## Digitized by the Internet Archive in 2010 with funding from University of Toronto

[^0] -

```
-
```

```
-
```

    \(+1\)
    VOL. IX.<br>(1.

- 

$$
\begin{aligned}
& \text { CAMBRIDGE, MASS., U.S. A. } \\
& \text { 1881-1882. }
\end{aligned}
$$


5

$\qquad$

\author{
\author{
BULLETIN <br> <br> MUSEUSI OF COMPARATIVE ZOÖLOGY <br> <br> HARVARD COLLEGE, IN CAMBRIDGE. <br> <br> \author{

```
OF THE
``` \\ \\ \\  \\ \\ \\  \\ \\ \\  \\ \\ \\  \\ \\ \\ . \\ \\ \\ 
} \\ \\ COLEHGE, IN CANBRIDGE. \\ \\ i? \\ \\ \(\square\) \\ \\ . \\ \\ -
}
}
.

\author{
\(\qquad\) \\ 
}
\(\qquad\)







1
\[
4
\] -
\[
\begin{aligned}
& \text { QL } \\
& 1 \\
& H^{3} \\
& V .9-10
\end{aligned}
\]

University Press:
John Wilson and Son, Cambridge.
\(\frac{61385}{4.7 .55}\)

\section*{CONTENTS.}
Page
No. 1. - Reports on the Results of Dredging by the United States Coast Sur- vey Steamer "Blake." XIV. Description sommaire des espèces nou- velles d'Astéries. Par E. Perrier ..... 1
No 2. - Reports on the Results of Dredging by the United States Coast Sur- vey Steamer "Blake." XV Preliminary Report on the Mollusca. By W. H. Dall ..... 33
No. 3. - Letter No. 5 to C. P. Patterson, Superintendent United States Coast Survey, on the Explorations in the Vicinity of the Tortugas during March and April, 1881. By A. Agassiz ..... 145
No. 4. - Report on the Results of Dredging by the United States Coast Sur- vey Steamer " Blake." XVI. Preliminary Report on the Comatnlæ. By P. H. Carpenter. (1 Plate). ..... 151
No. 5. - Observations on the Species of the Genus Partula Fér., with a Biblio- graphical Catalogue of all the Species. By W. D. Hartman. (2 Plates) ..... 171
Bibliographical Catalogue ..... 179
No. 6. - Bibliography to accompany "Sclections from Embryological Mono- graplis" compiled by A. Agassiz, W. Faxon, and E. L. Mark. I. Crus- tacea. By W. Faxon ..... 197
No. 7. - Explorations of the Surface Fauna of the Gulf Stream under the Auspices of the United States Coast Survey. By A. Agassiz. I. Notes on Acalephs from the Tortugas, with a Description of new Genera and Species. By J W. Fewkes. (f llate)S. ..... 251
No. 8. - On the Aealephe of the East Coast of New England. By J. W. Fewkes. (1 Plate) ..... 291

No. 1.-Reports on the Results of Dredging under the Supervision of Alexander Agassiz, in the Gulf of Mexico, 1877-78, by the United States Coast Survey Steamer "Blake," Lieut.-Commander C. D. Sigsbee, U. S. N., Commanding, and in the Carilbean Sea, 1878-79, by the U. S. C. S. S. "Bluke," Commander J. R. Bartlett, U. S. N., Commanding.
(Published by permission of Carlile P. Patterson, Supt. U. S. Coast and Geodetic Survey).

\section*{XIV.}

> Description sommaire des Espèces nouvelles d'Astéries, par Edmond Perrier, Professeur au Jardin des Plantes de Paris.

Nota. - Dans toutes les descriptions, \(\boldsymbol{R}\) désigne la distance du centre de la bouche à l'extremité d'un bras ; \(r\), la distance du centre de la bouche au sommet de l'angle ou de l'are interbrauchial ; \(d\), la distance entre les pointes des deux bras consécutifs.

\section*{GENRE ASTERIAS (Linné).}

Asterias contorta (Ed. Perrier).
Espèee voisine d'aspect de l'Asterias glacialis des côtes de France. Elle possède comme elle cinq bras de longueur moyenne, présentant chacun une rangée dorsale médiane de piquants assez longs et poiutus, deux rangées latérales, l'une à droite, l'autre à gauche de piquants semblables limitant la face dorsale des bras et sur la face ventrale, à peu de distance des piquants qui bordent la gouttière ambulacraire, une double rangée moins régulière de piquants un peu plus petits; comme chez l'Asterias glacialis tous les piquants sont eutourés d'un bourrelet portant un nombre considérable de pédicellaires croisés tandis 'que de grands pédicellaires droits, isolés, sont disséminés entre eux. Mais les piquants qui bordent la gouttière ambulacraire sont sur deux rangées, au lieu d'être sur une scule, comme chez l'Asterias glacialis. De plus entre les piquants ambnlacraires et la double rangée de piquants ventraux, on voit chez l'dsterias contorta une série longitudinale de gros tentacules isolés, tandis que dans l'dsterias glacialis, on trouve à la place une série de bouquets de tentacules comme sur la face dorsale.

\section*{Asterias fascicularis (nov. sp.).}

Cinq bras, assez allongés, légèrement reuflés ì la base. \(\mathrm{K}=57 \mathrm{~mm}\)., \(r=\) 9 mm ., \(\mathrm{R}>6 \mathrm{r}\). Sillon ambulacraire assez large bordé par une double rangée vol. ix. - No. 1.
de piquauts assez allongés, obtus, coutigus les uns aux autres; piquant, de la seconde rangée exactement superposés à ceux de la première ct se renversant assez sourent sur la face rentrale des bras, tandis que les piquants internes se rabatteut sur la gouttière ambulacraire. Du sommet de chacun des angles buceaux partent des piquants semblables qui se rabattent sur la bouche.

A très peu de distauce des sillons ambulacraires viennent successivement deux rangées de piquauts isolés un peu plus gros que les piquants de la seconde rangée; entre deux piquants cousécutifs de la seconde rangée, on trouve en général intercalé un assez gros pédicellaire croisé. Ces deux rangées de piquants peurent être cousidérées comme appartenant à la face ventrale. La charpente dorsale des bras est. formée par environ sept raugées d'ossicules alternes, laissant entre eux des espaces membraueux dont le diamètre est moins grand que le leur et dans lesquels on aperçoit généralement deux tentacules; sur les bords de chacun de ces espaces membrancux se trouvent deux ou trois pédicellaires eroisés isolés. Les ossicules qui occupent la ligue médiane des bras portent en général de trois ou quatre piquants courts, mousses, disposés en are transrersal ; les autres ossicules portent un ou deux piquants semblables sur leur partie médiane et quelquefois aussi près de leur extrémité, de sorte qu'ou troure des piquants non seulement dans l'intervalle des huit rangées d'aires membraneuses, mais aussi sur les trabécules transverses qui séparent les uns des autres les aires d'une même raugée. Ces piquants courts et obtus tous semblables eutre cux forment ainsi un grand nombre de rangées irrégulières.

Les piquants du disque qui est petit et auquel les bras s'attachent en se retréeissant sont semblables à ceux des bras, on aperçoit entre cux un petit nombre de grands pédicellaires droits à branches courbes et ne se touchent que par leur extrémité. Ces pédicellaires de forme ovalaire sont très caractéristiques; leur pièce basilaire est moins larges que les deux brauches de la pince.

La plaque madréporique est pctite, arrondic, marquée de larges sillons rayonnants, ellc est placée à l'augle des deux bras.

\section*{Asterias linearis (nov. sp.).}

Cinq bras, ćtroits, anguleux. Un scul rang de piquants ambulacraires droits, aussi large au sommet qu’à la base, serrés. - Face ventrale très-étroite armée de piqủants obtus, formant trois rangées irrégulières à la base des braspiquants de la rangée externe formant la carène latérale. Face dorsale des bras formée par trois rangées de plaques, dont chacune porte un long piquant. Ces piquants forment done trois rangées dont une médiane et deux latérales, formant le hord même du bras. Chaque piquant est entouré à sa base de plusieurs cercles de pédicellaires croisús.

Entre la rangée latérale et la rangée ventrale de piquants les tubes tentaculaires sont gros et isolés: ils sont petits et disposés par groupes cutre la rangée latérale et la raucrice médiane de piquants.

Il existe sur le disque quelques pédicellaires droits, épars, de forme allongée.
\[
\mathrm{R}=50 \mathrm{mm.}, r=5 \mathrm{mm.}, \mathrm{R}=10 r, d=5 \mathrm{~mm} .
\]

\section*{Asterias angulosa (nov. sp.).}

Ciuq bras, allongés, relativement grêles et pointus, sur un échantillon désseché \(\mathrm{R}=43 \mathrm{~mm}\)., \(r=6 \mathrm{~mm}\)., \(\mathrm{R}=7 \mathrm{r}\). Largeur des bras à la base (non compris les épines) \(=7\) mil. Sillon ambulacraire large ; face ventrale très étroite; faces latérales presque verticales; arête médiane dorsale très marquée; de ces dispositions résulte pour les bras une section pentagonale très-nettemeut accusée.

Plaques interambulacraires portant chacnue deux piquants grêles, allougés presque cylindriques dont l'eusemble forme une double rangée parfaitement régulière; dans chaque rangée les piquants à cause de leur minceur paraisseut cependant pell serrés; les piquants portent, en géuéral, un pédicellaire droit de forme allongée; ceux qui correspondent aux piquants interncs s'insèrent dans le sillon ambulacraire. Les plaques ventrales sont plus longues que larges; elles portent chacune deux longs piquants pointus, insérés sur une ligue très oblique par rapport à l'axe des bras; les piquants forment encore une double rangée régulière séparée de la rangée de piquants interambulacraires par une bande très étroite daus laquelle, avec quelques piquants isolés et plus courts que leurs voisins, se trouve une rangée de pédicellaires droits de même forme que ceux du sillon ambulacraire. Il existe, en général, un de ces pédicellaires à la base de chaque couple de piquants. Le pịquant externe est entouré du côté exterue d'une demi courome de pédicellaires croisés; on trouve aussi quelquefois daus son voisinage un ou deux pédicellaires droits. Les plaques latérales presque verticales sont très élargies de la base au sommet; elles s'imbriquent par leur partie élargic de la base au sommet du bras. Cette partie élargie porte toujours un piquant isolé, long, grêle ct pointu, entouré à sa base d'une couronne de pédicellaires croisés. L'espace libre eutre les bases rétrécics de ces plaques est occupé par une aire porifere ne contenant qu'un petit nombre (un à trois) de tubes tentaculaires. Le squelette dorsal est formé par des bandes presque parallèles de deux ou trois plaques calcaires aplaties et imbriquées unissaut eluaque plaque latérale à une plaque correspondaute de l'arête dorsale: d'où il suit que les plaques de l'arête dorsale, les bandes costiformes qui en partent les plaques latérales et même les plaques ventrales sont en même nombre. Ces bandes costiformes sont séparées par des espaces vides de même largeur qu'elles allongés transversalement et où ne parait avoir existé qu'un très petit nombre de tubes tentaculaires (probablement un à ehaque extrémité). Les bandes costiformes sont inermes, sauf quelques unes de la région moyenne des bras qui portent chacune en leur milicu un petit piquant pointu, entouré à sa base d'un ccrele de pédicellaires eroisés. Dans ce cas la région moyenne de la baude s'élargit de manière à venir au contact des bandes voisines et à couper en deux l'aire porifere. Toutes les plaques formant l'arête médiane dorsale portent un piquant loug et pointu cutouré à sa base de pédieellaires eroisés. Chaque bras présente done en tout trois rangées de piquants ; une dorsale et médiane et deux latérales; plus quelquefois le rudiment d’une rangée interealcaire à la base des bras, les bandes costiformes s élargissent de manière ì former autour du disque un cerele caloaire relié par cinq rayous correspondant au
milieu des bras aux plaques entourant l'anus. La plaque madréporique petite et peu sillonnéc est avec ce cercle osseux sur le disque, ou ue voit qu'un petit nombre de piquants extrémités de pédicellaires droits.

\section*{Asterias gracilis (nov. sp.).}

Six bras, assez allongés, grêles, pointus, inégaux ; trois d'entre eux situés d'un même côté, plus grands que les trois autres (sur les quatre échantillons que j’ai pu examiner). Sur l'échantillon dans l'alcool \(\mathrm{R}=15 \mathrm{~mm}\)., \(r=3 \mathrm{~mm}\)., \(\mathrm{R}=5 r\). R étant mesuré sur le plus grand bras le rapport \(\frac{R}{r}\) est un peu plus grand chez l'individu désseché. Piquants ambulacraires disposés sur dcux rangs, égaux entre cux. Au devant de cette double rangée on aperçoit une rangée de petits pédicellaires droits, émergeant du fond de la gouttière ambulacraire. En dehors des piquants interambulacraires, sur les faces latérales, on aperçoit une double rangée de piquants aplatis, à bords parallèles ou légèrement élargis au sommet, brusquement tronqués, finement striés, divergents, plus longs et plus larges que les piquants intcrambulacraires auxquels ils font immédiatement suite. Ces piquants sont entourés en dehors d'un demi cerele de pédicellaires croisés. Un assez grand nombre de ces pédicellaires se voient dans l'espace qui séparent ces piquants des premiers piquants dorsaux. Ceux-ci sont beaucoup plus courts presque cylindriques, finement striés et légèrement épineux au sommet. Ils sont nombreux et disposés sans ordre sur les ossicules qui limitent les aires porifères ; mais celles-ci sont disposées au contraire fort régulièrement; elles constituent six rangées longitudinales alternes, dans chacune desquelles les aires sont séparées par des ossicules transversaux couverts de piquants et de pédicellaires, lcurs têtes élargies constitueut les baudes solides de séparation entre les rangées d'aires poriferes. Celles-ci ont un diamètre plus grand que la largcur des ossicules qui les séparent, entre les piquants qui naissent des parties solides des bras on voit un assez grand nombre de pédicellaires croisés qui ne se disposent pas nettement en cercle autour de leur base, sur la base des bras et sur le disque, oin les aires poriferes cessent de présenter un ordre déterminé et où les piquants sont plus nombrcux ; à ces pédicellaires croisés s'ajoutent des pédicellaires droits, relativement grands, une fois et denie plus longs que larges, et dont les deux branehes laissent entre elles, à leur insertion sur la piêee basilaire, un ćcartement très sensible.

Sur aucun des quatre échantillons que j’ai ecpendant cxaminés avec soin, je n'ai pu distinguer de plaque madréporique ; trois des échautillons de Sand Key (Floride), ì 120 et 129 brasses de profondeur, l'autre de Tennessee Reef (Floride), à \(17 t\) brasses.

\section*{GENRE ZOROASTER (Wyville Thomson).}

\section*{Zoroaster Sigsbeei (nov. sp.).}

Cinq bras; ambulacres quadrisériés à la base des bras, bisériés dans le dernier tiers de lcur longueur, à ventouse très-petite, beaucoup moins large que le tube ambulacrairc quand celui-ci est contracté. Tubes anıbulacraires très serrés les uns contre les autres; gouttière ambulacraire étroite à bords échancrés au devant de chaque tube ambulacraire. Chacun des tubes se trouve ainsi placé dans une sorte de loge semi-circulaire dont les bords saillants le séparent de ses voisius; ces
* parties saillantes sont armées chacune d'un piquant comprimé, courbe, assez semblable aux piquants qui occupent la même position chez les Astropecten. Sur le dos de ce piquant se trouve, en général, un pédicellaire droit; sur le bord de la gonttière les pédicellaires semblent donc alterner avec les tubes ambulacraires. Toute la face ventrale est uniformément recouverte de petits piquants très serrés couchés sur la surface du corps et dirigés vers l'intérieur des bras. Parmi cux se trouve quelques piquants isolés, plus grands, assez régulièrement espacés, correspondant à peu près aux piquants de la gouttière ambulacrairc. De chaquc angle interbrachial 3 on 4 piquants aigus se projettent au-dessus de l'orifice buccal. La face dorsale des bras et le disque sont dépourvus de piquants. La partie supérieure des bras est formée de cinq rangées régulières de plaques calcaires légèrement bombées, très scrrées laissant entre elles des sillons longitudinaux un peu enfoncés, occupés par les apophyses latérales des plaques, qui eirconscrivent des orifices par où faisaient probablement saillic chez l'animal rirant des tubes tentaculaires. Le disque est formé d'une plaque centrale autour de laquelle se disposent: \(1^{\circ}\) un cercle de cinq plaques interbrachiales. \(2^{\circ}\) un second cerele de eing plaques correspondant aux bras et séparées les unes des autres par les premières qui font saillie entre elles. \(3^{\circ}\) un ccrcle de dix plaques sitnćes deux par deux dans l'intervalle des bras, plus petits que les précédents. \(4^{\circ}\) un cercle de quinze plaques disposées trois par trois à la basc des bras et dont la médiane, plus grande, sépare les unes des autres les cinq̧ couples de plaques du cercle précédent auxquelles sont contigus les deux autres plaques. Le disque se trouse done formé de 36 plaques toutes convexes, bien nettement séparées les unes des autres et circonscrivant des pores isolés par chacun desquels fait saillie un tube tentaculaire. Quelques petits pédicellaires droits sont disséminés en ces plaques.
La plaque madréporique couvexe, arrondie est situce entre le premier cercle de cinq plaques et le cercle des dix plaques interbrachiales.

Il existe un anns bien visible entre la plaque centrale et les plaques du premier cerele, vis-à-vis de l'un des augles interbrachiaux, contigu à celui où se trouve la plaque madréporique.

Bras étroits, grêles, allongés. \(\mathrm{R}=49 \mathrm{~mm} ., r=7 \mathrm{~mm} ., \mathrm{R}=7 r, d=6 \mathrm{~mm}\).
Nota : pas de pédicellaires croisés.

\section*{Zoroaster Ackleyi (nor. sp.).}

Cctte espèce est hien nettement distincte du Zoroaster Sigsbeei, comme aussi dn Zoroaster fulgens. Son aspect rappelle beaueoup plus l'aspect d'un Ophidiaster on même celui d'un Chataster, surtout lorsqu'on examine la face inféricure des bras.
Les bras sont beaucoup plus allongés et le disque proportionnellement plus petit que celui du Zoroaster Sigsbeei.
\[
\mathrm{R}=110 \mathrm{~mm} ., r=9 \mathrm{~mm} ., \mathrm{R}=12.2 r, d=9 \mathrm{~mm} \text {. à la basc. }
\]

Les bras ne diminuent pas graduellement d'épaisseur de la base au sommet comme chez le Zoroaster Sigsbeei. Ils conservent à pen près semsiblensent le même diamètre jusque vers le premier tiers de leur longueur, ou même se renflent légèrement dans cette région, puis diminuent peu à peu saus cependant devenir aussi efflés que ceux du \(Z\). Sigsbeei.

Leur squelette est aussi beaucoup moins compact, il est formé d'un beaucoup plus grand nombre d'ossicules plus petits; on compte jusqu'à 17 rangécs longitudinales de ces ossicules tandis qu'il n'en existe que neuf daus l'autre espèce. Il en résulte que les bras sout heaucoup plus faciles à déformer et sont courbés en sens divers chez les indiridus conservés dans l'alcool, au lieu de présenter la rigidité et la netteté de forme si frappantes chez les Zoroaster Sigsbeei et fulgens. Les ossicules du disque ne se renflent pas comme chez la première de ces espèces de manière à faire une forte saillie au-dessus des bras et à en séparer nettement le disque. Les plaques des bras et du disque sont uniformément couvertes de piquants articulés très-petits et dans leurs intervalles se trouveut des pédicellaires droits. Sur la face ventrale les piquants deviennent beaucoup plus allongés, plus pointus et claque plaque en porte à son centre un certain nombre qui sont plus grands et plus forts que ceux qui sont situés sur ses bords; l'ensemble de ces piqquants forme à la face ventrale un revêtement assez semblable à celui qu'on observe chez les Luidia. La ressemblance est encore augmentée parce que chacune des plaques adambulacraires, au lieu de porter un seul piquant marginal droit, comme chez les Asterias, porte une rangée de piquants dont la dircetion est perpendiculaire à celle de la gouttière ambulaeraire qui s'avance jusqu'ì cette gouttière et sont comprimés et recourbés en lame de sabre, exactement comme clie\% les Luidia. P'armi ces piquants se trouvent en assez grand nombre des pédicellaires droits.
les tubes ambulacraires sont disposés sur quatre raugées à la hase des lras ; mais il finissent par n'être plus que sur denx rangées à l'extrémité; ils somt remarquables, comme che\% les Zorouster Sigsbeei, par la petitesse de leur ventouse terminale ; e'est eneore un earactère qui rapproche ces singuliers animaux des As/ropertinider et motamment de Luilia.

La plaque malréporique est petite et largement sillomnée. La bouehe est petite; les augles huceaux presque coutigus et armés de piquants assez forts.

\section*{GENRE PEDICELLASTER (Sars).}

\section*{Pedicellaster Pourtalesi (Edm. Per.).}

Cinq bras, grêles, allongés, presque cylindriques, obtus au sommet.
\[
\mathrm{R}=21 \mathrm{~mm} ., r=4 \mathrm{~mm} ., \mathrm{R}>5 r
\]

Le diamètre des bras près de leur base est d'environ 3 mm .
Lics tubes ambulacraires sont disposés sur deux rangs sculement et terminés par une ventouse bien conformée.

La gouttière ambulacraire occupe presque toute la face ventrale des bras.
Les plaques adambulacraires sont assez larges et portent chacune deux ou trois piquants coniques, grêles, asscz longs, placés en rangéc transversalc. La face dorsale est constituée par un réscau'd'ossicules qui forment sculement trois rangécs régulières, une qui occupent la ligne médianc dorsale, et deux latéralcs. Ces trois rangécs sont reliées entre elles par des ossicules irrégulièrement disposés, tous ces ossicules portent un petit piquant; dans les intervalles des piquants se trouvent des pédicellaires croisés isolés et parfaitement caractérisés.

L'anus, très visible, est subcentral ; la plaque madréporique, petite, difficile à distinguer, marquée de larges sillons rayonuants est située tout au bord du disque dans l'intervalle de deux bras. Les bras sont à leur base d'unc fragilité extrême. Les pièces dentaires sont formées par les plaques ambulacraires et portent chacunc deux piquants dirigés vers la bouche.

\section*{GENRE ECHINASTER (Müller \& Troschel).}

\section*{Echinaster modestus (Ed. P.).}
\[
\text { Cinq bras : } \mathrm{R}=36 \mathrm{~mm} ., \mathrm{r}=6 \mathrm{~mm} ., \mathrm{R}=6 \mathrm{r}
\]

Ses bras deviennent proportionnellement plus gros et plus courts chez les petits échautillons. Plaques adambulacraires portant chacunc dans la gouttière ambulacraire, un piquant gros, court, cylindriquc, obtus, renforcé intérieurement d'un piquant aussi gros mais un peu plus court et quelquefois d'un certain nombre de piquants plus petits, placés transversalement sur la plaque les uns derrière les autres. Vient ensuite une rangéc assez régulière de piquants qui s'arrêtent géućralement vers le milicu de la longucur des bras; puis d'un bord à l'autre des bras, neuf rangées assez régulières de petits piquants entre lesquelles se trourent parfois disséminés d’autres piquants irrégulièrement disposés - ossicules du squelette formant un réseau irrégulier, ì larges mailles sur les nocuds duquel sont placés les piquants. Dans les mailles du résean se trouvent trois ou quatre tubes tentaculaires. Les téguments sont épais; la plaque madréporique est petite, saillante, arrondic, marquée de sillons myomuants assez fins. L'anus est bien visible près du centre du disque et cntouré de petits piquants.

\section*{GENRE CRIBRELLA.}

\section*{Cribrella antillarum (Ed. P.).}

Cinq bras, allongés, pointus, flexibles dans tous les sens à l'état vivant et se contournant de toute façons dans l'animal desseché ou conservé dans l'alcool.
\[
\mathrm{R}=42 \mathrm{~mm} ., r=7 \mathrm{~mm} ., \mathrm{R}=6 r .
\]

Plaques adambulacraires petites, mais bicn distinctes, rectangulaires et allongées perpendiculairement au sillon ambulacraire, couvertes de petits piquants assez pointus mais peu saillants et serrés de manière à former unc sorte de gramus lation, ces piquants deviennent brusquement plus grands au voisinage du sillon ambulacraire et forment deux ou trois rangées irrégulières de piquants scrrés à chacune desquelles chaque plaque fournit deux ou trois piquants, deux ou trois de ces piquants occupent le bord libre de la plaque et forment l'armature ambulacraire proprement dite. La face ventrale est formée par des rangécs de petites plaques rectangulaires qui deviennent de moins en moins régulières à mesure que l'on s'éloigne de la grouttière ambulacrairc. Les plaques de la première rangée correspondent exactement aux plaques ambulacraires et les plaques des rangées suivantes correspondent aussi à peu près à celles des rangées adjacentes, et par conséquent à celles des rangées adambulacraires. On pen compter cinq de ces rangécs à la base des bras, mais elles se réduisent rapidement à trois. Toutes les plaques qui les composent sont couvertes d'une granulation serrée et formée de piquants un peu plus petits et moins pointus que ceux des plaques adambulacraircs. Les pièces dentaires ne sont pas saillantes; clles sont petites et bordécs chacuncs à l'angle buccal de trois ou quatre piquants un pcu plus gros que leurs voisins, eyliudriques et arrondis au sommet; leur surface porte quelques piquants de forme ordinaire.

La surface dorsalc est formée d'un réscau scrré d'ossicules finement granuleux, réscau semblable à celui qui forme la face dorsale des autres Cribrelles. Les mailles de ec réseau ont un diamètre un peu plus petit que celui des ossicules et offrent chacune un porc. L'anus est subcentral, entouré de piquauts un peu plus grands que leur voisins. La plaque madréporique est graude, situéc au milicu de la distance qui sépare le ecntre du disque du sommet de l'angle interbrachial correspondant, clle est converte de gramules semblables à ceux des ossieules dursaux et distincte seulement, en conséquence, par la disposition un peu spéciale de ses granules et par la saillic qu'elle fait sur le disque.

\section*{Cribrella sex-radiata (Ed. P.).}

Cette espè̀e, voisine de la précélcnte par les caractères de sa face rentrale, en differe très uettement par les proportions de ses bras plus eourts et plus obtus et
 jonit anssi de la faculte de reproduction par division en deux moitiés que la présentent plusieurs Asterius ì bras nombreux, diverses Limekia ef quelques Asterime.

Des trois échantillons que j’ai sous les yeux, un seul, en effet, possède six bras égaux. Chez les autres, trois bras sont à peu près de même taille et trois consídérablement plus petits, sont évidemment de nourelle formation et destinés à remplacer ccux qu’ont dû précédemment se détacher. La répétitiou de ce même phénomène, dans les mêmes conditions, chez deux excmplaires sur trois indique bien qu'il ne doit pas être accidentel. Voici la description de l'individu le plus complet qui est aussi le plus grand.

Six bras, relativement courts et obtus : \(\mathrm{R}=18 \mathrm{~mm} ., r=4 \mathrm{~mm} ., \mathrm{R}=4.5 r\).
Plaques adambulacraires rectangulaires, allongées perpendiculairement au sillon ambulacraire, couvertes de granules scrrées obtus, qui grandissent brusquement sur le bord libre de la plaque de manière à former deux rangécs de petits piquants obtus; à la plus externe de ces deux rangées chaque plaque fournit trois piquants, et deux seulement à la plus interne qui est tout-à-fait sur le bord de la gouttière ambulacraire. La face ventrale est formée de rangées régulières de plaques rectangulaires au nombre de trois à la base des bras, de deux ì partir du milieu de la longuenr, la rangée intermédiaire disparait graduellement.

Ces plaques se correspondent dans chaque série, et correspondent aux plaques adambulacraires; elle sont couvertes d'une granulation serréc et régulière.
La face dorsale est composéc du réscau d'ossicules ordinaire chez les Cribrelles, les ossieules de ee réseau sont couverts de granules plus fins encore que ceux de la face ventrales. Les mailles du réseau sont de plus petite dimension que les ossicules eux-mêmes, et ne présentent qu'un seul pore tentaculaire.

Comme chez la plupart des espèces où existe la reproduction par division; on observe sur la face dorsale deux plaques madréporiques. Ces plaques, assez petites, arrondies, couvertes de granules, sont situées à droite et à gauche d'un même bras et près du sommet des angles interbrachiaux correspondants.

\section*{GENRE OPHIDIASTER (Müller \& Troschel).}

\section*{Ophidiaster Floridæ (nov. sp.).}

Cinq bras courts, coniques et obtus au sommet. \(R=33 \mathrm{~mm} ., r=9 \mathrm{~mm}\)., \(\mathrm{R}=3.7 \mathrm{r}\). Largeur des bras à leur base \(=10 \mathrm{~mm}\). à 5 mm . du sommet \(=415 \mathrm{~mm}\).

Face ventrale légèrement aplatic et formée comme chez les Linchia, par un petit nombre de rangées de plaques entre lesquelles on n'observe pas de pores tentaculaires et qui sont plus petites que les plaques marginales dorsales. La granulation générale, formée de grains arrondis, contigus, parfaitement réguliers. et assez gros, enpêehe de distinguer le nombre de ces rangées et les limites de's plaques qui les composent. Les piquants interambulacraires sont sensiblement disposés comme chez les autres espèces du geure Ophidiaster; c'est-ì-dire qu'en dehors des piquants qui sont implantés au bord même du sillon et qui sont ici tous égaux entre cux, on observe une rangée de piquants obtus, oroïles, heaucoup plus gros que les précédents; on trouve deux de ces piquants pour quatre de la rangée préeédente, deux piquants conséentifs de la rangée exterue sont sépa-
rées par deux petits piquants aplatis semblables à ccux de la rangée interne et implantés obliquement. Ces deux rangées de piquants sont presque contiguës et beaucoup plus rapprochées par conséquent que dans la plupart des autres espèces d'Ophidiaster. Vers la base des bras à \(1 \frac{1}{2} \mathrm{~mm}\). en dehors de la rangéc externe on observe une rangée de piquants exactement semblables à ccux qui la composent, mais qui ne dépasse guère le nircau de l'angle interbrachial et ne comprend que huit piquants au plus; encore en dehors de cette rangée, également à une distance de \(1 \frac{1}{3}\) mm. environ, on observe les indices d'une nouvelle rangée formée de semblables piquants, mais beaucoup plus courte. Cette multiplieité des rangées de piquants ventraux est encore un caractère exceptionucl, probablement en rapport aree le développement relativement grand de la face ventrale (dont la largeur ne dépasse pas toutcfois \(4 \frac{1}{2} \mathrm{~mm}\). à la naissance des bras). La rangée moyeme (eclle qui se compose de huit piquants envirou) semble être prolongée par une rangée moins régulière et min peu plus interne de pédicellaires en salière construits sur le mêne type que ceux des autres Ophidiaster. Les cupules de ces pédicellaires qui sont à peine retrécies à leur basc, peu saillantes, à bords lisses. Il en est de même des petites valves verticales qui se rabattent dans leur intérieur. Plusieurs de ces pédicellaires ont trois branches au lieu de denx.

Les faces dorsales et latérales sont formécs par sept rangécs parfaitement régulières d'ossienles allongés, ovalaires et non plus en forme de trètle, comme chez la plupart des Ophidiaster; ces ossicules recouverts d'une grauulation semblable à celle de la face ventrale sont assez lortement saillants et bien distinets les mus des autres. Entre la première rangéc latérale (plaques marginales rentrales des Goniasteride) et les plaques ventrales proprement dites, il n'existe pas d'aires porifêres. Sur le reste des faces latérales et dorsales on trouve six rangées régrulières d’aires poriferes placées dans autant de sillons enfoncés séparant les sept rangées d'ossienles. Ces aires poriféres ne contienneut que de deux à quatre pores, assez espacés. Sur le disque, les ossicules affeetent ume disposition asserz régulière. Autour d'un ossienle central se trourent d'abord des ossicules peu visibles formant la surface d'un pentagone limité par dix ossicules plus gros, convexes, bien distinets, contigus, corrrespondant les uns ì la ligne médiane des bras, les autres aux angles interbrachiaux. C'est en dehors de ees pentagones entre l'un de ses côtés et le sommet de l'm des angles iuterhrachiaux, que se trouve la plague madréporigue, en forme de triangle éguilatéral et converte de fins sillons rayounamts. Sur le disque les aires poriferes sont peu distinctes.

\section*{Ophidiaster Agassizii (nov. sp.).}

Ciug bras, presume eylindriques, s'amincissant senlement vers l'extrémité pour se terminer en pointe obtuse.
\(\mathrm{k}=\hat{\imath} 0 \mathrm{~mm}, r=10 \mathrm{~mm}\)., \(\mathrm{R}=7 r, d=13 \pi \mathrm{~mm}\). Épaisseur des bras près de leur base \(=12\) min., ì 1 mm . de l'extrémití \(=5 \mathrm{~mm}\).
l'iquants du sillom ambulacraire disposés, suivaut la règle générale, en rangées distantes l'une de l'autre ; leur intervalle étant rempli par la gramulation gémérale. hes piquauts de la rangée interne sont cylindriques, ćgaux ontre enx, et séparís
par une rangée verticale de petits grauules qui remplacent le petit piquant que l'ou observe chez d'autres espèees et qui rappellent la dispositiou caractéristique ehez certaines espèees de Linckia telles que la L. mullifora, Lamarek et le L. miliaris, Lam. Les piquants de la seeonde rangée sont courts, coniques, plus gros que ceux de la rangée interne, et plus espacés, de sorte que trois piquants de eette dernière correspondent à deux piquants seulement de la première: La gramulation qui remplit l'intervalle de ees dcux rangées de piquants est la même que la granulation générale ou du moins que la partie de eette granulation qui rceouvre les séries de plaques constituant le squelette de l'animal. Le nombre de ces séries est de sept, dont une occupe la ligue médiane des bras; elles sout parfaitement régulières sauf dans quelques régions fort limitées où l'animal paraît avoir été blessé.

Ces plaques sont comme d'habitude en forme de trèfle dont le pédoncule serait coupé et le foliole médiau tourné vers la base du bras et un peu plus grand que les folioles latérales. Les plaques de toutes ces séries se correspondent exactement et se touchent dans deux rangées consécutives par leur folioles latéraux, de sorte que le squelette peut tout aussi bien être décomposé en rangées transversales qn'en rangées longitudinales. Un léger sillou passaut par la base des plaques d'une même rangée transrersale s'observe sur tout le pourtour de bras auxquels ils domnent, au moius chez les individus dessćchés, un aspect nettement anuelé. Le nombre de ees rangées transversales de plaques est de 43 envirou, à partir des sommets d'une sorte de pentagone que l'on observe sur le disque. A l'intéricur de ce pentagone les plaques, peu nombreuses, sont disposées irrégulièrement autour de l'auus. La plaque madréporique circulaire, petite, criblée plutôt que sillonnée est en dehors de ce pentagone et tout-ì-fait marginale.

Les rangées de plaques longitudinales sont séparcées par des rangées d’aires porifères au nombre de huit et dont les plus inférieures arrivent au coutact des plaques interambulacraires. Chacune de ces rangées est composéc d'aires elliptiques, distinetes les unes des autres, allongées tranversalement sur le dos et sur le côté, presque circulaires au voisinage des ambulacres et contenant chacune de 14 ì 18 pores tentaculaires. La granulation qui recourre ces aires est uu pen plus fine que celle qui recouvre les plaques et qui est d'ailleurs parfaitement uniforme. C'est dans les aires poriferes, légèrement enfoncées par rapport aux rangées de plaques que l'on distingue les pédicellaires ; ceux-ci sont construits sur le type des pédicellaires salières; mais ici les deuxalvéoles sont larges à leur base, pointues à leur sommet, de sorte que leur ensemble a une forme exactement naviculaire. Une barrette transversale sépare comme d’habitude les deux alvéoles l'une de l'autre, et divise, par conséquent, la marette en deux moitiés symétriques. Chez l'O. pyramidalus, Gray, les pédicellaires présentent une forme à peu près semblable ; mais les bords de l'alvéole sont légèrement reuflés aux deux extrémités de la barrette transversale; les alvéoles se rétrécissent même un peu au voisinage de cette barrette ; ils sout aussi moins pointus de sorte que la forme navieulaire est beaucoup moins nette ; enfin ceux qui avoisinent le bord de la gouttière ambulacraire sont beancoup plus gros que les autres, et leurs alvéoles beaucoup plus ronds, différenee que l'on retrouve chez l'O. Agassizii.

Chez cette dernière espèce une seule aire poriferr peut contenir cinq ou six pédicellaires; ceux-ci échapperaient facilement à l'attention si l'on n'était préveuu, parce qu'ils ne font pas saillie au-dessus de la granulation générale, qu'ils sont fort petits et que la moitié de leur alvéole peut êtré facilement confonduc avec un des pores tentaculaires avoisinants.

La couleur paraît avoir été rougeâtre pendant la vie.

\section*{GENRE KORETHRASTER (Wry. Tnoss.).}

Korethraster palmatus (nov. sp.).
Cinq bras courts, convexes en dessus, légèrement aplatis on dessous.
\[
\mathrm{R}=47 \mathrm{~mm} ., r=14 \mathrm{~mm} ., \mathrm{R}=3 r
\]

Angles interbrachiaux non arrondis. Tubes ambulacraires sur deux rangs, terminés par une ventouse de forme ordinaire, plaques adambulacraires petites, portant chacune un piquant dans le sillon ambulacraire. Face ventrale forméc de 13 rangées lougitudiuales de petites plaques en rectangle allongé dans le sens trausrersal du bras, imbriquées d'une rangée à l'autre de telle façon que les plaques de la rangée la plus interne recourrent le côté des plaques de la rangée à laquelle elles sont contigues. Chacune de ces plaques porte sur son bord libre parallile au sillon ambulacraire un pinceau de piquauts grêles, aplatis, qui semblent soudés entre cux et forment une lame mobile qui se rabat généralement vers le bord libre dn bras.

Une quatrième rangée porte des pinceaux ì peu près semblables qui forment aux bras une large bordure frangéc. La face dorsale est forméc d’ossicules quadrangulaires, ćchancrés sur leurs quatre côtés ct se tonchant par leurs sommets tronqués de manière à limiter entre eux un petit espace circulaire occupé par un tube tentaculaire. Chacun des ossicules porte à son centre un tubereule saillant, terminé par une tête arronlie et qui porte un large pinceau de dix à donze piquants grêles, pouvant aroir plus d'un millimètre de long, disposés en cercle sur lit tête des tubercules et réunis entre eux par une membrane continue formant une sorte de corolle monopétale dont ils seraient les nervures.

Ces piquants peuvent s'écarter ou se rapprocher de telle façon que le corolle peut, à la volouté de l'animal, s'ouvrir ou se fermer.

Il existe entre les bras anssi bien sur le dos que sur le ventre, des sillons partant soit de lit bouche soit du centre du disque et aboutissant aux angles interbrachiaux de façon que chaque bras est nettement séparé de ses voisins. Lat plaque madréporique petite, arrondie, marq̧uée de vermiculations courtes et assez larges est tri's voisine de l'anus, comme chez les Pleraster; elle est ì elieval sur l'un de ces sillons.

\section*{Koretlaraster radians (Ed. Per.).}

Petite espiee ì eing hras, courts et obtus, iplatis en dessous, assez, fortement convexes ch dessus: \(\mathrm{R}=10 \mathrm{mm},. r=4 \mathrm{~mm}\)., \(\mathrm{R}=2.5 \mathrm{r}\).

Plaques ambularaires portant chacune sur le bord même du sillon trois
piquants assez courts et divergents; plus, en dehors, sur la faee ventrale, une rangée transversale de trois piquants également divergents, rangée qu'une étroite bande nue sépare du bord des bras qui est eomme tranehant et frangé par les bouquets de piquants obtus que portent les plaques dorsales; ossicules dorsaux supportent chacun un bouquet d'une douzaine de piquants assez courts, obtus au sommet, ou même légèrement eapités, divergents, plus longs sur le bord des bras, irrégulièrement disposés à la surface des ossicules, mais de manière à en eouvrir toute la surface.
Des pores tentaculaires isolés entre les ossicules dont on pcut compter onze rangées peu régnlières d'un bord à l'autre des bras.

Plaque madréporique arrondie convexe, assez petite, à demi eaehéc entre les piquants de la surface dorsale, située à la moitié de la distance entre le ventre du disque et le sommet de l'angle interbrachial.

\section*{GENRE PTERASTER (Müller \& Trosciel).}

Pteraster caribbæus (nov. sp.).
Cinq bras: \(\mathrm{R}=30 \mathrm{~mm} ., r=15 \mathrm{~mm}\)., \({ }^{*} \mathrm{R}=2 r\).
Les tubes ambulacraires sont nettement sur deux rangs sur les grands exemplaires; sur les petits ils sont plus serrés et un examen superfieiel pourrait faire croire qu'ils sont disposés sur quatre rangs; mais on reconnaît aree un peu d'attention que la disposition est toujours la même, ces tubes terminés par une large ventouse sont bisériés. Les pièecs ambulacraires sont d'ailleurs ćlargies ì leurs deux extrémités.

Les pièces adambulacraires qu'elles supportent sont irrégulièrement arroudies, larges, mais imbriquées de façon que leur tranche seule apparait sur la face ventrale, où elle se montre comme un are de eerele incliné de dedans en dchors et du sommet à la base du bras. Elle porte sept piquants divergents; les six premiers eroissent régulièrement de dedans en dehors; le septième est beaueoup plus grand et dépasse la largeur des bras. Tous les piquants d'une même plaque sont unis entre eux par une membrane tendue comme eelle de l'aile d'une chaure-souris. En outre une autre membranc unit entre eux l'ensemble des grands piquants qui oceupent sur chaque plaque le septième rang; les membranes unissant les autres piquants viemuent s'attaeher à celle-ei le long du grand piquant; mais demeurent libres sur le reste de leur étenduc. Les pièces dentaires sont constituées aux dépens des pièces adambulaeraires, elles s'unissent en faisant sur la faee rentrale une légère saillic conique. Chacune d'elles porte six piquants qui grandissent en se rapprochant du sommet de l'augle buceal. Celui qui oceupe le sommet de cet angle est large, aplati.

Immédiatement en dehors des plaques adambulaeraires et s'appuyant sur elles, viement les ossicules qui forment tout le reste du squelette et qui sont très

\footnotetext{
* \(r\) est compté depuis le centre de la bouche jusqu'd l'angle de la membrane ventrale.
}
remarquables. Ce sont, en effet, des espèees d'étoiles à quatre branehes obliques, légèrement élargies à leur extrémité libre et dont deux sont plus longues et deux plus courtes. Au point d'entre-croisement de ces branches, s'élève une tige calcaire, oblique également par rapport au plan de l'étoile, plus longue que les plus longues branches et terminée par une tête arrondie. De cette tête divergent des piquants longs et grêles au nombre de six ou sept pour chaque ossicule, formant une sorte de balai dont toutes les parties sont unies entre elles par une fine membrane; à leur extrémité libre ces petits balais arrivent à se toucher; et tous sont unis entre eux par une membrane continue, distante de la surface dorsale, formée par les ossicules. C'est cette membrane qui donue à l'animal sa forme presque pentagonale; en réalité les bras tels qu'ils sont limités par les ossieules sont distinets les uns des autres jusque près de la bouche, comme on peut s'en assurer sur des sujets déteriorés.

On ne peut apereevoir la plaque madréporique que sur des individus dout la membrane dorsale a été déchiréc. Elle est arrondie, grande, bombée, très voisine de l'anus, sa surface est formée de sillons sinueux, fréquemment interrompus, de manière à isoler de petits îlots calcaires, irréguliers et saillants.

GENRE FROMIA (Gray).
Fromia Japonica (nov. sp.).
Cinq bras aplatis, ainsi que le disque, et terminés en pointe très obtuse. \(\mathrm{R}=32 \mathrm{~mm} ., r=7 \mathrm{~mm} ., \mathrm{R}=4.7 \mathrm{r}, d=65 \mathrm{~mm}\).
Piquants des sillons ambulacraires disposés sur deux rangés, la rangée cxterne étant assez irrégulière. Plaques interambulaeraires portant deux très rarement trois piquants divergents et inégaux terminés en pointe très obtuse; assez distants les uns des autres. Ces piquants, qui forment la rangée interne, sont suivis des piquants formant la rangée externe. Ceux-ci sont également au nombre de deux par plaque, mais l'un d'entre cux demeure ordinairement rudimentaire et ne forme qu'une courte pointe, tandis que l'autre devient plus gros que les piquants internes et constitue un piquant eonique dont la longucur ue dépasse pas celle de ces derniers. Les plaques interambulacraires sont suivies d'une rangée de plaques un peu plus longnes que larges de forme sensiblement rectangulaire et qui correspondent chacune en général à deux plaques interambulacraires. La largeur de ces plaques devient de moins en moins grande à mesure que l'on se rapproche de l'extrémité des bras, et la raugée elle-même devient tout-ì-fait indistinete à partir du dernier quart des bras. Dans la région interbrachiale, cette rangée est suivie d'une autre formće de plaques à peu près semblables au sept préeédentes, mais diminuant plus rapidement de longucur. Cette rangée s'arrête ì l'extrémité du premier tiers des bras et ne contient guère pour chacun d'enx que six ì sept pharques de plus en plus petites ì mesure que l'on s'approche de la lin de la rangéc. Chacune d'elles, sauf la première, correspond ì l'me des plaques du: la rangée précédente; il n'y a pas de pores tentaculares entre elles. Lee systeme de ces deux rangées constitue le squelette ventral. Viemment ensuite lés
deux rangées de plaques latérales. La rangée inféricure est composée de dix-sept plaques pour chaque bras. Ces plaques sont plutôt elliptiques que rectangulaires ì peu près deux fois aussi longues que larges et chacune d'elles correspond à deux des plaques de la rangée précédente.

Entre ces plaques et celle de la rangée ventrale, au bord inférieur des premières on trouve un pore tentaculaire isolé de telle sorte que deux pores eonséeutifs sont séparés par deux plaques ventrales et une latérale. On ne compte que six ou sept de ees pores à partir de la base des bras et quelques pores sporadiques isolés au nombre de deux ou trois tout au plus, se tronvent eneore entre les deux rangées de plaques ventrales. Les plaques latérales de la rangée supérieure sont au nombre de quinze pour elaque bras. Leurs dimensions sont inégales, et une plaque plus petite sépare souvent deux plaques plus grandes, de sorte que le bord des bras prend un aspect légèrement moniliforme. Toute la surface du disque et la surface dorsale des bras sont constitués par des plaques aplaties de grandeur variable, sensiblement cireulaires et autour desquelles sont distribués des pores tentaculaires isolés, équidistants au nombre de huit autour des plus grandes plaques. Sur les bras ees plaques peuvent être considérées co:nme formant trois rangées prineipales, d'ailleurs peu régulières; quelques plaques interealcaires plus petites se trouvent entre les deux rangées externes et les plaques latérales.

L'anus est subeentral, peu visible. La plaque madréporique petite, eireulaire, ne dépassant pas le niveau général du disque, est située au milieu du petit rason de celui-ci; elle est marquée de sillons très-courts, non rayonnants et légèrement rebordée.
Tout le corps est uniformément couvert de fines granulations. Cette espèce se distingue nettement de la \(F\). milleporella et la \(F\). pistoria par son armature ambulacraire, la plus grande disproportion entre scs plaques marginales et dorsales, le petit nombre de rangécs de celles-ci qui constituent la face dorsale des bras.

Localité, Japon.

\section*{GENRE ASTERINA (Nardo).}

\section*{Asterina Lymani (nov. sp.).}

Cinq bras reliés entre eux par un are interbrachial.
\[
\mathrm{R}=10 \mathrm{~mm} ., r=5 \mathrm{~mm} ., \mathrm{R}=2 r .
\]

Plaques adambulacraires portant chacune quatre piquants serrés l'un contre l'autre. Face ventrale formée de plaques petites, bien distinctes les unes des autres et couvertes chacune d'un bouquet de longs piquants grêles et soceux. Sur le bord du disque ees bouquets isolés les uns des autres forment une bordure frangée.

La face dorsale est également formée de petites plaques portant de petits bouquets de piquants longs et minees. Claque bras porte, à droite et à qauche de la ligne médiane dorsale, trois rangées longitudinales de pores tentaculaires isolés.

La plaque madréporique est cachéc par les bouquets de piquants.

\section*{Asterina pilosa (nov. sp.).}

Espèce à six bras, nettement séparés les uns des autres par des angles interbrachiaux arrondis au sommet. Sommet des bras obtus.
\[
\mathrm{R}=10 \mathrm{~mm} ., r=6 \mathrm{~mm} ., \mathrm{R}<2 r
\]

Plaques adambulacraires portaut chacume quatre piquants, grêles, presque égaux. Plaques rentrales assez régulièrement disposées en raugées sensiblement normales an bord libre des bras, couverts de piquants, moins allongés, formaut à la face ventrale un revêtement très serré. Les plaques ventrales diminuent pou ì peu quoique daus de faibles proportions en se rapprochant du bord libre des bras. Chacune des plaques qui forment ce bord porte un bouquet serré de piquants allongés, très minces et comme soycux. Les pièces dentaires ne sont pas saillantes, et portent chacune un peigne de cinq piquants, ce qui fait dix piquants pour chaque angle buccal.

Les plaques de la face dorsale, qui est légèrement convexe, sont plus petites que celles de la face ventrale, imbriquées, et portent chacune un bouquet hérissé de petits piquants grêles, divergents, inégaux et pointus; entre ces plaques, dans le voisinage de la ligne nédiane dos bras, on distingue plusieurs rangées régulières de pores tentaculaires isolés. Ces rangées sout au nombre de six environ pour chaque bras. Immédiatement en dessous du point ou sc rejoignent les rangées externes de deux bras voisins, se trouve un orifice plus grand (orifice génital?) que ccux par lequel sortent les tentacules dorsaux.

La plaque madréporique cst petitc, convexc, presque entièrement cachće par les piquants dorsaux et située au premier tiers de la distance qui sépare le centre du disque du sommet de l'angle interbrachial voisin.

L'anus est bien visiblc.

GENRE MARGINASTER (nov. gen.).

\section*{Marginaster pectinatus (Ed. P.).}

Singulière petite astéric, exactement pentagonale, mais à sommets du peutagone émoussés.
\[
\mathrm{R}=5 \mathrm{~mm} ., r=4 \mathrm{~mm}
\]

Côtés du corps à peu près rectilignes; face ventrale plane, face dorsale convexe, mais s'unissant ì la face ventrale de manière à former mu bord tranchant.

Tentacules ambulacraires sur deux rangs, gonttiere ambulacraire, bordée par unc raugéc de piquants aplatis, tronqués au sommet, isolés, sur chacmue des plaques adambulacraires. Une scoonde rangée de piquants plus petits et irrégroliers se trouve en arrière de la rangée adambulacraire.

Les plaques sont petites, peu distinetes, ainsi que les plaques ambulacraires ventrales, en raison de l'épaisseur de la peau qui les recouver uniformément sur la surface de elacun des triangles ventraux, compris entre le bord des bras et les grouttieres ambulacraires, on observe trois on quatre piquauts courts, monsses,
enveloppés par les téguments et irrégulièrement placés. Le bord libre du disque est formé sur la face ventrale par de grandes plaques rectangulaires, dont le grand côté est perpendiculaire au bord du bras, et qui sont séparées les unes des autres par des sillons bieu distinets prolongés souveut par d'autres sillons qui obliquent brusquement et se dirigent perpendiculairement à la gouttière ambulacraire la plus voisine. Il existe huit de ces plaques pour chaque côté du corps, et chacune d'elles porte sur son bord libre un peigne de cinq ou six petits piquants aplatis.

Sur la face dorsale le squelette est encore moins apparent que sur la face ventrale. De petits piquants, mousses, isolés, mais assez saillants, sont épars sur cette face. Le corps est également bordé par une rangée de grandes plaques correspondant à celles de la face ventrale et portant comme elle un peigne de piquants, plus courts cependant que ceux de la face ventrale.

La plaque madréporique est petite et situće à la moitié de la distance qui sépare le centre du disque du bord libre des bras.

L'anus est visible.

\section*{Marginaster echinulatus (Ed. P.).}

Petite astérie distincte par ses côtés échancrés de manière à découper cinq bras courts et larges; le sommet des angles interbrachiaux n'est pas arroudi.
\[
\mathrm{R}=5 \mathrm{~mm} ., r=3 \mathrm{~mm} ., \mathrm{R}=1.6 r
\]

Plaques adambulacraires s'avançant au-dessus de la gouttière ambulacraire et terminées en demi cercle de manière à en festomer les bords, portaut sur leur bord libre un demi cercle de quatre ou cinq petits piquants ct sur leur surface libre une rangée transversale de denx ou trois piquants divergents. Plaques ventrales distinctes surtout latéralcment et formant des rangées séparées par des sillons qui vont obliquement de la gouttière ambulacraire au bord des bras. Chacune d'elles porte deux petits piquants divergents. Pièces dentaires saillantes et séparées par une fente très visible.

Plaques marginales ventralcs au nombre de huit pour chaque côté du corps portant chacune sur leur bord libre un peigne de cinq piquants divergents.

Squelette dorsal caehé par la peau; plaques distinetes seulement par les petits piquants qu'elles portent et qui sont irrégulièrement disposés. Plaques margiuales peu visibles, bordées par des piquants très courts. Une rangéc de pores tentaculaires de chaque côté de lia ligne médianc des bras. Plaque terminale des bras, ovale et très grande.

Je u'ai pas pu voir la plaque madréporique.

\section*{GENRE RADIASTER (nov. gen.).}

\section*{Radiaster elegans (nov. sp.).}

Grande astérie à cinq bras.
\[
\mathrm{R}=92 \mathrm{~mm} ., r=26 \mathrm{~mm} ., \mathrm{R}=3.5 \mathrm{r} .
\]

Disque assez aplati, bras ayant ì lenr base 22 mm . de diamètre euviron, reliés entre cux par un are interbrachial à assez grande eourbure, contour nettement vol. ix. - No. 1.
limité par une rangéc de plaques marginales cachées par les tégumeuts, mais portant chacune à son bord extrême et à son bord interne un bouquet de piquants beaucoup plus gros que les bouquets analogues qui recourrent toute la surface dorsale et ressemblent un peu aux bouquets analogues des Solaster. Ces bouquets margiuaux forment ainsi sur tout le contour de l'animal une double rangée assez régulière. Ces bouquets sont un peu comprimés, de sorte que ceux d'une même plaque sont plus rapprochés l'un de l'autre qu'ils ne sont des bouquets des plaques voisines. Les plaques marginales sont an nombre de 39 ou 40 pour chaque bras.

Les bouquets de piquants des plaques dorsales, qui sont également recouverts par des téguments sont formés de piquants grêles, allongés, mobiles, qui peurent s'ćcarter les uns des autres ou se rapprocher en fuseaux.

La plaque madréporique assez petite est roisine du bord du disque.
Les plaques adambulacraires portcut chacune un faisceau de piquants cylindriques qui sont d'autant plus longs qu'ils sont plus rapprochés du bord de la gouttière ambulacraire; on observe génćralemeut trois de ces piquants sur le bord même de la plaque. İ chacune de ces plaques adambulacraires correspond une rangée de plaques ventrales qui se dirigent presque transrersalement de la gouttière ambulacraire au bord externe des bras. Bien que ces plaques soient cachées dans le tégument, on les distingue nettement, grîce au bouquet de piquants que porte chacune d'elles. Ces bouquets bien isolés les uns des autres forment sur la face ventrale autant de rangées bien régulières qu'il y a de plaques adaunbulaeraires le nombre de ees rangées est notablement supéricur à celui des pièces marginales ; il s'élève à près de 70 , de sorte qu'il n'y a aucume correspondance entre le nombre des plaques marginales et celui des plaques adambulacraires. Les piquants qui forment les bouquets rentraux sont plus courts que ceux qui forment les houquets dorsaux. Les pièees dentaires sont saillantes, couvertes de piquants ; leur longucur est de \(S \mathrm{~mm}\). et lcur largeur est de 3 mm . Ces pièces arrivent presque au contact et ne laissent pas apercevoir les membranes buccales.

Il n'y a point de pédicellaires.
Les tubes ambulacraires sont bisériés et terminés par une veutouse bien déreloppéc.

GENRE CTENASTER (nov. gen.).

\section*{Ctenaster spectabilis (nov. sp.).}

Six bras grêles mais assez courts sc rattachant par des ares interbrachianx assez arrondis à un disque large et assez épais. Tubes tentaculaires bisériés pourvus chacun d'une ventouse plane, bien distinete plus large. Toutes les plaques du squelette tant dorsales que vontrales recouvertes par la peau qui n'en laisse pas moins apparaître de nombreux piquauts bien acérés.

Bouche sitnéc au eentre d'un grand disque membraneux qui l'áloigne des pièces dentaires. Celles-ei portent comme les auteres plaques adambulacraires un peigne the cimy piquants divergents ì pointe obtuse. Les autres plaques adambulacraires protent cuene sur la face ventrale, une rangée perpendiculaire à la direction de la
gouttière ambulacraire, de quatre ou cinq piquants divergents dorsanx externes plus grêles que les autres et un peu plus longs. Chaque plaque est séparée de ses voisines par un sillon de la peau qui se prolonge d'une façon légèrement sinucuse, parfois même en se bifurquant jusqu'au bord du disque ou des bras. Sur chacune des bandes qui limitent ces sillons on aperçoit un certain nombre de petits piquants épars, assez épais, isolés ou géminés. Le bord dorso-ventral est formé par des plaques dissimulées sous la peau et qui portent chacune une rangée perpendiculaire au plan du disque de cinq ou six piquants, assez gros, obtus et divergents. Il n'y a auem rapport entre le nombre de ces plaques marginales et le nombre des plaques adambulacraires.

Face dorsale courerte de papilles entremêlées de gronpes de petits piquants divergents - une bande lisse vis-ì-vis de ehaque espace interbrachial.-l'laque madréporique ovale à la moitié du rayon du disque, contigue à un espace interbrachial lisse un peu plus grand que les autres.
\[
\mathrm{R}=132 \mathrm{~mm} ., r=48, \mathrm{R}=2.07 r
\]

\section*{GENRE PENTAGONASTER (Linck).}

Pentagonaster (Tosia) parvus (Ed. P.).
Corps pentagonal, à côtés légèrement concaves. Dans le plus grand échantillon: \(\mathrm{R}=20 \mathrm{~mm} ., r=14 \mathrm{~mm} ., \mathrm{R}=\frac{3}{2} r\).
Plaques adambulacraires, portant une rangée de piquants suivie de deux rangées de granules; cinq à six piquants sur chacune d'elles. Face rentrale formée de plaques arrondies, assez grandes, entièrement granuleuses, au voisinage des plaques marginales, se dénudant graduellement au centre ì mesure qu'on se rapproche de la bouche, et finissant par être bordées d'une simple rangée de granules. Plaques marginales ventrales au nombre de dix pour chaque côté du corps, bordées d'une simple rangée de granules carrées sauf à l'extrénité des bras où les dernières sont trapézoïles ou triangulaires.

Plaques marginales dorsales au nombre de huit, bordées par une rangée de granules; plaques dorsales arrondies serrées, bordées d'une rangée de granules et portant à leur centre deux on trois très petits tubercules isolés.

Plaque madréporique, graude, arrondic, sitnée plus près du centre du disque que des plaques margimales.

Le nombre des plaques marginales diminue aree la taille. Il est réduit à six chez un petit échantillon ou \(\mathrm{R}=8 \mathrm{~mm}\).

\section*{Pentagonaster grenadensis (Ed. P.).}

Belle espèee pentagonale, ì côtés légèrement concaves et ì sommet des bras plus obtus que dans les espèces précédentes.
\[
\mathrm{R}=26 \mathrm{~mm} ., r=17 \mathrm{~mm} ., \mathrm{R}=1.4 r .
\]

Piquants adambulacraires arrivant au même niveau que les gramules de la surface ventrale avee lesquels ils se confondent. Il en existe cinq ou six sur chaque
plaque adambulacraire. Plaques ventrales polygonales uniformément granuleuses et couvertes d’assez gros graules. Plaques marginales ventrales toutes granuleuses. Plaques marginales dorsales au nombre de quatorze, finement grauuleuses comme les ventrales ou légèrement dénudées au centre; plaques dorsales polygonales uniformément granuleuses et portant parfois un très petit pédicellaire.

Plaque madréporique au premier quart de la distance du centre au bord du disque.

\section*{Pentagonaster ternalis (Ed. P.).}

Cinq bras pointus reliés entre eux par un are iuterbrachial à long rayon de courbure, pointus.
\[
\mathrm{R}=30 \mathrm{~mm} ., r=10 \mathrm{~mm} ., \mathrm{R}=3.3 r
\]

Nombre des plaques marginales ventrales d'euriron 50 . Ces plaques sont d'abord rectangulaires et allongées daus le sens des rayons du disque, puis elles deviennent presque carrées; elles arrivent au contact des plaques adambulacraires vers le deuxième tiers des bras en comptant à partir de la bouche. Ces plaques sont grossièrement granuleuses ainsi que les plaques ventrales qui sont irrégulièrement polygonales. Plaques adambulacraires presque carrées, couvertes de la même granulation que les plaques rentrales et portant sur le bord de la gouttière ambulacraire unc rangée de neuf à dix piquants serrés, prismatiques et comme tronqués au sommet. En outre la plupart de ces plaques portent près de celui de leurs angles avoisinant la gouttière ambulacraire qui est le plus rapprochéc de la bouche, un pédicellaire très remarquable puisqu'il est formé de trois ou plus souvent même quatre valres à pen près de même aspect que les granulations qui les avoisinent, mais dont elles se distinguent bien nettement par leur mobilité et la façon dont elles sont rapprochécs. On trouve des pédicellaires semblables, quoiqu'un pou plus petits sur un certain nombre des plaques ventrales qui suivent les plaques adambulacraires.
l'laques marginales dorsales en même nombre que les plaques contigues à celles du côté opposé sur toute la longucur des bras, couvertes d'une grossière granulation. Plaques dorsales, saillantes, espacées les unes des autres, polygonales couvertes de granules dout les plus externes légèrement saillantes leur forment une sorte de couronne et portent pour la plupart un ou deux pédieellaires en pinces, à deux valves senlement. Pores tentaculaires isolés à l'angle des plaques, au fond des sillons qui les séparent.

Plaque madréporique polygonale, à sillons rayonnants assez longs, de la grandeur des plaques dorsales voisines, situće au premier quart de la distance qui sépare le centre du disque du sommet de l'axe interbrachial. Anus subeculral bien distinet, entouré de petits piquants.
\[
\mathrm{l}=75 \mathrm{~mm} ., r=32 \mathrm{~mm} ., \mathrm{R}=3.5 r
\]

Le nombre des plaques marginales parait le même que dans l'indiridu préecdent.

\section*{Pentagonaster subspinosus (nov. sp.).}

Disque pentagonal à angles prolongés par einq bras grêles et pointus, ares interbrachiaux à graude courbure, arrondis.
\[
\mathrm{R}=65 \mathrm{~mm} ., r=16 \mathrm{~mm} ., \mathrm{R}=4 r
\]

Plaques marginales ventrales plus larges que longues dans l'are interbrachial, puis devenant plus longues que larges et presque linéaires, au nombre de soixante environ, d'unc extrémité à l'autre des deux bras consécutifs, uniformément granuleux, et portant ordinairement un piquant sur leur bord libre dans l'are interbrachial. À partir de elhaque sommet du disque pentagoual, ees plaques sont coutigues avec les plaques adambulacraires qui sont elles aussi plus longues que larges et portent même un peigne de sept à dix piquants très fins ct sont couverts, dans le reste de leur étendue, de grauules coniques assez gros, semblables à ecux qui recouvrent les plaques de la partie ventrale du disque et les plaques marginales. Piẹ̀ees dentaires petites, a peine distinctes; tubes ambulacraires terminés par une veutouse bien développée.

Plaques marginales dorsales au nombre de 54, plus larges que longnes dans l'are interbrachial, puis devenant graduellement plus longues que larges, finement granuleuses et portant fréquemment au milieu de leur bord libre dans l'are interbrachial uu piquant monsse d'environ 1 mm . de long. Sur les bras proprement dits les plaques de l'un des bords sout contigues à celles du bord opposé.

Plaques du disque grauuleuses, sensiblement hexagonales, bien distinetes les unes des autres - un pore teutaculaire vis-à-vis de chaque sommet de l'hexagone. Plaque madréporique à peine plus graude que les autres, mais bicu distincte au premier tiers du petit rayon à partir du centre.

\section*{Pentagonaster arenatus (nov. sp.).}

Cinq bras allongés et pointus; ares interbrachiaux à assez grande courbure.
\[
\mathrm{R}=57 \mathrm{~mm} ., r=15 \mathrm{~mm} ., \mathrm{R}=4 \mathrm{r} . \mathrm{E}=100 \mathrm{~mm}
\]

Cinquante-deux plaques margimales ventrales, d'abord plus larges que longues puis devenant graduellement plus longues que larges, uniformément granuleuses, totalement incrmes, contiguies dans la plus graude longeur des bras aux plaques adambulacraires. Unc aire triangulaire formée de nombreuses plaques granulenses, irrégulièrement polygonales et peu distimetes entre l'are brachial et le sommet de l'aigle buceal. Pièces dentaires petites, peu distinctes des plaques roisines. Plaques adambulacraires portant chacme six ou sept petits piquants grêles et assez courts. (La gouttière ambulacraire très serrée ne permet pas de voir les tulues ambulaeraires).

Cinquante plaques marginales dorsales semblables anx ventrales, contignes dans toute la lougueur des bras. Surface dorsale formée de plaques gramuleuses peu distinetes les mes des autres. Plaque madréporique petite, situéc an promier quart ale l'axe du petit rayon à partir du centre.

\section*{Pentagonaster Alexandri (nov. sp.).}

Bras au nombre de einq, assez courts, mais bieu distinets et émergents des som. mets d'un peutagoue régulier dont les côtés légèrement coneaves réunissent les bras l'unà à l'autre.
\[
\mathrm{R}=9 \mathrm{~mm} ., r=4.5 \mathrm{~mm} ., \mathrm{R}=2 r
\]

Largeur des bras à leur base \(=3 \mathrm{~mm}\). Sur la face ventrale, les plaques interambulaeraires portent deux rangées de piquants. Les piquants de la rangée interne au nombre de trois et plus souvent quatre sur ehaque plaque sont grêles, allongés, dirergents et inclinés sur le sillon ambulacraire; ceux de la rangée externe inelinés au contraire en dehors sout plus gros, plus courts, un peu obtus an sommet et au nombre de trois seulement sur chaque plaque. Les plaques dentaires sont séparées l'une de l'autre par un sillon bieu visible.

Les gouttières ambulacraires, et les deux plaques marginales interbrachiales limitent sur la face ventrale une aire triangulaire daus laquelle on ne compte pas plus de six our sept plaques ventrales portant chacune un groupe de trois à sept grauules assez espacées, saillantes, quoiqu'obtus au sommet et figurant presque de petits piquants. Le nombre de plaques marginales ventrales est de douze pour chaque eôté du corps, quinze pour ehaque bras. Ces plaques ront rapidement en diminuant du sommet de chaque are interbrachial à l'extrémité des bras; les deux premières de chaque côté du sommet de cet are sont scules séparées des plaques interambulacraires, les autres sont en contact avee elles. Toutes ces plaques portent des gramules espaeés qui deviement plus grands et plus forts en sc rapprochant du bord libre de la plaque et simulent alors des piquants.

Les plaques marginales dorsales sont an nombre de dix pour ehaque côté (cinq pour chaque bras et une impaire, au sommet du bras) triangulaires et assez grandes. Ces plaques de forme sensiblement earrée vont en dimiunant du sommet de l'are interbrachial à l'extrémité des bras; elles portent de gros granules espacés, disposés comme ceux des plaques correspondantes du bord rentral. Sauf les deux plaques placées de chaque côté du sommet de l'are interbrachial et une partie de celles qui suivent et qui limitent avec elles l'aire pentagonale du disque, les plaques marginales dorsales d'un côté des bras sont exactement contigïes avee eclles du côté opposé, de sorte que l'aire paxillaire du disque ne pénètre pas entre clles. Cette dernière se troure forméc de plaques portant des piquants relativement gros et obtus, mais assez longs, de manière à constituer de véritables paxilles.

Cinq de ees plaques plus grandes que les antres forment au cercle du disque inn peulagone daus l'intŕrieur duquel se trouve des paxilles plus petites.

La plaque madréporique, petite, et ne présentant que peu de sillons, est situéc immédiatement en dehors de ce pentagone, ì égale distamee du centre du disque et du bord interue des plaques marginales.

Plaques margimales dorsales, an uombre de \(2 t\) de elaqqué côté du corpls, sont entourées d'un cerele de grauules à lour partic supérieure, granulenses à leur bord infórieur. Plaques de disque uniformément granulenses, mais ayant une tendimee ia se dénuler vers le centre, de sorte que le plus grand nombre présentent simple-
ment unc bordure plus ou moins complète de granules. Toutes ces plaques doivent évidemment être uniformément granulcuses sur certains exemplaires.

\section*{GENRE GONIODISCUS (Müller \& Troschel).}

\section*{Goniodiscus pedicellaris (nov. sp.).}
\[
\mathrm{R}=59 \mathrm{~mm} ., r=18 \mathrm{~mm} ., \mathrm{R}=3 r .
\]

Cinq bras réunis entre eux par nn are interbrachial d'assez grande courbure. Plaques marginales ventrales au nombre de 58 d'un sommet is l'autre de deux bras consécutifs, plus larges que longues dans l'are interbrachial, devenant presque carrées très rapidement, couuvertes de petits piquants assez espacés et portant assez fréquemment un pédicellaire valvulaire irrégulièrement placé. Les plaques calcaires qui forment le disque veutral sont entourécs d'une couronne de petits piquants semblables à ceux des plaques marginales, au centre des plaques les plus voisines des plaques adambulacraires se trouve cnclâssé un pédicellaire à valves plus hantes que larges en forme de cuilleron.

Ce pédicellaire est remplacé par un piquant dans la région moyeune de chacun des secterrs de la face ventrale. Les plaques adambulacraires et marginales sont contigues à partir de la \(14^{e}\) plaque marginale comptée du sommet de l'arc interbrachial. Chaque plaque adambulacraire porte dans le sillon ambulacraire cinq piquants à peu près de mêmc grandeur; un peu en arrière trois ou quatre piquants beaucoup plus gros et souveut irrégulièrement placées, enfin, sur son bord tourné vers le sommet du bras, un pédicellaire conique à peu près de la grosseur des gros piquants.

Sur la surface dorsale, les plaques marginales sont en même nombre que sur la face ventrale et recouvertes comme elles de petits piquants plus gros sur le bord externe des plaques; clles sont séparées de celles du côté opposé sur plus des deux tiers des bras.

Les plaques dorsales sont légèrement saillantes, arrondies, séparées les unes des antres et laissant voir, dans lcur intervalle, les trabécules calcaires rayomants qui les unissent et limitent les pores tentaculaires. Chacune d'clles est cutouréc d'une courome de piquants et porte ì son centre de un à trois piquants que remplace parfois me pédicellaire semblable à ccux de la face ventrale. Les plaques interbrachiales ne forment pas de bande distincte. La plaque madréporique est à pen près au premier tiers de la distance qui sépare le centre du disque du sommet de l'angle interbrachial.

\section*{GENRE ANTHENOIDES (nov. gen.).}

Anthenoides Peircei (Ed. P.).
Cinq bras pointus insensiblement reliés entre enx par un are interbrachial it grand rayon.
\[
\mathrm{R}=50 \mathrm{~mm} ., r=32 \mathrm{~mm} ., \mathrm{k}=2.5 \mathrm{r}, \mathrm{~d}=1.52 \mathrm{~mm} \text {. }
\]

Plaques marginales rentrales au nombre de 54, allongées dans l'are interbra. chial dans le sens du rayon du disque, puis presque carrées; fortement granuleuses, à granulation plus forte sur leur bord externe, dont l'angle porte souvent un granule plus gros que les autres, figurant une sorte de piquant court et mous, au contact des plaques adambulacraires un peu au-delà de la moitié de la longucur du sillon ambulacraire à partir du centre de la bouche.

Plaques ventrales granuleuses, légèrement bombées; celles qui touchent les plaques adambulacraires les plus voisines de la bouche dans la rangée suirante, portent, en générale, un pédicellaire valvulaire peu saillant et dont l'orientation n'a rien de déterminé. Plaques adambulaeraires portant un peigne de sept piquants bien séparés les uns des autres, légèrement divergents et plus grands vers le milieu de la plaque; en arrière de ces piquants une seconde rangće de piquants plus gros et plus courts au nombre de trois par plaque, en arrière desquels se voient les premiers pédicellaires valvulaires séparés les uns des autres par les sillons situés entre les plaques. Pièces dentaires non saillantes. Plaques marginales dorsales au nombre de 50 de chaque côté, presque earrées, recouvertes comme toute la surface du dos d'une peau assez épaisse, finement granuleuses laissant aperceroir les ossicules du squelette qui sont polygoneux comme chez les Pentagonaster et bordés de petits pores tentaculaires espacés les uns des autres. Face dorsale légèrement convexe et se laissant déformer par la pression.

Anus visible.

\section*{GENRE GONIOPECTEN (nov. gen.).}

\section*{Goniopecten demonstrans (nov. sp.).}

Les bras au nombre de cinq diminuent graduellement de largeur de la base au sommet et sont reliés cutre eux par un are interbrachial d'assez forte courbure.

Les plaques marginales ventrales sont de 92 entirou pour chaque côté du corps ce qui fait 46 pour chaque bras.

Ces plaques sont reetangulaires, et leur plus grande longueur est perpendiculaire à l'axe ales bras. Les sillons qui les séparent se continuent jusqu'au bord de la gouttière ambulactaire et séparent en même temps les unes des autres les plaques adambulaeraires, de sorte que le nombre de ees plaques est précisément le même que eclui des plaques marginales ventrales, toutefois elles ne sont pas exaetement dans le prolongement de eelles-ci; les sillons communs qui les séparent forment à l'extrémité des plaques marginales un angle dont l'ouverture variahle est tantôt dirigée rers le sommet des bras, tantût vers leur base. Les sillous consćeutifs penvent même n'être pas exaetement parallìles, et la bande qu'ils limitent s'élargit parfois de la plaque marguale à la plaque adambulacraire qui le termine. Dans la région du disque cette bande est formée par une double rangée de plaques polygonales alternes, généralement allongées dans le sens de la largeur des bras.

Ces doubles rangées se racemureissent beancoup sur les bras proprement dits, elles ne sont bientôt plus formées que de deux plaques qui semblent même con-
fondues dès le premier tiers des bras. Tout au moins le tégument membranenx qui rccouvre tout le squelette et revêt même les piquants empêche-t-il de distinguer les lignes de sutures qui les séparent des plaques avoisinantes.

Entre les plaques marginales et les plaques adambulacraires on remarque quelques piquants courts, épars, enfouis dans les téguments, pcu distincts; des piquants plus petits, réruliers forment sur le bord de chaque série des plaques dans les sillons transversaux qui vout de la gouttière ambulacraire; au bord du bras unc fine crénelure régulière, semblable à celle que présentent les \(A\) stropecten entre leurs plaques ventrales. Parfois le tégument est marqué d'impressions polygonales qui le font paraître comme cailleux.

Chaque plaque ambulacraire s'avance dans le sillon ambulacraire en unc forte carène qui s'introduit entre deux tubes ambulacraires consécutifs, de telle sorte que chacun d'eux est comme euchâssé entre deux carc̀nes. Sur le bord de chaque plaque on voit un peigue de huit ou neuf piquants aplatis, assez courts, contigus, et dont les médians sont un peu plus allongés que les autres. Lcs tubes ambulacraires sont assez gros, coniques, terminés par une ventouse extrêmement petite. Les pièces dentaires forment une saillie ellipsoïdale de 7 mm . de long sur 4 de large, avec une suture très apparente le long de son grand axc. Cette saillie cst recouverte de fortes épines et dans l'angle buccal unc épine beaucoup plus forte et saillante termine chaque plaque.

Les plaques marginales dorsales sont en même nombre que les plaques marginales ventrales et de forme à peu près semblable ; chacune d'elles occupe environ le tiers de la largeur des bras, et est entourée d'une bordure de fins granules; mais ne porte aucune trace de piquants.

La région moyenne des bras et le disque sont formés de très petites plaques polygonales bien distinctes les unes des autres et couvertes de granules qui simulent les paxilles des Astropecten.

La plaque madréporique distante de 3 mm . du bord interne de la plaque marginale la plus voisine a environ 6 mm . de diamètre, clle est converte de fins sillons sinueux et rayonnants. Il existe une apparence d'anus subcentral.

\section*{Goniopecten intermedius (nov. sp.).}

Cinq bras médiocrement allongés, interbrachiaux arrondis.
\[
\mathrm{R}=34 \mathrm{~mm} ., r=12 \mathrm{~mm} ., \mathrm{R}=3 r \text { environ. }
\]

Corps plat, plaques marginales au nombre de 44 à 54 , plus larges que longues granulenses, portant chacunc un piquant isolé, obtus, sur le milicu'de leur bord libre, contigus sur les bras proprement dits avee les plaques adambulacraires. Espace compris entre le sommet de l'angle buecal et le bord des plaques marginales oceufé par des plaques nombrcuses irrégulièrement polygonales, grauuleuses.
lièeces dentaires, grandes, saillantes sur le disque, bien distinctes l'une de l'autre. Plaques adambulacraires portant chacune sept piquants environ. Thbes ambulacraires terminés par une ventonse très petite presque punctionme.

Plaques marginales dorsales an nombre de 4t, granulenses, plus larges que longues, portant des piquants an moins daus l'are interhachial. Ces piquants
sont eux-mêmes semblables ì ceux des plaques rentrales correspondantes, mais un peu plus petits. Plaques dorsales de l'un des bords des bras séparées de celles de l'antre bord par une aire paxillaire moins large que les plaques elles-mêmes. Dos couvert de paxilles très analogues à celles des Astropecten. Auus bien net. Plaque madréporique à la moitié de l'un des petits rayons à demi cachée par des paxilles plus grandes que celles du reste de la face dorsale, sur le plus grand exemplaire \(\mathrm{E}=110 \mathrm{~mm}\).; sur le plus petit \(\mathrm{E}=62 \mathrm{~mm}\).

\section*{Goniopecten subtilis (nov. sp.).}

Disque pentagonal terminé par cinq bras grêles linéaires.
\[
\mathrm{R}=60 \mathrm{~mm} ., r=12 \mathrm{~mm} ., \mathrm{R}=5 r
\]

Soixante-dix plaques marginales ventrales, d'abord plus larges que longues, puis plus longues que larges, granuleuses avec quelques granulures convexes, allongées, presque spiniformes; contiguës sur presque toute la largeur des bras avec les plaques adambulacraires. Celles-ci portent chacune un peigne de cinq ou six piquants plats, obtus, divergents, les médians plus longs que les autres, de sorte que l'ensemble figure un demi cerele. Chaque groupe de piquants très nettement isolé de ses roisins, de sorte que le bord de la gouttière ambulacrairc parait fes. touné. Le reste de la plaque couvert de piquants - plaques ventrales granuleuses.

Pièces dentaires grandes, bien distinctes des autres plaques, un peu saillantes. Tubes ambulacraires à ventouse petite.

Soixante-six plaques marginales dorsales, plus larges que longues d'abord, puis presque carrées, granuleuses; elles sont séparées dans toute l'étendue du bras par une rangée unique de plaques granuleuses plus longues que larges. Toute la surface dorsale formée de plaques hexagonales granuleuses, bien distinctes les unes des autres, dissimulant la plaque madréporique. Anus bien apparent.

GENRE ARCHASTER (Müller \& Troschel).

\section*{Archaster pulcher (nov. sp.).}

Cinq bras: \(\mathrm{R}=12 \mathrm{~mm} ., r=4 \mathrm{~mm} ., \mathrm{R}=3 r\).
Bras se rejoignant à angles émonssés. Vingt-six plaques marginales rentrales couvertes do gramules un peu espacés, en forme de petits piquants, et portant un piquaut plus volumincux, mais peu saillant sur leur angle supéro-externc. Aire triangulaire comprise entre les gouttières ambulacraires et les plaques margiuales, bien distinete; plaques qui la constituent portant de petits piquants dont le nombre ne dépasse pas six. Des piquants semblables se retronseut sur les plaques adambulacraires qui portent dans le sillon ambulacraire quatre ou cimp piquauts presque éganx, légèrement divergents et formant me rangée régulière. Pièers denaires assez saillantes terminés chacme vers la bouche par un gros piquant. Ventouse des tubes ambulacraires très petite, vingt-denx plaques marginales dor-
sales de ehaque eôté, revêtues de petits piquants espacés ; plaque terminale assez volumineuse portant deux piquauts comme eela arrive d'ordinaire eliez les jounes Goniaster. Plaques dorsales petites surtout vers le centre du disque ne portant guère que six piquants arrondis en forme de grauules. Plaque madréporique touchant presque les plaques marginales, distincte sculement par saillic plus grande que celle des plaques voisines et couvertes de piquauts scmblables à ccux de ces deruiers.

Pas d'anus apparent.

\section*{Archaster mirabilis (Ed. P.).}

Cinq bras grêles, allongés, pointus, se réunissant à angle vif arec leurs voisius.
\[
\mathrm{R}=87 \mathrm{~mm}, \mathrm{r}=12 \mathrm{~mm} ., \mathrm{R}>7 \mathrm{r}
\]

Plus de 50 plaques marginales par chaque côté ( 40 et plus pour chaque bras) ehez les gramds éeliantillons. Plaques marginales ventrales contigiies aree les bras, à partir de la troisième en comptant du sommet de l'angle interbrachial, ì peu près carrées, hérissées de petits piquants parmi lesquels se trouvent deux ou trois piquants bcaucoup plus allongés, très pointus et sur le milieu du bord de la plaque un autre piquant très allongé, pointu, pouvant atteiudre vers le milieu des bras jusqu'à 8 mm . de longueur.

Les plaques adambulaeraires font légèrement saillie dans le sillon ambulacraire, de manière à séparer les tubes ambulacraires les uns des autres; chacune d'elles porte sur son bord interne un peigne de dix piquants, grêles, cylindriques, grandissant rapidement du bord de la plaque eu son milieu et divergents.

Les pièees dentaires sont longues de 4 mm . et leur ensemble large de 2 mm .; les deux piquauts qu'elles portent sur leur angle buceal sont notablement plus grands que leurs voisins. Les tubes ambulacraires sont terminés par une ventouse d'assez petite taille mais bien distinete.

Les plaques marginales dorsales sont assez petites, presque carrées, gramulcuses, et ne portent chacuue qu'un long piquant conique semblable à celui des plaques marginales ventrales. Sur le disque un cerele de piquants semblahles entoure l'anus. Les paxilles sont petites, espacées, grauuleuses. La plaque madréporiqque beaucoup plus grande qu'elles est très près du sommet de l'angle interbrachial et marquée de sillons rayomnants assez larges. Dans un assez, grand nombre d'exemplaires on observe un orifice à la bas des bras, tout près de la ligne médiane de ees parties.

Les individus de grande taille prement les caraetères suivants: Une aire triangulaire formée de plusieurs rangées de plaques entre les plaques marginales ventrales et les plaques dentaires qui sont saillantes sur la face ventrale entre elles une surface ovalaire bien nette. Sur l'aire triangulaire on voit parmi de fins piquants épars une dizaine d’assez gros pédifellaires à deux, trois ou même quatre branches. Pièes dentaires portant elatune onze piquants plus gros ì l'angle buceal.

Plaques adambulacraires portant huit piquants grêles, contigus dont les médians
sont plus longs. Treute-une plaques marginales ventrales portant chacunc de long piquants pointus, outre un revêtement de fines épines.

Ventouse des tubes ambulacraires petites. Plaques marginales dorsales petites au nombre de trente, portant chacune un piquant. Plaques dorsales du disque invisibles. Tout le dos courert de petits bouquets de trois ou quatre petits piquants qui dissimulent la plaque madréporique. \(\mathrm{E}=90 \mathrm{~mm}\)., \(\mathrm{R}=45 \mathrm{~mm}\)., \(r=12 \mathrm{Mm} ., \mathrm{R}=3.5 \mathrm{r}\). Angles interbrachiaux arroudis.

\section*{Archaster simplex (nov. sp.).}

Point de plaques ventrales entre les plaques marginales rentrales et les pièces dentaires. Une plaque marginale impaire dans l'angle des bras supportant les pièces dentaires qui sont arrondies au sommet. Quatorze plaques marginales plus longues que larges, légèrement convexes sur le bord externe, de manière à faire paraître le bord du bras un peu festonné. Ces plaques supportent directement les plaques adambulacraires qui sont plus petites, polygonales, saillantes dans le sillon ambulacraire. Quelques petites épines et une beaucoup plus grande, fine, pointuc, se trouvent tout-à-fait sur le bord de chacune des plaques marginales ventrales. Plaques adambulacraires portant sur leur bord quatre ou cinq piquants divergents ct un à leur centre. Tubes ambulacraires terminés par une ventousc bien distincte.

Quatorze plaques marginales dorsales plus longues que larges, de forme presque ovale, plus une impaire triangulaire, portant chacune un long piquant pointu au sommet de l'angle interbrachial. Piquant de la plaque impaire double au moins des autres; une autre épine près de l'anus. Plaques du disque petites, trìs pou apparentes. Dos présentant de nombreuses petites épines, espacées, sans plaques calcaires apparentes. Plaque madréporique petite, arrondie, à surface irrégulière, vermiculée, presque au contact de la plaque impaire.
\[
\mathrm{E}=35 \mathrm{~mm} ., \mathrm{R}=15 \mathrm{~mm} ., r=3 \mathrm{~mm} ., \mathrm{R}=3 r, d=4 \mathrm{~mm}
\]

GENRE BLAKIASTER (nov. gen.).

\section*{Blakiaster conicus (Ed. P.).}

Cinq bras sc rejoiguant à angle aigu, épais, un peu obtus au sommet, légèrement arroudis en-lessus, plats en-dessous.
\[
\mathrm{R}=2 \tau \mathrm{~mm} ., r=10 \mathrm{~mm} ., \mathrm{R}<3 \mathrm{r}, \mathrm{~d}=46 \mathrm{~mm} .
\]

La plỵsionomic earactéristique de cette espèce tient à l'épaisscur et à la disposition des plaques marginales ainsi qu'un revêtement de piquants des plaques ventrales.

Les plaques marginales ventrales sont au nombre de 15 pour claque bras, (ubligues de delors en dedans et du snmmet ì la base des bras; elles ne sont séparérs des plaques adambulacraires que par une petite plaque carrée, sauf dans l'angle interhrachial oin un petit triaugle, formé d'une dizaine de plaques dont
l'une occupe le centre du triangle, les sépare de ces autres plaques. Les plaques adambulacraires sont également obliques par rapport au sillou ambulacraire: elles portent dans ce sillon quatre ou cinq piquants allongés et divergents; mais toute la surface est couverte, comme celles des autres plaques ventrales, y compris les marginales d'un revêtement serré de piquants grêles assez allongés, au milieu desquels on distingue sur le bord des plaques marginales quelques piquants plus forts, plus allongés et pointus. Les pièces dentaires sont à peine plus grandes que les plaques adambulacraires voisines, mais saillantes et bien distinctes.

Les tubes ambulacraires sont coniques et terminés en pointe.
Les plaques marginales dorsales sont à peu près verticalcs dans l'angle interbrachial de sorte qu'on les aperçoit à peine; mais elles deviennent de plus en plus apparentes à mesure qu'on se rapproche du sommet; elles sont couvertes de grossières granulations: La face dorsale est formée de plaques arrondies dont les granules sont plus allongés de manière à figurer une sorte de paxille de 1 mm . euviron de diamètre. La plaque madréporique est petite à peine, plus grosse que les paxilles qui l'entoureut et les sillons qui la marquent la traversent dans toutes sa longueur, comme chez les Astropecten, au lieu d'être rayounants comme daus la plupart des autres types.

L'auus n'est pas distinct.

\section*{GENRE LUIDIA (Forbes).}

\section*{Luidia barbadensis (nov. sp.).}

Six bras, très longs et extrêmement fragiles, toujours très contourués dans les individus couservés dans l'alcool.
\[
\mathrm{R}=125 \mathrm{~min} ., r=10 \mathrm{~mm} ., \mathrm{R}=12.5 r
\]

À leur plus grande largeur, les bras ont environ 11 mm . de diamètre. Ils sont aplatis en dessus et conservent daus l'alcool une légère coulcur rouge brique.

Les plaques adambulaeraires portent dans le sillon ambulacraire un piquant comprimé et légèrement recourbé; puis, immédiatement en dehors, deux autres piquants également comprimés, mais presque droits ct disposés un peu obliquement l'un derrière l'autre ; derrière eux, deux ou trois petits piquants plus grêles complètent l'armature de la plaque, qui porte en outre un pédicellaire à trois brauches. Pièces buceales assez saillantes avec un peigne de cinq ou six piquants dirigés vers la bouche.

Les plaques ventrales sont barbelées de tout petits piquants et portent une rangée médiane de piquants plus gros, coniques, dout les deux derniers graudissent considérablement et forment aux bras la bordure liabituelle de piquants.

Sur chaque bras les trois rangées latérales de paxilles de chaque côté sont formées de paxilles plus grandes que celle de la région moyeme; vienucut cusuite deux rangées assez régulières de paxilles plus petites, les paxilles médianes sout plus petites encore et irrégulièrement disposées.

La plaque madréporique est cachée par les piquants.

\section*{Luidia convexiuscula (Ed. P.).}

Six bras-petits pédieellaires à trois branehes dans le voisinage de l'angle des bras. - Plaques interambulacraires portant dans le sillon un long piquant comprimé et recourbé et derrière lui un bouquet de piquants plus petits. Plaques rentrales, courtes, couvertes de petits piquants et portant un seul long piquant margiual.

Dos des bras légèrement eonvexe, à paxilles presque égales, un peu plus petites eependant sur le milieu des bras et sur le disque, portant de petits piquauts divergents presque égaux dont les médians, un peu plus gros que les autres, ne se prolongent pas en aiguillon - environ 15 rangées de paxilles.
llaque madréporique invisible sans préparation.
\(\mathrm{B}=54 \mathrm{~mm} ., \mathrm{R}=25 \mathrm{~mm} ., r=5 \mathrm{~mm} ., \mathrm{R}=5.5 \mathrm{r}\).

\section*{GENRE ASTROPECTEN (Lлск).}

\section*{Astropecten alligator (nov. sp.).}

Cinq bras, aplatis, terminés en pointe; angles interbrachiaux non arrondis.
\[
\mathrm{R}=40 \mathrm{~mm} ., r=9 \mathrm{~mm} ., \mathrm{R}=4.5 r
\]

Largeur des bras à leur base \(=9 \mathrm{~mm}\). Les plaques interambulacraires sont bordées de piquants dont trois divergents oceupent le bord du sillon ambulacraire, un ou deux, plus petits sont placés sur les bords latéraux de la plaque et trois sur son bord externe. Quelquefois un piquant s'élève en outre de la partie ecntrale de la plaque; les piquants du bord ambulacraire sont d'ailleurs les seuls dont le nombre soit constant. Les plaques ventrales présentent certain nombre d'écailles pointues qui s'amincissent et deviennent plus serrées sur les bords et dans l'intervalle des plaques. Un petit nombre de piquants obtus et aplatis se trouvent parmi les écailles qui deviennent plus longues vers le bord externe de la plaque, formant ainsi une rangée margimale de petits piquants ordinairement au nombre de trois, au-dessus desquels s'iusèrent deux piquants plus longs, aplatis et pointus. Les plaques veutrales débordent très sensiblement les plaques marginales dorsales ; eelles-ei, au nombre de 30 ì ehaque bras, peu ćlerées, presque earrérs, sauf dans le voisinage du sommet de l'are interbrachial où elles sont un peu plus larges que longues. Les granules qui les recouvrent sont assez gros, saillants et non contigus.

Les trois ou quatre premieres plaques interbrachiales portent an milieu de leur bord interne un piquant eonique, vertieal, assez court, celui que supporte la plaque triaugulaire qui forme le sommet de l'angle étant un peu plus grand que les autres. Fusuite ce piquant se déplace graduellement en se rapprochant du bord libre des bras sans eependant l'atteindre. À la base des bras, l'aire paxillaire est ì peu près ćgale à quatre fois la largeur des plaques marginales; les paxilles sont petites it forméres de quelques gramules centraux entourés d’une eonrome de six à luit prtits piquants, légèrement reullés an sommet; elles uffectent dans le voisiuage
du bord des bras une disposition en rangées transversales assez nette. On compte à la base des bras une quinzaine de paxilles d'un bord à l'autre. La plaque madréporique peu apparente, à sillons peu nombreux ct non radiés, n'cst séparéc des plaques marginales que par une on deux paxilles, tandis qu'on en compte une vingtaine entre elle et le centre légèrement eu relief du disque.

Réçu à Cambridge en Mars 1881 ; publié le 25 Juin 1881.

Note. - The list of the stations at which the different species occur will be given in the final report. - A. Ag.

No. 2. - Reports on the Results of Dredging, under the Supcriision of Alexander Agassiz, in the Gulf of Mcxico, and in the Caribbean Sea, 1877-79, by the United States Coast Survey Steamer "Blake," Lieutenant-Commander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., Commanding.
(Published by permission of Carlile P. Patterson, Supt. U. S. Coast and Geodetic Survey.)

\section*{XV.}

Preliminary Report on the Mollusea, by W. H. Dall.
Ir has seemed desirable to those directing the publications on these materials, in order to secure proper recognition to those engaged in the sounding and dredging work, that the description of the many new forms contained in their collections be not longer delayed. Later laborers in the same field have already, to some extent, duplicated the materials, and this may be expected to go on in increasing ratio. I have, therefore, endeavored to give recognizable descriptions of those forms which seemed to be new, reserving for further treatment the species on which some doubt existed, or which from their habitat and appearance seemed likely to belong more properly to the fauna of moderate depths. These descriptions are only preliminary to the work in which they shall be properly figured, without which, indeed, species of mollusks can hardly be said to have been wholly published, especially in these days of refinement in specific differentiation.

The materials here described do not include collections obtained by Professor Agassiz and Commander J. R. Bartlett, U. S. N., on the "Blake," in the season of \(1878-79\), but with very few exceptions form part of the mollusca gathered by the party on the "Blake," in \(18 / i-78\), under Professor Agassiz's supervision, while the ressel was commanded by Lieut.-Com. C. D. Sigsbec. The later collections, containing many forms of great beauty, have not yet been administered upon, owing to the limited leisure of the writer, and his absence on official duties.

It can hardly be expected that all the species here described will ultimately prove to be new, but the probability is that most of them are so. In preparing the descriptions, I have been much indebted to the kindness of Mr. K. J. Boog-W atson, in chatrge of the "Challenger" mollusks, for early copies of his preliminary descriptions, etc., which has chabled me to avoid re-describing species obtained by that expedition, but of which knowledge in many cases has reached but a limited circle of the scientific world. To Dr. J. Gwyn Jeffreys I am also under obligrations of a similar nature, and for the most obliging loan of rare and even unique specimens for comparison.

I may add that, so far, the more detailed study of the specimens has done nothing to vitiate the deductions reached in the "General Conclusions" (Bull. M. C. Z., VI. No. 3), but, on the contrary, the views there put forward have received further confirmation.

The difference in richness between the collections of the "Blake" and those of the "Challenger" is truly remarkable, at least so far as the mollusks are concerned ; the former containing perhaps three times as many species as the whole three years' voyage of the "Challenger" brought to light.

\section*{Cadulus æqualis n. s.}

Shell opaque white, polished, without seulpture except a rare line due to growth or some irregularity ; very slightly curved with hardly any gibbosity perceptible, such as there is being in the anterior fifth of the shell; anal opening circular, simple, thin-elgel, not oblique ; anterior opening somewhat oblique, slightly contracted, nearly circular ; the shell on the whole tapering regularly toward the posterior enl, which is stouter than usual in the gemus. Lon. 15.0. Anal diam. 1.0. Oral diam. 2.0. Max. diam. 2.5 mm .

Station 43, 339 fathoms, three specimens.
This species is unlike any of those described from the "Challenger" collections and the others figured by Sars. Its even taper is particularly noticeable.

\section*{Cadulus Watsoni n. s.}

Shell translucent white, polished, showing faintly the annular lines of growth; slightly curved, with the greater portion of the curve in the anal third ; tapering rapidly from the oral third to the posterior end; the oral third flattened on the convex side toward the mouth ; this portion also tapered laterally in the same direction ; oral nuerture not perceptibly oblique in the most perfect specimen, slightly so in another; the transwerse diameter of the month very slightly longer tham the vertical diancter. Lon. 13.0; anal diam. 0.6 ; upal diam. 1.5 ; max. diam. 2.25 ; these measurements, when not
otherwise stated, being taken from back to front, or from the concave to the convex surface. Max. trausverse diam. 2.9 mm .

Off C. San Antonio, 413 fms. Yucatan Strait, 640 fms.
This species is most like C. colubridens of Watson (New Zealand, 700 fms .), but has no gibbosity on the concave or (lorsal) side, a less oblique mouth, is more tapered, and more curved up posteriorly.

\section*{Cadulus Agassizii n. s.}

Shell translucent white with more opaque annulations ; shining, destitute of sculpture excepting nearly imperceptible lines of growth, very slightly curved, the dorsum being nearly straight except at the posterior fourth, oral end very slightly tapered, not flattened; posterior part gently tapering from the anterior third; anal end rather stout, opening simple, circular; oral end thin, mouth forming an angle of \(45^{\circ}\) with the axis, simple, quite circular ; the tube with no pronounced gibbosity. Lon. 9.0. Max. lat. 2.0. Oral diam. 1.5. Anal diam. 0.75 . Max. diam. 2.0 mm .

Station 5, 229 fims.
This species resembles C. sauridens Watson, but is three times the size, wants the gibbosity, and has a straighter back. It differs from C. gracilis Jeffreys in size and in wanting the compression, so far as can be decided in the absence of a specimen or figure of Jeffreys's species. The proportions are different from those of \(V\). Pandionis V. and S., of which the mouth is described as elliptical.

\section*{Cadulus lunulus n. s.}

Shell translucent white, smooth, destitute of sculpture ; dorsumi nearly straight, slightly inflated near the middle ; oral end contracted, not flattened, and more slender at the mouth than the posterior end ; the shell largest in the mildle, and tapering nearly equally to both ends, apertures simple, circular, the oral one oblique and quite contracted in proportion to the rather stout form of the shell, which, but for the curve of the convex side and extreme ends, would be nearly evenly fusiform ; there is no gibbosity, and, thongh the anal aperture is the larger, it seems unbroken. Lon. 6.0. Oral diam. 0.75. Aual diam. 0.87. Max. diam. 1.5 mm .

Station 2, 805 fms.
Most like C. simillimus Watson, from which it differs in its more even halfmoon shape, and proportions.

\section*{Cadulus cucurbitus n. s.}

This little shell is perhaps best described by saying that in form it is about midway between C. obesus Watson and C. tumidosus Jeffreys, being laryer than the former and more evenly tapered from the middle than either. It wants the ledge within the aperture at both ends, is polished, translucent, and with-
out perceptible sculpture; neither of the apertures appears to be oblique; both are circular. Lon. 4.0. Max. diam. 1.25. Oral diam. 0.62. Anal diam. 0.37 mm .

Station 19, 310 fms .
It is really somerwhat difficult to decide which is the anterior opening in this species, unless the size be considered a criterion.

\section*{C. sauridens Watson.}

St. Thomas, Challenger Exp., 390 fms. Blake Exp., Station 19, 310 fms.; off Cape San Antonio, 1,002 fms. Barbados, Hassler Exp., 100 fms.

\section*{C. obesus Watson.}

St. Thomas, Challenger Exp., 390 fms. Blake Exp., Station 20, 220 fms.

\section*{Siphonodentalium quadridentatum n. s.}

This species is best described by comparing it with S. tetraschistum Watson, to which it is nearly allied. The present form, which may prove eventually to be a large race of Watson's species, scems to differ from it in its proportionately greater stoutness and actually larger size, in the want of any sculpture on its polished surface, and in the proportionally smaller and narrower slits at the anal end of the tube. The dimensions of quadridentatum are : - Lon. 10.0. Max. diam. 1.3. Oral dianı. 0.80. Anal diam. 0.4 mm. The same in Mr. Watson's species are \(7.7,0.81,0.75\), and 0.4 mm . respectively. His specimen came from Fernando Noronha, 7-25 fms. ; ours is from Pourtalès's dredging's on the west coast of Florida, in 30 fms.

In other respects than those mentioned, Watson's description and figure agree almost exactly with our specimen.

\section*{DENTALIUM.}

\section*{A. - Species with cylimbrical tube.}

\section*{D. perlongum Dall.}

Bull. Mus. Comp. Zoül., V. No. 6, p. 61 (name ouly). \(1 S 78\).
Shell solicl, opaque white, shining, without sculpture except delicate irregularities due to incremental lines; oral aperture simple, nearly circular, its plane furite or nearly at right angles to the axis; anal aperture with a shallow motch (in adult specimens) on the convex side; tule very slightly curved. Lon. 50.0 to 80.0. Anal diam. 0.5 to 0.7 . Oral diam. 3.5 mum.

Station 41 , sfio fims. Station 46,858 fims. Yucatan Strait, 640 fins, Station 33, Lat, \(24^{\circ} 1^{\prime}\), Lon. \(88^{\circ} 58^{\prime}\) W., 1,5068 fins.

This superb species may be compared with \(D\). acutissimum Watson, but is proportionally more slender, wants the faint longitudinal strix, and is without an anal notch on the concave side.

\section*{D. agile M. Sars.}

Antalis agitis G. O. Sars, Moll. Reg. Arct. Norv., p. 102, tab. 20, fig. 9. 1878.
Station 32, 804 fms. Station 33, \(1,568 \mathrm{fms}\).
I can find no characters to separate these specimens from Sars's species, except the absence of the (inconstant) notch at the anal extremity, although they appear to be perfect.

\section*{D. antillarum D'Orb.}

Sagra, Moll. Cub., Pl. XXV. figg. 10-13.
Station 20, 220 fins.; Barbados, 100 fms. ; Yucatan Strait, 640 fms. ; Station 44, 539 flus.; Station 19, 310 fms. ; Station 43, 339 fms. ; Station 33, 1,568 fms.; off C. San Antonio, 1,002 fims.

\section*{D. disparile D'Orr.}

Loc. cit., figs. 14-17.
Station 41, 860 fms.; Yucatan Strait, 640 fms.; Barhados, 100 fms.

\section*{D. ceras Watson.}

Station 33, \(1,568 \mathrm{fms}\).
This specimen measures 50.0 mm . in length. Watson's came from the midPacific, east of Japan, in 2,050 fms., and from the Atlantic, west of Valparaiso, in 2, 160 fms.

\section*{D. sericatum n. s.}

Shell small, very thin, acute, slightly curvel, rather rapidly enlarging ; covered with fine, sharp, close set longitudinal grooves with narrower threadlike interspaces separating them to number of thirty-six on the mildle and about fifty at the oral end of the shell; plane of the oral aperture at right angles to the axis, both apertures circular, simple; color translucent white, with opaque white wavy lines (like those on the silk gools known as moire antique) encircling the shell with zigzags whose successive irregular lands ( 0.8 mm . apart in the middle of the shell) are sub-parallel with one another, and gradually become more slender and further apart toward the ends. In a specimen 13.0 mm . long there are about fifteen of these bands, each band with about 10 or 12 angles. Lon. 13.0. Aual diam. 0.37. Orad diam. 1.2 mm .

Yucatan Strait, 640 fms.

The sculpture of this species recalls that of D. capillosum Jeffreys, which is a much larger species, less suddenly attenuated, and, so far as described, wanting in the remarkable color-pattern of \(D\). sericatum.

\section*{D. ceratum n. s.}

Shell of waxen hue becoming whiter toward the mouth, aculeate, slightly curved, rather stout, and of glassy texture; at the anal end septangular, the angles passing into riblets at the beginning of the middle third, then becoming gradually much more numerous, finer, fainter, and lastly absent or evanescent on the oral third. Surface shining, apertures simple, circular. Lon. 30.0. Anal diam. 0.5. Oral diam. 2.0 mm .

West Florida, Pourtales, 50 fms. Station 2, 805 fms.
This species has about the curve and proportions of \(D\). circumcinctum Watson, but is much smaller, has a wholly different sculpture and no anal notch.

\section*{B. - Species with tube laterally compressed. \\ D. Sigsbeanum n. s.}

This may be best described by comparing it with its nearest ally, D. didymum Watson (St. Thomas, W. I.), than which it is more slender, more attenuated, more arched, and the compression results in an evenly elliptical section, instead of a subtriangular one, as in his species. It is translucent whitish, less brilliant than the last-described species, and apparently, from the look of the eroded tips, is notched at the anal end, but this is not certain. Lou. 20.0. Anal diam. 0.3. Major oral diam. 2.0. Minor do. 1.1 mm .

Yucatan Strait, 640 fims.

\section*{C. - Species with tube transversely compressed. \\ D. compressum Watson.}

Station 43, 339 fms. ; off C. San Antonio, 413 fms. (Culebra, St. Thomas, 390 fms. - Challenger.) This turns out not to be a Siphonodentalium, after all.

\section*{D. ophiodon n. s.}

About the same length as the last species, more slender, more acute, more translucent, more curved, and without the evanescent indications of longitudinal striation ; the compression results in less tendency to angulation, and there is an evident tendency, in adult specimens, for the diameter at the nouth to be somewhat less than at a short distance behind it, - a very marked distinction as between the two. The shell is quite tramslucent, and very thin ; there is very little variation between the specimens. Lon. 12.5. Anal dian. 0.27. Major oral diam. 1.3. Minor do. 1.1 mm .

Station 19, 310 fms. ; Station 20, 220 fms. ; Station 21, 287 fms.
The flattening is most prominent a little way behind the mouth in the adult, and is best seen in an adolescent specimen.

\section*{Siliquaria modesta n. s.}

Shell white, small, delicate, irregularly coiled, unattached, surface without sculpture except that formed by the rounded incremental lines, which have somewhat the appearance of floss silk when wound on a spool. Apical part a simple cone, which bears marks of the slit as far as can be seen almost from the first ; the apical and terminal portions usually more loosely coiled than the middle part ; the slit near the mouth is open continuously, with an undulated margin ; further back the prominent parts of the undulations approach each other, finally joining, forming ovate holes, which, lastly, are entirely filled up in the older third of the shell. The coils rarely exceed 25.0 mm . in length, and gradually enlarge ; the diameter of the mouth is 3.0 mm . or less ; of the widest part of the slit, about 0.5 mm . Found at all depths from 80 to 800 fathoms, but not in less than 80 fathoms. The specimen from which the description was taken lived in 220 fathoms (Station 20). The shell is so very fragile that only living ones came up in even tolerable condition ; the dead ones can hardly bear touching. It is evidently suited only to a soft and quiet bottom.

\section*{Bivonia exserta n. s.}

Shell white, uncoiled or only curved ; short, stout, thick, attached by its tip only, and rising upward and forward from this smpport. Interior of tube circular in section, smooth ; exterior having five longitudinal ribs, or keels, and otherwise deeply and strongly annulated, looking like a pile of roundedged coins or biscuit, one upon another. Lon. 11.0 mm . Diam. 2 mm . Internal diam. 1.0 mm . Length of attached portion, 3 mm .

This has a remarkable sculpture, and is only provisionally referred to Bivonia, as the operculum is unknown. Found with the last.

\section*{Pedicularia albida n. s.}

Shell in the embryonic state (as seen imbedded in young specimens) apparently having somewhat the shape of an immature Marginella, of a deep pink or salmon color, the visible surface of the nuclear whorl polished, smooth, the second with a sharp keel, the succeeding ones granulated or reticulated, but generally so immersed in the adult shell as to be indistinguishable. The whorls of the adolescent shell white, marked with mumerous even, fine revolving threads, separated by equivalent grooves, both beeming coaser with growth and terminating in denticulations on the margin and the distinct columella ; these threads are prettily reticulated by the lines of growth. In the adult, the outer lip and the outer margin of the columellar callus (which is
then irregularly striated) are produced in a more or less irregular manner, become confluent, and assume the shape of the coral upon which the animal lives. Diam. of embryonic shell, 0.37 mm ; of adolescent, 2.5 ; of adult, 5.0 mm . Lon. of adult, from 3.0 to 9.0 mm .

Barbados, Hassler Exp., 100 fms. Off Havana, Sigsbee, 450 fms. Yucatan Strait, 640 fms.

This seems sufficiently different from any species noticed by me.

\section*{Margarita ægleis Watson.}

Linn. Soc. Journ., XIV., 1879, p. 704 ; St. Thomas, Wr. I., 390 fms. M. lannellosa Verrill and Smith, Am. Journ. Sci., Nov. 18S0, p. 397.

This beautiful species, like most of the genus, is exceedingly variable, the umbilicus varying from very wide to comparatively narrow, the shell depressed or conical ; the number of nodulated ribs or simple carinæ, the thickening or absence of it on the pillar, and the number of whorls, differing according to age and individual. I am not at all sure that others of Watson's species should not be combined with this; but, in the absence of specimens for comparison, I hesitate to do more than suggest a careful inspection. The number examined shows every transition.

Station 2, 805 fms.; Yucatan Strait, 640 fms.; Station 21, 287 fms. ; Station 46, 888 fms. ; off Cape San Antonio, 640 fms. ; Station 41, 860 fms. ; Station 19, 310 fins.

\section*{Margarita asperrima n. s.}

Shell conical, yellowish white, turreted, higher than wide ; whorls five to seven, the last forming half the height of the shell; base rounded, umbilicus small, partly covered by the reflexed lip, transversely striate, with one longitudinal thread close to the bounding nodulated strong carinal rib; upper whorls with two strong longitudinal ribs, the lower of which forms the carina of the last whorl ; near the beginning of the latter a single less conspicuous thread is intercalated between these two ; the carina is above the middlle of the last whorl, and between it and the bounding rib of the umbilicus are four strong, simple revolving threads, not nodulated, between which, near the mouth, interealary, weaker threads begin to appear. Suture distinct, compact, not channelled, except by projection of the ribs above and below it which give the shell a turreted appearance. Lip thin or slightly thickened, denticulated on the edge by the rib-ends; pillar little thickened, its hase apparently toothed by the ends of the umbilical threads (these denticulations are probably missing in the perfect adult) ; mouth slightly oblique, not produced below ; transverse sculpture consisting of threads following the lines of growth, rising into lamellæ between the ribs, and in passing over them (except the basal ones) forming squarish projections, cutting the ribs obliquely. Nuclens smonth, polished, the remainder dull white, with no visible nacre. Alt. 7.5. Lat. of laase, 6.0 . Height of aperture, 3.0 mm .

Station 12, 177 fms. ; Barbados, 100 fms. ; Station 20, 220 fms.
This little shell has much the form of Trochus transenna W. The regularity of its asperities has a very pleasing effect, and it seems quite different from any described species.

\section*{Margarita scabriuscula n. s.}

Shell white, conical, compact, very thin, with a silky lustre ; whorls, five to six, suture not channelled ; nucleus bulbous, polished, smooth; next whorl and a half having a sculpture of slightly raised ribs like a minute Scalaria; on the following whorls the upper surface decorated with two carine, seulptured with closely set, angular, buttressed projections, like those figured by Watson on the carinæ of Trochus clavatus (Pl. V. fig. 8), but the buttresses are not continuous over the whorl, so as to form transverse ribs, and the second carina is within the periphery of the last whorl, which is bordered by a sharp, angular earina, without nodules or projections ; two similar, but lightly nodulated, intervene on the somewhat rounded base between the last and the nodulated boundary of the umbilical chink, which is nearly filled by the reflecterl pillar ; the lines of growth radiate in a wavy manner from the umbilicus over the whorl, and constitute the remaining sculpture ; there are no longitudimal strix of any kind, or any ribs except those described ; the aperture is nearly rectangular, a little wider than high ; the sides of the spire are rather a little inflated than simply conical. Alt. 4.75. Lat. of base, 4.0. Lat. of aperture, 1.62 ; alt. 1.12 mm .

Station 44, 539 fins.
This has the characteristic aspect of an abyssal shell.

\section*{Margarita lissocona n. s.}

This species belongs to the same group as the last three mentioned species, but is nearest to the last. The shell is more simply conical, consisting of six and a half whorls, which glisten with that peculiar spun-glass or flossy lustre noticeable in so many abyssal species ; the nuclear whorls as in the last; then the sculpture consists of two lines elosely appressed to the sutures, less prominent and less conspicnonsly provided with the angular projections than in the last species. Between the upper and lower lines the surface of the whorl is smootl, except for lines of growth, shining as above described, and seems even a little conave. The nodules on the upper carina of one whorl fit into the spaces between the nodules on the lower carina of the preceding whorl, and thus alternate along the line of the suture and give it a wavy character. The carima on the last whorl is seen to be formed by two threads, which constitute the periphery, with fainter angularities than the others. The base is somewhat inflated, with two sharp, sunoth threads between the periphery and the notulate boundary of the small funnel-shapel umbilicus. The lines of growth are much as in the last species, the umbilicus is not infringed upon by any reftec-
tion of the pillar lip, and the aperture is about as wide as high, and less distinctly rectangular. Alt. 5.5. Lat. of base, 4.5. Lat. of aperture, 2.0 mm .

Station 47, 331 fms .
This little species recalls the last in many features, but the differences in sculpture and umbilicus are so great that it seems inadvisable to unite them without a connecting series.

\section*{Margarita filogyra n. s.}

Shell white, or brownish white, but little nacreous, except when decorticated ; suture appressed, not conspicuous; whorls six, the first two and a half smooth and glassy, the others, on the upper surface, supplied with four carinæ, extending from the periphery half-way in toward the suture; the space between the inner carina and the suture sculptured with fine even radiating ridges, striated by the lines of growth, underneath which are a few inconspicuous longitudinal threads; on passing over the inner carina these ridges become about three times as numerous, and so continne over the whorl, the base being supplied with about eighteen smooth, fine, even, close set revolving lines; the radiating lines or fine ridges are almost obscured until they pass into the umbilicus, where they appear as striations on its walls. The umbilical rib is not nodulated; the sides of the umbilicus are so straight that they look concare above the rib, and the perforation is visible to the apex, though not wide or funnel-shaped. The base of the shell is full and rounded, the pillar lip emarginated, and the aperture alnost round ; there is no reflection or callus, except that in adult shells the outer lip is a little thickened, while in young ones it is slightly emarginated by the ends of the carinæ. Alt. 6.75. Lat. of base, 8.0 ; of aperture, 4.0 ; of umbilicus, 1.5 mm .

Off Cuba, Pourtalès, 200 fms. Station 20, 220 fms. Yucatan Strait, 640 fms .

This recalls the M. groenlandica in some respects.

\section*{Margarita (Turcicula) imperialis n. s.}

Shell with five (?) whorls, globosely conical, white, extremely thin ; umbilicus reduced to a mere chink under the thin callus of the upper part of the pillar lip. Mouth rounded rectangular, pillar somewhat concave, margins all thin; base flattened convex, with seven revolving ribs, the outermost of which is just within the periphery, crossed by radiating lines of growth, regular and very fine, but raised into low, very sharp lamellæ, which pass over the periphery on to the upper surface of the whorl ; the last is provided with two strong revolving ribs, one of which forms the periphery, while the other lies a little less than half-way from the first towarl the suture ; two indistinct threads run in the vicinty of the suture; on the revolving ribs above mentioned there are regularly disposed sharp rougb tubercles (seventeen on the last whorl), most prominent on the middle carina; the above-mentioned
lamellæ are arranged with a regular irregularity (which gives a shagreened appearance to the surface) between the carinx, and are still coarser and more elevated over the threads near the suture, forming there a double row of scales partly obscuring the suture, which is nevertheless rather deep. Alt. of last whorl, 10.0. Lat. 13.0. Alt. of aperture, 5.5. Lat. of same, 6.25 mm . Off Cuba, Pourtalès, in 200 fms .
The single specimen taken, though destitute of the apical whorls, seemed too remarkable to leave undescribed. It has a general resemblance to some of A. Adams' species of Turcica from Eastern seas, but has a peculiar and remarkable sculpture, and wants the teeth on the pillar.

\section*{Margarita iris n. s.}

Shell thin, brilliantly nacreous, inflated, depressed-conical, five-whorled; spire obtuse; nucleus polished, smooth, very minute; remainder of shell sculptured with fine revolving lines, subequal, about as wide as the interspaces, ahout eighteen at the beginning of the last whorl ; these are crossed by slight plications, begimning near the suture, becoming nodulous on a single prominent thread a little way from the suture (which is thus made to appear somewhat channelled), becoming faint about the middle of the upper side of the whorl, and entirely disappearing before reaching the periphery; the revolving lines are fainter on the rounded base; the umbilicus is wide and funnel-shaped, bordered by a strong keel with about twenty-five rounded nodules, the inner walls of the umbilicus with strong revolving lines delicately reticulated by the lines of growth. The whorls are rounded, with no carina at the periphery; the pillar thin, arched, not reflected; the aperture nearly round, but angulated above by the sutural thread, and below by the umbilical keel; edges simple, not thickened; operculum thin, corneons, multispiral ; shell nacreons, with delicate suffused splashes of brown. Alt. 5.0. Maj. dian. 5.5. Diam. of aperture, 2.0 ; of umbilicus, 2.75 mm .

Sind Key, 119 fms.

\section*{Margarita maculata n. s.}

Shell in general form and sculpture much resembling the last, but without the nacreous coloring, stouter and coarser in every respect. Whorls five, the revolving threads on the upper side of the whorls only seven in number (on the last whorl), of which the inner two are crenulated by the radiating plications which otherwise are visible only as radiating threads in the interspaces, the base rounded with nine flattened revolving ribs separated only by incised lines and crossed by delicate lines of growth. The umbilicns much smaller than in the last, bordered by two nodulous ribs with a remarkably deep groove between them ; aperture as in the last, but not so distinctly angulated ; shell varionsly paintel with brown on a yellowish white ground ; one specimen has five distinct brown patehes on the upper side of the last whorl, another has more numerous radiating brown streaks; the base is whitish, and in adults
there is a thickening of the inside of the aperture all round, but least on the pillar. Alt. 4.5. Maj. diam. 5.0. Diam. of aperture, 2.25; of umbilicus, 1.0 mm .

Station 2, 805 fms.

\section*{Margarita lubrica n. s.}

Shell small, conical, white, shining, with a slight nacreous h ue; whorls five full and rounded; suture distinct; from about the beginning of the third whorl a row of round nodules extends along the upper line of the whorls just below the suture, about twenty-five on the last whorl and more faintly defined near the aperture ; base perforated by a small unibilicus bounded by a thickened raised line, within which are about twelve plications extending up into the umbilicus ; outside of this line a few radiating impressed lines extend toward the outer part of the whorl; faint lines of growth are here and there risible on the polished surface; aperture nearly circular, thin-edged, simple ; the pillar slightly extended on the umbilical side, not thickened. Alt. 4.0. Major diam. 3.25. Diam. of aperture, 1.5 ; of umbilicus, 0.5 mm .

Station 2, 805 fms .
This shell may possibly not be a Margarita, hut there seems no other place arailable for it. The minute nucleus and regular form preclude the idea of its being the fry of something larger.

\section*{Margarita (?) euspira n. s.}

Shell conical, shining, pearly white, elevated, with a rather obtuse apex ; fivewhorled, the nueleus translucent, white, and with a sculpture of strong revolving threads, of which that nearest to the suture is most pronounced, and contimues, at first sharp, then with slight waves, then with oblique waves like the "lay" of a stranded rope, and on the last whorl as a succession of well-elevated, pinched-up points forming a band next the suture; the othess disappear on the third whorl, and for the rest the shell is only marked by faint lines of growth here and there a little more pronounced in the vicinity of the mmbilical callus; periphery with a tendency to carination, base roundel ; aperture oblique, rounded, margin sharp, simple, pillar stout, thick, inseparable from a thick white callus which forms a lump over the umbilical pit; end of pillar (broken in specimens seen so far) aprarently forming a sort of hump or thickened angle. Suture distinct throughout. Alt. 5.i5. Major diam. 6.0. Diam. of aperture, 3.0 min. Defl. somewhat less than \(90^{\circ}\).

Station 2, 805 fims.
Perhaps not a Margurita, but with no sufficient claracters to justify its being separated in the absence of soft parts.

\section*{Calliostoma circumcinctum n. s.}

Shell solisl, strong, white, elevaterl, conical, seven-whorled; mucleus polished, small, delicately reticulate; other whorls with two sharp, much produced, thin
keels a little recurved at their edges, and crossed only by most delicate lines of growth ; base flattened, ornamented with nine angular ribs, the outermost produced somewhat; umbilicus none, aperture subrectangular, notched by the keels; pillar simple, somewhat projecting at its anterior end, not callous; suture appressed, distinct, not chanuelled. Alt. 8.0. Basal diam. 6.0. Diam. of aperture, 3.0 mm .

Yucatan Strait, 640 fms ; Station 2, 805 fms .
This somewhat resembles a Calliostoma annulatum in miniature, with the eharacters exaggerated and minus the coloration.

\section*{Calliostoma tiara Watson sp.}

Trochus (Ziziplinus) tiara Watson, loc. cit., p. 696 ( \(390-1,075 \mathrm{fms}\).).
Off Havana, Sigsbee, 450 fms. ; Station 44, 539 fms. ; Station 20,220 fms. (St. Thomas and Bermuda, Watson, Challenger Exp.)
The number of these which I have to compare is smaller than of Margarita coglcis, but the variations are as numerous as the individuals, and there are specimens with an impervious base, while others indicate a chink in the umbilical region. The sculpture is tolerably constant, and the elerated shape much more so than in the Margaritas.

\section*{Calliostoma Bairdii Verrill and Smiti.}
C. Bairdii Verrill and Smith, Am. Journ. Sci., loc. cit., p. 396, Nor. 1850.
C. Psyche Dall (not described), Bull. M. C. Zö̈l., V., p. 61, July, 1878.

This lovely species was first found by Pourtales in 100 to 200 fms . along the Florida reefs ; it seems to vary from 80 to 350 fms. in its halitat. The original specimens were burned at Chicago; others were subsequently collected, and more lately it has been found by the United States Fish Commission in deep water off Newport, R. I. It strongly recalls some of the European forms.

\section*{Calliostoma roseolum n. s.}

Shell acute conical, eight-whorled ; the first five whorls flattened, the last three somewhat rounded; periphery of last whorl gently rounded to meet the rather flattened base; umbilicus none; pillar short, straight, ending in a slight knob inside the margin of the aperture, which is thin, crennlated by the sculpture, nacroons, obliquely set and subrectangular in form ; sutures appressed, hardly visible except in the last three whorls ; color delicate rosy, nueleus smooth and white ; the base with about twelve equal revolving rils consisting of successive rounded nodules, of even size, somewhat like strings of beads ; the first, thirl, and fifth ribs, comuting from the pillar, show every thirl bead crimson, the others white; the other hasal ribs lave the rosy color of the shell, but in the seventh, ninth, and eleventh, each alternate or each third bead has a deeper crimson tint, though this is harlly visible without a
glass. On the upper surface of the whorls are (eight in the last whorl) similar beaded ribs, several of which have rosy beads alternating with crimson ones; the general rosy hue is clouded darker and lighter alternately, but in an indefinite way. The schipture of the whole shell is very uniform. Alt. 9.5. Basal diam. 7.0. Diam. of aperture, 3.5 mm .

Station 11, 37 fms. Lat. \(23^{\circ} 43^{\prime}\) N., Long. \(83^{\circ} 2 \bar{u}^{\prime}\) W., near Harana.
This is one of the early finds of Pourtalès, lost at Chicago, afterward refound, and has been known to me for a good many years. It recalls C. macandrce from Panama in general form, and is one of a group of small species, apparently hitherto undescribed, which have a considerable general resemblance to one another, and to some West American forms.

\section*{Calliostoma apicinum n. s.}

Shell conical, of six whorls, clevated, thin, rather solid; whorls and base flattened, the sutures hardly visible, the last whorl subangulated, but not carinated, on the periphery. Nucleus prominent, bublle-shaped, shining, opaque white ; second whorl deep rose-pink, with three longitudinal beaded ribs ; rest of shell yellowish white, with indistinct elouds of brown transversely disposed on the upper whorls ; the lower rib on the second, third, and part of the fourth whorls with somewhat larger beads than the rest, crowning the suture ; the upper side of the last whorl with alout nine revolving beaded ribs with a slight tendency to run in pairs, beginning at the periphery; base with eleven somewhat flattened ribs, only the two next the pillar beaded, the others crossed by evident lines of growth, radiating in a wavy manner; umbilicus a hardly visible puncture ; pillar grooved, hardly thickened, aperture not very oblique, crenulated (especially below) by the ends of the ribs, subrectangular. Alt. 7.5 . Basal diam. 7.0 ; of aperture, 2.0 ; width of do. 4.0 mm .

Barbados, 100 fms. Off Havana, Sigsbee, 175 fms.

\section*{Calliostoma sapidum n. s.}

This species bears a strong superficial resemblance to the last, and is best describer ly a differential diagnosis; it is entirely white, not colored; it has seven whorls in a shell of the same size as an apicinum with six ; the sutures are slightly channelled, and therefore distinctly visible ; there are four instead of nine beaded ribs on the upper side of the last whorl, and the beads are coarser, the interspaces wide enongh to show the lines of growth crossing them ; the nodules on the peripheral rib in this whorl are undulations rather than beads, and sufficiently large to give a cremulated appearance to the border of the shell when viewed from below; there are eight revolving riks on the base crossed ly fine rilliges following the lines of growth ; there is no umbilicus or callus; the pillar is not grooved or thickened ; the aperture is more obligne and proportionately less wide. Alt. 5.0. Basal diam, 4.12. Alt. of aperture, 1.5. Width of do. 2.0 mm .

Station 2,805 fins.

\section*{Calliostoma Yucatecanum n. s.}

Shell belonging to the group of C. I'almeri Dall, C.eximium Rve., and C. limu of the western coast of America. Shell depressed conic with a rather acute apex and six whorls ; nueleus white, delicately seulptured ; remainder of shell whitish with faint streaks of brown transverse to the whorls, arranged so as to present the appearance of seveu brownish streaks radiating from the apex; other dots and streaks of brown irregularly distributed ; upper side of whorls with one smonth revolving keel nearly midway between the sutures, but a little nearer the periphery; this gives the whorls a somewhat tabulated aspect; above this on the last whorl are four smaller more or less beaded or crenulated keels, below it are two without nodosities, reaching the gently rounded periphery ; between these are interealary threads or grooves ; base supplied with nine rounded revolving ribs, those nearer the umbilicus with a ternleney to beading ; interspaces about as wide as the ribs, which are erossed by slight elevations due to lines of growth; umbiliens perforate, bordered by a strong white rib, imner walls smooth or transversely striate ; pillar emarginate, twistel, not thickened, ending in a rounded lump above the basal margin of the aperture: the latter oblique, subrectangular, nacreous, sharp-edged, crenulated by the rils. Operculum as usual in the genus. Alt. 7.0. Basal diam. 7.0. Diam. of aperture, 4.0 ; of umbilicus, 1.0 mm .

Yucatan Strait, 640 fins.

\section*{Calliostoma echinatum n. s.}

Shell small, white, acute-conical, in general resembling C. sapidum, but less stout and solill and with wholly different sculpture ; whorls six, somewhat appressed toward the apex ; muelens smooth, semi-transparent, inflated, shining, remainder of shell opaque white with the following sculpture; on the upper whorls, four revolving ribs with smaller ineonspicuous ones between them, erossed by faint plications (more evident on the smaller whorls), prodneing norlosities which, on the four principal ribs, and especially on the thirl one, counting from the suture toward the base, rise to acutely pointed projections separated by an incurved scallop of about twice the width of the projections; toward the aperture the ribs and nodosities become more equal in size ; base flattened, impervious, senlptured with some fifteen close set flattenel revolving ribs crossed by impressed radiating lines of growth ; aperture nearly reetancrulirr ; pillar straight, stout, not projecting, withont a callus; margin thin, a little crenulated by the sculpture. Alt. 5.25 . Basal diam. 4.75. Diam. of aperture, 2.0. Alt. of same, 1.75 mm .

Sigsbee, off Havana, 80 tims.

\section*{Seguenzia formosa Jeffreys.}

Rep. on V:Alorous Cruise, I'roc. Roy. Soc., 1876, p. 200.
Station 16, 292 fins. Station 20, 220) fus.

\section*{Seguenzia ionica Watson.}

Watsox, loc. cit., p. 589.
Station 33, 1,568 fms. Station 41, 860 fms.

\section*{Seguenzia delicatula n. s.}

Shell somewhat resembling S. carinuta Jeffreys, but with the sides of the cone rather concave than convex, an acute apex, and quite differently sculptured. Whorls seven, the nucleus prominent, rounded, transparent ; the next two whorls irregularly reticulately sculptured with the transverse sculpture following the lines of growth ; the remainder having fine revolving lire entirely covering the whorl above and below; a raised band just above the suture or basal margin, across which pass squarish bands half the width of their interspaces, composed each of several threads following the lines of growth, lost on the middle upper surface of the whorls and reappearing as flexuous plications below the sutures. Base plano-convex, crossed by lines of growth which appear as slight plications near the umbilicus and as nodules (18-20) on the strong umbilical rib. Otherwise much as in S. carinata. Alt. 5.0. Basal diam. 6.0. Umbilical diam. 1.0 mm .

Station 2, 805 fms.

> Basilissa alta Watson (loc. cit., p. 597).

Station 43, 339 fms.
Basilissa costulata Watson (loc. cit., p. 600).
Yucatan Strait, 640 fms . Sigsbee, Station 50, 119 fms; Sand Key, 15 fins.

I apply this name provisionally to a shell which may prove to be the alult of Watson's species, but which requires further investigation. If so, the mouth is well provided with thick internal denticulations when grown, and the pillar is stout and involved. It seems to have no operculum!

\section*{Leptothyra (induta var. ?) albida n. s.}

Shell stont, solid, heary, very nacreons, variable in form and seulpture, rather elevatell for the remus, dead white or brownish externally, with the nsual solich shelly operenlum. Whorls five, romuled, apex obthse, suture distinct ; senplure of stout revolving ribs, varying from three to six on the upper side of the whorl crossel liy slight plications, most noticeable just below the sutures, but distinguishable also on the hase; the ribs may he few and widely separated, or umberons and close set ; they may near the sutures be nodulated IT1.5 12, 1881.
by the plications，or not ；the base is usually more finely sculptured and some－ times quite smooth except for lines of growth．Aperture quite oblique ；pil－ lar with a blunt tooth as in other species of the genus；lip somewhat reflected， thickened inside，basal callus not very thick．Alt．7．0土．Maj．diam．6．75士．

Sand Key， 125 fims．；Station 2， 805 fms．；Sigsbee，off Havana， 450 fms．； off Cape San Antonio，1，002 fms．；Yucatan Strait， 640 fms．

This shell is so variable that I should be disposed to think Watson＇s Turbo （Collonia）indutus a mere abnormally smooth specimen，were it not that he does not figure the tooth on the pillar．It is very probable，however，that they will turn out to be varieties of the same species．

\section*{CALLOGAZA n．g．}

Shell resembling Gaza Watson，but with the umbilical pad reflected only partly over the umbilicus；the pillar straight，passing without notch or mucro－ nation into the reflected basal margin of the aperture；nacreous layer in this shell covered with a thin non－nacreous layer，which，in its turn，appears to be covered by a delicate epidermis．A marked feature in Gaza is the mucronate pillar，which gives it much the aspect of an Alcadia，while the umbilicus is wholly covered and the shell wholly nacreous．Were it not that I have ser－ eral forms agreeing in character，and in these differences，I should have hesi－ tated to separate them from Gaza．Such differences，however，are held to have considerable value in littoral forms，and，until we know to the contrary，camnot in abyssal species be held to be valueless．It is probably allied to Gaza，and has a sinilar operculum．

\section*{Callogaza superba n．s．}

Shell in general features recalling Gaza docdala Watson，much of whose de－ scription would apply with little change to this species．Whorls eight，in the adult roundly shouldered below the suture，rounded at the periphery，some－ what flattened on the base，deeply and widely umbilicated，the umbilicus a little more than half covered by a nacreous callus；first two and a half whorls transparent，not nacreous，very obtuse，the nucleus not prominent ；the next three and a half whorls smooth，except for faintest lines of growth，glassy with the nacre shining through ；the remainder of the shell covered with delicate and distinct lines of growth，sometimes a little more pronounced near the su－ ture，and by revolving lines almost too shallow to be called grooves，most promi－ nent on the periphery，evanescent on the flattened part of the base and above near the suture；on the last whorl these are about 0.5 mm ．apart；the regrion near the suture is almost smooth．Suture very distinct，but not channelled； umbilicus bordered by an edge from which the flattened base falls away，and with straight walls forming an almost perfect cone ；last whorl contracted just before the reflected \(l_{1}\) ，which，above，rounds out in advance of its junction with the suture，the last quarter of an inch of which clescends on the whorl，
giving the aperture a downward look; aperture oblique abore, arching more nearly to a perpendicular below ; smoothly, evenly reflected and thickened from the pillar to the suture, with an internal channel behind the thickening ; pillar callous above, thinly and unevenly reflected half-way across the umbilicus, gently and very obliquely descending and smoothly passing into the basal part of the lip. The interior of the aperture, the lip, the umbilical callus, and a slight wash near the sutural junction, brilliantly nacreous; base and body whorl within the mouth not so ; upper surface of shell distinctly tinted with fawn color, base waxen white, the nacre perceptible throngh the thinner portions. Alt. 24.0 ; Maj. diam. 35.5 ; of umbilicus, 8.0 ; of aperture, 13.0 mm . Defl. about \(100^{\circ}\).

Station 153, off Montserrat, 303 fms., and from various other localities at about the same depth.

This sbell, except for the nacre, at once recalls a big Helix of the albolabris type.

\section*{Callogaza Watsoni n. s.}

Shell much smaller than the last and but slightly nacreous; whorls six and a quarter, having the same general form as in the last species, but with a more prominent nucleus ; nucleus small, bulbous, dark brown ; first two and a half whorls glassy, brown spotted, smooth ; subsequently the exterior two thirds of the upper surface of the whorls seulptured with four or five strong revolving threads ; the space between them and the suture above, with strong, even, flexuously radiating, sbining, rounded plications (about eight to a millimeter) which pass obliqucly over the revolving threads and appear again on the base as strong regular plications in the umbilical region, extending from the umbilical carina one third of the way toward the periphery. The base is covered with numerous revolving threads flattened until their interspaces appear like grooves; the umbilicus similarly formel to the last species, but somewhat more turreted internally. Last whorl less contracted behind the lip, which is not produced forward above, as in superba; the umbilical callus not nacreons, with a granular surface, white and covering less than half the umbilicus; lip and aperture otherwise much the same as in superba, but only slightly nacreous. Base waxy white, top the same, with clondy radiating brown blotehes near the suture and on the periphery; some of the revolving threals are also continuously brown. Alt. 7.75. Maj. diam. 12.5 ; of umbilicus, 2.5 ; of aperture, 5.5 mm . Defl. about \(120^{\circ}\).

Sigsbee, Station 12, 177 fms , off Havama.
This modest little species looks very like some of Lowe's Madeiran helices.

\section*{MICROGAZA n. subg.}

Shell flattened, rotelliform, resembling a Cuiza without reflected lip or mombilical callns, brilliantly macreous when fresh, and having a distinctly sealariform umbilicus.

This little shell I at first supposed to be the young of the preceding species, but a careful examination of many specimens has shown that this is not the case, and there is no evidence to indicate immaturity. The close resemblance in the other characters leads to the supposition that it is related to Callogaza, of which until more is known it will form a subdivision.

\section*{Microgaza rotella n. s.}

Shell depressed, with five whorls, somewhat flattened above and below; nucleus small, translucent white, and with the two first whorls polished, smooth or marked only by faint growth-lines; remainder of the whorls with a narrow puckered band revolving immediately below the suture, on which the slell matter is as it were pinched up into slight elevations at regular intervals, about half a millimeter apart. In some specimens, outside of this band an impressed line revolves with the shell ; remainder smooth, shining or with evanescent traces of revolving lines impressed from within and strongest about the rounded periphery; base rounded toward the umbilical carina over which it seems to be drawn into flexuously radiating well-marked plications (about thirty-two on the last turn) which disappear a third of the way toward the periphery; walls of the umbilicus concave, overhung by the carina, turns of the shell so coiled that the part of each whorl uncovered by its successor forms a narrow spiral plane ascending to the apex like a spiral staircase or screw thread. Pillar straight, thin, with no callus; aperture rounded except at the angle of the umbilical carina; margin thin, sharp, not reflected or thickened; no callus on the body whorl in the aperture ; shell whitish or greenish; nacre less brilliant in dead or deep-water specimens; with zigzag brown lines variously transversely disposed and disappearing on the base. Alt. 4.0. Maj. diam. 6.75 ; of umbilicus, 1.75 ; of aperture, 2.5 mm .

Station 2, 805 fms. Barbados, 100 fms., etc.
The coloration recalls that of some species of Cyclotus.

\section*{FLUXINA n. g.}

Shell porcellanous, depressed conical, umbilicate, strongly carinate, with a stout umbilical rib, above which the pillar is thin and emarginate; from the umbilical rib to the carima the basal margin of the aperture is deeply Hexuonsly emarginate; above the carina it is again but less deeply emarginate, then sweeps forward roundly and then slightly recedes before joining the preceding whorl.

This curious form belongs in all probability to the Solariider ; representing among them Basilissa among the Trochide, and recalling Platyschisma, but with a different aperture. When perfect the margin at the carina must project forwarl like a claw, or nail, as in Schiznstoma. When adult, the nuclear whorls are filled up with a solid deposit of shelly matter, and it is probable that there is a slight notch at the end of the umbilical rib.

\section*{Fluxina brunnea n. s.}

Shell large, solid, depresserl, with five to seven whorls ; light brown with a few touches of white transterse to the whorls on the carina; umbilical rib white ; nucleus and interior walls of the umbilicus dark brown. Several of the spiral grooves above and below are marked by a darker brown than the rest, and appear as brown lines. Sculpture above, on the nuclear whorls, of close-set sharp longitudinal grooves with the ridges between them rounded and more or less beaded or nodulous, crossed by more or less evident lines of growth, which, however, are not necessarily coincident with the beading where present ; the grooves continue, but do not seem to increase in number, while all sculpture disappears from between them, the interspaces being smooth and flat and only marked by very light lines of growth. The carina is separated from the rest of the whorl by a squarish shallow gutter, somewhat too broad to be termed a groove, while the base rounds up over the periphery so that the most angular edge of the carina is at the top ; base between flat and rounded, marked by evanescent (partly brown) grooves and transversely by delicate flexuous slightly raised aggregations of the lines of growth at somewhat regular intervals ; these slightly crenate the umbilical rib on its inner ed;e and perhaps form the pronounced, slightly backwardly flexed, striæ and ridges which mark the umbilical walls. There is hardly any callns on the body wall at the aperture, which is broken in the specimens at hand; its form has been made out from the lines of growth; the suture in the later whorls is closely appressed, the cariual gutter would at first sight be taken for it ; the first two and a half whorls are solidly filled with translucent shelly matter. Alt. of base, 6.0 ; of spire, 4.75. Diam. of base, 15.5 ; of umbilicus, 3.12. Width of aperture, 7.0 mm .

Station 2, 805 fms., and in other localities which will hereafter be enumerated.

\section*{Ethalia anomala D'Orbigny.}

Yucatan Strait, 640 fms.

\section*{Turbo (Liotia?) Briareus n. s.}
shell small, clevated, with an obtuse apex and fise rounded whorls. Nucleus flattened, lemon-yellow, looking like a little Dolphinula; the remainder whitish with the backs of the spines streaked with rose colur, or the whole shell (except the nucleus) of a darker shade of rose; nucleus with transwerse ridges; next whorl and a half with spiny rugosities, spirally armared ; remainder, above, with fun or five revolving rilges close set with hollow spines resembling little curved tubes slit down on the anterior side, a millimeter long (or less) but sometimes dwarfed, thickened and stunted; a thread with smaller spines just below the periphery (or appearing just at the sutme in carlier whorls) inside of which are three strong ribs clusely monlulated, then a
very pronounced umbilical rib coarsely nodulated, then three rows of small spines which twist into the umbilicus, above which its walls are smooth, but twisted so that the proper perforation is very small. The whole shell moreover is covered with the lines of growth which rise into elegantly imbricated scales, regular on the base, irregular on top, where they produce by their irregularity a shagreened effect. Aperture circular, thickened in the adult; pearly substance of the shell thick and solid. Alt. 7.5. Maj. diam. 9.0. Diam. of aperture, 3.5 mm .

Station 2, 805 fms. Station 60, off Havana, 480 fms.
This may belong to the subgemus Arene H. \& A. Adams. Contrary to the ordinary experience, those from the deeper water are the darker and smaller specimens.

This shell is a perfect little gem. Words can give but little idea of its beauty under a magnifier.

\section*{Hanleyia tropicalis n. s.}

Dall, Sci. Results Expl. Alaska, Art. IV. p. 101, Dec. 1878 (name only).
Chiton about 10.0 mm . in length and 5.0 mm . in width, with the usual characters of the genus, i. e. anterior valve with an unslit insertion plate, other valves without even the plates; back with an angle of about \(90^{\circ}\). Girdle in the dried specimens thin, narrow, covered with close-set, white, glassy, slender spines ( \(1.0-1.5 \mathrm{~mm}\). in length) above, and below with similar but much shorter ones. Anterior valve with a well-marked mucro from which proceed concentric strix of growth, and in front of which the valve is a little concave ; sculpture of little tessellated flattened nolules radiating from the mucro, above which are irregularly distributed small opaque white pustular bubbles of shelly matter looking like attached grains of coral sand ; posterior valve smaller, flatter, with similar sculpture, but the pustules take on a decidedly cylindrical shape and are elongated, looking like the stalks of decapitated mushrooms; this arrangement is still more marked on the posterior lateral areas of the intermediate valves, the anterior lateral areas also exhibit it (less prominently), but with an obliquely antero-posterior radiation, while the former have it more entirely lateral from the mucrones; dorsal areas with the tessellated sculpture alone, arranged longitudinally. Color entirely white.

Pourtales, Sand Key, 128 fms.
This is the first known species of the group from the watess of the tropics, and is entirely distinct in sculpture and appearance from the others.

GENUS PLEUROTOMA L.m.
ANCISTROSYRINX n. subg.
Shell with the posterior surface of the whorls concave, with a hroad deep sinus, bordered extermally by a pectinated clevatel frill, directed backwards.

Understanding that the name Candelabrum, used (but not described) for this form (Bull. M. C. Z., Vol. V., 1878), has been used by Blainville for an echinoderm, I propose to atdopt the above designation for the group typified by the following species.

\section*{Ancistrosyrinx elegans n. s.}

Candclabrum cathedralis Dall, l. c. (named, but not described).
Shell with the canal abont the same length as the spire, acutely tapering before and behind; white; whorls nine, of which two are embryonic ; aperture very long and narrow; anterior surface of the whorls everywhere sculptured with even uniform spiral rows of rounded nodules beantifully reticulated by the lines of growth ; one row about the midlle of the whorl slightly elerated above the others; carina fringed with delicate triangular points; posterior surface of the whorls, except for lines of growth, smooth, with one row of nodules just inside the carina; canal straight, columella not thickened, but somewhat twisted anteriorly, onter lip sharply angulated ly the carina. Length 27 mm ., of which 12 mm . are behind the carinal notch. Max. width, 12 mm . Width of aperture, 4 mm . Defl. \(45^{\circ}\).

Florida Reefs, Ponrtalès, 1870. Station 2, 805 fathoms, four miles from Havana, Agassiz, 1877-78.

This is a most exquisite gem of the sea, and will not fit into any of the sections of Pleurotomida yet climinated from the Lamarckian genus.

\section*{SUBGENUS BELA Leach.}

The subdivisions of the Pleurotomidce are at present so indistinctly limited and so poorly defined by diagnosis; the differences of authors in regard to which groups should be taken as of full generic value are so great, and the difficulty of decision in the absence of the soft parts so perplexing; that for the present purpose I shall regard the groups as merely subdivisions of the Lamarckian genns, recognizing of course that some of them, when properly climinated, are entitled to generic separation.

\section*{P. (Bela) Blakeana n. s.}

Shell very variable in proportions and somewhat variable in sculpture; thin, white, with a dark nuelens, rather acute spire, short pillar and rather wide aperture; sculpture of revolving threads, two stronger ones immediately in front of the suture, which are nodulated at their intersection with the ribs; with sixteen to cighteen transwerse ribs which are strongest near the suture and farle away toward the canal ; notch subobsolete; shell with the waxy polish characteristic of so many abyssal forms.

\section*{Var. normalis.}

Shell short and very stout, seren-whorled, the last whorl abont eight elevenths of the whole leneth; extreme nucleus smooth ; remainder of the three and
a half nuclear whorls yellow-brown, beautifully reticulated with wary transverse lines, then changing suddenly into waxy white ; remainder of shell with spiral threads, set in pairs which frequently blend to make one flattened spiral thread, with wider interspaces between the threads. Two or three threads next the suture are stronger and wider apart than the others, the outer one strongest, giving the whorl a turreted appearance, and rising into little knobs on the transverse ridges; these ridges rather sharp, sixteen to eighteen in number, fading away toward the canal in most but not all specimens, flexuons with the lines of growth ; pillar straight, the edge obliquely cut off, shorter than the aperture anteriorly ; a light deposit of callus on the body ; aperture proportionally wide, thin-lipperd, about half as long as the shell. Lon. 8.25. Lat. 5.25 mm . Defl. very variable.

Off Cape San Antonio, 640 fms . Yucatan Strait, 640 fins.

\section*{Var. extensa.}

Shell in most features like the last, but more elongated, with nine whorls, the revolving threads (except the sutural ones) obsolete except near the anterior end of the last whorl; with a tendency of the thread next the suture to be stronger and more strongly knobbed than (as in the normal form) the outer one; the transverse threads twenty to twenty-five, more numerous and in large specimens hardly noticeable except near the suture; spire nearly equal to the last whorl and aperture about one third of the shell. Lon. 12.5. Lat. 5.0 mm .

Off Cape San Antonio, 640 fins., 413 fins. Station 35, Lat. \(23^{\circ} 52^{\prime}\), Lon. \(88^{\circ} 58^{\prime}\) W., 804 fms.

The sutural knobbing characterizes so many abyssal shells that it would seem to have some significance, but what it is we are not yet able to determine.

\section*{P. (Bela) limacina n. s.}

Shell waxy white, smooth, glistening, elongated, rather acute at both extremities; whorls eight or nine, the nucleus and nuclear ones as in the last except that they are less strongly sculptured ; next the suture, which is by them distinctly marked, a succession of (on the last whorl sixteen) little squarish knobs, not continued anteriorly in any way, but looking as if they had been pinchect up from the interspaces between them ; on the back of the canal are two or three spiral threads, remainder of shell without trace of spiral sculpture ; lines of growth very flexuous, indieating a deep broad emargination near the suture ; but the shell is so excessively thin and brittle that I can find, among many specimens, none with a perfect aperture, but suppose from the growth lines that the outer lip was roundel out broadly, while the canal is very narrow, the pillar extremely thin, sharp and straight, making the aperture narrowly lunate. There are variations in slenderness and in the prominence of the sutural knobs, otherwise this is one of the most characteristic alyssal species and wholly unlike any of the shallow-water Belas. Last whorl twenty-seven forty-fourths of
the shell. Lon. 11.0. Lat. 4.0 mm . Aperture equal to the spire above the last whorl.

Station 2, 805 fms . Yucatan Strait, 640 fms . Gulf Stream, 447 fms ., Pourtalès.

\section*{P. (Bela) filifera n. s.}

Shell thin, delicate, elongated, fnsiform, waxy white ; nuclear whorls three, generally decorticated, but when perfect probably as in the preceding species; whorls in all ten, near the suture smooth except for the distinct lines of growth indicating the deep wide notch ; suture appressed, indistinct ; elsewhere sculptured with numerous nearly uniform flattened revolving threads with about equal interspaces ; otherwise with obliquely transverse elevations, hardly limited sharply enough to call ribs ; these appear just below the sutural smooth band (sixteen on last whorl), cross the whorls of the spire with a slight angulation above the middle of those whorls, but on the last whorl disappear at about the periphery; tolerably evident lines of growth appear here and there, crossing the spiral sculpture ; spire less than one third of the shell ; aperture a little less than half the length of the shell; pillar straight, simple, polished. Lon. 17.5. Lat. 6.25 mm .

Station 47, 331 fms .
A remarkably elegant species, which resembles none of the Northern forms.

\section*{P. (Genota) mitrella n. s.}

Shell white, strong, acutely fusiform, nine-whorled ; nucleus and two nuclear whorls rounded, smooth, shining, white ; spiral sculpture consisting of two small threads next before the suture separaterl, by a smoother excavated space representing the notch, from two or three or even four strong flattened threads (the second of which forms the periphery) which distinctly overlic the transverse sculpture, are continuel on the last whorl to the canal, and number about twenty-two ; beside these the entire surface is overscored with very minute microscopic spiral strix ; the transverse sculpture is of twelve to fourteen sharp straight rilges, continuons from the earlier whorls to the last one, except on the final half of the latter and on its anterior two thirds where they become obsolete ; suture appressed, indistinct; column straight, simple; onter lip slightly excavated (for the notch) just in advance of the suture, then broally projecting with its edre somewhat thickened, then falling away toward the canal with a thinner edge ; aperture long, narrow, somewhat less than half as long as the shell, internally smooth. Lon. 12.5. Lon. of last whorl, 7.25. Lat. 4.25. Lat. of aperture, 1.4 mm .

Yucatan Strait, 6.40 fims.
This little species has much the aspect of a small acute rough-sculptured Mitru.

\section*{P. (Pleurotomella) Verrillii n. s.}

Shell eleven-whorled, thin, large, bluish white, with an acute spire and wide twisted canal ; nucleus thin, smooth ; next three or four whorls smooth, shining, with a spiral row of little polished knobs just behind the suture; thence the entire shell covered with hardly raised spiral flattened threads about equal to the very shallow interspaces, and averaging about four to a millimeter; the knobs continue in front of the ante-sutural excavation, but in the later whorls have a more pinched appearance; there are twenty-one on the last whorl ; suture appressed, obscmre ; motch broad, shallow, rounderl, the ante-sutural band on the last whorl somewhat concave and about four millimeters wide; lip much produced forward, rounded, falling away toward the camal, which at its anterior end is broad and flaring ; pillar stout, simple with a sharp thin twisted edge and no callus; aperture equal to half the shell in length and width. Lon. 36.0 ; of last whorl, 25.0. Max. lat. 12.0 mm .

Station 41, 860 fms.
This is supposed from the shell characters to belong to Prof. Verrill's subgenus Pleurotomella, and, so far as his descriptions go, seems not to be illentical with any of those describel by him alone or jointly with Mr. Sanderson Smith. Whether the subgenus itself can stand will only be determined when the solt parts of the numerous other named divisions of Pleurotoma have been critically examined and compared. Meanwhile it is a convenient receptacle for a few forms which seem to differ in several particulars from those diagnosed in the text-books, or by writers on the suliject.

\section*{P. (Pleurotomella?) Sigsbei n. s.}

Shell in general closely resembling the last, with the following differences: it has the same number of whorls in 25.5 mm . length; it is proportionally more slender ; the knobs are oblique instead of perpendicular, in the spire are set in the middle of the whorls instead of near the suture, are less prominent, and become obsolete towarl the end of the last whorl ; there are about eighteen on the last whorl that has them, and they are proportionally more produced than in the last ; the pillar is less twisted and the sharp flaring elge near the anterior end is not so prominent ; the muclens is smoth and light brown ; the remainder of the shell has a brownish tinge compared with the preceding. Lon. 25.5 ; of last whorl, 15.0 ; of aperture, 11.75. Max. lat. 9.5 mm .

Station 33, 1,568 fins. Yucatan Strait, 640 fims. (young).
The spiral threads in this and the last species cover the ante-sutural band as strongly as any part of the shell.

\section*{P. (Mangilia?) ipara n. s.}

Shell with nine whorls; nucleus minute, dark brown, polished, smonth; second and third nuclear whorls beautifully reticulated hy oblique transerse lines
in two directions; remainder waxy white, with the peculiar waxy lustre of abyssal shells; form rather short-fusiform, spire subturreted by the concave ante-sutural band ; spiral sculpture of about twentr-four flattened threads, with wider interspaces, before the band on the last whorl ; only two or three of these threads visible on the upper whorls; they pass over all the transverse ridges and are a little stronger orer them. Next the suture are small, short, appressed plications, with a tendency to pair, and even to unite abore, thus becoming staple-shaped ; the ante-sutural band is excavated, smooth except for the terminations of the plicæ, which cease near its posterior border ; near the anterion loorder the spiral threads begin, crossing sharply-projecting short oblique plications (thirteen on the last whorl) which disappear half-way from the periphery to the anterior end of the canal, and are somewhat angulaterl just in adrance of the ante-sutural band ; notch broad and deep ; outer lip thin, projecting ; pillar short, thin, twisted ; canal short, broad. Lon. 8.5 ; of last whorl, 5.75 ; of aperture, 4.5. Max. lat. 4.5 mm .

Yucatan Strait, 640 fms.
There is some variation in form and sculpture of this species; the above is from a perfect specimen of average characters. I suspect it to be a Bela; the form of the notch, however, more nearly resembles what is usually understood by Mangilia. It has no resemblance to any of the Northern forms:

\section*{P. (Mangilia) comatotropis n. s.}

Shell white, porcellanous, eight-whorled; first three whorls with ten to eighteen distinct deeply flexuous transverse riblets and a narrow longitudinal belt near the suture ; succeeding rather abruptly to this the sculpture of the remaining whorls consists of (on the earlier ones) two or three, or (on the last whorl) up to eleven sharp revolving ridges, the one next before the suture being the most prominent ; these are crossed by delicate distinct raised lines following the lines of growth (on the last whorl about twelve to one millimeter) which are most evident in the interspaces ; suture appressed from above and below, forming a gronsed, slightly projecting riblet; notel not deep, less than semicircular ; aperture rather narrow and short ; pillar smonth, entirely free from callus ; margins simple, not thickenel. Lon. of shell, 6.0; of last whorl, 3.5 ; ; of aperture, 2.5. Lat. of last whorl, 2.5 ; of aperture, 1.0 mm . Defl. about \(27^{\circ}\).

Cape San Antonio, 640 fms .
This somewhat recalls the comparatively gigantic Pleurotoma oxytropis Sby. and Drillia Kemnicottii Dall, but is clearly not the young of any described species.

\section*{P. (Mangilia) lissotropis n. s.}

Shell small, slender, somewhat bluntly tipped, with six whorls, shining with the lustre of parafline ; moleus rather large, bullate, smowth, translucent, shining; remaining whorls with transverse, stout, shoulderel ribs (on the last
whorl eleven) becoming obsolete anteriorly, and succeeded by a few (four or five) revolving riblets at the anterior extreme of the canal; suture appressed ; lines of growth not evident; whorls rather inflated in appearance ; notch very slight; aperture small and unusually short; pillar very short, straight, and pointed. Lon. of shell 4.5 ; of last whorl 2.25 ; of aperture, 1.25. Lat. of last whorl, 1.75 mm . Defl. about \(27^{\circ}\).

Station 20, 220 fms.
This very likely grows to larger size, and is notable for its peculiar translucent waxy lustre.

\section*{P. (Mangilia) bandella n. s.}

Shell thin, white, polishel, fusiform, eight-whorled ; nucleus smooth ; succeeding whorl or two scalariform, by reason of sharp scale-like transwerse lamellx; remaining whorls with sharp transverse ridges prominent on the spire and on the posterior half of the last whorl (where there are eighteen of them) and obsolete on the anterior half; these ridges rise into points where they cross the carina in front of the notch-band and the ante-sutural rib; of other transverse sculpture there are only the lines of growth which are prominent only where they cross the band marking the track of the notch ; the revolving sculpture consists of a rather stout rib closely appressed to the suture forming one margin of the band, the other edge of which forms a carina, in advance of which are (on the last whorl \(20-23\) ) flattened riblets with about equal interspaces which extend with regularity to the anterior end of the canal. Aperture equal to half the total length, margins and column thin; notel broand, shallow, leaving a very distinct band ; spire moderately pointed. Lon. of shell, 9.37 ; of last whorl, 6.12 ; lat. of do., 3.75 mm . Defl. about \(39^{\circ}\).

Station 47, 321 fins.
This has a superficial resemblance to the Bela turricula group, which is less evident on a closer inspection. It has the deep-water facies and (as will he observed) the sutural band with raised sculpture common to so many other abyssal species of totally different genera or even orders.

\section*{P. (Mangilia) antonia n. s.}

This species at first sight appears like a variety of the last, and is hest described by a differential diagnosis. It is six-whomed, with a length of 5.25 mm. ; the nuclens is clear brown instend of white, with three whorls, nu most of which there are scalar ridges which are much more closely and regularly set than in the last, and do not resemble lamella ; there is only a trace of an antesutural revolving rib in the earlier whorls which vanishes entirely in the later ones, and with it, of course, the tendency to raised points of sculpture ; though its place is marked by a white opacity in the otherwise rather tramslucent shell ; there are thirteen longitudinal ribs on the last whorl, which extend on to the anterior fourth of the whorl instem of vanishing, and are more evident and sharper where they cross the band; while the revolving ribs are less rew-
ular and extend partially over the notch-band, which is thus rendered much less conspichous than in the last species; the notch is also less marked and the spire has a stouter aspect. Lon. of shell, 5.75 ; of last whorl, 4.25 ; of aperture, 3.0. Lat. of last whorl, 2.5 mm . Defl. about \(41^{\circ}\).

Cape San Antonio, 640 fms.

\section*{P. (Mangilia) Pourtalesii n. s.}

Shell slender, dull, light brown, eight-whorled; nucleus large, bubbleshaped, smonth, forming a blunt apex ; other whorls furnished with numerons: (on the whorl next to the last 20, and on the last 27) narrow, little-raisel, rounded riblets with somewhat wider interspaces, becoming less distinct and more crowded in the adult near the aperture ; the posterior terminations of these riblets are waved, forming an obscure notch-band, each being slightly enlarged close by the suture and also on the anterior side of the band, thus forming two rows of indistinct nodulations, of which the sutural row is more clearly defined than the other ; the riblets extend from suture to suture, and near its anterior third become obsolete on the last whorl ; here eight or ten rather indistinct revolving threads exist, becoming more distinct toward the end of the canal, separated from each other by shallow grooves; these pass round the column into the aperture; canal short, wide ; aperture simple, with thin margins; notch rather indistinct in the adult. Lon. of shell, 17.0 ; of last whorl, 9.5 ; of aperture, 7.0 . Lat. of last whorl, 6.0 ; of aperture, 2.0 mm . Defl. about \(25^{\circ}\).

Bed of the Gulf Stream, Pourtales, in 447 fms.
An inconspicuous but well-marked species.

\section*{P. (Mangilia) columbella n. s.}

Shell whitish, inclining to dove-color, slightly translucent, thin, delicate, with eight and a half sub-turreted whorls; nucleus minute, shining, glasey, transparent; succeeding whorls regularly sculptured by transverse slightly oblique riblets, abolit twenty on the last whorl but one, extending from suture to suture on the spire, somewhat shonldered before the suture giving the spire a sub-turreted appearance, beeoming less numerous, regular and prominent on the last whorl, and vanishing at or before reaching its periphery ; revolving sculpture of close microsenpic striæ often elegantly wavel, covering the whole surface except the apical whorls ; column short, straight, simple, with a gronve behind it, forming a distinct siphonal fasciole; unteh very shallow and ineonspicuous; outer margin thin, simple; canal very short and wide; aperture almost lunate. Lon. of shell, 10.0 ; of last whorl, 6.5 ; of aperture, 4.5. Lat. of shell, 4.5 ; of aperture, 1.8 mm . Defl. about \(36^{\circ}\).

Station 2 (), 220 fuls.
This is one of the species which, in the alsence of the soft parts, is difficult to locate. It is possible it shoulil be referred to Bela. It is not umlike one or two Aretic sprecies.

\section*{P. (Mangilia) pelagia n. s.}

Shell slender, thin, white, smooth but not polished, with eight whorls; nucleus small, three apical whorls inflated, white, perfectly smooth; remainder indistinctly keeled midway between the sutures by a ridge, over which, the lines of growth passing obliquely, the shell is as it were pinched up at rewular intervals into oblique projections, ten to fourteen on each whorl, fewer proportionally on the larger whorls ; shell otherwise not sculptured ; suture distinct, not appressed ; canal and aperture long and narrow, notch well marked, but not forming a distinct band. Lon. of shell, 10.75 ; of last whorl, 7.25 ; of aperture, 5.25. Lat. of shell, (abont) 3.5 mm .
Station 44,539 fms.
This is distinctly abyssal in its facies. The specimen, though somewhat imperfect, presents such distinct and recognizable characters as to anthorize its description. Other specimens will doubtless be found in the Agassiz-Bartlett series as yet untouched. Its generic place is, like that of the last-mentioned species, a little uncertain as between Bela and Mangilia.

\section*{P. (Drillia) polytorta n. s.}

Shell large, slender, sulid, with about thirteen whorls, of a dull ashen color and unpolished surface; uucleus - ? ; succeeding wholls transversely sculptured by twelve or thirteen rounded, shouldered rihs, beginning and largest just before the notch-band, crossing the whorls a little obliquely or even in a directly transverse direction, widest at the begiming, becoming narrower and less prominent anteriorly, on the last whorl fading out or indistinct on the anterior half, and less numerous or partially obliterated over the latter part of this whorl in fully developed adults; the lines of growth are more or less distinct, but not uniform, while the ribs on one whorl bear no uniform relation in position to those on the next or preceding whorls; longitudinally each whorl is appressed in a thickened band against the suture, next in front of which band is the (except on the last half-whorl) narrow unseulptured band indicating the path of the notch ; this on the last half-whorl widens out consiterably if the specimen in hand be typical, though in this case it may be an individnal charateristic ; before the notch-hand, and even encroaching a little on it, and extending over the surface of the whorls, are six or seven (on the last whon seventeen) slightly raised rounded revolving lines, with slightly wider shallow interspaces, which are abont equally prominent over the transverse ribs aml between them; other sculpture none; aperture rather short and narrow, slightly more than one third the whole length of the shell ; outer lip probably thickened; a considerable amount of smooth callus on the boty whorl mul pillar; notch mather narrow, of variable depth at different stages; camal short. rather open, nearly straight; last whorl less than half the length of the shell. Lon. 33.5. Max. diam, 8.0. Lat, of aperture, 5.5 mm, Defl. ahout \(27^{\circ}\).

Oll Cape Sim Antonio, 413 fims.

A rather large, subcylindrical, coarse-looking shell, without specially pronounced characters, yet seemingly not to be attiliated with any of the species described and figured with which I have been able to compare it.

\section*{P. (Drillia) subsida n. s.}

Shell stont, solid, fusiform, waxy white, with nine whorls ; nucleus brown, smooth, first three (nuclear) whorls sculptured with neat flexnous ribs transversely disposed; next four whorls transversely with only the rather strong and distinct rounded lines of growth which cover pretty much all the rest of the shell except the tops of the longitudinal riblets ; the longitudinal seulpture a kecl just in advance of the suture upon which the posterior edge of the former is appressed, then a few faint revolving strix on the broad notch-band, then two more keels, or sharp squarish riblets (on the last whorl ten or twelve), the first marked with numerous knobby waves extending forward in the interspace toward the second keel rather than outwardly, and sometimes meeting and slightly waving the second keel ; these waves make their appearance on about the fifth whorl, and are evanescent on the last whorl ; there are about three in a millimeter and a half ; aperture narrow, slightly callons ; canal short, nearly straight ; pillar covered with thin, translucent white callus; outer lip not thickened, but might become so in an older shell. Lon. of shell, 13.0; of last whorl, 8.0 ; of aperture, 6.0 . Max. lat. 5.0 mm . Defl. about \(42^{\circ}\).

Station 43, 339 fathoms.
A solirl, stout, clear-ent species, allied to Drillia Kennicottii Dall, of Alaska, but shorter and more spindle-shaped.

\section*{P. (Drillia) nucleata n. s.}

Shell polished, waxy white, seven or eight whorled ; nucleus disproportionately larse, smooth at first, shining, very obtuse, white ; sccond whorl with ahout fifteen rather sharp transverse ridges parallel with the axis, and not flexnous; these pass gradually into slightly oblique, rounded riblets, which begin in front of the notch-hand with a slight shoulder, then contimue acruss the whorl, and are somewhat attenuated by the time they reach the suture; of these there are ahout fifteen on the last whorl, less distinct anteriorly; the lines of growth are tolerably prominent, and especially so on the last whorl. Of rewolving seulpture there is little or none; a few microseopic revolving stria are perceptible in some places, especially on the surface of the rather brom noteh-hand; the suture is appressel ; the shouldering of the riblets gives the upper whorls a rather inflated appearance; the aperture is short and wide; the notch deep, with its edges turned up and a little twisterl ; the canal short, wide, slightly reflected, showing on the pillar a distinct fasciole; pillar straight, with a distinct callus upon it aud also upou the bexly-whorl; outer lip thin-edged, prodneed and rounded. Lon. of shell, 13.5 ; of last whorl, 9.5 ; of aperture, 5.0. Max. lat. 5.0; lat. of aperture, 2.0 mm. Defl. about \(2!)^{\circ}\).

Station 43, 339 fms .
A modest and distinct little species, remarkable for its stout obtuse and unusually large nucleus.

\section*{P. (Drillia) exasperata n. s.}

Shell yellowish-white, with a dull surface, except for the glassy and translucent nucleus, slender, thin, eight-whorled ; mucleus thin, inflatel, the (nuclear) first two whorls polished, smooth, and free from sculpture, passing abruptly into the dull and lustreless surface of the adult shell ; for the remainder, the transverse sculpture consists of subernal ribs, largest on the periphery, smaller toward the sutures, which they reach above and below, the track of the nutch not being marked by a flattened band, as is generally the case ; there are about eleven of these to a whorl, on the last whorl they are less pronounced, and become obsolete toward the anterior third of the whorl, where the lines of growth are particularly conspicuous; the completion of the adult aperture is marked by a particularly large rib or swelling of the margin, which becomes more conspicuous in case the shell continues to grow; in the older part of the shell the ribs are continued in the same line from whorl to whorl, in the last whorl and a half they become alternate or irregular ; the revolving sculpture consists of (on the smaller whorls) two or three to (on the last whorl) sixteen flattened raised bauds, with wider interspaces, which are much more marked, or even knobby, on the smaller whorls where they pass over the transverse ribs; gradually become more uniform, and, on the last whorl, are nearly as well defined between the rils as on them ; nine of those on the last whorl are crowded together on the anterior third, the rest spread over the body of the whorl; there are hardly any traces of revolving striation ; noteh deep, but not producing a band; margin of the aperture thin, the onter lip proluced forward, a slight deposit on the body and pillar; columella nearly straight, slightly shorter than the rather wide, somewhat recurved canal ; sutures appressed, sinuous over the ends of the transverse ribs ; aperture less than one third of the shell. Lon. of shell, 9.5 ; of last whorl, 5.0 ; of aperture, 3.0. Max. lat. 3.5 mm . Defl, abont \(27^{\circ}\).

Off Cape San Antonio, 1002 fins.
A rough-looking little shell, with somewhat the sculpture of a Cerithiopsis.

\section*{P. (Drillia?) leucomata n. s.}

Shell more or less translucent white, short-fusiform, thin, polished, tenwhorled; nucleus thin, very minute, inflated, clear tramsparent brown, with a shining surface; succeeding to it are three mulear whorls, whitish brown, smooth, but not shining like the nuclens, subinflated, and with a sharp, strons. peripheral keel ; succeeding whorls marked by a strongly defined hroad bame extenting from the suture more than half-way over the whorl, desconling steeply to the periphery, where the keel of the nuclear whorls is continued as
two sharp raised threads which pass over strong oblique angular transverse projections, are clearly defined in the smaller whorls, but on the later ones become obsolete ; on the last whorl (about six on the middle and mine on the anterior third) in advance of the peripheral nodules are about fifteen sharply raised threalls, with interspaces up to 0.5 mm . in width ; other revolving sculpture consisting of microscopic strixe covering the shell, which in favorable localities in crossing the lines of growth (as, for instance, on the notch-band) occasionally give rise to microscopic shagreening, invisible except in a good light and under a good lens ; transverse sculpture consisting only of generally faint lines of growth, and the oblique nodosities above mentioned, which extend on the posterior whorls from the periphery to the suture, and on the last whorl are proportionally smaller ; these vary from eleven to thirteen in number per whorl ; aperture narrow, outer lip much produced forward, columella twisted and the canal rather wide and somewhat recurved ; deposit on the boty whorl and pillar very slight ; notch wide, reaching nearly or quite to the suture: margins all thin. Lon. of shell, 13.5 ; of last whorl, 7.5 ; of aperture, 5.75 . Max. lat. 5.25 mm . Defl. about \(38^{\circ}\).

Station 48, 533 fms.
It is uncertain whether this should go in Drillia or Pleurotomelle in the present perplexing condition of the Pleurotomide and without any characters from the soft parts. The nucleus is, however, precisely the same as in several species which, so far as external characters go, may be considered typical Drillias.

\section*{P. (Drillia) gratula n.s.}

Shell slender, acute, white, smooth, but not polished, with ten or eleven whorls when adult; nuclear whorls as in the last, except that the nuclens itself is smaller and more acute ; notch-band narrower, occupying only about a quarter of the surface in the smaller whorls, and descending but slightly, thus giving a somewhat turreted aspect to the spire ; transverse sculpture cousisting of eleven to (on the last turn) sixteen slightly oblique roumded ribs, faintly evident across the band and anteriorly extending to the suture, or, on the last whorl, well forward on the canal ; these are crossed by (on the smatler whorls) two to four or (on the last one) sixteen rounded threads, distinct in the interspaces and slightly swollen on the tops of the ribs where they cross; half of those on the last whorl are in its anterior third, being as usual more crowded on the canal ; the lines of growth are but slightly risible, and there are only faint indications of spial stris ; in addition to this the entire surface is covered with most minute punctations, visible only under a strong magnifier; noteh in the adult wery deep, with its edges mised and directed backward, the outer lip produced forward and inwarl so much as to cover the entire aperture when the shell is held so that the buttom of the noteh is kept in view: the outer liph is thickened, aud with four to eight small denticulations rising from its surface a short distance within its marin: pilhar straght, somewhat thekened; a slight callus on the bonly whorl ; camal very slighty recurved; one adult hats A1"orst 12, 1881.
an ashy and another an olive tinge, but a fresh specimen is quite white. Lon. of shell, 13.0 ; of last whorl, 8.0 ; of aperture, 5.25 . Max. lat. 5.25 mm . Defl. about \(27^{\circ}\).

Bed of the Gulf Stream, Pourtalès, 447 fms. Station 19, 310 fms. Station 43, 339 fms. Sigsbee, off Havana, 450 fms. Station 2, 805 fms .

\section*{P. (Drillia) detecta n. s.}

Shell having a strong superficial resemblance to the last, but with a totally different nucleus, and with differences in details of sculpture; it also has not the minute punctation ; color white or ashy gray ; nucleus and nuclear whorls heliciform, with a sculpture of slightly raised lamellæ waved backward from the middle point of the periphery both ways; under these are also fine revolving raised lines; whorls in all nine ; remainder with a transverse sculpture of from sixteen to (on the last whorl) eighteen narrow raised riblets passing entirely over the whorls, quite faint on the band and only obsolete on the columella and canal ; beside these the lines of growth are unusually distinct, somewhat raised and rounded, and are especially well marked on the notchband ; revolving sculpture consisting of three or four (on the last whorl thirteen) raised rounded threads slightly swollen where they cross the transverse riblets; between these are usually two, but sometimes as many as four, similar but finer threads, which also invade the band and cover the pillar, but cross the riblets without enlarging; the interspaces between the ribs are less deep, and the whole sculpture more uniform and less prominent than in the last species; suture appressed; band less prominent than in the last; notch shallow, pillar nearly straight, canal very slightly recurved ; outer lip (not adult) thin. Lon. of shell, 11.75 ; of last whorl, 6.75 ; of aperture, 4.5. Max. lat. 4.5 mm . Defl. about \(27^{\circ}\).

Station 43, 339 fms.
In the absence of any perfectly mature specimen it is impossible to say what the mouth characters would be, but it seems likely that they would resemble the last species from the general similarity of the juvenile portion.

\section*{P. (Drillia) serga n. s.}

Shell small, dull, slender, yellowish white, eight-whorled ; nucleus small, translucent, shining, passing into the sculpture of the adult gradually, in two and a half nuclear whorls, which show first minute transverse wrinkles on the periphery of the second whorl ; succeeding whorls transversely sculptured hy eight to twelve slightly oblique angular riblets, which pass entirely over the whorls, and only become obsolete on the canal ; these are crossed, first by (on the upper whorls) two or (on the last whorl) nine roundel threads which rise to sharp points on reaching the summits of the riblets, and are perfectly distinct in the interspaces ; secondly, by finer intercalary revolving threads, which pass without change over the riblets, usually to the number of three or four between each pair of primary threads ; these also cover the notch-band, and vol. \(1 \times\).
over them, as well as the primaries, the lines of growth are raised in microscopic granules, or lamellæ, which, under strong magnification, give a very peculiar scabrous appearance to the surface ; the strongest primary riblet is the one just in advance of the somewhat steeply declining and poorly defined notchband ; aperture narrow, notch deep, outer lip thin, produced, probably thickened in the perfectly mature adult ; columella and body whorl without callus; pillar straight ; suture appressed; canal slightly recurved. Lon. of shell, 9.0; of last whorl, 5.25 ; of aperture, 4.12 . Max. lat. 3.25 mm . Defl. about \(28^{\circ}\).

Bed of the Gulf Stream, Pourtalès, 447 fms .
This much resembles, on a cursory glance, the two preceding species, while a careful microscopic scrutiny shows very marked differences.

\section*{P. (Drillia) smirna n. s.}

Shell long, slender, shining with the lustre of barley-sugar candy; whorls twelve, of which two are nuclear ; nucleus white, smooth, rather large, inflated, polished, not sculptured except by lines of growth, changing suddenly into the normal sculpture ; sculpture consisting of small pointed nodules set on the periphery of the whorls, a little in advance of midway between the sutures, ten to fourteen on each whorl, except the last half-whorl in the adult, where they begin to be obsolete; the tips of these nodules and a line just in advance of the suture are white as compared with the general translucent pinkish or fleshy hue; these nodules are a little compressed in the latter whorls in a direction transverse to the whorls; the lines of growth are distinct and in the later whorls occasionally a little prominent at the suture, against which the shell is appressed ; other transverse sculpture none; revolving sculpture comprised in fifteen or twenty threads on the last whorl, faintly visible at the periphery and gradually becoming stronger toward the end of the canal ; an occasional trace of such might be visible on some of the older whorls; notch moderately deep; notch-band not strongly marked; outer lip in the adult produced (but imperfect in our specimens), apparently having the usual form ; pillar obliquely cut off anteriorly, covered with a light callus ; canal narrow ; aperture short and seemingly rather wide, behind. Lon. of shell, 15.0 ; of last whorl, 5.75 ; of aperture, 4.0. Max. lat. of shell, 3.25 ; of aperture, about 1.5 mm . Deff. about \(16^{\circ}\).

Off Cape San Antonio, 413 fms.
An elegant, remarkable, and characteristic species.

\section*{P. (Drillia) oleacina n. s.}

Shell in sculpture much resembling the last, especially on the older whorls which differ from those of \(D\). smirna in the following particulars: the nuclens is a rich, dark, shining brown; the nodules have more extended bases, and want the white tips; the color of the whorls is more clearly translucent, wanting the pinkish tinge and the white sutural line ; the whorls increase more rapidly
in size, and are strongly appressed against their predecessors, thus making the line of the suture irregular ; whorls nine instead of twelve ; the body whorl is quite different in shape and sculpture; the nodules, of which there are on the last whorl only eleven instead of fourteen, instead of becoming obsolete on the latter half of the whorl, are produced in the form of stout, strong ribs over the periphery, when these suddenly cease and the anterior part of the whorl is as it were constricted, instead of gradually tapering to the canal, so that the latter is much more clearly differentiated from the rest of the aperture than is usual in this genus; there is no spiral sculpture, even on the canal where traces are usually perceptible ; notch as usual; a thin callus on the pillar rising into a sort of lamina at its outer edge forms a rather deep groove along the columella, which last is attenuated anteriorly. Lon. of shell, 10.0 ; of last whorl, 5.0 ; of aperture, 3.75 ; of canal, 1.5. Max. lat. of shell, 3.0 ; of aperture, 1.5 mm . Defl. about \(22^{\circ}\).

Station 21, 287 fms .
Belonging to the same group as the last, but sufficiently distinguished from it.

\section*{P. (Drillia) Havanensis n. s.}

Shell somewhat variable, small, white, the first six whorls rather slender, giving a subcylindrical apprarance, the latter whorls, if any, enlarging more rapidly; whorls about eight, of which about two are nuclear; nucleus large, white, smooth, unsculptured, forming for the shell a rather blunt button-like apex; succeeding whorls marked by a transverse sculpture of twelve to (on the last turn) eighteen narrow, oblique, flexuous ribs, which begin as little sharp nodules at the suture, are evanescent over the notch-band, thence continue to the next suture, or in the last whorl become evanescent at its anterior third; these ribs are crossed by a variable number of rather sharp revolving threads, with wider interspaces, usually three or four in number (on the older whorls) to sixteen (on the last whorl), beginning just in advance of the band; the first two are most prominent, and angulate the riblets where they cross them, producing little raised points; the succeeding threads are a little enlarged where they cross the ribs, but do not form points, and are as usual closer together on the anterior part of the canal ; on the band is no sculpture except the lines of growth and an occasional faint indication of revolving strix ; the number of riblets and of threads with their respective sharpness and the prominence of the nodules are somewhat variable; the band is somewhat excavated, tending to give a turreted appearance in old shells; notch broad, not deep ; outer lip thin, produced forward ; pillar straight, anteriorly attenuated, with very little callus; lines of growth well marked all over the shell. Lon. of shell, 9.0 ; of last whorl, 5.0 ; of aperture, 3.75. Max. lat. of shell, 2.5 to 3.0 ; of aperture, 1.0 mm . Defl. \(24^{\circ}\) to \(27^{\circ}\).

Station 16, 262 fms. Station 19, 310 fms. Sigsbee, off Havana, 450 fms. Yucatan Strait, 640 fms .

The specimen measured was the largest, and that which had the greatest apical angle ; the alternative measurements are from an adult, but more slender specimen. Considering the number obtained, the variability was perhaps not greater than might have been expected.

\section*{P. (Drillia) Verrillii n.s.}

Shell resembling D. oleacina on a very small scale; white, with a large white, smooth, inflated nucleus ; whorls six or seven, rounded, polished, translucent waxen whitish ; transversely sculptured by twelve to fourteen rounded, stout, strongly raised ribs extending forward from the notch-band to the suture, or on the last whorl to its anterior third ; on the last half of the last turn evanescent ; suture appressed; lines of growth evident ; spiral sculpture, none visible ; a decided callus with a groove behind it on the pillar and body, whorl ; notch, as usual in the adult, rather deep; aperture rather wide behind, and shaped as in D. oleacina. Lon. of shell, 5.5 ; of last whorl, 3.0 ; of aperture, 2.0. Max. lat. of aperture, 1.0 ; of shell, 1.75 mm .

Station 19, 310 fms .
This pretty little species seems quite distinct from any of the others, and unlike any of the known Northern forms. This and the three previously described species form a little group similar in general character, yet distinct in detail, but requiring close and careful inspection.

\section*{P. (Drillia) peripla n. s.}

Shell small, rough, dark-colored (normally?), acute, nine-whorled ; nucleus and two and a half nuclear whorls yellowish, with sculpture reticulated by raised revolving lines, and lines waved backward from before and behind a point on the periphery;* remainder of the shell transversely sculptured by twelve or (on the last whorl) fourteen rounded ribs, which start at the anterior border of the band, where they are roundly shouldered, and continue somewhat obliquely to the suture, or, on the last whorl, to the anterior third, narrowing as they go ; beside these, the lines of growth are well exhibited and the notch-band is ornamented by distinctly raised, transverse, backwarlly concave plications, which extend across it, about nine in the space of a millimeter, with wider interspaces ; spiral sculpture consisting of (on the smaller whorls) three to (on the last whorl) about nine raised rounded riblets, the first of which is just in advance of the band, and between every pair of which are two (or in rare cases) three much finer threads; the primary threads are a little swollen where they cross the transverse riblets, the sccondary threads not so; toward the anterior end of the canal the threads become uniform in size and

\footnotetext{
* This peculiar sculpture of the nuclear whorls is noted by Verrill in one of his Pleurotomella, and has been described several times in this paper. It was described and figured as a mature form by D'Orbigny under the name of Sinusigera. Cf. Sagra, Moll. Cuba, Atlas, Pl. XXIIJ. figs. 7-9.
}
are crowded together ; the threads, especially the secondary ones, have a rough appearance, perhaps due to the lines of growth ; aperture (excluding the canal) ovate, somewhat abruptly compressed to form the very distinct straight canal ; pillar straight, without callus ; outer lip imperfect in the specimen, but probably thickened in the adult. Lon. of shell, 8.0 ; of last whorl, 4.75 ; of aperture and canal, 3.5. Max. lat. of shell, 3.25 ; of aperture, 1.5 mm . Defl. about \(34^{\circ}\).

Yucatan Strait, 640 fms.
The specimen is light brown, blotched with a darker shade, but it is doubtful if this is not accidental to the specimen. The abrupt contraction to form the canal gives it the aspect of a little Fusus.

\section*{P. (Drillia) elusiva n. s.}

Shell small, rather acute, having a dull, ashy, worn appearance, the sculpture faint, as if obsolete, although quite perfectly preserved, whorls eight or nine; nucleus, nuclear whorls, and sculpture of the notch-band precisely as in the last species ; spiral sculpture much the same, excepting that there are from three to six secondaries between the primary threads, and all, both secondaries and primaries, are ill defined and barely elevated above the surface; on the smaller whorls there are eight or ten transverse swellings extending from the edge of the notch-band to the suture, too wide and ill defined to call ribs, and chiefly evident as oblique waves most prominent at the anterior edge of the band; on the last whorl barely evident as ten or twelve faint nodules just before the band and wholly obsolete before the periphery ; form of the whorls wholly different from that seen in the last species, the whorl and aperture tapering imperceptibly into the short canal, with about seven spiral threads distinguishable as larger than the secondaries; notch moderate; suture appressed, indistinct ; outer lip thin, simple, moderately produced forward in the middle ; pillar short, twisted, with a thin white glaze on it ; canal distinctly recurved. Lon. of shell, 9.25 ; of last whorl, 5.25 ; of aperture, 4.0. Max. lat. of shell. 3.75 ; of aperture, 1.5 mm . Defl. about \(35^{\circ}\). Yucatan Strait, 640 fms .
A species with no salient characters or attractions, which a sufficiently large series might perhaps show to be an extreme variety of \(D\). peripla.

\section*{P. (Drillia) morra n. s.}

Shell small, acute, with the Sinusigera nuclens, and seven or eight reticulated whorls; sculpture, on the earlier whorls, of ten or twelve, and, on the last whorl, of twenty-five equal, rounded, close-set riblets, beginning at the anterior edge of the band, growing stronger and wider to the periphery, after which they again diminish, covering the whorls, and on the last visible nearly to the extreme of the canal ; these are crossed by (on the fourth whorl) four, or (on the last) about twenty-five close-set rounded threads, with a tendency to form a little nodule where they cross the summit of the transverse ribs, and
pretty even in size ; the first one forms a smooth margin to the narrow, but well-defined notch-band, which is crossed by the lines of growth deeply waved, and extends to the suture, which is not appressed ; outer lip thin, much produced forward, as in Daphnella, but the notch is distinct and very deep, with its edges simple and not reflected; pillar slightly twisted, without a callus; canal distinct, slightly recurved; whorls full and rounded. Lon. of shell, 5.75 ; of last whorl, 3.5 ; of aperture, 2.5. Max. lat of shell, 2.5 ; of aperture, 1.0 mm . Defl. about \(37^{\circ}\).

Sigsbee, off Havana, 450 fms.
This little shell has quite the Daphnella shape, but the nucleus, the notch, and its band seem to decide that it should go with the Drillias, until more is known.

\section*{P. (Daphnella?) leucophlegma n. s.}

Shell thin, delicate, pearly white, acute, with nine rapidly enlarging whorls, roundly inflated (especially the last), which gives a turreted appearance to the spire; nucleus minute, glassy, smooth, simple ; nuclear whorls not separated by any sudden change of character from the rest of the shell ; general sculpture consisting of numerous close-set (three or four to a millimeter) narrow plications extending from near the suture obliquely and flexuously across the whorls, in general correspondence with the lines of growth ; on the last whorl fading away anteriorly and barely visible at the periphery; lines of growth generally pretty distinct ; the whole shell covered with fine, somewhat wavy, spiral grooves and intervening threads, not strong enough to give a rough appearance to the surface, and evenly distributed (twelve to sixteen in a millimeter); aperture large, semilunate ; outer lip thin, simple, much arched and produced at the middle, and rounding broadly to the anterior end of the pillar ; columella with a slight callus, obliquely trimmed to a point, and slightly recurved anteriorly; notch obsolete, forming no distinct band, though indicated by the lines of growth and by a slight flattening of the whorl just in front of the distinct and well-marked suture, as in Daphnella. Lon. of shell, 10.25 ; of last whorl, 6.25 ; of aperture, 4.75 . Max. lat. of shell, 4.25 ; of aperture, 2.0 mm . Defl. about \(36^{\circ}\).

Station 2, 805 fms.
This pretty little shell may turn out to be a Drillia. It has characters recalling Daphnella, Bela, and (the immature) Drillia. Until the soft parts are known it can hardly be definitely located.

\section*{Taranis Mörchii Mala.}

\section*{T. Mörchii Malm, Sars, Moll. Reg. Arct. Norv., p. 220, tab. 17, fig. 8. 1878.}

Station 2, 805 fms.
This specimen resembles Sars's figure exactly, except that it has one whorl more, and is correspondingly larger. I observe, however, that the specimens
sent as T. mörchii from Norway to me by Prof. Sars and Dr. Jeffreys agree better with Verrill's description of his Turanis bella than they do with the figure above cited. It is not improbable that the species is pretty variable, and that trifling variations in sculpture may not indicate specific differences.

\section*{Trichotropis migrans n. s.}

Shell white, solid, rough, with six rapidly enlarging whorls; upper whorls rounded, last whorl with a tendency to applanation on the basal side; epidermis lost ; spiral sculpture of (on the fourth whorl) five to (on the last whorl) twenty revolving ridges, which cross (on the fourth whorl) twelve to (on the last) ten varix-like ribs or costæ, extending completely around the whorl; these increase by dichotomy and between the costæ are quite uniform, widening as they reach the crest of a varix and then suddenly diminishing in breadth to repeat the process at the next one; between the spiral ridges the interspaces are channelled, and rarely contain a single a fine thread; beside the costæ the whorls are crossed by beautifully fine and even raised liræ, corresponding in direction to the lines of growth, and only visible under a magnifier; aperture rounded, produced into the narrow canal in front; pillar with a thin lamellar callus (behind which is a narrow umbilical chink) and a slight toothlike projection on the inner side; interior of aperture shining, smooth. Lon. of shell, 9.25 ; of last whorl, 6.0 ; of aperture, 4.0. Lat. of shell, 6.0 ; of aperture, 3.5 mm . Defl. \(54^{\circ}\).

Sigsbee, near Havana, 80 fms.
The first of the genus from tropical waters.

\section*{Marginella Watsoni n. s.}

Shell short, stout, white or yellowish white, polished, five-whorled; suture marked under the glaze with a darker translucent line; apex obtuse ; in adults the nucleus is obscured by the glaze, in young specimens it presents no differences from the rest of the shell; last whorl shouldered roundly, forming a rounded angle at the posterior part of the outer lip ; aperture narrow, labrun and labium nearly parallel ; pillar with four clearly cut folds, the anterior continued around the margin of the canal, slightly flaring, to join the outer lip ; the latter slightly thickened inside, with about a dozen rounded denticulations, outwardly little or not at all reflected, joining the body behind at an acute angle. Lon. of shell, 9.5 ; of last whorl, 8.0 ; of aperture, 7.50 . Lat. of shell, 6.0 ; of aperture, 1.5 mm .

Sigsbee, off Havana, 480 fms ; Station 2, 805 fms . Bed of the Gulf Stream, Pourtalès, 447 fms ; Yucatan Strait, 640 fms .

This species resembles \(M\). vitrea Hinds, from West Africa, in general shape, but that species is smaller and has the outer lip not denticulated. M. Wratsoni has the facies of a deep water shell, and does not appear to agree exactly with any I find figured.

\section*{Marginella fusina n. s.}

Shell ovate-fusiform, with the spire nearly as long as the aperture, polished waxen white, five-whorled; whorls of the spire well marked and rotundate though covered with a transparent glaze; suture distinct ; apex rounded; lines of growth perceptible under the glaze, especially near the suture on the last whorl ; aperture short, lunate, with no posterior angle in the outer lip, which gently rounds to the body whorl before and behind; outer lip a little thickened inside, simple, not reflected; folds four, the two anterior ones very oblique and close together ; canal not flaring, short, and not twisted backward. Lon. of shell, 8.0 ; of last whorl, 6.0 ; of aperture, 4.5. Max. lat. 4.0 ; lat. of aperture, 1.5 mm .
Yucatan Strait, 640 fms .
This has somewhat the shape of Marginella nodata in a general way, but is more evenly fusiform, and quite peculiar in its even taper, which does not seem to be ascribed to any other species.

\section*{Marginella seminula n. s.}

This species differs from the last by its proportionally shorter spire containing one less whorl ; by the less distinctly marked suture ; by the shouldering of the last whorl which angulates the outer lip in adult specimens, the lip in this vicinity being generally much thickened and slightly reflected, somewhat produced in the middle, and thiming toward the distinctly flaring canal ; the columellar folds are more evenly separated, and the canal is slightly recurved. In other respects it resembles M. fusina. Lon. of shell, 7.0; of last whorl, 5.62 ; of aperture, 5.12. Lat. of shell, 3.5 ; of aperture, 1.25 mm .

Yucatan Strait, 640 fms .
There is some variation in size and in the way in which the outer lip is thickened in different individuals. The shape is not far from that of \(M\). festiva. The measurements are of the largest of several specimens.

\section*{M. (var. ?) Yucatecana.}

Shell with three and a half to four whorls, smaller than the last and the adult specimens proportionally more slender and of a distinctly different shape; but some of the younger specimens of M. semimula, before they have put on the lip-callus and its angulation, appear much more similar, and suggest that the range of variation may be wide enough to cover both. The present form, with a proportionately shorter spire and longer and wider aperture, has an evenly rounded outer lip and botly whorl, which recalls M. fusina. Its chief differences from M. seminula consist in those features which accompany the shouldering of the whorls and the thickening of the outer lip, which in this form seems to be always evenly rounded, arched forward, and hardly thick-
ened ; it is slightly but distinctly reflected, and the canal is slightly recurved. Lon. of shell, 5.62 ; of last whorl, 5.0 ; of aperture, 4.0. Lat. of shell, 3.0 ; of aperture, 1.37 min .

Yucatan Strait, 640 fms.

\section*{Marginella torticula n. s.}

Shell slender, shining, grayish waxen white, of about five whorls; spire roundly pointed, slender, covered in the adult with a complete coat of translucent glaze almost obscuring the sutures; last whorl somewhat appressed between the junction of the outer lip and the suture; turns somewhat laxly coiled ; surface perfectly smooth ; axis laterally curved, with the convexity to the left, so that the spire and the canal both point to the right of a straight line when the shell is in its natural position ; aperture long and narrow; columella with four very oblique folds, of which the one behind the anterior fold is a little the most prominent; outer lip simple, not reflected, slightly thickened, and produced posteriorly, inwardly convex and externally concave in correspondence with the bent axis ; aperture widest anteriorly, making the canal very open ; no callus on the body whorl, which is joined by the outer lip at an exceedingly acute angle. Lon. of shell, 11.5 ; of last whorl, 9.75 ; of aperture, 8.0. Max. lat. of shell, 3.75 ; medium lat. of aperture, 1.0 mm .

Station 5, Lat. \(24^{\circ} 15^{\prime}\), Lon. \(76^{\circ} 49^{\circ} .5\), in 229 and 152 fms., soft coral ooze.
The only shells normally arcuated in this manner which occur to me are some species of Eulima. The twist gives the shell a very peculiar and highly characteristic appearance.

\section*{Marginella (avena Val. var.?) avenella.}

Shell exceedingly variable in proportions; spire short, obtuse, sometimes almost suppressed; color light yellow or yellowish white, with a faint white line bordering the suture; general outline elongated ovate; aperture long, narrow behind (where the outer lip is thickened and a little inflected), wider in front (where it is thin) and a little flaring at its (widest) anterior termination ; columella with four subequal folls, all rather oblique ; outer lip simple, thickened behind, where the line of callus may extend to the suture or fall considerably short of it; slightly concave in the middle, where its edge is even turned in a little; scarcely, if at all, produced forwarl ; whorls not at all or very slightly shouldered, three or four in number. In the form with the short roundel spire, the outer lip is straight, not inflected, and more evenly thickened along its whole length; the anterior end of the aperture has the outer lip obliquely cut off, and not flaring; the whole form is more evenly ovate-cylindrical. The measurements of the long and short spired specimens are respectively as follows:-Lon. of shell, 12.0 and 9.5 ; of last whorl, 10.25 and 9.0 ; of aperture, 9.5 and 8.25. Max. lat. of shell, 5.0 and 3.75 ; lat. of aperture at middle part, 1.0 and 1.0 mm .

Station 2, 805 fms . Off Cape San Antonio, 1,002 fms. Station 5, 229 and 152 fms.

Notwithstanding the differences above indicated by extreme specimens, the shells appear to grade into one another and to approach very closely the old M. avena of Valenciennes, of which indeed this may be but an abyssal race; but of the latter I have no typical specimens, and it is described as having color bands. In view of the great number of the closely allied forms of this group, without such specimens it would be rash to consolidate.

Another form with the spire almost lost (from Yucatan Strait, 640 fms ., and Station \(2,805 \mathrm{fms}\) ), of a yellowish white tinge, strongly resembles D'Orbigny's M. triplicata, which I take to have been founded on an abnormal specimen, and might be thought a pale race of Volvarina varia, but I am not at all sure that it is not an extreme form of the preceding. The genus Volvarina, unless supported by other than its conchological characters, must be given up, if the above inferences be supported by further investigation.

\section*{GENUS PUNCTURELLA Lowe.}

\section*{Type Patella noachina L.}
\(=\) Patella sp. L., Mantissa, p. 551, 1771 ; O. Fabr., Faun. Grönl., p. 384, 1780 ; etc.
<Cemoria Leach, MS., 1819 ; Lowe, Zö̈l. Journ., III. p. 77, passim, 1827.
not Diodora Gray, Lond. Med. Rep., XV. p. 233, Mar., 1821 (no diagn.). (=Fissurella sp. juv.)
not Cemoria Risso, Hist., IV. p. 258, 1826. (=Calyptrcea Lam.)
\(=\) Diadora "Gray," Blainville, Man., I. p. 501, passim (in error), 1825 (no diag.).
\(=\) Puncturclla Lowe, Zoöl. Journ., III. p. 78, Jan., 1827 (P. noachina).
< Sipho Brown, Ill. Conch. Gt. Brit. (ed. prima), pl. 36, fig. 14-16, 1827 (S. striatus \(\mathrm{Br} .=P\). noachina Lowe). Id. Conch. Textb., 1833, p. 100, sole ex. \(S\). striatus, Pl. XIV. fig. 21 ; do. (ed. Macgillivray n. d.), ed. VI. p. 115, Pl. XIV. fig. 21, same type. (Not Sipho, Klein, Fabr., nor Mörch.)

Fissurella sp. Lyell, Phil. Trans., 1835, p. 37 ; and most older authors.
Diodora Gray, Syn. Brit. Mus., 1840, name only.
Rimula sp. Couthony, Bost. Journ. Nat. Hist., II. p. 87, 1838 ; Lovén, Ind. Moll. Scand., p. 21, 1846. (Not of Defrance.)
\(=\) Cemoria Möller, Index, p. 16, 1842 ; Migh. \& Ad., Bost. Journ. Mat. Hist., 1842, 1. 42 ; Gray, Ann. Nat. Hist., XX., 1847 (name only).
? Siphon "Brown, 1844," Gray, P. Z. S., 1847, p. 147 (not of Brown).
<Sypho "Brown, 1827 " Gray, P. Z. S., 1847, p. 147 ; Pbilippi, Handb., p. 217, 1853; Forbes \& Hanley, Brit. Moll., II. p. 473, 1853. (Not of Brown.)
<Cemoria Leacl, Moll. Gt. Brit., p. 213, Dec., 1852. (Here for the first time published according to the rules of nomenclature.)
\(=\) Puncturella (Lowe) Forbes \& Hanley, Brit. Moll., II. p. 473, 1853; Woodwarl, Man. Moll., p. 150, 1853 ; Gray, Guide Brit. Mus., p. 164, Jan., 1857 ; Jeffreys, Brit. Conch., 111. 256, 1865.
\(=\) Cemoria H. \& A. Adams, Gen. Rec. Moll., I. p. 450, 1854 ; Chenu, Man. Conchyl., I. p. 372, 1859.

About 1819 the young shell of Fissurella graca, which had been described as a separate species (l'atella fissura) by Montague, attracted the attention of Messrs. Brown, Leach, and Gray, on account of the spiral apex, which disappears in the adult, a fact not recognized by them. Brown claims to have first pointed this out to Leach, and to have proposed to call the shell by the new generic name of Sipho, which he published in the latter part of 1827 in his Illustrated Conchology of Great Britain. He complains that his name was not adopted, and that Dr. Leach preferred to name the shell Cemoria. Meanwhile it would appear that Dr. Leach's intimate friend and pupil, Mr. J. E. Gray, was unaware of the proposed name of Dr. Leach, since in 1821, without a description, he suggested for the shell in question the name of Diodora. Blainville erroneously supposed Gray's sole species to be Patella noachina of Linnæus, and so refers to it in a note without adopting or describing it. To his original Ccmoria Dr. Leach afterward added a shell, which he received from Fleming, nuder the name of C. flemingianus as a second species, but of neither was any publication made. In 1827 Lowe properly defined and published his genus Puncturella, stating that he believed it to have formed one of Leach's unpublished species of Cemoria. The name Cemoria was used by several authors without any description subsequent to Lowe's publication, but was only published by Dr. Gray from the manuscripts and unpublished plates of Leach, in December, 1852. If unpublished and undescribed names are to have any place in nomenclature the name Diadora from Blainville's erroneous reference has the first claim. But since this is properly forbidden by the rules of nomenclature, the only name having any just claim to priority is that of Lowe, which has accordingly been adopted by the best authorities. Believing that the introduction of unpublished names leads only into the limbo of inextricable confusion, I have no hesitation in following the example of the eminent authors of the British Mollusca, and adopting the name Puncturella.

\section*{Puncturella circularis n.s.}

Shell white, acutely conical, with the anterior wall slightly, and the posterior wall strongly concave ; tip sharply recurved, acute, not spiral, directed backward in the middle line ; surface ornamented with about forty very slender radiating lines, fewer toward the apex with intercalary threads toward the margin ; concentric sculpture consisting of extremely delicate, irregularly disposed aggregations of the lines of growth, which now rise above and now fall below the general plane of the surface, giving it under a strong magnifier a curiously malleated appearance, between the radiating threads, nowhere exhibiting any uniform concentricity ; where the lines of growth cross the radiating threads they form fine overlapping scales closely appressed to the threads; puncture ovate, pointed behind; margin thickened, perfectly smooth ; septum triangular, inclined forward under the puncture which it almost entirely hides when viewed from below; basal edge subcircular. Lon. 5.55 ; lat. 5.0 ; alt. 3.0 mm .

\section*{Station 44, 539 fms.}

This species differs in various details from Puncturella profundi Jeffreys, and is apparently nearer his \(P\). granulosa from the Norwegian coast and the Porcupine Expedition (60-292 fathoms). That species has no concentric sculpture, however, and has not been fully described as far as is known to me. It belongs, with the preceding and with Puncturella Cooperi Carpenter, from the northwest coast of America, in the genus Fissurisepta of Seguenza. This differs in most specimens by having no props to the septum, a character, however, which is not constant even in the same species, as in a large series of Alaskan forms I have found every transition from fully developed props to none at all, in specimens which differed in no other character. Hence, while it may be a permanent feature in some species, I doubt if it is yet sufficiently established to be safely used as a generic character.

\section*{Puncturella trifolium n.s.}

Shell brownish white, acutely conical, with anterior and posterior walls nearly straight, except near the tip where they are slightly concave, especially the latter; tip erect, squarely truncated at the top, not twisted, inclined, or recurved; surface ornamented with some twenty-four to thirty strongly clevated rounded ribs, smooth for the most part, but undulating a little as they pass over the concentric sculpture and rarely and irregularly spinous; these spines do not exceed two or three on any rib, occur only on the stronger ribs and are short, pointed, solid, and acutely triangular ; between the primary radiating ribs are secondary ones about equal in number, but not spinous, and not raised above the concentric sculpture ; the latter is not strictly concentric except in a general sense, and consists of stout spongy bands connecting the ribs, passing from base to base between each pair of primary ribs on a level with the secondaries, but not eveuly continuous clear around the shell, and having a pumice-like texture, so that the bands are not defined sharply like the ribs; the spaces left vacant by this reticulation are rather deep, and have a worm-eaten appearance ; shell inside smnoth, with shallow grooves indicating the stronger external ribs and with a striated space over the head between the anterior horns of the scar of the great pedal muscles. Puncture externally circular, as in Glyphis, internally trefoil-shaped from the projection of the middle of the septum and two little shelly knobs on each side into the space; septum triangular, very small and short, inclined in about the same plane as the anterior wall of the shell, in the middle of its lower edge produced and thickened like a little short tongue ; about half-way between the base of the septum and the outer upper surface of the perforation inside the tube and at about equal distances from each other and from the median line of the septum, are two little shelly triangular projections, which give to the interior of the apex, when looked through, the trilobate outline referred to in the specific name; base of the shell ovate, the margin showing projections and indentations corresponding to the sculpture of the exterior. Lon. 14.0 ; lat. 10.5 ; alt. 7.0 mm .

\section*{Yucatan Strait, 640 fms.}

The peculiarities of the apical tube are quite as great in this species as in the preceding when compared with typical P'uncturella; but I cannot consider them as of even sectional importance. It is hardly necessary to add that the species does not resemble any of the ordinary forms, nor has it, so far as I am able to determine at present, been anywhere previously described.

\section*{Emarginula Rollandi Fischer.}

Sigsbee, off Havana, 450 fms. Station 21, 287 fms.
Emarginula sp. indet.
Yucatan Strait, 640 fms.

\section*{FAM. PLEUROTOMARIID凷 Dall.}
> Pleurotomarice Swainson, Mal., pp. 213, 223, 363; as subfamily of Trochide; 1840. >< Pleurotomariidde Chenu, Man., I. p. 236, 1862. In suborder Proboscidifera near Scalariida.
\(>\) Pleurotomariidece Bronn, Keferstein Thierreichs, Mal., III. 1037, 1866.
> Pleurotomariude Stoliczka, Pal. Indica, Gasterop., p. 380, 1868.
? Pleurotomariidec Gill, Fam. of Moll., p. 11, No. 132, 1871. (Limits not stated.)
Shell trochoid in form, internally pearly, the last whorl perforated or fissured, for the escape of eggs or fecal matters, in the direction of the coil of the whorl.

Operculum horny, subspiral or multispiral.
Branchice two, nearly symmetrical, one on each side of the slit in the mantle corresponding to the fissure or perforations of the shell.

Animal with papillose edge to the mantle and lateral fringes; without elongated cirri as in the Trochids; with no frontal veil, or fissuring of the foot. Muzzle simple, without a proboscis, eyes on pedicels exterior to the bases of the simple tentacles. Jaws small, weak.

Dentition. Rachidian tooth small, lanceolate or broad bayonet-shaped, laterals rather simple, numerous, similar, diminishing in size ontwardly, followed by a large number of long slender uncini, many of which are denticulate near their tips and also furnished with a little tuft of bristles or a brushlike bunch of fibres attached to the side of each uncinus behind the denticulations, the tips of the fibres projecting beyond the end of the uncinus.*

Distribution. Fossil in Lower and Upper Bala groups, Upper Cambrian of Sedgewick, and thence to recent times; two species living in the Antilles, one of unknown habitat, probably Japanese.

\footnotetext{
* More miuute details will follow hereafter in an account of the two species obtained.
}

\section*{GENUS PLEUROTOMARIA Sowerby.}

Pleurotomeria Sowerby, Min. Conch., III. p. 139, text to pl. 278, Dec., 1821. Type Trochus Gibbsii Sby., tab. 278, fig. 1, 2 ( \(=\) Tr. ornatus Sby. fide D'Orbigny). Ed. Agassiz, p. 316, 1842. Characterized, but no mention is made of Defrance or any one else.
"Pleurotomaria? Defrance," Férussac, Tabl. Syst. XXXIV., Juin, 1821. Not characterized; no species cited; placed in Trochidce.
Pleurotomaire Defrance, Tabl. des corps. org. foss., 114, 1824. No Latinization, characterization, or species mentioned; placed in Scalariens.
Plcurotomarium Blainville, Man. Mal., I. p. 429, 1825. Type P. tuberculosum Defr. MS., Tom. II. Pl. LXI. fig. 3, 1827 (Fossil). Described as of Defrance, and type figured. Fischer de Waldheim, Bibl. Paleont., p. 266, 1834.
Pleurotomaria Defrance, Dict. Sci. Nat., XLI. p. 381, 1826, Art. Fossiles; P. tuberculosa Defr., first of three species, tab. 86, fig. 3. Characterized here by Defrance for the first time. Also, Dict. Sci. Nat., LV. p. 481, 1828.
> Pleurotomaria Rang, Manual, p. 204, 1829; in Trochoidea Cuvier.
Pleurotomuria Swainson, Mal., pp. 213, 223, 363, 1840.
Pleurotomaria Gray, Syn. Brit. Mus., p. 89, 1842 ; in Haliotidœ.
Pleurotomaria Philippi, Handb., p. 214, 1853; in Trochacea.
Pleurotomaria Woodward, Man. p. 147, P. anglica, t. x. f. 24, 1851; in Haliotidce.
Plcurotonaria H. \& A. Adams, Gen. Rec. Moll., II., App., p. 630, 1858; in Stomatellince, subfamily of Trochidoc.
Pleurotomaria Chenu, Man. de Conchyl., I. p. 236, 1862; in Pectinibranchiata between Toxifera and Scalariide of the Proboscidifcra.
\(>\) Pleurotomaria Ryckholt, Journ. de Conchyl., V1II. p. 183, 1860 ; in Haliotida. Stoliczka, Pal. Indica, Gast., p. 380, Oct., 1868. Deslongschamps, Bull. Soc. Lin. de Normandie, IX. p. 422, 1865.

This genus was figured by Clysses Aldrovandus (Mus. Metall., pl. 16) in 1648, and by Lister (An. Angl., p. 214) in 1678, both being, of course, fossil forms. It seems to have been overlooked until now that we are indebted to Sowerby for its characterization, and that he is entitled to be cited as authority for the genus.

\section*{Pleurotomaria Quoyana Fiscier \& Bernmardi.}
P. Quoyana F. \& B., Journ. de Conchyl., V. p. 165, Pl. V. figs. 1-3, Nov., 1856.

Statiun 240, 73 fms. ; Station 296, 84 fms.; off Barbados. Fischer's specimen was from the island of Marie Galante.

\section*{Pleurotomaria Adansoniana Crosse \& Fiscuer.}
P. Alansoniana C. \& F., Journ. de Conchyl., IX. p. 163, Pl. V. figs. 1, 2, 1561.

Station 278, 69 fms. (dead) ; Station 276, 94 fms. ; Station 291, 200 fins. ; all near Barbados.

A description of the soft parts of these species, with figures of the animal taken from life, is in preparation. It is to be regretted that the account will be rendered rather. imperfect on account of the poor state in which the soft parts have come to hand. The more delicate portions were entirely destroyed. Those parts of importance in classification, being of a tougher nature, for the most part can be tolerably well made out. Sufficient is already known to show that the group possesses characters of family value, and stands nearest the Trochide, with features recalling Haliotides; and that it has nothing whatever in common with the Pleurotomide.

The other living species is Pleurotomaria Beyrichii Hilgendorf (Sitz. Ges. Naturf. Fr., Berlin, Mar. 20, 1877), which is supposed to come from Japan seas, though its habitat is not yet certainly known. Eight specimens altogether of the three species are all at present recorded, only one being known of \(P\). Beyrichii, four of \(P\). Adansoniana, and three of \(P\). Quoyana.

\section*{GENUS HALIOTIS Linné.}

\section*{Haliotis (Padollus) Pourtalesii n.s.}

Shell about an inch and a half in diameter, above smoothish except for two strong spiral ribs, the outermost of which was perforated with four or five branchial holes; general form subcircular; color ahove, rich reddish orange, within brilliantly pearly; whorls about two and a half; spire flattened, not prominent.

Bed of the Gulf Stream in 200 fathoms, near the Florida Reefs, Pourtalès, March 31, 1869.

This species was obtained by the lamented Pourtalès, and carefully examined by me in 1870 . It was represented by the only specimen ever obtained from the region, and which was afterward destroyed in the Chicago fire. Its characters are such as to be immediately recognizable if it were again obtained, and it seems proper to associate the name of the discoverer with it, not only as being one of his most notable finds among mollusks, but also as representing a remarkable fact in geographical distribution which might otherwise be lost sight of.

GENUS CREPIDULA Lamarck.

\footnotetext{
< Patella Linné, Syst. Nat., ed. X. p. 781, 1758 ; ed. XII. p. 1257, 1767.
<Crypta Humphrey, Mus. Cal., p. 4, Gen. V., May 1, 1797. No description.
\(=\) Crepidula Lam., Prodr., p. 78, 1799 ; type Patella fomicata Lin. (not of Lam., Syst., p. 70, 1801, = Navicella Lam.). Roissy, Moll., V. p. 234, 1805. Fischer, Tabl. Synopt. Zoügn., p. 26, 180s. Auctorum.
\(=\) Crepidulus Montfort, Conch. Syst., II. p. S7, 1810.
\(=\) Proscenula Perry, Conch., pl. 53, 1811 ; type indeterminable.
\(=\) Sculatium \(\beta\) Schumacher, Essai d'un Nonv. Syst., p. 184, \(181 \%\).
\(=\) Proxenula Ferussac, Journ. de Phys., t. 90, p. 285, 1S20, as of Perry.
}
>Crepipatclla Lesson, Voy. de la Coquille, t. II. p. 359 et seq., Atlas, Pl. II. fig. 4 a, 1830. Ill. Zoöl., pl. 42, 1831. (C. Adolphci Less.). Broderip, Trans. Zoöl. Soc., I. p. 202, 1835, H. \& A. Adams, Geu., I. p. 369, 1854.
<Calyptraa Broderip, Trans. Zoöl. Soc., I. p. 195, 1835.
> Crepidipatella Agassiz, Nom. Zoöl., 1847 ; corr. v. Crepipatella.
>Crepidopatella Herrmannsen, Ind. Gen. Mal., II. Suppl., p. 38. = Crepidipatella Agass. emend. 1852.
> Lephyrolobus Schlüter, Syst. Verz., p. 26, 1838 (fide H. \& A. Adams).
? Lepyrolobus Schlüter, loc. cit. Both genus and type undescribed, mere catalogue names. Marschall, Nom. Zoöl., p. 124, 1873.
\(>\) Ianachus Moerch, Cat. Yoldi, p. 146, 1852 (I. plana Say). No description. H. \& A. Adams, Gen. Rec. Moll., I. p. 369, 1854.
\(=\) Crypta H. \& A. Adams, G n. Rec. Moll., I. p. 368, 1854.
\(?+\) Ergoca H. \& A. Adams, loc. cit., p. 370, 1854 (E. plana Ad. \& Rve. Voy. Sam.).
\(=\{\) Crepidula Gray, Guide, p. 115, \(1857+\)
\(=\{\) Garnotia Gray, loc cit., p. 117, 1857. (Crepidula adunca Sby.)
\(=\) Crepidula Troschel, Gebiss der Schn., I. p. 159, 1863.
\(>\) Spirocrypta Gabb, Pal. California, I. p. 136, 1864. (C. pileum G., loc cit., pl. 29, fig. 233 a, b. Cret. Cala.) Subgenus of Crypta (Humphr.) Gabb.

This well-marked group has passed through the fluctuations of most wellknown genera by being divided into a number of sections which further research has shown to be hardly more than specific modifications, and it would seem as if the time had arrived to concentrate within nearly its original limits the mass of species which have been set apart from one another on merely transitional characters incapable of exact limitation.

Crypta Humphrey was never characterized and has no just claims to recognition under the rules governing zoölogical nomenclature. It moreover appears to have contained representatives of several genera, but no descriptions are given, and his species cannot be positively recognized.

\section*{Crepidula protea D'Orbigny.}
C. protea D'Orbigny, Sagra, Moll. Cuba, II. 192, Pl. XXIV. figs. 30-33.

Specimens which are doubtless the species named as above by D'Orbigny were found attached to dead shells, and even to pieces of coral, from several stations varying in depth from 80 to 450 fms. Also a few small specimens rescmbling C. (Ianachus) plana Say, but not determinable.

\section*{GENUS TRIFORIS Deshates.}

\section*{Triforis (Ino) longissimus n. s.}

Shell much elongated, sinistral, subeylindrical, yellowish white, polished with more than twenty-two axially flattened, rather obliquely twisted whorls, bearing three spiral rows of small pointed tubercles, fourteen (on the smaller)

Aucust 25, 1881.
to twenty-four (on the terminal) on each whorl ; apex wanting, width of shell at fracture 1.75 mm . ; transverse sculpture consisting solely of the lines of growth, which, on the last whorl, occasionally rise to the dignity of faint plicutions; spiral sculpture consisting of the three rows of tubercles above mentioned, of which the anterior is slightly the most prominent and the middle row slightly the most pointed ; these tubercles are connected by a slightly raised band, often obsolete and never very distinct, somewhat narrower than the tubercles, and strongest on the last whorl ; in addition to these the base of the whorl at its periphery is ornamented by a plain, raised, narrow band, behind which is a rather deep narrow groove, and immediately in front of which is the suture, which would otherwise be hardly visible; about three raised lines separated by shallow grooves are found on the base of the shell toward its outer part, the inner line faintest, and the vicinity of the canal without spiral sculpture; basal surface in the adult flattened before the aperture, rounded behind it, on the whole more rounded than in most species ; canal short, slightly recurved, possibly entire in old shells, but in the specimens at hand open in front; sutural aperture large, rounded, with reflected edges, probably finally closed in front ; outer lip chipped, but evidently produced and bent in toward the pillar ; a slight callus on the body whorl and pillar ; aperture roundly obliquely rhomboidal. Lon. of shell (decapitated), 26.0 ; of first whorl at fracture, 0.75 ; of last whorl, 4.0 ; all measured along the axis. Lon. of aperture, 3.0; lat of do., 1.75 ; of last whorl, 3.25 mm . Defl. about \(10^{\circ}\).

This is probably the largest and most elongated species of the group. All the specimens were decapitated, but fresh. The characters do not agree with any of those species described by Hinds, D'Orbigny, or Watson, and are sufticiently well marked when full grown to distinguish it at a glance from any of the other species. In the absence of the tip the flattened whorls give it a tubular aspect.

\section*{Triforis turris-thomæ D'Orbigny.}

Cerilhium turris-thonue D'Orbiguy, Sugra, Moll. Cub., II. p. 155, Atlas, Pl. XXIII. figs. \(10-12,1853\).
Station 2, 805 fims., one dead specimen, probably drifted from shoaler water. Reported by D'Orbigny in shell sand from Cuba and Guadaloupe Island.

Triforis bigemma Warson.
Cerilhium (Triforis) bigemma Watson, Journ. Linn. Soc., XV. p. 101, 1880. (Near St. Thomas, W. I., 390 fms.)
Yueatan Strait, 640 fms.

> Triforis inflatum Watson.
> Cerithium (Triforis) inflatum Watson, loc. cit., p. 103.

Same localities as the preceding.
VOL. 1x. - NO. 2.

\section*{Triforis torticulus n. s.}

Shell having much the habit of T. bigemma Watson, but attaining a much larger size, and devoid of the brown tinge ; specimens in hand decapitated, waxen yellowish white, about six whorls in length, and if perfect, according to the proportions of T. bigemma, would probably attain over an inch in length and perhaps eighteen whorls; it is possible that the apex may be blunt, in which case the length and number of whorls might be less ; shell very gradually tapering, subeylindrical, sinistral, with rather inflated whorls bevelled towards the suture; longitudinal sculpture consisting, on the posterior surface of the whorls, of four principal spiral ridges continuous, on the later whorls, over the transverse furrows though considerably indenterl by them, but, on the earlier whorls, eutirely cut through by the furrows, and therefore appearing as nodules on the transverse ridges; the anterior spiral ridge forms an exception to this, it is everywhere continuous as a simple thread behind the suture, which is appressed against it ; begimning with this, which is the least conspicuous of the four, it is separated from the next posterior spiral by a well-defined gutter ; the next spiral is quite close to it, and the third is nearly in the middle of the whorl ; the second and third are conspicuously larger than the others and nearly equal in size, the space between them is about equal to their brearlth singly ; the fourth ridge is smaller and less conspicuous, and the space between it and the third spiral is twice the width of the latter, sloping rather rapidly toward the suture, which is immediately behind the fourth ridge, appressed against the first ridge of the whorl behind ; the second and third ridges are sharp on the edge, falling abruptly on the posterior side and rounded toward the basal side, but the fourth is an evenly rounded thread; between this and the third on the later whorls is a very delicate thread, while spiral strix are visible here and there under a powerful glass; the first ridge forms the periphery of the (in the adult) somewhat flattened base, on which appear, toward the periphery, one or two faint spiral threads or grooves, which in the young are quite pronounced ; transverse sculpture consisting of about twenty-seven distinct riblets, separated by about equal furrows, slightly flexnous over the inflated whorls, but in general parallel with the axis of the shell ; these are marked by rather prominent parallel lines of growth, which pass over the periphery, and are distinet on the base; columella twisted, slender, slightly thickened; anterior canal slemder, small, somewhat produced amd bent to the right ; aperture rounded, not completely developed in the specimens at hand. Length of four whorls in a nearly adult specimen, 10.5 ; in a younger ne, 6.0. Brealth of the former shell behind, 4.0 ; in front, 4.2 ; of the latter shell behind, 2.5 ; in front, 2.5. Length of last whorl in the first mentionel, 5.0 ; of aperture, 2.25 ; width of the same, 1.87 mum.

Yucatan Strait, 640 fins.
This form seems nearest to T. bigemma of any described spucies, hut, so far as the specimens in hamd go, seems quite sulliciently distiuguished from it. When perfect and adult, it must he a very tine example of the genns, and one of the largeat known.

\section*{Triforis hircus n.s.}

Shell elongated, acutely tapered, with fourteen or more rather inflated whorls of translucent whitish color ; transverse sculpture of some twenty-one slightly oblique rounded riblets with somewhat narrower interspaces, which are prominent on the periphery of the whorls, and evanescent toward the sutures; these riblets are nearly parallel with the axis in the younger shells, and become more oblique in the adults ; each bears two nodules caused by the intersection of the spiral sculpture ; beside these there are faint lines of growth, most distinct on the polished and flattened base ; spiral seulpture consisting of a thread behind the suture, undulated by the ends of the transverse riblets in the young, simple and regular in the more mature whorls, and forming on the last whorl the margin of the base, and two flattened threads, separated by a wider groove, which rise to nodules where they intersect the transverse sculpture ; the distance from the suture forward to the posterior spiral thread is greater than from the anterior thread forward to the next suture, and this wider space has a somewhat excavated appearance, the posterior edge of the whorl being appressed to the suture, and slightly thickened where it meets the post-sutural spiral rib ; base flattened, yellowish, polished, with a single faint thread near the periphery ; aperture squarish, not completely developed in the specimens accessible ; canal very short ; pillar twisted, short, stout, of a darker yellow than the rest; apex dccollated, probably rather pointed. Lon. of shell, 12.5. Max. lat. 3.0. Lon. of last whorl, 3.0 ; of aperture, 1.9. Lat. of aperture, 1.75 ; lat. of first remaining whorl, 0.87 mm .

Yucatan Strait, 640 fms.
This is closest to T. bigemma, from which it differs in the less pronounced sculpture, the absence of the first ante-sutural nodulated spiral rib, and the more acute taper of the shell. A large series might show them to be varieties of one species, but in the absence of connecting links they can hardly be properly united.

\section*{Triforis cylindrellus n. s.}

Shell small, slender, sinistral, whitish, of twelve or fourteen whorls, tapered in the adnlt both ways, the spire rather acutely (the nuclens is missing), and the last whorl being a little more slender than the two immediately preceding it : transverse sculpture of twenty or more close, faint plications, extenting from suture to suture, a little less strong anteriorly, and in the last whorl evanescent in advance of the periphery ; the spiral scupture consisting of L -shaped gronves, one side of which is nearly vertical to the axis of the shell and the other slopes spireward ; of these there are three, nearly equidistant, the anterion one, being separatel from the suture in front of it by a smouth space, gives to that space the effect of a post-sutural rib; base prominent, intlated, with one faint groove near the periphery, the whole shell showing more or less evident lines of growth, and oceasionally faint revolving stria ; whorls inflated, distinct; suture appressed, conspicuous; colum twisted, molerately long,
stout ; anterior and posterior canals developed; outer lip expanded, slightly thickened, aperture rounded. Lon. of shell, 6.5 ; of last whorl, 1.85 ; of aperture, 0.75 . Max. lat. of shell, 1.5 ; of last whorl, 1.4 mm .

Cape San Antonio, 640 fms .
Owing to the anterior taper, this species has the aspect of a diminutive Cylindrella or Clausilia. It belongs to the section Mastonia of Hinds.

\section*{Triforis (bigemma Watson var.?) abruptus n. s.}

Shell short, stout, yellowish white to dark red brown in color, with nine to eleven whorls; sculpture precisely resembling that of T. bigemma Watson, from which the shell differs in its shorter, stouter, and more abruptly tapered form ; in having about half the number of whorls; in the rounded and seulptured base, upon which are several spiral threads and numerous strong and elevater radiating lines of growth ; the anterior canal is very short and not closed in the specimens examined, the posterior canal indicated by a deep wide notch; the outer lip patulous and flaring. Lon. of shell, 7.5 ; of last whorl, 2.5 ; of aperture, 1.5. Max. lat. of shell, 2.25 ; of aperture, 1.25 mm .

Cape San Antonio, 640 fms . Iucatan Straits, 640 fms .
It would seem hardly probable that such an extreme disparity of form and number of whorls, as well as size, should exist in one species; however, since the variability of many of these deep-sea forms in many cases surpasses almost anything recorded from shallow water, I have hesitated to separate this little shell absolutely from Watsou's species.

\section*{Triforis triserialis n. s.}

Shell slender, acute, whitish or yellowish, of about fifteen whorls; nucleus flattened, sharply keeled, white, polished ; first nuclear whorl with two keels, on the third an interealary thread appears, all of which quickly hecome subequal and uniformly nodulated ; sculpture of three spiral rows of tubercles with their anterior (hasal) slopes morlerate, but the posterior (spireward) slope nearly perpendicular to the axis, so that the tubercles point more or less spireward ; the posterior row, just in front of the suture, is a little more prominent than the other two, and so marks the whorls, which are somewhat oblicuely enilerl ; the tubercles are arranged on the whorls obliquely from right to left, and connected by the representative of the nuclear keels, with the spaces hetween the spirals deep and narrow, that space in which the suture is contaned being only distinguishahle from the others by the abovementioned more prominent spiral ; the suture itself, even with a good glass, is harelly to be made out ; base flattened or in the perfectly mature shell rounded, in the first case with one, in the latter case with three well-marked spiral threals and evident radiating lines of growth; pillar stont, straight, with a thick solis but small lump of callus on it ; aperture small and narrow ; both camals probably
closed, reflected and rather short. Lon. of shell, 8.25; of last whorl, 2.0 ; of aperture, 1.0. Max lat. of shell, 1.75 ; of nuclens, 0.5 mm .

Yucatan Strait, 640 fins. Off Cape Sau Antonio, 640 fms. Station 2, 805 fims.

Without careful sturly the differences between the forms of this group are hardly noticeable. When examined under a high power it is soon found that species which to the naked eye appear very similar or hardly distinguishal,le are really characterized by quite a different method in their sculpture, though the general result may be not very dissimilar in its salient features. The tubercles of one are due to grooves cutting transverse riblets; of another, to spiral ridges rising to nodules on the riblets; of a third, to rows of nodules side by side without spiral or transverse sculpture of any kind. This and the following forms have been separated after several days' close study from an assembly which the first examination had almost decided to place in the category umler one specific name. However, there are distinct definable differences between them, and the fact that the microscope is required to perceive these differences should have no effect on our estimate of their systematic value.

\section*{Triforis intermedius n. s.}

Shell, elongated, slender, acute, yellowish white, of ahout twenty-three whorls; nucleus missing in the specimens at hand ; spiral sculpture consisting of two principal rows of rounded tubercles, with spirally confluent bases, which are conspicuous from the beginning to the end of the spire ; if there is any difference in size, the anterior row is slightly the larger; there are about eighteen of these tubercles on the last turn; the posterior row lies close to and somewhat appressed upon the suture ; midway between these is a smaller spiral riblet, which rises into narrow elongated waves, or tuberculations, in harmony with the others; at the base of the whorl is a simple riblet very slightly or not at all waved, and nowhere rising into tubercles; these spiral series are about equidistant, but the space between the anterior row of tubercles and the basal riblet is more deeply excavated than the others; base somewhat flattened, conical, with an outer strong spiral ridge and two or three inner fainter ones; the transverse sculpture consists solely of the lines of growth, which are conspicuous only on the base ; the tubereles, however, are arranged so as to appear as if placed obliquely from right to left across the whorls, so that on the length of the spire the transverse row makes nearly one revolution around the shell ; suture inconspicuous ; pillar short, stout, strongly recurved, with a thick and projecting callus ; anterior and posterior canals open in the specimens examined; outer lip proluced anteriorly, wery oblique, forming a narrow aperture ; adult shell with the outline of the spire slightly convex.

Lon. of shell, 11.0 ; of last whorl, 2.25 ; of aperture, 1.5. Max. lat. of shell, 1.75 mm .

Station 2, 805 fins.

This shell somewhat resembles T. concors Hinds, from the Straits of Malacca, but the aperture in our species is much narrower, and the shell is of a different color. The base is also of a somewhat different shape. The specimen measured is the most perfect, but not the largest.

\section*{Triforis colon n.s.}

Shell very slender, elongated, acute, pure white, with a glassy polish when fresh, with twenty-eight or thirty whorls when perfect and complete; nucleus and first nuclear whorl white, polished, smooth, flattened on top; surface passing gradually into the second nuclear whorl, with two strong narrow projecting smooth keels, which are then continued into the normal sculpture which they assume very promptly; the keels project so much that the diameter of the keeled whorl is slightly larger than that of the tubereled third whorl; spiral sculpture consisting of two rows of round, pointed tubercles and a narrow, flattened band on each edge of the whorl ; the latter occasionally a little wavel, but usually smooth, one before and one behind the suture joining so closely that the suture is practically invisible, or appears only under a strong magnifier like a faint groove on the joined surfaces of the (really double, but apparently single) narrow band; there are sixteen tubereles on the last turn, and those on the anterior row are opposite the interspaces of the posterior row, thus falling into oblique series from right to left across the whorls; the bases of the tubercles are connected spirally and transversely by small ridges, and the tubercular rows are much more elevated above the general surface than the sutural bands; there is on the flattened base a single faint thread just within the periphery; a very young specimen, however, shows several additional inner strix; none of the speeimens have the mouth in its adult form, consequently, as in immature specimens of this genus generally, the base is flattened, and the canal short and straight, the pillar without callus, and the outer lip simple, thin, and not projecting; the transverse sculpture additional to the above is solely composed of the lines of growth, which are hardly evident, except on the base; outline of the spire a very elongated cone, which in old and decollated specimens assumes a sulcylindrical form. Lon. of shell, 12.0 ; of last whorl, 1.5 ; of aperture (immature), 0.6. Мах. lat. of shell, 1.87 mm .

Sigsbee, off Havana, in 450 fms. Off Cape San Autonio, in 640 and 1002 fathoms.

This species has a sculpture somewhat like Triforis ruber Hinds, from New Ireland; but the tubercles are alternate instead of opposite, and the form and coloration are quite distinet. Indeed, they would fall into different sections according to Hind's classification.

\section*{Triforis ibex n. s.}

Shell elongated, conical, but less slender than T. cnlon, yellowish white, blunt-tipperl, with eighteen or nineteen rather romulen whorls; nucleus about
twice as large as that of \(T\). colon, smooth, inflated, rounded on top, larger than the succeeding nuclear whorl, which has two inconspicuous narrow keels which are wavy and almost tuberculate from the first, and pass imperceptibly into the usual seulpture of the shell ; spiral sculpture of two rows of somewhat elongated tubercles (about eighteen to the last turn), sometimes degenerating into a wavy riblet; these tubercles are arranged much as in \(T\). colon, but are narrower in a direction transverse to the whorl, with their transverse connections less evident, the spiral ridge proportionately stronger, and the tubercles individually less conspicuous ; the two spiral rows of tubercles, especially in the anterior part of the shell, occupy the peripheral third of the visible part of the whorl; * the anterior and posterior thirds are somewhat excavated toward the suture, the shell being appressed and slightly raised on each side of the latter, but withont forming a regular band or riblet, unless in the very last whorl where the raised edges are a little waved in sympathy with the tulberculation of the periphery ; suture very distinct ; the excavation above referred to gives a particularly rounded appearance to the whorls, resulting in a wholly different aspect from that given by the subcylindrical \(T\). colon, which has twenty-three whorls in the same space as sixteen of \(T\). ibex; base rounded with three strong raised threads between the anterior tubercular spiral and the canal; canal short, a little recurved at the tip; pillar with a strong callus; posterior canal and outer lip not completed in any of the specimens at hand, but the more adult ones indicate a rather wide roundish mouth ; outlines of the spire a little concave from the button-like nucleus. Lon. of shell, 11.0 ; of last whorl, 3.0 ; of (immature) aperture, 1.5. Max. lat. of shell, 1.87 ; of nucleus, 0.5 mm .

Off Cape San Antonio, 640 fms. Yucatan Straits, 640 fms. Sigsbee, off Havana, 450 fms.

This shell tapers more rapidly than \(T\). colon, as will be seen by the measurements, and differs in the other particulars mentioned from that species, which appears to be its nearest ally.

\section*{Cerithiopsis (?) Sigsbeana n. s.}

Shell long, slender, excepting the inflated apex acutely conical, sides rectilinear, with about twenty-three whorls ; color, muclens translucent, first three or four whorls with a deep reddish brown tinge which gradually fades to waxen white, tinged irregularly with faint brown or yellowish suffusion, in dead shells pure white, polished and partly translucent; muclens inflated, vitriniform, set on a little obliquely, projecting outward more than the two subsequent apical whorls, smooth, but latterly fitintly senlptured in transition toward the regular sculpture of the shell by finint posteriorly concave transverse undulations; subsequent spiral senlpture of three and afterward four spiral flattened squarish ridges, the most prominent of which is the posterior, which is in front of and covers the invisible suture ; before this are two equal and slightly but distinetly smaller ones, and lastly at the anterior margin of the shell (except in the very

\footnotetext{
* Of course, proportionately much more in the earlier whorls.
}
young specimens) a still smaller rather rounded thread, which forms the periphery of the base, and which a slight expansion of the last half-whorl in the adult covers up, so that there are only three spirals visible on this last small portion ; base nearly flat, with one rather marked spiral within the periphery, defined by a groove on either side, and between this and the canal numerons fine submicroscopic spiral striæ; in the earlier whorls the spirals are waved or even tuberculated by the transverse undulations, the large spiral most so and the anterior one least so, varying in amount in different specimens; in a strongly sculptured specimen which was selected for description as living and perfect, the transverse sculpture (of about twenty faint undulations) is stronger than the spirals during the three or four apical whorls, gradually becoming fainter until on the eighteenth and succeeding whorls it is only visible between the spirals under a strong magnification; for the greater part of the shell the spirals are not tubercled, but waved or slightly swollen at the intersection of the transversals, which last become fainter and more numerous from whorl to whorl, and on the base are not indicated, or only by moderately distinct lines of growth. On another larger specimen the tuberculations or undulations are perceptible only on the earlier third of the shell, and on the remainder are represented only by the lines of growth; in this specinen the spirals also are less distinctly marked in the latter part of the shell, the two intermediate ones suffering most diminution; on the surface spiral striæ exist, which are hardly to be detected on the first-mentioned strongly seulptured specimen; the base is about the same in both. The sharp onter lip does not appear to be ever thickened, but at certain periods it is slightly reflected and this excessively thin edge is visible like a varix here and there on the whorls, although it hardly rises above their surface; the aperture is squarish, short, and wide; the inner lip glazed, but not thickened; the onter lip concavely waved laterally and with the basal edge slightly produced ; the pillar solid, very short, strongly spirally twisted and forming a short but very distinet canal abruptly bent to the left; operculum so far retracted as to be inaccessible; soft parts indicated by a blackish tinge perceptible through the shell. Lon. oi shell, 10.5 ; of last whorl, 2.0 ; of aperture and canal, 1.5. Lat. of shell, 1.75 ; of aperture, 0.9 . Lon. of longest specimen when perfect, 13.25 mm .

Station 5, 229 fms. Station 20, 220 fms.
The genus Cerithiopsis appears to be at present ill defined, the character of the operculum used by Forbes being illusory, if Sars's figure is correet ; the differences of lentition between this form and Bittium appear quite sufficient to distimgish it, however, if other species agree. Nevertheless, it seems at present impossille to fully define cither genus or to distinguish by the shell (except approximately) between species of Bittium and Cerithiopsis as these names have heretofure been applied. The differences in the soft parts which have been mentionel may exist, hat like the asserted differences in the operenla prove on more thorough inspection to be partly transitional or specitic characters. It will be understood, therefore, that the nhove and succeeding species
are only provisionally referred to Cerithiopsis, and may hereafter be proved to belong to Bittium or to some allied group. Were the describers of new genera and subgenera to carefully deseribe the distinctions between the groups they name and their near allies, much labor would be saved those who come after, and who have to do the drudgery properly belonging to the original describer, if indeed he went so far as to give the data necessary for the search. Many genera really separated from one another by good characters are defined by most worthless ones in the text-books, and in no department is there more work to be done than in what may be termed that of giving a proper perspective to the innumerable named groups of mollusks.

This particular species is clearly different from any of those described by Watson, and I have been unable to find any described species with which it agrees.

\section*{Cerithiopsis (?) crystallina n. s.}

Shell translucent white, elongate-conical, extremely acute, with granulated surface and about twenty-four somewhat rounded whorls ; nuclens extremely minute and partly submerged, smooth, shining, translucent, passing imperceptibly into the very attenuated shining apical whorls, which in the adult are most frequently, though not always, lost ; spiral sculpture in the earlier whorls of two rather strong subequal rounded revolving riblets, to which, about the seventh whorl, another smaller thread just before the suture is added, which soon becomes nearly as prominent as the posterior riblet of the original pair; the space between the original pair gradually grows proportionately wider, and about the tenth whorl a fine intercalary thread appears which always remains snaaller than the others; beside this in the nearly adult shell the space between the original anterior riblet and the suture (to which this part of the whorl rapidly descends) is supplied with two very fine elevated threads; a similar one may also (but does not always) appear intercalated between each pair of the four principal spirals above described; on the base in the fully adult eight or more subequal simple spirals appear between the periphery and the canal, while the more anterior original spirals diminish in prominence and gradually approximate in size to the basal ones; in the younger shells the difference is quite strongly marked. The trimsverse sculpture in the apical whorls consists of a few (six or eight) rather strong transverse riblets, which appear as stont romnded tubercles on the spirals, and run down the spire almost straight, until the order is broken up by the continnal appearance of new interealary series (seventeen on the thirteenth whorl and about twenty-two on the last whorl) ; on the later whorls these are somewhat concarely flexed, and no regular succession up and down the spire can be made out; fine lines of growth appear on the anterior whorls, which by the constriction of the basal periphery put on a rather rounded outline, so that the number of whorls can loe easily comnted, though the suture is almost invisible ; on the base the only transverse sculpture is due to the delicate lines of growth : the last whorl or two may have one or two faint varices ; the base is thattish
in the young, rounded in the adult; the outer lip expanded and thickened concave behind, basally produced and curving into a distinct but not produced canal, which opens to the left ; on the other side the outer lip is continuous with a thin but distinct callus, which is twisted over the very short and inconspicuous pillar ; the reflected edge of this callus is not adherent to the pillar, and there is a perceptible chink under it, or more properly above it ; the aperture is subovate, pointed before and behind. Lon. of shell, 16.0 ; of last whorl, 3.62 ; of aperture (from point to point), 2.5. Max. lat of shell, 3.0 ; of aperture, 1.75 mm .

Station 2, 805 fms. ; Barbados, 100 fins. ; and numerous other localities.
A very pretty, and apparently a very common species, which, except in its attenuated apex has quite a general resemblance to Lovenella metula Sars of Northern European shores. From Cerithium (Bittium) cylindricum Watson (Australia) it differs in its color and in its non-convex outlines, and in having four instead of three prominent spirals and many more whorls; it has a larger number of series of tubercles than C. (Bittium) gemmatum Watson from Setubal, and two more spirals ; it is much larger than C. (Bittium) pigrum Watson, and of all Watson's species is perhaps most like C. (Bittium) mamillunum from Pernambuco ; but the details of sculpture, size, and number of whorls differ quite sufficiently.

\section*{Bittium (?) Yucatecanum n. s.}

Shell stout, solid, conical, waxen white or grayish, with about eight rather rounded whorls; spiral sculpture of four (afterward five) revolving, flattened threads, with about equal interspaces; the first is about its own width, or a little more, in advance of the suture; the second, abont the same distance in advance of the first, is equal to it in size ; both are smaller than the third, which is the largest and most prominent of all, and gives a subcarinate appearance to the whorl, or than the fourth, which is about midway in size between the second and third ; on the later whorls a fine thread appears just behind the suture which it crowns, and on the last turn forms the periphery of the base, within which appear two or three others, growing fainter toward the canal ; the shell is also covered with microscopic revolving strie; the transverse sculpture consists of fourteen to eighteen faint plications or riblets, which appear to pass under and in so doing to undulate the spirals, especially the thirl and fourth; in some specimens these undulations may appear tubercular, but they do not in the one under consideration ; the sutural thread is not undulated, and the reticulation is confined to the sides of the whorls, the base being crossed only by rather strong lines of growth. Base rounded ; pillar straight, rather slender, short, without any marked callus; aperture rounded; outer lip thin, notched by the spirals, with a faint emargination near the pillar, lout no well-marked camal ; the nuclens is mostly broken away, but seems to have been helicionm, turned half over, and partly immersed. Lon, of shell 8.0 ; of last whorl, 3.5 ; of aperture, 2.0. Max. lat. of shell, 3.0 ; of aperture, 1.5 mm .

Yucatan Strait, 640 fms .
A solid, rather uninteresting-looking shell, with few attractions, but differing from any of the species described by Watson.

\section*{Columbella (Astyris) Duclosiana D'Orbignt.}
C. Duclosiana D’Orbigny, Sagra Moll. Cub., II. p. 136, Tab. XXI. figs. 31-33. 1853.

Station 20, 220 fms . Sigsbee, off Havana, in 450 fms .
These specimens, leeing dead, may have been washed off shore. The species might well be a variety of \(C\). dichroa Sowerby, and faded specimens recall C. lunata Say.

\section*{Columbella (Astyris?) amphissella n. s.}

Shell small, stout, blunt-tipped, yellowish white, of four and a half whorls; nucleus large, white, shining, smooth, and naticoid, of one and a half whorls ; transverse sculpture of numerous (on the last whorl twenty-one) straight subequal plications with about equal interspaces, beginning at the suture, passing clear over the whorl, and fading out only when near the canal ; also faint lines of growth ; spiral seulpture of numerous equal fine rounded threads (twentyone on the last turn) with slightly wider interspaces, covering the whole shell except the nucleus; pillar short, stout, a little concave, with a slight callus; outer lip somewhat thickened, smooth ; canal wide, short, but distinet ; sutures distinct. Lon. of shell, 4.0 ; of last whorl, 3.0 ; of aperture, 2.0. Max. lat. of shell, 2.0 ; of aperture, 1.0 mm .

Yueatan Strait, 640 fms.
This stout and prettily reticulated little shell has almost the form of amphissa versicolor Dall, from California, though of course on a very diminutive scale ; the character of the sculpture is also not dissimilar. The nearest West Indian species to it is Columbella Hotessieriana D'Orbigny, which has a toothed aperture, one more whorl, an acute spire, and different color. It is not unlike C. costulata Cantraine as figured by Sars, but has a proportionately shorter spire, fewer whorls, more numerous plications, and is of about one niuth the size. By some authors this species would be referred to Anachis.

\section*{Columbella (Astyris) Verrilli n. s.}

Shell slender, conical, yellowish white, with about seven whorls; surface polished, but when in a perfectly fresh comdition covered by a mather shagey brown epidermis, whose surface projects in irregular lamellæ, as in Astyris californica. Nucleus naticoid, shining translucent white; spiral seulpture appearing only on the pillar and hasal surface where there are ten or twelve well-marked close-set revolving threads, which grow fainter toward the periphery; microscopic revolving lines may occasionally, thongh marely, be
seen on other parts of the shell ; transverse sculpture varying with different individuals; in those where it is strongly developed it consists of from nine (on the third whorl) to fourteen (on the last whorl) sharp-edged plications rumning clear across the whorls, rounder and wider near the middle of the whorls, and on the last disappearing half-way from the periphery to the canal; these plications run straight up and down the spire, and are strongest (though rather narrower) at their posterior ends, at which the plication often rises into a little tubercle, which is not only appressed against but even extends over the suture, which, in consequence, has a wavy outline; the spaces between the plications are wide and evenly excavated ; in other specimens the plications will be much fainter, not raised into a tubercle at their posterior ends and evanescent on the larger whorls at a short distance in advance of the suture ; the suture in such specimens is more even and distinct than in those previously described, and the lines of growth are usually more evident. The pillar is stout, twisted a little to the left, and, with the canal, distinctly recurved, its inner side covered with a thin smooth white callus; the outer lip gently arched, slightly thickened, and reflected, contracted a little at its anterior enel to form the short wide canal, and having internally, about midway between its junction with the body whorl and the canal, a single small rounded pustuleshaped callus ; there are no denticles or other armature to the mouth with the above exception, which is invariably present in perfectly mature specimens. A moderately plicate shell measured as follows:-Lon. of shell, 9.0 ; of last whorl, 5.0 ; of aperture, 3.5. Max. lat. of shell, 3.0 ; of aperture, 1.5 mm . Another strongly sculptured specinien measures 9.25 mm . long and 3.12 mm . broad.

Sculptured variety, Station 2, 805 fms. ; Station 19, 310 fms. ; Station 47, 331 fms . Normal form, Station 43, 339 fnss. ; Station \(4 \overline{7}, 331\) fins.

This species is most nearly allied to Astyris rosacea Gould, from which the faintly sculptured specimens differ by the smaller mouth in proportion to the spire, and the characters of the epidermis and aperture; the character of the plications also differs from that of \(A\). rosacea. The strongly sculptured specimens do not at all resemble rosacea, except in size and number of whorls. The latter would usually be referred to Anachis and the former with A. rosacea to Astyris, lint there can be no doubt that they are forms of one species. This without prejudice to the proper separation, maybe, of certain species under the name of Anachis.

This species was obtained in some numbers, so that I was prepared to find it deecribed ; but a pretty thorough search has not revealed any reference to it in the various publications I have consulted. Professor Verrill, to whom I have great pleasure in dedicating it, may perhaps secure it with other Southcrn forma off the coast of New England luring the researches he is now conducting. The solitary pustular denticle is a very peculiar, and, as far as I am aware, unique feature.

\section*{Natica leptalea Watson.}
N. leptalea Watson, Journ. Linn. Soc. (Zoöl.), XV. p. 261. Dec. 1880.

A small specimen, perhaps the young of the above species, was dredged in 640 fathoms in Yucatan Strait. Watson's specimens were from near Sumbrero Island, W. I., in 450 fathoms.

\section*{Natica fringilla n. s.}

Shell small, elevated, slightly turreted, blunt-tipped, wavy white, of three or four whorls ; meleus translucent, polished, rather disproportionately large, depressed nearly to the level of the next whorl, and so giving the spire a blunted aspect; transverse sculpture of strong plications like the "grathers" of a skirt, about thirty-two on the last whorl, not perfectly uniform in elevation or extent, passing forward from immediately in front of the suture a distance of about 1.25 mm ., and then becoming obsolete or replaced by ordinary lines of growth ; these plications are sharp-edged near the suture with about equal interspaces, and gradually grow wider, flatter, and less elevated anteriorly until they disappear ; surface polished, lines of growth not prominent ; spiral sculpture none, though the surface is marked with those faint revolving markings, visible only by reflected light, which are common to nearly all spiral polished shells, and, as far as I have observed, to all species of this genns; suture well marked, slightly appressed ; whorls rounded benind and laterally in female, and slightly laterally flattened in male specimens; base prettily rounded ; umbilicus small, funiculate at its mouth, twisted, with a rounded not very distinctly defined riblet coiled on its inner surface, beginning from the anterior end of the pillar lip; no umbilical pad ; outer lip simple, sharpedged, a little oblique, and, at maturity, slightly bent downward and forwarl at its junction with the body whorl ; pillar-lip and body moderately thickened, an emargination in front of and correspouding to the umbilical arch; aperture rounded in front, pointed behind. Lon, of shell, \(\begin{gathered}\text { o } 7.0, ~ ㅇ .5 .75 ; ~ o f ~\end{gathered}\) aperture, \(\hat{\delta} 4.0\), \(\uparrow 4.0\). Max. lat. of shell, \(\hat{\delta} 5.0\), \(¢ 5.0\); of aperture, \(\hat{\delta} 2.5\), \(\$ 2.5 \mathrm{~mm}\)., the \(q\) being a somewhat younger shell.

Yucatan Strait, 640 fims. Off Cape San Antonio, 640 fims.
Among all the descriptions of forms from deep water, I have found none which apply to this rather simple little species, which is about the size of N. pusillu Say, but quite distinet from it. In his rejort on the French experdition of the Travailleur in the Bay of Biscay, Dr. Jeffreys mentions as new, but does not describe, a \(N\). subplicata, which, from the name, might be allied to this.

\section*{Turritella Yucatecanum n. s.}

Shell small, thin, acute, opaque white mottled with rusty brown, of about twelve whorls; muelens and second turn minute, white, smooth, with ileep
suture, rounded and vermicular ; next whorls with spiral sculpture, whereof three riblets aboutt equidistant are markedly larger and more prominent than the rest; sculpture of mature whorls consisting of fine spiral threads with nearly cqual interspaces crossed by fine lines of growth and divided into five bands by four larger polished spirals, which are white and marked by rather distant dots of brown ; of these bands of fine spirals that behind the anterior suture and the two immediately behind it are of about equal width and equal to the two posterior bands and their included large spiral taken together; the general surface, barring the large spirals, is marked by light nebnlous transverse pencillings of brown, which in general accord in direction with the lines of growth ; the whorls are hardly at all rounded laterally, are slightly carinated by the three major spirals, and the last whorl is flattened on the base, but without any marked carina at the periphery of the base ; spiral sculpture of the base similar to that of the spaces between the major spirals on the side of the whorls, with here and there a slightly larger thread; the transverse sculpture consists of the lines of growth above mentioned, which are most distinct on and between the minor spirals and irregular narrow undulations following the lines of growth (about twenty-five to the last whorl), which cross the larger whorls in some specimens so prominently as to render the major spirals almost tuberculate at their intersection, in most specimens produce a series of moderate undulations, and in others are almost obsolete ; outer lip thin, sharp, very little rounded, and hardly emarginated by the slight flexuosity of the lines of growth ; pillar rather thin, prettily arched, passing into the flattencd basal edge ; body polished, not callous; suture rather inlistinct, not channelled ; base in several specimens dotted with convex, ovate, coriaceous, light yellow ovicapsules, whose surface, wrinkled in drying, seemed to have originally been smooth, and to have had a length of 0.75 and a brealth of 0.5 mm . Lon. of shell, 16.5 ; of last whorl, 5.5 ; of aperture, 3.25. Max. lat. of base, 5.0 ; of aperture, 2.75 mm .

Yucatan Strait, 640 fms .
This species perhaps most resembles a miniature edition of \(T\). leucostoma Valenciennes, but does not agree with any of Watson's species or with the few species ordinarily assignel to the West Indian province. Quite a number of fresh specimens were obtained, which are very uniform in size, disposing of the suspicion that the shell might be drifted from shallow water.

\section*{Actæon fasciatus Lamarck.}

A species which may be the Tornatella fasciata of Lamarck, judging by figures only, was ohtained from Station 19, 310 fms. ; by Sigsbee, Station 50 (Lat. \(26^{\circ} 31^{\prime}\) and Lon. \(85^{\circ} 53^{\prime} \mathrm{W}\).), in 119 fms. ; Station 9, 111 fms. (young) ; and from 450 fms. off IIavana, also a young specimen.

\section*{Actæon incisus n. s.}

Shell short, thin, inflated, waxen white, polishel, with five or six whorls and a rather acute spire; nucleus minute, more or less immersed, erorled to some extent in every specimen ; apical whorls smooth, polished, rounded; suture very distinct, in the majority of cases not channelled; the apical whorls with two or three distant narrow grooves across which, in some cases, patss elevated lines of growth which appear nowhere else, or, if at all, only in the suture near the apex ; last whorl forming the largest part of the shell, inflated, provided with ten or eleven spiral grooves, which are nearer together anteriorly ; these grooves are somewhat zigzag by exigencies of growth, but are not punctate, as in so many species; other spiral sculpture consisting of microscopically fine slightly zigzag strix, about seventy in the width of a millimeter ; transverse sculpture only of most delicate flexuous lines of growth most evident near the sutures ; aperture rounded in front, pointed behind; outer lip thin, simple, arcuated toward the periphery, passing imperceptibly into the pillar ; body with a slight callus joining the rather slender pillar which carries one inconspicuous fold. Lon. of shell, 9.0 ; of last whorl, 7.0 ; of aperture, 5.75. Max. lat. of shell, 5.75 ; of aperture, 3.0 mm .

Yucatan Strait, 640 fms. ; off Cape San Antonio, 640 fms.
A peculiarly thin delicate polished and inflated species.

\section*{Actæon melampoides n. s.}

Shell short, stont, with a depressed spire and shouldered last whorl; white, with five whorls, sculptured with punctate spiral lines; nucleus small, eroded ; other whorls with two, three, or (on the last) twenty to twenty-five spiral lines, which are distinctly punctate, with about ten punctations in the length of a millimeter ; the spirals are crowded just in advance of the suture and near the pillar, and especially distant on the shoulder of the last whorl ; suture distinct, with the anterior margin finely crenulate in the last whorl; other sculpture of fine lines of growth and microscopic revolving striee as in the last species ; outer lip hardly oblique, joining the body at a wider angle than usual, owing to the shouldering of the last whorl, thin, simple, passing imperceptibly into the short, twisted pillar, which bears a single distinct fold ; boly whorl with only a glaze, pillar hardly or not at all thickened; aperture approximately lunate. Lon. of shell, 6.0 ; of last whorl, 5.25 ; of aperture, 4.25. Max. lat. of shell, 4.0 ; of aperture, 1.62 mm .

Station 19, 310 fms.
This species has a good deal the outline of the common Mclampus corneus of the east coast of America.

\section*{Actæon Danaida n. s.}

Shell elongated, moderately pointel, polished, white, and having about six whorls ; spiral sculpture of (on the spire) six, or (on the last whorl) over twenty-five punctate grooves, more crowded anteriorly, but with two or three coarser than the rest, just in advance of the suture ; between these original grooves in the latter half of the last whorl intercalary single or double grooves appear, which are seldom quite as deep as the originals, and at first are not punctate, but at last, and especially near the anterior extrense of the shell, become nearly as well marked as the original series; transverse sculpture consisting only of lines of growth, by a peculiar thickening of certain of which when they cross the grooves the punctate appearance is produced; nuclens croded, minute; suture appressed, distinct, but the thin appressed anterior margin seems peculiarly liable to erosion, which in some cases takes place so as to produce the appearance of a channelled suture ; whorls slightly rounded ; outer lip thin, simple, somewhat produced in the middle, passing imperceptibly into the thin twisted pillar, which is slightly reflected, and bears one inconspicuous, very oblique fold; body with a thin layer of callus; aperture rounded in front, rather narrow, pointed behind; no umbilical chink in this or any of the preceding species. Lon. of shell, 11.0 ; of last whorl, 7.75 ; of aperture, 6.25 . Max. lat. of shell, 5.25 ; of aperture, 3.0 mm .

Station 43, 339 fms .
An elegant and excessively punctate species, which looks as if it might have been pelted by a shower of little coins.

\section*{Actæon perforatus n. s.}

Shell small, pointed, waxen white, with a narrow opaque jellowish band in advance of the suture, composed of about six whorls, and with a distinct umbilical perforation; nucleus croded, small ; spire with about six, or (on the last whorl) eighteen strong and very regularly and distinctly punctate grooves, the punctations at the rate (near the aperture) of abont six to a millimeter, the grooves a little more crowded anteriorly and distant posteriorly, the interspaces everywhere wider than the grooves and with no intercalary grooves or strix whatever ; transverse sculpture of faint lines of growth ; aperture rounded in front, pointed behind: outer lip thin, simple, arched, and continnous with the reflected thin pillar lip, upon which a fold can hardly be made out; hody with a slight glaze; umbilical perforation straight, with smooth walls, apparently very decp, and abont 0.25 mm . in diameter. Lon. of shell, 7.75 ; of last whorl, 6.0; of aperture, 4.0. Max. lat. of shell, 4.62 ; of aperture, 2.0 mm.

Station 2, 805 fims.
The anterior part of the last whorl being a little larger than any part posterior to it, this shell has a somewhat pyriform appearance.

Sept. 26, 1881.

\section*{Ringicula nitida Verrill.}

\author{
Ringicula nitida Verrill, Am. Journ. Sci., V., 3d series, pp. 6, 16, 1873. H. Morlet, Journal de Conchyl., Vol. XXVI. p. 127, 1878.
}

Pourtales, bed of the Gulf Stream, 447 fms. Station 43, 339 fms . Yuca\(\tan\) Strait, 640 fms.

This is very different from Ringicula semistriata D'Orbigny (Sagra, Moll. Cub., II. 103, Tab. XXI. figs. 17-19), and considerably larger.

It has six whorls; the anterior fold on the column is distinctly the largest; the outer lip in mature specimens is thicker in the middle and anteriorly than elsewhere; the parietal tooth is obsolete; and there is in perfect specimens a well-defined area on the base, anterior to the junction of the outer lip and body, which is distinctly grooved, the remainder being smooth. It reaches a length of 7.5 and a breadth of 5.00 mm .

\section*{Bulla abyssicola n. s.}

Shell of moderate size, and nearly the shape of \(B\). ampulla, but proportionately wider behind, white with an ill-defined band of pale yellow brown encircling the periphery; aperture as long as the shell ; outer lip simple, nearly straight, rounded before and behind, not extending beyond the summit of the left side of the shell ; apex depressed, immersed, forming a slight pit with none of the whorls visible; surface ornamented with fine, minutely punctate spiral grooves, more crowded before and behind, more distant about the periphery, from four to twelve in the width of a millimeter and from eight to ten punctations in the length of a millimeter, according to the part of the shell examined; besides these there are numerous still finer strix, also puctate, but more finely, which, when very faint, appear like rows of very faint puncticulations; otherwise the surface is smooth, or even polished, the lines of growth hardly perceptible ; aperture narrow behind, wide in front, the pillar reflected, and a thin layer of" callus evenly spread over the body within the aperture ; proportions of younger specimens much the same, but a little more pointed at the extremities. Lon. of shell and aperture, 12.75. Max. lat. of shell, 9.0 ; of aperture, \(5.25 ; \mathrm{min}\). lat. of aperture, 1.5 mm .

Iucatan Strait, 640 fms . Station 43, 339 fms . (young).
The genera of these opisthobranchiates nust always be uncertain in the absence of the soft parts. To the species here described from the shells alone the generic names applied must necessarily be provisional. The present one shows no characters in the shell by which it might be separated from the typical species of the genus, unless it be the absence of distinct coloration which we should naturally expect in a species from great depths.

\section*{Bulla (?) eburnea n. s.}

Shell small, ivory-white, polished, ovate, the aperture extended posteriorly a little beyond the left hand summit of the whorl ; sculpture a few spiral grooves near either extremity, more numerons and crowded anteriorly ; these grooves somewhat zigzag from irregularities of growth, but not puncticulate ; remainder of the shell without sculpture, except most minute microscopic faint indications of spiral striæ and faint lines of growth ; apex minutely pitted, but the pit nearly covered by a small reflexion of the lip where it joins the posterior face of the body ; outer lip thin, sharp, curved round and reflected at the anterior end of the axis; a thin deposit over the body within the aperture. Lon. of shell and aperture, 7.25. Max. lat. of shell, 4.25 ; of aperture, 2.0 ; min. lat. of aperture, 0.75 mm .

Station 43, 339 fms .
The description of Diaphana gemrna Verrill is the only thing I can find which bears any resemblance to this species ; but the size and proportions of that species are different, it is umbilicated, and B.? eburnea does not seem likely to prove a Diaphana.*

\section*{Atys (?) bathymophila n. s.}

Shell large, stout, white, polished, sculptured with numerous puncticulate striæ, crowded toward the ends and few and distant in the middle; outer lip extending backward a short distance from the spire, then sweeping downward, forward, outward, and then upwarl, curving downward and backward again to join the subtruncate columella, above and behind which there is almost a canal ; columella reflected, with a tolerably thick callus, but no umbilicus or umbilical chink ; body with a thin deposit of callus (in one instance much thickened and roughened, apparently by disease); aperture very narrow behind, very wide and somewhat oblique in front; lines of growth on the surface hardly visible. Lon. of shell and aperture, 16.5 ; from summit to oblique truncation of columella, 13.75. Max. lat of shell, 11.25 ; of aperture, 7.0 ; min . lat. of aperture, 1.0 mm .

Station 33, 1,568 fms.
In young specimens 3.5 mm . long there are three and a half whorls; the nucleus is visible turned on its side and half immersed ; it is heliciform, translucent white, and minute; the striation is more uniformly distributed over the shell, and is exceedingly fine ; the nucleus (but not the whorls outside of it) remains partly visible until the shell has attained a length of 8.25 mm . Like most young shells of this group, the young are more pointed before and behind, and less expanded than the adult.

Yncatan Strait, 640 fms.
* A comparison of specimens shows that they are perfectly distinct.

This may not be an Atys, but the subtruncate axis and general form of the shell are more like that group than any other, and it is so referred until we know the soft parts.

\section*{Atys (?) Sandersoni n. s.}

Shell small, thin, fragile, polished, translucent white, with the aperture longer than the axis of the shell, slender, elongated oval with the posterior fourth bevelled off slightly; transverse sculpture solely of delicate evanescent lines of growth, sometimes lost in the general polish of the surface ; spiral sculpture of about a dozen incised lines near either extremity, more crowded toward the tips and obsolete toward the middle of the shell, reticulating the lines of growth when the latter are present, but delicate, extremely fine, and not puncticulate ; posterior apex a rather deep funiculate pit, out of the centre of which rises the margin of the aperture, which is here slightly reflected, extends behind the summit of the body and suddenly curves forward, leaving a very narrow aperture, which is produced into a rounded point in front, then sharply recurved and reflected to a point where the reflected part loses itself in the thin callus on the body within the aperture; the anterior reflection is sometimes closely appressed and sometimes loose with a chink behind it, but there is no anterior pit; the shell is more slender forward than behind, the bevelling is more marked in some specimens than in others; a fragment from off Havana, if conspecific as seems likely, indicates that it reaches a much larger size than the described specimens. Lon. of shell and aperture, 6.5. Max. lat. of shell, 3.4 ; of aperture, 1.75 ; min. lat. of aperture, 0.5 mm .

Station 2, 805 fms . Off Havana (?), Sigsbee, in 450 fms., a fragment which, if perfect, would be about 5.5 mm . broad and 11.0 mm . long.

I have much pleasure in dedicating this species (which is provisionally referred to the genus Atys) to Mr. Sanderson Smith of the U. S. Fish Commission, well known by his researches among the marine mollusks of N. E. America. Its nearest ally seems to be the Bulla caribbrea D'Orhigny, which is much smaller, more globose, and entirely covered with striæ.

\section*{Philine sp.}

A fragment of a species resembling \(P\). quadrata Wood, as figured by G. O. Sars (Tab. 18, fig. 9 a), was obtained in Yucatan Strait at a depth of 640 fms . It is of a yellow brown, with strong lines of growth crossed by very numerous puncticulate grooves all over the surface.

\section*{Scaphander (?) Watsoni n. s.}

Shell slender, delicate, white or yellowish, polished, posteriorly attenuated, with the outer lip and aperture produced behind the apex ; transverse sculp-
ture, none beside the delicate lines of growth, which are perceptible chiefly at or near the tips; spiral sculpture consisting of some twenty-five sharp, strong, chamelled, clear-cnt grooves, not punctate or in any way irregular, except that they are more crowded near the summit than elsewhere, about half being within the posterior third of the shell ; between these, near the extremities, and near the margin of the outer lip, are a few more delicate intercalary grooves ; posterior apex a minute pit, punctured in the centre, from which the free margin rises, extends backward somewhat more than half a millimeter, then downward, forward almost in a straight line, then with a wide sweep up and around to join the slightly thickened margin of the body, into which it passes imperceptibly; body with a light wash of callus ; axis coiled so as to be pervious to the summit when viewed from in front. Lon. of shell and aperture, 8.75. Max lat. of body, 2.5 ; of entire shell, 4.25 ; of aperture, 3.25 ; min . lat. of aperture, 0.75 mm .

Off Sombrero Island in 72 fathoms.
It is possible that this will prove to be a Philine when the animal is known, but the form and aspect are those of a Scaphander. In general outline it recalls S. lignarius L., though more slender, more attenuated and pointed behind and with the free margin more produced posteriorly. In the former characters it resembles Philine Loveni Malm, as figured by G. O. Sars, but is still more pointed behind, and the free margin is of quite a different shape.

This is a remarkably elegant and characteristic species, and is named in honor of my friend, Mr. R. Boog-Watson, who is working up the Mollusea of the Challenger Expedition.

\section*{Utriculus (?) vortex n. s.}

Shell stout, rather solid, opayue white, short, the posterior fourth bevelled off toward the bluntly rounder summit; transverse sculpture consisting of occasional faint lines of growth, nowhere very prominent; spiral sculpture consisting of very numerous fine grooves, so crowded near the ends of the shell as to be but little narrower than the interspaces ; these grooves are only visible under a lens, are occasionally reticulated by the lines of growth and gradually become more distant toward the middle of the shell ; just in adramee of the shoulder of the bevel are a small number of equally fine raised lines, which are so minute that only by the most careful inspection and under strong magnification can they be distinguished from the grooves which cover the rest of the shell ; the folds of the outer whorl are appressed toward the apex, with a somewhat thickened and irregular margin, which leaves a minute pit at the summit and about two volutions visible ; this appresserl margin is often eroled, and then some four or five turns can be made ont ; in advance of the bevel the shell is nearly cylindrical, mather suddenly rounded in front ; onter lip straight, slightly produced in the middle, but not bent inwarl toward the body, passing imperceptibly into the columm, over which, as well as over the bolly, is a thin layer of callus ; aperture rounded and rather wide in front, narrowing to an
acute point behind, shorter than the shell ; pillar with no twist or fold, continuous with the margin. Lon. of shell, 7.5 ; of aperture, 6.0. Max. lat. of shell, 4.25 ; of aperture, 2.5 mm .

Station \(43,339 \mathrm{fms}\); Station 44, 539 fms.
After comparing this with the figures of all the Northern species given by Sars and those from the West Indies by D'Orbigny, it seems quite distinct from any of them. It is possible that it may prove to be a Cylichna when the animal is known ; but it does not agree with any of the figured Cylichnce.

\section*{Utriculus (?) Frielei n. s.}

Shell rather large, solid, polished opaque white, broader behind than before its middle; apex perforate, around which the margin of about two turns is ustally visible ; this margin, formed by the rather brond \(p\)-shaped posterior sinus of the aperture, resembles the notch-hand of some Pleurotomide in that the surface is flattened, with a well-marked boundary on each side, and on this surface the successive marginal edges are often raised into scales, one fitting into another, composed of an extension of the body callus on one side and a reflection of the free margin on the other; the surface of the band varies in different specimens from nearly smooth to distinctly and regularly undulated or imbricately scaled as above mentioned; other transverse sculpture of lines of growth which are hardly visible while of spiral sculpture there is none, though, with a strong reflected light, under the microscope numerous spiral markings may be observed which are neither grooved nor raised, but are visible in most smooth spiral shells, and are probably due to growth, somewhat as are the lines commonly recognized as "lines of growth." Aperture nearly or quite as long as the shell, narrow, rounded in front, and terminating in the \(p\)-shaped sinus behind; outer lip straight, sharp, thin, not incurved, rounded to join the stout columella into which it passes imperceptibly ; pillar broad, short, with a thin callus which also extends along the body; shell widest about the posterior third ; distinctly narrowed anteriorly. Lon. of shell and aperture (the latter occasionally a trifle less), 8.2. Max. lat. of shell (at posterior thirll), 4.0 ; at anterior third, 3.5 ; of aperture, 1.75 ; min. lat. of aperture, 0.5 mm .

Off Cape San Antonio, 640 fms; ; Yucatan Strait, 640 fms.
None of the Northern species present the characters of \(U\). (?) Frielei. \(U\). truncatulus Brug., as figured by Sars (Tab. 18), should have a somewhat similar summit, though the lines are not \(D\)-shaped, but obliquely transverse in the figure ; the other characters of that slell are quite different, and it does not reach half the size of \(U\). (?) Friclei. None of those figured by D'Orbigny are at all like the present species, which it gives me pleasure to dedicate to Mr. Hermann Friele of Bergen, naturalist (in charge of the Mollusea) of the Norwegian Deep-sea Expedition on the Vöringen, and well known for his work on the collections of that expelition and for his valuable researches on the development of Waldheimia.

\section*{NOTES.}

Before passing to the Acephala and Brachiopoda it may be well to note that in the preceding descriptions the apex or nucleus is considered the posterior end of the shell, and in dextral shells the free margin as the right-band side of the shell ; such lines or sculpture as pass along the whorls are spiral or longitudinal ; such as pass across the whorls are transverse.

Dr. J. Gwyn Jeffreys has kindly pointed out to me that the name maculata is preoccupied in the genus Margarita for a fossil species by Wood. The species described by that name on page 43 will therefore take the name of Margarita lacunella.

Dr. Jeffreys has also forwarded to me some specimens of the shell describerl under the name of Margarita (?) euspira (page 44), but which are destitute of the sutural band, forming a variety which may take the name of nitens (Jeffreys). The genus of this peculiar little shell remains in doubt. It presents some characters in common with Margarita and some with Photinula. In nearly adult specimens the pillar is broad, flattened, and granulated minutely with a polished small tubercle at its end, which later becomes enlarged, and forms a blunt tooth, or prominent rounded tubercle, which also is rough or granulated on the surface (which at first, with only a few specimens for comparison, led me to the supposition that it was due to fracture), and is shown by the additional material of Dr. Jeffreys to be a normal feature unlike anything I find described. If it be considered desirable to separate it on this ground (and it certainly cannot remain with typical Margarita or be referred to Photinula or Oxystele as strictly defined), it might take the name of Bathymophila, and for the present be considered as a subgenus of Margarita, which genus it resembles entirely when immature, being then widely umbilicate and with no callus.

Professor Verrill has called my attention to the fact that the species described as Pleurotoma (Bela) limacina (page 55), also obtained by the U. S. Fish Commission in deep water off Newport, R. I., has no operculum, and hence is probably not a Bela. None of my specimens retained the ammal. An examination of a specimen in spirits kindly lent by him confirms this view, and for the present the species were perbaps better referred to Daphnella. The family divisions of Gray, Adams, and others, based on the characters of the operculum, in the light of later researches cannot be maintained. I have elsewhere shown that in Buccinum cyaneum about five per cent have no traces of an operculum, while Friele has described a Neptunea or Chrysodomus with a subspiral operculum (Mohnia alba). In the Toxifera it is highly probable that the operculum has at most a generic value.

\section*{BRACHIOPODA.}

\section*{Terebratulina Cailleti Crosse.}
T. Cailleti Crosse, Journal de Conchyliologie, XIII. p. 27, Pl. I. figs. 1-3, 1865 ; Dall, Bull. Mus. Comp. Zoöl., III. No. 1, p. 10, 1871.

Barbados, 100 fms., abundant ; Sigsbee, off Havana, in 80, 119, 127, 240, and 450 fms. ; Yucatan Strait, 640 fms., living ; Station 2, 805 fms., living ; West Florida, 30 fms. ; Station 16, 292 fms.; Station 20, 220 fms. ; Station 44, 539 fms.; Station 45, 101 fms. ; Off Morro Light, Station 16, 292 fms.; Santa Lucia, Station 218, 164 fms. ; St. Vincent, Station 232, 88 fms.

\section*{Terebratula cubensis Pourtalès.}
T. cubensis Pourtalès, Bull. Mus. Comp. Zoöl., I. No. 7, p. 109, 1867 ; Dall, Bull., loc. cit., p. 3, Pl. I. figs. 2, 8-16, 1871.

Station 45, 101 fms. ; Station 16, 292 fms. ; Sigsbee, off Havana, 175 fms.; Lat. \(26^{\circ} 31^{\prime}\), Lon. \(85^{\circ} 3^{\prime}, 119\) fms. ; Barbados, 100 fins. ; Station 232, St. Vincent, 88 fms. ; Station 202, Martinique, 210 fms.

\section*{Eudesia floridana Pourtalès.}

Waldheimia floridana Pourtalès, Bull., loc. cit., p. 127; Dall, loc. cit., p. 12, Pl. I. fig. 3, Pl. II. figs. 1-3, 1871.
Off Sand Key, 125 fms. ; Sigsbee, off Havana, 175 fms. ; Lat. \(26^{\circ} 31^{\prime}\), Lon. \(85^{\circ} 3^{\prime}\), 119 fins. Very young specimens from Station 45, 101 fms ; Station 5, 229 fms. ; and Station 19, 310 fms .

Waldheimia being preoccupied in insects, as heretofore pointed out, Eudesia is the next in order of priority.

\section*{Cistella lutea Dall.}
C. (? Barrettiana var.) lutea Dall, Bull., loc. cit., p. 20, Pl. I. fig. 5, Pl. II. figs. 4-8, 1871.
Sigsbee, off Havana, 80 to 127 fms. ; Barbados, 100 fms; Station 21, 287 fms. ; Tortugas, 30 fms.

\section*{Cistella Barrettiana Daridson.}

Argiope Barrcttiana Davidson, P. Z. S., Feb. 1866, p. 103, PI. XII. fig. 3.
Argiope antillarum Crosse and Fischer, Journ. de Conchyl., XlV., July, 1866, p. 270 , Pl. VIII. fig. 7.
? Argiope Schrammi Crosse and Fischer, loc. cit., p. 269, PI. VIII. fig. 6, 1866.
C. (? Schrammi var.) rubrotincta Dall, Bull., loc. cit., p. 19, Pl. I. fig. 6, 18 i1.

\section*{C. Barrettiana var. rubrotincta.}

Sand Key, 80 fins. ; Station 2, 805 fnis., dead valves ; Yucatan Straits, 640 fms., valves ; Station 45, 101 fms., living ; Station 20 , 220 fms. ; Barbados, 100 fms . ; Sigsbee, off Havana, 450 fms. valves; Station 276, 94 fms ; Station 231, St. Vincent, 95 fms. ; Tortugas, 43 fms.

\section*{C. Barrettiana (?) var. Schrammi.}

Station 45, 101 fms. ; Barbados, 100 fms.

\section*{Platidia anomioides Scacchr.}
P. anomioides Costa, Fauna del Reg. Nap., p. 47, 1852 ; Dall, Bull., loc. cit., p. 18, 1871.

Tcrebratula anomioides Scacchi, Phil. Moll. Sic., II. p. 69, Pl. XVIII. fig. 9, 1844.
Near Morro Light, Cuba, Station 16, 292 fms. ; Station 253, 92 fms. : Barbados, Station 280, 221 fms. ; Granada, Station 260, 291 fms . ; St. Vincent, Station 232, 88 fms.

\section*{Thecidium Barretti Woodward.}
T. Barretti Woodward, Davidson, Geol. Mag., I., Pl. II. fig. 1-3, 1864 ; P. Z. S., 1866, p. 104.
Barbados, 100 fms. ; Station 232, St. Vincent, 88 fms. ; Station 155, Montserrat, 88 fms.

These specimens I take to be Barretti, though rery small, since they do not show the complicated internal arrangement of the next species.

\section*{Thecidium mediterraneum Sowerby.}
T. mediterraneum Sowerby, Thes. Conch., VII. p. 371, Pl. 73, figs. 30-32; Dall, Am. Journ. Conch., VI. p. 151, fig. 27, 1870.

Station 241, 163 fms.

\section*{Crania Pourtalesii Dall.}

Crania (? anomala var.) Pourtalcsii Dall, Bull., loc. cit., p. 35, Pl. I. fig. 7, 1871.
A single valve was found among coral from St. Vincent, W. I., obtained at a depth of 88 fathoms at Station 232. Those previously described were from Sand Key, Florida, in 105 fathoms, and from off the Sambos, in 116 fathoms.

Other species of Brachiopods appear in some numbers in the Agassiz-Bartlett collection, among which 3 Mcgerlia incerta Datvidsun was recognized; but these will form the subject of a supplementary report.

\section*{ACEPHALA.}

\section*{VERTICORDIA (Wood) Sowerby.}

\section*{Verticordia ornata D'Orbigny.}

Trigonulina ornata D'Orbigny, Sagra, Moll. Cub., II. p. 292, Pl. XXVII. figs. 3033 , (1846) 1853.
Hippagus novencostatus Adams and Reeve, Voy. Samarang, Zö̈l., p. 76, Pl. XXIV. fig. \(1,1850\).
Trigonituna ornata Chenu, Man., II. pp. 169, 322, fig. 843, 1862.
Verticordia ornata Fischer, Journ. de Conchyl., X. p. 380, 1862.
Barbados, 100 fms. ; Station I9, 310 fins. [Catalina Island, California, 16 fms., Dall ; shell sand, Jamaica, W. I., D'Orbigny ; China Seas, Adams.]

This species has no epidermis, as erroneously stated in the Zoollogy of the Samarang, and copied by various authors. That specimen may have been covered with some extrancous substance, which in drying gave the impression of an epidermis. A careful examination of fresh specimens from California, and of fresh specimens of other species, reveals no sign of any epidermis, nor of any ossicle, as repurted by Adams. The latter, seen only in one instance, may have been a concretion accidental to the individual, as often happens in bivalves. Nevertheless, I am of the opinion that the reference of the genus to the Anatinida will probably be sustained, as it seems much more probable than any relationship to the porcellanous Isocardia or Cardita. The number of ribs varies from eight to eleven, but is usually ten.

\section*{Verticordia acuticostata Philıppi.}

Hippagus acuticostatus Philippi, Moll. Sic., II. p. 42, Tab. NIV. fig. 19, 1844. (Fossil in Miocene of Calabria.)
Iphigenia acuticostata Costa, Pal. del Regno Nap., p. 160, Tav. XILI. fig. 9, 1850. (Fossil.)
Verticordia acuticostata Segnenza, Journ. de Conchyl., VIII. p. 291, Pl. X. fig. 1 a-e, 1860. (Fossil.)
?Verticordia Deshaycsiana Fischer, Journ., loc. cit., X. p. 35, Pl. V. figs. 10, 11, 1 S62.
? Verlicordia japonica A. Adams, Ann. Mag. Nat. Hist., Mar. 1862, p. 224. (Insufficiently described.)

Station 3I, 84 fms.; Station 5, 229 fms.; Barbados, 100 fms. [China, Fischer ; Gotto Id., Japan, A. Adlams, 71 fms.]

The form which I refer to Philippi's species (and all of whose synonyms I suspect may perhaps some time be referred with it to the original trpe \(I^{*}\). verticordia S . Wool) is a little more like Fischer's figure of \(T\). Deshayesiana than Seguenza's figure of V. acuticostala. However, specimens enough are at land to show that the shell has a larger amount of variation than the few specimens in
cabinets have led authors to suspect. \(V\). cardiiformis ( \(=V\). verticordia) has sixteen ribs ; \(V\). acuticostata, thirteen to fifteen ; V. Deshayesiana, seventeen; my specimens have from fourteen to seventeen ribs, which may be stronger or weaker, finely or more sharply granulated, more or less markedly denticulate on the margin.

The descriptions of Mr. Adams are quite insufficient to identify any species by. No measurements are given, the number of ribs is not even stated, and the only differences of any value between his diagnoses of the two forms he names are, that one is "convexa " with "costis multis subdistantibus," while the other is "subcompressa" with "costis numerosis confertis." Such descriptions are rubbish, and a detriment to the progress of science. Yet the fact that they are in Latin gives them for some "conservative" writers a great charm, though they are perfectly useless for any practical pnrpose.

\section*{Verticordia Fischeriana n. s.}

Shell of the same general form as \(V\). verticordia Wood, or \(V\). Deshayesiana Fischer, from which it differs in the number of ribs, which range from 27 to 35 , being subequal with equal interspaces, and which merely crenulate the margin instead of extending beyond it in sharp denticulate points; the lunule is less impressed than in either of the preceding species ; from \(V\). granulata it differs by the larger number of ribs and by its striated and granulose lunule ; also by its more quadrate or subeircular rather than triangular form ; the granulation, however, is regular and even, as in that species, which is only known from a single valve found in the Sicilian tertiaries. Lon., 10.0 ; alt., 10.5 ; diam., 10.5 mm . Most of the specimens smaller. Barbados, 100 fms ; Sigsbee, off Cuba, 119 fms.; Station 36, 84 fms.

The granulated, non-pearly surface, the nacreous under-layer, the peculiar disposition and character of the teeth and ligament (first correctly described by Seguenza), the transverse costæ, the simple pallial line and peculiar muscular scars (of which there are four in each valve), are generic characters. Hippagus of Lea, long confounded with this genus, may prove to be a Crenella like C. decussata. I am pleased to be able to dedicate this species to the author who first brought order out of confusion in the complex synonymy of this genus ; who is, moreover, one of the first living malacologists.

\section*{Verticordia elegantissima n. s.}

Euciroa elegantissima Dall, Bull. M. C. Zoöl., V. pp. 61, 62, July, 1878 (named but not described.)

Shell large, solid, frosty white externally, internally very pearly, inequilateral, slightly inequivalve, Cytherea-shaped, furnished with many scabrous, granulated, slightly elevated radiating costa, of which one, forming the anterior boundary of the posterior fourth of the shell, is more prominent, and is
indicated by a groove on the interior surface; the sculpture in young shells consists of rounded granules between and irregularly over the costæ and small conical rough-surfaced spines arranged on the summits of the costæ, but these are usually rubbed down in adult specimens, after which the costæ (about fifty in number) and the secondary granulations become more evident ; lunule small, slightly impressed, with a comparatively smooth surface, the portion pertaining to the right valve (as usual in the genus) being about half the size of that forming part of the left valve, which latter (also as usual) is produced beyond the general plane of the margin, simulating a tooth ; beaks not very prominent, not coiled as in the typical species; inner margin irregularly grooved, not denticulate; in the left valve the wedge-shaped groove for the (wholly internal) ligament is separated by a projecting septum from the fossette for the right cardinal tooth ; except this septum be so considered, there are no teeth in the left valve ; right valve with a strong, stout, slightly anteriorly projecting tooth fitting into the fossette in the left valve and immediately under the beak; the base of this tooth is supported by two buttresses, one with a concave surface extending forward under the lunule, the other opposite, shorter, and terminating under the cardinal margiu, between which and its upper surfice the ligament is inserted ; a little way within the posterior cardinal margin, and in general parallel with it, is a long slender tooth or lamina, which becomes obsolete in aged shells; beside the ordinary marks of the adrductor muscles as usually described, there are two smaller but very evident muscular scars, the pedal below the lunular buttress and the cardinal in the cavity of the beak. Lon. 13.25 ; alt. 10.1 ; max. diam. 8.0 mm ., in an adolescent specimen; one old valve measuring in lon. 30.0, alt. 23.0 , and diam. 13.0 mm . approximately.

Station 16, 292 fms. ; Lat. \(23^{\circ} 7^{\prime}\) and Lon. \(82^{\circ} 43^{\prime} 30^{\prime \prime}\) W., in 756 fathoms.
This elegant shell has quite a different aspect from the other Verticordice, and, misled by the the erroneous diagnosis in all the text-bonks, I referred it to a new group in my preliminary report, reserving a description until this conjecture could be verified by comparison and study. Now it seems to me, that the characters are insufficient to justify its separation. The above description of the teeth is appropriate to all the recent species I have seen, or which have been well figured, except that in most of the species the cardinal tooth points upward or backward, and the posterior lamina is obsolete in some individuals of each species. It is by far the largest of the group, and only detached valves have been noted as yet.

\section*{Lyonsia bulla n. s.}

Lyonsia bulla Dall, Bull., loc. cit., 1878. (Not described.)
Shell delicate, iridescent, very thin, rounded, inflated; sub-equivalve, but slightly produced and gaping behind ; surface covered with a delicate evanescent epidermis, which is raised into very tine short beards in radiating lines from the umbones; these on the posterior third of the shell form rather dis-
tant, slightly elevated threadlike lines; shell smooth, except that a faint impression of radiating lines is left by the epidermis; beaks inflated; basal margin arcuated ; anterior margin rounded; posterior margin slightly produced, pinched, and truncated ; ossicle extremely minute (or none?). Lon. 16.0 ; alt. 16.0 ; max. diam. 12.0 mm .

Lat. \(21^{\circ} 33^{\prime}\) N., Lon. \(84^{\circ} 23^{\prime}\) W., 1920 fms.
This has a curious superficial resemblance to the next species, except that it wants the granules.

\section*{POROMYA Forbes.}

\author{
Poromya Forbes, Rep. Egean Sea, p. 143, 1844. (P. anatinoides.)
}

This genus is clearly distinct from Thetis Sowerby (T. minor), which has an internal laminar buttress in the hollow of the beaks, although the two have been very generally united by authors, following the lead of H. and A. Adams. I do not feel sure that Eucharis Recluz is an exact synonym, though the name is several times preoccupied and must be given up. Embla Lovèn appears to be an exact synonym of Poromya. The pallial line is slightly sinuated in the latter, and there is a cardinal tooth only in the right valve, the ligament is almost entirely internal, and in the specimens I have seen there has been no ossicle. The group is closely related to Necrra and Verticordia by the shell characters.

\section*{Poromya granulata Nyst and West.}

Thetis granulata Nyst and Westendorp, H. and A. Adams, Gen. Rec. Moll., II. 367, Pl. XCVII. figs. \(2 a, 2 b\).

Sand Key, 15 fms. ; Station 36, 84 fms. ; Station 32,95 fms. (valve 19.5 high by 21.0 mm . in length) ; Station 45,101 fms. (valve 16.0 high by 22.0 mm . long) ; Station 9, 111 fms ; Station 5, 229 fins. Barbados, 100 fms.; off Sombrero, in 45 fms ; these two specimens belonging to the var. triangularis.

Having no specimens of the genuine P. gramulata to compare, the determination is not absolute, especially as the figures of that species given by Adams and Jeffreys differ considerably among themselves, but the variation in form is considerable, as the above measurements show, and I feel little doubt that this is the true \(P\). granulata. A form belonging to this genus has been insufficiently described by Jeffreys (under the name of rotundata) from one broken valve obtained in Lat. \(56^{\circ} 11^{\prime} \mathrm{N}\). and Lon. \(37^{\circ} 41^{\prime} \mathrm{W}\)., in 1450 fathoms, on the Valorous cruise. Professor Verrill has amplified this description a little; but in consideration of the great variation in the form of the shell, number and distribution of the granules and their coarseness, visible in the specimens before me, I see no reason for considering the charaters mentioned by Jeffreys ats of importance enourg to deserve a separate name. I note a very triangular variety from two localities, probably only an extreme variation of the type,
which is covered with densely crowded very coarse subtubular granulations. These peculiar granulations, if they can be so termed, are apparently a feature common to a number of genera which are found in deep water. Jeffreys figures it in what he calls an Axinus (but which was referred to Verticordia by Seguenza); it exists in all the Verticordias, in species of Necera, Poromya, and perhaps Corbula.

\section*{Poromya (?) granatina n. s.}

This shell differs from Corbula quadrata Hinds* (P. Z. S., 1843, p. 57 ; Reeve, Conch. Icon., Pl. V. fig. 40, 1844) in form and proportions, but in many respects resembles that shell as figured. It is, however, of corbuloid form, having the ventral margin straight, the beaks. more nearly central ; it is not inflated and rounded like Hinds' species, but the posterior margin forms a sharp angle with the base at the intersection of the carina, which is very pronounced throughout its whole length, bounded by a shallow groove posteriorly, beyond which the whole shell is flattened as in Hemicarlium; in the middle of this flattened area is a faint riblet bounding a small impressed lunule just behind the beak, which last is not prominent ; cardinal tooth large and strong, directed laterally ; shell anteriorly attenuated, perfectly white, proportionally more elongated than C. quadrata and covered with the fine sub-tubular granulations referred to previously. Lon. 10.0 ; alt. 7.0 ; diam. of right valve, 3.26 mm .

Yucatan Strait, 640 fms. (one valve).
' If Recluz is correct in stating that C. quadrata has a cardinal tooth in each valve it will of course be distinct from Poromya ; but a new name will have to be used, \(\dagger\) since Euchuris is preoccupied in several departments. This, however, may well be left until the fact is determined. Reeve says nothing about the granulations on the surface of C. quadrata, but C. B. Adams states that all except the posterior thirl is grannlated ; in the present form the posterior part is granulated like the rest. As a single valve in grood preservation is all that was obtained in this collection, the generic question cannot be yet determined, though the present form is probably quite nearly related to P.quadrata.

\section*{(?) Pandora oblonga Sowerby.}

Pandora oblonga Sby., Hanley, Recent Shells, p. 49, Pl. X. fig. 46.
Charlotte Harbor, Florida, 13 fmis. ; Yucatan Strait, 640 fms.
Left valves of a species of Pandora, exactly resembling Hanley's figure of P. oblonga, were obtained at the above localities. Until the other valve is known it will not be practicable to refer them to their proper section of the genus. According to Carpenter, the type specimens of \(P\). oblonga Sby. are lost, and no more are known. The present specimens may belong to another

\footnotetext{
* The type of Eucharis Recluz.
\(\dagger\) There are several paloontological synonyms.
}
species; but they resemble the figure so closely, and do not so well agree with any of the Northern forms, that for the time it seems more desirable to allow them to remain provisionally under the name of oblonga. In Poulsen's catalogue of West Indian shells an undetermined species of Pandora is mentioned, which is doubtless the same as those obtained by the Blake. It is possible, however, that both may be referable to a form of the Mediterranean P. rostrata.

\section*{(?) Thracia phaseolina Kiener.}
T. phaseolina Philippi, Moll. Sic., I., t. 1, fig. 7, 1836.
T. papyracea Jeffreys, Brit. Conch., V., Pl. XLVIII. fig. 4.

A single right valve about half an inch long, which seems referable to this species, was obtained in Yucatan Strait, at 640 fms .

\section*{Neæra ornatissima D'Orbigny.}

Sphena ornatissima D'Orbigny, Sagra, Moll. Cuba, II. p. 286, t. XXVII. figs. 13-16 (1846).

Station 43, 339 fms.
Several specimens obtained as above appear to differ from the species figured by D'Orbigny only in size and in the greater proportional length and slenderness of the rostrum. As his specimens seem to have been young, it is probable that their proportions were not fully developed. The Blake specimens have about 25 to 28 radiating riblets, and an altitude of 4.0 mm ., and a total length of 8.0 mm ., of which the rostrum has 3.25 mm . To distinguish it, if necessary, it may take the varietal name of perrostrata. There are quite a number of fine radiating lines which are intercalated between the riblets and stray over part of the rostrum. These are not figured by D'Orbigny, but may have existed in his specimens nevertheless.

\section*{Neæra alternata D'Orbigny.}

Sphena alternata D'Orbigny, loc. cit., t. XXVII. figs. 17-20.
Station 36, 84 fms. Station 5, 152 fms.
Single valves, probably of this species, hut with the anterior striæ or riblets finer and closer set, were obtained as abore.

\section*{Neæra costellata (Desmayes) Piilippi.}

Corbula costellata Deshayes, Philippi, Moll. Sic., II. p. 13, Tab. XIII. fig. 9.
Station 5, 220 fms.
A left valve, measuring in lon. 14.0 , in alt. 10.0 , and 4.36 mm . in diameter, was collected at the above-mentioned locality. It has a strong resemblance to Philippi's figure above cited, but does not at all resemble the costellata figured
in Jeffreys' Brit. Conch. (V., Pl. XLIX. fig. 3). It differs from Philippi's figure in having the radiating ridges continued over the acute rostrum and over the anterior third; it is also larger and more inflated, while the margin in front of the umbones is more produced and rounded. As I cannot at present untangle the synonymy, I propose to refer it, with the varietal name of corpulenta, to Philippi's species, which he rightly or wrongly called costellata.

\section*{Neæra granulata n. s.}

Shell in form somewhat like G. O. Sars' figure of \(N\). glacialis Sars, but more elongated. Sculpture of an indefinite, hardly perceptible, rounded ridge extencling from the beak toward the lower angle of the rostrum, with a more definite one extending toward the anterior margin, which it slightly angulates, forming the boundary of a sort of lunule or impressed space in front of the beaks ; beside these there are fainter or stronger concentric striæ or slight ridges extending toward the margin ; lastly, the entire surface is more or less densely covered with minute opaque white granules, much as in Poromya; the granulations are obscurely radiately and concentrically arranged. Color dead white, beaks little prominent. Teeth small, subobsolete; ventral margin rounded, anterior about the same ; general appearance of the shell superficially much like Leda minuta Fabr. Interior very polished. Lon. 11.0 ; alt. 8.0 ; lat. 4.0 ; lon. of rostrum, which is not smooth, 3.3 mm .

Off Sombrero, 54 and 72 fms.; Barbados, 100 fms.
This is a very remarkable species, and not like any of those figured or described in the books.

\section*{Neæra rostrata Spengler.}
N. rostrata Spengler, G. O. Sars, loc. cit., p. 89, t. 6, fig. 7, a, b.

Barbados, 100 fms.; Station 36, 84 fms.; Sand Key, 80 fms.
Several large specimens were obtained which agree very fairly with Sars' figures.

\section*{Neæra Jeffreysi n. s.}

Shell silky white, differing from N. arctica M. Sars, as figured (Moll. Reg. Arct. Norv., tab. 6, fig. 5) by the younger Sars, in being smaller, proportionately more elongated, the rostrum shorter and more pointed than in \(N\). glacialis G. O. Sars, more turned up and more nearly midway between the ventral and the cardinal borders than N.arctica; shell inflated, with moderate beaks, on either side of which the dorsal margin lies very slightly incurved, instead of straight as in Sars' figures of glacialis ; shell smonth, except for the distinet and very regula lines of growth ; ventral margin a little proluced in the middle, but on the anterior side rounded and sloping without any indentation at the intersection of the rostrum ; there is no sculpture, - even the rnstrum has
no radiating lines. Interior smooth and polished ; the process for the ligament is small, rounded, triangular, and projects downward directly from the tip of the beak, instead of being obliquely continued along the hinge margin, as in the above and most other species ; a ridge runs along just below the anterior cardinal margin, as if the said margin had been pressed upward and outward from within ; the space between the ridge and the margin is a little excavated. Lon. 15.0 ; alt. 9.5 ; maj. diam. 8.0 ; rostrum, (about) 5.0 mm . From the beak to the anterior margin is seven fifteenths, and from the tip of the rostrum to the line of the beak is eight fifteenths of the whole length.

Barbados, 100 fms. (young) ; Station 44, 539 fms.; Yucatan Strait, 640 fms.
I am glad to be able to dedicate this species to my friend Dr. Jeffreys, who has added a number of new species to this genus in his account of the mollusks of the Valorous expedition.

\section*{Neæra claviculata n. s.}

Shell white, thin, translucent, polished, shining, covered with (about fourteen to the millimeter) numerous fine, regular, rounded, concentric undulations or narrow waves, fainter and more distant on the umbones ; sbape not unlike that of Portlandia arctica as figured by G. O. Sars (op. cit., tab. 4, fig. 7 a), but shorter, more inflated, with the beaks more prominent and more directed forward, the posterior cardinal margin excavated instead of produced, and the rostrum itself more pointed and without the strong rib which characterizes this part in the Nuculid. Interior marginated more or less distinctly all round ; spoon for the ligament small, posteriorly directed; from behind it, two thirds of the way toward the tip of the rostrum and broadening as it proceeds backward, extends a laminar buttress or "clavicle," lying within the marginal ridge and margin ; beaks almost exactly midway between the two extremities of the shell; radiating sculpture none. Lon. 12.0 ; alt. 8.5 ; diam. (approx.) 6.5 mm .

Station 44, 539 fims. (one right valve). A fragment of which the sculpture resembled that of this species was obtained by Sigsbee off Havana, in 450 fms.

This species is remarkable for its abbreviated form, total absence of radiating sculpture, and singular clavicle. I have seen nothing of the latter kind in any species I have examined except this one.

\section*{Neæra sp. indet.}

A fragnent from off Cape San Antonio in 1,002 fmis., somewhat resembling the last species in shape, but not in sculpture, indicates a rather large-sized form.

\section*{Neæra limatula n. s.}

Shell of moderate size, thin, white, elongated, with the rostrum hardly differentiated from the rest of the valve; sculpture consisting of sharp-edged conOct. 31, 1891.
centric ridges, hardly rising to lamellæ except posteriorly, covering the entire shell, averaging six to a millimeter but more crowded toward the basal margin and especially on the rostrum where they are also most elevated; a single faint ridge extending from the umbo to the lower corner of the rather squareended rostrum, which ridge is formed by a slight elevation of the lamellæ where they change from longitudinal to transserse following the lines of growth ; there is also a faint inward flexuosity in the lamellæ and basal margin in advance of this where the rostral indentation occurs in most species ; anterior cardinal margin gently rounder, anterior end rounded to the rather straight base which is hardly interrupted by the flexuosity above mentioned; posterior cardinal margin rather concare ; rostrum rather squarely truncated, nearly straight ; within polished; cardinal border thin ; ligamentary fossette extremely small, narrow, oblique, and not projecting within the margin.

Lon. 11.5 mm ., of which 5.0 is forward from the line of the umbo ; alt. 5.0 ; diam. (approx.) 5.0 mm .

Station 44, 539 fms., one right valve.
This, from the descriptions, is clearly not one of the species obtained by Jeffreys, and is not like any of those figured by Sars or in the monographs.

\section*{Neæra arcuata n.s.}

Shell very thin, white, polished, the basal margin evenly arcuated from the anterior end to the lower angle of the extremity of the rostrum ; anterior cardinal margin parallel with or hidden by the oblique anterior slope from the umbo ; posterior cardinal margin concavely arched ; rostrum short, somewhat recurved, roundly truncated at the tip, not differentiated by any riblet and with a very small triangular space of transverse wrinklings; sculpture of rather distant (four to the millimeter) concentric flattened threads slightly sharper and more closely set toward the ends and quite faint on the umbo and in the middle of the shell ; intercalary lines of growth so faint as not to be perceptible ; there are some radiating opaque white color lines on the general translucent ground, but no radiating sculpture ; interior brilliantly polished; margins very thin, not reflected ; ligamentary fossette oblique, small, narrow, projecting within the margin ; posterior extremity of the rostrum slightly inflated or twisted to the left. Lon. 12.5 (the umbo exactly in the middle of the shell) ; alt. 7.3 ; diam. (approx.) 5.5 mm .

Yucatan Strait, 640 fms., one left valve.
By its evenly arcuated base, want of differentiated rostrum, and peculiar sculpture, this species seems to be sufliciently distinguishied.

\section*{Neæra lamellifera n. s.}

Shell thin, inflated, not polished, white, short, and ornamented with about thirty-three thin sharp clevated and slightly reflectel concentric lamellæ; the
lamellæ are separated by pretty uniform spaces marked with extremely fine and rather irregular lines of growth ; there are no radiating ribs, but on the transversely sculptured rostral area the lamellæ fail and are replaced by densely crowded, rather irregular and extremely fine wrinkles; anterior cardinal margin arched ; posterior cardinal margin oblique, nearly straight ; anterior and basal margin rounded, with a strong sharp flexuosity differentiating the rostral part, which is also correspondingly compressed as compared with the inflated anterior part; rostrum short, rounded at the end, not recurved; umbo prominent ; interior smooth, with groores corresponding to the lamellæ; margins thin, sharp; ligamentary fossette long, extremely narrow, reduced to a mere line parallel with the margin from which a barely perceptible corner projects inward. Lon. 12.5, of which 6.75 is posterior to the line of the umbo ; alt. 8.0 ; approximate diam. 6.25 mm .

Station 36, 84 fms., one right valre.
This also agrees with none of the described species so far as I have been able to discover, and is a particularly well marked form if the limited material be a fair representative of the usual characters of the species.

\section*{Corbula cubaniana D'Orbigyr.}
C. cubaniana D'Orbigny, Sagra, Moll. Cub., II. p. 282, Tab. XXVI. figs. 51-54 (1846).

Sigsbee, off Havana, in 100 fms ; one valve probably of this species.

\author{
Corbula Barrattiana C. B. Adars. \\ C. Barrattiana C. B. Adams, Contr. to Conch., p. 237, 1852.
}

Off the west coast of Florida, in 30 fms.; Station 21, 287 fms.
Two specimens probably of the above unfigured species.

\section*{Corbula Swiftiana C. B. Adams.}
C. Swiftiana, C. B. Adams, Contr. to Conch., p. 236, 1852.

Sigsbee, off Havana, in 182 and 450 fins. ; off Sombrero, in 72 fms.
Specimens agreeing with Adams' diagnosis of his hitherto unfigured species were obtained in some numbers, especially at the first locality.

\author{
Corbula Dietziana C. B. Adams. \\ C. Dictziana C. B. Adams, Contr. to Conch., p. 235, 1852.
}

Off the west coast of Florida, 30 fms. ; off Sombrero, 72 fms. ; Barbados. 100 fms. ; Gordon Key, 68 fms.

\section*{Corbula disparilis D'Orbigny.}
C. disparilis D'Orbigny, Sr gra, Moll. Cub., II. p. 283, Tab. XXVII. figs. 1-4, 1853.

Off the west coast of Florida, in 30 and 50 fms. (fine large specimens); Station 12, 36 fms . ; off Sombrero, 72 fms. ; Station 36, 84 fms. ; Barbados, 100 fms. ; Sigsbee, off Havana, in 127 and 450 fms.; Station 2, 805 fms.

A well-marked species, with a wide range in depth, as the above record indicates.

\section*{Corbula cymella n.s.}

Shell of somewhat the general character of C. fragilis and C. scaphoides (from the Pacific coast of Mexico and the Philippines respectively), but differing in proportions from either. Color whitish with a brownish tinge at the margins, internally with a glassy polish, externally dull ; shell inequilateral, one third being auterior to the umbones; inequivalve, but not markedly so; anterior margin evenly rounded; ventral margin waved, slightly concave nearly opposite the beaks, then swelling, then again a little concave just before the posterior angulation ; posterior hæmal margin straight, declining from the beaks to the first angulation, then obliquely straightly truncated toward the extremely acute posterior angle formed by the principal carina ; beaks moderately prominent, flattened on top, not involute; from them a strong rounded carina extends to the tips of the shell, growing sharper posteriorly; another fine but very sharp carina extends from above the ligament close to and nearly parallel with the hinge margin, which its posterior termination slightly angulates; these form an extremely narrow concave lunule, while the space between these carinx and the more prominent second pair of carine is distinctly excavated, and is crossed by the wave-like sculpture only near the posterior portion, the rest being nearly smooth, except for the extremely fine radiating lines, which are better defined here than elsewhere on the shell ; these last cover the entire shell, and have not the appearance of grooves, they are visible only with a glass, and are best defined on the posterior face, as above mentioned, and in the furrows; other sculpture of about ten regular concentric waves, with wider and very uniform interspaces, which, however, in adults (as in all Corbule) begin to be crowded at the extreme margin ; there is no anterior lunule or carina, the tooth is very slender and small, and the whole shell is very thin. Lon. 13.5 ; alt. at beaks, 7.5 ; max. diameter, 5.0 mm .

Gordon Key, in 68 fms.
This species is remarkable for its acuminated posterior end, and as very thin, nearly equivalve, ventrally slightly concave, and for its slender and elongated form.

\section*{Saxicava azaria n. s.}

Shell having much the aspect of Potamomya; thick, of earthy texture, extremely inequivalve, marked with coarse irregular concentric ridges and growth lines, covered with a strong brown wrinkled epidermis, irregularly inequilateral ; left valve the smaller, with the posterior side shortest, right valve with the posterior side longest and strongly twisted to the left; umbones very prominent, Corbula formed, anteriorly directed and greatly involute ; upper surface in front of them obscurely flattened; from behind them two indistinct, irregular coarse ridges extend to the posterior end, which is obscurely rostrated and twisted to the left ; ligament coarse, stout, external ; cardinal margin perfectly edentulous, irregularly twisted; other internal margins thin, smooth; interior livid white; muscular impressions irregularly broken and blotchy, as in Saxicava and certain species of so-called Panopora; posterior end somewhat gaping. Lon. 25.0 ; alt. of larger valve, 22.0 ; diam. 16.5 mm .

This extraordinary shell, which has all the appearance externally of a gigantic irregularly twisted Corbula, was obtained by the U. S. Coast Survey Steamer Bache, twenty miles off Charlotte Harbor, Florida, in thirteen fathoms, April 19, 1872. Many of its peculiarities are cloubtless merely individual; but, allowing all that may be claimed on this score, it does not appear to even approximately resemble any other species of Saxicara known to science, althongh it pretty certainly belongs to that genus. It was alive when taken, but the soft parts were not preserved.

\section*{Modiola polita Verrill and Smith.}
> M. polita V. and S., Am. Journ. Sci., XX. p. 400, Oct. 25, 1880.
> ? Mytilus lutcus Jeffreys' Rep. on French Expl. in the Bay of Biscay, pp. 5, 6 ; in Rep. Brit. Assoc. Adv. Sci., 1880.

Station 43, 339 fims., etc.
A species of Morliola, or perhaps of Modiolaria ; agreeing with the very brief diagnosis of Messrs. Yerrill and Smith, as far as that goes, and with the habit of Dr. Jeffreys' undescribed Mytilus in forming a large nest, or mat, of hyssus-threads, like most Morliolarie ; was obtained at various depths and localities, reaching to very deep water, the largest specimens from the deepest water being over two inches in length. The depths are not given in Dr. Jeffreys' paper. Prof. Verrill's specimens were from 238 fathoms.

\section*{Crenella decussata Montague.}
C. recussata Sars, m. cit., p. 31, Tab. 3, fig. 4, 1878.

N'uculocurlia divaricata D'Orbigny, Sagra, Moll. Cub., II. p. 311, Tah. XXVII. figs. 56-59 (1846).
Barbados, 100 fms. [Alaska, California, New England, British Seas, Norway, etc.]

This little shell has a wide distribution; the farther north it is found, the laryer it grows. Some Arctic specimens measure 12.5 mm . in height; these, about one tenth as much, or \(\frac{1}{1000}\) of the size of the former. There is no doubt as to its identity with D'Orbigny's Nuculocardia.

\section*{Modiolaria sp. indet.}

Yucatan Strait, 640 fms ., one dead valve.

\section*{Mytilus exustus Linne.}

Mytitus exustus Linne, D'Orbigny, +M. Lavalleanus D'Orbigny + M. Dominguensis D'Orbigny, loc. cit., Tab. XXVIII.
Sigsbee, off Havana, 158 fms. ; Barbados, 100 fms., etc.; thence to shallow water.

\section*{Avicula sp. indet.}

Station 26, 116 fms., dead, perhaps washed from shoaler water.

\section*{Amussium lucidum Jeffrers.}

Pleuronectia lucida Jeffreys, Depths of the Sea, p. 464, fig. 78.
Station 2, 805 fms.; Station 21, 287 fms.; Yucatan Strait, 640 fms.; Station 5, 229 fms.; Station 35, 804 fms.; Station 3, 243 fms.; Station 19, 310 fms.; Station 47,331 fms.; Sigsbee, off Havana, in 119, 127, 243, 450 , and 480 fms.; off Morro Light, 292 fms.; Station 7, off Cape San Antonio, 424 fms.; Station 44, 539 fms.; Gulf of Mexico, west of Florida, 30 fms.; Charlotte Harbor, Florida, 13 fms.

This is one of the most common and pretty of the abyssal species in the Antillean and Gulf region. Variety marmoratum, from all depths, is beautifully mottled with scarlet, opaque white, and orange; many specimens are dotted all over with opaque white dots. I have reason for suspecting that this, or a nearly allied species, attains a much greater size, perhaps two or three inches in length. It will be observed that the ordinary form ranges from a few fathoms on the coast of Florida to the greatest depths of the region; and there is no difference whatever between the specimens from shallow and those from deep water. The same may be said of Gouldia cubaniana.

\section*{Pecten sp. indet.}

A fresh valve of a small, aculeatcly sculptured, scarlet Pecten was obtained from 804 fms.

\section*{Spondylus sp. indet.}

Young specimens and one adult valve of a pink striated Spondylus were obtained from 640 fms. in the Yucatan Strait.

\section*{Lima caribbea (?) D'Orbigny.}

In Yucatan Strait, at a depth of 640 fathoms, a valve was obtained, which may perhaps belong to this species.

Lima sp. indet.
A very young valve, nearly smooth, and equilateral, was obtained from 805 fathoms at Station 2.

\section*{Limatula ovata Jeffreys.}

Lima ovata (Wood) Jeffreys, Ann. Jag. Nat. Hist., Nov. 1876, p. 426.
A single valve with rather prickly imbricated sculpture on the ribs, a plain hinge-line and no furrow, was obtained by Sigsbee in 450 fms. off Havana. This unfortunately crumbled under handling, but may very probably be referred to the species quoted by Jeffreys under the above name.

\section*{Pectunculus variegatus (?) D'Orbigny.}
? P. variegatus D'Orbigny, Sagra, Moll. Cub., II. p. 314.
Station 56, 888 fms.
A single pair from the abore locality may belong to the species above mentioned, which is the P. castaneus of Lamarck.

It is huped that in the final report this and other doubtful species will be definitely recognized, - a labor often taking a disproportionate amount of time compared with the result obtained and which could not be at present spared.

\section*{Limopsis aurita Brocchi.}

Arca aurita Brocchi, Conchyl. foss. subapp. II. p. 485, Tab. XI. fig. 9. Limopsis aurita Jeffreys, P. Z. S., 1879, p. 585.

Gulf of Mexico, west of Florida, 30 fms.; Station 36, 84 fms.; Station 20, 220 fms.; Gulf Stream, 447 fms., Pourtalès.

\section*{Limopsis tenella Jeffreys.}
L. tenella Jeffreys, Ann. Mag. Nat. Hist., Nov. 1876, p. 433.

Station 44, 539 fms.; Station 41, 860 fms.; Station 56, 888 fms.; Station 33, 1568 fms.

\section*{Limopsis minuta Philippi.}

\author{
Pectunculus minutus Philippi, En. Moll. Sic., I. p. 63, Tab. V. fig. 3; II. p. 45. Linnopsis borealis Woodward, Sars, etc., testc Jeffreys.
}

Gulf of Mexico, west of Florida, in 30 fms.; Station 36, 84 fms.; Barbadlos, 100 fms.; Bache, Apr. 22, 1872, Lat. \(21^{\circ} 14^{\prime}\) N., 100 fms.; Sigssbee, off Cuba, 119 fms.; Station 20, 220 fms.; off Morro Light, 292 fms.; Station 19, 310 fms.; Sigsbee, off Havaua, 450 fms. ; Yucatan Strait, 640 fms.; Station 2, 805 fms .

The teeth in this species vary from six to eleven ; the proportional width of the hinge-line, obliquity of the shell, etc., are most variable.

\section*{Limopsis cristata Jefrreys.}

\author{
L. cristata Jeffreys, Ann. Mag. Nat. Hist., Nov. 1876, p. 434.
}

Yucatan Strait, 640 fms .
Several detached valves, probably of this species, which seems to be a wellfounded one.

\section*{Limopsis antillensis n.s.}

Shell small, moderately thick, rather inflated, inequilateral, shovel-shaped, short, elevated; hinge-line straight, with a narrow quadrangular area, in the niddle of which is a narrow space scooped out triangularly in each valve for a ligament ; anterior margin nearly perpendicular to the hinge-line, gently rounding into the evenly rounded base; posterior margin obliquely truncate, the truncation extending nearly to the base and being bounded by a straight or slightly concave line; at the point where the truncation rounds into the base the interior shows three or four particularly strong ridges rising to small tubereles just within the margin ; hinge teeth six in each valve ; from just in front of the cartilage pit three teeth extend forward enlarging progressively, the anterior tooth considerably the largest, all perpendicularly placed with regard to the cardinal margin, long and rather slender in the young, stouter and more obtuse in the older shells; behind the cartilage-furrow or pit the hinge is edentulous for a little space, then bears three teeth, one below the other, nearly parallel to the hinge margin, the largest uppermost, the smallest being the last in the series ; inner margin lightly crenulate, crenulations most evident toward the basal angles, where also traces of internal radiating riblets are visible, of which the tubercles form the terminations; sculpture of close-set, rounded, concentric ridges with a greater or lesser number of fine radiating distant raised threads intersecting them, most evident in the furrows but not greatly breaking the continuity of the concentric senlpture; color white; several specimens show a pink color-ray in the posterior portion, one is wholly a bright lemon-yellow,
but most are waxen white ; shell inflated, beaks not very prominent ; epidermis short except on the radiating lines, light brown, altogether rather sparse. Lon. 3.5 ; lat. 4.25 ; diam. 2.5 mm . Length of hinge line, 2.25 mm .

Sirsbee, off Havana, 80 fms .
The peculiarities of the hinge appear to be only specific characteristics, and from Limatula through rarious forms of Limopsis to Glomus, Silicula, and Arca the hinge offers a series of easy transitions. The peculiar hinge, the "keystone" shape, the character of the tuberculation, and the small size, are the chief characteristics of this little shell, which is perhaps alone in the group in showing traces of bright coloration.

\section*{Macrodon asperula n. s.}

Shell small, white, slightly inequivalve, excessively inequilateral, byssiferous ; with a thin brownish epidermis radiatingly streaked with thicker lines which fray out into hairs, the whole being very fugacious; hinge-line straight, the area long and narrow, the beaks situated just within the anterior third of the line ; ligamentary area extremely narrow, beginning under the beak, extending close under the posterior areal carina obliquely to the posterior third of the hinge-line, where it first reaches the margin, flat, black, with several white longitudinal strix ; beaks well marked, not very prominent, with a faint depression extending from them to the basal margin, marking the position of the byssal gape ; ontline like that of Philippi's Arca uspera (Philippi, op. cit., II. Tab. XV. fig. 1 c ), but mnch more inequilateral, the anterior end being smaller, the posterior larger and more extended, and the line of the base much more oblique, as would naturally follow from the above circumstances; sculpture of about a dozen (excluding those on the beaks) concentric sharp-edged subimbricate ridges, being old margins of the shell as it were forming varices, fainter and more close set on the beaks; with strong rounded ralliating riblets (near the base alout four to a millimeter) continuous only from one varix to another ; posterior part of the cardinal border somewhat auriculated or compressed, anterior extreme rounded or moderately inflated, the anterior margin forming a little less than a right angle with the hinge-line, the posterior a little more than a right angle, the former slightly rounded to the base, where it is a little concavely excavatel for the byssal gape, the latter first a little concare from the auriculation, then very broadly rounded out and passing without any angle into the base ; right valve a little the smaller ; interior white, hoth muscular scars double (by the splitting of the ends of the adductors) ; margin smooth, sharp; byssus slender, tufted at the distal end, light brown ; hinge with six vertical teeth extending from the position of the leaks anteriorly, the first four small, vertical, gradually enlarging forwarl, the fifth layrest, aml with the sixth somewhat oblique; hinge between the beak and the ligramentary furrow edentulons, beyond that there are three horizontal teeth, the middle one largest extending posteriorly nearly parallel to the hinge-line and to each other. Lon. 8.5 ; alt. 5.0 ; max. diam. 3.25 ; lun. of hinge-line, 6.25 mm.

Station 33, 1568 fms., living ; Station 19, 310 fms; Cape San Antonio, 1002 fms.

This is one of the most interesting of the Arcide obtained by the experlition. The type of the genus (Lycett, 1845) is a fossil of the lower Oülite, bat there seems no reason for separating the recent shell from it generically or sectionally.

\section*{Arca pectunculoides Scacchi, var. orbiculata.} A. pectunculoides Scacchi, Notizie, etc., p. 25, Tab. I. fig. 12, 1833.

\section*{Sigsbee, off Havana, 480 fms ; station \(33,1568 \mathrm{fms}\).}

The specimen from deeper water was nearly round, except for the slightly auriculated cardinal margin ; the teeth were also proportionally more distant and less strong, the exterior nearly smooth. I suspect it to be different, but until further material be available, refer it to this species as a variety orliculata. I can'only account for Prof. Verrill's suggestion that this species and Arca glacialis are the same, and that Sars' figure of the variety septentrionalis represents a deformed specimen,* by the supposition that the Professor had no specimens of the genuine \(A\). glacialis for reference. It appears to me not only that they are very distinet, but that many authors would be tempted to put them in different sections of the genus. Apropos of this, the reference of these small species to Cucullcea by Dr. Jeffreys will hardly be accepted in view of the characters of the type of Lamarck's genus, which materially differ from those of the forms now under consideration. In this species sometimes the radiating sculpture almost fails, at other times is very strong ; the margin is sometimes lightly notched on the edge, but is smooth within the edge ; in the middle of the hinge margin is an edentulous space, and all the teeth are more or less oblique.

\section*{Arca glomerula n. s.}

Shell similar in general shape, size, and sculpture to \(A\). pectunculoides, but shorter and higher, with a perfectly different hinge, and bearing much the same relation to that species that Limopsis minuta does to L. aurita. The external concentric senlpture is the most enduring, and is always preserved, while the radiating sculpture, sometimes strong, is often evanescent ; the radiating sculpture always appears inside the shell within the margin (which is smooth and polished) in a series of small ridges, generally with the same level as the rest of the interior, but sometinues rising into little tubercles, and separated by rather deep, short, narrow depressions, which do not extend far inward nor over the smooth margin ; hinge straight, with from tifteen to seventeen stout nearly vertical teeth, usually in a contimnous series ; an occasional specimen shows a gap in the middle through the atrophy of one of the small central tecth ; those at the ends of the series are oblique, as usual, but the series itself forms a straight line. In A. pectunculoides, on the contrury, all the teeth are

\footnotetext{
* Proc. U. S. Nat. Mus., 1SS1, p. 401.
}
oblique and very much more slender ; there are usually only five or six at each extremity of the hinge-line, and the middle part is either quite edentulous or only lightly irregularly granulous. A. glomerula measures as follows: lon. 5.75 ; alt. 5.0 ; diam. 5.0 ; lon. of hinge-line, 4.25 mm . A specimen of \(A\). pectunculoides measures: lon. 7.75 ; alt. 7.5 ; diam. 5.5 ; lon. of hinge-line, 6.25 mm .

Barbados, 100 fmis.; Bache, April 22, 1872, lat. \(21^{\circ} 14^{\prime}, 100\) fms.; Station 20, 220 fms.; Station 19, 310 fms.; Sigsbee, off Havana, 450-480 fms.

Considering the great variability of abyssal shells it is possible this may eventually rank only as a variety of \(A\). pectunculoirles, but with the material at hand I cannot see the way clear to unite them at present.

\section*{Arca polycyma n. s.}

Shell small, rounded quadrangular, slightly inequilateral, nearly equivalve, moderately evenly inflated, whitish, with little or very fugacious epidermis; sculpture very remarkable, consisting, first, of very even, broad, rounded, regular, concentric waves (twelve or thirteen in number), separated by sharp, deep grooves. In dead or worn shells these waves are smooth, or nearly so, but in perfectly fresh (and especially young) shells on the surface of the broad slightly flattened waves may be seen what look like two rows of subeylindrical, slightly irregular grains of sand, arranged side by side, with their longer axes radiating from the beak; these granules, if so they may be termen, are really hollow, and are the thinnest possible bubbles of shelly matter which leare, when rubbed off by any slight friction, a couple of zigzag slightly elevated lines where their bases were fixed to the shell ; a very slight friction will obliterate this, and then the shell will be nearly smooth. The hinge area in each valve is elongated and narrow ; the narrow furrow for the ligament goes straight across to the margin from the beak (which is nearly opposite the mildle of the hingeline) instead of obliquely, as in the last-mentioned species. The anterior, posterior, and basal margins are all evenly rounded, and the surface evenly convex ; the beaks not at all prominent; the margin is perfectly smouth ; the interior is undulated to correspond with the exterior, though the shell is pretty solid and thick in proportion to its size ; muscular impressions distinct ; hinge with seven to mine smooth teeth in advance of the ligamentary furrow and ten or eleven behind it ; middle teeth vertical, small ; those at the angles of the shell somewhat oblique and larger ; there is no marked gap in the middle of the scries, and the teeth are strong broad and not striated. Lon. 9.75 ; alt. 6.0 ; max. diam. 5.0 ; lon. of hinge-line, 6.0 mm .

Barbados, 100 fins.
This shell has a sculpture unlike any other in the genus of which I can fiml any description. It may be of a similar nature to the "grannles " of Poromya, but the "bubbles" project much more from the surface and have a very different aspect from the tubular or honeycomb-like surface of Poromya.

\section*{Nucula tenuis Montague.}

Nucula tenuis Forbes and Hanley, Brit. Moll., II. 223, Pl. 47, f. 6.
Sigsbee, off Havana, 175 and 450 fms.; off Morro Light, 292 fms.; Station 20, 220 fims.; Station 3, 450 fms.

These specimens agree very well with British and some Arctic specimens of \(N\). tenuis, although the waters in which they live are many degrees warmer and perceptibly salter than those of the North.

\section*{Nucula crenulata A. Adars.}

Nucula crenulata A. Adams, P. Z. S., 1860, p. 52. Hanley, Mon. Nuculidee, Pl. IV. figs. 134, 135 (Guadaloupe).

Twenty miles west of the Florida coast in 30 fims.; Station 36, 84 fms.; Barbados, 100 fms.; Sigsbee, off Havana, in 158, 182, and 450 fms.; Station 20 , 220 fms.; Station 19, 310 fims.; Yucatan Strait, 640 fms. Variety obliterata : Station 44, 539 fms.; Yucatan Strait, 640 fms .; Station 2, 805 fms .

There seems to be little doubt that this is Adams' species, though uniformly more trigonal than Hanley's figure of the same from the unique type. Most of them have very stroug sculpture, which is irregular. The teeth are 9 anterior, 15 posterior, with a well-marked cartilage pit. In the variety obliterata the shell is higher and still more triangular ; teeth, 8 anterior, 12 posterior ; and the sculpture almost entirely obsolete, the radiating striæ least so.

\section*{Nucula cytherea n. s.}

Shell with nearly the outline of Tapes virgineus, as figured by Jeffrers (Brit. Conch., Pl. XXXIX. fig. 5), but with the beaks higher and more central and the anterior end more broadly rounded ; color pale straw-color or white, heautifully polished, with no radiating sculpture ; concentric senlpture of regular rounded waves, as in Liocyma, of which there are about forty, finer and closer on the beaks, with a tendency to become obsolete at the anterior basal portion of the shell ; shell eveuly convex ; beaks well marked, hut not prominent ; inner margin not crenulate ; anterior teeth 12-14; posterior teeth \(25-27\), all slender, long, comblike, and not \(>\)-shaped; ligamentary fossette or pit extremely minute, so that the series of teeth is practically continuous. Neither lunule nor escutcheon is visible, nor can they he said to exist in this species ; interior polished, white, not perceptibly pearly, but having a sort of opaline lustre when viewed in a strong light. Lon. 8.6 ; alt. 6.75 ; diam. 5.0 mm.

Off Cape San Antonio, 413-424 fms.; Yucatan Strait, 640 frus.
This species is beautiful and remarkable both in form and seulpture. I have not found any Nucula of this shape figured anywhere or described in molern publications on the recent or fossil species of the group. It would perhaps be referred to the section Tindaria.

\section*{Leda jamaicensis D'Orbigny.}

Leda jamaicensis D'Orbigny, Sagra, Moll. Cub., II. p. 263, Pl. XXIV. figs. 30-32 (1846).

Leda unca Gould, Proc. B. S. Nat. Hist., VIII. p. 282, 1862 ; Verrill, Proc. U. S. Nat. Mus., Jan. 18s1, p. 401.
? Lcda (Lembulus) lamellicostata Segueuza, Studi form. plioc. 1877; Nuculidi terz., 1. 1173, Tar. II. figs. \(10 a-c\).

Sand Key, 80 fms. ; off Sombrero, 54 and 72 fms. ; Yucatan Strait, 640 fms.; Jamaica, Santo Domingo (D'Orligny); North Carolina (Gould); off Southeru New England, 85-155 fms. (Verrill).
Specimens obtained as above appear to be referable to D'Orbigny's species. As between Northern and West Indian specimens of this shell the only differences are those of texture, as usual in shells having such a distribution. There is little doubt that of the minute shells described by Seguenza and Jeffreys a certain proportion are merely the young of larger forms, and the slight differences of contour and number of teeth do not necessarily indicate equal differences in the adult state. The amount of sectional, subgeneric, generic, and subfamily divisions instituted by some authors in this group seems to me largely in excess of the needs of science and of valid characters in the creatures themselves.

\section*{Leda messanensis Segcenza.}

Leda acuminata Jeffreys, An. Mag. Nat. Hist., p. 69, July, 1870.
Leda (Junonia) acuminata Seguenza, Nuc. terz., p. 1175, Tav. IlI. figs. 15 a-e. (Not L. acuminata Von Buch, nor of Eichwald.)

Leda messanensis Seguenza, MSS. (not Neilo messancnsis S.), loc. cit., supra. Jeffreys, P. Z. S., June 17, 1879, P. \(576,1880\).

Station 19, 310 fnıs. ; Station 20, 220 fms. ; off Cape San Antonio, 1002 fins. ; Barbados, 100 fms ; Sigsbee, off Havana, 450 fms.

Chiefly distinguished by the strength of its sculpture and its greater inflation from the young of the preceding, but is placed by Seguenza in a different subgenus or section.

\section*{Leda Jeffreysi Midalgo.}

Lede lata Jeffreys, An. Mag. Nat. Hist., Nov. 1876, p. 431 ; not of Hinds, Voy. Sulph., 1845.
Lada Jeffreysi Hidalgo, Moll. Hisp. etc. Jefireys, P. Z. S., 1879, p. 579, Pl. XLY'l. fig. 2.

Station 33, 1568 fma .
The shell which I refer to the above species is more quadrangular than Jeffreys' figure, the longer end descending more obliquely from the beak and therefore more pointed; a much larger proportion of the shell is behind the
beaks, the anterior end is more pointed, and the basal margin, instead of being rather evenly arcuated, is particularly produced in the middle just behind the vertical line of the beaks. It has six teeth before and eight behind the beaks, and is about five millimeters in length. It does not exactly agree with any of the figured species, recent or fossil, and is most like Philippi's figure of Nucula glabra, if the relations of the parts were exactly reversed, anterior for posterior, etc. It may take the varietal name of quadrangularis until more material comes to hand, and may eventually prove to belong where I provisioually place it, among the varieties of \(L\). Jeffreysi.

\section*{Leda dilatata Philippi.}

Nucula dilatate Phil., En. Moll. Sic., II. p. 47, Tab. XV. fig. 7, 1844. Ncilo dilatata Seguenza, Nuc. terz., p. 1184, 1877.
Off Morro Light in 292 fms.
This shell agrees exactly with Philippi's figure and description, but it is not a Neilo, the ligament being as usual in Leda and Yoldia.

\section*{Leda Carpenteri n. s.}

Shell resembling in outline and size Leda hamata Carpenter, as figured by Reeve in the Iconica (Pl. IX. fig. 56), but with the rostrum less recurved. It differs from that species in being thinner, anteriorly more pointed, in wanting the strong epidermis, concentric ridges, and sharp rostral carinæ. It is nearly smooth, except for lines of growth, with a thin greenish polished epidermis; a ridge bounding the escutcheon proceeds from the inconspicuous beaks to the dorsal angle of the rostrum ; the umbones hardly rise above the dorsal margin, which pouts before and behind them, but hardly gapes; an internal ridge passes from the tip of the rostrum well into the umbonal cavity in most specimens. Teeth, auterior 8-16, posterior 20-25. Lon. 10.5; alt. 5.0; diam. \(2.5 . \mathrm{mm}\).

Barbados, 100 fms.; Station 21, 287 fms.; Station 5, 229 fms.; Station 9, 111 fms.

I have not been able to compare a figure of \(L\). clavata Calcara, which is an Italian fossil, apparently of somewhat this shape. A long search has not revealed a figure or description of any recent species applicable to the form before me , whose smoothness is remarkable.

\section*{Leda (Neilonella) corpulenta n.s.}

Shell nearest to \(L\). calata Hinds, which is more deeply concentrically sulcated, with the rostral area smooth, or with a smooth homuling rilge, while in L. corpulenta the strix and intervening finer ridges are carried clear ower the shell to the dorsal margin. The present species is more inflated, with at more convex basal margin, with the beaks a little more anterior, both ends more
rounded, especially the posterior end; in colata the lunular areas are defined by deep grooves or ridges and dissimilar sculpture, in corpulenta they are so faintly defined as to be nearly invisible; corpulenta has about fifteen teeth on each side of the beak, which is not inclined; in colata there are about fifteen posterior and twenty anterior teeth, and the beak is posteriorly inclined; the ligament in the latter is wholly internal, in corpulenta it extends equally on each side of the beak external to the dorsal margin, is about 2.0 mm . long, black, and when weatherel away in detached valres exhibits a flattened area beneath each beak with a little pit in the centre, which last usually retains a particle of ligament, simulating an internal ligament. Shell with a light olive polished epidermis, porcellanous, extremely inflated, the young proportionately longer and less rounded. Lon. 9.5 ; alt. 6.0 ; diam. 5.0 mm .

Station 23, 190 fms.; Station 21, 287 fms. ; Station 47, 331 fms. ; Sigsbee, off Havana, 450 fms .

Some things seem to indicate that the young have the cartilage wholly internal, but this is not certain, as the apparent young may belong to a different species. Except the difference of the ligament, however, there seem to be no differential characters between them.

This species does not gape at all. The epidermis is polished. The ligament is central, not at one side of the beaks as in Solenella and the typical Neilo. The latter, as hitherto defined, will not admit it, nor will typical Leda. I regard it as one of the links which knit together the assemblage of the Nuculidre in a network of ramifying relationships. Should it be thought worthy of a name it may be called Neilonella, and it is certainly far more distinguishable than many groups which have been named and segregated by Bellardi and others.

\section*{Leda vitrea (?) D'Orbigny, var. cerata.}

\section*{L. vitrea D'Orbigny, Sagra, Moll. Cuba, II. p. 262, Pl. XXVI. figs. 27-29 (1846).}

Barbados, 100 fms.; Sigsbce, off Havana, 450 fms.
I an not sure that these shells should be referred to D'Orbigny's species. They are more obtuse at the posterior end ; the sculpture is strong only over the basal middle part, elsewhere it and the carinæ about the lunule and escutcheon are obsolete. It may take the varictal name of cerata (from its peculiar whitish lustre) for the present, or until more material can be examined, or a comparison made with typical specimens of D'Orliguy's species. The general features, except those above noted, are very similar to those of the shell be figures, and these specimens reach a length of 6.5 mm .

\section*{Leda solida n. s.}

Shell almost equilateral, with the beaks inclined a little backward, stout, solid, smooth, except for rather well-marked lines of growth ; anterior end broadly rounded ; posterior end more pointed, but not carinated, sulcated, nor
produced; base roundly arcuated; anterior dorsal slope slightly convexly rounded ; posterior slope a little excavated or concave ; lunule and escutcheon indistinct or none ; teeth, anterior 17, posterior 11, ligamentary fossette unusually large, triangular. Lon. 12.5 ; alt. 6.6 ; diam. 4.5 mm .

Station 21, 287 fms.
The general form of this species is not unlike that of L. chuva Gray, but the rostrum is not so curved or differentiated from the remainder of the shell, and it is not sculptured. I have sought in vain for any figure sufficiently similar in outline to form the basis of a critical comparison.

\section*{Leda intermedia Sars.}

Portlandia intermedia M. Sars; G. O. Sars, Moll. Reg. Arct. Norv., p. 38, Tab. 4, fig. \(9,1878\).
Station 2, 805 fms.
This is identified from Sars' figure, above cited. The North Pacific species, mentioned by Jeffreys (P. Z. S., 1879, p. 578), seems to me to differ from it but slightly, if at all.

\section*{Yoldia solenoides n. s.}

Shell thin, elongate-oval, gaping at both ends; smooth, or marked by a few shallow concentric grooves or flattened ridges about the middle toward the basal part, elsewhere obsolete or absent ; shell whitish, rather pearly ; epidermis iridescent, thin, dehiscent ; basal and dorsal margins nearly parallel ; beaks very inconspicuous; lunule and escutcheon extremely narrow, marked by a narrow elevated thread and a groove on each side of the slightly pouting margin ; anterior and posterior ends nearly equal, similar, bluntly rounded ; anterior teeth about 18, posterior 22 ; ligamentary fossette large ; lon. 12.5 ; alt. 6.0 ; diam. 3.5. Beaks situated 6.5 mm . from the anterior end.

Station 49, 118 fms .
This shell looks like a Solenella; but the ligament is distinct, and it is perfectly internal.

\section*{Yoldia liorhina n. s.}

Shell thin, moderately large for the genus, light greenish maxen, clouded with a smoky tinge in some specimens on the convexity of the valves; inside shining, not pearly; outside polished, brilliant, moderately inflated; beaks nearest the anterior end of the shell, little prominent ; sculpture consisting of rather numerous (about five to a millimeter) concentric grooves, with much wider interspaces, more crowded and fainter toward the beaks, extencling from the anterior dorsal margin parallel with the lines of growth to the (rather faint) rostral flexure at the posterior part of the shell, where they rather abruptly cease, and the remainder is extremely smooth and polishei ; lunule and escutcheon very narrow, bounded externally by gronves, insile of which is
a raised thread, the space between groove, thread, and margin being somewhat excavated; shell gaping at both ends; anterior end rounded, base broadly arcuated, posterior end very obtusely pointed; angle between the anterior and posterior dorsal margins rery obtuse ; beaks hardly rising above the margin ; anterior teeth thirteen, posterior seventeen, distinctly marked, with some four or five obscure ones on each side near the beak; ligament large, inserted under the beak, insteal of on a little shelf as usual. Lon. 13.1; alt. 7.5 ; diam. 4.75 mm . Beak behind the front, 5.0 mm .

Sigsbee, off Havana, 182 fms.; Station 23, 190 fms.; Station 33, 1568 fms.
This species belongs to the group of Yoldia lanceolata Sowe! by, Y. scminuda Dall, etc.; but I have not found any description or figure which would seem to apply to it. It is perhaps most like Yoldia nicobarica Spengler, as figured by Hanley (Mon. Nuc., Pl. I. fig. 7), but is less equilateral and less recurved behind, beside being sculptured.

\section*{GENUS GOULDIA C. B. Adams.}
<Gouldia C. B. Adams, Cat. Coll., p. 29, 1847. Dall, P. Z. S., Feb. 1879, p. 131.
\(<\) Thetis C. B. Adams, Proc. Bost. Soc. Nat. Hist., p. 9, 1845, non Sowerby.
<Lioconcha Mörch, Cat. Yoldi, pt. ii. p. 26, 1853.
Circe E. A. Smith, P. Z. S., 1881, p. 489, non Schumacher.
The genus Gouldia was instituted by Prof. Adams in 1847, as pointed out lately by the writer in the Proceedings of the Zoological Society. Nore lately Mr. E. A. Smith, of the British Museum, has shown that the genus, as constituted and as generally used, contains two very different types of shell, one belonging to that group of Venerider of which Circe Schumacher is the leading type, and the other to the Crassatcllidcc. While desirous of bearing testimony to the general accuracy of Mr. Sinith's comments on the subject, and to the obligation under which he has placed us in setting forth the facts clearly, I must heg leave to question two of his conclusions, first, that the genus is untenable, and, secondly, that Prof. Adams' specific names are to be supplanted by those of D'Orbigny.

The genus contained two species, both new ; the first, G. cerina, essentially similar to the Tenus minima Montagne, of Britain ; the second, G. parva, a minute Crassatellid belonging to the sub-genus or section Eriphylu Gabb. The specific names of Jrof. Adams date from 1845, those of D'Orbigny from 1846, accorling to his own claims, which were never any too modest in matters of priority, while the Mollusyues de Cuba in which they are figured (and which in itself bears no evidence of their having been elsewhere described, except the date 1846 after the specific name) was published in 1853 , instead of 1841, as Mr. Smith has it.

The genus Circe was described by Schumacher in 1817 with Vemus scripta L. as the type. From this the shells of the type of Gouldia cerina are very different. We do not know the animal of Circe, but on conchological grounds alone there

Nov. 26, 1881.
are abundant reasons for separation if the practice of Mr. Smith and other modern naturalists with regard to genera in general be takcu as a criterion. Under the Linnean or Lamarckian system they would of course be united ; but with that we have nothing to do. The G. minima was figured by the brothers H. and A. Adams as an example of the genus, and was taken as the type by Stoliczk:a, who notes its resemblance to an Astarte (Cret. Pelyc. India). Prof. Adams mentioned no type, but \(G\). cerina was his first species. Other naturalists have judged the genus by the specimens they happened to possess, or were puzzled if they had representatives of buth. However, Carpenter, in 1857, as noted by Smith, pointed out that the Crassatelloid types must be eliminated from Gouldia. In 1853 Mörch proposed, without a diagnosis, the genus Lioconcha for shells formerly included under Circe, but inflated and smooth, or concentrically ribbel, and practically identical with Gouldia, as restricted here. The type L. castrensis belonged to the smooth series ; as Stoliczka points out, Lioconcha may be conveniently separated into two sections, in which case Gouldia might be restricted to the concentrically sculptured forms, and Lioconcha preserved for the smooth ones. If this be thought too refined a distinction, Gouldia, having eight years' priority and a Latin diagnosis, will take precedence, and Lioconcha (which has been generally adopted) must be suppressed. The little Crassatclla, included with G. cerina by Professor Adlams, represents a group, which has been discussed by several writers, Meek among the number, and to which several names have been appliel. It is rather numerous in species, and they are very uniform in facies, proportions, and general character. They ditler from the typical Crassatella chiefly in form, in the elongration and more distant location of the lateral teeth, their usually unequal valves, and in their uniformly small size. These are not important characters, and the group can at best form but a subordinate section of Crassatella ; yet the preservation of Gabb's name of Eriphyla for the group would not be without a certain convenience.

A word in regard to the error of combining forms belonging to such different groups may serve to throw a little light on the subject. Prof. Adams' original types of \(G\). parva were detached valves which had lost their ligament, as also had his (two) specimens of G. cerinu. In this condition the cartilage pit preserves little trace of its office, and it is really not very easy to point out any marked difference in the two hinges which, by itself, would separate them more than specifically. The error, with the specimens before one, is really not so surprising as it might seem.

Gouldia dilceta, as surmised by Mr. Smith, belongs to the typical group; Gr. custralis I do not know, but there are many more species of various sizes incheded in collections usually under the name of Lioconcha.

\section*{Gouldia cerina C. B. Adams.}

\author{
Thetis cerina C. B. Adams, Proc. Boston Soc. Nat. Hist., Jan. 1845, p. 9. Gouldia cerina C. B. Adams, Cat. of Coll., p. 29, 1847. (Jamaica.)
}

Charlotte Harbor, Florida, 13 fms. ; Barbados, 100 fms. ; Station 5, 229 fms.
Shell with nebulous fluctuating color markings, developed into distinct lines on the lunule and escutcheon, purplish inside in some specimens. The ligament is as much external as in any of the Venerida, and cannot be said to be semi-internal any more than in Saxidomus, for instance. The hinge is composed of three diverging cardinal teeth, the middle one largest, that nearest the lunule slender, and sometimes almost obsolete. A tolerably well-defined lateral tooth on the lunular (or anterior) side of the shell exists in the left ralve, and is received between two laminæ in the opposite valve. On the opposite or posterior side is a faint elongated ridge or lamina. Both tooth and laminx are distinct from the cardinal margin in this species. There is no internal ligament. The pallial line is slightly but distinctly sinuaterl. The margin of the shell is not crenate, and bears traces of an exceedingly thin polished and fugacious epidermis. The outside of the valves is concentrically ridged, with fine transverse striæ radiating from the umbo and obsolete toward the margin. The beaks are not compressed; the lunule is smooth.

The mantle has a smooth edge. There are no tubes, but the edges of the mantle are caught together, forming two openings like those in Gouldia minima Montague, as figured by H. and A. Adams. Otherwise the two halves of the mantle are wholly disunited, except on the cardinal border.

Prof Adams' type specimen, most kindly lent by the custorian of the Amherst collection * for my examination, is of a pale yellowish brown, and much resembles in form a small Astarte of the borcalis type. It is very similar to G. minima, and if occurring in the same region would doultless be taken to be a variety of it. Florida specimens are often prettily variegated and brightly colored.

\section*{Gouldia cubaniana D'Orbigny.}

Venus cubaniana D'Orbigny, Sagra, Moll. Cub., II. p. 278 , Pl. XXVI. figs. \(44-46\) (1846). (Cuba, Martinique, and Florida, D'Orb., loc. cit.)

Off Sombrero, 54 fms . Station 36, 84 fms . ; Sigshee, off Havana, in 100 , \(119,158,175\), and 450 fins.; Barbados, 100 fms. ; Station 5, 229 fins.; Station 44, 539 fms.
This little shell has a similar hinge structure to Gouldia cerina C. B. Adams, except that the lateral tooth is much elongated and somewhat ohsolcte; the sinus in the pallial line is almost invisille; the ligament is quite the same as in Adams' species; the color is pale yellow or light brown, the edge is mi-

\footnotetext{
* Irof. John D. Tyler.
}
nutely crenate in perfectly adult specimens, though smooth in the young. It has, as will be observed, a very considerable range in depth.

\section*{Crassatella antillarum (?) Reeve.}

Reeve, Conch. Icon., I. Mon. Crassatella, Pl. III., 1845.
Gulf of Mexico, west of the Florida coast, in 30 fms .
Shell thin, compressed, light brown, with about six strong concentric undulations, a rosy streak extending from the beaks outside and coloring the interior, having much the shape of C. Robinaldina, and a length of 11.0 mm ., with a height of 6.75 and a width of 2.5 mm . It may take the varietal name of Floridana until more nearly adult specimens are accessible, but I strongly suspect it will eventually prove distinct from the above species, to which it is provisionally referred.

\section*{Crassatella (Eriphyla) parva C. B. Adams.}

Thetis parca C. B. Adams, Proc. Bost. Soc. Nat. Hist., II., Jan. 1845, p. 9.
Gouldia parva C. B. Adams, Cat. loe cit., p. 29, 1847.
Gouldia fastigiata Gould, Proc. Bost. Soc. Nat. Hist., VIII. p. 282, 1862. (North Carolina.)
Astartc Pfeifferi Phil., Zeitschr. für Mal., V. 133, 1848.
Crassatella martinicensis D'Orbigny, Sagra, Moll. Cuba, II. 258, Pll. XXVII. figs. 24-26, 1853 ; " 1846."
Crassatella guadaloupensis D'Orbigny, loc. cit., p. 289. Pl. XXV'II. figs. 24-26, 1853 ; " 1846. "

Martinique, Jamaica, St. Domingo, Cuba, St. Thomas (D’Orbigny); Cuba (Pfeiffer); Jamaica (Adams) ; Station 21, 287 fns. ; Station 44, 539 fms.; Station 33, 1,568 fims. (Blake Exp.).

This seems perfectly distinct from C. (E.) mactracea Linsley, which is identical with Astarte lamulata Conrad (Journ. Acad. Nat. Sci.. VII. p. 133, 1834), from the postpliocene of Virginia and North Carolina. That the two forms figured by D'Orbigny are mere individual variations, is well shown by the series I have examined. Gould's species seems rather to belong here than with C. mactracea. In any case, Conrad's name is long prior to any of the others. A form almost identical with C. parva is Prof Adams' C. pacifica from Panama, of which C. varians Carpenter seems to be only a Northern race.

\section*{Cardium serratum Linne.}

Cardium scrratum Reeve, Conch. Icon. Carlium, Pl. I. fig. 1, 1844.
West of Florida, in 30 fins., Bache ; Barbados, 100 fms.; Sigsbee, off Havana, 127 fims.

This is the Curdium citrinum of Wood; the specimens obtained were all rather young.

\section*{Cardium medium Linne.}

Several ralves of a very young Cardium, which may perhaps belong to this species, were obtained by Sigsbee off Havana in 80 fathoms.

\section*{Cardium sp. indet.}

Sigsbee, off Havana, in 182 fms., dredsed several young valves remarkably elegant in their nodulation and reticulation, having about twenty ribs, of which five, with their interspaces, cover nearly half of the shell in its middle part. I camot identify them with any species figured in the Iconica, but they are too young to be positive about.

\section*{Cardium (Fulvia) peramabilis n.s.}

Shell having a general resemblance to Fulvia modesta Adams and Reeve,* but smaller, less transverse and much more elegant. Shell generally white, but occasionally exquisitely stained with lemon-yellow, orange, and carmine, inflated, nearly equilateral, valves nearly as long as high, beautifully reticulated; outer surface of the valves divided into two areas with different sculpture, the posterior occupying a little more than one third of the surface and separated by a single radiating rib; anterior region sculptured by about fortyfive radiating ribs (three in the space of a millimeter) about equal to their interspaces, and reticulated by concentric ridges, strong only in the interspaces, which increase in regular ratio, so that the reticulations form nearly exact squares ; the concentric ridges are occasionally a little irregular or dichotomous, but it does not affect the general very remarkable regularity of the reticulation; in the region immediately in front of the beaks the radiating riblets fail or become obsolete and the concentric ones become crowded, wrinkled, and irregular. Over the posterior region the sculpture differs. The bounding rib, which is really composed of two amalgamated riblets, in perfect specimens should bear a delieate crest bent forward and buttressed behind with spurs extending from the interspaces; this, however, is invariably removed by friction, only small portions of it remaining in oceasional specimens; hehind this rib the radiating ribs are more slender than in the anterior area, with proportionally wider interspaces harred across with thin lamelle at regular intervals, which lamella are not continuons with the concentric riblets of the anterior area; from the interspaces project short ennical (sometimes gronved and decursed) spurs or spines alnve the general surface, which are generally mostly removed by friction even in the most perfect specimens; anterior ellge and hasal margin rounded ; posterior extreme of the hinge-line slightly angulating the curse of the posterior

\footnotetext{
* China Seas and Japan, appearing on the northwest coast of America as Cardum centifilosum \(\mathrm{C}_{[\mathrm{r}}\). and C. Iicharelsonii Whiteaves.
}
margin ; within polished ; edges of the shell delicately denticulate ; sculpture varying slightly in fineness in different specimens. Variety tinctum, with indistinct rays and concentric waves of darker or lighter carmine and orange, interior suffused with lemon-yellow, sculpture finer than in the common form. The shell does not gape. Lon. 12.5 ; alt. 12.0 ; diam. 9.5 mm .

Sigsbee, Station 50, 119 fms. ; U. S. S. Bache, April 22, \(1872,100 \mathrm{fms}\); Barbados, 100 fms. ; Station 9, 111 fms. ; Station 26, 110 fms. ; Station 36, 84 fms. ; Lat. \(23^{\circ} 18^{\prime}\), Lon. \(89^{\circ} 10^{\prime}, 84\) fms. ; off Sombrero, \(54-72\) fms.; west of Florida, 50 fms .

This very lovely shell is so abundant in the collection, that it seemed almost impossible that it should be unclescribed; but I have not been able to find any description or figure that agrees with it.

\section*{Syndosmya longicallis Scacchr.}

Tellina longicallis Scacchi, Not., p. 16, Tab. I. fig. 7.
Erycina longicallis Phil., En. Moll. Sic., II. p. 8, Tab. XIII. fig. 7, 1844. (Fossil in Apulia.)
Abra longicallis Sars, op. cit., p. 74, Tab. 6, fig. 3; Tab. 20, fig. 4, 1878.
Ligula profundissima Forbes, Rep. Egean Inv., p. 191, 1 S43.
Station 41, 860 fms., living.
I cannot distinguish any eharacters by which this beautifully brilliant little shell ean be distinguished from that figured and cleseribed by Philippi. I have not seen Scacchi's original paper. Forbes' description is too brief for identification, but it seems likely that his name refers to this species as claimed by Monterosato.

\section*{Syndosmya lioica u. s.}

Shell allied to S. tenuis Miiller and S. similis Philippi, thin, polished, short, much inflated, white, with a yellowish or translucent epidermis, which sometimes gives it an opaline effect ; sculpture solely of concentric lines of growth, which are accompanied by a different degree of translucency in the shell, so that many specimens show successive waves of more or less opacity and whiteness contrasted with others more translucent, but there is no uniformity in the number or extent of these wares; beaks inequilateral, nearest the posterior end, which is slightly twisted to the right ; posterior slope short, steep : posterior end hardly angulated ; auterior slope long, less stecp, the angle at the beaks being about \(100^{\circ}\); anterior end rounded; base produced anil rounded. especially before the beaks ; beaks and ligament not prominent ; cartilage narrow, elongated, teeth strong, distinct; pallial sinus reaching nearly to the anterior muscular scar, rounded in front ; margin smouth. Lon. S.1 ; alt. 6.i5 ; diameter, 4.75 mm .

Twenty miles west of Florida in 30 fims.; off Sombrero in 54 and iv fms.;
off Sand Key, 30 fms.; Station 36, 84 fms.; Station 9, 111 fms.; Station 5, 2.29 fms.; Station 2, 805 fms.

It is more produced anteriorly, more inequilateral, and more inflated than S. tenuis, and has no radiating striæ ; it is shorter, more oblique, more inflated, and has a much larger and deeper pallial sinus than Philippi's "Erycina" similis, which is a Calabrian fossil. It is very similar in form to Hanley's figure of Tellina Gouldii in the Thesaurus. It has, as will be noted, a remarkable range in depth.

\section*{Tellina Antoni Philippi.}

Tellina Antoni Philippi, Hanley, Thes. Conch., p. 224, Pl. LVIII. fig. 74, 1846.
Obtained ly the Bache, west of Florida, in 19 fms.

\section*{Tellina plectrum (?) Hanley.}

\author{
Tellina plectrum Hanley, P. Z. S., 1845 ; Thes. Conch., p. 265, Pl. LXI. fig. 177.
}

A single valve, resembling Hanley's figure in most features, hut with an ontline a little more like that of Tellina perplexa Hanley (Manila) was obtained in the Yucatan Strait at a depth of 640 fathoms. To determine positively to what species it belongs would require more material. It may have been washed from shallower water, or disgorged by a fish, and not properly belong in the deeps at all. It is, however, quite fresh, though a little broken.

\section*{Tellina Gouldii Haxley.}

Tellina Gouldii Hanley, Thes. Conch., p. 272, Pl. LVI. fig. 26, 1846.
Tellina cuncata D'Orbigny, Sagra, Moll. Cub., II. p. 256, Tab. XXVI. fig. 23, 1853.
Yucatan Strait, 640 fms .
Two valves only were obtained.

\section*{Tellina sybaritica n. s.}

Shell small. solid, shining with a silky lustre, deep rose-pink, darkest at the beaks, sontewhat disposed in lighter and darker concentric waves; elongated, donaciform, rather inflated, slightly posteriorly twisted to the right ; heaks nearest the posterior end, not prominent ; cardinal tooth in left valve strong, bifid; lateral teeth short, strong, rather close to the cardinal ; pallial sinus profound, reaching below and nearly as far forward as the anterior muscular scar ; sculpture of concentric deep erowided growses separated ly narrow uniform rounded ridges, the fineness and miformity of which give rise to the silky lustre; a strong not very sharp carina extemls backward from the beaks, forming a short square-pointed rostrum, behind which, in the left
valve, is a faint flexuosity ; right valve the smaller ; basal and anterior cardinal borders nearly parallel, posterior cardinal border rather steeply sloping to the end of the rostrum ; anterior end rounded, basal margin nearly straight. Lon. from anterior end to beak, 7.0 ; to tip of rostrum, 10.5 ; alt. 5.5 mm .; diam. 3.75 mm . approximately.
Yucatan Strait, 640 fins.
This lovely little species is one of the instances of remarkably fine color in a deep-water shell. It somewhat resembles a miniature Tellina Tayloriana Sowerby (Conch. Icon. Tellina, Pl. XXX. fig. 168, 1867), but the sculpture is greatly finer, the color purer, and the furm not so broad ; Tellina tenuilirata Sowerby, from New South Wales (loc. cit., Pl. XXXIX. fig. 219), is still more like it, but is shorter and broader proportionally.

\section*{Loripes compressa n. s.}

Shell thin, elongated, with squarish bluntly rounded ends, the base and hinge-line nearly parallel, much compressed, dull white, nearly smooth but not polished; hinge with a single small but distinct cardinal tooth in the right valve, entering a triangular depression in the opposite valve, otherwise edentulous ; beaks inconspicuons nearest the anterior end ; anterior hinge-margin straight, a little sloping ; posterior ditto short, excavated; ends equally bluntly rounded ; base evenly arcuated; interior polished, white, margin smonth ; exterior with some malleated irregularities, generally only sculptured by the more or less accentnated lines of growth, which are produced at the hinge-margin into small triangular denticulations and in some specimens rise to extremely thin distant delicate lamellie on the body of the valves; surfice without radiating strix, and covered with a pale yellowish epidermis. Lon. 11.0 ; alt. 8.3 ; diam. 2.75 mm .; another broken specimen exceeds 15 mm . in length.

Off Cape San Antonio, in 413 and 424 fms.
This shell is nearest Loripes anatinelloides Reeve, which is larger, much more orbicular, more waved before and behind, and has a different sculpture with radiating strix. It also recalls Lucina (Myrtea) spinifere, but has no lateral teeth, is more quadrangular, much more compressed, and less prominently sculptured.

\section*{Loripes icterica Reete.}

Lucina icterica Reeve, Conch. Icon. Lucina, Pl. X. figs. 60 a, b, Aug. 1850.
Station 21, 287 fims.; Yucatan Strait, 640 fms.
This shell is quite closely related to \(L\). lactea or leucoma.

\section*{Lucina antillarum Reeve.}

Lucina antillarum Reeve, Conch. Icon. Lucina, Pl. X. fig. 37, 1850.
Lucina pecten Reeve, loc. cit., Pl. VII. figs. 34, \(3 \overline{5}\); not of Lamarck teste Reeve. Lucina occidentalis Reeve, loc. cit., in errata.

Charlotte Harbor, Florida, 13 fms.; Sigsbee, off Havana, in 182 and 450 fms. . Yucatan Strait, 640 fins.

\section*{Lucina funiculata Reeve.}

Lucina funiculata Reeve, loc. cit., Pl. VII. fig. 40, June, 1850.
Station 2, 805 fins.
A single young valve was obtained, probably of this species.

\section*{Diplodonta venezuelensis Denker.}

Diplodonta renezuelcnsis Dunker, Zeitschr. für Mal., 1848, p. 184; Nov. Conch., p. 3, Tab. IV. figs. 7, 8, 9, 1858.

Yucatan Strait, 640 fms .
One valve and part of another were obtained.

\section*{Diplodonta pilula n. s.}

Shell small, round, inflated, polished, with concentric seulpture of slightly raised sharpish ridges ; umbos smooth, polished, prominent, intlated; margins not angulated, forming nearly a perfect circle, teeth indistinct ; margin smooth ; epidermis if any thin and translucent. Lon. 2.6 ; alt. 2.6 ; diam. 2.6 mm .

Station 43, 339 fms., living.
This little shell rescmbles a homœopathic pill as much as anything, and, curiously enough, seems to be mature. The teeth are so indistinct that I feel a slight doult as to whether it is a Diplodonta or not.

\section*{Cryptodon obesus (?) Verrill.}

Fragments of a Cryptodon were obtainel in (i40 fins,, Yucatan Strait, which bear some resemblance to C. obesus Verrill, though they do not agree with more northern specimens in all respects. These Cryptodons, however, vary considerably, and when fully compared it is probable that the number of nominal species will be reduced.

\section*{NOTE.}

To the species previonsly enumerated in this paper, the following (kindly identified for me by Mr. S. R. Roberts, of Philadelphia, who has paid special attention to the group) may be added :-

\section*{Trivia globosa Gray.}
T. globosa Gray, Descr. Cat., p. 14, 1832.

Station \(2,805 \mathrm{fms}\).
Most of the specimens of Trivia from great depths being dead and having lost their freshness, a reasonable doubt exists as to their having lived at those depths.

Trivia oryza Lamarck.
T. pccliculus Rumphius, Roberts Cat. No. 24.

Station 2, 805 fims.

\section*{Trivia quadripunctata Gray.}
T. quadripunctata Gray, Zoöl. Journ., III. 36§, \(1 \$ 27\).

Yucatan Strait, 640 fms (fresh) ; Station 2, 805 fms.; Station 12, 177 fms.; Barbados, 100 fius.; Sigsbee, off Havana, 80 fms.

\section*{Trivia subrostrata Grar.}
T. subrostrata Gray, Zoül. Journ., III. p. 363, 1 S27.

Sigsbee, off Harana, in 80 and 17.5 fnis.; Station 12, \(17 \%\) fms.

\section*{Trivia candidula Gaskons.}
T. candidula Gaskoin, P. Z. S., 1835, p. 200.

Yucatan Strait, 640 fms.; Station 21, 287 fms.; Barbados, 100 fms.; Sigsbee. off Havana, 119.

\section*{Marginella hæmatita Kíexer.}

Stations 10 and 11 , in 37 fims.

A fourth species of Pleurotomaria ( \(P\). Fumphii Schepman, Tijdschrift Nederl. Dierkundige Vereeniging. IV. p. 162, Rotterlan, 1879) from the Molnceas has been recently described, but I have not had access to the description, and I believe it has not yet been tigured. Its height is 170.0 , diam. 190.0, and breadth of sinus 2.25 mm . It is an mombilicated sprecies like \(l\). Adansoniuna.

In closing this preliminary report the attention of the reader is called to the fact that nearly as many forms remain to be enumerated as have here been mentioned; but so far as the Agassiz-Sigsbee collection is concerned, they are mostly from comparatively shallow water. The Agassiz-Bartlett collection still remains to be administered upon, and will certainly afford a number of novelties.

It may be noted that the West Indian marine fauna is in a particularly muddled state. Many species have been described from, but not attributed to the West Indies; many others have been so attributed wrongly: There are few catalogues; of which that of Guadaloupe is most praiseworthy, but all are more or less imperfect and discrepant in nomenclature. There is, perhaps, no other part of the seas commonly traversed by commerce of which so little is actually known and accessible in convenient form for reference. This renders the task of describing species from this fauna both irksome and tedious, since one can never tell what unfigured species, described with a wrong habitat, or without habitat, may not demand investigation, and after all be left in doubt.

I can hardly hope to have entirely escaped the error of redescribing some species under the circumstances. I beg that any one, who may possibly be able to offer some corrections or emendations, will communicate the same to me in order that the final report shall be as complete and perfect as possible.

Since the species could not be taken up in zoölogieal or any other definite order an Index has been prepared in which the nowly described forms appear in Italic letters; those not new, or mentioned for purposes of illustration, in Roman.

For the benefit of purists I will add that the names applied to new species and groups in this report make no pretence to any more Latinity than that of form, and are intended merely as cuphonic combinations of vowels and consonants in the majority of cases.

Wasmingtun, Dec. 5, 1851.

\section*{INDEX.}

Abra Iongicallis, 133.
Actron Danaida, 96.
Actæon fasciatus? 94.
Actroon incisus, 95.
Actcon melampoides, 95.
Actwon perforatus, 96.
Alcadia, 49.
Amphissa versicolor, 91.
Amussium luciduns, 117.
Amussium var. marmoratum, 117.
Anachis, 91, 92.
Ancistrosyrinx, 53.
Ancistrosyrinx elegans, 54.
Antalis agilis, 37.
Arca, 120.
Arca aspera, 120.
Arca asperulu, \(1 \geqslant 0\).
Arca aurita, 118.
Area glacialis, 121.
Arca glomerula, 121.
Arca var. orbiculata, 121.
Arca pectunculoides, 121, 122.
Arca polycyma, 12:3.
Arca car. septentrionalis, 121.
Arenc, 53.
Argiope antillarum, 103.
Argiope Barrettiana, 103.
Argiope Schrammi, 103.
Astarte, 129.
Astarte borealis, 130.
Astarte limulata, 131.
Astarte l'feifferi, 131.
Astyris? amphissella, 91.
Astyris californica, 91.
Astyris Duclosiana, 91.
Astyris rosacea, 92 .
Astyris Verrilli, 91.
Alys? bethymophila, 98.
A'ys? Sundersoni, 99.

Avicula sp., 117.
Axinus, 109.

Basilissa, 48, 51.
Basilissa alta, 48.
Basilissa costulata, 48.
Buthymophila, 44, 102 .
Bela, 54, \(58,60,61,70\).
Bela Blakerna, 54.
Bela var. extensa, 55.
Bela filifera, 56.
Belu limacina, 55.
Bela var. normulis, 54.
Bela turricula, 59.
Bittium, 88.
Bittium cylindricum, 90.
Bittium gemmatum, 90 .
Bittium mamillanum, 90.
Bittium pigrum, 90.
Bittium yucrtecumım, 90.
Bivoniu exserla, 3?).
Buccinum cyaneum, 102.
Bulla abyssicola, 97.
Bulla caribbæa, 99.
Bulla? eburnea, 98 .
Cadulus aqualis, 34.
Cadulus Agassizii, 35.
Cadulus colubridens, 35.
Caduhes cucurbitus, 35.
Cadulus gracilis, \(3 \overline{5}\).
Cudulus lumulus, 35.
Cadulus obesus, \(35,36\).
Cadulus Pandionis, 35.
Cadulus sauridens, 35,36 .
Cadulus simillimus, 35.
Cadulus tumidosus, 35 .
Cadulns W'atsoni, 34.
Calliostoma anuulatum, \(4 \overline{5}\).

Calliostoma apicinum, 46.
Calliostoma Bairdii, \(4 \overline{5}\).
Calliostoma circumcinctum, 44.
Calliostoma echinutum, 47.
Calliostoma eximium, 47 .
Calliostoma lima, 47.
Calliostoma Macandræ, 46.
Calliostoma Palmeri, 47.
Calliostoma Psyche, 45.
Calliostoma roseolum, \(4 \overline{5}\).
Calliostoma sapidum, 46, 47.
Calliostoma tiara, 45.
C'alliostoma yucatecanum, 47.
Callogaza, 49-51.
Callogaza superber, 49.
Callogaza W'atsoni, 50.
Candelabrum, 54.
Candelabrum cathedralis, \(5 \leq\).
Cardium centifilosum, 132.
Cardium citrinum, 131.
Cardium medium, 182.
Cardium nodestum, 132 .
Cardium peramabilis, 132.
Cardium Richardsonii, 132.
Cardium serratum, 131.
Cardium sp. ind., 182.
Cardium var. tinctum, 133.
Cemoria, 74, 75.
Cemoria Flemingianus, 75.
Cerithiopsis, 63, 8T, 88.
Cerithiopsis? crystallina, 89 .
Cerithiopsis? Sigsbecuna, 87.
Cerithinm bigemma, 81.
Cerithium cylindricum, 00 .
Cerithium gemmatum, 90 .
Cerithium inflatım, 81.
Cerithium mamillanum, 90 .
Cerithium pigrum, 90.
Cerithinm turris-thoma. 81.
Chiton (IIanleyia) tropicalis, 53.
Circe, 128.
Cistella Barrettiana, 103.
Cistella lutea, 103.
Cistella var. rubrotincta, 104.
Cistclla Schrammi, 104.
Collonia iuduta, 49.
Columbella amplissslla, 91.
Columbella costulata, 91.

Columbella dichroa, 91 .
Columbella Duclosiana, 91.
Columbella Llotessierana, 91.
Columbella lunata, 91.
Columbella Verrilli, 91.
Corbula Barrattiana, 114.
Corbula costellata, 110.
Corbula cubaniana, 114.
Corbuta cymella, 115.
Corbula Dietziana, 114.
Corbula disparilis, 115.
Corbula fragilis, 115.
Corbula quadrata, 109.
Corbula scaphoides, 115.
Corbula Swiftiana, 114.
Crania Pourtalesii, 104.
Crassatella, 129.
Crassatella antillarum, 131.
Crassatella var. floridane, 131.
Crassatella guadaloupensis, 151.
Crassatella lunulata, 131.
Crassatella mactracea, 131.
Crassatella martinicensis, 131.
Crassatella parva, 131.
Crassatella Robinaldina, 131.
Crenella, 106.
Crenella decussata, 116.
Crepidıla, 79.
Crepidula plana, 80.
Crepidula protea, 80.
Crypta, 79, 80.
Cryptodon obesus? 136.
Cucullæa, 121 .
Cyclotus, 51.

Daphnella, 55, 70.
Daphnclla? lcucophlegma, 70.
Daphnella? limaciua, 5̄5, 102.
Dentalium acutissimum, 37.
Dentalium agile, 37.
1)entalium autillarum, 37 .

Dentalium capillosum, 38.
Dentalium ceras, 37 .
Ucutalium crratum, :38.
Dentalium circumcinctum, 38.
Dentalium compressum, 38.
Dentalium didymum, :88.
Dentalium disparile, 37 .

Dentalium ophiodon, 38.
Dentalium perlongum, 36.
Dentalium sericatum, 37.
Dentulium Sigsbeanum, 38.
Diadora, 74, 75.
Diaphana gemma, 98 .
Diodora, 74, 75.
Diplodonta pilula, 136.
Diplodonta venezuelensis, 136.
Drillia detecta, 65.
Drillia elusiva, 69.
Drillia exasperata, 63.
Drillia gratula, 64.
Drillia havanensis, 67.
Drillia Kennicottii, 58, 62.
Drillia? leucomata, 63.
Drillia morra, 69.
Drillia nucleata, 62.
Diillia oleacina, 66.
Drillia peripla, 68, 69.
Urillia polytorta, 61.
Drillia serga, 65.
Drillia smirna, 66.
Drillia subsida, 62.
Drillia Verrillii, 68.

Emarginula, 77.
Emarginula Rollandi, 77.
Embla, 108.
Eriphyla, 128.
Eriphyla lunulata, 131.
Eriphyla mactracea, 131.
Eriplyla pacifica, 131.
Eriphyla parva, 131.
Eriphyla varians, 131.
Erycina longicallis, 133.
Erycina similis, 134.
Ethalia anomala, 52.
Eucharis, 108.
Huciroa elegantissima, 106
Eudesia floridana, 103.
Fissurella graca, 75.
Fissurisepta, 76.
Fluxina, 51.
Fluxina brunnea, 52.
Fulvia modesta, 132.
F'ulvia peramabilis, 132.

Gaza, 49.
Gaza dædala, 49.
Genota mitrella, 56.
Glomus, 120.
Gouldia, 128.
Gouldia australis, 129 .
Gouldia cerina, 128, 130.
Gouldia cubaniana,117, 130.
Gouldia dilecta, 129.
Gouldia fastigiata, 131.
Gouldia minima, 129, 130.
Gouldia pacifica, 181.
Gouldia parva, 128, 131.
Gouldia varians, 131.
LIaliotis, 79.
Haliotis Pourtalesii, 79.
IIanleyia tropicalis, 53.
Hemicardium, 109.
Hippagus, 106.
Hippagus acuticostatus, 105.
Hippagus novemcostatus, 105.
Tanachus, 80.
Ino, 80.
Iphigenia acuticostata, 105.

Leda acuminata, 124.
Leda Carpenteri, 125.
Leda var. cerata, 126 .
Leda chuva, 127.
Leda clavata, 125.
Leda colata, 125.
Leda (Neilonella) corpulenta, 125, 126.
Leda dilatata, 125.
Leda liamata, \(12 \overline{5}\).
Leda intermedia, 127.
Leda jamaicensis, 124.
Leda Jeffreysi, 124.
Leda (Lembulus) lamellicostata, 121
Leda lata, 124 .
Leda messanensis, 124.
Leda minuta, 111.
Lede var. quadrangularis, 125.
Ledu solida, 126.
Leda unca, 124.
Leda vitrea, 126.
Lembulus, \(1: 4\).

Leptothyra var. albida, 48.
Leptothyra induta, 48.
Ligula profundissima, 133.
Lima sp., 118.
Lima caribbæa? 118.
Limatula ovata, 118.
Limopsis antillensis, 119.
Limopsis aurita, 118, 121.
Limopsis borealis, 119.
Limopsis cristata, 119.
Limopsis minuta, 119, 121.
Limopsis tenella, I18.
Lioconcha, 128.
Liocyma, 123.
Liotia Briareus, 52.
Loripes anatinelloides, 135.
Loripes compress \(n, 135\).
Lovenella metula, 90 .
Lucina antillarum, 135.
Lucina funiculata, 136.
Lucina icterica, 135.
Lucina lactea, 135.
Lucina leucoma, 13 .
Lucina occidentalis, 135.
Lucina pecten, \(13 \overline{5}\).
Lucina spinifera, 135.
Lyonsia bulla, 107.

Macrodon asperula, 120.
Mangiliu antonia, 5 ?
Mangilia bandella, 59.
.1/angilia columbella, 60.
. Wangilia comatotropis, 58.
Mangilia? ipara, 57.
Mangilia lissotropis, 58.
Mangilia pelagia, 61.
Mangilict Pourtalesii, 60.
Margarita egleis, 40.
Maryarita asperrima, 40.
Margarita? enspira, 44.
Margarita filogyra, 42.
Margarita groenlandica, 42.
Margurita (Turcicula) imperialis, 42.
Maryarita iris, 43.
Maryarita lacunella, 44, 102.
Margarita lamellosa, 40.

Margarita lissocona, 41.
Margarita lubrica, 44.
Margarita maculata, 44, 102.
Margarita scabriuscula, 41.
Marginella avena, 73, 74.
Marginella var.? avenella, 73.
Marginella festiva, 72 .
Marginella fusina, 72 .
Marginella hæmatita, 137.
Marginella nodata, 72.
Marginella seminula, 72.
Marginella torticula, 73.
Marginella triplicata, i4.
Marginella vitrea, 71.
Marginella I' \({ }^{\top}\) atsoni, 71.
Marginella var.? yucatecana, i2.
Mastonia, 84.
Megerlia incerta, 104.
Melampus corneus, 95.
Microgaza, 50.
Microgaza rotella, 51.
Modiola polita, 116.
Modiolaria, 116, 117.
Molmia alba, 102.
Myrtea spinifera, 135.
Mytilus dominguensis, 117.
Mytilus exustus, 117.
Mytilus Lavalleanus, 117.
Mytilus luteus, 116.
Natica fringilla, 93.
Natica leptalea, 03.
Natica pusilla, 93.
Natica subplicata, 93.
Neæra, 108.
Ncæra alternata,* 110.
Neæra arctica, 111.
Necera arcuata, 113.
Neara claviculata, 112.
Veara var. corpulenta, 111.
Neara costellata, 110.
Neara glacialis, 111.
Vecrra granu/ata, 111.
Neerra Jeffreysi, 111.
Necera lamellifera, 113.
Neera limatula, 112.
*This is the same as \(N\). multicostuta V. \& S., and may be distinct from allernata.

Nerra ornatissima, 110.
Necera var. perostrata, 110.
Neæra rostrata, 111.
Neilo, 125, 126.
Neilo dilatata, 125.
Neilo messanensis, 124.
Neilonella, 125, 126.
Nucula crenulata, 123.
Nucula cytherea, 123.
Nucula dilatata, 125.
Nucula glabra, 125.
Nucula var. obliterata, 123.
Nucula tenuis, 123.
Nuculocardia divaricata, 116.

Oxystele nitens. See Marg. euspira.
Patella fissura, 75.
Patella noachina, 74, 75.
Pandora oblonga, 109.
Pandora rostrata, 110.
Panopæa, 116.
Pecten sp., 117.
Pecten lucidum, 117.
Pectunculus castaneus, 118.
Pectunculus minutus, 119.
Pectunculus variegatus, 118.
Perliculuria albida, 30.
Philine Loveni, 100.
Philine quadrata, 99.
Philine sp., 99.
Photinula. See Bathymophila.
Platidia anomioides, 104.
Platyschisma, 51.
Pleuronectia lucida, 117.
Pleurotoma, 53, 57. See also Ancistrosyrinx, Bela, Daphnella, Drillia, Genota, Mangilia.
1'leurotoma oxytropis, 58.
Pleurotomaria Mdansoniana, 78, 137.
Pleurotomaria Beyrichii, 79 .
Pleurotomaria Quoyana, 78.
l'leurotomaria Rumphii, 137.
Pleurotomariide, 77 .
Pleurotomella, 57, 64.
Pleurotomella? Sigsbei, 57.
Plcurotomella Verrillii, 57.
Poromya, 108, 122.

Poromya anatinoides, 108.
Poromya granatina, 109.
Poromya granulata, 108.
I'oromya rotundata, 108.
Poromya var. triangularis, 108.
Portlandia arctica, 112.
Portlandia intermedia, 127.
Potamomya, 116.
Puncturella, 74, 75, 77.
Puncturclla circularis, 75.
Puncturella Cooperi, 76.
Puncturella granulosa, 76.
Puncturella profundi, 76.
Puncturella trifolium, 76.

Ringicula nitida, 97.
Ringicula semistriata, 97.
Saxicuva azaria, 116.
Scaphander lignarius, 100.
Scaphander? Watsoni, 99.
Schizostoma, 51.
Seguenzia carinata, 48.
Seguenzia delicutula, 48.
Seguenzia formosa, 47.
Seguenzia ionica, 48.
Silicula, 120 .
Siliquaria modesta, 39.
Sinusigera, 68.
Sipho, 74, 75.
Siphonodentalium compressum, 38.
Siphonodentalium quadridentatum, 36.
Siphonodentalium tetraschistum, 36.
Solariidæ, 51.
Solenella, 126, 127.
Sphena alternata, 110.
Sphena ornatissima, 110.
Spondylus sp., 117.
Syndusmya lioica, 133.
Syndosmya longicallis, 133.
Syndosmya similis, 133.
Syndosmya tenuis, 133 .
Tapes virginens, 123 .
Taranis bella, 71.
Taranis Mürchii, 70.
Tellina Antoni, 134.
Tellina cuncata, 134.

Tellina Gouldii, 134.
Tellina longicallis, 133.
Tellina perplexa, 134.
Tellina plectrum? 134.
Tellina sybaritica, 134.
Tellina Tayloriana, 135.
Tellina tenuilirata, 185.
Terebratula anomioides, 104.
Terebratula cubensis, 103.
Terebratulina Cailleti, 103.
Thecidium Barretti, 104.
Thecidium mediterraneum, 104.
Thetis, 108, 128.
Thetis cerina, 130.
Thetis granulata, 108.
Thetis minor, 108.
Thetis parva, 131.
Thracia papyracea, 110.
Thracia phaseolina, 110.
Tindaria, 123.
Tornatella fasciata, 94.
Trichotropis migrans, 71.
Triforis, 80.
Triforis abruptus, 84.
Triforis bigenma, \(81,82,83,84\).
Triforis colon, 86, 87.
Triforis concors, 86.
Triforis cylindrellus, 83.
Triforis hircus, 83.
Triforis ibex, 86.
Triforis inflatum, 81.
Triforis intermedius, 85.
Triforis (Ino) longissimus, 80 .
Triforis ruber, 86.
Triforis tortirulus, 82.
Triforis triscrialis, 84.
Triforis turris-thomex, 81.
Trigoniluna ornata, 10.5 .
Trigonulina oruata, 105.
Trivia candidula, 137.

Trivia globosa, 137.
Trivia oryza, 137.
Trivia quadripunctata, 137.
Trivia subrostrata, 137.
Trochus clavatus, 41.
Trochus tiara, 45.
Trochus transenna, 41.
Turbo indutus, 49.
Turbo (Liotia) Briareus, 52.
Turcica, 43.
Turcicula, 42.
Turritella leucostonia, 94.
Turritella yucatecanum, 93.
Utriculus? Frielei, 101.
Utriculus truncatulus, 101.
Utriculus? vortex, 100.
Venus cubaniana, 130.
Venus minima, 128.
Venus scripta, 128.
Verticordia, 108.
Verticordia acuticostata, 105.
Verticordia cardiiformis, 105, 106.
Verticordia Deshayesiana, 105.
Verticordia elegantissima, 106.
Verticordia Fischeriuna, 106.
Verticordia japonica, 105.
Verticordia ornata, 105.
Verticordia verticordia, 105.
Volvarina varia, 74.
Waldheinia floridana, 103.
Yoldia lanceolata, 128.
Yoldia liorhina, 127.
Yoldia nicobarica, 128 .
Toldia seminuda, 128 .
Joldia solenoidrs, 127 .
Zizyphinus tiara, 45.

No. 3. - (Letter No. 5.) - To Carllee P. Patterson, Superintendent United Stutes Coast and Cícodetic Survey, from Alexander Agassiz, on the Explorations in the Vicinity of the Tortugas, during March and April, 1881.

I left Key West for the Tortugas in the middle of March on the " Laurel," which Lieut.-Com. Wright had kindly ordered, in accordance with the permission of the Lighthonse Board, to transport myself and assistant, with the necessary coal for the steam launch which you had placed at my disposal during my visit to the Tortugas. The launch I found ready at Key West, fully equipped, manned, and provisioned, thanks to the care of Licut.-Com. Winn. She arrived at the Tortugas somewhat later in the day than the Laurel.
During our stay at the Tortugas we were allowed by the Hon. Secretary of War to occupy such quarters at Fort Jefferson as were not otherwise needed, and selected as a laboratory a large room, with excellent light, on the ground floor of the barracks. We remained at the Tortugas five weeks, and spent the remaining time at my disposal at Key West, where we continued our studies of the pelagic fauna of the Gulf Stream. We returned to Key West in the revenue steamer Dix, Captain Scammon, whom the Sceretary of the Treasury had authorized to assist us as far as practicable.

The prevalence of strong northorly winds during the greater part of our stay in Florida interfered greatly with the work which was the principal ohject of my visit, - the study of the surface fama of the Gulf Stream. We expected to find the usual prevailing sontheasterly winds, and to find the pelagic famna of the Gulf Stream driven against the Tortugas. In this respect we were greatly disappointed, and I availed myself of days, otherwise favorable, in finishing a number of drawings of the most characteristic occanic Tuhularians of the Gulf Stream, the l'orpite and Physalix. I had accumulated a number of drawings and notes cither at Newport.or on the "Blake," but mider circumstances not specially favorable for a critical examination of the specimens. A number of interesting stages of Porpita, of Velella, and of Physalia were observed, as well as many points of interest in their antatomy hitherto

\footnotetext{
vol. \(1 \times\). - No. 3.
}
not noticed.* These will be published in the Memoirs of the Musenm as soon as the necessary illustrations can be prepared. The two species of Porpitidre found in Florida, although they find their way as far North as the sonthern shores of Massachusetts, are as yet very imperfectly known.

On the days when the weather was not suitable for surface work outside in the Gulf Stream, I employed the launch in crnising inside the reef, and thus examined carefully the topography of the different groups of corals characteristic of the Florida reefs. As the Tortugas are the most westerly of the reefs, and in an active state of growth, the data I have collected are interesting from the light they throw on the share the different species of corals have in the formation of the reef. To illustrate the distribution of the corals, I shall reproduce in one of the forthcoming Bulletins of the Museum one of the charts of the Tortugas published by the Coast Survey, marking upon it the position of the different species of corals within the area occupied by the reef-builders of the Tortugas.

As far as the pelagic famma is concerned, the prevalence of northerly winds during our visit to Florida prevented us from accomplishing any satisfactory results. The few days on which it was possible to collect the surface fauma of the Gulf Stream showed us, however, a wealth of pelagic animals which I had hardly anticipated. Both the Tortngas and Key West are excellent stations from which to work up the surface fama of the Gulf Stream. The Tortugas, though more inaccessible than Key West, are practically within the northern edge of the Gulf Stream during the prevalence of southeasterly winds, while at Key West we must go ontside of Sand Key to olbtain the same couditions. The Tortugas also have the immense advantage of supplying the naturalist, not only with the common species of reef-building corals at his very door, but with the varied invertebrate famna to be found living in a coral reef. From retnrus lately made to me by Mr. Cole, the fort keeper at the Tortugas, it is evident that May and June are far more satisfactory months for surface work than March and April. Unfortmately, that is rather late in the season to remain on the Florida Reefs, - an objection which applies equally to all localities which are not sufficiently far within the tropies to be available for pelagic work during the winter months.

The Bermudas, from their position and their marine fama, maturally suggest themselves as a substitute for the Florida reefs in the study of

\footnotetext{
* Dr. Chum has, in a preliminary notice in a recent number of the Zoolog. Anzciger, called attention to several of the peints here referred to.
}
the surface fauna of the Gulf Stream. From the existence there of certain species of corals, these islands may prove, on trial, the best fitted for a prolonged study, not only of corals, but also of the Atlantic surface fauma.

In spite of the unfavorable weather, enough was aecomplished to show conclusively that by far the greater number of the pelagic animals known from the Atlantic coast of the United States are inhabitants of the surface of the Gulf Stream, and are driven on the northern shores by the prevailing southwesterly winds during the summer and autumn months.

An enumeration of the pelagic species observed during our stay at Key West and at the Tortugas wonld carry me too far. I will only mention in a general way the presence of a couple of species of Firoloidea, of Phyllirhoe, of several Appendiculariæ, of a small Pyrosoma, of a Doliolium, two species of Salpa, one of which is our common Northern form, and of half a dozen species of Pteropods. Three or four of these, as well as a large proportion of the other pelagic animals, find their way worth as far as Newport. In fact, much of our surface work during March and April reminded me of similar work done at Newport from the end of July until late in September, but of course the number of specimens was far greater at the Tortngas. The surface fama of the Gulf Stream can undoubtedly be best studied at the Tortugas, though important additions to our knowledge of it have been made at Charleston, and at Beaufort, N. C., and along the coast of New Jersey, of Rhode Island, and of Southern Massachusetts.

It is remarkable that Janthina, which is so commou at the Tortngas, should not find its way farther north than off Cape Hatteras, in common with other surface things, where I have frequently seen it while on the "Blake," and on other occasions.

There are also found at the Tortugas a large number of pelagic Crustacea in their embryonic stages, among them Phyllosoma and the Nanplins stago of a Peneus similar to that obscrved by Fritz Miiller ; also multitudes of young Annelids, Mollusks, Actiniæ, the planule of several of the Corals, Echinoderm embryos, and a host of young pelagic Fishes, among which I may mention the young of the Flying-fish and Leptocephali. For tho study of the young stages of Fishes and of Acalephs the Florida reefs present an murivalled field of observation. We were greatly disappointed in tho number of the pelagic Foraminifera. We did not meet once a species of Globigerina, which was found quite commonly off the 'Tortugas in my former ernises in the "Blake," and which Mr. Pour-
talès had also observed off Havana. We found a few species of Acanthometra, Thalassicola, and of Sphærozoum.

A thorough study of the surface fauna of the Gulf Stream, with reference to its effect in supplying material for the building of the plateaus upon which the Florida reefs hare grown, would require an investigation of at least a couple of months at the Tortugas during the most promising part of the season (May and June), as well as a summer's cruise along the track of the Gulf Stream north of the Bahamas, when the principal work should be the collecting of the surface animals fuund in the course of the Stream.

A good idea of the richness of the Acalephian Fanna of the Gulf Stream can be formed from the accompanying list of Jelly-fishes observed at the Tortugas and Key West. This list has been prepared by Mr. Fewkes, who during our visit to Florida devoted his time specially to the study of that group.

I may specially mention among the Ctenophore a new Ctenophore remarkable as possessing structural characters of the Lobatre, Saccatre, and Eurystome ; also a magnificent species of Eucharis. A pretty, small Discophore allied to Linerges is found in large numbers all along the Florida recfs and has been observed by the "Blake" off the Windward Islands and in the Caribbean Sea. A new species of Glossocodon is the most interesting of the Hydroids. Our harvest was very rich among the Siphonophores: the greater number of the genera characteristic of the Mediterrancan were observed for the first time on this coast, either at Key West or at the Tortugas.

\section*{CTENOPHORE.*}

Bolina vitrea Ag.
Idyia ovata Less.
Lesneuria hyboptera A. Agass.
Pleurobrachia rhododactyla Agass.
Ocyroe sp. nov.
Eucharis sp. nov.

\section*{DISCOPHORA.}

Polyclonia frondosa Agass.
Aurelia flavidula Per. et Less.

\footnotetext{
* See also, for other grographical lists of Acalephs from Florida and the West Indies, A. Agassiz, N. Am. Aealephe, and Allman, Hydroidea of the Gulf Stream, Mem. Mus. Comp. Zoul., and S. F. Clarke, Bull. M. C. Z.
}

Pelagia cyanella Per．et Less．
Dactylethra formosa Fewkes gen．et sp．MS．

\section*{SIPHONOPHOR圧．}

Stephanomia atlantica Fewkes MS．
Agalma papillosum Fewkes MS．
Agalma elegans Fewres．
Agalmopsis fragilis Fewkes MS．
Rhizophysa gracilis Fewkes MS．
Physalia Arethusa Tri．
Athorybia formosa Fewees MS．
Praya sp．
Diphyes Lessonii Huxley．
？Epibulia aurantiaca Vogt．

\section*{HYDROID \(\mathbb{E}\) ．}

Lafœa sp．
Zygodactyla cyanea Agass．
Modeeria multitentacula Fewres．
Eucope sp．
Oceania folleata Agass．
Halopsis sp．nov．
Halicalyx gen．nov．
Aglaura sp．nov．
Cunina discoides Fewres．
Trachynema digitale A．Agass．
Glossocodon sp．nov．
Pennaria gibbosa Agass．
Millepora alcicornis Linn．

\section*{VELELLID尼。}

Velella mutica Bosc．
Porpita Linnæana Less．

No. 4. - Reports on the Results of Dredying, under the Supervision of Alexander Agassiz, in the Gulf of Mexico, and in the Caribbean Sea, 1877-79, and along the Atlantic Coust of the United Stutes doring the Summer of 1880, by the United Stutes Coast Survey Stecmer "Blake," Lieutenant-Commander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., Commanding.

\section*{XVI.}

\section*{Preliminary Report on the Comatulce,* by P. Herbert Carpenter.}

The Comatula collection of the Museum of Comparative Zoölogy, which has been intrusted to me for examination and description, contains a very large number of specimens from widely different localities. The majority of these were dredged in the Florida Straits and in the Caribbean Sea, under the auspices of the U. S. Coast Survey. There is also a foreign collection, which mainly consists of specimens obtained by the U. S. and N. P. Exploring Expeditions. Many of them are from localities that I had not previonsly known as the homes of Comatula, while others are merely additions to Comatula faunas already known to me at particular localities. Except in these respects the foreign collection presents no features of special interest.

The ease is very different, however, with the collection obtained by the "Blake" in the Caribbean Sea. In one respect, indeed, - the number of duplicates, - it is superior to that made by the "Challenger." A few species occur not only in great numbers, but also at several localities; so that I have been able to study their range of variation in a more satisfictory manner than it has hitherto been possilhe for me to do in the case of any Comatula but the common Antedon rosucea and Ant. Eschrichtii. This opportunity has proved of immense value to me in every way ; and I am convinced that continned investigation will reveal the existence of so many intermediate forms, that many types which now appear quite distinet will prove to be specifically identical. This has, in fact, been the carse with two of the species deseribed by the late

\footnotetext{
* - A few species obtaned by the U. S. Const Envery steamers " ('orwin," " Bihb," and " Hassler" are also comsitered in this liepurt.

VOL. IX. - No. 4.
}

Mr. Pourtalès, which I have been compclled to unite under one name, together with three other forms that scemed at first sight quite distinct both from one another and from the two species of Mr. Pourtales.

The importance of the collection made by the "Blake" in the season 1878-79 may be gathered from the fact that it contains nearly three times the number of species previously known as inhabiting the Caribbean Sea. Under the general name of Antedon Mr. Pourtales had described five species of Antedon and four of Actinometra, which were obtained by the U. S. Coast Survey steamers "Corwin," "Bibb," and "Hassler," in 1867-72, and by the "Blake" in 1877-78. During a visit to the principal European museums, in the antumn of last year, I examined nine West Indian Comatulce, including six species of Actinometra and three of Antedon. I believe a few of them to be identical with some of the species of Mr. Pourtalès.

Hence, before I commenced work on the "Blake" collection from the Caribbean Sca, I was acquainted with less than twenty species of Comatulce from that area. Pending the completion of my memoir on the Comatulce of the "Challenger" Expedition, I am unable to give the "Blake" collection the critical attention which is more than ever necessary on account of the number of duplicates which it contains. But so far as I can judge at present, it includes nearly forty new specics, besides most of those from the same region which were already known to me. Altogether, therefore, I should estimate that the number of Comatula species now known to inhabit the Caribbean Sca is about fifty-five, nearly three quarters of which were first obtained by the "Dlake" Expedition of 1878-79.

Comutula were dredged at fiftr-seven out of the tro hundred stations occupied during this season's work. Nearly all of them were in comparatively shallow water, i. e. in depths less than 200 fathoms. On three occasions only did the depth exceed 300 fithoms ; viz. Nos. 150 , 151 , and 222 , the depths being \(373 \frac{1}{2}, 356\), and 422 fathoms respectively; and the Comatulue obtained at these stations represent new and wery singular types. The remarkable form Atelecrinus (nov. gen., Figs. 1- ) was met with at each station ; and at No. 222 the unique specimen of Antelon columnaris (n. sp.), which is represented in Fig. 8, was also obtained.

These facts agree very well with the results of the "Challenger" dredgings,* which only yielded Comutulue at twenty stations where the

\footnotetext{
* Irwliminary Peport non the Comatula of the "Challenger" Expedition. Proceralings of the lioyal Society, No. 194, 187!, IP, 353-386.
}
depth exceeded 200 fathoms. One may fairly conclude, therefore, that these animals are essentially inhabitants of shallow water. There is, however, in one respect a considerable difference between the results of the "Blake" and "Challenger" Expeditions.

The "Challenger" species of Actinometra were nearly all obtained at depths of less than 20 fathoms, the genus occurring at only one station where the depth exceeded 100 fathoms. In 1878-79, however, the "Plake" dredged Actinometra 3 times at 7 to 50 fathoms, 10 times at 50 to 100 fathoms, 25 times at 100 to 200 fathoms, and 4 times at 200 to 300 fathoms, making in all 42 stations; while Anteclon was only met with at 34 stations, at all but four of which the depth was less than 200 fathoms.

As might be expected from the above facts, Actinometra is not only represented by a larger number of species than Antedon, but it is also individually more abundant. Comatulce were especially plentiful at four stations, viz. Nos. \(155,203,262\), and 269 ; and at all but the last Actinometree were the most numerous, both specifically and individually. In fact at Station 203 no Antedon was obtained at all, though at least six species of Actinometra were met with.

There are several points of difference between the general facies of the "Blake" and of the "Challenger" collections respectively, which supplement one another in a very interesting manner. The great peculiarity of the Caribbean fama is the abundance of ten-armed Comatule representing both the principal genera. About two thirds of the Antedon species and three fourths of the Aetinometree belong to this simple type ; whilo in the remaining species the rays rarely divide more than twice, and in two species only is there a fourth division. In this respect the contrast with the Comatula fanna of the Eastern seas is very marked. Ten-armed forms of both genera are there decidedly in the minority, especially of Actinometra, in which genus the rays mar divide as often as seven times, so that the number of arms falls very little short of two hundred.

The "Blake" collcetion from the Caribbean Sea may be fairly compared with that made liy the "Challenger" in cruising from Cape York through the Banda and Arafura Seas to the Philippine Islands, and thence sonthwards to the Admiralty 1slands. About seventy species were collected from this area, nearly all from depths less than 150 fathoms. The mumbers of Antedon and Actinometra species are about equal, but while half of the former are ten-armed, only three Actinometroe are equally simple. These three species all agree in having the second
and third radials united by syzygy, and also a syzygy in each of the first two brachials, as in Act. solaris.

This area averages abont 100 farther south than that of the "Blake" dredgings, and it is possible that the greater vegetative development of its Comatula may be due to the higher temperature of the shallower water from which they were obtained.

Although three fourths of the Actinometra species from the Caribbean Sea are ten-armed, there is not one among them that recalls the Act. soluris of the Eastern seas, in which the secoud and third radials are united by syzygy, and each of the first two brachials is a syzygial or double joint. All the ten-armed Actinometrce of the West Indies belong to a type which is but slightly represented in the Eastern hemisphere, viz. that of Act. meridionalis. In this type, as in every Antedon that I have yet examined, the second and third radials are articulated together by a vertical ridge on each of their apposed faces, at the sides of which are large masses of ligament, but no muscular bundles. The first syzygy in the arms is on the third brachial, while the first and second brachials are articulated together in the same manner as the second and third radials, instead of forming a syzygial or double joint, as in Act. solaris. Nearly all the ten-armed Actinometree in the Eastern hemisphere belong to the solaris type. The only exceptions known to me are Act. Cumingii Mïll. sp., from Malacca, and two or three undescribed species from China, Japan, and Sumatra. Even among the "Blake" Comatulce, in which the rays divide more than once, there is very little variety of type. Either there are two distichals united by ligament, or three, of which the axillary has a syzygy, the former case being the more frequent ; and in six out of the nine species in which the rays divide a third time, there is only one joint between the distichal and palmar axillaries, to the latter of which it is mited by ligament.

On the other hand the Eastern Comatule, with about the same number of arms (11-40), present several well-marked varieties of type, according to the number of joints in the primary and secondary raydivisions and their modes of mnion.

Of all the Antedon species dredged by the U. S. Coast Survey, that with the widest range within the Caribbean Sea is the little ten-armed Ant. Ilagemii, Pourt.* It was obtained hy the "Blake" on the Vucatan Bank, and also at various stations between Dominica and Grenada, at different depths between 75 and 291 fathoms ; while Mr. Pourtale's dredged it in great abundance at several localities in the Flurida
* Bull. Mus. Comp. Zoöl., Vol. I. Nos. 6, 11 ; Vol. V. No. 9, p. 214.

Straits. The original type specimens were obtained off Sand Key, and several individuals from Barbados and Grenada differ so much both from them and from one another, that I was at first inclined to regard them as representing two new species ; but a more careful examination did not confirm this impression. There are, however, three distinct species besides the type, to which the name Ant. Hayenii has been given. The specimens sent to the Museums at Edinburgh and Copenhagen under this specific name do not belong to the genus Antedon at all, but are rarietal forms of Actinometra meridionalis A. Agass. sp.; and among the large number of individuals of Ant. Hagenii from the Florida Straits I found a few examples of two entirely new Antedon species. One of them is distinguished by having enormous lancet-like processes on the lower joints of its oral pinnules; while the other is a very exceptional type, with no pinnules at all upon the second and third brachials, though those of the other arm-joints are developed as usual. This is a singular condition, which occurs but rarely among the Comatulc. The "Challenger" dredged a specimen near the Philippine Islands which presents the same peculiarity, and another in which the large pinnule on the second brachial is present as usual, but that on the third brachial is undeveloped, though those of the fourth and succeeding arm-joints are perfectly normal. Except in the remarkable type Atelecrinus (Figs. 1, 2, 7), which has no pinnules at all upon the ten or twelve lower arm-joints, these are the only Comatulice I have ever met with in an examination of several hundred individuals that present any departure from the ordinary pinnule arrangement.

At Station cecxi. of the "Blake" dredgings in 1880, on the Atlantic coasts of the United States, a small ten-armed Antedon was found to be very abuudant. It was doubtfully referred by Mr. Agassiz* to Ant. Sursii, which species was obtained by Mr. Verrill, somewhat later in the season, at several localities off the northern coasts of New England. \(\dagger\) I have carefully compared the "Blake" specimens with a Norwegian example of Ant. Sarsii, which I owe to the kindness of Prof. G. O. Sars, and also with the two specimens obtained by H. M. S. "Porcupine" in 1869, at two stations in the "cold area" of the North Atlantic.

All the specimens agree in their general characters, and must certainly be united under one specific name ; but they differ considerably among themselves while corresponding fairly well with Müller's deseription of

\footnotetext{
* Bull. Mus. Comp. Zoül., Vol. V I. No. 8, p. 150.
\(\dagger\) Notice of the lemarkable Marine Fanna occuping the Outer Fanks off the Sonthern Coast of New England. American Journal of Science, Vol. XX. p. 401.
}

Ant. Sarsii. Both the American and the "Porcupine" specimens are larger and more stoutly built than any Scandinavian ones that I have ever seen. This is especially the case with the American specimens, which have a considerable resemblance to some forms of Ant. Hagenii. But the characters of the oral pinnules are entirely different in the \(t\) mo species. Although the number of their component joints may be the same, about 25 , their dimensions are very different. In Ant. Sarsii the lower joints of the oral pinnules are clear and glassy, and remarkably long, their length being fonr or five times their width; while in Ant. Hagenii the joints are more opaque, and also shorter and thicker, their length rarely exceeding twice their width. Both species agree with Ant. rosacea and Ant. celtica Barrett, sp., which is identical with Ant. phalangizm Müll. sp., in the absence of any basal star in connection with the rosette, such as is found in every other species of Antedon or Actinometra the calyx of which I have been able to dissect.*

I have pointed out above that four distinct types of Comatulce have hitherto passed under the name Ant. Hagenii. In like manner the specific designation meridionalis, given by Mr. Agassiz \(\dagger\) to a ten-armed Comatula which has long been known from the coast of Sonth Carolina, has been applied to almost every specimen with ten arms and an eccentric mouth, and even in two cases to forms with more than ten arms, owing to some of the rays forking twice. All of these are true Actinometree with combed oral pinnules, \(\ddagger\) and the name Antedon merilionalis must therefore be exchanged for Actinometra meridionalis A. Agass. sp.

Among the many individuals sent to me under this specific name, there are at least four distinct types. Mr. Pourtalès § seemed to think that the species varied considerably with age, "older and larger specimens looking so much more massire than the young, that they at first sight appear like different species, althougb the usual specific characters agree." But almost all the characters given by him in his specific description \(\|\) apply equally well to every ten-armed Actinometra which has no syzygy in the radials or lowest brachials, including those of the Eastern seas, such as Müller's species Act. Cumingii and also Act. echinoptera (loc. 3), which are nevertheless perfectly distinct from Act. meridionalis and from one another. Under these circumstances the

\footnotetext{
* Ou the Genus Actinometra Muill. Trans. Linn. Suc., Sec. Series, Zoülogy, Vol. II. pp. 96-100.
\(\dagger\) seaside Studies in Natural Itistory, p. 121.
\(\ddagger\) Actinometra, loe. eit., p1. 20, 28.
§ Bull. Mns. Comp. Zomil, Vol. V. No. 9, p. 214.
|| Ihid., Vol. I. No. 11, j. 355.
}
specific name meridionalis must be restricted to the type from South Carolina, on which it was originally conferred. The only example of this type which has reached me is too imperfect for a satisfactory specific diagnosis to be framed upon it. It is valuable, however, for having two Pentacrinoids entangled in its cirrhi, to which I shall refer immediately. I am inclined to agree with Mr. Pourtales in thinking that the specimens from French Recf (1869) belong to the same type, and also those obtained by the "Hassler" off Cape Frio. The latter certainly constitute a strongly marked variety (as indicated by him on his labels), which differs from the French Reef specimens in the characters of the cirrhi, and especially in the relative propurtions of the luwer pinnules. I have dissected the calices of both, and find them to be so very similar that the differences between them con hardly be regarded as due to anything more than local variation. The radials of the French lieef specimens are relatively higher and slightly more sloping than those of the Cape Frio variety ; but were these calices fossil specimens I should have much hesitation in referring them to different species. There is another structural character that I shall mention later on as common to certain examples from both localities. It is therefore of some importance as tending to indicate their specific identity.

Luitken has given the MS. name Anteclon brasiliensis to a ten-armed Comatula which is aboundant on the coast of Brazil. It was descrihed by Mr. Pourtales* as answering "to the description of the Comatula carinata Lamk. (Leach. sp.) " from Mauritius, and as differing only in some minor details from Zanzibar specimens of Ant. carinata. Rathbun has spoken to the same effect, \(\dagger\) and though I was at first inclined to follow Lütken in separating the two types, further study has led me to believe in their specific identity. By the kinduess of Prof. Möbius, of Kiel, I have been enabled to examine specimens of Ant. carinata from Mauritius. 'This is the original locality of Müller's type specimens, which Prof. E. von Martens courteously permitted me to study in the University Muscum at Berlin. I have also seen specimens from Chili, Madagascar, St. Helena, the Seychelles, the Red Sea, and Aden, and find it impossible to separate them specifically. This conclusion is confirmed by the resemblance between the dissected calices of specimens from Bahia and Zanzibar. They are so very similar that, if they were fossils, I should unhesitatingly refer them to the same species. In fact, the Bahia specimens vary considerably inter se, and there is less like-

\footnotetext{
* Bull. Mus, Comp. Zoül., Vol. V. No. 9, p. 214.
\(\dagger\) A List of the Brazilian Echinverms. Trans. Comnect. Acad., Vol. V. p. 156.
}
ness between two calices from this locality than betreen one of them and a calyx from Zanzibar. Ant. carinata is described by Rathbun as probably ranging along the Brazilian coast from Rio Janeiro to Pernambuco. It was not obtained by the "Blake" at all ; but it was found in abundance by Captain Cole, of the "Investigator," in 278 fathoms, off St. Lucia, so that it may fairly be considered as belonging to the Caribbean fauna.

The two Comatulce which appear from their abundance to be especially characteristic of the neighborhood of the Caribbean Islands, ranging from Santa Cruz to Grenada, are an Antedon and an Actinometra, both of which had been obtained previously to the "Blake" Expedition of 1878-79. In the year 1870, M. Duchassaing brought from Guadeloupe to the Paris Museum a fine specimen of Antedon, with thirty very spiny arms. Prof. Perrier having kindly permitted me to examine this type and to make a note of its characters, I readily recognized it in the "Blake" collection, and propose to name it Ant. spinifera. It was obtained by the "Blake" (1878-79) at ten stations, in depths of from \(80 \frac{1}{2}\) to 297 fathoms. It was most abundant at No. 269, in 124 fathoms, off St. Vincent, and was also dredged in 278 fathoms, off St. Lucia, by the "Investigator." Its more striking distinctive characters are as follows : -

\section*{Antedon spinifera n. sp.}

Cirrhi 12-20, long and slender, composed of 40-60 joints, the later ones of which bear dorsal spines. The rays may fork four times, each subdivision consisting of two joints not united by a syzygy. Usually, however, there are not more than two axillaries, the distichal and the palmar, above the radials ; and palmars are frequently only developed upon the inner pair of the four secondary arms, so that there are thirty arms in all (as in the Paris specimen), viz. six on each ray, in the following order: \(1,2,2,1\). Tolerably large sharp spines are seatterel irregularly over the calyx and arm-bases. The arm-joints are triangular in outline, alternating with one another from side to side; and from near the base of each triangular surface there rises a strong curved spine, which projects forwards and slightly outwarls. On the lower parts of the arms, therefore, there is a double row of these spines alternatiug right and left of the median dorsal line ; hut farther out, as the joints become more and more compressed laterally, the two rows gradually coalesce into a single median one, the spines at the same time hecoming less and less prominent. The disk bears a fairly complete amambulacral plating, and there is a donhle row of plates along each edge of the piumule ambulacra, vi\% sile plates resting on the pinmule joints and supporting the covering plates which overlip one another alternately from opposite sides. The color varies from almost white through pale straw-
color to a light yellowish brown. The diameter of the disk is 6 or 7 millimeters, and the spread of the arms about 20 centimeters.

The common Actinometra of the Caribbean Sea is a singularly protean species, which was obtained at twenty-nine stations during the "Blake" Expedition of 1878- 79 , and once in the previons season. The "Hassler" dredged it off Barbados; and it was found by the "Investigator" at the station already mentioned off St. Lucia, and also on the Martinique and Dominica cable. It ranges from 73 to 278 , and possibly to 380 fathoms. Not only is it everywhere very abundant, but it presents a most remarkable series of minor variations on one fairly distinct type, to which I must refer the two forms named Antedon alata and Ant. pulchella respectively by the late Mr. Pourtalès.* These two forms seemed to me at first sight to represent entirely distinct species; but I have felt obliged to unite them both with one another, and with four others also apparently distinet at first sight. In naming this type I prefer to use the second of the two specific designations omployed by Mr. Pourtalès, viz. pulchella; for the other, alata, refers to a character which, though very marked in some individnals, is barely traceable in others. Generally, the type is a true Actinometra, with eccentric mouth and combed oral pinmules ; though Mr. Pourtales gave the name Antedon to both his species, the two genera not being so distinctly differentiated at the time he wrote as they are now. Nost of the specimens have 20 arms, or perhaps one or two less ; some, however, have as few as 12-15, and there is so little difference between them and a few ten-armed individuals occurring at the same localities that I do not think the latter cam be regarded as a separate species. A small Antedon which is tolerably abundant at five stations exhibits the same variability, and I have met with a few similar cases in the "Challenger" collection. As a rule, however, ten-armed Comatulce are sharply distingnished from those in which the rays divide more than onee. Act. pulchella is also interesting as furnishing the third instance which I have met with of a variation from the ordinary type of five rays. \(\dagger\) One specimen, like one dredged by the "Challenger," has six rays ; while another "Challenger" specimen has but four, though in other individuals of each species there is the usual number of five rays. It is curious that this variation, which is common in Rhizocrimus, should be so rare among the Comatulec.
The special characters of this species are as follows : -

\footnotetext{
* Bull. Mus. Comp. Zoöl., Vol. V. No. 9, pr. 215, 216.
† l'roc. R. S., 1879, p. 385.
}

\section*{Actinometra pulchella Pocrtalès sp.}

Cirrhi 15-20, of 15-18 joints; the fourth or fifth is the longest, and the following ones gradually develop a blint spine on the dorsal side. Two ralials only visible ; the axillary short, wide, and almost triangular. 10-20 arms, most of the rays usually dividing twice, the first division (distichals) consisting of two joints which are not united by syzygy. When the arms spring directly from the radial axillary, the two lowest brachials are united by ligament, as in most Comatulc, and the third is a syzygial or double joint. But in all the arms which spring from a distichal axillary, the two lowest brachials are united by syzygy to form a double joint ; and the true third brachial, which is also a syzygial joint, as in all Comatulce, thus becomes the second arm-joint, as in Act. soluris.* The position of the next syzygy may be anywhere between the 12th and 20th joints, after which there are ustually intervals of three or four joints between the successive syzygia. The lower arm joints are sharply welgeshaped, alternating from side to side, the later ones gradually beconing blunter. In some specimens the dorsal surface of the arms is unusually smooth, the joints not overlapping in the slightest degree; but in others the lower parts of the arms, about as far as the 25 th joint, are exceedingly rough. The distal edge of each joint is raised on the side next the pimnule into a high, somewhat recurved plate, with more or less serrated edges. This is largest about the 15th joint and gradually decreases in prominence, the joints after the middle of the arm being quite smooth. \(\dagger\) The arms of most individuals, whether rongh or smooth, are bordered throughout their whole length by a lateral expansion of the ventral perisome, which embraces the lowest joints of the pimules. \(\ddagger\) The first pinnules of the arms are rather loug, with well-marked terminal combs. The length gradually decreases till about the l0th brachial, and then begins to increase, but there is no specially small pinnule. The terminal comb may continue as far as the 10th brachial, or cease four or five joints sooner. The pimule joints may be almost smooth, or they may have strong projections towards the dorsal side, even to far out on the arms.
* This peeuliarity is a very marked one. In no case have I found a syzygy in the first joint of any arm springing from a radial axillary. The ten-armed forms thus belong to the type of Act. meridionalis. But individuals with \(12,13,15\), ete. arms are by no ineans rare, and furnish a complete transition to the large examples with 20 arms to which the specific designation (2mulchellu) by Pourtales is strikingly applicable.
\(\dagger\) This character is especially distinct in the Ant. alata of Pourtales from Barbados, and in several specimens, both ten- and twenty-armel, from Station 260 (St. Vincent). In other individuals from this station, as in those nanued Ant. pulchella (Pourtalis), the arms are perfectly smonth throughont their whole length.
\(\ddagger\) This is the elaracter which led Pourtales to give the specifie name alata to certain imlividuals dredged by the "Hassler" at Barbadns, in which it is esprecinlly. markel. It oecurs also, thongh less clistinctly, in the original specimens of Ane. mulchelle. I find it to be a rery variable one, even anong the ditferent arms of the same individual, some of which are webled and others not.

The mouth is radial, and the disk either bare or more or less covered with irregular calcareous concretions. Its diameter, in large specimens, is 12 or 15 millimeters, and the spread of the arms is about 25 centimeters. The color (in alcohol) varies greatly, - white, straw-color, and brown, either alone or more or less mixed with a dirty lilac.

The results of my examination of the "Challenger" and "Blake" collections, and of the numerous Comatula to which I had access in the various European museums last autumn, entirely confirm and extend the conclusions to which I had been previously led respecting the separation of Antelon and Actinometra as distinct generic types.* A glance at the skeleton is sufficient to enable me to distinguish the genus; and it is even possible to determine the genus of a mere arm fragment, or in fact of a single pinnule. For the problematical red spots (sacculi) at the sides of the ambulacra which have puzzled all the workers on Antelon are entirely absent in Actinometra. They are much more abundant in some Antedon species than in others, but they are always to be found by careful examination. They are also present in Ophiocrinus, Promachocrinus, Pentacrinus, Rhizocrinus, Bathycrinus, and Atelecrinus, all of which are types with a subcentral mouth. But I have never yet met with them in Actinometra, thongh some specimens of Act. pulchella seemed at first sight to be exceptions to this rule. Nicroscopic examination showed, however, that the appearances are due to irregular aggregations of brown pigment at the sides of the ambulacra, which are altogether different from the vesicular saceuli that are so puzzling in Antedon and in the other genera mentioned above.

On the other hand, there are certain structures which are peenliar to Actinometra, though far from boing as universal in their occurrence as the sacculi are in Autedon. I allude to the brown cellular bodies which I have supposed to be sense-organs. I found them first in some specimens of Act. polymorpha from the Philippines, \(\dagger\) and have since detected them in two of the "Challenger" species, also from the Eastern seas. They are confined almost exclusively to the middle and later pimmules of the ungrooved hinder arms, each one oceupying the dorsal half of a pinmule segment just beneath its calcareous axis. There are several individuals in a very large collection of Act. meriulionalis obtained at French Reef in 1869, which exbibit this peculiarity in a very marked degree. It also oceurs in a few individuals of the Cape Frio variety of this species, and

\footnotetext{
* Actinometra. Trans. Linn. Soc., Sec. Scr., Zől., Vol. II. pp. 17-20, \$1. §2. - Quart. Journ. Geol. Soe., Vol. XXXV1. pp. 41-43. - Proe. li. S., 1s79, p. 394.
\(\dagger\) Actinometra. Traus. Linn. Suc., Sec. Ser., Zoül., Vol. II. p. 40, Pl. 1I. Fig. ©.
}
is therefore of some importance as tending to indicate the specific identity of the examples from these two localities. In most specimens the spots are confined to the pinnules of the hinder arms, sometimes to one or two arms only; but in one case I found them on all the arms except the two immediately adjuining the mouth. As a general rule, the arms distinguished by their presence are of the ungrooved type, to which I have already called attention.* In some specimens the dimorphism of the arms is exceedingly marked, just as in Act. polymorpha. The anterior arms are long, slender, and composed of many joints bearing similar long and slender pinnules; while the hinder arms are shorter, fewer-jointed, and much more fleshy, with stouter pinnules, in which the genital glands are better developed than in the pinnules of the anterior arms. These are grooved and tentaculiferous, while the hinder arms have no ambulacral groove nor tentacles, and the pinnules are usually spotted with the "sense-organs." These may occur in Act. meridionalis as early as the 10 th pinnule of the arm, while in Act. polymorpha I have rarely found them lower than the 25 th pinnule.

In Act. meridionalis, as in all species of which I have been able to examine any considerable number of individuals, the presence of nngrooved arms and of "sense-organs" is altogether inconstant and irregular. But though it is in this way merely a potential character, it is one which is peculiar to Actinometra, and is therefore of some systematic value. On the other hand, there is a similar potential character, which so far as I have yet seen is peculiar to Antedon, though it appears to be constant in Pentacrinus. This is the existence of a complete calcareous plating at the sides of the ambulacra on the arms and pinnules. Many of the Antedon species dredged by the "Challenger" in the Pacific resemble Pentacrinus in having a very complete anambulacral plating on the disk ; \(\dagger\) while there is a donble row of plates along each side of the ambulacra of the arms and pinnules, especially of the latter. The side plates rest on the pinnule joints and support the covering plates, which can be made to overlap one another from opposite sides so as to close in the groove completely. \(\ddagger\) Several of the "Blake" Autedons, ineluding Ant. spinifera, exhibit these peculiarities better than some Pentacrinus species do. But I have never yet found them in any Actinometra. There are many species, such as Act. pulchella and Act. granulifera Pourt. sp.,

\footnotetext{
* Actinometra. Trans. Linn. Soc., Sec. Ser., Ziiol., Vol. II. Jp. 31-41, Pl. II. Firs. 3-6. - Popular Science Review, N.S., Vol. IV. Hp. 195, 199, Ml. V'I. Figs. 1, 2.
\(\dagger\) Proc. R. S., 1879, pp. 388, 389.
\(\ddagger\) Popular Science Review, N゙. S., Vol. IV. 1p. 195, 196, Гl. VI. Figs. 10, 12.
}
in which there is a considerable amount of anambulacral plating in the anal area; but it is usually rather of the nature of an aggregation of tubereles than of a regular pavement of plates, and I have never met with it so completely covering the disk and extending out on to the arm bases and lower pinnules as it does in Antedon. The species in which I have found it to reach its greatest development is a large one which is common at Cape York, and is probably identical with Act. robusta Lütken, MS. The plating supports the sides of the ambulacra on the disk and occupies the intervals between them, the plates immediately adjacent to the grooves being extensively pierced by the water-pores. The plating ceases, however, just within the circumference of the disk, so that the perisome of the arms and pinnules is perfectly bare, just as in the common Antedon species which inhabit the North Atlantic. This entire absence of side plates and covering plates on the arms and pinnules of Actinometra, even in species which have a strongly plated disk, is a very singular peculiarity, and one which I am quite unable to explain.

The principal differences between Antedon and Actinometra are conveniently summarized in the subjoined table.

Antedon.
Disk with central or subcentral mouth and five equal ambulacra.

Oral pinnules not specially distinguished.

All the arms equal in length, grooved, and tentaculiferous.

Red spots (sacenli) always present at sides of the ambulacra.
"Sense organs" wanting.

Pinnule ambulacra may be protected by side plates and covering plates.

Cirrhi many, sometimes very numerous, and more or less covering the under surface of the hemispherical, conical, or columnar centrodorsal.

Onter faces of radials relatively high, with large muscle plates, and mueh inclined to the vertical axis of the calyx.

\section*{Actinometra.}

Disk with eccentric month and a variable number of unequal ambulacra, at least two of which enclose the anal area in a horseshoe-shaped curve.

Oral pinnules have terminal combs.
Some of the hinder arms may be much shorter than the rest, ungrooved, and non-tentaculiferous.

Sacculi wanting.
Brown spots (sense organs?) may be present on the dorsal side of the pinmule segments, mostly in the ungrooved hinder arms.
linnule ambulacra (when present) unprotected by plates.

Cirrhi few in number, and almost entirely limited to the margin of the discoidal centrodorsal.

Outer faces of radials relatively wide. with small muscle plates, and nearly or quite parallel to the vertical axis of the calyx.

I have mentioned above that two Pentacrinoids were entangled in the cirrhi of the type specimen of \(A c t\). meridionalis from Charleston. They presumably belong to that species, and are therefore interesting as being the first Actinometra Pentacrinoids that I have scen. The smaller one is at about the stage represented at Fig. 1. B on Plate XXXIX. of Dr. Carpenter's memoir on Ant. rosacea; * while Fig. 1. C on the same plate, and Fig. V. on Tab. V. of Sars's "Crinoildes Vivants," \(\dagger\) correspond to the condition of the larger specimen, which has seven arm-joints beyond the radial axillaries. The oral plates of the former are plainly visible, but in the latter it is difficult to make out the condition of the disk. The radials, however, are broader and more closely united than in the corresponding stage of Ant. rosacea, and their superolateral angles are much less truncated. The basals form a closed ring, and the centrodorsal is scarcely larger than the stem-joints immediately below it. Five of these are short and discoidal, and the next joint much elongated. In both these respects the Charleston Pentacrinoids resemble Ant. Sarsii rather than Ant. rosacea. As in both these species the lower arm-joints do not bear pimnules at first, but, with the exception of the second brachial, do not acquire them until a much later developmental stage. Both in Ant. Sarsii and in Ant. rosacea the first pinnule appears on or about the twelfth joint of the growing arm ; and it is not until some time later, after several pinnules have been formed towards the end of the arm, that any appear, even on the second brachial. In fact, the basal portions of the arms of Ant. rosacea remain withont pimules until after the development of ten cirrhi on the centrodorsal and its separation from the stem. But in Ant. Sarsii, which retains its stem until twenty or thirty cirrhi have appeared, all the lower arm-joints acquire pimmules before the close of the Pentacrinoid stage. So far as can be judged at present, this appears to be a somewhat exceptional condition ; for I have found fire other species besides Ant. rosacea in which the third and the following arm-joints do not develop their pinnules until some time after the loss of the stem. Thus a very young Act. meridionalis has a relatively large well-combed pinnule on the second brachial, and another fairly large one on the eighth brachial. The intervening joints have small or poorly developed pinnules, that of the fifth brachial being either a mere stump or absent altogether. In a young Autedon from Station 231 the 7 th to the 9 th arm-joints have no pinnules. A young example of another species of the same grenus (locality monown) has a large pinnule on the

\footnotetext{
* I'hilosophical Transactions, CIJV., 1866.
\(\dagger\) Mémoires pour servir à la Commaissance des Crinoüles V'ivants. Christiania, 1868.
}
second brachial, and a small stump on the third. Neither the 4th nor the 5 th joint has a pinnule at all, but there are small ones on the 6 th and 7th joints, and a larger one on the 8 th, which was probably the first pinnule to appear at all.

I have sometimes found that the different arms of the same young individual have reached different stages of development. Thus, in a young Antedon from station 232, one arm has large pinnules on the 2 d and 16 th joints, smaller ones on the 3 d to the 6th, and mere stumps on the rest of the intervening joints. On other arms, however, there are no pinuules at all between the 4th and the 15 th joints. Again, in a young Ant. phalangium from the Mediterrancan, some arms have no pinnules at all between the 2 d and 10th joints; while in one arm there are pimules on \(2,4,6\), and 10 , but none on \(3,5,7,8\), or 9 . This would seem to show that, when the basal pinuules of this species do begin to appear, the first-comers are those borne by the even-numbered joints on the outer side of the arm.

Hence, whatever be the order of succession of these basal pimnules inter se, there is good reason to believe that their late appearance as a whole is a marked developmental character among the Comatulce. This is a point of some importance, as will be seen immediately.

During the Gulf Stream Expedition of 1869, Mr. Pourtales dredged two small ten-armed Comatulce in 450 fathoms, off Cojima, on the coast of Cuba. They were described by him under the name of Antedon cubensis;* but the description given by him only applies to the larger and more perfect specimen, which differs considerably from the smaller and much mutilated one. Mr. Pourtales seems to have recognized that the two were different, for in his description \(\dagger\) of the Crinoids obtained by the "Blake " Expedition of 1877-78, he wrote as follows:-"To this species (i. e. Ant. cubensis) I refer provisionally two specimens very much mutilated, having lost the cirrhi and the arms, differing somewhat from my type specimen, but possibly the differences may be due to age." He then described a specimen dredyed at Station 43, in 339 fathoms (to which I shall refer directly), and added that a smaller, equally mutiated one had been previonsly dredged by himself in 450 fathoms, near Havana (Fig. 7).

These two specimens are quite different from the trpe of Ant. cubensis. Not only are the first radials visible and the second but little shorter than broad, as was mentioned by Mr. Pourtales, but the first radials are

\footnotetext{
* Bull. Mus. Comp. Zü̈l., Yol. I. No. 11, 1. 356.
t Ibil., Vol. V. No. 9, 111. 214, 215.
}
separated from the centrodorsal by a complete circlet of basals, and there are no pinnules upon any of the first six arm-joints, which are the only ones preserved. An equally mutilated specimen was dredged by the "Challenger" in 350 fathoms, near Pernambuco, and more perfect ones were obtained off Nevis, St. Lucia, and Grenada during the cruise of the "Blake" in 1878-79 (Stations 150, 151, 222, and 260, depths 291-375 fathoms). In most individuals the first pinnule is borne by the 12th arm-joint (Figs. 1, 2), but in one arm of one individual it occurs as early as the 10th joint. In no case, however, is there any pinnule on the second brachial.

This type is one of singular interest. With the exception of the doubtful genus Comaster,* no recent Comatula yet known retains its embryonic basals on the exterior of the calyx after the latter part of its existence as a "Pentacrinoid"; while there is no known Comatula, either recent or fossil, in which the basal circlet is complete, as it is in some Pentacrini,\(\dagger\) and in the earlier stages of the Pentacrinoid larva.

As regards the characters of its calyx, therefore, this new Comatula may be considered as a permanent larval form. The absence of pinnules from the lower portions of the arms points to the same conclusion ; and it is not a little singular to find these tro larval characters (viz. a closed basal circlet and pinnule-less arm-bases) persisting in recent Comatula. The combination seems to me sufficiently remarkable to justify the establishment of a new genus, which I propose to call Atelecrinus. \(\ddagger\)

The original specimen from Cuba (Fig. 7) is so different from those obtained later (Figs. 1, 3), that it should, I think, be regarded as a distinct species, and may retain the name cubensis, originally couferred upon it by Mr. Pourtalès. The other species I propose to name balanoides, in allusion to the peculiar form of its centrodorsal (Figs. 1, 3), which was well described as acorn-shaped by Mr. Pourtalès. It may be as much as 5 mm . long by \(3 \frac{1}{2} \mathrm{~mm}\). in diameter, and bears five double rows of cirrhus-sockets, which are separated near its upper end by slight interradial ridges and do not quite reach the dorsal pole. Each socket has a horseshoe-shaped rim which is much more strongly marked in some specimens than in others. The arch of the horseshoe is directed upwards, and the two culs are frequently turned somewhat upwards and outwards, so that the surface of the centrodorsal has a very rough appearance. This is more marked, however, in Atelecrinus cubensis (Fig. 7).

\footnotetext{
* Journ. Linn. Soc. Zoül., Vol. XIII. pp. 45t-456.
† Ibid., Vol. XV. pp. 210, 213-215.
\(\ddagger\) àe \(\begin{aligned} & \text { hrs, } \\ & \text { incomplete. }\end{aligned}\)
}

In none of the specimens are the cirrhi preserved entire. They are long and slender, consisting of \(30+\) joints, the lowest of which are quite short; but from the fifth or sixth onwards they are very long ( \(2 \frac{1}{2} \mathrm{~mm}\).) and tolerably equal (Fig. 1).

The extent of development of the basals varies with the size of the individual, apparently diminishing with age as in ordinary Comutula. In the smallest specimen they are wide but low pentagons, which fall away very rapidly from their interradial apices to the points where they meet one another beneath the radials. The middle of each basal rests on the top of one of the interradial ridges at the upper end of the centrodorsal (Figs. 4, 5), just as the basals of Pentacrinus rest on the upper ends of the interradial ridges of the stem. The pentagonal shape of the basals is still traceable in the slightly older specimens which are the originals of Figs. 1 and 3 ; but in still older ones, just as in the Pentacrinoid of Antedon rosacea, the amount of the first radials which is visible on the exterior of the calyx, becomes relatively less and less, and the same is the case with the basals. These are best described as triangular, with their lower angles extended so as just to meet those of their fellows and separate the radials from the centrodorsal by what is practically little more than a line, only visible at all under specially farorable conditions of light. In fact, I believe that even this is absent in parts of some of the specimens, the radials coming into partial contact with the centrodorsal just as in Pent. asteria.

The acorn-shaped centrodorsal of Atelecrinus balanoides is nearly as deep as it is high. The opening of its cavity has a narrow pentagonal rim, from the interradial angles of which strong ridges descend the sloping walls, diminishing in size as they approach the apex, where they die away without mecting one another (Fig. 5). The large openings of the cirrhus sockets are visible between them. Owing to the manner in which they project inwards, the centrodorsal cavity has a five-lobed shape, the re-entering angles between the broad but short lobes corresponding to the interradial ridges. The large upper ends of these ridges are somewhat hollowed, as are the lower surfaces of the basal plates which rest upon them (Fig. 4). When seen edgeways each of these plates has the form of a short triangular prism, with a flattened platelike extension on each side (Figs. \(6 a, 6 b\) ). They are in complete contact laterally, so as to form an unbroken ring around the eentral opening of the calyx, which is not quite so large as is shown in Fig. 4; for it is encroached upon by excessively delicate processes that project inwards from near the lateral margin of each basal. Owing to their extreme
fragility, - the "rosette" of a small Antedon being massive in comparison, - I found it impossible to preserve them intact; but their position is indicated in Fig. 6 b.

There is nothing specially remarkable about the radials and the lowest arm-joints of Atelecrinus, but the arm-joints generally are somewhat peculiar in their characters. They are rather longer than in most Comatula, and have shallower bodies, while the muscle plates which rise from about the middle of each joint are unusually thin. There is, in consequence, a series of large gaps between the muscle plates of successive joints, which are occupied by correspondingly large muscular bundles (Figs. 1, 2, 7). These are not concealed from view by superficial perisome as they are in ordinary Comatula ; but the food-groove lies close down upon and between the muscles, all the structures connected with it being very much reduced and contracted together, as I have sometimes found to be the case in Ant. rosacea. At the sides of the groove are a few scattered "sacculi" (Fig. 2). The pinnules which are borne by the twelfth and following joints are comparatively short and styliform, and are composed of ten or twelve elongated joints. Their ambulacra are more spotted with "sacculi" than those of the arms, and are fringed with tentacles, of which I have as yet found no traces on the arms.

The following are the chief points of difference between Atelecrinus cubensis and A. balannides. In the former species (Fig. 7) the base of the centrodorsal is much wider relatively to its height than in the latter (Figs. 1, 3) ; the cirrhus sockets are more closely packed, and the points of their horseshoe-shaped rims more prominent ; while the five processes at the ventral rim which support the basals are more strongly marked than in any specimen, large or small, of Atelecrinus balanoides. In correspondence with this feature, the shape of the basals is very different in the two species. In the little A. cubensis they form a kind of belt of tolerably uniform height with its interradial angles somewhat produced, which everywhere separates the first radials from the centrodorsal. The second radials are squarer, and the axillaries project rather more into them than is the case in A. balanoides; while the first brachials are relatively shorter, the second longer and projecting more into the first, and the three following joints also relatively longer than in the larger species.

Taking all these facts into consideration, I think it rery probable that we are dealing with two distinct species. Althongh Pourtales's original specimen (A, cubensis) is very considerably smaller than those ohtained
more recently, its centrodorsal bears quite as many cirrhus sockets as theirs do, or even more. This rather indicates that it is not merely a premature form, as one might be inclined to regard it, owing to the relatively greater length of its arm-joints.
The peculiarities of Antedon columnaris are almost sufficiently obvious in Fig. 8. I can find no traces on its columnar centrodorsal of any sutures which would indicate its composition out of two or more anchylosed joints. In fact the alternating arrangement of its cirrhus sockets indicates the improbability of such an anchylosis. They are disposed in five double rows separated by interradial ridges, at the tops of which minute basals are visible, just as in Pentacrinus asteria. The lower end of the column is somewhat concave, but appears to be completely closed and devoid of any central perforation. The loose arms obtained with the calyx are rather large and massive, and resemble those of Atclecrinus in having the ambulacrum close down upon the top of the large muscular bundles.

In conclusion I may mention that many of the Comatula I have examined were the hosts of Myzostomilla. The Gulf Stream dredgings of 1867-69 yielded these curious parasites at five stations. They were also obtained on the Yucatan Bank, and at two other localities during the "Blake" expedition of 1877-78, and at fourteen stations between Montserrat and Grenada in 1878-79. Twenty specimens were dredged at No. 269 (off St. Vincent), where Comatula were very abundant. Captain Cole's haul off St. Lucia also yielded oue specimen, and I fonnd another on the Actinometra sent to the Copenhagen Museum as Antedon Hagenii. The Actinometra brought from Yeddo by Prof. E. S. Morse also furnished an example. All the Mysostomida have been sent, together with those from the "Challenger" dredgings, to my friend, Prof. L. Graff, of Aschaffenburg, who has added so much to our knowledge of the European species.

\section*{EXPLANATION OF THE PLATE.}

Figs. 1-6. Atelccrinus balanoides not. gen. \& sp.
Fig. 1. The best specimen obtained (No. 151, off Nevis). The first pinnule visible is on the 13th brachial, that borne by the 12th brachial being on the opposite side of the arm, and therefore out of sight. \(\times 4\).
Fig. 2. Portion of an arm between the 10 th and 18th joints, showing the absence of pinnules as far as the 11 th joint (inclusive). \(\times 4\).
Fig. 3. Side view of the calyx of another specimen. \(\times 8\).
Fig. 4. Radials and basals from beneatl. The minute processes at the central ends of the basals are omitted. \(\times 10\).
Fig. 5. The centrodorsal from above. \(\times 10\).
Fig. 6. A single basal (without its central processes). a. From the outer side. b. From above. \(\times 14\).

Fig. 7. Atelecrinus cubensis. Pourt. sp. A single specimen dredged by Mr. Pourtalès, in 1869, off Cojima, near Havana, in 450 fathoms. \(\times 8\).
Fig. 8. Antedon columnaris n. sp. No. 222, off St. Lucia. \(\times 4\).


Ber mau \& Wignley de. et. . .

> No. 5. - Observations on the Species of the Genus Partula Fér., with a Bibliographical Catalogue of all the Species. By William Dell Hartman, M. D.

The genus Partula, proposed by Baron Férussac, in 1819, at the present time embraces numerous species, encumbered by synonyms and manuscript names. This catalogue has been prepared with a view to indicate the former, as well as to eliminate and define the status of the latter, hoping in the future to be enabled to indicate a full and correct synonymical catalogue of the genus, together with a new arrangement of the species. Prior to his decease, the late William Harper Pease was engaged in the preparation of a monograph of the genus Partula, in which he designed describing and figuring all his new species. In anticipation of this work, he freely distributed his manuscript and published species amongst institutions and private collections. Since that time the names of many of the former have bcen incorporated into printed catalogues, thereby creating confusion in synonymy, and hence it was deemed proper to notice all such in these pages. The large collection of Mr. Pease having, by purchase, passed into the possession of the Muscum of Comparative Zoölogy, Cambridge, through the favor of Professor Agassiz of that institution I have been enabled to trace his published and manuscript species with a considerable degree of accuracy. I have also been favored by Andrew Garrett, Esq., of Huaheine, (who collected for Mr. Pease, and was familiar with all his species,) with all the species and varicties of Mr. Pease from the islands the maps of which accompany this paper. In the year 186t, the Rev. P. P. Carpenter published in the proceedings of the Zoulogical Society a catalogue of Partule with synonyms, chiefly those of Mr. Pease, which contains numerous incorrect determinations. Mr. Gloyne has also published a partial list of Partule in the Quarterly Journal of Conchology, which contains several synonymical inaccuracies. In the proceedings of the Zoülogical Society for 1871 , the late William H. Pease published a eatalognc of the Polynesian Partula, numbering over sixty species. In this list he has omitted twenty-sevelı species, which embraced all his manuseript, together with a few of his published species. These omissions, it
vol. ix. - No. 5.
is to be supposed, he regarded at that time as obsolete, or synonyms of known species.

Dr. Pfeiffer, in Vol. VIII. of his Monographia Heliceorum Viventium, has enumerated one hundred and four species, but marks thirteen species of Mr. Pease as unknown to him. This is surprising, as the species of Mr. Pease, both manuscript and published, were freely distributed over Germany long before this publication, through the Museum Godeffroy and private channels. The institution named has published a partial list of Partulæ, embracing some of the manuscript species of Mr. Pease. Dr. Pätel in his catalogue has also enumerated about thirty-six species of Partula. Mr. Pease designated about eighty species and rarieties of Partula by descriptions, figures, and manuscript names, many of which, however, are synonyms of known species.

The stations of Partula, as published by Mr. Pease and Dr. Pfeiffer, in many instances are incorrect or entirely omitted. These omissions and inaccuracies are often very embarrassing, but in some instances they are attributable to the shells having been collected by missionaries, mariners, and others, who carried them from one island to another until their identity of station was lost or forgotten ; and in this manner species belonging to Tahiti or the Marquesas have been erroneonsly accredited to the Sandwich or other islands. In the present catalogue, Mr. Garrett vouches for the correctness of all the stations to which his name is attached.

So far as known, the genus is confined to the Pacific Islands. They have never been found at the Sandwich group, or New Caledonia; its western limit is New Guinea, and they are not found in New Zealand or Australia. North of the equator, they are found at the Pelem Islands, and as far north as Guam in the Ladrone Islands. The New Hebrides and Solomon's Island have afforded a few species almost unknown to collections in this country. The metropolis of the genus is situated in the Polynesian Islands, but few species being found in the islands of other groups. Of these the island of Raiatea, having a length of fourten miles and a breadth of three to four miles, is principal: about thirty species and varieties are accredited to this island alone. "The different species are confined to small areas, or restrieted to single valleys, each of which has its specific centre, and the range of many species is quite eireumseribed. When a species has migrated to an adjoining valley, it has retained all the specific characters belonging to its ancestors at the centre of distribution. Certain species and varieties are confined to separate valleys. P. Helve Pse, will be found in one
valley, while P. globosa Psc. Mss. = Hebe var. will be found in a remote valley. P. hyalina Brod. and P. faba Mart. range through all parts of the islands where they occur. The island of Bora-bora, eighteen or twenty miles northwest from Raiatea, should, from its size as compared with other islands, produce five or six species. On the contrary, it produces but a solitary species, P. lutea Less., which is remarkably uniform in its specific character, and widely distributed over the island. P. hyalina Brod. has the widest range of any other species inhabiting the Polynesian Islands ; it has spread over Tahiti, and is abundant at the Austral group, over three hundred miles sonth of the former island. It is also found at Mangaia, one of Cook's Islands, five hundred miles southwest of Tahiti. The Polynesian group, in which the greatest number of species occurs, comprises cight islands, six of which are inhabited by more than half of the known species of the genus. The distance of these islands from each other is from ten to ninety miles. The former distance is between Tahiti and Moorea, and the latter separates Moorea from Huaheine. Tahaa and Huaheine are only three or four miles apart, but are enclosed in the same encircling reef, and may be regarded as one island separated into two by more or less shallow water. Tahaa is inhabited by two or three species comprising two or three distinct types, which are also represented on Raiatea, but not elsewhere. Bora-bora is ten miles from Tahaa, and, as before mentioned, possesses but a siugle species. Notwithstanding the short distance between the several islands, and the constant intercourse of the inhabitants for hundreds of years, not a single instance has come to my knowledge of a specics having been introduced from one island to another." *

Hybrids are common amongst some specics, and rare with others. They even occur between arboreal and gromnd species. As to the amount of fertility existing amongst hybrids, we possess no certain data, but to these intermediate forms is to be ascribed the embarrassment which so often besets the concholoyist in the determination of species. As was to be expected, the hybrids in my collection are chiefly the result of the union of proximate species. I possess three which partake of the mingled characters of \(P\). crassilabris Pse. and P. bella Pse. Mss. = Hebe var.; one between I'. affinis Pse. and I'. rubescens Rev. \(=\) Otaheitana var. ; two hetween P. radiata Pse. Mss. and P. faba Mart. ; several between P. vinginea Pse. Mss. and I'. amanda Garr. Mss. \(=\) faba var. ; three between \(P\). virginea \(P^{\prime}\) 'se. and 1 '. duhia Garr. Mss.; two between P. virginea Pse. Mss. and P. dentifuril l'se.,

\footnotetext{
* Garrett in litt.
}
several between P. Garrettii Pse. and P. Thalia Garr. Mss. ; two between P. faba Mart. and some unknown species; besides a few others which I cannot locate.

Like many other Terrestrial Mollusks, Partulæ are known as Viviparous Hermaphroditos, and on this account they may differ from bisexual animals, in producing hybrids more or less fertile ; and we may hazard the conjecture that some varieties of Partula originally may have resulted from fertile hybrids, being the first step in the formation of a race, afterwards intensified and rendered permanent by confinement to the food and climatic influences of one station, and to having been bred in and in, in such positions, for a long period. With respect to the mutation of species of Mollusca caused by food and station alone, we have a striking iustance in the Achatinellas of the Sandwich Islands, a genus in many respects analogous to Partula. It often happens that "the gravid females are washed by heary rains from a favored position to drier levels, where after a few generations the progeny become depanperated, and so stunted in size as to be mistaken for distinct species." The distribution of the different species of Partula throughout the Pacific islands in some instances is not correctly ascertained; and before we can pronounce with certainty on the stations occupied by some species, we must await a more thorough exploration of these islands, the conchology of which has not been accurately observed.

Andrew Garrett, Esq., of Huaheine, who has resided and collected for many years in the Polynesian Islands, contends "that, as the different varieties of Partula are found in limited areas, all those exhibiting slight but constant differences should in most cases be acknowledged as distiuct species." To this end he has kindly prepared the accompanying maps to illustrate their distribution. The names underlined on the maps indicate their metropolis or specific centre. A double line marks the locality of a ground species. Partula, like Trochomorpha, Nanina, Helicina, Succinea, and some other Terrestrial Mollusks in tropical commtries, are divided into Arboreal and Terrestrial species. The former being found during the dry season gummed to the leares and bark of trees, while the latter are found at all times under decayed wood and leaves. "The character of the animals affords but little aid in the determination of species. In those of P. arguta Pse., P. turgida Pse., P. annectens l'se., aud P. gracilis Pse., the exudation of mucus is much more viscid and tenacious than in other species. The ocular tentacles in these are longer and more slender, and the colors of the soft parts as seen through the pellucid shells are more variegated, than in the solid
species. .... The animals of the arboreal species are lighter-colored than the terrestrial. The color of the animals in all the solid species varies from a pale cineroous, through all the intermediate shades of black, to dusky slate, while the thiu-shelled species before mentioned are more or less of a luteous color." * The shells of many species of Partula vary in size, weight, and coloration. When numbers of these apparent varieties are compared, aided by a microscopic examination of the surface of the shell, their specific identity is obvious. Some Partulæ may readily be mistaken for small Bulimi, especially that division of the genus in which the pillar tooth is absent, and the lip not broadly reflected, and concave, as in P. rosea Brod. In other species the lip is widely reflected, thick, and flat, often with a large pillar tooth within, which gives the aperture an auricnlar appearance, as seen in P. auriculata Brod., constituting two natural divisions of the genus, the Auriform and Buliminoid, which are divisible into sub-groups.

Partulæ differ from Bulimi in having the columella broadly reflected and compressed at base, leaving an umbilicus of variable size, whilst a few are imperforate, or narrowly umbilicate, and many species constantly exhibit a small tubercle on the columella. The spiral strix of the surface together with the embryonic fovea of the apex of the shell are formd in all the species. Some species are constant in form and color, and also in the presence or absence in the adult of a denticle on the columella and a pillar tooth, whilst other species are more variable, especially as regards the latter feature. In P. spadicea Reve, only one specimen in fifty has a pillar tooth, while in others the tooth is not absent in several hundred specimens. The same variation is observable in sinistral Partule. P. Mooreana nohis is both sinistral and dentate in fifteen hundred examples. P. Otaheitana Brug. and varieties exhibit a majority of reversed examples, while P . vexillum Pse. has one in fifty and P . affinis Pse. only shows one in several hundred. \(\dagger\)

In sinistral examples, the whorls are either excessively drawn out, as in P. bulimoides Less.,' P. rubescens Rve., and P. perversa Pse. Mss. \(=\) Otaheitana Brug.; or they are closely rolled together, as in P. crassa Pse. Mss. and P. brevicula Psc. Mss. = P. Otaheitama vars.

In the auriform division of the gemus the lip of the immature shell is at first concave, the outer margin in the early stages partaking of the color of the epidermis. This concavity and coloration disappears as the

\footnotetext{
* Garrett in litt.
\(\dagger\) I possess a sinistral example of Patula Cooperi W. G. Biun., from Colomdo, selected from bushels of dextral specimens.
}
nacreous deposit increases with age, the thick flat labium and elevated pillar tooth always indicating maturity.

The mature reflected lip of Partula always exhibits numerous interrupted microscopic lines, rumning in the direction of the peritreme. In all thin-shelled species the surface is more thickly crowded by the wared spiral strix, common to all the species, than in the heary and thick-shelled varietics : in the latter, they are not so conspicuous, partly owing to the decussation of the more coarse oblique lines of growth.

The shells of the same species of Partula often vary in color. Albiuism is often present ; but the species vary throngh all the shades of dark bay to pale or reddish chestnut, greenish yellow, rufons, hyaliue, and white.

The colors, which are deposited ly glands on the margin of the mantle, are not found in the embryo, but after extrusion and exposure to light and heat the colors appear ; and owing to the latter influcnces, the arboreal species are more beantifully marked than the terrestrial. The colors of the shell are arranged in streaks, rays, or bauds, the latter varying in number and width, while the former follow the direction of the whorls, becoming wider as the shell increases. Like Achatinclla, some species possess a white sutural line beneath the whorls of the spire, and the uniform dark purple or rose tint of the apical whorl is a marked feature in the coloration of many species. In the embryonic shell the fine spiral strix of the epidermis at the apex (when viewed by a glass) are seen to consist of spiral rows of furea, or separate depressions in the epidermis, which occupy the first one and a half or two whorls (the usual number they possess when extruded from the oviduct). After birth the fovere are discontinued ; but we see in their stead the fine spiral waved strix common to all the species, the embryonic fovere always remaining at the apex of the shell, constituting a generic feature common to all Partulæ with which I am acquainted. In Partula, as in some species of Helix, Bulimus, Achatinella, and many viviparous fresh-water genera, as Paludiua and Lanistes, we meet with what are termed sinistral or reversed individuals. We can only conjecture as to the cause of this departure from the more usual conformation; but it may be owing to a reversal of the vital forces acting during the segmentation of the yolk of the eqge in the early stages of the formation of the embryo. The egys of the common garden slug (which are almost transparent, and afford grood material for observation) a short time nfter depusition exhibit the germinal vesicle (which lies in the midst of the yolk) rising to the upper part, where a distinct rotation may be seen; after which it under-
goes segmentation, and the germ appears. The rotary motion, which is probably due to ciliary or vital action, consists of two or three turns in one direction and the same number in a reversed one ; and in this reversed vital action during segmentation of the yolk of the egg may lie the secret of sinistral or reversed shells. Several years ago I received from Mr. Garrett a number of species of Partula in alcohol. These I presented to William G. Binney, Esq., of Burlington, New Jersey, well known to scientists for his work on the anatomy and lingual dentition of Terrestrial Mollusks; and his observations on Partula are reported in the Proceedings of the Academy of Natural Sciences, Philadelphia, for April, 1873, which may be epitomized in this place as follows: "In the examination of the animals of twentythree species of Partula he not only found the external characters to agree generically, but the peculiarity of the lingual dentition was constantly exhibited. Nothing remarkable was observed in the nervous, respiratory, or alimentary systems." "The jaw differs in the different species in the more or less atteuuation of the ends, and also in the number of plates of which it is composed. The lingual membrane is broad, and the denticles vary in size and number in the different species, as in other Terrestrial Geophila. Excepting that some of the membranes had narrower teeth than others, he found no difference in then. The Genitalia differed somewhat in the different species, illustrations of which accompany the paper. Férussac's observations concerning their viviparous character were confirmed, but he had overlooked the fact that the animal possessed the two inferior tentacles."

Through the kindness of Professor Dall I have received some Partule in alcohol from the Smithsonian Institution, some of which I have submitted to a microscopical examination of the jaw and lingual dentition. I find the number of plates in the jaw on each side of the median line varies in the same species, as well as in the different species, agreeing in this respect with other terrestrial Geophila. For example, in P. subangulata Pse. Mss. = P. faba Mart. var., the formula was \(\frac{3}{\frac{3}{8}}\),
 the formula was \(\frac{35}{3} \frac{3}{6}, \frac{3}{4} \frac{2}{2}, \frac{36}{3}, \frac{26}{3}, \frac{36}{3}, \frac{36}{3}, \frac{36}{4}\). Of P . vexillum Pse., P. Ganymedes Pse., and P. inflata Rve., I possess but one specimen each. In P. vexillum the formula was \(\frac{30}{30}\); in P. Ganymedes, \(\frac{38}{3}\); and in P. inflata, \(\frac{3}{3}\) T. The form of the teeth and dental formula in P. Ganymedes and \(P\). iuflata are similar, the only difference being in the number of rows on each membrane. The shape of all the jaws agreed with the figure of Mr. Bimey. Whether the number of plates in the jaw or the
number of denticles on the lingual membrane depends on the age of the individual, I am not prepared to affirm. The shells, however, from which my examples were taken were all mature, which is always indicated by the thick, flat, and fully expanded lip. In the examination of the lingual membranes, not only of Partula, but of all other Gasteropods, it is noticeable that the denticles of the anterior extremity of the lingual membrane are always more stont and prominent, gradually diminishing in size towards the posterior part, where for several rows the denticles become almost obsolete, presenting at last a mere rudimentary appearance. In preparing a lingıal membrane for a slide it may be observed that the denticles at the anterior extremity always separate more readily from the membrane. This, taken in connection with their gradual diminution in size, has suggested the query in my mind whether the wear and loss of the anterior denticles were supplied by a constant renewal of those from behind. From the continued presence of rudimentary denticles in varying stages of growth on the posterior part of the lingual membrane of all Gasteropodous Mollusks, whether terrestrial, fluviatile, or marine, which I have examined, it would seem probable that the mode of growth is such as I have indicated.

To Andrew Garrett, Esq., of Huaheine, who for many years has collected in the various islands of the Pacific, I am under many obligations for specimens and information in reference to the stations and distribution of Partulæ, together with other facts of his personal observation embodied in this paper. To the Conchological Department of the Nuseum of Comparative Zoölogy, so ably represented by Prof. Charles E. Hamlin, I am indebted for the opportunity of examining the collection of Partulæ belonging to the late William Harper Pease, and also for his kindness in selecting a suite from the duplicates in the Museum. To the personal friendship of Professor Baird, seconded by his efficient assistant, Professor Dall, I owe many thanks for the opportunity afforded me of examining the collection of Partula contained in the Smithsonian Institution. To Edgar A. Smith, F. Z. S., Assistant Conchologist in the British Museum, I am under obligations for his kindness in comparing my specimens with types in the Museum, and for valuable information pertaining to the same.

For specimens I am indebted to many frionds, among whom I may mention A. D. Brown, Esq., of Princeton, New Jersey; Rohert Damon, Esq., of Weymouth, England; Mr. Robert F. Geale, formerly with Hugh Cuming; G. B. Sowerby, Jr., Esq., of London ; and Dr. Schmeltz, of the Museum Godeffroy, Hamburg.

To Mr. Geo. W. Tryon, Jr., Curator of the Conchological Department of the Academy of Natural Sciences, Philadelphia, I am especially obliged for his uniform courtesy in aiding me in the examination of books and specimens belonging to the Academy.

\section*{GENUS PARTULA FERUSSAC. 1819.}

Helix Mïll. - Otis Humph. - Auris Chem. - Bulimus Brug. - Volute Dill. Partulus Beek. - Partula Pfr., W. H. Pease, O. Semper, W. G. Binney.
[All species marked with a dagger are embraced in my collection - Species are printed in Small Capitals; synonyms, in Italics.]
P. abbreviata Mouss., J. C., xvii. p. 339, pl. 15, f. 7, 1869. Island Tutuila, Gräffe.
† P. abbreviata Pse. Mss. (non Mouss.), Mus. Godeff. Cat., v. p. 91, 1874. Island Raiatea, Garr. \(=P\). Thalia.
\(\dagger\) P. actor Albers, (Partulus) Helicien, p. 87, 1850. Belcher Island.
P. adusta Garr. Mss. in litt. Tahiti, Garr.
\(\dagger\) P. affinis Pse., A. J. C., iii. p. 224, 1867, Tahiti, Garr. \(=\) lignaria. This shell is variable in size and color; it is often confounded with small dextral examples of P. Otaheitana; some are more clongate than others, while a few are almost globose. In the Pease collection, a few of the latter were labelled by him P. bacca, Pse. Mss. The pillar tooth is often absent, and the shell is usually smaller in size than depauperated examples of P. Otaleitana, of a dark bay or rufons color, often with darker oblique strix, and occasionally with a dark-brown band at the periphery. The surface is always smooth, looking as though it had been oiled. All specimens of P. rufa from correspondents \(=P\). affiuis; the former is said to occur in the Caroline Islands.
\(\dagger\) P. alabastrina Pfr. (Bulimus), P. Z. S., p. 39, 1856. Fiji Islands, Geale. Solomon's Island, Cox.
\(\dagger\) P. alternata Psc. Msss., Moorea, Garr. = P. suturalis Pfr.
\(\dagger\) P. amabilis Pfr. (Bulinus), P. Z. S., p. 38, 1850. Tutuila and Anaa Islands, Taliti, Garr. \(=\) P. Otaheitana var.
P. amanda Garr. Mss., Tahaa, Garr. = P. faba var.
\(\dagger\) P. annectens Pse. (Bul.), P. Z. S., p. 671, 1864. Huaheine, Garr.
\(\dagger\) P. approximata Pse., Mus. Goleff. Cat., v. p. 207, 1574. Raiatea, Garr.
\(\dagger\) P. arguta Pse. (Bul.), P. Z. S., p. 670, 1564. Huahcinc, Garr.
† P. assimilis P'se., A. J. C., p. 230, pl. 15, f. 2S, 29, 1867. Raratonga, Garr. This shell may prove to be a local variety of \(P\). varia.
\(\dagger\) P. attenuata Pse, P. Z. S., p. 6i2, 1864 . Raiatea, Taliti, Garr.
P. Australis Brug. (Bul.), Encyc. Meth., i. No. \(83,1792 .=\) P. faba.
\(\dagger\) P. auriculata Brod., P. Z. S., p. 33, 1832 ; also Conch. Icon. Mon. Part., pl. 2, f. \(11^{\text { }}, 11^{\text {b }}, 1849\). Tahiti, Garr.
P. bella Pse. Mss., Pätel Cat., p. 104, 1873. Raiatea, Garr \(=\) P. Hebe var. This shell has been widely distributed as P. bella Pse. Mss. The true P. bella Pse. is claimed for the next species.
\(\dagger\) P. bella Pse. Mss. In Coll. A. N. S. Phila. ex auctore \(=\) P. Amanda Garr. Mss. \(=\) P. faba var., Raiatea. This shell was deposited in the A. N. S. by Mr. Pease, long anterior to the date of Pätel's Catalogue.
\(\dagger\) P. biangulata Pse. Mss., Coll. Pse. = P. faba var.
\(\dagger\) P. bicolor Garr. Mss. in litt. Huaheine, Garr. = P. varia var.
\(\dagger\) P. bicolor Pse., P. Z. S., p. 473, 1871 ; also A. J. C., vii. p. 26, pl. 9, f. 4, 1872. Guam.
\(\dagger\) P. bilineata Pse., A. J. C., ii. p. 201 ; id., iii. p. 81, pl. 1, f. 10, 1866-1S67. Tahaa, Garr.
\(\dagger\) P. Brazieri Pse., A. J. C., vii. p. 27, pl. 9, f. 5, 1872. Island Tutuila, Brazier ; specimens in A. N. S. Phila. ex auctore \(=P\). Turneri.
\(\dagger\) P. brumalis Rve., Conch. Icon. Mon. Part., species 2, pl. 1, f. 2, 1849. Ponape \(;=P\). Guamensis.
\(\dagger\) P. brevicula Pse. Mss., Coll. Pse. = a short sinistral P. Otaheitana, Tahiti.
\(\dagger\) P. brunnea Pse. Mss., Coll. Pse. = a dark elongated variety of P. faba.
\(\dagger\) P. bulimoldes Less., Voy. Coq., p. 326, 1829. I have no hesitation in pronouncing upolensis, canalis, semi-lineata, and conica varieties of this species.
\(\dagger\) P. Caledonica Pfr. (Bul.), P. Z. S., p. 387, 1861. New Hebrides. = Pfeifferi \(=\) P. Nacgillivrayi. So far as I have been able to secure specimens of these species, it would seem that the two former are slender or depauperated varieties of the latter.
\(\dagger\) P. calistoma Smeltz, Mus. Godeff. Cat., v. p. 507, \(1874=\) callifera.
\(\dagger\) P. Calypso O. Semper, J. C., xiii. p. 417, pl. 12, f. 5, 1863. Pelclilu. This shell, together with P. Thetis and P. Leucothoe, are all from one island; the figures are all of one type, differing only in size and coloration.
\(\dagger\) P. canalis Mouss., J. C., xiii. p. 132, 1869. Tulare, Upolu, Garr. = Bulimoides, yellow sinistral variety.
\(\dagger\) P. callifera Pfr., P. Z. S., p. 333, 1856. Raiatea, Garr.
P. Cepolensis Mouss. Mss., Patel, Cat., p. \(83=\) Upolensis.
\(\dagger\) P. Carterensis Quoy et Gaim, (Helix), Voy. Astro., ii. p. 117, pl. 9, f. 10, 11, 1830. Specimens of P. spadicea are sometimes coufounded with this species. P. Carterensis is more solid and slender, the spiral strix are almost obsolete, and more widely separated than P. spadicea and varieties. In the former, the denticle on the colunclla is absent, while in the latter it is always preseut.
\(\dagger\) P. castanca Garr. Mss. in litt. Faaloa valley, N. E. coast of Raiatea, Garr. = P. terrestris.
\(\dagger\) P. citrina Pse., A. J. C., ii. p. 195, 1866. Raatea, Garr. = P. faba var.
\(\dagger\) P. cenverea Albers, Moll. Blat., p. 98, 1857. Solomon's 1sland, Dr. Cox. The spiral strix in this shell are more regular, less waved and crowded than in P. spadicea and varieties, some examples of which it resembles.
\(\dagger\) P. clara Pse., P. Z. S., p. 671, 1864. Tahiti, Garr. In the Smithsonian collection this species is regarded as \(=\mathrm{P}\). hyalina; it is doubtless a good species. Mr. Garrett informs me that it seems to be rapidly disappearing from the island of Tahiti.
\(\dagger\) P. cognata Pse. Mss., Mus. Godeff. Cat., v. p. 92, 1874. Huaheine, Garr. = P. rosea var.
\(\dagger\) P. compacta Pse., A. J. C., ii. p. 200 ; Id. iii. p. 81, pl. 1, f. 9, 1866-67. Raiatea, Garr. This shell possesses the keyhole aperture of P. auriculata; it is a good species.
\(\dagger\) P. compressa Pfr. Mss. (Bul.), Mus. Cuming, Conch. Icon. Mon. Part., species 20, pl. 4, f. 20, 1850, Fiji Islands, coll. Taylor. This shell is very rare in collections.
\(\dagger\) P. concinna Pse., A. J. C., vii. p. 196, 1872. Tanna, New Hebrides. Mr. Pease remarks, "This shell is the type of P. repanda"; it resembles it in contour, but is less than half the size of \(P\). repanda.
\(\dagger\) P. conica Gould, Proceedings Boston Soc. Nat. Hist., p. 196, 1848. Rarkaa and Samoa Islands, Gould. Upolu, Garr. Tularc, Navigator's Islands, Cox = P. bulimoides.
P. Cookiana Mouss. Mss., p. 28, f. 28, 29. Raratonga (Garr. in litt.) \(=\) P. assimlis?
\(\dagger\) P. Coxi Angas, Cox, Cat. Land Shells of Solomon's Island, p. 46, 1868. Ysabel and Solomon's Island, Dr. Cox. I have been unable to find any notice of this shell except in the catalogue of Dr. Cox. Specimens labelled P. Coxi from several correspondents \(=\mathrm{P}\). grisea; those from \(\mathrm{Dr} . \mathrm{Cox}=\mathrm{P}\). micans.
\(\dagger\) P. crassilabris Pse., A. J. C., ii. p. 199 ; Id. iii. p. S1, pl. 1, f. 6, 1866, 1867. Raiatea, Garr.
\(\dagger\) P. crassa Pse. Mss., Mus. Godeff. Cat., v. p. 92, \(1874=\) a sinistral short heavy specimen of P. Otaheitana. Tahiti.
P. crassiuscula Garr. Mss. in litt. in Mus. Godeff. Pacific Isls., Garr.
\(\dagger\) P. decorticata Pse. Mss., Coll. Pse. Raiatea \(=\) P. dentifera denuded of epidermis.
\(\dagger\) P. decussatola Pfi., P. Z. S., p. 131, 1850. Con. Icon. Mon. Part., species 24, pl. 4, f. 23, 1849. Dominique, Marqucsas, Garr. Samoa, Pse. Navigator's Isls., Dr. Cox.
\(\dagger\) P. dentifera Pfr., P. Z. S., p. 85, 1852. Raiatea, Garr. Solomon's Island, Dr. Cox.
P. diminuta C. B. Adams, Ann. Lyc. Nat. Hist., v. p. 81, 1850. Socicty Islands. I have been unable to ideutify this shell. It would seem that the types in the Adams collection are lost. From the description I am inclined to believe it a variety of that protean species P. Otaheitana.
\(\dagger\) P. dubla Garr. Mss. in litt. Tahaa, Garr. = faba dentate var.*
\(\dagger\) P. elongata Pse., A. J. C., ii. p. 196 ; Id. iii. p. S1, pl. 1, f. 2, 1866-67. Moorea, Garr. \(=\mathrm{P}\). spadicea var.
* Andrew Garrett, of Huaheine, will deseribe the Mss. species of Mr. Pease and himself which are marked as good species in this catalogue.
P. Erhelii Morelet, J. C., iv. p. 371, pl. 12, f. 7, 8, 1853. Moorea = simulans?
\(\dagger\) P. expaxsa Pse., A. J. C., rii. p. 26, pl. 9, f. 3, 1871. Tutuila, Brazier, type in A. N. S. ex auctore. An examination of the animal and embryo of this species is necessary to establish its claim to a place in the genus Partula.
P. extensa Pse., P. Z. S., p. 473, 1871 . This is an error in name for P. expansa. See Pfr. Mon. Helic., viii. p. 204.
\(\dagger\) P. faba Martyu (Limax), Universal Conch., ii. p. 67, central figs., 1784. Raiatea, Garr.
\(\dagger\) P. fasciata Pse., A. J. C., ii. p. 202, 1866. Marquesas, Garr. = P. Ganymedes small var.
\(\dagger\) P. filosa Pfr., P. Z. S., p. 262, 1851. Tahiti, Garr. Narigator's Isls., Cox.
\(\dagger\) P. formosa Pse. Mss., Coll. Pse. Raiatea, Garr. This shell is common in collections, aud by Cuming was considered to \(=\mathrm{P}\). dentifera. It is a much larger and finer colored shell than P. dentifera, from which it is doubtless distinct. The latter is always much smaller, of a greenish-yellow color, with a yellow apex, while P. formosa is always pale reddish, or orange red, with a dark red apex.
\(\dagger\) P. fusca Pse., A. J. C., ii. p. 193, 1866. Raiatea, Garr. The types of P. fusca in the Museum of Comparative Zoology are young, immature shells, and \(=P\). ovalis and P . Ingubris, as generally found in collectious. When large quautities of the above species are compared with P. protea Pse., they mar be arranged in the following order, from the junior to the adult shell : P . lugubris \(=\mathrm{P}\). ovalis \(=\mathrm{P}\). protea \(=\mathrm{P}\). fusca. Some well-grown P. fusca are as large as examples of P. faba, which they somewhat resemble. In the Smithsonian collection, P. fusca is marked as equalling P. faba. This, however, is an error, as P. faba is arboreal, while P. fusca is terrestrial. These varieties of P. fusca are all terrestrial, and all inhabit the island of Raiatea.
\(\dagger\) P. Gaxymedes Pfr. (Bul.), P. Z. S., p. 39, 1850; also Conch. Icon. Mon. Part., species 16, pl. 3, f. 16, 1846. Dominique, Marquesas, Garr.
\(\dagger\) P. Garrettir Pse., P. Z. S., p. 672, 1864. Raiatea, Garr.
\(\dagger\) P. gibba Fér., Prod., p. 66, No. 3, 1822 ; also Conch. Icon. Mon. Part., species 15, f. \(15^{\text {a }}, 15^{\text {b }}\). Island Guam.
\(\dagger\) P. globosa Pse. Mss., Coll. Pse., Mus. Godeff. Cat., v. p. 207. Raiatea, Garr. \(=P\). Hebe var.
\(\dagger\) P. glutinosa Pfr., P. Z. S., p. 85, 1852. Navigator's Islands, Solomon's Island, Cox.
\(\dagger\) P. gonochcila Pfr. (Bul.), Zeit. fur Malacol., p. 82, 1817 ; also Conch. Icon. Mon. Part., species 19 , pl. 4, f. \(19,1850=\) P. Ganymedes. I possess a shell said to be from J)ominique, the exact counterpart of Recve's figure, color included. This shell does not agree with specimens of P . gonoeheila in the British Museum, or with the figure of P. gonocheila in Chemnitz. I am at a loss to aecount for the discrepancy, uiless it is to be found in a habit of Cuming, substituting what he considered better specimens for those alrealy in the British Muscum collection. My shells are certainly P. Ganymedes.
† P. grarilis Psc., A. J. C., ii. p. 197, iii. p. S1, pl. 1, f. 3, 1866-67= P. attenuata.
\(\dagger\) P. gracilior Pse. Mss., specimens in \(\Lambda\). N. S. Isabel Island \(=\) P. gracilis.
\(\dagger\) P grisea Lesson (Bul.), Voy. Coquill., xiii. p. 325, pl. 13, f. 11, 1829. New Guinea. I often receive this shell from correspondents and others as P. Coxi. My shells all agree with the figure and description of P. grisca.
\(\dagger\) P. Guamensis Pfr. (Bul.), Phil. Abbild. und Beschreib. Conch., ii. p. 113, pl. 4, f. 9, 1S21. Guam, Ladroue Islands. The spiral rows of foreæ at the apex of the shells of all Partulæ, both embryo and adult, are not visible ou the embryos of this species sent to me from the Museum of Comparative Zoölogy, which, in the absence of an examination of the animal, leads me to doubt its being a true Partula.
\(\dagger\) P. Hebe Pfr. (Bul.), P. Z. S., p. 39, 1846. Reeve, Mon. Part., species 25, pl. 4, f. 25, 1850 . Raiatea, Garr.
\(\dagger\) P. hyalina Brod., P. Z. S., p. 32, 1832. Tabiti=Mauguaia, Garr. Rurutu, Le Cage. Tunaco, Cuming.
\(\dagger\) P. Huahinensis Garr: Mss., Mus. Godeff. Cat., v. p. 92, 1874. Huahcine, Garr. = P. varia var.
† P. imperforata Pse. Mss., Mus. Godeff. Cat., v. pp. 92, 207, 1874. Raiatea, Garr.
\(\dagger\) P. inflata Rve., P. Z. S., p. 197, 1842; also Rve., Mon. Part., species 3, f. \(3^{\text {a }}, 3^{\text {b }}, 1849\). Dominique, Marquesas, Garr.
\(\dagger\) P. Isabellina Pfr. (Bul.), P. Z. S., p. 39, 1846. Rre., Mon. Part., specics 10 , f. \(\mathrm{S}^{\text {b }}, 1849=\) P. Otaheitana var. Tahiti.
\(\dagger\) P. labiata Pse. Mss., Mus. Godeff. Cat., v. p. 207, 1S74=P. dentifera Raiatea.
\(\dagger\) P. levigata Pfr., P. Z. S., p. 334, 1856.
P. Leucothoë O. Semp., J. C., xiii. p. 419, pl. 12, f. 5, 1S65. Peleliu; see P. Calypso.
\(\dagger\) P. lignaria Psc., P. Z. S., p. 671, 1S64. Tahiti, Garr. This shell very nearly approximates, if it is not identical with, P. affluis. I have arrived at this conclusion after the examination of a quart of each variety.
P. lineata Lesson (Bul.), Voy. Coquill., p. 324, pl. 7, f. S, 9, 1826. Oualan, Frieudly Islands. This species has been crroncously referred to P. vexillum. I regard it as differing from all others with which I am acquainted.
\(\dagger\) P. lilurina Pfr. (Bul.), P. Z. S., p. 33t, 15556. Bora-bora Isl. = P. lutea. Through the kinduess of Edgar A. Smitl, F. Z. S., of the British Muscun, I have been cuabled to establish the truc positiou of this species. P. lilacina Pfr. is a highly eolored specimen of P. lutea Less.; while P. solidula Rre., as figured in his Monograph of Partula, is a large aud fully developed specimen of P. lutea withont color.
\(\dagger\) 1. lineolata Pse., A. Z. C., iii. p. 224, 1867. Tahiti, Garr. \(=\) P. filosa. The type of P. filosa in the Brit. Mus. confirms the identity of P. lineolata with P. filosa.
\(\dagger\) P. lirata Mouss., J. C., xviii. p. 126, 15 ji0 Tavinu, Viti Isles, Garr.
P. lugubris Psc., P. Z. S., p. 672, 1864. Raiatea, Garr. = P. fusea Jr.; see P. fusca.
\(\dagger\) P. lutea Less., Voy. Coquill., p. 325, 1856. Bora-bora Isl., Garr.
\(\dagger\) P. Macgillivray Pfr., P. Z. S., p. 97, 1855. Annietium Isl., New Hebrides, Cox. This shell is described and figured from a large ventricose and weatherbeaten example.
\(\dagger\) P. marginata Garr. in litt. Tahaa, Garr. = P. faba var.
\(\dagger\) P. Mastersii Pfr., P. Z. S., p. 110, 1857. Guam, Ladrone Islands, Dr. Masters \(=P\). gibba var.
P. maura Grateloup, Actes Soc. Linn. Bordeaux, xi. pl. 12, f. 4, \(1837=\) P. Otaheitana original var.
\(\dagger\) P. micans Pfr., P. Z. S., p. 138, 1852. Solomon's Isl., Dr. Cox. This is the smallest Partula known, being much less than P. minuta Pfr.
\(\dagger\) P. megastoma Pse. Mss., Mus. Godeff. Cat., v. p. 92, 1874. Raiatea, Garr. = P. callifera.
\(\dagger\) P. nicrostoma Pse. Mss., Coll. Pse. type \(=\) P. vittata Pse. without a pillar tooth.
\(\dagger\) P. Mooreana W. D. Hart., P. A. N. S., p. 229, 1850. Moorea, Garr. Coll. A. N. S. and Mus. Comp. Zoöl.
\(\dagger\) P. mucida Pfr., P. Z. S., p. 98, 1855. The type of this shell in the British Museum \(=\) a large dark specimen of \(P\). varia.
P. minuta Pfr., P. Z. S., p. 3S4, 1856. Admiralty Island. This species is more globose than any other deseribed Partula.
P. navigatoria Pfr. Mss., Rve., Mon. Part., species 21, pl. 4, f. 21, 1849. Raiatea, Garr.
\(\dagger\) P. nitens Pfr., P. Z. S., p. 293, 1854. New Hebrides, Taylor coll. This shell only differs from specimens of \(P\). affinis in possessing a broad, light band, beginning at the base, and becoming narrower towards the apex; it has the form, button-like pillar tooth, and polished surface of P. affinis. A similar specimen occurred amongst the Pease duplicates of P. affinis from Tahiti.
\(\dagger\) P. vodoss Pfr., P. Z. S., p. 262, 1851. Tahiti, Samoa, Garr. Specimens of this shell in A. N. S. Phila. ex auctore from Tahiti=dark specimens of P. trilineata Pse. Some have a broad white band beneath the suture, which is extended to the base of the shell; others are dark fuscous, with a narrow white line beneath the suture; the latter agree with the figure of P. nodosa in Chemnitz.
\(\dagger\) P. nucleola Psc. Mss., Mus. Godeff. Cat., v. p. 92, 1S74. Coll. Pse. Moorea, Garr. This shell equals short depauperated speeimens of P. spadicea.
P. obesa Pse., A. J. C., iii. p. 223, pl. 15, f. 12, 1S67. Islands Fortuna and Vavao, Gräff. The figure of Mr. Pease resembles a Bulimus; the type specimen in the Pease collection is lost.
\(\dagger\) P. Otaheltana Brug., Ency. Method., i. p. 347, No. S4, 1792. Tahiti. The original deseription of this shell ealls for "a heavy brown sinistral shell, oblong, ovate, perforate, aperture semiovate, unidentate." Mr. Garrett iuforms me that this variety oceurs near the old anehorage, and is probably the original trpe. Large quantities of this shell exhibit all the varieties merging into each other. Sinall dextral specimens are often confounded with P. affinis. On the other hand, large, well-developed sinistral specimens, with or without a dentile, as P. Recve-
ana, P. Isabellina, and P. Pacifica, have been regarded as separate species. The sinistral forms have not been less fortunate in adding to the confusiou in synonymy; they vary in size and color in an equal degree with the dextral. The synonyms of P. Otaheitana Brug. may be cnumerated in the order of seniority as follows: P. Otaheitana, P. Vanikorensis, P. maura, P. Tahulana, P. Isabellina, P. amabilis, P. rubescens, P. Reeveana, P. Pacifica, P. T'ahitana; mauuscript species, P. sinistrorsa, P. crassa, P. sinistralis, P. brevicula, P. perversa, P. turricula, Pse. Mss. (non Pse. in A. J. C.).
\(\dagger\) P. ovalis Pse., A. J. C., ii. p. 194, 1866. Raiatea \(=\) P. protea. See P. fusca.
\(\dagger\) P. Pacifica Pfr., P. Z. S., p. 125, 1854. This species probably =a large dextral P. Otaheitana without a pillar tooth.
\(\dagger\) P. pallida Pse., Mss. Coll. Pse. = a pale elongate variety of P. faba.
P. Peasil Cox, P. Z. S., p. 644, pl. 52, f. 2, 1871. Solomon's Island, Dr. Cox.
\(\dagger\) P. peraffinis Psc., Mss. Mon. Helicien, viii. p. \(197=\) P. elongata (Pfr.).
\(\dagger\) P. perversa Pse., Mss. Coll. Pse., Coll. Brit. Mus. = P. Otaheitana sinistral.
\(\dagger\) P. perplexa Pse., Mss. Coll. Pse., Huaheine \(=\mathrm{P}\). varia var. This is one of the most beautiful varieties of P. varia. I only detected five specimens in several quarts of P . varia from Huaheine.
P. pellucida Pse., P. Z. S., p. \(457=1871\). Guadeleamar, Solomon's Island. "A sinall shell with a distinctly granular surface " (Pse.), possibly a Bulimus.
\(\dagger\) P. Pfeifferi Cross, J. C., xix. p. 184, 1871. Vanna-Levu, Banks Island, New Hebrides \(=P\). Caledonica.
\(\dagger\) P. pinguis Garr., Mss. in litt. The form of aperture resembles P. rustica, but in size it approximates P. Thalia. It is a terrestrial species, and probably \(=P\). rustica.
\(\dagger\) P. planilabrum Pse., P. Z. S., p. 672, 1864. Coll. Pse. Tahaa, Garr.
\(\dagger\) P. producta Pse., P. Z. S., p. 671, 1864. Tahiti, Garr. This is a terrestrial specics, and may be confounded with dextral banded \(P\). Otaheitana without a pillar tooth.
\(\dagger\) P. propinqua Pse., Mss. Coll. Psc., Tahaa. Mr. Pcase, in a label attached to this species, remarks: "I regard this and P. subangulata as only local varicties of P. faba from Tahaa," - an observation applicable to many other so-called species of Partula.
\(\dagger\) P. protea Pse., Mss. Mus. Godeff. Cat., v. p. 92, 1874. Raiatea, Garr. \(=\) P. fusca var. See P. fusca.
\(\dagger\) P. pulchra Pse., Mss. Mus. Godeff. Cat., v. p. 92, 1874. Huahcine, Garr. \(=\mathrm{P}\). varia, minor form.
\(\dagger\) P. purpurascons Pfr., P. Z. S., p. \(335,1856=\) P. rosea, purple varicty.
\(\dagger\) P. radiata Pse., Mss. Coll. Psc., Coll. A. N. S., ex auctorc. Raiatca, Garr. This is a good species; it has been widely distributed by Mr. Pease and others as P. compressa lfr. The former possesses very coarse oblique stria, widely retlected lip, with a keyhole aperture, a pillar tooth, and a slight carimation at the periphery; while the latter is a smooth shell, with a slightly retlected lip, and the pillar tooth is absent.
\(\dagger\) P. radiolata Pfr. (Bul.), P. Z. S., p. 39, 1849 ; also Rve. Mon. Part., species 6, pl. ii. f. \(6^{\text {a }}, 6^{\text {b }}, 1850\). Guam, Cuming. New Ireland, Dr. Cox.
\(\dagger\) P. Raiatensis Garr. Mss. in litt. Raiatea, Garr. This shell = P. dentifera, with a rose apex. In two quarts of P. dentifera belonging to the duplicates of the Pease collcction about one sixth of the number possessed the rose apex; they did not differ in other respects from \(P\). dentifera.
\(\dagger\) P. Reereana Pfr., P. Z. S., p. 137, 1852. Solomon's Island, Dr. Cox. Large dextral specimens of P. Otaheitana from Tahiti, of a yellow color, red apex, and a pillar tooth, agree with types of P. Reereana in the British Museum, and also with the figurc of P . Reeveana in Chemnitz.
\(\dagger\) P. recta Pse., A. J. C., iv. p. 155, pl. 12, f. 8, 1868. Mountains Mauui and Nukahiva, Marquesas \(=P\). repanda. I possess a number of specimens of this species from the collection of the late William H. Pease. It is very variable in shape, color, and texture. Some specimens are yellowish-white, solid, and covered with a greenish epidermis, easily rubbed off, with a perpendicular aperture, and the inner margin of the aperture waved or roughened. This variety represents P. recta Pse. ; others are pale yellow, white, or ycllowish-white, often thin and inflated, with the aperture oblique or perpendicular, and slightly roughened; others, agaiu, are pale red, with the basal half several shades deeper in color. These two latter varieties represent P. repanda. In one and a half pints of duplicates in the collection of William H. Pease, the specimens exhibited a perfect inosculation of these apparently dissimilar species.
\(\dagger\) P. recta Pse. Mss., Raiatea, Garr. Coll. Pse. (nou P. recta Pse. in A. J. C.). This shell is also synonymous with P. Peaseana, Garr. Mss. (non Peasii, Cox). \(=\) P. labiata Pse. Mss. in A. N. S., ex auctore, which latter \(=\) P. dentifera var.
P. Recluziana Petit, J. C., v. p. 170, pl. 7, f. 5, \(18550=\) P. actor.
\(\dagger\) P. repanda Pfr., P. Z. C., p. 98, 1855. New Hebrides? Dr. Cox. Watercolor drawings from types in the British Museum agree with specimens from Marquesas. See P. recta Pse. in A. J. C.
\(\dagger\) P. rosea Brod., P. Z. S., p. 125, 1832. Huahcine, Garr.
\(\dagger\) P. rubescens Rve., Mon. Part., No. 12, pl. 3, f. \(12,1850=\) P. Otaheitana var.
\(\dagger\) P. robusta Psc. Mss., Coll. Pse., Coll. Smithsonian, Raiatea, Garr. = P. auriculata var.
1. rufe Lesson (Bul.), Voy. Coquill., p. 324, 1930. Oualan, Caroline Islands. Since the publication of my Cataloguc of the Genus Partula Fér. in May of this year, and while the present Bibliographic Catalogue was in press, Prof. von Martens has published in Conchologia Mitthcilung for \(1 S 81\) the description and figure of a Partula from the island of Ponape, which he has no doubt is P. rufa less., and which he makes synonymous with P. Guamensis Pfr. The figures of his shell materially differ in size and form from P. Guamensis Ifr., and, in my opinion, approximate dextral exituples of P. Upolensis Mouss. Mss., whieh \(=\) depauperated examples of I' bulimoides Less.; the smatler size, conic form, wide umbilicus, and violet color within, together with other characters cmmerated,
seem more applicable to the latter than the former specics. Unfortunately Lesson never published a figure of \(P\). rufa.
\(\dagger\) P. rustica Pse., A. J. C., ii. p. 199 ; id. p. 81, pl. 1, f. 5, 1866-67. Raiatea, Garr. \(=\) P. crassilabris. After examining large quantities of these two so-called species, I have arrived at the conclusion that they are one. Typical P. crassilabris is more rounded in form, while P. rustica is more elongate, and the columella is indented from without, giving the aperture an angular appearance. The colors agree, and large numbers of each exhibit the inoseulation of the two varieties. They are both terrestrial, from the same island, and doubtless identical.
\(\dagger\) P. semilineata Mouss., J. C., xvii. p. 337, 1869, Coll. Mus. Godeff. = P. conica, sinistral yellow var.
\(\dagger\) P. sinistrorsa Pse. Mss., Mus. Godeff. Cat., v. p. 92, 1874. Tahiti, Garr. Coll. Pse. I have considered this shell to \(=\mathrm{P}\). Otaheitana, banded var. It certainly inosculates with the original brown P. Otahcitana, as we see examples of the latter with one or two dark bands.
\(\dagger\) P. sinistralis Pse. Mss., Pätel Cat., p. 104, 1873. Tahiti. Olim P. sinistrorsa?
\(\dagger\) P. simplaria Morelet, J. C., iv. p. 370, pl. 11, f. 13, 14, 1853. Huaheine \(=\mathrm{P}\). rosea var.
\(\dagger\) P. simulans Pse., A. J. C., vii. p. 202 ; id., iii. p. 81, pl. 1, f. 1, 1866-67. Moorea, Garr. \(=\) P. spadicea var.
\(\dagger\) P. solidula Rve. Mon. Part., species 2, pl. 4, f. 22, 1850. Bora-bora, Garr. \(=\mathrm{P}\). lutea var.
\(\dagger\) P. solidula Pse. Mss., Coll. Pse. (non Rve.). Raiatea \(=\) P. approximata banded var.
† P. spadicea Rve., Mon. Part., species 24, pl. 4, f. 24, 1850. Moorea, Garr. Marquesas, Rve. The synonyms of this species I arrange as follows: P. treniata, P. spadicea, P. elongata, P. simulans, P. striolata, P. nuclcola. A microscopic examination of the surface of these varieties exhibits it thickly crowded with waved spiral strix, exceeding in this respect all other species. A small tubercle is present on the columella of all the varieties, and the junction of the lip with the body whorl presents the appearance of having been cut off obliquely outwards, learing a sharp elevation, which is seldom surrounded by callus. Large quantities from Moorea exhibit all these varieties, merging into each other. All the varietics exlibit translucent or horn-colored specimens with dark bands of greater or less width, which equal \(P\). treniata.
\(\dagger\) P. strigata Pse., A. J. C., iv. p. 155, pl. 12, f. 7, 1863 ; also Rve. Mon. Part., pl. 3, f. 17. Marquesas? Rve. Muaheine, Garr. Coll. P'se., Coll. A. N. S., cx anctore \(=\mathrm{P}\). varia var.
\(\dagger\) P. strigosa Pfr., P. Z. S., p. 384, 1S56. Admiralty Island, Pfr., Moorea \(=\) P. suturalis Pfr.
\(\dagger\) P. striolata Psc., A. J. C., ii. p. 197; id., p. S1, pl 1, f. 4, 1S66-6i = P. spadicea var. Moorea.
\(\dagger\) P. stenostoma Pfr., P. Z. S., 97, 185\%. Moorea.
\(\dagger\) P. stolida Pse., A. J. C., ii. 1. 198, 1569. Raiatea. Garr. This shell is
sometimes confounded with P. affinis. It is larger than the latter, of a light bay color, and is terrestrial.
\(\dagger\) P. suturalis Pse. Mss. (non Pfr.) = P. planilabrum, dark var. Tahaa, Garr.
\(\dagger\) P. suturalis Pfr., P. Z. S., p. 9S, 1855. Noorea.
\(\dagger\) P. subangulata Pse., J. C., 3d series, p. 458, 1871. Tahaa, Garr. \(=\) P. faba var., Coll. Pse., Coll. Smithsonian.
\(\dagger\) P. sub-gonocheila Mouss., J. C., xix. p. 14, pl. 3, f. 4, 1871. Fortuna and Vavao, Gräff.
P. Tahitana Brug. (Gould), Conch. U. S. Explor. Exped., i. p. 84, 1849-50 \(=\mathrm{P}\). Otaheitana.
P. Tahulana Anton, Ant. Verz., p. 40, No. \(1470,1539=\) P. Otaheitana.
\(\dagger\) P. teniata, Mörch (Bul.), Cat. Con. Kierulf, p. 29, pl. 1, f. 5, 1840. Fiji Islands, Mörch, Moorea Coll., Pse. Specimens of this shell from Mr. Geale are translucent, with dark bands. I possess numerous similar shells from Moorea. Mörch says: "My shell, together with P. faba, was purchased of a whalefisher, who gave the locality as Fiji Islands."
\(\dagger\) P. terrestris Pse. Mss., Coll. Pse., Pätel Cat., p. 104, 1873. Raiatea, Garr. = P. approximata.
P. Thetis O. Semp., J. C., xiii. p. 419, pl. 12, f. 6, 1865. Peleliu. See P. Calypso.
P. Thersites Pfr. (Bul.), Symbola, ii. p. 52, 1846. Dominique, Tiawata, Marquesas, Garr. \(=\) P. inflata.
\(\dagger\) P. Thalia Garr., Mss. in litt., Raiatea, Garr. = P. Peasii Garr. Mss. (non P. Peasii Cox) = P. abbreviata Pse., Mss. (non Mousson). This shell has been distributed as P. abbreviata Pse., Mss. It is a good species.
P. torosus Beek (Partulus), Beck's Index, p. 87, No. \(6,1837=\) P. lineata?
\(\dagger\) P. trilineata Pse., A. J. C., ii. p. 195 ; id. iii. p. 81, pl. 1, f. 1, 1866, 1867. Tahiti, Garr. \(=\) P. nodosa.
\(\dagger\) P. turricula Pse., A. J. C., p. 196, 1872. New Hebrides. Mr. Pease observes that "this shell is smooth, without any trace of transverse strix." Under a low power the spiral rows of embryonic foveæ at the apex of the shells of all Partulæ (and which, after extrusion, are continued as spiral strix) in this species, are continued as spiral rows of forex over the whole surface, dillering in this respect from all other Partulæ with which I am acquainted.
\(\dagger\) P. turricula Pse., Mss. Coll. Pse. = P. Otaheitana var. rubescens. Tahiti.
P. turgida Pse. (Bul.), P. Z. S., p. 670, 1864. Raiatea, Garr. Mr. Pease remarks: "This shell resembles P. arguta and P. annectens." It is a rare species.
\(\dagger\) P. Turneri Pfr., P. Z. S., p. 140, 1860. Erromango Island, New Hebrides, Turner \(=\mathrm{P}\). Maegillivrayi. The former has been deseribed from a fresb specimen, while the latter was deseribed and figured from an old and weather-beaten specimeu, musually inflated. See P. Brazieri.
\(\dagger\) P. embilicata Psc., A. J. C., ii. p. 200; id., iii. p. S1, pl. 1, f. 7, 1S66, 1867. Tahaa, Garr.
\(\dagger\) P. Upolexsis Mouss. Mss., Iätel. Cat., p. 104, 1S73. Upolu Coll., A. N. S.
\(=\mathrm{P}\). bulimoides. I possess this shell from the Museum Godeffroy. It = a small, dark P. bulimoides. In Europe the typical P. bulimoides is called P. cauals, the small dark variety P. Upolensis, the sinistral greenish-sellow variety P. conica. These, however, are only varieties of one species, and are all embraced in Dr. Gould's description of P. conica "interdum sinistrorsa flavida vel castanea." Like P. repanda, they are found only on mountains.
\(\dagger\) P. varta Brod., P. Z. S., p. 125, 1832. Huaheine, Garr. The following synonyms of this species are enumerated in the order of seniority: P. mucida, P. assimilis, P. strigata; mauuscript species, P. pulchra, P. Cookiana, P. perplexa, P. Huaheinensis, P. bicolor, Garr. (non Pse.).
P. Vanicorensis Quoy et Gaim (Helix), Voy. Astrolabe, ii. p. 115, pl. 9, f. 12 \(-17,1830\). The original description and figure of this shell agree with dextral specimens of P. Otaheitana, without a denticle. In collections it is sometimes represented by P. affinis, and in others by P. Otaheitana. Dr. Gould says, "It only differs from P. Otaheitaua in the lighter color of the animal."
\(\dagger\) P. variabilis Pse., A. J. C., ii. p. 203 ; id., p. 81, pl. 1, f. 13-15, 1866-67. Raiatea, Garr. = P. Navigatoria. This shell is the true P. Navigatoria Pfr., agreeing with Reeve's figure and description, as well as with the types of \(P\). Navigatoria in the British Museum. Dr. Pfeiffer says, "My Navigatoria in the British Museum was by Cuming confounded with another shell." From a number of specimens in the Pease collection, labelled "P. Navigatoria Pfr., from the British Museum," I infer that P. protea is the shell alluded to by Pfeiffer. The possession of these doubtless led Mr. Pease to redescribe this shell.
\(\dagger\) P. ventrosa Garr., Mss. in Litt. Raiatea, Garr. = P. Hebe var.
\(\dagger\) P. ventricosa Pse., Mss. Coll. Pse., Tahaa = P. faba var. (Anthony).
\(\dagger\) P. vexillum Pse., A. J. C., ii. p. 198 ; id., iii. p. S1, pl. 1, f. 8, 1866-67. Moorea, Garr. Reeve figures this shell for P. lineata Lessou; others confound it with P. elongata Pse. It \(=\mathrm{P}\). stenostoma Pfr. See Pfeiffer's Novitates Conehologice.
\(\dagger\) P. vittata Pse., A. J. C., ii. p. 194, 1866. Raiatea, Garr.
\(\dagger\) P. Virginea Pse. Mss., Coll. Pse. Tahaa, Garr.
\(\dagger\) P. virgulata Pse., J. C., 3d series, x. p. 401, 1870. Raratonga, Garr.
\(\dagger\) P. zebrina Gould, Proc. Bost. Soc. Nat. Hist., vii. p. 196, 1842. Tutuila, Gould, Upolu, Garr., Belcher Island, Coll. Taylor = P. actor. Dr. Gould's type of this shell is preserved in the collection of the New York State Museum of Natural History and also in the Smithsonian collection. The figures of this shell in "Expeditionary Mollusks" are dissimilar ; figure \(S 0\) is probably an crror ; figure 81, containing the animal, is the true P. zebrina.

The follorring species and varieties, so far as known, are Terrestrial ; all others are Arboreal.
P. approximata Pse.
P. protea Pse. Mss.
P. castanea Garr. Mss.
P. producta Pse.
P. crassilabris Pse.
P. radiata Pse. Mss.
P. fusca Pse.
P. robusta Pse. Mss.
P. lugubris Pse. Mss.
P. microstoma Pse. Mss.
P. rustica Pse.
P. Navigatoria Pfr.
P. solidula Pse. Mss., non Reeve.
P. ovalis Pse. Mss.
P. stolida Pse.
P. pinguis Garr. Mss.
P. terrestris Pse. Mss.
P. planilabrum Pse.
P. variabilis Pse.
P. vittata Pse.

\section*{SPURIOUS SPECIES OF PARTULA.}
P. arcuatus Mighls. = Achatinella auriculata Fér.
P. auriculata Pfr. = Tornatella.
P. Bataria Grat. (Bul.) = Amphidromus.
P. decussata Pfr. = (Bul.).
P. densilineata Rve. \(=\) Achatinella radiata Gould.
P. Dumartroy Soul. \(=\) Achatinella auriculata Fér.
P. fragilis Ferr. = Bul. rubens Mulif.
P. flavescens King. = Bul.
P. labrclla Grat. = Bul. virgatus Jay.
P. major Desh. = Bul. fulvicans Pfr.
P. Maximilliaua Pot et Michd. \(=\) Bul.
P. pusilla Gould \(=\) (Auriculclla).
P. pudica Fér. \(=\) Bul.
P. Solomonis Pfr. = (Bul.).
P. unidenta Sowb. \(=\) (Bul.).
P. virgulata Mighls. \(=(\) Achatinella \()\).

Observations on the Duplicates of the Genus Partula Fér., contained in the Mruseum of Comparative Zoölogy, Cambridye, Mass., formerly belonging to the Collection of the late William H. Pease. By Willam Dell Hartman, M. D.

Since the completion of my Bibliographic Catalogue of the Genus Partula, through the kindness of Prof. Alexander Agassiz of the Museum of Comparative Zoölogy, I have been favored with all the duplicates of Partula belonging to the institution, amounting to two bushels. An inspection of this vast amount of material has afforded me a rare opportunity of observing the relative abundance and variation of a number of species, and the notes taken at the time I offer as a supplement confirmative of the conclusions arrived at in the paper above mentioned. The original labels belonging to the different parcels were often misplaced or absent. These omissions were of no moment, as a previous study of all the species enabled me to determine the specific status of each parcel.
P. varia and P. rosea Brod., together with P. faba Mart., were in the greatest abundance, and for relative numbers were present in the order mentioned.
P. varia Brod., represented by six quarts, exhibited all the varieties mentioned by authors, all of which, however, are included by Mr. Broderip under the expressive name of \(P\). varia.
\(P\). rosea Brod. was next in abundance, in which the elongated white variety \(=P\). cognata Pse. Mss. largely predominated over the rose, purple, and party-colored varieties. From the great number of examples of these two species they would seem to be very abundant.

In four quarts of \(P\). faba Mart. the white and oblique striated varieties predominated over the banded variety, which latter = Martyn's type.
P. dubia Garr. Mss. was represented by two quarts. The specimens are all somewhat smaller than typical \(P\). faba, always dentate, and oceasionally one exhibits the brown bands of \(P\). faba var. Amander Garr. Mss.
P. formosa Pse. Mss., P. lugubris Pse., P. Garrettii Pse., and P. Thatia Garr. Mss. were next in abundance and in the order mentioned. P. Thalia and P. formosa are doubtless gooll species, although Mr. Cuming regarded the latter as a variety of \(l\). dentifera Pfr.
P. Thalia Garr. Mss., in two quarts, was very uniform in size and color.
\(P\). compacta Pse., in two quarts, was also uniform as to size and color. It is a much larger and heavier shell than \(P\). auriculata Brod., with a heavy flat lip, and, like P. Thalia, it is a well-marked species.
P. auriculata Brod., in one quart, exhibited the light, unicolored, and banded varieties in about equal numbers.
P. compacta Pse., P. Thalia Garr. Mss., and P. auriculata Brod., all possess, in a greater or less degree, the "keyhole aperture," which Mr. Broderip regarded as especially characterizing \(P\). auriculata. They form a group of very nearly allied species. In P. Garrettii Pse., about one third of the examples exhibited the shell with a brown-colored base.

A number of depauperated examples were also present in the pareel, beside several hybrids between P. Garrettii Pse. and P. Thalia Garr. Mss. These possessed the brown base of \(P\). Garrettii, with the form and aperture of \(P\). Thalia, but were only half the size. I received a number of the same from Mr. Garrett.
P. crassilabris Pse. and P. rustica Pse. were each represented by about one quart of specimens. For the most part the former were smaller and more globose than the latter. Both parcels presented numerous depauperated examples. When compared in quantity, they are seen to merge into each other by easy grades; only the extremes in form represent the two species of Mr. Pease. They are both terrestrial, and inhabit the same island, their variation being due to station and food plants. Two examples of P. pinguis Garr. Mss. were found in the lot of \(P\). rustica. The former is doubtless only a well-fed specimen of the latter.
\(P\). lignaria Pse. and \(P\). affinis Pse. were each represented by a quart of examples; a few of each were banded. The variety P. lignaria as a rule is a trifle larger and darker in color, and presents more banded examples, than \(P\). affinis. All the adult shells of both varieties (with few exceptions) are dentate, and both exhibit, to a greater or less extent, dark oblique strix on the body whorl.

The parcel \(P\). affinis Pse. was labelled "Faarumaia Valley, Tahiti"; about fifty examples to the quart were banded. Several albinos were present, two of which showed traces of dark bands, and a few pale examples occurred with a bright brown band continued beneath the suture to the apex. One example was found the counterpart of my specimens of \(P^{\prime}\) ' nitens Pfr. from the Taylor collection, said to be from New Helirides ; and three similar bauded examples were found in the lot of \(P\). lignaria.

I regard these as varieties of one species ; they all possess a small elevation on the columella, with a round button-shaped pillar tooth. They vary in size somewhat, but the dark oblique strix exist, to a greater or less degree, in nearly all examples. The surface in fresh shells is always polished, looking as though oiled.

From all the examples of \(P\). rufa Less., \(P\). nitens Pfr., \(P\). lignaria Psc., and P. affinis Pse., which I have seen, I am inclined to consider them varicties of one species.
\(P\). glutinosa Pfr., in one quart, was uniform in size and color ; and so was \(P\). virguluta Pse. in the same amount from Raratonga. \(P^{\prime}\). elonguta, P. simulans, P. strioluta, and P. nucleola Pse., from the island of Moorea, were present in several pints, and donbtless belong to one species, only varying in size and color, the two last being only depanperated examples of the first. Under the microscope all exhibit the thickly crowded wared spiral strix, and all the varieties show the translucent and banded examples which \(=P\). teeniata Mörch. \(P\). elongata Pse., in half a pint, shows the most numerous banded examples. There were present numerons pale yellow elongated specimens, which dealers send out as \(P\). spadicea Rve. In the parcel of \(P\). simuluns Pse., the banded examples equalled ten per cent.
\(P\). nucleola Pse. Mss. exhibited several very dark opaque examples.
All the above varieties from Moorea possess to a greater or less degree the dark oblique stria, the elevation on the colnmella, the sharp oblique juncture of the labimm with the body whorl, and the thickly crowded spiral striae of the surface of the shell. The latter feature is seen in no other species except \(P\). Monreana nobis, from the same island.
\(P\). Hebe Pfr., in half a pint, exhibited nearly all the examples entirely denuded of epidermis, and withont a rose apex, the specimens being entirely white and solid. These represent the typical \(P\). Hebe.
\(P\). bella Pse. Mss. \(=P\). rosea var. (according to Mr. Garrett). In almost a pint, the shells possessed a rose apex and were thinner than typical \(P\). Hebe. The epidermis of some of the heavier examples was thin and readily separated from the shell. Many of the more matme specimens were withont epidermis. They only differ from \(P\). Hehe in possessing the rose apex, and the lot exhibited the easy grade be which the latter merges into the former. A few specimens of \(P\). gloloser (iarr. Mss. and P. ventrosa Pse. Mss. were found in the parcel. These varieties are more stout and heary than ordinary examples of \(P\). beller. They possess a lieary and more adherent epidermis, with little or no color at the apex. All the varieties from \(P\). Mebe to \(P\). ventrosa present
an elongated pillar tooth similar in shape, and all have a slight dentiform process on the columella. I possess a typical P. Hebe from Mr. Garrett, in which the color of the apex is centred in the pillar tooth, and another in which the whole shell is a pale rose color. These are all varieties of one species resulting from station and food plants.

Since the above was written Mr. G. W. Tryon has called my attention to four specimens of Partula in the collection of the Academy of Natural Sciences received a long time ago from Mr. Pease, and labelled by him \(P\). bella Pse. The examples \(=P\). Amanda Garr. Mss. \(=P\). faba var. This it would seem is the true \(P\). bella Pse. Mss., so named long anterior to the date of \(P\). bella Pse. \(=P\). Hebe var. in Pätel's catalogue.
P. hyalina Brod., in half a pint, was uniform in size, some being thinner and more hyaline than others, probably the result of food and age.
P. lugubris Pse. In a three-pint lot, many examples exhibited the usual white peripheral band ; a few almost white examples with a black band were also present. In the adult shell it is noticeable that these bands are often concealed by the overlapping of the fifth whorl. I possess a series of examples of this species which seems to point to the fact that it and \(P\). fusca, as usually found in collections, are young and immature shells, the synonymy being such as I have indicated in my Bibliographical Catalogue of the genus.
P. Guamensis Pfr. In two quarts several light-colored examples occurred possessing a narrow brown line at the periphery. Judging from the figure of \(P\). obesa Pse. (no locality being given), I suggest the probability that the latter \(=\) a depauperated specimen of the former. Some examples of \(P\). Guamensis are quite large, while others are much smaller than Reeve's figures. I have not been able to find the type specimen of \(P\). obesa Pse. in the Pease collection, and suppose it to have heen lost, as some of his types were broken in transit between Honolulu and Boston.

I think, when the animals of \(P\). Guamensis, \(P\). bulimoides, \(P\). obesa, and \(P\). expansa are examined, they will be climinated from the genus Partula.
\(P\). dentifera Pfr., in two quarts, was very uniform in size, color, and contour. It is a much smaller shell than \(P\). formosa Pse. Mss., with a greenish yellow epidermis and yellow apex. Abont one sixth of the specimens exhibited a rose apex \(=P\). Raculensis Garr. Mss. The varicty styled \(P\). decorticata Pse. Mss. consists of individuals of \(P\). dentifera, in which the epidermis has been denuded by the animals licking the shells of each other after hybernation has ended.
P. trilineata Pse. \(=P\). nodosa Pfr., in a half-pint, were all banded and possessed a pillar tooth, except three, which were eutirely dark fuscous with a narrow white sutural line; the latter \(=P\). nodosa Pfr. type. \(P\). vexllium Pse., in a small parcel, exhibited the dark and striated examples with or without bands ( \(=P\). alternata Pse.), exceeding in numbers the horn-colored shell with narrow brown bands \(=P\). stenostoma Pfr. type. These two species of Mr. Pease seem to inosculate. I have received from Mr. Garrett a few very dark examples of \(P\). alternata Pse., and he informs me that one in fifty examples of \(P\). vexillum Pse. is sinistral.
\(P\). citrina Pse. was present in a small lot. Mr. Pease was of the opinion that this species would eventually prove to be a varicty of P. fuba. In a recent letter from Mr. Garrett, he reiterates his opinion, previously expressed, that \(P\). citrina is a good species. In the collection of Mr. Pease, kindly loaned for my inspection by the Museum of Comparative Zoölogy, a few examples were marked \(P\). pallida I'se. Mss. These \(=\) elongated examples of \(P . f a b a\), which latter is disposed to be somewhat protean, of which \(P\). citrina is probably another variety, or, ats Mr. Pease suggests, it may be a hybrid.
F. approximata Pse., in a small lot, exhibited one banded to twentyfive unicolored examples. My opinion in regard to this species is the same as expressed in my Bibliographic Catalogue of the genus.
P. imperforata Psc. Mss., in a pint lot, was very uniform in size and color; abont half a dozen were banded. It is a larger, heavier, and more inflated shell than \(P\). virginea Pse. Mss., and the surface is more roughened by oblique striæ. This shell has been supposed to \(=\) \(P\). solidula Pse. Mss. (non Reeve). The type examples of \(P\). solidula I'se. Mss. in the Pease collection \(=\) banded specimens of \(P\). approximata Pse. Mss.

In one quart of \(P\). protea \(\operatorname{Pse}\), the light and striated examples predominated in numbers over the dark and banded varieties. Well fed and fully developed examples approximate \(P\). faba in size and form. The colors are often rusty red with a darker base, or uniformly rusty red with a broad light zone at the periphery. This last varicty represents type examples from Mr. Garrett and the Mnsemm Godeffroy. In the Smithsonian collection this shell is labelled (probably by Carpenter) P. faba Martyn var. The latter, however, is arboreal, while the former is terrestrial. See \(P\). fusca l'se. in my Bibliographic Catalogue.

Of \(P\). Otaheitana Brug. there were about two quarts; nearly all the examples were sinistral. The type or original unicolored variety was
exceeded in number by the banded variety \(=P\). sinistrorsa Pse. Mss. All the latter were sinistral, and very few of the former were dextral. From the small mumber of dextral, as compared with the large number of sinistral examples in the lot, it would seem that the sinistral form in this species is the rule and not the exception, as obtains in some other species of Partula.
\(P\). bilineata Pse., in a half-pint of examples, was shown to be a distinct and beautiful species.
\(P\). radicta Pse. Mss. In one quart of this species abont twenty banded specimens occurred which \(=\mathrm{Mr}\). Pease's type. The light-colored and striated examples, which Mr. Pease distributed as \(P\). compressa Pfr., predominated. This shell and \(P\). approximata Pse. possess the keyhole aperture, with a slight cariua at the periphery. The latter feature varies in different examples. I can see uo difference in these two varieties of terrestrial shells from Raiatea, exeept that in \(P\). radiuta the oblique lines of growth are more coarse than in \(P\). approximata, and the latter is somewhat darker in color, which in some of the varying species of Partula (more especially in the terrestrial varieties) is often referable to station and food plants.
\(P\). lineata Pse. \(=P\). filosa Pfr. In one pint of this species from Tahiti, the specimens were all dentate and uniform in size; some were lighter in color than others, but all in a greater or less degree exhibited the ash-colored filiform lines characteristic of the species.
\(P\). repanda Pfr. was represented by one and a half pints. This parcel was labelled by Mr. Pease " \(P\). recta Pse. Mountains Nukahira, Marquesas." The variety \(P\). repanda Pfr. predominated in numbers over the variety \(P\). recta. Dr. Pfeiffer, in his deseription of \(P\). repenela, quotes New Hebrides as the station for the species, but his localities for Partula are so often incorrect or eutirely omitted, that I have very grave doubts of the correctness of this one. My examples agree with the types of \(P\). repanda Pfr. in the British Musemm. For a farther exposition of the two varicties, sec \(P\). recta l'se. in my Bibliographic Catalogue of the Cienus Pertula.


\title{
No. 6. - Bibliography to accompany "Selections from Embryological Monographs" compiled by Alexander Agassiz, Walter Faxon, and E. L. Mark.
}

\section*{I.}

\section*{CRUSTACEA.}

\author{
By Walter Fayon.
}
[It is proposed to issue in the Memoirs of the Museum a "Selection from Embryological Monogranhs," which will give to the student, in an easily accessible form, a more or less complete iconography of the embryology of each important group of the animal kingdom. This selection is not intended to be a handbook, but rather an atlas to accompany any general work on the subject.
The plates will be issued in parts, as fast as practicable, each part covering a somewhat limited field. The parts devoted to Echinoderms, Acalephs, and Polyps are well advanced, and a beginning has been made for the Crustacea. Occasional appendices may be published, to prevent the plates from becoming antiquated.
The quarto illustrations will be accompanied by a carefully prepared explanation, and by a bibliography, in octavo, to be male as complete as possible. Althongh a large part of this bibliographical literature may be found in the general works of Kölliker, Balbiani, and Balfour, and in some of the more recent special monographs, a fuller list on special subjects, comprising the scattered references now accessible only with much cost of time and labor, will he convenient for students.

The present Bulletin contains the first instalment of this bibliography. It will be followed at an early date by similar lists for the Echinoderms, the Acalephs, the Polyps, and the Fishes.

ALEXANDER AGASSIZ.
Tue embryological literature of the Arthropod groups incerta sedis, viz. Xiphosura, Trilobita, and Pycnogonida, will be found at the end of this list. An asterisk (*) before a title denotes that the work cited has not been seen by me.

December 3, 1881.
W. F.]

\section*{Agassiz, Alexander.}
[On the Development of the Porcellanide.] Proc. Boston Soc. Nat. Hist., X. p. 222. Oet. 1S, 1865.
(Zoc̈a of Porcellana (Polyonyx) macrocheles recorded from Newport, R. I.)
Instinct? in Hermit Crabs. Amer. Journ. Sci. \& Arts [3], X. pp. 290, 291. Oet. 1875.

Agassiz, Louis.
(Habits of young.)
'Twelve Lectures on Comparative Embryologr, delivered hefore the Lowrell Institute, in Boston, Deeember and Jamary, 184S-49. Boston, 18\&9. 104 pp .
(Eggs of Pinnotheres, p. 67, II. XXII. Development of Palcemon, Pp. 67, 68, PI. III. Cume the young of Palsemon, Mippolyte, and Mysis, p. 68.)
VOL, IX. - No. 6.

Zoölogical Notes from the Correspondence of Prof. Agassiz. Amer. Journ. Sci. \& Arts [2], XIII. pp. 425, 426, 1852; XXII. pp. 2S5, 2S6, 1856.
(Cumce the young of Crangon, Pulæmon, and Hippolyte.)

\section*{Allman [George James].}

On the Derelopment of Notodelphys, Allm., a new Genus of Entomostraca. Rep. Brit. Assoc. Adt. Sci. for 1S47, p. 74.1848.

\section*{Anderson, John.}

On the Anatomy of Sacculina, with a Description of the Species. Ann. Mag. Nat. Hist. [3], IX. pp. 12-19, Pl. I. 1862.
(Larra, pp. 13, 14, fig. 1.)

\section*{Aurivillius, P. O. Christopher.}

On a new Genus and Species of Harpacticida. Bihang till K. Srenska Vetensk.Akad. Handl., V. No. 18. 1879. 14 pp., 4 pl.
(Balenophilus unisetus. Development, pp. 10-15, Pl. III., IV.)
*Balaenophilus unisetus nov. Gen. et Sp. Ett Bidrag till Kännedomen om Harpacticidernas Utrecklingshistoria och Systematik. Stockholm, 1879. 26 pp., 4 pl. (Akadem. Afhandl.)
Baird, W.
The Natural History of the British Entomostraca. London, 1850. \(36 \pm \mathrm{pp}\)., 36 pl .

Previously in Mag. Zoöl. Bot., I. pp. 35-41, 309-333, 514-526, Pl. VIII.-X., XVI., 1837; II. pp. 132-144, 400-412, Pl. V., 1838. Ann. Nat. Hist., I. pp. 215-256, Pl. IX., 1838. Aan. Mag. Nat. Hist., XI. pp. S1-95, Pl. II., III., 1843.

> (Young stages, passim.)

\section*{Balbiani [G.].}

Observations relatives à une Note récente de \(\mathbf{M}\). Gerbe, sur la Constitution et le Déreloppement de l'Euf ovarien des Sacculines. Comptes Rendus de l'Acad. des Sci., Paris, LXY III. pp. 615-618. 1869.
Sur la Constitution et le Mode de Formation de l'euf des Saceulines. Comptes Rendus de l'Acad. des Sci., Paris, LXIX. pp. 1320-1324. 1863. Ann. Mag. Nat. Hist. [4], V. pp. 303-30G. \(18 \% 0\).
Sur la Constitution et le Mode de Formation de I'Fuf des Sacculines. Remarques eoneernant une Note récente de M. Ed. Van Beneden. Comptes Rendus de l'Acad. des Sci., Paris, LXIX. pp. 1376-1379. 1869.

\section*{Balfour, Francis M.}

A Treatise on Comparative Embrrology. Vol. I. Chapter XVIII. Crustacea. Pp. 350-443. London, 1850.

\section*{Bate, C. Spence.}

Notes on Crustacea. Ann.Mag. Nat. Hist. [2], VI. pp. 109-111, Pl. ViI. 1850. (On the mode of eseape of Pagurus larva from the egg, p. 111.)
On the Development of the Cirripedia. Ann. Mag. Nat. Hist. [2], VIII. pp. 324-332, Pl. VI.-VIII. 1851.
On the British Edriophthalmia. Part I. The Amphipoda. Rep. Brit. Assoc. Adv. Sci. for 1855. 1856.
(On the development of the young, pp. 55, 56.)
On the British Diastylida. Ann. Mag. Nat. Hist. [2], XVII. pp. 449-465, Pl. XIII.-XV. 1856.
( On the development, p. 463. Zoëa of IIippolyte varians, pp. 461, 462, Pl. XV. fig. 8.)
On the Development of Carcinus Menas. Proc. Roy. Soc. London, VIII. pp. 544-546. \(185 \%\).
(Abstract of paper given in full in Phil. Trans. Roy. Soc. London, CXLVIII.)
On the Genus Cuma. Ann. Mag. Nat. Ilist. [2], XIX. pp. 106, 107. \(185 \%\).
(On the affinity of Cumce with young Macroura.)
On Praniza and Anceus, and their Affinity to each other. Ann. Mag. Nat. Hist. [3], II. pp. 165-172, Pl. VI., VII. 1858.
On the Development of Decapod Crustacea. Phil. Trans. Roy. Soc. London, CXLVIII. pp. 559-605, Pl. XL.-XLVI. 1859. (Receired May 1, read June 18, 1857.)
(Development of Carcinus Mrenas.)
On the Morphology of some Amphiporla of the Division Hyperina. Ann. Mag. Nat. Hist. [3], VIII. pp. 1-16, Pl. I., II. 1861.
(Young described.)
[Review of Fritz Müller's Für Darwin.] Rcc. Zö̈log. Lit. (1864), I. pp. 261270. 1865.
[Revicw of Z. Gerbe's Métamorphoses des Crustacés marins.] Rec. Zoölog. Lit. (1865), II. pp. 321, 322. 1866.
Report of the Committce appointed to explore the Marine Fauna and Flora of the South Coast of Devon and Cornwall. No. 1. Rep. Brit. Assoc. Ado. Sci. for 1865. 1866.
(Glaucothoë the young of Pagurus, p. 53.)
Also published with title, Carcinological Gleanings, No. II., in Ann. Mag. Nat. Hist. [3], XVII. p. 26. 1866.
Carcinological Gleanings. No. III. Aun. Mag. Nat. Hist. [1], I. pp. 442448, Pl. XXI. 1868.
(Believes Alima to be the second stage of Squilla. Young of Uca, see Cunningham, Robert O.)

Report of the Committee appointed to explore the Marine Fauna and Flora of the South Coast of Devon and Cornwall. No. 2. Rep. Brit. Assoc. Adv. Sci. for 1867. 1868.

> (Larvæ of Porcellana, Pagurus, Palinurus, pp. 279-282, P1. I., II.)

Also published with title, Carcinological Gleanings, No. IV., in Ann. Mag. Nat. Hist. [4], II. pp. 113-117, Pl. IX., X. 1868.
Fourth Report on the Fauna of South Devon. Rep. Brit. Assoc. Adv. Sci. for 1872. 1873.
(Observation on the development of Homarus, \&c., p. 52.)
Report on the Present State of onr Knowledge of the Crustacea. Parts I. and II. On the Homologies of the Dermal Skeleton. Rep. Brit. Assoc. Ado. Sci. for 1575, pp. 41-53, Pl. I., II. 18~6. Do. for 15766, pp. 75-94, Pl. II., III. 187\%.
(Remarks on development, passim.)
On the Nauplius Stage of Prawns. Ann. Mag. Nat. Hist. [5], II. pp. 79-85. 1878.
(Thinks Fritz Mïller's "Peneus-nauplius" may be a larval Schizopod or parasitic Suctorian. Larva of Galatea noticed, p. 82.)
Report on the Present State of our Knowledge of the Crustacea. Part IV. On Development. Rep. Brit. Assoc. Adv. Sci. for 1S7S, pp. 193-209, Pl. V.-VII. 1879.
(Gelasimus, Trapezia, Dromia, Porcellana, Galatea, Astacus, Crangon, Pakemon, \&c.)
Report on the Present State of our Knowledge of the Crustacea. Part V. On Fecundation, Respiration, and the Green Gland. Rep. Brit. Assoc. Ado. Sci. for 1850, pp. 230-241. 1880.
(Account of recent observations of Chantran, Gerbe, Willemoes-Suim, \&c.)
On the Penreinea. Ann. Mag. Nat. Hist. [5], VIII. pp. 169-196, Pl. XI., XII. 1881.
(Genus Euphema M. Edw. a young form of Peneus? p. 192.)
Bate (C. Spence) and Müller (Fritz).
The Nauplius Stage of Prawns. Ann. Mag. Nat. Hist. [5], II. pp. 426, 427. 1878.

Bate, C. Spence [and Power, Wilmot Henry].
On the Development of the Crustacean Embryo, and the Variations of Form exhibited in the Larve of thirty-cight Genera of Podophthalmia. Proc. Roy. Soc. London, XXIV. pp. 375-379. 1876. Ann. Mag. Nat. Hist. [4], XVIII. pp. 174-17\%. \(18 \% 6\).

Bate (C. Spence) and Westwood (J. O.).
A History of the British Sessile-eyed Crustacea. 2 vols. London, 1861-1868. \(\mathrm{lvi},+50 \mathrm{j}+536 \mathrm{pp}\).
(Observations on development, Pp. xliii--xlvi., 1568 (C. S. Hate), et passim.)

\section*{Bell, Thomas.}

A History of the British Stalk-eyed Crustacea. London, 1853. lxv. +386 pp .
(Metamorphosis, pp. xxxviii.-lxi., et pussim.)

\section*{Beneden. See Van Beneden.}

\section*{Bessels, Emil.}

Einige Worte über die Entwickelungsgeschichte und den morphologisclien Werth des kugelförmigen Organes der Amphipoden. Jenaische Zeitschr., V. pp. 91-101. 1870.

See also Van Beneden, Edouard.

\section*{Birge, Edward A.}

Notes on Cladocera. Trans. Wisconsin Acad. Sci., Arts, \& Letters, IV. pp. 77112, Pl. I., II. 1878.
(Some notes on young, passim.)

\section*{Boas, J. E. V.}

Amphion und Polycheles (Willemoesia). Zoolog. Anzeig., II. pp. 256-259. May, 1879.

\section*{(Amphion the larva of Polycheles?)}

Studier over Decapodernes Slægtskabsforhold. Arec un Résumé en frauçais. K. Danske Vidensk. Selsk. Skr. [6], naturvidensk. og mathemat. Afd. I. pp. 25-210, 7 pl .1880.

Abstr. in Journ. Roy. Microscop. Soc. [2], I. pp. 450-452. 1881.
(Development, passim.)
Bobretzky, N.
K Embriologii Tshlenistonogikh [On the Embryology of Arthropods]. Zapiski Kiefshavo Obshtchestva Yestestroispitatalyei, III., 1873. [Mem. Kieff Naturalists' Soc., III. pp. 129-263, Pl. I.-YI. 1S\%3.]

Abstr. in German by Horer in Hofmann u. Schucalbe's Jahresberichte, II. pp. 31-2318. 1875.
(Astacus and Palamon.)
Zur Embryologic des Oniscus murarius. Zeitschr.f. wissensch. Zool., XXIV. pp. 179-203, Taf. XXI., XXII. 1874.
Boeck, Axel.
*Om det norske IIummerfiski og dets Historie. Tidsshrift for Fisheri, Kjobenhavn, 3 die Aargangs, pp. 28-43, 1868 ; pp. 145-18?, 1869.

Translated in United States Commission of Fish and Fisheries, Part III. Report of the Commissioner for 1873-i4 and 1574-75, pp. 2:3-255. 1576.
(Observations on development of Homarus, pp. 226, 227.)
Bosc, L. A. G.
Histoire Naturelle des Crustacés. Paris, 1802.
(Genus Zoēa founded for reception of the Brachyuran larva described by Slabber under the name of Monoculus taurus.)

\section*{Bovallius, Carl.}

Embryologiska Studier. I. Om Balanidernas Utveckling. Stockholm, 1875. \(44 \mathrm{pp} ., 5 \mathrm{pl}\).

\section*{Brandt, Eduard.}

Ueber die Jungen der gemeinen Klappenassel (Idothea entomon). Bull. Acad. Impér. des Sci. de St.-Pétersbourg, XV. pp. 403-409 (Mélanges Biologiques, VII. pp. 649-657), 1 pl. 1870.

\section*{Brauer, Friedrich.}

Beiträge zur Kenntniss der Phyllopoden. Sitzungsber. d. kais. Akad. d. Wissensch. Wien. Math.-naturio. Cl., LXV. pp. 279-291. 1872.

Abstr. Anzeiger d. Akad. d. Wissensch. Wien, May 31, 1872, p. 100. Ann. Mag. Nat. Hist. [土], X. p. 152, 1872. *Zeitschr. gesammt. Naturwissen. [2], VI. pp. 314, 315, 1872.
(Parthenogenesis of Apus, \&c.)
Vorläufige Mittheilungen über die Entwicklung und Lebensweise des Lepidurus productus Bosc. Sitzungsber. d. kais. Akad. d. Wissensch. Wien. Math.-naturwo. Cl., LXIX., I. Abt. pp. 130-140, Taf. I., II. 1874.
Bree, W. T.
Eedysis, or the Casting of the Skin or Shell, in Crustaceous Animals. Mag. Nat. Hist. (Loudon's), VIII. pp. 469, 469. August, 1835.
(Astacus hatched in the adult form.)

\section*{Brightwell, T.}

Description of the Young of the Common Lobster, with Observations relative to the Questions of the Occurrence and Non-occurrence of Transformations in Crustaccous Animals. Mag. Nat. Hist. (Loudon's), VIII. pp. 452-456. September, 1835.
(IIomarus, Astacus.)

\section*{Brooks, W. K.}

The Larval Stages of Squillat Empusa Say. Chesapeake Zoölogical Laboratory. Scientific Results of the Session of 1878, pp. 143-170, Pl. IX.-NIII. Fcbruary, 1879.

Also published as Studies from the Biological Laboratory of Johns Mopkins University, I. Part 3.
The Rhythmical Character of the Process of Scgmentation. Amer. Journ. Sci. \& Arts [3], XX. p. 293. October, 1880.
(Observed in eggs of Lucifer.)
The Young of the Crustacean Lucifer, a Nauplius. Amer. Naturalist, XIV. pp. 806-80s. November, 1880.
(Also records obs. of E. B. Whison that zoëa of Libinia has full number of thoracic appendages when it leaves egg. Whason has also raised zoëte from egigs of Porcellana, Pinnixa, Sesarma, Pinnotheres, and Callinectes.)
The Embryology and Metamorphosis of the Sergestidce. Zoolog. Anseig., III 1p. 563-567, 15 Nov., 1880.

Also brief notice in Fifth Annual Report of the Johns IIophins University, Baltimore, Maryland, 1880, Appendix F, " Report of Chesapeake Zoölogical Laboratory for the Third Year, Summer of 1880, Beaufort, N. C.," p. 57. 1880.
(Lucifer, Acetes?)
Lucifer: a Study in Morphology. (Abstract.) Proc. Roy. Soc. London, No. 212, 1881. 3 pp .
(Development of Lucifer, Acetes?)
Brooks (W. K.) and Wilson (E. B.).
The First Zoëa of Porcellana. Studies from the Biological Laboratory of Johns Hopkins University, II. No. 1, pp. 58-64, Pl. VI., VII. 1881.

\section*{Buchholz, Reinhold.}

Ueber Hemioniscus, eine neue Gattung parasitiseher Isopoden. Zeitschr. f. wissensch. Zool., XVI. pp. 303-327, Taf. XVI., XVIl. 1866.

Beiträge zur Kenntniss der innerhalb der Ascidien lebenden parasitischen Crustaceen des Mittelmeeres. Zeitschr. f. wissensch. Zool., XIX. pp. 99155, Taf. V.-XI. 1869.
(Figures nauplii of several Notodelphyidec.)
See also Münter, Jul.

\section*{Bullar, J. F.}

On the Development of the Parasitic Isopoda. Phil. Trans. Roy. Soc. London, CLXIX. pp. 505-521, Pl. XLV.-XLVII. 1878. Abstr. in Proc. Roy. Soc. London, XXVII. pp. 284-2s6. April 4, 1878.
(Cymothoë.)

\section*{Burmeister, Hermann.}

Beiträge zur Naturgeschichte der Rankenfüsser (Cirripedia). Berlin, 1834. viii. +60 pp., 2 pl .
(Development, pp. 12-27, Pl. I.)
Cane. See DuCane.
Carbonnier, Pierre.
L'Écrevisse. Mours - Reproduction - Education. Paris, 1869. 197 pp.
(Notes on hatching and young, Ch. VI. pp. 49-56.)

\section*{Cavolini, Filippo.}
*Mcmoria sulla Generazionc dei Pesei c dei Granchi. Napoli. \(17 \mathcal{S 7}\).
Germ. transl. by E. A. W. Zimmermann. Abhandlung über die Erzeugung der Fische und der Krebse. Berlin, 1792. 192 pp., 3 pl.
(Zoëa of Brachyura [Grapsus varius?], young of Entoniscus, Rhizocephala, Sc.)
Chantran, Samuel.
Obscrvations sur l'Histoire Naturelle des Écrevisses. Comptes Rendus de l'Acad. des Sci., Paris, LXXI. pp. 43-45. 18~0

Trans. in Ann. Mag. Nat. Hist. [4], VI. pp. 265-26̃. 18,0. Journ. de l'Anat. et de la Physiol. (Robin's), VIII. pp. 230-235. 18\%2. Ree. Mag. Zool. [2], XXlII. pp. 75-78. 1S\%1-7~2.

Nourclles Observations sur le Développement des Écrevisses. Comptes Rendus de l'Acad. des Sci., Paris, LXXIII. pp. 220, 221. 1871.

Trans. in Ann. Mag. Nat. Hist. [4], VIII. pp. 219, 220. 1871. Journ. de l'Anat. et de la Physiol. (Robin's), VIII. p. 238. 1872. Rev. Mag. Zool. [2], XXIII. pp. 78, 79. 1871-72.

\section*{Claparède, A. René Edouard.}

Beobachtungeu über Anatomie und Entricklungsgeschichte wirbelloser Thiere au der Küste von Normandie angestellt. Leipzig, 1863. viii. +120 pp., 18 pl .
(Development of Mysis, pp. 92-9t, Pl. XVII. figs. 1-6; Lepas anatifera, pp. 98-101, Pl. XVII. figs. 15-26; Phoxichilidium, pp. 104, 105, Pl. XVIII. figs. 13, 14.)

\section*{Claus, Carl.}

Ueber den Bau und die Entwickelung parasitischer Crustaceen. Cassel, 1858. \(-34 \mathrm{pp} ., 2 \mathrm{pl}\).
(Chondracanthus, Lernanthropus, Kroyeria.)
Zur Anatomie und Entwickelungsgeschichte der Copepoden. Arch.f.Naturgesch., XXIV. I, pp. 1-76, Taf. I.-III. 1858.
*Zur Kenntniss der Malacostracenlarven. Wüizlurg. naturwiss. Zeitschr., II. pp. 23-46. 1861.

Ueber die morphologischen Beziehungen der Copepoden zu den rerwandten Crustaceengruppen der Malacostraken, Phyllopoden, Cirripedien und Ostracoden. Ẅ̈rz̈burg. naturwiss. Zeitschr., III. pp. 159-167. 1862.
Ueber den Bau und die Entwicklung von Achtheres percarum. Zeitschr.f. wissensch. Zool., XI. pp. 2S7-30s, Taf. XXIII., XXIV. 1862.
Die frei lebenden Copepoden mit besonderer Berücksichtigung der Fauna Deutschlands, der Nordsee und des Mittelmeeres. Leipzig, 1868. x. +230 pp., 37 pl . (Development, pp. 72-83. Figures several naıplii.)
Ucber einige Schizopoden und niedere Malacostraken Messina's. Zeitschr. f. wissensch. Zool., XIII. pp. 422-454, Taf. XXV.-XXIX. 1863.
(Development of Palinurus, Sergestes, Euphausia.)
Zur näheren Kenutniss der Jugendformen von Cypris orum. Zeitschr.f. wissensch. Zool., XV. pp. 391-39S, Taf. XXVIII., XXIX. 1865.

Abstr, by C. Spence Bate in Rec. Zoöl. Lit. (1S65), II. pp. 344, 345. 1866.

Die Copepoden-Fauma von Nizza. Ein Beitrag zur Charakteristik der Formen und deren Abäuderungen "im Sime Darwin's." Schriflen d. Gesell. zur Befödcrung d. gesammt. Naturvissen. zu Marburg, IX. Suppl. 1. 34 pp ., 5 pl .1866.
(Young Calunellu, p. 9, Taf. V. fig. 22. Calanus mastignphorus? pp. 10, 11, Taf. V. figs. 20, 21.)

Ueber Lernueocera esocina v. Nordm. (Vorläufige Mittheilung.) Sitzungsber. d. Gesell. zur Beförderung d. gesammt. Naturwissen. zu MFarbury, 1867, pp. 5-12.
(Development, pp. 11, 12.)
Ueber den Entwicklungsmodus der I'orcellana-Larven im Vergleiche zu den Larven von Pagurus. Sitzungsber. der Gesell.zur Beförderung d. gesammt. Naturvissen. zu Marburg, 1867, pp. 12-16.
Ueber die Metamorphose und systematische Stellung der Lernaeen. Sitzungsber. d. Gesell. zur Beförderung d. gesammt. Naturwissen. zu Marburg, 1868, pp. 5-13.
Beiträge zur Kenntniss der Ostracoden. I. Entwicklungsgeschichte von Cypris. Schriften d. Gesell. zur Beförderung d. gesammt. Naturwissen. zu Marburg, IX. pp. 151-166, 2 pl. 1868.

Abstr. in Ann. Mag. Nat. Hist. [t], IV. pp. 291, 292. 1869. *Arch. Sci. Phys., XXXV. pp. 312-314. 1869.

Beobachtungen über Lernaeocera, Peniculus und Lernaea. Ein Beitrag zur Naturgeschichte der Lernaeen. Schriften d. Gesell. zur Beförderung d. gesammt. Naturwissen. zu Marburg, IX. Suppl. 2. 32 pp., 4 pl. 1868.
(Young of Lerneoeera esocina. Metamorphosis of Lernea branchialis, pp. 1627, Taf. IV.)
Die Cypris-ähnliche Larve (Puppe) der Cirripedieu and ihre Verwandlung in das festsitzende Thier. Ein Beitrag zur Morphologie der Rankenfüssler. Schriften d. Gesell. zur Beförderung d. gesammt. Naturwissen. zu Marburg, IX. Suppl. 5. 17 pp., 2 pl. 1869.

Die Metamorphose der Squilliden. Nachrichten Kön. Gesell. Wïssensch. Göttin. gen, 1871, pp. 169-150. (Abstract.) Alh. Kön. Gesell. IV issensch. Göttingen, XVI. pp. 111-163, Taf. I.-VIII. 1871. (Full memoir.)
Zur Kemntniss des Bau's und der Entwicklung von Apus und Branchipus. Nachrichten Kön. Gesell. Wissensch. Göttingen, 1872, pp. 209-225. *Zeitschr. gesamnt. Naturwissen., VI. pp. 200, 201. 18\%2.
Zur Kenntniss des Baues und der Entwicklung von Branchipus stagnalis und Apus cancriformis. Abh. Kön. Gesell. Wissensch. Göttingen, XVIII. pp. 93-140, Taf. 1.-VIII. 1s\%s.
Ueber die Entwickelung, Organisation und systematisehe Stellung der Arguliden. Zeitschr. f. wissensch. Zool., XXV., pp. 217-2St, Tuf. XIV.-_XVIII. 1875.
*Das System der Crustaccen im Liehte der Descendenzlehre. I. Dic Metamorphose der Malakostraken. Wien, 1875.
Zur Kemntniss der Organisation und des feinern Banes der Daphniden und verwandter Cladoecren. Zeitschr.f. wissensch. Zool., XXV11. pp. 362-102, Taf. XXV.-AXVIIl. Aug., 18 G.
(Structure of ovary, eggs, 心'c., pp. 389-399, Taf. XXVII. figs. 15-20.)

Grundzüge der Zoologic. Zum Gebrauche an Univcrsitäten und höheren Lehranstalten sowie zum Selbststudium. 3te Aufl. Marburg und Leipzig, \(18 \pi 4,18 \% 6\). xii. +1254 pp .
(Development of Crustacea, pp. 450-562, passim. 1876.)
Untersuchungen zur Erforschung der Gencalogischen Grundlage des Crustaceeu-Systems. Ein Beitrag zur Descendenzlehre. Wien, 1876. viii. +114 pp., 19 pl.

Noticed by Eduard von Martens in Zoölog. Rec. (1876), XIII. Crust., pp. 2, 3. 1878.
(General work on development of Crustacea.)
Neue Beiträge zur Kenutniss der Copepoden unter besonderer Berücksichtigung der Triester Fauna. Arleiten aus d. zoolog. Inst. d. Universilät Wien u. d. zoolog. Station in Triest, III. pp. 313-332, Taf. XXIII.-XXV. 1881.
(Young males of certain species resemble the female in the segmentation of the antennæ, \&c.)

\section*{Coldstream, John.}

On the Structure and Habits of the Limnoria terebrans, a minute Crustaceous Animal, destructive to marine woodeu Erections, as Piers, \&c. Edinburgh New Philosoph. Journ., XVI. pp. 316-334, Pl. VI. 1834.
(Toung, p. 325, Pl. VI. figs. 17, 18.)

\section*{Cornalia (Emilio) and Panceri (Paolo).}

Osservazioni zoologico-anatomiche sopra un nuovo Gcucre di Crostacei Isopodi sedentarii (Gyge branchiulis). Memorie della Reale Accad. d. Scienze di Torino, [2], XIX. \(1858.36 \mathrm{pp} ., 2 \mathrm{pl}\).
(Development, pp. 21-27, Pl. I. figs. 6-25.)

\section*{Costa, Oronzio-Gabriele.}

Fauna del Regno di Napoli, \&c. Napoli, 1829, et seqq.
(Embryo of Callianassa subterranea, Decapodi Macrouri, Tav. I \({ }^{\text {bin }}\), fig. 2, pp. 9, 10. Feb. 1847.)

A few plates are missing from the copy of this work in the library of the Muscum of Comparative Zoology. According to Leuckart, Arch. \(f\). Nalurgesch., 1859, 1, p. 246, the embryo of Notopterophorus is figured.

\section*{Coste [P.].}

Note sur la Larve des Langoustes. Comptes Rendus de l'Acad. des Sci., Paris, XLVI. pp. 547, 548. 1858. Amm. Mag. Nat. Hist. [3], I. p. 466. 1858.

> (Phyllusoma the larva of Palinurus.)

Études sur les Mocurs et sur la Génération d'm certain Nombre d'Animaux marins. Comptes liendus de l'Acud. des Sci., I'aris, XLVII. pp. 45-50. 1858.

Traus. in Ann. Mag. Nat. Hist. [3], II. pp. 19ī-202. \(185 s\).

\section*{Couch, R. Q.}

On the Metamorphoses of the Decapod Crustaceans. The Elecenth Aimual Report of the Royal Cornwall Polytechnic Society, 1843, pp. 2S-43, Pl. I. Falmouth.
(Carcinus Mienas, Portunus plicatus, Cancer pagurus, Maia verrucosa, Inachus dorynchus, Pisa Gibbsii, Iomarus vulgaris, Palinurus vulyaris, Galatea squamiftra.

Xantho floridus, X. rivulosus, Pilumnus hirtellus, Polybius Menslowii, Portunus puber, and several others hatched as zoëæ.)

See Bell's Mist. Brit. Stalk-eyed Crustacea. Loudon, 1853.
On the Metamorphosis of the Crustaceans, including the Decapoda, Entomostraca, and Pycnogonide. The Twelfth Annuat Report of the Royal Cornwall Polytechnic Society, 1844, pp. 17-46, Pl. I. Falmouth.
(Carcinus Mfenas, Patinurus vulguris, Homarus vulgaris, Cranyon vulgaris, Pabemon serratus, Porcellana platycheles, Cyclops quadricornis, Orithyia coccinea, Nymphon gracile.)

See Bell's Hist. Brit. Stalk-eyed Crustacea. London, 1853.
[Letter to C. Spence Bate on the Larvæ of Cuma.] Amn. Mag. Nat. Hist. [2], XIX. pp. 106, 107. \(185 \%\).
On the Embryo State of Palinurus vulgaris. Nat. Hist. Rev., IV., Proc. Soc., pp. 250-257, Pl. XVII. 185\%. Rep. Brit. Assoc. Adv. Sci. for I857, Trans. of Scet., pp. 102, 103. 1858.
(Larva referred to Phyllosoma by Gerstaecker, Arch. f. Naturgesch. 1858, 2, p. 455 .)

\section*{Cunningham, Robert \(\mathbf{O}\).}
[Letter to C. Spence Bate,] Carcinological Gleanings, No. III., Ann. Mag. Nat. Ilist. [4], I. pp. 442-446. 1868.
(Uca Cunninghami Bate with live, fully developed young ones under the pleon.)
Czerniavsky. See Tscherniawsky.
Dana, James D.
United States Exploring Expedition, during the Years 183S, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U. S. N. Vol. XIII. Crustacea. Philadelphia, 1852. xii. +1618 pp., 96 pl .
(Passim.)
Danielssen [D. C.]. See Koren, J.

\section*{Darwin, Charles.}

A Monograph on the Sub-Class Cirripedia, with Figures of all the Species. The Lepadides, or Pedunculated Cirripedes. London, 1851. xii. +400 pp., 10 pl .

The Balanider, or Sessile Cirripedes, the Vorrucide, \&c., \&c. London, 1854. viii. \(+654 \mathrm{pp} ., 30 \mathrm{pl}\).
(Metamorphoses, pp. 102-133.)

\section*{De Filippi. See Filippi.}

De Geer. See Geer.
De La Valette St. George. See La Valette St. George.
Dohrn, Anton.
Die embryonale Entwicklung des Asellus aquaticus. Zeitschr. f. wissensch. Zool., XVII. pp. 221-278, Pl. XIV., XV. 1867.
On the Morphology of the Arthropoda. Journ. of Anat. and Physiol., II. ([2], I.) pp. 80-86. 1868.

Abstr. in Rep. Brit. Assoc. Adv. Sci. for 1867, Trans. of Sect., p. 82. 1868.

Untersuchungen über Bau und Entwickelung der Arthropoden. 1. Ueber den Bau und die Entwickeluug der Cumaceen. Jenaische Zeitschr., V. pp. 54-S1, Taf. II., III. 1870.
Untersuchungen über Baı und Entwicklung der Arthropoden. 3. Die Schalendrüse und die embryonale Entwicklung der Daphnien. Jenaische Zeitschr., V. pp. 277-306, Taf. X. \(18 \% 0\).
Untersuchungen iiber Bau und Entwicklung der Arthropoden. 4. Entwick. lung und Organisation von Praniza (Anceus) maxillaris. Zeitschr.f. wissensch. Zool., XX. pp. 55-S0, Taf. YI.-VIII. 1869.
Untersuchungen über Bau und Entwicklung der Arthropoden. 5. Zur Kentniss des Baues von Paranthura Costana. Zeitschr. f. wissensch. Zool., XX. pp. 81-93, Taf. IX. 1869.
(Observations on development in Nachtrag.)
Untersuchungen über Bau und Entwicklung der Arthropoden. 6. Zur Entwicklungsgeschichte der Panzerkrebse (Decapoda Loricata). Zeitschr.f. wissensch. Zool., XX. pp. 249-271, Taf. XVI. 18 ro.
(Scyllarus arctus, Palinurus rulgaris.)
Untersuchungen über Bau und Entwicklung der Arthropoden. 7. Zur Kenntniss vom Bau und der Entwicklung von Tanais. Jenaische Zeitschr., V. pp. 293-306, Taf. XI., XII. 1870.

Untersuchungen über Bau und Entwicklung der Arthropoden. 8. Die Ueberreste des Zoëa-Stadiums in der ontogenetischen Entwicklung der verschiedenen Crustaceen-Familien. Jenaische Zeitschr., V. pp. 471-491. 1870.

Untersuchungen ïber Bau und Entrricklung der Arthropoden. 9. Eine neue Nauplius-Form (Archizoëa gigas). Zeitschr.f. wissensch. Zool., XX. pp. 597-606, Taf, XXVIII., XXIX. 1870.
(Cimipedia.)
Untersuchungen über Bau und Jintwicklnng der Arthropoden. 10. Beiträge zur Kenntniss der Malacostraken und ihrer Larven. Zeitschr. f. e issensch. Zool., XX. pp. 607-626, Taf. XXX.-XXXII. \(18 \% 0\).
(Amphion, Lophogaster, Portunus, I'undalus, Gulatet, Elaphocaris.)

Untersuchungen über Bau und Entwicklung der Arthropoden. 11. Zweiter Beitrag zur Kenntniss der Malacostraken und ihrer Larven-formen. Zeitschr. f. wissensch. Zool., XXI. pp. 356-379, Taf. XXVII.-XXX. 1871.
(Zoëx, pp. 372-378, Taf. XXIX., XXX.)
Geschichte des Krebsstammes, nach embryologischen, anatomischen und palaeontologischen Quellen. Jenaische Zeitschr., VI. pp. 96-156. 1871.
Der Ursprung der Wirbelthiere und das Priucip des Functionswechsels. Genealogische Skizzen. Leipzig, 1875. 87 pp .
(Contains remarks on development of various Crustacea, passim.)

\section*{DuCane, C.}

Letter from Captain DuCane, R. N., to the Rev. Leonard Jenyns, on the subject of the Metamorphosis of Crustacea. Extract from a Letter on the same subject from Captain J)uCane, R. N., to W. S. MacLeay, Esq. Ann. Nat. Hist., II. pp. 178-181, Pl. VI., VII. 1839.
(Palamon, Crangon.)
On the Metamorphoses of the Crustacea. Ann. Nat. Hist., III. pp. 43s-440, Pl. XI. 1839.

Dujardin, Félix.
Observations sur les Métamorphoses de la Porcellana longicornis, et Description de la Zoé, qui est la Larve de ce Crustacé. Comptes Rendus de l'Acad. des Sci., Paris, XVI. pp. 1204-1207. 1843.

\section*{Duthiers. See Lacaze-Duthiers.}

\section*{Edwards. See Milne Edwards.}

Erdl, M. P.
Entwicklung des Hummereics von den ersten Veränderungen im Dotter an bis zur Rcife des Embryo. München, 1843. 40 pp., 4 pl.
Noticed in Ann. Mag. Nat. Hist., XIII. pp. 213, 214. 1844.
(Plate II. figs. 1-10, Carcinus Manas in oro.)

\section*{Eschscholtz, Fr.}

Bericht über die zoologische Ausbeute während der Reise von Kronstadt bis St. Peter-und-Paul. Isis, 1825, 1, col. 733-747, Taf. V.
(Lonchophorus anceps, col. 734, Taf. V. fig. 1, described as a Macrouran, is a Brachyuran zoëa, described by A. Dohru, Zeitschr. f. wissensch. Zool, XXI. p. 373, Taf. XXX. fig. 52, 1871, and by Claus, under the name of Pluteocaris, "Cntersuchungen," \&c., p. 65, Taf. NiI. figs. 1-7, 1576.)

\section*{Faxon, Walter.}

On some Young Stages in the Development of Ilippa, Porcellana, and Pinnira. Bull. Mus. Comp. Zoöl. at Marvard Coll., in Cumbridge, V. pp. 253-26s, 5 pl . June 30, \(1 \mathcal{S N}^{7} 9\).
(Includes notice of unpublished observations of S. I. Smitu on develepment of Finnixa, pp. 264, 265, and Pinnotheres, p 265, foot-note.)
VOL. IX. - No. 6.

On the Development of Palamonetes rulgaris. Bull. Mus. Comp. Zoöl. at Haraard Coll., in Cambridge, V. pp. 303-330, 4 pl. Sept. 1879.
(Includes notice of schizopod stage of Virbius zostericola, p. 322.)
On some Points in the Structure of the Embryouic Zoëa. Bull. Mus. Comp. Zoöl. at Harvard Coll., in Cambridge, VI. pp. 159-166, 2 pl. Oct. 19, 1880.
(Carcinus Manas, Panopeus Sayi, Gelasimus pugnax.)
Filippi, F. de.
Osservazioui Zoologiche. Seconda Nota sulla Dichelaspis Darvinii. Archivio di Zoologia, I. pp. 200-206, Tav. XII., XIII. 1861.
(Development, pp. 200-203, Tav. XII., XIII. figs. 10, 11.)
*Ueber die Entwicklung von Dichelaspis Darwinii. Moleschott's Untersuchungen zur Naturlehre des Menschen und der Thiere, IX. pp. 113-120, 2 pl. 1863.

\section*{Fischer, Sebastian.}

Ablandlung über das Genus Cypris, und dessen in der Umgebung von St. Petersburg und von Fall bei Reral vorkommenden Arten. Mém. des Savants étrangers prés. à l'Acad. Inpér. des Sci. de St.-Pétersbourg, VII. pp. 127167, 11 pl .1854.

Also printed separately, with date 1851.

> (Young indiriduals of several species represented.)

Beitrag zur Kenntuiss der Ostracoden. Alhandl. d. K. bayr. Akad. d. Wissen.sch. München. Math. phys. Cl., VII. pp. 635-666, Taf. XIX., XX. 1855.
(Young Cypris, pp. 643, 644, Taf. XIX. figs. 7, 8.)
Fraisse, Paul.
Die Gattung Cryptoniscus Fr. Müller (Liriope Rathke). Arbeit. aus dem zoolog.zootom. Inst. in WFürzburg, IV. pp. 239-296, Taf. XII.-XV. 1878. (Includes development. Nauplius of Peltogaster Rodriguezii, Taf. XV. fig. 57.)
Entoniscus Carolinii n. Sp., ncbst Bemerkungen über die Umwandlung und Systematik der Bopyriden. Arbeit. aus dem zoolog.-zootom. Inst. in Würzburg, IV. pp. 352-440, Taf. XX゙., XXI. \(18 \% 8\).

Frey (Heinrich) and Leuckart (Rudolph).
Beiträge zur Kenntuiss wirbelloser Thiere mit besonderer Berücksichtigung der Fauna des Norddeutsehen Mceres. Braunschweig, 1847. 170 pp., 2 pl .

Frič. Sce Fritsch.

\section*{Fritsch, Anton.}

Ueber das Vorkommen von Apus und Branchipus in Böhmen. Terhandl. d. Kais.-Königl. zoolog. -botan. Fesell. in Wien, XVI. pp. 557-562. 18G6.
(On the influence of desiceation on the development of the egg, \&e.)

\section*{Gamroth, Alois.}

Beitrag zur Kenntniss der Naturgeschichte der Caprellen. Zeitschr.f. wissensch. Zool., XXXI, 101-126, Taf. VIII.-X. 1878.
(Development, pp. 122, 123, Taf. VIII. figs. 15-21.)
Geer, Charles De.
Mémoires pour servir à l'Histoire des Insectes. Tome VII. Stockholm, 1778. \(\quad\) e Mém. Dcs Monocles, pp. 443-191, Pl. XXVII.-XXX.

Germ. transl. by J. A. E. Goeze. Abhandlungen zur Geschichte der Insekten. Bd. VII. Nürnberg, 1\%83. Pp. 161-181, Pl. XXVII.-XXX.
(Larve of Cludocera, Copepoda, passim.)

\section*{Geoffroy Saint-Hilaire, Isid.}

Rapport fait à l'Aeadémie royale des Sciences, sur un Mémoire de M. Milne Edwards, intitulé: Observations sur les Chaugements de Forme que les Crustacés eprouveut dans le jeune Âge. Ann. Sci. Nat. [1], XXX. pp. 360-372. 1833.

Gerbe, J.
Sur les Sacculina. Extrait d'uue Lettre de M. J. Gerbe, adressée à M. Van Beneden. Bull. Acud. Roy. Belgique, [2], XIII. pp. 339, 340. 1862.
' (On development.)
Recherelies sur la Constitution et le Développement de l'Guf ovarien des Sacculines. Comptes Rendus de l'Acad. des Sci., Paris, LXVIII. pp. 460-462, 22 Feb. 1869.

Abstr. in Rev. Mag. Zool. [2], XXI. pp. 79, 80. 1869. Ann. Mag. Nat. Hist. [4], III. pp. 321, 322. 1869.

Réponse aux Observations de M. Balbiani, sur le Rôle des deux Vésicules que renferme l'(Euf primitif. Comptes Rendus de l'Acad. des Sci., Paris, LXVIII. pp. 670, 671. Mar. 15, 1879.

Gerbe, \(Z\).
Métamorphoses des Crustacés marins. Comptes Rendus de l'Acad. des Sci., Paris, LIX. pp. 1101-1103. 1864 Rer. Mag. Zool. [2], ヘ1'II. pp. 7983. 1865. Ann. Mag. Nat. Hist. [3], NV. pp. 23~, 235. 1865.

Notiee by C. Spence Bate in Rec. Zoölog. Lit. (1565), Il. pp. 321, 322. 1866.
(Phyllosoma the young of Palinurus. Embryonic skin with invaginated spines in numerous genera.)

Métamorphoses des Crustacés marius. Dcuxième Note. Comples Rendus de l'Acud. des Sci., Paris, LX. pp. 71-77. 1865. Ree. Mag. Zool. [2], XVII. pp. S3-S7. 1865. Ann. Mrag. Nat. IIist. [3], XV. pp. 356-355. 1865.

Appareils vasculaire et nerveux des Larres des Crustacés marins. Comptes Rendus de l'Acad. des Sci., Paris, LXII. pp. 932-937. Apr. 23, 1866.

Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], XVIII. pp. 712. 1866.
(Porcellana, Homarus, Phyllosoma, Nymphon, \&c.)
Métamorphose des Crustacés marins. Quatrième Note. Comptes Rendus de l'Acad. des Sci., Paris, LXII. pp. 1021-1027. May 7, 1S66. Ann. Mag. Nat. Hist. [3], XVIII. pp. 69-il.` July, 1866.
(Conclusions from observations recorded in three preceding notes.)

\section*{Gerstaecker, A.}

Bericht über die wissenschaftlichen Leistungen im Gebiete der Entomologie während des Jahres 1857. Arch.f. Naturgesch. 185s, 2, p. 455.
(Larva of Palinurus, described by R. Q. Couch (Nat. Hist. Rev. IV., Rep. Brit. Assoc. Adv. Sci. for 1857), referred to Phyllosoma.)
Vol. V. (Arthropoda) of Broxy's Klassen und Ordnungen des Thier-Reichs. Leipzig und Heidelberg, 1866 et seqq.
(Development, passim.)
[On Ornitholepas australis Targ. Tozz.] Sitz.-Bei. Gesell. naturf. Freunde zu Berlin, 18~5, pp. 113-115.
(An immature form. See Ad. Targioni Tozzetti, Bull. Soc. Entomol. Italiana, IV. pp. 8t-96, Tav. I. 1872.)

Giard, Alfred.
Contributious à l'Histoire Naturelle des Synascidies. Arch. Zool. Expér., II. pp. 4S1-514. \(18 \div 3\).
(Nauplius of Ophioseides apoda, P1. XIX. fig. 2.)
Sur les Cirripèdes Rhizocéphales. Comptes Reudus de l'Acad. des Sci., Paris, Vol. LXXVII. pp. 945-945. 18i3.
Sur l'Embrrogénie des Rhizocéphalcs. Comptes Rendus de l'Acad. des Sci., Paris, Vol. LXXIN. pp. 41-46. 1874.

Trans. in Ann. Mag. Nat. Hist. [4], XIV. pp. 3S1-3S3. 1874.
Sur les Isopodes parasites du Genre Entoniscus. Comptes Rendus de l'Acad. des Sci., Paris, Vol. LXXXVII. pp. 299-301. 18is.

Trans. in Aun. Mag. Nat. Hist. [5], II. pp. 316-3ts. 1878.
("Nauplius-eye" in embryo.)
Notes pour servir à l'Histoire du Genre Eutoniscus. Journ. de l'Anat. et de la I'hysiol. (Robin et Pouchet's), XIV. pp. 675-700, Pl. NLVI. 1878.

Trans. ly W. S. Dallas in Amm. Mag. Nat. Ifist. [5], IV. pp. 13i-156, Pl. X. \(18 \pi 9\).
(Development, pp. 693-698. On the eye of Cypris-larva of Cirripedia, p. 695, foot-note.)
Ou the Nauplins and Pupa Stage of Suctoria. Ann. Mag. Nat. Mist. [5], II. pp. 233, 234. Scpt. \(18 \%\).
(Fritz Miller's "I'eneus-nauplius " not a larval Suctorian.)

\section*{Gissler, Charles F.}

Contributions to the Fauna of the New York Croton Water. Microscopical Obscrvations during the Years 1870-71. New York, 1872. 23 pp., 5 pl . (Young of Cyclops and Cypris.)

\section*{Goodsir, Henry D. S.}

On a New Genus, and on Six New Species of Crustacca, with Observations on the Development of the Egg, and on the Metamorphoses of Caligus, Carcinus, and Pagurus. Edinburgh New Philosoph. Journ., XXXIII. pp. 174192, PI. II., III. 1842.

The section on development of Caligus traus. in Ann. Sci. Nat. [2], Zool., XVIII. pp. 181-184. 1842.
On the Scxes, Organs of Reproduction, and Mode of Development, of the Cirripeds. Account of the Maidre of the Fishermen, and Descriptions of some New Species of Crustaceans. Edinburgh Nero Philosoph. Journ., XXXV. pp. 85-104, 336-339, Pl. III., IV., VI. 1843. Frorien's Neue Notizen, XXX. col. 193-200, 209-215. 1844.

\section*{Gosse, Philip Henry.}

A Naturalist's Rambles on the Devonshire Coast. London, 1853. xvi. + 451 pp., 28 pl.

> (Young of Hyperia [?], p. 368, Pl. XXII. fig. 15.)

Tenby : a Sca-side Holiday. London, 1856. xx. +400 pp., 24 pl.
(Development of Balanus, pp. 115-118, Il. III., IV. Last zoëa stage and first megalopa stage of Galatea [Porcellana ?], pp. 169-172, Pl. VII., VIII. ; also brief notice in \(A\) Year at the Shore, p. 194, London, 1865.)
Gray [J. E.].
Reproduction of Cirrhipeda. Proc. Zoölog. Soc. London, Pt. I. pp. 115, 110. 1833.

\section*{Grobben, Carl.}
(Balanus Cranchii.)
Die Entwickelungsgeschichte der Moina rectirostris. Zuglcich ein Beitrag zur Kcnutniss der Anatomie der Plyllopoden. Arbeiten aus d. zoolog. Inst. d. Universität Wien u. d. zoolog. Station in Triest, II. pp. 203-26S, Taf. XI.-XVII. 1879.

Abstr. by P. Mayer in Zoolog. Jahresber. 1879, I. pp. 395, 399-401, 1880; in English, by J. S. Kingsley, in Amer. Naturalist, XIV. pp. 114-116, 7 figs., February, 1880.
(Also contains observations on larva of Cyclops and Ergasilus.)
Die Entwicklungsgeschichte von Cetochilus septentrionalis Goodsir. Arbeiten aus d. zoolog. Inst. d. Universität Wien u. d. zoolog. Station in Triest, III. pp. 243-252, Taf. XIX.-XXII., 2 cuts. 1851.

Abstr. in Journ. Roy. Microscop. Soc. [2], I. pp. 731-736. 1881.
(Also contains observations on the formation of the mesoderm in Phyllopoda and Cirripedia, pp. 29-31.)

\section*{Grube, Adolph Eduard.}

Bemerkungen über die Phyllopoden, nebst einer Uebersicht ihrer Gattungen und Arten. Arch.f. Naturgesch., 1853, 1, pp. 71-172, Taf. V.-VIII.
(Observations on development, passim.)
Guérin-Méneville, Felix Eduard.
*Iu Ramon de la Sagra's Historia Física, Politica, y Natural de la Isla de Cuba. II. Parte, Historia N̄atural, VII. p. xx. ff., Tab. III. Paris, 1856.

\section*{Guilding, L.}

Desultory Remarks relative to Points in the Economy of various Crustacea. May. Nat. Hist. (Loudon's), VIII. pp. 276, 27~. May, 1835.
(Young of " mountain crab" [?] " leave the egg perfect.")
Cf. Bell's Hist. Brit.Stalk-eyed Ciustacea, Introd., p.xliv. London, 1853.

\section*{Haeckel, Ernst.}

Die Gastrula und die Eifurchung der Thiere. Jenaische Zeitschr., IX. ([2], II.) pp. 402-50S, Taf. XIX.-XXV. 1875.
(Peneus, pp. 447-452, Taf. XXIII.)

\section*{Hailstone, S.}

An Illustrated Description of a Species of Eurynome, supposed to be hitherto undescribed; and Notices of some Instances of some Clange of Form which occurs in certain cited Species of Crustaceous Animals. Mag. Nat. IIist. (Loudon's), VIII. pp. 549-551. October, 1835.

Hailstone (S.) and Westwood (J. O.).
Descriptions of some Species of Crustaceous Animals, by S. Hailstone, Jr., Esq.: with Illustrations and Remarks, by J. O. Westrood, Esq., F.L.S., etc. Mag. Nat. Hist. (Loudon's), VIII. pp. 261-276. May, 1835.
(Young of several Decapoda.)

\section*{Hartmann, Robert.}

Beiträge zur anatomische Kenntniss der Schmarotzer-Krchse. 2. Lernaeocera Barnimii Mihi. Arch. f. Anat., Physiol. u. wissensch. Med., 1870, pp. 726-752, Taf. XVII., X VIII.
(Development, p. 749, Taf. XVIII. figs. 21-28.)
Hartog, Marcus. See Addendum, p. 244 .
Haswell, William A.
Note on the Phyllosoma Stage of Ibacus Peronii Leach. Proc. Linn. Soc. New South H'ales, IV. pp. 250-252. 1870.
Henneguy, L. F.
Note sur l'Existence de Globules polaires dans l' (Euf des Crustacés. * Bull. Soc. Philomath., Paris [7], IV. p. 135, 10 April, 1880. Trans. in Ann. Mag. Nat. Hist. [5], V I. p. 465. December, 1880.
(Scen in ovum of Asellus aquaticus.)
Hensen, V.
Studien über das Gehörorgan der Decapoden. Zeritschr. f. vissensch. Zool., XIII. pp, 319-112, Taf. NXX-XXII. 1863.
(Auditory apparatus of zoëa of Carcinus Manas, pr. 340, 3f2, Taf. XX. tig. 25.)

\section*{Herrick, C. L.}

Microscopic Entomostraca. Geolog. \& Nat. Hist. Survey of Minnesota, 7th Ann. Rep. for the Year 1878, pp. 8I-123, Pl. I.-XXI. 1879.
(Nauplii, passim.)

\section*{Hesse, Eugène.}

Mémoire sur les Pranizes et les Ancées. Ann. Sci. Nat. [4], Zool., IX. pp. 93119. 1858.

Complete memoir in Mém. prés. par divers Suvants à l'Inst. Impér. de France, XVIII. 1864.

Mémoire sur les Moyens à l'Aide desquels certains Crustaeés Parasites assurent la Conservation de leur Espèce. Aun. Sci. Nat. [4], Zool., IX. pp. 120-125, 1858. Comples Rendus de l'Acad. des Sci., Paris, XLVI. pp. 1054, \(10555,1858\).

\section*{(Parasitic Copepoda.)}

Complete memoir in Mém. prés. par divers Savants à l'Inst. Impér. de France, XVIlI. 1864.

Mémoire sur les Métamorphoses que subissent peudant la Période Embryonnaire les Anatifes appelés Sealpels Obliques. Ann. Sci. Nat. [4], Zool., XI. pp. 160-175, 1859. Short Notice in Comptes Rendus de l'Acad. des Sci., Paris, XLVIII. p. 911. 1859.
(See later paper in Revue des Sci. Nat.)
Mémoire sur deux nouveanx Genres de l'Ordre des Crustacés Isopodes Sedentaires et sur les Espèces Types de ees Genres. Arn. Sci. Nat. [4], Zool., XV. pp. 91-116, Pl. VIII., IX. 1861.
(Development of Athelgue, pp. 100-102, PI. VIII. figs. \(2^{\mathrm{h}}-2^{\mathrm{k}}\).)
Observations sur des Crustacés rares ou nourcaux des Côtes de France. \(1^{\text {er }}\) Art. Du Coiliaeole sétigère (Nobis), Coiliacola setigera. Ann. Sci. Nat. [4], Zool., XV1lI. pp. 343-355, Pl. XV1II. 1862.
(Few observations on development.)
Reeherches sur quelques Crustacés rares ou nouvcaux des Côtes de France. \(2^{e}\) Mémoire. De la Lernée branehiale et de celle qui vit sur le Gade barbu. \(3^{e}\) Mémoire. Famille des Lernćogastriens, Nohis. Genre Naobranchie, Nobis. Ann. Sci. Nat. [4], Zool., XX. pp. 101-132, Pl. I. \(1 S 63\).
Mémoire sur les Pranizes et tes Aneées et sur les Moyens curicux à l'Aide desquels eertains Crustacés Parasites assurent la Conservation de leur Espèce. Mém. prés. par divers Savants à l'Inst. Inpér. de France, XV1II. 1864. \(74 \mathrm{pp} ., 5 \mathrm{pl}\).

Abstr. in Ann. Mag. Nat. Mist. [3], NIV. pp. 405-117. 1864. (Memoir on the Pranizer and Ancei.)

Revicwed by C. Spence Bate in Rec. Zoöl. Lit., I. (1804), pp. 290299. 1565.

Obserrations sur des Crustacés rares ou noureaux des Côtes de Franec. \(3^{e}\) Art. Ann. Sci. Nat. [5], Zool., I. pp. 333-35s, Pl. XI., XII. 1864.
(Embryos of some species parasitic in Ascidians.)
Mémoire sur des Crustacés rares ou nouveaux des Côtes de France. \(4^{e}\) Art. Sacculinidés. Ann. Sci. Nat. [ј], Zool., II. pp. 2ĩō-2SS, Pl. XIX. A. 1864. (Includes observations on development.)
Recherches sur les Crustacés rares ou nouveaux des Côtes de France. Complément du \(3^{\mathrm{e}}\) Art. Crustacés parasites vivant dans les Ascidies Phallusiennes. \(5^{\text {e }}\) Art. Genre Pleurocrypte, Nobis. Ann. Sci. Nat. [5], Zool., III. pp. 221-242, Pl. IV. 1865.

Abstr. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], XVI. pp. 162167. 1865.
(Young of Notopterophorus bombyx, pp. 225, 226; Pleurocrypta Galatea, pp. 233-235, Pl. IV. figs. 18-28.)
Observations sur des Crustacés rares ou noureaux des Côtes de France. \(6^{e}\) Art. Ann. Sci. N̄at. [5], Zool., IV. pp. 229-25S, Pl. VI., VII. 1865.
(Young of sereral species found parasitic in compound Ascidians.)
Obserrations sur des Crustacés rares ou nourcaux des Côtes de France. \(7^{\mathrm{e}}\) Art. Mémoire sur un noureau Crustacé parasite appartenant à l'Ordre des Lernédiens, formant la Famille des Lernéosiphoniens et le Genre Leposphile. Aun. Sci. Nat. [5], Zool., V. pp. 265-2̃̃9, PI. IX. 1866.

Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], XVIII. pp. 7382. 1866.

> (Larva, pp. 269, 2〒0, figs. 23-26.)

Observations sur des Crustacés rares ou noureaux des Côtes de France. \(9^{\text {e Art. Recherches sur les Genres Doropygus et Despontius de M. Thorell. }}\) Description de quatre noureaux Genres: Gastrode, Cheratrichode, Ophthalmopache et Platydurax (Nobis). Ann. Sci. Nat. [5], Zool., VI. pp. 5187, Pl. IV. 1866.
(Y̌oung of Doropygus, a parasite of Ascidians, pp. 57, 65.)
Obserrations sur des Crustacés rares ou noureaux des Côtes de France. \(10^{e}\) Art. Peltogastres et Sacculinidiens. Ann. Sci. Nat. [5], Zool., VI. pp. 321-360, Pl. XI., XII. 1866.
(Includes observations on development.)
Observations sur des Crustacés rares ou nonveanx des Còtes de France. \(11^{e}\) Art. Mémoire concernant deux Crustacés nouveaux trouvés parmi des Ballanes sillonées (Balanus sulcatus) et des Anatiles lisses (Anatifa loris). Ann. Sci. Ňat. [5], Zool., V II. pp. 123-152, 1l. 11., III. \(1 S 67\).
(Includes observations on larva of Cirripedia.)
Observations sur des Crustacés rares ou nouveaux des Côtes de France. \(14^{e}\) Art. Description de deux Saceulinidiens, d'un Pellogastre, d'un Polyehliniophile et de deux Cryptopodes nouveanx. Ann. Sci. Nat. [5], Zool., VIII. pp. 377-3S1, 1S67; IX. pp. 53-61, 1863.

Observations sur des Crustacés rares ou nouveaux des Côtes de France. I5 Art. Description d'un nouveau Crustacé appartenant au Geure Limnorie. Ann. Sci. Nat. [5], Zool., X. pp. 101-120, Pl. IX. 1868.
(Young, pp. 108, 109, figs. 4, 5.)
Observations sur des Crustacés rares ou nouveaux des Côtes de France. 16 \({ }^{\text {e Art. Ann. Sci. Nat. [5], Zool., X. pp. 347-371, Pl. XIX. } 1868 . ~}\)
(Embryo of Cuma terginigra, pp. 353, 354, fig. 19.)
Observations sur des Crustacés rares ou nouveaux des Côtes de France. \(17^{\mathrm{e}}\) Art. Description d'un nouveau Crustacé Type d'une nouvelle Famille des Anuelidicoles; du Geure des Chelonidiformis; du noureau Genre Aplopode et de plusicurs autres Crustacés, encore inédits, appartenant aux Genres Polychliniophile, Cryptopode, Botryllophile, Bothacus, Adranesius, Lygephile et Doropygus. Ann. Sci. Nat. [5], Zool., XI. pp. 275-308. 1869.

\section*{(Observations on young, passim.)}

Observations sur des Crustacés rares ou nouveaux des Côtcs de France. \(18^{e}\) Art. Description d'une nouvelle Espèce de Crustacé parasite des l'Ordre des Lernéidiens de la Famille des Lernéveeriens, et du Genre Lernée: Lernée du Gade-petit, Lernaa Gadni minutus [Gadi minuti] (Nobis). Ann. Sci. Nat. [5], Zool., XIII., Art. 4. 30 pp., Pl. I. 1870.
(Embryology, pp. 7-15, Pl. I.)
Mémoire sur des Crustacés rares on nouveaux des Côtes de France. \(21^{\mathrm{e}}\left[20^{\mathrm{e}}\right]\) Art. Mémoire sur la Famille des Sphéromiens, à l'Occasiou des Affuités et des Relations scxuelles qui paraissent exister eutre les Sphéromiens et les Cymodocéeus d'une part, et les Dynaméniens et les Néséens d'autrc part. Ann. Sci. Nat. [5], Zool., XVII., Art. I. 35 pp., PI. I.-III. 1873.

\section*{(Treats of young, passim.)}

Mémoire sur des Crustacés rares ou noureanx des Côtes de France. \(21^{\circ}\) Art. Deseription de Crustacés nouveaux appartenant à la Légion des Edriophthalmes, de l'Ordre des Amphipodes, de la Famille des I'iscicoles, de la Tribu des Enoplopodes, Nobis, du Geure des Iehthyomyzoques, Nobis. Ann. Sci. Nat. [5], Zool., XVII., Art. 7. 16 pp., I'l. IV. 1873. (Young of Ichthyomyzocus Lophii resembles adult, p. 11.)
Observations biologiques concernant les Cymothoadiens parasites et notanment le Cymothoé (Estre, Cymothoa EEstrunu. Revue des Sci. Nat., II. pp. 1-13. June, 1873.
(Remarks on the young.)
Mémoire sur des Crustacés rares ou noureanx des Côtes de Franee. \(23^{e}\) Art. l'ranizes et Ancées nonveanx. Ann. Sei. Nitt. [5], Zool., X1N., Art. \(8 . \quad 29 \mathrm{pp}\)., Pl. XXL., XXII. \(18 \% 4\).

Description des Crustacés rares ou nouveaux des Côtes de France. \(25^{\mathrm{e}}\) Art. Description du Pagurus misanthropus; son Ontogénic, sa Physiologie ct sa Biologie. - Description d'un Larve trouvée mêlée à celles de ce Crustacé. - Observations concernaut les Pagurus Ulidianus et Prideauxii. Ann. Sci. Nat. [6], Zool., III., Art. 5. 42 pp. Pl. V., VI. 1876.

Description des Crustacés rares ou nouveaux des Côtes de France. \(26^{e}\) Art. Nouvelles Observations sur les Métamorphoses embryonnaires des Crustacés de l'Ordre des Isopodes sedentaires. - Description de trois nourelles Espèces de ces Crustacés, dont deux appartiennent au Genre Athelgue et l'autre au Genre Pleurocrypte. Ann. Sci. Nat. [6], Zool., IV., Art. 2. 4 S pp., Pl. VII.-IX. 1876.

Description de la Série complète des Métamorphoses que subissent, durant la Période embryonnaire, les Auatifcs désignés sous le Nom de Scalpel oblique ou de Scalpel vulgaire. Revue des Sci. Nat. [after 1874]. 31 pp., 2 pl.
Description d'un nouvel Ancée, l'Ancée du Congre, Anceus Congeri, faite sur des Individus vivants. \(25 \mathrm{pp} ., 1 \mathrm{pl}\). Ex. de la Revue des Sci. Nat., IV. Mars, \(18 \pi 6\).

> (Includes young or Praniza state.)

Remarques sur le Geure Cbalime. Ann. Sci. Nat. [6], Zool., V., Art. 10. 3 pp. \(187 \%\).
(This so-called genus is a larva.)
Description des Mâles, non cucore commus, des Lernanthropes de Gisler et de Kroyer, ainsi que de la Femelle d'une Espèce nouvelle, dessinés et peints d'après des Individus vivants. \(30 \mathrm{pp} ., 3 \mathrm{pl}\). Ex. de la Reoue des Sci. Nat., VI., déc., 1877; VII., juin, 1878.

Description des Crustacés rares ou nouveaux des Côtes de France décrits et peints sur des Individus vivauts. \(29^{e}\) Art. Description de dix nouveaux Crustacés, dont sept appartiemnent du Geure Cyrnus de Kroyer et trois au Genre Ǩroyeria de Van Bencden, tous déerits et dessinés sur des Individus vivants. Ann. Sci. Nat.[6], Zool., VIIT., Art. 11. 34 pp., Pl. NIX.-XXI. \(18 \% 9\).
(Larva of Kroyeria, a parasitic Copepod, [1. XXI. fig. 10.)
Description des Crustacés rares ou nouveaux des Côtes de France décrits sur des Individus vivants. \(30^{\circ}\) Art. Description d'un nouvean Crustacé parasite appartenant à la Sous-Classe des Crustacés suceuras, de l’Ordre des Lernéides, formant la nouvelle Fanille des Lernéopalmiens et le nouveau Geure des Stylophores, décrits et dissiné d'apuè's des Individus vivants. Ann. Sci. Nat. [6], Zonl., Vlli., Art. 15. 16 pil., Pl. XXVIll. \(18 \% 9\).
(Young of Stylophorus hippocephatus, p. 6, figs. 22-25.)

\section*{Hoek, P. P. C.}
*Eerste Bijdrage tot een nauwkeuriger Kennis der Sessile Cirripedien. 1875. \(94 \mathrm{pp} ., 2 \mathrm{pl}\). (Inaugural Dissertation.)

Zur Entwiekelungsgeschichte der Entomostraken. I. Embryologie von Bulanus. Niederländisches Arch.f. Zool., III. pp. 47-S2, Taf. III., IV. 1876.

Zur Entwickelungsgeschichte der Entomostraken. II. Zur Einbryologie der freilebenden Copepoden. Niederländisches Arch.f. Zool., IV. pp. 55-i4, Taf. V., VI. 1877.

\section*{Hosius, A.}

Ueber die Gammarus-Arten der Gegend von Bonn. Arch.f. Naturgesch. 1850, 1, pp. 233-248, Taf. III., IV.
(Young, pp. 243 et seq., figs. 23, 24.)

\section*{Huxley, Thomas H.}

Lectures on General Natural History. Lecture XI. The Medical Times and Gazette, new ser., XIV. pp. 63S, 639, fig. 1. June 27, 1857.

Also in Trans. Linn. Soc. London, XIII., Pt. III., 1858 (sec next title), and A Manual of the Anatomy of Invertebraled Animals, pp. 350-355, fig. 79, London, 1877.

> (Development of Mysis.)

On the Agamic Reproduction and Morphology of Aphis, Pt. II. § 2. Embryogeny of Mysis, as exemplifying the Crustacea. §3. Embryogeny of Scorpio, as exemplifying the Arachnida. §4. Generalizations regarding the Embryogeny of the Articulata, and Morphological Laws based on them. § 5. The Embryogeny of Articulata, Mollusea, and Vertelrata compared. Trans. Linn. Soc. London, XXII., Pt. III. pp. 22j-234. 1858.
The Crayfish. An Introduction to the Study of Zoölogy. Londou and New York, 18SO. 371 pp ., 81 cuts.
(Development, pp. 39-4t, 205-226, figs. 8, 57-60.)

\section*{Joly, N.}

Histoire d'un petit Crustacé (Artemia salina Leach), auquel on a fausscment attribué la Coloration en Rouge des Marais salants Méditerranéens, suivie de Recherches sur la Cause réclle de cette Coloration. Ann. Sci. Nat. [2], Zool., XIII. pp. 225-290, Pl. VII., V1II. 1S40.
(Development, pp. 257-262, II. VII.)
Also printed with the same title at Montpellier, 1840. \(72 \mathrm{pp} ., 3 \mathrm{pl}\).
Recherches Zoologiques, Anatomiques et Physiologiques smr l'Isaura cycladö̈des, noureau Genre de Crustacé à Test bivalve, décourert aux Euvirons de Toulouse. Amn. Sci. Nat. [2], Zool., XVII. pp. 293-349, Pl. V1I.IX. A. 1842.
(Estheria. Development, pp. 321-330, Г1. [ג゙. A.)

Sur les Métamorphoses d'un Crustacé de la Tribu des Salicoques, trouré dans le Canal du Midi. Comptes Rendus de l'Acad. des Sci., Paris, XV. pp. 36, 37. 1842.
(Caridina Desmarestii.)
Études sur les Mœurs, la Développement et les Métamorphoses d'une petite Salicoque d'Eau douce (Caridina Desmarestii), suivies de quelques Réflexions sur les Métamorphoses des Crustacés Décapodes en géuéral. Ann. Sci. Nat. [2], XIX. pp. 34-56, Pl. III., IV. 1843.

Also published under the following title :-
Recherches sur le Déreloppement et les Métamorphoses d'une petite Salicoque d'Eau douce (Caridina Desmarestii Nobis, Hippolyte Desmarestii Millet), suivies de quelques Réflexions sur les Métamorphoses des Crustacés Décapodes en général. Toulouse, 1843. \(59 \mathrm{pp} ., 2 \mathrm{pl}\).

\section*{Jurine, Louis.}

Mémoire sur l'Argule foliacé (Argulus foliaceus). Ann. du Nus. d'Hist. Nat., VII. pp. 431-455, Pl. XXVI. 1806.
(Development, pp. 452-456.)
Histoire des Monocles qui se trourent aux Enrirons de Genère. Gcnère, 1820. \(258 \mathrm{pp} ., 22 \mathrm{pl}\).
(Young of Copepoda, Cladocera, Ostracoda, passim.)
Translation of the Memoir of Snäffer, Sur les Monocles à queue, ou Puces d'Eau rameuses, pp. 181-197.
(Development, pp. 196, 197.)
Mémoire sur le Chirocéphale. Par Bénédict Prevost, pp. 201-244, Pl. XX.-XXII.
(Development, pp. 214-220.)
Kellicott, D. S.
A Larval Argulus. The North American Entomologist, I. pp. 5\%-60, Feb. 1880.

Kinahan [John Robert].
Notes on the foregoing Paper [Melville's Carcinological Notes], with a Supplement to his List of Dublin Crustacca. *Proc. Dublin Nat. Ifist. Soc., II. pp. 43-51. 1856-53. Nat. Hist. Rev., IV. Proc. Soc., pp. 153162. 1857.
(Zoëa of Pirimela denticulata, pp. 156, 157, Pl. LX. figs. 4-6.)
Remarks on the Zoë of Eurynome aspera, and the Habits of the Animal in Confinement. *Proc. Dublin Nat. Hist. Soc., 4 Dec. 1857. *Nat. Hist. Rev., V. Proc. Soc., pp. 3i-39. 185s. Ann. May. Nat. Hist., [3], I. pp. 233-235. 1858.

\section*{Kollar, Vincenz.}

Beiträge zur Kenntniss der Lernacenartigen Crustaceen. Annalen des Wiener Muscums der Naturgeschichte, I. pp. 79-92, Taf. IX., X. 1856.
(Development of Basanistes IIuchonis, pp. 87-90, Taf. X.)

Koren (J.) and Danielssen (D.).
Bidrag til Cirripedernes Udvikling. Nyt May. Naturvid., V. pp. 262-264, Tab. II. figs. 1-3. 1848. Isis, 1848, eol. 201, 205, Taf. II. figs. 11-13. (Alepas squalicola.)

\section*{Kossman, Robby.}

Beiträge zur Anatomie der selmarotzenden Rankenfüssler. Arbeit. aus dem zoolog.-zootom. Inst. in Würzbury, I. pp. 97-137, Taf. V.-VII. 1872. Verhandl. d. physikal.-medicin. Gesell. in Würzburg [2], III. pp. 296-335, Taf. XVI.-XVIII. 1872.
(Development, pp. 115-118, Taf. VII. 1-6.)
Suctoria und Lepadidae. Untersnehungen über die dureh Parasitismus hervorgerufenen Umbildungen in der Familie der Pedunculata. Arbeit. aus dem zoolog.-zootom. Inst. in Ẅürzbury, I. pp. 179-207, Taf. X. 1872-74. Verhandl. d. physikal.-medicin. Gesell. in Würzbury [2], V. pp. 120-157, Taf. I., II. 1873.
(Development, pp. 195-200, Taf. X., XI.)
Studien über Bopyriden. II. Bopyrina Virlii; Beiträge zur Kenntniss der Anatomie und Metamorphose der Bopyriden. Zeitschr. f. wissensch. Zool., XXXV. pp. 666-680, Taf. XXXIV., XXXV. 1881.

Kröyer, Henrik.
Bopyrus abdominalis. Naturhistorisk Tidsskr., III. pp. 102-112, 259-299, Taf. I., II. 1840. Isis, 1841, col. 693-69S, 707-713, Taf. II., III.

Trans. by Lereboullet in Aim. Sci. Nat. [2], Zool., XVII. pp. 142152, Pl. VI. 1842.
(Contains observations on development.)
Monografisk Fremstilling af Slægten Hippolyte's nordiske Arter. Med Bidrag til Dekapodernes Udviklingshistorie. K. Dauske Vidensk. Selsk, naturcid. og mathem. Afh., IX. pp. 209-360, 6 pl. 1842.
(Larval stages of Hippolyte, Homarus, and Cymopolia, pp. 245-262, Pl. V. figs. 111-119, VI.)
In Gamard's Voyages de la Commission Scientifique du Nord en Scandinarie, en Laponic au Spitzberg et aux Feröe pendant les Années 1S3S, 1539 et 1840, sur la Corvette la Recherche. Paris, 1840-45. Zoologie. Crustacés.
(Young Caridea, Pl. VII.; Mysis, Pl. IN.; Bopyrus, Pl. XXVill. ; Syenogonida, PI. XXXIX.)
[On the Development of Peltogaster and Sylon.] Overs. Ki. Danske Tidensk. Selsk. Forhandl. 1855, N1. 4, p. 130.

Trans. by Creplin in Zeitschr. gesammt. Naturncissen., VIII. pp. 421, 422. 1556.

Bidrag til Kundskab om Snyltekrebsene. Naturhistorisk Tidsskr. [3], II. pp. \(75-426\), Tab. I.-XVIII. 1S6S-64.
(Larva of Lesteira Lumpi, Tab. NVH1. figs. \(5 \mathrm{f}, 5 \mathrm{~g}\). 1864.)

\section*{Krohn, August.}

Beobachtuugen über die Entwickelung der Cirripedien. Arch.f. Naturgesch., 1860, l, pp. l-S, Taf. I. figs. l-3.

Trans. by W. S. Dallas in Ann. Nag. Nat. Hist. [3], VI. pp. 423-42S, Pl. VII. figs. l-3. 1860.

\section*{Lacaze-Duthiers, Henri de.}

Mémoire sur un Mode nouveau de Parasitisme observé sur un Animal non décrit. Comptes Rendus de l'Acad. des Sci., Paris, LXI. pp. S35-S41. 1865.

Abstr. in Amn. Mag. Nat. Hist. [3], XVII. pp. 155, 156. Feb., 1866. (Laura Gerardice. Development, p. 841.)
Histoire de la Laura Gerardie, Type nouveau de Crustacé parasitc. Archives de Zool. Erpér., VIII. pp. 53i-5s1. 1879-80. 7 cuts.

Ex. from Mém. Acad. Sci., where it appears in extenso, with 8 plates.
(Parasitic Cirriped. Development, pp. 575-577, fig. 7.)
Lang, Arnold.
*Ueber die Metamorphose der Naupliuslarven ron Bulanus mit Rücksicht auf die Gestaltung der Gliedmassen und dic Verwandlung in die Cypris-ähnliche Larve. Mitth. aarg. nat. Gesell., I. pp. 104-115, 1 Taf. 1878.
Die Dotterfurchung vou Bulanus. Jenaische Zeitschr., XII. ([2], V.), pp. 671-674, Taf. XX., XXI. 1878.
Latreille [P. A.].
In Curier's Rìgue Animal. Paris.
(Young 1sopode at birth like parent form, 1st ed.. III. p. 50, 1817. So also with Astacus, \(2 d\) ed., IV. p. 90, 1829. Young stage of Squilla made a genus under the name Erichthus, 1st ed., III. p. 43, 181~.)
La Valette St. George, Adolphe de.
Ueber die Entwicklungs-Geschichte der Amphipoden. Sitzungsber. Niederrhein. Gesell. f. Nutur- u. Heilhunde zu Born, XVI. pp. 91-95. 1859.
Studien über die Entwickelung der Amphipoden. Abh. d. naturfor. Gesell. Halle, V. pp. 153-166, 2 pl. 1860.
Ueber dic Entwickelung der Isopoden. Amitlicher Bericht ïber die 39 Versamml. Dentseh. Naturforsch. u. Lerate zu Giessen, 1564, 1. 165. 1865.

Leach, William Elford.
Malacostraca Podophthalmata Britannix; or Descriptious of such British Species of the Limean Genus Cuncer as have their Eyes elevated on Footstalks. London, 1815. it pl.
(Genus Megalopa founded upon young stage of Brachyura, P1. XVI.)
In *Jouru. de I'hysique, 1S1S, and *Appendir to Tuckey's Expedition to explore the Suarce of the Rirer Zaire, Lourlon, 1818 (see Isis, 1818, col. 2053-2056), Leach founded the genera Phyllosoma, Alimu, Smerdis, fer., for the reception of what are now known to be larval stages of Crnstiena.

For the various systematic works on zoollogy in which the many so-called species of these and other genera established upon young stages have been described, sec Milne Edwards, Mist. Nat. Crust., II.; F. C. Lukis, Mag. Nat. Hist., VIII. p. 461, \&c.

\section*{Lereboullet, A.}

Résumé d'un Travail d'Embryologie Comparéc sur le Développement du Brochet, de la Pcrehe et de l'Eerevisse. Suite Deuxième Partie. Embryologie de l'Éerevisse. Ann. Sci. Nat. [4], Zool., II. pp. 39-S0. 1854.
Recherches d'Embryologie Comparée sur le Développement du Brochet, de la Perche et de l'Écrevisse. Mém. prés. par divers Savants étrangers à \(l^{\prime}\) Acad. des Sei. de l'Inst. Impér. de France, XVII. pp. 447-S05, 6 pl. 1862.
(Astacus, pp. 650-768, Pl. IV.-VI.)
Observations sur la Génération et le Développement de la Limnadie de Hermann (Limnadia Hermanni Ad. Brongn.). Ana. Sci. Nat. [5], Zool., V. pp. 2S3-308, Pl. XII. 1866.

\section*{Leuckart, Rudolph.}

Carcinologisches. Einige Bemerkungen über Sacculina Thomps. (Pachybdella Dies., Peltogaster Rathke, p. p.). Arch. f. Naturgesch. 1859, 1, pp. 232-241, Taf. VI.
(Embryo, p. 239.)
Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], IV. pp. 422-429, Pl. VII. 1859.

See also Frey, Heinrich.

\section*{Leydig, Franz.}

Ueber Argulus foliaceus. Ein Beitrag zur Anatomie, Histologic, und Entwicklungsgeschichte dieses Thieres. Zeitschr. f. uissensch. Zool., II. pp. 323-3Ł9, Taf. XLX., XX. 1850.
(Development, pp. 344-347, Taf. XX. fig. 8.)
Ueber Artemia salina und Branchipus stagnalis. Beitrag zur amatomischen Kemntniss diescr Thiere. Zeitschr. f. wissensch. Zool., III. pp. 250-307, Taf. VIII. 1851.
(Development, pp. 30 4 -306.)
Naturgesehichte der Daphiniden (Crrustacea Cladocera). Tübingen, 1860. \(252 \mathrm{pp} ., 10 \mathrm{pl}\).
(Reproduction, pp. 58-75.)
Reviewed by J. Lubbock in Nat. Hist. Rev., 1861, pp. 22-33.

\section*{Liljeborg, Wilh.}

Norges Crustaceer. Öfeers. K. Seenska Vetensk,-Akad. Förhandl., VIII. (1851), pp. 19-25. 1852.
(Young of Hyas. Zoëa pelagica Bose the young of Hyas? pp. 20, 21, 25.)

De Crustaccis ex Ordinibus Tribus: Cladocera, Ostracoda et Copepoda, in Scania occurrentibus. Om de inom Skåne förckommande Crustaccer af ordningarue Cladocera, Ostracoda och Copepoda. Lund, 1853. 222 pp ., 26 pl .
(Young Canthocamptus, pp. 148, 149, Pl. XVI. fig. 6; Cyclops, pp. 156-158, Pl. XXVI. fig. 19.)

Les Genres Liriope et Peltogaster H. Rathke. Nora Acta Reg. Soc. Scient. Upsal. [3], III. pp. 1-35, Pl. I.-III. 1859. (*Arsskr., I. pp. 137-147. 1860.)

Abstr. in English in Ann. Mag. Nat. Hist. [3], VI. pp. 162-173, 260-267, Pl. IV. 1860.
(Includes development.)
Supplément au Mémoire sur les Genres Liriope et Peltogaster H. Rathke. Nora Acta Reg. Soc. Scient. Upsal. [3], III. pp. 73-102, Pl. VI.-IX. 1860.

Abstr. in Ann. Mag. Nat. Hist. [3], VII. pp. 47-63, Pl. II., III. 1861. Ann. Sci. Nat. [5], Zool., II. pp. 259-355, Pl. XX. 1864.
(Includes development.)
Liriope och Peltogaster H. Rathke. Öfvers. K. Svenska Vetensk.-Akad. Förhandl., XVI. (1559), pp. 213-217. 1860. Forhandl. Skand. Naturforsk., VIII. (1860), pp. 677-684. Kiöbenhavu, 1861.
Beskrifning öfver tvenne märkliga Crustaceer af Ordniugen Cladocera. Öfters. K. Svenska Vetensk.-Akad. Förhandl., XVII. (1860), pp. 265271, Taf. VII., VIII. 1861.

Trans. in Aun. Mag. Nat. Hist. [3], IX. pp. 132-136, Pl. VIII. 1862. (Young Leptodora hyalina, p. 267, Taf. VII. fig. 2; Bythotrephes longimanus, Taf. VIII. fig. 24.)

\section*{Lindström, G.}

Om Larven till en Art af Slägtet Peltogaster. Öfvers. K. Seenska Vetensk.Akad. Fürhandl. XII. (1855), pp. 361-363, Tab. XILI. B. 1856.

\section*{Lubbock, John.}

An Aecount of the Two Methods of Reproduction in Daphnia, and of the Structure of the Ephippium. Phil. Trans. Roy. Soc. London, CXLVII. pp. 79-100, Pl. VI., VII. 1857.

\section*{Ludwig, Hubert.}

Ueber dic Eibildung im Thierreiche. Arleit. aus dem zoolog.zootom. Inst. in Würzlurg, I. pp. 257-510, Taf. XIII.-XV. 18ז4. Verhandl. d. physital.medicin. Gesell. in Ẅ̈rzuurg [2], VII. pp. 33-256, Taf. I.-llI. 1874.
(On the Crustacean e5g, pp. 379-401 [120-147], Taf. XIII., XIV. [I., II.].)

\section*{Mayer, Paul.}

Zur Entwieklungsgeschichte der Dekapoden. Jenaische Zeitschr., XI. ([2], IV.) pp. 1S8-269, Taf. XIII.-XV. 187\%.
(Embryology of Eupagurus Prideauxii, pp. 188-246, Taf. XIII., XIV. Morphology of the caudal fin of the zoëa (Zur Kenntniss der Zuēa-Gestalt), pp. 246-262, Taf. XV.)

Abstr. in IIofmann u. Schwalbe's Jahresber., VI. 2e Abt. pp. 160-162. 1878.

Carcinologisehe Mittheilungen. III. Ueber einige Jugendstadien von Peneus Caramote. Mittheil. aus der zoolog. Station zu Neapel, I. pp. 49-51. 1878.

Carcinologische Mittheilungen. VII. Ein neuer parasitischer Copepode. Mittheil. aus der zoolog. Station zu Neapel, I. pp. 515-521, Taf. XVII. 1879.
(Ive Balanoglossi n. sp. Nauplius, p. 519, Taf. XVII. figs. 10-12.)
Carcinologische Mittheilungen. IX. Die Metamorphosen von Palaemonetes varians Leach. Mittheil. aus der Zoolog. Station zu Neapel, II. pp. 197221, Taf. X. 1880.
(Includes notice of larva of Squilla just batched from the egg, p. 219.)
Mecznikow. See Metschnikoff.
Meinert, Fr. See Schiödte, Jörgen C.

\section*{Meissner, Georg.}

Beobachtungen über das Eindringen der Samenelemente in den Dotter, Nro. II. Zeitsehr. f. wissenseh. Zool., VI. pp. 272-295, Taf. IX. 1855.
(Micropyle in egg of Gammarus, pp. 284, 285. 293, 294, fig. 9.)
Méneville. See Guérin-Méneville.
Metschnikoff, Elias.
Istoriya Razvitiya Nebalia. Sravnitelno-embriologitshesky Otsherk. [History of the Development of Nebalia. A Comparative Embryologieal Essay.] Zapiski Imp. Akad. Nauk, XIII., 1868. [Mem. Imper. Acad. of Sciences, XIII. St. Petersburg, 1868.] 48 pp., 2 pl.

Noticed in Rec. Zoölog. Lit., VI. (1S69), p. 617. 18~0.
Ueber ein Larvenstadium von Euphausia. Zeitschr. f. wissensch. Zool., XIX. pp. 479-4S1, Taf. XXXVI. 1869.
Ueber den Naupliuszustand von Euphausia. Zeitschr.f. wissensch. Zool., XXI. pp. 397-101, Taf. XXXIV. \(18 \% 1\).
Metzger, A.
Ueber das Männehen und Weibehen der Gattung Lernaea vor den Eintritt der sogen. rüekschreitenden Metamorphose. Arch. f. Naturgeseh. 186S, 1, pp. 106-110. *Nachrichten Kö̈. Gcsell. Wissensch. Güttingen, 1S6S, pp. 31-36.

Trans. by W. S. Dallas, Ann. Mag. Nat. Hist. [4], III. pp. 15t-157. 1869.
vol. ix. - No. 6 .

\section*{Milne Edwards, Henri.}

Deseription des Genres Glaucothoé, Sicyonic, Sergeste et Acète, de l'Ordre des Crustacés Décapodes. Ainn. Sci. Nat., XIX. pp. 333-352, Pl. VIII.-XI. 1830.
(A young stage of a Pagurid made the type of a new genus, Gluucothoë, pp. 334 339, Pl. VIII.)
Histoire Naturelle des Crustacés, comprenant l'Anatomie, la Physiologie et la Classification de ces Animaux. Paris, 1834, 1837, 1840. 3 vols. and Atlas, \(1635 \mathrm{pp} ., 44 \mathrm{pl}\). (Suites à Buffon.)
(Remarks on development, passim; especially Vol. I. pp. 175-200, Vol. II. pp. 260-264 (Megalops, Monolepis), pp. 431-438 (Zoëa).)
Observations sur les Changements de Forme que dirers Crustacés éprouvent dans le jeune Âge. Aun. Sri. Nat. [2], Zool., III. pp. 321-334, Pl. XIV. 1835. Arch.f. Naturgesch., 1836, 2, pp. 225-227.
(Cymothoë, Anilocra, Cyamus, Phronima, Amphithoë, Naxia.)
Rapport sur un Travail de M. Hesse, relatif aux Métamorphoses des Ancécs et des Caliges, fait à l'Académie des Seicnces, le 28 Juin 185S. Aun. Sci. Nat. [4], Zool., IX. pp. 89-92. 1858. Comptes Rendus de l'Acud. des Sci., Paris, XLVI. pp. 1256-1259. 1858.

\section*{Montagu, George.}

Description of several Marine Animals found on the South Coast of Deronshire. Trans. Limn. Soc. London, VII. pp. 61-S5, Pl. VI., VII. 1804. (Read December 7, 1802.)
("Cancer rhomboidalis," p. 65, Tab. VI. fig. 1, is a megalopa. Observed the young of "Cancer Phasma" [Caprella] crawl from abdominal pouch of parent, "all perfectly formed," p. 67.)

\section*{Müller, Fritz.}

Die Rhizocephalen, eine nenc Gruppe schmarotzender Kruster. Arch. f. Naturgesch., 1862, 1, pp. 1-9, Taf. I.

Trans. by W. S. Dallas in Am. Mag. Nat. IIist. [3], X. pp. 41-50, Pl. II. figs. 1-7. 1862.
(Describes larva of Lerneodiscus and Sacculina.)
Entoniscus Porecllanue, cine neuc Schmarotzerasscl. Arch.f. Naturgesch., 1862, 1, pp. 10-1@, Taf. II.

Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], X. pp. S7-93, 1'l. II. figs. 8-16. 1862. (Larva described and figured.)
Die Verwandlung der Porecllanen. Vorläufige Mittlicilung. Arch.f. Natur. gesch., 180?, 1, pp. 191-199, Taf. VII.

Trans. by Wr. S. Dallas in Am. Mag. Nat. Hist. [3], XI. pp. 47-50, Pl. I. 1863.

Bruchstück zur Entwickelungsgeschichte der Maulfüsser. Arch.f. Naturgesch., XXVIII. pp. 352-361, Taf. XIII. 1862.

Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], XII. pp. 13-19, Pl. J. 1863.
Ein zweites Bruchstück aus der Entwickelungsgeschichte der Maulfüsser. Arch.f. Naturgesch., XXIX. pp. 1-7, Taf. I. 1863.
Die Verwandlung der Garncelen. Erster Beitrag. Arch.f. Naturgesch., XXIX. pp. 8-23, Taf. II. 1863.

Trans. by W. S. Dallas in Ann. Mag. Nat. IIist. [3], XIV. pp. 101-115, Pl. IV. 1864.
Reviewed by C. Spence Bate in Rec. Zoölog. Let., I. (1864), pp. 2S0285. 1865.
(Peneus.)
Die zweite Entwickelungstufe der Wurzelkrebse (Rhizocephala). Arch.f.Naturgesch., XXIX. pp. 21-33, Taf. III. figs. 1-7. 1863.
Für Darwin. Leipzig, 1864. 91 pp., 67 cuts.
English transl. by W. S. Dallas: Facts and Arguments for Darwin. With Additions by the Author. London, 1869. 144 pp., 67 cuts.

Reviewed by C. Spexce Bate in Rec. Zoölog. Lit., I. (1564), pp. 261270. 1865.
(General work on development of Crustacea, with many original observations.)
Bruchstïcke zur Naturgeschichte der Bopyriden. Jenaische Zeitschr., YIL. pp. 53-72, Taf. III., IV. 1871. [1869 ! ]
(Ineludes observations on development.)
Ueber die Naupliusbrut der Garncelen. Zeitschr. f. wissensch. Zool., XXX. рр. 163-166. \(187 \mathcal{S}\).

Traus. in Ann. Mag. Nat. Hist. [5], I. pp. 4S1-4S5. 18~S.
Wasserthiere in Baumwipfeln. E'pidium Bromeliarum. Losmos, VI. pp. 35635S, 15 figs. Feb. 1880.

Translated with title: An Entomostracon living in Tree-tops, in Nature, XXII. pp. 55, 56. Мау 20, 1880.
(Egg and young figured. Ostracoda.)
Palaemon Potiuna. Ein Beispicl abgekïrzter Verwandlung. Zoolog. Anseig., III. pp. 152-157, April 5, 1880; p. 233, May 10, 1880.

Dic Putzfüsse der Kruster. Kosmos, VII. pp. 148-152, 15 figs. May, 1880. (Trichodactylus leaves the egg in the perfect form, p. 152.)
See also Bate, C. Spence.

\section*{Mïller, Otho Fredericus.}
*Entomostraca, sen Insecta testacea que in Aquis Danix et Norregix reperit, descripsit et Iconibus illustravit. Lipssia et Hafnix, 1 r85.
(Many larve represented. Nauplius. See reproduction of figures in Encyclopidie Methodique, Ill. CCLXIV.-CCLXVIII.)

Zoologia Danica seu Animalium Daniæ et Norvegiæ rariorum ac minus notorum Descriptiones et Historia. Hafniæ, 1\%88, 1789, 1806. 4 vols., \(225 \mathrm{pp} ., 160 \mathrm{pl}\).
(Young Mysis, II., Tab. LXVI. fig. 9, 1788. "Cancer Faeroensis," III. p. 56, Tab. CXIV., \(1789,=\) megalopa.)

\section*{Müller, P. E.}

Bidrag til Cladocerernes Forplantningshistorie. Naturhistorisk Tidsskr. [3], V. pp. 295-354, Tab. XIII. 1868. Forhandl. Skand. Naturforsk., X. (1S65), pp 530-540. 1869. Arch. Sci.Phys. Nat., XXXVII. pp. 357372. \(18 \% 0\).

Noticed by Gerstaecker in Arch.f. Naturgesch., 1860, 2, pp. 190-192.

\section*{Müller, Wilhelm.}

Beitrag zur Kenntniss der Fortpflanzung und der Geschlechtsverhältnisse der
Ostracoden nebst Beschreibung einer neuen Species der Gattung Cypris. Zeitschr. gesammt. Naturwissen. [3], V. pp. 221-246, Taf. IV., V. 1880. (On parthenogenesis in Ostracola. First stage of Cythere lutea, Taf. V. fig. 2.)
Münter (Jul.) and Buchholz (Reinh.).
*Ueber Bulanus improvisus Darw. var. gryphicus Münter. Mitth. naturaissensch. Vereins v. Neu-Vorpommern. u. Rügen, I. pp.1-40, 2 pl. 1869. Zeitschr. gesammt. Naturuissen., XXXVI. pp. 529, 530. 1870.
(Contains observations on development.)
Noll, F. C.
Kochlorine hamata N., ein bohrender Cirripedc. (Vorläufige Mittheilung.) Bericht über d. Senckenbergische naturforsch. Gesell. Frankifurt am .Main, 1872-73, pp. 50-55. *Tageblatt d. 46. Versammlung deutsch. Naturforsch. u. Acrzte, Wiesbaden, p. 131. \(18 \pi 3\).

Kochlorine hamata N., ein bohrendes Cirriped. Zeitschr.f. eissensch. Zool., XXV. pp. 111-12S, Taf. VI. 20 Nov. 1874.
(Larve described and figured.)

\section*{Nordmann, Alexander v.}

Mikrographische Beiträge zur Naturgeschichte der wirbellosen Thiere. Zweites Heft. Berlin, 1832. xviii. \(+150 \mathrm{pp} ., 10 \mathrm{pl}\).
(Development of Ergasilus, pp. 11-15, P1. II. figs. 7-9; of Achtheres, pp. 76-85, P1. IV. figs. 5-12; of Tracheliastes, p. 99, P1. VII. figs. 7, 8 ; of Lernueccera, pp. 127130, Pl. VI. figs. 5-7.)
Neue Beiträge zur Kemıtniss parasitischer Copepoden. Erster Beitrag. Bull. Soc. Impér. des Nat. Moscou, XXXVII. It. II., pp. 461-520, PI. V.VIII. 186 .
(Larva of Lernanthropus Ǩrơyeri, I1. VI1. figs. 7, 8.)
Olivier [Ant. Gu.].
Encyclopédic Méthodique, IIist. Nat., VT. Paris, 1791.
(Observations on young Gammarus, p. 183.)

Packard, A. S., Jr.
Life Histories of the Crustacea and Insects. Amer. Naturalist, IX. pp. 583622. Nov. 1875.
(General account of the development of Crustarea, pp. 583-605. Original observations on development of Gelasimus pugnax, p. 603.)
Appears also in the author's Life Histories of Animals including Man or Outlines of Comparative Eimbryology, pp. 167-189. New York, 1876.
Notes on the Early Larval Stages of the Fiddler Crab, and of Alpheus. Amer. Naturalist, XV. pp. 781-759, figs. Oct. 1881.
(Gelasimus pugnax, Alpheus heterochelis.)

\section*{Pagenstecher, H. Alex.}

Untersuchungen über niedere Secthiere aus Cette. II. Abtheilung. IX. Beitrag zur Auatomic und Entwiekelungsgeschichte von Lepas pectinata. Zeitschr. f. wissensch. Zool., XIII. pp. S6-106, Taf. V., VI. 1863.
Panceri, Paolo. See Cornalia, Emilio.
Philippi, R. A.
Zoologische Bemerkungen (Fortsetzung). Arch.f. Naturgesch., VI. 1, pp. 181195, Taf. ILI., IV. 1840. .

Trans. in Amn. Mag. Nat. Hist., VI. pp. 89-101, Pl. III., IV. 1841. (Zoëa of Pagurus, pp. 18t-186, Taf. III. figs. 7, 8.)
Kurze Beschreibung einiger neueu Crustaceeu. Arch.f. Naturgesch., 1857, 1, pp. 319-329, Taf. XIV.
(Thysanopus, Hoplites [schizopod stage of Caridea], Lucifer, Alima, Euacanthus [zoën of Porcellana], Megalopa [Cancer? see Gerstaecker, Arch.f. Naturgesch., 1858, 2, p. 455].)
Plateau, Félix.
Recherches sur les Crustacés d'Eau douce de Belgique.
1• Partie. Genres Gammarus, Linccus et Cypris. Mém. Cour. Acad. Roy. Belgique, XXXIV. 1868. \(66 \mathrm{pp.}\),1 pl .
\(2^{e}\) et \(3^{e}\) Partics. Geures Daphuia, Bosmina, Polyphemus, Cyclopsina, Canthocamptus et Cyclops. Ibid. XXXV. 1870. \(92 \mathrm{pp} ., 3 \mathrm{pl}\).
(Development, pp. 70-82.)
Power, Wilmot Henry. See Bate, C. Spence.
Prevost, Bénédict.
*IIstoire d'un Insecte (ou d'nn Crustacé) qui l'Autcur a cru devoir appeler Chirocéphale diaplaue (Branchiopode Lam., Cancer stagnalis L., Gammarus stagn. Fabr.). Journ. de Physique, LVII. pp. 3ĩ-5t, S9-106, PI. I. 1803.

Appears, in substance, in Jurine's IFistoire des Monocles, pp. 201-244, 1820.

Mémoire sur le Chirocéphale. In Jurine's Histoire des Monocles, pp. 201244, l'l. XX.-XXII. 1820.
(Young, pp. 214-220, P1. XX., XXI.)

\section*{Rasch.}
*Om Forsog med kunstig Udklaekning af Hummer. Nordisk Tidsskrift for Fiskeri, ny Række, 2en Aargang, pp. 184, 18S. 1875.

Translated in United States Commission of Fish and Fisheries. Part III. Report of the Commissioner for 1873-74 and 1874-75, pp. 267-263. Washington, 1876.
(Observations of Professor Rasch on young Homarus, pp. 268, 269.)

\section*{Rathke, Heinrich.}

Flusskrebs. Isis, 1825, 2, col. 1093-1099.
(Prodromus of complete memoir published in 1829).
See also account of the development of Astacus, by latuke, in BurDach's Physiologie, II. pp. 191-200, Leipzig, 1828, and Isis, 18~9, col. 429, 430.

Untersuchungen über die Bildung und Entwickelung des Flusskrebses. Leipzig, 1829. 97 pp., 5 pl .

Abstract in Ann. Sci. Nat., XX. pp. 442-469, Pl. V.-VIII. 1830. Zoölog. Journ., V. pp. 241-255. 1830. Milne Edwards's Hist. Nat. des Crustacés, I. pp. 175-195, Pl. XIV. Paris, 1834.
Abhandlungen zur Bildungs- und Entwickelangs-Geschichte des Mcnschen und der Thiere. Leipzig, 1832-33. 216 pl ., 14 pl .
\(1^{\text {er }}\) Th. \(I^{\mathrm{e}} \Lambda\) bh. Untersuchungen über dic Bildung und Entwickelung der Wasser-Assel oder des Oniscus aquaticus. l'p. 1-20, Pl. I. 1882.

Also in Ann. Sci. Nat. [2], Zool., 11. pp. 139-157, Pl. II. C. 1834.
\(2^{\text {er }}\) Th. \(2^{\mathrm{e}}\) Abh. Bildungs- und Entwickelungs-Geschichte des Oniscus asellus oder der Kellar-Assel. Pp. 69-S.4, Pl. VI. 1833.
\(2^{\text {er }}\) Th. \(3^{\text {te }}\) Abh. Bildungs- und Entwickelungs-Gcschichte einiger Entomostraken (Daphnia Pulex, Iynceus sphacricus, Cyclops quadricornis). Pp. S5-94, Pl. VII. figs. 1-5. 1833.

Ueber die Entwickelung der Decapoden. Arch. f. Anat. Physiol. und wissensch. Medicin (Mïller's), 1836, pp. 1Si-192.

Trans. in Elinlurgh New Philosoph. Journ., XXIL. pp. 361-366. \(185 \%\).
(This is a preliminary notice of the observations published in Zur Morphologie, \&c.)

Zur Morphologie, Reiscbemerkungen aus Tauricn. Riga u. Leipzig, 1857. \(192 \mathrm{pp} ., 5 \mathrm{pl}\).

Drite Ablandlung. Zur Entwickelungsgesehichte der Crustaceen. Pp. 35-151, 179-151, Tah. I. figs. 13-15, IL.-1V.
(Lernceopodn, Bopyrus, Idolhea, Ligia, Janira, Amphilhoë, Gammarus, Crangon, Palcmon, Eriphin. Carcinus.)
Beohaehtungen und Betrachtungen iuher die Entwiekehung der Mysis culgaris. Arch.f. Naturgcsch., 1839, 1, pp. 195-210, Taf. VI.

Zur Entwickelungsgeschichte der Dekapoden. Arch. f. Naturgesch., VI. I, pp. 241-249. 1840.

Trans. by W. Francis in Ann. Mag. Nat. Hist., VI. pp. 263-269. 1841.
(Astacus [IIomarus] marinus, Pagurus Bernhardus, Galatea rugusa, Ilyas araneus )
(This is an abstract of the observations published in Reisebemerlkungen aus Skandinarien, \&c.)
Beiträge zur verglecheuden Anatomie und Physiologie, Reisebemerkungen aus Skandinavien, nebst cinem Anhange über die rückschreitende Metamorphose der Thicre. Neueste Schriften der naturforschenden Gesellschaft in Danzig, IIl. Heft 4, 1842. 162 pp., 6 pl .
II. Zur Entwickelungs-Geschichte der Dekapoden. Pp. 23-55, Tab. II. figs. 11-21, III., IV.
(Homarus, Pagurus, Galatea, Myas.)
Beiträge zur Fauna Norwegens. Nov. Act. Acad. Cas. Leop.-Car. Nat. Cur., XX. pp. 1-264 c, Tab. I.-X1I. 1843.
(Development of Phryxus, pp. 49-56, Taf. I. figs. 16, 17; Nicothoë, pp. 109-116, Taf. V. figs. 7-10.)

\section*{Reichenbach, Heinrich.}

Die Embryonalanlage und erste Entwicklung des Flusskrebses. Zeitschr. f. wissensch. Zool., XXIX. 123-196, 263-266, Taf. X.-XII. 1877.
(Vorlänfige Mittheilung appeared in *Centralblatt für die medizin. Wissenschuften, 18\%6, No. 41.)

Abstr. by P. Mayer in Jahresber. üb. Fortschr. Anat. u. Physiol., VI. (1877), \(2^{e}\) Abtl. pp. 162-164. 1878.

Eug. Abstr. by T. Jeffery Parker in Quart. Journ. Microscop. Sci. [2], XVIII. pp. 84-94. 1878.
Richiardi, S.
Sulle Sacculinc. Atti della Soc. Toscana di Seienze Nat., I. fasc. 2‥ 1875. (Contains observations on development.)
Descrizione di ciuque Specie Nuove del Genere Philichthys ed una di Spherifer. Atti della Soc. Toscana di Scienze Nat., III. Tav. VI. 1 Si7. (Nauplius of Spherifer Leydigi, fig. 8.)
Descrizione di due Specie Nuove di Lerncenicus Les., con Osservazioni intorno a questo ed ai Gemeri Lerncocera Bl., e Lernconema M. Edw. Atti della Soc. Toscana di Scienze Nat., III. Tay. VII. \(187 \%\).
(Describes and figures young forms of Lernceenicus.)

\section*{Richters, Ferd.}

Dic Phyllosomen. Ein Beitrag zur Entricklungsgeschichte der Loricaten. Zoitschr. f. wissensch. Zool., XXILI. p1. 623-646, Taf. XXXI.-XXXIV. \(1 S \% 3\).

\section*{Rösel von Rosenhof, August Johann.}

Der monatlich-herausgegebenen Insecten-Belustigung Dritter Theil. Nüruberg, 1755. 624 pp., 101 pl.
(Young of Astacus, p. 337; Gammarus, p. 353.)
Rougemont, Ph. de.
Étude de la Faune des Eaux privées de Lumière. Histoire Naturelle du Gammarus puteanus Koch. Description de l'Asellus Sieboldii. Observatious anatomiques sur l'Hydrobia de Munich. Paris, 1876. \(49 \mathrm{pp} ., 5 \mathrm{pl}\). (Describes six forms of Gammarus puteanus, pp. 28-31, Pl I.-III.)
Sur l'Anatomie des Organes génitaux de l'Écrevisse de Rivière (Astacus fluriatilis Rond.) et sur la Physiologie de la Génćration de ces Crustacés. Bull. Soc. Sci. Nat. Neuchatel, XI. pp. 400-402. 1879.
(Observations on young.)
Saint George. See La Valette St. George.
Saint-Hilaire. See Geoffroy Saint-Hilaire.
Salensky, W.
Sphaeronalla Leuckarti, ein neuer Schmarotzerkrebs. Arch. f. Naturgesch. 1868, 1, pp. 301-322, Taf. X.
(Gives account of development. Parasitic Copepod.)

\section*{Sars, Georg Ossian.}

Norges Ferskvaudskrebsdyr. Første Afsnit Branchiopoda. I. Cladocera Ctenopoda (Fam. Sidida \& Holopedidœ). (Prisbelønnet Afhandling.) Christiania, 1865. viii. \(+71 \mathrm{pp} ., 4 \mathrm{pl}\).
(Young of Sida crystallina, Tab. I. figs. 3-7.)
Histoire Naturelle des Crustacés d'Eau douce de Norrège. \({ }^{\text {e }}\) Livraison. Les Malacostracés. Christiania, 1867. 146 pp., 10 pl.
(Development of Gammarus neglectus, pp. 61, 66, Pl. VI. figs. 10-19; Asellus aquaticus, pp. 116-122, Pl. X. figs. 23-40.)
Carcinologiske Bidrag til Norges Fauna. I. Monographi orer de ved Norges Kyster forekommende Mysider. Første Heftc. Christiania, 1870. \(64 \mathrm{pp} ., 5 \mathrm{pl}\).
(Embryo of Pseudomma roseum, Tab. IV. fig. 23.)
Om en dimorph Udvikling samt Generationsvexel hos Leptodora. Forhandl. Vidensk.-Selsk. Christiania, Aar 1S73, pp. 1-15, Tab. I. 1573.

Notice of, by S. I. Smiti, in Amer. Journ. Sci. \& Arts [3], IX. pp. 230, 231. Mar. 1875.
On Hummerens postembryonalc Udvikling. Forhandl. Vidensk.Selsk. Christiania, Aar 1874, pp. 1-27, Tab. I., Il. 1875.

Abstr. in Gercais's Journ. de Zool., IV. pp. 362, 363. 1575.
Notice of, by S. I. SmitiI, in Amer. Journ. Sci. S. Arts [3], IX. p. 231 Mar. 1875.

\section*{Sars, Michael.}

Beskrivelse over Lophogaster typicus, en mærkværdig Form af de lavere tiføddede Krebsdyr. Kongl. Norske Universitetsprogram for andet Haloaar 1862. Christiania, 1862. iv. \(+37 \mathrm{pp},. 3 \mathrm{pl}\).

Abstr. in Bibliothèque Univ., Arch. Sci. Phys. Nat., XXI. pp. 87, 83. 1864. Ann. Mag. Nat. Hist. [3], XIV. pp. 461, 462. 1864.
(Development, pp. iv, 21-2j, Tab. III. figs. 57-65.)
Bidrag til Kundskab om Christianiafjordens Fauna. Christiania, [I.] 1868; II. 1870. \(218 \mathrm{pp} ., 13 \mathrm{pl}\).
(Young of Munnopsis typica [I.], PI. VII. figs. 137, 138; nauplius of Melinnacheres ergasiloides, II. p. 14, Pl. VIII. fig. 7; embryo and nauplius of Anteacheres Duebenii, pp. 26-28, Pl. X. figs. 35-37.)

\section*{Say, Thomas.}

An Account of the Crustacca of the United States. Journ. Acad. Nat. Sci. Phila., I. pp. 155-169. 1817.
(The megalopa of Ocypoda described as a Macrouran genus under the name of Monolepis, pp. 155-160.)

\section*{Schäffer, Jacob Christian.}

Die grïnen Armpolypen, die geschwänzten und ungeschwänzten zackigen Wasserflöhe, und eine besondere Art kleiner Wasseraale. Regeusburg, 1755. 94 pp .3 pl .

Trans. in Jurine's Histoire des Monocles, pp. 196, 197. Genève, 1820. (Development of Daphnia, pp. 56 et seq., Pl. I. tigs. 2, 3.)
*Der Krebsartige Kicfenfuss mit der kurzen und langen Sehwanzklappe. Regensburg, 1756.
(Parthenogenesis in Apus cancriformis and A. productus.)
Schiödte (Jörgen C.) [and Meinert (Fr.)].
Sur la Propagation et les Métamorphoses des Crustacés suceurs de la Famille des Cymothoadiens. Comptes Rendus de l'Acad. des Sci., Paris, LXXXVII. pp. 52-55. 1878.

Trans. in Ann. Mag. Nat. Mist. [5], II. pp. 195-197. \(18 \%\) S.
Schmankewitsch, Wladimir.
*[On some Crustacea from Salt Lakes and Fresh Waters, and their Relation to the surrounding Element.] Zapiski Novoross. Obshtch. Yestestcoisp. [Mem. Nero-Russian Soc. of Naturalists], III. 2. 18~5. (In Russian.)
Ueber das Verhältniss der Artenia salina Miln. Edw. zur Artemia Mühlhuusenii Milu. Edw. und dem Genus Branchipus Schaeff. Zeitschr.f. wissensch. Zool., Supplem. XXV. pp. 103-116, Taf. VI. \(18 \% 5\).

Trans. in Ann. Mag. Nat. Hist. [4], XVII. pp. 256-25S. \(18 \% 6\).
Zur Kenntniss des Einflusses der äusseren Lebensbedingungen auf dic Organisation der Thiere. Zeitschr.f. wissensch. Zool., XNIX. pr. 429-494. 1877.
(On the influence of salt and fresh waters on the development of Crustacea.)

\section*{Schmidt, Oscar.}

Zoologische Mittheilungen. Zeitschr.gesammt. Naturwissen., II. p. 101, 1853.
*Hand-Atlas d. vergl. Anat., Taf. X. fig. 7. 1853. *Das Weltall, No. 3, p. 19. 1854.
(Peltogaster shown to be a parasitic Crustacean from its development.)

\section*{Schöbl, Jos.}

Ueber die Fortpflanzung isopoder Crustaceen. Arch.f. Mikroskop. Anat., XVII. pp. 125̄-140, Taf. IX., X. 1879. *Sitzungsber. Uöhm. Gesell. Wissensch. 1879, pp. 339-350.

\section*{Schulze, Max.}

Zoologische Skizzen. Zeitschr.f. wissensch. Zool., IV. pp. 17S-195. 1852. (Development of Balanida, pp. 190-192.)

\section*{Semper, Carl.}

Reisebericht von Herrn Dr. Carl Semper. Briefliche Mittleilung an A. Kölliker. Zeitschr. f. wissensch. Zool., XIII. pp. 555-570, Taf. XXXVIII., XXXIX. 1863.
(Larva of Sacculina, p. 560, Taf. XXXVIII. figs. \(3^{\circ}, 3^{\text {b }}\).)
On the Embryogeny of the Rhizocephala. Ann. Mag. Nat. Hist. [4], XV. pp. S3, S4. 1875. Arch. Zool. Expér., IV. pp. viii., ix. 1875. (Reply to Giard.)
*Die natürlichen Existenzbedingungen der Thiere. Leipzig, 1880 [Ausgegeben, 1879]. 2 vols., \(299+296\) pp. (Internat. wissenseh. Bibliothek.)
English trans.: Animal Life as affected by the Natural Conditions of Existence. London and New York, 1881. \(472 \mathrm{pp} ., 106\) cuts. (International Scientific Scries.)
(Zoëa of Pinnotheres holothurix, p. 81, fig. 22. Influence of temperature and desiccation on development of eggs of Apus, Branchipus, Cypris, pp. 129, 175, 176.)

\section*{Shaw, George.}

Description of the Cancer stugnalis of Linnxus. Trans. Linn. Soc. London, I. pp. 103-110, Pl. IX. 1791.
(Branchipus. Describes eggs and young.)
Siebold, C. Th. E. v.
Beiträge zur Parthenogenesis der Arthropodeu. Leipzig, 1871. \(235 \mathrm{pp} ., 2 \mathrm{pl}\). VI. Ueber die parthenogenetisehe Fortpflanzung bei \(A p u s\) und verwandten Crustacecn. P'p. 160-222, Taf. II.
(Apus cancriformis, Apus productus, Artemia salina, Limnadia IIernanni.)
Ueber Parthenogenesis der Artemia salina. Sitzungsber. d. Königl. Akad. d. Wisscnsch. zu München, III. pp. 16S-196. 1878.

\section*{Slabber, Mart.}
*Natuurknudige Verlustigingen, behelzende mieroseopisehe Waarnemingen van in- en uit- landische Water- en Laud-Dieren. Haarlem, \(1 \sim 60-\mathcal{F} \mathcal{S}\).
*German trans. by P. L. St. Müller : Physikaliselıe Belustigungen, oder microscopische Wahrnelımungen in- und ausländischer Wasser- und LandThieren. Nürnberg, 1775-81.
(Cirriped larva, zoëa of Brachyura, \&c. See Belc's Hist. Brit. Stalk-eyed Crustacea, Introd., pp. xxxix. et seqq.; J. V. Thompsos's Zoölog. Res., Mem. I., and copy of figs. in Encyc. Meth., Pl. CCLXVII., CCCxXXIII. ; Latrellee's Ifist. Nut. gen. et partic. des Crustacís et des Insectes, IV., PI. XXXXY., \&c.)

\section*{Smith, Sidney I.}

The Early Stages of the American Lobster (Homarus Americanus Edwards). Aner. Journ. Sci. \& Arts, [3], III. pp. 401-406, Pl. IX. 1872.
(Abstract of later paper in Trans. Conn. Acad.)
The Early Stages of the Amcrican Lobster (Homarus Americanus Edwards).
Trans. Comn. Acad., II. pp. 351-351, Pl. XIV.-XVIII. 1873.
(Includes description of larva of Paleemonetes rulgaris, p. 377, foot-note.)
The Mctamorphoses of the Lobster and other Crustacea. Incert. Animals of Vineyard Sound, etc. (Verrill and Smith), pp. 22S-243, Pl. VIII., IX. Rep. U. S. Fish Comm. 1871-72, pp. 522-537. Washington, 1873.
(Homarus, Crangon, Palemonetes, Virbius, Gebia, Callianassa, Eupagurus, Hippa, Cancer, Platyonychus, Cyllene, Ocypoda, Gelasimus?, Squilla, \&c., noticed.)
The Megalops Stage of Ocypoda. Amer. Journ. Sci.\& Arts [3], VI. pp. 67, 68. 1873.
(Monolepis inermis Say is the megalopa of Ocypoda arenaria.)
The Early Stages of Hipputalpoidu, with a Note on the Structure of the Mandibles and Maxillæ in Hippa and Remipes. Trans. Conn. Acad., III. pp. 311-342, Pl. XLV.-XLVIII. 187\%.

The Stalk-eyed Crustaceans of the Atlantic Coast of North America nortlı of Cape Cod. Trans. Conn. Acall., V. pp. 27-136, Pl. VIII--NII. 1879.
(Observations on larval stages of Thysanopoda, pp. 90, 91.)
On the Specics of Pinnixa inhabiting the New England Coast, with Remarks on their Early Stages. Trans. Conn. Acad., IV. pp. 24̃-253. July, 1850.
Occasional Occurrence of Tropical and Sub-tropical Species of Dceapod Crustacea on the Coast of New England. Trans. Conn. Lcad., IV. pp. 25t267. July, 1880.
(Describes megalopa stage of Calappa marmorata, \&e.)
Soubeiran, Léon.
Sur l'Histoire Naturelle et l'Education des Écrevisses. Comptes Rendus de l'Acad. des Sci., Paris, LA. pp. 1249, 1250. 1865.
Spangenberg, Friedrich.
Zur Kemutniss von Branchipus stagnalis. Zeitschr.f. rissensch. Zool., Supplem. XXV. pp. 1-61, Taf. I.-III. \(18 \pi 5\).
(Contains observations on development.)

\section*{Steenstrup [Joh. Japetus Smith].}

Bemærkninger om Slægterne Pachybdella Dics. og Peltogaster Rathk. Overs. K. Danske Vidensk. Selsk. Forhandl. 1854, pp. 145-158, 214.

Trans. by Creplin in Arch.f. Naturgesch. 1855, 1, pp. 15-29, 62.
English trans. in Ann. Mag. Nat. Hist. [2], XVI. pp. 153-162. 1855.
[On Liriope and Peltogaster.] Forhandl. Skand. Naturforsk., VIII. (1860), pp. 684, 685. Kiöbenhavn, 1861.

\section*{Steffenberg, Adalrik.}
*Bidrag til Kännedomen om Flodkräftans Naturalhistoria. Falun, 1872. 72 pp. (Akadem. Afhandl.)

Noticed by Eduard von Marteas in Zoölog. Rec. (1872), IX. p. 193. 1874.
(Young of Astacus fuviatilis.)
St. George. See La Valette St. George.

\section*{Straus-Durckheim, Hercule Eug.}

Mémoire sur les Daphnia, de la Classe des Crustacés. Mém. du Mus. d'Hist. Nat., V. pp. 3S0-425, Pl. XX1X., 1819; VI. pp. 149-162, 1820.
(Contains observations on development.)
Mémoire sur les Cypris, de la Classe des Crustacés. Mém. du Mus. d'Hist. Nat., VII. pp. 33-61, Pl. I. 1821.
```

(Young, p. 54.)

```

\section*{Stuxberg, Anton.}

Karcinologiska Takttagelser. Öfvers. K. Svenska Vetensk.-Akad. Förhandl., XXX. (18i3), No. 9, pp. 3-23, Taf. XIV. 1874.
(Stenorrhynchus rostratus, Carcinus Menns, Portunus depurator, Galatea intermedia, Hippolyte rarians, Palemon squilla, Pachybdella carcini.)

\section*{Suhm. See Willemoes-Suhm.}

\section*{Targioni Tozzetti, Ad.}

Di una Specie nuova in un nuovo Genere di Cirripedi Lepadidei ospitante sulle Peunc abdominali del Priofinus cinereus dell' Atlautico Australe e dell' Occano Indiano raccolta nel Viaggio intorno al Mondo della Fregata Italiana La Magenta dai Professori F. De Filippi ed E. Giglioli. Bull. Soc. Entomolog. Italiana, IV. pp. St-96, Tav. I. figs. 2-13. 1872.
(Ornitholepas rustralis, young stage according to A. Gerstaecker, Sitzungs-Ber. Gesell. naturfursch. Freunde Berlin, 1875, pp. 113-115.)

\section*{Thompson, John V.}

Zoülogical Researches and Mlustrations; or Natural History of nondescript or imperfectly known Animals, in a Series of Memoirs. Illustrated by Numerous Figures. Cork, 1828-34. 110 pp., 20 pl.
Memoir I. On the Metamorphoses of the Crustacea, and on Zoëa, exposing their singular Structure and demonstrating that they are not, as has
been supposed, a peculiar Genus, but the Larva of Crustacea. Pp. 1-11, Pl. I., II. Addenda, pp. 63-65, Pl. VIII. fig. 1.

Analyt. notice in Zoölog. Journ., IV. pp. 24S-250. 1828.
(Cancer pagurus, \&c.)
Memoir II. Ou the Genus Mysis or Opossum Shrimp. Pp. 13-31, Pl. III., IV. Addendum, p. 66.
(Contains observations on development.)
Memoir IV. On the Cirripedes or Barnacles; demonstrating their deceptive Character; the extraordinary Metamorphosis they undergo, and the Class of Animals to which they iudisputably belong. Pp. 69-82, PL IX., X. (Balanus.)
Memoir VI. Development of Artemis salinus or Brine Shrimp; demonstrative of its Relationship to Branchipus and the other Crustaceous Phyllopoda, and to those enigmatical Fossils, the apparently eyeless Trilobites . . . . with a new Species of Artemis and of Apus. Pp. 103-110, Pl. I.-VI.
[Letter to the Editor of the Zoölogical Journal, dated "Cork, Dec. 16, 1830."] Zoölog. Journ., V. pp. 383, 381, Pl. XV. fig. 13. 1831.
(Metamorphosis of Homarus.)
Discovery of the Metamorphosis in the Second Type of the Cirripedes, viz., the Lepades, completing the Natural History of these singular Animals, and confirming their Affinity with the Crustacea. Phil. Trans. Roy. Soc. London, 1835, pp. 355-358, Pl. VI.
On the Double Metamorphosis in the Decapodous Crustacea, exemplified in Cancer Manas Linn. Phil. Trans. Roy. Soc. London, 1835, pp. 359-362, Pl. V.
Memoir on the Metamorphosis and Natural Ifistory of the Pinnotheres or PeaCrabs. Entomolog. Mag., III. pp. S5-90, figs. 1-3. April, 1835.
Memoir on the Metamorphosis in Porcellana and Portunus. Eintomolog. Mag., III. pp. 275-280, figs. 1-3. October, 1835.

Of the Double Metamorphosis in Macropodia phalangium or Spider-Crab, with Proofs of the Larve being Zoëa in Gecarcinus hydrodomus, Telphusa erythropus, Eriphia Caribbra, and Grapsus pelagicus. Entomolog. Mag., III. pp. 370-375, figs. 1-6. January, 1836.
Natural History and Metamorphosis of an auomalous Crustaccous Parasitc of Carcinus Menas, the Sacculina carcini. Entomolog. Mag., III. p]. 452456, figs. 1-6. \(\Lambda\) pril, 1856.

Notice of, in Arch. f. Naturgesch., 1837, 2, p. 248.
Memoir on the Metamorphosis in the Macroura or Long-tailel Crustacea, exemplified in the Prawn (Paliemon serratus). Edinburgh Veuc Philosoph. Journ., XXI. pp. 221-223, Il. I. 1886.

Abstract in Proc. Roy. Soc., III. p. 371. 1886.

\section*{Thompson, William.}

Description of a Young Lobster measuring only Nine Lines. The Zoölogist, XI. p. 3765. 1853.

\section*{Thorell, T.}

Bidrag till Kännedomen om Krustaceer, som lefva i Arter af Slägtet Ascidia L. 84 pp., 14 pl. K. Svenska Vetensk.-Akad. Handl., III. No. 3. 1859-60. *Zeitschr. gesammt. Naturwissen., XV. pp. 114-143. 1860. (Copepoda. Young, passim.)
Till Kännedomen om Vissa parasitiskt lefrande Entomostracecr. Öfvers. \(K\). Svenska Vetensk.-Akad. Förhandl., XVI. (1S59), pp. 335-362. 1860.
(Includes account of derelopment.)

\section*{Tozzetti. See Targioni Tozzetti.}

\section*{Travis.}
[Letter to Pennant, dated "Scarborough, 25th Oct. 1r66."] Pennant's British Zö̈logy, IV. pp. 11-15. London, 17\%7. (Describes the eggs of Homarus. Young have "the appearance of tadpoles.")
Tscherniawsky, W.
*Materialia ad Zoographiam Ponticam comparatam, Basis Genealogiæ Crustaceorum. Oct. 1868. \(120 \mathrm{pp} ., 8 \mathrm{pl}\). (Iu Russian.)

Noticed by Gerstaecker in Arch.f. Naturgesch., 1869, 2, p. 169.
(Larva of Balanus, and three zoër.)
*[The Megalopa Larvæ of Brachyura.] Trudy Russhoye Entomolog. Obshtchest. [Trans. Russian Entomolog. Soc.], XI. No. 2, pp. 51-96, 2 pl. 1878. (Iu Russian.)

Sce Zoolog. Aazeig., II. p. 219. 1879. Zö̈log. Rec. (1Si8), XV., Crust., pp. 15, 16.1880.
Notice of, by Paul Mayer, in Zoolog. Jahresber. 1SS0, II. Abth., pp. 41, 42. 1881.
Ueber die Gencalogic der Mysiden. Zoolog. Anzeig., III. pp. 213, 214. 1880. (Verhandl. d. zool. Sect. d. VI. Versamml. russisch. Naturf. u. Aerzte.)

Eng. abstr. in Journ. Roy. Microscop. Soc., III. pp. 944, 945. 1880.
Turner (Wm.) and Wilson (H. S.).
On the Structure of the Chondracanthus lophii, with Observations on its Larral Form. Trans. Roy. Soc. Edinlurgh, XX1II. pp. 6ī-iG, I'l. Ill. 1861. Abstr. iu Proc. Roy. Soc. Jdinlurgh, IV. pp. 52.5-527. 1802.
(Larva, pp. 74, 75, Pl. III. figs. 15, 16.)

On the Structure of Ierncopoda Dalmanmi, with Observations on its Larval Form. T'rans. Roy. Soc. Ellinburgh, XX1II. pp. 7i-87, lll. IV. 1861. Abstr. in Proc. Roy. Soc. Edinhorigh, IV. pp. 560, 5i0. 186?.
(Larva, pp. 84, 85, figs. 13-16.)

Uljanin, B.
Untersuchungen über Blastoderm- und Keimblätterbildung bei Orchestia Montagui und mediterranea. Zoolog. Anzeig., III. pp. 163-165. 1880. (Verhandl. d. zoolog. Sect. d. VI. Versamml. russisch. Naturf. u. Aerzte.)

Notice of, by P. Mayer, in Zoolog. Jahresber. (1880), II. Abt., pp. 53, 54. 1880.
Zur Entwicklungsgeschichte der Amphipoden. Zeilschr. f. wissensch. Zool., XXXV. pp. 440-160, Taf. XXIV. 1881.

Abstr. in Journ. Roy. Microscop. Soc. [2], I. pp. 590, 600. Aug. 1881.
Valenciennes, A.
Note sur la Reproduction des Homards. Comptes Rendus de l'Acad. des Sci., Paris, XLVI. pp. 603-606. 1858.

\section*{Valette St. George. See La Valette St. George.} Van Beneden, Édouard.

Sur le Mode de Formation de l'Euf et le Développement embryonnaire des Sacculines. Comptes Rendus de l'Acad. des Sci., Paris, LXIX. pp. 11461151. 29 Nov. 1869.

Trans. in Ann. Mag. Nat. Hist. [4], V. pp. 140-144. 1870.
Recherches sur l'Embryogénie des Crustacés. I. Observations sur le Développement de l'Asellus aquaticus. Bull. Acad. Roy. de Belgique [2], XXVIII. pp. 54-S7, 2 pl. 1869.

Recherches sur l'Embryogénie des Crustacés. II. Développement des Mysis. Bull. Acad. Roy. de Belgique [2], XXVIII. pp. 232-249, 1 pl. 1869.

Recherches sur l'Embryogénie des Crustacés. III. Développement de l'Euf et de l'Embryon des Sacenlines (Sacculina carcini, Thomps.). Bull. Acad. Roy. de Belgique [2], XXIX. pp. 99-112, 1 pl. 1 sio.
Recherches sur l'Embryogénie des Crustacés. IV. Développement des Genres Anchorella, Lerncopoda, Brachiella et Messia. Bull. Acad. Roy. de Belgique [2], XXIX. pp. 223-254, 1 pl. \(18 \% 0\).
Réponse à quelques-unes des Observations de M. Balbiani sur l'Euf des Sacculines. Comptes Rendus de l'Acad. des Sci., Paris, LXX. pp. 19í200. 18\%0.

Recherehes sur la Composition et la Signification de l'Euf, basées sur l'Étude de son Mode de Formation et des premières Phénomènes embrromaires (Mammiferes, Oiseanx, Crustacés, Vers). Ménn. Cour. Acad. Roy. de Belgique, XXXIV. 1870 [1869 ?]. \(283 \mathrm{pp} ., 12 \mathrm{pl}\).
(Crustacea, pp. 107-143, Pl. VII--X.)
Van Beneden (Édouard) et Bessels (Émile).
Mémoire sur la Formation du Blastoderme chez les Amphipodes, les Lernéens et les Copépodes. Mém. Cour. Acad. Roy. de Belgique, XL.XIV. \(18 \% 0\) [186S ?]. \(59 \mathrm{pp} ., 5 \mathrm{pl}\).

Résumé in Bull. Acad. Roy. de Belgique [2], XXV. pp. 434-448. 1868. Monthly Microscop. Journ., I. pp. 41-45. Jan. 1869.

See also Report by Schwany, Gluge, and Poelman, Bull. Acad. Roy. de Belgique [2], XXVI. pp. 252-259. 1868.

\section*{Van Beneden, P.-J.}

Résumé d'un Mémoire sur le Développement et l'Organisation des Nicothoés. Bull. Acad. Roy. de Belgique, XV. \(2^{\text {me }}\) Partie, pp. 356-390. 1848. Schleiden u. Froriep's Notizen [3], IX. col. 165-167. 1849.
Mémoire sur le Développemeut et l'Organisation des Nieothoés. Mém. Acad. Roy. de Belgique, XXIV. 1850. 28 pp., 1 pl. Ann. Sci. Nat. [3], Zool., XIII. pp. 354-377, Pl. I. figs. 13-29. 1850.
Recherehes sur quelques Crustacés inférieurs. Ann. Sci. Nat. [3], Zool., XVI. pp. 71-131, Pl. II.-VI. 1851.

> (Parasitic Copepoda, Lerneans.)

Note sur un nouveau Genre de Crustacé parasite, Eudactylina. Bull. Acad. Roy. de Belgique, XX. Pt. I. pp. 235-23S, 1 pl. 1853. (Larvæ, figs. 5, 6.)
Histoire naturelle d'un Animal noureau, désigné sous le Nom d'Histriobdella. Bull. Acad. Roy. de Belgique, 1858, pp. 263-296.
(Development of Homarus, pp. 263, 264.)
Un nouveau Genre de Crustacé Lernéen. Bull. Acad. Roy. de Belgique, 1860, pp. 137-146, 1 pl.
(Enterocola fulgens P. J. Van Ben. Larra, figs. 6, 7.)
Recherches sur les Crustacés du Littoral de Belgiquc. Mém. Acad. Roy. de Belgique, XXXIII. 1861 [1860?]. 174 pp., 21 pl.

Also printed separately with the following title: Recherches sur la Faune littoralc de Belgique. Crustacés. Bruxelles, 1861. 174 pp., 21 pl .

See Rev. by Fritz Müller, Ueber Cumaceen. Arch. f. Naturgesch., 1865, 1, pp. 311-323.
(Development of Jrysis, pp. 52-69, Pl. VI. figs. 9-12, VIII.-XI.; Homarus, p. 53; Cuma, pp. 75, 87; Cyamus, p. 95; Anceus, p. 102, Pl. XVI.; Peltogaster, p. 118, PI. XXI. figs. 5-7; Sacculina, Pl. X゙X. figs. 8, 9, l'l. XXI. figs. 8, 9; Lernara, p. 131, I'l. XIX. figs. 9-13.)

\section*{Vejdovský, Franz.}

Untersuchungen über die Anatomic und Metamorphose ron Tracheliastes polycolpus Nordm. Zeitschr. f. wissensch. \%ool., NXIX. pp. 15-46, Taf. II.-IV. \(187 \%\).
(Development, pp. 3t-43, Taf. III., IV.)

\section*{Vogt, Carl.}

Recherches Cotières. Genève, 187\%. 104 pp., 6 pl. Mém. Inst. Genère, XIII.

Ier Mém. De la Famille des Philichthydes et en particulier du Léposphile des Labres (Leposphilus labrei Hesse). Pp. 1-41, Pl. I., II. (Nauplius, p. 26, Pl. I. fig. 10.)
\(2^{\text {d }}\) Mém. Sur quelques Copépodes Parasites à Males Pygmécs habitant les Poissons. Pp. 43-104, Pl. III.-VI.
(Nauplius of Brachiella, p. 56, Pl. III. fig. 8; Chondracanthus, pp. 86-88, Pl. V.)
Also in Arch. Zool. Expér., VI. 385-456. 1877.
Recherches Cotières faites a Roskoff. Crustacés Parasites des Poissons. Genève, 1879. \(104 \mathrm{pp} ., 6 \mathrm{pl}\).
\(1^{\text {er }}\) Mém. Leposphile des Labres, Famille des Plilichthydes.
\(2^{\text {d }}\) Mém. Familles des Lernæopodides et des Chondracanthides.
(Nauplius of Leposphilus, Brachiella, Chondracuntlius.)
Same as the preceding.
L'Adaptation des Crustacés Copépodes au Parasitisme. Actes de la Soc. Helvétique des Sci. Nat., 60e Scess., pp. 121-139. 1878.
(Contains remarks on larve.)

\section*{Wagner, Nicolas.}

Observations sur l'Organisation et le Développement des Ancées. Bull. Acad. Impér. des Sci., de St.-Pétershourg, X. pp. 498-502 (Mélanyes Biologiques, VI. pp. 27-34). 1866.
*In Arbeit. d. ersten Sitzung Russischer Naturforscher in St. Petershurg, 1868, pp. 218-237, Taf. I.-IV.
(Development of \(\Pi\) yalosoma [Leptodora], according to Gerstaecker, Arck. \(f\). Naturgesch., 1871, 1, p. 351.)
Wagner, Rudolphus.
Prodromus Historix Generationis Hominis atque Animalinm. Lipsix, 1836. 15 pp., 2 pl .
(Eggs of Porcellio, Cypris, Balanus, Gammarus, Astacus, Carcinus, p. 8, P1. I. figs. 12-17.)
Weismann, August.
Ueber Bau und Lebenserschcinungen von Leptodora hyalina Lilljehorg. Zeitschr. f. rissensch. Zool., XXIV. pp. 349-418, Taf. XXXIII.XXXVIII. 1874.

Zur Naturgeschichte der Daphniden. I. Ueber die Bildung von Wintereiern bei Leptorlora hyalina. Zeitschr.f. wissensch. Zool., XXVII. pp. 51-112, Taf. V.-VII. May, \(1 \mathcal{S}^{\sim} \sigma\).
Beiträge zur Naturgeschichte der Daphuoiden. Theil II., III., u. IV. Zeitschr. f. wissensch. Zool., XXVIII. pp. 93-254, Taf. VII.-ㅓ. \(187 \%\).
II. Die Eibildung bei den Daphnoiden. Pp. 95-175.

VOL. IX. - No. 6.
III. Die Ablängigkeit der Embryonal-Eutwicklung vom Fruchtwasser der Mutter. Pp. 176-211.
IV. Ueber den Einfluss der Begattung auf die Erzeugung von Wintereiern. Pp. 212-240.
Beiträge zur Naturgesehiehte der Daphnoiden. VII. Die Entstehung der eselisehen Fortpflanzung bei den Daphnoiden. Zeitschr.f. wissensch. Zool., XXXIII. pp. 111-264. Oct. 1879.

Parthenngenese bei deu Ostracoden. Zoolog. Anzeig., III. pp. 82-\$4. 23 Feb. 1880. Journ. Roy. Microscop. Soc., III. Pt. I. pp. 431, 432. 1880.

\section*{Wendt.}

Ueber das Ansetzen der Cirripedien an eisernen Schiffen. Verhandl. d. Vereins f. naturwissensch. Unterhalt. zu Hamburg, III. (1876), pp. 31, 32. 1878.

\section*{Westwood, J. O.}

Extrait des Reeherehes sur les Crustacés du Genre Pranize de Leach. Ann. Sci. Nat., XXVII. pp. 316-332, Pl. VI. 1832.
On the Transformations of the Crustacea. Rep. Brit. Assoc. Add. Sci. for 1834 , pp. 608, 609. 1835.
(Abstract of the following paper.)
On the sunposed Existence of Metamorphoses in the Crustacea. Phil. Trans. Roy. Soc. London, 1835, pp. 311-32S, Pl. IV.

Abstract in Proc. Roy. Soc. Ioondon, III. pp. 341. 342. 1835. London and Edinburgh Philosoph. Mag. [3], TII. pp. 210, 211. 1835. Froriep's Notizen, NLTI. pp. 230, 231. 1835.
(Gecarcinus, with direct development.)
See also Bate (C. Spence) and Hailstone (S.).

\section*{Willemoes-Suhm, Rudolf von.}

On a new Gimus of Amphipod Crustaceans. Proc. Roy. Soc. London, XXI. pp. 20¢-208. 1873. Ann. Mag. Nat. Hist. [1], XI. pp. 389-391. \(18 \% 3\).
(Thaumnps pellucilda W.-S. [CYystisnma Neptuni Guér.-Mín.] undergoes no metamorphosis after learing the egg, pp. 207, 208.)
Von der Chatlenger-Expedition. Briefe an C. Th. E. r. Siebold von R. v. Willemocs-Suhn. I. Zeitschr.f. rissensch. Zool., XXIII. pp. i.-vii. May, 18\%.3.
(Finbryo of Thaumops pellucida W.-S. [Cystisona Nicptuni Guér.-Mén., Amphiporl] undergoes no metamorphosis, p. vi.)
Von der Challenger-Expedition. Briefe an C. Th. E. v. Siehold won R. v. Willemnes-Suhm. 1I. Zeitschr.f. wissensch. Zool., XXIV. pp. ix.-xxiii. Oct. 18\%/4
(Young Isponta and Amphipoda of Antaretic I-lands developed in saes of parent. Larval stages of the higher Crustacea not found on the surface at Kerguelen's Ish.. excepting one small zoëa.)

Von der Cballenger-Expedition. Briefe von R. v. Willemoes-Suhm an C. Th. E. v. Siebold. V. Zeitschr.f. wissensch. Zool., XXVI. pp. lix.-lxxv. Dec. \(18 \% 5\).
(According to a very intelligent fisherman, Menancio Perez, the young Birgus on hatching is like the parent in form, p. Ixxiii.)
On some Atlantie Crustacea from the "Challenger" Expedition. V. On the Development of a Land Crab. Trans. Linn. Soc. London [2], Zool., I. pp. 46-49, Pl. XI. figs. 1-3. 1875.
(Zoëa of Cardisoma from Cape-Verd Isl. Direct development of Telphusa fluviatilis from Italy.)

On the Development of Lepas fascicularis and the "Archizoëa" of Cirripedia. Phil. Trans. Roy. Soc. London, CLXVI. pp. 131-154, Pl. X.-XV. 1876.

Abstract in Proc. Roy. Soc. London, XXIV. pp. 129-132. Dec. 1875. Ann. Mag. Nat. Hist. [4], X VII. pp. 15s-161. 1876.
Preliminary Remarks on the Development of some Pelagic Dceapods. Proc. Roy. Soc. London, XXIV. pp. 132-131. 1875. Also in Ann. Mag. Nat. Hist. [4], XVII. pp. 162, 163. \(18 \% 6\).
(Amphion, Sergestes, Lucifer.)
Preliminary Report to Professor Wyville Thomson, F. R. S., Direetor of the Civilian Seientific Staff, on Observations made during the earlier Part of the Voyage of H. M. S. "Challenger." Proc. Roy. Soc. London, XXIV. pp. 569-585. 1876.
(Blind megalopa from 1675 fms., p. 577; Cardisoma zoëa, p. 582. .)
Von der Challenger-Expedition. Briefe von R. v. Willemocs-Sulım an C. Th. E. จ. Siebold. VII. Zeitschr. f. wissensch. Zool., XXVII. pp. xevii.-criii. May, \(18 \tau 6\).
(Sergestes, Lueifer, Lepas, pp. cvi.-cviii. Same observations as those recorded in Preliminary Remarks, fc., and On the Development of Lepas fascicularis, \(\mathscr{q}^{c} c\).)

Wilson, E. B. See Brooks, W. K.
Wilson, H. S. See Turner, Wm.

\section*{Woodward, Henry.}

Art. Crustacea in Encyclopedia Britannica (9th ed.), VI. pp. 632-666. \(18 \% 7\).
(General account of development, pp. 643-652. Australian Dromict, with direct development, p. 644.)

Zaddach, Ernestus Gustavus.
De Apodis caneriformis Schaeff. Anatome et Historia Evolutionis. Bonne,

(Development, pp. 55-64, Pl. W.)

\section*{Zenker, Jonathan Carolus.}

De Gammari pulicis Fabr. Historia Naturali atque Sanguinis Circuitu Commentatio. Jenæ, 1832. viii. \(+25 \mathrm{pp} ., 1 \mathrm{pl}\).
(Remarks on development, p. 17.)
Zenker [Wilhelm].
Monographie der Ostracoden. Arch.f. Naturgesch. 1854, 1, pp. 1-87, Taf. I.V1. figs. \(1,2\).
(Development, pp. 57-60.)
Also published as *Anatomisch-systematische Studien über die Krebsthiere (Ciustacea). Berlin, 1854. 115 pp., 6 pl.
-?
[Notice of Phyllosoma hatched from Eggs of Palinurus rulgaris at Brighton Aquarium.] Nature, VIII. p. 231. 1873. Amer. Journ. Sci. \& Arts [3], VI. p. 229. 1873.
\[
A D D E N D A .
\]

Claus, Carl.
Untersuchungen über die Organisation und Vermandtshaft der Copepoden. (In Auszuge zusammengestellt.) Würzburg. naturwiss. Zeilschr., III. pp. 51-103. 1862.
(Development, pp. 78-82.)
Dohrn, Anton.
*Studien zur Embryologie der Arthropoden. 1868. (IIabilitationsschrift.)

\section*{Hartog, Marcus.}

On the Anal Respiration of the Copepoda. Quart. Journ. Microscop. Sci. [2], XX. pp. 244, 245. April, 18SO. Journ. Roy. Microscop. Soc., 111. Pt. 2, pp. 632, 632. 1850.
(Anal respiration in nauplius of Cyclops and Dioptomus, p. 245.
Ou the Respiration of the Crustacca. Quart. Journ. Microscop. Sci. [2], XX. p. 495. Oct. 18SO. Journ. Roy. Microscop. Soc., III. Pt. 2, p. 944. \(18 S 0\).
(Anal respiration in zoëre.)

\section*{Kossmann, Robby.}

Dic Entonisciden. Mittheil. aus der zoolog. Station au Neapel, III. pp. 149169, Taf. VIII., IX. Dec. 9, 18s1
(I)evelopment, pp. 16G-168, Taf. VIll., fig. 6.)

Studien über Bopyriden. III. Jone thoracica und Cepon portuni. Mittheil. aus der zoolog. Station zu N'capel, III. [p. 170-193, Taf. X., XI. Dee. 9, 1881.

\section*{XIPHOSURA (Limulus).}

\section*{Agassiz, Alexander.}

Note on the Habits of young Limulus. Amer. Journ. Sci. \& Arts [3], XV. pp. 75, 76. 1878. Ann. May. Nat. IIist. [5], I. pp. 183, 184. 1878.
(Swim, feed, and rest on their backs.)

\section*{Beneden. See Van Beneden.}

\section*{Dohrn, Anton.}

Untersuchungen über Bau und Entwickelung der Arthropoden. 12. Zur Embryologie und Morphologic des Limulus Polyphermus. Jenaische Zeitschr., VI. pp. 550-640, Taf. XIV., XV. 1871.

\section*{Edwards. See Milne Edwards.}

\section*{Gegenbaur, C.}

Anatomische Untersuchung eine Limulus, mit besonderer Berücksichtigung der Gewebe. Abhandl. Naturforsch. Gesell. Halle, IV. pp. 229-250, 1 pl .1858.
(Structure of egg, pp. 247-249, fig. 9.)

\section*{Lockwood, S.}

The Horse-Foot Crab. Amer. Naturalist, IV. pp. 257-274, Pl. III. July, \(18 \% 0\).
(Development of Limulus Polyphemus.)

\section*{Milne Edwards, Henri.}

Recherches relatives au Développemeut des Limules. *Soc. Philonath. Paris, E.ttr. des Procès-Verbaux des Séances, 1838, pp. 125, 126. *L'Institut, VI. No. 255s, p. 397. 183S. Disciples' Ed. Cuvier's Règne Animal, Crustacés, Pl. LXXVI. fig. 2 h, 2 i. Hist. Nat. des Crustacés, III. p. 546. 1840.

\section*{(Young Limulus at time of hatching.)}

Notice of, in Van der Hoeven's Recherches sur l'Histoire Nuturelle et l'Anatomie des Limules, p. 44. Leyde, 1838.

Packard, A. S., Jr.
On the Embryology of Limulus Polyphemus. Aner. Naturalist, N. pp. 49S502, figs. 95-100. Oct. 1870. Proc. Boston Soc. Ňat. Hist., XIV. p. 60. Nov. 16, 1570. Proc. Amer. Assoc. Adr. Sci., 19th Meeting (1sĩ0), pp. 247-255, 9 figs. 1871. Quart. Journ. Microscop. Sci. [2], II. pp. 26326\%. 18\%1.
(Notice of observations given in full in Mem. Buston Soc. Nat. Mist., II. pp. 155202. 1872.)

Morphology and Ancestry of the King Crabs. Amer. Naturalist, IV. pp. T51756. Fcb. \(18{ }^{1} 1\).
(Abstract of some of the conclusions stated in Mem. Buston Suc. Nat. Mist., II. pp. 155-202. 1872.)

The Development of Limulus Polyphenus. Mem. Boston Soc. Nat. Hist., II. pp. I55-202, Pl. III.-V. March, 18i.2.

Abstract by the author in Life Ilistories of the Crustacea and Insects, Amer. Nat., IX. pp. 559-592, figs. 239-246, Nov. 1875; Life Mistories of Animals including Man, or Outlines of Comparatice Embryology, New York, 18r6; and in Zoölogy for Students and General Readers, pp. 320-323, New York, 1879.

See also Henry Woodward's Monograph of the British Fossil Crustacea of the Order Merostomata, pp. 211-221. Loudon, 1878.

Farther Observations on the Embryology of Limulus, with Notes on its Affinities. Amer. Naturalist, VIl. pp. 675-675. Nor. 1873. Proc. Amer Assoc. Ado. Sci., 22d Meeting (1573), Pt. I1. pp. 30-32. 18\%.4.

On the Development of the Nervous System in Limulus. Aner. Naturalist, IN. pp. 422-121. July, 1875.

The Anatomy, Histology, and Embryology of Limulus Polyphemus. Annivers. Mem. Boston Suc. Nat. Hist. 1880. 45 pp., î pl.
(Embryology, pp. 36-40, PI. I., III., IV.)

\section*{Suhm. See Willemoes-Suhm.}

\section*{Van Beneden, Édouard.}

De la Place que les Limules doivent occuper dans la Classification des Arthropodes d'après leur Développement embryomaire. Ann. Soc. Entomol. Belyique, IV. Comptes Rendus, pp. x., xi. It Oct. 18i1. Gercais's Journ. de Zoologie, I. pp. 41-14. 187~. Ann. Mag. Nat. Hist. [1], IX. pp. 95, 99. Jan. 187 .
*[Observations on the first Stages of embryonic Developinent in Limulus.] Tageblatt d. \(4 \mathrm{~S}^{\text {er }}\) Versamml. deutsch. N'aturforsch. u. Lertze in IViesbuden, 1873, p. 59.

\section*{Willemoes-Suhm, Rudolf von.}

Von der Challenger-Expedition. Nachträge zu den Briefen an C. Th. E. v. Sicbold von R. v. Willemoes-Suhn. VIlI. Zeitschr. f. wissensch. Zool., XXIX. pp. cix.-cxxxvi. June, 1 Sif.
(Limulus from the Plhilippine Islands has a free-swimming nauplius larva, p. cxxxii.)

Challenger-Bricfe von Rudulf v. Willemoes-Sulm Dr. Phil. 15i2-1875. Nach dem Tode des Verfassers herausgegeben von seiner Mutter. Leipzig, 1877. 150 pp .
(Limulus rotumdicaudatus does not have a direct development like L. Folyphentus but has a nauplius larva, pp, 157, 158. [Letter to I'rofessur Kinpfter.])

\section*{TRILOBITA.}

\section*{Barrande, Joachim.}

Systême Silurien du Centre de la Bohême. Prague et Paris.
Métamorphoses des Trilobites, I. pp. 257-278, Pl. VII., XLIX., \&c. 1852. I. Suppl., pp. 182-189, Pl. passim. 1872.

Cf. A. Gerstaecker in Brons's Klassen und Ordmungen des ThierReichs, V. (Arthropoda), L. Abt., I. Hälfte, pp. 1200-1208, Tuf. XLIII., XLVI. Leipzig and IIcidelberg, 1879.

Ford, S. W.
On some Embryonic Forms of Trilobites from the Primordial Rocks at Troy, N. Y. Amer. Journ. Sci. \&. Arts [3], XIII. pp. 265̄-273, 1 pl. \(187 \%\).

On additional Embryonic Forms of Trilobites from the Primordial Rocks of Troy, N. Y., with Observations on the Genera Olenellus, Parculorides, and IIydrocephalus. Amer. Journ. Sci., XXII. pp. 250-259, 13 cuts. 1881.

Walcott, C. D.
Note upon the Eggrs of the Trilobite. 31st Ann. Rep. N. Y. State Nus. Nat. IIist., pp. 66, 67. Alhany, 1879. (Published and distributed in advance of Report, Sept. 20, 1877.) Bull. Mus. Comp. Zoöl., at IIarvard Coll., in Ctombridge, VIII. p. 216, PI. IV. figs. S, 8 c. 1881.
Fossils of the Utica Slate. Trans. Albany Inst., X. (Printed in advance, June, 1879.)

Metamorphoses of Triurthrus Becki, pp. 21-33, PI. II. figs. 1-15.

\section*{PYCNOGONIDA.}

\section*{Allman [George James].}

On a Remarkable Form of Parasitism among the Pyrnogonidm. Rep. Brit. Assoc. Adv. Sci. for 1S59, Trans. of Scet., p. 143. 1860.
(Young Ammothea? parasitic in Coryne.)
Böhm, R.
Zwei neue, von Herrn Dr. Hilgendorf in Japan gesammelte Prenogoniden. Sitzungs-Ber. Gesell. naturforsch. Freunde zu Berlin, 1s̃a, pp. 53-60, 140-142.
(On some structural characters of the young, pp. 55, 140, 141.)

\section*{Claparède, A. René Edouard.}

Beobalatungen über Auatomie und Eutwicklungssesehiehte wirbelloser Thiere an der Küste von Normandic angestellt. Leipzis, 1863. viii +120 pp., 18 pl .
(Development of Phoxichilitium, pp. 10t, 105, Pl. XVIII. figs. 13, 14.)

\section*{Couch, R. Q.}

On the Metamorphosis of the Crustaceans, including the Decapoda, Entomostraca, and Pyonogonide. Twelfth Ann. Rep. Roy. Cornwall Polytechnic Soc., pp. 17-46, Pl. I. Falmouth, 1844.
(Young of Orithyia coccinea and Nymphon gracile, pp. 36, 37. First stage of Orithyia coccinea, fig. 13.)

\section*{Dohrn, Anton.}

Untersuchungen über Bau und Entwickelung der Arthropoden. 2. Ueber Entwickelung und Bau der Pycnogoniden. Jcnaische Zeitschr., V. pp. 13S-157, Taf. V., VI. 1870.
(According to Dohrn, the Pycnogonida are neither Arachnidn nor Crustacea.)
Neue Untersuchungen über Pyenogoniden. Mittheil. aus der Zoolog. Station zu Neapel, I. pp. 2S-39. 1878.
Die Pantopoden des Golfes von Neapel und der angrenzenden MeeresAbsehnitte. Eine Monographic. Herausgegeben von der Zoologischen Station zu Neapel. Leipzig, 1881. 252 pp., 17 pl. (Fauna und Flora des Golfes von Neapel, III. Monographie.)
(Development, pp. 69 et seqq. Phoxichilidium, Pallene.)
Gegenbaur, Carl.
Zur Lehre vom Generationswechsel und der Fortpflanzung bei Medusen unci Polypen. Wïrzburg, 1854. 65 pp., 2 pl.
(Pycnogonum developing as a parasite in Eudendrium, p. 38, foot-note.)

\section*{Gerbe, \(Z\).}

Apparcils vasculaire et nerveux des Larves des Crustacés marins. Comptes Rendus de l'Acad. des Sci., Paris, LXII. pp. 932-937. 23 Apr. 1866.
(Larva of Nymphon, pp. 932, 933, foot-note.)
Trans. by W. S. Dallas in Ann. Mag. Nat. Hist. [3], XVIII. pp. 7-12. 1866.

Hesse [Eugène].
Ménoirc sur des Crustacés rares ou nonvcaux des Côtes de France. \(24^{e}\) Art. Description d'un nouvcau Crustacé appartenant à l'Ordre des Pyenogonidicns et formant le Genre Oomère, Nob. Ann. Sci. Nat. [5], Zool., XX. Art. 5. 18 pp., Pl. VIII. 1874.
(Contains observations on the larva of Phoxichilidium femoratum Rathke, and Nymphon grossipes.)

Hodge, George.
Observations on a Species of Pyenogon (Phoxichilidium coccineum Johnston), with an Attempt to explain the Order of its Development. Ann. Mag. Nat. Hist. [3], LX. pp. 33-43, Il. IV., V. 1862.
(Development of Thoxichililium in Coryne.)

\section*{Hoek, P. P. C.}

Ueber P'yenogoniden. Niederländisches Arch.f. Zool., III. pp. 235-254, Taf. XV., XVI. 18\%\%.
(Development of Pallene, pp. 239, 240, Taf. XVI. figs. 21, 22.)
Report on the Pyenogonida dredged by H. M. S. "Challenger," during the Years 1873-76. \(167 \mathrm{pp} ., 21 \mathrm{pl}\). Appendix II. Contributions to the Anatomy and Enibryology of the Pycnogonida. Pp. 100-144, Pl. XLX., XX. Rep. Sci. Results of the Voyage of II. II. S. "Challonger," during the Years 1873-76, Zool., III. London, Edinburgh, and Dublin, 1881.

\section*{Kölliker, A.}

Beiträge zur Entwicklungsgeschichte wirbelloser Thiere. 1. Ueber die ersten Vorgänge im befruchteten Ei. Arch.f. Anat., Physiol. u. wissensch. Hed. 1843, pp. 6S-141, Taf. VI., VII.
(Cleavage of egg of Pycnogonon total, p. 136.)

\section*{Krohn, A.}

Notiz über die Eierstöcke der Pyenogoniden. Schleiden u. Froriep's Notizen, [3], IX. col. 225, 226. May, 1849.
(Structure of ovarian egg, col. 226.)

\section*{Kroyer, Henrik.}

Om Pyknogonidernes Forvandlinger. Naturhistorisk Tidsskr., III. pp. 290306, Tab. III. 1840. Isis, 1841, col. 713-717, Taf. III. Ann. Sci. Nat. [2], Zool., XVII. pp. 2SS-292, Pl. IX. B. 184?. (Trans. by Lereboullet.)

In Gamard's Voyages de Commission Scientifique du Nord en Scandinarie, en Laponie au Spitzberg et aux Feröe pendant les Anncés 1S3S, 1539 et 1540, sur la Corvette "La Recherche." Paris, 1840-45. Zoologie. Crustacés. (Young Pycnogonida, PI. XXXIX.)

\section*{Lewes, George Henry.}

Sea-Side Studies at Ilfracombe, Tenby, the Scilly Isles, and Jersey. Edinburgh and London, 1858. \(414 \mathrm{pp} ., 7 \mathrm{pl}\).
(Larva of Nymphon gracile, p. 203, P1. V. fig. 4.)

\section*{Semper, Carl.}

Ueber Pyenogoniden nnd ihre in IIfdroiden schmarotzenden Larrenformen. Arbeit. aus dem zoolog.-zootom. Inst. in Wïr=burg, I. pp. 261-256, Taf. XVI., XVII. 1874. Verhandl. d. physitial.-medicin. Gesell. in Fürzburg, [2], VII. pp. 257-279, Taf. IV., V. 1874.

\section*{Wilson, Edmund B.}

Synopsis of the Pyrnogonida of New England. Trans. Conn. Acad., V. pp. 1-20, Pl. I.-VII. 1878.
(Young of Achelia spinosa, p. 8, PI. II. fig. 1g; of Nymphon hirtum, p. 23. PI. VI. figs. \(2 i, 2 j\).)

Report on the Pycnogonida of New England and Adjacent Waters. In Rep. U. S. Commissioner of Fish and Fisheries for 1S78, pp. 463-506, 7 pl. Washington, 1880.
(Young ot Achelia spinosa, p. 474; of Nymphon hirtum, p. 496, PI. VII. fig.41, as before.)
Reports on the Results of Dredging, under the Supervision of Alexander Agassiz, along the East Coast of the United States, during the Summer of 1SS0, by the U. S. Coast Surver Steamer "Blake," Commander J. R. Bartlett, U. S. N., commanding. XIII. Report on the Pycnogonidd. Budl.Mus. Comp. Zoöl., at Harcard Cull., in Cambridge, VIII. pp. 239-256, 5 pl. 1881.
(Development of Pallene shows that Zenker's account of the innervation of the three anterior pairs of appendages of Pycnogonida is incorrect, p. 241, footnote.)

\section*{Wright, T. Strethill.}

Observations on British Zoöphy̧tes. 9. On the Development of Pycnogon Larve within the Polyps of Hydiactinia echinata. Quart. Journ. Microscop. Sci. [2], III. pp. 51, 52. 1863.

No. 7. - Explorations of the Surface Fauna of the Gulf Stream, under the Auspices of the U. S. Coast Survey, by Alexander Agassiz.
(Published by permission of Carlile P. Patterson and J. E. Hilgard, Supts. of the U. S. Coast Survey.)

\section*{I.}

Notes on Acalephs from the Tortugas, with a Description of New Genera and Species. By J. Walter Fewkes.

The following pages contain descriptions of new medusæ collected at Key West and the Tortugas Islands, in March and April, 1881.* They contain an account of the anatomy and development of Linerges, Cassiopea (Polyclonia), Ocyroë, and a stage in the embryology of Eucharis. Six new species of Siphonophora, two new genera and three new species of IIydroida, are also described. New larval stages of growth, illustrative of the development of Glossocodon, are also figured and described.

\section*{CTENOPHORA.}

\section*{Beroë ovata, Escir. \\ Plate IV. Fig. 1.}
B. avata is common along the Florida Keys. It has a quicker motion and is larger than \(B\). roseold. The sense area is also more prominent.

\section*{Eucharis multicornis, Escr.}

Plate VII. Figs. 11, 12.
A larva of Eucharis, closely resembling the young of E. multicornis, was found at Key West. It is smaller than the adults of E. multicornis, \(\dagger\) and is

\footnotetext{
* An acconnt of A. Agassiz's explorations of the Tortugas, when these meduse were found, is published in Harv. Univ. Bull., XIX. p. 218, and Bull. Mus. Comp. Zoöl., IX. 3. I am indebted to A. Agassiz for affording an opportunity to visit Key West and the Tortugas as his assistant.
\(\dagger\) Chun, Die Ctenophoren der Golfes von Neapel, \&e., p. 297.
vol ix.- No. 7.
}
more transparent. It wants also the brown red color of the well-known Mediterranean species.

\section*{Ocyroë crystallina, Rang.}

Plate I. Figs. 1-6.
A larval stage of this medusa* was found at the Tortugas. The anatomy of this Ctenophore is very characteristic. It differs from Deïopea kaloktenota, Chun, \(\dagger\) in size, in the absence of tentacles, and in the presence of very prominent longitudinal muscles ( \(l \mathrm{~m}\) ) on the under and inner surface of the oral lappets. It has only a remote likeness to the young of other genera. The motion of the animal is very characteristic, as it is caused, for the most part, not by the movement of the vibratile combs on the outer surface of the body, but by the strokes against the water of the oral lappets or lobes.

When the animal is resting, the oral lappets are widely extended at right angles to the axis of the body (fig. 2). As movement begins, these lobes are quickly raised from that position to one above the actinal pole, so that their outer surfaces approach and almost touch each other over it (fig. 4). Both lobes are then swang simultaneously downward, passing through an angle of \(180^{\circ}\), and made to approach each other below the mouth, as in fig. 1. A flapping motion of this kind is continued without interruption several tines and then ceases, the lappets returning to the position of rest with which they started. When the inertia acquired by this flapping is lost, the motion is again repeated. \(\ddagger\) Practically the "combs" contribute nothing to the motion of the medusa. This larva, like the alult Ocyroë maculata, has neither tentacles nor tentacular sacs. The single specimen found was without doubt immature, and we should cexpect to find a true tentacle hanging from its borly walls. In the young Bolina the tentacles are very large, while in the adult they are reduced to simple club-shaped processes. In the Ocyroë larva there is no indication of the tentacle nor of the tentacular sac. The adult also has nothing which can be homologized to these structures.§

The body of the larva has a short axis, and resembles distantly that of a young Bolina. The oral lappets are large, widely extended when at rest, and crossed on their lower, inner surface by longitudinal muscles (fiy. \(5,7 \mathrm{~m}\) ). \(\|\)

\footnotetext{
* It may be the young of \(O\). maculata, \(O\). fusca, or \(O\). crystallina, as described by Rang (Établissement de la Famille des Beroides, Ocyroë, 1827).
\(\dagger\) Op. cit., p. 291, l'l. IV. figs. 1-4.
\(\ddagger\) A. Agassiz observed a similar motion of the oral lappets of \(O\). maculuta, Bull. Mus. Comp. Zöll., VIII. 7.
§ This is true of the adult of 0 . maculata.
|| The study of these muscles in the young \(O\). crystallina leads me to believe that I was wrong in considering the "spots" on the lobes of 0 . maculata as mnscular in character, an opinion expressed in a previous paper. (Bull. Mus. Comp. Zoül., VIII. 7.) These spots in 0 . maculata are probably due to pigment in the walls of the lobes.
}

The same surface is covered by a network of muscular fibres, similar to that found on the inner walls of the oral lappets of Bolina, and other genera. Lips ( \(/\) ) simple, very flexible, and prominent, projecting below the mouth. The auricles ( \(a\) ) are stout and not very prominent. There are two swimming combs on each ambulacrum. The course of the chymiferous tubes does not differ from that of the vessels of Bolina. The lateral or subtentacular tube \((l t)\) arises from the lower end of the funnel \((f n)\), and passes down along the side of the bolly into one of the lips. At this point it bifurcates (b), sending a branch ( \(b^{\prime}\) ) on each side to join the tube ( \(s t\) ), which arises from a short ambulacrum.* The vessel later formed by the union of these small tubes first skirts the margin of the auricle (a) and is then continued in the tube ( \(t\) ) around the rim of the oral lappets, joining half-way in its course a similar tube from the opposite side of the boly. The branch from the lateral tube joins the auricular vessel just below the auricle.

The chymiferous vessels of the eight rows of swimming plates (ambulacra) primarily branch from the lower end of the "funnel" as two small tubes (fig. \(6, c\) ) on opposite sides of this medial vessel, in a vertical plane at right angles to that which passes through the longitudinal axis of the month (fig. 5). The plane in which they lie cuts at right angles the axis of the mouth and passes through the otocyst (fig. 5, c). Each of these primary branches bifurcates, at a short distance from its origin (c), and each smaller branch again subdivides (ec) into two members. In this way we have formed the eight ressels, which extend to the surface of the outer body walls, and form the meridional tubes, which lie directly under the rows of comhs. The tubes (st), which correspond to the "longer rows" of combs in the Bolinido, push their way into the oral lappets, and join in pairs, two in each lappet, while the shorter rows, after a more tortuous course, in which they mite with the bifurcations from the lateral tube ( \(l t\) ) and skirt the edge of the auricles, also eventually unite in the oral lohes, forning a loop, which encloses the union of the vessels \((s t) . \dagger\) In the union of the "long tubes" adjacent ressels unite ; in the junction of short tubes, vessels separated by a pair of long tubes join.

The otocyst resembles that of Bolina.
No liver glands or folds of the intestine and stomach were observel.
In Dr. Chun’s \(\ddagger\) figures of Deïopea the tubes corresponding with the ressels (s \(t\) ) end blinully in the oral lappets without junction. In Ocyroë these tubes join as shown above. Deïopea has tentacular filaments extending from the position where the tentacle hangs to that of the auricles, along the lower ellge of the body. Tentacular filaments are wanting in \(O\). crystallina.

Dr. Chun, \(\ddagger\) as is well known, diviles the Ctenophora into the two groups

\footnotetext{
* The ambulacrum aljacent the tentacle on cither side.
\(\dagger\) These tubes are shorter than the others in the adult. They correspond with the "long tubes" in the young Bolina.
\(\ddagger\) Op. cit., I'l. IV. figs. 2, 3.
}

Tentaculata and Nuda, accordingly as tentacles exist or are wanting. If this feature alone be used in classification, Ocyroë would be placed in the group of Nuda side by side with medusæ like Beroë, with which it has few other anatomical likenesses. If his classification be followed, Ocyroë must be regarded as a connecting form between Ctenophora tentaculata and Ctcnophora nuda.

Ocyroë renders mecessary some modification in the phylogenetic tree which Dr. Chun suggests, for the different genera of comb-bearing medusæ. The Beroils may have come from Bolina like jelly-fishes through Ocyroë rather than directly from other tentaculated Ctenophores. A. Agassiz has pointed out that this medusa has "structural characters of the Lobatce, Saccatce, and Eurystomue." * It is the intermediate form connecting Beroë with Ctenophores like Mnemiopsis or Bolina. Although most closely related to the Lobato, it resembles genera of the Eurystomatce in the absence of tentacles and the course of the lateral tubes. The resemblance to the Saccato is more distant.

\section*{DISCOPHORA.}

\section*{Cassiopea frondosa, Lamarck.}

\section*{Plate I. Figs. 7-19. Plate II. Figs. 1, 2. Plate III. Figs. 1-3, 9, 10.}

Cassiopea frondos \(\alpha \dagger\) is rery common in the moat outside Fort Jefferson on Garden Key (Tortugas Islands). Specimens were also found in the still waters and protected shallows in the lee of the Mangrove Keys, near Key West City.

Cassiopea frondosa is found lying on the coral mud at the sea bottom, with its bell reversed and the oral region turned uppermost (Pl. I. fig. 7.). When transferred to the aquarium it assumes a similar position, exhibiting little power of locomotion, but flapping the disk-shaped bell in a sluggish manner. This motion seems to be confined almost wholly to the margin of the bell. While it cannot be said to be fixed to the bottom in such a way that movement is impossible, it will be found, if its position from time to time be carefully observed, that it does move from place to place, although the amount is very small. It generally lies on its aboral region, \(\ddagger\) slugrishly flapping the bell margin in a monotonous manner, in general appearance, when seen from the boat floating above it, resembling a small cluster of nullipores. The habit of
* Bull. Mus. Comp. Zoöl., IX. 3.
\(\dagger\) I regard this the same as Polyclonia frondosr, Agass. Polyclonia according to L. Agassiz has tuelve marginal seuse bolies and twelve ralial markings. The specimens of C. frondosa studied by me had generally sixtren such structures. This is true of young as well as of adult Cassiopece, except in alnormal specimens.
C. frondosa is closely related to C. Audromeda, Esch.
\(\ddagger\) A similar pesture has already been observel in Cassiopea by Mertens ; in Polyc'onia, ly L. Agassiz : and in Mcdusa aquorea, Försk, by McAndrew. (Ann. Nat. Hist., IV., 1869, p. 295.)
clinging to the bottom by the upper (aboral) surface of the bell is also found in a genus widely separated in our classification from Cassiopea. We noticed last summer a young Cyanea (C.urctica), which was kept in the aquarium at Newport, fasten itself in the same way, and adopt the same sluggrish movement of the bell-margin which is so characteristic of Cassiopea. It is not impossible, although as yet not supported lyy observation, that the "ahoral papillæ" (Bull. Mus. Comp. Zoöl., VIII. 8, p. 669, Pl. VII. fig. 1) of the young Cyaneu may serve to anchor the young medusa in this posture.*

The bell of C. frondosa is flat and disk-shaped, in larger specimens with a diameter of a foot or a foot and a half. When seen from the aboral pole (fig. 10), two regions can be distinguished on the surface. Of these the central part has a circular form, and a slightly concave surface. It is bounded by the circumference of a circle, whose diameter is about three fourths that of the whole disk, and whose circumference limits that rigid (fig. \(7, u\) ) portion of the medusa bell by which it is attached to the bottom.

The most marked feature in the structure of the central portion of the bell is the possession of sixteen radial stripes ( \(\ell\) ), which can best be seen from the aboral surface. These stripes are simple thickenings of the bell walls, and are most clearly defined near the periphery of the central region already described. At that point they assume a pyriform shape, while nearer the centre of the disk they become narrower until they disappear. A periphery drawn through the ends of these bodies, most distant from the middle of the bell, bounds the rigid portion of the umbrella and divides the central part from the flexible margin. The outline of the stomach cavity (s) can be casily made out through the aboral bell walls, in which, at this point, there are traces of the radial stripes. If the substance of the bell be cut in such a way as to make a cross section of a pyriform body, it will be found that it has a milky-white color, while adjoining parts of the bell are brown and green. Its tissuc is also more compact than that of the rest of the bell. They seem to impart a greater rigidity to the bell walls, and not to be simply superficial coloration as sometimes supposerl.

The marginal portion of the bell arches upward in the natural position of the medusa, and is very flexible. It is much thimer than the central part, and is almost wholly withont radial markings.

The bell rim is destitute of tentacles. It has, however, marginal bodies which distantly represent these structures in tentaculated Discophora. These structures are of two kinds \((v l, o l)\). They assume either the form of serrations ( \(v l\) ) placed peripherally (velar lappets), or take a crescentic shape (ocular lappets), (ol). In the latter case they are arranged in pairsand mark the position on the bell margin of the sense bodies. There are sixteen pairs of these structures ( \(o l\) ) having the more rounded shape, and each pair marks the position

\footnotetext{
* In the genus Cephea we find structures homologous to the aboml papilla assuming the form of small exerescences. Haeckel, op. cit., p. 574 , Pl. XXXV1. figs. 3, 5, 6.
}
of an otocyst. They represent approximately those lappets which in the genus Aurelia project far leyond the bell margin.

Between each pair of crescent-shaped bodies there are three or four pointed serrations ( \(v l\) ) which represent in position the tentacles. The bell rim has a wavy crenate outline, slightly indented between the marginal serrations, and deeply incised between the crescentic bodies which have been mentioned above. The otocysts are found in the angle of these deeper incisions.

The anatomy of the oral region (fig. 11) of Cassiopea is in certain respects peculiar. When the jelly-fish is seen from this side, which is uppermost in the natural position of the medusa, a confused mass of bodies of all sizes covers it and conceals completely the bell itself. These bodies give to the Cassiopea, when seen from a distance, a remote likeness to a marine alga. If, however, the innumerable bodies which cover the oral pole of the medusa be pushed apart (fig. 11) so that their attachment can be seen, it will be found that they arise from branches which primarily originate from eight gelatinous arms (oral arms, \(d\) ), which are themselves prolongations from a centrally placed projection (" Mundscheibe," \(i\) ) from the oral surface of the bell.

In the middle of the lower floor of Cassiopea there rises a cylindrical body, Mundscheibe ( \(i\) ), of gelatinous consistency, which gives origin to the eight oral arms (d) of the stomach. It is an octagonal body, and is without opening on the upper surface. There is no single central mouth in Cassiopea, and no centrally placed orifice * into the cavity of this cylinder. The only external openings which are to be found are four orifices (o) on the sides of the body of the Mundscheibe, \(90^{\circ}\) apart. These openings lie in the intervals between the four pairs of branching oral tentacles, and are the sexual orifices. They communicate directly between the cavity of the ovaries which lie in that of the oral cylinder (Pl. III. fig. 3, so) and the surrounding water.

Eight oral arms ( \(l\) ) are found branching in pairs from the sides of the oral cylinder, Mundscheibe (i). These appendages form the most important structures in the oral region of the Cassiopea, and bear organs which, as is probably the case in all Rhizostomate, represent the mouths of other genera of Discophora. Each oral arm extends at right angles to the sides of the oral cylinder, and parallel to the lower surface of the bell. It is irregularly branched (Pl. I. figs. 17, 19), and has solid walls of a gelatinous character. The outer surfaces (fig. 17) turned to the bell and the sides are smooth, while the mpper surface (fig. 19) is covered with innumerable flask-shapel structures of different shapes and sizes. A system of vessels ( \(g r\) ) runs along the upper part of the oral tentacle just below the surface, communicating with the flaskshaped bodies and a centrally placed chymiferous cavity. There are two kinds of appendages found on the upper surface of the oral tentacles. Indiscrimimately over the whole surface, und at the angle of lifureation of smaller branches from the oral arms, we find ovoid bodies, "lollhenformige Blasen" ( \(p\) ),

\footnotetext{
* I. Agassiz, op. cif., p. 147, mentions a central mouth oprening in a young Polyclonia.
}
which, when extended, assume a flask-like form. The structures have walls of a greenish color with darker interiors, and communicate with the chymiferous tubes of the oral tentacles. They have no opening at their unattached end, and are simply closed sacs for the reception of fluid. The function of these bodies is unknown.

A second* kind of polyp-like bodies \(\left(p^{\prime}\right)\) is scattered over the upper surface of the oral tentacles. These are more numerous and smaller than the first. They are the true mouths of the Cassiopea. They resemble frills, between which there are slits surrounded by a circlet or row of minute tentacles. It is in fact as if we had the whole upper surface of the oral tentacle covered with small fresli-water hydræ, with mouth-openings very much elongated laterally, and around which the circumoral tentacles are very numerous. The central opening, or month, may be a circular orifice or an elongated slit. Whatever its form may be, the circlet of tentacles about it is always arranged in a single series. These sacs or sucking mouths communicate with the same system of vessels ( \(g v\) ) as the flask-shaped bodies ( \(p\) ) mentioned above. They are the mouths of the jelly-fish.

Within the Mundscheibe, or oral cylinder, there is a thin disk-shaped cavity (Pl. III. fig. 3), which may be called the stomach. Its floor is formed by the upper surface of the bell, and its roof by the upper wall of the Mundscheibe. The most prominent structures in the stomach are the four sexual organs, or, more accurately speaking, the four sexual sacs, since the sexual organs themselves (o) are separated from the stomach by a thin gelatinous wall. The ova cannot pass into the stomach, but are dropped in these sacs, and from them into the water through the four openings (so) on the side of the oral disk. It will be noticed then that the ovarian openings do not lead into the chymiferous cavity, but into four sexual sacs which lie in the stomach. Morphologically, as has been suggesterl, the sexual sacs are invaginations of the outer surface of the Mundscheibe at the point where the sexual openings (so) lie, and their cavities are wholly independent of that of the stomach. There are four sexual glands hanging to the walls of the sexual sacs, which are fastened to the oral disk or roof of the stomach on a V-shaped line, each gland filling a quadrant of the circle in which it is found. On the roof of the stomach between the lines of attachment of the sexual sacs, four grooves ( \(g\) ) are left, which cross each other at the centre at right angles. These grooves are simply spaces left between the lines of attachment of the sexual sacs. Near its peripheral end each groove deepens, and at the extremity sinks into an opening (b), \(\dagger\) which commmicates with the system of chymiferons vessels (Pl. I., \(g v\) ) in the upper walls of the month arms. The openings (b) into the stomach alternate in the oral disk with the sexual orifices (so).

\footnotetext{
* One or two large white flask-shaped bodies were also observed. Compare Haeckel, op. cil., p. 571.
\(\dagger\) These openings were diseovered by L. Agassiz in Polyclomia, of) cit. Hacekel, op. cit., Ip. 566-573, does not mention them. They are also omitted in his figures of C. ornata, op. cit., XXXV1l. 6.
}

Through them the food material collected from the mouths on the upper side of the oral arms by a system of chymiferous vessels (Pl. I., \(g v\) ), is poured into the stomach cavity occupying the centre of the disk.

The chymiferous vessels of the bell of Polyclonia have been well described by L. Agassiz. My observations agree with his and those of Haeckel of Cassiopea ornata. I have nothing to add to the account which they give.

In regard to the marginal sense bodies, my observations are a little more complete than any yet recorded. The few points which can be added to our knowledge of these organs appertain only to their gross anatomy.

In external form the marginal sense bolies (Pl. I. figs. 12-16) of Cassiopea resemble those of Aurelia and Cyanea. There are sixteen of these structures, each of which lies at the extremity of a radius passing through one of the pearshaped radial stripes (ef) which have been described in the bell. They are set in deep incisions in the bell margin, and are flanked on either side by the ocular lappets (ol). A "hood" ( \(h\) ) protects the sense organ on its aboral side. This structure resembles that of Cyanea, and is simply stretched from one ocular lappet to another. There is no aboral "Sinnespolster." The outer "Riechgrubschen" is wanting. There are no finger-like lappets, as in Aurelia, and only diminutive oral "sense curtains," as in Cyanea. The inner "Riechgriibschen" are very small.

The otocyst is mounted on a short peduncle, and is more spherical in slape than the same organ in most other Discophora. It seems to fit into the end of its style as an acom into its cup, and not to be united to it by an elbowjoint as in Aurelia and Cyanca. The otoliths have a rhomboidal form and a yellow color.

An ocellus (oc), or eluster of pigment spots, can easily be seen through the walls of the hood. It is situated on the aboral side of the otocyst, near the enlargement of the style into the cup-shaped end into which the otocyst fits. In normal specimens (fig. 12) there is but a single ocellus to each otocyst, yet in many cases we find a style bearing an otocyst with two ocelli (fig. 16). In several iustances, also, a bifurcated style supporting two otocysts (figs. 14, 15) as well as \(t w o\) ocelli was observed. Variations in the number of otocysts about the margin of the bell of Cassiopea are very common.*

Little is known of the development of Cassiopea. The youngest specimens taken were about an inch in diameter, and bad already assumed the characteristic posture ( \(g a\) ) of the adult. In the youngest, however, the central mouth, spoken of by L. Agassiz in the young Polyclonia, was not observel. The larval Cassiopca (fig. S) differs but little except in size from the adult as far as the oral region is concerned. The "sucker frills" (Saugkrausen) are less abundant and the large flask-shaped bodies fewer in number in the young melusa than in the adult. The coloration of the aboral side of the bell differs markelly from that of the adult. The disposition of color is as follows : -

\footnotetext{
* Polyclonia, which has twelve otocysts according to L. Agassiz, may be an abnormal Cassiopea in which the number of sense bodics is normally sixteen.
}

The young medusa seen from the aboral pole is shown in Plate I. fig. 8. Sixteen radial stripes (e), whose periphery bounds the central region of the bell, have already appeared, and can be seen faintly showing through the transparent walls of the bell. Their general shape is cuneiform. Situated on the bell margin, and alternating with the bodies last mentioned, are sixteen triangular white spots \(\left(t^{\prime}\right)\). These triangular spots are the velar lappets \((v l)\), which are now solid and not differentiated into the three serrations which characterize the interocular bell margin of the adult. The ocular lappets ( \(t t\) ) are also found on the bell rim. They seem from the very first to arise independently of the velar lappets. They are arranged in pairs alternating with the velar lappets, and enclosing the otocysts as in the adult.

In many of the young Cassiopere which were examined, one of the oral arms was much more developed than the others. Is this a remnant of a want of symmetry in growth similar to what exists in the strobila stage of the young Aurelia?

\section*{Linerges Mercurius, Haeckel.}

Plate II. Figs. 3, 4, 5. Plate III. Figs. 4-8, 11, 13. Plate IV. Figs. 3-22.
Representatives of the genus Linerges,* probably L. Mercurius, are among the most abundant Discophores found in the Gulf off the Florida Keys. In the tide eddies near the Tortugas Islands, we passed through long windrows of these medusx, reaching as far as the eye could follow. Linerges is locally called the " mutton-fish thimble," from its shape and the supposition, without foundation as far as I could learn, that they constitute the food of the muttonfish. The bell is thimble-shaped, with vertical walls; its height is about half the diameter. The outer surface is covered with small excrescences or tubercles. The walls are thin and flexible. The walls of the apex are more rigid than the vertical, and less capable of motion. The bell margin is indented with sixteen deep incisions, from each of which hang alternately tentacles and otocysts. The marginal lobes left by these incisions in the bell rim are commonly carried folded inward at right angles to the vertical bell walls, resembling a discontinuous velum.
There are eight short tentacles, which hang from alternate incisions in the bell rim, and project but a short distance beyond the bell margin. They are capable of very little motion, and are probably solid. \(\dagger\)

The lower floor or imer wall of the bell is formed of muscular fibres, and is

\footnotetext{
* Swartz (Nen. Abh. d. Schwed. Akal., IX.) described in 17S9, under the name Medusa unguiculata, a similar jelly-fish.
\(\dagger\) Hacekel, op. eit., says they are solid in related genera. The specimens of Linerges deseribed by Hacekel were alcoholic, which fact is an explanation of the difference in coloration in his drawings and mine. Lincrges loses its brown color in preservative fluids.
}
thickly pigmented. At certain points it hangs down in spherical sacs, which will be described presently. Between this muscular layer and the inner surface of the vertical walls of the bell, below the pouches last mentioned, there is an anastomosing network of vessels, which grows more intricate near the bell margin, and finally ends in irregular dendritic marginal prolongations in the lobes of the bell. This network of tubes is formed by interstitial growth between the lower floor and the inner surface of the lell. All the anastomosing vessels unite near the upper part of the bell, and enter the stomach cavity through sixteen radial tubes. Eight of these tubes pass directly from the cavity of an otocyst to the stomach, gathering up as it goes the network of vessels, and eight others take a similar course from the tentacles to the central chymiferous cavity.

The common cavity into which these tubes open lies above the stomach properly so called. It is a small circular recess, bounded by the inner wall of the bell above, and the lower floor below. It occupies the central part of the bell above the stomach, with which, however, it communicates by means of a centrally placed opening in the floor. This chymiferous cavity is marked on its periphery by thirty-two ponches, which hang down into the bell cavity from its inner walls. These pouches are formed of baglike expansions of the lower floor of the bell, and are commonly found inflated with fluid. At times, also, they lose their contents, probably discharging it into the chymiferous cavity. They have a deep brown color from the growth of pigment in their walls, and are probably organs for the secretion of a biliary fluid.*

The chymiferous cavity is probably homologous with the central cavity in Cambessa Tagi. \(\dagger\) It lies above the stomach in normal positions of the medusa, and communicates with it only through the central orifice already mentioned. The stomach proper of Linerges is bounded on the sides by folds hanging down from the inner bell walls and roofed over by the floor of the chymiferous cavity. The lateral walls of the stomach are short, curtain-like structures, which never project beyond the bell opening. The mouth is rectangular, cross-shaped, resembling closely that of some genera of hydroid melusx. The walls of the lips are crossed by eight rows of pigment spots arranged in four pairs, each of which extends intn one of the four divisions of the cruciform mouth.

Four elusters of gastral filaments are found suspended from the upper wall or roof of the stomach, in positions corresponding with the four angles of the mouth, and alternating with the extensions of the cruciform oral aperture. Each filament is dotted with crimson pigment-spots. They are in constant motion, and at times their extremities are found projected through the central
* This conclusion seems to me more natural than that they are testes, saes for the reeeption of undeveloped ova or spermatozoa, organs of respiration, or kidneys. For enumeration of their possible function and discussion of their homology, see Haeckel, op. cit., [. 493.
\(\dagger\) Grenacher and Noll, Abhandl. Scuk. Gesell., X. IPl. III. fig. 3 ( \(\left.c^{\prime} c^{\prime}\right)\).
opening, which leads from the stomach into the chymiferous cavity above. Their function is unknown.*

The marginal sense bodies of Linerges are very characteristic. They are eight in number, and are situated in incisions alternating with the tentacles on the bell rim. Each otocyst is very prominent, and at first glance appears to be destitute of a "hood." This impression is, however, not a true one, for the hood in Linerges assumes a curious and at first unrecognizable form.

When the otocyst is looked at from above it resembles a spherical sac, in the centre of which, through the transparent walls, a single otolith mounted on a short perluncle can be seen. The transparent sac in which this single otolith is contained is the homologne of the "hood " of other Discophora. If the sac be viewed from below, it will be found to be not a closed capsule, but an open one, or that the wall of the sac is wanting on the under surface. The hoorl has thus in Linerges assumed a caplike form reaching outward so as to envelope the otolith on the upper side, and to leave the lower mprotected. The otolith is a single spherical borly, and not a rhomboidal structure as in Cyanea and many others. There is no prominent ocellus. \(\dagger\)

No representative of a "Simnespolster," or of an outer " Riechgriulbschen," was seen. Oral sense curtains and lappets are also wanting.

The ovaries hang from the inner bell walls and seem to be in free communication with the stomach. They are four in number, and have a horseshoe shape. Each ovary is made up of two halves, united together in such a way that the gland has the peculiar arched form shown in the plate. The ovaries have a dark brown color.

The ova (Pl. IV. fig. 7) are laid in small black clusters, composed of from fifteen to twenty egrgs, which are agglutinated together. A segmentation of the ovum begins shortly after the eges is dropped, when it becomes more transparent and separates from its mion with others of the same cluster.

The first change in the segmentation is the clongation of the ovom into an ovoid shape, blunt at one pole and more tapering at the opposite. The first plane of segmentation divides the egg into two mequal segment spheres; one formed from the pointed, and the other from the blunt pole of the ovim.

Shortly after this first cleavage of the egg into two unerpal spheres, a second plame divides the larger of the two into two other spheres which are also of unequal size, and we have an egg in which three segmentulx can be seen. All of these parts now assume a pyriform shape, and new segment-spheres are constricted from them in the same way that the two spheres were first formed from the original ormm. At the end of the second day after orulation the orum was in the condition shown in fig. 12. The segmentation takes place in the water,

\footnotetext{
* These filaments may be homologons to the "sexmal filaments" of Cyanea. They resemble elosely in position the early condition of these stunctures in the ephyra of Cyance. Sce IBull. Mus. Comp. Zoöl., V'III. 8, Pl. VII. figs. 8, s, 10.
\(\dagger\) Thero are many seattered pigment-cells, which may be an ocellns, in the region of the style where this structure is commonly found.
}
and not in the sacs banging from the inner walls of the bell.* The planula which follows the morula last described does not differ from the planula of other mednsæ. It is an oblong spherical body richly ciliated and capable of rapid motion.

Intermerliate stages of growth between the planula and that which is probably the ephyra of Linerges were not observed, so that I cannot say definitely whether Linerges has a direct development or not.

A medusa which resembles Linerges very closely, and which may be its ephyra, was found in great abundance in the water about Fort Jefferson (Tortugas Islands) at the same time that Linerges was so common. \(\dagger\)

The shape of the youngest ephyra (fig. 4) is very similar to that of the young Cyanea. The bell is flat, disk-shaped, and with its margin continued into eight pairs of prominent lappets, two of which are represented in the figure. The walls of the bell bave a yellow-brown color, and the surface (upper) is dotted with small round pigment-spots. In the deep incisions aromed the bell margin hang, alternating with each other, eight tentacles and as many otocysts. The tentacles are suspended from the deeper and narrower incisions of the bell rim, while the marginal sense borlies are found in the remaining indentations which separate adjoining pairs of marginal lobes.

The tentacles are single, hollow (?) bodies, which do not project beyond the tips of the marginal lobes when extended. As compared to the diameter of the bell they are relatively larger than the same borlies in Linerges.

The marginal sense bodies resemble elosely those of Linerges, and consist of a single otolith of spherical shape enclosed in a capsule-like hood which is open below (figs. 16-18). It differs from Linerges in possessing an ocellus or wellmarked black pigmented region at the base of the perluncle which bears the otocyst. The existence of an ocellus in the young, and not in the adult, is a very anomalous fact, and never before mentioned in any Discophore. It even leads me strongly to doubt whether I am right in considering this ephyra the young of Linerges. The ocellus of the ephyra is a complicated structure. It is not a simple mass of black pigment-cells, but resembles the complicated eyespot of meduser like the genus Tamoya. In the middle of the base there is a lens-shaped, apparently transparent borly, which rises ahove the surface of the otocyst style, and around it, in which it seems to be imbedded, we find the black pigment (fis. 17). In this regard it is different from the ocellus of most Discophora in which the ocellus seems to be a simple pigment-spot on the perluncle of the otocyst.

\footnotetext{
* An ohservation which disproves the theory that the submulral ponches aro receptacles for the developing young.
\(\dagger\) The resemblance between this ephyra and members of the family Ephyride, Hacek. is very close. It approaches very near the gemus Nausicara, Hacek. The fignures of this ephyra made use of in my description were drawn from nature by \(\mathbf{A}\). Agassiz.
}

The mouth of the ephyra is simple, quadrate, and there is a single gastral filament in each quadrant. The lips are simple raised ridges from the lower floor of the stomach, and assume a cruciform outline when seen from beneath. The chymiferous tubes are broad extensions from the stomach to the tentacles and otocysts. No extensions of the central cavity as yet push out towards the marginal lobes.

In an ephyra still older than that just described, we have anatomical differences of a most important kind. While the general ontline, color, and pigmentation is about the same as in the former, important additions have taken place in the internal anatomy. Prominent among these is the formation near the base of each tentacle of a spherical body filled with cells. These bodies are seen in fig. 3. They are the beginnings of the ovaries which in later stages assume a different form, and by coalescence form the horseshoe sexual glands of the adult. Intermediate between the broad prolongations from the stomach cavity, which in the young ephyra extend to otocyst and tentacle, smaller blindly ending tubes push out in the direction of the marginal lobes. They are as yet very short, hardly entering more than the base of the lobe.

By far the most interesting anatomical structure in this as well as subsequent stares of the ephyra is the differentiation of the stomach cavity into an upper and lower story, by the growth of a continuation of the lower floor of the bell into a partition in this structure. In an ephyra as young as fig. 3 , this differentiation has been accomplished, and the only communication between the stomach proper and the cliymiferous cavity above is through a centrally placed opening in the lower floor.

The number of gastral filaments in each cluster has very much increased, and their ends often project through the central orifice in the wall which divides the stomach from the chymiferous cavity, just as also happens in the adult Linerges.

In the oldest ephyra (fig. 15) the approximation in shape and color to the adult Linerges has gone still further. The depth of the incisions which separate the marginal lobes has diminished, and the bell has become more thimbleshaped, the apex rising and the walls becoming more vertical instead of horizontal. The circular museles in the lower floor have also clearly differentiated themselves from the inner wall of the bell.

One of the most importint changes which has taken place is in the form of the eight ovaries. As the spherical glands of the ephyra (fig. 3) glow in size with the development of the larva, two bulges form on adjoining sides near the ends, and gradually approach each other. As growth goes on, these projecting portions join, and we have the eight glands fused into four, each assuming a crescentic shape, as in the adult Linerges. The mode of growth of the ovaries has been one of the strongest facts pointing to the relationship of the ephyra to Linerges.

\section*{SIPHONOPHORA. \\ Stephanomia* Atlantica, sp. nov. \\ Plate V. Fig. 1. Plate VI. Figs. 18-22.}

A new species of Stephanomia, M. E. was taken by us at Tortugas.
The most marked characteristic of the genus Stephanomia (Forskalia) is the multiserial arrangement of the swimming bells. Instead of being placed biserially on the stem, or with one row of bells at each end of diameters passing through the axis in one and the same plane as in Agalma, Esch., Agulmopsis (sensu strictiori) and Halistemma, Huxley, the nectocalyces of Stephanomia are arranged in several series, with their openings situated at the extremities of axes or cliameters passing through the nectostem in several vertical planes, so that they seem to open on all sides, as shown in Pl. V. fig. \(1, n\). The nectocalyces are much more numerous than in any of the genera mentioned, and the motion which they impart to the animal is of a more varied kind. This genus is the only Physophore which has a multiserial arrangement of nectocalyces on the nectostem. \(\dagger\)

The polypites are mounted on long peduncles (x) corresponding to the "Wimperwulst" \(\ddagger\) of Agalma and related genera. From the distal end of this peduncle, near the base of the feeling-polyps, hang also clusters of undereloped tentacular knobs ( \(j\) ) and covering scales. The hase of the polypite when retracted is enlarged iuto a spherical body, as shown in Pl. VI. figs. 20, 22. This portion of the feeding-polyp is formed by the contraction of the base of the polypite. The walls of the feeding-polyp are thickly pigmented (Pl. VI. fig. 22) near the base with dark red pigment, which renders these bodies very prominent.

The tentacular knobs (Pl. VI. figs. 18, 19, 21) have a single terminal filament, a long pedicle, and are destitute of an involucrum. They arise from tentacles as those of other Physophores. The tentacles from which they hang

\footnotetext{
* In this account I regard Forskalia, Köll., a synonym of Stcphanomia, M. E. (Vide Bull. Mus. Comp. Zoül., Vl. 7, pp. 132-134).
\(\dagger\) A single species of Physophora, P. tetrustica, is said by Philippi and Delle Chiaje to have four rows of nectocalyers. This is probally a mistake. (Vide Keferstein u. Ehlers. Zoologische Beiträge, p. 30, note.)
\(\ddagger\) The hase of the polypite from which the tentacular knobs bud. Clans, Ueber ILalistemma Tergestinum, 1 . 35. Peron's Stcphanomia may have been an Agalma, Esch. Stephanomia, Huxley, is nearer Agnlmopsis, Sars, than it is to Stcphanomia, Peron. Agalmopsis, Sars (1846), has the priority of Stcphanomia, Huxley (1859). Stephanomia, Milne Edwards, has pedunculated polypites, which are not figured in Stephanomia, Peron. Milne Eilwaris's description is such that there is no doubt of his genus S'ephanomia. If we abanton Peron's generie name Stephanomia, as applied by Milne Edwarls, for Kölliker's later name, Forskalia, why should we retain it as applied by Huxley eleven years later ?
}
take origin from the base of the polypite, near its union with the peduncle. The axis is large, museular, and spirally coiled.* The color of its wall is yellow and orange. The float is in no respects peculiar, and bears around the opening by which the air-sac communicates with the surrounding water a number of regularly arranged pigment-spots. The nectocalyces are arranged in many rows, opening laterally in spirals on all sides of the animal. The most distally placed bells from the float are the oldest, as in other Physophores. Directly under the float there is a small clnster ( \(u\) ) of undeveloped swimming-bells. Each nectocalyx has a cubical form, the flat faces of which conform to the surfaces of arljoining bells. -The hell has in other particulars a great resemblance to the nectocalyx of other Physophores, and does not seem to differ from that of Forskalia contorta. The course of the radial tubes is like that in Agalma. At the union of the radial tube with the ring canal on the bell margin, there is a large yellow spot, which is an ocellus or sense organ of the same kind as similar bodies in certain hydroid melnse. On either side of it, there is a short papilla of unknown function. In the undereloped nectocalyx we find a single large yellow spot of this kind, which forms a very conspicuous body on the bell margin. Later in the growth of the nectocalyx, its comparatively large size diminishes. We should expect, if anywhere among the Physophores, a development of the sense organs in Stephanomia. Its motion through the water is so rapid that organs of this kind are necessary. Ocelli on the margin of the nectocalyx are, however, not peculiar to Stephanomia. In our common Diphyes similar ocelli are found, three in number, on the margin of the anterior nectocalyx. The attachment of the covering-scales to the base of the polypites and the distal end of the petuncle imparts to the polyx stem of Stephunomia a diancter relatively greater than that of other Plyssophores. In Agulma the covering-scales spring from the lase of the polypite, of which the peduncle is very short. In Stephanomia, however, the pedicle, which bears the feedingpolyp, is so long that the covering-scale seems to hang from a point milway between the axis of the animal and the month of the polypite. The tastern do not differ from the tastem of other Physophores, except that they have long peduncles, as is the case also with the polypites.

The male and female bells arise from the same tastern at their junction with their-peluncles. The colony is monœcious. The sexual bells resemble elosely those of Agalmopsis gracile, sp. nov. In its motion through the water it is one of the most active of all the Physophores. The combination of so many series of nectocalyces can propel it in almost any direction with the greatest ease, whereas in Agalma and some others these propelling organs are ohvionsly placed in a disadvantagenus position for quick movement. As it passes throngh the water in the line of its axis, it sometimes combines a rotation of the stem with the direct forward motion.

When the colony is quict in the water the pelmucles of the polypites and the organs which they bear are widely extender, so that its diameter is very great as compared with its length. As the colony hegins to atvance in the line of
* In the same way as Furstalia contorta.
its axis the peduncles are retracted and the bracts are pressed closely together in order to offer less resistance to the direct advance of the animal.

The greatest care must be taken in transferring the colony from its native element into aquaria, otherwise it will drop all its nectocalyces and the bracts will fall off, their attachment to the colony is of such a fragile nature. Stephanomia is much more delicate than most other genera of Physophores.

\section*{Agalma papillosum, sp. nov.}

\section*{Plate V. Figs. 5, 6. Plate VI. Fig. 27.}

The genus Agulma,* Esch., is represented by at least two species in Florida seas. One of these is \(A\). elegans, which is also found in Narragansett Bay. The other is a new species, A. papillosum, of which two immature specimens were found near Key West, Florida.

A papillosum resembles A. elegans in many particulars of structure, and might be mistaken for it. There is, however, this important difference between the two American species of the genus.

The most important characteristic of A. papillosum is the presence, on the outer surface of the covering-scales and upon the swimming-bells, of short papillæ, swollen at their extremities into spherical knobs (Pl. V. figs. 5, 6). As far as I have studied other genera of Physophores there are none where similar appendages are found on these parts.

The axis of the specimens taken was very short, and seemed to indicate an immature animal. A single feeding polyp ( \(p\) ) is found hanging from the end of the stem, and several tastern ( \(d d^{\prime} d^{\prime \prime}\) ) could be seen protruded between the covering-scales (c). The float (a) is large, thickly pigmented at its apex with crimson spots. It has a small aperture communicating between its air-sac ( \(a\) a) and the surrounding medium.

The nectocalyces were all immature and few in number. The largest swimming-bell ( \(n\) ) was about half grown, as its relative size seemed to indicate, and is shown, as seen from above, on Plate V. fig. 6. In most particulars of internal structure the swimming-bells resemble the young nectocalyces of
* I include in the genus Agalma those long-stemmed Physophores with a biserial arrangement of the neetocalyees and tentacular knobs, composed of a coiled saceulus, eovered by an involuerum, and terminatel by a vesicle and two lateral filaments. (Eschscholtz, Oken's Isis, 1825, I., and System der Aealephen, p. 150.) For a discussion of the himits of the genera Ayalma, Agalmopsis, and Halistemma, see Bull. Mus. Comp. Zoül., VI. 7, p. 132.

Sars evidently had two or three genera of Physophores which he called Agalmopsis elcgans. One of these may have been my Ayalma clcyans (Fauna Littoralis Norvegia, \({ }^{*}\) pr. 32-44, Taf. 5, 6). The first form deseribed by him had a tentacular knob like IIalistemma rubrum, with a well-developed involucrum, which is wanting in Hatistemima, Huxley. Such a knob is not very unlike that of Agalmepsis Tergestinum and A. gracile.
A. elegans. A characteristic feature in their anatomy is the prolongation of the upper wall of the bell cavity into two symmetrically placed recesses ( \(h n\) ), one extending into each of those prolongations of the nectocalyx which embrace the axis. The sides of the swimming-hell, on the external surface, are sparingly covered with papillæ which are enlarged at their ends into a spherical knob formed of large thread-cells (Pl. VI. fig. 27).

The covering-scales are more rectangular in outline than those of \(A\). elegans, and are crossed by several longitudinal ridges \((r)\) bearing lasso-cells closely crowded together. Their exact shape was not determined, as only two specimens were taken, and these were evidently larval. The sides and outer convex surface of the bract bear the characteristic papillæ which have been spoken of as found on the walls of the nectocalyces.

The tastern \(\left(d d^{\prime} d^{\prime \prime}\right)\) are more slender than those of \(A\). elegans, and have a greater flexibility of motion. Their extremities protrude far outside the limits of the covering-seales, and their very tips are armed with clusters of lasso-cells. From the base of each there hangs a long, flexible, highly contractile filament (e), which is commonly carried retracted at its base near the axis.

There is but one feeding-polyp, which appears to be the metamorphosed yolk mass, and is found at the lower end of the axis. The single tentacle ( \(t\) ) suspender from its base bears tentacular knobs (k) like those of \(A\). elegans. Immature pendants ( \(j\) ) in all stages of growth are found at the lase of the polypite, on the wimperwulst. The tentacular knob is composed of a coiled sacculus of dark red color, enclosed in an involucrum and terminated by a vesicle and two lateral filaments. These filaments are short and stunted, and seem to indicate that the specimens studied were immature.* No sexual bells were observed.

\section*{Agalmopsis fragile, sp. nov.}

\section*{Plate V. Fig 2. Plate Vi. Figs. 16, 17, 23, 24, 25.}

In 1878 Claus \(\dagger\) described from Trieste a new Physophore, to which he gave the name Halistemma Tergestinum. Metschnikoff refers the same, taken at Villa Franca at about the same time, to Stephanomia pictu, sp. nov. Metsch. I have already discussed \(\ddagger\) the synonomy of this genus.

A single specimen of an Agalmopsis closely related to S. picta, Metsch. (II. Torgestinum, Claus), was found at Key West. So close is its likeness to the Mediterranean species that it is probably the same. Direct comparison is necessary to prove their identity.
* This speeies is very different from \(A\). elegans of about the same age. A. elegans with one polypite has two kinds of tentacular knohs and a prominent network of red pigment on the feeding polyp. It is destitute of the prapilla found on the nectncalyces and seales of A. papillosum.
\(\dagger\) Ueber Halistemma Tergestinum, n. sp., in Arbeit. d. Zool. Iust. zu Wien, Heft I.
\(\ddagger\) Bull. Mus. Comp. Zoöl., VI. 7.

The axis (b) of Ag. fragile is very flexible, while the nectocalyces and scales admit of more motion on each other than is commonly the case among Physophores. These appendages also are very transparent and small in size as compared to the length of the colony. The whole animal is more slender than an Agalma, and the appendages, in respect to their size, less conspicuous. The float (a) does not differ from that of other Physophores. It is relatively large, and bears apical pigment-spots of crimson color. Similar colored spots are likewise found at intervals along the length of the axis, especially on that portion of it which bears the swimming-bells and is known as the nectostem. This peculiar distribution of pigment on the stem is confined to the two species Ag. picta and Ag. fragile. In other genera colored spots are found on the axis, but they are not so prominent as in these two species of Agalmopsis.*

One of the main differences between the nectocalyces of Agalmopsis and those of Agalma is the existence of three or four bright orange ocelli (o) on the bell margin near the terminus of the radial tubes. The course of these ressels in the walls of the bell is almost identical in the two genera.

The portion of the axis upon which the bracts are borne is very long and highly flexible. The covering-scales (c) are small, inconspicuous, and transparent. They have a rectangular shape, and are fastened to the axis by means of a short peduncle. A blindly ending, medially placed tulue penetrates their whole length on the inner concare surface. It opens into the stem cavity by an ellow-joint.

The polypites ( \(p\) ) are long, slender, flask-shaped bodies, which are very prominent on account of the network of bright crimson pigment on their sides and bases. The tentacles carry tentacular knobs (Pl. VI. fig. 17), which have a bell-shaped involucrum and a single terminal filament without a vesicle. The sacculus is tightly coiled, and has a dark red color. It bears near the attachment of the involucrum a double row of prominent thread-cells. The male and female bells hang in clusters from the base of the tastern (fig. 16, s), and are not separated from each other on different regions of the axis. The male bells (fig. 25) are smaller than the female (fig. 24) and have a crimson color. The female bells are colorless. As is true of most Physophores, the colony is monœcious. \(\dagger\)
* The tentaenlar knobs of Agalmopsis utricularia, Claus, are so different from those of other Physophoridx that 1 have considered it a new genus (Bull. Mus. Comp. Zoöl., V'l. 7). It may be known as Calliugalma utricularia.

1 In Nanomia according to Mr. Agassiz the two sexes are not combined in the same colony. (N. Amer. Acal., ए. 208 ; Senside Stulies, \&e., p. So.) Agalmopsis, Agulma, Physophora, Athorybia, Halistcmma, Stephanomia, and Praya have both male and female bells on the same stem. The same is said to he true of Hipropodius. Abyla, Apolemin, and Jiphyes are probably diwecions. Sexual organs of but one kind are known in Rhizophysa. They resemble thase of Physalia.

Nanomin will also be found to bear male as well as female sexual bells on the same axis, as it is prolably the young of Agolmopisis. My reason for regarling Nanomin as the yonng of Agalmopsis and not of Agalma will be found in Bull. Mus. Comp. Zoül., VI. 7, p. 141.

\section*{Rhizophysa gracilis, sp. nov.}

\section*{Plate VI. Figs. 1-6.}

One of the most interesting Physophores found by us is a new species of Rhizophysa.

It differs from \(R\). filiformis, Lam., in the position of the sexual bodies and the form of the tentacular knols. Its differences from R. Eysenhardtii are still greater. R. gracilis has two kinds of tentacular knols, neither of which are present in \(R\). Eysenhardtii. I am unable to say whether iny species is the same as any of those described by Studer.* Phizophysa has a long, threadlike axis, destitute of swimming-bells, covering-scales, and tastern. At one extrenity there is a float which, in all species of the genus, is relatively larger than in other Physophores, with the exception of the single genus Physalia. The axis is very contractile, coiling up when touched at the base of the float, and then leisurely extending itself to its normal length. The stem walls seem to be extremely sensitive to the touch of a foreign body.

The float (fig. 2) is similar to an enlargement of the stem at one extremity, and is formed of two parts, an extermal float and an internal air-sac. The walls of the float are composed of two layers, and have the shape of an elongaterl sphere (prolate spheroid). The outer walls are dotted with small cells, irregularly placed. These cells are characteristic of the species, or at least are not found in R.filiformis, the common Rhizophysa from the Mediterranean. At the apical pole of the float there is an opening through which the cavity of the air-sac communicates with the surrounding medium.
The air-sac has the general form of the float, but is much smaller, and liangs inside this structure, being suspended from its upper pole. The cavity of the air-sac is in free communication with the external water through the apical orifice of the float. Around this opening there are large patches of dark brown pigment. The walls of the lower hemisphere of the air-sac (g) are thicker than those of the upper, and have a yellowish green color. From the lower surface of the air-sac, confined to the hemisphere ( \(g\) ) with thickened walls, there hang into the cavity of the float many finger-like pouches, which are sometimes bifureated at their extremities, In \(R\). gracilis these appendages to the air-sac are open at their distal ends, so that their cavities seem to freely commmicate with that of the float. On one side of the lase of the float, projecting from its external walls, is an excrescence (e) filled with small globules whose function is unknown. \(\dagger\) A similar appendage to the float has not been scen by me in \(R\). filiformis.
The polypites \((p)\) of \(R\). gracilis resemble closely in shape those of \(R\). fili-

\section*{* Zeit. f. Wiss. Zool., XXXI.}
t A natumal homology of this body is that it is an umdereloped polypite. The transparent spheres within are probably bubbles of air which have made their way into the float through its apical opening.
formis, but are stouter and covered with small regularly placed patches of pisment, whose color was not noticed (fig. 4). The single specimen which we found had four feeding-polyps.
The tentacles (fig. 4) arise from the base of the polypite, and closely resemble the tentacles of \(R\). filiformis. Along their upper side, near their proximal end, they bear many simple buds,* which are undeveloped tentacular knobs (fig. 4). The pendants, therefore, in this genus, seem to bud from the tentacles, and not, as in Agalma, from the base of the polypites. These buds pass by successive changes into well-developed tentacular pendants of two kinds. The adult form of these two kinds of tentacular knobs does not differ as radically in their auatomy as that of the pendants of \(R\). filiformis.
The first and more numerous tentacular pendant consists of a simple coiled sacculus (fig. 5), without involucrum, mounted on a long, flexible peduncle. The termination (fig. \(5^{\prime}\) ) of the sacculus is trifid, consisting of a prominent median projection and smaller lateral protuberances. The tip of each bears a black pigment-spot. The whole surface of the knob is abundantly supplied with thread-cells.
A second kind of tentacular pendant, similar in some respects to the former, was also observed (fig. 6). It differs from the former in having an undivided tip which bears a small pigment-spot. The second form of tentacular pendant is more slender than the first, and may be found to be simply the immature condition of that described above. The "first form" of tentacular knob in R. gracilis corresponds part for part with the "first form" of knob in R.filiformis. Representatives of what are known as the "second" and "third" \(\dagger\) kind of pendant in the latter species seem not to exist in the present species, \(R_{\text {. }}\) gracilis. The whole outer surface of the tentacle is thickly covered with large lasso-cells.
The sexual organs (s) differ in shape, size, and position from those of most other Physophores. They resemble most closely homologous structures in the genus Physalia. Instead of arising in clusters from the stem, each placed milway between two polypites as in some genera, or from the base of a taster as in others, they hang from the axis at a point immediately below the base of attachment of the upper polypite. \(\ddagger\) In the single specimen studied they are wanting on the other feeding-polyps.
The cluster (fig. 3) has a botryoidal shape, and hangs from the axis by a single slight peduncle. The pedicle of the sexual bodies opens directly into a spherical boly, as shown in fig. 3. This boly varies in size and shape, and contains a simple carity. It is sometimes so contractel that it is indistinguish-
* Huxley, op. cit., Pl. VIII. fig. 18, represents similar buds near the proximal end of the tentaele.
\(\dagger\) By the "second" and "third" form of tentacular pendants in R. filiformis, I refer to those structures which Gegenhaur (Beit. z. n. Kennt. d. Sehwimp., Taf. XVIII. figs. 8, 9) calls respectively the Handformiges Angeloryan and the Vögrlkopfahnliches Oryma.
\(\ddagger\) They occupy a similar position as regards the polypites as the female bells of Ayalma.
able from the peduncle itself. There are four clusters of sexual bodies arising from this enlargement of the peduncle. Each of these subordinate clusters is attached by its own peduncle, and bears several buds in various stages of growth. Of these buds the more proximal are generally the most developed, and they have not yet taken on the form of a bell. The axis and peduncle of each cluster is very contractile. The sexual cluster is a very prominent body on the stem, swaying backward and forward with passing currents of water. None of the single bells which form this cluster were observed to separate from the axis, nor were their contents seen to be discharged. In none of the buds could an egg be distingnished, and it is impossible to tell whether the animal was male or female, so little is known of the diffcrence between the sexes in the genns Rhizophysa. "Mace-like" sexual organs, such as are found in R. filiformis, probably develop into sexual glands similar to those which we have described in \(R\). gracilis.*

Many parasitic Crustacea were found infesting R. gracilis. They clung to the float and polypites with such pertinacity that it was almost impossible to tear them away without rupturing the Rhizophysa. Six of these parasites were found upon a single Siphonophore. The same, or a closely related parasite, \(\dagger\) is also one of the greatest enemies of the genus Physophora.

\section*{Athorybia formosa, sp. nov.}

\section*{Plate V. Figs. 3, 4. Plate VI. Figs. 7-14.}

A new species \(\ddagger\) of Athorybia was taken at the Tortugas. This remarkable genus has never before been found in American waters, and very little is known of the anatomy of the other species, \(A\). rosacea, although it is very common in some parts of the Mediterranean.§

Athorybia differs from other Plysophoridee in the absence of a long axis and nectocalyces, although possessing a well-developed float, and bracts or covering-
* See Proc. Bost. Soc. Nat. Hist., XX., Note on Rhizophysa. The likeness of the sexual organs of \(R\). gracilis to the bundles of "nedusa buds" in Physalia and Tubularia is very striking. Whether the medusoid buds always remain attached in this Physophore, as in Tubularia, is unknown. The resemblance between the sexual organs of Physalia and R. gracitis is so close that the embryology of the two genera must be very similar.
\(\dagger\) The genus and species of this Crustacean were not determined.
\(\ddagger\) Three species of Athorybia (sensu strictiori) are deserihed by Esehseholtz, A. heliantha, A. melo, Q. \& G., and A. rosacea. Since his time nothing has been added to his descriptions of the two former. Practically what is known of the amatomy of the genus we owe to the accounts of \(A\). rosacca by Külliker (Die Schwimmpolypen oder Siphonophoren von Messina, p1. 2t-28, PI. Vil.), Sars (Middelhavets Littoral Fauna, Nyt. Magaz. f. Natur., X. pp. 6, 7), and Huxley (op. cit., pp. 86-89, 11. 1X.). A. formosa differs from their aecount of the anatomy of \(A\). rosucca in the form of the tentacular knob.
§ hare at Naples and Villa Frunca.
scales. The form and development of these latter structures impart a peculiar outline to the Athorybia. The float (a) is large, pear-shaped, and sometimes it protrules above the circlet of covering-scales, as in the figures of \(A\). melo, Q . \& G., but generally it is drawn below the upper edges of the bracts so that it can only be seen by looking through the body of the scale. When seen from above, the float has a cherry or claret-red color on the periphery surrounding a dark brown middle. In the centre there appears an opening giving a free communication between the air-bladder ( \(a a\) ) and the surrounding water.

The air-bladder ( \(a\) a), which hangs within the float, is an elongated sae suspended from the inner walls of the upper pole of the float. It resembles closely the air-bladder of Agalma, and is destitute of those finger-like processes which characterize the same structure in Rhizophysa. No communication was observed between the cavity of the float and that of the axis. Swimming-bells are wanting in Athorybia.

The covering-scales arise from all sides of the short axis below the float, and in their method of attachment to the rudimentary stem are not unlike the petals of a flower. When seen from the side, they give the whole animal a rhomboidal shape. The covering-scales (Pl. VI. fig. 14) are curved and spatulate, with the convex surface turned outward. At its origin the bract is narrow, but gradually as it recedes from that point it widens, and its bounding edges are indented with a pair of teeth, one on each side about two thirds the distance from the attachment to the distal rim of the scale. The outer, convex surface of the covering-scale is slightly rounded laterally, and is crossed by four rows of lasso-cells ( \(l\) ) arranged in longitudinal lines.* When the scale is seen from one side it appears serrated along these four lines. The scale of the \(A\) thorybia stage in the young Agalma has a somewhat similar serrated appearance. Along the medial line of the bract, on its imer concave surface, there runs a lonyitudinal ressel which communicates with the stem cavity and ends blindly at the most distal extremity of the scale.

From their position of attachment, as commonly carried, the scales at first extend outward almost at right angles to the axis of the float, and the natural curvature which they have imparts the somewhat spherical outline to the animal. These covering-scales can be made to extend themselves or draw together, recerling from or approaching the line passing through their attachment and the apical portion of the float. This expanding and contracting power of these borlies is linited to the extremities, which are moved apparently by muscles in the base of the scale and its pedumele. The motion of the scale may
* Huxley (op. cit., p. 86) says the outcr surface of the covering-seale in his species of Athorybia is crossed hy six rows of small thread-cells. Küllikur describes the bract of \(A\). rosacea as crossed by five or six white ribs, formed of small lasso-cells which sometimes traverse the whole length of this structure and sometimes do not. The same may be said of the lines of lasso-cells in the bract of \(A\). rosacea, with the exeeption that in no specimen were there more than four ribs of these lwolies. The specimens which were taken may have been immature, and other specimens may be found with six lines of these cells, as in \(A\). rosacea.
in part make up for the loss of swimming-bells and propel the animal in the water. As far as my observations go it is rather sluggish, and but poorly adapted for rapid progression. As the colony floats along, the covering-scales are generally extended to their greatest width, but when alarmed the scales are contracted closely together around the feeding-polyps and those other organs which arise near their base.

The polypites, tastern, and sexual bells arise from a slight enlargement of a structure corresponding to the axis of the other Physophores. This enlargement does not differ greatly from a similar sac at the extremity of the stem of the genus Physophora. The polypite ( \(p\) ) resembles the same structures in other Siphonophores. They are long, flask-shaped bodies, projecting beyond the covering-scales ( \(c\) ) when extended, and have a month at the free extremity. The walls have a pink color with patches of dark crimson pigment near the base of the feeding-polyp. From each polypite, near its origin, there hangs a single tentacle. This tentacle \((t)\) is dotted along its whole length by secondary appendages or tentacular knobs ( \(k\) ), of which there are two very different forms.

The existence of more than one kind of tentacular pendant in an adult Physophore * has up to this time been thought peculiar to the genus Rhinophysa. Two forms of these bodies exist in the young of several genera. In the young Agalma we find the permanent knob of the adult coexisting with an embryonic form. The same is true of the young Agalmopsis and Nanomia. Each kind of knob, however, in the larval Physophore, is limited to its own tentacle, and in the case of the embryonic knob the tentacle itself has the same provisional nature as the structure which it carries.

The adult Rhizophysa \(\dagger\) has three different kinds of tentacular knobs hanging from one tentacle, and as far as we now know none are embryonic. A similar condition exists in \(A\). formosa, with the exception that there are here two forms of tentacular knobs instead of three.
The first and more numerous kind of tentacular pendant (Pl. TI. figs. 9, 10) is in many respects like that of the adult Agalma. It has a sacculus (d), an involucrum, and two terminal filaments (b), one on either side of a spherical bladder or vesicle (c). The terminal filaments are, however, shorter than those of Agalma, and are commonly carried stiflly elevated like two horns.

The peduncle of the knob is very flexible and of moderate length, admitting a free motion of the pendant in all directions. The involucrum closely surrounds the sacculus, and its walls are with the greatest difficulty distinguishable from those of the latter body which it contains. The saccalus has a single coil upon itself, and its walls have a dark crimson color. At its base there are rows, generally two in number, of large lasso-cells, homologous to similar bodies in the knob of other Physophores.
* See reference to Sars's genus Agalmopsis on preceding pages.
\(\dagger\) Proc. Bost. Soc. Nat. Hist., XX. These three kinds of knots in R. filiformis are distinct from their carliest embryonic condition, and do not develop one from another.

The most peculiar structure in the anatomy of the knob is the prolongation of the margin of the involucrum on its lower side into a conical appendage ( \(a\) ), which extends ont from the knob slightly beyond the vesicle. This conical body appears to be solid, and is crossed by lines or annulations, as shown in figs. 9, 10. It has a yellow color, and may be called the apex.

If now we compare the first kind of knob in \(A\). formosa with that of \(A\). rosacea, Esch., we find this important difference between them. In rosacea, according to Kölliker, there is a "stalked elongated capsule " hanging to the knob at its base, near the origin of the involucrum. That capsule is undoubtedly homologous to the apex (a) of the knob in formosa. Its closest homology, however, is with the "second kind " of knob in A. formosa, as we shall show presently.

Sars * has already compared the knob of A. rosacea with that of Agalma. The resemblance of the first kind of pendant in A. formosa to that of Agulma is even more striking, since it possesses an involucrum of a form which has not been observed in \(A\). rosacea.

A second kind of tentacular knob (figs. 7, 8) is sparingly scattered along the tentacle of \(A\).formosa. Besides being less numerous, it is also much larger than the former, with which it is homologous. It may eventually be found to have been developed from the preceding. This knob has one of the most peculiar forms which this organ, highly variable among Siphonophores, assumes. Its general shape is shown in figs. 7, 8 .

The knob, when seen from the side (fig. 8), bas a pear shape, and hangs from a short flexible peduncle. The great mass of the pendant is made up of a very large involucrum or structure of the same homology. The walls of this body are very thick, and seem to be composed of large cells. At one end it is continued into dendritic branches ( \(a\) a) of a yellow color. The borly of the involucrum is transparent, and through its walls there can be seen a crimson and orange-colored sacculus (d). The sacculus is not coiled, as is generally the case with other Physophores, but has a simple curred shape, and in its walls can be traced the rows of large thread-cells, which are a common feature of all these organs.

Fastened to the upper side of the involucrum, near its articulation with the peduncle, there spring three bodies very similar to those found on the first kind of knob. One of these structures is the owoid vesicle ( \(c\) ), and on each side there rises a short lateral filament (b). These organs differ in no respect from the same in the former kind of pendants.

The most exceptional feature in the second kind of knob in Athorybia is seen in the structure of the distal extremity of the involucrum or the apex (a). The apex (fig. \(8, a a\) ) is bifid at its base, and after a basal bifurcation each \(1^{\text {bart }}\) subdivides into many smaller unbranched divisions. Each division has the general appearance of the apex of the first kind of knob. It is capable of great extension and retraction, and when drawn hack has a corrugated surface, like similar brauches in the " Handfömiges Angelorgra," described by Cegenbaur
in Rhizophysa. I have already (Bull. Mus. Comp. Zoöl., VI. 7) compared the undeveloped knob of Physophora hydrostatica and that of Athorybia.

The tastern* (fig. 13) of A. formosa are very long, highly flexible bodies of pink color, protruding through the spaces left between adjacent covering scales. They are in continued motion, and resemble, with the exception of their color, more the filamentous bodies found between the swimming-bells of Apolemia than true tastern. Their tips bear several large thread-cells. They were not observed to bear tentacles.
A. formosa is monœcious. The female bells (fig. 12) are borne on short stems, \(\dagger\) and have a botryoidal shape. Each bell contains a single ovum. The course of the chymiferous tubes in the bell walls is similar to that in Agalma. The male bells (fig. 11), like the female, take the form of grape-like clusters on short stems. They are smaller than the female. The male and female clusters are colorless, and the bell-walls transparent. \(\ddagger\)

\section*{Praya, sp.}

Fragments of a large Praya, too mutilated for specific identification, were taken on two occasions at the Tortugas Islands. Diplophysa, sometimes called the diphyizoid of Praya, has been taken in Narragansett Bay.§ It was not collected in Florida.

\section*{Galeolaria aurantiaca, Vogt.||}

\section*{Plate VI. Fig. 26.}

Galeolaria (Epibulia) was taken on two occasions. It is unfortunate that only the posterior nectocalyx was found. Although this is sufficient to deter-

\footnotetext{
* Huxley (op. cit.) does not mention these structures in his Athorybia. Kölliker's description of them is much the same as that which is here given. The tastern of the two species seem to have much the same form.
\(\dagger\) Huxley (op. cit., p. 87) says that in his Athorybia a single stem bears both male and female bells, as well as small tastern. According to Kölliker (op. cit., p. 2S), the male bells in \(A\). rosacea are isolated, and a single male bell is found with a grapelike eluster of female bells near the base of a polypite. In A. formosa male and female bells are found in clusters of about equal numbers.
\(\ddagger \mathrm{My}\) measurements of the size of \(A\). formosa are about the same as those giren by Kölliker for A. rosacca. They are larger than Förskal's or Huxley's measurements of the Athorybice which they had. A. formosa is half an inch in diameter (distance taken at right angles to the axis, when covering-seales are extended).
§ Bull. Mus. Comp. Zoöl., VI. 7, and VIII. 8.
II Sur les Siphonophores de la Mer de Nice. Mem. de l'Inst. Genev., I. pp. 72, 73, Pl. IV. figs. 12, 13.

Since my return from Florida, the U. S. Fish Commission has sent me a speeimen of Gleba hippopus, Forsk., and two new Physophores for identification. Crleba was also collected by Mr. Agassiz in the cruise of the "13lake" along our eastern
}
mine the genus, it is hardly enough for the species. The nectocalyx resembles closely that of G. aurantiaca, Vogt.*

Although Galeolaria is not recognized by some naturalists as a distinct genus from Diphyes, the form of the nectocalices, the course of the gastrovascular tubes, and especially the flap-like appendages to the inferior (posterior) swim-ming-bell, are so characteristic that it is here looked upon as a distinct genus.

\section*{HYDROIDA.}

\section*{Halitiara formosa, gen nov. et sp. Plate IV. Fig. 2.}

The young of a new Tubularian medusa was taken by us at the Tortugas. Geueric characteristics are as follows :-

The bell is tall with a small apical projection. Chymiferous tubes, four in number, simple, broad, without lateral glands. There are four long tentacles which correspond with the radial tubes, between each pair of which are three small tentacles. Otocysts wanting.

\section*{H. formosa, sp. nov.}

The bell is tall, its height being double the diameter. At its apex it bears a slight apical protuberance. The surface of the bell is smooth, and its wall thin and transparent. The proboscis (manubrium) is unpedunculated, and hangs down about one third the depth of the bell cavity. The basal portion is filled with spherical cells, which are probably ova. The lips are smooth and without appendages.
coast in the summer of 1880 . Leuckart (Siphon. von Yizza, p. 33, note 1) speaks of the same genus from the coast of Greenland. Abyla, Halistcmma, and Apolemia have not yet been taken in our waters. There is in the collection of the U. S. Fish Commission for 1881 a mutilated fragment of the stem of a Physophore, which may have belonged to an Apolemia, and a new genus, IIaliphyta, which is elsewhere deseribed.
* The choice between the two generic names Galcolaria and Suculccolaria to designate this medusa is purely arbitrary. Lesucur gave the former to the anterior, the latter to the posterior nectocalyx of the same Diphyid. Vogt named the first complete form of this medusa Epibulia aurantiaca (later also Galcolaria aurantiaca). Epibutia must give place to either of the two previous names of Lesucur. The specifie name, filiformis, Delle Cliaje, adopted by Leuckart (Galcolaria filiformis), although the oldest, is derived from a wrong identification. The specifie name quadrivalvis adopted by Gegenbaur, Sars, Keferstein, and Ehlers, with others, from Lesueur and Blainville (Actin. Zoöl. Atl., VI. 6), has more in its favor, but the fragment to which it is applied by Lesueur cannot be distinguished from those other betls which bear the names biacuta and minuta. The oldest specific name applicd to a Galcolaria the use of whieh leaves me no doubt of the animal intended, is that of aurantiaca by Vogt. To choose between it and quadrivalvis is very diffeult.

At the extremity of each chymiferous tube on the bell margin springs a long tentacle, which is commonly carried tightly coiled about the tentacular bulb. On the bell margin, between each pair of long tentacles, are three short tentacular appendages, which are generally more or less coiled around their bases, and are carried upright, as shown in the figure. There are no otocysts. The coloration of the genus was not observed.

\section*{Tiaropsis diademata, Agassiz.}

Plate VII. Figs. 1314.
A larval stage of this medusa, younger than any Tiaropsis yet figured, was found by us at the Tortugas. The youngest Tiaropsis described by A. Agassiz* has a deeper bell and more tentacles, but in other respects seems the same.

\section*{Halicalyx tenuis, gen. et sp. nov.}

\section*{Plate VII. Fig. 15.}

In January, 1878, A. Agassiz found at Key West a hydroid medusa with the following characteristics.

Bell low, hemispherical, with thick walls and smooth surface. Apex of the bell destitute of protuberance. The chymiferous tubes are four in number, and from along their course in the bell hang dendritic ovaries. Through all the windings of the sexual glands there runs a bright crimson stripe, which has the appearance of being jointed.

The tentacles are twelve in number, and are carried elevated or stiffly extended at right angles to the axis of the bell. They are thickly ribbed along their whole length with lasso-cells, and enlarged at the extremity into a knob. At the base of each tentacle there is an otocyst containing a single otolith.

The proboscis is short, extending barely to the bell opening, and is without peduncle. The mouth is rectangular, and with short lips, which are sometimes turned backwards and reversed over the outer walls of the stomach.

\section*{Aglaura vitrea, sp. nov.}

\section*{Plate VII. Fig. 10.}

A new Aglaura was found by us at the Tortugas. The shape of the bell resembles that of Trachynema, with which the medusa is easily confounded.

\footnotetext{
* North American Acalephæ, 111. 69, 70 ; Illust. Cat. Mus. Comp. Zoül., II. ; Proc. Bost. Soc. Nat. Hist., IX. 1. 93. See also Morel, Beskriv. af Groenland; and Agassiz, op. cit.; also Mem. Am. Acad., IV. p. 259.
}

There is this marked difference between Aglaura and Trachynema. In Aglaura the sexual glands hang from the distal end of the peduncle which bears the stomach, while in Trachynema they are suspended from the upper part of the bell cavity.

The bell of Aglaura is high, cup-shaped, and without apical projection. The walls are thin, rigid and transparent. There are eight simple, narrow, chymiferous tubes. The velum is very muscular, and it is mainly by its efforts that the medusa is propelled through the water.

The proboscis is pedunculated, and bears the eight sausage-like ovaries near its point of division into peduncle and stomach. The upper part of the stomach is spherical in shape, and through its walls the half-digested food can be easily seen. Its mouth is formed by labial walls, in which are imbedded lasso-cells. Many patches of red pigment are present in the lips and the walls of the stomach.

The tentacles are very numerous, long, and flexible, and are generally broken off near their bases, leaving stiff projecting stumps, as in Trachynema digitale A. Ag. Several specimens were captured which carried the flexible tentacles unbroken, but for the most part these bodies presented the appearance shown in the figure.

There are eight otocysts, alternating in position with the chymiferous tnbes. Each otocyst contains a single otolith. The ovaries are cream-colored. The development of the egg is unknown.
A. vitrea resembles very closcly the A. hemistoma, Peron et Lesucur, found so commonly in the Atlantic Ocean and Mediterranean Sca. It has, however, no apical projection to the bell, and the umbrella is half-egg-shaped. The form of the bell is so variable that it may eventually be found to be identical with the well-known A. hemistoma.

\section*{Glossocodon tenuirostris (sp. Agassiz).}

\section*{Plate VII. Figs. 1 -9.}

In 1857 McCrady* gave a description of a new specics of Liriope, to which he affixed the name Liriope scutigera. L. Agassiz \(\dagger\) in 1862 mentions from Key West, Florida, another species, L. tenuirostris, which he says has a more slender proboscis than L. scutigera. A. Agassiz \(\ddagger\) gives a figure of a Liriope, which he identifies with \(L\). scutigera, and mentions the form \(L\). tenuirostris, from Florida, without description. The figure of L. scutigcra by A. Agassiz has slighter ovaries than those mentioned in McCrady's description, and has not the interradial tentacles ("four short" tentacles) spoken of by the last author. The figure, however, was but a sketch, and the mellusa from which it was made is prohably correctly referred to L. scutigcra, McCr. Hacekel takes excep-

\footnotetext{
* Gymnophthalmata of Charleston Harbor. Proc. Fill. Soc. Nat. Hist., 1857.
\(\dagger\) Contributions to the Natural Uistory of the United States, IV.
\(\ddagger\) Op. cil., p. 60 .
}
tion to this identification, and makes it a new species of Liriope, to which he assigns the name \(L\). conirostris. From the fact that no mention is made by McCrady of "blinde Centripetal-canäle," Haeckel refers L. scutigera, MeCr. to his own genus Liriantha.

In my work on the meduse of Narragansett Bay a very poor figure of what I regard the same as L. scutigera is given, as taken at Newport, R. I.*

Fritz Müller \(\dagger\) has published an anatomy and development of \(L\). Catharinensis, F. M., which differs from the medusa about to be described only in the want of the blindly ending centripetal canals, which lie between the radial tubes. In all details the likeness is very close. It also is placed in the genns Liriantha, Haeck., by Haeckel, \(\ddagger\) on account of the want of these centripetal structures. In the use of the generic designations Glossoconus and Glossocodon in the "System der Medusen" of the latter author, the medusa which is here described would be placed under the latter rather than the former genus; yet in the figures of the oldest stage found there will be noticed two kinds of tentacles on the bell margin, whereas Glossocodon has but one kind, viz. tentacles of the radial tubes. In Glossoconus there are two kinds of tentacles on the bell margin, as well as blindly ending centripetal canals between each pair of radial tubes. In younger stages, however, according to Haeckel, there is only one such canal between every pair of tentacular vessels.

Many specimens § of the genus Glossocodon, which is strictly speaking in the Glossoconus stage describel by Haeckel, were found at the Tortugas. It has the ovaries well developed and to every appearance is sexually mature. No specimen was taken with less than eight tentacles, and consequently if on further study it should be found to drop certain tentacular bodies on the bell rim midway between the tentacular vessels (radial tubes), it should be referred to Glossocodon. In its present condition it belongs to the genus Glossoconus, Haeckel.

The species differs from Liriope scutigera, McCr . in having but one kind of otocyst, and in possessing the blindly ending centripetal tubes ( \(l\), Pl. VII. tig. 1). The figure of L. scutigera, A. Ag., has four long tentacles, and ovaries of a different form, while there are no centripetal tubes. It resembles \(L\). Catharinensis, F. Miill., in every respect except that the centripetal canals are wanting in Müller's figure and description. In L. Agassiz's short description of L. tenuirostris, there is nothing to eliminate our species. Instead of introducing a new name, his specific designation has been arlopted.

The adult Glossocodon has a deep, almost spherical bell (PI. VII. fig. 1). The

\footnotetext{
* Studies of the Jelly-fishes of Narragansett Bay. Bull. Mus. Comp. Zoöl., VIII. 8.
\(\dagger\) Polypen und Quallen von S. Catharina. Areh. f. Naturg., 1859, pp. 310-321, Taf. XI. figs. 1-25.
\(\ddagger\) Das System der Medusen, I. 1, p. 287.
§ The adult and young of this medusa figured on Pl. VII. figs. 1-9, were drawn from nature by A. Agassiz.
}
bell walls are thick, especially at the apex, although there is no apical protuberance. The surface is smooth; its walls very transparent. The bell cavity, when seen in profile, is rectangular. The floor opposite the bell entrance is almost flat, and not concave, as in many other meduse. This characteristic in the shape of the bell cavity is noticeable even in young stages. It differs in this respect from the figure given by Fritz Müller of Liriope Catharinensis.

Upon the walls of the bell cavity there are found two kinds of chymiferous tubes. Four of these vessels are radially arranged, and pass from a circular tube about the bell opening to a highly flexible proboscis, along the sides of which they extend, opening eventually into the stomach at the extremity of the proboscis. These tubes are narrow, unbranched, and without lateral appendages. The sexual glands hang from the radial tubes, extending about two thirds their length, in the inner surface of the bell. They end at the point where the radial vessels bend at right angles to the outer walls of the bell. Midway between each pair of radial tubes, arising from the bell margin and extending in the bell walls about one third the height of the cavity, there is a single blindly ending centripetal canal ( \(d\) ), characteristic of the adult. These tubes (?) are four * in number, and do not bear ovaries.
The largest and most important appendage to the bell is the long, slender, and highly flexible manubrium or proboscis. It springs from the centre of the floor of the bell cavity, and, when the jelly-fish is quiet in the water, hangs far outside the rail. At other times it is so contracted that its termination barely projects beyond the bell margin. It consists of two parts, a hyaline base, which resembles in character the bell walls, and a distal pink-colored stomach with a terminal mouth. The only structures which can be recogmized in the peduncle of the proboscis are the four chymiferous tubes just below the surface. These are extensions of the radial chymiferous tubes, which have been described above. These tubes open into the stomach near the distal end of the proboscis. The distal end of the peduncle of the proboscis is continued inside the stomach into a conical projection or tongue. In fig. 9 we have a view of the distal end of the manubrium with the walls of the stomach reversed to show the projecting tongue.

The stomach of Glossocodon is a hag-shaped structure with pinkish walls, situated at the distal extremity of the manubrium. When the mouth is expanded, as in the figure, it assumes a quadrangular shape. The elges of the lips are lined with clusters of lasso-cells (fig. 9) arranged in bundles equidistantly arranged around the border of the mouth. Similar cells are described

\footnotetext{
* In the only complete drawing of the adult which we have, there is only a single centripetal canal between each pair of ovaries. There are prohably three such structures insteal of one in that position. This can be seen in sketehes of a portion of the bell margin which I have not copied. The medial of these three canals, which is that figured in fig. 1, is larger than the two lateral, which are little more than slight protuberances.
}
in L. Catharinensis by Fritz Müller. The stomach walls are capable of great expansion, and the mouth opening is very large. Oftentimes the lips are turned back, leaving the projecting tongue very prominent. When not feeding, or when alarmed, the lips are pressed closely together, concealing the tongue and closing the entrance into the stomach. The stomach walls are not transparent, but contain many small pigment-dots and minute lasso-cells, irregularly imbedded in their substance.

There are two forms of tentacular appendages found on the bell margin. At the end of each radial tube there is a tentacle which is long, hollow, and very flexible. The surface of each such tentacle is covered with lasso-cells arranged in rings surrounding the appendage. We thus have along its whole length amulations of lasso-cells, alternating with smooth depressions. The correlation between the stomach and tentacles is very well shown in this Glossocodon. The voracity of Liriope is mentioned by McCrady,* and in this animal it is equally great. The abundant lasso-cells upon the tentacles and the lips are but necessary to capture living food to satisfy an enormous appetite.

In addition to the long tentacles there are four others likewise springing from the bell rim. In the adult Glossocodon these appendages are wanting, and in the oldest form which we found they were reduced to the mere "stump" of a tentacle. We have, however, no drawing of our jelly-fish in which they are not represented. Each of these appendages is situated midway on the bell margin, between two long tentacles. In the adult stage (fig. 1) they are clubshaped bodies, united to the bell by means of a slender peduncle, and are carried stiffly erect. They are solid, inflexible, and on their outer convex surface there are clusters of lasso-cells arranged with regularity. At the position of union of the bell walls and the peluncle of this appendage there is a slight spur or solid extension of the base on the outer surface of the bell, extending upwards a short distance on the bell walls.

The adult Glossocodon has eight otocysts, which are arranged on the outer edge of the bell margin near the points from which the tentacles, long and short, arise. Those which are found near the tentacular bulbs of the long tentacles are placed at one side of the tentacle, and not at its very base. The other set of otocysts are placed in the immediate vicinity of the origin of the pelicle which bears the solid tentacle. There is but one kind \(\dagger\) of ofocyst found on the bell margin, and it is a simple sac containing a single otelith. The sexual organs hang like heart-shaped pouches from the four radial tubes. They are sometimes so inflated that the walls of adjoining glands almost touel. Their size and shape vary greatly, depending solely on the maturity of the ova. Their color is white and sometimes pink. Male and female glands may be found later to be distinguished by a difference in color, but little is known of the difference of the sexes in Glossocodon.

\footnotetext{
* McCrady saw \(L\). scutigera with its tentaeles and lips seize a small fish "thrice as large as itself" (op. cit., p. 209).
\(\dagger\) According to McCrady there are two kinds in L. scutigera (op. cit., p. 208).
}

The youngest larva of Glossocodon which we have found was approximately in the same stage as that figured in fig. 18 of Fritz Müller's paper. It resembles closely the larva which Haeckel * figures, Pl. III. fig. 35, as the young of G. eurybia. In Haeckel's representation of this stage, no chymiferous tubes are to be found. The bell in his figure is also more spherical, and the profile of the bell cavity lacks the rectangular shape which our youngest larva had. The bell is low, disk-shaped, transparent, and has a smooth onter surface. The bell cavity has a cylindrical shape, its walls following closely the outer surface of the bell. The bell walls are of about uniform thickness throughout. There are four radial tubes passing from the bell margin to the centre of the upper floor of the bell carity. They bear no sexual pouches.

The proboscis is the least developed of all the appendages to the bell in the youngest larva which was captured. It has the form of a simple, raised wall of rectangular shape, arising from the upper floor of the bell cavity. There is in it no division into stomach and peduncle. The lips are simple, and are destitute of the clusters of lasso-cells found in the adult.

There is only one kind of tentacular appendages to the bell margin in this larva, and these are the club-like bodies situated midway between the tentacular or radial tubes. The long flexible tentacles at the end of the radial vessels have not yet begun to form. Those tentacular borlies which are present are solid and are carried stiffly elevated at the side of the bell. Their length is about that of the radius of the bell, and their diameter near their distal extremity is very much greater than at the attachment to the bell rim. The inner concave side of the appendage is smooth and without lasso-cells; the outer, convex surface bears many clusters of cells arranged in bundles in a series. These bodies are especially numerous near the terminal end of the tentacle. On the outer surface of the appendage, near its junction with the bell margin, a small conical tooth is developed. A similar spur is not to be found in the published figures of G. eurybia or \(L\). Catharinensis. These tentacles are represented in the adult by bodies (c) of reduced size, which are said eventually to disappear in Glossocodon. \(\dagger\)

While these bodies are the only tentacles found upon the bell margin, they are not the ouly appendages of a tentacular nature which the youngest Glossocodon has. A second kind of appendace, also embrronic, is situated on the outer surface of the bell walls. At right angles to the sides of the bell, in the same spheromere in which the radial tubes lie, there spring four solid appendages, which are true tentacles. At its distal end each of these tentacles is enlarged, and bears many lasso-cells; but of its minute anatomy and the arrangement of cells at that point nothing was observed. Its hase of attachment is about one third the distance between bell margin and apex, and is connected by a rib (b) with the bell rim. This rib is probably a solid body

\footnotetext{
* Die Familie der Riisselquallen, 1865, P1. IIl. fig. 35, pp. 67, 68. Called by Haeckel the fourth stage (Eurybia-likic larva).
\(\dagger\) Harekel, op. cil.
}
and not a tube, and is strictly homologous to a like structure in Cunina discoides, Fewkes. It lies on the outer surface of the bell, while the radial tube follows the inner or the bounding wall of the bell cavity. There are four otocysts, each closely resembling the otocyst of the adult in the larval form which has just been described. Each otocyst is placed on the bell margin at the point of attachment of the solid tentacle.
The next oldest larva to that already described is one which, together with the following (figs. 3, 4), may be referred to the " fifth period" (Haeckel) of G. eurybia. It corresponds in some respects with fig. 20 in Fritz Miller's account. In this larval stage (fig. 3) the most marked addition to the former is the growth of tentacular bodies on the bell margin midway between the solid tentacles (c). They lie near the union of the radial vessels with the circular tube, and are the beginnings of the long flexible tentacles. They are in a larva even as young as fig. 3 banded with the lasso-cells characteristic of the adult, which seems to be true in a larva of the same age figured by Haeckel (Pl. III. fig. 37). Fritz Muiller represents two of these appendages as formed prior to the remainder. The stage of such a larva may be a little younger than my fig. 3 , in which all these bodies, four in number, were equally developed. The most important difference between the two figures (figs. 3, 4) which are given to represent the fifth period is the result of the growth of the proboscis, which even in this larva is differentiated into a basal peduncle and a terminal stomach. The larva has still ouly four otocysts.

Hacckel's accomnt of the development of G. eurybia closes with the fifth period. Between that and the adult he has given no figures of intermediate stages. Fritz Müller's paper, however, has one more stage intermediate between these two, in which there appear to be ten otocysts on the bell margin intermediate between the radial canals, before the organs corresponding to the tentacles (a) are dropped. In the present species the otocysts of the long tentacles do not develop before the complete loss of the bodies ( \(c\) ).

Fig. 5 represents a larva in the sixth period of its development. This larva differs from that last represented (fig. 4) in the growth of the long tentacle on the bell margin and the total loss of the tentacle (a). It is to be noticed, however, that there are still but fonr otocysts, and that these bodies lie at the bases of the solid marginal tentacles (c). A larva still older than this, hut undoubtedly to be placed in the same period (sixth periorl) is the first in the series having eight otocysts. The four sense bodies additional to those at the base of the marginal solicl tentacles appear at the base of the long tentacles for the first time in a larva represented in fig. 6 . This larva has assumed the form of the adult in many particulars, one of the most prominent of which is the enormous development of the proboscis. The sexnal glands lave not yet begun to form, or at least are not represented. In a larval form which approaches very elosely the adult, the sexual glands are well developed and crowled with owa. Such a larva is figured in fig. 7 , which represents the Glossocodon as seen from the aboral pole. In the adult the only representative
which can be found of the embryonic structure (b) is a tooth or spur which is represented in fig. 8.*
* It will be seen, if my account of the development of Glossocodon be compared with Fritz Miiller's (op. cit.), that, while according to my account the peduncle (Stiel) of the stomach appears long before the secondly formed otocysts, he represents them both as developing at about the same time. It will also be seen that the four secondary otocysts follow instead of precede the appearance of the long tentacles. According to him the otocysts, as the long tentacles, appear in pairs situated diametrically opposite on the bell rim. No observations were made by us on this point.

\section*{EXPLANATION OF THE PLATES.}

\section*{PLATE I.}

Fig. 1. Ocyroë crystallina (young).
" 2. The same, with oral lobes expanded.
" 3. A single oral lobe extended.
" 4. Position assumed by the oral lobe.
" 5. View of oral lobe from the aboral pole (expanded).
" 6. The same contracted.
" 7. Cassiopea frondosa in natural position.
" 8. Young of the same (aboral view).
" \(9 a\). Side view of young Cassiopea.
"، \(9 b\). Older larva of the same.
" 10. Cassiopea frondosa (aboral view).
" 11. The same (oral view).
" 12. Marginal sense body of the same (aboral side).
" 13. The same (oral side).
" 14. Double marginal sense body of \(C\). frondosa (monstrosity).
" 15. The same (aboral view).
" 16. Marginal sense body with two oeelli (monstrosity).
" 17. Extremity of the oral arms of Cassiopea.
" 18. Mouths and pouches of the same.
" 19. Oral appendage from upper side.
a. Auricles.
b. Bifureation of the lateral tubes.
c. Primary tubes from the base of the funnel.
\(c e\). Sceondary tubes, branches of the primary.
d. Oral branehes.
e. Radial stripes.
\(e^{\prime}\). Intermediate spaces between the radial stripes.
f. Marginal zone.
h. Hood.
i. Oral disk.
i. Otocyst.
k. Stomaeh.
l. Lips.
m. Mouth.
o. External sexual openiug.

\section*{p. Chymiferous reservoirs.}
\(p^{\prime}\). Oral tentacles.
t. Auricular tubes.
\(t^{\prime}\). Velar lappets.
tt. Ocular lappets.
\(l t\). Lateral tubes.
oc. Ocellus.
os. Otocyst style.
ot. Otoliths.
st. Lobular tubes.
u. Central zone.

\section*{PLATE II.}

Fig. 1. Cassiopea frondosa (aboral vier).
" 2. The same (oral view).
" 3. Linerges Mcreurius (side vicw). The marginal lobes are infolded.
" 4. The same. The marginal lobes are extended and the crescentic form of the ovaries is shown.
" 5. L. Bcrcurius (aboral niew).

\section*{PLate III.}

Fig. 1. Portion of the oral surface of \(C\). frondosa.
" 2. Peripheral extremity of a canal lying in the central cavity between two ovarics. Showing also the opening (b) leading from it into the chymiferous system of the oral arms.
" 3. Oral cylinder cut off from the bell, so as to expose its cavity.
" 4,5. Life-size figures of \(L\). Mercurius in attitudes assumed while swimming.
" 6. Section cut through the cavity which lies above the stomach of \(L\). Mcrcurius. One half this sinus is drawn in longitudinal plane, i. e. section cut in the direction of the axis of the medusa.
" 7. View of the opening by which this carity communicates with the stomach.
" 8. The same opening shown in an cphyra in order to illustrate its relations to the remaining structures of the same.
" 9. Cassiopea frondosa.
" 10. The same (position assumed in floating).
" 11. Ovary (shrunken) of \(L\). Mercurius.
" 12. Portion of the inner bell wall of the same medusa.
" 13. L. Mercurius from oral side.
a. Circular orifice, centrally placel, communicating between the stomach and the carity situated above it.
b. Opening leading from the carity of the oral cylinder into the chymifrrous vessels of the arms.
c. Cavity above the stomach.
e. Sae (subumbral).
\(f\). Margin of the bell.
\(g f\). Gastral filaments.
h. Patehes of pigment.
\(i\). Substance of the bell.
\(k\). Pouches.
\(l s\). Row of pigment-spots on the walls of the stomach.
o. Ovary.
p. Chymiferous reservoirs.
\(p^{\prime}\). Oral tentacles.
ot. Otocyst.
so. Sexual openings through which the ova are discharged.

\section*{PLate IV.}

Fig. 1. "Scnse area" (Beroë ovata).
" 2. IIalitiara formosa.
" 3. Ephyra (?) of Linerges Mercurius. (Quadrant of disk from below.)
"4. Ephyra (L. Mercurius) younger than fig. 3.
" 5. Ovaries and subumbral pouches (L. Mercurrius).
" 6. Subumbral pouch (L. Mercurius adult).
" 7, 8, \(9,10,11,12\). Eggs and stages of their segmentation (L. Ifcreurius).
" 13. I'lanula (L, Mercurius).
" 14. Ephyra (?), (L. Mercurius).
" 15. Ephyra more developed than fig. 3. (Oetant.)
" 16. Marginal sense body of ephyra (L. Mercurius).
" 17. The same (side view).
" 18, 19. Marginal sense body (L. Mercurius adult).
" 20. Gastral filaments (L. Mercurius).
" 21. Tentacle and bell margin (L. Mercurius).
" 22 . Single marginal tentacle (L. Mercurius).

\section*{I'late V.}

Fig. 1. Stcphanomia Allantica.
" 2. Agalmopsis fragilc.
" 3. Athorybia formosa.
" 4. A. formosa. (From above.)
" 5. Agalma papillosum.
" 6. A. papillosum. (From above.)
a. Float.
\(\alpha a\). Air-sac.
b. Axis.
c. Covering scale.
\(d, d^{\prime}, d^{\prime \prime}\). Tastern.
c. Filament of the taster.
fs. Female bells.
g. Papillæ.
h. Somatocyst.
\(h n\). Rceesses opening into bell cavity.
\(j\). Undeveloped tentacular knobs.
k. Adult tentacular knobs.
l. Lasso-cells.
\(m \mathrm{~s}\). Male bells.
n. Nectocalyces.
o. Ocellus.
p. Polypite.
\(r\). Chymiferous tubes.
t. Tentacle.
u. Undeveloped nectocalyces.
\(w\). Wimperwulst. Peduncle of polypite.
\(x\). Structure of unknown homology.

In figure 1 the bell margins are too prominent, and the spiral lines in which the openings into the cavities of the nectocalyces lic are imperfectly shown.

\section*{PLATE VI.}

Fig. 1. Rhioophysa gracilis, sp. nov.
" 2. Float (I. gracilis).
" 3. Sexual organs (R. gracilis).
" 4. Polypite and proximal part of the tentacle (R. gracilis).
" 5. First kind of tentacular knob (Ii. gracilis).
" 6. Second kind of tentacular knob (R. gracilis).
" 7. First kind of tentacular knob (Athorybia formosa).
" 8. The same from one side.
" 9. Second kind of tentacular knob ( \(A\). formosa).
" 10. The same from one side.
" 11. Male bells (A. formost \()\).
" 12. Female bells (A. formosa).
" 13. Taster (A. formosa).
" 14. Covering-scale (A. formosa).
" 15. Tentacular knob of Agrelma papillosum.
" 16. Taster and sexual bells of Ayalmopsis fragile.
" 17. Tentacular knob (Ag. fragile).
" 18. Tentacular knob of Stephenomia Atlentica.
" 19. The same, macoilect.
" 20. Polypite (S. Allentica).
". 21. Tentacular knob (S. Allentica).
" 22. Polypite (S. Allentici).
" 23. P'olypite (Ay. fragilc).
" 24. Male bell (Aly. fromile).
" 25. Cluster of male leells (Ay. fragilc).

Fig. 26. Nectocalyx (Galcolaria aurantiaca).
" 27. Papilla from the nectocalyx (A. papillosum).
a. Apex.
b. Lateral filaments.
c. Terminal vesicle.
d. Sacculus.
e. Appendage to the float (undeveloped polypite ?).
\(f\). Circular plates.
\(g\). Thickened walls of the air-sac.
p. Polypite.
s. Sexual organs.

\section*{PLATE VII.}

Fig. 1. Glossocodon tenuirostris.
2. Larva of the same (fourth period, Haeckel).
3. The same more developed (fifth period, Haeckel).
4. Larva in fifth period.
5. Larva in sixth period.
6. Same, inore developed.
7. Fig. 1 from aboral pole.
" 8. Base of the adult tentacle.
" 9. Everted stomach walls and protruded gastrostyle.
" 10. Aglaura vitiea.
" 11. Eucharis multicornis (one half body of the joung).
" 12. Same at right angles to fig. 11.
" 13. Tiaropsis diadcmata (young).
" 14. Quadrant of the same (oral view).
"15. Haliculyx tenuis (only four of the twelve marginal tentacles are drawn).
" 16. Staurophora laciniata.
" 17. Tentacular knobs and "spur" of the same.
a. Embryonic tentacles from bell walls.
b. Ribs connecting the embryonic tentacles with the bell rim.
c. Club-shaped tentacular bodies.
e. Tentacular spur.
\(f\). Auricle.

Cambridge, April 1, 1882.





1

3.

5.




J.W.E.

> No. 8. - On the Acalephoe of the East Coast of New England. By J. Walter Fewkes.

The observations recorded in the following pages are placed under two titles. The first subject, " Medusæ from Newport " relates to jelly-fishes taken at Newport, R. I., in the summer of 1881.* Under the second, "Aealephæ collected by the U. S. Fish Commission, \&e.," will be found deseriptions of jelly-fishes taken by them off the New England coast in 1880 and 1881. \(\dagger\)

\section*{I. Medusæ from Newport.}

\section*{CTENOPHORA.}

Development of the Chymiferous Tubes in Mnemiopsis Leidyi, A. Ag. Figs. 1-9.

In the development and union of the chymiferous tubes, the larval stages of Mnemiopsis differ radically from those of the closely related genus Bolina, whose embryology is described and figured by Mr. A. Agassiz. \(\ddagger\) In Bolina, according to the author last mentioned, those ambulacral tubes which are situated nearest the tentacles are the first to unite, "forming thus the first connected loop enclosing in the adult Bolina the complicated winding tubes of the short pair of chymiferous canals of the actinal lohes."

The first pair of these tubes to unite in the young Mnemiopsis are not the vessels which lie adjacent to the tentacles, but those placed in the body walls between the tentacular rows of combs. It therefore appears, in other words, that the chymiferous tubes which are the last to join in Bolina, are first to unite in the elosely allied Mnemiopsis.

\footnotetext{
* I am indebted to Mr. Agassiz for facilities to carry on this portion of the work in his private laboratory at Newnort, R. I.
\(\dagger\) These meduse have been phaced in my hands for study through the kindness of Prof. Verrill. I take this opportunity to express my indebtedness to him for this and other favors.
\(\ddagger\) North American Aealephæ, p. 17; also Mem. Amer. Acal., Vol. X. No. III. Mr. Agassiz has pointel out that the sequenee in the union of the ambulacral tubes of Bolina is exceptional.
vol.. IX. - No. 8.
}

The successive stages in the growth of the young Mnemiopsis are as follows.
In the youngest larva which was taken we recognize most of the organs of the adult. The lateral tubes ( \(l\) ), which originate as simple blind saes, end in the neighborhood of the lips without bifurcation. The eight remaining vessels, situated meridionally just below the surface beneath the rows of "combs," resemble each other in size and have about the same length, each also ending blindly in the body walls.* Fig. 1 represents this larva, drawn in a plane passing through the tentacles and the otocyst. The two auricular vessels ( \(a t\) ) are seen to lie adjacent to the tentacles, one on either side, while the lobular tubes ( \(l t\) ) are situated in the segments between them.
A clearer conception of the relationship of the chymiferous tubes to each other may be obtained by a consultation of the following figure ( 1 a), taken from the actinal pole. In no other way can the origin of the chymiferous vessels from the fumel be shown to such advantage as by a drawing made in this way. The eight meridional tubes spring in pairs from a ressel \((c)\) which arises from the base of the funnel \((f)\). From the point of bifurcation also, there originates a tentacular tube ( \(t\) t), which passes to the tentacular sac. This tube exists in the youngest larva studied, as a very broad vessel, and in subsequent growtb it beccmes more and more slender and tubelike, as shown in following figures. The lateral tubes ( \(l\) ) originate independently of all the others, as short diverticula from the base of the funnel.

Fig. 2 represents, in the same plane as the above, a larval Mnemiopsis somewhat older than the last. The most marked difference between the vessels of the two is producel by a growth of the lobular ressels, which have lengthened more than the auricular, and now extend about half-way down the length of the body. In other respects they are unchanged. The lateral tubes \((l)\) have remained in about the same condition as in the previous stage, and have not yet lifurcated at their extremities.

In Fig. 3 the lobular vessels are represented as having extended still farther in their growth, and are rapidly approaching the oral pole of the medusa. Their extremities have even turned towards each other preparatory to a final union. The auricular tubes have also lengthened and pushed their way about two thirds the whole distance from the apical to the oral pole.

Fig. 4 represents a larva somewhat more developed than the last, in which
* In ny descriptions the lobular ressels correspond with what Mr. Agassiz calls the "long ambulacral tubes (longitudinal ambulacra)," and the amricular vessels with his "short ambulacral tubes (lateral amblarra)." The adjectives lobular and auricular sew to me preferable to "long" and "short," to aroid confusion in a comparative study of these structures in other Ctenophores (eontrast the long and short nmbulacra of Cestus and Ocyroë". I have abandoned the adjective "lateral," as applied to ambulaera, in order to avoil confusion with other ressels (l) designated by the same name, on each side of the stomach. Between the older term "longitudinal" nuld the new adjective lobular, I lave chosen the latter, as more characteristic. The nomenclature adopted seems to me to eall attention to characteristic features in all genera of Ctcnophora, as well as of Mncmiopsis.
the growth preparatory to a fusion of the lobular tubes has gone still further, so that the extremities of the lobular vessels almost tunch each other. By far the most important change has taken place in the lateral tubes, which are now bifurcated at their extremities.

The fusion of the lobular vessels appears in a larva (Fig. 5) following the last. A junction of these tubes has here been effected, forming one continuous vessel. In the same stage the auricular tubes have also pushed downward through the bell walls, but they still end blindly and without division. They also eventually fuse, and in a following stage (Fig. 6) they bend towards each other and approach in such a way as to enclose the loop of the lobular vessels, which has been already formed.

In the next figure ( \(6 a\) ) the junction of the two auricular vessels has occurred, so that a connecting loop is formed enclosing that already resulting from a fusion of the lobular vessels. It will also be noticed that the lower ends of the lateral tubes have bifureated. Its terminal division ( \(l l\) ) is shown in the foreground of the figure. At about this stage in the growth of the Ctenophore, the lobes (ol), which later reach such a great size, begin to be differentiated from the body of the medusa. In Fig. 7 they hare pushed themselves still more prominently into notice, and the network of lines upon their inmer surface is even now well marked. Meanwhile a slight variation in the direct meridional course of the auricular tubes marks the situation of the future auricles \((a)\). The two branches formed by the bifurcations at the extremity of each lateral tube have grown to such an extent that they join the auricular vessels one on each side at a point directly below the position where the lower edge of the auricles ends.

The oldest larva of Mnemionsis, which I have figured, shows nearly the same disposition of vessels as one finds in the adult. Subsequent morlifications in the course of these vessels consist in their deviation from the direct meridional lines, and their increase in length; but no new junction of tubes takes place in intermediate stages between this larva and the adult Mnemiopsis.

\section*{DISCOPHORA.}

Dactylometra quinquecirra, A. Ag.
Nigs. 25-28, 38, 39.
A single specimen of this interesting Discophore was taken by me in the last summer, and from it a few new observations were made, which may add something to our imperfect knowledge of its anatomy.

The hell margin bears eight otocysts and a variable number of tentacles, which have the following arrangement. If we take the interval of bell rim between two otocysts we find appended to it a variable number of tentacles. A figure is given of such a portion in which there are eight tentacles. Of these the two tentacles adjacent the otocysts are larger than the remainder, and
hang from the incisions between two marginal lappets. The remaining six tentacles are of smaller size, and are irregularly placed as regards the incisions between the marginal lobes. The tentacles have a brownish color above, and are white on the under side. The two marginal lobes adjacent the marginal sense bodies are larger and more prominent than the others. In the interval of bell margin between them there are five smaller lobes. Each lobe is leafshaped, pointed, and very flexible. In each lobe there ends blindly, without dendritic ramifications, a chymiferous vessel, which is a prolongation from a cavity, or system of vessels in the disk. There are four ovarian openings, each of which lies in a radius drawn from alternate marginal sense bodies. They resemble most closely similar openings in Aurelia. The ovaries themselves have a pink flesh-color. The ovarian filaments are well developed. The marginal sense bodies are bighly characteristic. When looked at from the aboral side, in the region of the bell margin in which the otocyst lies, there is in its immediate vicinity a small pit or depression in the bell walls. This pit is identified as a "Riechgrübschen." It is commonly regarded in other medusæ as an organ of special sensation. The situation of this pit in Dactylometra is such that one cannot help being reminded that it may be simply the thinning out of the bell walls above the sense body in order to increase the sensitiveness of the otocyst below. The oral curtains, which are so prominent on each side of the otocyst of Cyanea, are wanting in Dactylometra. The two lappets found one on each side of the marginal sense body of Aurelia also fail. Two wellmarked inner Riechgriubschen are found one on each side of the base of the style. The ocellus is inconspicuous or wanting. The otocysts do not differ from those of other Discophores, and are formed of a simple sac with enclosed otoliths. They have a whitish straw color, and are easily seen from the aboral side, showing through the bell walls at the bottom of the recess or pit called the outer Riechgrübschen.

\section*{HYDROIDA.}

\section*{Calycidion formosum, Fewres.}

A further consideration of my former *identifieation of Turritopsis mutricula, MeCrady, has convincerl me that I was wrong in my determination of this medusa. The jelly-fish which was mistaken for T. nutricula resembles in some respects l'odocoryne, and may perhaps be found to be a new genus and species, for which I suggest the name Calycidion formosum. The melusa which was referred in the same paper to Modecria and described as M. multitentacula, sp. nov., is probably the same as T. nutricula, McCr. As the generic name Modeerin is older than Turritopsis, and as they seem to have heen applied to similar jelly-fishes, McCrady's medusa may later be known as M. nutricula.

\footnotetext{
* Bull. Mus. Comp. Zoül, VIII. 7.
}

New studies must be made to find out whether M. multitentacula and M. nutricula are the same species.

As my identification * of T. uutricula was wrong, my criticisms of McCrady's description of this medusa are unjust to him. The true aftinities of the jellyfish which Mr. Agassiz \(\dagger\) and myself \(\ddagger\) called Turritopsis are somewhat doubtful. The "pencil-like clusters of stalked thread-cells" upon the lips allies this medusa to that of Podocoryne carnea, Sars. In a figure \(\ddagger\) of \(P\). carnea, just escaped from the trophosome, there are eight tentacles, and no ruws of lassocells extending from the tentacular bulbs to the apex of the bell. The oldest specimens of C. formosum have more than eight tentacles. It may, however, be simply a more developed planoblast of \(P\). carnea, Sars.

\section*{Ectopleura ochracea, A. Ag.}

Figs. 15, 16, 35, 36.
The bell of the medusa of E. ochracea is high, and has a pointed apex, where its walls are thicker than on the sides. There is no trace of a former tubular connection between the stomach cavity and the fixed hydroid through the apex. The outer surface of the bell walls is crossed by eight rows of lassocells, which arise in pairs from the tentacular bulbs and have a common junction at the apex of the bell. Near the bulbs the number of cells in each row is larger than towards the apex, where they become more scattered and smaller (?). The chymiferous tubes are four in number, narrow, and unbranched.

A manubrium hangs down in the bell cavity about two thirds its height. In normal specimens it is never protruded beyond the bell opening. It is divided into three regions, a basal, median, and terminal. The basal division, by which it arises from the bell walls, is more transparent than the others, and is colorless. It contains many large spherical cells. The remainder of the proboscis has a light rosy color, and is divided midway in its length by a slight constriction, which separates it into a median and a terminal region. Both of these portions are more opaque than the hyaline division with large cells already noticed. Near the region where the junction of the median division with the basal takes place there is a zone of ochraceons colored pigment. The constriction forming the division between the median and terminal divisions is marked by a zone of small dark brown pigment-dots. The lips are thickly pignented with irregnlar patches of a yellow color. They bear also, according: to Mr. Agassiz, small "bunches of lasso-cells."
* Bull. Mus. Comp. Zoöl., Vili. 7.
\(\dagger\) Op. cit., p. 167. Mr. Agassiz suspected that his medusa was not the same as Turriopsis, MeCr., since he was unable to trace it to a medusa of the same form and color.
\(\ddagger\) Allman, op. cil., Pl. XV'I. figs. 3, 4.

There are four rosy flesh-colored tentacles, which are generally carried closely coiled about the tentacular bulbs. Their length, when extended, is greater than the height of the bell. In older specimens they are sometimes extended at full length when the medusa is in motion. At rest they are carried at right angles to the bell walls, or closely coiled about the tentacular bulbs. At intervals along their outer surface the tentacles bear bundles of lasso-cells regularly placed, equally distant from each other. The tentacular bulbs are darkened by orange-colored pigment scattered through their walls, and in many specimens a single black pigment spot (ocellus) is found on the under side. The figures of the fully grown medusa which I have described are from a more advanced stage than those given by Mr. Agassiz.*

The above description of this species cliffers in some respects from the original account which we have of this medusa. The arrangement of lassocells on the tentacles is similar to that in Sarsia turricula, McCr. \(\dagger\) Although in McCrady's description of S. turricula the lines of lasso-cells found on the external bell walls of \(E\). ochracea were not observed, in other particulars the two medusæ are so much alike that they probably belong to the same genus. The rows of lasso-cells were probably overlooked in S. turricula. The reference of S. turricula, McCr. to Syndictyon, A. Ag., made by Haeckel, has little to recommend it \(\ddagger\) except the arrangement of lasso-cells on the tentacles. We now know that the same or a very similar regularity exists in E. ochracea, and one more reason for separating the two species E. turricula, A. Ag. and E. ochracea, A. Ag. vanishes. The want of meridional lines of lasso-cells on the outer bell walls of E. turricula, A. Ag. is the main feature by which E. ochracea and Sarsia turricula are known to differ.§
* North American Acalephre, pp. 191, 192.
\(\dagger\) Gymnophthalmata of Charleston Harbor. Proc. Eliot Soc. Nat. Hist., 1857. Mr. Agassiz says (loc. cit.) : "This speeies (ochracea) differs from the S. turricula, MeCr., in having the surface of the tentacles covered irregularly with innumerable lasso-cells ; they are not arranged in bundles, as in the Charleston species." Aceording to my observations they are arranged in regular bundles in E. ochracca.
\(\ddagger\) For referenee of S. turricula, McCr. to Syndictyon, A. Ag., see Hacekel, op. cit. The validity of the genus Syndictyon is denied by Alman. (A Monograph of the Gymnoblastic or Tubularian Hydroids. Ray Soc., 1871, p. 284.)
§ E. turricula loes not seem to be the young of \(E\). ochracea, since in the young of the latter of the same age, as judged by the form of the bell, the lasso-cells of tho tentacles are "irregularly arranged" according to Mr. Agassiz, while in S. turricula, MeCr . they are thrown into bundles.
E. ochracea is closely related to E. Dumorticri, Van Beneden.

\title{
Phialium duodecimale, Haeckel.
}

Figs. 17-21.
The youngest larval stage of the medusa of \(P\). duodecimale* found by us has two long tentacles, which are situated opposite each other on the bell rim. Each tentacle is accompanied by two tentacular spurs or filaments, which arise from the bell margin near the tentacular bulb. The rudiments of two intermediate tentacles are visible as simple projections on the bell margin. A description of this larva, which resembles closely the planoblast, Lovenellu, is given below.

The bell is tall, almost spherical, with thin walls. Its outer surface is smooth. At the apex there is a remnant of the tube by which the medusa was attached in an earlier stage to its hydroid. It has four simple narrow clymiferous tubes, which are destitute of sexual organs. \(\dagger\) Proboscis short, small, with closed month. There are four otocysts, each containing a single otolith, and alternating on the bell margin with the radial tubes.

The two larger tentacles are long, coiled in the distal two-thirls of their length, and accompanied by flexible "spurs" or filaments, \(\ddagger\) which arise near their bases.

A still older medusa of \(P\). duodecimale differs from the former in having four well-developed tentacles, each of which is accompanied by a pair of lateral filaments. The bell of this larva has a more pointed apex, which has thicker walls than that of the preceding. Sexual glands, four in number, have made an appearance upon the radial tubes near their junction with the circular ressel. There are four otocysts, each alternating with a tentacle. The height of the bell, when expanded, is about two thirds its diameter. When the bell walls are contracted the height and diameter are about equal.

In a medusa more advanced in growth than the last two, additional otocysts

\footnotetext{
* Mr. Agassiz's suggestion (op. cit.), that his Eucheilota duodecimalis belongs to a different genus from MeCrady's \(E\). ventricularis, is supported not only by the difference in number of otocysts on the bell margin of the adnlt, but also by the character of the development of the two. Without adding any new facts to our knowledge of these two forms, Hacckel has already suggested the name Phiatium for \(E\). duodecimalis, A. Ag. The difference in the form of figs. \(106,107^{-3}\) (North Ameriean Acalephæ), upon which Haeckel relies, together with the inflated or shrunken eondition of the ovaries, for his two species of Phialium, does not seem to me to warrant the separation. I therefore retain the specific name duodecimale for both.
\(\dagger\) The sexual organs are well developed in l'rof. Clarke's figure of the medusa of L. gracilis, Clarke. They are wanting in llineks's trawing of L. clausc. (Clarke, Mem. Bost. Soc. Nat. Mist., Vol. II. No. lV. Hincks, Ann. Mag. Nat. Mist., VIII., 1871, p. 79, Pl. V. figs. 2-2b.)
\(\ddagger 1\) have not followed a medusa of this age in its development into the following stage. Both stages are common at the same time, and they appear to be the same. Absolute proof is as yet wanting.
}
have formed between each pair of tentacles, so that we have a stage in which there are four tentacles and twelve otocysts. Between each pair of tentacles there are three marginal sense bodies, instead of a single otocyst as in the larva last described. The beginnings of other tentacles alternating with the otocysts are visible on the bell rim as simple protuberances from the margin.

The adult is derived from the medusa last mentioned by a change in form of the bell and a growth of the protuberances which form in the last-mentioned larva the beginnings of the new tentacles. In the most developed stage which was taken, the medusa has assumed a form like that figured ( \(107^{\circ}\) ) by Mr. Agassiz. The color of the bell of this medusa is light green, and that of the ovaries is white.

The likeness between the youngest Phialium which is here described and the planoblast Lovenella* is so great, that there is no doubt that these two genera are identical. The Lovenella stage of Phialium is remarkable, according to Haeckel, in the exceptional number of otocysts, which are generally eight in the young of other Leptomeduse. The existence of otocysts shows that it has \(n 0\) affinities with the Anthomeduse, and it is extremely doubtful whether it has any relationship with the Trachymedusæ. \(\dagger\)

\section*{Epenthesis folleata, McCrady.}

Figs. 10-14.
Several specimens of E. folleata, McCr. were found at Newport about the end of August.

The differences between this medusa and that of Oceania languida, A. Ag. seem to ine great enough for a generic separation.

The bell of the adult is low, disk-shaped, and about one sixteenth of an inch in diameter. Walls transparent, thin, with smooth outer surface. There are four narrow, unbranched chymiferous tubes. The sexual organs are small spherical bodies, which hang in the bell cavity from a position on the tubes midway between the base of the proboscis and the bell margin. The proboscis is small, and has a light green color. Its lips are four-lobed and hang down a short distance into the bell cavity. There are sixtecn tentacles, which alternate on the bell rim with the same number of otocysts. Each otocyst regularly contains a single otolith. The tentacular bulbs have a red or crimson color. Two clusters of pigment are found in the tentacular bulb. The smallest occupies the position of the ocellus.

\footnotetext{
* In what I have identified as a young Phiatiom (Lovenella stage) the small tentacles (spurs) do not arise so near the lithocysts as in Hincks's figures (Ann. Mag. Nat. Hist., VIlI., 1571, p. 79 , Il. V. figs. \(\left.2^{2}, 2^{b}\right)\). It however agrees with his draw. ing in being destitute of ovaries, which are found in the figure of \(L\). gracilis given by Prof. Clarke (op.cit.).
\(\dagger\) Hacekel, op. cit.
}
E. folleata has a habit of swimming with the bell reversed and the proboscis protruded, as shown in Figure 14. This posture is rarely assumed by O. languida.

Two larval stages in the growth of Epenthesis were observed. The youngest of these has a taller lell than the adult, and seven tentacles with as many otocysts. The disposition of the tentacles and otocysts is as follows. Of the seven tentacles six are well developel, while a seventh is a simple enlargement in the marginal border. In each of three quadrants there are two otocysts, and in a fourth there is a single borly of this kind. It is to be noticed that the quadrant which contains the begiming of a new tentacle is situated diametrically opposite that in which no tentacle is founl, and in which there is a single otocyst. In the same way the two quaurants which bear the fully developed tentacles are opposite each other. This inequality in the number of tentacles and otocysts leads us at first sight to suppose that this form is a monstrosity. There is, however, a certain regularity in the arrangement of the tentacles and otocysts. We are perhaps hardly justified in supposing that in a stage earlier than the present that quadrant which now bears a rudimentary tentacle separating two otocysts had but a single otocyst, and that in larvæ still younger we have a medusa with four tentacles and a single otocyst in each quadrant. In this way we may interpret the existence in the present form of a quadrant with a solitary otocyst.

An older stage * of the medusi than that with seven tentacles is one with eight tentacles, alternating with as many marginal sense bodics. From this stage the adult is formed by the interposition of a new tentacle between each pair alrealy formed, after the formation of an additional otocyst, either by fission from the last, or by a new growth from the bell margin between each pair of tentacles.

\section*{Willia ornata, McCrady.}

Figs. 22-24.
The youngest larva of \(W\). omatc which was found is very different from the adult. It has a deeper bell and only four tentacles. The bell walls are thin, transparent, and have a smooth surface. There are four narrow, unbranched chymiferous tubes, each of which passes directly from the proboscis to the bell margin. Several specimens of about the same age were taken. In all, the remmant of a communication between the stomach cavity and the hydroid is still visible. There are four short, smonth tentacles, \(\dagger\) which are sometimes earried tightly coiled about the base as in Ectopleura. They are also sometimes extendel.

The structures which identify this larva as the young of Willia are four rows

\footnotetext{
* Both of these stages were fished up in the open sea, and not raised one from the other.
\(\dagger\) According to Mr. Agassiz (op, cit., p. 171), two of these tentacles are longer than the remaining pair. In my specimens their length was about equal.
}
of lasso-cells, each situated on the outer surface of the bell in a position slightly removed from the bell rim, and midway between the tentacles. Each cluster is connected with the bell margin by a small body which bears some likeness to one of the peroniæ of Cunina.

This larva is the youngest Willia yet figured.* It has been raised into an adult, and there is therefore no donbt of its relationship.

In a Willia observed by Dr. Brooks at Beaufort, N. C., there are stolons attached to the outer walls of the manubrium, and upon them are found budding meduse in all stages of growth.

The accompanying figure \(\dagger\) of \(I\) 'illia shows a stage in which there are only eight tentacles, and each of the four chymiferous tubes has a single bifurcation. If this budding IVillia represents a stage in the development of \(W\). ornata, it is intermediate between the youngest medusa described above and that which is figured as the youngest I'illia by Mr. Agassiz. At present, I cannot say from the facts which are known whether it is a new species, a stage in the development of \(W\). ornata, or a dimorphous form of the latter. The difference in the chymiferons tubes in it and in \(W\). omata of the same age is very great, as will be seen by contrasting Fig. 24 with those of the young I'illia by Mr. Agassiz. It may be a new species, \(W^{\top}\). genmifera.

\section*{II. Acalephre collected by the U. S. Fish Commission during the Summer of 1880 and 1881.}

The collection \(\ddagger\) of medusæ here described was taken by the members of the Commission off the New England coast in the summers of 1880 and 1881. The finds of the latter year were the most valuable, so far as the collection sent to me is concerned.

The collection contains two Ctenophores, which should probably be referred to the genus Beroë. The species could not be determined.

Among the Siphonophora there is a magnificent new Physophore, IIaliphyta, gen. nov., Agalma elegans, Fewkes, Apolemia, sp., Diphyes, sp., and Gleba hippopus, Forsk.
* A medusa doubtfully referred to Cytais by Will (Hore Tergestinæ, P1. II. fig. 7) is possibly the same.
\(\dagger\) The figure of a Willia, with attached stolons, was contributed by the courtesy of Dr. Brooks. Consult his notice, "Budding in Free Meduse," Amer. Naturalist, Sept., 1880. See also Huxley, Anatomy of the Invertebrated Animals, p. 132. In the Willia mentioned by Huxley the stolons arise from the bifureations of four malial tubes.
\(\ddagger\) An assorted collection from which l'rof. Verrill had exeluded many previously known mednse collected by the commission at tho same time. For an aceonnt of the explorations in the summer of 1881, see Prof. Verrill's 1aper, Am. Jour. Arts and Sei., XXII., Oct. 1881.

The only Discophores sent me are Periphyllia hyacinthina, Steen., and an unknown genus of the Pelagidæ. Three new hydroids represented by several specimens were found. The whole material upon which my observations were made is as follows.*


\section*{DISCOPHORA.}

Periphyllia hyacinthina, Steen. \(\dagger\)
Many specimens of the young of this medusa were taken.
* For locations and depths corresponding to the stations, see Prof. Verrill's lists, op. cit., XX. p. 391, and loc. cit., pp. 292, 294.
\(\dagger\) Peron designated two very different meduse under the name Carybudea periphylla. One of these was undoubtedly the above mentioned, while tho other was

\section*{SIPHONOPHORA.}

\section*{PHYSOPHORID䙵.}

Apolemia, sp. (Provisional.)
A fragment of an Apolemia* stem from which covering-scales and nectocalyces have been broken off was taken by the commission.

\section*{Agalma elegans, Fewres.}

A mutilated specimen of a Physophore which is identified as belonging to this species is found in the collection made in 1880 . The locality given is " Gulf Stream, surface."

\section*{Haliphyta magnifica, gen. et sp. nor.}

Figs. 39, 40.
The most interesting, and at the same time tantalizing find, was a magnificent new Physophore, which was destitute of both nectocalyces and tentacular knobs. These structures, so important in generic determinations of Siphonophores, had evidently been detached from the stem in the capture of the animal, and we must wait for future observations to determine their form. The structures, however, which remain, especially the covering-scales, polypites, and stem, show that the genus to which they belong is different from any which have yet been described.

The genera with which Haliphyta is liable to be confounded are Stephanomia II. E., Halistemma, Huxley, Agalma, Esch., and Agalmopsis (restricted sense). Although in the broken specimen before me the nectocalyces and tentacular knobs, the structure of which has generally been relied upon for generic differences, are gone, from what is left there can be no doubt that the animal to be described is a type of a new genus.

The polypites of Stephanomia differ from those of Agalma, Agalmopsis, and IIalistemma in possessing long peduncles. Maliphyta seems to have the same long peduncles as Stephanomia. Unlike Stephanomia (Forskalia) the margin of the few covering-scales which remain in the bottle with our new genus and attached to its axis is not indented or notched. When placed in alcohol the
the same with or very similar to Carybdea marsupialis of later authors. Stecnstrup's name Periphylla is followed to designate the first of these forms, since the generic name Carybdea is commonly given to the latter. (Cf. Hacekel, loc. cil., I. 2, p1. 416 and 439.) The Discophore which I have identified as Dodecnbostrycha dubia, Brandt, is probably the same. (Cf. Bull. Mus. Comp. Zoul., VIll. 7.)
* The stem of this specimen is twisted in the same direction as that of alcoholic Apolemia uvaria brought from Naples. No ilentification of species could be made.
stem of Stephanomia is generally contracted into a closely coiled spiral. The alcoholic stem of Haliphytu is uncoiled.

A description * of what remains of the single specimen of Haliphyta is as follows. The parts remaining which could be identifiel were the float, stem (nectostem and polyp-stem), a few covering-scales, polypites, a broken tentacle, and clusters of sexual bells. Although no nectocalyces are found, their former existence is indicated by a well-marked nectostem and a cluster of immature swimming-bells (always the most adherent of these bodies) just below the float. Nectocalyces, with the exception of the cluster just mentioned, are more readily detached from the stem than any other structures, and they were probably broken from their connections with the axis at the time of capture.

The float is a sinall, pear-shaped, colorless body, slightly inclined to one side in its attachment to the stem. The nectostem is larger in diameter than that of any other genus, not excluding gigantic specimens of Apolemia. The contracted axis is about a quarter of an inch in diameter. It is not twisted in contraction. The nectosten has a smooth surface with the exception of one side, on which is placed a row of small tubercles, which I have considered former points of attachment of the absent nectocalyces.

The polyp-stem is a little more in diameter than the nectostem, and is jointel. Many detached joints from the distal end are found in the bottle, while several of the joints, although partially severed, hang adherent to the remainder of the axis.

The appendages to the polyp-stem all arise from one side of the stem, which by its contraction in spirit has thrown them in such confusion that their normal arrangement camot be satisfactorily determined. The walls of the stem are very thick, and its terminal end opposite the float is not eularged into a sac, as occurs in Physophora.

Several detached covering-scales are found in the bottle, and a few still hang from the stem. They have a spatulate outline, continnous margin, and resemble the bracts of Agalma. A small orange-colored tube \(\dagger\) (somatocyst) passes through the middle of each covering-scale, and opening into the stem cavity.

The polypites are very large, and in alcohol are contracted into an almost globular shupe. They have a bright vermilion color, which must have imparted to this Physophore, when alive, a very beautiful appearance. The polypites seem to have been momnted unon a long preduncle, which is also contracted into a spherical slaqe. Upon the basal part of the polypite we find two kinds of appendages arranged in clusters.

\footnotetext{
* A few sketches of this Physophore made hy Mr. Emerton shortly after the specimen was placed in alcohol have been of assistance in my studies. I have also made use of a few of his notes as regards the color of the tastern and corering-scales.
\(\dagger\) This tube was colorless when the specimen came into my lands. Mr. Emerton, who observed it shortly after the medusa was placed in spirit, has indieated its color as bright orauge. The central tube of the bract of known species of Agalma, Agalmopsis, Hatistemma, and Stephanomia is colorless.
}

The first cluster is composed of a bundle of simple filaments．They are probably undeveloped tentacular knobs．The second cluster has a botryoidal shape，and is composed of small spheres closely packed together．They are regarded as the female sexual bells．From the base of a single polypite hangs the stump of a large tentacle，which is destitute of appendages．

The tastern are very characteristic in Haliphyta．They are long，flask－shaped structures，aud are mounted on a slender peduncle．There is no filament in the tastern of the specimen studied．Their color is bright orange．＊

\section*{HIPPOPODID画。}

\section*{Gleba hippopus，Forsk．}

Figs．31－33．
This beautiful medusa，somewhat mutilated，was taken off Martha＇s Vine－ yard，Station 925 ．The nectocalyces are sufficiently well preserved to show that it is identical with the Mediterranean species which is so well known．\(\dagger\)

In the cruise of the＂Blake＂in the summer of 1880，Mr．Agassiz collected a second specimen of this Siphonophore in the Gulf Stream．

\section*{DIPHYID出。}

Diphyes，sp．
A specimen of Diphyes too imperfect for specific determination is found in the collection．

\section*{HYDROIDA．}

Calycopsis typa，gen．et sp．nov．

\section*{Fig． 34.}

Several specimens of a medusa which closely resembles Turris neglectu， Haeck．were collected．The structure of this jelly－fish is so exceptional that it is given a new generic name．Bell high，without apical protuberance．Bell walls thin，with external surface smooth．The inner surface of the bell is crossed ly sixteen radial tubes，each of which passes without bifurcation directly from the proboseis to the bell margin．These vessels are narrow， and in alcoholic specimens resemble white lines on the surface of the bell walls． Four of them arise from the point of union of the ovaries to the proboscis， while three are found intermediate between each pair．The size of all is uniform．
＊Mr．Emerton＇s notes mark what is here identifiel as a taster as bright orange． Even in the alcoholic specimens which were stulied there were traces of this color．
\(\dagger\) A direct comparison between this and specinens of \(G\) ．hippopus brought from Villa Franca show that they are the same．

From the termination of each radial tube on the bell margin hangs a long flexible tentacle, which is unbranched, and in alcoholic specimensappears to be enlarged at the distal end. There are sixteen tentacles in most specimens. Several had less, but none more than this number.

No otocysts were found on the bell 1 im .
The ovaries are four in number, and in all the specimens are very well developed. They cover the outer walls of the proboseis, and seem to fill almost the whole of the upper part of the bell cavity. Each gland consists of many small leaflets arranged in parallel rows side by side, and opening into a tube which is a continuation along the surface of the proboscis of one of four radial vessels. By the method of attachment of the ovaries to the proboseis and the imer walls of the bell, the upper part of the leell cavity is separated into four recesses, which are divided from each other by partitions. These recesses are bounded above by the apex of the bell, on one side by the bell walls, and on the other sides by the partitions mentioned above and the walls of the proboseis. Upon the lower edge of the partitions which separate the recesses pass the chymiferous tubes, from the ovaries to the inner surface of the bell.

The lips about the mouth are so poorly preserved that their structure could not be satisfactorily made out. The color of the ovaries in alcohol is dark brown ; the bell walls and tentacles are white, with a tinge of bluish color.

The relationship of this medusa to forms like Turris is very great, so far as the general character and place of attachment of the ovaries is concerned. The existence in Calycopsis of sixtecn radial tubes instead of four, is a feature which it shares with none of the Anthomeduse. On the other hand, my failure to find otocysts on the bell rim seems to support the reference of it to Tubularianlike jelly-fishes. The otocysts could not be found after a persistent search, and are probably wanting. If sense bodies of this kind are present in C'alycopsis, the place of attachment of its ovaries has such a strong likeness to those of Turris that the melnsa would combine extraordinary features and be a most abnormal form, the number of radial tubes is so great.

Chromatonema rubrum, gen. et sp. nor.

\section*{Fig. 40.}

Several specimens of a large hydroid medusa in a distorted condition, and apparently allied to Staurophora in the position of the sexual organs, were found.

The form of the bell is shown in the figures. There are four reat-colored chymiferous tubes, near the origin of which from the proboseis are situated the ovaries. The sexual glands are confinel to the upper part of the bell, hanging from the chymiferous tubes for abont one thirl their conse. Their color is bright red. No otocysts were fonnd. The number of tentacles varies from twelve to sixteen. In alcohol their color is red. The attinities of this medusa
are somewhat difficult to make out, and it is provisionally named C. rubrum until future observations can complete this imperfect sketch.

Halicreas minimum, gen. et sp. nov.
Two specimens* of a new and highly interesting jelly-fish closely related to the Narcomedusæ were found by the members of the Commission.

\section*{Halicreas, gen. nov.}

The genus Halicreas differs from other medusæ in possessing eight prominent rounded projections covered with tubercles on the bell margin at the extremity of eight radially arranged ribs passing from centre to circumference of the bell. No proboscis. No tentacles. It has eight sausage-shaped oraries hanging into the bell cavity from its upper surface.

\section*{H. minimum, sp. nov.}

The bell of the alcoholic specimen is flat, disk-shaped, translucent, white. In its walls are eight radial stripes, which were at first mistaken for radial tubes. They are, howerer, simple thickenings of the bell walls, and in gencral character are not unlike the radial stripes of Cassiopea. No opening was traced from them into the stomach, and they secmed to be solid throughout. Each of these radial stripes terminates on the bell margin near a prominence which is very marked in both specimens. This protuberance bears many small rounded papillæ. No remnant of tentacles was observed hanging from these tubercles or from the papillæ. Tentacles are also absent on the bell margin between the prominences. The margin of the bell between two marginal prominences is smooth and destitute of otocysts. A narrow " velum" (?), which probably forms the sides and lower floor of a stomach, hangs down in both specimens from the bell rim. \(\dagger\) In the specimen preserved in chromic acid this structure is rery much convoluted on account of the contracted condition of the bell walls. No otocysts were observed on its lower rim. Chymiferous tubes are wanting in the bell walls of both specimens. No circumferential ressel. There is no proboscis, and the stomach seems to resemble that of Cunina discoides. Its upper wall is the wall of the bell, and its floor the surface of the "velum."

Eight ovaries hang into this gastral carity. They are sausage-shaped, and arise near the centre of the disk in the intervals between the radial stripes

\footnotetext{
* One of these had the disk expanded, and was preserved in spirit. The other was contracted, globular, and less translucent. It resembles a jelly-tish preserved in chromic acid. The second specimen had eight ovaries langing down in the bell cavity. These organs were wanting in the former specimens, but the scars where they formerly were attached still existed.
\(\dagger\) Circumference of the disk comecting the prominences.
}
mentioned above. In them individual eggs can be easily distinguished in the chromic acid specimen. The diameter of the larger specimen is about three fourths of an inch.

The combination of structures which could be made out with any certainty in these two specimens of Halicreas certainly stamp it as a most peculiar jellyfish. Little stress, however, can be placed on the failure to find certain essential organs, as the tentacles, otocysts, and the like. Tentacles may have existed and have been broken off in the capture of the medusa, leaving the bases as stumps. Such a condition almost invariably results in alcoholic Trachymedusx. If I am not wrong in my interpretation of the systematic position of Halicreas, the otocysts, if any exist, should be searched for on the inner or lower rim of that body which has been called the velum. In both the specimens before me that structure is so contorted that, even if sense organs existed, they could not be found or counted. There are certainly no marginal sense bodies on the interval between each marginal tubercle.

The knowledge which we have of the structure of this medusa is so fragmentary that it is at present impossible to determine its affinities. It seems to me most closely allied to the Narcomedusx, Haeckel, but differs from them all in the eight radial stripes in the bell and the eight marginal tubercles. On the other hand, there are no marginal lappets as in Discophora, and the "velum " indicates a true hydroid medusa. The prominent marginal tubercles at their extremities are wanting in all other meduse with which I am acquainted. The genus is the type of a new family related to the Discophora more intimately than are the Narcomedusæ, among which it will probably be placel.

\section*{EXPLANATION OF THE PLATE.}

\section*{LETTERS.}
A. a. Auricles.
\(a t\). Auricular vessels.
B. bo. Bell opening.
\(b w\). Central part of the nectocalyx.
C. c. Bifurcation of tubes from the funnel.
ca. Cavity.
cc. Primary divisions of \(c\).
cl. Connection between the otocyst and the roms of combs.
ci. Wings of bell.
ct. Termination of the chymiferous tubes in marginal lappets.
D. d. Tentacular cavity (basal).
E. \(c e\). Clusters of lasso-cells.
F. f. Funnel.
G. g. Remnant of former tubular connection with hydroid or medusa.
\(g \mathrm{~m}\). Lasso-cells.
H. h. Lasso-cells.
\(h d\). Hood.
I. i. Chymiferous tubes.
ir. Inner recesses (Riechgrübschen).
J. \(j\). Peduncle.
K. k. Budding stolon.
L. l. Lateral tubes.
\(l m\). Muscular layer on under floor (color white).
ld. Gelatinous tissuc.
\(l l\). Bifurcation of lateral tubes.
\(l t\). Lobular vessels.
M. m. Mouth.
\(m f\). Muscular fibres.
\(m\) l. Marginal lappets.
\(m p\). Pigment.
0. oc. Ocellus.
o l. Oral lappets.
ov. Ovaries.
oi. Enlargement of a chymiferous tube.
ot. Otocyst.
otc. Cavity between the marginal lobes into which the marginal sense body projects.
ot \(i\). Chymiferous tube passing to the otocyst.
P. p. Proboseis.
\(p b\). Mass of pigment.
\(p\) s. Piginent spots.
R. \(r\). Outer pit (Riechgruibsehen).
\(r t\). Tentacular base.
S. s. Stomach.
\(s p\). "Spurs" (small filaments or tentaeles).
st. Somatocyst.
T. t. Tentacle.
\(t^{3}\). Small intermediate tentacles.
\(t f\). Tentacular appendages.
\(t m\). Basal portion of the tentacle into which it is absorbed.
\(t c\). Distal enlargement of the tentacle.
\(t t\). Tentacular tubes.
U. \(u\). Basal portion of proboseis.
\(u \mathrm{~m}\). Gelatinous part of the lower floor (color pink).
V. v. Pigment in median portion.
ve. Velum.
W. w. Constrietion whieh separates median and distal portions.
\(w \mathrm{~m}\). Long cells (?).
X. \(x\). Pigment dots near constrietion.
Y. \(y\). Seattered pigment.
Z. z. Half-absorbed tentacular appendage.

\section*{FIGURES.}

1-9. Larval stages illustrative of the development of the chymiferous tubes of Mncmiopsis Lcidyi, A. Ag.
1. Youngest larva just escaped from the shell (egg sac). The riew is taken in a plane passing through the tentacles and the otocyst.
1 a. A larval Mnemiopsis seen from the aetinal pole.
\(2-4\). Stages in growth illustrating the elongation of the ehymiferous vessels previous to their union.
5. Young Mnemiopsis in which the lobular tubes ( \(l t\) ) have united.
6. The same, still older than the last.
\(6 a\). View of fig. 6 in a plane at right angles.
7. A stage more advanced than the last, in which the auricles have begun to form.
\(7 a\). View of fig. 7 at right angles to the plane of the last.
8. A larva in which the lateral and aurieular tubes have united.
9. Young Inemiopsis with well-developed auricles and oral lotes.
\(9 a\). Base of the tentacle of young 1 /nemionsis.
10-14. Larval stages of Epenthesis folleata, MeCr.
10. Side riew of the young, with six tentacles and beginnings of a serenth.
11. The same (oral view).
12. Young \(E\). follcata with cight tentacles (oral riew).
13. E. folleata with bell reversed.
14. Side view of the young Epenthesis with eight tentacles.
15. Adult Ectopleura oeliracea, A. Ag.

15 a. Magnified proboscis of the same.
15 b . Magnified basal part of the proboscis when retracted.
16. Youngest larva observed of \(E\). ochracea.
17. Youngest medusa of Phialium duodecimale, Haeck.
18. The same (oral view).
19. An older stage of \(P\). duodecimale (bell expandel).
20. The same (oral view).
21. The same (bell contracted).
22. Youngest larva of Willia ornata, McCr.
\(22 a\). The same (oral view).
23. Older larva of \(W\). ornata.
\(23 a\). A row of three clusters of lasso-cells found on the exterual walls of \(W\). omata.
23 b . A single cluster of lasso-cells from the external wall of the youngest Willia (fig. 22).
23 d . Tentacular bulb of \(W\). ornata (optical section).
24. Willia, sp., with budding stola.
25. Marginal sense body of Dactylometra quinquecirra, A. Ag. (The marginal lobes are infolded.)
26. The same (side view with marginal lobes extended).
27. The relative position of the outer pit and the otocyst of the same.
28. Portion of the bell margin of \(D\). quinquccirra between two marginal sense bodies.
29. Tentacular bulb of Eucope.
30. Tentacular bulb of Gemmaria gemmosa, McCr.
31. Nectocalyx of Glcba hippopus, Forsk.
32. The same (side view).
33. G. hippopus with retracted stem.
34. Culycopsis typa, gen. et sp. nov.
35. Tentacular bulb of Ectopleura ochracea.
36. Portion (terminal) of the tentacle of the last.
37. Covering scale of Haliphyta magnifica, gen. et sp. nov.
38. Inner pits, "Riechgrübschen," of the marginal sense body of D. quinquecirra.
39. The iuner pits from above.
40. Taster of IIaliphyta magnifica.
41. Chromatonema rubrum, gen. ct sp. nov.


\section*{BULLETIN}

OF THE

\title{
MUSEUM OF COMPPARATIVE ZOÖLOGY \\ AT
}

HARVARD COLLEGE, IN CAMBRIDGE.

VOL. X.

CAMbridge, Mass., U.S. A.

Uńiversity Press:
John Wilson \& Son, Cambridge.

\section*{CONTENTS.}
Page
No. 1. - Reports on the Results of Dredging by the United States Coast Survey Steamer "Blake." XVII. Report on the Crustacea. Part I. De- capoda. By S. I. Smith. (16 Plates) ..... 1
No. 2. - Bibliography to accompany " Selections from Embryological Mono- graphs," compiled by A. Agassiz, W. Faxon, and E. L. Mark. II. Echinodermata. By A. Agassiz ..... 109
No. 3.-On a Revision of the Ethmoid Bone in the Mammalia. By H.
Allen. (7 Plates) ..... 135
No. 4. - Reports on the Results of Dredging by the United States Coast Survey Steamer "Blake." XVIII. The Stalked Crinoids of the Caribbean Sea. By P. H. Carpenter . ..... 165
No. 5. - Reports on the Results of Dredging by the United States Coast Survey Steamer "Blake." XIX. Report on the Fishes. By G. B. Goode and T. H. Bean ..... 183
No. 6. - Reports on the Results of Dredging by the United States Coast Sur- vey Steamer "Blake." XX. Report on the Ophiuroidea. By T. Lrmas. (8 Plates) ..... 227

No. 1. - Reports on the Results of Dredying, under the Supervision of Alexander Agassiz, on the East C'oust of the United States, during the Summer of 18S0, by the U. S. Coust Survey Steamer "Blule," Commander J. R. Bartlett, U. S. N., Commanding.
(Published by permission of Carlile P. Patterson and J. E. Hilgard, Supts. U. S. Coast and Geodetic Survey.)

\section*{XVII.}

\author{
Report on the Crustacea. Part I. Decapod. By Sidner I. Smite.
}

The part of the following report relating to the Macrura was ready for the printer before Alphonse Milne-Edwards's Description de quelques Crustacés Macroures provenant des grandes profondeurs de la Mer des Antilles (Annales Sci. Nat., Zool., \(6^{m o}\) série, XI. No. 4, 1881) was received, so that all the references to it have been added subsequently. The new species in this and some other recent papers of Milne-Edwards, and in Bates's recent paper on the Penæidea, are so imperfectly characterized that in several cases I have found it impossible to determine, with any approximation to certainty, whether or not they are identical with species described in the following pages. I bave endeavored, howerer, to make the descriptions and figures of the species here described so complete, that subsequent investigators will not labor under a similar difficulty in regard to them.

\section*{BRACHYURA.}

MAIOIDEA.
Amathia Agassizii, sp. nov.
Plate II. Figs. 2, 3.
Resembles A. Carpenteri Norman (figured by Wywille Thomson, Depths of the Sea, p. 175, 1873), but has shorter rostral horns and more mmerons spines upon the carapax.

The carapax is sub-triangular, excluding spines and rostral horns, nearly VOL. X. - No. 1.
four fifths as broad as long, or with the breadth including spines about equal to the length excluding the rostral horns, which are strongly divergent, nearly straight, and in the adult less than half as long as the rest of the carapax. The supra-orbital spines are large, acute, and much more prominent than the obtuse post-orbital processes. The basal segment of the antenna is armed with two large and nearly equal spines beneath the eye, one near the base, the other near the tip. The hepatic region projects above the lateral margin in a prominent spine about a third of the way from the orbit to the great branchial spine. The anterior angles of the buccal area project in angular dentiform processes, back of which the prominent margin of the pleural region is armed with two or three small and unequal spines. There are six spines or spiniform tubercles on the gastric region, two median, and each side two slightly smaller lateral, which are nearer together than the median. There are three median spiniform tubercles on the cardiac region, of which the middle one is much the more prominent, and back of these the posterior margin of the cardiac region projects in a prominent median spine, either side of which the postero-lateral margin is ornamented with a regular series of six or seren minute tubercles. The middle of the branchial region projects in a spine directed straight outward and a little upward, which is the largest upon the carapax, and about half as long as the rostral horns; on a line between this and the posterozlateral gastric spine there are two spines near together ; and back of these on the posterior part of the region there is a single spine opposite the large cardiac spine. In addition to these dorsal spines of the branchial region there is a lateral closely set series of three or four small spines just below the pleural suture and above the base of the cheliped, and a similar but isolated spine below and back of the great branchial spine. The entire surface of the carapax and of the sternum, and of the exposed parts of the appendages, except the terminal portions of the chele and of the dactyli of the ambulatory legs, is covered with soft scabrous papillæ, and sparsely clothed with short seta.

The chelipeds are a little longer than the carapax including the rostral horns, and scarcely stouter than the ambulatory legs; the chela is nearly as long as and no stouter than the merus, the basal portion subeylindrical, nearly maked and smooth except for minute, scattered papillæ, like those on the surface generally except that they are smaller and much more seattered ; the digits are a little more than half as long as the basal portion, a little curved, slightly compressed, smooth, and with the prehensile edges regularly dentate. The ambulatory legs are all armed with a dentiform spine at the distal end of the merns; the first pair are nearly twice as long as the chelipeds, and the succeeding pairs are successively a little shorter.

The second and thisd segments of the abdomen of the male are expanded, and the first and second are each armed with a small median tuberele.

Station 319, N. Lat. \(32^{\circ} 25^{\prime}\), W. Long. \(77^{\circ} 42^{\prime} 30^{\prime \prime}, 262\) fath. ; 18 .
A very much smaller specimen (Plate Il. fig. 3) from Station 317 differs so much from the one above describer that it might readily be mistaken for a distinct species. It is apparently an immature male, and differs in having a
narrower carapax, with much longer rostral horns and fewer and much longer spines.

The carapax, excluding the rostral horns and lateral spines, is about two thirds as broad as long ; the rostral horns are as long as the breadth of the carapax excluding the spines, nearly straight, slender, and very acute. There are two spines upon the basal segment of the anteuna, but the proximal is moch smaller than the distal. The hepatic spine is slender, and about a fourth as long as the rostral horus. There is only one small spine, or one with the rudiment of a second, on the margin of the pleural region back of the anterior angle of the buccal area. The two median spines of the gastric region are slender and conspicuous, the posterior much the larger, but there are no lateral spines. The middle spine of the cardiac region is as long as the hepatic, and in front of its base there is a rudiment of a second; the posteitior cardiac spine is slender and very little shorter than the hepatic, but there are no spines or tubercles either side its base. The middle spine of the branchial region is slemder, and more than half as long as the rostral horns; there is a single small spine in place of the two anterior branchial ; a small posterior branchial is present; and in place of the series of small spines there are two very minute tubercles.

The chelipeds and ambulatory legs are nearly as in the other specinen, but the chelx and the dactyli of the ambulatory legs are a little more hairy.

Station 317, N. Lat. \(31^{\circ} 57^{\prime}\), W. Long. \(75^{\circ} 18^{\prime} 35^{\prime \prime}, 333\) fath.
The two specimens give the following measurements.


Since the above was written sereral specimens of this species have been taken off Martha's Vineyard by the United States Fish Commission. All these specimens are intermediate in size between those above descrihed, and show that they are really, as supposed, stages of growth of a single species.

Hyas coarctatus Leacir.
One young specimen, Station 301, N. Lat. \(41^{\circ} 26^{\prime} 55^{\prime \prime}\), W'. Lon. \(66^{\circ} 3^{\prime}\), 71 fath.

\section*{Euprognatha rastellifera Stimpson.}

Stimpson, Bull. Mus. Comp. Zoöl., II. p. 123, 1870.
A. M.-Edwards, Crust. Région Mexicaine, p. 183, Pl. XXXIII. fig. 2, 1878 ; Bull. Mus. Comp. Zoöl., VIII. p. 7, 1880.
Smith, Proc. National Mus., Washington, III. p. 415, 1881.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
335 & \(38^{\circ} 22^{\prime} 25^{\prime \prime}\) & \(73^{\circ} 33^{\prime} 40^{\prime \prime}\) & 89 & \(1 \delta\). \\
345 & \(40^{\circ} 10^{\prime} 15^{\prime \prime}\) & \(71^{\circ} 4^{\prime} 30^{\prime \prime}\) & 71 & \(70 \delta\) §. 9. \\
346 & \(40^{\circ} 25^{\prime} 35^{\prime \prime}\) & \(71^{\circ} 10^{\prime} 30^{\prime \prime}\) & 44 & 1 个.
\end{tabular}

This is apparently by far the most abundant of all the Brachyura along our whole eastern coast south of C'ape Cod in the belt from 50 to 200 fath. depth. In the U. S. Fish Commission dredgings off Martha's Vineyard, many thonsands of specimens were often taken at a single haul of the trawl.

\section*{CANCROIDA.}

\section*{Cancer irroratus Sar.}

Cancer irroratus Sar, Jour. Acad. Nat. Sci. Philadelphia, I. p. 59 ( \(\sigma^{\circ}\) only, \(\%\) being C. borcalis), Pl. IV. fig. 2, 1817.

Stimpsox, Ann. Lyceum Nat. Hist. New York, ViI. p. 50 (4), 1859.
Smity, Trans. Conn. Acad., V. p. 38, 1879.
Fingslef, Proc. Acad. Nat. Sci., 1879, p. 391, 1880.
Platycarcinus irroratus M.-Edwards, Hist. Nat. Crust., I. p. 414, 1834.
Dekar, Nat. Hist. New Iork, Crust., p. 6 (in part), Pl. Il. fig. 2, 1844.
Cancer Sayi Govld, Invertebrata Massachusetts, 1st ed., p. 323, 1841.
Platycarcinus Sayi Dekay, op. cit., p. 7, 1844.
C'ancer borealis Packard, Memoirs Boston Soc. Nat. Hist., I. p. 303, 1867.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
314 & \(32^{\circ} 24^{\prime} 0^{\prime \prime}\) & \(78^{\circ} 440^{\prime \prime}\) & 142 & \(2 \%\). \\
327 & \(35^{\prime 0} 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & \(6 \delta, 29\). \\
333 & \(35^{\circ} 45^{\prime} 25^{\prime \prime}\) & \(74^{\mathrm{C}} 50^{\prime} 30^{\prime \prime}\) & 65 & \(1 \delta\).
\end{tabular}

The occurrence of this abundant shallow-water and littoral northern species in deep water south of Cape Hatteras is very interesting. As a littoral species it is apparently not abundant south of Cape IIatteras, and on the New England coast fully grown individuals are certainly rare below twenty fathoms. The alcoholic specimens from deep water are lighter in color than similar specimens from shallow water, but this may be partially due to the fact that they are entirely devoid of all algoid growths which are common on shallow-water individuals; and the edges of the carapax appear more acutely dentated, which is easily explained by the fact that they are not sulbjected to the almading influence of sand and gravel as the shallow-water specimens are. The following measurements show no appreciable difference from shallow-water specimens in the proportions of the carapax.
\begin{tabular}{ccccc} 
Station. & Sex. & Length of Carapax. & \multicolumn{2}{c}{ Breadth of Carapax. } \\
333 & \(\delta\) & 25.0 mm. & \(38.7 \mathrm{~mm} .=1.55\) lgth. \\
327 & " & 36.3 & 56.0 & 1.54 \\
" & " & 37.2 & 59.0 & 1.59 \\
" & " & 37.2 & 59.1 & 1.59 \\
" & " & 40.5 & 64.8 & 1.60 \\
" & " & 41.0 & 64.8 & 1.58 \\
" & " & 59.7 & 94.0 & 1.59 \\
" & 8 & 39.0 & 61.5 & 1.58 \\
" & " & 39.1 & 62.0 & 1.56
\end{tabular}

\section*{Cancer borealis Stimpson.}

Cancer irroratus Sar, Jour. Acad. Nat. Sci. Philadelphia, I. p. 57, 1817 (\% only, \(\sigma^{\pi}\) being C. irroratus).
Gould, Invertebrata Massachusetts, 1st ed., p. 322, 1841
Stimpson, Invertebrata Grand Manan, p. 59, 1853 (teste Stimpson).
Platycarcinus irroratus DeKay, Nat. Hist. New York, Crust., p. 6 (but not the fig.), 1844.
Cancer borcalis Stimpson, Ann. Lyceum Nat. Hist. New York, VII., p. \(54(4), 1859\).
Smithi, Inverteb. Vineyard Sd., Report U. S. Fish Com., I. p1. 546 ( 252 ), \(i 45\)
(451), 1874 ; Trans. Conn. Acad., V. p. 39; P1. VIll. 1879 ; Proc. National Mus., Washington, III. p. 417, 1881.
Kingsley, Proc. Acad. Nat. Sci. Philadelphia, 1878, p. 317 (2).
\begin{tabular}{ccccl} 
Statiou. & N. Lat. & W. Long. & Fathoms. & \multicolumn{1}{c}{ Specimens. } \\
314 & \(32^{\circ} 24^{\prime} 0^{\prime \prime}\) & \(75^{\circ} 44^{\prime} 0^{\prime \prime}\) & 142 & \(1 \delta, 39,3\) young. \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & \(6 \delta, 4 \%\). \\
327 & \(34^{\circ} 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & \(3 \delta, 19,8\) young.
\end{tabular}

Fifteen of the specimens give the following measurements.


This species has also been taken in considerable abundance, in 50 to 200 fathoms, off Martha's Vineyard, by the U. S. Fish Commission. The remarks under the last species in regard to coloration, acuteness of the dentation of the edge of the carapax, etc., apply equally well to this species. The fact that this species and C.irroratus as well are regular inhabitants of the deep water off our southern coast is sufficient to account for their occasional occurrence in shallow water at the Bermudas, and even in the West Indies.

Cancer Bellianus Johnson (Proc. Zoöl. Soc. London, 1861, p. 240, Pl. XXVIII.) from Madeira, is much like this species, but apparently distinct from it.

\section*{Geryon quinquedens Smith.}

Trans, Conn. Acad., V. p. 35, Pl. IX. figs. 1-1 b, 2, 1879 ; Proc. National Mus. Washington, III. p. 417, 1881.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Speeimens. \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ} 00^{\prime} 0^{\prime \prime}\) & 647 & \(1 \delta\) \\
332 & \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) & \(74^{\circ} 48^{\prime}\) & \(0^{\prime \prime}\) & 263 \\
334 & \(39^{\circ} 20^{\prime} 30^{\prime \prime}\) & \(73^{\circ} 26^{\prime} 40^{\prime \prime}\) & 395 & \(2 \delta\) \\
337 & \(35^{\circ} 20^{\prime} \delta^{\prime \prime}\) & \(70^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & Fragments only. \\
343 & \(39^{\circ} 45^{\prime} 40^{\prime \prime}\) & \(70^{\circ} 55^{\prime}\) & \(0^{\prime \prime}\) & 732 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & \(0^{\prime \prime}\) & 304 \\
\(1 \delta^{\prime \prime}, 19\) with ergs. \\
312 & \(39^{\circ} 50^{\prime} 45^{\prime \prime}\) & \(70^{\circ} 11^{\prime}\) & \(0^{\prime \prime}\) & 466
\end{tabular}

These specimens and others recently obtained by the U. S. Fish Commission show that this species grows to be one of the largest of the Brachyura. The very large individuals differ considerably from the specinens originally described. In all the large specimens the teeth of the antero-lateral margin of the carapax become reduced to angular tubercles, and in some of the larger ones the fourth tooth becomes entirely obsolete. Thus in specimens No. 2, 3, 5, 7 , and 8 of the table of measurements given below, the fourth tooth is distinct; in No. 9, distinct, but very obtuse ; in No. 4, distinct, but the right side of the carapax deformed by some injury ; in No. l, nearly olsolete ; while in Nos. 6 and 10 it is entirely obsolete.
Ten specimens give the following measurements : -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Station. & Sex. & Length of Carapax. & \multicolumn{2}{|l|}{Breadth including spines.} & \multicolumn{2}{|l|}{Breadth exeluding spines.} \\
\hline 1 & 312 & § & 41.0 mm . & 51.61 & 1.26 & & 1.10 \\
\hline 2 & 303 & " & 54.0 & 65.5 & 1.21 & 61 & 1.13 \\
\hline 3 & 334 & " & 81.0 & 97.0 & 1.20 & 89 & 1.10 \\
\hline 4 & " & \% & 94.0 & 113.0 & 1.20 & 104 & 1.11 \\
\hline 5 & 332 & " & 116.0 & 136.5 & 1.18 & 128 & 1.10 \\
\hline 6 & " & " & 130.0 & 152.5 & 1.17 & 144 & 1.11 \\
\hline 7 & 309 & \% & 47.5 & 61.0 & 1.88 & 55 & 1.16 \\
\hline 8 & 343 & " & 82.5 & 99.5 & 1.21 & 92 & 1.12 \\
\hline 9 & " & 6 & 84.0 & 100.0 & 1.19 & 91 & 1.18 \\
\hline 10 & " & * & 92.0 & 107.5 & 1.17 & 101 & 1.10 \\
\hline
\end{tabular}

In four of the above specimens the greatest expanse of the ambulatory legs， which is at next to the last pair，is as follows．No． \(5,540 \mathrm{~mm}\) ．；No． \(6,625 \mathrm{~mm}\) ． （ 24.6 inches）；No． \(8,380 \mathrm{~mm}\) ．；No． \(10,417 \mathrm{~mm}\) ．The chele are almost ex－ actly alike on the two sides，and in the largest male and largest female give the fullowing measurements ：－

Right Caela．
Length．Meight．Length of Dactylus．
No． 6
＂ 10
39

\section*{OXYSTOMATA．}

\section*{CALAPPID不。}

\section*{Acanthocarpus Alexandri Stimpsox．}

Stimpsos，Bull．Mus．Comp．Zoöl．，II．p．153， 1870.
A．M．－EdWAEDs，Ibid．，VIII．p．19，Pl．I．fig．2， 1880.
Suitir，Proc．National．Mus．，Washington，111．p．418， 1881.
Station 345 ，N．Lat． \(40^{\circ} 10^{\prime} 15^{\prime \prime}\) ，W．Long． \(71^{\circ} 4^{\prime} 30^{\prime \prime}\) ， 71 fathoms．A single male recently moulted and very soft，the carapax about 36.0 mm ．long and 36.1 broarl．It has also been taken at several stations off Martha＇s Vinevard by the U．S．Fish Commission in 1880 and 1881，and in living specimens from these stations the dorsal surface of the carapax and cheliperls was pale reddish orange，deepest in color upon the elevations of the carapax and upon the bases of the carpal spines of the chelipeds ；white the carapax beneath，the sternum， abdomen，and the under surfaces of the chelipeds and ambulatory legs are white，very slightly tinged with redlish．

\title{
DORIPPID压． \\ Cyclodorippe nitida A．M．－Edrards．
}

Bull．Mus．Comp．Zoül．，ViII．p．24， 1 Sso．
Plate II．Figs．1－1 \({ }^{\text {b }}\) ．
Station 319，N．Lat． \(32^{\circ} 25^{\prime}\) ，W．Lons． \(77^{\circ} 42^{\prime} 30^{\prime \prime}, 262\) fath．One speci－ men，which gives the following measurements ：－
Station ．．．．．．．．．．．． 319
Sex ．．．．．．．．．．．． 8
Length of carapax to middle of front ．．．．．． 6.1 mm ．
＂＂inclucling frontal teeth ．．．．． 6.4
Brealth between tips of lateral teeth ．．．．．． 6.9
Greatest lirealth lack of lateral teeth ．．．．． 6.9
Length of chelipal ．．．．．．．．．． 10.0
Length of chela ..... 5.0 mm .
Breadth of " ..... 1.7
Length of its dactylus ..... 2.8
" first ambulatory leg ..... 9.0
" dactylus ..... 2.0
" second ambulatory leg ..... 11.6
" dactylus ..... 3.2
" telson ..... 2.5
Breadth of " ..... 4.8

\section*{ANOMURA.}

\section*{LITHODIDEA.}

Lithodes Agassizii, sp. nov.

\section*{Plate \(\mathbf{I}\).}

This species is allied to \(L\). maia and \(L\). antarctica in haring no scale and only a single spine at the base of the antenna, and in the general form and armament of the carapax and appendages, but differs from them both conspicuously in the rostrum, which is rather short and tridentate, with the lateral spines nearly as long as the rostral spine itself. The spines upon the carapax and appendages are more numerous and much more acute than in L. maia, and the marginal spines of the carapax are not very much larger than the dorsal. There are only two adults, both females, in the collection, and these differ remarkably from each other, and from three very young specimens, in the number and length of the spines upon the carapax and legs.

In the larger specimen the carapax, excluding the rostrum and spines, is about nine tenths as broad as long, with a conspicuous sinus in the middle of the posterior margin. The rostrum is very short, with an acute central spine scarcely as long as the eye-stalks and with a somewhat shorter lateral spine arising either side its base and directed upward and outward. The gastric region is swollen and very high, separated from the cardiac by a very deep depression, and armed with a pair of small spines just back of the lateral spines of the rostrum, and back of these on the highest part of the region with two widely separated pairs of much larger spines, while either sile there is a small spine npposite the large hepatic spine, between which and the ohtusely spiniform external angle of the orbit there are two spinigerous angular prominences in the antero-lateral margin. There is a distinct notch in the anternlateral margin at the cervical suture, but back of this the margin is regularly arcuate to the middle of the posterior margin, and is armed with about thirteen stout spines, of which the larger are about as large as the hepatic spines. The branchial region is considerably convex, and arment, in addition to those upon the margin, with about ten large spines, between which there are a consider-
able number of low obtuse spines or tubercles. The cardiac region is separated from the branchial each side by a deep sulcus, is prominent and armed with two pairs of large spines, and back of these with a single one in the middle line.

The eyes, antennulx, autennæ, and the exposed parts of the oral appendages are rery nearly as in L. maia. The chelipeds are nearly equal in length, lut the right is much stouter than the left, are armed with comparatively few and small spines, and the digits of the chele are about two thirds of the entire length of the chela, slender, tapering, and strongly curved. The ambulatory legs are very long, those of the third pair being nearly three times as long as the breadth of the carapax excluding spines. The ischial, meral, and carpal segments are armed with only a very few scattered and very small spines, the meral segments in the first and second pairs are almost entirely unarmed except a few small spines or teeth along the upper edges, but the propodi, which are slender and fully as long as the corresponding meri, are armed along the edges with more numerous and very sharp but small spines. The dactyli are about half to considerably more than half the length of the corresponding propodi, slightly curvel, acute, and, except near the tips, armed with small and acute spines.
The plates of the second somite of the abdomen are armed with numerous spines projecting backward and upward, and of which those upon the midulle plate are longer than those upon the lateral. The plates of the succeeding somites of the abdomen are very unequally developed, the plates of the left hand side of the third, fourth, and fifth somites being greatly developed at the expense of the corresponding plates of the opposite side, so that the outer edge of the left side of the fifth segment lies beneath the bases of the cheliped and first ambulatory leg of the right side, and the small semicircular telson is beneath or a very little in front of the base of the second ambulatory leg of the right side.

In the smaller of the adult specimens (Pl. I. fig. 1) the carapax, excluding rostrum and spines, is proportionally narrower than in the larger specimen, being about eight tenths as broad as long, and the spines upon the carapax, abdomen, and appendages are much longer and more numerous, the adlitional spines appearing between the large ones corresponding to the spines, or in place of the tubercles, on the larger specimen. The rostral spine and the spines at its base are absolutely more than twice as long as in the larger specimen and more slender, and about the same proportion holds for all the principal spines of the carapax. The external angle of the orbit projects in a spine but little shorter than the eye-stalk, and back of it there are two nearly as lare spines on the antero-lateral margin in place of the two angular prominences of the larger specimen. The large hepatic spine and the thirteen large marginal spines back of the cervical suture are most of them but little smaller than the rostral spine, are directel more upward than outward, and there are nearly as many more allitional smaller spines alternating with the larger. There is a conspicnous additional spine in the middle of the gastric region, and numerous allitional small spines on other parts of the carapax.

The chelipeds and ambulatory legs have about the same proportions as in the larger specimen, but are armed with very numerous acute spines, many of which are of large size. The spines upon the second somite of the abdomen are more numerous, and the larger ones much longer and more slender than in the larger specimen.

The small specimens are all immature, with the carapax excluding the rostrum and spines less than 13 mm . in length, and differ so much from the adults that they might readily be mistaken for a distinct species. These small specimens differ considerably in size, but are all essentially alike. The smallest and most perfect one is from the U. S. Fish Commission dredgings off Martha's Vineyard. In this specimen (Pl. I. figs. 2, 2*) the carapax exeluding the rostrum and spines is only 12.6 mm . in length and scarcely more than seven tenths as broad as long, but all three of the rostral spines and several spines of the carapax proper are more than half as long as the carapax. The spines are much fewer in number than in either of the adult specimens, very slender and acute, and those at the base of the rostrum are just about as large as the rostrum itself. The gastric region is proportionally very much larger than in the adults, but is high and separated from the cardiac region by a deep sulcus, as in them, and is armed with six slender spines, - two pairs on the highest part of the region, of which the anterior pair are almost as long as the rostrum, but the posterior considerably shorter, and a still smaller lateral spine each side. There are two pairs of slender spines on the anterior part of the cardiac region, the anterior a little longer and the posterior a little shorter than the posterior gastric spines. The single hepatic spine each side is nearly as long as the rostrum. The external angle of the orbit projects forwarl in a long and slender spine, back of which are two smaller spines on the antero-lateral margin. There are about twelve slender spines on the lateral and posterior margin back of the cervical suture each side, but they are all small compared with the other spines of the carapax and about half of them are inconspicuous, and above these on either branchial region there are six much larger spines, of which two near the middle of the region are as long as the posterior gastric, but the others considerably shorter.

The eye-stalks and eyes are small and proportionally but little larger than in the adult, but there are two or three sharp spines projecting in front over the eye in place of some inconspicuous tubercles in the alults. The antennulæ, antennæ, and the exposed parts of the oral appendages, are nearly as in the adults.

The cheliperls are nearly as unequal as in the adults, and are armed with very much longer and more slender spines, several of those upon the distal part of the merus and upon the carpus being longer than the carpus itself. The ambulatory less have about the same proportions as in the adults, but the spines with which they are armed are fully as long as those upon the chelipeets, the longer ones, as in the chelipeds, being upon the distal parts of the meri and upon the carpi.

The abdomen is symmetrical. The second somite is made up of three calci-
fied and spiny plates, nearly as in the adult female. The third, fourth, and fifth somites are soft, scarcely at all calcified, and show no distinct division into somites. The sixth is small and sunken for its whole length in the proximal somites, while the seventh is still smaller and rounded at the extremity.

Four of the five specimens seen give the following measurements : -
Station . . . . . . . . . \(1029 \quad 305 \quad 329 \quad 326\)
Sex . . . . . . . . . Young. Young. \& 9
Length of carapax including rostrum and posterior spines . . . . . . . . 17.5 25+ 115139
Length of carapax excluding rostrum and posterior spines . . . . . . . \(9.1 \quad 12.6 \quad 90\)

123
\(\begin{array}{llllll}\text { Breadth of carapax between tips of hepatic spines, } & 13.5 & 18+ & 57 & 64\end{array}\)
\(\begin{array}{llllllll}\text { " " " branchial spines, } & 13.0 & 18+ & 87 & 117\end{array}\)
Greatest breadth of carapax excluding spines . . \(\begin{array}{llllll}6.6 & 9.0 & 77 & 110\end{array}\)
Length of rostrum . . . . . . 7.3
" spines at base of rostrum . . \(\quad\). \(\begin{array}{llllllll}7.4 & 11.5 & 16 & 7\end{array}\)
" anterior gastric spines . . . . \(\quad 7.0 \quad 10.5 \quad 12 \quad 5\)
" " cardiac . . . . . 6.3 8.0 10
" right cheliped . . . . . \(15.0 \quad 19.0 \quad 126 \quad 171\)
" " chela . . . . . . \(6.1 \quad 8.5\)
Breadth of " " . . . . . . \(1.9 \begin{array}{llll}2.5 & 18 & 25\end{array}\)
Length of dactylus of right chela . . . . \(3.5 \quad 5.0 \quad 3544\)
" left cheliped . . . . . \(15.0 \quad 20.0 \quad 126 \quad 167\)
" " chela . . . . . . \(6.0 \quad 8.8 \quad 50\)
Breadth of " . . . . . . \(1.5 \quad 1.9 \quad 14 \quad 19\)
Length of dactylus of left chela . . . . \(3.8 \quad 5.5 \quad 3644+\)
" first ambulatory leg . . . . \(\quad 18.5 \quad 30.0 \quad 220 \quad 270\)
" second " " . . . . 19.5 31.5 245310
" third " " . . . . \(19.532 .0 \quad 260\) 3200
Greatest expanse of ambulatory legs . . . \(43.0 \quad 65.0 \quad 560 \quad 720\)
\begin{tabular}{cccc} 
Station. & N. Lat. & W. Lang. & Fathoons. \\
305 & \(41^{\circ} 33^{\prime} 15^{\prime \prime}\) & \(65^{\circ} 51^{\prime} 25^{\prime \prime}\) & 810 \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 464 \\
329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603
\end{tabular}

Also taken ly the U. S. Fish Commission, off Martha's Vineyard, in 1891. Stations 1028 and 1029, 410 ond 458 fithoms; one young specimen in each case.

\section*{PAGURIDEA.}

\section*{PAGURID灰.}

\section*{Eupagurus Kröyeri Stimpson.}

Eupagurus Kröyeri Stimpsor, Ann. Lyceum Nat. Hist. New York, VII. p. 89 (43), 1859.
S.itth, Trans. Conn. Acad., III. p. 28, 1874 ; Ibid., V. p. 48 ; Proc. National Mus., Washington, III. p. 428, 1881.
Eupagurus pubescens Krüyer, in Gaimard, Voyages en Scandinarie, Pl. II. fig. 1, 1849 (non Kröyer, Naturh. Tidssk., II. p. 251, 1839).
\begin{tabular}{ccccc} 
Station. & N. Lat. & T. Long. & Fathoms. & Specimens. \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 6 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime} 0^{\prime \prime}\) & 524 & 4 \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime}\) & \(0^{\prime \prime}\) & 143 \\
\hline
\end{tabular}

Nearly all the specimens I hare seen from deep water off the Southern coast of New England are small, and the great majority of them were inhabiting carcinœcia overgrown by or composed of Emizoanthus Americanus Verrill.

Eupagurus politus, sp. nov.

\section*{Plate II. Fig. 5.}

The carapax is not suddenly narrowed at the bases of the antennæ, where the breadth is equal to the length in front of the cerrical suture, and not rostrated, the median lobe of the front being broadly rounded and not projecting as far forward as the external angles of the orbital sinuses, which are acute and each usually armed with a short spine.

The eye-stalks, including the eyes, are nearly four fifths as long as the breadth of the carapax in front, stout, and expanded at the very large lolack eves, which are terminal, not oblique, compressed vertically, and broaler than half the length of the stalks. The ophthalmic scales are small, narrow, and spiniform at the tips.

The peduncle of the antenna is about as long as the breadth of the carapax in front, and the ultimate segment about a third longer than the penultimate. The upper flagellum is much longer than the ultimate segment of the pehuncle, while the lower is only about half as long as the upper, slender, and composed of ten to twelve segments. The perluncle of the antema reaches slightly beyond the eye. The acicle is slender, slightly curved, and reaches to the tip of the perduncle, and inside its hase there is a minute tonth, while outside there is a straight spine tonthed or spined along its inner elge, acute at the tip and half as long as the acicle itself. The flagellum is nearly naked, and about three times as long as the carapax.

The exposed parts of the oral appendages are very nearly as in E. bernhardus.
The chelipeds are longer, much narrower, and more nearly equal in size than in \(E\). bernherdus, and, as in that species, are almost entirely naked, but beset with numerous tubercles and low spines. The right cheliped is about as long as the body from the front of the carapax to the tip of the abdomen. The merus and carpus are subecual in length, while the chela is about once and a half as long as the carpus. The carpus and chela are rounded above and armed with numerous tubercles, which are smaller and more crowded on the chela than on the carpus, but the surface between the tubercles is smooth and polished. The dorsal surface of the carpus is limited along the inner edge by a sharp angle armed with a double line of tulercles, while the outer edge is rounded. The chela is very little wider than the carpus, and is narrowed from near the base to the tips of the digits, and both edges are rounded. The digits are rather slender, about half as long as the entire chela, slightly gaping, with acute and strongly incurved chitinous tips, and the prebensile edges armed with a very few obtuse tuberculiform teeth. The left chela is much more slender than the right, but reaches to or a little by the base of its dactylus. The carpus is slender, higher than broad, only slightly expanded distally, and with the narrow dorsal surface flattened and margined either side with a single line of spiniform tubercles. The chela is about a third longer than the carpus, slender, about two and a half times as long as broad, and the dactylus about two thirds the entire length. The dorsal and outer surface is tuberculose, and a low obtuse ridge extends from near the middle of the base along the propodal digit, which tapers from the base to the tip, while the dactylus is smooth except for a few fascicles of setæ, more slender than the propodal digit, and tapered only near the tip. The chitinous tips of the digits are slender, acute, and strongly incurved, and the prehensile edges are sharp, and armed with it closely set series of slender spines or setr.

The ambulatory legs reach considerably beyond the right cheliped, and the second pair reach to the tips of the first pair. In both pairs the meri and propodi are approximately equal in length and longer than the carpi, while the dactyli are about once and a half as long as the propodi, slender, strongly curved, and distally strongly twisted. The two posterior pairs of thoracic legs and the abdominal appendages are very nearly as in \(E\). bernhardus.

In life the general color of the exposed parts is pale orange, the tips of the chelo and of the ambulatory legs white, the eyes black.

The egres are very large, and few in number as compared with the ordinary species of the genus, being 1.0 to 1.1 mm . in diameter in alcoholic specimens, while in E. bernhardus they are only 0.45 to 0.50 mm . in diameter.

Three specimens give the following measurements : -


\section*{BULLETIN OF THE}


It has also been taken, and in great abundance, by the U. S. Fish Commission, off Martha's Vineyard and off the Capes of the Delaware, in 65 to 365 fathoms, and is the species which I have referred to, in Proc. National Mus., Washington, III. p. 428, 1881, as "Eunagurus, sp."

\section*{CATAPAGURUS A. M.EDwards.}

Catapagurus A. M.-Edwards, Bu’l. Mrus. Comp. Zoül., VIII. p. 46, 1850 (Dec. 29). Hemipagurus Smirn, Ann. Mag. Nat. Hist., 5th ser., VII. p. 143, Feb. 1881 ; Proc. National Mus., Washington, III. p. 422, 1881.

I have no doubt that my genus is synonymous with that of Milne-Elwards as indicated above, but I am quite unable to tell from the description alone whether one of my species is synonymous with the single species, C. Sharreri, described by Milne-Elwards. C. Sharreri agrees more nearly in size with H. socialis than \(H\). gracilis, but will very likely prove to be distinct from either, and until this can be determined satisfactorily, it seems best to refer both my species to Catapagurus.

The genus differs from Spiropagurus Stimpson in the form and position of the sexual appendage (formed by the permanent extrusion of a portion of the
vas deferens) of the last thoracic somite of the male, which arises from the right cosa, and is curved in one plane round the right side of the abolomen ; while in Spiropayurus the appendage arises from the left cosa, and in ipirally curved.

The carapax is short and broad, and the anterior margin is obtuse, and does not wholly cover the ophthalmic somite between the eyes. The portion in front of the cervical suture is indurated, but all the rest of the carapax is very soft and membranaceous, without any distinct induration along the cardiacnbranchial suture. The ophthalmic scales are well developed. The eye-stalks are short and the cornea expanded. The antennulx, antennæ, and oral appendages are similar to those in Eupagurus; the exopols of all the maxillipeds are, however, proportionally much longer than in that genus. There are eleven pairs of phyllobranchix, arranged as in Eupagurus bernhardus, but the two anterior pairs connected with the external maxillipeds are rery small, and composed of a few flattened papillæ. The chelipeds are slender and unequal. The first and sccond pairs of ambulatory legs are long, and have slender, compressed, and ciliated or setigerous dactyli ; the third pair are only imperfectly subcheliform.

In the male, the second, third, and fourth somites of the alxlomen bear small appendages upon the left side, as in most of the allied genera, but the fifth somite is destitute of an appendage ; in the female, the appendages of the second, third, and fourth somites are biramous and ovigerous, and there is usually a rudimentary uniramous appendage upon the fifth somite, as in the allied genera.* The uropods are very nearly or quite symmetrical, the rami of the right appendage being very nearly or quite as large as that of the left. The telson is bilobed at the extremity.

As might be expected, the unsymmetrical development of the external sexual appendages of the males of the two species here described corresponds to a like unsymmetrical development of the internal sexual organs, and the following incomplete observations, made on ordinary alcoholic specimens in which the abdominal viscera are not sufficiently well preserved for a full anatomical or histological investigation, appear of sufficient importance to notice here, especially as nothing appears to be known of the internal structure of either species of Spiropagurus.

The right testis and vas deferens are much larger than the left. The lower part of the right ras deferens, in all the adults examined, is much more dilated than the left, and is filled (as is also the external part of the duct) with rery large spermatophores of peculiar form. The left vas deferens is slender, much as in Eupagurus bernhurdus, terminates in a small opening in the left cowa of the last thoracic somite, as in ordinary Paguroids, and contains spermatophores somewhat similar in form and size to those of Eupagurus bernharlus. In alco-

\footnotetext{
* In many of the best preserved and most perfect females of \(C\). socialis examined I can find no traee whatever of this appendage of the difth somite, while in others it is very easily scen.
}
holic specimens of C. socialis the spermatophores from the left ras deferens are approximately 0.16 mm . long and 0.035 mm . broad, with a slender neck about a third of the entire length, and a very thin and delicate lamella for a base. The spermatophores from the right vas deferens are over 2 mm . in total length; the body itself is oval, approximately 0.40 mm . long and a third as broad ; at one end it terminates in a very long and slender process, two or three times as long as the body; at the other end there is a similar lut slightly stouter process, a little longer than the body, and expanding at its tip into a broad and very delicate lamella, approximately 0.35 mm . long by 0.20 mm . broad.

\section*{Catapagurus socialis.}

Hemipagurus socialis Smitif, Proc. National Mus., Washington, III. p. 423, 1881.
Male. - The part of the carapax in front of the cervical suture is about a fifth broader than long, with the sides nearly parallel ; the front margin sinuous, curving slightly forward in the middle and each side between the eye-stalks and the peduncles of the antennæ, the middle lobe thus formed being scarcely more prominent than the lateral lobes, each of which is armed with a minute spine, projecting forward just inside of the 'peduncle of the antenna; between these spines the edge of the front is upturned in a sharp marginal carina, which terminates each side in the spines themselves. The dorsal surface of this part of the carapax is convex in both directions, the protogastric lobes are protuberant and well marked, and nearly the whole surface is roughened and more or less tuberculose, with transverse scabrous elevations, which give rise to numerons hairs. The branchial regions are slightly swollen, so that the breadth of the carapax posteriorly is greater than in front. All the portions back of the cervical suture are smooth and membranaceous.

The cye-stalks are about half as long as the carapax in front of the cervical suture, flattened and expanded distally, where they are about three fourths as broad as long. The eye itself is black, and the cornea extends round either side so as to be crescent-shaped as seen from above. The ophthalmic scales are less than half as long as the eye-stalks, narrow, triangular, and acute.

The first and second segments of the peduncle of the antennula are subequal in length, and the ultimate segment nearly once and a half as long as the penultimate, and almost as long as the eye-stalks. The superior or major flagellum is nearly as long as the ultimate segment of the peduncle; the thick, ciliated basal portion consists of about fourteen segments, and the slender terminal portion, which is nearly once and a half as long as the basal, of about five very slender and subequal segments. The minor flagellum is about two thirds as long as the major, and composed of about eight segments. The perluncle of the antenna reaches by the eye nearly the length of the last segment, which is aloout as long as the greatest diameter of the eye. The acicle is slender, acute, and slightly longer than the last segment of the peduncle. The flagellum reaches beyond the tips of the ambulatory legs.

The cheliperls are slender and very nearly equal in length, but the right is very much stouter than the left. In the right cheliped the merus and carpus are suberqual in length, together nearly twice as long as the carajax, and both are rough and obscurely spinous, the spines being most conspicuous on the edges of the upper surface of the carpus, which is fully three times as long as broad, flattened above, and angular, but not distinctly carinated along either side. The chela is not far from twice as long as the carpus, nearly three times as long as broad, compressed vertically, evenly rounded, smooth and nearly naked above, but clothed with long, soft hair beneath; the digits are longitudinal, not gaping, and the dactylus is about two thirds as long as the basal portion of the propodus, and its prehensile edge is armed with a broad tooth near the middle. ln the left cheliped the merus and carpus are similar to those of the right, but much more slender and a little longer; the carpus is about six times as long as broad, and the edges of the upper surface are rather more sharply angular than in the right ; the chela is shorter than the right, but very slender, smooth, and nearly naked ; the digits are similar, longitudinal, slightly longer than the basal portion of the chela, compressed, slightly curved downward toward the tips, but the prehensile edges straight and very minutely serrate.

The ambulatory legs are rery nearly equal in length, and slightly overreach the chelipeds; the merus is about as long as the left chela, and roughened with small spines on the upper and under edges; the propodus is shorter than the merus, compressed, smooth, and ciliated along the elges; the dactylus is a little longer in the second than in the first pair, but in both shorter than the propodus, very strongly compressed, very slightly twisted, about ten times as long as broad, and thickly ciliated along both edges, except for a short distance along the lower edge near the tip.

The female is smaller than the male, and has proportionally shorter ambulatory legs, and chelipeds very much shorter and much more alike. The right chela is only about a third longer than the carpus, little more than a third as broad as long, and the digits are slender and nearly as long as the basal portion. The left cheliped is proportionally stouter than in the male, and thus approximates to the right ; the chela itself is scarcely more than a third longer than the carpus. The ambulatory legs overreach the chelipeds by nearly or quite the full length of the dactyli, but all the segments have very nearly the same relative proportions as in the male.

The eggs are few in mmber and very large, being about a millimeter in diameter in alcoholic specimens.

In young males the chelipeds and ambulatory legs are similar to those of the female.

Two specimens from Station 314 give the following measurements :-



The carcinœcium is rery rarely a naked gastropod shell ; in most of the specimens seen it is either built up by a colony of Epizoanthus Americanus, or is made up in a somewhat similar way by the single polyp of Adamsia sociabilis Verrill, the base secreted by the Adamsia being expanded on either side and united below so as to enclose the crab in a broadly conical carity, with only a slight spiral curvature. The nuclei about which these polypean carcinœcia are formed are of various origins ; the majority of the Adamsia carcinœcia appear to have been built upon fragments of pteropod shells, in some cases upon bits of worn-tubes, in one case upon the entire shell of a Cadulus, the greater part of the shell being left protruding from the base of the polyp. In the carcinœcia formed by Epizonthus the nucleus seems usually to have been absorbed, so that nothing is left distinguishable from the colony of polyps itself. In some cases the Adamsia has completely overgrown a small Epizoanthus carcinœcium, so that when the Adamsia is removed a perfect Epizoanthus carcinocium is found beneath as a nucleus. The carcinœcium of this species, and of C. gracilis as well, does not cover the animal to the same extent as is usual in the species of Eupagurus, the anterior part of the carapax being apparently constantly exposed, and its induration fitting the animal for such exposure. The Epizoanthus carcinœcia are, however, very often disproportionately large for the crabs inhabiting them, having grown out either sile until they are several times broader than long. In spite of these often enormons carcinœcia, both species of the genus probably swim about by means of the ciliated dactrli of the ambulatory legs, as Spiropagurus spiriger has heen olserved to do by Stimpson (Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 248 (86), 1859).
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 1 \underline{2}^{\prime} 0^{\prime \prime}\) & 143 & 6 \\
313 & \(32^{\circ} 31^{\prime} 50^{\prime \prime}\) & \(78^{\circ} 45^{\prime} 0^{\prime \prime}\) & 75 & 2 \\
314 & \(32^{\circ} 24^{\prime} 0^{\prime \prime}\) & \(78^{\circ} 44^{\prime} 0^{\prime \prime}\) & 142 & \(1000 \pm\) \\
315 & \(32^{\circ} 18^{\prime} 20^{\prime \prime}\) & \(75^{\circ} 43^{\prime}{N^{\prime \prime}}^{\prime \prime}\) & 225 & 4 \\
316 & \(32^{\circ} 7^{\prime} 0^{\prime \prime}\) & \(78^{\circ} 37^{\prime \prime} 30^{\prime \prime}\) & 229 & 1 \\
327 & \(34^{\circ} 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 8 \\
344 & \(40^{\circ} 1^{\prime} 0^{\prime \prime}\) & \(70^{\circ} 55^{\prime} 0^{\prime \prime}\) & 129 & \(40 \pm\) \\
345 & \(40^{\circ} 10^{\prime} 15^{\prime \prime}\) & \(71^{\circ} 4^{\prime} 30^{\prime \prime}\) & 71 & 5
\end{tabular}

This species was taken in great abmilance, in 51 to 250 fathoms, off Martha's Vinesard, ly the U. S. Fish Commission, in 1850 and 1881.

\section*{Catapagurus gracilis.}

Hemipagurus gracilis Smitir, Proc. National Mus., Washington, III. p. 426, 1881.
This is a smaller and more slender species than the last, and is readily distinguished from it by the smooth carapax, the longer and more slender eyestalks, the long and acicular ophthalmic scales, and by the narrow dactyli of the ambulatory legs being longer than the corresponding propodi.

Male. - The carapax in front of the cervical suture is flat, smooth, nearly naked, and scarcely at all areolated. The anterior margin is rather more strongly sinuous than in C. socialis, and the lateral lobes are slightly angular and each is tipped with a minute spine, as in that species, but the marginal carina between these spines is much less distinct.

The eye-stalks are more than half as long as the carapax in front of the cervical suture, flattened and expanded distally, but only about half as broad as long. The eyes themselves are as in \(C\). socialis. The ophthalmic scales are more than half as long as the eye-stalks, and are acicular and regularly acute.

The ultimate segment of the peduncle of the antemmula is as long as the eyestalk and nearly twice as long as the penultimate segment. The major flagellum is as long as the ultimate segment of the peduncle, the basal portion of about eight segments, the terminal portion three times as long and of about five subequal and very slender segments. The minor flagellum is about half as long as the major, and composed of about six segments. The antennæ are very much as in C. socialis.

The chelipeds are nearly equal in length and similar to those of C. socialis, but in the right cheliped the inner edge of the upper surface of the carpus is angular, and armed with a regular series of twelve to eighteen small spines, while the outer edge is rounded and unarmed; and the prehensile edge of the dactylus is armed with two irregular and indistinct teeth, corresponding with two irregular emarginations in the edge of the digital portion of the propodus. In the left cheliped the outer edge of the upper surface of the carpus is slightly rounded and scarcely at all spinulous, while the inner edge is armed as in the right cheliped. The left chela differs from that of C. socialis, in having the digital portion of the propodus considerably stouter than the dactylus, particularly toward the base.

The ambulatory legs are proportionally as long as in C. socialis, but more slender ; in both pairs the dactylus is longer than the propodus, curved slightly near the tip, about sixteen times as long as broad, sparsely ciliated along the upper edge, and very slightly setigerous along the lower.

The female differs from the male as in C. socialis, but to a very much less extent, the chelipeds and ambulatory legs being only a little shorter than in the male, and the right cheliped only a little less stout and a little more like the left than in the male.
The eggs are few and nearly as large as in \(C\). socialis.
The carcinccia are similar to those of the last species.
\begin{tabular}{ccccc} 
Station. & \multicolumn{2}{c}{ N. Lat. } & W. Long. & Fathoms. \\
344 & \(40^{\circ} 1^{\prime} 0^{\prime \prime}\) & \(70^{\circ} 5 \delta^{\prime} 0^{\prime \prime}\) & 129 & 1 \\
345 & \(40^{\circ} 10^{\prime} 15^{\prime \prime}\) & \(71^{\circ} 4^{\prime} 30^{\prime \prime}\) & 71 & 3
\end{tabular}

Also taken by the U. S. Fish Commission, in 51 to 155 fathoms, off Martha's Vineyard, in 1880 and 1881.

Two specimens from Fish Commission Station 874, 85 fathoms, give the following measurements : -


\section*{PARAPAGURID屈.}

The genus Parapagurus differs so widely from all other Paguridea in possessing trichobranchiæ instead of phyllobranchiæ, that it ought, undoubtedly, to be separated as a distinct family on this character alone.

\section*{Parapagurus pilosimanus Smith.*}

Trans. Conn. Acad., V. p. 51, 1 S79 ; Proc. National Mus., Washington, III. p. 42S, 1881.

\section*{Plate II. Figs. 4-4.}
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime} 0^{\prime \prime}\) & 524 & 1 young. \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime} 0^{\prime \prime}\) & 304 & 4 \\
322 & \(33^{\circ} 10^{\prime} 0^{\prime \prime}\) & \(76^{\circ} 32^{\prime} 15^{\prime \prime}\) & 362 & \(2 \delta\)
\end{tabular}

This species has also been taken, and in considerable abundance, by the U. S. Fish Commission, in deep water off Martha's Vineyard. At Station
* A. Milne-Elwards in a recent report on the explorations of the "Travailleur," in the Comptes-Rendus of the Academy of Sciences, Paris, Dec. 1881 (Ann. Mag. Nat. Hist., 5th ser., IX. p. 42, 1882), states that his Eupugurus Jacobii from the "Blako" dredgings (Bull. Mus. Comp. Zoül., VIll. p. 42, 1S80) is identical with this species, of whieh specimens were sent to him last June.

947, 312 fathoms, three hundred and ninety-three specimens, nearly all adults an I many of them very large, were taken at one haul of the trawl.
The carcinœcia of all the specimens seen are formed by colonies of Epizioanthus paguriphilus Verrill, which at first invest spiral shells which are finally absorbel by the basal cœnenchyma of the growing polyps.

\section*{GALATHEID 玉.}

Galacantha rostrata A. M.-Edwards.
Bull. Mus. Comp. Zoöl., VIII. p. 52, 1880.
Plate IX. Figs. 2, \(2^{3}\).
Station 340 , N. Lat. \(39^{\circ} 25^{\prime} 30^{\prime \prime}\), W. Long. \(70^{\circ} 58^{\prime} 40^{\prime \prime}\), 1394 fathoms; and Station 341, N. Lat. \(39^{\circ} 38^{\prime} 20^{\prime \prime}\), W. Long. \(70^{\circ} 56^{\prime}\), 1241 fathoms ; two males, which give the following measurements : -


\section*{MUNIDOPSIS Wmiteaves.}

Munidopsis Whitraves, Amer. Jour. Sci., 3d ser., VII. p. 212, 1 Sit.
Galathodes A. M.-Edwards, Bull. Mus. Comp. Zoöl., VIII. p. 53, 1850.

\section*{Munidopsis curvirostra Whiteaves.}

Amer. Jour. Sci., 3d. ser., VII. p. 212, 1S74; Report on further Deep-sea Dredging Operations in the Gulf of St. Lawrence [in 1873], p. 17, 1874.

Plate VIII. Figs. 2, 3, \(3^{3}\).
Station 325 , N. Lat. \(33^{\circ} 35^{\prime} 20^{\prime \prime}\). W. Long. \(76^{\circ}, 647\) fathoms, one swall male, which gives the following measurements :-
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{\multirow[t]{5}{*}{\begin{tabular}{l}
Length from tip of rostrum \\
" of carapax \\
Greatest breadth of carapax \\
Diameter of eye . \\
Length of cheliped.
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

I have compared this specimen with the original specimens from the Gulf of St. Lawrence described by Whiteaves, and find no differences of any importance whatever. The species is perhaps identical with some one of the ten species of Gulathodes described by Milne-Edwards, but with which, if with any, it seems impossible to determine from the descriptions alone.

Munida, sp. indet.
Munida Cariboa? Smith, Proc. National Mus., Washington, III. p. 428, 1881.
Plate X. Fig. 1.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime} 0^{\prime \prime}\) & 143 & 1 \\
314 & \(32^{\circ} 24^{\prime} 0^{\prime \prime}\) & \(78^{\circ} 44^{\prime} 0^{\prime \prime}\) & 142 & \(50 \pm\) \\
315 & \(32^{\circ} 18^{\prime} 20^{\prime \prime}\) & \(78^{\circ} 43^{\prime} 0^{\prime \prime}\) & 225 & 1 \\
333 & \(35^{\circ} 45^{\prime} 25^{\prime \prime}\) & \(74^{\circ} 50^{\prime} 30^{\prime \prime}\) & 65 & \(100 \pm\) \\
335 & \(35^{\circ} 22^{\prime} 25^{\prime \prime}\) & \(73^{\circ} 33^{\prime} 40^{\prime \prime}\) & 89 & 31 \\
336 & \(35^{\circ} 21^{\prime} 50^{\prime \prime}\) & \(73^{\circ} 32^{\prime} 0^{\prime \prime}\) & 197 & 6 \\
344 & \(40^{\circ} 1^{\prime} 0^{\prime \prime}\) & \(70^{\circ} 58^{\prime} 0^{\prime \prime}\) & 129 & 1
\end{tabular}

Also taken in great abundance in the U. S. Fish Commission dredgings off Martha's Vineyard, in 1880 and 1881, in 65 to 200 fathoms.
This species will probably prove identical with one of the eleven species enumerated by A. Milne-Elwards in his report on the "Blake" crustacea from the West Indies, but with which one it is not possible to tell from the descriptions alone. Before the publication of Milne-Edwards's report I referred this species doubtfully, as indicated above, to Munida Caribera of Stimpson, described from a single very small specimen, but it is probably not the species referred to the Caribece by Milne-Edwards. It is now impossible to tell with certainty to which of the numerous Caribbean species Stimpson's really belongs, but it is perhaps best to restrict it to the one called Curibera by Milne-Elwards, whatever that may be, although he gives no description whatever.

\section*{MACRURA.}

\section*{ERYONTIDE.}

\section*{Pentacheles sculptus.}

\section*{Plates III. and IV.}

Polycheles sculptus Smiti, Ann. Mag. Nat. Hist., London, 5th ser., V. p. 269, April, 1880 ; Proc. National Mus., Washington, II., 1879, p. 345, Pl. V1I., 1850.
Pentachelcs spinosus A. M.-Edwards, Bull. Mı.j. Comp. Zoül., VIII. p. 66, December, 1880.
\begin{tabular}{ccccl} 
Station. & \multicolumn{1}{c}{ N. Lat. } & \multicolumn{1}{c}{ W. Long. } & Fathoms. & \multicolumn{1}{c}{ Specimens. } \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ} \mathrm{u}^{\prime} 0^{\prime \prime}\) & 647 & 1 young, 44 mm . long. \\
326 & \(33^{\circ} 24^{\prime} 15^{\prime \prime}\) & \(76^{\circ}\left(y^{\prime} 50^{\prime \prime}\right.\) & 464 & \(1 \delta, 2 ¢\) \\
329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & \(2 \delta\)
\end{tabular}

This species was first described from a single imperfect specimen taken by a Gloucester fisherman, off the coast of Nova Scotia, N. Lat. \(43^{\circ} 10\), W. Long. \(61^{\circ} 20^{\prime}\), in 250 fathoms, so that the specimens recorded above, and a large female with eggs, taken, Nov. 16, 1850, off the mouth of Chesapeake Bay, N. Lat. \(37^{\circ} 24^{\prime}\), W. Long. \(74^{\circ} 17^{\prime}, 300\) fathoms, Station 898 , by Lient. Tauner, on the U. S. Fish Commission Steamer "Fish-Hawk," afford an opportunity for a more complete description than that originally given.

The sides of the carapar are nearly parallel posteriorly, but arcuately convergent anterionly, and the greatest breadth is just in front of the cervical suture, and is about three fourths of the length along the median line. As seen from above, the anterior margin is concave in outline, so that the acute and spiniform lateral angles are much in advance of the rostrum, which is armed with two spines close together and projecting obliquely upward and forward. About a third of the space between the median line and the lateral angle each side is occupied by a very deep orbital sinus nearly parallel with the lateral margin, considerably deeper than broad, somewhat narrowed and evenly rounded posterionly, and completely filled by the large ophthalmic lobe. On the inner side of this simus the frontal margin projects in a small spiniform tooth, but outside the margin is unarmed and curves regularly to the lateral angle. Just behind the orbital sinus there is a smooth and evenly curvel depression in the surface of the carapax exposing a small area on the posterior part of the ophthalmic lobe, more fully described beyond. The cervical suture divides the dorsal surface of the carapax into two pretty nearly equal portions, and is deep and conspicuous, but is indicated in the lateral margin, each side, by a slight emargimation only, which is scarcely deeper than the emargination between the anterior and posterior lobes of the hepatic region. The lateral margin is armed, on the anterior lobe of the hepatic recgion, witl (including the anterior angle) six, or rarely only five, small and slender spiniform teeth di-
rected formard, and on the posterior lobe with three more. The lateral margin, behind the cervical suture, is armed with six to eight similar teeth, which become successively more remote posteriorly. There is a slight median carina extending the whole length of the carapax, and armed, behind the two rostral spines, first with a single small spine directed forward, then with two side by side and very close together, then with one, then with two on the posterior edge of the cerrical suture, then with two more, and finally with two somewhat larger and more widely separated spines projecting forward from the anterior edge of the broad and prominently raised posterior margin. In front of the cervical suture there is an irregular longitudinal dorso-lateral line of five minute spines each side, and back of these a single spine each side on the posterior edge of the cervical suture. Extending from the posterior margin nearly to the cervical suture, there is a sharp sublateral carina parallel to the lateral margin, about a third of the way from it to the median carina, and armed with five or six small spines.

The rentral regions of the carapax (Pl. IV. fig. 1) are inflected each side at a very acute angle with the dorsal surface, and, the sternum being narrow, the rentral regions are very broad. The rentral region each side is divided longitudinally into three approximately equal parts by two prominent carinæ; the outer carina (marking the pleurotergal suture ?) extends from the anterior margin at the base of the antenna, in a slightly sinuous line, toward the posterolateral margin of the carapax; the anterior half is very prominent, and amed with small spines directed outward, while the posterior half is much less conspicuous, unarmed, and disappears entirely before reaching the posterior angle of the carapax. The inner carina extends along the branchial region from near the base of the first leg quite to the postero-lateral angle of the carapax ; the extreme anterior portion is not prominent, but from opposite the third leng posteriorly it is very prominent, acnte, and armed with ten to fifteen sharp spines. The outer of the three longitudinal regions thus marked out is dirided transverscly by the cervical suture, and the anterior portion (subhepatic region) is divided transversely into an anterior and a posterior lobe by a groove nearly or quite as conspicuons as the cervical. In the frontal margin of this anterior lobe, and near its inner side, there is a deep sinus corresponding to the orbital sinus of the dorsal surface, but not quite as wide, and open nearly to the dorsal surface, except where it is crossed by a protuberance from the ventral portion of the ophthalmic lobe.

On the upper surface of the carapax, the orbital sinus, each side, is completely filled by the dorsal part of the ophthalmic lobe, of which the anterior margin is slightly concave in outline and continuous with the anterior margin of the carapax, but has a small tubercle near the midlle. The dorsal surface of the lohe is smooth, calcareons, and opaque, and on a level with the adjacent surface of the carapax except posteriorly, where a small oval area of the extremity of the lobe is exposed by a lepression in the carapax. This oval area is thin, semitranslucent, and not calcareons, and has every appearance of being a true corneal area, although I am unable to detect any evidence of facets. The
carapax along the margins of the sinus is in close contact with the ophthalmic lobe. From the lower portion of each ophthalmic lobe there is an elongated cylindrical and somewhat conical, lut olutuse and pointed protuberance, of which the base rests in a transverse groove in the lase of the antenna, while the terminal portion extends well across the open ventral side of the orbital sinus. Upon the obtuse extremity of this protuberance there is a nearly circular area similar to the cornea-like area at the posterior extremity of the dorsal part of the lobe.

The peluncles of the antennulx are very stout, being stouter even than the peduncles of the antennæ. The basal portion of the proximal segment is longer than the two distal segments, is armed on the distal portion of the outer margin with two spiniform teeth, and the inner side is lioadly expanded and prolonged into an acute scalelike appendage upturned and densely ciliated along the inner margin, and extending considerably beyond the distal segment and nearly as far as the tip of the antennal scale. The second and third segments are subcylindrical, and, as seen from above, are each about as broad as long, the second being somewhat larger than the third. The imner or major flagellum is about as long as the carapax. The minor flacellum is about as long as the peduncle of the antenna, about half as thick as the base of the major flagellum, of nearly uniform thickness for three fourths its length, then tapers rapidly to a very slender tip, and is thickly ciliated along the imner margin distally.
The first three segments of the perduncle of the antenua are very short, the three torether being scarcely longer than the fifth segment. The first segment is loosely articulated with the sternum of the antennal segment, so as to be freely movable upon it ; it is very short upon the outside, but expands somewhat on the inner side, which terminates clistally in a thin tubular process arising from the oral side of the segment and directed upward to a level with the dorsal side, so that, in the ordinary position of the appendages, its orifice is closed by contact with the first segment of the peduncle of the antemnula. This tubular process readily admits a large bristle, which can be pushed through it round into the cavity of the segment itself. It undoubtedly contains the canal of the green gland. The second segment is small, closely united with the third, and bears upon its outer side a slender scale, which reaches nearly to the tip of the peduncle, is about five times as long as broad, and thickly ciliated along both edges. The thirl segment, as seen from below, is almost wholly internal to the seeond, and is armed on the distal part of the inner margin with a small spiniform tubercle. The fourth and fifth segments are subcylindrical, the fourth is slightly longer than the fifth, and both are ciliated each side. The flagellum is about as thick at base and nearly as long as the major flagellum of the antemula.

The buccal opening is nearly square. The branchiostergites extend forward quite over the sternum of the antemary somite, and their anterior extremities are applied to the basal segments of the antemm, which, however, are freely movable upon the antemary somite. The epistome is short, not extending at all in front of the bases of the antenne, is nearly on a level with the dorsal
wall of the efferent passages from the branchial chambers and on a plane above the bases of the antennæ, so that the efferent passages terminate in the space between the upturned edges of the squamiform processes of the inner sides of the basal segments of the antennulx and just beneath the short two-spined rostrum. In the middle of the slightly raised and regularly arcuate posterior edge of the eristome there is a slight elevation with a tuft of hairs. The anterior part of the endostome is on a plane somewhat above the plane of the epistome, but the space below is filled by the soft and fleshy labrum which projects considerably below the raised posterior edge of the epistome.

The mandibles (Pl. IV. fig. 2) are wholly without molar areas and with crowns expanded into very broad and thin lamellæ serrated along the cutting edges with about fourteen acutely triangular teeth, of which one at the anterior angle and one in the middle are much larger and more prominent than the others. The palpus (fig. \(2^{a}\) ) is short, but composed of three segments, of which the proximal is very small ; the second is fully as long as the terminal, and expanded distally, and the terminal about three and a half times as long as broad, and densely setose along the anterior edge and ventral side.

The lobes of the metastome (fig. 2) are very narrow and widely separated. The two lobes of the first maxilla (fig. 3) are very much as described and figured ly Willemoes-Suhn in Willemossia leptodactyla, the two lobes being very slender and strongly incurved, and the anterior the larger and with a slight elevation covered with a dense tuft of hairs on the outside near the base.

The second maxilla (fig. 4) has two small and slender protognathal lobes, of which the anterior is very much the larger. The scaphognath is very large, and with the posterior portion rery broad and evenly rounded in outline posteriorly, while the anterior portion is much narrower, and reaches forward nearly to the base of the antenna. The endognath is apparently represented by a short and truncate lobe at the base of the anterior lobe of the protognath.

The first maxillipeds (Pl. IV. figs. \(5,5^{a}, 5^{b}\) ) are greatly elongated and peculiarly modified. The exopodal lamella ( \(f\), fig. \(5^{*}\) ) is long and very broad, projects farther back into the branchial passage than the scaphognath, and terminates anteriorly in a small triangular lobe ( \(g\) ) ; while the exopord reaches forward considerably in front of the epistome, where its terminal lobes are somewhat upturned and help to enclose the efferent branchial passage. The proximal lobe of the protopod ( \(a\), figs. \(5,5^{n}\) ) is triangular and densely setigerous along the edges, while the distal lobe ( \(a^{\prime}\) ) is elongated, and bears the endopod and the peculiarly morlified exopod, which lie torether, and at nearly a right angle with the protoporl. The entopod ( \(b\), figs. \(5,5^{b}\) ) is slemier, somewhat triquetral, reaches nearly to the bases of the terminal lobes of the exnoorl, is densely hairy along the edges, is divided near the middle by an imperfect articulation, and lies above and close along the inner edge of the expood. The exopod ( \(c\), figs. \(5,5^{b}\) ) is lamellar, very broad, concave dorsally, divided by several sutures, as shown in the figure, curved inwarl almost to the mesial line, and encloses the broal efferent passage ventrally and anteriorly. The terminal portion of the exopod is divided into two lobes ( \(d, c\), figs. \(5,5^{\circ}\) ), which
are stiff and more calcareous than the rest of the appendage. The outer and anterior of these lobes ( \(d\) ) is the larger, and is alone exposed as seen from below in the natural position of the appendages, while the inner (e) is somewhat triangular, with a narrow base of attachment, and is curved round above the other lobe, and serves to prolong the dorsal wall of the efferent passage, or, perhaps, as a valve for closing its orifice.
The second maxillipeds (fig. 6) are apparently wholly without exopodal or epipodal branches, and are so short that they reach but little beyond the ischia of the third pair. The ischium and merus are very short, together little more than half as long as the carpus, and both are setigerous along the inner edge, while the ischium has in addition a series of dentiform tubercles. The carpus is about two thirds of the whole length, nearly twice as long as broad, compressed vertically, and much broader in the middle than at either end, and setigerous, but not dentate or tuberculous along the inner edge. The propodus is less than half as long and less than half as wide as the carpus, while the dactylus is still smaller, tapered distally, and terminated in a slender curved and spiniform tip, and both propodus and dactylus are thickly armed with setre and small spines.

The external maxillipeds (fig. 7) are long and slender, reach, when extended, nearly to the bases of the peduncles of the antennulx, and are well clathed with hairs and setx, but unarmed either with teeth or spines. There is a very small and rudimentary appendage (a), apparently representing the epipod, upon the outer side of the protopod. The ischium is a little longer than the merus and carpus combined, and a very little stouter than the merus. The merus is about two thirds as long as the ischium, while the three distal segments are subequal in length and together a little longer than the merus, the carpus and propodus tapering slightly distally, while the dactylus is slightly curved and tapers regularly to an acute tip.

The great chelipeds are smooth and naked throughout, except the prehensile edges of the digits of the chelæ, and differ somewhat in size in different individuals, varying in length from about two and a half to nearly three times the length of the carapax, but the differences are apparently entirely independent of sex. The coxa is very stout and broad, far stouter than any of the succeeding segments, and much broader than the coxx of the other legs. The basis is completely anchylosed with the ischinm, which is expanded clistally but at the same time strongly compressed vertically, strongly curved upward so as to fit the side of the carapax when turned out at right angles to it, and reaches, in this position, a little above the elge of the carapax, or, when turned forwarl, to the base or beyond the middle of the antemal scales. The merus is two thirds to four fifths as long as the carapax, compressel like the merus, hut considerably expanded proximally, contracted in the middle and distally to near the tip where it is again expanded and thickened at the articulation with the carpus; the posterior elge is armed with an acute spine at the distal extremity, and with either one or two similar ones on the proximal half, while the anterior edge, except near the base, is armed with a scatterel series of minute
spines. The carpus is more than half as long as the merus, compressed and very slender to near the distal end where it is expanded and thickened for the articulation of the chela and armed above with a single acute spine and below with one or two small teeth, and along the whole length of the dorsal edge there is a distinct but narrow sulcus. The chela (Pl. IV. fig. 8) is about as long as the merus, and the digits themselves considerably longer than the basal portion, which is about as broad as but much thicker than the proximal part of the merus, thongh still strongly compressed ; the dorsal edge is evenly rounded, and projects in a small tooth and an acute spine above the articulation of the dactylus; the inferior edge projects slightly proximally and then retreats at the base of the propodal digit, and except near the proximal end is occupied with a shallow sulcus, the edges of which are armed with several minute spines directed distally. Both digits are compressed, very slender, and regularly tapered to acute and very strongly curved extremities; the dorsal edge of the dactylus is flattened, but scarcely sulcated, and the inferior edge of the propodal digit is flattened and slightly sulcated near the base, but rounded distally ; the prehensile edges of both digits are armed throughout with a closeset series of very short and very stiff setæ.

The legs of the second pair are slender, densely ciliated along the edges, and reach to the tips of the peduncles of the antennæ. The basis is anchylosed with the rather short ischium. The merus is considerably longer than the ischiobasis and reaches to the edge of the carapax. The carpus is a little shorter than the merus. The basal part of the chela (fig. 9) is a very little longer than the carpus, and is flattened and somewhat expanded distally, where it is a third as broad as long ; the propodal digit is very slender, nearly as long as the basal portion of the chela, nearly straight to the slender, acute, and chitinous tip, which is strongly curved, and the prehensile edge is thin and armed as in the first pair. The dactylus is almost exactly of the same form as the propodal digit, and its prehensile edge is armed in the same way, but the cilia upon the outer edge are much longer than on the corrosponding part of the propodus.

The third and fourth pairs of legs are successively a very little shorter than the second, and have very nearly the same form. From the coxal to the meral segment they are very nearly as stout as in the second pair, but the three distal segments are much more slender. The basal part of the chela (fig. '10) is subcylindrical and only very slightly expanded and flattened distally, while the propodal digit and the dactylus are nearly equal in length, very slender and weak, straight throughout, without incurved or chitinous tips, and densely ciliated along the prehensile edges.

The fifth pair of legs (figs. 11 and 12) are considerably shorter and more slender than the fourth, and all the segments except the proporlus and dactylus have very nearly the same relative proportions as in that pair. The basal portion of the propodus is alike in the two sexes, a little longer than the carpus, subeylindrical and slightly tapered distally. The digits differ in the sexes. In the male (fig. 11) the propodal digit is about as long os the proximal
thickness of the propodus, or a little longer, slender, and tapers to a rounded tip, while the dactylus is nearly or fully twice as long, considerably stouter, straight, and nearly cylindrical. In the female (fig. 12) the propodal digit is scarcely as long as in the male, is more slender, and tapers to an acute and incurved tip, which is somewhat flattened and excavated on the anterior and inner side, leaving an edge on the posterior side; the dactylus reaches very nearly to the tip of the propodal digit, and is like it in form, but a little more sharply incurved at tip.

The branchiæ resemble the branchiæ of the Astacidæ, being slender, very soft, and composed of slender filaments, which are not closely crowded together. There are no branchiæ connected with the first and second maxillipeds, but above the base of the third maxilliped and between the lamellar epipod of the first maxilliped and the coxa of the first legr there is a slight lamellar elevation bearing a few filaments which are apparently branchial and may represent a very rudimentary epipodal branchia. The legs of the first four pairs bear each a well-developed poilobranchia and a small epipodal plate, lying just at the edge of the carapax but not projecting into the branchial chamber, and above the bases of each of these legs there are two arthrobranchiæ and one pleurobranchia. There is also a pleurobranchia above the base of the fifth leg, so that there are in all sixteen well-developed branchix, - four podobranchix, eight arthrobranchix, and four pleurobranchiæ each side, as indicated in the following formula : -
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & VII. & viII. & IX. & X. & XI. & XII. & XIII. & XIV. & Total. \\
Epipods, & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & \\
Podobranchix, & 0 & 0 & \(?\) & 1 & 1 & 1 & 1 & 0 & 4 \\
Arthrobranchix, & 0 & 0 & 0 & 2 & 2 & 2 & 2 & 0 & 8 \\
Pleurobranchix, & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 4 \\
\hline
\end{tabular}

As seen from above, the siles of the abdomen are nearly straight, and form, with the telson, a regular acute triangle. The first five somites are carinated dorsally, and the carina projects forward from each somite in an acute tooth, but the carina and tooth are small and low on the first somite, increase rapielly to the fourth, while on the fifth they are scarcely as prominent as on the fourth, and on the sixth the carina is inconspicuous and there is no tooth, but the top of the carina is traversed by a narrow longitudinal sulcus. On the first somite there are, in addition, two slender spines each side projecting forward ahove the articulations with the carapax. The clorsal surface of the abdomen, either side of the median carina, is smooth and scarcely at all sculptured; but along the lateral margin, where the pleura bend abruptly and nearly perpendicularly downward, there is a series of deep longitudinal sulci, except npon the narrow first somite, which is mensenptured, and upon the sixth, where the sulens is replacel by a simple carina. Of the plemra themselves, the first is nearly obsolete, the second is broader than ileep, projecting back over the thinl with a broadly rounded margin, and forward in a prominent but rounded angle, and
has a central circular depressed area ; the succeeding pleura decrease regularly in size posteriorly, scarcely overlap when the abdomen is extended, are convex in outline posteriorly but straight or slightly concave anteriorly, and the third, fourth, and fifth are ornamented with a median curved carina extending two thirds of the length, but not well marked upon the fifth.

The telson is pretty regularly triangular, about twice as long as broad, is convex and slightly grooved longitudinally above, and terminates in an acutely rounded tip unarmed with spines. The lamelle of the uropods scarcely reach the tip of the telson : the outer is nearly as broad as long, regularly rounded in outline except for a short distance on the outer edge near the tip, where the margin is more or less conspicuously truncater, but varying considerably in different individuals, and stiffened by two slightly diverging ribs in addition to the thickening of the outer margin ; the inner lamella is stiffened by a single median rib, is nearly twice as long as broad, the lateral margins are approximately straight and parallel, and the tip is regularly rounded in outline.

In the male the first pair of abdominal appendages (Pl. IV. fig. 14) are much longer than the protopods of the second pair, reach slightly beyond the bases of the fourth thoracic legs, and have an imperfect articulation at about a third of the way from the base to the tip; the basal portion is somewhat triquetral, while the terminal expands into a smonth, naked, and thin lanceolate lamella slightly concave posteriorly. The second pair reach slightly farther forward than the first, and the protopod and lamellæ are about equal in length. The lamellæ are narrow, lanceolate, and thickly ciliated along the edges; the imner is about as long as the outer, and bears the two styliform processes usually characteristic of males in the Macrura. These styliform processes are a little less than a third as long as the lamella itself, and arise together at about a third of the way from the base to the tip of the lamella; the inner, like that upon the three succeeding pairs of appendages, arises from the slightly thickened inner edge of the lamella, is ridged, of nearly equal width to the rounded tip, and nearly naked except a line of cilia along the posterior margin. The outer process arises just in front of the inner, and its hase is at a right angle to that of the outer ; it is more slender than the outer, tapers distally, and is ciliated on both edges and on the anterior surface. The three succeeding pairs of appendages are similar to the second pair, but the fourth and fifth pairs are successively a little shorter, and, as usual among Macrura, they all want the outer of the two styliform processes of the inner margin of the inner lamella.

In the female the first pair of abdominal appendaces (Pl. IV. fig. 13) are about as long as in the male; the basal portion, or protopol, is scarcely more than half as long as the terminal lamella, is narrow, compressed, turned inwart toward the mesial line, and clothed thickly along the onter and the distal part of the inner edge with long ovigerous lairs ; the terminal lamella is multiarticulate, like the lamelle of succeeding appentages, but a little narrower than they, and is clothed with mumerous origerous hairs. The four succeeding pairs of appendages are very nearly like the three last pairs in the male, but the styliform process of the inuer lamella is a little larger aud more compressed.

The only specimen carrying eggs is the one above referred to as taken off the mouth of Chesapeake Bay. In this specimen the eggs are in an early stage of development, are nearly spherical and .65 to .70 mm . in diameter, and are carried in a mass behind the first pair of abdominal appendages, and between the appendages of the second and third pairs, the mass being principally supported by the first pair, very slightly by the third, and not at all by the fourth and fifth.

Five specimens give the following measurements in millimeters : -
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & 326 & 898 & 326 & 329 & 326 \\
\hline Sex & ¢ & \% & 9 & § & § \\
\hline \multicolumn{6}{|l|}{Length from front of carapax to tip of} \\
\hline Length of carapax along median line & 26.0 & 53.2 & 55.2 & 36.0 & 45.3 \\
\hline Breadth of carapax between spines of anterior margin & 12.9 & 25.5 & 27.3 & 16.5 & 23.0 \\
\hline Greatest breadth (in front of cervical suture) . & 19.3 & 40.5 & 41.3 & 26.7 & 35.0 \\
\hline Length of first pair of legs * & 67.0 & 140.0 & 161.0 & 100.0 & 125.0 \\
\hline " merus & 21.5 & 42.0 & 50.0 & 31.7 & 39.0 \\
\hline " carpus & 12.5 & 26.0 & 32.0 & 17.9 & 25.0 \\
\hline " chela & 21.0 & 46.0 & 49.0 & 30.0 & 38.5 \\
\hline " dactylus & 12.6 & 27.0 & 29.0 & 18.0 & 22.0 \\
\hline " second pair of legs & 22.3 & 50.0 & 51.0 & 32.0 & 41.5 \\
\hline " merus & 6.1 & 13.3 & 13.2 & 8.5 & 11.0 \\
\hline carpus & 4.0 & 9.3 & 9.t & 5.2 & 6.6 \\
\hline " propodus & 7.7 & 17.9 & 18.5 & 11.1 & 14.5 \\
\hline dactylus & 3.9 & 8.5 & 8.8 & 5.2 & 7.0 \\
\hline " fifth pair of legs & 12.5 & 32.0 & 32.5 & 19.0 & 23.0 \\
\hline " propodus & 3.6 & 10.7 & 10.5 & 5.4 & 7.4 \\
\hline " dactylus & 0.9 & 2.0 & 2.1 & 1.4 & 1.8 \\
\hline " abdomen & 34.0 & 70.0 & 71.0 & 47.0 & 62.0 \\
\hline Greatest breadth at second somite & 14.0 & \(3 \pm .5\) & 35.0 & 21.0 & 30.0 \\
\hline sixtl somite & 7.5 & 17.3 & 18.0 & 11.1 & 15.0 \\
\hline Length of telson & 11.0 & 23.0 & 23.0 & 14.5 & 20.0 \\
\hline Breadth of telson & 5.7 & 12.2 & 12.2 & 7.9 & 10.5 \\
\hline
\end{tabular}
* In the second, third, and fourth columns the measurements of the first pair of legs are taken from the right leg; in the first and last columns, from the left. In the specimen of which the measurements are given in the fourth column, both legs of the first pair are present and the left one is a little shorter than the right and gives the following measurements : length, 15 S mm. ; merns, 47 ; carpus, 31 ; chela, 45 ; dactylus, 28.

\title{
CRANGONID用。 \\ Ceraphilus Agassizii, sp. nov.
}

\section*{Plate VII. Figs. 4-5 \({ }^{\text {s }}\).}

The carapax is short and broad, and in the female rounded and swollen above and somewhat conrex longitudinally. The rostrum ( \(b\), in figs. \(4^{\circ}\) and 5 ) is hidden from above by the anterior spine ( \(a\) ) of the dorsal carina, and is slender, spiniform, and scarcely if at all more prominent than the slender spine forning the outer angle of the orbit each side, and very much less prominent than the slender and acute antero-lateral angles ( \(d\) ), which are slightly divergent and reach a little by the bases of the anteunal scales in the female, while they are much more divergent and much longer in the male, so that the distance between their tips is considerably greater than the greatest breadth of the middle portion of the carapax. A narrow dorsal carina extends the whole length of the carapax, and is armed with two laterally compressed and spiniform teeth directed forward, and of which the anterior is much the larger, projects immediately above the rostrum, and reaches considerably beyond its tip, while the posterior one is smaller and arises just in front of the cardiae region. There is occasionally a very minute additional tooth in the dorsal carina about midway between these two. On the gastric region either side of the dorsal carina there is a large spine directed forward; below this is a stout hepatic spine from the upper side of which a prominent carinal ridge extends to near the posterior border, while from its lower edge a similar ridge extends downward and backward a short distance to the branchial region, where it neets a much less distinct carina cxtencling from the antero-lateral angle nearly to the posterior border. There is also a well-marked carina extending backward from the orlital spine ( \(c\), figs. \(4^{\circ}, 5,5^{2}\) ) along either side of the gastric region and following a distinct suture terminating anteriorly just outside the orbital spine. The lateral margin of the carapax is strongly incurved, and projects inward in a prominent rounded lobe below the base of the first thoracic ley. All the spines of the carapax are proportionally longer in the male than in the female.

The eyes are small and black, and scarcely reach beyond the tip of the rostrum.

The first segment of the peduncle of the antennula is more than twice as long as the second, and the lateral process from its base is very long, and reaches as far forward as the segment itself, which is armed with a tuberculiform prominence at the outer eige of the distal extremity and with a much smaller one on the inner edge; the second segment is short and has the outer distal angle considerably produced; the ultimate segment is much broader than long. The flagella are subequal in length and in the female about as long as the peduncle, but in the male about twice as long as the peduncle and the outer longer and very much stouter than the inner or than the outer flagellum of the female.

The antennal scale is about as long as the sixth segment of the alodomen and about twice and a half as long as broad, and the ultimate segment of the peduncle reaches very nearly to the tip of the scale.

The external maxillipeds are much more slender than in C. boreas and reach by the tips of the antennal scales about half the length of the ultimate segment, which is no broader than the penultimate but fully twice as long and about six times as long as broad ; the antepenultimate segment is longer than the ultimate.

The thoracic legs are nearly as in C. boreas, but are all rather more slender and less hairy. In the first pair the carpal spines are smaller and the chelæ are nearly naked and less swollen than in C. boreas. The second pair are nearly as long as the first : the carpus and merns are subequal in length, and each is a little longer than the ischium ; the chela is very slender, about half as long as the carpus, with the digits scarcely a third as long as the basal portion of the chela. The third pair are about as long as the second, the carpus a little longer than the merus, the propodus two thirds as long as the carpus, and the very slender dactylus but little less than half as long as the propodus. The fourth pair do not quite reach the tips of the third, and the fifth reach slightly by the carpi of the fourth.
The abdomen is broad, slightly depressed and rounded above anteriorly, and tapers rapidly to the sixth somite, which is only a little longer than the fifth. The five anterior somites are armed with a median dorsal carina which is conspicuons and flattened above on the fourth and fifth. The epimeron of the first somite is broadly expanded anteriorly and projects in an obtuse tooth below ; the second is broad and evenly rounded in front and behind, and has a slight tooth below, but the inferior elges of the remaining epimera are straight and unarmed. The sixth somite, excluding spines, is about a fourth longer than the fifth, is armed above with four prominent and approximately equidistant carinæ, and the posterior edge projects in a large tooth either side of the base of the telson and in an acute angle at the lateral margin. The carinæ and the teeth on the edges of the epimera are more prominent in the male than in the female.

The lamellx of the uropods are much shorter than the telson : the outer are from a little more than twice to about three times as long as broad; the inner are about as long as the outer, and three to four times as long as broal.

The telson is about once and two thirds as long as the sixth somite of the abdomen, flattened and broadly chamelled above, tapers regularly to an acute point unarmed with spines but furnished with two pairs of plumose seta arising from the under side, and the margins are ciliated beneath.

In the male there is a very long median spine on the sternum of each of the four anterior somites of the ablomen, lut no similar spines in the female.

The surface of the carapax and abdomen is sparsely clothed with minnte pubescence, which is very easily removel with the coating of soft mud with which all the specimens are covered.

The number and arrangement of the branchic is the same as in C. borcas, and as indicated by the following formula : -

VOL. x. - No. 1.
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & VII. & VIII. & IX. & x. & xI. & XII. & XIII. & XIV. & Total. \\
Epipods, & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
Podobranchiæ, & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Arthrobranchiæ, & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Pleurobranchix, & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline
\end{tabular}

Five specimens give the following measurements in millimeters: -
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & 317 & 332 & 326 & 326 & 339 \\
\hline Sex & ¢ & ¢ & ¢ & ¢ & \% \\
\hline Length from tip of rostrum to tip of telson & 42.0 & 49.0 & 51.0 & 70.0 & 72.0 \\
\hline Length of carapax including rostrum & 11.2 & 12.5 & 14.7 & 19.1 & 19.5 \\
\hline Greatest breadth of carapax anteriorly & 7.7 & 9.4 & 11.4 & 15.2 & 15.3 \\
\hline Breadth between tips of antero-lateral spines & 10.3 & 11.8 & 11.0 & 14.0 & 14.8 \\
\hline Length of anterior dorsal spine & 3.5 & 4.5 & 3.5 & 3.7 & 3.6 \\
\hline " antennal scale & 5.6 & 6.0 & 6.4 & 8.1 & 8.2 \\
\hline " sixth somite of abdomen excluding spines & 5.3 & 5.7 & 6.3 & 8.2 & 8.3 \\
\hline telson & 9.1 & 10.2 & 10.3 & 13.6 & 14.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & N. Lat. & W. Long. & Fathoms. & Speeimens. \\
\hline 317 & \(31^{\circ} 57^{\prime \prime} 0^{\prime \prime}\) & \(78^{\circ} 18^{\prime} 3 \overline{3}^{\prime \prime}\) & 333 & 2大 \\
\hline 326 & \(33^{\circ}+2^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 464 & 1才, 2 ¢ \\
\hline 329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & 19 \\
\hline 332 & \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) & \(74^{\circ} 48^{\prime} \quad 0^{\prime \prime}\) & 263 & 1\%,49 \\
\hline
\end{tabular}

A young specimen was taken in the U.S. Fish Commission dredgings off Block Island, in 1880, Station 891, N. Lat. \(39^{\circ} 46^{\prime}\), W. Long. \(\overline{7} 1^{\circ} 10^{\prime}\), 500 fath.

\section*{Pontophilus Norvegicus M. Sars.}

Crangon Norregicus M. Sars, Nyt Magazin Naturv., Christiania, XI. p. \(248,1561\).
Goes, Öfversigt Vetenskaps-Akad. Förhandlingar, Stockholm, 1863, p. 173 (13). Pontophilus Norvegicus M. Sars, Christiania Videnskabs-Sclskabs Forhandlinger, 1861, p. 183; Nyt Magazin Naturv., Christiania, Xll. p. 290 (38), 1863 ; XV. p. 242 (2), Pl. 1. figg. \(1-25, \mathrm{Pl}\). II. figs. \(17-37,1865\).
G. O. Sars, Nyt Magazin Naturv., Christiania, XV. p. 95 (14), 1866 ; Christiania Videnskabs-Selskabs Forhandlinger, 1871, p. 261 (18), 1872 ; Archiv. Mathem. Naturvidensk., Kristiania, II. p. \(3 \ddagger 0,1577\).
Matzeni, Jahresher. Comm. wissenseb. Untersuchung dentseheu Meere, 18i2-i3, Nordsee, p. 291, 1875.
S. I. Smitn, Trans. Comn. Acal., New Haven, V. p.,61, 1 S79 ; Proc. National Mus., Washington, III. p. 435, 1881.
?? IIjppolyfe costate Lecckart, Wirbelloser Thiere mit Fauna nordleutsch. Meeres, 1. 159, 1847.
\begin{tabular}{ccccc} 
Station. & N Lat. & W. Inng. & Fathoins. & Specimens \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & \(0^{\prime \prime}\) & 524 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime} 0^{\prime}\) & 304 & 7
\end{tabular}

\section*{Pontophilus brevirostris Smitr.}

\author{
Proc. National Mus., Washington, III. p. 435, 1881.
}

Plate VII. Figs. 1-1 \({ }^{\text {b }}\).
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
314 & \(32^{\circ} 24^{\prime} 0^{\prime \prime}\) & \(78^{\circ} 44^{\prime} 0^{\prime \prime}\) & 142 & 15 \\
315 & \(32^{\circ} 18^{\prime} 20^{\prime \prime}\) & \(70^{\circ} 43^{\prime} 0^{\prime \prime}\) & 225 & 2 \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & 1 \\
327 & \(34^{\circ} 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 25 \\
333 & \(35^{\circ} 45^{\prime} 25^{\prime \prime}\) & \(74^{\circ} 50^{\prime} 30^{\prime \prime}\) & 65 & 2 \\
344 & \(40^{\circ} 1^{\prime} 0^{\prime \prime}\) & \(70^{\circ} 58^{\prime} y^{\prime \prime}\) & 129 & 6 \\
345 & \(40^{\circ} 10^{\prime} 15^{\prime \prime}\) & \(71^{\circ} 4^{\prime} 30^{\prime \prime}\) & 71 & 20
\end{tabular}

This species is very closely allied to \(P\). spinosus and \(P\). Norvegicus, but is readily distinguished from them by the very short rostrum, which is tridentate, with the median tooth scarcely broader and very little longer than the lateral, about reaching to the cornea of the inner side of the eye and not projecting beyond the line of the spiniform outer angles of the orbits. The proportions of the body are more like spinosus than Norvegicus, but the carination and armature of the carapax are more like Norvegicus, while the sculpture of the distal somites of the abdomen is more like spinosus.

The dorsal carina of the carapax is armed with three spines, and frequently a smaller fourth one in front of the others and just back of the base of the rostrum ; the subdorsal carina is armed with two spines, as in Norvegicus, and often with a rudiment of a third behind these ; the lateral carina does not extend back of the middle of the carapax, and is armed with a single spine, as in Norvegicus. There are no distinct carine on the first four somites of the abdomen, but the fifth somite is flattened above and has subdorsal carinæ slightly diverging posteriorly, and below these, each side, another carina, nearly parallel with the subdorsal ; and the sixth somite is flattened above and subdorsally carinated, as in spinosus, though the carinæ are not quite as conspicnous on either somite as in that species.

The eyes, antennulx, and antennæ are very nearly as in \(P\). spinosus. The external maxillipeds reach a little beyond the tips of the chelipeds, the penultimate segment reaches nearly to the tip of the antennal scale, and the ultimate segment is a little less than twice as long as the penultimate, while in \(P\). Norvegicus it is about once and a half as long, and in \(P\). spinosus much more than twice as long, as the penultimate segment. The thoracic legs differ scarcely at all from those of \(P\). spinosus.

The lamellæ of the uroporls are very nearly as in \(P\). spinosus. The inner lamella reaches nearly or quite to the tip of the telson, is lanceolate, amd six or seven times as long as broad ; the outer lamella is about a tenth shorter than the inner, and about four times as long as broad. The telson is once and a fourth to once and two fifths as long as the sixth somite of the ablomen, is rey narrow, slightly acuminate, and has a very narrow and acutely triangular tip,
armed with only two very long, slender, and plumose setx, which arise near tugether from the under side.

It appears to be a much smaller species than either Norvegicus or spinosus, the largest males being scarcely 25 mm . in length and the largest females about 36 mm .

This species was taken in great abundance, in 51 to 155 fathoms, off Block Island, in 1880 and 1881, by the U. S. Fish Commission. The specimen figured is from the Fish Commission collection, Station \(8 \div 3,100\) fathoms.

\section*{Pontophilus gracilis, sp. nov.}

\section*{Plate VII. Figs. 2-3 \({ }^{3}\).}

This species is very much more slender and has much larger eyes than any other species of the genus known to me. It is represented in the collection by a single specimen, which is possibly immature, but, judging from the structure of the appendages of the first and second somites of the abdomen, is a female.

The carapax is nearly twice as long, along the dersal line, as broad, slightly carinated, and so thin that the branchix are readily seen through it. The rostrum is about two sevenths as long as the rest of the carapax along the dorsal line, very slender, and the lateral teeth scarcely a third of the way from the lase to the tip. The dorsal carina is not distinct except where it rises into two acute teeth directed forward, one on the gastric region and one on the anterior part of the cardiac. There is a slight lateral carina in the middle portion of the carapax, terminating anteriorly in a spine like those in the dorsal carina. A little farther down upon the carapax and a little in front of the anterior spine of the corsal carina there is a small hepatic spine, making in all six spines exclusive of those of the anterior margin. The orbit is very broad and its outer border extends far forward and terminates in a slender spine, while the similarly slender spine of the antero-lateral angle extends still farther forward nearly or quite to a line with the tip of the rostrum.

The eycs are very large and reach to about the tip of the rostrum ; the cornea is oblique, somewhat compressed vertically, and its greatest breadth considerably more than the breadth of the antemal scale. The peduncle of the antennula scarcely reaches the middle of the antemnal scale, and the lateral process from the base of the first segment reaches to the distal extremity of the scgment itself; the outer flagellum is slender and reaches to the tip of the nutennal scale ; the inner is about a third longer, but scarcely stouter, than the outer. The antemal scale is about three fourths as long as the carapax exclusive of the rostrum, about four times as long as broad, only rery slightly narrowed distally, and the tip evenly roumdel. The distal segment of the peduncle is a little more than half as long as the scale, and the flagellum is slender and about twice as long as the carapax exclusive of the rostrum.

The first and second maxillipeds are nearly as in \(P\). Norvegicus. The external maxillipeds reach by the tips of the antemall scales by fully half the
length of the distal segment, which is a little longer than the penultimate, Jut only a little more than two thirds as long as the antepenultimate, while the two distal segments together are about as long as the antennal scale.

The anterior thoracic legs are very slender, reach a little beyond the tips of the antennal scales, and the chela itself is snooth, naked, strongly compressel distally, a little shorter than the antennal scale, about as long as the diameter of the carapax, and, excluding the very prominent distal spine of the inner margin, about a fourth as wide as long. The second legs are very small, as in the other species of the genus, slender, and scarcely reach the middle of the meri of the anterior pair. The third are very slender, about twice as long as the carapax, reach by the tips of the antemmal scales the full length of the propodi and dactyli, which taken together are very nearly as long as the carpi, the dactyli being very slender and acute and about half as long as the propodi. The fourth and fifth legs are about as long as the first pair, and sparsely clothed with long hairs except upon the dactyli, which are strongly compressed vertically, about two thirds as long, and toward the base as broud, as the propodi.

The abdomen to the tip of the telson is about three times as long as, and slightly narrower than, the carapax. The sixth somite is more than a fifth of the entire length, compressed laterally so that the breadth is less than a fourth while the height is fully two fifths of the length, and flattened or obscurely channelled longitudinally in the midlle of its length above. The telson is about as long as the sixth somite, very slender, flattened but scarcely chamelled above, and the narrow tip armed with four very slender spines of which the median are twice as long as the lateral. The inner lamella of the uropod is as long as the sixth somite, projects consilerably by the tip of the telson, is lanceolate, and more than five times as long as broad. The outer lamella is considerally shorter and slightly broarler than the inner.

The inner lamella of the appendage of the first abdominal somite (Pl. VIT. fig. \(2^{b}\) ) is about as long as the protopod, linear, and the margins not ciliated ; the outer lamella is narrow-ovate, considerably longer than the inner, and of the usnal structure. The inner lamella of the appendage of the second sonite (fig. \(2^{\circ}\) ) is a little shorter and much narrower than the outer, and has a single stylet two fifths as long as itself arising from the imer margin near the base.

Station \(315, \mathrm{~N}\). Lat. \(32^{\circ} 18^{\prime} 20^{\prime \prime}\), W. Long. \(78^{\circ} 43^{\circ}\); 225 fathoms.

Since the above description was written a specimen of this species has been taken in 458 fathoms, by the U. S. Fish Commission, Station 1029, off Martha's Vineyard. This specimen, an adult male 28 mm . long, agrees perfectly with the female except in the usual sexual characters, and proves beyond question that the specimens are adult, though the female is probably not fully grown. The eyes in the male are fully as large as in the female. The inner flagellum of the antennula reaches nearly half its length by the antennal scale, while the outer is only a little shorter than the inner, but very stout, fusiform, with the diameter at the thickest point equalling nearly half the breadth of the antennal scale. The inner lamella in the first pair of abdominal appendages (PI. VII. fig. 3) is only half as long and less than half as broad as the outer, and almost entirely naked. In the second pair (fig. \(3^{\circ}\) ) the inner lamella is nearly as long as the outer, but only about two thirds as broad, lanceolate in outline, furnished with plumose marginal setæ like the outer, and bears the two stylets characteristic of the male at about a fourth of the way from the base to the tip of the inner margin. The marginal or major stylet is like the single stylet of the female and of the succeeding appendages of the male, about two fifths as long as the lamella itself, very narrow, and almost entirely naked except the usual hooklike setæ near the tip, while the minor stylet is a little stouter than the other, but only about a fourth as long as the lamella, and naked except a few minute hairs near the tip.

\section*{Sabinea princeps, sp. nov.}

\section*{Plate VIII. Figs. 1 - \(\mathbf{1}^{\text {b }}\).}

Carapax with seven carinæ as in the other species of the genus, but with an acute rostrum as long as the antennal scales or longer, and armed above with a spine either side near the base and below with a single spine. The dorsal carina is very high, sharp, slightly arched longitudinally, and armed, from a little back of the orbit to the posterior margin, with seven or eight somewhat irregular teeth directed forward. The rostrum varies very much in length, in the male being often only a little shorter than the length of the carapax from the orbit to the middle of the posterior margin, but in large females often only half as long; dorsally it is flattened and the margins slightly carinated, but beneath the edge is angular ; the basal portion is nearly horizontal, but the terminal portion is upturned and acute; brlow the margin is armed with a slender spiniform tooth directed forward from the point where the terminal portion is upturned, and above with a similar tooth arising from the dorsal margin over either eye and clirected outward and upward. The three carina each side of the carapax have about the same position as in the other species of the genus. The subdorsal is contimuns almnst to the orbit, and is armed with six or seven spiniform teeth directed forward. The next carina helow is broally interrupted on the anterior region, but back of this is armed with five or six teeth like those of the subilorsal carina, and in front, at the outer margin
of the orbit, with a prominent slender and acute spine. The lower lateral carina is very prominent anteriorly and is armed with nine to twelve spiniform teeth, of which the three or four most anterior increase in size very rapidly, the anterior one forming a great and somewhat laterally expanded spine nearly or quite half as long as the rostrum, and reaching nearly to, or in the male often considerably beyond, the middle of the autennal scale.

The eyes are black, very large, pyriform, and including the peluncles much longer than the greatest diameter, which is about two thirds the breadth of the antennal scale.

The peluncle of the antennula reaches to about the middle of the antennal scale ; the flagella are subequal in length, in the female a little longer than the antennal scale, but in the male much longer and the outer very much stouter than in the female, and considerably thickened vertically.

The antennal scale is about a third as long as the carapax including the rostrom, and is itself of nearly the same form as in the allied species, but there is a prominent and acute spine near its base upon the outer edge of the second segment. The distal segment of the peduucle is very long, reaching nearly to the tip of the antennal scale, and the flagellum in the male is about as long as the abdomen, but considerably shorter in the female.

The external maxillipeds are slender, reach considerably beyond the tips of the antemal scales, and the proportions of the segments and of the exopods are almost exactly the same as in the other species of the genus.

The anterior legs reach to the tips of the antennal scales: the outer distal margin of the merus is prolonged into a slender spine, and there is a similar one upon each of the two outer distal angles of the carpus; the chela is about as long as the merus, very stout, somewhat swollen, and nearly cylindrical at base, but compressed and expanded on the inner side distally, the prehensile edge nearly transverse, slightly arcuate, and armed with a very large spiniform tooth at the inner margin. The rudimentary second legs are small, very slender, and reach to the distal end of the ischia of the first : the ischimm and merns are subequal in length and each much longer than the three distal segments, of which the carpus and propodus are subequal, while the dactylus is very small, only a little longer than the diameter of the propolus. The third legs reach slightly beyond the first, and the dactylus is very slender and acute, but only about one sixth as long as the propolus. The fourth and fifth are nearly equal in length, and the fourth reach to the tips of the third : the dactyli are about half as long as the proporli, very slender, with the upper surfaces densely ciliated.

The carine of the abdomen have the same arrangement as in S. Sarsii, but are much more conspicuons, and each of the epimera of the first two somites projects below into an acuminate spine, while the epimera of the third, fourth, and fifth somites are each armed with two similar spines. The dorsal carima npon the posterior half of the secomd somite is double, or rather V-shaped with the apex directed forward. The dorsal carina upon the third and fourth somites is rery conspicnous, and upon each is prolonged in a tooth at the
posterior margin, the tooth upon the fourth being prominent and horizontal and occasionally having a secondary tooth above its base. The two dorsal carinæ of the filth somite are high and sharp, and each armed with a sharp tooth near the iniddle and with a similar one projecting over the posterior margin. The sixth somite is about once and a half as long as the fifth, its dorsal carinæ are very high and sharp and each armed with five to seven acute teeth of which the posterior project over the margin as in the fifth somite ; the posterior margin is in addition armed with two spines each side, one at the inferior angle and another above the base of the telson.

The outer lamella of the uropod is a little longer than the sixth somite, about twice and a half as long as broarl, and oltusely rounded at the tip; the inner is longer than the outer, ovate-lanceolate, and not quite a third as broad as long.

The telson is about once and a half as long as the sixth somite, tapers regularly tbroughout, and is ornamented above with two carinæ converging to the tip, which is acnte, unarmed, and naked.

All the exposed surfaces of the carapax and abdomen except the spines and carinæ, and a considerable part of the surface of the appendages, are clothed with a very short and dense pubescence, which readily brushes off with the solt mud with which most of the specimens are covered.

Six specimens give the following measurements in millimeters:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Station & 326 & 326 & 337 & 326 & 326 & 312 \\
\hline Sex & & \(\delta\) & ठ & \(\delta\) & ¢ & \% \\
\hline Length from tip of rostrum to tip of telson & 56.0 & 65.0 & 89.0 & 98.0 & 77.0 & 125.0 \\
\hline Length of carapax including rostrum & 21.0 & 23.2 & 33.5 & 35.0 & 28.5 & 49.5 \\
\hline Length of rostrum & 9.2 & 9.6 & 15.5 & 13.5 & 12.0 & 21.0 \\
\hline Length of antemnal scale & 7.0 & 8.1 & 11.5 & 12.5 & 9.2 & \(15.1)\) \\
\hline
\end{tabular}

The eggs are rery large, being, even in alcoholic specimens, abnut 2.5 and 3.0 mm . in least and greatest diameter, while in \(S\). septemcurinata they are about 1.0 by 1.4 mm . in alcoholic specimens.

The number and arrangement of the branchix are the same as in S. septemcarinata, and may be indicated by the following formula : -


Also obtained in the U. S. Fish Commission dredgings off Block Island in 1880, Station 892, N. Lat. \(39^{\circ} 46^{\prime}\), W. Long. \(71^{\circ} 5^{\prime}, 487\) fathoms ; and Statiun 893, N. Lat. \(39^{\circ} 52^{\prime} 20^{\prime \prime}\), W. Long. \(70^{\circ} 58^{\prime}, 372\) fathoms.

The long and spined rostrum and the long spines and teeth of the carapax and abdomen give this gigantic species a very different aspect from the other species of the genus; but the oral appendages, the number and arrangement of the branchix, and other structural details, agree perfectly with S. septemcarinata, the type species of the genus. The present species is, however, much more closely allied to S. Sarsii Smith (Trans. Comn. Acad., V. p. 59, P1. II. figs. 6-\&, 1879) than to septemcarinata; the elongated and acute rostrum, the prominent dentation of the carapax and abdomen, and the structure of the telson in Sarsii show a marked approach toward the princeps, although the two species are very different in general appearance.

Sabinea hystrix (Paracrangon hystrix A. Milne-Edwards, Ann. Sci. Nat., \(\mathrm{E}^{\mathrm{me}}\) série, XI. No. 4, p. 6, 1881), from 730 fath., near Guadaloupe, is very closely allied and probably identical with this species, which, though externally somewhat like Paracrangon echinatus Dana, cliffers essentially in several structural features in which, as pointel out above, it agrees with the typical species of Sabinea. In Paracrangon echinatus, not only are the second pair of legs completely obsolete, but there are no arthrobranchix, the branchial formula being the same as for Ceraphilus boreas and Agassizii.

\section*{RHACHOCARIN 压, subfam. nov.}

Anterior thoracic legs stout, non-chelate ; second pair slender, chelate, and with multiarticulate carpi ; coxæ of the external maxillipeds articulated with the adjacent edge of the carapar.

These characters sufficiently distinguish this subfamily from all other Crangonidæ. The broad, ovate antennal scales with both margins ciliated are probably also characteristic of the subfamily, which, as far as known to me, contains but one genus.

\section*{RHACHOCARIS,* gen. nov.}

\section*{Plates V. and VI.}

The carapax is subcylindrical, carinated longitudinally, rostrated, with prominent antero-lateral and antennal spines, and the margins of the branchiostegites are strongly incurvel opposite the bases of the second pair of legs and are connected each side with the coxa of the external maxillipeds by two processes from the coxa interlocking between their converging tips a projection in the margin of the carapax so as to form therewith an articulation admitting slight motion.

The eyes are large and pyriform, with the cornca expanded and very large. The antennulx are rery nearly as in Crangon. The antennal scale is broad,
* 'Páxis and rapls.
ovate, the entire margin ciliated, and with the tooth of the outer margin small and far back from the tip. The other parts of the antenna are nearly as in Crangon. The oral appendages are very similar to those of Crangon and the closely allied genera, and the labrum, metastoma, mandibles, maxillæ, and second pair of maxillipeds are very nearly as in Crangon vulgaris. In the first maxillipel the proximal lobe of the endopod projects inward much more pronıinently and the distal lobe is longer than in Crangon. There are two arthrobranchir at the base of the external maxilliped, as in Sabinea, and the stout endopod is composed of three segments as in Crangoninæ, but the two distal segments are very short and the terminal one acute and spined.

The legs of the first pair are symmetrical and about as large as the external maxillipeds ; the propodus is short and tapers distally, and the dactylus is small, slender, and capable of flexion against the inner side of the propodus. The legs of the second pair are elongated, slender throughout, and, in all the specimens examined, slightly nnsymmetrical in length; the carpi are long and muiltarticulate; and the chelæ small. The last three pairs of legs are slender and nearly alike.

The number and arrangement of the branchiæ differ from all the Crangonidæ known to me. In \(R\). sculpta, the sccond species here described, there are epipods on the bases of the first and second maxillipeds and two arthrobranchiæ at the base of each external maxilliped, one arthrobranchia for each of the thoracic legs except the last pair, and a pleurobranchia for each side of the last five thoracic somites, - making two epipods, six arthrobranchix, and five pleurolranchix each side, as indicated in the following formula :-
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & viI. & viII. & IX. & X. & XI. & xII. & xIII. & xIV. & Total. \\
Epipods, & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
Podobranchiæ, & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Arthrobranchiæ, & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 6 \\
Pleurobranchix, & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline \(11+(2)\)
\end{tabular}

The abdomen is sculptured and spined to correspond with the carapax, and the exoskeleton is thronghout very thick and massive.

In the three species here described, the hinges at the last three articulations of the abdominal somites - that is, at the articulation of the fifth with the fourth, the sixth with the fifth, and of the telson with the sixth - present a peculiar modification by which the hinge is very much strengthenerl and is at the same time apparently made capable of being clamped or hocked so as to hold the terminal somites firmly extenderl. In addition to the ordinary hinge, at each of these articulations, there is a process arising from the anterior somite just below the hinge and curved hackwarl and upard concentrically with the hinge, and this process fits accurately am is slightly overlapperl along its edges by a similarly curved gronve in the posterior somite. When the abdomen is completely flexed the ends of these curvel proceses priject dorsally consider-
ably beyond the grooves, but when the abdomen is fully extended the processes are withdrawn so as to expose the dorsal part of the groove, and in this position in the contracted alcoholic specimens the somites are firmly clamped, apparently by the pressure of the ends of the processes upon the concave posterior walls of the grooves, and held rigilly extended, so that it is very difficult to flex the somites, unless the tip of the abdumen is pulled backward with considerable force, when the processes slide easily through the grooves and the somites are readily flexed. It is probable that in life, while the extensor museles of the abdomen are relaxed, the processes move easily through the grooves ; but when the extensor muscles are strongly contracted the hinges are clamped as in the alcoholic specimens, so that the anmal can voluntarily hold the telson and the spiny terminal somites of the abdomen rigidly extended as a means of self-lefence.

In all three of the species, when the abdomen is fully flexed, the tip of the telson is brought directly below and very near to the mouth.
A. Milne-Edwards, in the paper already referred to, which has been published since the part of this report relating to the Crangonille was ready for the printer, has described three new species belonging to a new genus, Glyphocrangon, which is apparently very closely allied to the genus here described and possibly identical with it. In Milne-Elwards's genus the telson is described as consolidated with the sixth somite of the abdomen.* It is scarcely to be supposed that Milne-Edwards could mistake the peculiar articulation of the telson with the sixth somite of the ablomen, which is described above and which is equally characteristic of the articulation of the sixth somite with the fifth and of the fifth with the fourth, for actual consolidation, or overlook the remarkable character of the articulation of the external maxillipels with the carapax ; and as neither of the species here described and figured agrees fully with the description of either of the species of Glyphocrangon in the spines of the carapax and abdomen, I an forced to the conclusion that MilneElwards's genus is different from mine, thongh possessed of quite as remarkable characters.

\section*{Rhachocaris Agassizii, sp. nov.}

Flate V. Fig. 2. Plate VI. Fig. ※.
Female. - The carapax has eight conspicuous longitulinal carine which are interrupted by a very deep cervical and a broad and deep gastro-orbital sulens, but, aside from the carine, sulci, and spines, is nearly cylindrical. The rostrum is about two thirds as long as the rest of the carapax along the dorsal line, llat-
* In characterizing the genus he says, "Le septième articlo abdominal est presque entièrement soude an sixieme ": and in the description of \(G\). spiniaruldr, the first species, "Le septieme article est immohile sur le précédent, il est triangulaire, biearené en dessus, très pointu, et an lien d’avoir la même direction que les autres articles, il se relève et son extrómité est dirigée en haut."
tened above, triaugular but with the edge flattened and distally slightly grooved below, and tapers regularly to an acute and gently uptumed tip ; above there is a narrow but distinct median carina extending the whole length, and the margins are carinated and each armed just above the front of the eye with a prominent and acute spine directed forward and upward; below the rostrum is unarmed. Just back of the base of the rostrum there is a pair of spines like those upon the rostrum, but elightly larger and with the bases elongated and laterally compressed. From these teeth two parallel dorsal carinx extend to the posterior margin, but each one is broken into ten or eleven elongated teeth turned slightly forward, truncated above, and all except the first and last with flattened and conspicuously punctate tops. The space between these carinx is concave with a deep transverse depression at the cervical suture, but smooth except a few small tubercles along the carinæ and one on the median line in front. The frontal margin is transwerse and nearly straight, but the lateral angle is armed with three very large and acute spines : a very slender antemal spine directed upward and forward from just above the lase of the antenna; directly below thio a somewhat larger one (the lateral angle itself) slightly compressed laterally and curved downward and then directed forward below the antennal scale; and, arising outside and a little back of these, a very broad, dentiform, vertically compressed spine directed outward and forward, terminating in an acute tip as fur forward as the tip of the antemal spine, and apparently representing the anterior part of the lower of the three lateral carinæ, but separated from it by the broad and very deep depression of the cervical suture. The broad triangular space between this carinal tooth and the gastric region is depressed and smooth. The posterior part of the middle lateral carina is prominent and terminates at the cervical suture in a long tooth directed forward ; posteriorly it extends to the posterior margin and has the ellge thich, flattened and punctate. The upper of the lateral carine is not evident in front of the cervical suture, is less conspicuous than the dorsat, and is olscurely divided into about four truncated teeth flattened and punctate above. On the gastric region in frout of this carima there is an irregular group of elongated tubercles extending to the gastro-orbital suture, but with this exception the sides of the gastric recrion are unarmed, as are the remaining spaces between the carine of the dorsal part of the campax, except a few very small tubercle either side of the carliac region, and a few still smaller ones below the upper lateral carina and near the postcrior margin. The lower of the lateral carinx is broad, punctate along its edge, and extents from near the base of the spine of the antero-lateral angle almost to the posterior margin, with a broad and deep interruption at the cervical suture. On the branchial recrion below this carina there are about three irregular elongated and punctate ridges, and near the posterior margin there are a few small tulereles, but with these exceptions the branchial regions are unarmed. There is, however, a narrow but well-marked carina the whole length of the lateral margin.

The eyestalks are slenter and very small in proportion to the eyes themselves, which are approximately spherical, slightly compressed vertically, and
with the horizontal diameter about three fourths as great as the breadth of the antennal scale and only a little less than the length of the eye to the base of the stalk. In the alcoholic specimen, the pigment is deep purplish and is probably not black in life.

The peduncle of the antennula reaches to the tip of the antennal scale and nearly to the tip of the rostrum, and is clothed along the siles and below with very fine hairs, but is nearly naked above ; the first segment is a little longer than the second and third together, the second nearly as long as the last, which is less than twice as long as broad. The flagella are both nearly naked : the outer is about as long as the peduncle, the proximal two thirds of its length vertically compressed and broad, hut the terminal portion suddenly contracted; the inner is a little longer than the outer, very slender and regularly tapered.

The antennal scale is regularly ovate, with the greatest breadth about two thirds of the way from the tip to the base, where it is very much contracted at the articulation; both margins are thickly ciliated, and the tooth of the outer margin is represented by an obscure angular projection at less than a third of the way from the base to the tip. The narrowness of the articulation permits great lateral motion in the scale, so that it may be turned outward at nearly a right angle to the body. The segments of the peduncle are without spines or tubercles ; the last segment is about as long as the breadth of the scale and reaches three fourths of the way from its base to its tip, and the inner edge is compressed and ciliated. The flagellum is a little longer than the carapax including the rostrum, slender, compressed vertically, and almost naked.

The tips of the external maxillipeds reach to about the tips of the antennal scales. The proximal of the three segments of the endopod is about as long as the antennal scale and five or six times as long as broad; the second segment is about two fifths as long as, and slightly broader than, the first, vertically compressed, thickly ciliated along the inner edge, and armed beneath with a single movably articulated spine near the distal end, and with two or three similar spines along each edge ; the last segment is a little longer than the second, flat and smooth above, tapers from the base to a slender curved and acute tip, and the under surface and lateral margins are armed with thirteen or fourteen movably articulated spines among which there are a few fascicles of setr. The exopod is very slender, the basal portion slightly longer than the flagelliform portion, and the whole considerably shorter than the proximal segment of the endopol.

The legs of the first pair are just about as long as and scarcely stouter than the external maxillipeds, and reach a little beyond the bases of their dactyli, or nearly to the tips of the peduncles of the antemno: the ischim is about as long as the propodus, the imner and outer margins nearly parallel, the outer articnlating with the merus, while the inner is thin, nearly straight, chosely approximated, and armed with a few sete, and each projects forward beyoml the articulation with the merns in a narrow dentiform prominence; the merus is as long as the three distal segments together, about a fourth as long as broad, slightly compressed vertically and with a few seta along the inner edge, but
otherwise unarmed ; the carpus is short, about as broad as long, and unarmed, and is so articulated with the merus as to be capable of flexion backward and beneath it ; the propodus is slightly more than half as long as the merns, rounded, slightly swollen, tapers to a very narrow distal extremity, and is smooth and unarmed except upon the upper and inner side where it is furnished with three longitudinal series of fascicles of soft setæ ; the dactylus is about half as long as the propodus, very slender, curved and acute, smooth and naked, and capable of nearly complete flexion on the setigerous side of the propodus. The manner in which the distal segments of these limbs are articnlated brings the setigerous sides of the propodi and the points of the dactyli in direct opposition to the spinous sides of the two distal segments of each of the external maxillipeds, and these two pairs of appendages are probably used together as prehensile organs.

The legs of the second pair are unarmed and naked, very slender, the distal portion but little stouter than the proximal part of the flagellum of the antenna, and a little unsymmetrical, the left being slightly stouter than the right and reaching nearly to the tip of the rostrum, while the right reaches a little beyond : the coxa is short and nearly cylindrical ; the ischium is a little longer than the propodus in the first pair, much broader than the coxa, very much compressed vertically and the inner edge slightly expanded proximally, so that the breadth is about a fourth of the length ; the merus is about a fourth longer than the ischium, the right a little longer than the left, little more than half as broad as the ischium, nearly uniform in breadth, and compressed vertically but much less so than the ischinm ; the carpus is more than twice as long as the merus and more slender, strongly compressed, very slightly tapering at the distal end, composed of thirty-one segments on the right side and twenty-three on the left, and the most distal segment in each about as long as the three next taken together ; the left chela is slightly larger than the right, but neither is larger than the distal segment of the carpus, the digits are hoth short, the prehensile edge of the propodal one considerably oulique and shorter than the dactylus, which is itself scarcely longer than the breadth of the propodus.

The legs of the third pair are nearly naked, slender, and reach to the tip of the rostrum : the merus is about twice as long as the ischimm, and these two segments taken together are longer than the three distal segments and are of nearly uniform diameter throughout and very slightly compressed ; the carpus is a little shorter and more slender than the ischimm ; the propodus is nearly twice as long as the carpus, cylindrical, and slightly tapered distally; the dactylus is narrower than the distal end of the propodus, nearly a fourth as long as the propodus, nearly straight, a little compressed vertically, and tapered from the base to the tip. The fourth and fifth pairs of legs are alike and very similar to the third pair, but are slightly stonter throughout, the propodus is furnished with a dense fascicle of setre outside the hase of the dactylus, and the dactylus itself is considerably longer than in the third pair, strongly compressed vertically, concave above and convex below, and lanceolate, being broader in the mildle than the distal end of the propodus, but narrowed toward the baso and tapered to an acute tip.

The sternum is flat, triangular, and wholly unarmed.
The abdomen is about once and a half as long as the carapax including the rostrum, is narrower than the carapax, and as seen from above tapers regularly from the base to the tip of the telson. There is a sharp medio-dorsal carina from the base to the telson, but interrupted on all the somites but the first ; a single lateral carina each side is indistinctly indicated on the first two or three somites ; and the dorsal surface generally is studded with prominent tubereles, many of which are elongated and all the larger ones with flattened and punctate tops. Upon the first somite, the median carina is thin and very high and projects forward in an acute tooth ; either side, in line with the upper lateral carina of the carapax, there is a very prominent acute and spiniform tooth directed obliquely forward. On the second and third somites, the dorsal carina is divided into two nearly equal parts by a smooth and very conspicuous sulcus, which passes slightly backward either side across the whole dorsum of the segment and down parallel with and near to the posterior margin of the epimeron ; the anterior part of the carina on the second somite is nearly as high as on the first and projects slightly forward, but the posterior part on the second and both parts on the third are much lower and do not project in front or behind. On the fourth somite, the carina is divided into two unequal parts by a less conspicuous sulcus, the anterior part being like that upon the third somite, while the posterior part is twice as long, thickened and flat above anteriorly, but posteriorly higher, more acnte, and projecting slightly over the fifth somite. On the fifth somite the carina is unequally divided by a similar suleus, but the anterior portion is more prominent than on the fourth, and the posterior part is very prominent, its anterior half being formed of two longitudinally elongated tubercles slightly diverging posteriorly, and between and hack of them a single very high sharp and triangular tooth. The carina upon the sixth somite is broken anteriorly by a small notch, and posteriorly rises in an acute edge and projects far back over the base of the telson in an acute tooth. The epimeron of the first somite is narrow, does not project below the margin of the carapax, is rounded below and alnost wholly covered by the anterior expansion of the epimeron of the second somite when the abdomen is fully flexed. The epimeron of the seeond somite projects much below the epimeron of the first, the anterior margin is nearly as convex in outline as the posterior, the inferior margin projects in the middle in a very long, slender, and onteurved spine, in a much smaller spine at the posterior angle, and in a small tonth anteriorly ; on the outer surface a sulcus, like and nearly parallel with the sulcus of the porterior border, passes from near the anterior hinge to the base of the larye spine of the inferior margin, but hetween and outside of the sulei the surface is sparsely tubereulous. The epimera of the thirl, fourth, and fifth somites have a smooth depressed area along the anterior margin, and are each armed helow with two slender acute and out-eurved spines, of which the anterior one on each epimeron is about as long as the large spine of the seend epimeron, while the posterior spines increase in length from the second to the fifth somite, that upon the fifth epimeron being longer than the anterior spine of the same
epimeron and directed backward as well as outward ; the middle portion of the outer surface of each of these epimera is raised and sparsely tuberculons, and there is also a line of small tubercles between the sulcus and the posterior margin on the third, but on the following epimera the transverse sulcus of the dorsum does not extend down the epimera. Most of the tubercles on the side of the sixth somite are arranged in two longitudinal lines, an irregular but prominent one between the two linges and a less prominent one below. The lateral angles of the sixth somite project downward, outward, and backward in a very large and acute spine outside the base of the uropod.

The telson is a little longer than the rostrum, slightly expanded toward the base, but the distal two-thirds is narrow, and terminates in a slender spiniform and slightly upturned tip unarmed with spines or setæ. On the dorsal side there is a sharp median tooth beneath the projecting carinal tooth of the sixth somite; either side there is a sharp carina extending from the base nearly to the tip, leaving, except at the base, a smooth and deep groove between them; the lateral edges are strongly carinate, leaving a smooth groove either side, and a wide and shallow groove the full width of the under surface.

The lamellæ of the uropods are about three fourths as long as the telson: the inner lamella is obtusely lanceolate and nearly four times as long as broad; the outer is much broader, the tip ovately rounded, and the very prominent lateral tooth about a fourth of the way from the tip to the base.

The inner lamella of the appendage of the first abdominal somite is very short, abont a third as long as the outer, obtuse, and about half as broad as long.

The sterna of all the abdominal somites are unarmed.
The eggs are very large, being, in alcohol, about 2.6 and 3 mm . in least and greatest diameter, and are proportionally few in number, there being not far from one hundred carried by the specimen examined.

The single specimen seen, a female, gives the following measurements : -
Length from tip of rostrum to tip of telson . . . . . 111.0 mm .
Lengtli of carapax, including rostrun . . . . . . 46.0
Length of rostrum . . . . . . . . . 18.0
Breadth of carapax in front, including spines . . . . 30.0
" " at cervical suture . . . . . . 17.0
" " at middle, including spines . . . . 21.0
Diameter of eye . . . . . . . . . . 5.0
Length of antennal scale . . . . . . . . 13.1
Brearth of anterinal seale . . . . . . . . .1
Length of external maxillipels . . . . . . . 27.4
" first pair of legs . . . . . . . . 27.2
" carpus . . . . . . . . . 2.3
" propiotus . . . . . . . . . . 6.2
" dactylus . . . . . . . . . 3.4
" second pair of legs . . . right, 42.0 mm . left, 39.0


Station 326, N. Lat. \(33^{\circ} 42^{\prime} 15^{\prime \prime}\), W. Long. \(76^{\circ} 0^{\prime} 50^{\prime \prime}, 464\) fathoms.

\section*{Rhachocaris sculpta, sp. nor.}

Plate V. Fig. 3. Plate VI. Figs. 3-3 \({ }^{1}\).
Female. - This species, though closely resembling the last in structure and general appearance, difters very conspicuously in the ornamentation of the carapax and abdomen, and in the form of the clactyli of the fourth and fifth pairs of thoracic legs. It is distinguished from R. Agassizii at a glance by having the dorsal and upper lateral carinæ of the carapax only obscurely indicated by lines of acute tubercles and the spaces between the carinx tuberculous, by having two short spines each side in place of the great lateral spine of the antennal region and a small bidentate tooth in place of the sharp branchial spine of \(R\). Agassizii, and in having three instead of two lateral spines on the epimeron of the fifth somite of the abdomen.

The postero-lateral angle of the carapax is more prominent and angular than in R. Agassizii, but in other respects the form is very nearly the same. The lateral carinx on the posterior part of the rostrum are not so high, and the two teeth at the base of the rostrum are even smaller than the rostral teeth and are nearly erect. All the carinac of the carapax are much less prominent, so that the carapar is more regularly rommed. The space hetween the two dorsal carine is scarcely at all depressed, the transverse sulcus at the cervical suture is not as deep, and there are two lines of small spiniform tubercles extending the whole length of the space, and the dorsal carinæ themselves are represented by two similar lines of larger spiniform tubereles with about twelve tubercles in each line, and with an obseure line of ninute tubercles just outside of them. Below the dorsal carina and just back of the eye either side, at the extreme anterior end of the lateral lobe of the gastric region, there is a very large vertically compressed and acute tooth or spine comected with the lateral carina of the rostrum by a low but conspicuous ridge, just back of the base of this tooth there are one or two small spines, and on the rest of the triangular lateral lohe of the gastric region between these and the cervical suture there are approximately twelve spines or tubereles, of which those in the middle of the lotre are larger than the others. Of the three spines of the antemal remion, the antennal itself is longer than in \(R\). Agassimii, much stouter, considerally expanded at the base and directed strongly ouward as well as forward and upward ; the spine of the antero-lateral margin is stouter and directed more outward; while hack of and between these spines there are two relatively small acute teeth directed
voL. x. - No. 1.
forward, one behind the other, and of which the anterior is considerably the larger, and in the space between these teeth and the gastric region there are two or three irregular lines of minute acute tubercles. Back of the cervical suture, the upper lateral carina is high, conspicuons, and marked by a line of about six acute teeth directed slightly forward, and the depression between these and the lateral carina is armed with minute spiniform tubercles obscurely arranged in longitudinal lines. The middle lateral carina is distinct, armed in front with a small bidentate tooth and back of this by a very few small and irregular teeth. The lower lateral carina is distinct, with the edge slightly crenulated but not dentate. Below the carina of the antennal region there is a longitudinal rugose ridge, and below and back of this a similar ridge on the lower part of the branchial region. The surface of the branchial region between the carinæ is roughened by many minute tubercles, the inferior margin is bordered by a conspicuous carina as in the last species, and just above this at the postero-lateral angle there is a conspicuous elongated tubercle.

The eyes are a little larger than in the last species, but do not differ in other respects. The peduncles of the antennule are clothed with coarser hairs than in the last species, and the distal segments are hairy above as well as on the sides, but in other respects they do not differ. The antennal scale is a little broader than in the last species and the tooth of the outer margin is more prominent and nearly half-way from the base to the tip, but the peduncle and flagellum do not differ. The distal segment of the external maxilliped is no longer than the penultimate, and the spines upon these two segments are a little more slender and the whole appendage a little shorter than in R. Agassizii. The legs of the first pair are a little shorter as a whole, and the propodi and dactyli are relatively shorter. The legs of the second pair are exactly as in R. Agassizii except that they are shorter and have fewer segments in the carpi, the right leg scarcely reaching the tip of the peduncle of the antenna, the left a little shorter, while the right carpus has twenty-three segments and the left twenty. The legs of the third pair are stouter than in \(R\). Agassizii and only reach to tips of the antennal scales, but the relative lengths of the segments are about the same. The fourth and fifth pairs are proportionally short and stout, and the dactyli very different from those of \(R\). Agassizii. These are alike in both pairs, about a fifth as long as the propodi, slonter than in the third pair, not at all compressed but nearly cylindrical, even slightly swollen distally, and very abruptly contracted into a bifid tip, the imer tooth of which is the longer, more acute, and curved.

The form and sculpture of the abdomen is very similar to that of the last species, but the dorsal carina on the first somite is intermipted posteriorly and on the second is not so high ; the teeth of the lateral carime on the first somite are not !uite as acute ; the tubercles over the surface generally are more irregularly arranged, and none of them are much clongated ; the marginal spines of the epimera are shorter and less curvel, hut the anterior tooth on the second epimeron is much larger though ohtuse ; the fifth is armed with three spiniform teeth, a median tooth, and two smaller nearly equal lateral teeth; and the
lateral spine of the sixth somite is smaller and not directed so much backward. There are no differences of importance in the form of the telson, uropods, or other abdominal appendages.
The eggs are slightly larger than in \(R\). Agassizii, and of about the same number.
The specimen above described gives the following measurements : -
Length from tip of rostrum to tip of telson ..... 108.0 mm .
Length of carapax, including rostrum ..... 44.0
Length of rostrum ..... 18.5
Breadth of carapax in front, including spines ..... 19.3
" " at cervical suture ..... 15.4
" " at middle, including spines ..... 21.5
Length of antennal scale ..... 12.7
Breadth of antennal scale ..... 6.8
Diameter of eye ..... 5.5
Length of external maxillipeds ..... 22.5
" first pair of legs ..... 22.2
" second pair of legs . . . . right, 29.0 ; left, 27.5
" merus . . . . . . . " 6.2 " 6.2
" carpus . . . . . . " 12.7 " 11.0
" chela . . . . . . . " 1.1 " 1.1
" third pair of legs ..... 34.0
" fifth pair of legs ..... 27.5
" telson ..... 18.5

Station 339, N. Lat. \(38^{\circ} 16^{\prime} 45^{\prime \prime}\), W. Long. \(73^{\circ} 10^{\prime} 30^{\prime \prime}\), 1186 fathoms.

\section*{Rhachocaris longirostris, sp. nor.}

\section*{Plate V. Fig. 1. Plate VI. Fig. 1.}

Female. - This species agrees with \(R\). Agassizii in having the dactyli of the fourth and fifth pairs of thoracic legs slender, but in the sculpturing of the carapax and abdomen it is more like R. sculpta, though the tubereles are fewer in number and are all obtuse; it differs very conspicuously from both these species in having a much longer rostrum, longer telson, much shorter antemal scales, and the eyes on shorter peduncles, and, in the alcoholic specimen, devoid of colorel pigment.

The rostrum is slightly longer than the rest of the carapax along the dorsal line; the basal two-thirds is horizontal, but the tip strongly upturned; the upper side is flat and the horizontal portion of unifurm breadth, but the tip regularly tapered and acute ; there is a slight median carina the whole length; there are lateral spines and the corresponding pair of spines at the base of the
rostrum as in \(R\). sculpta, though a little less prominent; and between the lateral spines and the curved tip the surface is irregularly corrugated. The inferior edge of the rostrum is grooved, the groove being broadest at the beginning of the curved portion, and toward the tip there is in addition a slight median carina. The carinæ of the carapax have nearly the same arrangenent as in R. sculpta. The tubercles of the indistinct dorsal carinæ are all very low, olituse, and punctate, and the space between the carinæ unarmed except by a few small tubercles in front. On the lateral lobes of the gastric region the tubercles are all low and obtnse, the anterior being no more prominent than the others. The antennal spine is nearly as in R. sculpta, but the spine of the anterior angle is shorter and stouter than in that species, and directed straight forward as in \(R\). Agassizii. The lateral carina of the antennal region is continuous and terminates anteriorly in a distinct tooth back of which the edge is obtuse and punctate. Back of the cervical suture, the upper lateral carina is prominent, but the tubercles with which it is surmounted, though more prominent than the others on the carapax, are all obtuse and punctate. The mildlle lateral carina is continuous, broad, and punctate, and the lower carina is very low but well marked by being punctate. The inferior marsin of the carapax is carinated as in the other species.
The eyestalks are very short so as to be almost entirely concealed, and the eyes themselves relatively about as broad as in the other species, but somewhat flattened anteriorly so that they appear much less prominent, and in the alcoholic specimen are perfectly white.

The peduncles of the antennulæ reach only to about the midule of the rostrum and the flagella fall short of its tip, but the proportions of both peduncles and flagella are very nearly as in the other species. The antemal scales scarcely reach to the tips of the peduncles of the antemulx, are orate, about three fifths as broad as long, broulest distally, and have a very indistinct tooth about the middle of the outer margin which is only obscurely ciliated back of the tooth.

The external maxillipeds and the first pair of thoracic legs are slightly shorter, reaching scarcely to the tips of the antemal scales, but otherwise as in \(R\). sculpta. The thoracic legs of the second pair are similar to those of R. sculpta, but the right reaches a little beyond the tip of the antennal seale and its carpus has about twenty-one segments ; the left is a little shorter than the right and its carpus has about eighteen sugments. The thirl legs are nearly as in the other species, reach a little beyond the tijs of the antenmal scales, and their dactyli are about a third as long as the proporli and very slemler. The fourth and fifth pairs of legs are hut very little if at all stouter than the thind, the fascicles of seter at the tips of the proporli are nearly as long as the propoli themselves, and the propodi are slifhtly shorter than in the thind pair, strongly compressed as in IV. Agassizii, but slemder and not expanded at all in the middle.

The sculpturing of the abrinmen resembles that of \(R\). sculpta, hut the domsal carina is less prominent and more obtuse, and the tubercles are fewer in num-
ber, obtuse, and punctate. The marginal spines of the epimera of the second to the fifth somite are all short, dentiform, and the posterior spine of the fifth epimeron is merely represented by an obtuse angle. The lateral spines of the sixth somite are about as prominent and fully as stout as in R. sculpta.

The telson is longer than the carapax along the median line, exclusive of the rostrum, and has nearly the same form and sculpturing as in \(R\). sculpta, though the tip is slightly more upturned. The outer lamella of the uropod is only about two thirds as long as the telson, fully a third as broad as long, with the lateral spine farther from the tip than in the other species and the margin between the spine and the tip obliquely truncated rather than rounded. The inner lamella is narrow and considerably longer than the outer.

The specimen on which the above description is based is not carrying eggs, and the genital orifices at the bases of the third pair of thoracic legs are not easily discoverable; but the appendages of the first and second somites of the abdomen are like those of \(R\). sculpta, and leave no doubt in regard to the sex.


Station 330, N. Lat. \(31^{\circ} 41^{\prime}\), W. Long. \(74^{\circ} 35^{\prime}, 1047\) fathoms.
From Station 315, N. Lat. \(33^{\circ} 18^{\prime} 20^{\prime \prime}\), W. Long. \(78^{\circ} 43^{\prime}, 252\) fathoms, there is a single small and imperfect specimen, evidently the young of this species. This specimen is abont 25 mm . long and differs from the one above described in having the carinæ of the carapax a little sharper; the lateral carina of the antennal region interrupted in the middle ; the marginal teeth of the abdominal epimera smaller in proportion and the posterior tooth of the fifth epimeron wholly wanting, leaving it bidentate like the third and fourth ; and the right and left carpi in the second pair of thoracic legs of about eighteen and fifteen segments respectively.

\section*{PAL压MONID雨．}

\section*{ALPHEIN 正．}

\section*{Hippolyte Liljeborgii Danielssen．}

Hippolytc Liljeborgii Danielssen，Nyt Magazin Naturv．，Christiania，XI．p．5， 1861.
Metzger，Jahresber．Comm．wissensch．Untersuchung deutschen Meere，1872－73， Nordsee，p．290， 1865 （Lilljeborgi）．
Danielsser and Boeck，Nyt Magazin Naturv．，Christiania，XIX．p．196，Pl．， figs．15－20， 1872.
Hippolyte sccurifrons Normax，Trans．Tyneside Naturalists＇Field Club，V．p．267， 1863 （teste Danielssen and Boeck，Metzger）．
Smitn，Trans．Conn．Acad．，V．p．69，Pl．X．fig．3， 1879 ；Proc．National Mus．， Washington，III．p．437， 1881.
\begin{tabular}{ccccc} 
Station． & N．Lat． & T．Long． & Fathoms． & Specimens． \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 89 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime} 0^{\prime \prime}\) & 524 & 29 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(65^{\circ} 22^{\prime} 0^{\prime \prime}\) & 304 & 29
\end{tabular}

This species appears to be abundant in deep water off the whole New Eng－ land cnast．It has also been taken off the Capes of the Delaware by Capt． Z．L．Tanner，of the U．S．Fish Commission Steamer＂Fish－Hawk，＂Sta－ tion 1045，N．L． \(38^{\circ} 35^{\prime}\) ，W．Long． \(73^{\circ} 13^{\prime}, 312\) fathoms，and at neighboring stations．

\section*{Hippolyte．Phippsii Krörer．}

Mippolyte Phippsii Knöyer，Naturh．Tidssk．，III．p．575， 1841 （ô）．
Hippolyte turgida Kıöyer，Ibid．，p．575， 1841 （\＆）．
Hippolyte vibrans Stimpson，Ann．Lyceum Nat．Hist．New York，X．p． 125 （ \({ }^{4}\) ，var．）
Hippolyte Ochotensis Brandt，Middendorff＇s Sibirische Reise，II．p．120，Pl．V． fig．17， 1849 （ \(\%\) ）．

Station 302 ，N．Lat． \(41^{\circ} 30^{\prime}\) ，W．Long． \(66^{\circ} 3^{\prime}, 73\) fathoms ：one male．

\section*{Hippolyte polaris Ross．}

Alphers pmlaris Sabine，Suppl．to Appendix of Parry＇s First Voyage，p．cexxxriii． PI．II．firs．5－8， 1824.
Hippolytr polaris J．C．Ross，in John Ross，Appendix to Second Voyage，p．lxxxv．， 1835 （ㅇ） ）
Hippolyte borealis J．C．Ross，in John Ross，op．cil．，p．lxxxiv．Pl．B，fig．3， 1835 （ \(0^{\circ}\) ）．
Station 303，N．Lat． \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) ，W．Long． \(65^{\circ} 54^{\prime} 30^{\prime \prime}, 306\) fathoms ；one male．

\section*{Caridion Gordoni Goës.}

Hippolyte Gordoni Bate, Nat. Hist. Review, V., Proc., p. 51, figs., 1858. [No specific name is given in the article, though the slecies is said to be named after its discoverer, the Rev. G. Gordon, but Hippolyte Gordoni is given in the "Index to the Proceedings," p. iv.]
Doryphorus Gordoni Norsan, Ann. Mag. Nat. Hist., 3d Series, VIII. p. 277, Pl. XIII. figs. 6, 7, 1861. [The generic name preoccupied.]
Caridion Gordoni GoE̊s, Öfversigt Veteuskaps-Akad. Förhandlingar, Stockholm, 1863, p. 170 (10).

Station 311, N. Lat. \(39^{\circ} 59^{\prime} 30^{\prime \prime}\), W. Long. \(70^{\circ} 12^{\prime}, 143\) fathoms, sand ; two specimens, male and female.

\section*{Bythocaris, sp. indet.}

A few specimens from Station 314, N. Lat. \(32^{\circ} 24^{\prime}\), W. Long. \(78^{\circ} 44^{\prime}, 142\) fathoms ; and Station 327, N. Lat. \(34^{\circ} 0^{\prime} 30^{\prime \prime}\), W. Lon. \(76^{\circ} 10^{\prime} 30^{\prime \prime}\), 178 fathoms.

The species is the same as the one I have referred to as taken off Block Island by the U. S. Fish Commission (Proc. National Mus., Washington, III. p. 437,1881 ). It is apparently closely allied to B. Puyeri G. O. Sars (Archiv Mathem. Naturvid. Kristiania, II. p. 340, 1877, Hippolyte Payeri Heller), but the specimens are all much smaller thon the one described by Heller, none of them being over 30 mm . in length, and probably belong to a distinct species.

\section*{Anchistia tenella, sp. nov.}

\section*{Plate IX. Figs. 1 - \(\mathbf{1}^{\text {b }}\).}

This species is represented by a single specimen, an egg-carrying female. The integument is very thin and soft, so that it is difficult to make out accurately the proportions of the carapax, which is apparently slightly compressed laterally. The rostrum is slender, falls slightly short of the tips of the antennal scales, is fully three fourths as long as the rest of the carapax along the dorsal line ; the dorsal crest extends back a short distance upon the carapax, is directed slightly downward through its whole length, and is armed with nine teeth, crowded posteriorly but more widely separated anteriorly, and of which three are back of the orbit and the small anterior one near the acute tip; the lower edge is armed with three teeth. The anterior margin projects in an acute angle below the orbit, and there are well-developed antennal and hepatic spines. Just back of the dorsal crest there is a slight notch in the dorsum with a distinct but short transverse sulcus turned forward either side.

The eyes are small, black, and fall considerably short of the middle of the rostrum. The peducle of the antemula ( \(\mathrm{Pl} . \mathrm{IN}\). fig. \(1^{a}\) ) reaches to the tip of
the rostrum : the first segment is squamiform, about onee and two thirds as long as the two distal segments together, about three sevenths as broal as long, and the outer margin is armed with an acute tooth near the middle and projects distally in a similar tooth half as long as the second segment ; the second and third segments are subequal in length, the second less than half as wide as the first but with a slight carina-like expansion on the outer side, while the third is still narrower and nearly cylindrical. The onter flagellum is dividen for nearly balf the length of the outer portion, which is as long as the peduncle, rather stout and somewhat hairy, while the imner ramus is more slender, nearly naked, and extends more than half the length of the whole flagellmn beyond the tip of the outer ramus. The inner flagellum is very slender and apparently a little shorter than the outer, but is imperfect at the tip. The antennal scale (Fig. \(1^{b}\) ) is about as long as the rostrum, more than a third as broad as long, only very slightly narrowed distally, and the broad olliquely truncated and rounded tip extends considerably beyond the large and acute spine in which the outer margin terminates. The terminal segment of the peduncle is slender and about two fifths as long as the scale. The flagellum is nearly as long as the whole body of the animal.

The external maxillipeds reach to the middle of the antennal scales and are very slender ; the first of the three segments of the endopod reaches to the front edge of the carapax, and the second and third are successively a little shorter. The exopod is slender and reaches a little by the first segment of the endopod. The two pairs of chelate legs are unsymmetrical, the legs of the left side being larger than those of the right. This is very likely accidental, however, for the right antennal scale is short and misshapen, evidently reproduced after injury, and the right chelate legs have very likely been reproduced also, although they are as well formed as the left ones. The left leg of the first pair is about as long as the carapax including the rostrum ; the merus and carpus slender and subequal in length ; the chela nearly as long as the carpus, and slender, six or seven times as long as broad and with slender and slightly curved digits nearly half the whole length. The right leg is slightly smaller than the left, but the proportion of the parts the same. The left leg of the second pair is once and a half as long as that of the first pair ; the ischium and merns are subequal in length, the latter reaching as far forward as the tip of the rostrum ; the carpus is a little more than half as long as the merus, and shorter than in the first pair; the chela is nearly as long as the carpus and merus together, slender, though slightly swollen in the middle, and with slemder digits ahout two fifths the whole length. The right leg is about a fourth shorter than the left, and slender in proportion. The third and fourth pairs of legs are alike, slemeler, abont a third longer than the carapax including the rostrum, the carpi about two thirds as long as the meri, the proporli considerably longer than the carpi, and the dactyli slender, slightly curved, acute, and only a sixth or seventh as long as the propodi.

The epimeron of the first somite of the alklomen is very broal, but little narrower than that of the second, and extends far forward by the poaterior edge
of the carapax ; the second epimeron is orlicular, broader than high and nearly as broad as the whole height of the somite; the third epimeron is broad and rounded posteriorly; the fourth epimeron is prolonged backward nearly the full length of the fifth somite and is evenly rounded posteriorly ; the fifth is rounded and projects very slightly posteriorly. The sixth somite is nearly twice as long as the fifth, and about half as high as long. The telson is nearly a third longer than the sixth somite, thin and lamellar, tapers regularly to a rounded tip unsymmetrically armed with five spines and perhaps not quite perfect, and above is ceenly rounded and armed with two pairs of aculci. The lamellæ of the uropods reach a little by the tip of the telson : the inner is narrowly ovate and nearly four times as long as broad ; the outer is less than three times as long as broad, and broadly rounded at the tip, which projects much beyond the tooth in which the thickened outer margin terminates.

The eggs, which are well advanced toward maturity, are approximately 0.60 and 0.45 mm . in greater and less diameter in the alcoholic specimen.

All the oral appendages agree very closely with those of Palcemonctes varians (Leach sp.) and the number and arrangenent of the branchix are apparently the same as in that species, though I am not certain that there is more than one arthrobranchia at the base of the external maxilliped. [Palcmonetes varians and Leander natator have the same branchial formula as Palcemon squilla.]

The single specimen is from Station 316, N. Lat. \(327^{\prime}\), W. Long. \(78^{\circ} 3 \overline{7}^{\prime} 30^{\prime \prime}\), 229 fathoms, bottum of pebbles, and gives the following measurements :-


\section*{PANDALIN 㞑。}

Pandalus propinquus G．O．Sars．
G．O．Sars，Vidensk．－Selsk．Forhandl．Christiania，1869，p． 148 （4）；Ibid．，1871， p． 259 （16）．
Smith，Proc．National Mus．，Washington，III．p．437， 1881.
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Syecimens． \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime} 0^{\prime \prime}\) & 524 & 2 \\
309 & 40 & \(11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime} 0^{\prime \prime}\) & 304 \\
\hline
\end{tabular}

This species is not uncommon in deep water off the New England coast，and is found at least as far south as off the Capes of the Delaware，where it has been taken in abundance by Capt．Z．L．Tanner，of the U．S．Fish Commission steamer＂Fish－Hawh，＂Station 1045，N．Lat． \(38^{\circ} 35^{\prime}\) ，W．Long． \(73^{\circ} 13^{\prime}, 312\) fathoms．

\section*{Pandalus leptocerus Smith．}

Proc．National Mus．，Washington，III．p．437， \(1 \$ 81\).
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimens． \\
301 & \(41^{\circ} 26^{\prime} 55^{\prime \prime}\) & \(66^{\circ} 3^{\prime} 0^{\prime \prime}\) & 71 & 2 \\
302 & \(41^{\circ} 30^{\prime} 0^{\prime \prime}\) & \(66^{\circ} 0^{\prime} 0^{\prime \prime}\) & 73 & 7 \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & \(25 \pm\) \\
304 & \(41^{\circ} 35^{\prime} 0^{\prime \prime}\) & \(65^{\circ} 50^{\prime} 30^{\prime \prime}\) & 139 & 1 \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime} 0^{\prime \prime}\) & 143 & 14 \\
344 & \(40^{\circ} 1^{\prime} 0^{\prime \prime}\) & \(70^{\circ} 5 夕^{\prime} 0^{\prime \prime}\) & 129 & 2 \\
346 & \(40^{\circ} 25^{\prime} 35^{\prime \prime}\) & \(71^{\circ} 10^{\prime} 30^{\prime \prime}\) & 44 & 1
\end{tabular}

This species almost entirely replaces \(P\) ．Montagui south of Cape Cod，and appears to be everywhere exceedingly abundant in from 30 to 200 fathoms，but below 300 fathoms it seems to give place to \(P\) ．propinquus．

In size and general appearance it is much like \(P\) ．Montagui but more slender and readily distinguished from it，and from \(P\) ．propinques and borcalis as well， by the minutely roughened surface and the presence of exopods upon the ex－ ternal maxillipeds．

The rostrum is from about once and a third to nearly twice as long as the rest of the carapax，aud curved very slightly upward，but usually not as much so as in \(P\) ．Montagui．Above，it is armed with eleven to thirteen teeth，of which one is near the tip，as in \(P\) ．Montagui，and usually only two hack of the orbit on the carapax proper，while a consilerable space back of the terminal spine is unarmed，though this space is nsually shorter than in \(P\) ．Montagui． Beneath，there are six to eight teeth，as in \(J^{\prime}\) ．Montagui．The entire surface of the carapax and ablomen is slightly roughened with short and irregular，trans－
verse punctate ridges, which give rise to very short bristle-like hairs, while in \(P\). Montayni, propinquas, and borealis the surface is naked and very smooth. The carapax is considerably more sleuder than in P. Montayui, and the posterior tooth of the dorsal carina is farther forward, being much in front of the middle. The abdomen is more slender than in P. Montagui; but, except for the greater slenderness, there is scarcely any difference in the form or proportions of the somites, or the form and armature of the telson and uropods. There are slender exopods, about a third as long as the ischia, at the bases of the external maxillipeds, but the endopols themselves are as in \(P\). Montagui; the merus reaches to the base of the flagellum of the antenna, and the tip falls considerably short of the tip of the antennal scale.

The legs of the first pair are nearly as in P. Montagui. The right chelate leg of the second pair is shorter and stouter than in \(P\). Montagui, and scarcely reaches the tip of the corresponding leg of the first pair ; the ischium is about a fourth the entire length; the merus is only a little shorter than the ischium ; the carpus increases in thickness distally, is a little longer than the ischium, not more than about once and a half as long as the merus, and usually composed of only five segments, the proximal half being wholly unsegmented or annulated, then three subequal and very distinct segments, about as broad as long, and these followed by the terminal segment, which is about as long as the three next preceding ; the chela is about half as long as the carpus, and a little stouter than its distal end. The left chelate leg is a little shorter and stouter than in \(P\). Montagui, but has about the same number of segments in the merus and carpus, and does not differ in other respects. The third, fourth, and fifth pairs of legs differ from those of \(P\). Montagni in being a little more slender, and in having much longer, much more slender, and nearly cylindrical dactyli, which are wholly unarmed, except a few small spinules beneath near the base.

The branchial formula is the same as in P. Montagui.

\section*{Pandalus tenuipes Smiri.}

Proc. National Mus., Washington, III. p. 441, 1881.
Plate XIII. Fig. 12.
Station 314, N. Lat. \(32^{\circ} 24^{\prime}\), W. Long. \(78^{\circ} 44^{\prime}, 142\) fathoms ; one male and one young specimen, both imperfect.

This species is smaller but has a proportionally thicker boly than P. Montagui, and the surface of the carapax and abdomen is very minutely roughened, somewhat as in \(P\). leptocerus, but the punctate rilges are much less conspicuous and much more thickly crowded than in that species.

The carapax, including the rostrom, is about two fifths of the entire length, and the carapax proper is nearly as long as the rostrum, slightly swollen in the middle, somewhat contracted in front, as seen from above, and with the rostral carina extending back to about the middle, and armed, at about a third of the
way from the orbit to the posterior margin, with two to four slender spines crowded close torether, rapidly decreasing in size posteriorly and morably articulated with the carapax ; but between these teeth and the posterior tecth of the rostrum the carina is wholly unarmed. The rostrum is curred upwarl a little more than in P. Montagui, is not expanded below, and is armed the whole length above with eight to ten teeth, which are usually more widely separated distally, though in some specimens the terminal two or three are crowded together near the tip ; beneath there are six to ten small teeth.

The eyes are black and as broad as long, but shorter than in P. Montagui. The peduncle of the antennula reaches to near the middle of the antennal scale, and the two distal segments are subequal in length and each about as broad as long. The antennular flagella are subequal in length and much longer than the carapax, including the rostrum ; the proximal half of the outer fagellum is very much thickened, the terminal portion very slender, as is the inner flagellum throughout. The antennal scale is approximately four fifths as long as the rostrum, and of very nearly the same form as in P. Montagui. The oral appendages differ from those of \(P\). Montagui in the following particulars: the proximal segment of the mandibular palpus is dilated, though not quite as conspicuously as in P. Montagui; the posterior lobe of the scaphognath of the second maxilla is very short, broad, obtusely rounded at the extremity, and projects very little lack of the base of the endognath, while in \(P\). Montagui. and the allied species it is very much prolonged and acutely triangular posteriorly; in the second maxilliped the dactylus is about as long as broad, and articulated with the oblique distal end of the propodus (Pl. XIII. fig. 12), while in \(P\). Montayui and its allies the dactylus is a narrow plate, articulated by one edge to the distal part of the mesial edge of the propolus. The external maxillipeds are very slender, reach to about the tip of the rostrum, and have well-developed exopods, fully half as long as the ischium ; the ischiun is a little longer than the rest of the endopol, which is composed, as in P. Montagui, of only two distinct segments beyond the ischium, and in this case these two segments are subequal in length.
The legs of the first pair are very slender, and reach to the tips of the external maxillipeds. The second (chelate) legs are exactly alike, and reach to or considerably by the tips of the antennal scales. The ischium is a little longer than the merus; the carpus is a little less than twice as long as the merus, slightly shorter than the antennal scale, and composed of about fifteen segments, of which the proximal are separated by indistinct, but the four or five distal by conspicnous articulations, while the ultimate is about twice as long as broat, and the next three or four, each, only about half ats long as brom. The chela is slenter, only a very little stouter than the distal end of the carpus, nearly a third as long as the carpus, and about half as long as the merus, and the digits are alike, about as long as the basal portion, slightly giping, and with a very few long, setiform hairs. The third, fourth, and fifth pairs of legs are exceeringly slender, sparsely armed with minute spinules and slender seta; and the dactyli are very long and slender, slightly and regularly bent, and
flattened a little vertically (or in the direction of the plane of the curvature), and wholly unarmed ; those of the fifth pair reach leyond the tip of the rostrum, and the fourth and thirl pairs are successively a little longer; the dactylus in the fifth pair is a third or a little more than a third as long as the propodus, in the fourth pair a little longer than in the fifth, and in the third pair not far from half as long as the propodus.

The abdomen is evenly rounded and not at all compressed above, and less geniculated at the third segment than in \(P\). Montagui. The sixth segment is about once and two thirds as long as the fifth. The telson is about once and a half as long as the sixth segment, and terminates in an acutely triangular tip, armed each side with two long spines, of which the proximal is very much the longer, and at the extrene tip with a few long, plumose seto.

The branchial formula is the same as in P. Montugui.

\section*{Pandalus acanthonotus, sp. nov.}

\section*{Plate XIII. Figs. 10, 11.}

This species, of which there is but one specimen in the collection, is closely allied to \(P\). tenuipes, but is at once distinguished from it by the deeper and neally horizontal rostrum with the lorsal teeth forming a continnous series with the spines on the dorsal crest of the carapax ; and by the much longer sixth sonite of the abdomen, which is more than twice as long as the fifth somite, and longer even than the telson.

Female. - The carapax including the rostrum is only about a thirt of the entire length, somewhat contracted in front as seen from above, and with the rostral carina extending lack to about the middle, but not sharp except in front, where it is armed with fire slender spines movally articulated with the carapax and chosely crowded together. The rostrum is considerably shorter than the carapax proper, nearly horizontal, expanded below, tapers to an acute tip, is armed above with seven teeth, of which the anterior is rery minute and a little way from the tip while posteriorly the teeth become slender and at last spiniform, almost like the spines of the carapax, with which they form a continnous series; below, the elge is armed with six teeth, of which the anterior one is minute and situated a little back of the tip.

The eyes are large, pyriform, and black, and, as well as the antemnula and antema, are nearly as in \(l\) '. temipes.

The oral appendages are all very nearly as in \(P\). temuipes; the propolus in the secoml maxilliped (Pl. XIII. fig. 11) is, however, a little larger proportionally, and the very narmo dactylns articulated along nearly half the length of the mesial edge of the propolus very much as in \(P\). Montagne, while in \(P\). tenuipes the dactylus is about half as long as hroad and articulated with the oblique distal end of the propolus. The external maxilliperts reach a little ly the tips of the antemal scales, are almost exactly as in \(P\). temnipes, ant, as in that species, have well developed exopods half as loner as the ischia. The oral
appendages do not differ very much from those of \(P\). carinatus figured on Plates X . and XI.: the first maxillæ and second maxillipeds are almost exactly as in P. carinatus; the distal segment of the mandibular palpus is broader and more obtuse at the tip, but in other respects the mandibles do not differ ; the second maxillæ differ only in having the posterior division of the distal lobe of the protognath proportionally a little smaller; the first maxillipeds are similar to those of \(P\). carinatus, but the lamellar portion of the exopod is a little broader and more abruptly narrowed into a more slender flagelliform portion; the external maxillipeds are more slender than in \(P\). carinatus, and the two distal segments are subequal in length.

The legs of the first pair reach to the tips of the external maxillipeds and are as in P. tenuipes. The second (chelate) legs are very nearly alike, but the left is a little longer than the right and reaches to about the tip of the antennal scale; both are about equally slender ; the carpi are more than a third of the entire length, segmented throughout but more conspicuously distally, and composed of about twenty segments, of which the most distal one is considerably longer than broad, but all the others shorter than this and approximately equal in length; the chelæ are alike, scarcely stouter than the carpus and only a little more than twice as long as its distal segment. The third, fourth, and fifth pairs of legs are nearly as in \(P\). tenuipes: those of the posterior pair reach considerably by the tip of the rostrum, and the fourth and third are successively a little longer; the meri are sparsely armed with small spines, but the distal segments unarmed excepting a few setæ or hairs; the dactylus in the third pair is abont a third as long as the propodus, and in the fourth pair about a fourth as long as the propodus.

The abdomen is rounded above, but is rather strongly geniculated and slightly compressed at the third somite. The sixth somite is more than twice as long as the fifth, longer even than the antennal scale or rostrum, and strongly compressed.

The telson is much shorter than the sixth somite, slender, and terminates, as in \(P\). tenuipes, in a triangular tip armed each side with two long and slender spines of which the proximal is much the longer.

The surface of the carapax and abdomen is minutely ronghened, as in \(P\). tenuipes, by thickly crowded irregular transverse punctate ridges.

The branchial formula is apparently just as in \(P\). tenuipes, \(P\). Montagui, etc., and as in the following species, \(P\). carinatus.

\section*{MEASUREMENTS.}



Station 321, N. Lat. \(32^{\circ} 43^{\prime} 25^{\prime \prime}\), W. Long. \(77^{\circ} 20^{\prime} 30^{\prime \prime}\), 233 fathoms.

\section*{Pandalus carinatus, sp. nov.}

\section*{Plate X. Figs. 2-2?. Plate XI. Figs. 1 -3.}

Female. - The surface of the carapax and abdomen is microscopically punctate for the insertion of very minute hairs. The carapax including the rostrum is about as long as the entire abdomen, but the carapax proper much shorter than the rostrum and armed with a high dorsal crest nearly the whole length and with four sharp and very conspicuous longitudinal carinæ each side. The rostrum is very slender, nearly horizontal toward the base and slightly upturned from a little back of the middle, and armed above, from near the slender and acute tip, with thirteen conspicuous teeth in front of the orbit and four more on the anterior half of the carapax, and beneath from near the tip to the front of the eye with nine similar tecth. The uppermost of the four lateral carinæ is in a line straight back from the middle of the orbit, but is interrupted by a slight depression and terminates in a small tooth just lack of the middle, and is not conspicuous on the anterior half of the carapax ; the second and third carine are continuous the whole length of the carapax, nearly parallel and slightly curved, the upper terminating anteriorly in a conspicuous antenmal spine just over the base of the antemm, the lower in a similar but laterally more prominent spine below the base of the antenna; the lowest cariua is a marginal carina of the inferior edge of the carapax, which is more strongly incurved than in the typical species of Pundalus.

The eyes are rather small for the genus, pyriform, and black. The first segment of the peduncle of the antemmia is broad, squaniform, excavated for the reception of the cye, and furnished externally with a large lamellar process teminating anteriorly in an acute angle in front of the eye. The second and third segments are very short, taken together being searecly longer than their diameter. The outer flagellum is a little more than twice as long as the peluncle, the basal half considerably thickened and hairy, but the terminal
portion exceedingly slender. The inner flagellum is considerably longer than the outer, reaches nearly to the tip of the rostrum, and is slender throughout. The antennal seale is about three fourths as long as the carapax excluding the rostrum, and near the base about a fourth as broal as long, but tapers distally to an acute tip. The second segment of the peduncle of the antema is armed with a triangular tooth above the base of the seale and with a long spine below. The flagellum is slender, and considerably longer than the carapax including the rostrum.
The mandibles (Pl. XI. fig. 1) are nearly as in P. Montagui, though the proximal segment of the palpus is much less dilatell, and all the segments are only sparsely armed with setæ; the mandibles are in fact more nearly as in \(P\). tenuipes. The first maxillx (Fig. 2) are essentially as in P. Montagui. The lobes of the protognath and the endognath of the second maxilla (Fig. 3) are nearly as in \(P\). Montagui, but the scapognath is very different ; its posterior lobe is short, broad, and evenly rounded, much as in \(P\). tenuipes, while the anterior lobe is much longer than the posterior, fully as broad, and with a broad and truncated extremity ; both extremities of the scaphognath are margined with very long plumose setx, while those upon the ellges between are short. The first and second maxillipeds (Pl. X. figs. \(2^{2}, 2^{b}\) ) do not differ essentially from those of \(P\). Montagui. The external maxillipeds have well-developed exopods about two thirds as long as the ischimm, which is more than half the entire length of the endopod ; the terminal segment of the endopod is considerably longer than the penultimate, and tapers to an acute point.

The legs of the first pair are more slender than the external maxillipeds, and do not quite reach to their tips. The right chelate \(\operatorname{leg}\) (Pl. X. fig. 20) reaches a little by the base of the antennal scale, and is rather stouter than nsual in the genus; the merns and carpus are snbequal in length, and the carpus is rather obscurely divided into about eight segments, of which the proximal and distal are much longer than the others; the chela is very little shorter than the carpus and much stouter, and somewhat swollen so that it is between a third and a fourth as broad as long ; the digits are rather stout, slightly curved, and more than a third of the entire length.

The three last pairs of legs are slender, suberyual in length, reach to about the tips of the first pair, are armed with numerons seta and slemer spines, and the dactyli are slender, very slightly curvel, and about a third as long as the propodi.
The first, second, fifth, and sixth somites of the alxhmen are evenly rounded above, but the thirel and fourth are armed with a sharp doral carima, most conspicunus on the third somite, and in beth somites projecting lack warl orer the succeeding somite in a prominent horizontal and aeute tooth. The first epimeron projects downwarl even below the second, which is orlicular and about as broal as high ; the thirl and fourth epimera project backwarl in evenly romudel lobes, but the fifth in an acute anyle.
The tulson is about as long as the bifh mul sixth somites torecther, narrow, armed with four pairs of dorsul aculei, and the triangular tip ( \(\mathrm{Pl} . \mathrm{X}\). fig. 2')
with three pairs of spines, of which the terminal are small and slender, the next very long, and the anterior short and stont. The lamellæ of the uropods are about as long as the telson : the inner is lanceolate and between four and five times as long as broad ; the outer is between three and four times as long as broad, with the tip broad, somewhat obliquely rounded, and projecting considerably beyond the acute tooth in which the outer margin terminates, and just inside the base of which there is a spine much longer than the tooth itself.

The outer lamella of the appendage of the first somite of the ablomen is a little longer than the protopol, about a sixth as broad as long, and marginet with multiarticulate plumose setre as usual, while the inner lamellit is a little less than half as long as the outer, expanded externally near the base, where the breadth is equal to about a fourth the length, but tapering and slender distally, and margined with plomose setæ like the outer. The inner lamella of the appendage of the second somite is a little longer than the outer lamella of the appendage of the first somite, between six and seven times as long as broad, and bears, a little way from the base, the usual stylet, which is about a fifth as long as the lamella itself.
The single specimen is from Station 327 , N. Lat. \(34^{\circ} 0^{\prime} 30^{\prime \prime}\), W. Lon. \(76^{\circ} 10^{\prime} 30^{\prime \prime}, 178\) fathoms, and gives the following measurements :-

Sex . . . . . . . . . . . . \&
Length from tip of rostrum to tip of telson . . . . . 48.0 mm .
" of carapax including rostrum . . . . . . 24.0
" of rostrum . . . . . . . . . . 15.2
Breadth of carapax . . . . . . . . . 5.2
Length of antennal scale . . . . . . . . . 7.1
Breadth of " " . . . . . . . . 1.8
Length of right chelate leg . . . . . . . . 0.2
" carpus . . . . . . . . . . 2.2
" chela . . . . . . . . . . 1.9
" left chelate ley . . . . . . . . 12.3
" carpus . . . . . . . . . . 4.8
" chela . . . . . . . . . . 1.2
" sixth somite of abdomen . . . . . . . 4.3
ITeight of " " " . . . . . . . 2.2
Length of telson . . . . . . . . . . 6.1
The genus Pandalus, as at present recognized, apparently contains species representing several genera, and this species is probably not strictly' congeneric with \(I\). Montagui, the type species. The carinated carapax gives the species a very different aspect from the trpical Pandali, but the appendages thronghout, excepting the scaphognath of the second maxilla, are very nearly as in \(P\). Montagui, and the number and arrangement of the branchix are the same as in that species, P. propinquus, borealis, leptocerus, and tenuipes, or as indicated in the following formula.
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & VII. & VIII. & IX. & X. & XI. & XII. & XIIL. & XIV. & Total. \\
Epipods, & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & ( 7\()\) \\
Podobranchiæ, & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Arthrobranchiæ, & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 6 \\
Pleurobranchix, & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline
\end{tabular}

This species will evidently fall in Milne-Edwards's genus Heterocarpus (Ann. Sci. Nat., \(6^{\mathrm{mo}}\) series, XI. No. 4, p. 8, 1881), of which the description has been published since the above was written, and it appears to be closely allied to, but distinct from, his \(H\). ensifer, from 218 fathoms near Barbadoes. Milne-Edwards has however misapprehended the affinities of the genus, of which he says: "Les crustacés du genre Heterocarpus offrent certaines analogies avec les Oplophorus et, par d'autres caractères, ils se rapprochent des Lysmates, des Hippolytes et des autres crustacés de la même famille." The ggenus is very near Pandalus, certainly far nearer than to Oplophorus (of which, however, I have never examined specimens), or any other described genns. Heterocarpus should be placed with the two or three genera into which the genus Pandalus as it now stands must sooner or later be divided, and the species which I have here described should then stand as Heterocarpus carinatus.

\section*{EPHYRIN 厌。}

\section*{MIERSIA Kingsley.}

\section*{Ephyra Roux (nom. preoc.).}

As far as I know, the only described species properly referred to this genus are M. pelugica and punctulata (Risso sp.), both apparently unknown to modern carcinologists, and M. Hackelii (Ephyra Mlackelii Von Martens), all from the Mediterranean. Ephyra compressa De Han, placed in Miersia by Kingsley, had alreally been referred to Atyephyra by Von Martens (Archiv fur Naturgesch., XXXIV., 1868, p. 51, Pl. I. fig. \(4^{*}\) to \(4^{6}\) ), and is certainly not closely allied to the species here described nor to M. HIrckelii.

A new genus, Meningodora, described beyond, and Hymenodora G. O. Sars, are in most characters closely allied to Miersiu, and are here referred to the same subfanily, which has little affinity with the Atyida, but is in many respects much like Pandalus, and has, perhaps, still closer affinity with Oplophorus or some of its allies.

Eumiersia, a new genus described beyond, is in some respects intermediate between the genera just mentioned and Pandalus, and is only provisionally placed in this subfamily.

\section*{Miersia Agassizii, sp. nov.}

\section*{Plate XI. Figs. 5-\%. Plate XII. Figs. 1 - 4.}

Male. - The carapax is nearly as broad as high, but is a little compressed above so as to make the dorsum somewhat obtusely angular, though rounded and not at all carinate even anteriorly. The rostrun is imperfect in all the specimens seen, but in the most perfect specimen it was evidently much longer than the carapax proper ; it is very slender, slightly upturned toward the tip, and back of the tip of the antennal scale is armed with seven teeth above and four beneath. The anterior margin projects in an acute, but searcely spiniform, angle above the base of the antenna, and opposite the base in an acute and laterally prominent branchiostegial spine, below which the branchiostergite is rather suddenly incurved in the anterior part of the carapax. The surface of the carapax and abdomen is naked and smooth to the unaided eye, but is microscopically punctate.

The eyestalks are very short, and terminated by small hemispherical black eyes. The peduncle of the antennula is short, much less than half as long as the antennal scale : the first segment is fully as long as the second and third taken together, is deeply excavated above for the reception of the eye, and its outer edge is armed distally with a small tooth; the second and third segments are broader than long and subcylindrical. The outer or major flagellum is nearly twice as long as the antennal scale, with the proximal portion for about half the length of the antennal scale compressed vertically, broally expanded, and thickly clothed beneath with fine hairs, but the distal portion is very slender and somewhat compressed vertically. The antennal scale is about three fourths as long as the carapax excluding the rostrum, and near the base about a fourth as broad as long, but narrowed regularly to a very slender tip. The second segment of the peduncle is armed with an acute dentiform spine below, and a triangular tooth above the base of the scale. The distal segment of the peduncle reaches only about a third of the way from the base to the tip of the antemal scale. The flagellum is wanting in all the specimens examined.

The labrum is fleshy, prominent as seen in front, and the inferior edge is thiekened and slightly indurated and applied to the coneave dorsal surfaces of the mandibles. The lobes of the metastome are very broad distally and somewhat truncated. The mandibles (Pl. XII. figs. \(1,1^{\circ}\) ) are expanded into thin, dorsally concave and strongly dentate ventral processes, above and closely comnected with which are small and narrow molar areas. The opposing edzes of the ventral processes differ somewhat on the two sides : on the right side, as shown in the fignres, the mesial edge is slightly convex as seen from above or below, and armed with about eight acutely triangular teeth, beyond which there are several small teeth on the anterior edge; on the left side the mesial edge as seen from above or below is stright or slightly concave, terminates anteriorly in a sharp angle beyond which there are no teeth on the anterior edge, and the
teeth on the anterior part of the mesial edge are very small, though back of these small teeth there are about as many and as large teeth as on the mesial edge of the right mandible. The protognathal lobes of the first maxilla (Pl. XII. fig. 2) are approximately equal in size, broad at the ends, and arned as usual with slender spines upon the distal, and numerous setæ upon the proximal lobe. The endognath is small, obtusely pointed, and armed with a very few marginal setæ and with two slender spines upon a small fold on the ventral side near the tip. The protognathal lobes of the second maxilla (PI. XII. fig. 3) are very unequal, the proximal lobe is broad but very short, while the distal is long and deeply divided into two narrow and obtuse lobes. The endognath is unsegmented, short, and narrowed to a slender tip. The scaphognath projects anteriorly slightly beyond the endognath, and both ends are broad and evenly rounded.
The protopod of the first maxilliped (Pl. XII. fig. 4) projects very little anteriorly, and is obscurely divided into a very small proximal and a large distal lobe. The endopod is well developed, and composed of three segments, of which the proximal is very short, broader than long, the second nearly three times as long as broad, the terminal a little smaller than the second and lanceolately pointed, and all the segments margined with setæ. The exopod is a very large lamelliform lobe longer than the endopod, about a third as broad as long, expanded and broadly rounded in outline distally, and edged with plumose setæ which gradually increase in size distally along the margin. The epiporl is small, branchial, with the anterior and posterior parts nearly equal. The ischium in the second maxilliped (PI. XI. fig. \(5^{\circ}\) ) is mueh shorter than broad; the merus between two and three times as long as broad; the carpus a little narrower than the merus and about as long as broad ; the propodus bent back upon the merus as in most Palæmonidæ, a little longer than the merus, nearly half as broad as long, and obliquely truncated along the mesial edge for the articulation of the dactylus, which is more than twice as broad as long and armed with setre and slender spines as is the mesial and anterior edge of the dactylus. The exopod is nearly as long as the endopod, slender, and multiarticulate and flagelliform for more than half its length. The epipod is broad at base, somewhat trimgular, and bears a large phillobranchia. The endopod of the external maxilliped reaches a little beyond the middle of the antennal scale, and is slender and composed of three segments, of which the proximal is the longest, reaches as far forward as the antero-lateral angle of the carapax, and is strongly curved and dorsally compressed in the middle opposite the mouth ; the middle and the distal segments are straight, the middle about half as long, and the distal nearly as long, as the proximal ; all the segments are more or less setigerons. The cxopod is slender, multiarticulate, flagelliform, and about as long as the proximal segment of the endopoil. The epipod is narrow, lamellar, nearly as long as the middle segment of the endopod, and lies between the branchix of the ninth and tenth somites.

All the thoracic legs are furnished with exopode like those of the external maxillipeds, and the first, second, and third pairs are furnished also with epi-
pods like those of the external maxillipeds. The first and second pairs of letrs are slender, do not reach the tips of the external maxillipeds, and are very nearly alike, but the carpus and chela are a little longer and more slender in the second than in the first pair. In both pairs the merus is a little longer than the ischinm, and reaches to or a little by the antero-lateral angle of the carapax. In the first pair the carpus is scarcely more than half as long and about as stout as the merus, and the chela is somewhat longer and a little stouter than the carpus, and with slender slightly compressed and nearly straight digits abont a third of the whole length. In the second pair the carpus is scarcely as stout as the merus and about two thirds as long, and the chela is scarcely stouter than the carpus, but considerably longer. The third and fourth pairs of legs are nearly alike and reach by the tips of the external maxillipeds, the lower edges of the meri are spinulose, the propodi considerably longer than the earpi, and the dactyli are slender, nearly straight, unarmed, and nearly a third as long as the propodi. The posterior legs are slightly shorter than the third and fourth, and like them except the distal extremity, which is peculiarly modified. The propodus is slender, about as long as in the third and fourth pairs, is furnished with a few very long plumose seta near the middle, is thickly armed distally along the lower edge with serrately armed and simple setre, and so densely clothed at the tip with long setre as to very nearly hide the dactylus, which is very short, curved at the tip, and armed with several slender spines.

The abdomen is large relatively to the cephalo-thorax, strongly compressed, and dorsally carinated except upon the first somite, the carina being most conspicuous on the third somite, where it projects posteriorly in a very long and slender tooth. There is a similar but much smaller tooth on the three succeeding somites, though in two of the three specimens examined it is nearly or quite obsolete on the fourth somite. The epimera of the four anterior somites are broad and very deep, the height of the abdonten at these somites being as great as or greater than that of the carapax. The first epimeron is as deep as the second, and its anterior edge is slightly coneave in outline and projects a little below ; the second is about as broad as high, and approximately orhicnlar; the third and fourth project posteriorly in broadly romnded lobes; the fifth projects posteriorly in an angular lobe obtusely rounded at the tip. The sixth somite is nearly twice as long as the fifth, and about twice as long as high.

The telson is considerably longer than the sixth somite, very slemder towarl the tip, rounded and slightly sulcated above, and armed with four or five pairs of stont dorsal aculei on the distal half. The outer lamella of the uropont scarcely reaches the tip of the telson, is about four times as long as hroat, tapers very slightly except near the tip, which is ovate and projects nearly the width of the lamella beyond the angle in which the thickened outer margin ends ; the inner lamella is obtusely lanceolate, and considerably shorter and a little narrower than the onter.

The outer ramus of the appendage of the first somite of the abromen is long and slender, and like that of the succeeding appendages, but the imer ramus is
developed into a broad oval lamella about a third as long as the outer ramus, with both margins setigerous and the inner thickened and bearing a slender stylet armed as usual with minute hooks. The inner ramms of the appendage of the second somite bears the two stylets usually characteristic of the male.

A small and imperfect female specimen appears not to differ from the males as above described except in the usual sexual characters. The inner ramus of the first abcominal appendage is a very small lamella nearly four times as long as broad and furnished with very long and slender setr.

The surface of the carapax and ablomen is very nearly naked, but is roughened ly minute granular projections.

The number and structure of the branchix seem to be essentially the same as in the typical species of Pandalus, but there is apparently no epipod at the base of the fourth leg, so that the branchial formula is as follows : -
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Sonites. } & VII. & VIII. & IX. & X. & XI. & XII. & XIII. & XIV. & Total. \\
Epipods, & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & \((6)\) \\
Podobranchix, & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Arthrobranchix, & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 6 \\
Pleurobranchix, & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline
\end{tabular}

The most perfect of the three specimens in the collection affords the following measurements :-
Station . . . . . . . . . . . . 330
Sex \(\delta\)
Length from tip of rostrum to tip of telson . . . . . \(80+\mathrm{mm}\).
" of carapax excluding rostrum . . . . . . 16.0
" of rostrum . . . . . . . . . . \(16+\)
" of antennal scale . . . . . . . . 11.7
Prealth of " " . . . . . . . . . 3.0
Length of sixth somite of abdomen . . . . . . 10.0
Height " " " . . . . . . . 5.0
Length of telson . . . . . . . . . . 13.0
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
305 & \(41^{\circ} 23^{\prime} 15^{\prime \prime}\) & \(65^{\circ} 51^{\prime} 55^{\prime \prime}\) & 810 & \(1 \delta\). \\
323 & \(33^{\circ} 19^{\prime} 0^{\prime \prime}\) & \(76^{\circ} 12^{\prime} 30^{\prime \prime}\) & 457 & 18. \\
330 & \(31^{\circ} 41^{\prime} \quad 0^{\prime \prime}\) & \(74^{\circ} 35^{\prime} 0^{\prime \prime}\) & 1047 & \(1 \delta\).
\end{tabular}

Miersia gracilis, sp. nov.
Plate NI. Figs. 4-4.
Young male. - The carapax is slightly compressed, and including the rostrum only a little shorter than the ablomen ; the dorsum is romded posteriorly, but carinated in front of the middle, and rises anteriorly into a high and sharp crest
which extends to the base of the rostrum ; and the anterior margin is armed as in M. Agassizii. The rostrum is considerably longer than the carapax proper, very slender, directed slightly downward for a short distance from the base, and is then nearly horizontal to the very slender and acute tip; is armed above for its whole length with fourteen teeth, of which the four or five posterior are nearer together than the others, and the two posterior very small and back of the orbit on the carapax proper; and is armed below with nine teeth from in front of the eye to the tip.

The eyes are very much larger than in M. Agassizii, pyriform, and black. The antennulix are very nearly as in M. Agassisii, but the thickened proximal part of the outer or major flagellum is relatively a little shorter. The antennal scale is about half as long as the rostrum, about three fourths as long as the carapax excluding the rostrum, and of nearly the same form as in \(M\). Agassizii.

The labrum and metastome are nearly as in M. Agassizii. The mandibles differ from those of M. Agassizii in the molar areas being very small, nearly obsolete, and not distinctly separated from the ventral process, which is armed with teeth more miform in size and not becoming rudimentary anteriorly. The terminal segment of the mandibular palpus is slightly shorter than in M. Agassizii, but in other respects the palpus does not differ. The distal lobe of the protognath of the first maxilla is very broad at the prehensile edge, and the lobe is much larger than the proximal lobe ; the endopod is more slender than in M. Agassizii, is armed with one in place of two spines on the fold near the distal extremity, and is without marginal setæ. The divisions of the distal lobe of the protognath of the second maxilla are much broader distally, presenting much longer prehensile edges, and the scaphognath is narrower than in M. Agassizii. The protopod of the first maxilliped is as in M. Agassizii, but the exopod and endopod (Pl. XII. fig. 10) differ conspicuonsly. The endopod is more slender and the distal segment is very much shorter, while the lamelliform exopod has the inner angle of the distal extremity prolonged and indistinctly segmented, thus approximating to the early stages, in which it is doubtless ftagelliform. The second maxilliped is as in M. Agassizii, except the terminal portion of the endopod (Pl. XI. fig. \(4^{\text {d }}\) ) which differs in the same way as that of Pandalus tenuipes differs from that of \(P\). acanthonotus (Pl. XIII. figs. 11, 12), but to a greater extent, the dactylus being narrow, longer than broal, and transversely articulated with the propodus.

The external maxillipeds and chelate legs are almost exactly as in \(M\). Agassizii. The third and fourth pairs of legs are alike, and differ from those of M. Agassizii in having shorter carpi scarcely half as long as the meri, proporli about twice as long as the carpi, and dactyli only a very little shorter than the propodi, slender, slightly curved, and armed with a few minute spines. The posterior legs are scarcely three fourths as long as the fourth, but the segments have nearly the same relative proportions except the dactylus (Pl. XIT. fig. f*), which is about a third as long as the propodus, obtuse at the tip, and armend along the lower edge and at the tip with serrate seta, of which the terminal
ones are much the longer, while the proximal are like those upon the propodus, which is armed with serrate setæ somewhat as in M. Agassizii.

The abdomen is a little more slender than in M. Agassizii, and the third, fourth, and fifth somites are more conspicuously toothel, but none of the somites are distinctly carinated except the thirl, which is strongly carinate, or crested, and projects over the fourth somite in a very strong tooth, and the fourth and fifth, which are anteriorly rounded above, and have a short carinalike elevation at the base of the tooth. All the epimera are somewhat smaller than in M. Agussizii, but similar in form to those of that species except that the fifth has a distinct tooth in the postero-dorsal edge. The sixth somite is fully twice as long as the fifth, twice as long as high, and strongly compressed laterally.

The telson is a little longer than the sixth somite, about as long as the antennal scale, slender, and tapers to a long and slender tip armed either side with six to eight spines, besides five or six pairs of dorsal aculei above the tip. The lamellæ of the uropods are almost exactly as in M. Agassizii.

The inner ramus of the appendage of the first somite of the abdomen (Pl. XI. fig. 4b) is a little more than a third as long as the slender normal outer ramus, fully three times as long as broad, ciliated along the outer elge, the inner edge straight, and projecting slightly distally, where it is armed with the usual booklike spines for holding together the appendages of the two sides of the animal. The immer ramus of the appendage of the second somite bears the usual two stylets (Pl. XI. fig. 4), but the secondary stylet, specially characteristic of the male, is rudimentary, only about a fifth as long as the other, is terminated with a single long seta, and undoubtedly indicates that the specimen is immature.

The surface of the carapax and abdomen is naked, but thickly and conspicuously punctated.

The branchial formula is apparently the same as in M. Agassizii.
The single specimen is from Station 328, N. Lat. \(34^{\circ} 25^{\prime} 25^{\prime \prime}\), W. Long. \(75^{\circ} 22^{\prime} 50^{\prime \prime}, 1632\) fath., and gives the following measurements : -


This species is perhans not congeneric, or consubgeneric, with M. Agassizii, but it seems best to refer them buth to the present genus until their relations to the typical Mediterranean species of Miersia can be better determined.

The form and dentition of the rostrum of Micrsia gracilis appear to be much
like Acanthephyra debilis A. Milne-Edwards (Ann. Sci. Nat., \(6^{m 0}\) series, XI. No. 4, p. 13, 1881), and it is possible that the species may le identical, - or, on the other hand, that they may belong to very different genera. Milne-Edwards says: "Le genre Acanthephyra semble rattacher les Pencous, les liegulus, les Oplophorus et les Ephyra," but gives no characters which enable me to tell how the genus differs from Miersia (Ephyra), though the species of Miersia appear to be very little known, as I have already remarked, and Milne-Edwards may have had opportunities of examining typical specimens, to which, however, he does not allude. Miersia Agassizii is evidently very distinct from any of the species of Acanthephyra described by Milne-Edwards.

\section*{MENINGODORA,* gen. nov.}

Integument throughout very thin and membranaceous. Body compressed laterally and the carapax dorsally carinate anteriorly, with a short triangular rostrum, a well-developed branchiostegial spine as in Miersia, and with an antennal and hepatic sulcus, above which there is a carina which is continued back along the dorsal limit of the branchial region, - a form of areolation strongly recalling the Penæidx. Antennal scales broad and foliaceous, but all the other articular appendages essentially as in Miersia. The branchix (phyllobranchix) have the same structure and arrangement as in Miersia, except that there is apparently but one arthrobranchia at the base of the external maxilliped, making in all eleven branchix and six epipods each side.

Although differing very conspicnously in general appearance from the species of Miersia here described, this genus is very closely allied to them, as a comparison of the figures of the appendages will show, but it is sufficiently distinguished by the characters above given. Its relation to Hymenodora \(\dagger\) is more obsenre, though perhaps equally close. In Hymenodora the body is not compressed, and according to Buchholz's figure the epimera of the second somite of the abdomen do not overlap the epimera of the first segment, but are of the same form as the succeeding epimera, and this seems to be confirmed by the clause in Sars's generic diagnosis, "epimeris æqvaliter rotundatis." Moreover, the endopod of the first maxilliped, according to Sars, is not segmented ("parte terminali (propria) angusta, inarticulata "). On the other hand, the number of the branchix is apparently the same, though Sars's statement (" branchix utringve 6, antica et postica simplex, cetere bipartite ; preterea adsunt branchix supplementarix, indivisx, laminacees, basi maxillipedum \(1^{\text {us }}\) et \(2^{\text {di }}{ }^{\text {paris affixa }}\) ") does not make this perfectly clear.

\footnotetext{

\(\dagger\) Hymenodora glacialis G. O. Sars, Archiv Mathem. Naturvid., Kristiania, II. p. 341, 1877 (Pasiphaë glacialis Buchholz, Zweite deutsche Nordpolfahrt, II. 1. 2i9, Pl. I. fig. 2, 1874).
}

\section*{Meningodora mollis, sp. nov.}

\section*{Plate XI. Figs. 8-9. Plate XII. Figs. 5-9.}

Female. - The carapax including the rostrum is abont two thirds as long as the abdomen to the tip of the telsun, about half as high as long, and considerably compressed; the dorsal carina is high and very sharp in front, gradually diminishes posteriorly, scarcely reaches the posterior margin, and anteriorly extends to the tip of the acutely triangular rostrum, which is about half as long as the antennal scale and only about a seventh as long as the carapax. On the dorsal carina just back of the base of the rostrum there are five or six very indistinct rudimentary teeth scarcely perceptille to the naked eye and too minute to be indicated in the figure. The anterior margin projects in a triangular lobe above the base of the autenna, and is armer below with an acute and laterally prominent branchiostegial spine very much as in Miersia Agassizii. From just back of the eye a distinct gastro-antennal and gastrohepatic carina extends backward and downward and divides, the upper branch continuing back in a gastro- and cardiaco-branchial carina, and the lower turning down in front of the branchial region and limiting a wide antennal and hepatic sulcus behind. The inferior and posterior edges are broadly and evenly curved.

The evestalks (Pl. XI. fig. \(8^{*}\) ) scarcely reach the tip of the rostrum, are nearly cylindrical, slightly swollen near the base and tapered distally, with a papilla-like tubercle just back of the cornea on the inner side and very small terminal black eyes no thicker than the arljacent stalk.

The first segment of the peduncle of the antemula is about as long as the eye and rather longer than the other two taken together, flattened and somewhat excavated above and with a rather broad lateral lobe terminating in a tooth nearly as far forward as the extremity of the body of the segment itself; the second and third secments are subcylindrical and approximately equal, but the third projects below in a process for the articulation of the lower flagellum far beyond the base of the upper flagellum. The proximal part of the upper flagellum is much stouter than the lower, somewhat compressed, not conspicunusly swollen at the base, and hairy along the lower edge. The lower flagellum is very slender, cylindrical, and nearly maken. The intennal scale is rather more than twice as long as the eye, nearly half as broad as long, very thin, foliaceous, slightly narrowed distally, and obliquely truncated at the tip, which extends a little beyond the small tooth in which the slightly curved outer margin terminates. There are no acnte teeth or spines on the second segment of the peduncle at the base of the scate.

The oral appendages are all very nearly as in Miersia Agassizii, the differences being no greater in fact than might be expected between species belonsing to the same genus. The labrum is nearly the same, but the lohes of the metastome are much narrower. The mandibles (Pl. XHI. firs. 5, \(5^{2}\) ) are mueh the same, but the mesial edge of the ventral process is short and armed with
only five or six teeth, while the anterior edge is entirely unarmed ; the molar area is considerably larger, and is rounded above instead of angular ; the palpus is a very little larger and the second segment proportionally a little longer. The proximal lobe of the protognath of the first maxilla (Pl. XII. fig. 6) is more angular anteriorly and its mesial edge a little longer, and the endognath has but a single spine on the fold near the tip. The protognath and endognath of the second maxilla (Pl. XII. fig. 7) are almost exactly the same, but the scaphoguath is larger, more prolonged and ovate in outline at the tip, and the posterior portion projects inward less prominently. The endopod of the first maxilliped (Pl. XII. fig. 8) is much stouter and the two distal segments mnch more nearly equal in length, and the exopol is more expanded anteriorly and more prolonged at the outer than at the inner edge. The endopod of the second maxilliped (Pl. XI. fig. 9) is a very little stouter proximally and has a rather shorter carpus, but differs very slightly; the exopod is a very little longer ; and the epipod is narrower at base, more ovate in outline, and bears a branchia composed of only a few pairs of lamellæ.
The endopods of the external maxillipeds reach considerably beyond the tips of the antemal scales, and are composed of three segments each, as in Miersia Agassizii, but are considerably stouter than in that species; the proximal segment is distally stouter than any part of the other segments and nearly as long as the other two together; the mildle segment is seareely more than a fourth as long as the proximal, and the distal is triquetral, tapers to an acute point, and is nearly naked but armed with a few minute spines near the tip. The exoporl is multiarticulate, flagelliform, as in Miersia Agussizii, and about as long as the proximal segment of the endopod. The epipod is nearly as in Miersia.

All the thoracic legs are furnishel with exopods like the extemal maxillipeds, and the first, second, and third pairs are fumished also with epipods as in the external maxillipeds. The legs of the first pair are not stouter than the external maxilliperls and fall considerably short of their tips: the merus is compressed and nearly as long as the proximal segment of the endopod of the external maxilliped; the carpus is scarcely half as long as the merns, subeylindrical, and slightly enlarged distally ; the chela is about twice as long as the carpus, very slightly swollen proximally, and the digits nearly a third the whole length, strongly curved at the tips, and the propodal one consilerally stouter at base than the dactylus. The legs of the second pair are very slender, and reach a little by the tips of the external maxillipeds: the ischium and merns are strongly compressel, and the latter is longer than in the first pair and reaches to the distal extremity of the proximal segment of the endopor of the external maxilliped; the carpus is slender, cylimbical, and about half as long as the merus; the chela is slightly longer than the carpus, searcely as long as in the first pair, cylindrical, scarcely as stout as the carpus, not at all swollen, and with very slender and slightly compressed digits about two sevenths the entire length. The third and fourth pairs of legs are nearly alike: the ischia and meri are compressed, and nearly as in the second pair, but a little longet; the carpi are a little shorter and broader than in the second pair ; the propodi and
dactyli are wanting on both sides. The ischium, merus, and carpus in the posterior legs are nearly as in the third and fourth pairs, but the merns is a little shorter and narrower, while the terminal portion (Pl. XI. fig. 6) is very nearly as in Miersia Agassizii : the propodus is longer than the merus, nearly three times as long as the carpus, slender, nearly cylindrical, and is armed near the middle with several very long and slender setæ, toward the distal end with numerous short serrate setæ, and about the base of the dactylus with numerous long serrate, plumose and simple setæ ; the dactylus is very short and stout, scarcely as long as the diameter of the propodus, strongly curved at the tip and armed along the lower side with several spines.

The abdomen is considerably compressed, and has a sharp, but not very high, dorsal carina on the third, fourth, fifth, and sixth somites, and is prolonged posteriorly into a small tooth on the fourth and fifth somites. The outlines of the epimera are very nearly as in Miersia Agassizii, but the posterior margins of the third, fourth, and fifth are perhaps a little fuller and more broadly rounded. The sixth somite is scarcely once and a half as long as the fifth, and about twice as long as high.

The telson is nearly twice as long as the sixth somite, very slender distally, the dorsum is without aculei but with a broad sulcus within the broadest part of which there is a median longitudinal elevation, and the tip is armed with a pair of lateral and a pair of very slender median spines.

The outer lamella of the uropod reaches slightly by the tip of the telson, is about three times as long as broad, and with the tip rather broad and extending a little by the tooth in which the outer margin terminates, and within which there is a small spine. The inner lamella is a little shorter than the outer, about four times as long as broad, and lanceolate at tip.

The outer ramus of the appendage of the first somite is longer than the protopord and like that of the succeeding pairs, while the inner is a minute lamella about twice as long as broad. The inner rami of the four succeeding pairs of appendages are each furnished with the usual stylet for attaching together the two appendages of each pair.

There is but a single specimen in the collection, a female, wanting the left leg of the second pair and the terminal portions of both legs of the third and fourth pairs, from Station 328, N. Lat. \(34^{\circ} 28^{\prime} 25^{\prime \prime}\), W. Long. \(75^{\circ} 22^{\prime} 50^{\prime \prime}\), 1632 fathoms. This specimen gives the following measurements:-


\section*{EUMIERSIA, gen. nov.}

Resembles Pandalus in the external form of the carapax and abdomen, and agrees with it essentially in the structure of the oral appendages, and the two species known to me have the same number and arrangement of branchix and epipods as in the typical species of Pandalus; but the genus is more like Miersia in the structure of the thoracic legs, which, however, are greatly more elongated than in the species of that genus here described, and have only very small epipods at the bases of the fourth pair and none at all upon the fifth. The mandibles, though essentially as in P'andulus, are stouter and have larger molar processes, while the ventral processes are very thin, more expanded, and with broader serrate tips, thus approaching somewhat to the structure in Miersia. The mandibular palpi are much stouter than in the typical species of Pandalus, and have broad terminal segments.

\section*{Eumiersia ensifera, sp. nov.}

Plate NIII. Figs. 1-9.
The carapax is as broad as high, with the cervical suture indicated by a distinct sulcus from the dorsum to the upper part of the hepatic region either side, where the sulcus terminates in a small but deep depression, and with a very short and inconspicuous gastro-antennal sulcus; the anterior margin is armed with a small antennal and a distinct pterygostomian spine, though the latter is wanting on one side in two of the specimens seen ; back of the cervical suture the dorsum is very broad and evenly rounded, but there is usually a very small dentiform tuberele in the middle line on the posterior part of the cardiac region ; the rostrum in the smaller specimens is often not more than half as long as the carapax proper, but in the larger specimens much longer and in one specimen nearly as long as the carapax, nearly straight and horizontal, or curved considerably upward as in the specimen figured, narrow, with a strong ridge either sile, tapering to a more or less acute tip, and with the dorsal carina extending back upon the carapax nearly to the cervical suture and armed with twenty-five to thirty spines directed forward, movably articulated with the carapax, thickly crowded posteriorly but more and more remote anteriorly, and of which six to eight are crowded upon the carapax in about half the space between the orbit and the cervical suture; beneath, the rostrum is ciliated and in most of the specimens entirely unarmed, but in two or three cases there are one or two teeth near the tip.

The eyestalks are short and terminated by small hemispherical black eyes very nearly as in Miersia Agassizii. The peciuncle of the antennula is about half as long as the antemal scale : the first segment is about as long as the two others taken together, excavated above for the reception of the eye, which, however, does not reach by a considerable distance the extremity of the segment, with a prominent lateral process terminating in an acute spine, and the body
of the segment itself produced in a spiniform process outside the articulation with the second segment; the second and third segments are subequal in length and nearly cylindrical. The flagella are imperfect in all the specimens seen, but both were very long and slender: the upper or major flagellum is slightly compressed near the base but not suddenly expanded, and was at least as long as the carapax and apparently very nuch longer ; the inferior flagellum was a little smaller at the base than the superior, cylindrical, and apparently about as long as the superior. The antennal scale is thick and strong, seven or eight tenths as long as the carapax excluding the rostrum, about a fourth as broad as long, only slightly narrowed toward the tip, which is truncated and does not extend beyond the strong tonth in which the thickened outer margin terminates; the second segment is armed with a small spiniform tooth below the articulation of the scale; the third segment projects scarcely beyond the second ; the fourth and fifth are very short, and the fifth does not project more than its diameter in front of the second. The flagellum is wanting in all the specimens seen.

The labrum is very large, the ventral surface flattened, broader than long, and approximately rectangular, the antero-lateral angles being expanded below so as to reach nearly as far forward as the middle portion, which projects in a tuberculiform lobe a little above the plane of the ventral surface. The lobes of the metastome are broad and rather fleshy, as in Pandalus. The molar process of the mandible (Pl. XIII. firs. \(2,2^{2}\) ) is stout, the mesial surface sumewhat convex, and broken by several semicircular and concentric ridges, of which the one nearest the hase of the ventral process is armed with a closely-set series of setx. The rentral process is thin, distally broad and somewhat concave above, and armed with about eight rather slender teeth. The palpus is a little longer than the ventral process, the first and second segments subequal in length, and the third longer and much broader than the second, lamellar, and armed with numerous setæ. The proximal lobe of the protognath of the first maxilla (Fig. 3) is large, somewhat triangular, with the mesial ellge two or three times as long as that of the narrow distal lobe ; the endognath is much shorter than the distal lobe of the protognath and truncated at the extremity, which is armed with a stont seta either side and a third one just below the tip. The second maxilla (Fig. 4) is very nearly as in the typical species of Pandalus: the proximal lobe of the protngnath is very much shorter than the listal, and its small anterior division is more conspicuons than in the typical species of Pendulus, while the two divisions of the distal lobe are nearly equal in size : the endognath is scarcely half as long as the distal lobe of the protognath : the anterior portion of the seaphognath is a little longer than the posterior, which, as in the typical species of Pandulus, is narrowed to an acute point, and the mesial edge furnished with exceedingly long sete, many times longer than those upon the outer elge.

The distal lube of the protoporl of the first maxilliped (Fig. 5) is somewhat triangular in outline ; the two proximal of the three segments of the emploped are suberqual in length, while the distal seement is very short, but little longer
than broad; the lamellar portion of the exopod reaches slightly beyond the endopol, and the flagelliform is a little longer than the lamellar portion. The ischium and merus in the second maxilliped (Fig. 6) are subequal in length; the propodus is about as long as the ischium and merus taken todether, and abont half as broad as long; the dactylus is articulated obliquely along the distal end of the propodus, and is five or six times as broad as long ; the flagelliform exopod is slender, nearly twice as long as the endopod, and multiarticulate for half its length ; the epipod bears a well-developed branchia composed of two series of numerons lameliz. The endopods of the external maxillipeds reach nearly to the tips of the antennal scales : the proximal segment is nearly as long as the two distal, vertically compressed, with a knifelike mesial ellge ; the middle segment is very slender, cylindrical, and nearly naked; the distal segment is about two thirls as long as the middle, somewhat triquetral, very slightly expanded near the middle, tapered to a point distally, and armed with numerous short setix. The exopod is very slender and about three fourths as long as the proximal segment of the endopol. The epiporl is rudimentary, scarcely longer than the breadth of the protopod, in a transverse suleus on the onter sile of which it lies.

The first four pairs of thoracic legs have exopods and epipods like the external maxillipeds, but the exopods diminish in size very rapidly posteriorly, and are minute upon the fourth pair. The legs of the first pair (Fig. \(\overline{7}\) ) are about as long as the carapax inclucling the rostrum and reach to or a little by the tips of the antennal scales : the ischium is slightly longer than the merus, and both are very slender and armed with a few small spines; the carpus is sery much more slender than the merus, and about twice or consilerably more than twice as long, slightly enlarged at the distal extremity, and entirely naked and unarmed ; the chela in the larger specimens seen is a fourth or fifth as long as the carpus, considerably stouter, slightly flattened, and the digits ahout a third of the entire length, slightly curved, and rather sparsely clothed with slender setie. The second (Fig. 8) are similar to the first, but very much longer and more slender: the chela is just about as long as in the first pair, but not quite as stout, while the ischium, merns, and carpus are very much longer than in the first pair. The thirl, fourth, and fifth pairs of legs are more or less broken in all the specimens seen, but are very long and slender, and are all apparently longer than the second pair. The only one of these legs which is complete belongs to a female 108 mm . long, and is apparently one of the posterior pair, but is, unfortunately, letached. This leg (Fig. 9) is nearly twice as long as the first pair in the same specimen, and much more slender than the second even : the ischium and merns make a little more than half the entire length ; the earpus is much longer than the merus, exceedingly slender, somewhat enlarged at the distal extremity, and entirely naked ; the propolus is fully as stont as the arljacent part of the carpus, scarcely more than a tenth as long, and armel with a few short setae on the dorsal side, a fascicle of longer sete beneath, and a circle of very long ones about the base of the dactelus, which is slightly longer than the carpus, slender, and very slightly curved.

The first and second somites of the abdomen are broadly rounded above and not at all compressed, but the succeeding somites are considerably compressed, particularly near the dorsum, which is not really carinated on any of the somites, however, though the third somite is prolonged in a very prominent tooth over the fourth. The first epimeton is broad and evenly rounded below, the second much longer than high and elliptical, the third and fourth with the posterior edges rounded, but the fifth produced posterionly in an acute point. The sixth somite is about twice as long as the fifth, less than half as high as long, and very strongly compressed.

The telson is about as long as the sixth somite, narrow distally, rounded above, and armed with five to ten pairs of clorsal acnlei and two pairs of long spines at the tip. The outer lamella of the uropod reaches to about the tip or the telson, is nearly four times as long as broad, with the rounded tip extending much beyond the tooth in which the stout outer margin terminates and just within which there is a spine as in most species of Pandalus. The inner lamella is considerably shorter and much narrower than the outer, and lanceolate in outline.

In the female, the inner ramus of the appendage of the first somite of the abdomen is lamellar, about two thirds as long as the outer, four times as long as broad, and tapered to an acute point. In the male, this ramns is lamelliform, but shorter and very much broader, being ovate and about twice as long as broad. In the male the sexual appendage at the side of the stylet of the inner ramus of the appendage of the second somite is as long as the stylet, and expanded distally into a broad lamelliform and obtusely rounded tip.

The surface of the carapax and abdomen is naked, but thickly punctate.
All the specimens are imperfect and many of them fragmentary, and the accompanying measurements are consequently very incomplete.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Speeimens. \\
305 & \(41^{\circ} 33^{\prime} 15^{\prime \prime}\) & \(65^{\circ} 51^{\prime} 25^{\prime \prime}\) & 810 & 2 \& young. \\
308 & \(41^{\circ} 24^{\prime} 45^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & 1242 & 3 ¢ \\
330 & \(31^{\circ} 41^{\prime} 0^{\prime \prime}\) & \(74^{\circ} 35^{\prime} 0^{\prime \prime}\) & 1047 & \(2 \delta\) young. \\
339 & \(38^{\circ} 16^{\prime} 45^{\prime \prime}\) & \(73^{\circ} 10^{\prime} 30^{\prime \prime}\) & 1156 & \(2 \delta\) sinall. \\
340 & \(39^{\circ} 25^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 58^{\prime} 40^{\prime \prime}\) & 1394 & \(2 \%\) \\
341 & \(39^{\circ} 38^{\prime} 20^{\prime \prime}\) & \(70^{\circ} 56^{\prime} 0^{\prime \prime}\) & 1241 & \(2 \delta\)
\end{tabular}

The following measurements are in millimeters:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & 330 & 339 & 308 & 340 & 340 \\
\hline Sex & \(\delta\) & \(\delta\) & ¢ & \% & \% \\
\hline Length from tip of rostrum to tip of telson & 4.4 & & 105.0 & 122.0 & 125.0 \\
\hline " of carapax including rostrum & 15.1 & 25.5 & 42.0 & 48.0 & 51.0 \\
\hline Breadth of carapax & 4.8 & 7.5 & 11.0 & 13.0 & 13.5 \\
\hline Length of rostrun & 4.8 & 9.5 & 17.0 & 21.3 & 23.3 \\
\hline " of antenmal scale & 6.8 & 11.3 & 16.2 & 19.0 & 19.5 \\
\hline Breadth " " & 1.5 & 3.0 & 4.4 & 4.7 & 5.0 \\
\hline
\end{tabular}


\section*{PEN 届ID 届。}

\section*{？BENTHESICYMUS Bate．}

A single mutilated male specimen is referred very doubtfully to this genus， recently and only very imperfectly characterized by Bate．This specimen wants the larger part of the external maxillipeds，of the flagella of the antenne and an－ tenulas，and of the three last pairs of thoracic legs，but the branchial formula is the sume as given ly Bate for his genns，and as far as the diagnosis goes the specimen agrees with it．There is nothing in the branchial formula given by Bate in regard to the seventh somite（the first maxillipelal），hat in the specimen before me there is an epipod and a single arthrobranchia at the base of the first maxilliped．The eighth somite bears two arthrobranchie，a podohranchia， and an epipod；the ninth to the twelfth inclusive bear each a plenrobranchia， two arthrobramchix，a podobranchia，and an epipod；the thirteenth bears a plenrobranchia，two arthrobranchix，and an epipod ；and the forrtenth bears a pleurohranchia only ：making in all twenty－four branchix and seven epi－ pods，and of the true branchixe six are pleuro－，thirteen arthro－，and eight podo－ branchix．The species here lescribed has no exopots at the lases of the thoracie legs，and the maxille and first and second maxillipeds are much less vol．x．－xo． 1.
like Penceus than like Stenopus hispidus as figured by Boas; and the species is not so closely allied to Penceus as might be inferred from the description of Benthesicymus and its place in Bate's arrangement.

\section*{Benthesicymus Bartletti, sp. nov.}

\section*{Plate XIV. Figs. 1-7.}

Male. - The carapax is only slightly compressed laterally, and its surface, as well as that of the abdomen, is naked and polished, but is very conspicuously and peculianly areolated. There is only one spine each side, a prominent and acute branchiostegial, and from this a sharp carina extends back parallel with the inferior margin to near the middle of the carapax, where it is interrupted by a well-marked sulcus which, begiming as the antennal, turns slightly downward, runs back above and contiguous to the carina just described, and then turns down and nearly reaches the inferior margin ; back of this carina a somewhat similar but much less conspicuous cardiaco-branchial carina accompanied by a slight sulcus extends to near the posterior margin of the carapax; there is a slight gastro-frontal sulcus at the base of the rostrum; a very deep and conspicuous transrerse gastric sulcus, which slightly notches the dorsum at about the middle of the carapax, extends in an even curve downward and forward, as the gastro-hepatic, and joins the hepatic sulcus a little way back of the branchiostegial spine; and back of this sulcus there is a distinct lout nuch less conspicuous cerrical, extending from rery near the middle line, at about a third of the way from the transverse gastric sulcus to the posterior margin, downward to the cardiaco-branchial suture. In front of the transverse gastric sulcus there is a sharp dorsal carina which rises into a lamellar crest and terminates in a short and laterally compressed rostrum armed above with two sharp teeth of which the posterior is slightly back of the orbit and the anterior apparently about half-way between it and the tip, which is slightly broken but appears to have terminated in an acute point about two thirls of the way from the base to the tip of the cyestalk. Both edges of the rostrum are ciliated. Back of the gastric sulcus the dorsum is broal and evenly rounded transiersely.

The eyestalks (Pl. XIV. figs. 1, 1^) are less than half as long as the antennal scales, slender, strongly compressed vertically, with a small obtuse dentiform prominence at the midille of the inner side, and just in front of and outside of this a small spot of black pirment showing faintly on the upper but conspicuously on the lower side. The eyes themselves are searecly wider than the stalks, but are less compressed vertically, thongh still much broader than high, distinctly faceted, and dark brown in the alcoholie specimen.

The peduncles of the antemulx (Figs. 1, \(1^{\circ}\) ) are more than half as long as the antennal scales, and essentially as in the species of Penorus. The first segment is considerably longer than the two others taken together, is expanded laterally and deeply exeavated above to fit the eye, and the outer margin is armed with an acute tooth opposite the extremity of the cye and another at the
distal end ; the second and third segments are subequal in length, and the terminal is considerably prolonged beneath at the migin of the lower flagellun; the inner and distal margins of the first segment, and nearly the whole exposed surface of the second and third, are thickly clothed with hair. The proximal part of the lower flagellum is about as stout as the flagellum of the antenna, nearly cylindrical, and naked; while the upper is considerably stouter and ciliated along the inner side.
The segments of the peduncles of the antennæ are all smooth, nearly naked, and externally unarmed, but the second segment bears, on the upper and inner edge, a slender spine curved forward and outward above the base of the scale, and there is a papilla-like prominence just above the opening of the green gland at the distal extremity of the first segment ; the consolidated fourth and fifth segment is about as long as the three others taken together, is subcylindrical, and the distal segment prolonged in a thin triangular process inside the origin of the flagellum ; the scale (Fig. \(1^{a}\) ) is about two thirds as long as the carapax, and about three times as long as broad, the greatest breadth bemg near the base, but the margins only slightly converging distally except near the tip, which is obliquely rounded and extends considerably beyond the acute spine in which the very slightly arenate outer margin terminates. The proximal part of the flagellum is very slender, naked, and slightly compressed vertically.

The labrum projects far below the epistome and is broadly candate as seen in front, but this form is perhaps a result of contraction due to preservation in alcohol. The lobes of the metastome are narrow at the base, but expand into very broad and obtuse tips.

The mandibles (Fig. 2) are almost exactly alike, and nearly as in Penceus. They are somewhat contracted at the crowns, which are small, with the opposing surfaces somewhat semicircular in outline and each divided longitudinally by a narrow and shallow depression into two portions, of which the ventral is obtusely triangular and obscurely bidentate, while the dorsal portion is long and narrow anteriorly, but expanded at the pusterior angle into a small and somewhat oval molar area with a raised and obscurely dentate margin. The mandibular palpus is composed of two lamellar segments, of which the proximal is considerably the longer and broader, while the distal is narrowly ovate with the tip rounded; both segments are margined with soft hairs and plumnse seter.

The proximal lobe of the protognath of the first maxilla (Fig. 3) is small and ovate, the distal lobe obliquely truncated and armed as in the allied genera. The endognath is narrow, curved, unsegmented, and shorter than the distal lobe of the protognath.

The four lobes of the protognath of the second maxilla (Fig. 4) increase successively in size distally, the distal being twice as wide as the next. The endognath is much shorter than the distal lohe of the protognath, and tapers regularly to the tip. The anterior part of the scaphognath is muth longer than the posterior and projects beyond the protognath, while the posterior part is short, broadly expanded, and strongly incurved at the extremity.

The protopod of the first maxilliped (Fig 5) projects anteriorly in a straight
lobe twice and a half as long as broad and rounded at the tip. The endopod is composed of three rery distinct segments : a narrow basal one reaching a little by the protopod and with a slight expansion of the inner edge armed with slender spines, while the rest of the inner margin and the distal part of the outer are clothed with hairs; a second segment about half as long as the first, but expanded in the middle so as to be somewhat elliptical and nearly half as broad as long, with very long plumose setæ on the outer edge and smaller and more numerous ones on the inner ; and a small terminal segment about a third as long as the second, half as broad as long, and edged with small setæ or hairs. The exopod is longer even than the endopod, the proximal two-thirds or threefourths of its length wider than the first segment of the endopod, but the distal portion rather suddenly narrowed, multiarticulate, and flagelliform. The lamelliform branchial epipod is as large as the endopod and the anterior portion a little smaller than the posterior.

The endopod of the second maxilliped (Fig. 6) is approximately uniform in breadth throughout, except the dactylus: the ischium is broader than long ; the merus is about as long as the three distal segments taken together, and about three and a half times as long as broad ; the carpus and propodus are subequal in length and each a little longer than wide; the dactylus is a little shorter than the propodus, only half as wide as long, and narrowed to a somewhat triangular tip, which is armed with one or more curved spines; the edges of all the segments are more or less hairy or setigerous. The exopod is slender, regularly tapered, considerably longer than the endopod, and its distal half multiarticulate, flagelliform, and furnished with long plumose seta, while the proximal part is unsegmentel and furnished with short hairs or setx. The epipod is short, nearly orbicular, and bears a short and dense dendrobranchia.

The endopod of the external maxillipeds is unfortunately wanting. The exopod is like that of the second except that it is a little smaller ; the epipod is about as long as in the second, but narrow, ovate, and bears a dendrobranchia nearly as long as itself.

The first thoracic legs are slender and reach scarcely by the bases of the antennal scales : the merus is slightly longer than the ischium, and both these segments are strongly compressed vertically and ciliated along the imer ediges; the carpus is slightly compressed, about as wile as the merns, and ciliated like it ; the chela is scarcely as long as the carpus, and no stonter, and the dinits are about as long as the basal portion, slender, very slightly curved at the tips, and the prehensile edges ciliated.

The second lens are much like the first, but a little more slender and considerably longer, reaching to the tips of the peduncles of the antenne; the merus and carpus are subequal in lengrth, and the chela is considerably shorter than the carpus.

The most of the endopods of the third, fourth, and fifth pairs of legs are wanting except a detached portion of, apparently, one of the fourth pair. This fragment is longer than the carapax and consists of a slenter ischium and
merus, the latter twice as long as the former, a still more slender carpus nearly as long as the merus, and a portion of an exceedingly slender and filifurm propodus.

The abdomen (Pl. XIV. fig. 1) to the tip of the telson is nearly twice as long as the carapax, anteriorly about as broad as high, but much compressed posteriorly, so that the sixth somite is fully twice as high as broad. The dorsum is evenly rounded on the first four somites, but there is a narrow and sharp carina on the fifth and sixth, which rises abruptly into a crest on the anterior part of the fifth. The posterior prolongations of the first and second epimera are broadly rounded ; those of the third and fourth less broad and more angular, but still obtuse and rounded at the posterior angle; while the fifth is acutely angular, but with the tip itself obtuse. The sixth somite is twice as long as the fifth, and more than half as high as long. The telson wants the tip, but is apparently shorter than the sixth somite ; it is narrowly triangular, thickened and transversely very strongly convex above at base, but not carinated, and posteriorly flattened above.

The lamelle of the uroporls are thin and lanceolate in outline. The inner is only a little shorter than the sixth somite, less than a third as broad as long, and stiffened in the middle by two slender riblike thickenings, separaterl, on the dorsal surface, by a narrow sulcus. The outer is fully once and a half as long as the imer, scarcely a fourth as broad as long, and the narrow tip is prolonged far beyond the sharp spine in which the thickened outer margin terminates, anl from this spine a slender riblike thickening, with a narrow sulcus along its inner edge on the dorsal surface, runs nearly parallel with the outer edge to the base of the lamella.

The ablominal appendages of the first pair are as large as those of the seconrl, about as long as the uropods, and the distal multiarticulate portion is nearly twice as long as the protopod, slenter and subcylindrical. The peenliar male appendage (petasma of Bate) is a thin, squarish plate (Pl. XIV. fig. i) attached by a constricted base, below which there is a small oblong process (i) stancling out at nearly right angles to the plane of the rest of the plate. The plate itself, which is apparently carried in a nearly horizontal position in front of the protopod to which it is attached, is obliquely divided vertically or longitudinally by imperfect articulations into three parts, of which the middle one is much the largest and projects at the inner inferior angle in a large ovately pointed process, while the inner or distal of the three parts is narrow and has the lower or posterior part of its free edge armed with minute hooked spines for the attachment of the appendares of the opposite sides of the animal. The outer rami of the second to the fifth pairs of alolomimal appentages are similar to the single rami of the first pair, but are all consilerably compressel ilistally. The immer ramus in the second pair is very much more slemter and considerably shorter than the outer, and is fumished on the anterior sile at hase with two small and obtusely terminated, harl, lamelliform processes. The inmer rami of the thind, fourth, and fifth pairs of appendages are as in the first pair except that they are withont the lamelliform process at base.


Station 343 , N. Lat. \(39^{\circ} 45^{\prime} 40^{\prime \prime}\), W. Long. \(70^{\circ} 55^{\prime}\), 732 fathoms; one male.

AMALOPFN 巴US, gen. nov.
Like the last species in general appearance, but readily distinguished from it by the second maxillipeds, in which the meri expand intu broad opercular plates, and in having no podobranchix on any of the thoracic legs. The integument of the whole animal is membranaceous, and very soft and thin. The carapax, eyes, antennulæ, antennæ, nandibles, and maxillæ are nearly as in the species last described. The endopod of the first maxilliped is divided into three segments as in that species, but the terminal segment is larger than the penultimate, and the exopod is broad and lamelliform throughout. The merus of the second maxilliped is expanded in a thin lamelliform plate along the inside and beyond the articulation of the carpus, so that when the three distal segments are flexed they are concealed beneath it. In the external maxillipeds the ischium is longer than the merns, and both these secements are very much broader than the slender carpus and propodus, or than the short flattencl and pointed dactylus. The first three pairs of thoracic legs are approximately equal and their chele are slender and subequal in size, but in the first pair the ischime and merus are compressed and considerally expanded. The fourth and fifth pairs of legs are about as long as the thirt, and very slender. There are no exopods at the hases of any of the thoracic legs. The branchix are arranged as in the last species except that there are no porlobranchise at the bases of any of the thoracic legz, so that there are only twenty branchix and seven epipods on each side, as indicated in the following table.
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & ViI. & VIII. & IX. & X. & XI. & XII. & XIII. & XIV. & Total. \\
Epiporls, & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \((1)\) \\
Porlobranchix, & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Arthrobranchix, & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 0 & 13 \\
Pleurobranchix, & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 6 \\
\hline
\end{tabular}

\section*{Amalopenæus elegans, sp. nov.}

\section*{Plate XIV. Figs. 8-14. Plate XV. Figs. 1 -5.}

The carapax is not at all compressed laterally, but about as broad as high, exceedingly thin and membranaccons, and its surface naked and polished. The branchiostegial spine is very minute and the carina which extends back from it is less conspicnous than the sharp gastro-antennal and gastro-hepatic carina which is continnous posteriorly with a distinct cardiaco-branchial one; between the gastro-antennal and the branchiostegial carina there is a wide antennal and hepatic sulcus, which posteriorly turns down in front of the branchial region; there is a slight gastro-frontal and a very conspicuous transverse gastric and gastro-hepatic sulcus, as in the last species, while the cervical itself is equally deep and conspicuous, notches the dorsum like the gastric and only a very little way back of it, is directed downward and backward and then in a regular curre forward round the hepatic region to join the hepatic sulcus. A sharp dorsal carina extends the whole length of the carapax, but is most conspicuous in front of the gastric sulcus, rises in front into a sharp lamellar crest armed with a single sharp tooth over the posterior margin of the orlit, and projects forward in a short but acute and laterally compressed rostrum, which scarcely reaches the middle of the eyestalks.

The eyes and cyestalks are very nearly as in the last species, but the dentiform prominence is very much more prominent and conspicuous; the color of the eye and position of the pigment spot are the same, though the latter is more conspicuous above than below,

The ultimate segment of the perluncle of the antennula is much longer than the penultimate, and these two taken together are nearly as long as the first segment, but in other respects the perluncle is as in the last species. In the male the flagella are proximally subequal in diameter, but the superior is expanded somewhat along the inner side for a short distance from the base.

The antennal scale (Pl. XIV. fig. 12) is much less than half as long as the carapax, nearly three times as long as the greatest breadth, which is near the base, from where the margins arcuately converge to a narrow but obtusely rounded tip, which is scarcely in adrance of the small terminal spine of the outer margin. The rest of the antemal peduncle is nearly as in the last species, and is armed with a curved spine above the base of the scale in the same way, but the terminal segment is shorter to correspond with the shorter scale. The flagellum is nearly naked, wery slender, and at least much longer than the rest of the animal.

The labrum, metastome, and crowns of the mandibles are nearly as in the last species, but the labrum is full and rounded below. The mandibular palpi (PI. XIV. fig. 9) are very large, and reach nearly to the middle of the antennal scales : the proximal segment is more than half as broad as long, nearly twice as long as the distal segment, with the distal part of the mesial edge straight and the outer edge curved and directed inward distally so as to narrow the
segment very much at the articulation of the terminal segment, which is about twice and a half as long as broad, and ovate with the tip rounded.

The first maxilli is as in the last species except that the endognath (Pl. XIV. fig. 10) is expanded somewhat a little way from the base.

The proximal of the four lobes of the protognath of the second maxilla (Pl. XIV. fig. 11) is larger than the next, while the three others increase successively in size distally, though the distal is not more than a third broader than the one next it. The endognath is nearly as long as the distal lube of the protognath, broadly expanded near the middle, where it is more than a third as broad as long ame has a rounded prominence edged with slender setæ on the inner margin, but suddenly contracted to a very slender tip armed distally with four long setæ on the inner edge and with two or three stonter and curved setæ on the outer elge just below these. The scaphognath is nearly as in the last species except that the posterior part is a little narrower and not so strongly incurved.

The protopod and the branchial epipod of the first maxilliped (Pl. XV. fig. 3) are nearly as in the last species, hut the endopod and exopod are very different. The proximal segment of the endopod does not reach the tip of the protopod, though it is between three and four times as long as broad, the imer edge is armed distally with three or four slender spines and the rest of the way with long setre or hairs; the second segment is a little narrower than the first, between a third and a half as long, about twice as long as broad, and margined with hairs ; the terminal segment is considerably wider than the second segment, and about once and a half as long, approximately elliptical, and margined all round with long setro or hairs. The exopod is a little longer than the endopol, unsegmented, lamellar, very thin and of nearly uniform brealth throughout, rounded at the tip, and with both edges setigerous, the setæ upon the outer edge being long and plumose.

The ischium of the second maxilliped (Pl. XV. fig. 4) is very short; the merus is considerably longer than the carpus and propodus combinel, half as broad as long, and projects distally in a thin and broadly rounded lobe beyond the articulation of the carpus; the carpus is as long as the breadth of the merus, less than half as broad as long, and somewhat narrowed proximally ; the proporlus is a little shorter than the carpus, but as broal, and is slightly produced at the inner distal angle ; the dactylus is about two thirds as long as the propodus, nearly half as broad as long, obtusely pointed, and armed with a strong curved spine at the tip. The exopod is slender, reaches about to the extremity of the carpus, and is distinctly multiarticulate from near the hase to the tip. The epipod is small, ovate, and bears a relatively large dendrobranchia.

The external maxillipeds ( \(\mathrm{P} . \mathrm{XV}\). fig. 5) reach nearly to the tips of the antennal scales and are longer than either the first or second pair of legs: the ischium is alout a third of the entire length of the endopod, finlly a third as broad as long, and very slightly narrowed proximally ; the merus is as lroad and about two thirlds as long as the ischium, and narrowed distally to the breadth of the
carpus ; the carpus is slightly shorter than the merus, and only about a thirl as wide; the propolus is very nearly as long as the carpus, but a little narrower; the dactylus itself is a little broader than the propodus, but less than half as long, broadest at the midlle and with the tip triangilar and armed with a slender spine not much shorter than the segment itself; both edges of the dactylus, the extremity and inner edge of the propodus, and the inner edge of the carpus, are armed with exceedingly long and slender setiform spines, and the inner sides of the proximal segments are, as usual, armed with setre. The exopod is slender, reaches a little beyond the ischiun, and is distinctly multiarticulate to near the base. The epipod is narrow, and not longer than the brealth of the ischium.

The first and second pairs of legs (Pl. XV. figs. 1, 2) are very nearly equal in length, the first pair reaching about to the extremities of the peduncles of the antenne, and the second pair scarcely falling short of the same point. In both pairs the corresponding segments are of very nearly equal lengths, except the carpi which are a very little longer in the second pair, lut the ischia, meri, and carpi are narrower in the second than in the first : the ischium is about two thirds as long as the merus, half as broad as long in the first pair, and searcely more than a third as broad as long in the second ; the merus is nearly a third of the entire length of the endopor, slightly narrowed distally, and in the first pair more than a third as broad as long, but in the second pair scarcely more than a tifth as broad as long; the carpus in the first pair is about two thirls as long and half as wide as the merus, while in the seeond pair it is absolutely a little narrower than in the first; the chelx are very nearly alike in both pairs, about as long and broad as the carpus in the second lair, with the fingers slender, curved at the tips, and scarcely more than two thirds as long as the basal portion ; the edres of the chele are furnished with fascicles of short setr, the tips of the fingers densely clothed with much longer seta and hairs, the inner edges of the other segments thiekly clothed with plumose hairs and long seter, and the outer edges sparsely clothed with short hairs, except on the carpus in the secoul pair where the outer edge is thickly hairy. The legs of the thind pair are considerably longer and much more slemler than those of the second, beyond which they reach by the length of their chele ; the ischimm is about as long as in the second pair, but narrower ; the merus is twice as long the the carpus, very slender, and of nearly equal diameter throughout ; the carpus is a little shorter and searcely stonter than the merns, and very slightly thickenerd distally ; the chela is very near the same size as in the first and second pairs, hut the fingers are apparently a little longer in proportion.

The third and fourth pairs of legs are nearly alike, a little longer than the third pair and very slender, the fifth being a little more slender than the fouth, and both sparsely armed with long setiform spines, except upon the dactyli, which are nearly naked, long, very slightly curved, and acute.

The abdomen to the tip of the telson is about twice as long as the carapax, anteriorly about as broad as the carapax and with the dorsum broally rombed, but much compressel posteriorly, so that the sixth somite is twice as high as
broad. None of the anterior somites are dorsally carinated or toothed, but the sixth, which is nearly twice as long as the fifth and half as high as long, has a thin dorsal carina nearly the whole length. The epimera of all somites are rather small, and the posterior angle is more or less rounded in all.

The telson is about two thirds as long as the sixth somite, narrowly triangular, thickened at base, with a longitudinal sulcus the whole length above and with a shorter one either side near the base, and with the tip truncated, narrow, and armed with a spine either side and a series of long plumuse hairs between.

The inner lamella of the uropod is a little longer than the sixth sonnite, lanceolate, and about six times as long as broad. The outer lamella is about a fifth longer than the inner, scarcely wider proportionally, and with the ovate tip prolonged far beyond the sharp spine in which the outer margin terminates.

In both sexes the protopods of the appendages of the first to the fifth somite are stout and all nearly alike, the outer rami are all very long and slender, and the inner rami of the four posterior pairs are shorter and more slender than the outer. The peculiar sexual appendage of the first pair of appendages in the male is carried as in the last species, and, as in that species, consists of a thin, squarish plate (Pl. XIV. figs. 13, 14) divided by imperfect articulations into three parts and attached by a constricted base, below which there is a small, broad, oval process ( \(a\) ) ; but the middle of the three parts is as large as the two others combined, inferiorly projects beyond the other parts, and at either side there is an obtuse tooth, above the onter of which there is an obtuse lobe in the margin and then a deep and narrow notch separating the middle from the inner or distal part, while above the notch on the anterior side there is an oblong process (b) which may be turned either in over the distal part of the plate or ont over the middle part ; the distal part is thin, membranous, curls easily over upon the middle part, and is armed along the free edge with minute hooked spines as in the last species. There are two small, lamelliform plates at the base of the inner ramus in the second pair of appendages of the male, as in the last species.

All the specimens are more or less imperfect, and most of them in very bad condition on account of the softness of the integument and the exceeding fragility of the appendages, so that it is nearly impossible to present a general figure of the whole animal or give accurate measurements. Three specimens, however, give the following approximate measurements in millimeters : -

\begin{tabular}{|c|c|c|c|c|}
\hline Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
\hline 323 & \(33^{\circ} 19^{\prime} \quad 0^{\prime \prime}\) & \(76^{\circ} 12^{\prime} 30^{\prime \prime}\) & 457 & 2\%, flugmentary. \\
\hline 324 & \(33^{\circ} 27^{\prime} 20^{\prime \prime}\) & \(75^{\circ} 53^{\prime} 30^{\prime \prime}\) & 1386 & 1 ¢ \\
\hline 325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 0^{\prime \prime}\) & 647 & 19, fragmentary. \\
\hline 328 & \(34^{\circ} 28^{\prime} 25^{\prime \prime}\) & \(75^{\circ} 22^{\prime} 50^{\prime \prime}\) & 1632 & 29, 1 fragmentary. \\
\hline 330 & \(31^{\circ} 41^{\prime} \quad 0^{\prime \prime}\) & \(74^{\circ} 35^{\prime} \quad 0^{\prime \prime}\) & 1047 & 2 ¢ \\
\hline 343 & \(39^{\circ} 45^{\prime} 40^{\prime \prime}\) & \(70^{\circ} 55^{\prime} 0^{\prime \prime}\) & 732 & Fragments only. \\
\hline
\end{tabular}

From Station 325, there is the crushed and fragmentary cephalothoracic portion of another specimen, apparently of this species, but having two teeth on the crest of the rostrum, the sccond tooth being about half-way between the one above the posterior margin of the orbit and the tip of the rostrum.

This species has also been taken by the U. S. Fish Commission at the following stations off Block Island, in 1880 and 1881 : -
\begin{tabular}{lcccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
893 & \(39^{\circ} 52^{\prime} 20^{\prime \prime}\) & \(70^{\circ} 58^{\prime} 0^{\prime \prime}\) & 372 & \(1 \%\) \\
935 & \(39^{\circ} 45^{\prime}\) & \(0^{\prime \prime}\) & \(69^{\circ} 44^{\prime} 45^{\prime \prime}\) & 770 \\
952 & \(39^{\circ} 55^{\prime} \quad 0^{\prime \prime}\) & \(70^{\circ} 28^{\prime} \quad 0^{\prime \prime}\) & 388 & \(1 \delta\) \\
& & & &
\end{tabular}

Among these were the only specimens which had either of the fourth and fifth pairs of legs, the telson, or the uropodal lamellæ perfect.

The specimens in alcohol retain for a considerable time bright purple markings about the oral appendages, and give out a peculiar, bright red, oil-like fluid, after the manner of the species of Sergestes and some of the deep-water Schizopoda.

\section*{Hymenopenæus debilis, gen. et sp. nor.}

Plate XV. Figs. 6-11. Plate XVI. Figs. 1-3.
The whole integument is membranaceous and exceedingly thin and soft. The carapax is smooth, naked, slightly compressed laterally, and dorsally carinated the whole length but not conspicuously on the posterior part ; there are four large and acute lateral spines cither side, - an antemal, an hepatic, one a little way back of the antemnal, and another (branchiostegial ?) below and in front of the hepatic and near the lower edge of the carapax ; the gastro-hepatic sulcus is conspicuous and deep, and continues mpward to the dorsal line considerably back of the middle of the carapax and teminates below in front of the hepatic spine in a depression from which a narrow sulens extends backward and divides, sending a short brancl downward in front of the branchial region and a long one back to become the cardiaco-branchial. The rostrum is nearly straight, a little less than half as long as the rest of the carapax along the dorsum, compressed but not high, terminates in an acute point, is armed above with six or seren teeth hesiles three more widely separated ame nearly equidistant ones upon the anterior half of the carapax proper, and near the tip below with a closely set series of hairs.

The eyes are large, reniform, and black, as in the typical species of Pincus.

The peduncle of the antenuula is much longer than the rostrum : the first segment is more than half the entire length, excavated above for the reception of the eye, but the lamelliform appendage is small, narrow, and concealed between the eyestalks ; the second segment is about half as long as the first, a:il somewhat triquetral ; the body of the ultimate segment is not quite half as long as the second, but is prolonged in a narrow process beneath the bases of the flagella; the upper flagellum is slender, cylindrical and longer than the carapax and rostrum ; the proximal portion of the lower flagellum is slender ind cylindrical, like the upper, but the terminal portion is wanting in all the specimens seen.

The antennal scale is about half as long as the carapax including the rostrum, nearly four times as long as broad, and contracted distally to a rather narrow but evenly rounded tip, which projects scarcely beyond the terminal spine of the outer margin. The second segment of the peduncle of the antennia is armen with a slender spine just outside the articulation of the scale, and the consoliclated fourth and fifth segments reach nearly to the middle of the scale and are subcylindrical. The flagellum is slender, cylindrical, and three or more times as long as the rest of the animal.

The labrum, metastome, and crowns of the mandilies are nearly as in Pencus. The mandibular palpi (Pl. XVI. fig. 1) are very much as in the Amalopencus just describell, and reach to about the midllle of the antennal scales: the proximal segment is about half as broad as long and once and two thirds as long as the distal segment, which is three times as long as broad, and ovate with the tip obtuse.

The proximal lobe of the first maxilla (Pl. XVI. fig. 2) is large, broadly romuled at the extremity, and armed with very long setiform spines and setre; the distal lobe is broad and truncated at the extremity, and armed with slender spines and seta rather shorter than on the proximal lobe ; the endognath is shorter than the distal lobe of the protognath, has a slight expansion maryined with hairs on the outer edge near the base, and tapers to an obtuse tip ( \(F i g .2^{\wedge}\) ) armed on the inner elge with three very long and distally phmose seter, and on the anterior surface with very delicate hairs.

The secoul maxilla (Pl. XVI. fig. 3) is very much as in many species of I'enens. The three proximal lobes of the protognath are subequal and narmw, and the distal lobe abont twice as wide as they, but still rather marrow and ovate. The endognath is much shorter than the distal lobe of the protegnath, ami terminates in a narrow thickenel foll (Fig. \(3^{\circ}\) ) on the posterior side amed along either 1. Lge and on the anterior side with a longitulinal series of slemder spines or spinifurm seta, of which the distal one on the inner eltre, the anterion series, ath the distal ones of the outer series are very long. The anterior lube of the satphognath is long and very narrow, and projects considerably beyond the frotugnath, while the posterior lube is large, broad, and curved strongly inward and anteriorly ns in the allied genera.

The first maxillipeds (Pl. XV. fig. 7) resemble those of the typical species of Penceus. The distal lobe of the protopod is large, rounded in outline distally and about two and a half times as long as broad. The endopod is composed of three segments : the proximal segment is a little more than half the whole length, broad at base but narrow distally and with the inner margin abruptly contracted near the middle, leaving an angular projection which is armed with long setx, while beyond this projection it is narrowed to near the extremity and is regularly curved inward round, and extends considerably beyond, the end of the protopod ; the two distal segments are nearly straight, approximately equal in length, very narrow, and with a regular series of slender plumose setæ along either edge, those on the outer edge being much the larger. The exopod reaches to about the base of the distal segment of the endopod, is narrow, twelve to fifteen times as long as broad, but lamellar, and edged with a regular series of long plumose setr. The epipod is small, but with a distinct anterior lobe, has a few hairs or setæ along the edges, and is apparently nut branchial.

The endopod in the second maxilliped (Pl. XV. fig. 8) is large and stout: the ischium as usual is shorter than broad; the merus is as long as the entire protognath of the first maxilliped, and about a fourth as broad as long ; the three distal segments are subequal in length and together about as long as the merus, the propodus about as wide as the merus, but the carpus and dactylus a little narrower; the dactylus is obtusely rounded and armed with a few strong spines distally, and both margins of the three distal seginents and the imner margins of the proximal are clothed as usual with stout setæ and hairs. The exopod is very small, slender, nearly cylindrical, about as long as the merus, and the distal half multiarticulate, flagelliform, and furnished with small phumose setre. The lamellar epipod is narrow-ovate, not bilobed distally, and bears a rather small dendrobranchia.

The external maxillipeds (Pl. XV. fig. 9) are very long and slender, though as thick as any of the legs, longer than the carapax and rostrum, and reach beyond the tips of the antennal scales fully the length of their dactyli: the ischium, merus, and carpus are approximately equal in length and subegnal in diameter ; the propodus and dactylus taper slightly and regulaly; the propodus is fully two thirds and the dactylus half as long as the carpus; all the segments are thickly armed allong the imer side with fascicles of exceedingly long and slender spines or stout setx, and the three distal are similarly armed, but with shorter spines and seter, on the other sides. The exoporl is mulimentary and exceedingly minute, being very slender and much shorter than the diameter of the merus. The epipod is well developed, lanceolate, and undivided at the tip.

All the thoracic lecrs have very minute exopods, and all except the fifth pair have narrow and undivided epipods like the external maxillipeds. The first legs (Pl. NV. fig. 10) are about as long as the cartpax excluding the rostrum, reach to the middle of the antemal scales, are slightly compressed, and stouter than the succeeding pairs: the merus is about twice as long as the ischium and
seren or eight times as iong as broad; the carpus is a third or fourth shorter than the ischium, but as broad; the chela is slightly stouter than the carpus and only a little shorter, and has slightly curved digits about two thirds of the whole length ; the lower edges of the ischium, merus, and carpus are armed with fascicles of long spines and setæ as in the external maxillipeds, the upper edges of these segments and both edges of the chela are armed with much smaller spines or setæ, and in addition there is a small area densely covered with very short setæ or hairs near the distal end of the lower edge of the carpus, and a similar area in a corresponding position at the proximal end of the chela. The second lerss are a half longer and much more slender than the first, nearly cylindrical, reach to the tips of the antennal scales, and are almost entirely naked. The third legs (Pl. XV. fig. 11) are like the second, but longer, reaching to the tips of the external maxillipeds. The chelæ of the second and third pairs are about as long as those of the first, but more slender, with proportionally shorter, straight and weak digits, and naked except for a few very minute hairs near the tips of the digits.

The fourth and fifth pairs of legs are exceedingly long and slender, and apparrently very nearly alike, but the distal segments are wanting in all the specimens seen ; the meri, however, reach to about the tips of the antemnal scales in both pairs, but in the fifth pair a little farther than in the fourth; and the parts which are preserved are almost entirely unarmed.

The branchix appear to be less densely branched than in the typical species of Pencus, and there are two arthrobranchix at the base of the penultimate leg each side instead of one, making nineteen branchiæ on each side arranged as indicated in the following table.
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & VII. & VIII. & IX. & x. & XI. & XII. & XIII. & XIV. & Total. \\
Epipods, & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & ( 1\()\) \\
Podobranchir, & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Arthrolranchix, & & 2 & 2 & 2 & 2 & 2 & 2 & 0 & 12 \\
Pleurobranchix, & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 6 \\
\hline
\end{tabular}

The abdomen to the tip of the telson is slightly more than once and a half as long as the carapax including the rostrmm, anteriorly nearly as broad as the carapax \({ }_{2}\) but strongly compressed back of the third somite so that the sixth somite, which is nearly a fouth of the entire length of the abromen and nearly twice as long as high, is nearly twice as high as broad. The threc anterior somites are evenly romded above, but the three posterior are sharply carinated, and on the fifth and sixth somites the carina terminates at the posterior margin in a small tooth. The epinera of all the somites are rather small, and have the posterior angles more or less roumled.

The telson is not quite perlect at the tip in any of the specimens, but is nearly three fourths as long as the sixth somite, narrowly triangular, thickened at base, las shallow dorsal and lateral sulci nearly the whole length, and the lower elge each side is armed near the tip with a slender spine.

The inner lamella of the uropod is slightly longer than the sixth somite, lanceolate, and about four times as long as broad. The onter lamella is just about as long and wide as the antennal seale, but is broader at the tip.

There are only three specimens in the collection, all apparently females, and all more or less imperfect. The largest specimen, from Station 323, gives the following measurements, which, on account of the soft condition of the specimen, are more or less approximate.


Possibly none of the specimens are fully grown, but all have apparently attained the characters of the adult. The smallest specimen, less than 30 mm . in length, does not differ, except in size, from the largest.
\begin{tabular}{cccc} 
Station. & N. Lat. & W. Long. & Fathoms. \\
317 & \(31^{\circ} 57^{\prime}\) & \(0^{\prime \prime}\) & \(78^{\circ} 18^{\prime} 35^{\prime \prime}\) \\
323 & \(33^{\circ} 19^{\prime}\) & \(0^{\prime \prime}\) & \(76^{\circ} 12^{\prime} 30^{\prime \prime}\) \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 333 \\
3 & & &
\end{tabular}

F The genus Pencus, even after the subdivisions recently made by Bate, ineludes species diflering widely in the structure of the articular appendages and in the arrangement of the branchix, but the genus here proposed appears to differ from all these species in the small and narrow terminal segment of the mandibular palpus, the rudimentary character of the exopods of the external naxilliperls and legs, the number and arrangement of the branchix, and the membranacoons character of the integument. From the trpical species of Pencus it differs morcover in the short and unsegmented eulognath of the first maxilla and in the sulcation and ammment of the carapax. The species here described is possibly closely allied to, or even congeneric with, Haliporus Bate, which, however, is so imperfectly characterized, and the four species referred to it so briefly described, that it is impossible to determine its allinities with any certainty.

\section*{SERGESTID屈。}

\section*{Sergestes arcticus Krörer.}

Orersigt Vidensk. Selsk. Forhandi. Kjöbenhaven, 1855, p. (6) ; Monograph. Sergestes, Vidensk. Selsk. Skr., V., Naturvidensk. mathem. Afh., IV. py. 240, 276, Pl. III. figs. \(7 a-7 g\), Pl. V. fig. 16, 1856.
Smith, Proc. Natioual Mus., Washington, III. p. 445, 1881.

\section*{Plate XVI. Fig. 4.}
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
\hline 304 & \(41^{\circ} 35^{\prime} \quad 0^{\prime \prime}\) & \(65^{\circ} 5{ }^{\prime \prime} 30^{\prime \prime}\) & 139 & Fragments only. \\
\hline 309 & \(40^{\circ} \mathrm{I} 1^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime} 0^{\prime \prime}\) & 304 & 1 \% \\
\hline 326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 46t & 1 ¢, Iq \\
\hline 337 & \(38^{\circ} 20^{\prime} 8^{\prime \prime}\) & \(73^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & \(19,55 \mathrm{~mm}\). in length. \\
\hline
\end{tabular}

In this species there is an epipod and a well-developed podobranchia at the base of the second maxilliped, and above its base a simple lamella in place of a pleurobranchia, a large anterior pleurobranchia with a simple lamella back of it on each of the three succeeding somites, a large anterior and a small posterior pleurobranchia on the antepenultimate somite, and on the penultimate somite two small branchix, of which the posterior is very much the smaller, while the last somite is without branchix; or, indicating the simple pleurolamelle by accents, the branchial formula* may be indicated as follows :-
\begin{tabular}{lccccccccc}
\multicolumn{1}{c}{ Somites. } & III. & IIII. & IX. & X. & XI. & XII. & XIII. & XIV. & Total. \\
Epipods, & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
Podobranchix, & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Arthrol)ranchix, & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Pleurobranchiæ, & 0 & \(0^{\prime}\) & \(1^{\prime}\) & \(1^{\prime}\) & \(1^{\prime}\) & 2 & 2 & 0 & \(\frac{7}{8+(2)}\)
\end{tabular}
* Boas (Studier over Decapodernes Strogtskabsforhold, Vidensk. Selsk. Skr., VI., Natuvidensk. mathem. Afh., I., 1880), for S. Frisii Krüyer, gives an epipod and a rudimentary arthrobranchice for the eighth somite and a single pleurobranchia for each of the sueceeding somites including the last. Bate (Amm. Mag. Nat. Hist., 5th ser., VIII. p. 193, 1881), gives, for the gemus Scrgestes, a "mastibranchia" (epipod) and one pleurobranchia for the eighth somite, a single pleurobranchia for the ninth, a pleurobranchia and pleurolamella each for the tenth, eleventh, and twelfth, two plenrobranchixe for the thirteenth, and nothing for the last ; but under S. Kröycri he says, "This species has two well-developed pleurobranchio attached to the prenultimate somite of the percion, two to the antepemultimate, one plume and a leaflike plate to the next three somites, and one plme and a rudimentary mastibranchial plate to the first pair of gmathopoda" (second maxillipeds). This last statement of Bate would apparently indicate an arrangement of the branchie much like that which I havo given above, or even nearer to that of \(S\). robustus described beyond, but it is very unlike the arrangement indicated by his furmula for the genus.

The structure of the branchix themselves, in this and in the two following species as well, is very different from that in Penceus, or any of the Penæidæ described in this paper. The branchiæ are pinnate in form, and each pinna is a complete phyllobranchia; that is, they are compound phyllobranchix, while those of Penceus are compound trichobranchix. The structure is more like that in Sicyonia (judging by Bate's description of the branchix of that genus) than that in Penceus.

The first pair of thoracic legs are subchelate, and the dactyli of the external maxillipeds and the propodi of the first, second, and third pairs of legs are multiarticulate, as in the next species, the articulations being more conspicuous than in that species. These structural characters of the thoracic legs are, however, undoubtedly characteristic of all the species of the genus.

\section*{(Sergestes robustus, sp. nov.}

\section*{Plate XVI. Figs. 5-8 \({ }^{\text {b }}\).}

Male. - The carapax is strongly compressed, the breadth being considerably more than the height at the base of the antennæ, but much less than the greatest height posteriorly, which is rather more than twice that at the base of the antennæ. The dorsum is broadly rounded to the base of the rostrum, which rises rather abruptly from the dorsum, is very thin, acutely triangular, and extends a little forward of the truncated middle lobe of the ophthalinic somite.

The eyestalks to the tips of the eyes are abont two fifths as long as the antennal scales, and the diameter of the eye itself about half the length. The peduncle of the antennula is about a fifth longer than the antemnal scale, the first segment scarcely half as long as the antennal scale, and the second and third successively a little shorter ; all the segments are very stout, the diameter in the second and third being equal to more than half the length. The proximal segment of the upper or major flagellum is scarcely more than a fourth as long as the distal segment of the peduncle, and scarcely longer than the proximal segment of the lower flagellum, which is modified as in the allied species. The antennal scale (Fig. 7) is about half as long as the carapax along the dorsal lime, about a third as broad as long, and much broader at the tip than in the allied species.

The oral appendages do not differ essentially from the oral appendages of P. Frisii and arcticus as figured by Kröger.

The external maxillipeds reach by the tips of the antennal scales fulle the length of their dactyli, and are about as stont as the third pair of legs : all five segments of the endopod are approximately equal in length though the dactylus is slightly shorter than the others, and all are armed with very slender spines ; the dactylus is slender and multiarticulate, being composed of about five segments, and tipped with two or three spines. The legs of the first pair fall a little short of the tips of the autennal scales : the merns is about twice as long as the carpus and about as long as the propodus, which is very slender, comYOL. x. - NO. 1.
posed of about ten segments, and armed, like the ischinm, merus, and carpus, with exceedingly long, and for the most part simple, setiform spines, and at the proximal extremity with a tuft of serrate setæ corresponding to a similar tuft on the distal extremity of the propodus ; the dactylus is very minute, but perfectly distinct, and armed with an exccedingly long and slender spiniform seta, while the tip of the propodus is armed with a very much shorter spine. The legs of the second pair reach to about the tips of the external maxillipeds: the werus is a little longer than in the first pair ; the carpus twice as long as in the first pair and only a little shorter than the merus; the propodus is longer than the merus, composed of about twelve segments, and armed very nearly as in the first pair, except that the tuft of setæ at the proximal extremity, with the corresponding one on the carpus, is wholly wanting, while the digits of the welldeveloped chela (Fig. 6) are considerably longer than the diameter of the propodus at their base, slender, nearly straight, and armed at the tips with a dense brush of setæ, most of which are serrate. The legs of the third pair are almost exactly like those of the second, except that they are considerably longer, reaching by the second pair by about half the length of their dactyli. The legs of the fourth pair reach nearly to the tips of the carpi of the third pair and are very much stouter, and the endopods are composed of only four segments cach, the dactylus, apparently, being wanting : the ischinm, carpus, and propolus (or the proximal and the two distal segments) are subequal in length, while the merus (or antepenultimate segment) is about once and a half as long as each of the others : the merus is about six times as long as broad, and, like the ischium, densely ciliated along both edges, but the cilia on the lower edge are several times longer than those upon the upper, which are not as long as the breadth of the segment ; the carpus is slightly broader than the merns, being more than a fourth as broad as long, ciliated like the merus along the lower edge, but the upper edge naked; the propodus (or ultimate segment) is a little less than a fifth as broad as long, ovate at the tip, and has the lower edge ciliated and the upper naked like the carpus. The legs of the fifth pair are a little more than half as long as those of the fourth, and their endopods are composed of the same number of segments : the ischium and carpus are subequal in length, the merus a little longer, and propodus a little shorter, and all the segments are ciliated along both edges, though the cilia upon the lower edge are much longer than those upon the upper; the merus is about a fouth as broud as long, and considerably broader than the ischimm or carpus; the capus is less than a fourth as broad as long, and slightly tapered distally ; the propodus is a little less than a fifth as broad as long, and regularly tapered from near the base to the acute tip.

The abdomen, excluding the telson, is nearly twice as long ns the carapax along the dorsal line, is considerably compressed, thongh anteriorly about as broad as the carapax, and, like the carapax, rounded above, but with a shallow median sulcus on each of the first four somites, meonspicuous on the first and second, but distinct on the third and fourth. [There are similar sulci on the abdomen of S. areticus, and they are possibly, thourh apparently not, due to
contraction from preservation in strong alcohol.] The epimera of the first three somites are large and project backward in an angle, while the epimera of the fourth and fifth somites project backward quite as far, but have the outline more rouncled. The sixth somite is about as long as the antennal scale, considerably more than half as high as long, and strongly compressel.

The telson is considerably shorter than the sixth somite, flattened and slightly sulcated above, with a deep lateral groove each side, acutely angular at the tip, and ciliated along the edges. The inner lamella of the uropod is a little longer than the telson, about three and a half times as long as broad, and lanceolate at the tip. The outer lamella is between a thind and a fourth longer than the inmer, less than a fourth as browl as long, the outer margin terminating in a strong tooth about two thirds of the way from the base to the tip, and the tip narrow, but rounded.

The peculiar sexual appendages (petasma, Fig. 8) of the first somite of the abdomen have essentially the same structure as in \(S\). arcticus, but are much more complicated than would be inferred from the figures for that species given by Kröyer. The appendages of the two siles are usually hooked together along the middle line ( \(h\) ), but are really entirely distinct. Each is attached by a narrow process (a) to the protopod of the abdominal appendare, and is divided by more or less distinct sutures into three portions. The outer portion, that next the protopod, projects above the point of attachment in a narrow process, and below the point of attachment in a broad lamellar lateral expansion, and below this in a long, flat, chitinous stylet (b) terminating in a sharp hook below a rounded sinus in the extremity. The middle portion projects below and alongside of, but far beyond, the hooked stylet (b), in a complicated appendage divided distally into three membranaceous and hook-bearing processes \((e, f, g)\) and bearing two slender and unarmed stylets \((c, d)\); and each of the membranaceous processes is armell along one edge with a series of peculiar chitinous hooks retractel within invarginated papillie (Fig. \(8^{\text {b }}\) ), and at the tip with a larger and somewhat differently shaped but similarly retracted hook (Fig. ss). The lateral hooks themselves are semi-mushroom-shaped, like those which serve to hook together the inmer rami of the abdominal appendages in many crnstaceans, and very much like those along the mesial edge ( \(h\) ) of this same appendage, but larger. The terminal hooks are more properly hook-shaped, as shown in the figure, but are broad at the tips. The invagination of the memlyane around the hooks is possilly due to contraction in the alcololic specimens, but the hooks are similaly retracted in thll the specimens of S. arcticus which I have examined, their bases appear to be conneeted with strong muscular fibres, and I think there is little doubt that the hooks are capalile of being retracted in life. The mesial portion of appendages is thin, lamellar, longitudinally folded, and armed along the mesial elige with great mumbers of semi-mushrom-shaped hooks which serve to attach together the appendages of the two sides.

The branchis are the same in number and have the same arrangement as in S. arcticus, but the posterior branchia on the twellth (antepenultimate) somite
is nearly as large as the anterior, which is the largest of the series, and the brauchix of the penultimate segment are very nearly alike, and not very much smaller than the pair next in front of them.
I have seen only four specimens, all males, and but one of these is in the "Blake" collection ; this one from Station 328, N. Lat. \(34^{\circ} 28^{\prime} 25^{\prime \prime}\), W. Long. \(75^{\circ} 22^{\prime} 50^{\prime \prime}, 1632\) fathoms. The other specimens are fron the collections made by the U.S. Fish Commission off Martha's Vineyard: Stations 893 and 952,372 and 388 fathoms.
Two specimens give the following measurements : -


This is the species which I have referred to as "Sergestes sp." in Proc. National Mus., Washington, III. p. 445, 1881.

Sergestes, sp. indet.
There are specimens of a third species of Sergestes from Station 328, N. Lat. \(34^{\circ} 25^{\prime} 25^{\prime \prime}\), W. Long. \(75^{\circ} 22^{\prime} 55^{\prime \prime}, 1632\) fathoms, and fragments of apparently the same species from Station 325 , N. Lat. \(33^{\circ} 35^{\prime} 20^{\prime \prime}\), W. Long. \(76^{\circ}, 647\) fathoms. These specimens are all in bat condition and want a large part of the appendages, but they are interesting on account of the modification of the branchial formula. The branchix are all much smaller than in S. robustus, the posterior pleurobranchia of the twelfth (antepenultimate) somite is replaced ly a simple lamella like that upon the somite next in front, and the two hanchix of the penultimate somite are very small, as in \(S\). arcticus. The species is apparently even larger than S. robustus, and much like it in general appearance, but the rostrum is much smaller and apparently obtuse, and the eyes are very small, scareely larger than eyestalks. The specimens are all females.

\section*{EXPLANATION OF THE PLATES.}

All the figures on Plates I., III., and V.; Figs. 1 to \(4^{\text {b }}, 5\), Plate II. ; Fig. 1, Plate IV.; Figs. 1, 2, 3, 'late VI. ; Figs. 1, \(1^{\text {a }}, 1^{\text {b }}, 2,2^{2}, 4,4^{\text {a }}, 5,5^{\text {a }}\), Plate VII.; Figs. 1, 1, \(1^{\text {b }}, 2\), Plate VIII. ; Figs. 1, 2, 2², Plate IX. ; Figs. 1, 2, Plate N. ; Figs. 4, 5, 8, Plate XI. ; Fig. 1, Plate XIII. ; and Fig. 5, Plate XVI., were drawn by J. II. Emerton. All the other figures were drawn by the author.

\section*{PLATE I.}

Fig. 1. Lithodes Agassizii. Dorsal view of female from Station 329, half natural size.
" 2. Dorsal view of a young specimen taken off Martha's Vineyard by the U. S. Fish Commission, Station 1029, enlarged two diameters.
" 2. Lateral view of the carapax of the same specimen, enlarged two diameters.

\section*{PLATE II.}

Fig. 1. Cyclodorippe nitida A. Milue-Edwards. Dorsal view of female, enlarged two diameters.
" 1 . Front riew of same specimen, enlarged four diameters.
" \(l^{\text {b }}\). Ventral view of same specimen, the distal portions of the legs omitted, enlarged four diameters.
" 2. Amathia Agassizii. Dorsal riew of tho carapax of the male from Station 319, natural size.
" 3. Dorsal view of a young specimen from Station 317, enlarged two dianeters.
" 4. Parapagurus pilosimanus Smith. Lateral riew of tho left sile of the originally described male specimen, taken on a trawl line, off Nova Scotia, half natural size.
" \(4^{\text {a }}\). Dorsal view of the chelipeds of the same specinen, half matural size.
" \(4^{\text {b }}\). Dorsal view of the carapax and anterior appendages of the same specimen, natural size.
" \(4^{\circ}\). \(\Delta\) ppendage of the right side of the first somite of the ablomen of the same speeimen, seen from behind, enlargel four diameters.
" \(4^{8}\). Appendage of the right side of the second somite of the abdomen of the samo speeimen, seen from behind, enlarged four diameters.
" 5. Eupagurus politus. Lateral view of left side of male, dredged by the U. S. Fish Commission of Martha's Vineyard, Station 922, natural size.

\section*{PLATE III.}

Fig. 1. Pentachelcs sculptus Smith. Dorsal view of female, from Station 326, natural size.

\section*{PLATE IV.}

Fig. 1. Pentachelcs sculptus Smith. Yentral riem of the cephalo-thorax of the specimen figured on the last plate, the distal prortions of the appendages omitted, natural size : \(a\), tubular process coutaining the canal of the green gland; \(b\), process of the ophthatmic lobe.
" 2. Mandible and lobe of metastome of the right side, as seen in place from below, from the male from Station 326 , enlarged about two diameters.
" 23. Palpus of the same mandible, seen from below, enlarged about two diameters.
" 3. First maxilla of the right side of the same specimen, seen from below, enlarged about two diameters.
" 4. Second maxilla of the right side of the same specimen, seen from below, enlarged about two diameters.
" 5. Diagrammatic outline of the anterior portion of the first maxilliped of the right side of the same specimen, as seen in place from below, enlarged about two diameters; \(a\), proximal, and \(a^{\prime}\), distal lobe of the protopod; \(b\), base of endopod, the terminal portion being entirely hidden by the exopod ; \(c\), basal portion of the exopod; \(l l, e\), terminal lobes of the exoport.
" 5 . The sume maxilliped removed from the animal, slightly compressed and seen from a little one side and below, enlarged about two diameters ; \(a, a^{\prime}, b\), \(\varepsilon, d\), same as in last figure ; \(f, g\), epipolal lamella.
" \(5^{\text {b }}\). Terminal portion of the same maxilliped, seen from above under slight pressure, enlarged about two diameters; lettering the same as in figures 5, \(5^{\mathrm{s}}\).
" 6. Second maxilliped of the right side of the same specinen, enlarged abont two diameters.
" 7. External maxilliped of the right side of the same specimen, enlarged two diameters; \(a\), rudimentary epipol.
" 8. Chela of the right great cheliped of the female figured on Plate III., natural size.
" 9. Chela of the right leg of the second pair of the male from Station 326, enlarged about two diameters.
" 10. Rudimentary chela of the right leg of the third pair of the same specimen, enlarged about two diameters.
" 11. Rulimentary chela of the right leg of the fifth pair of the same specimen, enlarged abont two diameters.
" 12. Rudimentary chela of the right leg of the fifth pair of the female from Station 898, U. S. Fish Commission, enlargel nbout two diameters.
"13. Aprendage of the left side of the first somite of the abdomen of the female figured on Plate III., enlarged about two dinmeters.
" 14. Appendage of the left side of the first somite of the male from Station 326, enlarged about two diameters.

\section*{PLATE V.}

Fig. 1. Rhachocaris longirostra. Lateral view of female from Station 330, enlarged two diameters.
" 2. Rhachocaris Agassizii. Lateral view of female from Station 326, natural size.
" 3. Rhachocaris sculpta. Lateral view of female from Station 339, natural size.

\section*{PLATE VI.}

Fig. 1. Rhachocaris longirostra. Dorsal view of earapax and anterior appendages of the speeimen figured on Plate V., enlarged two diameters.
" 2. Rhachocaris Agussizii. Dorsal view of the specimen figured on Plate V., natural size.
" 3. Rhachocaris sculpta. Dorsal view of the specimen figured on Plate V., natural size.
" \(3^{\text {a }}\). First maxilla of the right side of the same specimen enlarged six diameters.
" \(3^{\text {b }}\). Second maxilla of the right side of the same specimen, enlarged four diameters.
" \(3^{\circ}\). First maxilliped of the right side of the same specimen, enlarged six diameters.
" \(3^{4}\). Second maxilliped of the right side of the same specimen, enlarged four diameters.

\section*{PLATE VII.}

Fig. 1. Pontophilus brevirostris Smith. Dorsal view of adult female, enlarged two diameters.
" 10. Lateral view of the carapax of the same specimen, enlarged two diameters.
" \(1^{\text {b }}\). Dorsal view of rostrum of the same specimen, enlarged eight diameters.
" 2. Pontophitus gracilis. Dorsal view of female, enlarged two diameters.
" \(2^{2}\). Lateral view of the carapax of the same specimen, enlarged two diameters.
" \(2^{\text {b }}\). Appendage of the left side of the first somite of the abdomen of the same specimen, enlarged eight diameters.
" \(2^{\circ}\). Appendage of the left side of the second somite of the abdomen of the same speeimen, enlarged eight diameters.
" 3. Appendage of the left side of the first somite of the abdomen of a male taken off Martha's Vineyard by the U. S. Fish Commission, Station 1029, enlarged eight diameters.
" \(3^{\circ}\). Appendage of the left side of the second somite of the abdomen of the same specimen, enlarged eight diameters.
" 4. Ceraphitus Agassizii. Dorsal view of fenale from Station 326, natural size.
" \(4^{2}\). Lateral view of the carapax of the same specimen, natural size \(; a\), anterior gastric spine ; \(b\), rostrum ; \(c\), orbital spine ; \(d\), antero-lateral angle.
" 5. Lateral view of earapax and abdomen of a male from Station 317, enlarged two diameters ; \(a, b, c, d\), the same as in fig. \(4^{n}\).
" 5 . Dorsal view of carapax of the same specimen, enlarged two diauneters; \(a, c, d\), the same as in fig. 4:

\section*{PLATE VIII.}

Fig. 1. Sabinea princeps. Lateral view of female, natural size.
"، 1*. Dorsal view of carapax and anterior al'pendages of the same specimen, natural size.
" \(1^{\text {b }}\). Dorsal view of the terminal portion of the abdomen of the same specimen, natural size.
" 2. Munidopsis curvirostra Whiteaves. Dorsal riew of male from Station 325, enlarged four diameters.
" 3. Appendage of the right side of the first somite of the abdomen of a male, from 220 fathoms, Gulf of St. Lawrence, enlarged eight diameters.
" \(3^{\text {s }}\). Appendage of the right side of the second somite of the same specimen, enlarged eight diameters.

\section*{PLATE IX.}

Fig. 1. Anchistia tenella. Lateral view of female, enlarged four diameters.
" \(1^{\text {s }}\). Dorsal outline view of right eye and peduncle of antennula of the same specimen, enlarged eight diameters.
" \(1^{\text {b }}\). Outline of left antennal scale of the same specimen, enlarged eight diameters.
" 2. Galacantha rostrata A. Milne-Elwards. Dorsal view of male from Station 341, natural size.
" \(2^{2}\). Lateral view of carapax of the same specimen, natural size.

\section*{PLATE X.}

Fig. 1. Munida sp. indet. Dorsal view of a large male, taken by the U. S. Fish Commission off Martha's Vineyard, Station 877, natural size.
" 2. Pandalus carinatus. Lateral view of female, enlarged two diameters.
" \(2^{\circ}\). First maxilliped of the right side of the same specimen, seen from beneath, enlarged twelve diameters.
" \(2^{\text {b }}\). Second maxilliped of the right side of the same specimen, enlarged twelse diameters.
" 20. Distal portion of right chelate leg of the same specimen, enlarged twelve diameters.
" \(2^{4}\). Lamellæ of the appendage of the left side of the first somite of the abdomen of the same specimen, scen from belind, enlarged twelve diameters; the marginal sete and the distal portion of the outer lamella omitted.
" 2 e. Outline of tip of outer lamella of right uropod of the same speeimen, enlarged four diameters.
" 2 . Tip of telson of same specimen, seen from above, enlarged twenty-four diameters.

\section*{PLATE XI.}

Fig. 1. Pandalus carinatus. Right mandible of the specimen figured on Plate X., seen from in front, enlarged twelve diameters.
" 2. Right first maxilla of the same specimen, seen from beneath, enlarged twelve diameters.

Fig. 3. Right second maxilla of the same specimen, seen from beneath, enlarged twelve diameters.
"4. Niersia gracilis. Lateral view of young male, enlarged two dianeters.
" 4. Distal extremity of the posterior leg of the left side of the same specimen, enlarged eight diameters.
" \(4^{\text {b }}\). Rami of the appendage of the right side of the first somite of the abdomen of the same specimen, seen from behind, enlarged eight diameters; the marginal setæ of the outer ramus omitted.
" 4 . Portion of the base of the inuer lamella of the appendage of the right side of the second somite of the abdomen of the same specimen, seen from behind and showing the small secondary stylet characteristic of the male, enlarged twenty-four diameters.
" 4 . Distal part of the second maxilliped of the right side of the same specimen, seen from below, enlarged eight diameters.
" 5. Miersia Ayassizii. Lateral view of male from Station 330, natural size.
" 5 . Second maxilliped of the left side of the same specimen, seen from below, enlarged eight diameters.
" 6. Distal extremity of the posterior leg of the right side of a male from Station 305 , enlarged twelve diameters.
" 7. Inner lamella of the appendage of the left side of the same specimen, seen from in front, enlarged eight diameters.
" 8. Meningodora mollis. Lateral view of female, natural size. The lateral carine of the carapax are indicated by simple lines.
" \(8^{\text {s }}\). Outline of the right eye of the same specimen, seen from abore, enlarged two diameters.
" 9. Second maxilliped of the right side of the same specimen, seen from below, enlarged eight diameters.

\section*{PLATE XII.}

Fig. 1. Miersia Agassizii. Distal portion of the left mandible of the specimen figured on Plate XI. fig. 5 , seen from beneath.
" \({ }^{\text {² }}\). The same mandible seen from above.
" 2. First maxilla of the left side of the same specimen, seen from beneath.
" 3. Second maxilla of the left side of the same specimen, seen from heneath.
" 4. First maxilliped of the left side of the same specimen, seen from beneath.
" 5. Meningodora mollis. Distal portion of the right mandible of the specimen figured on Plate XI. fig. 8, seen from beneatl.
" 5. The same mandible seen from above.
" 6. First maxilla of the right side of the same speeimen, seen from beneath.
" 7. Second maxilla of the right side of the same specimen, seen from beneath.
" 8. First maxilliped of the right side of the same specimen, seen from beneatlo.
" 9. Distal extremity of posterior leg of the same specimen, cularged twenty-four diameters.
" 10. Niersia gracilis. Endopod and exopod of the second maxilliped of the right side of the specimen figured on Plate XI. fig. 4.

All the figures, except Fig. 9, are cnlarged eight diameters.

\section*{PLATE XIII.}

Fig. 1. Eitmiersia ensifera. Lateral view of female from Station 340 , natural size.
" 2. Mandible of the left side of another female of about the same size and from the same station, seen from beneath, enlarged four diameters.
" 23. The same mandille seen from behind, enlarged four diameters.
" 3. First maxilla of the left side of the same specimen, seen from beneath, enlarged four diameters.
" 4. Second maxilla of the left side of the same specimen, seen from beneath, enlarged four diameters.
" 5. First maxilliped of the left side of the same specimen, seen from beneath, enlarged four diameters.
" 6. Second maxilliped of the left side of the same specimen, seen from beneath, enlarged four diameters.
" 7. Distal extremity of right ehelate ley of the first pair of a male 44 mm . long from Station 330 , enlarged about eight diameters.
" 8. Distal extremity of right chelate leg of the second pair of the same specimen, enlarged eight diameters.
" 9. Distal extremity of left leg of the fifth (?) pair of a female 108 mm . long from Station 30S, enlarged four diameters.
" 10. Pandalus acanthonotus. Carapax and anterior appendages of the female from Station 321, enlarged four diameters.
" 11. Propodus and dactylus of the second maxilliped of the right side of the same speeimen, seen from beneath, enlarged twelve diameters
" 12. Pundulus tenuipes Smith. Same part of second maxilliped of a specimen from 115 fathoms, off Martha's Vineyard (L. S. Fish Commission, Station \(\$_{7} 1\) ), enlarged twelve diameters.

\section*{PLATE XIV.}

Fig. 1. Benthesicymus Bartlettii. Diagrammatic sketch of the left side of the male, with most of the appendages omittel, natural size.
" \(1^{1}\). Similar dursal riew of the anterior part of the carapax and the anterior appendages of the same specimen, natural size.
" 2. Distal part of the mandible of the left side of the same specinoen, seen from beneath, enlarged six diameters.
" 3. First maxilla of the left sile of the same specimen, seen from beneath, enlarged six diameters.
" 4. Second maxilla of the left side of the same specimen, seen from beneath, enlarged six diameters.
5. First maxilliped of the left side of the same specimen, seen from beneath, enlargel four diameters.
6. Second maxilliped of the left side of the same speeimen, seen from beneath, (nlarged foum diameters.
7. Appenduge (petasina) of the protopod of the appendage of the left side of the firct somite of the ablomen, seen from in front, enlargel twelve diameters ; \(a\), process standing ont, in its matural position, at nearly
right angles to the rest of the plate, but here represented as compressed nearly to the plane of the plate.
Fig. 8. Amalopenceus clegans. Diagrammatic sketch of the left side of the carapax and anterior appendages of a female from Station 328, enlarged about two diameters.
" 9. Mandibular palpus of the left side of the same specimen, seen from beneath, enlarged eight diameters.
" 10 . Endognath of the first maxilla of the left side of the same specimen, seen from beneath, enlarged eight diameters.
" 11. Second maxilla of the left side of the same speeimen, seen from beneath, eularged eight diameters.
" 12. Outline of the antennal scale of the left side of the same specimen, seen from above, enlarged nearly four diameters.
" 13. Appendage (petasma) of the protopod of the appendage of the left side of the first somite of a male from Station 324 , seen from in front, enlarged twelve diameters; \(a\), proeess below the base; \(b\), process between the middle and inner or distal parts of the plate, and which turns readily either in or out.
" 14. Same appendage from a specimen from Station 330 , seen in the same position, enlarged twelve diameters; \(a, b\), as in Fig. 13.

\section*{PLATE XV.}

Fig. 1. Amalopencess elegans. First chelate leg of the right side of the female figured on Plate XIV. fig. 8, enlarged about eight diameters.
" 2. Second chelate leg of the left side of the same specimen, enlarged about eight diameters.
" 3. First maxilliped of the left side of the same specimen, seen from beneath, enlarged eight diameters.
" 4. Second maxillijed of the left side of the same specimen, seen from beneath, enlarged eight diameters.
" 5. External maxilliped of the left side of the same specimen, enlarged four diameters.
" \(5^{\text {a }}\). Distal extremity of the same maxilliped, enlarged twenty-four diameters.
" 6. Irymenopencus debilis. Diagrammatic sketeh of the left side of the carapax and anterior appendages of a female from Station 323, enlarged about two diameters.
" 7. First maxilliped of the left side of a female from Station 326 , seen from beneath, enlargel eight diameters.
" 8. Second maxilliped of the left side of the same specimen, seen from beneath. enlarged eight diameters.
" 9. External maxilliped of the left side of the same specimen, enlarged four diameters.
" 10. First ehelate leg of the right side of the same specimen, enlarged four diameters.
" 11. Distal part of the third chelate leg of the right side of the same specimen, enlarged four diameters.

\section*{PLATE XVI.}

Fig. 1. Hymenopencous debilis. Mandibular palpus of the left side of the female from Station 326, seen from beneath, enlarged eight diameters.
" 2. First maxilla of the left side of the same specimen, seen from beneath, eularged eight diameters.
" \(2^{2}\). Tip of endopod of the same maxilla, enlarged twenty-four diameters.
" 3. Second maxilla of the left side of the same specimen, seen from beneath, enlarged eight diameters.
" \(3^{\text {a }}\). Tip of the endopod of the same maxilla, enlarged seventy-two diameters.
" 4. Sergestes areticus Kröyer. Antennal scale of the right side of a male from off Martha's Vineyard, U. S. Fish Commission, Station 1030, enlarged four diameters.
" 5. Sergestes robustus. Lateral view of male from off Martha's Vineyard, U. S. Fish Commission, Station S93, enlarged two diameters.
"6. Distal extremity of chela of the second leg of the left side of another male from the same station, enlarged twenty-four diameters.
" 7. Antennal scale of the right side of the same specimen, enlarged four diameters.
"8. Appendage (petasma) of the protopod of the appendage of the right side of the first somite of the same specimen, seen from in front, enlarged eight diameters ; \(a\), point of attachment to the protopod ; \(b\), hooked stylet; \(c, d\), unarmed stylets; \(c, f, g\), terminal processes armed with invaginated hooks; \(h\), mesial line where the appendages of the two sides are hooked together.
" 8 s. Invaginated hook at the tip of process \(f\), enlarged one hundred diameters.
" \(8^{\text {b }}\). Invaginated hook from the side of the same process, enlarged one hundred diameters.

Neth Haven, Convi, June, 1882.


















No. 2. - Bibliography to accompany "Selections from Embryological Monographs" compiled by Alexander Agassiz, Walter Faxon, and E. L. Mark.

\author{
II. \(\dagger\) \\ ECHINODERMATA.
}

\section*{By Alexander Agassiz.}

Ir will greatly facilitate the study of the history of the development of Echinoderms by recalling here that in 1836, Thompson (J. V.) first called attention to the remarkable development of Comatula ; that next came in 1844 the observations of Sars (M.) on the direct development of Echinaster, and in 1846 of Asteracanthion. This was followed in 1848 by the confirmation of these observations by Desor and Agassiz (L.) In 1847 Dufossé traced many of the stages of development of Echinus esculcntus. From 1846 to 1855 Johames Müller published his memoirs on the development of the different orders of Echinoderms. They have formed the basis of all the subsequent publications on the same subject. The more important of these in their chronological order are those of Alman, Carpenter, Thomson (C. W.), and Goette on the Embryology of the Comatule ; of Krohn, Agassiz (A.), and Metschnikoff on the Embryology of the Set-urehins ; of Koren and Danielssen, Baur, Metselmikoff, and Selenka on the Holothurians; of Schultze, Agassiz (A.), Metschnikoff, and A postolides on the Ophiurans ; and of Van Beneden, Agassiz (A.), and Metsehmikoff on the Starfishes. While the memoirs of Miiller, Agassiz (A.), Metsehnikoff, and others treated of Tornaria as a Starfish larra, the subsequent publications of Metschnikoff ancl of Agassiz (A.) proved that Tornaria was the larva of Balanoglossus. The literature of this part of the subject is, therefore, repeated here ; it will also appear in that of the Vermes, to accompany the illustratious of Balanoglossus. It is taken for granted that no sprecial record is necessary of the older Jaluresheriehte of Leuckart, of Keferstein, of the Zoölogical Rceord, and of the recent Berichte of Itoffinam and Schwalbe and of Carus ; and that such ohserrations as are found in the notices and reviews of special memoirs must be sought for in the ehapters on Echinodermata of these volumes. [*] before a title denotes that I have not scen the work.

Cambridge, July 1, 1882.

\section*{Agassiz, Alexander.}

On the Embryology of Asteracanthion berylimus Ag. and a Species allied in A. rubens M. 'T. Asteracanthion pallitus Ag. Proc. Amer. Acad. Arts osSci., VI. pp. 106-111. 15 figs. \(186 s\).

Also scparate. 1863. S \(\mu\) p.
+ I. Crustacea, by Walter Faxon. Sce Bull. Mus, Comp. Zöol., IN. No. © , p. 197, Mareh, 1882.

VOL. \(\mathrm{x} . \mathrm{-x}\). 2.

Agassiz, Alexander (continued).
Embryology of the Starfish. Published in December, 1564, adrance Pt. I., Vol. V. Contrib. Nat. Hist. of U. S. of L. Agassiz. \(63+7\) pp., 8 pl .
(Development of Asteracanthion berylinus and A. pallidus.)
See also Pt. I. Mem. Museum Comp. Zoölogy at Harrard College, V. No. 1,1877 , where the same is found.

Abstr. of this Memoir by A. Agassiz in Ann. Sci. Nat., 1865, III. pp. 367-377.

Embryology of Eehinoderms. Mem. Amer. Acad. Arts \& Sci., IX. pp. 1-30. 1864. 38 cuts.
(Development of Toxopneustes Dröbachiensis, Ophiopholis bellis, Amphiura squamata, Curieria Fabricii.)
Notes on the Embryology of Starfishes (Tornaria). Ann. Lyceum Nat. Hist., VIII. pp. 240-246, Pl. II. New York, 1866.

Preliminary Report; Echini, and Starfishes, dredged in Deep Water between Cuba and Florida Reef. Bull. Mus. Comp. Zö̈l. I., No. 9, pp. 253-303. 1869. Also abstr. trausl. by Troschel, Arch. f. Naturg., I. 1s70, pp. 127149.
(On the young stages of Echini, II. p. 279.)
Note on Lorés's article on Leskia mirabilis Gray. Ann. Lyceum Nat. Hist., IX. pp. 242-245. New York, 1869. See also Lotex's and Lüthex's articles on Leskia.
Revision of the Eehini. Illust. Cat. Mus. Comp. Zoöl., Harvard College, No. 7. Cambridge (U. S.), 1872-74. xii +762 pp., 94 pl., 69 cuts.

Reviewed by P. De Loriol. Arch. Sci. Phys. et Nat., L. pp. 401411. 1874. Also reviewed by Edmond Perrmer in Revue des Cours Scientifiques for 1874.
(Part IV. Structure and Embryologyo of the Echini. 69 cuts. Also young stages in Parts II. and III. pusssm.)
The History of Balanoglossus and Tornaria. (Separate in 1872.) Mem. Amer. Acad. Arts \(\rho \cdot\) Sci., IX. pp. 42l-436, Pl. I.-IV. \(18 \pi 3\).
Zoölogieal Results of the "Hassler" Expedition. I. Eehini, Crinoids, and Corals, by Alexander Agassiz and L. F. De Pourtalès. Illust. Cut. Mus. Comp. Zoöl., No. S. Echini, by A. Agassiz. l-23 pp., t pl. Cambridgc, Fcb. \(18 \% 4\).
(Young Colopleurus, young Memiaster Philippii.)
Embrrology of the Ctenophore. Mem. Amer. Acad., X. pp. 357-398. 5 pl. \(18 \% 4\).
(See systennatic position and affinities of Ehehinoderms and Ctenophorie, pp. 379, and following.)

Agassiz, Alexander (continued).
Sur la Fertilisation artificielle de deux Espèces d'Étoiles de Mer. Arch. Zoäl. Expér. et Génér., III. p. xlvi. \(18 \pi^{\pi} 4\).
(Asteracanthion pallidus and A. berylinus.)
On Viviparous Echini from the Kcrguelen Islands. Proc. Amer. Acad. Arts \& Sci., XIII. pp. 231-236, 6 cuts. 1876. Also Journ. de Zool., V. pp. 277-278. 1876.

\section*{(Young Hemiaster.)}

North American Starfishes. Mem. Museun Comp. Zoölogy at Harvard College, V. No. 1. 187\%. iv +136 pp .20 pl .
(Part I. pp. 3-83, PI. I.-VIII. See above, Embryology of the Starfish, orig. pub. in 1864.)
Palæontological and Embryological Development. Proc. Amer. Assoc. Adv. Sei. Boston, XXIX. pp. 359-414. 1880. Also Ann. Mag. Nat. Hist. [5ॅ], VI. pp. 348-372. 1880.

Also Transl. by P. De Loriol. Étude sur le Développement Paléontologique et Embryologique. Areh. Sci. Phys. et Nat., V. pp. 516-555. 1881.

Also same, Die paläontologische Entwickclung der Sec-Igel im Vergleich zu ihrer individuellen Entwickelung, abstract transl. by E. Kravse. Kosmos, X. pp. 214-217. 1881.

Also Nature, XXII. No. 566, pp. 424-431, Sept. 2, 1880, and Amer. Journ. Sci. S. Aits [3], XX. pp. 29t-302, 375-3S9. 1880.
Report on the Echinoidea, dredged by II. M. S. "Challenger," during 1S73-76. Loudon, 1881. 321 pl., 64 pl. Rep. Voy. "Challenger," Zoöl., III. P't. IX.
(Young stages of Echini, passim; Cidaris, Ceeloplearus, Echinothurice, Paleotropus, Spatagocystis, Cystechinus, Urechinus, Pourtalesia, Aêrope, Brisus; viviparous Goniocideris and Ifemiaster.)
Agassiz, Alexander and Elizabeth C.
Seaside Studies in Natural History. Marine Animals of Massachusetts Bay. Radiates. Boston, 1865 and 1871.153 pp ., 185 figs.
(Chapter on Embryology of Echinoderms, p. 143.)
Agassiz, Alexander. See (p. 130) Pourtalès, L. F. de.
Drawing of Young Holopus from Bahia ILonda, Cuba, by A. Agassiz. Pl. II. Bull. Mus. Comp. Zö̈l., V. p. 213. 187S-テ9.
Agassiz, Louis.
Obscrvations on the Growth and Bilateral Symmetry of Echinodermata. Philos. Mag. [3], V. pp. 369-373. 1834.
Observations sur les Progrès récens de l'Histoire Naturelle des Échinodermes. 21 pp . In Monographies d'Échinodermes. 2de Livraison. Neuflaitel, 1841. Also dinn. Mag. Nat. Nist., L.. pp. 149-197, 296-302. 184~.
(Notice of Fimbryological works, p. 12.)

Agassiz, Louis (continued).
Twelve Lectures on Comparative Embryology, delivered before the Lowell Institute in Boston, December and January, 1848-49. Boston, 1849. 104 pp . (Originally published in the Boston Traveller.)
Lectures II. and III. On Development of Echinoderms; p. 12. Traveller, of Dec. 22, 1848.
Die Entwickelung eines Seesternes, Echinaster. (From Daily Evening Traveller, Boston, Dec. 22, 1848.) Archio f. Anat. Phys. und Wiss. Med. 1851. pp. 122-124.
(See also (p. 116) Desor.)

\section*{Allman, George James.}

On a Pre-Brachial Stage in the Development of Comatula, and its importance in relation to certain Aberrant Forms of Extinct Crinoids. (Read Feb. 16, 1863.) Trans. Roy. Soc. Edinburgh, XXIII. pp. 241-252, Pl. XIII. 1864.

\section*{Anderson, John.}

On an apparently New Form of Holothuria. Ann. Mag. Nat. Hist., March, 1562, IX. pp. 1S9-191, Pl. XI.

\section*{(Young Ioluthuria.)}

Ankum, H. J. van.
Mededeelingen omtrent de Vergroeing van de Gcneratie-organen bij Echinus en eenige verwante Geslachten. Tijdschr. Nederl. Dierk. Tereen., I. pp. 176-187, Pl. IX. 1874.

Abstr.: Niederl. Arch. Zool., III., Pt. III. p. 2i9. 1877.
Sur la Soudnre des Organes Génitiux des Oursins Réguliers. Arch. Néerl., XI. pp. \(9 \tilde{\jmath}-116, \mathrm{Pl} . \mathrm{IN} ., \mathrm{X} .1876\).

\section*{Apostolides, Nicolas Christo.}

1e Thèsc. Anatomic et Développensent des Ophiures. Archives de Zool. Expér. et Génér., X., Pl. VII.-Xll. 1881.
(Thèses présentées ì la Faculté des Sciences de Paris, 1881. Paris, No. d'Ordre 471. \(104 \mathrm{pp} ., 6 \mathrm{pl}\).)

Baer, K. E. v.
Neue Uutersuchungen ueber die Entwickelung der Thicre. Froriep's Neue Notizen, XXXIX. p. 38.

> (Ei des Seeigel.)

Bull. Physic-1Tath. Acad. de St. Pétersbourg, V. p. 231.
(Pluteus of Echini.)
Balfour, Francis M.
A Treatise on Comparative Embrynlngy. Vol. I. xi \(+492+\) xxii. pp., 27.5 figs. London, 1880. Vol. II. xi. \(+655+\) xxii. pp., 429 cuts. London, 1881.
(Chapter XX., p. 453. Eehinodermata.)

Balfour, Francis M. (continued).
Also German trausl. by Dr. B. Verter: Handbuch der verglcichenden Embryologie. I. Jena, 1880.

Essays on Embryology.
1. On the Structure and Homologies of the Germinal Layers of the Embryo. Quart. Journ. Micr. Sci., XX. pp. 247-273, 17 cuts. 1880.
II. Larval Forms: their Nature, Origin, and Affinitics. Quart. Journ. Micr. Sci., XX. pp. 381-407. 21 cuts. 1880.

\section*{Bastian, H. Charlton.}

On the Auatomy and Physiology of the Nematoids, Parasitic and Free; with Observations on their Zoölogical Position and Affinities to the Echinoderms. Phil. Trans. Roy. Soc. London, CLVI. pp. 545-638, Pl. XXIL.-XXVIII. 1866.

\section*{Barrois, J.}

Embryogénic de l'Asteriscus verruculatus. Journ. de l'Anat. et de la Physiol., XV. pp. 1-S, Pl. I., II. 1879.

Baur, Albert.
Beitrïge zur Naturgeschichte d. Synapta digitata. Drci Abhandlungen. Dresden, 1864. 51 ; 60; \(119 \mathrm{pp} ., \mathrm{S} \mathrm{pl}\).
(Zweite Abhandlung, Metamorphose und Entwiekelung der Synapta digitata.)

\section*{Bell, F. Jeffrey.}

Note on the Number of Anal Plates in Eehinocidaris. Proc. Zöol. Soc. London, pp. 436, 437. 1879.
Exhibition of an Immature Echinoid. Proc. Zöol. Soc. London, pp. 350-358. 1880.
(Palieolampas, the immature form of an Echinolampas.)
Observations on the Characters of the Eehinoidea. Part III. On Some Genera and Species of the Temnopleuridæ. Proc. Zöol. Soc. London, Junc I, 1850. pp. 422-440, Pl. XLI.
(Describes the young forms of several species.)
On the Apparent Retention of a Sur-Anal Plate by a Young Echinometra. Journ. Limn. Soc. London, Zoül., XV. pp. 31S-320. 1 SS1.

Abstr. Journ. Roy. Mic. Soc. [2], I. ן. S06. 1SS1. Also Zool. Auzcig., No. 99, p. 896.

See also p. 119, Gegenbaur, Carl.
Beneden, P. J. van.
Sur deux Larves d'Echmodermes de la Côte d'Osteude. Bull. Acad. Roy. Belgique, XVII. pp. 50S-515. 1 pl. 1850. L’Institut Journ. Gén. Soc. Trav. Sci., XVILI, p. \(2 \pi\) б. 1850.
(Bipimarrie and Ophiuran larve.)

\section*{Beneden, P. J. Van (continued).}

Ucber Zwei Larven ron Echinodermen. Froriep's Taysb. Fortschr. Nat. u. Heill., I. p. 257. 1850. Same as above.
Bergh, R. S.
Bidrag til Opfattelsen af Klфvning og Kimbladdannelse hos Echiniderne. 1879. Vidensk. Meddel. natui•h. Foren. Kjobenhavn, pp. 255丂-264. 1879-80.
(p. 7, fig. of Gastrula of Psammechinus miliaris.)

\section*{Billings, E.}

Note ou Leskia mirabilis Gray, by S. Lovéx, communicated by C. F. Lütken. Can. Nat. Geol. (x. s.), III. pp. 442-445. 5 figs. 1868.

> (For reply, see p. 125, Lütren, "Hyponome Sarsi."

Note on Hyponome Sarsi, described by S. Lovén, by C. F. Lüteen. Can. Nat. Geol. (x. s.), IV. p. 270. 1869.
Notes on the Structure of the Crinoidea, Cystidea, and Blastoidea. Amer. Journ. Sci. [2], XLVII. p. 353, XLVIII. pp. 69-83, XLIX. pp. 51-58, L. pp. 225-240. 1869- 0. Ann. Mag. Nat. Hist. [4], V. pp. 251-266, 409-416; [4], VII. pp. 142-158. 18\%0-\%1. Can. Nat. Geol. [2], IV. pp. 27ĩ-293, 426-433; [2], V. pp. 150-198. 1869-70.
(Refers to young stages of Echinoderms for comparisons.)
Bronn, H. G.
Klasseu und Ordnungen des Thier-Reichs, Strahlenthiere, II. (Actinozoa.) Leipzig u. Heidelberg, 1860. \(434 \mathrm{pp} ., 49 \mathrm{pl}\). and cuts.
(Chapters on the development of the differeut orders of Echinoderms.)

\section*{Brooks, W. K.}

Haudbook of Invertebrate Zoölogy for Laboratories and Seaside Work. Boston, 1882. viii. +392 pp., 202 figs.
XIV. pp. 99-139. The Embryology and Metamorphosis of Echinoderms. Figs. 4.3-i7. development of Arbacia, by W. K. Brooks, H. Garmax, and B. P. Colton. - Figs 78-83. Brachioluria aud Young Starfish by E. B. Wilson.

\section*{Busch, Wilhelm.}

Beobachtungen ueber Anatomic und Entwiekelung ciniger Wirbellosen Scethicre. 143 p ., 17 pl . Berlin, 1851.
p. 76. Eclinodermen Entwickelung.
(Stages of Echinaster, Asteracanthion, Comatula, Echinocidaris, Pl. XII., XIII. XIV.)

\section*{Carpenter, P. Herbert.}

On Some Points in the Anatomy of Pentarrinus and Rhizocrinus. 187\%. Journ. Anat. \&- Physiol., XII. pp. 35-53. 1878.

Carpenter, P. Herbert (continued).
On the Apical and Oral Systems of the Eehinodermata, Pt. I. Quart. Journ. Micr. Sci., XVIII. pp. 351-383; Pt. II. (same), XIX. pp. 176-206, cuts. \(1878,1879\).
(Embryonic stages fully discussed.)
Some Disputed Points in Echinoderm Morphology. Quart. Journ. Micr. Sci., XX. pp. 322-330. 1880.
(Homologies of embryonic stages, passim.)
Feather Stars, Recent and Fossil. Pop. Sci. Rev. (s. s.), IV. Pl. V., VI. pp. 193-214. 1880.
(Account of devclopment of Antedon, after Cairpenter, Tionisos, and others. Cuts.)

\section*{Carpenter, William B.}

Researches on the Strueture, Physiology, and Development of Antedon (Comatula Lam.) rosaceus. Aun. Mag. Nat. Hist. [3], X VI. pp. 200-202. 1865.

Abstr. Proc. Roy. Soc. London, XIV. pp. 376-375. 1865.
Researches on the Strueture, Physiology, and Development of Antedon (Comatula Lk.) rosuceus. Pt. I. Philos. Trans. Roy. Soc. London, CLVI. (1566), pp. 671-756, Pl. XXXI.-XLIII.
(Development of the skeleton, p. 726, P1. XXXIX.-XLII.)
On the Structure, Plysiology, and Development of Antedon (Comatula Lamk.) rosaccus. Proc. Roy. Soc. London, No. 166, 1876, pl. 8, 9, pp. 211-231.

Supplement to above, No. 169, Proc. Roy. Soc. London, XXIV. pp. 451-455. 18\%6.

\section*{Carus, J. Victor.}

Icones Zootomicæ. Erste Haelfte. Die wirbellossen Thiere. Leipzig, \(185 \%\). 23 pI .

Echinodermata I., Pl. V. fig. 11.
(Young Comatula, after Thompson.)
Zoologischer Jahresbericht fïr 1879, 1880. Herausgegeben von der Zoologischeu Station zu Neapel.
(Fehinodermata, by Dr. Hub. Ledwig.)
Claparède, A. René Edouard.
Beobachtungen neher Anatomie und Entwickelungseseschichte Wirbelloser Thicre an der Küste von Normandie angestellt. Leipzig, 1863. viii + 120 pp. , Is pl.
(Ueber cine neue Eehinodermen Larve, p. 7, PI. I., tigs. 11. 12.)
Claus, Carl.
Grundzaïge der Zoologic. Dritte Auflage. Marburg u. Leipzig, 18~6. xii + 1254 pp .
(Eehinolermata: Metamorphose, pp. 26.5-27\%.)

Claus, Carl (continued).
Grundzüge der Zoologie. 4e Auflage. I. Pt. 2. Echinodermata, pp. 305-374. Marburg, 1879.
Colton, B. P. See (p. 118) Garman, H., and Colton, B. P., also (p. 114) Brooks, W. K.

\section*{Dalyell, Sir John G.}

Report Brit. Ass., 1840. Froriep's Notizen, XVI. No. 331, pp. 1-5. 1840. (Young Holothurix.)
Powers of the Creator. I. pp. 91-100. London, 1851.
Danielssen, D. C. See (p. 121) Koren and Danielssen, and (p. 181) Sars, Koren, and Danielssen.

Dareste, C.
Analyse des Observations de J. Müller sur le Développement des Échinodermes. I. Du Développement des Eehinides. Ann. Sci. Nat. [3], XVII. pp. 349-376, Pl. XIII. 1852.

Analyse des Observations de J. Müleer sur le Développement des Echinodermes. II. Développement des Astérics. Ann. Sci. Nat. [3], XIX. pp. 244-282, Pl. VIII. 1853.

Analyse des Observations de J. Müller sur le Développement des Ophinres. III. Développement des Ophiures. Am. Sci. Nat. [3], XX. pp. 121-150, Pl. IV. 1853.

Analyse des Observations de J. Müller sur le Développement des Echinodermes. IV. Du Développement des Holothurics. Ann. Sci. Nat. [3], XX. pp. 247-280, Pl. XVI. 1853.

Mémoire sur le Plan Général du Développement des Échinodermes, par J. Müller. Ann. Sci. Nat. [4], I. pp. 153-175, 1 pl. 1854.

\section*{Delle Chiaje, Stephano.}

Memoria su la Storia e Notomia degli Animali senza Vertebre del Regno di Napoli. Napoli, 1823-29.
(Young Holothuria, PI. CXVI., figs. 16-18.)
Derbès, Alph.
Observations sur le Méeanisme et les Phénomènes qui aceompagaent la Formation de l'Embryon chez l'Oursin Comestible. Ann. Sci. Nat. [3], VIII. pp. S0-9S, I'l. V. 1847.
Desor, E.
[On the Development of the Embryn of the Starfish.] Proc. Boston Soc. Nat. Hisl., III. 1. 1t. 184S-51.
Ueber die Eintwiekelung der Asterien. Arch.f. Anat. Physiol. u. Wiss. Mcel., pp. 79-S3, II. II. figs. 1-12. 1849.

\section*{Dönitz, W.}

Ueber den typisehen Ban der Eehinodermen. Arch.f. Anal. Physiol. u. Wiss. Med., pp. 406-113, Pl. XI. B. 1866.

\section*{Düben, M. W., and Koren, J.}

Zoologiske Bidrag - Om Holothuriernas Hudskelett. Kongl. Vetensk. Akad. Handl. for 1814, pp. 211-328, Pl. IV-XI. Stockhohm, 1846.
(Figure young Holothurix on Pl. XI.)

\section*{Dufossé, le Dr.}

Observations sur le Développement des Oursins. C. R., Acad. Sci., Paris, 1S17, p. 15. Ann. Sci. Nat. [3], VII. pp. 44-52. 1847.
(Echinus esculentus.)
Nouvelle Note sur le Développement des Oursins. Comptes Rendus, Acad. Sci., Paris, NXV. p. 311. 1847. L'Institut, No. 712, p. 1755. 1847.

\section*{Dujardin, F., et Hupé, H.}

Histoire Naturelle des Zoophytes Echinodermes. [Suites à Bupfox.] Paris, 1862. 625 pp .10 pl.
(See general chapters on the different orders: P1. I. and PI. VI. contain original figures on the development of Comatula, also other Echinoderm larvie copied from Thompson and Muller.)

\section*{Edwards, Henri Milne.}

Observations sur les Sexes des Oursins. Comptes Rendus, Acad. Sci., Paris, X. p. 780. 1840.

Leçons sur la Physiologie et l'Anatomic Comparée de l'Homme et des Animaux. Eehinodermes, VIII. pp. 301-320. Paris, 1863. - Reproduetion des Zonphytes, LX. p. 395. \(18{ }^{\circ} 0\).

\section*{Fol, Hermann.}

Sur les Phénomènes Intimes de la Féeondation. Comples Rendus, Acad. Sci., Puris, LNXNIV. pp. 268-271. 18~テ.
(On the Ironuclei of the Sea-urchin and Asterias.)
Sur le Premier Développement d’une Étoile de Mer. Comples Rendus, Acad. Sci, P'uris, LNXXIV. pp. 35̃-360. 18\%~.
(On the amphiaster of Asterics glacialis, and the disappearance of the germinative vesicle and dot.)
On the First Development of a Starfish. Amm. Mag. Nat. Hist. [1], NX. lip. 151-156. 1877. Trausl. from C. R. Feb. 19, 1877, p. 357.
(Amphiaster of Asterias glacialis.)
Sur Quelques Férondations Auormales chez l'Étoile de Mer. Corinptes Rendus, Acad. Sci., Paris, LXXXIV. pp. 6j9-661. 1s7\%.
On Some Abunmal Fecundations in Starfisles. Aun. Mag. Vat. Mist. © H. XX. ph. 15s-160. 18\%\%. Transl. from C. R. April 2, 1sĩ, p. 659.

Fol, Hermann (continued).
Note sur la Fécondation de l'Étoile de Mer et de l'Oursin. Comptes Rendus, Acad. Sci., Paris, LXXXV. pp. 233-236. 1877.
Encore un Mot sur la Fécondation des Échinodermes. Comptes Rendus, Acad. Sci., Paris, LXXXV. pp. 625-62S. \(18 \pi 7\).
Sur la Fécondation et le Premier Développement de l'Euf. Act Sor. Helvét. Sci. Nat., \(60^{e}\) Sess., pp. 165-172. \(187 \%\).
(Oursins, Astéries.)
Répouse à quelques Objections formulées contre mes Idées sur la Pénétration du Zoosperme. Aich. Zool. Expér. et Génér., VI. pp. 180-192. 1877.

Sur le Commencement de l'Hénogénie chcz Divers Animaux. Archiv. des Sci. Phys. et Nat. de Genève. Avril 15, 187G. Arch. Zool. Erpér., VI. pp. 145-169. 187\%. Also Arch. Sci. Nat., LVIII. pp. 439-472; LX. pp. 321-326. 1877.
Sopra i Fenomeni Intimi della Fecondazione degli Echinodermi. Trans. R. Acad. Lincei, Rome [3], I. 1877.
Recherches sur la Fécondation et le Commencement de l'Hénogénie chez Divers Animaux. Mém. Soc. Phys. d'Hist. Nat. Genève, XXVI. pp. S9-397, Pl. I.-VI. 1878-~9.
(Asterias glacialis, Toxopneustes lividus.)

\section*{Forbes, Edward.}

A History of British Starfishes and Other Animals of the Class Echinodermata. \(x \mathrm{x}+267 \mathrm{pp}\). Figs. London, 1841.
(Development of Comatula, p. 11.)
Fewkes, J. W.
On the Development of the Pluteus of Arbacia. Mem. Pcabody Acad. Sci., I., No. 6. pp. 1-10, Pl. I. Salem, 1881.

Galeb, O.
De l'(Euf dans la Sèric Animale. 106 pp . Paris, \(187 \mathcal{S}\).
(Echinodermes, p. 28.)
Garman H., and Colton, B. P. See also (p. 11t) Brooks, W. K.
Some Notes on the Development of Arbacia puuctulata Lam. Studics Biol. Lab. Johns IIopkins Unio. II. Pl. XVII., XVIII. pp. 247-255. Baltimore, 1882.
(Late stages of Pluteus and young Sea-urchin.)
Gegenbaur, Carl. See also (p. 122) Krohn.
Strahlthiere p. 329 in Bericht über einige im Iterbste 1852 in Messina angestellte vergleichend-anatomische Untersuchungen, von C. Gegmabaur, A. Kölliker, u. II. Müllerr. Zeitschr.f. Wiss. Zool., IV. pp. 299-370. 1853.

\section*{Gegenbaur, Carl (continued).}

Grundzüge der Vergleichenden Anatomie. \(2^{\text {to }}\) Auflage. 802 pp., 391 fig. Leipzig, 18 ro.
(Vierter Abschnitt. p. 303. Echinodermen, allgemeine Uebersicht.)
(Sce also English and French translations of the above, by Bell and Scuneider.)

Elements of Comparative Anatomy. (Translated by F. Jeffrey Bell; the trauslation revised, and a Preface written by E. R. Laviester). London, 187s. xxvi +645 pp ., 356 figs.
(Echinoderma, pp. 192-227, figs. 91-116.)

\section*{Giard, A.}

Note sur les Premiers Phénomènes du Développement de l’Oursin. Comptes Rendus, Acad. Sci., Paris, LNXXIV. pp. 720-722. 18i7. Am. Mag. Nat. Hist. [4], XIX. pp. 434-436. 1877.
(Echinus miliaris.)
Sur la Fécondation des Échinodermes. Comptes Rendus, Acad. Sci., Paris, LXXXV. pp. 408-410. Noût 13, \(187 \%\).
(On artificial fecundation, normal and pathological segmentation.)
Sur une Fonction Nouvelle des Glandes Génitalcs des Oursius. Comptes Rendus, Acad. Sci., Paris, LXXXV. pp. S5S-S59. 18\%7.
(During a part of the year, the genital organs act also as organs of secretion.)
*Particularités de Reproduction de certains Échinodermes eu Rapport avec l'Éthologie de ces Animaux. Bull. Sci. Norl [2], I. pp. 290-301. 18 sis. (Asterina giblosa; hermaphroditisme chez certaiues Ophiures. Teste, Zool., Anz. II. No. 18, p. 1. 18\%9.)

Goette, Alexander.
Verglechende Entwicklungsgeschichte der Comatula mediterranea. Arch. Mikr. Anat., XII. pp. 5S3-61S, Pl. XXV.-XXVIII. \(18 \% 6\).
Bemerkungen zur Entwickelungsgeschichte der Echinodermeu. Zool. Anzeig., III. pp. 321-326. \(18 S 0\).
(Bipinnaria, Auricularia.)

\section*{Gosse, Philip Henry.}

T'cuby : a Seasidc IIoliday. London, 1856. \(\mathrm{xx}+400 \mathrm{pp} ., 21 \mathrm{pl}\).
(Chapter NXX., young Sea-urchins, p. 282: Pl. XTI.-XTTII.; larva of a \(\mathrm{S}_{\mathrm{pa}}\) tangoid, Pl. XVI., XVII.; pluteus of Echinus miliazis, Il. XVII.)

\section*{Greeff, Richard.}

Ueber den Bau der Eehinodermen. Erste Mittheil. No S. Novemher, 1š̃1. \(2^{\text {te }}\) Mittheil. No. 6. July, 18\%~. \(3^{\text {te }}\) Mittheil. No. 11. December, 18:2. Sitzungsh. Grsellsch. Bejörd. gesommt. Naturic. Marburg, pp. 1-9, , 13-10s, 15S-172. 18\%1-72

\section*{Greeff, Richard (continued).}

Ueber den Bau der Echinodermen. Vierte Mittheilung. Sitzungsb. der Gesell. Beförd. der gesammt. Naturı. zu Marburg, Jan. 1576, No. 1, pp. 16-37, cuts.
(III. p. 34. Ueber die Entwickelung des Asteracanthion rubens vom Ei bis zur Bipinnaria und Brachiolaria.)

Ueber den Bau und die Eutwickelung der Echinodermen. Sitzungsb. Gerellsch. Beförd. gesammt. Naturic. Marburg, pp. 4~-5 t, S3-95, 4 ents. \(18 \tau 6\).
(5 Jittheil. 1. Parthenogenesis bei den Seesternen. 2. Leber das Verschwinden des Keimbläschens und Keimflecks in Ei des Asteracanthion rubens. 3. Leber das Herz der Crinoideen; lig. of young Comatula.)
Ueber Echiurcu und Echinodermen. Arch. f. Naturgesch., XLVI., I. pp. SS-101. \(18 S 0\).
(II. p. 94, Ueber den Bau und die Entwickelung der Eehinodermen, sechste Mitth. Entwickelung r. Asterias.)

Grube, E .
Ueber cinen lebendig gebärenden Seeigel (Anorhamus sinensis). Monatsh. K. Akad. Wissensch. Berlin., pp. 175-150. 1568.

Transl. in Ann. Mag. Nat. Hist. [4], II. pp. 16S-1\%0. 1868.

\section*{Haeckel, Ernst.}

Generelle Morphologie der Organismen. I. xxir +574 pp., 2 pl.; II. clx + 462 pp., \(S\) pl. Berlin, 1866.
II. Fünftes Buch, Erster Theil d. allgemeinen Entrickelungsgeschichte der Organismen.
Ueber die Individualität des Thierkörpers. Jenaische Zeitschr. Naturuc., XII. pp. 1-20. 1878.
Die Kometenform der Seesterne und der Generationswechsel der Echinodermen. Zeitschr. f. vissenseh. Zool., XXX. Suppl., Pl. NX. pp. 421-1j戸. 18is.

Abstr. Arch. Zool. Erpér. et Génér., VI. pp. xxxiii-xxxvii. \(18 \pi \%\). Kosmos, III. pp. 35S-36z. 18is. Sitzungsb. Jenuische Gesellsch. Med. Nature., pp. vi., vii. Jena, \(18 \% 9\).
Biolorisehe Studien. Zweites IIeft. Mit 14 Tafeln. Studien zur Gastrea Throrie. Jenaische Zcitschr., VIII. pp. 1-5.), 1’. I. 18i\%. IX. pp. 402-

(I'l. 1 f. G, Gastrula of Asterias; Pl. 1I. fig. 33, Starfish Archigastrula.)
Hatschek, B.
Ueloer Entwiekelungscreschichte ron Teredo. Mesodermbildung bei Toxopneustp.s, p. 30. A.beit. Zool. Inst. Unio. Wien, III. pp. 1-1t, 3 pl. 1 SSO.

Hensen, Victor.
Ueloer eine Brachiolaria des Kieler Hafons. Arch. f. Naturgesch., pp. 212246, Nachtrag, pr. 36:3, 36t. 1SG.3.

\section*{Hertwig, Oscar.}

Beitrïge zur Kenntniss der Bildung, Befruchtung und Theilung des thicrischen Eics. Morphol. Jahrb., I. pp. 347-431, Pl. X.-XIII. 1875.

Abstr. Arch. Zool. Expér. et Génér., V. pp. xxi-xxvi. 1876.
(Toxopneustes lividus.)
Weitere Beiträge zur Kenntniss der Bildung, Befruchtung und Theilung dea, thierischen Eies. Morphol. Jahrb., III. pp. 271-279; IV. pp. 156-175, 177-213, Pl. VI.-VIII. 1877, 1878. Also Arch. Zool. E.xpér. et Génér., VI. pp. 171-179, 1877; VII. pp. i-vii. 1878.
(Eientwickelungen von Asteracanthion.)
Nourclles Contributions à la Conuaissance de la Fécondation et du Fraetionnement de l'(Fuf des Animaux. Traduit par Mermann Fol. Archiv. Zool. E.ppér. et Génér., VI. p. 171. \(187 \%\).
(Asteracanthion.)
Hoffmann, Fr., u. Schwalbe, G.
Jahresberichte neber dic Fortsehritte der Anatomie n. Physiologic 18721880.

\section*{(Entwickelungsgeschichte.)}

Huxley, Thomas H. See (p. 128) Müller, Johannes.
Report upon the Researches of Müller into the Anatomy and Development of the Eehinoderms. Anu. Mag. Nat. Hist. [2], ''ILI. pp. 1-19, 1 pl. 1851. Sce Medical Times and Gazette for 1856 and 1857.
A Manual of the Anatomy of Invertcbrated Animals, London, 18\%7; and a German translation, by Dr. J. W. Spesgel.
(Chapter 1N. p. 543 , "The Echinodermata," treats of the development of each order. No original figs. See also The Elements of Comparative Anatomy. p. 42. London, 186.4.)

\section*{Keferstein, W.}

Berichte neber die Fortsehritte in der Generationslehre in den Jahren 1S5S1867. Aus Mlenle u. Pfeiffer, Archio. f. Rationelle Medicin.

Kölliker, A. See (p. 118) Gegenbaur.
Koren, J., and Danielssen, D. C.
Zoologiske Bidrag. Bemaerkuinger til Bipinnaria asterigera. Nyt. Mag. Naturv. Christiania, V. pp. 253-272. 18\&s.

Obscrrations sur la Bipinnaria asterigere. Ann. Sei. Nat.. [37, VII. pp. 31ī352. Pl. VII. fig. 7-9. 184~. Also 1 sis. \(1818, ~ p p\). 205-208. figs. Transl. from Nyt. Mag.f. Sat., p. 26\%. Christimia, 184s.
Observations sur le Déreloppement des IIolothuries. In S.ars, M... Korex, J., Dantelssex, D. ('. F'ama Litforalis Norvegia. ade Livraison. 101 pp ., 12 pl . Bergen, 1856.

Koren, J., and Danielssen, D. C. (continued).
Observations sur le Déreloppement des Astéries, pp. ธั \(-\check{9} 9\).
In Fauna Littoralis Norvegiæ. [2de Liv. Bergen, 1856. See (p. 131) Sars, Koren, and Danielssex.]
(Pteraster militaris M. \& T., Pl. VIII. figs. 1-8.)
Observatious on the Derelopment of the Starfishes. Ann. Mag. Nat. Mist. XX. pp. 132-136. 1837.

Transl. from Faura Lit., Pt. II. p. 55, by W. S. Dallas.
Fauna Littoralis Norregix. Part 3d. 163 pp., 16 pl. Bergen, \(187 \%\). Edited by Korey and Dasielssen.
(Young Stichopus natans, p. 58, P1. VII.)

\section*{Kowalevsky, A.}

Beiträge zur Eutwickelungsgeschichte der Holothurien. Mém. Acad. Impér. S'ci. St. Pétersbourg [7], XI. No. 6. S pp., l pl. 1867.
(Development of Psolinus brevis.)

\section*{Krohn, August.}

Beitrag zur Entwickelungsgeschichte der Seeigellarven. 35 pp., 2 pl. Heidelberg, 1849.
(Early stages of the Pluteus of Echinus lividus Lam., raised by artificial fecundation.)
Beobachtungen aus der Entwickelungsgeschichte der Holothurien und Secigel. Arch.f. Anat. Physiol. u. wissenseh. Med., pp. 344-352, Pl. IIV. figs. 2-5. 1851.

Ueber dic Eutwickelung einer lebendig gebärenden Ophiure. Arch.f. Anat. Physiol. u. weissensch. Med., pp. 333-3 13, Pl. XIV. fig. 1. 1851.
(Ophiolepis squamata.)
Ueber einige niclere Thiere. Aich.f. Anat. Physiol. n. vissensch. Med., pp. 137-14. 1853 (Plutens of Echinus brerispinosus, p. 139.)
Ueber die Larve von Spatanyus purpureus. Aich. f. Anat. Physiol. u. wissensch. Mell., pp. 255-259, Pl. VII. 1853.
Ueber dic Entwickelung der Seesterne und Inolothurien. Areh.f. Anat. Physiol. u. veissensch. Med., pp. 31~-321, Pl. VII. fig. 7. 1853.

Ueber die Larve des Erhinns brevispinosus. Arch f. Anat. Physiol. u. wissensch. Med., pp. 361-36t, Pl. XI. 1853.
(Two figs., by Gegexibiur.)
Beobachtungen über Echinodermenlarren. Aech.f. Anat. Physiol. u. wissensch. Mod., pp. 20s-213, Pl. X. figs. 1, 2. 1S54.
(Tornaria.)
Ueber einen neuen Eintwiekelungsmodus der Ophiuren. Aich.f. Anat. Physiol. u. wissensch. Med., pp. 369-375, ll. XIV. 13. 1857.

\section*{Lacaze-Duthiers, Henri de.}

Note sur une Station d'une Encrine vivante (Pentacrinus Europaus) sur les Côtes de France. Comptes Rendus, Lead. Sci., Paris, LXIX. pp. 12531256. 1869.

Note sur une Nouvelle Forme du Procmbryon des Éehinodermes (Stellérides, Asterisc'us veriuculutus M. ct Tr.). Comptes Rendus, LXXVIIL. pp. 2t-30. 1874. Aich. Zool. E.ppér., III. pp. 18-23. 1874.

Abstr. Revue May. Kool., Paris [3], II. pp. i-iii. 1874.
Lankester, E. R. See also (p. 119) Gegenbaur, Carl.
On the Primitive Cell-Layer of the Embryo as the Basis of Gencalogical Classification of Animals, and on the Origin of Vascular and Lymph Systems. Auu. Mag. Nat. Mist. [4], NI. pp. 321-335, 7 cuts. 1873.

\section*{Leuckart, Rudolph.}

Berieht über die wissensehaftliehen Leistungen in der Naturgesehichte der niederen Thiere während der Jahre 18\$5-75. Arch. f. Naturgesch., 1854\(61,1863,1864,1566,1568,1870,1872,1575\).
Ueber die Morphologie und die Verwandtschaftsverhältnisse der wirbellosen Thicre. 180 pp . Braunschweig, 1848.
(Echinodermata, p. 31.)
Artiele "Zeugnng," R. Wagner, Handzörlerbuch der Physiologie, IV. p. 707. 1853.

\section*{Loriol, P. de.}

Crinoiles. Terrain Jurassique. Paléont. française. XI. 48 pp., 12 pl. Paris, 1882. Le Sér. Animaux Invertébrés.
(Copies of figures of young Comatulx.)
Lovén, S.
Om Leskia mirabilis Gray. Öfvers k. Svensk. Fetensk. Akad. Förhandl., pp. 431440. 1867.

Sec alsu (p. 125) Lüthen on Leskia miralilis Gray.
(IIomologies of Crinoids and young of Comatula and other Echinoderms discussed.)
Note on Hyponome Sarsi, a recent Cystidean. Ann. Mag. Vat. Mist. [4]. IV. pp. 159, 160. 18G9. Can. Nat. Geol. [2], IV. pp. 265̈-26i. 1862. 'Trausl. from Förhandl. Shand. Naturf. Christiania, X. p. liv. 1568.
On Eehmodecmas byggnail. Öffersk. k. Siens. Fetensk, Alkad. Förhandl., рр. 1-17, Pl. XLX. \(18 \pi 1\).
'Trumsl. in Lrehiv. f: Näturgeschichte, XXXIX. 1s73. I. p. 16. -tnn. Mag. Nat. Llist. [4], X. 1572, pp. 2S5, 376, 427. Sce also Comples Reudue de l'Acudémic des Sciences, LAXV. 1. S03. 18 sas.
(Develupment of test of Toxepneustes drübachit nsis. Aso in "litudes sur hee F.chimidées.")

Lovén, S. (continued).
Études sur les Échinoidées. K. Svensk. Vetensk. Akad. Handl. Stockholm, XI. Pt. Il. pp. l-91, A-H, 53 pl. 1874. Sicparate. 1875.

Abstr. : Journ. Zool., V. pp. 102-10J. \(18 \pi 6\).
(Development, passim; Toxopneustes dröbachiensis, Pl. XVII., XXI. ; young anal systems, Mellita, Echinarachnius, Asterias glacialis.)

\section*{Lubbock, Sir John.}

On the Urigin and Metamorphoses of Insects. Nature Series. \(x v i+105 \mathrm{pp}\). 6 pl., 59 cuts. London, 1874.
(Metamorphoses of Echinodermata, pp. 54-61.)
Ludwig, Hubert. See also (p. 115) Carus.
Ueber die Eibildung im Thierreiche. Arbeiten aus tlem zool.-zoot. Inst. IF̈rz. burg, I. pp. 287-510, Pl. XIII.-XV. 1874.
(Von der Fibildung bei den Echinodermen, p. 293. Amphidetus cordatus, Solister papposus, Astropecten aurantiacus.)

Beiträge zur Anatomie der Crinoidcen. Zeitschr. f. evissensch. Zool., XXVIII. pp. 255-353, Pl. XII.-XIX. 187\%. Morphol. Studien an Echin., pp. 1-99. 1877- \(\%\) 9.

Zur Anatomie des Rhizocrinus lofotensis M. Sars. Zeitschr.f. wissensch. Zool., XXIX. pp. 4i-76, Pl. V., VI. 1877. Morphol. Studien an Echin., pp. \(101-\) 130. 1877-79.

Beiträge zur Anatomie der Asteriden. Zeitschr. f. uissensch. Zool., XXX. pp. 99-162, Pl. V.-YIII. 2 cuts. 1878. Morphol. Studien an Echin., pp. 150-212. 18ヶソч-79.
Beitrïge zur Anatomic der Ophiuren. Zeitschr.f. wissensch. Zool., XXXI. pp. 346-394, Pl. XXIV.-XXVII. I eut. 1878. Morphol. Studion an Echin., pp. 241-289. 1877-79.
Ueber die Genitalorgane der Asterina gibbosa. Zcitschr.f. wissensch. Zool., XXXI. pp. 395-100, Pl. XXVIII. 1878. Morphol. Studien an Echin., pr. 290-295. 1877-79
Dic Bursae der Ophiuriden und deren Homologon bei den Pentremiten. Nach. k. Gesellsch. Wissensch. Göttingen, pp. 215-220. 18\%s.

Morphologisele Studien an Echinodermen. I. Band, Abhandlungs I.-IX iv \(+300 \mathrm{pp} ., 23 \mathrm{pl}\)., 5 ents. Leipzig, 187\%-79. Sce also Band II. Ent. wick. d. Ophinr. Skelet.
Colleeted from Vols. XXVIII., XXIX., XXX., and XXXI., Zeitschr. f. wissensech. Zool.
(Contains anatomy of the genital organs, and remarks on the development of the different orders of Eehinoderms.)
Ueber d. primären Steinkanal d. Crimoiden mebst vergleichende-anatomisehen Bemerkungen ii. d. Eehinodermen ïherhanpt. (Scparate, \(3 \& \mathrm{pp}\).) \%eitschr. f. wissensch. Zool., XXXIV. pp. 310-3332, Pl. XIT., XIII. \(18 s 0\).

Ludwig, Hubert (continued).
Dic Bildmır der Eihülle bei Antedon rosacea. Zool. Anzeig., III., No. 65, рр. 470-171, 3 cuts. 1880.
Ueber cine lebendiggebärende Chirodota. Zool. Anzeig., III. p. 492. 1880.
Ueber eine Lebendiggebärende Synaptide und awci andere neue INolothurien arten der Brasilianischen Küste. Aich. liol. (publiées par E. Van Beneden et Cif. Van Bambeke), II. pp. 41-5S, Pl. IlI. 1881.

Abstr. Jouru. Roy. Micr. Soc. [2], I. pp. 606, 607. 1851.
Zur Entwickelungsgeschiehte des Ophiurenskelettes. Zeitschr. f. Triss. Zool., XXXV1. pp. 181-200, PI. X., XI. 1881. Ludwig Morphol. Studien, 11. pp. 91-110.

Lütken, Chr. F.
Bidtrag til Kumdskab om Echiniderne. Vidensk Meddel.f. d. naturh. Forening i Kjöl., pp. 69-20s, 368-371, Pl. I., II. Kjöbenhavn, 1863. Also separatc, 1864.
(Young Mellita, Clypeaster, Encope, P1. II.)

On Leskia miralilis Gray, by S. Loréx. Geol. Mag., V. pp. 179-1S4. 1868. See (p. 123) Lovéx's artiele on "Leskia."
Enduu et Piu Ord om de gamle Söliliers "Suabel" og Mund, with French Résumé. Vidensh. Med. fia d. naturh. Forening i Kjöbenhavn for 1569, No. 9-13. pp. 160-185. Cuts.

See also (p. 114) Billings, E., and (p. 123) Lovés.
Ifponome Sarsi : a recent Australian Eehinoderm, elosely allied to the Palioozoic Cystidea, described by Prof. Lovéx ; with some Remarks on the Mouth and Anus in the Crinoidea and Cystidea. Can. Nat. Geol. [2], IV. pp. 2G7270. 1869.

Sce also (p. 11 t) Blllings and (p. 123) Lovén.
Ophiuridarum novarum vel minus cognitarum descriptiones nonnullae. Oters.l. Dansk. Vidensk. Selsk. Forkandl., pp. 71-15S, Pl. I., II. 187~. Abstract, transl. by W. S. Dallas in Amn. Mag. Nat. Hist. [t], Nll. pp. 323-337, 391-399. 1873.
Om Selvdeling hos Eehinodermer of andre Straahlyr. Overs. ik. Dansk: Vidensli. Selst. Forhandl., pp. 105-155. Cuts. 18\%~.
(French résumé.)
Résumé du Mémoire intitulé: Description de quelques Ophiurides noureaus ou pen comms avee quelques Remarques sur la Division spontance ehe\% les Rayomés. . . . Ophiurid. nor. . . . deser. nomullae. Oiers. K. Dunsk. Selsk. Forhandl., plp. 2כ-5ั. 18г2.

\section*{Lyman, Theodore.}

Ophiurilx and Astrophytidx. Illust. Cat. Mhus. Comp, Zool., No. 1. Cambrielge, 1865.

\section*{Lyman, Theodore (continued).}

Ophiuridæ and Astrophytidæ, Old and New. (1874.) Bull. Mus. Comp. Zool., III. pp. 221-272. 1871-\%6.
(Young Ophiuridx, passim.)
Zoölogical Results of the "Hassler" Expedition. II. Ophiuridæ and Astrophytidæ. Illust. Cat. Alus. Comp. Zool., No. 8. Cambridge, 1875.
(Young of Ophiacantha marsupialis, sp. nov., pp. 13-14, P1. I. fig. 9.)
Ophiuridæ and Astrophytidæ of the "Challenger" Expedition. Pt. II. Bull. Mus. Comp. Zö̈l., VI. No. 2. Cambridge, 1873.
(Young of Astrophyton Agassizii, Euryale asperum, p. 60, P1. XIX. figs. 494, 495, 500, 501.)
The Voyage of H. M. S. "Challenger." Zoölogy - Ophiuridea. Vol. V. Part IV. \(37 \mathrm{pp} ., \mathrm{Pl}\) I. - XLVIII. London and Edinburgh, 1882.
(Young Ophiuridæ, passim, Plates XXVIII. fig. 10; XXXIT. fig. 1-16; XL. figs. 11, 12; XLIV. fig. 16 ; XLV., XLVI., XLVII. figs. 2-5.)
Marion, A. F.
Reproductions hybrides d'Échinodermes. Journ. Zool., II. pp. 304-307. 1873. Comptes Rendus, Acad. Sci., Paris, LXXVI. pp. 963-966. 1873. (Spharechinus brevispinosus and Toxopneustes lividus.)

\section*{Martens, E. von.}

Selbstthcilung bei Seesternen. Naturforscher, No. 11, pp. 103, 104. 1879.
Meissner, G.
Ueber die Befruchtung des Eies von Echinus eseulentus. 1855. Terhandl. d. Naturf. Gesellsch. Basel, I. pp. 374, 375. 1854-57.

Metschnikoff, Elias.
Ueber cine Larve v. Balanoglossus. Arehiv. f. Anat. u. Physiol. 1866, p. 592, Pl. XVII. B. Also Berichte der Versamml. Deutscher Naturf. u. Aertzte in IIanover, 1865.
Entwickclungsgeschichtliche Beiträge. Mél. Biol. St. Pétersbourg, VI. pp. 709-732. 1866-68.
I. Mctamorphose der Auricularia. Mél. Biol. St. Pétersbourg, VI. pp. 709711. 1866-68.
II. Entwickelnng von Ophiolepis squamata. Mél. Biol. St. Pétcrsbourg, VI. pp. 711-712. 1866-68.
III. Metamorphose der Ophiuren. Mél. Biol. St. Pétersbourg, VI. pp. 712713. 1866-68.
IV. Metamorphose der Sceigel. Mél. Biol. St. Pétersbourg, VI. pp. 713-î15. 1866-68.
Studien über dic Entwiekelung der Fehinodermen und Nemertinen. Mém. Acad. Imprír. S'ri. St. P'étersboury [i], XIV. No. S, pp. 1-i3, 12 pl. 1 SGO.
(Metamornhosis of Auricularia, Embryology of Amphiura squemate, Ophiurida, E.chinoidea, Bipinnaria.)

\section*{Metschnikoff, Elias (continued).}

Untersuchungen über die Metamorphose einiger Secthiere. I. Ueber Tornaria. 1869. Zcitschr. f. wissensch. Zool., XX. pp. 131-1 14, Pl. XIII. 1870.

Ueber die systematische Stellung von Balanoglossus. Zool. Anzeig., IV. pp. 139-143, 153-157. 1881.

\section*{Müller, Fritz.}

Letter to Keferstein in Jahresberichte ueber die Fortschritte in der Generationslehie für 1867, p. 203, in Henle u. Pfeiffer's Archiv.f. Rationelle Medicin.

\section*{(Heart of Tornaria.)}

\section*{Müller, Johannes.}

Bericht üher einige neue Thierformen der Nordsec. Archiv. f. Anat. Physiol. u. wissensch. Med., pp. 101-110, Pl. V., VI. 1846.
(Pluteus, p. 108, PI. VI. figs. 2, 3.)

Ueber die Larvenszustände und die MLetamorphose der Ophiuren und Secigel. Monatsl. Akad. Wissensch. Berlin, pp. 291-310. 1846.

Also transl. by Grifriti in Amn. Mag. Nat. Hist., XIX. pp. 433-445. \(184 \%\).
Bemerkungen über die Metamorphose der Sceigel. Arch. f. Anat. Physiol. u. wissensch. Med., pp. 113-131. 1848.
Ueber die Bipinnarien und die Metamorphose der Astericn. Arch.f. Anat. Physiol. u. wissenseh. Med., pp. S.1-112. 18ヶ9.
Ueber die Larven und die Metamorphose der Holothmien. Arch.f. Anat. Physiol. u. wissensch. Med., pp. 364-399. 1849.
Fortsctzung der Untersuchungen neber die Metamorphose der Eehinodermen. Arch.f. Anat. Physiol. u. vissensch. Med., pp. 452-4i5. 1850.
(p. 453 Holuthurien, p. 459 Seeigel, p. 469 Asterien. Abstract of \(4^{40}\) Abhandl.)

Ueber die Ophiurenlarven des Adriatisehen Meeres. Arch. f. Anat. Physiol. u. vissensch. Med., pp. 1-20. 1851. Abstract of Müller's ste Abhandhug.
(1. Larve n. Metamorphose der Ophiolepis squamata, 2. Ophiothric fragilis, 3. Ophiolepis ciliata.)

Bemerkungen über einige Eehinodermenlarven. Arch.f. Anat. Physiol. u. wissenseh. Med., pp. 353-357. 1851.
Ueber die Entwiekehng der Eehinodermen. Froriep's Tagsber., II. No. 319, pp. 105-107. 1851.
Ueher Syaapta digitata und über die Erzengung von Sehueeken in Holothurien. \(36 \mathrm{pp} ., 10 \mathrm{pl}\). Berlin, 185~.
Ueber die Semitx der Spatangoiden. Arch. f. Anat. Mhysiol. u. ris.sensech. Med., pp. 1, 2. 1853.
(Compares the fascioles of adult to vibratile chorils of I'lutei.)

Müller, Johannes (continued).
Ueber den Bau der Echinodermen. Arch.f. Anat. Physiol. u. wissensch. Med., pp. 175-240. 1853. Abstract of last Memoir in Abhl. d. k. preuss. Akcud. d. Wissensch. Berlin, XLIV. pp. 123-219. 1854.

On the Structure of the Echinoderms; transl. by T. H. Huxley. Abstr. in Archiv. f. Anat. Phys. u. Wiss. Med., pp. 175-240, 1853, of Huxley's article in Aun. Mag. Nat. Hist. [2], XIII. pp. 1-24, 112-123, 241-256. 1854.
Eine Fortsetzung der Beobachtungen über die Entwickelung der Echinodermen. Monatsb. Aliad. Wissensch. Berlin, pp. 589-593. 185 \%.
Ueber den Canal in den Eiern der Holothurien. Arch.f. Anat. Physiol. u. wissensch. Med., pp. 60-6S. 1854.
Fortsetzung der Beobachtungen über die Metamorphose der Echinodernien. I. Nachtrag zu den Secigel Larven, p. 67. II. Nachträge zu den Asteridlarven, p. 78. Arch. f. Anat. Physiol. u. wissensch. Med., pp. 67-89. 1855.

Ueber die Larven und die Metamorphose der Eehmodermen. Seven memoirs from the Ablandl. d. h. preuss. Akad. d. Wissensch. Berlin, 1S4S, 1849, 1850, 1852, 1853, 1855.
Ueber die Larren und die Metamorphose der Ophinren und Seeigel. [1846.] Abh. k. preuss. Akad. Wissench. Berlin, pp. 273-312, 7 pl. 1848.

Also separate, \(25 \mathrm{pp} ., 7 \mathrm{pl}\). Berlin, 1848.
(Pluteus paraloxus, and its metamorphosis to Ophiura. Transformations of a Pluteus with epaulettes into a Sea-urchin.)
Ucber die Larren und die Metamorphose der Echinodermen. Zweite Abhandlung. [1848.] Alk. k. prouss. Akad. Wissensch. Berlin, pp. 75-109, 5 pl .1849.

Alsn separate, \(37 \mathrm{pp} ., 5 \mathrm{pl}\). Berlin, 1849.
(I. On the Bipinnarie: II. On Brachiolaria, Auricularia, Tornaria; III. On the Metamorphoses of Echinoderms.)
Ucber die Larven und die Metamorphose der Holothurien und Asterien [Pt. 3.] 「18.90-50.] Abh. K. prenss. Akad. Wissensch. Berlin, pp. 35-ĩ, 7 pl .1850.

Also separate, 40 pp., 7 pl . Merlin, 1850.
(Auricularie with calcarenus wheels, Holothurian pupe, Holothurian larvae with balls, worm-shaped Starlish larva.)
Ucher die Larren und die Metamorphose der Eehinodermen. Tierte Ahhandlung. [1850-51.] Abh. k. prouss. Aliad. Wissensch. Berlin, pp. 3ï-56, 9 pl. 1852.

Also separate, \(50 \mathrm{pp} ., 9 \mathrm{pl}\). Berlin, 185~.
(Auricularia aud Holothuria with halls and calearenus wheels, larva of Fechinus lividus, lichinus pulchrllus, Spatangoid larvar, Bipinnaria, Tormaria, wormshaped Startish larva, strueture of egiss of lichinoderms.)

\section*{Müller, Johannes (continued).}

Ueber die Ophiurenlarven des Adriatischen Meceres. [Pt. 5.] [1851.] Abh. k. prenss. Akad. Wissensch. Berlin, pp. 33-61, S pl. 1852.

Also separate, \(29 \mathrm{pp} ., 8 \mathrm{pl}\). Berlin, 1853.
(Pluteus bimaculatus, Larva and Metamorphosis of Ophiothrix fragilis M. T., Pluteus paradoxus.)

Ueber den allgemeinen Plan in der Entwiekelung der Echinodermen. [Pt. 6.] [1852.] Abh. k. preuss. Akad. Wissensch. Berlin, pp. 25-65, 8 pl. 1853. Also scparate, \(41 \mathrm{pp} ., 8 \mathrm{pl}\). Berlin, 1853.

Ueber die Gattungen der Seeigellarven. [1853.] Siebente Abhandlung ueher die Metamorphose der Echinodermen. Alk. k.preuss. Akad. Wissench. Berlin, pp. 1-55, 9 pl. 1855.

Scparate, 55 pp., 9 pl . Berlin, 1855.
(Larve of Echinus, of Echinocidaris, of Spatangoids, of Echinocyamus?, Pluieus paradoxus, Bipinnaria, Brachiolaria. This part also contains a complete index to the seven Memoirs on the Embryology of Echinoderms.)

Ueber den Bau der Eehinodermen. [1853.] Abh. k. preuss. Ahad. d. Wissensch. Berlin, XLIV. pp. 123-219, 9 pl. 1854.

Also separate, \(97 \mathrm{pp} ., 9 \mathrm{pl}\). Berlin, 185 4
(On development, passim.)
Müller, Johannes, and Troschel, Franz Herrmann.
Ueber die Gattungen der Ophiuren. Arch.f. Naturgcsch., pp. 326-330. 1840. Transl. Ofiurernes Inddeling i Slaegter in Krörer's Naturhistorisk. Tidsskrift, III. pp. 535-545. 1840-41.
(Ophionyx.)
System der Asteriden. viii \(+134 \mathrm{pp} ., 12 \mathrm{pl}\). Braunsehweig, 1842. (PI. IN. Young Ophiothrix \(=\) Ophionyx armata.)

Müller, H. See (p. 118) Gegenbaur.

\section*{Neumayr, M.}

Morphologisehe Studien über fossile Echinodermen. Sitzungsb. der K. Akad. d. Wiss. Wien, LAXIIV. I Abth. pp. 143-1 26,2 pl. June, 1881.
(Comparisons with embryonic forms, passim.)
Oersted, A. S.
[Dircet Development of Synaptula vivipara.] Fidensh. Med. fra den Naturfor. Foren i Kjöbenhavn for 1S 49-50, VII.

Packard, A. S., Jr.
Life Histories of Animals including Man or Outlines of Comparative Vimbryology. 239 pp., 268 figs. New lork, 1876. Embryology of Echinoderms, p. 7 万-92, figs. 72-96.
vol. \(x .-\) No. 2.

\section*{Perez, J.}

Sur la Fécondation de l'Euf chez l'Oursin. Comptes Rendus, Acad. Sci., Paris, LXXXIV. pp. 620-622; LXXXV. pp. 353, 354. 1877. Ann. Mag. Nat. Hist. [4], XX. pp. 1556-15s. 1877.

\section*{Perrier, Edmond.}

Recherches sur l'Anatomie et la Régénération des Bras de la Comatula rosacea (Antellon rosaceus Liuck). Arch. Zool. Exppér., II. pp. 29-86, Pl. II.-IV. 1873. Am. Mag. Nat. Hist. [4], XI. pp. 466-46S. 1873.

Abstr. Comptes Rendus, LXXVI. pp. 718-720. 1873.
Les Colonies Animales et la Formation des Organismes. 798 pp., 2 pl., 158 cuts. Paris, 1881.

Peters, W.
Ueber das Geschlecht der Seeigel. Arch.f. Anat. Physiol. u. wissensch. Med., pp. 143, 144. 1840.
(In Sea-urehins sexes are separate.)
Philippi, R. A.
Beschreibung zweier Nissgebildeter See-Igel, nebst Bemerkungen über die Echiniden überhaupt. Arch.f. Naturgesch., I. pp. 241-243. 1837.
(p. 244, Ueber das Waehsthum der Echiniden.)

Beschreibung einiger neuen Echinodermen ncbst kritischen Bemerkungen ueber einige weniger bekannte Arten. Archiv. f. Ňaturg., I. p. 344, 1 pl. 1845.
(Ifemiaster carries young in sunken ambulacra.)
Pourtalès, L. F. de.
Reports on the Dredging Operations of the U. S. Coast Surrey Steamer "Blake." II. Corals and Crinoids. Descriptiou of a Young Holopus. 1878. Bull. Mus. Comp. Zool., V. p. 213. Dec. 1878.
(Pl. II. figure of young Holopus, by A. Agassiz.)
Quatrefages, A.
L'Ophiure Grisâtre cst viriparc. Comptes Rendus, Acud. Sci., Paris, XV. p. 799.1842.

Métamorphoses de l'Homme et des Animaux. Paris, 1862.
Euglish transl. by Henry Latrson. 284 pp . Londom, 1564. (Chapter XVII. p. 172, Gcueagenetic Phenomena of Radiata.)

\section*{Rathke, H.}

Ueber das Geschlechtsverhältuiss bei den Sceigeln und Seestern. Froriep's Neue Notizcn, XIII. pp. 65-67. 1840.

\section*{Sars, George Ossian.}

On Some Remarkable Forms of Animal from the Great Deeps of the Norwegian Coast. II. Rescarches on the Structure ana Affaity of the Genus Brisinga, based on the Study of a New Species, Brisinga cornata; with 4 copperplates and 3 autographic plates. 112 pp . Christiania, 1875.
(Young Brisinga, PI. IV.)

\section*{Sars, Michael.}

Beskrivelser og Iagitagelser over nogle mærkelige eller nye i Havet ved den Bergenske Kyst levende Dyr af Polypernes, Acalephernes, Radiaternes, Annclidernes og Molluskernes Classer. . . . Bergen, 1835.
(p. 37, Pl. XV. fig. 40, Bipinnaria asterigera.)

Ueber die Entwickelung der Scesterne, Fragment aus meinen Beiträge zur Fauna von Norvegen. Archiv.f. Naturgeschichte, 1844, I. pp. 169-178, Pl. VI. figs. 1-22.
(Direct development of Echinaster sanguinolentus and Asteracanthion Mïlleri.)
Also translated in Amn. d. Sci. Nat. [3], 1841, II. p. 190, 1 pl. ; and in Ann. Mag. Nat. Hist., 1841, XIV. p. 233; Froricp's Neue Notizen, XXXIII. No. 721, 1845, pp. 263-269; Archiv. f. Anat. Phys. u. Wiss. Med., 1812, p. 330 .

Fauna Littoralis Norvegiæ. Erstes Heft. 94 pp., 10 pl. Christiania, 1846. VI. Beobachtungen über die Entwickelung der Seesterne. pp. 47, 1. Echinaster sunguinolentus, PI. VIII. figs. 1-37; p. 56, 2. Asteracanthion Mïlleri, Pl. VIII. figs. 38-43.
For continuation, see (p. 131) Sars, Koren, and Danielssen.
Oversigt af Norges Echinodermer. Christiania, 1861. ri +160 pp., 16 pl .
(PI. VI. figs. 3-13. Development of Pteraster militaris, pp. 57-62.)
Om en ny Art Brachiolaria. Forhundl. Vidensh. Selsk. Christiania, pp. 126137. 1563.

Geologiske og Zoologiske Iagttagelser, anstillede paa en Rcisc i en Decl af Trondhjems Stift i Sommeren 1862. Nyt Mag. Naturv. Christiania, XII. pp. 253-272. Also separate. \(\$ 8 \mathrm{pp}\). Christiania, 1863.
(Young of Amphiura squamata, new speeies of Brachiolaria, p. 72.)
Mémoires pour servir à la Comuaissance des Crinoïdes vivants. Programme de l'Université Royale de Norvège. Christiania, 1868. \(65 \mathrm{pp} ., 6 \mathrm{pl}\).
(II. Pentacrinoīde de l'Antédon Sarsii (Alecto) Düben et Koren, Pl. V. et VI.)

Sars, M., Koren, J., and Danielssen, J. C. See also (p. 121) Koren and Danielssen.
Fauna Littoralis Norvegic. 2de Livraison. 101 pI., 12 pl . Bergen, 1856
(pp. 46-54. Development of IIolothuria tremula, I'l. VII., VIII. figs. \(23-32\). pp. 55-59. Development of Pteraster militaris, I'l. VIII. figs. 1-8.)
Fama Littoralis Norvegize. Part 3d. Elited by Koren and Danielsses. \(163 \mathrm{pp} ., 16 \mathrm{pl}\). lergen, \(187 \%\).
(p. 58. Young Stichopus natans, II, VII. See also (p. 122) Korex and Dashelssen.)

\footnotetext{
Schneider, Anton.
Ueber Befruchtung (Asteracanthion glaciale) \(=\) A. rubens. (See p. 336, Zool. Anzeig., 1II.) Zool. Anzeig., III. pp. 252-25̃, 336. 1880.
}

\section*{Schultze, M.}

Ueber dic Entwickelung von Ophiolepis squamata, einer lebendiggebährenden Ophiure. Arch. f. Anat. Physiol. u. vissensch. Med., pp. 3i-46, Pl. I. 1852.

\section*{Selenka, Emil.}

Zur Entwickelung d. Holothurien (Holothuria tululosa und Cucumaria doliolum). Ein Beitrag zur Keimblätterthcorie. Zeitschr. f. wissench. Zool., XXVII. pp. \(155-178\), Pl. IX.-XIII. 1876. Zeit. gesammt. Naturıc. Ber\(\operatorname{lin}\) [2], XIII. pp. 108, 109. \(18{ }^{\circ} \mathrm{G}\).

Abstr. Sitzungsb. phys.-med. Ges. Erlangen. June aud Dec. 1875.
Sur le Développement des Holothurics. Abstr. Arch. Zool. Expér., V. pp. xxvi.-xxxi. \(18 \pi 6\).
Beobachtungen über die Befruchtrug und Theilung des Eies von Toxopneustes variegatus. Vorläufige Mittheilung. 1s7\%. Sitzungsb. phys -med. Ges. Erlangen, X. pp. 1-7. 1877-\%s.
Zoologische Studien. I. Befruchtung des Eics von Toxopneustes rariegatus. Eiu Beitrag zur Lehre von der Befruchtung und Eifurchung. 38 pp., 3 pl. Leipzig, \(18 \% 8\).
Keimblätter u. Organanlage der Echiuiden. Zeitschr. f. vissensch. Zool., XXXIII. pp. 39-54, Pl. V.-VII. 1880.

Also abstr. Sitzungsb. phys.-med. Ges. Erlangen, pp. 100-10s. Mai, 1879.
(Early stages of Echinus miliaris, Toxopneustes brexispinosus, Strongylocentrotus lividus, Arbacia pustulosa, Echinocardium cordatum.)

\section*{Semper, Carl.}

Ueber einige tropische Larrenformen. Zeitschr.f. wissensch. Zool., XIII. pp. 407-42S. 1867.
(Discussion of radiate type of Echinoderms, p. 415.)
Reisen im Archipel der Philippinen. Pt. 2. Wissensehaftliche Resultate. I. Holothuricn. \(258 \mathrm{pp} ., 40 \mathrm{pl}\). Leipzig, 1868.
(Description of genital organs of many genera; general discussion of development in IV. Das System.)

\section*{Simroth, H.}

Anatomic und Schizogonie der Ophiactis virens Sars. [Ein Beitrag zur Kemutniss der Eehinodermen.] Zeitschr.f. evissensch. Zool., XIVII. pp. 41\%-1S5, 555-500, PI. XXXI.-XXXV.; XXVIII, pp. 119-526, Pl. XXII.-XXV. 187G, \(187 \%\).
Sladen, W. P.
On the Asteroidea and Echimoidea of the Korean Seas. 18\%S. Iourn. Linn. Soc. Zöol. Lomdon, XlV. pp. 42t-H5, Pl. VIII. 1s\%?.
(Describes some young Temmopleurida and Behinocardium.)
On Traces of Aneestral Relations in the Structure of the Asternidea. Proc. Geol. Pulyl. Soc. Yorkshire, VII. PI. IX. \(18 s 0\).

\section*{Spengel, J. W.}

Bauu. Entwickclung von Balanoglossus. Tagebl. d. Naturf.Vers. München, 1877. Sce also transl. of Thomas II. Huxley, 1 Manual of the Anatomy of Invertebrated Animals.

\section*{Springer, Frank. See (p. 134) Wachsmuth, Chas., and Springer, Frank. Stewart, T. H.}

On the Young State of Ophiocoma rosula, and on the Form and Development of the Spines of this Species. Amn. Mag. Nat. Hist. [2], XVHII. pp. 357391, PI. XV. 1856.

\section*{Studer, Th.}

Ueber Echinodermen aus dem antarktischen Mecre und zwei neue Seeigel von deu Papua Inseln, gesammelt auf der Reise S. M. S. Corvette "Gazelle" um die Erdc. Monatsb. Alad. Wissensch. Berlin, pp. 452-165. 1876.
(Viviparons Echinoderms and young stages of Goniocidaris vivipara, p. 455; Abatus cordatus, p. 457; and Ophiomyxa vivipara, p. 462.)
Ueber Geschlechtsdimorphismus bei Echinodermen. Zool. Anzeig., III. pp. 523527, 543-546, 10 figs. 1880.
(Sexual differences [due to growth in part] in IIemiaster.)
Uebersicht ucber die während der Reise S. M. S. Corvette "Gazelle " um die Erde 1874-76 gesammelten Eehinoiden. Monatsb. der Königl. Akad. der Wiss. zu Berlin, pp. S61-SS5, Pl. I., II. Oct. 2S, \(18 s 0\).
(Viviparous Echini, passim.)

\section*{Thomson, C. Wyville.}

On the Embryology of Asteracanthion violaceus (L.). Quart. Journ. Mic. Sci., I. pp. 99-108, Pl. VII. 1861.

On the development of Synapta inharens O. F. Müller sp. Quart. Journ. Mic. Sci., II. pp. 131-146, Pl. V., VI. 1862.
On the Enmryology of the Echinodermata. Nat. Hist. Recier, London, III. pp. 395-415, figs. 1-6. 1863.
(Gencral review of the subject to date: Part I. Bipinnaria; II. Brachiolaria; III. Asteracunthion riolaceus, A. Ifülleri and E. sanyuinolentus; IV. Pteruster militaris and A. glacialis; V. Vermiform Larva.)
On the Embryology of the Echinodermata. VI. The Embryology of the Lehinidea. Nat. Hist. Reriex, pp. 5S1-611, figs. 7-16. 1864.

Coneluded from Nat. Hist. Rev., III. p. 415.. 156 \(\%\).
On the Embryogeny of Anteclon rosaccus Linck. (Comatula rosacea Lam.). [1863:] Philos. Trans. Roy. Soc. London, CLV. pp. 513-514, Pl. AX111.XXYII. 1865.
Notice of some P'eculiarities in the Mode of Propagation of certain Echino. derms of the Southern Sca. 1SrG. Journ. Linn. Soc: London, XILI. pp. \(55-79,13\) euts. \(18 \% 6-\tau \mathcal{S}\).
(Direct development of IIolothuriaus, Starfish, Sea-urchins, and Ophiuraus, Cladodactylu crocea, Psolus cphippifer, Cilaris nntrix. Gomiociduris canaliculata, Hemiaster sp. Archaster cxcacatus, Ifymenaster nobilks, (Ophicoma didelphys.)

\section*{Thompson, J. V.}

On the Star-fish of the Genus Comatula, demonstrative of the Pentacrinus Europreus being the young of our Indigenous Species. 1835. Abstr. Proc. Phil. Trans. Roy. Soc. London, p. 339. 1830-37. L'dinb. New Phil. Journal, XX. pp. 295-300, PI. II. 1836. Froriep's Notizen, XLIX. pp. 1-5, figs. 1-10. 1836. L'Institut, p. 332. 1835. Oken's Isis., pp. 73-75. 1838.

Verrill, A. E.
Notes on Radiata in the Museum of Yale College, with Descriptions of New Genera and Species. Tians. Conn. Acad., I. pp. 247-596. 1866-ヶ1. Separate. 36 S pp. 1867-69.
(Mentions young of several species of Echinoderms, passim.)
Echinodermata (in "Contributions to the Natural History of Kerguelen Islands," by J. H. Kidder. II.). Bull. U. S. Nat. Mus., III. pp. 66-75. Washington, 1876.
Wachsmuth, Charles.
Internal and External Structure of Palæozoic Crinoids. Amer. Journ. of Science, 1sï7, p. 126.
Wachsmuth, Charles, and Springer, Frank.
Trausition Forms iu Crinoids, and Description of fire New Species. Proc. Acad. Nat. Sci. Phila., pp. 224-266. \(18 \pi 8\).
Revision of the Palæocrinoidea. I., II. Proc. Acad. Nat. Sci. Phila., 1879-81.

Part I. The Families Ichthyocrinidæ and Cyathocrinidæ. Proc. Acad. Nat. Sci. Phila., pp. 226-3iS. Nov. 4, 1879.

Part II. Family Sphæroidocriuidæ, with the Sub-Families Platycrinidæ, Rhodocrinidæ, and Actinocrinidæ. Proc. Acad. Nat. Sci. Phila., pp. 177414. July 26, 1881.
(Comparison of fossils with young stages of Comatulx, passim.)

\section*{Walch, J. E. J.}
*Abhandlung von der Reproduction der Seesterne. Der Naturforscher, 1774, pp. 57-66.
Zittel, Karl A.
Handbuch der Palacontologic: München u. Leipzig, 1876-80. I. Abth. I. pp. 30S-560, figs. Echinodermata. \(18: 9\).
(Comparison of young stages of Crinoids, Echini, and other Echinoderms to fossils.)
Zoölogical Record ("The Record of Zoülogical Literature").
Reports on Echinodermata, passin, I.-NV1I. 1S64-80. London, 1S651881.

Cambridge, Mass., August 15, 1882.

No. 3.-On a Revision of the Ethmoid Bone in the Mammalia, with special Reference to the Description of this Bone and of the Sense of Smelling in the Cheiroptera. By Hariison Allex, M. D., Professor of Physiology in the University of Pennsylvania.

In the Bulletin of the Museum of Comparative Zoölogy dated February, 1880, I described briefly some peculiarities of structure I had detected in the ethmoid bone of the Cheiroptera.* It is my purpose in this communication to extend my remarks in the same direction, and by way of introduction to give a brief account of the ethmoid bone as it is met with in the mammals generally.

The ethmoid bone in mammals lies within the ethmoidal noteh of the frontal bone, and is in all but a few groups (c.g. in Primates, Quadrumana, and some of the genera of Felidx) protected laterally by the descending process of the frontal bone, the orbital process of the palatal bone, and the orbital process of the orbito-sphenoid bonc. In the masal chamber it is protected above by the nasal bone and in part by the vomer. Its several portions lie in the nasal chamber and in the frontal and sphenoidal sinuses. With a near approach to acenracy, it may be said that the ethmoid is included between the following openings : the optic, the ethmoidal and the sphenoidal foramina, and the lachrymal and the infra-orbital camals. The suture between the palatal bone and the superior maxilla in the roof of the month corresponds nearly to the anterior limit of the ethmoturbinals.
The Nomenclature of the Subdivisions of the Dithmoid Bone. - The ethmoid bone of the human sulject is deseribed by anatomical writers as composed of a pair of lateral masses, sponges, or labyrinths, mited to a perpendicular phate by means of the cribriform plate, the projection of the former above the latter constituting the crista galli. Each lateral \({ }^{\circ}\) mass in turn is composed of ethmoid cells, and presents upon its median surface two serolls. The "cones of Wistar" are a pair of symmetrical ossicles appended to the lateral masses posteriorly, and are not of olfactory significance.

\footnotetext{
* The prodrome of this memoir, as amounced in the above-named paper, has not been followed in all respects. The points of difference, however, do not demand special attention.

VOL. \(\mathrm{x} .-\mathrm{No} .3\).
}

The departures from this arrangement in the ethmoid of quadrupeds are so numerous and pronounced that an adherence to a similar plan of description is not satisfactory.

In proposing modifications, I will ise the following language :-
The ethmoid bone is composed of the meso-ethmoid and two ethmoturbinals. The former includes the perpendicular plate and the crista galli ; the latter, as in human anatomy, the lateral masses of the bone. These terms are in general use by English writers. The nasoturbinal is an ethmoturbinal plate projecting in front of the remaining plates, and forming the superior limit to the series, as seen on the median surface of a longitudinal (sagittal) section. - The "cones of Wistar" form the sphenoturbinals.

Each ethmoturbinal element is an olfactory plate. The space between any two plates is called an olfactory interspace.

Each olfactory plate is, as a rule, plicated, and each plication in turn forms an olfactory fold. The free projecting ends of the olfactory plates constitute the olfactory lobes.

The ethmoturbinal plates are divided into two groups, the ectoturbinals and the endoturbinals. The ectoturbinal plates are those which lic in a space defined by the frontal bone and the superior maxilla. This space communicates with the nasal chamber at the interspace between the nasoturbinal and the first endoturbinal, as well as by a large oval opening behind the maxillo-turbinal and the vertical plate lying between the supcrior maxilla and the ethmoid. The ectoturbinal plates are arranged on the lateral sides of the chamber, from which they project inward toward one another, but never to a degree to be seen on the median surface as this is seen in a longitudinal section of the skull.

The endoturlinal plates are arranged in a series lying beneath as well as medianly to the foregoing. They are placed in oblique parallel rows from above downward, and are best scen in a longitudinal (sagittal) section of the skull. Each ethmoturbinal plate bas a base where it arises from the cribriform plate. The uper border of each plate is its frontal Zorder, while its lower border is its palatal border.*

The space between the meso-ethmoid and the ethmoturbinal is the septoturbinal space. The lamina uniting the ethmoturbinals one with

\footnotetext{
* The terms ecto- and endoturbinal are named with reference to the relations they entertain to the nasal elamber. The ectoturbinals do not appear, with a few exceptions, on the lateral wall of the undissected nasal chamber (see llate I. fig. 1), while the endoturbinals so appear, or can be made to do so, by producing the axes of the olfactury plates entering into them.
}
another constitntes the transverse lamina. Its posterior portion unites with the vomer, and may receive the name of the turbino-vomerine lamina. Its anterior portion lies in front of the last named. The sphenoturbinals are furnished with olfactory plates that join the vomer, thus crossing the septoturbinal space.

The surface of the ethmoid bone entering into the construction of the brain case is called the encranial surface. It exhibits a perforate or cribriform plate, and a non-perforate plate placed posteriorly to the foregoing. The perforate plate answers in position to the ectoturbinals, the endoturbinals in great part, and the septoturbinal space. The non-perforate space covers the sphenoturbinals and the lowest of the endoturbinals. The encranial surface may be subdivided, for convenience in description, into surfaces which correspond to the divisions of the ethmoid as seeu from the nasal chamber. Thus the septoturbinal, the ectoturbinal, and the endoturbinal surfaces are easily distinguished.

The Literature of the Ethmoid Bone. - That the terminology of the ethmoid bone at present in use needs revision can be readily shown by a reference to the literature of the subject.
E. F. Gurlt (Handbuch der Vergleichenden Anatomic der Haus-Saugthiere, Berlin, 1843, Vol. I. p. 81) describes the ethmoid on the basis of the human bone. IIe identifies the nasoturbinal as the superior conch and the first endoturbinal as the middle conch. All parts not appearing on the median surface he groups under the head of the "Labyrinth."
H. Strauss-Durckheim (Anatomie Descriptive et Comparative du Chat, Paris, 1845 , p. 385) gives the sphenoturbinals as equivalent to the "cornet de Bertin," and forming the third division of the bone. The second division is the group of plates seen only in the cat and its congeners. lt is a development from the transverse lamina. All the remaining portion of the ethmoturbinal, comprising as it does the bulk of the bone, Strauss-Durckheim calls the first or superior division of the bone. The space between the two ethmoturbinals on a level with the lower borde: of the chamber of the ectoturbinals and the equivalent to the ethmoidal notch of human anatony receives the name of the "ccartement des anfractuosités supérieures." 'The mesoturbinal is named the "lame verticale moyenne."

Owen (Archetype and Homologies of the Vertehrate Skeleton, 1Stis) named the meso-ethmoid the prefrontal, and wave to the ethmoturhimals the name which they have since borne. In his claborate work on the Anatomy of the Vertebrates, Owen restricts the term clkmotubinal to
the lower plates only of the mass (the endoturbinals of this paper), as seen in the hog. In the description of the ethmoid in this animal the word "labyrinth" is also used, showing that the term had not, in the mind of the writer, supplanted that of "ethmoturbinal." - In the tapir the cribriform plate is said to be reticulate, with long radiating meshes. The ethmoturbinal in this animal consists of many convolute divisions, and each is perforated by many foramina. - In the horse the ethmoturbinal is separated from the nasoturbinal. The same language is employed in describing the ethmoids of other animals. - The giraffe exhibits the upper folds of the labyrinth coalescing in the moderately long and deep ethmoturbinal. - In the dog the horizontal folds of the "labyrinth" are four in number. Here by the word "labyrinth" the median surface of the ethmoturbinals (endoturbinals) is intended. Indeed, throughout the descriptions in this work, the term ethmoturbinal includes the periphery of the lateral mass, excepting that portion lying above the cribriform plate. Thus the os planum and the middle and lower plates of the median surface are ethmoturbinal, while the intervening structures and the superior division are vaguely ineluded in the "labyrinth." This is evidently so in the account of these parts in the giraffe, where the upper folds of the labyrinth are said to coalesee and to be produced into the ethmoturbinal. In like manner, the ethmoturbinal forms the part identical with the transrerse lamina.
J. Chatin (Les Organs des Sens daus la Série Animale, Paris, 1880, p. 241) describes each olfactory plate as it appears upon the median surface, where it is called a "cornet." The "cornet supérieur" is the same as the nasoturbinal ; the "eornet ethmoidal," the equivalent of the endoturbinals. No attempt is made to deseribe the ethmoturbinal. It is simply stated to be most bizarre in its construction. In the kangaroo the maxilloturbinal is called the "volute ethmoidal."

Kitchen Parker ("On the Structure and the Development of the Skull in the Pis," Philosoph. Trans., Vol. CLNIV. Part 1., 18it) calls the first plate of the ectoturbinals the "upper turbinal"; the first endoturbimal, the "middle turbinal." The maxilloturbinal forms the "lower turhinal." The nasoturbinal is called the "nasal turbinal." In alvance of the olfactory region Parker recognizes two turbinals, viz. the maxilloturbinal and the alinasal turbinal. The first of these has been already noticed. The last named is a ledge-like point within the nostril continuous with the ledge supporting the maxilloturbinal. A very good general view of the ethmoid as seen in the hog is shown in Plate XXIV. of the above memoir, - the ectoturhinals being as yet imperfectly developed.

Dr. Elliott Coues ("Osteology and Myology of the Opossum," Memoirs of the Boston Nat. Hist. Soc., II. 62) treats of the cthmoturbinal as synonymous with the lateral mass, and of the perpendicular plate as being probably homologous with a pair of coalesced prefrontals. He further ąmbiguously states that the "spongy convolutions" are borne on either side of the perpendicular plate. Respecting the arrangement of the olfactory plates, he remarks, "It would be difficult even if it were desirable (!) to describe the details of the spongy convolutions."

The description in Bronn's Klassen und Ordnungen des Thier-Reichs (Bd. VI. Abtheil. X. 52) embraces a general account of the bone. No attempt is made to discriminate between the olfactory plates. The ethmoturbinal mass is named the labyrinth, and composed of thin rolled plates of bone enclosing the ethmoidal cells.

The Method employed by the Author in studying the Ethmoid Bone. The study of the ethmoid bone is greatly facilitated by immersion of the bone in an acid solution which is sufficiently strong to remove the bone-salts. When the bone is detached from the skull, the delicate folds are easily decalcified by a solntion of nitro-muriatic acid of not greater strength than eight drops of the acid to an ounce of water. When the entire skull, say of an animal of the size of a horse or dog, is subjected to the acid solution, a strength from a half-drachm to a drachm of acid to the pint of water will be required. For small, delicate skulls, such as those of the bats, a fluid slightly acidulated, say two drops to the ounce of water, is sufficient. Immersion from six to twelve hours is needed for the smaller specimens, and perhaps a renewal of the fluid for a second period as long as the first for the larger ones. The specimen is next washed and soaked throngh several waters, and afterwards can be preserved in alcohol. The ethmoid bone thus prepared ean be studied with sigmal alvantage over the natural bone, since a dissection can be effected with ease, and without dauger of mutilation. I think perhaps the best way to obtain a satisfictory preparation for general purposes of comparison is to secure a macerated skull * of tho animal whose ethmoid is desired, and, after the bone-salts have been removed, to bisect the skull longitudinally at one side of the line of the romer, and reserse one half of the specimen for study of the median surface of the ethmoid bone. The encranial

\footnotetext{
* Care must he taken to protect the freshly macerated skull from the attacks of a voracious dipterous larva, that is capable of destroying the delicate structures of the ethmoid in an incredibly short space of time.
}
surface will be seen in the same specimen. Next, to make a transverse (frontal) section of the opposite piece, in such a manner as to divide transversely all the parts of the ethmoid bone directly in adrance of the cribriform plate. The section must be made concentrically to the plane of the cribriform plate, and of course to include the mesoethmoid. The proximal surface of such a preparation embraces a section of the ethmoturbinals and of the septoturbinal space, and gives at a glance the plan of the bone. The parts of both specimens can be handled with freedom, as the botanist can press aside the several parts of a flower, and afterward, without violence, return them to their natural positions.

If it be desired to retain the mucous membrane in connection with the olfactory plates, the superficial parts, together with the temporal and masseter muscles and the eyes, shonld be first removed to enable the acidulated fluid to act directly upon the bony surfaces. After the bonesalts have been dissolved, a saw may be employed to sever the denser surrounding structures, such as the frontal bone, the zygomata, the hard palate, ete., reserving the interior parts to be divided by the scissors or the knife. By this means irregular laceration of the plates and membranes is avoided, and the parts are kept free from bone-dust.*

\section*{A General Account of the Ethmoid Bone.}

At the risk of repeating here and there a fact already incorporated in the above list of terms, I will now give a succinct account of the ethmoid bone, as studied in a number of well-known mammals other than the bats.

The Encranial Surface. - The cribriforn plate is divided into two portions, one lying over the septoturbinal space, and the other answering to the ethnoturbinal spaces. The latter is again divided into two portions, a superior and an inferior, which correspond to the ectoturbinal and endoturbinal spaces respectively. In the Carnivora, \(\dagger\) so far as cxamined, these divisions are abruptly angulated one to the other. The line

\footnotetext{
* I desire to retum my acknowlelgments to the Academy of Natural Sciences of Philadelpha for the use of crania from its collection. When it is seen that a decalcified skull subsequently subjected to the making of sections of the ethmoidal region is one practically expented in the canse of science, it will be conceded that no incousiderable privilege was accorted me.
\(\dagger\) For purposes of comparison, the etlimoid bone of the dog and otter are figured side by side in Plate I. Bint the bone of the otter is not separately describel.
}
separating them is distinctly ridged, and is conspicuous in the raccoon and the dog, but inconspicuons in the sloth. This ridge is the basal encranial aspect of the first endoturbinal, and the foramina ranged on the sides and at the tip of the ridge afford openings of exit to the olfactory nerves supplying the sides of the plate. Indeed, all the olfactory nerres excepting those of the septoturbinal spaces are similarly placed with respect to basal lines of the ethmoturbinal plates. The first endoturbinal, being the largest of the series, secures for its base a more decided line than is the case with the others. The septal openings are arranged in a single straight line parallel to the crista galli.

The simplest arrangement of foramina is seen when a row of openings lies parallel to the median border of the encranial surface, and another is seen similarly disposed along the lateral border. The successive degrees of complication on the surface are dependent upon the extent that the basal ridges extend medianly from the last-named row.

A general idea of the plan of the ethmoidal plates can be thus formed by the study of the encranial surface. The number of the foramina present, the size of the basal ridges, the extent of the non-perforate space, will be found to hold an exact relation to the number and size of the olfactory plates, and indirectly to the functional importance of the olfactory region.

As a rule, the encramial ectoturbinal surface is rounded in form, and of greater diameter than the surface for the endoturimals. In the cat the cribriform plate is cverywhere narrow, the ectoturbinal surfices being separated by a median frontal process, on either side of which septal foramina are arranged. The crista galli is not developed at the anterior third of the endoturbinal region. The ridge for the first endoturbinal is searcely longer than the width of the septoturbinal space at its side. The second endoturbinal closely resembles the first. The foramina of the last-mamed plates are continuons at the lateral horder of the cribriform plate. The rilge of the third plate is indeterminate, the foramina being large and clustered.

In the \(\operatorname{dog}\) (Plate I. figs. 1, 2) the ectoturbinal surface is suhbounded. higher than it is broad, with the septoturbinal space widened superiorly. The ectoturbinal ridges and foramina are displayed laterally, and lie on the level of the descending portion of that pertion of the frontal bone artienlating with the orhitosphenoid. The first endoturbinal ridge is three times the width of the related septoturhinal space. The second is two thirds the length of the first. The third ridge is, as \({ }^{\circ}\) in the cat, indeterminate, and the foranina are elustered.

In both the cat and the dog the non-perforate space is exceedingly small. In the former it is rednced to a mere elevated rim, and in the latter it is concealed by the anterior edge of the presphenoid. The nonperforate space is well seen in the seal, Phoca vitulina, the opossum, and the peccary. In the otter, the bear, and other Carnivora, it is nearly absent, so that the posterior border of the cribriform plate is also the posterior border of the bone. The non-perforate space is in close relation with the orbitosphenoid and the presphenoid, so that the sphenoidal sinuses may be occupied by the lowest of the endoturbinals.

As is rell known, the sphenoidal turbinals in man are distinct ossicles, lying between the ethmoturbinals and the presphenoid. In some mammals, as the sloth, the presphenoid has a group of plates which closely resemble an olfactory plate of the ethmoturbinal, but differing therefrom by the fact that the plates unite with the crest at the basal surface of the cranio-facial axis, instead of being separated by an intervening space, as in the ethmoturbinals. A slight tendency in the same direction is seen in the peccary. Is this group of plateshomologous with the sphenoturbinals of man?

In the otter (Plate I. fig. 4), the mink, the weasel, and the bear, the frontal simuses are occupied by the ectoturbinals. When such frontal development is pronounced, the ectoturbinal division of the ethmoid is of a circular form in transverse section and on the encranial surface, while the endoturbinal division is longer than wide.

The Nasal Surfaces. - Each ethmoturbinal plate is attached to the cribriform plate proximally, to the os planum laterally, and, it may be, to an associate-turbinal distally. Upon the median surfaces the plates remain free, and either end simply, or exhibit a tendency at their ends to form two revolute parts, the convex surfaces of which appear upon the superficies of the lateral wall of the nasal chamber. In a longitudinal section of the nose the median aspect of the ethmeturbinal is thas made up, in the last-named variety, of the romnded convexities of the plates and the spaces between them. The uppermost of the plates is much longer than the others. . . . The lateral aspect of the nasal chamber at the ethmoturbinal region is, therefore, made up simply of those plates which have a common plane. The surface gives no impression of the number of the plates present; for some may not reach the median surface, and from this circumstance be not seen or accounted for. Neither is the surface a guide to the lencth of the plates, since, as the reader has already seen, the eribriform phate is wider above than below,
so that a plate extending from the last-named to the median surface is of necessity longer than one extending between similar points below.

In the transverse section it will be seen that a number of the plates have failed to reach the median surface. In the dog (Plate I. fig. 1), for example, the ectoturbinals are four in number. The first is obliquely placed from above downward, and within outward. Two conspicuous convolutions are present at the distal end, the lower one of which alone lies toward, but not on, the median surface. The second plate possesses a single convolution, which is directed outrard. The third and fourth are very short, biconvolute, and directed upward and forward. None of the ectoturbinals appear on the longitudinal surface of the nasal chamber. The first endoturbinal is long and complex. It is directed forward and upward, and nearly touches the median convolution of the first ectoturbinal. It is biconvolute, but the parts are short and not incurved. Three secondary convolutions are seen on the sides of the plate, - one on the upper, and two on the lower aspect. Both of the latter reach the surface of the longitudinal section. The second endoturbinal is the longest of the series, and touches the septum. A single primary convolution is directed upward, and much convoluted. A single upper and two lower sccondary convolutions are seen, as in the first plate, but they are less conspicuous. The third and remaining plate is the smallest of the endoturbinals, and arises from the os planum, as this structure is seen in the section. It is directed upward and inward, to appear on the longitudinal section. It presents a single convolution. Immediately beneath the last plate, the tramsverse plate or lamina is seen. The nasoturbinal is seen in the section as a minute non-convolute structure, intermediate between the two sets of plates.

The endoturbinals are always arranged in tiers one above another. All originate from the lateral surface. In the dory (Plate I. fig. 2) the second of the plates descends, and may follow the curve of the siles and the bottom of the nasal chamber as far as the meso-ethmoid, aloner which it ascends a short distance. The plates in this portion of the ethmoturbinal in the dog are from three to four in number. The olfactory plates tend to unite anteriorly. Thus two to three plates unite to form the masoturbinal in the dog. The lower endoturbinal plates mite in front by broad, thin plates. These, taken collectively, constitute the transverse lamina of Strauss-Durckheim. It is constantly present, stretching across the septoturbinal space to the vomer, against which it rests.

The ectoturbinal plates may he rulimentary or absent. They wouk
appear to be absent in the ape, at least in the adult. In man they are also absent. The opossum has two ectoturbinals; the cat, two to three; the hog, five; the ox, eight. In the seal the ectoturbinals are developed to a greater degree than the endoturbinals.

The olfactory plates are either simple at their ends or convolute. Their anterior ends are often produced forwards in a series of tonguelike projections, which have received the name of the olfactory lobes. The projection known as the nasoturbinal is the most conspicuous of these. The lobe on the first endoturbinal is always well developed. The endoturbinals of the hog are without marked lobulations. The Carnivora and the Rodentia, as far as examined, possess lubes on all the folds. In the opossum tro of the plates are simple, the remainder are convolute. Occasionally a convolute fold arises from the side of a plate instead of from the end, as in the larger plates of the Carnivora and the Ruminantia. The arrangement of the endoturbinals, as seen in the median surface of the ethmoturbinals, is much the same as in other Carnivora.

The septoturbinal space is in all mammals narrorr, and indeed may be obliterated here and there where the endoturbinal plates lie in contact with the septum. Such a point of contact is evident in the macaque, M. nemestrinus, where a depression is seen on the septum answering in position to the first endoturbinal plate. Similar depressions are seen in the bats, as in Antrozous and Corynorlimus.

In Cebus (Plate II. figs. 1, 2) the absence of an ectoturbinal series, and the endoturbinal series being restricted to a single plate bearing incisures upon its posterior border, and retaining upon its anterior surface a deflected and abortive nasoturbinal (uncinate process), an example is afforded of the manner after which the ethmoid bone is modified in passing from the quadrupedal form to the primate. In man the interval between the endoturbinal series and the lateral aspect of the bone is oceupied by a number of cellules. These being absent in Cebus and Mucacus (the only genera examined), it rould appear as thongh the chief difference between these forms and the human ethmoid lay in the development of the ethmoid cells.

The human ethmoid bone (Plate II. fig. 3), viewed from beneath, furnishes, as in Cebus, an aborted nasoturbinal in the "uncinate process," and the rugose under surface of the siugle endoturbinal plate in the " middle turbinated bone."

A Special Account of the Ethmoid Bone in the IIorse, the Peccary, the Sloth, the Cat, the Seal, and the Mole. - I have this endeavored to
sketch the general plan of arrangement of the ethmoid bone in the mammals, and to indicate the relations that the several parts hold one to another. Before describing the bone in the Cheiroptera, I propose giving detailed accounts of the ethmoid in the eat, the seal, the peceary, the sloth, and the mole; with the ohject of bringing together some widely diverse examples, and presenting deseriptions which will be sufficiently detailed to permit of comparisons heing made with those which will follow in the concluding portion of this paper.

In the horse (Plate II. figs. 4, 5) the endoturbinal aspect of the encranial surface is concoaled from the brain case at its upper third by a transverse plate apparently of the frontal bone, but which in reality is an ossification of the ethmoid. The foramina of the endoturbinal surface are arranged elaborately in a erescent extending across the anterior end. The formmina of the ectoturbinal surface are seen in five transverse triangular or clavate elusters.

The ethmoid, studied from its lateral aspect, exhibits a trenchant distinction between the endotmbinals and the ectoturbinals by a thin septum extending across the great cranio-facial simus. Both the turbinal sets lie in this simus, connected by a thin papyraceous lamina, save at the anterior fourth of the ectoturbinal series, where it is firmly comected by the ends of the olfactory plates to the descending process of the frontal bone, as well as with the line of junction this process effects with the orbitosphenoid and the frontal bones.

Seen in transverse section, the turbinal mass exhibits sharply the division between the two sets of plates. The ectoturbinals are eight in number, including the nasoturbinal. The endoturbinals are five in mumber, and preserve the order already described as existing in the log. The last plate sends backward a single folinm within the sphenoidal sinus, so that the olfactory apparatus extends a short distance posterior to the eneranial surfice.

Seen from the median aspect, the nasoturbinal is seen to assume enormons proportions, being much wider than any of the endoturbinals. Four of the endoturbinals are visible, and all are markedly biconvolnte. the convexities of the scrolls alone appearing on the general surfite. Anteriorly each plate is seen ending simply at the bases, hut toward the apices they are more or less lobate. The first and second plates project beyond the transverse lamina.

A small but distinet plate erosses the septoturbinal space obliquely at the orifice of the sphenoid simus. The septum is distinctly foliated opposite the third, fourth, and fifth plates.
vol. \(x,-\) No. 8.

In the peccary,* Dicotyles torquatus (Plate III. figs. 1-3), the encranial surface is uniformly concare, and presents seareely any angulation inferiorly. Hence, the indications of separation of the ectoturbinals from the endoturbinals are indistinct. The basal aspects of the endoturbinal plates form well-defined lines on the cribriform plate, about which are arranged a number of little pits. From the bottom of these lie the foramina of the olfactory nerves. The most conspicuons of these is the one for the first endoturbinal plate. The septoturbinal surface is on a higher plane than that of the ethmoturbinals. The crista galli is distinct throughout. The non-perforate space is uearly one third the length of the cribriform plate. Of the nasal surfaces, it is seen on the frontal section that the divisions between the eetoturbinals and the endoturbinals are well defined. The former are seen to have a less complieated structure, and are arranged as couverging radii from the upper and lateral walls. The endoturbinals are arranged in tiers, and constitute, with the median exposure of the nasoturbinal, the entirety of the median surface.

The cetoturbinals are nine in number. The first ectoturbinal and the nasoturbinal are confluent. The former presents a convex uniform surface above. The nasoturbinal is distinet from the meso-ethmoid. The second ectoturbinal is of the same size as the first, but more distinctly biconvolute at the base. The third is the longest of the ectoturbinal series, and reaches the centre of the ectoturbinal space. Three additional plates, rudimental in character, are seen on the lateral aspect of the section. The endoturbinals are also nine in number, four of them only reaching the median surface. They are much more convolute than in the ectoturbinals, aud present a number of sccondary folia.

The sphenoturbinal is seen distinetly united to the meso-ethmoid.
In the two-toed sloth, \(\dagger\) Cholapus didactylus (Plate III. figs. 5, 6), the cribriform plate is without angulation, as seen in the skull of the young of this species, and the entire surface which answers to that for endoturbinals is marked by four plates and associated foramina. The plates are all united anteriorly into a single transverse lamina. The posterior non-perforate space equals in longitudinal diameter one third of the area of the eribriform plate. The septoturbinal space is searcely raised abovo the plane of the turbinal spaces. The crista galli answers in

\footnotetext{
* For purposes of eomprison, the encranial surface of the ethmoid bone of the hog is figured (Plate III. fig. 4), hut not desmiberl.
\(\dagger\) For purposes of comprison, the encranial and the nasal surfaces of Bradypus are presented in figs. 1 and 2 of llate \(\mathbb{W}\)., hut not here described.
}
position to the anterior two-thirds of the same. No separate arrangement for ectoturbinals appears to exist. On the masal surface the endoturbinals are, with the exception of the first, without lobes, and the nasoturbinal and the ectoturbinals are absent. The sphenoturbinal is united to the septum by three distinct lamine.

In the cat* the nasal surfaces are much compressed medio-laterally. With the exercise of a little care, the parts can be analyzed without resorting to a transverse section. The first ectoturbinal is excessively short, and presents biconvolute folia directed upward. The second, third, and fourth ectoturbinals are slight, and are biconvolute their entire length. The plates and the convexities of the convolutions are distinctly visible on the lateral surface of the ethmoturbinal mass. The nasoturbinal is biconvolute, the median convolution being the larger anteriorly. The lobule of this turbinal is in height equal to one half the length of the nasoturbinal, and is crescentic in outline. The nasoturbinal and all the ectoturbinals are united anteriorly by a transverse lamina.

The endoturbinal plates are fire in number. The first is the largest of the series. It is obscurely convolute, while the lobule is as long as the plate. It is obliquely placed from above downward, and before backward, lying in front of the second and third endoturbinals, and composed of a number of closely-set convolutions. It is the anterior division of Strauss-Durckheim. The second plate also possesses a distinct foliated lobe. The second and third plates are united on the lateral surface by a common lamina. The third plate is small, concealed from the median surface, without lobes, and partly concealed on the lateral surface by the above-named lamina. The fourth plate closely resembles the second. Its lobule is nearly the length of the plate. The fifth is without a lobe, and convolute medianly, the conver surface of this convolution appearing for its entire length on the free median surface of the ethmoturbinal mass.

In the seal, Phoca vitulina (l'late IV. figs. 3-5), the encranial surface presents a narrow septoturbinal surface. It lies on the same plane with that of the turbinal surfaces, extends over less than one third the width of the encranial surface, and terminates anteriorly by an chormons foramen. The rounded surface answering to the ectoturbinal space is bordered by an elliptical row of foramina. The ridges for the endeturbi nals are inconspicuous and short, not extending, oven for the first endoturbinal, more than one third of the diameter of the cribriform plate.

\footnotetext{
* Elaborate figures of the ethmoid of the cat are contained in the work of StraussDurckheim, loc. cit.
}

The crista galli is robust, and extends the entire length of the cribriform. The non-perforate space is one third as long as the cribriform, thus presenting a striking contrast with the same plate of the other Carnivora mentioned in this paper. It is concealed in part by the frontal bone in articulation of the bone with the cranium, but in the disarticulated bone it is convex or rounded in outline and nearly equal to the ectoturbinal surface in diameter. From it the ectoturbinal plates in part arise. These last-named plates, with their accompanying convolutions, are well seen on the lateral surface.

As in the doy, the cat, the otter, and other carnirores, the nasoturbinal, as in the seal in part, arises from the meso-ethmoid. It is held to the meso-ethmoid one half the length of the latter, at its upper margin. The union does not interfere with free access of air to the olfactory plates.

Huxley makes a statement, in his "Anatomy of the Vertebrated Animals," to the effect that the ethmoturbinals in the seal are small and flattened, and that the latter are anchylosed with the romer on each side. In a single specimen examined I did not find this to be the case. (See Plate IV. fig. 3. The position of the arrow indicates the septoturbinal space.) It is true that the mass is, on the whole, flattened ; but the frontal portion of the mass is more than usually well developed, and at no point did anchylosis exist. The remarkably thickened transverse lamina was probably in this statement mistaken for an exceptional layer of union.

In the star-nosed mole, Condylura cristata, the cetoturbinals advance forward as far as the anterior end of the transverse lamina. The nasoturbinal extends as far as the third premolar. The first endoturbinal reaches to the last premolar; the second and third are of nearly equal size; all the endoturbinals presenting uniformly broad contiguous median surfaces, the first and third not comected below the cribriform plate. In transserse section the ectoturbinals are seen to be four in number, the last being the largest. It would here seem that the last is the one retained in the Cheiroptera.

\section*{The Ethmoid Bone in the Cheirortera.*}

Enongh has been said, I trust, of the general plan of arrangement of the several parts in the ethmoid bone of mammals, to scrve as an introduction to the description of the bone in the Cheiroptera. It was, indeed, in attempting to describe the hone as found in the lats that the necessity of a revision of the subject hecame evident. It is not to be

\footnotetext{
* The crania furmishing the basis of this study were, with few exerptions, furnished by the Museum of Comparative Zoölng!.
}
inferred from this statement that the ethmoid bone in the bats differs in any essential feature from the bone as ahove described. In the more generalized forms, as the Pteropines and in most of the Phyllostomines, the ethmoid, while simple in construction, is in general appearance much the same as in other mammals. But in the more specialized genera, the details are so strongly contrasted with those of the mammalian type, (presenting a number of characters, which it is thought may be of value in classification,) that the special attention of the reader is invited to their consideration.

Descriptions of the Ethmoid Bone, including all its Parts.
Pteropus medius. - The encranial surface presents a small ectoturbinal space, which, howeser, is as wide as the mion of the septoturbinal and endoturbinal spaces farther backward. The cribriform is thus narrowed, and without conspicuous ridges or other markings than the median and lateral rows of foramina. The non-perforate surface is a mere narrow rim.

The ethmoturbinal mass is much compressed laterally, and composed of a single ectoturbinal and a series of four endoturbinal plates, which are united anteriorly and laterally. The tendency for the endoturbinal plates to form parts of one functional surface recalls the disposition of the parts in the Quadrumana. The opening above the endoturbinal series is distinctly median. The first plate lateral to this opening would be the nasoturbinal, which here does not appear to be different from the usual disposition of an ectoturbinal, and I have concluded so to name it.

The ectoturbinal extends as fir as the plane of the anterior border of the first molar. It is higher at its origin from the cribriform plate than at its anterior free end. It is curvilinear and convolute outward. It is attached its entire length to the lateral surface of the ethmoturbinal mass, and anteriorly to the endoturbinal transerse lamina.

The endoturbinal series of plates are united by a broad transverse lamina, which anteriorly (i. e. beyond the point of its mion with the romer) is deeply concave on its free under surface, so as to cover in the maxilloturbinal.

In a profile view of the median surface of the ethmoturbinal series the vertical aspect of this concave surface is distinctly seen, and closely resembles a lobe; but it is not traceable to any one olfactory plate. The transverse lamina is traceable backward to the anterior ends of all the olfactory plates, including the ectoturbinal. The lower anterior half of the median surfice of the plate is emarginate. The anterior
end of the lamina reaches as far as the canine tooth. Of the endoturbinal plates themselves it may be said that the first endoturbinal plate is nearly simple, and reaches the transverse lamina at the plane of the anterior border of the first molar. The second endoturbinal plate arises in common with the preceding, and ends at the same point. It is biconvolute. The third plate reaches as far as a point between the first and second molars. It is convolute, but permits a small portion of the plate to be seen anteriorly.

Cyonycteris. - The general plan of the plates is the same as in Pteropus. The median rertical aspect of the concavity of the transrerse lamina is one fourth the length of the second endoturbinal plate. The anterior margin is concave.

Epomophorus gambianus (Plate V. fig. 1). - The general plan of the plates as in Pteropus. The produced end of the transverse lamina reaches the plane of the anterior edge of the second premolar.

Cyanopteris. - The general plan of the plates as in Pteropus. The anterior margin of the median vertical aspect of the transverse lamina is straight (that is, not concave), and less oblique than in Pteropus.

Phyllortina tridens (Plate VI. fig. 5). - The olfactory plates two in number. They are apparently the first and second endoturbinals. Each plate ends anteriorly in a clavate median process or lobe. The two are separate from each other, and nearly vertical in position. The encranial surface is of extreme simplicity.

Rhinolophus ferro-equinum (Plate VI. fig. 4). - The first ectoturbinal arched, long, reaching as far as the plane of the anterior border of the first molar. The first and second endoturbinals are horizontal, simple, not contiguous. They are without lobes, and are non-convolute. They do not advance beyond the vomerine portion of the transverse lamina. The encranial surface is slightly inflated over the cribriform plate. The ectoturbinal space is absent. The non-perforate space is searcely at all raised.

Megaderma frons (Plate VI. fig. 2). - The ectoturbinal absent. The endoturbinals two in number, as in Phyllorhina and lihinolophus. Both of these possess small swollen lobes, but are both confined within the limits of the vomerine portion of the transserse lamina. The lobes, as they appear on the median surface, are nearly vertical. Projecting in advance of the plates as far as the level of the last premolar is a lobule, which may be said to represent tho produced transwerse lamina, althongh in this genus it more elosely resembles a septum defining the onter wall of the nasal chamber. The eneranial surfaces were not examined.

Megaderma spasma (Plate VI. fig. 1). - The ectoturbinal a minute tubercle, lying above and to outer side of first endoturbinal. The ethmoturbinals four in number. The first endoturbinal is separated by a short interval from the remaining two. It is but slightly lobulated, extends as far as the level of the anterior border of the second molar, and is obliquely placed from above downward and from bchind forward. The second and third endoturbinals are parallel, nearly contiguous, the second scarcely exceeding the third in length. The first is lobed for one third its length.

Nycteris thebaica (Plate VI. fig. 3). - The plates are three in number, one cetoturbinal and two endoturbinal. The first of these answers in position to the nasoturbinal, since it bounds posteriorly the opening leading outward from the nasal chamber. Its frontal surface is furnished with a clavate swelling, which is slightly projected as a small lobe. The first and second endoturbinals are smaller than the nasoturbinal, and are so arranged as to permit the second to conceal the third. The latter is, indeed, the only one of the two seen in profile, the former lying between it and the nasoturbinal. The first endoturbinal is slender pedunculated, and bears a small bifid lobule. The second endoturbinal is almost as stont as the nasoturbinal, and its lobule projects forward for a distance equalling one half of the plate itself. The lobe is obscurely clavate.

In the Vespertilionide the arrangement of the plates is more simple than in the Pteropidx, but more complex than in Rhinolophus and the allied genera.

Tesperus. - The openings of the septoturbinal space are confincl to a large foramen placed just in advance of the non-perforate space. Near to the scptum, at the anterior portion of the space, is scen a group of foramina advancing well to the front. Directly opposite the begiming of this series to the lateral side is the group of foramina for the first endoturbinal plate, while in front of the latter lie the two foramina for the single ectoturbinal plate. The arrangement is the same in Tesperugo.

Seen from the nasal aspect in Tesperus noctula, the ectoturbinal is two thirds the length of the first endoturbinal. It is thickened above and convolute laterally at the summit. The lateral surface is coneare. The entire plate rests on the coneave lateral surface of the first codoturhinal. The last-named plate is very broad above, and expands laterally and in front of the ectoturbinal. It is narrower at the base than at the tip, where it is prolonged slightly along the median border into a slen-
der process. The lateral border of the portion in advance of the transverse lamina extends as far as the anterior edge of the second premolar. It is concare to receive the convex masilloturbinal. The second endoturbinal is slightly narrower behind than in front. It is twice the size of the third endoturbinal, which is subrounded.

Tesperus fuscus. - The ectoturbinal is as in V. noctula, with the exception that it is deflected a little more ontward. The first endoturbinal is acuminate, with a uniformly sloping border. On the median surface the plate is not risible below the second and third plates. The second plate is as in \(V^{r}\). noctula. The third is longer than wide.

Scotophilus Temmincti. - The ectoturbinal is compressed medio-laterally, without lateral concavity, and is deflected slightly outward. It is a little more than one half the length of the first endoturbinal. The latter plate is much as in \(V\). noctula. Its lateral border extends a short distance beyond the ectoturbinal. The end of the free portion is a narrow point, and lies at the level of the premolar. The median surface bears a general resemblance to the same part in \(V\). noctula.

Tespertilio (Plate VII. fig. 6). - The encranial surface in all essential features as in Tesperus. The single ectoturbinal one third the length of the first endoturbinal plate. As scen from above, the ectoturbinal is lodged in a concarity in the lateral surface of the preceding plate. The first endoturbinal is produced as far as the first premolar. The plate is of a pyriform fignre as scen from above, and presents a trumeate apex. The portion in advance of the transverse lamina is deeply concave belor, and overlies the maxilloturbinal. The second endoturbinal is of a triangular figure, with a rounded apex. It appears to be lodged, when the parts are viewed superficially, on the median surface of the endoturbinal series. The third endoturbinal is the smallest of the three, and is contimuous with the upper portion of the first endoturbinal.

All the preceding genera of the Vespertilionidre, as contrasted with the genus next to be mentioned, have the first and third endoturbinal plates united ahove the second plate.
Atalapha. - In A. novelonacensis the encranial surface presents the septoturbinal foramina placed in a row along the anterior half of the space of the stme name. The openings of the ectoturbinal surface are in a direct line with the foregoing, and both are depressed below the general surface. The foramen for the first endoturthinal is seen lying at the bottom of the conspicuous depression near the crista galli. The foramina are everywhere at the sides of the eneranial surface. Seen from the masal aspect the ectoturbinal seems to be uearly the length of
the first endoturbinal, and is compressed medio-laterally. It is slightly convolute outward at its base, and concave on its lateral surface. The first endoturbinal is abruptly acuminate anteriorly, and straight on its median, lateral, and under free surfaces, the last named being concare inferiorly. The second endoturhinal plate is oblique, and slightly inflated at its anterior end. Its lower border forms the inferior edge of the median series of plates. The third endoturbinal is triangular in shape, and is one half the size of the preceding.

In A. cinereus the general plan resembles that of the foregoing species. The parts are, however, of greater height, the interval between the first and second endoturbinals being wider. The second endoturbinal is relatively larger, and curved outward. This arrangement canses the plate to present a concave surface outward, which receives the swollen lower border of the third plate. The median aspect of the first endoturbinal is straight; but the lateral surface is deflected outward, and is impressed on its entire surface by the cetoturbinal which rests upon it, leaving only a raised rim of the endoturbinal round its anterior half. The median surface of the produced portion of the first endoturbinal is nearly as high as it is long. The concave under surface embraces securely the maxilloturbinal.

Nycticejus cremuscularis. - In this genus the encranial surface is about one third the area of the entire region, the cribriform plate marked as follows : first, a single opening is seen on the sphenoturbinal surface; sccond, two openings on the ectoturbinal surface; third, a relatively large depression on the endoturbinal, containing two openings, well to the lateral aspect, for the first endoturbinal plate.

The nasal smface exhibits a single ectoturbinal plate. It is a little less than one half the length of the first endoturbinal, is directed almost vertically downward, the swollen upper border looking outward. The lateral surface is concave, deflected outward as far as the tip of the first endoturbinal. It is slightly concare above. The free portion is acuminate, reaching as far as the level of the canine tooth. The second plate is as in I. fuscus, but not so much narrowed at the base. The third is a mere rounded nodule.

Lasionycteris noctivagans. - The septoturbinal space extends a little in advance of the septal line. There is but a single opening for the ectoturbinal. The main plate is marked ly a relatively small openiug, behind which extends a row of three small foramina. The non-perforate space is as in the preceding forms. On the masal surface the endoturbinal series is inflated, and does not exhibit the lateral concavity seen in other

Vespertilionidæ. It is directed downward and forward. The first endoturbinal is as in \(V\). fuscus. It reaches a point as far as the canine tooth, is slightly depressed above, and presents a uniformly sloping surface laterally. Its lower edge forms the lower border of the median surface. The second endoturbinal is of uniform width, longer than high, and equal in length to the free portion of the first endoturbinal. The third endoturbinal is smaller than the preceding.

Antrozous pallidus. - The ethmoid bone in this genus closely resembles that of other Vespertilionidæ. The ectoturbinal is compressed medio-laterally.

Mollosus obscurus. - The ectoturbinal is biconvolute, slightly acuminate in frout, and subequal in length to the mesoturbinal. The endoturbinal is somewhat broader in frout than behind, straight on its median surface, concave on its lateral surface to receive in a measure the ectoturbinal. It is apparently without an olfactory plate, which being understood to be present the eutire endoturbinal forms a summit thereto with two convolutions which make up the median and lateral surfaces respectively. The concarity thos opening downward receives in part the maxilloturbinal. The second endoturbinal is absent. The third and fourth closely resemble the same plates in the Phyllostomididr, and do not demand any special description. The transverse lamina is apparently absent.
M. perotis. - The ectoturbinal is compressed from side to side, and is one half the length of the first endoturbinal. The first endoturhinal is acuminate as it is seen from the median surface, the portion projecting in advance of the third endoturbinal being slightly convex inferiorly. The third endoturbinal is received in a depression on the lateral surface of the first, the second being absent. It in turn receives the fourth. Both these turbinals as seen in situ are longer than wide.

Natalus stramineus. - The ectoturbinal is absent. The second is slender and acuminate, the convolutions uniting inferiorly at the anterior two-thirds. The lower border of the free part is straight. The third endoturbinal is globose, and one third the length of free portion of the preceding. The fourth is exceedingly minute, being about one third the length of the third. It is somewhat rounded in form.

Taphozous (Plate V'I. figs. 2, 4). - The ectoturbinal somewhat broader than the first endoturbinal, lut of the same length. The transverse lamina deeply concave, completely concealing the small maxilloturbinal. The under portion of the free portion of the first endoturbinal is traceable as far lock as the end of the endoturbinal series. The median aspect of the concavity not projected, as in most genera, hut appears as a
rounded convexity of equal width with the exposed portions of the endoturbinals. The second endoturbinal appears as a nodule between the transverse lamina and the second endoturbinal ; the third and fourth much as in other genera, the lower border of the third plate being visible from the lower edge of the series.

Rhynconycteris naso. - The ectoturbinal absent. The remaining three endoturbinals closely resemble one another. The first projects in advance beyond the third no more than the third projects beyond the fifth. The free portion of the first small, yet reaches the level of the anterior of the second premolar. The plates on the median surface while contiguous leave exposed a larger surface than is the case in any other genus of the Molossi.

Noctilio leporinus (Plate VII. fig. 5). - The ectoturbinal inflated nearly twice the thickness of the first endoturbinal, and nearly equalling it in length. The median aspect of ethmoturbinal closely resembling Molossus. The free portion of each plate of about equal width. The nasoturbinal of great width anteriorly, and almost entirely concealing the maxilloturbinal.

Mormops megaphylla. - The encranial surface presents the following features. The single ectoturbinal foramen is small. That for the first endoturbinal is conspicuous. The extent of the non-perforate space appears to be enormous as compared with the same space in other genera. The ectoturbinal is a mere rounded point at the base of the first endoturbinal. The endoturbinal series closely resembles the same in the Vespertilionidx. The first endoturbinal is without the lobe present in Chilonycteris. Its under surface is concare at the free produced portion, and conceals the umsually long maxilloturbinal. The second ethmoturbinal is very slender and oblique. It is continnous above with the first thus differing from the arraugements seen in Vespertilionidæ. The third plate is obscure, if not absent. It is apparently continuous with the crista galli.

Chilonycteris rubiginosa. - The first ectoturbinal subglobose, one fourth the length of the first endoturbinal. The free projecting portion of the first endoturbinal is deeply concave beneath, and completely covers in the maxilloturbinal, as in the Vespertilionide. It reaches as far as the first premolar. This plate bears upon its summit a lobule, as in the Phyllostomidida. The second and third endoturbinals are simple, non-revolute, nearly vertical, the third being the broader.

Desmodus rufus (Plate VII. fig. 1). - The ectoturbinal is inflated, and neanly the length of the first endoturbinal. The first endoturbinal is
compressed, and reaches the plane of the anterior border of the single molar. A lobule in the position of the basal convolution of other Phyllostomines lies between the first and the third plates, and resembles in general appearance a separate endoturbinal. The second endoturbinal is small and concealed. The third and fourth plates are in general appearance much as in other Phyllostomines. The lobes of the first and third endoturbinals are conspicuous.

Carollia brevicaudu (Plate V. figs. 3, 5). - The first ectoturbinal is inflated, with no trace of the concavity marking the plate in the Vespertilionide. It is two thirds the length of the first endoturbinal. The last-named plate is narrowed anteriorly, but not acuminate, since the tip is truncate. Its lower border is concare. The lobule at the summit of the plate is broader in front than behind, and equals the free portion in length. The third plate is concealed. The fourth is of the same size and shape as the foregoing. The fifth is triangular in form, open beneath, and presents the appearance of having a large lateral convolution equal in length with the main plate. The maxilloturbinal is rudimentary and free from the ethmoturbinal.

Lonchoglossa. - The general plan in this genus is as in other Phyłlostomines. The ectoturbinal is minute, compressed, not more than one half the length of the first endoturbinal. The latter is thin, straight, with a long falciform lobe, which is concave inferiorly. The basal lobule is well developed, and lies at the lower border of the median surface of the ethmoturbinal. The remaining endoturbinals as in other Phyllostomines, but less obliquely inclined.

Phyllostoma hastatum (Plate V. fig. 2). - The foramina of the septoturbinal and the ectoturbinal surfaces on the eneranial aspect form a continuous arch. The depression for the main plate is large, and the space behind it is occupied by numerous openings arranged without apparent order.

Schizostoma. - The eetoturhinal is moderately inflated, but less so proportionally than in Dermanura. The narrow and acuminate first endoturbinal projects about one third of the length of the ectoturbinal. Its lobule is ineonspienous. The second endotmbinal is concealed, and presents a slightly inflated upper border. The third plate possesses a large anterior lohnle, which is convex forward. The parts are contignous upon the median surface.

Macrotus Waterhousii. - The ectoturbinal is small, a little less than one half the length of the first endoturbinal. Its upper horder is horizontal, and its lower concave. The extreme tin of the lobule extends as
far as the anterior border of the first molar. The second plate is concealed, and the third and fourth are arranged much as in Vampyrops, which this form in great part resembles. The lobule on the first endoturbinal is small, but readily discernible. The plates below their inflated summits are not clearly seen. The parts on the median surface are contiguous.

Vampyrops. - The ectoturbinal extends the entire lengtl of the inner wall of the orbit, and is inflated. The first endoturbinal is concealed between the last named and the second endoturbinal. It is a simple inflated plate, without convolntions. It is in intinate assuciation with the region of the second plate, with which it may be confounded. If the first endoturbinal plate be counted as a lobule upon the base of the second, the series will lack the number five which all other genera of this group possess. Assuming, therefore, that the concealed plate is the true second endoturbinal, the one below it becomes the third. The lastnamed third plate is the largest of the series, and resembles the second of the Pteroderma related forms. It is broad, non-convolute, and ends in a narrow tongue that reaches a point as far forward as the anterior border of the first molar tooth. The fourth endoturbinal is a nearly simple plate, having a thickened free upper border. Its free surface is entirely median, and almost linear. The fifth endotmbinal is exposed on the median surface for its entire extent; its anterior border is thickened, and convolute upwards. The frontal section of the ethmoturbinal presents the ectoturbinal and the first endoturbinal in close juxtaposition and assuming a medio-lateral relation, while the remaining plates are arranged nearly at right angles to them. There appear to be no plates comparable to the sphenoturbinals.

P'teroderma (Plate V. fig. 6). - The ectoturbinal of a triangular form, whose base is forward and advances as far as the ends of the olfactory plates of the endoturbinals minus the lobules, and nearly to the hinder border of the orifice of the maxillary sinus.

The first endotmbinal is convolute laterally, and possesses an achminate lobe directed forward that equals the plate itself in length. The free end of the olfactory plate is distinctly seen beneath the level of the lobe. Lying at the level of the lobe just described, behind the free portion of the plate, is a small nodule, which may receive the name of the posterior lobe, as opposed to the preceding, whieh is as compared to this 201 anterior lobe. The second endoturbinal plate is free inferiorly, but is biconvolute abovo for the greater part of its length. The last-named portions are concealed by the lobes of the adjacent plates. The third
endoturbinal plate is free beneath, and possesses a broad fleshy lobe directed forward. The fourth plate, unlike the preceding, is not free at its base beneath, and is the smallest of the series. It presents a concave border in front, and is furnished with a fleshy lobe which is directed backward. The surfaces of all the olfactory plates are separated by appreciable intervals.

Artibeus (Plate V. figs. 4, 6). - The parts in this genus closely resemble those of Pteroderma. The ectoturbinal is exceeding slender, and is furnished with a fleshy summit, which is couvolute outward. Its upper portion alone is seen from the median surface. The first endoturbinal is free below, but fleshy above. It is produced forward one half its leugth beyond the end of the ectoturbinal in the form of a lobule, is acuminate, and possesses as in Dermanura a small posterior lobe. The second endoturbinal is concealed by the third. When the latter is pressed aside at its upper part the small biconvolute plate of the second plate is seen in position. The third endoturbinal possesses a large lobule, which lies upon the median surface. The lobule is subromnded in form, completely oceupying the upper edge of the plate, so that it appears to arise from the eribriform plate by a pedicle. The fourth endoturbinal presents an exposed plate on the median surface. It is beneath the convex non-perforate space, and yiclds a single large convolution, which is turned outward. Although this plate lies back of the cribriform plate, the absence of any connection between it and the romer would seem to show that the arrangement met with in many mammals is departed from.

Dermanura. - In this genus the ectoturbinal is inflated, and is projected beyond the first endoturbinal one half its length. The first endoturbinal is concave outward, is without a lobule, and in a measure embraces the last-named plate. The remaining plates are arranged as in P'teroderma. On the encranial surface the depression for the main plate is withont associated foramina, but in their stead three openings are seen, ranged transversely. The ectoturbinal opening is single.

\section*{Tie Pursiological Anatomy of the Olfactory Sexse in the Mammalia.}

The olfactory organ in the mammalia is an appendage to the respiratory tract. It dejends upon the direct eontact of the odoriferous particle upon the sjecifie cell fixed upon the olfactory surface, and united with a terminal filament of an olfactory nerve. The olfactory plates upon which the cells lie are composed of two sets, an ectuturbinal and
an endoturbinal, the space between them being defined on the median aspect by the nasoturbinal. In advance and beneath these plates, as well as being more or less embraced by the endoturbinals, the maxilloturbinal lies.* This bone acts as a sieve to warm the current of air entering the olfactory region, and to exelude extraneous particles. The particles which pass through the upper half of the maxilloturbinal pass directly to the ectoturbinals and the plates of the endoturbinals for the distance from their lateral attachments to the primary terminal convolutions or endings. The current passing through the lower half of the maxilloturbinal is received within the space below the level of the ethmoturbinal, and is chiefly respiratory. A large opening exists between the nasal chamber and the superior maxillary sinus, partly within which the ectoturbinal plates lie. The lower current may be deflected in part laterally through this opening or drawn upward between the lobes of the endoturbinal plates. Direct contact of the inspiratory currents through the space between the maxilloturbinal and the septum must be inconsiderable, by reason of the close relation, if not contact, existing between these parts. A small passage between the nasoturbinal and the septum would permit some to pass. It will be seen that all the currents above indicated are directed immediately inward, or inward and upward. In these directions no continuity with the air-passage exists. The currents in time must impinge upon the sides and roof of the nasal chamber above the level of the transverse lamina, and lie against the cribriform plate. Within this restricted area the currents may be assumed to cease, and their odor-bearing particles to fall gently upon the olfactory surfaces. This condition of rest doubtless goes on while ordinary respiration continues. So it is conceivable for a gentle respiratory current to be passing in and out along the lower portion of the masal chamber, while the air is at rest unloading itself of its odoriferous partielos above the transverse lamina. When the air is sniffel, the invitation for its ascent into the olfactory chambers is marked, - an act probably accompanied by partial elevation of the soft palate, by which means the respiratory current through the nose is suspended, and the air compolled to ascend to the olfactory level. The transserse lamina, therefore, has great fumetional significance. The parts contained above this

\footnotetext{
* The maxilloturbinal is continuous forward through the means of a well-defined erest into the snout, where it ends in the prominent swelling at the upper lateral horder. Near its end it is coneave ontwand, the concavity reeciving a little crest-like fold on the onter side of the snont. The above description applies to the parts as seen in \(I^{\text {: }}\) noctula, but is probably true of all mammals.
}
lamina would appear to have the most strongly localized olfactory signifiance, and the projected parts or lobes to be in part protectors of the maxilloturbinals, or highly specialized portions of the olfactory apparatus, in animals remarkably endowed with the sense of smell.*

\section*{Conclusions.}

From the foregoing statements it is erident that the ethmoid bone varies greatly in its details in the Mammalia. While these variations may not have yielded any clews to relationship of genera in addition to those already entertained, they may nevertheless be said to present new evidence by which old claims can be strengthened. It has been secn that generalized forms, such as Sus, Equus, or Dicotyles, are related to more specialized forms, such as Bos or Ovis, not only by the characters yielded by the foot, the teeth, and the placenta, but by the ethmoturbinal bones as well. In like manner, in a generalized genus of the Carnivora, as Ursus or Procyon, the ethmoturbinal bones possess a less degree of specialization than in Felix in one direction, and in Phoca in another. If the testimony in confirmation of such relations of these genera were lost, it could be restated from the data obtainable from a study of the ethmoidal plates. - In the bats a plan similar to the one existing in the majority of the mammals is recognized in the Pteropider and Phyllostomididae (groups already known to be generalized), but which is strangely departed from in highly specialized forms, as the Megadermatidre and the Rhinolophidx, and in a widely different way in the Vespertilionidx. -It has been found that in many of the Cheiroptera, generic and even specific characters can be found in the cthmoid bone; and, on the whole, it is temperate to affirm that a comprehensive account of any species of bat would be imperfect which omitted an account of this bone. It is probable that a similar statement might with propriety be made for all mammals. Certainly it may be said that, in the study of those genera
* The relation home by the cetoturbinals to the frontal simes, by the sphenoturbinals to the sphenoidal sinuses, and by the passages of access to the lateral part of the ethmoturbinals to the maxillary sinuses, suggests the probability that the primary sig. nification of these chambers is to aceommolate the olfactory plates; and that in the human suhject, where they are empty and not held subservient to the sense of smelling, the original conception has been lnst, owing to the stunted eondition of the olfactory apparatus. Until claborate studies of the development of the mammalian head are instituted with the ohject of eonfirming such a suggestion, but little can be said about it in this conmetion. It must be remarked that the labors of Kitehen Parker (loc. cit.) have not led to any affirmative answer to such a line of inquiry.
of whose affinities the zoölogist remains in doubt, a careful examination of the ethmoid bone should be made. - Much might be said of the relation existing between the size of the olfactory bulb and the degree of development attained by the ethmoturbinal plates, - the bulbs, as has been found, being well developed in animals having large ethmoturbinals, and being small in others having small enduturbinals, - and of the mechanism of the act of smelling, and the significance, in a word, of the function of smelling in connection with habit. But any such extended discussion would be out of place in a communication plauned as this has been, and would in no way strengthen the proposition which it was the original object of the paper to demonstrate.*

\footnotetext{
* I may here add, that a careful microscopic study of the cells of the olfactory plates, and a comparative stndy of the olfactory sense, and the tactile sense of hats as developed in the external nasal appendages, yielded at the hands of my friend, Dr. Francis X. Dercum, a negative result. The forms that were taken for study were Phyllostoma hastatum and Nyctcris Thebaica.
}

\section*{EXPLANATION, OF THE ABBREVIATIONS EMPLOYED IN DESCRIBING THE FIGURES.}
m.t. Maxilloturbinal.
n.t. Nasoturbinal.
tr. l. Transverse lamina.
cct. t. Ectoturbinal.
cnd. t. Endoturbinal.
cct. sp. Ectoturbinal space.
end. sp. Endoturbinal space.
s. t. sp. Septoturbinal spacc.
m. c. Meso-ethmoid.
sp. t. Septoturbiual.
\(f r\). Froutal.
op.f. Optic foramen.
cr. gl. Crista galli.
orb.sphl. Orbitosphenoid.
n. p.s. Non-perforate space.
l. Lobule.
ol. pl. Olfactory plate.
orb. pl. Orbital plate.

\section*{EXPLANATION OF FIGURES.}

\section*{PLATE I.}

Fig. 1. Sagittal section of head of the dog, showing the oblique position of the encranial surface of the ethmoid bone, with the melian aspect of the lateral mass of the same bone. A portion of the septum has been included in the section at the transverse lamina. The horizontal line between the asterisks represents the dividing line between the olfactory and the respiratory regions of the nasal chamber. - It is probable that some variation will be found to exist in the turbinals of the domestic dog. Natural size.
Fig. 2. Frontal scetion of the nasal chamber of the dog, a short distance in adrance of the encranial surface. Natural size.
Fig. 3. Diagrammatic representation of the encranial surface of the dog. Natural size.
Fig. 4. Encranial surface of the otter. Natural size.
Fig. 5. Diagrammatic frontal section of the turbinals of the otter. Natural sizc.

\section*{PLATE II.}

Fig. 1. Median surface of lateral mass of ethnoid lone of Cebus capuccinus. Natural size.
Fig. 2. The muler surface of same. Natural size.
Fig. 3. The under surface of lateral mass of the human ethmoid bone. Natural size.

Fig. 4. The encranial surface of the ethmoid bone of the horse. The dotted line, as it extends across the surface, represents the lower limit of the plate of bone described in the text as covering in the ectoturbinal subdivision of the surface. Natural size.
Fig. 5. Frontal section, diagrammatically treated, of the turbinals of the horse. Natural size.

\section*{PLATE III.}

Fig. 1. Encranial surface of the ethmoid bone of the peccary. Natural size.
Fig. 2. The isolated ridge of the first endoturbinal plate. Natural size.
Fig. 3. Frontal section of turbinals of same, made close to the eneranial surface. Natural size.
Fig. 4. The encranial surface of the ethmoid bone of the hog.
Fig. 5. The under nasal surface of the ethmoid bone of the two-toed sloth (Cholcepus didactylus). Natural size.
Fig. 6. The encranial surface of the same. Natural size.

\section*{PLATE IV.}

Fig. 1. The anterior aspect of the ethmoturbinals of the ethmoid bone of the threetoed sioth (Bradypus tridactylus).
Fig. 2. The encranial surface of the same.
Fig. 3. The ethmoid bone of the common seal (Phoca vitulina).
Fig. 4. The encranial surface of the same.
Fig. 5. The under surface of the same.
The figures are all of natural size.

\section*{PLATE V.}

Fig. 1. Median sagittal section of nasal chamber of Epomophorus gambianus. Slightly enlarged.
Fig. 2. The same of Phyllostoma hastatum.
Fig. 3. The same of Carollia brevicauda.
Fig. 4. The same of Artibeus (slightly distortel).
Fig. 5. Dorsal aspect of the turbinals in Carollia brevicauda.
Fig. 6. The sagittal section of nasal chamber of Pterodermue (slightly distorted).
Fig. 7. The dorsal aspect of turbinals of Artibeus.
Figs. 2-7 enlirged one half.

\section*{PLATE VI.}

Fig. 1. A median sagittal section of the nasal clamber of Megaderme spasma.
Fig. 2. The same of Negaderma frons.
Fig. 3. The same of Nyeteris Thebaica.
Fig. 4. The same of Ihinolophus ferrum-cquinum.
Fig. 5. The same of Phyllorthina tritens.
Figures enlarged one half.

\section*{164 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOÖLOGY.}

\section*{PLATE VII.}

Fig. 1. A median sagittal section of the nasal chamber of Desmodus rufus. Figure enlarged two thirds.
Fig. 2. The same of Taphozous.
Fig. 3. The dorsal aspect of the turbinals of Vespertilio subulatus.
Fig. 4. The same of Taphozous.
Fig. 5. A median sagittal section of the nasal chamber of Noctilio leporinus (somewhat distorted, the nasoturbinal elevated).
Fig. 6. The same of Vespertilio subulatus (somewhat distorted, the first endoturbinal elevated).

Figs. 2-6 enlaged one half.

Philadelphla, November 4, 1882.

F゙官 1


Fig 3

Fis


ト・空


Fio 1


Fig 2


Fig 3

\(\because\)
Fis ,

1r) \(=6:\)
\(515 p\)


Fio 1


Fiè +

\(r\).
Fis :


Fis is
H. Allen on Ethonold Bone



H Allen on E'thmold Bome



Fiğ \({ }^{2}\) '


Fig 1 *


Fig 3 ,


H．Allen on Ethmod Bone


Fi！1


Fige 3；


ド ぶ，


Fie \(2=1\)
\(\mathrm{F}_{2} \mathrm{H}_{\mathrm{C}}^{2}\)


No. 4. - Reports on the Results of Dredging under the Supervision of Alexander Agassiz, in the Gulf of Mexico (1877-78), and in the Caribbean Sea (1878-79), by the U. S. Coast Survey Steamer "Blake," Lieut.-Commander C. D. Sigsbee, U. S. N., and Commander J. R. Bartlett, U. S. N., Commanding.
(Published by permission of J. E. Hilgard, Supt. U. S. Coast and Geodetic Survey.)

\section*{XVIII.}

The Stalked Crinoids of the Caribbean Sea. By P. Herbert Carpexter.
Owing to the lamented death of the late Sir Wyville Thomson, it has become my duty to complete the Repcrt upon the Stalked Crinoids of the "Challenger" Expedition, which had been commenced by him. It had been arranged between Sir Wyville and Mr. Agassiz that the descriptions of the species obtained by the "Blake" in the Caribbean Sea should be incorporated in the "Challenger" report, which would thus assume the character of a Monograph of nearly all the known species of the group.* For this purpose nearly thirty plates were drawn at Edinburgh, under Sir Wyville's superintendence, but, except for a ferw pencil notes upon one or tro of them, he has unfortunately left no manuscript behind him of any kind. It has therefore become my duty to make good this deficiency; but as the other calls upon my time leave me only a limited amount of leisure, I fear that some months must yet elapse before the publication of the final report.
The "Blake" dredgings hare shown that the bathymetrical range of the Stalked Crinoids is not always so great as has been often supposed. So far as my information goes, they have only been obtained fourteen times at depths exceeding 650 fathoms, their lowest limit leing the eelebrated deep dredging of the "Porcupine," in 1869, where Bathycrinus

\footnotetext{
* Ilycrinus carnenteri of the Norwegian North Atlantic Expelition (Nyt Mag. for Naturvid., Bd. XXIII., 1877) is undoubtedly a Batheycrimus, thongh I do not think it is identical with \(B\). gracilis of the first "Porenpine" E.xpedition (1sin). The "Vecga" dredged some Stalked Crinoids off the Siberian coast, and also a large Metucrinus in tho North Paeifie, but no elescriptions of them have yet been published.
}

VOL. X. - No. 4.
taining the genus Cainocrinus Forbes, which has recently been resuscitated by De Loriol.* The distinguished Swiss paleontologist describes the basals of C'ainocrinus as in contact with one another all round the calyx, so as to form a complete ring, while those of Pentacrinus are small and not contiguous externally, as shorn in Miller's figure of \(P\). caputmedusce (asteria Linn.). \(\dagger\) So far as the fossil species are concerned this certainly does appear to be a constant difference, but it is by no means so in the recent ones and in Metacrinus. The unique specimen of \(P\). maclearanus \(\ddagger\) has a closed basal ring, and so have all the examples of \(P\). wyville-thomsoni that I have seen, though one or more of the basals occasionally fail to meet their fellows. But in P. naresianus there appears to be no constancy whatever in this respect. Some individuals of this species have a closed basal ring. But in others the basals are comparatively small and the radials are prolonged slightly downwards over the upper stem-joints. A few exhibit both conditions, some of the basals meeting their fellows, while the rest are separated by the downward projecting radials. The same variation, though in a less degree, occurs in P. mülleri. But it is in P. decorus that the most remarkable variation occurs in the size of the basals. They are sometimes smaller than those of \(P\). asteria, and scarcely more conspicuous than the interradial ridges on the stem beneath them; or they may be large triangular knobs standing out prominently from the general plane of the calyx, and mecting one another laterally by their extended lower angles; or they may present any intermediate condition between these two.

The following brief descriptions of the Caribbean species of Pentacrinus are not to be considered as complete specific diagnoses. These will appear, together with the synonymy, in my final report.

\section*{P. asteria Linv. sp.}

Stem rohust, reaching 6 or 7 mm . in diameter, with 13-21 (usually 15-18) internodal joints. Cirrus-sockets widely oval, and occupy nearly the whole height of the nodal joint. The hypozygal joints rarely modified, and then very slightly so.

Cirri reaching 70 mm . in length and composed of 50 stout joints. Lowest limit of the interarticular pores from the ninth to the twelfth node. The two outer radials united by syzugy. The ray-divisions somewhat irregular. Primary arms of 2-6 (distichal) joints ; secondary arms of 4-10 (palmar) joints,

\footnotetext{
* Monographie des Crinoïdes fossiles de la Suisse, (Geneva, 1877-79,) p. 111.
\(\dagger\) A Natural History of the Crinoidea, (Bristol, 1821,) p. 51, Pl. II. fig. 9.
\(\ddagger\) The Atlantic, Vol. II. p. 124, fig. 31.
}
usually 6-8. Tertiary arms of 6-14 joints, and occasionally another division after 8 or 10 joints more. The first two joints after each axillary united by syzygy, with a pinnule on the epizygal. No other syzygies on the arms.

The joints of the large pinnules on the arm-bases have their distal edge raised into a strongly marked keel, which projects forwards over the base of the next joint. This feature recurs on all the pinnules of the arms, though it is less distinct in their middle and outer portions.

Remarlis. - The above description is based on the examination which I have made of the following examples of the type:-(a.) Miller's original specimen from Nevis, now in the geological department of the British Museum. (b.) One dry specimen and another in spirit, both in the zoollogical department of the same Muscum. (c.) One dry specimen in the Hunterian Collection of the Royal College of Surgeons. (d.) Two dry specimens obtained by Dr. Carpenter and Sir Wyville Thomson from Mr. Damon of Weyinouth.

I have not seen either of the individuals described by Gnettard* (Martinique) and Ellis \(\dagger\) (Barbados); but judging from the figures given by these authors I have little doubt that they belong to the type which is now generally known as \(P\). asteria. The specimen from Guadelonpe in the Museum of the Geological Society of London, which is mentioned by both Miller and Müller \(\ddagger\) as a \(P\) caput-medusce, is really referable to Oersted's type \(P\). milleri, which is so well described in Liutken's classical memoir.§ If the sixth example nentioned by Müller \| be the one formerly belonging to the Natural History Society at Copenhagen, and bought in \(18 \pm 6\) by the University Museum, it is also a \(P\). muilleri.

The peculiar features of the pinnules of \(P\). asteria afford an excellent specific distinction. They are well shown in Miller's figure, T which represents a pinnule some little way out on the arms. In the lowest pinnules the tubercular projection at the distal end of each joint is very marked indeel ; and it is recognizable, though of course less distinctly so, all along the arms; so that arm fragments of this species can be readily identified, which is more than can be said for most of the Pentacrinida.

The stem also, like the arms, has a definite character of its own, which has not always been correctly described. The nodal joint, i. e. that which is pierced by the canals lodging the cirrus-vessels, is united by syzygy to the joint below it, just as in \(P\). millleri and in all the Pentacrinider ; but this lower or hypozygal joint is not grooved externally for the reception of the thick basal

\footnotetext{
* Mém. de l'Acad. Roy. des Sci. Paris, 1755 (published 1761), pp. 22s-247, Pl. VIII., IX.
\(\dagger\) I'hil. Trans., 1762, Vol. LII. Part I. pp. 357-362, Tab. XIIl.
\(\ddagger\) Abhandl. d. Berlin. Akad., 1843, p. 185.
§ Om Vestiudiens Pentaeriner, med nogle Bemaerkninger nm Pentacriner og Sulilier i Almindelighel. Videnskal. Meddel. fra den naturhist. Foren. i Kjubenharn, 1864, Nr. 13-16, pp. 195-245, Tab. IV., V.
\(\|\) Loc. cit.
ฯ Loc. cit., p. 51, Pl. II. fig. 5.
}
portions of the cirri, as is markedly the case in \(P\). decorus, and less so in \(P\). mülleri and in most species of the genus. It has therefore often been said that the nodal joints of \(P\). asteria are simple and low, while those of \(P\). mülleri are double and thick. This is not strictly true. The nodal joints are always single and united by syzygy to those next below them, though the line of junction is frequently almost obliterated. The hypozygals may be morlified to receive the cirrus-bases, as in \(P\). mülleri and \(P\). decorus, or they may not differ in external appearance from the other internodal joints, as in \(P\). asteria and \(P\). wyvillethomsoni. In this last species, however, the joint above the node is slightly excavated to receive the wide basal portions of the ciri, and this character is still more marked in the genus Metacrinus.

\section*{P. mülleri Oerst.}

Stem generally robust, reaching 6 mm . in diameter, with 4-10 (usually 6-9) internodal joints. The cirrus-sockets, which do not reach the upper edges of the nodal joints, are variable in shape. Some are oval, and encroach but little on the hypozygal, while others are more circular and extend well down on to it.

Cirri reaching 50 mm . in length and composed of about 40 stout joints.
Lowest limit of the interarticular pores from the fourth to the eighth node.
The two outer radials united by syzygy. There are usually 6 or 8 arms on each ray in the following order, 2,\(1 ; 1,2\), or \(2,1,1 ; 1,1,2\), the axillaries being limited to the outer arm of each successive pair. Primary arms of 2 (distichal) joints, which are united by syzygy. Secondary arms of \(2-7\) (palmar) joints, usually 3. The two following divisions are usually of 3 joints each, but may have 5 or 6 . The first two joints after the paluar and subsequent axillaries are united by syzygy with a pinnule on the epizygal. No other syzygies on the arms.

The lower joints of the pinnules are somewhat prismatic, and the following ones laterally compressed, with sharp dorsal edges.

Examples of this type were dredged by the "Blake" at the following stations*: -

187ィ-78. Off Havana. 175 fathoms.
1878-79. No. 193. Off Martinique. 169 fathoms.
No. 291. Off Barbados. 200 fathoms.
Remarks.-A dry example of this species was obtained by Sir Wyville Thomson from Mr. Damon, and a spirit one was brought home from Barbados by Sir Rawson Rawson. Its stem is readily distinguished from that of \(P\). asteria by the shortness of the internordes and the norlification of the hypozygal joints, which, however, is far less marked than in \(P\). decorus. The basals generally

\footnotetext{
* The complete list of localities for the different Crinoids dredged by the " Blake" will doubtless be drawn \(u p\) by Mr. Agassiz and his assistants. 1 cannot, of course, do more than record the localities of the selected specimens which have been sent to Europe for study.
}
form a complete ring; while the branching of the arms is much more regular than in P. asteria, and there are fewer joints between the successive axillaries.

\section*{P. decorus Wyv. Thonson.}

Stem slender, rarely exceeding 4 mm . in diameter, with 7-16 (usually 11 or 12) internodal joints. The nodal joints are generally somewhat enlarged, with circular cirrus-sockets which do not nealy reach their upper edge, but extend well down on to the hypozygral joints.

Slender cirri composed of \(25-35\) joints, and reaching 28 mm . in length.
Lowest limit of the interarticular pores from the ninth to the eleventh node.
The two outer radials united by a ligamentous articulation. Ray-divisions rather irregular. Primary arms of \(2-7\) (distichal) joints, of which the first two are united by a ligamentons articulation, the seeond bearing a pinnule, while the last two often form a syzygy. Secondary arms of 1-9 (pulnar) joints, which are very variable in their character. The second free brachial is usually a syzygial joint. The next syzygy from the eighth to the thirtieth brachial, after which an interval of \(5-11\) joints between successive syzygies.

A pinnule on the first joint after the last axillary. Pinnule joints laterally compressed, those at the base of the lower pinnules being rather broad, but the following ones are elongated.

Examples of this type were dredged by the "Blake" at the folluwing sta-tions:-

1877-78. Off Havana. 175 and 177 fathoms; very abundant.
1878-79. Nns. 155 and 156. Off Montserrat. 88 fathoms.
No. 269. Off St. Vincent. 124 fathoms.
Remarks. - The distinctness of this species from \(P\). asteria was first recognized by Mr. Damon of Weymouth, who procured an exanple of it from the seas of the outer Antilles. Its occurence was recorded by the late Sir Wyville Thomson in a popular article on "Sea Lilies," which was published in the "Intellectnal Observer" for August, 1864, but no formal description of it has since appeared. At that time Sir Wyville seems to have been maequaintel with the description of \(P\). mülleri by Oersted, puhlished six years previously, for he spoke of \(P\). asteria and \(P\). decorus as "the only two known living species" of Stalked Crinoids. But in the following year* he referred to \(P\). mielleri as well, Liitken's memoir having appeared in the interval ; so that he evidently regarled \(P\). decorus and \(P\). mülleri as separate species. Later on (1s:2), howerer, he seems to have come to the conchsion that his \(P\). decorus was identical with Oersted's species. For, having previously said that \(P\). asteria and \(P\). decorus were the only two known living species of the genus, he made nearly the same statement \(\dagger\) concerning \(P\). asterir and \(P\). mülleri. He likewise repeated most
* Phil. Trans., Vol. CLV. p. 542.
\(\dagger\) On the Crinoids of the "Porcupine" Deep-Sea Drelging Expedition, Proc. Roy. Soc. Edinb., Vol. VII. Pp. \(765-767\); and "The Depths of the Sea," Pp. \(434-442\). See also "The Atlantic," Vol. II. p. I26.
of his original description of \(P\). decorus as a diagnosis of \(P\). mülleri, with a reference under the latter name to the specimen which he had before him when describing \(P\).decorus. He stated that the two outer radials of \(P\). asteric are united by syzygy, and further added that " the arrangement of the joints and the syzrgies in the cup is the same in \(P\). mülleri as in \(P\). asteria, only the syzygy between the second radial and the radial axillary is not so complete." This description obviously refers to a ligamentous articulation as distinguished from a true syzugy on the one hand, and from a muscular joint on the other ; and it is by no means in accordance with Lütken's very positive statements * as to the presence of a syzygy between the two outer radials of \(P\). mülleri. Neither does Sir Wyville's description of the nodes as occurring about every twelfth joint agree with Lütken's diagnosis, which only records \(4-10\) internodal joints in \(P\). mülleri. As a matter of fact there are 11 or 12 internodal joints in \(P\). decorus, and there is no syzygy at all between the two outer radials, but only a ligamentous articulation such as occurs in the majority of the Neocrinoidea, and has often been wrongly spoken of as a syzygy, though clearly distinguished from it by Müller.

Had Sir Wyville lived to work out the "Blake" collection more fully than he was able to do before his health gave way, I cannot but think that he would have returned to his original views as to the distinctness of his \(P\). decorus from Oersted's P. mülleri. The two species have really no sort of resemblance to one another, differing in all the characters of the stem, the cirri, the calyx, and the arms.

Curiously enough, \(P\). decorus appears to be the most common species of the genus in the Caribbean Sea. One of the "Blake" specimens is remarkable for the total absence of cirri along the whole of one face of the stem ; while at one of the nodes two more cirri are missing, so that there are only two present instead of the usual five.

\section*{P. blakei n. sp.}

Stem slender, not reaching 4 mm . in diameter with 5-7 internodal joints. Nodal joints not enlarged. The small circular cirrus-sockets do not nearly reach their upper edges, and extend but slightly downwards on to the hypozygals.

Slender cirri composed of 25 joints and barely 20 mm . long.
Lowest limit of the interarticular pores from the sixth to the tenth node.
The two outer radials united by a ligamentous articulation. Usually only 4 arms on each ray. Primary divisions of \(1-1\) (distichal) joints, of which the first two are united by a ligamentous articulation. If 4 distichals are present, the second bears a pinnule and the two outer ones form a syzygy. The first free brachial bears a pinnule, and the second is usually a syzygial joint, while other syzygies occur on the arms at very irregular intervals. The proxinal face
of the epizygal forms a sharp angle which projects backwards into the retreating distal face of the hypozygal.

Examples of this species were dredged by the "Blake" at the following stations:-

1878-79. No. 157. Off Montserrat. 120 fathoms. No. 281. Off Barbados. 200 fathoms.
Remarks. - This species is at once distinguished from P. decorus by the shortness of the internodes of the stem and the absence of any enlargement at the nodes. The calyx is closely similar to that of the variety of \(P\). decorns with small basals, but the arm-bases have a totally different appearance from those of that type, owing to the peculiar nature of the syzygy in the second brachials and in the sulsequent syzygial joints. The two apposed faces are not plane as is usually the case, but the hypozygal has its distal face sharply incised, while the proximal face of the epizygal is in two planes, which make a sharp angle with one another and project backwards into the hypozygal. This peculiarity is best seen in a side view of the arm, unless the joints are separated by boiling with potash or soda. The only other species of Pentacrinus in which it occurs is the ten-armed \(P\). naresianus from the Western Pacific. In both cases it may be traced in all the syzygies of the a:ms, so that small fragments of them are easily recognizable.

Both the recent species of Rhizocrinus occur in the Caribbean Sea. \(R\). lofotensis was dredged in the Florida Straits by the late Mr. Pourtalès, a few months before the publication of M. Sars's well-known description of it ; and \(R\). rawsoni, first found by the "Hassler" off Barbados, was subsequently obtained by the "Blake" in 1877-78 and 1878-79.

So far as my information goes, the distribution of these two species is as follows:-

\section*{R. lofotensis.}

Bibb. 1868. Off the Samboes. 237 fathoms. Off Sand Key. 248 and 306 fathoms.
1869. Off Cojima near Havana. 450 fathoms ; and several times at lesser depths.
Blake. \(1877-78 . \quad\) No. 29. Lat. \(24^{\circ} 36^{\prime}\) N., Long. \(84^{\circ} 5^{\prime} \mathrm{W} .955\) fathoms.
No. 43. Lat. \(24^{\circ} 8^{\prime}\) N., Long. \(88^{\circ} 51^{\prime}\) W. 339 fathoms.
No. 44. Lat. \(25^{\circ} 33^{\prime}\) N., Long. \(84^{\circ} 35^{\prime} \mathrm{W} .539\) fathoms.
No. 56. Off Havana. Lat \(22^{\circ} 9^{\prime} \mathrm{N} .\), Long. \(82^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{W}\). 175 fathoms.

\section*{R. rawsoni.}

Hassler. 1872. Off Sandy Bay, Barbados. 100 fathoms.
Blake. 1877-78. No. 32. Lat. \(23^{\circ} 32^{\prime}\) N., Long. \(85^{\circ} 5^{\prime}\) W. 95 fathoms. Off IIavana. 175 fathoms.

Mr. Agassiz mentions in his dredging letters that he obtained a number of specimens of Rhizocrinus among the Windward Islands in 1878-79, and a few specimens in 1880 on the line from Cape Hatteras to St. George's Shoal; but not having seen any of them, I can say nothing as to the species which they represent.

In 1869 two examples of this genus were obtained by the "Porcupine " off Cape Clear, in 862 fathoms (No. 42), and were referred at the time to \(R\). lofotensis. On comparing them, however, with some specimens of \(R\). rawsoni from off Havana, I find that they really belong to this type, as I had always suspected since reading Pourtalès's description of it.* \(R\). rawsoni was also dredged by the "Challenger" in 900 fathoms among the Azores. It is readily distinguished from \(R\). lofotensis by its more robust appearance and elongated calyx, which is nearly always constricted at the basiradial suture, instead of widening gradually upwards, as does that of \(R\). lofotensis. The first radials are much shorter relatively to their width than in R. lofotensis, and the epizygal of the syzygial first brachial is not markedly narrower than the hypozygal as in the latter species. The greater part of the cup is formed by the elongated basals. In the Norwegian variety of \(R\). lofotensis these fuse so very completely that no sutures are usually visible on the exterior of the calyx. This led Sars \(\dagger\) and Ludwig \(\ddagger\) to suggest that the basals of the young lihizocrinus undergo metamorphosis into a "rosette," as in most Comatula, though this view is not supported by the observations of Pourtales \(\S\) and myself; \(\|\) and the fact that the so-called "enlarged upper stem-joint" of \(R\). lofotensis really consists of the anchylosed basals as originally stated by Mr. Pourtales \(\mathbb{T}\) for the Caribbean variety is now generally recognized.** The difference in the relative proportions of the two species is seen in the following table, which also shows the sizes of the stem-joints in the examples of \(I\). rausoni that were dredged by the "Blake," "Challenger," and "Porcupine" respectively, and in Sars's largest specimens of \(R\). lofotensis.

\footnotetext{
* Zoülogieal Results of the "Hassler" Expedition, Ill. Cat. Mus. Comp. Zoül., No. VIII. pp. 27-31.
† Mémoíres pour servir à la Connaissance des Crinoïdes Tivants, p. 12.
\(\ddagger\) Morphologische Studien an Echinodermen, Band I. pp. 120-122.
§ Loc. cit., p. 29.
|| On some Points in the Anatomy of Pentacrinus and Rhizocrinus. Journ. Anat. and Phys., Vol. XII. pp. 48-53.
- Contributions to the Fruma of the Gulf Stream at great Depths. Bull. Mus. Comp. Zoïl., Vol. I. No. 7, pp. 128-130.
** Zittel's Handbuch der Palaeontologie. Palaeozologie, Band I. p. 393.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Expedition.} & & \multicolumn{2}{|c|}{Base.} & \multicolumn{2}{|l|}{Length} & \multicolumn{2}{|l|}{Stem-Joints.} \\
\hline & Depth. & Height. & Width. & of Stem. & No. & Length. & Width. \\
\hline & fath. 175 & \[
\underset{5.5}{\mathrm{~mm}} .
\] & \[
\begin{aligned}
& \mathrm{mm} . \\
& 2.50
\end{aligned}
\] & \[
\min _{180}
\] & 68 & \[
\mathrm{mm.}_{3.50}
\] & \[
\mathrm{mm}_{2.25}
\] \\
\hline Challenger & 900 & 5.0 & 2.00 & 150 & 53 & 3.00 & 2.00 \\
\hline Porcupine & 862 & 3.0 & 1.75 & 50 & 30 & 2.25 & 1.25 \\
\hline G. O. Sars & 300 & 2.0 & 1.50 & 70 & 67 & 1.50 & 0.50 \\
\hline R. lofotensis & (maximum.) & & & & & & \\
\hline
\end{tabular}
N. B. - Pourtales described his largest specimen of \(R\). lofotensis as having a stem nearly 130 mm . long and composed of 59 joints, the length of which averages three times their diameter.

The stem-joints of \(R\). rawsoni are relatively shorter and thicker than those of \(R\). lofotensis, in which the length is three times the width. In absolute size, as well as in the proportions of the basals and of the stempoints, the "Porcupine" examples of this type are the ones which approach \(R\). lofotensis most nearly. They are smaller than those from the Azores, which are themselves smaller than the Caribbean specimens, a fact which is doubtless due to variations of temperature. The difference in size between the largest specimens of \(R\). lofotensis found by Sars and Ponrtales respectively is likewise probably the result of the difference between the temperature of the Gulf Stream in the Florida Straits and that of the Northeast Atlantic. It is noteworthy that an elongated calyx resembling that of \(R\). rawsoni is chiefly found in those individuals of \(R\). Infotensis which have the arms best developed; * so that this species probably represents a further stage in the degradation of the Apiocrinite type than is reached by \(R\). rawsoni. The occurrence of the latter form in the Eastern Atlantic is of extreme interest, owing to its remarkable resemblance to Bourgueticrinus Iondinensis. This type was named by Forbes from some isolated stem-joints in the London clay; but a well-preserved calyx has since been discovered, which is now preserved in the Natural History Museum at South Kensington.

Several species closely allied to \(B\). londinensis, which occur in the Tertiary deposits of Fraince and Italy, are referred by Zittel \(\dagger\) and other palaontologists to the genus Conocrimus D'Orbigny ; e. g. C. pryriformis M(ünst. sp., C. thorenti D'Arch. sp., C. cornutus Schafh. sp., C. suessi

\footnotetext{
* Sars, C'rinoildes Virants, p. 4.
\(\dagger\) l'alaeontologie, p. 392. See also Meneghini, "I Crinoili Terziarii," Atti d. Soc. Tose., Vol.I1. 11]. 11-17. Schluter, "['eber cinige Astylide Crinorlen," Zeitsch. 1. deutsch geol. Gesellsch., 1878, 1p. 52-55. De Loriol, "Crinoïdes fossiles de la Suisse," p. 190 ; and I'aléontologie Française, "Terrain Jurassique," Tom. ⼷ㅣ. (1882), ]. 65.
}

Munier-Chalmas sp., and C. seguenzai Menegh. That they are congeneric with Forbes's species and with Rhizocrinus I have not the smallest doult ; and the question therefore arises whether Conocrinus D'Orbigny is to take precedence over Rhizocrinus Sars.

On this subject Prof. Zittel remarks, "Nach den Regeln der Priorität gebührt dem Namen Conocrinus D'Orb. die Priorität, wenn gleich die Gattungsdiagnose D'Orbigny's unvollständig und theilwise unrichtig ist."

The type on which D'Orbigny founded Conocrinus was the Bourgueticrinus thorenti of D'Archiac, but his definition of it was so incomplete and so incorrect that, even supposing Sars had not defined Rhizocrinus as elaborately as he did, I should not admit Conocrinus as a valid genus until it had been re-defined. Lütken * remarked, in 1864, that its distinctness from Bourgueticrinus was still a matter of uncertainty. D'Orbigny \(\dagger\) spoke of it as "Genre voisin des Bourgueticrinus, mais sans pièces basales comme les Eugeniucrinus"; and again, "C'est un Bourgueticrinus ayant la tige comprimée, mais avec une seule série de pièces basales." If he considered it as near Bourgueticrinus and as resembling Eugeniacrinus, why did he omit it altogether from the tabnlar scheme of the Apiocrinida, which appears on page 2 of his "Histoire Naturelle des Crinoildes Virans et Fossiles," and contains the names of both those genera? It would seem from his reference to the absence of any tertiary species of Bourgueticrinus on page 96 that he included them all in Conocrinus, which would belong to a different family altogether. This shows how he had misunderstood its real character and affinities, and as a matter of fact his description of it as having no basals is entirely incorrect. They are visible enough in D'Archiac's figures of \(B\). thorenti (the type-species of Conocrinus), and in other closely allied species. Lastly, the remark that Conocrinus is a Bourgueticrinus with a compressed stem, is worthless as a generic description, when the latter genus itself is described as having a round or compressed stem.

The differences between the two types are of an entirely different character from those mentioned by D'Orbigny, which would be absolutely unintelligible in the absence of figures or of original specimens. I feel it only right, therefore, to ignore Conocrinus altogether, and to adopt Sars's well-known genus Rhizocrinus.

The differences between Apiocrinus and Nillericrinus on the one hand, and Bourgueticrinus and Rhizocrinus on the other, have led Mons. do

\footnotetext{
* Loc. cit., p. 212.
\(\dagger\) Prodrome de Paléontologie Stratigraphique Universelle, 1850, Tom. II. p 332.
}

Loriol * to establish a new family Bourgueticrinidue, which comprises the two genera just mentioned, together with Bathycrinus and Mesocrinus, a genus recently proposed by myself. De Loriol also includes in it Ilycrinus of Danielssen and Koren ; but this genus is certainly identical with Bathycrinus, which was founded by Sir Wyville Thomson \(\dagger\) ou an immature specimen dredged by the "Purcupine" in 2435 fathoms, two hundred miles south of Cape Clear. His deseription \(\ddagger\) of the larger species, B. aldrichianus, from the Southern Sea, seems not to have reached the Norwegian naturalists before the publication of their genus Ilycrinus, which was founded on much more developed individuals than that dredged by the " Porcupine."

Of the four genera included in De Loriol's new family, Bourgueticrinus and Rhizocrinus are the two most closely allied. The differences between them are greater than was supposed by Sars, owing to his mistake about the basals of the latter type, and may be summarized as follows : -
Bourgueticrinus. Lower stem-joints not longer than wide ; while one or tro at the top of the stem are much longer t'nan those below, and help to form the "summit." Basals usually wider than high.
Rhizocrinus. Lower stem-joints usually much elongated, two or three times as long as wide. Those just below the calyx are the shortest, often being mere disks. Basals usually much longer than wide, occupying the greater part of the length of the calyx, which expands somewhat from below upwards.

The last type to be mentioned is the remarkable genus Holopus, about which much information will be found in a communication § by Sir Wyville Thomson to the Royal Society of Edinburgh, in 1877. Since the publication of this paper Sir Wyville made a horizontal section of the cup about two thirds of its height from the base. I was never fortunate enough to learn his own views on the subject, but the appearance of the section leads me to believe that the lower part of the cup is formed by basal plates which project inwards and upwards above the level of the outer edges of the radials, just as in Pentacrinus.||

\footnotetext{
* Paléont. Franç., loc. cit., p. 63.
\(\dagger\) The Depths of the Sea, Pp. 450-454, fig. 73 ; and Proc. Ror. Soc. Edinb., Vol. VII. pp. 722, 7 \%3.
\(\ddagger\) "Notice of new Living Crinoids belonging to tho Apiocrinidx," Journ. Linn. Soc. Zoülogy, Vol. XIII. pp. 48-51.
§ "On the Structure and Relations of the Genus Holopus," Proc. Roy. Soc. Eilinb., Vol. IX. p. 400.
|| Schliter (loc. cit., p. 51) is inclined to believe that hasals are present in Cyathidium spileccensc. Like Sir Wyville Thomson, I am unable to dillerentiate Cyathidium from Holopus.
vol. x. - No. 4.
}

Sir Wyville left it an open question whether the articular facets on the upper edge of the calyx-tube belong to the first or to the second radials. I believe myself that they are of the former nature, partly on account of their great resemblance to those of certain fossil species, and partly because the axillaries appear to me to be syzygial or double joints.

Sir Wyville has pointed out that the cup exhibits a very marked division into bivium and trivium ; for "one side of the border is much thicker and considerably higher than the other side, and the three arms articulated to it are much larger than those articulated to the opposite sidc." In fact, the three facets of the trivium are themselves unequal, the centre one being both longer and wider than the other two, which are themselves longer and a little wider than the two facets of the bivium. This want of symmetry in the calyx is very remarkable, as it is precisely similar to that described by De Loriol * in Eugeniacrinus mayalis, from the Leptana bed (Middle to Upper Lias) of Calvados in Normandy. The calyx of this species, formed by the five contignous radials, tapers away downwards to a truncated extremity, which De Loriol supposes to have rested on the top stem-joint, basals being apparently absent.

But although Eugeniacrinus mayalis probably had a short stem, it is certainly very closely allied to Holopus. The calyx as well as the second and third radials are covered with scattered grannles of variable size, just as in Holopus. The two outer radials were united by a muscular joint; but in a closely allied species, \(E\). deslongchampsi, which is more symmetrical and less coarsely granular than \(E\). mayalis, they are united by syzygy, just as I believe to be the case in Holopus. Together with the calyces and separate radials of these two species, the Leptena bed contains a large number of isolated arm joints, \(\dagger\) some of which are extraordinarily like those forming the lower part of a Holopus arm.

One reason why I suspect the axillaries of Holopus to bo syzygial joints is as follows. In one individual the axillaries on the two rays of the bivium are distinctly in two parts, though the sutural lines do not extend right across them. On the three axillaries of the trivium, however, no sutural lines are visible at all ; though they are just traceable in another specimen, and are fairly distinct in a young one 8 mm . high.

The condition of the very young individual which was obtained by the "Blake" at Station 22, and was figured in Volume V. No. 9 of the

\footnotetext{
* Paléontologie Française. Terrain Jurassique, Tom. XI. p. 78, Pl. VIII. figs. 1-5.
\(\dagger\) Loc. cit., Pl. XI.
}
"Bulletins," seems to point to the same conclusion ; for the lower ring of pentagonal (or rather hexagonal) plates must surely be the second radials, and the triangular ones above them the axillaries.

A fragment of a living Ilolopus was dredged by the "Blake" in 120 fathoms, off Montserrat (No. 157). It was preserved in spirit and sent over to Sir Wyville Thomson, who asked me to cut some sections of the arms for him. The condition of the dried individuals hitherto known had led him to suspect " that the tissues are very imperfectly differentiated, almost protoplasmic. When an arm is put into boiliug water it falls to pieces at once, the joints simply coming asunder, and showing no trace of muscular or other organic connection except the axial cords of the joints, which sometimes keep two joints hanging in connection for a little." The spirit specimen, however, told a different tale altogether, and the sections which I have made from it show that the soft parts of Holopus differ but little from those of any ordinary Crinoid. The arm-joints are articulated by means of muscles and ligaments in the usual way. The two large arm-canals, the coliac and the subtentacular, are separated by a smaller genital canal containing the genital cord. This has exactly the same structure as that of any common Antedon, and the ovaries which it bears at intervals are much more like those of Antedon eschrichti in their histological structure than are those of many Comatulce. The ambulacral groove is quite narrow in proportion to the breadth of the arm, and the ovaries extend but a very little way into the pinnules. The branches which leave the axial cords of the arms to supply the pinnules take a somewhat singular course. For they are thrown into loops in a dorsoventral direction, which are small at first, immediately beneath the arm-canals, but become much more marked at the bases of the pinnules, within which the cords still retain an mdulating course.

Above the water-vessel is the usual darkly colored ambulacral epithelium, which is doubtless separated from the water-vessel by the ambulacral nerve and bloodvessel, though I have not been able to see them clearly. There are no large and imbricated reniform plates at the sides of the ambulacra, such as occur in Rhizocrinus, Bathycrinus, and Hyocrinus. But the tentacles are musually large, and taper rapidly from a broad base ; while the lower thick part of the shaft of each tentacle is protected by a well-developed caleareous reticulation, above which are groups of more or less closely united spicules.

Eton College, September, 1882.

\title{
List of Additional Stations of Stalked Crinoids collected by the "Blake." Prepared by J. Walter Fewkes.
}

\section*{RHIZOCRINUS.}

\section*{R. lofotensis Sars.}
* Blake, 187彳-78. No. 35. Lat. \(23^{\circ} 54^{\prime} 46^{\prime \prime}\) N. \(\dagger\) Long. \(88^{\circ} 58^{\prime}\) W. 804 fath.
" 1878-79. No. 238. Off Grenadines ..... 127 "
" " No.248. Grenada ..... 161 "
" " No. 259. Grenada ..... 159 "
" " No. 274. Barbados ..... 209 "
" 1880. No. 306. Lat. \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) N. Long. \(65^{\circ} 55^{\prime} \mathrm{W}\). ..... 524 "
\(\ddagger\) U. S. Fish Com. 1882. No. 1124. S. S.E. Off Nantucket ..... 640 "
R. rawsoni Pourtalès.
Blake, 1878-79. No. 155. Montserrat ..... 88 fathoms.
" " No. 166. Guadeloupe ..... 150 "
" No. 177. Dominica ..... 118 "
" No. 211. Martinique ..... 357 "
" No. 273. Barbados ..... 103 "
" No. 277. Barbados ..... 106 "
" No. 290. Barbados ..... 73 "
" " No. 296. Barbados ..... 84 "
" " No. 297. Barbados ..... 123 "
Capt. E. Cole. Saba Bank . ..... 200 "

\section*{PENTACRINUS.}

\section*{P. asteria Lins.}
* Blake, 1878-79. No. 157. Montserrat . . . . . . . 120 fathoms.

Dr. Schramm.
* The identifications on labels in bottle with specimens, marked in this list with an asterisk, are in Mr. Pourtales's handwriting.
\(\dagger\) In list of Stations, Bull. Mus. Comp. Zoül., VI. 1, p. 9, Lat. reads \(23^{\circ} 52^{\prime}\).
। Verrill, American Journal, November, 1882.

\section*{P. mülleri Oersted.}

P. decorus Wyville Thomson.
\begin{tabular}{ll} 
Blake, 1877-78. No. 21. & Bahia Horda (Cuba) . . . . . 287 fathoms. \\
Cuba. \\
W. Stimpson. & Off Havana (Sigsbee) . . . 150-200 "
\end{tabular}
" " No. 56 or 57. Lat. \(22^{\circ} 9^{\prime} 15^{\prime \prime}\) N., Long. \(82^{\circ} 21^{\prime}\) W.
" 1878-79. No. 100. Off Morro Light . . . . . 250-400 "
Capt. E. Cole. S. side of Porto Rico . . . . . 667 "

Blake, 1878-79. No. 101. Off Morro Light, Havana . . 175-250 "
" " No. 156. Plymouth, Montserrat . . . . . 88 "
" " No. 157. Montserrat . . . . . . . . 120 "
" " No. 233. Milligan's Kev, St. Vincent . . . 174 "
" " No. 296. Barbados . . . . . . . . . 84 "
" " No. 298. Barbados . . . . . . . . . 120 "
Gov. Rawson (ident. by Mr. Pourtalès as P. mïlleri). Barbados. Depth ? Blake, 1880. Kingston (Bartlett) . . . . . . 100 fathoms.
P. blakei P. H. Carpenter.

Blake, 1878-79. No. 209. Martinique . . . . . . . . . 189 fathoms.
" " No. 295. Barbados . . . . . . . . . 180 "

No. 5. - Reports on the Results of Dredging under the Supervision of Alexander Agassiz, on the East C'oust of the United States, during the Summer of 1880, by the U. S. Coust Surrey Steamer "Blake," Commander J. R. Bartlett, U. S. N., Commanding.
(Published by permission of Cablile P. Patterson and J. E. Hilgard, Superintendents U. S. Coast and Geodetic Survey.)

\section*{XIX.}

\author{
Report on the Fisles. By G. Brown Goode and Tarletos II. Beas.
}

The specimens disenssed in the following preliminary report were obtained by Mr. Agassiz in the dredge and trawl, during the summer of 1880, off the eastern coast of the United States between Georse's Bank and a line eastward from the vicinity of Charleston, South Carolina, between north latitude \(31^{\circ} 57^{\prime}\) to \(41^{\circ} 35^{\prime}\), and west longitude \(65^{\circ} 35^{\prime}\) to \(78^{\circ} 18^{\prime}\), at depths varying from 44 to 1632 fathoms.

Many of the same species were obtained by the United States Fish Commission in the deep waters off Newport and Wood's Holl, in 1880, 1881, and 1882, as well as by various Gloncester fishermen collecting on the fishing banks for the National Museum.

Drawings have been prepared to accompany the following descriptions, mainly from material collected by Mr. Agassiz. These are not published in connection with this preliminary report, but are retained for the illustration of a monograph of the deep-sea fishes of the Western Atlantic, which is now in an advanced state of preparation.

Allusion is frequently made in the following pages to the mutilated condition of the specimens sent to us for examination. It seems only fair to ourselves to call attention to the unsatisfactory state of the material investigated, since in some instances our most studions efforts have resulted in only partially complete descriptions. At the same time, it should be said that specimens of fishes brought up from such great depths are rarely perfect after they have been separated from the mass of mud and hard-shelled invertebrates which are usually found in vol. x . - xo. 5 .
the same localities, and that the tanks containing these collections were, for want of space, packed in a part of the ship close to the boiler-room, where, much to their detriment for descriptive purposes, they were partially cooked.

The Selachians collected by the "Blake" were described by Mr. Samuel Garman in the Bulletin of the Muscum of Comparative Zoülogy, Vol. VIII. No. 11. A list of the stations referred to below is given in the same serial, Vol. VIII. No. 4.

\section*{LIST OF SPECIES COLLECTED AT STATIONS 302-346.}

\section*{Pleuronectidæ.}
1. Aphoristia nebulosa, new species.
2. Notosema dilecta, new species and genus.
3. Monolene sessilicauda, Goode.
4. Citharichthys arctifrons, Goode.
5. Glyptocephalus cynoglossus (Lisw.), Gill.

\section*{Macruridæ.}
6. Macrurus Bairdii, Goode \& Beax.
7. Macrurus carminatus, Goode.
8. Macrurus asper, new species.
9. Coryphænoides rupestris, Mǚler.
10. Coryphænoides carapinus, netv species.
11. Chalinura simula, new species and genus.

\section*{Brotulidæ.}
12. Barathrodemus manatinus, new species and genus.
13. Dicrolene introniger, new species and genus.

Gadidæ.
14. Phycis chuss (Walb.), Gill.
15. Phycis tenuis (Mitce.), DeKar.
16. Phycis regius (Walb.), Jor. \& Gilb.
17. Phycis Chesteri, Goode \& Bean.
18. Læmonema barbatula, new species.
19. Haloporphyrus viola, Goode \& Beas.
20. Onos cimbrius (Linn.), Goode \& Bean.
21. Merlucius bilinearis (Mitcir.), Gill.

Lycodidæ.
22. Lycodes Verrillii, Goode \& Bean.
23. Lycodes paxilloides, new species.
24. Lycodonus mirabilis, new sprecies and new genus.
25. Melanostigma gelatinosum, Günther.

Triglidæ.
26. Prionotus alatus, new species.

Agonidæ.
27. Peristedium miniatum, Goode.

Cottidæ.
28. Icelus uncinatus (Reinh.), Kröxer.
29. Cottunculus microps, Collett.
30. Cottunculus torvus, new species, Goode.

Scorpænidæ.
31. Setarches parmatus, Goode.
32. Sebastoplus dactylopterus (De la Roche), Gill.

Carangidæ.
33. Caranx amblyrhynchus ?

Berycidæ.
34. Poromitra capito, new species and genus.

Synodontidæ.
35. Bathysaurus Agassizii, new species.

Alepocephalidæ.
36. Alepocephalus Agassizii, new species.

Halosauridæ.
37. Halosaurus macrochir, GÜvther.

Stomiatidæ.
38. Stomias ferox, Reinhardt.

Sternoptychidæ.
39. Sternoptyx diaphana, Hermann.
40. Argyropelecus hemigymnus, Cocco.
41. Cyclothone lusca, new species and genus.

Scopelidæ.
42. Scopelus Mülleri (Gueliy), Colletr.

Microstomidæ.
43. Hyphalonedrus chalybeius, Goode.

Saccopharyngidæ.
44. Saccopharynx flagellum, Mitchile.

Synaphobranchidæ.
45. Synaphobranchus pinnatus (Grovow), Güvther.

Murænesocidæ.
46. Nettastoma procerum, new species.

Nemichthyidæ.
47. Nemichthys scolopaceus, Richardson.

Leptocephalidæ.
48. Leptocephalus sp. (Perhaps larva of Synaphobranchus.)

Raiidæ.
49. Raia plutonia, Garman (new to this collection).
50. Raia ornata, Garman (new to this collection).

Scylliidæ.
51. Scyllium retiferum, Garasan (new to this collection).

Myxinidæ.
52. Myxine glutinosa, Lisvé.

\section*{LIST OF STATIONS AT WHICH FISHES WERE TAKEN,}

\section*{With an Enumeration of the Species identified from each Station, and the Length of the Individuals.}

Station 302.
1 Phycis sp. Unidentifiable. Young. 61 mm .

Station 303.
25 Macrurus Bairdii. Young and old. \(55-221 \mathrm{~mm}\).
4 Phycis Chesteri. 155-315 mm.
1 Haloporphyrus viola. 332 mm .
1 Icelus uncinatus. 50 mm .
1 Scopelus Mülleri. \(56+\mathrm{mm}\).
12 Synaphobranchus pinnatus. Spawning. 221-393 mm.
1 Nemichthys scolopaceus. 590 mm .
2 empty eggs of Raia sp.

Station 304.
1 fish, perfectly unidentifiable, - mutilated.
Station 305.
6 Coryphrenoides carapinus.
1 Huloporphyrus viola. 450 mm .
Station 306.
12 Macrurus Bairdii. \(121-310 \mathrm{~mm}\).
1 Coryphocnoides rupcstris. 804 mm .
13 Haloporphyrus viola. \(116-375 \mathrm{~mm}\).
3 Cottunculus torvus. \(62-211 \mathrm{~mm}\).
I Stomias ferox. 125 mm .
1 Nemichthys scolopaceus. 395 mm .
1 Myxine glutinosa. 465 mm .
Station 308.
5 Macrurus asper. 178-350 mm.
4 Coryphennides carapinus. \(210,230,268\), and 280 mm .
1 Chalinura simula. 481 mm .
5 Haloporphyrus viola. \(253-372 \mathrm{~mm}\).
1 Halosaurus macrochir. 680 mm .

\section*{Station 309.}

13 Macrurus Bairdii. \(55-283 \mathrm{~mm}\).
1 Macrurus asper. 235 mm .
2 Lycodes paxilloides. \(210-227 \mathrm{~mm}\).
2 Lycodes Verrillii. \(98-135 \mathrm{~mm}\).
1 Phycis tenuis. 620 mm .
2 Merlucius bilinearis.
1 Scopclus Mïlleri. 40 mm .
1 Stomias ferox. 140 mm
35 Synaphobranchus pinnatus. \(278-440 \mathrm{~mm}\).
1 Nemichthys scolopaceus. 530 mm .
1 Myxine glutinosa. 412 mm .
Station 310.
2 Cottunculus microps. 75-108 nim.

\section*{Station 311.}

1 Citharichthys arctifrons. 149 mm .
1 Phycis chuss. 390 mm .
1 Merlucius bilinerris. 505 mm .
1 Sebastoplus dactylopterus. 45 mm .

\section*{Station 312.}

12 Macrurus Bairdii. \(2 \nmid(1)-340 \mathrm{~mm}\).
2 Haloporphyrus viola. \(225-280 \mathrm{~mm}\).
1 Lycodes paxilloùles. 247 mm .
18 Synaphobranchus pinnatus. \(455-180 \mathrm{~mm}\).
Station 313.
8 Citharichthys arctifrons. \(\quad 18-48 \mathrm{~mm}\).
4 Notosema dilecte. 92-114 mm.
1 Prionotus alatus. 137 mm .
1 Raia sp.
2 Mcrlucius bilinearis. Young. \(17-25 \mathrm{~mm}\).

\section*{Station 314.}

2 Citharichthys arctifrons. Young. \(46-57 \mathrm{~mm}\).
3 Monolene sessilicauda. 114-147 mm.
1 Phyris regius. 288 mm .
4 Peristedium miniatum. 68-82.
3 Raia ornata. (Lengths not given ly Garman.)

Station 315.
2 Lamonema barbatula. 88-180 mm.
2 Argyropelecus hemigymmus. \(15-22 \mathrm{~mm}\).
1 larval eel (Leptocephalus). 175 mm .
Station 316.
1 Aphoristia nebulosa. 85 mm .
1 Sternoptyx diaphanus. 19 mm .
2 Macrurus Bairdii. 65-77 mm.
3 Lamonema barbatula. \(81-88 \mathrm{~mm}\).
1 Hyphalonedrus chalybeius. 122 num.
5 Raic plutonia. (Size not given.)
Station 317.
1 Macrurus Bairdii. 185 mm .
1 Chalinura simula. Young. 25 mm .
1 Raia plutonia.
Station 321.
6 Macrurus carminatus. Fragments.
3 Phycis regius. \(221-258 \mathrm{~mm}\).
3 Lamonema barbatula. \(75-120 \mathrm{~mm}\).
1 Merlucius bilincaris. 270 mm .
1 Hyphalonedrus chalybeius. 70 mm .
1 Raia plutonia.
Station 323.
37 Cyclothone lusca. \(50-64 \mathrm{~mm}\).
1 Sternoptyx diaphana. 30 mm .
Station 324.
20 Cyclothone lusca. \(50-57 \mathrm{~mm}\).
1 Caranx amblyrhynchus? 33 mm .
Station 325.
2 Macrurus Bairdii. \(\quad 300-356 \mathrm{~mm}\).
2 Chalinura simula. Young??
7 Dicrolene introniger. \(166-2 / 2 \mathrm{~mm}\).
2 Barathrodemus munatinus. 150 mm .
1 Haloporphyrus viola. 295 mm .
5 Ihalosaurus macrochir. 255-465 mm.
2 Nettastomut procerum. \(440-700 \mathrm{~mm}\).
12 Synaphobranchus pinnatus. \(360-4,5 \mathrm{~mm}\).

Station 326.
21 Macrurus Bairdii. \(\quad 152-280 \mathrm{~mm}\).
1 Macrurus carminatus. 230 mm . Fragmentary.
4 Dicrolene introniger. \(135-250 \mathrm{~mm}\).
1 Cottunculus torvus. 96 mm .
6 Synaphobranchus pinnatus. \(375-545 \mathrm{~mm}\).
Station 327.
1 Onos cimbrius. Young. 72 mm .
2 Setarches parmatus. \(51-52 \mathrm{~mm}\).
1 Peristedium minatum. 65 mm .
5 Hyphalonedrus chalybeius. \(52-58 \mathrm{~mm}\).
1 Myxine glutinosa. 282 mm .
Station 328.
13 Cyclothone lusca. \(49-59 \mathrm{~mm}\).
1 Poromitra capito.
Station 329.
1 Glyptocephalus cynoglossus. Fragments.
1 Macrurus Bairdii. 130 mm .
2 Lycodes Verrillii. \(90-162 \mathrm{~mm}\).
3 Scopelus Mülleri. \(52-64 \mathrm{~mm}\).
4 Synaphobranchuspinnatus. \(300-388 \mathrm{~mm}\).
Station 330.
5 Cyclothone lusca. \(17-55 \mathrm{~mm}\).
1 Nemichthys scolopaceus. 520 mm .
Station 331.
1 Saccopharynx flagellum. Fragmentary.
Station 332.
2 Glyptocephalus cynoglossus. Young. 103 mm .
1 Macrumes sp. Unidentifiable, from mutilation.
1 Macrurus Bairdii. 92 mm .
6 Lycodes Verrillii. \(118-147 \mathrm{~mm}\).
Station 333.
5 Phycis regius. \(168-225 \mathrm{~mm}\).
Station 334.
4 Macrurus Bairdii. 127-348 mm.
1 Glyptocephalus cynoglossus. 282 mm .
1 Melanostigma gelatinosum. 103 mm .
3 Scopelus Mïlleri. 33-52 mm.

Station 335.
6 Citharichthys arctifrons. Young. \(79-103 \mathrm{~mm}\).
1 Scyllium retiferum. 311 mm .
Station 336.
3 Citharichthys arctifrons. Young. 75-89.
7 Phycis Chesteri. 209-286 nm.
2 Macrurus Buirdii. 127-152 mm.
Station 337.
1 Macrurus Bairdii. 239 mm .
1 Haloporphyrus viola. 300 mm .
1 Lycodonus mirabilis. \(112+\mathrm{mm}\).
2 Synaphobranchus pinnatus. \(367-374 \mathrm{~mm}\).
1 Nemichthys scolopaceus. 510 mm .
1 Nettastoma procerum. \(190+\mathrm{mm}\).
Station 338.
1 Coryphenoides carapinus. 225 mm .
1 Alepocephalus Agassizii. 274 mm .
1 Halosaurus macrochir.
Station 341.
1 Coryphcenoides carapinus. Unfit to measure.
1 Bathysaurus Agassizii. 610 mm .
Station 343.
1 Glyptocephalus cynoglossus. 260 mm .
13 Macrurus Bairdii. 245-361 mm.
2 Coryphænoides carapinus. 196 mm . One not measured.
1 Cottunculus torvus. 407 mm .
Station 344.
8 Merlucius bilinearis. Young. \(25-94 \mathrm{~mm}\).
Station 346.
3 Phycis chuss. 340-400 mm.

\section*{PLEURONECTID平.}

\section*{1. Aphoristia nebulosa, new species.}

The extreme length of the type is 85 millimeters. The body is rather slenderer than in other species of the genus ; its greatest height ( 18 mm .) is contained \(4 \frac{2}{3}\) times in the extreme length. The scales are small, rough, about 120 in a longitudinal series; about 50 in a transverse series. Jaws and snont scaleless. The length of the head ( 15 mm .) is contained \(5 \frac{2}{3}\) times in total length. The length of the snout ( 3 mm .) is \(\frac{1}{5}\) that of the head. The eyes are small and close together, being separated by only a single row of scales; the upper eye is very slightly in advance of the lower. The tubular nostril is directly in front of the lower eye, and a little nearer to it than to the tip of snout. The length of the eye ( 2 mm .) is contained \(7 \frac{1}{2}\) times in length of head. The angle of the mouth is about in a vertical through the anterior margin of the lower pupil. Teeth feeble, very slender, and rather closely placed, apparently equally developed on the two sides.

The dorsal fin begins at a point slightly behind the eyes ; it is comnate with the caudal, and contains 119 rays to the middle of the base of the caudal ; the rays about the middle of the fin are the longest, their height being a little more than one third that of the body.

The distance of the anal from the snout ( 20 mm .) is contained \(4 \frac{1}{4}\) times in extreme length ; the longest rays are alout the middle of the fin, their length ( 6 mm .) equalling twice that of the snout. The amal is connate with the caudal, and contains 107 rays, counting to the middle of the base of the latter fin.

The median caudal rays are longest, their length ( 6 mm .) equalling twice that of the snout.

Pectorals none.
The distance of the rentral from the snout ( 15 mm .) is contained \(5 \frac{2}{3}\) times in extreme length. The ventral is separated from the anal by an interspace \(t\) wice as long as the eye. The number of ventral rays is five, the longest of them being one third as long as the head.

The vent is near the origin of the anal.
Color grayish, everywhere mottled with brown. The median keel on the seales dark and prominent.

Radial formula: D. 119 ; A. 107 ; V. 5 ; P. none.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
316 & \(33^{\circ} 7^{\prime}\) & \(78^{\circ} 3 \jmath^{\prime \prime} 30^{\prime \prime}\) & 229 & 1
\end{tabular}

NOTOSEMA, new genus.
Four specimens of a new genus and species, belonging to the Flounder family, were dreilged hy the Blake at Station 313, off Charleston, S. C., at a depth of seventy-five fathoms.

In general appearance and size this species resembles Paralichthys quadro-
cellatus (Gill), Jordan and Gilbert. On account of its elongated ventral fin, the triangular elongation of the anterior rays of the dorsal, and the highly ctenoid character of the scales upon the colored side of the body, it seems necessary to establish for it a new genus.

A genus of pleuronectoid fishes, with elliptical body and pedunculate caudal fin. Mouth moderate in size, and beneath the central axis of the body. Eyes large upon left side, close together, the upper one nearly encroaching upon the profile, the lower slightly in advance of the upper. Teeth in single series in the jaws, about equally devcloped upon each side, much largest in frout; absent on vomer and palatines. Pectoral fins somewhat unequal, that upon the blind side about three fourths as large as its mate. The dorsal fin commences slightly behind the anterior margin of the upper cye, and the first eight rays are separated into a distinct subdivision of the fin, several of them being much prolonged.

Caudal fin pedunculate, rounded posteriorls. Sinistral ventral much elongated. Scales small, ctenoid on colored side of body. Latcral line prominent, strongly arched over the pectoral, alike on both sides. Gill-rakers moterately numerons, rather stout, subtriangular, pectinate posteriorly. Pscudobranchix well developed. Vertebræ 35.

\section*{2. Notosema dilecta, new species.}

Jiagnosis of Species. - Extreme length of specimen described 0.122 mm .
The height of the body is contained twice in its total length, without caudal, and is erqual to twice the distance of the origin of the ventral from the snout. The height of the candal peduncle is one ninth of the standard body length.

The length of the head is two sevenths of the standard length, and three times the diameter of the eyc. Width of interorbital area almost imperceptible. Mandible reaching to middle of pupil of lower eye, its length equal to half that of the head. Upper jaw contained twice and one half in length of head.

The dorsal fin, beginning almost over the anterior margin of the eve, is composed of about 68 rays, the longest of which are the second and thirl, which are contained twice in the greatest leight of the body, and which are almost twice as long as the length of the base of the triangular division of the fin to which they belong.

The anal fin is made up of 54-56 simple rays, of which the posterior ones are largest, as they are also in the main portion of the dorsal. It begins close to the vent, at a distance from the snout equal to the length of the elongated sinistral ventral.

The caudal is pedunculate, its middle rays somewhate elongate, giving it a wedge-shaped outline.

The pectoral of the colored side is subtriangular, its length contained fise and one half times in the standard length.

The ventrals are composed of six rays, that upon the colored side much produced in its anterior portion, its length more than three times that of its mate.

Color on the left side purplish brown, speckled with dark brown, and with three large ocellated subcircular spots, nearly as large as the eye, with white centre, dark iris, narrow light margin, and a brown encircling outline. They are arranged in the form of an isosceles triangle, the spot marking the apex being upon the lateral line, near the base of the caudal peduncle, the others distant from the lateral line, on either side, a space equal to their own diameters, the lower one nearly reached by the tip of the elongate ventral. On the blind side white. Fins blotched with dark brown.

Rarlial formula : D. 69 ; A. 56 ; P. 11 ; V. 6 ; B. 7. Lateral line 48 (in straight portion).
\begin{tabular}{ccccc} 
Station & N. Lat. & W. Long. & Fathoms. & Specimens. \\
313 & \(32^{\circ} 31^{\prime} 50^{\prime \prime}\) & \(78^{4} 45^{\prime}\) & 75 & 4
\end{tabular}

\section*{3. Monolene sessilicauda, Goode.}

Monolene sessilieauda, Goode, Proc. U. S. National Museum, III. 1880, pp. 338, 472. (Nov. 23.)

Three specimens of this species were obtained from Station 314, lat. \(32^{\circ} 24^{\prime}\) N., long. \(78^{\circ} 44^{\prime} \mathrm{W}\)., at a depth of 142 fathoms.

The species has also been found only by the U.S. Fish Commission off Newport, R. I., in 115 to 150 fathoms.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
314 & \(32^{\circ}\) & \(78^{\circ} 4 \cdot 4^{\prime}\) & 142 & 3
\end{tabular}

\section*{4. Citharichthys arctifrons, Goode.}

Citharichthys arctifrons, Goode, op. cit., pp. 341, 472. (Nov. 23.)
Eight young individuals, the longest measuring two inches, were dredged at Station 313, off Charleston, S. C., in 75 fathoms; also, three specimens, badly mutilated, from Station 336, lat. \(38^{\circ} 21^{\prime}\) N., long. \(73^{\circ} 32^{\prime}\) W., in 197 fathoms, and another large one at Station 311, lat. \(39^{\circ} 59^{\prime} 30^{\prime \prime}\), long. \(70^{\circ} 12^{\prime} \mathrm{W}\)., in 143 fathoms. Other small ones were from Station 314.

The peculiar elongated snout, similar to that of Macrurus, is attributable to age.

The species has also been taken by the U. S. Fish Commission off Newport in 83-155 fathoms.
\begin{tabular}{cllcc} 
Station. & \multicolumn{1}{c}{ N. Lat. } & \multicolumn{1}{c}{ W. Long. } & Fathoms. & Specimens. \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime}\) & 143 & 1 \\
313 & \(32^{\circ} 31^{\prime} 50^{\prime \prime}\) & \(78^{\circ} 45^{\prime}\) & 75 & \(? 8\) juv. \\
314 & \(32^{\circ} 24^{\prime}\) & \(78^{\circ} 44^{\prime}\) & 142 & 2 \\
335 & \(38^{\circ} 22^{\prime} 5^{\prime \prime}\) & \(73^{\circ} 33^{\prime} 40^{\prime \prime}\) & 89 & 6 \\
336 & \(38^{\circ} 21^{\prime} 50^{\prime \prime}\) & \(73^{\circ} 32^{\prime}\) & 197 & 3 (had)
\end{tabular}
5. Glyptocephalus cynoglossus (Linn.), Gill.

Pleuronectes cynoglossus, Linvects, Syst. Nat., ed. X., I., 1758, p. 269.
Gilyptocephalus cynoglossus, Gill, Proc. Acad. Nat. Sci., Phila., 1873, p. 161. Goode and Bean, Proc. U. S. Nat. Mus., I., 1878, p. 21 (with extensive synonymy). Goode, op. cit., p. 475.

A single specimen of the Pole Flounder was obtained from Station 343, Lat. \(39^{\circ} 45^{\prime} 20^{\prime \prime}\) N., Long. \(70^{\circ} 55^{\prime} \mathrm{W}\)., in 732 fathoms. The occurrence of this species at such immense depths is noteworthy, since the Fish Commission in the same year obtained it at a depth of 120 fathoms, in almost the same latitude, and within one minute of the same longitude (Station 876).
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
343 & \(39^{\circ} 45^{\prime} 40^{\prime \prime}\) & \(70^{\circ} 55^{\prime}\) & 732 & 1 \\
334 & \(33^{\circ} 20^{\prime} 30^{\prime \prime}\) & \(73^{\circ} 26^{\prime} 40^{\prime \prime}\) & 395 & 1 \\
332 & \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) & \(74^{\circ} 4 S^{\prime}\) & 263 & 2 juv. \\
329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & Frag. of 1
\end{tabular}

\section*{MACRURID届。}

\section*{6. Macrurus Bairdii, Goote \& Bean.}

Mucrurus Bairdii, Goode \& Beax, Amer. Jour. Sci. and Arts, XIV., 1877, pp. 471-473 (Massachusetts Bay). Cat. Fish. Essex Co. and Mass. Bay, 1879, p. 7. Goode, Proc. U. S. Nat. Mus., IIL., 1880, p. 475.

Numerous specimens were obtained from the following stations :-
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
\hline 303 & \(41^{\circ} 3 t^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & \(\bigcirc 5\) \\
\hline 306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 12 \\
\hline 309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 2 z^{\prime}\) & 304 & 13 \\
\hline 312 & \(39^{\circ} 50^{\prime} 45^{\prime \prime}\) & \(70^{\circ} 11^{\prime}\) & 466 & 12 \\
\hline 316 & \(32^{\circ} 7^{\prime}\) & \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) & 229 & 2 jux. \\
\hline 317 & \(31^{\circ} 57^{\prime}\) & \(78^{\circ} 18^{\prime} 35^{\prime \prime}\) & 333 & 1 \\
\hline 325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & \(64 \%\) & 2 \\
\hline 326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} \quad 0^{\prime} 50^{\prime \prime}\) & 464 & 21 \\
\hline 329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & 1 \\
\hline 332 & \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) & \(74^{\circ} 48^{\prime}\) & 263 & 1 jux. \\
\hline 334 & \(35^{\circ} 20^{\prime} 30^{\prime \prime}\) & \(73^{\circ} 26^{\prime} 40^{\prime \prime}\) & 395 & 4 \\
\hline 336 & \(38^{\circ} 21^{\prime} 50^{\prime \prime}\) & \(73^{\circ} 32^{\prime}\) & 197 & 2 \\
\hline 337 & \(38^{\circ} 20^{\prime} 8^{\prime \prime}\) & \(73^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & 1 \\
\hline 343 & \(39^{\circ} 45^{\prime} 40^{\prime \prime}\) & \(70^{\circ} 55^{\prime}\) & 732 & 13 \\
\hline
\end{tabular}

\section*{7. Macrurus carminatus, Goode.}

Macrurus carminatus, Goode, Proc. U. S. Nat. Mus., III., 1880, pp. 346, 475 (Nov. 23).
The Fish Commission obtained individuals in 1880 in the same region, at depths of \(115,155,225\), and 372 fathoms.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(75^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & Fragments of 6 \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ}\) & \(0^{\prime} 50^{\prime \prime}\) & 464 \\
& & & &
\end{tabular}

\section*{8. Macrurus asper, new species.}

The relations of this species appear to be with M. Bairdii, from which it differs in (1.) its longer snout, (2.) the location of the rent, which is much farther back, and (3.) the absence of keels upon any of its scales.

The length of the specimen described is 322 millimeters. The body is much stouter than in M. Bairdii, its greatest height being contained \(6 \frac{1}{2}\) times in its length. The scales are small, strong, the free portions covered with vitreous spines arranged in about seven rows ; there is no specialization of the central row, as in M. Bairdii, though the median spine at the margin of the scale projects most strongly. The number of scales in the lateral line is about the same, there being about 150 ; there are 7 above and 18 below the line.

Length of head contained \(5 \frac{2}{3}\) times in total length. Width of interorbital area a little greater than horizontal diameter of orbit and length of operculum, and contained \(4 \frac{1}{4}\) times in the length of the head. Length of snout about equal to width of interorbital space and about one half the postorbital portion of the head. Snout triangular, depressed, its tip in the axis of the body, and nearly on a level with the lower margin of the eye; its lower surface forming an angle with the body axis, about equal to that formed with same by its upper profile. The superior ridge is pronounced anteriorly, but ends in advance of the concavity in the interorbital space. The lateral ridges are prominent, and continue posteriorly to the eye, with strong angular projections in front of the nostrils. No ridges continued from supraorbital region. Nostrils rather close to the eye. Barbel shorter than the eye. Tip of lower jaw under anterior nostril, cleft of mouth under posterior margin of orbit.

Teeth in the jaws in a very narrow villiform band, the outer series slightly larger : those in lower jaw apparently in single series, moderate.

Distance of first dorsal from snout equal to nearly four times the length of its base, its distance from the anterior margin of the orbit equal to the length of the head. First spine minute ; second spine nearly two thirds the length of the head, and when laid down is far from reaching to the origir of the second dorsal. When the fin is erect, its superior margin is nearly at right angles to the plane of the back, and slightly convex. The distance between the two
dorsals is twice the length of the base of the first, the second beginning in the perpendicular from the fifth ray of the anal.

The anal is about three times as high as the second dorsal. The vent is under the 30th scale of the lateral line directly in adrance of the anal, and at a distance from the ventral considerably greater than the length of that fin, in this respect differing widely from M. Bairdii.

Distance of pectoral from snout slightly more than the length of the head. Its length is less than that of the dorsal spinc, and slightly more than half its distance from the snout. Its insertion (upper axil) is in the middle line of the body.

Insertion of ventral under that of pectoral, and slightly in advance of that of dorsal. Its first ray is not greatly prolonged, and is about half as long as the distance of the fin from the snout.

Radial formula: 1st D. II, 8-9; 2d D. 105 ; A. 110 ; P. 20 ; V. 10. Scales, 7-150-18.

Color dark reddish brown, the spines upon the scales with a metallic lustre.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
308 & \(41^{\circ} 24^{\prime} 25^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & 1242 & 5 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 1
\end{tabular}

\section*{9. Coryphænoides rupestris, Gunnerus.}

Coryphaenoides rupestris, Gunnerus, Thjemske. Selsk. Skr. 3, 1765, p. 50. Collett, Norges Fiske, p. 131.

A specimen was taken at station 306. The species has been sent to the National Museum by Gloucester fishermen.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 1
\end{tabular}

\section*{10. Coryphænoides carapinus, new species.}

Several specimens were obtained from various stations of the "Blake." Most of these had their tails broken off, and all of them were completely demuded of scales, - a natural consequence of their passage in the nets from the ocean depths. By a happy chance, two scales were found attached to the base of the dorsal fin of one of the larger individuals, thus enabling us to determine the general character of the covering of the body. The description of this specics is necessarily meagre.

Diagnosis. - Scales 22 to 24 in a transverse scries; (the position of the lateral line cannot be determined, but there appear to be four above it;) the scales are oval, membranous, without armature, and rather large. The first ray of the dorsal is very short ; the second, compressed anteriorly and serrated, with slender teeth closely appressed and bent upwards. Its length is equal to the length of the head, and is greater than the height of the body. This fin
is seated upon a lump-like elevation of the back, and its base is as long as the snout.

The second dorsal begins over the tenth to trelfth anal ray, and at a distance from the end of the first dorsal equal to the length of the head without the snout. The rent is located not far behind the vertical from the end of the first dorsal.

The snout is acute, projecting beyond the month, its tip at a distance from the mouth equal to or greater than the diameter of the eye. The bones of the head are very soft and flexible, and its surface is very irregular, there being a very prominent subocular ridge, a prominent ridge extending from the tip of the snout to the middle of the interorbital space, and a curved ridge extending from the upper anterior margin of the orbit, over the cavity containing the nostrils, to a prominent point, at the side of, and slightly posterior to tip of the snout. The barbel is two thirds as long as the eye. The eye is contained in the head four times, and the length of the head in the total length six tinies.

\section*{Radial formula: D. II, 8, 100 ; A. 117 ; V. 10.}

The upper jaw extends to the vertical through the posterior margin of the pupil ; its length equals half that of the head without the snout. The mandible extends behind the vertical through the posterior margin of the orbit; its length is contained three times in the distance from the tip of the snout to the origin of the first dorsal.

The interorbital space is almost twice the diameter of the eye, and is equal to the length of the upper jaw. The preoperculum is crenulate.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
308 & \(41^{\circ} 24^{\prime} 45^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & 1242 & 2 \\
308 & \(" 6\) & \("\) & 6 & 2 \\
341 & \(39^{\circ} 38^{\prime} 20^{\prime \prime}\) & \(70^{\circ} 56^{\prime}\) & 1241 & 1 \\
Unknown. & & & & 6 \\
338 & \(38^{\circ} 18^{\prime} 40^{\prime \prime}\) & \(73^{\circ} 18^{\prime} 10^{\prime \prime}\) & 922 & 1 \\
342 & \(39^{\circ} 43^{\prime}\) & \(70^{\circ} 55^{\prime} 25^{\prime \prime}\) & 1002 & 2
\end{tabular}

\section*{CHALINURA, new genus.}

Scales cycloid, flated longitudinally with slightly radiating strix. Snout long, broad, truncate, not much produced. Mouth lateral, subterminal, very large. Head without prominent ridges save the subocular ones, and those upon the snout. The suborbital ridge is not joined to the angle of the preoperculum. Teeth in the upper jaw in a villiform band, with those in the outer series much enlarged ; those in lower jaw uniserial, large. No teeth on vomer or palatines. Pseudobranchis present, but small. Gill-rakers spiny, depressible, stout, in double series on the anterior arch. Branchiostegal membrane apparently free from the isthmus. Ventrals bolow the pectonals. Barbel present.

\section*{11. Chalinura simula, new species.}

A single specimen, 458 millimeters in length, was obtained at Station 308. In some respects it resembles the description of Coryphcenoides affinis, Günther, obtained by H. M. S. "Challenger" at a depth of 1900 fathoms, east of the mouth of the Rio Plata.

The most salient characters are (1.) the very large mouth, (2.) the long obtuse snout, and (3.) the very elongate first ventral ray.

The body is shaped much as in Corypheenoides, but is rather stout, its greatest height being contained \(6_{3}^{2}\) times in its total length. The back is somewhat gibbous in profile, the dorsal outline rising quite rapidly from the interorbital region to the origin of the first dorsal, whence it descends almost in a straight line to the end of the tail.

The scales are rather snall, cycloid, without armature, but with indications, particularly on the head, of radiating strix. The number of scales in the lateral line is about 150, about eight rows between the origin of the clorsal and the lateral line, and 17 to 19 between that line and the origin of the anal.

The length of the head is contained about \(5 \frac{4}{5}\) times in the total length of the body. The width of the interorbital area is a little greater than the long diameter of the orbit, which is equal to that of the snout. The postorbital portion of the head is about three times as long as the diameter of the eye. The length of the operculum is equal to half that of the upper jaw. The preoperculum is emarginate on its posterior limb. The orbit is nearly round, its diameter contained five times in the length of the head. The snout is broad, obtuse, scarcely projecting beyond the mouth ; its width nearly as great at the tip as that of the interorbital space or as its own length. The median ridge is very prominent, gibbous in outline when observed laterally ; the lateral ridges start out almost at a right angle with the median ridge, and are not continued upon the sides of the head. The suborbitals prominent, forming broad subocular ridges. No supraorbital ridges. Nostrils in front of the middle of the eye, and nearer to its anterior margin than to the tip of the snout. Barbel longer than the diameter of the eye.

Teeth in the upper jaw in a broad villiform band, with the outer series very much enlarged. The lower jaw with the teeth in a single series.

Distance of first dorsal from snout \(4 \frac{1}{3}\) times the length of its base, its distance from the anterior margin of the orbit about equal to the length of the head. First spine very short, second rather stout and with a simple serration anteriorly, the serrie closely appressed to the spine (the spines all broken at their tips).

The second dorsal begins at a distance from the first about equal to the length of the upper jaw.

The anal is high, its average rays being about three times as long as those in the dorsal. It is inserted slightly behind the perpendicular from the last rayof the first dorsal. The pectoral is inserted over the base of the ventral (its
rays are mutilated). The ventral is inserted almost under the pectoral, but very slightly in advance ; its distance from the snout is less than the length of its longest ray, which is prolonged in a filament which extends to the base of the 18 th ray of the anal fin.
Radial formula : D. I, IX, 113 ; A. 118 ; P. 20 ; V. 9 ; B. VI.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
308 & \(41^{\circ} 24^{\prime} 45^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & 1242 & 1 \\
317 & \(31^{\circ} 57^{\prime}\) & \(78^{\circ} 15^{\prime} 35^{\prime \prime}\) & 333 & 1 juv. appar- \\
& & & & [ently of this species.
\end{tabular}

Length of adult, 481 millimeters; of young, about 25 millimeters.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & \(6 \pm 7\) & 2 juv., and very \\
& & & [rotten, probably belonging to the above species.
\end{tabular}

\section*{BROTULID卌。}

BARATHRODEMUS, new genus.
Diagnosis. - Body brotuliform, much compressed; head considerably compressed with mouth moderate (in the type species extending to the vertical through the middle of the eye). Eye moderate. Head spineless, except a short flattened spine at the upper angle of the operculum. Snont long, projecting far beyond the tip of the upper jaw, its extremity much swollen. Jaws nearly equal in front. Teeth minute in villiform lands on jaws, vomer, and palatines. Barbel none. Anterior pair of nostrils open and situated at the outer angles of the dilated snout, circular, each surrounded with a cluster of mucous tubes. Posterior nostrils over anterior upper margin of orbit. Gill openings wide, membranes not united. Gills four, with a slit behind the fourth : gill laminx moderate in length. Gill rakers also moderate: not numerous. Pseudobranchix absent : a small, separate caudal fin considerably prolongerl.

Dorsal and anal fins long. Branchiostegals, eight. Body and head covered with small, thin scales, those on the body scarcely imbricated. Lateral line absent (?). Ventrals reduced each to a single bifid ray, close together, far in front of the peetorals.

\section*{12. Barathrodemus manatinus, new species.}

Two specimens of this species of Barathrodemus, six and a quarter inches in length, were obtained at Station 325, lat. \(33^{\circ} 35^{\prime} 20^{\prime \prime}\), long. \(76^{\circ}\), at a depth of 647 fathomes.
Description. - Boly much compressed. Dorsal and anal ontline approaching at an equal angle the horizontal axis. The height of the body is contancel \(7 \frac{1}{2}\) times in its total length withont candal, and \(8 \frac{1}{1}\) times with candal included. Scales small ; about 175 rows between the branchial opening and the tail ; and
about 34 rows, counting upward and forward obliquely from the origin of the anal to the dorsal line. Lateral line apparently absent.

Head considerably compressed, with rounded upper surface, its length contained about six times in total body length; its width contained \(2 \frac{1}{2}\) times in its length; its greatest height equal to two thirds its length. Snout slightly longer than the horizontal diameter of the eye, and projecting beyond the tip of the upper jaw a distance equal to the vertical diameter of the eye ; much dilated and swollen, the anterior pair of nostrils being sitnated at the most salient angles; the snout in general form resembling that of a manatee, whence the specific name.

Mouth moderate ; its cleft extending to the vertical from the centre of the orbit. Length of the upper jaw equal to twice the horizontal diameter of the eye, and contained \(2 \frac{1}{2}\) times in the length of the head. The posterior portion of the maxilla is considerably expanded. The maxilla is largely included within a skinny sheath. When the mouth is closed, the lower jaw is entirely included within the upper. Maxilla toothless. Vomer and palatine bands of teeth more than twice as broad as the bands in the intermaxillaries and on the mandille.

Eye elliptical in form. Its vertical diameter two thirds of its horizontal, the latter being equal to the distance from the tip of the snout to the posterior nostril, and contained \(5 \frac{1}{4}\) times in the length of the head. The distance of the eye from the dorsal outline is equal to half its horizontal diameter, and to one fifth of the height of the head in a perpendicular through the centre of the eye. Interorbital space rounded : its width equal to the horizontal diameter of the eye.

Dorsal fin inserted in the vertical above the insertion of the pectoral, at a distance from the end of the snout equal to that of the insertion of the pectoral.

Anal inserted under the 21st to 23 d dorsal ray, and at a distance from the snout about equal to one third the body length. The height of the dorsal and anal fins is about equal to half the height of the body at the insertion of the anal. Their bases extend almost to the insertion of the caudal.

The caudal is composed of nine rays, the five medial ones almost equal in length, though the tip of the tail is slightly rounded, about equal to the height of the body midway between the branchial opening and the base of the tail.

The ventrals are inserted almost under the middle of the operculum; in length about equal to half the length of the head.

The pectorals are inserted under the origin of the dorsal, and at a distance behind the branchial opening equal to two thirds the vertical diameter of the eye. Their length is equal to the greatest height of the body.

Color, grayish brown. Abdominal region black.
Radial formula: D. 106 ; A. 86 ; C. \(2+5+2\); P. 18-20; V. \(\frac{1}{1}\).
L. lat., ca. 175.
\begin{tabular}{ccccc} 
Station. & N. Lat. & IV. Long. & Fathoms. & Sperimens. \\
325 & \(33^{\circ} 33^{\prime} 20^{\prime \prime}\) & \(7\left(i^{\circ}\right.\) & \(1 i+\%\) & 2
\end{tabular}

\section*{DICROLENE, new genus.}

Diagnosis. - Body brotuliform, moderately compressed ; head somewhat compressed, with mouth large (in the type species extending nearly to the posterior margin of the eye). The tip of the maxillary much dilated. Eye large, placed close to the dorsal profile. Head with supraorbital spines: several strong spines on the preoperculum, and one long spine at the upper angle of the operculum. Snout short, not projecting beyond the upper jaw. Jaws nearly equal in front. Teeth in narrow villiform bands in the jaws on the head of the vomer, and on the palatines. Barbel none. Gill openings wide : membranes not united. Gills four : gill laminæ of moderate length. Gill rakers rather long, not numerous. Pseudobranchiæ absent. A small, separate caudal fin, much prolonged. Dorsal and anal fins long : rays of the pectoral fin arranged in two groups: several of the lower rays being separate and much produced. Ventral fins close together, far in front of the pectorals. Each ventral composed of a single bifid ray. Branchiostegals seven. Body and head covered with small scales. Lateral line close to the base of the dorsal fin, apparently becoming obsolete on the posterior third of the body. Stomach siphonal. Pyloric cæca few, rudimentary. Intestine shorter than body.

\section*{13. Dicrolene introniger, new species.}

Several specimens of a species of Dicrolene were obtained from Stations 325 and 326.

Body moderately compressed, its dorsal and anal outlines approaching at an equal angle the horizontal axis, and tapering to a narrow point, which forms the base of the caudal fin. Scales small, about 110 rows between the branchial opening and the tail, and about 27 transverse rows counting upward and forward obliquely from the origin of the anal. The lateral line rudimentary, running near the base of the dorsal fin at a distance from it less than the diameter of the eye, and apparently becoming obsolete on the posterior third of the body. Body height one sixth of standard length.

Head somewhat compressed, with flattish upper surface, which is encroached upon by the upper margins of the orbit. At the posterior upper margin of each orbit is a strong spine pointing backward and upward; a long sharp spine at the upper angle of the operculum, its exposed portion as long as half the diameter of the eye. Preoperculum, on its lower posterior border, with three equidistant spines much weaker than that of the operculum. Large muciferous cavitics in the bones of the head : a row of large cavities extending backward from the upper angle of the orbit, and continuous with those on the lateral line. Month large : its cleft considerably longer than half the length of the head, and the maxillary extending behind the vertical from the posterior margin of the orbit. The posterior portion of the maxillary much expanded, its width at the end equal to three fourths the dianeter of the eye. Upon its
expanded tip are scales. Eye large, one fourth as long as head, and as wide as the interorbital space. Length of hearl one fifth standard length.

Dorsal fin inserted at a distance from the snout equal to two ninths the length of the body.

Anal inserted under the vertical from the 25 th or 26 th dorsal ray. The height of the dorsal and anal fins is about equal to the diameter of the eye. Their bases extend almost to the insertion of the caudal.

The caudal is composed of six or seven rays : its length equal to half the distance from the snout to the insertion of the dorsal.

The ventrals inserted almost under, but slightly posterior to, the posterior limb of the preoperculum, in length about equalling the upper jaw.

Pectorals inserted close to the branchial aperture ; the eight lower rays being free and much prolonged, the longest and most anterior being nearly one third as long as the body, and more than three times as long as the contiguous posterior ray of the normally-constructed portion of the fin, which is, however, about equal to the last of the free rays. The free portion of the pectoral beins longer, and composed of fewer rays, than the nomal portion, the fish has the appearance of bearing two pectoral fins of the same general shape, the lower of which is the longer. The length of the normal portion of the fin is contained about four times in the length of the body.

Radial formula: D. 100 ; A. about 85 ; C. 6 or 7 ; V. \(\frac{1}{1}\); P. \(19+7\) or 8. L. lat. 110-120.
\begin{tabular}{cccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 464 & 4 \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & & 647 & 7
\end{tabular}

\section*{GADID用.}

\section*{14. Phycis chuss (Walb.), Gill.}

Blennius cluss, Walbaum, Artedi, 1792, p. 186.
Phycis chuss, Gill, l'roc. Acad. Nat. Sci. Phila., 1862, p. 237.
This species occurred at the fullowing stations.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathnms. & Specimens. \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(700^{\circ} 12^{\prime}\) & 143 & 1 \\
340 & \(40^{\circ} 25^{\prime} 35^{\prime \prime}\) & \(71^{\circ} 10^{\prime} 30^{\prime \prime}\) & 44 & 3
\end{tabular}

\section*{15. Phycis tenuis (Mitch.), Deray}

Gadus tenuis, Mitcmile, Trans. Lit. © Phil. Soc. N. Y., 1S14, p. 372.
Phycis temuis, Dekiar, Zoül. New York, Fishes, 1842, p. 293.
Taken in the following locality.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & N. Lat. & W. Leng. & Fathoms. & sperimen. \\
\hline 309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) &  & :34 4 & 1 \\
\hline
\end{tabular}

\section*{16. Phycis regius (Walb.), Jorday \& Gilbert.}

Blennius regius, Walbady, Artedi, 1702, p. 186.
Urophycis regius, Gill, Proc. Acad. Nat. Sci. Phila., 1863, p. 240.
Phycis regius, Jordan \& Gilbert, Proc. U. S. Nat. Mus., I., 1878, p. 371. Goode \& Bean, Cat. Fish. Essex Co. and Mass. Bay, 1879, p. 8; Bean, Proc. U. S. Nat. Mus., III. p. 70; Goode, ibid., p. 476 (with synonymy).

Specimens of this beautiful Hake were obtained at depths of 142 and 233 fathoms. Prof. Agassiz and the officers of the "Blake" had their attention forcibly attracted to a singular power of emitting electric shocks possessed by this fish. This peculiarity has never been noticed in this species save in deep water. The attention of observers is called to this interesting point.
\begin{tabular}{cllcc} 
Station. & \multicolumn{1}{c}{ N. Lat. } & W. Long. & Fathoms. & Specimens. \\
333 & \(35^{\circ} 45^{\prime} 25^{\prime \prime}\) & \(74^{\circ} 50^{\prime} 30^{\prime \prime}\) & 65 & 5 \\
314 & \(32^{\circ} 24^{\prime}\) & \(78^{\circ} 44^{\prime}\) & 142 & I \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & 3
\end{tabular}

\section*{17. Phycis Chesteri, Goode \& Bean.}

Phycis Chesteri, Grode \& Bean, Proc. U. S. Nat. Mus., I., 1878, p. 256 ; Cat. Fish. Essex Co. and Mass. Bay, 1879, p. 8; Goode, Proc. U. S. Nat. Mus., III. p. 476.

Numerons specimens of this fish were taken at various depths. These collections confirm the view expressed after a study of the collections made by the Fish Commission in the sane year ; namely, that Phycis Chesteri and Macrurus Bairdii appear to be the most abundant fishes in the continental slope from 140 to 500 fathoms, occurring in immense numbers and breeding copiously.

Following is a list of the stations.
\begin{tabular}{cclcc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
Unknown. & \(30^{\circ} 21^{\prime} 50^{\prime \prime}\) & \(73^{\circ} 32^{\prime}\) & & 5 \\
336 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 197 & 7 \\
303 & & 306 & 4
\end{tabular}

LIEMONEMA, Güntier.
Lacmonema, Güntiler, Cat. Fish. Brit. Mıs., IV., p. 356, 1862.
18. Læmonema barbatula, new species.

Head contained in borly (without courlal) \(4 \frac{2}{3}\) times; height of body \(4 \frac{1}{2}\) times Diameter of orbit in length of head three times, upper jaw a little more than twice. Barhel half as long as the dianeter of the eve. Vent situated under the sixth or seventh ray of secund dorsal. Distance of first forsal from snout
equal to one fourth standard length of body. The base of the first dorsal is half as long as the middle caudal rays ; that of the second, slightly more than three times the length of the head. The first dorsal is composed of five rays, the first of which is elongate, three times as long as the middle caudal rays: it extends to the base of the twenty-fourth ray of the second dorsal. Anal fin inserted at a distance from the tip of the snout equal to twice the length of the head, its distance from the insertion of the ventrals being equal to the length of the head. The length of the ventrals is equal to that of the pectorals, their tips not extending to the vent.

Scales small, very thin, deciduous, crowded anteriorly. Lateral line not well defined on the posterior part of the body.

Radial formula: B. VII ; D. 5-63; A. 59 ; P. 19 ; V. 2.
Scales 13-140-31.
Color similar to that of the various species of Phycis; the dorsal and anal fins have narrow black margins.

The length of the first dorsal ray is very variable in individuals, being shorter in younger specimens.

This species differs from L. Yarrellii by its much smaller scales, and from L. robustum by the greater number of rays in the dorsal and anal fins, and its much shorter ventrals.

Specimens of this species were obtained at the following stations of the steamer "Blake."
\begin{tabular}{ccccc} 
Station. & N. Lat. & W, Long. & Fathoms. & Specimens. \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & 1 and 1 1art of 1 \\
315 & \(32^{\circ} 18^{\prime} 20^{\prime \prime}\) & \(78^{\circ} 43^{\prime}\) & 225 & 2 \\
316 & \(32^{\circ} 7^{\prime}\) & \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) & 229 & 3
\end{tabular}

A single specimen was also obtained by the Fish Commission steamer "Fish Hawk" in Lat. \(38^{\circ} 35^{\prime} \mathrm{N}\)., Long. \(73^{\circ} 13^{\prime} \mathrm{W}\)., at a depth of 312 fathoms, Oct. 10, 1881 (U. S. Nat. Mus., No. 29,046).

\section*{MEASUREMENTS.}

Distance from snout to orbit ..... 9
Diameter of orbit ..... 11
Dorsal (first). Distance from snout ..... 40
Length of base ..... 9
Length of longest ray ..... 54
(second). Length of base ..... 105
Length of first ray ..... 14
Length of longest ray ..... 17
Anal. Distance from snout ..... 65
Length of base ..... 86
Length of first ray ..... 7
Length of longest ray ..... 16
Length of last ray ..... 3
Caudal. Length of middle rays ..... 18
Pectoral. Distance from snout ..... 36
Length ..... 25
Ventral. Distance from snout ..... 30
Length ..... 25
Branchiostegals ..... VII
Dorsal ..... 5-63
Anal ..... 59
Caurlal
Pectoral ..... 19
Ventral ..... 2
Number of scales in lateral line ..... ca. 140
Number of transverse rows above lateral line ..... 13
Number of transverse rows below lateral line ..... 31

\section*{19. Haloporphyrus viola, Goode \& Bean.}

Haloporpliyrus viulu, Goode \& Beas, Proc. U. S. Nat. Mus., I. pp. 25ī-260, Dec. \(17,1878\).

Specimens were obtained at the following stations.
\begin{tabular}{ccccc} 
Station & N. Lat. & \multicolumn{2}{c}{ W. Long. } & Fathoms. \\
305 & \(41^{\circ} 33^{\prime} 15^{\prime \prime}\) & \(65^{\circ} 51^{\prime} 25^{\prime \prime}\) & 810 & Specimens. \\
308 & \(41^{\circ} 24^{\prime} 25^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & 1242 & 5 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 13 \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & 647 & 1 \\
312 & \(39^{\circ} 50^{\prime} 45^{\prime \prime}\) & \(70^{\circ} 11^{\prime}\) & 466 & 2 \\
Unknown. & & & & 1 \\
337 & \(35^{\circ} 20^{\prime} 88^{\prime \prime}\) & \(73^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & 1 \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 1
\end{tabular}

\section*{20. Onos cimbrius (Linn.), Goode \& Bean.}

Gadus cimbrius, Linn., Syst. Nat., ed. XII., 1766, p. 440.
Onos cimbrius, Goode \& Bean, Proc. U. S. Nat. Mus., I. p. 349, Feb. 14, 1879.
A single specimen, 70 nm . long, of a species of Onos, apparently 0 . cimbrius, was taken at Station 327. It was in fragments when received.
\begin{tabular}{cccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
327 & \(34^{\circ}\) & \(0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 1 bad.
\end{tabular}

\section*{21. Merlucius bilinearis (Mitch.), Gili.}

Stomodon bilinearis, Mitcuill, Rep. Fish. N. Y., 1814, p. 7. Merlucius bilinearis, Gill, Cat. Fish. E. Coast N. A., 1861, p. 48.

Specimens mostly young were obtained at several stations enumerated below. A reference to the list of stations will show that the very young, not more than 25 millimeters in length, were secured.
\begin{tabular}{cclcc} 
Station. & N. Lat. & \multicolumn{1}{c}{ W. Long. } & Fathoms. & Specimens. \\
313 & \(32^{\circ} 31^{\prime} 50^{\prime \prime}\) & \(78^{\circ} 45^{\prime}\) & 75 & 2 \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime}\) & 143 & I \\
321 & \(32^{\circ} 43^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & 1 \\
344 & \(40^{\circ} 1^{\prime}\) & \(70^{\circ} 58^{\prime}\) & 129 & 8 juv.
\end{tabular}

\section*{LYCODID.蛋.}
22. Lycodes Verrillii, Goode \& Bear.

Lycodes Verrillii, Goode \& Bean, Amer. Jour. Sci. and Arts, Vol. XIV., Dec., 18it, pp. 474-476.

This species was collected at the three following stations.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 2 \\
329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & 2 \\
332 & \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) & \(74^{\circ} 4 S^{\prime}\) & 263 & 6
\end{tabular}

\section*{23. Lycodes paxilloides, new species.}

This species resembles Lycodes paxillus, Goode \& Bean, in many respects, but differs markedly in the smaller mouth and less prominent cheeks.

Diagnosis. - The length of the head is contained about eight times in the total length. The greatest height of the boty is about half the length of the head. The dorsal begins over the end of the extended pectoral : its distance
from the tip of the snout is contained \(4 \frac{2}{3}\) times in the total length ; that of the anal from the snout, \(3 \frac{1}{3}\) times. The vent is immediately in front of the anal. The length of the pectoral equals one half that of the head, or a little more. The distance of the ventral from the snout is contained \(8 \frac{1}{2}\) times in the total length. The length of the rentral is scarcely more than that of the pupil. The interorbital space (on the skull) is about one fourth the length of the snout, which is about equal to that of the eye, which is contained \(3 \frac{1}{2}\) times in the length of the head. The tubular nostril is much nearer the tip of the snout than to the cye. The scales are very small, present everywhere excepit on the head and the pectorals, extending almost out to the margin of the vertical fins. Dorsal (with half of caudal) 118 rays; anal (with half of canclal) 110. Pectoral 16, ventral 3. Color light brown, the head somewhat darker.

Specimens were obtained at the following places.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 2 \\
312 & \(39^{\circ} 50^{\prime} 45^{\prime \prime}\) & \(70^{\circ} 11^{\prime}\) & 466 & 1
\end{tabular}

LYCODONUS, new genus.
This genus is in nearly every particular like Lycodes, from which, however, it is distinguished by the peculiar structure of the dorsal and anal fins.

Diagnosis. - Body blenniform, elongate. Scales small, circular, imbedded in the skin. Lateral line very short, posteriorly obsolete. Eye moderate. Jaws without fringes. Upper jaw longer than lower. Fin rays soft, articulated ; those of the dorsal and anal fins supported laterally, each by a pair of sculptured cctodermal scutes or plates. Caudal distinct ; not fully connate uith dorsal and anal, few-rayed. Ventrals present, jugular each composed of a few slender deeply cleft articulated rays. Gill opening rather narrow: Branchiostegal membranes broadly joined to the isthmus. Teeth as in Lycodes. Psendobranchix apparently present. Branchiostegals apparently five. Gill arches four. Gill rakers rudimentary, in moderate number. Air bladder and pyloric cæca apparently absent.

\section*{Lycodonus mirabilis, new species.}

The body is shaped much as in Lycodes Verrillii; its greatest leight, at origin of dorsal, containel about eighteen times in the length of the body. Scales as in Lycodes, the scales not extending out upon the fins. The head and nape are also scaleless. Lateral line apparently obsolete posteriorly, not extending back of the extremity of the pectoral.

The length of the head is contained about seven times in the entire length. The diameter of the eve is contained \(2 \frac{1}{2}\) times in the length of the heal, and is about equal to the postorbital portion of the head. The eye is phaced high, the wilth of the interorbital space heing less tham the diameter of the pupil, and
contained \(3 \frac{1}{2}\) times in the long diameter of the eye. Nostrils immediately in front of the eye. Teeth as in Lycodes. The maxilla extends to the vertical through the anterior margin of the pupil ; the mandible, to a little behind the vertical through the posterior margin of the pupil.

The dorsal fin is inserted slightly behind the vertical through the base of the pectoral ; the portion of the fin present in the mutilated specimen before us contains 80 articulated rays. The first ten or eleven scutes do not support rays, but whether rays were originally present or not cannot now be ascertained. The longest dorsal ray is about equal to the longest anal ray, its length being contained about three times in that of the head. The distance of the vent from the snout is twice the length of the head; the anal begrins immediately behind the vent ; it consists at present of about 70 articulated rays. The caudal rays extend beyond the tips of the ultimate dorsal and anal rays; they are about 9 in number.

The distance of the ventral from the snout is equal to twice the length of the upper jaw ; the middle ventral ray is the longest, it being half as long as the postorbital part of the head.

The length of the pectoral equals three times that of the snout.
Radial formula : D. \(80+\); A. \(70+\); C. 9 ; P. 18 ; V. 3.
The single mutilated specimen was from Station 337 . It measured 112 millimeters in its imperfect condition.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
337 & \(35^{\circ} 20^{\prime} 8^{\prime \prime}\) & \(73^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & 1
\end{tabular}

\section*{25. Melanostigma gelatinosum, Güxtuer.}

Melunostigma gelutinosum, Günther, Proc. Zoül. Soc. London, 1881, Part 1, Jan. \&, p. 21 (genus, p. 20), Pl. II. fig. \(\Lambda\).

A single greatly mutilated specimen, 103 mm . long, was obtained.
It has since been taken by the U. S. Fish Commission, in the deep water off Martha's Vineyard.

This species was described from a specimen obtained, January 16, 1850, bỵ Dr. Coppinger, of H. M. S. Steamer "Alert," at Tilly Bay in the Straits of Magellim, in 24 fathoms. Dr. Giinther remarks (op. cit., p. 21), "The fish is evidently habitually living at a greater depth than that at which Dr. Coppinger happened to obtain the single specimen in his collection." This does not seem to us to be necessarily a logical conchnsion, since, as is well known to those who have studied the distribution of deep-sea forms in the Western Atlantic, those which are found at great depths in temperate seas are shore inhabitants in seas near the poles.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Lang. & Fathoms. & Sperimen \\
334 & \(35^{\circ} 20^{\prime} 30^{\prime \prime}\) & \(73^{\circ} 26^{\prime} 40^{\prime \prime}\) & 395 & 1 (frayment:)
\end{tabular}
rol. X. - No. 5.
14

\section*{TRIGLID平.}

\section*{26. Prionotus alatus, new species.}

A single specimen of a new species of Prionotus was obtained off Charleston, S. C., in the same haul with the pleuronectoid described above under the name Notosema dilecta. This species belongs to the group referred by Jordan to the subgenus Ornichthys of Swainson.

Description. - A Prionotus with the body normal in form, rather robust : its greatest beight equal to one fourth its length without caudal, and nearly equal to one fifth of the total length ; its greatest width one fifth of its greatest length without caudal ; the least height of tail contained twelve times, or nearly so, in the standard body length, and three times in the height of the body.

Scales small and much pectinate, there being in the lateral line about one hundred vertical rows of scales, about fifty of which are tube-bearing and specialized. The number of rows, counting diagonally around the body from the origin of the anal, is twenty-one below and seven above the lateral line. The length of the head to the tip of the preopercular spine is contained two and a half times in the standard body length, and very little more than three times in the total length. The width of the head is equal to its height. The upper limb of the orbit encroaches upon the upper profile of the head, and the centre of the pupil is equidistant from the tip of the snont and the tip of the prolonged preopercular spine. The length of the snout, measured obliquely from the anterior margin of the orbit, is equal to that of the postorbital portion of the head to the end of the opercular spine. At the lower angle of the preoperculum is a robust spine, curving slightly upwards, the length of which is equal to that of the first dorsal ray. This spine is serrated upon its outer edge, and has a small spine at its base, which is also serrated. The tip of the spine extends to the perpendicular from the centre of the interspace between the third and fourth dorsal spines; while that of the humeral spine extends to the perpendicular from the interspace between the fourth and fifth, and that of the opercular, to the perpendicular from the centre of the base of the third. There is a strong scapular spine, which extends back to the posterior edge of the second dorsal spine.

The length of the upper jaw is equal to one third that of the head. The palatine teeth are in short feeble bands, hardly perceptible even with a strong magnifying-glass. Gill rakers, six in number, besides several rudimentary nnes, five being below the angle, and the longest equal in length to one thirl the diameter of the cye.

The first dorsal fin is inserted above the tip of the upper opercular spine, and at a distance from the snout equal to twice the length of the fourth dorsal spine. The height of the first dorsal spine, which is equal to that of the thirl, and slightly less than that of the sccond, equals half the length of the head.

Its anterior margin is strongly serrated, while those of the second and third spines are less markedly so. The length of base of first dorsal equals the greatest height of bory: the distance between its insertion and that of the second dorsal fin is equal to the length of the longest and superior detached pectoral ray. The second dorsal fin is inserted in the perpendicular over the interspace between the second and third anal rays : the length of its longest ray equals twice the least height of tail, and the length of its base equals the greatest length of the ventral rays. Its first ray is conspicuously serrated on its anterior edge.

The insertion of the anal fin is in the perpendicular below the end of the first dorsal fin : the length of its longest ray is equal to half that of the middle caudal rays.

The caudal is truncated, very slightly emarginate.
The pectoral is very peculiar in structure, its longest ray, the 9th, reaching to the base of the caudal rays, and equal in length to four times that of the fourth dorsal spine. The loth ray is a little bit shorter, extending nearly to the end of the soft dorsal. The 11th, 12th, and 13th rays are graduated, decreasing in regular proportion, the 13th being less than one fourth as long as the 10th. The 8th is about midway, between the 10th and 11th: the 1 st is slightly longer than the 12th, and those intermediate between the lst and the 8th are graduated in length, so as to form a rounded outline for the anterior, or upper, portion of the fin. The pectoral appendages are slender, the third being slightly greater in length than the 13th ray, being two thirds as long as the first, while the second is intermediate between the other two.

The ventral is inserted directly under the base of the pectoral appendages : its first spine about equal in length to the preopercular spine from the base of the supplemental spines ; its longest, the third and fourth, exactly equal in length to the base of the second dorsal.

Color, brownish above, with about four indistinct transverse band-like blotches, one of which is on the base of the caudal ; whitish beneath. Vertical fins uniform, the tips of the caudal rays blackish, with two indistinct cloud-like bands in advance of the terminal band thus formed. A black blotch, with whitish anterior margin on the membrane between the fourth and fifth dorsal spines; a very inconspicnous blackish spot on the membrane between the fifth and sixth; others still less conspicuous on the succeeding interspaces. The pectoral blotched and clouded with blackish brown and white.

Radial formula: D. X, 12 ; A. 11 ; C. \(3-7+5-4\); P. \(13+3\); V. I, 5.
L. lat. about 100. Tube-bearing scales, about 50.
\begin{tabular}{ccccc} 
Station & N. Tast. & W. Long. & Fathoms. & Specimen. \\
313 & \(32^{\circ} 31^{\prime} 50^{\prime \prime}\) & \(78^{\circ} 45^{\prime}\) & 75 & 1
\end{tabular}

\section*{AGONID杘．}

\section*{27．Peristedium miniatum，Goode．}

Peristedium miniatum，Goode，Proc．U．S．Nat．Mus．，III．pp．349，350，Nov．23， 1880.
Young individuals were trawled at the following stations．
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimens． \\
327 & \(34^{\circ} 00^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 1 \\
314 & \(32^{\circ} 24^{\prime}\) & \(78^{\circ} 44^{\prime}\) & 142 & 4
\end{tabular}

\section*{COTTID開。}

28．Icelus uncinatus（Reinhardt），Krörer．
Cottus uncinatus，Reinhardt，＂Orers．Kgl．D．Vid．Selsk．Naturv．Math．Afh． 6 Del．，p．xliv．，Copenhagen， 1837 （1833－34）．＂
Icelus uncinatus，Krörer，Naturh．Tidssk．， \(2^{\text {ser．，B．I．，p．263，} 1844 .}\)
Centridernichthys uncinatus，Güxther，Catalogue of the Fishes in the British Mu－ seum，II．，1860，p．172．Collett，Norske Nordhavs－Expedition，1876－78， Fiske，p．29，pl．1，fig． 7.

A single specimen，much mutilated，was taken at Station 303.
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimen． \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 1
\end{tabular}

\section*{29．Cottunculus microps，Collett．}

Cotunculus microps，Collett，Norges Fiske，\(\Lambda\) ppendix to Forh．Vidensk．Selskab．， Christiania，1874，p．20，pl．1，figs．1－3．Norske Nordhavs－Expedition，Fiske， 1880，p．18，pl．1，figs．5， 6.

Taken at only one station．Two small examples secured．
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimens． \\
310 & \(39^{\circ} 59^{\prime} 16^{\prime \prime}\) & \(70^{\circ} 18^{\prime} 30^{\prime \prime}\) & 260 & 2
\end{tabular}

30．Cottunculus torvus，Goode，new species．
Cottunculus tortus，Goode，Proc．U．S．Nat．Mus．，III．p． 479 （name only）．
Diagnosis．－Head and hody smooth，scaleless，covered with a tough lax skin．The length of the head is nearly one third of the extreme length of the body including the caudal；its greatest height，one fourth of the body without the caulal．The greatest width of the head is twice the length of the maxilla． The distance of the vent from the insertion of the anal equals the leugth of the maxilla．The eye is close to the dorsal profile．The length of the orbit is about
equal to that of the snout, and is contained about four and a half times in the greatest length of the head. The intermaxillary is long and slender, its length contained slightly more than three times in the distance from the tip of the snout to the insertion of the first dorsal (three and one third times in the length of the head). The maxilla is very slender, except in its posterior third, where it is considerably expanded. The mandible is very stout, posteriorly widened, its length contained nearly two and one third times in that of the head. Teeth in broad villiform bands on the intermaxillary and the mandible. Two short separate similar bands on the vomer. None on the palatines.

Head armed with blunt spines, as in C. microps.
The distance of the dorsal from the tip of the snout is nearly equal to one third of the total length, caudal included. It consists of six spines and seventeen rays.

The anal fin is located midway between the tip of the snout and the end of the caudal fin ; it consists of thirteen rays.

The length of the upper pectoral rays is equal to that of the postorbital portions of the head. The pectoral rays diminish rapidly in size, the lowest being exceedingly short. The number of rays is twenty-two. The distance of the ventral from the tip of the snout is one third of the total length without the caudal. The length of the free portion of the ventral equals that of the eye The fin consists of one spine and three rays.

The caudal consists of ten developed rays.
Color light brown, the fins somewhat darker.
This species was first noticed in the Fish Commission collections of 1880, and was mentioned by name in a paper published in that year by Mr. Goode. No deseription accompanied this name, and the author of it has no excuse to offer for following a practice which is so pernicious and indefensible.

Specimens were obtained as follows :-
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 3 \\
343 & \(39^{\circ} 45^{\prime} 50^{\prime \prime}\) & \(70^{\circ} 55^{\prime}\) & 732 & 1 \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) & 464 & 1
\end{tabular}

\section*{SCORP \(\mathrm{E}_{\mathrm{E}} \mathrm{NID}\).}

\section*{31. Setarches parmatus, Goode.}

Setarches parmatus, Goode, Proe. U. S. Nat. Mus., III. pp. 480, 481, Feb. 16, 1881.
Two specimens, respectively 53 mm , and 52 mm . long, were taken at Station 327, Lat. \(34^{\circ} 0^{\prime} 30^{\prime \prime}\), Long. \(76^{\circ} 10^{\prime} 30^{\prime \prime}\), at a depth of \(1 / 8\) fathoms. These specimens and the type of the species are the only three examples known.
\begin{tabular}{cccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & specimens. \\
327 & \(34^{\circ}\) & \(0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 2
\end{tabular}

\section*{32. Sebastoplus dactylopterus (De la Roche), Gill.}

Scorpcè̀a dactyloptera, De la Roche, Ann. Mus., XIII., pl. 22, fig. 2 (fide Günther, Cat. Fish. Brit. Mus., II. p. 99.
Sebastoplus dactylopterus, Gile, MS.
A single young specimen was taken. The U. S. Fish Commission has since secured many young and adult.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
311 & \(39^{\circ} 59^{\prime} 30^{\prime \prime}\) & \(70^{\circ} 12^{\prime}\) & 143 & 1
\end{tabular}

\section*{CARANGID \(\underset{\text { A. }}{ }\)}

\section*{33. Caranx amblyrhynchus, Cev. \& Val.?}

Caranx amblyrhynchus, Cev. \& Val., Hist. Nat. Poiss., Vol. IX. p. 100, pl. 248.
A single young individual, apparently of this species (D. VIII, i, 27 ; A. II, i, 24 ; V. I, 5 ; L. lat. ca. 39), was taken at Station 324 ; its length is 33 mm . In all probability the fish was caught near the surface, while the trawl was on its way up, and not on the bottom.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
324 & \(33^{\circ} 2 \mathbf{1}^{\prime} 20^{\prime \prime}\) & \(75^{\prime} 53^{\prime} 30^{\prime \prime}\) & 1386 & 1
\end{tabular}

\section*{BERYCID \(\mathbb{E}\).}

POROMITRA, new genus.
A single individual, \(1 \frac{1}{4}\) inches long, was obtained at Station 328, and another one of about the same length is in the collection without locality. The species comes to us in such a dilapidated condition, that it is impossible to make a satisfactory diagnosis of its characters. It seems to differ widely from anything heretofore described. As it is, we simply describe it under a new generic name, and at present shall refer it to Berycide, to which, as we now view it, it appears to be related.

Provisional Diagnosis. - Borly short, compressed, scopeliform, covered with thin cycloid seales. Head very large, nearly half the entire length of the fish to base of caudal, with scales upon cheeks, suboperculum, and probably elsewhere. No barbel. Mouth very large, the lower jaw projecting. Margin of upper jaw composed of a short intermaxillary and a long maxillary. Teeth cardiform, numerons, very small, on the intermaxillaries and mandibles. None discovered on maxillaries, palatines, or vomer. Opercular apparatus complete.

Dorsal fin in the middle of the body, its origin not far behind that of the ventrals, the spinous and soft portions subequal in length. Anal much shorter than dorsal, its middle under the end of the dorsal, or nearly so. Pseudobranchix present. Gill openings very wide, separate.

\section*{34. Poromitra capito, new species.}

The height of the body is two sevenths of its length to base of caudal rays; its width about one half its height. Scales as large as the pupil, with concentric strix, about twenty-four in the lateral line, and about ten in the transverse series.

Head about two fifths of standard length, somewhat resembling in appearance that of Alepocephalus Bairdii. The eye is large, circular, located normally. The length of the upper jaw is three sevenths that of the head; that of the lower jaw about one half. The end of the maxillary is nearly in the perpendicular from the posterior limb of the pupil. The length of the snout is about equal to the least diameter of the eye. The distance from the limb of the preoperculum to the end of the opercular flap is equal to that from the tip of the snout to the posterior margin of the orbit. Teeth as described in generic diagnosis. Dorsal fin inserted midway between tip of snout and origin of middle caudal rays. The fin is mutilated and its outline cannot be determined ; it is composed of seven or eight spines and six soft rays, and the length of its base is nearly equal to the height of the body at its insertion.

The anal fin is inserted in the perpendicular from the base of the eighth dorsal ray. It is composed of nine rays, and the length of its base is half that of the dorsal base.

The pectoral is inserted far below the axis of the body, and with a single scale between its axil and the branchial opening. Its length is twice the distauce of its insertion from the snout.

The ventral is minute (apparently, and is inserted in advance of the pectoral) ; it has apparently seven or eight rays.

The caudal is mutilated, but apparently composed of fifteen rays.
Radial formula : D. VII or VIII, 6 ; A. 9 ; V. 7 or 8 ; P. 12 ; C. 15.
Two examples were secured, - one from an unknown locality. The list follows.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
No locality slip. & & & 1 \\
328 & \(34^{\circ} 28^{\prime} 25^{\prime \prime}\) & \(75^{\circ} 22^{\prime} 50^{\prime \prime}\) & 1632 & 1
\end{tabular}

\section*{SYNODONTID正。}

\section*{bathysaurus, Güntier.}

Bathysaurus, Güntier, Ann. and Mag. Nat Hist., Aug. 1878, p. 181.

\section*{35. Bathysaurus Agassizii, new species.}

Body elongate, subcylindrical, with depressed heal and tapering tuil, its greatest height contained seven times in its standard length, and eight times in
the length to tip of upper candal lobe: its greatest width nine times in standarl length ; its height at the origin of the anal about half its greatest height ; length of caudal peduncle equal to greatest height of body.

Scales irregularly ovate, with the free portion convex, thin, cycloid, leathery, deciduous, those in middle of body with a vertical diameter nearly equal to that of the pupil, those of lateral line with posterior margin truncate. In the lateral line, which extends upon the caudal fin, descending below the median line of the body near the origin of this fin, are seventy-eight specialized scales, larger than those of the body. Between the dorsal fin and the lateral line are about eight rows of scales; between the latter and the anal fin are about the same number.

Head twice as long as the greatest height of the body, strongly depressed, alligator-like, naked except upon the cheeks and a small area on the occiput, with strong nasal and interorbital ridges. The greatest width is somewhat more than half its greatest length, the width of interorhital area nearly equal to half that of head, and one fourth the length of the lower jaw. The length of the snout is equal to twice the horizontal diameter of the eyc. The anterior nostrils are situated midway between the tip of the snout and the anterior margin of the orbit. The cleft of the mouth is enormons, its angle posterior to the eye by a distance about equal to the width of the interorbital space. The length of the upper jaw equals one sixth of the standard body length ; that of the lower jaw, one fifth. The margin of the upper jaw (formed by the intermaxillary only) is armed with two irregular rows of depressible teeth, some of which are barbed ; those in the inner row are much the largest, many of them being two thirds as long as the horizontal diameter of the pupil and twice as long as those in the outer series. The lower jaws are enormously strong, and broad, flattened below, the wilth measured on the under surface of the head equal to two thirds the width of the broad interorbital space. The lower jaw projects outside of the upper jaw at the sides a distance apparently egual to half its width, and considerably in front ; the lower jaws are thickly studded with depressible teeth, many of then, especially the larger inner ones, strongly barbed, those in front claw-like, recurved. On the palatines, three rows of tecth, the middle ones very much enlarged and most of them strongly barbed, - these being the largest of all the teeth. On the tongue a few weaker tecth, and groups of similar teeth upon the vomer.

Gill laminæ, gill rakers, and pseudobranchix, as described by Dr. Günther in the diagnosis of the genus.

The dorsal fin contains seventeen rays, and is inserted at a distance from the tip of the snout equal to the length of its own base, and slightly greater than one third of the standard body length. The fourth or longest ray is equal in length to the greatest height of the body. The first ray is a rudiment; the second is nearly half as long as the third ; the third slightly shorter than the fourth; after the fourth the mays diminish rapidly in length to the ninth, which is about half as long as the lower jaw, and subsequent to which the diminution is gradual : the last ray is about as long as the first.

There is no adipose dorsal ; if ever present, it was obliterated before the specimen came into our possession.

The anal fin contains eleven rays, and is inserted considerably behind the vertical from the termination of the dorsal, - at a distance equal to the horizontal diameter of the eye ; the length of its base is equal to half that of the dorsal, the length of its longest ray (the third) equal to that of the eighth of the dorsal.

The caudal is slightly forked, its middle rays two thirds as long as those in the upper lobe, and about equal to the seventh dorsal ray.

The pectoral fin consists of fifteen rays, is inserted under the fourth scale of the lateral line, and at a distance in front of the dorsal equal to half the greatest height of the body. Its length is equal to that of the lower jaw, and the seventh ray is prolonged to a length equal to that of the head, its tip extending to the perpendicular from the twelfth dorsal ray.

The ventral is composed of eight rays, and its base is almost entirely in advance of the perpendicular from the origin of the dorsal : its length equals half that of the head. The two ventrals are far apart.

Radial formula : B. 10 (?) ; D. 17 ; A. 11 ; C. 19 ; P. 15 ; A. 8. Scales 8, 78, 8.

Color brownish, the inside of the branchiostegal flap bluish black.
A single specimen, about two feet in total length, a female, full of nearly mature eggs, was taken at a depth of 647 fathoms, at Station 325, in Lat. \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) N., Long. \(76^{\circ} \mathrm{W}\).

\section*{MEASUREMENTS.}
Length to base of caudalMillimeters.Length to end of middle caudal rays610
Body. Greatest height ..... 76
Greatest width ..... 58
Height at ventrals ..... 76
Least height of tail . ..... 25
Head. Greatest length ..... 137
Greatest width ..... 62
Width of interorbital area ..... 27
Length of snont ..... 40
Length of maxillary ..... S3
Length of mandible ..... 108
Diameter of orbit ..... 20
Dorsal. Distance from snout ..... 191
Length of base ..... 17
Length of tirst ray ..... 5
Length of longest ray (4th) ..... is
Anal. Distance from snout ..... 350
Length of base ..... 85
Length of longest ray ..... 56
Pectoral. Distance from snout . ..... 144
Length ..... 105
Length of prolonged ray ..... 132
Ventral. Distance from snout ..... 175
Length ..... 70
Branchiostegals ..... X (?)
Dorsal ..... 17
Anal ..... 11
Caudal ..... 19
Pectoral ..... 15
Ventral ..... 8
Number of scales in lateral line ..... 78
Number of transverse rows above lateral line ..... 8
Number of transverse rows below lateral line . ..... 8

\section*{}

\section*{36. Alepocephalus Agassizii, new species.}

A single specimen of Alepocephalus was obtained at Station 338, in 922 fathoms, Lat. \(38^{\circ} 18^{\prime} 40^{\prime \prime}\) N., Long. \(73^{\circ} 18^{\prime} 10^{\prime \prime} \mathrm{W}\).

This is the fourth species of the genus which has, to date, come up for description: the first, A. rostratus, having been described by Risso from the Mediterranean in 1820; the second, A. niger, from north of Australia, at a depth of 1,400 fathoms, obtained by H. M. S. "Challenger," and described by Guinther in 1878 ; the third, A. Bairdii, from the Grand Banks of Newfoundland, at a depth of 200 fathoms, described by us in 1879. The former American species having been named in honor of the Director of the U.S. National Museum, we propose to dedicate the one now under consideration to the Curator of the Museum of Comparative Zoölogy, under the name Alepocephalus Agassizii.

Diagnosis. - Body slightly less elongate than in A. Bairdii, its height being contained very slightly more than five times in its length to origin of middle caudal rays, somewhat compressed, its width being about half its height. The least height of the tail is contained twelve times in the length of the body:

Scales apparently ovate-lanceolate, parchment-like, smaller than in \(A\). Bairdii: the specimen is almost denuded of scales, and their arrangenent in the drawing has been in part made out from their impressions upon the skin. There are ninety scales in the lateral line, ten between lateral line and origin of dorsal, eleven between same and origin of anal. The base of the dursal is squamose, the anal slightly so, but probably less than in A. Bairdii.

Head somewhat compressed, snout conically elongate, the lower jaw slightly produced. Its length is contained three times in the length of the body (in A. Bairdii, \(4 \frac{1}{3}\) ), slightly exceeding twice the length of the lower jaw, and four times the least height of the tail (in A. Bairdii, less than three). Width
of head slightly less than length of operculum, and \(9 \frac{1}{2}\) times in length of body ( 12 in A. Bairdii).
Length of snout half that of mandible, which is one sixth of total length ( \(\frac{1}{8}\) in A. Bairdii). Diameter of orbit in total length of body \(10 \frac{1}{2}\) times ( 18 in A. Bairdii), \(3 \frac{1}{2}\) in head (about \(4 \frac{1}{3}\) in A. Bairdii).

The insertion of the dorsal is immediately above the vent ; the distance of its origin from the base of middle caudal rays equal to one third of distance from same to anterior margin of orbit, and at a distance from the snout much greater than two thirds the total length of body (about equal in A. Bairdii). The length of its base is equal to one eighth of total length.

The origin of the anal is under the second ray of the dorsal ; its length of base is slightly more than one seventh of the body length, and is equal to the height of the body at the vent.

The ends of the dorsal, anal, and caudal rays are broken off in the specimen before us.

Distance of pectoral from snout, equal to \(\frac{1}{3}\) of the body length (slightly more than \(\frac{1}{4}\) in A. Bairdii) and \(4 \frac{1}{2}\) times least height of tail ( 3 in A. Bairdii). Its length equal to the diameter of orbit and contained \(10 \frac{1}{2}\) times in total length ( 10 in A. Bairdii). The origin of the pectoral is close behind the end of the opereular flap, while in A. Bairdii it is separated therefrom by four rows of scales.

Distance of ventral from snout considerably less than twice the length of the head. Its length, probably, about one sixth that of the head.

Radial formula: D. 15 ; A. 17 ; C. 19 ; P. 11 ; V. 1, 5 ?
L. lat. 90.

Dentition as in A. Bairdii.
Color dark, head and fins nearly black.
\begin{tabular}{ccccc} 
Station. & N. Lat. & . W. Long. & Fathoms. & Specimen. \\
338 & \(38^{\circ} 18^{\prime} 40^{\prime \prime}\) & \(73^{\circ} 18^{\prime} 10^{\prime \prime}\) & 922 & 1
\end{tabular}

\section*{HALOSAURID屈.}

\section*{37. Halosaurus macrochir, Güntuer.}

Halosaurus macrochir, Güntuer, Ann. and Mag. Nat. Hist., 5th Ser., II., 1878, p. 251.
H. macrochir was described by Dr. Günther from specinens obtained by H. M. S. "Challenger," in the Atlantic, at a lepth of 1090 fathoms, and midway between the Cape of Good Hope and Kerguelen's Land, at a depth of 1375 fathoms.

Specimens were obtained by the "Blake" at the following stations : -
\begin{tabular}{ccccc} 
Station. & N. Lat. & \multicolumn{1}{c}{ W. Long. } & Fathoms. & Specimens. \\
308 & \(41^{\circ} 24^{\prime} 25^{\prime \prime}\) & \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) & \(12 t^{\prime \prime}\) & 1 \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & \(1 i 4 \%\) & 5
\end{tabular}

\section*{STOMIATIDAF.}

\section*{38. Stomias ferox, Reinhardr.}

Stomias ferox, Reinilardt, Vid. Selsk. Nat. og Math., Afhandl. X. p. Ixxviii.
A single specimen was obtained at each of the two following stations:-
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 1 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 1
\end{tabular}

\section*{STERNOPTYCHID Æ.}

\section*{39. Sternoptyx diaphana, IIermans.}

Sternoptyx diaphana, Hermann, Naturforscher, X VI. p. 781, p. 8, Taf. I. figs. 1 and 2 ; XVII. p. 249 ("Copied by Walbadm, Artedi, III., Vol. I. figs. 1 and 2 , and by Schaeider, p. 494, Pl. XXXV."). Ceviler, Règne Animal, 2d ed., Pl. XIII. fig. 1. Cevier \& Valenciennes, Hist. Nat. Poiss., XXiI. p. 415. Güntier, Cat. Fish. Brit. Mus., V. p. 387 (no specimens).

Specimens were caught at the stations mentioned below.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
323 & \(33^{\circ} 19^{\prime}\) & \(76^{\circ} 12^{\prime} 30^{\prime \prime}\) & 457 & 1 \\
316 & \(32^{\circ}{\varsigma^{\prime}}^{\prime}\) & \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) & 229 & 1
\end{tabular}

\section*{40. Argyropelecus hemigymnus, Cocco.}

Argyropelcus hemigymnus, Cocco, Giorn. Sc. Sic. 1829, fasc. 77, p. 146. Bondparte, Faun. Ital. Pesc. Cov. \& Val., Hist. Nat. Poiss., XXII. p. 308. Güstier, Cat. Fish. Brit. Mus., V. p. 385.
Sternoptyx hemigymnus, Valenciennes, in Cuvier, Règne Animal, Ill. Poiss., Pl. 103, fig. 3.
Sternoptyx mediterranea, Cocco, Giorni il Faro, 1838, IV. p. 7. fig. 2. Bonaparte, Faun. Ital. Pesc., Fig.

This species was obtained at Station 315, at a depth of 225 fathoms. It was also obtained by the steamer "Fish Hawk," Augrost 18, 1852, at Station 1112 (Lat. \(39^{\circ} 56^{\prime} \mathrm{N}\)., Long. \(70^{\circ} 35^{\prime} \mathrm{W}\)., 245 fathoms), and was seen by Dr. Bean on the same vessel in 1880.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
315 & \(32^{\circ} 18^{\prime} 40^{\prime \prime}\) & \(78^{\circ} 43^{\prime}\) & 225 & 2
\end{tabular}

\section*{CYCLOTHONE, new genus.}

Numerous small specimens, in very bad condition, were received, belonging to an undescribed genus of the family Sternoptychidec, or of some closely related family not yet defined.

Diagnosis. - Body long, somewhat compressed, apparently naked, covered with dark pigment-cells, there being no scales. A series of luminous spots along the lower sides of the body. Head conical, cleft of mouth very wide, oblique, the lower jaw strongly projecting. The maxilla is long aud slender, anteriorly curved strongly upward, its outline sickle-shaped, closely connected with the short intermaxillary. Maxillary and intermaxillary with a single series of rather large acicular teeth, about every fourth one in the maxilla longer than the average. Lower jaw with teeth apparently uniform in size, raking forward, and with a few canines in front. A small patch of minnte teeth upon the head of the vomer. Palate smooth. Eye moderate, inconspicuous, apparently covered with opaque membrane, causing a dull appearance. Gill opening very wide, the branchiostegal membrane free from the isthmus. Gill rakers long and slender, moderately numerous, more than twice as numerous below as above the angle.

Pseudobranchix absent (branchiostegals not clearly made out, apparently sevell, eight, or nine). No air-bladder. All the fins well developed : the anal large : dorsal and anal fins entirely on the posterior half of the body : no adipose dorsal : caudal forked.

\section*{41. Cyclothone lusca, new species.}

Body elongate, its greatest height contained \(7 \frac{2}{3}\) times in its length to base of middle caudal rays, its width being less than two thirds of its height. Its height at the ventrals is contained \(8 \frac{1}{3}\) times in standard length : the least height of tail is half that of the body at the ventrals.

Head length contained \(4 \frac{2}{3}\) times in body length, its wilth about one thirl of its length. The intermaxillary is very short, extending to vertical from posterior limb of anterior nostril. The naxillary is very strongly curved downward, and has a short knob at its anterior extremity, not visible withont dissection. The maxillary extends backward to a distance from the tip of the snout equal to the length of the head without the snout. The peculiar arrangement of the teeth is described above in the generic diagnosis. Most of those in the maxillary are inclined strongly forwarl.

The long lower jaw, with the exception of the projecting tip, is includerl within the upper jaw : its length is equal to the distance from the anterior nostril to the end of the head.

Eye circular, close to the profile, the interorbital area being very narrow: Its length is equal to that of the snont, and contained seven times in the length of the head.

Dorsal fin inserted at a distance from the tip of the snout equal to three
times the length of the lower jaw, its base being as long as the head; the first ray is minute, and about two thirds as long as the eye ; the second ray is about two thirds the length of the base of the fin, and the subsequent rays rapidly and uniformly decrease in length to the last, which is about twice as long as the first. All the rays except the first are bificl.

The anal fin is inserted under the second ray of the dorsal: its base is balf as long again as that of the dorsal, and nearly one third as long as the body of the fish : its outline resembles that of the dorsal, though slightly emarginate, its longest ray a little longer than the longest of the dorsal, and half as long as the base of the fin. All the rays except the first are bifid.

Caudal forked, its middle rays less than half as long as the outer rays, equal in length to least height of caudal perluncle.

Pectoral inserted under the tip of the opercular flap, its length equal to the greatest height of the body.

Ventral inserted at a distance from the snout equal to twice the length of the head, its length slightly exceeding that of the pectoral, and contained seven times in the standard body length.

Radial formula : B. VII to IX ; D. I, 11 ; A. I, 16 ; C. 17 ; P. 10 ; V. 5. Color blackish brown, the luminous pores inconspicuous.
Specimens were obtained at the following stations.
\begin{tabular}{cllcc} 
Station. & \multicolumn{1}{c}{ N. Lat. } & W. Long. & Fathoms. & Specimens. \\
330 & \(31^{\circ} 41^{\prime}\) & \(74^{\circ} 35^{\prime}\) & 1047 & 5 \\
323 & \(33^{\circ} 19^{\prime}\) & \(76^{\circ} 12^{\prime} 30^{\prime \prime}\) & 457 & 37 \\
328 & \(34^{\circ} 28^{\prime} 25^{\prime \prime}\) & \(75^{\circ} 22^{\prime} 50^{\prime \prime}\) & 1632 & 13 \\
324 & \(33^{\circ} 27^{\prime} 20^{\prime \prime}\) & \(75^{\circ} 53^{\prime} 30^{\prime \prime}\) & 1386 & 20
\end{tabular}

\section*{SCOPELID里。}

\section*{42. Scopelus Mülleri (Gmel.), Collett.}

Salno Mülleri, Gmelin's Linnæus, Systema Naturæ, I., 1788, p. 1378.
Scopelus glacialis, Reinuardt, Oversigt Kgl. D. Vid. Selsk. Nat. Math. Aph. Vi. p. cx., Copenhagen, 1837.

Scopelus Mülleri, Collett, Norges Fiske Tillaegsh. til. Forl. Vid. Selsk., Christiania, 1874, p. 152. Norske Nordhavs-Expedition, 1876-1878, Fiske, 1880, p. 158.

This species, known hitherto only from the coast of Greenland and the northern shores of Norway, has been frequently taken during the past two years, by the U. S. Fish Commission, off the southern shores of New England, and was also obtained by the "Blake" at the stations mentioned below.

The following specimens, all in bad condition, were obtained.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 1 \\
334 & \(38^{\circ} 20^{\prime} 30^{\prime \prime}\) & \(73^{\circ} 26^{\prime} 40^{\prime \prime}\) & 395 & 3 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 1 \\
329 & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 003 & 3
\end{tabular}

\section*{MICROSTOMID无。}

43．Hyphalonedrus chalybeius，Goode．
Hyphalonedrus chalybeius，Goode，Proc．U．S．Nat．Mus．，III．pp．484，485，Feb．16， 1881.

This species was found at the following stations．
\begin{tabular}{cccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimens． \\
321 & \(32^{\circ} 433^{\prime} 25^{\prime \prime}\) & \(77^{\circ} 20^{\prime} 30^{\prime \prime}\) & 233 & 1 \\
316 & \(32^{\circ}\) & \(7^{\prime}\) & \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) & 229 & 1 \\
327 & \(34^{\circ}\) & \(0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 5 bad
\end{tabular}

\section*{SACCOPHARYNGID尼．}

44．Saccopharynx flagellum，Mitchill．
Saccopharynx flagellum，Mitciill，Ańn．Lyc．New York，I．，1824，p． 82.
A single badly mutilated example was secured．
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimen． \\
331 & \(35^{\circ} 44^{\prime} 40^{\prime \prime}\) & \(74^{\circ} 40^{\prime} 20^{\prime \prime}\) & 898 & 1
\end{tabular}

\section*{SYNAPHOBRANCHID疋．}

45．Synaphobranchus pinnatus（Grosow），Gtur．
Murcena pimata，Groxow，Syst．ed．Gray，p． 19 （fide Giinther）． Synaphobranchus pimatus，Güvtner，Cat．Fish．Brit．Mus．，VIII．p． 23.

Numerous specimens were obtained，as will be seen by referring to the fol－ lowing list．
\begin{tabular}{ccccc} 
Station． & N．Lat． & W．Long． & Fathoms． & Specimens． \\
309 & \(38^{\circ} 18^{\prime} 40^{\prime \prime}\) & \(73^{\circ} 18^{\prime} 10^{\prime \prime}\) & 304 & 35 \\
Unknown． & & & & 4 \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 12 \\
312 & \(39^{\circ} 50^{\prime} 45^{\prime \prime}\) & \(70^{\circ} 11^{\prime}\) & 466 & 8 \\
325 & \(33^{\circ} 35^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & 647 & 12 \\
337 & \(35^{\circ} 20^{\prime} 5^{\prime \prime}\) & \(73^{\circ} 23^{\prime} 20^{\prime \prime}\) & 740 & 2 \\
326 & \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 50^{\prime \prime}\) & 464 & 6 \\
Unknown． & \(34^{\circ} 39^{\prime} 40^{\prime \prime}\) & \(75^{\circ} 14^{\prime} 40^{\prime \prime}\) & 603 & 4 \\
329 & & & & 1
\end{tabular}

\section*{MURANESOCIDAT.}

\section*{46. Nettastoma procerum, new species.}

Two specimens of a species of Nettastoma were obtained at Station 325, Lat. \(33^{\circ} 35^{\prime} 20^{\prime \prime}\), Long. \(76^{\circ}\), at a depth of 647 fathoms. Another (mutilated), something over 190 mm . long, was taken at Station 327. The species is in many respects closely allied to the Nettastoma melanurum of the Mediterranean, but appears to differ from it in the greater length of the tail, the much smaller teeth, and in the presence of a filamentous nasal tip.

Description. - Body anguilliform, very elongate, compressed, - posteriorly greatly so, - and tapering to a very slender attenuate point. Its greatest height is contained nearly four times in the distance from the gill opening to the tip of the lower jaw, and equals half the length of the snout. Head slender, conical : jaws somewhat depressed : the upper jaw heavier and thicker, and projecting beyond the lower a distance equal to the diameter of the eye. Length of snout equals the distance from the posterior margin of the orbit to the gill opening : the cleft of the mouth extends far behind the eye to a distance equal to the diameter of the eye. On each side of the upper jaw, and in advance of the eye, are twelve pores; behind each eye are three pores, while on the median line, on the top of the upper jaw, are several pores posteriorly arranged in pairs, of which there are four, the ultimate pair being between the posterior nostrils. There is also a pair of pores upon the nape, connecting the postorbital rows, and seventeen on each side of the mandible. The mandibulary series is continued by another series extending over the cheeks and nape. The snout is provided with a slender, filamentous tip, whose length is equal to twice the diameter of the eye. The tongue is apparently absent in the specimens examined by us. The teeth are arranged as in \(N\). melonurum, but exceedingly small, and much less conspicuous than in the figures of Kanp and Risso.

Dorsal fin commences above the gill opening.
The anal fin is inserted under the 73 l dorsal ray at a distance from the snout equal to \(3 \frac{2}{3}\) times the length of the head. The tail is twice as long as the loody with the head included. The total length of the specimen is 727 millimeters, including the nasal tip, which measures 7 mm .

Lateral line highly specialized, with numerous pores, corresponding in general character to those upon the head, and arranged in a deep furrow, their distances apart being about the same as in the case of those upon the head. Height of dorsal and anal fins about equal to half the height of body.

Color apparently brownish ; peritoneun black.
\begin{tabular}{cccccc} 
Station. & N. Lat. & \multicolumn{1}{c}{ W. Long. } & Fathoms. & Specimens. \\
325 & \(33^{\circ} 355^{\prime} 20^{\prime \prime}\) & \(76^{\circ}\) & 647 & 2 \\
327 & \(34^{\circ} \quad 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 1
\end{tabular}

\section*{NEMICHTHYID压.}
47. Nemichthys scolopaceus, Richardson.

Nemichythys scolopaceus, liciardsor, Voyage Samarang, Fishes, p. 25, Pl. X. figs.
1-3̈ (fule Günther, Cat. Fish. Brit. Mus., VIII. p. 21).
Five individuals in all were taken at the following stations.
\begin{tabular}{cclcc} 
Station. & \multicolumn{1}{c}{ N. Lat. } & \multicolumn{1}{c}{ W. Long. } & Fathoms. & Specimens. \\
303 & \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) & \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) & 306 & 1 \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 1 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 1 \\
330 & \(31^{\circ} 41^{\prime}\) & \(74^{\circ} 35^{\prime}\) & 1047 & 1 \\
338 & \(38^{\circ} 18^{\prime} 40^{\prime \prime}\) & \(73^{\circ} 18^{\prime} 10^{\prime \prime}\) & 922 & 1
\end{tabular}

\section*{LEPTOCEPHALIDA.}
48. Leptocephalus sp. (Perhaps larva of Synaphobranchus.)

A single individual, measuring 175 millimeters in length, was secured at the station following.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimen. \\
315 & \(32^{\circ} 18^{\prime} 20^{\prime \prime}\) & \(78^{\circ} 43^{\prime}\) & \(22 J\) & 1
\end{tabular}

\section*{RAIID Æ.}
49. Raia plutonia, Garmin.

Ruia plutonia, Garman, Bull. Mus. Comp. Zoül. Cambridge, Vol. VIII. No. 11, p. 236, March, 1881.

Not in the collection studied by us. The species was taken at Stations 316, 317 , and 321.

\section*{50. Raia ornata, Garman.}

Raia ornata, Garman, Bull. Mus. Comp. Zoül. Cambridge, Vol. VIII. No. 11, pp. 235, 236, March, 1881.

Not seen by us. Said to be a variety of \(R\). Ackleyi, by Mr. Garman. Three specimens were taken at Station 314.
vol. x . - no. 5.

\section*{SCYLLIID \(\nrightarrow\).}
51. Scyllium retiferum, Garman.

Scyllium retiferum, Garman, op. cit., p. 233.
Not studied by us. One specimen was in the "Blake" collection from Station 335. The U. S. Fish Commission has since obtained several examples.

\section*{MYXINID业。}

\section*{52. Myxine glutinosa, Linx.}

Specimens were taken at the following stations.
\begin{tabular}{ccccc} 
Station. & N. Lat. & W. Long. & Fathoms. & Specimens. \\
309 & \(40^{\circ} 11^{\prime} 40^{\prime \prime}\) & \(68^{\circ} 22^{\prime}\) & 304 & 1 \\
306 & \(41^{\circ} 32^{\prime} 50^{\prime \prime}\) & \(65^{\circ} 55^{\prime}\) & 524 & 1 \\
327 & \(34^{\circ} 0^{\prime} 30^{\prime \prime}\) & \(76^{\circ} 10^{\prime} 30^{\prime \prime}\) & 178 & 1
\end{tabular}
U. S. National Musedm, Washington, D. C.,

February 22, 1883.

No. 6. - Reports on the Results of Dredging, under the Supervision of Alexander Agassiz, in the Caribbean Sea in 1878-79, and along the Atlantic Coast of the United States during the Summer of 1880, by the U. S. Coast Surrey Steamer "Blake," Commaxder J. R. Bartlett, U. S. N., Commanding.*
(Published by permission of Carlile P. Patterson and J. E. Hilgard, Superintendents of the U. S. Coast and Geodetic Survey.)
\[
\mathrm{XX} .
\]

Report on the Ophiuroidea. By Theodore Lyman.
The West Indies are the hotbed of Echinodermata. Out of less than six hundred living species of Ophiuroidea now known, about one hundred and fifty-five, or more than a quarter, are from that region ; and for the round Echinoderms the proportion is even larger. Beginning at low-water mark, this fauna descends to 1,568 fathoms; and, having its centre in the Caribbean Sea and the Gulf of Mexico, it sends branches northward at least as far as South Carolina, and southward to Brazil. In the present state of knowledge, it seems a well-marked fama, containing a great number of distinctive forms, although there occasionally occur species from other marine regions, such as Ophioscolex glacialis and Astronyx Loveni. This appearance of limitation may come in part from the special investigations in this area; for it is to be borne in mind that the U. S. ships "Corwin," "Bibb," "Hassler," and "Blake " have dredged in about 570 stations, chiefly along the line of the Antilles, and from the Dry Tortugas to Cape Florida. In addition to these, some hauls were made by Dr. William Stimpson, and by the naturalists of the "Challenger."

Nearly all known genera of Ophiuroidea are there found, the most notable exceptions being Ophioplocus, Ophioplinthus, Ophiopholis, Ophiarachna, Ophiarthrum, Ophiomastix, and Trichaster.
Among Ophiurans, as in other animals, we find that certain genera

\footnotetext{
* In this paper are included six new species from the dredgings of the "Porcupine" and the "Challenger," which are published by permission of the Lords Commissioners of the Treasury.

VOL. X. - No. 6.
}
are very rich in species ; such are Ophioglypha, Amphiura, Ophiacantha, and Ophiothrix, which contain two thirds as many species as do all the remaining sisty-eight genera in the family. A peculiar structure does not necessarily entail abundance of species, for the Astrophyton-like Ophiurans (e. g. Ophiomyza) have few species.
There are included in this paper three unpublished species from the dredgings of H. B. M. ship "Porcupine," - Ophiochiton tenuispinus, Ophiomyxa serpentaria, and Ophiobyrsa hystricis; and from the "Challenger" expedition there are one genus and three species whose originals were found among the collections of the late Sir Wyville Thomson. They are Ophiocopa spatula, Ophiacantha scolopendrica, and Ophiomastus texturatus. All the rest are from the " Blake" dredgings.

The following list of species will show all new information as to the depths at which they occur, and will give some notion of their frequency, by the number of stations at which they are found.

Ophiopæpale Goesiana. Up to 38 fathoms.
Ophiozona nivea. From twenty-six stations, and in large numbers. Up to 50 fathoms.
Ophiozona tessellata. From seventeen stations. 60-300 fathoms.
Ophiozona impressa. Down to 300 fathoms.
Ophiozona antillarum. Ten stations. 94-508 fathoms.
Ophioglypha Sarsii. Found as far south as \(35^{\circ} 45^{\prime} 30^{\prime \prime}\) N., and down to 306 fathoms.
Ophioglypha lepida. Ten stations.
Ophioglypha falcifera. Twelve stations. 200-508 fathoms.
Ophioglypha variabilis. Twenty-six stations. Up to 175 fathoms.
Ophiomusium eburneum. Twenty-two stations. \(95-390\) fathoms.
Ophiomusium Lymani was dredged at only nine stations, but in such quantities that Mr. Agassiz was forced to throw away a large part. These hauls illustrate the abundance of animal life at great depths; for the shallowest station was 810 fathoms.
Ophiomusium validum. The great number of stations (thirty-two) at which it was dredged show its frequent occurrence, as well as its variation in depth, now known to run from 60 to 1568 fathoms.
Ophiomusium testudo. Sisteen stations. 69-508 fathoms.
Ophiomusium planum. Up to 300 fathoms.
Ophiomusium acuferum. This humble species, deseribed by me in 1875 from the "Hassler" dredgings, proves to be the most widely spread in that fauna. It also inhabits very diverse depths, and must accommodate itself to temperatures varying from \(78^{\circ}\) to \(39^{\circ}\) Fah. Strangely enongh, it has not yet been found outside the West Iudian limits. Thirty-five stations. 27-1030 fathoms.

Ophiomusium serratum. Thirteen stations. 12t-1097 fathoms.
Ophiomastus secundus. Thirteen stations. 60-1131 fathoms.
Ophiopyren longispinus. Eighteen stations. 60-625 fathoms.
Ophioconis miliaria. Up to 163 fathoms.
Ophiochœeta mixta. Down to 572 fathoms.
Ophiactis Muilleri var. quinqueradia. 27-338 fathoms.
Amphiura duplicata, like Ophioglypha variabilis and Ophiomusium acuferum, is plentiful, and is found over a great range of depth. Thirty-four stations.
Amphiura Otteri. There is some question about the distinction of those species that stand near the old A. Chiajei. I believe, however, that Ljungman's species was found by the "Blake" from \(41^{\circ} 32^{\prime} 50^{\prime \prime} \mathrm{N}\). to the island of Grenada on the south, and from 175 to 576 fathoms.
Amphiura tumida. Up to 94 fathoms.
Amphiura lunaris. Up to 424 fathoms.
Amphiura cuneata. 159-370 fathoms.
Amphiura Stimpsoni. Down to 69 fathoms.
Ophionereis reticulata. Down to 94 fathoms.
Ophioplax Ljungmani. Eleven stations. Down to 175 fathoms.
Ophiostigma isacanthum. Down to 122 fathoms.
Ophiacantha bidentata. From as far south as \(33^{\circ} 27^{\prime} 20^{\prime \prime} \mathrm{N}\).
Ophiacantha hirsuta. Twelve stations. 82-955 fathoms.
Ophiacantha sertata. Ten stations. 150-411 fathoms.
Ophiacantha vepratica. Seven stations. Up to 291 fathoms.
Ophiacantha scutata. Nine stations. 12t-338 fathoms.
Ophiacantha echinulata. Up to 303 fathoms.
Ophiacantha pentacrinus. Twenty-four stations. Down to 625 fathoms.
Ophiacantha stellata. Twelve stations. 56-262 fathoms.
Ophiacantha aspera. Twelve stations. 73-262 fathoms.
Ophiomitra valida. Twenty-four stations. Down to 1105 fathoms. Another abundant species, of great range in depth.
Ophiocamax hystrix. Fifteen stations. 11.4-300 fathoms.
Ophiothamnus vicarius. Six stations. Down to 611 fathoms.
Ophiothrix Suensonii. Twenty-one stations. Down to 262 fathoms.
Ophiothrix angulata. Fourteen stations. Down to 262 fathoms.
Ophioscolex tropicus. 103-502 fathoms.
Ophiomyces mirabilis. Down to 422 fathoms.
Ophiomyces frutectosus. Down to 288 fathoms.
Ophiochondrus convolutus. Eleven stations. \(U_{p}\) to 88 fathoms.
Sigsbeia murrhina. Twenty-one stations.
Gorgonocephalus mucronatus. Down to 288 fathoms.
Astrogomphus vallatus. \(114-337\) fathoms.
Astroporpa amulata. Sixteen stations. Down to 163 fathoms.
Astrochele Lymani. Down to 980 fathoms.
Astroschema arenosum. Eight stations. Up to 120 fathoms.

Astroschema læve. Sixteen stations. 56-262 fathoms.
Astroschema oligactes. Seventeen stations.
Astroschema tenue. Four stations. 88-124 fathoms.
Ophiocreas lumbricus. Seven stations. Down to 580 fathoms.
Ophiocreas œdipus. Down to 580 fathoms.
Astronyx Loveni (young). Down to 980 fathoms.

\section*{Ophiura Elaps ? Lym.}

These fine specimens, of which the largest had a disk of 28 mm . and arms of about 200 mm ., only differed from Lütken's description (Addit. ad Hist. Oph., Pt. II. p. 93) in having six or seven, instead of seven or eight armspines, of which the upper ones were longest.

Station (Bartlett) \(29,21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime} \mathrm{W} ., 300\) fathoms. Station 157, Montserrat, 120 fathoms. Station 241, Grenadines, 163 fathoms.

\section*{Ophiura brevispina Lrm.}

Station 142, Flannegan Passage, 27 fathoms. Station 152, St. Kitts, 122 fathoms. Station 285, Barbados, 13-40 fathoms.

\section*{Ophiura cinerea Lym.}

Station 132, Santa Cruz, 115 fathoms. Station 276, Barbados, 94 fathoms. Station 278, Barbados, 69 fathoms.

\section*{Pectinura tessellata sp. nov.}

\section*{Plate III. Figs. 1-3.}

Special Marks. - One tentacle-scale : four or five short arm-spines. Under arm-plates narrow and rounded. Granulation of disk continuous above, but with naked patches below.

Deseription of an Individual (Station 130). - Diameter of disk 17.5 mm . Length of arm about 95 mm . Wilth of arm close to disk 4 mm . Sixteen stout month-papillæ to each angle, whereof the one next the outermost is mueh the widest and stoutest, while those within grow gradually narrower and more peg-like. Four flat, stont, short teeth, the lowest one of which is sometimes cleft. Mouth-shichls wide heart-shape with a rounded point within. The supplementary shield lies just outside and forms one of a number of thrick nakel plates which partly cover the lower interhrachial space. Side mouthshiehls three-cornered amd very small, lying next the outer comers of the mouth-shields. Under arm-plates occupying less than half the width of the arm ; as long as broal; bounded without by a curve, within by a truncated
angle, and on the sides by a re-entering curve. Side arm-plates occupying about two thirds of the height of the arm, and having a cleanly curved outer side. Upper arm-plates arched (but not so strongly as in \(O\). heros), wider without than within, and having straight outer and imner sides. Disk angular, closely and evenly covered above, except the radial shields, with a fine granulation having about six grains in the length of 1 mm . Interbrachial spaces below have a reticulated look, from the numerous bare plates among the granulation. Radial shields wide oval ; length to breadth, \(2.3: 1.8\). Genital opening long, extending from mouth-shield nearly to edge of disk. Four or five small, peg-like, even, spaced arm-spines, a little more than half the length of a joint. One stout, round tentacle-scale.

Station 130, near Frederickstadt, 451 fathoms, 1 specimen.
This species is well distinguished from \(P\). heros and \(P\). lacertosa by a flatter arm, four or five peg-like spaced arm-spines, and naked plates in the lower interbrachial space.

\section*{Pectinura lacertosa sp. nov.}

\section*{Plate III. Figs. 4-6.}

Special Marks. - Three arm-spines about as long as a joint and standing low down on side of arm. Indentations, but no pores, between the first four or five lower arm-plates. Arms short ; only three and a half or four times the diameter of the disk. One large, round tentacle-scale.

Description of an Individual (Station 258). - Diameter of disk 35 mm . Length of arm about 135 mm . Width of arm close to disk, without spines, 6 mm . About twenty mouth-papillæ to each angle, whereof the two or three outer ones are wide and squarish, while those within are sharp and per-like. The two lowest teeth are replaced by similar papillæ. Mouth-shields short heart-shape with a rounded angle within; length to breadth, \(4: 5\). There are sometimes one or more large scales, or supplementary pieces, just outsude. Side mouth-shields very small and nearly obliterated. Under arm-plates about as wide as long, bounded withont by a curve, within by a truncated angle, and on the sides by a re-entering curve. Side arm-plates low, occupying only about one half the height of the arm, and meeting neither above nor helow. Upper arm-plates highly arched, closely overlapping, with outer and iuner edges nearly straight ; each is usually broken in two pieces. Disk angular, closely and evenly covered with very fine granules, 7 or 8 in the length of I mm., except the radial shields and sometimes a small plate on the margin. Radial shields egg-shaped, somewhat longer than broad with outer and inner ends much roundel ; length to breadth, 4:2.5. Lower interbrachial space covered by a similar granulation, exteuding oven to the mouth-angle. There are none on the month-shields, outside which are one or more thick, partially naked scales, representing the supplementary shiehl. Genital opening long, extending from mouth-shield nearly to margin of disk. Three, some-
times four, stout, rounded, tapering arm-spines, not quite as long as a joint. One round, thick tentacle-scale. Color in alcohol, nearly white.
Station 258, near Grenada, 159 fathoms, 1 specimen.
This species is very near \(P\). heros, dredged in 900 fathoms by the "Challenger," near New Guinea, but differs in its longer and differently placed armspines, and in the indentations between the basal under arm-plates.

\section*{Pectinura angulata sp. nov.}

\section*{Plate III. Figs. 7-9.}

Special Marks. - Disk with thin scales covered by a fine granulation. Nine arm-spines, of which the lowest is longest and broad and flat. Pores only between the first three under arm-plates.

Description of an Individual (Station 134). - Diameter of disk 27 mm . Width of arm close to disk 5.5 mm . About twenty mouth-papillæ to each angle, of which the two or three outer ones are much the widest and are squarish, while those within are spiniform. The lowest of the five broad, flat teeth is split in two, and there are sometimes one or two additional papillæ at the apex of the mouth-angle. Under arm-plates within the disk wider than long, bounded without by a curve, within by a wide much-truncated angle, and on the sides by re-entering curves. Further out they are as long as broad and nearly octagonal. They are stout but not swollen, and there are pairs of pores between the first three. Side arm-plates with a gently curved outer edge, and occupying nearly the whole height of the arm. Upper armplates smooth, nearly flat, regular, with straight outer and inner sides, and the outer corners rounded. They occupy nearly the whole upper surface. Length to breadth, \(1.5: 4\). Mouth-shields short heart-shape, with a rounded angle within. Length to breadth, \(4: 5.5\). Supplementary shields small, and swollen; length to breadth, \(1: 1.3\). Side mouth-shields reduced to a little plate, at the outer corner of the mouth-shield. Disk angular, and cosered by a close, fine granulation, which is easily rubbed off, as is shown in the figure. There are about seven grains in the length of 1 mm . Radial shields naked, of a narrow oval shape and pointed within ; length to breadth, \(4: 2\). The scale-coat of the disk is of thin delicate scales about 1 mm . in length. Arm-spines nine, the cight uppermost slender, pointed, and flattened, and about three fourths the length of a joint. The lowest one is much wider, blunt, and longer than a joint. Two tentacle-scales of a short spatula-shape: the upper one covering the lase of the lowest arm-spine. On the first tentacle-pore there are usually two supplementary scales placed just outside the pore. Color in alcohol, nearly white.

Station 134, near Santa Cruz, 248 fathoms, 1 specimen. Station 232, St. Vincent, 88 fathoms.

This species is nearest \(P\). rigida, from which it is distinguished by a shorter under arm-spine, larger radial shields, coarser disk-seales, and pores between the under arm-plates extending only to three joints.

In other specimens the granulation was uninterrupted over the disk, except small spots at the radial shields. The supplementary mouth-shield is often very small, and ill marked.

\section*{Ophiopæpale Goesiana Lsv.}

Station 101, Morro Light, 175-250 fathoms. Station 132, Santa Cruz, 115 fathoms (young). Station 127, Santa Cruz, 38 fathoms. Station 155, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 253, Grenada, 92 fathoms. Station 269, St. Vincent, 124 fathoms. Station 272, Barbados, 76 fathoms. Station 293, Barbados, 82 fathoms. Station 297, Barbados, 123 fathoms.

\section*{Ophiozona marmorea sp. nov.}

\section*{Plate III, Figs. 10-12.}

Special Marks. - Arms very stout and short (two and a half times diameter of disk), with strongly projecting side arm-plates and small sunken upper armplates. Side mouth-shields much swollen. Lower interbrachial spaces with scattered grains.

Description of an Individual (Station 164). - Diameter of disk 8 mm . Length of arm 19 mm . Width of arm next disk 2.3 mm . Five short, olunt, crowded angular papillæ to each mouth-angle, and, at the apex, the lowest of the short teeth; the outer papillæ are largest. Mouth-shields small, much larger than broad, five-sided with a curve without and an angle within ; length to brealth, 1.2 :.8. Side mouth-shields larger than mouth-shickls proper; much swollen, rudely triangular, and meeting fully within. First under armplate small and pentagonal, with a long angle inward ; those beyond are much larger, but still cover only about a third of the arm's width ; they are mueh wider without than within, with a sharp peak on the outer corners, and reentering curves on the lateral sides; length to brealth, 1.2 :.8. Side armplates large and swollen, but meeting neither above nor below. Upper armplates small and sunken, fan-shaped, with a truncated angle inward ; they cover not more than a third of the npper surface. Disk covered by large, thick, swollen rounded plates, with a central rosette of primaries and a radiating row of three in each interbrachial space. Radial shields longer than broat, rounded and swollen, separated by a wedge of two or three scales; length to breadth, \(2.3: 2\); between their outer ends and the arm is a row of narrow plates. Interbrachial spaces below covered on either sile by stout genital scales, and in the middle by a single row of two or three swollen plates ; they bear a scattered gramulation. Genital openings long, extending from sides of radial shields to margin of disk. Four short, stout, tapering, blunt, equal armspines, about two thirds as long as a joint. Two large oral tentacle-scales to each pore. Color in alcohol, white.

Station 101, 175-250 fathoms, 1 specimen. Station 134, 248 fathoms, 3
specimens. Station 158 , 148 fathoms, 1 specimen. Station 164, Guadeloupe, 150 fathoms, 11 specimens. Station 220, 160 fathoms, 1 specimen. Station 224, 114 fathoms, 1 specimen.
O. marmorea is nearest 0 . nivea, from which it differs in its swollen diskplates, side arm-plate and side mouth-shields, its smaller upper arm-plates, and shorter arms, and in granulation on the lower interbrachial space.

\section*{Ophiozona clypeata sp. nov.}

\section*{Plate III. Figs. 13-15.}

Special Marks. - Eleven close-set, lumpy mouth-papillæ to each angle. Side mouth-shields large and wide. Three moderately stout arm-spines, about as long as a joint.

Description of an Individual (Station 219). - Diameter of disk 10 mm . Length of arm 65 mm . Width of arm near disk 2 mm . Eleven short, lumpy, crowded mouth-papillæ to each angle, whereof the one next the outermost is widest. Mouth-shields blunt spear-head shape, with the point inward; length to breadth, \(1.5: 1\). Side mouth-shields rather wide and fully meeting within. Under arm-plates thick, but not ridged, much wider without than within where they are bounded by a wide truncated angle, while the outer is a broken curve and the lateral sides are re-entering curves. Side arm-plates short and stout, with a low spine-ridge. Upper arm-plates twice as broad as long, and much wider without than within. Disk round and flat, covered with distinct rounded slightly swollen overlapping scales, among which the primaries are conspicuous by their greater size. Radial shields short, oval ; length to breadth, \(1.2: 8\). In the interbrachial spaces below, the scales are of uniform size, about three in the length of 1 mm . Genital openings long, extending from outer corners of the mouth-shield quite to margin of disk. Three moderately stout, cylindrical, tapering, blunt arm-spines ; the two upper ones as long as a joint, the lowest a little longer. Two rudely semicircular tentacle-scales on the side arm-plate, whereof the one next the under arm-plate is smaller. Color in alcohol, nearly white.

Station 219, off Saint Lucia, 151 fathoms, 1 specimen. Station 232, St. Vincent, 88 fathoms.

By its smaller disk-scales and longer and more pliable arms this species connects the large-scaled and stiff-armed Ophiozonæ with the type O. impressa. It shows, too, the affinity of the genus to Ophiochiton through \(O\). lentus.

\section*{Ophiozona nivea Lrm.}

Station 129, Santa Cruz, 314 fathoms. Station 145, St. Kitts, 270 fathoms. Station 146, St. Kitts, 245 fathoms. Station 147. St. Kitts, 250 fathoms. Station 148, St. Kitts, 208 fathoms. Station 154, Montserrat, 298 fathoms. Station 155, Montserrat, 88 fathoms. Station 172, Guadeloupe, 62-180 fath-
oms. Station 183, Dominica, 252 fathoms. Station 208, Martinique, 213 fathoms. Station 209, Martinique, 189 fathoms. Station 210, Martinique, 191 fathoms. Station 215, St. Lucia, 226 fathoms. Station 216, St. Lucia, 154 fathoms. Station 218, St. Lucia, 164 fathoms. Station 219, St Lucia, 151 fathoms. Station 224, St. Vincent, 114 fathoms. Station 238, Grenadines, 127 fathoms. Station 241, Grenadines, 163 fathoms. Station 258, Grenada, 159 fathoms. Station 273, Barbados, 103 fathoms. Station 274, Barbados, 209 fathoms. Station 280, Barbados, 221 fathoms. Station 291, Barbados, 200 fathoms. Station 292, Barbados, 56 fathoms. Station 294, Barbados, 137 fathoms. Bartlett, Station 29, \(21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms, sp. ?

\section*{Ophiozona tessellata Lym.}

Station 134, Santa Cruz, 248 fathoms. Station 149, St. Kitts, 60-150 fáthoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 158, Montserrat, 148 fathoms. Station 166, Guadeloupe, 150 fathoms. Station 206, Martinique, 170 fathoms. Station 208, Martinique, 213 fathoms. Station 220, St. .Lucia, 116 fathoms. Station 231, St, Vincent, 95 fathoms. Station 238, Grenadines, 127 fathoms. Station 273 , Barbados, 103 fathoms. Station 282, Barbados, 154 fathoms. Station 290, Barbados, 73 fathoms. Station 297, Barbados, 123 fathoms. Station 299, Barbados, 140 fathoms. Bartlett, Station \(29,21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(8 z^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms.

\section*{Ophiozona impressa Lym.}

Station 132, Santa Cruz, 115 fathoms. Station 27-2, Barbados, 76 fathoms. Station 276, Barbados, 94 fathoms. Station 278, Barbados, 69 fathoms. Station 298, Parbados, 120 fathoms. Bartlett, Station \(29,21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms.

\section*{Ophiozona antillarum Lrm.}

Station 136, Santa Cruz, 508 fathoms. Station 204, Martinique, 46 fathoms. Station 205, Martinique, 334 fathoms. Station 208, Martinique, 213 fithoms. Station 211, Martinique, 357 fathoms. Station 273, Barhados, 103 fathoms. Station 276, Barbados, 94 fathons. Station 288, Barbados, 399 fathoms. Station 291, Barbados, 200 fathoms. Bartlett, Station 24, 5 m . E. of Cape Cruz, S. side of Cuba, 206 fathoms.

\section*{Ophiothyreus Goesii Lav.}

Station 101, Morro Light, 175-250) fathoms. Station 155. Montserrat, Ss fathoms. Bartlett, Station \(29,21^{\circ} 23^{\prime} 19^{\prime \prime} \mathrm{N}, 82^{\circ} 54^{\prime} 42^{\prime \prime} \mathrm{W}\)., 300 fathoms.

\section*{Ophiernus adspersus sp. nov.}

\section*{Plate III. Figs. 19-21.}

Special Marks. - Two or three small, unequal arm-spines. Arms flat and very wide, their width being about one third the diameter of the disk. Mouthframes narrow and prolonged.

Description of an Individual (Station 150). - Diameter of disk 13 mm . Width of arm close to disk 4 mm . Four short, rounded, bead-like, close-set papillæ on either side of the narrow, prolonged mouth-angle, and three longer ones under the teeth, which are five in number and are short and stout. There are also three or four bead-like papillæ on the side mouth-shield, and a much wider one outside them, all of which may be considered as scales of the second pair of mouth-tentacles. Mouth-shields about as broad as long, 1.6: 1.6, - of an angular heart-shape, with the point inward. Side mouthshields long triangular, embracing the sides of the mouth-shields and not quite meeting within. First under arm-plate small and swollen, of an irregular rounded shape. The plates beyond are narrow, with lateral sides reenteringly curved opposite the tentacle-pores. They are very small, and occupy not more than a quarter of the width of the arm. Side arm-plates wide, thin, and flat ; they do not quite meet below, and are broadly separated above by the upper arm-plates, which cover all that surface of the arm ; they are thus feebly arched, much wider than long, wider withont than within, and having the outer and inner margins straight. Disk flat, with re-entering curves over the arms ; covered by thin, flat, irregular, strongly overlapping, illdefined scales, which are beset with minute granules, of which there are about eight in the length of 1 mm . where they are closest. Radial shields nearly naked, of an irregular pear-seed shape, with the point inward, widely separated by the disk-scaling, and nearly naked; length to breadth, 4:2. Lower interbrachial spaces more finely and regularly scaled. Genital openings long and wide, with a broad genital scale at the outer end. Arm-spines two, rarely three ; they are slender and peg-like. The upper one is longest, and about half as long as a joint. Two, rarely three, small, flat, oval tentacle-scales standing on the side arm-plate. Color in alcolol, pale gray. The fragile arms are long and slender, being about nine times the diameter of the disk. In its natural state the disk is probably closely granulated, but the grains are easily rubbed off.

The wide arms and different mouth-angles distinguish it from \(O\). vallincola.
Station 129, Frederickstadt, 314 fathoms. Station 130, Santa Cruz, 451 fathoins. Station 150, between St. Kitts and Nevis, 375 fathoms. Station 148, St. Kitts, 208 fathoms. Station 161, Guarleloupe, 583 fathoms. Station 176, Dominica, 391 fathoms. Station 185, Dominica, 333 fathoms. Station 188, Duminica, 372 fathoms. Station 190, Dominica, 542 fathoms. Station 196, Martinique, 1,030 fathoms. Station 221, St. Lucia, 423 fathoms. Station 222, St. Lucia, 422 fathoms. Station 226, St. Vincent, 124 fathoms. Sti-
tion 230, St. Vincent, 464 fathoms. Station 230, Grenadines, 338 fathoms. Station 258, Grenada, 159 fathoms. Station 260, Grenada, 291 fathoms. Station 264, Grenada, 416 fathoms. Station 288, Barbados, 399 fathoms. Station 291, Barbados, 200 fathoms. Capt. Bartlett, 1880, Lat. \(17^{\circ} 30^{\prime}\) N., Long. \(79^{\circ} 14^{\prime} \mathrm{W} ., 555\) fathoms ; also, \(17^{\circ} 45^{\prime} \mathrm{N} ., 77^{\circ} 58^{\prime} \mathrm{W} ., 322\) fathoms.

\section*{Ophioglypha fasciculata sp. nov.}

Plate III. Figs. 2R-24.
Special Marks. - Four spaced arm-spines. Upper surface of thick disk chiefly covered by radial shields, rosette of primary plates and large plate in each interbrachial space ; no large plate on margin. Basal under arm-plates broader than long. Whole surface microscopically tuberculous. Papillæ of arm-comb flattened spiniform.
Description of an Individual. - Diameter of disk 13 mm . Width of arm near disk 3 mm . Three or four rectangular, crowded papillæ on each side of a mouth-angle, and two or three conical ones at its apex. Mouth-shields very large, much longer than broad, having the outline of a wide-mouthed jug, and with the small lobe-like end inwarl ; length to breadth, 3:2. Side mouthshields narrow, and of nearly equal width, meeting fully within. First under arm-plate larger than any other, longer than wide, narrower within than without ; the rest, within disk, are wider than long, and four-sided ; those beyond become gradually hexagonal. Side arm-plates swollen, meeting neither above nor below. Basal upper arm-plates more than twice as broad as long, with well-marked angles at their lateral ends. Disk thick, corerel above by a central rosette of large primary plates and a large plate in each interbrachial space; on margin of disk are a lot of small scales, and a single line between the chief plates. Lower interbrachial spaces partly covered liy large month-shield, and partly by imbricated scales. Radial shields longer than wide, irregular and somewhat angular in outline, joined for about half their length. Genital scales narrow next radial shicld, but growing wider without; they bear on their free edge a continuous but not crowded line of small, sharp papillæ, which on the upper side of arm become spiniform, and form the comb. Four spaced arm-spines about two thirds as long as a joint. Tentaclepores large ; month-tentacles with a straight line of five or six small, squarish, crowded scales on either side; the others, within the disk, have usually five on the side arm-plate, and two or three on the under arm-plate. Color in alcohol, pale gray.

Station 281, Barbados, 288 fathoms, 2 specimens.
O. bullata is nearest, but differs in finer disk-scales, large marginal plates, separated radial shields, differently shaped arm-comb papillx, and only three minute arm-spines.

\section*{Ophioglypha abyssorum sp. nov.}

\section*{Plate III. Figs. 25-2\%.}

Special Marlis. - Surface microscopically tuberculous. Arm-spines rudimentary, or wanting. No papillæ along genital scale on the under surface, and only two or three in each arm-comb. Side arm-plates not swollen.

Description of an Individual. - Diameter of disk 11 mm . Width of arm near disk 2 mm . Four or five rectangular, crowded papillæ on either side of a mouth-angle, and one diamond-shaped (lowest tooth) at apex. Mouthshields wide angular heart-shape, with a peak inward; length to breadth, \(2.5: 2\). Side mouth-shields rather wide, and meeting fully within. First under arm-plate larger than the rest, longer than wide, bell-shaped with a very gentle curre without, and a long curve within ; the next two plates are wider than long, rounded pentagonal with an angle inward ; those beyond are smaller, almost transverse diamond in form, with outer side gently curved. Side arm-plates meeting fully below ; also above, beyond the first two upper arm-plates, which are rounded diamond-shape with the inner angle truncated; those beyond are as broad as long, and diamond-shaped with rounded angles. Disk smooth and not very thick, having in the centre a large, round primary plate, which is separated from the other five by a circle of smaller angular plates, similar to those which cover the rest of the disk, some of which are, however, larger. Radial shields large and a little sunken, of a short, irregular pear-seed shape, almost wholly separated by an outer and an inner wedge of disk-scales; length to breadth, \(3: 2.3\). Interbrachial spaces below chiefly filled by two large central plates and the broad genital scales, which bear no papillæ on their free edge. It is only on the upper surface of the arm, just outside the radial shields, that a rudimentary comb is found, made up of two or three block-like papillæ. The joints within the disk have one or two rudimentary spines, the rest none. Mouth-tentacle pores surrounded by eight or nine small, crowded block-like scales; the next two have five such seales; those beyond, one very minute papilla, or none. Color in alcohol, pale gray.

Station 140 , Virgen Gorda, 1,09 t fathoms, 5 specimens.
The species differs from \(O\). confragosa in its even, microscopically tuberculated surface, its side arm-plates not swollen, under arm-plates of a different shape, and arm-spines rudimentary or wanting.

\section*{Ophioglypha scutata sp. nov.}

\section*{Plate 1V. Figs. 28-30.}

Special Marks. - Upper disk chiefly covered by large radial shields and primary plates, with two plates in each interbrachial space. Papills of genital scale blunt, and forming above a close row. Three little arm-spines about one third as long as a joint.

Description of an Individual (Station 231). - Diameter of disk 6 mm . Width of arm close to disk 1 mm . Three short, oblong, close-set papillæ on each side of mouth-angle, and at its apex a group of three smaller and bluntly pointed ones, whereof the centre one is largest. Mouth-shield rounded quadrangular, with an angle inward ; length to breadth, 1:1. Side mouth-shields rather short and narrow, running along inner angle of mouth-shield. First under arm-plate large and triangular, with a curved outer side. The next three plates wider than long, with a gently curved outer sile, an obtuse angle within, and re-entering curves on the sides. The plates beyond grow suddenly smaller, and are much wider than long. Side arm-plates large and a little swollen, meeting above and below. Upper arm-plates three-sided, with an angle inward. Disk flat, and covered above in the centre by a group of six large primary plates, whereof the middle one is pentagonal, and the rest rounded. Outside these are two large elongated plates, placed end to end and occupying the interbrachial space. The remaining upper surface is covered by very large radial shields, which are as wide as long, and of irregular outline, joined for their whole length, except at the inner point, where they are separated by a small scale ; length to breadth, 1.2:1.3. The lower interbrachial space is almost wholly occupied by a large hexagonal plate lying outside the mouth-shield and the rather wide genital scales, which bear blunt, bead-like papillæ continued in an unbroken line over top of arm just along outer edge of part of the radial shield. Three short, equal, stout, peg-like arm-spines, about one third as long as a joint. First three tentacle-pores, with three lumpy close-set scales on each side. The fourth bas two scales on either side, and those beyond have none. Color in alcohol, white.

Station 231, off St. Vincent, 95 fathoms, 1 specimen.
This specimen is probably not adult, but its characters are so marked that there seems no doubt of its novelty. In the small number and large size of its disk-plates, it resembles 0 . minuta.

\section*{Ophioglypha tenera sp. nov.}

Plate IV. Figs. 31-33.
Special Marks. - Three short, blunt, spaced arm-spines, less than half as long as a joint. Disk-scales somewhat swollen and mostly large. Radial shields joined for a part of their length. Papilla of arm-comb close-set, flat, and with rounded ends.

Description of an Individual. - Diameter of disk 5.5 mm . Wilth of arm 1.2 mm . Mouth-angles large and regular, bearing on each side five or six low papilla, which are much crowded, and form a straight line ; the outermost are much longer than high, while the imer ones are almost beal-like; at the apex and on the jaw-plate are two spiniform papilla, between which appears the lowest tooth. Mouth-shields five-sided, bomeded within by a well-marked angle, and without by a curve; length to breadth 1.2:1. Sile mouth-shields
narrow and tapering within, where they join. First under arm-plate as broad as long, four-sided with much rounded corners. Those beyond hare essentially a five-sided outline, but the second plate has its corners much rounded, while the others are more regular and have a well-marked peak within. Side armplates meeting below, but not above next the disk; slightly flaring so as to make a distinct shoulder, which carries the spines. Upper arm-plates Lroad wedge-shape, with an angle inward, which in the first two is truncated. Upper surface of disk with a central rosette of six slightly swollen, irregularly rounded primary plates, outside which is the great plate which separates the ends of the radial shields, and, in the interbrachial space, two other large plates, one of which is on the margin. Besides these there are numerous small intercalated scales. Interbrachial spaces below covered by half a dozen irregular angular plates ; besides which the narrow genital plates appear running along the genital openings quite to the margin of the disk. A row of fine papille stands on the edge of the genital scale, which grow suddenly larger, as the plate passes to the top of the arm, and form a close comb of flattened papillæ with rounded ends. Three small, equal, peg-like, spaced armspines, less than half as long as a joint. Mouth-tentacles with five or six minute, bead-like scales on each side ; the next have three or four ; the second and third have three on the side arm-plates, and the fourth, one. Color in alcohol, pale gray.
Station 269, off St. Vincent, 124 fathoms, 4 specimens.
This species stands nearest \(O\). costata, but has longer arm-spines, disk-scales more swollen and separated, side arm-plates more flaring, and radial shields joined.

\section*{Ophioglypha aurantiaca Vle.}

\author{
Vll., Amer. Journ. Sci., XXIII. p. 141, 1882.
}

Plate IV. Figs. 34-36.
Special Marks. - Disk covered by a smooth skin, through which the scales of the upper surface are scarcely to be made out, while those of the lorver surface are more distinct. Three wide, flattened arm-spines, the upper one longer than an arm-joint, the others not so long. No comb above the base of the arm.

Description of an Individual (Station 312). - Diameter of disk 11.5 mm . Width of arm close to disk 2.5 mm . About eleven small, bead-like, slightly spaced mouth-papille to each angle. Four or five small spear-head-shapeel tecth. Month-shield very wide heart-shaped, with an obtuse angle inward ; length to breadth, \(2: 1\). Side month-shields long, with an irrecular outline, and widest at their outer ends. liist under arm-plate ronnded hexagonal, and about as broad as long. The next two are of an irregular transvense oval shape, and those immediately beyond are much wider than long with a curve without aud a peak within. Site arm-plates clinging close to the arm,
and but slightly swollen, scarcely meeting below near base of arm, and separated above by four-sided upper arm-plates, which are as broad as long, and have the outer side curved, and the laterals straight. Disk romed, smooth, and somewhat swollen, covered by skin, through which the scaling of the upper surface is only vaguely indicated. In the lower interbrachial spaces the scales are plainly indicated ; they are thin, rounded, pretty even, and about three in the length of 2 mm . When the specimen is dry the scales are of course more distinct. Radial shields small, irregularly three-sided; widely separated, except at their outer ends, which overhang the arm. Along the edge of the genital opening, whose scale is completely obscured, runs a line of minute, sharp papillæ, which stops at the disk margin and does not pass upwards to form an arm-comb. Three wide, flattened, slightly rough arm-spines, whereof the uppermost is longer than a joint, the middle one as long as a joint, and the lowest one shortest and somewhat tapering. Each mouth-tentacle is surrounded by about ten small, bead-like, close-set scales ; the next pore has six, and those beyond two, which stand on the side arm-plate. Color in alcohol, pale gray ; of living animal, bright orange (Verrill).

Station 312, \(39^{\circ} 50^{\prime} 45^{\prime \prime} \mathrm{N}\)., \(70^{\circ} 11^{\prime} \mathrm{W}\)., 466 fathoms. Station \(306,41^{\circ} 32^{\prime}\) \(50^{\prime \prime}\) N., \(65^{\circ} 55^{\prime} \mathrm{W} ., 524\) fathoms, 2 specimens.

A young one, with a disk of 4 mm ., had more slender arm-spines, the back scaling less indistinct, and the under arm-plates narrower and more widely separated.

This species is nearest 0 . flagellata, but differs in having shorter arm-spines, and in wanting an arm-comb.

\section*{Ophioglypha affinis?}

Station \(344,40^{\circ} 1^{\prime} \mathrm{N} ., 70^{\circ} 58^{\prime} \mathrm{W}\).

\section*{Ophioglypha confragosa Lim.}

Station \(312,39^{\circ} 50^{\prime} 45^{\prime \prime} \mathrm{N} ., 70^{\circ} 11^{\prime} \mathrm{W}\). Young.

\section*{Ophioglypha Sarsii Lrm.}

Station 346, \(40^{\circ} 25^{\prime} 35^{\prime \prime} \mathrm{N} ., 71^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W} ., 44\) fathoms. Station 332, \(35^{\circ} 45^{\prime} 30^{\prime \prime} \mathrm{N} ., 74^{\circ} 48^{\prime} \mathrm{W} ., 263\) fathoms. Station \(344,40^{\circ} 1^{\prime} \mathrm{N} ., 70^{\circ} 58^{\prime} \mathrm{W}\)., 129 fathoms. Station \(303,41^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{N} ., 65^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{W}\)., 306 fathoms.

\section*{Ophioglypha lepida Lym.}

Station 228, St. Vincent, 785 fathoms. Station \(307,41^{\circ} 29^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 47^{\prime}\) \(10^{\prime \prime}\) W., 980 fathoms. Bartlett, Station 14, Grand Cayman Island, 608 fathoms. Station \(308,41^{\circ} 24^{\prime} 45^{\prime \prime} \mathrm{N}\)., \(65^{\circ} 35^{\prime} 30^{\prime \prime \prime} \mathrm{W}\)., 1,242 fathoms. Bartlett, Station 18, \(18^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{N}, 87^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{W}\)., 600 fathoms. Station 330, vole x. - No. 6.
\(31^{\circ} 41^{\prime}\) N., \(74^{\circ} 35^{\prime}\) W., 1,047 fathoms. Station \(339,38^{\circ} 16^{\prime} 45^{\prime \prime \prime}\) N., \(73^{\circ} 10^{\prime}\) \(30^{\prime \prime} \mathrm{W} ., 1,186\) fathoms. Station \(340,39^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{N} ., 70^{\circ} 58^{\prime} 40^{\prime \prime} \mathrm{W} ., 1,394\) fathoms. Station \(341,39^{\circ} 38^{\prime} 20^{\prime \prime} \mathrm{N} ., 70^{\circ} 56^{\prime} \mathrm{W}\)., 1,241 fathoms.

\section*{Ophioglypha Stuwitzii var.?}

Station \(321,32^{\circ} 43^{\prime} 25^{\prime \prime} \mathrm{N} ., 77^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{W}\)., 233 fathoms.

\section*{Ophioglypha acervata Lym.}

Station 132, Santa Cruz, 115 fathoms. Station 143, Saba Bank, 150 fathoms. Station 149, St. Kitts, 60-150 fathoms. Station 177, Dominica, 118 fathoms. Station 253, Grenada, 92 fathoms. Station 259, Grenada, 159 fathoms. Station 262, Grenada, 92 fathoms. Station 316, \(32^{\circ} 7^{\prime}\) N., \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) W., 229 fathoms. Station \(315,32^{\circ} 18^{\prime} 20^{\prime \prime}\) N., \(78^{\circ} 43^{\prime}\) W., 225 fathoms.

\section*{NOTES ON OPHIOGLYPHA.}

Ophioglypha falcifera Lrm.

\section*{Plate IV. Figs. 37-39.}

In the original description (Bull. Mus. Comp. Zoöl., I., No. 10, p. 320) I said : "We may look for an adult of this curious species about the size of \(O\). Sarsii, or rather smaller, and having a large number of small plates on the disk."

A considerable number of specimens were brought in by this expedition, of which the largest had a disk of 13 mm ., and the arm 52 mm . long. The disk was covered by coarse, well-defined scales, the interbrachial margin being almost wholly occupied by a single plate. The hook-like form of the middle arm-spine could be traced to within half a dozen joints of the disk.

Station 130, Frederickstadt, 451 fathoms. Station 136, Frederickstadt, 508 fathoms, Station 185, Dominica, 333 fathoms. Station 188, Dominica, 372 fathoms. Station 195, Martinique, \(502 \frac{1}{2}\) fathoms. Station 204, Martinique, 476 fathoms. Station 221, St. Lucia, 423 fathoms. Station 222, St. Lucia, 422 fathoms. Station 226, St. Vincent, \(42 \pm\) fathoms. Station 230 , St. Vincent, 464 fathoms. Station 265 , Grenada, 576 fathoms. Station 291, Barbados, 200 fathoms.

\section*{Ophioglypha variabilis Lrm.}

Specimens from about thirty stations slowel a good deal of variation. Some were like Fig 70, Pl. III., Bull. M. C. Z. V., No. T, while others had two or three vertical rows of scales in the lower interbrachial spaces. The scales on the back of the disk also varied in size and number. Likewise the second or under arm-comb, had sometimes numerous and sometimes very few papilla.

Station 101, Morro Light, 175-250 fathoms. Station 130, Frederickstadt, 451 fathoms. Station 136, Frederickstadt, 508 fathoms. Station 137, Frederickstadt, 625 fathoms. Station 148, St. Kitts, 208 fathoms. Station 161, Guadeloupe, 583 fathoms. Station 162, Guadeloupe, 734 fathoms. Station 163, Guadeloupe, 769 fathoms. Station 173, Guadeloupe, 734 fathoms. Station 174, Guadeloupe, 878 fathoms. Station 175, Dominica, 608 fathoms. Station 179, Dominica, 824 fathoms. Station 185, Dominica, 333 fathoms. Station 188, Dominica, 372 fathoms. Station 200, Martinique, 472 fathoms. Station 208, Martinique, 213 fathoms. Station 221, St. Lucia, 423 fathoms. Station 226, St. Vincent, 424 fathoms. Station 227, St. Vincent, 573 fathoms. Station 2228, St. Vincent, 785 fathoms. Station 230 , St. Vincent, 464 fathoms. Station 239, Grenadines, 338 fathoms. Station 257, Grenada, 553 fathoms. Station 260, Grenada, 291 fathoms. Station 264, Grenada, 416 fathoms. Station 265, Grenada, 576 fathoms.

\section*{Ophioglypha irrorata? Lim.}

The specimens seemed just the same as those from Station 164 of the "Challenger" (Bull. M. C. Z., V., No. 7, p. 74). They differed from those from the coast of Portugal, called 0 . irrorata (3) in the postscript to my Challenger Ophiuroidea (p. 381), in having three arm-spines set close together, whereas the latter had two below, and one separated and higher up; while farther out they were close together, and the middle one had the form of a blunt hook.

Station 140, Virgen Gorda, 1,097 fathoms. Station 245, Grenada, 1,058 fathoms.

\section*{Ophioglypha convexa? Lym.}

\section*{Plate IV. Figs. 40-45.}

Most of the specimens differ so much from 0 . convexa as to appear like another species. The six primary plates, extremely swollen, form an elevated rosette, overhanging very small radial shields, not so large as the head of the genital scale. The mouth-shield, too, occupies the whole of the lower interbrachial space (fig. 43). But specimens from Station 148 were intermediate, or rather differed from the typical form only in finer arm-comb papillæ and more interbrachial seales on the disk margin. It will be necessary to await further dredgings before deciding the specific limits. It is to be noted as an important difference, that, while the typical \(O\). convexa is found in 2,350 fathoms, this species does not go below 240 fathoms.

Station 145, St Kitts, 270 fathoms. Station 157, Montserrat, 120 fathoms. Station 158, Montserrat, 148 fathoms. Station 220, St. Lucia, 116 fathoms. Station 224, St. Vincent, 114 fathoms.

\section*{Ophiocten Pattersoni sp. nov.}

\section*{Plate IV. Figs. 46-48.}

Special Marks. - Longest arm-spine as long as one and a half arm-joints. Disk covered above irregularly with larger and smaller scales. Arm-comb feeble. One wide mouth-papilla on each side, and two spiniform farther in, with one at apex of mouth-angle.

Description of an Individual. - Diameter of disk 9.5 mm . Width of arm close to disk 1.6 mm . A very wide papilla at outer corner of mouth-angle, and two spiniform within it, on either side, and one or two at the apex. Three slender, spike-like teeth. Mouth-shields rounded squarish, as broad as long, with an ill-marked angle within; length to breadth, 1.2:1.2. Side mouthshields very narrow, of equal width, meeting fully within. First under armplate large, about as broad as long, of a rudely rhomboidal form, with a rounded angle outward ; the rest are much wider than long, with a rounded angle without, a little peak within, and sharp lateral corners. Side arm-plates slightly flaring outward, meeting broadly below, where they cover most of the arm; separated above by the upper arm-plates, which are much broader than long, and a little wider without than within; length to breadth, \(8: 1.5\). Disk circular and flat on top, where it is covered with fine, thin scales, among which appear numerous irregular plates, which form a continuous patch at the margin. Radial shields small, irregular, and widely separated. Interbrachial spaces below covered by a more regular imbricated scaling, and without plates. Genital scales hidden, except their outer ends, just outside the radial shields, which bear a feeble arm-comb of half a dozen or less minute papillx. Tentaclepores large; the outer ones are furnished with a small scale, which often is lacking on the basal pores. Three very slender, tapering arm-spines, the uppermost and longest one as long as one and a half or two joints. Color in alcohol, pale yellowish gray.

Station 344, Lat. \(40^{\circ} 1^{\prime}\) N., Long. \(70^{\circ} 58^{\prime}\) W., 129 fathoms, 1 specimen.

\section*{Ophiomusium eburneum Lxs.}

Bull. M. C. Z., I. 10, p. 322, 1869. Ill. Cat. M. C. Z., VI., Pl. II. figs. 1, 2, 3.
It happened strangely enough that the specimen originally described by me was only half grown and aberrant, differing from ordinary specimens somewhat in the comparative thinness of the disk scales, but chictly in the marrowness of the arm, which was only 1.3 mm., while an arerage individual with a similar disk ( 9 mm .) would have an arm 2 mm . wide. I found, however, one or two whose arms were not much wiler than those of the type.

This species attains a good size. One with a lisk of 15 mm . had arms about 50 mm . long and 3 mm . wide. The radial shields were more clongated than in the type, and there were three little arm-spines.

In looking over a large series, there may be found some difference in the form of the radial shields, in the size and thickness of the fine central scales of the disk, in the length and number of the arm-spines, which may be two or three, and in the width of the arm.

Constant features are the somewhat swollen and microscopically tuberculous side arm-plates, the numerous and comparatively thin disk scales, and the presence of only two under arm-plates furnished with tentacles.

Station 100, off Morro Light, 250-400 fathoms. Station 132, Santa Cruz, 115 fathoms. Station 147, St. Kitts, 250 fathoms. Station 159, Guadeloupe, 196 fathoms. Station 176, Dominica, 390 fathoms. Station 177, Dominica, 118 fathoms. Station 185, Dominica, 333 fathoms. Station 208, Martinique, 213 fathoms. Station 215, St. Lucia, 226 fathoms. Station 218, St. Lucia, 164 fathoms. Station 231, St. Vincent, 95 fathoms. Station 238, Grenadines, 127 fathoms. Station 240, Grenadines, 164 fathoms. Station 241, Grenadines, 163 fathoms. Station 248, Grenada, 161 fathoms. Station 249, Grenada, 262 fathoms. Station 258, Grenada, 159 fathoms. Station 262, Grenada, 92 fathoms. Station 263, Grenada, 159 fathoms. Station 269, St. Vincent, 124 fathoms. Station 274, Barbados, 209 fathoms. Station 280, Barbados, 221 fathoms.

\section*{Ophiomusium Lymani Wyv. Tном.}

\section*{Plate V. Figs. 55-5\%. (Young.)}

The young, with a disk not larger than 5 mm ., would be taken for a new species. On the back is an elevated rosette of thick primary plates, each having a central boss. Outside these lie the thick radial shields, and, in the interbrachial spaces, two plates, the marginal one much the larger. Below, it has, besides the genital scales, one large plate outside the mouth-shield, and two or three very small ones on the margin. With a disk of 8 mm . it resembles the adult of \(O\). validum, of the same size, except that the latter has larger radial shields, fewer central scales, and, below, scarcely more than one great plate outside the mouth-shield.

Station 331, \(35^{\circ} 44^{\prime} 40^{\prime \prime}\) N., \(74^{\circ} 40^{\prime} 20^{\prime \prime} \mathrm{W}\)., 898 fathoms.
The following were adult:-
Station 305, \(41^{\circ} 33^{\prime} 15^{\prime \prime} \mathrm{N} ., 65^{\circ} 51^{\prime} 25^{\prime \prime} \mathrm{W} ., 810\) fathoms. Station 307. \(41^{\circ} 29^{\prime} 45^{\prime \prime} \mathrm{N} ., 65^{\circ} 47^{\prime} 10^{\prime \prime} \mathrm{W} ., 980\) fathoms. Station \(308,41^{\circ} \supseteq 4^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{W} ., 1242\) fathoms. Station \(330,31^{\circ} 41^{\prime} \mathrm{N} ., 74^{\circ} 35^{\prime} \mathrm{W} ., 1047\) fathoms. Station 331, \(35^{\circ} 44^{\prime} 40^{\prime \prime} \mathrm{N} ., 74^{\circ} 40^{\prime} 20^{\prime \prime} \mathrm{W}\)., 898 fathoms. Station \(338,38^{\circ} 18^{\prime} 40^{\prime \prime} \mathrm{N} ., 73^{\circ} 18^{\prime} 10^{\prime \prime} \mathrm{W} ., 922\) fathoms. Station \(339,35^{\circ} 16^{\prime} 45^{\prime \prime}\) N., \(73^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}\)., 1186 fathoms. Station \(341,39^{\circ} 38^{\prime} 20^{\prime \prime} \mathrm{N}\)., \(70^{\circ} 56^{\prime} \mathrm{W}\)., 1241 fathoms. Station \(342,39^{\circ} 43^{\prime} \mathrm{N}\)., \(70^{\circ} 55^{\prime} 25^{\prime \prime} \mathrm{W}\)., 1002 fathoms.

\section*{Ophiomusium validum Lss.}

Station 100, off Morro Light, \(250-400\) fathoms. Station 101, off Morro Light, 175-200 fathoms. Station 117, Porto Rico, 874 fathoms. Station 131, Santa Cruz, 580 fathoms. Station 134, Santa Cruz, 248 fathoms. Station 145, St. Kitts, 270 fathoms. Station 146, St. Kitts, 245 fathoms. Station 148, St. Kitts, 208 fathoms. Station 149, St. Kitts, 60-180 fathoms. Station 161, Guadeloupe, 583 fathoms. Station 162, Guadeloupe, 734 fathoms. Station 163, Guadeloupe, 769 fathoms. Station 173, Guadeloupe, 734 fathoms. Station 174, Guadeloupe, 878 fathoms. Station 175, Dominique, 608 fathoms. Station 190, Dominique, 542 fathoms. Station 195, Martinique, 501 fathoms. Station 200, Martinique, 472 fathoms. Station 211, Martinique, 357 fathoms. Station 212, Martinique, 317 fathoms. Station 222, St. Lucia, 422 fathoms. Station 227, St. Vincent, 573 fathoms. Station 228, St. Vincent, 785 fathoms. Station 238, Grenadines, 127 fathoms. Station 257, Grenada, 553 fathoms. Station 259, Grenada, 159 fathoms. Station 261, Grenada, 340 fathoms. Station 264, Grenada, 416 fathoms. Station 291, Barbados, 200 fathoms. Bartlett, Station 4, \(20^{\circ} 24^{\prime} 15^{\prime \prime}\) N., \(73^{\circ} 56^{\prime} 50^{\prime \prime}\) W., 772 fathoms. Bartlett, Station \(8,17^{\circ} 45^{\prime}\) N., \(77^{\circ} 58^{\prime} 40^{\prime \prime}\) W., 322 fathoms. Bartlett, Station 18, \(18^{\circ} 20^{\prime} 30^{\prime \prime}\) N., \(87^{\circ} 16^{\prime} 40^{\prime \prime}\) W., 600 fathoms.

\section*{Ophiomusium testudo Lras.}

Station 100, off Morro Light, 250-400 fathoms. Station 132, Frederickstadt, 115 fathoms. Station 136, Frederickstadt, 508 fathoms. Station 155, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 158, Montserrat, 148 fathoms. Station 17T, Dominique, 118 fathoms. Station 178, Dominique, 130 fathoms. Station 224, St. Vincent, 114 fathons. Station 232, St. Vincent, 88 fathoms. Station 262, Grenada, 92 fathoms. Station 272, Barbados, 76 fathoms. Station 273, Barbados, 103 fathoms. Station 276, Barbados, 94 fathoms. Station 278, Barbados, 69 fathoms. Station 290 , Barbados, 73 fathoms. Bartlett, Station 29, \(21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms.

\section*{Ophiomusium planum Lym.}

Bartlett, Station \(29,21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime} W^{\prime}\)., 300 fathoms.

\section*{Ophiomusium acuferum Lras.}

Station 132, Santa Cruz, 115 fathoms. Station 143, Saba Bank, 150 fathoms. Station 149, St. Kitts, 60-180 fathoms. Station 142, Flannegan Passage, 27 fathoms. Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 167, Guadeloupe, 175 fathoms. Station 177, Dominica, 118 fathoms. Station 196, Martinique, 1030 fathoms. Station 206, Marti-
nique, 170 fathoms. Station 210, Martinique, 191 fathoms. Station 220, St. Lucia, 116 fathoms. Station 224, St. Vincent, 114 fathoms. Station 231, St. Vincent, 95 fathoms. Station 233, St. Vincent, 174 fathoms. Station 253, Grenada, 92 fathoms. Station 254, Grenada, 164 fathoms. Station 262, Grenada, 92 fathoms. Station 269, St. Vincent, 124 fathoms. Station 272, Barbados, 76 fathoms. Station 273, Barbados, 103 fathoms. Station 274, Barbados, 209 fathoms. Station 276, Barbados, 94 fathoms. Station 277, Barbados, 106 fathoms. Station 278, Barbados, 69 fathoms. Station 281, Barbados, 288 fathoms. Station 290, Barbados, 73 fathoms. Station 291, Barbados, 200 fathoms. Station 292, Barbados, 56 fathoms. Station 293, Barbados, 82 fathoms. Station 296, Barbados, 84 fathoms. Station 297, Barbados, 123 fathoms. Station 299, Barbados, 140 fathoms. Station 300, Barbados, 82 fathoms. Bartlett, Station 29, \(21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms. Entrance to Port Royal, Jamaica, 100 fathoms.

\section*{Ophiomusium serratum Lim.}

Station 136, Frederickstadt, 508 fathoms. Station 140, Virgen Gorda, 1097 fathoms. Station 205, Martinique, 334 fathoms. Station 211, Martinique, 357 fathoms. Station 214, Martinique, 476 fathoms. Station 230, St. Vincent, 464 fathoms. Station 260, Grenada, 291 fathoms. Station 269, St. Vincent, 124 fathoms. Station 274, Barbados, 209 fathoms. Station 280, Barbados, 221 fathoms. Station 288, Barbados, 399 fathoms. Bartlett, Station \(8,17^{\circ} 45^{\prime}\) N., \(77^{\circ} 58^{\prime} 40^{\prime \prime} \mathrm{W}\)., 322 fathoms. Bartlett, Station \(24,5 \mathrm{~m}\). E. of Cape Cruz, S. side of Cuba, 206 fathoms.

\section*{Ophiomastus texturatus sp. nov.}

\section*{Plate IV. Figs, 49-51.}

Special Marks. - Three minute arm-spines. Disk covered above by a central rosette of eleven plates, from which radiate ten single lines of plates. Radial shields large and oblong.

Description of an Individual. - Diameter of disk 4.7 mm . Width of arm, near disk, 1.7 mm . A row of four or five small, block-like papilla on each side of a mouth-angle ; they are so closely wedged together as to form an apparently continuous line. Teeth resembling mouth-papille in form and size. Month-shields small, as broad as long, bounded by a curve withont and an angle within ; length to breadth, .7:.7. Side mouth-shields pointel, oval, large, widely joined within. Under arm-plates small, occupying less than one thirl the width of the arm, five-sided, with outer edge curved, laterals reenteringly curved, and an angle within. Side arm-plates very lave, meeting above and below, and covering the greater part of the broad arm. Upper armplates small, occupying little more than a third of the width of arm, trans-
verse oval. The surface of the arm, as well as that of the disk, is microscopically tuberculous. Disk covered above by swollen plates, of which there is a central rosette of eleven; one ten-sided in the midst, and surrounding it ten hexagonal, with unequal sides, whereof the brachial plates are the largest ; all are continued, by single rows of small plates, to margin of disk. Below, the interbrachial space is occupied by large, thick genital plates, and by two others placed on the median line. Radial shields large, longer than broad, wider without than within, where they join the central rosette; length to breadth, \(1.2: 9\). Genital openings narrow and very short, beginning at outer corner of radial shield. Three very small peg-like arm-spines, less than half as long as a joint. Second pair of mouth-tentacles issuing from pores just inside the side mouth-shields ; first pair of arm-tentacles with three minute, liplike scales; those beyond usually with only one small scale. Color in alcohol, pale gray.
"Challenger" Expedition, Station 173, 310 fathoms, 1 specimen.

\section*{Ophiomastus secundus Lim.}

Station 136, Santa Cruz, 508 fathoms. Station 149, St. Kitts, 60-150 fathoms. Station 163, Guadeloupe, 769 fathoms. Station 179, Dominica, 824 fathoms. Station 180, Dominica, 982 fathoms. Station 182, Dominica, 1131 fatboms. Station 185, Dominica, 333 fathoms. Station 196, Martinique, 1030 fathoms. Station 205, Martinique, 334 fathoms. Station 211, Martinique, 357 fathoms. Station 230, St. Vincent, 464 fathoms. Station 288, Barbados, 399 fathoms. Station \(325,33^{\circ} 35^{\prime} 20^{\prime \prime} \mathrm{N} ., 76^{\circ} \mathrm{W}\)., 647 fathoms. Station 326, \(33^{\circ} 42^{\prime} 15^{\prime \prime}\) N., \(76^{\circ} 0^{\prime} 50^{\prime \prime}\) W., 464 fathoms. Station \(329,34^{\circ} 39^{\prime}\) \(40^{\prime \prime} \mathrm{N} ., 75^{\circ} 14^{\prime} 40^{\prime \prime} \mathrm{W}\)., 603 fathoms.

\section*{Ophiophyllum petilum? Lys.}

\section*{Bull. M. C. Z., V. 7, p. 130, Pl. VII. Figs. 170-181.}

\section*{Plate IV. Figs. 52-54.}

The single specimen brought up from 542 fathoms at Station 190, near - Dominica, differed from the type in having, near the base of the arm, a small, peg-like, additional arm-spine, standing just above the peculiar flat, curved, translucent spine, which seems like a continuation of the free plates which border the disk. Also there were not so many plates in the lower brachial space. All the disk plates were thin and more or less diaphanous, so that their outlines were hard to make out unless the specimen was partly dried. These differences may be constant and specific ; but I prefer to leave them in roubt because noly one adult specimen of the typical O. petilum was brought back by the "Challenger."

There is a certain resemblance in some parts of the Ophiuran fauna of the Fijis from depths of 200 to 600 fathoms to that of the West Indies at the
same depths. From the former we now have Astroschema salix and horridum, (?) Ophioccramis clausa, Ophiactis cuspidata, O. flexuosa, O. nama, Amphiura canescens, A. argentea, A. bellis, Ophiomitra plicata, Ophiacantha cornuta, O. vepratica, Ophiophyllum petilum, Ophiochiton lentus, Ophiomusium scalare, Ophioconis pulverulenta, Ophiopyrgus Wyville-Thomsoni, Ophiopyren brevispinus, Ophiozona insularia, and Ophiomyxa australis. Of these Ophiophyllum petilum, Ophiacantha vepratica, and Ophioconis pulverulenta correspond very closely with the Ophiophyllum above mentioned, with Ophiacantha Bairdi, and with Ophioconis miliaria. In both faunæ is found exclusively the peculiar genus Ophiopyren, and Ophiozona exists in both. Ophiomusium scalare and Ophiomitra plicata stand pretty near Ophiomusium testudo and Ophiomitra chelys. The genus Astroschema, so richly represented in the West Indies, has two species in this list of twenty. As a contrast comes the extraordinary form Ophiopyrgus, known thus far only from the neighborhood of the Fijis. It remains for future dredgings to show whether these resemblances result probably from community of origin, or simply indicate the presence of a nearly identical fauna over vast tracts of deep-sea bottom.

\section*{Ophiopyren longispinus Lym.}

Station 130, Santa Cruz, 451 fathoms. Station 136, Santa Cruz, 508 fathoms. Station 137, Santa Cruz, 625 fathoms. Station 149, St. Kitts, 60-150 fathoms. Station 156, Montserrat, 88 fathoms. Station 185, Dominica, 333 fathoms. Station 188, Dominica, 372 fathoms. Station 190, Dominica, 542 fathoms. Station 204, Martinique, 476 fathoms. Station 205, Martinique, 334 fathoms. Station 211, Martinique, 357 fathoms. Station 212, Martinique, 317 fathoms. Station 221, St. Lucia, 423 fathoms. Station 222, St. Lucia, 422 fathoms. Station 230, St. Vincent, 464 fathoms. Station 246, Grenada, 154 fathoms. Station 260, Grenada, 291 fathoms. Bartlett, Station \(18,18^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{N} ., 87^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{W} ., 600\) fathoms.

\section*{Ophioconis miliaria Lym.}

Station 187, Dominica, 411 fathoms. Station 222, St. Lucia, 422 fathoms. Station 241, Grenadines, 163 fathoms. Station 260, Grenada, 291 fathoms.

\section*{Ophiochota mixta Lmm.}

Station 170, Guadeloupe, 309 fathoms. Station 249, Grenada, 262 fathoms. Station 265, Grenada, 576 fathoms.

\section*{Ophiopholis aculeata Grar.}

Station 309, \(40^{\circ} 11^{\prime} 40^{\prime \prime} \mathrm{N}\)., \(68^{\circ} 22^{\prime} \mathrm{W}\)., 304 fathoms. Station \(310,39^{\circ} 59^{\prime}\) \(16^{\prime \prime}\) N., \(70^{\circ} 18^{\prime} 30^{\prime \prime}\) W., 260 fathoms. Station \(335,35^{\circ} 22^{\prime} 25^{\prime \prime} \mathrm{N} ., 73^{\circ} 33^{\prime} 40^{\prime \prime}\) W., 89 fathoms.

\section*{Ophiactis Mülleri (var. quinqueradia) Lrk.}

Station 142, Flannegan Passage, 27 fathoms. Station 152, St. Kitts, 122 fathoms. Station 210, Martinique, 121 fathoms. Station 239, Grenadines, 338 fathoms. Station 272, Barbados, 76 fathoms. Station 278, Barbados, 69 fathoms.

\section*{Amphiura incisa sp. nov.}

\section*{Plate V. Figs. 58-60.}

Special Marks. - Two scale-like papillæ on each side of month-angle, and a pair at its apex. Two large tentacle-scales. Upper disk-scales thick and irregular and separated by depressions.

Description of an Individual. - Diameter of disk 7.5 mm . Width of arm close to disk 1.7 mm . Two wide, scale-like papillæ at base of mouth-angle on either side, and a pair of thicker ones at its apex. Four stout squarish teeth; the lowest one smallest and more rounded than those above. Mouth-shields small, rounded, and with a peak inward; length to breadth, .7:.7. Side mouth-shields long and large ; broader without than within, where they meet. First under arm-plate small and rounded ; often partly covered by the outer mouth-papillæ. The plates beyond are of a regular narrow shield-shape, having a straight outer side where they are widest; re-enteringly curved laterals, and an angle within. Side arm-plates flat, with a low spine-ridge, barely meeting above, and scarcely separated below. Upper arm-plates separated ; narrow transverse oral, more than twice as broad as long. Disk rather thick, with an undulating border; covered above by thick, irregular, somewhat angular scales, which are separated by sunken lines, and have the look of a loose mosaic. Below, the scales are smaller and much more rounded and regular, but are strongly separated. Radial shields small, pear-seed shape, and separated by a narrow wedge of three scales; length to breadth, \(1.5: 1\). Three stout, blunt, rounded arm-spines, about as long as a joint ; the middle one is stoutest and has a microscopically rough surface. Two wide, large tentaclescales, standing one on the side and one on the under arm-plate. Color in alcohol, pale brown.

Station 161, near Guadeloupe, 583 fathoms, 2 specimens.
This species is nearest \(A\). Riisei, from which it is strongly distinguished by separated upper arm-plates and radial shields, and much coarser arm-spines and disk-scales.

\section*{Amphiura nereis sp. nov.}

\section*{Plate V. Figs. 61-63.}

Special Marks. - Five papille on each side of a mouth-angle. Three armspines. Radial shields small, narrow and separated. A row of minute papillw along genital scale.

Description of an Individual. - Diameter of disk 4.5 mm . Width of arm without spines 1 mm . Four small scale-like mouth-papillæ on each side of an angle, and a pair at the apex. The papilla next the outermost one is commonly the largest. Mouth-shields about as broad as long, rounded, with a slight peak within ; length to breadth, . \(6: .6\). Side mouth-shields small, and extremely narrow within, where they barely meet. Their outer ends are club-shaped. First under arm-plate minute and three-cornered; those beyond are of a squarish shield-shape, with outer side straight, laterals a little re-enteringly curved, and an obtuse or truncated angle within. Side armplates moderately stout, and nearly meeting above and below. Upper armplates transverse oval, and about twice as broad as long. Disk rather thick, and covered above and below with small, crowded, overlapping, somewhat irregular scales, of which there are seven or eight in the length of 1 mm . In centre of upper surface are the small, round, widely separated primary plates. Along edge of genital scale is a row of fine papillæ. Radial shields small, narrow, and separated by bunches of scales; their length is about .8 mm . Three rather stout, rounded, tapering arm-spines, about as long as a joint ; the middle one being somewhat the longest. One oval tentacle-scale on the side armplate, and a smaller and narrower one on the under plate. Color in alcohol, pale gray.

Station 158, Montserrat, 148 fathoms, 1 specimen.
This species is perhaps nearest to A. tumida, from which it differs in having much larger mouth-papillæ, and a row of papillæ along the genital scale.

\section*{Amphiura duplicata Lrs.}

Station 132, Santa Cruz, 115 fathoms. Station 134, Santa Cruz, 248 fathoms. Station 136, Santa Cruz, 508 fathoms. Station 145, St. Kitts, 270 fathoms. Station 147, St. Kitts, 250 fathoms. Station 148, St. Kitts, 208 fathoms. Station 151, Nevis, 356 fathoms. Station 154, Montserrat, 298 fathoms. Station 155, Montserrat, 88 fathoms. Station 161, Guadeloupe, 583 fathoms. Station 167, Guadeloupe, 175 fathoms. Station 173, Guadeloupe, 734 fathoms. Station 176, Dominica, 390 fathoms. Station 185, Dominica, 333 fathoms. Station 204, Martinique, 476 fathoms. Station 206, Martinique, 1\%0 fathoms. Station 210, Martinique, 191 fathoms. Station 216, St. Lacia, 154 fathoms. Station 218, St. Lucia, 164 fathoms. Station 220, St. Lucia, 116 fathoms. Station 221, St. Lucia, 423 fathoms. Station 227, St. Vincent, 573 fathoms. Station 238, Grenadines, 127 fathoms. Station 239, Grenadines, 338 fathoms. Station 241, Grenadines, 163 fathoms. Station 260, Grenada, 291 fathoms. Station 261, Grenada, 340 fathoms. Station 264 , Grenada, 416 fathoms. Station 272, Barbados, 76 fathoms. Station 273 , Barbados, 103 fathoms. Station 274, Barbados, 209 fathoms. Station 275, Barbados, 218 fathoms. Station 276, Barbados, 94 fathoms. Station 290, Barbados, 73 fathoms.

\section*{Amphiura Otteri Lsw.}

Station 115, \(17^{\circ} 55^{\prime}\) N., \(76^{\circ} 41^{\prime} 20^{\prime \prime}\) W., 228 fathoms. Station 167, Guadeloupe, 175 fathoms. Station 265, Grenada, 576 fathoms. Station 306, \(41^{\circ}\) \(32^{\prime} 50^{\prime \prime} \mathrm{N} ., 65^{\circ} 55^{\prime} \mathrm{W} ., 524\) fathoms. Station \(310,39^{\circ} 59^{\prime} 16^{\prime \prime} \mathrm{N} ., 70^{\circ} 18^{\prime} 30^{\prime \prime}\) W., 260 fathoms. Station \(336,38^{\circ} 21^{\prime} 50^{\prime \prime}\) N., \(73^{\circ} 32^{\prime}\) W., 197 fathoms.

Amphiura tumida Lym.
Station 184, Dominica, 94 fathoms.

\section*{Amphiura tenuispina Lis.}

Station 215, St. Lucia, 226 fathoms. Station 223, St. Vincent, 146 fathoms. Station 246, Grenada, 154 fathoms.

\section*{Amphiura lunaris Lym.}

Station 226, St. Vincent, 424 fathoms.

\section*{Amphiura grandisquama Lrm.}

Station \(316,32^{\circ} 7^{\prime}\) N., \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) W., 229 fathoms. Station \(319,32^{\circ} 25^{\prime}\) N., \(77^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W} ., 262\) fathoms.

Amphiura flexuosa? Ljs.
Station \(319,32^{\circ} 25^{\prime} \mathrm{N} ., 77^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W}\)., 262 fathoms.

\section*{Amphiura cuneata Lrm.}

Station 256, Grenada, 370 fathoms. Station 259, Grenada, 159 fathoms.

\section*{Amphiura Stimpsoni Ltr.}

Station 278, Barbados, 69 fathoms.

\section*{NOTES ON AMPHIURA.}

Amphiura sp. nov.?
Near A. semiermis, but has disk-scales much larger and fewer, and two large tentacle-scales. There are five short, tapering equal arm-spines. The lower interbrachial space is naked, except a few scales near the nouth-shields.

Station 244, near Grenada, 792 fathoms, 1 specimen.
Amphiura sp. nov.?
Near \(A\). divaricata, from which it differs in having radial shields scarcely separated, in coarser lower disk-scales, in having a larger tentacle-scale on the
under arm-plate, and in having five (not six) arm-spines, of which the lower are larger, and have a rudimentary cross-piece at the tip.

Station 211, Martinique, 357 fathoms, 1 specimen.

\section*{Amphiura sp. nov.? \\ Plate V. Figs. 64-66.}

Similar to preceding (Station 211), but with much smaller tentacle-scales; sharp mouth-papillæ.
Station 220, St Lucia, \(116^{\circ}\) fathoms, 1 specimen.
These last three species may be new ; but as the Amphiure are so numerous and run so close, I prefer to await a larger series of specimens.

\section*{Amphiura Verrilli? (young,) Lrx.}

Differs from the type in having smaller radial shields and the primary diskplates not conspicuous.

Station 226, St. Vincent, 424 fathoms, 1 specimen.

\section*{Amphiura tomentosa? (young,) Lrm.}

Differs from the original in having the radial shields touching and side armplates meeting above. These may be characters of the young.

Station 230, St. Vincent, 464 fathoms, 1 specimen.

\section*{Amphiura angularis Lym.}

It seems to differ from the type only in having radial shields a little closer and the disk-scaling less marked. Both \(A\). angularis and \(A\). tomentosa are from the Kerguelen Islands.

Station 204, Martinique, 476 fathoms, 1 specimen. Station 258, Barbados, 399 fathoms, 1 specimen.

Ophiocnida olivacea Lrm.
Station \(344,40^{\circ} 1^{\prime}\) N., \(70^{\circ} 58^{\prime}\) W., 129 fathoms.

Ophionema intricata Lrik.
(Young.) Station 128, Santa Cruz, 180 fathoms.

\section*{Ophionereis reticulata Lrk.}

Station 142, Flannegan Passage, 27 fathoms. Station 155, Montserrat, SS fathoms. Station 276, Barbados, 94 fathoms. Station 2i8, Barbados, 69 fathoms. Bartlett, Pedro Bank, 4 fathoms.

\section*{Ophiopsila fulva Lym.}

Station 155, Montserrat, 88 fathoms. Station 278, Barbados, 69 fathoms.

\section*{Ophiopsila Riisei Ltк.}

Station 285, Barbados, 13-40 fathoms. Station 287, Barbados, \(7 \frac{1}{2}-50\) fathoms.

\section*{Ophioplax Ljungmani Lrm.}

Station 101, Morro Light, 175-250 fathoms. Station 132, Santa Cruz, 115 fathoms. Station 155, Montserrat, 88 fathoms Station 156, Montserrat, 88 fathoms. Station 177, Dominique, 118 fathoms. Station 220, St. Lucia, 116 fathoms. Station 232, St. Vincent, 88 fathoms. Station 273, Barbados, 103 fathoms. Station 277, Barbados, 106 fathoms. Station 297, Barbados, 123 fathoms. Bartlett, Station \(10,18^{\circ} 13^{\prime} 20^{\prime \prime}\) N., \(78^{\circ} 36^{\prime} 40^{\prime \prime}\) W., 103 fathoms.

\section*{Ophiostigma isacanthum Lym.}

Station 132, Santa Cruz, 115 fathoms. Station 152, St. Kitts, 122 fathoms.

Ophiochytra tenuis sp. nov.

\section*{Plate III. Figs. 16-18.}

Special Marks. - Two very large seale-like papillæ at outer end of mouthangle, and two small ones, within and higher in the slit. A few grains in neighborhood of mouth-shield.

Description of an Individual. - Diameter of disk 5 mm . Width of arm near lisk 1 mm . At outer end of mouth-angle on either side are two large, flat, rounded scale-like papillæ, while within and higher on the mouth-frame may be seen two which are minute. At base of mouth-frames, in the centre, is a group of half a dozen grains, covering inner ends of the side mouth-shields, which are long, narrow and bent; wider without than within where they fully join and extend as a sharp angle under the month-frames to a level with the second great mouth-papilla. Mouth-shields small, about as long as broad, with a well-marked angle inward; length to breadth, .5 : .6. First under arm-plate smaller than those beyond, and making a furrow at outer corner of mouth-slit. The plates just beyond are axe-shaped with a curve without, an angle within, and deep re-entering curves where the tentacles protrude. Side arm-plates meeting above and nearly so below; beyond the disk they are a little swollen so as to give a slightly wavy outline to the arm. Upper armplates fan-shaped, with an angle inward. Disk evenly covered with thin
imbricated scales, whereof the lower ones are nearly as large as the mouthshields, near which are a few grains. Radial shields small and not touching ; nearly twice as wide as long, and separated from upper surface of arm by a cluster of scales. Genital openings extending from mouth-shield to margin of disk. Two stout, cylindrical, blunt arm-spines, about two thirds as long as a joint. One large circular tentacle-scale. Color in alcohol, pale gray.

Station 239; Grenadines, 383 fathoms, 6 specimens. Station 260, Grenada, 291 fathoms, 5 specimens.

The only other species of this genus, O. epigrus, comes from Low Archipelago, southeast of the Sandwich Islands, at a depth of over 2500 fathoms.

\section*{Ophiocoma pumilla Ltк.}

Bartlett, Pedro Bank, 4 fathoms.

\section*{Ophiochiton ternispinus sp. nov.}

\section*{Plate V. Figs. 67-69.}

Special Marks. - One tentacle-scale. . Three slender, rather long arm-spines.
Description of an Individual. - Diameter of disk 12 mm . Length of arm 60 mm . Width of arm near disk 2 mm . Twelve mouth-papillæ to each angle, whereof the four inner ones, on either side, are short, pointed and spaced, while the two outer ones are flattened and crowded. Teeth stont, flat, and shaped like a blunt spear-hearl. Mouth-shields regular pointed heart-shaped, with a small rounded lobe without. Length to breadth, \(2: 1.3\). Side mouthshields very narrow within, where they barely meet; but spreading widely without, where they bound a part of the inner end of the genital opening. First under arm-plate rounded and small, not larger than the neighboring mouth-papilla. The plates beyond are much narrower than the arm ; they are about as broad as long, much wider without than within, with an outer curve, re-entering curves on the sides, and a truncated angle within. They are somewhat swollen, but have no ridge. Side arm-plates even, slightly flaring, nearly mecting above and below. Upper arm-plates narrower than the arm, much longer than wide, bounded on all sides by gentle curves. Disk covered with thin, irregular, overlapping scales, and having in the centre a group of much larger rounded primary plates, 1 mm . in diameter. Below, the scaling is similar but finer. Radial shields narrow oblong, or erg-shape, small, separated by a narrow wedge of fine scales ; length to breadth, 2 : 1 . Genital openings large and long, extending from mouth-shield to maryin of disk. Three smooth, slender, tapering arm-spines, whereof the uppermost may be as long as two joints. Lengths, to that of an under arm-plate, \(2.5,1.2,1.2: 1\). One oval tentacle-scale of moilerate size. Color in alcohol, nearly white.
"Porcupine" Expedition, 1869, Station 42, southwest of Ireland, 862 fathoms, water \(4^{\circ} .3\) Cent., 1 specimen.

The genus is new to North European waters. The species differs from Ophiochiton lentus, which comes from 600 fathoms, southeast of the Fijis, in having three long slender arm-spines and only one tentacle-scale.

\section*{Ophiacantha Bairdi sp. nov.}

\section*{Plate V. Figs. \%0-72.}

Special Marks. - Disk closely and uniformly beset with elongated pointed granules, among which appear a few short scattered spines. Seven or eight slender, smooth, sharp arm-spines. Eleven mouth-papillæ to each angle.

Description of an Individual (Station 340). - Diameter of disk 9.5 mm . Length of arm about 45 mm . Width of arm close to disk 2 mm . Eleven papillæ to each mouth-angle, whereof the outer one on each side is broad and flat, with a rounded cutting edge, and the rest are much narrower and toothlike, including the odd one at the apex. Five broad flat teeth with a curved cutting edge; the uppermost one narrower than the others. Mouth-shields small, of a broad oval, or transverse heart-shape ; length to breadth, . 8 : 1.2. Side mouth-shiclds rather large, growing suddenly wider at the outer eurl, meeting within. Under arm-plates pentagonal, with an obtuse angle within, lateral sides a little re-enteringly curved, aud outer side wilely curved. Upper arm-plates diamond-shape with the angles much rounded. Side arm-plates rather stout, nearly meeting above and below near base of arm. Near tip of arm the side plates meet broadly above and below, and have only a feeble spine-crest. The upper arm-plates are there three-sided with an angle inward. Disk slightly puffed ; closely and uniformly beset with elongated, pointer grains, among which stand a few seattered short spines. No scaling or radial shields visible. Seven or eight long, slender, pointed, not rough arm-spines. The uppermost one is usually short; then the next three are as long as two or two and a half joints; the four lowest not much longer than one joint. One large, pointed, longer than broad tentacle-scale. Color in alcohol, nearly white.

Station 308, \(41^{\circ} 24^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) W., 1242 fathoms. Station 340, \(39^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{N} ., 70^{\circ} 58^{\prime} 40^{\prime \prime} \mathrm{W} ., 1394\) fathoms.

The species is quite near \(O\). vepratica, from which it is distinguished by haviug eleven instead of seven month-papillæ to each angle, and by the elongated, pointed grains of the disk.

\section*{Ophiacantha Bartletti sp. nov.}

\section*{Plate V. Figs. 73-~5.}

Special Marks. - Structure delicate, with narrow arms and four smooth, slender arm-spines. A few scattered spines on disk, whose scaling above is scarcely distinguishable. No tentacle-seales.

Description of an Individual. - Diameter of disk 12 mm . Length of arm about 75 mm . Width of arm 2 mm . Five spine-like, spacel mouth-papilla
on each side, of which four stand on the mouth-frames, and one on the side mouth-shield : there is in addition a pair which stand at the apex, on the jawplate. Five rather thin teeth, shaped like a blunt spear-head. Mouth-shields about as broad as long, of a much-rounded diamond-shape, with a sharp angle within; length to breadth, \(1.6: 1.6\). Side mouth-shields very narrow within, where they meet, but spreading at their outer end, so as to partly embrace the mouth-shield. Under arm-plates somewhat longer than broad, of an irregular hexagonal form, with a slight noteh without; they are small, and occupy not more than a third of the width of the arm. Side arn-plates meeting above and below, clinging close to arm and with a feeble spine-crest. Upper armplates about twice as broad as long, of a transverse diamond-shape, with outer angle rounded. Disk sparsely set with short spines, and covered by a skin which hides the thin scales, except here and there. Of radial shields only the outer, rounded ends may be seen, just over the arms. Genital openings large and extending from mouth-shield nearly to margin of disk. Four slender, smooth, tapering, translucent arm-spines, decreasing in length from above downward, the uppermost one being as long as two joints, while the lowest does not exceed one. No tentacle-scales. Color in alcohol, disk pale gray, arms white.

Station 260, 291 fathoms, 1 specimen.
In wanting tentacle-seales this species is especially distinguished. It stands as near to \(O\). abnormis as to any other, but differs in having only four armspines and in the arrangement of the mouth-papillæ.

\section*{Ophiacantha cervicornis sp. nov.}

\section*{Plate V. Figs. \%6-78.}

Special Marks. - Mouth-angles elongated and carrying at their base long spiniform papillæ and small peg-like ones at their apex. Arm-spines wide at their base and toothed on the edges. Disk densely beset with short smooth spines.

Jescription of an Individual (Station 227). - Diameter of disk 10 mm . Width of arm near disk 2.3 mm . Mouth-angle much elongated and bearing on either side, at its base, four long, pointed spiniform papillæ, inside which there are, on either side, five short, pointed tooth-like papilla, and a pair at the apex. Mouth-shields of a transverse oval shape, with a small peak inward; length to brealth, \(1: 1.8\). Side month-shields of moderate width, mecting within, where they form an acute angle. First moder arm-plate much wider than long, with lateral corners rounded and a peak within. The plates beyond have a wide axe-shape, in which the boly is narrow with an obtuse angle inward ; the lateral sides are deep re-entering curves, and the cutting edge is representel by the broad, curvel outer margin. Side arm-plates meeting below and nemly so abore, and having a rather feeble spine-crest. The first two upper arm-plates bear a few small tooth-like spines, and are as broad
vol. x. - wo. 6.
as long, and bounded without by a gentle curve and within by a deep pointed one. Farther out the plates are more elongated and angular, and soon become long diamond-shape. Disk densely beset with short, rounded, pointed spines, which obscure the underlying scales and radial shields. Five flattened, tapering, pointed arm-spines, the two uppermost about as long as one and a half arm-joints, the three lowest somewhat shorter. They are lightly swollen at their base and bear a few minute thorns on their edges. Tentacle-pores large, and furnished with two long, slender spiniform scales, whereof one stands on the side arm-plate, the other on the under one. Color in alcohol, straw.

Station 148, St. Kitts, 208 fathoms. Station 227, St. Vincent, 573 fathoms.

The elongated mouth-angle bearing numerous papillæ places this species near \(O\). stimulea and \(O\). hirsuta, but it differs much from both those species, especially in the under arm-plates and tentacle-scales.

\section*{Ophiacantha lineolata sp. nov.}

\section*{Plate VI. Figs. 79-81.}

Special Marks. - A group of tooth-papillæ just under the teeth. Upper surface of disk wholly and thickly set with coarse grains and a few short spines. Eight or nine long, translucent, nearly smooth arm-spines.

Description of an Individual. - Diameter of disk 18 mm . Length of arm about 135 mm . Width of arm, without spines, 6 mm . At base of mouthangle, on either side, are three or four rather long papillæ, whereof the two outer ones are wider and more flat; the point of the angle is beset by a cluster of a dozen spine-like papillæ which run upward to join the teeth. These last are seven or eight in number, rather narrow, crowded and with a curved cutting edge. Mouth-shields heart-shaped with an angle inward; length to breadth, \(2: 2\). Side mouth-shields small, tapering to a point inward, where they meet. Under arm-plates squarish, wider than long, with lateral sides re-enteringly curved and a feeble angle within. Side arm-plates meeting below, but not above, and forming a stout, not very prominent spine-crest. Upper arm-plates narrow, four-sided, wider without than within; length to breadth, \(1.3: 1.3\). Disk somewhat swollen in interbrachial spaces, thickly set with coarse grains, among which appear a few small spines; no radial shields visible, their position being granulated like the rest. Genital openings large and extencling from mouth-shield to margin of disk. Eight or nine long translucent, nearly smooth arm-spines, decreasing in length from above downward ; their cross-section is oval, and it is only on their edges that they have microscopic prickles; length of uppermost spine 11 mm . ; of lowest, 4 mm . One large, oval, pointed tentacle-scale on each pore, except the first, which has two. Color in alcohol, pale brown, with white spines and a white line along upper side of arm.

This large and beautiful species has some relation to Ophiocamax in the cluster of tooth-papillæ at the end of the mouth-angle.
Station 148, St. Kitts, 208 fathoms, 1 specimen.

\section*{Ophiacantha lævipellis sp. nor.}

\section*{Plate VI. Figs. 82-84.}

Special Marks. - Disk naked, or with a few scattered grains. Side armplates meeting above and below. Seven or eight slightly thorny slender armspines.

Description of an Individual. - Diameter of disk 4.5 mm . Length of arm about 18 mm . Width of arm, without spines, 1.5 mm . Mouth-angles long and wide, and bearing on each side three spine-like, widely spaced papillæ, while the apex is occupied by the lowest tooth, which, like the four above it, is of a blunt spear-head shape. The first under arm-plate also carries on its inner edge two scale-like papillæ. Mouth-shields small, of a tranverse dia-mond-form with rounded corners; length to breadth, 7 : .5. Side mouth-shields wide and large, of almost a crescent shape, meeting broadly within. First under arm-plate rounded hexagonal and,nearly as large as a mouth-shield; those beyond are widely separated by the side arm-plates, and are more than twice as wide as long, with a curve without and a small peak within. Side arm-plates meeting widely above and below, and forming a strong spine-ridge, which, farther out, becomes so exaggerated as to give the arm a knotted look. Upper arm-plates, beyond the first, of a blunt wedge form, with the point inward. Disk covered with small imbricated scales which are quite naked (in some specimens there are scattered grains). Radial shields pear-seed shaped; length to breadth, 5 :.4. Genital openings large, and extending from the mouth-shield to nearly the margin of disk. Seven or eight glassy, flattened, slightly thorny arm-spines, of which the uppermost is two or two and a half times as long as a joint; from this they grow shorter to the lowest spine, which is no longer than one joint. The uppermost spines on top of arm stand close to each other, on either side of the median line. One small, pointed tentacle-scale. Color in alcohol, pale brown.

Station 232, St. Vincent, 88 fathoms, \(12+\) specimens.
The figure of the upper surface is drawn from specimens of two varieties, a smonth and a granulated. The former is the more common. This species has some resemblance to \(O\). serrata, but has narrower side mouth-shields and much less thorny arm-spines.

Ophiacantha scolopendrica sp. nov.

\section*{Plate VI. Figs. 85-8\%.}

Special Marks. - Seven smooth arm-spines, of which the three lowest are much the smallest. Disk with a few scattered smooth grains, and small rounded radial shields.

Description of an Individual. - Diameter of disk 12 mm . Width of arm 3 mm . Six spaced and rather long mouth-papillæ to each angle. Fire thick teeth, of a short oval shape. Month-shields rery short and wide, rudely transverse oval in form ; length to breadth, \(1: 2.5\). Side mouth-shields much longer than wide, of nearly equal width except at their outer ends where they taper; they fully meet within. First under arm-plate of a transverse diamondshape with rounded angles ; the next two are squarish, with a curved outer side ; those beyond are nearly semicircular, with a slight peak within ; all are narrow, occupying not more than one third the width of the arm. Side arm-plates stout and forming a well-marked spine-ridge ; they meet below and separate all except the first two upper arm-plates; they, however, do not meet, and there is a pit between their upper ends ; also they are so short as to leave a band on sides of arm quite uncovered. Upper arm-plates transverse oval with somewhat pointed corners; they are nearly twice as broad as long and cover only about half the width of the arm. Disk-scales very indistinct, except near radial shields, which are separated, small, short and rounded; length to breadth, \(1.3: 2\). Upper surface of disk sparsely set with smooth grains. Lower interbrachial space smooth and apparently with few or no scales. Genital openings large and extending from the mouth-shield to margin of disk. Seven arm-spines, of which the three lowest are very small, microscopically rough, and not longer than half a joint ; while the three uppermost are often as long as one and a half or two joints, stout, nearly cylindrical, and tapering to a blunt point. On some of the basal pores there is a minute tentacle-scale attached at the juncture of under and side arn-plates. Color in alcohol, pale brown.
"Challenger" Expedition, Station 235, \(34^{\circ} 7^{\prime}\) N., \(138^{\circ}\) E., 565 fathoms. Water \(3^{\circ} .3\) Cent. Mud. One specimen.

The species is nearest \(O\). tuberculosa; but has seven instead of three armspines.

Ophiacantha anomala? G. O. Sars.
Station \(306,41^{\circ} 32^{\prime} 50^{\prime \prime}\) N., \(65^{\circ} 55^{\prime} \mathrm{W} ., 52 \pm\) fathoms.

\section*{Ophiacantha bidentata Lss.}

Station 307, \(41^{\circ} 29^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 47^{\prime} 10^{\prime \prime}\) W., 980 fathoms. Station 308, \(41^{\circ} 24^{\prime} 45^{\prime \prime} \mathrm{N} ., 65^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{W}\)., 1242 fathoms. Station \(324,33^{\circ} 27^{\prime} 20^{\prime \prime} \mathrm{N} .\), \(75^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{W}\)., 1386 fathoms. Station \(338,35^{\circ} 18^{\prime} 40^{\prime \prime} \mathrm{N} ., 73^{\circ} 18^{\prime} 10^{\prime \prime} \mathrm{W}\)., 922 fathoms. Station \(339,35^{\circ} 16^{\prime} 45^{\prime \prime} \mathrm{N} ., 73^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W} ., 1186\) fathoms. Station \(340,39^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{N} ., 70^{\circ} 58^{\prime} 40^{\prime \prime} \mathrm{W} ., 1394\) fathoms. Station 341, \(39^{\circ} 38^{\prime} 20^{\prime \prime} \mathrm{N}\)., \(70^{\circ} 56^{\prime} \mathrm{W}\)., 1241 fathoms. Station \(342,39^{\circ} 43^{\prime} \mathrm{N}\)., \(70^{\circ} 55^{\prime} 25^{\prime \prime}\) W., 1002 fathoms.

Ophiacantha abyssicola G. O. Sars.
Station 309, \(40^{\circ} 11^{\prime} 40^{\prime \prime} \mathrm{N}\)., \(68^{\circ} 22^{\prime} \mathrm{W}\)., 30.4 fathoms.

\section*{Ophiacantha millespina Vle.}

Station 303, \(41^{\circ} 34^{\prime} 30^{\prime \prime}\) N., \(65^{\circ} 54^{\prime} 30^{\prime \prime}\) W., 306 fathoms. Station 306, \(41^{\circ} 32^{\prime} 50^{\prime \prime} \mathrm{N} ., 65^{\circ} 55^{\prime} \mathrm{W}\)., 524 fathoms.

\section*{Ophiacantha hirsuta Lxar.}

Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 212, Martinique, 317 fathoms. Station 215, St. Lucia, 226 fathoms. Station 223, St. Vincent, 146 fathoms. Station 232, St. Vincent, 88 fathoms. Station 268, Grenada, 955 fathoms. Station 269, St. Vincent, 124 fathoms. Station 273, Barbados, 103 fathoms. Station 293, Barbados, 82 fathoms. Station 300, Barbados, 82 fathoms. Entrance to Port Royal Harbor, Jamaica, 100 fathoms ; sp. ?

\section*{Ophiacantha sertata Lrm.}

Station 148 , St. Kitts, 208 fathoms. Station 164, Guadeloupe, 150 fathoms. Station 187, Dominica, 411 fathoms. Station 208, Martinique, 213 fathoms. Station 240, Grenadines, 164 fathoms. Station 241, Grenadines, 163 fathoms. Station 249, Grenada, 262 fathoms. Station 274, Barbados, 209 fatboms. Station 280, Barbados, 221 fathoms. Station 291, Barbados, 200 fathoms. Station 297, Barbados, 123 fathoms.

\section*{Ophiacantha vepratica Lrx.}

Station 151, Nevis, 356 fathoms. Station 204, Martinique, 476 fathoms. Station 205, Martinique, 334 fathoms. Station 226, St. Vincent, 424 fathoms. Station 260, Grenada, 291 fathoms. Station 264, Grenada, 416 fathoms. Station 288, Barbados, 399 fathoms.

\section*{NOTES ON OPHIACANTHA.}

\section*{Ophiacantha scutata Lrm.}

The numerous individuals brought back by the second "Blake" expedition show some variations from the original fignre (Bull. M. C. Z., T. 9, Pl. I. Figs. 1-3). Usually the radial shields are not naked, but beset, like the rest of the disk, with minute stumps. There often is an extra mouth-papilla on each side ; and higher up in the mouth-slit there may be a pair of scales belonging to the second mouth-tentacles. This last feature exists also in \(O\). cosmica, a kindred species, but readily distinguished by the wide separation of the lower arm-plates. O. scutata has commonly only one tentacle-scale on the first pore, as on those beyond.

Station 134, Santa Cruz, 248 fathoms. Station 147, St. Kitts, 250 fathoms.

Station 148, St. Kitts, 208 fathoms. Station 183, Dominica, 250 fathoms. Station 238, Grenadines, 127 fathoms. Station 239, Grenadines, 338 fathoms. Station 269, St. Vincent, 124 fathoms. Station 281, Barbados, 288 fathoms. Station 291 , Barbados, 200 fathoms.

\section*{Ophiacantha echinulata Lras.}

Sometimes the radial shields cannot be scen, as in the figure (Bull. M. C. Z., V. 9, Pl. I. Figs. 7-9), but are quite hidden by the short disk-spines.

Station 153, Montserrat, 303 fathoms. Station 174, Guadeloupe, 878 fathons. Station 185, Dominica, 333 fathoms. Station 205, Martinique, 334 fathoms. Station 227, St. Vincent, 573 fathoms. Station 260, Grenada, 291 fathoms.

\section*{Ophiacantha pentacrinus Ltк.}

A large specimen with a disk of 6 mm . had still only six arm-spines, and in general answered to the description (O. meridionalis, Bull. M. C. Z., I. 10, p. 324), except that there were sometimes four, instead of three, mouth-papillæ on a side, and the disk-crotchets were somewhat stouter.

Station 136, Santa Cruz, 508 fathoms. Station 137, Santa Cruz, 625 fathoms. Station 155, Montserrat, 88 fathoms. Station 167, Guadeloupe, 175 fathoms. Station 176, Dominica, 390 fathoms Station 185, Dominica, 333 fathoms. Station 188, Dominica, 372 fathoms. Station 195, Martinique, \(502 \frac{1}{2}\) fathoms. Station 204, Martinique, 476 fathoms. Station 205, Martinique, 334 fathoms. Station 206, Martinique, 170 fathoms. Station 211, Martinique, 357 fathoms. Station 212, Martinique, 31 fathoms. Station 221, St. Lucia, 423 fathoms. Station 222 , St. Lucia, 422 fathoms. Station 226, St. Vincent, 424 fathoms. Station 227, St. Vincent, 573 fathoms. Station 230, St. Vincent, 464 fathoms. Station 260, Grenada, 291 fathoms. Station 280, Barbados, 221 fathoms. Station 288, Barbados, 399 fathoms. Station 291, Barbados, 200 fathoms. Station 299, Barbados, 140 fathoms. Station \(320,32^{\circ} 33^{\prime} 15^{\prime \prime} \mathrm{N} ., 77^{\circ} 30^{\prime} 10^{\prime \prime} \mathrm{W} ., 257\) fathoms.
O. cosmica is near this species, but has seldom less than eight arm-spines, while the disk-crotchets are coarser with a crown of more numerous thorns, and the side arm-plates are less prominent.

\section*{Ophiacantha stellata Lrm.}

This species differs from the two last-named in having shorter and more thorny arm-spines (indeed, the upper arm-spines, beyond the basal joints, are often scarcely longer than the lower); in larger upper arm-plates, and more strongly knotted arms ; and in coarser and nore thorny stumps on the disk.

Station 155, Montserrat, 88 fathoms. Station 177, Dominica, 118 fathoms. Station 233, St. Vincent, 174 fathoms. Station 249, Grenala, 262 fathoms. Station 253, Grenada, 92 fathoms. Station 262, Grenada, 92 fathoms. Station

269, St. Vincent, 124 fathoms. Station 272, Barbados, 76 fathoms. Station 273, Barbados, 103 fathóms. Station 290, Barbados, 73 fathoms. Station 292, Barbados, 56 fathoms. Station 293, Barbados, 82 fathoms.

\section*{Ophiacantha aspera Lym.}

Station 100, off Morro Light, 250-400 fathoms. Station 156, Montserrat, 88 fathoms. Station 158, Montserrat, 148 fathoms. Station 166, Guadeloupe, 150 fathoms. Station 171, Guadeloupe, 183 fathoms. Station 219, St. Lucia, 151 fathoms. Station 240, Grenadines, 164 fathoms. Station 241, Grenadines, 163 fathoms. Station 249, Grenada, 262 fathoms. Station 269, St. Vincent, 124 fathoms. Station 283, Barbados, 237 fathoms. Station 290, Barbados, 73 fathoms.

\section*{Ophiacantha Troscheli Lrm.}

Station 269, St. Vincent, 124 fathoms. Station 290, Barbados, 73 fathoms.

\section*{Ophiolebes claviger ? Lrar.}

Station 306, \(41^{\circ} 32^{\prime} 50^{\prime \prime} \mathrm{N} ., 65^{\circ} 55^{\prime} \mathrm{W} ., 524\) fathoms.

\section*{Ophiomitra incisa sp. nov.}

\section*{Plate VI. Figs. 89, 90.}

Special Marks. - Upper interbrachial spaces indented and covered by a double row of large plates. Radial shields large, scarcely depressed, and nearly or quite joined for their whole length. Two or more tentacle-scales on the first pore. Five slightly thorny arm-spines.

Description of an Individual (Station 131). - Diameter of disk 10 mm . Length of arm about 80 mm . Width of arm 3.5 mm . Four or five papille on each side of a mouth-angle ; the three inner ones being stout spiniform, while the outermost, which is wedged between the side mouth-shield and first under arm-plate, is thick, flattened and more or less curled upwarl. Mouthshields of a transverse diamond-shape, with corners so rounded as often to approach an oval; length to breadth, \(1.8: 1.2\). They are thick and horizontal, so that their border stands out quite sharply from the nearly vertical scaling of the interbrachial space. Side mouth-shields wide and short, not extending beyond the lateral corners of the mouth-shields, widest within, where they fully join. First under arm-plate small, of a diamond-shape with a curve without. The rest are five-sided; widest without, where ther are curved, and having re-entering laterals and a very feeble angle within. They are separated by a depressed portion of the side arm-plates, which meet below, but not above, near disk, and form prominent spine-crests on the siles of the arms. Upper arm-plates thick, wider than long, bounded by a gentle curve
without, and by a rounded angle or a deep curve within. Disk thick and rising well above the arms, with a very deep constriction and radiating furrow in each interbrachial space. The surface between the furrow and the radial shield is occupied on either side by four large curved plates rumning diagonally inwards. The central disk is covered by coarse, irregular plates, similar to those of the lower interbrachial spaces. All the upper surface except the radial shields is sparsely set with smooth stumps. Radial shields large and only a little sunken ; joined, except at their inner ends, which are separated by a scale; they are rounded without, pointed within; length to brealth, \(3.5: 1.4\). Genital openings reaching from the mouth-shield nearly to margin of disk. Five flattened glassy arm-spines which are slightly thorny on their edges ; the upper one is much the longest, and may equal three or four joints, thence they decrease to the lowest, which is about the length of a joint. On the first tentacle-pore are three erect, thickened tentacle-scales ; on the other pores there is but a single thickened scale. Color in alcohol, pale straw.

Variations. - There sometimes are as many as six scales on the first tentaclepore; and a small group of papillæ at outer corner of mouth-slit. The greatest number of arm-spines observed was six. It differs from 0 . chelys in having larger radial shields, which are joined and scarcely sunken (not at all in the young), in having three or more scales on the first tentacle-pore, and in more rounded under arm-plates. Most of the specimens mentioned under \(O\). chelys (Bull. Mus. Comp. Zöl., V. 7, p. 153, and 9, p. 231), as brought by the first "Blake" expedition, belong under this species, although one of them had seven spines. I an satisfied that the deep furrows in the disk are natural to the animal, and are not the result of contraction.

Station 124, Santa Cruz, 580 fathoms. Station 131, Santa Cruz, 580 fathoms. Station 175, Dominica, 608 fathoms. Station 190, Dominica, 542 fathoms. Station 204, Martinique, 476 fathoms. Station 205, Martinique, 334 fathoms. Station 211, Martinique, 357 fathoms. Station 214, Martinique, 476 fathoms. Station 222, St. Lucia, 422 fathoms. Station 227, St. Vincent, 573 fathoms. Station 266, Grenada, 461 fathoms. Station 288, Barbados, 399 fathoms.

\section*{Ophiomitra exigua? Lrm.}

Station 100, off Morro Light, \(250-400\) fathoms. Station 270, St. Vincent, 75 fathoms. Station 296, Barbados, 84 fathoms.

\section*{Ophiomitra valida Lrm.}

Station 119, \(18^{\circ} 12^{\prime}\) N., \(64^{\circ} 55^{\prime}\) W., 1105 fathoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 171, Guadeloupe, 183 fathoms. Station 175 (roung), Duminica, ( 611 fathoms. Station 193, Martinique, 169 fathoms. Station 216 , St Lucia, 154 fathoms. Station 218, St. Lucia, 164 fathoms Station 221 , St. Vincent, 114 fathoms. Sta-
tion 232, St. Vincent, 88 fathoms. Station 233, St. Vincent, 174 fathoms. Station 239, Grenadines, 338 fathoms. Station 240, Grenadines, 164 fathoms. Station 241, Grenadines, 163 fathoms. Station 269, St. Vincent, 124 fathoms. Station 270, St. Vincent, 75 fathoms. Station 272, Barbados, 76 fathoms. Station 277, Barbados, 106 fathoms. Station 283, Barbados, 237 fathoms. Station 290, Barbados, 73 fathoms. Station 296, Barbados, 84 fathoms. Station 297, Barbados, 123 fathoms. Bartlett, Station 5, 3.3 m. S. E. by E. \(\frac{1}{2}\) E. from Santiago de Cuba Light, 288 fathoms. Station \(316,32^{\circ} 7^{\prime}\) N., \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) W., 229 fathoms.

\section*{Ophiocamax fasciculata sp. nov.}

\section*{Plate VII. Figs. 92-94.}

Special Marks. - Disk covered with thin, small, smooth scales, of which there are about ten radiating rows in each interbrachial space, and which are beset by scattered, short, thin spines. Radial shields smooth and regular, and joined their whole length.

Description of an Individual (Station 209). - Diameter of disk 15 mm . Width of arms close to disk 4.5 mm . About twenty-three long, smooth, crowded mouth-papillæ to each angle, arranged in two or three tiers. On the upper part of the jaw-plate are about seven very short, blunt teeth, and, below these, usually eight tooth-papillæ arranged in pairs. Often the teeth do not stand immediately one above the other, but partly alternate. Mouth-shields smooth and a little swollen, of a wide heart-shape with a slight lobe outward ; length to breadth, 2:2. Side mouth-shields wide and meeting fully within. Under arm-plates wide triangular, with a sharp angle within, rounded latema corners, and wavy sides. They are considerably swollen near the middle. Side amm-plates stont, with a thick spine-ridge; they meet both above and below. Upper arm-plates much rounded triangular, with the outer margin swollen. Disk thick, flat on top and not constricted in the interbrachial spaces. It is covered with thin, smooth overlapping scales, of which there are ten or twelve radiating rows in each upper interbrachial space. Above, the disk is beset with short, slender, smooth, tapering spines. Radial shields flat and smooth, of a short pear-seed shape, and joined throughout. Length to breadth, \(3: 2\). Six long flattened arm-spines bearing thorns on their two edgee. The second is often as long as three arm-joints, the third nearly as long as two, and the fourth and fifth a little longer than one, while the uppermost and lowest are shortest of all. Three and sometimes four spine-like tentacle-scales to each pore, standing in a clump and turned inward. Color in alcohol, disk gray; arms pale yellowish.
A very fine specimen from Station 147 had a disk of 20 mm . and arms about 180 mm . long. There were usually but five spines, the uppermost short one being wanting, while the second was sometimes as long as five joints. The disk-scales were thicker than in the type, the basal tentacle-scales longer and
more numerous, and the under arm-plates and spine-ridges more swollen. The disk-spines were few and scattered. O. fasciculata stands between \(O\). vitrea and \(O\). hystrix; but the former has nine arm-spines and the upper arm set with fine points, while the latter has eight arm-spines and much coarser diskscales bearing coarse thorny stumps.

Station 145, St. Kitts, 270 fathoms. Station 147, St. Kitts, 250 fathoms. Station 148, St. Kitts, 208 fathoms. Station 209, Martinique, 189 fathoms. Station 295, Barbados, 180 fathoms.

\section*{Ophiocamax hystrix Lrm.}

Station 134, Santa Cruz, 248 fathoms. Station 148, St. Kitts, 208 fathoms. Station 157, Montserrat, 120 fathoms. Station 158, Montserrat, 148 fathoms. Station 209, Martinique, 189 fathoms. Station 224, St. Vincent, 114 fathoms. Station 233, St. Vincent, 174 fathoms. Station 238, Grenadines, 127 fathoms. Station 241, Grenadines, 163 fathoms. Station 269, St. Vincent, 124 fathoms. Station 274, Barbados, 209 fathoms. Station 280, Barbados, 221 fathoms. Station 291, Barbados, 200 fathoms. Bartlett, Station 5, 3.3 m. S. E. by E. \(\frac{1}{2}\) E. from Santiago de Cuba Light, 228 fathoms. Bartlett, Station \(29,21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms.

\section*{Ophiothamnus vicarius Lym.}

Station 100, off Morro Light, 250-400 fathoms. Station 175 (roung), Dominica, 611 fathoms. Station 190, Dominica, 542 fathoms (young), sp.? Plate VI. Fig. 88. Station 204, Martinique, 476 fathoms. Station \(315,32^{\circ} 18^{\prime}\) \(20^{\prime \prime}\) N., \(78^{\circ} 43^{\prime}\) W., 225 fathoms. Station \(316,32^{\circ} 7^{\prime}\) N., \(78^{\circ} 37^{\prime} 30^{\prime \prime}\) W., 229 fathoms.

\section*{OPHIOCOPA* gen. nov.}

Disk covered with fine imbricated scales, which may bear grains; and small radial shields. Numerous close-set mouth-papillæ, with tecth but no toothpapillæ. Side arm-plates nearly meeting above and below. Some of the armspines flattened and widened like an oar-blade. Two long genital openings in each interbrachial space.

Ophicopa spatula sp. nov.

\section*{Plate VII. Figs. 95-98.}

Special Marks. - Five arm-spines, which, near base of arm, are flat and all more or less widened. Five papille on each side of a mouth-angle, whereof the outermost is widest. Granules on upper maryin of disk.

Description of an Individual. - Diameter of disk 9 mm . Width of arm
\[
\text { * b̌фıs, snake ; кஸ́л } \eta \text {, oar. }
\]
near disk 2 mm . Five crowded mouth-papillx on either side of an angle, whereof the four innermost are small and narrow, while the outermost one is as wide as three of them. Four teeth, of which the upper and the under one are more or less pointed, while the other two are wide with a curved cutting edge. Mouth-shields of a wille diamond-shape with rounded angles; length to breadth, 1.5 : 1.5. Side mouth-shields long and tapering inward to a point; their outer end widened so as to embrace a corner of the mouth-shield. Under arm-plates much wider than long, of a broad shield-shape, with a wide curve without, re-entering curves on the sides, and a very obtuse angle within. Side arm-plates not prominent, nearly or quite meeting above and below. Upper arm-plates much wider than long, transverse diamond-shape with lateral angles sharp. Disk covered with smooth flat imbricated scales, the largest 1 mm . long; between the radial shields, in interbrachial space, there are four or five radiating rows. Along margin of disk is an irregular line of granules. Radial shields rounded, a little swollen, about as broad as long, closely joined; length to breadth, \(1.5: 1.5\). Genital openings large and extending from mouth-shield to margin of disk. Five arm-spines, whereof the lowest is shortest, about as long as one arm-joint, and blunt and flattened; the two uppermost are also flattened, but sharp, and about as long as two joints; the two middle ones are, near base of arm, much flattened, and are widened at their tip like a spatula and microscopically serrated on their edges: farther out, they are simply wide and flat. Two oval, rather large tentacle-scales to each pore. Color in alcohol, gray.
"Challenger" Expedition, Station 219, \(1^{\circ} 50^{\prime}\) S., \(146^{\circ} 42^{\prime}\) E., 150 fathoms, mud. One specimen.

\section*{Ophiothrix Suensonii Ltк.}

Station 127, Santa Cruz, 38 fathonis. Station 142, Flannegan Passage, 27 fathoms. Station 152, St. Kitts, 122 fathoms. Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 189, Dominica, 84-120 fathoms. Station 247, Grenada, 170 fathoms. Station 249, Grenada, 262 fathoms. Station 262, Grenada, 92 fathoms. Station 269, St. Vincent, 124 fathoms. Station 272, Barbados, 76 fathoms. Station 276, Barbados, 94 fathoms. Station 277, Barbados, 106 fathoms. Station 285, Barbados, 13-10 fathoms. Station 286, Barbados, 7-45 fathoms. Station 290, Barbados, 73 fathoms. Station 292, Barbados, 56 fathoms. Station 293, Barbados, 82 fathoms. Station 294, Barbados, 137 fathoms. Station 298, Barbados, 120 fathoms.

\section*{Ophiothrix angulata Arres.}

Station 142, Flannegan Passage, 27 fathoms. Station 152, St. Kitts, 122 fathoms. Station 155, Montserrat, 88 fathoms. Station 15ti, Montserrat, is fathoms. Station 177, Dominica, 118 fathoms. Station 203, Martinique,

96 fathoms. Station 241, Grenadines, 163 fathoms. Station 246, Grenada, 154 fathoms. Station 247, Grenada, 170 fathoms. Station 249, Grenada, 262 fathoms. Station 285, Barbados, 13-40 fathoms. Station 292, Barbados, 56 fathoms. Bartlett, Station \(30,21^{\circ} 26^{\prime} 30^{\prime \prime}\) N., \(86^{\circ} 2 v^{\prime} 40^{\prime \prime} \mathrm{W}\)., 51 fathoms. Bartlett, entrance to Port Royal, Jamaica, 100 fathoms.

\section*{Ophioscolex tropicus Lras.}

Station 195, Martinique, \(502 \frac{1}{2}\) fathoms. Station 266, Grenada, 461 fathoms. Station 211, Martinique, 357 fathoms. Station 273 , Barbados, 103 fathoms.
Young specimens resemble the young of 0 . purpureus, but have much more regular mouth-papillæ and flatter arm-spines.

\section*{Ophioscolex glacialis Müll. \& Tr.}

Station 336, \(38^{\circ} 21^{\prime} 50^{\prime \prime}\) N., \(73^{\circ} 32^{\prime} \mathrm{W}\)., 197 fathoms.
From the following three stations, lying much farther to the south, there were specimens having shorter and more numerous mouth-papillæ, and much thinner skin. I prefer to consider them as varieties, until additional specimens shall prove their final relations.
 fathoms (young). Station 293, Barbados, 82 fathoms (young).

\section*{OPHIOTOMA* gen. nov.}

Disk covered by a thick, naked skin, which conceals the small shapeless radial shields. Numerons mouth-papillæ and teeth; no tooth-papillæ. Armspines hollow, as in Ophiacantha, and smooth. Upper arm-plates present. Two genital openings in each interbrachial space.

The genus may be called an Ophioscolex with upper arm-plates and hollow arm-spines.

\section*{Ophiotoma coriacea sp. nov.}

\section*{Plate II. Figs. 1-3.}

Special Marks. - A dozen spiniform or tooth-like papillæ to each mouthangle, besides two minute ones under each of the second month-tentacles. Five smooth, slender, tapering arm-spines.

Description of an Individual. - Diameter of disk 16 mm . Width of arm near disk 3 mm . Mouth-angle elongated and bearing about a dozen papilla, wherenf the outer ones incline to he spiniform, while those within are somewhat more flattened and tooth-like. The second mouth-tentacle has also a couple of minute spiniform seales, which stand on the side mouth-shields. Seven or eight stont, flat spear-head-shaped teeth. Mouth-shields wide triangular with rounded corners; length to brealth, \(2.5: 1.5\). Side month-

\footnotetext{
* 夭фıs, snake; тон \(\boldsymbol{\gamma}\), a cut.
}
shields narrow within and not quite meeting, while without they spread inward to the first under arm-plate, and upward round the corner of the month-shield to the head of the genital opening. Under arm-plates small, about as broad as long; shield-shaped with a feeble angle inward; length to breadth, \(1.2: 1.2\). Side arm-plates flat with an ill-marked spine-crest at their outer margin; they meet below, but not above. Upper arm-plates wider than long, hexagonal with outer and inner angles rounded, and lateral angles sharp. Disk rather thick and covered by a tough skin, which exhibits obscurely below a fine scaling, and above a few very minute, scattered spines. Over each side of the arms is a swelling which looks like a radial shield, but is really the head of the large genital plate, the small radial shield being wholly hidden under the skin. Genital openings large, and extending from mouth-shield to margin of disk. Five slender, delicate, tapering, rounded hollow arm-spines. No tentacle-scales outside the mouth. Color in alcohol, disk greenish; arms pale brown.

Station 308, \(41^{\circ} 24^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 35^{\prime} 30^{\prime \prime}\) W., 1242 fathoms, 1 specimen.

\section*{Ophiosciasma granulatum sp. nov.}

\section*{Plate VII. Figs. 99-102.}

Special Marks. - Minute papillæ on edges of mouth-angles. Arms flat and rather wide. Two flat, translucent arm-spines with rough elges.

Description of an Individual. - Diameter of disk 6 mm . Arms very low and flat; width near disk 1.2 mm . Mouth-angles rather large, and bearing on their edges a row of minute saw-like papillæ; the two or three at the apex are somewhat larger. Mouth-shields small and rounded, with a slight angle inward; length to breadth, \(7: .7\). Side month-shields wide and fully mecting within. Under arm-plates rather thick, longer than broad, wider without than within, and with deep re-entering curves on the sides, where are the tentacle-pores. Side arm-plates projecting in a stroug spine-ridge, meeting neither above nor below. The upper surface, covered only by a thin skin, shows distinctly the tops of the elongated arm-bones with the pairs of circular muscle-fields between them. Farther out on the arm there appears a central depression, which towards the end penetrates quite through, until, at the tip. the bone appears as two long slender pieces curving towards each other, and unitiug at either extremity. Disk covered with skin having scattered grains on its surface, which are opaque white. No scales or radial shields are visible. Two translucent rough arm-spines, a little longer than a joint, and standing at a strong angle to the arm. They are composed of two flattened spicules soldered together, each of which has two or three spurs on its free edge (Fig. 101), and are enclosed in a skin-bag. Tentacles simple, fleshy, and very thick. No tentacle-scales. Color in alcohol, pale yellowish, with yellow tentacles.

A larger specimen with a lisk of 10 mm . had arms 45 mmn . hong: but diel not differ except in having many of the disk gramules buried in the thick shin.

Station 203, Martinique, 96 fathoms, 1 specimen. Bartlett, entrance to Port Royal, Jamaica, 100 fathoms, 1 specimen.

The species is readily distinguished from 0 . attenuatum by much wider arms, and by two instead of three arm-spines.

\section*{Ophiogeron supinus sp. nov.}

\section*{Plate VII. Figs. 103-106.}

Special Marks. - Arms rery flat and covered with thick, loose skin. Two glassy, slender, smooth arm-spines enclosed in a common skin-bag.

Description of an Individual. - Diameter of disk 18 mm . Length of arm about 85 mm . Width of arm near disk 5 mm . Height of arm 2.5 mm . On either side of the large mouth-angle is an irregular row of minute, conical papillæ; a cluster of similar tooth-papillæ stands on the jaw-plate; and, above these, are small, spine-like teeth. Mouth-shields small, as broad as long, presenting an angle within and a curre without. Side mouth-shields long and pretty wide; fully meeting within; and, at their outer ends, extending much beyond the mouth-shield. At base of arm all plates are quite obscured by skin; but at the tip may be seen small under arm-plates, longer than broarl, and pentagonal, with re-entering lateral sides and an angle within. The side arm-plates then meet below, but do not encroach on the upper surface. As there are no upper plates, the arm-bone may be seen, divided into its two embryonic halves. Disk uniformly covered by a soft, naked, wrinkled skin, which was much torn in the specimens observed. Genital openings long and large, extending from mouth-shield to margin of disk. Two glassy, smooth, slender arm-spines, longer than a joint, and enclosed in a common skin-bag. No tentacle-scales. Color in alcohol, pale brown.

Station 148, St. Kitts, 208 fathoms, 2 specimens. Station 291, Barbados, 200 fathoms. Station 230, St. Vincent, 464 fathoms (roung).

The long flat arms covered by loose skin readily distinguish this species from \(O\). edentulus.

There are, under the skin, just over the arms, small rounded radial shields, and, articulated to them, very short genital scales and plates, very much as in Ophiohyrsa. In the substance of the skin are imbedded fine scales, especially near the disk margin.

\section*{Ophiohelus umbella Lra.}

Station 300, Barbados, 82 fathoms.

\section*{Ophiomyces mirabilis Lis.}

Station 222, St. Lucia, 422 fathoms.

\section*{Ophiomyces frutectosus Lim.}

Station 281, Barbalos, 288 fathoms. Station 282, Barbados, 154 fathoms.

\section*{Ophiobyrsa Perrieri sp. nov.}

Plate II. Figs. 4-6.
Special Marks. - Skin of disk naked, except clumps of short spines over the radial shields. No spines on upper side of arms.

Description of an Individual. - Diameter of disk 22 mm . Length of arm 270 mm . Width of arm close to disk 4 mm . The mouth-angles, which are covered with thick skin, have a few short spiniform papille at the apex, arranged chiefly on the jaw-plate. Mouth-shields and other plates about the month quite obscured by thick skin. Top of arm covered also by a very thick, tough skin, but destitute of anything like upper arm-plates, except a certain amount of thin lime-crust, underlying it. Under arm-plates swollen, rounded, about as long as broad, and broader without than within. They are obscured by the overlying skin. Side arm-plates like little flaps or pads inclining outward. Disk rounded and wrinkled, covered by a thick skin which is naked except over the radial shields where are clusters of very short, blunt spines. Six equal, short, blunt arm-spines, not as long as a joint; when stripped of the thick covering skin, they are rough 'and translucent. Tentacles large and simple. No tentacle-scales. Color in alcohol, light yellowish brown.

Bartlett, 3.3 m. S. E. by E. \(\frac{1}{2}\) E. from Santiago de Cuba Light, 288 fathoms, 1 specimen.

\section*{Ophiobyrsa serpens sp. nov.}

\section*{Plate VIII. Figs. 117 -119.}

Special Marks. - Three short, glassy, slightly thorny arm-spines covered by thick skin. Mouth-angle long and bearing a line of minute papillx on either side.

Description of an Individual. - Diameter of disk 16 mm . Length of arm (from another specimen) above 140 mm . Width of arm near disk 2.8 mm . On either side of the inner part of each mouth-angle is a line of abont five minute papillx covered by thick skin. Five small, spime-like teeth, of which the uppermost are longest. A thick skin hides mouth-shields, side mouthshields, and under arm-plates. Side arm-plates project like little flaps. Disk covered by a naked, wrinkled skin; along its margin runs a row of minute peg-like spines, of which there is also a radiating row over the place of each radial shield. Genital openings large and extending from the rearion of the mouth-shield to margin of disk. Three short, glasey, slightly thorny armspines, of which the lowest is longest and about as long as a joint; ther are covered by skin. No tentacle-scales. Color in alcohol, above, umber variegated with yellowish brown; below, similar but lighter.
Station 278, 69 fathoms, 2 specimens.
O. serpons differs from \(O\). Perrieri in having three arm-spines instead of five; and in longer mouth-angles with minute papilla. The fact that it preserves
its color in alcohol suggests that it lives also in shallow water, although now found for the first time in 69 fathoms.

\section*{Ophiobyrsa hystricis sp. nov.}

\section*{Plate VIII. Figs. 120-122.}

Special Marks. - At apex of mouth-angle two or three large, peg-like mouthpapillæ; and two or three others much smaller, on either side, arranged in a line which runs high up on the side of the angle. Five slim, glassy arn-spines covered with skin.

Description of an Individual. - Diameter of disk 20 mm . Length of arm 187 mm . Wdith of arm near disk 5.5 mm . Height of arm 3 mm . The somewhat long and narrow mouth-angle bears at its end a pair of stout, peglike papillæ, and sometimes a third standing above them; on either side of the angle, considerably above its lower edge, is a line of three similar but much smaller papillæ. Mouth-shields and side mouth-shields entirely hidden by skin, as are the plates of the arm. On removing the skin, the under armplates are seen to be about 1 mm . long and squarish, with outer corners cut off. Side arm-plates like ridges, tapering at both ends, and with their lower end a little inserted between the under plates. There is nothing to represent upper arm-plates except two small nodules, one on each side of the median line. These are homologous with the double row of spine-bearing tubercles found in O. rudis. Disk thick and swollen, and covered by a tough skin; its upper surface is sparsely set with very short spines, more numerous and longer over the region of the radial shields, but all covered and obscured by the disk-skin. Genital openings large, and nearly extending to margin of disk. Five slender, slightly rough, chlassy, nearly equal arm-spines, about as long as one and a half arm-joints. They are covered by thick skin. Very large fleshy tentacles, but no tentacle-scales. Color in alchol, pale straw, with yellow tentacles.
"Porcupine" Expedition, 1869, Station 65, northwest of Shetland Islands, 345 fathoms, water \(1^{\circ} .7\) Cent.

This is the species mentioned by Sir Wyville Thomson on page 123 of the "Depths of the Sea." It comes from the " cold area," where the sea is at or below the freezing point of fresh water; whereas the three other species, O. rudis, O. serpens, and O. Perrieri, from Anstralia and the West Indies, inhabit much warmer water. By its small papille on the sides of the mouthangles this species differs from the typical Ophiobyrsa and approaches Ophioscolex; the joints of the arm-bones are, however, essentially as in Ophiobyrsa.

\section*{Ophiomyxa tumida sp. nov.}

\section*{Plate I. Figs. 1-3.}

Special Murls. - Four or five slemer, tapering, slifhtly rough arm-spines. Only a trace of upper arm-plates. Radial shields small and not bedded in a cluster of scales. A single margimal line of small plates round the disk.

Description of an Individual ( \(21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W.). - Diameter of disk 13 mm . Width of arm close to disk 3 mm . Length of arm 95 mm . Four flat, rounded papillæ with rough cutting edges on each side of the mouthangles; and five or six teeth of similar form, but with nearly smonth edges. Mouth-shields showing indistinctly under the skin as transverse oval figures. On boiling the skin of the arm in potash there are found under arm-plates of a shield-shape, with a strong central notch and two angles on the outer side and a peak within; while the side arm-plates are seen as ridges nearly meeting below, where they are thickest, and have a notch in their outer side through which passes the tentacle. Only a trace of upper plates in form of little crusts of lime. Disk five-sided with re-entering curves; covered by a naked, loose, wrinkled skin, under which is found a continuous marginal line of small plates, which runs quite round the entire edge. Attached by their outer ends to this line of plates are small, short, club-shaped radial shields, which have no such cluster of small scales as are often found in the genus. Four or five slender, somewhat flattened, blunt, slightly rough arm-spines, about as long as a joint. No tentacle-scales. Color in alcohol, disk gray; arms straw.

Usually this genus has low side arm plates, and a high arch of separate pieces which represent the upper arm-plates. The latter are nearly wanting in \(O\). tumida, while the side arm-plates run somewhat farther upwards than common.

Two other lots from Stations \(319,32^{\circ} 25^{\prime} \mathrm{N} ., 77^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W} ., 262\) fathoms, and \(320,32^{\circ} 33^{\prime} 15^{\prime \prime} \mathrm{N} ., 77^{\circ} 30^{\prime} 10^{\prime \prime} \mathrm{W} ., 257\) fathoms, may be the young of this species. The specimens differed in having, with a disk of 9 mm ., two, or at most three, arm-spines. The radial shields were as in \(O\). tumida, but there was no well-marked marginal line of plates. There were, however, microscopic crust-like scales under the disk skin, which may also be detected in \(O\). tumida. The specimens were fertile and were viviparous.

Station 132, Santa Cruz, 115 fathoms. Station 139, Santa Cruz, 218 fathoms. Station 146, St. Kitts, 245 fathoms. Station \(14 \overline{7}\), St. Kitts, \(2 j 0\) fathoms. Station 148, St. Kitts, 208 fathoms. Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fithoms. Station 158, Montserrat, 148 fathoms. Station 165, Guadeloupe, 277 fathoms. Station 172, Guadeloupe, 62-180 fathoms. Station 177, Dominica, 118 fathoms. Station 203, Martinique, 96 fathoms. Station 205, Martinicpue, 334 fathoms. Station 220, St. Lucia, 116 fathoms. Station 231, St. Vincent, 95 fathoms. Station 232, St. Vincent, 88 fathoms. Station 238 , Grenadines, 127 fathoms. Station 241, Grenalines, 163 fathoms. Station 246, Grenada, 154 fathoms. Station 247, Grenala, 170 fathoms. Station 259. Grenada, 159 fathoms. Station 269 , St. Vincent, 124 fathoms. Station \(2-2\). Barbados, 76 fathoms. Station 273 , Barbados, 103 fathoms. Station 276 , Barbados, 94 fathoms. Station 278, Barbados, 69 fathoms. Station 281, Barbados, 288 fathoms. Station 285, Barbados, 13-40 fathoms. Station 290, Barlados, 73 fathoms. Station 291, Barbados, 200 fathoms. Station 296 , Barbados,
\(84-125\) fathoms. Bartlett, \(21^{\circ} 23^{\prime} 19^{\prime \prime}\) N., \(82^{\circ} 54^{\prime} 42^{\prime \prime}\) W., 300 fathoms. Santiago de Cuba, 288 fathoms. Station \(319,32^{\circ} 25^{\prime}\) N., \(77^{\circ} 42^{\prime} 30^{\prime \prime}\) W., 262
fathoms. Station \(320,32^{\circ} 33^{\prime} 15^{\prime \prime}\) N., \(77^{\circ} 30^{\prime} 10^{\prime \prime}\) W., 257 fathoms.

\section*{Ophiomyxa serpentaria sp. nov.}

\section*{Plate VIII. Figs. 114-116.}

Special Marks. - Three short, tapering, lunt, translucent arm-spines enclosed in skin-bags. Three small mouth-papillæ on either side of the mouthangle, near its apex. Under and side arm-plates soldered together. No upper arm-plates. Skin of disk without apparent scales and with only small radial shields.

Description of an Individual. - Diameter of disk 19 mm . Length of arm 50 mm . Width of arm near disk 3 mm . On either side of each mouth-angle, near its apex, are three mouth-papillæ, of the usual flattened form with sawlike edge. The innermost one is largest; the two outer ones are smaller, and more or less obscured by thick skin. Teeth similar to imnermost mouthpapilla. Mouth-shields and side mouth-shields wholly hidden by thick skin. On removing the skin there are seen under arm-plates of elongated shape with deep re-entering curves on their sides where are the tentacle-pores; they are soldered together and with the side arm-plates, and have on their upper surface four knobs for attachment to the arm-bones. Side arm-plates thick and shapeless, extending to the upper surface of the arm. No upper arm-plates. Disk covered by a smooth tough skin, which under the microscope is seen to be full of little, rounded, thin scattered scales. There is no marginal row of plates; and the very small radial shields, which lie in the angle made by the arm with the disk, have no bed of scales. Genital openings running from mouth-shields rather more than half-way to margin of disk. Three arm-spines about 1.7 mm . long, widely spaced and standing at a large angle with the arm; their base is enclosed by thick skin, which being stripped off, they appear cylindrical tapering, blunt, and translucent; under the microscope they are slightly rough. Tentacles large and fleshy, but without scales. The articulating faces of the arm-bones do not approach the Astrophyton form so much as do those of other members of the genus, but come nearer the type of the true Ophiurans.
"Porcupine" Expedition, Station 54, between Fwroë Islands and Hebrides, 363 fathoms, water \(0^{\circ} .3\) Cent., 1 specimen.

The under arm-plates are shaped somewhat like those of \(O\). vivipara, while the disk-skin, almost without lime-scales, reminds one of \(O\). australis. The absence of upper arm-plates marks this new species as the Northern correspondent of the Antarctic O. vivipara, which is plentiful; and it is therefure singular that only one specimen of the Northern representative should thus far have been found.

Ophiochondrus crassispinus sp. nov.

\section*{Plate VII. Figs. 111-113.}

Special Marks. - Seven or eight thick, short, blunt, slightly rough arm-spines. Radial shields long and prominent. Month-papillæ sharp and separated.

Description of an Individual. - Diameter of disk 6 mm . Length of arm 20 mm . Width of arm close to disk 2 mm . Three short, stout, sharp mouthpapillæ on each side of an angle, and one similar but larger at the apex; this last may be considered as the lowest tooth. Mouth-shields somewhat swollen, about as broad as long, with an angle inward. Sile mouth-shields large, thick and wide; broader without than within where they meet. First under armplate small, longer than broad, with an angle inward. Those beyond are separated one from another, and are four-sided and much wider than long, with a slight re-entering curve without. Side arm-plates with narrow, prominent spine-ridges; meeting below but separated above by fan-shaped upper armplates which present a truncated angle inward. Disk thick, sparsely beset with a fine granulation, except on the radial shields which are prominent and large; they are much longer than broad, wider without than within, and separated; their ends are rounded; length to breadth, \(2: .6\). Seven or eight short, blunt, slightly rough arm-spines, which stand at a considerable angle to the arm; they are nearly equal and not so long as a joint; those in the middle often are swollen at their base. No tentacle-scalcs. Color in alcohol, pale straw.
Station \(316,32^{\circ} 7^{\prime} \mathrm{N} ., 78^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{W} ., 229\) fathoms, 1 specimen.
This species is well distinguished from 0 . stelliger by its great naked radial shields and numerous arm-spines; and from \(O\). convolutus by different mouthpapillæ and no tentacle-scale.

\section*{Ophiochondrus squamosus.}

\section*{Plate VII. Figs. 108-110.}

Special Marks. - Disk covered above by thick, lumpy, separated plates, anl below by lumpy scales. Seven or eight short conical arm-spines. Lower armplates obscured by thick skin.
Description of an Individual. - Diameter of disk 6.5 mm . Length of arm 40 mm . Width of arm near disk withont spines 1.3 mm . Three small, somewhat flattened, separated papillæ on each side of a mouth-angle, whose apex is occupied by the lowest tooth, which is large and of a wide spear-head shape. Mouth-shields small, of a transverse oval form; length to breadth, . 5 : . 6 . Side mouth-shields searcely visible under the thick skin; they are narrow and meet within. Basal under arm-plates obscured by thick skin; farther out on arm, they appear as thick, widely separated transerse oval plates, and near the end they are squarish and nearly or quite touch eath other. Side arm-
plates projecting as narrow spine-crests, and mecting neither above nor below. Upper arm-plates much wider than long, transverse oval, thick and microscopically tuberculated; length to breadth, . 5 : .9. Disk rather thick and covered above by high, lumpy, irregular, microscopically tuberculons plates, which are widely separated by depressed lines. Interbrachial spaces below covered by lumpy scales. Radial shields pear-seed-shape, small, and separated by a single row of plates; length to breadth, 1 :.5. Seven or eight (sometimes ouly six) short, stout, conical, equal arm-spines, about as long as a joint. Two minute, rounded tentacle-scales. Color in alcohol, nearly white; tentacles brownish.

Station 147, St. Kitts, 250 fathoms, 1 specimen.
At first sight this species seems like a new genus, owing to its peculiar disk covering; but I do not doubt it belongs under Ophiochondrus, although I have had no chance to examine the arm-bones.

\section*{Ophiochondrus convolutus Lym.}

Station 100, off Morro Light, 250-400 fathoms. Station 208, Martinique, 213 fathoms. Station 219, St. Lucia, 151 fathoms. Station 224, St. Vincent, 114 fathoms. Station 232, St. Vincent, 88 fathoms. Station 233, St. Vincent, 174 fathoms. Station 238, Grenadines, 127 fathoms. Station 253 , Grenada, 92 fathoms. Station 254, Grenada, 164 fathoms. Station 269, St. Vincent, 124 fathoms. Station 280, Barbados, 221 fathoms.

\section*{Hemieuryale tuberculosa sp. nov.}

\section*{Plate VIII. Figs. 123-12\%.}

Special Marks. - Upper arm-plate persistent to base of arm and there surrounded by large grains or tubercles. Two short flattened arm-spines which grow larger towards their ends.

Description of an Indivdiual (Station 203). - Diameter of disk 6.5 mm . Length of arm 37 mm . Width of arm near disk 2 mm . Three or four small, close-set, bead-like papillæ on each side of a mouth-angle, and just abore its apex appears the lowest of the short, thick rounded teeth. Mouth-shields small and five-sided, with rounded corners and an angle inward; length to breadth, \(1: 1\). Side mouth-shiclds ovoid and swollen, nearly as large as mouth-shields, and like them microscopically tuberculous. Under arm-plates swollen and soldered with surrounding parts, so that their outlines are indistinct; small, rounded, and separated from one another. Sile plates a little swollen, meeting below, but rising only about half-way up the sile of the arm. At its tip however they meet broadly above, where there is a small bead-like upper arin-plate. A few joints farther in, it becomes larger and has a supplementary piece at either corner, and a gramule inside it, in the centre, and separating the side arm-plates (Fig. 127). Still farther in, the upper arm-plates
have a transverse oval shape, and are separated by a group of five tubercles arranged in two rows, while the supplementary corner piece has become as large as the plate (Fig. 126). At the base of the arm the same arrangement prevails; but the upper plate is proportionately smaller and less regular, while the intermediate tubercles, from three to five in number, are conspicuous (Fig. 125). Disk small, and strongly contracted in the interbrachial spaces. It is covered by large radial shields which are much longer than wide and microscopically tuberculous; length to breadth, \(2.2: 1\). In the centre of the disk is a five-sided space covered by closely soldered plates and tubercles, from which radiate five brachial and five interbrachial narrow spaces; the latter covered by plates, the former by plates bearing large tubercles. Lower interbrachial spaces covered by small, swollen, closely soldered plates. Two short, stout, flattened arm-spines not more than half as long as a joint, and growing wider at the end. At tip of arm there is but one spine. One round tentaclescale. Color in alcohol, above variegated with shades of yellowish brown and with some of the tubercles white; below lighter with a broad longitudinal armband of purplish.

Station 132, Santa Cruz, 115 fathoms. Station 203, Martinique, 96 fathoms.
This species, with the top of its arm covered by polished beads of various colors, presents a curious aspect. It is readily distinguished from II. pustulata by the persistence of the upper arm-plate; and by having tubercles, instead of of a smooth mosaic, on the upper side of the arm.

\section*{Hemieuryale pustulata Lrm.}

Station 132, Santa Cruz, 115 fathoms. Station 203, Martinique, 96 fathoms. Station 276, Barbados, 94 fathoms. Station 277, Barbarlos, 106 fathoms. Station 296, Barbados, 94 fathoms.

\section*{Sigsbeia murrhina Lrm.}

Station 132, Santa Cruz, 115 fathoms. Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 166, Gnadeloupe, 150 fathoms. Station 203, Martinique, 96 fathoms. Station 209, Martinique, 189 fathoms. Station 210, Martinique, 191 fathoms. Station 211, Martinique, 357 fathoms. Station 219, St. Lucia, 151 fathoms. Station 220, St. Lucia, 116 fathorus. Station 222, St. Lucia, 422 fathoms. Station 224, St. Vincent, 114 fathoms. Station 232, St. Vincent, 88 fathoms. Station 233, St. Vincent, 174 fathoms. Station 238, Grenadines, 127 fathoms. Station 241, Grenalines, 163 fathoms. Station 247, Grenada, 170 fathoms. Station 249, Grenada, 262 fathoms. Station 269, St. Vincent, 124 fathoms. Station 277 , Barbados, 106 fathoms.

\section*{OPHIOBRACHION gen. nov.*}

Entire animal clothed in a thick skin which hides the underlying plates and is beset on the disk with spines. Arms long, slender and serpentine. Upper arm-plates wanting. Side arm-plates forming a low ridge with a line of little mamelons each bearing a hooklet which answers to an arm-spine. Tentacles large and simple. Mouth-angles rounded, covered with thick skin and bearing at their apex a clump of spiniform papillæ. Two large genital openings in each interbrachial space.

The presence of hooklets, which replace the arm-spines quite to the lase of the arm, is a feature found in no other Ophiuran; and, indeed, in none of the Astrophytons; for the hooklets of these, when found at the base of the arm, are not honologous with arm-spines, because they do not stand on the side arm-plate. At the tip of the Astrophyton arm there are, however, strictly homologous spines, like compound hooks, but these, as they approach the base of the arm, change gradually to short thick spines, or tentacle-scales, as they may also be called. (See Bull. M. C. Z., VI. 2, Plate XIX. Figs. 493-495.) As might be expected, the joints between the arm-bones are on the modified hour-glass pattern, similar to that found in Sigsbeia, and therefore approaching the corresponding structure among Astrophytons. In a word, this new genus belongs with such genera as Ophiomyxa and Ophiobyrsa, and stauds nearest the simple-armed Astrophytons.

\section*{Ophiobrachion uncinatus sp. nov.}

\section*{Plate VIII. Figs. 128-131.}

Special Marks. - Arms six or seven times the diameter of disk. Seren or eight compound hooklets mounted on little cylindrical bases which rise from the side arm-plates.

Description of an Individual. - Diameter of disk 43 mm . Length of arm 270 mm . Width of arm close to disk 5 mm . Mouth-angle covered with thick skin and bearing at the apex an irregular clump of short, sharp spines, like prickles. All the mouth-shiclds obscured by thick skin, except the madreporic, whose transverse oval outline may be distinguished. It has a few irregular pores near its outer margin. Under arm-plates obscured by a thick skin, on removing which they are found to be of a rounded quadrangular form, wider without than within, swollen, and sometimes so cut out on the lateml sides, where the tentacles pass through, as to assume an axe-shape. They are continued upwarl by shapeless, rommled side arm-plates, which appear externally as well-marked spine-ridges, bearing a row of seven or eight small cylindrical knobs, each with a hole in its top to which is articulated a hooklet. The lowest knols is opposite the tentacle. No upper arm-plates; there are,

\footnotetext{
* ठ̈申ıs, snake; Bpaxlav, arm.
}
however, two little lime nodules bedded in the skin of that region, over each joint. Disk large and flat, covered by a thick, somewhat wrinkled skin, densely beset above and below by short spines, whose bases are enclosed in a sheath of skin, beyond which projects a sharp, translucent point, or a furk. The arm-spines are represented by a row of seven or eight minute compound hooklets, about 1 mm . long. They are translucent and end in a sharp hook, and have two or three curved spurs on the same side. At the very tip of the arm the structure does not vary, except that the hooklets with their knob-like bases are reduced to two. The large smooth tentacles have no special scales. Color in alcohol, disk light yellowish brown; arms paler.

Bartlett, south side of Cuba, \(19^{\circ} 48^{\prime} 47^{\prime \prime}\) N., \(77^{\circ} 23^{\prime \prime}\) W., 250 fathoms, 1 specimen.

\section*{Astrophyton cœcilia Ltк.}

Station 269, St. Vincent, 124 fathoms. Station 290, Barbados, 73 fathoms. Station 296, Barbados, 84 fathoms.

\section*{Gorgonocephalus mucronatus Lrm.}

Bartlett, Station 5, 3.3 m. S. E. by E. \(\frac{1}{2}\) E. from Santiago de Cuba Light, 288 fathoms. Station 139, Santa Cruz, 218 fathoms, var.? Station 269, St. Vincent, 124 fathoms, var. ?

\section*{Astrocnida isidis Lrm.}

Station 156, Montserrat, 88 fathoms. Station 290, Barbados, 73 fathoms. Station 292, Barbados, 56 fathoms. Station 296, Barbados, 84 fathoms. Station 298, Barbados, 120 fathoms.

\section*{Astrogomphus vallatus Lrs.}

Station 209, Martinique, 189 fathoms. Station 224, St. Vincent, 114 fathoms. Station 232, St. Vincent, 88 fathoms. Station 269, St. Vincent, 124 fathoms. Station \(318,31^{\circ} 48^{\prime} 50^{\prime \prime} \mathrm{N}\)., \(77^{\circ} 51^{\prime} 50^{\prime \prime} \mathrm{W}\)., 337 fathoms.

\section*{Astroporpa annulata Örst. \& LTtк.}

Station 132, Santa Cruz, 115 fathoms. Station 155, Montserrat, 88 fathous. Station 178, Dominica, 130 fathoms. Station 203, Martinique, 96 fathoms. Station 241, Grenadines, 163 fathoms. Station 253, Grenada, 02 fathoms. Station 272, Barbados, 76 fathoms. Station 273 , Barbados, 103 fathoms. Station 276, Barbados, 94 fathoms. Station 277, Barbados, 106 fathoms. Station 200 , Barbados, 73 fathoms. Station 292, Barlados, 56 fathoms. Station 296, Barbatlos, 84 fathoms. Station 297, Barbarlos, 123 fathoms. Statiou 29s, Barhados, 120 fathoms. Bartlett, Station 20, off entrance to Port Royal, Jamaica, 50 fathoms.

\section*{Astrochele Lymani Vle.}

Station 307, \(41^{\circ} 29^{\prime} 45^{\prime \prime}\) N., \(65^{\circ} 47^{\prime} 10^{\prime \prime}\) W., 980 fathoms. Station 309, \(40^{\circ} 11^{\prime} 40^{\prime \prime} \mathrm{N} ., 68^{\circ} 22^{\prime} \mathrm{W} ., 304\) fathoms.

\section*{Astroschema arenosum Lra.}

Station 124, Santa Cruz, 580 fathoms. Station 131, Santa Cruz, 580 fathoms. Station 157, Montserrat, 120 fathoms. Station 159, Guadeloupe, 196 fathoms. Station 173, Guadeloupe, 734 fathoms. Station 227, St. Vincent, 573 fathoms. Station 269, St. Vincent, 124 fathoms. Station 281, Barbados, 288 fathoms.

\section*{Astroschema læve Lrm.}

Station 134, Santa Cruz, 248 fathoms. Station 156, Montserrat, 88 fathoms. Station 157, Montserrat, 120 fathoms. Station 203, Martinique, 96 fathoms. Station 216, St. Lucia, 154 fathoms. Státion 218, St. Lucia, 164 fathoms. Station 219, St. Lucia, 151 fathoms. Station 224 St. Tincent, 114 fathoms. Station 231, St. Vincent, 95 fathoms. Station 249, Grenada, 262 fathoms. Station 272, Barbados, 76 fathoms. Station 273, Barbados, 103 fathoms. Station 276, Barbados, 94 fathoms. Station 290, Barbados, 73 fathoms. Station 292 , Barbados, 56 fathoms. Station 296 , Barbados, 84 fathoms.

\section*{Astroschema oligactes Ltк.}

Station 156, Montserrat, 88 fathoms. Station 164, Guadeloupe, 150 fathoms. Station 220, St. Lucia, 116 fathoms. Station 224, St. Vincent, 114 fathoms. Station 241, Grenadines, 163 fathoms. Station 249, Grenada, 262 fathoms. Station 253, Grenada, 92 fathoms. Station 269, St. Vincent, 124 fathoms. Station 272, Barbados, 76 fathoms. Station 276 , Barbados, 94 fathoms. Station 278, Barbados, 69 fathoms. Station 290, Barbados, 73 fathoms. Station 296, Barbados, 84 fathoms. Station 297, Barbados, 123 fathoms. Station 298, Barbados, 120 fathoms. Bartlett, entrance to Port Royal, Jamaica, 100 fathoms. Bartlett, Station 5, 3.3 m . S. E. by E. \(\frac{1}{2}\) E. from Santiago de Cuba Light, 288 fathoms.

\section*{Astroschema tenue Lrm.}

Station 155, Montserrat, 88 fathoms. Station 156, Montserrat, 88 fathoms. Station 269, St. Vincent, 124 fathoms. Station 276, Barbados, 94 fathoms.

\section*{Astroschema brachiatum Lrm.}

Bartlett, Station 5, 3.3 m. S. E. by E. \(\frac{1}{2}\) E. from Santiaga de Cuba Light, 288 fathoms.

\section*{Ophiocreas spinulosus sp. nov.}

\section*{Plate VIII. Figs. 132-135.}

Special Marks. - Radial shields beset with short, blunt spines, which are continued along the upper side of the arms.

Description of an Individual (Station 269). - Diameter of disk 8 mm . Length of arm 60 mm . Width of arm, 10 mm . from disk, 2.5 mm . Height of arm at same point 3 mm . Mouth-angles well separated from each other and bearing on the upper part of their sides a number of grains which have somewhat the look of month-papillæ. Seven short, wide flat teeth, with a rounded cutting edge; below them is an imperfect tooth, or a couple of papillæ. Arms higher than wide, and widest above. The covering skin is smooth and rather loose, and the joints are scarcely indicated. The upper surface bears short blunt spines, a pair to each joint; but these are not found beyond the base of the arm. The first pore beyond the moath-slit has no tentacle-seale; the second, one; and the next, two, which are cylindrical, blunt, and somewhat tapering, the lower one being about 2 mm . long, and the upper one shorter. Farther out on the arm they become more slender, and at the extreme tip take on the form of minute double hooks. Disk high and angular with interbrachial spaces re-enteringly curved. Radial shields elevated as strongly narked ridges rumning to the centre and thickly set with short stout blunt spines. Genital openings large and wide, reaching nearly to the roof of the disk. Color in alcohol, pale pink.

The above-described speeimen was not fully grown. A large one, with a disk of 13 mm . and arms 385 mm . long, differed only iin having the spines more or less obliterated on the radial shields, but much more numerous on the tops of the arms. The arm-spines, also, were comparatively shorter and stonter.

Like Ophiocamax fasculata, Ophiomusium Lymani, and many other species, Ophiocreas spinulosus lives in great colonies. The tangles often came so clogged with hundreds of specimens that it was necessary to cut them off and throw the mass into alcohol. Mr. Agassiz reports the color of the living animal as brick red. A youmg specimen with a disk of 3 mm . had no spines on the disk or arms. Spines begin to appear only when the disk has reached 4 nr 5 mm .

Station 208, Martinique, 213 fathoms. Station 216, St. Lucia, 154 fathoms. Station 23:3, St Vincent, 174 fathoms. Station 269, St. Vincent, 124 fathoms. Station 279, Barbados, 118 fathoms. Station 281, Barbados, 288 fathoms.

\section*{Ophiocreas lumbricus Lrm.}

Station 131, Santa Cruz, 580 fathoms. Station 171, Gnateloupe, 183 fathoms. Station 216, St. Lacia, 154 fathoms. Station 210, St. Lacia, 151 fath-
oms. Station 238, Grenadines, 127 fathoms. Station 263, Grenada, 159 fathoms. Station 281, Barbados, 288 fathoms.

\section*{Ophiocreas œdipus? Lrm.}

Station 124, Santa Cruz, 580 fathoms. Station 131, Santa Cruz, 580 fathoms.
The originals dredged by the "Challenger" at Station 344, off Ascension Island, in 420 fathoms, differed from these only in lacking all granulation on the mouth-angle. I suppose they are of the same species.

\section*{Astronyx Loveni Müll. \& Tr. (Young.)}

Plate VIII. Figs. 136-138.
Station 227, St. Vincent, 573 fathoms. Station \(307,41^{\circ} 29^{\prime} 45^{\prime \prime}\) N., \(65^{\circ}\) \(47^{\prime} 10^{\prime \prime} \mathrm{W} ., 980\) fathoms. Station \(338,38^{\circ} 18^{\prime} 40^{\prime \prime} \mathrm{N} ., 73^{\circ} 18^{\prime} 10^{\prime \prime} \mathrm{W} ., 922\) fathoms.

Cajbrridge, May, 1883.

\section*{DESCRIPTION OF PLATES.}

\section*{PLATE I.}

Fig. 1. Ophiomy.ra tumida, from below; \(\frac{5}{1}\).
Fig. 2. " " from above ; 亭.

Fig. 3. " " arm-joints, profile; 桌.

\section*{PLATE II.}

Fig. 1. Ophiotoma coriacea, from below; \(\frac{4}{1}\).
Fig. 2. " " from above; \(\frac{4}{1}\).
Fig. 3. " " arm-joints, profile; \(\frac{4}{1}\).
Fig. 4. Ophiobyrsa Perrieri, from below; \(\frac{4}{1}\).
Fig. 5. " " from above; \(\frac{4}{1}\).
Fig. 6. " " arm-juints, profile; \(\frac{4}{1}\).

\section*{PLATE III.}

Fig. 1. Pectinura tessellata, from below; \(\frac{3}{2}\).
Fig. 2. " " from above; \(\frac{3}{2}\).
Fig. 3. " " arm-joints, profle; \(\frac{3}{2}\).

Fig. 4. " lacertosa, from below, \(\frac{1}{1}\).
Fig. 5. " " from above; \(\frac{1}{1}\).
Fig. 6. " " arm-joints, profile; \(\frac{1}{1}\).
Fig. 7. " angulata, from below; \(\frac{3}{2}\).
Fig. 8. " " from above ; \(\frac{3}{2}\).
Fig. 9. " " arm-joints, profile; \(\frac{3}{2}\).
Fig. 10. Ophiozona marmorea, from below; \({ }_{1}\).
Fig. 11. " " from above; \({ }_{1}^{4}\).
Fig. 12. " " arm-joints, profile; \(\frac{1}{1}\).
Fig. 13. " clypeata, from below; \(\frac{7}{2}\).
Fig. 14. " " from above ; \(\frac{7}{2}\).
Fig. 15. " " arm-joints, profile; \(\frac{7}{2}\).
Fig. 16. Ophiochytra tenuis, from below; \(\frac{5}{1}\).
Fig. 17. " " from above; \(\frac{5}{1}\).
Fig. 18. " " arm-joints, profile; \&.

Fig. 19. Ophiernus adspersus, from below; \(\frac{5}{2}\).
Fig. 20. " " from above; \(\frac{5}{2}\).
Fig. 21. " " arm-joints, profile; \(\frac{5}{2}\).
Fig. 22. Ophioglypha fasciculata, from below; \(\frac{3}{1}\).
Fig. 23. " " from above; \(\frac{3}{1}\).
Fig. 24. " " arm-joints, profile; \(\frac{8}{1}\).
Fig. 25. "abyssorum, from below; \(\frac{3}{1}\).
Fig. 26. " " from above: \({ }_{1}^{3}\).
Fig. 27. " " arm-joints, profile; \(\frac{3}{1}\).

\section*{PLATE IV.}

Fig. 28. Ophioglypha scutata, from below; \(\frac{11}{2}\).
Fig. 29. " " from above; \(\frac{11}{2}\).
Fig. 30. " " arm-joints, profile; \(\frac{11}{2}\).
Fig. 31. " tenera, from below; \(\frac{13}{2}\).
Fig. 32. " " from above; \(\frac{13}{2}\).
Fig. 33. " " arm-joints, profile; \(\frac{13}{2}\).
Fig. 34. " aurantiaca, from below; \(\frac{4}{1}\).
Fig. 35 . " " from above; \(\frac{4}{1}\).
Fig. 36. " " arm-joints; \(\frac{4}{1}\).
Fig. 37. " falcifera (adult), from below; \(\frac{5}{2}\).
Fig. 33. " " from above; \(\frac{5}{2}\).
Fig. 39. " " arm-joints, profile, showing the hooked spines; \(\frac{5}{1}\).
Fig. 40. " convexa, var. (Station 146), from below; \(\frac{7}{2}\).
Fig. 41. " " from above; \(\frac{7}{2}\).
Fig. 42. " " arm-joints, profile; \(\frac{7}{2}\).
Fig. 43. " " (Station 206), from below; \(\frac{7}{2}\).
Fig. 44. " " from above; \(\frac{7}{2}\).
Fig. 45. " "s arm-joints, profile; \(\frac{7}{2}\).
Fig. 46. Ophiocten Pattersoni, from below; \(\frac{7}{2}\).
Fig. 47. " " from above: \(\frac{7}{2}\).
Fig. 48. " " arm-joints, profile; \(\frac{7}{2}\).
Fig. 49. Ophiomastus texturatus, from below; \(\frac{5}{1}\).
Fig. 50. " . " from above; \(\frac{6}{1}\).
Fig. 51. " " arm-joints, profile; f.
Fig. 52. Ophiophyllum petilum? from below; \(\frac{9}{2}\).
lig. 53 . " " from above; \(\frac{?}{2}\).
lig. 54. " " arm-joints, profile; \(\frac{?}{2}\).

\section*{PLATE V.}

Fig. 55. Ophiomusium Iymani (young), from below; \(\frac{18}{2}\).
Fig. 56. " " from above; \(\frac{18}{2}\).
Fig. 57. "s " arm-joints, profile; \(\frac{13}{2}\).

Fig. 58. Amphiura incisa, from below ; \(\frac{9}{2}\).
Fig. 59. " " from above; \(\frac{9}{2}\).
Fig. 60. " " arm-joints, profile; \(\frac{9}{2}\).
Fig. 61. " ucreis, from below; \(\frac{15}{2}\).
Fig. 62. " " from above; \(\frac{15}{2}\).
Fig. 63. " " arm-joints, profile; \(\frac{15}{2}\).
Fig. 64. "، sp. nov.? (Station 220), from below; ? \(\frac{?}{2}\).
Fig. 65. " " from above; \(\frac{9}{2}\).
Fig. 66. " " arm-joints, profile; \(\frac{?}{2}\).
Fig. 67. Ophiochiton tenuispinus, from below; \(\frac{3}{1}\).
Fig. 68. " " from above; \(\frac{3}{1}\).
Fig. 69. " " arm-joints, profile; \(\frac{3}{1}\).
Fig. 70. Ophiacantha Bairdi from below; \(\frac{7}{2}\).
Fig. 71. " " from above; \(\frac{7}{2}\).
Fig. 72. " " arm-joints, profile; \(\frac{7}{2}\).
Fig. 73. " Bartletti, from below ; 雱.
Fig. 74. " " from above; \(\frac{5}{2}\).
Fig. 75. " " arm-joints, profile; \(\frac{5}{2}\).
Fig. 76. " cervicornis, from below; \(\frac{3}{1}\).
Fig. 77. " " from above; \(\frac{3}{1}\).
Fig. 78. " " arm-joints, profile; \(\frac{3}{1}\).

\section*{PLATE VI.}

Fig. 79. Ophiacantha lincolata, from below; \({ }_{1}^{2}\).
Fig. 80. " " from above; \(\frac{2}{1}\).
Fig. 81. " " arm-joints, profile; \({ }_{1}^{2}\).
Fig. 82. " lavipellis, from below; \(\frac{15}{2}\).
Fig. S3. " " whole disk from above, to show the varied corcring; \(\frac{15}{2}\).
Fig. 84. " " arm-joints, profile; \(\frac{15}{2}\).
Fig. 85. " scolopendrica, from below; \(\frac{5}{2}\).
Fig. 86. " " from above; \(\frac{5}{2}\).
Fig. 87. " " arm-joints, profile; \(\frac{5}{2}\).
Fig. 85. Ophiothamus vicarius? (young), Station 190, 542 fathoms; \({ }_{1}{ }_{1}^{2}\). The entire baek of the disk is shown, beset with shafts, each bearing a bunch of three or more sharp, slender thorns. These show the embryonie form of the thorny stumps so common in Ophiacautha and allied genera. Only two joints of the short arms are represented.
Fig. 89. Ophiomitra iucisu, from below; \(\frac{5}{2}\)
Fig. 90. " " arm-joints, profile; \(\frac{5}{2}\).

\section*{PLATE VII.}

Fig. 91. Ophiomitra incisa, from above; \(\frac{5}{2}\).
Fig. 92. Ophiocamax fasciculata, from below; \(\frac{2}{1}\).
Fig. 93. " " from above; \(\frac{2}{1}\).
Fig. 94. " " arm-joints, profile; \(\frac{2}{1}\).
Fig. 95. Ophiocopa spatula, from below ; \(\frac{4}{2}\).
Fig. 96. " " from above; \(\frac{4}{1}\).
Fig. 97. " " arm-joints, profile; \(\frac{4}{1}\).
Fig. 93. " " one of the flattened arm-spines; 10 .
Fig. 99. Ophiosciasma granulatum, from below ; \(\frac{5}{1}\).
Fig. 100. " " from above; \(\frac{5}{1}\).
Fig. 101. " " a flattened arm-spine in its skin-bag; \(\frac{45}{2}\).
Fig. 102. " " arm-joints; \(\frac{5}{1}\).
Fig. 103. Ophiogeron supinus, from below; \(\frac{2}{2}\).
Fig. 104. " " from above; \(\frac{3}{2}\).
Fig. 105. " " joints at tip of arm, from below ; \(\frac{5}{1}\).
Fig. 106. " " joints at tip of arm from above showing absence of upper arm-plates, and division of arm-bones into halves; \(\frac{5}{1}\).
Fig. 107. " " joints at tip of arm, profile ; \(\frac{5}{1}\).
Fig. 108. Ophiochondrus squamosus, from below; \(\frac{6}{1}\).
Fig. 109. " " from above; \(\frac{6}{1}\).
Fig. 110. " " arm-joints, profile; \(\frac{6}{1}\).
Fig. \(111 . \quad\) "crassispinus, from below; \(\frac{7}{1}\).
Fig. 112. " " from above; \(\frac{7}{1}\).
Fig. 113. " " arm-joints, profile; 盲.

\section*{PLATE VIII.}

Fig. 114. Ophiomyxa serpentaria, from below; \(\frac{2}{1}\).
Fig. 115. " " from above; \({ }^{2}\).
Fig. 116. " " arm-joints, profile: \({ }_{1}\).
Fig. 117. Ophiobyrsa serpens, from below; \(\frac{2}{1}\).
Fig. 118. " " from above; \(\frac{2}{1}\).
Fig. 119. " " arm-joints, profile; ?
Fig. 120. " hystricis, from below, showing the large tentacles; \({ }_{1}^{2}\).
Fig. 121. " " from above; \({ }_{1}^{2}\).
Fig. 122. " " arm-joints, profile; \({ }_{1}^{2}\).
Fig. 123. Hemieuryale tuberculosa, from below ; \(\frac{7}{2}\).
Fig. 124. " " from above; \(\frac{7}{2}\).
Fig. 125. " " base of arm, profile; \(\frac{7}{2}\).
Fig. 126. " " joints from middle of arm, from above; \(\frac{7}{2}\).
Fig. 127. " joints near tip of arm, profile; 否.

Fig. 128. Ophiobrachion uncinatus, from below; 1 .
Fig. 129. " " from above; \(\frac{1}{1}\).
Fig. 130. " " arm-joints, profile. The arm-hooks have all
fallen, leaving their little mamelons; \(\frac{1}{1}\).
Fig. 131. " "an arm-hook; \({ }_{1}^{8}\).
Fig. 132. Ophiocreas spinulosus, from below ; \(\frac{3}{1}\).
Fig. 133. " " from above; \({ }_{1}^{3}\).
Fig. 134. " " joints near base of arm, profile ; \({ }_{1}^{8}\).
Fig. 135. " " joints near tip of arm, profile; \({ }_{1}^{3}\).
Fig. 136. Astronyx Loveni (young), from below; \(\frac{1}{2}\).
Fig. 137. "" " from above; \({\underset{2}{2}}\).
Fig. 138. " " arm-joints, profile; \(\frac{11}{2}\).


\footnotetext{
1. Trouvelot on stone
}

Kain Perimon ad :a



(

Kath. Peirson adnat.

fath. Peirson ad nat


Kath Peitsoin ad mat


Kath. Peirson dadnat

hath. Peirson adnat

\title{
ANNUAL REPORT \\ OF
}

\section*{THE CURATOR}

OF THE

\section*{MUSEUM OF COMIPARATIVE ZOÖLOGY}

AT HARVARD COLLEGE,

то THE
president and fellows of harvard college,
FOR

\section*{1881-82.}

CAMBRIDGE:
UNIVERSITY PRESS: JOIIN WILSON AND SON.
1882.

\section*{FACULTY OF THE MUSEUM.}

\author{
CHARLES W. ELIOT, President. \\ ALEXANDER AGASSIZ, Curator. \\ JOSIAH D. WHITNEY, Secretary. \\ THEODORE LFMAN. \\ GEORGE L. GOODALE.
}

\section*{OFFICERS.}
ALEXANDER AGASSIZ . . . . . Curator.
JOSIAH D. WHITNEY . . . . . . Sturgis-Hooper Professor of Geology.
HERMANN A. HAGEN . . . . . . Professor of Entomology.
NATHANIEL S. SHALER . . . . . Professor of Palcoontology.
WILLIAM JAMES . . . . . . . . Assist. Prof. of Physiol. and Comp. Anat.
WALTER FAXON . . . . . . . . Assistant Prof. of Zoölogy.
THEODORE LYMIAN . . . . . . Assistant in Zoülogy.
CHARLES F. HAMLIN . . . . . . Assistant in Concholony and Palceontology.
JOEL ASAPI ALLEN . . . . . . Assistant in Ornithology.
W. M. DAVIS . . . . . . . . . Assistant in Gcological Laboratory.
SAMIUEL GARMAN . . . . . . . Assistant in Herpetology und Ichthyology.
E. L. MARK . . . . . . . . . . Assistant in Zoülogical Laboratory.
M. E. WADSWORTH . . . . . . Assistant in Lithology.
J. WV. FEWKES . . . . . . . . . . In charge of Radiates.
PAULUS ROETTER . . . . . . . Artist.
MISS F. M. SLACK . . . . . . . Librarian.

\section*{REPORT.}

To the President and Fellows of Harvari College:-
During the past year the corner-piece of the Museum has been plastered, and some of the rooms are already occupied. This part of the building can be completed in such time that the Zoölogical and Geologieal laboratories will be ready for use at the opening of the next academic year.

The usual courses of instruction have been given at the Muscum by Professors Whitney, Hagen, James, Farlow, and Faxon, and by Messrs. Mark, Davis, and Wadsworth.

For the details of this instruction and that in charge of Professor Whitney, I would refer to their several reports.

Two of the assistants of the Museum and two adranced students spent the greater part of the summer at my Newport laboratory. The former devoted their time principally to embryological studies of annelids, fishes, and polyps. The collections sent for study to Professors Verrill, Smith, and Mackintosh have been returned hy them.

About eight hundred volumes have been added to the Library during the past year. A special list of the Muscum publications is given to Appendix \(A\) of this Report; they are somewhat more extensive and numerons than has nsually been the case, consisting of twelve numbers of the Bulletins, and of two mumbers of the Memoirs. The publications issued elsewhere by several specialists, based mainly ulon Musenm materials, are mentioned in the special Reports of the Assistants of the Musemm.

The publication of the preliminary Reports on the " Blake "eollections has made excellent progress during the past year. There now remain unfinished of these only those mon the Fishes, Halcyonoids, Foraminifera, Ostracoids, Nemerteans, and some
minor groups, as well as the Report on the bottoms. It has been decided to publish only the final Reports of the fishes of the east coast and of the Holothurians. That on the fishes will be published in comnection with the United States Fish Commission, and include many species of shallower waters, first brought to light by the dredgings of the "Fish Hawk." Professor G. B. Goode and Dr. Bean have already prepared the greater part of this Report. Dr. H. Theel, of Stockholm, who has undertaken to work up the Holothurians, hopes next spring to transmit his final Report to the Royal Swedish Academy of Stockholm, where it is to be published. Professor Verrill has completed the examination of the east coast Halcyonarians and Actinarix, and is preparing a Report of these and of those of the Caribbean and Gulf of Mexico for the Museum Bulletin. Work is progressing farorably on the other Reports. I have inyself nearly completed Part I. of the final Report on the Echini, twenty plates are already on stone, and the remaining plates are well advanced. Concerning the results of the explorations of the Tortugas, undertaken in 1881 muder the auspices of the United States Coast Surrey, I am preparing for the Museum Memoirs a monograph on the Porpitidæ and Velellidæ of the Gulf Stream. The trelve plates to accompany this Memoir are completed. A second memoir on the structure of the Tortugas, and the distribution of the corals forming that part of the Florida Reefs, is also nearly completed. It will be illustrated by two maps and two plates, representing sections of the reef.

Mr. W. H. Dall is now engaged in preparing the final report on the "Blake" mollusca. His preliminary Report on the mollusca collected by the United States Coast Survey Steamer "Blake" has been issued in parts from July to December, 1881. Bull. M. C. Z. IX. No 2 ; pp. 111.

Mr. P. H. Carpenter has concluded his preliminary Report on the Comatulæ of the "Blake." It was published in October, 1881. Bull. M. C. 7. IX. No. 4; pp. 18. The erinoids of the "Blake" collection, which had been placed in the lands of the late Sir Wyville Thomson for determination, to be worked up in conuection with the "Challenger" material, have been transferred by Mr. John Murray, of the "Challenger" office, to Mr. Carpenter. Mr. Carpenter proposes in commection with his father, Dr. W. B. Carpenter, to work out as fully as practicable the
minute anatomy of Pentacrinus, for which the material collected by the "Blake" is quite extensire. In addition to the Pentacrinus material, our specimens of Holopus were also placed in his lands. Mr. Carpenter is now preparing a preliminary report on this part of the "Blake" collection. During the spring, Professor S. I. Smith has completed his Report on the Crustacea collected by the "Blake" off the Atlantic coast of the United States, during the summer of 1880 . We are under great obligations to Professor Smith, not only for the masterly manner in which he has accomplished his task, but also for his promptness in writing this Report, and preparing the excellent plates which accompany his Report. Professor Smith's Report was published in June, 1882. Bull. M. C. Z. X. No. 1 ; pl. 108, pl. 16.

Dr. J. W. Fewkes, who accompanied me as assistant to the Tortugas during the winter of 1881, has written a report on the jelly-fishes we collected while carrying on explorations of the Tortugas, under the auspices of the United States Coast Surrey. Bull. MI. C. Z. IX. No. 7 ; pp. 40, pl. 7. April, 188 ?.

Dr. Fewkes has also worked up some of the results of his studies on the jelly-fishes of the New England coast, carried on in my laboratory at Newport. Bull. M. C. Z. IX. No. 8 ; pp. 20, pl. 2. April, 1882.

The other publications of the Museum issued during the past academic year are : -

Observations upon the species of the genus Partula, by Dr. Wr. D. IIartman. Bull. M. C. Z. IX. No. 5; pp. 26, 2 pl. The collection of the species of the gemus Partula, made by Mr. Garrett for the Masenm, forms a large part of the material placed at the command of Dr. Hartman.

Of the Memoirs, Part II. of Vol. VII. No. -, - the climatic changes of later geological times, - has been published by Professor J. D. Whitney. Memoirs M. C. Z. VlI. No. 2 ; Part II.; pp. 121-264. March, 188.2. The concluding part of this memoir is well adranced.

Of the Geological Series Vol. VII. there have been issued No. 6, hy Professor Lesquercux, on recent additions to the collections of fossil plants of the Museum, and No. \(\boldsymbol{T}\) by Mr. Wolff, on the great dyke at Quiney, Mass.

The second part of the sixth volume of the Bulletin has been published, completing that volume. It contains an important
paper by Dr. E. L. Mark, on the maturation, fecundation, and segmentation of Limax campestris ; 5 pl., pp. 552. Besides a general review of what is known of the same phenomena in other classes of the animal kingdom, based upon his own researches on this difficult subject, Dr. Mark has added an exhaustive bibliography.
I have also undertaken, in comnection with Professor Faxon and Dr. Mark, to issue in the Museum Memoirs a "Selection from Embryological Monographs," which will contain 4to illustrations compiled from monographs scattered through innumerable scientific transactions and periodicals, and serve as an atlas to accompany any text-book on Embryology, such as Kölliker, Balbiani, Balfour, etc. Such a publication will, I hope, be found most useful to students and teachers. The 4to illustrations will be accompanied by a carefully prepared description of the plates, and an Svo bibliographical list. The 4to illustrations and the bibliographical lists will be issucd in parts limited to special groups of the animal kingdom.

The first part of the illustrations "Crustacea," has been prepared by Professor Faxon, and was published during this summer. Mem. M. C. Z. IX, No. 1; 14 pl., with an explanation of the Plates, June, 1882. Professor Faxon also prepared the Bibliography to accompany the Crustacea; it was published in March, 1882. Bull. M. C. Z. IX. No. 6 ; pp. 53. I have myself prepared the Bibliography of the Echinoderms. This was published in August, 1882. Bull. M. C. Z. X. No. 2, pp. 30, and I hope to finish the selection of the illustrations for the Echinoderms in time to issue the second part during this winter. Several of the plates of the acalephs and polyps are finished. I shall have the assistance of Dr. Fewkes in completing the preparation of this part. Professor A. S. Packard, Jr., has consented to take charge of the part relating to insects.

Other memoirs have also been prepared by the officers of the Muscum and published elsewhere. They will he found mentioned in the reports of the special departments. I may mention specially the final Report on the Ophiuride of the "Challenger" expedition ly Mr. Theodore Lyman, forming a part of Vol. IV. of the Zoölogical Results of the "Challenger." The preliminary Reports in the "Comptes Rendus" of some of the Crustacea collected by the "Blake" by Professor Alphonse Mihne-Edwards; I
have myself published in the Proc. Am. Acad. XVII ; pp. 271\(302,20 \mathrm{pl}\). July, 1882. Part III. of the Young Stages of Osseous Fishes.

The late Professor F. M. Balfour has published, in connection with Mr. Parker, in the Proceedings of the Royal Society, a preliminary account of the Embryology of Lepidosteus based upon the material sent him from our Museum. Professor Mackintosh has completed his examination of the large series of sections of spines of sea-urchins sent him by the Muscum. His Report has been sent for publication in the Memoirs of the Royal Irish Academy of Dublin.

The arrangement of the new rooms which have become arailable for exhibition and for storage has made excellent progress. All the material temporarily stored in the exhibition rooms has at last been remored and distributed to its fimal position, so that we may now hope within reasonable time to open all our Zoölogical Exhibition Rooms to the public, eren should they not exhibit all the specimens we expect to place in them.

The greater part of the gallery of the Systematic Collection of Mollusks has been arranged, and Messrs. Hamlin and Hyatt hope to finish the work on the Mollusks during the coming jear. The Systematic Collection of Fishes is now on exhibition and comprises the typical forms of the recent bony fishes, of the Selachians and of the Ganoids. It only remains now to interealate the blanks and many of the fossil forms to complete this room.

The Systematic Collection of Birds is mudergoing its final arrangement. A large part of the fannal collections intended for the Indian and Australian rooms has been placed in their exhibition cases, so that these rooms also can probably be open to the public during the coming winter. Fair progress has likewise been made in the African faunal collection. The skeletons of the reptiles, fishes, birds, and mammals, have been placed in the storage rooms destined for their use. The workroom containing the corals, polyps, echinoderms and sponges has been partially occupied, and Mr. Fewkes has arranged in the Systematic Room of Radiates a selected collection of Aleyonoids.

Mr. Garman has continued the explorations made by him during the two previnus years, and has bronght together an enormous collection of mammalian remains, - one of the finest, indeed, ever brought from the West. The thanks of the Muscum
are specially due to Dr. MeGillicuddy of the Pine Ridge Indian Agency for the assistance he bas given to Mr. Garman, and for his interest in his behalf.

Professor A. Lakes has continued to send fossil plants from Colorado to the Museum ; they have as formerly been carefully identified by Professor Lesquereux.

The past winter Mr. Sternberg spent in Texas collecting fossil rertebrates from the permian. His collections have reached Cambridge safely; we are indebted to Major Henry of the 19th Caralry, the Commander of Fort Sill, for the assistance he rendered to Mr. Sternberg while at work in his district. Later in the season Mr. Sternberg returned to Kansas, where he is still engaged in making collections for the Museum.

I have specially to thank the Secretary of War, the Hon. R. T. Lincoln, and the Secretary of the Treasury, the Hon. H. M. Teller, for the letters of introduction they were kind enough to send to Messrs. Sternberg and Garman for use in the Territories they explored.

Major Porrell, the Director of the United States Geological Surrey, kindly allowed the Museum the privilege of sending a collector under certain restrictions with the expedition sent by the survey in charge of Mr. C. D. Walcott to collect palæozoic fossils. It will of course be of great importance to the Museum, in riew of our recent acquisitions, that we should have as full a representation as possible of the Testern palæozoic fossils.

Mr. Ferrkes was sent by the Museum to examine the Bermudas, in hopes of finding it a suitable and accessible locality for studying the surface Fama of the Gulf Stream. He is preparing a report of his expedition for the Bulletin.

Dr. Hagen spent the greater part of the summer on the line of the Northern Pacific Railroad making an entomological surrey for the Northern Pacific Transcontinental Company. He collected during his trip a large number of insects from localities as yet little risited by naturalists.

Large accessions for the faunal collections have benn purchased from Professor Ward. In addition to these purchases, we liave also receired in exchange or as gifts a number of collections mentioned in the special Reports.

During the past year the accessions to our inrertebrate palæontological collections have been most important. The Museum
has purchased from Mr. E. Haeberlein a large collection of Solenhofen fossils, the duplicate of a collection purchased some time ago from him by the British Museum; thongh, of course, it did not contain its greatest treasure, the Archeopteryx. But by far the most valuable accession we have received during the past year is the collection of Silurian fossils of Bohemia, brought together by the late J. M. von Schary, which has been purchased from his heirs. This collection is of the greatest value to American palrontologists, as it will give us the means of comparing the types of the great collections which have formed the basis of the works of Barrande and of Hall. Some idea of the magnitude of this collection may be formed from the fact that it contains over 100,000 specimens; of these probably two thirds of the collection, no less than 1231 species, representing 157 genera, are identified.

The whole collection was packed by Professor Hamlin, who was sent out from the Museum on purpose to secure it. To Professor Poshepny we are under the greatest obligation for his serrices in carrying out the negotiations which onded in the purchase of this prize. The Schary collection, taken in connection with the collections brought together from Amcrican localities, now makes our collection of palæozoic fossil invertebrates one of the finest in existence.

Among the collections purchased in Europe, I may also mention a fine collection of green-sand fossils from Cambridge ; a collection of fossil fishes from the upper Cretaceous of the Lebanon, Syria; and a good collection of Devonian fishes from Cromarty, Scotland, with a few specimeus from the Mountain Limestone of Armagh, Ireland.

\title{
REPORT ON THE GEOLOGICAL DEPARTIIENT.
}

\author{
By Josiah D. Whitner, Sturgis-Huoper Professor.
}

The geological department of the Museum has gone on, during the year 1881-82, rery much as in former ones, although the number of special students has been small. Instruction was given in geology and lithology to two candidates for the higher degrees, their work in the field and laboratory having been supervised by the Professor and the Assistant, Dr. Wadsworth.

The latter has continued his comnection with the Museum, a considerable part of his time having been occupied by the preparation of a subject card catalogue of papers and works in lithology, intended for the use of students in this department. Nearly every lithological paper and work of vaiue can now be found either in the University Library, or in that of the Sturgis-Hooper Professor or his Assistant.

The collections in lithology have been considerably increased during the past year. During the summer Dr. Wadsworth made a geological excursion to Cape Breton, Nora Scotia, and New Brunswick, and was thus enabled to add a considerable number of specimens, not only of rocks, but of substances illustrative of the economical geology of that region. He also has collected in continuation of work previously done with the object of throwing light on the geology of this ricinity. A valuable lot of build-ing-stones was given by Mr. J. E. Wolff. Doctors Faxon and Ferkes also presented specimens of rocks collected by them during summer-vacation visits to Bermuda and Maine. A number of meteorites have been added by purchase. An arrangement has been made with Mr. J. S. Diller, Geologist to the Assos Expedition, with the consent of the Director of that work, by which the rocks collected in the course of that surrey, and the thin sections prepared to be used in their deseription, shall be turned over to our collection when the same are no longer required for use by the Geologist of the Expedition.

Professor Huntington has continued the preparation of micro-
scopic sections of the rocks in the collection, and the number of these now available for use by students of lithology now exceeds two thousand.

The Sturgis-Hooper Professor published in April the second part of the "Climatic Changes of Later Geological Times," and in October the third and final portion of that work. This completes the seventh volume of the Memoirs of the Muscum. IIe also published in the Bulletin of Harvard University a "List of American Authors in Gcology and Palæontology."

The following papers have been published during the current year in the lithological department:-

\section*{By Dr. Wadsworth.}
1. Some Points relating to the Geological Exploration of the Fortieth Parallel. Proc. Bost. Soc. Nat. Hist., 1881, XXI. 243-274.
2. On the Relation of the Quincy Granite to the Primordial Argillite of Braintree, Mass. Ibid., pp. 274-277 ; Harvard Univ. Bull., 1882, II. 360 .
3. On the Traeliyte of Marblehead Neck, Mass. Proc. Bost. Soc. Nat. Hist., 1881, XXI. 288-294; Harvard Univ. Bull., 1881, II. 267.
4. On the Lithological Cbaracter of the Paleolithic Implements of the Valley of the Delaware. Proc. Bost. Soc. Nat. Hist., 1881. XXI. 146, 147.
5. Notes in Geology and Lithology. Including
(a) The Marblehead Diabase.
(b) Picotite found in the Groundmass and Feldspar of Basalt.
(c) Zircon-Syenite from Marblehead, Mass.
(d) The Stoneham Limestone.
\((f)\) On the Relations of the so-callerl Felsite to the Conglomerate on Central Avenue, Miilton, Mass. Harvard Univ. Bull., 1882, II. 359, 360, etc.; Proc. Bost. Soc. Nat. Hist., 1881-82, XXI. 306, 314, 315, etc.

By Joun Eliot Wolff, Assistant in Geology in the College, and Candidate for the Degree of Ph.D.
6. The Great Dike at Hougl's Neek, Quincy, Mass. Bull. Mus. Comp. Zoül., 1882, V II. 231-242.

A considerable amount of other material in lithology and geology has been partially prepared for publication, and will probably he completed and placed in the hands of the printer during the coning year.

\author{
REPORT ON THE LNSTRUCTION GIVEN BY PROFESSOR FAXON, DR. MARK, AND MR. W. M. DAVIS.
}

The course in Biology, given by Professors Farlow and Faxon, was attended by thirty-two students, five of whom were Seniors, sixteen Juniors, six Sophomores, and five students in the Lawrence Scientific School. In the laboratory work of this course they had the assistance of Mr. C. H. Morss. The course in Advanced Zoölogy by Professor Faxon was followed throughout the year by thirteen students (eleven Seniors and two members of the Lawrence Scientific School), two of whom supplemented their study in Cambridge by several weeks' work in Mr. Agassiz's laboratory at Newport, R. I.

The conrse in general Zoölogy, by Dr. E. L. Mark, was pursued by fifty-four students ; of whom eiglt were Seniors, twelve Juniors, twenty-six Sophomores, and two Freshmen. Four were students in the Lawrence Scientific School, and two were unmatriculated. The course in Embryology, also by Dr. Mark, was followed by three persons, one of whom was a candidate for the degree A. M., and the two othors were students of the Lawrence Scientific School. The lectures were also regularly attended hy three other persons during portions of the year: a candidate for the degree of Sc.D., a special student in Entomology, and a student of the Bussey Institution.

On account of the absence of Professor Shaler, the electives in Palæontology and Iistoric Geology were not given this year. For the same reason, the classes in Gencral and Advanced Gcology were put in charge of Mr. W. M. Davis, instructor in the department. The work done was as follows:-

In Physical Geography and Meteorology. Leetures three times a week, on the same plan as in previous years, to a class of sixty-three undergraduates, and three students of the Scientific School.

In Geology. Leetures three times a week, hased on Dana's Mamal
of Geology, to a class of sixty-seven undergraduates and two members of the Scientific School. Voluntary excursions to points of interest in the neighborhoorl of Cambridge and Boston were made on several Saturday afternoons during the fall and spring.

In Advanced Geology. Lectures twice a week, fall and spring, three times a week through the winter, based on Lyell's "Principles of Geology," to a class of seventeen undergraduates and one Scientific student. Weekly excursions were made during the fall and spring to quarries and ledges in Somerville and Brighton, under the direction of the instructor and Mr. J. E. Wolff, assistant in Geology.

During the May recess, Messrs. Davis and Wolff, with five students, visited an interesting region between the Hudson River and Catskill Mountains, near the town of Catskill, N.Y. A short account of part of the results of the trip was published under the title of "The Little Mountains East of the Catskills " in Appalachia, Vol. III. A fuller description of the work done will be published in the Bulletin of the Muscum.

Papers in addition to the two above named were prepared by Mr. Davis on the "Classification of Lake Basins" and on "Glacial Erosion;" the first published, the second in press in the Proceedings of the Boston Society of Natural History ; and by Mr. Wolff on the Building and Paving Stones used in Boston (a report made to the U.S. Census), and on "The Great Dike at Hough's Neck, Quincy, Mass.," published in the Museum Bulletin. Mention may also be made of some geological work continned for the past three summers on Mt. Descrt by a party of undergradnates, many of whom were, or had been, students in this department. Mr. Davis spent part of two racations in their camp. An account of their results, with a geological map of the island, is now in preparation.

\section*{REPORT ON MAMMALS AND BIRDS.}

\author{
By J. A. Allen.
}

Mammals. - The additions during the year include forty-five mounted specimens, ten skins, fourteen mounted skeletons, seren disarticulated skeletons, and ten skulls. Among the mounted specimens are a fine male gorilla, a young chimpanzee, female and young orang, an Indian tapir, a Sumatran rhinoceros, a giant armadillo, several sloths, and various monkeys. The mounted skeletons include a gorilla and an orang.

The fossil mammals collected during the season of 1881, by Mr. Garman in Wyoming and by Mr. Sternberg in Kansas, came to hand too late to receive satisfactory mention in the report for that year. The Wyoming collection embraced very fine skulls of two species of large-horned perissodactyles, besides additional material of much value pertaining to many of the species represented in Mr. Garman's first collection from the same region, noticed in the Report for 1879-80. Mr. Sternberg's collection contained nearly perfect skulls of three species of rhinoceros, lower jaws of adult and young examples of a mastodon of the genus Tetralophodon, together with remains of horse, camel, deer, rodents, and carnivores, - the two last-named groups being each represented by several species. These gentlemen have successfully continued their explorations during the past season, but their collections have not yet reached the Museum.

Birds. - Four hundred species of mounted birds hare been added to the collection by purchase, and orer one hundred have been mounted from skins previously in the collection, making an aggregate addition of over six hundred specimens to the exhibition series. About six hundred and fifty skins have been received. These include about two hundred from Qucensland. representing one hundred and cightecn species, and thirty-one from Western Asia, both collections added by exchange ; two
hundred from Southern Mexico (one hundred and thirteen species), purclased, and one hundred and fifty from Culorado. The Muscum is indebted to Captain Charles Bendire for a small lot from Washington Territory. There have been added to the Osteological series thirty mounted and ten mmounted skeletons. Among the former are forr very finc moa skeletons, representing three species, obtained through Professor Ward.

Owing to my illness during a large part of the year, little work has been done on the collections of mammals and birds. Recently, however, the material for the faunal collections has been placed in the exhibition rooms, and the Indian and African rooms will soon be added to those open to the public. Three fourths to seven eighths of the species ordered for the faunal collections have been received, toward the completion of which we are still receiving frequent instalments.

The publication of a "Preliminary List of Works and Papers relating to the Mammalian Orders Cete and Sirenia" mas begun early in the year in the Bulletin of the U. S. Geological Survey of the Territories (Vol. VI., pl. 399-562), but inability on the part of the author to revise the proof-shects necessitated the suspension of the printing at the end of the first third of the paper.

\section*{REPORT ON THE REPTILES AND FISHES.}

\section*{By Sameel Garman.}

About one third of the year has heen devoted to field work in some of the Western Territories, in continuation of the explorations of the past years. Four species of smakes and as many of lizards, with many valuable duplicates, make up the total number of recent species obtained. Among the fossils there are a number of Pythonomorpl Saurians and some fishes from the upper Cretaceous and lower Eocene, and a few turtles from the Miocene. The mollusks and birds are represented to some extent, but the bulk of the fossil collection belongs to the mammals. Of the latter, there are mice and other rodents, pigs, deer, and camels. A considerable number of individuals belonging to several species of horses were collected from the lower Eocene to the upper Pliocene inclusire. The more recent of these were found in such situations as to suggest the cause of extinction to have been a rery severe winter, much more extensive and severe than those that occasionally, at long periods, are met with in the same section of country in modern times. If a winter so severe as to sweep away the cattle and horses were to risit the region, it would leare their remains crowded together in caĩons, gullies, ravines, and other sheltered places in the Bad Lands, rery much as the Pliocene mammals are found. As if from freezing, the shafts of the larger bones are generally splintered. From the lower Miocene, or Brontotherium beds, only such things were taken as would supplement the collections made in 1880 and 1881. If it had been desirable to duplicate to any extent, enough was discovered to have made the collection three times as large. As it is, sufficient material was brought away to represent five genera of the Brontotheridae. A complete skull of a species of Mcgacerops forms one of the largest and heariest specimens. The genus Rhinoceros is represented by several species from the Miocene and Pliocenc. A discorery
of considerable importance was an entire specimen of a gigantic Edentate, allied to Megatherium, in what appeared to be the Pliocene. This specimen we were fortunate enougl to dig out, pack, and ship in good shape. Mastodons and elephants were found in rarious localities. One of the latter had tusks more than six feet two inches in length, and more than nine inches in diameter at eighteen inches from the head. Among the undetermined specimens there is a large number of skulls, jaws, and teeth. Thirtytwo cases were slipped, and arrangements were made by whioh others, left on account of haste, are being secured for the Museum, and forwarded as rapidly as possible.
In the Muscum, the main work of the year has been directed toward the improvement of the exhibition and of the condition of the collection in the storage rooms. The systematic collection of Fishes and Selachians has been entirely rearranged. Various Sauria and Batrachia, in additiou to those previously reported, have been mounted in alcohol, and, experiment suggesting better methods, it is found expedient from time to time to improve on the results of the first attempts in this direction. Specimens of Piratinga, Platystoma, Boa, Jacare, and Hatteria have been taken from the alcohol and prepared as skeletons. Some stuffed reptiles of the larger genera have been purchased, and a fine Ptychemys concinna was secured by exchange. The purchases include lots from New Zealand, Australia, and Palestine. One of the most valuable acquisitions is a fine serics of Hatteria or Sphenodon. Donations have been received from Prof. S. A. Forbes, Prof. F. W. Putnam, Prof. W. A. Forbes, F. W. Cragin, N. Vickary, F. A. Bell, James Hill, Mr. Rollins, and others. The additions to the collections are distributed as follows: Four species of Selachians, fifty-two of fishes, ten of Batrachians, twenty-three of Ophidians, fifteen of Saurians, and six of Chelonians. A selection of seventy-seven species of fishes and reptiles was sent to the Boston Society of Natural History, and others to Mr. W. A. Forbes, and the Zoölogical Socicty of London.

\title{
REPORT ON THE CONCHOLOGICAL AND PALEONTOLOGICAL DEPARTMENTS.
}

\author{
By Charles E. Hamlin.
}

Since the last annual report a rery important addition has been made to the collections of Fossil Invertebrata by the acquisition of the great collection of Bohemian Fossils of Primordial, Lower Silurian and Upper Silurian age, made by the late J. M. ron Schary, of Prague, and purchased from his heirs. The specimens, which are of the finest quality and in perfect condition, number more than one hundred thousand \((100,000)\), and represent one hundred and fifty-seren, (157) genera and twelve hundred and thirty-one (1231) determined species, besides many species still undetermined.

A collection of fossils from the beds of Lithographic Slate at Solenhofen in the district of Pappenheim, Bararia, has been bought and received from Ernst Haeberlein of Pappenheim. It is made up in about equal proportions of Vertebrata and Invertebrata.

The work of selecting, determining, and mounting recent and fossil Lamellibranchiata for exhibition, begun previously to the last report, was interrupted by my departure to Europe on business connected with the Schary collection. It has been resumed since my return, and will soon be completed.

In consequence of my absence and the pressure of other work, conchological exclanges have this year been almost wholly suspended. The large stock of Achatinellæ from the Pease collection has been sent for study to Wm. D. Hartman, M.D., of West Chester, P'enn., who is engaged in monograplic work upon that obscure genus.

\section*{REPORT OF THE ENTOMOLOGICAL DEPARTMENT.}

\author{
By H. A. Magen.
}

The additions to the collection consist of some types of Lord Walsingham's N. A. Tincina presented by Mr. V. T. Chambers of Covington, Ky., and the large collection of insects presented by the Northern Pacific Railroad Transcontinental Survey. As the insects have been collected in one of the districts of the United States, not previously risited by entomologists, Washington Territory east of the Caseade Mountains and north of tho Columbia River, - they are of importance, and fill large gaps in the collections of North American insects in the Museum.

A large number of insects have been spread, and the rearrangement of the large collection of Odonata las nearly been finished.

Facilities for examining parts of the collection have been granted to specialists and students. Professor H. Osborn of Ames, Iowa, worked here three months, and sereral ladies hare studied N. A. Lepidoptera. The assistant has lectured on general entomology to five students and one lady.

The following gentlomen have received materials for their publications from the Museum collection: Rev. A. E. Eton, Croydon, Eugland, on the Ephemerina. A part of his results are published in the Entom. Monthly Magazine, London. The work will be published by the Royal Society, London, with a large number of plates in 4to.

Dr. Vayssière, Montpellier, has published the remarkable nympha of Batisea obesa, similar to Prosopistoma, in his monograph of the carly stages of Ephemerina in Amm. Sc. Nat. Paris from specimens of our collection.

Count Keyserling has published in Wien. Zoöl. Bot. Ges. number II. on American Spiders, based partly upon specimens of the collection.

As usual, correspondence with North American cutomologists has occupied a considerable part of the time of the Assistant.

The Assistant has published the first part of a monograph of the Psocina in the Stett. Ent. Zeit. with two plates drawn by himself. The description of the fossil species in amber was made after the specimens in the collection of Mr. Kuenon, Königsburg, Prussia. The second part (Fossil Atropina) is nearly ready for publication.

A description of the North American species with anatomical details is published in Psyche.

A paper on the color and the pattern of insects is published in the Proccedings of the American Academy of Arts and Science.

A number of smaller publications hare been given in different scrials (Nature, Ent. M. Mag., Zoöl. Anzeiger, Stett. E. Zeit., Canad. Entomol., Psyche, Proc. Boston Soc. N. H.)

The Library has reccived a number of very important additions ; a number of smaller books, pamphlets, and continuations of serials has been presented by the Assistant.

A revision of the Catalogue and of the Library has been undertaken. The collection of the works of T. W. Harris and Asa Fitch is now quite complete.

The Assistant was engaged during the greater part of the summer in an economic surrey of Washington Territory for the Northern Pacific Railroad Transcontinental Survey.

\section*{REPORT ON THE CRUSTACEA.}

\author{
By Walter Faion.
}

Since the last annual report, as much of my time as was not demanded by other duties has been employed in arranging and cataloguing the Crustacea of the "Blake" Expeditions of 187778 and 1878-79, together with other collections comprising many type specimens. Much of the value of the carcinological material in this Muscum comes from the large number of authors' types contained thercin. I have therefore thought it advisable, pending the revision and determination of the whole collection, to select such "type" collections, and carcfully number and catalogue the specimens, thus ensuring them against loss of labels and at the same time rendering them easy of access for comparison. Among the collections embracing types or specimens equally authoritative, from being labelled by the describers of the species, may be mentioned:-Astacidæ from Georgia, descriled by fohn Le Conte in 1855 ; Crustacea from the Wilkes United States Exploring Expedition, named by Dana; types of Stimpson's species from the east and west coasts of the United States, and from the United States North Pacific Exploring Expedition; types of the species described by Ordway in his monograph of the genus Callinectes; Hagen, in Monograph of North American Astacida; Packard, Phyllopoda ; Faxon, Crustacea of Lake Titicaca : freshwater Crustacea from the United States, described by ㄷ. I. Smith and O. Harger; Birge's species of North American Cladocera; Cymothoids described by Schï̈lte and Meinert; deepsea Crustacea of the "Bache," "Hassler" and "Blake" Expeditions, described by A. Milne Edwards, S. I. Smith, and E. B. Wilson (Pycnogonida).

Among the noteworthy additions to the collection, during the year, are fine specimens of Astacopsis serratus Haswell and Pali-
nurus tumidus Kirk, from Australia, purchased of H. A. Ward, of Rochester, N. Y.

The Report on the Crustacea of the "Blake" Expeditions of 1877-78 and 1878-79, by A. Milne Edwards (the first instalment of which appeared in the Bulletin of the Museum, Vol. VIII. No. 1), has been continued in Anuales des Sciences Naturelles, 6th ser. Vol. XI. Eight new genera and nineteen new species are recorded. Many species from the "Bache," "Hassler" and "Blake" dredgings are described for the first time in the same writer's great work on the Stalk-cyed Crustacea of Mexico (Recherches Zoologiques pour servir à l'Histoire de la Faune de l'Amérique Centrale et du Mexique, 5e Partie, Tome I.). In another paper he gires the general results reached through the study of the "Blake" Crustacea. The first part of S. I. Smith's Report on the Crustacea of the "Blake" Expedition of 1880, along the east coast of the United States, comprising the Decapods of the collection, was published in June in the Bulletin of the Museum, Vol. X., No. 1, with sisteen plates. Five new genera and twenty new species are described. From this collection a set comprising 25 species and 252 specimens has been made up for the U. S. National Museum, Washington, another set of 12 species, 91 specimens, for Yale College Muscum. In return a series of 33 species, 351 specimens, dredged by the United States Fish Commission off the coast of New England, 1877-81, has been received from the National Museum. These are named by Smith.

During the year a second contribution to the monograph of the Cymothoidæ, by Schiödte and Meinert of Copenhagen, based in part upon material sent from this Muscum, has been published in Naturlistorisk Tidsskrift, 3d series, Vol. XIll.

\section*{REPORT ON TIIE RADIATES.}

By J. Walter Fewkes.

During the past year the collection of corals formerly stored in the attic has been placed in cases in their final storage room in the new part of the Museum. The systematic collection of Alcyonoids on exhibition has been mounted and rearranged. Representatives of the more important genera of West Indian and South American corals have been placed on exhibition in the South American faunal room.

The "Blake" Alcyonoids have been examined and sent for identification to Professor Verrill, who will write the final report of this group. A small number of Bermuda corals and hydroids has been added to the general collection.

The Museum published during the year the following papers, which I had prepared for the Bulletin: "Explorations of the Surface Fauna of the Gulf Stream, under the auspices of the United States Coast Survey. By A. Agassiz. I. Notes on \(\Lambda\) caleplis from the Tortugas, with a Deseription of New Genera and Species." 7 plates. Bull. Mus. Comp. Zoöl., Vol. IX., No. 7; and "On the Acalephæ of the East Coast of New England." 1 pl. Ibid. Vol. IX., No. 7. In addition, I have written for the American Naturalist (Feb. 1882) a paper entitled "The Siphonophores. IV. Anatomy and Development of Diphyes," and for the American Jourual (Feb. 1882) "A Cercaria with Caudal Scta."

\section*{REPORT ON THE LIBRARY.}

\section*{By Miss F. M. Slack.}

During the year ending September 1, 1882, the Library has been increased by 779 volumes, 1055 parts, and 523 pamphlets.


The whole number of volumes now in the Library of the Museum (exclusive of pamphlets) is 15,526 .

\title{
[A.] \\ PUBLICATIONS
}

\author{
OF TIIE
}

\section*{MUSEUM OF COMPARATIVE ZOÖLOGY}

\author{
FOR THE ACADESIC YEAR 1881-18ッタ.
}

\section*{Of the Bulletin.}

Vol. VI., l'art II., completing the volume, being : -
No. 12. Maturation, Fecundation, and Segmentation of Limax Camplstris Binney. By E. L. Mark. pp. 453. 5plates. October, 1881. \$7.j0.
Vol. VII. (Geological Series, Vol. I.).
No. 6. Report on the recent additions of Fossin. L'lasts to the Musenm Col. lections. By L. Lesquereux. pp. 6. October, 18si. 5 c.
No. 7. The great Dhe at Hough's Neck, Quincy, Mass. By J. E. Wolff. pp. 12. July, 1882. 10 e.
(VoI. VII. to be continued).
Vol. IX., completing the volume : -
No. 2. Reports on the Results of Drenging by the U.S.C. S. Steamer " Blake." XV. Preliminary Report on the Mollusca. By W. H. 1.ill. pp. 112. December, 1881. \$1.00.
No. 4. Report on the Resnlts of Dredging by the U. S. C. S. Steamer "Blake." XVI. Preliminary Report on the Comatloes. Byl'. H. Cabpenter. pp. 20. 1 Plate. October, 1881. 20 e.
No. 5. Observations on the Species of the Genns Pantula Ferr., with a Bibliographical Catalogue of all the Species. By W. D). Hartama. pp. 26. 2 double l'lates. December, 1881. 50 c.
No. 6. Bhbliogbaphy to accompany" Selections from Embryologieal Monographs" compiled by A. Aga=iz, W. Faxun, and Vi, L. Mark. I. Crustacea. By W. Faxon. pp. 54. March, 1882.50 e.
No. 7. Explorations of the Surpace Fiuna of the Grie stasam maler the Auspices of the U. S. Coast Survey. By A. Agassiz. I. Notes on Acalefils from the Tontleas, with a Description of new Genera and Species. By J. W. Fewris. plo. fu. i Plates (3 duuble). April 1882. \$1.25.

No. S. On the Ae leirnse of the bast Coast of New Rixglanio. By J. W. Fewkes. P!. 20. 1 double Plate. April, 188\%. 30 e.

Vol. X .
No. 1. Reports on the Results of Dredging by the U. S. C. S. Steamer "Blake." XVII. Report on the Crustacea. Part I. Decafoda. By S. I. Smith. pp. \(108 . \quad 16\) Plates: June, 188:2. \(\$ 2.50\)

No. 2. Bibliograpyy to accompany "Selections from Embryological Monographs," compiled by A. Agassiz, W. Faxon, and E. L. Mark. II. Echinodermata. pp. 26. By A. Agassiz. Augnst, 1882. 25 c.
No. 3. Reports on the Results of Dredging by the L. S. C. S. Steamer "Blake." XVIII. The Stalied Crinoids of the Caribbean Sea. By I. II. Carpenter. (Is in press.)

Of the Memoirs.
Vol. VII. :
No 2. The Climatic Changes of Later Geological Times. Part II. containing pp. 121-264. Part III., completing the volume, is in press.
Vol. IX.
No. 1. "Selections from Embryological Monographs," compiled by A. Agassiz, W. Faxon, and E. L. Mark. I. Crestacea. By W. Faxon. 28 pp. 14 Pl. \(\$ 3.00\).

\section*{[B.]}

\section*{Invested Funds of the musedm.}

In the inand of the Treasurer of Harvard College, Sept. 1, 1881.


The payments on account of the Museum are made by the Bursar of Harvard College on vouchers approved by the Curator. The accounts are annually examined by a committee of the Museum Faculty. The only funds the income of which is restricted, the Gray and the Humboldt funds, are annually charged in an analysis of the accounts with vouchers to the payment of which the income is applicable.

The income of the Gray fund can be applied to the purchase and maintenance of collections, but not for salaries.

The income of the Humboldt fund can be applied for the benefit of one or more students of Natural History.

\section*{}
\begin{tabular}{lc} 
QL & Harvard University. Museum \\
1 & of Comparative Zoology \\
H3 & Bulletin \\
V.9-10 & \\
Biological & \\
\& Medical & \\
Serials &
\end{tabular}

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

STORAGE```


[^0]:    
    $\qquad$

