
523

NPS-MA-93-014

NAVAL POSTGRADUATE SCHOOL

Monterey, California

FINITE ELEMENT APPROXIMATION

OF THE SHALLOW WATER

EQUATIONS ON THE MASPAR
by

Beny Neta

Rex Thanakij

Technical Report For Period

November 1992 - March 1993

Approved for public release; distribution unlimited

FedDocs
D 208.14/2
NPS-MA-93-014

Naval Postgraduate School

Monterey, CA 93943

2£>' V

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer Harrison Shull

Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate

School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Unclassified
CURITY CLASSIFICATION QP THIS PAGE FTW«* UB

ffS»fiHOO'-

REPORT DOCUMENTATION PAGE
n-

assss?^
» REPORT SECURITY CLASSIFICATION

Unclassified
i SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

form Approved
OMB No 070*0188

lb RESTRICTIVE MARKINGS

3 DiSTRiBuTiON/AVAiLABmTY OF REPORT

Approved for public release
Distribution unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS-MA-93-014

5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-MA-93-014

i NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

MA

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

: ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

7b ADDRESS (Ofy. State, and ZIP Code)

Monterey, CA 93943

». NAME OF FUNDING /SPONSORING
ORGANIZATION

Naval Postgraduate School

8b OFFICE SYMBOL
(If applicable)

MA

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

OM & N
:. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

i title (include Secunty creation) T±n±te Element Approximation of the Shallow Water Equation
on the MASPAR

l. PERSONAL AUTHOR(S)

Beny Neta and Rex Thanakij
3a TYPE OF REPORT

Technical

13b TIME COVE RED

FROM H~92 TO 3-93
Id DATE OF Rl

93-d4-01
EPORT (Year, Month, Day) 15 PAGE COUN1

20

j SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

finite element approximation, shallow water equations

) ABSTRACT (Continue on reverse if necessary and identify by block number)

Here we report on development of a high order finite element code for the solution
of the shallow water equations on the massively parallel computer MP-1104. We have
compared the parallel code to the one available on the Amdahl serial computer. It is
suggested that one uses a low order finite element to reap the benefit of the massive
number of processors available.

) DISTRIBUTION /AVAILABILITY OF ABSTRACT

B UNCLASSIFIED/UNLIMITED SAME AS RPT QTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
a NAME OF RESPONSIBLE INDIVIDUAL
Beny Neta

22b TELE PHONEi/nc/yde Area Code)b, TELEPHONE (Indue

408-656-2235
22c OFFICE SYMBOL
MA/Nd

) Form 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF This PAGE

FINITE ELEMENT APPROXIMATION OF THE
SHALLOW WATER EQUATIONS ON THE

MASPAR

Beny Neta

Naval Postgraduate School

Department of Mathematics

Code MA/Nd
Monterey, CA 93943

and

Rex Thanakij

MASPAR Computer Corporation

749 N. Mary Ave.

Sunnyvale, CA 94086

January 20, 1993

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

Y CA 93943-5101

Abstract

Here we report on development of a high order finite element code for the solution of the

shallow water equations on the massively parallel computer MP-1104. We have compared

the parallel code to the one available on the Amdahl serial computer. It is suggested that

one uses a low order finite element to reap the benefit of the massive number of processors

available.

1 Introduction

The shallow water equations are first order nonlinear hyperbolic partial differential equations

having many applications in Meteorology and oceanography. These equations can be used

in studies of tides and surface water run-off. They may also be used to study large-scale

waves in the atmosphere and ocean if terms representing the effects of the Earth's rotation

are included. See review article by Neta (1992).

Indeed, it had become customary, in developing new numerical methods for weather

prediction or oceanography, to study first the simpler nonlinear shallow water equations,

which possess the same mixture of slow and fast waves as the more complex baroclinic

three-dimensional primitive equations. One of the issues associated with the numerical

solution of the shallow water equations is how to treat the nonlinear advective terms (Cullen

and Morton, 1980, Navon, 1987). In this paper the two-stage Galerkin method combined

with a high accuracy compact approximation to the first derivative is used. The method

was developed by Navon (1987). See also Navon (1979 a , 1979b, 1983). Our work here is to

discuss porting issues of finite element onto a massively parallel machine. Section 2 discusses

the algorithm, section 3 discusses the MasPar hardware and software. In section 4 we detail

our numerical experiments and compare the results to the code running on the Amdahl serial

computer.

2 Finite Element Solution

The barotropic nonlinear shallow-water equations on a limited-area domain of a rotating

earth (using the /?-plane assumption) have the following form:

u t + uux + vuy + <px — fv =

vt + uvx + vvy + (fy + fu = < x < L, < y < D, t >

Here u and v are the velocity components in the x and y directions respectively, / is the

Coriolis parameter approximated by the (3 plane as

where /?, / , are constants and tp = gh is the geopotential height. Periodic boundary

conditions are assumed in the x direction and rigid boundary conditions (v = 0) are imposed

in the t/-direction. The domain is a cylindrical channel simulating a latitude belt around

the earth (see e.g. Hinsman, 1975). The finite element approximation leads to systems of

ODES which can be finite differenced in time (see e.g. Douglas and Dupont, 1970). In the

two stage Galerkin (originally proposed by Cullen, 1974), we let any of the 4 derivatives in

the nonlinear terms be approximated by the compact Numerov scheme, i.e. for

du

OX

we have

— [zi+2 + 16zt+ i + 362, + 162,-1 + 2,_ 2]
=

— [-5u,_2 - 32u,_! + 32u,+1 + 5ui+2]

Similarly for zxv , zyu and 2yv .The approximation of jr- requires an interpolation of the bound-

ary values Vo, v^r+i

v = 4vi — 6v2 + 4v3 — v4

VN+1 = 4vN - 6vN-y + 4u/v_ 2 - VN-3

dv

dy

dv

dy

— 25vi + 48t>2
— 36u3 + 16u4 — 3v5

i

==

\2h

3uat_ 4 — 16u;v_3 + 36t>7V-2 — 48vyv-i + 25uat

n I2h

This stage will require a solution of a pentadiagonal system. For the second stage, we let w
be any of the four nonlinear terms and we solve a tridiagonal system. For

w = vz

we have

g(«>j-i + 4wj + Wj+i) = ±(vj-iZj-i + VjZj-i + v,'_i*y+

vj+l zi + VjZj+1 + VHl ZJ+l + QVjZj)

This two stage approximation yields O (h
s
) approximation to the derivatives uXiuyivx and

Vy.

Now the approximation of the shallow water equations becomes

M(u^+1 - uj) + At[(tf*„)J + (vZyu); - frf] = AtK21

M(v]+1 - t>?) + At[(vzyv)* + u;+1 (2xr), + /-u?+1]
= AtK31

where

M(^+1 ~ *D " l^K^?1 + V>J)

#21 = 2^"
+ + ^"")

#31 = ^3B
l

+1
+^3l)

'u = ///*«M« = / / V, K <M

014
31 " ?/£^/rcr

1 = > / »ri:^v:-iM
<9y

« « ^SL^ dA

and where K are the finite element shape functions.

u' = u"+1 /2 = |un - iu"" 1 + (At) 2

)

and similarly for v*.

Schuman (1957) filter was applied every 12 time steps to the v component of velocity in

order to recover the higher accuracy of the method.

Since the two-stage Galerkin method does not conserve integral invariants (Cullen [1979])

we apply an aposteriori technique using an augmented Lagrangian nonlinearly constrained

optimization approach for enforcing the conservation of integral invariants of the shallow

water equations (see Navon and deVilliers (1983) and Navon (1983)).

3 System Overview

The MasPar family of massively parallel processing systems consists of arrays of IK to 16K

processing elements (PE), a scalar control unit (ACU) and a UNIX subsystem. Architec-

turally, each PE is a custom 64-bit RISC processor with 48 32-bit registers and 64 KB of data

memory. All PEs execute instructions which are broadcast from the ACU on data stored in

their local memory. Although there is only a single instruction stream, the processors have

a number of autonomies, including the ability to generate independent addresses for indirect

loads and stores to memory.

The PEs share data using two communication mechanisms: the xnet and the router.

The xnet is an eight-way nearest neighbor mesh that is used for structured communications

such as stencil operations in finite difference codes. The router is a multi-stage circuit-

switched network for global or random communication patterns. I/O to and from the PEs is

transferred via the router to an external memory buffer called I/O RAM. From I/O RAM,
data can asynchronously be transferred to a wide variety of devices such as disk arrays,

frame buffers, or other machines. The MasPar Disk Array (MPDA) provides up to 22

GB of formatted capacity as a true UNIX file system. The UNIX subsystem provides the

programming and run-time environment to users.

3.1 MasPar Software

The MasPar system is programmed in either MPL, a parallel extension to ANSI C, or Mas-

Par Fortran, an implementation of Fortran 90. In MasPar Fortran (MPF) parallel operations

are expressed with the Fortran 90 (F90) array extensions which treat entire arrays as manip-

ulatable objects, rather than requiring them to be iterated through one element at a time.

F90 has also added a significant number of intrinsic libraries; operations such as matrix

multiplication and dot product are part of the language. Since Fortran 90 is a standard

defined by the ANSI/ISO committees, programs are architecture independent and can be

transparently moved to other platforms.

Fortranll Fortran90

doi = 1 , 256 a = b + c

do j = 1,256

a(i,j) = b{i,j) + c(ij)

enddo

enddo

The Fortran 90 code can be run on any computer with a F90 compiler. On a scalar machine

such as a workstation, the arrays will be added one element at a time; just as if it had been

written in Fortran 77. On a vector machine, the number of elements added at a time is

based on the vector length; a machine with a vector length of 64 will add 64 array elements

at once. The MasPar machine acts like a vector machine with a very long vector. On a 16K

MasPar machine, 16384 arrays elements are added simultaneously.

MasPar provides key routines in math, signal, image, and data display libraries. The

Math Library (MPML) contains a number of high-level linear algebra solvers, including

a general dense solver with partial pivoting, a Cholesky solver, a conjugate solver with

preconditioning, and an out-of-core solver. MPML also includes a set of highly-tuned linear

algebra building blocks, analogous to BLAS on vector machines, from which the user can

develop additional solvers. The Data Display Library provides a convenient interface to

graphically display data from within a program as it is executing.

The MasPar Programming Environment (MPPE) is an integrated, graphical environment

for developing, debugging, and tuning applications. MPPE provides a rich set of graphical

tools that allow the user to interactively control and visualize a program's behavior. The

statement level profiler allows the user to quickly identify the compute-intensive sections of

the program while the machine visualizer details the use of hardware resources. Each of

these tools are continuously available without having to recompile, even if a program has

been compiled with optimizations.

4 Program

The program is modular and is complemented with easily reachable switches controlling

print and plot options. The Input to the program consists of a single line containing the

following six parameters:

DT - the time step in seconds (F5.2)

NLIMIT - total number of time steps (15)

MF - number of time steps between printing solution (15)

NOUTU - to print (1) or not to print (0) the u-component

NOUTV - to print (1) or not to print (0) the u-component

NPRINT - to print (1) or not to print (0) the global nodal numbers of each triangular

elements and the indices and node coordinates of the nonzero entries of the global matrix.

The main program initializes all variables and then reads the only data card of the

program. It then proceeds to index and label the nodes and the elements, thus setting up

the integration domain. This is done by subroutine NUMBER.
Subroutine CORRES determine the nonzero locations in the global matrix and stores

them in array LOCAT. The initial fields of height and velocity are set up by subroutine

INCOND. The derivatives of the shape functions (Vj) are calculated in AREAA. A compact

storage scheme for the banded and sparse global matrices is implemented in subroutine

ASSEM. The method is based on the fact that the maximum number of triangles supporting

any node is six. Three different types of element matrices (3 x 3) will be required for assembly

in the global matrices.

A switch, denoted NSWITCH is set for selecting between the different types of element

matrices. After setting up the time independent global matrices the program proceeds to

the main do-loop which performs the time-integration and which is executed once for every

new time-step.

As the solution of the nonlinear constrained optimization problem of enforcing conser-

vation of the nonlinear integral invariants requires scaling of the variables, the scaling is

performed in the main program as well as in subroutine INCOND.
In the main integration loop the simulation time is set up and adjusted and then the

subroutines ASSEM and MAMULT set up and assemble the global matrices which then are

added up in a matrix equation, first for the continuity equation and in a similar manner for

the u and r-momentum equations.

Subroutine SOLVER then is called to solve the resulting system of linear equations (of

block tridiagonal form) by the conjugate gradient square.

The new field values for the geopotential and velocities, $* ,u£- ,t>£
+1 respectively, are

used immediately as obtained in solving the coupled shallow-water equations system. For

the u and v-momentum equations, the new two-stage Numerov-Galerkin scheme is imple-

mented. Separate routines are set up for the x and y-derivatives advection terms, DX and

DY respectively. Subroutine DX implements the two-stage Numerov-Galerkin algorithm de-

scribed previously for the advective terms in the u and u-momentum equations involving the

x-derivative.

In the first stage it calculates the 0(h8
) accurate generalized-spline approximation to

the (du/dx) first derivative by calling upon subroutine CYCPNT which solves a periodic

pentadiagonal system of linear equations generated by the spline approximation.

In the second stage it implements the second part of the Numerov-Galerkin algorithm

for the nonlinear advective term u(du/dx) and solves a cyclic tridiagonal system by calling

upon subroutine CYCTRD. Subroutine DY implements the two-stage Numerov-Galerkin

algorithm described previously for the advective terms in the u and v-momentum equations

involving the y— derivative. In its first stage it calculates the 0(h6
) accurate generalized-

spline approximation to the (du/dy) first derivative by calling upon subroutine PENTDG
which solves the usual pentadiagonal system of linear equations generated by the generalized-

spline approximation.

In the second stage subroutine DY implements the second part of the Numerov-Galerkin

algorithm for the nonlinear advective term u(du/dy) and solves the Galerkin product by

calling upon subroutine NCTRD to solve a special tridiagonal system.

The boundary conditions are implemented by subroutine BOUND. Periodically, a Schu-

man filtering procedure is implemented for the ^-component of velocity only, by calling

subroutine SMOOTH. The integral invariants are calculated at each time-step by calling

subroutine LOOK. If the variations in the integral invariants exceed the allowable limits

^Ei^Hi or t>z, the Augmented-Lagrangian nonlinear constrained optimization procedure is

activated. The unconstrained optimization uses the conjugate-gradient subroutine E14DBF
of the NAG(1982) scientific library. Subroutine E14DBF calls a user-supplied subroutine

FUNCT which evaluates the function value and its gradient vector as well as subroutine

MONIT whose purpose is merely to print out different minimization parameters.

After a predetermined number of steps, subroutine OUT is called, which in turn calls

upon the subroutines LOOK to calculate the integral invariants. Practically 4-5 augmented-

Lagrangian minimization cycles were determined to be sufficient.

We ran the program under MPPE and the following table shows the CPU time used by

some of the routines. All others require less than 5% each. Therefore we have decided to par-

allelize ASSEM, MAMULT, SOLVER (switching from Gauss Seidel to Conjugate Gradient

Square). Other subroutines we parallelized are:

CORRES, INCOND, LOOK, MONIT, NUMBER and AREAA.

After this, the most time consuming routines become E14DBF and FUNCT. These are

required only if the integral constraints are not conserved. Therefore if the mesh is fine,

these routines will not be called. Our numerical experiments confirmed that these two

routines were called only in the coarsest grid case.

The next set include: DX, DY, CYCTRD, CYCPNT, NCTRD, PENTDG, TRIDG, and

SMOOTH. We have decided not to try at this point to parallelize these or BOUND. We
have ran this program on the MP- 11 04 (4096 processors) on a variety of grid sizes. The

Routines CPU

SOLVER 32%

ASSEM 25%

MAMULT 14%

CORRES 5%

BOUND 5%

Table 1: CPU time used by some routines

original program was also ran on the Amdahl 5990/500 serial computer. All computations

were performed in double precision. The domain is a rectangle 6000 km by 4400 km. The

coarsest mesh, Ax = Ay = 400km. This means that the number of grid points in the

x-direction, NC, is 15 and the number of grid points in the y-direction, NROW is 11. (At

will be adjusted for stability.) The number of time steps, NLIMIT, is 30.

NC NROW Ax(fcm) Ay{km) A*(sec) Amdahl (sec) MP-1104(sec)

15 11 400 400 18. 1.14 14

48 45 133| 133| 5.51 13.52 31.3

63 62 93.75 70.97 4.22 24.8 44.3

88 85 51.76 51.76 3.03 48.32 80

128 125 46.87 46.87 2.10 - 164

Table 2: Total CPU time for several grids

The initial condition for the height field is given by

,/ x rr ,
9(D/2-y) H2 . 2ttx

M*,y) = //o + #itanh — +__
z

_ sm—
where

H = 2000m, Hi = -220m, H2 = 133m,

and

/o = lO~ 4sec-\ j3=1.5x 10-11sec^mT1
.

This initial condition is given in Grammeltveldt (1969) and tested by several researchers

(Cullen and Morton (1980), Gustafsson (1971), Navon (1987) etc.) The initial velocity fields

were derived from the initial height field via the geostrophic relationships

g dh

g dh

Table 2 gives the CPU time for each grid.

If we compare the CPU time for three of the subroutines we parallelized (to avoid the

difficulty that some parts are still running on the front end) we find that in MAMULT and

SOLVER we were able to cut the CPU time. The results are summarized in Table 3.

Subroutine Problem size Amdahl (sec) MP-1104 (sec)

ASSEM 48 by 45 3.02 5.77

63 by 62 5.47 8.56

88 by 85 10.49 15.2

128 by 125 - 34.4

MAMULT 48 by 45 .42 .44

63 by 62 .74 .37

88 by 85 1.44 .88

128 by 125 - 1.53

SOLVER 48 by 45 7.21 5.97

63 by 62 13.14 4.87

88 by 85 25.38 10.6

128 by 125 - 17.9

Table 3: CPU time before and after parallelization

The code was ran under profiler and we found that now the CPU usage (in percent of

total CPU) is as given in table 4.

It is clear that one should parallelize DX,DY,PENTDG,TRIDG and LOOK. The first

four require that one parallelizes the subroutines NCTRD,CYCTRD and CYCPNT. This is

not done since the tridiagonal and pentadiagonal systems to be solved are of order NC. We
feel that one should approach this problem slightly differently. Instead of trying to parallelize

this code which is of high order, we should parallelize a low order finite element code for the

shallow water equations. The accuracy of the solution will be obtained by using an even finer

mesh than 46 km (NC=128) we used above. It will be interesting to compare the accuracy

and efficiency of the two codes on MP-1104 machine.

Subroutine 15 by 11 44 by 45 88 by 85 128 by 125

FUNCT 36.8 - - -

DX 3.2 12.3 17.0 18.6

DY 3.2 12.8 16.6 20.0

ASSEM 10.2 17.9 16.0 14.3

PENTDG 2.5 12.0 13.7 11.4

MAMULT 16.2 13.7 9.8 6.9

TRIDG 1.2 6.5 6.9 5.2

LOOK 9.1 4.1 4.4 8.4

NCTRD .7 3.2 3.3 2.5

CYCPNT .7 3.9 3.2 2.4

CYCTRD .8 2.6 2.1 1.5

SOLVER 8.0 4.0 1.9 1.1

SET STI 1.0 1.7 1.4 1.2

BOUND 1.8 1.7 1.0 3.9

VFEUDX 1.8 1.3 .6 .5

rest 2.8 2.1 2.1 2.1

Table 4: CPU time by subroutine after parallelization

Conclusion

We have developed a high order finite element code to solve the shallow water equations

on the MasPar massively parallel computer MP-1104. It is believed that a low order finite

element code will be more efficient on the MP-1104 computer.

Acknowledgement

The first author would like to thank MasPar Computer Corporation for the computer time

used to develop the code. This research was conducted for the Office of Naval Research and

funded by the Naval Postgraduate School.

References

M.J. P. Cullen, A finite-element method for a nonlinear initial value problem, J. Institute of

Mathematics and its Applications, 13 (1974), 233-247.

M.J. P. Cullen, The finite element method in "Numerical Methods Used in Atmosphere Mod-
els," Vol. 2, ICSU/WMO GARP Pub. Ser. No. 17, World Met. Org., Geneva, Switzerland,

1979.

M.J. P. Cullen and K.W. Morton, Analysis of Evolutionary error in finite-element and other

methods, J. Computational Physics, 34 (1980), 245-267.

J. Douglas and T. Dupont, Galerkin methods for parabolic problems, SIAM J. Numerical

Analysis, 7 (1970), 575-626.

D.E. Hinsman, Application of a finite-element method to the barotropic primitive equations,

M. Sc. Thesis, Naval Postgraduate School, Department of Meteorology, Monterey, CA, 1975.

NAG, Numerical Algorithms Group Fortran Library Manuals Volumes 1-6 (1982) NAG,
Banbury Road, Oxford, OX2-6HN, England or NAG - Inc. 1131 Warren Ave. Downers

Grove IL 70515

I.M. Navon, Finite-element simulation of the shallow-water equations model on a limited

area domain, Applied Mathematics and Modeling, 3 (1979), 337-348.

I.M. Navon, Finite-element solution of the shallow-water equations on a limited area domain

with three different mass matrix formulations, Proceeding of the 4
th Conference on Numerical

Weather Prediction, Silver Springs, MD, 1979, 223-227.

I.M. Navon, A Numerov-Galerkin technique applied to a finite-element shallow-water equa-

tions model with enforced conservation of integral invariants and selective lumping, J. Com-

putational Physics, 52 (1983), 313-339.

I.M. Navon and R. de Villiers, Combined penalty-multiplier optimization methods to enforce

integral invariants conservation, Monthly Weather Review, 111 (1983), 1228-1243.

I.M. Navon, FEUDX: A two-stage, high-accuracy, finite-element Fortran program for solving

shallow-water equations, Computers and Geosciences, 13 (1987), 255-285.

B. Neta,, Analysis of Finite Elements and Finite Differences for Shallow Water Equations:

A Review, Mathematics and Computers in Simulation, 34 (1992), 141-162.

F.G. Schuman, Numerical methods in weather prediction II, smoothing and filtering, Monthly

Weather Review, 85 (1957), 357-361.

10

SUBROUTINE ASSEM (COMA, STI ,NSWTCH,CODI , AREA, tnod, tlocat)

INCLUDE 'PAR'

include ' inter_info'

real C0MA(7,N0DEB) ,STI(NNOD,NNOD,NELE)

real C0DI(NN0D,NELE)

integer itemp, tl, t2, t3, t4, tO, timel, time2

real tgmat(7,NELE)

integer tlocat (6, NODE) , tnod(NNOD.NELE) , nswtch

CMPF ONDPU STI, CODI, COMA

cmpf map coma(memory, allbits)

cmpf map codi (memory ,allbits)

cmpf map tgmat (memory ,allbits)

cmpf map tlocat (memory ,allbits)

cmpf map tnod (memory, allbits)

cmpf map sti (memory, memory , allbits)

COMA =0.0
C

C DECIDE WHICH ELEMNT MATRIX MUST BE CALCULATED

GOTO (100,200,500,600), NSWTCH

C

100 continue

call assem_sl(codi, tgmat, tlocat, tnod)

coma(:,:) = tgmat (:, :N0DEB)

RETURN

C

200 continue

write(6,*) ' error for nsvitch - 2'

RETURN

C

500 continue

call assem_s2(area, tgmat, tlocat, tnod)

coma(:,:) tgmat (:, :N0DEB)

RETURN

C

600 continue

call assem_s3(sti, tgmat, tlocat, tnod)

coma(:,:) = tgmat (:, :N0DEB)

return

END

11

subroutine assem_sl(codi, gmat, locat, nod)

include 'PAR'

real, intent (in) :: codi(NN0D, NELE)

real, intent(out) :: gmat(7,NELE)

integer, intent(in) :: locat (6, NODE) , nod (NNOD, NELE)

real tcodi (NNOD, NELE)

cmpf map codi (memory, allbits)

cmpf map gmat (memory , allbits)

cmpf map locat (memory .allbits)

cmpf map nod(memory, allbits)

cmpf map tcodi (memory , allbits)

integer irow(NELE), icol(NELE), i, k, j, 1

gmat = .

tcodi = codi/6.

do 100 k * 1, NNOD

irow = nod(k, :

)

do 150 j * 1, NNOD

icol = nod(j , :)

if(k .eq. j) then

cmpf collisions

cmpf collisions

gmat(7,irow)=gmat (7, irow) +t codi (j , :)

goto 150

endif

do 200 1 * 1, 6

where(locat (l,irow) .eq. icol)

gmat (1, irow) = gmat (1, irow) + tcodi (j,:)

end where

200 continue

150 continue

100 continue

return

end

12

subroutine assem_s2(area, gmat, locat, nod)

include 'PAR'

real area, tareal2, tarea6

integer locat (6,NODE) , nod(NNOD,NELE)

real gmat(7,NELE)

cmpf map gmat (memory ,allbits)

cmpf map locat (memory, allbits)

cmpf map nod (memory, allbits)

integer irow(NELE), icol(NELE), i, k, j

gmat = 0.

tareal2 = area/12.

tarea6 = tareal2 * 2.

do 100 k = 1, NNOD

irow = nod(k, :

)

do 150 j * 1, NNOD

icol = nod(j , :)

if(k .eq. j) then

cmpf collisions

gmat (7, irow)=gmat(7,irow)+tarea6

goto 150

endif

do 200 1 1, 6

vhere(locat (l.irow) .eq. icol)

cmpf collisions

gmat (1, irow) = gmat (1, irow) + tareal2

end where

200 continue

150 continue

100 continue

return

end

13

subroutine assem_s3(sti, gmat , locat, nod)

include 'PAR'

real, intent(out) :: gmat (7,NELE)

real, intent(in) :: sti(NNOD,NNOD,NELE)

integer, intent (in) :: locat (6,NODE) , nod(NNOD,NELE)

cmpf map gmat (memory ,allbits)

cmpf map locat (memory ,allbits)

cmpf map nod (memory ,allbits)

cmpf map sti(memory .memory ,allbits)

integer irow(NELE), icol(NELE), i, k, j, 1

gmat = .

do 100 k = 1, NNOD

irow = nod(k, :)

do 150 j = 1, NNOD

icol - nod(j , :)

if(k .eq. j) then

cmpf collisions

gmat(7,irow)=gmat (7, irow)+sti(k,j , :)

goto 150

endif

do 200 1 = 1, 6

where(locat (l,irow) .eq. icol)

cmpf collisions

gmat(l,irow) = gmat(l,irow) + sti(k,j,:)

end where

200 continue

150 continue

100 continue

return

end

14

SUBROUTINE MAMULT (COMA, VECTOR, RIGHT, locat)

INCLUDE 'PAR'

real, intent (in) :: C0MA(7,N0DEB) , vector (:)

real, intent(out) :: RIGHT(:)

integer, intent (in) :: locat (6, NODE)

integer nloc(NODE)

integer kr

cmpf map coma (memory, allbits)

cmpf map locat (memory , allbits)

right = 0.

RIGHT(:NODE) = coma(7, :node)*vector (mode)
DO 80 KR=1,6

nloc (:
) =locat (kr , :

)

where (nloc(:) .ne.O)

k RIGHT(:node) = RIGHT(:node) + C0MA(KR, mode) *VECT0R (nloc (:))

80 CONTINUE

RETURN

end

Conjugate Gradient Square (CGS) method to solve non-symmetric

positive definite metrix. Ax - b

coma - input matrix A

right b

xsolv = x

subroutine my.solver (coma , right , xsolv , eps , it ermx , locat)

include 'PAR'

include 'mamult.if

real coma(7,N0DEB) , eps

real right (NODEB) , xsolv (NODEB)

real, dimension(NODE) :: r, rbar, p, pi, q, u, mv

real*8, dimension(NODE) :: brbar, bpl

real beta, convl, conv2, restl, rest2

real delO, dell, alpha, residual(lOO)

real*8 bdelO, bdell

integer locat (6,NODE)

integer itermx, i, j

common/debug/ntime

15

cmpf map coma(memory , allbits)

cmpf map locat (memory , allbits)

r = right (mode)
convl = dotproduct(r,r)

call mamult (coma, xsolv, mv, locat)

r * r - mv

rbar r

p = r

u - r

itermx = 100

pi * 0.

eps = 1.5e-6

do 10 i = 1, itermx

call mamult (coma, p, pi, locat)

delO = dotproduct (rbar, pi)

dell = dotproduct (rbar, r)

alpha = dell/delO

q = u - alpha*pl

u = u + q
xsolv(:node) = xsolv(:node) + alpha*u

call mamult (coma, u, pi, locat)

delO = dell

r * r - alpha*pl

conv2 = dotproduct (r,r)

residual (i) sqrt(conv2/convl)

if(residual (i) .It. eps) then

return

endif

dell = dotproduct (rbar, r)

beta = dell/delO

u r + beta*q

p = u + beta * (q + beta*p)

10 continue

PRINT 2001

2001 FORMAT (1X,'N0 CONVERGENCE')

do 20 i = 1, itermx

write(6, *) i, ' residual is ', residual(i)

20 continue

stop

END

16

DISTRIBUTION LIST

Director 2

Defense Technology Information Center

Cameron Station

Alexandria, VA 22314

Director of Research Administration 1

Code 012

Naval Postgraduate School

Monterey, CA 93943

Library 2

Code 0142

Naval Postgraduate School

Monterey, CA 93943

Department of Mathematics 1

Code MA
Naval Postgraduate School

Monterey, CA 93943

Center for Naval Analysis 1

4401 Ford Avenue

Alexandria, VA 22302-0268

Professor Beny Neta 15

Code MA/Nd
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Professor Naotaka Okamoto 1

Okayama University of Science

Department of Applied Science

Ridai-cho 1-1, Okayama 700

Japan

Professor William Gragg

Code MA/Gr
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Professor Levi Lustman

NOARL
Monterey, CA 93943

Dr. C.P. Katti

J. Nehru University

School of Computer and Systems Sciences

New Delhi 110067

India

Professor Paul Nelson

Texas A&M University

Department of Nuclear Engineering and Mathematics

College Station, TX 77843-3133

Professor I. Michael Navon

Florida State University

Supercomputer Computations Research Institute

Tallahassee, FL 32306

Professor M.M. Chawla, Head

Department of Mathematics

in/in/B-l,IIT Campus
Hauz Khas, New Delhi 110016

India

Professor M. Kawahara

Department of Civil Engineering

Faculty of Science and Engineering

Chuo University

Kasuga 1-chome 13

Bunkyo-ku, Tokyo

Japan

Professor H. Dean Victory Jr.

Texas Tech University

Department of Mathematics

Lubbock, TX 79409

Professor Arthur Schoenstadt

Code MA/Zh
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Professor H.B. Keller

Department of Applied Mathematics

California Institute of Technology

Pasadena, CA 91125

INTEL Scientific Computers

15201 N.W. Greenbrier Pkwy.

Beaverton, OR 97006

Professor R. T. Williams

Code MR/Wu
Naval Postgraduate School

Monterey, CA 93943

Professor David Gottlieb

Brown University

Division of Applied Mathematics

Box F
Providence, RI 02012

Mike Carron

Advanced Technology Staff

Code CST
Naval Oceanographic Office

Stennis Space Center, MS 39522-5001

Professor Melinda Peng

Code MR/Pg
Naval Postgraduate School

Monterey, CA 93943

Rex Thanakij

MASPAR Computer Corporation

749 N. Mary Ave.

Sunnyvale, CA 94086

DUDLEY KNOX LIBRARY

3 2768 00347535 1

