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Electroencephalogram (EEG) is a popular tool for studying
brain activity. Numerous statistical techniques exist to
enhance understanding of the complex dynamics underlying
the EEG recordings. Inferring the functional network
connectivity between EEG channels is of interest, and non-
parametric inference methods are typically applied. We
propose a fully parametric model-based approach via
cointegration analysis. It not only estimates the network but
also provides further insight through cointegration vectors,
which characterize equilibrium states, and the corresponding
loadings, which describe the mechanism of how the EEG
dynamics is drawn to the equilibrium. We outline the
estimation procedure in the context of EEG data, which faces
specific challenges compared with the common econometric
problems, for which cointegration analysis was originally
conceived. In particular, the dimension is higher, typically
around 64; there is usually access to repeated trials; and the
data are artificially linearly dependent through the
normalization done in EEG recordings. Finally, we illustrate
the method on EEG data from a visual task experiment and
show how brain states identified via cointegration analysis
can be utilized in further investigations of determinants
playing roles in sensory identifications.
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1. Introduction

An electroencephalogram (EEG) records the electrical activity of the brain in terms of differences in
electrical potentials between two points by electrodes attached to the scalp. EEG recordings are an
invaluable source of information about neuronal activity on a global level. Traditional statistical
techniques focus on both the time and the frequency domain. In the time domain, stimulus-evoked
responses at a single or at a few electrodes are typically assessed using event-related response
methods [1], which average the time-locked EEG signal across repeated trials. Frequency domain
techniques investigate the amplitude or phase of oscillatory activity in selected electrode(s) for specific
frequency bands.

More recently, methods for assessing the functional network connectivity between electrodes have
been developed [2,3]. The functional network connectivity describes how activity at each recording
site is related to activity measured at other sites. These include computing Pearson correlations
between the time series, estimating oscillatory coupling from, e.g. coherence or phase locking values
within a time window [4], or estimating the causal influence from one electrode to others with
Granger causality [5]. Thus, functional network connectivity methods assess the EEG activity of all the
electrodes, adhering to the idea that the brain is a dynamical system and that electrodes should not be
examined in isolation [6].

In this article, we propose cointegration analysis as a novel tool to infer functional network
connectivity. The starting point is a multi-dimensional continuous stochastic differential equation
model for the underlying process leading to a vector autoregressive (VAR) model of order 1 of the
discretely observed EEG signal. This model considers all channels jointly and takes into account the
autocorrelation in the data. Cointegration analysis is based on the VAR model. VAR models have
previously been used for EEG data; for example, autoregressive models were used to calculate a direct
transfer function [7], partial directed coherence [8], or in classification algorithms [9]. However, the
standard VAR model is assumed stationary, which is not the case for EEG data during stimulation,
and the phenomenon of spurious regression may arise [10].

Cointegration analysis is able to address the four following aspects in EEG network analysis. First, most
of the usual methods are non-parametric, whereas our approach is fully parametric. While a clear benefit of
non-parametric and semi-parametric procedures is that they are (nearly) free from limiting assumptions
and flexibly applicable under most circumstances, a fully model-based parametric approach offers a
framework that can answer more specific scientific questions. Moreover, interpretation of parameters is
more transparent, and estimation variance is reduced in the parametric setting.

Second, the most common methods study connectivity in the frequency domain, which requires
observation intervals that are long enough to extract the most prominent cyclical components.
However, the period of the alpha rhythm is between 80 and 125ms. Here, we estimate the functional
network connectivity during a short stimulation period lasting only between 20 and 110ms, and we
determine the brain state from only 100ms before stimulus onset. Thus, inference in the frequency
domain is not an option.

Third, a crucial assumption in standard time series analysis and a common assumption in general is
that EEG data are stationary. The natural physical limitations of EEG data do not allow for persistent
trends. However, there will be temporary deviations due to experimental inputs. This non-stationarity
has implications for the statistical analysis, such as spurious regression [10]. Finally, networks are
typically inferred among a limited number of channels or among a few larger brain areas. Our aim is
to upscale the cointegration methodology so that all EEG channels (64 in our case) are included in the
network.

Cointegration analysis was originally developed with econometrics applications in mind [11].
Recently, it has been applied to climate research [12], phase-coupled oscillating systems in physics [13]
and to low-dimensional systems of coupled oscillators in neuroscience [14]. The idea of cointegration
analysis is to discern which part of the data can be attributed to stochastic trends and which part
stems from linear equilibrium relationships, termed cointegration relationships. This is particularly
relevant for non-stationary data, which nevertheless exhibit some kind of stability or structure in the
overall system. Such dynamics are observed in many biological systems, e.g. in processes in the brain
measured through EEG, which we focus on here. The cointegration relationships then represent the
functional network connectivity between electrodes in the EEG.

The estimated parameters of the cointegration model are relevant for interpreting the EEG: the
cointegration rank gives the number of independent cointegration relationships related to the global
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connectivity network and the number of independent stochastic trends; the cointegration matrix contains
coefficients of cointegration relationships (i.e. electrode connectivity strengths); the loading matrix
describes how the underlying system (i.e. the brain) reacts to deviations from the cointegration
relationships. Most importantly, the product of the loading and the cointegration matrices describes
the functional network structure. The structure might change over time, which reflects for example
how brain states change in response to changing tasks.

We apply the cointegration analysis to EEG data obtained from two human participants performing a
simple visual identification task. In each trial, the participant was asked to report the orientation of a
briefly presented Landolt ring. Exogenous factors such as the presentation time and stimulus
luminance are the typical factors that predict performance in the task; however, pre-stimulus EEG
activity has recently been shown also to have predictive value in similar tasks [15]. That is, the brain
activity prior to the onset of the visual stimulus affects how well the stimulus is perceived, either
from oscillatory activity in the visual cortex timed to the onset of sensory input [16,17] or from
spontaneous activity [18]. We show that cointegration analysis can be used to investigate this further
while giving an account of the functional networks involved. We then test if the pre-stimulus brain
state estimated from a time interval as short as 100 ms predicts performance on the visual
identification task.
Sci.9:220621
2. Cointegration methodology
The vector xt ¼ ðx1t, x2t, . . . , xptÞ0 [ Rp represents the EEG signals recorded at time t, p is the number of
electrodes and 0 denotes the transpose. If not stated otherwise, then p = 64. The data are recorded at time
points t0 < t1 <… < tn <… < tN. We write xn for xtn, and x0:N denotes the set of observations {xn : n = 0,…,
N}. For M repeated trials, xðmÞ

n is the vector of recordings at time tn in trial m and x(1:M ) denotes the set of
all observations in all trials fxðmÞ

n : n ¼ 0, . . . , Nm, m ¼ 1, . . . , Mg, where Nm is the number of
observations in trial m. A p-dimensional column vector of zeros is denoted by 0p, a p-dimensional
column vector of ones is denoted by 1p and Ip is the p × p unit matrix. The trace of a generic square
matrix A is tr(A), Ai· represents the ith row of the matrix A and A·i is the ith column of A. The l2-norm
of a vector v [ Rp is kvk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 v

2
i

q
and the l1-norm is kvk1 ¼

Pp
i¼1 jvij. Finally, a hat marks an

estimate, i.e. m̂ is an estimate of parameter μ.

2.1. Model
Assume that the EEG signals evolve according to an Ornstein–Uhlenbeck process [19,20],

d xt ¼ Pðxt �mÞdtþDdWt, ð2:1Þ
where m is a p-dimensional mean vector, P is a p × pmatrix, D is a p × dmatrix with d≤ p such that DD0 is
positive semidefinite andW is a d-dimensional Brownian motion. To ensure that the process generated by
(2.1) is recurrent, the eigenvalues of P must all have negative real parts (positive recurrent) or some of
them be equal to 0 (null recurrent). The matrix P can be factorized as P = ab0, where a, b [ R p�r and
r≤ p. We assume furthermore that |b0a|≠ 0 and all eigenvalues of b0a have negative real parts.

If the process is observed at equidistant time points t1,…, tN with timestep Δ = tn − tn−1, the
observations xn, n = 1,…, N satisfy the VAR model

xn ¼ mþ Axn�1 þ 1n, 1n � Npð0p, SÞ, n ¼ 1, . . . , N, ð2:2Þ
where A = ePΔ, μ = (Ip−A)m and S ¼ Ð D0 euPDD0euP

0
du. It is more convenient to write the VAR process as a

vector error–correction model (VECM),

Dxn ¼ xn � xn�1 ¼ mþPxn�1 þ 1n, n ¼ 1, . . . , N, ð2:3Þ
with P ¼ A� Ip. The assumptions imposed on matrices a and b imply that all eigenvalues of A have
modulus less than 1 or are equal to 1 [21].

The rank of P in (2.3), r ¼ rankðPÞ, has fundamental implications for the properties of the system,
directly linking to the properties of the original system (2.1), since rankðPÞ ¼ rankðPÞ [21].

— If r = 0, fxngNn¼1 is a set of p random walks, as Dxn ¼ 1n.
— If r = p, all eigenvalues of A have modulus less than 1, fxngNn¼1 is asymptotically stationary and

contains neither a stochastic trend nor a linear trend [22].
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— If 0 < r < p, fxngNn¼1 is driven by exactly p− r independent stochastic trends, and there exist r linear

combinations of the vector process fxngNn¼1 that yield an asymptotically stationary one-dimensional
process. Linear trends due to the drift μ are possible too.

The third case is termed cointegration and will be assumed from now on. If 0 < r < p, we can find matrices
a, b [ R p�r such that P ¼ ab0. The matrices α and β are not unique, one can take an arbitrary invertible
matrix Q [ Rr�r and find another decomposition P ¼ ðaQÞðQ�1b0Þ ¼ a�b�0 . However, the subspaces
spanned by the columns of α and β, sp(α) and sp(β), are unique [21].

Matrix P has a straightforward interpretation. An element Pij quantifies the influence of channel j on
the change in channel i in the following time point. The matrix P thus defines a functional network
among the channels 1,…, p. The matrix β is called the cointegration matrix, since the columns of β
contain cointegration vectors. A cointegration vector v [ Rp is a vector such that v0xn is an
asymptotically stationary univariate process. Thus, a linear combination given by v represents an
equilibrium, although single EEG signals can be subject to stochastic trends. Cointegration vectors
form a linear subspace, meaning that any linear combination of two distinct cointegration vectors is
also a cointegration vector. The columns of β are one possible basis of this subspace.

The matrix α is called the loading matrix. It describes the correcting mechanism ensuring that β0xn is
always pushed to the long-term mean Eðb0x1Þ :¼ limn!1 Eðb0xnÞ. Rewrite the VECM model (2.3) as
follows:

Dxn ¼ mþ aEðb0x1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a constant vector

þa [b0xn�1 � Eðb0x1Þ]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
disequilibrium error

þ1n: ð2:4Þ

The matrix α thus reveals the rate at which the system reacts to the deviations of the cointegration
relationships β0xn−1 from the asymptotic mean Eðb0x1Þ to keep the stationary cointegration
relationships satisfied in the long term.

2.2. Estimation procedure
We briefly review the most common estimation procedure termed the Johansen procedure [23]. We will
show the non-uniqueness of some of the estimated parameters and how a particular choice of an
estimate affects the rest, and address particular issues arising for EEG datasets.

2.2.1. Single trial

The Johansen procedure is based on the maximum likelihood method. Assuming 1n � Nð0, SÞ and
centring Δxn and xn as follows:

z0n ¼ Dxn � 1
N

XN
n¼1

Dxn; z1n ¼ xn�1 � 1
N

XN
n¼1

xn�1, ð2:5Þ

the log-likelihood becomes

‘ða, b, S; z0,1:N , z1,1:NÞ/�N
2
log jSj � 1

2

XN
n¼1

ðz0n � ab0z1nÞ0S�1ðz0n � ab0z1nÞ: ð2:6Þ

The parameter estimates can be expressed in terms of sufficient statistics S00, S01 and S11, which are
obtained as follows:

Sij ¼ N�1
XN
n¼1

zinz0jn, i, j [ f1, 2g: ð2:7Þ

The estimation procedure has the following consecutive steps:

(i) Estimate the cointegration rank r
(ii) Estimate the cointegration matrix β
(iii) Estimate the loading matrix α
(iv) Estimate the covariance matrix S and the drift μ

We explain the steps (ii)–(iv) first and discuss the topic of the cointegration rank determination in more
detail in §2.2.5.
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Estimation of β. For a given cointegration rank r, the task is to estimate P subject to rankðPÞ ¼ r, which

is a problem of reduced rank regression [24]. The columns of β can be found as the eigenvectors v1,…, vr
corresponding to the r largest eigenvalues λi of the eigenvalue problem,

liS11vi ¼ S001S
�1
00 S01vi, i ¼ 1, . . . , p, ð2:8Þ

which are normalized so that

v0iS11vj ¼
1 for i ¼ j,
0 for i = j:

�
ð2:9Þ

Since any linear combination of the cointegration vectors yields a cointegration vector, any basis of spðb̂Þ
can serve as b̂.

Estimation of α. For fixed b̂, we construct new stationary covariates b̂0z1n ¼ un [ Rr for each n∈ {1,…,
N} and turn the VECM model (2.3) into a standard linear regression model,

z0n ¼ aun þ 1n, ð2:10Þ
with no restrictions on the rank. The maximum likelihood estimator (MLE) as well as the standard least
squares estimator are expressed as follows:

â ¼ S01b̂ðb̂0S11b̂Þ�1: ð2:11Þ

The chosen form of b̂ affects â; however, spðâÞ is invariant. Furthermore, P̂ ¼ âb̂0 is always unique. The
estimation procedure gives some flexibility for choosing b̂, but not for â. There exist also procedures where
â is identified first with certain degree of freedom, and then, the estimator of β given â is unique [25].

Estimation of S and μ. The closed-form expressions of the MLE of S and μ for fixed b̂ are as follows:

Ŝ ¼ S00 � S01b̂ðb̂0S11b̂Þ�1b̂0S001 ð2:12Þ
and

m̂ ¼ 1
N

XN
i¼1

(Dxn � âb̂0xn�1): ð2:13Þ

2.2.2. Repeated trials

Cointegration analysis has mainly been used in econometrics, where processes of interest cannot be
repeated, and statistical inference is based on single time series observed typically over a long period
of time. The data in experimental neurobiology often differ in two aspects: processes evolve over a
short time interval and only few observations can be made, and running the same experiment under
controlled conditions repeatedly is not a problem. Here, we show how cointegration analysis can be
performed with data from repeated trials.

Assume the process (2.3) was observed in M experimental trials with Nm observations in trial m. The
log-likelihood becomes

‘ðm, a, b, S; xð1:MÞÞ/� log jSj
2

XM
m¼1

Nm

� 1
2

XM
m¼1

XNm

n¼1

DxðmÞ
n � ab0xðmÞ

n�1 � m
� �0

S�1
DxðmÞ

n � ab0xðmÞ
n�1 � m

� �
,

ð2:14Þ

and the only change is that now we also sum over trials m. The sufficient statistics SM00, S
M
01 and SM11 are as

follows:

SMij ¼
XM
m¼1

Nm

 !�1XM
m¼1

XNm

n¼1

zðmÞ
in zðmÞ0

jn , ð2:15Þ

where

zðmÞ
0n ¼ DxðmÞ

n �
XM
m¼1

Nm

 !�1XM
m¼1

XNm

i¼1

DxðmÞ
n ð2:16Þ
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and

zðmÞ
1n ¼ xðmÞ

n�1 �
XM
m¼1

Nm

 !�1XM
m¼1

XNm

i¼1

xðmÞ
n�1: ð2:17Þ

Analogously to a single trial, b̂ is constructed from r eigenvectors vi, i = 1,…, r, corresponding to the r
largest eigenvalues of the problem

liSM11vi ¼ SM
0

01 ðSM00Þ�1SM01vi, i ¼ 1, . . . , p, ð2:18Þ
and the estimators of α, S and μ are obtained as follows:

â ¼ SM01b̂ðb̂0SM11b̂Þ�1, ð2:19Þ
Ŝ ¼ SM00 � SM01b̂ðb̂0SM11b̂Þ�1b̂0SM

0
01 ð2:20Þ

and m̂ ¼
XM
m¼1

Nm

 !�1XM
m¼1

XNm

i¼1

DxðmÞ
n � âb̂0xðmÞ

n�1

� �
: ð2:21Þ
n
Sci.9:220621
2.2.3. Dealing with the reference level in electroencephalogram measurements

EEG measures differences in electrical potentials between two points. Thus, the signal at any channel is
the difference to some recording site. This recording site is the baseline electrode, which is, however,
prone to pick up electrical noise that does not reach the other electrodes. Consequently, the voltage
differences between baseline and other electrodes are also affected by this noise.

To eliminate this noise, systems for recording EEG usually re-reference EEG signals with respect to
another reference level that is chosen from the EEG channels. The signals at the other EEG channels
are expressed as the differences in electrical potential to this reference instead of the baseline. This
cancels out the noise stemming from the baseline circuit; however, it introduces linear dependence
between the recordings and causes the cointegration model to be overparametrized. We will illustrate
how this can be handled, for the case of a common average reference, which is a frequent choice of the
reference level.

The new reference is the average electrical activity measured across all channels and re-referencing is
achieved by subtracting the average from each channel. The electrical activity across all channels therefore
sums to zero at each time point,

Xp
i¼1

xin ¼ 0, 8n [ f1, . . . , Ng, ð2:22Þ

and the signal from one of the channels can always be derived from the other p− 1 channels.
Assume that the pth channel is excluded when the cointegration matrix is estimated. The new dataset

consists of ( p− 1)-dimensional observations xðp�1Þ
n ¼ ðx1n, . . . , xp�1,nÞ0, and the model is

Dxðp�1Þn ¼ mðp�1Þ þ aðp�1Þbðp�1Þ0xðp�1Þ
n�1 þ 1ðp�1Þ

n , ð2:23Þ
where aðp�1Þ, bðp�1Þ [ Rðp�1Þ�r, mðp�1Þ [ R p�1 and 1

ðp�1Þ
n � Np�1ð0, Sðp�1ÞÞ. A cointegration relationship in

the ( p− 1)-dimensional model given by the jth column of β( p−1) can be written as a linear combination of
the full p-dimensional vector xn using (2.22) as follows:

b
ðp�1Þ0
�j xðp�1Þ

n ¼ (bðp�1Þ
�j þ cj1 p�1)

0xðp�1Þ
n þ cjx pn, j [ f1, . . . , rg, ð2:24Þ

where cj [ R is an arbitrary constant. If β( p−1) is chosen so that the normalization condition
bðp�1Þ0Sðp�1Þ

11 bðp�1Þ ¼ Ir holds, the p-dimensional cointegration matrix β with columns
b�j ¼ ðbðp�1Þ0

�j þ cj10p�1, cjÞ0 satisfies the analogous p-dimensional condition β0S11β = Ir for any cj [ R,
j∈ {1,…, r}. This is because the common mode reference implies S111p = 0p. In the analysis in §3, we
use cj ¼ �ð1= pÞP p�1

i¼1 b
ðp�1Þ
ij to minimize the norm ‖β·j‖2.

The matrix â is obtained from the full p-dimensional model using formula (2.19). Note that P̂ ¼ âb̂0

in the full p-dimensional model is not invariant with respect to the choice of the excluded channel and
with respect to the choice of constants cj, j = 1,…, r. However, the product P̂xn�1 is invariant. Specifically,
P̂xn�1 remains unchanged if an arbitrary constant di is added to all elements in a row P̂i�, i∈ {1,…, p}.
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2.2.4. Regularization

As the dimension p is typically high for EEG data, it is beneficial to impose regularization to obtain
robust estimators. Several approaches have been suggested: imposing lasso penalty directly on P [26],
on β [25] or regularizing certain decompositions of P [27,28]. Here, we penalize α. The reasons for
choosing penalization of α over other possible methods are as follows: (i) easy computation that can
be done with standard software packages, (ii) no bias is introduced into the estimated cointegration
space spðb̂Þ, and (iii) better performance over a range of error measures compared with other
penalization methods [29].

First, the cointegration matrix β is estimated by the Johansen procedure, yielding b̂. Then, we find â

by minimizing the sum of squared errors with elastic net penalty [30]

â ¼ arg min
a[R p�r

1
2N

XM
m¼1

XNm

n¼1

zm0n � ab̂0zðmÞ
1n

� �0
zm0n � ab̂0zðmÞ

1n

� �

þ g
1� v

2

Xp
i¼1

kai�k22 þ v
Xp
i¼1

kai�k1
" #

,

ð2:25Þ

where γ≥ 0 is a tuning parameter governing the overall amount of penalization and ω∈ [0, 1] controls the
proportion of the ridge penalty kai�k22=2 and the lasso penalty ‖αi·‖1. The lasso penalty pushes the
elements of â to become exact zeros and thus a sparse representation, allowing for a more meaningful
interpretation. The ridge penalty weakens the impact of potential correlation between the predictors
b̂0zðmÞ

1n . A sparse estimate â does not imply that P̂ ¼ âb̂0 is sparse.

2.2.5. Determination of the cointegration rank

In standard low-dimensional problems, the typical procedure to determine r is based on likelihood ratio
tests that are applied sequentially over a range of possible cointegration ranks. The likelihood ratio test
can be in two forms. The null hypothesis is the same, H0 : r≤ r0, while the alternative is either Ha : r≤ p
(trace test) or Ha : r≤ r0 + 1 (maximum eigenvalue test). The test statistics depend only on eigenvalues λi,
i = 1,…, p, of the eigenvalue problem (2.18). Assuming that the eigenvalues are in a descending order,
λ1≥…≥ λp, the test statistics are as follows:

— trace test:

� 2½‘ðr0Þ � ‘ðpÞ� ¼ �
XM
m¼1

Nm

 ! Xp
i¼r0þ1

logð1� liÞ, ð2:26Þ

— maximum eigenvalue test:

� 2½‘ðr0Þ � ‘ðr0 þ 1Þ� ¼ �
XM
m¼1

Nm

 !
logð1� lr0þ1Þ: ð2:27Þ

The sequential testing starts with setting r0 = 0. If H0 is rejected, r0 is increased by one, and the test is
repeated until acceptance.

This way of determining the rank is in general not applicable for EEG data due to their high
dimension. The trace and the maximum eigenvalue test statistics do not follow any standard
distribution, and their critical values depend on p and need to be calculated numerically. Currently,
critical values are available for dimension p≤ 11. This can be overcome by bootstrap methods, but the
required computer time makes them out of reach.

Eigenvalues. The eigenvalues of (2.18) are approximate indicators of the cointegration rank. If a
cointegration relationship vi exists, the corresponding eigenvalue λi is expected to be significantly
larger than zero. A rough insight can therefore be gained from a scree plot, where ordered
eigenvalues are plotted against the rank.

Bunea et al. [31] proposed a rank selection criterion that uses eigenvalues of SM01ðSM11Þ�1SM10 and identifies
the cointegration rank as the number of eigenvalues larger than or equal to a threshold θ,

u ¼ 2ðpþ qÞ
pðPM

m¼1 Nm � qÞ
XM
m¼1

XNm

n¼1

zðmÞ
0n � P̂pz

ðmÞ
1n

� �0
zðmÞ
0n � P̂pz

ðmÞ
1n

� �
, ð2:28Þ
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where P̂p is the MLE of P assuming full rank p and q is the rank of the matrix of predictors

Z1 ¼ ðz11, . . . , z1NMÞ0. The cointegration rank selected by the rank selection criterion is equal to the
rank of P̂ estimated by a penalized least squares estimator of the form

P̂ ¼ argmin
P

XM
m¼1

XNm

n¼1

zðmÞ
0n �PzðmÞ

1n

� �0
zðmÞ
0n �PzðmÞ

1n

� �
þ u rankðPÞ

" #
: ð2:29Þ

Matrix angle. We use the following generalized version of the vector angle for quantifying the
closeness of subspaces spanned by two matrices U and V,

QðU, VÞ ¼ arccos
hU, ViFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihU, UiFhV, ViF

p
 !

, ð2:30Þ

and we call it the angle between matrices U, V [ R p�p. It uses the Frobenius inner product 〈U, V〉F =
tr(U0V ). For U = 0 or V = 0, we set QðU, VÞ ¼ p=2.

The angle QðP̂, PÞ between the estimate P̂ and the true P depends on how close the estimation rank
is to the true rank. When the estimation rank is much smaller than the true rank, the estimate P̂ is far
from the truth and the angle QðP̂, PÞ can be as high as π/2. When the estimation rank approaches
the true rank, the angle QðP̂, PÞ tends to decrease. However, when the estimation rank increases
beyond the true rank, the angle does not decrease further but fluctuates around a constant level due
to sampling error.

Ideally, we could plot QðP̂r, PÞ as a function of the estimation rank and inspect if the curve has a kink
separating the decreasing and constant segments. However, the true P is unknown. A naive solution is to
replace P with the estimate under full estimation rank P̂p, but this produces a curve that decreases to
zero, becoming exactly 0 for rank p, since the matrices are then equal.

Instead we replace the true P with several estimates P̂ð�kÞ
p . We split the original dataset into K folds

and estimate P from data with the kth fold excluded, assuming full rank. Then we calculate estimates PðkÞ
r

under ranks r∈ {0,…, p}, using only data from fold k. The plots of QðP̂ðkÞ
r , P̂ð�kÞ

p Þ against r are useful for
two reasons. First, QðP̂ðkÞ

r , P̂ð�kÞ
p Þ does not go to zero due to sampling error. Second, QðP̂ðkÞ

r , P̂ð�kÞ
p Þ tends

to have little variance for ranks lower than the true one, but can vary a lot for ranks higher than the true
one.

Cross-validation. Another option is to compare the prediction error of the cointegration model with
different ranks when applied to independent data through cross-validation, using K folds as
mentioned earlier. We use the following two criteria:

1. Mean squared error (MSE) of prediction:

MSEðrÞ

¼ 1
K

XK
k¼1

1
Nk

X
n[Ik

DxðkÞn � P̂ð�kÞ
r xðkÞn�1 � m̂ð�kÞ

� �0
DxðkÞn � P̂ð�kÞ

r xðkÞn�1 � m̂ð�kÞ
� �" #

:
ð2:31Þ

2. Average cross-validated log-likelihood:

‘ðrÞ ¼ 1
K

XK
k¼1

� 1
2Nk

X
n[Ik

�
log jŜð�kÞ

r j
(

þ DxðkÞn � P̂ð�kÞ
r xðkÞn�1 � m̂ð�kÞ

� �0
Ŝð�kÞ
r

� ��1
DxðkÞn � P̂ð�kÞ

r xðkÞn�1 � m̂ð�kÞ
� ��)

,

ð2:32Þ

where fxðkÞn :n [ Ikg are the observations in the kth fold specified by an index set Ik, Nk is the number of
observations in the kth fold and m̂ð�kÞ, P̂ð�kÞ and Ŝð�kÞ are estimates obtained when the kth fold is left out.
2.2.6. Test of structural difference between two cointegrated networks

A natural question is whether the network is the same under two different experimental set-ups A and B,
or whether the experimental conditions impose a structural difference of the network. We use the Chow
test, with the null hypothesis being that the data from both subsets follow the same model with identical
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Figure 1. Set-up of the experiment. (a) Time course of the visual task. It starts with 1.5–2.5 s of fixation on the centrally located
cross. Then two rings are shown on the sides, one with a gap (a Landolt C). After 0.02–0.11 s, the gap is masked. The masks are
shown for 0.5 s, then a blank screen appears. (b) Example of one trial of EEG recordings, with three samples: fixation (the last
500 ms of the fixation period), stimulation (the whole duration of the stimulation period) and masking (500 ms period after
the stimulation). (c) A 64-channel BioSemi EEG set-up on the scalp.
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parameters μ0 and P0,

H0: DxðkÞn ¼ m0 þP0x
ðkÞ
n�1 þ 1ðkÞn , n ¼ 1, . . . , Nk, k [ fA, Bg, ð2:33Þ

while the alternative is that each subset is governed by parameters ðmA, PAÞ or ðmB, PBÞ, as follows:

Ha: DxðkÞn ¼ mk þPkx
ðkÞ
n�1 þ 1ðkÞn , n ¼ 1, . . . , Nk, k [ fA, Bg: ð2:34Þ

The test statistic is the usual likelihood ratio test statistic,

QðH0jHaÞ ¼ �2 ‘ m0, P0; xðA,BÞ
� �

� ‘ mA, PA; xðAÞ
� �

� ‘ mB, PB; xðBÞ
� �h i

ð2:35Þ

and the asymptotic distribution is χ2 with p(2r + 1)− r2 degrees of freedom [22,32], given that the VAR
model with lag order 1 is valid.

When the hypothesis is rejected, it is of interest to identify which elements are different. A range of
likelihood ratio tests of constant loading matrix α or constant cointegration matrix β under either constant
or variable cointegration rank can be found in the literature [32].

3. Application to electroencephalogram recordings from a visual task
experiment

We applied the cointegration methodology to EEG recordings obtained during a visual identification
experiment (figure 1), during which two participants were given the following task. First, the
participant fixated on a centrally located fixation cross on a screen. The fixation lasted between 1.5
and 2.5 s randomly chosen. Then two rings appeared, one on each side of the fixation cross. Either the
left or the right ring was a Landolt C, i.e. it had a gap at a certain orientation. The orientation was
chosen from eight possible angles evenly spaced from 0 to 315 degrees in intervals of 45 degrees. The
luminance contrast of the rings was either 6.5% or 28%. The duration of the visual stimulus was 20,
40, 70 or 110ms. The position, orientation, contrast and duration were selected randomly with equal
probabilities. The gap in the Landolt C was then masked for the 500ms, followed by a blank screen.
The participants had to report the orientation of the gap in the Landolt C. We classify participants’
answers into two categories: correct and incorrect.

EEG signals were recorded throughout the whole experimental session. They were obtained with
64 channel BioSemi EEG recording device (figure 1c) with 1024Hz sampling (post hoc
downsampled to 256Hz). The data were cleaned with automatic methods from EEGlab in Matlab and
re-referenced using a common mode reference. Excessive kurtosis was detected in four channels for
Participant 1 (A2, B1, B2 and B12) and in three channels for Participant 2 (B29, B30 and B31);



Table 1. The number of observations N in the datasets after splitting the data according to the accuracy of the answer and the
stage of the visual task, the cointegration ranks r̂RSC estimated by the rank selection criterion and the tuning parameters γ and
ω used in model fitting.

participant accuracy no. of trials

period

fixation stimulus masking

1 correct 416 N = 53 248 N = 7, 305 N = 52 832

r̂RSC ¼ 25 r̂RSC ¼ 14 r̂RSC ¼ 22

γ = 2 · 10−3 γ = 1 · 10−2 γ = 2 · 10−3

ω = 0.75 ω = 0.75 ω = 0.5

incorrect 193 N = 24, 704 N = 1, 815 N = 24, 511

r̂RSC ¼ 23 r̂RSC ¼ 11 r̂RSC ¼ 19

γ = 3 · 10−3 γ = 1 · 10−2 γ = 3 · 10−3

ω = 0.75 ω = 0.25 ω = 0.75

2 correct 414 N = 52, 992 N = 7, 745 N = 52 578

r̂RSC ¼ 20 r̂RSC ¼ 12 r̂RSC ¼ 17

γ = 2 · 10−3 γ = 4 · 10−2 γ = 4 · 10−3

ω = 1 ω = 0.25 ω = 0.5

incorrect 173 N = 22, 144 N = 1, 468 N = 21 971

r̂RSC ¼ 18 r̂RSC ¼ 9 r̂RSC ¼ 15

γ = 6 · 10−3 γ = 4 · 10−2 γ = 3 · 10−3

ω = 0.5 ω = 0.75 ω = 0.75
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these channels were excluded from further analysis. Each participant completed 768 trials
(8 orientations� 2 contrasts� 4 durations� 12 repetitions). After cleaning the data, there were 609
trials for Participant 1 and 587 trials for Participant 2. The two study participants were healthy, young
female university students (20 and 21 years old).

The statistical analysis consists of two parts: the cointegration analysis to infer the functional network
and prediction of the accuracy of the response from pre-stimulus EEG activity.
3.1. Fitting the cointegration model
The dataset of each participant was stratified into six subsets, and for each of them, one network was
estimated by the cointegration analysis. The split was done according to the response accuracy (two
categories: correct and incorrect) and the period within the experimental trial (three categories:
fixation, stimulus and masking period). The fixation period was a 500ms time window prior to the
stimulus onset; the stimulation period was between 20 and 110ms time window, and the masking
period was the 500 ms time window starting with the mask onset (figure 1b). The number of
experimental trials with selected characteristics of the fitted models is presented in table 1.

Cointegration rank. The cointegration rank was investigated through the criteria described in §2.2.5.
The likelihood ratio tests using bootstrap were too time consuming and therefore not performed. We
focused on the fixation period, where the process is expected to be most stable. We then used the
same rank for stimulation and masking periods.

The visual assessment of the scree plots of the eigenvalues (figure 2) reveals that the most rapid
decrease is observed for ranks between 0 and 20, consistently across all six studied scenarios. The
stimulation period has in general larger eigenvalues than the other periods, and the data from trials
with incorrect answers have larger eigenvalues than the data from trials with a correct answer in the
stimulation period. This is probably due to smaller sample sizes and not evidence of a change in
the cointegration rank. The eigenvalues for the masking period decrease to zero earlier than for the
fixation period. This could indicate that the activity in the masking period is less cointegrated and
driven by more stochastic trends than in the fixation period, since the amount of data is similar.
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The angles QðP̂ðkÞ
r , P̂ð�kÞ

p Þ after splitting data into five folds (figure 3) are nearly constant for ranks
larger than 15, and the variability of QðP̂ðkÞ

r , P̂ð�kÞ
p Þ across folds k is also higher for those ranks. The

MSE of prediction and the average cross-validated log-likelihood were calculated for ranks r = 5, 10,
…, 55. MSEs attain minimum for r = 55, except when the answer of Participant 2 is incorrect, in which
case the minimum is achieved for r = 50. The cross-validated likelihood always attains its maximum
for r = 55. However, both criteria change only little for r > 15. Finally, ranks estimated by the rank
selection criterion (table 1) were between 9 and 25. We continue the analysis with r = 15 in all set-ups.

The models were fitted by the Johansen procedure with elastic net penalization on α. In the following,
we comment on the main results for Participant 1. For the complete results of both participants, see the
electronic supplementary material.

Network. Two main patterns are visible in P̂ (figure 4a). First, the row for channel B6 stands out with
many large elements, indicating that B6 is affected strongly by other channels. Second, there are a few
regions with larger positive or negative elements, signalling clusters of interlinked activity. One such
cluster consists of channels around channel A9, and another cluster consists of channels A20 to A30.
This is also shown in figure 4b, which shows strong input into B6 and lots of connections in the left
frontal region and in the occipital lobe.
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Figure 4. Estimated network for Participant 1. (a) Estimates of P and (b) the induced networks for the six categories of the data.
The crossed-out channels were excluded from the model.
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Test of difference between networks for correct and incorrect trials. By mere eye, there seems to be little
difference between the estimated networks. Therefore, we compared the cointegration model fitted
separately to correct and incorrect trials with the model fitted to all trials, separately for the periods of
fixation, stimulation and masking. The results for both participants (table 2) indicate a highly
significant difference between the cointegration models for correct and incorrect trials in all three periods.

Since the cointegration models differ visually little for the six subsets of data, in the following, we will
comment on b̂, â and m̂ only for the fixation period in trials with a correct answer to illustrate the main



Table 2. Likelihood ratio tests of structural differences between trials with correct and incorrect answers.

participant period Q(H0|Ha) d.f. x2Df ð0:95Þ p-value

1 fixation 15593.4 1604 1698.3 <0.001

stimulation 5728.7 1604 1698.3 <0.001

masking 15124.3 1604 1698.3 <0.001

2 fixation 11205.2 1635 1730.2 <0.001

stimulation 4579.9 1635 1730.2 <0.001

masking 11632.8 1635 1730.2 <0.001
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features. The estimates for the remaining five subsets can be found in the supplementary material. It
appears that the main pattern is specific to the participant, since the cointegration models for
participant 2 are clearly different from participant 1, but do show very similar features within
participant across the six subsets of data.

Cointegration vectors. Each of the 15 columns of b̂ (figure 5a) represents weights of one cointegration
vector. They have almost zero weights from channels B7 to B20. This indicates that these channels play a
minor role in the joint dynamics of the system.

Figure 5b shows the first cointegration vector and how the channels with largest weights are located
on the scalp. The most distinctive channels are two neighbouring channels A8 and A9 in the left frontal
region and two neighbouring channels A4 and B6 in the centre of the frontal lobe. Neighbouring
channels have weights of similar absolute value, but opposite signs, which indicates that they tend to
have the same level of activity at equilibrium. This may result naturally from the presence of a strong
connection between the neighbouring channels due to volume conduction [3]. However, there could
be another mediator channel as well.

Loadings. It is important to note that â can only be interpreted in the light of the accompanying matrix
b̂, which is not uniquely identifiable. For the estimate b̂ satisfying the normalization condition (2.9), then
larger absolute values of α (figure 5c) appear only in channel B6, around A9 and A20–A30, so the
equilibrium cointegrated state specified by columns of b̂ that satisfies (2.9) is achieved primarily by
adjustments of these channels. For example, the equilibrium in the first cointegration vector (figure
5d ) is achieved through adjustments of channel B6, which has the most significant loading in the first
column of â. The sign of the loading has no biological meaning because it depends on the particular
form of the cointegration vector, where signs of the weights could be reversed.

The channels having a noticeable non-zero weight in the cointegration vector usually also have a
noticeable non-zero loading. Thus, if the equilibrium state is not temporarily met, the channels
defining the equilibrium are also subject to the largest adjustments. However, this does not apply to
channel A4, which plays a large role in the cointegration relationship, but has a loading close to zero.
Thus, this channel’s activity evolves independently of whether the cointegration equilibrium is
achieved, while the remaining channels adjust their activity to match the activity of A4 required in the
cointegrated state.

Drift. For EEG data, we do not expect large drifts. First, the range of EEG signals is limited by natural
laws. Second, forcing the signals to sum to zero limits possible drifts. This is shown in figure 5e. The
majority of channels have drifts close to zero. Only channel B6 stands out with a significant negative drift.
3.2. Brain networks identified as predictors of performance in the visual task
In this subsection, we investigate whether the brain states identified by the cointegration analysis for the
period right before the stimulus onset are predictive of whether a participant can identify the visual
stimulus correctly. We fit a logistic model, where the response is the accuracy of the answer. One
predictor is then the goodness of fit of two alternative cointegration models.

We construct the variable dm for trial m∈ {1,…,M}, which quantifies how well data from the mth trial,
x(m), are fit by a model A with parameters ðmA, PA, SAÞ compared with a model B with parameters
ðmB, PB, SBÞ. We capture it by the difference in the log-likelihoods under the two models [33],

dm ¼ log LðmA, PA, SA; xðmÞÞ � logLðmB, PB, SB; xðmÞÞ: ð3:1Þ
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Model A is the cointegration model (2.3) fitted to data in the 100ms time window prior to the stimulus
onset in the trials with a correct answer, whereas Model B is with an incorrect answer. We used 100ms to
capture the network right before the stimulus onset and simultaneously to allow for a full period of 10 Hz
oscillatory activity, which has previously been suggested to drive the predictive value in the pre-stimulus



Table 3. Fitting and prediction performance of the logistic models.

model covariates d.f.

Participant 1 Participant 2

AIC BIC AUC AIC BIC AUC

M01 stim. duration 3 627.0 644.6 0.78 481.6 499.1 0.85

M02 stim. orientation 7 757.4 792.7 0.61 703.3 738.3 0.63

M03 loglik. diff. 1 741.2 750.0 0.60 700.9 709.7 0.61

M04 contrast 1 755.4 764.3 0.57 712.2 721.0 0.54

M05 fix. duration 10 776.3 824.8 0.56 724.2 772.3 0.57

M06 left/right 1 761.9 770.7 0.54 709.1 717.9 0.56

M1 all 23 598.8 704.7 0.84 439.8 544.8 0.91

M2 all except dm 22 616.6 718.1 0.83 448.6 549.2 0.91
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EEG [17]. We applied a leave-one-trial-out principle, so if the answer in trial k was correct, the data from
this trial were excluded for fitting Model A, and if the answer was incorrect, the data were left out when
fitting Model B.

Furthermore, the following covariates were included to control for the experimental conditions:

— Stimulus duration (sdm), with four levels: {20, 40, 70, 110 ms}.
— Stimulus orientation (om), with eight levels: {0°, 45°, 90°,…, 315°}.
— Luminance contrast (cm), with two levels: {high, low}.
— Fixation duration (fdm), with 11 levels: {1.5, 1.6,…, 2.5 s}.
— Stimulus location (locm), with two levels: {left, right}.

All the covariates, except for dm, are treated as categorical variables, even though some of them could be
naturally treated as continuous variables. We do so to capture possible nonlinear effects and to explain
the maximum portion of variability.

We considered a range of logistic models. The full model with all variables included (M1) has the
form

log
pm

1� pm

	 

¼ aþ bsdm þ bom þ bddm þ bcm þ b fdm þ blocm , ð3:2Þ

where pm is the probability of a correct answer in trial m. This model was compared with Model M2,
where the log-likelihood difference was excluded from the set of predictors. Moreover, we fitted six
single-predictor models M01−M06 with only one variable at a time, to assess the predictive power of
each covariate on their own.

The fit of the models and their ability to predict the accuracy of the visual identification is quantified
with Akaike information criteria (AIC), Bayesian information criteria (BIC) and area under the curve
(AUC) statistics in table 3, and receiver operating characteristic (ROC) curves corresponding to the
models are shown in figure 6 for Participant 1. As expected, the stimulus duration is the variable with
the highest predictive ability for both participants, when used as the only predictor (AUC = 0.78 for
Participant 1 and AUC = 0.85 for Participant 2). It is followed by stimulus orientation
(AUC ¼ 0:61 and 0:63, respectively) and log-likelihood difference (AUC = 0.60 and 0.61, respectively).
The predictive ability of luminance contrast, stimulus location and fixation duration is weaker. These
predictors are also borderline significant (the contrast is significant for Participant 1 and insignificant
for Participant 2; the stimulus location is insignificant for Participant 1, but significant for Participant
2) or even insignificant (fixation duration for both participants) in the one-predictor models M04, M05

and M06 (compared with table 4).
Model 1 with all covariates has good predictive power (AUC = 0.84 for Participant 1, AUC = 0.91 for

Participant 2). The predictive power of Model 2, where the log-likelihood difference is excluded, is nearly
the same. However, the decrease of fit is statistically significant both for Participant 1 (p < 10−4) and
Participant 2 (p = 0.002). This suggests that the network right before the stimulus onset impacts the
performance in the visual task. Nevertheless, data from more participants would be needed to
confirm that the effect of the brain state before the stimulus onset on the cognitive performance is general.
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Table 4. Significance tests of the covariates in the full model M1 and in the single covariate models M01−M06. The reported
numbers are p-values from drop-in-deviance tests.

covariate

Participant 1 Participant 2

M1 fM0ig6i¼1 M1 fM0ig6i¼1

stim. duration <0.001 <0.001 <0.001 <0.001

stim. orientation <0.001 0.007 <0.001 <0.001

loglik. difference <0.001 <0.001 0.001 <0.001

contrast <0.001 0.002 <0.001 0.058

fix. duration 0.915 0.784 0.628 0.470

left/right 0.020 0.094 0.008 0.010
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4. Discussion
We have shown how cointegration methodology can be applied to infer functional networks in EEG data
and have thereby expanded the available statistical toolbox for infering functional connectivity. We have
applied the cointegration analysis on EEG data obtained from a visual task experiment with two
participants.

Cointegration analysis is based on a VAR model, which is not new in EEG data analysis [7–9]. Our
use of VAR models differs in two ways. First, a standard VAR model has no restriction on the rank of P,
which means that P̂ has full rank almost surely and no stochastic trends are allowed. If the data are non-
stationary, the fitted model may have no link to existing relations between EEG channels due to the
phenomenon of spurious regression [10]. On the contrary, the cointegration approach starts with
estimating the rank of P; therefore, if non-stationarity is present, it is taken into account correctly.

Second, the VAR model in our approach is not just an auxiliary intermediate step as in other
procedures of network recovery, but the actual model of interactions between EEG units. The
parameters of the rank-restricted VAR model fitted as part of the cointegration analysis can also be
used in further analysis as illustrated earlier or e.g. used to deduce Granger causality. We only use a
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VAR model of order 1, since a higher order VAR model of high dimension would have too many

parameters to be fit reliably. Furthermore, we did not achieve a substantially better fit by adding
more lags (results not shown). A VAR(1) model has moreover the advantage of a direct link to the
continuous time Ornstein–Uhlenbeck model, which has a straightforward interpretation. Nevertheless,
it should always be checked if a VAR model with lag order 1 is sufficient to fit a particular dataset,
e.g. by inspecting the autocorrelation function of the residuals. We did not find any substantial
autocorrelation in the residuals from most channels, and adding more lags did practically not change
the residuals (results not shown).

We found that the cointegration analysis produced a distinct subject-specific network that did not
differ visually between experimental conditions (figure 4), but nevertheless was predictive of task
performance. Specifically, the pre-stimulus network predicted the response accuracy on the subsequent
visual identification task. This finding corroborates previous studies investigating the effect of specific
spontaneous and oscillatory brain activity features prior to the onset of a sensory stimulus on
identification performance [17]. Thus, the cointegration analysis offers an exploratory approach to
understand if and how the brain state at one instance in time affects behavioural performance in a
subsequent task.

The classification of brain states employs a logistic model, but other approaches to brain state
classification exist, such as neural networks [9] or quadratic discriminant analysis [34]. However, to
evaluate the specific contribution of the brain state compared with other covariates, a parametric
approach such as logistic regression is more suitable.

We estimated the functional connectivity network between channels. However, the measured
potentials are only indirect indicators of unknown sources of neuronal activity. The underlying
sources can influence measured activity at several nearby channels and lead to spurious correlations
between EEG channels. This problem could be potentially fixed by applying some of the algorithms
of EEG source localization [35] and inferring the functional connectivity network between the
reconstructed sources [36,37]. The reliability of the cointegration methodology with the reconstructed
sources needs to be further investigated. Altogether, the network inferred from EEG channels should
be interpreted cautiously. However, if changes in connectivity caused by an experimental
manipulation are of main interest, as in the logistic model for predicting performance in the visual
task, the ambiguity in the connectivity of the true sources is not an issue.

Data accessibility. The EEG data from the visual task experiment, the full data analysis for both participants and the
underlying R code are publicly available at the online repository https://doi.org/10.17894/ucph.f19b3ddd-ea40-
4d96-8787-c41aac9bd2e7 [38].
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