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ABSTRACT

A graphical technique to predict the frequency re-

sponse of nonlinear transmission functions is presented.

The technique is applied to nonlinear transmission func-

tions with accurate results. The technique utilizes the

magnitude ratio curve as a function of the system para-

meters developed in the algebraic methods.
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1. INTRODUCTION

An often used criterion applied in the design of con-

trol systems is that of the frequency response of the

system. It is the objective of this paper to investigate

a technique to predict the frequency response of nonlinear

transmission functions. The nonlinearities involved will

be changes in the system parameters and will be functions

of the output signal magnitude only.

11



2. PARAMETER PLANE METHOD

Use of the parameter plane methods [l] for frequency

response of linear time-invariant systems was first derived

by Dr. G. J. Thaler and Dr. A. G. Thompson [2], These

methods were later utilized to obtain parameter plane plots

by J. R. Rommel, R. H. Cradit, and G. Glavis [3] , [4] .

To provide a basic understanding of the use of the

parameter plane methods in the frequency response of dynam-

ical systems , the derivation pertaining to frequency re-

sponse presented in [2] will be presented below.

Given a system transfer function of the form

T(S) =
§[§} (2.1)

9
Where N(S) and D(S) are of the form A + A n S + A n S +

o 1 2

+ A ,S + A S . and in general the coefficients A to A
n-1 n 3 on

are nonlinear functions of two system parameters Oi and j9.

AXT can be expressed as A„T
= B._ + CM ,8 + D„ a + E._ aj9 (2.2)N r N N N N N

and any or all of the coefficients B^, C„» DXT , and E„ mayJ N N N N

be zero.

2
The squared magnitude function (m ) can be obtained

by

7 2

m =
I
T(S)

I
= T(S) T(-S) (2.3)

Separating the polynomials N(S) and D(S) into their even

and odd parts

N (S) + N (S)

T < S > = D
e
(S) + D°(S)

(2 ' 4)

e o
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and

N (S) - N (S)
T( "S) " D (S) - D (S) < 2 ' 5 )

e o

Then by taking the product of (2.4) and (2.5) and letting

S = jo) the squared magnitude function can be obtained.

The resulting product is

N
2
(S) - N

2
(S)

T(S) T(-S) = -~ ^ (2.6)
D
e

2
(S) - D

o
2
(S)

Examination of (2.6) shows that both the numerator and

denominator functions are even polynomials in S and letting

S = jw both are even functions in 0).

Then the squared magnitude function is

k=n

*2
- M ».*>

k=0

u>
2k

where A, and R are coefficients of the form of equation

(2.2).

As done in [3] and [4], by holding one parameter

(either a or ft) at a constant value, magnitude curves as

functions of the variable parameter can be plotted. Using

the computer program developed in [4] an example of the

magnitude curves for the second order system, shown in fig-

ure (2.1), are presented in figure (2.2). Here the magni-

tude curves represent the absolute ratio value of X, to X ,^ 1 o'

13



where X, and X denote the instantaneous displacement of
1 o ^

the point of support and the mass from their equilibrium

condition. It is easily seen that the transfer function

for this second order system is,

T(S) = 5 ~ (2 ' 8)
MS + BS + K

For the constant omega curves shown in figure (2.2),j9 = K

and a = B, also for illustrative purposes, j9 = M = 1.0.

The next section will utilize the magnitude ratio

curves, developed from the parameter plane theory, to

establish a technique in predicting the frequency response

of dynamic systems.

14
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(figure 2.1 Spring-Mass-Damper, Second Order
Dynamic System
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3. TECHNIQUE IN OBTAINING FREQUENCY RESPONSE OF A NON-

LINEAR DYNAMIC SYSTEM

Before introducing the nonlinear aspect into the dy-

namic system, the technique for predicting the frequency

response of a linear system will be reviewed. Using the

curves, which have resulted from the parameter plane

methods, in figure (2.2), the frequency response curve

for the linear, second order system of figure (2.1) was

obtained. This frequency response was obtained by fixing

a = 0.4 and at the various intersections with the constant

omega curves, the value of m was read off. As a basic

check to this frequency response, the second order systems

was simulated in an IBM 360 digital computer, utilizing

the DSL/360 simulation program [5]. This method of obtain-

ing the frequency response may be applied to a more complex

system, and with excellent results as shown in figure (3.1),

But this is quite an involved method, requiring a digital

computer, compared with say, the Bode diagram method. The

advantage here is the feature of varying the system para-

meter and obtaining a family of frequency response curves

for ranges of the system parameters.

To investigate the possibility of predicting the fre-

quency response of nonlinear dynamic systems, the nonlinear

feature was introduced by letting one of the system para-

meters be a function of the output of the system. For this

investigation, the system parameter will be considered a

function of the output amplitude only.

17



The identical magnitude curves for the second order

system are reproduced in figure (3.2) for the purpose of

illustrating the frequency response technique. in a

manner similar to that used with the linear case, the

curve or variance of the system parameter (in this case ot)

with magnitude is drawn on the magnitude curves. For

example, as shown in figure (3.2), ot is described by curve

A or Ot = 0o6, for m < 1,0 (3.1)

and ot = 0.4 + 0.2m for m > 1.0 (3.2)

With the function describing Ot superimposed on the

magnitude curves, it should be possible to predict the fre-

quency response of the system as ot varies with the output

amplitude. This method was investigated by entering the

curves at a specific omega and at the intersection of that

omega curve and the describing curve for ot the magnitude

was read off. For example, at to = 1.2 in figure (3.2),

m = 1^125. This technique is continued until a frequency

response curve or family of curves is obtained for the sys-

tem transfer function.

Initial investigation was performed using the above

described technique for the second order dynamic system

shown in figure (2.1). With the magnitude curves drawn for

the transfer function of equation (2„8), various functions

of magnitude for ot were superimposed on the curves. For

each magnitude function the frequency response was obtained

for the system with a set equal to that magnitude function.

For a check on this method, the system with ot equal to a

18



function of X,, (the output signal) was simulated in the

digital computer using the DSL/360 program [5]. The pre-

dicted and simulated value did not check out with any

degree of accuracy. Further investigation uncovered two

inaccuracies in the method. First it was determined by

the fact that the magnitude ratio was X, to X and was not

the direct displacement across the system parameter being

described by a function of X, . Later investigation proved

that the transmission function used, must be defined such

that the signal across the nonlinear parameter is the sys-

tem output. The complex theory or reasoning behind this

inaccuracy is not completely known at this time and should

be the subject of further investigation as described in

section 5 of this paper.

To overcome this first inaccuracy a new transmission

function was derived for the second order system. This new

transmission function was based upon the fact that the

system parameter to be varied was a (the damping coefficient

for the second order system) . Since the damping force is

physically proportional to the velocity across the damper

rather than the displacement across the damper, the velo-

city X, , was selected as the output signal and the new sys-

tem transmission function becomes

X
l &S

T(s
> = 5T " „2 ,1 . .

(3 " 3)

O s + as +

For the purpose of drawing the magnitude curves, £ is

set equal to 1.0 in equation (3.3) and the curves are plot-

19



ted for the system parameter a varying, figure (3.3). In

obtaining the correct frequency response utilizing the

technique presented here the following procedure is used.

First having selected the describing function curve for

the system parameter in an intelligent manner, superimpose

this describing function curve upon the magnitude ratio

curves as done here in figure (3.3) for curve A. Then en-

tering the magnitude ratio curves along the describing

function curve for the varying system parameter, at the

intersection of this curve with that of a desired frequen-

cy curve, for example point B in figure (3.3), the corres-

ponding magnitude ratio is read off by dropping a vertical

to a point immediately below the point of intersection to

the abscissa. For point B, figure (3.3), the magnitude ra-

tio is 0.7 5 and the corresponding frequency is 0.6 rads

.

Successive points, such as C, D, and E are read off the

curves in figure (3.3) and plotted as the frequency res-

ponse of the system, as shown in figure (3.4) where points

B, C, D, and E are corresponding points selected from fi-

gure (3.3). Also shown in figure (3.4) for comparison pur-

poses is the simulated results of the frequency response

of the system with ot varying and utilizing the correct

transmission function. The results of the two methods, pre-

dicted technique and simulated technique, compare very fa-

vorably. Curve B, figure (3.3) describes an additional

describing function curve superimposed upon the magnitude

ratio curves. Following the described technique above using

20



curve B, the new frequency response of the system was

found as shown in figure (3.5). The above two examples

demonstrate that it is possible to predict the frequency

response of the nonlinear system if the correct transmis-

sion function is applied.

The second inaccuracy uncovered in the initial inves-

tigation was that no attention was given to the dependency

of the technique on the amplitude of the input signal. This

inaccuracy was investigated by varying the input signal am-

plitude. It was determined that the technique was indepen-

dent of the input signal amplitude since the magnitude ra-

tio of the input to output signal is involved.

Table (3.1) demonstrates the independence of the

method to the input signal amplitude. This table is based

upon data obtained in the simulation run for equation (3.3)

of the second order system.

Table (3.1)

Frequency Input Signal Amplitiide Magnitude

1.4 1.0 1.79428

1.4 0.5 1.79392

1.4 2.0 1.79428

0.8 1.0 0.82243

0.8 0.5 0.82242

0.8 2.0 0.82243

0.5 1.0 0.41562

0.5 0.5 0.41562

0.5 2.0 0.41562
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4. APPLICATION OF TECHNIQUE

Further investigation of the technique was applied to

the second order system, but this time letting the system

parameter K (the spring constant) vary. This necessitates

defining the displacement across the spring as

Y = X
1

- X
q

(4.1)

and resolving for the correct transfer function. Using Y,

the displacement across the spring, as the output signal,

since the spring constant is proportional to the spring

displacement, the new system transfer function becomes

T(S) = -f
+ *S > (4.2)

S + as + j3

Where now the output signal is Y and the magnitude ratio is

that of Y to X .

o

The magnitude versus ft (the varying system parameter)

curves are presented in figure (4.2), where ct has been set

equal to one. Figures (4.3) and (4.4) for curves A and B

of figure (4.2) show the results of the frequency response

techniques for j9 being set equal to two different func-

tions (curves A and B of figure (4.2) of the output signal

Y) . Figures (4.3) and (4.4) also show the simulated fre-

quency response curve for comparison of the technique.

The frequency response of the fourth order system of

figure (4.1) was investigated for the case of the spring

constant K, varying as a function of the output signal

(the physical displacement of the spring in this case).
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The results of both the predicted and simulated frequency

response techniques are shown in figure (4.6) and (4.7)

for the parameter describing function curves A and B of

figure (4.5)

.

This case of the fourth order system covers the pro-

duct coefficient case of the parameter plane methods and

further demonstrates the applicability of the frequency

response techniques. For the fourth order system, the

system transmission function is

T(S) = -. - <
S' + 2g3 + 2<*\) (4.3)

S + 2S + (2a + )9)s + 0S + a/9

where a is set equal to 1.0 and /9 is allowed to vary as a

function of the output displacement Y. Where Y is defined

as

Y = X
1

- X
q

(4.4)

For this fourth order system the following physical

parameters were related to a and j9 as follows:

a = k
2

and for illustration purposes M, = M
2

= B
2

= 1.0.
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5. CONCLUSION

It is possible to predict the frequency response of a

nonlinear dynamic system. The technique described in this

paper is one method for making such predictions. The li-

mitations to the technique are two fold. First the use of

a digital computer is required in obtaining the parameter

plane magnitude curves, and second the proper transmission

function must be defined in applying these curves to the

specific problem.
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6. SUGGESTIONS FOR FURTHER INVESTIGATION

It is believed that additional investigation into the

technique presented in this paper for predicting the fre-

quency response of a nonlinear dynamic system should be con-

tinued on two fronts. First the limitations in the choice

of a transmission function should be investigated. Second-

ly (but more important) application of the technique to

meaningful physical problems should be undertaken. The

technique should be applied to a problem with physical

significance and developed further as a tool to be used by

the design engineer.
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