

BODV 3003

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A DATABASE MANAGEMENT SYSTEM

TO MANIPULATE DATA COLLECTED AT THE
NATIONAL TRAINING CENTER, FT. IRWIN CA.

by

Stephen D. Buck

June 198 7

Thesis Advisor: Samuel H. Parry

Approved for public release; distribution is unlimited

t

unclassified
[tCufli rv Classification OF TmiS paGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION

unclassified
lb RESTRICTIVE MARKINGS

a security classification authority

b DECLASSIFICATION /DOWNGRADING SCHEDULE

J DISTRI8UTION/AVAILA8ILITY OF REPORT

Approved for public release;
distribution is unlimited.

PERFORMING ORGANISATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

i NAME OF PERFORMING ORGANIZATION

aval Postgraduate School
6b OFFICE SVMBOL

(it iDDi'ctbit)

55

?a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

: AOORESS iOfy. State, and ZIP Code)

onterev, California 93943-5000

?b ADDRESS (Cty. State, and HP Code)

Monterey, California 93943-5000

a NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SVMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUM8ER

AOORESS (Cry. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK JNIT
ACCESSION NO

tu onouo-e secure cunt.cat.on, A DATABASE MANAGEMENT SYSTEM TO MANIPULATE DATA
COLLECTED AT THE NATIONAL TRAINING CENTER, FT. IRWIN, CA.

' ?f^0NA t autmor(S) Buck) Stephen D.

; d r>sj o* REPORT

laster's Thesis
' 3D "ME COVERE0
FPQM TO

14 DATE OF REPORT {Year. Month Day)

1987 June
IS PAGE COuNT

130
Supplementary notation

COSATi CODES

iiQ GROUP SU8GROUP

18 SUBJECT TERMS (Continue on revene if neceisary and identity by block number)

National Training Center; database; DBMS;
relational model; user's model

£8STRaC t (Continue on reverie it neceisary and identity by 0/<x* number)

This thesis provides a step by step development of a database management
program. Using a problem defined by the intended user, the thesis
develops a model of the real world situation using Entity-Relationship
Diagrams. This model is then refined into a Relational Model and
implemented into a database management program. The theoretical prin-
ciples used to validate the refinement process are presented in detail
to substantiate the procedure. Included also, are a user specific
program which facilitates data manipulation and a user's manual which
describes the intricacies of the program.

Ft. Knox's Office of Combat Developments has sponsored this thesis in an
attempt to provide a storage medium for data originating at the National
Training Center fNTC) . The NTC was established in the late 1970's to

S"R'3UTiON/ AVAILABILITY OF ABSTRACT

63-NC.ASSiFiED/UNL'MiTED D SAME AS OPT O DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

unclassified
a NAME OF RESPONSIBLE NDiviOUAl

Prof. Samuel H. Parry
22b TELEPHONE (Include Area Code)

(408) 646-2779
22c OFFICE SYMBOL

Code 55Py
) FORM 1473.81 mar 83 APR edition may be used until e»n«uited

All other editions are obsolete
SECURITY CLASSIFICATION OF

unclassified
'his PAGE

unclassified
SECURITY CLASSIFICATION OF THIS PACE i"T>.«n Dim Bn(«r*<)

BLOCK 19 CONTINUATION

meet the need for a more dynamic training facility. The exer-
cises conducted at the NTC have been acknowledged as extremely
beneficial to the units involved. However, recent reports by
the GAO show that the full potential of the training center is
not being realized, as adequate data collection and analysis
operations have not been instituted. This has caused units to
continually relearn past mistakes and failed to allow units to
build upon past performances. In an effort to reverse this
trend, several institutions have begun analyzing the data
originating at the NTC. This in turn, developed the need for a

flexible and responsive data storage system.

4 • .- t 1

unclass if ied
SECURITY CLASSIFICATION OF THIS PAGEHThan Dill Enftmd)

Approved for public release; distribution is unlimited.

A Database Management System
to manipulate data collected at the

National Training Center, Ft. Irwin CA.

by

Stephen D. $uck
Captain. United States Army

B.S., United States Military Academy, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

V*

ABSTRACT

This thesis provides a step by step development of a database management

program. Using a problem defined by the intended user, the thesis develops a model of

the real world situation using Entity-Relationship Diagrams. This model is then

refined into a Relational Model and implemented into a database management

program. The theoretical principles used to validate the refinement process are

presented in detail to substantiate the procedure. Included also, are a user specific

program which facilitates data manipulation and a user's manual which describes the

intricacies of the program.

Ft. Knox's Office of Combat Developments has sponsored this thesis in an

attempt to provide a storage medium for data originating at the National Training

Center (NTC). The NTC was established in the late 1970's to meet the need for a

more dynamic training facility. The exercises conducted at the NTC have been

acknowledged as extremely beneficial to the units involved. However, recent reports by

the GAO show.that the full potential of the training center is not being realized, as

adequate data collection and analysis operations have not been instituted. This has

caused units to continually relearn past mistakes and failed to allow units to build

upon past performances. In an effort to reverse this trend, several institutions have

begun analyzing the data originating at the NTC. This in turn, developed the need for

a flexible and responsive data storage system.

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

TABLE OF CONTENTS

I. INTRODUCTION AND BACKGROUND OF THE PROBLEM 9

A. INTRODUCTION 9

B. HISTORY OF FORT IRWIN 10

C. NATIONAL TRAINING CENTER INTO OPERATION 12

D. CONTRACT WITH FT. KNOX FOR A DATABASE
PRODUCT 15

II. DATABASE THEORY FOR THE NTC APPLICATION 17

A. CONCEPT USED TO DEVELOP THE PRODUCT 17

B. DATA MODELING 18

III. DESIGN AND IMPLEMENTATION OF THE NTC
RELATIONAL DATABASE 29

A. LOGICAL MODEL DESIGN FOR NTC APPLICATION 29

B. PHYSICAL IMPLEMENTATION OF THE PRODUCT 38

IV. RECOMMENDATIONS FOR IMPROVEMENT OF NTC
DATABASE 42

A. CHAPTER CONCEPT 42

B. PROGRAM CODE MODIFICATIONS 42

C. SYSTEMS INTEGRATION ISSUES 43

D. NATIONAL TRAINING CENTER
RECOMMENDATIONS 44

APPENDIX A: ENTITY-RELATIONSHIP DIAGRAMS 45

APPENDIX B: DATABASE TABLES 51

1. INTRODUCTION AND DEFINITION OF FORMAT 51

2. DATA TABLES 51

APPENDIX C: USER HANDBOOK FOR DBMS PROGRAM 57

1. CONCEPT OF THE USER'S MANUAL 57

2. LOADING THE APPLICATION PROGRAM 58

3. PROGRAM CHOICES AND CAPABILITIES 59

a. Initial Menu of Program 60

b. Secondary Level Menus 62

c. Other Menus used in the Program 65

d. Program Operations 66

4. SUGGESTIONS FOR CONSISTENT PROGRAM
PERFORMANCE 76

APPENDIX D: STARTUP PROGRAM 77

APPENDIX E: DATABASE MANAGEMENT PROGRAM CODE 78

APPENDIX F: PROCEDURE FILE CODE 81

APPENDIX G: USER TUTORIAL WITHIN PROGRAM 114

APPENDIX H: OTHER IMBEDDED PROGRAMS USED BY THE
DBM PROGRAM 121

APPENDIX I: ADDITIONAL EVALUATION CRITERIA 122

APPENDIX J: CONTRACTUAL AGREEMENT WITH SPONSOR 125

LIST OF REFERENCES 127

INITIAL DISTRIBUTION LIST 128

LIST OF FIGURES

1.1 Fort Irwin, California 11

2.1 Kroenke's Spectrum 19

2.2 Example Relationships 20

2.3 Obligatory / Non-obligatory Relationships 21

2.4 First Transition Move 23

2.5 Normal Forms 25

2.6 Un-normalized example vs. normalized 26

3.

1

Unit's Mission Relationship 31

3.2 First Step - relational model for 'Unit's Missions' 33

3.3 Second Step - relational model for 'Unit's Missions' 34

3.4 Final Form - relational models for 'Unit's Missions' 35

3.5 First Step - relational models for 'Unit's Vehicle Use' 36

3.6 Second Step - relational model for 'Unit's Vehicle Use' 37

3.7 Final Step - relational model for 'Unit's Vehicle Use' 38

I. INTRODUCTION AND BACKGROUND OF THE PROBLEM

A. INTRODUCTION

Over the last ten years the United States Army has made a significant investment

in both time and resources in an effort to upgrade the fighting capabilities of the

country's land forces. The primary vehicle for this training effort was the development

of a realistic training environment in the desert of Southern California. This training

facility, known as the National Training Center (NTC), was given the mission to

upgrade the fighting capabilities of maneuver units through a series of planned and

evaluated exercises.

The original intent of the NTC was to provide a set of evaluated scenarios where

battalion sized units could be evaluated against an opposing force using soviet tactics.

The center would also provide a live fire range where unit gunnery proficiency could be

measured. The NTC would present the- rotational unit with a total combat

environment using a simulated deployment to a Positioning Of Material Configured to

Unit Stocks (POMCUS) site where the unit would draw equipment and then conduct

simulated combat maneuvers for a two week period. This exercise period would be

made up of both force-on-force engagements using the MILES system and live fire

missions conducted in a specially designed range complex.

By creating a testing environment away from the home station of the rotational

units, the Army hoped for a more consistent evaluation process. Rather than cloud

the evaluations with issues dependent upon local facilities, the Army instead developed

a training vehicle which sought to make consistent and realistic evaluations of unit

proficiencies. As more units were exposed to the center and its unique training

environment the Army expected the level of capabilities of its fighting units to

progressively increase. High level officers intended to use this method to quickly

improve and maintain high levels of combat performance within the country's Active

Army component.

B. HISTORY OF FORT IRWIN

Fort Irwin lies on the arid section of California known as Death Valley. The

post has been host to several different groups throughout its lifetime and has provided

each a unique "sunny" experience. The original Old Spanish Trail was blazed through

the area by Spaniards on their way to the California coast. Groups of local indian

tribes sought refuge there in the early 1800's from the "white man's" expansion into the

southwest section of the United States. Kit Carson and John Fremont explored the

area and documented the sites which later were used as base camps for units fighting

the indians throughout several different periods. The U. S. Army attempted to bring

control to the region using an idea adopted from the Middle East when they instituted

what was jokingly referred to as the "Camel Corps." Although the idea was sound and

the camels adapted to the area, a combination of unfavorable political decisions and

the advent of the Civil War brought a halt to the effort. The area also entertained a

relatively successful commercial enterprise when 20 mule team trains moved borax

from the mines deep in Death Valley out to "civilization." [Ref. 1]

The modern military use of the area began in the 1930's when General George S.

Patton used the area to conduct the first large scale armor unit exercises. The post

proper was originally opened in August of 1940 as an anti-aircraft gun range and was

called the Mojave AntiAircraft Range. It was named Camp Irwin in memory of MG
George Irwin, a WWI commander in October of 1942 and proceeded to host armor

units training for action in Northern Africa. After the war spread into Europe, the

need for a desert training area was lost and the post was deactivated in 1944. As the

United States entered the Korean War, the Army once again saw the need for a large

scale training area suitable for armor forces. In response to this need, Camp Irwin was

opened for military maneuvers in 1951. After the war ended, the explosive potential of

large armor units had finally established themselves as a credible fighting force and the

need for a suitable training area was accepted. Therefore in 1961, the camp became a

permanent post and was renamed Fort Irwin. The post played a significant role in

staging units for deployment to Vietnam, but became a victim in the large defense cuts

of the early 1970's. In 1972 the site was turned over to the California National Guard

and it became primarily a training area for rotational units. [Ref. 2]

The post has provided an excellent staging area for large scale mechanized

maneuvers. With its remote location, the post enjoys a respite from interference from

civilian or commercial groups. The remote location also allows the combination of

10

CHIN* lAtl NiVAl -s

WtAPONS CtmCR

iini

Peariomnflt

. INDIAN
"A MltS 1 /A'SUJ
J\vAuer,- !»M*»t %

/\ 1 r • ("iJ7
2£>

J~T"'J#~~'*-Hesperia
V3lle* £\

'X -/// -~\~---^ :>N BfPHAPOtNO X\

Figure 1.1 Fort Irwin, California.

maneuver and live fire exercises to be held simultaneously. Since the area is so sparsely

populated, it provides an excellent facility for armor maneuvers. The post has played

host to a variety of Active Army, National Guard, and Army Reserve rotational units

which have come to the post to practice armor force techniques. These exercises have

run the gamut from live fire exercises to new equipment familiarization.

A special note should be included concerning the post's climate. The arid region

most closely represents the Middle East Area. The winters are mild and the summers

are extremely hot. The low humidity of the area allows the heat to be bearable, but

still a significant aspect for rotational units to plan for. Average rainfall in the area is

very small yet the surrounding mountains allow the installation to maintain operation

through a vast system of underground wells. Since the Middle East has been host to

11

several armor conflicts recently, the post has enjoyed a renewed interest. Most experts

agree that the installation presents an ideal training environment to prepare for a

conflict in that region of the world.

C. NATIONAL TRAINING CENTER INTO OPERATION

The concept for the National Training Center was developed in response to

conversations held with senior Army commanders from 1974 to 1976. Many of these

commanders felt that the successive wars in the Middle East had shown the need for a

renewed interest into armor operations. It was also felt at the time that the world

situation favored an outbreak in that region and the United States needed a training

area to help simulate actions in that region.

The training facility was first outlined in a concept paper presented in 1976.

After receiving favorable reviews, the concept was given high level support within the

Army and funding began in fiscal year 1980. Although the project was on a scale

larger than previously attempted, the plan did not involve a radical development plan.

A similar project on a smaller scale had been successfully demonstrated at Ft. Hood,

Texas. Although the Ft. Hood installation used some remote data processing

capabilities, the complex at Ft. Irwin required a significant system to be developed and

tested for year round use. The Ft. Irwin installation was upgraded to house a large

permanent opposing forces group (OPFOR) and a significant facility upgrade was also

undertaken. When the facility opened for rotational units in 1981, the post

incorporated the most advanced large scale unit training facilities in the free world.

[Ref. 2]

The total funding appropriation for years 1980 through 1987 has surpassed one

billion dollars. For that cost the Army has received a training facility which can

successfully measure a significant portion of the tactical maneuvering of battalion sized

units. When this is coupled with the unit evaluation teams, the facility provides- a

complete and thorough evaluation of CONUS based rotational units. The evaluations

are based upon data collected by a wide network of remote sensors which track the

maneuver elements of both the OPFOR and the rotational units and unit evaluator

input. Recorded measurements of engagements, vehicle locations, and movement

speeds allow an after-action critique of each mission. In the live fire area, computer

controlled targets simulate an attacking Soviet Motorized Rifle Regiment. The targets,

12

sensitive to both live rounds and MILES firings, provide the units with realistic

engagement scenarios through computer simulations. Upon completion of the exercise

period, the unit is provided with a final debrief and a take-home package to use to

remedy areas of weak performance.

A normal rotation involves a period of approximately five weeks. After

deployment details and pre-rotational briefings have been held, the unit arrives at the

NTC and over the period of a week to ten days draws, inspects and prepares its

vehicles and personnel for the graded exercises. The force-on-force and live fire

exercises last approximately fifteen days and follow two scenarios. The first scenario

has one unit conduct force-on-force exercises for approximately five days, then conduct

the live fire training for four days, and finish with force-on-force exercises. The second

scenario has a unit complete all force-on-force training before moving to the live fire

exercises. At the completion of these exercises the unit returns to the post proper,

receives its final critique, turns in the drawn vehicles, and returns to its home station.

The evaluated exercises consist of a number of standard missions which a unit

might be called upon to perform in a combat situation. They include a defensive

position, attack, counterattack, delay, hasty defense, and night operations. In most

situations, the units perform one mission a day except for the defensive position. In

that mission the units are given a longer period so that they can prepare realistic

positions which are dug in and well concealed within the allotted terrain. The live fire

missions are a day attack and a day and night defense. The only significant difference

between these are the safety requirements imposed by the use of live ammunition.

A unit is evaluated using a list of seven operating systems which has been

developed to check all areas of unit operations. Unit evaluators are attached to each

unit and subunit down to the level of the platoons. Staff level evaluators maintain

their position next to the individuals whom they evaluate while the maneuver unit

evaluators trail their units in M551 track vehicles to better assess the action. At the

end of each mission, the maneuver units are consolidated where the action stopped and

local critiques are conducted. Once platoon critiques have been completed, the

company as a whole is evaluated by the senior evaluator assigned to that company.

Finally, the commanders and staff of the battalion are critiqued upon their

performance and the mission success or failure is assessed. A recording of each

critique at the battalion level is made and included in the unit's take-home package.

13

The battalion level critique is conducted with the aid of a time incremented

recording of the mission just completed. The system of remote sensors allows the

evaluation group to track the movement, vehicle engagements, and radio traffic of both

the OPFOR and the rotational unit, or BLUE force. Transmitters mounted on all

vehicles send signals to the remote sensors which are collected, analyzed, and

transformed into meaningful output to be used in the critique. The evaluation takes

place in a mobile unit which allows the evaluators to "play back" items of interest on a

large screen projection. Using the actual movements, the unit is critiqued upon its

ability to move, shoot and communicate effectively throughout its mission. The "eye in

the sky" misses nothing and provides a most thorough view of what really transpired

during each mission.

Once the mission critiques have been completed, the battalion is informed of its

next operation and the planning process to develop a mission order begins. Prior to

the execution of that order, the unit must reconstitute its forces in a similar process as

units would in combat. Requisitions are made to request "new" personnel, vehicles,

and supplies to compensate for those "lost" or "used" during the last mission. Should a

unit not complete the reconstitution process, it fights with what ever force it has.

Many times the unit's success or failure depends upon the administrative actions that

preceded the battle. This step along with the in depth evaluation process is what

separates the training at the NTC from training conducted at any other installation.

The training is designed to be strenuous and tough and only units which are able to

accomplish all aspects of combat are considered successful.

The turn-in process allows the unit to repair any vehicles damaged during their

rotation to the best of their abilities. As the supply system can not always meet the

needs of the user, a civilian contractor maintains overall control of the rotational

vehicles to ensure that the vehicles maintain operational standards. During this phase,

the unit is debriefed and provided with a historical summary of its performance. In an

effort to maintain objectivity, no unit is compared to any other but against a standard

scale. Bragging rights are most certainly determined based upon this scale once the

unit returns to its home station.

The take-home package presented to the units for use at their home station

includes a written summary of the events of their rotation and video tapes of the

critiques. There is also limited footage taken of the actual battles where recording was

possible. The written report highlights each mission in terms of key events and then

14

present a summary of the status of the battalion at the completion of the mission. The

status report shows vehicle kills, personnel losses, engagement summaries by weapon

system and radio communication traffic. The video tapes are keyed to the critiques

and attempt to focus on the interaction of the evaluators and the unit in the hope of

illuminating weak areas. Although the evaluations are intended to specifically show

areas of weakness, they also report areas of strength. This provides the unit with an

honest appraisal of its true fighting capabilities.

D. CONTRACT WITH FT. KNOX FOR A DATABASE PRODUCT

Although the National Training Center provides what is claimed to be the best

training experience known, recent GAO reports have indicated that the full potential of

the NTC is not being realized. In particular, returning units are not performing

significantly better than first time participants. The GAO has found that the

information collected during the rotations was not being fully disseminated to other

rotational units by any agency. The GAO also criticized the Army for not fully

disclosing what lessons were learned by each rotational unit. In effect, this caused

units to relearn past lessons because units repeatedly made the same mistakes. [Ref. 3]

While in many aspects the GAO report is accurate, it does present a somewhat

unrealistic appraisal of the data collected at the NTC. The report concludes that the

data collected at the NTC is incomplete for an in depth analysis because it lacks the

ability to provide an action by action description of a mission. [Ref. 3] This is true as

the present system cannot fully describe a vehicle's location since it collects data using

only two axis. This allows it to appear that vehicles can engage other vehicles when

they are in fact masked by the terrain. Since terrain elevation is not included within

the position coordinates, judgemental decisions are required in the final analysis of

vehicle engagements.

This problem has been resolved through the awarding of a contract to modify the

system to include the collection of positional elevacion. However data collected prior

to that point was adequate for trend analysis. The point that eluded the GAO report

was that the data collected at the NTC was not designed to evaluate individual actions,

but to confirm or disprove trends within the missions as a whole. To attempt to "lock

in" on key data attributes and explicitly cite specifics is unrealistic because of the

nature of any combat exercise. The bottomline of this analytical exercise was to

15

introduce or disprove exercise trends for follow-on units to use, but not to dictate the

specifics of how a unit accomplished a mission.

Other modifications to the system include the addition of tactical air players to

the groups which are controlled by the Multiple Integrated Laser Engagement System

(MILES) system and a better implementation of field artillery effects. MILES is the

engagement system which allows individual players to "shoot" one another. Remote

area sensors monitor these "firings" and record them as tactical input data to be used

in the unit evaluation. The addition of the air assets into this engagement system will

allow a more in depth appraisal of unit actions since a more realistic combat

environment will be presented to the rotational unit.

In an effort to incorporate the lessons learned from experiences at the NTC,

several different agencies attempted to analyze data originating from the NTC. The

Office of Combat Developments at FT. Knox, KY was one such agency. However

within this process of analyzing the data was an inherent need to provide a capability

to store relevant data. This thesis is based upon the need to develop a storage

mechanism for data from the NTC to be used by an analyst at a distant site.

In an effort to define the nature of the need, a contract of proposed work was

developed. The contract, provided as Appendix J, outlined the fact that a need did in

fact exist and a solution was possible. It then outlined in very general terms, what

system would be developed and tested. The system would also be constructed to utilize

a degree of confidentiality to prevent disclosure to persons not authorized to know

such details.

Other items of interest within the contract include the need to develop a system

which was capable of stand alone operations. This allows the user to float his work

between several different locations. The system was requested to focus upon a product

which could be utilized in a microcomputer environment. Again, this represented a

need for system portability. Finally, the system should require limited maintainance

needs as there existed a limited level of expertise at the user's location. Since the thesis

due date was in June of 1987, a similar deliver}' date was given to Ft. Knox.

16

II. DATABASE THEORY FOR THE NTC APPLICATION

A. CONCEPT USED TO DEVELOP THE PRODUCT

The problem posed by the Office of Combat Developments revolves around the

collection of data developed by rotational units at the National Training Center. The

user wishes to store the large amounts of data in a permanent mode for analysis at a

future date. In a simplistic application, this can be visualized as a large file system

which provides the user the ability to access and manipulate large amounts of data in

an efficient manner. Such an intention lends itself to a database application.

The fundamental advantages of a database system would easily apply to this

application. The creation of the database would allow the data to be organized and

stored in a compact means. The system, by definition, allows the user to quickly

access the specific information with which he is concerned, and allows him the ability

to update the information conveniently. Finally, the database application, if

implemented correctly, allows the database to be purged of unnecessary duplications

and can avoid inconsistent data entries by reducing the number of times the entry must

be made.

Presently, data storage costs have been reduced to a fraction of the cost of the

overall computer system. As such, the question of data storage has evolved from one

of what data do we store to one of how do we store the data. This allows the designer

to concentrate on a logical and concise method of data storage in the quest to solve his

problem. This process encompasses two distinct phases: the logical representation used

to model the real world application, and the physical design which incorporates the

logical representation into physical constructs using a Database Management System

(DBMS). The thrust of this chapter will be to describe the design sequence utilized in

this thesis.

This chapter will attempt to provide a logical discussion of why the respective

options were chosen and how the specific components were designed. The design

process was started with Entity-Relationship Diagrams since they adequately modelled

the application. These diagram representations were refined by implementing them

17

into table forms using the relational data model. The tables developed by the

relational model were then normalized to remove unwanted duplications. At this point

the tables were directly incorporated into a DBMS using a commercially available

product. It also appeared that to continue the reduction process would be of little

gain, since the final objective was to achieve a form which could be directly

implemented into a DBMS.

B. DATA MODELING

To effectively construct any database system, the researcher must first design a

model to represent the real world application. Inherent in this modeling process is the

model's ability to relate its configuration for data display in such a way as to easily

allow further refinement or direct application into a database management system.

Kroenke describes a series of data models that allow the designer to transcend the

spectrum from a strictly logical perspective to a machine oriented implementation.

[Ref. 4: p. 193] This chapter will use his sequential relationships between models

within the discussion to highlight the movement from model to model.

To develop a logical representation, the researcher must first model the situation

in such a way as to allow it to be intuitively acknowledged by the user. To accomplish

this task, the researcher begins the development process by describing the data in easily

understood terms (with respect to the user's background and capabilities). Kroenke's

spectrum shows a range of focus for each model in terms of its applicability to either a

human or machine construct. Using this spectrum, the researcher can start on the left

side of the spectrum and sequentially refine the design until he reaches a state where

direct application into an available DBMS is possible. This sequence also allows the

user to understand the design process since the refinement follows a logical progression

of data reduction. This chapter will provide a sequential movement through Kroenke's

Spectrum (Fig 2.1), .developing each model within the discussion, until a point is

reached where a logical move can be made to an implementable form.

Kroenke's first model is the Semantic Data Model (SDM). This model reflects

an entirely verbal description of the data and the relationships between them.

Although this model presents a clear description of what the designer intends, no

DBMS has ever been designed to strictly implement the verbal descriptions of SDM.

[Ref. 4: p. 194] SDM also lacks the concise, formalized data relationships which allow

18

HUMAN MACHINE
'Logical) iPh\su.ili

'

Semantic Enhtv- CODASYL DBMS-
Data Model Relationship

HelatM.n^l
DBT(; Specific

(SDM) Model <E-R>
Da,a Model Model Model

ANSI/X3/SPARC

Figure 2.1 Kroenke's Spectrum.

easy refinement into an implementable form. Therefore, for the scope of this problem,

the design process was not initiated with it. However, should the user be less familiar

with the acronyms and descriptors used to refer to the data items, this model wouid

facilitate that understanding.

The Entity-Relationship Model (ER) provides a more precise interpretation of

the individual data items and their relationships. Modell, in a paper presented to the

IEEE, referred to the Entity-Relationship Diagram model as "one of the most effective

methods of holistic analysis (of the real world)." [Ref. 5: p. 123] Modell concluded

that the analyst was able to construct a meaningful model of the real world based upon

his interpretation of it. In fact, Modell feels that the only limitation of the diagrams is

the user's ability to recognize the different relationships and entities. In light of this,

the Entity-Relationship model is the most appropriate tool to begin the design process.

Briefly, the ER model is made up of diagrams which are used to model the real

world situation. Each object in the real world can be described through a series of

traits or Attributes. An Entity is used to represent this object by consolidating the

attributes into a singular body. Groups of similar objects or Entities are collected into

Entity Sets.

Entity Sets which are associated in some ways are said to have a relationship

between themselves. A relationship can also have attributes which are descriptive of

the association of the two entities. There are three distinct types or degrees of

relationships possible in ER diagrams. A single entity which is associated to one and

only one entity of a different entity set is said to have a one to one relationship (1:1).

An single entity which can be associated with more than one entity of another entity

19

set is said to have a one to many relationship (1:M). Finally, when multiple entites can

be associated with multiple entities of a different entity set they are said to have a

multiple to multiple relationship (M:N). The significance of these different

relationships is that they allow a convenient represention of the interdependence of

different objects in the model. A more colloquial understanding of entities and

relationships can be described as: entities refer to nouns and relationships refer to

verbs. An illustration of the three relational degrees follows (reference Figure 2.2).

HUSBAND

WIFE

MOTHER

M

CHILDREN

STORE

M

CUSTOMER

Figure 2.2 Example Relationships.

A further descriptive refinement of the relationships between entites has been

defined by the terms "Obligatory" and "Non-obligatory." These terms refer to the

membership rules which relate to each member of the entity set. The term

"Obligatory" refers to a situation where each member of the entity set must be included

in the relationship in order to exist. An example of this would be: before a car can

exist it must be manufactured. Therefore in the relationship between manufacturer and

car, the car has an obligatory relationship. Conversely, when an entity can exist

without inclusion in the relationship, the relation is said to be "Non-obligatory." Again

in the manufacture example, a manufacturer can exist without making cars. Therefore,

its role is said to be non-obligatory. These new terms are represented in Figure 2.3

20

below as additional marks on the diagram. The significance of this added description

of the relationship is realized during a later time in the development process. The

requirement for membership by one or both of the entity sets allows the researcher to

consolidate the information from the entity sets and the relationship during the

movement process from the ER diagrams to a subsequent model. This in turn allows

the move to be a relatively simpler one. [Ref. 6: p. 127]

HUSBAND WIFE

CAR MANUFACTURER

Figure 2.3 Obligatory / Non-obligatory Relationships.

Within each entity there is a specific attribute which can uniquely differentiate

this object from others in its respective set. This attribute is commonly refered to as

the Entity Identifier. Since a relationship is the association of entities identified by

entity identifiers, the relationship can utilize these same constructs. These multiple

identifiers within each relationship are refered to as a Relationship Identifier and are

nothing more than the consolidation of the two identifiers of the respective entity sets.

- Once the data has been completly modelled by the Entity- Relationship Diagrams,

the researcher is ready to take the next step in the design process. Using Kroenke's

spectrum as a guide for the progression (see Figure 2.1), the next step takes the entity-

relationship diagrams and refines them into a relational model. This is a necessary step

since as of yet there exists no software program which can take the entity-relationship

21

diagrams and implement them into physical DBMS constructs. [Ref. 4: p. 228] The

relational model will provide a closer link to an easily implementatable form.

The relational model allows the researcher to refine the database model into a

more practical form. Since the model was originally evolved from the concept of set

theory, the representation maintains a logical approach to data collection. [Ref. 7: p.

19] This allows the user to easily follow the transition from ER diagrams to the

relational model. The groupings of the data will tend to relate to sets in the same way

as the the Entity Set was a collection of Entities. Operations to manipulate the data

can also be modelled after set theory operations. This transition to the relational

model represents a move to a location in Kroenke's spectrum that is a midpoint

between the logical and physical constructs.

The relational model represents data in a two-dimensional table called a relation.

Within the relation, data is stored in rows or tuples. The fields of a tuple are called

attributes and represent the columns in the table. These attributes directly relate to the

attributes that are used to describe the entities. The number of attributes or columns

within a table defines the degree of the table. A table with n columns is said to be a

relation of degree n.

Data is normally stored within the table from top to bottom, left to right. No

two rows are allowed to be the same within a relation. The first column or columns

are generally reserved for the keys of the relation. The key of a relation is taken

directly from the Entity Identifier in the ER Diagrams and provides the same function

of a data discriminater as in the diagrams.

In moving data from the ER Diagrams to the relations the following steps are

initially taken. First, a table is allocated for each entity set and relationship within the

diagrams unless an obligatory relationship exists. In those situations the obligatory

entity sets are combined in the table corresponding to the relationship. If only one

entity set is involved, the result is two tables. If both entity sets are involved, one table

can be used to describe the relationship. [Ref. 6: p. 127] Next, using the entity sets, a

tuple within a relation is allocated to be filled with the data of each entity within the

set. As previously stated the Entity Identifier of the entity set becomes the Key of the

relation. For each relationship the relationship identifier becomes the Key (which also

should be the consolidation of the two keys of the appropriate tables). Any

corresponding attribute from the relationship should be placed in the tuple

corresponding to the key.

22

In the relational model it is important to note that in this first step of moving

data from the ER Diagrams to the relations, the relations corresponding to the entity

sets will have one or more keys. The relations corresponding to the relationships of

the ER Diagrams will have at least two keys. A representation of the move is shown

in Figure 2.4.

II.

CAR MODEL

450 SEL
Corvette

MANUFACTURER'S NAME

Mercedes Benz
General Motors

MANUFACTURER'S NAME

Mercedes Benz
General Motors

Figure 2.4 First Transition Move.

When the transition process has copied all the data into the relations, the

refinement process for this model can begin. This process is refered to as normalizing

the tables and removes the unexpected consequences of changing data from the ER

diagrams into the relational tables.

The normalization process begins with a basic redistribution of values throughout

the relational tables. The first step is to duplicate tuples to eliminate multiple entries in

attribute columns. This step places one and only one value within each tuple's

attributes. At this point the tables are said to be in their lowest form or at an atomic

level, which refers to the fact that the table values cannot be broken down any further.

Using this process a null or nonexistent value is allowed to be placed in locations

23

where a value is unknown or not applicable. This step is normally a trivial task, but it

constitutes a starting point for further work.

At this point process of moving the relational model through the series of normal

forms is initiated, which will allows the generation of a more compact and redundant

free data model. It is of significance to note that presently there is contention over the

ability to normalize the ER diagrams. Specifically, the idea is disputed by Chung, et al

and Ling in recently published papers. Chung's paper concludes that the normalization

process is so restrictive when applied to the diagrams that it stifles the creative abilities

of the diagrams. [Ref. 8] Ling proposes a method to normalize ER Diagrams which

attempts to counter the complaints identified by Chung. Although his methodology

follows a logical schema, it appears that he imposes a limitation upon the initial

descriptions of his entities and relationships. In other words, the process appears to

initially limit the ways that an entity or relationship can be defined, thereby restricting

membership within the sets. [Ref. 9] Since normalization is approached from a broader

perspective when implemented within relational tables, the design will follow the

recommendation of Chung and postpone normalization until the relational model is

constructed.

Over the past decades researchers in relational table theory have devised a series

of normal forms which describe the relationships of data within the relational tables.

Kroenke gives an illustration which is most useful in understanding the different levels

(see Figure 2.5). [Ref. 4: p. 288] The importance of this refinement process is not the

actual movement through the normal forms but what each form means. The focus of

the process is to develop tabular relations that are the most complete, logical, and

redundant-free tables possible.

To better understand this process, several key terms must first be described. A

value (A) within a table is said to be functionally dependent upon another value (B) if

the value which A can have in some way is dependent upon the value of B. In other

words, the values that can be assigned to A are chosen based upon what value has

been assigned to B. An example of this is grocery items in a supermarket. The price

of the item (A) is assigned (or dependent) based upon the brand of the item (B). In the

future we will shorten the description to a statement such as: item (B) —> price (A) or

B --> A. [Ref. 4: pp. 289-290]

The next critical piece of information is the idea of a determinant. A determinant

is the value which is the cause of the functional dependency. In other words, using the

24

First Sorm.il Form I INF)

Second Normal Form (2NF)

Third Normal Form (3NFi

Bovre-Codd Normal Form (BCNF)

Fourth Normal Form (4NF)

Fifth Normal Form (5NF)

•Domain/ke\ Normal Form (DK'NFi

Figure 2.5 Normal Forms.

previous example, the item was the determinant of the price because it determined

which value (of price) was assigned. Determinants and functional dependency are very

closely linked and can allow a strict interpretation of the relationship between columns

in the relational tables. Determinants, however, need not be restricted to single

attributes. One value can be the determinant of different attributes and a value can

"inherit" a determinant from a value which is its determinant in a transitive

relationship. An example of a situation of transitive determinancy is (back to the

supermarket): the item (A) determines the price (B) which in turn determines the sales

tax (C). In this example A is said to directly determine B, B directly determines C, and

A transitively determines C. therefore, C is said to be transitively dependent upon A.

Now that the important terminology has been explained we are ready to define

the appropriate normal forms. By eliminating all the tuples which had multiple entries

in a column, we have placed the tables in first normal form. This is regarded as the

starting point for further work and basically refers to any relational table. Second

normal form refers to the fact that any attribute which is not a key is dependent upon

all of the keys which define that tuple. Third normal form refers to tables which

contain no transitive dependencies. The form with which this thesis will finalize the

modelling process is Boyce-Codd Normal Form and refers to the fact that every

25

determinant in a table is a key for that table. Forms four, five, and DK/NF are more

restrictive forms which control functional and join dependencies, yet in an

implementation, result in requiring more table additions than they save. [Ref. 4: p.

305]

Once the tables are in BCNF, they have satisfied the attempts to attain a fully

normalized model. This process has now provided a model that is simplier to use and

work with. It also has eliminated the majority of unwanted duplications within the

tables, which in turn, allows the minimal number of entries possible to be used during

an update operation. But there are two less obvious advantages to performing this

task. Once this task has been accomplished, the user is free to insert or delete

information without worry of trying to ensure that other information either exists or

will be retained. These are called deletion and insertion side effects. The problem

arises when the user is confronted with a situation where if he had deleted a tuple he

would have lost information concerning another object. [Ref. 6: p. 85] Using the

supermarket example (see Figure 2.6): if he had deleted the tuples in the top table, he

would have lost information concerning the manufacturers. By using normalized

tables, once an item is sold out, he can delete it from the inventory table yet retain the

pertinent information about the manufacturer which would allow him to reorder it.

I ITEM I
PRICE I SALES TAX MANUFACTURER LOCATION QUANTITY R/0

juicel $1.37 I $.06
milk ! $1 .99 I $.10

General Mills
Holly Farms

Wisconsin
New York

50
235

I ITEM I PRICE I
SALES TAX I

| , ,
|

I juicel $1.37 I $.06
I milk $1.99 I $.10 iIII I

Vv|

MANUFACTURER

General Mills
Holly Farms

LOCATION I QTY

Wisconsin
New York

50
235

ITEM

juxce
milk

Figure 2.6 Un-normalized example vs. normalized.

26

complicated combinations of their predecessors, the most reasonable choice appears to

one of the latter categories. Ullman expresses this view by saying that most present

languages are complete in that they simulate all the features of relational algebra and

relational calculus. He also points out that "In truth, data manipulation languages

generally have capabilities beyond those of relational calculus." [Ref. 7: p. 174]

28

III. DESIGN AND IMPLEMENTATION OF THE NTC RELATIONAL
DATABASE

A. LOGICAL MODEL DESIGN FOR NTC APPLICATION

As described within the Data Modeling section, the Entity- Relationship

Diagrams are favored as the most practical model from which to initiate a design. The

diagrams allow the analyst to model the real world situation confronting him in such a

way as to capture the true data associations. The diagrams present representations of

the critical players involved in the situation and their relationships to each other. By

first developing diagrams to model the situation, the researcher can filter out the

immaterial aspects of the problem. This allows him to highlight those areas of interest,

but remain flexible enough to add items to the diagrams without compromising them.

In beginning the Entity-Relationship Diagrams, the objects that would be

reported by the National Training Center were modelled as entities. This relatively

long laundry list of items required additional features to ensure their ability to remain

distinct within their respective sets. In many cases that inferred the creation of specific

identifiers to accomplish this. Most notable was the creation of a mission code number

which was comprised of the year of the rotation, the home station of the rotational

unit, and a number which refered to whether it was the unit's first, second, or third

mission during the rotation. Since several entity sets needed such an identifier, this

process dominated the initial design phase.

An example of the entity set "Mission" is used to represent the typical entity set

that was developed. Mission has for its Entity Identifier the predefined attribute

"Mission Number." This allows the specific entity or mission that was completed at

the NTC to be identified. Other descriptors which describe the mission but are

common enough to prevent them from uniquely identifying the mission are included as

the attributes of the entity. They include:

• "Mission Type" which describes whether the mission was an attack, defense,

delay, etc.;

• the "Duration" which refers to the length of time that was used to complete the

mission;

29

• the "Success" of the mission (a yes or no entry which would be a subjective

evaluation by the observer/controller group);

• the "Location" which would describe a general location where the majority of

the action took place.

As these attributes show, the entity gives a view of the particulars of the mission and

nothing else.

Another entity set of interest is the entity set "Unit." This set is comprised of the

individual units which attend the National Training Center as a rotational unit. In this

set the identifier is "Unit Identification" and involves what the Army calls the UIC or

Unit Identification Code. It is a six character code which reveals the units identity and

extends down to identifying units at the battalion level. This attribute works smoothly

as the Identifier since it incorporates a time proven method as the value. Other

descriptors of the entity "Unit" which do not uniquely define the unit. are:

"Location" which is the home station of the unit;

"Type" which identifies the unit as an armor or infantry unit;

"Strength" which gives the total number of personnel in the unit;

"Percent Filled - Officer" which represents the ratio of the number of officers

currently available to the number of officers authorized;

"Percent Filled - Enlisted" which represents a ratio of the number of enlisted

personnel available to the number of enlisted personnel authorized.

As seen in "Mission," these attributes describe a Army unit in specific detail.

To reveal which unit was involved with a specific mission we must relate the

entity set "Unit" to the entity set "Mission" to form a relationship. This relationship

"Unit's Missions" reveals the applicable missions in which a unit was involved. Note

that this is a 1:M relationship as a single unit's training at the National Training

Center involves between 8 and 12 missions. Notice also that the relationship

incorporate the definition of obligatory for the entity set "Mission" and non-obligatory

for the entity set "Units." This stems from the fact that a mission can not exist unless

it has been performed by a particular- unit. The identifier precludes that a mission can

be formed with oniy general values. On the other hand, a unit need not have attended

the National Training Center yet to be included in the entity set "Unit." Therefore its

membership within the relationship is not required in order to be present within the

entity set. This relationship also contains no additional attributes which describe the

match of the two particular entities. The diagram which represents this relationship is

given in Figure 3.1.

30

UNIT >^IIMTT»S >s •
MISSION

\M1SS1UNS >•

(JJnitlD
Type
Location
Strenght
%Officers
^Enlisted)

(Mi ssionNum
Type
Location
Duration)

Figure 3.1 Unit's Mission Relationship.

Another relationship which involves a greater amount of work during the

refinement process is Unit's Vehicle Use. This relation involves the entity set "Unit"

which has been previously described and a new entity set "Vehicle." Vehicle is made up

of the following:

• "Vehicle Number", the Entity Identifier, which uniquely identifies the vehicle;

• "Model" which describes the type of vehicle;

• "Armament" which gives the different weapons organic to the vehicle;

• "Suspension" which tells if the vehicle used a track or wheel suspension system.

The relationship created by the two entity sets has the identifiers "Unit Identification"

and "Vehicle Number." The other attributes which complete the relationship are:

• "Miles," which relates the number of miles the vehicle was driven during the

exercises;

• "Hours" which reveals the number of hours the engine was used;

• "NMC days" which gives the number of days the vehicle was unavailable for

use due to mechanical problems;

• "Number of Missions missed" which refers to the number of missions that the

.'•vehicle nusscd while it was out for mechanical problems.

This relationship is M:N because many vehicles are used by a unit, but a single vehicle

can be used by more than one unit. Notice that the Unit portion of the relationship is

31

obligatory since every rotational unit must use vehicles from the NTC, but not all

vehicles are used by a unit. This relationship requires a much greater refinement

because of the different dependence relationships existing between data values within

the relational tables. These interdependencies will become clearer as the tables are

developed from the relationship.

Using the process outlined in the previous section, the refinement process can

begin. Using the first ER diagram, "Unit's Missions," tables will be made to reflect the

data contained in "Unit" and "Unit's Missions." Notice that a distinct table that refers

to "Mission" is not created since the obligatory relationship allowed the information

within "Mission" to be combined with the information in the relationship. The tables

in this first stage are provided in Figure 3.2. Notice at this point the table

corresponding to "Unit's Missions" has a tuple with multiple entries in its columns.

At this point the normalization process can provide each tuple with a single value

in each of the respective columns. This is done by using a specific tuple to represent

each mission that a unit performs. Although this creates a redundancy of LTC values,

it accomplishes the first step of the process. The tables are now in first normal form.

To move to second normal form, the non-key attributes must be dependent upon all of

the keys. The non-key attributes of "Unit'' all depend upon the key "Unit

Identification," since each is determined by the value of the key "Unit Identification."

In the case of the second table "Unit's Missions," the non-key attributes are not all

dependent upon the entire key, "Unit Identification" and "Mission number." The non-

key attributes, "Mission Type," "Duration," "Success," and "Location," are all

dependent upon the value of "Mission Number" only. To place this table into second

normal form the table must be divided into two tables. The first one consists of "Unit

Identification" and "Mission Number," and will be referred to as "Unit's Missions."

The next one, called "Mission" will contain "Mission Number" and those attributes

described before as dependent only upon that key. Figure 3.3 represents this action.

The tables are now in second normal form. To move into third normal form, the

tables must have transitive dependencies removed. In the case of "Unit's Missions,"

this step is academic since the key incorporates both attributes of the table. In "Unit,"

all non-key attributes are dependent only upon the value of the key. There exists no

other column within the table that helps determine the value of any other column.

This places the table in third normal form also. The last table to inspect is "Mission."

In that table a similar situation as in "Unit" exists. Although some units will contend

32

UNIT MISSION

Unit

Unit ID Type I Location Strength '/. Officers Enlisted
I

| , | ,

WAN6A0 Armor I Ft . Knox 531 i 90 83

Unit's Missions

Unit ID I Mission f Type Duration Location

WAN6A0 | 860201 ATK
I

12 Hrs Whale
860202 ! DEF I 24 Hrs I Whiskey
860203 I CATK I 8 Hrs I Valley

Figure 3.2 First Step - relational model for 'Unit's Missions'.

that the location of a mission inadvertently determined the success of the mission, the

attribute will be defined in a more rigorous way. Thus all tables are in third normal

form.

The last step is to insure that the tables are in BCNF. The process will conclude

at this point because further analysis and decomposition of the tables will create a

large number of small tables. For the user needs, the gains of these actions are

marginal at best. To reach BCNF, the values in each table which are a determinant for

others, must all be key attributes. Again, in the case of "Unit's Missions." this is

33

Unit's Missions

Unit ID Mission # i Type Duration I Location I

| | , , |
|

I
WAN6A0 1 860201 | ATK I 12 Hrs 1 Whale I

860202 1 DEF | 24 Hrs 1 Whiskey |

860203 I CATK I 8 Hrs | Valley III 1 1 1 1

Unit's Missions Mission

Unit ID Mission 8 Mission # I Type Duration I Location 1

WAN6A0 860201 860201 ATK I 12 Hrs Whale
I WAN6A0 860202 1 860202 DEF I 24 Hrs I Whiskey I

I WAN6A0 I 860203 ! I 860203 1 CATK I 3 Hrs I Valley III II II 1 1

Figure 3.3 Second Step - relational model for 'Unit's Missions'.

academic since all attnbutes are key. In the tables "Unit" and "Mission," the values

which determine the values of any other attribute within a specific tuple are the key

attributes. "Unit Identification" determines the value of "location," "type," Strength,"

etc. and in a similar fashion the value of "Mission Number" determines the values of its

respective tuples. At this point the normalization process for these three tables is

complete and they are ready for the implementation phase. Their final forms are

shown in Figure 3.4.

To refine the second ER diagram, "Unit's Vehicle Use," the same process is

initiated. In an effort to highlight those areas of interest it is assumed that the reader

has a firm understanding of how to arrive at the first normal form. At this point the

tables reflect single values in all tuple column entries. Only two tables initially have

been defined in this situation, because of the obligatory relationship with the entity set

"Unit." Fisure 3.5 reflects these tables.

34

Unit

Unit ID Type Location Strength V. Officers 'A Enlisted

1 WAN6A0 Armor Ft . Knox 531 90 83

Unit's Missions

Unit ID

WAN6A0
WAN6A0
WAN6A0

Mission t

860201
860202
860203

Mission

Mission # I Type Duration Location

860201 I ATK 12 Hrs Whale
860202 I DEF I 24 Hrs I Whiskey
860203 I CATK I 8 Hrs I Valley

Figure 3.4 Final Form - relational models for 'Unit's Missions'.

To place the tables into second normal form, the non-key attributes must be

dependent upon the entire key of the table. In "Unit's Vehicle Use" the attributes of

"Location," "Strength," "Type," etc. only depend upon "Unit Identification," so a

similar table division process takes place as that which was used in "Unit's Missions."

Continued refinement of "Unit" is academic since this was accomplished in the previous

refinement process, so the discussion will be confined to "Unit Vehicle Use" and

"Vehicle." By completing the division of "Unit" and "Unit Vehicle Use," all tables have

been placed into second normal form. "Vehicle" is also in second normal form since all

values are directly determined from the value within "Vehicle Number." In each

instance the value of the non-keys is dependent upon the entire key. See Figure 3.6 for

further clarification.

To move the tables into third normal form, the transitive dependencies must be

removed. In "Unit's Vehicle Use" the values of "Miles," "Hours," and "NMC days" are

all dependent upon the key since they reflect how a specific unit uses their vehicles in a

particular rotation. However, the values for "Number of Missions missed" are

dependent on the key and "NMC days." This is because the number of days a vehicle

was unavailable for use also determines the number of missions that the vehicle is

unable to. participate in. To alleviate this problem another table is created which has

35

UNIT
VEHICLE

U
Unit's Vehicle Use

Unit ID
I D

Veh I Location I Strgth I XOffs I '/.Enl I Miles I Hours NMC
Days

Missions
Missed

| | | | | j | | |

IWAN6A0 I El 075 I Ft. Knox I 531 90 83 I 22011831

Vehicle

Vehicle f Model Armament Suspension

E1073 M60A1
1 E1073 M60A1

El 073 M60A1

M68 CAN Track
M2 MG Track
M240 MG I Track

Figure 3.5 First Step - relational models for 'Unit's Vehicle Use'.

the same key but includes only the "Number of Missions missed." The values for

"NMC days" are left out to reduce the redundancies within the tables since the key can

adequately be used to separate this data. This new table will be refered to as "Missions

missed." In the other table a different situation arises. Since "Model" determines

"Armament," that table can be separated into two by moving "Armament" into a

separate table with "Model" as the key. The column "Model" is maintained within the

table "Vehicle" to allow the user to cross-reference and return a vehicle's organic

weapons. This table will be called "Weapons."

The last step is placing the tables into BCNF. There are now four tables with

which to work. "Unit's Vehicle Use" meets the criteria since ail determinants are kevs.

36

Unit's Vehicle Use

lUnit ID
1 I D

Veh 1 Location iStrgth
* 1 1

*0ffs i y.Enl Miles I Hours
1

INMC
IDays

Missions

|

Missed

1 WAN6A0 E1075|Ft. Knoxl 531
1 1

I 1

1 1

90 83 2201 1831
1

1

1

1 3
1

1

1

2

Unit

1 Unit ID Type | Location Strength '/. Officers I
'/. Enlisted

I WAN6AC
i

)

1

!

1

Armor | Ft . Knox 531 90 83

Unit's Vehicle Use

Unit ID I Veh I Miles I Hours j NMC Missions
ID I ft I IDays I Missed

, | | | |

WAN6A0 f El 075 1 22011831 I 3 I 2III I

I I I I I

Figure 3.6 Second Step - relational model for 'Unit's Vehicle Use'.

In "Missions Missed" the determinants are key, yet had "NMC days" been copied into

this table, it would have been required to make "NMC Days" part of the key to fulfill

the requirements of BCNF. In "Vehicle" all values in each tuple are determined by the

value of the key "Vehicle Number." Finally, in "Weapons," the key "Model"

determines the values of "Armament," so the process is complete.

At this point the tables have been processed in accordance with the procedure

established in section B. All tables have been placed in Boyce-Codd Normal Form

(BCNF), (see Figure 3.7). In places where an obvious redundancy was created, the

process has been modified to create tables which are compact yet still able to process

the user queries. The next section will describe the implementation process.

37

Unit

Unit ID Type Location Strength '/, Officers V. Enlisted

WAN6A0 Armor Ft . Knox 531 90 83

Vehicle

Vehicle f

E1073

Model

M60A1

Suspension

Track

Unit's Vehicle Use

lUnit IDI Veh ! Miles | Hours 1 NMCs
1 I D 1 f 1 1 DAYS I

_______ _____ 1 1 !

IWAN6A0 IE! 075
1 1

1 1

22011831 3 I

1 I 1

1 1 1

1 1 1

Weapons

Model Armament

1 M60A1
I M60A1

M60A1

M68 Cannon
M2 MG I

M240 MG

Missions Missed

Unit Veh I Missions
ID i # I Missed

| |

WAN6A0IE1075 2

Figure 3.7 Final Step - relational model for 'Unit's Vehicle Use'.

B. PHYSICAL IMPLEMENTATION OF THE PRODUCT

The relational model allows the smooth transition to an applications package.

At the present time there are several database products which use the relational model

as the basis for their implementation. Such products as AppleWorks and DBase II

have incorporated the basic applications of the use of relational tables to provide the

user with a working DBMS. In each product the user is presented with a language

that closely approximates one of the languages spawned from relational calculus,

namely the Transform Oriented language. Commercial designers have intentionally

refined the application to be responsive to the needs of the average programmer with

little or no background in relational theory.

Since the relational model consists of flat tables (two dimensional tables), it can

be moved directly into a corresponding memory convention. The flat tables can be

represented in memory as flat files of dimensions height (number of tuples) and width

38

(number of attributes within the tuple). This convention allows the tables to be

conveniently moved into the memory source, be that either a floppy disk or a hard

disk.

The issues of widespread use and portability of the information lead to the

adoption of a commercially available product. In an effort to remain as responsive as

possible, the product DBase III was chosen and later refined to use the its follow-on

version DBase III Plus. A comparison of present capabilities show DBase III Plus to

be the most useful application. This choice was also made based upon the perceived

need of the user to work in a variety of locations independently. It also reflects an

effort to make the transition to this new system as easy as possible for the user as the

application utilizes a widely available microcomputer system.

The operations provided in DBase III Plus are a good logical base upon which to

build. Although the language is one of the TO languages, and as such incorporates

several relational calculus processes, it falls short of the needs of the user. This

requires a revision of several of the facilities and the design of several additional

options to fulfill the void. Within each new option, a series of additional error

checking algorithms are implemented to ensure proper completion of each task.

The overall concept is to implement a system which is extremely user friendly, yet

retains a great deal of power and flexiblity. This is accomplished by the use of a menu

driven atmosphere from which the user can perform his work. Each task is provided

the ability to cease execution and return to the start point, as a worst case scenario.

Although the user is assumed to be an intelligent one, the system was none-the-less

"gorilla proofed."

Along with the basic operations of creation, addition, deletion, and listing, the

user is provided with several added features. These are broken into two groups: one

for information control, the other for information manipulation. Information control

is accomplished through the development of categories of information under which the

appropriate types of information are stored. The user is provided a menu within each

operation from which he is able to pick a category that best describes the data he

seeks. This helps the user to better organize the different files of data into logical

storage structures. The other aspect of information control is achieved through the

implementation of specific operations to restore and save data that the user has

changed or added. This option utilizes a secondary storage facility in both cases.

39

In terms of information manipulation, the language provided within DBase III

Plus was tailored to provide additional capabilities for the user. These changes are

added to move the language closer to approximating the capabilities found in relational

calculus languages. With the user's needs as a guide, it was decided that he required

the ability to be able to project specific columns of values from within a table, select

specific tuples within a table, join two or more tables together upon common

attributes, identify membership within a table, and accomplish some basic analytical

functions on the data within the tables. With the exception of the mathematical

analysis functions, these operations in reality closely approximate the relational

calculus join, project, and select operations which are embedded within that language.

These operations allow the user a much greater degree of flexibilty and reflect an

engineering viewpoint with the user's needs as the foremost consideration. These

additional capabilities of the language require only that the user to know a general

location of the data and what kind of value is to be returned. A more specific

description of each function is provided within the user's manual chapter.

In implementing the relational model, the following steps are taken. First, all

relational tables are divided into the categories which best describe the information

stored in them. Each category is implemented as a file of one column. That column

contains a listing of the tables which make up that category. Next, each relational

table is then implemented as a file which contains columns reflecting the attributes of

the table. Once the tables are loaded into memory files, the language implementation

can be initiated.

The final step is the implementation of the DBMS program to incorporate the

use of menus to move from step to step and the addition of the required operations.

These menus are designed to reflect an average understanding of the terms used to

describe DBMS operations. In the instances where the understanding might be

suspect, an explanation is provided. The incorporation of the added operations is done

by the use of a procedure file. The procedure file is made up of a series of smaller

program files, each accomplishing a specific task. The file is loaded at the start of the

session and remains throughout. At the conclusion of the session, the user is presented

the option to save his work. Throughout the session, at no time is the user required to

make an entry that is not presented on the monitor screen.

The code of the various options is provided as an appendix. To highlight the

added features the following descriptions of the operations are provided. The Join

40

operation is built upon the provided option and basically ensures that the operation

exists only when a common attribute is available. The Select operation allows the user

to select specific attributes within a given table and save them in another file of his

choice. The Find operation allows the user to locate an entry anywhere within a given

table and save those in a file of his choice. The user is only required to know a table

location of the data, as each column value is checked automatically. Membership is

also confirmed or denied using the Find operation. The Analytical operations provide

the user with a mathematical analysis of the entries of a column within a table. Such

calculations as the mean, standard deviation, and others are returned. As a final

feature, the user is provided with a tutorial section which walks him through each

different option, as one of the initial menu choices.

41

IV. RECOMMENDATIONS FOR IMPROVEMENT OF NTC DATABASE

A. CHAPTER CONCEPT

The intent of this chapter is to identify areas which might benefit from further

modification or system integration. These areas can be divided into three distinct

groups. The first area, Program Code, identifies aspects of the code which if modified,

wouid create a more responsive and efficient product. The next area, Systems

Integration, highlights outside influences that could be incorporated into the product

to benefit the system as a whole. The last area of concern, National Training Center

Aspects, reveals areas of data collection that would increase the practical benefits of

the information within the database. These aspects represent areas which would

significantly contribute to the product accomplishing its primary mission of analyst

support.

B. PROGRAM CODE MODIFICATIONS

The program code can be modified in several areas to maximize its efficiency and

responsiveness. Program code modifications would raise the overall program efficiency

by allowing the program to maximize the amount of operations possible within a given

amount of time. The first area which would benefit from code modification is the

search algorithm used to locate an object within the "Find" operation. Presently the

program uses a sequential search routine. A more efficient algorithm that would

perform a "smart" search and eliminate redundant or unnecessary values would allow

the user to receive his answer in a shorter amount of time. However, the new search

algorithm should not compromise the quest for speed by requiring the user to enter

any additional information other than what is presently required. The other aspect of

the code that lends itself to modification is the overall modularity of the program.

Presently the code has been developed to show system feasibility and applicability to a

specific use. Should the user wish to utilize the program over an extended period of

time, portions of the code would be easier to maintain if they were rewritten to be

more modular in composition.

42

The system responsiveness reflects the program's ability to satisfy the needs of

the user and could be upgraded by incorporating three additional features. The first

would be the option to allow the user to exit the program, yet remain within the DBase

environment. This would allow the user a greater degree of flexibility during a given

work session. The next feature would require an observation of the analyst's program

use over time. The mathematical operations could be modified to reflect those areas of

greatest need, thus increasing that choice's responsiveness to the needs of the user. As

these needs could fluctuate with time, the most appropriate means to accomplish this

might be to include an additional operation choice within the mathematical operation

menu. The last area which might benefit the user is the incorporation of mouse

functions. These functions allow easier user interface with the program, and since they

can be mastered quickly, could significantly reduce user training time.

C. SYSTEMS INTEGRATION ISSUES

Integration issues impact significantly upon the system's overall ability to handle

and process reliable data. Changes within this area reflect how the program interacts

with the outside world (including the machine environment). These modifications

reflect the need to allow a more efficient means of receiving input and distributing

output. Input could be more efficiently collected by the implementation of a interface

program to automatically load the data tables from the local workstation (reference

Appendix J, SAIC contract upgrade of home station facilities). This would remove

part of the manual input process and allow the system to be more responsive to local

data. It would also allow the system to be less dependant upon unit feedback reports

to generate the data tables. In addition to adding the workstation to unit home

stations, SAIC is also upgrading the collection facilities at the NTC. Changes such as

the addition of air assets into the engagement system and the addition of an elevation

axis will allow the data to be more realistic. This will require an update to the tables

to allow them to reflect this additional information.

Output needs can be solved by the incorporation of a means to print the screen

displays. The overriding concern of this implementation is unit confidentiality.

Therefore within the "print" mode should be the incorporation of a means to allow

units to remain "hidden." The only information displayed for all should be the data

values which represent answers to the queries, excluding unit identification.

D. NATIONAL TRAINING CENTER RECOMMENDATIONS
The last area of interest concerns the basic collection methods that the National

Training Center has established as its standard operating procedures. The inclusion of

several areas of data into the overall evaluation package would allow for a more

comprehensive evaluation. Specifically, the inclusion of a unit history profile would

allow a direct evaluation to be made of the unit's performance based upon past

exposure. This alone could allow researchers and analysts to truly gauge the

effectiveness of the NTC experience. The incorporation of logistical data could be used

to validate a combat Prescibed Load List (PLL) that would allow units to effectively

operate in similar terrain. The inclusion of recorded medical operations could more

effectively evaluate the Army's present field evacuation doctrine and update it as

needed. A more inclusive unit report could help validate the necessity of including the

many intangible aspects of combat actions, which to date have been passed on from

unit to unit rather than formalized. Practices such as long distance boresighting and

effective sleep plans could be given a solid evaluation rather than the heresay evidence

approach. These aspects all revolve around the inclusion of a wider range of subjects

into the evaluation package in an effort to make the total experience more profitable.

Although these additions will not guarantee better individual performance predictors,

they will allow much more thorough trend analysis to occur. Appendix I includes a

possible means to collect this data through specific evaluation sheets.

In terms of a relation to this product, those incorporated areas could produce a

wider range of data tables from which the user could draw (after the system was

modified to reflect them). This would allow for a better analysis to be conducted since

all significant aspects of the event could be related together. By factoring in all

possible input, the user could generate a truer appraisal of the event, thereby ensuring

a more responsive answer to his query.

44

APPENDIX A
ENTITY-RELATIONSHIP DIAGRAMS

The following diagrams are provided to the user to reveal how the real world

situation was modelled. Each entity contains the respective attributes in parentheses

and the key attribute is underlined. The keys for the relationships are understood to be

a combination of the keys of the respective entities, and as such only the relationship

attributes are presented.

MISSION

(MissionNum
Type
Duration
Location)

(TotalFired
TotaI4.2
Totall55
Total8in
TotalFrat)

(TaraetNum
Num_rds
Num_tubes
ProcessTime
Hit/Miss
Type_Rnd)

(UnitID
Type

.

Location
Strenght
%Officers
%Enlisted)

45

(Miles
Hours
NMC Days
Missions Missed)

(Vehicle^
Model
Armament
Suspension)

MISSION WEATHER
(REPORT)

(Day
Temp
%Humidity
%Moonlignt
WindSpd
WindDir
Visibility)

(TimeGiven
LDTime
TimeMissedLD
Distance)

(Unit.
Paragraphs
MOPP_Level)

46

MISSION

(Unit
Boresight
Distance
Tac_Feed
Sleep_plan
Tac_Fuel
%Security)

MISSION CLASSES OF
SUPPLY

(Amount
Rte_Distance
Trip_Time)

(Class
Item
Sen/Emergency)

VEHICLE PARTS

(PartNum
PartName
NMC_Status
Major_Assy)

47

CRITICAL
SUPPLY
CLASSES

(Qty_Used) (CLass
Name)

MODE]

(ReasonCode
Dn_Time)

(Model#
Number_Start
Number_Failed)

MISSION

(Aid Stat
Fieid_Hosp)

(Unit
Type
KeyLdr
Number)

MISSION

(NBC_Agent
Pre Warn
MasKTIme
Agent_Rptd
Num_Caslts
Area_Prediction)

48

MISSION VEHICLE
SYSTEMS

(Killer
Killed
Distance
Type_Kill)

(Hc-tiel
Num_Start
Num_lost
Tot US/OPFOR
Ratio)

MISSION

(Total_Trans
Avg_Lgth
Num_>25sec
Num_>55sec)

UNIT

(Date_Notifd
Rotatn_Date
Num_Tng_Cycles)

Position
Time_in_Psn
Rot_Experien
Mil_Scnools)

49

(Cert_Tank
Cert_TOW
Cert Bradle

Num_4Man
Num_3Man
Num_Sqds
Other)

50

APPENDIX B

DATABASE TABLES

1. INTRODUCTION AND DEFINITION OF FORMAT
The following appendix presents to the user the various tables which are used

within the database. Each table has been through the respective normalization process

discussed within the preceding chapters of the thesis, and are presently in Boyce-Codd

Normal Form (BCNF). The tables are presented within their respective category and

are formatted in the following manner: The first column given is the field name, the

second is a description of the field, and the third is a location where the data can be

found. This is in compliance with the thesis contract with FT. Knox. The name of the

table appears at the top of these columns along with the respective name used within

the database.

The data locations are presented in a coded form to allow for a more easily

understood format. Combinations of code reflect the need to combine the values of

both locations to arrive at the correct input for this table. The code is explained within

Figure B.l

2. DATA TABLES

A. Fire Support Tables

Fire Support Targets (FSTARGET)
MissionNum - The number of the tactical mission - 6 / 1:18
Targe tNum - The number of the taraet fired - 1:5
NumberRds - The number of rounds fired - 1:7
MumberTubes - The number of firing gun tubes that - 1:15

fired at target
ProcessTime - The time required to complete the fire - 1:15

request
Hit-Miss - Whether the target was hit or missed - 1:25
TypeRound - What type of artillery unit was used in - 1:15

the mission

Fire Support Totals (FSTOTAL)
MissionNum - The number of the tactical mission - 6/1:18
TotalMissions - The number of fire missions for this - 5

tactical mission
Total4.2 - The number that used 4.2" mortars - 5

Totall55 - The number that used 155mm artillery - 5

batteries
TotaiSIn - The number chat. used 3 inch artillery - 5

batteries

51

1 - Data is located within present collection system's
tape of a rotational unit's performance. A respective
ingres table number is also given to further identify data.
(e.g. - 1:18 refers to inares table #18 within the reference)
.reF 10 .

'

p. 2-38'

2 - Data is within combat vehicle contractor's database

3 - Data is contained in post DS4 database, which tracks
logistical requisitions.

4 - Data is contained within a respective account which
the unit maintains to meet rotational exercise
requirements/needs.

5 - Data would be the result of the use of one the
additional checklists provided in Appendix I.

6 - Data requires new assignment seneration techniques,
(i.e. mission numBer woulcl be the combination of the
home station-calendar vear-number of mission).

Figure B.l Data Location Coding Formats.

MissionNum
NumFratricides-

Fire Support Fratricides (FSFRAT)
The number of the tactical mission - 6 / 1:18
The number of fire missions that - 5

resulted in friendly casualities by
artillery round explosions

B. Intangibles

MissionNum
CompanyTeam
Boresight

AverageDist

MissionNum
CompanyTeam
TacticalFeed

SleepPlan

PercentSec

TacticalFuel

MissionNum
BdeOrderTime
BnOrderTime
LDTime

Company Boresights (INBORE)
The number of the tactical mission - 6 / 1:13
The identity of the unit reported - 1:15
Whether or not the unit boresighted - 5

weapons (Y/N)
The average distance at which the - 5

boresight was done

Tactical Resupply Actions (INRESUP)
The number of the tactical mission - S / 1:18
The identity of the unit reported - 1:15
Whether or not the unit fed - 5

tactically (Y/N)
Whether or not the unit used a sleep - 5

plan (Y/N)
The percentage of personnel on security - 5

during mission
Whether or not the unit refueled - 5

tactically (Y/N)

Brigade to Battalion Order Time (IN0RDER1)
The number of the tactical mission - 6

Time at which the brigade gave its. order - 5

Time at which the battalion gave its order- 5

Time at which the unit crossed the Line of- 5

Departure

/ 1:18

MissionNum
CompanyTeam

Company Order Times (IN0RDER2)
The number of the tactical mission - 6/1:13
The identity of the unit reported - 1:15

52

CoOrderTime
Platoon
PltOrderTime

Time at which company gave its order - 5
Platoon designator - 5

Time at which that platoon gave its order - 5

MissionNum
CompanyTeam
MCPPLevel

Company MOPP Level (INMOPP)
The number of the tactical mission
The identity of the unit reported
Level of MOPP used during the mission

6 / 1:18
1:15
5

MissionNum
CompanyTeam
OrderPara

Company Order Evaluation
The number of the tactical mission
The identity of the unit reported
paragraph in OPORD critique (1-5)

(IN0RDER3)
6 / 1:18
1:15
5

MissionNum
Temp
PercentHumid
PercentMoon

WindSpeed
WindDirection

Visibility

C. Logistical

Weather Statistics (INWETH)
The number of the tactical mission
Temperature at LD Time
Percent humidity at LD Time
If Night mission, percent moonlight

available
Wind Speed for the mission
Direction that wind was blowing during

mission
Visibilty distance during the mission

/ 1:18

VehicleNum
Model
Suspension

Vehicle (LGVEH)
Identification number of the vehicle - 2
Type vehicle assigned - 2
Type of suspension on vehicle (track/wheel)- 2

VehicleNum
Model
Miles
Hours
Rounds

NMCDays

Unit's Vehicle Use (LGUNVEH)
Identification number of the vehicle - 2
Type vehicle assigned - 2
Number of miles used during the rotation - 2
Number of hours recorded on the rotation - 2
If applicable, number of rounds fired - 2

thru gun
Number or Non Mission Capable days - 2

Model
Armament

Weapons (LGWEAPON)
Type of vehicle
Weapons which are organic to model

Unit ID
VehicleNum
MissionMissed

Mission Missed (LGMISSED)
Identification of Unit Using vehicle
Identification number of the vehicle
Number of tactical missions missed by

vehicle

VehicleNum
PartNumber
PartDescrip
NMCPart

Vehicle Parts History (LGPARTS)
Identification number of the vehicle - 2
Part number of part that vehicle needed - 3
Short part name identifying part - 3
(Y/N) did this part deadline the vehicle - 2

Unitlden
Diesel
GaiTrucks
GalTanks
GalAPC

GalBrad

Unit Fuel History (LGFUEL)
Identification of the tactical unit
Gallons of diesel used by unit
Number of gallons used by trucks
Number of gallons used by tanks
Number of gallons used by armored

personnel carriers
Number of gallons used by Bradley

53

GalTows

Unitlden
MPGTanks
MPGTrucks
MPGAPC

MPGTOW

carriers
Number of gallons used by TOW vehicles

Unit Mileage Figures (LGMPG)
Identification of the tactical unit
Miles per gallon figure for tanks
Miles per gallon figure for trucks
Miles per gallon figure for armored

personnel carriers
Miles per gallon figure for TOW vehicles

Unitlden
GalsWater
NumMRE

Water and Ration Use (LGRATION)
Identification of the tactical unit - 4
Number of gallons of water used by unit - 4
Number of Meals Ready to Eat consumed by - 4

unit

MissionNum
NumTanksStart

NumTanksDrop

NumAPCStart

NumAPCSDrop

NumBradsStart

NumBradsDrop

NumTOWsStart

NumTOWsDrop

Vehicle Statistical History (LGSTATS)
Number of the tactical mission - 6/1:18
Number of tanks at the start of the - 1:2

mission
Number of tanks lost for maintenance - 1:15

reasons
Number of personel carriers at the start - 1:2

of the mission
Number of personel carriers lost for - 1:15

maintenance reasons
Number of Bradley vehicles at the start - 1:2

of the mission
Number of 3radley vehicles lost for - 1:15

maintenance reasons
Number of TOW vehicles at the start - 1:2

of the mission
Number of TOW vehicles lost for - 1:15

maintenance reasons

MissionNum
DnVehType
ReasonCode

DnTime

Vehicle Deadline Status (LGDEAD
Number of the tactical mission
Type of vehical that was deadlined
Coded entry showing reason vehicle was

deadlined
Number of hours that the vehicle was

deadlined

/ 1:18

Unitlden
NumMajorAssy

NumTank
NumTOW
NumAPC
NumTruck
NumBrad

MissionNum
Unit
SupClass
Item
Amount
Sch/Emerg

Major Assembly Usage (LGASSY)
Unit identification number - 3
Total number of major assemblies used - 3

during rotation
Number or tank major assemblies - 3
Number of TOW major assemblies - 3
Number of APC major assemblies - 3
Number of truck major assemblies - 3
Number of Bradley major assemblies - 3

Unit Supply Requests (LGREQST)
Number of the tactical mission - 6
Unit identification - 3
Class of supply requested - 3
Item description - 3
Amount of the item requested - 3
Whether the request was scheduled - 5

refill or emergency

18

MissionNum
Unit

Unit Supplv Routes (LGROUTE)
Number of the tactical Mission - 6/1
Unit identification - 5

18

54

Distance

TripTime

MissionNum
NumCasualties
NumAidStation
NumFldHosp

Distance from tarveled by resupply - 5
vehicles

Time needed to make the trip - 5

Medical Evacuation Summary (LGMED)
Number of the tactical mission - 6
Number of casualties during mission - 1
Number taken to Bn Aid Station - 5
Number evacuated to Field Hospital - 5

/ 1:18
:3

D. Tactical

MissionNum
Type
Duration
Location

Mission Summary (TABATTLE)
Number of the tactical mission
Type of mission conducted
Length of time that mission ran
General area location of action

6 / 1:18
1:15
1:18
6

MissionNum
Unit
AgentType
PreWarn
TimeToWarn
NumCasualties

NBC Actions (TANBC1)
Number of the tactical mission - 6
Unit identification - 5
Type agent encountered during mission - 5
(Y/N) was unit prewarned of attack - 5
Time unit took to get into MOPP 4 5

Number of casualties as result of attack - 5

/ 1:18

MissionNum
Unit
AgentType
AgentReported
AreaPred

MissionNum
System
NumStart
NumLost
NumT72
NumBMP
NumSagger
NumSPl22
NumRPG
NumCAS
NumARTY
NumOther

MissionNUm
VehicleTvpe
USLoss
OPFORLoss
Ratio

NBC Messages (TANBC2)
Number of the tactical mission
Unit identification
Type agent used by OPFOR on attack
Type agent reported by unit
(Y/N) was an area prediction calculated

Vehicle Kill Summary (TAKILLS)
Number of the tactical mission
Fighting vehicle model
Number that atarted the mission
Number killed during the mission
Number killed by OPFOR tanks
Number killed by OPFOR BMPs
Number killed by OPFOR Sagger missiles
Number killed by OPFOR SP 122 howizters
Number killed by OPFOR RPG rockets
Number killed bv OPFOR Close Air Support
Number killed by OPFOR Artillery
Number killed by other means

Loss Ratio (TALOSS)
Number of the tactical mission
Type vehicle losses
Number of friendly vehicles lost
Number of OPFOR vehicles lost
Kill ratio US/OPFOR

6
1

1

1

1

1

1:2
1:2
1:2
1:2
1:2
1:2

/ 1:18

{5
1

2
2
2
2

18

6 / 1:18
1:15
1:15 /1:2
1:15 /1:2
6

MissionNum
Unit
Position

Key Leader Losses (TALDR)
Number of the tactical mission
Unit identification
Position of the leader killed

6 / 1:18
1:4
1:3

MissionNum
Unit
NumTrans
AvgLengrh
NumGTR25
NumGTR55

Radio Transmission Summary (TARADIO)
Number of the tactical mission - 6/1:18
Unit identification - 1:15
Number of transmissions made - 1:2
Average time length of the transmissions - 1:3
Number that were longer than 25 seconds - 1:2
Number that were longer than 55 seconds - 1:2

55

MissionNum
Unit
LDOnTime
Time
Distance

Unit Line of Departure Statistic (TALOD)
Number of the tactical mission - 6/1:18
Unit identification - 1:15
(Y/N) did unit cross LD on Time - 5
Amount of time unit missed LD time by - 5
Distance from assembly area to LD 5

MissionNum
KillerVeh
KilledVeh

WeaponSys
Distance

Direct Fire Targets (TADFTGT)
Number of the tactical mission - 6 / 1:18
Identification of killer vehicle - 1:3
Identification of vehicle which was - 1:3

killed
Weapon System used to kill with - 1:22
Distance between vehicles - Range of shot- 1:10

E. Unit History

Unitlden
Type
Location
Strength
PercenOff
PercenEnl

Unit Summary (TAUNIT)
Unit Identification - 5
Type of unit (ARMor/ INFantry) - 5
Home Station of unit - 5
Personnel assigned at rotation time - 5
% officers available / officers required - 5

% enlisted available / enlisted required - 5

Unitlden
MissionNum

Unit's Missions (UHMISSNS)
Unit identification
Number of the tactical mission / 1:18

Unitlden
Position
TimePsn

NumRotations
MilSchools
PrevRotPsn

Unit Personnel Summary (UHPER)
Unit identification - 5
Position description - 5
Length of time that individual has filled- 5

that position
Number or previous rotations experienced - 5

Military schools - 5

Previous positions held during other - 5

rotations

Unitlden
DateNotified

RotationDate
NumTngCycles

Unit Training Information (UHTNG)
Unit identification - 5
Date that unit was notified of upcomming - 5

rotation
Date of rotation - 5

Number of training cycles in between - 5

dates

Unitlden
Num4ManCrews
Num3ManCrevs
NumFullSqds
NumOtherSqds

Unit Crew Status (UHCREW)
Unit identification
Number of 4 man crews on tanks
Number of 3 man crews on tanks
Number of filled squads in unit
Number of unfilled squads in unit

Unitlden
CertCrewTanks

CertCrewTOWs

CertCrewBrad

Unit Crew Certification (UHCERT)
Unit identification - 5
Number of tanks crews that are - 5

certified during rotation
Number of TOW crews that are certified - 5

during rotation
Number of 3radley crews that are - 5

certified during rotation

56

APPENDIX C

USER HANDBOOK FOR DBMS PROGRAM

1. CONCEPT OF THE USER'S MANUAL

This chapter will provide a user's manual to the user or reader. The explicit

purpose of this manual is to allow the user to operate the database program in an

intelligent manner. This section will provide three distinct sections for the user that

will allow the user to implement the system properly. The only assumptions made at

the start of this chapter are that the user is working on an IBM AT microcomputer (or

a similar system), that the user has a working knowledge of the basic DOS functions

provided by the operating system, and that the user has a working copy of DBase III

Plus on his system.

The three major sections contained within the chapter are first, the section

designed to properly implement the system from the floppy disk, second, a general

discussion of the menu options contained within the system, and last, suggestions on

how to maintain a logical working system. The first section will take the user through

a step by step "boot up" session to ensure that the system is properly loaded into his

microcomputer. The second section will show through an example session, the various

choices presented to the user. The last section will provide some insights and

suggestions that will ensure that the logical organization of the data remains intact. It

will also provide some useful hints to help maintain the system's effectiveness.

The applications program follows a menu driven format. The user is presented

with a variety of choices within each menu and the ability to "quit" that menu and

return to a previous one. Normally in any situation the user can exit that option by

typing the letter "q", with the exception of certain categorizing choices that force the

user to select an option. These are conducted to maintain the proper functioning of

the program. Should the user be displeased with this action he can always delete the

table he has just created using the appropriate choices. In no situation is the user

presented with an option where his choice is anything other than what is displayed

upon the monitor.

57

2. LOADING THE APPLICATION PROGRAM

This section will provide the user with a step by step discussion of the proper

procedure used to load his program. At this point, the discussion will assume that the

user has turned his machine on, booted the system with an operating system such as

DOS 3.1 and the prompt shown in Figure C.l is displayed on his monitor screen.

Figure C. 1 Starting Point for Upload Procedure.

If this is not the case, please consult the microcomputer's user manual to move the

system to this display.

Once the user has reached this display, he is ready to proceed. The first action

should be to move to the sub-directory which contains the DBase III Plus program.

This can be accomplished through the command (after the prompt) "cd < sub-directory

name> ". When this has been completed the user should take the application's floppy

disk and place it into the "B" disk drive. Then the user changes drives to the "B" drive.

Figure C.2 gives a listing of the commands used to date.

C>cd <sub-di rectory name>

OB:
B>'

i

Figure C.2 Commands entered to reach B drive.

At this point the user should enter the following command after the "B" drive

prompt: "copy startup.bat C:". This will load the command file "startup" into the

proper sub-directory. When the file has been loaded the user returns to the sub-

directory by entering "C:" after the "B>" drive prompt. The user now enters the

command "startup" after the "C" drive prompt and waits for the completion of the load

process. Although the user could have directly transfered all files to the "C" drive, this

58

procedure ensures that only the proper starting files have been passed. The disk in the

"B" drive now becomes the system backup and this procedure can be done any time in

the event of a system failure or a move to another microcomputer. The user can now

remove the floppy disk from the "B" disk drive, but it is recommended that for the

duration of the session, he keeps it in place. Figure C.3 reviews the entire load

procedure.

C>cd < sub-directory name>

C>B:

B>"

B>copy startup. bat C:

B>C:

Ostartup

Figure C.3 System Upload Commands.

At this point, the user is now able to properly call and execute the program. By

following the above procedure, he is ensured that all applicable components of the

application have been properly stored.

3. PROGRAM CHOICES AND CAPABILITIES

The application program which has been provided to the user is a powerful

vehicle that has been designed for the data analyst. The program provides the user

with the ability to locate and analyze data on a variety of subjects. The different

operations allow the user to co-locate data, break tables into specific columns of data,

and work through queries to arrive at meaningful output. Inherent in this analysis, is

the requirement to provide a cursory analysis of a data column. This capability is

specifically designed into one of the option choices.

The user begins implementation of the program by typing "NTC" at the

operating system prompt (C >). This executes the application program implementing

DBase III Plus. The user is then presented with the copyright disclosure statement and

59

then a "welcome" screen (see Figure C.4). After the user types any key, the procedure

file is loaded and the top menu is provided. The user is presented a tree type structure

in Figure C.5 which will facilitate understanding the menu interactions. Upon starting

the program, the user is presented with the top menu where five choices are presented.

Selecting any choice (other than "quit") places him in the next level where he can

follow the tutorial or choose an option from another menu. These menu choices all

implement an action that manipulates a data file from the database. Once the required

actions have been completed, the user can traverse back "up" the tree by choosing the

"quit" option in a menu display. Ultimately this will allow the user to exit the

program.

NATIONAL TRAINING CENTER
RELATIONAL DATABASE

DESIGN PROGRAM

Figure C.4 Welcome Statement.

a. Initial Menu of Program

The first or "top" menu that is displayed for the user presents him with five

choices (see Figure C.6). The first choice is to invoke the text file "Tutorial" and read a

prepared text file that outlines the program in a user manual style. This is provided to

allow immediate support to the user while he is operating the program. The next three

choices move the user user to a second menu level and present the user with choices

which accomplish specific actions. The last choice from the first menu is the

"quifcommand. This choice is invoked when the user wishes to leave the program

gracefully. Prior to actually moving back to the control of the operating system, the

user is given the opportunity to do file maintenance in order to delete unnecessary files,

60

Opening Menu

Progr
Help

JA Tutorial
IB Make/Chge
|C Manipulate
ID File Maint
|Q Quit

Make/Change

Tutorial
I

I 1

IA Create
IB Add/Chgel
IC Delete
ID Display |

IQ
1

Quit

1

IA Join/Link
IB Select
IC Find
ID Math Opns
IQ
1

Quit

Manipulate File Maintenance

I
A Erase
B Restore
C Backup
Q Quit

Exit
Program

Table Categories

IF Fire Sprt
II Intangible
|L Logistics
IT Tactical
|U Unit Hist
|Y User Defnd
IQ Quit

I Access to Database Tables

Figure C.5 Menu Interaction Tree.

61

restore a lost files, or save files that may have been changed during the session. In

order to pass this phase, the user must make a correct entry.

OPENING MENU - NTC DB

Please select one of the following choices:

(A) FIRST TIME USERS - to USE TUTORIAL to learn about program
(B) to MAKE or CHANGE data within an existing table

(C) to MANIPULATE or LOCATE data in a table

(D) to DO FILE MAINTENANCE OPERATIONS on table data

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure C.6 Initial menu presented to the User.

The three choices that lead the user to the second menu level involve different

areas of operations. The second choice from the top menu allows the user to move to

a menu that presents choices which allow him to create, change, add, delete, or display

data. The third choice from the top menu moves the user to operations which allow

him to manipulate or locate data. These include the join, select, find (and membership

checks), and analyze data. The fourth choice from the top menu moves the user into

the menu which allows him to perform file maintenance operations. These include

deleting a table (or file), restoring tables from a backup source, and saving tables to a

backup source. Each operation will be elaborated in greater detail within this chapter.

b. Secondary Level Menus

The first menu described reflects choice "B" from the initial or "top" menu. As

described before, this menu provides operations which allow the user to make or

change data (see Figure C.7). The first option from this menu is the operation which

can create a table. This operation allows the user to generate a table of his own choice

to fulfill a need to store data. Although the procedure is fairly self-explanatory, a more

detailed description will follow in the section dealing with specific operations. The next

choice from this menu allows the user to add a tuple of information to an existing table

or modify a tuple already in existence. This operation will also be further explained in

a follow-on section.

OPTION CHOICE - MAKE / CHANGE

Please select one of the following choices:l =>

(A) to MAKE a new table to store data

(B) to ADD or CHANGE data within an existing table

(C) to REMOVE data within an existing table

(D) to DISPLAY all data in a table to the screen

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure C.7 Option "B" Sublevel Menu.

The next choice from this menu allows the user to delete a tuple of

information from one of the database tables. Choice four from this menu presents the

user with the opportunity to display, to the monitor screen,a table of information or

display the structure of a table. Structure is defined as what attributes are stored

within a table and the type of each attribute. The last choice from this menu allows

the user to return to the top menu for further choices or to exit the program.

The third choice from the top menu allows the user to access the menu which

controls operations that allow the user to manipulate or locate data (see Figure C.8).

These operations provide the user with the ability to satisfy query operations. The first

choice from this menu provides the capability to join two tables of information

together. The only restriction upon this action is that the tables have at least one

common attribute upon which the operation can center. The user is cautioned to

invoke this procedure prudently, as the new tables can be very large and cumbersome.

The next choice from this menu allows the user to create a new table by selecting

attributes from an existing table. This enables the user to tailor tables to meet specific

needs. The next operation serves a dual purpose. The find operation allows the user

to check for membership within a table and the ability to create a table with a specific

value that is common to all tuples. The only user requirement for this operation is

that the user know the table where the data is stored.

(A)

(B)

(Q
(D)

(Q)

OPTION CHOICE - MANIPULATE / LOCATE

Please select one of the following choices:

to LINK information from two tables

to SELECT a specific field from a table

to FIND a specific piece of data

to DO MATHEMATICAL OPERATIONS on table data

to QLTT or LEAVE this menu

Enter your selection _

Figure C.8 Option'C" Sublevel Menu.

The fourth choice from this menu provides the user with the capability to do

in house analysis of an attribute. This analysis includes the calculation of the mean,

range, standard deviation, standard deviation of the mean, and a quartile calculation.

These analysis functions are intended to provide a basic analytical capability only and

serve as a start for the data analyst. The last choice as in the previous menu, is the

"quit" command which returns the user to the top menu for further actions.

The fourth choice from the top menu moves the user to the menu allowing file

maintenance operations to be performed. Within this menu the user is provided with

four choices. First, he can choose to delete a file or table from the database. Should

64

the user choose this option he is allowed another chance to exit prior to execution, if a

change of mind occurs. The second option allows the user to restore his tables from a

backup floppy disk. Like the previous choice, the user is presented an opportunity to

exit this option, should a change of mind occur. The third option allows the user to

save the data tables he has changed in during the course of the session to his backup

floppy. As before, a safety value has been incorporated to prevent hasty use. The last

option is the "quit" option which takes the user back to the top menu (see Figure C.9).

OPTION CHOICE - TABLE MAINTENANCE

Please select one of the following choices:

(A) to ERASE an existing table

(B) to RESTORE all data in the tables from a floppy disk

(C) to SAVE your DATA TABLES to a floppy disk

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure C.9 Option "D" Sublevel Menu.

c. Other Menus used in the Program

There are several other significant menus which allow the user to progress

through the program. These can be broken into two categories. The first category are

menus which determine specific operations within an option choice. These allow the

user to specify which particular option he wishes to perform and provide a degree of

flexibility within that option. An example of such a menu is the menu associated with

Mathematical Operations. The option level menu allows the user to choose between

summing a column, averaging a column, conducting an analysis of a data column, or

counting the number of entries in a table. Each of these menus will be explained in

greater detail within the section explaining the option choice.

65

The next type of menu is the menu which allows the user to choose the

category of information that his table is stored under. The intent of this

implementation was to provide a logical storage facility under which a user could

group his tables. The menu is invoked any time a user is required to choose a table

and presents the menu shown in Figure CIO. The categories reflect logical headings

which reflect a type of information that the category contains. Any user developed

tables which do not "fit" within the confines of one of the category groups can be

stored under the catch-all category of user defined tables.

TABLE CATEGORIES AVAILABLE

Please select one of the following choices:

(F) FIRE SUPPORT tables

(I) INTANGIBLES tables

(L) LOGISTICAL tables

(T) TACTICAL MANUEVER tables

(U) UNIT HISTORY tables

(Y) YOUR OWN CATEGORY tables

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure CIO Category Choice Menu.

d. Program Operations

The program presents the user with ten operations from which he can choose.

As described in the previous section, the menus are presented with up to five choices

within each (one choice being the "quit", to return back to a previous menu). This was

implemented in an effort to not overload the user with a large number of choices

within one sinele menu.

66

The following paragraphs will describe each operation. Within the description

of each operation, the manual will highlight specifics which are peculiar to that

operation. Menus which are displayed, other than confirmation statements, will be

presented and explained. Confirmation statements merely show the reader what choice

he has made and give him the option to halt this choice or continue on (see Figure

C.ll).

OPTION MENU - CREATE

You have chosen the create option.
Please select one of the following choices:

(C) to CREATE a new table for data

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure C.ll Example Confirmation Statement Menu.

/. CREATE

The CREATE operation allows the user to design tables of his choosing.

The user is allowed to specify the any six letter name for the table. Should that name

already be in use, the user is presented with the opportunity to overwrite that table

with the new one. Once the user has chosen a name, he is asked to specify the fields of

the table and declare a type for each from one the five choices (character, numeric,

date, boolean, or memo). After the user has declared a type he is asked to give a

numerically length for the entries in that field.

When the user has completed defining the table, he is presented an

opportunity to place values within each field. Should he desire to do so, he enters a

"y" in the appropriate place and enters data corresponding to the various fields of each

67

record. Upon completion of this action the user is asked to place the table within a

logical storage category. The category should reflect the type of data that the table

contains. A "User Defined" category exists to hold tables which do not conform to

any other category. When this action has been accomplished, the user is returned to

the starting menu.

2. ADD
The ADD option allows the user to add a record of information to the

table of his choice. Upon entering this choice from the confirmation menu (see Figure

C.12), the user is presented with the category table choices from which he chooses the

category of his table. Having chosen the category, he is then presented with the tables

in that category from which he can make his table choice. In the event that he has

made an incorrect choice or wishes to change, he may enter a 'q' to leave the category

and choose another. He may continue in this vain to exit this option choice.

Please s

(A)

(C)

(Q)

OPTION MENU - ADD / CHANGE

elect one of the following choices:

to ADD data to an existing table

to CHANGE data within an existing table

to QUIT or LEAVE this menu

Enter your selection

Figure C.12 Add / Change Confirmation Choices.

Assuming that he has picked a table, the user is now presented with the

different columns of the record and a highlighted area to the right of each column

where he can enter the data. The length of the highlighted area shows how long the

entry can be and the user will be moved to each sequentially by pressing the enter key

or filling the preceding highlighted area completely. Notice at the top of the page there

is a number indicating the corresponding record number that the user is working on.

68

The user can follow the instructions provided in the menu block to

complete his actions or he may press the ENTER key at the beginning of the first

highlighted block to exit this addition process. Upon exiting, the user will be placed

back at the option menu from which he started.

3. CHANGE
The CHANGE operation allows the user to modify a record which is

already in existance. The user has reached this choice by following the same procedure

used to reach ADD. At the point where the menu asked for a choice between ADD
and CHANGE, the user chose CHANGE (see Figure C.12). The user is then

confronted with the category choice menu. After picking the appropriate category that

his table resides in, he then enters the table's name in the space provided. At this point

should he wish to return to the category choices, he can enter a "Q" in the space

reserved for the table name.

Assuming that the user wishes to continue, after picking the table, the

records of the table are displayed upon the monitor screen. Using the directional

arrow keys, he can move through the records and find the one he wishes to change.

Then using the directional keys he can move to the appropriate value and overwrite it

in the space provided. Typing the ENTER key stores the value in place. Should the

user traverse the entire length of the table, he will be given the option to add data to

the table. The user can accomplish this by entering a "Y" after the question. Then as

in the add operation he can input the data in the space provided. He exits this mode

by typing the ENTER key on a blank fieid. This will place him at the last value

entered where he may perform any changes he wishes or follow the menu information

and leave the option (CTRL - END). Should he wish to not save these changes he can

abort by pressing the ESC key. In either case, the user will return to the original menu

where he can pick another MAKE or CHANGE option.

4. DELETE

The REMOVE option is reached by entering choice "C" within the MAKE
or CHANGE menu. This choice allows the user to delete a record from an existing

table. Once the user picks this option, he is confronted with another menu which

confirms that he wishes to delete a record from a table. Picking the letter "D"

continues the action and places the user at the category choice menu. After picking

the appropriate category and tabie name the user is able to begin the operation.

69

At this point the user is presented with a display of the table of his choice

with each record numbered. At the base of the screen, the user is provided a area to

enter the respective number of the record that he wishes to delete. Error checking

ensures the the input number is within the proper boundaries. Should he wish to not

delete any record he is given the last chance to exit by entering a "Q" in the space

provided for the record number. Once a number is entered the user can use the

SPACE bar to complete the area or press the ENTER key. In each case the record

will be deleted and by pressing another key of his choice, he will return to the original

menu.

5. DISPLAY

The DISPLAY option is the last choice of the MAKE or CHANGE menu.

This option allows the user to list the contents of the table of his choice or display the

structure of the table. Once this option has been chosen, the user is confronted with

the menu to choose between displaying of the contents or the structure (see Figure

C.13). In either case once the user chooses a "D" or an "S" ("Q" returns him to the

original menu), he is placed at the category choice menu. After choosing the category,

he is then required to enter the name of the table he desires to display.

OPTION MENU - DISPLAY

Please select one of the following choices:

(D) to DISPLAY data within an existing table

(S) to DISPLAY table columns' name/type/width information

(Q) to QUIT or LEAVE this menu

Enter your selection _

Figure C.13 Display Choice Menu.

70

If the user had picked a "D" the table contents will be listed on the monitor

screen. Should the table be longer than twenty lines, including wrap arounds from

wide tables, the user must press a key to continue the display. Once the display is

completed, the user is returned to the original menu.

If the user had picked an "S" the different field names of the table will be

displayed on the screen. Next to each field name is its respective type, field width, and

if it is a numeric, the number of places to the right of the decimal point. By pressing a

key of his choice, the user can return to the original menu.

6. JOIN

The Join operation is refered to as the LINK operation to facilitate user

understanding. This is because the operation joins or links the data of two tables

together based upon a common field. It is important to note that the operation joins

on a common field regardless of whether there are common values within that field. In

the best case each value of one table has a record in another with that same value, and

the new table is the length of the original tables. In the worst case each value from the

first table is paired with a value from the second. In this case, the length of the new

table is the length of the first TIMES the length of the second. It is for this reason

that the user is cautioned when using this operation.

Once the user has decided to use this function, he is asked to pick the first

table to be used in the operation. He does this by typing the appropriate category

choice and table name. The program will then echo the name of the table which he

has picked. He's then given the opportunity to choose the second table in a similar

fashion. In either case entering a "Q" in the category choice places him back at the

original menu. Once he has chosen both tables the program will ask him to specify the

name of his new table. A similar error checking scheme is performed as in the

CREATE function and if the table name is not in use, the operation will proceed.

Should the name be used the program will place the user back at the start point.

If the table name is not in use, the user is then queried as to the category

which he wishes to store his new table under. Once this choice has been made, the

operation wiil continue and the actual linking of the data elements conducted. At the

completion of this operation the user will be asked to press any key to place him back

at the original menu.

71

7. SELECT

The SELECT option allows the user to create a table using an existing

table. The user does this by specifying the fields of data which he wishes to copy from

the old table into his new one. Once he has chosen to continue the operation, he is

asked to choose the appropriate table category and name. After picking the table

name, the user is provided with a listing of the table to help him determine which fields

he wishes to use. At the bottom of the screen, the program will ask him which fields,

by name, he wishes to copy. Only a "Y" response copies the field, any other response

is interpreted as an "N".

After he has chosen the fields he wishes to copy, the program will ask the

user to specify the table name that the data will be stored under. Here agam a

checking operation similar to the join operation is conducted. If the table name has

been used, the user is returned to the start point to try again. If the name is valid,

then the user will be asked which category to store the table under. When the

operation is completed, the user will be asked to press any key to return to the original

menu.

8. FIND

The FIND operation is used in two situations. First, the FIND operation

can be used to locate records within a table that contain a specific value. The other

reason is to show membership of a value within a table. To utilize the FIND

operation, the user must know what value he is looking for and which table is to be

scanned. After confirming that he wishes to proceed with this option, the user is asked

whether he wishes to retain a table with the information returned from the FIND

operation. This allows the user to maintain a permanent record suitable for a query

operation. If the user answers "Y" then he must specify a table name under which the

data will be stored. The table is automatically conformed to store the data (provided

the name passes the error checking scheme). Then the user chooses the new table

storage category.

After he has completed the above or should he have answered the question

"N", he must pick the appropriate table category and table name. He is then asked to

specify the data value which he desires to find an occurrence of in the table. The

program will check each field for the value and return those records which contain the

value. Should no record be found, a message confirming this will appear on the screen.

At the completion of the operation, the user will be asked to press any key to return to

72

the original menu. If the storage option was chosen, the records displayed will be

stored in the new table.

9. MA THEMA TICAL OPERA TIONS

This option provides the user the capability to accomplish some basic

mathematical operations on a column of data. This option is reached through entering

a "D" in the MANIPULATE and LOCATE menu. Upon choosing this option, the

user is presented with another menu which points out his operation choices (see Figure

C.14). The user may SUM the elements of a column, AVERAGE the elements of a

column, perform an ANALYSIS of the elements of the column, or he may COUNT
the number of records within a table. In each of the first three options the user is

allowed to only attempt the operation on a data column of type numeric. The final

operation can be used upon any table.

OPTION CHOICE - MATHEMATICAL FUNCTIONS

Please select one of the following choices:

(A) to SUM an existing TABLE COLUMN
(B) to AVERAGE data within a TABLE COLUMN
(C) to DO ANALYSIS OPERATIONS on a TABLE COLUMN
(D) to COUNT the NUMBER of ENTRIES in a TABLE
(Q) to QUIT or LEAVE this menu

Enter vour selection

Figure C.14 Mathematical Operations Menu.

The same procedure applies to each of the first three choices, so a general

description will be given. In each case, once the user has made a selection of the

operation, he is queried for the table category and name. Once the user has identified

the table of his choice, a listing of the table is displayed for user convenience. He is

73

then asked to denote the name of the column upon which he wants to perform the

operation. Should he pick a column which is not typed numeric, no action will take

place and the entry will be ignored.

When the user has selected a proper data column the operation will act.

The SUM operation will return a sum total of all entries in the coiumn. The

AVERAGE operation will return a value which represents an average for the data

column. The ANALYSIS will return values for the mean, range, standard deviation,

standard error of the mean, and a quartile listing. The quartile listing shows the data

value which corresponds to a percentile evaluation of the sorted data values. Once

these values have been displayed on the screen, the user will be asked to press any key

to return to operation choice menu.

The option to calculate the number of records within a table or COUNT
begins in a similar manner. The user is queried for the table category and name. Once

the table name has been identified, the program returns a value that represents the

number of records present in the table. The user is then asked to press any key to

return to the operation choice menu. At this menu the user can continue working or

enter a "Q" to return back to a previous higher level menu.

10. FILE MAINTENANCE

This option is called in two places. The user can reach this menu by

choosing the fourth option from the opening menu, or he can answer "Y" during the

QUIT procedure to exit the program. In either situation, the user is presented with a

menu of choices which allow him to accomplish the following (see Figure C.14):

ERASE a table from memory, RESTORE data from a floppy disk to his tables in main

memory, or SAVE a copy of the changes to his tables on a floppy disk and create a

backup for the system.

The ERASE operation deletes a table from memory and also removes the

table name from the appropriate category. The user is asked to select a table category

and name as before. Once the user has selected a table name, the program will ask

him again if he wishes to complete this action. Any answer other than a "Y" returns

the user to the operation choice menu. A "Y" erases the table and the data is lost from

memory. The user is then asked to press any key to return to the operation choice

menu.

The RESTORE operation allows the user to recopy information from a

backup floppy into main memory. As with any RESTORE operation, the information

74

OPTION CHOICE - TABLE MAINTENANCE

Please select one of the following choices:

(A) to ERASE an existing table

(B) to RESTORE all data in the tables from a floppy disk

(C) to SAVE your DATA TABLES to a floppy disk

(Q) to QUIT or LEAVE this menu

Enter vour selection

Figure C.14 File Maintenance Operations Menu.

is only as current as the last backup save procedure. Once the user chooses this option

he is asked again if he wishes to complete this. The significance of this question is that

the RESTORE operation will overwrite any new data within the tables and lose any

additions done after the backup save was done. Here again, any answer other than a

"Y" returns the user to the operation choice menu.

Should the user wish to continue, he is asked to place his backup floppy

into the "B" drive of his system. When the floppy has been placed in the disk drive, the

user presses any key to continue. Once the operation is complete, the user presses any

key to return to the operation choice menu.

The SAVE operation is just the reversal of the RESTORE operation. In

this situation the user is moving a copy of his working tables onto a floppy backup.

The user can use any formatted disk to be the backup medium and the "B" drive is

used in this procedure also. Once this operation has been completed, the user is asked

to press any key to return to the operation choice menu.

75

4. SUGGESTIONS FOR CONSISTENT PROGRAM PERFORMANCE

The following suggestions are made to help the user maximize the program to its

fullest extent. The first suggestion deals with query operations. In all circumstances,

the user should attempt to reduce the size (in terms of length and width) of the tables

prior to conducting a Join operation. Not only will this speed the operation within the

machine, but it will also cut down on extraneous material stored within the table. This

can be accomplished by using a Find operation to shorten the number of records (by

specifying a particular value if possible). The Select operation can reduce the number

of fields within a table to decrease the width of it.

The next suggestion deals with actual queries. To properly implement a query

within the program, the user must break the query into operations involving two or

less tables. Using Select, Find, and Join operations, the user can whittle away at the

query and return a correct answer. The Find operation is perfect for concentrating on

specific values. The Select operation keys to specific fields and the Join can be used to

link tables together, which in effect links the information upon common bonds.

The final suggestion deals with the table categories. The purpose of the

categories is to develop a logical storage mechanism that allows the user to group

tables together based on common information. This is provided only as a help to the

user, and as an organization tool. The user is encouraged to develop tables of his own

and store then appropriately. As more tables become available for use the benefits of

these categories will be more fully realized.

A note of caution is provided to the user to remind him of proper operating

procedures. It is recommended (and in many areas required) that the user backup his

work files daily. This will preclude hours of work attempting to return the system to

its current state. The user is also reminded of the storage requirements for his floppy

disks (avoid extreme heat and cold, moisture, excessive handling, and dirt). Recent

case studies have also shown that these same conditions have effected some

microcomputer systems. Ft. Ord, CA reports that a combination of cold morning

temperatures and high humidity have caused eractic behavior of their microcomputers.

76

APPENDIX D
STARTUP PROGRAM

rem
rem
rem
rem
rem
rem

copy
copy
copy
copy
codv
copy
copy
copy
copy
copy
copy
copy
cooy
copy
copy
copy
coby
copy

Program: Startup.BAT
Purpose: This program allows the user to properly boot

his own system with the necessary tables
and Drograms.

3:ntc.bat C:
B :ntcmenu.prg C:
B :welcome.prg C:
B: tUtor.txt C:
3 .-browse.* C:
3:fS*.dbf C:
3: in*. dbf C:
B: logistic. dbf C:
B:lg*.dbf C:
3:ta*.dbf C:
3:unithist .dbf C:
3:uh*.dbf C:
3:vourown.dbf C:
B:yr*.dbf C:
3 :procfile .prg C:
3:"erasorl .bat C:

3: savprog.bat C
3 :savinto.bat C

77

APPENDIX E

DATABASE MANAGEMENT PROGRAM CODE

rem ***
rem Program: NTC.3AT
rem Purpose: This program allows the user to properly invoke
rem the program using DBase III Plus as the outer
rem program shell.
rem ***

DBASE NTCMENU

* Program: NTCMENU. prg
* Purpose : The purpose of this program is to provide the
* user with a mechanism to manipulate bits of data

that have been collected at the NTC by giving him
* the ability to logically store these pieces of

data and orovide capabilities to move, link, and
* selectively operate on them through a series of
* complex functions.

*

SET BELL OFF
SET DEVICE TO SCREEN
SET ECHO OFF
SET EXCLUSIVE OFF
SET SAFETY OFF
SET SCOREBOARD OFF
SET STATUS OFF
SET TALK OFF
CLEAR ALL
CLOSE ALL
DO WELCOME
SET PROCEDURE TO PROCFILE
a = .t.
DO WHILE a

CLEAR
*
* Draw menu box

@ 1,2 to 22,73
(§5, 20 SAY 'OPENING MENU - NTC DB'
@ 6,13 SAY ' '

@ 3,15 SAY 'Please select one of the following choices
\A) FIRST TIME USERS - to USE TUTORIAL'
to learn about program 1

(B) to MAKE or CHANGE data within an
existing table 1

(C) to MANIPULATE or LOCATE data in a table'
(D) to DO FILE MAINTENANCE OPERATIONS on '

table data

'

(Q) to QUIT or LEAVE this menu'
Enter your selection'

3 10,10 SAY ' '

@ 10,51 SAY
@ 12,10 SAY
@ 12,50 SAY
@ 14,10 SAY
@ 16,10 SAY
@ 16,54 SAY
@ 18,10 SAY
@ 21,20 SAY
choice = '

DO WHILE . NOT. UPPER (choice) $'ABCDQ'
@ 21,43 GET choice
READ

ZNDDO
CLEAR GETS
choice = UPPER (choice)
IF choice='Q'

SET EXCLUSIVE ON

7S

CLEAR
ans = '

'

§ 5,10 SAY "If you've made a change within the tables"
@ 5,51 SAY at this time,
@ 7,8 SAY 'Would you like to do some file '

@ 7,39 SAY 'maintenance operations? (Y/N)

'

DO WHILE .NOT. ans$'YNyn'
(§8,35 GET ans
READ

ENDDO
IF ans = 'Y' .OR. ans = 'y'

DO SBMAINT
END IF
CLEAR
(§5,18 SAY "You've left the program at this time."
@ 8,16 SAY "Thank-you and please come back to use us."
@ 22,5 SAY " "

WAIT
CLOSE PROCEDURE
QUIT

END IF
IF choice='A'

X
* To use the tutorial to learn about the program
X

CLEAR
RUN 3R0WSE.COM TUT0R.TXT
choice = '

'

END IF
IF choice='3'

* To make or change data within a table

DO SBMENU1
choice = '

'

END IF
IF choice='

C

X
* To manipulate or locate a specific data element
X

DO SBMENU2
choice = '

'

END IF
IF choice='D'

X
* To file maintenace operations on data tables
X

DO SBMAINT
choice = '

'

END IF
a = .t.

ENDDO

xx
* Program : WELCOME. prg

Purpose : The purpose of this program is to display a welcome
heading for tne user to introduce the" program.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx*xxxxx*
X
* draw welcome message to screen
X

SET STATUS OFF
CLEAR
* draw outside box
X

SET COLOR TO B/W
3 2,1 to 23,79
@ 6,16 SAY 'NATIONAL TRAINING CENTER'
? 9,21 SAY 'RELATIONAL DATABASE'

79

@ 12,25 SAY 'DESIGN PROGRAM
@ 24,10 SAY ' '

WAIT
SET COLOR ON

80

Please select one of the following choices.-'
(A) to MAKE a new table to store data 1

(3) to ADD or CHANGE data within an existing 1

table'
C) to REMOVE data within an existing table 1

D) to DISPLAY all data in a table to the '

screen 1

(Q) to QUIT or LEAVE this menu 1

Enter your selection 1

APPENDIX F

PROCEDURE FILE CODE

* Program: SBMENUl.prg
* Purpose: The purpose of this program is to offer the user,
* the first second level menu options list.

*

PROCEDURE SBMENU1
SET EXCLUSIVE OFF
a = .t.
DO WHILE a

CLEAR
*

* Draw menu box
*

$ 1,2 to 22,78
@ 5, 12 SAY 'OPTION CHOICE - MAKE /
5 5,55 SAY ' CHANGE '

@ 6,11 SAY
@ 6,55 SAY
(§3,12 SAY
@ 10,15 SAY
(3 12,15 SAY
@ 12,63 SAY
@ 14,15 SAY
@ 16,15 SAY
@ 16,60 SAY
@ 18,15 SAY
@ 21,20 SAY
choice = '

'

DO WHILE .NOT. UPPER(choice) $
' ABCDQ

'

<? 21,43 GET choice
READ

ENDDO
CLEAR GETS
choice = UPPER (choice)
IF choice='0'

SET EXCLUSIVE ON
CLEAR
RETURN

END IF
IF choice='A'

*

* To create a new table to store data
*

SET SAFETY ON
SET MENUS ON

' DO SBCREATE
choice = '

'

END IF
IF choice='3'

*

* To add or change data within a table

DO SBADD
choice = '

'

END IF
IF choice='C'

* To delete data from an existing table
*

DO SBDEL

81

choice = ' '

END IF
IF choice='D'

*

* To display a table to the screen
•k

DO SBDISPLAY
choice = '

'

END IF
-s — 4-

ENDDO

* Program: SBMENU2.prg
* Purpose: The purpoose of this program is to provide the user
* with the second level menu options list.
**
*

PROCEDURE SBMENU2
a = .t.
DO WHILE a

CLEAR
*
* Draw menu box

(§ 1,2 to 22,78
(§5,7 SAY 'OPTION CHOICE
(§5,55 SAY 'T E
@ 6,5 SAY '---

(§6,52 SAY
(§8,15 SAY
(§ 10,18 SAY
(§ 12,18 SAY
(§ 14,13 SAY
(§ 16,13 SAY
(§ 16,63 SAY
(§ 18,18 SAY
(§ 21,23 SAY
choice =
DO WH

T I

/

I

E 1

MANIPULA

Please select one of the followinq choices:
to LINK information from two tables'
to SELECT a specific field from a table'
to FIND a specific piece of data'
to DO MATHEMATICAL OPERATIONS on table 1

to QUIT or _ LEAVE this menu'
Enter your selection

7HILE .NOT. UPPER(choice)$'ABCDQ
(§ 21,46 GET choice
READ

ENDDO
CLEAR GETS
choice = UPPER(choice)
IF choice='Q'

CLOSE ALL
CLEAR
RETURN

ENDIF
IF choice='A'

*
* To join two tables together
*

DO SBJOIN
choice = '

'

ENDIF
IF choice='B'

*
* To select a specific field from within a table
*

DO SBSELECT
choice = '

'

END IF
IF choice='C

*

* To locate a specific piece of information in a table
*

DO SBLOCATE
choice = '

'

END IF

82

IF choice='D'

* To perform mathematical operations

DO SBMATH
choice = '

'

END IF
a = .t.

ENDDO

* Prcaram: SBMAINT.prg
* Purpose: The purpose of this program is to provide the user

with file maintenance options to allow his memory
space to be more efficiently used and provide a

* backup system for his information files.

*

PROCEDURE SBMAINT
a = .t.
DO WHILE a

CLEAR

* Draw menu box
*

@ 1,2 to 22,78
@ 5,9 SAY'OPTION CHOICE - TABLE'
@ 5,51 SAY ' MAINTENANCE'
@ 6,7 SAY '

'

@ 6,46 SAY '
-

@ 3,15 SAY 'Please select one of the following choices: 1

@ 10,16 SAY '(A) to ERASE an existing table'
@ 12,16 SAY '(B) to RESTORE all data in the tables from'
?? ' a floppy disk '

@ 14,16 SAY '(C) to SAVE vour DATA TABLES to a floppy disk'
@ 16,16 SAY (Q) to QUIT or LEAVE this menu 1

@ 21,22 SAY 'Enter your selection'
choice = '

'

DO WHILE .NOT. UPPER (choice)$
' ABCQ

'

@ 21,45 GET choice
READ

ENDDO
CLEAR GETS
choice = UPPER (choice)
IF choices' Q'

CLEAR
RETURN

END IF
IF choice= 'A'

*

* To erase an existing table
k

SET EXACT ON
DO TABLOPT
tablechoice = TRIM(tablechoice)
tablechoice = UPPER(TRIM(tablechoice)

)

IF tablechoice = '0' .OR. ASC(tablechoice) =
RETURN

END IF
response = '

'

CLEAR
© 10, 12 SAY ' CAUTION - are you sure that you want to'
@ 10, 52 SAY ' DESTROY this table ?'

@ 12, 27 SAY ' You must enter a Y to continue'
@ 14, 40 GET response
READ
IF resDonse = 'Y' .or. response = '

y

'

CLOSE ALL
tablename = tablechoice + ' .DBF'
ERASE &tablename
* erase from appropriate catagory list

83

thrdchoice = UPPER(thrdchoice)
IF thrdchoice = 'F'

USE FSUPPRT
DELETE ALL FOR FSTABLES = tablechoice
PACK

END IF
IF thrdchoice = 'I 1

USE INTANG
DELETE ALL FOR INTABLES = tablechoice
PACK

END IF
IF thrdchoice = 'L'

USE LOGISTIC
DELETE ALL FOR LGTABLES = tablechoice
PACK

END IF
IF thrdchoice = 'T'

USE TACTIC
DELETE ALL FOR TATABLES = tablechoice
PACK

END IF
IF thrdchoice = 'U'

USE UNITHIST
DELETE ALL FOR UHTABLES = tablechoice
PACK

ENDIF
IF thrdchoice = 'Y'

USE YOUROWN
DELETE ALL FOR YRTABLES = tablechoice
PACK

END IF
WAIT

ENDIF
SET EXACT OFF
choice = '

'

ENDIF
IF choice='B'

*
* To backup existing tables from disk

response = '
'

CLEAR
@~10, 12 SAY ' CAUTION - are you sure that you want to'
@ 10, 52 SAY RESTORE these tables ?'

@ 12, 27 SAY ' You must enter a Y to continue'
(f 14, 40 GET response
READ
IF response = 'Y* .or. response = 'y'

CLEAR
@ 10,23 SAY ' RESTORE OPERATIONS IN PROGRESS'
@ 12,12 SAY ' You are now recopying all previously '

@ 12,50 SAY 'stored information 1

@ 14,26 SAY into your database files'
@ 16,20 SAY ' Please place your backup disk in DRIVE B'
@ 20,20 SAY '

WAIT
CLOSE DATABASES
SET SAFETY OFF
RUN SAVINTO.BAT
WAIT

ENDIF
choice = '

'

ENDIF
IF choice = 'C

•k

* To save the existing tables to disk
response = '

'

CLEAR
@ 10, 12 SAY ' CAUTION - are you sure that you want to'
@ 10, 52 SAY ' SAVE these tables ?'

84

(§12, 27 SAY ' You must enter a Y to continue 1

@ 14, 40 GET response
READ
IF response = 'Y' .or. response = 'y'

CLEAR
RECOPY OPERATIONS IN PROGRESS'
You are now recopying all previously '

stored information'
into vour disk in the B Drive. '

Please place a formatted disk into the 3 Drive

@ 10,23 SAY
@ 12,12 SAY
@ 12,50 SAY
@ 14,26 SAY
5 16,18 SAY
•3 21,9 SAY '

WAIT
RUN SAVPROG.BAT
WAIT

END IF
choice = '

'

END IF
a = .t.

ENDDO
x*x*xx***************************^
* Program: SBCREATE.prg
x Purpose: The purpose of this program is to allow the

user to design and save tables of his own
* choice and imagination.
xxxxxxxxxxxxxxxxxxxxxxxxxx^xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

PROCEDURE SBCREATE
* Clear all memory locations used to date
x

CLEAR

@ 5, 22 SAY ' OPTION MENU - CREATE'
§ 6,18 SAY ; '

§ 3,17 SAY 'You have chosen the create option.'
§ 9,17 SAY 'Please select one of the following choices: 1

@ 12,20 SAY '(C) to CREATE a new table for data'
@ 15,20 SAY (Q) to QUIT or LEAVE this menu'
@ 21,25 SAY 'Enter your selection 1

secnchoice = '
'

DO WHILE .NOT. UPPER (secnchoice)$
' CQ'

@ 21,48 GET secnchoice
READ

ZNDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice=' 0'

3ET EXCLUSIVE ON
CLEAR
RETURN

ENDIF
IF secnchoice='C

x
x To Create a new table for user data
CLEAR
§ 5,10 SAY 'Please enter the name of the table that you'
(§5,53 SAY ' wish to create: '

newtaoie = '

§ 7,35 GET newtable
READ
newtable = UPPER(TRIM(newtable)

)

IF newtable = 'Q' .OR. ASC(newtable) =
RETURN

END I?
* previous table check
rehash = .F.
USE FSUPPRT
orestable =

' FS ' + newtable
LOCATE FOR FSTABLES = prestable
IF FOUND ()

rehash = .T.

85

locattable = prestable
END IF
USE INTANGIB
prestable = 'IN' + newtable
LOCATE FOR INTABLES = prestable
IF FOUND ()

rehash = .T.
locattable = prestable

END IF
USE LOGISTIC
prestable =

' LG' + newtable
LOCATE FOR LGTABLES = prestable
IF FOUND ()

rehash = .T.
locattable = prestable

ENDIF
USE TACTICS
Drestable = 'TA' + newtable
LOCATE FOR TATABLES = prestable
IF FOUND ()

rehash = .T.
locattable = prestable

END IF
USE UNITHIST
Drestable = ' UH' + newtable
'LOCATE FOR UHTABLES = prestable
IF FOUND ()

rehash = .T.
locattable = prestable

ENDIF
USE YOUROWN
prestable = 'YR' + newtable
LOCATE FOR YRTABLES = ores table
IF FOUND ()

rehash = .T.
locattable = prestable

ENDIF
IF .NOT. rehash

CREATE templA.dbf
check = FILE(! templA.dbf

'

)

IF check
CLEAR
*

* Draw one box for table category

@ 1,2 to 22,78
(§5,20 SAY 'CATEGORY CHOICES
@ 5,17 SAY '

'

£ 8,16 SAY 'Please select one of the following choices
@ 9,18 SAY 'to catagorize your table under: '

@ 11,19 SAY '(F) FIRE SUPPORT tables '

@ 12,19 SAY '(I) INTANGIBLES tables '

@ 13,19 SAY ' (L) LOGISTICAL tables '

@ 14,19 SAY ' (T) TACTICAL MANUEVERS tables '

@ 15,19 SAY ' (U) UNIT HISTORY tables '

@ 16,19 SAY ' (Y) YOUR OWN CATEGORY tables '

@ 21,20 SAY 'Enter your selection 1

thrdchoice = '
'

DO WHILE .NOT. UPPER(thrdchoice) $' FILTUY

'

@ 21, 43 GET thrdchoice
READ

ENDDO
* place table in category of choice
thrdchoice = UPPER(thrdchoice)
IF thrdchoice = 'F 1

USE FSUPPRT
APPEND BLANK
newtable =

' FS ' + newtable
REPLACE FSTABLES WITH newtable

ENDIF

86

I? thrdchoice =
'

I

'

USE INTANG
APPEND BLANK
newtable = 'IN' + newtable
REPLACE IMTABLES WITH newtable

END IF
IF thrdchoice = 'L'

USE LOGISTIC
APPEND BLANK
newtable = 'LG 1 + newtable
REPLACE LGTABLES WITH newtable

END IF
IF thrdchoice = 'T'

USE TACTIC
APPEND BLANK
newtable = 'TA' + newtable
REPLACE TATABLES WITH newtable

END IF
IF thrdchoice = 'U'

USE UNITHIST
APPEND BLANK
newtable = 'UH' + newtable
REPLACE UHTABLSS WITH newtable

ENDIF
IF thrdchoice = 'Y 1

USE YOUROWN
APPEND BLANK
newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable

ENDIF
newtable = newtable + ' .DBF'
COPY FILE temDlA.dbf to ocnewtable
newtable = newtable - ' .DBF'
ERASE TEMP1A.DBF
WAIT
*

ENDIF
ENDIF
IF rehash

CLEAR
overwrite = '

@ 10,20 SAY ' The table has been previously defined.
@ 12,20 SAY ' Do you wish to OVERWRITE it ? (Y/N)

'

@ 12,56 GET overwrite
READ
overwrite = UPPER(overwrite)
IF overwrite = 'Y'

CREATE temDlA.dbf
check = FILE (' temDlA.dbf

'

)

IF check
CLOSE DATABASES
tablename = iocattable + ' .DBF 1

ERASE Sctablename
prefix = SU3STR(locattable,l,2)
IF orefix =

• FS

'

tfSE FSUPPRT
DELETE ALL FOR FSTABLES = Iocattable
PACK

ENDIF
IF orefix = 'IN'

USE INTANG
DELETE ALL FOR INTA5LES = Iocattable
PACK

ENDIF
IF orefix = 'LG'

USE LOGISTIC
DELETE ALL FOR LGTABLES = Iocattable
PACK

ENDIF
IF prefix = 'TA'

87

USE TACTIC
DELETE ALL FOR TATABLES = locattable
PACK

END IF
IF prefix = 'UH'

USE UNITHIST
DELETE ALL FOR UHTABLES = locattable
PACK

END IF
IF prefix = 'YR'
USE YOUROWN
DELETE ALL FOR YRTAELES = locattable
PACK

ENDIF
CLEAR
*
* Draw menu box
*

@ 1,2 to 22,78
@ 5,20 SAY 'CATEGORY CHOICES '

@ 5,17 SAY '

I 3,16 SAY 'Please select one of the following choices
(§9,18 SAY 'to catagorize your table under: '

F) FIRE SUPPORT tables
I) INTANGIBLES tables '

L) LOGISTICAL tables '

T) TACTICAL MANUEVERS tables
U) UNIT HISTORY tables '

Y) YOUR OWN CATEGORY tables '

Enter your selection 1

@ 11,19 SAY
@ 12,19 SAY
@ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 15,19 SAY
@ 21,20 SAY
thrdchoice = '

'

DO WHILE .NOT. UPPER (thrdchoice) $' FILTUY

'

@ 21, 43 GET thrdchoice
READ

SNDDO
* relocate table in category of choice
thrdchoice = UPPER(thrdchoice)
IF thrdchoice = 'F'

USE FSUPPRT
APPEND BLANK
newtable =

' FS ' + newtable
REPLACE FSTABLES WITH newtable

ENDIF
IF thrdchoice =

'

I'

USE INTANG
APPEND BLANK
newtable = 'IN' + newtable
REPLACE INTABLES WITH newtable

END IF
IF thrdchoice = 'L'

USE LOGISTIC
APPEND BLANK
newtable = 'LG' + newtable
REPLACE LGTABLES WITH newtable

END IF
IF thrdchoice = 'T'

USE TACTIC
APPEND 3LANK
newtable = ' TA 1 + newtable
REPLACE TATABLES WITH newtable

END IF
IF thrdchoice = 'U'

USE UNITHIST
APPEND BLANK
newtable = 'UH' + newtable
REPLACE UHTABLES WITH newtable

ENDIF
IF thrdchoice = 'Y'

USE YOUROWN
APPEND BLANK

88

newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable

END IF
newtable = newtable + ' .DBF 1

COPY FILE temDlA.dbf to &newtable
newtable = newtable - ' .DBF'
RUN ERAS0R1.3AT
WAIT

END IF
END IF
CLEAR
wish = '

'

@ 10,20 SAY 'The table has been categorized.'
@ 12,20 SAY 'Do you wish to relocate it ? (Y/N)

'

@ 12,54 GET wish
READ
wish = UPPER(wish)
IF wish = 'Y'

prefix = SUBSTR(locattable,l,2)
IF orefix =

' FS

'

USE FSUPPRT
DELETE ALL FOR FSTABLES = locattable
PACK

END IF
IF orefix = 'IN'

USE INTANG
DELETE ALL FOR INTABLES = locattable
PACK

END IF
IF prefix = 'LG'

USE LOGISTIC
DELETE ALL FOR LGTABLSS = locattable
PACK

END IF
IF prefix = 'TA'

USE TACTIC
DELETE ALL FOR TATABLES = locattable
PACK

END IF
IF orefix = 'UH'

Use unithist
DELETE ALL FOR UHTABLES = locattable
PACK

END IF
IF orefix = 'YR'

Use yourown
DELETE ALL FOR YRTABLES = locattable
PACK

END IF
CLEAR

* Draw box for category choice

@ 1,2 to 22,78
@ 5,20 SAY 'CATEGORY CHOICES '

@ 5,17 SAY '
'

(§3,16 SAY 'Please select one of the following choices
@ 9,13 SAY 'to catagorize your table under: '

FIRE SUPPORT tables
I) INTANGIBLES tables '

L) LOGISTICAL tables '

T) TACTICAL MANUEVERS tables '

U UNIT HISTORY tables '

Y) YOUR OWN CATEGORY tables '

Enter your selection'

@ 11,19 SAY
@ 12,19 SAY
<§ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 16,19 SAY
<§ 21,20 SAY
thrdchoice
DO WHILE .MOT. UPPER (thrdchoice) $' FILTUY 1

@ 21, 43 GET thrdchoice
READ

ENDDO

89

* relocate with new name into category choice
thrdchoice = UPPER(thrdchoice)
IF thrdchoice = 'F'

USE FSUPPRT
APPEND BLANK
newtable =

' FS ' + newtable
REPLACE FSTABLSS WITH newtable
CLOSE DATABASES
locattable = iocattable + ' .DBF 1

newtable = newtable + ' .DBF'
RENAME Sclocattable TO Scnewtable

END IF
IF thrdchoice = 'I 1

USE INTANG
APPEND BLANK
newtable = 'IN' + newtable
REPLACE INTABLES WITH newtable
CLOSE DATABASES
locattable = locattable + '.DBF'
newtable = newtable + ' .DBF 1

RENAME Sclocattable TO Scnewtable
ENDIF
IF thrdchoice =

'

L'

USE LOGISTIC
APPEND BLANK
newtable = 'LG' + newtable
REPLACE LGTABLES WITH newtable
CLOSE DATABASES
locattable = locattable + ' .DBF'
newtable = newtable + ' .DBF'
RENAME Sclocattable TO Scnewtable

END IF
IF thrdchoice = 'T 1

USE TACTIC
APPEND BLANK
newtable = 'TA 1 + newtable
•REPLACE TATABLES WITH newtable
CLOSE DATABASES
locattable = locattable + '.DBF'
newtable = newtable + ' .DBF'
RENAME Sclocattable TO Scnewtable

END IF
IF thrdchoice =

'

U

1

USE UNITHIST
APPEND BLANK
newtable = 'UH' + newtable
REPLACE UHTABLSS WITH newtable
CLOSE DATABASES
locattable = iocattable + ' .DBF 1

newtable = newtable + ' .DBF 1

RENAME Sclocattable TO Scnewtable
END IF
IF thrdchoice = 'Y'

USE YOUROWN
APPEND BLANK
newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable
CLOSE DATABASES
iocattable = locattable + '.DBF'
newtable = newtable + '.DBF'
RENAME Sclocattable TO Scnewtable

ENDIF
END IF

END IF
END IF
a = .t.

RETURN

* Program: SBADD.prg

90

* Purpose: Program allows the user to add a record to
* an existing table or change a record already
* there.

PROCEDURE SBADD
* Clear all memory locations used to date

CLEAR
*

* Draw a menu box
*

©1,2 to 22,78
©5,16 SAY 'OPTION MENU - ADD / '

@ 5,52 SAY 'CHANGE'
@ 6,13 SAY ' '

@ 6,45 SAY ' '

@ 8,12 SAY 'Please select one of the following choices:'
@ 11,15 SAY '(A) to ADD data to an existing table'
@ 13,15 SAY '(C) to CHANGE data within an existing table
@ 15,15 SAY ' (Q) to OUIT or LEAVE this menu'
@ 21,20 SAY 'Enter your selection 1

secnchoice — '
'

DO WHILE .NOT. UPPER(secnchoice)$ ' ACQ

'

@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice='0'

SET EXCLUSIVE ON
CLEAR
RETURN

ENDIF
IF secnchoice=' A'

* Add an entry to a table
* Must first pick table cataegory
CLEAR
@ 5,18 SAY " You've chosen the ADD option"
@ 16,9 SAY '

'

WAIT
DO TABLOPT
tablechoice = TRIM(tabiechoice)
tablechoice = UPPER(tablechoice)
IF tablechoice = 'Q' .OR. ASC(tablechoice) =

RETURN
ENDIF
USE Sctabiechoice
* add entrv to "able
APPEND
CLEAR
COUNT ALL TO sum
column = FIELD(l)
IF TYPEC&column 1

) = 'N'
blank = VAL(' ')

END IF
IF TYPE('Sccolumn') = 'C

blank = '

'

END IF
IF TYPE('.Sccolumn') = 'D'

blank = CT0D(' '

)

END IF
w delete extra blank record if one present
LOCATE RECORD sum FOR &column = blank
IF FOUND ()

DELETE RECORD sum
PACK

END IF
END IF
IF secnchoice='

C

91

*
* To change an entry in a table
* Must first pick table category
CLEAR
@ 5,18 SAY " You've chosen the CHANGE option"
@ 16,9 SAY '

WAIT
DO TABLOPT
tablechoice = TRIM(tablechoice)
tablechoice = UPPER(tablechoice)
IF tablechoice = 'Q' .OR. ASC(tablechoice) =

RETURN
ENDIF
USE &tablechoice
* cahnge record entries in table
BROWSE
PACK

ENDIF
a = .t.

RETURN

* Program: SBDEL.prg
* Purpose: Program allows the user to remove a record
* from an existing table.

PROCEDURE SBDEL
* Clear all memory locations used to date

OPTION MENU - DELETE
CLEAR

*

@ 5, 21 SAY '

@ 6, 13 SAY
@ o

,
45 SAY '

@ 3, 12 SAY
§ 9, 12 SAY '

@ 12 ,15 SAY
8 15 ,15 SAY

You have chosen the DELETE option '

Please choose one of the options below :

'

'(D) to DELETE data within an existing table 1

1

(Q) to QUIT or LEAVE this menu 1

@ 21,20 SAY 'Enter your selection'
secnchoice = '

'

DO WHILE .NOT. UPPER (secnchoice) $ DQ

'

@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice=

'

Q

'

SET EXCLUSIVE ON
CLEAR
RETURN

END IF
IF secnchoice='D'

* Add an entry to a table
* Must first pick table cataegory
DO TABLOPT
tablechoice = TRIM(tablechoice)
tablechoice = UPPER(tablechoice)
IF tablechoice = ; Q' .OR. ASC(tablechoice) =

RETURN
END IF
USE &tablechoice
IF RECCOUNT() #

CLEAR
DISPLAY ALL
p
'•>

'>

* get record number that user wishes to delete
numrecord = ' '

(§21,5 SAY 'Please enter the record number of the line'

@ 21,47 SAY ' which you wish to delete :'

@ 22,25 SAY ' Enter a "q" to delete none.'
COUNT ALL TO total

X
=

- F -

DO WHILE .NOT. y
IF VAL(numrecord) <= .OR. VAL(numrecord) > total

y = .T.
END IF
IF numrecord = 'q' .OR. numrecord = 'Q'

V = .T.
END IF
@ 23, 40 GET numrecord
READ

ENDDO
numrecord = TRIM(numrecord)
IF numrecord # 'q'.AND. numrecord # 'Q'

nrecord = VAL (numrecord)
DELETE RECORD nrecord
PACK
WAIT

END IF
ELSE

CLEAR
(§12, 15 SAY 'You have picked a table with no record 1

?? ' entries. 1

§ 14, 15 SAY 'Please try this option again with another 1

?? ' -able.

'

5 20,20 SAY '
'

WAIT
END IF

END IF
RETURN
xx
* Program: SBDISPLAY.Drg
* Purpose: Program allows ~he user to list the record
* elements of a particular table or display
* the structure of a table.
XX
X

PROCEDURE SBDISPLAY
* Clear all memory locations used to date

CLEAR

* Draw menu box
X

<§ 1,2 to 22,78
@ 5,21 SAY 'OPTION MENU - DISPLAY 1

? 8,13 SAY :
'

@ 5,45 SAY ' '

3 9,12 SAY Please choose one of the options below :'

@ 12,15 SAY '(D) to DISPLAY data within an existing table'
@ 14,15 SAY ' (S) to DISPLAY table columns name/ type/width
@ 14,63 SAY 'information'
@ 16,15 SAY '(0) to QUIT or LEAVE this menu'
@ 21,20 SAY 'Enter your selection 1

secnchoice - '
'

DO TOILS .NOT. UPPER(secnchoice) $'DS0'
@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice='0'

SET EXCLUSIVE ON
CLEAR
RETURN

END IF
IF secnchoice='D'

* To display the table and its contents

* Must first pick table cataegory and table
CLEAR
(§5,15 SAY ' You have chosen to display the table contents'
(§ 16,9 SAY '

'

WAIT
DO TABLOPT
tablechoice = TRIM(tablechoice)
tablechoice = UPPER (tablechoice)
IF tablechoice = '

Q
' .OR. ASC(tablechoice) =

RETURN
ENDIF
USE Sctablechoice
CLEAR
(§2,10 SAY 'You have chosen the table :

'

(§2,38 SAY tablechoice
•>

DISPLAY OFF ALL
IF RECCOUNT() =

? ' You have displayed an empty table.'

END IF
WAIT

END IF
IF secnchoice= 'S 1

* To display the column information or structure
* Must first pick respective table
CLEAR
(§ 5,15 SAY ' You have chosen to display the table columns'
(§16,9 SAY '

'

WAIT
DO TABLOPT
tablechoice = TRIM(tablechoice)
tablechoice = UPPER(tablechoice)
IF tablechoice = '

Q
' .OR. ASC(tablechoice) =

RETURN
END IF
USE &tablechoice
CLEAR
(§2,10 SAY 'You have chosen the table :

'

(§2,38 SAY tablechoice

DISPLAY STRUCTURE
WAIT

END IF
RETURN

* Program: SBJOIN.prg
* Purpose : Program is used to combine two tables worth
* of information into one using a similar
* field(s) as the base of the operation.

PROCEDURE SBJOIN

CLEAR
PUBLIC tablechoice

(§5,23 SAY
(§6,13 SAY
(§6,45 SAY
(§8,12 SAY
(§9,12 SAY

OPTION MENU - JOIN

i

You have chosen the JOIN option '

Please choose one of the options below
(§ 13,15 SAY '(J) to JOIN data within TWO existing tables
@ 15,15 SAY ' (Q) to QUIT or LEAVE this menu'
(§ 21,20 SAY 'Enter your selection'
secnchoice = '

'

DO WHILE .NOT. UPPER (secnchoice)$ ' JO.

'

94

@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice=l 1

SET EXCLUSIVE ON
CLEAR
RETURN

END IF
IF secnchoice=' J'

* Select TABLES from an existing tables
* Must pick FIRST table
CLOSE ALL
DO TABLOPT
choicel = TRIM(tablechoice)
choicel = UPPER(choicel)
IF choicel = 'Q' .OR. ASC(choicel) =

RETURN
END IF
CLEAR
@ 10,20 SAY 'You have chosen the table :

'

@ 10,48 SAY UPPER(tablechoice)
@ 21,10 SAY '

'

WAIT
* Must oick SECOND table
DO TABLOPT
choice2 = TRIMC tablechoice)
choice2 = UPPER(choice2)
IF choice2 = 'Q' .OR. ASC(choice2) =

RETURN
END IF
IF choicel = choice2

CLEAR
@ 12, 20 SAY ' You cannot Join a table with itself. 1

d 14, 20 SAY Please try this option again. 1

@ 20,20 SAY '

WAIT
RETURN

END IF
CLEAR
(5 2,20 SAY 'You have chosen the table :

'

@ 2,48 SAY UPPER (tablechoice)
(§7,10 SAY 'Please enter the name of the TABLE which you 1

?? would like'
(§9,20 SAY ' this information stored under :'

newtabie = '

@ 11,30 GET newtabie
READ
newtabie = TRIM(newtable)
newtabie = UPPER(newcable)
IF newtabie = 'Q' .OR. ASC(newtable) =

RETURN
END IF
* previous table check
rehash = .F.
USE FSUPPRT
orestabie =

' FS ' + newtabie
LOCATE FOR FSTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF
USE INTANGIB
orestabie = 'IN' + newtabie
LOCATE FOR INTABLSS = orestabie
IF FOUND ()

rehash = .T.
END IF
USE LOGISTIC
prestable = 'LG' + newtabie

95

LOCATE FOR LGTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF
USE TACTICS
prestable =

' TA 1 + newtable
LOCATE FOR TATABLES = prestable
IF FOUND ()

rehash = .T.
END IF
USE UNITHIST
prestable = 'UH 1 + newtable
LOCATE FOR UHTABLES = prestable
IF FOUND ()

rehash = .T.
END IF
USE YOUROWN
prestable = 'YR' + newtable
LOCATE FOR YRTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF
IF rehash

CLEAR@ 10,20 SAY ' You have chosen a table already in use.
@ 12,20 SAY ' Please try this choice again.'
@ 21,10 SAY '

'

WAIT
ENDIF
IF .NOT. rehash

CLEAR
* Categorize Operation
* Draw category menu box

@ 1,2 to 22,78
@ 5, 20 SAY'CATEGORY CHOICES '

@ 6,17 SAY ' '

@ 8,16 SAY 'Please select one of the following choices
@ 9,18 SAY 'to catagorize your table under: '

(F) FIRE SUPPORT tables
(I) INTANGIBLES tables '

(L) LOGISTICAL tables '

T) TACTICAL NANUEVERS tables
UNIT HISTORY tables '

YOUR OWN CATEGORY tables '

1?
Enter your selection 1

@ 11,19 SAY
@ 12,19 SAY
@ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 16,19 SAY
@ 21,20 SAY
thrdchoice =
DO WHILE .NOT. UPPER (thrdchoice) $' FILTUY'

@ 21, 43 GET thrdchoice
READ

ENDDO
thrdchoice = UPPER (thrdchoice)
IF thrdchoice = 'F'

USE FSUPPRT
APPEND BLANK
newtable = ' FS ' + newtable
REPLACE FSTABLES WITH newtable

ENDIF
IF thrdchoice = 'I'

USE INTANG
APPEND BLANK
newtable = 'IN' + newtable
REPLACE INTABLSS WITH newtable

ENDIF
IF thrdchoice = 'L'

USE LOGISTIC
APPEND 3LANK
newtable = 'LG' + newtable
REPLACE LGTABLES WITH -newtable

ENDIF

96

IF thrdchoice = ' T"
USE TACTIC
APPEND BLANK
newtable = 'TA' + newtable
REPLACE TATABLES WITH newtable

END IF
IF thrdchoice = 'U'

USE UNITHIST
APPEND BLANK
newtable = 'UH' + newtable
REPLACE UHTABLES WITH newtable

END IF
IF thrdchoice = 'Y'

USE YOUROWN
APPEND BLANK
newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable

END IF
* Join Operation
SELECT 2
USE &choicei
num = '

1

'

number = 1
DO WHILE ASC(FIELD (number)) #

A&num = FIELD (number)
num = STR(VALvnum) + 1)
num = LTRIM(num)
number = number + 1

ENDDO
countA = number - 1

SELECT 1

USE &choice2
numb = '

1

'

number = 1

DO WHILE ASC(FIELD (number)) #
B&numb = FIELD(number)
numb = STR(VAL(numb) + 1)
numb = LTRIM(numb)
number = number + 1

ENDDO
counc3 = number - 1

condition = '

moverA = 1

moverB = 1

num = '

1

'

numb = '
1

'

DO WHILE moverB <= counts
DO WHILE moverA <= countA

IF 3&numb = A&num
condition = condition + '

,
' + B&numb +

+ A&num
END IF
num = STR(VAL(num) + 1)
num = LTRIM(num)
moverA = moverA + 1

ENDDO
numb = STR(VAL(numb) + 1)
numb = LTRIM(numb)
moverB = mover3 + 1

ENDDO
1 = LEN(condition)
IF 1 > 1

1 = LEN(condition)
condition = SUBSTR(condition,3,l - 2)
JOIN WITH &choicel TO &newtable FOR &condition

END IF
.r 1

CLEAR
@ 12,20 SAY ' Unable to do JOIN Operation. 1

@ 14,15 SAY ' No compatible columns to join on

97

?? 'present.

'

@ 16,20 SAY ' Please try this operation again.'
@ 20,20 SAY '

WAIT
IF thrdchoice = 'F'

USE FSUPPRT
DELETE ALL FOR FSTABLES = newtable
PACK

END IF
IF thrdchoice =

'

I

'

USE INTANG
DELETE ALL FOR INTABLES = newtable
PACK

END IF
IF thrdchoice = 'L'

USE LOGISTIC
DELETE ALL FOR LGTABLES = newtable
PACK

ENDIF
IF thrdchoice = 'T'

USE TACTIC
DELETE ALL FOR TATABLES = newtable
PACK

END IF
IF thrdchoice = 'U'

USE UNITHIST
DELETE ALL FOR UHTABLES = newtable
PACK

END IF
IF thrdchoice = 'Y'

USE YOUROWN
DELETE ALL FOR YRTABLES = newtable
PACK

ENDIF
RETURN

ENDIF
WAIT

ENDIF
ENDIF

RETURN

* Program: SBSELECT.prg
* Purpose: The purpose of this program is to allow the
* user the ability to create a new table using
* selected columns from an existing table.

*

PROCEDURE SBSELSCT
k

PUBLIC tablechoice, newtable, fieldlist
CLEAR

@ 5,21 SAY 'OPTION MENU - SELECT'
@ 6,13 SAY '

'

@ 6,45 SAY '
--- '

@ 3,12 SAY 'You have chosen the SELECT option '

(§9,12 SAY ' Please choose one of the options below :'

(f 13,15 SAY '(S) to SELECT data within an existing table'
@ 15,15 SAY ' (Q) to QUIT or LEAVE this menu'
@ 21,20 SAY 'Enter your selection'
secnchoice = '

'

DO WHILE .NOT. UPPER(secnchoice) $
' SO

'

@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice='0'

SET EXCLUSIVE ON

98

CLEAR
RETURN

ENDIF
IF secnchoice=l S

* Select fields from an existing table
* Must first pick table cataegory
DO TABLOPT
tabiechoice = UPPER(tablechoice)
table choice = TRIM(tablechoice)
IF tablechoice = '

Q
' .OR. ASC(tablechoice) =

RETURN
END IF
USE Sctablechoice
CLEAR
(§2,10 SAY 'You have chosen the table :

'

(§2,38 SAY tablechoice
?

DISPLAY ALL
•?

?

* Count Fields
num = 1

DO WHILE ASC(FIELD (num)) #
num = num + 1

ENDDO
num = num - 1

colindex = I

response = ' ,

'

* user response for columns to copy
DO WHILE colindex <= num

(§ 22 ,9 SAY ' '

@ 22 ,50 SAY
(§ 22,10 SAY 'Do you wish to copy column

i

?? FIELD(coiindex)
?? ' (y/N) 1

answer = '
'

(§23, 30 GET answer
READ
IF answer = '

y' .or. answer = 'Y'
response = response + LTRIM(STR(colindex)) + ','

END IF
IF answer = 'q' .or. answer = '

Q

'

colindex = hum + I

END IF
colindex = colindex + 1

ENDDO
CLEAR
IF LEN(resoonse) = 2

(§ 12,10 'SAY ' You have decided to NOT SELECT any column
END IF
newtable = '

fieldlist = '

'

IF LEN(response) > 2
1 = LEN(resDonse)
response = SUBSTR(response, 3,1 - 2)
(§12, 10 SAY ' PLease enter che name of the new table 1

@ 14 , 27 GET newtable
READ
newtable = TRIM(newtable)
newtable = UPPER(newtable)
IF newtable = 'Q' .OR. ASC (newtable) =

RETURN
END IF
* previous table check
rehash = . F.
USE FSUPPRT
orestable =

' FS ! + newtable
LOCATE FOR FSTABLES = prestable
IF FOUND ()

99

rehash = .T.
END IF
USE INTANGIB
orestable = 'IN' + newtable
LOCATE FOR INTABLES = prestable
IF FOUND

O

rehash = .T.
END IF
USE LOGISTIC
prestable = 'LG' + newtable
LOCATE FOR LGTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF
USE TACTICS
prestable =

' TA 1 + newtable
LOCATE FOR TATABLES = prestable
IF FOUND ()

rehash = .T.
END IF
USE UNITHIST
prestable = 'UH' + newtable
LOCATE FOR UHTABLES = prestable
IF FOUND ()

rehash = .T.
END IF
USE YOUROWN
orestable =

' YR 1 + newtable
LOCATE FOR YRTABLES = prestable
IF FOUND ()

rehash = .T.
END IF
IF rehash

CLEAR
@ 10,20 SAY 'You have chosen a table already in use.
@ 12,20 SAY Please try this choice again. 1

@ 21,10 SAY ' '

•

WAIT
END IF
IF .NOT. rehash

CLEAR
* Do SELECT Operation
*

CLEAR
@ ?, 12 SAY Please identify the catagory for your

new table
FIRE SUPPORT tables
INTANGI3LES tables '

LOGISTICAL tables '

TACTICAL NANUEVERS tables '

UNIT HISTORY tables '

YOUR OWN CATEGORY tables '

your selection'

@ 7, 50 SAY
@ 11,19 SAY
@ 12,19 SAY
@ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 16,19 SAY
@ 21,20 SAY
thrdchoice =
DO WHILE .NOT. UPPER (thrdchoice) $' FILTUY

(§21, 43 GET thrdchoice
READ

ENDDO
* insert table into category choice
thrdchoice = UPPER(thrdchoice)
IF thrdchoice =

'

F'

USE FSUPPRT
APPEND BLANK
newtable =

' FS ' + newtable
REPLACE FSTABLES WITH newtable

END IF
IF thrdchoice = ' I

'

USE IMTANG
APPEND BLANK
newtable = 'IN' + newtable

100

REPLACE INTABLES WITH newtable
END IF
IF thrdchoice = 'L'

USE LOGISTIC
APPEND BLANK
newtable =

' LG ' + newtable
REPLACE LGTABLES WITH newtable

END IF
IF thrdchoice = 'T'

USE TACTIC
APPEND BLANK
newtable = 'TA' + newtable
REPLACE TATABLES WITH newtable

END IF
IF thrdchoice = 'U 1

USE UNITHIST
APPEND BLANK
newtable = 'UH' + newtable
REPLACE UHTABLES WITH newtable

END IF
IF thrdchoice = 'Y'

USE YOUROWN
APPEND BLANK
newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable

END IF
CLOSE DATABASES
WAIT
USE &tablechoice
DO WHILE ASC(response) #

newfield = VAL(SUBSTR(response , 1 ,1)

)

Fieldld = FIELD(newfield)"
fieldlist = fieldlist + Fieldld + '

,

'

1 = LEN(resDonse)
response = SUBSTR(response ,3,1 - 2)

ENDDO
1 = LEN(fieldlist)
fieldlist = SUBSTR(fieldlist,l,l - 1)
newtable = UPPER(newtable)
COPY TO *newtabie FIELD Scfieldlist
* disday result to screen
USE Schewtable
? ' For the new table '

?? newtable
?? ' the listing is :

'

7
>

DISPLAY ALL
WAIT
*

END IF
END IF

END IF
RETURN

* Program: SBLOCATE.Drg
: Purpose: Program is used to locate a specific data
* 2iernent within a database table.
7r***********X*******7C**7C7t**
*

PROCEDURE SBLOCATE
*

SET EXACT OFF
CLEAR

*

@ 5,21 SAY
(§5,13 SAY
(§5,43 SAY
d 8,12 SAY 'You have chosen the LOCATE option

Please choose one of the ODtions below@ 9,12 SAY

OPTION MENU - LOCATE'

101

@ 13,15 SAY ' (L) to LOCATE data within an existing table 1

@ 15,15 SAY ' (Q) to QUIT or LEAVE this menu 1

@ 21,20 SAY 'Enter your selection 1

DO WHILE .NOT. UPPER(secnchoice)

$

; LQ

'

@ 21,43 GET secnchoice
READ

ENDDO
CLEAR GETS
secnchoice = UPPER(secnchoice)
IF secnchoice=' '

SET EXCLUSIVE ON
CLEAR
RETURN

END IF
IF secnchoice='L'

k
* Determine if user wants a permanant copy
CLEAR
copvchoice = '

'

DO WHILE .NOT. UPPER (copychoice)$ 'YNp.

'

@ 10,15 SAY 'Do you wish to retain a copy of this'
?? ' output? 1

@ 12,15 SAY 'Please enter your decision (Y/N) :
'

d 12,49 GET cooychoice
READ

ENDDO
rehash = .F.
IF UPPER(copychoice) = 'Y'

newtable = '
'

@ 15,15 SAY 'Please enter the name of the table '

?? 'you wish to use 1

@ 16,35 GET newtable
READ
newtable = TRIM(newtable)
newtable = UPPER (newtable)
IF newtable = '

Q
' .OR. ASC(newtable) =

RETURN
END IF
* orevious table check
USE FSUPPRT
orestable =

' FS ' + newtable
LOCATE FOR FSTABLES = prestable
IF FOUND ()

rehash = .T.
END IF
USE INTANGIB
orestable = 'IN' + newtable
LOCATE FOR INTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF
USE LOGISTIC

E
res table = 'LG' + newtable
OCATE FOR LGTABLES = prestable

IF FOUND ()
rehash = .T.

ENDIF
USE TACTICS

E
res table =

' TA ' + newtable
OCATE FOR TATABLES = prestable

IF FOUND
(

)

rehash = ,T.
ENDIF
USE UNITHIST
prestable = 'UH' + newtable
LOCATE FOR UHTABLES = prestable
IF FOUND ()

rehash = .T.
ENDIF

102

USE YOUROWN
qrestable = 'YR' + newtabls
LOCATE FOR YRTABLES = prestable
IF FOUND ()

rehash = .T.
END IF
IF rehash

CLEAR
@ 10,20 SAY 'You have chosen a table already in use
@ 12,20 SAY ' Please try this choice again.'
@ 21,10 SAY '

'

WAIT
RETURN

ENDIF
IF .NOT. rehash

CLEAR
* Do LOCATE Operation

Please identify the catagory for your 1

new table :

'

(F) FIRE SUPPORT tables
I) INTANGIBLES tables '

L) LOGISTICAL tables '

T) TACTICAL MANUEVERS tables '

U) UNIT HISTORY tables '

Y) YOUR OWN CATEGORY tables '

Enter your selection'

CLEAR
@ 7, 12 SAY
<§ 7, 50 SAY
@ 11,19 SAY
@ 12,19 SAY
@ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 16,19 SAY
@ 21,20 SAY
thdchoice =

DO WHILE .NOT. UPPER (thdchoice) $' FILTUY'
(3 21, 43 GET thdchoice
READ

ENDDO
thdchoice = UPPER ('thdchoice)
IF thdchoice =

'

F

1

USE FSUPPRT
APPEND BLANK
newtable =

' FS ' + newtable
REPLACE FSTABLES WITH newtable

ENDIF
IF thdchoice =

'

I

'

USE INTANG
APPEND 3LANK
newtable = 'IN' + newtable
REPLACE INTABLES WITH newtable

ENDIF
IF thdchoice = 'L'

USE LOGISTIC
APPEND BLANK
newtable = 'LG' + newtable
REPLACE LGTA3LES WITH newtable

ENDIF
IF thdchoice = 'T'

USE TACTIC
APPEND BLANK
newtable = 'TA' + newtable
REPLACE TATABLES WITH newtable

ENDIF
IF thdchoice = 'U'

USE UNITHIST
APPEND BLANK
newtable =

' UH' + newtable
REPLACE UHTA3LES WITH newtable

ENDIF
IF thdchoice = 'Y'

USE YOUROWN
APPEND BLANK
newtable = 'YR' + newtable
REPLACE YRTABLES WITH newtable

ENDIF

103

CLOSE DATABASES
WAIT

END IF
END IF
* To locate data from an existing table
* Must first pick table
IF .NOT. rehash

DO TABLOPT
tablechoice = UPPER(tablechoice)
tablechoice = TRIM(tablechoice)
IF tablechoice = '

Q
' .OR. ASC(tablechoice) =

RETURN
ENDIF
USE Sctablechoice
IF UPPER(copychoice) = 'Y 1

COPY STRUCTURE TO Scnewtable
END IF
CLEAR
@ 2,10 SAY 'You have chosen the table :

(§2,38 SAY tablechoice
data = ' '

(§5,10 SAY 'Please enter the data which you would like found'
(§6,25 GET data
READ
* search for value, compare against all values within table
numfields = 1

DO WHILE ASC(FIELD (numfields)) #
numfields = numfields + 1

ENDDO
numfields = numfields - 1

c =
checkval =
cnterl = 1

numeric = VAL(data)
COUNT ALL TO numrecords
DO WHILE cnterl <= numfields

cnter2 = 1

colchoice = FIELD(cnterl)
DO WHILE cnter2 <= numrecords

DO CASE
CASE TYPE(' &colchoice') = ' C

cdata = TRIM (data)
LOCATE RECORD cnter2 FOR Sccoichoice = cdata
IF FOUND ()

LIST RECORD cnter2
IF UPPER (copychoice) = 'Y' .AND. checkval < cnterl

USE Scnewtaole
APPEND FROM Sctablechoice FOR Sccoichoice = cdata
checkval = cnterl
USE Sctablechoice

END IF
c = c + 1

ENDIF
CASE TYPE (' Sccoichoice '

) = 'D'
IF SUBSTR(DATA, 3,1) = '/'

STORE CTOD(data) TO ddata
LOCATE RECORD cnter2 FOR Sccoichoice = ddata
IF FOUND ()

LIST RECORD cnter2
IF UPPER(copychoice) = 'Y' .AND. checkval < cnterl

USE Scnewtable
APPEND FROM Sctablechoice FOR Sccoichoice = ddata
checkval = cnterl
USE Sctablechoice

ENDIF
c = c + 1

ENDIF
ENDIF

CASE TYPE('ScColchoice') = 'N'

104

LOCATE RECORD cnter2 FOR Sccolchoice = numeric
IF FOUND ()

LIST RECORD cntsr2
IF UPPER(copychoice) = 'Y' .AND. checkval < cnterl

USE Scnewtaole
APPEND FROM Sctablechoice FOR &colchoice = numeric
checkval = cnterl
USE Sctablechoice

END IF
c = c + 1

END IF
CASE TYPE ('Sccolchoice') = 'L'

IF LEN(data) = 1
IF data = 'T 1

boolean = .T.
END IF
IF data = 'F'

boolean = .F.
ENDIF
LOCATE RECORD cnter2 FOR Sccolchoice = boolean
IF FOUND ()

LIST RECORD cnter2
IF UPPER (copychoice) = 'Y 1 .AND. checkval < cnterl

USE Scnewtable
APPEND FROM Sctablechoice FOR Sccolchoice = boolean
checkval = cnterl
USE Sctablechoice

END IF
c = c + 1

END IF
END IF

ENDCASE
cnter2 - cnter2 + 1

ENDDO
cnterl = cnterl + 1

ENDDO
IF c =

? ' No records are listed because the data was not'
?? ' present.

'

END IF
WAIT

END IF
END IF

RETURN

* Program: SBMATH.prg
r Purpose: The purbose of this program is to provide the user

with" mathematical options from which he may choose
* to oerform on specific fields in a file.

PROCEDURE SBMATH
a = . t.
DO WHILE a

CLEAR
*
* Draw menu box

@ 1,2 to 22,78
(§5,4 SAY 'OPTION CHOICE - MATHE'
@ 5,43 SAY 'MATICAL FUNCTIONS'
@ 6,4 SAY ' '

@ 5,42 SAY ' '

(|8,15 SAY : ?lease select one of the following choices: 1

3 10,16 SAY '(A) to SUM an existing TABLE COLUMN 1

@ 12,16 SAY '(b) to AVERAGE data within a TABLE COLUMN '

@ 14,15 SAY '(C) to DO ANALYSIS OPERATIONS on a TABLE '

?? 'COLUMN'
3 16,16 SAY '(D) to COUNT the NUMBER of ENTRIES in a TABLE'
@ 13,16 SAY ' (0) to QUIT or LEAVE this menu 1

105

@ 21,22 SAY 'Enter your selection 1

choice = '
'

DO WHILE .NOT. UPPER(choice)$' ABCDO

'

@ 21,45 GET choice
READ

ENDDO
CLEAR GETS
choice = UPPER (choice)
I? choice='Q'

CLEAR
RETURN

ENDIF
IF choice='A'

*
* To sum a column from a table
*

DO TABLOPT
tablechoice = UPPER(tablechoice)
tablechoice = TRIM(tablechoice)
IF tablechoice = '

Q
' .OR. ASC(tablechoice) =

RETURN
END IF
USE Sctablechoice
nonumeric = .T.
i = 1

DO WHILE ASC(FIELD(i)) #
column = FIELD(i)
IF TYPE('Sccolumn') = 'N'

nonumeric = .F.
END IF
i = i + 1

ENDDO
IF nonumeric

7

? ' The table you have chosen has no numeric columns
?? ' to sum.

'

?
?

WAIT
RETURN

END IF
CLEAR
DISPLAY OFF ALL
colchoice = ' '

?
'->

->

@ 22,10 SAY ' Choose the column you wish summed: 1

x = .F.
num = 1
* if column "numeric" do operation
DO WHILE .NOT. x

@ 22,46 GET colchoice
READ
colchoice = TRIM(UPPER(colchoice)

)

DO WHILE .NOT. y
IF FIELD(num) = colchoice .and. asc(colchoice) >

IF TYPE('^colchoice 1

) = 'N'
x = .T.
v = .T.
SUN ALL Sccolchoice TO sumtotal
? ' The sum of that column is 1

?? sumtotal
?

WAIT
END IF

ENDIF
num = num + 1

106

IF asc(field(num)) =

y = .T.
num = 1

colchoice = ' '

END IF
ENDDO

ENDDO
choice = '

'

:ndif
'.~ choice-'B'

* To average the data values of a table's column

DO TABLOPT
tablechoice = UPPER(tablechoice)
tablechoice = TRIM(tablechoice)
IF tablechoice = '

Q' .OR. ASC(tablechoice) =
RETURM

END IF
USE Sctablechoice
nonumeric = ,T.
i = 1

DO WHILE ASC (FIELD (i)) #
column = FIELD(i)
IF TYPE('Sccolumn') = 'N'

nonumeric = .F.
END IF
i = i + 1

ENDDO
IF nonumeric

7

? ' The table you have chosen has no numeric columns'
?? ' to average. ;

WAIT
RETURN

END IF
CLEAR
DISPLAY OFF ALL
7

7

7

colchoice = ' '

'? 22, 10 SAY ' Choose the column you wish averaged: 1

X = .F.
* if column "numeric" do operation
num = 1

DO WHILE .NOT. x
@ 22,46 GET colchoice
READ
colchoice = TRIM(UP?ER(colchoice)

)

DO WHILE .NOT. y
IF FIELD(num) = colchoice .and. asc(colchoice) >

IF TYPE('Scolchoice 1

) = 'N'
x = .T.
v = .T.
AVERAGE Sccolchoice ALL TO sumtotal

The average of that column is 1

?? sumtocal
7

WAIT
END IF

END IF
num = num + i

IF asc(field(num)) =

y = .T.
num = 1

107

colchoice = ' '

END IF
ENDDO

ENDDO
choice = '

'

END IF
IF choice='C'

To do Operational Analysis of a table's column
* This means we will calculate the mean, range,
* standard deviation, and the standard error of the mean

DO TABLOPT
tablechoice = UPPER(tablechoice)
tablechoice = TRIM(tablechoice)
IF tablechoice = 'Q' .OR. ASC(tablechoice) =

RETURN
END IF
USE Sctablechoice
nonumeric = .T.
i — 1

DO WHILE ASC(FIELD(i)) #
column = FIELD(i)
IF TYPEC&column 1

) = 'N'
nonumeric = .F.

ENDIF
i = i + 1

ENDDO
IF nonumeric

? ' The table you have chosen has no numeric columns'
?? ' to average.

'

•>

WAIT
RETURN

ENDIF
CLEAR
DISPLAY OFF ALL
?
'?

'?

colchoice = ' '

(§22, 10 SAY ' Choose the column you wish analyzed:'
x = .F.
* if column "numeric" do operation
num = 1

DO WHILE .NOT. X
@ 22,46 GET colchoice
READ
colchoice = TRIM(UPPER(colchoice)

)

v = .F.
DO WHILE .NOT. y
IF FIELD(num) = colchoice .and. asc(colchoice) >

IF TYPEC&colchoice') = 'N 1

x = .T.
y = .T.
SUM 6<colchoice ALL TO sumtotal
counter = RECC0UNT()
mean = sumtotal / counter
sumsquares =
sumvar =
GOTO- TOP
number = '

1

'

3 = 1

DO WHILE j <= counter
M&number = &colchoice
IF j = 1

biggest = &colchoice
smallest = &colchoice

108

END I?
IF M&number > biagest

biggest = M&number
ENDIF
IF M&number < smallest

smallest = M&number
END IF
sumsquares = sumsquares + (M&number ** 2)
sumvar = sumvar + ((M&number - mean) ** 2)
3=3 + 1
SKIP 1

number = 5TR(VAL(number) + 1)
number = LTRIM(number)

ENDDO
SORT TO temp2a.dbf ON &colchoice
range = biggest - smallest
z = sumsquares - ((sumtotal ** 2) / counter)
standev = SQRT(z / (counter - 1))
standerror = standev / (SQRT(counter)

)

var = sumvar / (counter - 1)
standev2 = SORT(var)
?
>

'The column of your choice was :

?? colchoice
7

'The mean of the column was:
??mean
7

? 'The range of the column was:
??range

? 'The standard deviation was:
??standev

? 'The standard error of the mean was
??standerror
•p

? 'The variance of the column was:
??var
USE temo2a
n = counter / 4
GOTO TOP
SKI? (n - 1)
q = &colchoice
SKIP n
r = &colchoice
SKIP n
s = &colchoice
SKIP n
t = &colchoice

->

>

->

'?

>

?

7

erase temp2a.dbf
WAIT

END IF
END IF
USE &tablechoice
num = num + 1

17 .NOT. y
IF asc'v,field(num))

=

y = .T.
num = 1

Quartiles

50%(mode)
7 5%

, colchoice

,r
1 ,s

109

colchoice = ' '

END IF
END IF
ENDDO

ENDDO
ENDIF
IF choice='D l

k
* To count the number of records in a table

DO TABLOPT
tablechoice = UPPER(tablechoice)
tablechoice = TRIM(tablechoice)
IF tablechoice = *Q' .OR. ASC(tablechoice) =

RETURN
ENDIF
USE Sctablechoice
numrecords =
CLEAR
COUNT ALL TO numrecords
@ 12,15 SAY ' The number of records in '

?? TRIM(tablechoice;
?? ' is '

?? numrecords
@ 21,10 SAY '

'

WAIT
choice = '

'

ENDIF
— — .

ENDDO
kk
* Program: TABLOPT. prg
* Purpose: Program presents choice menu to the user for
* him to cnoose table catagory, then gives him

the option of what table he* wants and makes
* that table a public variable.
k-k-kkkkkkkk-kkkkkkkkkkkkkk^kkkkkkkkkkkkk-kk^kkk-k-kkkkkkk-k-k-kkk-kk-kkkkkkkkkkkkkk
k

PROCEDURE TABLOPT
CLEAR
PUBLIC tablechoice, thrdchoice
SET HEADING OFF
k

* Draw a menu box

@ 1,2 to 22,71
@ 5, 23 SAY
(3 6, 23 SAY
@ 3, 15 SAY
@ 10,19 SAY
3 11,19 SAY
@ 12,19 SAY
@ 13,19 SAY
@ 14,19 SAY
@ 15,19 SAY
@ 16,19 SAY
3 20,20 SAY

thrdchoice =

TABLE CATEGORIES AVAILABLE
_--______!

Please choose from the list below:
(F) FIRE SUPPORT tables'
'I) INTANGIBLES tables '

L) LOGISTICAL tables '

T) TACTICAL NANUEVERS tables '

U) UNIT HISTORY tables
Y) YOUR OWN CATEGORY tables *

Q) to QUIT or LEAVE this menu 1

Enter vour selection'

DO WHILE .NOT. UPPER (thrdchoice) $' FILTUYQ

'

@ 20, 43 GET thrdchoice
READ

ENDDO
thrdchoice = UPPER (thrdchoice)
IF thrdchoice ='Q'

CLEAR
tablechoice = '

'

thrdchoice = '

'

RETURN
ENDIF

110

* disDlay possible tables to user to allow him to pick one
DO CASE

*

CASE thrdchoice = 'F'
CLEAR
USE FSUPPRT
@ 5, 25 SAY ' FIRE SUPPORT TABLES PRESENT'
r = 3
c =
DO WHILE .NOT. EOF()

IF c > 60
r = r + 1

c =
END IF
entry = FSTABLES
@ r,c SAY entry
SKIP
c = c + 15

ENDDO
@ 19,15 SAY 'To leave this selection screen, type "Q" '

@ 21,15 SAY 'Please enter the table of your choice:'
tablechoice =' '

STORE .F. TO Y
DO WHILE .NOT. Y

(§21, 53 GET tablechoice
READ
STORE UPPER (tablechoice) to z
Z = TRIM(z>
IF z = '0' .or. ASC(z) =

DO TABLCPT
RETURN
tablechoice = '

Y = .T.
END IF
LOCATE FOR FSTABLES = Z
Y = FOUND ()

ENDDO
CASE thrdchoice = 'I 1

CLEAR
USE INTANGIB
@ 5, 25 SAY ' INTANGIBLE ITEMS TABLES PRESENT 1

r = 3
c =
DO WHILE .NOT. E0F()

IF c > 60
r = r + 1

c =
END IF
entry = IMTA3LES
@ r ,c SAY entry
SKI?
c = c + 15

ENDDO
@ 19, 15 SAY 'To leave this selection screen, type Q'

@ 21, 15 SAY 'Please enter the table of your choice:'
tablechoice =' '

STORE .F. TO Y
DO WHILE .MOT. Y

@ 21, 53 GET tablechoice
READ
STORE UPPER(tablechoice) to z
z = TRIM(z)
IF Z = 'Q' .OR. ASC(z) =

thrdchoice = '

DO TABLOPT
RETURN
Y - .T.

ENDIF
LOCATE FOR INTABLES = Z
Y = FOUND ()

ENDDO

111

CASE thrdchoice = 'L 1

CLEAR
USE LOGISTIC
@ 5, 25 SAY LOGISTICAL TABLES PRESENT'
r = 8
c =
DO WHILE .NOT. EOF()

IF c > 60
r = r + 1

c =
END IF
entry = LGTABLES
@ r,c SAY entry
SKIP
c = c + 15

ENDDO
@ 19,15 SAY 'To leave this selection screen, type "Q"'

(§21, 15 SAY 'Please enter the table of your choice:'
tablechoice =' '

STORE .F. TO Y
DO WHILE .NOT. Y

@ 21, 53 GET tablechoice
READ
STORE UPPER(tablechoice) to z
Z = TRIM(z)
IF z = '0' .OR. ASC(z) =

DO TABLOPT
RETURN
thrdchoice = '

'

END IF
LOCATE FOR LGTABLES = z
Y = FOUND ()

ENDDO
CASE thrdchoice = 'T'

CLEAR
USE TACTICS
@ 5, 25 SAY TACTICAL TABLES PRESENT '

r = 8
c =
DO WHILE .NOT. EOF()

IF c > 60
r = r + 1

c =
ENDIF
entry = TATABLES
@ r,c SAY entry
SKIP
c = c + 15

ENDDO
@ 19,15 SAY 'To leave this selection screen, type "Q"

'

@ 21, 15 SAY 'Please enter the table of your choice:'
tablechoice =' '

STORE .F. TO Y
DO WHILE .NOT. Y

(§21, 53 GET tablechoice
READ
STORE UPPER(tablechoice) to z
z = TRIM(z)
IF Z = 'Q' .OR. ASC(z) =

DO TABLOPT
RETURN
thrdchoice = '

'

ENDIF
LOCATE FOR TATABLES = Z
Y = FOUND ()

ENDDO
CASE thrdchoice = 'U'

CLEAR
USE UNITHIST
@ 5, 25 SAY ' UNIT HISTORY TABLES PRESENT'

112

r = 8
c =
DO WHILE .NOT. EOF()

IF c > 60
r = r + 1

c =
END IF
entry = UHTABLES
@ r,c SAY entrv
SKIP
c = c + 15

ENDDO
@ 19,15 SAY 'To leave this selection screen, type "Q"

'

@ 21, 15 SAY 'Please enter the table of your choice:'
tablechoice =' '

STORE .F. TO Y
DO WHILE .NOT. Y

@ 21, 53 GET tablechoice
READ
STORE upper (tablechoice) to z
z = TRIN(z)
IF z = '0' .OR. ASC(z) =

DO TABLOPT
RETURN
thrdchoice = '

END IF
LOCATE FOR UHTABLES = Z
Y = FOUND ()

ENDDO
CASE thrdchoice = 'Y'

CLEAR
USE YOUROWN
@ 5, 25 SAY ' USER DEFINED TABLES PRESENT'
r = 8
c =
DO WHILE .NOT. E0F()

IF C > 60
r = r + 1

c =
END IF
entry = YRTABLES
@ r,c SAY entry
SKIP
c = c + 15

ENDDO
@ 19,15 SAY 'To leave this selection screen, type "Q ,M

@ 21 , 15 SAY 'Please enter the table of your choice: 1

tablechoice =' '

STORE .F. TO Y
DO WHILE .NOT. Y

5 21, 53 GET tablechoice
READ
STORE UPPER(tablechoice) to z
z = TRIM(z)
IF Z = 'Q' .OR. ASC(z) =

DO TABLOPT
RETURN
thrdchoice = '

'

END IF
LOCATE FOR YRTABLES = Z
Y = FOUND ()

ENDDO
ENDCASE
*

SET HEADING ON
RETURN

113

APPENDIX G

USER TUTORIAL WITHIN PROGRAM

USE the CURSOR KEYS, PGUP, or PGDN to MOVE thru the tutorial.
USE -he ESC KEY to EXIT the tutorial.

WELCOME to the database program developed to store data from
the National Training Center. This program is designed to
provide a novice user with the ability to manipulate data, that
has been previously collected during a rotation, with ease and
efficiency.

The idea of the program is for the user to operate through a
series of menus to accomplish a specific task. At any time,
should the user feel uncomfortable with his selection or wish to
change it, he may enter a 'Q' in the choice selection box and
return to the previous menu. This process will ultimately place
the user at the opening menu where he may continue on a different
path or exit the system.

Before we begin, let us define some common terms that will
facilitate the user's understanding of the descriptions used
throughout the program. A Table refers to the format which we
use to logically store information, and is synonomous with the
common usage of the term "file". Our tables are subdivided into
different columns of information or "fields". A single line
entry is called a "record" and it has one and only one value for
each column or field within the table it is assigned to.

The program allows the user to perform the following actions
via menu selection choice options:

CREATE - This allows the user to make a new table complete
with column headings and typing to store new data of his
choice.
ADD - This option provides the user with the ability to add
a record of information to an existing table.
CHANGE - This option allows the user to change or update
information previously stored in a table.
REMOVE - The* allows for the removal of a specific record of
information within a table.
DISPLAY - This ootion allows the user to print the contents of
a table to the screen.
LINK - This option allows the user to combine the data from
two tables of his choice into a new table. This action is
done by combining the tables upon the columns which are
similar to both, then printing all the different record
entries using the data from each of the old tables. The user
is cautioned to use this option judisously as this combination
process can create a very large table.
SELECT - This option can be used by the user to create a new
table 'which has only a portion of the number of columns that
some original table had*.
FIND - This option allows the user to locate a particular
record within a known table and return that record to the
screen. It can also be used to show membership within a
table of a value corresoonding to one of the fields.
MATHEMATICAL OPERATIONS* - Using numerical entries within a
table, the user can use this option to sum or average the data
in that column. The analysis option allows the user to
perform some basic operational analysis functions upon the
values of a column. * He may also use this choice to* count the
number of records in a table.
TUTORIAL - The option that you have currently selected, is
recommended as a" learning tool to acquaint the user with the
various capabilities of this program.

114

FILE MAINTENANCE OPERATIONS - These choices allow the user to
erase a table from memory (thereby destroying the contents
forever), restore data from a disk to the tables in use (in a
situation of catastophic failure), or save a the data tables to
memory.

The OPENING MENU gives the user five choices. He can use the
TUTORIAL to receive instructions concerning the program, as you
have done , he can MAKE or CHANGE data within a table , he can"
MANIPULATE or LOCATE data elements, he can accomplish TABLE
MAINTENANCE operations to restore or save the contents of the data
tables, or he can QUIT and leave the program. The QUIT command
places him back at the DOS prompt outside the DBASE III system.

Lets try the second option since you've already tried the first,
The MAKE or CHANGE data option leads the user into another menu
of five choices. Here the user is asked whether he wants to
CREATE a table to display new information, ADD or CHANGE a record
in an existing table, REMOVE a record from an existing table,
DISPLAY a table, or OUIT this menu and return to the opening menu.
To see a further explanation of the steps corresponding to these
choices, ciease use the PGDN key until you reach the appropriate
title heading (i.e. CREATE).

The third option of the opening menu gives the user another
menu that is similar to the menu described in option two. Here
the user has the opportunity to pick from five other choices.
Using this menu he may LINK two existing tables toaether to get a
third which is the combination of those two originals, he may
SELECT a specific field or fields from an existing table and
reproduce those into a new table, he may FIND a specific piece of
data in a table, he may do MATHEMATICAL OPERATIONS on a table or
the numeric columns in that table, or he may QUIT this menu and
return to the opening menu again. As before, should you wish to
follow a particular option for further details, please refer to
the portion corresponding to the option heading.

The fourth option from the opening menu allows the user to
perform FILE MAINTENANCE OPERATIONS on the database tables,
using this option, the user has the capability to ERASE a table
from'the system memory, BACKUP all his tables from a disk using
one of the internal disk drives on his AT computer, SAVE the
database tables to a memory disk, or QUIT and return to the
opening menu. Again, to see further aetails on any of these
options, please refer to them directly.

The final option of the opening menu is the QUIT command.
Using this command the user returns himself to the DOS prompt
outside this SYSTEM. In the process of exiting the system, the
user is given the opportunity' to perform file maintenance

_

operations should he/she had changed anything. The user is
required to make a conscious choice to continue in order to
enforce good file management.

CREATE

This option allows the user to design a table of his own.
Using this choice following the choice of the second option from
the opening menu, the program will interactively ask the user
what the name of the new table he is creating is, wait for the
answer, then as!; him to identify the names ot the columns within
the table (these are also known as fields). Should he request to
use a name that already is being used, the program will ask him
if he wants to overwrite the old table with this new data. If he
enters '

Y' the program will continue on. A 'N' will place him
at a spot where he has the option to relocate his table or go
back at the start where he may use another name for his table.
The program will ask after each column name, what TYPE that
field is. The type can be either a character (which is like
letters or names', an numeric (a number), a date (ex. 04/12/78),
a logical (a true or false value), or a memo (used to record a
long series of sentences). After the user decides the type, he

115

will be asked to decide how long he wants the data entry in the
column to be: characters can be up to 254 characters long,
numerics up to 15 digits, dates are stored as the example
indicates MM/DD/YY, iogicals are either .T. or .F., and memos can
range from 512 to 4096 characters in length. Should the user
pick numeric as his choice, he will be asked to decide how manv
places after the decimal point should be displayed. This can he
any number between and 13. Press the ENTER* key after each entry
to move through each highlighted area.

To stop entering any more fields the user simply presses the ENTER
key when queried for a blank column name. The program will then
ask the user if he is sure that this is the way he wants his
new table. Following the menu directions he can change any of
the entries, or he can press the ENTER key to save this table's
form.

The next question that the user is asked is whether or not
he wants to enter data directly into his new table or wait.
Entering a 'Y' here allows the user to enter info directly in.
The screen will then present a highlighted area for each part
of the record so the user may enter the necessary data, blanks
may be maintained in areas by simply using the ENTER key when
you reach that ooint. Again, to exit this stage simply press
the ENTER at the beginning of a record or a better method is
to press the CTRL and END keys simultaneously at the end of the
last record entry.

The next menu allows the user to catagorize his new table
under an appropriate heading. The choices here reflect the five
established catagory headings plus the heading YOUR OWN tables
which are user defined. The user is forced to catagorize his
table at this time, so should he find that his table is in error,
he may use the CHANGE option to modify individual records or the
ERASE" option to destroy the file. This completes the CREATE
option and the user is returned to the appropriate menu from
which he started.

ADD

The ADD option allows the user to add a record of information
to the table of his choice. Upon entering this choice from the
conformation menu the user is presented with the category table choices
from which he chooses the category of his table. Having chosen the
category, he is then presented with the tables in that category
from which he can make his table choice. In the event that he has made
an incorrect choice or wishes to change, he may enter a '

q' to
leave the category and choose another. He may continue in this
vain to exit this option choice.

Assuming that he has picked a table, the user is now presented
with the different column's of the record and a highlighte'd area
to the right of each column where he can enter the data. The
length of the highlighted area shows how long the entry can be
and the user will be moved to each sequentially by pressing the
enter kev or filling the preceding highlighted area completely.
Notice at the top or the page there is a number indicating the
corresponding record number that the user is working on.

The user can follow the instructions provided in the menu
block to complete his actions or he may press the ENTER key at
the beginning of the first highlighted'block to exit this
addition process. Upon exiting, the user will be placed back at
the option menu from which he started.

CHANGE

The CHANGE operation allows the user to modify a record which
is already in existance. The user has reached this choice by
following the same procedure used to reach ADD. At the point
where the menu asked for a choice between ADD and CHANGE", the
user chose CHANGE. The user is then confronted with the category
choice menu. After picking the appropriate category that his
table resides in, he* then enters the table's name in the space
provided. At this point should he wish to return to the category

116

choices, he can enter a "0" in the sDace reserved for the table
name

.

Assuming that the user wishes to continue, after picking the
table, the records of that table are displayed upon the screen.
Using the directional arrow keys, he can move through the
records and find the one he wishes to change. Then using the
directional kevs he can move to the appropriate value and
overwrite it in the space provided. Typing the ENTER key
stores the value in place. Should the user traverse the entire
length of the table, he will be given the option to add data to
the 'table. The user can accomDlish this by entering a "Y" after
the question. Then as in the add operation he can input the data
in the space provided. He exits this mode by typing the ENTER
key on a blan* field. This will place him at the last value
entered where he may perform any changes he wishes or follow the
menu information ana leave the option (CTRL - END). Should he
wish to not save these changes he can abort by pressing the ESC
key. In either case, the user will return to the original menu
where he can pick another MAKE or CHANGE option.

DELETE

The REMOVE option is reached by entering choice "C" within the
MAKE or CHANGE menu. This choice allows the user to delete a
record from an existing cable. Once the user nicks this option,
he is confronted with another menu which confirms that he wishes to
delete a record from a table. Picking the letter "D" continues
the action and places the user at the category choice menu.
After picking the appropriate category and'table name the user is
able to begin the operation.

At this" point the user is presented with a display of the
table of his choice with each 'record numbered. At the base of
the screen, the user is provided a area to enter the respective
number of the record that he wishes to delete. Error checking
ensures the the input number is within the proper boundaries.
Should he wish to hot delete any record he is given the last
chance to exit by entering a "Q fl in the space provided for the
record number. Once a number is entered the user can use the
SPACE bar to complete the area or press the ENTER key. In each
case the record will be deleted and bv pressing another key of
his choice, he will return to the original menu.

DISPLAY

The DISPLAY option is the last choice of the MAKE or CHANGE
menu. This option allows the user to list the contents of the
table of his choice or display the structure of the table. Once
this option has been chosen, the user is confronted with the menu
to choose between displaying of the contents or the structure. In
either case once the user chooses a "D" or an "S" ("Q" returns
him to the original menu;, ne is placed at the category choice
menu. After choosing the category, he is then required to enter
tne name of the table he desires to display.

If the user had picked a "D" the table contents will be listed
on the monitor screen. Should the table be longer than twenty
lines, including wrap arounds from wide tables, the user must
press a key to continue the display. Once the display is
completed, the user is returned" to" the original menu.

"If the user had picked an "S" the different field names of the
table will be displayed on the screen. Next to each field name
is its respective" type , field width, and if it is a numeric, the
number of places to the right of the decimal point. By pressing
a key of his choice, the user can return to the original menu.

LINK

The LINK operation is often refered to as a join operation.
This is because the operation loins the data of two taoles
together based upon a common field. It is important to note
that the operation joins on a common field regardless of whether

117

there are common values within that field. In the best case each
value of one table has a record in another with that same value,
and the new table is the length of the oriainal tables. In the worst
case each value from the first table is paired with a value from
the second. In this case, the length or the new table is the
length of the first TIMES the length of the second. It is for
this reason that the user is cautioned when using this operation.

Once the user has decided to use this function, he is asked to
pick the first table to be used in the operation. He does this
oy typing the appropriate category choice and table name. The
program will then echo the name or the table which he has picked.
He ' s then given the opportunity to choose the second table in a
similar fashion. In either case entering a Q in the category
choice places him back at the original menu. Once he has chosen both
tables the program will ask him to specify the name of his new
table. A similar error checking scheme is performed as in the
CREATE function and if the table name is not in use, the
operation will proceed. Should the name be used the program will
place the user back at the start point.

If the table name is not in use, the user is then queried as
to the category which he wishes to store his new table" under. Once
this choice "has been made, the operation will continue and the
actual linking of the data elements conducted. At the comDletion
of this operation the user will be asked to press any key to
place him back at the original menu.

SELECT

The SELECT option allows the user to create a table using an
existing table. The user does this by specifying the fields of
data which he wishes to codv from the old table into his new one.
Once he has chosen to continue the operation, he is asked to
choose the appropriate table category and name. After picking
the table name, the user is provided with a listing of the table
to help him determine which fields he wishes to use. At the
bottom of the screen, the program will ask him which fields 1 by
name, he wishes to copy. Only a "Y" response copies the
field, any other response is interpreted as a "N' 1

.

After he has chosen the fields he wishes to cooy, the
program will ask the user to specify the table name that the data
will be stored under. Here again a checking operation similar to
the LINK operation is conducted. If the table" name has been
used, the user is returned to the start point to try again. If
the name is valid, then the user will be asked whicn category to
store the table under. When the operation is complete, the user
will be asked to press any key to return to the original menu.

FIND

The FIND ooeration is used in two situations. First, the Find
operation can "be used to locate records within a table that
contain a soecific value. The other reason is to show membership
of a value within a table. To utilize the FIND operation, the
user must know what value he is looking for and which table is to
be scanned. After confirming that he wishes to proceed with this
option, the user is asked whether he wishes to retain a table
with the information returned from the FIND operation. This
allows the user to maintain a permanent record suitable for a
query operation. If the user answers "Y" then he must specify a
table name under which the data will be stored. The table is
automatically conformed to store the data (provided the name
passes the error checking scheme). Then the user chooses the
new table storage category.

After he has completed the above or should he have answered
the question "N" , he" must pick the appropriate table category
and table name. He is then asked to* "specify the data value which
he desires to find an occurrence of in* the table. The program
will check each field for the value and return those records
which contain the value. Should no record be found, a message
confirming this will appear on the 'screen. At the completion of

118

the operation, the user will be asked to press any key to return
to the original menu. If the storage option was chosen, the
records displayed will be stored in the new table.

MATHEMATICAL OPERATIONS

This option provides the user the capability to accomplish
some basic mathematical ooerations on a "column "of data. This
option is reached through* entering a "D" in the MANIPULATE and
LOCATE menu. Upon choosing this option, the user is presented
with another menu which points out his operation choices. The
user may SUM the elements of a column, AVERAGE the elements of a
column, perform an ANALYSIS of the elements of the column, or he
may COUNT the number of records within a table. In each of the
first three options the user is allowed to only attempt the
operations on a data column of type numeric. The final operation
can be used upon any table.

The same procedure applies to each of the first three choices,
so a general description will be given. In each case, once the
user has made a selection of the operation, he is aueried for the
table category and name. Once the user has identified the table
of his choice, a listing of the table is displayed for user
convenience. He is then asked to denote the name of the column
upon which he wants co perform the operation. Should he pick a
column which is not typed numeric, no action will take place and
the entry will be ignored. .

When the user has selected a proper data column the operation
will act. The SUM operation will re"turn a sum total of all
entries in tne column. The AVERAGE ooeration will return a value
which represents an average for the data column. The ANALYSIS
will return values for the mean, range, standard deviation,
standard error of the mean, and a quartile listing. The quartile
listing shows the data value which corresponds to a oercehtile
evaluation of the sorted data values. Once these values have
been displayed on the screen, the user will be asked to press any
key to return to operation choice menu.

The ootion to calculate the number of records within a table
or COUNT "begins in a similar manner. The user is queried for the
table category and name. Once the table name has been
identified"" tne program returns a value that represents the
number of record's present in the table. The user is then asked
to press any key to return to the operation choice menu. At this
menu the user can continue working or enter a "Q" to return back
to a previous higher level menu.

FILE MAINTENANCE

This option is called in two places. The user can reach this
menu by choosma the fourth optio'n from the opening menu, or he
can answer "Y" during the QUIT procedure to exit the program. In
either situation, the user~is presented with a menu of choices
which allow him to accomplish the following: ERASE a table from
memory, RESTORE data from a floppy disk to his tables in main
memory, or SAVE a copy of the changes to his tables on a floppy
disk and create a backup for the svstem.

The ERASE operation erases a table from memory and also
removes the table name from the appropriate category. The user is
asked to select a table category and name as before". Once :he
user lias selected a table name, the program will ask him again if
he wishes to complete this action. Any'answer other than a "Y"
returns the user" to the operation choice menu. A "Y" erases the
table and the data is lost from memory. The user is then asked
to press any key to return to the operation choice menu.

The RESTORE "'operation allows the user to recopy information
from a backup floppy into main memory. As with any RESTORE
operation the information is onlv as current as the last backup
save procedure. Once the user chooses tms option he is asked*
again' if he wishes to complete this. The significance of this question
is that the RESTORE operation will overwrite any new data within
the tables and lose any additions done after the backup save was

119

done. Here again, any answer other than a "Y" returns the user
to the operation choice menu.

Should the user wish to continue, he is asked to place his
backuo floppy into the "B" drive of his system. When the floppy
has been placed in the disk drive, the user presses any key to
continue. Once the operation is complete, the user presses any
key to return to the operation choice menu.

The SAVE operation "is just the reversal of the RESTORE
operation. In this situation the user is moving a copy of his
working tables onto a floppy backup. The user can use* any
formatted disk to be the backup medium and the "B" drive is used
in this procedure also. Once this operation has been completed,
the user is asked to press any key to return to the operation
choice menu.

This completes the tutorial. If you have questions that have
not been answered within the context of this file, they probably
involve the microcomputer that you are using. For more
information about the program concept, please see the user's
manual within the thesis document. We wish you much success in
your endeavors.

PRESS THE <ESC> KEY AT THIS TIME TO EXIT THE TUTORIAL OR USE THE
MOVEMENT KEYS TO MOVE BACK UP TO REREAD ANY SECTION.

120

APPENDIX H
OTHER IMBEDDED PROGRAMS USED BY THE DBM PROGRAM

rem Program: Srasorl.bat
rem Purpose: Eliminates a temporary file created during copy process

ERASE C:templa.DBF

rem Program : 5avprog.BAT
rem Purpose -. This program provides the user with the capability
rem to store a copy of his files to a backup floppy disk

copy c :fs*.dbf B:
copy c:in*.dbf B:
copy c:logistic.dbf B:
copy c:lgA .dbf 3:
copy c -. ta*.dbf 3:
copy c :unithist.dbf B:
copy c:uh*.dbf B:
copy c :yourown.dbf B:
copy c:yr*.dbf B:

rem Program •. SAVINTO.BAT
rem Purpose : This program allows the user to restore his working files
rem from a backup source.

copy b:fs*.dbf c:
copy b:in*.cibf c:
copy b:iogistic.dbf C:
copy b:ig*.dbf c:
copy b:ta*.dbf c:
copy b:unithist.dbf c:
copy b:uh*.dbf c

:

copy b ryourown.dbf c:
copy b:yr*.dbf c:

121

APPENDIX I

ADDITIONAL EVALUATION CRITERIA

These evaluation sheets present one possible means to collect the

required data to fill some of the tables within the new database. These

are intended to allow the evaluator to make simple, objective

evaluations of a specific area of interest. The sheets are grouped by

data subject area and are shown in a tentative formatted display. Each

display will represent a different evaluation sheet.

1. FIRE SUPPORT

This sheet will require a summation of the missions fired for a given
"battle."

MissionNum Total
Missions
fired

Total
4.2"

MiUssions

Total Total
155MM 8"
Missions Missions

Total
Number of
Fratricides

2. INTANGIBLES

These sheets are intended to be used bv the individual unit evaluator
to record aspects of certain areas of combat operations during the
preparation phase of each "battle."

Mission
Number

Unit Soresight Distance Tactical Sleep Percent
(Y/N) Feeding Plan Securit

(Y/Nj (Y/N)

Tactical
Refuel
(Y/N)

Mission 3de 3n Co
Number Order Order Order

Time Time Time

PLT MOPP OPORD
Order Levei Paragraph
Time Evaluation

Mission Temp Percent Percent Wind
Number Humidity Moonlight Speed

(night;

Wind Visibilty
Direction Distance

122

3. LOGISTICS

The first sheet will require units to ensure proper completion
of the fuel/refuel allocation sheet presently in use. The next sheets
will used by the respective administrative area evaluator.

Unit
Identification

Total
fuel for
Trucks

Total
fuel for
Tanks

Total
fuel for
APCs

Total
fuel for
Bradleys

Total
fuel for
TOWs

Miles
per Gal
trucks

Miles
per Gal
Tanks

Miles
per Gal
APCs

Miles
>er Gal
iradleys

Miles
per Gal
TOWs

Mission Unit Supply Time
Number Route for

Distance Trip

Emergency
Request

Mission
Number

Total
Number

Casualties

Number
Evacuated
Bn Aid Stat.

Number
Evacuated
Field Hospital

4. TACTICAL MANEUVERS

These sheets are intended to be used by the individual unit evaluator
to record aspects of certain areas of combat operations during the
maneuver phase of each "battle."

Mission Unit Agent Agent Unit Masking
Number Used Reported Prewarned Time

(Y/N)

Number Area
Casualties Prediction

Made

Mission
Number

Unit Line ot
Departure
Time

Time
Late
LOD

Distance
From AA
To LOD

5. UNIT HISTORY

This questionaire is to be filled out prior to the unit's arrival at
the National Training Center. The questionaire can be handed out at the

123

prs-rotation brief at the uniyt's home station or sent to the unit at a
more convenient time.

Unit Type Home Unit Percent Percent Date Rotation
ID or Station Strength Officers Enlisted Notified Date

Number Unit Location Assigned Assigned

Number of Training
Cycles Before
Rotation Date

Number Certified Number Certified
4 Man 4 Nan 3 Nan 3 Man

Tk Crews Tank Crews Tk Crews Tank Crews

Number Full Number
Infantry Other
Squads Squads

Unit Position Time Number Military
In Rotation Schools
Psn in Psn Attended

Previous
Rotation
Experience

124

APPENDIX J

CONTRACTUAL AGREEMENT WITH SPONSOR

SECTION 1 PURPOSE

1.1 Request. This outline will serve as an agreement in principle as
to the functions of the thesis project. This also serves as an
information tool to show the depth of detail that the project
undertakes.

1.2 Action. The sponsor is requested to make any modifications that are
deemed appropriate and return such to the sender. Should no changes be
necessary", the outline will serve as an information paper concerning
the project that will be delivered to the sponsor.

SECTION 2 SYSTEM SUMMARY

2.1 Background. The National Training Center represents the most
complete training facility ever devised for use within the United States
Army. Since 1931 when the facility was opened to rotational units, vast
amounts of information relating to* nearly every phase of a unit's
performance have been generated as the unit performs under the watch of
the evaluation group. A typical rotation lasts approximately four weeks
with week one encompassing the drawing of tactical vehicles and
pre-mission tasks. "Week two and three encompass the actual
force-on-force (10 days) and live fire exercises (5 days). During the
final week the unit returns its borrowed vehicles and key personnel
receive their final outbriefs. The units return to their home stations
with a taxe home evaluation package. This oackage highlights the
tactical olay of each mission in terms of the seven operating systems.
Several data tables are presented at the completion of each mission
description which report the unit's losses in terms of vehicles and
personnel and their corresponding kill ratios against the opposing
forces.

2.2 Objectives. The overriding objective of the thesis is to provide a
system which can relate information from several significant areas of
interest to the unit's kill ratio for a given mission. The design
objectives of "his thesis are to furnish the following to the sponsoring
office

:

a. to provide a database framework to allow the storage of
information "generated by the rotational unit so as to give a more
complete picture of the" unit's performance.

b. to orovide an information management system to allow the user to
manipulate the data in a meaningful manner.

c. to provide a system to accomplish the above in a timely and
efficient manner.

d. to provide to the sponsor (the intended user) the location of
known collected data and in areas where the data is not collected, a

recommended method of data collection.

2.3 Existina Svstem. Currently the tactical information is collected as
per contract with 5AIC. SAIC nas also won a contract to update the
existing svstem. At present the historical data from rotations past has
been stored on magnetic tapes. These tapes are under operational
control of CATA, Ft. Leavenworth. The tapes are stored at ARI Monterey.
The vehicle logistical data is being collected by the private
contractor DYNALECTRON CORP. All other information is manually
collected but net maintained after the rotation. Several areas of
interest (i.e. unit history, etc.) are not collected.

2.3.1 Existing Software/ Hardware . At present the sponsoring office has
limited desktop microcomputer facilities. These assets are IBM
compatible

.

125

2.4 Present Procedures. To utilize any of the tactical data collected
to date, an agency must first obtain authorization from CATA. Once
Dermission has been granted, the request is then forwarded to ARI
Monterey for completion of the request. Upon completion of the search
by ARI, a "scrubbed" version of the infromation will be sent to the
requestor. Historical data concerning the vehicles is incomplete and
misleading due to faulty procedures by the previous contractor. Other
information can be obtained through specific unit contact to access
personnel data and after action reports. Units are under no pressure to
cooperate with such requests and arant these requests on a case by case
basis. The bottomline is that information access is difficult at best.

2.5 Proposed System. The proposal is made utilizing existing conditions
or conditions which are presently under contract to exist in the near
future. It also understood that the sponsoring office is in the process
of procuring an IBM PC AT.

2.5.1 Information Areas. The new contract with SAIC stipulates the
establishing of a work station at each home station of a rotational
unit. These workstations allow a unit to fully utilize the recorded
tapes that will become part of the take home package. Tactical
information as prescribed by the data locations within those tapes can
be accessed from the apprpriate unit's tapes. Unit historical data and
other applicable information can be obtained from the apprpriate unit.
The improvement is that the request can be made in person since the unit
is assigned to the same installation. Logistical data concerning the
tactical vehicles is treated in a similar fashion as a completed DA Form
2406 and accessing that information requires a formal procedure.
However, in this situationthe data is more reliable.

2.5.2 Information Entry. Since the system is designed to be a stand
alone system, the information will have to be manually entered. The
management system will attempt to make this procedure* as easy as
possible.

2.5.3 Access / Use. Because of the sensitivity of the information
provided it is understood that the information will be used with
discretion when unit identification becomes involved. However, by
enlisting the unit's cooDeration in gathering the information, the unit
may "scrub" their respective data prior to release.

2.5.4 Output. The output will be limited to screen displays in an
effort to neip maintain* discretionary use. Modification of the system
to allow hardcopies can be nade by onsite personnel as the need
develops.

2.5.5 Maintenance. The proposed system is envisioned to utilize a
commercially available database management system. Specific
documentation will also accompany any program design to facilitate
maintenance ooerations.

126

LIST OF REFERENCES

1. Army Times. Army Times Guide to Army Posts. The Stackpoie Company,

Harrisburg, PA, 1966.

2. Simpson K. W. The National Training Center. A Critique of Data Collection and

Dissemination. National War College, Washington, D.C., March 1985.

3. Government Accounting Office. Army Training - National Training Center's

Potential Has Not Been Realized. GAO/NSAID-S6-130, July 23, 1985.

4. Kroenke. David. Database Processing, 2nd edition. Science Research Associates,

Inc., Chicago 1983.

5. Modeil, M.E. IEEE 1985 International Conference on Entity-Relationship

Approach: The Entity-Relationship Approach as a tool for Application Analysis.

IEEE Computer Society Press, 1985.

6. Howe, D.R. Data Analysis for Data Base Design. Edward Arnold Publishers

Ltd., Baltimore, MD, 1983.

7. Ullman, JefFrey D. Principles of Database Systems. 2nd edition. Computer
Science Press. Rockville, MD. 1982.

8. Chung, I., Nakamura, F., Chen, P.P. A Decomposition of Relations Using the

Entity- Relationship Approach, Entity- Relationship Approach to Information

Modeling and Analysis. ER Institute, 1981.

9. Ling, T.-W. IEEE i985 International Conference on Entity- Relationship

Approach: A Normal Form for Entity- Relationship Diagrams. IEEE Computer

Society Press, Silver Springs, MD, 1985.

10. SAIC. Requirements Design Specifications for a Prototype NTC' Research Data

Base System. Final Report. Science Applications International Corporation. La

Jolla, CA, July 1984.

127

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Deputy Undersecretary of the Army 2

for Operations Research

Room 2E261, Pentagon

Washington. D.C. 20310

4. Commander 2

US Army Training Support Center

ATTN: ATIC - NC
Fort Eustis, VA 23604-5166

5. Directorate Of Combat Developments 2

ORSA Branch

ATTN: LTC G. S. Williams

Headquarters, US Army Armor School

Ft. Knox, KY 40121-5215

6. Director 1

U.S. Army TRADOC Operations Research Agency
White Sands Missile Range, NM 88002

7. Commander 2

LS Army TRADOC Analysis Center

ATTN: Mr. Reed Davis

Fort Leavenworth, KS 66027

8. 3eil Hail Library 2

U.S. Army Combined Arms Center

Fort Leavenworth, KS 66027

9. Professor Samuel H. Parry, Code 55Py 2

Department of Operations Reaserch

Naval Postgraduate School

Monterey, CA 93943

10. Major John B. Isett, Code 521s 1

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

128

11. Curricuiar Office

ATTN: Code 37

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

12. Director

DCS - Training

Headquarters, U.S. Army TRADOC
Fort Monroe, VA 23651

13. Commander
USACAG
ATTN: ATZL-TAL-N
Fort Leavenworth, KS 66027-7000

14. Cpt Stephen D. Buck.

113 Andrew Drive

Newtown. PA 18940

129

DTP 1Y

]

tt;il Hiss

51* g ssS 5

Thesis

B8313 Buck

c.i A database management
system to manipulate
data collected at the

National Training Center,
Ft. Irwin, CA.

