

A

TREATISE

ON

ASTRONOMY,

DESCRIPTIVE, PHYSICAL, AND PRACTICAL.

DESIGNED FOR

SCHOOLS, COLLEGES, AND PRIVATE STUDENTS.

BY H. N. ROBINSON, A. M.,
formerly professor of mathematid's iv the d. s. Navy; ATTHOR of a treatise on arthniettc; algebra; natural phloosophy ; etc.

ALBANY, NEW YORK: ERASTUS H. PEASE \& CO., 82 STATE STREET. CINCINNATI:
jacobernst, no. 183 main street.
::.:::::::
p1849

Entered, according to act of Congress, in the year 1849, By horatio n. ROBINSON,

In the Clerk's Office of the District Court of the United States, for the District of Ohio.

PREFACE.

To give at once a clear explanation of the design and intended character of this work, it is important to state that its author, in early life, imbibed quite a passion for astronomy, and, of course, he naturally sought the aid of books; but, in this field of research, he was really astonished to find how little substantial aid he could procure from that source, and not even to this day have his desires been gratified.

Then, as now, books of great worth and high merit were to be found, but they did not meet the wants of a learner; the substantially good were too voluminous and mathematically abstruse to be much used by the humble pupil, and the less mathematical were too superficial and trifling to give satisfaction to the real aspirant after astronomical knowledge.

Of the less mathematical and more elaborate works on astronomy there are two classes-the pure and valuable, like the writings of Biot and Herschel; but, excellent as these are, they are not adapted to the purposes of instruction; and every effort to make class books of them has substantially failed. From the other class, which consists of essays and popular lectures, little substantial knowledge can be gathered, for they do not teach astronomy; as a general thing, they only glorify it; they may excite our wonder concerning the immensity or grandeur of the heavens, but they give us no additional power to investigate the science.

Another class of more brief and valuable productions were, and are always to be found, in which most of the important facts are recorded; such as the distances, magnitudes, and motions of the heavenly bodies; but how these facts became known is rarely explained: this is what the true searcher after science will always demand, and this book is designed expressly to meet that demand.

In the first part of the book we suppose the reader entirely unacquainted with the subject; but we suppose him competent to the task-to be, at least, sixteen years of age-to have a good knowledge of proportion, some knowledge of algebra, geometry, and trigonometry-and then, and not until then, can the study be pursued with any degree of success worth mentioning. Such a person, and with such acquirements as

Preface. we have here designated, we believe, can take this book and learn astronomy in comparatively a short time; for the chief design of the work is, to teach whoever desires to learn: and it matters not where the learner may be, in a college, academy, school, or a solitary student at home, and alone in the pursuit.

The book is designed for two classes of students-the well prepared in the mathematics, and the less prepared; the former are expected to read the text notes, the latter should omit them. With the text notes, we conceive it, or rather designed it to be, a very suitable book to give sound elementary instruction in astronomy; but we do not offer the work as complete on practical astronomy; for whoever becomes a practical astronomer will, of course, seek the aid of complete and elaborate sets of tables, such as would be improper to insert in a school book.

We have inserted tables only for the purpose of carrying out a sound theoretical plan of instruction, and, therefore, we have given as few as possible, and those few in a very contracted form. The epochs for the sun and moon may be extended forward or backward, to any extent, by any one who understands the theory.

The chapters on comets, variable stars, \&c., are compilations, and are printed in smaller type; and the works to which we are most indebted, are Herschel's Astronomy and the Cambridge Astronomy, originally the work of M. Biot.

Other parts of the work, we believe, will be admitted as mainly original, by all who take pains to examine it.

The chief merits claimed for this book are, brevity, clearness of illustration, anticipating the difficulties of the pupil, and removing them, and bringing out all the essential points of the science.

Some originality is claimed, also, in several of our illustrations, particularly that of showing the rationale of tides rising on the opposite sides of the earth from the moon; and in the general treatment of eclipses; but it is for others to determine how much merit should be awarded for such originalities; we have, however, used greater conciseness and perspicuity in gencral computations than is to be found in most of the books on this subject ; and this last remark will apply to the whole work.

CONTENTS.

SECTION I.
Page.
Introduction.-Definition of terms, \&c., 1 Contents
CHAPTERI.
CHAPTERI.
Preliminary Observations,
Preliminary Observations, 6 6
A fixed point in the heavens - the pole and polar star,
A fixed point in the heavens - the pole and polar star, 7 7
Index to the length of one year,
Index to the length of one year, 11 11
Fixed stars-why so called,
Fixed stars-why so called, 12 12
CHAPTER II.
Appearances in the heavens, 13
Important instruments for an Observatory, 14
Standard measure for time, 16
An astronomical clock,. 17
Movable and wandering bodies, 19
To find the right ascension of the sun, moon, and planets, 21
CHAPTERIII.
Refraction-position of the equinox, \&c., 21
Altitude and azimuth instrument, 23
Astronomical refraction-its effect, \&c. 25
The declination of a star-how found, 29
Observations to find the equinox, 33
Length of the year-how observed, 36
CHAPTERIV.
Geography of the heavens, 38
Method of tracing the stars, 41
What constitutes a definite description, 43
How to find the right ascension of any star, 44
The southern cross and Magellan clouds, 48
SECTION II.
DESCRIPTIVE ASTRONOMY
CHAPTERI.
First consideration of the distances to the heavenly bodies-size and figure of the earth, 49
How to find the diameter of the earth, 53
Contents. Page.
Dip of the horizon, 54
The exact dimensions of the earth, 56
Gravity of the earth diminished on its surface by its rotation, 58
A degree between two meridians- the law of decrease, 61
CHAPTERII.
Parallax, general and horizontal, 62
Relation between parallax and distance, 63
Lunar parallax-how found, 65
Variable distance to the moon, 67
Apogee and perigee, 67
Mean parallax - and parallax at mean distance, 68
Mean distance to the moon, 69
Connection between semidiameter and the horizontal parallax of any celestial body 70
The earth a moon to the moon, 71
CHAPTERIII.
The earth's orbit eccentric, \&c. 72
Methods of measuring apparent diameters, 73
Eccentricity of the earth's orbit-how found, 76
Variations in solar motion 76
Eccentricity of orbit and greatest equation of center connected, 85
CHAPTERIV.
Causes of the change of seasons, 87
Temperature of the earth, 89
Times of extreme temperature, 90
CHAPTER V.
Equation of time, 90
Mean and apparent noon, 91
What is meant by sun slow and sun fast, 94
Use of the equation of time, 96
CHAPTER VI
Apparent motions of the planets, 97
The morning and evening star, 98
Motion of Venus in respect to the fixed stars, 101
Retrograde motion of planets accounted for, 102
CHAPTER VII.
First approximations of the relative distances of the planets from the sun 104
What to understand by stationary, 106
Method of approximating to the orbits of planets, 108
CONTENTS.
CHAPTER VIII.
Page.
Methods of observing the periodical revolutions of the planets,.. 111 Contents Diurnal motion of the planets, 114
Times of revolution and distances compared, 117
Kepler's Laws, 118
CHAPTER IX.
Transits of Venus and Mercury, 119
Periods of the transits of Venus, 122
Deductions from a transit made plain, 124
CHAPTER X.
The horizontal parallaxes of the planets computed, 127
Real distance between the earth and sun determined,. 128
How to find the magnitudes of the planets, 130
CHAPTER XI.
A general description of the planets, 131
Professor Bode's law of planetary distances, 134
A bold hypothesis, 135
Progressive nature of light - how determined, 139
CHAPTER XII.
Comets, 144
Inclinations of their orbits, 147
Fears anciently entertained concerning comets, 150
CHAPTER XIII
On the peculiarities of the fixed stars, 150
SECTION III.
PHYSICAL ASTRONOMY.
CHAPTERI.
General laws of motion - theory of gravity, 157
Attraction of a sphere - of a spherical shell, \&c. 161
A general expression for the mutual attraction of two bodies, 162
CHAPTERII.
Demonstration of Kepler's Laws, 163
A common error, 167
How a planet finds its own orbit, 168
Kepler's third law rigorously true in circles and ellipses, 171vii

CHAPTER III.

Page.
Contents. Masses of the planets, \&c., 174
The diameter of the earth accurately determined from equations in physical astronomy, (Art. 171), 180
The mass of the moon determined - densities of bodies, 183
CHAPTER IV.
Lunar Perturbations,. 185
Cause of nutation, 187
Mean radial force, 191
Acceleration of the moon's mean motion, 197
A summary statement of the cause, 198
The true mean value of the radial force, 199
A summary statement of the lunar irregularities, 200
CHAPTER V.
The tides, 201
A summary illustration of the physical cause of tides, 202
Mass of the moon computed from the tides, 204
CHAPTER VI.
Planetary perturbations, 206
Action and reaction equal and contrary, 206
The effects of commensurate revolutions of the planets, 208
The great inequalities of Jupiter and Saturn, 209
These inequalities explained, 212
The physical effects on Uranus that led to the discovery of Neptune, 213
CHAPTER VII.
Aberration-nutation, and precession of the equinoxes, 213
The velocity of light computed from the effect of aberration, 215
Cause of nutation explained, 218
The physical cause of the precession of the equinoxes, 222
Proper motion of the stars-how found, 224
The latitude of the sun explained, 226
SECTION IV.
PRACTICAL ASTRONOMY.
Preparatory remarks and trigonometrical formulæ, 229
CHAPTERI.
Problems in relation to the sphere, 232
To find the time, from the latitude of the place - altitude, and declination of the sun, 239
Page.
An artificial horizon, 242 Contents.
Absolute and local time, 244
Lunar observations, 246
Proportional logarithms, 247
CHAPTER II.
Explanation of the tables, 250
To compute the sun's longitude 253
To find the equation of time to great exactness, 254
To compute the time of new and full moons, 255
Eclipses-when they occur, \&c. 257
Limits of eclipses, 259
Periods of eclipses, 263
Elements of lunar eclipses, 264
Semidiameter of the earth's shadow, 265
CHAPTER III.
Preparation for the computation of eclipses, 267
Directions for computing the moon's longitude, latitude, \&c. 268
To construct a lunar eclipse, 275
To make exact computations in respect to lunar eclipses, 277
CHAPTER IV
Solar eclipses-general and local, 279
Elements for the computation of a solar eclipse, 280
To construct a general eclipse, 281
How to determine the duration of a solar eclipse on the earth, 282
To find where the sun will be centrally eclipsed at noon, 286
Results taken from the projection, 287
Results from trigonometrical computations, 288
CHAPTER V.
Local eclipses, \&c. 291
How to construct a local solar eclipse, 291
How to find the time of greatest obscuration, 295
To find the time of the beginning, end, \&c., of a local eclipse by the application of analytical geometry, 296
Catalogue of eclipses which will take place between the years 1850 and 1900, 300

A STRONOMY.

INTRODUCTION.

Astronony is the science which treats of the heavenly Astionomy bodies, describes their appearances, determines their magni- defined. tudes, and discovers the laws which govern their motions.

When we merely state facts and describe appearances as the divithey exist in the heavens, we call it Descriptive Astronomy. sions of asWhen we compute magnitudes, determine distances, record observations, and make any computations whatever, we call it Practical Astronomy.

The investigation of the laws which govern the celestial motions, and the explanation of the causes which bring about the known results, is called Physical Astronomy.

When the mariner makes use of the index of the heavens, to determine his position on the earth, such observations, and their corresponding computations, are called Nautical Astronomy.

By nautical astronomy we determine positions on the Geography earth, and subsequently, the magnitude of the earth; and ${ }_{\text {my }}^{\text {and astrono- }}$ thus, we perceive, that Geography and Astronomy must be linked together; and no one can fully understand the former science, without the aid of the latter.

Astronomy is the most ancient of all the sciences, for, in the earliest age, the people could not have avoided observing quity of as. the successive returns of day and night, and summer and winter. They could not fail to perceive that short days corresponded to winter, and long days to summer; and it was thus, probably, that the attentions of men were first drawn to the study of astronomy.

Introduc. In this work, we shall not take facts unless they are within Facts alone the sphere of our own observations. We shall not peremptonot science. rily state that the earth is 7912 miles in diameter; that the moon is about 240,000 miles from the earth, and the sun $95,000,000$ of miles; for such facts, alone, and of themselves, do not constitute knowledge, though often mistaken for knowledge. We shall direct the mind of the reader, step by step, through the observations and through the investigations, so that he can decide for himself that the earth must be of such a magnitude, and is thus far from the other heavenly bodies; and that will be knowledge of the most essential kind.
The foundation of astronomical knowledge.

All astronomical knowledge has its foundation in observation; and the first object of this book shall be to point out what observations must be taken, and what deductions must be made therefrom; but the great book which the pupil must study, if he would meet with success, is the one which spreads out its pages on the blue arch above; and he must place but secondary dependence on any book that is merely the work of human art.

As we disapprove of the practice of throwing to the reader astounding astronomical facts, whether he can digest thom or not, and as we are to take the inductive method, and to lead the student by the hand, we must commence on the supposition that the reader is entirely unacquainted even with the common astronomical facts, and now for the first time seriously brings his mind to the study of the subject; but we shall suppose some maturity of mind, and some preparation, by the acquisition of at least respectable mathematical knowledge.

Conventional terms and defini. tions.

Every science has its technicalities and conventional terms; and astronomy is by no means an exception to the general rule ; and as it will prepare the way for a clearer understanding of our subject, we now give a short list of some of the technical terms, which must be used in our composition.

Horizon. - Every person, wherever he may be, conceives himself to be in the center of a circle; and the circumference of that circle is where the earth and sky apparently meet. That circle is called the horizon.

Altitude. - The perpendicular hight from the horizon, Inrroduc. measured by degrees of a circle.

Meridian. - An imaginary line, north and south from any point or place, whether it is conceived to run along the earth or through the heavens. If the meridian is conceived to divide both the earth and the heavens, it is then considered as a plane, and is spoken of as the plane of the meridian.

Poles. - The points where all meridians come together: poles of the earth - the extremities of the earth's axis.

Zenith. - The zenith of any place, is the point directly overhead; and the Nadir is directly opposite to the zenith, or under our feet. The zenith and nadir are the poles to the horizon.

Verticals. - All lines passing from the zenith, perpendicular to the horizon, are called Verticals, or Vertical Circles. The one passing at right angles to the meridian, and striking the horizon at the east and west points, is called the Prime Vertical.

Azimuth. - The angular position of a body from the meridian, measured on the circle of the horizon, is called its $A z i$ muth.

The angular position, measured from its prime vertical, is Amplitude. called its Amplitude.

The sum of the azimuth and amplitude must always make 90 degrees.

Equator. - The Earth's Equator is a great circle, east and west, and equidistant from the poles, dividing the earth into two hemispheres, a northern, and a southern.

The Celestical Equator is the plane of the earth's eriuator conceived to extend into the heavens.

When the sun, or any other heavenly body, meets the Equinoc. celestial equator, it is said to be in the Equinox, and the ${ }^{\text {tial. }}$ equatorial line in the heavens is called the Equinoctial.

Latitude. - The latitude of any place on the earth, is its distance from the equator, measured in degrees on the meridian, either north or sorth.

If the measure is toward the north, it is north latitude; if toward the south, south latitude.

Introduc.

reckoned east and west ; but it would add greatly to syste- Inrrodre. matic regularity, and tend much to avoid confusion and am- Improve. biguity in computations, were this mode of expression aban- ment sag. doned, and longitude invariably reckoned westward, from 0 to ${ }^{\text {gested. }}$ 360 degrees.

Latitude and longitude, on the earth, does not corre- Latitude, spond to latitude and longitude in the heavens. Latitude, on longitude, the earth, corresponds with declination in the heavens; and cension. longitude, on the earth, has a striking analogy to right ascension in the heavens, though not an exact correspondence. We shall more particularly explain latitude, longitude, and right ascension in the heavens, as we advance in this work; for it is only when we are forced to use these terms, that the nature and spirit of their import can be really understood.

There are other technicalities, and terms of frequent use, in astronomy, such as Conjunction, Opposition, Retrograde, ${ }^{\text {not }}$ explain. Direct, Apogee, Perigee, \&c., \&c., all of which, for the sake of simplicity, had better not be explained until they fall into use; and, once for all, let us impress this fact on the minds of our readers, that we shall put far more stress on the substance and spirit of a thing, than on its name.

SECTION I.

CHAPTERI.

PRELIMINARY OBSERVATIONS.

Chap. I. To commence the study of astronomy, we must observe and call to mind the real appearances of the heavens.

Take such a station, any clear night, as will command an extensive view of that apparent, concave hemisphere above us, which we call the sky, and fix well in the mind the directions of north, south, east, and west.

The apparent motion of the stars.

At first, let us suppose our observer to be somewhere in the United States, or somewhere in the northern hemisphere, about 40 degrees from the equator.

As yet, this imaginary person is not an astronomer, and neither has, nor knows how to use, any astronomical instrument; but we would have him mark with attention the positions of the heavenly bodies.
(1.) Soon he will perceive a variation in the position of the stars; those at the east of him will apparently rise; those at the west will appear to sink lower, or fall below the horizon; those at the south, and near his zenith, will apparently move westward; and those at the north of him, which he may see about half way between the horizon and zenith, will appear stationary.
Apparent Let such observations be continued during all the hours of the night, and for several nights, and the observer cannot fail to be convinced that not only all the stars, but the sun, moon, and planets, appear to perform revolutions, in about twenty-four hours, round a fixed point; and that fixed point, as appears to us (in the middle and northern part of the United States), is about midway between the northern horizon and the zenith.
Large and It should always be borne in mind, that the sun, moon, and small circles. stars, have an apparent diurnal motion round a fixed point,
and all those stars which are 90 degrees from that point,

Chap. I.

 apparently describe a great circle. Those stars that are nearer to the fixed point than 90 degrees, describe smaller circles; and the circles are smaller and smaller as the objects are nearer and nearer the fixed points.(2.) There is one star so near this fixed point, that the small circle it describes, in about 24 hours, is not apparent from mere inspection. To detect the apparent motion of this star, we must resort to nice observations, aided by mathematical instruments.

This fixed point, that we have several times mentioned, is The North the North Pole of the heavens, and this one star that we have just Star. mentioned, is commonly called the North Star, or the Pole Star.
(3.) This star, on the 1 st of January, 1820, was $1^{\circ} 39^{\prime}$ Position of $6^{\prime \prime}$ from the pole, and on 1st of January, 1847, its distance the North from the pole was $1^{\circ} 30^{\prime} 8^{\prime \prime}$; and it will gradually and more slowly approach within about half a degree of the pole, and afterward it will as gradually recede from the pole, and finally cease to be the polar star.

We here, and must generally, speak of the star, or the stars, The pole as in motion; but this is not so. The fixed stars are abso- in motion. lutely fixed; it is the pole itself that has a slow motion among the stars, but the cause of this motion cannot now be explained; it is one of the most abstruse points in astronomy, and we only mention it as a fact.

As the North Star appears stationary, to the common observer, it has always been taken as the infallible guide to direction ; and every sailor of the ocean, and every wanderer of the African and Arabian deserts, has held familiar acquaintance with it.
(4.) If our observer now goes more to the southward, and makes the same observations on the apparent motions of the stars, he will find the same general results; each individual southwaing star will describe the same circle; but the pole, the fixed point, will be lower down, and nearer the northern horizon; and it will be lower and lower in proportion to the distance the observer goes to the south. After the observer has gone sufficiently far the fixed point, the pole, will no longer be up

Chap. I. in the heavens, but down in the northern horizon; and when
Appear- the pole does appear in the horizon, the observer is at the ance from equator, and from that line all the stars at or near the equathe equator. tor appear to rise up directly from the east, and go down directly to the west; and all other stars, situated out of the equator, describe their small circles parallel to this perpendicular equatorial circle.
South of If the observer goes south of the equator, the apparent the equator. north pole of the heavens sinks below the northern horizon, and the south pole rises up into the heavens at the south.
Changes in appearance on going north,
(5.) If the observer should go north, from the first station, in place of going south, the north pole would rise nearer to the zenith; and, should he continue to go north, he would finally find the pole in his zenith, and all the stars would apparently make circles round the zenith, as a center, and parallel to the horizon; and the horizon itself would be the celestial equator.
(6.) When the north pole of the heavens appears at the zenith, the observer must then be at the north pole, on the earth, or at the latitude of 90 degrees.
Appear- (7.) Any celestial body, which is north of the equator, is
from ance
the
from
north always visible from the north pole of the earth; hence the pole. sun, which is north of the equator from the 20th of March to the $23 d$ of September, must be constantly visible during that period, in a clear sky.

Just as the sun comes north of the equator, its diurnal progress, or rather, the progress of 24 hours, is around the horizon. When the sun's declination is 10 degrees north of the equator, the progress of 24 hours is around the horizon at the altitude of 10 degrees; and so for any other degree.

From the north pole, all directions, on the surface of the earth, are south. North would be in a vertical direction toward the zenith.
How to find the circumference and diameter of the earth.

We have observed that the pole of the heavens rises as we go north, and sinks toward the horizon as we go south; and when we observe that the pole has changed its position one degree, in relation to the horizon, we know that we must have changed place one degree on the surface of the earth.
(8.) Now we know by observation, that if we go north about $69 \frac{1}{4}$ English miles on the earth, the north pole will be one degree higher above the horizon. Therefore $69 \frac{1}{4}$ miles corresponds to one degree, on the earth; and hence the whole circumference of the earth must be $69 \frac{1}{4}$ multiplied by 360 : for there are 360 degrees to every circle. This gives 24,930 miles for the circumference of the earth, and 7,930 miles for its diameter, which is not far from the truth.
(9.) Here, in the United States, or anywhere either in

Chap. I

Circumpo- Europe, Asia, or America, north of the equator, say in lati- lar stars. tude 40°, the north pole of the heavens must appear at an altitude of 40° above the horizon; and as all the stars and heavenly bodies apparently circulate round this point as a center, it follows that all those stars which are within 40° of the pole can never go below the horizon, but circulate round and round the pole. All those stars which never go below the horizon, are called circumpolar stars.

At the north, and very near the north pole, the sun is a circumpolar body while it is north of the equator, and it is a circumpolar body as seen from the south pole, while it is south of the equator; this gives six months day and six months night, at the poles.
(10.) North of latitude 66°, and when the sun's declinanation is more than 23° north (asit is on and about the 20th of June in each year), then the sun comes at, or very near, the northern horizon, at midnight; it is nearly east, at 6 o'clock in the morning; it is south, at noon, and about 23° in altitude; and is nearly west at 6 in the afternoon.
(11.) In the southern hemisphere, there is no prominent star near the south pole ; that is, no southern polar star ; but, of course, there are circumpolar stars, and more and more as one goes south; and if it were possible to go to the south pole, the whole southern hemisphere would consist of circumpolar stars, and the pole, or fixed point of the heavens, would be directly overhead; and the sun himself, when south of the equator, would be a circumpolar body, going round and round every 24 hours; nearly parallel with the horizon.
(12.) In all latitudes, and from all places, the sun is

Chap. I. observed to circulate round the nearest pole, as a center; and The near- when the sun is on the same side of the equator as the ob-
est pole is the center of the sun's di. urnal mo-light.

When the sun is on the equator, the horizon, of every latitude, cuts the sun's diurnal circle into two equal parts, and gives 12 hours day, and 12 hours night, the world over. When the sun is on the opposite side of the equator from the observer, the smaller segment of the sun's diurnal circle is above the horizon, and, of course, gives shorter days than nights.

We have, thus far, made but rude and very imperfect ob-
rvations on the apparent motion of the heavenly bodies, and
We have, thus far, made but rude and very imperfect ob-
servations on the apparent motion of the heavenly bodies, and have satisfied ourselves only of two facts:

Facts set. tled. server, more than half of the sun's diurnal circle is above the horizon, and the observer will have more than 12 hours suntion. ren the sun is or apparently circulate round the pole, and round the earth, in a day, or in about 24 hours.
2. That the sun comes to the meridian, at different altitudes above the horizon, at different seasons of the year, giving long days in June, and short days in December.
(13.) Let us now pay attention to some other particulars. Let us look at the different groups of stars, and individual stars, so that we can recognize them night after night.
Necessity We should now have some means of measuring time; but, of having a in early days, when astronomy was no further advanced than
measur of time. it is supposed to be in this work, a clock could hardly have had existence; and the advancement of timepieces has been nearly as gradual as the advancement of astronomy itself.

But we will not dwell on the history, and difficulties, of clockmaking; whatever these difficulties may have been, or whatever niceties modern science and art may have attained, there never was a period when people had not a good general idea of time, and some means to measure it. For instance, sunrise and sunset could be always noted as distinct points of time; and the interval of a day and a night, or an astronomical day, which we now call 24 hours, was soon observed to be a constant quantity.

At first, only rude timepieces could be made, designed to Char. I. mark off equal intervals of time; but we will suppose, at once, that the reader of this work, or our imaginary observer, can have the use of a common clock, which measures mean solar time of 24 hours in a natural day, which is marked by the sun.
(14.) Now, having power to recognize certain stars, or The partigroups of stars, such as the Seven Stars, the Belt of Orion, ${ }_{\text {tion of stars }}^{\text {cula }}$ posiAldebaran, Sirius, and the like, and having likewise the use in relation to of a clock, he can observe when any particular star comes to time. any definite position.

Let a person place himself at any particular point, to the north of any perpendicular line, as the edge of a wall or building, and let him observe the stars as they pass behind the building, in their diurnal motions from the east to the west. For example, let us suppose that the observer is watching the star Aldebaran, and that, when the eye is placed in a particular definite position, the star passes behind the building at exactly 8 o'clock.

The next evening, the same star will come to the same point about 4 minutes before 8 o'clock; and it will not come to the same point again, at 8 o'clock in the evening, until after the expiration of one year.
(15.) But in any year, on the same day of the month, and at the same hour of the day, the same star will be at, or very near, the same position, as seen from the same point.

For instance, if certain stars come on the meridian at a on stars particular time in the evening, on the first day of December, coming to the same stars will not come on the meridian again, at the dian. same time of the night, until the first day of the next December.

On the first of January, certain stars come to the meridian Index to at midnight; and (speaking loosely) every first of January ${ }_{\text {a y year. }}^{\text {the lenth of }}$ the same stars come to the meridian at the same time; and there will be no other day during the whole year, when the same stars will come to the meridian at midnight.

Thus, the same day of every year is observed to have the same position of the stars at the same hour of the night; and this is the most definite index for the expiration of a year.

Chap, I. (16.) The year is also indicated by the change of the sun's Another declination, which the most careless observer cannot fail to index of the notice. On the 21 st of June, the sun declines about $23 \frac{1}{2}$ deyear. grees from the equator toward the north; and, of course, to us in the northern hemisphere, its meridian altitude is so much greater, and the horizontal shadows it casts from the same fixed objects will be shorter; and the same meridian altitude and short shadow will not occur again until the following June, or after the expiration of one year.

Thus, we see, that the time of the stars coming on to the meridian, and the declination of the sun, have a close correspondence, in relation to time.
Fixed In all our observations on the stars, we notice that their stars; why
this term is this term is applied. motions. In whatever parts of their circles they are observed, or at whatever hour of the night they are seen, the same configuration is recognized, although the same group, in the different parts of its course, will stand differently, in respect to the horizon. For instance, a configuration of stars resembling the letter A , when east of the meridian, will resemble the letter V , when west of the meridian.
Wander- As the stars, in general, do not change their positions, in ing stars. respect to each other, they are called fixed stars; but there are a few important stars that do change, in respect to other stars; and for that reason they become especial objects of attention, and form the most interesting portion of astronomy.
Planets.
In the earliest ages, those stars that changed their places, were called wandering stars; and they were subsequently found to be the planetary bodies of the solar system, like the earth on which we live.

CHAPTER II.

APPEARANCES IN THE HEAVENS.

In the preceding chapter we have only called to mind the Снap. II. most obvious and preliminary observations, which force themselves on every one who pays the least attention to the subject.

We shall now consider the observer at one place, making more minute and scientific observations.
(17.) We have already remarked, that if the observer How 10 was on the equator, the poles, to him, would be in his horizon. If he were at one of the poles, for instance, the north pole, the place of obequator would then bound the horizon. If he were half way servation. between the equator and one of the poles, that pole would appear half way between the horizon and the zenith.

Therefore, by observing the altitude of the pole above the horizon, we determine the number of degrees we are from the equator, which is called the latitude of the place.
(18.) To carry the mind of the reader progressively along, in astronomy, we must now suppose that he not only has the use of a good clock, but has also some instrument to measure angles.

Clocks and astronomical instruments progressed, toward perfection in about the same ratio as astronomy itself; but, as we are investigating or leading the young mind to the investigation of astronomy, and not making clocks or mathematical instruments, we therefore suppose that the observer has all the necessary instruments at his command, and we may now require him to make a correct map of the visible heavens; but to accomplish it, we must allow him at least one year's time, and even then he cannot arrive at anything like accuracy, as several incidental difficulties, instrumental errors, and practical inaccuracies, must be met and overcome.
(19.) There are three principal sources of error, which must be taken into consideration, in making astronomical

Sources of error in mak. ing observจ. observations. 1. Uncertainty as to the exact time. 2. Inex- tion-

Chap. II. m
Practical difficulties and causes of error. sarily imperfect.
"It may be thought an easy thing," says Sir John Herschel, "by one unacquainted with the niceties required, to turn a circle in metal, to divide its circumference into 360 equal parts, and these again into smaller subdivisions, - to place it accurately on its center, and to adjust it in a given position; but practically it is found to be one of the most difficult. Nor will this appear extraordinary, when it is considered that, owing to the application of telescopes to the purposes of angular measurement, every imperfection of structure or division becomes magnified by the whole optical power of that instrument; and that thus, not only direct errors of workmanship, arising from unsteadiness of hand or imperfection of tools, but those inaccuracies which originate in far more uncontrollable causes, such as the unequal expansion and contraction of metallic masses, by a change of temperature, and their unavoidable flexure or bending by their own weight, become perceptible and measurable."
Necessary (20.) The most important instruments, in an observatory, instruments. aside from the clock, are a circle, or sector, for altitudes; and a transit instrument.

The former consists of a circle, or a portion of a circle, of firm and durable material, divided into degrees, at the rate of 360 to the whole circle. Each degree is divided into equal parts; and, by a very ingenious mechanical adjustment of an index, called a Vernier scale, the division of the degree is practically (though not really) subdivided into seconds, or 3600 equal parts.

The whole instrument must now be firmly placed and adjusted to the true horizontal (which is exactly at right angles to a plumb line), and so made as to turn in any direction. With this instrument we can measure angles of altitude.
The transit instrument.
(21.) The transit instrument is but a telescope, firmly fastened on a horizontal axis, east and west, so that the telescope itself moves up and down in the plane of the meridian, but can never be turned aside from the meridian to the east or west.

To place the instrument in this position, is a very difficult matter; but it is a difficulty which, at present, should not come under consideration; we simply conceive it so placed, ready for observations.
"In the focus of the eyepiece, and at right angles to the length of the tele-

Transit Instrument.

Chap, II.

A line in the transit instrument a visible meridian. tant vertical threads or wires, as represented in the annexed figure, which always appear in the field of viev, when properly illuminated, by day by the light of the sky, by night by that of a lamp, introduced by a contrivance not necessary here to explain. The place of this system of wires may be altered by adjusting screws, giving it a lateral (horizontal) motion; and it is by this means brought to such a
 position, that the middle one of the vertical wires shall intersect the line of collimation of the telescope, where it is arrested and permanently fastened. In this situation it is evident that the middle thread will be a visible representation of that portion of the celestial meridian to which the telescope is pointed; and when a star is seen to cross this wire in the telescope, it is in the act of culminating, or passing the celestial meridian. The instant of this event is noted by the clock or chronometer, which forms an indispensable accompaniment of the transit instrument. For greater precision, the moments of its crossing all the five vertical threads is noted, and a mean taken, which (since the threads are equi-

Practica! artifices, 10 attain accuracy. distant) would give exactly the same result, were all the observations perfect, and will, of course, tend to subdivide and destroy their errors in an average of the whole."
(22.) Thus, all prepared with a transit instrument and a Intervals between the clock, we fix on some bright star, and mark when it comes to fixed stars the meridian, or appears to pass behind the central wire of the ${ }^{\text {passing the }}$ instrument. By noting the same event the next evening, the ${ }_{\text {ways }}^{\text {meridan }}$ connext, and the next, we find the interval to be very sensi- stant.

Cusp. II. bly less than 24 hours; but the intervals are equal to each other; and all the fixed stars are unanimous in giving equal intervals of time between two successive transits of the same star, if measured by the same clock.

The following observations were actually taken by M. Arago and Lacroix, in the small island of Formentera, in the Mediterranean, in December, 1807.

Date of Observations.	Time of transit of the Star a Arietis.		Intervals between successive Transits.		
	h. m.	S.	h.	m .	S.
1807, Dec. ${ }_{\text {\% }}{ }^{\text {24, }}$		32.36			
" 25 ,	941	29.70	23	58	57.34
" 26 ,	940	26.72	23	58	57.02
" 27 ,	$9 \quad 39$	23.90	23	58	57.18
" 28 ,	938	21.38	23	58	57.48

These intervals between the transits agree so nearly, that it is very natural to suppose them exactly equal, and the small difference of the fraction of a second to arise from some slight irregularities of the clock, or imperfection in making the observations.

The equality of these intervals is not only the same for all the fixed stars, in passing the meridian, but they are the same in passing all other planes.
standard Now as this has been the universal experience of astronoof measure for time. mers in all ages, it completely establishes the fact, that all the fixed stars come to the meridian in exactly equal intervals of time; and this gives us a standard measure for time, and the only standard measure, for all other motions are variable and unequal.
Time of Again, this interval must be the time that the earth the earth's
revolution on its axis. mark for the time that the meridian is in exactly the same position in relation to absolute space.
M. Arago's c.lock.
(23.) That the reader may not imbibe erroneous impressions, we remark, that the clock used for the preceding observations, made by M. Arago and Lacroix, ran too fast, if it was a common clock, and too slow, if it was an astronomical
clock. It was not mentioned which clock was used, nor was Crap. ir. it material simply to establish the fact of equal intervals; nor was it essential that the clock should run 24 hours, in a mean solar day; it was only essential that it ran uniformly, and marked off equal hours in equal times.

If it had been a common clock, and ran at a perfect rate, the interval would have been 23 h .56 m .4 .09 s .
(24.) In the preceding section we have spoken of an astronomical clock. Soon after the fact was established that the fixed stars came to the meridian in equal times, and that interval less than 24 hours, astronomers conceived the idea of graduating a clock to that interval, and dividing it into 24 hours. Thus graduating a clock to the stars, and not to the sun, is called a sidereal, and not a solar, or common clock; and as it was suggested by astronomers, and used only for the purposes of astronomy, it is also very appropriately called an astronomical clock; but save its graduation, and the nicety of its construction, it does not differ from a common clock.

With a perfect astronomical clock, the same star will pass the meridian at exactly the same time, from one year's end to another.* If the time is not the same, the clock does not run

An astro. nomical clock.

Ciap. II. to sidereal time; and the variation of time, or the difference between the time when the star passes the meridian, and the time which ought to be shown by the clock, will determine the rate of the clock. And with the rate of the clock, and its error, we can readily deduce the true time from the time shown by the face of the clock.

Solar days not equal.

$$
1
$$ (25.) When we examine the sun's passage across the meridian, and compare the elapsed intervals with the sidereal clock, we find regular and progressive variations, above and below a mean period, that cannot be accounted for by errors of observation.

The mean interval, from one transit of the sun to another, or from noon to noon, when we take the average of the whole year, is 24 hours, of solar time, or 24 h .3 m .56 .5554 s . of sidereal time; but, as we have just observed, these intervals are not uniform; for instance, about the 20th of December, they are about half a minute longer, and about the 20th of September, they are as much shorter, than the mean period.
From this fact, we are compelled to regard the sun, not as must have a fixed point; it must have motions, real or apparent, indereal or apparent motion. pendent of the rotation of the earth on its axis.
(26.) When we compare the times of the moon passing the meridian, with the astronomical clock, we are very forcibly struck with the irregularity of the interval.
General The least interval between two successive transits of the motion of moon (which may be called a lunar day), is observed to be about 24 h .42 m .; the greatest, 25 h .2 m .; and the mean, or average, 24 h .54 m ., of mean solar time.

These facts show, conclusively, that the moon is not a
which makes its transits across the meridian a fraction of a second shorter than the transits of a star.

The time required for 366 transits of a star across the meridian, is ($3^{\prime \prime} .34$), three seconds and thirty-four hundredths of a second of sidereal time, greater than for 366 transits of the equinox.
This difference would make a day in about 25000 years. The time elapsed between two successive transits of the equinox being now called a sidereal day of - - - 24 h .0 m .0 s ., the time between the transits of the same star, is - 24 h .0 m .0 .00916 s

Every astronomer understands Art. (24) with this modification.
fixed body, like a fixed star, for then the interval would be Chas. iI. 24 hours of sidereal time.

But as the interval is always more than 24 hours, it shows that the general motion of the moon is eastward among the stars, with a daily motion varying from $10 \frac{1}{2}$ to 16 degrees,* traveling, or appearing to travel, through the whole circle of the heavens (360°) in a little more than 27 days.

Thus, these observations, however imperfectly and rudely taken, at once disclose the important fact, that the sun and moon are in constant change of position, in relation to the stars, and to each other; and, we may add, that the chief object and study of astronomy, is, to discover the reality, the causes, the nature, and extent of such motions.
(27.) Besides the sun and moon, several other bodies were noticed as coming to the meridian at very unequal intervals of time - intervals not differing so much from 24 bodies. sidereal hours as the moon, but, unlike the sun and moon, the intervals were sometimes more, sometimes less, and sometimes equal to 24 sidereal hours.

These facts show that these bodies have a real, or apparent motion, among the stars, which is sometimes westward, sometimes eastward, and sometimes stationary; but, on the whole, the eastward motion preponderates; and, like the sun and moon, they finally perform revolutions through the heavens from west to east.

Only four such bodies (stars) were known to the ancients, namelỳ, Venus, Mars, Jupiter, and Saturn.

These stars are a portion of the planets belonging to our cients. solar system, and, by subsequent research, it was found that the Earth was also one of the number. As we come down to more modern times, several other planets have been discovered, namely, Mercury, Uranus, Vesta, Juno, Ceres, Pallas, and, very recently (1846), the planet Neptune. \dagger

[^0]Chap. II. We shall again examine the meridian passages of the sun, moon, and planets, and deduce other important facts concerning them, besides that of their apparent, or real motions among the fixed stars.

Observations which determine the meridian distances of the stars.
(28.) But let us return to the fixed stars. We have sereral times mentioned the fact, that the same star returns to the same meridian again and again, after every interval of 24 sidereal hours. So two different stars come to the meridian at constant and invariable intervals of time from each other; and by such intervals we decide how far, or how many degrees, one star is east or west of another. For instance, if a certain fixed star was observed to pass the meridian when the sidereal clock marked 8 hours, and another star was observed to pass at 9 , just one sidereal hour after, then we know that the latter star is on a celestial meridian, just 15 degrees eastward of the meridian of the first mentioned star.
Corespon- As 24 hours corresponds to the whole circle, 360 degrees, dence be- t iween lours and degrees. in time, to oue degree of arc. Hence, whatever be the observed interval of time between the passing of two stars over the meridian, that interval will determine the actual difference of the meridians running through the stars; and when we know the position of any one, in relation to any celestial meridian, we know the positions of all whose meridian observations have been thus compared.
Right as. The position of a star, in relation to a particular celestial cension. meridian, is called Right Ascension, and may be expressed either in time or degrees. Astronomers have chosen that

[^1]meridian, for the first meridian, which passes through the sun's center at the instant the sun crosses the celestial equator in the spring, on the 20th of March.

Right ascension is measured from the first meridian, eastward, on the equator, all the way round the circle, from 0 to 360 degrees, or from 0 h . to 24 h .

The reason why right ascension is not called longitude will be explained hereafter.
(29.) If we observe and note the difference of sidereal time between the coming of a star to the meridian, and the right ascen. coming of any other celestial body, as the sun, moon, planet, sun, moon, or comet, such difference, applied to the right ascension of the and planets. star, will give the right ascension of the body.

But every astronomer regulates, or aims to regulate, his sidereal clock, so that it shall show 0 h .0 m .0 s ., when the equinox is on the meridian; and, if it does so, and runs regularly, then the time that any body passes the meridian by the clock, will give the right ascension of the body in time, without any correction or calculation; but, practically, this is never the case; a clock is never exact, nor can it ever run exactly to any given rate or graduation.

We have thus shown how to determine the right ascensions of the hearenly bodies. We shall explain how to find their positions in declination, in the next chapter.

CHAPTER III.

REERACTION. - POSITION OF THE EQUINOX, AND OBLIQUITY OF THE ECLIPTIC - HOW FOUND BY OBSERVATION.

(30.) To determine the angular distance of the stars from Ceap. II: the pole, the observer must first know the distance of his zenith from the same point.

As any zenith is 90 degrees from the true horizon, if the observer can find the altitude of the pole above the horizon

Спap. III. (which is the latitude of the place of observation), he, of course, knows the distance between the zenith and the pole.

Preparations for determining the latitude by original observations.

As the north pole is but an imaginary point, no star being there, we cannot directly observe its altitude. But there is a very bright star near the pole, called the Polar Star, which, as all other stars in the same region, apparently revolves round the pole, and comes to the meridian twice in 24 sidereal hours; once above the pole, and once below it; and it is evident that the altitude of the pole itself must be midway between the greatest and least altitudes of the same star, provided the apparent motion of the star round the pole is really in a circle; but before we examine this fact, we will show how altitudes can be taken by the mural circle.

The mural circle.

(31.) The mural, or wall circle, is a large metallic circle, firmly fastened to a wall, so that its plane shall coincide with the plane of the meridian.

A perpendicular line through the center, $2 N$, (Fig. 2), represents the zenith and nadir points; and at right angles to this, through the center, is the horizontal line, $H h$.
How to ob- A telescope, $T t$, and an index bar, $I i$, at right angles to serve meri- the telescope, are firmly fixed together, and made to revolve
dian altitudes. on the center of the mural circle.

The circle is graduated from the zenith and nadir points, each way, to the horizon, from 0 to 90 degrees.

When the telescope is directed to the horizon, the index points, I and i, will be at Z and N, and, of course, show 0° of altitude. When the telescope is turned perpendicular, to Z, the index bar will be horizontal, and indicate 90 degrees of altitude.

When the telescope is pointed toward any star, as in the
figure, the index points, I and i, will show the position of the Crar. III. telescope, or its angle from the horizon, which is the altitude of the star.

As the telescope, and index of this instrument, can revolve Mural cir. freely round the whole circle, we can measure altitudes with cle also a $\begin{gathered}\text { and } \\ \text { transit } \\ \text { in- }\end{gathered}$ it equally well from the north or the south; but as it turns strument. only in the plane of the meridian, we can observe only meridian altitudes with it.

This instrument has been called a transit circle, and, says Sir John Herschel, "The mural circle is, in fact, at the same time, a transit instrument; and, if furnished with a proper system of vertical wires in the focus of its telescope, may be used as such. As the axis, however, is only supported at one end, it has not the strength and permanence necessary for the more delicate purposes of a transit; nor can it be verified, as a transit may, by the reversal of the two ends of its axis, east for west. Nothing, however, prevents a divided circle being permanently fastened on the axis of a transit instrument, near to one of its extremities, so as to revolve with it, the reading off being performed by a microscope fixed on one of its piers. Such an instrument is called a transit circle, or a meridian circle, and serves for the simultaneous determination of the right ascensions and polar distances of objects observed with it; the time of transit being noted by the clock, and the circle being read off by the lateral microscope."
(32.) To measure altitudes in all directions, we must have another instrument, or a modification of this.

Altitude and azimuth instrament.

Conceive this instrument to turn on a perpendicular axis, parallel to $Z N$, in place of being fixed against a wall; and conceive, also, that the perpendicular axis rests on the center of a horizontal circle, and on that circle carries a horizontal index, to measure azimuth angles.

This instrument, so modified, is called an altitude and azimuth instrument, because it can measure altitudes and azimuths at the same time.
(33.) After astronomy is a little advanced, and the angular distance of each particular star, sun, moon, and planet,

Chap. in. from the pole is known, then we can determine the latitude by The lati- observing the meridian altitude of any known celestial body; tude taken
by the alti- but before their positions are established (as is now supposed tude of the to be the case with the reader of this work), the only way to pole. observe the latitude is by the altitudes of some circumpolar star, as mentioned in Art. 30.

To settle this very important element, the observer turns the telescope of his mural circle to the pole star, and observes its greatest and least altitudes, and takes the half sum for his latitude. But is this really his latitude? Does it require any correction, and if so, what, and for what reason?
A difficulty. At first, it was very natural to suppose that this gave the exact latitude; but astronomers, ever suspicious, chose to verify it, by taking the same observations on other circumpolar stars; and if the theory was correct, and the observations correctly taken, all circumpolar stars would give the same, or very nearly the same, result. Such observations were made, and stars at the same distance from the pole, gave the same latitude, and stars at different distances from the pole, gave different latitudes; and the greater the distance of any star from the pole, the greater the latitude deduced from it. A star 30 or 35 degrees from the pole, observed from about the latitude of 40 degrees, will give the latitude 12 or 15 minutes of a degree greater than the pole star.
New and Astronomers were now troubled and perplexed. These important truths. great and manifest discrepancies could not be accounted for by imperfection of instruments, or errors of observations, and some unconsidered natural cause was sought for as a solution.
Curves de. To bring more evidence to bear on the case, astronomers scribed by
circumpolar examined the apparent paths of the stars round the pole, by stari. means of the altitude and azimuth instrument, and they were found to be not exact circles; but departed more and more from a circle, as the star was a greater and greater distance from the pole.

These curves were found to be somewhat like ovals - the longer diameter passing horizontally through the pole - the
upper segments very nearly semicircles, and the lower segments C. flattened on their under sides.

With such evidences before the mind, men were not long in deciding that these discrepancies were owing to

ASTRONOMICAL REFRACTION.

(34.) It is shown, in every treatise on natural philosophy, General that light, passing obliquely from a rarer medium into a effect of re. denser, is bent toward a perpendicular to the new medium.

Now, when rays of light pass, or are conceived to pass, from any celestial object, through the earth's atmosphere to an observer, the rays must be bent downward, unless they pass perpendicularly through the atmosphere; that is, come from the zenith.

Let $A B, C D$, $E F$, \&c. (Fig. 3), represent different strata of the earth's atmosphere. Let s be a star, and conceive a line of light to pass from the star through the various strata of air, to the observer, at 0 .

When it meets the first strata, as $E F$, it is slightly bent downward, and as the air becomes more and more dense, its increases alrefracting power becomes greater and greater, which more and more bends the ray. But the direction of the ray, at the point where it meets the eye of the observer, will determine the position of the star as seen by him. Hence the observer at 0 , will see the star at s^{\prime}, when its real position is at s.

As a ray of light, from any celestial object, is bent down-

Crap. in. ward, therefore, as we may see by inspecting the figure, the altitude of all the heavenly bodies is increased by refraction.

This shows that all the altitudes, taken as described in Art. 33, must be apparent altitudes - greater than true altitudes - and the resulting latitudes, deduced from them, all too great.

The object is now to obtain the amount of the refraction corresponding to the different altitudes, in order to correct or allow for it.

To determine the amount of refraction, we must resort to observations of some kind. But what sort of observations will meet the case?
How to Conceive an observer at the equator, and when the sun or find the a-. Contar passes through, or very near his zenith, it has no refraction cor- fraction. But, at the equator, the diurnal circles are per-
responding Tesponding
to every de. pendicular to the horizon; and those stars which are very gree of alti- near the equator, really change their altitudes in proportion to tude. the time.

Now a star may be observed to pass the zenith, at the equator, at a particular moment : four hours afterward (sidereal time), the zenith distance of this star must be 4 times 15 , or 60 degrees, and its altitude just 30 degrees. But, by observation, the altitude will be found to be $30^{\circ} 1^{\prime} 38^{\prime \prime}$. From this, we perceive, that $1^{\prime} 38^{\prime \prime}$ is the amount of refraction corresponding to 30 degrees of altitude.

In six sidereal hours from the time the star passed the zenith, the true position of the star would be in the horizon; but, by observation, the altitude would be $33^{\prime} 0^{\prime \prime}$, or a little more than the angular diameter of the sun.
Amount From this, we perceive, that $33^{\prime} 0^{\prime \prime}$ is the amount of reof horizontal refraction. fraction at the horizon.

Thus, by taking observations at all intervals of time, between the zenith and the horizon, we can determine the refraction corresponding to every degree of altitude.
(35.) In the last article, we carried the observer to the equator, to make the case clear; but the mathematician need not go to the equator, for he can manage the case wherever
he may be - he takes into consideration the curves, as mentioned in Art. 33.

If it were not for refraction, the curves round the pole would be perfect circles, and the mathematician, by means of the altitude and azimuth, which can be taken at any and every point of a curve, can determine how much it deviates from a circle, and from thence the amount of refraction, or nearly the amount of refraction, at the several points.

By using the refraction thus imperfectly obtained, he can correct his altitudes, and obtain his latitude, to considerable accuracy. Then, by repeating his observations, he can further approximate to the refraction.

In this way, by a multitude of observations and computations, the table of refraction (which appears among the tables of every astronomical work) was established and drawn out.
(36.) The effect of refraction, as we have already seen, is to increase the altitude of all the heavenly bodies. Therefore, by the aid of refraction, the sun rises before it otherwise light. would, and does not set as soon as it would if it were not for refraction; and thus the apparent length of every day is increased by refraction, and more than half of the earth's surfase is constantly illuminated. The extra illumination is equal to a zone, entirely round the earth, of about 40 miles in breadth.

As the refraction in the horizon is about 33^{\prime} of a degree, the length of a day, at the equator, is more than four minutes longer than it otherwise would be, and the nights four minuies less.

At all other places, where the diurnal circles are oblique to the horizon, the difference is still greater, especially if we take the average of the whole year.

In high northern latitudes, the long days of summer are Effects in very materially increased, in length, by the effects of refrac- high latition; and near the pole, the sun rises, and is kept above the horizon, even for days, longer than it otherwise would be, owing to the same cause.

Refraction varies very rapidly, in its amount, near the hori-

Chap. III.

Distortion of the sun and moon in the horizon.
zon; and this causes a visible distortion of both sun and monn, just as they rise or set.

For instance, when the lower limb of the sun is just in the horizon, it is elevated, by refraction, 33^{\prime}.
But the altitude of the upper limb is then 32^{\prime}, and the refraction, at this altitude, is $27^{\prime} 50^{\prime \prime}$, elevating the upper limb by this quantity. Hence, we perceive, that the lower limb is elevated more than the upper; and the perpendicular diameter of the sun is apparently shortened by $5^{\prime} 10^{\prime \prime}$, and the sun is distinctly seen of an oval form; which deviates more from a circle below than above.

The apparently dilated size of the sun and moon, when near the horizon, has nothing to do with refraction: it is a mere illusion, and has no reality, as may be known by applying the following means of measurement.

Roll up a tube of paper, of such a size and dimensions as just to take in the rising moon, at one end of the tube, when the eye is at the other. After the moon rises some distance in the sky, observe again with this tube, and it will be found that the apparent size of the moon will even more than fill it.

The reason of this illusion is well understood by the student of philosophy; but we are now too much engaged with realities to be drawn aside to explain illusions, phantoms, or any Will-o'-the-wisp.

When small stars are near the horizon, they become invisible; either the refraction enfeebles and dissipates their light, or the vapors, which are always floating in the atmosphere, serve as a cloud to obscure them.
(37.) Having shown the possibility of making a table of refraction corresponding to all apparent altitudes, we can now, by applying its effects to the observed altitudes of the circumpolar stars, obtain the true latitude of the place of observation.

Let it be borne in mind, that the latitude of any place on the earth, is the inclination of its zenith to the plane of the equator; which inclination is equal to the altitude of the pole above the horizon.

We demonstrate this as fcllows. Let E (Fig. 4) repre-
sent the earth. Now, as an observer always conceives himself ' to be on the topmost part of the earth, the vertical point, Z, truly and natu-
 rally represents his zenith. Through E, draw $H E O$, at right angles to $E Z$; then $H E O$ will represent the horizon (for the horizon is always at right angles to the zenith).

Let $E Q$ represent the plane of the equator, and at right angles to it, from the center of the earth, must be the earth's axis; therefore, $E P$, at right angles to $E Q$, is the direction of the pole.

Now the arcs, $-\quad$\begin{tabular}{l}
$Z P+P O=90^{\circ}$,

Also, -

By subtraction,

\quad

$Z P+Z Q=90^{\circ}$,

$P O-Z Q=0 ;$
\end{tabular}

Or, by transposition, the arc $P O=Z Q$; that is, the altitude of the pole is equal to the latitude of the place; which was to be demonstrated.

In the same manner, we may demonstrate that the are, $H Q$, is equal to the are $Z P$; that is, the polar distance of the zenith is equal to the meridian altitude of the celestial equator. Now, we perceive, that by knowing the latitude, we know the several divisions of the celestial meridian, from the northern to the southern horizon, namely, $O P, P Z, Z Q$, and $Q H$.
(38.) We are now prepared to observe and determine the declinations of the stars.

The declination of a star, or any celestial object, is its meridian distance from the celestial equator.

This corresponds with latitude on the earth, and declination might have been called latitude.

The term latitude, as applied in astronomy, is to be defined hereafter.

Chap. III. To determine the declination of a star, we must observe How to its meridian altitude (by some instrument, say the mural find the de- circle, Fig. 2), and correct the altitude for refraction (see
clination of a clination ofa table of refraction) ; the difference will be the star's true
star. altitude.

If the true meridian altitude of the siar is less than the meridian altitude of the celestial equator, then the declination of the star is south. If the meridian altitude of the star is greater than the meridian altitude of the equator, then the declination of the star is north.

These truths will be apparent by merely inspecting Fig. 4.

EXAMPLES.

Examples 1. Suppose an observer in the latitude of $40^{\circ} 12^{\prime} 18^{\prime \prime}$ of the me- north, observes the meridian altitude of a star, from the
thod pursued to find any southern horizon, to be $31^{\circ} 36^{\prime} 37^{\prime \prime}$; what is the declination star's decli- of that star? nation.

2. The same observer finds the meridian altitude of another star, from the southern horizon, to be $79^{\circ} 31^{\prime} 42^{\prime \prime}$; what is the declination of that star?

3. The same observer, and from the same place, finds the meridian altitude of a star, from the northern horizon, to be $51^{\circ} 29^{\prime} 53^{\prime \prime}$; what is the declination of that star?

In this way the declination of every star in the visible heavens can be determined.
(39.) In Art. 28 we have explained how to obtain the difference of the right ascensions of the stars; and in the last of the chart. article we have shown how to obtain their declinations.

With the declinations and differences of right ascensions, we may mark down the positions of all the stars on a globe or sphere the true representation of the appearance of the heavens.

Quite a region of stars exists around the south pole, which are never seen from these northern latitudes; and to observe them, and define their positions, Dr. Halley, Sir John Herschel, and several other English and French astronomers, have, at different periods, visited the southern hemisphere. Thus, by the accumulated labors of the many astronomers, we at length have correct catalogues of all the stars in both hemispheres, even down to many that are never seen by the naked eye.
(40.) In Art. 28, we have explained how to find the differences of the right ascensions of the stars; butwe have not meridian of yet found the absolute right ascension of any star, for the want sion. of the first meridian, or zero line, from which to reckon. But astronomers have agreed to take that meridian for the zero meridian, which passes through the sun's center the instant the sun comes to the celestial equator, in the spring (which point on the equator is called the equinoctial point); but the difficulty is to find exactly where (near what stars) this meridian line is. Before we can define this line, we must take obserrations on the sun, and determine where it crosses the equator, and from the time we can determine the place. But before we can place much reliance on solar observations, we must ask ourselves this question. Has the sun any parallax?

Chap. III. that is, is the position of the sun just where it appears to be? Is it really in the plane of the equator, when it appears to be there?
Parallax.
To all northern observers, is not the sun thrown back on the face of the sky, to a more southern position than the one it really occupies? Undoubtedly it is; and this change of position, caused by the locality of the observer, is called parallax; but, in respect to the sun, it is too small to be considered in these primary observations.

The early astronomers asked themselves these questions, and based their conclusions on the following consideration :

If the sun is materially projected out of its true place; if it is

Sun's parallax insensible, in com. mon observations.

Northern and southern observations compared. thrown to the southward, as seen by a northern observer, it will cross the equator in the spring sooner than it appears to cross.

But let an observer be in the southern hemisphere, and, to him, the sun would be apparently thrown over to the north, and it would appear to cross the equator before it really did cross. Hence, if the sun is thrown out of place by parallax, an observer in the southern hemisphere would decide that the sun crossed the equator quicker, in absolute time, than that which would correspond to northern observations.

But, in bringing observations to the test, it was found that both northern and southern observers fixed on the same, or very nearly the same, absolute time for the sun crossing the equator. This proves that the position of the sun was not sensibly affected by parallax.

We will now suppose (for the sake of simplicity) that a sidereal clock has been so regulated as to run to the rate of sidereal time; that is, measure 24 hours between any two successive transits of the same star, over the same meridian, but the sidereal time not known.

Also, suppose that, at the Observatory of Greenwich, in the year 1846, the following observations were made:*

[^2]| Date. | Face of the Sidereal Clock. | | Declination by Observa.
 (Art. 38.) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | h. m. | s. | - | , | " | |
| March 18, | 13 | 20.00 | 0 | 58 | 53.4 | south, |
| " 19, | 16 | 58.62 | 0 | 35 | 11.3 | |
| " 20 , | 110 | 37.10 | 0 | 11 | 29.4 | " |
| " 21, | 114 | 15.47 | 0 | 12 | 12.0 | north, |
| 22, | 117 | 54.07 | 0 | 35 | 52:0 | |

Chap. III.
Observa.
tions to find the equinox, and the side. real time.

From these observations, it is required to determine the sidereal time, or the error of the clock; the time that the sun crossed the equator; the sun's right ascension; its longitude, and the obliquity of the ecliptic.

It is understood that the observations for declinations must have been meridian observations, and, of course, must have been made at the instant of apparent noon, local solar time.

By merely inspecting these observations, it will be perceived that the sun must have crossed the equator between the 20th and 21 st; for at the apparent noon of the 20th, the declination was $11^{\prime} 29^{\prime \prime} .4$ south; and on the 21 st, at apparent noon, it was $12^{\prime} 12^{\prime \prime}$ north. Between these two observations, the clock measured out 24 h .3 m .38 .37 s ., of sidereal time.

If the sun had not changed its meridian among the stars, the time would have been just 24 hours. The excess (3 m .38 .37 s .) must be changed into arc, at the rate of four minutes to one degree. Hence, to find the are, we have this proportion:
As $4^{\mathrm{m}}-: 3^{\mathrm{m} .} 38.37^{\mathrm{s} .}:: 1^{0}$: to the required result.
The result is $54^{\prime} 35^{\prime \prime} .4$; the extent of are which the sun changed right ascension during the interval between noon and noon of the 20th and 21st of March.

To examine this matter understandingly, draw a line, $E Q$, (Fig. 5), and make it equal to $54^{\prime} 35^{\prime \prime} .4$.

From E, draw $E S$, at right angles to $E Q$, and make it equal to $11^{\prime} 29^{\prime \prime} .4$. From Q, draw $Q N$, at right angles to $E Q$, and make it equal to $12^{\prime} 12^{\prime \prime}$. Then S will represent the sun at apparent noon, March 20th, and N the position of the sun at apparent noon, on the 21 st, and $S N$ is the line of

Criaf, III.
Fig. 5.
the sunamong

the stars, and the point \uparrow (called the first point of ${ }^{E}$ Aries), and it is where the sun crosses s the equator.

Now we
wish to find P where the line
$E Q$ is crossed by the line $S N$; or, the object is, to find $E \uparrow$, expressed in time.

To facilitate the computation, continue $E S$ to P, making $S P=Q N$, and draw the dotted line $P Q$. Then $S P Q N$ is a parallelogram. $E P=11^{\prime} 29^{\prime \prime} .4+12^{\prime} 12^{\prime \prime}=23^{\prime} 41^{\prime \prime} .4$; and the two triangles, $P E Q$, and $S E \Upsilon$, are similar ; therefore we have

$$
P E: E Q:: S E: E \Upsilon .
$$

To have the value of $E \Upsilon$, in time, $E Q$ must be taken in time; which is 3 m .38 .37 s.

Hence, ($23^{\prime} 41^{\prime \prime} .4$) : (3m. $38.37^{\text {s. }}$) : $11^{\prime} 29^{\prime \prime} .4: E \uparrow$;
The result gives, $\quad E r=1^{\mathrm{m} .45 .91}{ }^{\text {s. }}$
But the clock time that the point E passed the meridian, was - - - $\quad 1 \mathrm{~h} .10 \mathrm{~m} .37 .10 \mathrm{~s}$:
Add, - - - - $\quad 1 \quad 45.91$
Error of The equi. passed merid. (by clock) at 1 h .12 m .23 .01
But, at the instant that the equinox is on the meridian, the sidereal clock ought to show 0 h .0 m .0 s .

The error of the clock was, therefore, 1 h .12 m .23 .01 s . (subtractive).
Sun's right ascension.

As the whole line, E Q (in time), is -3 m .38 .37 s .

But $\odot \boldsymbol{Q}$ is the right ascension of the sun at apparent noon,
at Greenwich, on the 21st of March, 1846; a very important Снar. III. element.

The right ascension of any heavenly body, whether it be How to sun, moon, star, or planet, is the true sidereal time that it find the ab. passes the meridian ; and now, as we have the error of the ascenterion oit clock, we can determine the true sidereal time that any star the stars, passes the meridian, and, of course, its right ascension; thus, $\begin{gathered}\text { sun, } \text { and planets. }^{2} .\end{gathered}$ for example,

If a star passed the meridian at - 10 h .15 m .47 s .
Error of the clock is (subtractive) $1 \begin{array}{lll}1 & 12 & 23 \\ \end{array}$
Right ascension of the star is - 9 h .3 m .24 s .
(42.) To find the Greenwich apparent time, when the sun crossed the equinox, we refer to Fig. 5 ; and as the point E corresponds to apparent noon, of March 20th, and the Q to apparent noon of March 21st, and supposing the motion of the sun uniform (as it is nearly) for that short interval, we have the following proportion:

$$
E Q: E \uparrow:: 24 \text { h. }: x .
$$

Giving to $E Q$ and $E \uparrow$ their numeral values in seconds of sidereal time, the proportion becomes:

$$
218^{\prime \prime} .37: 105^{\prime \prime} .91:: 24 \mathrm{~h} .: x
$$

The result of this proportion gives 11 h .38 m .24 s ., for the Time of interval, after the noon of the 20 th of March, when the sun the equinox. crossed the equator.

This result is in apparent time. The difference between apparent time, and mean clock time, will be explained hereafter. At this period, the difference between the sun and the common clock was 7 m .36 s ., to be added to apparent time.

Equinox of 1846, March - - 20 d. 11 h. 38 m .24 s .
Equation of time (add), - $\quad 7 \quad 36$
Equinox, clock time (Greenwich), $\overline{20 \mathrm{~d} .11 \mathrm{~h} .46 \mathrm{~m} .0}$
(43.) The two triangles, $E S \uparrow$ and $\tau Q N$, are really obliquity spherical triangles; but triangles on a sphere whose sides are of the eclipless than a degree may be regarded as plane triangles, with- ${ }^{\text {tic, how }}$ sut any appreciable error. In the triangle $E S \odot$,

$$
E \Upsilon=1588^{\prime \prime} .65, E S=689^{\prime \prime} .4 ;
$$

Chap. III. and, if we regard these seconds of arc as mere numerals, and calculate the angle $E \sim S$, we find it $23^{\circ} 27^{\prime} 43^{\prime \prime}$; which is the obliquity of the ecliptic.
Sun's longitude.

By computing the length of the line $S N$, we find it $59^{\prime} 30^{\prime \prime}$; which was the variation in the sun's longitude, between the noon of the 20th and 21st.

Both longitude and right ascension are reckoned from the equinoctial point r : longitude along the line $r N$ (which line is called the ecliptic), and right ascension along the celestial equator $\rightsquigarrow Q$.

Computing the length of the line γN, we find it equal to $30^{\prime} 36^{\prime \prime} .6$; which was the sun's longitude at the instant of apparent noon, at Greenwich, March 21st, 1846.
Latitude, Meridians of right ascension are at right angles to the celestial in
$m y$,
astrono-
from equator (at right angles to ΥQ). The first meridian runs $\underset{\text { what }}{\text { my }} \underset{\text { line }}{\text { from }}$ lhrough the point γ. Meridians of latitude are at right reckoned.
angles to the ecliptic (at right angles to the line $S N$). Latitude, in astronomy, is reckoned north and south of the ecliptic.

Thus a star at m.(Fig. 5), $\uparrow n$, would be its longitude, $n m$ its north latitude; $\gamma \circ$ its right ascension; and omits north declination.
Path of the (44.) Thus, it may be perceived, that these observations sun. are very fruitful in giving important results; but, as yet, we have used only two of them - those made on the 20th and 21st. By bringing the other observations into computation, and extending Fig. 5, we can find the points where the sun was on the other days mentioned; and then, by taking observations every day in the year, the sun's right ascension and longitude can be determined for every day; and its exact pathLength of way through the apparent celestial sphere. The same kind a year, how of observations taken on the 20th, 21st, 22d, 23d, and 24th observed. days of September, will show when the sun crosses the equator from north to south; and how long it remains north of the equator; and how long south of it. In March, 1847, the same observations might have been made; and the exact length of an equinoctial year determined: and in this way that important interval has been decided, even to seconds.

The true length of an equinoctial year was eariy a very
interesting problem to astronomers; and, before they had Chap. III. good clocks and, refined instruments, it was one of some difficulty to settle. But the more the difficulty, the greater the zeal and perseverance; and we are often astonished at the accuracy which the ancients attained.
The length of the equinoctial year, as stated in the tables of Days. hours. min. secs.

Ptolomée, is	-	-		365	5	55	12
Tycho Brahe, made it	-		-	365	5	48	45
Kepler, in his tables,	-		-	365	5	48	57
M. Cassini, in his tables,	-	-	365	5	48	52	
M. De Lalande, -	-	-	-	365	5	48	45
Sir John Herschel, -	-	-	365	5	48	49.7	

The last cannot differ from the truth more than one or two solar and seconds. Let the reader notice that this is the equinoctial sidereal year - the one that must ever regulate the change of seasons. There is another year - the sidereal year - which is about 20 minutes longer than the equinoctial year. The sidereal year, is the time elapsed, from the departure of the sun from the meridian of ANY STAR, until it arrives at the same meridian again, and consists of 365 d .6 h .9 m .9 s .

As the stars are really the fixed points in space, this latter Canse of period is the apparent revolution of the sun; and the shorter difference. period, for the equinoctial year, is caused by the motion of the equinoctial points to the westward, called the precession of the equinoxes. Since astronomers first began to record observations, the fixed stars have increased, in right ascension, about 2 hours, in time, or 30 degrees of arc.

The mean annual precession of the equinoxes is $50^{\prime \prime} .1$ of arc; which will make a revolution, among the stars, in 25868 years.*

[^3]
CHAPTER IV.

GEOGRAPHY OF THE HEAVENS.
Chap. iv. (45.) The fixed stars are the only landmarks in astronoGroups of my, in respect to both time and space. They seem to have stars. been thrown about in irregular and ill-defined groups and clusters, called constellations. The individuals of these groups and clusters differ greatly as to brightness, hue, and color; but they all agree in one attribute - a high degree of permanence, as to their relative positions in the group; and the groups are as permanent in respect to each other. This has procured them the title of fixed stars; an expression which must be understood in a comparative, and not in an absolute, sense ; for, after long investigation, it is ascertained that some of them, if not all, are in motion; although too slow to be perceptible, except by very delicate observations, continued through a long series of years.
Magni- The stars are also divided into different classes, according tudes of the stars. to their degree of brilliancy, called magnitudes. There are six magnitudes, visible to the naked eye; and ten telescopic magnitudes - in all, sixteen.

The brightest are said to be of the first magnitude; those less bright, of the second magnitude, etc.; the sixth magnitude is just visible to the naked eye.
One star The stars are very unequally distributed among these of the first classes; nor do all astronomers agree as to the number bemagnitude. longing to each; for it is impossible to tell where one class ends, and another begins; nor is it important, for all this is but a matter of fancy, involving no principle. In the first magnitude there is really but one star (Sirius) ; for this is manifestly brighter than any other; but most astronomers put 15 or 20 into this class.

The second magnitude includes from 50 to 60 ; the third, about 200 , the numbers increasing very rapidly, as we descend in the scale of brightness.

From some experiments on the intensity of light, it has
been determined, that if we put the light of a star, of the Сиar. Iv. average 1st magnitude, 100 , we shall have :

1st magnitude	$=100$	4th magnitude		$=6$
2 d	$"$	$=25$	5 th	$"$
3 d	$=2$			
3 d	$=12$	6 th	$"$	$=1$

On this scale, Sir William Herschel placed the brightness of Sirius at 320 .

Ancient astronomy has come down to us much tarnished with superstition, and heathen mythology. Every constellation bears the name of some pagan deity, and is associated with some absurd and ridiculous fable, yet, strange as it may appear, these masses of rubbish and ignorance - these clouds and fogs, intercepting the true light of knowledge, are still not only retained, but cherished, in many modern works, and dignified with the name of astronomy.

Merely as names, either to constellations or to individual stars, we shall make no objections; and it would be useless, ${ }_{\text {be }}^{\text {names must }} \underset{\text { conti- }}{\substack{\text { con }}}$ if we did; for names long known, will be retained, however nued. improper or objectionable; hence, when we speak of Orion, the Little Dog, or the Great Bear, it, must not be understood that we have any great respect for mythology.

It is not our purpose now to describe the starry heavens to point out the variable, double, and multiple stars - the Milky Way and nebulce; these will receive special attention in some future chapter; at present, our only aim is to point out the method of obtaining a knowledge of the mere appearance of the sky, to the common observer, which may be called the geography of the heavens.

To give a person an idea of locality, on the earth, we refer to points and places supposed to be known. Thus, when we say that a certain town is 15 miles north-west of Boston, a ship is 100 miles east of the Cape of Good Hope, or a certain mountain 10 miles north of Calcutta, we have a pretty definite idea of the localities of the town, the ship, and the mountain, on the face of the earth, provided we have a clear idea of the face of the earth, and know the position of Boston, the Cape of Good Hope, and Calcutta.

So it is with the geography of the heavens; the apparent

Chap. IV. surface of the whole heavens must be in the mind, and then the localities of certain bright stars must be known, as landmarks, like Boston, the Cape of Good Hope, and Calcutta.
Stars about We shall now make some effort to point out these landthe pole. marks. The North Star is the first, and most important to be recognized; and it can always be known to an observer, in any northern latitude, from its stationary appearance and altitude, equal to the latitude of the observer. At the distance of about 32 degrees from the pole, are seven bright stars, between the 1st and 2 d magnitudes, forming a figure resembling a dipper, four of them forming the cup, and three the handle. The two forming the sides of the cup, opposite to the handle, are always in a line with the North Star; and are therefore called pointers; they always point to the North Star. The line joining the equinoxes, or the first meridian of right ascension, runs from the pole, between the other two stars forming the cup. The first star in the handle, nearest the cup, is called Alioth, the next Mizar, near which is a small star, of the 4th magnitude; the last one is Benetnasch. The stars in the handle are said to be in the tail of the Great Bear.

About four degrees from the pole star, is a star of the 3d magnitude, s Ursce Minoris. A line drawn through the pole (not pole star), and this star will pass through, or very near, the poles of the ecliptic and the tropics. A small constellation, near the pole, is called Ursa Minor, or the Little Bear. An irregular semicircle of bright stars, between the dipper and the pole, is called the Serpent.
If a line be drawn from \& Ursce Minoris, through the pole star, and continued about 45 degrees, it will strike a very beautiful star, of the 1st magnitude, called Capella. Within five degrees of Capella are three stars, of about the 4th magnitude, forming a very exact isosceles triangle, the vertical angle about 28 degrees. A line drawn from Alioth, through the pole star, and continued about the same distance on the other side, passes through a cluster of stars called Cassiopea in her chair. The principal star in Cassiopea, with the pole star and Capella, form an isosceles triangle, Capella at the vertex.
(46.) More attention has been paid to the constellations Chap. IV along the equator and ecliptic, than to others in remoter Ecliptic regions of the heavens, because the sun, moon, and planets, defined. traverse through them. The ecliptic is the sun's apparent annual path among the stars (so called because all eclipses, of both sun and moon, can take place only when the moon is either in or near this line).

Eight degrees on each side of the ecliptic is called the signs oi zodiac; and this space the ancients divided into 12 equal the zodiac. parts (to correspond with the 12 months of the year), and each part $\left(30^{\circ}\right)$ is called a sign - and the whole, the signs of the zodiac. These divisions are useless; and, of late years, astronomers have laid them aside; yet custom and superstition will long demand a place for them in the common almanaes.

The signs of the zodiac, with their symbolic characters, are as follows: Aries \uparrow, Taurus ४, Gemini ㅍ, Cancerธ, Leo Ω, Virgo m, Libra \bumpeq, Scorpio m, Sagittarius रे, Capricornus ทs, Aquarius $\underset{\sim}{\sim}$, Pisces ㄷ.

Owing to the precession of the equinoxes, these signs do not correspond with the constellations, as originally placed; the variation is now about 30 degrees; the stars remain in their places; and the first meridian, or first point of Aries, has drawn back, which has given to the stars the appearance of moving forward.

Beginning with the first point of Aries as it now stands, no prominent star is near it; and, going along the ecliptic to tracing the the eastward, there is nothing to arrest special attention, until we come to the Pleiades, or Seven Star's, though only six are visible to the naked eye. This little cluster is so well known, and so remarkable, that it needs no description. Southeast of the Seven Stars, at the distance of about 18 degrees, is a remarkable cluster of stars, said to be in the Bull's Head; the largest star, in this cluster, is of the 1st magnitude, of a red color, called Aldebaran. It is one of the eight stars selected as points from which to compute the moon's distance, for the assistance of navigators.

This cluster resembles an A, when east of the meridian, and

Crap. Iv. a V, when west of it. The Seven Stars, Aldebaran, and $C a$ pella, form a triangle very nearly isosceles - Capella at the vertex. A line drawn from the Seven Stars, a little to the west of Aldebaran, will strike the most remarkable constellation in the heavens, Orion (it is out of the zodiac, however,); some call it the Ell and Yard. The figure is mainly distinguished by three stars, in one direction, within two degrees of each other; and two other stars, forming, with one of the three first mentioned, another line, at right angles with the first line.

The five stars, thus in lines, are of the 1 st or 2 d magnitude. A line from the Seven Stars, passing near Aldebaran and through Orion, will pass very near to Sirius, the most brilliant star in the heavens. The ecliptic passes about midway between the Seven Stars and Aldebaran, in nearly an eastern direction. Nearly due east from the northernmost and brightest star in Orion, and at the distance of about 25 degrees, is the star Procyon; a bright, lone star.

The northernmost star in Orion, with Sirius and Procyon, form an equilateral triangle.
The con. Directly north of Procyon, at the distances of 25 and 30 stellations are above the horizon, and visible every evening during the winter season. the most northern. Pollux is one of the eight lunar stars. Thus we might run over that portion of the heavens which is ever visible to us; and by this method every student of astronomy can render himself familiar with the aspect of the sky; but it is not sufficiently definite and scientific to satisfy a mathematical mind.
(47.) The only scientific method of defining the position of a place on the earth, is to mention its latitude and longitude; and this method fully defines any and every place, however unimportant and unfrequented it may be: so in astronomy, the only scientific methods of defining the position of a star, is to mention its latitude and longitude, or, more conveniently, its right ascension and declination.

It is not sufficient to tell the navigator that a coast makes off in such a direction from a certain point; and that it is so far to a certain cape; and, from one cape to another, it is
about 10 miles south-west - he would piace very little reli- Сhap. iv. ance on any such directions. To secure his respect, and What concommand his confidence, the latitude and longitude of every stitutes a depoint, promontory, river, and harbor, along the coast, must be finite ${ }_{\text {seription. }}^{\text {fin }}$ given; and then he can shape his course to any point, or strike in upon it from the indefinite expanse of a pathless sea. So with an astronomer; while he understands and appreciates the rough and general descriptions, such as we have just given, he requires the certain description, comprised in right ascension and declination.

Accordingly, astronomers have given the right ascensions and declinations of every visible star in the heavens (and of very many that are invisible), and arranged them in tables, in the order of right ascension.

There are far too many stars, for each to have a proper name; and, for the sake of reference, Mr. John Bayer, of Augsburg, in Suabia, about the year 1603, proposed to denote the stars by the letters of the Greek and Roman alphabets; by placing the first Greek letter, a, to the principal star in the constellation; β to the second in magnitude; γ to the third; and so on; and if the Greek alphabet shall become exhausted, then begin with the Roman, a, b, c, etc.
"Catalogues of particular stars, in sections of the heavens, have been published by different astronomers, each author numbering the individual stars embraced in his list, according to the places they respectively occupy in the catalogue." These references to particular catalogues are sometimes marked on celestial globes, thus; 79 H ; meaning that the star is the 79th in Herschel's catalogue; 37 M , signifies the 37 th number in the catalogue of Mayer, etc.

Among our tables will be found a catalogue of a hundred of the principal stars, inserted for the purpose of teaching a definite and scientific method of making a learner acquainted with the geography of the heavens.

To have a clear understanding of the method we are about to explain, we again consider that right ascension is reckoned from the equinox, eastward along the equator, from 0 h . to 24 hours. When the sun comes to the equator, in March, its

John Bayer's method of reference.

Particular catalogues.

Снap. rv. right ascension is 0 ; and from that time its right ascension increases about four minutes in a day, throughout the year, to 24 hours; and then it is again at the equinox, and the 24 hours are dropped.

But whatever be the right ascension of the sun, it is appa-

When it is apparent noon. rent noon when it comes to the meridian; and the more eastward a body is, the later it is in coming to the meridian. Thus, if a star comes to the meridian at two o'clock in the afternoon (apparent time), it is because its right ascension IS TWO HOURS greater than the right ascension of the sun.

Therefore, if from the right ascension of a star we subtract the right ascension of the sun, the remainder will be the time for that star to come to the meridian.

Connection If we put ($R *$) to represent the star's right ascension; between R. and $(R \odot)$ to represent that of the sun; and T to represent A. and me. the apparent time that the star passes the meridian, then we
ridian pas. sage shall have the following equation:

$$
\begin{aligned}
& R *-R \odot=T ; \\
& \text { By transposition . } \\
& R *=R \odot+T ;
\end{aligned}
$$

That is, the riglt ascension of a star' (or any celestial body), is equal to the right ascension of the sun, increased by the time that the star (or body) comes to the meridian.

The right ascension of the sun is given, in the Nautical Almanac (and in many other almanacs), for every day in the year, when the sun is on the meridian of Greenwich; but many of the readers of this work may not have such an almanac at hand, and, for their benefit, we give the right ascension for every fifth day of the year 1846 (Table III); the local time is the apparent noon at Greenwich.

We take the year 1846 , because it is the second jear after leap year; and the sun's right ascension for any day in that year, will not differ more than two minutes from its right ascension, on the same day, of any other year ; and will correspond with the right ascension of the same day in 1850 , by adding $7_{1 \frac{3}{10}}$ seconds; and so on for each succeeding period of four years.

To apply the preceding equation, the observer should adjust his watch to apparent time; that is, apply the equation
of time, and know the direction of his meridian, at least Chap. iv. approximately. 'In short, by the range of definite objects, he must be able to decide, within two or three minutes, when a celestial body is on his meridian.

Thus, all prepared, we will give a few

EXAMPLES.

1. On the $20 t h$ of May (no matter what year, if not many

Examples to And stars. $80^{\circ} \mathrm{W}$., at 9 h .24 m . in the evening, clock time, I observed a lone, bright star, of about the $2 d$ magnitude, on the meridian. It had a bland, white light; and, as I had no instrument to measure its altitude, I simply judged it to be 42°. What star was it?
We decide the question thus:
Time per watch, - - 9 h .24 m .00 s.
Equation of time (see Table), add 36
Apparent time, \quad - \quad - $\quad 9 \quad 27 \quad 46$

Lon. $80^{\circ} \mathrm{W}$., equal, in time, to | 5 | 20 | 00 |
| ---: | ---: | ---: |

Apparent time, at Greenwich, - 144746
The right ascension of the sun, on the 20th of May (noon, Greenwich time), is 3 h .47 m .15 s . (see Table III). The of the sun's increase, estimated at the rate of 4 minutes in 24 hours, will R.A. give 1 minute in 6 hours, or 10 seconds to 1 hour; this, for 14 h .47 m ., gives 2 m .27 s .

Hence, the right ascension of the sun, at the time of observation, wàs - - - 3 h .49 m .42 s .
Apparent time of observation, $\quad-\quad 9 \quad 27 \quad 46$
Right ascension of the star, - $-\overline{13 \mathrm{~h} .17 \mathrm{~m} .28} \mathrm{~s}$.
By inspecting the catalogue of the stars (Table II), we find the right ascension of Spica to ke 13 h .17 m .08 s ., and its declination, $10^{\circ} 21^{\prime} 35^{\prime \prime}$.

But, in the latitude of $40^{\circ} \mathrm{N}$., the meridian altitude of the celestial equator must be 50°; and any stars south of that. nust be of a less altitude. Therefore, the meridian altitude of Spica must be 50°, less $10^{\circ} 21^{\prime}$, or $39^{\circ} 39^{\prime}$; but the star observed, I simply judged to have had an altitude of 42°.

Chap. Iv. It is very possible that I should err, in altitude, two or three degrees;* but, it is not possible that the star I observed should be any other star than Spica; for there is no other bright star near it. This is one of the lunar stars.
Personal Being now certain that this star is Spica, I can observe it neservations recommended. in relation to its appearance - the small stars that are near it, and the clusters of stars that are about it - or the fact, that no remarkable constellation is near it. In short, I can so make its acquaintance as to know it ever after; but I am unable to convey such acquaintance to others, by language; true knowledge, in this particular, demands personal observation.
Continuation of exam. ples to find stars.
2. On the $3 d$ day of July, 1846, at 9 h. 34 m., P. M., mean time per watch, a star of the 1 st magnitude came to the meridian. I was in latitude $39^{\circ} \mathrm{N}$., and about $75^{\circ} \mathrm{W}$. The star was of a deep red color, and, as near as my judgment could decide, its altitude was between 25° and 30°. Two small stars were near $i t$, and a remarkable cluster of smaller stars were west and northwest of it, at the distances of $5^{\circ}, 6^{\circ}$, or 7°. What star was this? Time per watch, - - $\quad 9 \mathrm{~h} .34 \mathrm{~m} .00 \mathrm{~s}$.

Equa. of time (subtr. from mean time)		3	48			
Apparent time,	-	-	-	9	30	12
Longitude, 75°, equal to	-	-	5			

Apparent time, at Greenwich, - -14 h .30 m .00 s.
By examining the table for the sun's R. A., I ind that,
On the 1st of July, it is - $\quad-\quad 6$ h. 40 m .00 s.
On the 5th, -
Variation, for 4 days, - $\quad-\quad \frac{6630}{16 \mathrm{~m} .30 \mathrm{~s} .}$

At this rate, the variation for 2 days, $14 \frac{1}{2}$ hours, cannot be

[^4]far from 10 m .10 s ; and the right ascension of the sun, at Chap iv the time of observation, must have been

Nearly - - - - 6 h .50 m .10 s.

An example of finding Antares

To which add, apparent time, - \quad	9	30	12

Right ascension of the star, - - 16 h .20 m .22 s.
By inspecting the catalogue of stars, I find Antares to have a right ascension of 16 h .20 m .2 s . and a declination of $26^{\circ} 4^{\prime}$, south.

In the latitude mentioned, the meridian altitude of the celestial equator must be - - - $50^{\circ} 0^{\prime}$
Objects south of that plane must be less, hence (sub.) $26 \quad 4$
Meridian altitude of Antares, in lat. $50^{\circ}, \quad \overline{23^{\circ} 56}$
As the observation corresponds to the right ascension of $A n$ tares (as near as possible, considering errors in observation, and probably in the watch), and as the altitudes do not differ many degrees (within the limits of guess work), it is certain that the star observed was Antares. By its peculiar red color, and the remarkable clusters of stars surrounding it , I shall be able to recognize this star again, without the trouble of direct observation.
3. On the night of the 20 th of June, 1846, latitude $40^{\circ} \mathrm{N}$., and To find longitude $75^{\circ} \mathrm{W}$., at 1 h .48 m . past midnight, clock time, I ob- Altair. served a star of the 1st magnitude nearly on the meridian; two other stars, of about the $3 d$ magnitude, within 3° of it; the three stars forming nearly a right line, north and south; the altitude of the principal star about 60°. What star was it?

In these examples, the time must be reckoned on from noon to noon again; therefore 1 h .48 m . after midnight must be written, - - - 13 h .48 m .00 s .

Sun's right ascension, at this time, - 5 h .57 m .40 s .
Time, - - - - $\quad 13 \quad 46 \quad 48$
Star's right ascension, - $\quad-19$ h. 44 m .28 s .

Chap. IV. By inspecting the catalogue of stars, we find the right ascension of Altair 19 h .43 m .15 s. , and its declination 80 $27^{\prime} \mathrm{N}$. In latitude $40^{\circ} \mathrm{N}$., the declination of $8^{\circ} 27^{\prime} \mathrm{N}$. will give a meridian altitude of $58^{\circ} 27^{\prime}$; and, in short, I know the star observed must be Altair, and the two other stars, near it, I recognize in the catalogue.

By taking these observations, any person may become acquainted with all the principal stars, and the general aspect of the heavens; but no efforts, confined merely to the study of books, will accomplish this end.

The equation in Art. 47 is not confined to a star; it may be any heavenly body, moon, comet, or planet. The time of passing the meridian is but another term for right ascension. If observations are made on any bright star, and no corresponding star is found in the catalogue, such a star world probably be a planet; and if a planet, its right ascension will change.

The Sontheriz Cross, and Magel. i len Clouds.
(48.) The whole region of stars south of declination 50°, is never seen in latitude 40° north, nor from any place north of that parallel; and, to register these stars in a catalogue, it has been necessary for astronomers to visit the southern hemisphere, as we have before mentioned; but these stars are mostly excluded from our catalogues. There are several constellations, in the southern region, worthy of notice - the Southern Cross and the Mayellan Clouds. The Southern Cross very much resembles a cross; so much so, that any person would give the constellation that appellation. Its principal star is, in right ascension, 12 h .20 m ., and south declination 33°.

The Magellan Clouds were at first supposed to be clouds by the navigator Magellan; who first observed them. They are four, in number; two are white, like the Milky Way, and have just the appearance of little white clouds. They are nebulce. The other two are black - extremely so - and are supposed to be places entirely devoid of all stars; yet they are in a very bright part of the Milky Way: Right ascension, 10 h . 40 m ., declination, 62° south.

SECTION II.

DESCRIPTIVE ASTRONOMY.

CHAPTER I.

FIRST CONSIDERATIONS AS TO THE DISTANCES OF THE HEAVENLY bODIES. - SIZE AND EXACT FIGURE OF THE EARTH.

(49.) Hitherto we have considered ouly appearances, and have not made the least inquiry, as to the nature, magnitude, or distances of the celestial objects.

Abstractly, there is no such thing as great and small, near and remote; relatively speaking, however, we may apply the terms great, and very great, as regards both magnitude and distance. Thus an error of $t ? n$ feet, in the measure of the length of a building, is very great - when an error of ten rods, in the measure of one hundred miles, would be too trifling to mention.

Now if we consider the distance to the stars, it must be relative to some measure taken as a standard, or our inquiries will not be definite, or even intelligible. We now make this general inquiry: Are the heavenly bodies near to, or remote from, the earth? Here, the earth itself seems to be the natural standard for measure; and if any body were but two, three, or even ten times the diameter of the earth, in distance, we

Char. I. should call it near; if 100,200 , or 2000 times the diameter of the earth, we should call it remote. To answer the inquiry, Are the heavenly bodies near or remote? we must put them to all possible mathematical tests; a mere opinion is of no value, without the foundation of some positive knowledge. Let 1, 2 (Fig. 6), represent the absolute position of two stars; and then, if $A B C$ represents the circumference of the earth, these stars may be said to be near ; but if $a b c$ represents the circumference of the earth, the stars are many times the diameter of the earth, in distance, and therefore may The means be said to be remote. If $A B C$ is the circumference of of deciding
this question this question pointed out. the earth, in relation to these stars, the apparent distance of the two stars asunder, as seen from A, is measueed by the angle 1 A 2 ; and their apparent distance asunder, as seen from the point B , is measured by the angle 1 B 2 ; and when the circumference $A B C$ is very large, as represented in our figure, the angle A, between the two stars, is manifestly greater than B. But if $a b c$ is the circumference of the earth, the points a and b are relatively the same as A and B. And, it is an ocular demonstration that the angle under which the two stars would appear at a, is the same, or nearly the same, as that under which they would appear at b; or, at least, we can conceive the earth so small, in relation to the distance to the stars, that the angle under which two stars would appear, would be the same seen from any point on the earth.
The con- Conversely, then, if the angle under which two stars appear clusion. is the same as seen from all parts of the earth's surface, it is certain that the diameter of the earth is very small, compared with the distance to the stars; or, which is the same thing, ihe distance to the stars is many times the diameter of the earth. Therefore observation has long since decided this important point. Sir John Herschel says: "The nicest measurements of the apparent angular distance of any two stars, inter se, taken in any parts of their diurnal course (after allowing for the unequal effects of refraction, or when taken at such times that this cause of distortion shall act equally on both), manifest not the slightest perceptible variation. Not only this, but
at whatever point of the earth's surface the measurement is performed, the results are absolutely identical. No instruments ever yet invented by man are delicate enough to indicate, by an increase or diminution of the angle subtended, that one point of the earth is nearer to or farther from the stars than another."
(50.) Perhaps the following view of this subject will be more intelligible to the general reader.

Let $2 H N$ H represent the celestial equator, as seen from the equator on the earth; and if the earth be large, in relation to the distance to the stars, the observer, will be at z^{\prime}; and the part of the

Fig. 7.
Z

N

Another illustration of the great distance to the stars.
celestial arc above his horizon, would be represented by $A Z B$, and the part below his horizon by $A N B$, and these arcs are obviously unequal ; and their relation would be measured by the time a star or heavenly body remains above the horizon, compared with the time below it; but by observation (refraction being allowed for), we know that the stars are as long above the horizon as they are below; which shows that the observer is not at z^{\prime}, but at z, and even more near the center; so that the $\operatorname{arc} A Z B$, is imperceptibly unequal to the arc H $V H$; that is, they are equal to each other; and the earth is comparatively but a point, in relation to the distance to the stars.

This fact is well established, as applied to the fixed stars, The moon sun, and planets; but with the moon it is different; that body tion. ${ }^{\text {an }}$ excep.

Chap. I.
is longer below the horizon than above it; which shows that its distance from the earth is at least measurable.
(51.) It is improper, at present, or rather, it is too advanced an age, to pay any respect to the ancient notion, that the earth is an extended plane, bounded by an unknown space, inaccessible to men. Common intelligence must convince even the child, that the earth must be a large ball, of a regular, or an irregular shape; for every one knows the fact, that the earth has been many times circumnavigated; which settles the question.
Earth's
In addition to this, any observer may convince himself, that surface convex. the surface of the sea, or a lake, is not a plane, but everywhere convex; for, in coming in from sea, the high land, back in the country, is seen before the shore, which is nearer the observer; the tops of trees, and the tops of towers, are seen before their bases. If the observer is on shore, viewing an approaching vessel, he sees the topmast first; and from the top, downward, the vessel gradually comes in view. This being the case on every sea, and on every portion of the earth, proves that the surface of the earth is convex on every part - hence it must, be a globe, or nearly a globe. These facts, last mentioned, are sufficiently illustrated by

Fig. 8.

(52.) On the supposition that the earth is a sphere, there are several methods of measuring it, without the labor of applying the measure to every part of it. The first, and most natural method (which we have already mentioned), is that of measuring any definite portion of the meridian, and from thence computing the value of the whole circumference. Thus, if we can know the number of degrees, and parts of a degree, in the arc $A B$ (Fig. 9), and then measure the distance in miles, we in fact virtually know the whole circumfe-
rence; for whatever part the are $A B$ is of 360 degrees, the same part, the number of miles in $A B$, is of the miles in the whole circumference.

To find the arc $A B$, the latitudes of the two points, A and B, must be very accurately taken, and their difference will give the arc in degrees, minutes, and seconds. Now $A B$ must bo measured simply in distance, as miles, yards, or feet; but this is a laborious operation, requiring great care and perseverance. To measure directly any considerable portion of a meridian, is indeed impossible, for local obstructions would soon compel a deviation from any definite line; but still the measure can be continued, by keeping an account of the deriations, and reducing the measure to a meridian line.

Let m be the miles or feet in $A B$; then the whole circumference will be expressed by $\left(\frac{360 m}{\operatorname{arc} A B}\right)$.
(53.) When we know the hight of a mountain, as represented in Fig. 9, and at the same time know the distance of its visibility from the surface of the earth; that is, know the line $M A$; then we can compute the line $M C$, by a simple theorem in geometry; thus,
$C M \times M B=(A M)^{2} ;$
Or, $C M=\frac{(A M)^{2}}{M B}$.
Now as the right hand

Fig. 9.

How to find the dia. meter. member of this equation is known, $C M$ is known; and as part of it $(M B)$ is already known, the other part, $B C$, the diameter of the earth, thus becomes known.

This method would be a very practical one, if it were not
Objection for the uncertainty and variable nature of refraction near the to this mehorizon; and for this reason, this method is never relied upon, although it often well agrees with other methods. As an example under this method, we give the following:

Chap. I. A mountain, two miles in perpendicular hight, was seen from sea at a distance of 126 miles. If these data are correct, what then is the diameter of the earth

$$
\text { Solution; } M C=\frac{(126)^{2}}{2}=63 \times 126=7938 . \quad B C=7936
$$

Dip of the horizon.
(54.) This same geometrical theorem serves to compute the dip of the horizon. The true horizon is a right angle from the zenith; but the navigator, in consequence of the motion of his vessel, can never use the true horizon; he must use the sea offing, making allowance for its dip. If the navigator's eye were on a level with the sea, and the sea perfectly stable, the true and apparent horizon would be the same. But the observer's eye must always be above the sea; and the higher it is, the greater the dip; and the amount of dip will depend on the hight of the eye, and the diameter of the earth. The difference between the angle $A M C$ (Fig. 9), and a right angle (which is the same as the angle $A E M$), is the measure of the dip corresponding to the hight $B M$.

For the benefit of navigators, a table has been formed, showing the dip for all common elevations.*

The angle at the center is equal to the dip.

* The dip is computed thus:

$$
\text { Put } B C \text { (Fig. 9) }=D, B M=h \text {; }
$$

Then $E M=\left(\frac{D}{2}+h\right) ;$ and $(M A)^{2}=C M \times M B=(D+h) h$.
By trigonometry, $(E A)^{2}:(M A)^{2}:: R^{2}: \tan .^{2} A E M$;
That is, - - $\frac{D^{2}}{4}:(D+h) h:: R^{2}: \tan .^{2} A E M$.
For very moderate elevations, h is extremely small, in relation to D; and the second term of the proportion may be $D h$. (R represents the radius of the tables.) Making this consideration, we have

$$
\begin{array}{r}
\frac{D^{2}}{4}: D h:: R^{2}: \tan .^{2} A E M \\
\text { Or, }-\sqrt{ }, ~ \\
\text { Or, }-\sqrt{D}: \sqrt{h}:: 2 R: \tan { }^{2} A E M
\end{array}
$$

(55.) All such computations are made on the supposition that the earth is exactly spherical; and it is, in fact, so nearly spherical, that no corrections are required in consequence of its deviation from that figure.

After correct views began to be entertained, as to the magnitude of the earth, and its revolution on an axis, philosophers concluded that its equatorial diameter might be greater than

Chap. 1.

The earth not exactiy spherical. its polar diameter; and investigations have been made te decide the fact.

If the earth were exactly spherical, it is plain that the curvature over its surface would be the same in every latitude; but if not of that figure, a degree would be longer on one part of the earth than on another. "But," says Herschel, "when we come to compare the measures of meridional arcs made in various parts of the globe, the results obtained, although they agree sufficiently to show that the supposition of a spherical figure is not very remote from the truth, yet exhibit discordances far greater than what we have shown to be attributable to error of observation; and which render it evident that the hypothesis, in strictness of its wording, is untenable. The following table exhibits the lengths of a degree of the meridian (astronomically determined as above described), ex-

By inspecting this last proportion, it will be perceived that the tangent of the dip varies as the square root of the elevation. To apply this proportion, we adduce the following problem:

The diameter of the earth is 7912 miles; the elevation of the eye, above the surface, is ten feet. What is the dip?

$$
\begin{aligned}
& 2 R \text {. . log. . - - - - - } 10.301030 \\
& \sqrt{6} \text {. . log. - - - - - - . } 500000 \\
& \text { Product of the means (log.), - - - } 10.801030 \\
& 1 \text { miles, 7912, - - log. - } 3.898286 \\
& \text { Feet, - 5280, - - log. - } 3.722634 \\
& \sqrt{\bar{D} \text { in fect, - - (log.) } \frac{2 \longdiv { 7 . 6 2 0 9 2 0 }}{3.810460} \ldots 3810460}
\end{aligned}
$$

Crap. I. pressed in British standard feet, as resulting from actuai measurement, made with all possible care and precision, by commissioners of various nations, men of the first eminence, supplied by their respective governments with the best instruments, and furnished with every facility which could tend to insure a successful result of their important labors.

Country.	Latitude of Middle of - the Arc.	$\begin{gathered} \text { Are } \\ \text { measured. } \end{gathered}$	Length of Degree concluded	Observers.
Sweden	662010	$1^{\circ} 377^{\prime \prime} 19^{\prime \prime}$	365782	Svanberg.
Russia	581737	$335 \quad 5$	365368	Struve.
England	523545	35713	364971	Roy, Kater.
France	46522	8200	364872	Lacaille, Cassini.
France	44512	122213	364535	Delambre. Mechain.
Rome	42590	2947	364262	Boscovich.
America, U. S.	39120	1 2845	363786	Mason, Dixon.
Cape of G. Hope	331830	$11317 \frac{1}{2}$	364713	Lacaille.
India..........	$16 \quad 822$	$15 \quad 5740$	363044	Lambton, Everest.
India	123221	13456	363013	Lambton.
Pera	1310	$\begin{array}{lll}3 & 7\end{array}$	362808	Condamine, etc.

The earth "It is evident, from a mere inspection of the second and less curved at the poles than at the equator. fourth columns of this table, that the measured length of a degree increases with the latitude, being greatest near the poles, and least near the equator."
"Assuming," continues Herschel, "that the earth is an ellipse, the geometrical properties of that figure enable us to assign the proportion between the lengths of its axes which shall correspond to any proposed rate of variation in its cur-* vature, as well as to fix upon their absolute lengths, corresponding to any assigned length of the degree in a given latitude. Without troubling the reader with the investigation (which may be found in any work on the conic sections), it will be sufficient to state that the lengths, which agree on the whole best with the entire series of meridional ares, which have been satisfactorily measured, are as follow:-

Feet. Miles.
Greater, or equatorial diam., $=41,847,426=7925.648$
Lesser, or polar diam., - $=41,707,620=7899.170$
Difference of diameters, or $=139,806=26.478$ polar compression, -
The proporticn of the diameters is very nearly that of

298:299, and their difference $\frac{-1}{2} \frac{1}{9}$ of the greater, or a very Chap. i. little greater than $\frac{1}{3} \frac{1}{0}$."
(56.) The shape of the earth, thus ascertained by actual measurement, is just what theory would give to a body of water equal to our globe, and revolving on an axis in 24 hours; and this has caused many philosophers to suppose that the earth was formerly in a fluid state.

If the earth were a sphere, a plumb line at any point on its surface would tend directly toward the center of gravity of the body; but the earth being an ellipsoid, or an oblate spheroid, and the plumb lines, being perpendicular to the surface at any point, do not tend to the center of gravity of the figure, but to points as represented in Fig. 10.

The plumb line at H tends to F, yet the mathematical center, and center of gravity of the figure, is at E. So at I, the plumb line tends to the point G; and as the length of a degree at A, is to the length of a degree at H, so is $I G$ to $H F$. If, however, a passage were made

Fig. 10.
 through the earth, and a body let drop through it, the body would not pass from I to G; its first tendency at I would be toward the point G; but after it passed below the surface, at I, its tendency would be more and more toward the point E, the center of gravity; but it would not pass exactly through that point, unless dropped from the point A, or the point C.
(57.) If the earth were a perfect and stationary sphere, the force of gravity, on its surface, would be everywhere the same; but, it being neither stationary, nor a perfect sphere, the force of gravity, on the different parts of its surface, must be different. The points on its surface nearest its center of gravity, must have more attraction than other points more remote from the center of gravity; and if those points which are more remote from the center of gravity have also a rotary motion, there will be a diminution of gravity on that account.

Let $A B$ (Fig. 10) represent the equatorial diameter of

Chap. I. the carth, and $C D$ the polar diameter; and it is obvious that E will be the center of gravity, of the whole figure, and

Gravity diminished by rotation. that the force of gravity at C and D will be greater than at any other points on the surface, because $E C$, or $E D$, are less than any other lines from the point E to the surface. The force of gravity will be greatest on the points C and D, also, because they are stationary: all other points are in a circular motion; and circular motion has a tendency to depart from the center of motion, and, of course, to diminish gravity. The diminution of the earth's gravity by the rotation on its axis, amounts to its $\frac{1}{2} \frac{1}{8} 9$ part,* at the equator. By this frac-

Compatation tof the amount of dimination.

Fig. 11

* Let D be the equatorial diameter of the earth, F the versed sine of an arc, corresponding to the motion in a second of time, and c the chord, or arc (for the chord and arc of so small a portion of the circumference will coincide, practically speaking).

A portion of the earth's gravity, equal to F, is destroyed by the rotation of the earth, and we are now to compute its value.

By proportional triangles, $F: c:: c: D$;

$$
\begin{equation*}
\text { Or - - - - } \quad F=\frac{c^{2}}{D} \tag{1}
\end{equation*}
$$

The value of c is found by dividing the whole circumference into as many equal parts as there are seconds in the time of revolution. But the time of revolution is $23 \mathrm{~h} .56 \mathrm{~m} .4 \mathrm{~s} .,=$ 86164 seconds.

The whole circumference is (3.1416)D;
Therefore, - - - - $c=\frac{(3.1416) D}{(86164)}$
By this value of c, we have $\quad F=\frac{(3.1416)^{2} D}{(86164)^{2}}$.
The visible force of gravity, at the equator, is the distance a body will fall the first second of time, expressed in fect. Let us call this distance g. Now the part of gravity des-
tion, then, is the weight of the sea about the equator lightened, Свap. r. and thereby rendered susceptible of being supported at a higher level than at the poles, where no such counteracting force exists.
troyed by rotation, as we have just seen, is $\frac{c^{2}}{D}$; therefore the whole force of gravity is $\left(g+\frac{c^{2}}{D}\right)$

Our next inquiry is; what part of the whole is the part de- Ratio of the stroyed? Or what part of $\left(g+\frac{c^{2}}{D}\right)$ is $\frac{c^{2}}{\bar{D}}$?

Which, by common arithmetic, is,

$$
\frac{\frac{c^{2}}{D}}{g+\frac{c^{2}}{D}}=\frac{c^{2}}{g D+c^{2}}=\frac{1}{\frac{g D}{c^{2}}+1}
$$

From (2) - $\quad D^{2}=\frac{(86164)^{2} c^{2}}{(3.1416)^{2}}$ or, $\frac{D}{c^{2}}=\frac{(86164)^{2}}{(3.1416)^{2} D}$;
Hence,

$$
\frac{g D}{c^{2}}=\frac{(86164)^{2} g}{(3.1416)^{2} D}=\frac{(86164)^{2}(16.07)}{(3.1416)^{2}(7925)(5280)}
$$

By the application of logarithms, we soon find the value of this expression to be 288.4. Therefore, $\frac{1}{\frac{g D}{c^{2}}+1}=\frac{1}{289.4}$.

We may now inquire, how rapidly the earth must revolve on its axis, so that the whole of gravity would be destroyed on the equator. That is, so that F shall equal g. Fquation (1) then becomes, $g=\frac{c^{2}}{D}$, or $c=\sqrt{g D}$.

But as often as c is contained in the whole circumference, is the corresponding number of seconds in a revolution; that is, the time in seconds must correspond to the expression,

$$
\frac{(3.1416) D}{\sqrt{g D}} \text { or, } \quad(3.1416) \sqrt{\frac{D}{g}}
$$

Chap. I.
(58.) It is this centrifugal force itself that changed the shape of the earth, and made the equatorial diameter greater than the polar. Here, then, we have the same cause, exercising at once a direct and an indirect influence. The amount Rotation of the former (as we may see by the note) is easily calcuhas a direct and indirect effect on gra. vity. lated; that of the latter is far more difficult, and requires a knowledge of the integral calculus; "But it has been clearly treated by Newton, Maclaurin, Clairaut, and many other eminent geometers; and the result of their investigations is to show, that owing to the elliptic form of the earth alone, and independently of the centrifugal force, its attraction ought to increase the weight of a body, in going from the equator to the pole, by nearly its ${ }_{5} \frac{1}{900}$ th part; which, together with the ${ }^{-\frac{1}{2}} \frac{1}{9}$ th part, due from centrifugal force, make the whole quantity ${ }^{\frac{1}{9}-4}$ th part; which corresponds with observations as deduced from the vibrations of pendulums."- See Natural Philosophy.

Fig. 12.

(59.) The form of the earth is so nearly a sphere, that it is considered such, in geography, navigation, and in the general problems of astronomy.

The average length of a degree is $69 \frac{1}{4}$ English miles; and, as this number is fractional, and inconvenient, navigators have tacitly agreed to retain the ancient, rough estimate of sixty miles to a degree; calling the mile a geographical mile. Therefore, the geographical mile is longer than the English mile.
D, in feet, $=(7925)(5280) ; g=16.076$. By the application of logarithms, we find this expression to be 5069 seconds, or 1 h .24 m .29 s ; ; which is about 17 times the rapidity of its present rotation.

In a subsequent portion of this work, we shall show how to arrive at this result by another principle, and through another operation.

As all meridians come together at the pule, it follows that a degree, between the meridians, will become less and less as we approach the pole; and it is an interesting problem to trace the law of decrease.*

[^5]$$
E C: D I:: E Q: D E .
$$

In trigonometry, $E C$ is known as the radius of the sphere; $D I$ as the cosine of the latitude of the point D (the numerical values of sines and cosines, of all ares, are given in trigonometrical tables) : therefore we have the following rule, to compute the length of a degree between two meridians, on any parallel of latitude.

Role. - As radius is to the cosine of the latitude; so is the length of a degree, on the equator, to the length of a parallel degree in that latitude.

Calling a degree, on the equator, 60 miles, what is the length of a degree of longitude, in latitude 42° ?

SOLUTION BY LOGARITHMS.

As radius (see tables),	-	-	-	10.000000
Is to cosine 42° (see tables),	-	-	-	9.871073
So is 60 miles (log.), -	-	-	-	1.778151
To $44_{1}^{\frac{582}{10} 0}$ miles, -	-	-	-	1.649224

At the latitude of 60°, the degree of longitude is 30 miles; the diminution is very slow near the equator, and very rapid near the poles.

In navigation, the $D E$'s are the known quantities ob- To reduce tained by the estimations from the \log line, etc.; and the departure to navigator wishes to convert them into longitude, or, what is the same thing, he wishes to find their values projected on the equator, and he states the proportion thus:

$$
D I: E C:: \bar{D} E: E Q
$$

That is; as cosine of latitude is to radius; so is departure to difference of longitude.

CHAPTERII.

PARALLAX, GENERAL AND HORIZONTAL. - RELATION BETWEEN PARALLAX AND DISTANCE. - REAL DIAMETER AND MAGNITUDE OF THE MOON.

Chap. LI.
(60.) Parallax is a subject of very great importance in astronomy; it is the key to the measure of the planets - to their distances from the earth - and to the magnitude of the whole solar system.
Parallax in Parallax is the difference in position, of any body, as seen general. from the center of the earth, and from its surface.

When a body is in the zenith of any observer, to him it has no parallax; for he sees it in the same place in the heavens, as though he viewed it from the center of the earth. The greatest possible parallax that a body can have, takes place when the body is in the horizon of the observer; and this parallax is called horizontal parallax. Hereafter, when we speak of the parallax of a body, horizontal parallax is to be understood, unless otherwise expressed.

A clear and summary illustration of parallax in general, is given by Fig. 13.

Horizontal parallax.

Fig. 13.

Let C be the center of the earth, Z the observer, and P, or p, the position of a body. From the center of the earth, the body is seen in the direction of the
line $C P$, or $C p$; from the observer at Z, it is seen in the
direction of $Z P$, or $Z p$; and the difference in direction, of Снар. II. these two lines, is parallax. When P is in the zenith, there is no parallax; when P is in the horizon, the angle $Z P C$ is then greatest, and is the horizontal parallax.

We now perceive that the horizontal parallax of any body is equal to the apparent semidiameter of the earth, as seen from the body. The greater the distance to the body, the less the rallax ${ }_{\text {distance. }}$ horizontal parallax; and when the distance is so great that the semidiameter of the earth would appear only as a point, then the body has no parallax. Conversely, if we can detect no sensible parallax, we know that the body must be at a vast distance from the earth; and the earth itself appear as a point from such a body, if, in fact, it were even visible.

Trigonometry gives the relation between the angles and sides of every conceivable triangle; therefore we know all about the horizontal triangle $Z C P$, when we know $C Z$ and the angles. Calling the horizontal parallax of any body p, and the radius of the earth r, and the distance of the body from the center of the earth x (the radius of the table always R, or unity), then, by trigonometry, we have,

$$
R: x:: \sin p: r:
$$

Therefore, - - $x=\left(\frac{R}{\sin \cdot p}\right) r$.
From this equation we have the following general rule, to find the distance to any celestial body:

Rule. - Divide the radius of the tables by the sine of the Rule to horizontal parallax. Multiply that quotient by the semidiameter find the disof the earth, and the product will be the result.

This result will, of course, be in the same terms of linear heavenly measure as the semidiameter of the earth; that is, if r is in feet, the result will be in feet ; if r is in miles, the result will be in miles, etc. : but, for astronomy, our terrestrial measures are too diminutive, to be convenient (not to say inappropriate) ; and, for this reason, it is customary to call the semidiameter of the earth unity; and then the distance of any body from the earth is simply the quotient arising from dividing the radius, by the sine of the horizontal parallax, pertaining to

Chap. II. the body; and it is obvious, that the less the parallax, the greater this quotient; that is, the greater the distance to the body; and the difficulty, and the only difficulty, is to obtain the horizontal parallax.
Horizontal (61.) The horizontal parallax cannot be directly observed, parallax cannot be observed. by reason of the great amount and irregularity of horizontal refraction; but if we can obtain a parallax at any considerable altitude, we can compute the horizontal parallax therefrom.*

The fixed stars have no sensible horizontal parallax, as we have frequently mentioned; and the parallax of the sun is so small, that it cannot be directly observed (see 40); the moon is the only celestial body that comes forward and presents its parallax; and from thence we know that the moon is the only body that is within a moderate distance of the earth.

That the moon had a sensible parallax, was known to the earliest observers, even before mathematical instruments were at all refined; but, to decide upon its exact amount, and detect its variations, required the combined knowledge and observations of modern astronomers.

Deduction *In the two triangles $Z p C$ and $Z P C$ (Fig. 13), call the of : orizontal farallax. angle p the parallax in altitude. and the angle $Z P C=x$. and $C p$ and $C P$ each equal D. Then, by trigonometry, we have

$$
\begin{aligned}
\sin . p Z C & : \sin \cdot p
\end{aligned}:: D \quad D \quad r ;
$$

Therefore, by equality of ratios (see algebra),

$$
\sin p Z C: \sin p \quad:: \quad R \quad: \sin x
$$

But the sine $p Z C$ is the cosine of the apparent zenith distance. Therefore,

$$
\sin x=\frac{R \sin . p}{\cos . \text { zenith distance }}
$$

That is; the sine of the horizontal parallax is equal to the sine of the parallax in altitude, into the radius, and divided by the cosine of the apparent zenith distance.

The lunar parallax was first recognized in European and northern countries, by its appearing to describe more than a semicircle south of the equator, and less than a semicircle north of that line; and, on an average, it was observed to be a longer the lunar patime south, than north of the equator; but no such inequality could be olserved from the region of the equator.

Observers at the south of the equator, observing the position of the moon, see it for a longer time north of the equator than south of it; and, to them, it appears to describe more than a semicircle noith of the equator.

Here, then, we have observation against observation, unless we can reconcile them. But the only reconciliation that can be made, is to conclude that the moon is really as long in one hemisphere as the other; and the observed diserepancy must arise from the positions of the observers; and when we reflect that parallax must always depress the object (see Fig. 13), and throw it farther from the observer, it is therefore perfectly clear that a northern observer should see the moon farther to the south than it really is; and a southern observer see the same body farther north than its true position.
(62.) To find the amount of the lunar parallax, requires the concurrence of two observers. They should be near the same meridian, and as far apart, in respect to latitude, as possible; and every circumstance, that could affect the result, must be known.

The two most favorable stations are Greenwich (England) and the Cape of Good Hope. They would be more favorable if they were on the same meridian; but the small change in declination, while the moon is passing from one meridian to the other, can be allowed for; and thus the two observations are reduced to the same meridian, and equivalent to being made at the same time.

The most favorable times for such observations, are when the moon is near her greatest declinations, for then the change of declination is extremely slow.

Let A (Fig. 14) represent the place of the Greenwich observatory, and B the station at the Cape of Good Hope. C is the center of the earth, and Z and Z^{\prime} are the zenith

Chap. II.

points of the observers. Let M be the position of the moon, and the observer at A will see it projected on the sky at m^{\prime}, and the observer at \mathbf{B} will see it projected on the sky at m.

Now the figure $A \boldsymbol{C} \boldsymbol{B} M$ is a quadrilateral; the angle $A C B$ is known by the latitudes of the two observers; the angles $M . A$ C and $M B C$ are the respective zenith distances, taken from 180°.

But the sum of all the angles of any quadrilateral is equal to four right angles; and hence the angles at A, C, and B, being known, the parallactic angle at M is known.

In this quadrilateral, then, we have two sides, $A C$ and $C B$, and all the angles; and this is sufficient for the most ordinary mathematician to decide every particular in connection with it; that is, we can find $A M, M B$, and finally, MC.* Now $M C$ being known, the horizontal

A mathe. * The direct and analytical method of obtaining $M C$, will be matical de. very acceptable to the young mathematician; and, for that
dzction. reason, we give it.

Put $A C=C B=r, C M=x$, and the two parts of the observed parallactic angle, M, represented by P and Q, as in the figure. Also, let a represent the natural sine of the angle $M A C$, and b the natural sine of the angle $M B C$:

Then, by trigonometry, $\quad x: a:: r: \sin . Q$;
Also, - - - - $x: b:: r: \sin . P$;
Hence, - - $\sin P+\sin . Q=\frac{(a+b) r}{x}$.
parallax can be compuied, for it is but a function of the dis- Снар. II. tance (see 60).

By the equation (Art.60), $x=\left(\frac{R}{\sin . p}\right) r$
By changing, - $-\sin . p=\left(\frac{R}{x}\right) r$; and when x, the distance, is known, sin. p, or sine of the horizontal parallax, is known.
(63.) The result of such observations, taken at different times, show all values to $M C$, between $55 \frac{92}{100}$, and $63_{\frac{84}{10} \overline{0}}$; distance to taking the value of r as unity.

These variations are regular and systematic, both as to time and place, in the heavens; and they show, without further investigation, that the moon does not go round the earth in a circle, or, if it does, the earth is not in the center of that circle.

The parallaxes corresponding to these extreme distances, are $61^{\prime} 29^{\prime \prime}$ and $53^{\prime} 50^{\prime \prime}$.

When the moon moves round to that part of her orbit which is most remote from the earth, it is said to be in apogee;

Apogee and perigee. and, when nearest to the earth, it is said to be in perigee. The points apogee and perigee, mainly opposite to each other, do not keep the same places in the heavens, but gradually move forward in the same direction as the motion of the moon, and perform a revolution in a little less than nine years.

But, by a general theorem in trigonometry,

$$
\begin{equation*}
\sin . P+\sin . Q=2 \sin \cdot \frac{P+Q}{2}, \cos . \frac{P-Q}{2} \tag{2}
\end{equation*}
$$

Now by equating (1) and (2), and observing that $P+Q=$ M, and that (cos. $\frac{P-Q}{2}$) must be extremely near unity; and, therefore, as a factor, may disappear; we then have,

$$
2 \sin \cdot \frac{M}{2}=\frac{(a+b) r}{x}, \quad \text { or, } \quad x=\frac{(a+b) r}{2 \sin \cdot \frac{1}{2} M}
$$

A more ancient method is to compute the value of the little triangle $B C G$, and then of the whole triangle $A M G$, and then of a part, $A M C$ or $M G C$.

Ohap. In. (64.) Many times, when the moon comes round to its perigee, we find its parallax less than $61^{\prime} 29^{\prime \prime}$, and, at the opposite apogee, more than $53^{\prime} 50^{\prime \prime}$. It is only when the sun is in, or near a line with the lunar perigee and apogee, that these greatest extremes are observed to happen; and when the sun is near a right angle to the perigee and apogee, then the moon moves round the earth in an orbit nearer a circle; and thus, by observing with care the variation of the moon's parallax, we find that its orbit is a revolving ellipse, of variable eccentricity.
(65.) Because the moon's distance from the earth is variable, therefore there must be a mean distance: we shall show, hereafter, that her motion is variable; therefore there is a mean motion; and, as the eccentricity is variable, there is a mean eccentricity.
Mear pa- The extreme parallaxes, at mean eccentricity, are $60^{\prime} 20^{\prime \prime}$, rallax and
parallax at and $54^{\prime} 05^{\prime \prime}$; and the corresponding distances from the earth meav dis. are 56.93 and 63.64 ; the radius of the earth being unity. tance. The mean parallax, or mean between $60^{\prime} 20^{\prime \prime}$ and $54^{\prime} 05^{\prime \prime}$, is $57^{\prime} 12^{\prime \prime} .5$; but the parallax, at mean distance, is $57^{\prime} 03^{\prime \prime *}$.

* It may seem paradoxical that the mean parallax, and the parallax at mean distance are different quantities; but the following investigation will set the matter at rest. Let d and D be extreme distances, and M the mean distance.

$$
\begin{equation*}
\text { Then, }-\quad-\quad d+D=2 M \text {; } \tag{1}
\end{equation*}
$$

Also, let p and P be the parallaxes corresponding to the distances d and D; and put x to represent the parallax at mean distance. Then, by Art. 60 (if we call the radius of the tables unity), we have

$$
d=\frac{1}{\sin \cdot p}, \quad D=\frac{1}{\sin . P}, \quad \text { and } \quad M=\frac{1}{\sin . x}
$$

Substituting these values of d, D, and M, in equation (1) we

$$
\begin{align*}
& \text { have, }-\frac{1}{\sin \cdot p}+\frac{1}{\sin \cdot P}=\frac{2}{\sin \cdot x} \\
& \text { Or, }--\sin . P+\sin \cdot p=\frac{2 \sin \cdot p \sin . P}{\sin . x} \tag{2}
\end{align*}
$$

The mean between extreme distances is $\frac{55.02+63.84}{2}$ or 59.88 ; Chap. II.
but the true mear distance is 60.26 , corresponding to the parallax $57^{\prime} 3^{\prime \prime}$. The mean, between extremes, is a variable Mean disfance to the quantity; but the true mean distance is ever the same; a little more than $60 \frac{1}{4}$ times the semidiameter of the earth.
(66.) The variations in the moon's real distance must correspond to apparent variations in the moon's diameter; and if the moon, or any other body, should have no variation in apparent diameter, we should then conclude that the body was always at the same distance from us.

The change, in apparent diameter, of any heavenly body, is numerically proportioned to its real change in distance; as appears from the demonstration in the note below.*

But by a well known, and general theorem in trigonometry, Mean pa. we have, $\sin . P+\sin . p=2 \sin .\left(\frac{P+p}{2}\right) \cos .\left(\frac{P-p}{2}\right)$

By equating (3) and (2), and observing that the cosines of very small ares may be practically taken as unity, or radius, therefore,

$$
\begin{aligned}
\sin \left(\frac{P+p}{2}\right) & =\frac{\sin \cdot P \sin \cdot p}{\sin x} ; \\
0 r,--\quad-\sin x & =\frac{\sin \cdot P \sin \cdot p}{\sin \cdot \frac{1}{2}(P+p)}
\end{aligned}
$$

On applying this equation, we find $x=57^{\prime} 3^{\prime \prime}$.

* Let A be the point of vision, and d the diameter of any body at different distances, $A B$, $A C$.

Fig. 15.

Now, by trigonometry, we have the following proportions:

$$
\begin{aligned}
& A C: d:: R \\
& A B: d:: R
\end{aligned} \quad \text { : tan. } C A D
$$

Chap. IT. Now if the moon has a real change in distance, as observa-
tions show, such change must be accompanied with apparent changes in the moon's diameter; and, by directing observations to this particular, we find a perfect correspondence; showing the harmony of truth, and the beauties of real science.
Connec- We have several times mentioned that the moon's horizontion between semidiame. ser and hori. zontal paral!ax. tal parallax is the semidiameter of the earth, as seen from the moon; and now we further say, that what we call the moon's semidiameter, an observer at the moon would call the earth's horizontal parallax; and the variation of these two angles depends on the same circumstance - the variation of the distance between the earth and moon; and, depending on one and the same cause, they must vary in just the same proportion.

When the moon's horizontal parallax is greatest, the moon's semidiameter is greatest; and, when least, the semidiameter is the least; and if we divide the tangent of the semidiameter by the tangent of its horizontal parallax, we shall always find the same quotient (the decimal 0.27293); and that quotient is the ratio between the real diameter of the earth and the diameter of the moon.* Having this ratio, and the diameter of the earth, 7912 miles, we can compute the diameter of the moon thus:

$$
7912 \times 0.27293=2169.4 \text { miles }
$$

From the first proportion, - - $A C \tan . C A D=d R$;
From the second, - - - - $A B \tan . B A E=d R$;
By equality, - - - $A C \tan . C A D=A B \tan . B A E$.
This last equation, put into an equivalent proportion, gives:

$$
A C: A B: \tan B A E:: \tan C A D
$$

But tangents of very small arcs (such as those under which the heavenly bodies appear) are to each other as the ares themselves. Therefore,
$A C: A B:$ angle $B A E$: angle $C A D ;$
That is; the angular measures of the same body are inversely proportional to the corresponding distances.

* This requires demonstration. Let E be the real semi-

As spheres are to each other in proportion to the cubes of Crap. II. their diameters, therefore the bulk (not mass) of the earth, is $t s$ that of the moon, as 1 to $\frac{1}{4}$, nearly.
as the moon's distance is $60 \frac{1}{4}$ times the radius of the earth, Augmen. it follows that it is about $\frac{-1}{6} 0$ th nearer to us, when at the tation of the zenith, than when in the horizon. Making allowance for this diameter: its (in proportion to the cosine of the altitude), is called the canse. augmentation of the semidiameter.
(68.) It may be remarked, by every one, that we always The earti see the same face of the moon; which shows that she must a moon to roll on an axis in the same time as her mean revolution about the earth; for, if she kept her surface toward the same part of the heavens, it could not be constantly presented to the earth, because, to her view, the earth revolves round the moon, the same as to us the moon revolves round the earth; and the earth presents phases to the moon, as the moon does to us, except opposite in time, because the two bodies are opposite in position. When we have new moon, the lunarians have full earth; and when we have first quarter, they have last quarter, etc. The moon appears, to us, about half a degree in diameter; the earth appears, to them, a moon, about
diameter of the earth Fig. 16.
(Fig. 16), m that of the moon, D the distance betweenthe

two bodies; and let the radius of the tables be unity. Put P to represent the moon's horizontal parallax, and s its apparent semidiameter. Then, by trigonometry,

$$
D: E:: 1: \tan P ; \text { and } D: m:: 1: \tan s
$$

From the first, $D=\frac{E}{\tan . P} ;$ from the $2 \mathrm{~d}, D=\frac{m}{\tan . s} ;$
Therefore, - $\frac{E}{\tan . P}=\frac{m}{\tan \cdot s}$, or $\frac{\tan \cdot s}{\tan . P}=\frac{m}{E}$. Q. x.D.

Chap. II. two degrees in diameter, invariably fixed in their sky, and the stars passing slowly behind it.
The moon "But," says Sir John Herschel, " the moon's rotation on ${ }_{\text {revolves }}{ }_{\text {an an }}$ oxis. her axis is uniform; and since her motion in her orbit is not so, we are enabled to look a few degrees round the equatorial parts of her visible border, on the eastern or western side, according to circumstances; or, in other words, the line joining the centers of the earth and moon fluctuates a little in its position, from its mean or average intersection with her surface, to the east, or westward. And, moreover, since the axis about which she revolves is not exactly perpendicular to her orbit, her poles come alternately into view for a small space at the edges of her disc. These phenomena are known by the name of librations. In consequence of these two distinct kinds of libration, the same identical point of the moon's surface is not always the center of her dise; and we therefore get sight of a zone of a few degrees in breadth on all sides of the border, beyond an exact hemisphere.'

CHAPTERIII.

THE EARTH'S ORBIT ECCENTRIC. -THE APPARENT ANGULAR MOTION OF THE SUN NOT UNIFORM. - LAWS BETWEEN DISTANCE, REAL, AND ANGULAR MOTION. - ECCENTRICITY OF THE ORBIT.

Chap. III The sun larger than the earth.
(69.) The sun's parallax is too small to be detected by any common means of observation; hence it remained unknown, for a long series of years, although many ingenious methods were proposed to discover it. The only decision that ancient astronomers could make concerning it was, that it must be less than $20^{\prime \prime}$ or $15^{\prime \prime}$ of are; for, were it as much as that quantity, it could not escape observation.

Now let us suppose that the sun's horizontal parallax is less than $20^{\prime \prime}$; that is, the apparent semidiameter of the earth, as seen from the sun, must be less than $20^{\prime \prime}$; but the semidia-
meter of the sun is $15^{\prime} 56^{\prime \prime}$, or $956^{\prime \prime}$; therefore the sun must Chap. и. be vastly larger than the earth - by at least 48 times its diameter; and the bulk of the earth must be, to that of the sun, in as high a ratio as 1 to the cube of 48 . But as we do not suffer ourselves to know the true horizontal parallax of the sun, all the decision we can make on this subject is, that the sun is vastly larger than the earth.
(70.) Previous observations, as we explained in the first section of this work, clearly show, or give the appearance of the sun going round the earth once in a year ; but the appearance would be the same, whether the earth revolves round the sun, or the sun round the earth, or both bodies revolve round a point between them. We are now to consider which is the most probable: that a large body should circulate round a much smaller one; or, the smaller one round a large one. The last suggestion corresponds with our knowledge and experience in mechanical philosophy; the first is opposed to it.
(71.) We have seen, in the last chapter, that the semidiameter and horizontal parallax of a body have a constant relation to each other; and, while we cannot discover the one, we will examine all the variations of the other (if it have variations), and thereby determine whether the earth and sun always remain at the same distance from each other.

Here it is very important that the reader should clearly understand, how the apparent diameter of a heavenly body can be determined to great precision.

As an example, we shall take the diameter of the sun; but the same principles are to be followed, and the same deductions are to be made, whatever body, moon, or planet, may be under observation.

An instrument to measure the apparent diameter of a planet

Methods of measuring apparent diameters.

Does the sun go round the earth, or the earth round the sun?

Chap. III.
the mean result is regarded as a single observation. Generally speaking, the following method is more to be relied upon, when large angles are measured, and to it we commend special attention.
The me. The method depends on the time employed by the body in passthod by time in passing the meridian. ing the perpendicular wires of the transit instrument.

All bodies, (by the revolution of the earth) come to the meridian at right angles, and 15 degrees pass by the meridian in one hour of sidereal time; and, in four minutes, one degree will pass; and, in two minutes of time, 30 minutes of are will pass the meridian wire.

Now if the sun is on the equator, and stationary there, and employs two minutes of sidereal time in passing the meridian, then it is evident that its apparent diameter is just 30^{\prime} of are; if the time is more than two minutes, the diameter is more; if less, less.

But we have just made a supposition that is not true; we have supposed the sun stationary, in respect to the stars; but it is not so; it apparently moves eastward; therefore it will not get past the meridian wire as soon as it would if stationary. Hence we must have a correction, for the sun's motion, applied to the time of its passing the meridian.
Corrections We have also supposed the sun on the equator, and for a to be made. moment continue the supposition, and also conceive its diameter to be just 30^{\prime} of arc. Now suppose it brought up to the 20th degree of declination, on that parallel, it will extend over more than 30^{\prime} of arc, because meridians converge toward the pole; therefore the farther the sun, or any other body is from the equator, the longer it will be in passing the meridian on that account; the increase of time depending on the cosine of the declination. (See 59.)

Hence two corrections must be made to the actual time that the sun occupies in crossing the meridian wire, before we can proportion it into an are ; one for the progressive motion of the sun in right ascension ; and one for the existing declination. We give an example.

Method of
On the first day of June, 1846, the sidereal time (time deciding the measured by the sidereal clock) of the sun passing the me-
ridian wire, was observed to be 2 m .16 .64 s ; the declination Char. It. was $22^{\circ} 2^{\prime} 45^{\prime \prime}$, and the hourly increase of right ascension was exact appa. 10.235 s . What was the sun's semidiameter?

$$
3600 \mathrm{~s} .: 10.235 \mathrm{~s} .:: \quad 136.64: 0.39 \mathrm{~s}
$$

Observed dura. of tran., in secs., 136.64
Reduction for solar motion, - 39
136.25 . . log. 2.134337

Dec. $22^{\circ} 2^{\prime} 45^{\prime \prime}$; cosine, - - 9.967021
Duration, if stationary on equa., 126.3 s. . . log. 2.101358
Minutes or seconds of time can be changed into minutes or seconds of are, by multiplying by 15 ; therefore the diameter of the sun, at this time, subtended an are of $1894^{\prime \prime} .5$, and its semidiameter $947^{\prime \prime} .2$, or $15^{\prime} 47^{\prime \prime} .2$; which is the result given in the Nautical Almanac, from which any number of examples of this kind can be taken. We give one more example, for the benefit of those who may not have a Nautical Almanac.

On the 30th day of December (not material what year), the sidereal time of the sun's diameter passing the meridian was observed to be 2 m .22 .2 s ., or 142.2 s . The sun's hourly motion in right ascension, at that time, was 11.06 s ., and the declination was $22^{\circ} 11^{\prime}$. What was the sun's semidiameter?*

Ans. $16^{\prime} 17^{\prime \prime} .3$.
These observations may be made every clear day throughout the year; and they have been made at many places, and for many years; and the combined results show that the

Extreme values of the sun's apparent semidiameter.

* The following is the formula for these reductions :

$$
\frac{15(t-c) \cos . D}{R}=s .
$$

Here t is the observed interval in seconds, c is the correction for the increase in right ascension, D is the declination, R the radius of the tables, and s is the result in seconds of arc. c is always very small; for one hour, or 3600 s ., the variation is never less than 8.976 s , nor more than 11.11 s . The former happens about the middle of September ; the latter about the 20 th of December. For the meridian passage of the moon, the correction c is considerable; because the moon's increase of right ascension is comparatively very rapid. For the planets, c may be disregarded.

CHAP. III.
apparent diameter of the sun is the same, on the same day of the year, from whatever station observed.

The least semidiameter is $15^{\prime} 45^{\prime \prime} .1$; which corresponds, in time, to the first or second day of July; and the greatest is 16^{\prime} $17^{\prime \prime} .3$, which takes place on the 1st or 2 d of January.

Now as we cannot suppose that there is any real change in the diameter of the sun, we must impute this apparent change to real change in the distance of the body, as explained in Art. 66.
Variation Therefore the distance to the sun, on the 30th of Decemof the dis. ber, must be to its distance, on the first day of July, as the
fance from the earth to number $15^{\prime} 45^{\prime \prime} .1$ is to the number $16^{\prime} 17^{\prime \prime} .3$, or as the numthe sun. ber 945.1 to 977.3 ; and all other days in the year, the proportional distance must be represented by intermediate numbers.

From this, we perceive, that the sun must go round the earth, or the earth round the sum, in very nearly a circle ; for were a representation of the curve drawn, corresponding to the apparent semidiameter, in different parts of the orbit, and placed before us, the eye could scarcely detect its departure from a circle.
(72.) It should be observed that the time elapsed between the greatest and least apparent diameter of the sun, or the reverse, is just half a year; and the change in the sun's longitude is 180°.
Eccentricity of the earth's orbit, how known.

If we would consider the mean distance between the earth and sun as unity (as is customary with astronomers), and then put x to represent the least distance, and y the greatest distance, we shall have

$$
\begin{gathered}
x+y=2 \\
\text { And, - } x: y:: 9451: 9773 .
\end{gathered}
$$

A solution gives $x=0.98326$, nearly, and $y=1.01674$, nearly; showing that the least, mean, and greatest distance to the sun, must be very nearly as the numbers $.98326,1$., and 1.01674 .

The fractional part, .01674 , or the difference between the cxtremes and mean (when the mean is unity), is called the eccentricity of the orbit.

The eccentricity, as just mentioned, must not be regarded as Chap. mi. accurate. It is only a first approximation, deduced from the first and most simple view of the subject; but we shall, hereafter, give other expositions that will lead to far more accurate results.

In theory, the apparent diameters are sufficient to determine the eccentricity, could we really observe them to rigorous exactness; but all luminous bodies are more or less affected meters only by irradiation, which dilates a little their apparent diameters; approximate. and the exact quantity of this dilatation is not yet well ascertained.
(73.) The sun's right ascension and declination can be observed from any observatory, any clear day; and from thence we can trace its path along the celestial concave sphere above us, and determine its change from day to day; and we find it runs along a great circle called the ecliptic, which crosses the equator at opposite points in the heavens; and the ecliptic inclines to the equator with an angle of about $23^{\circ} 27^{\prime} 40^{\prime \prime}$.

The plane of the ecliptic passes through the center of the earth, showing it to be a great circle, or, what is the same thing, showing that the apparent motion of the sun has its center in the line which joins the earth and sun.

The apparent motion of the sun along the ecliptic is called longitude; and this is its most regular motion.

When we compare the sun's motion, in longitude, with its

Variations in the distance of the sun compared with its variations in longitude. connection.
When the semidiameter is greatest, the motion in longitude is greatest; and, when the semidiameter is least, the motion in longitude is least; but the two variations have not the same ratio.

When the sun is nearest to the earth, on or about the 30th of December, it changes its longitude, in a mean solar day, $1^{\circ} 1^{\prime} 9^{\prime \prime} .95$. When farthest from the earth, on the 1 st of July, its change of longitude, in 24 hours, is only $57^{\prime} 11^{\prime \prime} .48$. A uniform motion, for the whole year, is found to be $59^{\prime} 8^{\prime \prime} .33$.

The ancient philosophers contended that the sun moved

Chap, III.
?
about the earth in a circular orbit, and its real velocity uniform; but the earth not being in the center of the circle, the same portions of the circle would appear under different angles; and hence the variation in its apparent angular motion.

The result shows that the angular motion is in the inverse proportion to the square of the distance.

$$
\text { is. } 1
$$ have not the same ratio; therefore this supposition is not satisfactory; and it was probably abandoned for the want of this mathematical support. The ratio between $945^{\prime \prime}$.1, and $977^{\prime \prime} .3$ is $-\quad-\quad-\quad-\frac{9773}{9451}=1.0341$, nearly : between $57^{\prime} 11^{\prime \prime} .48$, and $61^{\prime} 9^{\prime \prime} .95, \frac{3669^{\prime \prime} .95}{3431^{\prime \prime} .48}=1.0694$, nearly.

If we square (1.0341) the first ratio, we shall have 1.06936, a number so near in value to the second ratio, that we con-
clude it ought to be the same, and would be the same, proa number so near in value to the second ratio, that we con-
clude it ought to be the same, and would be the same, provided we had perfect accuracy in the observations.
Law be. tween motion and disance.

Now if this is a true view of the subject, the variation in angular motion must be in exact proportion to the variation in distance, as explained in the note to Art. 66 ; that is, $945^{\prime \prime} .1$ should be to $977^{\prime \prime} .3$, as $57^{\prime} 11^{\prime \prime} .48$ to $61^{\prime} 9^{\prime \prime} .95$, if the supposition of the first observers were true. But these numbers

Thus we compare the angular motion of the sun in different parts of its orbit; and we always find, that the inverse square of its distance is proportional to its angular motion; and this incontestible fact is so exact and so regular, that we lay it down as a law; and if solitary observations do not correspond with it, we must condemn the observations, and not the law.
(74.) To investigate this subject thoroughly, we cannot avoid making use of a little geometry.

Let Fig. 17 represent the solar orbit,* the sun apparently revolving about the observer at 0 . The distance from 0 to

[^6]any point in the or-
Fig. 17.
bit is called the radius vector; and it is a varying quantity, conceived to sweep round the point 0 .

Let D be the value of the radius vector at any point, and $r D$ its value at some other point, as represented in the figure. Let y represent the real motion of the sun, for a very short interval of time, at the extremity of the in real and radius vector D; and x represent the real motion, at the tion. extremity of the radius vector $r D$, in the same time.

From O, as a center, at the distance of unity, describe a circle. Put A to represent the angle under which x appears from O; then, by observation, $r^{2} A$ is the angle under which y appears from the same point.

Now, considering the sectors as triangles, we have the following proportions:

$$
\begin{aligned}
& 1: A:: r D: x \\
& 1:
\end{aligned}: r^{2} A:: \quad D: y .
$$

From the first, - $\quad x=r A D$,
From the second, - $y=r^{2} A D$.
Multiply the first of these equations by r, and we perceive that - - - - - $y=r x$.

This last equation shows that the real velocity of the earth in its orbit varies in the inverse ratio as the radius vector; or it varies directly as the apparent diameter of the sun.
(75.) If we multiply $r D$ by x, the product will express the double of an area passed over by the radius vector in a certain sun's appa. interval of time; and if we multiply D by y, we shall have ${ }^{\text {ter. }}$ the double of another area passed over by the radius vector in the same time. But the first product is $r D x$, and the second is the same, as we shall see by taking the value of $y(r x)$; that is $r D x=r D x$; hence we announce this general law:

Chap. III. That the solar radius vector describes equal areas in equal The radius times.
vector describes equal areas in equal times.

When expressed in more general terms, this is one of the three laws of Kepler, which will be fully brought into notice in a subsequent part of this work.

If we draw lines from any point in a plane, reciprocally proportional to the sun's apparent diameter, and at angles differing as the change of the sun's longitude, and then connect the extremities of such lines made all round the point, the connecting lines will form a curve, corresponding with an ellipse (see Fig. 18), which represents the apparent solar orbit; and, from a review of the whole subject, we give the following summary:
Laws of motion in an ellipse.

1. The eccentricity of the solar ellipse, as determined from the apparent diameeer of the sun, is .01674.*
2. The sun's angular velocity varies inversely as the square of its distance from the earth.
3. The real velocity is inversely as the distance.
4. The areas described by the radius vector are proportional to the times of description.
(76.) We have several times mentioned, that, as far as appearances are concerned, it is immaterial whether we consider the sun moving round the carth, or the earth round the sun; for, if the earth is in one position of the heavens, the

* By making use of the 2 d principle, above cited, we can compute the eccentricity of the orbit to greater precision than by the apparent diameters, because the same error of observation on longitude, would not be as proportionally great as on apparent diameter.

Let E "be the eccentricity of the orbit; then $(1-E)$ is the least distance to the sun, and $(1+E)$ the greatest distance. Then, by observation; we have

$$
\begin{aligned}
& \quad(1-E)^{2}:(1+E)^{2}:: 7^{\prime} 11^{\prime \prime} .48: 61^{\prime} 9^{\prime \prime} .95 ; \\
& \text { Or, }(1-E)^{2}:(1+E)^{2}:: \quad 343148: \sqrt{366995} ; \\
& \text { Or, } 1-E: 1+E \quad:: \sqrt{343148}: \sqrt{366995} . \\
& \text { Whence } E=.016788+\text { We shall give a still more accu- } \\
& \text { rate method of computing this important element. }
\end{aligned}
$$

sun appears exactly in the opposito position, and everymotion made by the earth muse correspond to an apparent motion made by the sun.

But, for the purpose of getting nearer to
 fact, we will now suppose the earth revolves round the sun in an elliptical orbit, as represented by Fig. 18.

We have very much exaggerated the eccentricity of the orbit, for the purpose of bringing principles clearer to view.

The greatest and least distances, from the sun to the earth, make a straight line through the sun, and cut the orbit into two equal parts. When the earth is at B, the greatest distance from the sun, it is said to be in apogee, and when at A, the least distance, it is in perigee; and the line joining the apogee and perigee is the major, or greater diameter of the orbit; and it is the only diameter passing through the sun, that cuts the orbit into two equal parts.

Now, as equal areas are described in equal times, it follows that the earth must be just half a year in passing from apogee to perigee, and from perigee to apogee; provided that these positions of points are stationary in the heavens, and they are so, very the solar a. nearly.*
pogee and perigee.

If we suppose the earth moves along the orbit from D to A, and we observe the sun from D, and continue observations upon it until the earth comes to C, then the longitude of the sun has changed 180°; and if the time is less than

[^7]Chaz. III.
half a year, we are sure the perigee is in this part of the orbit. If we continue observations round and round, and find where 180 degrees of longitude correspond with half a year, there will be the position of the longer axis; which is sometimes called the line of the apsides.
Difficulties, We cannot determine the exact point of the apogee or how avoided perigee, by direct observations on the sun's apparent diameter; for about these points the variations are extremely slow and imperceptible.

If we take observations in respect to the sun's longitude, when the earth is at b, and watch for the opposite longitude, when the earth is about a, and find that the area $b D a$ was described in little less than half a year, and the area $a C b$, in a little more than half a year, then we know that b is very near the apogee, and a very near the perigee.

If we take another point, b^{\prime}, and its opposite, a^{\prime}, and find converse results, then we know that the apogee is between the points b^{\prime} and b, and we can proportion to it, to great exactness.
Longitude (77.) The longitude of the apogee, for the year 1801, was
 $31^{\prime} 9^{\prime \prime}$. These points move forward, in respect to the stars, about $12^{\prime \prime}$ annually, and, in respect to the equinox, about $62^{\prime \prime}$; more exactly $61^{\prime \prime} .905$, and, of course, this is their annual increase of longitude.

In the year 1250 , the perigee of the sun coincided with the winter solstice, and the apogee with the summer solstice; and at that time the sun was 178 days, and about $17 \frac{1}{2}$ hours, on the south side of the equator, and 186 days, and about $12 \frac{1}{2}$ hours, on the north side; being longer in the northern hemisphere than in the southern, by seven days and 19 hours: at present, the excess is seven days and near 17 hours.
The year (78.) As the sun is a longer time in the northern than in unequally divided. the southern hemisphere, the first impression might be, that more solar heat is received in one hemisphere than in the other; but the amount is the same; for whatever is gained in time, is lost in distance; and what is lost in time, is gained by a decrease of distance. The amount of heat depends on
the intensity multiplied by the time it is applied; and the Сhap. III. product of the time and distance to the sun, is the same in either hemisphere; but the amount of heat received, for a single day, is different in the two hemispheres.
(79.) Conceive a line drawn through the sun, at right angles to the greater diameter of the orbit $D S C$ (see Fig. 18), the point C is $8^{\circ} 21^{\prime}$ from the first point of Aries; and if we observe the time occupied by the sun in describing 180 degrees of longitude, from this point (or from any point very near this point), that time, taken from the whole year, will give the time of describing the other 180 degrees.

Without being very minute, we venture to state, that the a method time of describing the arc $D A C$, is 178 days $17 \frac{1}{2}$ hours; and of obtaining the time of describing the arc $C B D$ is 186 days $12 \frac{1}{2}$ hours. city of an orBut, as areas are in proportion to the times of their descrip- bit. tion; therefore,

$$
\text { area } C S D A: \text { area } C B D S:: \begin{array}{ccc}
\text { d. } & \text { h. } & \text { d. } \\
178 & 17 \frac{1}{2} & 186 \\
12 \frac{1}{2}
\end{array}
$$

By taking half of the greater axis of the ellipse equal unity, and the eccentricity an unknown quantity, e, the mathematician can soon obtain analytical expressions for the two areas in question, and then, from the proportion, he can find the value of the eccentricity e : but there is a better method - we only give an outside view of this, for the light it throws on the general principle.
(80.) Now let us conceive the orbit of the earth inclosed by a circle whose diameter is the greatest diameter of the ellipse, as represented by Fig. 19.

For the sake of simplicity we will suppose the observer at rest at the point o (one focus of the ellipse), and the sun really to move round on the ellipse, describing equal areas in equal times round the point o.

Prepara tion for finding the true variation in an ellipse.

Conceive, also, an imaginary sun to pass round the circle, describing equal angles, in equal times, round the center m. Now suppose the two suns to be together at the point B; they depart, one on the ellipse, the other on the circle; and, on account of both describing equal areas, in equal times, round their respective centers of motion, they will be together

Chap IIt.

at the point A, and again at the point B, and so continue in each subsequent revolution.

The imaginary sun B on the circle everywhere describes equal angles in equal times; and the true sun, on the ellipse, describes only equal areas in equal times; but the angles will be unequal. Conceive the two suns to depart, at the same time, from the point B, and, after a certain interval of time, one is at s, the other at s^{\prime}. Then we must have
area obs : area $m B s^{\prime}$: : area ellipse : area circle.
Mean and The angle $B m s^{\prime}$ is the angle the sun would make, or its tree ano- increase in longitude from the apogee; provided the angular maiy. motion of the sun was uniform. The angle $B o s$ is its true increase of longitude; the difference between these two angles is the angle $m n o$.

The angle $B m s^{\prime}$ is always known by the time; and if to every degree of the angle $B m s^{\prime}$ we knew the corresponding angle $m n o$, the two would give us the angle $B o s$; for,

$$
B m s^{\prime}-m n o=m o n ; \text { or, Bos. }
$$

The angle $B m s^{\prime}$ is called the mean anomaly, and the angle $B o s$ is called the true anomaly.
The equa. The angle $B m s^{\prime}$ is greater than the angle $B o s$, all the toon of the way from the apogee to the perigee; but from the perigee to center. the apogee the true sun, on the ellipse, is in advance of the imaginary sun on the circle.

The angle $m n o$ is called the equation of the center; that is, it is the angle to be applied to the angle about the center m, to make it equal to the true anomaly.

The angle m no depends on the eccentricity of the ellipse; and its amount is put in a table corresponding to every
degree of the mean anomaly; subtractive, from the apogee to Crap. II. the perigee, and additive from the perigee to the apogee.*
(81.) Again; conceive the two suns to set out from the same point, B; and as the angle $B m s^{\prime}$ increases uniformly, it will increase and become greater and greater than the angle $B o s$, until the true sun attains its mean angular motion, and no

The greatest equation of the center gives the eccentricity of the orbit. longer. Then the angle m no attains its greatest ralue, and, at that time the side $m n=n o$, and the point n is perpendicular over o m, and $o s$ is a mean proportional between o B and $o A$. That is, when the sun, or any planet, attains the greatest equation of the center, the true sun is very near the extremity of the shorter axis of the ellipse: o, the greatest equation of the ceuter, can be determined by observation; and, from the greatest equation, we have the most accurate method of computing the eccentricity of the ellipse, as we may see by the note below. \dagger
\dagger Let C (Fig. 20) be the place of the true sun, and G the place of the imaginary sun; the line $m F$ cuts off equal portions of the circle and the ellipse. Then we have, to make the sector $m F G$ to the triangle o $m C$,
 as the circle is to the ellipse. Now let

$$
m B=a, \quad m C=b, \quad o m=e a, \quad \pi=3.1416 ;
$$

Then, the area of the circle is πa^{2}; the area of the ellipse is $\pi a b$; that of the sector is $\left(G F^{\prime}\right) \frac{a}{2}$, and of the triangle $\frac{e a b}{2}$.

$$
\text { Hence, }-\frac{e a b}{2}: G F\left(\frac{a}{2}\right):: \pi a b: \pi a^{2} \text {; }
$$

[^8]Chap. IIl. When once the eccentricity of any planetary ellipse becomes known, the equation of the center, corresponding to all degrees of the mean anomaly, can be computed and put into a table for future use; but this labor of constructing tables belongs exclusively to the mathematician.
$\begin{gathered}\text { Method of } \\ \text { educing the }\end{gathered}$ Or, - $e a b:(G F) a:: b: a$;
deducing the
eccentricity
from the
quation of
the center.
Consequently, $G F=e a$, and $F G=o m$; which shows that the
f angle $o C m$ is nearly equal to $F m G$, unless it is a very eccen-
tric ellipse. Now we must compute the number of degrees
in the $\operatorname{arc} F G$. The whole circumference is $2 \pi a$.
Therefore, $2 \pi a$: ea :: 360 : are $F G$;
Hence, - - $\quad \operatorname{arc} F G=\frac{180 e}{\pi}=$ angle $n m C$.

But the angle onm=nmC+nCm=2nmC, nearly;
Therefore, $\frac{360 e}{\pi}=2 n m C=o n m=$ greatest equation of center, nearly.

But the greatest equation of the center, for the solar orbit, is, by observation, $1^{c} 55^{\prime} 30^{\prime \prime}$; and as the sun has not quite its greatest equation of the center, when at the point C, it will be more accurate to put

$$
\frac{360 e}{\pi}=1^{\circ} 55^{\prime} 24^{\prime \prime}
$$

From this equation, it is true, we have only the approximate value of e; but it is a very approximate value, and suffciently accurate.

Reducing both members to seconds, and we have,

$$
3600 \cdot 360 e=6924 \pi, \quad \text { and } \quad e=0.0167842 .
$$

The greatest equation of the center is at present diminishing at the rate of $17^{\prime \prime} .17$ in one hundred years; this corresponds to a diminution of eccentricity by 0.00004166 ; which is determined by a solution of the following equation:

$$
3600 \cdot \frac{360 e}{\pi}=17^{\prime \prime} .17
$$

CHAPTERIV.

```
THE CAUSES OF THE OHANGE OF SEASONS.
```

(82.) The annual revolution of the earth in its orbit, Снap, iv. combined with the position of the earth's axis to the plane of its orbit, produces the change of the seasons.

If the axis were perpendicular to the plane of its orbit, The cause there would be no change of seasons, and the sun would then of the change be all the while in the celestial equator.
This will be understood by Fig. 21. Conceive the plane of the paper to be the plane of the earth's orbit, and conceive the several representations of the earth's axis, $N S$, to be inclined to the paper at an angle of $66^{\circ} 32^{\prime}$.

In all representations of $N S$, one half of it is supposed to be above the paper, the other half below it.
$N S$ is always parallel to itself; that is, it is always in the same position* - always at the same inclination to the plane

[^9]Chap. IV.
of its orbit -always directed to the same point in the heavens, in whatever part of the orbit it may be.

The plane of the equator, represented by $E q$, is inclined to the plane of the orbit by an angle of $23^{\circ} 28^{\circ}$.
Importance By inspecting the figure, the reader will gather a clearer of inspecting the figure. view of the subject than by whole pages of description; he will perceive the reason why the sun must shine over the north pole, in one part of its orbit, and fall as far short of that point when in the opposite part of its orbit; and the number of degrees of this variation depends, of course, on the position of the axis to the plane of the orbit.
Position of Now conceive the line $N S$ to stand perpendicular to the the axis
cause ${ }_{\text {no }}$ plane of the paper, and continue so; then $E q$ would lie on change of the paper, and the sun would at all times be in the plane of seasons. the equator, and there would be no change of seasons. If $N S$ were more inclined from the perpendicular than it now is, then we should have a greater change of seasons.

By inspecting the figure, we perceive, also, that when it is summer in the northern hemisphere, it is winter in the southern; and conversely, when it is winter in the northern, it is summer in the southern.

When a line from the sun makes a right angle with the earth's axis, as it must do in two opposite points of its orbit, the sun will shine equally on both poles; and it is then in the plane of the equator; which gives equal day and night the world over.

Equal days and nights, for all places, happen on the 20th of March, of each year, and on the $22 d$ or $23 d$ of September. At these times the sun crosses the celestial equator, and is said to be in the equinox.
The equinoctial and solstitial points.

The longitude of the sun, at the vernal equinox, is 0°; and at the autumnal equinox, its longitude is 180°.

The time of the greatest north declination is the 20th of June; the sun's longitude is then 90°, and is said to be at the summer solstice.

The time of the greatest south declination is the 22d of December; the sun's longitude, at that time, is 270°, and is said to be at the winter solstice.

By inspecting the figure, we perceive, that when the earth Char. IT. is at the summer solstice, the north pole, P, and a conside-

Leng searable portion of the earth's surface around, is within the enlightened half of the earth; and as the earth revolves on its $\operatorname{light}_{\text {dat }}$ and axis $N S$, this portion constantly remains enlightened, giving and about a constant day - or a day of weeks and months duration, according as any particular point is nearer or more remote from the pole; the pole itself is enlightened full six months in the year, and the circle of more than 24 hours constant sunlight extends to $23^{\circ} 28^{\prime}$ from the pole (not estimating the effects of refraction). On the other hand, the cpposite, or south pole, S, is in a long season of darkness, from which it can be relieved only by the earth changing position in its orbit.
"Now, the temperature of any part of the earth's surface depends ainly, if antirely, on its exposure to the sun' ture of the rays. Whenever the sun is above the horizon of any place, that place is receiving heat; when below, parting with it, by the process called radiation; and the whole quantities receired and parted with in the year must balance each other at every station, or the equilibrium of temperature would not be supported. Whenever, then, the sun remains more than 12 hours above the horizon, of any place, and less beneath, the general temperature of that place will be above the average ; when the reverse, below. As the earth, then, moves from A to B, the days growing longer, and the nights shorter in the northern hemisphere, the temperature of every part of that hemisphere increases, and we pass from spring to summer, while at the same time the reverse obtains in the southern hemisphere. As the earth passes from B to C, the days and nights again approach to equality - the excess of temperature in the northern hemisphere, above the mean state, grows less, as well as its defect, in the southern; and at the autumnal equinox, \boldsymbol{C}, the mean state is once more attained. From thence to D, and, finally, round again to A, all the same phenomena, it is obvious, must again occur, but reversed, it being now winter in the northern, and summer in the southern hemisphere."

Chap. iv. The inquiry is sometimes made why we do not have the warmest weather about the summer solstice, and the coldest weather about the time of the winter solstice.

Times of extreme temperature.

This would be the case if the sun immediately ceased to give extra warmth, on arriving at the summer solstice; but if it could radiate extra heat to warm the earth three weeks, before it came to the solstice, it would give the same extra heat three weeks after; and the northern portion of the earth must continue to increase in temperature as long as the sun continues to radiate more than its medium degree of heat over the surface, at any particular place. Conversely, the whole region of country continues to grow cold as long as the sun radiates less than its mean annual degree of heat over that region. The medium degree of heat, for the whole year, and for all places, of course, takes place when the sun is on the equator; the average temperature, at the time of the two equinozes. The medium degree of heat, for our northern summer, considering only two seasons in the year, takes place when the sun's declination is about 12 degrees north; and the medium degree of heat, for winter, takes place when the sun's declination is about 12 degrees south; and if this be true, the heat of summer will begin to decrease about the 20th of August, and the cold of winter must essentially abate on or about the 16 th of February, in all northern latitudes.

CHAPTER V.

EQUATION OF TIME.

(83.) We now come to one of the most important subjects in astronomy - the equation of time.

Without a good knowledge of this subject, there will be constant confusion in the minds of the pupils; and such is the nature of the case, that it is difficult to understand even the facts, without investigating their causes.
Sidereal
Sidereal time has no equation; it is uniform, and, of itself, sime perfect. perfect and complete.

The time, by a perfect clock, is theoretically perfect and Chas. if. complete, and is called mean time.

The time, by the sun, is not uniform; and, to make it Eolar ima agree with the perfect clock, requires a correction - a quan- net uniorm. tity to make equality; and this quantity is called the equation of time.*

If the sun were stationary in the heavens, like a star, it would come to the meridian after exact and equal intervals of time; and, in that case, there would be no equation of time.

If the sun's motion, in right ascension, were uniform, then it would also come to the meridian after equal intervals of time, and there would still be no equation of time. But (speaking in relation to appearances) the sun is not stationary in the heavens, nor does it move uniformly ; therefore it cannot come to the meridian at equal intervals of time, and, of course, the solar days must be slightly unequal.

When the sun is on the meridian, it is then apparent noon, fer that day; it is the real solar noon, or, as near as may be, balf way between sunrise and sunset; but it may not be noon by the perfect clock, which runs hypothetically true and uniform throughout the whole year.

A fixed star comes to the meridian at the expiration of every 23 h .56 m .04 .09 s . of mean solar time ; and if the sun were stationary in the heavens, it would come to the meridian after every expiration of just that same interval. But the sun increases its right ascension every day, by its apparent eastward motion; and this increases the time of its coming to the meridian; and the mean interval between its successive transits over the meridian is just 24 hours; but the actual intervals are variable - some less, and some more than 24 hours.

On and about the 1st of April, the time from one meridian of the sun to another, as measured by a perfect clock, is 23 h . 59 m .52 .4 s . ; less than 24 hours by about 8 seconds. Here, then, the sun and clock must be constantly separating. On

[^10]
Chap. V.

Equation of time the result of two causes.

Days in The four days in the year on which the sun and clock the year in which the son and clock agree.
and about the 20th of December, the time from one meridian of the sun to another is $24 \mathrm{~h} .0 \mathrm{~m} .24 .3 \mathrm{~s} .$, more than 24 seconds over 24 hours; and this, in a few days, increases to minutes - and thus we perceive the fact of equation of time. To detect the law of this variation, and find its amount, we must separate the cause into its two natural divisions.

1. The unequal apparent motion of the sun along the ecliptic.
2. The variable inclination of this motion to the ecliptic.

If the sun's apparent motion along the ecliptic were uniform, still there would be an equation of time; for that motion, in some parts of the orbit, is oblique to the equator, and, in other parts, parallel with it; and its eastward motion, in right ascension, would be greatest when moving parallel with the equator.

From the first cause, separately considered, the sun and clock would agree two days in a year - the 1st of July and the 30th of December.

From the second cause, separately considered, the sun and clock agree four days in a year - the days when the sun crosses the equator, and the days he reaches the solstitial points.

When the results of these two causes are combined, the sun and clock will agree four days in the year; but it is on neither of those days marked out by the separate causes; and the intervals between the several periods, and the amount of the equation, appear to want regularity and symmetry. agree, that is, show noon at the same instant, are April 15th, June 16th, September 1st, and December 24th.

The greatest amount, arising from the first cause, is 7 m . 42 s ., and the greatest amount, from the second cause, is 9 m . 53 s . ; but as these maximum results never happen exactly at the same time, therefore the equation of time can never amount to 17 m .35 s . In fact, the greatest amount is 16 m . 17 s ., and takes place on the 3 d of November ; and, for a long time to come, the maximum value will take place on the same day of each year; but, in the course of ages, it will vary in its amount and in the time of the year in which the sun and
clock agree, in consequence of the slow and gradual change Сhap. v. in the position of the solar apogee. (See Art. 77.)
(84.) The elliptical form of the earth's orbit gives rise to the unequal motion of the earth in its orbit, and thence to the apparent unequal motion of the sun in the ecliptic; and this same unequal motion is what we have denominated the first part oi the cause of the equation of time. Indeed, this part of the equa- equation of tion of time is nothing more than the equation of the center a common (80), changed into time at the rate of four minutes to a degree. ${ }^{\text {cause. }}$
The greatest equation for the sun's longitude (81, note), is by observation $1^{\circ} 55^{\prime} 30^{\prime \prime}$; and this, proportioned into time, gives 7 m .42 s ., for the maximum effect in the equation of time arising from the sun's unequal motion. When the sun departs from its perigee, its motion is greater than the mean rate, and, of course, comes to the meridian later than it otherwise would. In such cases, the sun is said to be slow - and it is slow all the way from its perigee to its apogee; and fast in the other half of its orbit.

For a more particular explanation of the second cause, we must call attention to Fig. 22.

Let $\gamma \leftrightarrows \bumpeq$ (Fig. Fig. 22. 22) represent the ecliptic, and $\tau C \bumpeq$ the equator.

By the first correction, the apparent motion along the ecliptic is rendered uniform; and the sun is then supposed to pass over equal spaces in equal intervals of time along the arc
 $\uparrow S$ б. But equal spaces of arc, on the ecliptic, do not correspond with equal spaces on the equator. In short, the points on the ecliptic must be reduced to corresponding points on the equator. For instance, the number of degrees represented by $\uparrow S$, on

Сhap, v. the ecliptic, is greater than to the same meridian along the equator. The difference between $\uparrow S$ and $\wp S^{\prime}$, turned into time, is the equation of time arising from the obliquity of the ecliptic corresponding to the point S.

At the points \odot, σ, and \bumpeq, and also at the southern tropic, the ecliptic and the equator correspond to the same meridian; but all other equal distances, on the ecliptic and equator, are included by different meridians.
To compute the equation of time arising from this cause, compute the second part of the equa. tion of time. we must solve the spherical triangle $r S S^{\prime \prime} ; \gamma S$ is the sun's longitude, and the angle at r is the obliquity of the ecliptic, and at S^{\prime} is a right angle. Assume any longitude, as 32°, 35°, or 40°, or any other number of degrees, and compute the base. The difference between this base and the sun's longitude, converted into time, is the quantity sought corresponding to the assumed longitude; and by assuming every degree in the first quadrant, and putting the result in a table, we have the amount for every degree of the entire circle, for all the quadrants are symmetrical, and the same distance from either equinox will be the same amount.

The perfect clock, or mean time, corresponds with the

What is meant by sun fast and slow of clock. equator; and as uniform spaces along the equator, near the point r, will pass over more meridians than the same number of equal spaces on the ecliptic; therefore the sun, at S, will be fast of clock, or come to the meridian before it is noon by the clock - and this will be true all the way to the tropic, or to the 90 th degree of longitude, where the sun and clock will agree. In the second quadrant, the sun will come to the meridian after the clock has marked noon. In the third quadrant the sun will again be fast; and, in the fourth quadrant, again slow of clock.

It will be observed, by inspecting the figure, that what the sun loses in eastward motion, by oblique direction near the equator, is made up, when near the tropics, by the diminished distances between the meridians.

For a more definite understanding of this matter, we give the following table.

Table showing the separate results of the two causes for the equa- Снар. V . tion of time, corresponding to every fifth day of the second years after leap year; but is nearly correct for any year.

By this table, the regular and symmetrical result of each Use of tho cause is visible to the eye; but the actual value of the equa- preceding tion of time, for any particular day, is the combined results tabie. of these two causes. Thus, to find the equation of time for the 5th day of March, we look at the table and find that

Снap. v. The first cause gives sun slow, - - 7 m .3 s .
The second, " sun slow, - - - 446
Their combined result (or algebraic sum) is 1149 slow.
That is; the sun being slow, it does not come to the meridian until 11 m .49 s . after the noon shown by a perfect clock; but whenever the sun is on the meridian, it is then noon, apparent time; and, to convert this into mean time, or to set the clock, we must $\alpha d d 11 \mathrm{~m} .49 \mathrm{~s}$.

Use of the equatiofn of time.

By inspecting the table, we perceive, that on the 14 th of April the two results nearly counteract each other; and consequently the sun and clock nearly agree, and indicate noon at the same instant. On the $2 d$ of November the two results unite in making the sun fast; and the equation of time is then the sum of 636 , and 940 , or 16 m .16 s .; the maximum result.

The sun at this time being fast, shows that it comes to the meridian 16 m .16 s . before twelve o'clock, true mean time; or, when the sun is on the meridian, the clock ought to show 11 h .43 m .44 s .; and thus, generally, when the sun is fast, we must subtract the equation of time from apparent time, to obtain mean time; and conversely, when the sun is slow.

As no clock can be relied upon, to run to true mean time, or to any exact definite rate, therefore clocks must be frequently rectified by the sun. We can observe the apparent time, and then, by the application of the equation of time, we determine the true mean time.
A table for (85.) As the sun has a particular motion, corresponding equation of to every particular point on the ecliptic, and, at the same rime depending on the sun's longitude can be formed. time, the particular point on the ecliptic has a definite relation to the equator, therefore any point, as S (Fig. 22), on the ecliptic, has the two corrections for the equation of time; consequently a table can be formed for the equation of time, depending on the longitude of the sun; and such a table would be perpetual, if the longer axis of the solar orbit did not change its position in relation to the equinoxes. But as that change is very slow, a table of that kind will serve for
many years, with a very trifling correction, and such a table Crap. v. is to be found in many astronomical works.

It is very important that the navigator, astronomer, and clock regulator, should thoroughly understand the equation of time; and persons thus occupied pay great attention to it; but most people in common life are hardly aware of its existence.

CHAPTER VI.

THE APPARENT MOTIONS OF THE PLANETS.

(86.) We have often reminded the reader of the great Chap. vi. regularity of the fixed stars, and of their uniform positions in relation to each other; and by this very regularity and constancy of relative positions, we denominate them fixed; but there are certain other celestial bodies, that manifestly change their positions in space, and, among them, the sun and moon are most prominent.

In previous chapters, we have examined some facts concerning the sun and moon, which we briefly recapitulate, as lation. follows:

1. That the sun's distance from the earth is very great; but at present we cannot determine how great, for the want of one element - its horizontal parallax.
2. Its magnitude is much greater than that of the earth.
3. The distance between the sun and earth is slightly variable; but it is regular in its variations, both in distance and in apparent angular motion.
4. The moon is comparatively very near the earth; its distance is variable, and its mean distance and amount of variations are known. It is smaller than the earth, although, to the mere vision, it appears as large as the sun.

The apparent motions of both sun and moon are always in one direction; and the variations of their motions are never far above or below the mean.

But there are several other bodies that are not fixed stars; tial bodies.

Cfap. Vi. and although not as conspicuous as the sun and moon, have been known from time immemorial.

They appear to belong to one family; but, before the true system of the world was discovered, it was impossible to give any rational theory concerning their motions, so irregular and erratic did they appear; and this very irregularity of their apparent motions induced us to delay our investigations concerning them to the present chapter.
The plan- In general terms, these bodies are called planets -- and ets.-Venus. there are several of recent discovery - and some of very recent discovery; but as these are not conspicuous, nor well known, all our investigations of principles will refer to the larger planets, Venus, Mars, Jupiter, and Saturn. We now commence giving some observed facts, as extracted from the Cambridge astronomy
The morn- (87.) "There are few who have not observed a beautiful ing and evening star. star in the west, a little after sunset, and called, for this reason, the evening star. This star is Venus. If we observe it for several days, we find that it does not remain constantly at the same distance from the sun. It departs to a certain distance, which is about 45°, or $\frac{1}{4}$ th of the celestial hemisphere, after which it begins to return; and as we can ordinarily discern it with the naked eye only when the sun is below the horizon, it is visible only for a certain time immediately after sunset. By and by it sets with the sun, and then we are entirely prevented from seeing it by the sun's light. But after a few days, we perceive, in the morning, near the eastern horizon, a bright star which was not visible before. It is seen at first only a few minutes before sumrise, and is hence called the morning star. It departs from the sun from day to day, and precedes its rising more and more; but after departing to about 45°, it begins to return, and rises later each day; at length it rises with the sun, and we cease to distinguish it. In a few days the evening star again appears in the west, very near the sun; from which it departs in the same manner as before; again returns; disappears for a short time; and then the morning star presents itself.
These alternations, observed without interruption for nore
than 2000 years, evidently indicate that the evening and Carp. vi. morning star are one and the same body. They indicate, also, that this star has a proper motion, in virtue of which it oscillates about the sun, sometimes preceding and sometimes following it.

These are the phenomena exhibited to the naked eye; but the admirable invention of the telescope enables us to carry our observations much farther."
(88.) On observing Venus with a telescope, the irradiation is, in a great measure, taken away, and we perceive that it of Veaus. has phases, like the moon. At evening, when approaching the sun, it presents a luminous crescent, the points of which are from the sun. The crescent diminishes as the planet draws nearer the sun; but after it has passed the sun, and appears on the other side, the crescent is turned in the other direction; the enlightened part always toward the sun, showing that it receives its light from that great luminary. The crescent now gradually increases to a semicircle, and finally, to a full circle, as the planet again approaches the sun; but, as the crescent increases, the apparent diameter of the planet diminishes; and at every alternate approach of the planet to the sun, the phase of the planet is full, and the apparent diameter srull; and at the other approaches to the sun, the crescent dimin.shes down to zero, and the apparent diameter increases to its maximum. When very near the sun, however, the planet is lost in the sunlight; but at some of these intervals, between disappearing in the evening, and reappearing in the morning, it appears to run over the sun's disc as a round, black spot; giving a fine opportunity to measure its greatest apparent diameter.* When Venus appears full, its apparent diameter is not more than $10^{\prime \prime}$, and when a black spot on the sun, it is $59^{\prime \prime} .8$, or very nearly 1^{\prime}. Hence its greatest distance must be, to its least distance, as $59^{\prime \prime} .8$ to 10 , or nearly as 6 to 1 .

[^11]Cgar. vi. (89.) When we come to form a theory concerning the real motion of this planet, we must pay particular attention to the fact, that it is always in the same part of the heavens Yenus al. as the sun - never departing more than 47° on each side of Ways
the sui. always in the neighborhood of the sun, it can never come to the meridian near midnight. Indeed, it always comes to the
G:arest meridian within three hours 20 minutes of the sun, and, of elongation. course, in daylight. But this does not prevent meridian observations being taken upon it, through a good telescope;*
a micrometer, which is two spider lines, always parallel, near the focus of a telescope, and so attached, by the mechanism of screws, as to open and close at pleasure.

To understand its grade of adjustment, bring the two lines together, so as to form one line. Then take any object, whose angular diameter is known at that time, as the diameter of the sun, and open the lines so as just to take in its dise, counting the turns, and parts of a turn given to the index screw to open to this object. From this we can compute the angle corresponding to one turn, or to any part of a turn, of the index screw.

Now, if we wish to measure the apparent diameter of any planet, bring the lines together, and then open them, just to inclose the planet; and the number of.turns, or the part of a turn, given to the screw, will determine the result.

This may not be the exact mechanism of every micrometer, but this is the principle of their construction.

[^12]and, as to this particular planet, it is sometimes so bright as Chap. V!. to be seen by the unassisted eye in the daytime.
(90.) Fiven without instruments and meridian observations, the attentive observer can determine that the motion of Venus, in relation to the stars, is rery irregular-sometimes its stars. motion is rapid - sometimes slow - sometimes direct - sometimes stationary, and sometimes retrograde; * but the direct motion prevails, and, as an attendant to the sun, and in its own irregular manner, as just described, it appears to traverse round and round among the stars.
(91.) But Venus is not the only planet that exhibits the appearances we have just described. There is one other, and only one - Mercury ; a very small planet, rarely visible to the

Mercury similar in ail appearances to Venus. naked eye, and not known to the very ancient astronomers. Whatever description we have given of Venus applies to Mercury, except in degree. Its variations of apparent diameter are not so great, and it never departs so far from the sun; and the interval of time, between its vibrations from one side to the other of the sun, is much less than that of Venus.
(92.) These appearances clearly indicate that the sun must be A conciuthe center, or near the center, of these motions, and not the earth; and that Mercury must revolve in an orbit within that of Venus.

So clear and so unavoidable were these inferences, that everi the ancients (who were the most determined advocates for the immobility of the earth, and for considering it as the principal object in creation - the center of all motion, etc.) were compelled to admit them; but with this admission, they contended, that the sun moved round the earth, carrying these planets as attendants.
(93.) By taking observations on the other planets, the anThe appacient astronomers found them variable in their apparent diam- rent diame-

[^13]Crap. vI. eters, and angular motions; so much so, that it was imppossible ters of the to reconcile appearances with the idea of a stationary point of planets are observation; unless the appearances were taken for realities, variable. and that was against all true notions of philosophy.

The planet Jras is most remarkable for its variations; and the great distinction between this planet and Venus, is, that it does not always accompany the sun; but it sometimes, yea, at regular periods, is in the opposite part of the heavens from the sun - called Opposition - at which time it rises about sunset, and comes to the meridian about midnight.
The earth The greatest apparent diameter of Mars takes place when not the center of its mo. 'ion. the planet is in opposition to the sun, and it is then $17^{\prime \prime} .1$, and its least apparent diameter takes place when in the neighborhood of the sun, and it is then but about $4^{\prime \prime}$, showing that the sun, and not the earth, is the center of its motion.
Systematic The gencral motion of all the planets, in respect to the irregularities stars, is direct; that is, eastward; but all the planets that attain opposition to the sun, while in opposition, and for some time before and after opposition, have a retrograde motion and those planets which show the greatest change in apparent diameter, show also the greatest amount of retrograde motion - and all the observed irregularities are systematic in their irregularities, showing that they are governed, at least, by constant and invariable laws. If the earth is really stationary, we cannot account for this retrograde motion of the planets, unless that motion is real; and if real, why, and how can it change from direct to stationary, and from stationary to retrograde, and the reverse?
Retrograde
But if we conceive the earth in moiton, and going the sume motion of fie way with the planet, and moving more rapidly than the planet, planets acpisiets ac- then the planet will appear to run back; that is, retrograde.

And as this retrogradation takes place with every planet, when the earth and planet are both on the same side of the sun, and the planet in opposition to the sun; and as these circumstances take place in all positions from the sun, it is a sufficient explanation of these appearances; and conversely, then, these appearances show the motion of the earth.
(94.) When a planet appears stationary, it must be really
so, or be moving directly to or from the observer. And if it CuAp II. be moving to or from the observer, that circumstance will be Planets nerindicated by the change in apparent diameter; and observa- erstationary. tions confirm this, and show that no planet is really stationary, although it may appear to be so.
(95.) If we suppose the eartin to be but one of a family of The earth a bodies, called planets - all circulating round the sun at dif- planet. ferent times - in the order of Mercury, Venus, Earth, Mars (omitting the small telescopic planets), Jupiter, Saturn, Herschel, or Uranus, we can then give a rational and simple account for every appearance observed, and without discussing the ancient objections to the true theory of the solar system, we shall adopt it at once, and thereby save time and labor, and introduce the reader into simplicity and truth.
(96.) The true solar system, as now known and acknow- Copernieus ledged, is called the Copernican system, from its discoverer, ${ }^{\text {and }}$ the CoCopernicus, a native of Prussia, who lived some time in the tem. fifteenth century.

But this theory, simple and rational as it now appears, and Lost and re. capable of solving every difficulty, was not immediately adopted; for men had always regarded the earth as the chief object in God's creation; and consequently man, the lord of cretion, a most important being. But when the earth was hurled from its imaginary, dignified position, to a more humble place, it was feared that the dignity and vain pride of man must fall with it: and it is probable that this was the root of the opposition to the theory.

So violent was the opposition to this theory, and so odious Galileo and would any one have been who had dared to adopt it, that it his dialogue. appears to have been abandoned for more than one hundred years, and was revived by Galileo about the year 1620, who, to avoid persecution, presented his views under the garb of a dialogue between three fictitious persons, and the points left undecided.

But the caution of Galileo was not sufficient, or his dialogue was too convincing, for it woke up the sacred guardians of truth, and he was forced to sign a paper denouncing the theory as heresy, on the pain of perpetual imprisonment.

Cuar. vi. But this is a digression. With the history of astronomy, as interesting as it may be, we design to have little to do, and to proceed only with the science itself.

CHAPTER VII.

FIRST APPROXIMATIONS OF THE RELATIVE DISTANCES OF THE PLANETS FROM THE SUN. HOW THE RESULTS ARE OBTAINED.
(97.) Being convinced of the truth of the Copernican system, the next step seems to be, to find the periodical times of the revolutions of the planets, and at least their relative distances from the sun.

Mercury and Venus, never coming in opposition to the sun,

Distinction between interior and superior planets. but revolving around that body in orbits that are within that of the earth, are called inferior planets.

Those that come in opposition, and thereby show that their orbits are outside of the earth, are called superior planets.

We shall show how to investigate and determine the position of one inferior planet; and the same principles will be sufficient to determine the position of any inferior planet.

It will be sufficient, also, to investigate and determine the orbit of one superior planet; and if that is understood, it may be considered as substantially determining the orbits of ali the superior planets; and after that, it will be sufficient to state results.

For materials to operate with, we give the following table of the planetary irregularities (so called) drawn from observation:

Planets.	Greatest Apparent Diameters.	Least Apparent Diameters	Angular Dist.i. from Sun at the instant of being stationary.$\|$	Mean arc of Retrogradation.
	"		\bigcirc	\bigcirc
Mercury.	11.3	5.0	1800	1330
Venus.	59.6	9.6	2848	1612
Earth.				
Mars.	171	3.6	13648	1612
Jupiter.	44.5	301	11512	954
Saturn.	20.1	16.3	10854	618
Uranus.	4.1	3.7	10330	336

Planets.	Mean Duration of the Retro. grade Motion.	Mean Duration of the Synodic Revolution, or interval between two successive oppositions.	
Mercury.	23 days.	118 days.	
Venus.	42	6	584
Earth.			
Mars.	73	6	780
Jupiter.	121	6	6
Saturn.	139	66	399
Uranus.	151	66	378

Chap. VIL.

In the preceding table, the word mean is used at the head of several columns, because these elements are variable Why the sometimes more and sometimes less, than the numbers bhould be sometimes more somaimes less, than the mumbers here use. given - which indicates that the planets do not revolve in circles round the sun, but most probably in ellipses, like the orbit of the earth.

On the supposition, however, that the planets revolve in circles (which is not far from the truth), the greatest and least apparent diameters furnish us with sufficient data to compute the distances of the planets from the sun in relation to the distance of the earth, taken as unity.
(98.) In addition to the facts presented in the preceding The elonga. table, we must not fail to note the important element of the elongations of Mercury and Venus. This term can be applied tions of Merto no other planets.

It is very variable in regard to Mercury - showing that This element the orbit of that planet is quite elliptical. The variation is wariable it much less in regard to Venus, showing that Venus moves shows. round the sun more nearly in a circle.
The least extreme elongation of Mercury is $-17^{\circ} 37^{\prime}$.
The greatest: " "

The mean (or the greatest elongation when
both the earth and planet are at their
mean distances from the sun) is - - $22^{\circ} 46^{\prime}$.
The least extreme elongation of Venus is - $44^{\circ} 58^{\prime}$.
The greatest " " " is - $47^{\circ} 30^{\prime}$.
The mean (or at mean distances), is - $46^{\circ} 30^{\prime}$.
The least extremes must happen when the planet is in its perigee and the earth in its apogee, and the greatest when the earth is in perigee and the planet in apogee; but it is

Crar. Vin very seldom that these two circumstances take place at the same time.

Hew to find the com. parative magnitudes of the orbits of Mercury, Ventas, a!d the earth

Relying on these facts as established by observations, we can easily deduce the relative orbits of Mercury and Venus.

Fig. 23.

Let (Fig. 23) represent the sun, E the earth, V Venus.

Conceive the planet to pass round the sun in the direction of A $\checkmark B$.

The earth moves also in the same direction, but not so rapidly as Venus.
Now it is clearly evident, from inspection, that when the planet is passing by the earth, as at B, it will appear to pass along in the leavens in the direction of m to n. But when the planet is passing along in its orbit, at A, and the earth about the position of E, the planet wili appear to pass in the direction of n to m . When the planet is at V, as represented in the figure, its absolute motion is nearly toward the earth, and, of course, its appearance is nearly stationary.
What to It is absolutely stationary only at one point, and even then understand by stationary. but for a moment; and that point is where its apparent motion changes from direct to retrograde, and from retrograde to direct; which takes place when the angle $S E V$ is about 29 degrees on each side of the line $S E$.

When the line $E V^{\prime}$ touches the circumference $A V B$, the angle $S E V$, or angle of elongation, is then greatest; and the triangle $S E V$ is right angled at V; and if $S E$ is made radius, $S V$ will be the sine of the angle $S E V$.

But the line $S E$ is assumed equal to unity, and then $S V$
will be the natural sine of $46^{\circ} 20^{\prime}$, and can be taken out of any table of natural sines; or it can be computed by logarithms, and the result is . 12336 .

For the planet Mercury, the mean of the same angle is $22^{\circ} 46^{\prime}$, and the natural sine of that angle, or the mean radius of the planet's orbit, is .38698 .

Thus we have found the relative mean distances of three planets from the sun, to stand as follows:

(99.) If the orbits were perfect circles, then the angle $S E V$, of greatest elongation, would always be the same; but it is obsert fact it is but it is an observed fact that it is not always the same; not circles. therefore the orbits are not circles; and when $S V$ is least, and $S E$ greatest, then the angle of elongation is least ; and conversely, when $S V$ is greatest and $S E$ least, then the angle of elongation is the greatest possible; and by obscrving in what parts of the heavens the greatest and least elongations take place, we can approximate to the positions of the longer axis of the orbits.
(100.) By means of the apparent diameters, we can also find the approximate relations of their orbits. For instance, tion of orbirs when the planet Venus is at B, and appears on the sun's rent diane. disc, its apparent diameter is $59^{\prime \prime} .6$; and when it is at A, or ters. as near A as can be seen by a telescope, its apparent diameter is $9^{\prime \prime}$.6. Now put

$$
S B=x ; \text { then } E B=1-x \text {, and } A E=1+x
$$

By Art. 66, 1-x : $1+x:: 96$: 596 ;
Hence, - - - $x=0.72254$.
By a like computation, the mean distance of Mercury from the sun, is 0.3864 .
(101.) To determine the mean relative distances of the superior planets from the sun, we proceed as follows:

Let S (Fig. 24) represent the sun, E the earth, and M one of the superior planets, say Murs. It is easy to decide, from observation, when the planet is in opposition to the sun.

Chap. VII.

This gives the position of S, E, and M, in one right line, in respect to longitude. Now by knowing the true angular motion of the earth about the sun (73), and the mean angular motion of the planet,* we can determine the angle $m S e$, corresponding to any definite future time; for, by the motion of the earth round the sun, we can determine the angle $E S e$; and by the motion of the planet in the same time, we can determine the angle $M S m$; and the dif~

The relative distance of a mianet from the sun de- sun, at E (Fig. 24), measure its apparent diameter; and, termined sy
the after a definite time, when the earth is at e, measure the aption in its parent diameter again, and observe the angle $S e m$. Pro-apparentia- duce $S e$ to n. Then, by the apparent diameters, we hare meter.

By means of apparent diameters, we can determine the values of the orbit. When the planet is in opposition to the the proportion of $e m$ and $e n$ ($e n$ is the same as $E M$, brought to this position), and in the triangle $e m n$ we have the proportion between the two sides and the included angle men. These are sufficient data to determine the angles $\mathrm{e} n \mathrm{~m}$ and em r; and their difference is the angle $S m e$. Now we can determine the side $S^{\top} m$, of the triangle $S m e$, and the triangle Sem is completely known. Subtract the angle e $S m$ from the whole angle e $S M$, and the angle $M S m$ is left. That is, while the earth is describing the angle $E S e$, the planet describes the angle $M S m$. Put P for the periodical revo-

[^14]ference of these two angles is the angle $m S e$. By direct chap. vir. observation at e, we determine the angle $S e m$; and two angles, and the side $S e$, of the triangle $S m e$, are sufficient to determine the side $S m$, the value sought. The triangle gives the following proportion:
$$
\sin . S m e: 1:: \sin . S e m: \quad S m=\frac{\sin . S e m}{\sin . S m e}
$$

This is a general solution, for any superior planet; but the Why the result is only approzimate; for, until we know the eccentri- result is apcity of the orbit in question, and the part of the orbit in proximate. which the planet then is, we cannot accurately know the angle $M S m$.
lution of the planet; then, on the supposition of uniform motion, we have

$$
\operatorname{arc} M S m: \operatorname{arc} E S e:: 365 \frac{1}{4}: P
$$

In this proportion the two arcs are known, and from thence P becomes known; and thus, we perceive, that by the variations of the apparent diameter of a planet, we can determine its relative distance from the sun, and its periodical revolution.

We give the following hypothetical example, for the purpose of further illustration.

The apparent diameter of Mars, when in opposition to the sun, was observed to be $17^{\prime \prime} .1$. One hundred and eleven days afterward, when the earth had passed over 110° of its orbit, the apparent diameter of Mars was again observed, and found to be $7^{\prime \prime} .4$, and its angular position, in longitude, was 87° from the sun. From these data, it is required to find the relative approximate distance of the planet from the sun, and the approximate time of its revolution round the sun.

From these data we have the angle $M S n=110^{\circ}$, S e $m=$ Its solu 87°; therefore ne $m=93^{\circ}$.

By the observed apparent diameter, we have $E M$ to em as $7^{\prime \prime} .4$ to $17^{\prime \prime} .1$; but $E M=e n$, therefore

$$
\text { en : em :: } 74: 171
$$

In the triangle $n \mathrm{~cm}$ we can take $e n=74$, and $E m=171$, for the purpose merely of finding the angles. Then, by trigonometry, we have

Cinap. VII. (102.) By a perusal of the last text note, it will be seen, Results by those even who are not expert mathematicians, that it is from varia- not difficult to decide upon the relative distances of the
tions in ap. tions in ap.
parent dia. planets from the sun, by observing their changes in apparent meters diameter, as seen from the earth. Such observations have been often made, and the following table shows the results; which are compared with the results deduced from Kepler's Third Law.*

Planets.	Deduced from appa. rent Diameters.	From Kepler's Law.	Difference or Error.
Mercury ...	0.386400	0.387098	-. 000698
Venus	0.722540	0.723331	-. 000791
Earth.	1.000000	1.000000	
Mars	1.533333	1.523692	+. 009641
Jupiter.	5.180777	5.202776	-. 021999
Saturn	9.579000	9.538786	+. 040214
Uranus.....	19.500000	19.182390	+. 317610

Text note continued.
$171+74: 171-74:: \tan \frac{87^{\circ}}{2}: \tan . \frac{1}{2}$, difference between the angle n and $n m e$.

That is, -245 : 97 :: tan. $43^{\circ} 30^{\prime}: \tan \frac{1}{2}$ Sme.
Whence, $S m e=41^{\circ} 11^{\prime}$. Now in the triangle $S m e$,

$$
\sin 41^{\circ} 11^{\prime}: 1:: \sin .87^{\circ}: \quad S m=1.517
$$

Secondly, as the angle $S m e=41^{\circ} 11^{\prime}$ and $S e m 87^{\circ}$, therefore, - $m S e=51^{\circ} 49^{\prime}$, and $M S m 58^{\circ} 11^{\prime}$.

But the times of revolution, between any two planets, must be inversely as the angles they describe in the same time; the greater the angle, the shorter the periodic time; and therefore if we put P to represent the periodical revolution of Mars, we shall have

$$
58 \frac{2}{10}: 110:: 365 \frac{1}{4}: P . \text { Hence } P=690 \frac{2}{5} \text { days. }
$$

The true time is 686.97964; showing an error of a little more than three days; but this is not a great error, considering the remoteness of the data, and the want of minuteness and unity in the supposed observations. Our object is only to teach principles; not, as yet, to establish minute results.

[^15]The distances drawn from Kepler's law, are considered char, vit. more accurate than conclusions drawn from most other con- Why the siderations; and it is rather remarkable that these deduc- results from tions from the apparent diameters agree as well as they do, apparent diowing to the difficulty of settling the exact apparent diam- not be reited eter, by observation. Take the apparent diameter of Ura- upon for ance nus, for example, $3^{\prime \prime} .7$ and $4^{\prime \prime} .1$ and change either of them $\frac{1}{10}$ of a second, and it will make a great difference in the deduced result.

CHAPTER VIII.

IETHODS OF OBSERVING THE PERIODICAL REVOLUTIONS OF THE
PLANETS, AND THEIR RELATIVE DISTANCES FROM THE SUN.
(103.) The subject of this chapter will be to explain the Char. Vir. principles of finding the periodical revolutions of the planets Why direct around the sun. If observers on the earth were at the observations center of motion, they could determine the times of revo-point.
lution by simple observation. But as the earth is one of the planets, and all observers on its surface are carried with it, the observations here made must be subjected to mathematical corrections, to obtain true results; and this was an impossible problem to the ancients, as long as they contended for a stationary earth.

If the observer could view the planets from the center of Two importhe sun, he would see them in their true places among the tions. stars - and there are only two positions in which an observer on the earth will see a planet in the same place as though he viewed it from the center of the sun, and these positions are conjunction and opposition.

Thus, in Fig. 24, when the earth is at E, and a planet at M, the planet is in opposition to the sun; and it is seen projected among the stars at the same point, whether viewed from S or from E.

In Fig. 23, if the planet is at B, or A, it is said to be in Conjunctions $\begin{gathered}\text { cannot beob. }\end{gathered}$ conjunction with the sun; but a conjunction cannot be ob- served.

Cris. Vir. served on account of the brilliancy of the sum, unless it be the two planets, Mercury and Venus, and then only when they pass directly before the face of the sun, and are projected on its surface as a black spot. Such conjunetions are called transits.
(104.) All the planets move around the sun in the same

Revolution ai inferior hanets less, and of supe. tio: planets greater than a year. direction, and not far from the same plane, and the rudest and most careless observations show that those planets nearest the sun, perform their revolutions in shorter periods than those more remote. From this, we decide at once that the mean angular motion of all the superior planets is less than the mean angular motion of the earth in its orbit; and the mean angular motion of the inferior planets, as seen from the sun, is greater than the mean motion of the earth.
(105.) The time that any planet comes in opposition to Times of the sun, can be very distinctly determined by observation. opposition can be observed Its longitude is then 180 degrees from the longitude of the sun, and comes to the meridian nearly or exactly at midnight. If it is a little short of opposition at the time of one observation, and a little past at another, the observer can proportion to the exact time of opposition, and such time can be definitely recorded - and by such observation, we have the true position of the planet, as seen from the sun. Another
 opposition of the same kind and of the same planet, can be observed and recorded.
The elapsed time between two such oppositions is called the synodical revolution of the planet.

We note the time that a planet is in opposition to the sun. Then $S E$ and M are in one plane as represented in Fig. 25. If the planet M should remain at rest while the earth, E made its revolution; then the synodical revolution would be the same as the length of
our year. But all the planets move in the same direction as
the earth; and therefore the earth, after making a revolu- Chap. viri. tion, must pass onward and employ additional time to overtake the planet; and the more rapidly the planet moves, the longer time it will require. Hence, in case two planets have but a small difference in angular motion, their synodical pe- General conriod must be proportionately long.' The planet Jupiter siderations. moves about 31° in its orbit in a year; and therefore, after one opposition, the earth is round to the same point in $365 \frac{1}{4}$ days, and to gain the 31° requires about 32 days more; hence the synodical revolution of Jupiter must be about 397 days, by this very rough and imperfect computation. By inspecting the table on page 105, we perceive that the mean synodical revolution of Jupiter is 399 days, and this observed fact shows us that Jupiter passes over about 31° in a year, and of course its revolution must be a little less than 12 years; and by the same considerations, we can form a rough estimate of the periodical revolutions of all the planets.
(106.) The general principle being understood, we may now be more scientific. The mean motion of the earth Computation in its orbit is very accurately known. Represent its daily the determine an. motion by a. The angular motion of the planet (any supe- gula motion rior planet that may be under consideration) is unknown; of the earll. therefore, represent its daily motion by x. Let the angle F $S e$ represent a, and the angle $M S m$ represent x; then the angle $m S e$ or ($\alpha-x$) will represent the daily angular advance of the earth over the planet; and as many times as the angle $m S e$ is contained in 360° will be the number of days in a synodical revolution. Therefore, $\frac{360}{a-x}=$ the observed time of a synodical revolution; and by taking the times from the table (page 105), we have the following equations:

Mars. 360	Jupiter. 360	$\begin{gathered} \text { Saturn. } \\ 360 \end{gathered}$	$\begin{array}{r} \text { Uranus. } \\ 360 \end{array}$
$\frac{0}{-x}=780,$	$\frac{200}{a-x}=399,$	$\frac{200}{a-x}=378,$	$\frac{000}{a-x}=370 . *$

* These equations correspond to the general equation $t=\frac{d}{a-x}$ in Robinson's Algebra, page 105, University edition.

Chap. ViII. The value of a is $59^{\prime} 8^{\prime \prime}$, and then a solution of these sereral equations gives the mean angular motion, per day, of the several planets, as follows:

Mars.	Jupiter.	Saturn.	Uranus.
$31^{\prime} 27^{\prime \prime}$	$4^{\prime} 59^{\prime \prime} .4$	$1^{\prime} 59^{\prime \prime} .5$	$45^{\prime \prime} .3$

Times of Dividing the whole circle 360° by the mean daily motion revolution derived from of each planet, will give their respective times of revolution, the angular and the following are the results: motion.

Mars,	Jupiter.	Saturn.	Uranus.
687 days.	4331 days.	10840 days.	28610 days.

IT3 | For Mercury. | For Venus. |
| :---: | :---: |
| | $\frac{360}{x-a}=118 ;$ |$\quad \frac{360}{x-a}=584$.

Mean an. These diurnal angular motions correspond to 89 days for gular motion of the inferior planets, and their revolution round the sun. the revolution of Mercury, and 224.8 days for the revolution of Venus. All these results are, of course, understood as first approximations, and accuracy here is not attempted. We are only showing principles; and it will be noticed, that the times here taken in these considerations, are only to the nearest days; and not fractions of a day, as would be necessary for accurate results. By this method accuracy is never attempted, on account of the eccentricity of the orbits. No twó synodical revolutions are exactly alike; and therefore it is very difficult to decide what the real mean values are.
(107.) To obtain accuracy, in astronomy, observations must be carried through a long series of years. The following is an example; and it will explain how accuracy can be attained in relation to any other planet.

On the 7th of November, 1631, M. Cassini observed Mercury passing over the sun; and from his observations then taken, deduced the time of conjunction to be at 7 h .50 m ., mean time, at Paris, and the true longitude of Mercury $44^{\circ} 41^{\prime} 35^{\prime \prime}$.
Observa. Comparing this occultation with that which took place in tions carried 1723 , the true time of conjunction was November 9 th, at 5 h . through
long course 29 m ., P. M., and Mercury's longitude was $46^{\circ} 47^{\prime} 20^{\prime \prime}$.

The elapsed time was 92 years, 2 days, 9 h .39 m . Twenty- Chap. viir. two of these years were bissextile; therefore the elapsed time of years, to was (92×365) days, plus 24 d. 9 h .39 m .
secure acca-
In this interval, Mercury made 382 revolutions, and $2 \circ 5^{\prime \text { racy. }}$ $45^{\prime \prime}$ over. That is, in 33604.402 days, Mercury described 137522.095826 degrees; and therefore, by division, we find that in one day it would describe $4^{C} .0923$, at a mean rate.

Thus, knowing the mean daily rate to great accuracy, the mean revolution, in time, must be expressed by the fraction 360 $\frac{360}{4.0923}$; or, 87.9701 days, or 87 days 23 h .15 m .57 s .
(108.) The following is another method of observing the periodical times of the planets, to which we call the student's special attention.

The orbits of all the planets are a little inclined to the plane of the ecliptic.

The planes of all the planetary orbits pass through the center of the sun; the plane of the ecliptic is one of them, and therefore the plane of the ecliptic and the plane of any other planet must intersect each other by some line passing. through the center of the sun. The intersection of two planes is always a straight line. (See Geometry.)

The reader must also recognize and acknowledge the following principle:

That a body cannot appear to be in the plane of an observer, unless it really is in that plane.

For example; an observer is always in the plane of his meridian, and no body can appear to be in that plane unless it really is in that plane; it cannot be projected in or out of that plane, by parallaz or refraction.

Hence, when any one of the planets appears to be in the plane of the ecliptic, it actually is in that plane; and let the time be recorded when such a thing takes place.

The planet will immediately pass out of the plane, because the two planes do not coincide. Passing the plane of the ecliptic is called passing the node. Keep track of the planet until it comes into the same plane; that is, crosses the other node; in this interval of time the planet has described just

Cgap. viri. 180°, as seen from the sun (unless the nodes themselves are Two nodes in motion, which in fact they are; but such motion is nots 180 degrees sensible for one or two revolutions of Venus or Mars).
$\underset{\substack{\text { from each } \\ \text { other, as seen }}}{ }$ Continue observations on the same planet, until it comes from the sun. into the ecliptic the second time after the first observation, or to the same node again, and the time elapsed, is the time of a revolution of that planet round the sun. From such observations the periodical time of Venus became well known to astronomers, long before they had opportunities to decide it by comparing its transits across the sun's dise; and by thus knowing its periodical time and motion, they were enabled to calculate the times and circumstances of the transits which happened in 1761, and in 1769; save those resulting from parallax alone.
First idea of (109.) On comparing the time that a planet remains on the perigee
of the planets. of its apogee and perigee. If it is observed to be on each side of the ecliptic the same length of time, then it is evident that the orbit of the planet is circular, or that its longer axis coincides with its nodes. If it is observed to be a shorter time north of the plane of the ecliptic than south of it, then it is evident that its perigee is north of the ecliptic ; but nothing more definite can be drawn from this circumstance.
Finalresults. (110.) Finally. By the combination of the different methods, explained in articles (98), (100), (101), (105), (107), and (108), and extending the observations through a long course of years, and from age to age, the times of revolution, the mean relative distances of the planets from the sun, were approximated to, step by step, until a great degree of exactness was attained, and the following were the results:

	Sidereal Revolution.	Mean distance frora \odot
Mercury, -	- 87.969258	0.387098
Venus,	- 224.700787	0.723332
Earth,	- 365.256383	1.000000
Mars,	- 686.979646	1.523692
Jupiter,	4332.584821	5.202776
Saturn,	10759.219817	9.538780
Uranus, -	30686.820830	19.182390

(111.) By inspecting the preceding table, we find that the Снар. rur. greater the distance from the sum, the greater the time of Times of errevolution; but the ratio for the time is greater than the ratio olution and correspouding to distance; yet we cannot doubt that some distances $\begin{gathered}\text { compritel }\end{gathered}$ connection exists between these ratios.

For instance, let us compare the Earth with Jupiter. The ratio between their times of revolution, is near 12 .

The ratio between their relative distances from the sun, as we perceive, is nearly 5.2.

The square of 12 is 144 ; the cube of 5.2 is near 141 . But 12 is a little greater than the real ratio between the times of revolution, and 5.2 is not quite large enough for the ratio of distance, and by taking the correct ratios, they seem to bear the relation of square to cube.

Without a very rigid or close examination, we perceive that five revolutions of Jupiter are nearly equal to two revolutions of Saturn; that is, $\frac{5}{2}$ is nearly the ratio between their times of revolution.

By inspecting the column of distances, we perceive that the ratio of the distances of these two planets, is nearly $\frac{25}{5} \frac{5}{2}$; and if we square the first ratio, and cube the second, we shall have nearly the same ratio.

Now let us compare two other planets, say Venus and Result disMars, more exactly.

Their ratio of revolution is $\quad 686,979 \mathrm{log} .-2.836948$

	224,701 log.	2.351601
Log. of the ratio,	- - -	0.485347
Multiply by	- -	2

Log. of the square of the ratio of time, $\overline{0.970694}$
Their ratio of distance is, $\quad 15.23692$ log. 1.182883
7.23332
$-\quad$ log. $-\frac{859323}{0.323560}$

Log. of the ratio, $-\quad-\quad-\quad \overline{0.323560}$
Multiply by - $\quad-\quad-\quad 3$
Log. of the cube of the ratio of distance, $\overline{0.970680}$
Thus we perceive that the squares of the times of revolution. are to each other as the cubes of the mean distances of

Chap. vir. the planets from the sun,* and this is called Kepler's third Kepler's law; and it was by such numerical comparisons that Kepler ?aws. discovered the law. \dagger

We may now recapitulate the three laws of the solar system, called Kepler's laws, as they were discovered by that philosopher.

1st. The orbits of the planets are ellipses, of which the sun occupies one of the foci.

2d. The radius vector in each case, describes areas about the focus, which are proportional to the times.
$3 d$. The square of the times of revolution, are to each other as the cubes of the mean distances from the sun.
> * For a concise mathematical view of this subject, we give the following: Let d and D represent mean distances from the sun, and t and T the times of revolution. Then $\frac{T}{t}=n, \quad \frac{D}{d}=m ; n$ and m taken to represent the ratios. Square the 1 st equation and cube the 2 d . Then

$$
\frac{T^{2}}{t^{2}}=n^{2}, \quad \text { and } \quad \frac{D^{3}}{d^{3}}=m^{3}
$$

But by inspection we know that

$$
n^{2}=m^{3} ; \text { therefore, } \frac{T^{2}}{t^{2}}=\frac{D^{3}}{d^{3}}, \text { or, } t^{2}: T^{2}:: d^{8}: D^{3}
$$

[^16]
CHAPTER IX.

transits of venus and mercury. - how sun's horizontal PARALLAX DEDUCED
(112.) We have thus far been very patient in our inves- Char. ix. tigations - groping along - finding the form of the planetary attempts to orbits, and their relative magnitudes; but, as yet, we know find the sun's nothing of the distance to the sun; save the indefinite fact, ${ }^{\text {parallax. }}$ that it must be very great, and its magnitude great; but how great we can never know, without the sun's parallax. Hence, to obtain this element, has always been an interesting problem to astronomers.

The ancient astronomers had no instruments sufficiently ${ }^{\text {s }}$ Difficulties refined to determine this parallax by direct observation, in the of ancient manner of finding that of the moon (Art. 60), and hence the astronomers. ingenuity of men was called into exercise to find some artifice to obtain the desired result.

After Kepler's laws were established, and the relative distances of the planets made known, it was apparent that their real distance could be deduced, provided the distance between the earth and any planet could be made known.
(113.) The relative distances of the earth and Mars, from the sun (as determined by Kepler's law) are as 1 to 1.5237; Mars. and hence it follows that Mars, in its oppositions to the sun, is but about one half as far from the earth as the sun is; and therefore its parallax (Art. 60) must be about double that of the sun; and several partially successful attempts were made to obtain it by observation.

On the 15 th of August, 1719, Mars being very near its Maralzi opposition to the sun, and very near a star of the 5th magnitude, its parallax became sensible, and Mr. Maraldi, an aproximaItalian astronomer, pronounced it to be $27^{\prime \prime}$. The relative Mars. distance of Mars, at that time, was 1.37, as determined from its position and the eccentricity of its orbit.

But horizontal parallax is the angle under which the earth appears; and, at a greater distance, it will appear under a

Chap. Ix. less angle. The distance of Mars from the earth, at that time, was .37 , and the distance of the sun was 1 ; therefore, $1: .37:: 27^{\prime \prime}: 9^{\prime \prime} .99$, or $10^{\prime \prime}$, nearly, for the sun's horizontal parallax.
Uiserva. On the 6th of October, 1751, Mars was attentively obtions by Wargentii and scrved by Wargentin and Lacaille (it being near its opposiLacaille tion to the sun), and they found its parallax to be $24^{\prime \prime} .6$, from which they deduced the mean parallax of the sun, $10^{\prime \prime} .7$. But at that time, if not at present, the parallax of Mars could not be observed directly, with sufficient accuracy to satisfy astronomers; for no observer could rely on an angular measure within $2^{\prime \prime}$; for full that space was eclipsed by the micrometer wire.
Dr. Hal. (114.) Not being satisfied with these results, Dr. Halley, ley's sugges. tion. an English astronomer, very happily conceived the idea of finding the sun's parallax by the comparisons of observations made from different parts of the earth, on a transit of Venus over the sun's disc. If the plane of the orbit of Venus coincided with the orbit of the earth, then Venus would come between the earth and sun, at every inferior conjunction, at intervals of 584.04 days. But the orbit of Venus is inclined to the orbit of the earth by an angle of $3^{\circ} 23^{\prime} 28^{\prime \prime}$; and, in the year 1800, the planet crossed the ecliptic from south to north, in longitude $74^{\circ} 54^{\prime} 12^{\prime \prime}$, and from north to south, in longitude $254^{\circ} 54^{\prime} 12^{\prime \prime}$: the first mentioned point is called
The nodes the ascending node; the last, the descending node. The nodes of Venus.

What times in the year transits may take place. retrograde $31^{\prime} 10^{\prime \prime}$ in a century.
(115.) The mean synodical revolution of 584 days corresponds with no aliquot part of a year; and therefore, in the course of time, these conjunctions will happen at different points along the ecliptic. The sun is that part of the ecliptic near the nodes of Venus, June 5th and December 6th or 7th; and the two last transits happened in 1761 and in 1769; and from these periods we date our knowledge of the solar parallax.
Revolutions com. pared.
(116.) The periodical revolution of the earth is 365.256383 days, and that of Venus is 224.700787 ; and as numbers they are nearly in proportion of 13 to 8.

From this it follows, that eight revolutions of the earth
require nearly the same time as, 13 revolutions of Venus; Chas.ix and, of course, whenever a conjunction takes place, eight years afterward another conjunction will take place very near the same point in the ecliptic.*

[^17]\[

$$
\begin{array}{cccccc}
\frac{1}{1} & \frac{1}{2}, & \frac{2}{3}, & \frac{3}{5}, & \frac{8}{13}, & \frac{235}{382} .
\end{array}
$$
\]

To say nothing of the first two terms, these fractions show that two revolutions of the earth are near, in length of time, to three revolutions of Venus; three revolutions of the earth a nearer value to five revolutions of Venus; and eight revolutions of the earth a still nearer value to 13 revolutions of Tenus; and 235 revolutions of the earth a very near value to 382 revolutions of Venus.

The period of eight years, under farorable circumstances, will bring a second transit at the same node; but if not in eight years, it will be 235 years, or $235+8=243$ years.

For a transit at the other node, we must take a period of 235-8 years, divided by 2 , or 113 years; and sometimes the period will be eight years less than this, or 105 years. The first transit known to have been observed was in 1639, December 4th; to this add 235 years, and we have the time of the next transit, at the same node, 1874, December 8th; and eight years after that will be another, 1882, December 6 th. The first transit observed at the ascending node, was

Chap. Ix. If the proportion had been exactly as 13 to 8 , then the Periods of conjunctions would always take place exactly at the same conjunctions at the same time of the year. point; but, as it is, the points of conjunction in the heavens are east and west of a given point, and approximate nearer and nearer to that point as the periods are greater and greater.
Only two To be more practical, however, the intervals between contransits can happen at intervals of 8 years.

Periods between the transits of Venus. junctions are such, combined with a slight motion of the nodes, that the geocentric latitude of Venus, at inferior conjunctions near the ascending node, changes about $19^{\prime} 30^{\prime \prime}$ to the north, in the period of about eight years. At the descending node, it changes about the same quantity to the southward, in the same period; and as the dise of the sun is but little over 32^{\prime}, it is impossible that a third transit should happen 16 years after the first; hence only two transits can happen, at the same node, separated by the short interval of eight years.
(117.) If at any transit we suppose Venus to pass directly over the center of the sun, as seen from the center of the earth - that is, pass conjunction and node at the same time at the end of another period of about eight years, Venus would be $19^{\prime} 30^{\prime \prime}$ north or south of the sun's center; but as the semidiameter of the sun is but about 16^{\prime}, no transit could happen in such a case; and there would be but one transit at that node until after the expiration of a long period of 235 or 243 years.

After passing the period of eight years, we take a lapse of 105 or 113 years, or thereabouts, to look for a transit at the other node.
Transits (118.) Knowing the relative distances of Venus, and the can be computed.

Dr. Halley shows how to find the sun's parallax. earth, from the sun - the positions and eccentricities of both orbits-also their angular motions and periodical revolutionsevery circumstance attending a transit, as seen from the earth's center, can be calculated; and Dr. Halley, in 1677, read a paper before the London Astronomical Society, in

Text note in 1761, June 5th; eight years after, 1769, June 3d, there continued. was another; and the next that will occur, at that node, will be in 2004, June 7th, 235 years after, 1769.
which he explained the manner of deducing the parallax of Снар. Ix. the sun, from observations taken on a transit of Venus or Mercury across the sun's disc, compared with computations made for the earth's center, or by comparing observations made on the earth, at great distances from each other.

The transits of Venus are much better, for this purpose, than those of Mercury; as Venus is larger, and nearer the earth, and its parallax at such times much greater than that better adaptof Mercury; and so important did it appear, to the learned ed to give world, to have correct observations on the last transit of rallax than Venus, in 1769, at remote stations, that the British, French, and Russian governments were induced to send out expeditions to various parts of the globe, to observe it. "The famous expedition of Captain Cook, to Otaheite, was one of them."
(119.) The mean result, of all the observations made on that memorable occasion, gave the sun's parallax, on the day of the transit (3 d of June), $8^{\prime \prime} .5776$. The horizontal parallax, at mean distance, may be taken at $8^{\prime \prime} .6$; which places the sun, at its mean distance, no less than 23984 times the length of the earth's semidiameter, or about 95 millions of miles.

This problem of the sun's horizontal parallax, as deduced from observations on a transit of Venus, we regard as the most important, for a student to understand, of any in astronomy; for without it, the dimensions of the solar system, and the magnitudes of the heavenly bodies, must be taken wholly on trust; and we have often protested against mere facts being taken for knowledge.
(120.) We shall now attempt to explain this whole matter The result those of Mer. cury.
Why the transits of Venus are cury.

The impor. tance of this problem. on general principles, avoiding all the little minutiæ, which explanation. render the subject intricate and tedious; for our only object is to give a clear idea of the nature and philosophy of the problem.

Let S (Fig. 26) represent the sun, and $m n$ and $P Q$ smal! portions of the orbits of Venus and the earth.

As these two bodies move the same way, and nearly in the same plane, we may suppose the earth stationary, and Venus

Chap. IX.
 aimplified.

An abstract proposition for the purpose of illus. trution.

to move with an angular velocity, equal to the difference of the two.

When the planet arrives at v, an observer at A would see the planet projected on the sun, making a dent at v^{\prime}.

But an observer at G would not see the same thing until after the planet had passed over the small are $v q$, with a velocity equal to the dif-erence between the angular motion of the two bodies; and as this will require quite an interval of absolute time, it can be detected; and it measures the angle $A v^{\prime} G$; an angle under which a definite portion of the earth appears as seen from the sun.
(121.) To have a more definite idea of the practicability of this method, let us suppose the parallactic angle, $A v^{\prime} G$, equal to $10^{\prime \prime}$, and inquire how long Venus would be in passing the relative are $v q$.

Venus, at its mean rate, passes - $1^{0} 36^{\prime} 8^{\prime \prime}$ in a day. The earth, " " $59^{\prime} 8^{\prime \prime}$ "
The relative, or excess motion of Venus for a mean solar day is then 37^{\prime}.

Now, as 37^{\prime} is to 24 h . so is $10^{\prime \prime}$ to a fourth term; or, as $2220^{\prime \prime}: 1440 \mathrm{~m}$. :: $10^{\prime \prime}: 6 \mathrm{~m} .29 \mathrm{~s}$.

Now if observation gave more than 6 minutes and 29 seconds, we shall conclude that the parallactic angle was more than $10^{\prime \prime}$; if less, less. But this is an abstract proposition. When treating of an actual case in place of the mean motion, we must take the actual angular motions of the earth and Venus, at that time, and we must know the actual position of the observers, A and G, in respect to each other, and the position of each in relation to a line joining the center of the
earth and the center of the sun; and then by comparing the Crap. ix. local time of observation made at A, with the time at G, and referring both to one and the same meridian, and we have the interval of time occupied by the planet in passing from v to q, from which we deduce the parallactic angle $A v^{\prime} G$, and from thence the horizontal parallax.

The same observations can be made when the planet passes off the sun, and a great many stations can be compared with A, as well as the station G. In this way, the mean result of a great many stations was found in 1761 , and in 1769 , and the mean of all cannot materially differ from the truth.
(122.) There is another method of considering this whole Another mesubject, which is in some respects more simple and preferable to the one just explained. It is for the observers at every

A combination of many observations station to keep the track of the transit all the way across the sun's disc, and take every precaution to measure the length of chord upon the disc, which can be done by carefully noting the times of external and internal contacts, and the beginning and end of the transit, and at short intervals carefully measuring the distance of the planet to the nearest edge of the sun by a micrometer.

If the parallax is sensible, it is evident that two observers, situated in different hemispheres, will not obtain the same chord. For example, an observer in the northern hemisphere, as in Sweden or Norway, will see Venus traversing a more southern chord than an observer in the southern hemisphere.

Now if each observer gives us the length of the chord as observed by himself, and, knowing the angular diameter of the sun, we can compute the distance of each chord from the sun's center, and of course we then have the angular breadth of the zone on the sun's disc between them. But as this zone is formed by straight lines passing through the same point, the center of Venus, its absolute breadth will depend on its distance from the point v; that is, the two triangles $A B v$ and $a b v$ (Fig. 27) will be proportional, and we have

$$
A v: a v:: A B: a b
$$

Situation of

 different observers. thod of deduthod of dedu-cing the prolem.

\qquad
\square
\square
\square -
\qquad

Chap. IX. Fig. 27.

Under what circumstan. ces this method should not be used.

Transits of Mercury not important.

on the sun becomes known, the whole semidiameter becomes known, and from thence the horizontal parallax is immediately deduced.*
(123.) The accuracy of this method should be questioned when Venus passes near the sun's center, for the two chords are never more than $30^{\prime \prime}$ asunder, and hence they will not perceptibly differ in length when passing near the sun's center, and Venus will be upon the sun nearly the same length of time to all observers.
(124.) The apparent diameter of Mercury and Venus can be very accurately measured when passing the sun's disc. In 1769 the diameter of Venus was observed to be $59^{\prime \prime}$.
(125.) The same general principles apply to the transits of Mercury and Venus; but those of Mercury are not important, on account of the smaller parallax and smaller size of that planet; but owing to the more rapid revolution of Mercury, its transits occur more frequently. The frequent appearance of this planet on the face of the sun, gives to astronomers fine opportunities to determine the position of its node and the inclination of its orbit.

Revolutions of Mercury and the earth compared.

In 1779, M. Delambre, from observations on the transit of May 7, placed the ascending node, as seen from the sun, in longitude $45^{\circ} 57^{\prime} 3^{\prime \prime}$. From the transit of the 8th of May, 1845, as observed at Cincinnati, it must have been in longitude $46^{\circ} 31^{\prime} 10^{\prime \prime}$; this gives it a progressive motion of about $1^{\circ} 10^{\prime}$ in a century. The inclination of the orbit is $7^{\circ} 0^{\prime} 13^{\prime \prime}$. The periodical time of revolution is 87.96925 days; that of the earth is 365.25638 days, and by making a fraction of these numbers, and reducing as in the last text note, we find

[^18]that $6,7,13,33,46,79$, and 520 years, or revolutions of the Crap, ix. earth nearly correspond to complete revolutions of Mercury. Hence we may look for a transit in $6,7,13,33,4 \hat{0}$, \&c., years, or at the expiration of any combination of these years after any transit has been observed to take place; and by examining the following table, the years will be found to fol- Intervals be. low each other by some combination of these numbers;
tween tran. sits.

The following is a list of all the transits of Mercury that have occurred, or will occur, between the years 1800 and 1900 :

At the ascending node.	At the descending node.
1802, - - Nov. 8.	1799, - - May 7.
1822, - - Nov. 4.	1832, - - May 5.
1835, - - Nov. 7.	1845, - - May 8.
1848, - - Nov. 9.	1878, - - May 6.
1861, - - Nov. 11.	1891, - - May 9.
1868, - - Nov. 4.	
1881, - - Nov. 7.	
1894, - - Nov. 10.	

CHAPTERX.

THE HORIZONTAL PARALLAXES OF THE PLANETS COMPUTED, AND FROM THENCE THEIR REAL DIAMETERS AND MAGNITUDES.
(126.) Having found the real distance to the sun, and the sun's horizontal parallax, we have now sufficient data to find the real distance, diameter, and magnitude, of every planet in the solar system.

Chap. X.
Real mag. nitudes and distances can now be de-
In Art. 60 we have explained, or rather defined, the hori- termined zontal parallax of any body to be the angle under which the semidiameter of the earth appears, as seen from that body; and if the earth were as large as the body, the apparent diameter of the body, and its horizontal parallax, would have the same value. And, in general, the diameter of the earth is to the diameter of any other planetary body, as the horizontal parallax of that body is to its apparent semidiameter.

The mean horizontal parallax of the sun, as determined in

Chap. x. the last chapter, is $8^{\prime \prime} .6$; the semidiameter of the sun, at the Real dia- corresponding mean distance, is $16^{\prime} 1^{\prime \prime}$, or $961^{\prime \prime}$. Now let d meter of the represent the real diameter of the earth, and D that of the sun deter-
mined.

$$
d: D:: \quad 8^{\prime \prime} .6: 961^{\prime \prime} .0
$$

But d is 7912 miles; and the ratio of the last two terms is 111.66 ; therefore $D=(111.66)(7912)=883454$ miles.

Real dis. (127.) The sun's horizontal parallax is the angle at the tance be- base of a right angled triangle; and the side opposite to it is ${ }^{\text {tween the }}$ earthand sun the radius of the earth (which, for the sake of convenience, determined. We now call unity). Let x represent the radius of the earth's orbit; then, by trigonometry,

$$
\sin .8^{\prime \prime} .6: 1:: \sin 90^{\circ}: x
$$

Therefore, $x=\frac{\sin .90^{\circ}}{\sin .8^{\prime \prime} .6}=\log .10 .00000$-log. $5.620073 . *$
That is, the log. of $x=4.379927$, or $x=23984$; which is the distance between the earth and sun, when the semidiameter of the earth is taken for the unit of measure; but, for general reference, and to aid the memory, we may say the distance is 24000 times the earth's semidiameter.
(128.) Now let us change the unit from the semidiameter of the earth to an English mile; and then the distance betreen the earth and sun is

Distance in round numbers.

$$
(3956)(23984)=94880706 ;
$$

and, in round numbers, we say 95 millions of miles.
By Kepler's third law, we know the relative distances of

[^19]all the planets from the sun; and now, having found the real distance of the earth, we may have the distance in miles, by multiplying the distance of the earth by the ratio corresponding to any other planet. Thus, for the distance of Venus, We multiply 94880706 by .72333 ; and the result is the sun in 68629960 miles, for the distance of Venus: and proceed, in miles. the same manner, for the distance of any other planet.
(129.) By observations taken on the transit of Venus, in 1769, it was concluded that the horizontal parallax of that planet was $30^{\prime \prime} .4$; and its semidiameter, at the same time, was 29".2. Hence (Art. 127), $304: 292:: 7912$: to a fourth term; which gives 7599 miles for the diameter of Venus.
(130.) We cannot observe the horizontal parallax of Jupiter, Saturn, or any other very remote planet: if known at all, it becomes known by computation; but the parallax can served. be known, when the real distance is known; and, by Kepler's third law, and the solar parallax, we do know all the planetary distances; and can, of course, compute any particular horizontal parallax.

For the horizontal parallax of Jupiter, when at a distance from the earth equal to its mean distance from the sun, we proceed as follows:

The parallax, or the semidiameter of the earth, when seen at the distance of the sun, is $8^{\prime \prime} .6$. When seen from a greater distance, the angle would be proportionally less.

Put h equal to the horizontal parallax of Jupiter; then we have, - $5.202776: 1:: 8^{\prime \prime} .6: h ;$ or $h=\frac{8^{\prime \prime} .6}{5.202776}$.

From this, we perceive, that if we divide the sun's horizontal How to parallax by the ratio of a planet's distance from the sun, the compute the quotient will be the horizotal parllax of the of quotient will be the horizontal parallax of the planet, when at a the plenet. distance from the earth equai to its mean distance from the sun.
(131.) To find the diameter of a planet, in relation to the How to diameter of the earth, we have a similar proportion as in Art. find the real 126: and to find the diameter of Jupiter, we proceed as the planets. follows:

The greatest apparent diameter of Jupiter, as seen from

Chap. x. the earth, is $44^{\prime \prime} .5$; the least is $30^{\prime \prime} .1$; therefore the mean, as seen from the sun, cannot be far from $37^{\prime \prime} .3$, and the semidiameter $18^{\prime \prime} .65$; La Place says it is $18^{\prime \prime} .35$; and this value we shall use. Now, as in Art. 126, let $d=7912, D=$ the unknown diameter of Jupiter; $\frac{8^{\prime \prime} .6}{5.202776}$, is its horizontal parallax, and $18^{\prime \prime} .35$ its corresponding semidiameter; then, as in Art. 126, - 7912. : $D:=\frac{8.6}{5.202776}: 18.35$;
Therefore $D=\frac{7912 \times 18.35 \times 5.202776}{8.6}=7912 \times 11.11=$
87900 miles.
In the same manner, we may find the diameter of any other planet.
Jupiter not
We have just seen that the diameter of Jupiter is 11.11 spherical. times the diameter of the earth; but this is the equatorial dianeter of the planet. Its polar diameter is less, in the proportion of 167 to 177 , as determined by the mean of many micrometrical measurements; which proportion gives 82930 miles, for the polar diameter of Jupiter. These extremes give the mean diameter of Jupiter, to the mean diameter of the earth, as 10.8 to 1 .
How to find (132.) But the magnitudes of similar bodies are to one the magnitude of the planets. another as the cubes of their like dimensions; therefore the magnitude of Jupiter is to that of the earth, as $(10.8)^{3}$ to 1 , and from thence we learn that Jupiter is 1260 times greater than the earth.

In the same manner we may find the magnitude of any other planet, and it is thus that their magnitudes have often been determined, and the results may be seen in a concise form, in Table IV, which gives a summary view of the solar system.

The masses and attractions of the different planets will be investigated in physical astronomy, after we become acquainted with the theory of universal gravity.

CHAPTER XI.

a General description of the planets.

(133.) We conclude this section of astronomy by a brief Chap. Xi. description of the solar system, which we have purposely delayed lest we might interrupt the course of reasoning respecting the planetary motions. The reader is referred to Table IV, for a concise and comparative view of all the facts that can be numerically expressed; and aside from these facts, little can be said by way of explanation or description.

The fact, that the sun or a planet revolves on an axis, Facts revealmust be determined by observing the motion of spots on the ed by spots visible dise ; and if no spots are visible, the fact of revolution planets. cannot be ascertained.* But when spots are visible, their motion and apparent paths will not only point out the time of revolution, but the position of the axis.

THESUN.

(134.) The sun is the central body in the system, of im- The sun the mense magnitude, comparatively stationary, the dispenser of repository of light and heat, and apparently the repository of that force which governs the motion of all other bodies in the system.
"Spots on the sun seem first to have been observed in the year 1611, since which time they have constantly attracted attention, and have been the subject of investigation among astronomers. These spots change their appearance as the sun revolves on its axis, and become greater or less, to an observer on the earth, as they are turned to, or from him ; they also change in respect to real magnitude and number; one spot, seen by Dr. Herschel, was estimated to be more than six times the size of our earth, being 50000 miles in diameter. Sometimes forty or fifty spots may be seen at the same time, and sometimes only one. They are often so large as to be seen with the naked eye; this was the case in 1816.
"In two instances, these spots have been seen to burst into several parts, and the parts to fly in several directions, like a piece of ice thrown upon the ground.

[^20]Chap. XI.
"In respect to the nature and design of these spots, almost every astronomer has formed a different theory. Some have supposed them to be solid opaque masses of scoriæ, floating in the liquid fire of the sun ; others as satellites, revolving round him, and hiding his light from us; others as immense masses, which have fallen on his disc, and which are dark colored, because they have not yet become sufficiently heated.
"Dr. Herschel, from many observations with his great telescope, concludes, that the shining matter of the sun consists of a mass of phosphoric clouds, and that the spots on his surface are owing to disturbances in the equilibrium of this luminous matter, by which openings are made through it. There are, however, objections to this theory, as indeed there are to all the others, and at present it can only be said, that no satisfactory explanation of the cause of these spots has been given."

Singular means of discovering rotation.
(135.) Mercury. This planet is the nearest to the sun, and has been the subject of considerable remark in the preceding pages. It is rarely visible, owing to its small size and proximity to the sun, and it never appears larger to the naked eye than a star of the fifth magnitude.

Mercury is too near the sun to admit of any observations on the spots on its surface; but its period of rotation has been determined by the variations in its horns - the same ragged corner comes round at regular intervals of time24 h .5 m .

The best time to see Mercury, in the evening, is in the

Times when Mercury may be seen. spring of the year, when the planet is at its greatest elongation east of the sun. It will then be visible to the naked eye about fifteen minutes, and will set about an hour and fifty minutes after the sun. When the planet is west of the sun, and at its greatest distance, it may be seen in the morning, most advantageously in August and September. The symbol for the greatest elongation of Mercury, as written in the common almanacs, is $\underset{T}{ }$ Gr. Elon.
High mountains on Venus.
(136.) Venus. This planet is second in order from the sun, and in relation to its position and motion, has been sufficiently described. The period of its rotation on its axis is 23 h .21 m . The position of the axis is always the same, and is not at right angles to the plane of its orbit, which gives it a change of seasons. The tangent position of the sun's light across this
planet shows a very rough surface; indeed, high mountains. By the radiating and glimmering nature of the light of this planet, we infer that it must have a deep and dense atmos-
 phere.
(137.) The Earth is the next planet in the system; but $1 t$ would be only formality to give any description of it in this a planet. place. As a planet, it seems to be highly favored above its neighboring planets, by being furnished with an attendant, the moon; and insignificant as this latter body is, compared to the whole solar system, it is the most important and interesting to the inhabitants of our earth. The two bodies, the earth and the moon, as seen from the sun, are very small: the former subtending an angle of about $17^{\prime \prime}$ in diameter, the latter about $4^{\prime \prime}$, and their distance asunder never greater than between seven and eight minutes of a degree.

Contrary to the general impression, the moon's motion in absolute space is always concave toward the sun.*
(138.) Mars -the first superior planet-is of a red color, and very variable in its apparent magnitude. About every

* This may be shown thus - the moon is inside the earth's orbit from the last quarter to the first quarter, on an average 14 days and 18 hours. During this time the earth moves in its orbit $14^{\circ} 30^{\prime}$. Let $L n F$ be a portion of the earth's orbit equal to $14^{\circ} 30^{\prime}$,

The moon's motion con. cave toward the sun.
L the position of the earth at the First Quarter of the moon, and F its position at the Last Quarter. Draw the chord L F, and compute $m n$ the versed sine of the arc $7^{\circ} 15^{\prime}$.

The mean radius of the earth's orbit is 397 times the radius of the lunar orbit. A radius of 397 and an angle $7^{\circ} 15^{\prime}$ gives a versed sine of 3.49 ; but on this scale the distance from the earth to the moon is unity, or less than one third of $n m$; hence, the moon's path must be between the chord $L F$ and the arc $L n F$-that is, always concave toward the sun.

Shap. XI. other year, when it comes to the meridian, near midnight, it is then most conspicuous; and the next year it is scarcely noticed by the common observer.

"The physical appearance of Mars is somewhat remarkable. His polar regions, when seen through a telescope, have a brilliancy so much greater than the rest of his disc, that there can be little doubt that, as with the earth so with this planet, accumulations of ice or snow take place during the winters of those regions. In 1781 the south polar spot was extremely bright; for a year it had not been exposed to the solar rays, The color of the planet most probably arises from a dense atmosphere which surrounds him, of the existence of which there is other proof depending on the appearance of stars as they approach him ; they grow dim and are sometimes wholly extinguished as their rays pass through that medium."

Apparentim-
(139.) The next planet, as known to ancient astronomers, perfection in is Jupiter; but its distance is so great beyond the orbit of the system. Mars, that the void space between the two had often been considered as an imperfection, and it was a general impression among astronomers that a planet ought to occupy that vacant space.
Bode's law. Professor Bode, of Berlin, on comparing the relative distances of the planets from the sun, discovered the following remarkable fact-that if we take the following series of numbers:

$$
0,3,6,12,24,48, \quad 96,192, \& c .
$$

and then add the number 4 to each, and we have,

$$
4,7,10,16,28,52,100,196, \& c \cdot
$$

The reason and this last series of numbers very nearly, though not exwhy it should not be called a law. actly, corresponds to the relative distances of the planets from the sun, with the exception of the number 28 . This is sometimes called Bode's law; but remarkable as it certainly is, it should not be dignified by the term law, until some better account of it can be given than its mere existence; for, at present, all that can be said of it is, "here is an astonishing
coincidence." But, mere accident as it may be, it suggested the possibility of some small, undiscovered planet revolving in this region, and we can easily imagine the astonishment of pothesis. astronomers, on finding four in place of one, revolving in orbits tolerably well corresponding to this law, or rather coincidence. Had they even found but one, it would seem to indicate something more than mere coincidence; but finding four, proves the series to be simply accidental-unless the four or more planets there discovered were originally one planet; and then came the inquiry, is not this the case? Thus originated the idea that these new and newly discovered small planets are but fragments of a larger one, which formerly circulated in that interral, and was blown to pieces by some internal explosion - and we shall examine this hypothesis in a text note, under physical astronomy.

The names of these planets, in the order of the times of their discovery, are, Ceres, Pallas, Juno, Vesta. The order of their distances from the sun, is Vesta, Juno, Ceres, Pallas.

Planets.	Names of Discoverers.	Residence of Discoverers.	Date of Discovery.
Ceres .	M. Piazzi,	Palermo, Sicily,	1st Jan., 1801.
Pallas.	Dr. Olbers,	Bremen, Germany,	28th Mar., 1802.
Juno	M. Harding,	Lilienthal, near Bremen,	1st Sept. 1804.
Yesta	Dr. Olbers,	Bremen,	29th Mar., 1807.

If a planet has really burst, it is but reasonable to suppose that it separated into many fragments; and, agreeably to this view of the subject, astronomers have been constantly on the alert for new planets, in the same regions of space; and every discovery of the kind greatly increases the probability of the theory. The following very recent discoveries are said to have been made, but the elements of the orbits are not regarded as sis. sufficiently accurate to demand a place in the table.

On the 8th of December, 1845, Mr. Hencke, of Dreisen, claims to have discovered a planet which he calls Astrea; and the same observer also claims another, discovered in New plan1847, called Hebe. His success induced others to a like exa- ets discovermination, and a Mr. Hind, of London, within the past year, ed in 1845

Chap. xi. 1848, claims a seventh and eighth asteroid, named Iris and Flora.

Thus we have eight miniature worlds, supposed to have once composed a planet; and if the four last named are veritable discoveries, we shall soon have the elements of their orbits in an unquestionable shape.

The elements of the orbits of the four known asteroids, as given for the epoch 1820, are not as accurate as the following, which were deduced from the Nautical Almanac for 1846 and 1847; which have been corrected from more modern, extended, and accurate observations. (Epoch Jan., 1847.)

On account of the small magnitude of these new planets, and their recent discovery, nothing is known of them save the following tabular facts, and these are only approximation to the truth.

Planets.	Sidereal Revolutions.	Mean Distance from the Sun.	Eccentricity of Orbits.
Vesta.	Days. 1324. 289	2. 36120	0. 08913
Juno	1594. 721	2. 66514	0. 25385
Ceres.	1683. 064	2. 76910	0. 07844
Pallas.	1685. 162	2.77125	0. 24050
Planets.	Longitude of Ascending Node.	Inclination of Orbits.	Longitude of Perihelion.
	\bigcirc	\bigcirc - "	\bigcirc
Vesta.	$103 \quad 2047$	$7 \quad 8 \quad 29$	$251 \quad 434$
Juno	170530	$13 \quad 253$	541832
Ceres.	804756	103717	1472541
Pallas.	1724238	343742	1212013

(140.) With the two elements, the longitude of the ascendFig. 29. ing nodes, and the inclination of the orbits to the ecliptic, we are enabled to give a general projection of these orbits around the celestial sphere, in relation to the ecliptic, as represented on page 37 ; and our object is to show that there are two points in the heavens, nearly opposite to each other, near to which all these planets pass. One of these points is about the longitude of 185 degrees, and the latitude of 15 degrees north; and the other is the opposite point on the celestial sphere. If these planets are but fragments of one original planet, which burst or exploded by its internal fires, from that
moment they must have started from the same point, and the orbits of all have onc common distance from the sun; and for ages after such a catastrophe, these fragments must have had nearly a common node; and the fact that they do not, at present, pass through a common point, nor have a common node, does not prove that they were not originally in one body; for, owing to mutual disturbances, and the disturbances of other planets, the nodes must change positions; and the longer axis of the orbits, especially the very eccentric ones, must change positions; and now (after we know not how many ages), it is not inconsistent with the theory of an explosion, that we find the orbits as they are.

The hypothesis that these planets were originally one, and must, therefore, have two common points in the heavens near which they must all pass, led to the discovery of Juno and

Chap. XI:
Where the original pla. net must have explod. en, if the hypothesis of an original planet is true

Fig. 23.

Chas. xi. Vesta, by carefully observing these two portions of the heavens.

The apparent diameters of these planets are too small to be accurately measured; and therefore we have only a very rough or conjectural knowledge of their real diameters.

All of these planets are invisible to the naked eye, except Vesta, which sometimes can be seen as a star of the 5 th or 6 th magnitude.
(141.) Jupiter. We now come to the most magnificent planet in the system - the well-known Jupiter - which is nearly 1300 times the magnitude of the earth.
Jupiter's The disc of Jupiter is always observed to be crossed, in an belts. eastern and western direction, by dark bands, as represented in Fig. 30.

Fig. 30. - Telescopic View of Jupiter.

"These belts are, however, by no means alike at all times; they vary in breadth and in situation on the dise (though never in their general direction). They have even been seen broken up, and distributed over the whole face of the planet: but this phenomenon is extremely rare. Branches running out from them, and subdivisions, as represented in the figure, as well as evident dark spots, like strings of clouds, are by no means uncommon; and from these, attentively

Diurnalre. volution. watched, it is concluded that this planet revolves in the surprisingly short period of 9 h .55 m .50 s . (sid. time), on an axis perpendicular to the direction of the belts. Now, it is very remarkable, and forms a most satisfactory comment on the reasoning by which the spheroidal figure of the earth has been deduced from its diurnal rotation, that the outline of Jupiter's dise is evidently not circular, but elliptic, being considerably flattened in the direction of its axis of rotation.
"The parallelism of the belts to the equator of Jupiter, their occasional variations, and the appearances of spots seen upon them, render it extremely probable that they subsist in the atmosphere of the planet, forming tracts of comparatively clear sky, determined by currents analogous to our tradewinds, but of a much more steady and decided character, as might indeed be expected from the immense velocity of its rotation. That it is the comparatively darker body of the planet which appears in the belts, is evident from this, - that they do not come up in all their strength to the edge of the dise, but fade away gradually before they reach it.
(142.) "When Jupiter is viewed with a telescope, even of moderate

Chap. XI.
Atmosphere of Jupiter.

Jupiter's power, it is seen accompanied by four small stars, nearly in a straight satellites. line parallel to the ecliptic. These always accompany the planet, and are called its Satellites. They are continually changing their positions with respect to one another, and to the planet, being sometimes all to the right, and sometimes all to the left ; but more frequently some on each side. The greatest distances to which they recede from the planet, on each side, are different for the different satellites, and they are thus distinguished : that being called the First satellite, which recedes to the least distance; that the Second, which recedes to the next greater distance, and so on. The satellites of Jupiter were discovered by Galileo, in 1610.
"Sometimes a satellite is observed to pass between the sun and Jupiter, and to cast a shadow which describes a chord across the disc. This produces an eclipse of the sun, to Jupiter, analogous to those which the moon produces on the earth. It follows that Jupiter and its satellites are opake bodies, which shine by reflecting the sun's light.
"Careful and repeated observations show that the motions of the satellites are from west to east, in orbits nearly circular, and making small angles with the plane of Jupiter's orbit. Observations on the eclipses of the satellites make known their synodic revolutions, from which their sidereal revolutions are easily deduced. From measurements of the greatest apparent distances of the satellites from the planet, their real distances are determined.
"A comparison of the mean distances of the satellites, with their sidereal revolutions, proves that Kepler's third law, with respect to the planets, applies also to the satellites of Jupiter. The squares of their sidereal revolutions are as the cubes of their mean distances from the planet.
"The planets Saturn and Uranus are also attended by satellites, and the same law has place with them."
(143.) By the eclipses of Jupiter's satellites, the progresProgressive sive nature of light was discovered; which we illustrate in light. the following manner:

Ghap. XT.

Let S (Fig. 31) represent the sun, \boldsymbol{J} Jupiter, \boldsymbol{E} earth, and m Jupiter's first satellite. By careful and accurate observations astronomers have decided that the mean revolution of this satellite round its primary, is performed in 42 h .28 m . and 35 s . ; that is, the mean time from one eclipse to another.

Velocity of light, how determined.

But when the earth is at \boldsymbol{E}, and moving in a direction toward, or nearly toward, the planet as represented in the figure, the mean time between two consecutive eclipses is shortened about 15 seconds; and we can explain this on no other hypothesis than that the earth has advanced and met the successive progression of light. When the earth is in position as respects the sun and Jupiter, as represented in our figure at $E^{\prime \prime}$, and moving from Jupiter, then the interval between two consecutive eclipses of Jupiter's first satellite is prolonged or increased about 15 seconds.

But during the interval of one revolution of Jupiter's first satellite, the earth moves in its orbit about 2880000 miles ; this, divided by 15 , gives 192000 miles for the motion of light in one second of time; and this velocity will carry light from the sun to the earth in about eight and one-fourth minutes.

Longitude found by the eclipses of Jupiter's sa. tellites.
(144.) As an eclipse of one of Jupiter's satellites may be seen from all places where the planet is there visible, two observers viewing it will have a signal for the same moment, at their respective places; and their difference in local time will give their difference in longitude. For example, if one observer saw one of these eclipses at 10 h . in the evening, and another at 8 h .30 m ., the difference of longitude between the observers would be 1 h .30 m . in time, or $22^{\circ} 30^{\prime}$ of are.
The absolute time that the eclipse takes place, is the same to all observers; and he who has the latest local time is the most eastward.

These eclipses cannot be observed at sea, by reason of the motion of the vessel.
(145.) Saturn. The next planet in order of remoteness

Char. XI. Saturn solar system. Though less than Jupiter, it is about 79000 his rings. miles in diameter, and 1000 times greater than our earth.
"This stupendous globe, besides being attended by no less than seven satellites, or moons, is surrounded with two broad, flat, extremely thin rings, concentric with the planet and with each other; both lying in one plane, and separated by a very narrow interval from each other throughout their whole circumference, as they are from the planet by a much wider. The dimensions of this extraordinary appendage are as follows:

Exterior diameter of exterior ring, $=176418$.	
,	
Interior ditto,	117339.
Equatorial diameter of the body	79160.
Interval between the planet and	19090.
Interval of the rings	1791.
Thickness of the rings n	100

Fig. 32. - Telescopic View of Saturn.

"The figure represents Saturn surrounded by its rings, and having its body striped with dark belts, somewhat similar, but broader and less strongly marked than those of Jupiter, and owing, doubtless, to a similar cause. That the ring is a solid opake substance, is shown by its throwing its shadow on the body of the planet, on the side nearest the sun, and on the other side receiving that of the body, as shown in the figure. From the parallelism of the belts with the plane of the ring, it may be conjectured that the axis of rotation of the planet is perpendicular to that plane; and this conjecture is confirmed by the occasional appearance of extensive dusky spots on its surface, which when watched, like the spots on Mars or Jupiter, indicate a rotation in 10 h . 29 m .17 s . about an axis so situated.
" It will naturally be asked how so stupendous an arch, if composed of solid and ponderous materials, can be sustained without collapsing

The rings are opake.

Dimensions of the rings.

Chap. XI.

The stability of the rings.
and falling in upon the planet? The answer to this is to be found in a swift rotation of the ring in its own plane, which observation has detected, owing to some portions of the ring being a little less bright than others, and assigned its period at 10 h .29 m .17 s ., which, from what we know of its dimensions, and of the force of gravity in the Saturnian system, is very nearly the periodic time of a satellite revolving at the same distance as the middle of its breadth. It is the centrifugal force, then, arising from this rotation, which sustains it; and, although no observation nice enough to exhibit a difference of periods between the outer and inner rings have hitherto been made, it is more than probable that such a difference does subsist as to place each independently of the other in a similar state of equilibrium.

The rings revolve around the planet like satellites.
" Although the rings are, as we have said, very nearly concentric with the body of Saturn, yet recent micrometrical measurements, of extreme delicacy, have demonstrated that the coincidence is not mathematically exact, but that the center of gravity of the rings oscillates round that of the body, describing a very minute orbit, probably under laws of much complexity. Trifling as this remark may appear, it is of the utmost importance to the stability of the system of the rings. Supposing them mathematically perfect in their circular form, and exactly concentric with the planet, it is demonstrable that they would form (in spite of their centrifugal force) a system in a state of unstable equilibrium, which the slightest external power would subvert - not by causing a rupture in the substance of the rings-but by precipitating them, unbroken, on the surface of the planet. For the attraction of such a ring or rings on a point or sphere eccentrically situate within them, is not the same in all directions, but tends to draw the point or sphere toward the nearest part of the ring, or away from the center. Hence, supposing the body to become, from any cause, ever so little eccentric to the ring, the tendency of their mutual gravity is, not to correct, but to increase this eccentricity, and to bring the nearest parts of them together."

Uranus alias Herschel.
(146.) Uranus. The next planet, beyond Saturn, was discovered by Sir W. F. Herschel, in 1781, and, for a time, was called Herschel, in honor of its discoverer; but, according to custom, the name of a heathen deity has been substituted, and the planet is now called Uranus-the father of Saturn.

This planet is rarely to be seen, without a telescope. In a
This planet clear night, and in the absence of the moon, when in a favorto the naked eye. able position above the horizon, it may be seen as a star of about the 6 th magnitude. Its real diameter is about 35000 miles, and about 80 times the magnitude of the earth.

The existence of this planet was suggested by some Сaar. xi. of the perturbations of Saturn; which could not be accounted for by the action of the then known planets; but it does not appear that any computations were made, as a guide to the place where the unknown disturbing body ought to exist; and, as far as we know, the discovery by Herschel was mere accident.

But not so with the planet Neptune, discovered in the latter part of September, 1846, by a French astronomer, $L e$ - to the discoverrier ; and also a Mr. Adams, of Cambridge, England, who has very of Nepput in his claim as the discoverer. The truth is, that the attention of the astronomers of Europe had been called to some extraordinary perturbations of Uranus; which could not be accounted for without supposing an attracting body to be situated in space, beyond the orbit of Uranus; and so distinct and clear were these irregularities, that both geometers, Leverrier and Adams, fixed on the same region of the heavens, for the then position of their hypothetical planet; and by diligent search, the planet was actually discovered about the same time, in both France and England.

At present, we can know very little of this planet; and according to the best authority I can gather, its longitude, January 1, 1847, was $327^{\circ} 24^{\prime}$. Mean distance from the sun, 30.2 (the earth's distance being unity); period of revolution 166 years. Eccentricity of orbit 0.0084 ; mass, $\frac{1}{23000}$.

According to Bode's law, the distance of the next planet from the sun, beyond Uranus, must be 38.8 ; and if Neptune really is at 30.2 , it shows Bode's law to be only a remarkable coincidence; for there can be no exceptions to positive physical laws.

[^21]Chaf. XI. also a pea, on a circle of 430 feet; Mars a rather large pin's head, on a circle of 654 feet; Juno, Ceres, Vesta, and Pallas, grains of sand, in orbits of from 1000 to 1200 feet; Jupiter a moderate-sized orange, in a circle nearly half a mile across; Saturn a small orange, on a circle of four-fifths of a mile; and Uranus a full-sized cherry, or small plum, upon the circumference of a circle more than a mile and a half in diameter. As to getting correct notions on this subject by drawing circles on paper, or, still worse, from those very childish toys called orreries, it is out of the question. To imitate the motions of the planets in the
View of above-mentioned orbits, Mercury must describe its own diameter in 41 the planetary seconds; Venus, in 4 m .14 s ; the earth, in 7 minutes; Mars, in 4 m . motions. 48 s ; Jupiter, in 2 h .56 m . ; Saturn, in 3 h .13 m . ; and Uranus, in 2 h . 16 m."-Herschel's Astronomy.

CHAPTER XII.

ON COMETS.

Chap. xiI. (147.) Besides the planets, and their satellites, there are Comets great numbers of other bodies, which gradually come into formerly in. view, increasing in brightness and velocity, until they attain
spired spired terror. a maximum, and then as gradually diminish, pass off, and are lost in the distance.
Knowledge banishes
"These bodies are comets. From their singular and unusual appeardread. ance, they were for a long time objects of terror to mankind, and were regarded as harbingers of some great calamity.
"The luminous train which accompanied them was particularly alarming, and the more so in proportion to its length. It is but little more than half a century since these superstitious fears were dissipated by a sound philosophy; and comets, being now better understood, excite only the curiosity of astronomers and of mankind in general. These discoveries which give fortitude to the human mind are not among the least useful.
"It was formerly doubted whether comets belonged to the class of heavenly bodies, or were only meteors engendered fortuitously in the air by the inflammation of certain vapors. Before the invention of the telescope, there were no means of observing the progressive increase and diminution of their light. They were seen but for a short time, and their appearance and disappearance took place suddenly. Their light and vapory tails, through which the stars were visible, and their whiteness often intense, seemed to give them a strong resemblance to those transient fires, which we call shooting stars. Apparently, they differed from these only in duration. They might be only composed
of a more compact substance capable of retarding for a longer time Chap. XII. their dissolution. But these opinions are no longer maintained; more accurate observations have led to a different theory.
"All the comets hitherto observed have a small parallax,* which places Parallax of them far beyond the orbit of the moon ; they are not, therefore, formed comets. in our atmosphere. Moreover, their apparent motion among the stars is subject to regular laws, which enable us to predict their whole course from a small number of observations. This regularity and constancy evidently indicate durable bodies; and it is natural to conclude that comets are as permanent as the planets, but subject to a different kind of movement.
"When we observe these bodies with a telescope, they resemble a mass of vapor, at the center of which is commonly seen a nucleus more or less distinctly terminated. Some, however, have appeared to consist of merely a light vapor, without a sensible nucleus, since the stars are visible through it. During their revolution, they experience progressive variations in their brightness, which appear to depend upon their distance from the sun, either because the sun inflames them by its heat, or simply on account of a stronger illumination. When their brightness is greatest, we may conclude from this very circumstance that they are near their perihelion. Their light is at first very feeble, but becomes gradually more vivid, until it sometimes surpasses that of the brightest planets; after which it declines by the same degrees until it becomes imperceptible, We are hence led to the conclusion that comets, coming from the remote regions of the heavens, approach, in many instances, much nearer the sun than the planets, and then recede io much greater distances.
"Since comets are bodies which seem to belong to our planetary

Comets are apparently mere masses of vapor. system, it is natural to suppose that they move about the sun like comets. planets, but in orbits extremely elongated. These orbits must, therefore, still be ellipses, having their foci at the center of the sun, but having their major axes almost infinite, especially with respect to us, who observe only a small portion of the orbit, namely, that in which the comet becomes visible as it approaches the sun. Accordingly the orbits of comets must take the form of a parabola, for we thus designate the curve into which the ellipse passes, when indefinitely elongated.
"If we introduce this modification into the laws of Kepler, which

* The parallaxes of comets are known to be small, by two observers, at distant stations on the earth, comparing their observations taken on the same comet at near the same time. At the times the observations are made, neither observer can know how great the parallax is. It is only afterward, when comparisons are made, that judgment, in this particular, can be formed; and it is not common that any more definite conclusion can be drawn, than that the parallax is small, and, of course, the body distant.

Crabr. XII. of comets.
"Hence it follows that the areas described by the same comet, in its

Comets describe equal areas in e. qual times. parabolic orbit, are proportional to the times. The areas described by different comets in the same time, are proportional to the square roots of their perihelion distances.
" Lastly, if we suppose a planet moving in a circular orbit, whose radius is equal to the perihelion distance of a comet, the areas described by these two bodies in the same time, will be to each other as 1 to $\sqrt{2}$. Thus are the motions of comets and planets connected.
"By means of these laws we can determine the area described by a comet in a given time after passing the perihelion, and fix its position in the parabola. It only remains then to bring this theory to the test of observation. Now we have a rigorous method of verifying it, by causing a parabola to pass through several observed places of a comet, and then ascertaining whether all the others are contained in it.
Three obser- "For this purpose three observations are requisite. 'If we observe rations suffi- the right ascension and declination of a comet at three different cient to find times, and thence deduce its geocentric longitude and latitude, we the orbit of a shall have the direction of three visual rays drawn at these times from comet. the earth to the comet, and in the prolongation of which it must necessarily be found. The corresponding places of the sun are also known ; it remains then to construct a parabola, having its focus at the center of the sun, and cutting the visual rays in points, the intervals of which correspond to the number of days between the observations.

"Or if we suppose the earth in motion and the sun at rest, let $T, T^{\prime}, T^{\prime \prime}$, represent three successive positions of the earth, and $T C, T^{\prime \prime} C^{\prime}, T^{\prime \prime} C^{\prime \prime}$, three visual rays drawn to the comet. The question is to find a parabola $C C^{\prime} \mathbf{C}^{\prime \prime}$, having its focus in S at the center of the sun, and cutting the three visual rays conformably to the conditions required.

The orbit of a comet found by these ob- of the comet, the position of the perihelion, the instant of passing this servations. point, the inclination of the orbit to the ecliptic, and the position of its nodes. These five elements being known, we can assign the position of the comet for any time whatever, and compare it with the results of observation. But the calculation of the elements is very difficult, and can be performed only by a very delicate analysis, which cannot here be made known.
"About 120 comets have been calculated upon the theory of the Chap. XII. parabolic motion, and the observed places are found to answer to such a supposition. We can have no doubt, therefore, that this is conformable to the law of nature. We have thus obtained precise knowledge of the motions of these bodies, and are enabled to follow them in space. This discovery has given additional confirmation to the laws of Kepler, and led to several other important results.
"Comets do not all move from west to east like the planets. Some have a direct, and some a retrograde motion.
"Their orbits are not comprehended within a narrow zone of the heavens, like those of the principal planets. They vary through all degrees of inclination. There are some whose plane is nearly coincident with that of the ecliptic, and others have their planes perpendicular to it.
"It is farther to be observed that the tails of comets begin to appear, as the bodies approach near the sun; their length increases with this proximity, and they do not acquire their greatest extent, until after passing the perihelion. The direction is generally opposite to the sun, forming a curve slightly concave, the sun on the concave side.
"The portion of the comet nearest to the sun must move more rapidly than its remoter parts, and this will account for the lengthening of the tail.
"The tail is, however, by no means an invariable appendage of

Inclinations
of their or-

Ciap. Xif. "When we have determined the elements of a comet's orbit, we cont-

Elements of comets how determinel. pare them with those of comets before observed, and see whether there is an agreement with respect to any of them. If there is a perfect identity as to the elements, we should have no hesitation in concluding that they belonged to different appearances of the same comet. But this condition is not rigorously necessary; for the elements of the orbit may, like those of other heavenly bodies, have undergone changes from the perturbations of the planets or their mutual attractions. Consequently, we have only to see whether the actual elements are nearly the same with those of any cornet before observed, and then, by the doctrine of chances, we can judge what reliance is to be placed upon this resemblance."

Comet of 1811.

Dr. Halley's prediction verified.
"Dr. Halley remarked that the comets observed in 1531, 1607, 1682, had nearly the same elements; and he hence concluded that they belonged to the same comet, which, in 151 years, made two revolutions, its period being about 76 years. It actually appeared in 1759, agreeably to the prediction of this great astronomer; and again in 1832, by the computation of several eminent astronomers. According to Kepler's third law, if we take for unity half the major axis of the earth's
Particulars orbit, the mean distance of this comet must be equal to the cube root of comets. of the square of 76 , that is, to $\mathbf{1 7 . 9 5}$. The major axis of its orbit must, therefore, be 35.9 ; and as its observed perihelion distance is found to be 0.58 ; it follows that its aphelion distance is equal to 35.32 . It
departs, therefore, from the sun to thirty-five times the distance of the earth, and afterward approaches nearly twice as near the sun as the earth is, thus describing an ellipse extremely elongated.
"The intervals of its return to its perihelion are not constantly the same. That between 1531 and 1607 was three months longer than that between 1607 and 1682 ; and this last was 18 months shorter than the one between 1682 and 1759. It appears, therefore, that the motions of comets are subject to perturbations, like those of the planets, and to a much more sensible degree.
"Elements of the Orbits of the three Comets, which have appeared according to prediction, taken from the work of Professor Littrow.

Longitude of the ascending node,	Halley. 54:	Encke. 335°	Biela. 2490
Inclination of the orbit to the ecliptic,	162°	$13{ }^{\circ}$	13°
Longitude of the perihelion,	303°	1570	1080
$\begin{aligned} & \text { Greatest semidiameter, that of the earth } \\ & \text { being called } 1, \end{aligned}$	18	2.2	3.6
Least semidiameter,	4.6	1.2	2.4
Time of revolution in years,	76	3.29	6.74
Time of the per	$\begin{gathered} \text { Nov. } 16 . \\ 1835 \end{gathered}$	May 4. 1832	$\begin{gathered} \text { Nov. } 27 . \\ 1832 \end{gathered}$

"The comets of Encke and Biela move according to the order of the signs of the zodiac, or have their motions direct; the motion of that of Halley is retrograde.
"Comets, in passing among and near the planets, are materially drawn aside from their courses, and in some cases have their orbits entirely changed. This is remarkably the case with Jupiter, which seems, by some strange fatality, to be constantly in their way, and to serve as a perpetual stumbling-block to them. In the case of the remarkable comet of 1770, which was found by Lexell to revolve in a moderate ellipse in the period of about five years, and whose return was predicted by him accordingly, the prediction was disappointed by the comet actually getting entangled among the satellites of Jupiter, and being completely thrown out of its orbit by the attraction of that planet, and forced into a much larger ellipse. By this extraordinary renconter, the motions of the satellites suffered not the least perceptible derangementa sufficient proof of the smallness of the comet's mass."

The comet of 1456 , represented as having a tail of 60° in length, is now found to be Halley's comet, which has made several returns in 1531, 1607, 1682, 1759, and recently, in 1835. In 1607 the tail was said to have been over 30° in length ; but in 1835 the tail did not exceed 12° Does it lose substance, or does the matter composing the tail condense? or, have we received only exaggerated and distorted accounts from the earlier times, such as fear, superstition, and awe, always put forth? We ask these questions, but cannot answer them.

Chaf. XII. The following cut represents the appearance of the comet of 1819.

Fears en. "Professor Kendall, in his Uranography, speaking of the fears occatertained, by sioned by comets, says: "Another source of apprehension, with regard some, that to comets, arises from the possibility of their striking our earth. It is comets may quite probable that even in the historical period the earth has been ultimately come into collision with enveloped in the tail of a comet. It is not likely that the effect would be sensible at the time. The actual shock of the head of a comet against our earth. the earth is extremely improbable. It is not likely to happen once in a million of years.
"If such a shock should occur, the consequences might perhaps be very trivial. It is quite possible that many of the comets are not heavier than a single mountain on the surface of the earth. It is well known that the size of mountains on the earth is illustrated by comparing them to particles of dust on a common globe."

CHAPTER XIII.

ON THE PECULIARITIES OF THE FIXED STARS.

Chap. XIII. For the facts as contained in the subject matter of this chapter, we must depend wholly on authority; for that reason we give only a compilation, made in as brief a manner as the nature of the subject will admit.

In the first part of this work it was soon discovered that the fixed stars were more remote than the sun or planets; and now, having determined their distances, we may make further inquiries as to the distances to the stars, which will
give some index by which to judge of their magnitudes, nature, Снар. хіш. and peculiarities.
"It would be idle to inquire whether the fixed stars have a sensible Base from parallax, when observed from different parts of the earth. We have which to already had abundant evidence that their distance is almost infinite. It measure to is only by taking the longest base accessible to us, that we can hope to the stars. . arrive at any satisfactory result.
"Accordingly, we employ the major axis of the earth's orbit, which is nearly 200 millions of miles in extent. By observing a star from the two extremities of this axis, at intervals of six months, and applying a correction for all the small inequalities, the effect of which we have calculated, we shall know whether the longitude and latitude are the same or not at these two epochs.
"It is obvious, indeed, that the star must appear more elevated above the plane of the ecliptic when the earth is in the part of its orbit which parallax. is nearest to the star, and more depressed when the contrary takes place. The visual rays drawn from the earth to the star, in these two positions, differ from the straight line drawn from the star to the center of the earth's orbit; and the angle which either of them forms with this straight line, is called the annual parallax.
"As the earth does not pass suddenly from one point of its orbit to the opposite, but proceeds gradually, if we observe the positions of a of a sensible star at the intermediate epochs, we ought, if the annual parallax is sen- parallax. sible, to see its effects developed in the same gradual manner. For example, if the star is placed at the pole of the ecliptic, the visual rays drawn irom it to the earth, will form a conical surface, having its apex at the star, and for its base, the earth's orbit. This conical surface being produced beyond the star, will form another opposite to the first, and the intersection of this last with the celestial sphere, will constitute a small ellipse, in which the star will always appear diametrically opposite to the earth, and in the prolongation of the visual rays drawn to the apex of the cones.
"But notwithstanding all the pains that have been taken to multiply The annual observations, and all the care that has been used to render them per- parallaxmust fectly exact, we have been able to discover nothing which indicates, be less than with certainty, even the existence of an annual parallax, to say nothing one second. of its magnitude. Yet the precision of modern observations is such, that if this parallax were only $1^{\prime \prime}$, it is altogether probable that it would not have escaped the multiplied efforts of observers, and especially those of Dr. Bradley, who made many observations to discover it, and who, in this undertaking, fell unexpectedly upon the phenomena of aberration* and nutation. These admirable discoveries have themselves served to show, by the perfect agreement which is thus found to take

Chap. XIII. place among observations, that it is hardly to be supposed that the annual parallax can amount to $1^{\prime \prime}$. The numerous observations of the pole star, recently employed in measuring an arc of the meridian through France, have been attended with a similar result, as to the amount of the annual parallax. From all this we may conclude, that as yet there are strong reasons for believing that the annual parallax is less than $1^{\prime \prime}$, at least with respect to the stars hitherto observed.
"Thus the semidiameter of the earth's orbit, seen from the nearest star, would not appear to subtend an angle of $1^{\prime \prime}$; and to an observer placed at this distance, our sun, with the whole planetary system, would occupy a space scarcely exceeding the thickness of a spider's thread.

Conclusion to be drawn from these facts.
"If these results do not make known the distance of the stars from the earth, they at least teach us the limit beyond which the stars must necessarily be situated. If we conceive a right-angled triangle, having for its base half the major axis of the earth's orbit, and for its vertex an angle of $1^{\prime \prime}$, the distance of this vertex from the earth, or the length of the visual ray, will be expressed by 212207, the radius of the earth's orbit being unity : and as this radius contains 23987 times the semidiameter of the earth, it follows that if the annual parallax of a star were only $1^{\prime \prime}$, its distance from the earth would be equal to 5090209309 radii of the earth, or 20086868036404 miles; that is, more than 20 billions. But if the annual parallax is less than $1^{\prime \prime}$, the stars are beyond the limit which we have assigned.
Changes in individual stars.
"It is evident that the stars undergo considerable changes, since these changes are sensible even at the distance at which we are placed. There are some which gradually lose their light, as the star δ of Ursa Major. Others, as β of Cetus, become more brilliant. Finally, there are some which have been observed to assume suddenly a new splendor, and then gradually fade away. Such was the new star which appeared in 1572, A new star. in the constellation Cassiopeia. It became all at once so brilliant that it surpassed the brightest stars, and even Venus and Jupiter when nearest the earth. It could be seen at midday. Gradually this great brilliancy began to diminish, and the star disappeared in sixteen months from the time it was first seen, without having changed its place in the heavens. Its color, during this time, suffered great variations. At first it was of a dazzling white, like Venus; then of a reddish yellow, like Mars and Aldebaran ; and lastly, of a leaden white, like Saturn. An-

Another new star. pentarius, presented similar variations, and disappeared after several months. These phenomena seem to indicate vast flames which burst forth suddenly in these great bodies. Who knows that our sun may not be subject to similar changes, by which great revolutions have perhaps taken place in the state of our globe, and are yet to take place.
Periodical "Some stars, without entirely disappearing, exhibit variations not less changes. remarkable. Their light increases and decreases alternately in regular periods. They are called for this reason variable stars. Such is the
star Algol, in the head of Medusa, which has a period of about three Chap. xif. days; δ of Cepheus, which has one of five days; β of Lyra, six ; μ of Antinous, seven ; of Cetus, 334 ; and many others.
"Several attempts have been made to explain these periodical variations. It is supposed that the stars which are subject to them, are, like to explain all the other stars, self-luminous bodies, or true suns, turning on their periodical axes, and having their surfaces partly covered with dark spots, which may be supposed to present themselves to us at certain times only, in consequence of their rotation. Other astronomers have attempted to account for the facts under consideration, by supposing these stars to have a form extremely oblate, by which a great difference would take place in the light emitted by them under different aspects. Lastly, it has been supposed that the effect in question is owing to large opake bodies, revolving about these stars, and occasionally intercepting a part of their light. Time and the multiplication of observations may perhaps decide which of these hypotheses is the true one.
"One of the best methods of observing these phenomena is to compare the stars together, designating them by letters or numbers, and disposing them in the order of their brilliancy. If we find, by observation, that this order changes, it is a proof that one of the stars thus compared, has likewise changed; and a few trials of this kind will enable us to ascertain which it is that has undergone a variation. In this manner, we can only compare each star with those which are in the neighborhood, and visible at the same time. But by afterward comparing these with others, we can, by a series of intermediate terms, connect together the most distant extremes. This method, which is now practiced, is far preferable to that of the ancient astronomers, who classed the stars after a very vague comparison, according to what they called the order of their magnitudes, but which was, in reality, nothing but that of their brightness, estimated in a very imperfect manner.
"By comparing the places of some of the fixed stars, as determined Order in these observations. from ancient and modern observations, Dr. Halley discovered that they

Suggestion had a proper motion, which could not arise from parallax, precession, or aberration. This remarkable circumstance was afterward noticed by Cassini and Le Monnier, and was completely confirmed by Tobias Mayer, who compared the places of 80 stars, as determined by Roemer, with his own observations, and found that the greater part of them had a proper motion. He suggested that the change of place might arise from a progressive motion of the sun toward one quarter of the heavens; but as the result of his observation did not accord with his theory, he remarks that many centuries murst elapse before the true cause of this motion could be explained.
"The probability of a progressive motion of the sun was suggested upon theoretical principles by the late Dr. Wilson of Glasgow; and Lalande deduced a similar opinion from the rotatory motion of the sun, by supposing, that the same mechanical force which gives it a motion

Chap. XIII. round its axis, would also displace its center, and give it a motion of translation in absolute space

Consequences of such a theary.
"If the sun has a motion in absolute space, directed toward any quarter of the heavens, it is obvious that the stars in that quarter must appear to recede from each other, while those in the opposite region would seem gradually to approach, in the same manner as when walking through a forest, the trees toward which we advance are constantly separating, while the distance of those which we leave behind is gradually contracting. The proper motion of the stars, therefore, in opposite regions, as ascertained by a comparison of ancient with modern observations, ought to correspond with this hypothesis ; and Sir W. Herschel found, that the greater part of them are nearly in the direction which would result from a motion of the sun toward the constellation Hercules, or rather to a part of the heavens whose right ascension is $250^{\circ} 52^{\prime} 30^{\prime \prime}$, and whose north polar distance is $40^{\circ} 22^{\prime}$. Klugel found the right ascension of this point to be 260°, and Prevost made it 230°, with 65° of north polar distance. Sir W. Herschel supposes that the motion of the sun, and the solar system, is not slower than that of the earth in its orbit, and that it is performed round some distant center. The attractive force capable of producing such an effect, he does not suppose to be lodged in one large body, but in the center of gravity of a cluster of stars, or the common center of gravity of several clusters."

The following figures, taken from Norton's Astronomy, represent the telescopic appearance of some of the double stars.
Double and multiple stars.
"There are stars which, when viewed by the naked eye, and even only a single star; but, being seen through a good telescope, they are found to be double, and in some cases a very marked difference is perceptible, both as to their brilliancy and the color of their light. These Sir W. Herschel supposed to be so near each other, as to obey reciprocally the power of each other's attraction, revolving about their common center of gravity, in certain determinate periods.

Revolutions of the multiple stars.
"The two stars, for example, which form the double star Castor, have varied in their angular situation more than 45° since they were observed by Dr. Bradley, in 1759, and appear to perform a retrograde revolution in 342 years, in a plane perpendicular to the direction of the sun. Sir W. Herschel found them in intermediate angular positions, at intermediate times, but never could perceive any change in their distance. The retrograde revolution of γ in Leo, another double star, is supposed to be in a plane considerably inclined to the line in which we view it, and to be completed in 1200 years. The stars s of Bootes,
perform a direct revolution in 1681 years, in a plane oblique to the sun. Chap. xif. The stars $\bar{\xi}$ of Serpens, perform a retrograde revolution in about 375 years; and those of γ in Virgo in 708 years, without any change of their distance. In 1802, the large star ζ of Hercules, eclipsed the smaller one, though they were separate in 1782 . Other stars are supposed to be united in triple, quadruple, and still more complicated systems.
"With respect to the determination of the real magnitude of the stars, Description and their respective distances, we have as yet made but little progress. of nebulx. Researches of this kind must be left to future astronomers. It appears, however, that the stars are not uniformly distributed through the heavens, but collected into groups, each containing many millions of stars. We can form some idea of them from those small whitish spots called Nebulæ, which appear in the heavens as represented in the accompanying illustration. By means of the telescope, we distinguish in these collectious an almost infinite number of small stars, so near each other, that their rays are ordinarily blended by irradiation, and thus present to the cye only a faint uniform slıeet of light. That large, white, luminous track, which traverses the heavens from one pole to the other, under

the name of the Milky Way, is probably nothing but a nebula of this The Milks kind, which appears larger than the others, because it is nearer to us. Way a neWith the aid of the telescope we discover in this zone of light such a bala. prodigious number of stars that the imagination is bewildered in attempting to represent them. Yet from the angular distances of these stars, it is certain that the space which separates those which seem nearest to each other, is at least a hundred thousand times as great as the radius of the earth's orbit. This will give us some idea of the immense extent of the group. To what distance then must we withdraw, in order that this whole collection may appear as small as the other nebulæ which we perceive, some of which cannot, by the assistance of the best telescopes, be made to present anything but a bright speck, or a simple mass of light, of the nature of which we are able to form some idea only by analogy? When we attempt, in imagination, to fathom this abyss, it is in vain to think of prescribing any limits to

Chap. XIII. the universe, and the mind reverts involuntarily to the insignificant portion of it which we are destined to occupy."
Observa- Before we close this chapter, we think it important to call the attentions on ta- tion of the reader to table II, in which will be seen, at a glance (in ble II. the columns marked annual variation), the general effect of the precession of the equinoxes; and although we have called particular attention to the fact elsewhere, we here notice that all the stars, from the 6th to the 18 th hour of right ascension, have a progressive motion to the southward (一), and all the stars from the 18th to the 6th hour of right ascension have a progressive motion to the northward (十), and the greatest variations are at 0 h . and 12 h . But these motions are not, in reality, the motions of the stars; they result from motions of the earth. Whenever the annual motion of any star does not correspond with this common displacement of the equinox, we say the star has a proper motion ; and by such discrepancy it has been decided, that those stars marked with an asterisk, in the catalogue, have proper motions; and the star 61 Cygni, near the close of the table, has the greatest proper motion.
The paral. From this circumstance, and from the fact of its being a double star, lax of 61 it was selected by Bessel as a fit subject for the investigation of stellar Cygni disco- parallax ; and it is now contended, and in a measure granted, that the vered. annual parallax of this star is $0^{\prime \prime} .35$, which makes its distance more than 592.000 times the radius of the earth's orbit ; a distance that light could not traverse in less than nine and one-fourth years.

SECTION III.

PHYSICAL ASTRONOMY.

CHAPTERI.

GENERAL LAWS OF MOTION - THE THEORY OF GRAVITY.

(148.) In a work like this, designed for elementary instruction, it cannot be expected that a full investigation of be expected physical astronomy shall be entered into; for that subject in this work. alone would require volumes; and to fully appreciate and comprehend it, requires the matured philosopher combined with the accomplished mathematician.

We shall give, however, a sufficient amount to impart a good general idea of the subject - if one or two points are taken on trust.

For elementary principles we must turn a moment to natu- Elementary ral philosophy, and consider the laws of inertia, motion, and principles. force. Motion is a change of place in relation to other bodies which we conceive to be at rest; and the extent of change in the time taken for unity is called velocity, and the essential cause of motion we denominate force.

A double force will give a double velocity to bodies moving Velocity the freely in void space, or in an unresisting medium - a triple measure of force, a triple velocity, \&c. This is taken as an axiom - and hence, when we consider mere material points in motion, the relative velocities measure the relative amounts of force.

There are three elements to motion, which the philosopher never loses sight of; or we may say that he never thinks of motion without the three distinct elements of time, velocity, and distance, coming into his mind.

Algebraically, we put t, v, and d, to represent the three elements, and then we have this important and general equation,

$$
\begin{equation*}
t v=d \tag{1}
\end{equation*}
$$

Chap. I.

Expression for force.

From this we derive $v=\frac{d}{t}$ (2) and $t=\frac{d}{v}$
(149.) As forces are in proportion to velocities (when momentum is not in question), therefore, if we put f and F to represent two forces corresponding to the distances d and D, which are described in the times t and T, then by making use of equation (2), in place of the velocities, we have

$$
f: F:: \frac{d}{t}: \frac{D}{T} \quad(4)^{*}
$$

The law of (150.) A body at rest, has no power to put itself in moinertia. tion, and having no self power, no internal force or will, in any shape, it cannot increase or diminish the motion it may have, or change the direction it may be moving. This is the law of inertio. It cannot of itself change its state; and if it is changed it must be acted upon by some external force; and this accords with universal experience; and this law is the most natural and simple of any we can imagine, but it is only in the motion of the heavenly bodies that it is fully exemplified.
Some central The earth, moon, and planets move in curves - not in force must right lines. The directions of their motions are changed.
act on the motions of the earth, f. moon, and . planets. in a straight line. Now this force must exist within the orbis of every curve; we therefore naturally refer it to the body round which others circulate. The earth and planets go round the sun, and if we could suppose a force residing in the sun to extend throughout the system sufficient to draw bodies to it, this would at once account not only for the planets deviating from a right line, but would account for a constant deviation of all bodies to that point, and the preservation of the system.
The moon's The moon goes round the earth, constantly deviating from motion con- the tangent of its orbit, and the law of inertia is constantly
sidered.

[^22]urging it to rise from the center; the two on an average balancing each other, retains the moon in an orbit about the earth.

Now what and where is this force? Is it around the earth, or within the earth? Is it electrical or magnetic? or is it that same force (call it what we may) that makes a body fall toward the earth's center when unsupported on a resting base?

A trifling incident, the fall of an apple from a tree, seems to have led the mind of Newton to the contemplation of this force which compels and causes bodies to fall, and he at once conceived this force to extend to the moon and to cause it to deviate from the tangent of its orbit.

The next consideration was, whether if this were the force, it was the same at the distance of the moon, as on the surface of the earth ; or if it extended with a diminished amount, what was the law of diminution?

Newton now resorted to computation, and for a test he Incipient conceived the force in question to extend to the moon, undi- steps to the minished by the distance ; and corresponding thereto he de- gravity. cided that the moon must then make a revolution in its orbit in 10 h .55 m . But the actual time is 27 d .7 h .43 m , which shows that if the force is the same which pervades a falling body on the surface of the earth, it must be greatly diminished.

Now by making a reverse computation, taking the actual time of revolution, and finding how far the moon did really computafall from the tangent of its orbit in one second of time, it was found to be about $\frac{{ }^{3} \bar{\sigma} \bar{\sigma} \bar{\sigma}}{}$ part of $16 \frac{1}{12}$ feet - the distance a body falls the first second of time.

But the distance to the moon is about 60 times the radius of the earth, and the inverse square of this is $\frac{{ }_{3} \bar{\sigma} \bar{\sigma} \overline{0}}{}$, which corresponds to the actual fall of the moon in one second.
(151.) It is a well-established fact in philosophy, and A principle geometrically demonstrated, that any force or influence existing at a point, must diminish as it spreads over a larger space, and in proportion to the increase of space. But space increases as the square of linear distance, as we see by Fig. 28.

A double distance spreads the influence over four times the space, whatever that influence may be; a triple distance, nine times the space, etc., the space increasing as the square of

the distance. Therefore, any influense spreading in all directions from its central point must be enfeebled as the square of the distance.

The theory of universal gravity.

From observations and considerations like these, Newton established the all-important and now universally admitted theory of gravity.

This theory may be summarily stated in the following words:

Every body of matter in the universe attracts every other body, in direct proportion to its mass, and in the inverse proportion to the square of the distance.
This theory
Some attempts have been made, from time to time, to call well estab- the truth of this theory in question, and substitute in its lished. place the influence of light, caloric, and electricity; but any thing like a close application shows how feebly all such substitutes stand the test.

The theory of gravity so exactly accounts for all the physical phenomena of the solar system, that it is impossible it should be false; and although we cannot determine its nature or its essence, it is as unreasonable to doubt its existence, as to doubt the existence of animate beings, because we know nothing of the principle of life.
Attraction (152.) According to the theory of gravity, every particle of an irregular body. composing a body has its influence, and a very irregular body may be divided in imagination into many smaller bodies, and the center of gravity of each taken as the point of attraction, and all the forces resolved into one will be the attraction of the whole body.

In a sphere composed of homogeneous particles, the aggre- Cuap. I. gate attraction of all of them will be the same as if all were Attraction of compressed at the center; but this will be true of no other a sphere. body. The earth is not a perfect sphere, and two lines of attraction from distant points on its surface may not, yea, will not, cross each other at the earth's center of gravity. (See Fig. 10.)
(153.) A particle anywhere inside of a spherical shell of equal thickness and density, is attracted every way alike, and inside of a of course would show no indication of being attracted at all. spherical Hence a body below the surface of the earth, as in a deep pit or well, will be less attracted than on the surface, as it will be attracted only by the diminished sphere below it. At the center of the earth a body would be attracted by the earth $\begin{gathered}\text { Attraction at } \\ \text { the center of }\end{gathered}$ every way alike, and there would be no unbalanced force, a sphere. and of course no perceptible or sensible attraction.*
(154.) The attractive power on the surface of any perfect and homogeneous sphere may be expressed by the mass of the for the atsphere divided by the square of the radius. $\quad \begin{gathered}\text { traction on } \\ \text { the surface of }\end{gathered}$

Consider the earth a sphere (as it is very nearly), and a sphere. put E to represent its mass, and r its mean radius, then

$$
\frac{E}{r^{2}}=g=16_{\frac{1}{12}} \text { feet. }
$$

This attractive force, algebraically expressed by $\frac{E}{r^{2}}$ we call g, and it is sufficient to cause bodies to fall $16_{\frac{1}{1 \frac{1}{2}}}$ feet during the first second of time. If the earth had contained more matter, bodies would have fallen more than $16_{\frac{1}{12}}$ feet the first second; if less, a less distance.

With the same matter, but more compact, so that r^{2} would be less with E the same, $\frac{E}{r^{2}}$ would be greater, and the attrac- $\begin{gathered}\text { attraction of earth. }\end{gathered}$ tive power at the surface greater, and bodies would then fall more than $16 \frac{1}{1 \frac{1}{2}}$ feet the first second of their fall.

Now we say this $16 \frac{1}{12}$ feet is the measure of the earth's attraction at its surface, and it is made the unit and standard measure, directly or indirectly, for all astronomical forces.

[^23]Chap. I. For this reason, we call the undivided attention to this force, the known - the noted - the all-important $16 \frac{1}{12}$ feet.
To find the (155.) By the theory of gravity, we can readily obtain an attraction of analytical expression for the attraction of a sphere at any disany distance. tance from the center, after knowing the attraction at the surface. For example. Find the value of the attraction of the earth, at the distance of D from its center; r being the radius of the earth, and g the gravity at the surface; put x to represent the attraction sought. Then by the theory,

$$
\begin{equation*}
g: x:: \frac{1}{r^{2}}: \frac{1}{D^{2}} ; \quad \text { Or }, x=g\left(\frac{r^{2}}{D^{2}}\right) \tag{5}
\end{equation*}
$$

As g and r are constant quantities, the variations to x will correspond entirely to the variations of D^{2}. We shall often refer to this equation.
An expres- (156.) As every particle of matter in the universe atsion for the tracts every other particle, therefore the moon attracts the mutual
traction of $^{\text {of }}$ earth as well as the earth attracts the moon; and the extent two bodies. by which they will draw together, depends on their mutual attraction. If m represents the mass of the moon, and R the radius of the lunar orbit; then,

The earth will attract the moon by the force $\frac{E}{R^{2}}$.
The moon will attract the earth by the force $\frac{m}{R^{2}}$.
The two bodies will draw together by the force $\frac{E+m}{R^{2}}$.
If we substitute the value of g, as found in (154), in equation (5), and making $R=D$, then we have the expression $\frac{E}{r^{2}}$.

The spirit of these expressions will be more apparent when we make some practical applications of them, as we intend soon to do.

CHAPTER II.

KEPLER'S LAWS - DEVONSTRATION OF THE SECOND AND THIRDHOW A PLANETARY BODY WILL FIND ITS ORBIT.

(157.) In this chapter we design to make some examina- Chap. II. tion of Kepler's laws, recapitulating them in order.

Examina.
The orbits of the planets are ellipses, having the sun at tions of Kep. one of their foci.

This law is but a concise statement of an observed fact, which never could have been drawn from any other source than observation; but the second law, namely,

That the radius vector of any planet (conceived to be in motion) sweeps over equal areas in equal times is susceptible of a rigid mathematical demonstration, under the following general theorem.

Any body, being in motion, and constantly urged toward any A general fixed point, not in a line with its motion, must describe equal areas in equal times round that point.

Let a moving body be at A, having a velocity which would carry it to B, say in one second of time. By the law of inertia, it would move from B to \boldsymbol{C}, an equal dis-
 tance, in the next second of time. But during this second interval of time, let us suppose it must obey an impulse or force from the pcint S, sufficient to carry it to D. It must then, by the composition of forces explained in natural philosophy, describe the diagonal $B E$, of the parallelogram $B D E C$.

Chay. II.

Now in the first interval of time, we supposed the moving body described the triangle $S A B$. The second interval, it would have described the triangle $S B C$, if undisturbed by any force at S, but by such a force it describes the triangle $S B E$; but the triangle $S B E$, is equal to the triangle $S B C$, because they have the same base $S B$, and lie between the parallels $S B$ and $E C$. Also the triangle $S B C$ is equal to the triangle $S A B$, because they terminate in the same point S, and have equal bases, $A B$ and $B C$. Therefore the triangle $S A B$ is equal to the triangle $S B E$, because they are both equal to the triangle $S B C$; that is, the moving body describes equal areas in equal times about the point S, and this is entirely independent of the nature of the force at S; it may be directly or inversely as the distance, or as the square of the distance.
The converse of the theorem.

The converse of this theorem is, that when a body describes equal areas in equal times round any point, the body is con- stantly urged toward that point, and therefore as the planets are observed to describe equal areas in equal times round the sun, their tendency is toward the sun, and not toward any other point within the orbits.
Kepler's (158.) The third law of Kepler is most important of all, ${ }^{\text {third }}$ proves that namely - The squares of the times of revolution are to each proves that the sun's attraction is inversely as the square of the distance. other as the cubes of the distances from the sun. By this law it is proved, that it is the same force which urges all the planets to the same point, and that its intensity is inversely as the square of the distance from that point (the center of the sun), confirming the Newtonian theory of gravity.

Fig. 30.

To show this, let us suppose that the planets revolve round the sun in circular orbits (which is not far from the truth), and let P (Fig. 30) represent the position of a planet; F the distance which the planet is drawn from a tangent during unity of time; in the same time that it describes the indefinite small are c; and the number of times that c is contained in the whole circumference, so many units of time, then, must be in one revolution.

If D is the diameter of the orbit and t the time of revolu- Снар. . tion, then will

$$
\begin{equation*}
t=\frac{\pi D}{c} \tag{1}
\end{equation*}
$$

So for any other planet. If f is the force urging it toward An importhe sun, a its corresponding arc, T its time of revolution, and tant trutb deR the radius of its orbit; then, reasoning as before,

$$
\begin{equation*}
T=\frac{2 \pi R}{a} \tag{2}
\end{equation*}
$$

By comparing (1) and (2) we have

$$
t: T:: \frac{D}{c}: \frac{2 R}{a}
$$

By squaring, $\quad t^{2}: T^{2}:: \frac{D^{2}}{c^{2}}: \frac{4 R^{2}}{a^{2}}$.
By Kepler's laur, $t^{2}: T^{2}:: r^{3}: R^{3}$.
By comparing the two last proportions, and observing that $2 r$ may be put for D, and reducing, we have

$$
\frac{1}{c^{2}}: \frac{1}{a^{2}}:: r: R
$$

But by the well-known property of the circle, we have

$$
F: c:: c: 2 r ; \text { or, } c^{2}=2 r F .
$$

In like manner,

$$
a^{2}=2 R f .
$$

Substituting these values in the last proportion, and reducing, we have

$$
\frac{1}{r F^{\prime}}: \frac{1}{R}:: r: R ;
$$

Or, . . $R f: r F:: r: R$.
Hence, . $\quad R^{2} f=r^{2} F ;$ or, $F: f:: R^{2}: r^{2}$.
Or,

$$
F: f:: \frac{1}{r^{2}}: \frac{1}{R^{2}}
$$

That is; the attractive force of the sun is reciprocally proportional to the square of the distance.
(159.) If we commence with the hypothesis, that bodies tend toward a central point with a force inversely propor- of gravity

Chap. II. tional to the squares of their distances, and then compute and laws of the corresponding times of revolution, we shall find that the motion result in Kepler's squares of the times must be as the cubes of the distances. Hence thirl law. Kepler's third law is but the natural mathematical relation which must exist between times and distances among bodics moving freely, in circular orbits, animated by one central force which varies as the inverse square of the distance.
An inquiry. (160.) Having shown that Kepler's third law is but a mathematical theorem when the planets move in circles and their masses inappreciable in comparison to that of the sun's, we now inquire whether the law is true, or only approximately true, when the orbits are ellipses, and their masses considerable.
How answer- On one of these points of inquiry, the reader must take our ed. assertion; for its demonstration requires the use of the integral calculus, a subject that we designed not to employ in this work. Kepler's third law supposes all the force to be in the central body, and the planets only moving points. But we have seen in Art. (120) that the attracting force on any planet is the mass of both sun and planet divided by the square of their mutual distance; and therefore when the mass of the planet is appreciable, the force is increased, and Masses of the time of revolution a little shortened. But the fact that $\underset{\text { very }}{\text { the }} \underset{\text { pmall }}{\text { planets }}$ Kepler's law corresponds so well with other observations very small compared to the sun. compared to the mass of the sun.

Kepler's third law mathematically true in ellip. tic orhits.
(161.) As to the other point, we state distinctly that the planets (considered as bodies without masses) revolving in ellipses of ever so great eccentricity, the squares of the times of revolution are to each other as the cubes of half the greator axes of the orbits.

We shall not attempt a demonstration of this truth; but hope the following explanation will give the reader a clear view of the subject.

Bodies revolving in ellipses round one of the foci, may be considered to have a rising and a falling motion; something like the motion of a pendulum. The motion of a pendulum depends on the force of graviiy, the length of the pendulum,
and the distance the pendulum was first drawn aside. The Сняs. І. motion of a planet depends on the force of gravity, its mean distance from the sun, and the original impulse first given to it. Most persons, who have not investigated this subject, imagine that each planet must originally have had precisely the impulse it did have to maintain itself in its orbit; and so it must, to maintain itself in just that definite orbit in which it moves. But had the original impulse been different, either as to amount or direction, or as to both, then by the action of gravity and inertia, the planet would have found a corresponding orbit.
(162.) The force of gravity, from the action of any attract- Examinaing body, is always as the mass of the body divided by the square tion of the of its distance. Algebraically, if M is the mass of the body, ${ }_{\text {motions }}^{\text {planetary }}$ in r its distance, and F the force at that distance, then (see 118) elliptic orbits we have - $\quad-\frac{M}{r^{2}}=F$. (See Fig. 28.)

Now if the planet has such a velocity, c, as to correspond with the proportion $F: c:: c: 2 r$, Or, $-\quad-\quad-c=\sqrt{2 r F}=\sqrt{\frac{2 M}{r}}$, and that velocity at right angles to r (Fig. 28), then the planet's orbit would be a circle, with the radius r. If the velocity had been less in amount than this expression, and still at right angles to r, then the planet would fall within the circle, and the action of gravity would increase the motion of the planet; and the motion would increase faster than the increased action of gravity: there would be a point, then, where the motion would be sufficient to maintain the planet in a circle, at its then distance; but the direction of the motion will not permit the planet to run into the circle, and it must fall within it.

The motion continues to increase until its position becomes at right angles to the radius vector ; the motion is then as much more than sufficient to maintain the planet in a circle, as it was insufficient in the first instance; it therefore rises, by the law of inertia, and returns to the original point P, where it will have the same velocity as before; and thus the planet vibrates between two extreme distances.

Chap. II
If the velocity, on starting from the point P, were very Gravity and much less than sufficient to maintain a circle, at that distance, original ve. then the orbit it would take would be very eccentric, and locity deter.
mine the ec. centricityand at P were greater than to maintain it in a circle, it would mean distances of the or. bits. pass outside of this circle, and the point P would be the perihelion point of the orbit.

Thus, we perceive, that the eccentricity of orbits and mean distances from the sun, depend on the amount and direction of the original impulse, or velocity which the planet has in some way obtained; and it is not necessary that the planet should have any definite impulse, either in amount or direction, to move in an orbit, if the direction is not directly to or from the sun. A hypothe. (163.) For a more definite explanation of this subject, let tical case. us conceive a planet launched out into space with a velocity sufficient to maintain it in a circle at the distance it then happened to be, but the direction of such velocity not at right angles to the sun, then the orbit will be elliptical, and the degree of eccentricity will depend on the direction of the motion; but the longer axis of the orbit will be equal to the diameter of the circle, to which its velocity corresponds; and

Fig. 31.

How a planet finds its orbit. the time of its revolution will be the same, whether the orbit is circular or more or less elliptical.

Let P (Fig. 31) be the position of a planet, S the sun; and let the velocity, a, be just sufficient to maintain the planet in a circle, if it were at right angles to $S P$.

Now to find the orbit that this planet would describe, draw the line $P C$ at right angles to a, and from S let fall a perpendicular on $P C$; $S C$ will be the eccentricity of the orbit, and $P C^{r}$ will be the half of its conjugate
axis; and with these lines the whole orbit is known.
(164.) Now let us suppose that a planet is rather carelessly launched into space, with a velocity neither at right angles to the sun, nor of sufficient amount to maintain it in a circle, at that distance from the sun.
Let P (Fig. 32) represent the position of the planet, a the amount and direction of its haphazard velocity during the first unit of time. The direction of the motion being within a right angle to $S P$, the action of gravity increases the velocity of the planet, $B \bigcirc$ on the same principle that a falling body increases in velocity; and the planet goes on in a curve, describing equal areas in equal times round the point S; and it will find a point, p, where its increased velocity will be just equal to the velocity in a circle whose radius is the diminished distance $S p$. From the point p, and at right angles to a, draw $p C$, \&c., forming the right angled triangle $p C S$. $S C$ is the eccentricity, $S a$ the mean distance, and $p C$ half the conjugate axis of the orbit.

If the planet is launched into space in the other direction, the action of gravity will diminish its motion, and will bring it at right angles to the line joining the sun; it is then at its apogee, with a motion too feeble to maintain a circle at that distance; and it will, of course, approach nearer and nearer to the sun by the same laws of motion and force that it receded from the sun; hence the curre on each side of the apogee will be symmetrical ; and the same reasoning will apply to the curve on each side of the perigee; and, in short, we shall have an ellipse.

To sum up the whole matter, it is found by a strict exami- An impornation of the laws of gravity, motion, and inertia, that whatever sion.

Caap. II. may be the primary force and direction given to a planetary body (if not directly to or from the sun), the planet will find a corresponding orbit, of a greater or less eccentricity, and of a greater or less mean distance; and whatever be the eccentricity of the orbit, the real velocity, at the extremity of the shorter axis, will be just sufficient to maintain the planet in a circular orbit, at that mean distance from.the sun.*

Theory of Dr. Olbers concerning the asteroids * Let S be the sun, and P the position of a planet as represented in the annezed figure, and we may now suppose it to burst into fragments, the figure representing three fragments only; the velocity and direction of one represented by a; of another by b, and of a third by c, \&cc.

Fig. 33.

As action is just equal to reaction, under all circumstances, therefore the bursting of a planet can give the whole mass no additional velocity; a small mass may be blown off at a great velocity, but there will be an equal reaction on other masses,

tions.

 in the opposite direction.The whole might simply burst into about equal parts, and then they would but separate, and all the parts move along in the same general direction, and with the same aggregate velocity as the original planet. The bursting of a rocket is a very minute, but a very faithful representation of such an explosion.
(165.) To see whether Kepler's third law applies to ellipses, we represent half the greater axis of any ellipse by A, and half the shorter axis by B, and then (3.1416) $A B$ is the area of the ellipse. Also, let a represent the velocity or distance

If the velocities of the several fragments were equal, the times of their revolutions would be equal; but the eccentricities of the several orbits would depend on the angles of a, $b, c, \& c$., with $S P$. If a is at right angles to $S P$, and just sufficient to maintain the planet in a circle at that distance, then its orbit would have no eccentricity. If still at right angles, but not sufficient to maintain a circle at that distance, then $S P$ would be the greatest radius of the orbit. Hence, we perceive, there is an abundance of room to have a multitude of orbits passing through the same point, during the first one or two revolutions; and the times of such revolutions may be equal, or very unequal. In short, there is no physical impossibility to be urged against the theory of Dr. Olbers, that the asteroids are but fragments of a planet.

The objection is (if an objection it can be called) that these planets have not, in fact, a common node, nor have an approximation to one; nor have they an approximation to a common radius vector, as $S P$. But the objection vanishes when we consider that the elements of the different orbits must be variable; and time, a sufficient length of time, would separate the nodes and change the positions of the orbits so as to hide the common origin, as is now the case.

But if it be true that these planets once had a common origin in one large planet, it is possible to find the variable nature of the elements of their orbits to such a degree of exactness as to trace them back to that origin - define the place where, and the time when, the separation must have occurred.

If, however, a planet should burst at one time, and afterward one or more of the fragments burst, there could be no tracing to a common origin; hence it is possible that the asteroids in question may have a common origin, and it be wholly beyond the power of man to show it.

Снap. II. that the planet will move in a unit of time, when at the extremity of its shorter axis; then $\frac{1}{2} a B$ will express the area described in that unit of time.

But as equal areas are described in equal times, as often as this area is contained in the whole ellipse will be the number of such units in a revolution. Put $t=$ that number, or the time of revolution; then

$$
t=\frac{(3.1416) A B}{\frac{1}{2} a \bar{B}}=\frac{2(3.1416) A}{a}
$$

Let A^{\prime} and B^{\prime} be the semiaxes of any other ellipse; a^{\prime} the velocity at the extremity of B^{\prime}, and t^{\prime} the time of revolution; then will - $\quad t^{\prime}=\frac{2 \cdot(3.1416) A^{\prime}}{a^{\prime}}$.

By comparing these equations, and rejecting common factors, we have $-t: t^{\prime}:: \frac{A}{a}: \frac{A^{\prime}}{a^{\prime}}$.
But by Art. 162, $a=\sqrt{\frac{2 M}{A}}$, and $a^{\prime}=\sqrt{\frac{2 M}{A^{\prime}}}$
M mass of sun); and putting the values of a and a^{\prime}, in the above proportion, we have

$$
t: t^{\prime}:: A \frac{\sqrt{A}}{\sqrt{2 M}}: \frac{A^{\prime} \sqrt{A^{\prime}}}{\sqrt{2 M}}
$$

Or, - $\quad t: t^{\prime}:: A \sqrt{A}: A^{\prime} \sqrt{A^{\prime}}$.
By squaring $t^{2}: t^{\prime 2}:: \quad A^{3} \quad: A^{\prime 3}$; which is Kepler's third law.

Eccentricities of the planetary orbits change by their mu. tual attrac. tions.
(166.) We have seen, in articles 126 and 127, that the eccentricity of an orbit depends on the direction of the motion to the radius vector, when the planet is at mean distance. If that direction is at right angles to the radius vector, at that time, then the eccentricity is nothing. If its direction is very acute, then the eccentricity is very great, \&c.

Now suppose another planet to be situated at B (Fig. 30); its attraction on the planet, passing along in the orbit $p a$, is to give the velocity, a, a direction more at right angles to
$S p$, and thus to diminish the eccentricity of the orbit. If Chap. II. the disturbing body, \boldsymbol{B}, were anywhere near the line $\boldsymbol{C S}$, its The mean tendency would be to increase the eccentricity; and thus, in distances ne. general, A disturbing body near a line of the shorter axis of ${ }^{\text {ver vary. }}$ an orbit, has a tendency to diminish the eccentricity of the orbit of the disturbed body; and, arywhere near a line of the greater axis, has a tendency to increase the eccentricity. Hence the eccentricities of the planets change in consequence of their mutual attractions; but their mean distances never change.
(167.) As the time of revolution is always the same for the same mean distance, whatever be the eccentricity of the orbit, therefore if we conceive a planet to turn into an infinitely eccentric orbit, and fall directly to the sun, the time of such fall would be half a revolution, in an orbit of half its present mean distance, as we perceive, by inspecting Fig. 34.

Hence, by Kepler's third law, we can compute the time that would be required for any planet to fall to the sun. Let x represent the time a planet would revolve in this new and infinitely eccentric orbit; then, by Kepler's law,

$$
t^{2}: x^{2}:: 2^{3}: 1^{3}, \text { or, } \quad x^{2}=\frac{t^{2}}{8}
$$

Therefore half of the revolution, or simply the time of the fall, must be expressed by $\frac{t}{2 \sqrt{8}}$, or, $\frac{t}{4 \sqrt{2}}$; that is, to find the time in which any planet would

The principles and the computation of the time required for the plan. ets to fall to the sun. fall to the sun, if simply abandoned to its gravity, or the time in which any secondary planet would fall to its primary, divide its time of revolution by four times the square root of two.

By applying this rule, we find that

	Days. h. m.
Mercury would fall to the sun in.	$\begin{array}{lll}15 & 13 & 13\end{array}$
Venus,	$\begin{array}{lll}39 & 17 & 19\end{array}$
Earth,	$\begin{array}{lll}64 & 13 & 39\end{array}$
Mars,	$\begin{array}{lll}121 & 10 & 36\end{array}$
Jupiter,	$765 \quad 21 \quad 36$
Saturn,	$1901 \quad 23 \quad 24$
Uranus,	$5424 \quad 16 \quad 52$

The moon would fall to the earth in 4 d .19 h .54 m .36 s .

CHAPTER III.

MASSES OF THE PLANETS - DENSITIES - PRESSURE ON THEIR
SURFACES.

Chap. III.

$\overline{\text { Masses mea. }}$sured by attraction.
(168.) If the earth contained more matter, it would attract with greater force; and if the sun has a greater power of attraction than the earth, it is because it contains more matter than the earth; and therefore, if we can find the relative degree of attraction between two bodies, we have their relative masses of matter.

If the earth and sun have the same amount of matter, they will attract equally at equal distances. Let M be the mass of the sun, and E the mass of the earth, then (at the same unit of distance), the attraction of the sun is, to the attraction of the earth, as M to E.

But attraction is inversely as the square of the distance. Hence the attraction of the sun at D distance, is $\frac{M}{D^{2}}$; and the attraction of the earth at R distance is $\quad \frac{E}{R^{2}}$.

Gravity of the sun is measured by the devia. tion of the earth from a tangent of its orbit.

The earth is made to deviate from a tangent of its orbit by the attraction of the sun; and the moon is made to deviate from a tangent of its orbit by the attraction of the earth, and the amount of these deviations will give the respective amounts of solar and terrestrial gravity.

If we take any small period of time, as a minute or a second, and compute the versed sine of the are which the earth describes in its orbit during that time, such a quantity will express the sun's attraction; and if we compute the versed sine of the are which the moon describes in the same time, that quantity will express the attraction of the earth.
How to com-
pute the com. pute the comparative are; and if we take D to represent the mean distance bemasses of the tween the earth and sun, and consider the orbit a circle sun andearth (as we may without error, 164), the whole circumference is
$\pi D(\pi=6.2832)$. Divide the whole circumference by the Chap. iII. number of minutes in a revolution ; say T, and the quotient will represent the are a (Fig. 30). When T is very small, and of course a very small, the chord and are practically coincide; and by the well known property of the circle, we have

$$
\begin{equation*}
2 D: a:: a: F ; \quad \text { Or, } \quad F=\frac{a^{2}}{2 D} \tag{1}
\end{equation*}
$$

But $a=\frac{\pi D}{T} ;$ hence, $a^{2}=\frac{\pi^{2} D^{2}}{T^{2}}, \quad$ and $\frac{a^{2}}{2 D}=\frac{D_{\pi}}{2 T^{2}} ;$
That is, $F=\frac{\pi D}{2 T^{2}}$; which is an expression for the sun's
attraction at the distance of the earth. But $\frac{M}{D^{2}}$ is also an expression for the sun's attraction at the same distance; therefore,

$$
\frac{M}{D^{2}}=\frac{\pi D}{2 T^{2}} ; \quad \text { Or, } \quad M=\frac{\pi D^{3}}{2 T^{2}}
$$

In the same manner, if R represents the radius of the lunar orbit; t the number of minutes in the revolution of the moon; the mass of the central attracting body (in this case the earth) must be expressed by

$$
E=\frac{\pi^{2} R^{3}}{2 t^{2}} .
$$

Therefore, $\quad E: M:: \frac{R^{3}}{t^{2}}: \frac{D^{3}}{T^{\frac{1}{2}}}$.
This proportion gives a relation between the masses of the earth and sun expressed in known quantities.

If we assume unity for the mass of the earth, we shall have for the mass of the sun,

$$
\begin{equation*}
M=\frac{t^{2} D^{3}}{T^{2} R^{3}} \tag{A}
\end{equation*}
$$

(169.) This is a very general equation, for D may repre- The general sent the radius of the earth's orbit, or the orbit of Jupiter or application Saturn, and T will be the corresponding time of revolution. of this equa. Also R may represent the radius of the lunar orbit, or the
'Gaz. MI. orbit of one of Jupiter's or Saturn's moons, and then t will be its corresponding time of revolution.
The results This equation, however, is not one of strict accuracy, as of the equa- the distance a planet falls from the tangent of its orbit, in a tion will not be periectly accurate, and why?

Corrections for equation (A).

A more ac. curate equa. tion. tion. definite moment of time, is not, accurately $\frac{M}{D^{2}}$, but $\frac{M+E}{D^{2}}$ (see 156), E being the mass of the planet. The force which retains a moon in its orbit is not only the attracting mass of the central body, but that of the moon also. But the planets being very small in relation to the sun, and in general the masses of satellites being very small in respect to their primaries, the errors in using this equation will in general be very small. The error will be greatest in obtaining the mass of the earth, as in that case the equation involves the periodic time of the moon; which period is different from what it would be were the moon governed by the attraction of the earth alone; but the mass of the moon is no inconsiderable part of the entire mass of both earth and moon; and also the attraction of the sun on the combined mass of the earth and moon, prolongs the moon's periodical time by about its 179 th part.

With these corrections the equation will give the mass of the sun to a great degree of accuracy; but we can determine the mass of the sun by the following method:

From Art. 155, we learn that the attraction of the earth at the distance to the sun, is $g\left(\frac{r^{2}}{D^{2}}\right)$.

By Art. 168, we have just seen that the attraction of the sun on the earth, is $\frac{\pi^{2} D}{2 T^{2}}$; therefore,

$$
E: M:: g \frac{r^{2}}{\overline{D^{2}}}: \frac{\pi^{2} D}{2 T^{2}}
$$

Taking the mass of the earth as unity, we have

$$
\begin{equation*}
M=\frac{\pi^{2} D^{3}}{2 g r^{2} T^{2}} \tag{B}
\end{equation*}
$$

Equation (B) is more accurate than equation (A),
because (B) does not involve the periodical revolution of the Char. III. moon, which requires correction to free it from the effects of the sun's attraction. To obtain a numerical expression for How to obthe mass of the sun, M, the numerator and denominator of the tain the nuright hand member of equation (B), must be rendered homo- sult. geneous; and as g, the force of gravity of the earth, is expressed in feet (corresponding to T in seconds), therefore r the mean radius of the earth, and D the distance to the sun, must be expressed in feet. But from the sun's horizontal parallax, we have the ratio between r and D (see 127), which gives $D=23984 r$.

This reduces the fraction to $\frac{\pi^{2}(23984)^{3} r}{2 g T^{2}}$. But to ex-
press the whole in numbers, we must give each symbol its value ; that is, $\pi=6.2832 ; r=(3956)(5280) ; g=16.1$; $T=31558150$, the number of seconds in a sidereal year. Therefore, $\quad M=\frac{(6.2832)^{2}(23984)^{3}(3956)(5280)}{(32.2)(31558150)^{2}}$.

It would be too tedious to carry this out, arithmetically, An example without the aid of logarithms, and accordingly we give the logarithmetical solution, thus,

6.2832 log. 0.798178×2	1.596356
23.984 log. 4.380000×3	13.140000
3956 log.	3.597256
5280 log.	3.722632
Logarithm of the numerator,	22.056244

32.2 log.	1.507856	The mass of
31558150 log. 7.499114×2	14.998228	the sun de-
Logarithm of the denominator,	16.506084	
Therefore $M=354945$, whose log. is	5.550160	

That is, the mass or force of attraction in the sun is 354945 times the mass or attraction of the earth. La Place .

Сен⿱亠䒑．III．Says it is 354936 times；but the difference is of no conse－ quence．

Equation（ A ）gives 350750 ，but equation (B) ，as we have before remarked，is far more accurate，and the result here given，agrees，within a few units，with the best author－ ities．

Equation（ B ）is not general；it will only apply to the relative masses of sun and moon，because we do not know the element g ，the attraction，on the surface of any other planet，except the earth．That is，we do not know it as a primary fact；we can deduce it after we shall have determined the mass of a planet．

Equation（ A ）is general，and although not accurate，when applied to the earth and sun，is sufficiently so when applied to finding the masses of Jupiter，Saturn，or Uranus；because these planets are so remote from the sun，that the revolutions of their satellites are not troubled by the sun＇s attraction．

To find the masses of Ju． piter，Saturn， and Uranus．
（170．）To find the mass of Jupiter（or which is the same thing，the mass of the sun when Jupiter is taken as unity），we conceive the earth to be a moon revolving about the sun，and compare it with one of Jupiter＇s satellites revolving round that body．To apply equation（ A ），let the radius of the earth equal unity，then the radius of Jupiter must be 11.11 （Art．131）；and as observation shows the radius of Jupiter＇s 4th satellite is 26.9983 times its equatorial radius，therefore the distance from the center of Jupiter to the orbit of its 4 th satellite，must be the following product（11．11）（26．9983）， which corresponds to R in the equation．$\quad D=23984$ ； $T=365.256$ ；$t=16.6888$ ．

Therefore，by applying equation $(A),\left(M=\frac{t^{2} D^{3}}{T^{2} R^{3}}\right)$ ；we have

$$
M=\frac{(16.6888)^{2}(23984)^{3}}{(365.256)^{2}(11.11)^{3}(26.9983)^{3}} .
$$

By logarithms 16.6888 log． 1.222410×2 ． 2.444820

$$
23984 \text { log. } 4.380000 \times 3.13 .140000
$$

Logarithm of the numerator， 15． 584820

365.256 log. 2.562600×2	5.125200
11.11 log. 1.045714×3	3.137142
26.9983 log. 1.431320×3	4.293960
the denominator,	12.556302
$=1068 * \log$.	3.028518

This result shows that the mass of the sun is 1068 times the mass of Jupiter; but we previously found the mass of the sun to be 354945 times the mass of the earth, and if unity is taken for the mass of the earth, and J for the mass of Jupiter, we shall have

$$
1068 J=354945
$$

because each member of this equation is equal to the mass of the sun.

By dividing both members of this equation by 1068 , we The mass of find the mass of Jupiter to be 332 times that of the earth; Jupiter combut in Art. 132, we found the bulk of Jupiter to be 1260 of the earth. times the bulk of the earth; therefore the density of Jupiter is much less than the density of the earth.

In the same manner we may find the masses of Saturn and The masses Uranus - the former is 105.6 times, and the latter 18.2 of Saturn times the mass of the earth.

The principles embraced in equation (A) apply only to those planets that have satellites; for it is by the rapid or slow motion of such satellites that we determine the amount of the attractive force of the planet.

In short, the masses of those planets which have satellites, What reare known to great accuracy; but the results attached to sults may be others in table IV, must be regarded as near approximations. ${ }^{\text {considered }}$

The slight variations which the earth's motion experiences The masses by the attractions of Venus and Mars, are sufficiently sensi- of Venus, ble to make known the masses of these planets; and M. Mercury. Burckhardt gives $\overline{405 \overline{5}^{\frac{1}{8}} \overline{7}}$ for Venus, and $\overline{2} \overline{5} \frac{1}{6} \overline{3} \overline{2} \overline{0}$ for Mars (the mass of the sun being unity); Mercury he put down at

[^24]Chap. III
$\overline{2} \overline{0} \frac{1}{2} \frac{1}{5} \overline{1} \overline{1} 0$; but this result is little more than hypothetical, as it is drawn from its volume, on the supposition that the densities of the planets are reciprocal to their mean distances from the sun; which is nearly true for Venus, the earth, and Mars.
By means of gravity and the lunar parallax, we may find the diameter of the earth.
(171.) It may be astonishing, but it is nevertheless true, that by means of equations (A) and (B) we can find the diumeter of the earth to a greater degree of exactness than by any one actual measurement.

We have several times observed that equation (A) is not accurate when used to find the masses of the earth and sun, because it contained the time of the revolution of the moon; which revolution is accelerated by the gravity of the moon, and retarded by the action of the sun.

Therefore, to make equation (A) accurately express the mass of the sun, the element t^{2} requires two corrections, which will be determined by subsequent investigation. The first is an increase of $\frac{1}{7}$ th part; the second is a diminution of $\frac{1}{3} \frac{1}{8}$ th part, and both corrections will be made if we take $76 \cdot 358$ $\frac{75 \cdot 359}{7} t^{2}$ in place of t^{2}.

A common axiom.

Then having two correct expressions for the mass of the sun, those two expressions must equal each other ; that is,

$$
\frac{76 \cdot 358 t^{2} D^{3}}{75 \cdot 359 T^{2} R^{3}}=\frac{\pi^{2} D^{3}}{2 g r^{2} T^{2}}
$$

By suppressing common factors, we have

$$
\frac{76 \cdot 358 t^{2}}{75 \cdot 359 R^{3}}=\frac{\pi^{2}}{2 g r^{2}}
$$

In this equation r represents the mean radius of the earth, and we will suppose it unknown; the equation will then make it known.

The relation between R, the mean radius of the lunar orbit, and r, the mean radius of the earth, is given by means of the moon's horizontal parallax.

Equatorial horizontal parallax and

The moon's equatorial horizontal parallax, as we have seen, (65) is $57^{\prime} 3^{\prime \prime}$; but the horizontal parallax for the mean ra-
dius, is $56^{\wedge} 57^{\prime \prime}$; this makes $R=(60.36) r$, whatever the Снар. III. numerical value of r may be. Put this value of R in the mean horipreceding equation, and suppress the common factor r^{2}, zontal paralwe then have $\frac{76 \cdot 358 t^{2}}{75 \cdot 359(60.36)^{3} r}=\frac{\pi^{2}}{2 g}$.

Therefore,

$$
r=\frac{2 g \cdot 76 \cdot 358 t^{2}}{75 \cdot 359(60.36)^{3 \pi^{2}}}
$$

As g is expressed in feet, and corresponds to t in seconds, Confidence the numerical value of r will be in feet, which divided by in the result. 5280 , the number of feet in a mile, will give the number of miles in the mean radius or mean semidiameter of the earth; and by applying the preceding equation, giving g, t, and π, their proper values; and by the help of logarithms, we readily find $r=3953$ miles ; only three miles from the most approved result; and we do not hesitate to say, that this result is more to be relied upon than any other.

MASS OF THE MOON.

(172.) Approximations to the mass of the moon have The mass of been determined, from time to time, by careful observations the moon on the tides; but it is in vain to look for mathematical re- originally sults from this source ; for it is impossible to decide whether from obserany particular tide has been accelerated or retarded, aug- vations on mented or diminished, by the winds and weather; and if not affected at the place of observation, it might have been at remote distances; but notwithstanding this objection, the mass of the moon can be pretty accurately determined by means of the tides, owing to the great number and variety of observations that can be brought into the account; and we shall give an exposition of this deduction hereafter; but at present we shall confine our attention to the following simple and elegant-method of obtaining the same result.

If the moon had no mass; that is, if it were a mere material point, and was not disturbed by the attraction of the sun, then the distance that the moon would fall from a tangent of its orbit, in one second of time, would be just equal

Chap. III. to $\frac{g r^{2}}{R^{2}}$. (Art. 155.) In this expression g, r, and R, represent the same quantities as in the last article. The distance that the moon actually falls from a tangent of its orbit, in one second of time, is equal to the versed sine of the are it describes in that time, and the analytical expression for it is found thus:

Let $r R$ represent the circumference of the lunar orbit, and if t is put for the number of seconds in a mean revolution, then $\frac{\pi R}{t}$ represents the are corresponding to the moon's motion in one second (Fig. 30), and as this so nearly coincides with a chord, we have

$$
2 R: \frac{\pi R}{t}:: \frac{\pi R}{t}: \frac{\pi^{2} R}{2} \frac{1}{t^{2}} .
$$

An expres. sion for the distance the moon falls in one second of time.

Hence, we perceive, that $\frac{\pi^{2} R}{2 t^{2}}$ is the distance that the moon would fall from the tangent of its orbit in one second of time, if it were undisturbed by the action of the sun; but we can free it from such action by multiplying it by $\frac{359}{358}$, as we shall show in a subsequent chapter. That is, the attraction of both the earth and moon, at the distance of the lunar orbit, is $\frac{359 \pi^{2} R}{358 \cdot 2 t^{2}}$.

But the attraction of the earth alone, at the same distance, is $\frac{g r^{2}}{R^{2}}$; and comparing these quantities with the more general expressions in Art. 156, we have

$$
\frac{E}{R^{2}}: \frac{E+m}{R^{2}}:: \frac{g r^{2}}{R^{2}}: \frac{359 \pi^{2} R}{358 \cdot 2} \frac{R}{t^{2}} .
$$

By suppressing the common denominator, in the first couplet, and calling E; the mass of the earth, unity, the proportion reduces to

$$
1: 1+m:: g r^{2}: \frac{359 \pi^{2} R^{3}}{358 \cdot 2 t^{2}}
$$

As in the last article, $R=(60.36) r$, and this value put for Crap. III. R^{3}, and reduced, gives

$$
1: 1+m:: g: \frac{359 \pi^{2}(60.36)^{3} r}{388 \cdot 2 t^{2}} ;
$$

Therefore, - $-1+\bar{m}=\frac{359 \pi^{2}(60.36)^{3} r}{358 \cdot 2 t^{2} g}$.
This fraction, as well as the one in the last article, can be reduced arithmetically; but the operation would be too tedious; they are both readily reduced by logarithms, by which we found $1+m=1.01301$; hence $m=.01301$, which is a little less than $\frac{1}{76}$ th. Laplace says $\frac{1}{75}$ th of the earth is the true mass of the moon; and this value we shall use.

Result given by Laplace.

THE DENSITIES OF BODIES.

(173.) The density of a body is only a comparative term, Standard and to find the comparison, some one body must be taken as ${ }^{\text {for density. }}$ the standard of measure. The earth is generally taken for that standard.

It is an axiom, in philosophy, that the same mass, in a smaller volume, must be greater in density; and larger in volume, must be less in density; and, in short, the density must be directly proportional to the mass, and inversely proportional to the volume; and if the earth is taken for unity in mass, and unity in volume, then it will be unity in density also ; and the density of any other planetary body will be its mass divided by its volume; and if its volume is not given, the density may be found by the following proportion, in which d represents the density sought, and r the radii of the body; the radius of the earth being unity. The proportion is drawn from the consideration that spheres are to one another as the cubes of their radii.

$$
\frac{1}{1}: \frac{\text { mass }}{r^{3}}:: 1: d ; \text { hence } d=\frac{\text { mass }}{r^{3}}
$$

From this equation we readily find the density of the sun, for we have its mass (354945), and its semidiameter $111.6 \begin{gathered}\text { Expression } \\ \text { for the den- }\end{gathered}$ times the semidiameter of the earth (Art. 156); therefore its sities of

Chap. III. spheres com. pared to the density of the earth. density must be $\frac{354945}{(111.6)^{3}}=0.254$, or a little more than $\frac{1}{4}$ th the density of the earth.

The mass of Jupiter is 332 times that of the earth, and its volume is 1260 times the volume of the earth; therefore the density of Jupiter is $\frac{332}{1260}=0.264$; which is a little more than the density of the sun.
Densities of Jupiter, moon, \&c. density is $\frac{1}{75}$ divided by $\frac{1}{4} \frac{7}{9}$, or $\frac{4}{7} \frac{9}{5}=0.6533$; about $\frac{2}{3}$ the density of the earth.

From these examples the reader will understand how the densities were found, as expressed in table IV.

GRAVITY ON THE SURFACE OF SPHERES.

Gravity on the surfaces of the other planets, how found.
(174.) The gravity on the surface of a sphere depends on the mass and volume. The attraction on the surface of a sphere is the same as if its whole mass were collected at its center; and the greater the distance from the center to the surface, the less the attraction, in proportion to the square of the distance: but here, as in the last article, some one sphere must be taken for the unit, and we take the earth, as before.

The mass of the sun is 354945 , and the distance from its center to its surface is 111.6 times the semidiameter of the earth; therefore a pound, on the surface of the earth, is to the pressure of the same mass, if it were on the surface of the sun, as $\frac{1}{1}$ to $\frac{354945}{(111.6)^{2}}$, or as 1 to 28 nearly. That is, one pound on the surface of the earth would be nearly 28 pounds on the surface of the sun, if transported thither.

The mass of Jupiter is 332, and its radius, compared to that of the earth, is 11.1 (Art. 131); therefore one pound, on the surface of the earth, would be $\frac{332}{(11.1)^{2}}$, or 2.48 pounds on the surface of Jupiter; and by the same principle, we can compute the pressure on the surface of any other planet. Results will be found in table IV.

CHAPTER IV.

PROBLEM OF THE THREE BODIES. - LUNAR PERTURBATIONS.
(175.) By the theory of universal gravitation, every body in the universe attracts every other body, in proportion to its mass; and inversely as the square of its distance; but simple and unexceptionable as the law really is, it produces very complicated results, in the motions of the heavenly bodies.
If there were but two bodies in the universe, their motions would be comparatively simple, and easily traced, for they ${ }_{\text {results. }}^{\text {plexity }}$ of would either fall together or circulate around each other in some one undeviating curve; but as it is, when two bodies circulate around each other, every other body causes a deviation or vibration from that primary curve that they would otherwise have.

The final result of a multitude of conflicting motions cannot be ascertained by considering the whole in mass; we must take the disturbance of one body at a time, and settle upon its results; then another and another, and so on; and the sum of the results will be the final result sought.

We, then, consider tro bodies in motion disturbed by a third body; and to find all its results, in general terms, is lem of the three bodies. the famous problem of "the three bodies;" but its complete solution surpasses the power of analysis, and the most skillful mathematician is obliged to content himself with approximations and special cases. Happily, however, the masses of most of the planets are so small, in comparison with the mass of the sun, and their distances so great, that their influences are insensible.

We shall make no attempt to give minute results; but we hope to show general principles in such a manner, that the reader may comprehend the common inequalities of planetary motions.

Let m, Fig. 34, be the position of a body circulating around Abstract another body, A, moving in the direction $P m B$, and dis- attraction. turbed by the attraction of some distant body, D.

Chap IV.

Two bodies equally attracted in parallel lines are not affected in their mutual relations.

Fig. 35.

We now propose to show some of the most general effects of the action of D, without paying the least regard to quantity.

If A and m were equally attracted by D, and the attraction exerted in parallel lines, then D would not disturb the mutual relations of A and m. But while m is nearer to D than A is to D, it must be more strongly attracted, and let the line $m p$ represent this excess of attraction. Decompose this force (see Nat. Phil.) into two others, $m n$ and $n p$, the first along the line $A m$, the other at right angles to it.

The first is a lifting force (called by astronomers the radial force), the other is a tangental force, and affects the motion of m. It will accelerate the motion of m, while acting with it, from P to B, and retard its motion, while acting against it, from B to Q.

We must now examine the effect, when the revolving body is at m^{\prime}, a greater distance from D than A is from D.

Now A is more strongly attracted than m^{\prime}, and the result of this unequal attraction is the same as though A were not attracted at all, and m^{\prime} attracted the other way by a force equal to the difference of the attractions of D on the two bodies A and \dot{m}^{\prime}. Let this difference be represented by the line $m^{\prime} p^{\prime}$, and decompose it into two other forces, $m^{\prime} n^{\prime}$ and $n^{\prime} p^{\prime}$, the first a lifting force, the other the tangental force.

The rationale of this last position may not be perceived by every reader, and to such we suggest, that they conceive A and m^{\prime} joined together by an inflexible line, $A m^{\prime}$, and both A and m^{\prime} drawn toward D, but A drawn a greater distance than m^{\prime}. Then it is plain that the position of the line $A m^{\prime}$ will be changed; the angle $D A m^{\prime}$ will become greater, and the sngle $C A m^{\prime}$ less - that is, the motion of m^{\prime} will be
accelerated from Q to C, but from C to P it will be re- Chap.iv. tarded.

In short, the motion of m will be accelerated when moving to- The disward the line $D B C$, and retarded while moving from that line. turbing body That is, retarded from B to Q, accelerated from Q to C, re- ${ }^{\text {constantly }}$ urevoltarded from C to P, and again accelerated from P to B.

If we conceive A to be the earth, m the moon, and D the ving body to the line of syzigies. sun; then $D B C$ is called the line of the syzigies, a term which means the plane in which conjunctions and oppositions take place. At the point B the moon falls in conjunction with the sun, and is new moon; at the point C it is in opposition, or full moon.
(176.) Conceive a ring of matter around a sphere, as represented in Fig. 36, and let it be either attached or detached from the sphere, and let D be not in the plane of the ring.

From what was explained in the last article, the particles of matter at m are constantly urged toward the line $D B C$, and the particles at m^{\prime} are constantly urged toward the same plane; that is, the attraction of D, on the ring, has a tendency to diminish its inclination to the line $D B C$; and its position would be changed by such attraction from what it would otherwise be;

Fig. 36.

Action of an attracting body on a ring. and if the ring is attached to the sphere, the sphere itself will have a slight motion in consequence of the action on the ring.

Now there is, in fact, a broad ring attached to the equatorial part of the earth, giving the whole a spheroidal form; and the plane of the equator is in the plane of the ring.

When the sun or moon is without the plane of this ring, that is, without the plane of the equator, their attraction has nutation. a tendency to draw the plane of the equator toward the attracting body, and actually does so draw it; which motion is called nutation. How this motion was discovered, and its amount ascertained, will be explained in a subsequent chapter.
(177.) We may conceive the line $D B C$ to be in the

Chap. IV. Applica. the moon's orbit, inclined to the plane of the ecliptic with an tion of the ring to the Junar orbit.

The moon's nodes retro• grade.

Fig. 37.
 moon falls into the ecliptic from its greatest inclination before it describes 90°, and goes from node to node before it describes 180° - and hence we say that the moon's nodes fall backward on the ecliptic. The rate of retrogradation is $19^{\circ} 19^{\prime}$ in a year, making a whole circle in about 18.6 years.
(178.) We are now prepared to be a little more definite, and inquire as to the amount of some of the lunar irregularities.

Let S be the mass of the sun, E that of the earth, and m the moon, situated at D. Let a be the mean distance between the earth and sun, z the distance between the sun and moon, and r the mean radius of the lunar orbit. Let the moon have any indefinite position in its orbit. (It is represented in the figure at D.)

The attraction of the sun on the earth is $\frac{S}{a^{2}}$, the attrac-
tion of the sun on the moon is $\frac{S}{z^{2}}$; and the attraction of the Catp. iv. earth and moon, on the moon, is $\frac{E+m}{r^{2}}$. (Art. 156.)

Let the line $D B$, the diagonal of the parallelogram $A C$, be the attraction of the sun on the moon, and decompose it into the two forces $D A$ and $D C$; the first along the lunar radius vector, the other parallel to $S E$.

The two triangles $C D B$ and $D S E$ are similar, and give the proportion $a: z:: C D: D B$. But $D B=\frac{S}{z^{2}}$;

Therefore $C D=\frac{a S}{z^{3}}$. By a similar proportion we find D $A=\frac{r S}{z^{3}}$.

Let the angle $S E D$ be represented by x, then $D G$ will be expressed by $r \cos x$, and $S D G$ will be a right line nearly, for the angle $D S E$ is never greater than 7^{\prime}.

Now if the force $D C$, which is parallel to $S E$, is only equal to the force of the sun's attraction on the earth, it will not disturb the mutual relations of the earth and moon. The force of the sun's attraction on the earth is $\frac{S}{a^{2}}$; and as this must be less than the force of attraction on the moon, when the moon is at D, conceive it represented by the line $C n$, and subtracted from $C D$, will leave $D n$ the excess of the sun's attraction on the two bodies, the earth and the moon; and this alone constitutes the disturbing force of the moon's motion ;

That is, $\quad D n=C D-C n=\frac{a S}{z^{3}}-\frac{S}{a^{2}} ;$
Or $D n=a S\left(\frac{1}{z^{3}}-\frac{1}{a^{3}}\right)$, the disturbing force. Decom-
pose this force ($D n$) into two others, $D p$ and $p n$, by means of the right angled triangle $D p n$; the angle $p D n$ being equal to $D E S$, which we represent by x.

Chap. 1V.
Whence $\quad D p=S a\left(\frac{1}{z^{3}}-\frac{1}{a^{3}}\right)$ cos. x;
And $\quad p n=S a\left(\frac{1}{z^{3}}-\frac{1}{a^{3}}\right) \sin . x$.
The force $D \dot{A}$, i.e. $\left(\frac{r S}{z^{3}}\right)$ is called the additious force;
The radial the force $D p$ the ablatitious force. The difference of these force. two forces is called the radial force; that is
$S a\left(\frac{1}{z^{3}}-\frac{1}{a^{3}}\right) \cos . x-\frac{r S}{z^{3}}=$ the radial force; $p n$ is the tangental force.
Expression of the radial of the radial When the angle x is equal to 90°, $\cos . x=0, S D=S E$, or $z=a$; which values, substituted, give $-\frac{r S}{a^{3}}$ for the value of the radial force at the quadratures, and its tendency there is to increase the gravity of the moon to the earth. When the angle x is zero (the moon is in conjunction with the sun) the $\cos . x=1$, and the radial force becomes

$$
\frac{S a}{z^{3}}-\frac{S a}{\alpha^{3}}-\frac{r S}{z^{3}} ; \text { or } \frac{S(a-r)}{z^{3}}-\frac{S \alpha}{a^{3}} .
$$

But at that point $z=(a-r)$, which value substituted, and rejecting the comparatively very small quantities in both numerator and denominator, we have, for the radial force at conjunction, $\frac{2 r S}{a^{3}}$.

When the angle $x=180^{\circ}$ (the moon is in opposition to the sun), $\cos . x=-1$, and the force becomes

$$
\frac{S a}{\alpha^{3}}-\frac{S a}{z^{3}}-\frac{r S}{z^{3}} ; \text { or } \frac{S}{\alpha^{2}}-\frac{S(\alpha+r)}{z^{3}}
$$

But at this point $z=\alpha+r$, which, substituting as before, and we have for the radial force in opposition $\frac{2 r S}{a^{3}}$, the same expression as at conjunction.

If we compare the radial force at the syzigies with the expression for it at the quadratures, we shall find it the same in form, but double in amount and opposite in sign, showing that it is opposite in offect.
(179.) As the radial force increases the gravity of the moon to the earth, at the quadratures, and diminishes it at the syzigies, there must be points in the orbit symmetrically situated, in respect to the syzigies, where the radial force neither increases nor diminishes the gravity, and of course its expression for those points must be zero; and to find these points we must have the equation

$$
\begin{equation*}
S a\left(\frac{1}{z^{3}}-\frac{1}{a^{3}}\right) \cos . x-\frac{r S}{z^{3}}=0 \tag{1}
\end{equation*}
$$

By inspecting the figure we perceive that the line $S D G$ is in value nearly equal to the line $S E$, and for all points in the orbit we have

$$
\begin{equation*}
z=a \pm r \cos . x \tag{2}
\end{equation*}
$$

Reducing equation (1) we have

$$
\begin{equation*}
\left(a^{3}-z^{3}\right) \cos x=r a^{2} \tag{3}
\end{equation*}
$$

Cubing (2)

$$
z^{3}=a^{3} \pm 3 a^{2} r \cos x \mp 3 a r^{2} \operatorname{cos.}^{2} x \pm r^{3} \cos { }^{3} x
$$

As r is very small in relation to a, the terms containing the powers of r, after the first, may be rejected; we then have

$$
\begin{equation*}
\left(a^{3}-z^{3}\right)=\mp 3 a^{2} r \cos . x \tag{4}
\end{equation*}
$$

This value substituted in (3), and reduced, gives

$$
\mp 3 \cos ^{2} x=1
$$

Hence cos. $x=\sqrt{\frac{1}{3}}$ and $x=54^{\circ} 44^{\prime}$, or the points are $35^{\circ} 16^{\prime}$ from the quadratures.

Result of the radial force at the quadratures and syzigies.

This shows that at the quadratures, and about 35° on each side of them, the gravity of the moon is increased by the action of the sun, and at the syzigies, and about 54° on each side of them, the gravity is diminished; and the diminution in the one case is double the amount of increase in the other, and by the application of the differential calculus we Mean radial force. learn that the mean result, for the entire revolution, is a diminution whose analytical expression is $\frac{r S}{2 a^{3}}$; an expression which holds a very prominent place in the lunar theory; the

Chap. IV.
result of which we have used in Art. 171, and there stated it to be $-\frac{1}{5} \frac{\text { th }}{5}$ part of the force that retained the moon in its orbit.

Value of the mean ra. dial force, and how found.

But how do we know this to be its numerical value, is a very serious inquiry of the critical student?
The force that retains the moon in its orbit is $\frac{\boldsymbol{E}+\boldsymbol{m}}{r^{2}}$ (Art. 156) ; and if the radial force can be rendered homogeneous with this, some numerical ratio must exist between them. Let x represent that ratio, and we must find some numerical value for x to satisfy the following equation :

$$
\begin{align*}
& \frac{r S}{2 a^{3}} x=\frac{E+m}{r^{2}} \tag{A}\\
& x=\frac{2(E+m) a^{3}}{r^{3} S}
\end{align*}
$$

Therefore
calling $E=1, m=\frac{1}{7}$ (Art. 172), or $E+m$ is 1.013 . $S=354945$ (Art. 169), and the relation between the mean distance to the sun, and the mean radius of the lunar orbit, is $397.3, *$ therefore

$$
x=\frac{(2.026)(397.3)^{3}}{354945}=358 ;
$$

or the coefficient to x, in equation (A), is one three hundredth and fifty-eighth part of the force which retains the moon in its orbit.

General ef. fect of the radial force.
(180.) The mean radial force causes the moon to circulate at $\frac{1}{3} \frac{1}{8}$ th part greater distance from the earth than it otherwise would have, and its periodical revolution is increased by its 179 th part; but this would cause no variation or irregularity in its distance or angular motion, provided its orbit were circular, and the earth and moon always at the same mean distance from the sun.
Thie radial
force varia. But we perceive the expression $\frac{r S}{2 a^{3}}$ contains two variable rorce variable. quantities, r and a, which are not always the same in value; and, therefore, the value of the expression itself must be va-

[^25]riable; and it will be least when the earth is at the greatest Crap. Iv. distance from the sun, and, of course, the moon's motion will then be increased. But the earth's variable distance from
the sun depends on the eccentricity of the earth's orbit; and hence we perceive that the same cause which affects the apparent solar motion, affects also the motion of the moon, and

The annu. al equation of the moon's motion. gives rise to an equation called the annual equation* of the moon's motion. It amounts to 11^{\prime} in its maximum, and varies by the same law as the equation of the sun's center.
(181.) If we take the general expressions for the radial A general expression
 from it by means of the equation point of the moon's orbit,

Or,

$$
\begin{aligned}
& z=a \pm r \cos x \\
& z^{3}=a^{3} \pm 3 a^{2} \cdot \cos . x
\end{aligned}
$$

(n eglecting the powers of r) and we shall have,

$$
\frac{r S\left(3 \cos .^{2} x-1\right)}{a^{3}}
$$

for an expression of the radial force corresponding to any angle x from the syzigy.

If we take the general expression for the line $p n$, the tangental force, and banish z, as before, we have,
tangental force, $\quad=\frac{3 r s \cos x \sin . x}{a^{3}}$.
By doubling numerator and denominator this fraction can Expression take the following form :

$$
\frac{3 r s(2 \cos . x \sin x)}{2 a^{3}}
$$

But, by trigonometry, $2 \cos . x \sin . x=\sin .2 x$,
Therefore the tangental force $=\frac{3 r s \sin .2 x}{2 a^{3}}$.
This expression vanishes when $x=0$ and $x=90^{\circ}$; for then Its vanish. $\sin .2 x=\sin .180=0$. Hence the tangental force van- ${ }^{\text {ing points. }}$ ishes at the syzigies and quadratures, attains its maximum

Ch.ip. Iv. value at the octants, and varies as the sine of the double angular distance of the moon from the sun.
The tan. The mean maximum for this force must be determined by gental force greatest when the earth is in perigee. observation. It is known by the name of variation, and by mere inspection we can see that its amount must correspond to the variations of r and of a^{3}. Hence, to obtain the moon's place, we must have correction on correction.

The variation amounts to about 35^{\prime}. It increases the velocity of the moon from the quadratures to the syzigies, and diminishes it from the syzigies to the quadratures; hence, in consequence of the variation, the velocity of the moon is greatest at the syzigies, and least at the quadratures.
Application (182.) Let us now examine the effect of the radial force of the radial force to an elliptical orbit. on the lunar orbit, considered as elliptical.

Let $S E$ (Fig. 37) be at right angles to $A B$, the greater axis of the lunar orbit, and conceive $A C B$ to represent the orbit that the moon would take if it were undisturbed by the sun.

But when the moon comes round to its perigee at A, it is in one of its quadratures, and the radial force then increases the gravity of the moon toward the earth by the expression $\frac{r s}{a^{3}}$. But here r is less than its mean value, and the expression is less than its mean, and therefore the moon is not crowded so near the earth as it otherwise would be, and, of course, at this point the moon will run farther from the earth.
At the point C, the radial force tends to increase the distance between the earth and moon, and to widen the orbit.

When the moon passes round to B, the radial force again
$\frac{r s}{a^{3}}$, is greater than its mean value; and, of course, crowds the $\frac{\text { Chap. IV. }}{\text { decreases }}$ moon nearer to the earth than it otherwise would go; and the eccentrithus we perceive that the action of the radial force on an el- $\begin{gathered}\text { city of the lu } \\ \text { nar ellipe. }\end{gathered}$ liptical orbit has a tendency to decrease the eccentricity of the ellipse, when the sun is at right angles to its greater axis.
(183.) Now conceive the sun to be in a line, or nearly in a line, with the longer axis of the lunar orbit, as represented in Fig. 38.

The radial force at the quadratures, C and D, has a tendency to press in the orbit, or narrow it. At the point A, the tendency, it is true, is to increase the distance between the earth and moon; but that tendency is not so strong as it would be if the moon were at its mean distance from the earth.

The tendency at B is to increase the distance, and it is a tendency greater than the medium. That is, the tendency at A is less than the medium; at B, greater than the medium; and at C and D, the compressed parts of the orbit, the tendency is to a still greater compression; therefore, the entire action of the radial force is to increase the eccentricity of the lunar orbit, when the sun is in line, or nearly in line, with the longer axis.
Fig. 39. $\underbrace{\substack{\text { Whien the } \\ \text { radial foroe } \\ \text { increases the } \\ \text { eccentricity } \\ \text { of the Junar } \\ \text { orbit. }}}$

When the radial force increases the eccentricity of the lunar orbit.

Thus, we perceive, that under the disturbing action of the sun, the eccentricity of the moon's orbit must be in a state of perpetual change, now more, now less, than its mean state.

Corresponding with this change of eccentricity there must be changes in the lunar motion; and to keep account of it, and allow for it, astronomers have formed a table called evection.

Chap. Iv. (184.) Now let us examine the effect of the radial force Effect of on the position of the lunar apogee.

force on the motion of the hanar perigee.

Retrograde motion of the perigee and apogee.

Fig. 40.

Let E (Fig. 40), be the earth, and, for the sake of simplicity, we conceive the earth to be stationary, and the sun and moon both to revolve about it with their apparent angular velocities; the moon in the orbit $A C B$, and in the direction $A C B$; the sun in a distant orbit, part of which is represented by $S S^{\prime}$.

Let $A B$ be the greater axis of the moon's orbit, in its natural position, or as it would be if undisturbed by the sun; and being undisturbed, the perigee and apogee would remain constant at the points A and B, and the time from A to B, or from B to A, would be just equal to the mean time of half a revolution, as explained in a former part of this work.

Now let us conceive the sun to be in its orbit at S, then the moon will be in the syzigy when it comes round to s, and as the radial force at that point tends to increase the distance between the earth and the moon, the apogee will take place at s, or between s and B; and it is evident that the apogee in that case would recede or run back. But at

The major axis of the lunar orbit is inclined to follow the sun. the next revolution of the moon, in a little more than twentyseven days, the sun at that time will, apparently, have moved to S^{\prime} about twenty-seven degrees. Now the syzigy will take place at s^{\prime}, and the greatest distance between the earth and moon will now be between B and s^{\prime}, that is, the apogee will adrance, in one revolution, from near s to near s^{\prime}; and thus, in general, the longer axis of the moon's orbit is strongly inclined to follow the sun; and this is the source of its progressive motion. It makes a revolution in $3232 \frac{1}{2}$ days; but its motion is very irregular, for, as we have just seen,
when the line which joins the earth and sun makes a very acute angle with the longer axis of the lunar orbit, and is approaching that axis, the motion of the apogee and perigee is retrograde; but, all of a sudden, when the sun passes the longer axis of the lunar orbit, the motion of the apogee becomes direct, and moves with considerable rapidity.

When the sun is at right angles to the major axis of the moon's orbit, the tendency of the radial force is to diminish the eccentricity of the orbit, but it has no tendency to change the position of the axis.

From this investigation it follows, that when the sun has just passed the greater axis of the lunar orbit, the interval from apogee to apogee, or from perigee to perigee, will be greater than a revolution. Just before the sun arrives at the position of the longer axis, the time from one apogee to another is less than a revolution; and when the sun is at right angles to the longer axis, the time is just equal to a revolution in longitude.
(185.) By comparing eclipses of the moon, observed by the ancient Egyptians and Chaldeans, with those of more modern times, Dr. Halley, and other astronomers, concluded that the periodic time of the moon is now a little shorter than at those remote periods; and to make these extreme observations agree with modern ones, it became necessary to conceive the moon's mean motion to be accelerated about 11 seconds per century.

For a long time this fact seriously perplexed astronomers; some were for condemning the theory of gravity as insuffcient to explain the cause of the lunar perturbations, while others were for rejecting the facts, although as well established as any mere historical facts could be.

In this dilemma, says Herschel, "Laplace stepped in to rescue physical astronomy from reproach by pointing out the real cause of the phenomenon in question."

Although this subject troubled the greatest philosophers of the past age - the greatest mathematical philosophers the world ever saw - the problem is quite simple, now the solution is pointed out, and we are sure that every reader of or-

Chap. 1V.

A summary statement of the cause.
dinary capacity can understand it, provided he gives his serious attention to the subject.

The secular acceleration of the moon's mean motion is caused by a small change in the mean value of the radial force, occasioned by a change in the eccentricity of the earth's orbit.

The expression $\frac{r S}{2 a^{3}}$ is the mean radial force of the sun acting on the moon's orbit, dilating it and increasing the time of the lunar revolution.

When the moon's motion is increased.

If the earth's orbit had no eccentricity, $2 a^{3}$, the denominator of the fraction, would always have the same value, and then regarding the numerator as constant, there would be no variation of the moon's motion arising from this cause. But in consequence of the earth and moon moving toward the apogee of the earth's orbit, a, of course, a^{3} becomes greater, and the value of the radial force becomes less than its mean value, and in consequence of this, the moon's motion is increased. And when the earth and moon move to-
When di- ward the earth's perigee, a and a^{3} become less, and the minished. value of the radial force becomes greater than its mean; the moon's orbit is dilated to excess, and its motion is diminished;
The ex. and the orbit is more dilated when the earth is in perigee than it pression for is contracted when the earth is in apogee. In other words, the the mean radial force is mean dilatation of the lunar orbit is greater, and the mean not the true motion of the moon less, in proportion as the earth's orbit is mean. more eccentric.

The less the value of $\frac{r S}{2 a^{3}}$ the greater is the moon's mean motion, and that value is least when a is greatest. But a would have no variation of value if the earth's orbit were circular.

The earth's orbit, however, is eccentric, and in the course of a year the value of the radial force is exactly expressed by $\frac{r S}{2 a^{3}}$ only at two instants of time, when the earth passes the extremities of the shorter axis of its orbit. At all other times a is either greater or less than its mean value, and the variations are equal on each side of it; that
is, a becomes $(a-d)$ or $(a+d)$, and the radial force is Ciapr. IV. really

$$
\frac{r S}{2(a-d)^{3}} \text { or } \frac{r S}{2(a+d)^{3}}
$$

which expressions correspond to equal distances on each side The true of the mean distance, and d may have all values, from 0 to mean value $a e$, the eccentricity. The mean value of the radial force force. corresponding to the whole year, is equal to

$$
\frac{1}{2}\left(\frac{\frac{1}{2} r S}{(a-d)^{3}}+\frac{\frac{1}{2} r S}{(a+d)^{3}}\right)
$$

Or,

$$
\frac{r S}{4}\left(\frac{1}{(a-d)^{3}}+\frac{1}{(a+d)^{3}}\right)
$$

But this expression is always greater than $\frac{r S}{2 a^{3}}$, except $\begin{gathered}\text { The mean } \\ \text { value of the }\end{gathered}$ when $d=0$; then it is the same, as any algebraist can verify. radial force Hence the mean radial force for the whole year is greater will be least as the earth's orbit is more eccentric, and it will be least of the earth's all when that orbit becomes a circle, and then and then orbit is a only, it will be accurately represented by $\frac{r S}{2 c^{3}}$.

But when the radial force is least, the mean motion must be greatest, and that force is less and less as the eccentricity of the earth's orbit becomes less and less; and corresponding. thereto the moon's motion becomes greater and greater, as has been the case for more than 4000 years.
(186.) The mean distance between the earth and sun remains constant. It must be so from the nature of motion, force, action, and reaction; but by the attraction of the planets the eccentricity of the earth's orbit is in a state of per-

The cause of the change of eccentricity of the earth's orbit. petual change; the change, however, is excessively slow. From the earliest ages the eccentricity of the orbit has been diminishing; and this diminution will probably continue until it is annihilated altogether, and the orbit becomes a circle; after which it will open out in another direction, again become eccentric, and increase in eccentricity to a certain moderate amount, and then again decrease.

Chap. IV. The im. ben period for these vibrations, "though calcula, has never mense jeriod corresponding to these changes. reckoned by hundreds or even by thousands of years." It is a period so long that the history of astronomy, and of the whole human race, is but a point in comparison.

The moon's mean motion will continue to increase until the earth's orbit becomes a circle; after which it will again decrease, corresponding with the increase of a new eccentricity.

The inclination of the lunar orbit taken into account.
(187.) For the sake of simplicity, we have thus far considered the moon's orbit to be in the same plane as the earth's orbit; but this is not true; the mean inclination of the lunar orbit to the ecliptic is $5^{\circ} 8^{\prime}$, varying about 9^{\prime} each way, according to the position of the sun.

Owing to this inclination of the lunar orbit, the expressions which we have obtained for the tangental force need correction, by multiplying them by the cosine of the inclination; and for the effect of the same forces in a perpendicular direction to the moon's longitude, multiply them by the sine of the inclination of the crbit.

The position of the moon's orbit, in relation to the sun, is strictly analogous to the ring in relation to the disturbing body D (Art. 176) ; the sun is constantly urging the moon into the plane of the ecliptic, which has a constant tendency to diminish the inclination of the lunar orbit (except when the sun is in the positions of the moon's nodes) ; and this constant force urging the moon to the ecliptic, causes the moon's nodes to retrograde.

We conclude this chapter by a brief summary of the principal causes which affect the moon's motion.

A summary statement of the lunar irregularities.

1. The eccentricity of the earth's orbit ; which gives rise to the annual equation of the moon in longitude.
2. The eccentricity of the lunar orbit; producing the equation of the center.
3. The tangental force; giving rise to the equation called variation.
4. The position of the sun in respect to the greater axis of the lunar orbit; giving rise to the inequality called evection.
5. The inclination of the moon's orbit.
6. The combination of the first cause, when differing from chap. IV. its mean state, augments or diminishes the result of every other - thus making many additional small equations.
7. The ellipsoidal form of the earth.

CHAPTER V.

THE TIDES.

(188.) The alternate rise and fall of the surface of the sea, as observed at all places directly connected with the waters of the ocean, is called tide; and before its cause was definitely known, it was recognized as having some hidden and mysterious connection with the moon, for it rose and fell twice in every lunar day. High water and low water had no con- with the nection with the hour of the day, but it always occurred in about such an interval of time after the moon had passed the meridian.

When the sun and moon were in conjunction, or in opposi- High tides. tion, the tides were observed to be higher than usual.

When the moon was nearest the earth, in her perigee, other circumstances being equal, the tides were observed to be higher than when, under the same circumstances, the moon was in her apogee.

The space of time from one tide to another, or from high water to high water (when undisturbed by wind), is 12 hours and about 24 minutes, thus making two tides in one lunar day; showing high water on opposite sides of the earth at the same time.

The declination of the moon, also, has a very sensible influence on the tides. When the declination is high in the north, the tide in the northern hemisphere, which is next to the moon, of the moon. is greater than the opposite tide; and when the declination of the moon is south, the tide opposite to the moon is greatest.

It is considered mysterious, by most persons, that the moon ${ }_{\mathrm{a}}$ which meets supericial by its attraction should be able to raise a tide on the opposite reasoner. sine of the earth.
$\underline{\text { Chap. V. }}$
That the moon should attract the water on the side of the earth next to her, and thereby raise a tide, seems rational and natural, but that the same simple action also raises the opposite tide, is not readily admitted; and, in the absence of clear illustration, it has often excited mental rebellion - and not a few popular lecturers have attempted explanations from false and inadequate causes.
The true But the true cause is the sun and moon's attraction; and
cause.

A summary illustration of the tides.

Fig. 41.
 until this is clearly and decidedly understood - not merely assented to, but fully comprehended - it is impossible to understand the common results of the theory of gravity, which are constantly exemplified in the solar system.

We now give a rude, but striking, and, we hope, a satisfactory explanation.

Conceive the frame-work of the earth to be an inflexible solid, as it really is, composed of rock, and incapable of changing its form under any degree of attraction; conceive also that this solid protuberates out of the sea, at opposite points of the earth, at A and B, as represented in Fig. 41, A being on the side of the earth next to the moon, m, and B opposite to it. Now in connection with this solid conceive a great portion of the earth to be composed of water, whose particles are inert, but readily move among themselves.
The solid $A B$ cannot expand under the moon's attraction, and if it move, the whole mass moves together, in virtue of the moon's attraction, on its center of gravity. But the particles of water at a, being free to move, and being under a
more powerful attraction than the solid, rise toward A, pro-
Chap. v. ducing a tide.

The particles of water at b being less attracted toward m than the solid, will not move toward m as fast as the solid, and being inert, they will be, as it were, left behind. The solid is drawn toward the moon more powerfully than the particles of water at b, and sinks in part into the water, but the observer at B, of course, conceives it the water rising up on the shore (which in effect it is), thereby producing a tide.
(189.) The mathematical astronomer perceives a strict analogy between the analytical expressions for the tides and the expressions for the perturbations of the lunar motion.

What we have called the radial force, in treating of the lunar irregularities, is the same in its nature as the force that ocean. raises the tides; the tide force is a radial force, which diminishes the pressure of the water toward the center of the earth under and opposite to the moon, in the same manner as the radial force diminishes the gravity of the moon toward the earth in her syzigies.

In Art. 179 we found that the radial force for the moon, at
Analogy between the lunar perturbations and the perturbations of the 1
\qquad

 The the syzigies, is expressed by $\frac{\frac{2}{} r S}{a^{3}}$; in which expression S is flied to the the mass of the sun, a its distance from the earth, and r the radius of the lunar orbit.

The same expression is true for the tides, if we change S to into an ex. m, the mass of the moon, and conceive a to represent the distance to the moon, and r the radius of the earth. For the the tides. tides, then, we have $\frac{2 r m}{a^{3}}$, and as the numerator is always constant, the variation of the tides must correspond to the cube of the inverse distance to the moon.
(190.) The sun's attraction on the earth is vastly greater than that of the moon; but, by reason of the great distance

Sun's attraction con. sidered. to the sun, that body attracts every part of the earth nearly alike, and, therefore, it has much less influence in raising a tide than the moon.

Сhap. v. From a long course of observations made at Brest, in Observations France, it has been decided that the medium high tides, at Brest. when the sun and moon act together in the syzigies, is 19.317 feet; and when they act against each other (the moon in quadrature), the tides are only 9.151 feet. Hence

Comparative influences of the sun and moon. the efficacy of the moon, in producing the tides, is to that of the sun, as the number 14.23 to 5.08 .

Among the islands in the Pacific ocean, observations give the proportion of 5 to 2.2 , for the relative influences of these two bodies; and, as this locality is more favorable to accuracy than that of Brest, it is the proportion generally taken.

Having the relative influences of two bodies in raising the tides, we have the relative masses of those two bodies, provided they are at the same distance. But by the expression for the tides, as we have just seen, the variation for distance corresponds with the inverse cube of the distance, and the distance to the sun is 397.2 times the mean distance to the moon. Hence, to have the influence of the moon on the tides, when that body is removed to the distance of the sun, we must divide its observed influence by the cube of 397.2.
Mass of the That is, the mass of the moon is, to the mass of the sun, as
moon com. puted. the number $\frac{5}{(397.2)^{3}}$ to the number 2.2.

In all preceding computations we have called the mass of the earth unity, and in relation thereto, the mass of the sun is 354945 (Art. 169). Let us represent the mass of the moon by m, then we have the following proportion :

$$
m: 354945:: \frac{5}{(397.2)^{3}}: 2.2 .
$$

This proportion makes the mass of the moon a little less than $\frac{1}{7 T}$; but I have little confidence in the accuracy of the result, as the data, from their very nature, must be vague and indefinite.
The times (191.) The time of high water at any given point is not of high wa. commonly at the time the moon is on the meridian, but two
ter different in different or three hours after, owing to the inertia of the water; and localities. places, not far from each other, have high water at very dif-
ferent times on the same day, according to the distance and direction that the tide wave has to undulate from the main ocean.

The interval between the meridian passage of the moon and the time of high water, is nearly constant at the same place. It is about fifteen minutes less at the syzigies than at the quadratures; but whatever the mean interval is at any place, it is called the establishment of the port.

It is high water at Hudson, on the Hudson river, before it is high water at New York, on the same day; but the tide wave that makes high water one day at Hudson, made high water at New York the day before; and the tide waves that make high water now, were, probably, raised in the ocean several days ago; and the tides would not instantly cease on the annihilation of the sun and moon.

The actual rise of the tide is very different in different places, being greatly influenced by local circumstances, such as the distance and direction to the main ocean, the shape of the bay or river, \&c., \&c.

In the Bay of Fundy the tide is sometimes fifty and sixty feet; in the Pacific ocean it is about two feet; and in some places in the West Indies, it is scarcely fifteen inches. In inland seas and lakes there are no tides, because the moon's attraction is equal over their whole extent of surface.

The following table shows the hight of the tides at the most important points along the coast of the United States, as ascertained by recent observation.
Feet.
Annapolis (Bay of Fundy), 60
Apple River, 50
Chicneito Bay (north part of the Bay of Fundy), 60
Passamaquoddy River, 25
Penobscot River, 10
Boston, 11
Providence, R. I., 5
New Bedford, 5
New Haven, 8
New York, 5
Cape May, 6
Cape Henry, $41 / 2$

The tides would not instantly cease on the removal of their causes.

Tides very much affected by local circum.

CHAPTERVI.

PLANETARYPERTURBATIONS.

Chap. VI.
(192.) The perturbations of a planet, produced by the atPlanetary tractions of another planet, are precisely analogous to the perand lunar perturba- turbations of the moon, produced by the action of the sun. tions analo. The disturbing forces are of the same kind, and they are gous. subject to similar variations from precisely the same causes. But the amount of the disturbances is, in most cases, very trifling, on account of the small mass of the disturbing planet compared with the mass of the sun, or its great distance from the body disturbed.

Action and reaction among the plan. ets recipro. cal.

One planet is accelerated while another is retarded.

When the action changes.

As action and reaction are everywhere equal, the planets mutually disturb each other, and if one is accelerated in its motion, the other must be retarded; if the tendency of one toward the sun is diminished, that of the other must be increased.

Examine Fig. 23, and conceive V, Venus, to be disturbed by the attraction of the earth at E, and if the motion of the planets is in the direction of $V B$, it is perfectly clear that Venus will be accelerated by the earth, and the earth will be retarded by Venus.
But Venus will be more accelerated in its motion than the earth will be retarded, for the disturbance at this point is in a line with the motion of Venus, and not in a line with the motion of the earth.
After Venus passes conjunction, that is, passes the varying line $S E$, her motion becomes retarded, and the earth's is accelerated; but every motion of the earth we ascribe to the sun; and in all modern solar tables, the corrections of the sun's longitude corresponding to the action of Venus, Mars, Jupiter, the moon, \&c., are simply the effect that these bodies have on the motion of the earth.
What is meant by so. lar pertu:ba. tions.

The direct effect of any of these bodies nn the position of the sun is absolutely insensible.

The relative disturbances of two planets are reciprocal to their masses; for if one is double in mass of another, the
greater mass will move but half as far as the smaller, under their mutual action. But when the amount of disturbance is referred to angular motion for its measure, regard must be had to the distances of each planet from the sun; for the same distance on a larger orbit corresponds to a less angle.* Also, the whole amount of the disturbing force of a superior planet on an inferior will, at times, be a tangental force (Fig. 23); but the reaction of the inferior planet on the superior can never be in a tangent directly with, or opposed to, the motion of the superior.

If observations can give the mutual disturbance of any two planets, then these circumstances being taken into consideration, an easy computation will give the relative masses of the planets.
(193.) As a general result, the attraction of a superior planet on an inferior, is to increase the time of revolution of the inferior, and to maintain it at a greater distance from the sun than it would otherwise have. The action of the inferior is to diminish the time of revolution of the superior; and the general effect is greater than it would be, if the inferior planet were constantly situated at the distance of the sun. (Art. 185.)

As an illustration of this truth, we say, that if Venus were annibilated, the length of our year, and the times of revolution of all its superior planets, would be a little increased, and the revolution of Mercury, its inferior planet, would be a little diminished. If Jupiter were annihilated, the times of revolution of all its inferior planets would be a little diminished; for it acts as a radial force to keep them all a little farther from the sun.
(194.) If the orbits of all the planets were circular, the acceleration in one part of an orbit would be exactly compen-

[^26]Char. VI. sated by the retardation in another; and in the course of a whole revolution, the mean motions of both planets (the disturber and the disturbed) would be restored, and the errors in longitude would destroy each other. Bat the orbits are not circles, and it is only in certain very rare occurrences that symmetry on each side of the line of conjunctions takes place; and hence, in a single revolution the acceleration of

Long periods of ine. çualities depending on conjunctions in the same parts of the orbits. one part cannot be exactly counterbalanced by the retardation of the other; and, therefore, there is commonly left a certain outstanding error, which increases during every synodical revolution of the two planets, until the conjunctions take place in opposite parts of the orbits, then it attains its maximum, which is as gradually frittered away as the line of conjunctions works round to the same point as at first.
Some of Hence, between every two disturbing planets there is a common these ine- inequality depending on their mutual conjunctions, in the same,
qualities too minute to be or nearly in the same, parts of their orbits. But it would be noticed. folly to compute the inequalities for every two planets, by reason of the extreme minuteness of the amounts; for instance, Mercury is not sensibly disturbed by Saturn or Uranus; and Mars, and Mercury, and Uranus, practically speaking, do not disturb each other; but Jupiter and Saturn have very considerable mutual perturbations, on account of their orbits being near each other, and both bodies far away from the sun.
The effect (195.) Again, if the revolutions of two planets are exof commensurate revoIntions of the planets. actly commensurate with each other, or, what is the same thing, the mean motion of both exactly commensurate with the circle, then the conjunctions of those two planets will always occur at the same points of the orbits (just as the conjunctions of the two hands of a clock always occur at the same points on the dial plate), and, in that case, the conjunctions will not revolve and distribute themselves around the orbits, so that in time, the radial and tangental forces will have an opportunity to accelerate on one side of the line of conjunctions as much as they retard on the other; and, therefore, a permanent derangement would then take place.

For instance, if three times the mean angular motion of one planet were exactly equal to twice the mean angular mo-
tion of another, then three revolutions of the one would exactly correspond to two of the other, and every second conjunction of the two would take place in the same points of the orbits; and the orbits, not being circular, the portions of them on each side of the line of conjunctions cannot be symmetrical, unless the longer axes of the two orbits are in the same line, and the conjunctions also taking place on that line.

Here, then, is a case showing that the disturbing force may constantly differ in amount on each side of the line of conjunctions, and, of course, could never compensate each other, and a permanent derangement of these two planets would be the result.

Hence, we perceive, that, to preserve the solar system, it is necessary that the orbits should be circles, or their times of revolution incommensurable; but we do not pretend to say that the converse of this is true; we do say, however, that no natural cause of destruction has thus far been found.
(196.) The times of the planetary revolutions are incommensurable; but, nevertheless, there are instances that approach commensurability, and, in consequence, approach a derangement in motion, which, when followed out, produce very long periods of inequality, called secular variation. The most remarkable of these, and one which very much perplexed the astronomers of the last century, is known by the term of "the great inequality" of Jupiter and Saturn.
"It had long been remarked by astronomers that, on comparing together ancient with modern observations of Jupiter and Saturn, their mean motions could not be uniform." The period of Saturn appeared to have been increased throughout the whole of the seventeenth century, and that of Jupiter shortened. Saturn was constantly lagging behind its calculated place, and Jupiter was as constantly in advance of his. On the other hand, in the eighteenth century, a process precisely the reverse was going on.

The amount of retardations and accelerations, corresponding to one, two, or three revolutions were not very great; but, as they went on accumulating, material differences, at length, sophers existed between the observed and calculated places of both

Chap. vi. these planets, and, as such differences could not then be accounted for, they excited a high degree of attention, and formed the subject of prize problems of several philosophical societies.
Laplace For a long time these astonishing facts baffled every endeavor to account for them, and some were on the point of declaring the doctrine of universal gravity overthrown; but, at length, the immortal Laplace came forward, and showed the cause of these discrepancies to be in the near commensurability of the mean motions of Jupiter and Saturn; which cause we now endeavor to bring to the mind of the reader in a clear and emphatic manner.
(197.) The orbits of both Jupiter and Saturn are elliptical, and their perihelion points have different longitudes, and, therefore, their different points of conjunction are at different distances from each other, and no line $*$ of conjunction cuts the two orbits into two equal or symmetrical parts; hence, the inequalities of a single synodical revolution will not destroy each other; and, to bring about an equality of perturbations, requires a certain period or succession of conjunctions, as we are about to explain.
The revo. Five revolutions of Jupiter require 21663 days, and two utions of Ju,iter and Saurn comparel. of Saturn, 21518 days. So that, in a period of two revolutions of Saturn (about sixty of our years), after any conjunction of these two planets, they will be in conjunction again not many degrees from where the former took place.

Their syno-

 dical revolution determined.To determine definitely where the third mean conjunction will take place, we compute the synodical revolution of these two planets by dividing the circumference of the circle in seconds (1296000) by the difference of the mean daily motion of the planets in seconds $\left(178^{\prime \prime} .6\right), \dagger$ and the quotient is 7253.4 days; three times this period is 21760 days. In this period Jupiter performs five revolutions and $8^{\circ} 6^{\prime}$ over; Saturn makes two revolutions and $8^{\circ} 6^{\prime}$ over; showing that the line

[^27]of conjunction advances $8^{\circ} 6^{\prime}$ in longitude during the period Char. vi. of 21760 days.

In the year 1800, the longitude of Jupiter's perihelion point was $11^{\circ} 8^{\prime}$, and that of Saturn $89^{\circ} 9^{\prime}$; the inclination of the greater axis of the orbits, therefore, was $78^{\circ} 1^{\prime}$.

Fig. 42.

Let $A B$ (Fig. 42) represent the major axis of Saturn's orbit, and $a b$ that of Jupiter; the two are placed at an angle of 78°.* tions explained.

Suppose any conjunction to take place in any part of the orbits, as at $J S$ (the line $J S$ we call the line of conjunction) ; in 7253.4 days afterward another conjunction will take place. In this interval, however, Saturn will describe about

Line of conjunction explained. 243° in its orbit, at a mean rate, and Jupiter will describe one revolution and about 243° over, and it will take place as represented in the figure, at $P Q$ (STB being the direction of the motion). The next conjunction will be 243° from $P Q$, or at $R T$. From $R T$ the next conjunction will be at si, $8^{\circ} 6^{\prime}$ in advance of $J S$, and thus the conjunction $J S$ (so to speak) will gradually advance along on the orbit from S to T.

But, as we perceive, by inspecting the figure, there is a

[^28]
Chap. VI.

 Certain planets would come nearer together in their conjunction, than conjunctions -bring the planets nearer one of the three conjunctions is passing through that portion together than of the orbits - Jupiter disturbs Saturn, and Saturn reacts on most others. Jupiter more powerfully than at other conjunctions; and this is the cause of "the great inequality of Jupiter and Saturn."The pariod of (198.) To obtain the period of this inequality, we comthis renark- pute the time requisite for one of these lines of conjunction
abie ine. quality com- to make a third of a revolution, that is, divide 120° by $8^{\circ} 6^{\prime}$, pated, and and we shall find a quotient of $14 \frac{2}{2} \frac{2}{7}$, showing the period to be the computation confirmed by observation.

An explanation of the principle that led to the discovery of Neptune. $14 \frac{2}{2} 7$ times 21760 days, or nearly 883 years; which would be the actual period, provided the elements of the orbits remained unchanged during that time. But in so long a period the relative position of the perigee points will undergo considerable variation; which causes the period to lengthen to about 918 years.

The maximum amount of this inequality, for the longitude of Saturn, is 49^{\prime}, and for Jupiter 21^{\prime}, always opposite in effect, on the principle of action and reaction.
(199.) The last great achievement of the powers of mind in the solar system, was the discovery of the new planet Neptune, by Leverrier and Adams analyzing the inequalities of the motion of Uranus. To give a rude explanation of the possibility of this problem we present Figure 43. Let S be the sun, and the regular curve the orbit of Uranus, as corresponding to all known perturbations; but at a it departs from its computed track and runs out in the protuberance $a c b$. This indicated that some attracting body must be somewhere in the direction
$S P$, although no such body was ever seen or known to exist. Ceap. II. The next time the planet comes round into the same portions of its orbit,* suppose the center of the protuberance to have changed to the line $S Q$. This would indicate that the un- How comknown and unseen body was now in the line $S Q$, and that could be since the former observations it had changed positions by the made for the angle $P S Q$; and, by this angle, and the time of its descrip- revolution of tion, something like a guess could be made of the time of its planet. revolution.

With the approximate time of revolution, and the help of Kepler's third law, its corresponding distance from the sun can be known. With the distance of the unseen body, and the amount that Uranus is drawn from its orbit by it, we can approximate to its mass.

Thus, we perceive, that it is possible to know much about an existing planet, although so distant as never to be seen. But the body that disturbed the motion of Uranus has been seen, and is called Teptune.

CHAPTERVII.

ABERRATION, NUTATION, AND PRECESSION OF THE EQUINOXES.

(200.) About the year 1725 Dr. Bradley, of the Green-

 wich observatory, commenced a very rigid course of observa- $\begin{gathered}\text { Dres. Brad- }\end{gathered}$ tions on the fixed stars, with the hope of detecting their vations on parallax. These observations disclosed the fact, that all the the fixed stars which come to the upper meridian near midnight, have purpose of an inverse of longitude of about $20^{\prime \prime}$, while those opposite, finding their near the meridian of the sun, have a decrease of longitude of ${ }^{\text {parallax. }}$ $20^{\prime \prime}$; thus making an annual displacement of $40^{\prime \prime}$. These resnlts. observations were continued for several years, and found to be the same at the same time each year; and, what was most[^29]Снap. VII. perplezing, the results were directly opposite from such as would arise from parallax.

These facts were thrown to the world as a problem demanding solution, and, for some time, it baffled all attempts at explanation, but it finally occurred to the mind of the Doctor, that it might be an effect produced by the progressive motion of light combined with the motion of the earth; and, on strict examination, this was found to be a satisfactory solution.

(201.) A person standing still in a rain shower, when the rain falls perpendicularly, the drops will strike directly on the top of his head; but if he starts and runs in any direction, the drops will strike him in the face; and the effect would be the same, in relation to the direction of the drops, as if the person stood still and the rain came inclined from the direction he ran.

This is a full illustration of the principle of these changes in the positions of the stars, which is called Aberration; but the following explanation is more appropriate.

Conceive the rays of light to be of a material substance, and its particles progressive, passing from the star S (Fig. 44) to the earth at B; passing directly through the telescope, while the telescope itself moves from A to B by the motion of the earth. And if $D B$ is the motion of light, and $A B$ the motion of the earth, then the tele-
scope must be inclined in the direction of $A D$, to receive the Снағ. vir. light of the star, and the apparent place of the star would be at $S^{\prime \prime}$, and its true place at S, and the angle $A D B$ is $20^{\prime \prime} .36$, at its maximum, called the angle of aberration.

By the known motion of the earth in its orbit, we have the value of $A B$ corresponding to one second of time: we have the angle $A D B$ by observation: the angle at B, is a right angle, and (from these data) computing the side $B D$ we have the velocity of light, corresponding to one second of time. To make the computation, we have

$$
D B: B A:: \operatorname{Rad} .: \tan .20^{\prime \prime} .36 . *
$$

But $B A$, the distance which the earth moves in its orbit The velo. Fig. 45.

*To obtain the logarithmetic tangent of $20^{\prime \prime} .36$ see note on page 128.

Cbap. vil. in one second of time, is within a very small fraction of 19 miles; the logarithm of the distance is 1.278802 , and, from this, we find that $B D$ must be 192600 miles, the velocity of light in a second; a result very nearly the same as before deduced from observations on the eclipses of Jupiter's moons. (Art. 143.)

The agreement of these two methods, so disconnected and so widely different, in disclosing such a far-hidden and remarkable truth, is a striking illustration of the power of science, and the order, harmony, and sublimity that pervades the universe.
A compre. To show the effects of aberration on the whole starry hensive view
of the effects heavens, we give figure 45 . Conceive the earth to be of aberra- moving in its orbit from A to B. The stars in the line $A B$, tion. whether at 0 or 180, are not affected by aberration. The stars, at right angles to the line $A B$, are most affected by aberration, and it is obvious that the general effect of aberration is to give the stars an apparent inclination to that part of the heavens, toward which the earth is moving. Thus the star at 90 has its longitude increased, and the star opposite to it, at 270, has its longitude decreased, by the effect of aberration; both being thrown more toward 180. The effect on each star is $20^{\prime \prime} .36$. But when the earth is in the opposite part of its orbit, and moving the other way, from C to D, then the star at 90 is apparently thrown nearer to 0 ; so also is the star at 270 , and the whole annual variation of each star, in respect to longitude, is $40^{\prime \prime} .72$.
Proof of the annual mo. tion of the earth.
(202.) The supposition of the earth's annual motion fully explains aberration; conversely, then, the observed variations of the stars, called aberration, are decided proofs of the earth's annual motion.

In consequence of aberration, each star appears to describe a small ellipse in the heavens, whose semi-major axis is $20^{\prime \prime} .36$, and semi-minor axis is $20^{\prime \prime} .36$ multiplied by the sine of the latitude of the star. The true place of the star is the center of the ellipse. If the star is on the ecliptic, the ellipse, just mentioned, becomes a straight line of $40^{\prime \prime} .72$ in length

If the star is at either pole of the ecliptic, the ellipse be-
comes a circle of $40^{\prime \prime} .72$ in diameter, in respect to a great Снар. vii circle; but a circle, however small, around the pole, will include all degrees of longitude; hence it is possible for stars very near either pole of the ecliptic, to change longitude very considerably, each year, by the effect of aberration; but no star is sufficiently near the pole to cause an apparent revolution round the pole by aberration; and the same is true in relation to the pole of the celestial equator.

All these ellipses have their longer axis parallel to the ecliptic, and for this reason it is easy to compute the aberration of a star in latitude and longitude,* but it is a far more complex problem to compute the effects in respect to right ascension and declination.
(203.) The aberration of the sun varies but a very little, because the distance to the sun varies but little, and without material error, it may be always taken at $20^{\prime \prime} .2$, subtractive. The apparent place of the sun is always behind its true place by the whole amount of aberration; but the solar tables give its apparent place, which is the position generally wanted.

In computing the effect of aberration on a planet, regard must be had to the apparent motion of the planet while light is passing from it to the earth.

The effects of aberration on the moon are too small to be The moon noticed, as light passes that distance in about one second of not affected time.
(204.) While Dr. Bradley was continuing his observa- Other inetions to verify his theory of aberration, he observed other sualities obsmall variations, in the latitudes and declinations of the stars, Bradley. that could not be accounted for on the principle of aberration.

The period of these variations was observed to be about
*Aber. in Lon. $=-\frac{20^{\prime \prime} .36 \cos .(S-s)}{\cos . l}$;
Aber. in Lat. $=20^{\prime \prime} .36 \sin .(S-s) \sin . l$.
In these expressions S represents the longitude of the sun, s the longitude of the star, and l its latitude.

Chap. vir. the same as the revolution of the moon's node, and the amount of the variation corresponded with particular situations of the node; and, in short, it was soon discovered that the cause of these variations was a slight vibration in the earth's axis, caused by the action and reaction of the sun and moon on the protuberant mass of matter about the equator, which gives the earth its spheroidal form, and the effect itself is called Nutation.

Fig. 46.

> *

Nutation fully explain. ed by the theory of gravity.
(205.) We have shown, in Art. 176, that the attraction of a body, m, on a ring of matter around a sphere, has the effect of making the plane of the ring incline toward the attracting body.

Let $B C$, Fig. 46, represent the plane of the equator; and conceive the protuberant mass of matter, around the equator, to be represented by a ring, as in the figure. Let m be the
moon at its greatest declination, and, of course, without the Crap. viI. plane of the ring.

Let P be the polar star. The attraction of m on the ring inclines it to the moon, and causes it to have a slight motion on its center ; but the motion of this ring is the motion of the whole earth, which must cause the earth's axis to change its position in relation to the star P, and in relation to all the stars.

When the moon is on the other side of the ring, that is, opposite in declination, the effect is to incline the equator to the opposite direction, which must be, and is, indicated by an apparent motion of all the stars.

A slight alternate motion of all the stars in declination, corresponding to the declinations of the sun and moon, was carefully noted by Dr. Bradley, and since his time has been fully verified and definitely settled; this vibratory motion is known by the name of nutation, and it is fully and satisfactorily explained on the principles of universal gravity; and conversely, these minute and delicate facts, so accurately and completely conforming to the theory of gravity, served as one of the many strong points of evidence to establish the truth of that theory.
(206.) By inspecting Fig. 46, it will be perceived that when the sun and moon have their greatest northern declina- ral effect of tions, all the stars north of the equator and in the same hemi- lastrated by sphere as these bodies, will incline toward the equator; or all Fig. 46. the stars in that hemisphere will incline southward, and those in the opposite hemisphere will incline northward; the amount of vibration of the axis of the earth is only $9^{\prime \prime} .6$ (as is shown by the motion of the stars), and its period is 18.6 , or about nineteen years; the time corresponding to the revolution of the moon's node. When the moon is in the plane of the equator, its attraction can have no influence in changing the position of that plane; and it is evident that the greatest effect must be when the declination is greatest.

Where the
The moon's declination is greatest when the longitude of tocorrespond the moon's ascending node is 0 , or at the first point of Aries. The greatest declination is then 28° on each side of the clination.

Casp. viI. equator; but when the descending node is in the same point, the moon's greatest declination is only 18°. Hence there will be times, a succession of years, when the moon's action on the protuberant matter about the equator must be greater than in an opposite succession of years, when the node is in an opposite position. Hence, the amount of lunar nutation depends on the position of the moon's nodes.
Monthly nutation, effect small.

It is very natural to suppose that the period of lunar nutation would be simply the time of the revolution of the moon; and so, in fact, it is; but the corresponding amount is very small, only about one-tenth of a second. This is because half a lunar revolution, about $13 \frac{1}{2}$ days, while the moon is on one side of the equator, is not a sufficient length of time for the moon to effect much more than to overcome the inertia of the earth; but, in the space of nine years, effecting a little more than a mean result at every revolution, the amount can rise to $9^{\prime \prime} .6$, a perceptible and measurable quantity.
The mean (207.) The mean course of the moon is along the ecliptic; effect of the its variation from that line is only about five degrees on each
moon on the mass of matter around the equator. moon was all the while in the ecliptic. But, in that case, its effect would be the same at every revolution of the moon; and the earth's equator and axis would then have an equilibrium of position, and there would be no nutation, save the slight monthly nutation just mentioned, which is too small to be sensible to observation; and the nutation that we observe, is only an inequality of the moon's attraction on the protuberant equatorial ring; and, however great that attraction might be, it would cause no vibration in the position of the earth, if it were constantly the same.
solar nu- We have, thus far, made particular mention of the moon, tation. but there is also a solar nutation; its period is, of course, a year; and it is very trifling in amount, because the sun attracts all parts of the earth nearly alike; and the short period of one year, or half a year (which is the time that the unequal attraction tends to change the plane of the ring in
one direction), is too short a time to have any great effect on Chap. vi. the inertia of the earth.

The solar nutation, in respect to declination, is only one second.
(208.) Hitherto we have considered only one effect of nu-tation-that which changes the position of the plane of the equator-or, what is the same thing, that which changes the position of the earth's axis; but there is another effect, of greater magnitude, earlier discovered, and better known, resulting from the same physical cause, we mean the

PRECESSION OF THE EQUINOXES.

We again return to first principles, and consider the mutual attraction between a ring of matter and a body situated out of the plane of the ring; the effect, as we have several times shown, is to incline the ring to the body, or (which is the same in respect to relative positions), the body inclines to run to the plane of the ring.

The mean attraction of the moon is in the plane of the ecliptic. The sun is all the while in the ecliptic. Hence, the mean attraction of both sun and moon is in one plane, the ecliptic ; but the equator, considered as a ring of matter surrounding a sphere, is inclined to the plane of the ecliptic by an angle of $23 \frac{1}{2}$ degrees, and hence, the sun and moon have a constant tendency to draw the equator to the ecliptic, and actually do draw it to that plane; and the visible effect is, to make both sun and moon, in revolutions, cross the equator sooner than they otherwise would, and thus the equinox falls back on the ecliptic, called the precession of the equinoxes.

The annual mean precession of the equinoxes is $50^{\prime \prime} .1$ of The precesarc, as is shown by the sun coming into the equinox, or sion of the crossing the equator at a point $50^{\prime \prime} .1$, before it makes a revolution in respect to the stars.

Perhaps it is clearer to the mind to say, that the sun is drawn to the equator by the protuberant mass of matter mode of exaround the earth, and, in consequence, arrives at the equator, in its apparent revolutions, sooner than it otherwise would. But the truth is, that the ecliptic is stationary in position,

Chap. VII.
and the equator, by a slight motion, meets the ecliptic; which motion is caused by the attractions of the sun and moon, as has been several times explained.
The true physical

If the moon were all the while in the ecliptic, the precescause of the sion of the equinoxes would then be a constantly flowing quanpreeession of
the equinox. , equal to $50^{\prime \prime} .1$, for each year; but, for a succession of es. about nine years, the moon runs out to a greater declination than the ecliptic, and, during that time, its action on the equatorial matter is greater than the mean action, and then comes a succession of about nine years, when its action is less than its mean; hence, for nine years, the precession of the equinoxes will be more than $50^{\prime \prime} .1$, per year, and, for the nine years following, the precession will be less than $50^{\prime \prime} .1$, for each year; and the whole amount of variation, for this inequality, in respect to longitude, is $17^{\prime \prime} .3$, and its period is half a revolution of the moon's nodes. This inequality is called the equation of the equinozes, and varies as the sine of the longitude of the moon's nodes.

Equation of the equinoxes.

The equation of the equinoxes, of course, affects the length of the tropical year, and slightly, very slightly, affects sidereal time.
Mean and There is a true equinox and a mean equinox; and, as sidetrue sidereal time. real time is measured from the meridian transit of the equinox, there must be a true sidereal and a mean sidereal time; but the difference is never more than 1.1 s . in time, and, generally, it is much less.
Explanation
(209.) In the hope of being more clear than some authors have been, in explaining the results of precession, we present Fig. 47. E represents the pole of the ecliptic, and the great circle around it is the ecliptic itself. P is the pole of the earth, $23^{\circ} 27^{\prime}$ from the pole E, and around P, as a center, we have attempted to represent the equator, but this, of course, is a little distorted; r and \bumpeq are the two opposite points where the ecliptic and equator intersect; ΥE is the first meridian of longitude; $r P$ is the first meridian of right ascension. The angle $E \odot P$ is $23^{\circ} 27^{\prime}$, and $E P$, produced, is the meridian passing through the solstitial points. To obtain a clear conception of the precession of the equinoxes, the stars;
the ecliptic, and its pole E, must be considered as fixed, Chap. vil and the line $\gamma \bumpeq$ as having a slow motion of $50^{\prime \prime} .1$, per an-

Fig. 47.

From the nam, on the ecliptic, in a retrograde direction; and this must fixed posicarry the pole P, around the point E, as a center, carrying tion of the also the solstitial points backward on the ecliptic. Some ${ }_{\text {also of of the }}^{\text {eclict }}$ and of the stars have proper motions; but, putting that circum- stars, the stance out of the question, the stars are fixed, and the eclip- stars never tic is fixed; therefore, the stars never change latitude, but tade.

Chap. VII.

the whole frame-work of meridians from the pole P, the pole itself, and the equator, revolve over the stars; and, in respect to that motion of the meridian and the equator, the stars change right ascension, declination, and longitude, but do not change latitude. The stars change longitude, simply because the first meridian of longitude, $\odot E$, moves backward; they change right ascension, because the meridian, $r P$, and all the meridians of right ascension, revolve backward.
One hemi- By inspecting the figure, we readily perceive that all the
shere sphere of stars approaches the north pole, the other recedes from it. stars near \uparrow must, apparently, approach the north pole, because the pole, in its revolution round E, is approaching toward that part of the ecliptic; for the same reason, all the stars near \bumpeq are, apparently, moving southward, because the equator is being drawn over them. In short, all the stars, from the eighteenth hour of right ascension through r, to the sixth hour of right ascension, must diminish in north polar distance, and all the stars, from the six hours through \bumpeq, to the eighteenth hour of right ascension, must increase in north polar distance, in consequence of the precession of the equinoxes.
Inspection These observations may be confirmed by inspecting Table

Table II. II, in which is registered the positions of the principal fixed stars, with their annual variations. The column of annual variation of declination changes sign at the point corresponding to six hours, and eighteen hours of right ascension; and the rapidity of this variation is greater as the star is nearer to 0 hours, or twelve hours of right ascension.
Annual va. When the right ascension of a star is 0 hours, or twelve riation in declination, how computed. hours, it is easy to compute its annual variation in declination, corresponding to its precession along the ecliptic of $50^{\prime \prime} .1$. Conceive a small plane triangle whose hypothenuse is $50^{\prime \prime} .1$, the angle at the base $23^{\circ} 27^{\prime} 40^{\prime \prime}$ (i.e. the obliquity of the ecliptic), the side opposite to this angle will be found to be a little over $20^{\prime \prime}$, corresponding to the figures in the table.
Proper mo- It is thus, by the motion of these imaginary lines over the tions, how discovered. whole concave of the heavens, that the annual variation of both right ascension and declination of each individual star
in the catalogue is computed and put down; and if any par- Chsp. vir. ticular star does not correspond with this, it is said to have proper motion; and it is thus that proper motions are detected.

As P must circulate round E by the slow motion of $50^{\prime \prime} .1$ in a year, it will require 25868 years to perform a revolution; of precesand the reader can perceive, by inspecting the figure, why the pole star is in apparent motion in respect to the pole, and why that star will cease to be the polar star, and why, at the expiration of about 12000 years, the bright star, Lyra, will be the polar star.
(210.) The mean effect of the moon in producing the pre- Comparacession of the equinoxes is, to the mean effect of the sun, as ${ }_{\text {sun }}^{\text {tive effect of }}$ and five to two. The sun's action is nearly constant, because moon. the sun is always in the ecliptic; a small annual variation, however, is observed. The great inequality of $17^{\prime \prime} .3$, corresponding to about nineteen years, is caused entirely by the unequal action of the moon, depending on the longitude of the moon's ascending node.

In consequence of this inequality, the pole, P, does not Undulatory move round the pole of the ecliptic, E, in an even circumfe- motion of the rence of a circle, but it has a waving or undulating motion, as earh's axis represented in this figure; each wave corresponding to nineteen years; and, therefore, there must be as many of them in the whole circle as 19 is contained in 25868 . From this, we perceive, that the undulations in the figure are much exaggerated, and vastly too few in number; an exact linear representation of them would be im-
 possible.
(211.) From the foregoing, we learn that the positions of all the stars are affected by aberration, precession, and nutation; the amount for each cause is very trifling in itself, yet,

Mean and apparent place of a place in most cases, too great to be neglected, when accuracy is required; and it is as difficult to make computations for a small quantity as for a large one, and often greater; and to reduce the apparent place of a fixed star from its mean place,

Chap. VII. and its mean place from its apparent place, is one of the most troublesome problems in practical astronomy.
General for- The mean place of a fixed star, reduced to the time of obmulæ, where found. servation, is sufficiently near its apparent place to be considered the same. The practical astronomer, however, who requires the star as a point of reference, or uses it for the adjustment of his instruments, must not omit any cause of variation; but such persons will always have the aid of a Nautical Almanac, where general formulæ and tables will be found, to direct and facilitate all the requisite reductions.
Importance (212.) Physical astronomy brings many things to light of physical astronomy. that would otherwise escape observation, and some of these developments, at first, strike the learner with surprise, and he is not always ready to yield his assent. For instance, as a general student, he learns that the anomalistic year, the time that the earth moves from its perigee to its perigee again, is 365 d .6 h .14 m .; that the perigee is very slow in its motion, moves only about $12^{\prime \prime}$ in a year, and is subject to but few fluctuations. He has also learned that the earth, in its orbit, describes equal areas in equal times; hence, he concludes, that the time from perigee to perigee, or from apogee to apogee, must be very nearly a constant quantity; but, on consulting and comparing the predictions to be found in the English nautical almanacs, he will find these periods to be (in comparison to his anticipations) very fluctuating. They differ from the stated mean times, not only by minutes and seconds, but by hours, and even days. The investigator is, at first, surprised, and fancies a mistake; at least, a misprint; but, on examining concurrent facts, such as the logarithms of the distance from the sun, and the sun's true motion at the time, he finds that, if a mistake has been made, it is a very harmonious one, and every other circumstance has been adapted to it.
The lati- But let us turn a moment from these facts, and examine tude of the sun explain. ed. the first page of our Tables. There it will be found, that the sun has latitude; that it deviates to the north and south of the ecliptic, by a quantity too small ever to be observed; it is, therefore, a quantity wholly determined by theory, and, as
the sun's latitude changes with the latitude of the moon, we Сниp. vir. must seek for its cause in the lunar motions. Fig. 48.

To understand the fact of the sun having latitude, we must admit that it is the center of gravity between the earth and moon, that moves in an elliptical orbit round the sun; and that center is always in the ecliptic; and the sun, viewed from that point, would have no latitude. But when the moon, m, (Fig. 48), is on one side of the plane of the ecliptic, $S c$, the earth, E would be on the other m side, and the sun, seen from the center of the earth, would appear to lie on the same side of the ecliptic as the moon. Hence, the sun will change his latitude, when the moon changes her latitude.

If the moon were all the while in the plane of the ecliptic, Longitude the sun would have no latitude (save some extremely minute of the sun af. quantities, from the action of the planets, when not in the position of plane of the ecliptic) ; but the moon does not deviate more the moon. than $5^{\circ} 20$ from the ecliptic, and, of course, the earth makes but a proportional deviation on the other side; but, in longitude, the moon deviates to a right angle on both sides, in respect to the sun, and when the moon is in advance in respect to longitude, the sun appears to be in advance also; and when the moon is at her third quarter, the longitude of the sun is apparently thrown back by her influence:-the greatest variation in the sun's longitude, arising from the motion of the earth and moon about their center of gravity, is about $6^{\prime \prime}$ each side of the mean. Now it is this motion of the earth around the common center of gravity of the earth and moon, that chiefly affects the time when the earth comes to its apogee and perigee. When the moon is in conjunction earth comes with the than it otherwise would be; and when the moon is in opposition to the sun, the earth is about 3200 miles nearer the sun than it would be in its mean orbit; and thus, we perceive, that the longitude of the moon has a great influence in

ต
Chap. vir. bringing the earth into, or preventing it from coming into, its perigee or apogee; but the perigee and apogee points, for the center of gravity, are quite uniform, agreeably to the views expressed in the first part of this article. These explanations will give a general insight into some of the apparent intricacies of physical astronomy.
Small equa- The small equations of the sun's center are computed on tions of the sun's center explained. the principle explained by Fig. 48, the sun having a motion round the center of gravity between itself and each of the planets. For example, the perturbation produced by Jupiter is greatest when Jupiter is in longitude 90° from the sun, as seen from the earth; the greatest effect is then about $8^{\prime \prime}$, and varies very nearly as the sine of Jupiter's elongation from the sun.

When Jupiter is in conjunction with the sun, the sun is nearer the earth than it otherwise would be, and, on this account, we have a small table to correct the sun's distance from the earth, called the perturbations of the sun's distance.

The same remarks apply to other planets, but, to avoid confusion, the effects of each one must be computed separately.

SECTION IV.

PRACTICAL ASTRONOMY.

```
PREPARATORY REMARKS.
```

We have now done with general demonstrations, and with
minute and consecutive explanations; but we shall give all necessary elucidation in relation to the particular problems under consideration. To go through this part of astronomy with success and satisfaction, the reader must have a passable understanding of plane and spherical trigonometry; and if to these he adds a general knowledge of the solar system, as taught in the foregoing pages, he will have a full comprehension of all we design to embrace in this section.

To prompt the student in his knowledge of trigonometry we give the following formulce:
I. Relative to a single are or angle.

1. - - $\sin . a=\tan . a \cos . a$.*
2. $-\quad-\sin . a=\frac{\tan . a}{\sqrt{1+\tan { }^{2} a .}}$.
3. $\quad . \quad-\quad \cos . a=\frac{1}{\sqrt{1+\tan ^{2} a}}$
4. - - cos. $a=2 \operatorname{cos.}^{2} \frac{1}{2} a-1$.
5. - - $\tan . \frac{1}{2} \alpha=\frac{\sin . \alpha}{1+\cos . a}$
6. - $\quad \tan .2 \frac{1}{2} a=\frac{1-\cos . a}{1+\cos . a}$.
7. - - $\sin .2 \alpha=2 \sin . a \cos . \alpha$
[^30]TRIG.
8. - $\quad \cos .2 a=2 \cos .{ }^{2} \alpha-1=1-2 \sin { }^{2} \alpha$.
II. Relative to two arcs, a and b, of which a is supposed to be the greater.
9. $-\sin .(a+b)=\sin . a \cos . b+\sin . b \cos . a$.
10. - $\cos .(a+b)=\cos . a \cos . b-\sin . a \sin . b$.
11. - $\sin .(a-b)=\sin . a \cos . b-\sin . b \cos . a$.
12. $-\cos .(a-b)=\cos . a \cos . b+\sin . a \sin . b$.

Sum of (9) and (11) gives 13, diff. gives 14.
13. - $\sin .(a+b)+\sin .(a-b)=2 \sin . a \cos . b$.
14. - $\sin .(a+b)-\sin .(a-b)=2 \cos . a \sin . b$.
15. - $\tan \cdot(a+b) \quad=\frac{\tan \cdot a+\tan \cdot b}{1-\tan \cdot a \tan \cdot b}$.
16. - $\tan .(a-b) \quad=\frac{\tan . a-\tan . b}{1+\tan \cdot a \tan \cdot b}$.
17. $-\frac{\sin \cdot a+\sin . b}{\sin \cdot a-\sin . b}-\quad=\frac{\tan \cdot \frac{1}{2}(a+b)}{\tan \cdot \frac{1}{2}(a-b)}$.
18. $-\frac{\tan . a+\tan . b}{\tan . a-\tan . b}-\quad=\frac{\sin .(a+b)}{\sin .(a-b)}$.
19.

$$
\begin{cases}\frac{1+\tan . b}{1-\tan \cdot b} & - \\ \frac{1-\tan . b}{1+\tan \cdot b} & - \\ =\tan \cdot\left(45^{\circ}+b\right) \\ & \left.=\tan 5^{\circ}-b\right)\end{cases}
$$

We shall, probably, make an application of the following theorem; it applies to finding the unknown angles of a riangle, when the logarithms of two sides (not the sides themselves) and the angle included between the sides are given.

The greater of two sides of a plane triangle is, to the less, as radius to the tangent of a certain angle. Take this angle from 45°, and call the difference a. Lastly, radius is to the tangent, a, as the tangent of the half sum of the angles at the base is to the tangent of half their difference.
III. Resolution of right-angled spherical triangles.

In the following equations, h is the hypothenuse, s a given
side, a a given angle, and x the quantity sought. (The right Tris. angle is unity, and always given.)

Given, Required, Solution.
h
and
a $\begin{cases}\text { side op. } a & \text { 20. } \sin . x=\sin . h \sin . a . \\ \text { side adj. } a & \text { 21. } \tan . x=\tan . h \cos . a . \\ \text { the other angle } & \text { 22. cot. } x=\cos . h \text { tan. } a .\end{cases}$
h
and
s $\begin{cases}\text { the other side } & 23 . \cos . x=\frac{\cos . h}{\cos . s} \\ \text { ang. adj. } s & 24 . \cos . x=\tan s \cot . h \\ \text { ang. op. } s & 25 . \sin . x=\frac{\sin . s}{\sin . h}\end{cases}$
s
and
a
opposite, $\left\{\begin{array}{cl}h & 26 . \sin . x=\frac{\sin . s}{\sin \cdot a} \\ \text { the other side, } & 27 . \sin . x=\tan . s \cot . a \\ \text { the other ang. } & 28 . \sin . x=\frac{\cos \cdot a}{\cos . s}\end{array}\right.$
s
and
\boldsymbol{a}
adjacent, $\left\{\begin{array}{cl}\hbar & \text { 29. cot. } x=\cos . a \cot . s \\ \text { the other side, } & \text { 30. tan. } x=\tan . a \sin . s \\ \text { the other ang. } & \text { 31. } \cos . x=\sin . a \cos . s .\end{array}\right.$
The
two sides. $\left\{\begin{array}{cl}h & \text { 32. } \cos . x=\cos . s \cos . \text { other side } \\ \text { the angles, } & \text { 33. } \cot x=\sin . \text { adj. side } \times \cot .\end{array}\right.$
[opp. side.
IV. Resolution of oblique angled spherical triangles. Let $A B$ and C be the three angles of any spherical triangle, and $a b$ and C the sides opposite to them, respectively, that is, the side a is opposite to A, \&c.

In spherical trigonometry the sines of the angles are proportional to the sines of the opposite sides.

Therefore $34 \frac{\sin . A}{\sin . a}=\frac{\sin . B}{\sin . b}=\frac{\sin . C}{\sin . C}$.
Given the three sides $a b c$;
Required one of the angles, A.
35. $-\operatorname{Sin} .2 \frac{1}{2} A=\frac{\sin .(s-b) \sin .(s-c)}{\sin . b \sin . c}$.

Trig.

$$
\text { 36. - } \operatorname{Cos}^{2}{ }^{\frac{1}{2}} A=\frac{\sin . S \sin \cdot(s-a)}{\sin . b \sin . c}
$$

In 35 and $36, \quad 2 S=a+b+c$.

CHAPTERI.

ASTRONOMICAL PROBLEMS.

PROBLEMI.

Chap. I. -

Given the right ascension and declination of any heavenly body to find its latitude and longitude; or conversely, given the latitude and longitude of a body to find its corresponding right ascension and declination.

A general projection for connecting right ascension, declination, longitude, and latitude.

From any point as a center (Fig. 49) describe a circle Q $E P \sigma$, \&c. Let this circle represent the meridian, which passes through the pole of the ecliptic \boldsymbol{E}, the pole of the earth's axis P, and through the solstitial points σ, and W^{2}. Then the point Aries (Q) will be at the center of the circle and $v \uparrow \sigma$ and $Q \uparrow q$ will be lines crossing each other by an angle equal to the obliquity of the ecliptic. $P p$ is the celestial meridian, which passes through the equinoctial points, and is the first meridian of right ascension $E \gamma e$ is the first meridian of longitude, and, of course, the angle $E \odot P$ is equal to the obliquity of the ecliptic.

The figure is considered transparent, and both sides of it are represented.

Let s be the position of any celestial body, and draw the meridian of right ascension $P s p$, also draw the meridian of longitude E s e, draw also $r s$. We have now two right-angled spherical triangles $s D r$ and $\upharpoonright B s$, having a common hypothenuse $r s$; the first is the right ascension triangle, the
second is the longitude triangle. Let the student observe that the line $Q q$ represents a circle, the whole equator; and the point r represents, in fact, two points, the 0 degree of right ascension and the 180 th degree. So the point s represents two points, and $r D$ is the right ascension from 0 degree, or from 180 degrees.

In our figure, the point s is north of both ecliptic and equator; but it might have been between the two, or south of both; hence, to meet every case, the judgment of the operator must be called into exercise to perceive a general solution.

Now, having the right ascension and declination of s, we find its latitude and longitude thus:

In the triangle $r D s, r D$ and $D s$ are given, and equation 32 gives $\varphi s(h) ; 33$ gives the angle $s \uparrow D$. From $s \Upsilon D$ subtract $B r D$, the obliquity of the ecliptic, and there remains the angle $s \uparrow B$.*

With the angle $s \Upsilon B$, and the side $r s$, equation 20 gives $s B$ the latitude, and 21 gives γB the longitude

EXAMPLES.

1. The right ascension of a certain point in the heavens is 5 h .7 m .50 s ., or in arc $76^{\circ} 57^{\prime} 30^{\prime \prime}$; and its declination is $26^{\circ} 11^{\prime} 36^{\prime \prime}$ N.:

What is the latitude and longitude of the same point?
(32.)

PD $76^{\circ} 57^{\prime} 30^{\prime \prime} \cos 9.353454 \quad-\quad-\quad \sin 9.988651$
sD $26^{\circ} 11^{\prime} 36^{\prime \prime} \cos 9.952952$ - - \quad cot. 10.308104
rs $78^{\circ} 19^{\prime} 3^{\prime \prime}$ cos. $9.306406, \quad 26^{\circ} 47^{\prime} 27^{\prime \prime}$ cot.10.296755
$B \uparrow D-\quad-\quad-\quad 232732$
$\operatorname{srB}-\quad-\quad \begin{aligned} & 31955=a\end{aligned}, ~$

[^31]Chap. I.
(h) $78^{\circ} 19^{\prime} 3^{\prime \prime} \sin .9 .990911$
(a) $3 \quad 19 \quad 55 \quad \sin .8 .763965$
$3^{\circ} 15^{\prime} 36^{\prime \prime} \sin .8 .754876$
$\tan 10.684611$
cos. 9.999265
$78186 \tan .10 .683876$

Thus we determine that the longitude must be $78^{\circ} 18^{\prime} 6^{\prime \prime}$, and the latitude $3^{\circ} 15^{\prime} 36^{\prime \prime} \mathrm{N}$.
2. The longitude of the moon, at a certain time, according to computation, was $102^{\circ} 7^{\prime}$; and latitude $5^{\circ} 14^{\prime} 15^{\prime \prime}$ S. :

What was the corresponding right ascension and declination?*

From thes		(32.)		(33.)
examples w	$\bigcirc B 77^{\circ} 53^{\prime}$	$\operatorname{cos.9.322019}$		sin. 9.990215
might for	$s B \quad 5^{\circ} 14^{\prime} 15^{\prime \prime}$	cos. 9.998183		cot. 11.037780
but rules thu	\bigcirc ¢ $77^{\circ} 56^{\prime} 12^{\prime \prime}$	cos. 9.320202	$5^{\circ} 21^{\prime} 27^{\prime \prime}$	cot. 11.027995
formed se dom reflec		$B \gtrdot D$ -	$23 \quad 2742$	
principles;			18615	
therefore for educational		(20.)		(21.)
purposes, w	(h) $77^{\circ} 56^{\prime} 12^{\prime \prime}$	in. 9.990302		tan. 10.670170
fall back o the primar	(a) $18 \quad 6 \quad 15$	sin. 9.492400		cos. 9.977948
equations.	$17 \quad 41 \quad 22$	sin. 9.482702	$77^{\circ} 19^{\prime} 41^{\prime \prime}$	$\tan .10 .648118$

Thus we find that the right ascension distance on the equator, from the 180 th degree, was $77^{\circ} 19^{\prime} 41^{\prime \prime}$; or its right ascension in arc was $102^{\circ} 40^{\prime} 19^{\prime \prime}$, or in time, 6 h .50 m .41 s .
3. By meridian observations on the moon, at a certain time, its right ascension was found to be 16 h .53 m .33 s ., and its declination $17^{\circ} 51^{\prime} 36^{\prime \prime}$ S.: what was its longitude and latitude? Ans. Lon. $254^{\circ} 9^{\prime} 14^{\prime \prime}$, Lat. $4^{\circ} 41^{\prime} 12^{\prime \prime} \mathrm{N}$.

Any number of the like exam. ples can be found.

In the following examples either right ascension and declination may be taken for the data, and the longitude and latitude the sought terms, or conversely; the longitude and latitude may be the given data, and the right ascension and

[^32]declination the required terms. A Nautical Almanac will Crap. I. furnish any number of similar ezamples.
\[

$$
\begin{array}{cc}
\text { R. A. } & \text { Dec. } \\
\text { h. m. s. } & \circ
\end{array}
$$
\]

4	154736	15	58	15 south,	2381448	43017 north,
5	61322	1823	2 north,	931055	5	423 south,
6	112444	145	28 north,	1711240	15251 south,	
7	202333	1411	9 south,	3044715	5	223 north.

PROBLEM II.

Given the latitude of the place, and the declination of the sun
Tables for the semidior star; to find the semidiurnal arc, or the time the sun or star urnal are and would remain above the horizon; and to find its amplitude, or the amplitudes number of degrees from the east and west points of the horizon, ${ }^{\text {are compated }}$ where it will rise and set. by this problem.
To illustrate this problem we draw Figure 50. Let $P Z H$, These ea\&c., represent the celesamples do tial meridian passing through the place. Make the are $Q Z$ equal to the latitude, then $Z P$ will equal the co-latitude. The line $H h$ is everywhere 90° from Z, and represents the horizon. $P p$ represents the earth's axis, and the meridian, 90° distant from the meridian of the place; $Q q$
 not take refraction into account. is the equator. From the points Q and q set off d and d^{\prime}, equal to the declination (north or south, as the case may be) and describe the small circle of declination, $d \odot d^{\prime}$, where this circle crosses the circle of the horizon $H h$ is the point where the body (sun, moon, or star) will rise or set (rise on one side of the meridian and set on the other, both are represented by the same point in the projection). Through $P \odot$ p describe the meridian as in the figure, and the right-angled spherical triangle $R \odot C$ appears; right angled at R.

Сhap, I.

In the triangle $R \odot C$, there is given the side $R \odot$, the declination, and the angle opposite $R C \odot$, which is equal to the co-latitude. $R C$, expressed in time, at the rate of 15° to one hour, will be the time before and after 6 hours, from the time the body is on the meridian to the time it is in the horizon; and the arc $C \odot$ is the amplitude. The triangle is immediately resolved by equations 26 and 27.
$\operatorname{Sin} . R C=\tan$. declin. \times tan. lat.
Sin. $C \odot=\frac{\text { sin. declin. }}{\text { cos. lat. }} ;$
Observing that the tangent of the latitude is the same as the cotangent of the angle $R C \odot$, and the cosine of the latitude is the same as the sine of $R C \odot$, corresponding to a in the equation.

EXAMPLE.

The time in all these examples is, of course, ap- will be its amplitude? parent, because it refers directly to the sun, and not to a clock.
(27.)

20°	$\tan .9 .561066$
40	$\tan .9 .923813$
$17^{\circ} 47^{\prime} \sin .9 .484879$	

(26.)

$\sin .9 .534052$
$\cos .9 .884254$
$26^{\circ} 31^{\prime} \sin .9 .649798$

Thus we find that the arc called the ascensional difference, is $17^{\circ} 47^{\prime}$, or, in time, 1 h .11 m .8 s ., showing that the sun or heavenly body, whatever it may be (when not affected by parallax or refraction), will be found in the horizon 7 h .11 m . 8 s . before and after it comes to the meridian.

Its amplitude for that latitude and declination is $26^{\circ} 31^{\prime}$ north of east, or north of west, and, if observed by a compass, the apparent deviation would be the variation of the compass.
2. At London, in Lat. $51^{\circ} 32^{\prime} \mathrm{N}$., the sun's amplitude was observed to be $39^{\circ} 48^{\prime}$ toward the north; what was its declination, and what was the apparent time of its rising and setting?

Ans. Sun's declination, $23^{\circ} 27^{\prime} 59^{\prime \prime} \mathrm{N}$.
Sun's rising, 3 h .47 m .32 s. ; sun's setting, 8 h .12 m .28 s .

The amplitude of the sun is frequently observed, at sea, to discover the variation of the compass; but, by reason of refraction, the results are not perfectly accurate.

From the right-angled spherical triangle (Fig. 48) $P Z \odot$, we can compute the time when the sun is east or west in position, and the altitude it must have, when in that position. The triangle Z is a right angle, $P Z$ is the co-latitude, and $P \odot$ is the co-declination.

Equation (23) gives the cosine of $Z \odot$, or the sine of the altitude of the sun when it is east or west - the latitude and declination being given - and equation (24) will give the angle or time from noon.

We may also find the altitude and azimuth of the sun, at 6 o'clock, by making use of a triangle, formed by drawing a vertical through $Z s N ; C S$, the given declination, will be its hypothenuse, and $P C h$, the latitude, will be the are of its angles.

By means of right-angled spherical trigonometry, as comprised in the equations from 20 to 33 , we can resolve all possible problems that can occur in astronomy, pertaining to the sphere; but, for the sake of brevity, mathematicians, in some cases, use oblique-angled spherical trigonometry, which is nothing more than right-angled trigonometry combined and condensed.

PROBLEM 1II.

Given, the latitude of the place of observation, the sun's declination, and its altitude above the horizon, to find its meridian distance, or the time from apparent noon.

There is no problem more important in astronomy than that of time. No astronomer puts implicit faith in any chronometer or clock, however good and faithful it may have been; and even to suppose that a chronometer runs true, it can only show time corresponding to some particular meridian; and hence, to obtain local time, we must have some method, directly or indirectly, of finding the sun's distance from the meridian.

When the center of the sun is on any meridian, it is then and there apparent noon; and the equation of time will be the
\qquad

Chap. I

Refraction

not taken into account, if it were, the time that the sun would remain above the horizon
would be increased
while it rose in altitude 33^{r} of arc.

Chap. I. interval to or from mean noon; but none, save an astronomer $\overline{\text { Great im. in an observatory, can define the instant when the sun is on }}$ portance of the meridian; no one else has a meridian line sufficiently defithis problem. nite and accurate, and with him it is the result of great care, combined with a multitude of nice observations.

To define the time, then (when anything like accuracy is required), we must resort to observations on the sun's altitude.
Direct meridian observations not generally ac. curate.

Proper times of observa. tion.

Description of the figure. time and altitude have a scientific connection, which can only be disentangled by spherical trigonometry. But we proceed to the problem. Draw a circle, $P Z$ $Q H$, \&c., (Fig. 51), representing the meridian; Z is the zenith, and $Z N$ is the prime vertical ; $H h$ is the horizon; $Z Q$ is an are equal to the given latitude; $Q q$ is the equator, and, at right angles to it, we have the earth's axis, $P S$.

Take $H a, h a$, equal to the observed altitude of the sun, and draw the small circle, $a \alpha$, parallel to the horizon, $H h$. From the equator take $Q d, q d$, equal to the declination of the sun, and draw the small circle, $d d$, parallel to $\boldsymbol{Q} q$. Where these two small circles, $a \alpha, d d$, intersect, is the position of the sun at the time.

From Z draw the vertical, $Z \odot N$, and from P draw the meridian through the sun, $P \odot S$. The triangle, $P Z \odot$, has all its sides given, from which the angle, $Z P \odot$, can be computed; which angle, changed into time at the rate of 15° to one hour, will give the time from noon, when the altitude was taken. If the time, per watch, should agree with the time thus computed, the watch is right, and as much as it differs is the error of the watch.

The side, $Z \odot$, is the complement of the altitude, $P \odot$ is the complement of the declination, and $P Z$ is the comple- vation de. ment of the latitude, and equation (35) or (36), will solve points out a the problem; that is, find the angle, P, which can be made to correspond to A, in the equation. But, in place of using the complement of the latitude, we may use the latitude itself; and, in place of using the complement of the altitude, we may use the altitude itself; provided we take the cosine, when the side of the triangle calls for the sine; for it would be the same thing. By thus taking advantage of every circumstance, ingenious mathematicians have found a less troublesome practical formula than either (35) or (36) would Mathemabe; but we cannot stop to explain the modifications and $\begin{gathered}\text { ticians make } \\ \text { great exer }\end{gathered}$ changes in a work like this; we contemplate doing so in tions to aba work more appropriate to such a purpose; the student must breviate be content with the following practical rule, to find the time practial opeof day, from the observed altitude of the sun, together with its polar distance, and the latitude of the observer.

Rule 1.-Add together the altitude, latitude, and polar dis- Practical tance, and divide the sum by two. From this half sum subtract rule ised at the altitude, reserving the remainder.
2.-Take the arithmetical complement of the cosine of the latitude, the arithmetical complement of the sine of the polar distance, the cosine of the half sum, and the sine of the remainder. Add,

Спия. I. these four logarithms together, and divide the sum by two; the result is the logarithmetic sine of half the hourly angle.
3.-This angle, taken from the Tables, and converted into time at the rate of four minutes to one degree, will be the time from apparent noon; the equation of time applied, will give the mean time when the observation was made.*

The quad. rant and sextant and reliecting circle essentially the same instrument.

* The instrument for taking altitudes at sea, or wherever the observer may happen to be, is a quadrant or sextant, according to the number of degrees of the arc. It is made on the principle of reflecting the image of one body to another, by means of a small mirror revolving on a center of motion, carrying an index with it over the arch. Nearly opposite to the index mirror is another mirror, one half silvered, the other half transparent, called the horizon glass. Directly opposite to the horizon glass is the line of sight, in which line there is sometimes placed a small telescope. The line of sight must be parallel to the plane of the instrument. The two mirrors must be perpendicular to the plane of the instrument. To be in adjustment, the two mirrors, namely the index glass and horizon glass, must be parallel, when the index stands at 0 .

To examine whether a sextant is in adjustment or not, proceed as follows:

1. Is the index mirror perpendicular to the plane of the in. strument?

Put the index in about the middle of the arch, and look into the index mirror, and you will see part of the arch reflected, and the same part direct; and if the arch appears perfect, the mirror is in adjustment; but if the arch appears broken, the mirror is not in adjustment, and must be put so by a screw behind it, adapted to this purpose.
2. Are the mirrors parallel when the index is at 0 ?

Place the index at 0 , and clamp it fast, then look at some well-defined, distant object, like an even portion of the dis-

EXAMPLE.

In latitude $39^{\circ} 46^{\prime}$, north, when the sun's declination was $3^{\circ} 27^{\prime}$, north, the altitude of the sun's center, corrected for refraction, index error, \&c., was $32^{\circ} 2 v^{\prime}$, rising; what was the apparent time?

The hourly angle is $49 \quad 41 \quad 0$, which, converted into time, gives 3 h .18 m .44 s ., the time from apparent noon, and, as
tant horizon, and see part of it in the mirror of the horizon glass, and the other part through the transparent part of the glass; and, if the whole has a natural appearance, the same as without the instrument, the mirrors are parallel; but, if the object appears broken and distorted, the mirrors are not parallel, and must be made so, by means of the lever and screws attached to the horizon glass.
3. Is the horizon glass perpendicular to the plane of the instrument?

The former adjustments being made, place the index at 0 , and clamp it; look at some smooth line of the distant horizon, while holding the instrument perpendicular ; a continued, unbroken line will be seen in both parts of the horizon glass; and if, on turning the instrument from the perpendicular, the horizontal line continues unbroken, the horizon glass is in full adjustment; but, if a break in the line is observed, the glass is not perpendicular to the plane of the instrument, and must be made so, by the screw adapted to that purpose.

After an instrument has been examined according to these

Chap. I. the sun was rising, it was before noon, and the apparent time was 8 h .41 m .16 s .

An are may be measured by the quadrant within one minute. An artificial horizon.

A practical example.

A good observer, with a good instrument, in favorable circumstances, can define the time, from the sun's altitude, to within three or four seconds.

At sea, the observer brings the reflected image of the sun to the horizon, and allows for the dip (Tables p.25). On shore, where no natural horizon can be depended upon, resort is had to an artificial horizon, which is commonly a little mercury turned out into a shallow vessel, and protected from the wind by a glass roof. The sun, or any other object, may be seen reflected from the surface of the mercury (which, of course, is horizontal), and the image, thus reflected, appears as much below the natural horizon as the real object is above the horizon; and, therefore, if we measure, by the instrument, the angle between the object and its image in the artificial horizon, that angle will be double the altitude.

When mercury is not at hand, a plate of molasses will do very well; and in still, calm weather, any little standing pool of water may be used for an artificial horizon.

Observations taken in an artificial horizon are not affected by dip, but they must be corrected for refraction and index error, and, if the two limbs of the sun are brought together, its semidiameter must be added after dividing by two.
The following example is from a sailor's note book:
"On the 18 th of May, 1848, at sea, in latitude $36^{\circ} 21^{\prime}$, north, longitude, $54^{\circ} 10^{\prime}$, west, by account, at 7 h .43 m ., per watch; the altitude of the sun's lower limb was $32^{\circ} 51^{\prime}$, rising; the hight of the eye was eighteen feet, and the index
directions, it may be considered as in an approximate adjust-ment-a re-examination will render it more perfect--and, finally, we may find its index error as follows:-measure the sun's diameter both on and off the arch-that is, both ways from 0 , and if it measures the same, there is no index error; but if there is a difference, half that difference will be the index error, additive, if the greatest measure is off the arch, subtractive, if on the arch.
error of the sextant was $2^{\prime} 12^{\prime \prime}$ additive. What was the er- \qquad
Chap. I. ror of the watch?"

PREPARATION .

Time, per watch, - - $7 \mathrm{~h} .43 \mathrm{~m} .$, morning. Longitude, $54^{\circ} 10^{\prime}$, in time, - $3 \quad 38$
Estimated mean time at Greenwich, 11 h .21 m .
The declination of the sun at mean noon, Greenwich time, was $19^{\circ} 38^{\prime} 29^{\prime \prime}$, increasing, the daily variation being 13^{\prime}; the variation, therefore, for 39^{\prime}, the time before noon, was $21^{\prime \prime}$, subtractive. Hence, the declination of the sun, at the time of observation, was $19^{\circ} 38^{\prime} 8^{\prime \prime}$, north, and the polar distance, $70^{\circ} 21^{\prime} 52^{\prime \prime}$.

Observed altitude,	-	-	-	-	$32^{\circ} 51^{\prime} 00^{\prime \prime}$		
Index error,	-	-	-	-	-	+	2

Altitude, $33^{\circ} 3^{\prime} 20^{\prime \prime}$
Latitude, 3621 cos. complement, . 093982
Polar dis., $\begin{array}{llll}70 & 21 & 52 & \text { sin. complement, } 026013\end{array}$
2) $\lcm{139 \quad 46 \quad 12}$
$\begin{array}{llll}69 & 53 & 6\end{array}$ cosine, - $\quad 9.536470$

$33 \quad 3 \quad 20$

364946 sine, - 9.777770
2) 19.434235
$\frac{1}{2}$ hourly angle, $31 \quad 2530$ sine, - - 9.717117
This angle corresponds to 4 h .11 m .24 s ., or, in reference to the forenoon, 7 h .48 m .36 s ., apparent time.

On the 18th of May, noon, Greenwich time, the equation By obserof time was 3 m .54 s ., subtractive; therefore, the true mean $\begin{gathered}\text { vations thus } \\ \text { tat dif. }\end{gathered}$ time, at ship, was - - $7 \mathrm{~h} .44 \mathrm{~m} .42 \mathrm{~s} . \quad$ ferent times

Time, per watch, - - $743 \quad$| at the same |
| :--- |
| place, |

Watch slow, - - - 142 rate of the

A short time before this observation was taken, the watch watch can be $\begin{gathered}\text { detrmined. }\end{gathered}$

Chap. I.

\qquad
\qquad

How to decide from the observations whether the longitude is east or west. How to determine and mark out a meridian line.
was compared with a chronometer in the cabin, which was too fast for mean Greenwich time, 19 m .12 .5 s ., according to estimation from its rate of motion. The chronometer was fast of watch by 3 h .56 m .39 s . What was the longitude of the ship?

	h. m. s.
Time of observation, per watch,	74300
Diff. between watch and chron.,	$\frac{35639}{113939}$
Time, per ch., at observation,	1912
Chron. fast of Greenwich time,	$\frac{19}{112027}$
Greenwich mean time,	-
Mean time at ship,	-
74442 Longitude in time,	

The longitude is west, because it is later in the day, at Greenwich, than at the ship. This example explains all the details of finding the longitude by a chronometer.
By taking advantage of the observations for time on shore, we may draw a meridian line with considerable exactness; for instance, in the last observation (if it had been on land), in 4 h .11 m .24 s , after the observation was taken, the sun would be exactly on the meridian; and if the watch could be depended upon to measure that interval with tolerable accuracy, the direction from any point toward the sun's center, at the end of that interval, would be a meridian line. Several such meridians, drawn from the same point, from time to time, and the mean of them taken, will give as true a meridian as it is practical to find; although, for such a pürpose, a prominent fixed star would be better than the sun.
Absolute The problem of time includes that of longitude, and findand local ing the difference of longitude between two places always re-
time. solves itself into the comparison of the local times, at the same instant of absolute time. When any definite thing occurs, wherever it may be, that is absolute time. For instance, the explosion of a cannon is at a certain instant of absolute time, wherever the cannon may be, or whoever may note the event; but if the instant of its occurrence could be known at far distant places, the local clocks would mark very diffe-
rent hours and minutes of time; but such difference would be occasioned entirely by difference of longitude; the event is the same for all places - it is a point in absolute time.

Thus any single event marks a point in absolute time. If the same event is observed from different localities the difference in local time will give the difference in longitude. But a perfect clock is a noter of events, it marks the event of noon, the event of sunrise, the event of one hour after noon, \&c.; and if we could have perfect confidence in this marker of events, nothing more would be necessary to give us the local time at a distant place. The time, at the place where we are, can be determined by the altitude of the sun, or a star, as we have just seen. But, unfortunately, we cannot have perfect confidence in any chronometer or clock; and therefore we must look for some event that distant observers can see at the same time.

The passage of the moon into the earth's shadow is such an event, but it occurs so seldom as to amount to no practical value. The eclipses of Jupiter's satellites are such events, but they cannot be observed without a telescope of considerable power, and a large telescope cannot be used at sea. Hence these events are serviceable to the local astronomer only; the sailor and the practical traveler can be little benefited by them. The moon has comparatively a rapid motion among the stars (about 13° in a day), and when it comes to any definite distance to or from any particular star, that circumstance may be called an event, and it is an event that can be observed from half the globe at once.

Thus, if we observe that the moon is 30° from a particular star, that event must correspond to some instant of absolute time; and if we are sufficiently acquainted with the moon, and its motion, so as to know exactly how far it will be from certain definite points (stars) at the times, when it is noon, $3,6,9$, \&c., hours at Greenwich, then, if we observe these events from any other meridian, we thereby know the Greenwich time, and, of course, our longitude.

Finding the Greenwich time by means of the moon's angular distance from the sun or stars, is called taking a lunar;

Char. I. and it is probably the only reliable method for long voyages at sea.

If the motion of our moon had been very slow, or if the earth had not been blessed with a moon, then the only methods, for sea purposes, would have been chronometers and dead reckoning. For a practical illustration of the theory of lunars, we mention the following facts.

Lunar observations illustrated by an example.

In a sea journal of 1823, it is stated that the distance of the moon from the star Antares was found to be $66^{\circ} 37^{\prime} 8^{\prime \prime}$, when the observation was properly reduced to the center of the earth, and the time of observation at ship was September 16 th, at $7 \mathrm{~h} .24 \mathrm{~m} .44 \mathrm{~s} .$, P. м., apparent time.

By comparing this with the Nautical Almanac, it was found that at 9 , P. m., apparent time at Greenwich, the distance between the moon and Antares was $66^{\circ} 5^{\prime} 2^{\prime \prime}$, and at midnight it was $67^{\circ} 35^{\prime} 31^{\prime \prime}$; but the observed distance was between these two distances, therefore the Greenwich time was between 9 and 12, р. м., and the time must fall between 9 and 12 hours, in the same proportion as $66^{\circ} 37^{\prime} 8^{\prime \prime}$ falls between the distances in the Nautical Almanac; and thus an observer, with a good instrument, can at any moment determine the Greenwich time, whenever the moon and stars are in full view before him.

The moon, in connection with the stars in the heavens, may be considered a public clock (quite an enlargement of the town-clock), by which certain persons, who understand the dial plate and the motion of the index, and who have the necessary instrument, can read the Greenwich time, or the time corresponding to any other meridian to which the computations may be adapted.
Observed The angular distances from the moon to the sun, stars, tances as sponding to every third hour, are distances as seen from the and planets, as put down in the Nautical Almanac, correcenter of the earth, and when observations are taken on the surface the distance is a little different; the position of the moon is affected by parallax and refraction, the sun or star by refraction alone; and therefore a reduction is necessary, dis'ance. which is called clearing the distance. This is done by spheri-
cal trigonometry. The distance between the moon and star Сhap. I. is observed, the altitudes of the two bodies are also observed. The co-altitudes come to the zenith, and the co-altitudes, with the distance, form three sides of a spherical triangle, from which the angle at the zenith can be computed. Then correct the altitude of the moon, for parallax and refraction, and the star for refraction, and find the true altitudes and coaltitudes, and the true co-altitudes and angle at the zenith give two sides, and the included angle of a spherical triangle, and the third side, computed, is the true distance.

An immense amount of labor has been expended by mathematicians, to bring in artifices to abbreviate the computation of clearing lunar distances; and they have been in a measure successful, and many special rules have been given, but they would be out of place in a work of this kind.

PROPORTIONAL LOGARITHMS.

In every part of practical astronomy there are many pro- Proportional portional problems to be resolved, and as the terms are logarithms -mostly incommensurable, it would be very tedious, in most tion of the cases, to proceed arithmetically, we therefore resort to loga- construction rithms, and to a prepared scale of logarithms, very appropri- of the table ately called proportional logarithms.

The tables of proportional logarithms commonly correspond to one hour of time, or 60^{\prime} of are, or to three hours of time. The table in this book corresponds to one hour of time, or 3600 seconds of either time or arc. To explain the construction and use of a table of proportional logarithms, we propose the following problem :

At a certain time, the moon's hourly motion in longitude was $33^{\prime} 17^{\prime \prime}$; how much roould it change its longitude in 13 m .23 s .?

Put x to represent the required result, then we have the following proportion :

[^33]Снap. I. second, and the third and fourth by the third, then we have

$$
\frac{3600}{13.23}: 1:: 1: \frac{x}{33.17}
$$

Divide the third and fourth terms by x, and multiply the same terms by 3600 , and the proportion becomes

$$
\frac{3600}{13.23}: 1:: \frac{3600}{x}: \frac{3600}{33.17}
$$

Multiplying extremes and means, using logarithms, and remembering that the addition of logarithms performs multiplication,
Then we have log. $\frac{3600}{x}=\log \cdot\left(\frac{3600}{13 \cdot 23}\right)+\log \cdot\left(\frac{3600}{33 \cdot 17}\right)$.
By the construction of the table, the proportional logarithm of $1^{\prime \prime}$ is the common logarithm of $\frac{3600}{1}$; of $2^{\prime \prime}$ is the common logarithm of $\frac{3600}{2}$; of $3^{\prime \prime}$ is $\frac{3600}{3}$, \&c., to $\frac{3600}{3600}$; hence the proportional logarithm of 3600 is 0 .

We now work the problem:

	1323				P.	L.		6516
	3317					L.		2559
Result,	$725 \frac{1}{2}$					L.		9075

EXAMPLES FOR PRACTICE.

1. When the sun's hourly motion in longitude is $2^{\prime} 29^{\prime \prime}$, what is its change of longitude in 37 m .12 s ?

Ans. $1^{\prime} 32^{\prime \prime} .5$.
2. When the moon's declination changes $57^{\prime \prime} .2$ in one hour, what will it change in 17 m .31 s ?

Ans. $16^{\prime \prime} .8$.
3. When the moon changes longitude $27^{\prime} 31^{\prime \prime}$ in an hour, how much will it change in 7 m .19 s .? Ans. $3^{\prime} 21^{\prime \prime}$.
4. When the moon changes her right ascension 1 m .58 s . in one hour, how much will it change in 13 m .7 s .?

Ans. $25^{\prime \prime} .8$.
N. B. This table of proportional logarithms will solve any

Chap. I. proportion, provided the first term is 60 , or 3600 ; therefore, when the first term is not 60 , reduce it to 60 , and then use the table.

EXAMPLES

1. If the sun's declination changes $16^{\prime} 33^{\prime \prime}$ in twenty-four hours, what will be the change in 14 h .18 m .?

Statement,	24	$:$	14.18	$::$	$16^{\prime} 33^{\prime \prime}$
Or,	12	$:$	7.09		
Or,	60	$:$	35.45	$::$	$16^{\prime} 33^{\prime \prime}$

Examples given to illustrate the practical utility of propor. tional logar ithms.

$16^{\prime} 33^{\prime \prime}$	P. L.	5594
$35^{\prime} 45^{\prime \prime}$	P. L.	2249
$9^{\prime} 51^{\prime \prime} .5$ P. L.	7843	

2. If the moon changes her declination $1^{\circ} 31^{\prime}$ in twelve hours, what will be the change in 7 h .42 m .? Ans. 58^{\prime}.

Conceive degrees and minutes to be minutes and seconds, and hours and minutes to be minutes and seconds.

When 60 minutes or 3600 seconds are not the first term of a proportion, the result is found by taking the difference of the proportional logarithms of the other term for the P.L. of the sought term, as in the following example:

The moon's hourly motion from the sun is $26^{\prime} 30^{\prime \prime}$, what time will it require to gain $30^{\prime \prime}$?

Statement, $26^{\prime} 30^{\prime \prime}: 60 \mathrm{~m} .: 30^{\prime \prime}: x$

	$30^{\prime \prime}$	P. L.	2.0792
Product of extremes,	60 m.	P. L.	0.0000
		$26^{\prime} 30^{\prime \prime}$	P. L. sub.
Result,	3549		
1 m .7 s.	P. L.	1.7243	

3. The equation of time for noon, Greenwich, on a certain day, was 6 m .21 s ; the next day, at noon, it was 6 m .43 s . what was it corresponding to 3 h .42 m ., p. M., in longitude 74° west, on the same day?

Ans. 6 m .29 s.

CHAPTERII.

GENERAL PROBLEM.
Chap. 1I. Given, the motions of sun and moon, to determine their appaA general rent positions at any given time; from which results their appaproblem pre- rent relative situations, and the eclipses of the sun and moon. paratory to
the computa- This problem covers two-thirds of the science of astronomy, tions ofeclip ses. and includes many minor problems; therefore a brief or hasty solution must not be expected.

From the foregoing portions of this work, the reader is supposed to have acquired a good general knowledge of the solar and lunar motions, and the tables give all the particulars of such motions; and all the artifices and ingenuity that astronomers could devise, have been employed in forming and arranging these tables, for the double purpose of facilitating the computations and giving accuracy to the results.

The tables, in general, must be left to explain themselves, and the mere heading, combined with the good judgment of the reader, will furnish sufficient explanation, in most instances; but some of them require special mention. All the tables are adapted to mean time at Greenwich.

EXPLANATION OF TABLES.

A very ge. Table IV contains the sun's mean longitude, the longineral and
comprehen. tude of its perigee (each diminished by 2°), and the Argusive explana-ments* for some of the small inequalities of the sun's appation of the rent motion.

Explanation * The term, argument, in astronomy, means nothing more than a of the term correspondence in quantities. Thus, each and every degree of the argument. sun's longitude corresponds with a particular amount of declination ; and therefore, a table could be formed for the declination, and the argument would be the sun's longitude.

The moon's horizontal parallax and semidiameter vary together, and each minute of parallax corresponds to a particular amount of semidiameter; hence, a table can be made for finding the semidiameter, and the arguments would be the horizontal parallax. But the hori-

Argument I, corresponds to the action of the moon; Argument II, to the action of Jupiter; Argument III, to Venus; and Argument N, is for the equation of the equinoxes, and corresponds with the position of the moon's node; and, by inspecting the column in the table, it will be perceived that the argument runs round the circle in a little more than eighteen years, as it should; and thus, by inspection, we can obtain an insight as to the period of any argument in the solar or lunar tables.

The object of diminishing the mean longitude and perigee of the sun by 2°, is to render the equation of the center al-

Chas. II. ways additive; for if 2° are taken from the longitude, and 2° added to the equation of the center, the combination of the two quantities will be the same as before; and, as the equation of the center is always less than 2°, therefore, 2° added to its greatest minus value, will give a positive result. By the same artifice all equations may be rendered always positive. The 2°, taken from the mean longitude, are restored by adding $1^{\circ} 59^{\prime} 30^{\prime \prime}$ to the equation of the center, and $10^{\prime \prime}$ to each of the other equations; hence, to find the real equation of the center corresponding to any degree of the anomaly, subtract $1^{\circ} 59^{\prime} 3^{\prime \prime}$ from the quantity found in the table.

Table XII, shows the time of the mean new moon, \&c., in January, diminished by fifteen hours, to render the corrections always additive. The fifteen hours are restored by adding 4 h .20 m . to the first equation, 10 h .10 m . to the second, 10 m . to the third, and 20 m . to the fourth.

Argument I, corrects for the action of the sun on the lunar
zontal parallax and semidiameter of the moon depend (not solely) on the moon's distance from its perigee; hence, a table can be formed giving both horizontal parallax and semidiameter; which arguments are the anomaly. In other words, an argument may be called an index, and when the arguments correspond to points in a circle, or to the difference of points in a circle, the circle may be considered as divided into 1000 or 100 parts, then 500 , or 50 , as the case may be, would correspond to half a circle, and so on in proportion. This mode of dividing the circle has been adopted, with certain limitations, to avoid the greater labor of computing by denominate numbers.

Chap. II.
\qquad
orbit; Argument II, corrects for the mean eccentricity of the lunar orbit; Argument III, corrects for the different combinations of the solar and lunar perigee; and Argument IV, corrects for the variation occasioned by the inclination of the lunar orbit to the ecliptic; N. shows the distance from or to the nodes.

Tables ad. apted to the synodical motion of the moon, by which new and full moons can be computed.

Explanation of the lunar table.

New and full moons, calculated by these tables, can be depended upon within four minutes, and commonly much nearer; but when great accuracy is required, the more circuitous and elaborate method of computing the longitudes of both sun and moon must be employed.
Tables XIII, XIV, and XV, are used in connection with Table XII.
Table XVI, shows the reduction of the latitude, and also of the moon's horizontal parallax, corresponding to the latitude, occasioned by the peculiar shape of the earth, and the diminution of its diameter as we approach the poles. The table is put in this place because of the convenient space in the page.

Table XVII, and the following tables to No. XXX, contain the arguments and epochs of the moon's mean longitude, evection, \&c., necessary in computing the moon's true place in the heavens.
The method The argument for evection is diminished by 29^{\prime}; the anoof computing the true lon. gitude of the sun. maly by $1^{\circ} 59^{\prime}$, the variation by $8^{\circ} 59^{\prime}$, and the longitude by $9^{\circ} 44^{\prime}$, and the balances are restored by adding the same amounts to the various equations, which, at the same time, renders the equation affirmative, as explained in the solar tables.

The arguments in Table xxxir, are also arguments for polar distance, or latitude, in Table xxviri. Anything like a minute explanation of / these tables would lead us too far, and not comport with the design of this work. The use of the tables will be shown by the examples.

We have carried the mean motions of the sun and moon only to five minutes of time - and this is sufficient for all practical purposes - for we can proportion to any intermediate minute or second, by means of the hourly motions.

PROBLEMI.

Chap. II.
From the solar tables find the sun's longitude, hourly motron in longitude, declination, semidiameter and equation of time; and for a specific example, find these elements corresponding to mean time, at Greenurch, 1854, May 26 d. 8 h. 40 m .

To find the sun's declination, spherical trigonometry gives us the following proportion: (Eq. 20, page 231.)

As radius $\quad-\quad-\quad-\quad-\quad 10.000000$		
Is to sin. of \odot^{\prime} s lon. $\left(65^{\circ} 12^{\prime} 15^{\prime \prime}\right)$	-	9.957994
So is sin. of obliq. of the eclip. $\left(23^{\circ} 27^{\prime} 32^{\prime \prime}\right)$	9.599900	
To sin. declination N., $21^{\circ} 10^{\prime} 54^{\prime \prime}$	-	-
9.557894		

In nearly all astronomical problems, time is reckoned from noon to noon - from 0 hour to 24 hours.

When the given time is apparent, reduce it to mean time, and when not at Greenwich, reduce it to Greenwich time, by applying the longitude in time. - (This is necessary because the tables are adapted to Greenwich mean time.)

From Table IV, and opposite the given year, take out the whole horizontal line of numbers (headed as in the table), and from Tables V, VII, VIII, take out the numbers corresponding to the month - day of the month - hour and minute of the day, as in the following example.

Add up the perpendicular columns, as in compound numbers, rejecting entire circles in every column, and the sums or surplus, as the case may be, will give the mean values of all the quantities for the given instant.

Subtract the longitude of the perigee from the mean lon- mean $\begin{gathered}\text { maly. }\end{gathered}$ gitude, and the remainder will be the mean anomaly; which is the argument for the equation of the center.

With the respective arguments take out the corresponding equations, all of which add to the mean longitude, and the true longitude of the sun from the mean equinox will be found.

With the argument N^{*} take out the equation of the equi-

[^34]Ceap. II. noxes from Table X, and apply it according to its sign, and the result will be the true longitude from the true equinox.

Eq. of the equinox-16
True lon. 251215
Sun's hourly motion in lon. $2^{\prime} 24^{\prime \prime}$
" semidiameter, $15^{\prime} 49^{\prime}$

These principles were explained on pages 94 and 95.

To find the equation of time to great accuracy.
By equation 21, page 231, we find
the sun's R.A., - - - 631610
Subtract this from the sun's lon., - - 651215
Equatorial point is west of mean eastward motion by - - - $\overline{1^{\circ} 56^{\prime} 5^{\prime \prime}}(\alpha)$

From the equation of the center, as
just found, - - - 3642

Subtract the constant of the table, - $\frac{15930}{1712}$
The sun east of its mean place, - $\quad 1712$ (b)
Subtract (b) from (a) because one is east, the other west, and we

$$
\text { have the arc - } \quad-\quad 48^{\prime} 53^{\prime \prime}
$$

This arc, converted into time, gives 3 m .15 .5 s . for the equation of time at this instant, and the sun will not come to the meridian at mean noon, but 3 m . $15 \frac{1}{2} \mathrm{~s}$. afterward Hence, to convert mean into apparent time, in the month of May, add the equation of time.

Thus, in general, we can determine the exact amount of the equation of time, by means of the two arcs (a) and (b) (which are roughly tabulated on page 95), and, without strictly scrutinizing each particular case, we can determine whether we are to take the sum or difference of the ares by inspecting the table on page 95 , or by referring our results to some respectable calendar.

EXAMPLE.

2. What will be the sun's longitude, declination, right ascension, hourly motion in longitude, semidiameter of the sun, and equation of time corresponding to 20 minutes past 9 , mean time at Albany, N. Y., on the 17 th of July, 1860 ?
N. B. At this time the sun will be eclipsed.

$$
\text { Ans. Lon. } 214^{\circ} 38^{\prime} 21^{\prime \prime} \text {; Dec. } 21^{\circ} 12^{\prime} 48^{\prime \prime} \text {. }
$$

R. A., in time, 7 h .46 m .15 s . Eq . of time to add to apparent time, 5 m .46 .2 s .; hourly motion in lon., $2^{\prime} 23^{\prime \prime}$; S. D., $15^{\prime} 45.6^{\prime \prime}$.

PROBLEM II.
From Tables XI, XII, and XIII, to find the approximate time of new and full moons.

Take the time of new moon, and its arguments, from Table XI, corresponding to January of the given year, and take as many lunations, from the following table, as correspond to the number of the months after January, for which the new moon is required; add the sums, rejecting the sums corresponding to whole circles, in the arguments, and in the column of days, rejecting the number corresponding to the expired months, as indicated by Table XIII; the sums will be the mean new moon and arguments for the required month.

When a full moon is required, add or subtract half a lunation. Sometimes one more lunation than the number of the month after January, will be required to bring the time to the required month, as it occasionally happens that two lunations occur in the same month.

Add the number of lu. nations necessary to bring the result to the re. quired time

Apply the equations corresponding to the different argu- of year. ments taken from Table XIV, and their sum, added to the mean time of new or full moon, will give the true mean time of new or full moon for the meridian of Greenwich, within four minutes, and generally within two minutes.

Cbar. II. For the time at any other meridian apply the time corresponding to the longitude.

EXAMPLES.

1. Required the approximate time of new moon, in May, 1854, corresponding to the day of the month, and the time of the day, at Greenwich, England, Boston, Mass., and Cincinnati, Ohio.

January.	Mean N. Moon.	I.	II.	III.	IV.	N.
1854, Four Luna. Table XIII.	27d. 18h. 14 m . $118 \quad 2 \quad 56$	0761	1168	19	04	668
		3234	2869	61	96	341
	$\begin{array}{llll}145 & 21 & 10 \\ 120 & & \end{array}$	3995	4037	80	00	009
Table XIII.		N shows an eclipse of the sun-visible in the United States.				
May,	25 21 10 6 46 4 14 17 20					
I.						
III.						
IV.						
May,	$\begin{array}{lll}26 & 8 & 47\end{array}$					

New (1) mean time at Greenwich, - 8 h. 47 m., P. м.
Boston, Longitude, - - - $\frac{444}{4}$
New (1) Boston time, - - 43
Cincinnati, Longitude from Boston, 53
New (1) Cincinnati time,
$3 \quad 10$
2. Required the approximate time of full moon, in July, 1852, for the meridian of Greenwich, and for Albany time, New York.

January.	Mean N. Moon.	I.	II.			N.
1852,	20d. 11h. 53m.	0549	$\overline{3239}$	38	27	538
Five Luna.	$147 \quad 15 \quad 40$	4042	3586	76	95	426
Half Luna.	$\begin{array}{lll}14 & 18 & 22\end{array}$	404	5359	58	50	43
Tab. 13. Bis.	$\begin{array}{\|lll} \hline 182 & 21 & 55 \\ 182 & & \\ \hline \end{array}$	4995	2184	72	72	00
		The column N shows that the moon is very near her node. There will be a total eclipse of the moon-invisible in the United States. Mean time at Greenwich.				
July, I. II. III. IV.	$\begin{array}{lrr} \hline 0 & 21 & 55 \\ & 4 & 21 \\ & & 42 \\ & & 17 \\ & & 10 \end{array}$					
July,	$1 \quad 3 \quad 25$					

Thus we can compute the time of new or full moon for any month in any year; but, as the numbers for the arguments correspond to mean or average motions, and cannot, without immense care and labor, be corrected for the true, variable motions, the results are but approximate, as before observed.

ECLIPSES.

Eclipses take place at new and full moons; an eclipse of the sun at new moon, and an eclipse of the moon at full moon; but eclipses do not happen at every new and full moon; and the reason of this must be most clearly comprehended by the student before it will be of any avail for him to prosecute the further investigation of eclipses.

If the moon's orbit coincided with the ecliptic, that is, if the moon's motion was along the ecliptic, there would be an eclipse of the sun at every new moon, and an eclipse of the everymonth moon at every full moon; but the moon's path along the celestial arch does not coincide with the sun's path, the ecliptic; but is inclined to it by an angle whose average value is $5^{\circ} 8^{\prime}$, crossing the ecliptic at two opposite points on the apparent celestial sphere, which are called the moon's nodes.

If the moon's path were less inclined to the ecliptic, there what would would be more eclipses in any given number of years than be essential now take place. If the moon's path were more inclined to what for fewthe ecliptic than it now is, there would be fewer eclipses. er eclipses.

The time of the year in which eclipses happen, depends on the position of the moon's nodes on the ecliptic; and if that position were always the same, the eclipses would always happen in the same months of the year. For instance, if the longitude of one node was 30°, the other would be in longi- why an tude $30+180$, or 210°; and, as the sun is at the first of eclipse these points about the 20th of April, and at the second about phould take in any the 20th of October, the moon could not pass the sun in particular these months without coming very nearly in range with it, of month. course, producing eclipses in April and October.

Chap. If.

The figure represents the particular paths of the sun and moon through the heavens.

Fig. 52.

For a clearer illustration, we present Fig. 52; the right line through the center of the figure, represents the equator, the curved line, $\uparrow \sigma_{0} \bumpeq$, crossing the equator, at two opposite points, represents the ecliptic, and the curved line, 8 (1) 8 , represents the path of the moon crossing the ecliptic at the points 8 and \&; the first of these points is the descending, the other, the ascending node.

As here represented, the ascending node is in longitude about 210°, and the descending node in about 30°; which was about the situation of the nodes in the year 1846, and, of course, the eclipses of that year must have been, and really were, in April and October.

The sun and moon at conjunction are represented in the figure a little after the sun has passed the northern tropic, which must be about the first of August; and it is perfectly evident that no eclipse can then take place, the moon running past the sun, at a distance of about five degrees south; and at the opposite longitude the moon must pass about five degrees north.

The moon's nodes move backward at the mean rate of 19° 19^{\prime}, per year; but the sun moves
over 19° in about twenty days; therefore, the eclipses, on

Chap. II.

- an average, must take place about twenty days earlier each year, or at intervals of about 346 days.

In May, 1846, the moon's ascending node was in longitude 216°; in eight years, at the rate of $19^{\circ} 19^{\prime}$, per year, it would bring the same node to longitude $61^{\circ} 28^{\prime}$. The sun attains this longitude each year, on the 23d of May, therefore, the eclipses for 1854 must happen in May, and in the opposite month, November.

In computing the time of new and full moons, as illustrated
The meaning of the co. by the preceding examples, the columns marked N , not hith- lumns N , in
erto used, indicate the distance of the sun and moon from the tables. the moon's node, at the time of conjunction or opposition.

The circle is conceived to be divided into 1000 parts, com- Eclipses are mencing at the ascending node; the other node then must limited to a be at 500 ; and when the moon changes within 37 of 0 , or along certain space 500 , that is, 37 of either node, there must be an eclipse of ecliptic. the sun, seen from some portion of the earth. When the distance to the node is greater than 37 , and less than 53 , there may be an eclipse, but it is doubtful: we shall explain how to remove the doubt in the next chapter.

When the moon fulls within 25 divisions of either node, there must be an eclipse of the moon: when the distance is greater than 25 , and less than 35 , the case is doubtful; but, like the limits to the new moon, the doubts are easily removed. We repeat, the ecliptic limits Comparative for eclipses of the sum are 53 and 37 ; for eclipses of the moon, eclipses of the limits are 35 and 25 . Hence, in any long period of time, the sun and the number of eclipses of the sun is, to the number of eclipses of the moon, as 53 to 35 .

In the same period of time, say in one hundred years, there will be more visible eclipses of the moon than of the sun; for every eclipse of the moon is visible over half the world at once, while an eclipse of the sun is visible only over a very small portion of the earth; therefore, as seen from any one place, there are more eclipses of the moon than of the sun.

In the preceding examples the columns, N , are far within the limits, and, of course, there must be an eclipse of the

Chap. II. sun on the 26 th of May, 1854, and an eclipse of the moon in July, 1852.
How we As N is in value 9 , at the time of new moon, in May, 1854, know that an
eclipse of the it shows that the moon will then have passed the ascending sun will hap- node, and be north of the ecliptic, and the eclipse must be ${ }_{26 \text { on }}^{\text {pen on the }}$, visible on the northern portions of the earth, and not on the 1854, and southern.
from what
circumstance When the moon changes in south latitude, which will be we learn that shown by N being a little more than 500 , or a little less than it will be an
eclipse to
to 1000 , the corresponding eclipse, if of the sun, will be visible eclipse to
some north. on some southern portion of the earth, and not visible in the ern portion of northern portion; and if of the moon, the moon will run the earth. through the southern portion of the earth's shadow.

Table B,p.31, shows the moon's latitude, approximately corWhat indi. responding to the column N ; or N is the argument for the cates that a latitude, and the heading of the argument columns will
solar eclipse solar eclipse will be visible on some southern portion of the earth.
scending to the southward.
The tables from XVI to XVIII, together with the solar tables, will give approximate values of the elements necessary for the calculation of eclipses; and if accurate results are not expected, these tables are sufficient to present general principles, and give primary exercises to the student in calculating eclipses; but he who aspires to be an astronomer, must continue the subject, and compute from the lunar tables, farther on.

The times, and the intervals of time, between eclipses, depend on the relative motion of the sun and moon, and the motion of the moon's nodes. The relative motion of the sun and moon is such as to bring the two bodies in conjunction, or in opposition, at the average interval of 29 d .12 h .44 m . 3 s., and the retrograde motion of the node is such as to bring the sun to the same node at intervals of 346 d .14 h .52 m . 16 s . Neglecting the seconds, and conceiving the sun, moon, and norle to be together at any point of time, and after an unknown interval of time, which we represent by P, suppose them together again. Then $\frac{P}{29 \frac{1244}{12}}$, represents the
number of returns of the lunation to the node, in the time P, and the expression $\frac{\mathrm{P}}{3461452}$, represents the number of returns of the sun to the node in the same time. Each return of either body to the node is unity; therefore, these expressions are to each other as two whole numbers; say as m to n; that is, $\frac{\mathrm{P}}{291244}: \frac{\mathrm{P}}{3461452}:: m: n$;

$$
\begin{aligned}
& \text { Or, } \quad \frac{n}{(291244)}=\frac{m}{(3461452)} ; \\
& \text { Or, }-\frac{(3461452) n=(291244) m \ldots}{}, \quad \text { (a) } \\
& \text { Or, } \quad \frac{n}{m}=\frac{291244}{3461452} .
\end{aligned}
$$

Chap. II.
The motions of the sun and moon in relation to moon's node investigated.

Reducing to minutes, and dividing numerator and denominator by 4 , we have $\frac{n}{m}=\frac{10631}{124783}$. As this last fraction is irreducible, and as m and n must be whole numbers to answer the assumed condition, therefore, the smallest whole number for m is 124783 , and for n is 10631 ; that is, as we see by equation (a), the sun, moon, and node will not be exactly together a second time, until a lapse of 124783 lunations, or 10631 returns of the sun to the same node; which require a period of no less than 10088 years and about 197 days. We say about, because we neglected seconds in the computation, and because the mean motions will change, in some slight degree, through a period of so long a duration.

This period, however, contemplates an exact return to the same positions of the sun, moon, and earth, so that a line contemplates drawn from the center of the sun to the center of the moon, possibilities. would strike the earth's axis in exactly the same point; but to produce an eclipse, it is not necessary that an exact return to former position should be attained; a greater or less cidences nev. approximation to former circumstances will produce a greater er happen. or less approximation to a former eclipse; but exact coincidences, in all particulars, can never take place, however long the period.

To determine the time when a return of eclipses may hap-

Chap. II. How to find the successive return of eclipses.
pen (particularly if we reckon from the most favorable positions - that is, commence with the supposition that the sun, moon, and node are together), it is sufficient to find the first approximate values of the fraction $\frac{10631}{124783}$. If we find the successive approximate fractions, by the rule of continued fractions,* we shall have the successive periods of eclipses, which happen about the same node of the moon.

The approximating fractions are

$$
\begin{array}{cccccc}
\frac{1}{11} & \frac{1}{12} & \frac{3}{35} & \frac{4}{47} & \frac{19}{223} & \frac{156}{1831} .
\end{array}
$$

A series of fractions showing the periods at which eclipses oc. cur.

These fractions show that 11 lunations from the time an eclipse occurs, we may look for another ; but if not at 11 , it will be at 12, and it may be at both 11 and 12 lunations; and at five or six lunations, we shall find eclipses at the other node, and the same succession of periods occurs at both nodes.

To be more certain of the time when an eclipse will occur, we must take 35 lunations from a preceding eclipse, which period is 1033 days 13 h .40 m ., and the sun, at that time is about $6^{\circ} 40^{\prime}$ farther from, or nearer to, the node, than before -and, if the count is from the ascending node, the monn's latitude is about 32^{\prime} farther south than before, and if from the descending node, the moon is about the same distance farther north.

The double of 11, 12, and 35 lunations, from any eclipse, may also bring an eclipse.

If an eclipse occurs within 10° of either node, it is certain that eclipses will again happen after the lapse of 47 lunations.
A briefex- The period of 47 lunations includes 1387 d .22 h .31 m ., amination of
the periodi- and revolutions of the sun to the node include 1386 d . the periodical return of eclipses. 11 h .29 m. ; the difference is 1 day 11 h .29 m. ; but in this time the sun will move, in respect to the node, $1^{\circ} 32$ and some seconds; therefore, if the first eclipse were exactly at the node, the one which follows, at the expiration of 47 lunations,

[^35]or 3 years and nearly 11 months afterward; would take place $1^{\circ} 32^{\prime}$ short of the same node; and if it were the ascending

Chap. II
The Chalnode, the moon's latitude would be about $5^{\prime} 40^{\prime \prime}$ south, and, dæan astronif the descending node, about $5^{\prime} 40^{\prime \prime}$ more to the north. omers called this period
The period, however, which is most known, and the most saros. remarkable, appears in the next term of the series, which shows that 223 lunations have a very close approximate value to 19 revolutions of the sun to the node.

The period of 223 lunations includes 6585.32 days, and 19 returns of the sun to the same node require 6585.78 days, showing a difference of only a fraction of a day; and if the sun and moon were at the node, in the first place, they would be only about 20^{\prime} from the node, at the expiration of this period, and the difference in the moon's latitude would be less than 2^{\prime}, and therefore the eclipse, at the close of this period, must be nearly the same in magnitude as the eclipse at the beginning; and hence the expression " a return of the cclipse," as though the same eclipse could occur twice.

This period was discovered by the Chaldæan astronomers, and enabled them to give general and indefinite predictions of the eclipses that were to happen; and by it any learner, however crude his mathematical knowledge, can designate the day on which an eclipse will occur from simply knowing the date of some former eclipse. The period of 6585 days is 18 years, including 4 leap years, and 11 days over; therefore from any eclipse, if we add 18 years and 11 days, we shall come within one day of the time of an eclipse, and it will be an eclipse of about the same magnitude as the one we reckon from.

For the purpose of illustrating the method of computing lunar eclipses, we wish to find the time when some future Almanac of 1833, we find that an eclipse of the moon took ${ }^{\text {an }}$ eclipse place on the 1st day of July of that year, therefore " a return of this eclipse" must take place on the 12th of July 1851.

By a simple glance into the American Almanac for the year 1834, we find a total eclipse of the moon on the 21 st of

Chap. II. June - therefore, on the first of July 1852, or at the time that the moon fulls, on or about the first of July, there must be a large eclipse of the moon, visible to all places from where the moon will then be above the horizon; and furthermore, 18 years and 11 days after this, that is, in the year 1870, on the 12th day of July, the moon will be again eclipsed; and, in this way, we might go on for several hundred years, but in time the small variations, which occur at each period, will gradually wear the eclipse away, and another eclipse will as gradually come on and take its place.

In the same manner we may look at the calendar, for any year, take any eclipse, that is anywhere near either node, and run it on, forward or backward.

Let us now return to the eclipse of July 12th, 1851.

Elements for the compotation of lunar eclipses.

To decide all the particulars concerning a lunar eclipse we must have the following data, commonly called elements of the eclipse:

1. The time of full moon.
2. The semidiameter of the earth's shadow.
3. The angle of the moon's visible path with the ecliptic.
4. Moon's latitude.
5. Moon's hourly motion.
6. Moon's semidiameter.
7. The semidiameter of the moon and earth's shadow.

General directions to obtain the elements of eclipses.

To find these elements, the approximate time of full moon is found from Table XI, and the tables immediately connected. For the time thus found, compute the longitude of the sun from Table IV, and the tables immediately connected, as illustrated by examples on page 254.

Compute, also, the latitude, longitude, horizontal parallax semidiameter, and hourly motion in latitude and longitude, from the lunar tables, commencing with Table XVI, and following out the computation by a strict inspection of the examples we have given (rules, aside from the examples, would be of no avail); and, if the longitude of the moon is exactly 180° in advance of the sun, it is then just the time of full moon; if not 180°, it is not full moon; if more than 180°, it is past full moon.

It will rarely, if ever, happen that the longitude of the Ceap. II. moon will be exactly 180° in advance of the longitude of the sun; but the difference will always be very small, and, by means of the hourly motions of the sun and moon, the time of full moon can be determined by the problem of the couriers.*

The moon's latitude must be corrected for its variation, corresponding to the variation in time between the approximate and true time of full moon.

To find the semidiameter of the earth's shadow, where the moon runs through it, we have the following rule:

To the moon's horizontal parallax, add the sun's, and, from the sum, subtract the sun's semidiameter.

This rule requires demonstration. Let S (Fig. 53) be
Fig. 53.

the center of the sun, E the center of the earth, and $P m$ a small portion of the moon's orbit. Draw $p P$, a tangent to both the earth and sun; from p and P draw $P E$ and $p E$, forming the triangle $p E P$.

By inspecting the figure, we perceive that the three Demonstra. angles:

$$
S E p+p E P+m E P=180^{\circ} .
$$

tion of the rule.

Rule to find the semidia. meter of the earth's sha. dow.

Crap. II. But the angle, $m E p$, is the semidiameter of the earth's shadow at the distance of the moon; $S E p$ is the semidiameter of the sun; P, that is, the angle, $E P p$, is the moon's horizontal parallax; and p is the horizontal parallax of the sun ; therefore, the equation is the rule just given.*
What is meant by the angle of the moon's visi . moon's visi- in some measure, on the relative motions of the sun and ble path with the ecliptic. moon.

To explain why the real and visible paths of the moon are different, let $A B$ (Fig. 54) be a portion of the ecliptic, and $A m$ a portion of the moon's orbit, then the angle, $m A B$,

Fig. 54.

is the angle of the moon's real path with the ecliptic. Conceive the sun and moon to depart from the node, A, at the same time, the moon to move from A to m in one hour, and the sun to move from A to b in the same time; join b and m, and the angle, $m b B$, is the angle of the moon's visible path with the ecliptic, which is greater than the angle, $m A B$; which is the angle of the moon's real path with the ecliptic. On this principle we determine the angle in question.

All the other elements are given directly from the tables.

[^36]
CHAPTER III.

PREPARATION FOR THE COMPUTATION OF ECLIPSES.

We shall now go through the computation in full, that it Char. III. may serve for an example to guide the student in computing Computaother eclipses.

	Mean N. Moon.	I.	II.	III.	IV	N.
1851, Six Luna. Half Luna.	1d. 14h. 21 m .	0038	3916	40	39	431
	$177 \quad 4 \quad 24$	4851	4303	92	95	511
	$\begin{array}{lll}14 & 18 & 22\end{array}$	404	5356	58	50	43
	$\begin{array}{lll}193 & 13 & 7\end{array}$	5293	3575	90	84	$\overline{985}$
July,		As N is within 25 of 1000 or 0 , there must be an eclipse The sun is 15 short of the as cending node, and the moon a full, being opposite, must be 15 short of the descending node and therefore, in north latitude descending.				
	$\begin{array}{rrr} 12 & 13 & 7 \\ & 3 & 35 \end{array}$					
	3 2					
	14					
	11					
	$\begin{array}{lll}12 & 19 & 14\end{array}$					

The approximate time of fall moon computed.

We now compute the sun's longitude, hourly motion, and Sun's lonsemidiameter for 1851 , July 12, 19 h .15 m . mean Greenwich time, as follows:

gitade computed, corresponding to the approximate time of full moon.

Chap. III. We now compute the moon's longitude, latitude, semidiDirection ameter, horizontal parallax, and hourly motions for the same, for comput- mean Greenwich time, as follows:
ing the moon's true longitude.

FOR THE LONGITUDE.

1. Write out the arguments for the first twenty equations, and find their separate sums. With these arguments enter the proper tables (as shown by the numbers), and take out the corresponding equations, and find their sum.
2. Write out the evection, anomaly, variation, longitude, supplement to node, and the several arguments for latitude, in separate columns, corresponding to the given time, and write the sum of the twenty preceding equations in the column of evection.
3. Add up the column of evection first; its sum will be the corrected argument of evection, with which, take out the equation of evection (Table XXIV), and write it under the sum of the first twenty equations; their sum will be the correction to put in the column of anomaly.
4. Add up the column of anomaly, and the sum will be the moon's corrected anomaly, which is the argument for the equation of the center. With this argument take out the equation of the center from Table XXV, and write it under the sum of the preceding equations, and find the sum of all, thus far. Write this last sum in the column of variation, and then add up the column of variation; which sum is the correct argument of variation, and with it take out the equation for variation from Table XXVI.
5. Add the equation for variation to the sum of all the preceding equations, and the sum will be the correction for longitude, which, put in the column of longitude, and the whole added up, will give the moon's longitude in her orbit, reckoned from the mean equinox.
Equation 6. Add the orbit longitude to the supplement of the node, of the equinox is some. times called nutation in longitude. and the sum is the argument of reduction to the ecliptic; it is also the first argument for polar distance.
With the argument of reduction take out the reduction from Table XXVII, and add it to the longitude.

With argument 19, which is the same as N in the solar ta- Сhap. III. bles, take out the equation of the equinox, and apply it according to its sign; the result will be the moon's true longitude reckoned on the ecliptic from the true equinox.

FOR THE LATITUDE.

Add the same correction (to its nearest minute) to column II, as was added to the column of longitude, and add its rections for value, expressed in the 1000th part of a circle, to all the fol- finding the lowing columns, except column X. Add up these columns, tude. rejecting thousands (or full circles), and the sums will be the 5 th, 6 th, 7 th, 8 th, 9 th, and 10 th arguments of latitude.

The sum of the moon's orbit longitude, and supplement to node, is the first argument of latitude. The sum of column II is the second argument of latitude; the moon's true longitude is the third argument, and the twentieth of longitude is the fourth argument. Then follow 5, 6, \&c., up to 10. With these arguments enter the proper Tables, and take out the corresponding equations, and their sum will be the moon's true distance from the north pole of the ecliptic, and, of course, will be in north latitude, if the sun is less than 90°, otherwise in south latitude.
N. B. When the first argument of latitude is nearer 6 signs than 12 signs, the moon is tending south; when nearer 12 signs, or 0 sign, than 6 signs, it is tending north.

For the equatorial horizontal parallax.- The arguments for Equatorial Evection, Anomaly, and Variation are also arguments for parallax and horizontal parallax, and with these arguments take out the ter depend corresponding equations from the tables adapted to this upon each purpose.

For the semidiameter.- The equatorial parallax is the argument for semidiameter, Table XXXIV.

For the hourly motion in longitude.-Arguments 2, 3, 4, and 5 of engitude rections for 5 of longitude sensibly affect the moon's motion; they are, finding the therefore, arguments for hourly motion, Table 36, (the units hourly moand tens in the arguments are rejected). Take out these tion of the equations from table, also take out the equation corresponding to the argument of evection, Table XXXVII. With the

Снағ. III. sum of the preceding equations, at the top, and the corrected anomaly at the side, take out the equations from Table XXXVIII. Also, with the correct anomaly, take out the equation from Table XXXIX. With the sum of all the preceding equations at top, and the argument of variation at the side, take out the equation from Table XL. Also with the variation, take the equation from Table XLI. With the argument of reduction take out the equation from Table XLII. These equations, all added together, will give the true hourly motion in longitude.
In this pro. For the hourly motion in latitude.-With the 1st and 2 d portion the arguments of latitude, take out the corresponding quantities first term is
the mean mo. tion of the noting the sign; call the result l.
moon. Then make the following proportion:

$$
32^{\prime} 56^{\prime \prime}: L \quad:: \quad \text { : } \frac{L l}{32^{\prime} 56^{\prime \prime}}
$$

the true hourly motion in latitude, tending north, if the sign is plus, and south, if minus. In this proportion L is the true motion of the moon in longitude, and the first term is the moon's mean motion; and the proportion is founded on the principle that the true motion in latitude must vary by the same ratio as the motion in longitude.
N. B. In computing the moon's latitude we caution the pupil against omitting to add to the arguments II, V, VI, VII, VIII, and IX, the same correction as to the column of longitude; its value must be changed into the decimal division of the circle for all the columns except column II.

In the following example the correction for longitude is added to column II, and its value to all the following columns except column X.

We find the value in question thus:

$$
360^{\circ}: 13^{\circ} 46^{\prime}: \quad: 1000: x
$$

The proportion resolved gives $x=$ the number added to the several columns.

But to avoid the formality of resolving a proportion for every example, we give the following skeleton of a table that
may be filled out to any extent to suit the convenience and Chas. II taste of the operator.

Degrees $=$ decimal parts			Degrees		$=$ parts.	
15	$=$. 003	5	24	$=$. 015
126	$=$. 004	7	12	=	. 020
148	$=$. 205	9	0	=	. 025
210	$=$. 006	10	48	=	. 030
231	=	. 007	12	36	=	. 035
253	=	. 008	14	24	=	. 040
314	$=$. 009	16	12	$=$. 045

$336=.010$
To make use of this table, we will suppose that the correction for longitude, in a particular example is, $11^{\circ} 31^{\prime} 25^{\prime \prime}$; what is the corresponding decimal or numeral part?

Thus

$$
\begin{aligned}
9 \circ & =.030 \\
231 & = \\
\hline 1131 & =.037
\end{aligned}
$$

We now continue the examples, hoping to follow these precepts.

Chap. III.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1851	0005	9167	2644	$\overline{5695}$	3467	4239	$\overline{8539}$	3477	3885	306	958	918	570	487	493	963	201	569	648	038
July,	4955	7629	8273	1942	0732	7341	0444	0643	4396	698	634	754	185	948	525	625	613	699	27	83
D. 12,	301	7149	1442	3157	3691	4093	635	4293	267	772	342	775	376	91	336	403	463	286	2	5
h. 19,	22	515	823	227	266	295	46	309	19	56	25	56	27	78	24	29	33	21	0	0
m. 15,	0	7	11	3	3	4	1	,	0	1	,	1	,	1	0	0	,	0	0	0
	5283	4467	$\frac{11}{3193}$	1024	8159	5972	9665	8726	8567	- 833	959	504	158	607	378	001	310	575	677	126

Moon's hourly motion in Longitude.

Moon's hourly motion in Latitude.	
Argument I.	-2^{\prime}
II.	-
	4

Chap. III.

For the Equatorial Parallax.	
Arg.	Moon's Equation.
Evection,	$0^{\prime} 25^{\prime \prime}$
Anomaly,	53
Variation,	54
Parallax,	55
S. D.	15

Arg.	Eq. Moon's Polar Dis.
I.	$\begin{array}{ccc} \circ & \prime 11 \\ 89 & 5 & 0 \end{array}$
II.	941
(10) lon.	1
20 lon.	4
V.	20
VI.	31
VII.	29
VIII.	17
IX.	4
X .	41
$\begin{array}{\|cc\|} \hline \text { Polar Dis. } 89 \\ 90 \end{array}$	
(10) Lat.	4252 tending S

Arg. Moon's Longitude.

Chap. III.
The moon's longitude, as just computed, will be $\begin{array}{cccc}9 & 0 & 15 & 9\end{array}$ The sun's longitude, at the same time, will be 3201455

The difference will be - - $\quad 6 \quad 0 \quad 014$.
Therefore, at the time for which these longitudes were computed, the moon will be past her full by $14^{\prime \prime}$ of are : to correct the time, then, we must find how much time will be required for the moon to gain $14^{\prime \prime}$; which, by the problem of the couriers, is

$$
t=\frac{14}{(30.54)-(2.23)}=\frac{14^{\prime \prime}}{28^{\prime} 31^{\prime \prime}}=\frac{14}{1711}
$$

The correction is subtractive because the moon is past conjunction, otherwise it would be additive.

The unit for t is one hour, and the denominator of the fraction is the difference of the hourly motions of the sun and moon, as determined by the tables; the result is 29 seconds of time to be subtracted.
The Greenwich time will be, 1851, July 12d. 19h. 15m. 0s.

Subtract	-	-	-				29
True time of full moon	-	-	12	19	14	31	

But the time given by the lunation table was 19 h .14 m ., differing only 31 seconds from the true time; the approximate and true time, however, do not commonly coincide as near as this; if they did, none but the most rigid astronomer would use the lunar tables for the time of conjunction or opposition.

To be very exact we must correct the moon's latitude for what it will vary in 31 seconds; that is, in this case, increase it $4^{\prime \prime} .5$. The moon's latitude, at the time of full moon, is, therefore, $42^{\prime} 53^{\prime \prime} .4$.

We have now all the elements necessary for computing the eclipse, or, at least, we have all the materials for finding them, and, for convenience, we collect the elements together:

$$
\begin{aligned}
& \text { 1. True time of full moon, July, } \quad-\quad \begin{array}{lllll}
\text { d. } & \text { h. } & \text { m. } & \text { s. } \\
19 & 14 & 31
\end{array} \\
& \text { 2. Semidiameter of earth's shadow } \\
& \text { (page 265), - - - } 39^{\prime} 39^{\prime \prime} \\
& \text { 3. Angle of the moon's visible path } \\
& \text { with the celiptic,* } \quad \text { - } \quad \text { - } \quad-\quad 5 \quad 38 \quad 26
\end{aligned}
$$

[^37]

Whenever the moon's latitude, at the time of full moon, is less than this last element, the moon must be more or less eclipsed; and it is by computing and comparing these two elements, viz., 4 and 7, that all doubtful cases are decided.

to CONSTRUCT A LUNAR ECLIPSE.

From any convenient scale of equal parts, take the 7 th element in your dividers $(5443)=54 \frac{3}{4}$, and from C, as a center with that distance, describe the semicircle $B D H E$ (Fig. 55). Take $C A=$ the 2 d element, and describe the semidiameter of the earth's shadow. From C, the center of the shadow, draw $C n$ at right angles to $B E$, the ecliptic, above $B E$, when the latitude is north, as in the present example, but below, if south.

Fig. 55.

When the moon has very little latitude describe a full circle.
When large south latitude, deseribe only the lower semicircle.

Take the moon's latitude from the scale of equal parts, and set it off from C to n. Through n draw $D n H$, the moon's path, so that the line shall incline to $B E$, the ecliptic, by an angle equal to the 3 d element. Conceive the moon's
is the hourly motion of the moon from the sun ($28^{\prime} 31^{\prime \prime}$), and the perpendicular, the moon's hourly motion in latitude ($2^{\prime} 49^{\prime \prime}$). See page 266, figure 54.

Chap. III
center to run along the line from D to H, and from C draw $C m$ perpendicular to $D H$.
When the moon is ascending in her orbit, $D H$ must incline the other way, and $C m$ must lie on the other side of $C n$.

The eclipse commences when the moon arrives at D. It is the time of full moon when it arrives at n; the greatest obscuration occurs when it arrives at m, and the eclipse ends at H. The duration is the time employed in passing from D to H; and to find the duration apply $D H$ to the scale, and thus The sthele- find its measure. Divide this measure by the 5 th element, ment is the moon's angular motion from the sun. and we shall have the hours and decimal parts of an hour in the duration. Also apply $D n$ to the scale and find its measure. Divide this measure by the 5 th element, for the time of describing $D n$, also divide the measure $n H$ for the time of describing $n H$.

The time of describing $D n$, subtracted from the time of full moon, will give the time of the beginning of the eclipse, and the time of describing $n H$, added to the time of full moon, will give the time when the eclipse ends.

With lunar eclipses the time of greatest obscuration is the instant of the middle of the eclipse, provided the moon's motion from the sun, for this short period of time, is taken as uniform, as it may be without sensible error.

In reference to this example $D n=31^{\prime}$ and $n H=39^{\prime}$. These distances, divided by $28^{\prime} 31^{\prime \prime}$, give 1 h .5 m .16 s . for the time of describing $D n$, and 1 h .22 m .4 s . for $n H$: whole time, or duration, 2 h .27 m .20 s .

Astronomical time converted into civil time.

This eclipse not visible in Earope, and why.
h. m. s.

Therefore from the time of full				191431		
Subtract	-	-	-	1		16
Eclipse begins	-	-		18		15
Add the duration		-	-		7	
Eclipse ends	-	-			6	

That is, in 1851 , July 12 d. 18 h. 9 m .15 s., mean astronomical time, the eclipse begins; but this time corresponds with July 13, at 6 h .9 m . in the morning, and at this time, the sun will be above the horizon of Greenwich, and, of course, the
full moon, which is always opposite to the sun, will be below the horizon, and the eclipse will be invisible to all Europe.

Chap. III.
Visible in
In the United States, however, the eclipse will be visible, the U.s. for, at these points of absolute time, the sun will not have risen nor the moon have gone down; but, to be more definite, we demand the times of the beginning, middle, and end of the eclipse, as seen from Albany, N. Y. To answer this demand, all we have to do, is to subtract from the Greenwich time the difference of meridians between the two places, which, in this case, is 4 h .55 m. ; and the result is,

Beginning of the eclipse	13 d.	1 h .14 m.	morning,		
Middle	-	-	2	28	$"$
End of the eclipse	-	-	3	41	$"$

In the same manner we would compute the time for any other place.

For the quantity of the eclipse we take the portion of the moon's diameter, which is immersed in the shadow, at the time of greatest obscuration, and compare it with found.
the whole diameter of the moon; and in the present example, we perceive, that not quite half of the diameter is eclipsed - about 5 digits when the whole is called 12, or 0.4 when the diameter is 1 .

All these results, however, except the time of full moon, are approximate, because we cannot, nor do we pretend to construct to accuracy; but any mathematician can obtain accurate results by means of the triangles $D C H$ and $C n m$, and the relative motion of the moon from the sun.

In the right-angled triangle $C n m$, right-angled at $m, C \cdot n$ The exact is the latitude of the moon $=42^{\prime} 53^{\prime \prime} .4=2573^{\prime \prime} .4$, and the angle $n C m=5^{\circ} 38^{\prime} 26^{\prime \prime}$; with these data we find $m n=$ $253^{\prime \prime}$, and $C m=2561^{\prime \prime} .6$.

In the right-angled triangle $C D m$, or its equal $C m H$, we have - $C m^{2}+m H^{2}=C H^{2}$;

Or, - $\quad m H^{2}=C H^{2}-C m^{2}$;
Or, - $\quad m H^{2}=(C H+C m)(C H-C m)$.
$C H$ is the 7 th element $=3283^{\prime \prime}$, and $C m=2561^{\prime \prime} .6$.
Therefore, $m H=\sqrt{(5844.6)(721.4)}=2043^{\prime \prime}$.4. This

Chap. III. divided by $1711^{\prime \prime}$, the 5 th element, gives the time of half the duration of the eclipse 1 h .12 m .; therefore the whole duration is 2 h .24 m ., which is 3 m .20 s . less than the time we obtained by the rough construction.

The distance $n m$, as just determined, is $253^{\prime \prime}$, and the time of describing this space, at the rate of $1711^{\prime \prime}$ per hour, requires 8 m .52 s ., which taken from, and added to the semiduration, gives 1 h .3 m .8 s . from the beginning of the eclipse to full moon, and 1 h .20 m .52 s . from the full moon to the end of the eclipse.

The trigonometrical computation of the magnitude of the eclipse.

For the magnitude of the eclipse we add the moon's semidiameter in seconds ($904^{\prime \prime}$) to $C m$ ($2561^{\prime \prime} .6$), and from the sum subtract the semidiameter of the shadow in seconds (2379), and the remainder is the portion of the moon's diameter not eclipsed. Subtract this quantity from the moon's diameter and we shall have the part eclipsed. Divide this by the whole diameter and the quotient is the magnitude of the eclipse, the moon's diameter being unity.

Following these directions we find the magnitude of this eclipse must be 0.397 .

The construction a sufficient guide to carry out the trigonometri. cal computa. tions.

In all these computations we were guided by the construction; which will always prove a sufficient index, and all that should be required.

We may determine, in any case, whether the eclipse will or will not be total, by the following operation:

Subtract the (1)'s semidiameter from the semidiameter of the shadow, and if the moon's latitude, at the time of full moon, is less than the remainder, the eclipse will be total, otherwise not.

To find the duration of total darkness.- Diminish the semidiameter of the shadow by the semidiameter of the moon, and from the center of the shadow describe a circle, with a radius equal to the remainder; a portion of the moon's path must come within this circle ; that portion, measured or divided by the hourly motion, will give the time of total darkness.

When the moon's latitude is north, as in the present example, the southern limb of the moon is eclipsed - and conversely.

CHAPTERIV.

SOLAR ECLIPSES - GENERAL AND LOCAL.

The elements for a solar eclipse are computed in the same chap. iv. manner as the elements of a lunar eclipse; all of which are General difound by the solar and lunar tables.

The approximate time of new moon is first computed, and rections to find the elements. for this time, compute the sun's longitude, declination, parallax, semidiameter, and hourly motion; and for the same time compute the moon's longitude, latitude, hourly motion in longitude and latitude, horizontal parallax, and semidiameter.

If the longitudes of both sun and moon are found to be the same, then the approximate time of conjunction; found by the lunation tables, is the same as the true time; if not, we proportion to the true time, as described in the last chapter.

The elements for a general solar eclipse are:

1. The time of δ^{*} at some known meridian. 2. Longi- What eletude of \odot and ©. 3. \odot 's declination. 4. ©'s latitude. ${ }_{\text {neneessary. }}^{\text {mare }}$ 5 . ©'s hourly motion. 6. ©'s hourly motion in longitude. 7. ©'s hourly motion in latitude. 8. The angle of the ©'s risible path with the ecliptic. 9. ©'s horixontal parallax. 10. ©'s semidiameter. 11. \odot 's semidiameter. 12. \odot 's horizontal parallax.

For a local eclipse, the latitude of the particular locality must also be given, or considered as one of the elements.

As we can best illustrate general principles by taking a particular example, we now propose to show the general course of an eclipse of the sun, which will occur in May 1854; where it will first commence on the earth; in what latitude and longitude the sun will be centrally eclipsed at noon, and where; in what latitude and longitude the eclipse will finally leave the earth.

We speak of an eclipse of the sun being on the earth; by some genethis we mean the moon's shadow on the earth. If an observer $\begin{aligned} \text { ral } \\ \text { nary }\end{aligned}$ peelimi. is in the moon's shadow, of course, the sun would be in an nations. eclipse to him; and, if a tangent line be drawn between the

Chap. IV. sun and moon, and that line strike the eye of an observer on the earth, to that observer the limbs of the sun and moon would apparently meet, and all projections of eclipses are on the principle of lines drawn from some part of the sun to some part of the moon, and those lines striking the earth. When no such lines can strike the earth there can be no eclipse. For the sake of simplicity in explaining a projection

Point of view,
 elements for the solar eclipse, which will take place May 26, 1854 , of a solar eclipse, whether it be general or local, an observer is supposed to be at the moon, looking down on the earth, viewing the moon's shadow as it passes over the earth's dise, and, of course, the earth to him appears as a plane, equal to the moon's horizontal parallax.

The approximate time of new moon will be found computed on page 254 , and, if very close results are not required, we may compute the sun's longitude, declination, hourly motion, and semidiameter for this time, and take out the moon's horizontal parallax, hourly motion, and semidiameter from Table IX; but we have computed the elements more a.ccurately by the lunar tables, and find them as follows:

> d. h. m. s.

1. Greenwich mean time of d 1854, May 2684539
2. Lon. of \odot and $-\quad$ - $65^{\circ} 14^{\prime} 6^{\prime \prime}$
3. Declination of the \odot - - 211143 N .
4. Latitude of the - - 2119 N .
5. ©'s hourly motion in lon., - - - 224
6. 's hourly motion in lon., - - $\quad 303$
7. ©'s hourly motion in lat., tending north, 246

From 5, 6, and 7 we obtain 8, as explained in the last chapter.

8. Angle of the moon's visible path
with the eclip., $-\quad 0 \quad, \quad "$

9. The ©'s horizontal equatorial parallax, 5430
10. The 's semidiameter, - 1451
11. The \odot 's semidiameter, - 1548
12. The \odot 's horizontal parallax, always taken at 9

Add together the \odot 's horizontal parallax, the \odot 's horizontal parallax, and the semidiameters of \odot and \odot, and if the moon's latitude is less than this sum, there will be an
eclipse, otherwise not; and it is by comparing this sum with Chap. Iv. the moon's latitude that all doubtful cases are decided.

TO CONSTRUCT A GENERAL ECLIPSE.

1. Make, or procure, a convenient scale of equal parts, and from any point as C (Fig. 56) with the radius $C B$, equal to the sum of the horizontal parallaxes of \odot and (in the present example $54^{\prime} 39^{\prime \prime}$, the minute is the unit), describe the semicircle $C B P H$, or the whole circle, when the case requires it. When the moon has small latitude (less than 20^{\prime}) describe the whole circle; when the moon has large north latitude describe the northern semicircle, when south describe the southern semicircle.

Through C draw $V C D P L$ perpendicular to $H B$. This perpendicular will represent the plane of the earth's axis, as seen from the moon.

From P take $P A, P F$, each equal to the obliquity of the ecliptic $23^{\circ} 27^{\prime} 30^{\prime \prime}$, and draw the chord $A F$.

On $A F$, as a diameter, describe the semicircle $A L F$. $\begin{gathered}\text { How to } \\ \text { find the axis }\end{gathered}$
2. Find the distance of the sun from the tropic, nearest to of the eclip$i t$, by taking the difference between the sun's longitude and tic. 90° or 270°, as the case may be. In the present example we subtract $65^{\circ} 14^{\prime}$ from 90°, the remainder is $24^{\circ} 46^{\prime}$. Take $L T$, equal to $24^{\circ} 46^{\prime}$, and draw $T E$ parallel to $L C$. Draw $C E$ the axis of the ecliptic.
By the revolution of the earth round the sun, the axis of the ecliptic appears to coincide with the axis of the equator, of the eclip- variable when the sun is at either tropic, and it appears to depart in position. from that line by the whole amount of the obliquity of the ecliptic ; and the time of this greatest departure is when the sun is on the equator. That is, $C E$ runs out to $C A$ at the vernal equinox, and runs out to $C F$ at the autumnal equinox. As a general rule, $C E$, the axis of the ecliptic, is to the left of $C P$, the axis of the equator, from the 20 th of $D \mathrm{e}-$ cember to the 20 th of June, and to the right of that line the rest of the year. Draw $C G$ the axis of the moon's orbit, so How to ind that the angle $G C E$ shall be equal to the angle of the the axis of moon's visible path with the ecliptic, and $C G$ is to the left of bit.

Chap. IV. example, but at the right when the eclipse is about the decending node.

For this projection to appear natural, the reader should face the north, so that H will appear to the west, and B on the east of the figure.

The shadow of the moon across the earth is from a western to an eastern direction, therefore, the moon is conceived to come in on the earth from the west side.
The equator.

How to draw the moon's path.

The point, C, is perpendicular to the sun's declination, and $C V$ is the sine of the declination, and the curved line, $H V B$, is a representation of the equator, as seen from the moon. When the sun has no declination, the equator draws up into a straight line.
3. Take $C n$ from the scale of equal parts, making it equal to the moon's latitude, and through the point n, and at right angles to $C G$, draw the line $k l m n r p e$, which represents the center of the shadow, or the moon's path across the disc.

From C, as a center, at the distance $C O$, describe the outer semicircle, equal to the sum of the moon's horizontal parallax, the sun's horizontal parallax, and the semidiameter of both sun and moon; then $O H$ is the semidiameter of the sun and moon.

When the eclipse first commences, the center of the moon is at k, and the center of the sun is on the circumference of the other circle, in a direct line to C, not represented in the figure, therefore, the two limbs must then just touch.

As C is the center of the earth, and H on the equator, therefore $C H O$ is a line in the plane of the equator, and the point, k, is a little below the equator; which shows that the eclipse first commences on the earth a little south of the equator.

The time that the eclipse is on the earth is measured by the time required for the moon to pass from k to e with its true angular motion from the sun.

The length of this line, $k e$, can be found from the elements, and trigonometry, as in an eclipse of the moon, and the time of describing it is found in the same way.

Fig. 56.

Chap. IV. When the moon's center comes to l, the central eclipse How to de. commences, and the arc, $H l$, shows that it must be about in termine in the latitude of 7° north. When the moon's center comes what lati- to r, the sun will be centrally eclipsed at apparent noon; and eclipse will $C r$ is the sine of the number of degrees north of the sun's enter, pass
over,
and declination, which, in this case, is about 23°; hence to the p.ss off the sun's declination, $21^{\circ} 12^{\prime}$, add 23°, making $44^{\circ} 12^{\prime}$; showing, parth. as near as a mere projection can show, that the sun will be centrally eclipsed at noon on some meridian, in latitude $44^{\circ} 12^{\prime}$ north. The central eclipse will end, or pass off the earth, when the moon's center arrives at p, and the arc, $B p$, from the equator, shows that the latitude must be about 41° north. The eclipse will entirely leave the earth when the moon's center arrives at e, and for its limb to touch the sun, the sun's center must be at h, and the arc, $B h$, shows that the latitude must be about 30° north.

The lines, $c d$ and $a b$, parallel to the moon's path, and distant from it equal to the sum of the semidiameters of sun and moon, represent the lines of simple contacts across the earth, or limits of the eclipse; $c d$ is the southern line of simple contact, and $a b$ is the northern line of simple contact, and the latitudes at which these lines make their transits over the earth, are determined precisely as the latitudes on the central line.
We may But we need not stop at coarse approximations, we have make accu-
rate compu- all the data for correct mathematical results, on the same tations by principles as we determined those in relation to a lunar eclipse. plane trigo- In the triangle, $C n r$, we have the side, $C n$, the moon's
nometry. latitude in secands, which may be used as linear measure, as yards or feet, and in proportion thereto, we may compute $C r$ and $n r$, when we know the angle, $n C r$.
An equa. But the following equation always gives the tangent of the rion for the position of angle, $E C D$, or $n C r$, calling the sun's distance from the solthe axis of stice D, the obliquity of the ecliptic E, and the radius, unity. the ecliptic.

$$
\tan . E C D=\tan . E \sin . D . *
$$

[^38]To the angle, $E C D$, add the angle, $G C E$, the angle of the Chap. iv. moon's visible path with the ecliptic, and we have the whole angle, $G C D$, or $m C r$. $C m n$ is a right angle, and in the two triangles, $C m n$ and $C m r$, we have all the data, and can compute $n r$ and $r C$.

When the moon arrives at m, it is in the line of conjunction in her orbit; when it arrives at n, it is in ecliptic conjunction; and when it arrives at r, it attains conjunction in right ascension.

For the last six or eight years, the English Nautical Almanac has given the conjunctions and oppositions in right ascension, in place of conjunctions and oppositions in longitude, and has given the difference of declinations between the sun and moon, in place of giving the moon's latitude; that is, it has given the time that the moon arrives at r, in place of n, and given the line, $C r$, in place of $C n$.

All lunar tables give the ecliptic conjunction at n, and from this we can compute the time at r, by means of the triangle, Cnr.

Having explained the principle of finding the latitude on the earth, when a solar eclipse first commences, we are now ready to show another important principle-how to find the longitude; and with the latitude and longitude, we have the exact point on the earth.

Where an eclipse first commences on the earth, it commences with the rising sun, and finally leaves the earth with the setting sun. In this example, we have decided that the eclipse must commence very near the equator, not more than The method of finding the longitude one degree south; but in that latitude the sun rises at 6 h ., earth.
A. м., apparent time ; therefore, at the place where the eclipse commences, it is six in the morning, apparent time.

From the scale of equal parts, take the moon's hourly motion from the sun in the dividers ($27^{\prime} 39^{\prime \prime}$), and apply it on the line $k q$, it will extend three times, and a little over, to the point n. This shows that three hours, and a little more (we say 3 h .3 m .) must elapse from the first commencement of the eclipse to the change of the moon at n. Hence, by the local time at the place of the commencement of the eclipse,

Crap. IV. the moon changes at 9 h .3 m . in the morning, apparent time; but the apparent time of new moon at Greenwich is 8 h .49 m ., p. m., making a difference of 11 h .46 m ., for mere locality; the absolute instant is the same; the difference is only in meridians which correspond to a difference of longitude of $175^{\circ} 30^{\prime}$; and it is west, because it is later in the day at Greenwich.
The method The central eclipse also first comes on the earth at a place
of finding where the where the sun is rising. In this example it first strikes the central
eelipse first earth at the point l, in latitude about $7^{\circ} \mathrm{N}$.; but, in latitude eelipse first
strikes
the $7^{\circ} \mathrm{N}$., and declination $21^{\circ} \mathrm{N}$. , the sun rises at 5 h .48 m ., earth. A. M., apparent time (Prob. II), and from that time to the change of the moon, namely, the time required for the moon to move from l to n, is (as near as we can estimate it by the construction), 1 h .56 m ., therefore, the time of new moon, in the locality where the central eclipse first commences, is 7 h . 44 m . in the morning. From this to 8 h .49 m . in the evening, the time at Greenwich, gives a difference of 13 h .5 m ., reckoned eastward from the locality; or 10 h .55 m ., reckoned westward; which corresponds to $196^{\circ} 15^{\prime}$ west longitude from Greenwich, or $163^{\circ} 45^{\prime}$ east longitude; the meridian is the same. If the longitude is called east, the day of the month must be one later; but, to avoid this, we had better call the longitude west.
To find the Where the sun is centrally eclipsed on the meridian, it is longitude where the sun will be b cenirally eclipsed at noon. just 12, apparent time; the moon's center is then at r, and, by the construction, it must be about seven minutes after conjunction in that locality; hence, the conjunction is seven minutes before 12, and at Greenwich it is 8 h .49 m . after 12, giving 8 h .56 m . for difference of longitude, or 134° west longitude.

The central eclipse will leave the earth with the setting sun, when the center of the moon and sun are both at p; but the latitude of p we decided to be 40° north, and in this latitude, when the sun's declination is $21^{\circ} 11^{\prime}$, as it now is, the sun sets at 7 h .15 m . apparent time; but this is 1 h .40 m . after conjunction, therefore, the conjunction, in that locality, must be at 5 h .35 m . ; but, at Greenwich, it is

8 h .49 m ., giving, for difference of longitude, 3 h .14 m ., or Chap. IV. $48^{\circ} 30^{\prime}$ west.

The eclipse finally leaves the earth in latitude 46° north; but, in this latitude, the sun sets at 6 h .51 m ., and the con- longitude junction will be 3 h .0 m . sooner (the time required for the eclipse will moon to pass from n to q), therefore the conjunction, in this leave the locality, must be at 3 h .51 m .; but, at Greenwich, it will be 8 h . 49 m ., giving 4 h .58 m . for difference of longitude, or $74^{\circ} 30^{\prime}$ west.

Thus, by the mere geometrical construction, we have roughly determined the following important particulars:

	time Gr. h. m.	${ }_{\circ}^{\text {Lat. }}$	Longitude.	
Eclipse commences, May 26	546	1 S .	17530 W .	Results me-
Cen. eclipse commences,	653	7 N.	19615 W .	${ }_{\text {chanen }}^{\text {tanically }}$ from
Cen. eclipse at local noon,	856	46	13400 W.	the projes-
Cen. eclipse ends,	1034	40	4830 W.	
End of eclipse,	1146	30	7330 W.	

To find the latitude of the first commencement of simple contact on the southern line, all we have to do is, to find the ties of the aro, $H c$, and for the latitude on the northern line, we find the northern arc, $H a$; the point, c, is in latitude about 27° south, and a in $\begin{aligned} & \text { lines of sim. } \\ & \text { ple contact. }\end{aligned}$ about 54° north.

The southern line of simple contact leaves the earth at d, between the seventh and eighth degrees of north latitude, and the northern line passes off beyond the pole.

We have, thus far, taken the results but approximately from the projection, and the projection is sufficient to teach us principles; and it must be our guide, if we attempt to obtain more minute results; and with the elements and the figure we have the whole subject before us as minutely accurate as it is magnificent, and as simple as it is sublime.

To complete our illustration, we now go through the trigonometrical computation.

In the triangle, $C n m$, we have $C n=21^{\prime} 19^{\prime \prime}=1279$, the angle, $m C n=5^{\circ} 42^{\prime} 50^{\prime \prime}$, and the angle, m, a right angle.

Whence, $\quad C m=1273^{\prime \prime}$, and $m n=127^{\prime \prime} .3$.
$\frac{\text { Chap. IV. }}{\text { In these }}$ computations the moon's latitude and the distances
from the center, C, to the circumfer. ences are given lines.
$\tan . E C D=n C r=\tan .\left(23^{\circ} 27^{\prime} 32^{\prime \prime}\right) \sin .\left(24^{\circ} 45^{\prime} 54^{\prime \prime}\right)$
(page 284).

In the triangle $m C r$, we have $C m$ (1273), the perpendicular, and the angle $m C r$, as just determined; whence,

$$
m r=365^{\prime \prime} .3 ; \quad C r=1324^{\prime \prime} .3
$$

In the triangle, $C m p, C p$ is the horizontal parallax of moon and sun $\left(54^{\prime} 30^{\prime \prime}\right)+9^{\prime \prime}$, or, $54^{\prime} 39^{\prime \prime}=3278^{\prime \prime}$.

By the well-known property of the right-angled triangle,

$$
C m^{2}+m p^{2}=C p^{2}
$$

Or, $\quad m p^{2}=C p^{2}-C m^{2}=(C p+C m)(C p-C m)$,
That is, $\quad m p=\sqrt{(4551)(200} \overline{5})=3020^{\prime \prime} .7$.
Therefore, $l p$, the whole chord, is $6041^{\prime \prime} .4$, which, divided by $1659^{\prime \prime}$ (the moon's motion from the sun), gives 3.646 h ., or 3 h .38 m .46 s. , for the time that the central eclipse will be on the earth.

In the same manner the line, $m q$, is found.
That is, $\quad m q=\sqrt{\left(C^{\prime} q+C m\right)(C q-C m)}$,
But, $\quad C q=54^{\prime} 39^{\prime \prime}+14^{\prime} 5.1^{\prime \prime}+15^{\prime} 48^{\prime \prime}=5118^{\prime \prime}$.
Or, $\quad m q=\sqrt{(6391)(3845)}=4957^{\prime \prime} .3$.
Therefore, the whole chord, $k q$, is 9814.6 , which, divided by $1659^{\prime \prime}$, gives 5 h .58 m .34 s ., for the entire duration of the general eclipse on the earth.

On the supposition that the moon's motion from the sun is uniform for the six hours that the eclipse will be on the earth, the several parts of the moon's path will be passed over by the moon, as follows:

Accurate results on the condition of invariable elements.

From k to l in 1 h .9 m .54 s.
From l to m in $1 \quad 49 \quad 23$ to δ in orbit.
From m to n in $\quad 4 \quad 36$ to δ in ecliptic.
From n to r in $\quad 8 \quad 37$ to d in right ascension.
From r to p in $1 \quad 36 \quad 10$
From p to q in $1 \quad 9 \quad 54$

The apparent time of ecliptic conjunction, at Greenwich, as determined by the tables (and applying the equation of time), is at
Subtract from k to ecliptic δ,
Eclipse commences, Greenwich app. time, Central eclipse commences (add 1954), 8 h .49 m .0 s . Sun centrally eclipsed on some meridian, or δ in right ascension, Greenwich time, at (add 2236), $\begin{array}{lll}8 & 57 & 37\end{array}$
Central eclipse ends at (add 136 10), $\begin{array}{lllll}10 & 33 & 47\end{array}$
End of eclipse at (add 1954), $11 \quad 4341$
By comparing these times with those obtained simply by a careful the projection, we perceive that the projection is not far out projection of the way, notwithstanding the terms rough and roughly that $\begin{gathered}\text { more, acu } \\ \text { rate }\end{gathered}$ we have been compelled to use concerning it. Indeed, a good draftsman, with a delicate scale and good dividers, can decide the times within two minutes, and the latitudes and longitudes within half a degree; but all mathematical minds, of course, prefer more accurate results; yet, however great the care, absolute accuracy cannot be attained; the nature of the case does not admit of it.*

To find whether the point k is north or south of the equa-

[^39]Chap. IV.
tor, we conceive k and C joined, and if the angle $m C k$ is greater than the angle $m C H$, the point k is south, otherwise north.

By trigonomẹtry, Ck : $k m$: : sine $90^{\circ}:$ sine $m C k$;
Or, $5118: 4957^{\prime \prime} .3: \sin .90: \sin . m C k=753520$

To this add $G C D$,	-	-	16058
Sum is the angle $r C k$	-	-	913618

This angle shows that the eclipse will first touch the earth in latitude $1^{\circ} 36^{\prime} 18^{\prime \prime}$ south.

To find the arc $H l$, conceive the points $C l$ joined, and the two triangles $C l m, m C p$ are equal.

And $\quad C l: l m:: \sin .90^{\circ}: m C l$;
Or, $3278: 3020.7:: \sin .90: \sin . m \mathrm{Cl}=67750$

To this add $G C D$,	-	-	-	16058
The sum is,	-	-	-	-
83848				

Where the eclipse first strikey the earth

This angle shows the latitude of the point l to be $6^{\circ} 51^{\prime}$ $12^{\prime \prime}$ north. That is, the central eclipse first touches the earth in $6^{\circ} 51^{\prime} 12^{\prime \prime}$ of north latitude; differing very little from the point determined by construction.

To find the latitude of the point p, we have $m C l=m C p$ $=67^{\circ} 7^{\prime} 50^{\prime \prime}$, and subtracting $16^{\circ} 0^{\prime} 58^{\prime \prime}$, we have the polar distance, or co-latitude; the result is, that the central eclipse passes off at latitude $38^{\circ} 53^{\prime} 8^{\prime \prime}$ north, and the general eclipse entirely leaves the earth in latitude $30^{\circ} 25^{\prime} 38^{\prime \prime}$.

To find the latitude of the point r, we consider $C r$ to be a sine of an arc, and $C P$ the radius.

Therefore, $3278^{\prime \prime}: 1324^{\prime \prime} .3:: R: \sin . x=234950$
To this add the sun's declination, - 211143
Sum is latitude where the sun will be centrally eclipsed on the meridian, - 45133 N .

How to find the longitude is apparent noon at that place, but at Greenwich the apparent of the place where the sun is central. ly eclipsed on the meridian.

Wherever the sun is centrally eclipsed on the meridian, it time is $8 \mathrm{~h} .57 \mathrm{~m} .37 \mathrm{~s} .$, , $\mathbf{~ m . ; ~ t h i s ~ d i f f e r e n c e , ~ c h a n g e d ~ i n t o ~ l o n - ~}$ gitude, gives $134^{\circ} 25^{\prime}$ west, within a degree of the result determined from the projection; and it is not important to go over a trigonometrical computation for the longitudes, since
we are sure of knowing how to do it; and we are also sure chap. if. that the results will not differ much from those already determined.

In short, from the elements, the figure, and a knowledge snfficient of trigonometry, we can determine all the important points in $\begin{gathered}\text { data in the } \\ \text { figure. }\end{gathered}$ each of the three lines $c d, k q$, and $a b$, for between them we have, or may have, a complete net-work of plane triangles.

CHAPTERV.

LOCAL ECLIPSES, ETC.
We now close the subject of eclipses by showing how to Chap. v. project and accurately compute every circumstance in relation to a local eclipse.

For an example, we take the eclipse of May, 1854, and for the locality, we take Boston, Mass., because we anticipated a central eclipse at that place, but the result of computations shows that it will not be quite central even there. We use the same elements as for the general eclipse.

THE CONSTRUCTION.

Draw a line $C D$, and divide it into 65 equal parts, and The scale. consider each part or unit as corresponding to one minute of the moon's horizontal parallax. From C, as a center, at a distance equal to the horizontal parallax of the sun and moon (5439), describe a semicircle north or south according to the latitude, or describe a whole circle, if the latitude is near the equator.

From C draw C so the universal meridian, at right angles to $C D$, and from σ take 匹 Υ and $\sigma \bumpeq$, each equal to the obliquity of the ecliptic ($23^{\circ} 27^{\prime}$) and draw the straight line $\uparrow \bumpeq, \Gamma$ on the right. Subtract the sun's longitude from 90° or 270° to find its distance from the nearest solstitial point, and note the difference (in this example $24^{\circ} 46^{\prime}$).

From the point, a, with $a \Upsilon$, as radius, make $a G$, equal to ecliptic.

Chap. V.
the sine of $24^{\circ} 46^{\prime}$,* and join $C G$, and produce it to E; $C E$ is the axis of the ecliptic; this line is variable, and is on the other side of the line, $C \sigma_{\sigma}$, between June 20, and December 21 .
How to find the axis of the moon's orbit.

From E take the arc, $E L$, equal to the moon's visible path with the ecliptic, to the right of E, when the moon is descend. ing, but to the left, when ascending, as in the present exam- ple. Join $C L$, a line representing the axis of the moon's orbit.

To and from the reduced latitude of the place add and subtract the sun's declination:

$\begin{array}{cccccc}\text { Thus, Boston, reduced latitude, } & - &$| 42° | $6^{\prime} 39^{\prime \prime}$ |
| :--- | :--- |
| N | |
| Sun's declination, | - |
| 21 | 11 | \& 43 \& $\mathrm{~N} .\end{array}$

Sum is $63^{\circ} 19^{\prime} 22^{\prime \prime}$, and difference is $20^{\circ} 54^{\prime} 56^{\prime \prime}$.
How to find From C, make $C 12$, equal to the sine of the difference of the points in the two $\operatorname{arcs}\left(20^{\circ} 54^{\prime} 56^{\prime \prime}\right)$, and $C d$, the sine of the sum
the ellipe $\left.\begin{array}{l}\text { the erkilipse } \\ \text { marking the } \\ 63^{\circ} \\ 19^{\prime} \\ 22^{\prime \prime}\end{array}\right)$.
visible path
of the place Divide (12) d into two equal parts at the point g, and on $\begin{aligned} & \text { of the place } \\ & \text { over } \\ & \text { the }\end{aligned} g(12)$, as radius, mark the sine of $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$, earth's dise. 90°; the line 7,5 , runs through the first point; 8,4 , through the second, \&ce.

Subtract the latitude ($42^{\circ} 6^{\prime} 39^{\prime \prime}$) from 90°, thus finding the co-latitude ($47^{\circ} 53^{\prime} 21^{\prime \prime}$). On the semidiameter of the earth's disc, as radius, take the sine of the co-latitude (47° 53^{\prime}), and set off that distance from g, both ways to 6 ; thus making a line, 6,6 , at right angles to the universal meridian, Cq. On $g(6)$, as radius, and from the point g, as a center, find the sine of $15^{\circ}, 30^{\circ}, 45^{\circ}$, \&rc., and set off those distances each way from g, and through the points, thus found, draw lines parallel to $g C$; these lines, meeting the lines drawn parallel to $6 g 6$, will define the points $5,6,7,8$, \&c., to 12 , and $1,2,3$, \&c., to 7 , the hours of the day on the elliptic curve. That is, our supposed observer at the moon would see Boston (or any other place in the same latitude as Boston), at the point 9 , when it is 9 o'clock at the place, and at 12, when it is noon at the place, \&c.

[^40]

Chap. V. shows that, in that latitude, on the day in question, the sun will rise before 5 in the morning, and set after 7 in the evening. If the declination of the sun had been as much south as now north, the point, d, would have been 12 at noon, and all the hours would have been on the upper part of the ellipse, which is not now represented.

From C, as in the general eclipse, set off the distance, $\boldsymbol{C} n$, equal to the moon's latitude, and, through the point n, draw the moon's path at right angles to $C L$.

As the ellipse represents the sun's path on the dise, and as the point (12) refers, of course, to apparent noon, and not to mean noon, therefore, we will mark off the time on the moon's path, corresponding to apparent time.

How to mark time on the moon's path.

When the moon's center passes the point n, it is at ecliptic conjunction, apparent time, at Boston, or it must be considered the apparent time, corresponding to any other meridian for which the projection may be intended.
The ecliptic δ, apparent time, Greenwich, is 8 h .49 m .0 s . For the longitude of Boston, subtract

Conjunction, apparent time, at Boston, \quad	4	44	16
4	4	44	

The moon's hourly motion from the sun is $27^{\prime} 39^{\prime \prime}$; take this distance from the scale, in the dividers, and make the small scale, $a b$, which divide into 60 equal parts, then each part corresponds with a minute of the moon's motion from the In this case, the ellipse sun, and the distance, $a b$, will correspond with one hour of the must
mence \quad be. moon's motion along its path. At 4 h .4 m .44 s . the moon's tween 4 and center will be at the point n, the sun's center, at the same 5 o'clock. time, will be just beyond the point 4, on the ellipse; and, as the distance between these two points is greater than the sum of the semidiameters of sun and moon, therefore, the eclipse will not then have commenced; but the moon moves rapidly along its path, and, at 5 o'clock, the center of the moon will be at the point marked 5 on the moon's path, and the center of the sun will be at the point marked 5 on the ellipse, and these two points are manifestly so near each other, that the limb of the moon must cover a part of that of the sun, show-
ing that the eelipse mast have commenced prior to that time. To find the time of commencement more exactly, let the hour on the moon's path be subdivided into 10 or 5 -minute spaces, and take the sum of the semidiameter of the sun and moon in your dividers from the scale $C D$, and, with the dividers thus open, apply one foot on the moon's path, and the other on the sun's path, and so adjust them that each foot will stand at the same hour and minute on each path as near as the eye can decide. The result in this case is 4 h .28 m . The end of the eclipse is decided by the dividers in the same manner, and, as near as we can determine, must take place at 6 h .44 m .

To find the time of greatest obscuration, we must look along the moon's path, and discover, as near as possible, from what point a line drawn at right angles from that path, will scaration. strike the sun's path at the same hour and minute; the time, thus marked on both paths, will be the time of greatest obscuration.

In this case it appears to be 5 h .40 m ., and the two centers are very nearly together; so near, that we cannot decide on which side of the sun's center, the moon's center will be, without a trigonometrical calculation.

To show a representation of an eclipse at any time during How to find its continuance, we must take the semidiameter of the sun in the magnithe dividers from the scale; and, from the point of time on eclipse. the sun's path, describe the sun; and, from the same point of time on the moon's path, describe a circle with the radius of the moon's somidiameter; the portion of the sun's diameter eclipsed, measured by the dividers, and compared with the whole diameter, will give the magnitude of the eclipse as near as it can be determined by projection.

The results of this projection are as follows:

From the projection the two centers are nearer together than the difference of the semidiameter of the sun and moon,

Crap. V. and the moon's diameter being least, the eclipse will be annular, as represented in the projection.

The above results are, probably, to be relied upon to within three minutes.

We have now done with the projection, as far as the particular locality, Boston, is concerned; but, in consequence of the facility of solution, we cannot forbear to solve the following problem: In the same parallel of latitude as Boston, find the longitude where the greatest obscuration will be exactly at 2 р. м., apparent time.
A very easy From the point 2, in the ellipse, draw a line at right angles to the moon's path, and that point must also be 2 h . on the moon's path; running back to conjunction, we find it must take place at 1 h .50 m . ; but the conjunction for Greenwich time is 8 h .49 m ., the difference is 6 h .59 m ., corresponding to $104^{\circ} 45^{\prime}$ west longitude; we further perceive that the sun would there be about 9 digits eclipsed on the sun's southern limb.

Now, admitting this construction to be on mathematical
How to find more accurate results. principles (as it really is, except the variability of the elements), we can determine the beginning and end of a local eclipse to great accuracy, by the application of analytical GEOMETRY.
Let $C D$ and $C \sigma$ be two rectangular co-ordinates, then the distance of any point in the projection from the center can be determined by means of equations.

Let x and y be the co-ordinates of any point on the sun's path or elliptic curve, and X and Y the co-ordinates of any point on the moon's path, then we have the following equations:

In these remarkable equations, p is the semidiameter of projection, L the latitude, D the sun's declination, t the time from apparent noon, d the difference in declination between
sun and moon at the instant of conjunction in right ascen- Снағ. v. sion, h the moon's hourly motion from the sun, i the interval of time from conjunction in right ascension-minus, if before conjunction-plus, if after; and B is the angle $L C \sigma$, or the angle which the moon's path makes with $C D$.

In the equations x and X, are horizontal distances. In equation (1) the plus sign is taken when the hours are on the upper side of the ellipse, as in winter; when on the lower side take the minus sign.

In equation (3), the plus sign is taken when the motion of the moon is northward, and the minus sign, when southward. The sin. t, or cos. t, means the sin. or cos. of an arc, corresponding to the time at the rate of 15° to one hour.

The solar and lunar co-ordinates, or equations (1), (2), Explanation of the sym. bols. (3), and (4), are connected together by the following equations; the minus sign applies to forenoon, the plus sign to afternoon :

$$
\begin{aligned}
& \delta-i=-t ; \\
& \delta+i=t .
\end{aligned}
$$

The symbo! d expresses the time of conjunction in right ascension.

To apply these equations, and, of course, the former ones, i, the interval of time from conjunction must be assumed, and, as the time of conjunction is known, t thus becomes known; d, h, and B, are known by the elements, therefore, x, y, and Y, Y, are all known. But the distance between any two po nts referred to co-ordinates, is always expressed by

$$
\sqrt{(x \backsim \Omega)^{2}+(y \backsim Y)^{2}} .
$$

When an eclipse first commences, or just as it ends, this expression must be just equal to the semidiameter of the sun and moon; and if, on computing the value of this expression, it is found to be less than that quantity, the sun is eclipsed; if greater, the sun is not eclipsed; and the result will show how much of the moon's limb is over the sun, or how far asunder the limbs are, and will, of course, indicate what change in the time must be made to correspond with a contact, or a particular phase of the eclipse.

For an eclipse absolutely central, and at the time of being central, the last expression must equal zero; and, in that

Crap. v. case, $x=X$, and $y=Y$. In cases of annular eclipses, to find the time of formation or rupture of the ring, the expression must be put equal to the difference of the semidiameters of sun and moon. In short, these expressions accurately, efficiently, and briefly cover the whole subject; and we now close by showing their application to the case before us.

Application of the preceding expres. sions.

By the projection we decided that the beginning of the eclipse would be at 4 h .28 m ., apparent time at Boston. Call this the assumed or approximate time, and for this instant we will compute the exact distance between the center of the sun and the center of the moon, and if that distance is equal to the sum of their semidiameter, then 4 h .28 m . is, in fact, the time, otherwise it is not, \&c.

An accurate
computation
Conjunc. in R. A., app. time, Boston, 41321
Assume i equal to,
for the begin.
ning of the eclipse as seen from Boston.

Here are two sides of a right-angled triangle, and the hypothenuse of that triangls is $1861^{\prime \prime} .8$, which is the distance between the center of the sun and moon at that instant; but the semidiameter of the sun and moon is only $1853^{\prime \prime}$; therefore the eclipse has not yet commenced, and will not until the moon moves over $8^{\prime \prime} .8$; which will require about 19 s ., as we determined by proportion, because the apparent motion of the moon will be almost directly toward the sun.

When the apparent motion of the moon is not so nearly in a line with the sun, as it is in this case, we cannot proportion directly to the result of the correction. In fact, the apparent motion of the moon is on one side of a plane right-angled triangle, and the distance between the center of sun and moon is the hypothenuse to that triangle, and the variation of the moon on its base, varies the hypothenuse, and the computation must be made accordingly.

Hence, to the assumed time of beginning, 4 h .28 m .21 s .

Add,	-	-	-	-	-			19
Beginning, apparent time,	-	-		4	28	40		
Mean time,	-	-	-	-	4	25	19	

By the application of the same expressions, we learn that the greatest obscuration will take place at 4 h .41 m ., mean time at Boston; and the apparent distance of the moen's center will be $18^{\prime \prime}$ north of the sun's center; and, as the moon's conjunctiont semidiameter is $57^{\prime \prime}$ less than that of the sun, a ring will be formed of between $10^{\prime \prime}$ and $11^{\prime \prime}$ wide at the narrowest point. End of the eclipse, 6 h .46 m .58 s. , mean time.

In computing for the end of the eelipse, we assumed $i=1 \mathrm{~h} .33 \mathrm{~m}$., and as t is more than 6 h ., the second part of y changes sign, as we see by the figure; the sun after 6 , must be above the line 6 g 6 .

Occultations of stars are computed on the same principles as an eclipse of the sun, the star having neither diameter nor parallax.

As problems, to give practice to the learner, we take the elements of two solar eclipses for 1846 , from the Nautical Almanac, with their results, as answers to the problems:

Char. V. ELEMENTS OF THE ECLIPSES OF THE SUN.

THE APRIL ECLIPSE.
General re. Begins on the earth generally April 25 d .2 h .2 m .4 s., mean time at Greenwich, in longitude $119^{\circ} 40^{\prime} \mathrm{W}$. of Greenwich, and latitude $6^{\circ} 15^{\prime} \mathrm{S}$.
Central Eclipse begins generally April 25 d. 3 h .3 m .3 s . in longitude $135^{\circ} 51^{\prime} \mathrm{W}$. of Greenwich, and lat. $2^{\circ} 11^{\prime} \mathrm{S}$.
Central eclipse at noon, April 25 d .4 h .55 m .9 s . in longitude $74^{\circ} 31^{\prime} \mathrm{W}$. of Greenwich, and lat. $25^{\circ} 21^{\prime} \mathrm{N}$. Central eclipse ends generally April 25 d. 6 h .37 m .6 s. in longitude $3^{\circ} 43^{\prime} \mathrm{W}$. of Greenwich, and lat. $24^{\circ} 56^{\prime} \mathrm{N}$. Ends on the earth generally April 25 d .7 h .38 m .5 s . in longitude $20^{\circ} 4^{\prime} \mathrm{W}$. of Greenwich, and lat. $20^{\circ} 52^{\prime} \mathrm{N}$.

THE OCTOBER ECLIPSE.

Begins on the earth generally October 19 d .16 h .46 m .7 s. mean time at Greenwich, in longitude $16^{\circ} 21^{\prime}$ E. of Greenwich, and latitude $9^{\circ} 50^{\prime} \mathrm{N}$.
Central eclipse begins generally October 19 d .17 h .52 m .0 s . in longitude $0^{\circ} 32^{\prime} \mathrm{W}$. of Greenwich, and lat. $6^{\circ} 44^{\prime} \mathrm{N}$.
Central eclipse at noon, October 19 d .19 h .50 m .2 s in longitude $58^{\circ} 41^{\prime} \mathrm{E}$. of Greenwich, and lat. $19^{\circ} 22^{\prime} \mathrm{S}$.

Central Eclipse ends generally October 19 d .21 h .38 m .9 s.
Chap.v. in longitude $126^{\circ} 5^{\prime} \mathrm{E}$. of Greenwich, and lat. $23^{\circ} 51^{\prime} \mathrm{S}$. Ends on the earth generally October 19 d .22 h .44 m .1 s . in longitude $109^{\circ} 6^{\prime}$ E. of Greenwich, and lat. $20^{\circ} 47^{\prime} \mathrm{S}$.

The following is a catalogue of the solar eclipses that will be visible in New England and New York, between the years 1850 and 1900; the dates are given in civil, not astronomical, time.

1851, July 28th. Digits eclipsed, 33, on sun's northern limb. 1854, May 26 th. As computed in the work.
1858, March 15th. Sun rises eclipsed. Greatest obscura- 1900. tion, $5 \frac{1}{2}$ digits on sun's southern limb.
1859, July 29 th. Digits eclipsed, $2 \frac{1}{2}$, on sun's northern limb. 1860, July 18th. Digits eclipsed, 6, on sun's northern limb. 1861, December 31st. Sun rises eclipsed. Digits eclipsed at greatest obscuration, $4 \frac{1}{3}$, on sun's southern limb.
1865 , October 19th. Digits eclipsed, $8 \frac{1}{3}$, on sun's southern limb.
1866, October 8th. $\frac{1}{2}$ digit eclipsed. South of New York no eclipse.
1869, August 7th. Digits eclipsed, 10, on sun's southern limb. This eclipse will be total in North Carolina.
1873, May 25th. Sun and moon in contact at sunrise, Boston.
1875, September 29th. Sun rises eclipsed. This eclipse will be annular in Boston, Maine, New Hampshire, and Vermont.
1876, March 25th. Digits eclipsed, $3 \frac{1}{2}$, on sun's northern limb.
1878 , July 29 th. Digits eclipsed, $7 \frac{1}{3}$, on sun's southern limb. This is the fourth return of the total eclipse of 1806 .
1880, December 31st. Sun rises eclipsed. Digits eclipsed at greatest obscuration, $5 \frac{1}{2}$, on sun's northern limb.
1885, March 16th. Digits eclipsed, $6 \frac{1}{2}$, on sun's northern limb.

Снap. V. 1886, August 28th. North of Massaohusetts no eclipse; Statistics south, sun eclipsed.
of eclipses
from 1850 to
1892, October 20th. Digits eclipsed, 8, on sun's northern 1900. limb.
1897, July 29th. Digits eclipsed, $4 \frac{1}{2}$, on sun's southern limb.
1900, May 28th. Digits eclipsed, 11, on sun's southern limb. The sun will be totally eclipsed in the State of Virginia.

TABLES.

EXTRACTS FROM THE NAUTICAL ALMANAC FOR JANUARY, 1846.

TABLE I.

MEAN ASTRONOMICAL REFRACTIONS.
Barometer 30 in. Thermometer, Fah. 50°.

Ap. Alt.	Refr.	Ap. Alt.	Refr.	Ap. Alt.	Refr.	Alt.	Refr.
$0^{\circ} 0^{\prime}$	$33^{\prime} 51^{\prime \prime}$	$\overline{4^{6} 0^{\prime}}$	$11^{\prime} 52^{\prime \prime}$	$12^{\circ} 0^{\prime}$	$4^{\prime} 28.1^{\prime \prime}$	42°	$1{ }^{1} 4.6$
5	3253	10	1130	10	424.4	43	12.4
10	3158	20	1110	20	420.8	44	10.3
15	315	30	1050	30	417.3	45	058.1
20	3013	40	1032	40	413.9	46	56.1
25	2924	50	1015	50	410.7	47	54.2
30	2837	50	958	130	47.5	48	52.3
35	2751	10	942	10	44.4	49	50.5
40	276	20	927	20	41.4	50	48.8
45	2624	30	911	30	358.4	51	47.1
50	2543	40	858	40	355.5	52	45.4
55	$25 \quad 3$	50	845	50	352.6	53	43.8
10	2425	60	832	$14 \quad 0$	349.9	54	42.2
5	2348	10	820	10	347.1	55	40.8
10	2313	20	89	20	3 44.4.	56	39.3
15	2240	30	758	30	341.8	57	37.8
20	228	40	747	40	339.2	58	36.4
25	2137	50	737	50	336.7	59	35.0
30	217	70	727	150	334.3	60	33.6
35	2038	10	717	1530	327.3	61	32.3
40	2010	20	78	160	320.6	62	31.0
45	1943	30	659	1630	314.4	63	29.7
50	1917	40	651	$17 \quad 0$	$\begin{array}{lll}3 & 8.5\end{array}$	64	28.4
55	1852	50	643	1730	$\begin{array}{ll}3 & 2.9\end{array}$	65	27.2
20	1829	80	635	180	257.6	66	25.9
5	185	10	628	19	247.7	67	24.7
10	1743	20	621	20	238.7	68	23.5
15	1721	30	614	21	230.5	69	22.4
20	170	40	67	22	223.2	70	21.2
25	1640	50	60	23	216.5	71	19.9
30	1621	90	554	24	210.1	72	18.8
35	162	10	547	25	24.2	73	17.7
40	1543	20	541	26	158.8	74	16.6
45	1525	30	536	27	153.8	75	15.5
50	158	40	530	28	149.1	76	14.4
55	1451	50	525	29	144.7	77	13.4
30	1435	100	520	30	140.5	78	12.3
5	1419	10	515	31	136.6	79	11.2
10	14.4	20	510	32	133.0	80	10.2
15	1350	30	$5 \quad 5$	33	129.5	81	9.2
20	1335	40	50	34	126.1	82	8.2
25	1321	50	456	35	123.0	83	7.1
30	137	110	451	36	120.0	84	6.1
35	1253	10	447	37	117.1	85	5.1
40	1241	20	443	38	114.4	86	4.1
45	1228	30	439	39	111.8	87	3.1
50	1216	40	435	40	199.3	88	2.0
55	123	50	431	41	16.9	89	1.0

CORRECTION OF MEAN REFRACTION.
Hight of the Thermometer.

Hight of the Barometer.

TABLE II.

MEAN PLACES FOR 100 PRINCIPAL FIXED STARS, FOR JAN. 1, 1846.

Star's Name.	宛	Right Ascen.	Annual Var.	Declination.	Ann. Var.
a Andromed	1	h. 0 m. s. 0 26.257	$+3.0720$	$\begin{aligned} & \text { deg. min. sec. } \\ & \text { N. } 281425.40 \end{aligned}$	$+20.055$
2 Pegasi (Algen	2.3	$\begin{array}{llll}0 & 5 & 18.691\end{array}$	3.0784	N. 141937.80	20.050
ß Hydri,.....	3	01734.168	3.3054*	S. $78 \quad 724.40$	19.997
α Cassiopeet	3	03148.294	3.3418	N. 554131.08	19.862
β Ceti	2.3	03551.339	+ 2.9995	S. 1849 59.01	+19.810
a Urs. Min.	2.3	1352.226	17.1346*	N. 88×917.88	19.279
O1 Ceti,	3	$1 \begin{array}{llll}1 & 1619.692\end{array}$	3.0015	S. 85845.93	18.952
a Eridani (Achernar)	1	13158.291	2.2339	S. 581114.34	18.461
a Ariet	3	15830.193	+3.3475	N. 224353.86	+17.432
γ Ceti,	3	23519.633	3.1085	N. 2351.17	15.621
a Ceti	2.3	25414.072	3.1266	N. 32855.70	14.532
a Persei,	2.3	31321.403	4.2324	N. $4918 \quad 28.20$	13.329
n Tau	3	33820.382	$+3.5473$	N. 233727.73	+11.620
γ^{1} Eridani	2.3	35050.760	2.7898	S. 13571.50	10.711
a Tauri (Aldebaran)	1	$427 \quad 5.404$	3.4274	N. 1611141.39	7.907
a Aurigs (Capella),	1	$\begin{array}{llll}5 & 5 & 19.317\end{array}$	4.4082	N. 45 50	4.737
β Orionis	1	$\begin{array}{llll}5 & 7 & 8.383\end{array}$	$+2.8787$	$\left\lvert\, \begin{array}{cccc}\text { S, } & 8 & 23 & 3.33\end{array}\right.$	+ 4.583
β T Taur	2	51633.662	3.7827	N. 282817.49	- 3.776
δ Orionis,	2	5248.428	3.0609	S S	3.123
a Lepris,	3.4	52556.406	2.6425	S. 175612.77	2.968
ε Orionis	2.3	52824.062	$+3.0404$	S. 11817.53	+ 2.754
a Columb	2	5344.54 .531	2.1691	S. 341836.95	-2.262
a Orionis,	1	54650.189	3.2433	N. 72222.32	+ 1.149
μ Geminorum,	3	61338.621	3.6257	N. 223513.16	- 1.196
a Argus (Canopus	1	62032.145	+ 1.3279	S. 523649.17	- 1.796
51 (Hev.) Cephei,.	6	62630.287	30.7946	N. 871531.20	2.337
a Canis Maj. (Sir	1	63821.883	$2.6459 *$	S. 163032.83	4.484*
\& Canis Majori	2	65234.440	2.3558	S. $2845 \quad 59.38$	4.562
δ Geminoru	3.4	71055.298	+ 3.5918	N. 221537.47	
α^{2} Geminor. (Castor),	3	72446.065	3.8561	N. 32131312.93	7.253
a Can. Min. (Procyon)	1.2	$7{ }_{7}^{7} 3114.237$	3.1445*	N. 53654.95	8.758*
β Geminor. (Pollux),	2	$7 \quad 35 \quad 53.153$	3.6829*	N. 282334.06	8.152
15 Argus	3.4	8 8 0059.232	+ 2.5596	S. 235150.94	-10.104
ε Hydræ,	4	83837.154	3.1966	N. 658488.51	12.800
, Ursm Majo	3.4	84838.088	$4.1261 *$	N. 48383832.35	13.464
- Argus,	2	91258.192	1.6100	S. 583749.78	14.961
α Hyd	2	$920 \quad 1.170$	+2.9499	S. 75939.05	-15.366
θ Ursæ Majoris,	3	$\begin{array}{lllll}9 & 22 & 31.453\end{array}$	4.0504*	N. 522231.09	16.108*
\& Leonis,	3	$\begin{array}{llll}9 & 37 & 6.098\end{array}$	3.4258	N. 242849.46	16.283
a Leonis (Regulus),	1	$10 \quad 0 \quad 10.062$	+ 3.2211	N. 1243 2,96\|	-17.377

Star's Name.	-	Right Ascen.	Annual Var.	Declination.	Ann. Var.
n Argus	2		+2.3051	$\begin{aligned} & \hline \text { deg. } \\ & \mathrm{min} . \\ & \mathrm{S} .58 \\ & \mathrm{sec} .52 \\ & \hline \text { sec. } \end{aligned}$	$\begin{aligned} \mathrm{s} . \\ -18.82 \end{aligned}$
a UBSE Majoris,	1.2		- 3.8001	N. 623451.81	19.24
δ Leonis,	3	111	3.1928	N. 212159.86	19.50
δ Hydræ et Crater	3.	1111138.718	3.0010	S. 135646.85	19.61
β Leo	2.3	114112.066	+ 3.0654*	N. 152558.12	-19.99
γ Uriex Majoris,	2	114542.219	3.1874	N. 5433	20.02
β Chamæleontis,	5	$12 \begin{array}{lll}12 & 9 & 26.893\end{array}$	3.3409	S. 782726.15	20.04
${ }_{2}{ }^{\text {Crucis, }}$	1	12184.916	3.2710	S. 621439.74	19.99
β Corvi,	2.3	122618.465	+3.1342	S. 22.32323 .93	-19.92
12 Canum Venatic	2.3	124849.007	2.8403	$\begin{array}{lll}\text { N. } 39 & 9 & 4.18\end{array}$	19.60
a Virginis (Spica)	1	$1317 \begin{array}{lll}13 & 5.233\end{array}$	3.1512	S. 102120.80	18.94
" Urise Majoris,	2.3	134127.894	2.3525*	$\begin{array}{llll}\text { N. } 50 & 5 & 1.45\end{array}$	18.12
\# Bootis,	3	$134721.140 \mid$	+ 2.8606	N. 191021.03	-17.89
β Centauri	1	135300.800	4.1508	S. 593733.93	17.67
a Bootis, (A	1	$\left\lvert\, \begin{array}{lll}14 & 8 & 38.366\end{array}\right.$	2.7336*	N. 195912.07	18.94*
α^{2} Centauri,	1	142911.925	4.0165*	S. 601137.00	15.12*
Воот	3	143815.706	+ 2.6229	N. 274335.23	-15.46
a^{2} Libre,	3	$1442 \quad 22.132$	+ 3.3102	S. 152353.52	15.23
β Urse Mi	3	$14 \begin{array}{llll}14 & 13.199\end{array}$	-0.2692	N. 74475.58	14.71
В Libræ,.	3	$15 \quad 843.595$	+ 3.2226	S. 84838.53	13.63
a Corone Bo	2	$15 \quad 2810.083$	+ 2.5279	N. 271411.07	-12.33
a Serpentis,	2.3	153641.077	+ 2.9391	N. 65449.88	11.74
ζ Ursæ Mino	4	154941.194	-2.3520	N. 781555.43	10.80
β^{1} Scorpii,	2	$15 \quad 5629.397$	+ 3.4742	S. 192244.18	10.29
δ Ophiuch	3	$\left\lvert\, \begin{array}{lll}16 & 6 & 16.830\end{array}\right.$	$+3.1382$	S. 31735.67	- 9.55
a Scorpir, (Anta	1	161958.461	3.6638	S. 26	8.48
" Draconis,		16	0.7960	N. 615150.58	8.32
a Trianguli Australis	2	163225.090	$+6.2587$	S. 68444.75	7.48
\& Ursæ Min	4	$17 \begin{array}{lll}17 & 1 & 55.988\end{array}$	-6.5328*	N. 821652.30	-5.03
a Herculis	3.4	$17 \begin{array}{lll}17 & 7 & 37.617\end{array}$	+ 2.7320	N. 143412.67	4.54
σ Octantis,		$17 \quad 2255.004$	106.8627	S. 89161610.25	3.14
¢ Lraconis,	2	172657.473	1.3513	N. 5225	2.88
a Ophiuchi,	2	172747.219	+ 2.7727	N. 124037.11	-2.81
γ Draconis,	2	17531.955	1.3900	N. 513033.50	- 0.61
$\mu 1$ Sagittarii,	3.4	$18 \quad 433.276$	+ 3.5861	S. 21536.14	+ 0.40
δ Ursex Minoris,	3	18220.703	-19.2683*	N. 863542.58	+ 1.91
a Lyret (Vega)	1	183143.386	+ 2.0118	N. 383835.33 \|	+ 2.77
β Liree,	3	184423.696	2.2124	N. 331114.80	3.86
ζ Acquilit,	3	185819.965	2.7566	N. 13 38 38.49	5.05
δ Acquilis,	3	191743.889	+3.0086	N. 24843.64	+ 6.67
γ Acquiles,		193856.278	$+2.8511$	N. 101431.50	$+8.39$
a Acquilm, (Altair)	1.2	194316.128	2.9254*	N. 82754.32	8.74
β Acquiler,	3.4	194744.866	2.9446	N. 61133.90	8.55*
a^{2} Capricormi,		20 9 30.316\|	3.3315	S. 13118.19 \|	10.74

Star's Name.	突	Right	Ascen.	Annual Var.		Declinat	ion.		n. Yar
Pavol		h. m.	25.814	+ 4.8046		$\begin{aligned} & \text { eg. min. } \\ & 5713 \end{aligned}$			-11.03
γ Ursæ M	5	2016	31.309	$\underline{-52.1273}$. 8850	53.54		11.22
\propto Cyga		2036	11.005	+2.0418		. 4443	57.43		12.64
G1. Cugai		2059	59.947	2.6908*		. 3759	2.08		17.48*
C	3		23.073	+2.5486		. 2935	53.03		-14.57
a Cepr	3	2114	53.940	1.4163		. 6156	4.55		15.07
β Aquarit	3	2123	26.875	3.1628		614	44.46		15.56
β Cephei,	3	2126	39.120	0.8059		. 6953	7.21		15.73
ε Pegasi				+ 2.9441		. 910			-16.26
a Aquarir	3	2157	52.326	3. \%\%. 1		13	56.72		17,28
a Gruis,	2	2158	29.837	3. 1 4		4742	12.42		17.30
$\zeta^{\text {L }}$ L'gasi,	3	$22 \quad 33$	46.976	2.95 .7		. 101	44.67		18.65
a Pis. Aus. (Fomalhaut),.	. 1	2249	7.531	+3.3095		3026	2.2		-19.11
a Pegasi (Markab),	2	2257	5.584	- 2.9776		. 142	40.12		19.31
${ }_{\text {¢ }}$ Piscium,	4.5	2332	1.736	+ 3.0569		. 447	30.74		19.36*
γ Cephei,	3	2333	4.581	+ 2.4042		. 7646	22.01		-19.92

Those Annual Variations which include proper motion are distinguished by an Asterisk.

Sun's right ascension for 1846.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Mo. } \end{gathered}$	January.	February.	March.	April.	May.	June.
1		$\begin{array}{lll}\text { h. } & \\ 20 & \\ 20 & 59 & 11\end{array}$	$\begin{array}{llll}\text { h. } & \text { m. } \\ 22 & \text { s. } \\ 28 & 17\end{array}$	h. m. 0	h. m. 2 23	$\begin{array}{rrrr}\text { h. } & \text { m. } & \\ 4 & 35 & \text { s. }\end{array}$
5	$19 \quad 430$	211522	$\begin{array}{lllll}23 & 3 & 12\end{array}$	05626	24825	45212
10	192621	213518	232140	11443	$\begin{array}{lll}3 & 7 & 47\end{array}$	51250
15	194757	215454	2340	1336	32724	53334
20	$20 \quad 9 \quad 17$	221412	235814	15138	34715	55422
25	203019	223314	01625	21022	4720	61510
30	20510		03436	22917	42788	63555
$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Mo. } \end{aligned}$	July	Augu	September.	October.	November.	December.
	$\begin{array}{ccc}\text { h. } & \text { m. } & \\ 6 . \\ 6 & 40 & 4\end{array}$		$\begin{array}{ccc}\text { h. m. } \\ 10 & 41 & 0\end{array}$	h. m.	$\begin{array}{lll}\text { h. } & \text { m. } \\ 14 & 25 & 16\end{array}$	
5	65634	$9 \quad 0 \quad 23$	105529	124336	14412	164623
10	7175	91929	111330	$\begin{array}{lll}13 & 1 & 54\end{array}$	$\begin{array}{lll}15 & 1 & 5\end{array}$	$17 \quad 817$
15	73725	93821	113128	132024	152128	173022
20	75733	95660	114925	$\begin{array}{llll}13 & 39 & 8\end{array}$	154214	175233
25	81728	101527	12724	$\begin{array}{llll}13 & 58 & 9\end{array}$	$16 \quad 319$	181446
30	8377	103344	122527	141727	162443	183657

The R. A. in this title will answer for corresponding days in other years within four minutes, and for periods of four years the difference is only about seven seconds for each period.

TABULAR FIEW OF THE SOLAR SYSTEM.

Names.	Mean diameter in miles.	Mean distance in miles.	Mean dist.; the Earth's dist. unity.	$\left[\begin{array}{c} \text { Log. of } \\ \text { mean } \\ \text { distance. } \end{array}\right.$	ime of revolutions round the Sun.	$\begin{gathered} \text { Log. of } \\ \text { times of } \\ \text { revolution. } \end{gathered}$
sun	883000					
Mercury	32	37 million	0.387098	. 587818	87.969258	81.944324
Venus	7687	68 "	0.72333	9.859306	224.700787	2.351610
The Earth	7912	95	1.000000	0.000000	365.256383	2.562598
Mars	4189	144	1.523692	0.182810	686.979646	2.836942
Vesta	238	224,340,000	2.36120	0.373100	1324.289	3.121991
Iris		226 million	2.37880	0.376384	1327.973	3.123190
Hebe		230 "	2.42190	0.384004	1375. nearly	3.138303
Flora		240	2.52630	0.402487	1469.76	3.167300
Astrea		246 "	2.5895	0.413211	1512. nearly	3.179547
Juno	1420	253,600,000	2.66514	0.425710	1594.721	3.202700
Ceres	Not well $\{160$	263,236,000	2.76910	0.442334	1683.064	3.226086
Pallas	wn. $\{120$	265 million	2.77125	0.442725	1685.162	3.226610
Jupiter	89170	490 "	5.202776	60.716212	4332.584821	13.636738
Saturn	79040	900	9.538786	0.979476	10759.219817	74.031718
Uranus	35000	1800	19.182390	1.282853	30686.8208	4.486953
Neptune	35000	2850	29.59	1.47712	60128.14	4.779076

TABLE III.

ELEMENTS OF ORBITS FOR THE EPOCH OF 1850 , JANUARY 1, MEAN NOON AT GREENWICH.

Planets.	Inclination of orbits to ecliptic.	Variation in 100 years.	Long. of the ascending nodes.	Variation in 100 years	$\begin{aligned} & \text { Longitude } \\ & \text { of } \\ & \text { oerihelion. } \end{aligned}$	Variation in 100 years.	$\begin{array}{\|c} \text { Mean longi- } \\ \text { tude at } \\ \text { at } \\ \text { epoch. } \end{array}$
	$\bigcirc 11$				- ' "		- ' "
Mercu	$\begin{array}{llll}7 & 0 & 18\end{array}$	+18.2	463440		75	+93	$\begin{array}{llll}327 & 17 & 9\end{array}$
Venus	32326	-4.6	751740	+51	1292253	$+78$	243584
Earth					1002210	103	100471
Mars	1516	-0.2	482024	+42	333 17 17	+110	182930
Vesta	$7 \quad 829$	-12.	1032047	+26	254434	157	1132812
Juno	$13 \quad 253$		170530		541832		1651738
Ceres	$10 \quad 3717$		804756		1472541		1310
Pallas	343744		1724238		1213013		3273124
Jupiter	11842	-22.	985519	+57	11560	+ 95	1602150
Saturn	22929	-15.	1122254	-51	$90 \quad 70$	+116	135813
Uranus	$\begin{array}{ll}0 & 46 \\ 27\end{array}$.	$\left\|\begin{array}{\|l\|l\|}73 & 12\end{array}\right\|$	+24	1681447	+87	282022

* It is with reluctance that we give these planets a place in the tables. The fact of their existence is as yet questionable, and their elements, at present, cannot be well known. We give the logarithms in the tables, that the data may be at hand to exercise the student on Kepler's third law.
tabular view of the solar system.

Names.	Mass.	Density.	Gravity.	Sidereal Rotation.	Light and Heat.
				h. m. s.	
Mercury..	$\overline{2} \overline{0} \frac{1}{2} \frac{1}{8} \overline{1} 0$	3.244	1.22	$\begin{array}{llll}24 & 5 & 28\end{array}$	6.680
Venus..	4012 $\frac{1}{2} \overline{1}$	0.994	0.96	$\begin{array}{lll}23 & 21 & 7\end{array}$	1.911
Earth	$\overline{3} \overline{5} \frac{1}{5} \overline{0} \overline{0}$	1.000	1.00	2400	1.000
Mars	$\overline{2} \overline{6} \overline{8} \frac{1}{0} \overline{3} \overline{3} 7$	0.973	0.50	$\begin{array}{lll}24 & 39 & 21\end{array}$. 431
Jupiter		0.232	2.70	$\begin{array}{llll}9 & 55 & 50\end{array}$. 037
Saturn.	$\overline{3} \overline{5}^{\frac{1}{0}} \overline{0} . \overline{2}$	0.132	1.25	$\begin{array}{lll}10 & 29 & 17\end{array}$. 011
Uranus	${ }_{1} \overline{7} \frac{1}{9} \overline{1}$	0.246	1.06	Unknown.	. 003
Sun.	1	0.256	28.19	$25 \quad 120$	
Moon..	$\overline{26} \overline{6} \frac{1}{2} \overline{0} \overline{2} \overline{0} 0$	0.665	0.18	27 7 43	

TABLE III.

Planets.	Eccentricities of orbits.	Variation in years. years.	Motion in mean long. in 1 year of 365 days.	Mean Daily Motion in longitude.
			\bigcirc	\bigcirc,
Mercury	0.20551494	+. 000003868	5343	4532.6
Venus..	0.00686074	-. 000062711	2244729.7	$1 \begin{array}{lll}1 & 36 & 7.8\end{array}$
Earth	0.01678357	-. 000041630	-0 1419.5	0 0 88.3
Mars	0.09330700	$+.000090176$	191179.1	03126.7
Vesta.	0.08856000	+. 000004009		01617.9
Juno	0.25556000			01333.7
Ceres.	0.07673780	-. 000005830		01249.4
Pallas	0.24199800			01248.7
Jupiter.	0.04816210	+. 000159350	302031.9	0459.3
Saturn.	0.05615050	-. 000312402	121336.1	0 0 00.6
Uranus .	0.04661080	-. 000025072	41745.1	$0 \quad 042.4$

TABLE III.
SATELLITES OF JUPITER.

Satel.	Mean Distance.	Sidereal Revolu.	Inclination of orbits to that of Jupiter.	Mass; that of Jupiter being 1000000000		
			d.	h.	m.	0

SUN'S EPOCHS.

SUN'S MOTIONS FOR MONTHS.

Months.	Longitude.				Per.	I.	II.	III.	N .
		\bigcirc	1		"				
Com.					0	0	0	0	0
Jan. Bis.		29	0	52	0	966	997	998	0
Feb. Com.	1	0	33	18	5	47	78	53	4
Feb. Bis.		29		10	5	13	75	51	4
March.	1	28	9	11	10	993	148	01	9
April	2	28	42	30	15	42	226	154	13
May.	3	28	16	40	20	59	301	206	18
June	4	28	49	58	26	110	379	259	22
July .	5	28	24	8	31	129	454	310	27
August.	6	28	57	26	36	182	531	363	31
September.	7	29	30	44	41	233	609	416	36
October.. .	8	29	4	54	46	250	684	468	40
November	9	29	38	12	52	300	762	521	45
December	10	29	12	22	57	313	837	572	49

TABLE VI.

SUN'S HOURLY MOTION.
Argument.-Sun's Mean Anomaly.

	0 s	Is	IIs	IIIs	IVs	V	
\bigcirc	' 11	' 1	' 1	, "	, "	, "	\bigcirc
0	233	232	230	$2 \quad 28$	225	$2 \quad 24$	30
10	233	232	$2 \quad 29$	$2 \quad 27$	225	$2 \quad 23$	20
20	233	231	$2 \quad 29$	226	294	223	10
30	232	230	228	$2 \quad 25$	$2 \quad 24$	$2 \quad 23$	0
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

SUN'S SEMIDIAMETER.
Argument.-Sun's Mean Anomaly.

	0s	Is	IIs	IIIs	IVs	Vs	
\bigcirc	, "	"	, 1	, "	, "	, "	\bigcirc
0	-16 18	$16 \quad 15$	169	161	$15 \quad 53$	1548	30
10	1618	1614	16 \%	$15 \quad 58$	$15 \quad 51$	1546	20
20	$16 \quad 17$	$16 \quad 12$	164	$15 \quad 56$	1549	1546	10
30	$16 \quad 15$	169	161	$15 \quad 53$	$15 \quad 48$	$15 \quad 45$	0
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

SUN'S MOTIONS FOR DAYS AND HOURS.

Days.	Logitude.			Per.	I.	II.	III.	N.	Hours.	Long.	I.
	\bigcirc	,	"	"						, "	
1	0	0	0	0	0	0	0	0	1	228	1
2	0	59	8	0	34	3	2	0	2	456	3
3	1	58	17	0	68	5	3	0	3	723	4
4	2	57	25	0	101	8	5	0	4	951	6
5	3	56	33	1	135	10	7	1	5	1219	7
6	4	55	42	1	169	13	9	1	6	$14 \quad 47$	8
7	5	54	50	1	203	15	10	1	7	$17 \quad 15$	10
8	6	53	58	1	236	18	12	1	8	1943	11
9	7	53	7	1	270	20	14	1	9	2211	13
10	8	52	15	1	304	23	15	1	10	2438	14
11	9	51	23	2	338	25	17	1	11	$27 \quad 6$	16
12	10	50	32	2	371	28	19	2	12	2934	17
13	11	49	40	2	405	30	21	2	13	$32 \quad 2$	18
14	12	48	48	2	439	33	22	2	14	3430	20
15	13	47	57	2	473	35	24	2	15	3658	21
16	14	47	5	3	506	38	26	2	16	$39 \quad 26$	23
17	15	46	13	3	540	40	27	2	17	4153	24
18	16	45	22	3	574	43	29	2	18	4421	25
19	17	44	30	3	608	45	31	3	19	$46 \quad 49$	27
20	18	43	38	3	641	48	33	3	20	$49 \quad 17$	28
21		42	47	3	675	50	34	3	21	5145	30
22	20		55	4	709	53	36	3	22	5413	31
23	21	41	3	4	743	55	38	3	23	5640	32
24	22	40	12	4	777	58	39	3	24	598	34
25	23	39	20	4	810	60	41	4			
26	24	38	28	4	844	63	43	4			
27	25	37	37	4	878	65	45	4			
28	26	36	45	5	912	68	46	4			
29	27	35	53	5	945	70	48	4			
30	28	35	2	5	979	73	50	4			
31	29	34	10	5	13	75	51	4			

SUN'S MOTIONS FOR MINUTES.

Min.	Longitude.		Min.	Longitude.	
	,	"		,	"
1	0	2	30	1	16
5	0	12	35	1	26
10	0	25	40	1	39
15	0	37	45	1	51
20	0	49	50	2	3
25	1	2	55	2	16
30	1	14	60	2	28

EQUATIONS OF THE SUN'S CENTER.
Argument.-Sun's Mean Anomaly.

	0 s			Is			IIs			IIIs			IVs			Vs		
\bigcirc	\bigcirc	,	"	\bigcirc	'	"	\bigcirc	,	"	\bigcirc	,	"	\bigcirc	,	"	\bigcirc		"
0	1	59	30	2	58	15	3	40	27	3		50	3	38	21	2	56	9
1	2	1	33	3	0	0	3	41	25	3		47	3	37	18	2	54	25
2	2	3	37	3	1	44	3	42	21	3		41	3	36	14	2	52	40
3	2	5	40	3	3	27	3	43	15	3	54	33	3	35	8	2	50	54
4	2	7	43	3	5	9	3	44	8	3	54	23	3	34	1	2	49	8
5	2	9	46	3	6	49	3	44	58	3		11	3	32	51	2	47	20
6	2	11	49	3	8	28	3	45	47	3	53	57	3	31	41	2	45	32
7	2	13	51	3	10	6	3	46	33	3	53	41	3	30	28	2	43	43
8	2	15	54	3	11	43	3	47	17	3	53	23	3	29	14	2	41	53
9	2	17	56	3	13	18	3	48	0	,	53	3	3	27	58	2	40	3
10	2	19	57	3	14	51	3	48	40	3	52	40	3	26	41	2	38	11
11	2	21	58	3	16	24	3	49	18	3	52	16	3	25	22	2	36	19
12	2	23	59	3	17	54	3	49	55	,	51	50	,	24	2	2	34	27
13	2	25	59	2	19	24	3	50	29	,	51	21	3	22	40	2	32	34
14	2	27	59	3	20	51	3	51	1	,	50	51	,	21	17	2	30	40
15	2	29	58	3	22	18	3	51	31	3	50	18	,	19	52	2	28	46
16	2	31	57	3	23	42	3	51	59	3	49	44	3	18	26	2	26	52
17	2	33	55	3	25	5	3	52	25	3	49	7	3	16	58	2	24	56
18	2	35	52	3	26	26	3	52	49	3	48	29		15	30	2	23	0
19	2	37	49	3	27	46	3	53	10	3	47	49	3	14	0	2	21	4
30	2	39	45	3	29	4	3	53	30	3	47	7	3	12	28	2	19	8
21	2	41	40	3	30	24	3	53	47	3	46	22	3	10	55	2	17	11
22	2	43	34	3	31	35	3	54	3	3	45	36	3	9	22	2	15	14
23	2	45	28	3	32	48	3	54	16	3	44	48		7	46	2	13	16
24	2	47	20	3	33	59	3	54	27	3	43	58	3	6	10	2	11	19
25	2	49	12	3	35	8	3	54	36	3	43	7	3		33	2	9	21
26	2	51	2	3	36	16	3	54		3	42	13	3	2	54	2	7	23
27	2	52	52	3	37	21	3	54	48	3	41	18		1	14	2	5	25
28	2	54	41	3	38	25	3	54	51	3	40	21	2	59	33	2	3	27
29	2	56	28	3	39	27	3	54	52	3	39	22	2	57	52	2	1	28
30	2	58	15	3	40	27	3	54	50	3	38	21	2	56	9	1	59	30

equations of the sun's Center.
Argument.-Sun's Mean Anomaly.

	VIs	VIIs	VIIIs	IXs	Xs	XIs
-	\bigcirc, '	- , "	- ' "	- ' "	- , "	- ' "
0	5930	251	2039	0	01833	045
1	5732	$1 \begin{array}{lll}1 & 1 & 8\end{array}$	0	0	1933	232
2	5533	5927	0	9	2035	419
3	5335	0	0 $17 \begin{array}{lll}17 \\ 0\end{array}$	412	$0 \quad 2139$	68
4	5137	0566	0	417	02244	758
5	4939	0	0	424	02352	948
6	11 47 1	05247	015	433	251	1140
7	$1 \begin{array}{llll}1 & 45 & 44\end{array}$	0	0	0	2612	1332
8	11 43	04938	$\begin{array}{llll}0 & 13 & 24\end{array}$	457	$27 \quad 25$	11526
9	$1 \begin{array}{llll}1 & 49\end{array}$	0485	1238	513	02840	11720
10	$1 \begin{array}{llll}1 & 39 & 52\end{array}$	046	1153	530	02356	11915
11	3756	0	$\begin{array}{llll}0 & 11 & 11\end{array}$	550	0	$1 \begin{array}{llll}1 & 21\end{array}$
12	36	$\begin{array}{llll}0 & 43 & 30\end{array}$	$\begin{array}{llll}0 & 10 & 31\end{array}$	$0{ }_{0} 611$	$0 \begin{array}{lll}0 & 32 & 34\end{array}$	123
13	344	$0 \begin{array}{lll}0 & 42 \\ 1\end{array}$	953	0	$0 \quad 3355$	125
14	$\begin{array}{lll}1 & 32 & 9\end{array}$	$\begin{array}{llll}0 & 40 & 34\end{array}$	916	71	0 05 0	27
15	$1 \begin{array}{llll}1 & 30 & 14\end{array}$	$\begin{array}{llll}0 & 39 & 8\end{array}$	42	729	3642	129
16	$28 \quad 20$	0 $\begin{array}{llll}0 & 37 & 43\end{array}$	8		$\begin{array}{lll}0 & 38 & 9\end{array}$	31
17	12626	$0 \begin{array}{lll}0 & 36 & 20\end{array}$	$0 \begin{array}{llll}0 & 7 & 39\end{array}$	0	$0 \begin{array}{llll}0 & 39\end{array}$	133
18	12433	0 3458	710	0	0419	135
19	12241	$0 \begin{array}{llll}0 & 33 & 38\end{array}$	644	0	04236	137
20	12049	03219	620	01020	044	139
21	1857	0 31	557	0 1110	04542	141
22	$\begin{array}{llll}1 & 17 & 7\end{array}$	$0{ }_{0}^{0} 2946$	0	0	$\begin{array}{llll}0 & 47 & 17\end{array}$	143
23	$\begin{array}{llll}1 & 15 & 17\end{array}$	$0 \quad 2832$	519	0	00 48	145
24	$\begin{array}{llll}1 & 13 & 28\end{array}$	$\begin{array}{llll}0 & 27 & 19\end{array}$	53	$0{ }_{0}^{0} 1313$	0	14711
25	$1 \begin{array}{llll}11 & 40\end{array}$	$0 \quad 26 \quad 9$	449	0 $14 \quad 2$	$0 \quad 5211$	14914
26	52	$\begin{array}{llll}0 & 24 & 59\end{array}$	437	0 14.52	$\begin{array}{llll}0 & 53 & 51\end{array}$	$\begin{array}{llll}1 & 51 & 17\end{array}$
27	6	$0 \quad 2352$	427	0	$0 \quad 55$	15320
28	11 6 	$0 \quad 2246$	419	$\begin{array}{llll}0 & 16 & 39\end{array}$	5716	$1 \begin{array}{lll}155 & 23\end{array}$
29	$1 \begin{array}{lll}1 & 4 & 35\end{array}$	0	413	$0 \begin{array}{llll}0 & 17 & 35\end{array}$	0 59	$1 \begin{aligned} & 157 \\ & 1\end{aligned}$
30	251	$\begin{array}{llll}0 & 20 & 39\end{array}$	$\begin{array}{lll}0 & 4 & 10\end{array}$	$0 \begin{array}{lll}0 & 18 & 33\end{array}$	45	15930

SMALL EQUATIONS OF THE SUN'S LONGITUDE.

Arg.	I	II.	III.	Arg.	I.	II.	III.
	"	\%	/		"	"	"
0	10	10	10	500	10	10	10
10	10	11	9	510	10	10	9
20	11	11	9	520	9	10	8
30	11	12	8	530	9	10	7
40	11	13	8	540	9	10	7
40	12	14	7	550	8	10	6
60	12	14	7	560	8	9	5
70	12	15	7	570	8	9	4
80	13	15	7	580	7	9	3
90	13	16	7	590	7	9	3
100	13	16	7	600	7	9	2
110	14	17	7	610	6	8	1
120	14	17	7	620	6	8	1
130	14	18	8	630	6	8	1
140	15	18	8	640	5	7	0
150	15	18	9	650	5	7	0
160	15	18	9	660	5	6	0
170	15	18	10	670	5	6	1
180	15	18	10	680	5	6	1
190	16	18	11	690	4	5	2
200	16	18	11	700	4	5	2
210	16	18	12	710	4	4	3
220	16	18	12	720	4	4	3
230	16	18	13	730	4	4	4
240	16	17	14	740	4	3	5
250	16	17	14	750	4	3	6
260	16	17	15	760	4	3	6
270	16	16	16	770	4	2	7
480	16	16	17	780	4	2	8
290	16	16	17	790	4	2	8
300	16	15	18	800	4	2	9
310	16	15	18	810	4	2	9
320	15	14	19	820	5	2	10
330	15	14	19	830	5	2	10
340	15	14	20	840	5	2	11
350	15	13	20	850	5	2	11
360	15	13	20	860	5	2	12
370	14	12	19	870	6	2	12
380	14	12	19	880	6	3	13
390	14	12	19	890	6	3	13
400	13	11	18	900	7	4	13
410	13	11	17	910	7	4	13
420	13	11	17	920	7	5	13
430	12	11	16	930	8	5	13
440	12	11	15	940	8	6	13
450	12	10	14	950	8	6	13
460	11	10	13	960	9	7	12
470	11	10	13	970	9	8	12
480	11	10	12	980	9	9	11
490	10	10	11	990	10	9	11
500	10	10	10	1000	10	10	10

nUtations.
Argument.-Supplement of the Node, or N.

N.	Long.	R. Asc.	Obliq.	N.	Long.	R. Asc.	Obliq.
	"	"	"		"	"	"
0	+ 0	+ 0	+10	530	- 0	- 0	-10
20	+ 2	+ 2	10	520	2	2	9
40	4	4	9	540	4	4	9
60	7	6	9	560	7	6	9
80	9	8	8	580	9	8	8
100	+ 11	$+10$	+ 8	600	- 11	-10	-8
120	12	11		620	12	11	7
140	14	13	6	640	14	13	6
160	15	14	5	660	15	14	5
180	16	15	4	680	16	15	4
200	+ 17	+16	+ 3	700	-17	-16	- 3
220	+18	16	+ 2	720	18	16	2
240	18	16		740	18	16	1
260	18	16	- 1	760	18	16	+ 1
280	18	16	2	780	18	16	+ 2
300	+17	+16	- 3	800	- 17	-16	+ 3
320	16	15		820	16	15	4
340	15	14	5	840	15	14	5
360	14	13	6	860	14	13	6
380	12	11	7	880	12	11	7
400	+11	+10	- 8	900	- 11	-10	+8
420	+ 9	+ 8	8	920	9	8	+ 8
440	7	6	9	940	7	6	9
460	4	4	9	960	4		9
480			10	980	2	2	10
500	+ 0	+ 0	-10	1000	- 0	-	+10

TABLE XI.
Earth's Radius Veotor.-Argument. Sun's Mean Anomaly.

	0s	Is	IIs	IIIs	IVs	Vs	
0	0.98313	0.98545	0.99173	1.00018	1.00850	1.01450	30°
2	0.98314	0.98576	0.93225	1.00077	1.00899	1.01477	28
4	0.98317	0.98608	0.99278	1.00135	1.00947	1.01503	26
6	0.98322	0.98643	0.99331	1.10193	1.00994	1.01527	24
8	0.98330	0.98679	0.99386	1.00251	1.01040	1.01549	22
10	0.98339	0.98717	0.99441	1.00308	1.01084	1.01569	20
12	0.98350	0.98756	0.99497	1.00366	1.01128	1.01588	18
14	0.98364	0.98797	0.99554	1.00422	1.01170	1.01604	16
16	0.98380	0.98840	0.99611	1.00478	1.01210	1.01619	14
18	0.98397	0.98883	0.99668	1.00534	1.01249	1.01632	12
20	0.98417	0.98929	0.99726	1.00588	1.01286	1.01643	10
22	0.98439	0.98975	0.99784	1.00642	1.01322	1.01652	8
24	0.98462	0.99023	0.99843	1.00695	1.01357	1.01659	6
26	0.98486	0.99072	0.99901	1.00748	1.01389	1.01663	4
28	0.98515	0.99122	0.99960	1.00799	1.01420	1.01666	2
30	0.98545	0.99173	1.00018	1.00850	1.01450	1.01667	0
	XIs	Xs	1Xs	VIIIs	VIIs	VIs	

MEAN NEW MOONS AND ARGUMENTS IN JANUARY.

	Mean New Moon in January.	I.	II.	III.	IV.	N.
A. D.	D. H. M.					
1836 B.	$17 \quad 1032$	0469	1246	17	08	669
1837	51920	0171	9852	00	97	692
1838	241653	0681	9175	99	85	799
1839	14142	0383	7780	82	74	822
1840 B.	31030	0085	6386	65	63	844
1841	$\begin{array}{llll}21 & 8 & 3\end{array}$	0595	5709	63	51	951
1842	101651	0297	4314	46	40	974
1843	291424	0807	3637	44	28	081
1844 B.	182313	0509	2243	28	17	104
1845	$7 \quad 81$	0211	0848	11	06	126
1846	$26 \quad 534$	0721	0171	09	94	234
1847	151422	0423	8777	92	84	256
1848 B.	42311	0125	7382	75	73	278
1849	222043	0635	6705	73	61	386
1850	$12 \quad 532$	0337	5311	56	50	408
1851	11421	0038	3916	40	39	431
1852 B.	201153	0549	3239	38	27	538
1853	82042	0251	1845	21	16	560
1854	271814	0761	1168	19	04	668
1855	$17 \quad 3 \quad 3$	0463	9773	02	93	690
1856 B.	61151	0164	8379	85	82	713
1857	24924	0675	7702	84	70	820
1858	131813	0376	6307	67	59	843
1859	$\begin{array}{llll}3 & 3 & 1\end{array}$	0078	4913	50	48	865
1860 B.	$22 \quad 034$	0588	4236	48	36	972
1861	$10 \quad 922$	0290	2840	31	25	995
1862	29655	0800	2163	30	14	102
1863	181544	0504	0769	13	03	125
1864 B.	$8 \quad 032$	0204	9374	96	92	147
1865	$25 \quad 225$	0714	8698	94	80	256
1866	15653	0416	7303	77	69	277
1867	41542	0118	5909	60	58	299
1868 B.	231314	0628	5231	59	46	407
1869	11223	0330	3837	42	35	429
1870	1651	0032	2442	25	24	451
1871	$20 \quad 424$	0542	1765	23	12	559
1872 B.	81313	0244	0371	05	01	581
1873	271046	0754	9694	03	89	689
1874	171935	0456	8300	86	78	711
1875	$7 \quad 424$	0158	6906	69	67	733
1876 B.	2615	0668	6229	67	55	841
1877	141049	0370	4835	50	44	863
1878	31838	0072	3441	33	23	885
1879	22611	0582	2764	31	21	993
1880 B.	11150	0284	1370	14	10	015

MEAN LUNATIONS AND CHANGES OF THE ARGUMENTS.

Num.	Lunations.			I.	II.	III.	IV.	N.
		h.						
1/2	14	18	22	404	5359	58	50	43
1	29	12	44	808	717	15	99	85
2	59	1	28	1617	1434	31	98	170
3	88	14	12	2425	2151	46	97	256
4	118	2	56	3234	2869	61	96	341
5	147	15	40	4042	3586	76	95	425
6	177	4	24	4851	4303	92	95	511
7	206	17	8	5659	5020	7	94	596
8	236	5	52	6468	5737	22	93	682
9	265	18	36	7276	5454	37	92	767
10	295	7	20	8085	7117	53	91	852
11	324	20	5	8893	7889	68	90	937
12	354	8	49	9702	8606	83	89	22
13	383	21	33	510	9323	93	88	108

TABLE XIII.

TABLEXIV.

NUMBER OF DAYS FROM THE COMMIENCEMENT OF THE YEAR TO THE FIRST OF EACH MONTH.

Months.	Com.	Bis.
January.	Days.	Days. 0
February..	31	31
March	59	60
April .	90	91
May.	120	121
June.	151	152
July	181	182
August...	212	213
S'eptember.	243	244
October...	273	274
November.	304	305
December .	334	335

Arg. II.	H. Par.	S.D.	H. Mo.	$\begin{aligned} & \text { Arg. } \\ & \text { III } \end{aligned}$
0	$60 \quad 29$	$16 \quad 29$	$36 \quad 48$	10000
250	$60 \quad 26$	$16 \quad 26$	3644	9750
500	$\begin{array}{ll}60 & 17\end{array}$	$16 \quad 25$	$36 \quad 19$	9500
750	$60 \quad 0$	$16 \quad 21$	36	9250
1000	5947	1617	3548	9000
1250	$59 \quad 24$	$16 \quad 11$	$35 \quad 28$	8750
1500	$58 \quad 56$	16	3457	850
1750	$58 \quad 30$	$15 \quad 56$	$34 \quad 34$	8250
2000	58	$15 \quad 50$	$33 \quad 58$	8000
2250	57	1542	$33 \quad 32$	7750
2500	57	$15 \quad 31$	3242	7500
2750	$56 \quad 32$	$15 \quad 23$	32	7250
3000	$56 \quad 2$	$\begin{array}{ll}15 & 16\end{array}$	$31 \quad 36$	7000
3250	$55 \quad 40$	1510	31. 13	6750
3500	$55 \quad 22$	15	$30 \quad 52$	6500
3750	$55 \quad 12$	15	$30 \quad 29$	6250
4000	$54 \quad 51$	$14 \quad 56$	30	6000
4250	$54 \quad 39$	$14 \quad 54$	$29 \quad 55$	5750
4500	$54 \quad 26$	$14 \quad 50$	2943	5500
4750	$54 \quad 18$	1448	$29 \quad 37$	5250
5000	5413	1445	$29 \quad 35$	5000

EQUATIONS FOR NEW AND FULL MOON.

Arg.	I.	II.	Arg.	I.	II.	Arg.	III.	IV.	Arg.
	h. m.	h. m.		h. m.	h. m.		m.	m.	
0	420	1010	5000	420	1010	25	3	31	25
100	436	936	5100	45	1050	26	3	31	24
200	452	92	5200	349	1130	27	3	30	23
300	58	828	5300	334	129	28	3	30	22
400	524	755	5400	319	1248	29	3	30	21
500	540	722	5500	34	1326	30	3	30	20
600	555	649	5600	249	143	31	3	30	19
700	610	617	5700	235	1439	32	4	20	18
800	624	546	5800	221	1513	33	4	29	17
900	638	515	5900	28	1546	34	4	29	16
1000	651	446	6000	155	1618	35	4	29	15
1100	74	417	6100	142	1648	36	5	28	14
1200	715	350	6200	131	1716	37	5	28	13
1300	727	324	6300	119	1742	38	5	27	12
1400	737	259	6400	$1 \quad 9$	186	39	5	27	11
1500	747	235	6500	059	1828	40	6	26	10
1600	755	214	6600	050	1848	41	6	26	9
1700	83	153	6700	042	196	42	7	25	8
1800	810	135	6800	034	1921	43	7	25	7
1900	816	118	6900	$0 \quad 28$	1933	44	7	24	6
2000	821	13	7000	022	1944	45	8	23	5
2100	825	051	7100	017	1952	46	8	23	4
2200	829	040	7200	014	1957	47	8	22	3
2300	831	032	7300	011	200	48	9	21	2
2400	832	025	7400	$0 \quad 9$	$20 \quad 1$	49	10	21	1
2500	832	021	7500	08	1959	50	10	20	0
'2600	831	019	7600	. 08	1955	51	10	19	99
2700	829	020	7700	09	1948	52	11	19	98
2800	826	023	7800	011	1940	53	11	18	97
2900	823	028	7900	015	1929	54	12	17	96
3000	818	036	8000	019	1917	55	12	17	95
3100	812	047	8100	024	$19 \quad 2$	56	13	16	94
3200	86	059	8200	030	1845	57	13	15	93
3300	758	114	8300	037	$18 \cdot 27$	58	13	15	92
3400	750	132	8400	045	186	59	14	14	91
3500	741	152	8500	053	1745	60	14	14	90
3600	731	214	8600	13	1721	61	15	13	89
3700	721	238	8700	113	1656	62	15	13	88
3800	79	34	8800	125	1630	63	15	12	87
3900	658	332	8900	136	$16 \quad 3$	64	15	12	86
4000	645	42	9000	149	$15 \quad 34$	65	16	11	85
4100	632	434	9100	22	$15 \quad 5$	66	16	11	84
4200	619	57	9200	216	1434	67	16	11	83
4300	65	541	9300	230	14	68	16	10	82
4400	551	617	9400	245	1331	69	17	10	81
4500	536	654	9500	30	1258	170	17	10	80
4600	521	732	9600	316	1225	71	17	10	79
4700	56	811	9700	332	1152	72	17	10	78
4800	451	850	9800	348	1118	73	17	10	77
4900	435	930	9900	4	1044	74	17	9	76
5000	420	1010	10000	420	1010	75	17	9	75

\％L\＆L	； 86 万	0．61 II	9° ¢\％I	¢ 68 \＆			L2\％\％	178	0×9 I	C＇8才	\＆．L I	08
L2 8	G0\％ $\begin{gathered}\text { ¢ }\end{gathered}$	I＇\＆も 0 I	ช0\％\％	I6 \quad T	20695	coc 9	8．89	I＇L 9	$6^{6.9 c} 0$	$7^{\circ} 678$	L88¢ 0	86
F\％78	すL	$\mathcal{G} ¢ 01$	6．2I \＆	－99\％和	ち99 T	869	9.96 \＆	［\％C	$9.860+$	¢ ¢G E	$9^{\circ 8} 80-$	96
I＇8I 6		cit 6	¢GI ${ }^{\text {¢ }}$	$9^{\circ} 0 \mathrm{cI}$	I＇すE DI	$8^{\circ} \mathrm{C} \%$	0 OG \＆	2.67	$0 \cdot 7 \% 0$	6.798	$7^{\circ} \mathrm{IC}$	もも
\％\％\％¢ 6	\％$\% ¢ T$	CLE 8	I＇II 9	$0 \cdot \mathrm{II}$ ¢	6.8 万	6.67	L｀LI	T08 9	IVGO	です \＆	$00^{\circ} \mathrm{GG} 0$	ชも
L¢も0 0	90¢ $\square^{\text {¢ }}$	E0G 2	176	$20 才 91$	\％\％\％® \＆	$0 \cdot 70$	OTV	2 CI 9	0670	9098	$9{ }^{\circ} \mathrm{Gz}$ I	0%
DGc 0I	$0 \cdot 9 \%$ ¢	9% L	6.74	6.7 Gc	I＇\％I EI	$6^{\circ} \mathrm{CI} 8$	\％0 9	6.297	$8{ }^{\circ} \mathrm{y}$ I I	［＇形 \＆	キヲ \％	8I
8＊\％IT	G2L 7	6． 1 I 9	0.29 L	8.89 I	9．0才 \％I	0 \％¢ \％	¢．$¢ 1.9$	I＇88	L2E I	8＊\％¢ \＆	ワ6\＆も	9 I
8．69 II	9．9 万T	80%	0．878	Fir 9	0\％	G\％GI I	\％ 86.	$8 \cdot 81$	0006	0 －\％\＆	\％¢I \＆	7I
16 Cl ［	$\because 0 ¢ 8 \mathrm{~L}$	8．9\％${ }^{\text {\％}}$	10286	GGI 9I	历．$\%$ IL	F＇GI I	\％97	8.998	$\nabla^{\circ} 0 \%$ \％	C6 \＆	円 67 \＆	てI
$00^{\circ} \mathrm{CJ}$ \％	0% ¢	00% \＆	Fit 0	c91 9I	LGg 0 I	LOEG 0	T89	L¢\％\＆	0．88	CGG \％	96% ¢	0 L
8 B	8．\％I \＆	\％IE \％	I－6 IT	๕゙刀［ 9	0．81 0I	9.90	$G^{\bullet} ¢ 9$	001 \＆	İLG G	0.98%	$7{ }^{\circ} 70$	8
19\％8I	0.67 \％	¢＇¢ 5	0° IS IT	$0 \% 6$ I	I＇886	$0^{\circ} \mathrm{T}$ 鴯 0	0.89	ช゙\％ワ	9\％\％\＆	89 \％\％	8.87 G	9
¢＇6i \＆	£＇\％\％\％I	$6.980+$	๕6\％\％I	$\boldsymbol{F}^{\circ} 09$ 9	๕88 8	6．6I I	0019	79 I	$0^{\circ} \mathrm{CG}$ ¢	$9^{\circ} \mathrm{EG}$ I	8619	7
\％8¢ EI	¢TG IT	I＇I\％ 0	I＇9 \＆	$2.8 \pm$ G	8918	8．29 I	$1 \begin{aligned} & 106\end{aligned}$	209 I	ICg \＆	F\％G I	$0 \cdot 999$	\％
$\begin{array}{cc}8.6 & \text { DT } \\ \text { S } & \text { ut }\end{array}$	${ }_{0}^{06 \mathrm{l}} \mathrm{II}$ It		$\nabla^{\top} \cdot 68 \cdot 8 \mathrm{EL}$		F＇EE ${ }^{-1}$	L2\％	＊＊8 ${ }^{\circ} \mathrm{s}$－${ }^{-1}$		c^{-87}		$Z \cdot I \varepsilon \underset{\sim}{L}+$	0
SIX	sX	SXI	SIIIA	SIIA	SIA	s^{1}	s $\Lambda 1$	SIII	SII	SI	s0	

MOON'S EPOCHS.

Years.	1	2	3	4	5	6	7	8	9
184.6	0013	2475	3275	1688	0773	4880	3179	0800	9542
1847	0006	9683	2941	6432	3245	0678	4239	3257	8406
1848 B.	0026	7542	3646	1463	6052	6847	5358	6106	7295
184.	0019	4750	3312	6207	8524	2644	6418	8563	6158
1850	0012	1958	2978	0951	0995	8442	7479	1020	5022
1851	0005	9167	2644	5695	3467	4239	8539	3477	3885
1852 B.	0025	7025	3350	0726	6274	0408	9658	6326	2774
1853	0018	4233	3016	5469	8746	6206	0718	8782	1637
1854	0011	1442	2681	0213	1217	2003	1778	1240	0501
1855	0004	8650	2347	4957	3689	7801	2839	3697	9365
1856 B.	0024	6509	3053	9988	6496	3970	3957	6446	8254
1857	0017	3717	2719	4732	8968	9767	5018	9002	7117
1858	0010	0925	2385	9476	1439	5565	6078	1460	5981
1859	0003	8134	2051	4220	3911	1362	7139	3917	4845
1860 B.	0023	5992	2756	9551	6718	7531	8257	6765	3734
1861	0016	3200	2423	3995	9190	3329	9317	9222	2597
1862	0009	0409	2088	8739	1661	9126	0378	1679	1461
1863	0002	7617	1754	3483	4133	4923	1438	4137	0324
1864 B.	0022	5476	2460	8514	6941	1093	2557	6984	9212
1865	0015	2684	2126	3257	9412	6890	3617	9442	8076
1866	0008	9893	1792	8001	1883	2687	4678	1899	6940
1867	0001	7101	1457	2745	4355	8485	5738	4357	5804
1868 B.	0021	4959	2163	7776	7163	4654	6857	7204	4692
1869	0 Cl 4	2168	1829	2520	9634	0452	7917	9662	3556
1870	0007	9376	1495	7264	2105	6249	8978	2119	2420
1871	0000	6584	1161	2008	4576	2046	0039	4576	1284
1872 B.	0020	4432	1867	7039	7383	8215	1158	7423	0172
1873	0013	1640	1533	1783	9854	4012	2239	9880	9036
1874	0006	8848	1199	6527	2325	9809	3300	2337	7900
1875	9999	6056	0865	1271	4796	5606	4361	4794	6764
1876 B.	0019	3914	1571	6292	7603	1775	5480	7641	5652
1877	0012	1122	1247	1036	0074	7572	6541	0098	4516
1878	0005	8330	0913	5780	2545	3369	7602	2555	3380
1879	9998	5538	0579	0524	5016	9166	8663	5012	2244
1880 B.	0018	3396	1285	5545	7823	5335	9782	7859	1132
1881	0011	0604	0951	0289	0294	1132	0843	0316	9996
1882	0004	7812	0617	5033	2765	6929	1904	2873	8860
1883	9997	5020	0283	9777	5236	2726	2965	5330	7724
1884 B.	0017	2878	0989	4798	8043	8895	4084	8177	6612
1885	0010	0086	0655	9542	0514	4692	5145	0634	5476
1886	0003	7294	0321	4286	2985	0489	6206	3091	4340
1887	9996	4502	9987	9030	5456	6286	7267	5548	3204
1888 B.	in16	2360	0693	4051	8263	2455	8386	8395	2092
1889	009	9568	0359	8795	0734	8252	9447	0852	0956
1890	0002	6776	0025	3539	3205	4049	0508	3309	9820

MOON'S EPOCHS.

Year	10	11	12	13	14	15	16	17	18	19	20
1846	203	123	250	171	419	760	126	396	167	379	4
1847	810	484	970	644	613	901	486	749	643	433	371
1848 B	486	876	759	151	905	072	881	143	144	487	539
1849	093	237	479	624	099	212	241	496	619	540	705
1850	700	597	199	097	293	352	600	848	094	594	871
1851	306	958	918	570	487	493	960	201	569	648	038
1852 B	983	350	707	077	780	664	355	595	070	701	06
1853	589	711	427	550	974	804	715	948	545	755	72
1854	196	072	147	023	168	944	074	300	020	809	539
1855	802	432	866	496	361	085	434	653	495	863	705
1856 B	479	824	656	003	654	256	829	047	996	916	873
1857	086	185	375	476	848	396	189	400	471	970	039
1858	692	546	095	949	042	537	548	752	947	024	206
1859	299	907	814	422	236	677	908	105	422	078	372
1860 B.	975	298	604	929	529	848	303	499	923	131	540
1861	581	659	323	402	723	988	662	852	398	185	706
1862	187	020	042	875	916	129	021	204	873	239	873
1863	794	381	761	348	110	269	381	557	348	292	39
1864 B	470	773	551	855	403	440	777	951	849	346	207
1865	077	134	271	328	597	580	136	304	324	400	373
18	68	494	990	801	791	721	495	65	799	3	40
1867	290	855	710	274	985	861	855	009	274	507	707
1868 B	967	247	500	781	277	032	251	40	775	561	874
1869	573	608	219	254	471	172	610	756	251	615	040
1870	180	968	939	737	665	313	969	109	726	668	207
	78	328	659	200	859	554	328	562	201	721	374
1872 B	464	720	549	707	151	725	724	957	702	785	531
1873	071	080	269	180	345	966	083	410	177	838	698
1874	678	440	989	653	539	205	442	863	642	891	865
1875	285	800	709	126	733	446	801	316	117	-	032
1876 B	962	192	599	633	025	617	197	711	618	008	199
1877	569	552	319	106	219	858	556	164	093	061	366
1878	176	912	039	579	413	099	915	617	568	114	533
1879	783	272	759	052	607	340	274	070	043	167	700
1880 B.	460	664	649	559	899	511	670	465	544	231	867
1881	067	024	369	032	093	752	029	918	019	284	034
1882	674	384	089	505	287	993	388	371	494	337	201
1883	281	744	809	978	481	234	747	824	969	390	368
1884 B.	958	136	699	485	773	405	143	219	470	454	535
1885	565	4.96	419	958	967	646	502	672	945	507	702
1886	172	856	139	451	161	887	861	125	420	560	869
1887	779	216	859	904	355	128	320	578	895	613	036
1888 B.	456	608	749	411	647	299	716	973	396	677	203
1889	063	968	469	884	841	540	075	426	871	730	370
1890	670	328	189	357	035	781	434	879	346	783	537

MOON'S MOTIONS FOR MONTHS.

Month	1	2	3	4	5	6	7	8	9
Jon) Com	0000	0000	0000	0000	0000	0000	0000	0000	0000
Jan. ${ }^{\text {Bis }}$	9973	9350	8960	9713	9664	9628	9942	9610	9976
Com.	849	146	2246	8896	402	1533	1789	2099	753
Bis.	821	9497	1205	8609	66	1161	1731	1709	729
March.	1615	8343	1371	6931	9797	1951	3404	3027	1433
Ap	2464	8490	3616	5827	199	3484	5193	5126	2186
	3285	7986	4822	4436	265	4646	6924	6835	2914
	4134	8133	7067	3332	666	6179	8713	8934	3667
	4955	7629	8273	1942	732	7341	444	643	4396
August	5804	7776	518	838	1134	8874	2233	2742	5148
September	6653	7922	2764	9734	1536	408	4021	4842	5901
October...	7474	7419	3969	8343	1602	1569	5752	6550	6630
November.	8323	7565	6215	7239	2004	3102	7541	8649	7382
December.	9144	7062	7420	5848	2070	4264	9272	358	8111

TABLEXVIII.

MOON'S MOTIONS FOR DAYS.

Days.	1	2	3	4	5	6	7	8	9
1	0000	0000	0000	0000	0000	0000	0000	0000	0000
2	27	650	1040	287	336	372	58	390	24
3	55	1300	2080	574	671	744	115	781	49
4	82	1950	3121	861	1007	1116	173	1171	73
5	109	2600	4161	1148	1342	1488	231	1561	97
6	137	3249	5201	1435	1678	1860	289	1952	121
7	164	3899	6241	1722	2013	2232	346	2342	146
8	192	4549	7281	2009	2349	2604	404	2732	170
9	219	5199	8321	2296	2684	2976	462	3122	194
10	246	5849	9362	2583	3020	3348	519	3513	219
11	274	6499	402	2870	3355	3720	577	3903	243
12	301	7149	1442	3157	3691	4093	635	4293	267
13	328	7799	2482	3444	4026	4465	692	4684	291
14	356	8449	3522	3731	4362	4837	750	5074	316
15	383	9098	4563	4018	4698	5209	808	5464	340
16	411	9748	5603	4305	5033	5581	866	5854	364
17	438	398	6643	4592	5369	5953	923	6245	389
18	465	1048	7683	4878	5704	6325	981	6635	413
19	493	1698	8723	5165	6040	6697	1039	7025	437
20	520	2348	9763	5452	6375	7069	1096	7416	461
21	548	2998	804	5739	6711	7441	1154	7806	486
22	575	3648	1844	6026	7046	7813	1212	8196	510
23	602	4298	2884	6313	7382	8185	1269	8586	534
24	630	4947	3924	6600	7717	8557	1327	8977	559
25	657	5597	4964	6887	8053	8929	1385	9367	583
26	684	6247	6005	7174	8389	9301	1443	9757	607
27	712	6897	7045	7461	8724	9673	1500	148	631
28	739	7547	8085	7748	9060	45	1558	538	656
29	767	8197	9125	8035	9395	417	1616	928	680
30	794	8847	165	8322	9731	789	1673	1319	704
31	821	9497	1205	8609	66	1161	1731	1709	729

MOON'S MOTIONS FOR MONTHS.

Months.	10	11	12	13	14	15	16	17	18	19	20
Jan. Com.	000	000	000	000	000	000	000	000	000	000	000
Jan. Bis.	930	969	930	966	901	969	963	958	974	000	000
Feb Com.	175	965	184	59	74	946	135	304	805	5	14
Feb. Bis.	105	934	114	25	975	916	98	262	779	5	14
March.	139	836	157	16	¢51	801	159	482	5.32	9	27
April	314	801	342	76	925	747	294	786	336	13	41
May	419	735	556	101	899	663	392	47	115	18	55
Jun	593	700	640	160	973	609	527	351	920	22	59
July	698	634	754	185	948	525	625	613	699	27	83
August	873	599	938	245	22	471	759	917	503	31	97
September	48	563	123	304	96	417	894	221	308	36	111
October...	152	497	237	329	71	333	992	483	87	40	125
November..	327	462	421	388	145	279	127	787	892	45	139
December	432	396	535	414	120	194	225	49	670	49	153

TABLEXVIII.
MOON'S MOTIONS FOR DAYS.

Days.	10	11	12	13	14	15	16	17	18	19	20
1	000	000	000	000	000	000	000	000	000	000	000
2	70	31	70	34	99	31	37	42	26	0	0
3	140	62	141	68	198	61	73	84	52	0	1
4	210	93	211	103	297	92	110	126	78	0	1
5	281	125	282	137	397	122	146	168	104	1	2
6	351	156	352	171	496	153	183	210	130	1	2
7	421	187	423	205	595	183	220	252	156	1	3
8	491	218	493	239	694	214	256	294	182	1	3
9	561	249	564	273	793	244	293	336	208	1	4
10	631	280	634	308	892	275	329	379	234	1	4
11	702	311	705	342	992	305	366	421	260	1	5
12	772	342	775	376	91	336	403	463	286	2	5
13	842	374	845	410	190	366	439	505	312	2	5
14	912	405	916	444	239	397	476	547	337	2	6
15	982	436	986	478	388	427	512	589	368	2	6
16	52	467	57	513	487	458	549	631	389	2	7
17	122	498	127	547	587	488	586	673	415	2	7
18	193	529	198	581	686	519	622	715	441	2	8
19	263	560	268	615	785	549	659	757	467	3	8
20	333	591	339	649	884	580	695	799	493	3	9
21	403	623	409	683	983	611	722	841	517	3	9
22	473	654	480	718	82	641	769	883	545	3	10
23	543	685	550	752	182	672	805	925	571	3	10
24	614	716	621	786	281	702	842	967	597	3	11
25	684	747	691	820	389	733	878	9	623	4	11
26	754	778	762	854	479	763	915	52	649	4	11
27	824	809	832	888	578	794	952	94	675	4	12
28	894	840	903	923	677	824	988	136	701	4	12
29	964	872	973	957	777	855	25	178	727	4	13
30	34	903	43	991	876	885	61	220	753	4	13
31	105	934	114	25	975	916	98	262	779	4	14

MOON'S MOTIONS FOR HOURS.

Hours.	1	2	3	4	5	6	7	8	9
1	1	27	43	12	14	16	2	16	1
2	2	54	87	24	28	31	5	33	2
3	3	81	130	36	42	47	7	49	3
4	5	108	173	48	56	62	10	65	4
5	6	135	217	60	70	78	12	81	5
6	7	162	260	72	84	93	14	98	6
7	8	190	303	84	98	109	17	114	7
8	9	217	347	96	112	124	19	130	8
9	10	244	390	108	126	140	22	146	9
10	11	271	433	120	140	155	24	163	10
11	12	298	477	131	154	171	26	179	11
12	14	325	520	143	168	186	29	195	12
13	15	352	563	155	182	202	31	211	13
14	16	379	607	167	196	217	34	228	14
15	17	406	650	179	210	233	36	244	15
16	18	433	693	191	224	248	38	260	16
17	19	460	737	203	238	264	41	276	17
18	20	487	780	215	252	279	43	293	18
19	22	515	823	227	266	295	46	309	19
20	23	542	867	239	280	310	48	325	20
21	24	569	910	251	294	326	50	341	21
22	25	596	953	263	308	341	53	358	22
33	26	623	997	275	322	357	55	374	23
24	27	650	1040	287	336	372	58	390	24

TABIE XIX.

MOON'S MOTIONS FOR MINUTES.

Min.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
5	0	2	4	1	1	1	0	1	0	0	0	0	0	0
10	0	5	7	2	2	3	0	3	0	0	0	0	0	1
15	0	7	11	3	3	4	1	4	0	1	0	1	0	1
20	0	9	14	4	5	5	1	5	0	1	0	1	0	1
25	0	11	18	5	6	6	1	7	0	1	1	1	1	2
30	1	14	22	6	7	8	1	8	0	1	1	1	1	2
35	1	16	25	7	8	9	1	10	,	2	1	2	1	2
40	1	18	29	8	9	10	2	11	,	2	1	2	1	3
45	1	20	32	9	10	12	2	12	1	2	1	2	1	3
50	1	23	36	10	11	13	2	13	1	2	1	2	1	3
55	1	25	40	11	13	14	2	15	1	3	1	3	1	4
60	1	27	43	12	14	15	2	16	1	3	1	3	1	4

heliocentric longitudes, etc. of the planet vends, at the times of THE NEXT TWO TRANSITS OVER THE SUN'S DISC.
The subject matter of this table is connected with Chapter IX, page 119.

Times.	Hel. Long. from true Equinox.			l. Lat.	Rad. Vec.
1874, Dec. 8th, at 12h.	$76^{\circ} 41^{\prime}$	$36.6^{\prime \prime}$	4	$6.3^{\prime \prime} \mathrm{N}$.	0.7203632
16h.	$76 \quad 57$	44.1		3.5	0.7203449
20h.	$77 \quad 13$	51.5	6		0.7203268
1882, Dec. 6th, at noon.	$74 \quad 12$	55.7		58.1 S	0.7205502
4 h .	$74 \quad 29$	2.5		0.8	0.7205315
8 h .	$74 \quad 45$	9.7	3		0.7205127

DIP OF THE HORIZON.
For the principle of computing the dip of the horizon see text-note, page 54.

Hight in feet.	Dip.		Hight in feet.	Dip.	
1	1^{\prime}	$1{ }^{\prime \prime}$	16	4^{\prime}	$3^{\prime \prime}$
2	1	26	17	4	11
3		45	18	4	18
4	2	2	19	4	25
5	2	16	20	4	32
6	2	29	21	4	39
7	2	41	22	4	45
8	2	52	23	4	52
9	3	2	24	4	58
10	3	12	25	5	4
11	3	22	26	5	10
12	3	31	28	5	22
13	3	39	30	5	33
14	3	48	35	6	1
15	3	56	40	6	25

SUN'S SEMIDIAMETER FOR EVERY TENTH DAY OF THE TEAR.

Days.	Jan.	July.	Days.	April.	Oct.
1	$\begin{array}{ll}16 & 118 \\ 16\end{array}$	15 ${ }^{11} 46$	1	16 1	16 11
11	$16 \quad 17$	1546	11	$15 \quad 58$	163
21	$16 \quad 17$	1546	21	$15 \quad 55$	16
	Feb.	August.		May.	Nov.
1	$16 \quad 15$	$15 \quad 47$	1	$15 \quad 53$	169
11	$16 \quad 13$	1549	11	1551	$16 \quad 12$
21	$16 \quad 11$	$15 \quad 51$	21	1549	$16 \quad 14$
	March.	Sept.		June.	Dec.
1	$16 \quad 10$	$15 \quad 53$	1	1548	$16 \quad 16$
11	167	$15 \quad 56$	11	1546	$16 \quad 17$
21	164	$15 \quad 58$	21	1546	$16 \quad 18$

MOON'S EPOCHS.

Years.	Evection.	Anomaly.	Variation.	Longitude.
	s 0 , "	s o "	s 0 ' "	s 0 , "
1846	$\begin{array}{llllll}2 & 0 & 45 & 6\end{array}$	$0 \quad 2621 \quad 2$	11 5	$101548 \quad 23$
1847	$21 \quad 1635$	$\begin{array}{llll}3 & 25 & 4 & 23\end{array}$	$\begin{array}{lllll}5 & 15 & 25 & 29\end{array}$	$\begin{array}{lllll}2 & 25 & 11 & 28\end{array}$
1848 B.	$1 \begin{array}{llll}1 & 23 & 7 & 5\end{array}$	$\begin{array}{lllll}7 & 6 & 51 & 37\end{array}$	$\begin{array}{llll}10 & 7 & 14 & 21\end{array}$	$\begin{array}{lllll}7 & 17 & 45 & 8\end{array}$
1849	$\begin{array}{llll}7 & 13 & 38 & 35\end{array}$	$10 \quad 5 \quad 3457$	$2 \begin{array}{lllll}2 & 16 & 51 & 46\end{array}$	$11 \begin{array}{llll}11 & 27 & 8\end{array}$
1850	$\begin{array}{llll}1 & 4 & 10 & 4\end{array}$	$1 \begin{array}{llll}1 & 4 & 18 & 18\end{array}$	$\begin{array}{lllll}6 & 26 & 29 & 11\end{array}$	$\begin{array}{lllll}4 & 6 & 31 & 20\end{array}$
1851	6244135	138	$\begin{array}{lllll}11 & 6 & 6 & 36\end{array}$	$815 \quad 5425$
1852 B.	$0 \begin{array}{llll}06 & 32 & 5\end{array}$	$7{ }_{7}^{7} 14 \begin{array}{lll}48 & 53\end{array}$	$\begin{array}{llll}3 & 27 & 55 & 29\end{array}$	1828
1853	$6 \begin{array}{llll}6 & 17 & 34\end{array}$	$1913 \begin{array}{llll}13 & 13\end{array}$	73253	$\begin{array}{lllll}5 & 17 & 51 & 11\end{array}$
1854	$\begin{array}{lllll}0 & 7 & 35\end{array}$	$\begin{array}{lllll}1 & 12 & 15 & 34\end{array}$	$\begin{array}{llll}0 & 17 & 10 & 19\end{array}$	$\begin{array}{lllll}9 & 27 & 14 & 17\end{array}$
1855	5 28 6	105854	$\begin{array}{llll}4 & 2647\end{array}$	2637.22
1856 B.	$11 \quad 2957$	$7 \quad 2246$	$\begin{array}{lllll}9 & 18 & 36 & 36\end{array}$	62911
1857	$\begin{array}{llll}5 & 20 & 28 & 33\end{array}$	$\begin{array}{llll}10 & 21 & 29 & 29\end{array}$	$\begin{array}{lllll}1 & 28 & 14 & 1\end{array}$	11834
1858	1111	$1 \begin{array}{llll}120 & 12 & 50\end{array}$	75126	$\begin{array}{lllll}3 & 17 & 57 & 14\end{array}$
1859	$\begin{array}{lllll}5 & 1 & 31 & 33\end{array}$	$\begin{array}{lllll}4 & 18 & 56 & 10\end{array}$	$\begin{array}{llll}10 & 17 & 28 & 52\end{array}$	7272020
1860 B.	$11 \quad 322$	$8 \quad 0 \quad 43 \quad 25$	$\begin{array}{llll}9 & 17 & 44\end{array}$	01954
1861	$\begin{array}{lllll}4 & 23 & 53 & 33\end{array}$	$\begin{array}{lllll}10 & 29 & 26 & 45\end{array}$	71855	4 29 17
1862	101425	$1 \begin{array}{llll}1 & 28 & 10 & 6\end{array}$	$\begin{array}{lllll}11 & 28 & 32 & 34\end{array}$	$\begin{array}{lllll}9 & 8 & 40 & 12\end{array}$
1863	56	$\begin{array}{llll}4 & 26 & 53 & 27\end{array}$	4810	$\begin{array}{llll}1 & 18 & 3 & 18\end{array}$
1864 B.	$\begin{array}{llll}10 & 6 & 47 & 2\end{array}$	4041	295851	$6 \begin{array}{llll}6 & 10 & 36 & 58\end{array}$
1865	$\begin{array}{llll}3 & 27 & 18 & 32\end{array}$	$\begin{array}{llll}11 & 7 & 24 & 2\end{array}$	$\begin{array}{llll}9 & 36 \quad 17\end{array}$	$10 \quad 20$
1866	$\begin{array}{lll}17 & 50 & 2 \\ 8\end{array}$	723	$\begin{array}{lllll}5 & 19 & 13 & 42\end{array}$	$\begin{array}{lllll}2 & 29 & 23 & 10\end{array}$
1867	82132	$4{ }^{4} 5043$	92851	$\begin{array}{lllll}7 & 8 & 46 & 15\end{array}$
1868 B.	1012	88163758	22040	$\begin{array}{llll}0 & 1 & 19 & 56\end{array}$
1869	04333	$\begin{array}{llll}11 & 15 & 21 & 19\end{array}$	$\begin{array}{llll}0 & 17 & 25\end{array}$	41043
1870	$\begin{array}{llll}8 & 21 & 15 & 2\end{array}$	$\begin{array}{lllll}2 & 14 & 4 & 40\end{array}$	$\begin{array}{llll}11 & 9 & 54 & 50\end{array}$	8206
1871	$\begin{array}{lllll}2 & 11 & 45 & 31\end{array}$	$\begin{array}{llll}5 & 12 & 47\end{array}$	$\begin{array}{llll}3 & 19 & 31 & 16\end{array}$	$\begin{array}{lllll}0 & 29 & 28 & 13.7\end{array}$
1872 B.	$\begin{array}{llll}8 & 2 & 17 & 0\end{array}$	$\begin{array}{lllll}8 & 11 & 30 & 21.7\end{array}$	7 29 8	$\begin{array}{llll}5 & 8 & 51 & 19.4\end{array}$
1873	$\begin{array}{lllll}2 & 4 & 7 & 31\end{array}$	$\begin{array}{lllll}11 & 23 & 17 & 36.6\end{array}$	$\begin{array}{llll}0 & 20 & 57 & 36\end{array}$	$\begin{array}{llll}10 & 1 & 25 & 0.3\end{array}$
1874	$\begin{array}{lllll}7 & 24 & 39 & 0\end{array}$	$\begin{array}{llll}2 & 22 & 0 & 57.3\end{array}$	035	21048
1875	$\begin{array}{llll}1 & 15 & 10 & 29\end{array}$	$\begin{array}{lllll}5 & 20 & 44 & 18\end{array}$	$\begin{array}{llll}9 & 10 & 12 & 24\end{array}$	$\begin{array}{lllll}6 & 20 & 11 & 11.7\end{array}$
1876 B.	$\begin{array}{ll}41 & 59\end{array}$	$\begin{array}{lllll}8 & 19 & 27 & 38.7\end{array}$	$1 \begin{array}{llll}19 & 49 & 50\end{array}$	$\begin{array}{lllll}10 & 29 & 34 & 17.4\end{array}$
1877	3230	$1 \begin{array}{lll}14 & 53.6\end{array}$	$\begin{array}{llll}6 & 11 & 38 & 40\end{array}$	$\begin{array}{llll}3 & 22 & 7 & 58.3\end{array}$
1878	6 28 3 59 0 18 3	${ }_{2}^{2} 29988814.3$	$\begin{array}{lllll}10 & 21 & 16 & 5\end{array}$	881
1879	$\begin{array}{lllll}0 & 18 & 35 & 28 \\ 6 & 9 & 6 & 58\end{array}$	$\begin{array}{lllll}5 & 28 & 41 & 35\end{array}$	0 53 30	$\begin{array}{lllll}0 & 10 & 54 & 9.7\end{array}$
1880 B.	58	8872455.7	$\begin{array}{llll}10 & 30 & 55\end{array}$	$\begin{array}{llll}4 & 20 & 17 & 15.4\end{array}$
1881	$\begin{array}{lllll}0 & 10 & 57 & 29\end{array}$	${ }_{9}^{9} 1210.6$	$\begin{array}{llll}0 & 2 & 19 & 47\end{array}$	$\begin{array}{lllll}9 & 12 & 50 & 56.3\end{array}$
1882	$\begin{array}{llll}6 \\ 1 & 1 & 28 & 58 \\ 11 & 22\end{array}$	$\begin{array}{lllll}7 & 55 & 31.3\end{array}$	$\begin{array}{lllll}4 & 11 & 57 \\ 8 & 21 & 12 \\ 1 & 1 & 34 & 37\end{array}$	$\begin{array}{llll}1 & 22 & 14 & 20 \\ 6 & 1 & 37 & 7\end{array}$
1883	$\begin{array}{llll}11 & 22 & 0 & 27\end{array}$	$\begin{array}{lllll}6 & 6 & 38 & 52.0\end{array}$	8 81 3437	$\begin{array}{lllll}6 & 1 & 37 & 7.7\end{array}$
1884 B.	$\begin{array}{lllll}5 & 12 & 31 & 56\end{array}$	2212.7	$\begin{array}{llll}1 & 1 & 12 & 2\end{array}$	$\begin{array}{lllll}10 & 11 & 0 & 13.4\end{array}$
1885	$\begin{array}{llll}11 & 14 & 22 & 28\end{array}$	$\begin{array}{lllll}0 & 17 & 9 & 27.6\end{array}$	$\begin{array}{llll}5 & 23 & 0 & 54\end{array}$	$\begin{array}{lllll}3 & 3 & 33 & 54.3\end{array}$
1886	5357	$\begin{array}{lllllllll}3 & 15 & 52 & 48.3\end{array}$	$\begin{array}{lllll}10 & 2 & 38 & 19\end{array}$	$\begin{array}{llll}7 & 12 & 57 & 0.0\end{array}$
1887	$\begin{array}{llll}10 & 25 & 25 & 26\end{array}$	$6{ }^{6} 14 \begin{array}{lll}14 & 36 & 9.0\end{array}$	$\begin{array}{lllll}2 & 12 & 15 & 44\end{array}$	$\begin{array}{llll}11 & 22 & 20 & 5.7\end{array}$
1888 B.	$\begin{array}{lllll}4 & 15 & 56 & 57\end{array}$	$\begin{array}{llllll}9 & 13 & 19 & 29.7\end{array}$	${ }^{6} \quad 2153$	$\begin{array}{llll}4 & 1 & 43 & 11.0\end{array}$
1889	$\begin{array}{lllll}10 & 17 & 47 & 28\end{array}$		$11 \quad 1342$	241651.9
1890	$\begin{array}{lllll}4 & 8 & 18 & 57\end{array}$	$\begin{array}{lllll}3 & 23 & 50 & 5.3\end{array}$	$\begin{array}{lllll}3 & 23 & 19 & 26\end{array}$	$\begin{array}{lllll}1 & 3 & 39 & 57.6\end{array}$

MOON'S EPOCHS.

Years.	Supp. of Node.	II.	V.	VI.	VII.	VIII.	IX.	X.
.	s 0 , "	s 0						
1846	$\begin{array}{lllll}4 & 16 & 35 & 9\end{array}$	11785	254	258	937	941	847	113
1847	$\begin{array}{lllll}5 & 5 & 54 & 52\end{array}$	$\begin{array}{llll}2 & 28 & 38\end{array}$	668	670	245	247	927	053
1848 B.	$\begin{array}{lllll}2 & 25 & 17 & 45\end{array}$	$7 \quad 0 \quad 9$	116	122	582	587	042	997
1849	$\begin{array}{lllll}6 & 14 & 37 & 27\end{array}$	$\begin{array}{llll}10 & 20 & 41\end{array}$	531	535	889	893	122	937
1850	$\begin{array}{lllll}7 & 3 & 57 & 9\end{array}$	$2 \begin{array}{lll}2 & 11 & 13\end{array}$	944	947	196	200	202	876
1851	$\begin{array}{llll}7 & 23 & 16 & 51\end{array}$	$\begin{array}{llll}6 & 1 & 45\end{array}$	358	359	504	506	282	816
1852 B.	$\begin{array}{llll}8 & 12 & 39 & 44\end{array}$	$\begin{array}{llll}10 & 3 & 27\end{array}$	806	811	841	846	398	760
1853	$\begin{array}{lllll}9 & 1 & 59 & 26\end{array}$	$\begin{array}{llll}1 & 23 & 59\end{array}$	220	223	148	152	477	700
1854	$\begin{array}{lllll}9 & 21 & 19 & 9\end{array}$	$\begin{array}{llll}5 & 14 & 31\end{array}$	634	636	456	459	557	639
1855	$\begin{array}{llll}10 & 10 & 38 & 51\end{array}$	9	047	048	763	765	637	579
1856 B.	$\begin{array}{lllll}11 & 0 & 1 & 44\end{array}$	16644	495	500	100	105	753	523
1857	$\begin{array}{llll}11 & 19 & 21 & 26\end{array}$	$\begin{array}{lll}4 & 27 & 16\end{array}$	909	912	407	411	832	463
1858	$\begin{array}{lllll}0 & 8 & 41 & 8\end{array}$	$8 \quad 17 \quad 48$	323	325	715	718	912	402
1859	$\begin{array}{llll}0 & 28 & 0 & 51\end{array}$	$0 \quad 8 \quad 20$	736	737	023	024	992	342
1860 B.	$\begin{array}{llll}1 & 17 & 23 & 43\end{array}$	$\begin{array}{llll}4 & 10 & 1\end{array}$	184	189	359	364	108	286
1861	$\begin{array}{lllll}2 & 6 & 43 & 27\end{array}$	$8 \quad 0$	598	601	666	670	187	226
1862	$\begin{array}{llll}2 & 26 & 3 & 9\end{array}$	$11 \quad 21$	012	014	974	977	267	165
1863	$\begin{array}{lllll}3 & 15 & 23 & 11\end{array}$	$\begin{array}{llll}3 & 11 & 37\end{array}$	426	426	282	283	347	105
1864 B.	$\begin{array}{lllll}4 & 4 & 45 & 44\end{array}$	$\begin{array}{llll}7 & 13 & 18\end{array}$	873	878	618	623	463	049
1865	$\begin{array}{lllll}4 & 24 & 5 & 46\end{array}$	$\begin{array}{llll}11 & 3 & 50\end{array}$	287	291	926	929	542	989
1866	$\begin{array}{llll}5 & 13 & 25 & 28\end{array}$	$\begin{array}{lll}2 & 24 & 22\end{array}$	701	703	233	236	622	928
1867	$\begin{array}{lllll}6 & 2 & 45 & 10\end{array}$	$\begin{array}{llll}6 & 14 & 54\end{array}$	115	115	544	542	702	868
1868 B.	$\begin{array}{llll}6 & 22 & 7 & 43\end{array}$	$\begin{array}{llll}10 & 16 & 36\end{array}$	563	567	877	882	818	812
1869	$\begin{array}{llll}7 & 11 & 27 & 46\end{array}$	$\begin{array}{llll}2 & 7 & 8\end{array}$	977	980	185	188	897	752
1870	$\begin{array}{llll}8 & 0 & 47 & 28\end{array}$	$\begin{array}{llll}5 & 27 & 40\end{array}$	390	392	493	495	977	691
1871	$\begin{array}{llll}8 & 20 & 6 & 49\end{array}$	$\begin{array}{llll}9 & 18 & 11\end{array}$	803	804	800	802	057	630
1872 B.	$\begin{array}{lllll}9 & 9 & 26 & 31\end{array}$	$1 \begin{array}{lll}1 & 8 & 43\end{array}$	216	216	108	110	137	569
1873	$\begin{array}{lllll}9 & 28 & 49 & 24\end{array}$	$\begin{array}{llll}5 & 10 & 25\end{array}$	664	668	444	450	252	514
1874	$\begin{array}{llll}10 & 18 & 9 & 6\end{array}$	$\begin{array}{llll}9 & 0 & 57\end{array}$	077	080	752	758	332	453
1875	$\begin{array}{llll}11 & 7 & 28 & 48\end{array}$	$\begin{array}{llll}0 & 21 & 29\end{array}$	490	492	054	064	412	392
1876 B.	$\begin{array}{llll}11 & 26 & 48 & 31\end{array}$	$\begin{array}{ll}4 & 12\end{array}$	904	905	364	370	492	331
1877	$\begin{array}{llll}0 & 16 & 11 & 24\end{array}$	$8 \quad 13 \quad 42$	352	357	700	710	607	276
1878	$1 \begin{array}{llll}1 & 5 & 31 & 6\end{array}$	$\begin{array}{llll}0 & 4 & 14\end{array}$	765	769	008	018	687	215
1879	$1 \begin{array}{llll}1 & 24 & 50 & 48\end{array}$	$\begin{array}{llll}3 & 24 & 46\end{array}$	178	181	316	326	767	154
1880 B.	$\begin{array}{lllll}2 & 14 & 10 & 30\end{array}$	$\begin{array}{llll}7 & 15 & 18\end{array}$	593	593	624	630	847	093
1881	$\begin{array}{lllll}3 & 3 & 33 & 23\end{array}$	$\begin{array}{lll}11 & 16 & 59\end{array}$	041	045	960	970	962	038
1882	$\begin{array}{lllll}3 & 22 & 53 & 5\end{array}$	$\begin{array}{llll}3 & 7 & 31\end{array}$	454	457	268	278	042	977
1883	$\begin{array}{llll}4 & 12 & 12 & 47\end{array}$	$\begin{array}{llll}6 & 28 & 3\end{array}$	867	869	576	586	122	916
1884 B.	$\begin{array}{llll}5 & 1 & 32 & 29\end{array}$	$\begin{array}{lll}10 & 18 & 35\end{array}$	280	281	884	894	202	855
1885	$\begin{array}{llll}5 & 20 & 55 & 22\end{array}$	22016	728	733	220	234	317	800
1886	$\begin{array}{lllll}6 & 10 & 15 & 4\end{array}$	$\begin{array}{llll}6 & 10 & 48\end{array}$	141	145	528	542	397	739
1887	$\begin{array}{lllll}6 & 29 & 34 & 46\end{array}$	1018120	554	557	836	850	477	678
1888 B.	$\begin{array}{llll}7 & 18 & 54 & 28\end{array}$	12152	967	969	144	158	557	617
1889	$\begin{array}{llll}8 & 8 & 17 & 21\end{array}$	$\begin{array}{llll}5 & 23 & 33\end{array}$	415	421	480	498	672	562
1890	$\begin{array}{llll}8 & 27 & 36 & 3\end{array}$	$\begin{array}{llll}9 & 14 & 5\end{array}$	828	833	788	806	752	501

MOON'S MOTIONS FOR MONTHS.

nths.	Fvection.				Anomaly.				Variation.					M. Longitude.			
		\bigcirc									\bigcirc						"
Jan. ${ }^{\text {j }}$ Bis.	0	0	0			0	0			0	0	0			0	0	0
. Bis.	11	18	41			116	56			11	17	48	33		116	49	5
Feb. ${ }_{\text {Bis. }}^{\text {Com.. }}$	11	20	48	42		115	0	53			17		48				
March....		7	2			$\begin{array}{ll}1 & 1 \\ 1 & 20\end{array}$	${ }_{50}^{56}$				$\stackrel{5}{29}$	43			$\begin{array}{ll}1 & 5 \\ 1 & 27\end{array}$	${ }_{24}^{17}$	
Apri		28	29			35	50	57		0	17	10			315	52	
May	9	7	58	51			47	56		0			24			10	
Jun	8	28	47	33		522	48	49		1	10	48	11		6	38	9
July	8	8	17	16		624	45	48		1	16	31	32			55	
August		9	5				46				4	26			9	23	
September		19	54	41		924				2							
October.		29	24	24		026	45	34		2	28		28				
November		20	13			011	45			3	15	59	16		15	37	
December		29	42	49		113	42	26			21	42	37		220	54	459

TABLE XX.
moon's motions for days.

Days.	Evection.		Anomaly.				Variation.				Mean Longitude.			
1	$0 \mathrm{~s}{ }^{\circ}$	$0^{\prime} 0^{\prime \prime}$	0 s	00	0^{\prime}	$0^{\prime \prime}$		$0{ }^{\circ}$	0^{\prime}		0 s	0°	0^{\prime}	
2	0 11	$18 \quad 59$	0	13	3	54	0	12	11	27	0	13	10	35
3	0 2\%	$37 \quad 59$	0	26	7	48	0	24	22	53	0	26	21	10
4	13	5658	1	9	11	42	1	6	34	20	1	,	31	45
5	115	$15 \quad 58$	1	22	15	36	1	18	45	47	1	22	42	20
6	126	3457	2	5	19	30	2	0	57	13	2	5	52	55
7	27	5357	2	18	23	24	2	13	8	40	2	19	3	30
8	219	1256	3	1	27	18	2	25	20	7	3	2	14	5
9	30	3155	3	14	31	12	3	7	31	34	3	15	24	40
10	311	5055	3	27	35	6	3	19	43	0	3	28	35	15
11	323	954	4	10	39	0	4	1	54	27	4	11	45	50
12	44	$28 \quad 54$	4	23	42	54	4	14	5	54	4	24	56	25
13	$4 \quad 15$	4753	5	6	46	48	4	26	17	20	5	8	7	0
14	427	653	5	19	50	42	5	8	28	47	5	21	17	35
15	58	$25 \quad 52$	6	2	54	36	5	20	40	14	6	4	28	10
16	${ }_{5}^{5} 19$	4451	6	15	58	29	6	2	51	40	6	17	38	45
17	6	351	6		2	23	6	15	3	7	7	0	49	20
18	$6 \quad 12$	2250	7	12	6	17	6	27	14	34	7	13	59	55
19	$6 \quad 23$	4150	7	25	10	11	7	9	26	1	7	27	10	30
20	75	049	8	8	14	5	7	21	37	27	8	10	21	5
21	716	1949	8	21	17	59			48	54	8	23	31	40
22	727	3848	9	4	21	53	8	16	0	21	9	6	42	16
23	88	5747		17	25	47	8	28	11	47	9	19	52	51
24	820	$16 \quad 47$	10	0	29	41	9	10	23	14	10	3	3	26
25	91.	3546	10	13	33	35	9	22	34	41	10	16	14	1
26	912	5446	10	26	37	29	10	4	46	7	10	29	24	36
27	924	1345	11	9	41	23	10	16	57	34	11	12	35	11
28	105	3245	11	22	45	17	10	29	9	1	11	25	45	46
29	$10 \quad 16$	5144	0	5	49	11	11	11	20	28	0	8	56	21
30	$10 \quad 28$	1043	0	18	53	5	11	23	31	54	0	22	6	56
31	$11 \quad 9$	2943	1	1	56	59	0	5	43	21	1	5	17	31

MOON'S MOTIONS FOR MONTHS.

TABLE XX.
moon's motions for days.

Days.	Supp. of Node.			II.		V.	VI.	VII.	VIII.	IX.	X.
1	$0^{\circ} 0^{\prime}$	$0^{\prime \prime}$		Os 00	0^{\prime}	000	000	000	000	000	000
2	03	11		11	9	34	39	28	34	36	5
3	06	21		22	18	68	79	56	67	72	11
4	$0 \quad 9$	32	1	13	27	102	118	85	101	108	16
5	012	52	1	14	37	136	158	113	135	143	21
6	015	53	1	25	46	170	197	141	169	179	27
8	$0 \quad 19$	4	2	6	55	204	237	169	202	215	32
8	$0 \quad 22$	14	2	18	4	238	276	198	236	251	37
9	$0 \quad 25$	25	2	29	13	272	316	226	270	287	43
10	$0 \quad 28$	36	3	10	22	306	355	254	303	323	48
11	031	46	3	21	31	340	395	282	337	358	53
12	0	57	4	2	40	374	434	311	371	394	58
13	038	7	4	13	50	408	474	339	405	430	64
14	041	18	4	24	59	442	513	367	438	466	69
15	044	29	5	6	8	476	553	395	472	502	74
16	047	39	5	17	17	510	592	424	506	538	80
17	050	50	5	28	26	544	632	452	539	573	85
18	054	1	6	9	35	578	671	480	573	609	90
19	057	11	6	20	44	612	711	508	607	645	96
20	10	22	7	1	53	646	750	537	641	681	101
21	13	33	7	13	3	680	790	565	674	717	176
22	16	43	7	24	12	714	829	593	708	753	112
23	19	54	8	5	21	748	869	621	742	788	117
24	113	5	8	16	30	782	908	650	775	824	122
25	116	15	8	27	39	816	948	678	809	860	128
26	$1 \begin{array}{ll}19\end{array}$	26	9	8	48	850	987	706	843	896	133
27	122	36	9	19	57	884	027	734	877	932	138
28	125	47	10	1	6	918	066	762	910	968	143
29	128	58	10	12	16	952	106	791	944	003	149
30	132	8	10	23	25	986	145	819	978	039	154
31	135	19	11	4	34	020	185	847	011	075	153

MOON'S MOTIONS FOR HOURS.

Hours.	Evection.			Anomaly.			Variation			Longitude.		
		'			,		\bigcirc	1		\bigcirc	,	"
1	0	28		0	32	40)	30		0	32	56
2	0	56	35	1	5	19	1	0	57	1	5	53
3	1	24	52	1	37	59	1	31	26	1	38	49
4	1	53	10	2	10	39	2	1	54	2	11	46
5	2	21	27	2	43		2	32	23	2	44	42
6	2	49	45	3	15	58	3	2	52	3	17	39
7	3	18	2	3	48	38	3	33	20	3	50	35
8	3	46	20	4	21	18	4	3	49	4	23	32
9	4	14	37	4	53	58	4	34	17	4	56	28
10	4	42	55	5	26	37	5	4	46	5	29	25
11	5	11	12	5	59	17	5	35	15	6	2	21
12	5	39	30	6	31	57	6	5	43	6	35	17
13	6	7	47	7	4	37	6	36	12	7	8	14
14	6	36	5	7	37	16	7	6	40	7	41	10
15	7	4	22	8	9	56	7	37	9	8	14	7
16	7	32	40	8	42	36	8	7	38	8	47	3
17	8	0	57	8	15	16	8	38	6	9	20	0
18	8	29	15	9	47	55	9	8	35	9	52	56
19	8	57	32	10	20	35	9	39	3	10	25	53
20	9	25	50	10	53	15	10	9	32	10	58	49
21	9	54	7			55	10	40		11	31	46
22	10	22	24	11		34	11		29	12	4	42
23		50	42	12	31	14	11	40	58	12	37	39
24	11	18	59	13	3	54	12	11	27	13	10	35

TABLE XXI.
MOON'S MOTIONS FOR MINUTES.

Min.	Evec.		Anomaly.		Variations.		Longitude.		Sup Node	II.
	,	"	,	"		"	,	"	"	"
1	0	28	0	33		30	0	33	0	0
5	2	21		43	2	32	2	45	1	2
10		43		27	5	5	5	29	1	5
15	7	4		10		37	8	14	2	7
20	9	26	10	53	10	10	10	59	3	9
25	11	47	13	37	12	42	13	43	3	12
30	14	9	16	20	15	14	16	28	4	14
35	16	30	19	3	17	47	19	13	5	16
40	18	52	21	46			21	58	5	19
45		13	24	30	22	52	24	42	6	21
50		34		13		24		27	7	23
55	25	56	29	56	27	56		12	7	26
60	28	17	32	40	30	29	32	56	8	28

MOON'S MOTIONS FOR HOURS.

Hours.	Supp. of Node.	II.	V.	VI.	VII.	VIII.	IX.	X.
	, "	\bigcirc -						
1	08	028	1	2	1	1	1	0
2	- 16	056	3	3	2	3	3	0
3	$0 \quad 24$	124	4	5	4	4	4	1
4	0 32	152	6	\%	5	6	6	1
5	$0 \quad 40$	219	7	$\}$	6	7	7	1
6	048	247	9	10	7	9	9	1
7	056	315	10	19	8	10	10	2
8	14	343	11	13	9	11	12	2
9	111	411	13	15	11	13	13	2
10	$1 \begin{array}{ll}1 & 19\end{array}$	439	14	16	12	14	15	2
11	127	57	16	18	13	15	16	2
12	135	$5 \quad 35$	17	20	14	17	18	3
13	143	$6 \quad 2$	18	21	15	18	19	3
14	151	$6 \quad 30$	20	23	16	19	21	3
15	159	$6 \quad 58$	21	25	18	21	22	3
16	27	$7 \quad 26$	23	26	19	22	24	4
17	215	$7 \quad 54$	24	28	20	24	25	4
18	$2 \quad 23$	822	26	29	21	25	27	4
19	231	850	27	31	22	27	28	4
20	239	$9 \quad 18$	28	32	24	28	30	4
21	247	$9 \quad 45$	30	34	25	29	31	5
22	255	$10 \quad 13$	31	36	26	31	33	5
23	$3 \quad 3$	1041	33	38	27	32	34	5
24	311	119	34	39	28	34	36	5

TABLE A.*
perturbations of earth's
radius vector.

Arg.	I.	II.	III.	Arg.	I.	II.	III.
	-		-				
0	8	4	3	500	2	0	4
50	8	4	3	550	2	1	4
100	7	4	2	600	3	1	3
150	7	4	1	650	3	2	2
200	6	4	0	700	4	3	1
250	5	4	0	750	5	4	0
300	4	3	1	800	6	4	0
350	3	2	2	850	7	4	1
400	3	1	3	900	7	4	2
450	2	1	4	950	8	4	3
500	2	0	4	1000	8	4	3

TABLE B.
D's approx. lat.-arg. n.

N . A.	$\begin{aligned} & \mathrm{N} . \\ & \mathrm{D} . \end{aligned}$	D.	A.	(1)'sLat.	
					"
0	500	500	1000	0	0
5	495	505	995	9	41
10	490	510	990	19	22
15	485	515	985	29	3
20	480	520	980	38	40
25	475	525	975	48	18
30	470	530	970	58	40
35	465	535	965	67	28
40	460	540	960	76	45
45	455	545	955	86	21
50	450	550	950	95	26
55	445	555	945		

[^41]FIRST EQUATION OF MOON'S LONGITUDE.-ARGUMENT 1.

Arg.	1		Diff.	Arg	1		Diff.
		"	"				"
0	12	40	42	5000	12	40	40
100	11	58	42	5100	13	20	40
200	11	16	42	5200	14	1	41
300	10	34	41	5300	14	41	40
400	9	53	41	5400	15	20	39
500	9	12	41	5500	16	0	40
600	8	32	40	5600	16	38	38
700	7	54	38	5700	17	15	37
800	7	16	38	5800	17	52	37
900	6	40	36	5900	18	27	35
1000	6	6	34	6000	19	1	34
1100	5	33	33	6100	19	33	32
1200	5	2	31	6200	20	4	31
1300	4	32	30	6300	20	33	29
1400	4	5	$\stackrel{2}{25}$	6400	21	1	28
1500	3	40	25	6500	21	27	26
1600	3	17	$\stackrel{23}{ }$	6 600	21	50	23
1700	2	56	21	6700	22	12	22
1800	2	38	18	6800	22	31	19
1900	2	22	16	6900	22	48	17
2000	2	9	13	7000	23	3	15
2100	1	58	11	7100	23	15	12
2200	1	50	8	7200	23	25	10
2300	1	44	6	7300	23	32	7
2400	1	41	3	7400	23	37	5
2500	1	41	0	7500	23	39	2
2600	1	43	$\stackrel{2}{5}$	7600	23	39	0
2700	1	48	5	7700	23	36	3
2800	1	55	10	7800	23	30	8
2900	2	5	10	7900	23	22	11
3000	2	17	12	8000	23	11	11
3100	2	32	15	8100	22	58	13
3200	2	49		8200	22	42	16
3300	3	8	19	8300	22	24	18
3400	3	30	23	8400	22	3	$\stackrel{1}{21}$
3500	3	53	$\stackrel{2}{2}$	8500	21	40	23
3600	4	19	26	8600	21	15	25
3700	4	46	27	8700	20	48	27
3800	5	16	30	8800	20	18	30
3900	5	47	31	8900	19	47	31
4000	6	19	32	9000	19	14	33
4100	6	53	34	9100	18	40	34
4200		28		9200	18	4	38
4300	8	5	37	9300	17	26	38
4400	8	42	38	9400	16	48	38
4500	9	20	38	9500	16	8	41
4600	9	59	49	9600	15	27	41
4700	10	39	40	9700	14	46	41
4800	11	19		9800	14	4	42
4900	11	59	41	9900	13	22	42 42
5000	12	40		10000	12	40	42

eqdations 2 to 7 of moon's longitude.-Argdments 2 to 7.

Arg.	2	3	4	5	6	7	Arg.
	, "	"	, "	, "	, "	"	
2500	$4 \quad 57$	02	$6 \quad 30$	$3 \quad 39$	06	0 1	2500
2600	457	0 2	$6 \quad 30$	$\begin{array}{ll}3 & 39\end{array}$	06	$0 \quad 1$	2400
2700	456	03	$6 \quad 29$	338	07	$0 \quad 1$	2300
2800	455	03	$6 \quad 27$	$3 \quad 37$	08	02	2200
2900	453	0 0	$6 \quad 24$	336	$0 \quad 9$	03	2100
3000	450	05	$6 \quad 21$	$3 \quad 34$	0 10	04	2000
3100	$4 \quad 47$	06	$6 \quad 17$	$3 \quad 32$	0 12	05	1900
3200	443	08	$6 \quad 12$	$3 \quad 29$	$0 \quad 14$	06	1800
3300	$4 \quad 39$	09	67	326	$0 \quad 17$	08	1700
3400	4	0811	$6 \quad 1$	322	0 0 19	0	1600
3500	4	$\begin{array}{ll}0 & 13\end{array}$	$5 \quad 54$	$\begin{array}{ll}3 & 18\end{array}$	$0 \quad 22$	012	1500
3600	4	0	547	$\begin{array}{ll}3 & 14\end{array}$	$0 \quad 25$	0	1400
3700	$4 \quad 17$	0	$5 \quad 39$	310	$0 \quad 29$	$0 \quad 17$	1300
3800	411	$0 \quad 20$	$5 \quad 30$	35	0	0	1200
3900	4	$0 \quad 23$	$5 \quad 21$	30	$0 \quad 37$	$0 \quad 22$	1100
4000	357	$0 \quad 26$	512	254	$0 \quad 41$	$0 \quad 25$	1000
4100	$3 \quad 49$	$0 \quad 29$	$5 \quad 2$	249	$0 \quad 45$	$0 \quad 28$	900
4200	381	0 0	452	243	$0 \quad 50$	031	800
4300	$3 \quad 33$	0	$4 \quad 41$	237	054	$0 \quad 35$	700
4400	$3 \quad 24$	$0 \quad 39$	430	230	$0 \quad 59$	039	600
4500	$3 \quad 15$	$0 \quad 42$	$4 \quad 19$	$2 \quad 24$	14	042	500
4600	37	046	47	217	19	$0 \quad 45$	400
4700	258	$0 \quad 49$	356	210	$1 \begin{array}{ll}1 & 14\end{array}$	049	300
4800	248	053	344	24	$\begin{array}{ll}1 & 19\end{array}$	$0 \quad 53$	200
4900	$2 \quad 39$	$0 \quad 56$	$3 \quad 32$	157	125	056	100
5000	230	10	$3 \quad 20$	150	130	10	0000
5100	$2 \quad 21$	1 d	38	143	135	14	9900
5200	211	17	256	136	140	17	9800
5300	22	111	24	129	146	111	9700
5400	153	$1 \begin{array}{ll}1 & 14\end{array}$	233	123	151	115	9600
5500	1	$1 \begin{array}{ll}1 & 18\end{array}$	221	116	156	118	9500
5600	$1 \begin{array}{ll}1 & 36\end{array}$	1	$2 \quad 10$	$1 \begin{array}{ll}1 & 10\end{array}$	21	122	9400
5700	$1 \begin{array}{ll}1 & 27\end{array}$	$1 \begin{array}{ll}1 & 25\end{array}$	159	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	26	$1 \quad 25$	9300
5800	$1 \begin{array}{ll}1 & 19\end{array}$	128	148	$0 \quad 57$	210	128	9200
5900	111	1	138	$0 \quad 51$	215	132	9100
6000	13	1	128	046	219	135 .	9000
6100	056	1	119	040	$2 \quad 23$	138	8900
6200	0849	$1 \begin{array}{ll}1 & 39\end{array}$	110	035	27	140	8800
6300	0	1	11	$0 \quad 30$	$2 \quad 31$	143	8700
6400	$0 \quad 36$	144	$0 \quad 53$	$0 \quad 26$	235	146	8600
6500	031	$1 \begin{array}{ll}1 & 47\end{array}$	0	$0 \quad 21$	238	148	8500
6600	$0 \quad 26$	149	$\begin{array}{ll}0 & 39\end{array}$	018	241	150	8400
6700	$0 \quad 21$	151	0	014	243	152	8300
6800	$0 \quad 17$	152	$0 \quad 28$	$0 \quad 11$	246	154	8200
6900	0	154	$0 \quad 23$	08	248	155	8100
7000	$0 \quad 10$	155	$0 \quad 19$	06	250	156	8000
7100	07	156	016	$0 \quad 4$	251	157	7900
7200	05	157	013	02	252	158	7800
7300	04	157	0 11	01	253	159	7700
7400	03	158	0		254	159	7600
7500	03	158	$0 \quad 18$	0	254	159	7500

TABLE XXIII.
EqUATIONS 8 to 9 of moon's Longitude.-ARGUMENTS 8 то 9 .

Arg.	8		9		Arg.	8		9	
		"		"			/	,	/r
0	1	20	1	20	5000	1	20	1	20
100	1	15	1	29	5100	1	24	1	26
200	1	11	1	37	5200	1	29	1	31
300	1	7	1	46	5300	1	33	1	37
400	1	2	1	54	5400	1	37	1	42
500	0	58	2	1	5500	1	42	1	47
600	0	54	2	8	5600	1	46	1	51
700	0	50	2	15	5700	1	50	1	55
800	0	46	2	20	5800	1	54	1	58
900	0	42	2	25	5900	1	58	2	0
1000	0	38	2	29	6000	2	1	2	1
1100	0	35	2	32	6100	2	5	2	2
1:00	0	31	2	34	6200	2	8	2	2
1300	0	28	2	35	6300	2	11	2	1
1400	0	25	2	35	6400	2	14	1	59
1500	0	33	2	34	6500	2	17	1	56
1600	0	20	2	32	6600	2	19	1	52
1700	0	18	2	29	6700	2	22	1	48
1800	0	16	2	26	6800	2	24	1	43
1900	0	14	2	21	6900	2	25	1	38
2000	0	13	2	i6	7000	2	27	1	32
2100	0	11	2	11	7100	2	28	1	25
2200	0	10	2	4	7200	2	29	1	18
2300	0	10	1	58	7300	2	30	1	11
2400	0	9	1	51	7400	2	30	1	4
2500	0	9	1	43	7500	2	31	0	56
2600	0	10	1	36	7600	2	30	0	49
2700	0	10	1	29	7700	2	30	0	42
2800	0	11	1	22	7800	2	29	0	36
2900	0	12	1	15	7900	2	28	0	29
3000	0	13	1	8	8000	2	27	0	24
3100	0	15	1	2	8100	2	26	0	18
3200	0	16	0	57	8200	2	24	0	14
3300	0	18	0	52	8300	2	22	0	10
3400	0	21	0	47	8400	2	20	0	8
3500	0	23	0	44	8500	2	17	0	6
3600	0	26	0	41	8600	2	15	0	5
3700	0	29	0	39	8700	2	12	0	5
3800	0	32	0	38	8800	2	9	0	6
3900	0	35	0	38	8900	2	5	0	8
4000	0	39	0	39	9000	2	2	0	11
4100	0	42	0	40	9100	1	58	0	15
4200	0	46	0	42	9200	1	54	0	20
4300	0	50	0	45	9300	1	50	0	25
4400	0	54	0	49	9400	1	46	0	32
4500	0	58	0	53	9500	1	42	0	39
4600	1	3	0	58	9600	1	38	0	46
4700	1	7	1	3	9700	1	33	0	
4800	1	11	1	9	9800	1	29	1	3
4900	1	16	1	14	9900	1	24	1	11
5000		20	1	20	10000	1	20	1	20

equatrons 10 and 11.

Arg.	10	11	Arg.	10	11
	"	\prime		"	11
0	10	10	500	10	10
10	9	11	510	10	11
20	9	12	520		11
30	8	13	530	9	12
40	7	14	540	8	13
50	7	15	550	8	14
60	6	16	560	8	14
70	6	17.	570	8	15
80	5	17	580	7	15
90	5	18	590	7	15
100	5	18	600		16
110	4	19	610	7	16
120	4	19	620	7	16
130	4	19	630	7	16
140	4	19	640	7	15
150	4	19	650	8	15
160	4	19	660	8	815
170	4	18	670	8	14
180	5	18	680	9	13
190	5	17	690	9	13
200	5	16	700	10	12
210	6	16	710	10	11
220	6	15	720	11	110
230	7	14	730	11	19
240	7	13	740	12	- 9
250	8	12	750	12	8
260	8	11.	760	13	
270	9	10	770	13	6
280	9	10	780	14	
290	10	9	790	14	
300	10	8	800	15	3
310	11	7	810	15	
320	11	6	820	15	52
330	12	6	830	16	2
340	12	5	840	16	6 1
350	12	5	850	16	6
360	12	5	860	16	
370	13		870	16	16.
380	13	4	880	16	6
390	13	4	890	16	6
400	13	4	900	15	2
410	13	5	910	15	52
420	12	5	920	15	5
430	12	5	930	14	3
440	12	6	940	14	4
450	12	6	950	13	-
460	11	7	960	13	
470	11	8	970	12	2
480	11	8	980	11	1
490	10	9	990	11	1.9
50	10		1000.		

EQUATIONS 12 тo 19.

Arg								
	"	"		"			"	
250	2	2	8	803	343	17	3	250
260	2	2	8	8.3	343	17	3	240
270	2	2	8	83	343	17	3	230
280	3	,	8	803	333	17	3	220
290	3	2	8	03	334	416	, 3	210
300	3	2	8	83	33	16	3	200
310	3	3	9	3	33	16	3	190
320	4	3	9	3	324	16		180
330	4	4		3	32.4	416	5	170
340	5	4	10	- 23	324	4 16	6	160
350	6	5	10		315	515		150
360	6	6	11		31	515		140
370	7	7	11		330	515		130
380	8	7	12		3295	515		120
390	9	8	12	$2{ }^{4}$	+29 6	6 14	+	110
00	10		13		4286	614		100
410	10	10	13	3.5	5276	14	4	90
420	11	11	14	4.52	527	713		80
430	12	12	15	5.6	${ }^{2} 267$	713		70
440	13	13	15	562	6258	812	2	60
450	14	14	16	72	24	812		50
460	16	15	17	72	23	812		40
470	17	16	18	88	8239	911	1	30
480	18	18	18	89	9229	911	1	20
490	19	19	19	199	3110	010	10	10
500	20	20	20	010	2010	010	10	0
510	21	21	21	111	1910	010	10	0
520	22	22	21	111	1811	1		0
530	23	23	22	2212	1711	1	911	0
540	24	25	23	3312	1712	2	812	60
550	25							950
560	26	27	24	414	1512	27	713	940
570	27	28	25	25141	$4{ }^{14} 13$	3	7	930
580	28	29	26	2615	1313	37	713	920
590	29	30	26	2615	51313	36	614	910
600	30				1214	4	614	00
610	31	32	28	816	1114	14	6	90
620	32	33	28	8171	11114	45	5	880
630	33	33	29	29171	1015	155	515	870
640	34	34		2918	915	$5{ }^{5}$	- 15	860
650	3	35		30		15	16	850
660	35	36	30	30	8.816	164	4	840
670	35	36	31	3115	816	164	416	830
680	36	37	31	1119	816	164	16	820
690	36	37	31	3119	716	164	17	810
0	37	37		3219	716		17	17800
10	37	38	32	322	716	163	17	7790
720	37	38	'32	322	616	163	17	7780
30	38	38	32	3220	616	163	17	770
40	38	38	32	3220	617	173	17	7760
750	, 38				617	173	3	

EQUATION 20.

Arg.	20	Arg.
	11	
0	10	500
10	11	510
20	12	520
30	13	530
40	13	540
50	14	550
60	15	560
70	16	570
80	16	580
90	17	590
100	17	600
110	17	610
120	17	620
130	17	630
140	17	640
150	17	650
160	17	660
170	16	670
180	16	680
190	15	690
200	14	700
210	13	710
220	13	720
230	12	730
240	11	740
250	10	750
260	9	760
270	8	770
280	7	780
290	6	790
300	6	800
310	5	810
320	4	820
330	4	830
340	3	840
350	3	850
360	3	860
370	3	870
380	3	880
390	3	890
400	3	900
410	3	910
420	4	920
430	4	930
440	5	940
450	6	950
460	6	960
470	7	970
480	8	980
490	9	990
500	10	1000

TABLE XXIV.
Evection. Argument-Evection Corrected.

	0 s	Is	IIs	IIIs	IVs	Vs
00	$1^{\circ} 30^{\prime} 0^{\prime \prime}$	$2010^{\prime} 43^{\prime \prime}$	$204010^{\prime \prime}$	$2^{\circ} 50^{\prime} 25^{\prime \prime}$	$2^{\circ} 39^{\prime} 8^{\prime \prime}$	$209^{\prime} 42^{\prime \prime}$
1	$1{ }^{1} 3125$	21157	24051	25023	23825	$2 \quad 829$
2	13251	2139	24130	25020	23740	2716
3	13416	21421	2428	25015	23655	262
4	13542	21531	24245	$2 \quad 50 \quad 9$	2368	$2 \quad 447$
5	1377	21641	24321	2501	23519	$2 \quad 332$
6	13832	21750	24355	$2 \quad 4952$	$2{ }^{2} 3430$	$2 \begin{array}{llll}2 & 2 & 16\end{array}$
7	13957	21858	24427	24941	23340	$2{ }^{2} 10$
8	14121	2205	24459	24929	23248	5943
9	14246	22111	24529	24915	23155	5826
10	14410	22217	24557	2490	2312	578
11	14534	22321	24624	24843	2307	5549
12	14658	22424	24650	24826	$2 \quad 2911$	5430
13	14821	22526	24714	2486	$2 \quad 2814$	$1 \begin{array}{lll}1 & 53 & 11\end{array}$
14	14944	22628	24737	24745	$2 \begin{array}{ll}27 & 16\end{array}$	15151
15	$\begin{array}{lll}1 & 51 & 7\end{array}$	22728	24759	24723	$\begin{array}{llll}2 & 2617\end{array}$	15031
16	15229	22827	24819	2470	$2 \quad 2517$	14911
17	15351	$2 \quad 2925$	24837	24635	$2 \quad 2416$	14750
18	15512	23021	24854	2468	$2 \quad 2314$	14629
19	15633	23117	24910	24541	$2 \quad 2211$	$1 \begin{array}{lll}1 & 45 & 7\end{array}$
20	15753	23211	24924	$2 \quad 4512$	$2 \quad 21$	14346
21	15913	2335	24937	24441	$2 \quad 202$	$1 \begin{array}{lll}1 & 42 & 24\end{array}$
22	2032	23357	24948	2449	21856	$\begin{array}{lll}1 & 41 & 2\end{array}$
23	2151	23448	24958	24336	$2 \quad 1750$	$\begin{array}{llll}1 & 39 & 39\end{array}$
24	239	23538	2506	$243 \quad 2$	21643	$\begin{array}{llll}1 & 38 & 17\end{array}$
25	2426	23626	25013	24226	21534	$1 \begin{array}{lll}1 & 36 & 54\end{array}$
26	2543	23713	25019	24149	$2 \quad 1425$	$\begin{array}{llll}1 & 35 & 32\end{array}$
27	2659	23759	25023	24111	21316	$\begin{array}{llll}1 & 34 & 9\end{array}$
23	2815	2 3844	25025	$2 \quad 4031$	$2 \quad 125$	$1 \begin{array}{lll}1 & 32\end{array}$
29	$2 \quad 980$	23928	25026	23950	21054	$1 \begin{array}{lll}1 & 31 & 23\end{array}$
30	21043	24010	25025	2398	2942	$130 \quad 0$

TABLE XXV.

Moon's Equatorial Parallax. Argument.-Arg. of the Evection.

	0 s	Is	IIs	IIIs	IVs	Vs	
00	$1^{\prime} 28^{\prime \prime}$	$1^{\prime} 23$ "	$1^{\prime} 9^{\prime \prime}$	$0^{\prime} 50^{\prime \prime}$	$0^{\prime} 32^{\prime \prime}$	$0^{\prime} 18^{\prime \prime}$	30°
2	128	122	18	$0 \quad 49$	$0 \quad 30$	018	28
4	128	122	17	047	$0 \quad 29$	017	26
6	128	121	15	046	$0 \quad 28$	0 0 17	24
8	128	120	14	045	$0 \quad 27$	016	22
10	128	$1 \begin{array}{ll}1 & 19\end{array}$	13	044	$0 \quad 26$	016	20
12	$1 \begin{array}{ll}1 & 27\end{array}$	118	12	0	$0 \quad 25$	0 0	18
14	$1 \begin{array}{ll}1 & 27\end{array}$	$\begin{array}{ll}1 & 17\end{array}$	10	0811	$0 \quad 24$	0	16
16	$\begin{array}{ll}1 & 27\end{array}$	$1 \begin{array}{ll}1 & 16\end{array}$	$0 \quad 59$	040	$0 \quad 24$	0	14
18	126	115	058	$0 \quad 39$	0 0 23	0	12
20	126	114	057	$\begin{array}{ll}0 & 37\end{array}$	0	0	10
22	$1{ }^{1} 25$	$1 \begin{array}{ll}1 & 13\end{array}$	055	0	$0 \quad 21$	0	8
24	125	$\begin{array}{ll}1 & 12\end{array}$	054	0	$0 \quad 20$	$\begin{array}{ll}0 & 14\end{array}$	6
26	124	111	0 53	0	$0 \quad 20$	0	4
28	124	110	051	$0 \quad 33$	019	0	2
30	$1 \quad 23$		$0 \quad 50$	$0 \quad 32$	$\begin{array}{ll}0 & 18\end{array}$	0	0
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

TABLE XXIV.
Evection. Argument.-Evection Corrected.

	VIs	VIIs	VII	IXs	X	XIs
0	$1030^{\prime} 0^{\prime \prime}$	$0^{\circ} 50^{\prime} 18^{\prime \prime}$	$0^{\circ} 20^{\prime} 52^{\prime \prime}$	$0^{\circ} 9^{\prime} 34^{\prime \prime}$	$0^{\circ} 19^{\prime} 50^{\prime \prime}$	$0^{\circ} 49^{\prime} 16^{\prime \prime}$
1	12837	0496	02010	$0 \quad 934$	$0 \quad 2032$	$0 \quad 5030$
2	2714	04755	01929	$0 \quad 935$	02116	05145
3	2551	04644	01849	$0 \quad 937$	$\begin{array}{llll}0 & 22\end{array}$	0 5
4	2428	$\begin{array}{lll}0 & 45 & 34\end{array}$	$\begin{array}{llll}0 & 18 & 11\end{array}$	$0 \begin{array}{llll}0 & 9 & 41\end{array}$	$\begin{array}{lll}0 & 22 & 47\end{array}$	$\begin{array}{llll}0 & 54 & 17\end{array}$
5	236	$\begin{array}{llll}0 & 44 & 26\end{array}$	$\begin{array}{llll}0 & 17 & 34\end{array}$	$\begin{array}{llll}0 & 9 & 47\end{array}$	$\begin{array}{llll}0 & 23 & 34\end{array}$	$0 \quad 5533$
6	2143	J 4317	$\begin{array}{llll}0 & 16 & 58\end{array}$	$\begin{array}{llll}0 & 9 & 54\end{array}$	02422	0 5651
7	2020	04210	$\begin{array}{llll}0 & 16 & 24\end{array}$	$\begin{array}{llll}0 & 10 & 2\end{array}$	$\begin{array}{llll}0 & 2512\end{array}$	058
8	1858	$\begin{array}{llll}0 & 41 & 4\end{array}$	$\begin{array}{llll}0 & 15 & 50\end{array}$	$\begin{array}{llll}0 & 10 & 12\end{array}$	$\begin{array}{llll}0 & 26\end{array}$	$0 \begin{array}{llll}0 & 59\end{array}$
9	1736	$\begin{array}{llll}0 & 39 & 58\end{array}$	$\begin{array}{llll}0 & 1519\end{array}$	01023	02655	047
10	1614	$0 \quad 3853$	01448	$0 \quad 1036$	02748	2
11	1452	03749	01419	01050	$0 \quad 2843$	327
12	1331	03646	01351	011	$\begin{array}{lll}0 & 29 & 39\end{array}$	448
13	1210	03544	$0 \quad 1325$	01123	03035	69
14	1049	$0 \quad 3443$	$0 \begin{array}{lll}0 & 13 & 0\end{array}$	01114	03133	731
15	929	$0 \quad 3343$	$0 \begin{array}{lll}0 & 12 & 37\end{array}$	0121	$0 \quad 3232$	1853
16	809	$0 \quad 3244$	$\begin{array}{llll}0 & 1214\end{array}$	01223	$0 \quad 3332$	11016
17	649	03146	01154	$0 \quad 1245$	$0 \quad 3434$	$1 \begin{array}{lll}1 & 11 & 39\end{array}$
18	530	03049	011134	01310	03536	1132
19	411	$0 \quad 2953$	$\begin{array}{lllllllll}0 & 11 & 16\end{array}$	01335	$0 \quad 3639$	11426
20	252	02858	0110	0143	0 37	11550
21	134	0285	$\begin{array}{llll}0 & 10 & 45\end{array}$	01431	03848	$1 \begin{array}{lll}1 & 17 & 14\end{array}$
22	$\begin{array}{lll}1 & 0 & 17\end{array}$	0 0	01031	$\begin{array}{llll}0 & 15 & 1\end{array}$	03955	11839
23	0 590	02620	$\begin{array}{llll}0 & 10 & 19\end{array}$	01533	0412	1203
24	$0 \quad 5744$	02530	$0 \quad 108$	016	04210	12128
25	05628	02440	$0 \quad 959$	$0 \begin{array}{llll}0 & 16\end{array}$	$0 \quad 4319$	$1 \quad 2253$
26	$0 \quad 5513$	$0 \quad 2352$	$0 \quad 951$	$\begin{array}{llll}0 & 1715\end{array}$	04429	12418
27	05358	$\begin{array}{llll}0 & 23 & 5\end{array}$	$0 \quad 945$	01752	$0 \quad 45 \quad 39$	12544
28	$0 \quad 5244$	$0 \quad 2220$	$0 \quad 940$	01830	04651	$1 \begin{array}{lll}1 & 27\end{array}$
29	05131	$0 \quad 2135$	$0 \quad 936$	$\begin{array}{llll}0 & 19 & 9\end{array}$	0483	12834
30	5018	$0 \quad 2052$	934	$\begin{array}{llll}0 & 19 & 50\end{array}$	04916	30

TABLE P.
Moon's Equatorial Parallax. Argument.-Arg. of the Variation.

	0s	Is	Hs	IIIs	IVs	Vs	
07	$56^{\prime \prime}$	$42^{\prime \prime}$	$16^{\prime \prime}$	$4^{\prime \prime}$	$18^{\prime \prime}$	$44^{\prime \prime}$	30°
2	55	41	14	4	19	46	28
4	55	39	13	4	21	47	26
6	55	37	12	4	23	48	24
8	55	35	10	5	24	50	22
10	54	34	9	6	26	51	20
12	53	32	8	6	28	52	18
14	52	30	7	7	30	53	16
16	51	28	6	8	32	54	14
18	50	26	6	9	34	55	12
20	49	24	5	10	35	55	10
22	48	23	4	12	37	56	8
24	47	21.	4	13	39	56	
26	45	19	4	14	41	57	4
28	44	18	4	16	42	57	2
30	42	16	4	18	44	57	0
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

Equation of Moon's Center. Argument.-Anomaly corrected.

	0 s	Is	IIs	IIIs	IVs	Vs
00	$700^{\prime} 0^{\prime \prime}$	$10^{\circ} 20^{\prime} 58^{\prime \prime}$	$12^{\circ} 38^{\prime} 44^{\prime \prime}$	$13^{\circ} 17^{\prime} 35^{\prime \prime}$	$12^{\circ} 16^{\prime} 21^{\prime \prime}$	$905829^{\prime \prime}$
1	$7 \begin{array}{lll}7 & 7 & 5\end{array}$	$10 \quad 2652$	124143	$\begin{array}{llll}13 & 17 & 5\end{array}$	121248	$9 \quad 5258$
2	$\begin{array}{llll}7 & 14 & 10\end{array}$	$10 \quad 3242$	124435	$\begin{array}{llll}13 & 16 & 28\end{array}$	$12 \quad 911$	94794
3	$\begin{array}{lll}7 & 21 & 15\end{array}$	$\begin{array}{llll}10 & 38 & 27\end{array}$	124720	$\begin{array}{llll}13 & 15 & 44\end{array}$	$12 \quad 5 \quad 29$	94148
4	7 28	10448	$12 \quad 4959$	$\begin{array}{llll}13 & 14 & 53\end{array}$	$12 \quad 141$	93610
5	$7 \quad 3523$	$10 \quad 4943$	125230	$\begin{array}{llll}13 & 13 & 56\end{array}$	$\begin{array}{llll}11 & 57 & 49\end{array}$	$9 \quad 30 \quad 29$
6	74226	$10 \quad 5514$	125455	$\begin{array}{ll}13 & 12 \\ 12\end{array}$	$\begin{array}{llll}11 & 53 & 52\end{array}$	9 94 16
7	74928	11039	$12 \quad 5712$	$1311 \begin{array}{lll}13 & 41\end{array}$	$\begin{array}{llll}11 & 49 & 50\end{array}$	191
8	$7 \quad 5628$	1160	125923	$\begin{array}{llll}13 & 10 & 24\end{array}$	114544	1313
9	$8 \quad 328$	111115	13126	$\begin{array}{llll}13 & 9 & 1\end{array}$	114133	724
10	81026	$11 \quad 1624$	$\begin{array}{lll}13 & 3 & 23\end{array}$	$13-731$	$\begin{array}{llll}11 & 37 & 17\end{array}$	132
11	81722	$\begin{array}{llll}11 & 2129\end{array}$	$13 \quad 512$	$\begin{array}{lll}13 & 5 & 54\end{array}$	$\begin{array}{lll}11 & 32 & 57\end{array}$	85539
12	$8 \quad 2417$	$\begin{array}{ll}11 & 26 \\ 11\end{array}$	13655	$\begin{array}{ll}13 & 412\end{array}$	$\begin{array}{llll}11 & 28 & 33\end{array}$	84944
13	83110	113120	$13 \quad 830$	$\begin{array}{ll}13 & 2 \\ 13\end{array}$	$\begin{array}{llll}11 & 24 & 5\end{array}$	84347
14	83881	11368	$13 \quad 959$	$\begin{array}{lll}13 & 0 & 27\end{array}$	$\begin{array}{llll}11 & 19 & 32\end{array}$	$8 \quad 3749$
15	84450	114049	131120	$12 \quad 58 \quad 26$	$11 \quad 1455$	$8 \quad 3149$
16	$8 \quad 5136$	$\begin{array}{llll}11 & 45 & 25\end{array}$	131234	125618	$\begin{array}{llll}11 & 10 & 14\end{array}$	$8 \quad 2548$
17	$8 \quad 5820$	114954	131341	$12 \quad 54 \quad 5$	$\begin{array}{llll}11 & 5 & 30\end{array}$	$8 \quad 1946$
18	$\begin{array}{llll}9 & 5 & 1\end{array}$	$\begin{array}{llllllllllllllllll}11 & 54 & 18\end{array}$	$1314 \begin{array}{ll}13\end{array}$	125145	11041	8 8 1342
19	$\begin{array}{llll}9 & 11 & 39\end{array}$	$11 \quad 5835$	$13 \quad 1534$	$12 \quad 4919$	$10 \quad 5549$	$8 \quad 738$
20	$\begin{array}{llll}9 & 18 & 15\end{array}$	$\begin{array}{ll}12 & 247\end{array}$	$13 \quad 16 \quad 20$	$\begin{array}{llll}12 & 46 & 47\end{array}$	$10 \quad 5053$	8 8 132
21	$\begin{array}{lll}9 & 2447\end{array}$	12652	$\begin{array}{llll}13 & 16 & 59\end{array}$	124410	$10 \quad 45 \quad 53$	$7 \quad 5526$
22	$\begin{array}{llll}9 & 31 & 16\end{array}$	121050	$1317 \begin{array}{lll}131\end{array}$	$1241 \begin{array}{ll}12 & 41\end{array}$	$10 \quad 4050$	$7 \quad 4918$
23	93742	$12 \quad 1442$	$\begin{array}{llll}13 & 17 & 56\end{array}$	$\begin{array}{llll}12 & 38 & 38\end{array}$	$10 \quad 3543$	$7 \quad 4310$
24	9444	121828	131814	$12 \begin{array}{lll}12 & 35 & 43\end{array}$	$10 \quad 3033$	371
25	95053	$12 \quad 227$	$1318 \quad 24$	$12 \quad 3243$	$10 \quad 2520$	3052
26	95638	$12 \quad 2540$	131828	$\begin{array}{llll}12 & 29 & 37\end{array}$	$10 \quad 20 \quad 4$	2442
27	$10 \quad 249$	$12 \quad 296$	131825	$12 \quad 2626$	$10 \quad 1445$	1832
28	$\begin{array}{llll}10 & 8 & 56\end{array}$	123225	131816	$12 \quad 2310$	$\begin{array}{llll}10 & .9 & 22\end{array}$	1221
29	$\begin{array}{llll}10 & 14 & 59\end{array}$	$12 \quad 3538$	131759	121948	$10 \quad 357$	$7 \quad 611$
30	$10 \quad 2058$	$12 \quad 3844$	$13 \quad 1735$	121621	$\begin{array}{ll}9 & 58 \\ 29\end{array}$	700

TABLE XXVI.
Moon's Equatorial Parallax. Argument.-Corrected Anomaly.

	Os		Is		IIs		IIIs		IVs		Vs		30°
00°					57^{\prime}				54^{\prime}		53^{\prime}		
2		58		23	57	2		23	53	57			28
4		57		19	56	55		17	53	52		58	26
6		56		14	56	49	55	11	53	47	52	56	24
8		55		10	56	42	55		53	43	52	54	22
10		54	58	5	56	36		58	53	38	52	52	20
12		53	58	0	56	29		52	53	34	52	50	18
14		51		55	56	22		46	53	30	52	49	16
16		49		49	56	16		40	53	26	52	47	14
18		46		44	56	9		34	53	22	52	46	12
20		44		38	56	3			53	19	52	45	10
22		41		32	55	56			53	15	52	44	8
24		38		26		49			53	12		43	6
26		34.		20	55	43			53	9	52	43	4
28		31		14	55	36			53		52	43	2
30		27	57	8		30	54	2	53	3	52	43	
	XIs		Xs		IXs		VIIIs		VIIs		VIs		

Equation of Moon's Center. Argument.-Anomaly corrected.

	VIs	VIIs	VIIIs	IXs	Xs	XIs
$0{ }^{\circ}$	$700^{\prime} 0^{\prime \prime}$	$4^{\circ} 1^{\prime} 31^{\prime \prime}$	$1043^{\prime} 39^{\prime}$	$0^{\circ} 42^{\prime} 25^{\prime \prime}$	$1^{\circ} 21^{\prime} 16^{\prime \prime}$	$3039{ }^{\prime \prime}$
1	$6 \quad 5349$	$\begin{array}{llll}3 & 56 & 3\end{array}$	14012	0421	12422	$\begin{array}{llll}3 & 45 & 1\end{array}$
2	64739	$\begin{array}{llll}3 & 50 & 38\end{array}$	13650	0	12735	$\begin{array}{llll}3 & 51 & 4\end{array}$
3	6 6 4128	34515	13334	$0 \begin{array}{llll}0 & 41 & 35\end{array}$	133054	35711
4	$\begin{array}{llll}6 & 3518\end{array}$	$3{ }^{3} 3956$	13023	$\begin{array}{llll}0 & 41 & 32\end{array}$	13420	4322
5	$\begin{array}{llll}6 & 29 & 8\end{array}$	33440	$\begin{array}{lll}1 & 2717\end{array}$	0	$1 \begin{array}{llll}1 & 37 & 53\end{array}$	$4 \quad 937$
6	$6 \quad 2259$	32926	12417	$0 \quad 4146$	14132	41555
7	61650	32417	12122	$\begin{array}{llll}0 & 42\end{array}$	$1 \begin{array}{lll}1 & 4518\end{array}$	42218
8	61042	$\begin{array}{llll}3 & 19 & 10\end{array}$	11833	$\begin{array}{llll}0 & 42 & 29\end{array}$	$1 \begin{array}{ll}1 & 4910\end{array}$	42844
9	6	$\begin{array}{llll}3 & 14 & 7\end{array}$	11550	$\begin{array}{llll}0 & 43 & 1\end{array}$	$1 \begin{array}{llll}1 & 53 & 8\end{array}$	43513
10	$\begin{array}{llll}5 & 58 & 28\end{array}$	$\begin{array}{llll}3 & 9 & 7\end{array}$	$\begin{array}{lll}1 & 13 & 12\end{array}$	$0 \quad 4340$	$1 \begin{array}{llll}1 & 57 & 13\end{array}$	44145
11	$5{ }_{5}^{5} 5222$	$3{ }^{3} 411$	$1 \begin{array}{lll}1041\end{array}$	04426	2124	$4 \quad 4821$
12	$5 \begin{array}{lll}5 & 4617\end{array}$	$\begin{array}{llll}2 & 59 & 19\end{array}$	1815	04519	$2 \quad 542$	45459
13	$\begin{array}{llll}5 & 40 & 14\end{array}$	25430	$1 \quad 555$	$\begin{array}{ll}0 & 4619\end{array}$	$210 \quad 5$	5140
14	$\begin{array}{llll}5 & 34 & 12\end{array}$	24946	$1 \quad 342$	0 0 426	21435	5
15	$5 \quad 2811$	$245 \quad 5$	$1 \begin{array}{lll}1 & 1 & 34\end{array}$	04840	$\begin{array}{llll}2 & 19 & 11\end{array}$	$\begin{array}{llll}5 & 15 & 10\end{array}$
16	$5 \quad 2211$	24028	$0 \quad 5933$	$\begin{array}{llll}0 & 50 & 1\end{array}$	22352	$5 \quad 2159$
17	$\begin{array}{llll}5 & 16 & 13\end{array}$	$2 \quad 35 \quad 55$	$0 \quad 5737$	05130	22839	$5 \quad 2850$
18	$\begin{array}{llll}5 & 10 & 16\end{array}$	$2 \begin{array}{llll}2 & 31 & 27\end{array}$	05548	$\begin{array}{llll}0 & 53 & 5\end{array}$	23332	$5 \quad 3543$
19	$5 \quad 421$	$\begin{array}{llll}2 & 27 & 3\end{array}$	0546	05447	23831	54237
20	$4 \quad 5828$	$2 \quad 2243$	0 0 529	$\begin{array}{llll}0 & 56 & 37\end{array}$	24335	$5 \quad 4934$
21	45236	21827	05059	05833	24845	$5 \quad 5632$
22	$4 \quad 4647$	21416	$0 \quad 4936$	$1 \quad 037$	2540	$6 \quad 331$
23	44059	$\begin{array}{llll}2 & 10 & 10\end{array}$	0 4819	1248	25921	$\begin{array}{llll}6 & 10 & 32\end{array}$
24	$\begin{array}{ll}4 & 36 \\ 14\end{array}$	$2{ }^{2} 568$	00 47	155	$3 \quad 446$	61734
25	$4 \quad 2931$	2 2 211	046	1730	$\begin{array}{llll}3 & 10 & 17\end{array}$	$6 \quad 2437$
26	$4 \quad 2350$	$\begin{array}{llll}1 & 58 & 19\end{array}$	$\begin{array}{llll}0 & 45\end{array}$	$\begin{array}{lll}1 & 10 & 1\end{array}$	$\begin{array}{llll}3 & 15 & 15\end{array}$	$\begin{array}{llll}6 & 31 & 41\end{array}$
27	$\begin{array}{llll}4 & 18 & 11\end{array}$	158431	04416	11240	$\begin{array}{llll}3 & 21 & 33\end{array}$	63845
28	41235	$\begin{array}{llll}1 & 50 & 49\end{array}$	$0 \quad 4332$	11525	$\begin{array}{llll}3 & 27 & 18\end{array}$	$6 \quad 45 \quad 50$
29	$4 \quad 7 \quad 2$	$\begin{array}{ll}1 & 47 \\ 1\end{array}$	$0 \quad 4255$	$1 \begin{array}{lll}1 & 18 & 17\end{array}$	$\begin{array}{llll}3 & 33 & 8\end{array}$	$6 \quad 5255$
30	$4 \quad 131$	$1 \begin{array}{lll}1 & 43 & 39\end{array}$	$0 \quad 42 \quad 25$	12116	3 3 39 2	$7 \quad 0 \quad 0$

VARIATION.

Argument.-Variation, corrected.

MOON'S DISTANCE FROM THE NORTH POLE OF THE ECLIPTIC.
Argument. Supplement of Node + Moon's Orbit Longitude.

	IIIs	IVs	Vs	VIs	VIIs	VIEIs	
00	$84^{\circ} 329716^{\prime \prime}$	$85^{\circ} 20^{\prime} 43^{\prime \prime}$	$87^{\circ} 13^{\prime} 47^{\prime \prime}$	$89^{\circ} 48^{\prime \prime} 0^{\prime \prime}$	$92^{\circ} 22^{\prime} 13^{\prime \prime}$	$94^{\circ} 15^{\prime} 17^{\prime \prime}$	30°
2	$\begin{array}{llll}84 & 39 & 27\end{array}$	$85 \quad 2616$	$87 \quad 2312$	$89 \quad 58 \quad 46$	$\begin{array}{llll}92 & 31 & 27\end{array}$	$94 \quad 20 \quad 31$	28
4	$84 \quad 40 \quad 1$	$85 \quad 32 \quad 9$	$87 \quad 3248$	$90 \quad 931$	924030	$\begin{array}{llll}94 & 25 & 25\end{array}$	26
6	84.4058	$\begin{array}{llll}85 & 38 & 20\end{array}$	$87 \quad 4233$	$\begin{array}{llll}90 & 20 & 14\end{array}$	$\begin{array}{llll}92 & 49 & 19\end{array}$	$\begin{array}{llll}94 & 29 & 59\end{array}$	24
8	$84 \quad 42 \quad 17$	854450	$88 \quad 5228$	$\begin{array}{llll}90 & 30 & 55\end{array}$	925756	$\begin{array}{llll}94 & 34 & 12\end{array}$	22
10	$84 \quad 4358$	$85 \quad 5137$	$88 \quad 231$	$90 \quad 4133$	$\begin{array}{llll}93 & 6 & 18\end{array}$	$\begin{array}{llll}94 & 38 & 4\end{array}$	20
12	$84 \quad 46 \quad 2$	$85 \quad 58 \quad 42$	$88 \quad 1242$	$\begin{array}{lll}90 & 52 & 7\end{array}$	$\begin{array}{llll}93 & 14 & 27\end{array}$	$\begin{array}{llll}94 & 41 & 35\end{array}$	18
14	$84 \quad 48 \quad 27$	$86 \quad 6 \quad 3$	$88 \quad 230$	$91 \quad 236$	$\begin{array}{lll}93 & 22 & 20\end{array}$	$94 \quad 44 \quad 45$	16
16	$84 \quad 51 \quad 15$	86	$\begin{array}{lll}88 & 33 & 24\end{array}$	$\begin{array}{llll}91 & 13 & 0\end{array}$	$\begin{array}{lll}93 & 29 & 57\end{array}$	$\begin{array}{lll}94 & 47 & 32\end{array}$	14
18	$8454 \quad 25$	86	$88 \quad 4353$	$\begin{array}{llll}91 & 23 & 18\end{array}$	$\begin{array}{llll}93 & 37 & 18\end{array}$	$\begin{array}{llll}94 & 49 & 58\end{array}$	12
20	845756	$86 \quad 2942$	$\begin{array}{llll}88 & 54 & 27\end{array}$	$\begin{array}{llll}91 & 33 & 29\end{array}$	$\begin{array}{llll}93 & 44 & 23\end{array}$	$94 \quad 52 \quad 2$	10
22	85148	86	$89 \quad 5 \quad 5$	$\begin{array}{llll}91 & 43 & 32\end{array}$	$\begin{array}{llll}93 & 51 & 10\end{array}$	$\begin{array}{llll}94 & 53 & 43\end{array}$	8
24	$88 \quad 6 \quad 1$	$86 \quad 4641$	$89 \quad 15 \quad 46$	$\begin{array}{llll}91 & 53 & 27\end{array}$	$\begin{array}{llll}93 & 57 & 40\end{array}$	$94 \quad 55 \quad 2$	6
26	851035	$86 \quad 55 \quad 30$	$89 \quad 2629$	$\begin{array}{llll}92 & 3 & 12\end{array}$	$94 \quad 351$	$94 \quad 55 \quad 59$	4
28	85	$87 \quad 4 \quad 32$	$89 \quad 3714$	$92 \quad 1248$	$\begin{array}{ccc}94 & 9 & 44\end{array}$	$\begin{array}{llll}94 & 56 & 33\end{array}$	2
30	$85 \quad 20 \quad 48$	$\begin{array}{lll}87 & 13 \quad 47\end{array}$	$89 \quad 480$	$\begin{array}{llll}92 & 22 & 13\end{array}$	$\begin{array}{lll}94 & 15 & 17\end{array}$	$\begin{array}{llll}94 & 56 & 44\end{array}$	
	Is	Is	0 s	XIs	Xs	LXs	

TABLE XXIX.

EQUATION II OF THE MOON'S POLAR DISTANCE.
Argument II, corrected.

	IIIs	IVs	Vs	VIs	VIIs	VIIIs	
0°	$0^{\prime} 14^{\prime \prime}$	$1^{\prime \prime} 24^{\prime \prime}$	$4^{\prime} 37^{\prime \prime}$	$9^{\prime} 0^{\prime \prime}$	$13^{\prime} 23^{\prime \prime}$	$16^{\prime} 36^{\prime \prime}$	30°
2	014	134	453	918	1339	1645	28
4	015	144	59	937	1354	$16 \quad 53$	26
6	$\begin{array}{ll}0 & 17\end{array}$	154	526	955	149	171	24
8	019	25	543	1013	1424	17 ¢	22
$1{ }^{\text {a }}$	022	217	60	1031	1438	1714	20
12	025	229	$6 \quad 17$	1049	$14 \quad 52$	1720	18
14	$\begin{array}{ll}0 & 29\end{array}$	241	635	117	155	1726	16
16	034	254	653	1125	1518	1731	14
18	040	38	711	1143	1531	$17 \quad 35$	12
20	045	322	729	120	1543	1738	10
22	052	336	747	1217	1555	1741	8
24	059	351	85	1234	166	1743	6
26	17	46	823	1251	$16 \quad 16$	1745	4
28	115	421	842	137	1626	1746	2
30	124	437		1323	1636	1746	0
	Is	Is	0 s	XIs	Xs	IXs	

TABLE XXX.

equation iif of the polar distance.
Argument. Moon's True Longitude.

	$\mathrm{III}^{\text {s }}$	IVs	Vs	VIs	VIIs	VIIIs	
00	16"	$15^{\prime \prime}$	12'	$8^{\prime \prime}$	$4^{\prime \prime}$	$1^{\prime \prime}$	30°
6	16	14	11	7		1	24
12	16	14	10	6	3	0	18
18	16	13	10	5	2	0	12
24	15	13	9	5	1	0	6
30	15	12	8	4	1	0	0
	Hs	Is	0 s	XIs	X8	IXs	

EQUATIONS OF POLAR DISTANCE.

Arguments.-20 of Longitude; V to IX, corrected; and X, not corrected.

Arg.	20	V.	VI.	VII.	VIII.	IX.	X	Arg.
	260	$0^{\prime \prime}$	$56^{\prime \prime}$	$6^{\prime \prime}$	$3^{\prime \prime}$	$25^{\prime \prime}$	$3^{\prime \prime}$	$11^{\prime \prime}$
280	1	55	6	3	25	3	11	220
300	1	55	7	4	25	4	11	200
320	2	53	8	5	24	6	12	180
340	3	52	10	6	23	7	13	160
360	4	50	12	8	23	9	14	140
380	5	48	14	10	22	11	16	120
400	6	45	16	12	21	14	17	100
420	8	42	18	14	20	17	19	80
440	10	39	21	17	19	20	21	60
460	11	36	24	19	17	23	23	40
480	13	33	27	22	16	27	25	20
500	15	30	30	25	15	30	27	000
520	17	27	33	28	14	33	29	980
540	19	24	36	31	12	37	31	960
560	20	20	39	33	11	40	33	940
580	22	17	41	36	10	43	35	920
600	24	15	44	38	9	46	37	900
620	25	12	46	40	8	48	38	880
640	26	10	48	42	7	51	40	860
660	27	8	50	44	6	53	41	840
680	28	7	52	45	6	54	42	820
700	29	5	53	46	5	56	42	800
720	29	5	53	47	5	56	43	780
740	30	4	54	47	5	57	43	760

TABLE XXXII.

REDUCTION

Argument.-Supplement of Node + Moon's Orbit Longitude.

	0s	VIs		VIIs		VIIIs	IIIs	IXs	IV	Xs	Vs	XIs
$0{ }^{\circ}$	$7{ }^{\prime}$	$0^{\prime \prime}$		$3^{\prime \prime}$	$1{ }^{\prime}$	$3^{\prime \prime}$	$7{ }^{\prime}$	$0^{\prime \prime}$	13'	57^{\prime}	12'	57'
2	6	31	0	49	1	18	7	29	13	10	12	42
4	6	3	0	38	1	35	7	57	13	22	12	25
6	5	34	0	28	1	54	8	26	13	32	12	6
8	5	6	0	20	2	14	8	54	13	40	11	46
10	4	39	0	14	2	35	9	21	13	46	11	25
12	4	12		10	2	58	9	48	13	50	11	2
14	3	46	0	8	3	22	10	13	13	52	10	38
16	3	22	0	8	3	46	10	38	13	52	10	13
18	2	58	0	10	4	12	11	2	13	50	9	48
20	2	35	0	14	4	39	11	25	13	46	9	21
22	2	14	0	20	5	6	11	46	13	40	8	54
24	1	54	0	28	5	34	12	6	13	32	8	26
26	1	35	0	38	6	3	12	25	13	22	7	57
28	1	18	0	49	6	31	12	42	13	10	7	29
30	1	3			7	0	12	57	12	57	7	0

TABLE XXXIV. MOON'S SEMDDIAMETER.
Argument. Equatorial Parallax.

Eq. Parallax.	Semidiam.	Eq. Parallax.	Semidiam.	Eq. Parallax.	Semidiam.
$53^{\prime} 0^{\prime \prime}$	$14^{\prime} 27{ }^{\prime \prime}$	$56^{\prime} \quad 0^{\prime \prime}$	$15^{\prime} 16^{\prime \prime}$	$59^{\prime} 0^{\prime \prime}$	$16^{\prime \prime} 5^{\prime \prime}$
5320	1432	5620	1521	5920	1610
5340	1437	5640	1526	5940	$16 \quad 16$
540	1443	57	1532	60 0	$16 \quad 21$
5420	1448	5720	1537	$60 \quad 20$	1626
5440	1454	5740	1543	$60 \quad 40$	1632
55	1459	580	1548	610	1637
5520	$15 \quad 5$	5820	$15 \quad 54$	6120	1643
5540	1510	5840	1559	6140	1648
560	1516	590	$16 \quad 5$	62	1654

TABLE XXXV.
augmentation of moon's semidiameter.
Argument. Apparent Altitude.

Ap. Alt.	Augm.
$\mathbf{6}^{\circ}$	$2^{\prime \prime}$
12	3
18	5
24	6
30	8
36	9
42	11
48	12
54	13
60	14
66	15
72	15
78	16
84	16
90	16

TABLE XXXVI.
MOON's HOURLY MOTION IN LONGITUDE.
Arguments. 2, 3, 4, and 5 of Longitude.

Arg.	2	3	4	5	Arg.
0	$6^{\prime \prime}$	$1^{\prime \prime}$	3^{\prime}	3	100
5	5	2	3	3	95
10	5	2	3	3	90
15	4	2	3	3	85
20	4	3	2	2	80
25	3	3	2	2	75
30	2	3	2	2	70
35	2	4	1	1	65
40	1	4	1	1	60
45	1	4	1	1	55
50	0	5	1	1	50

TABLE XXXVII.

MOON'S HOURLY MOTION IN LONGITUDE.
Argument. Argument of the Evection.

	0 s	Is	IIs	IIIs	IVs	Vs	
$0{ }^{\circ}$	$1^{\prime} 20^{\prime \prime}$	$1^{\prime} 15^{\prime \prime}$	$1^{\prime \prime} 0^{\prime \prime}$	$0^{\prime} 39^{\prime \prime}$	$0^{\prime} 20^{\prime \prime}$	$0^{\prime} 6^{\prime \prime}$	30°
2	120	114	058	038	019	05	28
4	120	113	057	037	018	05	26
6	120	112	056	035	016	04	24
8	120	111	054	034	015	04	22
10	120	111	053	033	014	03	20
12	119	- 10	052	031	013	03	18
14	119	19	050	030	012	02	16
16	119	18	049	029	011	02	14
18	118	17	048	027	011	02	12
20	118	15	046	026	$0 \quad 10$	01	10
22	117	14	045	025	09	01	8
24	117	13	044	023	08	01	6
26	116	12	042	022	07	01	4
28	115	11	041	021	07	01	2
30	115		$0 \quad 39$	$0 \quad 20$	06	01	-
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

MOON'S HOURLY MOTION IN LONGITUDE.

Arguments. Sum of preceding equations, and Anomaly, corrected.

		$0^{\prime \prime}$	$20^{\prime \prime}$	$40^{\prime \prime}$	$60^{\prime \prime}$	$80^{\prime \prime}$	$100^{\prime \prime}$		
Os	0°	$4^{\prime \prime}$	$6{ }^{\prime \prime}$	$9 \prime \prime$	$11^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	XUs	002010
	10	4	7	9	11	13	16		
	20	5	7	9	11	13	15		
Is	0	5	7	9	11	13	15	XIs	10
	10	6	7	9	11	13	14		20
	20	7	8	9	11	12	13		10
IIs	0	7	8	9	11	12	13	Xs	0
	10	8	9	10	10	11	12		20
	20	9	10	10	10	10	11		10
IIIs	0	10	10	10	10	10	10	IXs	020
	10	11	11	10	10	9	9		
	20	12	11	10	10	9	8		10
IVs	0	13	12	11	9	8	7	VIIIs	0
	10	14	12	11	9	8	6		20
	20	14	12	11	9	8	6		10
Vs	0	15	13	11	9	7	5	VIIs	0
	10	15	13	11	9	7	5		20
	20	15	13	11	9	7	5		10
VIs	0	15	13	11	9	7	5	V.Is	0
		$0^{\prime \prime}$	$20^{\prime \prime}$	$40^{\prime \prime}$	$60^{\prime \prime}$	$80^{\prime \prime}$	100"		

TABLE XXXIX.

MOON'S HOURLY MOTION IN LONGITUDE.
Argument. Anomaly, corrected.

	0 s	Is	Is	IIIs	IVs	Vs	
0°	$34^{\prime} 51^{\prime \prime}$	$34^{\prime} 14^{\prime \prime}$	$32^{\prime \prime} 39^{\prime \prime}$	$30^{\prime} 45^{\prime \prime}$	$29^{\prime} 6^{\prime \prime}$	$28^{\prime \prime} 1^{\prime \prime}$	30°
2	3451	349	3232	3038	290	2758	28
4	3451	344	$32 \quad 24$	3031	2855	2755	26
6	3450	3359	$32 \quad 17$	$30 \quad 23$	2850	2753	24
8	3449	3353	329	3016	2845	2750	22
10	3447	3347	$32 \quad 2$	309	2840	2748	20
12	3445	3341	3154	$30 \quad 2$	2835	2746	18
14	3443	$33 \quad 35$	3146	2956	2830	2745	16
16	3441	3328	3138	2949	$28 \quad 26$	2743	14
18	3438	3322	3131	2942	2822	2742	12
20	3434	3315	3123	2936	2818	2741	10
22	3431	338	3115	2930	2814	2740	8
24	3427	331	318	2923	2810	$27 \quad 39$	6
26	3423	$32 \quad 54$	310	2917	287	2739	4
28	3419	3247	3053	2912	28 4	2738	2
30	3414	$32 \quad 39$	$30 \quad 45$	296	28 1	2738	0
	XIs	X s	IXs	VIIIs	VIIs	VIs	

MOON'S HOURLY MOTION IN LONGITUDE.
Arguments. Sum of preceding equations, and Argument of Variation.

		27^{\prime}	297	31^{\prime}	33^{\prime}	35^{\prime}	37		
Os	0°	$0^{\prime \prime}$	$2^{\prime \prime}$	$5^{\prime \prime}$	$7 \prime$	$10^{\prime \prime}$	$12^{\prime \prime}$	Xпs	002010
	10	0	3	5	7	9	12		
	20	1	3	5	7	9	11		
Is	0	3	4	5	7	8	9	XIs	10
	10	5	5	6	6	7	7		20
	20	7	7	6	6	5	5		10
IIs	0	9	8	7	5	4	3	Xs	
	10	11	9	7	5	3	1		20
	20	12	10	7	5	2	0		10
IIIs	0	12	10	7	5	2	0	IXs	
	10	12	10	7	5.	2	0		20
	20	11	9	7	5	3	1		10
IVs	0	9	8	7	5	4	3	VIIIs	0
	10	7	7	6	6	5	5		20
	20	5	5	6	6	7	7		0
Vs	0	3	4	5	7	8	9	VIIs	
	10	1	3	5	7	9	11		2010
	20	0	2	5	7	10	12		
VIs	0	0	2	5	7	10	12	VIs	0
		277	29^{\prime}	31^{\prime}	33^{\prime}	35^{\prime}	37		

TABLE XLI.

MOON'S HOURLY MOTION IN LONGITUDE.
Argument. Argument of the Variation.

	0 s	Is	IIs	IIIs	IVs	Vs	
0	$1^{\prime} 17^{\prime \prime}$	$0^{\prime} 58^{\prime \prime}$	$0^{\prime} 20^{\prime \prime}$	$0^{\prime} \quad 2^{\prime \prime}$	$0^{\prime} 22^{\prime \prime}$	$1^{\prime} 0^{\prime \prime}$	30°
2	117	055	0.18	03	024	12	28
4	117	053	016	$0 \quad 3$	026	14	26
6	116	051	014	03	029	16	24
8	116	048	012	04	031	18	22
10	115	0 45	011	05	034	110	20
12	114	043	$0 \quad 9$	06	037	112	18
14	113	040	0 \%	07	$0 \quad 39$	113	16
16	111	038	06	08	042	115	14
18	110	035	05	010	044	116	12
20	18	032	04	011	047	117	10
22	16	030	04	013	050	118	8
24	14	$0 \quad 27$	0 - 3	015	052	118	6
26	12	$0 \quad 25$	03	017	055	119	4
28	10	023	$0 \quad 2$	019	057	119	2
30	058	020	$0 \quad 2$	022		119	0
	XIs	X s	IXs	VIIIs	VIIs	VIs	

MOON'S HOURLY MOTION IN LONGITUDE. Argument. Argument of the Reduction.

	0s	Is	IIs	IIIs	IVs	Vs	
0°	$2^{\prime \prime}$	$6^{\prime \prime}$	$14^{\prime \prime}$	$18^{\prime \prime}$	$14^{\prime \prime}$	$6^{\prime \prime}$	30°
2	2	7	14	18	13	6	28
4	2	7	15	18	13	5	26
6	2	8	15	18	12	5	24
8	2	8	16	18	12	4	22
10	3	9	16	17	11	4	20
12	3	9	16	17	11	4	18
14	3	10	17	17	10	3	16
16	3	10	17	17	10	3	14
18	4	11	17	16	9	3	12
20	4	11	17	16	9	3	10
22	4	12	18	16	8	2	8
24	5	12	18	15	8	2	6
26	5	13	18	15	7	2	4
28	6	13	18	14	7	2	2
30	6	14	18	14	6	2	0
	XIs	Xs	IXs	VIIIs	VIIs	VIs	

TABLE XLIIT.

MOON'S HOURLY MOTION IN LATITUDE.
Argument. Argument I, of Latitude.

	0s+	Is+	IIs+	IIIs-	IVs--	Vs-	
0°	$2^{\prime} 58^{\prime \prime}$	$2^{\prime} 34^{\prime \prime}$	$1^{\prime} 298$	$0^{\prime} 0^{\prime \prime}$	$1^{\prime} 29^{\prime \prime}$	$2^{\prime \prime} 34^{\prime \prime}$	30°
2	258	231	124	06	135	237	28
4	258	228	118	012	140	240	26
6	257	224	113	019	145	243	24
8	256	220	17	025	150	245	22
10	255	217	11	031	155	247	20
12	254	212	055	$0 \quad 37$	159	249	18
14	253	28	049	043	24	251	16
15	251	24	043	049	28	253	14
18	249	159	037	055	212	254	12
20	247	155	031	11	217	255	10
22	245	150	025	17	220	256	8
24	243	145	019	113	224	257	6
26	240	140	012	118	228	258	4
28	237	135	06	124	231	258	2
30		129	00	129	234	258	,
	XIs+	Xs+	IXs+	VIIIs-	VIIs-	VIs-	

TABLE XLIV.

MOON'S HOURLY MOTION IN LATITUDE.
Argument. Argument II, of Latitude.

	0s+	Is+	IIs+	IIIs-	IVs-	Vs-	
0°	$4{ }^{\prime \prime}$	$4^{\prime \prime}$	$2^{\prime \prime}$	$0{ }^{\prime \prime}$	$2^{\prime \prime}$	$4^{\prime \prime}$	30°
6	4	3	2	0	3	4	24
12	4	3	1	1	3	4	18
18	4	3	1	1	3	4	12
24	4	3	0	2	3	4	6
30	4	2	0	2	4	4	0
	XIs+	X $\mathrm{s}+$	IXs+	VIIIs-	VIIs-	VIs-	

TABLE XLV.-PROPORTIONAL LOGARITHMS. 47

	0^{\prime}	$1{ }^{\prime}$	$2 \prime$	3^{\prime}	4^{\prime}	5^{\prime}	$6{ }^{\prime}$	$7 \prime$
$0^{\prime \prime}$	00000	- 17782	14771	13010	11761	10792	10000	9331
1	35563	17710	14735	12986	11743	10777	9988	9320
2	32553	17639	14699	12962	11725	10763	9976	9310
3	30792	17570	14664	12939	11707	10749	9964	9300
4	29542	17501	14629	12915	11689	10734	9952	9289
5	28573	17434	14594	12891	11671	10720	9940	9273
6	27782	17368	14559	12868	11654	10706	9928	9269
7	27113	17302	14525	12845	11636	10692	9916	9259
8	26532	17238	14491	12821	11619	10678	9905	9249
9	26021	17175	14457	12798	11601	10663	$9 ¢ 93$	9238
10	25563	17112	14424	12775	11584	10649	9881	9228
11	25149	17050	14390	12753	11566	10635	9869	9218
12	24771	16990	14357	12730	11549	10621	9858	9208
13	24424	16930	14325	12707	11532	10608	9846	9198
14	24102	16871	14292	12685	11515	10594	9834	9188
15	23802	16812	14260	12663	11498	10580	9828	9178
16	23522	16755	14228	12640	11481	10566	9811	9168
17	23259	16698	14196	12618	11464	10552	9800	9158
18	23010	16642	14165	12596	11457	10539	9788	9148
19	22775	16587	14133	12574	11430	10525	9777	9138
20	22553	16532	14102	12553	11413	10512	9765	9128
21	22341	16478	14071	12531	11397	10498	9754	9119
22	22139	16425	14040	12510	11380	10484	9742	9109
23	21946	16372	14010	12488	11363	10471	9731	9099
24	21761	16320	13979	12467	11347	10458	9720	9089
25	21584	16269	13949	12445	11331	10444	9708	9079
26	21413	16218	13919	12424	11314	10431	9697	9070
27	21249	16168	13890	12403	11298	10418	9686	9060
28	21091	16118	13860	12382	11282	10404	9675	9050
29	20939	16069	13831	12362	11266	10391	9664	8041
30	20792	16021	13802	12341	11249	10378	9652	9031
31	20649	15973	13773	12320	11233	10365	9641	9021
32	20512	15925	13745	12300	11217	10352	9630	9012
33	20378	15878	13716	12279	11201	10339	9619	9002
34	20248	15832	13688	12259	11186	10326	9608	8992
35	20122	15786	13660	12239	11170	10313	9597	8983
36	20000	15740	13632	12218	11154	10300	9586	8973
37	19881	15695	13604	12198	11138	10287	9575	8964
38	19765	15651	13576	12178	11123	10274	9564	8954
39	19652	15607	13549	12159	11107	10261	9553	8945
40	19542	15563	13522	12139	11091	10248	9542	8935
41	19435	15520	13495	12119	11076	10235	9532	8926
42	19331	15477	13468	12099	11061	10223	9521	8917
43	19228	15435	13441	12080	11045	10210	9510	8907
44	19128	15393	13415	12061	11030	10197	9499	8898
45	19031	15351	13388	12041	11015	10185	9488	8888
46	18935	15310	13362	12022	10999	10172	9478	8879
47	18842	15269	13336	12003	10984	10160	9467	8870
48	18751	15229	13310	11984	10969	10147	9456	8861
49	18661	15189	13284	11965	10954	10135	9446	8851
50	18573	15149	13259	11946	10939	10122	9435	8842
51	18157	15110	13233	11927	10924	10110	9425	8833
52	18403	15071	13208	11908	10909	10098	9414	8824
53	183.0	15032	13183	11889	10894	10085	9404	8814
54	18239	14994	13158	11871	10880	10073	9393	8805
55	1899	14956	13133	11852	10865	10061	9383	8796
56	18081	14918	13108	11834	10850	10049	9372	8787
57	18004	14881	13083	11816	10835	10036	9362	8778
58	17929	14844	13059	11797	10821	10024	9351	8769
59	17855	14808	13034	11779	10806	10012	9341	8760
60	17782	14771	13010	11761	10792	10000	9331	8751

TABLE XLV.—PROPORTIONAL LOGARITHMS.

	8^{\prime}	9^{\prime}	10^{\prime}	11^{\prime}	12^{\prime}	13^{\prime}	14^{\prime}	15^{\prime}	16^{\prime}
$0^{\prime \prime}$	8751	8239	7782	7368	6990	6642	6320	6021	5740
1	8742	8231	7774	7361	6984	6637	6315	6016	5736
2	8733	8223	7767	7354	6978	6631	6310	6011	5731
3	8724	8215	7760	7348	6972	6625	6305	6006	5727
4	8715	8207	7753	7341	6966	6620	6300	6001	5722
5	8706	8199	7745	7335	6960	6614	6×29	5997	5718
6	8697	8191	7738	7328	6954	6609	6289	5992	5713
7	8688	8183	7731	7322	6948	6603	6284	5987	5709
8	8679	8175	7724	7315	6942	6598	6279	5982	5704
9	8670	8167	7717	7309	6936	6592	6274	5977	5700
10	8861	8159	7710	7302	6930	6587	6269	5973	5695
11	8652	8152	7703	7296	6924	6581	6264	5968	5691
12	8643	8144	7696	7289	6918	6576	6259	5963	5686
13	8635	8136	7688	7283	6912	6570	6254	5958	5682
14	8626	8128	7681	7276	6906	6565	6248	5954	5677
15	8617	8120	7674	7270	6900	6559	6243	5949	5673
16	8608	8112	7667	7264	6894	6554	6238	5944	5669
17	8599	8104	7660	7257	6888	6548	6233	5939	5664
18	8591	8097	7653	7251	6882	6543	6228	5935	5660
19	8582	8089	7646	7244	6877	6538	6223	5930	5655
20	8573	8081	7639	7238	6871	6532	6218	5925	5651
21	8565	8073	7632	7233	6865	6527	6213	5920	5646
22	8556	8066	7625	7225	6859	6521	6208	5916	5642
23	8547	8058	7618	7219	6853	6516	6203	5911	5637
24	8539	8050	7611	7212	6847	6510	6198	5906	5633
25	8530	8043	7604	7206	6841	6505	6193	5902	5629
26	8522	8035	7597	7200	6836	6500	6188	5897	5624
27	8513	8027	7590	7193	6830	6494	6183	5892	5620
28	8504	8020	7583	7187	6824	6489	6178	5888	5615
29	8496	8012	7577	7181	6818	6484	6173	5883	5611
30	8487	8004	7570	7175	6812	6478	6168	5878	5607
31	8479	7997	7563	7168	6807	6473	6163	5874	5602
32	8470	7989	7556	7162	6801	6467	6158	5869	5598
33	8462	7981	7549	7156	6795	6462	6153	5864	5594
34	8453	7974	7542	7149	6789	6457	6148	5860	5589
35	8445	7966	7535	7143	6784	6451	6143	5855	5585
	8437	7959	7528	7137	6778	6446	6138	5850	5580
37	8428	7951	7522	7131	6772	6441	6133	5846	5576
38	8420	7944	7515	7124	6766	6435	6128	5841	5572
39	8411	7936	7508	7118	6761	6430	6123	5836	5567
40	8403	7929	7501	7112	6755	6425	6118	5832	5563
	8395	7921	7494	7106	6749	6420	6113	5827	5559
42	8386	7914	7488	7100	6743	6414	6108	5823	5554
43	8378	7906	7481	7093	6738	6409	6103	5818	. 5550
44	8370	7899	7474	7087	6732	6404	6099	5813	5546
45	8361	7891	7467	7081	6726	6398	6094	5809	5541
46	8353	7884	7461	7075	6721	6393	6089	5804	5537
47	8345	7877	7454	7069	6715	6388	6084	5800	5533
48	8337	7869	7447	7063	6709	6383	6079	5795	5528
49	8328	7862	7441	7057	6704	6377	6074	5790	5524
50	8320	7855	7434	7050	6698	6372	6069	5786	5520
51	8312	7847	7427	7044	6692	6367	6064	5781	5516
52	8304	7840	7421	7038	6687	6362	6059	5777	5511
$5{ }^{\text {s }}$	8296	7832	7414	7032	6681	6357	6055	5772	5507
54	8288	7825	7407	7026	6676	6351	6050	5768	5503
55	8279	7818	7401	7020	6670	6346	6045	5763	5498
56	8271	7811	7394	7014	6664	6341	6040	5758	5494
57	8263	7803	7387	7008	6659	6336	6035	5754	5490
58	8255	7796	7381	7002	6653	6331	6030	5749	5486
59	8247	7789	7374	6996	6648	6325	6025	5745	5481
6 C	8239	7782	7368	6990	6642	6320	6021	5740	5477

TABLEXLV.-PROPORTIONAL LOGARITHMS.

	171	18^{\prime}	19^{\prime}	20^{\prime}	21^{\prime}	22^{\prime}	23^{\prime}	24^{\prime}	25^{\prime}
$0^{\prime \prime}$	5477	-5229	4994	4771	4559	4357	4164	3979	3802
1	5473	5225	4990	4768	4556	4354	4161	3976	3799
2	5469	5221	4986	4764	4552	4351	4158	3973	3796
3	5464	5217	4983	4760	4549	4347	4155	3970	3793
4	5460	5213	4979	4757	4546	4344	4152	3967	3791
5	5456	5209	4975	4753	4542	4341	4149	3964	3788
6	5452	52.5	4971	4750	4539	4338	4145	3961	3785
7	5447	5201	4967	4746	4535	4334	4142	3958	3782
8	5443	5197	4964	4742	4532	4331	4139	3955	3779
9	5439	5193	4960	4739	4528	4328	4136	3952	3776
10	5435	5189	4956	4785	4525	4325	4133	3949	3773
11	5430	5185	4952	4732	4522	4321	4130	3946	3770
12	5420	5181	4949	4728	4518	4318	4127	3943	3768
13	5422	5177	4945	4724	4515	4315	4124	3940	3765
14	5418	5173	4941	4721	4511	4311	4120	3937	3762
15	5414	5169	4937	4717	4508	4308	4117	3934	3759
16	5409	5165	4933	4714	4505	4305	4114	3931	3756
17	5405	$51 € 1$	4930	4710	4501	4302	4111	3928	3753
18	5401	5157	4926	4707	4498	4298	4108	3925	3750
19	5397	5153	4922	4703	4494	4295	4105	3923	3747
20	5393	5149	4918	4699	4491	4292	4102	8919	3745
21	5389	5145	4915	4696	4488	4289	4099	3917	3742
22	5384	5141	4911	4692	4484	4285	4096	3914	3739
23	5380	5137	4907	4689	4481	4282	4092	3911	8736
24	5376	5133	4903	4685	4477	4279	4089	3908	3733
25	5372	5129	4900	4682	4474	4276	4086	3905	3730
26	$536 \overline{8}$	5125	4896	4678	4471	4273	4083	3902	3727
27	5364	5122	4892	4675	4467	4269	4080	3899	3725
28	5359	5118	4889	4671	4464	4266	4077	3896	3722
29	5355	5114	4885	4668	4460	4263	4074	3893	3719
30	5351	5110	4881	4664	4457	4260	4071	3890	3716
31	5347	5106	4877	$466^{\circ} 0$	4454	4256	4068	3887	3713
32	5343	5102	4874	4657	4450	4253	4065	3884	3710
33	5339	5098	4870	4653	4447	4250	4062	3881	3708
34	5335	5 C 94	4866	4650	4444	4247	4059	3878	3705
35	5331	5090	4863	4646	4440	4244	4055	3875	3702
36	5326	5086	4859	4643	4437	4240	4052	3872	3699
37	5322	5082	4855	4639	4434	4237	4049	3869	3696
38	5318	5079	4852	4636	4430	4234	4046	3866	3693
39	5314	5075	4848	4632	4427	4231	4043	3863	3691
40	5810	5071	4844	4629	4424	4228	4040	3860	3688
41	5306	5067	4841	4625	4420	4224	4037	3857	3685
42	5302	5063	4837	4622	4417	4221	4034	3855	3682
43	5298	5059	4833	4618	4414	4218	4031	3852	3679
44	5294	5055	4830	4615	4410	4215	4028	3849	3677
45	5290	5051	4826	4611	4407	4212	4025	3846	3674
46	5285	5048	4822	4608	4404	4809	4029	3843	3671
47	5281	5044	4819	4604	4400	4205	4019	3840	3668
48	5277	5040	4815	4601	4397	4202	4016	3837	3665
49	5273	5036	4811	4597	4394	4199	4013	3834	3663
50	5269	5032	4808	4594	4390	4196	4010	3831	3660
51	5265	5028	4804	4590	4387	4193	4007	3828	3657
52	5261	5025	4800	4587	4384	4189	4004	3825	3654
53	5257	5021	4797	4584	4380	4186	4001	3922	3651
54	5253	5017	4793	4580	4377	4183	3998	3820 3817	3649
55	5249	5013	4789	4577	4374	4180	3995	3317	3646
56	5245	2009	4786	4573	4370	4177	3991	3814	3643
57	5241	5005	4782	4570	4367	4174	3988	3811	3640
58	5237	5002	4778	4566	4364	4171	3985	3808 3805	3637
59	5233	4998	4775	4563 4559	4361 4357	4167 4164	3982 3979	3805 4802	3635 3632
60	5229	4994	4771	4559	4357	4164	3979	4802	3632

50 TABLE XLV.-PROPORTIONAL LOGARITHMS.

	26^{\prime}	27^{\prime}	28^{\prime}	29^{\prime}	30^{\prime}	31^{\prime}	32^{\prime}	33^{\prime}	34^{\prime}
$0^{\prime \prime}$	3632	3468	3310	3158	3010	2868	2730	2596	2467
1	3629	3465	3307	3155	3008	2866	2738	25.94	2465
2	3626	3463	3305	3153	3005	2863	2725	2592	2462
3	3623	3460	3302	3150	3003	2861	2723	2590	2460
4	3621	3457	3300	3148	3001	2859	2721	2588	2458
5	3618	3454	3297	3145	2998	2856	2719	2585	2456
6	3615	3452	3294	3143	2996	2854	2716	2583	2454
7	3612	3449	3292	3140	2993	2852	2714	2581	2452
8	3610	3446	3289	3138	2991	2849	2712	2579	2450
9	3607	3444	3287	3135	2989	2847	2710	2577	2448
10	3604	3441	3284	3133	2986	2845	2707	2574	2445
11	3601	3438	3282	3130	2984	2842	2705	2572	2443
12	3598	3436	3279	3128	2981	2840	2703	2570	2441
13	3596	3433	3276	3125	2979	2838	2701	2568	2439
14	3593	3431	3274	3123	2977	2835	2698	2566	2437
15	3590	3428	3271	3120	2974	2833	2696	2564	2435
16	3587	3425	3269	3118	2972	2831	2694	2561	2433
17	3585	3423	3266	3115	2969	2828	2692	2559	2431
19	3582	3420	3264	3113	2967	2826	2689	2557	2429
19	3579	3417	3261	3110	2965	2824	2687	2555	2426
20	3576	3415	3259	3108	2962	2821	2685	2553	2424
21	3574	3412	3256	3105	2960	2819	2683	2451	2422
22	3571	3409	3253	3103	2958	2817	2681	2548	2420
33	3568	3407	3251	3101	2955	2815	2678	2546	2418
24	3565	3404	3248	3098	2953	2812	2676	2544	2416
25	3563	3401	3246	3096	2950	2810	2674	2542	2414
26	3560	3399	3243	3093	2948	2808	2672	2540	2412
27	3557	3396	3241	3091	2946	2805	2669	2538	2410
25	3555	3393	3238	3088	2943	2803	2667	2535	2408
29	3552	3391	3236°	3086	2941	2801	2665	2533	2405
30	3549	3388	3233	3083	2939	2798	2663	2531	2403
31	3546	3386	3231	3081	2936	2796	2060	2529	2401
32	3544	3383	3223	3078	2934	2794	2658	2527	2399
33	3511	3380	3225	3076	2931	2792	2655	2525	2397
34	3538	3378	3223	3073	2929	2789	2654	2522	2395
35	3535	3375	3220	3071	2927	2787	2652	2520	2393
35	3533	3372	3218	3069	2924	2785	2649	2518	2391
37	3530	3370	3215	3066	2922	2782	2647	2516	2389
38	3527	3367	3213	3064	2920	2780	2645	2514	2387
39	3525	3365	3210	3061	2917	2778	2643	2512	2384
40	3522	3362	3208	3059	2915	2775	2640	2510	2382
41	3519	3359	3205	3056	2912	2773	2638	2507	2380
42	$351{ }^{\text {a }}$	3357	3203	3054	2910	2771	2636	2505	2378
43	3514	3354	3200	3052	2908	2769	2634	2503	2376
44	3 ll	3351	3198	3049	2905	2766	2632	2501	2374
45	3508	3349	3195	3047	2903	2764	2629	2499	2372
45	3506	3316	3193	3044	2901	2762	2627	2497	2370
47	3503	3344	3190	3042	2898	2760	2625	2494	2368
48	3500	3341	3188	3039	2896	2757	2623	2492	2366
49	3497	3338	3185	3037	2894	2755	2621	2490	2364
50	3495	3336	3183	3034	2891	2753	2618	2488	2362
51	3492	3333	3180	3032	2889	2750	2616	2486	2359
52	3489	3331	3178	3030	2887	2749	2614	2484	2357
53	3487	3328	3175	3027	2884	2746	2812	2482	2355
54	3484	3325	3173	3025	2882	2744	2610	2480	2353
55	3481	3323	3170	3022	2880	2741	2607	2477	2351
56	3479	3320	3168	3020	2877	2739	2605	2475	2349
57	3476	3318	3165	3018	2875	2737	2603	2473	2347
58	3473	3315	3163	3015	2873	2735	2601	2471	2345
59	3471	3313	3160	3013	2870	2732	2599	2469	2343
60	3469	3810	3158	3010	2868	2730	2596	2467	2341

TABLEXLV.—PROPORTIONAL LOGARITHMS. 51

	35^{\prime}	36^{\prime}	$37^{\prime \prime}$	38^{\prime}	39^{\prime}	40^{\prime}	41^{\prime}	42^{\prime}	43^{\prime}
$0^{\prime \prime}$	$23 \div 1$	2218	2099	1984	1871	1761	1654	1549	1447
1	2339	2216	2098	1982	1869	1759	1652	1547	1445
2	2337	2214	2096	1980	1867	1757	1650	1546	1443
3	2335	2212	2094	1978	1865	1755	1648	1544	1442
4	2233	2210	2092	1976	1863	1754	1647	1542	1440
5	2331	2208	2090	1974	1862	1752	1645	1540	1438
6	2328	2206	2088	1972	1860	1750	1643	1539	1437
7	2323	2204	2086	1970	1858	1748	1641	1537	1435
8	2324	2202	2084	1968	1856	1746	1640	1535	1433
9	2322	2200	2082	1967	1854	1745	1638	15.34	1432
10	2320	2198	2080	1965	1852	1743	1636	1532	1430
11	2313	2196	2078	1963	1850	1741	1634	1530	1428
12	2316	2194	2076	1961	1849	1739	1633	1528	1427
13	2314	2192	2074	1959	1847	1737	1631	1527	1425
14	2312	2190	2072	1957	1845	1736	1629	1525	1423
15	2310	2188	2070	1955	1843	1734	1627	1523	1422
16	2308	2186	2068	1953	1841	1732	1626	1522	1420
17	2306	2184	2068	1951	1839	1730	1624	1520	1418
18	2304	2182	2064	1950	1838	1728	1622	1518	1417
19	2302	2180	2082	1948	1833	1727	1620	1516	1415
20	2300	2178	2061	1946	1834	1725	1619	1515	1413
21	2298	2176	2059	$19{ }^{\text {a }} 4{ }^{\text {a }}$	1832	1723	1817	1513	1412
22	2296	2174	2057	1942	1830	1721	1615	1511	1410
23	2294	2172	2055	1940	1828	1719	1613	1510	1408
24	2291	2170	2053	1938	1827	1718	1612	1508	1407
25	2289	2169	2051	1936	1825	1716	1610	1506	1405
26	2287	2167	2049	1934	$\overline{1} 223$	1714	1608	1504	1403
27	2285	2165	2047	1933	1821	1712	1606	1503	1402
28	2283	2163	2045	1931	1819	1711	1605	1501	1400
29	2281	2161	2013	1929	1817	1709	1603	1499	1398
30	2279	2159	2041	1927	1816	1707	1601	1498	1397
31	2277	2157	2039	1925	1814	1705	1599	1496	1395
32	2275	2155	2037	1923	1812	1703	1598	1494	1393
33	2273	2153	2035	1921	1810	1702	1596	1493	1392
34	2271	2151	2033	1919	1808	1700	1594	1491	1390
35	2269	2149	2032	1918	1806	1698	1592	1489	1388
${ }_{3} 6$	2267	2147	2030	1916	1805	1696	1591	1487	
37	2265	2145	2028	1914	1803	1694	1589	1486	1385
38	2263	2143	2026	1912	1801	1893	1587	1484	1383
39	2261	2141	2024	1910	1799	1691	1585	1482	1382
40	2259	2139	2022	1908	1797	1689	1584	1481	1380
41	2257	2137	2020	1906	1795	1687	1582	1479	1378
42	2255	2135	2018	1904	1794	1686	1580	1477	1377
43	2253	2133	2016	1903	1792	1684	1578	1476	1375
44	2251	2131	2014	1901	1790	1682	1577	1474	1373
45	2249	2129	2012	1899	1788	1680	1575	1172	1372
46	2247	2127	2010	1897	1786	1678	1573	1470	1370
47	2245	2125	2039	1895	1785	1677	1571	1469	1368
48	2243	2123	2007	1893	1783	1675	1570	1467	1367
49	2241	2121	2005	1891	1781	1673	1568	1465	1365
50	2239	2119	2003	1889	1779	1671	1566	1464	1363
31	2237	2117	2001	. 888	1777	1670	1565	1462	$13{ }^{\circ} 2$
52	2235	2115	1999	1886	1775	1668	1563	1460	1360
53	2233	2113	1997	1884	1774	1666	1561	1459	1359
54	2231	2111	1995	1882	1772	1664	15 599	1457	1357
วั	2329	2109	1993	1880	1770	1663	1558	1455	1355
56	2227	2107	1991	1878	1768	1661	1556	1454	1354
57	2225	2105	1989	1876	1766	1659	1554	1452	1352
58	2223	2103	1987	1875	1765	1657	1552	1450	1350
59	2220	2101	1986	1873	1763	1655	1551	1449	1349
60	2218	2049	1984	1871	1761	1654	1549	1447	1347

	44^{\prime}	45^{\prime}	46^{\prime}	47^{\prime}	48^{\prime}	49^{\prime}	50^{\prime}	51^{\prime}	52^{\prime}
$0^{\prime \prime}$	1347	1249	1154	1061	969	880	792	706	621
1	1345	1248	1152	1059	968	878	790	704	620
2	1344	1246	1151	1057	966	877	789	703	619
3	1342	1245	1149	1056	965	875	787	702	617
4	1340	1243	1148	1054	963	874	786	700	616
5	1339	1241	1146	1053	962	872	785	699	615
6	1337	1240	1145	1051	960	871	783	697	613
7	1335	1238	1143	1050	959	769	782	696	618
8	1334	1237	1141	1048	957	868	780	694	610
9	1332	1235	1140	1047	956	866	779	693	609
10	1331	1233	1138	1045	954	865	777	692	608
11	1329	1232	1137	1044	953	863	776	690	606
12	1327	1230	1135	1042	951	862	774	689	605
13	1326	1229	1134	1041	950	860	773	687	603
14	1324	1227	1132	1039	948	859	772	686	602
15	1322	1225	1130	1037	947	857	770	685	601
16	1321	1224	-1129	1036	945	856	769	683	599
17	1319	1222	1127	1034	944	855	767	682	598
18	1317	1221	1126	1033	942	853	766	680	596
19	1316	1219	1124	1031	941	853	764	679	595
20	1314	1217	1123	1030	939	850	763	678	594
21	1313	1216	1121	1028	938	849	762	676	592
22	1311	1214	1119	1027	936	847	760	675	591
23	1309	1213	1118	1025	985	846	759	673	590
24	1308	1211	1116	1024	983	844	757	67.	588
25	1306	1809	1115	1022	932	843	756	670	587
26	1304	1208	1113	1021	930	841	754	669	585
27	1303	1206	1112	1019	929	840	753	668	584
28	1301	1205	1110	1018	927	838	751	666	583
29	1300	1803	1109	1016	926	837	750	665	581
30	1298	1201	1107	1015	924	885	749	663	580
31	1296	1200	1105	1013	923	834	747	662	579
32	1295	1198	1104	1012	921	833	746	661	577
33	1293	1197	1102	1010	920	831	744	659	576
34	1291	1195	1101	1008	918	830	743	658	574
35	1290	1193	1099	1007	917	828	741	656	573
36	1288	1192	1098	1005	915	827	740	655	572
37	1287	1190	1096	1004	914	825	739	654	570
38	1285	1189	1095	1002	912	824	737	652	569
39	1283	1187	1093	1001	911	822	736	651	568
40	1282	1186	1091	999	909	821	734	649	566
41	1280	1184	1090	998	908	819	733	648	565
42	1278	1182	1088	996	906	818	731	647	563
43	1277	1181	1087	995	905	816	730	645	562
44	1275	1179	1085	993	903	815	729	644	561
45	1274	1178	1084	992	902	814	727	642	559
46	1272	1176	1082	990	900	812	726	641	558
47	1270	1174	1081	989	899	811	724	640	557
48	1269	1173	1079	987	897	809	723	638	555
49	1267	1171	1078	986	896	808	721	637	554
50	1266	1170	1076	984	894	806	720	635	552
51	1264	1168	1074	983	893	805	719	634	551
52	1262	1167	1073	981	891	803	717	633	550
53	1261	1165	1071	980	890	802	716	631	548
54	1259	1163	1070	978	888	801	714	630	547
55	1257	1162	1068	977	877	799	713	628	546
56	1256	1160	1067	-975	885	798	711	627	544
57	1254	1159	1065	974	884	796	710	626	553
58	1253	1157	1064	972	883	795	709	624	541
59	1251	1156	1062	971	881	793	707	623	540
60	1248	1154	1061	969	880	792	706	621	539

TABLE XLV.-PROPORTIONAL LOGARITHMS. 53

	53^{\prime}	54^{\prime}	55'	56^{\prime}	57^{\prime}	58^{\prime}	59^{\prime}
$0{ }^{\prime \prime}$	539	458	378	300	223	147	78
1	537	456	377	298	221	146	72
2	536	455	375	297	220	145	71
3	535	454	374	296	219	143	69
4	533	452	373	294	218	142	68
5	532	451	371	293	216	141	67
6	531	450	370	292	915	140	66
7	529	448	369	291	814	139	64
8	528	447	367	288	213	137	63
9	526	446	366	288	211	136	62
10	525	444	365	287	210	135	61
11	524	443	363	285	209	134	60
12	522	442	362	284	208	132	58
13	581	440	361	283	206	131	57
14	520	439	359	282	205	130	56
15	518	438	358	280	204	129	55
. 6	517	436	357	279	302	127	53
17	516	435	356	278	201	126	52
18	514	434	354	276	200	125	51
19	513	432	353	275	199	124	50
20	512	431	352	274	197	122	49
21	510	430	350	273	196	121	47
22	509	428	349	271	195	120	46
23	507	427	348	270	194	119	45
24	506	426	346	269	192	117	44
25	505	424	345	267	191	116	42
26	503	423	344	266	190	115	41
27	502	422	342	265	189	114	40
28	501	420	341	264	187	112	39
29	499	419	340	262	186	111	38
30	498	418	339	261	185	110	36
31	497	416	337	260	184	109	35
32	495	415	336	258	182	107	34
33	494	414	335	237	181	106	33
34	493	412	333	256	180	105	31
35	491	411	332	255	179	104	30
36	490	410	331	253	177	103	29
37	489	408	329	252	176	101	28
38	487	407	328	251	175	100	27
39	486	406	327	250	174	98	25
40	484	404	326	248	172	98	24
41	483	403	324	247	171	96	23
42	482	402	323	246	170	95	22
43	480	400	322	244	169	94	21
44	479	399	320	243	167	93	19
45	478	398	319	242	166	91	18
46	476	396	318	241	165	90	17
47	475	395	316	239	163	89	16
48	474	394	315	238	162	88	15
49	472	392	314	237	161	87	13
50	471	391	313	235	160	85	12
51	470	390	311	234	158	84	11
52	468	388	310	233	157	83	10
53	467	387	309	232	156	82	8
54	466	386	307	230	155	80	7
55	464	384	30.6	829	153	79	-
56	463	383	305	228	152	78	5
57	462	382	304	227	151	77	4
58	460	381	302	225	150	75	2
59	459	979	801	224	148	74	1
60	458	378	300	223	147	73	0

00036314308

[^0]: * Four minutes above 24 hours corresponds to one degree of arc.
 \dagger We have not mentioned the names of these planets in the order in which they stand in the system, but rather in the order of their discovery. As yet, we have really no idea of a planet, or a planetary system.

[^1]: It is true, we might mention every fact, and every particular respecting each planet; such as its period of revolution, size, distance from the sun, \&c.; but such facts, arbitrarily stated, would not convey the science of astronomy to the reader, for they can be told alike to the man and to the child - to the intellectual and to the dull - to the learned and to the unlearned.

 To constitute true knowledge - to acquire true science - the pupil must not only know the fact, but how that fact was discovered, or deduced from other facts. Hence we shall mainly construct our theories from observations, as we pass along, and teach the pupil to decide the case from the facts, evidences, and circumstances presented.

[^2]: * In early times, such observations were often made. We took these results from the Nautical Almanac, and called them observations; but, for the purpose of showing principles, it is immaterial whether observations are real or imaginary.

[^3]: * The computation is thus: As $50^{\prime \prime} .1$ is to the number of seconds in 360 degrees; so is one year to the number of years. Which gives 25868 years, nearly.

 We say, the stars increase in right ascension; and this is true; but the stars do not move - they are fixed; the meridian moves from the stars.

[^4]: * Ten or twenty degrees, near the horizon, is apparently a much larger space than the same number of degrees near the zenith. Tvo stars, when near the horizon, appear to be at a greater distance asunder than when their altitudes are greater. The variation is a mere optical illusion; for, by applying instruments, to measure the angie in the different situations, we find it the same. Unless this fact is taken into consideration, an observer will always conceive the altitude of any object to be greater than it really is, especially if the alritude is less than 45 degrees.

[^5]: * This law of decrease will become apparent, by inspecting Fig. 12. Let $E q$ represent a degree, on the equator, and $E q C$ a sector on the plane of the equator, and of course $E C$ is at right angles to the axis $C P$. Let $D E I$ be any plane parallel to $E q C$; then we shall have the following proportion:

[^6]: * We say solar orbit, when it is really the earth's orbit; so we speak of the sun's motion, when it is really the motion of the earth; and it is customary, with astronomers, to speak of apparent motions as real: and none object to this manner of speaking, who have a clear or enlarged view of the science - for to depart from it would lead to oftrepeated and troublesome technicalities, if not to confusion of ideas. Clearness does not always correspond with exactness of expression.

[^7]: * The longer axis of the orbit, or apogee point, changes position by \& very slow motion of about $12^{\prime \prime}$ per annum, to the eastward : but this motion must be disregarded, for the present, as well as many other minute deviations, to be brought into view when we are better prepared to understand thom.

 Those minute variations, for short periods of time, do not sensibly affect general results.

[^8]: * By a mere mechanical contrivance, the modern astronomical tables are so arranged, that all corrections are rendered additive; so that the mechanical operator cannot make a mistake, as to signs, and he may continue to work without stopping to think. These arrangements have their advantages, buit they cover up and obscure principles.

[^9]: * Except minute variations, which it would be improper to notice in this part of the work.

[^10]: * In astronomy, the term equation is applied to all corrections to convert a mean to its true quantity.

[^11]: * Astronomers do not measure the apparent diameters of the planets by the process described for the sun and moon, because they pass the meridian too quickly. Most of them will pass the meridian in a small fraction of a second. They use

[^12]: * Perhaps we ought to have informed the reader before, "that the stars continue visible through telescopes, during the day, as well as the night ; and that, in proportion to the power of the instrument, not only the largest and brightest of them, buteven those of inferior luster, such as scarcely strike the eye, at night, as at all conspicuous, are readily found and followed even at noonday, - unless in that part of the sky which is very near the sun,-by those who possess the means of pointing a telescope accurately to the proper places. Indeed, from the bottoms of deep narrow pits, such as a well, or the shaft of a mine, such bright stars as pass the zenith may even be discerned by the naked eye; and we have ourselves heard it stated by a celebrated optician, that the

[^13]: earliest circumstance which drew his attention to astronomy, was the regular appearance, at a certain hour, for several successive days, of a considerable star, through the shaft of a chimney."-Herschel's Astrosomy.

 * In astronomy, direct motion is eastward among the stars ; stationary is no apparent motion, in respect to the stars; and retrograde is a westward motion.

[^14]: * Here we anticipate a little ; for we have not shown how to dietermine the periodical time of revolution from observation: but this is shown in a future chapter, snc in the above text note

[^15]: * A principle to be explained in Physical Astronomy.

[^16]: † It appears that Kepler did not compare ratios, as we have done; but took the more ponderous method of comparing the elements of the ratios (the numbers themselves) ; for, says the historian:- It was on the 8th of March, 1618, that it first came into Kepler's mind to comoare the powers of the numbers which express their revolutions and distances; and by chance he compared the squares of the times with the cubes of the distances; but from too great anxiety and impatience, he made such errors in computation, that he rejected the hypothesis as false and useless; but on examining almost every other relation in vain, he returned to the same hypothesis, and on the 15th of May, of the same year, he renewed his calculation with completo success, and established this law, which has rendered his name immortal

[^17]: * The ratio of the times of these revolutions is directly Compara. compared, as terms of a fraction, thus, $\frac{224.700787}{365.25} 6381$; and it is $\begin{gathered}\text { tive motions } \\ \text { of Venus and } \\ \text { the earth. }\end{gathered}$ manifest that 365.256383 days, multiplied by the number 224700787 , will give the same product as 224.700787 days multiplied by the number 365256383 ; that is, after an elapse of 224700787 years, the conjunction will take place at the same point in the heavens; and all intermediate conjunctions will be but approximations to the same point: and to obtain these approximate intervals, we reduce the above fraction to its approximating fractions, by the principle of continued fractions. (See Robinson's Arithmetic.)

 The approximating fractions are

[^18]: * That is, as the real diameter of the sun, is to the real diameter of the earth, so is the sun's angular semidiameter to its horizontal parallax. (See 66).

[^19]: * Students generally would be unable to find the sine of $8^{\prime \prime} .6$, or the sine of any other very small are ; for the directions given in common works of trigonometry are too gross, and, indeed, inaccurate, to meet the demands of astronomy.
 On the principle that the sines of small arcs vary as the arcs themselves, we can find the sine of any small arc as follows:

 | Sine of 1^{\prime}, taken from the tables, is Divide by 60 , that is, subtract the log. of $60,-$ | $\begin{aligned} & \text { 6. } 463726 \\ & \text { 1. } 778151 \end{aligned}$ |
 | :---: | :---: |
 | The sine of $1^{\prime \prime}$, therefore, is | 4. 685575 |
 | Multiply by the number 8.6 ; that is, add lo | 0.93 |
 | The sine of $8^{\prime \prime} .6$, therefore, must be, - | 5. 620073 |

 In the same manner, find the sine of any other small arc.

[^20]: * Mercury is an exception to this principle.

[^21]: " We shall close this chapter with an illustration calculated to convey to the minds of our readers a general impression of the relative magni- obtain a cortudes and distances of the parts of our system. Choose any well- rect concepleveled field or bowling green. On it place a globe, two feet in diame- tion of the ter; this will represent the sun; Mercury will be represented by a grain solar system of mustard seed, on the circumference of a circle 164 feet in diameter, for its orbit; Venus a pea, on a circle 284 feet in diameter; the earth

[^22]: * We number the proportions the same as equations, for a proportion is but an equation in another form.

[^23]: * See Robinson's Natural Philosophy, page 16.

 11

[^24]: * This is a correct result according to these data; but more modern observations, in relation to the micromatic measure of Jupiter, and the distance of his satellites, give results a little different, as expressed in table IV.

[^25]: * This relation is found by dividing the horizontal parallax of the moon, $56^{\prime} 57^{\prime \prime}$, by the horizontal parallax of the sun, $8^{\prime \prime} .6$.

[^26]: * Geometry demonstrates, that, on the average of each revolution, the proportion in which this reaction will affect the longitudes of the two planets, is that of their masses multiplied by the square roots of the major axes of their orbits, inversely; and this result of a very intricate and curious calculation is fully confirmed by observation.Herschel.

[^27]: * Line of conjunction, an imaginary line drawn from the sun through the two planets when in conjunction.
 \dagger See problem of the two couriers, Robinson's Algebra.

[^28]: * We have very much exaggerated the eccentricities of these ellipses, for the purpose of magnifying the principle under consideration.

[^29]: * Leverrier and Adams had not the advantage of a complete revolution of Uranus.

[^30]: * Radius is unity in all these equations.

[^31]: * In general, take the difference between the angle $s \Upsilon D$ and the obliquity of the ecliptic; and if the angle $s \uparrow D$ is the greater quantity, the body is north of the ecliptic, otherwise it is south of it. When the declination is south, the angle $s \uparrow D$ must be added to the obliquity of the ecliptic in the first and second quadrants, and subtracted in the third and fourth. Hence the judgment of the operator wust be called in to decide the particulars of the case; or he must have a general formula that will give no exercise to the mind.

[^32]: * As the longitude is more than 90° and less than 180°, the moon is in the second quadrant of right ascension, and 77053^{\prime} in longitude from the equator, and as her latitude is south, it does not correspond to $B s$ in the figure, and we give the example to exercise the judgment of the learner.

[^33]: m. m. s.

 60 : 1323 : : 3317 : x;
 Or $3600: 1323:: 3317: x$.

 Divide the first and second terms of this proportion by the 17

[^34]: * The reason why \mathbf{N} is not applied with the other equations is because it is sometimes negative.

[^35]: *See Robinson's Arithmetic.

[^36]: * Some writers have directed us to increase this value of the shadow by its one-sixtieth part, but we emphatically deny the propriety of the direction.

[^37]: * This is the angle of the base of a right-angled triangle, whose base

[^38]: * The student who has acquired a little skill in analytical trigonometry can discover the preliminary steps to this equation; the principles are ull visible in the construction of the figure.

[^39]: * The astronomer, by making use of his judgment, can be very accurate with very little trouble; he perceives, at a glance, what elements vary, and what the effects of such variation will be, but a learner, who is supposed not to be able to take a comprehensive view of the whole subject, must go through the tedious process of computing the elements for the times of the beginning and end of the eclipse, as well as the time of conjunction, if he aims at accuracy, but an astronomer can be at once brief and accurate. In computing the moon's longitude, in the present example, the astronomer would notice in particular the moon's anomaly, and, by it, he perceives whether the moon's hourly motion is on the increase or decrease, and at what rate.

 It is on the decrease, and the first part of the chord $k m$ is passed over by the moon in about 7 seconds less time than our computation made it, and the last part requires about 7 seconds longer time; but the times of passing m and n should be considered accurate, and the times of beginning and end should be modified for the variation of the moon's motion, making the beginning and end 7 seconds later, and the beginning and end of the central eclipse about 4 seconds later.

[^40]: * The reader is supposed to understand how to draw a sine to any arc, corresponding to any radius, either with or without a sector.

[^41]: *Tables A. and B. are put in this place on account of the convenience in the page.

