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PREFACE.

To give at once a clear explanation of the design and in- pREFACE .

tended character of this work, it is import-ant to state that its

author, in early life, imbibed quite a passion for astronomy,

and, of course, he naturally sought the aid of books ; but, in

this field of research, he was really astonished to find how
little substantial aid he could procure from that source, and
not even to this day have his desires been gratified.

Then, as now, books of great worth and high merit were to

be found, but they did not meet the wants of a learner ; the

substantially good were too voluminous and mathematically

abstruse to be much used by the humble pupil, and the less

mathematical were too superficial and trifling to give satis-

faction to the real aspirant after astronomical knowledge.

Of the less mathematical and more elaborate works on as-

tronomy there are two classes—the pure and valuable, like

the writings of Biot and Herschel; but, excellent as these

are, they are not adapted to the purposes of instruction; and
every effort to make class books of them has substantially

failed. From the other class, which consists of essays and
popular lectures, little substantial knowledge can be gathered,

for they do not teach astronomy ; as a general thing, they only

glorify it; they may excite our wonder concerning the im-
mensity or grandeur of the heavens, but they give us no ad-

ditional power to investigate the science.

Another class of more brief and valuable productions were,

and are always to be found, in which most of the important

facts are recorded; such as the distances, magnitudes, and mo-
tions of the heavenly bodies; but how these facts became
known is rarely explained : this is what the true searcher after

science will always demand, and this book is designed ex-

pressly to meet that demand.
In the first part of the book we suppose the reader entirely

unacquainted with the subject ; but we suppose him compe-
tent to the task—to be, at least, sixteen years of age—to have

a good knowledge of proportion, some knowledge of algebra,

geometry, and trigonometry—and then, and not until then,

can the study be pursued with any degree of success worth

mentioning. Such a person, and with such acquirements as

( iii

)



Iv PREFACE.

Preface, we have here designated, we believe, can take this book and

learn astronomy in comparatively a short time; for the chief

design of the work is, to teach whoever desires to learn : and

it matters not where the learner may be, in a college,

academy, school, or a solitary student at home, and alone in

the pursuit.

The book is designed for two classes of students—the well

prepared in the mathematics, and the less prepared ; the for-

mer are expected to read the text notes, the latter should

omit them. With the text notes, we conceive it, or rather

designed it to be, a very suitable book to give sound elemen-

tary instruction in astronomy ; but we do not offer the work
as complete on practical astronomy; for whoever becomes a

practical astronomer will, of course, seek the aid of complete

and elaborate sets of tables, such as would be improper to

insert in a school book.

We have inserted tables only for the purpose of carrying

out a sound theoretical plan of instruction, and, therefore, we
have given as few as possible, and those few in a very con-

tracted form. The epochs for the sun and moon may be ex-

tended forward or backward, to any extent, by any one who
understands the theory.

The chapters on comets, variable stars, &c, are compila-

tions, and are printed in smaller type; and the works to

which we are most indebted, are Herschel's Astronomy and
the Cambridge Astronomy, originally the work of M. Biot.

Other parts of the work, we believe, will be admitted as

mainly original, by all who take pains to examine it.

The chief merits claimed for this book are, brevity, clear-

ness of illustration, anticipating the difficulties of the pupil,

and removing them, and bringing out all the essential points

of the scienoe.

Some originality is claimed, also, in several of our illustra-

tions, particularly that of showing the rationale of tides rising

on the opposite sides of the earth from the moon ; and in the

general treatment of eclipses ; but it is for others to deter-

mine how much merit should be awarded for such originali-

ties; we have, however, used greater conciseness and per-

spicuity in general computations than is to be found in most
of the books on this subject ; and this last remark will apply

to the whole work.
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ASTEONOMY.

INTRODUCTION.

Astronomy is the science which treats of the heavenly Astronomy

bodies, describes their appearances, determines their magni-
e ne

tndes, and discovers the laws which govern their motions.

When we merely state facts and describe appearances as The dw
they exist in the heavens, we call it Descriptive Astronomy. S10ns ot as "

. .
tronomy.

When we compnte magnitudes, determine distances, record

observations, and make any computations whatever, we call

it Practical Astronomy.

The investigation of the laws which govern the celestial

motions, and the explanation of the causes which bring about

the known results, is called Physical Astronomy.

When the mariner makes use of the index of the heavens, Nautical

to determine his position on the earth, such observations, and
as ronomy -

their corresponding computations, are called Nautical Astro-

nomy.

By nautical astronomy we determine positions on the Geography

earth, and subsequently, the magnitude of the earth : and
an a *tr°n0 "

i -v o * my united.

thus, we perceive, that Geography and Astronomy must be

linked together ; and no one c.an fully understand the former

science, without the aid of the latter.

Astronomy is the most ancient of all the sciences, for, in T'»e anti

the earliest age, the people could not have avoided observing ^0°
the successive returns of day and night, and summer and

winter. They could not fail to perceive that short days cor-

responded to winter, and long days to summer ; and it was

thus, probably, that the attentions of men were first drawn

to the study of astronomy.

(1)



2 ASTRONOMY.

Introduc. In this work, we shall not take facts unless they are within

Facts alone the sphere of our own observations. We shall not perempto-
not science.

T^ gtate^ the eartk ig 79-^2 miles in diameter; that the

moon is about 240,000 miles from the earth, and the sun

95,000,000 of miles; for such facts, alone, and of themselves, do

not constitute knowledge, though often mistaken for knowledge.

We shall direct the mind of the reader, step by step, through

the observations and through the investigations, so that he

can decide for himself that the earth must be of such a mag-

nitude, and is thus far from the other heavenly bodies ; and

that will be knowledge of the most essential kind.

The foun- A\\ astronomical knowledge has its foundation in observa-

astronomicai
^on '

an(^ *ne nrs^ 0D
J
ect of this book shall be to point out

knowledge, what observations must be taken, and what deductions must

be made therefrom ; but the great book which the pupil must

study, if he would meet with success, is the one which spreads

out its pages on the blue arch above ; and he must place but

secondary dependence on any book that is merely the work

of human art.

As we disapprove of the practice of throwing to the reader

astounding astronomical facts, whether he can digest them or

not, and as we are to take the inductive method, and to lead

the student by the hand, we must commence on the supposi-

tion that the reader is entirely unacquainted even with the

common astronomical facts, and now for the first time seriously

brings his mind to the study of the subject ; but we shall

suppose some maturity of mind, and some preparation, by the

acquisition of at least respectable mathematical knowledge.

Conven- Every science has its technicalities and conventional terms

;

tional terms , . . . , -,

and defini-
anc* astronomy is by no means an exception to the general

tions. rule ; and as it will prepare the way for a clearer understand-

ing of our subject, we now give a short list of some of the

technical terms, which must be used in our composition.

Horizon.— Every person, wherever he may be, conceives

himself to be in the center of a circle ; and the circumference

of that circle is where the earth and sky apparently meet.

That circle is called the horizon,
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Altitude.— The perpendicular hight from the horizon, intboduc.

measured by degrees of a circle.

Meridian.— An imaginary line, north and south from any

point or place, whether it is conceived to run along the earth

or through the heavens. If the meridian is conceived to

divide "both the earth and the heavens, it is then considered

as a plane, and is spoken of as the plane of the meridian.

Poles. — The points where all meridians come together

:

poles of the earth— the extremities of the earth's axis.

Zenith.— The zenith of any place, is the point directly Poles of

overhead ; and the Nadir is directly opposite to the zenith, or
l e honzon *

under our feet. The zenith and nadir are the poles to the

horizon.

Verticals.— All lines passing from the zenith, perpendicu- Prime ver.

lar to the horizon, are called Verticals, or Vertical Circles.
tlca1.

The one passing at right angles to the meridian, and striking

the horizon at the east and west points, is called the Prime

Vertical.

Azimuth.— The angular position of a body from the meri-

dian, measured on the circle of the horizon, is called its Azi-

muth.

The angular position, measured from its prime vertical, is Amplitude.

called its Amplitude.

The sum of the azimuth and amplitude must always make

90 degrees.

Equator.— The Earth's Equator is a great circle, east and

west, and equidistant from the poles, dividing the earth into

two hemispheres, a northern, and a southern.

The Celestial Equator is the plane of the earth's equator celestial

conceived to extend into the heavens. equator.

When the sun, or any other heavenly body, meets the Equinoc

celestial equator, it is said to be in the Equinox, and the
tia1 '

equatorial line in the heavens is called the Equinoctial.

Latitude.— The latitude of any place on the earth, is

its distance from the equator, measured in degrees on the

meridian, either north or south.

If the measure is toward the north, it is north latitude; if

toward the couth, south latitude.
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Lntroduc . The distance from the equator to the poles is 90 degrees—
one-fourth of a circle ; and we shall know the circumference

of the whole earth
5
whenever we can find the absolute length of

one degree on its surface.

Co-Latitude.— Co-latitude is the distance, in degrees, of

any place from the nearest pole.

The latitude and co-latitude ( complement of the latitude )

must, of course, always make 90 degrees.

Parallels Parallels of latitude are small circles on the surface of the

of latitude, earth, parallel to the equator.

Every point, in such a circle, has the same latitude.

Longitude.— The longitude of a place, on the surface of

the earth, is the inclination of its meridian to some other

meridian which may be chosen to reckon from. English

astronomers and geographers take the meridian which runs

through Greenwich Observatory, as the zero meridian.

The first Other nations generally take the meridian of their princi-

meridian ar-

pa} observatories, or that of the capital of their country, as

the first meridian ; but this is national vanity, and creates

only trouble and confusion ; it is important that the whole

world should agree on some one meridian, from which to reckon

longitude ; but as nature has designated no particular one, it

is not wonderful that different nations have chosen different

lines.

We adopt jn this work, we shall adopt the meridian of Greenwich as

of Green- ^e zero ^me °f longitude, because most of the globes and

wich
; and maps, and all the important astronomical tables, are adapted

to that meridian, and we see nothing to be gained by chang-

ing them.

Declination.— Declination refers only to the celestial equa-

tor, and is a leaning or declining, north or south of that line,

and is similar to latitude on the earth.

Solstitial Points.— The points, in the heavens, north and

south, where the sun has its greatest declination.

The northern point we call the Summer Solstice, and the

southern point the Winter Solstice; the first is in longitude

90°, the other in longitude 270°.

As latitude is reckoned north and south, so longitude is



INTRODUCTION. 5

reckoned east and west ; but it would add greatly to syste- introduc.

matic regularity, and tend much to avoid confusion and am- improve-

biguity in computations, were this mode of expression aban- ment sng-

doned, and longitude invariably reckoned westward, from to sesied -

360 degrees.

Latitude and longitude, on the earth, does not corre- Latitude,

spond to latitude and longitude in the heavens. Latitude, on
OB§itn

f
e

>

* p and right as-

the earth, corresponds with declination in the heavens ; and cension.

longitude, on the earth, has a striking analogy to right ascen-

sion in the heavens, though not an exact correspondence.

We shall more particularly explain latitude, longitude, and

right ascension in the heavens, as we advance in this work

;

for it is only when we are forced to use these terms, that the

nature and spirit of their import can be really understood.

There are other technicalities, and terms of frequent use, other terms

in astronomy, such as Conjunction, Opposition, Retrograde,
not exp ain '

Direct, Apogee, Perigee, &c, &c, all of which, for the sake

of simplicity, had better not be explained until they fall

into use ; and, once for all, let us impress this fact on the

minds of our readers, that we shall put far more stress on the

substance and spirit of a thing, than on its name.
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SECTION I.

CHAPTER I.

PRELIMINARY OBSERVATIONS.

chap. i. To commence the study of astronomy, we must observe

and call to mind the real appearances of the heavens.

Take such a station, any clear night, as will command an

extensive view of that apparent, concave hemisphere above

us, which we call the sky, and fix well in the mind the direc-

tions of north, south, east, and west.

The appa- At first, let us suppose our observer to be somewhere in

of the stars. *ne United States, or somewhere in the northern hemisphere,

about 40 degrees from the equator.

As yet, this imaginary person is not an astronomer, and

neither has, nor knows how to use, any astronomical instru-

ment ; but we would have him mark with attention the po-

„ sitions of the heavenly bodies.

( 1. ) Soon he will perceive a variation in the position of

the stars ; those at the east of him will apparently rise ; those

at the west will appear to sink lower, or fall below the hori-

zon; those at the south, and near his zenith, will apparently

move westward ; and those at the north of him, which he may

see about half way between the horizon and zenith, w ill appear

stationary.

Apparent Let such observations be continued during all the hours
revolution of

Q^ ^Q night, and for several nights, and the observer cannot
the heavenly ° °

bodies. fail to be convinced that not only all the stars, but the sun,

moon, and planets, appear to perform revolutions, in about

twenty-four hours, round a fixed point ; and that fixed point,

as appears to us (in the middle and northern part of the

United States ), is about midway between the northern hori-

zon and the zenith.

Large and ft g^o^d always be borne in mind, that the sun, moon, and
s

" stars, have an apparent diurnal motion round a fixed point.
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and all those stars which are 90 degrees from that point, Chap. i.

apparently describe a great circle. Those stars that are

nearer to the fixed point than 90 degrees, describe smaller

circles ; and the circles are smaller and smaller as the objects

are nearer and nearer the fixed points.

( 2. ) There is one star so near this fixed point, that the

small circle it describes, in about 24 hours, is not apparent

from mere inspection. To detect the apparent motion of

this star, we must resort to nice observations, aided by ma-

thematical instruments.

This fixed point, that we have several times mentioned, is The North

the North Pole of the heavens, and this one star that we have just
Star "

mentioned, is commonly called the North Star, or the Pole Star.

(3.) This star, on the 1st of January, 1820, was 1° 39' Position of

6" from the pole, and on 1st of January, 1847, its distance
*he North

from the pole was 1° 30' 8"; and it will gradually and

more slowly approach within about half a degree of the pole,

and afterward it will as gradually recede from the pole, and

finally cease to be the polar star.

We here, and must generally, speak of the star, or the stars, The pole

as in motion; but this is not so. The fixed stars are also-
in motlon -

lutely fixed ; it is the pole itself that has a slow motion among

the stars, but the cause of this motion cannot now be ex-

plained; it is one of the most abstruse points in astronomy,

and we only mention it as a fact.

As the North Star appears stationary, to the common ob-

server, it has always been taken as the infallible guide to

direction ; and every sailor of the ocean, and every wanderer

of the African and Arabian deserts, has held familiar ac-

quaintance with it.

( 4. ) If our observer now goes more to the southward, and changes of

makes the same observations on the apparent motions of the
aPPearance

stars, he will find the same general results ; each individual southward,

star will describe the same circle ; but the pole, the fixed

point, will be lower down, and nearer the northern horizon

;

and it will be lower and lower in proportion to the distance

the observer goes to the south. After the observer has gone

sufficiently fax the fixed point, the pole, will no longer be up

2
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Chap. i. in the heavens, but down in the northern horizon ; and when

Appear- the pole does appear in the horizon, the observer is at the

ance from equator, and from that line all the stars at or near the equa-
eqaa or. ^ appear j.Q rjse Up (Jirectly from the east, and go down

directly to the west; and all other stars, situated out of the

equator, describe their small circles parallel to this perpendi-

cular equatorial circle.

south of j£ foe observer goes south of the equator, the apparent

north pole of the heavens sinks below the northern horizon,

and the south pole rises up into the heavens at the south.

changes in / 5 \ jf tke observer should go north, from the first
appearance .., „ ,°

, , ,

on going station, in place of going south, the north pole would rise

north, nearer to the zenith; and, should he continue to go north, he

would finally find the pole in his zenith, and all the stars

would apparently make circles round the zenith, as a center,

and parallel to the horizon ; and the horizon itself would be the

celestial equator.

( 6. ) When the north pole of the heavens appears at the

zenith, the observer must then be at the north pole, on the

earth, or at the latitude of 90 degrees.

Appear-
( 7. ) Any celestial body, which is north of the equator, is

ance from . .

the north always visible from the north pole of the earth ; hence the

pole. sun, which is north of the equator from the 20th of March to

the 23d of September, must be constantly visible during that

period, in a clear sky.

Just as the sun comes north of the equator, its diurnal

progress, or rather, the progress of 24 hours, is around the

horizon. When the sun's declination is 10 degrees north of

the equator, the progress of 24 hours is around the horizon

at the altitude of 10 degrees ; and so for any other degree.

From the north pole, all directions, on the surface of the

earth, are south. North would be in a vertical direction

toward the zenith.

How to ^ye jjave |3Serye(i that the pole of the heavens rises as we
rind the eir- L

r.nmference go north, and sinks toward the horizon as we go south ; and
andtMameter waen we observe that the pole has changed its position one
of the earth.

ox
degree, in relation to the horizon, we know that we must have

changed place one degree on the surface of the earth.
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( 8. ) Now we know by observation, that if we go north Chap, i

about 69i English miles on the earth, the north pole will be

one degree higher above the horizon. Therefore 69i miles

corresponds to one degree, on the earth ; and hence the whole

circumference of the earth must be 69^ multiplied by 360

:

for there are 360 degrees to every circle. This gives 24,930

miles for the circumference of the earth, and 7,930 miles for

its diameter, which is not far from the truth.

( 9. ) Here, in the United States, or anywhere either in Ch-cumpo-

Europe, Asia, or America, north of the equator, say in lati- lar stars <

tude 40°, the north pole of the heavens must appear at an

altitude of 40° above the horizon ; and as all the stars and

heavenly bodies apparently circulate round this point as a

center, it follows that all those stars which are within 40°

of the pole can never go below the horizon, but circulate

round and round the pole. All those stars which never go

below the horizon, are called circumpolar stars.

At the north, and very near the north pole, the sun is a The sun a

circumpolar body while it is north of the equator, and it is a ^
ir

^

umP° ar

J- ^ u body, as seen

circumpolar body as seen from the south pole, while it is south from the

of the equator: this gives six months dav and six months nortn °f latl -

..,,,; ° J
tude CG de-

night, at the poles. grees>

( 10. ) North of latitude 66°, and when the sun's declina-

nation is more than 23° north ( as it is on and about the 20th

of June in each year ), then the sun comes at, or very near, the

northern horizon, at midnight ; it is nearly east, at 6 o'clock

in the morning ; it is south, at noon, and about 23° in alti-

tude ; and is nearly west at 6 in the afternoon.

( 11. ) In the southern hemisphere, there is no prominent

star near the south pole ; that is, no southern polar star ; but,

of course, there are circumpolar stars, and more and more as

one goes south ; and if it were possible to go to the south

pole, the whole southern hemisphere would consist of circum-

polar stars, and the pole, or fixed point of the heavens, would

be directly overhead ; and the sun himself, when south of the

equator, would be a circumpolar body, going round and round

every 24 hours ; nearly parallel with the horizon.

( 12. ) In all latitudes, and from all places, the sun is



10 ASTRONOMY.

Chap. i. observed to circulate round the nearest pole, as a center ; and

The near- when the sun is on the same side of the equator as the ob-
est pole is

gerverj more than half of the sun's diurnal circle is above the
the centerof. ...

i i r» i

the sun's di- horizon, and the observer -will have more than \A hours sun-

nrnal mo- lio'ht.

When the sun is on the equator, the horizon, of every lati-

tude, cuts the sun's diurnal circle into two equal parts, and

gives 12 hours day, and 12 hours night, the world over.

When the sun is on the opposite side of the equator from the

observer, the smaller segment of the sun's diurnal circle is

above the horizon, and, of course, gives shorter days than

nights.

We have, thus far, made but rude and very imperfect ob-

servations on the apparent motion of the heavenly bodies, and

have satisfied ourselves only of two facts

:

Facts set- l. That all the stars, sun, moon, and planets included,

apparently circulate round the pole, and round the earth, in

a day, or in about 24 hours.

2. That the sun comes to the meridian, at different alti-

tudes above the horizon, at different seasons of the year,

giving long days in June, and short days in December.

(13.) Let us now pay attention to some other particulars.

Let us look at the different groups of stars, and individual

stars, so that we can recognize them night after night.

Necessity We should now have some means of measuring time ; but,

measure^of *n early ^ays >
when astronomy was no further advanced than

time. it is supposed to be in this work, a clock could hardly have

had existence; and the advancement of timepieces has been

nearly as gradual as the advancement of astronomy itself.

But we will not dwell on the history, and difficulties, of

clockmaking; whatever these difficulties may have been, or

whatever niceties modern science and art may have attained,

there never was a period when people had not a good general

idea of time, and some means to measure it. For instance,

sunrise and sunset could be always noted as distinct points

of time ; and the interval of a day and a night, or an astro-

nomical day, which we now call 24 hours, was soon observed

to be a constant quantity.
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At first, only rude timepieces could be made, designed to Chap. i.

mark off equal intervals of time; but we will suppose, at

once, that the reader of this work, or our imaginary observer,

can have the use of a common clock, which measures mean

solar time of 24 hours in a natural day, which is marked by

the sun.

( 14.) Now, having power to recognize certain stars, or The parti-

groups of stars, such as the Seven Stars, the Belt of Orion,
cu ar

_
pos

o -t
' ' * ' tion of stars

Aldebaran, Sirius, and the like, and having likewise the use in relation to

of a clock, he can observe token any particular star comes to
time *

any definite position.

Let a person place himself at any particular point, to the

north of any perpendicular line, as the edge of a wall or

building, and let him observe the stars as they pass behind

the building, in their diurnal motions from the east to the

west. For example, let us suppose that the observer is

watching the star Aldebaran, and that, when the eye is placed

in a particular definite position, the star passes behind the

building at exactly 8 o'clock.

The next evening, the same star will come to the same

point about 4 minutes before 8 o'clock ; and it will not come

to the same point again, at 8 o'clock in the evening, until

after the expiration of one year.

(15.) But in any year, on the same day of the month, and

at the same hour of the day, the same star will be at, or very

near, the same position, as seen from the same point.

For instance, if certain stars come on the meridian at a on stars

particular time in the evening, on the first day of December, comins t0

i -n -i .-,. . . the men-
the same stars will not come on the meridian agam, at the d ian .

same time of the night, until the first day of the next December.

On the first of January, certain stars come to the meridian index to

at midnight; and ( speaking loosely) every first of January thelensthof

the same stars come to the meridian at the same time ; and

there will be no other day during the whole year, when the

same stars will come to the meridian at midnight.

Thus, the same day of every year is observed to have the

same position of the stars at the same hour of the night ; and

this is the most definite index for the expiration of a year.
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Chap » r - ( 16.) The year is also indicated by the change of the sun's

Another declination, which the most careless observer cannot fail to
index of the

notice< Qn the 21st of June, the sun declines about 23i de-
jength of the

year. grees from the equator toward the north ; and, of course, to

us in the northern hemisphere, its meridian altitude is so

much greater, and the horizontal shadows it casts from the

same fixed objects will be shorter; and the same meridian

altitude and short shadow will not occur again until the fol-

lowing June, or after the expiration of one year.

Thus, we see, that the time of the stars coming on to the

meridian, and the declination of the sun, have a close corre-

spondence, in relation to time.

Fixed In all our observations on the stars, we notice that their

thi^ternTis
apparent relative situations are not changed by their diurnal

applied, motions. In whatever parts of their circles they are observed,

or at whatever hour of the night they are seen, the same con-

figuration is recognized, although the same group, in the

different parts of its course, will stand differently, in respect

to the horizon. For instance, a configuration of stars resem-

bling the letter A, when east of the meridian, will resemble

the letter V, when west of the meridian.

Wander- As the stars, in general, do not change their positions, in

respect to each other, they are called fixed stars ; but there

are a few important stars that do change, in respect to other

stars ; and for that reason they become especial objects of

attention, and form the most interesting portion of astro-

nomy.

In the earliest ages, those stars that changed their places,

were called wandering stars ; and they were subsequently

found to be the planetary bodies of the solar system, like the

earth on which we live.

Planets.
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CHAPTER II.

APPEARANCES IN THE HEAVENS.

In the preceding chapter we have only called to mind the chap, ii .

most obvious and preliminary observations, which force them-

selves on every one who pays the least attention to the

subject.

We shall now consider the observer at one place, making-

more minute and scientific observations.

( 17.) We have already remarked, that if the observer How to

was on the equator, the poles, to him, would be in his horizon. ° ^ the

If he were at one of the poles, for instance, the north pole, the place of ob-

equator would then bound the horizon. If he were half way servatlon -

between the equator and one of the poles, that pole would

appear half way between the horizon and the zenith.

Therefore, by observing the altitude of the pole above the hori-

zon, we determine the number of degrees we are from the

equator, which is called the latitude of the place.

( 18.) To carry the mind of the reader progressively along,

in astronomy, we must now suppose that he not only has the

use of a good clock, but has also some instrument to measure

angles.

Clocks and astronomical instruments progressed toward

perfection in about the same ratio as astronomy itself; but,

as we are investigating or leading the young mind to the in-

vestigation of astronomy, and not making clocks or mathe-

matical instruments, we therefore suppose that the observer

has all the necessary instruments at his command, and we

may now require him to make a correct map of the visible

heavens ; but to accomplish it, we must allow him at least

one year's time, and even then he cannot arrive at anything

like accuracy, as several incidental difficulties, instrumental

errors, and practical inaccuracies, must be met and overcome.

(19.) There are three principal sources of error, which Sources of

must be taken into consideration, in making astronomical ^l*<&<&&*-
observations. 1. Uncertainty as to the exact time. 2. Inex- tion-
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Chap. ii. pertness and want of tact in the observer ; and 3. Imperfec-

tion in the instruments. Everything done by man is neces-

m sarily imperfect.

Practical " It may be thought an easy thing," says Sir John Her-

and

011

^^es sc^e^ " ^°7 one unacquainted with the niceties required, to

of error. turn a circle in metal, to divide its circumference into 360

equal parts, and these again into smaller subdivisions,— to

place it accurately on its center, and to adjust it in a given

position ; but practically it is found to be one of the most

difficult. Nor will this appear extraordinary, when it is con-

sidered that, owing to the application of telescopes to the

purposes of angular measurement, every imperfection of struc-

ture or division becomes magnified by the whole optical power

of that instrument ; and that thus, not only direct errors of

workmanship, arising from unsteadiness of hand or imperfec-

tion of tools, but those inaccuracies which originate in far

more uncontrollable causes, such as the unequal expansion

and contraction of metallic masses, by a change of tempera-

ture, and their unavoidable flexure or bending by their own

weight, become perceptible and measurable."

Necessary ( 20.) The most important instruments, in an observatory,

aside from the clock, are a circle, or sector, for altitudes; and

a transit instrument.

The former consists of a circle, or a portion of a circle, of

firm and durable material, divided into degrees, at the rate

of 360 to the whole circle. Each degree is divided into equal

parts ; and, by a very ingenious mechanical adjustment of an

index, called a Vernier scale, the division of the degree is

practically (though not really) subdivided into seconds, or

3600 equal parts.

The whole instrument must now be firmly placed and ad-

justed to the true horizontal ( which is exactly at right angles

to a plumb line ), and so made as to turn in any direction.

With this instrument we can measure angles of altitude.

(21.) The transit instrument is but a telescope, firmlv fas-
sit instru- ,-,,. ,. , i

•
i i

ment# tened on a horizontal axis, east and west, so that the telescope

itself moves up and down in the plane of the meridian, but can

never be turned aside from the meridian to the east or west.

The tran-
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Transit Instrument.

Meridian Wires.

To place the instrument in this posi-

tion, is a very difficult matter ; but it is

a difficulty which, at present, should not

come under consideration; we simply

conceive it so placed, ready for observa-

tions.

" In the focus of the eyepiece, and at

right angles to the length of the tele-

scope, is placed a system of one horizontal and five equidis-

tant vertical threads or wires, as represented in the annexed

figure, which always appear in the field of view, when properly

illuminated, by day by the light of the

sky, by night by that of a lamp, intro-

duced by a contrivance not necessary here

to explain. The place of this system of

wires may be altered by adjusting screws,

giving it a lateral (horizontal) motion;

and it is by this means brought to such a

position, that the middle one of the vertical wires shall inter-

sect the line of collimation of the telescope, where it is arrested

and permanently fastened. In this situation it is evident

that the middle thread will be a visible representation of that

portion of the celestial meridian to which the telescope is

pointed ; and when a star is seen to cross this wire in the

telescope, it is in the act of culminating, or passing the celes-

tial meridian. The instant of this event is noted by the

clockvor chronometer, which forms an indispensable accom-

paniment of the transit instrument. For greater precision,

the moments of its crossing all the five vertical threads is

noted, and a mean taken, which ( since the threads are equi-

distant ) would give exactly the same result, were all the

observations perfect, and will, of course, tend to subdivide and

destroy their errors in an average of the whole."

( 22. ) Thus, all prepared with a transit instrument and a

clock, we fix on some bright star, and mark when it comes to

the meridian, or appears to pass behind the central wire of the

instrument. By noting the same event the next evening, the

next, and the next, we find the interval to be very sensi-

Chap, II.

A line in

the transit

instrument a

visible meri-

dian.

Practical

artifices, to

attain accu-

racy.

Intervals

between the

fixed stars

passing the

meridian al-

ways con-

stant.
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Chap. ii. bly less than 24 hours ; but the intervals are equal to each

other : and all the fixed stars are unanimous in giving equal

intervals of time between two successive transits of the same star,

if measured by the same clock.

The following observations were actually taken by M.

Arago and Lacroix, in the small island of Formentera, in the

Mediterranean, in December, 1807.

Date of Observations.
Time of transit of the

Star a, Arietis.

Intervals between
successive Transits.

1807, Dec. 24,
" 25,

" 26,
" " 27

" 28,'

h. m. s.

9 42 32.36

9 41 29.70

9 40 26.72

9 39 23.90

9 38 21.38

h. m. s.

23 58 57.34

23 58 57.02

23 58 57.18

23 58 57.48

of measure

for time.

These intervals between the transits agree so nearly, that

it is very natural to suppose them exactly equal, and the

small difference of the fraction of a second to arise from some

slight irregularities of the clock, or imperfection in making

the observations.

The equality of these intervals is not only the same for all

the fixed stars, in passing the meridian, but they are the

same in passing all other planes.

standard Now as this has been the universal experience of astrono-

mers in all ages, it completely establishes the fact, that all

the fixed stars come to the meridian in exactly equal inter-

vals of time ; and this gives us a standard measure for time,

and the only standard measure, for all other motions are

variable and unequal.

Time of Again, this interval must be the time that the earth
the earth's emp] yS }n turning on its axis; for if the star is fixed, it is a
revolution on x J

.

its axis. mark for the time that the meridian is in exactly the same

position in relation to absolute space.

M.Arago's
^ 23.) That the reader may not imbibe erroneous impres-

sions, we remark, that the clock used for the preceding ob-

servations, made by M. Arago and Lacroix, ran too fast, if it

was a common clock, and too slow, if it was an astronomical

clock.
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clock. It was not mentioned which clock was used, nor was Chap. n.

it material simply 'to establish the fact of equal intervals ; nor

was it essential that the clock should run 24 hours, in a mean

solar day ; it was only essential that it ran uniformly, and

marked off equal hours in equal times.

If it had been a common clock, and ran at a 'perfect rate,

the interval would have been 23 h. 56 m. 4.09 s.

( 24.) In the preceding section we have spoken of an An astro-

astronomical clock. Soon after the fact was established that
B^ca

the fixed stars came to the meridian in equal times, and that

interval less than 24 hours, astronomers conceived the idea

of graduating a clock to that interval, and dividing it into 24

hours. Thus graduating a clock to the stars, and not to the

sun, is called a sidereal, and not a solar, or common clock

;

and as it was suggested by astronomers, and used only for

the purposes of astronomy, it is also very appropriately called

an astronomical clock; but save its graduation, and the

nicety of its construction, it does not differ from a common

clock.

With a perfect astronomical clock, the same star will pass the To deter-

meridian at exactly the same time, from one year's end to an-
mmetherate

. . .

J
. of an astro-

other.* If the time is not the same, the clock does not run nomicai

clock.

* Sidereal time-has been slightly modified since the discovery of the

precession of the equinoxes, though such modification has never been

distinctly noticed in any astronomical work.

At first, it was designed to graduate the interval between two suc-

cessive transits of the same star over the meridian, to 24 hours, and to

call this a sidereal day ; which, in fact, it is.

But it was necessary, in some way, to connect sidereal with solar

time ; and, to secure this end, it was determined to commence the side-

real day (not from the passage of any particular star across the meri-

dian, but from the passage of the imaginary point in the heavens, where

the sun's path crosses the vernal equinox, called the first point of

Aries), thus making the sidereal day and the equinoctial year commence

at the same moment of absolute time.

For some time, it was supposed that the interval between two suc-

cessive transits of the first point of Aries, over the m ridian, was the

same as two successive transits of a star ; but the two intervals are not

identical; the first point of Aries has a very slow motion westward

among the stars, which is called the precession of the equinox, and

2 B*
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Chap. ii. to sidereal time ; and the variation of time, or the difference

between the time when the star passes the meridian, and the

time which ought to be shown by the clock, will determine

the rate of the clock. And with the rate of the clock, and its

error, we can readily deduce the true time from the time

shown by the face of the clock.

Solar days ( 25. ) When we examine the sun's passage across the
equa

' meridian, and compare the elapsed intervals with the sidereal

clock, we find regular and progressive variations, above and

below a mean period, that cannot be accounted for by errors

of observation.

The mean interval, from one transit of the sun to another,

or from noon to noon, when we take the average of the whole

year, is 24 hours, of solar time, or 24 h. 3 m. 56.5554 s. of

sidereal time ; but, as we have just observed, these intervals

are not uniform; for instance, about the 20th of December,

they are about half a minute longer, and about the 20th of

September, they are as much shorter, than the mean period.

The snn From this fact, we are compelled to regard the sun, not as

must have a gxe(j point ; it must have motions, real or apparent, inde-
real or appa- . . ,

rent motion, pendent of the rotation of the earth on its axis.

( 26. ) When we compare the times of the moon passing

the meridian, with the astronomical clock, we are very forcibly

struck with the irregularity of the interval.

General The least interval between two successive transits of the
motion of moon / Wnich may be called a lunar day ), is observed to be
the moon. v J

_
about 24 h. 42 m. ; the greatest, 25 h. 2 m.; and the mean, or

average, 24 h. 54 m., of mean solar time.

These facts show, conclusively, that the moon is not a

which makes its transits across the meridian a fraction of a second

shorter than the transits of a star.

The time required for 366 transits of a star across the meridian, is

( 3".34), three seconds and thirty-four hundredths of a second of sidereal

time, greater than for 366 transits of the equinox.

This difference would make a day in about 25000 years. The time

elapsed between two successive transits of the equinox being now
called a sidereal day of ----- 24h. m. s., the

time between the transits of the same star, is - 24 h. m. 0.00916 s

Every astronomer understands Art. ( 24 ) with this modification.
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fixed body, like a fixed star, for then the interval would be chap. ii.

24 hours of sidereal time.

But as the interval is always more than 24 hours, it shows

that the general motion of the moon is eastward among the

stars, with a daily motion varying from 10^- to 16 degrees*

traveling, or appearing to travel, through the whole circle

of the heavens ( 360° ) in a little more than 27 days.

Thus, these observations, however imperfectly and rudely chief ob-

taken, at once disclose the important fact, that the sun and
jec

moon are in constant change of position, in relation to the

stars, and to each other ; and, we may add, that the chief

object and study of astronomy, is, to discover the reality, the

causes, the nature, and extent of such motions.

(27.) Besides the sun and moon, several other bodies 0ther

.'."-,
. ,-. . -,. . movable and

were noticed as coming to the meridian at very unequal m- wandering

tervals of time— intervals not differing so much from 24 bodies,

sidereal hours as the moon, but, unlike the sun and moon,

the intervals were sometimes more, sometimes less, and some-

times equal to 24 sidereal hours.

These facts show that these bodies have a real, or appa-

rent motion, among the stars, which is sometimes westward,

sometimes eastward, and sometimes stationary; but, on the

whole, the eastward motion preponderates ; and, like the sun

and moon, they finally perform revolutions through the hea-

vens from west to east.

Only four such bodies ( stars ) were known to the ancients, Wandering

namely, Venus, Mars, Jupiter, and Saturn.
stars known

These stars are a portion of the planets belonging to our cients.

solar system, and, by subsequent research, it was found that Modem

the Earth was also one of the number. As we come down

to more modern times, several other planets have been disco-

vered, namely, Mercury, Uranus, Vesta, Juno, Ceres, Pallas,

and, very recently ( 1846), the planet Neptune.

\

* Four minutes above 24 hours corresponds to one degree of arc.

t We have not mentioned the names of these planets in the order in

which they stand in the system, but rather in the order of their dis-

covery. As yet, we have really no idea of a planet, or a planetary

system.
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Chap. ii. We shall again examine the meridian passages of the sun,

moon, and planets, and deduce other important facts con-

cerning them, besides that of their apparent, or real motions

among the fixed stars.

Observa- (28.) But let us return to the fixed stars. We have

. f

~ several times mentioned the fact, that the same star returns
determine »

the meridian to the same meridian again and again, after every interval of
distances of

24 sj(jereai hours. So two different stars come to the meri-
tne stars.

dian at constant and invariable intervals of time from each

other ; and by such intervals we decide how far, or how many

degrees, one star is east or west of another. For instance,

if a certain fixed star was observed to pass the meridian when

the sidereal clock marked 8 hours, and another star was ob-

served to pass at 9, just one sidereal hour after, then we

know that the latter star is on a celestial meridian, just 15

degrees eastward of the meridian of the first mentioned star.

Correspou- As 24 hours corresponds to the whole circle, 360 degrees,

be ' therefore one hour corresponds to 15 degrees ; and 4 minutes,

and decrees. i*1 time, to one degree of arc. Hence, whatever be the ob-

served interval of time between the passing of two stars over

the meridian, that interval will determine the actual difference

of the meridians running through the stars ; and when we

know the position of any one, in relation to any celestial meri-

dian, we know the positions of all whose meridian observations

have been thus compared.

Right as- The position of a star, in relation to a particular celestial

meridian, is called Right Ascension, and may be expressed

either in time or degrees. Astronomers have chosen that

It is true, we might mention every fact, and every particular re-

specting each planet ; such as its period of revolution, size, distance

from the sun, &c. ; but such facts, arbitrarily stated, would not convey

the science of astronomy to the reader, for they can be told alike to the

man and to the child— to the intellectual and to the dull— to the learned

and to the unlearned.

To constitute true knowledge— to acquire true science— the pupil

must not only know the fact, but how that fact was discovered, or de-

duced from other facts. Hence we shall mainly construct our theories

from observations, as we pass along, and teach the pupil to decide the

case from the facts, evidences, and circumstances presented.

cension.
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meridian, for the first meridian, which passes through the Chap. n.

sun's center at the instant the sun crosses the celestial equa- First men-

tor in the spring, on the 20th of March. dian -

Right ascension is measured from the first meridian, east-

ward, on the equator, all the way round the circle, from to

360 degrees, or from Oh. to 24 h.

The reason why right ascension is not called longitude will

be explained hereafter.

(29.) If we observe and note the difference of sidereal To find the

time between the coming of a star to the meridian, and the
"g

^
C

T'© .
' sions of the

coming of any other celestial body, as the sun, moon, planet, sun, moon,

or comet, such difference, applied to the right ascension of the
and planets -

star, will give the right ascension of the body.

But every astronomer regulates, or aims to regulate, his

sidereal clock, so that it shall show Oh. m. s., when the

equinox is on the meridian ; and, if it does so, and runs regu-

larly, then the time that anybody passes the meridian by the

clock, will give the right ascension of the body in time, with-

out any correction or calculation; but, practically, this is

never the case ; a clock is never exact, nor can it ever run

exactly to any given rate or graduation.

We have thus shown how to determine the right ascensions

of the heavenly bodies. We shall explain how to find their

positions in declination, in the next chapter.

CHAPTER III.

REFRACTION. POSITION OF THE EQUINOX, AND OBLIQUITY OF

THE ECLIPTIC HOW FOUND BY OBSERVATION.

( 30. ) To determine the angular distance of the stars from Chap. hi.

the pole, the observer must first know the distance of his

zenith from the same point.

As any zenith is 90 degrees from the true horizon, if the

observer can find the altitude of the pole above the horizon
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by original

observa

tions,

The mural

circle.

chap. hi.
( which is the latitude of the place of observation ), he, of

course, knows the distance between the zenith and the pole.

Prepara- ^s fas north pole is but an imaginary point, no star being

t^mming

6
"

there, we cannot directly observe its altitude. But there is a

the latitude very bright star near the pole, called the Polar Star, which,

as all other stars in the same region, apparently revolves

round the pole, and comes to the meridian twice in 24 sidereal

hours; once above the pole, and once below it; and it is

evident that the altitude of the pole itself must be midway

between the greatest and least altitudes of the same star,

provided the apparent motion of the star round the pole is really

in a circle ; but before we examine this fact, we will show how

altitudes can be taken by the mural circle.

(31.) The mural, or

wall circle, is a large me-

tallic circle, firmly fas-

tened to a wall, so that

its plane shall coincide

with the plane of the me-

ridian.

Ji A perpendicular line

through the center, ZJV,

(Fig. 2), represents the

zenith and nadir points
;

and at right angles to

this, through the center,

is the horizontal line, Hh.

A telescope, Tt, and an index bar, Ii, at right angles to

the telescope, are firmly fixed together, and made to revolve

on the center of the mural circle.

The circle is graduated from the zenith and nadir points,

each way, to the horizon, from to 90 degrees.

When the telescope is directed to the horizon, the index

points, I and i, will be at Z and N", and, of course, show 0°

of altitude. When the telescope is turned perpendicular, to

Z, the index bar will be horizontal, and indicate 90 degrees

of altitude.

When the telescope is pointed toward any star, as in the

How to ob-

serve meri-

dian alti-

tudes.
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figure, the index points, / and i, will show the position of the chap. hi.

telescope, or its angle from the horizon, which is the altitude

of the star.

As the telescope, and index of this instrument, can revolve Mural ek.

freelv round the whole circle, we can measure altitudes with
cle a!s0

.

a

J transit m-

it equally well from the north or the south; but as it turns strument.

only in the plane of the meridian, we can observe only meri-

dian altitudes with it.

This instrument has been called a transit circle, and, says

Sir John Herschel, " The mural circle is, in fact, at the same

time, a transit instrument; and, if furnished with a proper

system of vertical wires in the focus of its telescope, may be

used as such. As the axis, however, is only supported at one

end, it has not the strength and permanence necessary for

the more delicate purposes of a transit ; nor can it be veri-

fied, as a transit may, by the reversal of the two ends of its

axis, east for west. Nothing, however, prevents a divided

circle being permanently fastened on the axis of a transit

instrument, near to one of its extremities, so as to revolve

with it, the reading off being performed by a microscope

fixed on one of its piers. Such an instrument is called a

transit circle, or a meridian circle, and serves for the simulta-

neous determination of the right ascensions and polar dis-

tances of objects observed with it ; the time of transit being

noted by the clock, and the circle being read off by the late-

ral microscope."

( 32.) To measure altitudes in all directions, we must have Altitude

,i • , yn ,• r- .i ' and azimuth
another instrument, or a modification of this.

instrnm

Conceive this instrument to turn on a perpendicular axis,

parallel to Z N, in place of being fixed against a wall ; and

conceive, also, that the perpendicular axis rests on the center

of a horizontal circle, and on that circle carries a horizontal

index, to measure azimuth angles.

This instrument, so modified, is called an altitude and azi-

muth instrument, because it can measure altitudes and azi-

muths at the same time.

( 83.) After astronomy is a little advanced, and the angu-

lar distance of each particular star, sun, moon, and planet,

3
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Chap. hi. from the pole is known, then we can determine the latitude by

The lati- observing the meridian altitude of any known celestial body

;

tnde taken ^^ ^f^g ^heir positions are established ( as is now supposed

tude of the to be the case with the reader of this work ), the only way to

pole " observe the latitude is by the altitudes of some circumpolar

star, as mentioned in Art. 30.

To settle this very important element, the observer turns

the telescope of his mural circle to the pole star, and ob-

serves its greatest and least altitudes, and takes the half sum

for his latitude. But is this really his latitude ? Does it

require any correction, and if so, what, and for what reason

V

a difficulty. At first, it was very natural to suppose that this gave the

exact latitude; but astronomers, ever suspicious, chose to

verify it, by taking the same observations on other circum-

polar stars ; and if the theory was correct, and the observa-

tions correctly taken, all circumpolar stars would give the

same, or very nearly the same, result. Such observations

were made, and stars at the same distance from the pole,

gave the same latitude, and stars at different distances from

the pole, gave different latitudes ; and the greater the dis-

tance of any star from the pole, the greater the latitude de-

duced from it. A star 30 or 35 degrees from the pole, ob-

served from about the latitude of 40 degrees, will give the

latitude 12 or 15 minutes of a degree greater than the pole

star.

New and Astronomers were now troubled and perplexed. These

truths

ant

great an(^ manifest discrepancies could not be accounted for

by imperfection of instruments, or errors of observations, and

some unconsidered natural cause was sought for as a solution.

Curves de- T/o bring more evidence to bear on the case, astronomers

circumpoia/ examined the apparent paths of the stars round the pole, by

stars. means of the altitude and azimuth instrument, and they were

found to be not exact circles ; but departed more and more

from a circle, as the star was a greater and greater distance

from the pole.

These curves were found to be somewhat like ovals— the

longer diameter passing horizontally through the pole— the
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upper segments very nearly semicircles, and the lower segments Chaf. hi.

flattened on their under sides.

With such evidences before the mind, men were not long

in deciding that these discrepancies were owing to

fraction.

ASTRONOMICAL REFRACTION.

( 34. ) It is shown, in every treatise on natural philosophy, General

that light, passing obliquely from a rarer medium into a
el

denser, is bent toward a perpendicular to the new medium.

Now, when rays of light pass, or are conceived to pass,

from any celestial object, through the earth's atmosphere to

an observer, the rays must be bent downward, unless they pass

perpendicularly through the atmosphere ; that is, come from

the zenith.

EF,kz (Fig.'

3 ), represent

different strata

of the earth's at-

mosphere. Let

s be a star, and

conceive a line

of light to pass

from the star

through the va-

rious strata of

air, to the ob-

server, at 0.

When it meets the first strata, as E F, it is slightly bent Refraction

downward, and as the air becomes more and more dense, its
increases al-

/> ,. , titudes.
retracting power becomes greater and greater, which more
and more bends the ray. But the direction of the ray, at

the point where it meets the eye of the observer, will deter-

mine the position of the star as seen by him. Hence the

observer at 0, will see the star at s', when its real position is

at .5.

As a ray of light, from any celestial object, is bent down-
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Chap. hi. ward, therefore, as we may see by inspecting the figure, the

altitude of all the heavenly bodies is increased by refraction.

This shows that all the altitudes, taken as described in

Art. 33, must be apparent altitudes— greater than true alti-

tudes— and the resulting latitudes, deduced from them, all

too great.

The object is now to obtain the amount of the refraction

corresponding to the different altitudes, in order to correct or

attoio for it.

To determine the amount of refraction, we must resort

to observations of some kind. But what sort of observations

will meet the case ?

How to Conceive an observer at the equator, and when the sun or
find the a- .. ,..,.,
monnt of re-

a s*ar passes through, or very near his zenith, it has no re-

fraction cor- fraction. But, at the equator, the diurnal circles are per-

t^eve/'lie Pendicular to the horizon; and those stars which are very

gree of aiti- near the equator, really change their altitudes in proportion to

tude - the time.

Now a star may be observed to pass the zenith, at the

equator, at a particular moment : four hours afterward ( side-

real time ), the zenith distance of this star must be 4 times 15,

or 60 degrees, and its altitude just 30 degrees. But, by ob-

servation, the altitude will be found to be 30° 1' 38". From

this, we perceive, that V 38" is the amount of refraction

corresponding to 30 degrees of altitude.

In six sidereal hours from the time the star passed the

zenith, the true position of the star would be in the horizon

;

but, by observation, the altitude would be 33' 0", or a little

more than the angular diameter of the sun.

Amount From this, we perceive, that 33' 0" is the amount of re-
of horizontal n .

.

. . 1 ,

refraction,
faction at the horizon.

Thus, by talcing observations at all intervals of time, between

the zenith and the horizon, we can determine the refraction corre-

sponding to every degree of altitude.

( 35. ) In the last article, we carried the observer to the

equator, to make the case clear ; but the mathematician need

not go to the equator, for he can manage the case wherever
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he may be— lie takes into consideration the curves, as men- chap. hi.

tioned in Art. 33.

If it were not for refraction, the curves round the pole Themathe-

would be perfect circles, and the mathematician, by means of matlcian '
s

1
method of

the altitude and azimuth, which can be taken at any and nnaing the

every point of a curve, can determine how much it deviates amount ofre-

from a circle, and from thence the amount of refraction, or

nearly the amount of refraction, at the several points.

By using the refraction thus imperfectly obtained, he can

correct his altitudes, and obtain his latitude, to considerable

accuracy. Then, by repeating his observations, he can fur-

ther approximate to the refraction.

In this way, by a multitude of observations and computa-

tions, the table of refraction ( which appears among the tables

of every astronomical work ) was established and drawn out.

( 36. ) The effect of refraction, as we have already seen, is Refraction

to increase the altitude of all the heavenly bodies. There-
'ncreas

^

s

J time ot sun-

fore, by the aid of refraction, the sun rises before it otherwise light.

would, and does not set as soon as it would if it were not

for refraction ; and thus the apparent length of every day is

increased by refraction, and more than half of the earth''8 sur-

face is constantly illuminated. The extra illumination is equal

to a zone, entirely round the earth, of about 40 miles in

breadth.

As the refraction in the horizon is about 33' of a degree,

the length of a day, at the equator, is more than four minutes

longer than it otherwise would be, and the nights four minutes

less.

At all other places, where the diurnal circles are oblique

to the horizon, the difference is still greater, especially if we

take the average of the whole year.

In high northern latitudes, the long days of summer are Effects in

very materially increased, in length, by the effects of refrac- hish lati -

tion ; and near the pole, the sun rises, and is kept above the

horizon, even for days, longer than it otherwise would be,

owing to the same cause.

Refraction varies very rapidly, in its amount, near the hori-
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Chap. iii. zon ; and this causes a visible distortion of "both sun and

moon, just as they rise or set.

Distortion ;por instance, when the lower limb of the sun is just in the

and moon in horizon, it is elevated, by refraction, 33'.

the horizon. But the altitude of the upper limb is then 32', and the

refraction, at this altitude, is 27' 50", elevating the upper

limb by this quantity. Hence, we perceive, that the lower

limb is elevated more than the upper ; and the perpendicular

diameter of the sun is apparently shortened by 5' 10", and

the sun is distinctly seen of an oval form; which deviates

more from a circle below than above.

An optical j/j^ apparently dilated size of the sun and moon, when

near the horizon, has nothing to do with refraction : it is a

mere illusion, and has no reality, as may be known by apply-

ing the following means of measurement.

Roll up a tube of paper, of such a size and dimensions as

just to take in the rising moon, at one end of the tube, when

the eye is at the other. After the moon rises some distance

in the sky, observe again with this tube, and it will be found

that the apparent size of the moon will even more than fill it.

The reason of this illusion is well understood by the stu-

dent of philosophy; but we are now too much engaged with

realities to be drawn aside to explain illusions, phantoms, or

any Will-o'-the-wisp.

When small stars are near the horizon, they become invi-

sible ; either the refraction enfeebles and dissipates their light,

or the vapors, which are always floating in the atmosphere,

serve as a cloud to obscure them.

Application
( 37.) Having shown the possibility of making a table of

' refraction corresponding to all apparent altitudes, we can now,

by applying its effects to the observed altitudes of the cir-

cumpolar stars, obtain the true latitude of the place of obser-

vation.

Let it be borne in mind, that the latitude of any place on

the earth, is the inclination of its zenith to the plane of the

equator ; which inclination is equal to the altitude of the pole

above the horizon.

We demonstrate this as follows. Let E ( Fig. 4 ) repre-
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sent the earth. Fig. 4. Chap# iil

Now, as an oh- ^>—i—^^ T^n-
server always con- y^ ^\ stration.

ceives himself to

be on the topmost

part of the earth,

the vertical point,

Z, truly and natu- h

rally represents his

zenith. Through E, draw HE 0, at right angles to E Z
;

then HE will represent the horizon ( for the horizon is

always at right angles to the zenith).

Let E Q represent the plane of the equator, and at right

angles to it, from the center of the earth, must be the earth's

axis ; therefore, E P, at right angles to E Q, is the direction

of the pole.

Now the arcs, - - ZP+P 0=90°,

Also, - - - ZP+ZQ=90°,

By subtraction, - P O—ZQ=0
;

Or, by transposition, the arc PO = ZQ; that is, the

altitude of the pole is equal to the latitude of the place

;

which was to be demonstrated.

In the same manner, we may demonstrate that the arc,

H Q, is equal to the arc Z P ; that is, the polar distance of

the zenith is equal to the meridian altitude of the celestial equa-

tor. Now, we perceive, that by knowing the latitude, we

know the several divisions of the celestial meridian, from the

northern to the southern horizon, namely, OP, P Z, Z Q,

and QH
( 38.) We are now prepared to observe and determine the

declinations of the stars.

The declination of a star, or any celestial object, is its meri- Deciina

dian distancefrom the celestial equator.
tl0n defined -

This corresponds with latitude on the earth, and declination

might have been called latitude.

The term latitude, as applied in astronomy, is to be de-

fined hereafter.
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Chap. in. To determine the declination of a star, we must observe

How to its meridian altitude ( "by some instrument, say the mural
find the de- q^qU Fig. 2 ), and correct the altitude for refraction ( see
clmationofa >-©••>

^ #

\

star. table of refraction ) ; the difference will be the star's true

altitude.

If the true meridian altitude of the star is less than the meri-

dian altitude of the celestial equator, then the declination of the

star is south. If the meridian altitude of the star is greater

than the meridian altitude of the equator, then the declination of

the star is north.

These truths will be apparent by merely inspecting Fig. 4.

EXAMPLES.

Examples 1. Suppose an observer in the latitude of 40° 12' 18"

thod pursued
nor^n

'
observes the meridian altitude of a star, from the

to find any southern horizon, to be 31° 36' 37" ; what is the declination
star's <iecli-

of thatstar? ^
nation.

From • 90° 0' 00"

Take the latitude, - 40 12 18_

Biff, is the meridian alt. of the equator, 49° 47' 42"

Alt. of star, 31° 36' 37"

Refraction, 1 32

True altitude, 31° 35^ 5" - - 31° 35' 5"

Declination of the star, south, - - 18° 12' 37"

2. The same observer finds the meridian altitude of an-

other star, from the southern horizon, to be 79° 31' 42";

what is the declination of that star ?

Observed altitude,

Refraction, -

True altitude, -

Altitude of equator, -

Star's declination, north, - - - 29° 43' 49"

3. The same observer, and from the same place, finds the

meridian altitude of a star, from the northern horizon, to be

51 c 29' 53"; what is the declination of that star?

79° 31' 42"

11

79 31 31

49 47 42



51° 29' 53"

46

Chap, in,

51

40

29

12

IT

i

18

11

78°

16

43'

49

11"
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Observed altitude,

Refraction, -

True altitude of star,

Altitude of pole ( or latitude ),

Star from the pole ( or polar dist. ),

Polar dist., from 90°, gives decl., north,

In this way the declination of every star in the visible

heavens can be determined.

(39.) In Art. 28 we have explained how to obtain the Elements

2; . ,
"; for a chart

difference of the right ascensions of the stars ; and m the last of the stars#

article we have shown how to obtain their declinations.

With the declinations and differences of right ascensions, we may

mark down the positions of all the stars on a globe or sphere—
tlie true representation of the appearance of the heavens.

Quite a region of stars exists around the south pole, which

are never seen from these northern latitudes ; and to observe

them, and define their positions, Dr. Halley, Sir John Her-

schel, and several other English and French astronomers,

have, at different periods, visited the southern hemisphere.

Thus, by the accumulated labors of the many astronomers,

we at length have correct catalogues of all the stars in both

hemispheres, even down to many that are never seen by the

naked eye.

(40.) In Art. 28, we have explained how to find the dif-
The zero

. .
meridian of

ferences of the right ascensions of the stars ; but we have not right ascen-

yet found the absolute right ascension of any star, for the want sioa -

of the first meridian, or zero line, from which to reckon. But

astronomers have agreed to take that meridian for the zero

meridian, which passes through the sun's center the instant

the sun comes to the celestial equator, in the spring ( which

point on the equator is called the equinoctial point ) ; hut the

difficulty is to find exactly where ( near what stars ) this mendian

line is. Before we can define this line, we must take obser-

vations on the sun, and determine where it crosses the equa-

tor, and from the time we can determine the place. But be-

fore we can place much reliance on solar observations, we

must ask ourselves this question. Has the sun any parallax ?
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Chap. in. that is, is the position of the sun jztst where it appears to be?

Is it really in the plane of the equator, when it appears to be

there ?

Parallax. rp
a]} northern observers, is not the sun thrown back on the

face of the sky, to a more southern position than the one it

really occupies? Undoubtedly it is; and this change of

position, caused by the locality of the observer, is called paral-

lax ; but, in respect to the sun, it is too small to be considered

in these primary observations.

The early astronomers asked themselves these questions,

and based their conclusions on the following consideration :

Sun's pa- If the sun is materially projected out of its true place ; if it is

raiiax msen- thrown to the southward, as seen by a northern observer, it
sible, in com-

#

"

monobserva- will cross the equator in the spring sooner than it appears

tions.
jj

cr0SS-

But let an observer be in the southern hemisphere, and, to

him, the sun would be apparently thrown over to the north,

and it would appear to cross the equator before it really did

cross. Hence, if the sun is thrown out of place by parallax,

an observer in the southern hemisphere would decide that the

sun crossed the equator quicker, in absolute time, than that

which would correspond to northern observations.

Northern ~But, jn bringing observations to the test, it was found that

observations both northern and southern observers fixed on the same, or

compared, very nearly the same, absolute time for the sun crossing the

equator. This proves that the position of the sun was not

sensibly affected by parallax.

We will now suppose (for the sake of simplicity) that a

sidereal clock has been so regulated as to run to the rate of

sidereal time ; that is, measure 24 hours between any two

successive transits of the same star, over the same meridian,

but the sidereal time not known.

Also, suppose that, at the Observatory of Greenwich, in

the year 1846, the following observations were made:*

* In early times, such observations were often made. We took these

results from the Nautical Almanac, and called them observations ; but,

for the purpose of showing principles, it is immaterial whether obser-

vations are real or imaginary.
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Date.
Face of the Side- Declination by Observa.

real Clock. ( Art. 38.

)

h. m. s.
o / //

March 18,
{

1 3 20.00 58 53.4 south,

" 19, 1 6 58.62 35 11.3 "

" 20, 1 10 37.10 11 29.4 "

" 21, 1 14 15.47 12 12.0 north,

" 22, 1 17 54.07 35 52:0 "

Chap. III.

Observa-

tions to find

the equinox,

and the side-

real time.

From these observations, it is required to determine the sidereal

time, or the error of the clock ; the time that the sun crossed the

equator ; the sun's right ascension ; its longitude, and the obli-

quity of the ecliptic.

It is understood that the observations for declinations must

have been meridian observations, and, of course, must have

been made at the instant of apparent noon, local solar time.

By merely inspecting these observations, it will be perceived

that the sun must have crossed the equator between the 20th

and 21st ; for at the apparent noon of the 20th, the declina-

tion was 11' 29".4 south ; and on the 21st, at apparent noon,

it was 12' 12" north. Between these two observations, the

clock measured out 24 h. 3 m. 38.37 s., of sidereal time.

If the sun had not changed its meridian among the stars,

the time would have been just 24 hours. The excess

(3 m. 38.37 s.) must be changed into arc, at the rate of four

minutes to one degree. Hence, to find the arc, we have this

proportion :

As 4m "-. 3m - 38.37 s
- : : 1° : to the required result.

The result is 54' 35".4; the extent of arc which the sun

changed right ascension during the interval between noon and

noon of the 20th and 21st of March.

To examine this matter understandingly, draw a line, E Q,

( Fig. 5 ), and make it equal to 54' 35".4.

From E, draw E S, at right angles to E Q, and make it computa-

equal to 11' 29".4. From Q, draw QJV, at right angles to tions t0 find

E Q, and make it equal to 12' 12". Then S will represent

the sun at apparent noon, March 20th, and JV the position of

the sun at apparent noon, on the 21st, and /S'iVis the line of

3
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Ckaf. IIL Fig. 5.

Error of

the clock.

Sun's right

ascension.

the sunamong

the stars, and

the point op

( called the

first point of

E Aries ), and it

is where the

sun crosses

g the equator.

Now we

wish to find

P where the line

E Q is crossed by the line SIT; or, the object is, to find

E op, expressed in time.

To facilitate the computation, continue E S to P, making

SP=zQJV, and draw the dotted line P Q. Then S P Q XT

is a parallelogram. EP=1V 29".4+12' 12"==23' 41"A;
and the two triangles, PE Q, and SE °p , are similar; there-

fore we have

PE : EQ : : SE : E<y.

To have the value of E t, in time, E Q must be taken in

time ; which is 3 m. 38.37 s.

Hence, (23'41".4) : (3™- 38.37 s -) : IV 29"A : Ecp

;

The result gives, Eop=l™- 45.91 s -

But the clock time that the point E passed the meridian,

was lh. 10 m. 37.10 s.

Add, ----- 1 45.91

The equi. passed merid. (by clock) at 1 h. 12 m. 23.01

But, at the instant that the equinox is on the meridian,

the sidereal clock ought to show Oh. m. s.

The error of the clock was, therefore, 1 h. 12 m. 23.01 s.

( subtractive ).

As the whole line, EQ (in time ), is - 3 m. 38.37 s.

And the part E op is - - - 1 45.91

Therefore, qp Q, is - - - - 1 m. 52.46

But op Q is the right ascension of the sun at apparent noon,
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at Greenwich, on the 21st of March, 1846; a very important chap. in.

element.
,

The right ascension of any heavenly body, whether it be How to

sun, moon, star, or planet, is the true sidereal time that it
find the ab "

•t n l l r»
solute right

passes the meridian ; and now, as we have the error of the ascension or

clock, we can determine the true sidereal time that any star the stars
.

passes the meridian, and, of course, its right ascension ; thus,
an

^'
lane^

for example,

If a star passed the meridian at - 10 h. 15 m. 47 s.

Error of the clock is (subtractive) 1 12 23

Eight ascension of the star is - 9 h. 3 m. 24 s.

( 42.) To find the Greenwich apparent time, when the sun

crossed the equinox, we refer to Fig. 5 ; and as the point E
corresponds to apparent noon, of March 20th, and the Q to

apparent noon of March 21st, and supposing the motion of

the sun uniform (as it is nearly ) far that short interval, we

have the following proportion

:

EQ : Hop : : 24h. : x.

Giving to EQ and E<v their numeral values in seconds of

sidereal time, the proportion becomes:

218".37 : 105".91 : : 24h. : x.

The result of this proportion gives 11 h. 38 m. 24 s., for the Time of

interval, after the noon of the 20th of March, when the sun the e<illmox -

crossed the equator.

This result is in apparent time. The difference between

apparent time, and mean clock time, will be explained here-

after. At this period, the difference between the sun and the

common clock was 7 m. 36 s., to be added to apparent time.

Equinox of 1846, March - - 20 d. 11 h. 38m. 24s.

Equation of time (add), - 7 36

Equinox, clock time (Greenwich), 20 d. 11 h. 46 m.

(43.) The two triangles, E S°p and ^pQJV, are really obliquity

spherical triangles ; but triangles on a sphere whose sides are of the eciip-

less than a degree may be regarded as plane triangles, with-
fou

'

nd

out any appreciable error. In the triangle E S^p,

^V=1588".65, ES=6S9"A;
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Chap, iii . and, if we regard these seconds of arc as mere numerals, and

calculate the angle E T S, we find it 23° 27' 43" ; which is

the obliquity of the ecliptic.

Sun's ion- By computing the length of the line S N, wefind it 59' 30"

;

which was the variation in the sun's longitude, between the noon of

the 20th and 21st.

Both longitude and right ascension are reckoned from the

equinoctial point qp : longitude along the line °p JV ( which

line is called the ecliptic), and right ascension along the

celestial equator HP Q.

Computing the length of the line °p JV, we find it equal to

30' 36".6 ; which was the sun's longitude at the instant of

apparent noon, at Greenwich, March 21st, 1846.

Latitude, Meridians of right ascension are at right angles to the celestial

in astrono-
eC

|
Uat r ( at right angles to T $)• ^ne firsi meridian runs

what line through the point <¥>. Meridians of latitude are at right

reckoned. angles to the ecliptic (at right angles to the line S JV). La-

titude, in astronomy, is reckoned north and south of the ecliptic.

Thus a star at m (Fig. 5), °p n, would he its longitude, n m
its north latitude ; °p o its right ascension ; and o m its north

declination.

Path ofthe (44.) Thus, it may be perceived, that these observations
snn#

are very fruitful in giving important results ; but, as yet, we

have used only two of them— those made on the 20th and 21st.

By bringing the other observations into computation, and

extending Fig. 5, we can find the points where the sun was

on the other clays mentioned ; and then, by taking observa-

tions every day in the year, the sun's right ascension and lon-

gitude can be determined for every day : and its exact path-

Len^-th of w°y through the apparent celestial sphere. The same kind

a year, how f observations taken on the 20th, 21st, 22d, 23d, and 24th

days of September, will show when the sun crosses the equa-

tor from north to south; and how long it remains north of the

equator; and how long south of it. In March, 1847, the

same observations might have been made; and the exact

length of an equinoctial year determined : and in this way that

important interval has been decided, even to seconds.

The true length of an equinoctial year was early a very
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interesting problem to astronomers; and, "before they had Chap, hi.

good clocks and, refined instruments, it was one of some diffi-

culty to settle. But the more the difficulty, the greater the

zeal and perseverance ; and we are often astonished at the

accuracy which the ancients attained.

The length of the equinoctial year, as stated in the tables of

Days, hours, min. sees.

Ptolomee, is - - - - 365 5 55 12

Tycho Brahe, made it - 365 5 48 45

Kepler, in his tables, - - - 365 5 48 57

M. Cassini, in his tables, - - 365 5 48 52

M. Be Lalande, - - - - 365 5 48 45

Sir John Herschel, - - - 365 5 48 49.7

The last cannot differ from the truth more than one or two solar and

seconds. Let the reader notice that this is the equinoctial s,dereal

year,

year— the one that must ever regulate the change of sea-

sons. There is another year— the sidereal year— which is

about 20 minutes longer than the equinoctial year. The side-

real year, is the time elapsed, from the departure of the sun

from the meridian of any star, until it arrives at the same

meridian again, and consists of 365 d. 6 A. 9 m. 9 5.

As the stars are really the fixed points in space, this latter Cause of

period is the apparent revolution of the sun ; and the shorter
dlfferenC8,

period, for the equinoctial year, is caused by the motion of

the equinoctial points to the westward, called the precession

of the equinoxes. Since astronomers first began to record

observations, the fixed stars have increased, in right ascension,

about 2 hours, in time, or 30 degrees of arc.

The mean annual precession of the equinoxes is 50 ".1 of

arc ; which will make a revolution, among the stars, in 25868

years.*

* The computation is thus : As 50".l is to the number of seconds in

360 degrees ; so is one year to the number of years. Which gives

25868 years, nearly.

"We say, the stars increase in right ascension ; and this is true ; but

the stars do not move— they are fixed; the meridian moves from the

stars,

D
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CHAPTER IV.

GEOGRAPHY OF THE HEAVENS.

chap, iv. ^ 45, ) The fixed stars are the only landmarks in astrono-

Groups of my, in respect to both time and space. They seem to have

been thrown about in irregular and ill- defined groups and

clusters, called constellations. The individuals of these groups

and clusters differ greatly as to brightness, hue, and color

;

but they all agree in one attribute— a high degree of perma-

nence, as to their relative positions in the group; and the

groups are as permanent in respect to each other. This has

procured them the title of fixed stars ; an expression which

must be understood in a comparative, and not in an absolute,

sense ; for, after long investigation, it is ascertained that

some of them, if not all, are in motion ; although too slow to

be perceptible, except by very delicate observations, conti-

nued through a long series of years.

Magni- The stars are also divided into different classes, according

stars

8 e

^° ^ne^r degree of brilliancy, called magnitudes. There are

six magnitudes, visible to the naked eye; and ten telescopic

magnitudes— in all, sixteen.

The brightest are said to be of the first magnitude ; those

less bright, of the second magnitude, etc. ; the sixth magni-

tude is just visible to the naked eye.

One star The stars are very unequally distributed among these

of the first classes ; nor do all astronomers agree as to the number be-
magm u e.

jongjng £ eac|j . for j^ jg impossible to tell where one class

ends, and another begins ; nor is it important, for all this is

but a matter of fancy, involving no principle. In the first

magnitude there is really but one star ( Sirius ) ; for this is

manifestly brighter than any other; but most astronomers

put 15 or 20 into this class.

The second magnitude includes from 50 to 60 ; the third,

about 200, the numbers increasing very rapidly, as we descend

in the scale of brightness.

From some experiments on the intensity of light, it has
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been determined, that if we put the light of a star, of the Chap. iv.

average 1st magnitude, 100, we shall have :

1st magnitude = 100 4th magnitude = 6

2d " = 25 5th " =2
3d " = 12 6th " =1

On this scale, Sir William Hersehel placed the brightness of

Sirius at 320.

Ancient astronomy has come down to us much tarnished

with superstition, and heathen mythology. Every constella-

tion bears the name of some pagan deity, and is associated

with some absurd and ridiculous fable, yet, strange as it may

appear, these masses of rubbish and ignorance— these clouds

and fogs, intercepting the true light of knowledge, are still

not only retained, but cherished, in many modern works, and

dignified with the name of astronomy.

Merely as names, either to constellations or to individual Ancient

stars, we shall make no objections; and it would be useless, f
ames must

. .
be conti-

if we did ; for names long known, will be retained, however RUe d.

improper or objectionable ; hence, when we speak of Orion,

the Little Dog, or the Great Bear, it must not be understood

that we have any great respect for mythology.

It is not our purpose now to describe the starry heavens—
to point out the variable, double, and multiple stars— the

Milky Way and nebulae ; these will receive special attention

in some future chapter ; at present, our only aim is to point

out the method of obtaining a knowledge of the mere ap-

pearance of the sky, to the common observer, which may be

called the geography of the heavens.

To give a person an idea of locality, on the earth, we refer

to points and places supposed to be known. Thus, when we

say that a certain town is 15 miles north-west of Boston, a

ship is 100 miles east of the Cape of Good Hope, or a cer-

tain mountain 10 miles north of Calcutta, we have a pretty

definite idea of the localities of the town, the ship, and the

mountain, on the face of the earth, provided we have a clear

idea of the face of the earth, and know the position of Boston,

the Cape of Good Hope, and Calcutta.

So it is with the geography of the heavens ; the apparent

4
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Chap, iv. surface of the whole heavens must be in the mind, and then

the localities of certain bright stars must be known, as land-

marks, like Boston, the Cape of Good Hope, and Calcutta.

stars about Tffe g^aH now make some effort to point out these land-

marks. The North Star is the first, and most important to

be recognized ; and it can always be known to an observer, in

any northern latitude, from its stationary appearance and alti-

tude, equal to the latitude of the observer. At the distance of

about 32 degrees from the pole, are seven bright stars, between

the 1st and 2d magnitudes, forming a figure resembling a

dipper, four ofthem forming the cup, and three the handle. The

two forming the sides of the cup, opposite to the handle, are

always in a line with the North Star ; and are therefore called

pointers ; they always point to the North Star. The line join-

ing the equinoxes, or the first meridian of right ascension,

runs from the pole, between the other two stars forming the

cup. The first star in the handle, nearest the cup, is called

Alioth, the next Mizar, near which is a small star, of the 4th

magnitude; the last one is Benetnasch. The stars in the

handle are said to be in the tail of the Great Bear.

About four degrees from the pole star, is a star of the 3d

magnitude, e TJrsw Minoris. A line drawn through the pole

(not pole star), and this star will pass through, or very near,

the poles of the ecliptic and the tropics. A small constella-

tion, near the pole, is called Ursa Minor, or the Little Bear.

An irregular semicircle of bright stars, between the dipper

and the pole, is called the Serpent.

imaginary jf a \{ne ]je drawn from i Ursce Minoris, through the pole

staAo st

r

a

°

r

m
star, and continued about 45 degrees, it will strike a very

beautiful star, of the 1st magnitude, called Capella. Within

five degrees of Capella are three stars, of about the 4th mag-

nitude, forming a very exact isosceles triangle, the vertical

angle about 28 degrees. A line drawn from Alioth, through

the pole star, and continued about the same distance on the

other side, passes through a cluster of stars called Cassiopea

in Iter chair. The principal star in Cassiopea, with the pole

star and Capella, form an isosceles triangle, Capella at the

vertex.
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( 46. ) More attention has been paid to the constellations Chap, iv.

along the equator and ecliptic, than to others in remoter Ecliptic

regions of the heavens, because the sun, moon, and planets,
defined -

traverse through them. The ecliptic is the sun's apparent

annual path among the stars ( so called because all eclipses,

of both sun and moon, can take place only when the moon is

either in or near this line).

Eight degrees on each side of the ecliptic is called the Signs of

zodiac ; and this space the ancients divided into 12 equal
x ie z0 iac '

parts ( to correspond with the 12 months of the year ), and

each part (30°) is called a sign— and the whole, the

signs of the zodiac. These divisions are useless ; and, of late

years, astronomers have laid them aside; yet custom and

superstition will long demand a place for them in the common

almanacs.

The signs of the zodiac, with their symbolic characters, are

as follows: Aries T, Taurus & , Gemini n, Cancer vq, Leo ££,

Virgo n}7, Libra ^, Scorpio rf|, Sagittarius £ , Capricornus YJ,

Aquarius ox, Pisces X-
Owing to the precession of the equinoxes, these signs do

not correspond with the constellations, as originally placed

;

the variation is now about 30 degrees; the stars remain in

their places; and the first meridian, or first point of Aries,

has drawn back, which has given to the stars the appearance

of moving forward.

Beginning with the first point of Aries as it now stands, Method of

no prominent star is near it ; and, going along the ecliptic to tra<>ing the

the eastward, there is nothing to arrest special attention,

until we come to the Pleiades, or Seven Stars, though only

six are visible to the naked eye. This little cluster is so well

known, and so remarkable, that it needs no description. South-

east of the Seven Stains, at the distance of about 18 degrees,

is a remarkable cluster of stars, said to be in the BulVs Head;

the largest star, in this cluster, is of the 1st magnitude, of a

red color, called Aldebaran. It is one of the eight stars se-

lected as points from which to compute the moon's distance,

for the assistance of navigators.

This cluster resembles an A, when east of the meridian, and

stars.
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Chap, iv . a y, when west of it. The Seven Stars, Aldeharan, and Ca-

pella, form a triangle very nearly isosceles— Capella at trie

vertex. A line drawn from the Seven Stars, a little to the

west of Aldeharan, will strike the most remarkable constella-

tion in the heavens, Orion (it is out of the zodiac, however,)
;

some call it the Ell and Yard. The figure is mainly distin-

guished by three stars, in one direction, within two degrees

of each other ; and two other stars, forming, with one of the

three first mentioned, another line, at right angles with the

first line.

The five stars, thus in lines, are of the 1st or 2d magnitude.

A line from the Seven Stars, passing near Aldeharan and

through Orion, will pass very near to Sirius, the most bril-

liant star in the heavens. The ecliptic passes about midway

between the Seven Stars and Aldebaran, in nearly an eastern

direction. Nearly due east from the northernmost and bright-

est star in Orion, and at the distance of about 25 degrees, is

the star Procyon ; a bright, lone star.

The northernmost star in Orion, with Sirius and Procyon,

form an equilateral triangle.

The con- Directly north of Procyon, at the distances of 25 and 30
steiiations <wrees, are two bright stars, Castor and Pollux. Castor is
are above the ° °

horizon, and the most northern. Pollux is one of the eight lunar stars.

visible every Thus we might run over that portion of the heavens which is

ring the win- ever visible to us ; and by this method every student of astro-

ter season, nomy can render himself familiar with the aspect of the sky

;

but it is not sufficiently definite and scientific to satisfy a ma-

thematical mind.

(47.) The only scientific method of defining the position

of a place on the earth, is to mention its latitude and longitude ;

and this method fully defines any and every place, however

unimportant and unfrequented it may be : so in astronomy, the

only scientific methods of defining the position of a star, is to

mention its latitude and longitude, or, more conveniently, its

, right ascension and declination.
General J

and indefi- It is not sufficient to tell the navigator that a coast makes
mte descnp-

Q^
«

n svich a direction from a certain point ; and that it is so
tions not sa- x

tisfactory. far to a certain cape ; and, from one cape to another, it is
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about 40 miles south-west— he would place very little reli- Chap, iv.

ance on any such directions. To secure his respect, and what con-

command his confidence, the latitude and longitude of every scutes a de-

point, promontory, river, and harbor, along the coast, must be
scriptioru

given; and then he can shape his course to any point, or

strike in upon it from the indefinite expanse of a pathless sea.

So with an astronomer; while he understands and appreciates

the rough and general descriptions, such as we have just given,

he requires the certain description, comprised in right ascension

and declination.

Accordingly, astronomers have given the right ascensions

and declinations of every visible star in the heavens ( and of

very many that are invisible ), and arranged them in tables,

in the order of right ascension.

There are far too many stars, for each to have a proper John Bay-

name; and, for the sake of reference, Mr. John Bayer, of
er

* "ie °
' 'of reference-

Augsburg, in Suabia, about the year 1603, proposed to denote

the stars by the letters of the Greek and Roman alphabets

;

by placing the first Greek letter, «, to the principal star in

the constellation; $ to the second in magnitude; y to the

third; and so on; and if the Greek alphabet shall become

exhausted, then begin with the Roman, a, b, c, etc.

" Catalogues of particular stars, in sections of the heavens, Particular

have been published by different astronomers, each author
catalosues -

numbering the individual stars embraced in his list, according

to the places they respectively occupy in the catalogue."

These references to particular catalogues are sometimes

marked on celestial globes, thus ; 79 H ; meaning that the

star is the 79th in Herschel's catalogue; 37 M, signifies the

37th number in the catalogue of Mayer, etc.

Among our tables will be found a catalogue of a hundred

of the principal stars, insertedfor the purpose of teaching a defi-

nite and scientific method of making a learner acquainted with the

geography of the heavens.

To have a clear understanding of the method we are about

to explain, we again consider that right ascension is reckoned

from the equinox, eastward along the equator, from h. to

24 hours. When the sun comes to the equator, in March, its



44 ASTRONOMY.

Chap. rv. right ascension is ; and from that time its right ascension

increases about four minutes in a day, throughout the year,

to 24 hours : and then it is again at the equinox, and the 24

hours are dropped.

when it is
-^u* whatever be the right ascension of the sun, it is appa-

apparent rent noon when it comes to the meridian ; and the more east-

ward a body is, the later it is in coming to the meridian. Thus,

if a star comes to the meridian at two o'clock in the afternoon

( apparent time ), it is because its right ascension is two hours

greater than the right ascension of the sun.

Therefore, if from the right ascension of a star we subtract

the right ascension of the sun, the remainder will be the time

for that star to come to the meridian.

Connection -^ we Put ( -# * ) to represent the star's right ascension;

between R, and (R O) to represent that of the sun; and T to represent

ridian pas-
îe aPParenl ^me that the star passes the meridian, then we

sage shall have the following equation :

By transposition . . JR$cz=BO-\~T;

That is, the right ascension of a star ( or any celestial body ), is

equal to the right ascension of the sun, increased by the time that

the star ( or body ) comes to the meridian.

The right ascension of the sun is given, in the Nautical

Almanac ( and in many other almanacs ), for every day in the

year, when the sun is on the meridian of Greenwich; but

many of the readers of this work may not have such an alma-

nac at hand, and, for their benefit, we give the right ascen-

sion for every fifth day of the year 1846 ( Table III); the

local time is the apparent noon at Greenwich.

We take the year 1846, because it is the second year after

leap year; and the sun's right ascension for any day in that

year, will not differ more than two minutes from its right

ascension, on the same day, of any other year ; and will cor-

respond with the right ascension of the same day in 1850, by

adding 7f^ seconds ; and so on for each succeeding period

of four years.

To apply the preceding equation, the observer should ad-

just his watch to apparent time ; that is, apply the equation
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of time, and know the direction of Ms meridian, at least chap. iv.

approximately. In short, by the range of definite objects,

he must be able to decide, within two or three minutes, when a

celestial body is on his meridian.

Thus, all prepared, we will give a few

EXAMPLES.

1. On the 20th of May ( no matter what year, if not many Examples

years from 1850), in the latitude of 40° J\\ and longitude of
tofind stars -

80° W., at 9 h. 24 m. in the evening, clock time, I observed a

lone, bright star, of about the 2d magnitude, on the meridian. It

had a bland, white light ; and, as I had no instrument to mea-

sure its altitude, I simply judged it to be 4:2°, What star

was it ?

We decide the question thus

:

Time per watch, - - - 9 h. 24 m. 00 s.

Equation of time ( see Table ), add 3 46

Apparent time, 9 27 46

Lon. 80° W., equal, in time, to 5 20 00

Apparent time, at Greenwich, - 14 47 46

The right ascension of the sun, on the 20th of May (noon, Correction

Greenwich time), is 3h. 47m. 15 s. ( see Table III). The... R. a
increase, estimated at the rate of 4 minutes in 24 hours, will

give 1 minute in 6 hours, or 10 seconds to 1 hour ; this, for

14 h. 47 m., gives 2 m. 27 s.

Hence, the right ascension of the sun, at the time of obser-

vation, was - - - - 3 h. 49 m. 42 s.

Apparent time of observation, - 9 27 46

Eight ascension of the star, - - 13 h. 17 m. 28 s.

By inspecting the catalogue of the stars ( Table II ), we

find the right ascension of Spica to be 13 h. 17 m. 08 s., and its

declination, 10° 21' 35".

But, in the latitude of 40° N., the meridian altitude of the

celestial equator must be 50° ; and any stars south of that

must be of a less altitude. Therefore, the meridian altitude

of Spica must be 50°, less 10° 21', or 39° 39' ; but the star

f observed, I simply judged to have had an altitude of 42°.

of the sun'



46 ASTRONOMY.

Chap. iv. It is very possible that I should err, in altitude, two or three

degrees ; * but, it is not possible that the star I observed should

be any other star than Spica ; for there is no other bright star

near it. This is one of the lunar stars.

Personal Being now certain that this star is Spica, I can observe it

observations
jn relation to its appearance— the small stars that are near

recommend- . . .

€d# it, and the clusters of stars that are about it— or the fact,

that no remarkable constellation is near it. In short, I can

so make its acquaintance as to know it ever after ; but I am
unable to convey such acquaintance to others, by language

;

true knowledge, in this particular, demands personal obser-

vation,
continua- % Qn tU u , f July, 1846, at 9 k. 34m., P. M., mean

turn ofexam- ,

y J *' ' '
'

p

pies to find time per watch, a star of the 1st magnitude came to the meridian.

stars. Iwas in latitude 39° JV., and about 75° W. The star was of

a deep red color, and, as near as my judgment could decide, its

altitude was between 25° and 30°. Two small stars were near

it, and a remarkable cluster of smaller stars were west and north-

west of it, at the distances of 5°, 6°, or 7°. What star was this ?

Time per watch, - - - - 9 h. 34 m. 00 s.

Equa. of time ( subtr. from mean time

)

3 48

Apparent time, - - - - 9 30 12

Longitude, 75°, equal to - - 5

Apparent time, at Greenwich, - - 14 h. 30 m. 00 s.

By examining the table for the sun's R. A., I find that,

On the 1st of July, it is - - 6h. 40 m. 00 s.

On the 5th, - - - - 6 56 30

Variation, for 4 days, - - - 16 m. 30 s.

At this rate, the variation for 2 days, 14^ hours, cannot be

* Ten or twenty degrees, near the horizon, is apparently a much
larger space than the same number of degrees near the zenith. Two
stars, when near the horizon, appear to be at a greater distance asunder

than when their altitudes are greater. The variation is a mere optical

illusion; for, by applying instruments, to measure the angie in the

different situations, we find it the same. Unless this fact is taken into

consideration, an observer will always conceive the altitude of any ob-

ject to be greater than it really is, especially if the altitude is less thaa

45 degrees.
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far from 10 m. .10 s. ; and the right ascension of the sun, at Chap rv

the time of observation, must have been An exam-

Nearly ..-_-- 6K. 50 m. 10 B, •££*«
To which add, apparent time, - - 9 30 12

Right ascension of the star, - - 16 h. 20 m. 22 s.

By inspecting the catalogue of stars, I find Antares to have

a right ascension of 16h. 20m. 2s. and a declination of 26° 4',

south.

In the latitude mentioned, the meridian altitude of the

celestial equator must be 50° 0'

Objects south ofthatplane must be less, hence (sub.) 26 4

Meridian altitude of Antares, in lat. 50°, 23° 56

As the observation corresponds to the right ascension of An-

tares ( as near as possible, considering errors in observation,

and probably in the watch ), and as the altitudes do not

differ many degrees ( within the limits of guess work ), it is

certain that the star observed was Antares. By its peculiar

red color, and the remarkable clusters of stars surrounding it,

I shall be able to recognize this star again, without the

trouble of direct observation.

3. On the night of the 20th of June, 1846, latitude 40° iV!, and To find

longitude 75° W., at 1 h. 48 m. past midnight, clock time, lob- Altair -

served a star of the 1st magnitude nearly on the meridian; two

other stars, of about the 3d magnitude, within 3° of it ; the three

stars forming nearly a right line, north and south ; the altitude

of the principal star about 60°. What star was it?

In these examples, the time must be reckoned on from noon

to noon again ; therefore 1 h. 48 m. after midnight must be

written, -

Equation of time, to subtract, -

Apparent time, -

Longitude, -

Greenwich apparent time, June 20,

Sun's right ascension, at this time,

Time, -

Star's right ascension, - - 19 h. 44 m. 28 s.

13 h. 48 m. 00 s.

1 12

13 46 48

5

18 h. 46 m. 48 s.

5h. 57 m. 40 s.

13 46 48
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Chap. iv. By inspecting the catalogue of stars, we find the right

ascension of Altair 19 h. 43 m. 15 s.., and its declination 8°

27' M; In latitude 40° N., the declination of 8° 27' N. will

give a meridian altitude of 58° 27' ; and, in short, I know
the star observed must be Altair, and the two other stars,

near it, I recognize in the catalogue.

By taking these observations, any person may become ac-

quainted with all the principal stars, and the general aspect

of the heavens ; but no efforts, confined merely to the study

of books, will accomplish this end.

The equation in Art. 47 is not confined to a star ; it may
be any heavenly body, moon, comet, or planet. The time of

passing the meridian is but another term for right ascension.

If observations are made on any bright star, and no corre-

sponding star is found in the catalogue, such a star would

probably be a planet; and if a planet, its right ascension

will change.
The South- /-^ n rpke ^qjq region of stars south of declination 50°,

em Cross, .

V J
.

& '

and Magei- is never seen m latitude 40° north, nor from any place nortn

lan Clouds. f that parallel ; and, to register these stars in a catalogue, it

has been necessary for astronomers to visit the southern

hemisphere, as we have before mentioned ; but these stars

are mostly excluded from our catalogues. There are several

constellations, in the southern region, worthy of notice— the

Southern Cross and the Magellan Clouds. The Southern

Cross very much resembles a cross ; so much so, that any

person would give the constellation that appellation. Its

principal star is, in right ascension, 12 h. 20 m., and south

declination 33°.

The Magellan Clouds were at first supposed to be clouds

by the navigator Magellan ; who first observed them. They

are four, in number ; two are white, like the Milky Way, and

have just the appearance of little white clouds. They are

nefadce. The other two are black— extremely so— and are

supposed to be places entirely devoid of all stars
;
yet they

are in a very bright part of the Milky Way : Bight ascen-

sion, 10 h. 40 m., decimation, 62° south.
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SECTION II.

DESCRIPTIVE ASTRONOMY.

CHAPTER I.

FIKST CONSIDERATIONS AS TO THE DISTANCES OF THE HEAVENLY

BODIES. SIZE AND EXACT FIGURE OF THE EARTH.

( 49.) Hitherto we have con-

sidered only appearances, and

have not made the least inquiry,

as to the nature, magnitude, or

distances of the celestial objects.

Abstractly, there is no such

thing as great and small, near

and remote; relatively speaking,

however, we may apply the terms

great, and very great, as regards

both magnitude and distance.

Thus an error of Un feet, in the

measure of the length of a

building, is very great— when

an error of ten rods, in the mea-

sure of one hundred miles, would

be too trifling to mention.

Now if we consider the dis-

tance to the stars, it must be

relative to some measure taken

as a standard, or our inquiries

will not be definite, or even in-

telligible. We now make this C
general inquiry : Are the heavenly bodies near to, or remotefrom,

the earth? Here, the earth itself seems to be the natural

standard for measure ; and if any body were but two, three,

or even ten times the diameter of the earth, in distance, we
4 E

Chap. I.

Distance

is but rela-

tive.

Are the

heaven] j' bo-

dies remote 1
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cha^i. should call it near; if 100, 200, or 2000 times the diametei

of the earth, we should call it remote. To answer the

inquiry. Are the heavenly bodies near or remote ? we must put

them to all possible mathematical tests ; a mere opinion is of

no value, without the foundation of some positive knowledge.

Let 1, 2 ( Fig. 6 ), represent the absolute position of two

stars ; and then, if A B C represents the circumference of the

earth, these stars may be said to be near ; but if a b c repre-

sents the circumference of the earth, the stars are many times

the diameter of the earth, in distance, and therefore may
The means he said to be remote. If AB C is the circumference of

this question
*ne ear*n

j £n relation to these stars, the apparent distance of

pointed out. the two stars asunder, as seen from A, is measueed by the

angle 1 A 2 ; and their apparent distance asunder, as seen

from the point B, is measured by the angle 1 B 2 ; and when

the circumference AB C is very large, as represented in our

figure, the angle A, between the two stars, is manifestly

greater than B. But if ah c is the circumference of the

earth, the points a and 6 are relatively the same as A and B.

And, it is an ocular demonstration that the angle under which

the two stars would appear at a, is the same, or nearly the

same, as that under which they would appear at h ; or, at

least, we can conceive the earth so small, in relation to the

distance to the stars, that the angle under which two stars

would appear, would be the same seen from any point on the

earth.

The con- Conversely, then, if the angle under which two stars appear

is the same as seen from all parts of the earth's surface, it is

certain that the diameter of the earth is very small, compared

with the distance to the stars ; or, which is the same thing,

the distance to the stars is many times the diameter of the earth.

Therefore observation has long since decided this important

point. Sir John Herschel says :
" The nicest measurements

of the apparent angular distance of any two stars, inter se,

taken in any parts of their diurnal course ( after allowing for

the unequal effects of refraction, or when taken at such times

that this cause of distortion shall act equally on both ), mani-

fest not the slightest perceptible variation. Not only this, but

elusion.
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Another

illustration

of the great

distance to

the stars.

at whatever point of the earth's surface the measurement is chap^i.

performed, the results are absolutely identical. No instruments

ever yet invented by man are delicate enough to indicate, by

an increase or diminution of the angle subtended, that one

point of the earth is nearer to or farther from the stars than

another."

( 50.) Perhaps the following view of this subject will be

more intelligible to the general reader.

Let Z HN
II represent

the celestial

equator, as

seen from the

equator on

the earth; and

if the earth be

large, in rela-

tion to the

distance to

the stars, the

observer, will

be at z' ; and

the part ofthe

celestial arc above his horizon, would be represented by AZ B,

and the part below his horizon by A NB, and these arcs are ob-

viously unequal ; and their relation would be measured by the

time a star or heavenly body remains above the horizon, com-

pared with the time below it ; but by observation ( refraction

being allowed for ), we know that the stars are as long above

the horizon as they are below; which shows that the ob-

server is not at z
r

, but at z, and even more near the center

;

so that the arc A Z B, is imperceptibly unequal to the arc H
NH\ that is, they are equal to each other; and the earth

is comparatively but a point, in relation to the distance to

the stars.

This fact is well established, as applied to the fixed stars,

sun. and planets ; but with the moon it is different ; that body
an
tion

The moon
excep-
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Chap
'

*• is longer below the liorizon than above it ; which shows that

its distance from the earth is at least measurable.

( 51.) It is improper, at present, or rather, it is too advanced

an age, to pay any respect to the ancient notion, that the earth

is an extended plane, bounded by an unknown space, inacces-

sible to men. Common intelligence must convince even the

child, that the earth must be a large ball, of a regular, or an

irregular shape; for every one knows the fact, that the earth

has been many times circumnavigated; which settles the

question.

Earth's In addition to this, any observer may convince himself, that

surface con- the surface of the sea, or a lake, is not a plane, but everywhere
vex„

convex ; for, in coming in from sea, the high land, back in the

country, is seen before the shore, which is nearer the observer;

the tops of trees, and the tops of towers, are seen before their

bases. If the observer is on shore, viewing an approaching

vessel, he sees the topmast first ; and from the top, downward,

the vessel gradually comes in view. This being the case on

every sea, and on every portion of the earth, proves that the

surface of the earth is convex on every part— hence if must

be a globe, or nearly a globe. These facts, last mentioned,

are sufficiently illustrated by

Fig. 8.

(52.) On the supposition that the earth is a sphere, there

are several methods of measuring it, without the labor of

applying the measure to every part of it. The first, and

most natural method (which we have already mentioned), is

that of measuring any definite portion of the meridian, and

from thence computing the value of the whole circumference.

How to Thus, if we can know the number of degrees, and parts of

find the cu-
ft (Wree, in the arc AB (Fig. 9), and then measure the dis-

cumference °"; " vox
of the earth, tance in miles, we in fact virtually know the whole circumfe-
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AP. I.

How to

find the dia-

meter.

rence ; for whatever part the arc A B is of 360 degrees, the ch

same part, the number of miles in A B, is of the miles in the

whole circumference.

To find the arc A B, the latitudes of the two points, A and

B, must be very accurately taken, and their difference will

give the arc in degrees, minutes, and seconds. Now A B must

be measured simply in distance, as miles, yards, or feet; but

this is a laborious operation, requiring great care and perse-

verance, To measure directly any considerable portion of a

meridian, is indeed impossible, for local obstructions would

soon compel a deviation from any definite line ; but still the

measure can be continued, by keeping an account of the de-

viations, and reducing the measure to a meridian line.

Let m be the miles or feet in A B ; then the whole circum-

ference will be expressed by
(

( 53. ) When we know the

hight of a mountain, as re-

presented in Fig. 9, and at

the same time know the dis-

tance of its visibility from

the surface of the earth;

that is, know the line M

A

;

then we can compute the

line M C, by a simple theo-

rem in geometry ;, thus,

CMXMB=(AM) 2
;

n „- (AMY

Now as the right hand

member of this equation is known. CM is known; and as

part of it (MB ) is already known, the other part, B C, the

diameter of the earth, thus becomes known.

This method would be a very practical one, if it were not objection

for the uncertainty and variable nature of refraction near the t0 this me -

borizon ; and for this reason, this method is never relied upon,
lhod

although it often well agrees with other methods. As an ex-

ample under this method, we give the following

:
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chap, i. A mountain, two miles in perpendicular hight, was seen

from sea at a distance of 126 miles. If these data are cor-

rect, what then is the diameter of the earth

Solution; MC=^^-=63x126=7938. 5(7=7936.

Dip of the ( 54. ) This same geometrical theorem serves to compute

horizon. the dip of the horizon. The true horizon is a right angle from

the zenith ; hut the navigator, in consequence of the motion

of his vessel, can never use the true horizon ; he must use

the sea offing, making allowance for its dip. If the naviga-

tor's eye were on a level with the sea, and the sea perfectly

stable, the true and apparent horizon would be the same.

But the observer's eye must always be above the sea ; and

the higher it is, the greater the dip ; and the amount of dip

will depend on the hight of the eye, and the diameter of the

earth. The difference between the angle AMC (Fig. 9),

and a right angle ( which is the same as the angle A EM),
is the measure of the dip corresponding to the hight BM.

For the benefit of navigators, a table has been formed,

showing the dip for all common elevations.*

* The dip is computed thus

:

The angle

at the center Put BC (Fig. 9) =JD, BM=h\
is equal to / T)

the dip. Then EM= ( « -H) 5 and {MAY= CMxMB=(JD+h)h.

By trigonometry, (EA) 2
: (MA)* : : R2

: tfm*AEM;

B2

That is, - - - — , : (B-\-h)h : : R 2
: tm. 2AEM

For very moderate elevations, h is extremely small, in rela-

tion to D ; and the second term of the proportion may be

Dh. (R represents the radius of the tables.) Making this

consideration, we have

B2

-j- : Dh : : R 2
: tsni.

2AEM;
4

Or, - - I) : h : : 4R2
: t&n. 2AEM;

Or, - - JD: Jl : : 2R : tm.AEM.
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( 55. ) All such computations are made on the supposition Chap. i.

that the earth is exactly spherical ; and it is, in fact, so nearly

spherical, that no corrections are required in consequence of

its deviation from that figure.

After correct views began to he entertained, as to the mag- The earth

nitude of the earth, and its revolution on an axis, philosophers not ex^ctiy

concluded that its equatorial diameter might be greater than
"

its polar diameter; and investigations have been made to

decide the fact.

If the earth were exactly spherical, it is plain that the cur-

vature over its surface would be the same in every latitude;

but if not of that figure, a degree would be longer on one part

of the earth than on another, " But," says Herschel, "when

we come to compare the measures of meridional arcs made in

various parts of the globe, the results obtained, although they

agree sufficiently to show that the supposition of a spherical

figure is not very remote from the truth, yet exhibit discord-

ances far greater than what we have shown to be attributable

to error of observation ; and which render it evident that the

hypothesis, in strictness of its wording, is untenable. The

following table exhibits the lengths of a degree of the meri-

dian ( astronomically determined as above described), ex-

By inspecting this last proportion, it will be perceived that

the tangent of the dip varies as the square root of the eleva-

tion. To apply this proportion, we adduce the following

problem

:

The diameter of the earth is 7912 miles ; the elevation of

the eye, above the surface, is ten feet. What is the dip?

2E . . log. .10.301030

i/T, . log. .500000

Product of the means (log.), - - - - 10.801030

2) miles, 7912, - - log. - 3.898286

Feet, - 5280, - - log. - 3.722634

2 ) 7.620920

JD in feet, - - (log.) 3.810460 . . 3 810460

tan. 3' 22"' - - - 6.990570
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chap, i . pressed in British standard feet, as resulting from actual

measurement, made with all possible care and precision, by

commissioners of various nations, men of the first eminence,

supplied by their respective governments with the best instru-

ments, and furnished with every facility which could tend to

insure a successful result of their important labors.

Country.

Sweden
Russia
England
France
France . . ,

E ome
America, U. S..

.

Cape of G. Hope
India ..........
India

Peru

Latitude
ofMiddle of

the Arc.

66 20 10

58 17 37

52 35 45
46 52 2

44 51 2
42 59
39 12

33 18 30
16 8 22
12 32 21

1 31

a,c
!Lengthof|A c

, Degree ]measured. < f . ,

concluded
Observers.

1°37'

3 35
3 57

8 20
12 22
2 9

I 28
1 13

15 57
1 34
3 7

19"

5

13

13
47
45m
40
56
3

365782
365368
364971
364872
364535
364262
363786
364713
363044
363013
362808

Svanberg.
Struve.

Roy, Kater.
Lacaille, Cassini.

Delambre, Mechain.
Boscovich,
Mason, Dixon.
Lacaille.

Lambton, Everest.

Lambton.
Condamine, etc.

The earth <•' It is evident, from a mere inspection of the second and

-}-e oies
f°ur*n columns of this table, that the measured length of a de-

fchan at the gree increases with the latitude, being greatest near the poles,

equator. ^ jeagt near^ equator
»

"Assuming," continues Herschel, "that the earth is an

ellipse, the geometrical properties of that figure enable us to

assign the proportion between the lengths of its axes which

shall correspond to any proposed rate of variation in its cur-

vature, as well as to fix upon their absolute lengths, corre-

sponding to any assigned length of the degree in a given

latitude. Without troubling the reader with the investiga-

tion (which may be found in any work on the conic sections),

it will be sufficient to state that the lengths, which agree on

the whole best with the entire series of meridional arcs, which

have been satisfactorily measured, are as follow :
—

Feet. Miles.

Greater, or equatorial diam., =41,847,426=7925.648

Lesser, or polar diam., - - =41,707,620=7899.170

Difference of diameters, or
^ q one- 26 4^8

polar compression, - - -

The propcrtioa of the diameters is very nearly that of
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298 : 299, and their difference j^j of the greater, or a very Chap, l

little greater than ^lo"
( 56. ) The shape of the earth, thus ascertained by actual

measurement, is just what theory would give to a body of

water equal to our globe, and revolving on an axis in 24

hours ; and this has caused many philosophers to suppose that

the earth was formerly in a fluid state.

If the earth were a sphere, a plumb line at any point on Expiana-

its surface would tend directly toward the center of gravity
tl° n ofradlus

•*

m

°
"f

of curvature.

of the body; but the earth being an ellipsoid, or an oblate

spheroid, and the plumb lines, being perpendicular to the sur-

face at any point, do not tend to the center of gravity of the

figure, but to points as represented in Fig. 10.

The plumb line at H tends to

F, yet the mathematical center,

and center of gravity of the

figure, is at E. So at I, the

plumb line tends to the point G;

and as the length of a degree at

A, is to the length of a degree

at H, so is IG to IIF. If,

however, a passage were made

through the earth, and a body let drop through it, the body

would not pass from /to G; its first tendency at /would be

toward the point G; but after it passed below the surface, at

I, its tendency would be more and more toward the point E,

the center of gravity ; but it would not pass exactly through

that point, unless dropped from the point A, or the point C.

( 57. ) If the earth were a perfect and stationary sphere, F0rce f

the force of gravity, on its surface, would be everywhere the gravity diffe -

same ; but, it being neither stationary, nor a perfect sphere, rent rts of

the force of gravity, on the different parts of its surface, must the earth

;

be different. The points on its surface nearest its center of

gravity, must have more attraction than other points more

remote from the center of gravity ; and if those points which

are more remote from the center of gravity have also a rotary

motion, there will be a diminution of gravity on that account.

Let A B (Fig. 10) represent the equatorial diameter of
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Chap »
*• the earth, and CD the polar diameter; and it is obvious

that E will be the center of gravity, of the whole figure, and
Gravity di- ^at ^he force f gravity at Q and D will be greater than at

rotation.
any other points on the surface, because E C, or ED, are

less than any other lines from the point E to the surface.

The force of gravity will be greatest on the points C and D,

also, because they are stationary : all other points are in a

circular motion ; and circular motion has a tendency to depart

from the center of motion, and, of course, to diminish gravity.

The diminution of the earth's gravity by the rotation on its

axis, amounts to its 2J9 part,* at the equator. By this frac-

Compnta-

tion tof the

amount of

diminution.

Fig. 11

* Let D be the equatorial diameter

of the earth, F the versed sine of an arc,

corresponding to the motion in a second

of time, and c the chord, or arc ( for the

chord and arc of so small a portion of the

circumference will coincide, practically

speaking).

A portion of the earth's gravity, equal

to F, is destroyed by the rotation of the earth, and we are

now to compute its value.

By proportional triangles, F : c : : c : D;

Or F=
~D

(1)

The value of c is found by dividing the whole circumference

into as many equal parts as there are seconds in the time of

revolution. But the time of revolution is 23 h. 56 m. 4 s., ~
86164 seconds.

The whole circumference is

Therefore,

(3.1416)D;

(3.1416)D
(2)

By this value of c, we have F=-

(86164)

(3.1416)2j)
:

(86164) 2 '

The visible force of gravity, at the equator, is the distance

a body will fall the first second of time, expressed in feet.

Let us call this distance g. Now the part of gravity des-
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tion, then, is the weight of the sea about the equator lightened, Chap. i.

and thereby rendered susceptible of being supported at a

higher level than at the poles, where no such counteracting

force exists.

c2

troyed by rotation, as we have just seen, is -=
; therefore the

c2 \
whole force of gravity is (<7-j~7w

Our next inquiry is; what part of the whole is the part de- Ratio of the

diminution

stroyed? Or what part of (#+77) *s 7)?

Which, by common arithmetic, is,

c2

D c 2 1

9+i
9D^ 2+1

From™ - D'- (
86164) ,e*

or
° - <86164>

2

*rom(Z) D - J^gy °h ~
2 - ^tmyj) >

Hence.

gJD_ (86164)^ (86164)2(16.07)

~c^~~ (3.1416)^""(3.1416)2 (7925)(5280)'

By the application of logarithms, we soon find the value of

this expression to be 288.4. Therefore, gB —

-

V+l 289.4
c 2 '

We may now inquire, how rapidly the earth must revolve

on its axis, so that the whole of gravity would be destroyed

on the equator. That is, so that F shall equal g. Equation

C2

(1) then becomes, g=^, or c= tJgD.

But as often as c is contained in the whole circumference,

is the corresponding number of seconds in a revolution; that

is, the time in seconds must correspond to the expression,

£±m or, (3.1416)V£.
'gD
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Chap
- !• ( 58. ) It is this centrifugal force itself that changed the

shape of the earth, and made the equatorial diameter greater

than the polar. Here, then, we have the same cause, exer-

cising at once a direct and an indirect influence. The amount
Rotation f the former ( as we may see by the note ) is easily calcu-

and indirect ^e& ; that of the latter is far more difficult, and requires a

effect on gra- knowledge of the integral calculus; "But it has been clearly

treated by Newton, Maclaurin, Clairaut, and many other emi-

nent geometers ; and the result of their investigations is to

show, that owing to the elliptic form of the earth alone, and

independently of the centrifugal force, its attraction ought to

increase the weight of a body, in going from the equator to

the pole, by nearly its T
i^ *n Part 5 which, together with the

jig- th part, due from centrifugal force, make the whole quan-

tity T
i
¥ th part ; which corresponds with observations as

deduced from the vibrations of pendulums."— See Natural

Philosophy.

(59.) The form of the earth
g *

' is so nearly a sphere, that it is

considered such, in geography,

navigation, and in the general

problems of astronomy.

The average length of a de-
and geogra- mm WM \ \ ° °

phicai miles. fff \ \ gree is 69i English miles ; and,

as this number is fractional, and

inconvenient, navigators have ta-

P citly agreed to retain the ancient,

rough estimate of sixty miles to a degree ; calling the mile a

geographical mile. Therefore, the geographical mile is longer

than the English mile.

D, in feet, = (7925)(5280) ; g = 16.076. By the applica-

tion of logarithms, we find this expression to be 5069 seconds,

or 1 h. 24 m. 29 s. ; which is about 17 times the rapidity of

its present rotation.

In a subsequent portion of this work, we shall show how

to arrive at this result by another principle, and through

another operation.

English
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As all meridians come together at the pule, it follows that Chap, t,

a degree, between the meridians, will become less and less as

we approach the pole; and it is an interesting problem to

trace the law of decrease.*

* This law of decrease will become apparent, by inspecting

Fig. 12. Let Eq represent a degree, on the equator, and

Eq C a sector on the plane of the equator, and of course EC
is at right angles to the axis C P. Let D EI he any plane

parallel to Eq C; then we shall have the following proportion :

EC : DI : : EQ : BE.

In trigonometry, E C is known as the radius of the sphere

;

D /as the cosine of the latitude of the point D (the nume-

rical values of sines and cosines, of all arcs, are given in trigo-

nometrical tables) : therefore we have the following rule, to

compute the length of a degree between two meridians, on

any parallel of latitude.

Rule.— As radius is to the cosine of the latitude ; so is the

length of a degree, on the equator, to the length of a parallel de-

gree in that latitude.

Calling a degree, on the equator, 60 miles, what is the Example.

length of a degree of longitude, in latitude 42° ?

SOLUTION BY LOGARITHMS.

As radius (see tables), - - - 10.000000

Is to cosine 42° (see tables), - - - 9.871073

So is 60 miles (log.), - 1.778151

To 44-jSg-Vo miles
>

1.649224

At the latitude of 60°, the degree of longitude is 30 miles

;

the diminution is very slow near the equator, and very rapid

near the poles.

In navigation, the DE's are the known quantities ob- To reduce

tained by the estimations from the log line, etc. ; and the deP arture t0

navigator wishes to convert them into longitude, or, what
°ngl

"

is the same thing, he wishes to find their values projected on

the equator, and he states the proportion thus

:

DI : EC : : DE : EQ;
That is ; as cosine of latitude is to radius ; so is departure to

difference of longitude.

F
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CHAPTER II

PARALLAX, GENERAL AND HORIZONTAL. RELATION BETWEEN

PARALLAX AND DISTANCE. REAL DIAMETER AND MAGNI-

TUDE OF THE MOON.

Chap. h.
( 60. ) Parallax is a subject of very great importance in

astronomy ; it is the key to the measure of the planets— to

their distances from the earth— and to the magnitude of the

whole solar system.

Parallax in Parallax is the difference in position, of any body, as seen

from the center of the earth, andfrom its surface.

When a body is in the zenith of any observer, to him it has

no parallax; for he sees it in the same place in the heavens,

as though he viewed it from the center of the earth. The

greatest possible parallax that a body can have, takes place

when the body is in the horizon of the observer ; and this

parallax is called horizontal parallax. Hereafter, when we

speak of the parallax of a body, horizontal parallax is to be

understood, unless otherwise expressed.

A clear and summary illustration of parallax in general, is

given by Fig. 13.

Horizontal Fig> 13 J^et Q ^q
parallax. ,

"* ihe center of

the earth, Z
the observer,

and P, or p,

the position

of a body.

From the

center of the

earth, the

body is seen

in the direc-

tion of the

line CP, or Cp; from the observer at Z, it. is seen in the
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direction of Z P, "or Zp\ and the difference in direction, of Chap. ii.

these two lines, is parallax. When P is in the zenith, there

is no parallax ; when P is in the horizon, the angle ZP C is

then greatest, and is the horizontal parallax.

We now perceive that the horizontal parallax of any body Relation

is equal to the apparent semidiameter of the earth, as seen from between Pa-

the body. The greater the distance to the body, the less the distance.

horizontal parallax ; and when the distance is so great that

the semidiameter of the earth would appear only as a point,

then the body has no parallax. Conversely, if we can detect

no sensible parallax, we know that the body must be at a

vast distance from the earth ; and the earth itself appear as

a point from such a body, if, in fact, it were even visible.

Trigonometry gives the relation between the angles and

sides of every conceivable triangle; therefore we know all

about the horizontal triangle Z CP, when we know CZ and

the angles. Calling the horizontal parallax of any body p,

and the radius of the earth r, and the distance of the body

from the center of the earth x ( the radius of the table always

R, or unity), then, by trigonometry, we have,

R : x : : sin. p : r

;

Therefore, - - - x=( -. Jr.
\sm.p/

From this equation we have the following general rule, to

find the distance to any celestial body :

Kule.— Divide the radius of the tables by the sine of the i> uie t0

horizontal parallax. Multiply that quotient by the semidiameter find the dis-

of the earth, and tlie product will be the residt.
tances to the

This result will, of course, be in the same terms of linear ^ A -

DOQies.

measure as the semidiameter of the earth ; that is, if r is in

feet, the result will be in feet ; if r is in miles, the result will

be in miles, etc. : but, for astronomy, our terrestrial measures

are too diminutive, to be convenient (not to say inappropri-

ate) ; and, for this reason, it is customary to call the semidia-

meter of the earth unity ; and then the distance of any body

from the earth is simply the quotient arising from dividing

the radius, by the sine of the horizontal parallax, pertaining to
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Chap^ii. the body ; and it is obvious, that the less the parallax, the

greater this quotient ; that is, the greater the distance to the

body; and the difficulty, and the only difficulty, is to obtain

the horizontal parallax.

Horizontal ( 61.) The horizontal parallax cannot be directly observed,

not be ob- ^y reason of the great amount and irregularity of horizontal

served. refraction ; but if we can obtain a parallax at any considera-

ble altitude, we can compute the horizontal parallax there-

from.*

The fixed stars have no sensible horizontal parallax, as we

have frequently mentioned ; and the parallax of the sun is

so small, that it cannot be directly observed ( see 40 ) ; the

moon is the only celestial body that comes forward and pre-

sents its parallax ; and from thence we know that the moon

is the only body that is within a moderate distance of the

earth.

That the moon had a sensible parallax, was known to the

earliest observers, even before mathematical instruments were

at all refined; but, to decide upon its exact amount, and

detect its variations, required the combined knowledge and

observations of modern astronomers.

Deduction * In the two triangles Zp C and ZP C (Fig. 13), call the

angle p the parallax in altitude, and the angle ZP C= x,

and Cp and CP each equal D. Then, by trigonometry,

we have

sin. pZC : sin.p :: D : r;

And - - R : sin. x : : D : r.

Therefore, by equality of ratios (see algebra),

sin. pZC : sm.p : : R : sin. x.

But the sine pZC is the cosine of the apparent zenith dis-

tance. Therefore,

R sin. p
sin. x= : ;

cos. zenith distance

That is ; the sine of the horizontal parallax is equal to the sine

of the parallax in altitude, into the radius, and divided by the

cosine of the apparent zenith distance.

:arallax.
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The lunar parallax was first recognized in European and chap. ii.

northern countries, by its appearing to describe more than a By what

semicircle south of the equator, and less than a semicircle north observatlons

r
.

the lunar pa-

of that line ; and, on an average, it was observed to be a longer rauax was

time south, than north of the equator ; hut no such inequality first indica-

could be ol servedfrom the region of the equator.

Observers at the south of the equator, observing the posi-

tion of the moon, see it for a longer time north of the equator

than south of it ; and, to them, it appears to describe more than

a semicircle noi th of the equator.

Here, then, we have observation against observation, unless

we can reconcile them. But the only reconciliation that can

be made, is to conclude that the moon is really as long in one

hemisphere as the other ; and the observed discrepancy must

arise from the positions of the observers ; and when we reflect

that parallax must always depress the object ( see Fig. 13 ),

and throw it farther from the observer, it is therefore per-

fectly clear that a northern observer should see the moon

farther to the south than it really is ; and a southern observer

see the same body farther north than its true position.

( 62.) To find the amount of the lunar parallax, requires

the concurrence of two observers. They should be near the

same meridian, and as far apart, in respect to latitude, as

possible ; and every circumstance, that could affect the result,

must be known.

The two most favorable stations are Greenwich (England) Observa-

and the Cape of Good Hope. They would be more favorable
* l(

!"
s

^°
ob '

if they were on the same meridian ; but the small change in mount of pa-

declination, while the moon is passing from one meridian to
ra ax

the other, can be allowed for ; and thus the two observations

are reduced to the same meridian, and equivalent to being

made at the same time.

The most favorable times for such observations, are when

the moon is near her greatest declinations, for then the change

of declination is extremely slow.

Let A ( Fig. 14 ) represent the place of the Greenwich ob-

servatory, and B the station at the Cape of Good Hope.

C is the center of the earth, and Z and Z' are the zenith
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Chap. II. Fiff. 14.

Illustration

of primary

observations.

and finally, i/C* Now

points of the observers. Let M
be the position of the moon, and

the observer atA will see it pro-

jected on the sky at m', and the

observer at B will see it pro-

jected on the sky at m.

Now the figure A CBM is a

quadrilateral; the angle A CB
is known by the latitudes of the

two observers; the angles MA
C and MB C are the respective

zenith distances, taken from 180°.

But the sum of all the angles

of any quadrilateral is equal to

four right angles ; and hence the

angles at A, C, and B, being

known, the parallactic angle at

M is known.

In this- quadrilateral, then, we

have two sides, A C and CB,

and all the angles ; and this is

sufficient for the most ordinary

mathematician to decide every

particular in connection with it:

that is, we can find AM, MB,
MC being known, the horizontal

A mathe-

matical de-

duction.

* The direct and analytical method of obtaining MC, will be

very acceptable to the young mathematician; and, for that

reason, we give it.

Put AC=CB=r, CM=x, and the two parts of the ob-

served parallactic angle, M, represented by P and Q, as in

the figure. Also, let a represent the natural sine of the angle

MA C, and b the natural sine of the angle MB C

:

Then, by trigonometry, - x : a : : r : sin. Q ;

Also, - x : b : : r : sin. P;

Hence, - - - - sin. P+sin. Q—±-~±-'-. .

x a)
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parallax can be computed, for it is but a function of the dis- Cha?. if.

tance (see 60).

By the equation (Art. 60), x=l )r

By changing, - - - sin. p=( )r; and when x, the

distance, is known, sin. p, or sine of the horizontal parallax,

is known.

( 63. ) The result of such observations, taken at different Variable

times, show all values to M C, between 55T
9
/o, and 63TVo ;

distance t0
' ' 100 '

* ° ° ' the moon.
taking the value of r as unity.

These variations are regular and systematic, both as to

time and place, in the heavens ; and they show, without fur-

ther investigation, that the moon does not go round the earth

in a circle, or, if it does, the earth is not in the center of that

circle.

The parallaxes corresponding to these extreme distances,

are 61' 29" and 53' 50".

When the moon moves round to that part of her orbit Apogee

which is most remote from the earth, it is said to be in apogee; Per'gee -

and, when nearest to the earth, it is said to be in perigee.

The points apogee and perigee, mainly opposite to each other,

do not keep the same places in the heavens, but gradually

move forward in the same direction as the motion of the moon,

and perform a revolution in a little less than nine years.

But, by a general theorem in trigonometry,

sin. P+ sin. Q=2 sin.^i^, cos.—^. . (2)
A A

Now by equating (1) and (2), and observing that P-\-Q=

M, and that ( cos. —^— ) must be extremely near unity

;

and, therefore, as a factor, may disappear ; we then have,

„ . M (a4-h)r («4-5>
2 81^-^- = ^

—

i-^-, or, a?=:
v

;
' ; a

-
2 x 2 sin. \M

A more ancient method is to compute the value of the little

triangle B C G, and then of the whole triangle AMG, and

then of a part, AMC or M G C.
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Ohap^ti.
(j 64.) Many times, when the moon comes round to its peri-

gee, we find its parallax less than 61' 29", and, at the oppo-

site apogee, more than 53' 50". It is only when the sun is

in, or near a line with the lunar perigee and apogee, that

these greatest extremes are observed to happen ; and when

the sun is near a right angle to the perigee and apogee, then

the moon moves round the earth in an orbit nearer a circle

;

and thus, by observing with care the variation of the moon's

parallax, we find that its orbit is a revolving ellipse, of variable

eccentricity.

(G5.) Because the moon's distance from the earth is va-

riable, therefore there must be a mean distance: we shall

show, hereafter, that her motion is variable; therefore there

is a mean motion ; and, as the eccentricity is variable, there

is a mean eccentricity.

Mean pa- The extreme parallaxes, at mean eccentricity, are 60' 20",

parallax
'

at
anc^ — ^"

'
an(^ * ae corresponding distances from the earth

mean dis- are 56.93 and 63.64; the radius of the earth being unity.
tance> The mean parallax, or mean between 60' 20" and 54' 05", is

57' 12". 5; but the parallax, at mean distance, is 57' 03"*.

* It may seem paradoxical that the mean parallax, and the

parallax at mean distance are different quantities ; but the

following investigation will set the matter at rest. Let d and

D be extreme distances, and M the mean distance.

Then, - - - - d+D=2M; . . '. (1)

Also, let p and P be the parallaxes corresponding to the dis-

tances d and D ; and put x to represent the parallax at mean

distance. Then, by Art. 60 ( if we call the radius of the

tables unity), we have11 1
d=- , D= -

=:, and M--
sin.p sin. P' sin. x

Substituting these values of d, D, and M, in equation (1) we112
have, - -

-f~
sin.^ sin. P sin. x

Or, - - - sin. P + sin. p = f (z)
1 • •. sin. x
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The mean between extreme distances is
55.92+63-84

2
or 59.88

Chap. II.

rallax.

but the true mean distance is 60.26, corresponding to the Mean di3_

parallax 57' 3". The mean, between extremes, is a variable moQn

quantity ; but the true mean distance is ever the same ; a

little more than 60i times the semidiameter of the earth.

(66.) The variations in the moon's real distance must cor-

respond to apparent variations in the moon's diameter ; and if

the moon, or any other body, should have no variation in

apparent diameter, we should then conclude that the body

was always at the same distance from us.

The change, in apparent diameter, of any heavenly body, is

numerically proportioned to its real change in distance ; as

appears from the demonstration in the note below.*

But by a well known, and general theorem in trigonometry, Mean pa-

we have, sin. P+sin.^=2 sin.f

—

~-~^-
) cos. ( 9 ) (3)

By equating (3) and (2), and observing that the cosines

of very small arcs may be practically taken as unity, or ra-

dius, therefore,

/P-\-p\ sin. P sin. p
sin. I —+^- ) = :

--

;

\ 2 / sin. x

>l . sin. P sin. p
Or, sin. x = -r———— -.

sm±(P-\-p)

On applying this equation, we find #=57' 3".

* Let A be the FiS- 15 -

point of vision, and

d the diameter of

any body at diffe-

rent distances,^B,

AC 1_ Be
Now, by trigonometry, we have the following proportions

:

AC : d : : R : tan. CAD
AB : d :: B : tan. BAE.
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Chaf
'
u - Now if the moon has a real change in distance, as observa-

tions show, such change must he accompanied with apparent

changes in the moon's diameter ; and, by directing observa-

tions to this particular, we find a perfect correspondence

;

showing the harmony of truth, and the beauties of real

science.

Connec- We have several times mentioned that the moon's horizon-
tion etween

^j parai]ax }g fae semidiameter of the earth, as seen from the
semidiame- *- 7

ter and hori- moon ; and now we further say, that what we call the moon's
zontai parai- gemidiameter, an observer at the moon would call the earth's
;ax„

horizontal parallax; and the variation of these two angles de-

pends on the same circumstance— the variation of the distance

between the earth and moon; and, depending on one and the

same cause, they must vary in just the same proportion.

When the moon's horizontal parallax is greatest, the moon's

semidiameter is greatest ; and, when least, the semidiameter

is the least ; and if we divide the tangent of the semidiameter

by the tangent of its horizontal parallax, we shall always find

the same quotient (the decimal 0.27293); and that quotient

is the ratio between the real diameter of the earth and the

diameter of the moon.* Having this ratio, and the diameter

of the earth, 7912 miles, we can compute the diameter of the

moon thus

:

7912x0.27293=2169.4 miles.
^

From the first proportion, - - - AC tan. CAD=dB;

From the second, AB tan. BAE=dR
;

By equality, - - - - A (7tan.CAD=AB tan. BAE.

This last equation, put into an equivalent proportion, gives

:

AC : AB : tan. BAE :: tan. CAB.

But tangents of very small arcs ( such as those under which

the heavenly bodies appear) are to each other as the arcs

themselves. Therefore,

AC \ AB w Singh BAE : angle CAD;
That is; the angular measures of the same body are inversely

proportional to the corresponding distances.

* This requires demonstration. Let E be the real semi-



APPEARANCE FROM THE MOON 71

As spheres are to each other in proportion to the cubes of Chap, ii,

their diameters, therefore the bulk ( not mass ) of the earth,

is to that of the moon, as 1 to T\, nearly.

As the moon's distance is 60 i times the radius of the earth, Augmen-

it follows that it is about JUfc nearer to us, when at the
tation of the

°
•

. .
moons semi-

zenith, than when in the horizon. Making allowance for this diameter : its

(in proportion to the cosine of the altitude), is called the cause -

augmentation of the semidiameter.

(68.) It may be remarked, by every one, that we always The earth

see the same face of the moon ; which shows that she must a moon t0

• • •
-i i • -i

^e moon -

roll on an axis in the same time as her mean revolution about

the earth ; for, if she kept her surface toward the same part

of the heavens, it could not be constantly presented to the

earth, because, to her view, the earth revolves round the

moon, the same as to us the moon revolves round the earth

;

and the earth presents phases to the moon, as the moon does

to us, except opposite in time, because the two bodies are

opposite in position. When we have new moon, the lunarians

have full earth ; and when we have first quarter, they have

last quarter, etc. The moon appears, to us, about half a

degree in diameter ; the earth appears, to them, a moon, about

Fig. 16.
diameter of

the ea r t h

(Fig. 16), wi

that of the

moon, D the

distance be-

tween the

two bodies ; and let the radius of the tables be unity. Put

P to represent the moon's horizontal parallax, and s its appa-

rent semidiameter. Then, by trigonometry,

i D : E : : 1 : tan. P : and D : m : : 1 : tan. s.

From the first, D= E
tan.i>'

from the 2d, D= m
tan. s

'

Therefore,

6

E m m
tan. P tan. $

or
tan. s

tan. P E'
Q. E.D.



revolves on

an axis
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Chap. ii. two degrees in diameter, invariably fixed in their shy, and the

stars passing slowly behind it.

The moon " But," says Sir John Herschel, "the moon's rotation on

her axis is uniform ; and since her motion in her orbit is not

so, we are enabled to look a few degrees round the equatorial

parts of her visible border, on the eastern or western side,

according to circumstances; or, in other words, the line join-

ing the centers of the earth and moon fluctuates a little in its

position, from its mean or average intersection with her sur-

face, to the east, or westward. And, moreover, since the

axis about which she revolves is not exactly perpendicular to

her orbit, her poles come alternately into view for a small

space at the edges of her disc. These phenomena are known

by the name of librations . In consequence of these two dis-

tinct kinds of libration, the same identical point of the moon's

surface is not always the center of her disc ; and we therefore

get sight of a zone of a few degrees in breadth on all sides

of the border, beyond an exact hemisphere.'

CHAPTER III.

THE EARTH'S ORBIT ECCENTRIC. THE APPARENT ANGULAR

MOTION OP THE SUN NOT UNIFORM. LAWS BETWEEN DIS-

TANCE, REAL, AND ANGULAR MOTION. ECCENTRICITY OF

THE ORBIT.

Chaf
-
1I f

( 69. ) The sun's parallax is too small to be detected by
The sun any common means of observation ; hence it remained un-

known, for a long series of years, although many ingenious

methods were proposed to discover it. The only decision

that ancient astronomers could make concerning it was, that

it must be less than 20" or 15" of arc ; for, were it as much

as that quantity, it could not escape observation.

Now let us suppose that the sun's horizontal parallax is less

than 20" ; that is, the apparent semidiameter of the earth, as

seen from the sun, must be less than 20"; but the semidia-

larger than

the earth
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meter of the sun is 15' 56", or 956" ; therefore the sun must Chap. hi.

be vastly larger than the earth— by at least 48 times its

diameter ; and the bulk of the earth must be, to that of the

sun, in as high a ratio as 1 to the cube of 48. But as we do

not suffer ourselves to know the true horizontal parallax of

the sun, all the decision we can make on this subject is, that

the sun is vastly larger than the earth.

( 70. ) Previous observations, as we explained in the first Does the

section of this work, clearly show, or give the appearance of
*un g0 r°un

r

the sun going round the earth once in a year ; but the appear- the earth

ance would be the same, whether the earth revolves round the round the

sun ?

sun, or the sun round the earth, or both bodies revolve round

a point between them. We are now to consider which is the

most probable : that a large body should circulate round a much

smaller one; or, the smaller one round a large one. The last

suggestion corresponds with our knowledge and experience in

mechanical philosophy ; the first is opposed to it.

(71.) We have seen, in the last chapter, that the semidia-

meter and horizontal parallax of a body have a constant rela-

tion to each other; and, while we cannot discover the one,

we will examine all the variations of the other ( if it have va-

riations ), and thereby determine whether the earth and sun

always remain at the same distance from each other.

Here it is very important that the reader should clearly Methods

understand, how the apparent diameter of a heavenly body of measunr>g

. . . apparent di
a-

can be determined to great precision. meters.

As an example, we shall take the diameter of the sun ; but

the same principles are to be followed, and the same deduc-

tions are to be made, whatever body, moon, or planet, may be

under observation.

An instrument to measure the apparent diameter of a planet The micro

is called a micrometer. It is an eyepiece to a telescope, with meter -

opening and closing parallel wires ; the amount of the opening

is measured by a mathematical contrivance. For the measure

of all small objects, the micrometer is exclusively used; and

since it is impossible that any one observation can be relied

upon as accurate (on account of the angular space eclipsed

by the wires), a great number of observations are taken, and

G
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Chap, hi. t"he mean result is regarded as a single observation. Gene-

rally speaking, the following method is more to be relied upon,

when large angles are measured, and to it we commend special

attention.

The me- The method depends on the time employed by the body in pass-

in
° y

!

m
^ *W flie perpendicular wires of the transit instrument.

the meridian. All bodies, (by the revolution of the earth) come to the

meridian at right angles, and 15 degrees pass by the meridian

in one hour of sidereal time; and, in four minutes, one de-

gree will pass; and, in two minutes of time, 30 minutes of arc

will pass the meridian wire.

Now if the sun is on the equator, and stationary there, and

employs two minutes of sidereal time in passing the meridian,

then it is evident that its apparent diameter is just 30' of arc;

if the time is more than two minutes, the diameter is more

;

if less, less.

But we have just made a supposition that is not true ; we

have supposed the sun stationary, in respect to the stars ; but

it is not so ; it apparently moves eastward ; therefore it will

not get past the meridian wire as soon as it would if station-

ary. Hence we must have a correction, for the sun's motion,

applied to the time of its passing the meridian.

Corrections We have also supposed the sun on the equator, and for a
to be made. . .

.

. i ... -it ..,.
moment continue the supposition, and also conceive its dia-

meter to be just 30' of arc. Now suppose it brought up to

the 20th degree of declination, on that parallel, it will extend

over more than 30' of arc, because meridians converge toward

the pole ; therefore the farther the sun, or any other body is from

the equator, the longer it will be in passing the meridian on that

account ; the increase of time depending on the cosine of the

declination. (See 59.)

Hence two corrections must be made to the actual time

that the sun occupies in crossing the meridian wire, before we

can proportion it into an arc ; one for the progressive motion

of the sun in right ascension ; and one for the existing decli-

nation. We give an example.

Method of
®n *^e ^rst ^ay °? June

> 1846, the sidereal time ( time

deciding the measured by the sidereal clock ) of the sun passing the me-
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ridian wire, was observed to be 2 m. 16.64 s.; the declination Chap. hi.

was 22° 2' 45", and the hourly increase of right ascension was exact appa .

10.235 s. What was the sun's semidiameter? rent diame-

ter of the

3600 s. : 10.235 s. :: 136.64 : 0.39 s. bob, moon,

or planets.

Observed dura, of tran., in sees., 136.64

Reduction for solar motion, .39

136.25 . . log. 2.134337

Dec. 22° 2' 45"; cosine, - - - 9.967021

Duration, if stationary on equa., 126.3 s. . .log. 2.101358

Minutes or seconds of time can be changed into minutes or

seconds of arc, by multiplying by 15 ; therefore the diameter

of the sun, at this time, subtended an arc of 1894". 5, and its

semidiameter 947". 2, or 15' 47".2 ; which is the result given

in the Nautical Almanac, from which any number of examples of

this kind can be taken. We give one more example, for the

benefit of those who may not have a Nautical Almanac.

On the 30th day of December (not material what year),

the sidereal time of the sun's diameter passing the meridian

was observed to be 2 m. 22.2 s., or 142.2 s. The sun's

hourly motion in right ascension, at that time, was 11.06 s.,

and the declination was 22° 11'. What was the sun's semi-

diameter?* Ans. 16' 17".3.

These observations may be made every clear day through- Extreme

values of the
out the year ; and they have been made at many places, and SDn ,

s appa.

for many years ; and the combined results show that the rent semidia-

meter.

* The following is the formula for these reductions :

15(f—c)cos.D

R
=S -

Here t is the observed interval in seconds, c is the correction for the in-

crease in right ascension, D is the declination, R the radius of the tables,

and s is the result in seconds of arc. c is always very small ; for one

hour, or 3600 s., the variation is never less than 8.976 s., nor more than

11.11 s. The former happens about the middle of September ; the lat-

ter about the 20th of December. For the meridian passage of the moon,

the correction c is considerable ; because the moon's increase of right

ascension is comparatively very rapid. For the planets, c may be dis-

regarded.
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Chap, in
. apparent diameter of the sun is the same, on the same day of

the year, from whatever station observed.

The least semidiameter is 15' 45". 1 ; which corresponds, in

time, to the first or second day of July ; and the greatest is 16'

17". 3, which takes place on the 1st or 2d of January.

Now as we cannot suppose that there is any real change in

the diameter of the sun, we must impute this apparent change

to real change in the distance of the body, as explained in

Art. 66.

Variation Therefore the distance to the sun, on the 30th of Decem-
1 ie

_

1S
" ber, must be to its distance, on the first day of July, as the

tance from */••_«/»
the earth to number 15' 45". 1 is to the number 16' 17".3, or as the num-
the sun. ber 945.1 to 977.3; and all other days in the year, the pro-

portional distance must be represented by intermediate num-

bers.

From this, we perceive, that the sun must go round the

earth, or the earth round the sun, in very nearly a circle ; for

were a representation of the curve drawn, corresponding to

the apparent semidiameter, in different parts of the orbit, and

placed before us, the eye could scarcely detect its departure

from a circle.

( 72.) It should be observed that the time elapsed between

the greatest and least apparent diameter of the sun, or the

reverse, is just half a year ; and the change in the sun's lon-

gitude is 180°.

Eccentri- If we would consider the mean distance between the earth

earth's orbit

6
an<^ sun as un^V (as *s customary with astronomers), and then

how known, put x to represent the least distance, and y the greatest dis-

tance, we shall have

x-\-y=2.

And, - - x : y :: 9451 : 9773.

A solution gives #=0.98326, nearly, and y=l.01674, nearly:

showing that the least, mean, and greatest distance to the sun,

must be very nearly as the numbers .98326, 1., and 1.01674.

The fractional part, .01674, or the difference between the

extremes and mean ( when the mean is unity ), is called the

eccentricity of the orbit.
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The eccentricity, as just mentioned, must not be regarded as chap. ni.

accurate. It is only a first approximation, deduced from the

first and most simple view of the subject ; but we shall, here-

after, give other expositions that will lead to far more accu-

rate results.

In theory, the apparent diameters are sufficient to determine Eccentrici-

the eccentricity, could we really observe them to rigorous ^re
^°
m

d̂ -

exactness : but all luminous bodies are more or less affected meters only

by irradiation, which dilates a little their apparent diameters ;

aPProximate -

and the exact quantity of this dilatation is not yet well

ascertained.

( 73. ) The sun's right ascension and declination can be

observed from any observatory, any clear day; and from

thence we can trace its path along the celestial concave sphere

above us, and determine its change from day to day ; and we

find it runs along a great circle called the ecliptic, which

crosses the equator at opposite points in the heavens ; and

the ecliptic inclines to the equator with an angle of about

23° 27' 40".

The plane of the ecliptic passes through the center of the

earth, showing it to be a great circle, or, what is the same

thing, showing that the apparent motion of the sun has its

center in the line which joins the earth and sun.

The apparent motion of the sun along the ecliptic is called Variations

longitude ; and this is its most regular motion.
m the dls '

-vVn ,'-.-.
.

tance of the

When we compare the sun s motion, m longitude, with its sun com.

semidiameter, we find a correspondence— at least, an apparent Pared with

. its variations

connection. in longitude .

When the semidiameter is greatest, the motion in longitude

is greatest ; and, when the semidiameter is least, the motion

in longitude is least ; but the two variations have not the same

ratio.

When the sun is nearest to the earth, on or about the 30th

of December, it changes its longitude, in a mean solar day,

1° 1' 9".95. When farthest from the earth, on the 1st of

July, its change of longitude, in 24 hours, is only 57' 11".48.

A uniform motion, for the whole year, is found to be 59' 8".33.

The ancient philosophers contended that the sun moved

G*
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Chap, in . about the earth in a circular orbit, and its real velocity uni-

form ; but the earth not being in the center of the circle, the

same portions of the circle would appear under different angles ;

and hence the variation in its apparent angular motion.
The result ]\jow jf ^his is a true view of the subject, the variation in

shows that .
"

.
.

the angular angular motion must be m exact proportion to the variation in

motion is in distance, as explained in the note to Art. 66; that is, 945".

1

pro'porUor

6
Sh0uld be t0 977 "-8

>
aS 57 ' n"-48 t0 61 ' 9"-95

>
if the SUP"

to the square position of the first observers were true. But these numbers
1S

" have not the same ratio ; therefore this supposition is not
tance.

satisfactory ; and it was probably abandoned for the want of

this mathematical support. The ratio between 945". 1, and

Q77Q
977".3is .JJL= 1.0341, nearly;

9451 J

266Q" Q'S

between 57' 11".48, and61'9".95, ^_4r= 1.0694, nearly.
3431".48 J

If we square (1.0341) the first ratio, we shall have 1.06936,

a number so near in value to the second ratio, that we con-

clude it ought to be the same, and would be the same, pro-

vided we had perfect accuracy in the observations.

Law be- Thus we compare the angular motion of the sun in diffe-

tion and dis-
ren* Par^s °f its orbit ; and we always find, that the inverse

ance. square of its distance is proportional to its angular motion; and

this incontestible/actf is so exact and so regular, that we lay

it down as a law ; and if solitary observations do not corre-

spond with it, we must condemn the observations, and not

the law.

(74.) To investigate this subject thoroughly, we cannot

avoid making use of a little geometry.

Let Pig. 17 represent the solar orbit,* the sun apparently

revolving about the observer at 0. The distance from to

* We say solar orbit, when it is really the earth's orbit ; so we speak

of the sun's motion, when it is really the motion of the earth ; and it

is customary, with astronomers, to speak of apparent motions as real •

and none object to this manner of speaking, who have a clear or en-

larged view of the science— for to depart from it would lead to oft-

repeated and troublesome technicalities, if not to confusion of ideas.

Clearness does not always correspond with exactness of expression.
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amy point in the or-

bit is called the ra-

dius vector; and it is

a varying quantity,

conceived to sweep

round the point 0.

Let D be the va-

lue of the radius vec-

tor at any point, and

rD its value at some

other point, as repre-

sented in the figure.

Fig. 17. Chap. in.

Let y represent the real motion of the Variations

sun. for a very short interval of time, at the extremity of the
m

,

and
" ° angular mo-

radius vector D ; and x represent the real motion, at the tion.

extremity of the radius vector r D, in the same time.

From 0, as a center, at the distance of unity, describe a

circle. Put A to represent the angle under which x appears

from 0; then, by observation, r2A is the angle under which y
appears from the same point.

Now, considering the sectors as triangles, we have the fol-

lowing proportions

:

: A : : rD : x;

: r2A : : D : y.

- x=rAD,

y=r2AD.

Multiply the first of these equations by r, and we perceive

that ------ y=rx.

This last equation shows that the real velocity of the earth The real

1

1

From the first, •

From the second,

or
velocity of

the earth in

its orbit va-

ries as the

sun's appa-

in its orbit varies in the inverse ratio as the radius vector

it varies directly as the apparent diameter of the sun.

(75.) If we multiply rD hjx, the product will express the

double of an area passed over by the radius vector in a certain rent diame

interval of time ; and if we multiply D by y, we shall have ter>

the double of another area passed over by the radius vector in

the same time. But the first product is rDx, and the second

is the same, as we shall see by taking the value of y (r x) ; that

is rD x=rB x \ hence we announce this general law:
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Chap, hi . That the solar radius vector describes equal areas in equal

The radius times.
.ec or e-

^Yhen expressed in more general terms, this is one of the
serines equal I o '

areas in e- three laws of Kepler, which will he fully brought into notice
qua time,.

jQ a su]3geqlient par£ f this work.

If we draw lines from any point in a plane, reciprocally

proportional to the sun's apparent diameter, and at angles

differing as the change of the sun's longitude, and then con-

nect the extremities of such lines made all round the point,

the connecting lines will form a curve, corresponding with an

ellipse (see Fig. 18), which represents the apparent solar orbit

;

and, from a review of the whole subject, we give the follow-

ing summary

:

Laws of 1. The eccentricity of the solar ellipse, as determinedfrom the

apparent diameter of the sun, is .01674.*

2. The sun's angular velocity varies inversely as the square

of its distance from the earth.

8. The real velocity is inversely as the distance.

4. The areas described by the radius vector are proportional

to the times of description.

(76.) We have several times mentioned, that, as far as

appearances are concerned, it is immaterial whether we con-

sider the sun moving round the earth, or the earth round the

sun; for, if the earth is in one position of the heavens, the

* By making use of the 2d principle, above cited, we can

compute the eccentricity of the orbit to greater precision than

by the apparent diameters, because the same error of obser-

vation on longitude, would not be as proportionally great as

on apparent diameter.

Let E be the eccentricity of the orbit; then (1

—

E) is

the least distance to the sun, and (l-\-E) the greatest dis-

tance. Then, by observation, we have

(1—E) 2
: (1+Ef-

Or, (1—Ey : (1+Ey
Or, 1—E : \-\-E

57' 11".48

343148

^343148

61' 9".95;

366995 s

^366995.

Whence ^=.016788-)-. We shall give a still more accu-

rate method of computing this important element.
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Chap. Ill,sun appears exactly in

the opposite position,

and e v e r y ra o t i o

n

made by the earth

must correspond to an

apparent motion made

by the sun.

But, for the purpose

of getting nearer to

fact, we will now sup-

pose the earth revolves round the sun in an elliptical orbit,

as represented by Fig. 18.

We have very much exaggerated the eccentricity of the

orbit, for the purpose of bringing principles clearer to view.

The greatest and least distances, from the sun to the earth,

make a straight line through the sun, and cut the orbit into

two equal parts. When the earth is at B, the greatest dis-

tance from the sun, it is said to be in apogee, and when at A,

the least distance, it is in perigee ; and the line joining the

apogee and perigee is the major, or greater diameter of the

orbit ; and it is the only diameter passing through the sun, thai

cuts the orbit into tivo equal parts.

Now, as equal areas are described in equal times, it follows

that the earth must be just half a year in passing from apogee
tl0ns t0 ®'

to perigee, and from perigee to apogee
;
provided that these positions of

points are stationary in the heavens, and they are so, very the solar a

pogee
nearly.* perigee

If we suppose the earth moves along the orbit from D to

A, and we observe the sun from D, and continue observa-

tions upon it until the earth comes to C, then the longitude

of the sun has changed 180°; and if the time is less than

Observa-

and

* The longer axis of the orbit, or apogee point, changes position by

u very slow motion of about 12" per annum, to the eastward : but this

motion must be disregarded, for the present, as well as many other mi-

nute deviations, to be brought into view when we are better prepared

to understand them.

Those minute variations, for short periods of time, do not sensibly

affect general results.

6
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Cha>. in. lialf a year, we are sure the perigee is in this part of the

orbit. If we continue observations round and round, and

find where 180 degrees of longitude correspond with half a

year, there will be the position of the longer axis ; which is

sometimes called the line of the apsides.

Difficulties, vye cannot determine the exact point of the apogee or

perigee, by direct observations on the sun's apparent diame-

ter; for about these points the variations are extremely slow

and imperceptible.

If we take observations in respect to the sun's longitude,

when the earth is at b, and watch for the opposite longitude,

when the earth is about a, and find that the area b Da was

described in little less than half a year, and the area a C b, in

a little more than half a year, then we know that b is very

near the apogee, and a very near the perigee.

If we take another point, b', and its opposite, a, and find

converse results, then we know that the apogee is between

the points b' and b, and we can proportion to it, to great exact-

ness.

Longitude ( 77. ) The longitude of the apogee, for the year 1801, was

Ld erkee

6 ^° ^' ^
"' an<^ °^ course

>
the perigee was in longitude 279°

31' 9". These points move forward, in respect to the stars,

about 12" annually, and, in respect to the equinox, about 62"

;

more exactly 61".905, and, of course, this is their annual

increase of longitude.

In the year 1250, the perigee of the sun coincided with the

winter solstice, and the apogee with the summer solstice ; and

at that time the sun was 178 days, and about 17-|- hours, on

the south side of the equator, and 186 days, and about 12^

hours, on the north side ; being longer in the northern hemi-

sphere than in the southern, by seven days and 19 hours: at

present, the excess is seven days and near 17 hours.

The year / "jg ^ As the gun }s a ionger time in the northern than in
unequally di- ., ..

i • i i • •
i -i n

vided. ^ne southern hemisphere, the first impression might be, that

more solar heat is received in one hemisphere than in the

other ; but the amount is the same ; for whatever is gained

in time, is lost in distance ; and what is lost in time, is gained

by a decrease of distance. The amount of heat depends on
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the intensity multiplied by the time it is applied ; and the Chap. hi.

product of the time and distance to the sun, is the same in

either hemisphere; but the amount of heat received, for a

single day, is different in the two hemispheres.

(79.) Conceive a line drawn through the sun, at right

angles to the greater diameter of the orbit D S C ( see Fig.

18), the point C is 8° 21' from the first point of Aries; and

if we observe the time occupied by the sun in describing 180

degrees of longitude, from this point (or from any point very

near this point), that time, taken from the whole year, will

give the time of describing the other 180 degrees.

Without being very minute, we venture to state, that the a method

time of describing the arc DA C, is 178 daysm hours; and °f obtainin§
®

# - . .
' 'the eccentri-

the time of describing the arc CBD is 186 days 12i hours, city of an or-

But, as areas are in proportion to the times of their descrip- bit -

tion; therefore,
d. h. d. h.

area CSDA : area CBDS : : 178 17* : 186 12i.

By taking half of the greater axis of the ellipse equal

unity, and the eccentricity an unknown quantity, e, the

mathematician can soon obtain analytical expressions for

the two areas in question, and then, from the proportion,

he can find the value of the eccentricity e: but there is a

better method— we only give an outside view of this, for the

ligM it throws on the general principle.

( 80.) Now let us conceive the orbit of the earth inclosed

by a circle whose diameter is the greatest diameter of the

ellipse, as represented by Fig. 19.

For the sake of simplicity we will suppose the observer at Prepara-

rest at the point o ( one focus of the ellipse ), and the sun tl0n for find'

. .
ing the true

really to move round on the ellipse, describing equal areas variation in

in equal times round the point o. an elliPse -

Conceive, also, an imaginary sun to pass round the circle,

describing equal angles, in equal times, round the center m.

Now suppose the two suns to be together at the point B ;
—

they depart, one on the ellipse, the other on the circle ; and,

on account of both describing equal areas, in equal times,

round their respective centers of motion, they will be together
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Fig- 19 - at the point A, and

again at the point B,

and so continue in

each subsequent re-

volution.

The imaginary sun

B on the circle every-

where describes equal

angles in equal times

;

and the true sun, on

the ellipse, describes

only equal areas in

equal times ; but the angles will be unequal. Conceive the

two suns to depart, at the same time, from the point B,

and, after a certain interval of time, one is at s, the other at

*'. Then we must have

area oBs : area mBs' : : area ellipse : area circle.

Mean and The angle Bms' is the angle the sun would make, or its

increase in longitude from the apogee
;
provided the angular

motion of the sun was uniform. The angle Bos is its true

increase of longitude ; the difference between these two angles

is the angle m n o.

The angle Bms' is always known hy the time ; and if to

every degree of the angle B m s' we knew the corresponding

angle m n o, the two would give us the angle Bos; for,

Bins'—mno=mo n; or, Bos.

The angle Bms' is called the mean anomaly, and the angle

Bos is called the true anomaly.

The equa- The angle Bms' is greater than the angle Bos, all the

tion of the way from the apogee to the perigee; but from the perigee to

the apogee the true sun, on the ellipse, is in advance of the

imaginary sun on the circle.

The angle mn o is called the equation of the center ; that is,

it is the angle to be applied to the angle about the center m,

to make it equal to the true anomaly.

The angle mno depends on the eccentricity of the ellipse

;

and its amount is put in a table corresponding to every

tree

maiy
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degree of the mean anomaly ; subtractive, from the apogee to ceap. hi.

the perigee, and additive from the perigee to the apogee.*

(81.) Again; conceive the two suns to set out from the same The great-

point. B • and as the angle B m s' increases uniformly, it -will
est ec

i
uatl0n

f
' a

r>
of the center

increase and become greater and greater than the angle Bos, gives the ec-

until the true sun attains its mean angular motion, and no centricity of

mi • • IT ^le oro't.

longer. Then the angle mno attains its greatest value, and,

at that time the side mn=no, and the point n is perpendicular

over om, and os is a mean proportional between o B and oA.

That is, when the sun, or any planet, attains the greatest equa-

tion of the center, the true sun is very near the extremity of

the shorter axis of the ellipse : o, the greatest equation of the

center, can be determined by observation ; and, from the

greatest equation, we have the most accurate method of com-

puting the eccentricity of the ellipse, as we may see by the

note below.f

t Let C (Fig. 20) be the

place of the true sun, and G
the place of the imaginary

sun ; the line mF cuts off

equal portions of the circle

and the ellipse. Then we

have, to make the sector

mF G to the triangle o m C,

as the circle is to the ellipse. Now let

mB=a, mC=b, om=ea, cr=3.1416;

Then, the area of the circle is ^a 2
; the area of the ellipse is

Trah
; that of the sector is ( GF)-, and of the triangle -f-.

Hence,
eab
~9~ GF

a

2>
rah Tra 2

* By a mere mechanical contrivance, the modern astronomical tables

are so arranged, that all corrections are rendered additive ; so that the

mechanical operator cannot make a mistake, as to signs, and he may
continue to work without stopping to think. These arrangements
have their advantages, but they cover up and obscure principles.

H
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Chap. in. When once the eccentricity of any planetary ellipse be-

comes known, the equation of the center, corresponding to all

degrees of the mean anomaly, can be computed and put into

a table for future use ; but this labor of constructing tables

belongs exclusively to the mathematician.

Method of Or, - - eab : (GF)a : : b : a;
deducing the

eccentricity Or, - - ea I GF : : 1 : 1

;

neatest e-
Consequently, GF=ea, and FG=om ; which shows that the

quation of angle o Cm is nearly equal toFm G, unless it is a very eccen-

tric ellipse. Now we must compute the number of degrees

in the arc FG. The whole circumference is 2?ra.

Therefore, 2jra : ea : : 360 : arc FG',

Hence, - - - arc FG= =angle nmC.
rr

But the angle onm=nm C-\-n Cm=2nm C, nearly;

Therefore, =2nm C=onm= greatest equation of

center, nearly.

But the greatest equation of the center, for the solar orbit,

is, by observation, lc 55' 30" ; and as the sun has not quite

its greatest equation of the center, when at the point C, it will

be more accurate to put

360 e „-_ __, nMI ,=1° 55' 24".

From this equation, it is true, we have only the approxi-

mate value of e ; but it is a very approximate value, and suffi-

ciently accurate.

Keducing both members to seconds, and we have,

3600-360 6=6924**, and e=0.0167842.

The greatest equation of the center is at present diminish-

ing at the rate of 17".17 in one hundred years ; this corre-

sponds to a diminution of eccentricity by 0.00004166; which

is determined by a solution of the following equation

:

3G00.^=17".17.
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CHAPTER IV.

THE CAUSES OF THE CHANGE OF SEASONS.

( 82. ) The annual revolution of the earth in its orbit, chap, iv.

combined with the position of the earth's axis to the plane

of its orbit, produces the change of the seasons.

If the axis were perpendicular to the plane of its orbit, The cause

there would be no change of seasons, and the sun would then ° tnec ans8

° of seasons.

be all the while in the celestial equator.

This will be understood by Fig. 21. Conceive the plane

of the paper to be the plane of the earth's orbit, and conceive

the several representations of the earth's axis, JVS, to be in-

clined to the paper at an angle of 66° 32'.

Fig. 21.

In all representations of JVS, one half of it is supposed to

be above the paper, the other half below it.

NS is always parallel to itself; that is, it is always in the

same position*— always at the same inclination to the plane

* Except minute variations, which it would be improper to notice in

this part of the work.

7
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Chap, iv
. f its orbit— always directed to the same point in the hea-

vens, in whatever part of the orbit it may be.

The plane of the equator, represented by Eq, is inclined to

the plane of the orbit by an angle of 23° 28'.

importance
;gy inspecting the figure, the reader will gather a clearer

of inspecting . ..
the figure, view ot the subject than by whole pages of description; he

will perceive the reason why the sun must shine over the

north pole, in one part of its orbit, and fall as far short of

that point when in the opposite part of its orbit ; and the

number of degrees of this variation depends, of course, on the

position of the axis to the plane of the orbit.

Position of Now conceive the line NS to stand perpendicular to the

plane of the paper, and continue so ; then Eq would He on
cause

change of the paper, and the sun would at all times be in the plane of

seasons. ^e equat r, and there would be no change of seasons. If

NS were more inclined from the perpendicular than it now

is, then we should have a greater change of seasons.

By inspecting the figure, we perceive, also, that when it is

summer in the northern hemisphere, it is winter in the

southern ; and conversely, when it is winter in the northern,

it is summer in the southern.

When a line from the sun makes a right angle with the

earth's axis, as it must do in two opposite points of its orbit,

the sun will shine equally on both poles ; and it is then in the

plane of the equator ; which gives equal day and night the

world over.

Equal days and nights, for all places, happen on the 20th

of March, of each year, and on the 22d or 23d of September.

At these times the sun crosses the celestial equator, and is

said to be in the equinox.

The equi- The longitude of the sun, at the vernal equinox, is 0° ; and
noctiai and at foe autumnal equinox, its longitude is 180°.

p 0ir, ts .
The time of the greatest north declination is the 20th of

June ; the sun's longitude is then 90°, and is said to be at

the summer solstice.

The time of the greatest south declination is the 22d of

December; the sun's longitude, at that time, is 270°, and

is said to be at the winter solstice.
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By inspecting the figure, we perceive, that when the earth Chap. it.

is at the summer solstice, the north pole, P, and a conside- Long sea-

rable portion of the earth's surface around, is within the en- sons cf sun -

'

. li^ht and
lightened half of the earth ; and as the earth revolves on its ^rkness at

axis J\
TS, this portion constantly remains enlightened, giving and about

a constant day— or a day of weeks and months duration,
epo

according as any particular point is nearer or more remote

from the pole; the pole itself is enlightened full six months

in the year, and the circle of more than 24 hours constant

sunlight extends to 23° 28' from the pole (not estimating the

effects of refraction). On the other hand, the opposite, or

south pole, S, is in a long season of darkness, from which it

can be relieved only by the earth changing position in its

orbit.

" Now, the temperature of anv part of the earth's surface
TemPera

,-
r

. .
ture of the

depends mainly, if not entirely, on its exposure to the sun's earth,

rays. Whenever the sun is above the horizon of any place,

that place is receiving heat ; when below, parting with it, by

the process called radiation; and the whole quantities re-

ceived and parted with in the year must balance each other

at every station, or the equilibrium of temperature would not

be supported. Whenever, then, the sun remains more than

12 hours above the horizon, of any place, and less beneath,

the general temperature of that place will be above the ave-

rage ; when the reverse, below. As the earth, then, moves

from A to B, the days growing longer, and the nights shorter

in the northern hemisphere, the temperature of every part of

that hemisphere increases, and we pass from spring to sum-

mer, while at the same time the reverse obtains in the southern

hemisphere. As the earth passes from B to C, the days and

nights again approach to equality—the excess of temperature

in the northern hemisphere, above the mean state, grows less,

as well as its defect, in the southern ; and at the autumnal

equinox, C, the mean state is once more attained. From

thence to D, and, finally, round again to A, all the same phe-

nomena, it is obvious, must again occur, but reversed, it being

now winter in the northern, and summer in the southern

hemisphere."
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Chap. iv. The inquiry is sometimes made why we do not have the

warmest weather about the summer solstice, and the coldest

weather about the time of the winter solstice.

Times of This would be the case if the sun immediately ceased to

give extra warmth, on arriving at the summer solstice ; but

if it could radiate extra heat to warm the earth three weeks,

before it came to the solstice, it would give the same extra

heat three weeks after ; and the northern portion of the earth

must continue to increase in temperature as long as the sun

continues to radiate more than its medium degree of heat

over the surface, at any particular place. Conversely, the

whole region of country continues to grow cold as long as

the sun radiates less than its mean annual degree of heat

over that region. The medium degree of heat, for the whole

year, and for all places, of course, takes place when the sun

is on the equator; the average temperature, at the time of

the two equinoxes. The medium degree of heat, for our

northern summer, considering only two seasons in the year,

takes place when the sun's declination is about 12 degrees

north ; and the medium degree of heat, for winter, takes place

when the sun's declination is about 12 degrees south; and

if this be true, the heat of summer will begin to decrease

about the 20th of August, and the cold of winter must essen-

tially abate on or about the 16th of February, in all northern

latitudes.

CHAPTER V.

EQUATION OF TIME

( 83.) We now come to one of the most important subjects

in astronomy— the equation of time.

Without a good knowledge of this subject, there will be

constant confusion in the minds of the pupils ; and such is

the nature of the case, that it is difficult to understand even

the facts, without investigating their causes.

Sidereal Sidereal time has no equation ; it is uniform, and, of itself,

time perfect, perfect and complete.
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The time, by a perfect clock, is theoretically perfect and Chap. tv.

complete, and is called mean time.

The time, by the sun, is not uniform,; and, to make it Soiai im-

agree with the perfect clock, requires a correction— a quan- notv'n,!0;i1
•

tity to make equality; and this quantity is called the equa-

tion of time.*

If the sun were stationary in the heavens, like a star, it

would come to the meridian after exact and equal intervals

of time; and, in that case, there would be no equation of

time.

If the sun's motion, in right ascension, were uniform, then

It would also come to the meridian after equal intervals of

time, and there would still be no equation of time. But

( speaking in relation to appearances ) the sun is not station-

ary in the heavens, nor does it move uniformly ; therefore it

cannot come to the meridian at equal intervals of time, and,

of course, the solar days must be slightly unequal.

When the sun is on the meridian, it is then apparent noon, Mean and

for that day ; it is the real solar noon, or, as near as may be, zw°

half way between sunrise and sunset; but it may not be

noon by the perfect clock, which runs hypothetically true and

uniform throughout the whole year.

A fixed star comes to the meridian at the expiration of

every 23 h. 56 m. 04.09 s. of mean solar time ; and if the sun

were stationary in the heavens, it would come to the meridian

after every expiration of just that same interval, But the

sun increases its right ascension every day, by its apparent

eastward motion ; and this increases the time of its coming

to the meridian ; and the mean interval between its successive

transits over the meridian is just 24 hours ; but the actual

intervals are variable— some less, and some more than 24

hours.

On and about the 1st of April, the time from one meridian

of the sun to another, as measured by a perfect clock, is 23 h.

59 m. 52.4 s. ; less than 24 hours by about 8 seconds. Here,

then, the sun and clock must be constantly separating. On

jrent

noon

* In astronomy, the terra equation is applied to all corrections to

convert a mean to its true quantity.
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Chap. v. and about the 20th of December, the time from one meridian

of the sun to another is 24 h. m. 24.3 s., more than 24

seconds over 24 hours ; and this, in a few days, increases to

minutes— and thus we perceive the fact of equation of time.

Equation To detect the law of this variation, and find its amount,

u"
16
-

ie

we must separate the cause into its two natural divisions.
result of two L

causes. 1. The unequal apparent motion of the sun along the ecliptic.

2. The variable inclination of this motion to the ecliptic.

If the sun's apparent motion along the ecliptic were uni-

form, still there would be an equation of time ; for that mo-

tion, in some parts of the orbit, is oblique to the equator, and,

in other parts, parallel with it ; and its eastward motion, in

right ascension, would be greatest when moving parallel with

the equator.

From the first cause, separately considered, the sun and

clock would agree two days in a year— the 1st of July and

the 30th of December.

From the second cause, separately considered, the sun and

clock agree four days in a year— the days when the sun

crosses the equator, and the days he reaches the solstitial

points.

When the results of these two causes are combined, the

sun and clock will agree four days in the year ; but it is on

neither of those days marked out by the separate causes ; and

the intervals between the several periods, and the amount of

the equation, appear to want regularity and symmetry.

Days in The four days in the year on which the sun and clock
the year in

a2.ree that is, show noon at the same instant, are April 15th,
which the &

sun and June 16th, September 1st, and December 24th.

clock agree. rpj^
greatest amount, arising from the first cause, is 7 m.

42 s., and the greatest amount, from the second cause, is 9 m.

53 s. ; but as these maximum results never happen exactly at

the same time, therefore the equation of time can never

amount to 17 m. 35 s. In fact, the greatest amount is 16 m.

17 s., and takes place on the 3d of November ; and, for a long

time to come, the maximum value will take place on the same

day of each year ; but, in the course of ages, it will vary in

its amount and in the time of the year in which the sun and
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common
cause.

clock agree, in- consequence of the slow and gradual change Chap, v.

in the position of the solar apogee. (See Art. 77.)

( 84. ) The elliptical form of the earth's orbit gives rise to The equa-

the unequal motion of the earth in its orbit, and thence to the
tl0n of the

.
-i t •

sun's center,

apparent unequal motion of the sun in the ecliptic; and this and the first

same unequal motion is what we have denominated the first P art of tho

cause of the equation of time. Indeed, this part of the equa-
tî e

'

have

tion of time is nothing more than the equation of the center a

(80), changed into time at the rate of four minutes to a degree.

The greatest equation for the sun's longitude ( 81, note ),

is by observation 1° 55' 30"; and this, proportioned into

time, gives 7 m. 42 s., for the maximum effect in the equation

of time arising from the sun's unequal motion. When the sun

departs from its perigee, its motion is greater than the mean

rate, and, of course, comes to the meridian later than it other-

wise would. In such cases, the sun is said to be slow— and

it is slow all the way from its perigee to its apogee ; and fast

in the other half of its orbit.

For a more particular explanation of the second cause, we

must call attention to Fig. 22.

Let T25^ (Fig.

22 ) represent the

ecliptic, and cp C ^=

the equator.

By the first cor-

rection, the apparent

motion along the

ecliptic is rendered ^
uniform : and the sun

is then supposed to

pass over equal spaces

in equal intervals of

time along the arc

°p S 25 . But equal

spaces of arc, on the ecliptic, do not correspond with equal

spaces on the equator. In short, the points on the ecliptic

must be reduced to corresponding points on the equator.

For instance, the number of degrees represented by qp S, on
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chap. v. the ecliptic, is greater than to the same meridian along the

equator. The difference between T S and t S', turned into

time, is the equation of time arising from the obliquity of the

ecliptic corresponding to the point S.

At the points T, 25, and =£t, and also at the southern

tropic, the ecliptic and the equator correspond to the same

meridian; but all other equal distances, on the ecliptic and

equator, are included by different meridians.

How to To compute the equation of time arising from this cause,

compute the we must solve the spherical triangle <pS S' ; <vSis the sun's

of the equa- longitude, and the angle at °p is the obliquity of the ecliptic,

tion of time, and at >S" is a right angle. Assume any longitude, as 32°,

35°, or 40°, or any other number of degrees, and compute

the base. The difference between this base and the sun's

longitude, converted into time, is the quantity sought corre-

sponding to the assumed longitude ; and by assuming every

degree in the first quadrant, and putting the result in a table,

we have the amount for every degree of the entire circle, for

all the quadrants are symmetrical, and the same distance from

either equinox will be the same amount,

what is The perfect clock, or mean time, corresponds with the

meant hy sun equator; and as uniform spaces along the equator, near the
fast and slow . . .-n . -.. .-,

, 7

of clock
point cp, will pass over more meridians than the same num-

ber of equal spaces on the ecliptic ; therefore the sun, at S,

will he fast of clock, or come to the meridian before it is noon

by the clock— and this will be true all the way to the tropic,

or to the 90th degree of longitude, where the sun and clock

will agree. In the second quadrant, the sun will come to the

meridian after the clock has marked noon. In the third qua-

drant the sun will again be fast ; and, in the fourth quadrant,

again slow of clock.

It will be observed, by inspecting the figure, that what the

sun loses in eastward motion, by oblique direction near the

equator, is made up, when near the tropics, by the diminished

distances between the meridians.

For a more definite understanding of this matter, we give

the following table.
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Table showing the separate results of the two causes for the equa- Chap, v.

tion of time, corresponding to every fifth day of the second

years after leap year ; but is nearly correctfor any year.

1st cause. 2d cause.
Sun slow
of Clock,

m. s.

Sun slow
ofClock.

1st cause.
Sun fast.

2d cause.
Sun slow.

m. s. m. S. m. s.

January 5 41 5 8 July 1 3 32

10 1 22 6 35 7 40 5 8

15 2 2 7 48 12 1 19 6 35

20 2 41 8 45 17 1 57 7 48
25 3 19 9 26 22 2 35 8 45

29 3 56 9 49 28 3 12 9 26
Feb. 3 4 30 9 53 Aug. 2 3 47 9 49

8 5 2 9 40 7 4 21 9 53

13 5 32 9 9 12 4 52 9 40
18 5 39 8 23 17 5 22 9 9

23 6 24 7 22 22 5 50 8 23
28 6 45 6 9 28 6 14 7 22

March 5 7 3 4 46 Sept. 2 6 36 6 9

10 7 18 3 15 7 6 56 4 46
15 7 29 1 39 12 7 12 3 15

20 7 37 sun fast 17 7 24 1 39

25 7 42 1 39 23 7 34 sun fast

30 7 42 3 15 28 7 40 1 39

April 4 7 40 4 46 Oct. 3 7 42 3 15

9 7 34 6 9 8 7 40 4 46
14 7 24 7 22 13 7 34 6 9

19 7 12 8 23 18 7 24 7 22
24 6 56 9 9 23 7 12 8 23
30 6 36 9 40 23 6 56 9 9

May 5 6 14 9 53 Nov. 2 6 36 9 40
10 5 50 9 49 7 6 14 9 53

15 5 22 9 26 12 5 50 9 49
20 4 52 8 45 17 5 22 9 26
26 4 21 7 48 22 4 52 8 45
31 3 47 6 35 27 4 22 7 48

June 5 3 12 5 8 Dec. 2 3 47 6 35
10' 2 35 3 32 7 3 12 5 8

16 1 57 1 48 12 2 35 3 32
21 1 19 sun slow 17 1 57 1 48
26 40 1 48 21

26
1 19

40
sun slow.

1 48

By this table, the regular and symmetrical result of each „

cause is visible to the eye ; "but the actual value of the equa- preceding

tion of time, for any particular day, is the combined results tabIe -

of these two causes. Thus, to find the equation of time for

the 5th day of March, we look at the table and find that
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Chap. v. The first cause gives sun slow, - - - 7m. 3 s.

The second, " sun slow, - - - 4 46

Their combined result (or algebraic sum) is 11 49 slow.

That is ; the sun being slow, it does not come to the meridian

until 11 m. 49 s. after the noon shown by a perfect clock ; but

whenever the sun is on the meridian, it is then noon, apparent

time ; and, to convert this into mean time, or to set the clock,

we must add 11 m. 49 s.

Use of the j$y inspecting the table, we perceive, that on the 14th of

time.
April the two results nearly counteract each other ; and con-

sequently the sun and clock nearly agree, and indicate noon

at the same instant. On the 2d of November the two results

unite in making the sun fast ; and the equation of time is

then the sum of 6 36, and 9 40, or 16 m. 16 s. ; the maximum

result.

The sun at this time being fast, shows that it comes to the

meridian 16m. 16s. before twelve o'clock, true mean time;

or, when the sun is on the meridian, the clock ought to show

11 h. 43 m. 44 s. ; and thus, generally, when the sun is fast, we

must subtract the equation of time from apparent time, to obtain

mean time ; and conversely, when the sun is slow.

As no clock can be relied upon, to run to true mean time,

or to any exact definite rate, therefore clocks must be fre-

quently rectified by the sun. We can observe the apparent

time, and then, by the application of the equation of time, we

determine the true mean time.

a table for (.85.) As the sun has a particular motion, corresponding

equation of to every particular point on the ecliptic, and, at the same

tns on^the
^me

^
*ne particular point on the ecliptic has a definite rela-

snn's longi tion to the equator, therefore any point, as S (Fig. 22), on
tu e can e ^Q ec]jp^Cj nag the two corrections for the equation of time

;

consequently a table can be formed for the equation of time,

depending on the longitude of the sun; and such a table

would be perpetual, if the longer axis of the solar orbit did

not change its position in relation to the equinoxes. But as

that change is very slow, a table of that kind will serve for
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many years, with a very trifling correction, and such a table Csap. v.

is to Tbe found in many astronomical works.

It is very important that the navigator, astronomer, and Utility of

clock regulator, should thoroughly understand the equation of
f

e

ti^g
atl0n

time; and persons thus occupied pay great attention to it;

but most people in common life are hardly aware of its ex-

istence.

CHAPTER VI.

THE APPARENT MOTIONS OF THE PLANETS.

(86.) "We have often reminded the reader of the great Chap, vi.

regularity of the fixed stars, and of their uniform positions in

relation to each other ; and by this very regularity and con-

stancy of relative positions, we denominate them fixed; but

there are certain other celestial bodies, that manifestly change

their positions in space, and, among them, the sun and moon

are most prominent.

In previous chapters, we have examined some facts con- Recapitu-

cerning the sun and moon, which we briefly recapitulate, as
atl0n '

follows

:

1. That the sun's distance from the earth is very great;

but at present we cannot determine how great, for the want

of one element— its horizontal parallax.

2. Its magnitude is much greater than that of the earth.

3. The distance between the sun and earth is slightly va-

riable ; but it is regular in its variations, both in distance and

in apparent angular motion.

4. The moon is comparatively very near the earth; its

distance is variable, and its mean distance and amount of

variations are known. It is smaller than the earth, although,

to the mere vision, it appears as large as the sun.

The apparent motions of both sun and moon are always in

one direction; and the variations of their motions are never

far above or below the mean. other ceies-

But there are several other bodies that are not fixed stars ; *»»! bodies.
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chap. vi. and although not as conspicuous as the sun and moon, have

been known from time immemorial.

They appear to belong to one family; but, before the true

system of the world was discovered, it was impossible to give

any rational theory concerning their motions, so irregular

and erratic did they appear ; and this very irregularity of

their apparent motions induced us to delay our investigations

concerning them to the present chapter.

The plan- jn general terms, these bodies are called planets— and
' there are several of recent discovery— and some of very

recent discovery; but as these are not conspicuous, nor well

known, all our investigations of principles will refer to the

larger planets, Venus, Mars, Jupiter, and Saturn. We now

commence giving some observed facts", as extracted from the

Cambridge astronomy

The mom- ( 87.) " There are few who have not observed a beautiful
mg and even-

g^ar in ^e west, a little after sunset, and called, for this rea-
in<j star.

son, the evening star. This star is Venus. If we observe it

for several days, we find that it does not remain constantly

at the same distance from the sun. It departs to a certain

distance, which is about 45°, or ith of the celestial hemi-

sphere, after which it begins to return; and as we can ordi-

narily discern it with the naked eye only when the sun is

below the horizon, it is visible only for a certain time imme-

diately after sunset. By and by it sets with the sun, and

then we are entirely prevented from seeing it by the sun's

light. But after a few days, we perceive, in the morning,

near the eastern horizon, a bright star which was not visible

before. It is seen at first only a few minutes before sunrise,

and is hence called the morning star. It departs from the

sun from day to day, and precedes its rising more and more

;

but after departing to about 45°, it begins to return, ami

rises later each day ; at length it rises with the sun, and we

cease to distinguish it. In a few days the evening star again

appears in the west, very near the sun ; from which it departs

in the same manner as before ; again returns ; disappears for

a short time ; and then the morning star presents itself.

These alternations, observed without interruption for more
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fchan 2000 years, evidently indicate that the evening and Chap. vi.

morning star are one and the same body. They indicate, also,

that this star has a proper motion, in virtue of which it oscil-

lates about the sun, sometimes preceding and sometimes fol-

lowing it.

These are the phenomena exhibited to the naked eye ; but

the admirable invention of the telescope enables us to carry

our observations much farther."

( 88. ) On observing Venus with a telescope, the irradiation The

is, in a great measure, taken away, and we perceive that it

has phases, like the moon. At evening, when approaching the

sun, it presents a luminous crescent, the points of which are

from the sun. The crescent diminishes as the planet draws

nearer the sun ; but after it has passed the sun, and appears

on the other side, the crescent is turned in the other direction

;

the enlightened part always toward the sun, showing that it

receives its light from that great luminarv. The crescent
i ..-.', i „ ;, The chases

now gradually increases to a semicircle, and finally, to a full fVerms and

circle, as the planet again approaches the sun ; hut, as the its aPParen t

crescent increases, the apparent diameter of the planet diminishes ; hE

pauses

of Venus.

lave corn

and at every alternate approach of the planet to the sun, the sponding

phase of the planet is full, and the apparent diameter snUl ;

°

and at the other approaches to the sun, the crescent diminishes

down to zero, and the apparent diameter increases to its

maximum. When very near the sun, however, the planet is

lost in the sunlight ; but at some of these intervals, between

disappearing in the evening, and reappearing in the morning,

it appears to run over the sun's disc as a round, black spot

;

giving a fine opportunity to measure its greatest apparent

diameter.* When Venus appears full, its apparent diameter

is not more than 10", and when a black spot on the sun, it

is 59". 8, or very nearly V. Hence its greatest distance must

be, to its least distance, as 59". 8 to 10, or nearly as 6 to 1.

* Astronomers do not measure the apparent diameters of

the planets by the process described for the sun and moon,

because they pass the meridian too quickly. Most of them will

pass the meridian in a small fraction of a second. They use
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Chap. vi. ( 89. ) When we come to form a theory concerning the

real motion of this planet, we must pay particular attention

to the fact, that it is always in the same part of the heavens

Venus ai- as the sun— never departing more than 47° on each side of

it— called its greatest elongation. In consequence of being

always in the neighborhood of the sun, it can never come to

the meridian near midnight. Indeed, it always comes to the

meridian within three hours 20 minutes of the sun, and, of

course, in daylight. But this does not prevent meridian ob-

servations being taken upon it, through a good telescope ;
*

a micrometer, which is two spider lines, always parallel, near

the focus of a telescope, and so attached, by the mechanism of

screws, as to open and close at pleasure.

To understand its grade of adjustment, bring the two lines

together, so as to form one line. Then take any object,

whose angular diameter is known at that time, as the diame-

ter of the sun, and open the lines so as just to take in its

disc, counting the turns, and parts of a turn given to the

index screw to open to this object. From this we can com-

pute the angle corresponding to one turn, or to any part of a

turn, of the index screw.

Now if we wish to measure the apparent diameter of any

planet, bring the lines together, and then open them, just to

inclose the planet ; and the number of turns, or the part of a

turn, given to the screw, will determine the result.

This may not be the exact mechanism of every micrometer,

but this is the principle of their construction.

* Perhaps we ought to have informed the reader before, "that the

stars continue visible through telescopes, during the day, as well as the

night ; and that, in proportion to the power of the instrument, not only

the largest and brightest of them, but even those of inferior luster, such

as scarcely strike the eye, at night, as at all conspicuous, are readily

found and followed even at noonday,— unless in that part of the sky

which is very near the sun,—by those who possess the means of point-

ing a telescope accurately to the proper places. Indeed, from the bot-

toms of deep narrow pits, such as a well, or the shaft of a mine, such

bright stars as pass the zenith may even be discerned by the naked eye;

and we have ourselves heard it stated by a celebrated optician, that the



PLANETARY MOTION. 101

and, as to this particular planet, it is sometimes so bright as cha?. Vi.

to be seen by*the unassisted eye in the daytime.

( 90.) Even without instruments and meridian observations, Morion of

the attentive observer can determine that the motion of Venus, >enus m re -

spect to tsie

in relation to the stars, is very irregular— sometimes its stars .

motion is rapid— sometimes slow— sometimes direct— some-

times stationary, and sometimes retrograde ;
* but the direct

motion prevails, and, as an attendant to the sun, and in its

own irregular manner, as just described, it appears to tra-

verse round and round among the stars.

(91. ) But Yenus is not the only planet that exhibits the Mercury

appearances we have iust described. There is one other, and similar m a11

1 L "
>

appearances

only one— Mercury ; a very small planet, rarely visible to the t0 Venus.

naked eye, and not known to the very ancient astronomers.

Whatever description we have given of Venus applies to Mer-

cury, except in degree. Its variations of apparent diameter

are not so great, and it never departs so far from the sun

;

and the interval of time, between its vibrations from one side

to the other of the sun, is much less than that of Venus.

(92.) These appearances clearly indicate that the sun must be A conclu-

de center, or near the center, of these motions, and not the earth ;

and that Mercury must revolve in an orbit within that of Venus.

So clear and so unavoidable were these inferences, that even

the ancients (who were the most determined advocates for

the immobility of the earth, and for considering it as the

principal object in creation— the center of all motion, etc.)

were compelled to admit them; but with this admission, they

contended, that the sun moved round the earth, carrying

these planets as attendants.

(93.) By taking observations on the other planets, the an- The

cient astronomers found them variable in their apparent diam- rent diame-

earliest circumstance which drew his attention to astronomy, was the

regular appearance, at a certain hour, for several successive days, of a

considerable star, through the shaft of a chimney."

—

HerscheVs Astro-

nomy.

* In astronomy, direct motion is eastward among the stars : station-

ary is no apparent motion, in respect to the stars ; and retrograde is a

westward motion.
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Chap. vi. eters, and angular motions ; so much so, that it was impossible:

ters 6f the to reconcile appearances with the idea of a stationary point of
planets are observation ; unless the appearances were taken for realities,

and that was against all true notions of philosophy.

The planet Mars is most remarkable for its variations; and

the great distinction between this planet and Venus, is, that

it does not always accompany the sun ; but it sometimes, yea,

at regular periods, is in the opposite part of the heavens from

the sun— called Opposition— at which time it rises about

sunset, and comes to the meridian about midnight.

The earth The greatest apparent diameter of Mars takes place when
no e cen-

j piane+ js m opposition to the sun, and it is then 17".l, and
ter ot its mo- i tx:

ion. its least apparent diameter takes place when in the neighbor-

hood of the sun, and it is then but about 4", showing that the

sun, and not the earth, is the center of its motion.

Systematic The general motion of all the planets, in respect to the
irregularities

g£arSj js direct ; that is, eastward ; but all the planets that

attain opposition to the sun, while in opposition, and for some

time before and after opposition, have a retrograde motion—
and those planets which show the greatest change in appa-

rent diameter, show also the greatest amount of retrograde

motion — and all the observed irregularities are systematic in

their irregularities, showing that they are governed, at least,

by constant and invariable laws. If the earth is really sta-

tionary, we cannot account for this retrograde motion of the

planets, unless that motion is real; and if real, why, and

how can it change from direct to stationary, and from station-

ary to retrograde, and the reverse?

Retrograde But if we conceive the earth in motion, and going the same
motion ofthe way yfifo fa piane^ and moving more rapidly than the planet,
planets ac- .

counted for. t'ien l'ie 2J^ane^ Wl^ cippear to run back ; that is, retrograde.

And as this retrogradation takes place with every planet,

when the earth and planet are both on the same side of the

sun, and the planet in opposition to the sun ; and as these cir-

cumstances take place in all positions from the sun, it is a suf-

ficient explanation of these appearances ; and conversely, then,

these appearances show the motion of the earth.

(94.) When a planet appears stationary, it must be really
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so, or be moving directly to or from the observer, And if it Cyxt vi.

be moving to or from the observer, that circumstance will be Planets lev.

indicated by the change in apparent diameter; and observa- erstationary-

tions confirm this, and show that no planet is really station-

ary, although it may appear to be so.

(95.) If we suppose the earth to be but one of a family of The earth a

bodies, called planets— all circulating round the sun at clif- Planet -

ferent times— in the order of Mercury, Venus, Earth, Mars

(omitting the small telescopic planets), Jupiter, Saturn, Her-

schel, or Uranus, we can then give a rational and simple ac-

count for every appearance observed, and without discussing

the ancient objections to the true theory of the solar system,

we shall adopt it at once, and thereby save time and labor,

and introduce the reader into simplicity and truth.

(96.) The true solar system, as now known and acknow- Copernicus

ledged, is called the Cooernican system, from its discoverer,
ani

}
e °"

° x
.

pernican sys-

Copernicus, a native of Prussia, who lived some time in the tem.

fifteenth century.

But this theory, simple and rational as it now appears, and Lost and re-

capable of solving every difficulty, was not immediately adop-
vived '

ted ; for men had always regarded the earth as the chief

object in God's creation ; and consequently man, the lord of cre-

tion, a most important being. But when the earth was hurled

from its imaginary, dignified position, to a more humble

nlace, it was feared that the dignity and vain pride of man

must fall with it ; and it is probable that this was the root

of the opposition to the theory.

So violent was the opposition to this theory, and so odious Galileo and

would any one have been who had dared to adopt it, that it
his clialosue -

appears to have been abandoned for more than one hundred

years, and was revived by Galileo about the year 1620, who,

to avoid persecution, presented his views under the garb of a

dialogue between three fictitious persons, and the points left

undecided.

But the caution of Galileo was not sufficient, or his dia-

logue was too convincing, for it woke up the sacred guardians

of truth, and he was forced to sign a paper denouncing the

theory as heresy, on the pain of perpetual imprisonment.

8
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Chai-. VI. But this is a digression. With the history of astronomy, as

interesting as it may be, we design to have little to do, and

to proceed only with the science itself.

CHAPTER VII.

tis

FIRST APPROXIMATIONS OF THE RELATIVE DISTANCES OF THE

PLANETS FROM THE SUN. HOW THE RESULTS ARE OBTAINED.

(97.) Being convinced of the truth of the Copernican

system, the next step seems to be, to find the periodical times

of the revolutions of the planets, and at least their relative

distances from the sun.

Distinction Mercury and Venus, never coming in opposition to the sun,

between in- but revolving around that body in orbits that are within that

penor plan- °^ *' ae earth, are called inferior planets.

Those that come in opposition, and thereby show that

their orbits are outside of the earth, are called superior

planets.

We shall show how to investigate and determine the posi-

tion of one inferior planet ; and the same principles will be

sufficient to determine the position of any inferior planet.

It will be sufficient, also, to investigate and determine the

orbit of one superior planet; and if that is understood, it may

be considered as substantially determining the orbits of all

the superior planets ; and after that, it will be sufficient to

state results.

For materials to operate with, we give the following table

of the planetary irregularities ( so called ) drawn from obser-

vation :

Planets.

Mercury.
Venus.
Earth.
Mars.
Jupiter.

Saturn.
Uranus.

Greatest
Apparent
Diameters.

Least
Apparent
Diameters.

(Angular Dist.j

(from Sun at the
(instant of being
stationary.

11.3

59.6

171
44.5

20.1

4.1

5.0

9.6

3.6

301
16.3

3.7

18 00
28 48

136 48
115 12
108 54
103 30

Mean arc of '

Retrogradation . 1

° ,

13 30
16 12

16 12
9 54
6 18
3 36
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Planets.
Mean Duration of the Retro-

grade Motion.

Mean Duration of the Synodic
Revolution, or interval between
two successive oppositions.

Mercury.
Venus.

23 days.

42 "
118 days.

584 «

Earth.
Mars. 73 " 780 «

Jupiter.

Saturn.

121 "

139 "
399 "

378 «

Uranus. 151 " 370 "

Chap. VII.

In the preceding table, the word mean is used at the head why the

of several columns, because these elements are variable— word MEAW

.. 'lii ii should be

sometimes more and sometimes less, than the numbers here used.

given— which indicates that the planets do not revolve in cir-

cles round the sun, but most probably in ellipses, like the orbit

of the earth.

On the supposition, however, that the planets revolve in

circles ( which is not far from the truth ), the greatest and

least apparent diameters furnish us with sufficient data to

compute the distances of the planets from the sun in relation

to the distance of the earth, taken as unity.

(98.) In addition to the facts presented in the preceding The eionga-

table, we must not fail to note the important element of the tionsofMer -

„ i T-r m- • t t curyandVe-
elongations ot Mercury and Venus. Ibis term can be applied nus

to no other planets.

It is very variable in regard to Mercury— showing that This element

the orbit of that planet is quite elliptical. The variation is
*J[jJ

ble
..

and

much less in regard to Venus, showing that Yenus moves shows,

round the sun more nearly in a circle.

The least extreme elongation of Mercury is

The greatest " " "
is

The mean (or the greatest elongation when

both the earth and planet are at their

mean distances from the sun ) is -

The least extreme elongation of Venus is

The greatest " " "
is

The mean (or at mean distances), is

The least extremes must happen when the planet is in its

perigee and the earth in its apogee, and the greatest when

the earth is in perigee and the planet in apogee ; but it is

37'.

28° 4\

22° 46'.

44° 58'.

47° 30'.

46° 30'.
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Chv.>. vii. very seldom that these two circumstances take place at the

same time.

How to Belying on these facts as established by observations, we
tin;] the com- ..

i • • n -\r -re-

parative can easily deduce the relative orbits of Mercury and Venus.
magnitudes Let S (Fie. 23) re-
of the orbits YlP. 23. ,

of Mercniy, ^^^j^ present the sun, i? the

"encs, a,.a ^|j| J
earth, V Venus.

the earth SuSHfcsBrwi n • i i

Conceive the planet

to pass round the sun

in the direction of A
VJB.

The earth, moves also

in the same direction,

but not so rapidly as

Venus.

Now it is clearly evi-

dent, from inspection,

that when the planet is

passing by the earth, as

at B, it will appear to

pass along in the hea-

vens in the direction of

m to n. But when the planet is passing along in its orbit, at

A, and the earth about the position of E, the planet will

appear to pass in the direction of n to w. When the planet

is at V, as represented in the figure, its absolute motion is

nearly toward the earth, and, of course, its appearance is

nearly stationary.

What to j£ jg absolutely stationary only at one point, and even then
understand , .. .

by station- hut for a moment ; and that point is where its apparent mo-

ary- tion changes from direct to retrograde, and from retrograde

to direct; which takes place when the angle SE V is about

29 degrees on each side of the line SE.

When the line E V touches the circumference A VJB, the

angle S E J
7
, or cwjle of elongation, is then greatest ; and the

triangle SE V\% right angled at V; and if SE is made ra-

dius, S V will be the sine of the angle SE V
But the line SE is assumed equal to unity, and then £ V
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w ill be the natural sine of 46° 20'. and can be taken out of «<*.„ ™L HAP, V 11,

any table of natural sines ; or it can be computed by loga-

rithms, and the result is .72336.

For the planet Mercury, the mean of the same angle is

22° 46'. and the natural sine of that angle, or the mean radius

of the planet's orbit, is .38698.

Thus we have found the relative mean distances of three

planets from the sun, to stand as follows

:

Mercury, ------ 0.38698

Venus, 0.72336

Earth, 1.00000

( 99. ^ If the orbits were perfect circles, then the angle The olbits

b Jb V, oi greatest elongation, would always be the same; and yenES
but it is an observed fact that it is not always the same; not circles.

therefore the orbits are not circles ; and when S V is least,

and SE greatest, then the angle of elongation is leant ; ami

conversely, when S V is greatest and SE least, then the

angle of elongation is the greatest possible ; and by observing

in what parts of the heavens the greatest and least elongations

take place, we can approximate to the positions of the longer

axis of the orbits.

( 100. ) By means of the apparent diameters, we can also Computa-

find the approximate relations of their orbits. For instance, t
.

10n
°

I i ' rrom appa-

when the planet Venus is at B, and appears on the sun's rent diame-

disc, its apparent diameter is 59".6 ; and when it is at A, or
ters -

as near A as can be seen by a telescope, its apparent diame-

ter is 9";6: Now put

SB=x; then EB=l—x, and AE=l-\-x.

By Art. 66, 1—x : l+.i- : : 96 : 596;

Hence, - - - - #=0.72254.

By a like computation, the mean distance of Mercury from

the sun, is 0.3864.

(101.) To determine the mean relative distances of the

superior planets from the sun, we proceed as follows

:

Let S (Fig. 24) represent the sun, E the earth, and i¥~one

of the superior planets, say Mars. It is easy to decide, from

observation, when the planet is in opposition to the sun.
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Chap. VII.

Method of

approximat-

ing to the cr-

bits of t! e

superior pla-

Fig. 24. This gives the position

of S, E, and M, in one

right line, in respect

to longitude. Now by

knowing the true angu-

lar motion of the earth

about the sun (73), and

the mean angular mo-

tion of the planet, * we

can determine the angle

mSe, corresponding to

any definite future time ;

for, by the motion of the

earth round the sun, we

can determine the angle

E S e ; and by the mo-

tion of the planet in the

same time, we can determine the angle MS m ; and the dif~

The relative "gy means of apparent diameters, we can determine the

values of the orbit. When the planet is in opposition to the
p.anet from i a I

the sun de- sun, at E (Fig. 24), measure its apparent diameter ; and,
termmed oy

after a definite time, when the earth is at e, measure the ap-
the v&na-

.

'

tion in its parent diameter again, and observe the angle S em. Pro-

apparent dia. duce Se to n. Then, by the apparent diameters, we have

the proportion of e m and e n (e n is the same asE M, brought

to this position), and in the triangle emn we have the pro-

portion between the two sides and the included angle men.

These are sufficient data to determine the angles en wand
emn', and their difference is the angle Sme. Now we can

determine the side S m, of the triangle Sm e, and the triangle

S em is completely known. Subtract the angle e Sm from

the whole angle e S 31, and the angle MSm is left. That

is, while the earth is describing the angle E Se, the planet

describes the angle MSm. Put P for the periodical revo-

* Here we anticipate a little ; for we have not shown how to deter-

mine the periodical time of revolution from observation : but this is

shown in a future chapter, and in the above text note
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ference of these two angles is the angle m S e. By direct Chap. vrr.

observation at e, we determine the angle Sem; and two

angles, and the side S e, of the triangle $m e, are sufficient to

determine the side Sm, the value sought. The triangle

gives the following proportion

:

. e 1
. e „ sin. Sem

sin. bme : 1 :: sin. kern : &m=——=—

.

sm. ome
This is a general solution, for any superior planet ; but the why the

result is only approximate ; for, until we know the eccentri- result is a^ _

city of the orbit in question, and the part of the orbit in

which the planet then is, we cannot accurately know the

angle MSm.

lution of the planet ; then, on the supposition of uniform

motion, we have

arc MSm : arc ESe : :
365i

: P
In this proportion the two arcs are known, and from thence

P becomes known ; and thus, ive perceive, that by the variations

of the apparent diameter of a planet, we can determine its rela-

tive distance from the sun, and its periodical revolution.

We give the following hypothetical example, for the pur-

pose of further illustration.

The apparent diameter of Mars, when in opposition to the sun, a problem

tvas observed to be 17". 1. One hundred and eleven days after-

ward, when the earth had passed over 110° of its orbit, the appa-

rent diameter of Mars was again observed, andfound to be 7"A,

and its angular position, in longitude, was 87° from the sun.

From these data, it is required to find the relative approximate

distance of the planetfrom the sun, and the approximate time of

its revolution round the sun.

From these data we have the angle M Sn=110°, Se m= its soiu

87°
; therefore n e m=93°. tion

- ~ Fi *-

. 24.

By the observed apparent diameter, we have EM to em
as 7".4 to 17".l; but EM=en, therefore

en : em : : 74 : 171.

In the triangle nem we can take erc=74, and Em=171,
for the purpose merely of finding the angles. Then, by trigo-

nometry, we have
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Chap, vh . ( 102.) By a perusal of the last text note, it will be seen,

Results by those even who are not expert mathematicians, that it is

from vana- not difficuit to decide upon the relative distances of the
tions in ap- ''."'.
parent dia- planets from the sun, by observing their changes in apparent
meters diameter, as seen from the earth. Such observations have

been often made, and the following table shows the results;

which are compared with the results deduced from Kepler's

Third Law.*

Planets.
Deduced from appa-

rent Diameters.
From Kepler's

Law.
Difference or

Error.

Mercury . .

.

Jupiter

0.386400
0.722540

1.000000
1.533333
5.180777
9.579000

19.500000

0.387098
0.723331
1.000000
1.523692
5.202776
9.538786

19.182390

—.000698
—.000791

+.009641
— .021999

+.040214
+.317610

Text note

continued.

171—74 tan. tan. i, difference be-171+74
—i

tween the angle n and n m e.

That is, - 245 : 97 : : tan. 43° 30' : tan. § Sme.

Whence, >SW=41° 11'. Now in the triangle Sme,

sin. 41° 11' : 1 : : sin. 87° : £m=1.517.

Secondly, as the angle Sme=41 11' and Sem 87°, there-

fore, - - m&=51c 49', and MSm 58° 11'.

But the times of revolution, between any two planets, must

be inversely as the angles they describe in the same time

;

the greater the angle, the shorter the periodic time; and

therefore if we put P to represent the periodical revolution

of Mars, we shall have

58T
2
F : 110 : :

365i
: P. Hence P=690§ days.

The true time is 686.97964; showing an error of a little

more than three days ; but this is not a great error, consider-

ing the remoteness of the data, and the want of minuteness and

unity in the supposed observations. Our object is only to

teach principles; not, as yet, to establish minute results.

* A principle to be explained in Physical Astronomy.
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The distances drawn from Kepler's law, are considered chap, vii.

more accurate than conclusions drawn from most other con- Why the

siderations ; and it is rather remarkable that these deduc- results from

tions from the apparent diameters agree as well as they do, ^fe
"
e

e

r

"
ca

,|'

owing to the difficulty of settling the exact apparent diam- not be relied

eter, by observation. Take the apparent diameter of Ura- upon for at:"

' •* * * curacy.

nus, for example, 3".7 and 4".l and change either of them

j
1
^ of a second, and it will make a great difference in the

deduced result.

CHAPTER VIII.

METHODS OF OBSERVING THE PERIODICAL REVOLUTIONS OF THE

PLANETS, AND THEIR RELATIVE DISTANCES FROM THE SUN.

( 103.) The subject of this chapter will be to explain the Chap
-
vin -

principles of finding the periodical revolutions of the planets why direct

around the sun. If observers on the earth were at the
° ,sena 10"i

are not to tae

center of motion, they could determine the times of revo- point.

lution by simple observation. But as the earth is one of the

planets, and all observers on its surface are carried with it,

the observations here made must be subjected to mathemati-

cal corrections, to obtain true results ; and this was an impos-

sible problem to the ancients, as long as they contended for a

stationary earth.

If the observer could view the planets from the center of Two impor*

the sun, he would see them in their true places anions the
tant p0Sl "

1 ° tions.

stars— and there are only two positions in which an observer

on the earth will see a planet in the same place as though he

viewed it from the center of the sun, and these positions are

conjunction and opposition.

Thus, in Fig. 24, when the earth is at E, and a planet at

M, the planet is in opposition to the sun ; and it is seen pro-

jected among the stars at the same point, whether viewed

from S or from E.

In Fig, 23, if the planet is at B, or A, it is said to be in
CaaXtbeob!

conjunction with the sun; but a conjunction cannot be ob- served.
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Chap. VIST.

Revolution

of inferior

planets less,

and of supe-

ijor planets

greater than

a year.

Times of

opposition

can. be ob-

served

served on account of the brilliancy of the sun, unless it be the

two planets, Mercury and Venus, and then only when they

pass directly before the face of the sun, and are projected on

its surface as a black spot. Such conjunctions are called transits.

( 104.) All the planets move around the sun in the same

direction, and not far from the «ame plane, and the rudest

and most careless observations show that those planets near-

est the sun, perform their revolutions in shorter periods than

those more remote. From this, we decide at once that the

mean angular motion of all the superior planets is less than

the mean angular motion of the earth in its orbit ; and the

mean angular motion of the inferior planets, as seen from

the sun, is greater than the mean motion of the earth.

(105.) The time that any planet comes in opposition to

the sun, can be very distinctly determined by observation.

Its longitude is then 180 degrees from the longitude of the

sun, and comes to the meridian nearly or exactly at midnight.

If it is a little short of opposition at the time of one obser-

vation, and a little past at another, the observer can propor-

tion to the exact time of opposition, and such time can be

definitely recorded— and by such observation, we have the

true position of the planet, as seen from the sun. Another

opposition of the same kind and

of the same planet, can be ob-

served and recorded.

The elapsed time between two

such oppositions is called the sy-

nodical revolution of the planet.

We note the time that a

planet is in opposition to the

sun. Then S E and M are in

one plane as represented in Fig.

25. If the planet M should

remain at rest while the earth,

E made its revolution; then

the synodical revolution would

be the same as the length of

our year. But all the planets move in the same direction as

Fig

S

\ 25.

Synodical

revolution.

Mean angu-

lar motion of

the planets \^
determined E—\^*
from their

synodical

revolutions.

Itv
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the earth; and therefore the earth, after making a revolu- chap. vm.

tion, must pass onward and employ additional time to over-

take the planet ; and the more rapidly the planet moves, the

longer time it will require. Hence, in case two planets have

but a small difference in angular motion, their synodical pe- General con-

ned must be proportionately long. The planet Jupiter sicterations.

moves about 31° in its orbit in a year; and therefore, after

one opposition, the earth is round to the same point in 365|

days, and to gain the 31° requires about 32 days more ; hence

the synodical revolution of Jupiter must be about 397 days,

by this very rough and imperfect computation. By inspect-

ing the table on page 105, we perceive that the mean synodi-

cal revolution of Jupiter is 399 days, and this observed fact

shows us that Jupiter passes over about 31° in a year, and of

course its revolution must be a little less than 12 years; and

by the same considerations, we can form a rough estimate of

the periodical revolutions of all the planets.

( 106.) The general principle being understood, we may

now be more scientific. The mean motion of the earth Computation

in its orbit is very accurately known. Represent its daily I?
determine

•> •> J- •> the mean an-

motion by a. The angular motion of the planet ( any supe- guiai motion

rior planet that maybe under consideration) is unknown ;

of the earth *

therefore, represent its daily motion by x. Let the angle F
S e represent a, and the angle M S m represent x ; then the

angle m Se or ( a—x ) will represent the daily angular advance

of the earth over the planet ; and as many times as the an-

gle m S e is contained in 360° will be the number of days in

Q f\C\

a synodical revolution. Therefore, = the observed
a— x

time of a synodical revolution ; and by taking the times from

the table (page 105), we have the following equations

:

Mars. Jupiter. Saturn. Uranus.

360
:780, J«L=899, J^=378, -^-=370.*

a— x a— x a— x a— x

d
* These equations correspond to the general equation f= in

c—x
Robinson's Algebra, page 105, University edition.

8 J*
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Chap. viii. The value of a is 59' 8", and then a solution of these sev-

eral equations gives the mean angular motion, per day, of the

several planets, as follows

:

Mars. Jupiter. Saturn. Uranus.

31' 27" 4' 59".4 V 59".5 45".3

Times of Dividing the whole circle 360° by the mean daily motion

aeXed°fr m °^ ea°k P^ane*» w^ §iye their respective times of revolution,

the angular and the following are the results

:

Mars, Jupiter. Saturn. Uranus.

687 days. 4331 days. 10840 days. 28610 days.

( 106.) For the inferior planets, Mercury and Venus, we

have the same principle, only making x greater than a, and

J£~p For Mercury. For Venus. #$-

!?i-118
;

-^=584.
x—a x—a

x=A°2' 11"; x=l° 36' 7".

Mean an- These diurnal angular motions correspond to 89 days for

guiar motion
tlie revolution Qf Mercury, and 224.8 days for the revolution

of the inferior J *

planets, and of Venus. All these results are, of course, understood as

their revoiu- grs£ approximations, and accuracy here is not attempted.
tion round x ... . .

the sun. We are only showing principles ; and it will be noticed, that

the times here taken in these considerations, are only to the

nearest days ; and not fractions of a day, as would be necessary

for accurate results. By this method accuracy is never at-

tempted, on account of the eccentricity of the orbits. No
two synodical revolutions are exactly alike ; and therefore

it is very difficult to decide what the real mean values are.

( 107.) To obtain accuracy, in astronomy, observations

must be carried through a long series of years. The follow-

ing is an example; and it will explain how accuracy can be

attained in relation to any other planet.

On the 7th of November, 1631, M. Cassini observed Mer-

cury passing over the sun ; and from his observations then

taken, deduced the time of conjunction to be at 7 h. 50 m., mean

time, at Paris, and the true longitude of Mercury 44° 41' 35".

observa- Comparing this occultation with that which took place in

tions carried
1723, the true time of conjunction was November 9th, at 5 h.

ion- "course 29m., p. m., and Mercury's longitude was 46° 47' 20".
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The elapsed time was 92 years, 2 days, 9 h. 39 m. Twenty- chap. vin.

two of these years were bissextile ; therefore the elapsed time of t0

was (92x365) days, plus 24 d. 9h. 39 m. secure accu-

In this interval, Mercury made 382 revolutions, and 2° 5'
rdCy '

45" over. That is, in 33604.402 days, Mercury described

137522.095826 degrees; and therefore, by division, we find

that in one day it would describe 4°.0923, at a mean rate.

Thus, knowing the mean daily rate to great accuracy, the

mean revolution, in time, must be expressed by the fraction

Q9 ;
or, 87.9701 days, or 87 days 23 h. 15 m. 57 s.

( 108. ) The following is another method of observing the Another

periodical times of the planets, to which we call the student's
|,servn Z

special attention. periodical re-

The orbits of all the planets are a little inclined to the
volBtions of

..-•-. the planets.

plane of the ecliptic.

The planes of all the planetary orbits pass through the

center of the sun ; the plane of the ecliptic is one of them,

and therefore the plane of the ecliptic and the plane of any

other planet must intersect each other by some line passing-

through the center of the sun. The intersection of'two planes

is always a straight line. (See Geometry.)

The reader must also recognize and acknowledge the fol-

lowing principle :

That a body cannot appear to be in the plane of an observer,

unless it really is in that plane.

For example ; an observer is always in the plane of his

meridian, and no body can appear to be in that plane unless

it really is in that plane; it cannot be projected in or out of

that plane, by parallax or refraction.

Hence, when any one of the planets appears to be in the

plane of the ecliptic, it actually is in that plane; and let the

time be recorded when such a thing takes place.

The planet will immediately pass out of the plane, because What is

the two planes do not coincide. Passing the plane of the
meant b^

. .
node.

ecliptic is called passing the node. Keep track of the planet

until it comes into the same plane ; that is, crosses the other

node ; in this interval of time the planet has described just
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Chap. tiii. 180°, as seen from the sun (unless the nodes themselves are

Two nodes in motion, which in fact they are ; but such motion is not

180 degrees sensible for one or two revolutions of Venus or Mars).

^-hlr,c=Q I„ Continue observations on the same planet, until it comes

from the sun. into the ecliptic the second time after the first observation,

or to the same node again, and the time elapsed, is the time of

a revolution of that planet round the sun. From such observa-

tions the periodical time of Venus became well known to

astronomers, long before they had opportunities to decide it

by comparing its transits across the sun's disc ; and by thus

knowing its periodical time and motion, they were enabled to

calculate the times and circumstances of the transits which

happened in 1761, and in 1769; save those resulting from

parallax alone.

First idea of (109.) On comparing the time that a planet remains on

of the plan-
eacn s^e °f ^he Ecliptic, we can form some idea of the position

ets. of its apogee and perigee. If it is observed to be on each side

of the ecliptic the same length of time, then it is evident that

the orbit of the planet is circular, or that its longer axis coin-

cides with its nodes. If it is observed to be a shorter time

north of the plane of the ecliptic than south of it, then it is

evident that its perigee is north of the ecliptic; but nothing

more definite can be drawn from this circumstance.

Finairesuits. ( HO.) Finally. By the combination of the different

methods, explained in articles ( 98 ), ( 100 ), ( 101 ), ( 105 ),

(107 ), and (108), and extending the observations through

a long course of years, and from age to age, the times of rev-

olution, the mean relative distances of the planets from the

sun, were approximated to, step by step, until a great degree

of exactness was attained, and the following were the results :

Sidereal Revolution. Mean distance from Q.

Mercury, - - - 87.969258 0.387098

Venus, - - - 224.700787 0.723332

Earth, - - - 365.256383 1.000000

Mars, - - - 686.979646 1.523692

Jupiter, - - 4332.584821 5.202776

Saturn, - - 10759.219817 9.538786

Uranus, - - 30686.820830 19.182390
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( 111.) By inspecting the preceding table, we find that the Cha?. viil

greater the distance from the- snn, the greater the time of Times one y-

revolution ; but the ratio for the time is greater than the ratio
olut:on ail;1

-,'. distances

corresponding to distance
;
yet we cannot doubt that some 0Ompired

connection exists between these ratios.

For instance, let us compare the Earth with Jupiter. The

ratio between their times of revolution, is near 12.

The ratio between their relative distances from the sun, as

we perceive, is nearly 5.2.

The square of 12 is 144; the cube of 5.2 is near 141.

But 12 is a little greater than the real ratio between the

times of revolution, and 5.2 is not quite large enough for the

ratio of distance, and by taking the correct ratios, they seem

to bear the relation of square to cube.

Without a very rigid or close examination, we perceive

that five revolutions of Jupiter are nearly equal to two revolu-

tions of Saturn; that is, f is nearly the ratio between their

times of revolution.

By inspecting the column of distances, we perceive that

the ratio of the distances of these two planets, is nearly |f

;

and if we square the first ratio, and cube the second, we shall

have nearly the same ratio.

Now let us compare two other planets, say Venus and Result dts-

Mars, more exactly.

Their ratio of revolution is 686,979 log. - 2.836948

224,701 log- - 2.351601

Log. of the ratio, - - - 0.485347

Multiply by 2

Log. of the square of the ratio of time, 0.970694

Their ratio of distance is, 15.23692 log. - 1.182883

7.23332 log. - 859323

Log. of the ratio, - - - 0.323560

Multiply by - 3

Log. of the ache of the ratio of distance, 0.970680

Thus we perceive that the squares of the times of revolu-

tion, are to each other as the cubes of the mean distances of

covered.



118 ASTRONOMY

Chap. viii. the planets from the sun,* and this is called Kepler's third

Kepler's low ; and it was by such numerical comparisons that Kepler
iaws "

discovered the law.f

We may now recapitulate the three laws of the solar sys-

tem, called Kepler's laws, as they were discovered by that

philosopher.

1st. The orbits of the planets are ellipses, of which the sun

occupies one of the foci.

2d. The radius vector in each case, describes areas about the

focus, vjhich are proportional to the times.

2d. The square of the times of revolution, are to each other

as the cubes of the mean distances from the sun.

* For a concise mathematical view of this subject, we give

the following: Let d and D represent mean distances from

the sun, and t and T the times of revolution. Then

T D
;—-== n, ~j— m

> n and m taken to represent the ratios.

Square the 1st equation and cube the 2d. Then

—-=n 2
, and —

—

=m 3

t
2 '

d 3

But by inspection we know that

T 2 D 3

n2=m 3
: therefore, —= -—, or, t

2
: T 2 ::d 8

: D 3
.

' '

t2 d 3

j It appears that Kepler did not compare ratios, as we have done
;

but took the more ponderous method of comparing the elements of the

ratios (the numbers themselves ) ; for, says the historian :— It was on

the 8th of March, 1618, that it first came into Kepler's mind to com-

pare the powers of the numbers which express their revolutions and

distances ; and by chance he compared the squares of the times with

the cubes of the distances ; but from too great anxiety and impa-

tience, he made such errors in computation, that he rejected the hy-

pothesis as false and useless ; but on examining almost every other

relation in vain, he returned to the same hypothesis, and on the 15th

of May, of the same year, he renewed his calculation with completo

success, and established this law, which has rendered his name im-

mortal
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CHAPTER IX.

TRANSITS OP VENUS AND MERCURY. HOW SUN'S HORIZONTAL

PARALLAX DEDUCED

(112.) We have thus far been very patient in our inves- chap, ix.

tigations— groping along— finding the form of the planetary Alttempts to

orbits, and their relative magnitudes ; but, as yet, we know find the sun's

nothing of the distance to the sun; save the indefinite fact, Parallax -

that it must be very great, and its magnitude great; but

how great we can never know, without the sun's parallax.

Hence, to obtain this element, has always been an interesting

problem to astronomers.

The ancient astronomers had no instruments sufficiently
*
;

jj;fficuit;es

refined to determine this parallax by direct observation, in the of ancient

manner of finding that of the moon (Art. 60), and hence the
astronomers -

ingenuity of men was called into exercise to find some artifice

to obtain the desired result.

After Kepler's laws were established, and the relative dis-

tances of the planets made known, it was apparent that their

real distance could be deduced, provided the distance between

the earth and any planet could be made known.

(113.) The relative distances of the earth and Mars, from
Parallaxof

the sun (as determined by Kepler's law) are asl to 1.5237; Mars.

and hence it follows that Mars, in its oppositions to the sun,

is but about one half as far from the earth as the sun is ; and

therefore its parallax (Art. 60) must be about double that

of the sun; and several partially successful attempts were

made to obtain it by observation.

On the 15th of August, 1719, Mars being very near its Maraidi

opposition to the sun, and very near a star of the 5th mag-
approx^ma^

nitude, its parallax became sensible ; and Mr. Maraldi, an tion to the

Italian astronomer, pronounced it to be 27". The relative pj™31" oi

distance of Mars, at that time, was 1.37, as determined from

its position and the eccentricity of its orbit.

But horizontal parallax is the angle under which the earth

appears ; and, at a greater distance, it will appear under a

9
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Chap. ix. less angle. The distance of Mars from the earth, at that

time, was .37, and the distance of the sun was 1 ; therefore,

1 : .37 :: 27" : 9".99, or 10", nearly, for the sun's horizon-

tal parallax.

o>erva- On the 6th of October, 1751, Mars was attentively ob-

eentia and
serve(^ Dy Wargentin and Lacaille (it being near its opposi-

Lacaiiie tion to the sun), and they found its parallax to be 24" .6,

from which they deduced the mean parallax of the sun, 10".7.

But at that time, if not at present, the parallax of Mars

could not be observed directly, with sufficient accuracy to

satisfy astronomers ; for no observer could rely on an angu-

lar measure within 2" ; for full that space was eclipsed by

the micrometer wire.

Dr. Hal- (114.) Not being satisfied with these results, Dr. Halley,
ey s sugges-

aQ jjjjgjjg^ astronomer, very happily conceived the idea of

finding the sun's parallax by the comparisons of observa-

tions made from different parts of the earth, on a transit of

Venus over the sun's disc. If the plane of the orbit of Venus

coincided with the orbit of the earth, then Venus would come

between the earth and sun, at every inferior conjunction, at

intervals of 584.04 days. But the orbit of Venus is inclined

to the orbit of the earth by an angle of 3° 23' 28" ; and, in

the year 1800, the planet crossed the ecliptic from south to

north, in longitude 74° 54' 12", and from north to south, in

longitude 254° 54' 12": the first mentioned point is called

The nodes the ascending node ; the last, the descending node. The nodes
of venns.

retrograde 3r 10" in a century.

What times (115.) The mean synodical revolution of 584 days corre-

in the year
Sp0ndg ^jj n0 aliquot part of a year; and therefore, in the

tiansiis may x
. i •

take place, course of time, these conjunctions will happen at different

points along the ecliptic. The sun is that part of the ecliptic

near the nodes of Venus, June 5th and December 6th or 7th

;

and the two last transits happened in 1761 and in 1769 ; and

from these periods we date our knowledge of the solar parallax.

Revoiu- (H6.) The periodical revolution of the earth is 365.256383
tions com- d and tnat of yenus ig 224.700787 ; and as numbers they
pared.

. .

are nearly m proportion of 13 to 8.

From this it follows, that eight revolutions of the earth
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require nearly the same time as
r
13 revolutions of Venus; Chap. ix

and, of course, whenever a conjunction takes place, eight

years afterward another conjunction will take place very near

the same point in the ecliptic*

* The ratio of the times of these revolutions is directly Compara.

; , . , 224.700787 , . .

ei
;°

m°tion*

compared, as terms of a traction, thus, ._. ^^r,-. '> an« ^ 1S
venusar,a

r 355.256381 the earth.

manifest that 365.256383 days, multiplied by the number

224700787, will give the same product as 224.700787 days

multiplied by the number 365256383 ; that is, after an elapse

of 224700787 years, the conjunction will take place at the

same point in the heavens; and all intermediate conjunctions

will be but approximations to the same point : and to obtain

these approximate intervals, we reduce the above fraction to

its approximating fractions, by the principle of continued

fractions. f See Robinson's Arithmetic.
)

The approximating fractions are112 3 8 235

I' 2' 3' 5' 13' 382'

To say nothing of the first two terms, these fractions show

that two revolutions of the earth are near, in length of time,

to three revolutions of Venus ; three revolutions of the earth

a nearer value to five revolutions of Venus : and eight revo-

lutions of the earth a still nearer value to 13 revolutions of

Venus ; and 235 revolutions of the earth a very near value

to 382 revolutions of Venus.

The period of eight years, under favorable circumstances,

will bring a second transit at the same node ; but if not in

eight years, it will be 235 years, or 235-f-8=243 years.

For a transit at the other node, we must take a period of

235—8 years, divided by 2, or 113 years; and sometimes

the period will be eight years less than this, or 105 years.

The first transit known to have been observed was in 1639,

December 4th; to this add 235 years, and we have the time

of the next transit, at the same node, 1874, December 8th;

and eight years after that will be another, 1882, December

6th. The first transit observed at the ascending node, was

K
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Chap. ix. If the proportion had been exactly as 13 to 8, then the

Periods of conjunctions would always take place exactly at the same
conjunctions

p0mt . fo^, as it is, the points of conjunction in the heavens
at the same

. ,.
•

time of the are east and west of a given point, and approximate nearer
year. an(j nearer to that point as the periods are greater and

greater.

Only two To be more practical, however, the intervals between con-
can

iunctions are such, combined with a slight motion of the nodes,
happen at in- ° ' % *

tervais of 8 that the geocentric latitude of Venus, at inferior conjunctions

years. near tne ascending node, changes about 19' 30" to the north,

in the period of about eight years. At the descending node,

it changes about the same quantity to the southward, in the

same period ; and as the disc of the sun is but little over 32',

it is impossible that a third transit should happen 16 years

after the first; hence only two transits can happen, at the

same node, separated by the short interval of eight years.

Periods be- (117.) If at any transit we suppose Venus to pass directly

transits of
over *^e center °f *ne sun

>
as seen from the center of the

Venus. earth— that is, pass conjunction and node at the same time—
at the end of another period of about eight years, Venus

would be 19' 30" north or south of the sun's center; but as

the semidiameter of the sun is but about 16', no transit could

happen in such a case ; and there would be but one transit

at that node until after the expiration of a long period of 235

or 243 years.

After passing the period of eight years, we take a lapse of

105 or 113 years, or thereabouts, to look for a transit at the

other node.

Transits ( 118. ) Knowing the relative distances of Venus, and the
can be com- in i i •• -, ...
puted. earth, from the sun— the positions and eccentricities ot both

Dr. Haiiey orbits—also their angular motions and periodical revolutions

—

to°find the
every circumstance attending a transit, as seen from the

sun's parai- earth's center, can be calculated; and Dr. Halley, in 1677,
lax '

read a paper before the London Astronomical Society, in

Text note
[n 17(31 june 5th

;
eight years after, 1769, June 3d, there

was another ; and the next that will occur, at that node, will

be in 2004, June 7th, 235 years after, 1769.
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vvhich he explained the manner of deducing the parallax of Chap. ix.

the sun, from observations taken on a transit of Yenus or

Mercury across the sun's disc, compared with computations

made for the earth's center, or by comparing observations

made on the earth, at great distances from each other.

The transits of Yenus are much better, for this purpose, Why the

than those of Mercurv ; as Yenus is larger, and nearer the
*ransits of

* ° Venus are

earth, and its parallax at such times much greater than that better adapt-

of Mercury; and so important did it appear, to the learned ed t0 £ive

world, to have correct observations on the last transit of rallax than

Yenus, in 1769, at remote stations, that the British, French, those ofMer -

and Russian governments were induced to send out expedi-
cur3 '

tions to various parts of the globe, to observe it. " The fa-

mous expedition of Captain Cook, to Otaheite, was one of

them."

(119.) The mean result, of all the observations made on The result

that memorable occasion, gave the sun's parallax, on the day

of the transit (3d of June), 8". 5776. The horizontal paral-

lax, at mean distance, may be taken at 8".6 ; which places

the sun, at its mean distance, no less than 23984 times the

length of the earth's semidiameter, or about 95 millions of

miles.

This problem of the sun's horizontal parallax, as deduced The impor-

from observations on a transit of Yenus, we regard as the tance of this

most important, for a student to understand, of any in astro-

nomy ; for without it, the dimensions of the solar system, and

the magnitudes of the heavenly bodies, must be taken wholly

on trust; and we have often protested against mere facts

being taken for knowledge.

(120.) We shall now attempt to explain this whole matter A general

on general principles, avoiding all the little minutiae, which exPlanatl0n -

render the subject intricate and tedious; for our only object

is to give a clear idea of the nature and philosophy of the

problem.

Let S (Fig. 26) represent the sun, and m n and P Q small

portions of the orbits of Yenus and the earth.

As these two bodies move the same way, and nearly in the

same plane, we may suppose the earth stationary, and Yenus
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Chap. IX.

The case

simplified.

An abstract

proposition

for the pur-

pose of illus-

tration.

to move with an angular velocity,

equal to the difference of the two.

When the planet arrives at v, an

observer at A would see the planet

projected on the sun, making a dent

at v

.

But an observer at G would not

see the same thing until after the

planet had passed over the small are

v q, with a velocity equal to the diff-

erence between the angular motion

of the two bodies; and as this will

require quite an interval of absolute

time, it can be detected; and it mea-

sures the angle A v' G; an angle

under which a definite portion of the

earth appears as seen from the sun.

(121.) To have a more definite

idea of the practicability of this me-

thod, let us suppose the parallactic

angle, A v' G, equal to 10", and in-

quire how long Yenus would be in

passing the relative arc v q.

1° 36' 8" in a day.

59' 8" "

The relative, or excess motion of Venus for a mean solar

day is then 37'.

Now, as 37'' is to 24h. so is 10" to a fourth term; or, as

2220" : 1440m. :: 10" : 6 m. 29 s.

Now if observation gave more than 6 minutes and 29 sec-

onds, we shall conclude that the parallactic angle was more

than 10"; if less, less. But this is an abstract proposition.

When treating of an actual case in place of the mean motion,

we must take the actual angular motions of the earth and

Venus, at that time, and we must know the actual position of

the observers
;
A and G, in respect to each other, and the po-

sition of each in relation to a line joining the center of the

Venus, at its mean rate, passes -

The earth,
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earth and the center of the sun ; and then by comparing the Chap. ix.

local time of observation made at A, with the time at G, and

referring both to one and the same meridian, and we have the

interval of time occupied by the planet in passing from v to

q, from which we deduce the parallactic angle A v' G, and

from thence the horizontal parallax.

The same observations can be made when the planet passes A combiua-

off the sun, and a great many stations can be compared with
b ti^3

A, as well as the station G. In this way, the mean result of

a great many stations was found in 1761, and in 1769, and

the mean of all cannot materially differ from the truth.

( 122.) There is another method of considering this whole Another me-

subject, which is in some respects more simple and preferable
thodofdedu -

to the one just explained. It is for the observers at every b]eni .

station to keep the track of the transit all the way across the

sun's disc, and take every precaution to measure the length

of chord upon the disc, which can be done by carefully noting

the times of external and internal contacts, and the begin-

ning and end of the transit, and at short intervals carefully

measuring the distance of the planet to the nearest edge of

the sun by a micrometer.

If the parallax is sensible, it is evident that two observers, situation cf

situated in different hemispheres, will not obtain the same dlfferent ob -

x
m

servers.

chord. For example, an observer in the northern hemisphere,

as in Sweden or Norway, will see Venus traversing a more

southern chord than an observer in the southern hemisphere.

Now if each observer gives us the length of the chord as ob-

served by himself, and, knowing the angular diameter of the

sun, we can compute the distance of each chord from the

sun's center, and of course we then have the angular breadth

of the zone on the sun's disc between them. But as this

zone is formed by straight lines passing through the same

point, the center of Venus, its absolute breadth will depend on

its distance from the point v; that is, the two triangles ABv
and a b v ( Fig. 27) will be proportional, and we have

A v : a v : : A B : a b. The result

But the first three of these terms are known ; therefore the

fourth, a b, is known also ; and if any definite angular space

K*
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Chap. IX. Fig. 27.

Under what

circumstan-

ces this me-

thod should

not be used.

Transits of

Mercury not

important.

Revolutions

of Mercury

and the earth

compared.

on the sun becomes known, the whole sem-

idiameter becomes known, and from thence

the horizontal parallax is immediately dedu-

ced.*

(123.) The accuracy of this method should be

questioned when Venus passes near the sun's

center, for the two chords are never more than

30" asunder, and hence they will not percepti-

bly differ in length when passing near the sun's

center, and Venus will be upon the sun nearly

the same length of time to all observers.

( 124.) The apparent diameter of Mercury

and Venus can be very accurately measured

when passing the sun's disc. In 1769 the di-

ameter of Venus was observed to be 59".

( 125.) The same general principles apply

to the transits of Mercury and Venus ; but those

of Mercury are not important, on account of the

smaller parallax and smaller size of that planet

;

but owing to the more rapid revolution of Mer-

cury, its transits occur more frequently. The

frequent appearance of this planet on the face

of the sun, gives to astronomers fine opportu-

nities to determine the position of its node and

the inclination of its orbit.

In 1779, M. Delambre, from observations on the transit of

May 7, placed the ascending node, as seen from the sun, in

longitude 45° 57' 3". From the transit of the 8th of May,

1845, as observed at Cincinnati, it must have been in longi-

tude 46° 31' 10"; this gives it a progressive motion of about

1° 10' in a century. The inclination of the orbit is 7° 0' 13".

The periodical time of revolution is 87.96925 days ; that of

the earth is 365.25638 days, and by making a fraction of

these numbers, and reducing as in the last text note, we find

LB

* That is, as the real diameter of the sun, is to the real diameter of

the earth, so is the sun's angular semidiameter to its horizontal par-

allax. ( See 66).
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that 6, 7, 13, 33, 46, 79, and 520 years, or revolutions of the Chap, ix.

earth nearly correspond to complete revolutions of Mercury.

Hence we may look for a transit in 6, 7, 13, 33, 46, &c,

years, or at the expiration of any combination of these years

after any transit has been observed to take place ; and by

examining the following table, the years will be found to fol-
Intervals be -

°
. .

tween tran-

low each other by some combination of these numbers.
S its .

The following is a list of all the transits of Mercury that

have occurred, or will occur, between the years 1800 and

1900:

At the ascending node. At the descending node.

1802, - - - Nov. 8. 1799, - - - May 7.

1822, - - - Nov. 4. 1832, - - - May 5.

1835, - - - Nov. 7. 1845, - - - May 8.

1848, - - - Nov. 9. 1878, - - -May 6.

1861, - - - Nov. 11. 1891, - - - May 9.

1868, - - - Nov. 4.

1881, - - - Nov. 7.

1894, - - - Nov. 10.

CHAPTER X.

THE HORIZONTAL PARALLAXES OF THE PLANETS COMPUTED, AND

FROM THENCE THEIR REAL DIAMETERS AND MAGNITUDES.

( 126.) Having found the real distance to the sun, acd the Chap. x.

sun's horizontal parallax, we have now sufficient data to find Real mag.

the real distance, diameter, and magnitude, of every planet nitudes ancl

distsncGS c?-n

in the solar system. now be de.

In Art. 60 we have explained, or rather defined, the hori- termined

zontal parallax of any body to be the angle under which the

semidiameter of the earth appears, as seen from that body

;

and if the earth were as large as the body, the apparent diame-

ter of the body, and its horizontal parallax, would have the

same value. And, in general, the diameter of the earth is to

the diameter of any other planetary body, as the horizontal

parallax of that body is to its apparent semidiameter.

The mean horizontal parallax of the sun, as determined in
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Chap. x. the last chapter, is 8".6; the semidiameter of the sun, at the

Real dia- corresponding mean distance, is 16' 1", or 961". Now let d

meter of the represent the real diameter of the earth, and D that of the
Mm e er-

g^ ^en we g^rj have -^he following proportion

:

d : D : : 8".6 : 961".0.

But d is 7912 miles; and the ratio of the last two. terms is

111.66; therefore D=(111.66)(7912)=883454 miles.

Real dis- ( 127.) The sun's horizontal parallax is the angle at the

tance be- kase f a right angled triangle ; and the side opposite to it is

earth and sun * Qe ra<&us of the earth (which, for the sake of convenience,

determined, we now call unity). Let x represent the radius of the earth's

orbit; then, by trigonometry,

sin. 8".6 : 1 :: sin. 90° : x\

sin 90°
Therefore, ^=-r—^-=log. 10.00000—-log. 5.620073 *

sm.8".6 to fe

That is, the log. of #=4.379927, or z=23984 ; which is

the distance between the earth and sun, when the semidia-

meter of the earth is taken for the unit of measure ; but, for

general reference, and to aid the memory, we may say the

distance is 24000 times the earth's semidiameter.

(128.) Now let us change the unit from the semidiameter

of the earth to an English mile ; and then the distance be-

tween the earth and sun is

Bistancein (3956)(23984)=94880706

;

round num- •

\

!)er3- and, in round numbers, we say 95 millions of miles.

By Kepler's third law, we know the relative distances of

* Students generally would be unable to find the sine of 8". 6, or the

sine of any other very small arc ; for the directions given in common
works of trigonometry are too gross, and, indeed, inaccurate, to meet

the demands of astronomy.

On the principle that the sines of small arcs vary as the arcs them-

selves, we can find the sine of any small arc as follows :

Sine of 1', taken from the tables, is - - - - 6.463726

Divide by 60, that is, subtract the log. of 60, - - 1. 778151

The sine'of 1", therefore, is - - - - - 4. 685575

Multiply by the number 8.6 ; that is, add log. - 0. 934498

The sine of 8". 6, therefore, must be, - - - - 5. 620073

In the same manner, find the sine of any other small arc.
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all the planets from the sun; and now, having found the real Chap, x.

distance of the earth, we may have the distance in miles, by How to

multiplying the distance of the earth by the ratio correspond- find the dls "

1 J ° ^ x tance of any
ing to any other planet. Thus, for the distance of Venus, planet from

we multiply 94880706 by .72333 ; and the result is the suu in

miles
68629960 miles, for the distance of Venus: and proceed, in

the same manner, for the distance of any other planet.

(129.) By observations taken on the transit of Venus, in To find the

1769, it was concluded that the horizontal parallax of that yenus
planet was 30".4; and its semidiameter, at the same time,

was 29".2. Hence (Art. 127), 304 : 292 : : 7912 : to a

fourth term; which gives 7599 miles for the diameter of

Venus.

(130.) We cannot observe the horizontal parallax of Ju- Parallax

piter, Saturn, or any other very remote planet: if known at cannotbeob-*

all, it becomes known by computation; but the parallax can served,

be known, when the real distance is known ; and, by Kepler's

third law, and the solar parallax, we do know all the planetary

distances ; and can, of course, compute any particular hori-

zontal parallax.

For the horizontal parallax of Jupiter, when at a distance

from the earth equal to its mean distance from the sun, we

proceed as follows

:

The parallax, or the semidiameter of the earth, when seen

at the distance of the sun, is 8". 6. When seen from a greater

distance, the angle would be proportionally less.

Put h equal to the horizontal parallax of Jupiter ; then we

have, - 5.202776 : 1 : : 8".6 : h; or h=~^-~.
5.202776

From this, we perceive, that if we divide the sun's horizontal How to

parallax by the ratio of a planets distance from the sun, the
comPute the

quotient will be the horizontal parallax of the planet, when at a the planet.

distance from the earth equal to its mean distancefrom the sun.

(131.) To find the diameter of a planet, in relation to the How to

diameter of the earth, we have a similar proportion as in Art. Snd the real

tnn -i .o 1 -i t i
diameters of

lib : and to find the diameter of Jupiter, we proceed as the planets.

follows

:

The greatest apparent diameter of Jupiter, as seen from

9
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Chap. x. the earth, is 44".5; the least is 30".1; therefore the mean,

as seen from the sun, cannot be far from 37 ".3. and the semi-

diameter 18".65; La Place says it is 18".35; and this value

we shall use. Now, as in Art. 126, let d=7912, Z>= the

8".6
unknown diameter of Jupiter

; 90977ft *s ^s norizontal

parallax, and 18".35 its corresponding semidiameter ; then, as

in Art. 126, - 7912. : D : : -g-^g : 18.35;

. Tnerefore jD=
7glg_Xl8.35x5.202776 = 7912><lm =

8.0

87900 miles.

In the same manner, we may find the diameter of any

other planet.

Jupiter not ^e have just seen that the diameter of Jupiter is 11.11

spherical, times the diameter of the earth ; but this is the equatorial

diameter of the planet. Its polar diameter is less, in the

proportion of 167 to 177, as determined by the mean of many

micrometrical measurements ; which proportion gives 82930

miles, for the polar diameter of Jupiter. These extremes

give the mean diameter of Jupiter, to the mean diameter of

the earth, as 10.8 to 1.

How to find (132.) But the magnitudes of similar bodies are to one
the magm-

ano^er as ^he cukes f their like dimensions ; therefore the
tude of the

planets. magnitude of Jupiter is to that of the earth, as (10.8) 3 to

1, and from thence we learn that Jupiter is 1260 times

greater than the earth.

In the same manner we may find the magnitude of any

other planet, and it is thus that their magnitudes have often

been determined, and the results may be seen in a concise

form, in Table IY, which gives a summary view of the solar

system.

The masses and attractions of the different planets will be

investigated in physical astronomy, after we become acquain-

ted with the theory of universal gravity.
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CHAPTER XI.

A GENERAL DESCRIPTION OP THE PLANETS.

( 133.) We conclude this section of astronomy by a brief chap. xi.

description of the solar system, which we have purposely

delayed lest we might interrupt the course of reasoning

respecting the planetary motions. The reader is referred to

Table IV, for a concise and comparative view of all the facts

that can be numerically expressed ; and aside from these facts,

little can be said by way of explanation or description.

The fact, that the sun or a planet revolves on an axis, Facts reveal-

must be determined by observing the motion of spots on the
e

.J
spot

•> o r on the sun or

visible disc ; and if no spots are visible, the fact of revolution planets.

cannot be ascertained.* But when spots are visible, their

motion and apparent paths will not only point out the time

of revolution, but the position of the axis.

THE SUN.

(134.) The sun is the central body in the system, of im- The snn the

mense magnitude, comparatively stationary, the dispenser of TeP° sitory of

light and heat, and apparently the repository of that force

which governs the motion of all other bodies in the system.

" Spots on the sun seem first to have heen observed in the year 1611,

since which time they have constantly attracted attention, and have

been the subject of investigation among astronomers. These spots

change their appearance as the sun revolves on its axis, and become

greater or less, to an observer on the earth, as they are turned to, or

from him; they also change in respect to real magnitude and number;

one spot, seen by Dr. Herschel, was estimated to be more than six

times the size of our earth, being 50000 miles in diameter. Some-

times forty or fifty spots may be seen at the same time, and sometimes

only one. They are often so large as to be seen with the naked eye

;

this was the case in 1816.

" In two instances, these spots have been seen to burst into several

parts, and the parts to fly in several directions, like a piece of ice

thrown upon the ground.

* Mercury is an exception to this principle.



132 ASTRONOMY.

Chap. XI. " In respect to the nature and design of these spots, almost every

astronomer has formed a different theory. Some have supposed them

to be solid opaque masses of scoria?, floating in the liquid fire of the

sun ; others as satellites, revolving round him, and hiding his light

from us ; others as immense masses, which have fallen on his disc, and

which are dark colored, because they have not yet become sufficiently

heated.

" Dr. Herschel, from many observations with his great telescope,

concludes, that the shining matter of the sun consists of a mass of

phosphoric clouds, and that the spots on his surface are owing to dis-

turbances in the equilibrium of this luminous matter, by which open-

ings are made through it. There are, however, objections to this

theory, as indeed there are to all the others, and at present it can only be

said, that no satisfactory explanation of the cause of these spots has

been given."

singular ( 135.) Mercury. This planet is the nearest to the sun,
means of dis-

aQ<j ^ag ^Qen ^e SUDiect of considerable remark in the pre-
covermg ro- * L

tation. ceding pages. It is rarely visible, owing to its small size and

proximity to the sun, and it never appears larger to the na-

ked eye than a star of the fifth magnitude.

Mercury is too near the sun to admit of any observations

on the spots on its surface ; but its period of rotation has

been determined by the variations in its horns— the same

ragged corner comes round at regular intervals of time—
24h. 5m.

Times when The best time to see Mercury, in the evening, is in the

Mercury may spring of the year, when the planet is at its greatest elonga-

tion east of the sun. It will then be visible to the naked,

eye about fifteen minutes, and will set about an hour and

fifty minutes after the sun. When the planet is west of the

sun, and at its greatest distance, it may be seen in the morn-

ing, most advantageously in August and September. The

symbol for the greatest elongation of Mercury, as written in

the common almanacs, is y Gr. Elon.

High moun- ( 136.) Venus. This planet is second in order from the sun,

tams on Ve- an(j ^n relation to its position and motion, has been sufficiently

described. The period of its rotation on its axis is 23h. 21m.

The position of the axis is always the same, and is not at

right angles to the plane of its orbit, which gives it a change of

seasons. The tangent position of the sun's light across this
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Chap. XI.

Telescopic

views of Ye-

planet shows a very rough sur-

face; indeed, high mountains.

By the radiating and glimmer-

ing nature of the light of this

planet, we infer that it must

have a deep and dense atmos-

phere.

( 137.) The Earth is the next planet in the system; but it The earth

would be only formality to give any description of it in this a Planet -

place. As a planet, it seems to be highly favored above its

neighboring planets, by being furnished with an attendant, The earth's

the moon ; and insignificant as this latter body is, compared
a

to the whole solar system, it is the most important and in-

teresting to the inhabitants of our earth. The two bodies,

the earth and the moon, as seen from the sun, are very small

:

the former subtending an angle of about 17" in diameter,

the latter about 4", and their distance asunder never greater

than between seven and eight minutes of a degree.

Contrary to the general impression, the moon's motion in

absolute space is always concave toward the sun.*

(138.) Mars—the first superior planet—is of a red color, Mars; his

and very variable in its apparent magnitude. About every pe^nce &c"

* This may be shown thus— the moon is inside the earth's

orbit from the last quarter to the first quarter, on an average

14 days and 18 hours. During this time the earth moves in

its orbit 14° 30'. Let ^g- 28 -

L n F'be a portion of the

earth's orbit equal to 14° 30', L

L the position of the earth at the First Quarter of the moon,

and F its position at the Last Quarter. Draw the chord L F,

and compute m n the versed sine of the arc 7° 15'.

The mean radius of the earth's orbit is 397 times the ra-

dius of the lunar orbit. A radius of 397 and an angle 7° 15'

gives a versed sine of 3.49; but on this scale the distance

from the earth to the moon is unity, or less than one third of

nm; hence, the moon's path must be between the chord LF
and the arc L n F— that is, always concave toward the sun.

L

The moon's

motion con-

cave toward

the sun.
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Chap. xi. other year, when it comes to the meridian, near midnight, it

is then most conspicuous ; and the next year it is scarcely

noticed by the common observer.

"The physical appearance of
Telescopic View of Mars. tvt • u , i_ ui tr-Mars is somewhat remarkable. His

polar regions, when seen through

a telescope, have a brilliancy so

much greater than the rest of his

disc, that there can be little doubt

that, as with the earth so with

this planet, accumulations of ice

or snow take place during the win-

ters of those regions. In 1781

the south polar spot was extremely

bright ; for a year it had not been

exposed to the solar rays. The
color of the planet most probably

arises from a dense atmosphere which surrounds him, of the existence of

which there is other proof depending on the appearance of stars as

they approach him ; they grow dim and are sometimes wholly extin-

guished as their rays pass through that medium."

Apparentim- (139.) The next planet, as known to ancient astronomers?

perfection in is Jupiter ; but its distance is so great beyond the orbit of
system.

jyjars ^ ^^ ^e Y0^ Space between the two had often been

considered as an imperfection, and it was a general impression

among astronomers that a planet ought to occupy that vacant

space.

Bode'siaw. Professor Bode, of Berlin, on comparing the relative dis-

tances of the planets from the sun, discovered the following re-

markable fact—that if we take the following series of numbers

:

0, 3, 6, 12, 24, 48, 96, 192, &c,

and then add the number 4 to each, and we have,

4, 7, 10, 16, 28, 52, 100, 196, &c,

The reason and this last series of numbers very nearly, though not ex-

no/be called
ttC%> corresponds to the relative distances of the planets from

a law. the sun, with the exception of the number 28. This is

sometimes called Bode's law ; but remarkable as it certainly

is, it should not be dignified by the term law, until some bet-

ter account of it can be given than its mere existence ; for,

at present, all that can be said of it is, " here is an astonishing
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coincidence." But, mere accident as it may be, it suggested chap. xi.

the possibility of some small, undiscovered planet revolving A bold h

in this region, and we can easily imagine the astonishment of pothesis.

astronomers, on finding four in place of one, revolving in

orbits tolerably well corresponding to this law, or rather co-

incidence. Had they even found but one, it would seem to

indicate something more than mere coincidence ; but finding

four, proves the series to be simply accidental— unless the

four or more planets there discovered were originally one

planet ; and then came the inquiry, is not this the case ? Thus

originated the idea that these new and newly discovered small

planets are but fragments of a larger one, which formerly cir-

culated in that interval, and was blown to pieces by some

internal explosion— and we shall examine this hypothesis in a

text note, under physical astronomy.

The names of these planets, in the order of the times of their

discovery, are, Ceres, Pallas, Juno, Vesta. The order of their

distances from the sun, is Vesta, Juno, Ceres, Pallas.

Planets.
Names of Dis-

coverers.
Residence of Discoverers. Date of Discovery.

Ceres . .

.

Pallas...

Juno . .

.

i Vesta . .

.

M. Piazzi,

Dr. Olbers,

M. Harding,
Dr. Olbers,

Palermo, Sicily,

Bremen, Germany,
Lilienthal, near Bremen,
Bremen,

1st Jan., 1801.

28th Mar., 1802.

1st Sept. 1804.

29th Mar., 1807.

If a planet has really burst, it is but reasonable to suppose

that it separated into many fragments ; and, agreeably to this

view of the subject, astronomers have been constantly on the

alert for new planets, in the same regions of space ; and every Recent

discovery of the kind greatly increases the probability of the discoveries

theory. The following very recent discoveries are said to have ™°™
^the

°

been made, but the elements of the orbits are not regarded as sis.

sufficiently accurate to demand a place in the table.

On the 8th of December, 1845, Mr. Hencke, of Dreisen,

claims to have discovered a planet which he calls Astrea;

and the same observer also claims another, discovered in

1847, called Hebe. His success induced others to a like exa- ets discover-

mination, and a Mr. Hind, of London, within the past year, and 1846#

10

New plan-
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chap. xi. 1848, claims a seventh and eighth asteroid, named Iris and

Flora.

Thus we have eight miniature worlds, supposed to have

once composed a planet ; and if the four last named are veri-

table discoveries, we shall soon have the elements of their

orbits in an unquestionable shape.

The elements of the orbits of the four known asteroids, as

given for the epoch 1820, are not as accurate as the follow-

ing, which were deduced from the Nautical Almanac for 1846

and 1847 ; which have been corrected from more modern,

extended, and accurate observations. (Epoch Jan., 1847.)

On account of the small magnitude of these new planets,

and their recent discovery, nothing is known of them save

the following tabular facts, and these are only approximation

to the truth.

Planets.
Sidereal

Revolutions.
Mean Distance from

the Sun.
Eccentricity of

Orbits.

1
Pallas

Days.
1324. 289
1594. 721
1683. 064
1685. 162

2. 36120
2. 66514
2. 76910
2. 77125

0. 08913
0. 25385
0. 07844
0. 24050

Planets.
Longitude of

Ascending Node.
Inclination of

Orbits.

Longitude of
Perihelion.

Vesta

Pallas

O ' "

103 20 47
170 53
80 47 56

172 42 38

O ' "

7 8 29
13 2 53
10 37 17

34 37 42

O ' "

251 4 34
54 18 32

147 25 41

121 20 13

Object of

Fig. 29.

( 140.) With the two elements, the longitude of the ascend-

ing nodes, and the inclination of the orbits to the ecliptic, we

are enabled to give a general projection of these orbits around

the celestial sphere, in relation to the ecliptic, as represented

on page 37 : and our object is to show that there are two

points in the heavens, nearly opposite to each other, near to

which all these planets pass. One of these points is about

the longitude of 185 degrees, and the latitude of 15 degrees

north ; and the other is the opposite point on the celestial

sphere. If these planets are but fragments of one original

planet, which burst or exploded by its internal fixes, from that
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moment they must have

started from the same

point, and the orbits of all

have one common distance

from the sun ; and for

ages after such a catas-

trophe, these fragments

must have had nearly a

common node; and the

fact that they do not, at

'present, pass through a

common point, nor have

a common node, does not

prove that they were not

originally in one body;

for, owing to mutual dis-

turbances, and the dis-

turbances of other pla-

nets, the nodes must

change positions; and the

longer axis of the orbits,

especially the very ec-

centric ones, must change

positions; and now (after

we know not how many

ages), it is not incon-

sistent with the theory

of an explosion, that we

find the orbits as they

are.

The hypothesis that

these planets were ori-

ginally one, and must,

therefore, have two com-

mon points in the hea-

vens near which they

must all pass, led to the

discovery of Juno and

Chap. XI.

Where the

original pla-

net must

have explod-

ed, if the

hypothesis

of an original

planet is true

Fisr. '-2lL
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Chap. xi. Vesta, by carefully observing these two portions of the

heavens.

The apparent diameters of these planets are too small to

be accurately measured; and therefore we have only a very

rough or conjectural knowledge of their real diameters.

All of these planets are invisible to the naked eye, except

Vesta, which sometimes can be seen as a star of the 5th or

6th magnitude.

(141.) Jupiter. We now come to the most magnificent

planet in the system— the well-known Jupiter— which is

nearly 1300 times the magnitude of the earth.

Jupiter's The disc of Jupiter is always observed to be crossed, in an

eastern and western direction, by dark bands, as represented

in Fig. 30.

Fig. 30. — Telescopic View of Jupiter.

belts

" These belts are, however, by no means alike at all times ; they

vary in breadth and in situation on the disc (though never in their

general direction). They have even been seen broken up, and distri-

buted over the whole face of the planet : but this phenomenon is ex-

tremely rare. Branches running out from them, and subdivisions, as

represented in the figure, as well as evident dark spots, like strings of

clouds, are by no means uncommon ; and from these, attentively

watched, it is concluded that this planet revolves in the surprisingly
Diurnal re- short period of 9 h. 55 m. 50 s. (sid. time), on an axis perpendicular to

the direction of the belts. Now, it is very remarkable, and forms a

most satisfactory comment on the reasoning by which the spheroidal

figure of the earth has been deduced from its diurnal rotation, that the

outline of Jupiter's disc is evidently not circular, but elliptic, being

considerably flattened in the direction of its axis of rotation.

volution
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" The parallelism of the belts to the equator of Jupiter, their occa- chap, XI,

sional variations, and the appearances of spots seen upon them, render
~~

it extremely probable that they subsist in the atmosphere of the planet,
of JuDiter

forming tracts of comparatively clear sky, determined by currents ana-

logous to our tradewinds, but of a much more steady and decided cha-

racter, as might indeed be expected from the immense velocity of its

rotation. That it is the comparatively darker body of the planet which

appears in the belts, is evident from this,— that they do not come up

in all their strength to the edge of the disc, but fade away gradually be-

fore they reach it.

(142.) "When Jupiter is viewed with a telescope, even of moderate Jupiter's

power, it is seen accompanied by four small stars, nearly in a straight satellites,

line parallel to the ecliptic. These always accompany the planet, and

are called its Satellites. They are continually changing their positions

with respect to one another, and to the planet, being sometimes all to

the right, and sometimes all to the left ; but more frequently some on

each side. The greatest distances to which they recede from the planet,

on each side, are different for the different satellites, and they are thus

distinguished : that being called the First satellite, which recedes to the

least distance ; that the Second, which recedes to the next greater dis-

tance, and so on. The satellites of Jupiter were discovered by Galileo,

in 1610.

" Sometimes a satellite is observed to pass between the sun and Ju-

piter, and to cast a shadow which describes a chord across the disc.

This produces an eclipse of the sun, to Jupiter, analogous to those

which the moon produces on the earth. It follows that Jupiter and

its satellites are opake bodies, which shine by reflecting the sun's

light.

" Careful and repeated observations show that the motions of the satel-

lites are from west to east, in orbits nearly circular, and making small

angles with the plane of Jupiter's orbit. Observations on the eclipses

of the satellites make known their synodic revolutions, from which

their sidereal revolutions are easily deduced. From measurements of

the greatest apparent distances of the satellites from the planet, their

real distances are determined.

" A comparison of the mean distances of the satellites, with their side-

real revolutions, proves that Kepler's third law, with respect to the

planets, applies also to the satellites of Jupiter. The squares of their

sidereal revolutions are as the cubes of their mean distances from the

planet.

" The planets Saturn and Uranus are also attended by satellites, and

the same law has place with them."

( 143.) By the eclipses of Jupiter's satellites, the progres-
nat

r

u

°

r

= ressl™

sive nature of light was discovered ; which we illustrate in light,

the following manner

:
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Chap. XI. Fig. 31. r // ?»»»»—».

Let S (Fig-. 31) represent the sun, J Jupiter, dearth, and m Jupiter's

first satellite. By careful and accurate observations astronomers have

decided that the mean revolution of this satellite round its primary, is

performed in 42 h. 28 m. and 35 s. ; that is, the mean time from one

eclipse to another.

Velocity of But when the earth is at E, and moving in a direction toward, or

light, how nearly toward, the planet as represented in the figure, the mean time
etermmed.

De tween two consecutive eclipses is shortened about 15 seconds ; and

we can explain this on no other hypothesis than that the earth has ad-

vanced and met the successive progression of light. When the earth

is in position as respects the sun and Jupiter, as represented in our

figure at E', and moving from Jupiter, then the interval between two

consecutive eclipses of Jupiter's first satellite is prolonged or increased

about 15 seconds.

But during the interval of one revolution of Jupiter's first satellite,

the earth moves in its orbit about 2880000 miles ; this, divided by 15,

gives 192000 miles for the motion of light in one second of time ; and

this velocity will carry light from the sun to the earth in about eight

and one-fourth minutes.

Longitude (144.) As an eclipse of one of Jupiter's satellites maybe
found by the geen from a]} p]aces where the planet is there visible, two

Jupiter's sa-
observers viewing it will have a signal for the same moment,

teiiites. at their respective places ; and their difference in local time

will give their difference in longitude. For example, if one

observer saw one of these eclipses at 10 h.in the evening, and

another at 8 h. 30 m., the difference of longitude between the

observers would be 1 h. 30 m. in time, or 22° 30' of arc.

The absolute time that the eclipse takes place, is the same

to all observers ; and he who has the latest local time is the

most eastward.

These eclipses cannot be observed at sea, by reason of the

motion of the vessel.
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(145.) Saturn. The next planet in order of remoteness Chap. xi.

from the sun, is Saturn, the most wonderful object in the Satum-

solar system. Though less than Jupiter, it is about 79000
hls nngs '

miles in diameter, and 1000 times greater than our earth.

" This stupendous globe, besides being attended by no less than seven

satellites, or moons, is surrounded with two broad, flat, extremely thin

rings, concentric with the planet and with each other ; both lying in

one plane, and separated by a very narrow interval from each other

throughout their whole circumference, as they are from the planet by

a much wider. The dimensions of this extraordinary appendage are

as follows :

Exterior diameter of exterior ring, = 176418.

Interior ditto, = 155272.

Exterior diameter of interior ring, = 151690.

Interior ditto, = 117339.

Equatorial diameter of the body, = 79160.

Interval between the planet and interior ring, = 19090.

Interval of the rings = 1791.

Thickness of the rings not exceeding, = 100. Dimensions

Fig. 32.— Telescopic View of Saturn.

" The figure represents Saturn surrounded by its rings, and having its The rings

body striped with dark belts, somewhat similar, but broader and less are °Pake '

strongly marked than those of Jupiter, and owing, doubtless, to a simi-

lar cause. That the ring is a solid opake substance, is shown by its

throwing its shadow on the body of the planet, on the side nearest the

sun, and on the other side receiving that of the body, as shown in the

figure. From the parallelism of the belts with the plane of the ring,

it may be conjectured that the axis of rotation of the planet is perpen-

dicular to that plane ; and this conjecture is confirmed by the occa-

sional appearance of extensive dusky spots on its surface, which when
watched, like the spots on Mars or Jupiter, indicate a rotation in 10 h.

09 m. 17 s. about an axis so situated.

" It will naturally be asked how so stupendous an arch, if composed

of solid and ponderous materials, can be sustained without collapsing
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Chap. XI. and tailing in upon the planet ? The answer to this is to be found in

ZZ ~~
. . a swift rotation of the ring in its own plane, which observation has

lity of the detected, owing to some portions of the ring being a little less bright

rings. than others, and assigned its period at 10 h. 29 m. 17 s., which, from

what we know of its dimensions, and of the force of gravity in the

Saturnian system, is very nearly the periodic time of a satellite revolv-

ing at the same distance as the middle of its breadth. It is the centri-

fugal force, then, arising from this rotation, which sustains it ; and,

although no observation nice enough to exhibit a difference of periods

between the outer and inner rings have hitherto been made, it is more

than probable that such a difference does subsist as to place each inde-

pendently of the other in a similar state of equilibrium.

The rings " Although the rings are, as we have said, very nearly concentric

revolve a- with the body of Saturn, yet recent micrometrical measurements, of
round the

extreme delicacy, have demonstrated that the coincidence is not mathe-
planet like . „ , , . „ . „ , .„ .

... matically exact, but that the center of gravity ot the rings oscillates

round that of the body, describing a very minute orbit, probably under

laws of much complexity. Trifling as this remark may appear, it is

of the utmost importance to the stability of the system of the rings.

Supposing them mathematically perfect in their circular form, and

exactly concentric with the planet, it is demonstrable that they would

form (in spite of their centrifugal force) a system in a state of unstable

equilibrium, which the slightest external power would subvert— not by

causing a rupture in the substance of the rings— but by precipitating

them, unbroken, on the surface of the planet. For the attraction of

such a ring or rings on a point or sphere eccentrically situate within

them, is not the same in all directions, but tends to draw the point or

sphere toward the nearest part of the ring, or away from the center.

Hence, supposing the body to become, from any cause, ever so little

eccentric to the ring, the tendency of their mutual gravity is, not to

correct, but to increase this eccentricity, and to bring the nearest parts

of them together."

Uranus alias (146.) Uranus. The next planet, beyond Saturn, was

Herschei. discovered by Sir W. F. Herschel, in 1781, and, for a time,

was called Herschel, in honor of its discoverer ; but, accord-

ing to custom, the name of a heathen deity has been substi-

tuted, and the planet is now called Uranus— the father of

Saturn.

This l et
^^s planet is rarely to be seen, without a telescope. In a

rarely visible clear night, and in the absence of the moon, when in a favor-
to the naked ^q position above the horizon, it may be seen as a star of

about the 6th magnitude. Its real diameter is about 35000

miles, and about 80 times the magnitude of the earth.
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The existence of this planet was suggested by some Chap. xi.

of the perturbations of Saturn ; which could not be accounted

for by the action of the then known planets ; but it does not

appear that any computations were made, as a guide to the

place where the unknown disturbing body ought to exist ; and,

as far as we know, the discovery by Herschel was mere

accident.

But not so with the planet Neptune, discovered in the Facts led

latter part of September, 1846, by a French astronomer, Le- t0 the disc0 '

verrier ; and also a Mr. Adams, of Cambridge, England, who has tune#

put in his claim as the discoverer. The truth is, that the

attention of the astronomers of Europe had been called to

some extraordinary perturbations of Uranus ; which could not

be accounted for without supposing an attracting body to be

situated in space, beyond the orbit of Uranus ; and so distinct

and clear were these irregularities, that both geometers, Le-

verrier and Adams, fixed on the same region of the heavens,

for the then position of their hypothetical planet ; and by dili-

gent search, the planet was actually discovered about the

same time, in both France and England.

At present, we can know very little of this planet ; and

according to the best authority I can gather, its longi-

tude, January 1, 1847, was 327° 24'. Mean distance from

the sun, 30.2 ( the earth's distance being unity)
;
period of

revolution 166 years. Eccentricity of orbit 0.0084; mass,

1

23000"'

According to Bode's law, the distance of the next planet

from the sun, beyond Uranus, must be 38.8 ; and if Neptune

really is at 30.2, it shows Bode's law to be only a remarkable

coincidence ; for there can be no exceptions to positive physi-

cal laws.

" We shall close this chapter with an illustration calculated to convey How ;o

to the minds of our readers a general impression of the relative magni- btain a cor-

tudes and distances of the parts of our system. Choose any well- rect concep-

leveled field or bowling green. On it place a globe, two feet in diame- tion of the

ter ; this will represent the sun ; Mercury will be represented by a grain solar system

of mustard seed, on the circumference of a circle 164 feet in diameter,

for its orbit ; Venus a pea, on a circle 284 feet in diameter ; the earth
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Chap. XI. also a pea. on a circle of 430 feet ; Mars a rather large pin's head, on a

circle of 654 feet; Juno, Ceres, Vesta, and Pallas, grains of sand, in

orbits of from 1000 to 1200 feet ; Jupiter a moderate-sized orange, in a

circle nearly half a mile across; Saturn a small orange, on a circle of

four-fifths of a mile ; and Uranus a full-sized cherry, or small plum,

upon the circumference of a circle more than a mile and a half in dia-

meter. As to getting correct notions on this subject by drawing circles

on paper, or, still worse, from those very childish toys called orreries,

it is out of the question. To imitate the motions of the planets in the

View of above-mentioned orbits, Mercury must describe its own diameter in 41

the planetary seconds ; Venus, in 4 m. 14 s. ; the earth, in 7 minutes ; Mars, in 4 m.
motions. 48 s . . Jupiter, in2h. 56 m. ; Saturn, in3h. 13m. ; and Uranus, in 2h.

16 m."—HerscheVs Astronomy.

CHAPTER XII.

ON COMETS.

chap. xii. (147.) Besides the planets, and their satellites, there are

Comets great numbers of other bodies, which gradually come into

formerly in- vieWj increasing in brightness and velocity, until they attain

ror a maximum, and then as gradually diminish, pass off, and are

lost in the distance.

Knowledge " These bodies are comets. From their singular and unusual appear-

banishes ance, they were for a long time objects of terror to mankind, and were
dread. regarded as harbingers of some great calamity.

" The luminous train which accompanied them was particularly

alarming, and the more so in proportion to its length. It is but little

more than half a century since these superstitious fears were dissipated

by a sound philosophy ; and comets, being now better understood,

excite only the curiosity of astronomers and of mankind in general.

These discoveries which give fortitude to the human mind are not

among the least useful.

" It was formerly doubted whether comets belonged to the class of

heavenly bodies, or were only meteors engendered fortuitously in the

air by the inflammation of certain vapors. Before the invention of the

telescope, there were no means of observing the progressive increase

and diminution of their light. They were seen but for a short time,

and their appearance and disappearance took place suddenly. Their

light and vapory tails, through which the stars were visible, and their

whiteness often intense, seemed to give them a strong resemblance to

those transient fires, which we call shooting stars. Apparently, they

differed from these only in duration. They might be only composed
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of a more compact substance capable of retarding for a longer time Chap. XII.

their dissolution. But these opinions are no longer maintained ; more

accurate observations have led to a different theory.

"All the comets hitherto observed have a small parallax,* which places Parallax of

them far beyond the orbit of the moon ; they are not, therefore, formed comets,

in our atmosphere. Moreover, their apparent motion among the stars

is subject to regular laws, which enable us to predict their whole course

from a small number of observations. This regularity and constancy

evidently indicate durable bodies ; and it is natural to conclude that

comets are as permanent as the planets, but subject to a different kind

of movement.
" When we observe these bodies with a telescope, they resemble a mass Comets are

of vapor, at the center of which is commonly seen a nucleus more or aPParentlv

less distinctly terminated. Some, however, have appeared to consist „* of vapor,
of merely a light vapor, without a sensible nucleus, since the stars are

visible through it. During their revolution, they experience progres-

sive variations in their brightness, which appear to depend upon their

distance from the sun, either because the sun inflames them by its heat,

or simply on account of a stronger illumination. When their bright-

ness is greatest, we may conclude from this very circumstance that

they are near their perihelion. Their light is at first very feeble, but

becomes gradually more vivid, until it sometimes surpasses that of the

brightest planets ; after which it declines by the same degrees until it

becomes imperceptible. We are hence led to the conclusion that

comets, coming from the remote regions of the heavens, approach, in

many instances, much nearer the sun than the planets, and then recede

to much greater distances.

" Since comets are bodies which seem to belong to our planetary Orbits of

system, it is natural to suppose that they move about the sun like comets «

planets, but in orbits extremely elongated. These orbits must, there-

fore, still be ellipses, having their foci at the center of the sun, but

having their major axes almost infinite, especially with respect to us,

who observe only a small portion of the orbit, namely, that in which

the comet becomes visible as it approaches the sun. Accordingly the

orbits of comets must take the form of a parabola, for we thus designate

the curve into which the ellipse passes, when indefinitely elongated.

" If we introduce this modification into the laws of Kepler, which

* The parallaxes of comets are known to be small, by two observers,

at distant stations on the earth, comparing their observations taken

on the same comet at near the same time. At the times the observa-

tions are made, neither observer can know how great the parallax is.

It is only afterward, when comparisons are made, that judgment, in

this particular, can be formed ; and it is not common that any more

definite conclusion can be drawn, than that the parallax is small, and,

of course, the body distant.

10 M
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Comets des-

cribe equal

areas in e-

qual times.

Three obser-

vations suffi-

cient to find

the orbit of a

comet.

relate to the elliptical motion, we obtain those of the parabolic motion

of comets.

" Hence it follows that the areas described by the same comet, in its

parabolic orbit, are proportional to the times. The areas described by

different comets in the same time, are proportional to the square roots

of their perihelion distances.

" Lastly, if we suppose a planet moving in a circular orbit, whose

radius is equal to the perihelion distance of a comet, the areas described

by these two bodies in the same time, will be to each other as 1 to

/2. Thus are the motions of comets and planets connected.

" By means of these laws we can determine the area described by

a comet in a given time after passing the perihelion, and fix its posi-

tion in the parabola. It only remains then to bring this theory to the

test of observation. Now we have a rigorous method of verifying it,

by causing a parabola to pass through several observed places of a

comet, and then ascertaining whether all the others are contained in it.

" For this purpose three observations are requisite. If we observe

the right ascension and declination of a comet at three different

times, and thence deduce its geocentric longitude and latitude, we
shall have the direction of three visual rays drawn at these times from

the earth to the comet, and in the prolongation of which it must

necessarily be found. The corresponding places of the sun are also

known ; it remains then to construct a parabola, having its focus at

the center of the sun, and cutting the visual rays in points, the inter-

vals of which correspond to the number of days between the obser-

vations.

" Or if we suppose the earth in mo-
tion and the sun at rest, let T, T', T",

represent three successive positions of

the earth, and TC, T'C, T"C", three

visual rays drawn to the comet. The
question is to find a parabola CC'C",

having its focus in S at the center of

the sun, and cutting the three visual

rays conformably to the conditions re-

quired.

Th b'tofa
" These conditions are more than sufficient to determine completely

comet found the elements of the parabolic motion, that is, the perihelion distance

by these ob- of the comet, the position of the perihelion, the instant of passing this

servations. point, the inclination of the orbit to the ecliptic, and the position of

its nodes. These five elements being known, we can assign the posi-

tion of the comet for any time whatever, and compare it with the

results of observation. But the calculation of the elements is very

difficult, and can be performed only by a very delicate analysis, which

cannot here be made known.
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"About 120 comets have been calculated upon the theory of the Chap. xn.

parabolic motion, and the observed places are found to answer to such

a supposition. We can have no doubt, therefore, that this is conform- T '111 /* ttt i .i Inclinations
able to the law of nature. We have thus obtained precise knowledge f tne j r or_

of the motions of these bodies, and are enabled to follow them in space, bits.

This discovery has given additional confirmation to the laws of Kepler,

and led to several other important results.

" Comets do not all move from west to east like the planets. Some
have a direct, and some a retrograde motion.

" Their orbits are not comprehended within a narrow zone of the

heavens, like those of the principal planets. They vary through all

degrees of inclination. There are some whose plane is nearly coinci-

dent with that of the ecliptic, and others have their planes perpendicular

to it.

" It is farther to be observed that the tails of comets begin to appear,

as the bodies approach near the sun ; their length increases with this

proximity, and they do not acquire their greatest extent, until after

passing the perihelion. The direction is generally opposite to the sun,

forming a curve slightly concave, the sun on the concave side.

" The portion of the comet nearest to the sun must move more rapidly

than its remoter parts, and this will account for the lengthening of the

tail.

" The tail is, however, by no means an invariable appendage of Some com-

comets. Many of the brightest have been observed to have short and ets have no

feeble tails, and not a few have been entirely without them. Those ta^ s «

of 1585 and 1763 offered no vestige of a tail; and Cassini describes the

comet of 1682 as being as round and as bright as Jupiter. On the other

hand, instances are not wanting of comets furnished with many tails,

or streams of diverging light. That of 1744 had no less than six,

spread out like an immense fan, extending to a distance of nearly 30

degrees in length.

" The smaller comets, such as are visible only in telescopes, or with

difficulty by the naked eye, and which are by far the most numerous,

offer very frequently no appearance of a tail, and appear only as round

©r somewhat oval vaporous masses, more dense toward the center;

where, however, they appear to have no distinct nucleus, or anything

which seems entitled to be considered as a solid body.

" The tail of the comet of 1456 was 60 degrees long. That of 1618, others have

100 degrees, so that its tail had not all risen when its head reached the several tails,

middle of the heavens. The comet of 1680 was so great, that though

its head set soon after the sun, its tail, 70 degrees long, continued visi-

ble all night. The comet of 1689 had a tail 68 degrees long. That of

1769 had a tail more than 90 degrees in length. That of 1811 had a

tail 23 degrees long. The recent comet of 1843 had a tail 60 degrees

in length."

The following figure gives a telescopic view of the comet of 1811.
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Elements

of comets

how deter-

mined.

"When we have determined the elements of a comet's orbit, we com-

pare them with those of comets before observed, and see whether there

is an agreement with respect to any of them. If there is a perfect

identity as to the elements, we should have no hesitation in concluding

that they belonged to different appearances of the same comet. But

this condition is not rigorously necessary ; for the elements of the

orbit may, like those of other heavenly bodies, have undergone changes

from the perturbations of the planets or their mutual attractions. Con-

sequently, we have only to see whether the actual elements are nearly

the same with those of any comet before observed, and then, by the doc-

trine of chances, we can judge what reliance is to be placed upon this

resemblance." Comet of 18u>

verified.

Dr.Halley's "Dr. Halley remarked that the comets observed in 1531, 1607, 1682,

prediction had nearly the same elements ; and he hence concluded that they be-

longed to the same comet, which, in 151 years, made two revolutions,

its period being about 76 years. It actually appeared in 1759, agreea-

bly to the prediction of this great astronomer ; and again in 1832. by

the computation of several eminent astronomers. According to Kep-

ler's third law, if we take for unity half the major axis of tne earth's

Particulars orbit, the mean distance of this comet must be equal to the cube root

of comets. f the square of 76, that is, to 17.95. The major axis of its orbit must,

therefore, be 35.9 ; and as its observed perihelion distance is found to

be 0.58. it follows that its aphelion distance is equal to 35.32. It
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departs, therefore, from the sun to thirty-five times the distance of the Chap. XII.

earth, and afterward approaches nearly twice as near the sun as the

earth is, thus describing an ellipse extremely elongated.

"The intervals of its return to its perihelion are not constantly the

same. That between 1531 and 1607 was three months longer than

that between 1607 and 1682 ; and this last was 18 months shorter than

the one between 1682 and 1759. It appears, therefore, that the motions

of comets are subject to perturbations, like those of the planets, and to

a much more sensible degree.

" Elements of the Orbits of the three Comets, which have appeared ac-

cording to prediction, taken from the work of Professor Littrow.

Halley. Encke. Biela.

Longitude of the ascending node, - 54°

Inclination of the orbit to the ecliptic, 162°

Longitude of the perihelion, - - 303°

Greatest semidiameter, that of the earth ) , q

being called 1, - - - - )

Least semidiameter.. - 4.6

Time of revolution in years, - 76

Nov. 16.

Time of the perihelion passage, - 1835

" The comets of Encke and Biela move according to the order of the

signs of the zodiac, or have their motions direct; the motion of that

of Halley is retrograde.

"Comets, in passing among and near the planets, are materially Jupiter,

drawn aside from their courses, and in some cases have their orbits en- andhissatel-

tirely changed. This is remarkably the case with Jupiter, which seems,
s
'
a great

by some strange fatality, to be constantly in their way, and to serve as !.

b
.

a perpetual stumbling-block to them. In the case of the remarkable comets .

comet of 1770, which was found by Lexell to revolve in a moderate

ellipse in the period of about five years, and whose return was pre-

dicted by him accordingly, the prediction was disappointed by the comet

actually getting entangled among the satellites of Jupiter, and being

completely thrown out of its orbit by the attraction of that planet, and

forced into a much larger ellipse. By this extraordinary renconter,

the motions of the satellites suffered not the least perceptible derangement—
a sufficient proof of the smallness of the comet's mass."

The comet of 1456, represented as having a tail of 60° in length, is

now found to be Halley's comet, which has made several returns—
in 1531, 1607, 1682, 1759, and recently, in 1835. In 1607 the tail was

said to have been over 30° in length ; but in 1835 the tail did not ex-

ceed 12° Does it lose substance, or does the matter composing tho

tail condense ? or, have we received only exaggerated and distorted

accounts from the earlier times, such as fear, superstition, and awe,

always put forth ? We ask these questions, but cannot answer them.
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Chap. XII. The following cut represents the appearance of the comet of

1819.

Fears en- " Professor Kendall, in his Uranography, speaking of the fears occa-

tertained, by gjoned by comets, says: "Another source of apprehension, with regard
some, t at

^Q cometS} ar ises from the possibility of their striking our earth. It is

quite probable that even in the historical period the earth has been

come into enveloped in the tail of a comet. It is not likely that the effect would

collisionwith be sensible at the time. The actual shock of the head of a comet against

our earth. the earth is extremely improbable. It is not likely to happen once in

a million of years.

" If such a shock should occur, the consequences might perhaps be

very trivial. It is quite possible that many of the comets are not

heavier than a single mountain on the surface of the earth. It is well

known that the size of mountains on the earth is illustrated by com-

paring them to particles of dust on a common globe."

CHAPTER XIII.

ON THE PECULIARITIES OF THE FIXED STARS.

Chap, xiii. j?on ^e fac|;S as contained in the subject matter of this

chapter, we must depend wholly on authority ; for that reason

we give only a compilation, made in as brief a manner as the

nature of the subject will admit.

In the first part of this work it was soon discovered that

the fixed stars were more remote than the sun or planets

;

and now, having determined their distances, we may make

further inquiries as to the distances to the stars, which will
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give some index by which to judge of their magnitudes, nature, chap. xin.

and peculiarities.

" It would be idle to inquire whether the fixed stars have a sensible Base from

parallax, when observed from different parts of the earth. We have wllich to

already had abundant evidence that their distance is almost infinite. It
measure to

the st3.rs

is only by taking the longest base accessible to us, that we can hope to

arrive at any satisfactory result.

"Accordingly, we employ the major axis of the earth's orbit, which is

nearly 200 millions of miles in extent. By observing a star from the

two extremities of this axis, at intervals of six months, and applying a

correction for all the small inequalities, the effect of which we have

calculated, we shall know whether the longitude and latitude are the

same or not at these two epochs.

" It is obvious, indeed, that the star must appear more elevated above Annual
the plane of the ecliptic when the earth is in the part of its orbit which parallax.

is nearest to the star, and more depressed when the contrary takes

place. The visual rays drawn from the earth to the star, in these two

positions, differ from the straight line drawn from the star to the center

of the earth's orbit ; and t^e angle which either of them forms with

this straight line, is called the annual parallax.

" As the earth does not pass suddenly from one point of its orbit to The effect

the opposite, but proceeds gradually, if we observe the positions of a of a sensible

star at the intermediate epochs, we ought, if the annual parallax is sen-
para '

sible, to see its effects developed in the same gradual manner. For

example, if the star is placed at the pole of the ecliptic, the visual rays

drawn from it to the earth, will form a conical surface, having its apex

at the star, and for its base, the earth's orbit. This conical surface

being produced beyond the star, will form another opposite to the first,

and the intersection of this last with the celestial sphere, will constitute

a small ellipse, in which the star will always appear diametrically oppo-

site to the earth, and in the prolongation of the visual rays drawn to

the apex of the cones.

" But notwithstanding all the pains that have been taken to multiply The annual

observations, and all the care that has been used to render them per- parallaxmust

fectly exact, we have been able to discover nothing which indicates, be Iess than

with certainty, even the existence of an annual parallax, to say nothing

of its magnitude. Yet the precision of modern observations is such,

that if this parallax were only 1", it is altogether probable that it would

not have escaped the multiplied efforts of observers, and especially those

of Dr. Bradley, who made many observations to discover it, and who,

in this undertaking, fell unexpectedly upon the phenomena of aberra-

tion* and nutation. These admirable discoveries have themselves

served to show, by the perfect agreement which is thus found to take

* Subject to be explained hereafter.
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Chap. XIII. place among observations, that it is hardly to be supposed that the

annual parallax can amount to 1". The numerous observations of the

pole star, recently employed in measuring an arc of the meridian

through France, have been attended with a similar result, as to the

amount of the annual parallax. From all this we may conclude, that

as yet there are strong reasons for believing that the annual parallax

is less than 1", at least with respect to the stars hitherto observed.

" Thus the semidiameter of the earth's orbit, seen from the nearest

star, would not appear to subtend an angle of 1'"; and to an observer

placed at this distance, our sun, with the whole planetary system, would

occupy a space scarcely exceeding the thickness of a spider's thread.

Conclusion " If these results do not make known the distance of the stars from
to be drawn

j.jje earth, they at least teach us the limit beyond which the stars must

necessarily be situated. If we conceive a right-angled triangle, having

for its base half the major axis of the earth's orbit, and for its vertex

an angle of 1", the distance of this vertex from the earth, or the length

of the visual ray, will be expressed by 212207, the radius of the earth's

orbit being unity ; and as this radius contains 23987 times the semidia-

meter of the earth, it follows that if the annual parallax of a star were

only 1", its distance from the earth would De equal to 5090209309 radii

of the earth, or 20086868036404 miles ; that is, more than 20 billions.

But if the annual parallax is less than 1", the stars are beyond the limit

which we have assigned.

Changes " It is evident that the stars undergo considerable changes, since these

in individual changes are sensible even at the distance at which we are placed. There

are some which gradually lose their light, as the star <? of Ursa Major.

Others, as of Cetus, become more brilliant. Finally, there are some

which have been observed to assume suddenly a new splendor, and then

gradually fade away. Such was the new star which appeared in 1572,

A new star, in the constellation Cassiopeia. It became all at. once so brilliant that

it surpassed the brightest stars, and even Venus and Jupiter when
nearest the earth. It could be seen at midday. Gradually this great

brilliancy began to diminish, and the star disappeared in sixteen months

from the time it was first seen, without having changed its place in the

heavens. Its color, during this time, suffered great variations. At first

it was of a dazzling white, like Venus ; then of a reddish yellow, like

Mars and Aldebaran ; and lastly, of a leaden white, like Saturn. An-

Another °ther star which appeared suddenly in 1604, in the constellation Ser-

new star. pentarius, presented similar variations, and disappeared after several

months. These phenomena seem to indicate vast flames which burst

forth suddenly in these great bodies. Who knows that our sun may
not be subject to similar changes, by which great revolutions have

perhaps taken place in the state of our globe, and are yet to take place.

Periodical « Some stars, without entirely disappearing, exhibit variations not less

changes. remarkable. Their light increases and decreases alternately in regular

periods. They are called for this reason variable stars. Such is the
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star Algol, in the head of Medusa, which has a period of about three Chap. XIII.

days ; 3 of Cepheus, which has one of five days
; of Lyra, six

;
/u. of

Antinous. seven ; of Cetus, 334 ; and many others.

" Several attempts have been made to explain these periodical varia- Attempts

tions. It is supposed that the stars which are subject to them, are, like to explain

all the other stars, self-luminous bodies, or true suns, turning on their periodical

axes, and having their surfaces partly covered with dark spots, which chanSes -

may be supposed to present themselves to us at certain times only, in

consequence of their rotation. Other astronomers have attempted to

account for the facts under consideration, by supposing these stars to

have a form extremely oblate, by which a great difference would take

place in the light emitted by them under different aspects. Lastly, it

has been supposed that the effect in question is owing to large opake

bodies, revolving about these stars, and occasionally intercepting a part

of their light. Time and the multiplication of observations may per-

haps decide which of these hypotheses is the true one.

" One of the best methods of observing these phenomena is to compare Order in

the stars together, designating them by letters or numbers, and dispos- these obser-

ing them in the order of their brilliancy. If we find, by observation, vations.

that this order changes, it is a proof that one of the stars thus com-

pared, has likewise changed ; and a few trials of this kind will enable us

to ascertain which it is that has undergone a variation. In this man-

ner, we can only compare each star with those which are in the neigh-

borhood, and visible at the same time. But by afterward comparing

these with others, we can, by a series of intermediate terms, connect

together the most distant extremes. This method, which is now prac-

ticed, is far preferable to that of the ancient astronomers, who classed

the stars after a very vague comparison, according to what they called

the order of their magnitudes, but which was, in reality, nothing but

that of their brightness, estimated in a very imperfect manner.

'•'By comparing the places of some of the fixed stars, as determined Suggestion

from ancient and modern observations, Dr. Halley discovered that they of'Dr.Halley.

had a proper motion, which could not arise from parallax, precession,

or aberration. This remarkable circumstance was afterward noticed

by Cassini and Le Monnier, and was completely confirmed by Tobias

Mayer, who compared the places of 80 stars, as determined by Roemer,

with his own observations, and found that the greater part of them

had a proper motion. He suggested that the change of place might

arise from a progressive motion of the sun toward one quarter of the

heavens ; but as the result of his observation did not accord with his

theory, he remarks that many centuries must elapse before the true

cause of this motion could be explained.

" The probability of a progressive motion of the sun was suggested

upon theoretical principles by the late Dr. Wilson of Glasgow ; and

Lalande deduced a similar opinion from the rotatory motion of the sun,

by supposing, that the same mechanical force which gives it a motion
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Chap. XIII. round its axis, would also displace its center, and give it a motion of
'

' translation in absolute space

" If the sun has a motion in absolute space, directed toward any
quences of ... .

*uch a the-
<l liarter °* the heavens, it is obvious that the stars in that quarter must

pyyj appear to recede from each other, while those in the opposite region

would seem gradually to approach, in the same manner as when walk-

ing through a forest, the trees toward which we advance are constantly

separating, while the distance of those which we leave behind is gradu-

ally contracting. The proper motion of the stars, therefore, in opposite

regions, as ascertained by a comparison of ancient with modern obser-

vations, ought to correspond with this hypothesis ; and Sir W. Her-

schel found, that the greater part of them are nearly in the direction

which would result from a motion of the sun toward the constellation

Hercules, or rather to a part of the heavens whose right ascension is

250° 52' 30", and whose north polar distance is 40° 22'. Klugel found

the right ascension of this point to be 260°, and Prevost made it 230°,

with 65° of north polar distance. Sir W. Herschel supposes that the

motion of the sun, and the solar system, is not slower than that of the

earth in its orbit, and that it is performed round some distant center.

The attractive force capable of producing such an effect, he does not

suppose to be lodged in one large body, but in the center of gravity of

a cluster of stars, or the common center of gravity of several clusters."

The following figures, taken from Norton's Astronomy, represent

the telescopic appearance of some of the double stars.

Double " There are stars which, when viewed by the naked eye, and even

and multiple by the help of a telescope of moderate power, have the appearance of

stars, only a single star ; but, being seen through a good telescope, they are

found to be double, and in some cases a very marked difference is per-

ceptible, both as to their brilliancy and the color of their light. These

Sir W. Herschel supposed to be so near each other, as to obey recipro-

cally the power of each other's attraction, revolving about their com-

mon center of gravity, in certain determinate periods.

Castor, y Leonis, Rigel, Pole Star, crMonoc, ^Cancri.

Revolutions " The two stars, for example, which form the double star Castor,

of the multi- have varied in their angular situation more than 45° since they were
pie stars. observed by Dr. Bradley, in 1759, and appear to perform a retrograde

revolution in 342 years, in a plane perpendicular to the direction of the

sun. Sir W. Herschel found them in intermediate angular positions,

at intermediate times, but never could perceive any change in their

distance. The retrograde revolution of y in Leo, another double star,

is supposed to be in a plane considerably inclined to the line in which

we view it, and to be completed in 1200 years. The stars « of Bootes,
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perform a direct revolution in 1681 years, in a plane oblique to the sun. Chap. Xin.

The stars £ of Serpens, perform a retrograde revolution in about 375

years ; and those of y in Virgo in 708 years, without any change of

their distance. In 1802, the large star £ of Hercules, eclipsed the

smaller one, though they were separate in 1782. Other stars are sup-

posed to be united in triple, quadruple, and still more complicated

systems.

"With respect to the determination of the real magnitude of the stars, Description

and their respective distances, we have as yet made but little progress, of nebuke.

Researches of this kind must be left to future astronomers. It appears,

however, that the stars are not uniformly distributed through the

heavens, but collected into groups, each containing many millions of

stars. We can form some idea of them from those small whitish spots

called Nebulae, which appear in the heavens as represented in the ac-

companying illustration. By means of the telescope, we distinguish in

these collections an almost infinite number of small stars, so near each

Other, that their

rays are ordina-

rily blended by

irradiation, and

thus present to

the eye only a

faint uniform

sheet of light.

Tii at large,

white, lumi-

nous track,

which traverses

the heavens
from one pole to

the other, under

the name of the Milky Way, is probably nothing but a nebula of this The Milky

kind, which appears larger than the others, because it is nearer to us. Way a ne-

With the aid of the telescope we discover in this zone of light such a bula -

prodigious number of stars that the imagination is bewildered in

attempting to represent them. Yet from the angular distances of

these stars, it is certain that the space which separates those which

seem nearest to each other, is at least a hundred thousand times as great

as the radius of the earth's orbit. This will give us some idea of the

immense extent of the group. To what distance then must we with-

draw, in order that this whole collection may appear as small as the

other nebulse which we perceive, some of which cannot, by the assist-

ance of the best telescopes, be made to present anything but a bright

speck, or a simple mass of light, of the nature of which we are able to

form some idea only by analogy ? When we attempt, in imagination,

to fathom this abyss, it is in vain to think of prescribing any limits to
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Chap. XIII. the universe, and the mind reverts involuntarily to the insignificant

portion of it which we are destined to occupy. "

Observa- Before we close this chapter, we think it important to call the atten-

tions on ta-
tjou f the reajer t table II , in which will be seen, at a glance (in

the columns marked annual variation), the general effect of the preces-

sion of the equinoxes ; and although we have called particular attention

to the fact elsewhere, we here notice that all the stars, from the 6th to

the 18th hour of right ascension, have a progressive motion to

the southward ( — ), and all the stars from the 18th to the 6th hoMX

of right ascension have a progressive motion to the northward (-f-)j and

the greatest variations are at h, and 12 h. But these motions are not, in

reality, the motions of the stars ; they result from motions of the earth.

Whenever the annual motion of any star does not correspond with this

common displacement of the equinox, we say the star has a proper

motion ; and by such discrepancy it has been decided, that those stars

marked with an asterisk, in the catalogue, have proper motions ; and

the star 61 Cygni, near the close of the table, has the greatest proper

motion.

The paral- From this circumstance, and from the fact of its being a double star,

lax of 61 it was selected by Bessel as a fit subject for the investigation of stellar

Cygni disco-
paranax

. an(j it is now contended, and in a measure granted, that the

annual parallax of this star is 0".35, which makes its distance more

than 592.000 times the radius of the earth's orbit ; a distance that light

could not traverse in less than nine and one-fourth years.
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SECTION III.

PHYSICAL ASTRONOMY.

CHAPTER I.

GENERAL LAWS OE MOTION— THE THEORY OE GRAVITY.

Chap. I.

C 1480 In a work like this, designed for elementary in-v
.

J > & J What should

struction, it cannot be expected that a full investigation of be expected

physical astronomy shall be entered into ; for that subject in this work,

alone would require volumes ; and to fully appreciate and

comprehend it, requires the matured philosopher combined

with the accomplished mathematician.

We shall give, however, a sufficient amount to impart a good

general idea of the subject— if one or two points are taken

on trust.

For elementary principles we must turn a moment to natu- Elementary

ral philosophy, and consider the laws of inertia, motion, and principles.

force. Motion is a change of place in relation to other bodies

which we conceive to be at rest ; and the extent of change in

the time taken for unity is called velocity, and the essential

cause of motion we denominate force.

A double force will give a double velocity to bodies moving Velocity the

pi' •! • ... t , • 7 measure of
freely in void space, or in an unresisting medium— a triple

force, a triple velocity, &c. This is taken as an axiom— and

hence, when we consider mere material points in motion, the

relative velocities measure the relative amounts of force.

There are three elements to motion, which the philosopher

never loses sight of; or we may say that he never thinks of

motion without the three distinct elements of time, velocity, and

distance, coming into his mind.

Algebraically, we put t, v, and d, to represent the three ele-

ments, and then we have this important and general equation,

tv=d (1)
N
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Chap. I.
, d d

From this we derive v=— (2) and t=- ('3)
Expression t

J V v '

( 149.) As forces are in proportion to velocities (when mo-

mentum is not in question ), therefore, if we put / and F to

represent two forces corresponding to the distances d and D,

which are described in the times t and T, then by making use

of equation ( 2 ), in place of the velocities, we have

f:F::*
(
:§ (4)*

The law of ( 150. ) A body at rest, has no power to put itself in mo-

tion, and having no self power, no internal force or will, in

any shape, it cannot increase or diminish the motion it may

have, or change the direction it may be moving. This is the

law of inertia. It cannot of itself change its state ; and if it

is changed it must be acted upon by some external force;

and this accords with universal experience ; and this law is

the most natural and simple of any we can imagine, but it is

only in the motion of the heavenly bodies that it is fully

exemplified.

Some central The earth, moon, and planets move in curves— not in

force must
pj-j^ lmes> The directions of their motions are changed.

act on the °
motions of Something external from them must, therefore, change them

;

the earth, f0T £ke ]aw f ineTiia would continue a motion once obtained
moon, and . .,,. •»-,- i • •> • j • i • i

planets. m a straight line. JNow this force must exist within the or-

bit of every curve; we therefore naturally refer it to the

body round which others circulate. The earth and planets

go round the sun, and if we could suppose a force residing in

the sun to extend throughout the system sufficient to draw

bodies to it, this would at once account not only for the

planets deviating from a right line, but would account for a

constant deviation of all bodies to that point, and the preser-

vation of the system.

The moon's The moon goes round the earth, constantly deviating from

the tangent of its orbit, and the law of inertia is constantlymotion con

sidered.

* We number the proportions the same as equations, for a propor-

tion is but an equation in another form.
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urging it to rise from the center ; the two on an average balan- Chap. i.

cing each other, retains the moon in an orbit about the

earth.

Now what and where is this force ? Is it around the

earth, or within the earth ? Is it electrical or magnetic ? or

fe it that same force ( call it what we may ) that makes a

body fall toward the earth's center when unsupported on a

resting base ?

A trifling incident, the fall of an apple from a tree, seems contempia.

to have led the mind of Newton to the contemplation of this t»«w of gir

force which compels and causes bodies to fall, and he at once
t^

ac

conceived this force to extend to the moon and to cause it to

deviate from the tangent of its orbit.

The next consideration was, whether if this were the force,

it was the same at the distance of the moon, as on the sur-

face of the earth ; or if it extended with a diminished amount,

what was the law of diminution ?

Newton now resorted to computation, and for a test he incipient

conceived the force in question to extend to the moon, undi-
s

,

teps t0 l

Ix theory 01

minished by the distance ; and corresponding thereto he de- gravity.

cided that the moon must then make a revolution in its orbit

in 10 h. 55 m. But the actual time is 27 d. 7h. 43 m.,

which shows that if the force is the same which pervades a

falling body on the surface of the earth, it must be greatly

diminished.

Now by making a reverse computation, taking the actual important

time of revolution, and finding how far the moon did really comPuta -

fall from the tangent of its orbit in one second of time, it was

found to be about
3 FVo Par* °f 16 jj feet— the distance a

body falls the first second of time.

But the distance to the moon is about 60 times the radius

of the earth, and the inverse square of this is ggV o» which

corresponds to the actual fall of the moon in one second.

(151.) It is a well-established fact in philosophy, and a principle

geometrically demonstrated, that any force or influence exist-
m Phllos°Ph?

ing at a point, must diminish as it spreads over a larger

space, and in proportion to the increase of space. But space

increases as the square of linear distance, as we see by Fig. 28.
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Chap - t- A double distance spreads the influence over four times the

space, whatever that influence may be ; a triple distance, nine

times the space, etc., the space increasing as the square of

Fig. 28.

the distance. Therefore, any influence spreading in all di-

rections from its central point must be enfeebled as the square

of the distance.

The theory Erom observations and considerations like these, Newton

gravity. established the all-important and now universally admitted

theory of gravity.

This theory may be summarily stated in the following

words

:

Every body of matter in the universe attracts every other body,

in direct "proportion to its mass, and in the inverse proportion to

the square of the distance.

This theory Some attempts have been made, from time to time, to call

well estab- ^he truth of this theory in question, and substitute in its

place the influence of light, caloric, and electricity; but any

thing like a close application shows how feebly all such sub-

stitutes stand the test.

The theory of gravity so exactly accounts for all the phy-

sical phenomena of the solar system, that it is impossible it

should be false ; and although we cannot determine its nature

or its essence, it is as unreasonable to doubt its existence, as

to doubt the existence of animate beings, because we know

nothing of the principle of life.

Attraction (152.) According to the theory of gravity, every particle

composing a body has its influence, and a very irregular body

may be divided in imagination into many smaller bodies, and

the center of gravity of each taken as the point of attraction,

and all the forces resolved into one will be the attraction of

the whole body.

of an irregu

lar body
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In a sphere eomposed of homogeneous particles, the aggre- chap. i.

gate attraction of all of thern will be the same as if all were
,Vttraction of

compressed at the center; but this will be true of no other a sphere,

body. The earth is not a perfect sphere, and two lines of

attraction from distant points on its surface may not, yea,

will not, cross each other at the earth's center of gravity.

( See Fig. 10.)

(153.) A particle anywhere inside of a spherical shell of Attraction

equal thickness and density, is attracted every way alike, and inside of a

of course would show no indication of being attracted at all. ^e]

e"ca

Hence a body below the surface of the earth, as in a deep pit

or well, will be less attracted than on the surface, as it will

be attracted only by the diminished sphere below it. At the

center of the earth a body would be attracted by the earth
the cen

1

ter f

every way alike, and there would be no unbalanced force, a sphere.

and of course no perceptible or sensible attraction.*

( 154 .) The attractive power on the surface of any perfect
Ex ress

.

and homogeneous sphere may be expressed by the mass of the for the at-

sphere divided by the square of the radius.
traction on

r J z J the surface of

Consider the earth a sphere (as it is very nearly), and a sphere,

put E to represent its mass, and r its mean radius, then

E— = g — 16-^ feet.

E
This attractive force, algebraically expressed by j-> we call g,

and it is sufficient to cause bodies to fall lGyL- feet during

the first second of time. If the earth had contained more

matter, bodies would have fallen more than 16-jL feet the

first second; if less, a less distance.

With the same matter, but more compact, so that r? would The definite

ii '17-ri & ill ii attraction of
be less with E the same, — would be greater, and the attrac- the earth.

tive power at the surface greater, and bodies would then fall

more than 16^ feet the first second of their fall.

Now we say this 16T\ feet is the measure of the earth's

attraction at its surface, and it is made the unit and standard

measure, directly or indirectly, for all astronomical forces.

* See Robinson's Natural Philosophy, page 16.

11
'

N*
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Chap. i. For this reason, we call the undivided attention to this

force, the known— the noted— the all-important IQ^feet.

To find the ( 155. ) By the theory of gravity, we can readily obtain an
rac ion o

anaiytical expression for the attraction of a sphere at anv dis-
a sphere at J L x. J

any distance, tance from the center, after knowing the attraction at the

surface. For example. Find the value of the attraction of

the earth, at the distance of D from its center ; r being the

radius of the earth, and g the gravity at the surface
;
put x

to represent the attraction sought. Then by the theory,

9 '* -'• ~
2

: giS 0r
>
x=v(^0 ( 5

)

As g and r are constant quantities, the variations to x will

correspond entirely to the variations of D 2
. We shall often

refer to this equation.

Anexpres- (156.) As every particle of matter in the universe at-

sion for the tracts every other particle, therefore the moon attracts the

traction of
eartn as weu* as tne earth attracts the moon ; and the extent

two bodies, by which they will draw together, depends on their mutual at-

traction. If m represents the mass of the moon, and R the

radius of the lunar orbit ; then,

E
The earth will attract the moon by the force -^.

m
The moon will attract the earth by the force -=^

E-\~m
The two bodies will draw together by the force ^ 2

.

If we substitute the value of g, as found in ( 154), in equa-

. E
tion (5 ), and makingH = J), then we have the expression— •

The spirit of these expressions will be more apparent when

we make some practical applications of them, as we intend

soon to do.
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CHAPTER II.

kepler's laws— demonstration of the second and third—
how a planetary body will find its orbit.

( 157. ) In this chapter we design to make some examina- chap. h.

tion of Kepler's laws, recapitulating them in order. Examina-

The orbits of the planets are ellipses, having the sun at tionsofKep-

j. , 7 . -. . ler's laws.
one of their joa.

This law is but a concise statement of an observed fact,

which never could have been drawn from any other source

than observation ; but the second law, namely,

That the radius vector of any planet ( conceived to be in mo v

tion ) sweeps over equal areas in equal times is susceptible of

a rigid mathematical demonstration, under the following gen-

eral theorem.

Any body, being in motion, and constantly urged toivard any A seneral

fixed point, not in a line with its motion, must describe equal

areas in equal times round that point.

Let a moving
U J l. i. A FiS- 29 «

body be at A,

having a veloci-

ty which would

carry it to B,

say in one sec-

ond of time. By
the law of iner-

tia, it would

move from B to

C, an equal dis-

tance, in the next second of time. But during this second

interval of time, let us suppose it must obey an impulse or

force from the pcint S, sufficient to carry it to D, It must

then, by the composition of forces explained in natural phi-

losophy, describe the diagonal B E, of the parallelogram

BDEQ.

Its demon-

stration.



verse of the

theorem.

164 ASTRONOMY.

Chap. ii. Now in the first interval of time, we supposed the moving

body described the triangle SAB. The second interval, it

would have described the triangle S B C, if undisturbed by

any force at S, but by such a force it describes the triangle

S B E; but the triangle S B E, is equal to the triangle

SBC, because they have the same base S B, and lie between

the parallels S B and E C. Also the triangle S B C is

equal to the triangle SAB, because they terminate in the

same point S, and have equal bases, A B and B C. There-

fore the triangle S A B is equal to the triangle S B E, be-

cause they are both equal to the triangle SBC; that is, the

moving body describes equal areas in equal times about the

point Sj and this is entirely independent of the nature of the

force at S; it may be directly or inversely as the distance, or

as the square of the distance.

The con- The converse of this theorem is, that when a body describes

equal areas in equal times round any point, the body is con-

stantly urged toward that point, and therefore as the planets

are observed to describe equal areas in equal times round the

sun, their tendency is toward the sun, and not toward any

other point within the orbits.

Kepler's (158.) The third law of Kepler is most important of all,

thud law name}y— I'he squares of the times of revolution are to each
proves that

.. . -r> i
• i

the sun's at-
°t"£r as the cubes of the distances from the sun. By this law

traction is it is proved, that it is the same force which urges all the
inverse y as

' piane^s ^ ^e same point, and that its intensity is inversely as

the distance, the square of the distance from that point ( the center of the

sun ), confirming the Newtonian theory of gravity.

To show this, let us suppose that the

planets revolve round the sun in circular

orbits (which is not far from the truth),

and let P ( Fig. 30 ) represent the posi-

tion of a planet ; F the distance which

the planet is drawn from a tangent during

unity of time ; in the same time that it

describes the indefinite small arc c ; and

the number of times that c is contained in the whole circum-

ference, so many units of time, then, must be in one revolution.
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If D is the diameter of the orbit and t the time of revolu- Chap, h.

tion, then will

t=~, ... (1)

So for any other planet. If / is the force urging it toward An impor-

the sun, a its corresponding arc, Tits time of revolution, and tant troth de-

t-»i t i • 1
monstrated.

B the radius of its orbit ; then, reasoning as before,

2*-B
t=A-t, • • • (2)

a

By comparing ( 1 ) and ( 2 ) we have

c a

_ D 2 AB2

By squaring, t
2

: T2 :: — :
——

.

By Kepler's law, t
2

: T 2
: : r 3

: B*.

By comparing the two last proportions, and observing that

2r may be put for D, and reducing, we have

c 2 a 2

But by the well-known property of the circle, we have

F : c :: c : 2r; or, c 2 = 2rF.

In like manner, . . . a2 = 2 Bf.

Substituting these values in the last proportion, and redu-

cing, we have

LI .*•.>

Or, . . Bf : r#:: r : .£.

Hence, . B2f=r2F; or, F : f :: B2

Or, J7
:/

A*2

1

r 2 * i?2

That is ; the attractive force of the sun is reciprocally pro-

portional to the square of the distance.

( 159.) If we commence with the hypothesis, that bodies The ^e^
tend toward a central point with a force inversely propor- of gravity
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Ckap

-
n

- tional to the squares of their distances, and then compute
and laws of the corresponding times of revolution, we shall find that the

in Kepler's
squares of the times must be as the cubes of the distances. Hence

third law. Kepler' s third law is but the natural mathematical relation

which must exist between times and distances among bodies

moving freely, in circular orbits, animated by one central

force which varies as the inverse square of the distance.

An inquiry. ( 160. ) Having shown that Kepler's third law is but a

mathematical theorem when the planets move in circles and

their masses inappreciable in comparison to that of the sun's,

we now inquire whether the law is true, or only approximately

true, when the orbits are ellipses, and their masses consid-

erable.

How answer- On one of these points of inquiry, the reader must take our
ed - assertion; for its demonstration requires the use of the inte-

gral calculus, a subject that we designed not to employ in this

work. Kepler's third law supposes all the force to be in the

central body, and the planets only moving points. But we

have seen in Art. ( 120 ) that the attracting force on any

planet is the mass of both sun and planet divided by the

square of their mutual distance; and therefore when the

mass of the planet is appreciable, the force is increased, and

Masses of the time of revolution a little shortened. But the fact that

the planets Kepier's law corresponds so well with other observations

compared to proves that the masses of all the planets are inappreciable

the sun. compared to the mass of the sun.

Kepler's ( 161. ) As to the other point, we state distinctly that the

third law ma- planets ( considered as bodies without masses) revolving in
thematioaiiy

e]j- seg f evcr g0 great eccentricity, the squares of the times
true in el lip- *- °

,
,

tic orhits. of revolution are to each other as the cubes of half the greater

axes of the orbits.

We shall not attempt a demonstration of this truth ; but

hope the following explanation will give the reader a clear

view of the subject.

Bodies revolving in ellipses round one of the foci, may be

considered to have a rising and a falling motion; something

like the motion of a pendulum. The motion of a pendulum

depends on the force of gravity, the length of the pendulum,
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and the distance the pendulum was first drawn aside. The chap, u.

motion of a planet depends on the force of gravity, its mean

distance from the sun, and the original impulse first given to a common

it. Most persons, who have not investigated this subject, error of opin-

imagine that each planet must originally have had precisely

the impulse it did have to maintain itself in its orbit; and so

it must, to maintain itself in just that definite orbit in which

it moves. But had the original impulse heen different, either as

to amount or direction, or as to both, then by the action of gravity

and inertia, the planet would have found a corresponding orbit.

(162.) The force of gravity, from the action of any attract- Examin-

ing body, is always as the mass of the body divided by the square tion of the

of its distance. Algebraically, if M is the mass of the body, motions jn

r its distance, and F the force at that distance, then (see 118) elliptic orbits

we have - - - ^-=F. (See Fig. 28.)

Now if the planet has such a velocity, c, as to correspond

with the proportion F : c : : c : 2r,

Or, -
f'2M

:=
tJ2rF=-^ , and that velocity at

right angles to r (Fig. 28), then the planet's orbit would be a

circle, with the radius r. If the velocity had been less in

amount than this expression, and still at right angles to r, then

the planet would fall within the circle, and the action of gra-

vity would increase the motion of the planet ; and the motion

would increase faster than the increased action of gravity

:

there would be a point, then, where the motion would be sufficient
further from

*

to maintain the planet in a circle, at its then distance ; but the the sun. Be-

direction of the motion will not permit the planet to run into ^ ^
"'

the circle, and it must fall within it.

The motion continues to increase until its position becomes

at right angles to the radius vector ; the motion is then as

much more than sufficient to maintain the planet in a circle,

as it was insufficient in the first instance; it therefore rises,

by the law of inertia, and returns to the original point P,

where it will have the same velocity as before ; and thus the

planet vibrates between two extreme distances.

12
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Chap. II

Gravity and

original ve-

locity deter-

mine the ec-

centricityand

mean distan-

ces of the or-

bits.

A hypothe-

tical case.

How a

planet finds

its orbit.

If the velocity, on starting from the point P, were very

much less than sufficient to maintain a circle, at that distance,

then the orbit it would take would be very eccentric, and

its mean distance much less than r. If the original velocity

at P were greater than to maintain it in a circle, it would

pass outside of this circle, and the point P would be the peri-

helion point of the orbit.

Thus, we perceive, that the eccentricity of orbits and mean

distances from the sun, depend on the amount and direction

of the original impulse, or velocity which the planet has in

some way obtained; and it is not necessary that the planet

should have any definite impulse, either in amount or direction, to

move in an orbit, if the direction is not directly to orfrom the sun.

(163.) For a more definite explanation of this subject, let

us conceive a planet launched out into space with a velocity

sufficient to maintain it in a circle at the distance it then hap-

pened to be, but the direction of such velocity not at right

angles to the sun, then the orbit will be elliptical, and the

degree of eccentricity will depend on the direction of the

motion ; but the longer axis of the orbit will be equal to the

diameter of the circle, to which its velocity corresponds ; and

the time of its revolution will be

the same, whether the orbit is

circular or more or less elliptical.

Let P (Fig. 31) be the posi-

tion of a planet, S the sun ; and

let the velocity, a, be just suffi-

cient to maintain the planet in

a circle, if it were at right angles

to 8 P.

Now to find the orbit that this

planet would describe, draw the

line P C at right angles to a,

and from S let fall a perpendi-

cular on PC; SC will be the

eccentricity of the orbit, and PC
will be the half of its conjugate

axis ; and with these lines the whole orbit is known.

Fig. 31.
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( 164.) Now let us suppose that a planet is rather carelessly chap, ii .

launched into space, with a velocity neither at right angles to

the sun, nor of sufficient amount to maintain it in a circle, at

that distance from the sun.

Fig. 32.

will find their

orbits, what-

ever be the

direction and

force of their

original mo-

tion.

Let P (Fig. 32) represent the

position of the planet, a the

amount and direction of its hap-

hazard velocity during the first

unit of time. The direction of

the motion being within a right

angle to S P, the action of gra-

vity increases

the velocity ^./*-\

of the planet, ^
on the same

principle that a falling body in-

creases in velocity ; and the planet

goes on in a curve,describing equal

areas in equal times round the point

S; and it will find a point, p, where

its increased velocity will be just

equal to the velocity in a circle whose radius is the diminished

distance Sp. From the point p, and at right angles to a,

draw p C, &c, forming the right angled triangle p C S. S C
is the eccentricity, S a the mean distance, and p C half the

conjugate axis of the orbit.

If the planet is launched into space in the other direction,

the action of gravity will diminish its motion, and will bring
w
\ .

e sym "

D » ' ° metrical on

it at right angles to the line joining the sun; it is then at its each side of

apogee, with a motion too feeble to maintain a circle at that aP°see ;

distance; and it will, of course, approach nearer and nearer

to the sun by the same laws of motion and force that it receded

from the sun ; hence the curve on each side of the apogee

will be symmetrical ; and the same reasoning will apply to the

curve on each side of the perigee ; and, in short, we shall

have an ellipse.

To sum up the whole matter, it is found by a strict exami-
tx ' •* tant conclu-

nation of the laws of gravity, motion, and inertia, that whatever sion.

The orbits

perigee.

An impor-
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Chap. ii. may be the primary force and direction given to a planetary

body ( if not directly to or from the sun ), the planet willfind

a corresponding orbit, of a greater or less eccentricity, and of a

greater or less mean distance ; and whatever be the eccentricity

of the orbit, the real velocity, at the extremity of the shorter axis,

will be just sufficient to maintain the planet in a circular orbit, at

that mean distance from -the sun*

* Let S be the sun, and P the position of a planet as repre-

sented in the annexed figure, and we may now suppose it to

the asteroids burst into fragments, the figure representing three fragments

only ; the velocity and direction of one represented by a ; of

another by b, and of a third by c, &c.

Fig. 33.

Theory of

Dr. Olbers

concerning

As action is just equal to reaction, under all circumstances,

therefore the bursting of a planet can give the whole mass no

additional velocity ; a small mass may be blown off at a great

velocity, but there will be an equal reaction on other masses,
On the «

n ^e pp0Site direction.
bursting of a L L

planet, the The whole might simply burst into about equal parts, and
fragments then they would but separate, and all the parts move along

orbits corre-
m *ne same general direction, and with the same aggregate

sponding to velocity as the original planet. The bursting of a rocket is

tieTanT

0C1
a very mmute

>
ou* a very faithful representation of such an

tions. explosion.
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( 165.) To see whether Kepler's third law applies to ellipses, Chap. n.

we represent half the greater axis of any ellipse by A, and Kepler's

half the shorter axis by B, and then (3.1416)AS is the area third law ri-

of the ellipse. Also, let a represent the velocity or distance ^0T0US

J
me

-!• -1- •> in relation to
~

ellipses, as

If the velocities of the several fragments were equal, the well as to

times of their revolutions would be equal ; but the eccentri-
circles -

cities of the several orbits would depend on the angles of a,

b, c, &c, with S P. If a is at right angles to S P, and just

sufficient to maintain the planet in a circle at that distance,

then its orbit would have no eccentricity. If still at right

angles, but not sufficient to maintain a circle at that distance,

then SP would be the greatest radius of the orbit. Hence,

we perceive, there is an abundance of room to have a multi-

tude of orbits passing through the same point, during the

first one or two revolutions ; and the times of such revolu-

tions may be equal, or very unequal. In short, there is no

physical impossibility to be urged against the theory of Dr.

Olbers, that the asteroids are but fragments of a planet.

The objection is (if an objection it can be called) that

these planets have not, in fact, a common node, nor have an

approximation to one ; nor have they an approximation to a

common radius vector, as S P. But the objection vanishes

when we consider that the elements of the different orbits

must be variable ; and time, a sufficient length of time, would

separate the nodes and change the positions of the orbits so

as to hide the common origin, as is now the case.

But if it be true that these planets once had a common

origin in one large planet, it is possible to find the variable

nature of the elements of their orbits to such a degree of

exactness as to trace them back to that origin— define the

place where, and the time when, the separation must have

occurred.

If, however, a planet should burst at one time, and after-

ward one or more of the fragments burst, there could be no

tracing to a common origin ; hence it is possible that the

asteroids in question may have a common origin, and it be

wholly beyond the power of man to show it.
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Chap. ii. that the planet will move in a unit of time, when at the ex-

tremity of its shorter axis ; then \aB will express the area

described in that unit of time.

But as equal areas are described in equal times, as often

as this area is contained in the whole ellipse will be the num-

ber of such units in a revolution. Put 1= that number, or

the time of revolution ; then

(3.1416)45 2(3.1416)4
t:

\aB a

Let A' and B' be the semiaxes of any other ellipse ; a' the

velocity at the extremity of B', and f the time of revolution

;

, 2.(3.1416)4'
then will - t'——± —+—

.

a

By comparing these equations, and rejecting common fac-

A A'
tors, we have - t : t' : : — : —-.

I2M I2M
But by Art. 162, a=^|— , and a'=^j—

-

M mass of sun) ; and putting the values of a and a, in the

above proportion, we have

i JA A'J A'
t : t' : : A v

: —g

—

;

J2M J2M

Or, - - t : t' :: AjA : A!JA!

.

By squaring t2 : t'
2 :: A 2

: A' 3
; which is

Kepler's third law.

Eccentrici- (166.) We have seen, in articles 126 and 127, that the
ties o t e

eccentricity of an orbit depends on the direction of the motion
planetary or-

.

-1

bits change *° *ne radius vector, when the planet is at mean distance. If

by their mu- that direction is at right angles to the radius vector, at that

tions
" time, then the eccentricity is nothing. If its direction is very

acute, then the eccentricity is very great, &c.

Now suppose another planet to be situated at B (Fig. 30)

;

its attraction on the planet, passing along in the orbit p a, is

to give the velocity, a, a direction more at right angles to
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Sp, and thus to diminish the eccentricity of the orbit. If Chap. h.

the disturbing body, J5, were anywhere near the line C S, its The mean

tendency would be to increase the eccentricity; and thus, in dlstancesne-

general, A disturbing body near a line of the shorter axis of

an orbit, has a tendency to diminish the eccentricity of the orbit

of the disturbed body ; and,, anywhere near a line of the greater

axis, has a tendency to increase the eccentricity. Hence the

eccentricities of the planets change in consequence of their

mutual attractions; but their mean distances never change.

(167.) As the time of revolution is always the same for

the same mean distance, whatever be the eccentricity of the

orbit, therefore if we conceive a planet to turn into an infi-

nitely eccentric orbit, and fall directly to the sun, the time of

such fall would be half a revolution, in an orbit of half its

present mean distance, as we perceive, by inspecting Fig. 34.

Hence, by Kepler's third law, we can compute the „. „ . The prm-

time that would be required for any planet to fall to
/
r\ ciples and

i T , . / \ the computa-
tne sun. .Let x represent the time a planet would / \ tion of the

revolve in this new and infinitely eccentric orbit ; then,

by Kepler's law,

t2

t
2

: x2 :: 2 3
: l 3

, or, x2 =—.
8

Therefore half of the revolution, or simply the time

of the fall, must be expressed by -, or,

time required

for the plan-

ets to fall to

the sun.

2^/8 V2
that is, to find the time in which any planet would

fall to the sun, if simply abandoned to its gravity, or the time

in which any secondary planet would fall to its primary, divide

its time of revolution by four times the square root of two.

By applying this rule, we find that

Days.

Mercury would fall to the sun in 15

Venus, 39

Earth, 64

Mars, 121

Jupiter, 765

Saturn, 1901

Uranus, 5424

The moon would fall to the earth in 4d. 19 h. 54 m. 36 s.

h. m.

13 13

17 19

13 39

10 36

21 36

23 24

16 52
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CHAPTER III.

MASSES OF THE PLANETS DENSITIES PRESSURE ON THEIR

SURFACES.

Chap. in. (168.) If the earth contained more matter, it would

„. attract with greater force; and if the sun has a greater
Masses mea- ° °

sured by at- power of attraction than the earth, it is because it contains

traction. more matter than the earth ; and therefore, if we can find the

relative degree of attraction between two bodies, we have

their relative masses of matter.

If the earth and sun have the same amount of matter, they

will attract equally at equal distances. Let M be the mass

of the sun, and E the mass of the earth, then ( at the same

unit of distance), the attraction of the sun is, to the attraction of

the earth, as Mto E.

But attraction is inversely as the square of the distance.

M
Hence the attraction of the sun at D distance, is -=—

; and

E
the attraction of the earth at R distance is -^.

Gravity of The earth is made to deviate from a tangent of its orbit

the sun is ^y foQ attraction of the sun ; and the moon is made to deviate
measured by « • "•

-i
•

'

i i •

the devia- from a tangent of its orbit by the attraction of the earth, and
tion of the the amount of these deviations will give the respective
earth from a

, f> t t • . • i

tangent of its
amounts oi solar and terrestrial gravity.

orbit. If we take any small period of time, as a minute or a sec-

ond, and compute the versed sine of the arc which the earth

describes in its orbit during that time, such a quantity will

express the sun's attraction; and if we compute the versed

sine of the arc which the moon describes in the same time,

that quantity will express the attraction of the earth.

How to com- jn Figure 30, Art. 158, ^represents the versed sine of an

arc ; and if we take D to represent the mean distance be-
pute the com

parative

masses ofthe tween the earth and sun, and consider the orbit a circle
sun and earth

^
ag we may ^hout error, 164), the whole circumference is
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vD (*r= 6.2832). Divide the whole circumference by the Chap. m.

number of minutes in a revolution ; say T, and the quotient

will represent the arc a (Fig. 30). When T is very small,

and of course a very small, the chord and arc practically coin-

cide ; and by the well known property of the circle, we have

2D : a :: a : F>, Or, ^=|g, . (1)

t> j
*$'/.

„
"2D 2 ' a 2 Dn

±Jut a = —==-'. hence, a2 = —=r—-
-, and ^-^=

T ' ' ^ 2 ' 2i> 2T 2

2T-
That is, F= „ ; which is an expression for the sun's

attraction at the distance of the earth. But -=-- is also anD 2

expression for the sun's attraction at the same distance

;

therefore, _= ___; Or, M=^.
In the same manner, if R represents the radius of the lunar

orbit; t the number of minutes in the revolution of the

moon ; the mass of the central attracting body ( in this case

the earth ) must be expressed by

?r2Rz
JE=

2P

7?3 Ti 3

Therefore, E : M : : — : j,-.

This proportion gives a relation between the masses of the

earth and sun expressed in known quantities.

If we assume unity for the mass of the earth, we shall

have for the mass of the sun,

t
2 D 3

M=T^' ^
(169.) This is a very general equation, for D may repre- The general

sent the radius of the earth's orbit, or the orbit of Jupiter or application

Saturn, and T will be the corresponding time of revolution.
tion

1S equa "

Also R may represent the radius of the lunar orbit, or the
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chap. hi. orbit of one of Jupiter's or Saturn's moons, and then t will

be its corresponding time of revolution.

The results This equation, however, is not one of strict accuracy, as

of the equa- ^e distance a planet falls from the tangent of its orbit,, in a
tion will not

accurate, and definite moment of time, is not, accurately =—
, but——-—

why ?

( see 156 ), E being the mass of the planet. The force

which retains a moon in its orbit is not only the attracting

mass of the central body, but that of the moon also. But

the planets being very small in relation to the sun, and in

general the masses of satellites being very small in respect to

their primaries, the errors in using this equation will in gen-

eral be very small. The error will be greatest in obtaining
Corrections

J
..'

..
'

• ' P
. . ,

for equation the mass of the earth, as in that case the equation involves

(A) - the periodic time of the moon ; which period is different from

what it would be were the moon governed by the attraction

of the earth alone ; but the mass of the moon is no inconsid-

erable part of the entire mass of both earth and moon; and

also the attraction of the sun on the combined mass of the

earth and moon, prolongs the moon's periodical time by about

its 179th part.

With these corrections the equation will give the mass of

the sun to a great degree of accuracy ; but we can determine

the mass of the sun by the following method

:

a more ac- From Art. 155, we learn that the attraction of the earth

curate equa- > „ \
t,on - at the distance to the sun, is 9\-f^)-

By Art. 168, we have just seen that the attraction of the

n2D
sun on the earth, is ^~^ ; therefore,

AJL

E: if ::i,_ : _.
Taking the mass of the earth as unity, we have

¥=^r>- -
(jB)

Equation ( B ) is more accurate than equation ( A ),
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because ( B) does not involve the periodical revolution of the Chap. ni.

moon, which requires correction to free it from the effects of

the sun's attraction. To obtain a numerical expression for How to ot>-

the mass of the sun. M, the numerator and denominator of the me rica]

e n

rg

right hand member of equation ( B ), must be rendered homo- suit,

geneous ; and as g, the force of gravity of the earth, is ex-

pressed in feet ( corresponding to T in seconds ), therefore r

the mean radius of the earth, and D the distance to the sun,

must be expressed in feet. But from the sun's horizontal

parallax, we have the ratio between r and D ( see 127 ),

which gives D = 23984?-.

This reduces the fraction to
?r

2 (23984) 3 rW2
' But to ex-

press the whole in numbers, we must give each symbol its

value ; that is, « == 6.2832 ; r= ( 3956 ) ( 5280 );g= 16.1

;

T= 31558150, the number of seconds in a sidereal year.

(6.2832) 2 (23984)3(3956)(5280)
Therefore, M=

(32.2)(31558150>'

It would be too tedious to carry this out, arithmetically, An example

without the aid of logarithms, and accordingly we give the showing the.,,., great utility

loganthmetical solution, thus, of logarithms

6 .2832 log. 0.798178x2

23 .984 log. 4.380000x3

3956 log.

5280 log.

Logarithm of the numerator,

1 .596356

13 .140000

3 .597256

3 .722632

22 .056244

32.2 log

31558150 log. 7.499114x2

Logarithm of the denominator,

Therefore M= 354945, whose log. is

1 .507856 The mass of

14 .998228 the sun de "

16 .506084

5 .550160

termined.

That is, the mass or force of attraction in the sun is

354945 times the mass or attraction of the earth. La Place
,

12
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Chap. in. says it is 354936 times ; but the difference is of no conse-

quence.

Equation
(
A

)
gives 350750, but equation

(
£ ), as we

have before remarked, is far more accurate, and the result

here given, agrees, within a few units, with the best author-

ities.

Equation (B) is not general; it will only apply to the

relative masses of sun and moon, because we do not know

the element g, the attraction, on the surface of any other

planet, except the earth. That is, we do not know it as a

primary fact ; we can deduce it after we shall have determined

the mass of a planet.

Equation ( A) is general, and although not accurate, when

applied to the earth and sun, is sufficiently so when applied

to finding the masses of Jupiter, Saturn, or Uranus ; because

these planets are so remote from the sun, that the revolutions

of their satellites are not troubled by the sun's attraction.

To find the ( 170. ) To find the mass of Jupiter ( or which is the
masses o u-

game thing, the mass of the sun when Jupiter is taken as
piter, Saturn, ° x

and Uranus, unity), we conceive the earth to be a moon revolving about the

sun, and compare it with one of Jupiter's satellites revolving

round that body. To apply equation (^4), let the radius of the

earth equal unity, then the radius of Jupiter must be 11.11

(Art. 131 ); and as observation shows the radius of Jupiter's

4th satellite is 26.9983 times its equatorial radius, therefore

the distance from the center of Jupiter to the orbit of its

4th satellite, must be the following product (11.11) (26.9983),

which corresponds to R in the equation. D = 23984;

T= 365.256; ^= 16.6888.

t
2D 3

Therefore, by applying equation
(
A ), (M==

) ; we

(16.6888) 2 (23984)3
have M=

(365.256) 2 (11.11)3(26 .9983)3*

By logarithms 16.6888 log. 1.222410x2 . 2.444820

23984 log. 4.380000x3 . 13 .140000

Logarithm of the numerator, . . 15. 584820
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365.256 log. 2.562600x2 . 5.125200 chap.hi.

11.11 log. 1 .045714x3 . 3 .137142

26.9983 log. 1 .431320x3 . 4 .293960

Logarithm of the denominator, . . 12 .556302

Therefore M= 1068* log. ... 3 .028518

This result shows that the mass of the sun is 1068 times

the mass of Jupiter ; but we previously found the mass of

the sun to be 354945 times the mass of the earth, and if

unity is taken for the mass of the earth, and J for the mass

of Jupiter, we shall have

1068 </= 354945;

because each member of this equation is equal to the mass

of the sun.

By dividing both members of this equation by 1068, we The mass of

find the mass of Jupiter to be 332 times that of the earth ; "redtoThat

but in Art. 132, we found the bulk of Jupiter to be 1260 of the earth,

times the bulk of the earth ; therefore the density of Jupiter

is much less than the density of the earth.

In the same manner we may find the masses of Saturn and The masses

Uranus— the former is 105.6 times, and the latter 18.2 of Satnrn

times the mass of the earth.

The principles embraced in equation
(
A ) apply only to

those planets that have satellites ; for it is by the rapid or

slow motion of such satellites that we determine the amount

of the attractive force of the planet.

In short, the masses of those planets which have satellites, what re-

are known to great accuracy ; but the results attached to SBlts may be

considered
others in table IV, must be regarded as near approximations. acCurate.

The slight variations which the earth's motion experiences The masses

by the attractions of Yenus and Mars, are sufficiently sensi- Mars an(|

ble to make known the masses of these planets ; and M. Mercury.

Burckhardt gives ¥ oiVtt f°r Yenus, and 25 4 6 3 20 f°r Mars

( the mass of the sun being unity ) ; Mercury he put down at

* This is a correct result according to these data ; but more modern

observations, in relation to the micromatic measure of Jupiter, and

the distance of his satellites, give results a little different, as expressed

in table IV.
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Chap, in ---J-—-
; but this result is little more than hypothetical,

as it is drawn from its volume, on the supposition that the

densities of the planets are reciprocal to their mean distances

from the sun ; which is nearly true for Venus, the earth, and
Mars.

J5y means of
/ yi\. ) It may be astonishing, but it is nevertheless true,

gravity and ^
' J

. , „
the lunar par- that by means of equations (-4) and (i>) we can find the

aiiax, we diameter of the earth to a greater degree of exactness than by
may find the

diameter of any one actual measurement.

the earth. "We have several times observed that equation (A) is not

accurate when used to find the masses of the earth and sun,

because it contained the time of the revolution of the moon;

which revolution is accelerated by the gravity of the moon, and

retarded by the action of the sun.

Therefore, to make equation (^4) accurately express the

mass of the sun, the element t
2 requires two corrections,

which will be determined by subsequent investigation. The

first is an increase of T
T^th part ; the second is a diminution

of a^-gth part, and both corrections will be made if we take

76-358 . ,

75^69**
m Pkce °

f tK

a common Then having two correct expressions for the mass of the

sun, those two expressions must equal each other ; that is,

76-358 t
2D* ^2D 3

75-359 T 2R*
=

2gr*T 2
'

By suppressing common factors, we have

76-358 *
2

7t
2

75-359 R*
~~ %&&'

In this equation r represents the mean radius of the earth,

and we will suppose it unknown ; the equation will then

make it known.

The relation between R, the mean radius of the lunar or-

bit, and r, the mean radius of the earth, is given by means

of the moon's horizontal parallax.

Equatorial The moon's equatorial horizontal parallax, as we have seen,
horizontal '

J-
*
'••** L

parallax and (65) is 57' 3"; but the horizontal parallax for the mean ra-
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dius, is 56^ 57"; this makes R = ( 60.36 ) r, whatever the chap. m.
numerical value of r may be. Put this value of R in the T* mean hon-

preceding equation, and suppress the common factor r 2
, zontai parai-

76-358 *
2 *•*

we then have

Therefore,

75-359 ( 60.36 )*r 2g

2<?-76-358*2

75-359(60.36)3^

As g is expressed in feet, and corresponds to t in seconds, confidence

the numerical value of r will be in feet, which divided by inthe result -

5280, the number of feet in a mile, will give the number of

miles in the mean radius or mean semidiameter of the earth;

and by applying the preceding equation, giving g, t, and &, their

proper values ; and by the help of logarithms, we readily find

r = 3953 miles ; only three miles from the most approved

result; and we do not hesitate to say, that this result is more

to be relied upon than any other.

MASS OF THE MOON.

( 172. ) Approximations to the mass of the moon have The mass of

been determined, from time to time, by careful observations the moon

on the tides ; but it is in vain to look for mathematical re- determined

suits from this source ; for it is impossible to decide whether from obser-

any particular tide has been accelerated or retarded, aug-
v

^
tl0n

.

s on

mented or diminished, by the winds and weather; and if not

affected at the place of observation, it might have been at

remote distances ; but notwithstanding this objection, the

mass of the moon can be pretty accurately determined by

means of the tides, owing to the great number and variety

of observations that can be brought into the account; and

we shall give an exposition of this deduction hereafter ; but

at present we shall confine our attention to the following

simple and elegant -method of obtaining the same result.

If the moon had no mass ; that is, if it were a mere mate-

rial point, and was not disturbed by the attraction of the

sun, then the distance that the moon would fall from a tan-

gent of its orbit, in one second of time, would be just equal

p
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Chap. III. gr2

to — . (Art. 155. ) In this expression g, r, and R, repre-
JTL

sent the same quantities as in the last article. The dis-

tance that the moon actually falls from a tangent of its orbit,

in one second of time, is equal to the versed sine of the arc it

describes in that time, and the analytical expression for it is

found thus

:

Let «R represent the circumference of the lunar orbit, and if

t is put for the number of seconds in a mean revolution, then

nR— represents the arc corresponding to the moon's motion in

one second (Fig. 30), and as this so nearly coincides with

a chord, we have

nR vR 7r*R

7T 2R
Anexpres- Hence, we perceive, that -^-^- is the distance that the

sion for the 2t2

distance the moon wou\^ fa]] from the tangent of its orbit in one second
moon falls in °

one second of time, if it were undisturbed by the action of the sun ; but
of time. g^g

we can free it from such action by multiplying it by — ^,

as we shall show in a subsequent chapter. That is, the

attraction of both the earth and moon, at the distance of the

'
. 859»*R

lunar orbit, is g^g^i •

But the attraction of' the earth alone, at the same distance,

g t2

is -=-
; and comparing these quantities with the more gene-

-LtJ

ral expressions in Art. 156, we have

E E+m gr2 359 re *R
R 2 '' R2

::
1& '' 358-2W

By suppressing the common denominator, in the first

couplet, and calling E, the mass of the earth, unity, the pro-

portion reduces to

, , ,
359^-^3

1 : 1+m :: gT>
: _^__

.
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As in the last article, i2=(60.36)r, and this value put for Chap - In -

JR 3
, and reduced, gives

359*-2(60.36) 3 r
1 : 1-f-m : : g : ttkftt,

—-— \

™ , -,
359*r 2 (60.36) 3 r

Therefore, - - l-\-m=
358-2 a

2 ?
' The result

This fraction, as well as the one in the last article, can be

reduced arithmetically; but the operation would be too

tedious; they are both readily reduced by logarithms, by

which we found l-L-wi=l.01301 ; hence m=.01301, which
Result

is a little less than 7yth. Laplace says -J^-th of the earth given by La-

is the true mass of the moon ; and this value we shall use. Place -

THE DENSITIES OF BODIES.

(173.) The density of a body is only a comparative term, standard

and to find the comparison, some one body must be taken as for density-

the standard of measure. The earth is generally taken for

that standard.

It is an axiom, in philosophy, that the same mass, in a

smaller volume, must be greater in density; and larger in

volume, must be less in density ; and, in short, the density

must be directly proportional to the mass, and inversely pro-

portional to the volume ; and if the earth is taken for unity

in mass, and unity in volume, then it will be unity in density

also ; and the density of any other planetary body will be its

mass divided by its volume ; and if its volume is not given, the

density may be found by the following proportion, in which

d represents the density sought, and r the radii of the body

;

the radius of the earth being unity. The proportion is drawn

from the consideration that spheres are to one another as the

cubes of their radii.

1 mass ^ , mass
t : —— : : 1 : d; hence d=——

.

From this equation we readily find the density of the sun,

for we have its mass (354945), and its semidiameter 111.6
for tiTTe™

times the semidiameter of the earth (Art. 156) ; therefore its sities of

13
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Chap. III. _ . » 354945 '.,/, ...
density must (be —=0.254, or a little more than ith

spheres com- (111.O)
3

pared to the^ density of the earth.
density of

the earth. The mass of Jupiter is 332 times that of the earth, and its

volume is 1260 times the volume of the earth ; therefore the

332
density of Jupiter is —0.264 ; which is a little more

than the density of the sun.

Densities The mass of the moon is -y
1
^, and its volume J¥ , therefore its

moon &C.

61
' density is T^ divided by ^\, or ff=0.6533; about f the den-

sity of the earth.

From these examples the reader will understand how the

densities were found, as expressed in table IY.

GRAVITY ON THE SURFACE OF SPHERES.

Gravity on ( 174.) The gravity on the surface of a sphere depends on

of the other
*ne mass an<^ volume. The attraction on the surface of a

planets, how sphere is the same as if its whole mass were collected at its

center; and the greater the distance from the center to the

surface, the less the attraction, in proportion to the square of

the distance : but here, as in the last article, some one sphere

must be taken for the unit, and we take the earth, as before.

The mass of the sun is 354945, and the distance from its

center to its surface is 111.6 times the semidiameter of the

earth ; therefore a pound, on the surface of the earth, is to

the pressure of the same mass, if it were on the surface of

1 354945
,

the sun, as - to ———-—, or as 1 to 2b nearly. That
1 (111.6) 2 J

is, one pound on the surface of the earth would be nearly 28

pounds on the surface of the sun, if transported thither.

The mass of Jupiter is 332, and its radius, compared to

that of the earth, is 11.1 (Art. 131) ; therefore one pound, on

332
the surface of the earth, would be , or 2.48 pounds on

the surface of Jupiter; and by the same principle, we can

compute the pressure on the surface of any other planet.

Results will be found in table IV.
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CHAPTER IV.

PROBLEM OF THE THREE BODIES. LUNAR PERTURBATIONS.

(175.) By the theory of universal gravitation, everybody in Chap. iv.

the universe attracts every other body, in proportion to its The theory

mass; and inversely as the square of its distance; but simple ° gnm} "

and unexceptionable as the law really is, it produces very com-

plicated results, in the motions of the heavenly bodies.

If there were but two bodies in the universe, their motions The com-

would be comparatively simple, and easily traced, for they p exl*y

would either fall together or circulate around each other in

some one undeviating curve; but as it is, when two bodies

circulate around each other, every other body causes a devia-

tion or vibration from that primary curve that they would

otherwise have.

The final result of a multitude of conflicting motions can-

not be ascertained by considering the whole in mass ; we must

take the disturbance of one body at a time, and settle upon

its results ; then another and another, and so on ; and the sum

of the results will be the final result sought.

We, then, consider two bodies in motion disturbed by a The prob-

third bodv ; and to find all its results, in general terms, is ?
m the

J
.

three bodies.

the famous problem of "the three bodies;" but its complete

solution surpasses the power of analysis, and the most skillful

mathematician is obliged to content himself with approxi-

mations and special cases. Happily, however, the masses of

most of the planets are so small, in comparison with the mass

of the sun, and their distances so great, that their influences

are insensible.

We shall make no attempt to give minute results ; but we

hope to show general principles in such a manner, that the

reader may comprehend the common inequalities of planetary

motions.

Let m, Fig. 34, be the position of a body circulating around Abstract

another body, A, moving in the direction PmB, and dis-
attractl0n -

turbed by the attraction of some distant body, D.



186 ASTRONOMY.

Chap TV.

Two bodies

equally at-

tracted in pa-

rallel lines

are not af-

fected in

their mutual

relations.

We now propose to show some of

the most general effects of the ac-

tion of D, luithout paying the least re~

gard to quantity.

If A and m were equally at-

tracted by D, and the attraction

exerted in parallel lines, thenD would

not disturb the mutual relations of

A and m. But while m is nearer to

D than A is to D, it must be more

strongly attracted, and let the line

mp represent this excess of attraction.

Decompose this force (see Nat. Phil.)

into two others, mn and np, the first

along the line A m, the other at right

angles to it.

The first is a lifting force ( called

by astronomers the radial force),

the other is a tangental force, and affects the motion of m. It

will accelerate the motion of m, while acting with it, from P
to JB, and retard its motion, while acting against it, from B
to Q.

We must now examine the effect, when the revolving body

is at m', a greater distance from D than A is from D.

Now A is more strongly attracted than m'\ and the result

of this unequal attraction is the same as though A were not

attracted at all, and m! attracted the other way by a force

equal to the difference of the attractions of D on the two

bodies A and m' . Let this difference be represented by the

line w! p', and decompose it into two other forces, m! n' and

n'p', the first a lifting force, the other the tangental force.

The rationale of this last position may not be perceived by

every reader, and to such we suggest, that they conceive A
and m! joined together by an inflexible line, A m', and both

A and m' drawn toward D, but A drawn a greater dis-

tance than m'. Then it is plain that the position of the line

A w! will be changed ; the angle D A m' will become greater,

and the gngle CAm' less— that is, the motion of m! will be
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accelerated from Q to <X but from C to P it will be re- Chap, iv .

tarded.

In short, the motion of m will he accelerated when moving to- The dis-

ward the line BBC, and retarded while moving from that line. ^"sjj *7

That is, retarded from B to Q, accelerated from Q to C, re- urgeS arevoi-

tarded from C to P, and again accelerated from P to B. ving body to

If we conceive A to be the earth, m the moon, and D the * * ™
sun; then D B C is called the line of the syzigies, a term

which means the plane in which conjunctions and oppositions

take place. At the point B the moon falls in conjunction with

the sun, and is new moon ; at the point C it is in opposition,

Fig. 36.

D

Action of

an attracting

body on a

ring.

or full moon.

( 176. ) Conceive a ring of matter around

a sphere, as represented in Fig. 36, and let

it be either attached or detached from the

sphere, and let D be not in the plane of the

ring.

From what was explained in the last ar-

ticle, the particles of matter at m are con-

stantly urged toward the line D B C, and

the particles at m' are constantly urged

toward the same plane; that is, the at-

traction of D, on the ring, has a tendency to

diminish its inclination to the line D B C;

and its position would be changed by such

attraction from what it would otherwise be

;

and if the ring is attached to the sphere, the sphere itself will

have a slight motion in consequence of the action on the ring.

Now there is, in fact, a broad ring attached to the equator-

ial part of the earth, giving the whole a spheroidal form ; and

the plane of the equator is in the plane of the ring.

When the sun or moon is without the plane of this ring, cause

that is, without the plane of the equator, their attraction has notation

a tendency to draw the plane of the equator toward the at-

tracting body, and actually does so draw it ; which motion is

called nutation. How this motion was discovered, and its

amount ascertained, will be explained in a subsequent chapter.

(177.) We may conceive the line DBC to be in the

7Tb
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Applica-

tion of the

ring to the

lunar orbit.

The moon';

nodes retro'

srrade.

Lnnar per

turbations.

Investiga-

tion for find-

ing a general

analytical

expression

for the lunar

perturba-

tions.

plane of the ecliptic, D the sun, and the ring around the earth

the moon's orbit, inclined to the plane of the ecliptic with an

angle of about Jive degrees ; then when the sun is out of the

plane of the ring, or moon's orbit, the action of the sun has

a constant tendency to bring the moon into the ecliptic, and

by this tendency the moon does fall into the ecliptic from

either side sooner than it otherwise would.

The point where the moon falls into the ecliptic is called

the mooris node; and by this external action of the sun the

moon falls into the ecliptic

from its greatest inclination

before it describes 90°, and

goes from node to node be-

fore it describes 180°— and

hence we say that the moon's

nodes fall backward on the

ecliptic. The rate of retro-

gradation is 19° 19' in a year,

making a whole circle in about

18.6 years.

( 178. ) We are now pre-

pared to be a little more defi-

nite, and inquire as to the

amount of some of the lunar

irregularities.

Let S be the mass of the

sun, E that of the earth, and

m the moon, situated at D.

Let a be the mean distance

between the earth and sun, z

the distance between the sun

and moon, and r the mean ra-

dius of the lunar orbit. Let

the moon have any indefinite

position in its orbit. ( It is

represented in the figure at D.
)

S
The attraction of the sun on the earth is —-, the attrac-

ts
2
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tion of the sun on the moon is — ; and the attraction of the -

—

'

earth and moon, on the moon, is
*""

. ( Art. 156.

)

Let the line D B, the diagonal of the parallelogram A C, be

the attraction of the sun on the moon, and decompose it into

the two forces D A and D 0; the first along the lunar radius

vector, the other parallel to SE.

The two triangles C D B and D S E are similar, and give

S
the proportion a : z : : CB : B B. But BB= — ;

a S'

Therefore CD = . By a similar proportion we find

D A = .

Let the angle SED be represented by x, then D G will

be expressed by r cos. x, and SB will be a right line nearly,

for the angle B SE is never greater than 1'.

Now if the force B C, which is parallel to SE, is only

equal to the force of the sun's attraction on the earth, it

will not disturb the mutual relations of the earth and moon.

The force of the sun's attraction on the earth is — ; and as this
or

must be less than the force of attraction on the moon, when

the moon is at B, conceive it represented by the line Cn, and

subtracted from CD, will leave Bn the excess of the sun's

attraction on the two bodies, the earth and the moon ; and

this alone constitutes the disturbing force of the moon's

motion

;

That is, Bn = CB—Cn = ?f— 4

;

An expres "

Z 3 a2 sion for the

Or Dn = aS ( — — ), the disturbing force. Decom-

pose this force ( Dn ) into two others, Dp and pn, by means

of the right angled triangle Dpn; the angle pDn being

equal to DE S, which we represent by x.

whole distur-

bing force.
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Whence Dp = Sa ( ~ — — ) cob. x;

And pn = Sa (
—

) sin. x.
\z 3 a 3 /

/ r£\
The force DA, i.e. ( — ) is called the additions force;

The radial the force Dp the ablatitious force. The difference of these
forc€ - two forces is called the radial force ; that is

Sa ( 1 1\ rS
I J cos. x = the radial force ;

pn is the
\z 3 a 3 / z 3 ' r

tangental force.

Expression when the angle x is equal to 90°, cos. x = o, SD — SE,
of the rarlial

orce at t« on=a . which values, substituted, give for the value
quadratures.

'
' ° ^3

of the radial force at the quadratures, and its tendency there

is to increase the gravity of the moon to the earth. When
the angle x is zero ( the moon is in conjunction with the sun )

the cos. x = 1, and the radial force becomes

Sa Sa rS S ( a— r ) Sa
• or —

i

.

z 3 a 3 z 3 z 3 a 3

But at that point z = (a— r ), which value substituted,

and rejecting the comparatively very small quantities in both

numerator and denominator, we have, for the radial force at

2rS
conjunction, .

a 3

When the angle x = 180° ( the moon is in opposition to

the sun ), cos. x =— 1, and the force becomes

Sa Sa rS S S(a4-r)
• or ^ !— '

m

a 3 z 3 z 3 a2 z 3

But at this point z = a -(- r, which, substituting as before,

2rS
and we have for the radial force in opposition , the same

a 3

expression as at conjunction.

If we compare the radial force at the syzigies with the ex-

pression for it at the quadratures, we shall find it the same

in form, but double in amount and opposite in sign, showing

that it is opposite in effect.
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( 179. ) As the radial force increases the gravity of the Chap. iv.

moon to the earth, at the quadratures, and diminishes it at

the syzigies, there must be points in the orbit symmetrically Where thera-
situated, in respect to the syzigies, where the radial force dial force is

neither increases nor diminishes the gravity, and of course
zer°"

its expression for those points must be zero; and to find How to

these points we must have the equation find them -

Sa { ) cos. x r=0 . . (1)
\z 3 a 3 / z 3 y J

By inspecting the figure we perceive that the line SD G
is in value nearly equal to the line S E, and for all points in

the orbit we have

z = a+ r cos. x ( 2

)

Reducing equation ( 1 ) we have

(a 3— z 3
) cos. xz=ra2

. . . . (3)

Cubing ( 2 )

z 3 = a 3 -j^Ba 2 r cos. x j^L Bar 2 cos. 2x+ r 3 cos. 3 x.

As r is very small in relation to a, the terms containing the

powers of r, after the first, may be rejected; we then have

(a 3— z 3
) = + 3a2 r cos. x. . . (4)

This value substituted in ( 3 ), and reduced, gives

— Q o -J

ReSUlt 0f

4- 3 C0S
-
** = *' the radial

Hence cos. x = J\ and x = 54° 44', or the points
force at the

~ 6 x quadratures

are 35° 16' from the quadratures. *nd syzigies,

This shows that at the quadratures, and about 35° on

each side of them, the gravity of the moon is increased by

the action of the sun, and at the syzigies, and about 54° on

each side of them, the gravity is diminished ; and the diminu-

tion in the one case is double the amount of increase in the Mean ra-

other, and by the application of the differential calculus we

learn that the mean result, for the entire revolution, is a dimi-

nution whose analytical expression is ^-^ ; an expression

which holds a very prominent place in the lunar theory; the



192 ASTRONOMY.

Chap
-
sv

- result of which we have used in Art. 171, and there stated it

to be 3-jg-th part of the force that retained the moon in its

orbit.

Value of But how do we know this to be its numerical value, is a
jie mean ra-

y serious inquiry of the critical student?
ilial force, " x J

, , ft] I rjm
and now The force that retains the moon in its orbit is -
found.

( Art. 156 ) ; and if the radial force can be rendered homoge-

neous with this, some numerical ratio must exist between

them. Let x represent that ratio, and we must find some

numerical value for x to satisfy the following equation :

rS _ E-\-m

Tneref0re x= HI+pl3

;

calling E=l, m == TV (Art. 172), or E -\- m is 1.013.

S = 354945 ( Art. 169 ), and the relation between the

mean distance to the sun, and the mean radius of the lunar

orbit, is 397.3,* therefore

(2.026)(397.3)3
*

154945
Sm

'

or the coefficient to x, in equation ( A ), is one three hundredth

and fifty-eighth part of theforce which retains the moon in its

orbit.

General ef- (180.) The mean radial force causes the moon to circu-

aiai force
*ate at ik^ Par<; greater distance from the earth than it

otherwise would have, and its periodical revolution is in-

creased by its 179th part ; but this would cause no variation

or irregularity in its distance or angular motion, provided its

orbit were circular, and the earth and moon always at the

same mean distance from the sun.

rS
The radial But we perceive the expression ~-j contains two variable

force varia-

ble - quantities, r and a, which are not always the same in value

;

and, therefore, the value of the expression itself must be va-

* This relation is found by dividing the horizontal parallax of the

moon, 56' 57", by the horizontal parallax of the sun, 8".6.
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riable ; and it will be least when the earth is at the greatest Chap. tv.

distance from the sun, and, of course, the moon's motion will

then be increased. But the earth's variable distance from

the sun depends on the eccentricity of the earth's orbit ; and The annu*

hence we perceive that the same cause which affects the ap-
a e(

i
uatl0n

x *- of the moons
parent solar motion, affects also the motion of the moon, and motion,

gives rise to an equation called the annual equation* of the

moon's motion. It amounts to 11' in its maximum, and va-

ries by the same law as the equation of the sun's center.

(181.) If we take the general expressions for the radial a general

expression

/. a ( -*-
i

***
i i • i xi. i j.j. f° r the radial

torce, b a\ — — — I cos. x ——, and banish the letter z .

\ z 3 a z/ ^ 3
' force at any

. . point of the

trom it by means ot the equation moon's orbit

z = a -j- r cos. x

Or, 2 s = a 3 + 3a2 r cos. x,

(neglecting the powers of r) and we shall have,

rS (3 cos. 2 x — 1)_

for an expression of the radial force corresponding to any

angle x from the syzigy.

If we take the general expression for the line pn, the tan-

gental force, and banish z, as before, we have,

. _ Srs cos. x sin. x
tangental force, =

.

By doubling numerator and denominator this fraction can Expression

for the tan-

gental force.
take the Mowing form :

3rs (2 cos. x sin. x)

But, by trigonometry, 2 cos. x sin. x = sin. 2x,

Therefore the tangental force = —-—

.

6 2a 3

This expression vanishes when x = o and x = 90° ; for then its vanish-

sin. 2x = sin. 180 = 0. Hence the tangental force van-
in?Points

ishes at the syzigies and quadratures, attains its maximum

* This is equation I, in the Lunar Tables.

13 Q
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The tan-

gental force

greatest

when the

earth is in

perigee.

Application

of the radial

force to an

elliptical or-

bit.

value at the octants, and varies as the sine of the double angular

distance of the moon from the sun.

The mean maximum for this force must be determined by

observation. It is known by the name of variation, and by

mere inspection we can see that its amount must correspond

to the variations of r and of a 3
. Hence, to obtain the moon's

place, we must have correction on correction.

The variation amounts to about 35'. It increases the ve-

locity of the moon from the quadratures to the syzigies, and

diminishes it from the syzigies to the quadratures ; hence, in

consequence of the variation, the velocity of the moon is

greatest at the syzigies, and least at the quadratures.

( 182.) Let us now examine the effect of the radial force

on the lunar orbit, considered as elliptical.

#0

Fig. 38.

When the

radial force

Let SE (Fig. 37) be at right

angles to A B, the greater axis

of the lunar orbit, and conceive

A CB to represent the orbit that

the moon would take if it were

undisturbed by the sun.

But when the moon comes

round to its perigee at A, it is in

one of its quadratures, and the

radial force then increases the

gravity of the moon toward the

rs
earth by the expression — . But

here r is less than its mean value,

and the expression is less than its

mean, and therefore the moon is

j$ not crowded so near the earth as

it otherwise would be, and, of

course, at this point the moon

D will run farther from the earth.

At the point C, the radial force tends to increase the dis-

tance between the earth and moon, and to widen the orbit.

When the moon passes round to B, the radial force again

increases the gravity of the moon, and r, in the expression
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rs
, is greater than its mean value ; and, of course, crowds the

Chap. IV.

decreases

so

Fig. 39.

When the

radial force

increases the

eccentricity

of the lunar

orbit.

moon nearer to the earth than it otherwise would go ; and the eccentri -

• «pi T-if i
city of the lu-

thus we perceive that the action of the radial force on an el- nar ellipse,

liptical orbit has a tendency to decrease the eccentricity of the

ellipse, when the sun is at right angles to its greater axis.

( 183.) Now conceive the sun to be in a line, or nearly in

a line, with the longer axis of the lunar orbit, as represented

in Fig. 38.

The radial force at the quadratures,

C and J), has a tendency to press in

the orbit, or narrow it. At the point

A, the tendency, it is true, is to in-

crease the distance between the earth

and moon ; but that tendency is not

so strong as it would be if the moon

were at its mean distance from the

earth.

The tendency at B is to increase

the distance, and it is a tendency

greater than the medium. That is,

the tendency at A is less than the

medium; at B, greater than the me-

dium; and at C and D, the com-

pressed parts of the orbit, the ten-

dency is to a still greater compres-

sion; therefore, the entire action of

the radial force is to increase the ec-

centricity of the lunar orbit, when the

sun is in line, or nearly in line, with

the longer axis.

Thus, we perceive, that under the disturbing action of the

sun, the eccentricity of the moon's orbit must be in a state

of perpetual change, now more, now less, than its mean state.

Corresponding with this change of eccentricity there must

be changes in the lunar motion ; and to keep account of it,

and allow for it, astronomers have formed a table called

evection.
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Effect of

the radial

force on the

motion of'the

lunar p.eri-

.?ee.

Fig. 40.

O
S

O
S'

Retrograde

motion ofthe

perigee and

apogee.

The major

axis of the

lunar orbit is

inclined to

follow the

sun.

(184.) Now let us examine the effect of the radial force

on the position of the lunar apogee.

Let E (Fig. 40), he the earth, and,

for the sake of simplicity, we conceive

the earth to be stationary, and the

sun and moon both to revolve about

it with their apparent angular veloci-

ties ; the moon in the orbit A C B,

and in the direction A C B; the

sun in a distant orbit, part of which

is represented by S S'.

Let A B be the greater axis of the

moon's orbit, in its natural position,

or as it would be if undisturbed by

the sun; and being undisturbed, the

perigee and apogee would remain con-

stant at the points A and B, and the

time from A to B, or from B to A,

would be just equal to the mean time

of half a revolution, as explained in

a former part of this work.

Now let us conceive the sun to be

in its orbit at S, then the moon will

be in the syzigy when it comes round

to s, and as the radial force at that point tends to increase

the distance between the earth and the moon, the apogee will

take place at s, or between s and B; and it is evident that

the apogee in that case would recede or run back. But at

the next revolution of the moon, in a little more than twenty-

seven days, the sun at that time will, apparently, have moved

to S' about twenty-seven degrees. Now the syzigy will take

place at s ', and the greatest distance between the earth and

moon will now be between B and s\ that is, the apogee will

advance, in one revolution, from near s to near s
f

; and thus,

in general, the longer axis of the moon's orbit is strongly in-

clined to follow the sun ; and this is the source of its pro-

gressive motion. It makes a revolution in 3232i days

;

but its motion is very irregular, for, as we have just seen,



LUNAR PERTURBATIONS. 197

when the line which joins the earth and sun makes a very chap. iv.

acute angle with the longer axis of the lunar orbit, and is ap-

proaching that axis, the motion of the apogee and perigee is

retrograde; but, all of a sudden, when the sun passes the

longer axis of the lunar orbit, the motion of the apogee be-

comes direct, and moves with considerable rapidity.

When the sun is at right angles to the major axis of the Under what

moon's orbit, the tendency of the radial force is to diminish Position of

. . -. , tne sun the

the eccentricity of the orbit, but it has no tendency to change lunar perigee

the position Of the axis. remains sta-

From this investigation it follows, that when the sun has

just passed the greater axis of the lunar orbit, the interval

from apogee to apogee, or from perigee to perigee, will be

greater than a revolution. Just before the sun arrives at the

position of the longer axis, the time from one apogee to an-

other is less than a revolution; and when the sun is at

right angles to the longer axis, the time is just equal to a

revolution in longitude.

(185.) By comparing eclipses of the moon, observed by Ancient

the ancient Egyptians and Chaldeans, with those of more
ecipsei

®T r pared with

modern times, Dr. Halley, and other astronomers, concluded modem ob-

that the periodic time of the moon is now a little shorter stations.

than at those remote periods; and to make these extreme

observations agree with modern ones, it became necessary

to conceive the moon's mean motion to be accelerated about

11 seconds per century.

For a long time this fact seriously perplexed astronomers ;
rrhs re-

some were for condemning the theory of gravity as insuffi-

cient to explain the cause of the lunar perturbations, while

others were for rejecting the facts, although as well estab-

lished as any mere historical facts could be.

In this dilemma, says Herschel, "Laplace stepped in to

rescue physical astronomy from reproach by pointing out the

real cause of the phenomenon in question."

Although this subject troubled the greatest philosophers

of the past age— the greatest mathematical philosophers the

world ever saw— the problem is quite simple, now the solu-

tion is pointed out, and we are sure that every reader of or-
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Chap, iv
. dinary capacity can understand it, provided he gives his se-

rious attention to the subject.

a summary rj^g
gecuiar acceleration of the moon's mean motion is

statement of

the cause, caused by a small change in the mean value of the radial force,

occasioned by a change in the eccentricity of the earth's orbit.

rS
The expression -— is the mean radial force of the sun

acting on the moon's orbit, dilating it and increasing the

time of the lunar revolution.

when the jf ^e earth's orbit had no eccentricity, 2a 3
, the denomina-

tion is in-
*or °f tne fraction, would always have the same value, and

creased. then regarding the numerator as constant, there would be no

variation of the moon's motion arising from this cause. But

in consequence of the earth and moon moving toward the

apogee of the earth's orbit, a, of course, a 3 becomes

greater, and the value of the radial force becomes less than

its mean value, and in consequence of this, the moon's mo-

tion is increased. And when the earth and moon move to-

when di- ward the earth's perigee, a and a 3 become less, and the

value of the radial force becomes greater than its mean ; the

moon's orbit is dilated to excess, and its motion is diminished

;

The ex- and the orbit is more dilated when the earth is in perigee than it

pression or ^ contracted when the earth is in apogee. In other words, the
the mean ra- .

dial force is mean dilatation of the lunar orbit is greater, and the mean
not the true motion of the moon less, in proportion as the earth's orbit is
mean. . .

more eccentric.

rS
The less the value of ~— the greater is the moon's mean

motion, and that value is least when a is greatest. But a

would have no variation of value if the earth's orbit were

circular.

The earth's orbit, however, is eccentric, and in the course

of a year the value of the radial force is exactly expressed

rS
by q

— only at two instants of time, when the earth passes

the extremities of the shorter axis of its orbit. At all

other times a is either greater or less than its mean

value, and the variations are equal on each side of it ; that
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is, a becomes (a— d) or (a-{-d), and the radial force is Chap. iv.

really

rS rS
-— or

2(a—d) 3 2(a+d) 3 '

which expressions correspond to equal distances on each side The true

of the mean distance, and d may have all values, from to of the radial

a e, the eccentricity. The mean value of the radial force *>«».

corresponding to the whole year, is equal to

V jrS ±rS \

2\(o—d)*^ {a+dy/'

Q rS/ 1 1 \
ur

'

4 \( a—d)3~T~(a4-d) 3 '(a—dy (a+d)'

rS
But this expression is always greater than -— , except The mean

La 3 value of the

when d— ; then it is the same, as any algebraist can verify.
ra<

Jj

a
^ f

106

Will D6 l63.St

Hence the mean radial force for the whole year is greater f ail when

as the earth's orbit is more eccentric, and it will be least of the
.

earth '
s

all when that orbit becomes a circle ; and then, and then circie>

rS
only, it will be accurately represented by ^--.

But when the radial force is least, the mean motion must

be greatest, and that force is less and less as the eccentricity

of the earth's orbit becomes less and less; and corresponding

thereto the moon's motion becomes greater and greater, as

has been the case for more than 4000 years.

( 186. ) The mean distance between the earth and sun re- The cause

mains constant. It must be so from the nature of motion,
°

f

e

e^ m̂

force, action, and reaction ; but by the attraction of the city of the

planets the eccentricity of the earth's orbit is in a state of per-
earth'

s orblt'

petual change ; the change, however, is excessively slow. From

the earliest ages the eccentricity of the orbit has been dimin-

ishing ; and this diminution will probably continue until it is

annihilated altogether, and the orbit becomes a circle; after

which it will open out in another direction, again become ec-

centric, and increase in eccentricity to a certain moderate

amount, and then again decrease.

14
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chap, iv . The period for these vibrations, " though calculable, has never

The im- oeen calculated further than to satisfy us that it is not to be

cones

8

on-
reckoned by hundreds or even by thousands of years." It is a

ding to these period so long that the history of astronomy, and of the whole
changes. human race, is but a point in comparison.

The moon's mean motion will continue to increase until the

earth's orbit becomes a circle; after which it will again decrease,

corresponding with the increase of a new eccentricity.

The mch- (187.) For the sake of simplicity, we have thus far con-
nation of the v y

. . ,

innar orbit sidered the moon s orbit to be in the same plane as the

taken into earth's orbit ; but this is not true; the mean inclination of the

lunar orbit to the ecliptic is 5° 8', varying about 9' each way,

according to the position of the sun.

Owing to this inclination of the lunar orbit, the expressions

which we have obtained for the tangental force need cor-

rection, by multiplying them by the cosine of the inclination

;

and for the effect of the same forces in a perpendicular

direction to the moon's longitude, multiply them by the sine

of the inclination of the orbit.

The position of the moon's orbit, in relation to the sun, is

strictly analogous to the ring in relation to the disturbing

body D (Art. 176) ; the sun is constantly urging the moon

into the plane of the ecliptic, which has a constant tendency

to diminish the inclination of the lunar orbit ( except when

the sun is in the positions of the moon's nodes) ; and this con-

stant force urging the moon to the ecliptic, causes the moon's

nodes to retrograde.

We conclude this chapter by a brief summary of the prin-

cipal causes which affect the moon's motion.

a summary 1. The eccentricity of the earth's orbit ; which gives rise to

S^iuhaf il
tne annual equation of the moon in longitude.

regularities. 2. The eccentricity of the lunar orbit
;
producing the equa-

tion of the center.

3. The tangental force; giving rise to the equation called

variation.

4. The position of the sun in respect to the greater axis

of the lunar orbit; giving rise to the inequality called evection.

5. The inclination of the moon's orbit.



THE TIDES. 201

6. The combination of the first cause, when differing from chap. iv.

its mean state, augments or diminishes the result of every

other— thus making many additional small equations.

7. The ellipsoidal form of the earth.

CHAPTER V.

THE TIDES.

( 188. ) The alternate rise and fall of the surface of the chap. v.

sea, as observed at all places directly connected with the Definition

waters of the ocean, is called tide ; and before its cause was of the term

tide.

definitely known, it was recognized as having some hidden and

mysterious connection with the moon, for it rose and fell twice Connection

in every lunar dav- High water and low water had no con-
W1

^ jo moon.

nection with the hour of the day, but it always occurred in

about suck an interval of time after the moon had passed the

meridian.

When the sun and moon were in conjunction, or in opposi- High tides,

tion, the tides were observed to be higher than usual.

When the moon was nearest the earth, in her perigee, other

circumstances being equal, the tides were observed to be

higher than when, under the same circumstances, the moon

was in her apogee.

The space of time from one tide to another, or from

high water to high water ( when undisturbed by wind ), is

12 hours and about 24 minutes, thus making two tides in one

lunar da}^ ; showing high water on opposite sides of the earth

at the same time.

The declination of the moon, also, has a very sensible influ- Tides af-

ence on the tides. When the declination is high in the north, f
c1* y *

e

° declination

the tide in the northern hemisphere, which is next to the moon, f the moon.

is greater than the opposite tide ; and when the declination of

the moon is south, the tide opposite to the moon is greatest. A difficulty

It is considered mysterious, by most persons, that the moon
a snperficial

by its attraction should be able to raise a tide on the opposite reasoner.

side of the earth.
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The true

cause.

Fig. 41.

m

chap. v. That the moon should attract the water on the side of the

earth next to her, and thereby raise a tide, seems rational and

natural, but that the same simple action also raises the oppo-

site tide, is not readily admitted ; and, in the absence of clear

illustration, it has often excited mental rebellion— and not a

few popular lecturers have attempted explanations from false

and inadequate causes.

But the true cause is the sun and moon's attraction; and

until this is clearly and decidedly

understood— not merely assented

to, but fully comprehended— it is

impossible to understand the com-

mon results of the theory of gra-

vity, which are constantly exem-

plified in the solar system.

We now give a rude, but strik-

ing, and, we hope, a satisfactory

explanation.

Conceive the frame-work of the

earth to be an inflexible solid, as it

really is, composed of rock, and in-

capable of changing its form under

any degree of attraction ; conceive

also that this solid protuberates

out of the sea, at opposite points of

the earth, at A and B, as repre-

sented in Fig. 41, A being on the

side of the earth next to the moon,

m, and B opposite to it. Now in

connection with this solid con-

ceive a great portion of the earth

to be composed of water, whose

particles are inert, but readily

move among themselves.

The solid A B cannot expand under the moon's attrac-

tion, and if it move, the whole mass moves together, in virtue

of the moon's attraction, on its center of gravity. But the

particles of water at a, being free to move, and being under a

A summary

illustration,

of the tides.
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more powerful attraction than the solid, rise toward A, pro- Chap. v.

ducing a tide.

The particles of water at b being less attracted toward m
than the solid, will not move toward m as fast as the

solid, and being inert, they will be, as it were, left behind.

The solid is drawn toward the moon more powerfully than the

particles of water at b, and sinks in part into the water, but

the observer at B, of course, conceives it the water rising up

on the shore (which in effect it is), thereby producing a

tide.

( 189. ) The mathematical astronomer perceives a strict Analogy

analogy between the analytical expressions for the tides and
lunar rtur_

the expressions for the perturbations of the lunar motion. bations and

What we have called the radial force, in treating of the \
e per

!

ur *"

J ' c tions of the

lunar irregularities, is the same in its nature as the force that ocean,

raises the tides ; the tide force is a radial force, which dimi-

nishes the pressure of the water toward the center of the

earth under and opposite to the moon, in the same manner as

the radial force diminishes the gravity of the moon toward

the earth in her syzigies.

In Art. 179 we found that the radial force for the moon, at The radial

tr, o force as ap-

the syzigies, is expressed by ; in which expression S is Plied t0 the

(X- moon.

the mass of the sun, a its distance from the earth, and r the

radius of the lunar orbit.

The same expression is true for the tides, if we change S to Converted

. into an ex.

m, the mass of the moon, and conceive a to represent the dis- pression for

tance to the moon, and r the radius of the earth. For the the tides -

tides, then, we have ——, and as the numerator is always con-

stant, the variation of the tides must correspond to the cube

of the inverse distance to the moon.

( 190.) The sun's attraction on the earth is vastly greater Sun '
s at',. traction con*

than that of the moon ; but by reason of the great distance S idered.

to the sun, that body attracts every part of the earth nearly

alike, and, therefore, it has much less influence in raising a

tide than the moon.
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Chap, v . From a long course of observations made at Brest, in

observations France, it has been decided that the medium high tides,

when the sun and moon act together in the syzigies, is

19.317 feet; and when they act against each other (the

moon in quadrature), the tides are only 9.151 feet. Hence
compara- ^e efficacy of the moon, in producing the tides, is to that

tive influen-

cesofthesun °* "$ snn
>
as ™e number 14.23 to 5.08.

and moon. Among the islands in the Pacific ocean, observations give

the proportion of 5 to 2.2, for the relative influences of these

two bodies ; and, as this locality is more favorable to accu-

racy than that of Brest, it is the proportion generally taken.

Having the relative influences of two bodies in raising the

tides, we have the relative masses of those two bodies, pro-

vided they are at the same distance. But by the expression

for the tides, as we have just seen, the variation for distance

corresponds with the inverse cube of the distance, and the dis-

tance to the sun is 397.2 times the mean distance to the

moon. Hence, to have the influence of the moon on the

tides, when that body is removed to the distance of the sun,

we must divide its observed influence by the cube of 397.2.

That is, the mass of the moon is, to the mass of the sun, as
moon com-

puted. 5
the number .^tt——-— to the number 2.2.

(397.2) 3

In all preceding computations we have called the mass of

the earth unity, and in relation thereto, the mass of the sun is

354945 (Art. 169). Let us represent the mass of the moon

by m, then we have the following proportion

:

5
The result. m : 354945 : : 7777^^— : 2.2.

(397.2)3

This proportion makes the mass of the moon a little less than

-yL
; but I have little confidence in the accuracy of the result,

as the data, from their very nature, must be vague and in-

definite.

The times (191.) The time of high water at any given point is not

° iL
Wa

* commonly at the time the moon is on the meridian, but two
ter different J '

in different or three hours after, owing to the inertia of the water ; and
localities.

p] acegj not far from each other, have high water at very dif-

Mass of the
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ferent times on the same day, according to the distance and Chap. v.

direction that the tide wave has to undulate from the main

ocean.

The interval between the meridian passage of the moon

and the time of high water, is nearly constant at the same

place. It is about fifteen minutes less at the syzigies than

at the quadratures; but whatever the mean interval is at

any place, it is called the establishment of the port.

It is high water at Hudson, on the Hudson river, before The tides

it is high water at New York, on the same day; but the tide
stantly cease

wave that makes high water one day at Hudson, made high on the remo-

water at New York the day before ; and the tide waves that
va

•> causes.

make high water now, were, probably, raised in the ocean

several days ago ; and the tides would not instantly cease on

the annihilation of the sun and moon.

The actual rise of the tide is very different in different Tides very

places, being greatly influenced by local circumstances, such
ed

°

b ^J
as the distance and direction to the main ocean, the shape circum-

of the bay or river, &c, &c. stances -

In the Bay of Fundy the tide is sometimes fifty and sixty

feet ; in the Pacific ocean it is about two feet ; and in some

places in the West Indies, it is scarcely fifteen inches. In

inland seas and lakes there are no tides, because the moon's

attraction is equal over their whole extent of surface.

The following table shows the hight of the tides at the

most important points along the coast of the United States,

as ascertained by recent observation.

Feet.

Annapolis (Bay of Fundy), 60

Apple River, 50

Chicneito Bay (north part of the Bay of Fundy), 60

Passamaquoddy River, 25

Penobscot River, 10

Boston, 11

Providence, R. I., 5

New Bedford, 5

New Haven, 8

New York, 5

Cape May, 6

Cape Henry, 4)^
K
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CHAPTER VI.

PLANETARY PERTURBATIONS.

Chap, vi
.

^ 192.) The perturbations of a planet, produced by the at-

pianetary tractions of another planet, are precisely analogous to the per-
and lunar . 1 r' '

-i'-i l • i

perturba- turbations oi the moon, produced by the action ot the sun.

tions anaio- The disturbing forces are of the same kind, and they are

subject to similar variations from precisely the same causes.

But the amount of the disturbances is, in most cases, very

trifling, on account of the small mass of the disturbing planet

compared with the mass of the sun, or its great distance from

the body disturbed.

Action and As action and reaction are everywhere equal, the planets

on? the plan-
mutuaUy disturb each other, and if one is accelerated in its

ets recipro- motion, the other must be retarded ; if the tendency of one to-

ward the sun is diminished, that of the other must be increased.

Examine Fig. 23, and conceive V, Venus, to be disturbed

by the attraction of the earth at E, and if the motion of the

planets is in the direction of VB, it is perfectly clear that

Venus will be accelerated by the earth, and the earth will be

retarded by Venus.

One planet But Venus will be more accelerated in its motion than the

ed while an-
eartQ wiH De retarded, for the disturbance at this point is in

other is re- a line with the motion of Venus, and not in a line with the

motion of the earth,

when the After Venus passes conjunction, that is, passes the varying

line S E, her motion becomes retarded, and the earth's is ac-

celerated ; but every motion of the earth we ascribe to the sun ;

and in all modern solar tables, the corrections of the sun's

longitude corresponding to the action of Venus, Mars, Ju-

meant by so- P^sr> $i? moon, &c, are simply the effect that these bodies

lar perturba. have on the motion of the earth.

The direct effect of any of these bodies on the position of

the sun is absolutely insensible.

The relative disturbances of two planets are reciprocal to

their masses ; for if one is double in mass of another, the

action

changes.
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greater mass will move but half as far as the smaller, under Chap. vi.

their mutual action. But when the amount of disturbance is

referred to angular motion for its measure, regard must be regularities

had to the distances of each planet from the sun ; for the indicate the

same distance on a larger orbit corresponds to a less angle.*
pxanetar

Also, the whole amount of the disturbing force of a superior disturbance

planet on an inferior will, at times, be a tangental force
a

,

er cer ai:

* ' ° reductions.

( Fig. 23 ) ; but the reaction of the inferior planet on the su-

perior can never be in a tangent directly with, or opposed to,

the motion of the superior.

If observations can give the mutual disturbance of any two

planets, then these circumstances being taken into considera-

tion, an easy computation will give the relative masses of the

planets.

( 193.) As a general result, the attraction of a superior The gene-

planet on an inferior, is to increase the time of revolution of
ral results in

respect to the

the inferior, and to maintain it at a greater distance from the times f rev .

sun than it would otherwise have. The action of the inferior oiution.

is to diminish the time of revolution of the superior; and

the general effect is greater than it would be, if the inferior

planet were constantly situated at the distance of the sun.

(Art. 185.)

As an illustration of this truth, we say, that if Venus were

annihilated, the length of our year, and the times of revolu-

tion of all its superior planets, would be a little increased, and

the revolution of Mercury, its inferior planet, would be a lit-

tle diminished. If Jupiter were annihilated, the times of re-

volution of all its inferior planets would be a little diminished

;

for it acts as a radial force to keep them all a little farther

from the sun.

( 194.) If the orbits of all the planets were circular, the inequalities

acceleration in one part of an orbit would be exactly compen-
™*l,c

* Geometry demonstrates, that, on the average of each revolution,

the proportion in which this reaction will affect the longitudes of the

two planets, is that of their masses multiplied by the square roots of

the major axes of their orbits, inversely; and this result of a very in-

tricate and curious calculation is fully confirmed by observation.

—

Herschel.
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chap. vi. sated by the retardation in another ; and in the course of a

whole revolution, the mean motions of both planets (the dis-

turber and the disturbed) would be restored, and the errors

in longitude would destroy each other. But the orbits are

not circles, and it is only in certain very rare occurrences

that symmetry on each side of the line of conjunctions takes

place ; and hence, in a single revolution the acceleration of

cds of ine- one Par^ cannot be exactly counterbalanced by the retarda-

^uaiities de- tion of the other; and, therefore, there is commonly left a cer-

coirunctions
*a*n outstanding error, which increases during every synodi-

in the same cal revolution of the two planets, until the conjunctions take
parts, o t e

pjace
'm pp0Site parts of the orbits, then it attains its maxi-

mum, which is as gradually frittered away as the line of con-

junctions works round to the same point as at first.

Some of Hence, between every two disturbing planets there is a common

qualities too
^neQua^ly depending on their mutual conjunctions, in the same,

minute to be or nearly in the sa?ne, parts of their orbits. But it would be

folly to compute the inequalities for every two planets, by rea-

son of the extreme minuteness of the amounts ; for instance,

Mercury is not sensibly disturbed by Saturn or Uranus; and

Mars, and Mercury, and Uranus, practically speaking, do not

disturb each other; but Jupiter and Saturn have very con-

siderable mutual perturbations, on account of their orbits be-

ing near each other, and both bodies far away from the sun.

The effect (195,) Again, if the revolutions of two planets are ex-

s te rev0 _ actly commensurate with each other, or, what is the same

lations of the thing, the mean motion of both exactly commensurate with
planets. ^e circiej ^hen the conjunctions of those two planets will al-

ways occur at the same points of the orbits ( just as the con-

junctions of the two hands of a clock always occur at the

same points on the dial plate), and, in that case, the conjunc-

tions will not revolve and distribute themselves around the

orbits, so that in time, the radial and tangental forces will

have an opportunity to accelerate on one side of the line of

conjunctions as much as they retard on the other; and,

therefore, a permanent derangement would then take place.

a supposed -por jns fcaiice if three times the mean angular motion of
case for illus-

tration, one planet were exactly equal to twice the mean angular mo-
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tion of another, then three revolutions of the one would ex- Chap. vi.

actly correspond to two of the other, and every second con-

junction of the two would take place in the same points of

the orbits; and the orbits, not being circular, the portions of

them on each side of the line of conjunctions cannot be sym-

metrical, unless the longer axes of the two orbits are in the

same line, and the conjunctions also taking place on that line.

Here, then, is a case showing that the disturbing force

may constantly differ in amount on each side of the line of

conjunctions, and, of course, could never compensate each

other, and a permanent derangement of these two planets

would be the result.

Hence, we perceive, that, to preserve the solar system, it stability of

is necessary that the orbits should be circles, or their times thesolarsys '

.
tem.

of revolution incommensurable ; but we do not pretend to say

that the converse of this is true ; we do say, however, that no

natural cause of destruction has thus far been found.

( 196.) The times of the planetary revolutions are incom-

mensurable ; but, nevertheless, there are instances that ap-

proach commensurability, and, in consequence, approach a

derangement in motion, which, when followed out, produce

very long periods of inequality, called secular variation. The

most remarkable of these, and one which very much perplexed

the astronomers of the last century, is known by the term of

" the great inequality " of Jupiter and Saturn.

"It had long been remarked by astronomers that, on com- The great

paring together ancient with modern observations of Jupiter
1»e(

i
1iallties

and Saturn, their mean motions could not be uniform." The and Saturn.

period of Saturn appeared to have been increased throughout

the whole of the seventeenth century, and that of Jupiter

shortened. Saturn was constantly lagging behind its calcu-

lated place, and Jupiter was as constantly in advance of his.

On the other hand, in the eighteenth century, a process pre-

cisely the reverse was going on.

The amount of retardations and accelerations, corresponding The per-

to one, two, or three revolutions were not very great ; but, as
f****

g™
they went on accumulating, material differences, at length, sopherg.

existed between the observed and calculated places of both

14 R*
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Chap. vi. these planets, and, as such differences could not then be ac-

counted for, they excited a high degree of attention, and

formed the subject of prize problems of several philosophical

societies.

Laplace For a long time these astonishing facts baffled every en-
1 e

deavor to account for them, and some were on the point of
mystery. *

declaring the doctrine of universal gravity overthrown ; but,

at length, the immortal Laplace came forward, and showed

the cause of these discrepancies to be in the near commensu-

rability of the mean motions of Jupiter and Saturn; which

cause we now endeavor to bring to the mind of the reader in

a clear and emphatic manner.

( 197.) The orbits of both Jupiter and Saturn are ellipti-

cal, and their perihelion points have different longitudes, and,

therefore, their different points of conjunction are at different

distances from each other, and no line* of conjunction cuts the

two orbits into two equal or symmetrical parts ; hence, the

inequalities of a single synodical revolution will not destroy

each other ; and, to bring about an equality of perturbations,

requires a certain period or succession of conjunctions, as we

are about to explain.

The revo- Five revolutions of Jupiter require 21663 days, and two
utionsofju-

of gat 21518 days. So that, in a period of two revolu-
,>iter and Sa- J L

aim compar- tions of Saturn (about sixty of our years), after any conjunc-

tion of these two planets, they will be in conjunction again not

many degrees from where the former took place.

Their syno- To determine definitely where the third mean conjunction

dical revolu- w-^ £ake piaC6) we compute the synodical revolution of these
tion deter- . . .,.
mined. two planets by dividing the circumference of the circle in sec-

onds (1296000) by the difference of the mean daily motion

of the planets in seconds (178". 6),f and the quotient is 7253.4

days ; three times this period is 21760 days. In this period

Jupiter performs five revolutions and 8° 6' over; Saturn

makes two revolutions and 8° 6' over ; showing that the line

* Line of conjunction, an imaginary line drawn from the sun

through the two planets when in conjunction.

f See problem of the two couriers, Robinson's Algebra.
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of conjunction advances 8° 6' in longitude during the period Chap. vi.

of 21760 days.

In the year 1800, the longitude of Jupiter's perihelion point

was 11° 8', and that of Saturn 89° 9'; the inclination of the

greater axis of the orbits, therefore, was 78° 1'.

Fig. 42.

plained.

Let AB ( Fig. 42 ) represent the major axis of Saturn's The series

orbit, and a b that of Jupiter; the two are placed at an angle
tions

00^
Of 78°.* plained.

Suppose any conjunction to take place in any part of the

orbits, as at JS (the line JS we call the line of conjunc- Lineofcon-

tion) ; in 7253.4 days afterward another conjunction will take J™ctl°n

place. In this interval, however, Saturn will describe about

243° in its orbit^ at a mean rate, and Jupiter will describe one

revolution and about 243° over, and it will take place as re-

presented in the figure, at P Q ( STB being the direction of

the motion). The next conjunction will be 243° from PQ, or

at R T. From RT the next conjunction will be at si, 8° 6'

in advance of JS, and thus the conjunction JS ( so to speak)

will gradually advance along on the orbit from S to T.

But, as we perceive, by inspecting the figure, there is a

*We have very much exaggerated the eccentricities of these ellip-

ses, for the purpose of magnifying the principle under consideration.
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Chap. VI.

Certain

conjunctions

bring the pla-

nets nearer

together than

most others.

The period of

this remark-

able ine-

quality com-

puted, and

the computa-

tion confirm-

ed by obser-

vation.

An expla-

nation of the

principle that

led to the

discovery of

Neptune.

certain portion of the orbits, between S and T, where the two

planets would come nearer together in their conjunction, than

they do at conjunctions generally, and, of course, while any

one of the three conjunctions is passing through that portion

of the orbits— Jupiter disturbs Saturn, and Saturn reacts on

Jupiter more powerfully than at other conjunctions ; and this

is the cause of "the great inequality of Jupiter and Saturn"

( 198. ) To obtain the period of this inequality, we com-

pute the time requisite for one of these lines of conjunction

to make a third of a revolution, that is, divide 120° by 8° 6',

and we shall find a quotient of 14ff , showing the period to be

14|^ times 21760 days, or nearly 883 years; which would be

the actual period, provided the elements of the orbits re-

mained unchanged during that time. But in so long a period

the relative position of the perigee points will undergo con-

siderable variation ; which causes the period to lengthen to

about 918 years.

The maximum amount

of this inequality, for

the longitude of Saturn,

is 49', and for Jupiter

21', always opposite in

effect, on the principle of

action and reaction.

(199.) The last great

achievement of the pow-

ers of mind in the solar

system, was the discovery

of the new planet Nep-

tune, by Leverrier and

Adams analyzing the in-

equalities of the motion

of Uranus. To give a rude explanation of the possibility of

this problem we present Figure 43. Let S be the sun, and

the regular curve the orbit of Uranus, as corresponding to all

known perturbations; but at a it departs from its computed

track and runs out in the protuberance acb. This indicated

that some attracting body must be somewhere in the direction
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S P, although no such body was eyer seen or known to exist. Cha?
-
yl

The next time the planet comes round into the same portions

of its orbit,* suppose the center of the protuberance to have

changed to the line S Q. This would indicate that the un- How com '

• >"<,
putations

known and unseen body was now in the line S Q, and that COuid be

since the former observations it had changed positions by the made for ths

angle P S Q; and, by this angle, and the time of its descrip- an unseeil

tion, something like a guess could be made of the time of its planet,

revolution.

With the approximate time of revolution, and the help of

Kepler's third law, its corresponding distance from the sun

can be known. With the distance of the unseen body, and

the amount that Uranus is drawn from its orbit by it, we can

approximate to its mass.

Thus, we perceive, that it is possible to know much about

an existing planet, although so distant as never to be seen.

But the body that disturbed the motion of Uranus has been

seen, and is called Neptune.

Chap. VII,

CHAPTER VII.

ABERRATION, NUTATION, AND PRECESSION OE THE EQUINOXES.

(200.) About the year 1725 Dr. Bradley, of the Green-

wich observatory, commenced a very rigid course of observa-
l

,
s bs^r-

tions on the fixed stars, with the hope of detecting their rations on

parallax. These observations disclosed the fact, that all the
lhe fixed

,1 .... stars ior tua

stars which come to the upper meridian near midnight, have purpose of

an inverse of longitude of about 20", while those opposite, findin s their

near the meridian of the sun, have a decrease of longitude of unexpected

20" ; thus making an annual displacement of 40". These resnits.

observations were continued for several years, and found to

be the same at the same time each year ; and, what was most

Leverrier and Adams had not the advantage of a complete revolu-

tion of Uranus.
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chap. vii. perplexing, the results were directly opposite from such as

would arise from parallax.

These facts were thrown to the world as a problem demand-

ing solution, and, for some time, it baffled all attempts at ex-

planation, but it finally occurred to the mind of the Doctor,

that it might be an effect produced by the progressive motion

of light combined with the motion of the earth ; and, on strict

examination, this was found to be a satisfactory solution.

Fig.
Aberration

44.
( 201.) A person stand-

illustrated. S

* *
ing still in a rain shower,

when the rain falls perpen-

dicularly, the drops will

\
\

strike directly on the top

of his head; but if he

\ starts and runs in any di-

\

\
rection, the drops will strike

\

\
him in the face ; and the

\
\

effect would be the same,

\
\

in relation to the direction

\ of the drops, as if the per-

\ son stood still and the rain

\

\

came inclined from the di-

rection he ran.

D
This is a full illustration

\\ \ of the principle of these

changes in the positions

of the stars, which is called

Aberration; but the follow-

ing explanation is more

appropriate.

Another and \ \ Conceive the rays of
more appro* \ \

priate illus- \ >
L \

light to be of a material

tTS.t.inn \ \ \ \ substance, and its nartinles

13 A progressive, passing from

the star S (Fig. 44) to the earth at B; passing directly

through the telescope, while the telescope itself moves from

A to B by the motion of the earth. And if DB is the mo-

tion of light, and A B the motion of the earth, then the tele-
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scope must be inclined in the direction of A D, to receive the Chaf - vn

light of the star, and the apparent place of the star would be

at S', and its true place at S, and the angleADB is 20".36, at

its maximum, called the angle of aberration.

By the known motion of the earth in its orbit, we have the

value of A B corresponding to one second of time : we have

the angle A D B by observation : the angle at B, is a right

angle, and (from these data) computing the side BD we

have the velocity of light, corresponding to one second of

time. To make the computation, we have

DB:BA:: Rod. : tan. 20".36.*

But B A, the distance which the earth moves in its orbit The veio-

Fig. 45. city of Hsht

q^ computed by

means of ab-

*% 7v erration.

180 * *

270

*To obtain the logarithmetic tangent of 20'\36 see note on page 128.

15



216 ASTRONOMY.

Chap. vii. in one second of time, is within a very small fraction of 19

miles; the logarithm of the distance is 1.278802, and, from

this, we find that BD must be 192600 miles, the velocity of

light in a second ; a result very nearly the same as before

deduced from observations on the eclipses of Jupiter's moons.

(Art. 143.)

The agreement of these two methods, so disconnected and

so widely different, in disclosing such a far-hidden and re-

markable truth, is a striking illustration of the power of

science, and the order, harmony, and sublimity that pervades

the universe.

a compre. To show the effects of aberration on the whole starry

ofthHffe

e

tI
neavens

>
we g*ve figure 45. Conceive the earth to be

of aberra- moving in its orbit from A to B. The stars in the line AB,
tion. whether at or 180, are not affected by aberration. The

stars, at right angles to the line A B, are most affected by

aberration, and it is obvious that the general effect of aberra-

tion is to give the stars an apparent inclination to that part

of the heavens, toward which the earth is moving. Thus

the star at 90 has its longitude increased, and the star op-

posite to it, at 270, has its longitude decreased, by the effect

of aberration; both being thrown more toward 180. The ef-

fect on each star is 20".36. But when the earth is in the

opposite part of its orbit, and moving the other way, from C
to D, then the star at 90 is apparently thrown nearer to ;

so also is the star at 270, and the whole annual variation

of each star, in respect to longitude, is 40".72.

Proof ofthe / 202. ) The supposition of the earth's annual motion fully
annual mo- _ .

tion of the explains aberration; conversely, then, the observed variations

earth. f the stars, called aberration, are decided proofs ofthe earth's

annual motion.

In consequence of aberration, each star appears to describe

a small ellipse in the heavens, whose semi-major axis is 20".36,

and semi-minor axis is 20".36 multiplied by the sine of the

latitude of the star. The true place of the star is the center

of the ellipse. If the star is on the ecliptic, the ellipse, just

mentioned, becomes a straight line of 40".72 in length

If the star is at either pole of the ecliptic, the ellipse be-
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comes a circle of 40".72 in diameter, in respect to a great Chap, vii

circle ; but a circle, however small, around the pole, will in-

clude all degrees of longitude ; hence it is possible for stars

very near either pole of the ecliptic, to change longitude

very considerably, each year, by the effect of aberration ; but

no star is sufficiently near the pole to cause an apparent revo-

lution round the pole by aberration ; and the same is true in

relation to the pole of the celestial equator.

All these ellipses have their longer axis parallel to the ecliptic,

and for this reason it is easy to compute the aberration of a

star in latitude and longitude,* but it is a far more complex

problem to compute the effects in respect to right ascension

and declination.

( 203. ) The aberration of the sun varies but a very little, Aberration

because the distance to the sun varies but little, and without

material error, it may be always taken at 20".2, subtractive.

The apparent place of the sun is always behind its true place

by the whole amount of aberration ; but the solar tables give

its apparent place, which is the position generally wanted.

In computing the effect of aberration on a planet, regard

must be had to the apparent motion of the planet while light

is passing from it to the earth.

The effects of aberration on the moon are too small to be The moon

noticed, as light passes that distance in about one second of mot affected

by aberra-

time -
tion.

( 204. ) While Dr. Bradley was continuing his observa- other ine-

tions to verify his theory of aberration, he observed other
qua

^^ °b "

J r
7 served by Dr.

small variations, in the latitudes and declinations of the stars, Bradley,

that could not be accounted for on the principle of ab-

erration.

The period of these variations was observed to be about

_20".36cos.(#—s)
*Aber. m Lon. = ^

;

cos. I

Aber. in Lat. = 20". 36 sin. (S—s) sin. I.

In these expressions S represents the longitude of the sun,

s the longitude of the star, and I its latitude.

.

s
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Chap, vii. the same as the revolution of the moon's node, and the

amount of the variation corresponded with particular situa-

tions of the node ; and, in short, it was soon discovered that

the cause of these variations was a slight vibration in the

earth's axis, caused by the action and reaction of the sun and

moon on the protuberant mass of matter about the equa-

tor, which gives the earth its spheroidal form, and the effect

itself is called Nutation.

Fig. 46.

m

*

# * *

* * *

*

Nutation / 205. ) We have shown, in Art. 176, that the attraction
fully explain- (,-,-, .

edbythethe- °* a body, m, on a ring of matter around a sphere, has the

ory of gravi- effect of making the plane of the ring incline toward the at-

y '

tracting body.

Let B O, Fig. 46, represent the plane of the equator ; and

conceive the protuberant mass of matter, around the equator,

to be represented by a ring, as in the figure. Let m be the
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moon at its greatest declination, and, of course, without the Chap, vn.

plane of the ring.

Let P be the polar star. The attraction of m on the ring

inclines it to the moon, and causes it to have a slight motion

on its center ; hut the motion of this ring is the motion of the

whole earth, which must cause the earth's axis to change its

position in relation to the star P, and in relation to all the

stars.

When the moon is on the other side of the ring, that is,

opposite in declination, the effect is to incline the equator to

the opposite direction, which must be, and is, indicated by an

apparent motion of all the stars.

A slight alternate motion of all the stars in declination, cor-

responding to the declinations of the sun and moon, was care-

fully noted by Dr. Bradley, and since his time has been fully

verified and definitely settled ; this vibratory motion is

known by the name of nutation, and it is fully and satisfac-

torily explained on the principles of universal gravity ; and

conversely, these minute and delicate facts, so accurately and

completely conforming to the theory of gravity, served as one

of the many strong points of evidence to establish the truth

of that theory.

( 206.) By inspecting Fig. 46, it will be perceived that The eene -

when the sun and moon have their greatest northern declina-
nTltati(m a.

tions, all the stars north of the equator and in the same hemi- lustrated by

sphere as these bodies, will incline toward the equator; or all
Fls- 46 -

the stars in that hemisphere will incline southward, and those

in the opposite hemisphere will incline northward ; the amount

of vibration of the axis of the earth is only 9".6 (as is shown

by the motion of the stars), and its period is" 18.6, or about

nineteen years ; the time corresponding to the revolution of

the moon's node. When the moon is in the plane of the

equator, its attraction can have no influence in changing the

position of that plane ; and it is evident that the greatest ef-

feet must be when the declination is greatest. node must be

The moon's declination is greatest when the longitude of tocorrespond

i , ,. t rT n i> a • tothemoon's
the moon s ascending node is 0, or at the first point ot Aries. greatest de-

The greatest declination is then 28° on each side of the ciinatum.



220 ASTRONOMY.

chap. vii. equator ; but when the descending node is in the same point,

the moon's greatest declination is only 18°. Hence there will

be times, a succession of years, when the moon's action on the

protuberant matter about the equator must be greater than in

an opposite succession of years, when the node is in an oppo-

site position. Hence, the amount of lunar nutation depends

on the position of the moon's nodes.

Monthly mi- it js very natural to suppose that the period of lunar nuta-

smaii.'
ti°n would De simply the time of the revolution of the moon

;

and so, in fact, it is ; but the corresponding amount is very

small, only about one-tenth of a second. This is because half

a lunar revolution, about 13i days, while the moon is on one

side of the equator, is not a sufficient length of time for the

moon to effect much more than to overcome the inertia of the

earth ; but, in the space of nine years, effecting a little more

than a mean result at every revolution, the amount can rise to

9". 6, a perceptible and measurable quantity.

The mean (207.) The mean course of the moon is along the ecliptic;

effect of the
jj. g variation from that line is only about five degrees on each

moon on the
# .

of mat- side; hence, the medium effect of the moon on the protuberant

around niass of matter at the equator is the same as though the

moon was all the while in the ecliptic. But, in that case, its

effect would be the same at every revolution of the moon

;

and the earth's equator and axis would then have an equili-

brium opposition, and there would be no nutation, save the

slight monthly nutation just mentioned, which is too small to

be sensible to observation ; and the nutation that we observe,

is only an inequality of the moon's attraction on the protube-

rant equatorial ring ; and, however great that attraction might

be, it would cause no vibration in the position of the earth,

if it were constantly the same.

Solar nu- We have, thus far, made particular mention of the moon,
tauon. i^ there is also a solar nutation; its period is, of course, a

year ; and it is very trifling in amount, because the sun at-

tracts all parts of the earth nearly alike; and the short

period of one year, or half a year (which is the time that the

unequal attraction tends to change the plane of the ring in

mass

ter

the equator
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one direction^, is too short a time to have any great effect on Chap. vn.

the inertia of the earth.

The solar nutation, in respect to declination, is only one

second.

( 208.) Hitherto we have considered only one effect of nu-

tation—that which changes the position of the plane of the

equator—or, what is the same thing, that which changes the

position of the earth's axis ; but there is another effect, of

greater magnitude, earlier discovered, and better known, re-

sulting from the same physical cause, we mean the

PRECESSION OF THE EQUINOXES.

We again return to first principles, and consider the mu- First prin-

tual attraction between a ring of matter and a body situated
ciples agam

° ^ examined.

out of the plane of the ring ; the effect, as we have several

times shown, is to incline the ring to the body, or (which is

the same in respect to relative positions), the body inclines

to run to the plane of the ring.

The mean attraction of the moon is in the plane of the The mean

ecliptic. The sun is all the while in the ecliptic. Hence, the the sun Md
mean attraction of both sun and moon is in one plane, the moon are in

ecliptic ; but the equator, considered as a ring of matter sur-
°"e p ane

'

rounding a sphere, is inclined to the plane of the ecliptic by

an angle of 23i degrees, and hence, the sun and moon have a

constant tendency to draw the equator to the ecliptic, and

actually do draw it to that plane ; and the visible effect is,

to make both sun and moon, in revolutions, cross the equator

sooner than they otherwise would, and thus the equinox falls

back on the ecliptic, called the precession of the equinoxes.

The annual mean precession of the equinoxes is 50".1 of Thepreces-

1 , , , . sion of the

arc, as is shown by the sun coming into the equinox, or equinoxes,

crossing the equator at a point 50".l, before it makes a revo-

lution in respect to the stars.

Perhaps it is clearer to the mind to say, that the sun is Natural

drawn to the equator by the protuberant mass of matter
sion#

around the earth, and, in consequence, arrives at the equator,

in its apparent revolutions, sooner than it otherwise would.

But the truth is, that the ecliptic is stationary in position,

s*
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chap. vii. and the equator, by a slight motion, meets the ecliptic ; which

motion is caused by the attractions of the sun and moon, as

has been several times explained.
The tme

-j-£ ^e moon were apj fae while in the ecliptic, the preces-
pnysical *

.
- *

cause of the sion of the equinoxes would then be a constantlyflowing quan-
precession of^ eqUai to 50". 1, for each year; but, for a succession of
the equinox-

.

es . about nine years, the moon runs out to a greater declination

than the ecliptic, and, during that time, its action on the

equatorial matter is greater than the mean action, and then

comes a succession of about nine years, when its action is

less than its mean ; hence, for nine years, the precession of

the equinoxes will be more than 50". 1, per year, and, for the

nine years following, the precession will be less than 50".
1,

for each year ; and the whole amount of variation, for this in-

equality, in respect to longitude, is 17". 3, and its period is half

a revolution of the moon's nodes. This inequality is called

the equation of the equinoxes, and varies as the sine of the

longitude of the moon's nodes.

Equation The equation of the equinoxes, of course, affects the length
equl

" of the tropical year, and slightly, very slightly, affects side-

real time.

Mean and There is a true equinox and a mean equinox; and, as side-
true sidereal i • • i <? .i «v ± «i o ,1

real time is measured trom the meridian transit of the equi-
time. J-

nox, there must be a true sidereal and a mean sidereal time

;

but the difference is never more than 1.1 s. in time, and, gene-

rally, it is much less.

Explanation ( 209.) In the hope of being more clear than some authors
lg

' have been, in explaining the results of precession, we present

Fig. 47. i? represents the pole of the ecliptic, and the great

circle around it is the ecliptic itself. P is the pole of the

earth, 23° 27' from the pole E, and around P, as a center, we

have attempted to represent the equator, but this, of course,

is a little distorted; qp and &= are the two opposite points

where the ecliptic and equator intersect; °pE is the first me-

ridian of longitude; cpP is the first meridian of right ascen-

sion. The angle E^pP is 23° 27', and E P, produced, is the

meridian passing through the solstitial points. To obtain a

clear conception of the precession of the equinoxes, the stars,
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the ecliptic, and its pole E, must be considered as fixed, chap, vii

and the line °p ^= as having a slow motion of 50". 1, per an-

Fig. 47.

. i i
•

From the

nam, on the ecliptic, in a retrograde direction; and this must fixed pogi .

carry the pole P, around the point E, as a center, carrying tion of the

also the solstitial points backward on the ecliptic. Some
also

'

f the

of the stars have proper motions ; but, putting that circum- stars, the

stance out of the question, the stars are fixed, and the eclip-
s* ars never

, change lati-

tic is fixed ; therefore, the stars never change latitude, but tude.
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chap, vii. the whole frame-work of meridians from the pole P, the pole

itself, and the equator, revolve over the stars ; and, in respect

to that motion of the meridian and the equator, the stars

change rigid ascension, declination, and longitude, hut do not

change latitude. The stars change longitude, simply because

the first meridian of longitude, T E, moves backward ; they

change right ascension, because the meridian, qp P, and all

the meridians of right ascension, revolve backward.

One hemi- By inspecting the figure, we readily perceive that all the

stars ap-
s^ars near HP must, apparently, approach the north pole, be-

pro aches the cause the pole, in its revolution round E, is approaching to-

the other V' war^- ^Da^ Par^ °f *ne ecliptic ; for the same reason, all the

cedes from stars near =£= are, apparently, moving southward, because the

equator is being drawn over them. In short, all the stars,

from the eighteenth hour of right ascension through qp, to

the sixth hour of right ascension, must diminish in north po-

lar distance, and all the stars, from the six hours through =£=,

to the eighteenth hour of right ascension, must increase in

north polar distance, in consequence of the precession of the

equinoxes,

inspection These observations may be confirmed by inspecting Table
* II, in which is registered the positions of the principal fixed

stars, with their annual variations. The column of annual

variation of declination changes sign at the point correspond-

ing to six hours, and eighteen hours of right ascension ; and

the rapidity of this variation is greater as the star is nearer

to hours, or twelve hours of right ascension.

Annual va- When the right ascension of a star is hours, or twelve

sanation hours, it is easy to compute its annual variation in declina-

how comput- tion, corresponding to its precession along the ecliptic of

50". 1. Conceive a small plane triangle whose hypothenuse is

50".l, the angle at the base 23° 27' 40" (i. e. the obliquity

of the ecliptic ), the side opposite to this angle will be found

to be a little over 20", corresponding to the figures in the

table.

Proper mo- j^ js thus, by the motion of these imaginary lines over the

discovered whole concave of the heavens, that the annual variation of

both right ascension and declination of each individual star
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in the catalogue is computed and put down ; and if any par- chap. vn.

ticular star does not correspond with this, it is said to have

proper motion ; and it is thus that proper motions are detected.

As P must circulate round E by the slow motion of 50". 1 Final effect

in a year, it will require 25868 years to perform a revolution; sion.

and the reader can perceive, by inspecting the figure, why

the pole star is in apparent motion in respect to the pole, and

why that star will cease to be the polar star, and why, at the

expiration of about 12000 years, the bright star, Lyra, will

be the polar star.

(210.) The mean effect of the moon in producing the pre- Compara-

cession of the equinoxes is, to the mean effect of the sun, as tive effect of

. , . sun and
five to two. The sun s action is nearly constant, because moon-

the sun is always in the ecliptic ; a small annual variation,

however, is observed. The great inequality of 17". 3, corre-

sponding to about nineteen years, is caused entirely by the

unequal action of the moon, depending on the longitude of

the moon's ascending node.

In consequence of this inequality, the pole, P, does not unduiatory

move round the pole of the ecliptic, E, in an even circumfe- motion ofthe

rence of a circle, but it has a waving or undulating motion, as a"und "e
represented in this figure ; each wave pole of the

corresponding to nineteen years ; and, _r-~'~s->-w
ecliptic,

therefore, there must be as many of

them in the whole circle as 19 is con-

tained in 25868. From this, we per-

ceive, that the undulations in the fig-

ure are much exaggerated, and vastly

too few in number; an exact linear

representation of them would be im-

possible.

(211.) From the foregoing, we learn that the positions of Mean and

all the stars are affected by aberration, precession, and nuta- apparent

tion ; the amount for each cause is very trifling in itself, yet,
star

in most cases, too great to be neglected, when accuracy is

required ; and it is as difficult to make computations for a

small quantity as for a large one, and often greater ; and to

reduce the apparent place of a fixed star from its mean place,

15
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Chap. vii. and its mean place from its apparent place, is one of the most

troublesome problems in practical astronomy.

General for- The mean place of a fixed star, reduced to the time of ob-
mulee, where . . ~, . , . ,

found. servation, is sumciently near its apparent place to be con-

sidered the same. The practical astronomer, however, who

requires the star as a point of reference, or uses it for the

adjustment of his instruments, must not omit any cause of

variation; but such persons will always have the aid of a

Nautical Almanac, where general formulae and tables will be

found, to direct and facilitate all the requisite reductions,

importance
^ 212.) Physical astronomy brings many things to light

astronomy. ^at would- otherwise escape observation, and some of these

developments, at first, strike the learner with surprise, and he

is not always ready to yield his assent. For instance, as a

general student, he learns that the anomalistic year, the time

that the earth moves from its perigee to its perigee again, is

365 d. 6h. 14 m. ; that the perigee is very slow in its motion,

moves only about 12" in a year, and is subject to but few

fluctuations. He has also learned that the earth, in its orbit,

describes equal areas in equal times ; hence, he concludes,

that the time from perigee to perigee, or from apogee to apo-

gee, must be very nearly a constant quantity; but, on con-

sulting and comparing the predictions to be found in the En-

glish nautical almanacs, he will find these periods to be (in

comparison to his anticipations) very fluctuatiDg. They

differ from the stated mean times, not only by minutes and

seconds, but by hours, and even days. The investigator is,

at first, surprised, and fancies a mistake ; at least, a mis-

print ; but, on examining concurrent facts, such as the lo-

garithms of the distance from the sun, and the sun's true

motion at the time, he finds that, if a mistake has been made,

it is a very harmonious one, and every other circumstance has

been adapted to it.

The lati- But let U3 turn a moment from these facts, and examine

,
.

e
the first page of our Tables. There it will be found, that the

sim explain- i. » »

ed. sun has latitude ; that it deviates to the north and south of

the ecliptic, by a quantity too small ever to be observed ; it is,

therefore, a quantity wholly determined by theory, and, as
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the sun's latitude changes with the latitude of the moon, we Chap, vil

Fig. 48.

S
must seek for its cause in the lunar motions.

To understand the fact of the sun having

latitude, we must admit that it is the center

of gravity "between the earth and moon, that

moves in an elliptical orbit round the sun;

and that center is always in the ecliptic ; and

the sun, viewed from that point, would have

no latitude. But when the moon, m, (Fig.

48 ), is on one side of the plane of the eclip-

tic, Sc, the earth, E would be on the other m
side, and the sun, seen from the center of the

earth, would appear to lie on the same side

of the ecliptic as the moon. Hence, the sun

will change his latitude, when the moon changes

her latitude.

If the moon were all the while in the plane of the ecliptic,

the sun would have no latitude ( save some extremely minute

quantities, from the action of the planets, when not in the

plane of the ecliptic ) ; but the moon does not deviate more

than 5° 20 from the ecliptic, and, of course, the earth makes

but a proportional deviation on the other side ; but, in longi-

tude, the moon deviates to a right angle on both sides, in re-

spect to the sun, and when the moon is in advance in respect

to longitude, the sun appears to be in advance also; and

when the moon is at her third quarter, the longitude of the

sun is apparently thrown back by her influence :—the great-

est variation in the sun's longitude, arising from the motion

of the earth and moon about their center of gravity, is about

6" each side of the mean. Now it is this motion of the

earth around the common center of gravity of the earth and

moon, that chiefly affects the time when the earth comes to

its apogee and perigee. When the moon is in conjunction

with the sun, the center of the earth is farther from the sun

than it otherwise would be ; and when the moon is in oppo-

sition to the sun, the earth is about 3200 miles nearer the

sun than it would be in its mean orbit ; and thus, we per-

ceive, that the longitude of the moon has a great influence in

Longitude

of the sun af-

fected by the

position of

the moon.

Longitude

of the moon
affects the

time that the

earth comes

to its apogee

and perigee.
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m
chap. vu. bringing the earth into, or preventing it from coming into, its

perigee or apogee; but the perigee and apogee points,for the

center of gravity, are quite uniform, agreeably to the views ex-

pressed in the first part of this article. These explanations

will give a general insight into some of the apparent intrica-

cies of physical astronomy.

Small equa- The small equations of the sun's center are computed on
nons of the ^e principle explained by Fig. 48, the sun having a mo-

expiained. tion round the center of gravity between itself and each of

the planets. For example, the perturbation produced by Ju-

piter is greatest when Jupiter is in longitude 90° from the

sun, as seen from the earth ; the greatest effect is then about

8", and varies very nearly as the sine of Jupiter's elongation

from the sun.

When Jupiter is in conjunction with the sun, the sun is

nearer the earth than it otherwise would be, and, on this ac-

count, we have a small table to correct the sun's distance

from the earth, called the perturbations of the sun's distance.

The same remarks apply to other planets, but, to avoid

confusion, the effects of each one must be computed sepa-

rately.
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SECTION IV.

PEACTICAL ASTRONOMY.

PREPARATORY REMARKS.

We have now done with general demonstrations, and with

minute and consecutive explanations; but we shall give all

necessary elucidation in relation to the particular problems

under consideration. To go through this part of astronomy

with success and satisfaction, the reader must have a passa-

ble understanding of plane and spherical trigonometry ; and

if to these he adds a general knowledge of the solar system,

as taught in the foregoing pages, he will have a full compre-

hension of all we design to embrace in this section.

To prompt the student in his knowledge of trigonometry

we give the following formulae

:

I. Relative to a single arc or angle.

1. - - - sin. a = tan. a cos. a.*

tan. a
2. - - - sin. a

3. - - - cos. a =

v l-(-tan. 2 a.
*

1

Vl-(-tan. 2
a.

4. - - - cos. a = 2 cos. 2
\ a—1.

- sin. a
o. - - - tan. \a=-

1-f-cos. a

a o i 1

—

cos
-
a

6. - - - tan.2ia=— .

l-}-cos. a

7. - - - sin. 2a=2 sin. a cos. a.

Trig.

* Radius is unity in all these equations.
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Two. 8. - cos. 2a=2 cos. 2 a—1=1—2 sin. 2 a.

II. Relative to two arcs, a and b, of which a is supposed

to be the greater.

9. - sin. (a-)-5)=sin. a cos. 5-)-sin. b cos. a.

10. - cos. ('«-f-5)=cos. a cos. b—sin. a sin. b.

11. - sin. (a—5)=sin.a cos. b—sin. b cos. a.

12. - cos. (a—5)=cos. a cos. 5-j-sin. a sin. 5.

Sum of (9 ) and ( 11 ) gives 13, diff. gives 14.

13. - sin. («—|—5)—[—sin. (a—5)=2 sin. a cos. b.

14. - sin. (a-\-b)—sin. (a

—

b)=2 cos. a sin. 5.

^ e ,',•;"» tan. am- tan. 5
15. - tan. («-H) - == 7-.

1—tan.a tan. b.

Hr,
. _ x tan.a—tan. b

lo. - tan. (a—o) - =t~, r-
1-4-tan. a tan. o

17. -

18. -

t

19. \

sin. a_f_sin. 5 __tan. ± (a-\-b)

sin. a—sin. b tan.i(a

—

b)'

tan. a-4-tan. 5 _sin. (a-\-b)

tan.a—tan.

5

sin. (a—&)*

1+tan. & ..ro, A
- =tan. (45°-f-6),

1—tan. b
v y

1—tan. b

{ i+sju " =tan
- (

45a-^

We shall, probably, make an application of the following

theorem ; it applies to finding the unknown angles of a tri-

angle, when the logarithms of two sides (not the sides them-

selves) and the angle included between the sides are given.

The greater of two sides of a plane triangle is, to the less,

as radius to the tangent of a certain angle. Take this angle

from 45°, and call the difference a. Lastly, radius is to the

tangent, a, as the tangent of the half sum of the angles at the

base is to the tangent of half their difference.

III. Resolution of right-angled spherical triangles.

In the following equations, h is the hypothenuse, s a given
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side, a a given angle, and x the quantity sought. (The right trig.

angle is unity, and always given.)

Required,

side op. a

side adj. a

the other angle

Solution.

20. sin. #=sin. k sin. a.

21. tan. £=tan. h cos. a.

22. cot. #=cos. h tan. a.

h the other side 23. cos. x=
cos. h

and «{ ang. adj. s

s
ang. op. s

s

and

a

opposite,

cos. s

24. cos. #=tan. s cot. k
. sin. s

25. sin. x=-—

;

sin. k

. sin. s
h 2o. sin. #==-:

sin. a
27. sin. #=tan. s cot. a

cos. a

the other side

the other ang. 28. sin. x
cos. s

s

and I
h

.

1 the other side,
& I

- the other ang.
adjacent, I

29. cot. #=cos. a cot. s

30. tan. #=tan. a sin. 5

31. cos. #=sin. a cos. 5.

The ( h

two sides. ( the angles,

32. cos. #=cos. s cos. other side

33. cot. #=sin. adj. sideX cot.

[opp. side.

IY. Resolution of oblique angled spherical triangles.

Let A B and C be the three angles of any spherical triangle,

and a b and C the sides opposite to them, respectively, that is,

the side a is opposite to A, &c.

In spherical trigonometry the sines of the angles are propor-

tional to the sines of the opposite sides.

sin. A sin. B sin.
Therefore 34

sin. a sin. b " "
sin. c

Given the three sides abc

;

Required one of the angles, A.

sin. (s—b~) sin. (s—c)

35. Sin. 2 i A =
sin. b sin. c

16
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36. - - CoS.^^= sin -'Ssin-(5-a
)

sin. b sin. c

In 35 and 36, 2S=a+b+c.

CHAPTER I.

ASTRONOMICAL PROBLEMS

Chap. I.

A general

projection for

connecting

right ascen-

sion, decli-

nation, lon-

gitude, and

latitude.

PROBLEM I.

Given the right ascension and declination of any heavenly

body to find its latitude and longitude ; or conversely, given the

latitude and longitude of a body to find its corresponding right

ascension and declination.

From any point as a center

(Fig. 49) describe a circle Q
EP<s>, &c. Let this circle

represent the meridian, which

passes through the pole of the

ecliptic E, the pole of the
v

earth's axis P, and through the

solstitial points 25, and V5>.

Then the point Aries ( qp) will

be at the center of the circle

and V? q5 25 and Q qp q will be

lines crossing each other by an angle equal to the obliquity

of the ecliptic. Pp is the celestial meridian, which passes

through the equinoctial points, and is the first meridian of

right ascension E °p e is the first meridian of longitude, and,

of course, the angle E qp P is equal to the obliquity of the

ecliptic.

The figure j^t s be the position of any celestial body, and draw the
is considered •-,* . i • 7-» ii i • t
transparent, meridian or right ascension Psp, also draw the meridian of

and both longitude Es e, draw also qp s. We have now two right-angled

represented, spherical triangles s D<¥> and t B s, having a common hypo-

thenuse qp s; the first is the right ascension triangle, the
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second is the longitude triangle. Let the student observe Chap. i.

that the line Q q represents a circle, the whole equator ; and

the point qp represents, in fact, two points, the degree of

right ascension and the 180th degree. So the point s repre-

sents two points, and T B is the right ascension from de-

gree, or from 180 degrees.

In our figure, the point s is north of both ecliptic and

equator ; but it might have been between the two, or south of

both ; hence, to meet every case, the judgment of the opera-

tor must be called into exercise to perceive a general

solution.

Now, having the right ascension and declination of s, we

find its latitude and longitude thus

:

In the triangle °p Ds, <¥> D and D s are given, and equa-

tion 32 gives cp s (h); 33 gives the angle s °p D. From

s<v D subtract B qp D, the obliquity of the ecliptic, and

there remains the angle s T B.*

With the angle s °p B, and the side qp s, equation 20

gives sB the latitude, and 21 gives ^jB the longitude

EXAMPLES.

1. The right ascension of a certain point in the heavens is

5 h. 7 m. 50 s., or in arc 76° 57' 30" ; and its declination is

26° 11' 36" N.

:

What is the latitude and longitude of the same point?
Fourequa-

(32.) (33.)
tions con -

TD 76° 57' 30" cos. 9.353454 - - - sin. 9.988651 ^f^nT
sD 26° 11' 36" cos. 9.952952 - - - cot. 10.308104

~<Y>"* 78° 19' 3" cos. 9.306406, 26° 47'' 27"cotyio!296766

BcpJ) - --- 23 27 32

s^B - - - - 3 19 55 = a

* In general, take the difference between the angle S Q&M and the

obliquity of the ecliptic ; and if the angle S HP B is the greater quan-

tity, the body is north of the ecliptic, otherwise it is south of it.

When the declination is south, the angle S T D must be added to the

obliquity of the ecliptic in the first and second quadrants, and sub-

tracted in the third and fourth. Hence the judgment of the operator

must be called in to decide the particulars of the case ; or he must
have a general formula that will give no exercise to the mind.
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Chap. I . (20.) (21.)

(h) 78° 19' 3" sin. 9.990911 tan. 10.684611

(a) 3 19 55 sin. 8.763965 cos. 9.999265

3° 15' 36" sin. 8.754876 78 18 6 tan. 10.683876

Thus we determine that the longitude must be 78° 18' 6",

and the latitude 3° 15' 36" N.

2. The longitude of the moon, at a certain time, according to

computation, was 102° 7'; and latitude 5° 14' 15" S.

:

What was the corresponding right ascension and declination ?*

From these 0*2 ') (33

examples we opB 77° 53' cos. 9.322019 sin. 9.990215
might form a

g B 50 u, 15„ cog _ 9-998183 cot> H.037780
general rule

;

batruiesthus cp s 77° 56' 12" cos. 9.320202 5° 21' 27" cot. 11.027995
formed sel- £cpj) - - 23 27 42
dom reflect

principles

;

18 O lO

n:;:»i: (200 m
purposes, we (h) 77° 56' 12" sin. 9.990302 tan. 10.670170
fan back on ,

fl) 18 Q 15 gin 9.492400 cos. 9.977948
the primary Ji

—

—
equations. 17 41 22 sin. 9.482702 77° 19' 41" tan. 10.648118

Thus we find that the right ascension distance on the equa-

tor, from the 180th degree, was 77° 19' 41"; or its right as-

cension in arc was 102° 40' 19", or in time, 6h. 50m. 41s.

3. By meridian observations on the moon, at a certain time,

its right ascension was found to be 16h. 53m. 33s., and its decli-

nation 17° 51' 36" S. : what was its longitude and latitude?

Ans. Lon. 254° 9' 14", Lat. 4° 41' 12" N.

Any num- In the following examples either right ascension and decli-

ber of the nation may foe taken for the data, and the longitude and lati-
like exam- J

•

a

pies can be tude the sought terms, or conversely ; the longitude and
found. latitude may be the given data, and the right ascension and

* As the longitude is more than 90° and less than 180°, the moon is

in the second quadrant of right ascension, and 77° 53' in longitude

from the equator, and as her latitude is south, it does not correspond

to B S in the figure, and we give the example to exercise the judg-

ment of the learner.
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declination the required terms. A Nautical Almanac will CHilp - L

furnish, any number of similar examples.

R. A.

h. m. s.

Dec. Lon. Lat.

4 15 47 36 15 58 15 south,

5 613 22 18 23 2 north,

6 11 24 44 1 45 28 north,

7 20 23 33 14 11 9 south,

238 14 48 4 30 17 north,

9310 55 5 4 23 south,

17112 40 152 51 south

304 47 15 5 2 23 north!

PROBLEM II.

Given the latitude of the place, and the declination of the sun

or star ; to find the semidiurnal arc, or the time the sun or star

would remain above the horizon; and to find its amplitude, or the

number of degrees from the east and west points of the horizon,

where it will rise and set.

To illustrate this problem we draw Figure 50. Let P Z H,

&c, represent the celes-

tial meridian passing

through the place. Make

the arc Q Z equal to the

latitude, then ZP will

equal the co-latitude.

The line Hh is every'

where 90° from Z, and'

represents the horizon.

Pp represents the earth's

axis, and the meridian,

90° distant from the me-

ridian of the place ; Q g

is the equator. From the points Q and q set off d and d ',

equal to the declination (north or south, as the case maybe)

and describe the small circle of declination, d Q d', where this

circle crosses the circle of the horizon Hh is the point where

the body ( sun, moon, or star ) will rise or set ( rise on one

side of the meridian and set on the other, both are repre-

sented by the same point in the projection ). Through P Q
p describe the meridian as in the figure, and the right-angled

spherical triangle P Q C appears ; right angled at R.

Tables for

the semidi-

urnal arc and

amplitudes

are computed

by this prob-

lem.

These ex-

amples do

not take re-

fraction into

account.
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chapel jn the triangle R Q C, there is given the side R Q,
the decimation, and the angle opposite R C Q, which is equal

to the co-latitude. R C, expressed in time, at the rate of 15°

to one hour, will be the time before and after 6 hours, from

the time the body is on the meridian to the time it is in the

horizon ; and the arc C Q is the amplitude. The triangle is

immediately resolved by equations 26 and 27.

(27.) Sin. R C = tan. declin. X tan. lat.

,ao a . „ sin. declin.
(26. ) Sin. Cq = ;v

\

w
cos. lat. '

Observing that the tangent of the latitude is the same as

the cotangent of the angle R C Q, and the cosine of the lati-

tude is the same as the sine of R C Q, corresponding to a in

the equation.

EXAMPLE.

The time jn tfw iatitude f 40° N., when the sun's declination is 20°

examples is,
^ ., what time before and after six will it rise and set, and what

of course, ap- win })Q Us amplitude?
parent, be-

cause it re- (27.) (26.)
fers directly 2QO ^ 9>561066 gin> 9.534052
to the sun,

and not to a 40 tan. 9.923813 cos. 9.884254
dock.

17° 47' sin. 9.484879 26° 31' sin. 9.649798

Thus we find that the arc called the ascensional difference,

is 17° 47', or, in time, lh. 11m. 8s., showing that the sun or

heavenly body, whatever it may be ( when not affected by

parallax or refraction), will be found in the horizon 7h. 11m.

8s. before and after it comes to the meridian.

Its amplitude for that latitude and declination is 26° 31'

north of east, or north of west, and, if observed by a compass,

the apparent deviation would be the variation of the compass.

2. At London, in Lat. 51° 32' N., the sun's amplitude was

observed to be 39° 48' toward the north ; what was its declina-

tion, and what was the apparent time of its rising and setting?

Ans. Sun's declination, 23° 27' 59" N.

Sun's rising, 3h. 47m. 32s. ; sun's setting, 8h. 12m. 28s.
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The amplitude of the sun is frequently observed, at sea, to Chap l

discover the variation of the compass ; but, by reason of re-x ^ Refraction

fraction, the results are not perfectly accurate. not taken m-

From the right-angled spherical triangle (Fig. 48) P ZQ, t0 acco*nt >

we can compute the time when the sun is east or west in po- time that
'

the

sition, and the altitude it must have, when in that position. sun wouId

The triangle Z is a right angle, P Z is the co-latitude, and "j^"
the

Pq is the co-declination. horizon

Equation (23) gives the cosine of Z Q, or the sine of the would be in "

crccisGti

altitude of the sun when it is east or west— the latitude and while it rose

declination being given— and equation ( 24 ) will give the in altitude

k,. o 33' of arc.
or time irom noon.

We may also find the altitude and azimuth of the sun, at

6 o'clock, by making use of a triangle, formed by drawing a

vertical through Z s JV; C S, the given declination, will be its

hypothenuse, and P Ch, the latitude, will be the arc of its

angles.

By means of right-angled spherical trigonometry, as com-

prised in the equations from 20 to 33, we can resolve all pos-

sible problems that can occur in astronomy, pertaining to the

sphere ; but, for the sake of brevity, mathematicians, in some

cases, use oblique-angled spherical trigonometry, which is

nothing more than right-angled trigonometry combined and

condensed.

PROBLEM III.

Given, the latitude of the place of observation, the sun's de- The sun's

clination, and its altitude above the horizon, to find its meridian dlstance

from the me-
distance, or the time from apparent noon. ridian, as

There is no problem more important in astronomy than me asured

that of time. No astronomer puts implicit faith in any chro- as a ce
-^*

nometer or clock, however good and faithful it may have and on the

been ; and even to suppose that a chronometer runs true, it ^j^
ab s

can only show time corresponding to some particular me- ence, is the

ridian ; and hence, to obtain local time, we must have some raeasure of

. time from aD-

method, directly or indirectly, of finding the sun s distance parent noon

from the meridian.

When the center of the sun is on any meridian, it is then

and there apparent noon ; and the equation of time will be the
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Chap. i. interval to orfrom mean noon; but none, save an astronomer

Great im _ in an observatory, can define the instant when the sun is on

portance of the meridian ; no one else has a meridian line sufficiently defi-
is pro em. ^.^ a^ accurate, and with him it is the result of great care,

combined with a multitude of nice observations.

To define the time, then (when anything like accuracy is

required ), we must resort to observations on the sun's al-

titude.

It is evident that the altitude of the sun is greater and

greater from sunrise to noon, and from noon to sunset the al-

Direct me-

ridian obser-

vations not

curate.

Proper times

of observa-

tion.

generally ac titude is continually becoming less. If we could determine,

by observation, exactly when the sun had the greatest alti-

tude, that moment would be apparent noon ; but there is a

considerable interval, some minutes, before and after noon, that

it is difficult to determine, without the nicest observations,

whether the sun is rising or falling ; therefore, meridian ob-

servations are not the most proper to determine the time.

From two to four hours before and after noon ( depending

in some respects on the latitude ), the sun rises and falls most

rapidly ; and, of course, that must be the best time to fix

upon some definite instant ; for every minute and second of

altitude has its corresponding time from noon ; and thus the

time and altitude have
Fig. 51. . ._

a scientific connection,

which can only be disen-

tangled by spherical tri-

gonometry. But we

proceed to the problem.

Draw a circle, P Z

Q M, &c, (Fig. 51),

^representing the meri-

dian; Z is the zenith,

and Z JV is the prime

vertical ; Hh is the ho-

rizon; Z Q is an arc

equal to the given lati-

tude ; Q q is the equa-

tor, and, at right angles to it, we have the earth's axis, P S.

Description

of the figure.
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Take H a, h a, equal to the observed altitude of the sun, chap, l

and draw the small circle, a a, parallel to the horizon, Hh.
From the equator take Q d, qd, equal to the decimation of

the sun, and draw the small circle, d d, parallel to Q q.

Where these two small circles, a a, dd, intersect, is the posi-

tion of the sun at the time.

From Z draw the vertical, Z Q JV, and from P draw the

meridian through the sun, P Q S. The triangle, P Z Q,
has all its sides given, from which the angle, ZP Q, can be

computed; which angle, changed into time at the rate of 15°

to one hour, will give the time from noon, when the altitude

was taken. If the time, per watch, should agree with the

time thus computed, the watch is right, and as much as it

differs is the error of the watch.

The side, Z Q, is the complement of the altitude, P Q The obser -

is the complement of the declination, and P Z is the comple-
fines and

ment of the latitude, and equation ( 35 ) or ( 36 ), will solve points out a

the problem ; that is, find the angle, P, which can be made
tnang e '

to correspond to A, in the equation. But, in place of using

the complement of the latitude, we may use the latitude it-

self; and, in place of using the complement of the altitude,

we may use the altitude itself; provided we take the cosine,

when the side of the triangle calls for the sine ; for it would

be the same thing. By thus taking advantage of every cir-

cumstance, ingenious mathematicians have found a less

troublesome practical formula than either (35) or (36) would Mathema-

be ; but we cannot stop to explain the modifications and
tlcians make

1 L great exer

changes in a work like this; we contemplate doing so in tions to ab-

a work more appropriate to such a purpose ; the student must breviate

. , . .
practial ope-

be content with the following practical rule, to find the time rations.

of day, from the observed altitude of the sun, together ivith its

polar distance, and the latitude of the observer.

Rule 1.

—

Add together the altitude, latitude, and polar dis- Practical

tance, and divide the sum by two. From this half sum subtract

the altitude, reserving the remainder.

2.

—

Take the arithmetical complement of the cosine of the lati-

tude, the arithmetical complement of the sine of the polar distance,

the cosine of the half sum, and the sine of the remainder. Add
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Chap
-

t
- thesefour logarithms together, and divide the sum fo} two; the

result is the logarithmetic sine of half the hourly angle.

3.—This angle, taken from the Tables, and converted into

time at the rate of four minutes to one degree, will be the

time from apparent noon ; the equation of time applied, will

give the mean time when the observation was made *

* The instrument for taking alti-

rant andlex- .^^X^ tudes at sea, or wherever the observer

tant and re-
^JJf // \l\@j)

may nappen to be, is a quadrant or

sextant, according to the number of

?.i!v the same /Jr-^rWf*^ degrees of the arc. It is made on the

principle of reflecting the image of one

body to another, by means of a small

mirror revolving on a center of motion,

carrying an index with it over the arch. Nearly opposite

to the index mirror is another mirror, one half silvered, the

other half transparent, called the horizon glass. Directly op-

posite to the horizon glass is the line of sight, in which line

there is sometimes placed a small telescope. The line of

sight must be 'parallel to the plane of the instrument. The

two mirrors must be perpendicular to the plane of the instru-

ment. To be in adjustment, the two mirrors, namely the in-

dex glass and horizon glass, must be parallel, when the index

stands at 0.

To examine whether a sextant is in adjustment or not,

proceed as follows

:

1. Is the index mirror perpendicular to the plane of the in-

strument ?

Put the index in about the middle of the arch, and look

into the index mirror, and you will see part of the arch re-

flected, and the same part direct; and if the arch appears

perfect, the mirror is in adjustment; but if the arch appears

broken, the mirror is not in adjustment, and must be put so

by a screw behind it, adapted to this purpose.

2. Are the mirrors parallel when the index is at 0?

Place the index at 0, and clamp it fast, then look at some

well-defined, distant object, like an even portion of the dis-
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EXAMPLE.
In latitude 39° 46', north, when the sun's declination was

3° 27', north, the altitude of the sun's center, corrected for

refraction, index error, &c, was 32° 20', rising ; what was

the apparent time ?

Chap. I.

Altitude,

Latitude,

Polar dis.,

32

39

86

20

46

33

cos. comple.

sine comple.

2)158 39

79

32

19

20

30 cosine

46 59 30 sine

\ZP O 24 50 30 sine

2

- .114268

- .000788

9 .267652

9 .864090

2)19 .246798

~9~623399

The hourly angle is 49 41 0. which, converted into time,

gives 3h. 18 m. 44 s., the time from apparent noon, and, as

tant horizon, and see part of it in the mirror of the horizon

glass, and the other part through the transparent part of the

glass ; and, if the whole has a natural appearance, the same

as without the instrument, the mirrors are parallel; but, if

the object appears broken and distorted, the mirrors are not

parallel, and must be made so, by means of the lever and

screws attached to the horizon glass.

3. Is the horizon glass perpendicular to the plane of the in-

strument ?

The former adjustments being made, place the index at 0,

and clamp it ; look at some smooth line of the distant horizon,

while holding the instrument perpendicular ; a continued, un-

broken line will be seen in both parts of the horizon glass

;

and if, on turning the instrument from the perpendicular, the

horizontal line continues unbroken, the horizon glass is in full

adjustment ; but, if a break in the line is observed, the glass

is not perpendicular to the plane of the instrument, and must

be made so, by the screw adapted to that purpose.

After an instrument has been examined according to these

16 u
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chap. i. the sun was rising, it was before noon, and the apparent time

was 8 h. 41 m. 16 s.

An arc may
j^ 0(j observer, with a good instrument, in favorable cir-

be measured ° °

by the quad- cumstances, can define the time, from the sun's altitude, to

rant within within three or four seconds.

An artificial
At sea '

tne observer brings the reflected image of the sun

horizon. to the horizon, and allows for the dip (Tables p.25). On shore,

where no natural horizon can be depended upon, resort is had

to an artificial horizon, which is commonly a little mercury

turned out into a shallow vessel, and protected from the wind

by a glass roof. The sun, or any other object, may be seen

reflected from the surface of the mercury ( which, of course,

is horizontal ), and the image, thus reflected, appears as much

below the natural horizon as the real object is above the hori-

zon ; and, therefore, if we measure, by the instrument, the

angle between the object and its image in the artificial hori-

zon, that angle will be double the altitude.

When mercury is not at hand, a plate of molasses will do

very well ; and in still, calm weather, any little standing pool

of water may be used for an artificial horizon.

Observations taken in an artificial horizon are not affected

by dip, but they must be corrected for refraction and index

error, and, if the two limbs of the sun are brought together,

its semidiameter must be added after dividing by two.

a practical The following example is from a sailor's note book

:

example. u Qr ^ jg^ Qf^ jg^ ^ ^ ^ fa^fa 350 2T,

north, longitude, 54° 10', west, by account, at 7 h. 43 m., per

watch; the altitude of the sun's lower limb was 32° 51', ris-

ing; the hight of the eye was eighteen feet, and the index

directions, it may be considered as in an approximate adjust-

ment—a re-examination will render it more perfect—and,

finally, we may find its index error as follows :—measure the

sun's diameter both on and off the arch—that is, both ways

from 0, and if it measures the same, there is no index error ;

but if there is a difference, half that difference will be the in-

dex error, additive, if the greatest measure is off the arch,

subtractive, if on the arch.
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error of the sextant was 2' 12" additive. What was the er- Ch*p. i.

ror of the watch?"

PREPARATION.

Time, per watch, - - - 7 h. 43 m., morning. Preparations

Longitude, 54° 10', in time, 3 38 to be made
' according to

Estimated mean time at Greenwich, 11 h. 21 m. ch-cnm-

The declination of the sun at mean noon, Greenwich time, stances -

was 19° 38' 29", increasing, the daily variation being 13'

;

the variation, therefore, for 39', the time before noon, was

21", subtractive. Hence, the declination of the sun, at the

time of observation, was 19° 38' 8", north, and the polar dis-

tance, 70° 21' 52".

Observed altitude, - - - - 32° 51' 00"

Index error, ----- -|- 2 12

Semidiameter, - - - - - -(-15 49

Refraction, ------ — 128
Dip of the horizon, - - - - — 413
True altitude of sun's center, - - 33° 3' 20"

Altitude, 33° 3' 20"

Latitude, 36 21 cos. complement, .093982

Polar dis. , 70 21 52 sin. complement, .026013

2)139 46 12

69 53 6 cosine, - - 9.536470

33 3 20

36~~4~9~46
sine, - - 9.777770

2)19.434235

\ hourly angle, 31 25 30 sine, - - 9.717117

This angle corresponds to 4h. 11m. 24 s., or, in reference

to the forenoon, 7 h. 48 m. 36 s., apparent time.

On the 18th of May, noon, Greenwich time, the equation B? obser"

of time was 3m. 54s., subtractive; therefore, the true mean taken at dif<,

time, at ship, was - - - 7 h. 44 m. 42 s. ferent times

Time, per watch, 7 43 " the sa™e

-1 place, the

Watch slow, ... 1 42 rate of the

. .
watch can he

A short time before this observation was taken, the watch determined.



h. m. s.

7 43 00

3 56 39

11 39 39

19 12

11 20 27

7 44 42

3 35 45==53° 56' west.

244 ASTRONOMY.

Chap. i. Was compared with a chronometer in the cabin, which was

too fast for mean Greenwich time, 19 m. 12.5 s., according to

estimation from its rate of motion. The chronometer was

fast of watch by 3 h. 56 m. 39 s. What was the longitude of

the ship?

Time of observation, per watch,

Diff. between watch and chron.,

Time, per ch., at observation,

Chron. fast of Greenwich time,

Greenwich mean time,

Mean time at ship,

Longitude in time,

How to de- The longitude is west, because it is later in the day, at
ci e rom e

Gre^^ei* than a£ the ship. This example explains all the
observations i i i

whether the details of finding the longitude by a chronometer.
longitude is -g taking advantage of the observations for time on shore.
east or west. J ° ? . . .

How to de- we may draw a meridian line with considerable exactness

;

termine and for instance, in the last observation (if it had been on land),

meridian iQ ^h- H m « 24 s., after the observation was taken, the sun

line. would be exactly on the meridian ; and if the watch could be

depended upon to measure that interval with tolerable accu-

racy, the direction from any point toward the sun's center,

at the end of that interval, would be a meridian line. Sev-

eral such meridians, drawn from the same point, from time to

time, and the mean of them taken, will give as true a me-

ridian as it is practical to find ; although, for such a purpose,

a prominent fixed star would be better than the sun.

Absolute The problem of time includes that of longitude, and find-

ing the difference of longitude between two places always re-

solves itself into the comparison of the local times, at the same

instant of absolute time. When any definite thing occurs,

wherever it may be, that is absolute time. For instance,

the explosion of a cannon is at a certain instant of absolute

time, wherever the cannon may be, or whoever may note the

event ; but if the instant of its occurrence could be known

at far distant places, the local clocks would mark very diffe-

t:me.
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rent hours and- minutes of time; but such difference would be chap, l

occasioned entirely by difference of longitude; the event is

the same for all places— it is a, point in absolute time.

Thus any single event marks a point in absolute time. If Absoiuii

the same event is observed from different localities the diffe- . mean3 of

rence in local time will give the difference in longitude. But events.

a perfect clock is a noter of events, it marks the event* J a noter oJ

of noon, the event of sunrise, the event of one hour after events, when

noon, &c. ; and if we could have perfect confidence in this
ll rmis trae

'

x
m

but not other-

marker of events, nothing more would be necessary to give us W i se .

the local time at a distant place. The time, at the place

where we are, can be determined by the altitude of the sun,

or a star, as we have just seen. But, unfortunately, we can-

not have perfect confidence in any chronometer or clock ; and

therefore we must look for some event that distant observers

can see at the same time.

The passage of the moon into the earth's shadow is such Eclipses are

an event, but it occurs so seldom as to amount to no practical ^^' mark

value. The eclipses of Jupiter's satellites are such events, absolute

but they cannot be observed without a telescope of consider-
time

'
but for

^ A common pur-

able power, and a large telescope cannot be used at sea. p0ses they

Hence these events are serviceable to the local astronomer are of httIe

value.

only ; the sailor and the practical traveler can be little bene-

fited by them. The moon has comparatively a rapid motion

among the stars ( about 13° in a day), and when it comes to

any definite distance to or from any particular star, that cir-

cumstance may be called an event, and it is an event that can

be observed from half the globe at once.

Thus, if we observe that the moon is 30° from a particular The raotion

. of the moon
star, that event must correspond to some instant ot absotute among ti. e

time ; and if we are sufficiently acquainted with the moon, stars, may be

and its motion, so as to know exactly how far it will be from
;,

• „

e
- -.

* w 3.S 3.11 lriUcX

certain definite points ( stars ) at the times, when it is noon, moving

3, 6, 9, &c, hours at Greenwich, then, if we observe these
roui

!

d a circ 'e

' marking ab-

events from any other meridian, we thereby know the Green- solute time,

wich time, and, of course, our longitude.

Finding the Greenwich time by means of the moon's angu-

lar distance from the sun or stars, is called taking a lunar;
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Chap. i. and it is probably the only reliable method for long voyages

at sea.

If the motion of our moon had been very slow, or if the

earth had not been blessed with a moon, then the only

methods, for sea purposes, would have been chronometers and

dead reckoning. For a practical illustration of the theory of

lunars, we mention the following facts.

Lunar ob- jQ a gea j ourna] f 1823, it is stated that the distance of
servations n- "

lustrated by the moon from the star Antares was found to be 66° 37' 8",

an example. wjien tfre observation was properly reduced to the center of the

earth, and the time of observation at ship was September

16th, at 7h. 24m. 44s., p. m., apparent time.

By comparing this with the Nautical Almanac, it was

found that at 9, p. m., apparent time at Greenwich, the dis-

tance between the moon and Antares was 66° 5' 2", and at

midnight it was 67° 35' 31"; but the observed distance was

between these two distances, therefore the Greenwich time

was between 9 and 12, p. m., and the time must fall between

9 and 12 hours, in the same proportion as 66° 37' 8" falls

between the distances in the Nautical Almanac; and thus an

observer, with a good instrument, can at any moment deter-

mine the Greenwich time, whenever the moon and stars are

in full view before him. ^
The moon, in connection with the stars in the heavens,

may be considered a public clock ( quite an enlargement of

the town- clock ), by which certain persons, who understand

the dial plate and the motion of the index, and who have the

necessary instrument, can read the Greenwich time, or the

time corresponding to any other meridian to which the com-

putations may be adapted,

observed The angular distances from the moon to the sun, stars,

distances,^
an(j pianetgj ag put <jown jn the Nautical Almanac, eorre-

tances as sponding to every third hour, are distances as seen from the

peen from
cen£er f the earth, and when observations are taken on the

iH© C6nt6r of"

ti.e earth, surface the distance is a little different ; the position of the

moon is affected by parallax and refraction, the sun or star

i the % refraction alone ; and therefore a reduction is necessary,

distance. which is called clearing the distance. This is done by spheri-
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cal trigonometry. The distance between the moon and star Chap - l

is observed, the altitudes of the two bodies are also observed.

The co-altitudes come to the zenith, and the co-altitudes,

with the distance, form three sides of a spherical triangle,

from which the angle at the zenith can be computed. Then

correct the altitude of the moon, for parallax and refraction,

and the star for refraction, and find the true altitudes and co-

altitudes, and the true co-altitudes and angle at the zenith

give two sides, and the included angle of a spherical triangle,

and the third side, computed, is the true distance.

An immense amount of labor has been expended by mathe-

maticians, to bring in artifices to abbreviate the computation

of clearing lunar distances ; and they have been in a measure

successful, and many special rules have been given, but they

would be out of place in a work of this kind.

PROPORTIONAL LOGARITHMS.

In every part of practical astronomy there are many pro- Proportional

portional problems to be resolved, and as the terms are logarithm s —
i

'

. 7i« -i-ii t • an explana-
mostly incommensurable, it would be very tedious, in most tion of the

cases, to proceed arithmetically, we therefore resort to loga- construction

rithms, and to a prepared scale of logarithms, very appropri- CTiven

ately called proportional logarithms.

The tables of proportional logarithms commonly correspond

to one hour of time, or 60' of arc, or to three hours of time.

The table in this book corresponds to one hour of time, or

3600 seconds of either time or arc. To explain the construc-

tion and use of a table of proportional logarithms, we propose

the following problem :

At a certain time, the moon's hourly motion in longitude was

33' 17" ; how much would it change its longitude in 13m. 23s. ?

Put x to represent the required result, then we have the

following proportion :

m. m. s.

60 : 13 23 : : 33 17 : x;

3600 :: 13 23 : : 33 17 : x.Or

Divide the first and second terms of this proportion by the

17
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Chap- !• second, and the third and fourth by the third, then we have

3600 x

13.23 33.17

Divide the third and fourth terms by x, and multiply the

same terms by 3600, and the proportion becomes

3600 , 3600 3600
: 1 : :

13.23 x * 33.17'

Multiplying extremes and means, using logarithms, and re-

membering that the addition of logarithms performs multipli-

cation,

T ,

'

. 3600 /3600\ /3600\
Then we have log.—^ = log. (^^-J +log. (^-j.

By the construction of the table, the proportional logarithm

of 1" is the common logarithm of —-— ; of 2" is the com-

i -n. *
3600

* w •
3600

s *
3600

mon logarithm of —^— ; 01 o is —5— , &c, to ^7^;

hence the proportional logarithm of 3600 is 0.

We now work the problem

:

13 23 - - - P. L. 6516

33 17 - - - P. L. 2559

Result, - - 7 25i - - - P. L. 9075

Examples EXAMPLES FOR PRACTICE.
given to il-

. m

instrate the 1. When the sun's hourly motion in longitude is 2' 29",

practical nti- wkat jg ftg c}iange f longitude in 37 m. 12 s.?
lityofpropor-

tional logar- IS'ns - x °^ •
°'

ithm?. 2. When the moon's declination changes 57".2 in one hour,

what will it change in 17 m. 31 s. ? Ans. 16".8.

3. When the moon changes longitude 27' 31" in an hour,

how much will it change in 7 m. 19 s. ? Ans. 3' 21".

4. When the moon changes her right ascension lm. 58 s.

in one hour, how much will it change in 13 m. 7 s.?

Ans. 25".8.
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N. B. This table of proportional logarithms will solve any Chap. i.

proportion, provided the first term is 60, or 3600 ; therefore,

when the first term is not 60, reduce it to 60, and then use

the table.

EXAMPLES.

1. If the sun's declination changes 16' 33" in twenty-four

hours, what will be the change in 14 h. 18 m. ?

Statement,

Or,

Or,

24

12

60

14.18

7.09

35.45

16' 33"

16' 33"

16' 33"

35' 45"

Examples

given to il-

lustrate the

practical uti-

lity ofpropor-

tional logar

ithms,

P. L.

P. L.

5594

2249

Ans. 9' 51".5 P. L. 7843

2. If the moon changes her declination 1° 31' in twelve

hours, what will be the change in 7 h. 42 m. ? Ans. 58'.

Conceive degrees and minutes to be minutes and seconds,

and hours and minutes to be minutes and seconds.

When 60 minutes or 3600 seconds are not the first term of

a proportion, the result is found by taking the difference of

the proportional logarithms of the other term for the P. L.

of the sought term, as in the following example

:

The moon's hourly motion from the sun is 26' 30'', what

time will it require to gain 30" ?

Statement, 26' 30" : 60m. :
30'

30"

60 m.

x

P. L.

P. L.

Other ex

amples.

2.0792

0.0000

Product of extremes,

Result,

2.0792

26' 30" P. L. sub. 3549

lm. 77 p7l~ 1.7243

3. The equation of time for noon, Greenwich, on a certain

day, was 6 m. 21 s. ; the next day, at noon, it was 6 m. 43 s.

:

what was it corresponding to 3 h. 42 m., p. m., in longitude

74° west, on the same day ? Ans. 6 m. 29 s.
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CHAPTER II.

GENERAL PROBLEM.

Chap. ii. Given, the motions of sun and moon, to determine their appa-

a o-enerai rent positions at any given time ; from which results their appa-

probiem pre- rent relative situations, and the eclipses of the sun and moon.

fi« com nta°
"^s problem covers two-thirds of the science of astronomy,

tionsofeciip- and includes many minor problems ; therefore a brief or hasty
ses * solution must not be expected.

From the foregoing portions of this work, the reader is

supposed to have acquired a good general knowledge of the

solar and lunar motions, and the tables give all the particu-

lars of such motions ; and all the artifices and ingenuity that

astronomers could devise, have been employed in forming and

arranging these tables, for the double purpose of facilitating

the computations and giving accuracy to the results.

The tables, in general, must be left to explain themselves,

and the mere heading, combined with the good judgment of

the reader, will furnish sufficient explanation, in most in-

stances ; but some of them require special mention. All the

tables are adapted to mean time at Greenwich.

EXPLANATION OF TABLES.

a very ge- Table IV contains the sun's mean longitude, the longi-
nerai and ^^Q Q^ ^g perip.ee /^gh diminished by 2°), and the Argu-
comprehen- 1 c \ «/ /> «?

sive expiana- ments * for some of the small inequalities of the sun's appa-
tion of the rent motjon _

tables.

Explanation * The term, argument, in astronomy, means nothing more than a

of the term correspondence in quantities. Thus, each and every degree of the

argument. sun's longitude corresponds with a particular amount of declination ;

and therefore, a table could be formed for the declination, and the ar-

gument would be the sun's longitude.

The moon's horizontal parallax and semidiameter vary together,

and each minute of parallax corresponds to a particular amount of se-

midiameter; hence, a table can be made for finding the semidiameter,

and the arguments would be the horizontal parallax. But the hori-
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Argument I; corresponds to the action of the moon; Ar- Chap, ii,

gument II, to the action of Jupiter; Argument III, to Ve-

nus ; and Argument N, is for the equation of the equinoxes,

and corresponds with the position of the moon's node ; and,

by inspecting the column in the table, it will be perceived

that the argument runs round the circle in a little more than

eighteen years, as it should; and thus, by inspection, we can

obtain an insight as to the period of any argument in the

solar or lunar tables.

The object of diminishing the mean longitude and perigee Explanation

of the sun by 2°, is to render the equation of the center al-
of the so 'ar... .
tables.

ways additive ; for if 2° are taken from the longitude, and 2°

added to the equation of the center, the combination of the

two quantities will be the same as before ; and, as the equa-

tion of the center is always less than 2°, therefore, 2° added

to its greatest minus value, will give a positive result. By
the same artifice all equations may be rendered always posi-

tive. The 2°, taken from the mean longitude, are restored by

adding 1° 59' 30" to the equation of the center, and 10" to

each of the other equations ; hence, to find the real equation

of the center corresponding to any degree of the anomaly,

subtract 1° 59' 3" from the quantity found in the table.

Table XII, shows the time of the mean new moon, &c,

in January, diminished by fifteen hours, to render the correc-

tions always additive, The fifteen hours are restored by add-

ing 4h. 20 m. to the first equation, 10 h. 10 m. to the second,

10 m. to the third, and 20 m. to the fourth.

Argument I, corrects for the action of the sun on the lunar

zontal parallax and semidiameter of the moon depend (not solely) on the

moon's distance from its perigee; hence, a table can be formed giving

both horizontal parallax and semidiameter; which arguments are the

anomaly. In other words, an argument may be called an index, and

when the arguments correspond to points in a circle, or to the differ-

ence of points in a circle, the circle may be considered as divided into

1000 or 100 parts, then 500, or 50, as the case may be, would corre-

spond to half a circle, and so on in proportion. This mode of dividing

the circle has been adopted, with certain limitations, to avoid the

greater labor of computing by denominate numbers.
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Chap. ii. orbit ; Argument II, corrects for the mean eccentricity of the

lunar orbit ; Argument III, corrects for the different combina-

tions of the solar and lunar perigee ; and Argument IV, cor-

rects for the variation occasioned by the inclination of the

lunar orbit to the ecliptic ; N. shows the distance from or to

the nodes.

Tables ad- New and full moons, calculated by these tables, can be de-

Tnodicti

1 6

Pen^e<l uPon within four minutes, and commonly much nearer;

motion ofthe but when great accuracy is required, the more circuitous and
moon, by

eiajj rate method of computing the longitudes of both sun
which new V
and full and moon must be employed.

moons can be Tables XIII, XIV, and XV, are used in connection with
computed.

TaWeXIL
Explanation Table XVI, shows the reduction of the latitude, and also of

table

Un
*ne moon'

s horizontal parallax, corresponding to the latitude,

occasioned by the peculiar shape of the earth, and the dimi-

nution of its diameter as we approach the poles. The table

is put in this place because of the convenient space in the page.

Table XVII, and the following tables to No. XXX, contain

the arguments and epochs of the moon's mean longitude, evee-

tion, &c, necessary in computing the moon's true place in

the heavens.

The method The argument for evection is diminished by 29' ; the ano-

theTme^on? maly by 1° 59
', the variation by 8° 59', and the longitude

gitude of the by 9° 44', and the balances are restored by adding the same

amounts to the various equations, which, at the same time,

renders the equation affirmative, as explained in the solar

tables.

The arguments in Table xxxn, are also arguments for polar

distance, or latitude, in Table xxviii. Anything like a minute

explanation of, these tables would lead us too far, and not

comport with the design of this work. The use of the tables

will be shown by the examples.

We have carried the mean motions of the sun and moon

only to five minutes of time— and this is sufficient for all

practical purposes— for we can proportion to any interme-

diate minute or second, by means of the hourly motions.
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Chap. II.

PROBLEM I. —

From the solar tables find the sun's longitude, hourly motion

in longitude, declination, semidiameter and equation of time;

and for a specific example, find these elements corresponding to

mean time, at Greenwich, 1854, May 26 d. 8 h. 40 m.

To find the sun's declination, spherical trigonometry gives

us the following proportion : (Eq. 20, page 231.)

As radius 10.000000

Is to sin. of O's Ion. (65° 12' 15") - - 9.957994

So is sin. of obliq. of the eclip. ( 23° 27' 32") 9.599900

To sin. declination N., 21° 10' 54" - - 9.557894

In nearly all astronomical problems, time is reckoned from

noon to noon— from hour to 24 hours.

When the given time is apparent, reduce it to mean time,

and when not at Greenwich, reduce it to Greenwich time, by

applying the longitude in time.— ( This is necessary because

the tables are adapted to Greenwich mean time. \

From Table IV, and opposite the given year, take out the

whole horizontal line of numbers ( headed as in the table

)

and from Tables V, VII, VIII, take out the numbers corre-

sponding to the month— day of the month— hour and

minute of the day, as in the following example.

Add up the perpendicular columns, as in compound num- The sun's

bers, meeting entire circles in everv column, and the sums or
dlstances

' J ° * '

from its peri-

surplus, as the case may be, will give the mean values of all gee point is

the quantities for the given instant. called its

Subtract the longitude of the perigee from the mean Ion- maly#

gitude, and the remainder will be the mean anomaly ; which is

the argument for the equation of the center.

With the respective arguments take out the corresponding

equations, all of which add to the mean longitude, and the

true longitude of the sun from the mean equinox will be found.

With the argument N * take out the equation of the equi-

* The reason why N is not applied with the other equations is be-

cause it is sometimes negative.
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Chap -
u

- noxes from Table X, and apply it according to its sign, and

the result will be the true longitude from the true equinox.

M. Lon. Lon. Perig.
]

I. II. III. N.j
S. o ' " S. O ' "

1854 9 8 48 48 9 8 25 29 073 998 902 809
May 3 28 16 40 20 59 301 206 18
26 d

8h
24 38 28

19 43

4 844
11

63 43 4

40m 139 987 362 151 831

2 2 5 18 9 8 25 53

Eq. of center 3 6 42 2 2 518

I 10

II 13
4 23 39 25 = Mean anomaly.

III 8

2 5 12 31

Eq. of the equinox— 16 Sun's hourly motion in lon. 2' 24"

True lc>n. 2 5 12 15 " semidiameter, 15' 49'

These prin- To find the equation of time to great accuracy.

ciples were

explained on

pages 94

and 95.

O t o

63 16 10

65 12 15

By equation 21, page 231, we find

the sun's R. A., -

Subtract this from the sun's lon., -

Equatorial point is west of mean east-

ward motion by

From the equation of the center, as

just found,

Subtract the constant of the table,

The sun east of its mean place,

Subtract
(
b ) from

(
a ) because one

is east, the other west, and we

have the arc - - 48' 53"

This arc, converted into time, gives 3 m. 15.5 s. for the

equation of time at this instant, and the sun will not come to

the meridian at mean noon, but 3 m. 15| s. afterward

Hence, to convert mean into apparent time, in the month of

May, add the equation of time.

1° 56' 5" {a
t

3 6 42

1 59 30

1 7 12 (b)
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Thus, in general, we can determine the exact amount of Chap. ii.

the equation of time, by means of the two arcs ( a ) and ( b )

( which are roughly tabulated on page 95 ), and, without

strictly scrutinizing each particular case, we can determine

whether we are to take the sum or difference of the arcs by

inspecting the table on page 95, or by referring our results to

some respectable calendar.

EXAM PLE.

2. What will be the sun's longitude, declination, right as-

cension, hourly motion in longitude, semidiameter of the sun,

and equation of time corresponding to 20 minutes past 9,

mean time at Albany, N. Y., on the 17th of July, 1860 ?

N. B. At this time the sun will be eclipsed.

Ans. Lon. 214° 38' 21"; Dec. 21° 12' 48".

E. A., in time, 7h. 46m. 15s. ; Eq. of time to add to apparent

time, 5m. 46.2s.; hourly motion in lon, 2' 23"; S. D, 15' 45.6".

PROBLEM II.

From Tables XI, XII, and XIII, tofind the approximate time

of new and full moons.

Take the time of new moon, and its arguments, from Table

XI, corresponding to January of the given year, and take

as many lunations, from the following table, as correspond to

the number of the months after January, for which the new

moon is required; add the sums, rejecting the sums corre-

sponding to whole circles, in the arguments, and in the column

of days, rejecting the number corresponding to the expired

months, as indicated by Table XIII; the sums will be the

mean new moon and arguments for the required month.

When a full moon is required, add or subtract half a luna- Add the

tion. Sometimes one more lunation than the number of the
numberoflu -

.

m
nations ne-

month after January, will be required to bring the time to cessary to

the required month, as it occasionally happens that two luna- hrins the re -

.

.

, ., suit to the re-

tions occur m the same month. quired time

Apply the equations corresponding to the different argu- of year.

ments taken from Table XIV, and their sum, added to the

mean time of new or full moon, will give the true mean time

of new or full moon for the meridian of Greenwich^ within

four minutes, and generally within two minutes.
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Chap. ii. For the time at any other meridian apply the time corre-

sponding to the longitude.

EXAMPLES.
1. Required the approximate time of new moon, in May,

1854, corresponding to the day of the month, and the time of

the day, at Greenwich, England, Boston, Mass., and Cincin-

nati, Ohio.

January. Mean N. Moon. I. II. I III. IV.
j

N.

1854,

Four Luna.

Table XIII.

27d.

118
18h
2

. 14m. !

56
0761
3234

1168 | 19
2869 61

04 1 668
96

j
341

145
120

21 10 3995 4037 1 80 |
00

|

009

May,
I.

II.

III.

IV.

25 21
6

4

10

46
14
17

20

N shows an eclipse of the

sun— visible in the United

States.

May, 26 8 47
_

8 h. 47 m., p. m.

4 44

New nD mean time at Greenwich,

Boston, Longitude,

New #) Boston time,

Cincinnati, Longitude from Boston,

New <§) Cincinnati time,

2. Required the approximate time of full moon, in July,

1852, for the meridian of Greenwich, and for Albany time,

New York.

4 3

53

3 10

January. Mean N. Moon. I. II. III. IV. N.

5381852, 20d llh.53m. 0549 3239 38 27
Five Luna. 147 15 40 4042 3586 76 95 426
Half Luna. 14 18 22 404 5359

2184

58

72

50

72

43

007182 21 55 4995
Tab. 13. Bis. 182

The column N shows that

July, 21 55
21

42
17
10

the moon is very near her
I. 4 node. There will be a total

II.

III.

IV.

eclipse of the moon—invisi-

ble in the United States.

July, 1 3 25 Mean time ai i Greenwich.
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Full ® Greenwich time, - 3h. 25 m
Albany, Longitude, - 4 55

Full H§> Albany time, - - 10 30

257

p - M - Chap. II.

A. M.

Thus we can compute the time of new or full moon for any

month in any year ; but, as the numbers for the arguments

correspond to mean or average motions, and cannot, without

immense care and labor, be corrected for the true, variable

motions, the results are but approximate, as before observed.

ECLIPSES.

Eclipses take place at new and full moons ; an eclipse of when eciip-

the sun at new moon, and an eclipse of the moon at full
j^ce

moon; but eclipses do not happen at every new and full

moon ; and the reason of this must be most clearly compre-

hended by the student before it will be of any avail for him to

prosecute the further investigation of eclipses.

If the moon's orbit coincided with the ecliptic, that is, if wh
-
v echp"

, . , ,.
' ses do not

the moon s motion was along the ecliptic, there would be an take p] ace

eclipse of the sun at every new moon, and an eclipse of the every month

moon at every full moon ; but the moon's path along the ce-

lestial arch does not coincide with the sun's path, the

ecliptic ; but is inclined to it by an angle whose average value

is 5° 8', crossing the ecliptic at two opposite points on the

apparent celestial sphere, which are called the moon's nodes.

If the moon's path were less inclined to the ecliptic, there What would

would be more eclipses in any given number of vears than
^e essential

*- v o
^ ^

for more and

now take place. If the moon's path were more inclined to whatforfew-

the ecliptic than it now is, there would be fewer eclipses.
er echPses -

The time of the year in which eclipses happen, depends on

the position of the moon's nodes on the ecliptic ; and if that

position were always the same, the eclipses would always

happen in the same months of the year. For instance, if the

longitude of one node was 30°, the other would be in longi- why an

tude 30+180, or 210°; and, as the sun is at the first of
ecliPse

. . should take
these points about the 20th of April, and at the second about piace in any

the 20th of October, the moon could not pass the sun in P articu]ar

these months without coming very nearly in range with it, of

course, producing eclipses in April and October.

17 v*
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Fig. 52.

The figure

represents

the particu-

lar paths "of

the sun and

moon through

the heavens.

For a clearer illustration, we

present Fig. 52; the right line

through the center of the figure,

represents the equator,the curved

line, T 25 =£= , crossing the equa-

tor, at two opposite points, re-

presents the ecliptic, and the

curved line, Q €> Q, represents

the path of the moon crossing

the ecliptic at the points £3 and

Q; the first of these points is

the descending, the other, the as-

cending node.

As here represented, the as-

cending node is in longitude

about 210°, and the descending

node in about 30°; which was

about the situation of the nodes

in the year 1846, and, of course,

the eclipses of that year must

have been, and really were, in

April and October.

The sun and moon at con-

junction are represented in the

figure a little after the sun

has passed the northern tropic,

which must be about the first of

August; and it is perfectly evi-

dent that no eclipse can then

take place, the moon running

past the sun, at a distance of

about five degrees south; and at

the opposite longitude the moon

must pass about five degrees

north.

The moon's nodes move back-

ward at the mean rate of 19°

19', per year; but the sun moves
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over 19° in about twenty days ; therefore, the eclipses, on Chap
- n -

an average, must take place about twenty days earlier each

year, or at intervals of about 346 days.

In May, 1846, the moon's ascending node was in longi-

tude 216°; in eight years, at the rate of 19° 19', per year,

it would bring the same node to longitude 61° 28'. The sun

attains this longitude each year, on the 23d of May, there-

fore, the eclipses for 1854 must happen in May, and in the

opposite month, November.

In computing the time of new and fuU moons, as illustrated The mean '

by the preceding examples, the columns marked N, not hith-
iumns Nj in

erto used, indicate the distance of the sun and moon from lhe tables

the moon's node, at the time of conjunction or opposition.

The circle is conceived to be divided into 1000 parts, com- Eclipses are

mencing at the ascending node ; the other node then must hmited t0 a
°

. . , certain space

be at 500; and when the moon changes within 37 of 0, or along the

500, that is, 37 of either node, there must be an eclipse of ecliptic -

the sun, seen from some portion of the earth. When the

distance to the node is greater than 37, and less than 53,

there may be an eclipse, but it is doubtful : we shall explain

how to remove the doubt in the next chapter.

When the moon fulls within 25 divisions of either

node, there must be an eclipse of the moon : when the dis-

tance is greater than 25, and less than 35, the case is

doubtful ; but, like the limits to the new moon, the
7 t ' t • Comparative

doubts are easily removed. We repeat, the ecliptic limits number of

for eclipses of the sun are 53 and 37 ; for eclipses of the moon, eclipses of

the limits are 35 and 25. Hence, in any long period of time, moon

the number of eclipses of the sun is, to the number of eclipses

of the moon, as 53 to 35.

In the same period of time, say in one hundred years, there

will be more visible eclipses of the moon than of the sun ; for

every eclipse of the moon is visible over half the world at

once, while an eclipse of the sun is visible only over a very

small portion of the earth ; therefore, as seen from any one

place, there are more eclipses of the moon than of the sun.

In the preceding examples the columns, N, are far within

the limits, and, of course, there must be an eclipse of the
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Chap - n - sun on the 26th of May, 1854, and an eclipse of the moon in

July, 1852.
How we as N is in value 9, at the time of new moon, in May, 1854,

know that an . n
- mi i i ».

eclipse ofthe it shows that the moon will then have passed the ascending

sun will hap. node, and be north of the ecliptic, and the eclipse must be

26th oTivia/ visible on the northern portions of the earth, and not on the

1854, and southern.

When the moon changes in south latitude, which will be
circumstance ® '

we learn that shown by N being a little more than 500, or a little less than
u will be an JQ00, the corresponding eclipse, if of the sun, will be visible
eclipse to

.

some north- on some southern portion of the earth, and not visible in the

em portion of northern portion; and if of the moon, the moon will run

through the southern portion of the earth's shadow.

Table B,p.31, shows the moon's latitude, approximately cor-

What indi- responding to the column N ; or N is the argument for the

cates that a latitude, and the heading of the argument columns will
solar eclipse -iii • t
will be visi- show whether the moon is ascending to the northward, or de-

We on some scending to the southward.

u°on

h

of *Z The tables from XVI t0 XVnI
>
together with the solar

earth. tables, will give approximate values of the elements necessary

for the calculation of eclipses ; and if accurate results are not

expected, these tables are sufficient to present general princi-

ples, and give primary exercises to the student in calculating

eclipses ; but he who aspires to be an astronomer, must con-

tinue the subject, and compute from the lunar tables, far-

ther on.

The times, and the intervals of time, between eclipses, de-

pend on the relative motion of the sun and moon, and the

motion of the moon's nodes. The relative motion of the sun

and moon is such as to bring the two bodies in conjunction,

or in opposition, at the average interval of 29 d. 12 h. 44 m.

3 s., and the retrograde motion of the node is such as to bring

the sun to the same node at intervals of 346 d. 14 h. 52 m.

16 s. Neglecting the seconds, and conceiving the sun, moon,

and node to be together at any point of time, and after an un-

known interval of time, which we represent by P, sup-

p
pose them together again. Tnen ~oo7"To~44' represents the
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number of returns of the lunation to the node, m the time Chap. ii.

P, and the expression . „ , represents the number of of the sun

and moon in

returns of the sun to the node in the same time. Each re- relation to

turn of either body to the node is unity ; therefore, these ex- moon '
s noJe

, ., , 7 7 7 investigated.
pressions are to each other as two whole numbers ; say as m

to n; that is, gg^jj 846TT62
: : m : n >

_ n m
(29 12 44)~(346 14 52)'

Or, - (346 14 52>=(29 12 44> - - - (a)

n_ 29 12 44
' " m~~346 14 52'

Reducing to minutes, and dividing numerator and denomi-

* a , n 10631 »•',*; o ...
nator by 4, we have —= „^, wo ^ - As this last traction is lr-J ' m 124783

reducible, and as m and n must be whole numbers to answer

the assumed condition, therefore, the smallest whole number

for m is 124783, and for n is 10631; that is, as we see by

equation ( a ), the sun, moon, and node will not be exactly to-

gether a second time, until a lapse of 124783 lunations, or

10631 returns of the sun to the same node ; which require a

period of no less than 10088 years and about 197 days. We
say about, because we neglected seconds in the computation,

and because the mean motions will change, in some slight de-

gree, through a period of so long a duration.

This period, however, contemplates an exact return to the This period

... n ,i 7 , 7 ,i t contemplates
same positions ot the sun, moon, and earth, so that a line

ractical im

drawn from the center of the sun to the center of the moon, possibilities.

would strike the earth's axis in exactly the same point ; but

to produce an eclipse, it is not necessary that an exact return .

to former position should be attained; a greater or less cidencesnev.

approximation to former circumstances will produce a greater er haPPen -

or less approximation to a former eclipse ; but exact coinci-

dences, in all particulars, can never take place, however long

the period.

To determine the time when a return of eclipses may hap-
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Chaf
-
tl pen

(
particularly if we reckon from the most favorable posi-

How to tions— that is, commence with the supposition that the sun,

find the sue-
m00Ilj an^ no(je are together ), it is sufficient to find the first

cessive re- °

turn of
. . 10631

eclipses. approximate values of the fraction * s}a^q6 ' ^ we ^n^ tne

successive approximate fractions, by the rule of continued

fractions,* we shall have the successive periods of eclipses,

which happen about the same node of the moon.

The approximating fractions are

1 1 8 L i?_ iMH 12 35 47 223" 1831

a series of These fractions show that 11 lunations from the time an

siowins the
ec^Pse occurs, we may look for another; but if not at 11, it

periods at will be at 12, and it may be at both 11 and 12 lunations;
which

an(j a£ £ye Qr gjx iuna^ong we g^aH fin(j eclipses at the other
eclipses oc- x

cur. node, and the same succession of periods occurs at both

nodes.

To be more certain of the time when an eclipse will occur,

we must take 35 lunations from a preceding eclipse, which

period is 1033 days 13 h. 40 m., and the sun, at that time is

about 6° 40' farther from, or nearer to, the node, than before

— and, if the count is from the ascending node, the moon's

latitude is about 32' farther south than before, and if from

the descending node, the moon is about the same distance

farther north.

The double of 11, 12, and 35 lunations, from any eclipse,

may also bring an eclipse.

If an eclipse occurs within 10° of either node, it is certain

that eclipses will again happen after the lapse of 47 lunations.

a brief ex- The period of 47 lunations includes 1387 d. 22 h. 31m.,
aminationof an^ 4 revolutions of the sun to the node include 1386 d.

cai return of lib. 29m.; the difference is 1 day 11 h. 29m.; but in this

eclipses. time the sun will move, in respect to the node, 1° 32 and

some seconds ; therefore, if the first eclipse were exactly at the

node, the one which follows, at the expiration of 47 lunations,

See Robinson's Arithmetic.
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or 3 years and nearly 11 months afterward, would take place Chap, ii

1° 32' short of the same node ; and if it were the ascending The Chal_

node, the moon's latitude would be about 5' 40" south, and, daean astron-

if the descending node, about 5' 40" more to the north.
°
L

mers ca
.

e
,° this period

The period, however, which is most known, and the most Saros.

remarkable, appears in the next term of the series, which

shows that 223 lunations have a very close approximate value

to 19 revolutions of the sun to the node.

The period of 223 lunations includes 6585.32 days, and 19

returns of the sun to the same node require 6585.78 days,

showing a difference of only a fraction of a day ; and if the

sun and moon were at the node, in the first place, they would

be only about 20' from the node, at the expiration of this

period, and the difference in the moon's latitude would be

less than 2', and therefore the eclipse, at the close of this

period, must be nearly the same in magnitude as the eclipse

at the beginning; and hence the expression "a return of the

eclipse" as though the same eclipse could occur twice.

This period was discovered by the Chaldsean astronomers, By this pe -

and enabled them to give general and indefinite predictions
I

,

we
o o r make a sum-

of the eclipses that were to happen; and by it any learner, mary predic-

however crude his mathematical knowledge, can designate the tlon of

. .
eclipses.

day on which an eclipse will occur from simply knowing the

date of some former eclipse. The period of 6585 days is 18

years, including 4 leap years, and 11 days over; therefore

from any eclipse, if we add 18 years and 11 days, we shall

come within one day of the time of an eclipse, and it will be

an eclipse of about the same magnitude as the one we reckon

from.

For the purpose of illustrating the method of computing a summary

lunar eclipses, we wish to find the time when some future
inor

™
e

eclipse of the moon will take place; and from the American time when

Almanac of 1833, we find that an eclipse of the moon took
an

t

echpse
'

Jl must occur.

place on the 1st day of July of that year, therefore "are-

turn of this eclipse " must take place on the 12th of July

1851.

By a simple glance into the American Almanac for the

year 1834, we find a total eclipse of the moon on the 21st of

18
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Chap. ji. June— therefore, on the first of July 1852, or at the time

that the moon fulls, on or about the first of July, there must

be a large eclipse of the moon, visible to all places from where

the moon will then be above the horizon ; and furthermore, 18

years and 11 days after this, that is, in the year 1870, on the

12th day of July, the moon will be again eclipsed; and, in

this way, we might go on for several hundred years, but in time

the small variations, which occur at each period, will gradu-

ally wear the eclipse away, and another eclipse will as gradu-

ally come on and take its place.

In the same manner we may look at the calendar, for any

year, take any eclipse, that is anywhere near either node, and

run it on, forward or backward.

Let us now return to the eclipse of July 12th, 1851.

Elements To decide all the particulars concerning a lunar eclipse we
for the com-

mugt ]jaYe ^he following data, commonly called elements of
putation of ° J

lunar the eclipse

:

eclipses. i The time Q£ ftQj moon

2. The semidiameter of the earth's shadow.

8. The angle of the moon's visible path with the ecliptic.

4. Moon's latitude.

5. Moon's hourly motion.

6. Moon's semidiameter.

7. The semidiameter of the moon and earth's shadow.

General di- To find these elements, the approximate time of full moon

obtain the ei°

'

lB ^oun^ from Table XI, and the tables immediately con-

ements of nected. For the time thus found, compute the longitude of
echpses. ^ gun £,om ^abie jy

?
an(j ^he tables immediately con-

nected, as illustrated by examples on page 254.

Compute, also, the latitude, longitude, horizontal parallax

semidiameter, and hourly motion in latitude and longitude,

from the lunar tables, commencing with Table XVI, and fol-

lowing out the computation by a strict inspection of the ex--

ampies we have given ( rules, aside from the examples, would

be of no avail ) ; and, if the longitude of the moon is exactly

180° in advance of the sun, it is then just the time of full

moon; if not 180°, it is not full moon ; if more than 180°, it

is past full moon.
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It will rarefy, if ever, happen that the longitude of the Chap. n.

moon will be exactly 180° in advance of the longitude of the

sun; but the difference will always be very small, and, by

means of the hourly motions of the sun and moon, the time

of full moon can be determined by the problem of the couriers*

The moon's latitude must be corrected for its variation,

corresponding to the variation in time between the approxi-

mate and true time of full moon.

To find the semidiameter of the earth's shadow, where the Role to find

the semidia-

moon runs through it, we have the following rule

:

meter of the

To the moon's horizontal parallax, add the sun's, and, from earth'
s sha -

the sum, subtract the sun's semidiameter.

This rule requires demonstration. Let S (Fig. 53) be

Fig. 53.

the center of the sun, E the center of the earth, and Pm a

small portion of the moon's orbit. Draw p P, a tangent to

both the earth and sun; from p and P, draw PE and pE,
forming the triangle p E P.

By inspecting the figure, we perceive that the three Demonstra,

angles:
tion of the

SEp+pEP+mEP=lSO°r

Also, the. three angles of the triangle, P Ep, are, together,

equal to 180°

;

Therefore, SEp+pE P+mEP=P+p+pEP
;

Drop the angle, pEP, from both members of the equation,

and transpose the angle SEp, we then have

mEP=P+p—SEp.

* Robinson's Algebra—problem of the couriers.
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Chap
-
n

- But the angle, nuEp, is the semidiameter of the earth's

shadow at the distance of the moon; SEp is the semidiame-

ter of the sun ; P, that is, the angle, EPp, is the moon's

horizontal parallax; and^ is the horizontal parallax of the

sun ; therefore, the equation is the rule just given.*
what is rp^ ang}e f^ moon '

s visible path with the ecliptic is al-
meant by the °

m m

l r

angle of the ways greater than its real path with the ecliptic, and depends,

moon's visi- m some measure, on the relative motions of the sun and
b!e path with

the ecliptic.
m00n '

To explain why the real and visible paths of the moon are

different, let A B (Fig. 54 ) be a portion of the ecliptic, and

Am a portion of the moon's orbit, then the angle, mAJB,

Fig. 54.

b

is the angle of the moon's real path with the ecliptic. Con-

ceive the sun and moon to depart from the node, A, at the

same time, the moon to move from A to m in one hour, and

the sun to move from A to b in the same time
;
join b and m,

and the angle. mbB, is the angle of the moon's visible path

with the ecliptic, which is greater than the angle, mA£;
which is the angle of the moon's real path with the ecliptic.

On this principle we determine the angle in question.

All the other elements are given directly from the tables.

* Some writers have directed us to increase this value of the shadow

by its one-sixtieth part, but we emphatically deny the propriety of the

direction.
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CHAPTER III.

PREPARATION FOR THE COMPUTATION OF ECLIPSES.

We snail now go through the computation in full, that it

may serve for an example to guide the student in computing

other eclipses.

Mean N. Moon. I. ii. III. IV. N.

431
511
43

1851,

Six Luna.

Half Luna.

• Id. 14h. 21m.
177 4 24
14 18 22

0038
4851
404

3916
4303
5356

40
92
58

39

95
50

.

193 13 7

181

5293 3575 90 84 985

As N is within 25 of 1000,

or 0, there must be an eclipse.

The sun is 15 short of the as-

cending node, and the moon at

full, being opposite, must be 15

short of the descending node,

and therefore, in north latitude,

July,

I.

II.

III.

IY.

12 13 7

3 35

2 7

14
11

Full © 12 19 14
descendmg.

. . .... j

Chap. m.

Computa-

tion of a lu-

nar eclipse.

The approx-

imate time of

full moon
computed.

We now compute the sun's longitude, hourly motion, and

semidiameter for 1851, July 12, 19 h. 15 m. mean Greenwich

time, as follows

:

O M. Lon. Lon. Peri. I. II. III. N.

s. ° ' " s. o / "

1851 9 8 32 39 9 8 22 24 958 250 025 648

July 5 28 24 8 31 129 454 310 27

12 d 10 50 32 2 371 28 19 2

19 h

15m

46 49

37

7

677485 732 151

3 18 34 45 9 8 22 57

Eq. of center 1 39 38

I. 10

IL 18

318 34 45

6 10 11 48 = Mean anomaly.

III. 20
O 's hourly motion, 2' 23"

O's semidiameter, 15' 46"3 20 15 11

Eq. of equinox — 16

O Ion. 3 20 14 55

Sun's lon-

gitude com-

puted, corre-

sponding to

the approxi-

mate time of

full moon.
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Chap. iit. We now compute the moon's longitude, latitude, semidi-

Direction anieter, horizontal parallax, and hourly motions for the same,
for comput- mean Greenwich time, as follows

:

ing the

moon's true

longitude. FOR THE LONGITUDE.

1. Write out the arguments for the first twenty equations,

and find their separate sums. With these arguments enter

the proper tables ( as shown by the numbers ), and take out

the corresponding equations, and find their sum.

2. Write out the evection, anomaly, variation, longitude,

supplement to node, and the several arguments for latitude,

in separate columns, corresponding to the given time, and

write the sum of the twenty preceding equations in the column of

evection.

3. Add up the column of evection first ; its sum will be

the corrected argument of evection, with which, take out the

equation of evection ( Table XXIV ), and write it under the

sum of the first twenty equations ; their sum will be the cor-

rection to put in the column of anomaly.

4. Add up the column of anomaly, and the sum will

be the moon's corrected anomaly, which is the argument for

the equation of the center. With this argument take out the

equation of the center from Table XXV, and write it under

the sum of the preceding equations, and find the sum of all,

thus far. Write this last sum in the column of variation,

and then add up the column of variation ; which sum is the

correct argument of variation, and with it take out the equa-

tion for variation from Table XXVI.
5. Add the equation for variation to the sum of all the

preceding equations, and the sum will be the correction for

longitude, which, put in the column of longitude, and the

whole added up, will give the moon's longitude in her orbit,

reckoned from the mean equinox.

Equation 6. Add the orbit longitude to the supplement of the node,
oi e equi- ^ ^ g^m jg ^ ar orUment f reduction to the ecliptic; it
nox is some- ° r '

times called is also the first argument for polar distance.
nutation m with the argument of reduction take out the reduction
longitude. °

from Table XXVII, and add it to the longitude.
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With argument 19, which is the same as N in the solar ta- Chap. hi.

bles, take out the equation of the equinox, and apply it ac-

cording to its sign; the result will be the moon's true longi-

tude reckoned on the ecliptic from the true equinox.

FOR THE LATITUDE.

Add the same correction ( to its nearest minute ) to column General di-

ll, as was added to the column of longitude, and add its rections lbr

value, expressed in the 1000th part of a circle, to all the fol- moon >
s iati.

lowing columns, except column X. Add up these columns, tude -

rejecting thousands ( or full circles ), and the sums will be

the 5th, 6th, 7th, 8th, 9th, and 10th arguments of latitude.

The sum of the moon's orbit longitude, and supplement to

node, is the first argument of latitude. The sum of column

II is the second argument of latitude ; the moon's true longi-

tude is the third argument, and the twentieth of longitude is

the fourth argument. Then follow 5, 6, &c, up to 10.

With these arguments enter the proper Tables, and take out

the corresponding equations, and their sum will be the moon's

true distance from the north pole of the ecliptic, and, of course,

will be in north latitude, if the sun is less than 90°, otherwise

in south latitude.

N. B. When the first argument of latitude is nearer 6 signs

than 12 signs, the moon is tending south ; when nearer 12 signs,

or sign, than 6 signs, it is tending north.

For the equatorial horizontal parallax.— The arguments for Equatorial

Evection, Anomaly, and Variation are also arguments for P aralIax and
° semidiame-

horizontal parallax, and with these arguments take out the ter depend

corresponding equations from the tables adapted to this uPon each

other.
purpose.

For the semidiameter.— The equatorial parallax is the ar-

gument for semidiameter, Table XXXIV.
For the hourly motion in longitude.— Arguments 2, 3, 4, and General di-

5 of longitude sensibly affect the moon's motion; they are, L
ec 'ons

o J ' J ' finding tne

therefore, arguments for hourly motion, Table 36, ( the units hourly mo-

and tens in the arguments are rejected ). Take out these
tl0n of lha

°
.

moon.
equations from table, also take out the equation correspond-

ing to the argument of evectfon, Table XXXVII. With the

w*
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Chap. hi. sum of the preceding equations, at the top, and the corrected

anomaly at the side, take out the equations from Table

XXXVIII. Also, with the correct anomaly, take out the

equation from Table XXXIX. With the sum of all the pre-

ceding equations at top, and the argument of variation at the

side, take out the equation from Table XL. Also with

the variation, take the equation from Table XLI. With the

argument of reduction take out the equation from Table

XLIL These equations, all added together, will give the

true hourly motion in longitude,

in this pro- For the hourly motion in latitude.— With the 1st and 2d
portion the arguments of latitude, take out the corresponding quantities

*L nil™™!? from Tables XLIII, and XLIV, and find their algebraic sum,
the mean mo- ' o '

tion of the noting the sign; call the result I.

moon. Then make the following proportion

:

LI
32' 56" : L : : I

32' 56"'

the true hourly motion in latitude, tending north, if the sign

is plus, and south, if minus. In this proportion L is the true

motion of the moon in longitude, and the first term is the

moon's mean motion ; and the proportion is founded on the

principle that the true motion in latitude must vary by the

same ratio as the motion in longitude.

N. B. In computing the moon's latitude we caution the

pupil against omitting to add to the arguments II, V, VI,

VII, VIII, and IX, the same correction as to the column of

longitude ; its value must be changed into the decimal division

of the circle for all the columns except column II.

In the following example the correction for longitude is

added to column II, and its value to all the following columns

except column X.

We find the value in question thus

:

360° : 13° 46' : : 1000 : x.

The proportion resolved gives x = the number added to

the several columns.

But to avoid the formality of resolving a proportion for

every example, we give the following skeleton of a table that
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may be filled out to any extent to suit the convenience and Chap, m
taste of the operator.

Degrees = decimal parts Degrees = parts.

1 5 = .003 5 24 = .015

1 26 = .004 7 12 = .020

1 48 = .205 9 == .025

2 10 = .006 10 48 ^ .030

2 31 — .007 12 36 — .035

2 53 — .008 14 24 — .040

3 14 — .009 16 12 = .045

3 36 = .010

To make use of this table, we will suppose that the cor-

rection for longitude, in a particular example is, 11'D 31' 25";

what is the corresponding decimal or numeral part?
i

Thus 9° j—^- .030

2 31 = 7

11 31 = .037

We now continue the examples, hoping to follow these

precepts.
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Chap. III.
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Chap. III.

The cor-

ditive.

The moon's longitude, as just computed, will be 9 20 15 9

The sun's longitude, at the same time, will be 3 20 14 55

The difference will be 6 14.

Therefore, at the time for which these longitudes were

computed, the moon will be past her full by 14" of arc : to

correct the time, then, we must find how much time will be

required for the moon to gain 14" ; which, by the problem

of the couriers, is

14 14" 14^-
(30.54)— (2.23) .

28' 31"~ 1711'

The unit for t is one hour, and the denominator of the frac-
rection is

# m _

subtractive tion is the difference of the hourly motions of the sun and

because the moon, as determined by the tables ; the result is 29 seconds
moon is past

of tjme ^ fee snbtracte(i .

conjunction,

otherwise it The Greenwich time will be, 1851, July 12d. 19h. 15m. 0s.

would be ad- Subtract - 29

True time of full moon - 12 19 14 31

But the time given by the lunation table was 19 h. 14 m.,

differing only 31 seconds from the true time ; the approxi-

mate and true time, however, do not commonly coincide as

near as this ; if they did, none but the most rigid astrono-

mer would use the lunar tables for the time of conjunction or

opposition.

To be very exact we must correct the moon's latitude for

what it will vary in 31 seconds ; that is, in this case, increase

it 4".5. The moon's latitude, at the time of full moon, is,

therefore, 42' 53".4.

We have now all the elements necessary for computing the

eclipse, or, at least, we have all the materials for finding

them, and, for convenience, we collect the elements together

:

d. h. m. s.

1. True time of full moon, July, - - 12 19 14 31

2. Semidiameter of earth's shadow

(page 265), - - - ° 39' 39"

3. Angle of the moon's visible path

with the ecliptic, * - - 5 38 26

* This is the angle of the base of a right-angled triangle, whose base
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4. Moon's latitude N. descending, - - 42 53.4

5. Moon's hourly motion from the sun, - 28 31

6. Moon's semidiameter, - - - 15 4

7. Semidiameter of £> and earth's shadow, 54 43

Whenever the moon's latitude, at the time of full moon, is

less than this last element, the moon must be more or less

eclipsed ; and it is by computing and comparing these two ele-

ments, viz., 4 and 7, that all doubtful eases are decided.

TO CONSTRUCT A LUNAR ECLIPSE.

From any convenient scale of equal parts, take the 7th ele-

ment in your dividers (54 43) = 54f , and from C, as a center

with that distance, describe the semicirele BDHE (Fig. 55).

Take A = the 2d element, and describe the semidiameter

of the earth's shadow. From C, the center of the shadow,

draw On at right angles to B E, the ecliptic, above BE, when

the latitude is north, as in the present example, but below,

if south.

Fig. 55.

Chap. in.

When the

moon has

very little la-

titude de-

scribe a full

circle.

When large

south lati-

tude, de-

scribe only

the lower

semicircle.

Take the moon's latitude from the scale of equal parts,

and set it off from C to n. Through n draw DnB, the

moon's path, so that the line shall incline to BE, the ecliptic,

by an angle equal to the 3d element. Conceive the moon's

is the hourly motion of the moon from the sun (28' 31"), and the per-

pendicular, the moon's hourly motion in latitude (
2' 49" ). See

page 266, figure 54.
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Chap, m center to run along the line from D to H, and from C draw

Cm perpendicular to DH.
When the moon is ascending in her orbit, DH must incline

the other way, and Cm must lie on the other side of Cn.

The eclipse commences when the moon arrives at D. It is

the time of full moon when it arrives at n ; the greatest ob-

scuration occurs when it arrives at m, and the eclipse ends at

H The duration is the time employed in passing from D to

H: and to find the duration apply DH to the scale, and thus

The 5th eie- find its measure. Divide this measure by the 5th element,
i s ie

an(j we gjjgjj have the hours and decimal parts of an hour in
moons angu- ->-

lar motion the duration. Also apply Dn to the scale and find its mea-
from the sun. sure Divide this measure by the 5th element, for the time

of describing Dn, also divide the measure nlf {or the time of

describing nH.

The time of describing Dn, subtracted from the time of

full moon, will give the time of the beginning of the eclipse,

and the time of describing nH, added to the time of full

moon, will give the time when the eclipse ends.

With lunar eclipses the time of greatest obscuration is the

instant of the middle of the eclipse, provided the moon's mo-

tion from the sun, for this short period of time, is taken as

uniform, as it may be without sensible error.

In reference to this example Dn = 3V and nH=39'.
These distances, divided by 28' 31", give 1 h. 5 m. 16 s. for the

time of describing Dn, and lh. 22m. 4s. for nH: whole

time, or duration, 2 h. 27 m. 20 s.

h. m. s.
Astronomi-

cal time con- Therefore from the time of full $ 19 14 31
verted into Subtract - - - 1 5 16
civil time.

Eclipse begins - - - 18 9 15

Add the duration - - 2 27 20

Eclipse ends - - - 20 36 35
This eclipse

Earope aud
That is, in 1851, July 12 d. 18 h. 9 m. 15 s., mean astrono-

why. mical time, the eclipse begins ; but this time corresponds with

July 13, at 6 h. 9 m. in the morning, and at this time, the sun

will be above the horizon of Greenwich, and, of course, the
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full moon, which is always opposite to the sun, will be below Chap. m.

the horizon, and the eclipse will be invisible to all Europe.
Visible

.

In the United States, however, the eclipse will be visible, theu.s.

for, at these points of absolute time, the sun will not have

risen nor the moon have gone down ; but, to be more definite,

we demand the times of the beginning, middle, and end of the

eclipse, as seen from Albany, N. Y. To answer this demand,

all we have to do, is to subtract from the Greenwich time the

difference of meridians between the two places, which, in this

case, is 4h. 55 m. ; and the result is,

Beginning of the eclipse 13 d. 1 h. 14 m. morning,

Middle ---- 2 28

End of the eclipse - - 3 41 „

In the same manner we would compute the time for any

other place.

For the quantity of the eclipse we take the portion of The quan-

the moon's diameter, which is immersed in the shadow,
tlty of the

eclipse how
at the time of greatest obscuration, and compare it with found,

the whole diameter of the moon; and in the present ex-

ample, we perceive, that not quite half of the diameter is

eclipsed— about 5 digits when the whole is called 12, or 0.4

when the diameter is 1.

All these results, however, except the time of full moon,

are approximate, because we cannot, nor do we pretend to

construct to accuracy ; but any mathematician can obtain accurate

results by means of the triangles D CH and Cnm, and the

relative motion of the moon from the sun.

In the right-angled triangle Cnm, right-angled at m, On The exact

is the latitude of the moon = 42' 53".4 = 2573".4, and the computation

angle n Cm = 5° 38' 26" ; with these data we find mn= tion of th

a

e

253", and Cm = 2561".6. eclipse.

In the right-angled triangle C Dm, or its equal CmE,we
have - - Cm2 -\-mH2 = CIT2

;

Or, - - mH2 = CH2 — Cm2
;

Or, - - mH2 =(CIT-\-Cm) (CH—Cm).
CITis the 7th element = 3283", and Cm == 2561".6.

Therefore, m ff= V (5844.6 ) (721.4) = 2043".4. This

x
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Chaf -
m

- divided by 1711", the 5th element, gives the time of half

the duration of the eclipse 1 h. 12 m. ; therefore the whole du-

ration is 2h. 24 m., which is 3 m. 20 s. less than the time we

obtained by the rough construction.

The distance nm, as just determined, is 253", and the time

of describing this space, at the rate of 1711" per hour, re-

quires 8 m. 52 s., which taken from, and added to the semi-

duration, gives 1 h. 3 m. 8 s. from the beginning of the eclipse

to full moon, and 1 h. 20 m. 52 s. from the full moon to the

end of the eclipse.

The trigo- ]?or tne magnitude of the eclipse we add the moon's semi-

compntation diameter in seconds (
904"

) to Cm ( 2561".6 ), and from the

ofthemagni- sum subtract the semidiameter of the shadow in seconds

eclipse
*

( 2379 ), and the remainder is the portion of the moon's di-

ameter not eclipsed. Subtract this quantity from the moon's

diameter and we shall have the part eclipsed. Divide this

by the whole diameter and the quotient is the magnitude of

the eclipse, the moon's diameter being unity.

Following these directions we find the magnitude of this

eclipse must be 0.397.
The con- jn ajj $jes@ computations we were guided bv the construc-

struction a L °
#

*

sufficient tion ; which will always prove a sufficient index, and all that

guide to car- should be required.

trigonometru ^e may determine, m any case
>
whether the eclipse will or

cai computa- will not be total, by the following operation

:

Subtract the €>'s semidiameter from the semidiameter of

the shadow, and if the moon's latitude, at the time of full

moon, is less than the remainder, the eclipse will be total,

otherwise not.

To find the duration of total darkness.— Diminish the semi-

diameter of the shadow by the semidiameter of the moon, and

from the center of the shadow describe a circle, with a radius

equal to the remainder; a portion of the moon's path must

come within this circle ; that portion, measured or divided by

the hourly motion, will give the time of total darkness.

When the moon's latitude is north, as in the present ex-

ample, the southern limb of the moon is eclipsed— and con-

versely.
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CHAPTER IV.

S0LAK ECLTPSES GENERAL AND LOCAL.

The elements for a solar eclipse are computed in the same Chap. iv.

manner as the elements of a lunar eclipse ; all of which are General ai-

found by the solar and lunar tables. rections to

_, .
.- find the ele-

J he approximate time of new moon is first computed, and ments .

for this time, compute the sun's longitude, declination, paral-

lax, semidiameter, and hourly motion; and for the same

time compute the moon's longitude, latitude, hourly motion in

longitude and latitude, horizontal parallax, and semidiameter.

If the longitudes of both sun and moon are found to be the

same, then the approximate time of conjunction ; found by the

lunation tables, is the same as the true time ; if not, we pro-

portion to the true time, as described in the last chapter.

The elements for a general solar eclipse are

:

I. The time of £ * at some known meridian. 2. Longi- what eie-

tude of O and f). 3. Q's declination. 4. f)'s latitude.
ments are

^ w necessary.

5. Q's hourly motion. 6. C's hourly motion in longitude.

7. #)'s hourly motion in latitude. 8. The angle of the ®'s

visible path with the ecliptic. 9. #)'s horixontal parallax.

10. C>'s semidiameter. 11. o' s semidiameter. 12. ©'s

horizontal parallax.

For a local eclipse, the latitude of the particular locality

must also be given, or considered as one of the elements.

As we can best illustrate general principles by taking a a definite

particular example, we now propose to show the general course
e**^p e pr°

of an eclipse of the sun, which will occur in May 1854; where

it will first commence on the earth ; in what latitude and longi-

tude the sun will he centrally eclipsed at noon, and where ; in

what latitude and longitude the eclipse will finally leave the earth.

We speak of an eclipse of the sun being on the earth; by Some gene-

this we mean the moon's shadow on the earth. If an observer „
pre^nary expJa-

is in the moon's shadow, of course, the sun would be in an nations,

eclipse to him; and, if a tangent line be drawn between the

* Sign of conjunction.
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chap. iv. sun and moon, and that line strike the eye of an observer on

the earth, to that observer the limbs of the sun and moon

would apparently meet, and all projections of eclipses are on

the principle of lines drawn from some part of the sun to

some part of the moon, and those lines striking the earth.

When no such lines can strike the earth there can be no

eclipse. For the sake of simplicity in explaining a projection

Point of °f a s°lar eclipse, whether it be general or local, an observer

view. is supposed to be at the moon, looking down on the earth,

viewing the moon's shadow as it passes over the earth's disc,

and, of course, the earth to him appears as a plane, equal to

the moon's horizontal parallax.

The approximate time of new moon will be found com-

puted on page 254, and, if very close results are not required,

we may compute the sun's longitude, declination, hourly mo-

tion, and semidiameter for this time, and take out the moon's

horizontal parallax, hourly motion, and semidiameter from

Table IX ; but we have computed the elements more accu-

rately by the lunar tables, and find them as follows

:

d. h. m. s.

1. Greenwich mean time of d 1854, May 26 8 45 39

Accurate 2. Lon. of Q and C - - - 65° 14' 6"
elements for 3 Dec]ination of the Q m %1 11 43 N.
the solar ^
eclipse, 4. Latitude of the if) -

which will 5 >

s hourl motion in 1q _
take place J

May 26, 6. #) s hourly motion in Ion., -

1854, 7, ^)' g hourly motion in lat., tending north,

From 5, 6, and 7 we obtain 8, as explained

in the last chapter.

8. Angle of the moon's visible path

with the eclip., -

9. The €>'s horizontal equatorial parallax,

10. The D's semidiameter,

11. The O's semidiameter,

12. The 0' s horizontal parallax, always taken at

Add together the O's horizontal parallax, the #)'s hori-

zontal parallax, and the semidiameters of O aQd O, and if

the moon's latitude is less than this sum, there will be an

21 19 N.

2 24

30 3

I

2 46

o i n

5 42 50

54 30

14 51

at

15 48

9
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eclipse, otherwise not; and it is by comparing this sum with Chap. iv.

the moon's latitude that all doubtful cases are decided.

TO CONSTRUCT A GENERAL ECLIPSE.

1. Make, or procure, a convenient scale of equal parts, and

from any point as C ( Fig. 56 ) with the radius CB, equal to

the sum of the horizontal parallaxes of O and Q ( in the pre-

sent example 54' 39", the minute is the unit ), describe the

semicircle C B P H> or the whole circle, when the case re-

quires it. When the moon has small latitude (less than 20')

describe the whole circle ; when the moon has large north lati-

tude describe the northern semicircle, when south describe the

southern semicircle.

Through C draw VCD PL perpendicular to HB. This

perpendicular will represent the plane of the earth's axis, as

seen from the moon.

From P take PA, P F, each equal to the obliquity of the

ecliptic 23° 27' 30", and draw the chord A F.

On A F, as a diameter, describe the semicircle ALF. , A .,
find the axis

2. Find the distance of the sun from the tropic, nearest to of the eciip-

it, by taking the difference between the sun's longitude and
tlc '

90° or 270°, as the case may be. In the present example we

subtract 65° 14' from 90°, the remainder is 24° 46'. Take

L T, equal to 24° 46', and draw TE parallel to L C. Draw
CE the axis of the ecliptic.

By the revolution of the earth round the sun, the axis of The axis

the ecliptic appears to coincide with the axis of the equator,
°

ic ^^m
when the sun is at either tropic, and it appears to depart in position,

from that line by the whole amount of the obliquity of the

ecliptic ; and the time of this greatest departure is when the

sun is on the equator. That is, CE runs out to CA at the

vernal equinox, and runs out to CF at the autumnal equi-

nox. As a general rule, CE, the axis of the ecliptic, is to

the left of CP, the axis of the equator, from the 20th of De-

cember to the 20th of June, and to the right of that line the

rest of the year. Draw C O the axis of the moon's orbit, so How t0 find

that the angle O CE shall be equal to the angle of the
th

&

e
£"* 0I

r

moon's visible path with the ecliptic, and C O is to the left of Mt.

x*
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chap. iv. CU when the eclipse is about the ascending node, as in this

example, but at the right when the eclipse is about the de-

cending node.

For this projection to appear natural, the reader should

face the north, so that H will appear to the west, and B on

the east of the figure.

The shadow of the moon across the earth is from a western

to an eastern direction, therefore, the moon is conceived to

come in on the earth from the west side.

The equa- rp^e point, C, is perpendicular to the sun's declination, and

C Vis the sine of the declination, and the curved line, HVB,
is a representation of the equator, as seen from the moon.

When the sun has no declination, the equator draws up into

a straight line.

How to 3. Take C n from the scale of equal parts, making it equal
draw the

j.Q ^ moon '

s latitude, and through the point n, and at right
naoon's path. - .

.

angles to C O, draw the line klmnrpe, which represents the

center of the shadow, or the moon's path across the disc.

From C, as a center, at the distance C 0, describe the

outer semicircle, equal to the sum of the moon's horizontal

parallax, the sun's horizontal parallax, and the semidiameter

of both sun and moon ; then If is the semidiameter of the

sun and moon.

When the eclipse first commences, the center of the moon

is at k, and the center of the sun is on the circumference of

the other circle, in a direct line to C, not represented in the

figure, therefore, the two limbs must then just touch.

As C is the center of the earth, and H on the equator,

therefore CH is a line in the plane of the equator, and the

point, k, is a little below the equator ; which shows that the

eclipse first commences on the earth a little south of the

equator.

How to de- The time that the eclipse is on the earth is measured by

dn™tion of a
*ne ^me required for the moon to pass from k to e with its

general true angular motion from the sun.

echpse. rpj^ j^g^ f this line, k e, can be found from the ele-

ments, and trigonometry, as in an eclipse of the moon, and

the time of describing it is found in the same way.
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Fig. 56,



284 ASTRONOMY.

chap. iv. When the moon's center conies to I, the central eclipse

Howtode- commences, and the arc, HI, shows that it must be about in

termine in
tke latitude of 7° north. When the moon's center comes

what lati-

tudes the to r, the sun will be centrally eclipsed at apparent noon; and
eclipse will (j r js the sine of the number of degrees north of the sun's
enter, pass -,.. . •,.-,. , . . > of>
over, and decimation, which, in this case, is about 23° ; hence to the

pass off the sun's declination, 21° 12', add 23°, making 44° 12'; showing,

as near as a mere projection can show, that the sun will be

centrally eclipsed at noon on some meridian, in latitude 44° 12'

north. The central eclipse will end, or pass off the earth,

when the moon's center arrives at p, and the arc, Bp, from the

equator, shows that the latitude must be about 41° north. The

eclipse will entirely leave the earth when the moon's center

arrives at e, and for its limb to touch the sun, the sun's cen-

ter must be at h, and the arc, B h, shows that the latitude

must be about 30° north.

The lines, cd and ab, parallel to the moon's path, and dis-

tant from it equal to the sum of the semidiameters of sun and

moon, represent the lines of simple contacts across the earth,

or limits of the eclipse ; cd is the southern line of simple con-

tact, and a b is the northern line of simple contact, and the

latitudes at which these lines make their transits over the

earth, are determined precisely as the latitudes on the cen-

tral line.

We may J3ut we need not stop at coarse approximations, we have

rate compn- a^ tne data for correct mathematical results, on the same

tations by principles as we determined those in relation to a lunar eclipse.
plane tr'

nometry. In the triangle, Cnr, we have the side, Cn, the moon's

latitude in seconds, which may be used as linear measure, as

yards or feet, and in proportion thereto, we may compute Cr

and nr, when we knoiv the angle, n Cr.

An equa- jjut the following equation always gives the tangent of the

position of angle, E CD, or n Cr, calling the sun's distance from the sol-

the axis of gtice j)
t
the obliquity of the ecliptic E, and the radius, unity.

the ecliptic.

tan. EC £=ta,n. E sin. D*

* The student who has acquired a little skill in analytical trigono-

metry can discover the preliminary steps to this equation; the princi-

ples are all visible in the construction of the figure.
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To the angle, E CD, add the angle, G CE, the angle of the Chap. iv.

moon's visible path with the ecliptic, and we have the whole

angle, G C D, or m Cr. Cmn is a right angle, and in the

two triangles, Cmn and Cmr, we have all the data, and can

compute n r and r C.

When the moon arrives at m, it is in the line of conjunction

in her orbit ; when it arrives at w, it is in ecliptic conjunction;

and when it arrives at r, it attains conjunction in right as-

cension.

For the last six or eight years, the English Nautical Al- Recent

i • ,1 • , • i •,• ••!, changes in

manac has given the conjunctions and oppositions m right as- the English

cension, in place of conjunctions and oppositions in longitude, Nautical Al-

and has given the difference of declinations between the sun

and moon, in place of giving the moon's latitude ; that is, it

has given the time that the moon arrives at r, in place of n,

and given the line, Cr, in place of Cn.

x^.11 lunar tables give the ecliptic conjunction at n, and from

this we can compute the time at r, by means of the triangle,

Cnr.

Having explained the principle of finding the latitude on

the earth, when a solar eclipse first commences, we are now

ready to show another important principle—how to find the

longitude ; and with the latitude and longitude, we have the

exact point on the earth.

Where an eclipse first commences on the earth, it com- The method

mences with the rising sun, and finally leaves the earth with ]°

on J|tl^f
the setting sun. In this example, we have decided that the where the

eclipse must commence very near the equator, not more than ™^** ^
one degree south ; but in that latitude the sun rises at 6 h., earth.

a. m., apparent time ; therefore, at the place where the eclipse

commences, it is six in the morning, apparent time.

From the scale of equal parts, take the moon's hourly mo-

tion from the sun in the dividers (27' 39"), and apply it on

the linekq, it will extend three times, and a little over, to the

point n. This shows that three hours, and a little more ( we

say 3h. 3 m.) must elapse from the first commencement of

the eclipse to the change of the moon at n. Hence, by the

local time at the place of the commencement of the eclipse,
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Chap. iv. the moon changes at 9 li. 3 m. in the morning, apparent time

;

but the apparent time of new moon at Greenwich is 8 h. 49 m.,

p. m., making a difference of 11 h. 46m., for mere locality;

the absolute instant is the same; the difference is only in

meridians which correspond to a difference of longitude of

175° 30'; and it is west, because it is later in the day at

Greenwich.
The method rj^g

centrai eclipse also first comes on the earth at a place
of finding x

^

*

where the where the sun is rising. In this example it first strikes the
central earth at the point I, in latitude about 7° N. ; but, in latitude
eclipse first

strikes the 7° N., and declination 21° N., the sun rises at 5h. 48 m.,

earth. A# M#j apparent time ( Prob. II ), and from that time to the

change of the moon, namely, the time required for the moon

to move from I to n, is ( as near as we can estimate it by the

construction ), 1 h. 56 m., therefore, the time of new moon, in

the locality where the central eclipse first commences, is 7 h.

44 m. in the morning. From this to 8 h. 49 m. in the even-

ing, the time at Greenwich, gives a difference of 13 h. 5 m.,

reckoned eastward from the locality; orlOh. 55m., reckoned

westward ; which corresponds to 196° 15' west longitude from

Greenwich, or 163° 45' east longitude; the meridian is the

same. If the longitude is called east, the day of the month

must be one later ; but, to avoid this, we had better call the

longitude west.

To find the Where the sun is centrally eclipsed on the meridian, it is

°h

g
r
"

6

h Jus* ^' aPParen* time >
*ne moon's center is then at r, and,

sun will be by the construction, it must be about seven minutes after

centrally
conjunction in that locality ; hence, the conjunction is seven

eclipsed at J ...
noon. minutes before 12, and at Greenwich it is 8 h. 49 m. after 12,

giving 8 h. 56 m. for difference of longitude, or 134° west

longitude.

The central eclipse will leave the earth with the setting

sun, when the center of the moon and sun are both atp ; but

the latitude of p we decided to be 40° north, and in this

latitude, when the sun's declination is 21° ir, as it now

is, the sun sets at 7h. 15m. apparent time; but this is

lh. 40 m. after conjunction, therefore, the conjunction, in

that locality, must be at 5 h. 35 m. ; but, at Greenwich, it is



App. time Gr. Lat. Longitude,
o /

m, 5 46

6 53

1 s.

7 N.

175 30 W. ResuItsme -

-tt\rt t r ttt chanically

196 15 W. taken from

8 56 46 134 00 W. the P'ojec-

10 34 40 48 30 W.
tion -

1146 30 73 30 W.
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8h. 49 m., giving, for difference of longitude, 3h. 14 m., or Chap. iv.

48° 30' west. "
"

The eclipse finally leaves the earth in latitude 46° north ; To find the

but, in this latitude, the sun sets at 6 h. 51 m., and the con-
lo^ltude

7 where toe

junction will be 3h. 0m. sooner (the time required for the eclipse will

moon to pass from n to q ), therefore the conjunction, in this
leave the

locality, must be at 3h. 51m.; but, at Greenwich, it will be

8h. 49 m., giving 4h. 58 m. for difference of longitude, or

74° 30' west.

Thus, by the mere geometrical construction, we have

roughly determined the following important particulars

:

Eclipse commences, May 26,

Cen. eclipse commences,

Cen. eclipse at local noon,

Cen. eclipse ends,

End of eclipse,

To find the latitude of the first commencement of simple The loca!i -

contact on the southern line, all we have to do is, to find the southern and

aro, Be, and for the latitude on the northern line, we find the northern

arc, Ha : the point, c, is in latitude about 27° south, and a in
1

,

nea

' * ' ' ' pie contact.

about 54° north.

The southern line of simple contact leaves the earth at d,

between the seventh and eighth degrees of north latitude, and

the northern line passes off beyond the pole.

We have, thus far, taken the results but approximately

from the projection, and the projection is sufficient to teach

us principles ; and it must be our guide, if we attempt to ob-

tain more minute results ; and with the elements and the figure

we have the whole subject before us as minutely accurate

as it is magnificent, and as simple as it is sublime.

To complete our illustration, we now go through the trigo-

nometrical computation.

In the triangle, Cnm, we have Cn—2V 19"=1279, the

angle, m Cw=5° 42' 50", and the angle, m, a right angle.

Whence, 0771=1273", and mrc=127".3.
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chap, iv . tan. E CD=n CV=tan. (23° 27' 32") sin. (24° 45' 54")

in these
( page 284).

ZIZ Whence, E CD= 10° 18' 8",

moon-, lati. Add, G GE= 5° 42 ' 50",
nule and the '

distancea Sum is G 2=m Cr=16° 0'58".

l^c^Te In the triangle m Cr
>
we have Cm (1273), the perpendicu-

circumfer- lar, and the angle m Cr, as just determined ; whence,

^Tnel
6^' mr=365".S ; (7r=1324".3.

In the triangle, Cmp, Cp is the horizontal parallax of

moon and sun (54' 30")+9", or, 54' 39"=3278".

By the well-known property of the right-angled triangle,

Cm2 -\-mp 2= Cp 2
.

Or, mp 2= Cp 2—Cm2 =(Cp-{-Cm) (Cp—Cm),

That is, m
j
p= N/(4551)(2005)=3020".7.

Therefore, Ip, the whole chord, is 6041"A, which, divided

by 1659" (the moon's motion from the sun), gives 3.646 h.,

or 3 h. 38 m. 46 s., for the time that the central eclipse will

he on the earth.

In the same manner the line, m q, is found.

That is, mq= J(lTq-\-Cm) ( Cq—Cm),

But, Cg=54' 39"+14' 5.1"+15' 48"=5118".

Or, m q= 7(6391)(3845)=4957".3.

Therefore, the whole chord, kq, is 9814.6, which, divided by

1659", gives 5 h. 58 m. 34 s., for the entire duration of the

general eclipse on the earth.

On the supposition that the moon's motion from the sun is

uniform for the six hours that the eclipse will be on the earth,

the several parts of the moon's path will be passed over by

the moon, as follows

:

Accurate From & to Z in 1 h. 9 m. 54 s
results on the

condition of

invariable el- From m to n in 4 36 to rj in ecliptic
ements.

From I to m in 1 49 23

From m to n in 4 36

From n to r in 8 37

From r top in 1 36 10

From p to q in 1 9 54

to £ in orbit,

to 6 in eclipt

to d in right ascension.



8 k 49 m. Os.

3 3 53

5 45 7

6 55 1

8 57 37

LO 33 47

LI 43 41
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The apparent time of ecliptic conjunction, at Greenwich, chap. rv.

as determined by the tables (and applying the equation of

time), is at

Subtract from k to ecliptic ^ ,

Eclipse commences, Greenwich app. time,

Central eclipse commences (add 1 9 54),

Sun centrally eclipsed on some meridian, or

£ in right ascension, Greenwich time,

at (add 2 2 36),

Central eclipse ends at (add 1 36 10),

End of eclipse at (add 1 9 54),

By comparing these times with those obtained simply by a careful

the projection, we perceive that the projection is not far out Pr°Jecljon

of the way, notwithstanding the terms rough and roughly that rate than is

we have been compelled to use concerning it. Indeed, a good generally

draftsman, with a delicate scale and good dividers, can decide
snppos

the times within two minutes, and the latitudes and longitudes

within half a degree; but all mathematical minds, of course,

prefer more accurate results; yet, however great the care,

absolute accuracy cannot be attained ; the nature of the case

does not admit of it.*

To find whether the point h is north or south of the equa-

*The astronomer, by making use of his judgment, can be very ac-

curate with very little trouble; he perceives, at a glance, what ele-

ments vary, and what the effects of such variation will be, but a learner,

who is supposed not to be able to take a comprehensive view of the

whole subject, must go through the tedious process of computing the

elements for the times of the beginning and end of the eclipse, as well

as the time of conjunction, if he aims at accuracy, but an astronomer

can be at once brief and accurate. In computing the moon's longi-

tude, in the present example, the astronomer would notice in particu-

lar the moon's anomaly, and, by it, he perceives whether the moon's

hourly motion is on the increase or decrease, and at what rate.

It is on the decrease, and the first part of the chord k in is passed over

by the moon in about 7 seconds less time than our computation

made it, and the last part requires about 7 seconds longer time ; but

the times of passing m and n should be considered accurate, and the

times of beginning and end should be modified for the variation of

the moon's motion, making the beginning and end 7 seconds later, and

the beginning and end of the central eclipse about 4 seconds later.

19 Y



290 ASTRONOMY.

Chap. iv. tor, we conceive k and C joined, and if the angle m Ck is

greater than the angle m CH, the point k is south, otherwise

north.

By trigonometry, Ck : km : : Bine 90° : sine mOk;
O I II

Or, 5118 : 4957".3 : sin. 90 : sin.™ Ck=1b 35 20

To this add G CD, - - - 16 58

Sum is the angle r Ck - - - 91 36 18

This angle shows that the eclipse will first touch the earth

in latitude 1° 36' 18" south.

To find the arc HI, conceive the points CI joined, and the

two triangles Clm, m Cp are equal.

&nd CI : I'm : : sin. 90° : m CI;
O I II

Or, 3278 : 3020.7 : : sin. 90 : sin. m C7=67 7 50

To this add Q CD, - - - 16 58

The sum is, - - - 83 8 48

Where the This angle shows the latitude of the point I to be 6° 51'

strikes th
"' -^" nort,h. That is, the central eclipse first touches the

earth earth in 6° 51' 12" of north latitude; differing very little from

the point determined by construction.

To find the latitude of the point p, we have mCl= m Cp
= 67° 7' 50", and subtracting 16° 0' 58", we have the

polar distance, or co-latitude; the result is, that the central

eclipse passes off at latitude 38° 53' 8" north, and the gene-

ral eclipse entirely leaves the earth in latitude 30° 25' 38".

To find the latitude of the point r, we consider Cr to be a

sine of an arc, and CP the radius.

Therefore, 3278" : 1324".3 : : R : sin. *= 23 49 50

To this add the sun's declination, - 21 11 43

Sum is latitude where the sun will be

centrally eclipsed on the meridian, - 45 1 33 N.

How to find
Wherever the sun is centrally eclipsed on the meridian, it

the longitude is apparent noon at that place, but at Greenwich the apparent
of the place^q is g ^ 57 m 37 g ^ p M ^ . ^g difference, changed into Ion-
wrier© in6

sun is central- gitude, gives 134° 25' west, within a degree of the result de-

iy eclipsed on termined from the projection; and it is not important to go
the meridian.

, .

over a tngonometncal computation tor the longitudes, since
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we are sure of knowing how to do it; and we are also sure chap. iv.

that the results will not differ much from those already de-

termined.

In short, from the elements, the figure, and a knowledge sufficient

of trigonometry, we can determine all the important points in
J

ala in the

each of the three lines cd, kg, and a b, for between them we

have, or may have, a complete net-work of plane triangles.

CHAPTER V.

LOCAL ECLIPSES, ETC.

We now close the subject of eclipses by showing how to Chap. v.

project and accurately compute every circumstance in rela-

tion to a local eclipse.

For an example, we take the eclipse of May, 1854, and for

the locality, we take Boston, Mass., because we anticipated a

central eclipse at that place, but the result of computations

shows that it will not be quite central even there. We use

the same elements as for the general eclipse.

THE CONSTRUCTION.

Draw a line CD, and divide it into 65 equal parts, and The scale,

consider each part or unit as corresponding to one minute of

the moon's horizontal parallax. From 0, as a center, at a

distance equal to the horizontal parallax of the sun and moon

( 54 39 ), describe a semicircle north or south according to

the latitude, or describe a whole circle, if the latitude is near

the equator.

From C draw (7gs, the universal meridian, at right angles

to CD, and from 25 take go T and 25=£=, each equal to the

obliquity of the ecliptic ( 23° 27' ) and draw the straight line

°p^=, T on the right. Subtract the sun's longitude from

90° or 270° to find its distance from the nearest solstitial

point, and note the difference (in this example 24° 46').
fle
*/ *

From the point, a, with a T, as radius, make a O, equal to ecliptic.
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Cg^-T- the sine of 24° 46',* and join C 0, and produce it to E; CE
is the axis of the ecliptic ; this line is variable, and is on the

other side of the line, C<g>, between June 20, and Decem-

ber 21.

How to find From E take the arc, EL, equal to the moon's visible path

tne moon's with the ecliptic, to the right of E, when the moon is descend.

o-bit. ing, but to the left, when ascending, as in the present exam-

ple. Join C L, a line representing the axis of the moon's orbit.

To and from the reduced latitude of the place add and sub-

tract the sun's declination:

Thus, Boston, reduced latitude, - 42° 6' 39" N.

Sun's declination, - 21 11 43 N.

Sum is 63° 19' 22", and difference is 20© 54' 56".

Howto find From C, make (712, equal to the sine of the difference of
the points in ^ ^ ^ v

2q 54, 56" ) and Q d fa gine f fa^ gum
the ellipse v "
marking the (63° 19' 22").
ViSi

he lace
Divide

(
12

)
d int0 tW0 e(lUal PartS at tne P°int 9* and 0n

over

6 P
the^ (12), as radius, mark the sine of 15°, 30°, 45°, 60°, 75°,

earth's disc.. 90°; the line 7, 5, runs through the first point; 8, 4, through

the second, &c.

Subtract the latitude (42° 6' 39") from 90°, thus finding

the co-latitude (47° 53' 21"). On the semidiameter of the

earth's disc, as radius, take the sine of the co-latitude (47°

53'), and set off that distance from g, both ways to 6 ; thus

making a line, 6, 6, at right angles to the universal meridian,

Cq. On g (6), as radius, and from the pointy, as a center,

find the sine of 15°, 30°, 45°, &c, and set off those distances

each way from g, and through the points, thus found, draw

lines parallel to g C ; these lines, meeting the lines drawn par-

allel to 6^6, will define the points 5, 6, 7, 8, &c, to 12, and

1,-2, 3, &c, to 7, the hours of the day on the elliptic curve.

That is, our supposed observer at the moon would see Boston
Explanation ii-i -i

• i t» n i

of the hours (or any other place in the same latitude as Boston), at the

round the el- point 9, when it is 9 o'clock at the place, and at 12, when it

is noon at the place, &c.

* The reader is supposed to understand how to draw a sine to any

arc, corresponding to any radius, either with or without a sector.
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Chap. V.
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chap. v. As this curve touches the disc before 5, and after 7, it

shows that, in that latitude, on the day in question, the sun

will rise before 5 in the morning, and set after 7 in the even-

ing. If the declination of the sun had been as much south as

now north, the point, d, would have been 12 at noon, and all

the hours would have been on the upper part of the ellipse,

which is not now represented.

From C, as in the general eclipse, set off the distance, C n,

equal to the moon's latitude, and, through the point n, draw

the moon's path at right angles to CL.

As the ellipse represents the sun's path on the disc, and as

the point (12) refers, of course, to apparent noon, and not to

mean noon, therefore, we will mark off the time on the moon's

path, corresponding to apparent time.

How to mark When the moon's center passes the point n, it is at ecliptic

mo v atr>

6
C0n

j
unc^0n > apparent time, at Boston, or it must be considered

the apparent time, corresponding to any other meridian for

which the projection may be intended.

The ecliptic d , apparent time, Greenwich, is 8h. 49 m. Os.

For the longitude of Boston, subtract 4 44 16

Conjunction, apparent time, at Boston, 4 4 44

The moon's hourly motion from the sun is 27' 39": take

this distance from the scale, in the dividers, and make the

small scale, ab, which divide into 60 equal parts, then each

in this case, Par* corresponds with a minute of the moon's motion from the

the ellipse SUI1} aa(j the distance, ab, will correspond with one hour of the

mence ^be'.
moon 's motion along its path. At 4h. 4 m. 44 s. the moon's

tween 4 and center will be at the point n, the sun's center, at the same
5 o'clock.

tjme ^ w -jj ^
j
ugt key0n(j tbe p int 4^ on the ellipse ; and, as

the distance between these two points is greater than the sum

of the semidiameters of sun and moon, therefore, the eclipse

will not then have commenced; but the moon moves rapidly

along its path, and, at 5 o'clock, the center of the moon will

be at the point marked 5 oh the moon's path, and the center

of the sun will be at the point marked 5 on the ellipse, and

these two points are manifestly so near each other, that the

limb of the moon must cover a part of that of the sun, show-
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ing that the eelipse must have commenced prior to that time. Chap. v.

To find the time of commencement more exactly, let the hour To find the

on the moon's path be subdivided into 10 or 5-minute spaces, more exaet

and take the sum of the semidiameter of the sun and moon

in your dividers from the scale CD, and, with the dividers

thus open, apply one foot on the moon's path, and the other

on the sun's path, and so adjust them that each foot will stand

at the same hour and minute on each path as near as the eye

can decide. The result in this case is 4h. 28 m. The end of

the eclipse is decided by the dividers in the same manner, and,

as near as we can determine, must take place at 6h. 44 m.

To find the time of greatest obscuration, we must look How t°find

along the moon's path, and discover, as near as possible, from greatest ob-

what point a line drawn at right angles from that path, will scuration.

strike the sun's path at the same hour and minute; the

time, thus marked on both paths, will be the time of great-

est obscuration.

In this case it appears to be 5 h. 40 m., and the two cen-

ters are very nearly together ; so near, that we cannot decide

on which side of the sun's center, the moon's center will be,

without a trigonometrical calculation.

To show a representation of an eclipse at any time during How to find

its continuance, we must take the semidiameter of the sun in the masni -

the dividers trom the scale ; and, from the point or time on eclipse,

the sun's path, describe the sun ; and, from the same point of

time on the moon's path, describe a circle with the radius of

the moon's semidiameter ; the portion of the sun's diameter

eclipsed, measured by the dividers, and compared with the

whole diameter, will give the magnitude of the eclipse as near

as it can be determined by projection.

The results of this projection are as follows

:

App. time. Mean time.

Beginning of the eclipse, p. m., 4h. 28 m. 4h. 24 m. 39 s. Accuracy of

Greatest obscuration, 5 40 5 36 39
theresQlte-

End of the eclipse, 6 44 6 40 39

From the projection the two centers are nearer together

than the difference of the semidiameter of the sun and moon,

20
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Chap. v. and the moon's diameter being least, the eclipse will be an-

nular, as represented in the projection.

The above results are, probably, to be relied upon to within

three minutes.

We have now done with the projection, as far as the particu-

lar locality, Boston, is concerned ; but, in consequence of the

facility of solution, we cannot forbear to solve the following

problem : In the same parallel of latitude as Boston, find the

longitude where the greatest obscuration will be exactly at 2 p. M.,

apparent time.

a very easy From the point 2, in the ellipse, draw a line at right an-

ta t rTiem" &^es *° ^e moon's path, and that point must also be 2h. on

the moon's path; running back to conjunction, we find it

How solved, must take place at 1 h. 50 m. ; but the conjunction for Green-

wich time is 8 h. 49 m., the difference is 6 h. 59 m., correspond-

ing to 104° 45' west longitude ; we further perceive that the

sun would there be about 9 digits eclipsed on the sun's south-

ern limb.

How to find Now, admitting this construction to be on mathematical
more accu-

princ}pies / ag ft really is, except the variabilis of the de-
rate results. r r x

. .

ments), we can determine the beginning and end of a local

eclipse to great accuracy, by the application of analytical

GEOMETRY.
enera j^ q jy an(j C 05 be two rectangular co-ordinates, then

equations to °

aid in com- the distance of any point in the projection from the center

putmgaiithe can j^ determined by means of equations.
circumstan-

ces of an Let x and y be the co-ordinates of any point on the sun s

eclipse as path or elliptic curve, and Xand Y the co-ordinates of any

ene place, point on the moon's path, then we have the following equa-

tions :

( 1 ) y=p sin. L cos. DztP cos - & sm - D cos - i { solar

( 2 ) x=p cos. L sin. t ) co-ordin.

( 3 ) Y=d±h i sin. B
j lunar co_ordinateg,

(4) X=hicos.B )

In these remarkable equations, p is the semidiameter of pro-

jection, L the latitude, D the sun's declination, t the time

from apparent noon, d the difference in declination between
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sun and moon at the instant of conjunction in right ascen- Chap. v.

sion, h the moon's hourly motion from the sun, i the interval

of time from conjunction in right ascension

—

minus, if before

conjunction

—

plus, if after ; and £ is the angle L C <s>, or the

angle which the moon's path makes with CD.
In the equations x and X, are horizontal distances. In

equation ( 1 ) the plus sign is taken when the hours are on

the upper side of the ellipse, as in winter ; when on the lower

side take the minus sign.

In equation ( 3 ), the plus sign is taken when the motion of Explanation

the moon is northward, and the minus sign, when southward. of the sym_

lhe sin. t, or cos. t, means the sin. or cos. of an arc, corre-

sponding to the time at the rate of 15° to one hour.

The solar and lunar co-ordinates, or equations ( 1 ), ( 2 ),
The symbol

( 3 ), and ( 4 ), are connected together by the following equa- d
expresses tiis

tions ; the minus sign applies to forenoon, the plus sign to time of con-

afternoon :
junction in

r £_ 4. right ascen-
'

sion.

^ -\-iz=t.

To apply these equations, and, of course, the former ones,

i, the interval of time from conjunction must be assumed, and,

as the time of conjunction is known, t thus becomes known

;

d, h, and B, are known by the elements, therefore, x, y, and

X, Y, are all known. But the distance between any two

po'nts referred to co-ordinates, is always expressed by

J(xmXy+{ycnYy.

When an eclipse first commences, or just as it ends, this ex-

pression must be just equal to the semidiameter of the sun

and moon ; and if, on computing the value of this expression,

it is found to be less than that quantity, the sun is eclipsed;

if greater, the sun is not eclipsed ; and the result will show

how much of the moon's limb is over the sun, or how far

asunder the limbs are, and will, of course, indicate what

change in the time must be made to correspond with a con-

tact, or a particular phase of the eclipse.

For an eclipse absolutely central, and at the time of being

central, the last expression must equal zero; and, in that
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chap. v. case, x=X, and y= Y. In cases of annular eclipses, to find

the time of formation or rupture of the ring, the expression

must be put equal to the difference of the semidiameters of

sun and moon. In short, these expressions accurately, ef-

ficiently, and briefly cover the whole subject; and we now

close by showing their application to the case before us

By the projection we decided that the beginning of the

eclipse would be at 4h. 28 m., apparent time at Boston. Call

this the assumed or approximate time, and for this instant we

will compute the exact distance between the center of the sun

and the center of the moon, and if that distance is equal to

the sum of their semidiameter, then 4h. 28 m. is, in fact, the

time, otherwise it is not, &c.

Application

ofthe preced-

ing expres-

sions.

An accurate

computation

for the begin-

ning of the

eclipse as

seen from

Boston.

h. m. s.

4 13 21

15

Conjunc. in R. A., app. time, Boston,

Assume i equal to,

Therefore, t is equal to 4 28 21=67° 5' 15".

^=54' 39"=3279. Reduced lat., Z=42° 6' 38".

i>=21° 11'43"; d=Cr=1324".3; £=1659 i=
B=U° 0' 58".

p 3279 - log. 3.515741 - log. 3.515741

42° 6' 38" sin. 9.826437 - cos. 9.870315

21 11 43 cos. 9.969583 - sin. 9.558149

67 5 15 cos. 9.590288

i

.

4 ?

L
D
t

2050.1

342.3

y=T707\8

log. 3.311761 .342.3 log. 2.534493

P
cos. L

tsin.

3.515741

9.870315

9.964303

*=2240.5 log. 3.350359

For Fand X:

B 16° 0' 58" -

A$414".75

114.5

add 1324.3

r= ~1438.8

(Fc/> y)=269

sin. 9.440775

log. 2.617800

cos. 9.982804

log. 2.617800

2.058575 398.6 2.600604

X=398.6

(sc/>X)=1841.9.
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Here are two sides of a right-angled triangle, and the hy- Chap. v.

pothenuse of that triangle is 1861". 8, which is the distance

between the center of the sun and moon at that instant ; but

the semidiameter of the sun and moon is only 1853"; there- The eclipse

fore the eclipse has not yet commenced, and will not until the
™*

moon moves over 8".8; which will require about 19 s., as we

determined by proportion, because the apparent motion of the

moon will be almost directly toward the sun.

When the apparent motion of the moon is not so nearly in

a line with the sun, as it is in this case, we cannot proportion

directly to the result of the correction. In fact, the apparent

motion of the moon is on one side of a plane right-angled tri-

angle, and the distance between the center of sun and moon

is the hypothenuse to that triangle, and the variation of the

moon on its base, varies the hypothenuse, and the computa-

tion must be made accordingly.

Hence, to the assumed time of beginning, 4h. 28 m. 21s.

Add, 19

Beginning, apparent time, - - 4 28 40

Mean time, - - - - 4 25 19

By the application of the same expressions, we learn that The moon '
s

the greatest obscuration will take place at 4h. 41m., mean rentiyi8"N.

time at Boston ; and the apparent distance of the mooii's cen- of the sun '
s

ter will be 18" north of the sun's center ; and, as the moon's „, .

apparen '

' ' conjunction.

semidiameter is 57" less than that of the sun, a ring will be

formed of between 10" and 11" wide at the narrowest point.

End of the eclipse, 6h. 46 m. 58 s., mean time.

In computing for the end of the eclipse, we assumed

t=sl h. 33 m., and as t is more than 6 h., the second part of

y changes sign, as we see by the figure; the sun after 6, must

be above the line 6^6.

Occultations of stars are computed on the same principles

as an eclipse of the sun, the star having neither diameter nor

parallax.

As problems, to give practice to the learner, we take the

elements of two solar eclipses for 1846, from the Nautical

Almanac, with their results, as answers to the problems

:
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Examples

given for

practice.

ELEMENTS OP THE ECLIPSES OF THE SUN.

1846. April 25. October 19.

h. m. s. h. m. s.

Greenwich M. T. of 6 in R. A., 4 55 54 -5 19 50 12 .2

O and (§'s Right Ascension, 2 11 8-31 13 38 31 -54

o i ii a i it

(§'s declination, N. 13 25 19 -8 S. 10 23 43 -0

O's declination, N. 13 13 21 -2 S.10 15 3-9

O 's hourly motion in R. A., 33 55 1 30 42 -2

O's hourly motion in R. A., 2 21 -3 2 21 -5

®'s hourly motion in dec. N. 8 23-6 S. 8 37*0

O's hourly motion in dec. N. 48 -8 S. 54*1

O's equatorial hor. parallax, 57 53 -8 55 33-4

O's equatorial hor. parallax, 8-5 8-6

$ 's true semidiameter, 15 46 -5 15 8 -4

O's true semidiameter, 15 54-5 16 5-6

THE APRIL ECLIPSE.

General re- Begins on the earth generally April 25 d. 2h. 2 m. 4 s., mean

time at Greenwich, in longitude 119° 40' W. of Greenwich,

and latitude 6° 15' S.

Central Eclipse begins generally April 25 d. 3 h. 3 m. 3 s.

in longitude 135° 51' W. of Greenwich, and lat. 2° 11' S.

Central eclipse at noon, April 25 d. 4 h. 55 m. 9 s.

in longitude 74° 31' W. of Greenwich, and lat. 25° 21' N.

Central eclipse ends generally April 25 d. 6 h. 37 m. 6 s.

in longitude 3° 43' W. of Greenwich, and lat. 24° 56' N.

Ends on the earth generally April 25 d. 7h. 38 m. 5 s.

in longitude 20° 4' W. of Greenwich, and lat. 20° 52' N.

THE OCTOBER ECLIPSE.

Begins on the earth generally October 19 d. 16h. 46 m. 7 s.

mean time at Greenwich, in longitude 16° 21' E. of Green-

wich, and latitude 9° 50' N.

Central eclipse begins generally October 19 d. 17 h. 52 m. s.

in longitude 0° 32' W. of Greenwich, and lat. 6° 44'N.

Central eclipse at noon, October 19 d. 19 h. 50 m. 2 s

in longitude 58° 41' E. of Greenwich, and lat. 19° 22' S.



ECLIPSES. 301

Central Eclipse ends generally October 19 d. 21 h. 38 m. 9 s. Chap. v.

in longitude 126° 5' E. of Greenwich, and lat. 23° 51' S.

Ends on the earth generally October 19 d. 22 h. 44 m. 1 s.

in longitude 109° 6' E. of Greenwich, and lat. 20° 47' S.

The following is a catalogue of the solar eclipses that will

be visible in New England and New York, between the years

1850 and 1900; the dates are given in civil, not astronomi-

cal, time.

1851, July 28th. Digits eclipsed, 3f, on sun's northern limb. statistics

of* ©cllDS6S

1854, May 26th. As computed in the work. from 1850 10

1858, March 15th. Sun rises eclipsed. Greatest obscura- woo.

tion, 5^ digits on sun's southern limb.

1859, July 29th. Digits eclipsed, 2|, on sun's northern limb.

1860, July 18th. Digits eclipsed, 6, on sun's northern limb.

1861, December 31st. Sun rises eclipsed. Digits eclipsed

at greatest obscuration, 4±-, on sun's southern limb.

1865, October 19th. Digits eclipsed, 8^, on sun's southern

limb.

1866, October 8th. ± digit eclipsed. South of New York

no eclipse.

1869, August 7th. Digits eclipsed, 10, on sun's southern

limb. This eclipse will be total in North Carolina.

1873, May 25th. Sun and moon in contact at sunrise,

Boston.

1875, September 29th. Sun rises eclipsed. This eclipse

will be annular in Boston, Maine, New Hampshire,

and Vermont.

1876, March 25th. Digits eclipsed, 3^, on sun's northern

limb.

1878, July 29th. Digits eclipsed, 7^, on sun's southern

limb. This is the fourth return of the total eclipse

of 1806.

1880, December 31st. Sun rises eclipsed. Digits eclipsed

at greatest obscuration, 5^, on sun's northern limb.

1885, March 16th. Digits eclipsed, 6±, on sun's northern

limb.
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Chap
-
v - 1886, August 28th. North of Massachusetts no eclipse;

statistics south, sun eclipsed.

f^
6

^]^ 1892, October 20th. Digits eclipsed, 8, on sun's northern

woo. limb.

1897, July 29th. Digits eclipsed, 4^, on sun's southern

limb.

1900, May 28th. Digits eclipsed, 11, on sun's southern

limb. The sun will be totally eclipsed in the State

of Virginia.



TABLES.
EXTRACTS FROM THE NAUTICAL ALMANAC FOR JANUARY, 1846.

4
a
o

%
n

—
o
-

Q

THE SUN'S

Apparent

Logar.

of the

Radius

Vector

of the

Earth.

THE MOON'S

i

Longitude. Latitude. Longitude. Latitude.
Semi-
diam.

Hor.
Paral.

i

Noon. Noon. Noon. Noon. Noon. Noon. Noon.

o / // // II 1 II / //
!

i n

1

2

3

280 46 15.3

281 47 26.1

282 48 36.5

N.0.49
0.45

0.37

9.99266

9.99266
9.99267

330 42 13.9

345 7 12.0

359 4 55.4

N.4 54 8.5

4 24 8.7

3 39 5.9

16 21.6

16 8.3

15 53.9

60 2.3!

59 13.5 i

58 20.5

4

5

6

283 49 46.5

284 50 56.1

285 52 5.3

0.27

0.16

N.0.03

9.99267

9.99268

9.99268

12 35 34.7

25 41 31.5

38 26 25.0

2 43 1.9

1 39 55.7

N.O 33 28.3

15 39.8

15 26.7

15 15.2

57 28.7

56 40.8

!

55 58.71

7

8
9

286 53 13.9

287 54 22.0

288 55 29.7

S.0.11
0.25

0.38

9.99270

9.99271

9.99272

50 54 23.2

63 9 30.1

75 15 21.8

8.0 33 3.6

1 36 46.8

2 35 8.6

15 5.6

14 57.6

14 51.5

55 23.31

54 54.1

1

54 31.6

10

11

12

289 56 36.8

290 57 43.4

291 58 49-5

0.49

0.58

0.65

9.99274

9.99277

9.99279

87 14 56.3

99 10 31.3

111 3 50.8

3 25 55.4

4 7 13.7

4 37 30.7

14 46.9

14 43.8

14 42.1

54 14.6

54 3.3

53 57.0

13

14
15

292 59 55.3

294 1 0.5

295 2 5.4

0.70

0.71

0.69

9.99282
9.99285
9.99288

122 56 17.6

134 49 7.9

146 43 48.4

4 55 38.9

5 56.4

4 53 7.6

14 41.7

14 42.8

14 45.5

53 55.7

53 59.8

54 9.7

16
17

18

296 3 9.9

297 4 14.0

298 5 17.8

0.64

0.57

0.47

9.99292
9.99295

9.99299

158 42 11.3

170 46 44.8

183 38.7

4 32 23.1

3 59 17.1

3 14 47.1

14 50.0

14 56.3

15 4.6

54 26.0

54 49.0

55 19.7

19

20
21

299 6 21.2

300 7 24.2

301 8 26.7

0.35

0.23

1
S.0.09

i

9.99304
9.99308

9.99313

195 27 41.8

208 12 10.4

221 18 27 5

2 20 14.2

1 17 27.8

S.O 8 53.1

15 15.2

15 27.7

,15 42.0

55 58.4

56 44.4

57 37.0

22
23
24

302 9 28.9

303 10 30.4

304 11 31.3

N.0.04
0.15

0.25

9.99318

9.99323

9.99328

234 50 26.7

248 50 42.5

263 19 30.4

N.l 2 20.5

2 12 11.7

3 15 50.9

15 57.3

16 12.5

16 26.2

58 32.9

J59 28.8

60 19.0

25
26
27

305 12 31.5

306 13 30.9

307 14 29.3

0.33

0.38

0.40
i

9.99334
9.99339

9.99345

278 13 48.8

293 26 49.2

308 48 22.8

4 8 2.8

4 43 49.4

4 59 32.4

Il6 36.8

16 42.9

16 43.5

60 57.9

61 20.2

61 22.6

28
29

30

31

308 15 26.8

309 16 23.3

310 17 18.5

311 18 12.6

0.40

|
0.37

0.30

I
0.21

9.99351
9.99357

9.99363

9.99369

324 6 34.0

339 9 55.3

353 49 32.0

8 13.1

4 53 45.4

4 27 32.9

3 44 8.2

2 47 58.7

16 38.7

16 28.9

16 15.6

16 0.2

61 4.9

60 29.1

59 40.2

58 43.7

32 1312 19 5.3 1 N.0.10 19.99375 21 40 34.3 N.l 43 50.6 15 44.2 57 45.1



TABLES.

TABLE I.

MEAN ASTRONOMICAL REFRACTIONS.

Barometer 30 in. Thermometer, Fah. 50°,

Ap. Alt,

"IPO7
"

Refr. Ap. Alt. Eefr. Ap. Alt. Refr. Alt. Refr.

33' 51" 4° 0' 11' 52" 12° 0' 4' 28.1" 42° 1 4.6'

5 32 53 10 11 30 10 4 24.4 43 1 2.4

10 31 58 20 11 10 20 4 20.8 44 1 0.3

1 15 31 5 30 10 50 30 4 17.3 45 58.1

20 30 13 40 10 32 40 4 13.9 46 56.1

25 29 24 50 10 15 50 4 10.7 47 54.2

30 28 37 5 9 58 13 4 7.5 48 52.3

35 27 51 10 9 42 10 4 4.4 49 50.5

40 27 6 20 9 27 20 4 14 50 48.8

45 26 24 30 9 11 30 3 58.4 51 47.1
'

50 25 43 40 8 58 40 3 55.5 52 45.4

55 25 3 50 8 45 50 3 52.6 53 43.8

1 24 25 6 8 32 14 3 49.9 54 42.2

5 23 48 10 8 20 10 3 47.1 55 40.8

|
10 23 13 20 8 9 20 3 44.4 56 39.3

15 22 40 30 7 58 30 3 41.8 57 37.8

20 22 8 40 7 47 40 3 39.2 58 36.4
25 21 37 50 7 37 50 3 36.7 59 35.0

30 21 7 7 7 27 15 O 3 34.3 60 33.6

35 20 38 10 7 17 15 30 3 27.3 61 32.3

40 20 10 20 7 8 16 3 20.6 62 31.0

45 19 43 30 6 59 16 30 3 14.4 63 29.7

50 19 17 40 6 51 17 3 8.5 64 28.4

55 18 52 50 6 43 17 30 3 2.9 65 27.2

2 18 29 8 6 35 18 2 57.6 66 25.9

5 18 5 10 6 28 19 2 47.7 67 24.7

10 17 43 20 6 21 20 2 38.7 68 23.5

15 17 21 30 6 14 21 2 30.5 69 22.4

20 17 40 6 7 22 2 23.2 70 21.2

25 16 40 50 6 23 2 16.5 71 19.9

30 16 21 9 5 54 24 2 10.1 72 18.8

35 16 2 10 5 47 25 2 4.2 73 17.7

40 15 43 20 5 41 26 1 58.8 74 16.6

45 15 25 30 5 36 27 1 53.8 75 15.5 I

50 15 8 40 5 30 28 1 49.1 76 14.4
j

55 14 51 50 5 25 29 1 44.7 77 13.4
!

3 14 35 10 5 20 30 1 40.5 78 12.3 !

5 14 19 10 5 15 31 1 36.6 79 11.2

10 14 4 20 5 10 32 1 33.0 80 10.2

15 13 50 30 5 5 33 1 29.5 81 9.2

20 13 35 40 5 34 1 26.1 82 8.2

25 13 21 50 4 56 35 1 23.0 83 7.1
j

30 13 7 11 4 51 36 1 20.0 84 6.1

35 12 53 10 4 47 37 1 17.1 85 5.1

40 12 41 20 4 43 38 1 14.4 86 4.1

45 12 28 30 4 39 39 1 11.8 87 3.1

50 12 16 40 4 35 40 1 9.3 88 2.0

55 12 3 50 4 31 41 1 6.9 89 1.0



TABLE

CORRECTION OF MEAN REFRACTION.

Plight of the Thermometer.

i App. 1 24c
Alt. i

o t
'+"

28° j
32° 36° 40° 440 52° 56° 60° 64° 68° 72C 76° 80°i

'+" '+" tit' '+" +" 1 // 1 n / // r /; / // / _ / 1 //| /_ //

0.002.18 1.55 1.33 1.11 51 31 10 29 48 1.07 1.25 143 2.01|2.19|
0.10|2.12 1.49i 1.28 1.08 48 29 9 27 45 1.04 1.21 1.38 1.542.12
0.20:2.05

1.44J 1.24 1.04 46 28 9 26 44 1.01 1.17 1.33!1.4912.05
0.301.59 1.39 1.20 1.01 44 26 8 25 41 58 1.13 1.28 1.4311.591
0.40b 53 1.34 1.16 58 42 25 8 24 39 55 1.10 1.24 1.38 1.53 :

0.5011.48 1.29 1.12 55 40 24 8 23 37 52 1.06 1.20! 1.34 1.48

1.00J1.43 1.25 1.09 53 38 23 7 21 36 50 1.03 1.17 1.30 1.43

1.10I1.38 1.21 1.06 50 36 22 7 20 34 48 1.00 1.13 1,26 1.38
1.201.33 1.17 1.03 48 34 21 6 19 32 45 57 1.09 1,21 1.33
1.3011.29 1.14 1.00 46 32 20 6 18 31 43 54 1.06 1.18 1.29
1.401.25 1.11 57 44 31 18 6 18 30 41 52 1.04 1.15 1.25
1.50I1.21 1.08 55 42 ! 30 17 6 17 28 39 50 1.01 1.11 1.21

2.00!i.i8 1.05 53 39 29 17 5 16 27 37 48 56| 1.08 1.18
2.20 1.11 1.00 48 37 26 16 5 15 25 35 44 54 1.03 1.11
2.40'1.06 55 44 34 24 14 5 14 23 32 41 50 58 1.06
S.OOjl.Ol 51 41 32l 22 13 4 13 21 30 38 46 54 1.01
3.201 57 47 38 29J 21 13 4 12 20 28 35 43 50 .57
3.40l 53 44 36 28! 20 12 4 11 18 26 33 40 47 53
4.00J 49 41 33 26; 18 11 4 10 17 24 31 37 44 50

4.30J 45
5.001 41

38 31 24! 17 10 3 9 16 22 28 34 40 45
35 28 221 16 9 3 9 14 20 26 31 36 40

5.30; 38 32 26 20; 14 9 3 8 13 19 24 29 34 38
6.00 35 30 24 19 13 8 2 7* 12 17 22 26 31 35
6.30 33 28 22 17 12 7 2 7 11 15 20 24 29 33
7.00 31 26 21 16 12 7 2 6' 10 14 19 23 27 31
8 27 23 19 15! 10 6 2 5 9 13 16 20 24 27
9 24 20 16 13i 9 5 2 5 8 11 14 18 21 24!

10 22 18 15 12! 8 5 1 4 7 10 13 16 19 22 i

11 20 17 14 11 8 5 1 4 7 9 12 15 18 20
12 18 15 13 10 7 4 1 4 6 9 11 13 16 18
1.3 17 14 12 9 7 4 1 3 6 8 10 12 15 17
14 16 13 11 8 6 4 1 3 5 7 9 11 14 16
15 15 12 10 8 6 3 1 3 5 7 9 11 13 15
16 14 12 9 7 5 3 1 3 5 6 8 10 12 14
17 13 11 9 7 5 3 1 3 4 6 8 9 11 13
18 12 10 8 6 5 3 1 2 4 6 7 9 10 12
19 11 9 8 6 4 3 1 2 4 5 7 8 10 11,

20 11 9 7 6 4 2 1 2 4 5 6 8 9 Hi
21 10 9 7 5 4 2 1 2 3 5 6 7 9 10
22 10 8 7 5 4 2 1 2 3 5 6 7 8 10
23 9 8 6 5 4 2 1 2 3 4 6 7 8 9
24 9 7 6 5 3 2 1 2 3 4 5 6 8 9
25 t 7 6 5 3 2 1 2 3 4 5 6 7 8
26 £ 7 6 4 3 2 1 2 3 4 5 6 7 8
27 £ 6 5 4 3 2 1 2 3 4 5 6 7 8
2S 7 6 5 4 3 2 1 2 3 5 5 6 7

30
,

7 6 5 4 3 2

29.75

1

+
2

4-

3

+
4

+
5 6 7

—
28.26J28.56 28.85 29.15 30 05)30.35 30.64 30.92

Hi ght oi' the Barometer.

20



TABLES.

TABLE II.

MEAN PLACES EOR 100 PRINCIPAL FIXED STARS, FOR JAN. 1, 1846.

Star's Name.

et Andromeda,
y Pegasi (Algenib),. .

.

Hydri,
at Cassiope^e,

£ Ceti,

at Urs.Min. (Polaris),.

fliCeti,

at Eridani (Achernar), .

<* Arietes,

y Ceti,

at Ceti,
at Persei,

» Tauri,
yi Eridani,
at Tauri (Aldebarari),.

.

at Auriga (Capella),. .

.

$ Orionis (Rigel), ...

.

Tauri
J" Orionis,
at Lepris,

i Orionis,
« Columbae,

i* Orionis,

[a Geminorum,

* Argus (Canopus), .

.

.

51 (Hev.) Cephei,
at Canis Maj. (Sirius),.

s Canis Majoris,

<f Geminorum,
at2 Geminor. (Castor),..

at Can. Min. (Procyon),

Geminor. (Pollux),..

15 Argus,
i Hydrae,

/ Ursse Majoris,

t Argus,

at HYDRiE,
Ursae Majoris,

c Leonis,

a Leonis (Regulus), . .

,

1

2.3
3

3

2.3
2.3
3

1

3

3

2.3
2.3

3

2.3
1

1

I

2

2
3.41

2.3
2
1

3

1

6

1

2.3

3.4
3

1.2
2

3.

4
3

2

4

Right Ascen.

h. m. s.

26.257

5 18.691

17 34.168

31 48.294

35 51.339

1 3 52.226

1 16 19.692

1 31 58.291

1 58 30.193

2 35 19.633

2 54 14.072

3 13 21.403

3 38 20.382

3 50 50.760

4 27 5.404

5 5 19.317

5 7 8.383

5 16 33.662

5 24 8.428

5 25 56.406

5 28 24.062

5 34 4.531

5 46 50.189

6 13 38.621

6 20 32.145

6 26 30.287

6 38 21.883

6 52 34.440

7 10 55.298
7 24 46.065
7 31 14.237

7 35 53.153

8 59.232

8 38 37.154

8 48 38.088

9 12 58.192

9 20 1.170

9 22 31.453

9 37 6.098

10 10.062

Annual Var,

+ 3.0720

3.0784
3.3054*

3.3418

+ 2.9995
17.1346*
3.0015

2.2339

+ 3.3475
3.1085
3.1266

4.2324

+ 3.5473

2.7898
3.4274

4.4082

+ 2.8787

3.7827
3.0609

2.6425

-f 3.0404
2.1691

3.2433
3.6257

+ 1.3279

30.7946
2.6459*

2.3558

+ 3.5918
3.8561
3.1445*
3.6829*

4- 2.5596
3.1966
4.1261*
1.6100

4- 2.9499
4.0504*

3.4258

4- 3.2211

Declination.

deg. min. sec.

N.28 14 25.40

N.14 19 37.80

S.78 7 24.40

N.55 41 31.08

S. 18 49 59,01

N.88 *!9 17.88

S. 8 58 45.93

S.58 1 14.34

N.22 43 53.86

N. 2 35 1.17

N. 3 28 55.70

N.49 18 28.20

N.23 37 27.73

S. 13 57 1.50

N.16 11 41.39

N.45 50 6.56

S, 8 23 3.33

N.28 28 17.49

S 25 4.86

S. 17 56 12.77

S3. 1 18 17.53

S. 34 9 36.95

N. 7 22 22.32

N.22 35 13.16

S.52 36 49.17

N.87 15 31.20

S. 16 30 32.83

S. 28 45 59.38

sec.

420.055
20.050
19.997

19.862

+19.810
19.279

18.952
18.461

417.432
15.621

14.532

13.329

411.620
10.711

7.907

4.737

N.22
N.32
N. 5

N.28

S.23
N. 6

N.48
S.58

15 37.47

13 12.93

36 54.95

23 34.06

51 50.94

58 48.51

38 32.35
37 49.78

S. 7 59 39.05

N.52 22 31.09

N.24 28 49.46

N.12 43 2.96

Ann. Var.

+ 4.583

3.776

3.123

2.968

4- 2.754
' 2.262

4 1.149
— 1.196

— 1.796

2,337
4.484*

4.562

— 6.110

7.253
8.758*

8.152

—10.104
12.800
13.464

14.961

—15.366
16.108*

16.283
—17.377



TABLE II.

Star's Name.

t, Argus,
a UaSiE Majoris,

J
1 Leonis,

<f Hydrae et Crateris,

.

]g Leonis,

y Urs^e Majoris,

JS Charaaeleontis,.

a » Crucis,

Corvi,

12 Canum Venaticorum,
a Virginis (Spica),. . . .

» Urs,e Majoris,

» Bootis,

Centauri,

a Bootis, (Arcturus),

a 2 Centauri,

g Bootis,
a2 Librae,

/g Urs,e Minoris,

$ Libras,

A CORON^E BOREALIS, .

a Serpentis,

£ Ursse Minoris,
/giScorpii,

J" Ophiuchi,
a Scorpii, (Antares), .

.

» Draconis,
a Trianguli Australis, .

s UrsEe Minoris,

a Herculis, ....

a- Octantis,

,t -L RACONIS, ....

a Ophiuchi,

y Draconis,
^iSagittarii,

$ Urs^e Minoris,

a Lyr^e (Vega),

.

Lyr^e,

£ AcQUILiE,

} AcQUILjE,

y AcQUILjE,
a Acq,uil,e, (Altair), .

.

/3 Acq.uii^e,

«.2Capricorni,

2
1.2
3

3.4

2.3

2
5

1

2.3
2.3
1

2.3

3

1

1

1

3

3

3
2.3

2
2.3
4
2

3

1

3

2

4
3.41

6

2

2

2
3.4|

3

1

3

3
3.4

3
1.2
3.4
3

Right Ascen.

h. m. s.

10 39 6.223
10 54 10.737
11 5 54.583

11 11 38.718

11 41 12.066
11 45 42.219
12 9 26.893

12 18 4.916

12 26 18.465
12 48 49.007
13 17 5.233

13 41 27.894

13 47 21.140
13 53 0.800

14 8 38.366

14 29 11.925

14 38 15.706
14 42 22.132
14 51 13.199
15 8 43.595

15 28 10.083

15 36 41.077
15 49 41.194
15 56 29.397

16 6 16.830

16 19 58.461

16 21 55.119
16 32 25

Annual Var Declination.

090+
17 1 55.988
17 7 37.617
17 22 55.004
17 26 57.473

17 27 47.219
17 53 1.955

18 4 33.276
18 22 0.703

18 31 43.386

18 44 23.696

18 58 19.965

19 17 43.889

19 38 56.278

19 43 16.128

19 47 44.866

20 9 30.316

+ 2.3051

3.8001

3.1928

3.0010

+ 3.0654*

3.1874
3.3409
3.2710

+ 3.1342
2.8403
3.1512
2.3525*

+ 2.8606
4.1508
2.7336*
4.0165*

-f 2.6229

+ 3.3102— 0.2692

+ 3.2226

+ 2.5279

+ 2.9391— 2.3520

+ 3.4742

4- 3.1382
3.6638
0.7960

6.2587

— 6.5328*

+ 2.7320
106.8627

1.3513

+ 2.7727

1.3900

-f 3.5861
19.2683*

4- 2.0118
2.2124
2.7566

4- 3.0086

4- 2.8511

2.9254*

2.9446

3.3315

deg. min. sec

S. 58 52 34.26

N.62 34 51.81

N.21 21 59.86

S. 13 56 46.85

N.15 25 58.12

N.54 33 3.18

S. 78 27 26.15

S. 62 14 39.74

S. 22 32 39.93

N.39 9 4.18

S. 10 21 20.80

N.50 5 1.45

N.19 10 21.03
S. 59 37 33.93

N.19 59 12.07

S. 60 11 37.00

N.27 43 35.23
S. 15 23 53.52
N.74 47 5.5

S. 8 48 38.53

N.27 14 11.07

N. 6 54 49.

N.78 15 55.43

S. 19 22 44.18

S. 3 17 35.67
S. 26 5 4.58

N.61 51 50.58
S. 68 44 4.75

N.82 16 52.30

N.14 34 12.67

S. 89 16 10.25

N.52 25 3.28

N.12 40 37.11

N.51 30 33.50

S.21 5 36.14

N.86 35 42.58

Ann. Var.

N.38 38 35.33

N.33 11 14.80

N.13 38 20.49

N. 2 48 43.64

N.10 14 31.50

N. 8 27 54.32

N. 6 1 33.90

S. 13 1 4.19

—18.82
19.24

19.50

19.61

—19.99
20.02

20.04

19.99

—19.92
19.60

18.94

18.12

—17.89
17.67

18.94*

15.12*

—15.46
15.23

14.71

13.63

—12.33
11.74

10.80

10.29

— 9.55

8.48

8.32

7.48

— 5.03

4.54

3,14

2.88

— 2.81
— 0.61

4- 0.40

4- 1.91

4- 2.77

3.S6

5.05

4- 6.67

+ 8.39

8.74
8.55*

10.74



TABLES.

Star's Name.
tea I I

I

g i Ri^ht Ascen. Annual Var.

h. m. s.

a Pavonis,
j

2 j20

^ Ursse Minoris, I 5 20
* Cygnj, 1 20
GPCygni, 5.620

Cygni,.

.

ct Cephei, .

Aquarii,

(6 Cephei, .

i Pegasi,..

ct Aquarii,

a. Gruis, .

.

£ 1
J

< gasi, .

a. Pis. Aus. (Fomalhaut),

a. Pegasi (Markab),

i Piscium,

y Cephei

3

3

3

3

2.3
3

2

3

1

2
4.5
3

21

21

21

21

13 25.814
16 31.309

36 11.005

59 59.947

6 23.073

14 53.940

23 26.875

26 39.120

Declination. Ann.

deg. min. sec.

+ 4.8046 IS. 57 13 19.50

—52.1273 N.88 50 53.54

+ 2.0418 N.44 43 57.43

2.6908* N.37 59 42.08

21 36 37.346

21 57 52.326

21 58 29.837

22 33 46.976

22 49 7.531

22 57 5.584

23 32 1.736

23 33 4.581

+ 2.5486

1.4163
3.1628

0.8059

-1- 2.9441

3. to. 1

3.1 4
2.9s;7

N.29 35 53.03

N.61 56 4.55

S. 6 14 44.46

N.69 53 7.21

N. 9 10 17.35

S. 1 3 56.72

S.47 42 12.42

N.10 1 44.67

+11.03
j

11.22

12.64 !

17.48*!

+14.57
15.07

15.56

15.73

+16.26
17,28

17.30

18.65

S.30 26
I

3.3095
2^776 N.14 22 40.12

3.0569 IN. 4 47 30.74

+ 2.4042 lN.76 46 22.01

12.28+19.11
19.31

19.36*

+19.92

Those Annual Variations which include proper motion are distinguished by

an Asterisk.

sun's right ascension for 1846.

Day
of
Mo.

January. February. March. April. May. June.

h. m. s. h. m. s. h, m. s. h. m. s. h. m. s. h. m. s.

1 18 46 52 20 59 11 22 48 17 41 52 2 23 6 4 35 48
5 19 4 30 21 15 22 23 3 12 56 26 2 48 25 4 52 12
10 19 26 21 21 35 18 23 21 40 1 14 43 3 7 47 5 12 50
15 19 47 57 21 54 54 23 40 1 33 6 3 27 24 5 33 34
20 20 9 17 22 14 12 23 58 14 1 51 38 3 47 15 5 54 22
25 20 30 19 22 33 14 16 25 2 10 22 4 7 20 6 15 10
30 20 51 34 36 2 29 17 4 27 :

J.8 6 35 55

Day
of
Mo.

July. August.6 September. October. November. December.

h. m. s. h. m. s. h. m. s. h. m. s. h. m. s. h. m. s.

1 6 40 4 8 44 55 10 41 12 29 4 14 25 16 16 29 1

5 6 56 34 9 23 10 55 29 12 43 36 14 41 2 16 46 23
10 7 17 5 9 19 29 11 13 30 13 1 54 15 1 5 17 8 17

15 7 37 25 9 38 21 11 31 28 13 20 24 15 21 28 17 30 22
20

i

7 57 33 9 56 60 11 49 25 13 39 8 15 42 14 17 52 33
25 8 17 28 10 15 27 12 7 24 13 58 9 16 3 19 18 14 46
30 j

8 37 7 10 33 44 12 25 27 14 17 27 16 24 43 18 36 57

The R. A. in this title will answer for corresponding days in other years within

four minutes, and for periods of four years the difference is only about seven

seconds for each period.



TABLE III.

TABULAR VIEW OF THE SOLAR SYSTEM.

Names.

bun
Mercury-
Venus
The Earth
Mars
Vesta
Iris

)

Hebe (

Flora f
*

Astrea /

Juno
Ceres
Pallas

Jupiter

Saturn
Uranus
Neptune

Mean diameter
in miles.

883000
3224
7687
7912
4189
238

Unknown

1420
Not well (160
known. )120

89170
79040
35000
35000

Mean distance
from the Sun

in miles.

37 million

68
95
144
224,340,000
226 million

230
240 "

246
253,600,000

263,236,000
265 million

490
900 »

1800 "

2850 "

Mean dist.;

the Earth's

dist. unity.

0.3870989.
0.7233329
1.0000000
1.52369210

2.36120
2.37880
2.42190
2.52630
2.5895

2.66514
2.76910
2.77125
5.202776
9.538786

19.182390
29.59

Log. of
mean

distance.

Time of revolu-

tions round
the Sun.

587818
859306
000000
182810
373100
376384
384004
402487
413211
.425710
442334
442725
.716212
979476
282853
477121

Log. of
times of

revolution,

DAYS.

87.969258
224.700787
365.256383
686.979646

1324.289
1327.973
1375. nearly

1469.76
1512. nearly

1594.721

1683.064
1685.162
4332.584821
10759.219817
30686.8208
60128.14

1.944324
2.351610
2.562598
2.836942
3.121991

3.123190
3.138303
3.167300
3.179547
3.202700
3.226086
3.226610
3.636738

4.031718
4.486953
4.779076

TABLE III.

ELEMENTS OF ORBITS FOR THE EPOCH OF 1850, JANUARY 1, MEAN NOON

AT GREENWICH.

Planets.

Inclination

of orbits to

ecliptic.

Variation
in 100
years.

Long, of the

ascending
nodes.

Variation
in 100
years.

Longitude
of

Perihelion.

Variation
in 100
years.

...

Mean longi-

tude at

epoch.

Mercury
Venus
Earth
Mars
Vesta
Juno
Ceres
Pallas

Jupiter
Saturn
Uranus

' "

7 18

3 23 26

1 51 6

7 8 29
13 2 53
10 37 17

34 37 44
1 18 42
2 29 29

46 27

+18.2— 4.6

— 0.2
—12.

—22.
—15.

3.

O ' "

46 34 40
75 17 40

48 20 24
103 20 47

170 53
80 47 56

172 42 38
98 55 19

112 22 54
73 12

-j-51

-j-42

-f-26

O ' "

75 9 47
129 22 53
100 22 10
333 17 57
254 4 34
54 18 32

147 25 41

121 30 3 3

11 56
90 7

168 14 47

+

1-93-

-78

103
110
157

O ' "

327 17 9

243 58 4

100 47 1

182 9 30

1

113 28 12

165 17 38
1 3 10i

327 31 24!

160 21 50!

13 58 13:

28 20 22!
i

r57
-51

-24

- 95
U116
- 87

* It is with reluctance that we give these planets a place in the tables. The
fact of their existence is as yet questionable, and their elements, at present, cannot

be well known. We give the logarithms in the tables, that the data may be at

hand to exercise the student on Kepler's third law.



TABLE III.

TABULAR VIEW OF THE SOLAR SYSTEM.

Names. Mass. Density. Gravity. ,

Sidereal
Rotation.

Light and
Heat.

Mercury.

.

Venus

Earth

Mars

Jupiter

Saturn. . .

.

Uranus . .

.

Sun

Moon

i

2 2 5 8 10
1

4 12 11

1

3 5 5

1

2680337
1

10 4 8.7

1

3 5 0.2

1

17 9 18

1

1

26620200

3.244

0.994

1.000

0.973

0.232

0.132

0.246

0.256

0.665

1.22

0.96

1.00

0.50

2.70

1.25

1.06

28.19

0.18

h. m. s.

24 5 28

23 21 7

24

24 39 21

9 55 50

10 29 17

Unknown.

25 12

27 7 43

6.680

1.911

1.000

.431

.037

.011

.003

TABLE III.

Planets.
Eccentricities

of orbits.

Variation in 100
years.

Motion in mean
long, in 1 year
of 365 days.

Mean Daily
Motion in

longitude.

Mercury. . .

.

Earth
Mars

Juno

0.20551494
0.00686074
0.01678357
0.09330700
0.08856000
0.25556000
0.07673780
0.24199800
0.04816210
0.05615050
0.04661080

+ .000003868
— .000062711
— .000041630

-f .000090176
-j- .000004009

— .000005830

O /

53 43 3.6

224 47 29.7

—0 14 19.5

191 17 9.1

'
"

4 5 32.6

1 36 7.8

59 8.3

31 26.7

16 17.9

13 33.7

12 49.4

12 48.7

4 59.3

0.6

42.4

-f .000159350
— .000312402
— .000025072

30 20 31.9

12 13 36.1

4 17 45.1

TABLE III.

SATELLITES OF JUPITER.

Satel. Mean Distance. Sidereal Revolu.
Inclination of
orbits to that

of Jupiter.

Mass; that
of Jupiter

being
1000000000

i

2
3
4

6.04853
9.62347

15.35024
26.99835

d.

1

3
7

16

h. m.
18 28
13 14
3 43

16 32

O ' "

3 5 30
Variable.

Variable.

2 58 48

17328
23235
88497
42659



TABLE IV.

SUN S EPOCHS.

Years. M. Long. Long. Perigee. 1 I. II. III. N.

s.
o ' a

s. o / -
!

...
. .

1846 9 8 45 8 9 8 17 17 124 673 897 379
1847 9 8 30 48 9 8 18 19 484 588 623 433
1848 B. 9 9 15 37 9 8 19 20 878 505 151 487
1849 9 9 1 17 9 8 20 22 238 420 775 540
1850 9 8 46 58 9 8 21 23 598 336 400 594

1851 9 8 32 39 9 8 22 24 958 250 025 648
1852 B. 9 9 17 27 9 8 23 26 353 168 653 701

1853 9 9 3 8 9 8 24 27 713 083 277 755

1854 9 8 48 48 9 8 25 29 073 998 902 809

1855 9 8 34 29 9 8 26 30 433 913 527 863

1856 B. 9 9 19 18 9 8 27 32 827 832 153 916
1857 9 9 4 58 9 8 28 34 187 746 779 970

1858 9 8 50 39 9 8 29 35 547 661 404 024
1859 9 8 36 19 9 8 30 37 907 576 029 078
1860 B. 9 9 21 8 9 8 31 38 301 494 656 131

1861 9 9 6 49 9 8 32 39 661 409 281 185
1862 9 8 52 29 9 8 33 41 021 324 906 239
1863 B. 9 8 38 10 9 8 34 42 381 239 530 292
1864 9 9 22 58 9 8 35 44 775 157 157 346
1865 9 9 8 39 9 8 36 45 135 072 783 400

1866 9 8 54 20 9 8 37 47 495 985 408 453
1867 9 8 40 9 8 38 49 855 902 033 507
1868 B. 9 9 24 49 9 8 39 50 249 820 659 561
1869 9 9 10 30 9 8 40 52 609 734 285 615
1870 9 8 56 10 9 8 41 53 969 649 910 668
1882

i

9 9 1 41 9 8 54 10 391 638 416 313

1871 9 8 41 51 9 8 42 54 329 564 534 721
1872 B. 9 9 26 39 9 8 43 56 723 481 161 774
1873 9 9 12 20 9 8 45 58 083 396 785 828
1874 9 8 58 1 9 8 47 443 311 410 881
1875 9 8 43 41 9 8 48 2 803 226 034 935

1876 B. 9 9 28 30 9 8 49 4 297 143 661 989
1877 9 9 14 10 9 8 50 5 657 058 286 042
1878 9 8 59 51 9 8 51 6 017 974 912 096
1879 9 8 45 32 9 8 52 7 377 889 537 150
1880 B. 9 9 30 20 9 8 53 9 671 807 164 204

1881 9 9 16 1 9 8 54 10 031 722 790 257
1882 9 9 1 41 9 8 55 12 391 637 415 311
1883 9 8 47 22 9 8 56 13 751 552 040 364
1884 B. 9 9 32 10 9 8 57 15 145 469 666 418

1885 9 9 17 51 9 8 58 16 505 385 292 471
1886 9 9 3 32 9 8 59 17 865 300 918 525
1887 9 8 49 12 9 8 19 225 216 544 579
1888 B. 9 9 34 1 9 8 1 20 619 133 169 6

21



10 TABLE V.

sun's motions for months.

Months. Longitude. Per. I. II. III. N.

T "1 Com. . .

.

Jan
-JBis

Feb.]S?
m

'
•'•

J Bis

s. ° ' "

11 29 52
1 33 18

29 34 10
1 28 9 11

5
5

10

966
47
13

993

997
78
75
148

998
53
51

01

4
4
9

April 2 28 42 30

3 28 16 40
4 28 49 58
5 28 24 8

6 28 57 26

15
20
26
31

36

42
59
110
129

182

226
301
379
454
531

154
206
259
310
363

13
18
22
27
31

May
J une
Julv
August

7 29 30 44
8 29 4 54
9 29 38 12

10 29 12 22

41

46
52
57

233
250
300
313

609
684
762
837

416
468
521
572

36
40
45
49

TABLE VI

SUN S HOURLY MOTION.

Argument.—Sun's Mean Anomaly.

0s Is lis Ills IVs V

o

10
20
30

2 33
2 33
2 33
2 32

2 32
2 32
2 31

2 30

/ //

2 30
2 29
2 29
2 28

/ //

2 28
2 27
2 26
2 25

/ //

2 25
2 25
2 24
2 24

2 24
2 23
2 23
2 23

o

30
20
10

XIs Xs IXs VIIIs VIIs Vis

SUN S SEMLDIAMETER.

Argument.—Sun's Mean Anomaly.

o

10
20
30

0s Is lis Ills IVs Vs

16 18
16 18
16 17
16 15

/ //

16 15

16 14
16 12
16 9

16 9

16 7

16 4
16 1

/ //

16 1

15 58
15 56
15 53

/ //

15 53
15 51

15 49
15 48

/ //

15 48
15 46
15 46
15 45

o

30
20
10

XIs Xs IXs VIIIs VIIs Vis



TABLE VII.

sun's motions foe days and hours.

11

! Days.
i

i

Logitude. Per. I. II. III. N. Hours. Long. I.
j

!

i

O / "

1 2 28 i ;

2 59 8 34 3 2 2 4 56 3

3 1 58 17 68 5 3 3 7 23 4
4 2 57 25 101 8 5 4 9 51 6

5 3 56 33 1 135 10 7 1 5 ]2 19 7
!

6 4 55 42 169 13 9 1 6 14 fa s
;

7 5 54 50 203 15 10 1 7 17 15 10
8 6 53 58 236 18 12 1 8 19 43 11 !

9 7 53 7 270 20 14 1 9 22 11 13

10 8 52 15 304 23 15 1 10 24 38 14 i

11 9 51 23 2 338 25 17 1 11 27 6
1

16
,

12 10 50 32 2 371 28 19 2 12 29 34 17
13 11 49 40 2 405 30 21 2 13 32 2 18

14 12 48 48 2 439 33 22 2 14 34 30 20
15 13 47 57 2 473 35 24 2 15 36 58 21

16 14 47 5 o 506 38 26 2 16 39 26 23

17 15 46 13 3 540 40 27 2 17 41 53 24
18 16 45 22 3 574 43 29 2 18 44 21 25
19 17 44 30 3 608 45 31 3 19 46 49 27

;

20 18 43 38 3 641 48 33 3 20 49 17 28

21 19 42 47 3 675 50 34 3 21 51 45 30 :

22 20 41 55 4 709 53 36 3 22 54 13 31

23 21 41 3 4 743 55 38 3 23 56 40 32
24 22 40 12 4 777 58 39 3 24 59 8 34
25 23 39 20 4 810 60 41 4 f

i

26 24 38 28 4 844 63 43 4
27 25 37 37 4 -878 65 45 4
28 26 36 45 5 912 68 46 4
29 27 35 53 5 945 70 48 4

j

!

30 28 35 2 5 979 73 50 4 i

31 29 34 10 5 13 75 51 4 !

SUN S MOTIONS FOR MINUTES.

Min. Longitude. Min. Longitude.

1 2 30 1 16
5 12 35 1 26

10 25 40 1 39
15 37 45 1 51
20 49 50 2 3
25 1 2 55 2 16
30 1 14

j
60 2 28

2a



ID TABLE VIII.

EQUATIONS OF THE SUN S CENTER.

Argument.—Sun's Mean Anomaly.

0s Is lis Ills IVs
n

Vs

o o / n o i a o i a o i a o / ii o / //

1 59 30 2 58 15 3 40 27 3 54 50 3 38 21 2 56 9

1 2 1 33 3 3 41 25 3 54 47 3 37 18 2 54 25
2 2* 3 37 3 1 44 3 42 21 3 54 41 3 36 14 2 52 40
3 2 5 40 3 3 27 3 43 15 3 54 33 3 35 8 2 50 54
4 2 7 43 3 5 9 3 44 8 3 54 23 3 34 1 2 49 8

5 2 9 46 3 6 49 3 44 58 3 54 11 3 32 51 2 47 20

6 2 11 49 3 8 28 3 45 47 3 53 57 3 31 41 2 45 32
7 2 13 51 3 10 6 3 46 33 3 53 41 3 30 28 2 43 43
8 2 15 54 3 11 43 3 47 17 3 53 23 3 29 14 2 41 53
9 2 17 56 3 13 18 3 48 3 53 3 3 27 58 2 40 3

10 2 19 57 3 14 51 3 48 40 3 52 40 3 26 41 2 38 11

11 2 21 58 3 16 24 3 49 18 3 52 16 3 25 22 2 36 19
12 2 23 59 3 17 54 3 49 55 3 51 50 3 24 2 2 34 27
13 2 25 59 2 19 24 3 50 29 3 51 21 3 22 40 2 32 34
14 2 27 59 3 20 51 3 51 1 3 50 51 3 21 17 2 30 40
15 2 29 58 3 22 18 3 51 31 3 50 18 3 19 52 2 28 46

16 2 31 57 3 23 42 3 51 59 3 49 44 3 18 26 2 26 52
17 2 33 55 3 25 5 3 52 25 3 49 7 3 16 58 2 24 56
18 2 35 52 3 26 26 3 52 49 3 48 29 3 15 30 2 23
19 2 37 49 3 27 46 3 53 10 3 47 49 3 14 2 21 4
30 2 39 45 3 29 4 3 53 30 3 47 7 3 12 28 2 19 8

21 2 41 40 3 30 24 3 53 47 3 46 22 3 10 55 2 17 11

22 2 43 34 3 31 35 3 54 3 3 45 36 3 9 22 2 15 14

23 2 45 28 3 32 48 3 54 16 3 44 48 3 7 46 2 13 16

24 2 47 20 3 33 59 3 54 27 3 43 58 3 6 10 2 11 19

25 2 49 12 3 35 8 3 54 36 3 43 7 3 4 33 2 9 21

26 2 51 2 3 36 16 3 54 43 3 42 13 3 2 54 2 7 23

27 2 52 52 3 37 21 3 54 48 3 41 18 3 1 14 2 5 25

28 2 54 41 3 38 25 3 54 51 3 40 21 2 59 33 2 3 27

29 2 56 28 3 39 27 3 54 52 3 39 22 2 57 52 2 1 28

30 2 58 15 3 40 27 3 54 50 3 38 21 2 56 9 1 59 30
]



TABLE VIII. 13

EQUATIONS OF THE SXJN's CENTER.

Argument.—Sun's Mean Anomaly.

Vis VIIs VIIIs IXs Xs XIs

o o i n o 1 // o / a o 1 a O i i' o i a

1 59 30 1 2 51 20 39 4 10 18 33 1 45
1 1 57 32 1 1 8 19 38 4 8 19 33 1 2 32
2 1 55 33 59 27 18 39 4 9 20 35 1 4 19
3 1 53 35 57 46 17 42 4 12 21 39 1 6 8

4 1 51 37 56 6 16 47 4 17 22 44 1 7 58
5 1 49 39 54 27 15 53 4 24 23 52 1 9 48

6 1 47 41 52 47 15 2 4 33 25 1 1 11 40
7 1 45 44 51 14 14 12 4 44 26 12 1 13 32
8 1 43 46 49 38 13 24 4 57 27 25 1 15 26
9 1 41 49 48 5 12 38 5 13 28 40 1 17 20

10 1 39 52 46 32 11 53 5 30 29 56 1 19 15

11 1 37 56 45 11 11 5 50 31 14 1 21 11
12 1 36 43 30 10 31 6 11 32 34 1 23 8
13 1 34 4 42 1 9 53 6 35 33 55 1 25 5

14 1 32 9 40 34 9 16 7 1 35 18 1 27 3
15 1 30 14 39 8 8 42 7 29 36 42 1 29 2

16 1 28 20 37 43 8 9 7 59 38 9 1 31 1

17 1 26 26 36 20 7 39 8 31 39 36 1 33 1

18 1 24 33 34 58 7 10 9 5 41 9 1 35 1

19 1 22 41 33 38 6 44 9 42 42 36 1 37 1

20 1 20 49 32 19 6 20 10 20 44 9 1 39 3

21 1 18 57 31 2 5 57 11 45 42 1 41 4
22 1 17 7 29 46 5 37 11 43 47 17 1 43 6

23 1 15 17 28 32 5 19 12 27 48 54 1 45 9

24 1 13 28 27 19 5 3 13 13 50 32 1 47 11

25 1 11 40 26 9 4 49 14 2 52 11 1 49 14

26 1 9 52 24 59 4 37 14 52 53 51 1 51 17

27 1 8 6 23 52 4 27 15 45 55 33 1 53 20
28 1 6 20 22 46 4 19 16 39 57 16 1 55 23
29 1 4 35 21 41 4 13 17 35 59 1 57 27
30 1 2 51 20 39 4 10 18 33 1 45 1 59 30

|



14 TABLE IX.

SMALL EQUATIONS OF THE SUN'S LONGITUDE.

Arg. I II. III. Arg. I. II. III.

a a II a a //

10 10 10 500 10 10 10

10 10 11 9 510 10 10 9

20 11 11 9 520 9 10 8

30 11 12 8 530 9 10 7

40 11 13 8 540 9 10 7

40 12 14 7 550 8 10 6

60 12 14 7 560 8 9 5

70 12 15 7 570 8 9 4
80 13 15 7 580 7 9 3

90 13 16 7 590 7 9 3
100 13 16 7 600 7 9 2
110 14 17 7 610 6 8 1

120 14 17 7 620 6 8 1

130 14 18 8 630 6 8 1

140 15 18 8 640 5 7

150 15 18 9 650 5 7

160 15 18 9 660 5 6

170 15 18 10 670 5 6 1

180 15 18 10 680 5 6 1

190 16 18 11 690 4 5 2
200 16 18 11 700 4 5 2
210 16 18 12 710 4 4 3
220 16 18 12 720 4 4 3
230 16 18 13 730 4 4 4
240 16 17 14 740 4 3 5

250 16 17 14 750 4 3 6
260 16 17 15 760 4 3 6
270 16 16 16 770 4 2 7

480 16 16 17 780 4 2 8
290 16 16 17 790 4 2 8
300 16 15 18 800 4 2 9
310 16 15 18 810 4 2 9
320 15 14 19 820 5 2 10
330 15 14 19 830 5 2 10
340 15 14 20 840 5 2 11
350 15 13 20 850 5 2 11
360 15 13 20 860 5 2 12
370 14 12 19 870 6 2 12
380 14 12 19 880 6 3 13
390 14 12 19 890 6 3 13
400 13 11 18 900 7 4 13
410 13 11 17 910 7 4 13
420 13 11 17 920 7 5 13
430 12 11 16 930 8 5 13
440 12 11 15 940 8 6 13
450 12 10 14 950 8 6 13
460 11 10 13 960 9 7 12
470 11 10 13 970 9 8 12
480 11 10 12 980 9 9 11

490 10 10 11 990 10 9 11

500 10 10 10 1000 10 10 10



TABLE X. 15

NUTATIONS.

Argument.—Supplement of the Node, or N.

N. Long. R. Asc. Obliq.

i

N. Long. R. Asc. Obliq.

+ ° 4- °

I

4- io 500 — —
II

— 10

20 2 2 10 520 2 2 9

40 4 4 9 540 4 4 9

60 7 6 9 560 7 6 9

80 9 8 8 580 9 8 8

100 + 11 4- 10 4- 8 600 — 11 — 10 — 8

120 12 11
T

7 620 12 11 t

140 14 13 6 640 14 13 6

160 15 14 5 660 15 14 5

180 16 15 4 680 16 15 4
200 -f-17 4- 16 + 3

1

2

700 — 17 — 16 — 3

220 18
T

16 720 18 16 2
240 18 16 1 740 18 16 1

260 18 16 _ 1 760 18 16 + 1

280 18 16 2 780 18 16 2
300 + 17 4- 16 _ 3 800 — 17 — 16 + 3

320 16 ^ 15 4 820 16 15 4
340 15 14 5 840 15 14 5

360 14 13 6 860 14 13 6

380 12 11 7 880 12 11 7

400 + 11 4- 10 — 8 900 — 11 — 10 + 8

420 9
T

8 8 920 9 8 8

440 7 6 9 940 7 6 9

460 4 4 9 960 4 4 9

480 2 2 10 980 2 2 10

500 + o + o — 10 1000 — — 4-10

TABLE XI.

Earth's Radius Vector.—Argument. Sun's Mean Anomaly.

0o

Os Is lis Ills IV s Vs

30°0.98313 0.98545 0.99173 1.00018 1.00850 1.01450

2 0.98314 0.98576 0.99225 1.00077 1.00899 1.01477 28
4 0.98317 0.98608 0.99278 1.00135 1.00947 1.01503 26
6 0.98322 0.98643 0.99331 1.10193 1.00994 1.01527 24
8 0.98330 0.98679 0.99386 1.00251 1.01040 1.01549 22

10 0.98339 0.98717 0.99441 1.00308 1.01084 1.01569 20
12 0.98350 0.98756 0.99497 1.00366 1.01128 1.01588 18

14 0.98364 0.98797 0.99554 1.00422 1.01170 1.01604 16

16 0.98380 0.98840 0.99611 1.00478 1.01210 1.01619 14

18 0.98397 0.98883 0.99668 1.00534 1.01249 1.01632 12
20 0.98417 0.98929 0.99726 1.00588 1.01286 1.01643 10

22 0.9843-9 0.98975 0.99784 1.00642 1.01322 1.01652 8

24 0.98462 0.99023 0.99843 1.00695 1.01357 1.01659 6

26 0.98486 0.99072 0.99901 1.00748 1.01389 1.01663 4
28 0.98515 0.99122 0.99960 1.00799 1.01420 1.01666 2
30 0.98545 0.99173 1.00018 1.00850 1.01450 1.01667

XIs Xs lXs vras VIIs Vis

2a*



16 TABLE XL

MEAN NEW MOONS AND ARGUMENTS IN JANUARY.

Mean New
Moon in

January.

A. D.

1836 B.

1837
1838
1839
1840 B.

1841
1842
1843
1844 B.

1845

1846
1847
1848 B.

1849
1850

1851
1852 B.

1853
1854
1855

1856 B.

1857
1858
1859
1860 B.

1861
1862
1863

1864 B.

1865

1866
1867
1868 B.

1869
1870

1871
1872 B.

1873
1874
1875

1876 B.

1877
1878
1879
1880 B.

D. H. M.

17 10 32
5 19 20

24 16 53
14
3

1 42
10 30

21 8 3

10 16 51

29 14 24
18 23 13
7 8 1

26 5 34
15 14 22
4 23 11

22 20 43
12 5 32

1 14 21

20 11 53
8 20 42

27 18 14
17 3 3

6 11 51

24 9 24
13 18 13

3 3 1

22 34

10 9 22
29 6 55
18 15 44
8 32

25 22 5

15
4

23
11

1

6 53
15 42
13 14
22 3

6 51

20 4 24
8 13 13

27 10 46
17 19 35

7 4 24

26 1 57

14 10 49

3 18 38
22 6 11

11 15

0469
0171
0681
0383
0085

0595
0297
0807
0509
0211

0721
0423
0125
0635
0337

0038
0549
0251
0761
0463

0164
0675
0376
0078
0588

0290
0800
0504
0204
0714

0416
0118
0628
0330
0032

0542
0244
0754
0456
0158

0668
0370
0072
0582
0284

II.

1246
9852
9175
7780
6386

5709
4314
3637
2243
0848

0171
8777
7382
6705
5311

3916
3239
1845
1168
9773

8379
7702
6307
4913
4236

2840
2L63
0769
9374
8698

7303
5909
5231
3837
2442

1765
0371
9694
8300
6906

6229
4835
3441
2764
1370

in.

17

IV. N.

08 669
00 97 692
99 85 799
82 74 822
65 63 844

63 51 951
46 40 974
44 28 081
28 17 104
11 06 126

09 94 234
92 84 256
75 73 278
73 61 386
56 50 408

40 39 431
38 27 538
21 16 560
19 04 668
02 93 690

85 82 713
84 70 820

1 67 59 843
50 48 865
48 36 972

31 25 995
30 14 102
13 03 125
96 92 147
94 80 256

77 69 277
60 58 299
59 46 407
42 35 429
25 24 451

23 12 559
05 01 581
03 89 689
86 78 711
69 67 733

67 55 841
50 44 863
33 23 885
31 21 993

J 14 10 015



TABLE XII 17

MEAN LUNATIONS AND CHANGES OP THE ARGUMENTS.

Num. Lunations. I. II. III. IV. N.

d. h. m.
y, 14 18 22 404 5359 58 50 43
i 29 12 44 808 717 15 99 85
2 59 1 28 1617 1434 31 98 170
3 88 14 12 2425 2151 46 97 256
4 118 2 56 3234 2869 61 96 341

5 147 15 40 4042 3586 76 95 425
6 177 4 24 4851 4303 92 95 511

7 206 17 8 5659 5020 7 94 596

8 236 5 52 6468 5737 22 93 682

9 265 18 36 7276 5454 37 92 767

10 295 7 20 8085 7117 53 91 852
11 324 20 5 8893 7889 68 90 937

12 354 8 49 9702 8606 83 89 22
13 383 21 33 510 9323 93 88 108

TABLE XIII. TABLE XIV.

NUMBER OF DATS FROM THE
COMMENCEMENT OF THE YEAR
TO THE FIRST OF EACH MONTH.

Months. Com. Bis.

January. .

.

February.

.

March

May

July

August.. .

.

September.

October . .

.

November.

December .

Days.

31

59

90

120

151

181

212

243

273

304

334

Days.

31

60

91

121

152

182

213

244

274

305

335
j

Arg. (1 (§ d Arg.
II. H. Par. S.D. H. Mo. II.

60 29 16 29

/

36

//

48 10000
250 60 26 16 26 36 44 9750 !

500 60 17 16 25 36 19 9500
i

750 60 16 21 36 8 9250 i

1000 59 47 16 17 35 48 9000
i

1250 59 24 16 11 35 28 8750 !

1500 58 56 16 3 34 57 8500 I

1750 58 30 15 56 34 34 8250
1

2000 58 7 15 50 33 58 8000
j

2250 57 37 15 42 33 32 7750 I

2500 57 1 15 31 32 42 7500
2750 56 32 15 23 32 9 7250
3000 56 2 15 16 31 36 7000 !

3250 55 40 15 10 31 13 6750
3500 55 22 15 7 30 52 6500
3750 55 12 15 3 30 29 6250
4000 54 51 14 56 30 7 6000

j

4250 54 39 14 54 29 55 5750
4500 54 26 14 50 29 43 5500 ,

4750 54 18 14 48 29 37 5250
5000 54 13 14 45 29 35 5000

|



18 TABLE XV.

EQUATIONS FOE, NEW AND FULL MOON.

Arg. I. II. Arg. I. II.

h. m.

Arg. III.

m.

IV. Arg.

h. m.
|

h. m. h. m. m.
4 20 10 10 5000 4 20 10 10 25 3 31 25

100 4 36 !
9 36 5100 4 5 10 50 26 3 31 24

200 4 52 9 2 5200 3 49 11 30 27 3 30 23
> 300 5 8 8 28 5300 3 34 12 9 28 3 30 22

400 5 24 7 55 5400 3 19 12 48 29 3 30 21

500 5 40 7 22 5500 3 4 13 26 30 3 30 20
600 5 55 6 49 5600 2 49 14 3 31 3 30 19

700 6 10 6 17 5700 2 35 14 39 32 4 20 18
800 6 24 5 46 5800 2 21 15 13 33 4 29 17

900 6 38 5 15 5900 2 8 15 46 34 4 29 16

1000 6 51 4 46 6000 1 55 16 18 35 4 29 15

1100 7 4 4 17 6100 1 42 16 48 36 5 28 14

1200 7 15 3 50 6200 1 31 17 16 37 5 28 13

1300 7 27 3 24 6300 1 19 17 42 38 5 27 12

1400 7 37 2 59 6400 1 9 18 6 39 5 27 11

1500 7 47 2 35 6500 59 18 28 40 6 26 10

1600 7 55 2 14 6600 50 18 48 41 6 26 9

! 1700 8 3 1 53 6700 42 19 6 42 7 25 8

|
1800 8 10 1 35 6800 34 19 21 43 7 25 7

;

1900 8 16 1 38 6900 28 19 33 44 7 24 6

i 2000 8 21 1 3 7000 22 19 44 45 8 23 5

i 2100 8 25 51 7100 17 19 52 46 8 23 4
' 2200 8 29 40 7200 14 19 57 47 9 22 3

! 2300 8 31 32 7300 11 20 48 9 21 2

i

2400 8 32 25 7400 9 20 1 49 10 21 1

i 2500 8 32 21 7500 8 19 59 50 10 20

! 2600 8 31 19 7600 .0 8 19 55 51 10 19 99
! 2700 8 29 20 7700 9 19 48 52 11 19 98

! 2300 8 26 23 7800 11 19 40 53 11 18 97
' 2900 8 23 28 7900 15 19 29 54 12 17 96
: sooo 8 18 36 8000 19 19 17 55 12 17 95

3100 8 12 47 8100 24 19 2 56 13 16 94

3200 8 6 59 8200 30 18 45 57 13 15 93

3300 7 58 1 14 8300 37 18 27 58 13 15 92

3400 7 50 1 32 8400 45 18 6 59 14 14 91

3500 7 41 1 52 8500 53 17 45 60 14 14 90

3600 7 31 2 14 8600 1 3 17 21 61 15 13 89

3700 7 21 2 38 8700 1 13 16 56 62 15 13 88

3800 7 9 3 4 8800 1 25 16 30 63 15 12 87

3900 6 58 3 32 8900 1 36 16 3 64 15 12 86

|
4000 6 45 4 2 9000 1 49 15 34 65 16 11 85

j
4100 6 32 4 34 9100 2 2 15 5 66 16 11 84

!
4200 6 19 5 7 9200 2 16 14 34 67 16 11 83

1
4300 6 5 5 41 9300 2 30 14 3 68 16 10 82

4400 5 51 6 17 9400 2 45 13 31 69 17 10 81

4500 5 36 6 54 9500 3 12 58 170 17 10 80

4600 5 21 7 32 9600 3 16 12 25 71 17 10 79

4700 5 6 8 11 9700 3 32 11 52 72 17 10 78

4800 4 51 8 50 9800 3 48 11 18 73 17 10 77

4900 4 35 9 30 9900 4 4 10 44 74 17 9 76

5000 4 20 10 10
i !

10000 4 20 10 10 75 17 9 75
>
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20 TABLE XVI.

moon's epochs.

1
Years. 1 2 3 4 5 6 7 8 9

1846 0013 2475 3275 1688 0773 4880 3179 0800 9542
1847 0006 9683 2941 6432 3245 0678 4239 3257 8406
1848 B. O026 7542 3646 1463 6052 6847 5358 6106 7295
1841 0019 4750 3312 6207 8524 2644 6418 8563 6158
1850 0012 1958 2978 0951 0995 8442 7479 1020 5022

1851 0005 9167 2644 5695 3467 4239 8539 3477 3885
1852 B. 0025 7025 3350 0726 6274 0408 9658 6326 2774
1853 0018 4233 3016 5469 8746 6206 0718 8782 1637
1854 0011 1442 2681 0213 1217 2003 1778 1240 0501
1855 0004 8650 2347 4957 3689 7801 2839 3697 9365

1856 B. 0024 6509 3053 9988 6496 3970 3957 6446 8254
1857 0017 3717 2719 4732 8968 9767 5018 9002 7117
!l858 0010 0925 2385 9476 1439 5565 6078 1460 5981
1859 0003 8134 2051 4220 3911 1362 7139 3917 4845
I860 B, 0023 5992 2756 9551 6718 7531 8257 6765 3734

11861 0016 3200 2423 3995 9190 3329 9317 9222 2597
:1862 0009 0409 2088 8739 1661 9126 0378 1679 1461
1863 0002 7617 1754 3483 4133 4923 1438 4137 0324
1864 B. 0022 5476 2460 8514 6941 1093 2557 6984 9212
'1865 0015 2684 2126 3257 9412 6890 3617 9442 8076

1866 0008 9893 1792 8001 1883 2687 4678 1899 6940
1867 0001 7101 1457 2745 4355 8485 5738 4357 5804
1868 B. 0021 4959 2163 7776 7163 4654 6857 7204 4692
1869 0C14 2168 1829 2520 9634 0452 7917 9662 3556
1870 0007 9376 1495 7264 2105 . 6249 8978 2119 2420

1871 0000 6584 1161 2008 4576 2046 0039 4576 1284
!l872 B. 0020 4432 1867 7039 7383 8215 1158 7423 0172
4873 0013 1640 1533 178-3 9854 4012 2239 9880 9036
1874 0006 8848 1199 6527 2325 9809 3300 2337 7900
1875 9999 6056 0865 1271 4796 5606 4361 4794 6764

11876 b. 0019 3914 1571 6292 7603 177o 5480 7641 5652
1877 0012 1122 1247 1036 0074 7572 6541 0098 4516
4878 0005 8330 0913 5780 2545 3369 7602 2555 3380
4879 9998 5538 0579 0524 5016 9166 8663 5012 2244
1880 B. 0018 3396 1285 5545 7823 5335 9782 7859 1132

1881 0011 0604 0951 0289 0294 1132 0843 0316 9996
1882 0004 7812 0617 5033 2765 6929 1904 2873 8860
1883 9997 5020 0283 9777 5236 2726 2965 5330 7724
1884 B. 0017 2878 0989 4798 8043 8895 4084 8177 6612
1885 0010 0086 0655 9542 0514 4692 5145 0634 5476

1886 0003 7294 0321 4286 2985 0489 6206 3091 4340
|

1887 9996 4502 9987 9030 5456 6286 7267 5548 3204
1888 B. 0016 2360 0693 4051 8263 2455 8386 8395 2092 !

1889
| 0009 9568 0359 8795 0734

1

8252 9447 0852 1
0956

|

1890
j
0002

!

6776 0025 3539
1
3205 I 4049 0508 3309

|

9820
!



TABLE XVI. 21

moon's epochs.

Years. 10
1

11 1 12

1

13 14 15 16 17 18 19 20

1846 203 123 250 171 419 760 126 396 167 379 204
1847 810 484 970 644 613 901 486 749 643 433 371
1848 B. 486 876 759 151 905 072 881 143 144 487 539
1849 093 237 479 624 099 212 241 496 619 540 705
1850 700 597 199 097 293 352 600 848 094 594 871

1851 306 958 918 570 487 493 960 201 569 648 038
1852 B. 983 350 707 077 780 664 355 595 070 701 206
1853 589 711 427 550 974 804 715 948 545 755 372
1854 196 072 147 023 168 944 074 300 020 809 539
1855 802 432 866 496 361 085 434 653 495 863 705

1856 B. 479 824 656 003 654 256 829 047 996 916 873
1857 086 185 375 476 848 396 189 400 471 970 039
1858 692 546 095 949 042 537 548 752 947 024 206
1859 299 907

!
814 422 236 677 908 105 422

923
078 372 !

1860 B. 975 298 604 929 529 848 303 499 131 540

1861 581 659 323 402 723 988 662 852 398 185 706
1862 187 020 042 875 916 ]29 021 204 873 239 873
1863 794 381 761 348 110 269 381 557 348 292 039
1864 B. 470 773

|

551 855 403 440 777 951 849 346 207
1865 077 134 271 328 597 580 136 304 324 400 373

1866 684 494
j

990 801 791 721 495 657 799 453 540
1867 290 855 \ 710 274 985 861 855 009 274 507 707
1868 B. 967 247

!
500 781 277 032 251 404 775 561 874

1869 573 608 219 254 471 172 610 756 251 615 040
1870 180 968 939 737 665 313 969 109 726 668 207

1871 787 328 659 200 859 554 328 562 201 721 374
1872 B. 464 720 549 707 151 725 724 957 702 785 531
1873 071 080

i 269 180 345 966 083 410 177 838 698
1874 678 440 989 653 539 295 442 863 642 891 865
1875 285 800 709 126 733 446 801 316 117 944 032

1876 B. 962 192 599 633 025 617 197 711 618 008 199
1877 569 552 319 106 219 858 556 164 093 061 366
1878 176 912 039 579 413 099 915 617 568 114 533
1879 783 272 759 052 607 340 274 070 043 167 700
1880 B. 460 664 649 559 899 511 670 465 544 231 867

1881 067 024 369 032 093 752 029 918 019 284 034
1882 674 384 089 505 287 993 388 371 494 337 201
1883 281 744

j

809 978 481 234 747 824 969 390 368
1884 B. 958 136 699 485 773 405 143 219 470 454 535
1885 565 496

j
419 958 967 646 502 672 945 507 702

1886 172 856 139 4S1 161 887 861 125 420 560 869
1887 779 216 859 904 355 128 320 578 895 613 036
1888 B. 456 608 749 411 647 299 716 973 396 677 203
1889 063 968 469 884 841 540 075 426 871 730 370
1890 670 328 189 357

I
035 1 781 434 879 346 783 537



22

Months.

T 1 Com.
Jan. D .

J Bis.

Feb 1
Com *

reD
-J Bis.

March

April

May
June
July
August. . . .

September .

October. . .

.

November..
December. .

TABLE XVIL

moon's motions for months.

1 2 3 4 5 6 7 8 9

0000 0000 0000 0000 0000 0000 0000 0000 0000
9973 9350 8960 9713 9664 9628 9942 9610 9976
849 146 2246 8896 402 1533 1789 2099 753
821 9497 1205 8609 66 1161 1731 1709 729

1615 8343 J 1371 6931 9797 1951 3404 3027 1433

2464 8490 3616 5827 199 3484 5193 5126 2186
3285 7986 4822 4436 265 4646 6924 6835 2914
4134 8133 7067 3332 666 6179 8713 8934 3667
4955 7629 8273 1942 732 7341 444 643 4396
5804 7776 518 838 1134 8874 2233 2742 5148

6653 7922 2764 9734 1536 408 4021 4842 5901
7474 7419 3969 8343 1602 1569 5752 6550 6630
8323 7565 6215 7239 2004 3102 7541 8649 7382
9144 7062 7420 5848 2070 4264 9272 358 8111

TABLE XVIII.
moon's motions for days.

Days. 1 2 3 4 5 6 7 8

1

9
!

1 0000 0000 0000 0000 0000 0000 0000 0000 0000
2 27 650 1040 287 336 372 58 390 24
3 55 1300 2080 574 671 744 115 781 49
4 82 3 950 3121 861 1007 1116 173 1171 73
5 109 2600 4161 1148 1342 1488 231 1561 97
6 137 3249 5201 1435 1678 1860 289 1952 121
7 164 3899 6241 1722 2013 2232 346 2342 146
8 192 4549 7281 2009 2349 2604 404 2732 170
9 219 5L99 8321 2296 2684 2976 462 3122 194

10 246 5849 9362 2583 3020 3348 519 3513 219
11 274 6499 402 2870 3355 3720 577 3903 243
12 301 7149 1442 3157 3691 4093 635 4293 267
13 328 7799 2482 3444 4026 4465 692 4684 291
1.4 356 8449 3522 3731 4362 4837 750 5074 316
15 383 9098 4563 4018 4698 5209 808 5464 340
16 411 9748 5603 4305 5033 5581 866 5854 364
17 438 398 6643 4592 5369 5953 923 6245 389
18 465 1048 7683 4878 5704 6325 981 6635 413
19 493 1698 8723 5165 6040 6697 1039 7025 437
20 520 2348 9763 5452 6375 7069 1096 7416 461
21 548 2998 804 5739 6711 7441 1154 7806 486
22 575 3648 1844 6026 7046 7813 1212 8196 510
23 602 4298 2884 6313 7382 8185 1269 8586 534
24 630 4947 3924 6600 7717 8557 1327 8977 559
25 657 5597 4964 6887 8053 8929 1385 9367 583
26 684 6247 6005 7174 8389 9301 1443 9757 607
27 712 6897 7045 7461 8724 9673 1500 148 631
28 739 7547 8085 7748 9060 45 1558 538 656
29 767 8197 9125 8035 9395 417 1616 928 680
30 794 8847 165 8322 9731 789 1673 1319 704

;

31 821 9497 1205 8609 66 1161 1731 1709 729



TABLE XVII.

moon's motions for months.

23

Months.

T 1 Com
Jan

-

J Brs.

Feb.]£om '

J Bis.

March

April. .

,

May . .

,

June .

.

July. .

.

August

September .

October.. .

.

November..
December.

.

10

000
930
175

105
139

314
419
593
698
873

48
152
327
432

11

000
969
965
934
836

801
735
700
634
599

563
497
462
396

12

000
930
184
114
157

342
556
640
754
938

123
237
421
535

13

000
966
59
25
16

76
101
160
185
245

304
329
388
414

14

000
901
74

975
851

925
899
973
948
22

96
71

145
120

15

000
969
946
916
801

417
333
279
194

16

000
963
135
98

159

747
l
294

663
I
392

609
J

527
525 I 625
471 759

894
992
127
225

17

000
958
304
262
482

786
47

351

613
917

221
483
787
49

18 I 19

000
974
805
779
532

336
115
920
699

503

20

000 000
000

5

5

9

13

18
22
27

31

308 36
87 40

892
I
45

670
I
49

000
14
14
27

41

55
69

83
97

111
125

139
153

TABLE XVIII.
moon's motions for days.

[Days.
1

10 11

000

32 13 14 15 16 17 18

000

19 20

1 000 000 000 000 000 000 000 000 000
2 70 31 70 34 99 31 37 42 26
3 140 62 141 68 198 61 73 84 52 1

4 210 93 211 103 297 92 110 126 78 1

5 281 125 282 137 397 122 146 168 104 1 2
6 351 156 352 171 496 153 183 210 130 1 2
7 421 187 423 205 595 183 220 252 156 1 3
8 491 218 493 239 694 214 256 294 182 1 3
9 561 249 564 273 793 244 293 336 208 1 4

10 6-31 280 634 308 892 275 329 379 234 1 4
11 702 311 705 342 992 305 366 421 260 1 5

12 772 342 775 376 91 336 403 463 236 2 5

13 842 374 845 410 190 366 439 505 312 2 5
14 912 405 916 444 239 397 476 547 337 2 6
15 982 436 986 473 388 427 512 589 363 2 6

16 52 467 57 513 487 458 549 631 389 2 7
I

17 122 498 127 547 587 488 586 673 415 2 7
!

18 193 529 198 581 686 519 622 715 441 2 8
I

19 263 560 268 615 785 549 659 757 467 3 8

20 333 591 339 649 884 580 695 799 493 3 9
1

21 403 623 409 683 983 611 722 841 517 3 9

22 473 654 480 718 82 641 769 883 545 3 10
23 543 685 550 752 182 672 805 925 571 3 10
24 614 716 621 786 281 702 842 967 597 3 11

25 684 747 691 820 389 733 878 9 623 4 11

26 754 778 762 854 479 763 915 52 649 4 11

27 824 809 832 888 578 794 952 94 675 4 12
28 894 840 903 923 677 824 988 136 701 4 12
29 964 872 973 957 777 855 25 178 727 4 13
30 34 903 43 991 876

975
885 61 220 753 4 13

31 105 934 114 25 916 98 262 779 . 4 14
;

2b



24 TABLE XIX.

moon's motions for hours.

Hours. 1 2

27

3 4 5 6 7 8 9

1 1 43 12 14 16 2 16 1

2 2 54 87 24 28 31 5 33 2

3 3 81 130 36 42 47 7 49 3

4 5 108 173 48 56 62 10 65 4
5 6 135 217 60 70 78 12 81 5

6 7 162 260 72 84 93 14 98 6

7 8 190 303 84 98 109 17 114 7

8 9 217 347 96 112 124 19 130 8

9 10 244 390 J 08 126 140 22 146 9

10 11 271 433 120 140 155 24 163 10

11 12 298 477 131 154 171 26 179 11

12 14 325 520 143 168 186 29 195 12
13 15 352 563 155 182 202 31 211 13
14 16 379 607 167 196 217 34 228 14
15 17 406 650 179 210 233 36 244 15

16 18 433 693 191 224 248 38 260 16
17 19 460 737 203 238 264 41 276 17

18 20 487 780 215 252 279 43 293 18
19 22 515 823 227 266 295 46 309 19

20 23 542 867 239 280 310 48 325 20

21 24 569 910 251 294 326 50 341 21

22 25 596 953 263 308 341 53 358 22
33 26 623 997 275 322 357 55 374 23
24 27 650 1040 287 336 372 58 390 24

TABLE XIX.

moon's motions for minutes.

Min. 1 2 3

1

4 5 6 7 8 9 10 11 12 13 u

1

5 2 4 1 1 1 1

10 5 7 2 2 3 3 1

15 7 11 3 3 4 4 1 1 1

20 9 14 4 5 5 5 1 1 1

25 11 18 5 6 6 7 1 1 2
30 1 14 22 6 7 8 8 1 1 1 2
35 16 25 7 8 9 10 2 2 2
40 18 29 8 9 10 2 11 2 2 3
45 20 32 9 10 12 2 12 2 2 3
50 23 36 10 11 13 2 13 1 2 2 3
55 25 40 11 13 14 2 15 3 3 4
60

]
27 43 12 14 15 2 16 3 3 4



TABLES. 25

HELIOCENTRIC LONGITUDES, ETC. OF THE PLANET VENUS, AT THE TIMES OF

THE NEXT TWO TRANSITS OVER THE SUN's DISC.

The subject matter of this table is connected with Chapter IX, page 119.

Times.
Hel. Long, from
true Equinox.

Hel. Lat. Rad. Vec.

1874, Dec. 8th, at 12h.

I6h.

20h.

1882, Dec. 6th, at noon.
4h.

8h.

76° 41' 36.6"

76 57 44.1

77 13 51.5

74 12 55.7

74 29 2.5

74 45 9.7

4' 6.3" N.
5 3.5

6 1.0

4 58.1 S.

4 0.8

3 3.5

0.7203632
0.7203449
0.7203268

0.7205502
0.7205315
0.7205127

DIP OF THE HORIZON.

For the principle of computing the dip of the horizon see text-note, 54.

Hight Hight
in Dip. m Dip

feet. feet.

1 1' 1" 16 4' 3"

2 1 26 17 4 11

3 1 45 18 4 18
4 2 2 19 4 25
5 2 16 20 4 32
6 2 29 21 4 39

7 2 41 22 4 45
8 2 52 23 4 52

9 3 2 24 4 58
10 3 12 25 5 4
11 3 22 26 5 10
12 3 31 28 5 22
13 3 39 30 5 33
14 3 48 35 6 1

15 3 56 40 6 25

SUN S SEMIDIAMETER FOR EVERY TENTH DAT OF THE YEAR.

Days.

1

11

21

Jan.

/ //

16 18
16 17

16 17

July.

/ //

15 46
15 46
15 46

Days.

1

11

21

April.

/ //

16 1

15 58
15 55

Oct.

/ //

16 1

16 3

16 7

1

11

21

Feb.
16 15
16 13
16 11

August.
15 47
15 49
15 51

1

11
21

May.
15 53
15 51

15 49

Nov.
16 9

16 12
16 14

1

11
21

March.
16 10
16 7

1 16 4

Sept.

15 53
15 56
15 58

1

11

J

21

June.
15 48
15 46
15 46

Dec.
16 16
16 17

16 18

22



26 TABLE XX.

moon's epochs.

Years. Evection. Anomaly. Variation. Longitude.

s o ' " s ° ' " s o / //
s O ' »

1846 2 45 6 26 21 2 1 5 48 4 10 15 48 23

1847 7 21 16 35 3 25 4 23 5 15 25 29 2 25 11 28

1848 B. 1 23 7 5 7 6 51 37 10 7 14 21 7 17 45 8

1849 7 13 38 35 10 5 34 57 2 16 51 46 11 27 8 14

1850 1 4 10 4 1 4 18 18 6 26 29 11 4 6 31 20

1851 6 24 41 35 4 3 1 38 11 6 6 36 8 15 54 25

1852 B. 26 32 5 7 14 48 53 3 27 55 29 1 8 28 6

1853 6 17 3 34 10 13 32 13 8 7 32 53 5 17 51 11

1854 7 35 4 1 12 15 34 17 10 19 9 27 14 17

1855 5 28 6 33 4 10 58 54 4 26 47 43 2 6 37 . 22

1856 B. 11 29 57 3 7 22 46 9 9 18 36 36 6 29 11 3

1857 5 20 28 33 10 21 29 29 1 28 14 1 11 8 34 9

j

1858 11 11 2 1 20 12 50 6 7 51 26 3 17 57 14
1859 5 1 31 33 4 18 56 10 10 17 28 52 7 27 20 20

j

1860 B, 11 3 22 3 8 43 25 3 9 17 44 19 54

i 1861 4 23 53 33 10 29 26 45 7 18 55 9 4 29 17 6

1 1862 10 14 25 3 1 28 10 6 11 28 32 34 9 8 40 12

|
1863 4 4 56 33 4 26 53 27 4 8 10 1 18 3 18

1864 B. 10 6 47 2 8 8 40 41 8 29 58 51 6 10 36 58
1865 3 27 18 32 11 7 24 2 1 9 36 17 10 20 4

1866 9 17 50 2 2 6 7 23 5 19 13 42 2 29 23 10

1867 3 8 21 32 5 4 50 43 9 28 51 8 7 8 46 15

1868 B. 9 10 12 2 8 16 37 58 2 20 40 1 19 56

1869 3 43 33 11 15 21 19 7 17 25 4 10 43 2

1870 8 21 15 2 2 14 4 40 11 9 54 50 8 20 6 8

1871 2 11 45 31 5 12 47 1 3 19 31 16 29 28 13.7

1872 B. 8 2 17 8 11 30 21.7 7 29 8 41 5 8 51 19.4

1873 2 4 7 31 11 23 17 36.6 20 57 36 10 1 25 0.3

1874 7 24 39 2 22 57.3 5 35 2 10 48 6

1875 1 15 10 29 5 20 44 18 9 10 12 24 6 20 11 11.7

1876 B. 7 5 41 59 8 19 27 38.7 1 19 49 50 10 29 34 17.4

1877 1 7 32 30 1 14 53.6 6 11 38 40 3 22 7 58.3

1878 6 28 3 59 2 29 58 14.3 10 21 16 5 8 1 31 4
1879 18 35 28 5 28 41 35 3 53 30 10 54 9.7

1880 B. 6 9 6 58 8 27 24 55.7 7 10 30 55 4 20 17 15.4

1881 10 57 29 9 12 10.6 2 19 47 9 12 50 56.3

1882 6 1 28 58 3 7 55 31.3 4 11 57 12 1 22 14 2.0

1883 11 22 27 6 6 38 52.0 8 21 34 37 6 1 37 7.7

1884 B. 5 12 31 56 9 5 22 12.7 1 1 12 2 10 11 13.4

1885 11 14 22 28 17 9 27.6 5 23 54 3 3 33 54.3

1886 5 4 53 57 3 15 52 48.3 10 2 38 19 7 12 57 0.0

1887 10 25 25 26 6 14 36 9.0 2 12 15 44 11 22 20 5.7

1888 B. 4 15 56 57 9 13 19 29.7 6 21 53 9 4 1 43 11.0

1889 10 17 47 28 25 6 44.6 11 13 42 1 8 24 16 51.9

1890 4 8 18 57 3 23 50 5.3 3 23 19 26 1 3 39 57.6



TABLE X .

moon's epochs.

27

Years. Supp. of Node. II. V. VI. VII. VIII. IX.
i

X.

1846
s

4

o

16 35 9

s

11

o

7

i

56 254 258 937 941 847

|

113
1847 5 5 54 52 2 28 38 668 670 245 247 927 053
1848 B. 2 25 17 45 7 9 116 122 582 587 042 997
1849 6 14 37 27 10 20 41 531 535 889 893 122 937

1

1850 7 3 57 9 2 11 13 944 947 196 200 202 876 1

1851 7 23 16 51 6 1 45 358 359 504 506 282 816
!

1852 B. 8 12 39 44 10 3 27 806 811 841 846 398 760
:

1853 9 1 59 26 1 23 59 220 223 148 152 477 700
;

1854 9 21 19 9 5 14 31 634 636 456 459 557 639 !

1855 10 10 38 51 9 5 3 047 048 763 765 637 579
I

1856 B. 11 1 44 1 6 44 495 500 100 105 753 523 i

1857 11 19 21 26 4 27 16 909 912 407 411 832 463
!

1858 8 41 8 8 17 48 323 325 715 718 912 402 !

1859 28 51 8 20 736 737 023 024 992 342 !

1860 B. 1 17 23 43 4 10 1 184 189 359 364 108 286
|

1861 2 6 43 27 8 33 598 601 666 670 187 226
1862 2 26 3 9 11 21 5 012 014 974 977 267 165
1863 3 15 23 11 3 11 37 426 426 282 283 347 105

J

1864 B. 4 4 45 44 7 13 18 873 878 618 623 463 049
1865 4 24 5 46 11 3 50 287 291 926 929 542 989 1

1866 5 13 25 28 2 24 22 701 703 233 236 622 928
1867 6 2 45 10 6 14 54 115 115 544 542 702 868

1868 B. 6 22 7 43 10 16 36 563 567 877 882 818 812
1869 7 11 27 46 2 7 8 977 980 185 188 897 752
1870 8 47 28 5 27 40 390 392 493 495 977 691

1871 8 20 6 49 9 18 11 803 804 600 802 057 630
1872 B. 9 9 26 31 1 8 43 216 216 108 110 137 569
1873 9 28 49 24 5 10 25 664 668 444 450 252 514

i
1874 10 18 9 6 9 57 077 080 752 758 332 453
1875 11 7 28 48 21 29 490 492 054 064 412 392

]

1876 B. 11 26 48 31 4 12 1 904 905 364 370 492 331 i

1877 16 11 24 8 13 42 352 357 700 710 607 276
1878 1 5 31 6 4 14 765 769 008 018 687 215
1879 ] 24 50 48 3 24 46 178 181 316 326 767 154

i

1880 B. 2 14 10 30 7 15 18 593 593 624 630 847 093
1

i

1881 3 3 33 23 11 16 59 041 045 960 970 962 038
1882 3 22 53 5 3 7 31 454 457 268 278 042 977
1883 4 12 12 47 6 28 3 867 869 576 586 122 916
1884 B. 5 1 32 29 10 18 35 280 281 884 894 202 855
1885 5 20 55 22 3 20 16 728 733 220 234 317 800

1886 6 10 15 4 6 10 48 141 145 528 542 397 739
1887 6 29 34 46 10 1 20 554 557 836 850 477 678
1888 B. 7 18 54 28 1 21 52 967 969 144 158 557 617
1889 8 8 17 21 5 23 33 415 421 480 498 672 562

,
1890 8 27 36 3 9 14 5 828 833 788

|
806 752 501

j

2b*



28 TABLE XX.
moon's motions for months.

Months. FiVection Anomaly Variation. M. Lor gitude.

s o / //
s o ' a

B o / //
s o n

T ~i Com..
Jan

'
I Bis. . 11 18 41 1 11 16 56 6 11 17 48 33 11 16 49 25

Feb.]£om"
J Bis. .

11 20 48 42 1 15 53 17 54 48 1 18 28 6
11 9 29 43 1 1 56 59 5 43 21 1 5 17 31
10 7 40 26 1 20 50 4 11 29 15 15 1 27 24 27

April 9 28 29 8 3 5 50 57 17 10 3 3 15 52 32
May 9 7 58 51 4 7 47 56 22 53 24 4 21 10 3

8 28 47 33 5 22 48 49 1 10 48 11 6 9 38 9

8 8 17 16 6 24 45 48 1 16 31 32 7 14 55 40
17
i 29 5 59 8 9 46 42 2 4 26 20 9 3 23 46

September..

.

7 19 54 41 9 24 47 35 2 22 21 7 10 21 51 52
6 29 24 24 10 26 44 34 2 28 4 28 11 27 9 22

November. .

.

6 20 13 6 11 45 27 3 15 59 16 1 15 37 28
December . .

.

5 29 42 49 1 13 42 26 3 21 42 37 2 20 54 59

TABLE XX.
moon's motions for days.

Days. Evection. Anomaly. Variation. Mean Longitude.

1 0s 19 0' 0" 0s 0° 0' 0" 0s 0° 0' 0" 0s 0° 0' 0"

2 11 18 59 13 3 54 12 11 27 13 10 35

3 22 37 59 26 7 48 24 22 53 26 21 10

4 1 3 56 58 1 9 11 42 1 6 34 20 1 9 31 45

5 1 15 15 58 1 22 15 36 1 18 45 47 1 22 42 20

6 1 26 34 57 2 5 19 30 2 57 13 2 5 52 55

7 2 7 53 57 2 18 23 24 2 13 8 40 2 19 3 30

8 2 19 12 56 3 1 27 18 2 25 20 7 3 2 14 5

9 3 31 55 3 14 31 12 3 7 31 34 3 15 24 40

10 3 11 50 55 3 27 35 6 3 19 43 3 28 35 15

11 3 23 9 54 4 10 39 4 1 54 27 4 11 45 50

12 4 4 28 54 4 23 42 54 4 14 5 54 4 24 56 25

13 4 15 47 53 5 6 46 48 4 26 17 20 5 8 7

14 4 27 6 53 5 19 50 42 5 8 28 47 5 21 17 35

15 5 8 25 52 6 2 54 36 5 20 40 14 6 4 28 10

16 19 44 51 6 15 58 29 6 2 51 40 6 17 38 45

17 6 1 3 51 6 o 23 6 15 3 7 7 49 20

18 6 12 22 50 7 12 6 17 6 27 14 34 7 13 59 55

19 6 23 41 50 7 25 10 11 7 9 26 1 7 27 10 30

20 7 5 49 8 8 14 5 7 21 37 27 8 10 21 5

21 7 16 19 49 8 21 17 59 8 3 48 54 8 23 31 40

22 7 27 38 48 9 4 21 53 8 16 21 9 6 42 16

23 8 8 57 47 9 17 25 47 8 28 11 47 9 19 52 51

24 8 20 16 47 10 29 41 9 10 23 14 10 3 3 26

25 9 1 35 46 10 13 33 35 9 22 34 41 10 16 14 1

26 9 12 54 46 10 26 37 29 10 4 46 7 10 29 24 36

27 9 24 13 45 11 9 41 23 10 16 57 34 11 12 35 11

28 10 5 32 45 11 22 45 17 10 29 9 1 11 25 45 46

29 10 16 51 44 5 49 11 11 11 20 28 8 56 21

30 10 28 10 43 18 53 5 11 23 31 54 22 6 56

31 11 9 29 43 1 1 56 59 o 5 43 21 1 5 17 31



TABLE XX.

moon's motions for months.

29

Months. Supp. of Nc de. II. V. VI. VII. VIII.

000
966

IX.

000
964

X.

T "1 Com..
Jan

-jBis. .

s

11

o

29 56 49

s

11

o

18 51

000
966

000
961

000
972

000
995

Feb.lS-°
m"

J Bis. .

1 38 30 11 15 43 54 224 875 45 111 165
1 35 19 11 4 34 20 185 847 11 75 159
3 7 27 9 27 59 7 330 666 989 114 313

4 45 57 9 13 42 61 554 542 34 225 478
May 6 21 16 8 18 15 81 738 389 46 300 638

7 59 46 8 3 58 136 962 264 91 411 802
July 9 35 5 7 8 32 156 147 112 103 486 962

11 13 35 6 24 15 210 371 987 147 497 126

September..

.

12 52 5 6 9 58 265 595 862 193 708 291
14 27 24 5 14 32 285 780 710 204 783 451

November. .

.

16 5 53 5 15 339 4 585 250 894 615
December . .

.

17 41 13 4 4 49 359 188 |432 261 969 775

TABLE XX.
moon's motions foe days.

Days.

1

2
3

4
5

6

8

8

9

10
11

12
13

14
15
16
17
18

19
20
21

22
23
24
25
26
27
28
29
30
31

Supp. of Node

0°

1

1

1

1

1

1

1

1

1

1

1

1

0' 0"

3 11

6 21

9 32
12 52
15 53
19 4
22 14

25 25
28 36
31 46
34 57
38 7

41 18
44 29
47 39
50 50
54 1

57 11

22
3 33
6 43
9 54

13 5

16 15
19 26
22 36
25 47
28 58
32 8

35 19

II.

0s 0o 0'

11 9

22 18

3 27
14 37
25 46
6 55

2 18 4
2 29 13

10 22
21 31

2 40
13 50
24 59
6 8

17 17

28 26
9 35

20 44
1 53

13 3

24 12
5 21

16 30
27 39

8 48
19 57
1 6

10 12 16

10 23 25
11 4 34

9

9

10

000
34
68

102
136
170
204
238
272
306
340
374
408
442
476
510
544
578
612
646
680
714
748
782
816
850
884
918
952
986
020

VI.

000
39
79

118
158
197
237
276
316
355
395
434
474
513
553
592
632
671

711
750
790
829
869
908
948
987
027
066
106
145
185

VII.

000
28
56
85

113
141

169
198
226
254
282
311
339
367
395
424
452
480
508
537
565
593
621

650
678
706
734
762
791
819
847

VIII.

000
34
67

101

135
169
202
236
270
303
337
371

405
438
472
506
539
573
607

641
674
708
742
775
809
843
877
910
944
978
011

IX.

000
36
72

108
143
179
215
251
287
323
358
394
43Q
466
502
538
573
609
645
681

717
753
788
824
860
896
932
968
003
039
075

X.

000
5

11

16
21

27

32
37

43
48
53
58
64
69

74
80
85
90
96

101
106
112
117
122
128
133
138
143
149
154
151



m TABLE XX.

moon's motions for hours.

Hours. Evection. Anomaly. Variati*311 Longitude.

o i a o / a o i ll o i a

1 28 17 32 40 30 29 32 56
2 56 35 1 5 19 1 57 1 5 53
3 1 24 52 1 37 59 1 31 26 1 38 49
4 1 53 10 2 10 39 2 1 54 2 11 46
5 2 21 27 2 43 19 2 32 23 2 44 42

6 2 49 45 3 15 58 3 2 52 3 17 39
7 3 18 2 3 48 38 3 33 20 3 50 35
8 3 46 20 4 21 18 4 3 49 4 23 32
9 4 14 37 4 53 58 4 34 17 4 56 28

10 4 42 55 5 26 37 5 4 46 5 29 25

11 5 11 12 5 59 17 5 35 15 6 2 21
12 5 39 30 6 31 57 6 5 43 6 35 17
13 6 7 47 7 4 37 6 36 12 7 8 14
14 6 36 5 7 37 16 7 6 40 7 41 10
15 7 4 22 8 9 56 7 37 9 8 14 7

! 16 7 32 40 8 42 36 8 7 38 8 47 3
17 8 57 8 15 16 8 38 6 9 20
18 8 29 15 9 47 55 9 8 35 9 52 56
19 8 57 32 10 20 35 9 39 3 10 25 53
20 9 25 50 10 53 15 10 9 32 10 58 49

21 9 54 7 11 25 55 10 40 1 11 31 46
22 10 22 24 11 58 34 11 10 29 12 4 42
23 10 50 42 12 31 14 11 40 58 12 37 39
24

4

11 18 59 13 3 54 12 11 27 13 10 35

TABLE XXI.

moon's motions for minutes.

Min. Evec. Anomaly. Variations. Longitude.
Sup.

Node.
II.

/ // / // / // / a a //

1 28 33 30 33
5 2 21 2 43 2 32 2 45 1 2

10 4 43 5 27 5 5 5 29 1 5

15 7 4 8 10 7 37 8 14 2 7

20 9 26 10 53 10 10 10 59 3 9

25 11 47 13 37 12 42 13 43 3 12
30 14 9 16 20 15 14 16 28 4 14
35 16 30 19 3 17 47 19 13 5 16
40 18 52 21 46 20 19 21 58 5 19
45 21 13 24 30 22 52 24 42 6 21
50 23 34 27 13 25 24 27 27 7 23
55 25 56 29 56 27 56 30 12 7 26
60 28 17 32 40 30 29 32 56 8 28



TABLE XX.

moon's motions> FOR HOURS.

r
'

Hours.
Supp. of

Node.
II. V. VI. VII. VIII. IX. X.

/ // O '

1 8 28 1 2 1 1 1

2 16 56 3 3 2 3 3
3 24 1 24 4 5 4 4 4 1

4 32 1 52 6 V 5 6 6 1

5 40 2 19 7 8 6 7 7 1

6 48 2 47 9 10 7 9 9 1

7 56 3 15 10 12 8 10 10 2
8 1 4 3 43 11 13 9 11 12 2
9 1 11 4 11 13 15 11 13 13 2

10 1 19 4 39 14 16 12 14 15 2

31 1 27 5 7 16 18 13 15 16 2

12 1 35 5 35 17 20 14 17 18 3

13 1 43 6 2 18 21 15 18 19 3

14 1 51 6 30 20 23 16 19 21 3

15 1 59 6 58 21 25 18 21 22 3

16 2 7 7 26 23 26 19 22 24 4
17 2 15 7 54 24 28 20 24 25 4
18 2 23 8 22 26 29 21 25 27 4
19 2 31 8 50 27 31 22 27 28 4
20 2 39 9 18 28 32 24 28 30 4

21 2 47 9 45 30 34 25 29 31 5

22 2 55 10 13 31 36 26 31 33 5

23 3 3 10 41 33 38 27 32 34 5

24 3 11 11 9 34 39 28 34 36 5

31

TABLE A.*

PERTURBATIONS OF EARTH'S

RADIUS VECTOR.

TABLE B.

f)'s APPROX. LAT. ARG. N.

Arg. I.

8

II.

4

III.

3

Arg. I. II. III.

500 2 4
50 8 4 3 550 2 1 4
100 7 4 2 600 3 1 3

150 7 4 1 650 3 2 2
200 6 4 700 4 3 1

250 5 4 750 5 4
300 4 3 1 800 6 4
350 3 2 2 850 7 4 1

400 3 1 3 900 4 2
450 2 1 4 950 8 4 3

500 2 4 1000 8 4 3

N. N. S. S. O's
A. D. D. A. Lat.

500 500 1000
5 495 505 995 9 41

10 490 510 990 19 22
15 485 515 985 29 3

20 480 520 980 38 40
25 475 525 975 48 18
30 470 530 970 58 40
35 465 535 965 67 28
40 460 540 960 76 45
45 455 545 955 86 21

50 450 550 950 95 26
j

55 445 555 945 04 56 !

Tables A. and B. are put in this place on account of the convenience in the page.



32 TABLE XXI

FIRST EQUATION OP MOON's LONGITUDE.—ARGUMENT 1.

IT

Arg.

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

12 40
11 58
11 16
10 34

9

9

10

11

11

53
12

8 32
54
16
40
6

33
2

32
5

40
17

56
38
22
9

58
50
44
41

41

43
48
55
5

17

32
49
8

30
53
19
46
16
47
19
53

28
5

42
20
59
39

19
59

12 40

Diff.

42
42
42
41

41

40
38
38
36
34
33
31

30
27

25
23
21

18
16
13
11

8
6

3

2
5

7

10
12
15
17

19

22
23
26
27
30
31

32
34
35

37
37

38
39
40
40
40
41

Arg

5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500
6*00
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000

12 40
13 20
14 1

14 41

15 20
16
16 38
17 15
17 52
18 27
19 1

19 33
20 4
20 33
21 1

21 27
21 50
22 12
22 31

22 48
23 3
23 15
23 25
23 32
23 37

23 39
23 39
23 36
23 30
23 22
23 11

22 58
22 42
22 24
22 3
21 40
21 15
20 48
20 18

19 47
19 14
18 40
18 4
17 26
16 48
16 8
15 27
14 46
14 4
13 22
12 40

Diff.

40
41
40
39
40
38

37
37
35

34
32
31
29
28
26
23
22
19
17
15
12

10
7

5

2

3

6

8

11

13
16
18
21

23
25
27
30
31

33
34
36
38
38
40
41
41

42
42
42



TABLE XXII.

EQUATIONS 2 TO 7 OF MOOn's LONGITUDE.

33

-ARGUMENTS 2 TO i .

Arg. 2 3 4 5 6 7 Arg.

, II , II i II / II / a / II

2500 4 57 2 6 30 3 39 6 1 2500
2600 4 57 2 6 30 3 39 6 1 2400
2700 4 56 3 6 29 3 38 7 1 2300
2800 4 55 3 6 27 3 37 8 2 2200
2900 4 53 4 6 24 3 36 9 3 2100
3000 4 50 5 6 21 3 34 10 4 2000
3100 4 47 6 6 17 3 32 12 5 1900
3200 4 43 8 6 12 3 29 14 6 1800
3300 4 39 9 6 7 3 26 17 8 1700
3400 4 34 11 6 1 3 22 19 10 1600
3500 4 29 13 5 54 3 18 22 12 1500
3600 4 23 15 5 47 3 14 25 14 1400
3700 4 17 18 5 39 3 10 29 17 1300
3800 4 11 20 5 30 3 5 33 19 1200
3900 4 4 23 5 21 3 37 22 1100
4000 3 57 26 5 12 2 54 41 25 1000
4100 3 49 29 5 2 2 49 45 28 900

4200 3 41 32 4 52 2 43 50 31 800
4300 3 33 35 4 41 2 37 54 35 700
4400 3 24 39 4 30 2 30 59 38 600
4500 3 15 42 4 19 2 24 1 4 42 500
4600 3 7 46 4 7 2 17 1 9 45 400
4700 2 58 49 3 56 2 10 1 14 49 300
4800 2 48 53 3 44 2 4 1 19 53 200
4900 2 39 56 3 32 1 57 1 25 56 100
5000 2 30 ] 3 20 1 50 1 30 1 0000
5100 2 21 1 4 3 8 1 43 1 35 1 4 9900
5200 2 11 1 7 2 56 1 36 1 40 1 7 9S00
5300 2 2 1 11 2 44 1 29 1 46 1 11 9700
5400 1 53 1 14 2 33 1 23 1 51 1 15 9600
5500 1 44 1 18 2 21 1 16 1 56 1 18 9500
5600 1 36 1 21 2 10 1 10 2 1 1 22 9400
5700 1 27 1 25 1 59 1 3 2 6 1 25 9300
5800 1 19 1 28 1 48 57 2 10 1 28 9200
5900 1 11 1 31 1 38 51 2 15 1 32 9100
6000 1 3 1 34 1 28 46 2 19 1 35' 9000
6100 56 1 37 1 19 40 2 23 1 38 8900
6200 49 1 39 1 10 35 2 27 1 40 8800
6300 33 1 42 1 1 30 2 31 1 43 8700
6400 36 1 44 53 26 2 35 1 46 8600
6500 31 1 47 46 21 2 38 1 48 8500
6600 26 1 49 39 18 2 41 1 50 8400
6700 21 1 51 33 14 2 43 1 52 8300
6800 17 1 52 28 11 2 46 1 54 8200
6900 13 1 54 23 8 2 48 1 55 8100
7000 10 1 55 19 6 2 50 1 56 8000
7100 7 1 56 16 4 2 51 1 57 7900
7200 5 • 1 57 13 2 2 52 1 58 7800
7300 4 1 57 11 1 2 53 1 59 7700
7400 3 1 58 10 1 2 54 1 59 7600
7500 3 1 58 18 1 2 54 1 59 7500

1



34 TABLE XXIII.

EQUATIONS 8 TO 9 OF MOON's LONGITUDE. ARGUMENTS 8 TO 9.

Arg. 8 9 Arg. 8 9

, II / II t ir / ft

1 20 1 20 5000 1 20 1 SO
100 1 15 1 29 5100 1 24 1 26
200 1 11 1 37 5200 1 29 1 31
300 1 7 1 46 5300 1 33 1 37

400 1 2 1 54 5400 1 37 1 42
500 58 2 1 5500 1 42 1 47
600 54 2 8 5600 1 46 1 51
700 50 2 15 5700 1 50 1 55
800 46 2 20 5800 1 54 1 58

900 42 2 25 5900 1 58 2
1000 38 2 29 6000 2 1 2 1

1?00 35 2 32 6100 2 5 2 2
1200 31 2 34 6200 2 8 2 2
1300 28 2 35 6300 2 11 2 1

1400 25 2 35 6400 2 14 1 59
1500 33 2 34 6500 2 17 1 56
1600 20 2 32 6600 2 19 1 52
1700 18 2 29 6700 2 22 1 48
1800 16 26 6800 2 24 1 43
1900 14 2 21 6900 2 25 1 38
2000 13 2 16 7000 2 27 1 32
2100 11 2 11 7100 2 28 1 25
2200 10 2 4 7200 2 29 1 18

2300 10 1 58 7300 2 30 1 11

2400 9 1 51 7400 2 30 1 4
2500 9 1 43 7500 2 31 56

2600 10 1 36 7600 2 30 49

2700 10 1 29 7700 2 30 42

2800 11 1 22 7800 2 29 36
2900 12 1 15 7900 2 28 29
3000 13 1 8 8000 2 27 24
3100 15 1 2 8100 2 26 18
3200 16 57 8200 2 24 14

3300 18 52 8300 2 22 10

3400 21 47 8400 2 20 8

3500 23 44 8500 2 17 6

3600 26 41 8600 2 15 5

3700 29 39 8700 2 12 5

3800 32 38 8800 2 9 6

3900 35 38 8900 2 5 8

4000 39 39 9000 2 2 11

4100 42 40 9100 1 58 15

4200 46 42 9200 1 54 20
4300 50 45 9300 1 50 25

4400 54 49 9400 1 46 32

4500 58 53 9500 1 42 39

4600 1 3 58 9600 1 38 46

4700 1 7 1 3 9700 1 33 54

4800 1 11 1 9 9800 1 29 1 3

4900 1 16 1 14 9900 1 24 1 11

5000 1 20 1 20 10000 1 20 1 20



EQUATIONS 10 AND 11.

TABLE XXIII.

EQUATIONS 12 TO 19.

35

EQUATION 20.

Arg. 10 11 Arg. 10 11

n n ii //

10 10 500 10 10

10 9 11 510 10 11

20 9 12 520 9 »
30 8 13 530 9 12

40 7 14 540 8 13

50 7 15 550 8 14

60 6 16 560 8 14

70 6 17 570 8 15

80 5 17 580 7 15

90 5 18 590 7 15

100 5 18 600 7 16

110 4 19 610 7 Ifil

120 4 19 620 7 16

130 4 19 630 7 18

140 4 19 640 7 15

150 4 19 650 8 15

160 4 19 660 8 15

170 4 18 670 8 14

180 5 18 680 9 13

190 5 17 690 9 13

200 5 16 700 10 12

210 6 16 710 10 11

220 6 15 720 11 10

230 7 14 730 11 9

240 7 13 740 12 9

250 8 12 750 12 8

260 8 11 760 13 7

270 9 10 770 13 6

280 9 10 780 14 5

290 10 9 790 14 4

300 10 8 800 15 3

310 11 7 810 15 3

320 11 6 820 15 2

330 12 6 830 16 2

340 12 5 840 16 1

350 12 5 850 16 1

360 12 5 860 16 1

370 13 4 870 16 1

380 13 4 880 16 1

390 13 4 890 16 1

400 13 4 900 15 2

410 13 5 910 15 2

420 12 5 920 15 3

430 12 5 930 14 3

440 12 6 940 14 4

450 12 6 950 13 5

460 11 7 960 13 6

470 11 8 970 12 7

480 11 8 980 11 8

490 10 9 990 11 9

500 10 10 1000 10 10

[

Arg.'l2 13 14 lslie,
1

1 i

i

17 18 19 Arg.!

a // a n it n
250 2 2 8 34 3 17 3 250

260 2 2 8 34 3 17 3 240

270 2 2 8 34 3 17 3 230

280 3 2 8 33 3 17 3 220

290 3 2 8 33 4 16 3 210

300 3 2 8 33 4 16 3 200

310 3 3 9 1 33
!

4 16 3 190

320 4 3 9 1 32 4 16 4 180

330 4 4 9 1 32 4 16 4 170

340 5 4 10 2 32 4 16 4 160

350 6 5 10 2 31 5 15 4 150

360 6 6 11 2 31 5 15 5 140

370 7 7 11 3 30 5 15 5 130

380 8 7 12 3 29 5 15 5 120

390 9 8 12 4 29 6 14 6 110

400 10 9 13 4 28 6 14 6 100

410 10 10 13 5 27 6 14 6 90

420 11 11 14 5 27 7 13 7 80

430 12 12 15 6 26 7 13 7 70

440 13 13 15 6 25 8 12 7 60

450 14 14 16 7 24 8 12 8 50

460 16 15 17 7 23 8 12 8 40

470 17 16 18 8 23 9 11 9 30

480 18 18 18 9 22 9 11 9 20

490 19 19 19 9 21 10 10 10 10

500 20 20 20 10 20 10 10 10 000

510 21 21 21 11 19 10 10 10 990

520 22 22 21 11 18 11 9 11 980

530 23 23 22 12 17 11 9 11 970

540 24 25 23 12 17 12 8 12 960

550 25 26 24 13 16 12 8 12 950

560 26 27 24 14115 12 7 13 940

570 27 23 25 14 14 13 7 13 930

580 28 29 26 15 13 13 7 13 920

590 29 30 26 15 13 13 6 14 910

600 30 31 1 27 16 12 14 6 14 900

610 31 32 2S 16 11 14 6 14 890

620 32 33 25 17 11 14 5 15 880

630 33 33 29 17 10 15 5 15 870

640 M 34 ,29 18 9 15 5 15 860

650 134 35 30 is; 9 15 5 16 850

660 35 36 30 18 8 16 4 16 840

670 1 35 36 31 19 8 16 4 16 830

680 36 37 31 19 8 16 4 16 820

690 36 37 31 19 7 16 4 17 810

700 37 37 32 19 7 16 4 17 800

710 37 38 32 20 7 16 3 17 790

720 37 38 32 20 6 16 3 17 780

730 38 38 32 20 6 16 3 17 770

740 38 38 32 20' 6 17 3 17 760

750 ,38 38 32 20; 6 17 3 111 1 750

Arg. 20

ii

Arg.

10 500

10 11 510

20 12 520

30 13 530

40 13 540.

50 14 550

60 15 560

70 16 570

80 16 580

90 17 590

100 17 600

110 17 610

120 17 620

130 17 630

140 17 640

150 17 650

160 17 660

170 16 670

180 16 680

190 15 690

200 14 700

2-10 13 710

220 13 720

230 12 730

240
i

11 740

1 250 10 750

1 260 9 760

1 270 8 770

|
280 7 780

|

290 6 790

300 6 800

310 5 810

320 4 820

330 4 830

340 3 840

350 3 850
360 3 860

370 3 870
380 3 880

390 3 890

400 3 900
410 3 910
420 4 920
430 4 930
440 5 940

450 6 950
460 6 960
470 7 970
480 8 980
490 9 990
500 10 1000

22 2G



36 TABLE XXIV,

Evection. Argument.—Evection Corrected.

0s Is

2° 10' 43"

lis Ills IVs Vs

Oo l'c>3Q' 0" 2° 40 10" 2° 50' 25" 20 39' 8" 2° 9' 42"
1 1 31 25 2 11 57 2 40 51 2 50 23 2 38 25 2 8 29
2 1 32 51 2 13 9 2 41 30 2 50 20 2 37 40 2 7 16
3 1 34 16 2 14 21 2 42 8 2 50 15 2 36 55 2 6 2
4 1 35 42 2 15 31 2 42 45 2 50 9 2 36 8 2 4 47
5 1 37 7 2 16 41 2 43 21 2 50 1 2 35 19 2 3 32
6 1 38 32 2 17 50 2 43 55 2 49 52 2 34 30 2 2 16
7 1 39 57 2 18 58 2 44 27 2 49 41 2 33 40 2 1

8 1 41 21 2 20 5 2 44 59 2 49 29 2 32 48 1 59 43
9 1 42 46 2 21 11 2 45 29 2 49 15 2 31 55 1 58 26

10 1 44 10 2 22 17 2 45 57 2 49 2 31 2 1 57 8
11 1 45 34 2 23 21 2 46 24 2 48 43 2 30 7 1 55 49
12 1 46 58 2 24 24 2 46 50 2 48 26 2 29 11 1 54 30
13 1 48 21 2 25 26 2 47 14 2 48 6 2 28 14 1 53 11

14 1 49 44 2 26 28 2 47 37 2 47 45 2 27 16 1 51 51

15 1 51 7 2 27 28 2 47 59 2 47 23 2 26 17 1 50 31

16 1 52 29 2 28 27 2 48 19 2 47 2 25 17 1 49 11
17 1 53 51 2 29 25 2 48 37 2 46 35 2 24 16 1 47 50
18 1 55 12 2 30 21 2 48 54 2 46 8 2 23 14 1 46 29
19 1 56 33 2 31 17 2 49 10 2 45 41 2 22 11 1 45 7

20 1 57 53 2 32 11 2 49 24 2 45 12 2 21 7 1 43 46
21 1 59 13 2 33 5 2 49 37 2 44 41 2 20 2 1 42 24
22 2 32 2 33 57 2 49 48 2 44 9 2 18 56 1 41 2
23 2 1 51 2 34 48 2 49 58 2 43 36 2 17 50 1 39 39
24 2 3 9 2 35 38 2 50 6 2 43 2 2 16 43 1 38 17

25 2 4 26 2 36 26 2 50 13 2 42 26 2 15 34 1 36 54
26 2 5 43 2 37 13 2 50 19 2 41 49 2 14 25 1 35 32
27 2 6 59 2 37 59 2 50 23 2 41 11 2 13 16 1 34 9

23 2 8 15 2 38 44 2 50 25 2 40 31 2 12 5 1 32 46
29 2 9 30 2 39 28 2 50 26 2 39 50 2 10 54 1 31 23
30 2 10 43 2 40 10 2 50 25 2 39 8 2 9 42 1 30

TABLE XXV.
Moon's Equatorial Parallax. Argument. Arg. of the Evection.

Os Is Hs Ills IVs Vs
I

1

0° V 28" 1' 23" 1' 9" 0' 50" 0' 32" 0' 18" 30°

2 1 28 1 22 1 8 49 30 18 28
4 1 28 1 22 1 7 47 29 17 26
6 1 28 1 21 1 5 46 28 17 24
8 1 28 1 20 1 4 45 27 16 22

10 1 28 1 19 1 3 44 26 16 20
12 1 27 1 18 1 2 42 25 15 18
14 1 27 1 17 1 41 24 15 16
16 1 27 1 16 59 40 24 15 14
18 1 26 1 15 58 39 • 23 14 12
20 1 26 1 14 57 37 22 14 10
22 1 25 1 13 55 36 21 14 8

24 1 25 1 12 54 35 20 14 6

26 1 24 1 11 53 34 20 14 4
28 1 24 1 10 51 33 19 13 2
30 1 23 1 9 50 32 18 13

XIs Xs IXs VTIIs VIIs Vis



TABLE XXIV.
Evection. Argument.—Evection Corrected.

37

Vis VIIs VIIIs IXs i

1

Xs XIs

Oo ic 30' 0" 0o 50' 18" 0o 20' 52" 0° 9' 34"
i

0o 19' 50" 0O49'16"

1 1 28 37 49 6 20 10 9 34 20 32 50 30
2 1 27 14 47 55 19 29 9 35 21 16 51 45
3 1 25 51 46 44 18 49 9 37 22 1 53 1

4 1 24 28 45 34 18 11 9 41 22 47 54 17
5 1 23 6 44 26 17 34 9 47 23 34 55 33
6 1 21 43 43 17 16 58 9 54 24 22 56 51

1 20 20 42 10 16 24 10 2 25 12 58 9
8 1 18 58 41 4 15 50 10 12 26 3 59 28
9 1 17 36 39 58 15 19 10 23 26 55 1 47

10 1 16 14 38 53 14 48 10 36 27 48 1 2 7

11 1 14 52 37 49 14 19 10 50 28 43 1 3 27

12 1 13 31 36 46 13 51 11 5 29 39 1 4 48
13 1 12 10 35 44 13 25 11 23 o 30 35 1 6 9

14 1 10 49 34 43 13 11 41 31 33 1 7 31

15 1 9 29 33 43 12 37 12 1 32 32 1 8 53

16 1 8 09 32 44 12 14 12 23 33 32 1 10 16
17 1 6 49 31 46 11 54 12 45 34 34 1 11 39

18 1 5 30 30 49 11 34 13 10 35 36 1 13 2

19 1 4 11 29 53 11 16 13 35 36 39 1 14 26
20 1 2 52 28 58 11 14 3 37 43 1 15 50
21 1 1 34 28 5 10 45 14 31 o 38 48 1 17 14
22 1 17 27 12 10 31 15 1 o 39 55 1 18 39
23 59 26 20 10 19 15 33 41 2 1 20 3

24 o 57 44 25 30 10 8 16 5 42 10 1 21 28
25 o 56 28 24 40 9 59 16 39 o 43 19 1 22 53
26 55 13 23 52 9 51 17 15 o 44 29 1 24 18
27 53 58 23 5 9 45 17 52 45 39 1 25 44
28 52 44 22 20 9 40 18 30 46 51 1 27 9

29 51 31 21 35 9 36 19 9 48 3 1 28 34
30 50 18 1 20 52 9 34 19 50 49 16 1 30

TABLE P.

Moon's Equatorial Parallax. Argument.—Arg. of the Variation.

~lp~

0s Is lis nis rvs Vs

56" 42" 16" 4" 18" 44" 30o

2 55 41 14 4 19 46 28

4 55 39 13 4 21 47 26

6 55 37 12 4 23 48 24

8 55 35 10 5 24 50 22

10 54 34 9 6 26 51 20

12 53 32 8 6 28 52 18

14 52 30 7 7 30 53 16

16 51 28 6 8 32 54 14

18 50 26 6 9 34 55 12

20 49 2-4 5 10 35 55 10

22 48 23 4 12 37 56 8

24 47 21 4 13 39 56 6

26 45 19 4 14 41 57 4

28 44 18 4 16 42 57 2

30 42 16 4 18 44 57

XIs Xs IXs VIIIs VHs Vis



38 TABLE XXV.
Equation of Moon's Center. Argument. -Anomaly corrected.

0s » lis Ills IVs Vs

0° 7c 0' 0" 10° 20' 58" 12° 38' 44" 13© 17' 35" 12° 16' 21" 9o 58 29"

1 7 7 5 10 26 52 12 41 43 13 17 5 12 12 48 9 52 58
! 2 7 14 10 10 32 42 12 44 35 13 16 28 12 9 11 9 47 24

3 7 21 15 10 38 27 12 47 20 13 15 44 12 5 29 9 41 48
4 7 28 19 10 44 8 12 49 59 13 14 53 12 1 41 9 36 10

5 7 35 23 10 49 43 12 52 30 13 13 56 11 57 49 9 30 29

6 7 42 26 10 55 14 12 54 55 13 12 52 11 53 52 9 24 46
7 7 49 28 11 39 12 57 12 13 11 41 11 49 50 9 19 1

8 7 56 28 11 6 12 59 23 13 10 24 11 45 44 9 13 13

9 8 3 28 11 11 15 13 1 26 13 9 1 11 41 33 9 7 24
10 8 10 26 11 16 24 13 3 23 13 7 31 11 37 17 9 1 32

11 8 17 22 11 21 29 13 5 12 13 5 54 11 32 57 8 55 39

12 8 24 17 11 26 27 13 6 55 13 4 12 11 28 33 8 49 44

13 8 31 10 11 31 20 13 8 30 13 2 23 11 24 5 8 43 47

14 8 38 1 11 36 8 13 9 59 13 27 11 19 32 8 37 49

15 8 44 50 11 40 49 13 11 20 12 58 26 1] 14 55 8 31 49

16 8 51 36 11 45 25 13 12 34 12 56 18 11 10 14 8 25 48 j

17 8 58 20 11 49 54 13 13 41 12 54 5 11 5 30 8 19 46
18 9 5 1 11 54 18 13 14 41 12 51 45 11 41 8 13 42
19 9 11 39 11 58 35 13 15 34 12 49 19 10 55 49 8 7 38
20 9 18 15 12 2 47 13 16 20 12 46 47 10 50 53 8 1 32

21 9 24 47 12 6 52 13 16 59 12 44 10 10 45 53 7 55 26
22 9 31 16 12 10 50 13 17 31 12 41 27 10 40 50 7 49 18

23 9 37 42 12 14 42 13 17 56 12 38 38 10 35 43 7 43 10

24 9 44 4 12 18 28 13 18 14 12 35 43 10 30 33 7 37 1

25 9 50 23 12 22 7 13 18 24 12 32 43 10 25 20 7 30 52

26 9 56 38 12 25 40 13 18 28 12 29 37 10 20 4 7 24 42
27 10 2 49 12 29 6 13 18 25 12 26 26 10 14 45 7 18 32

28 10 8 56 12 32 25 13 18 16 12 23 10 10 9 22 7 12 21

29 10 14 59 12 35 38 13 17 59 12 19 48 10 3 57 7 6 11

30 10 20 58 12 38 44 13 17 35 12 16 21 9 58 29 7

TABLE XXVI.
Moon's Equatorial Parallax. Argument.- -Corrected Anomaly.

0s Is lis Ills IVs Vs

0° 58' 58''' 58' 27" 57' 8" 55' 30" 54' 2" 53' 3" 30°

2 58 58 58 23 57 2 55 23 53 57 53 28
4 58 57 58 19 56 55 55 17 53 52 52 58 26
6 58 56 58 14 56 49 55 11 53 47 52 56 24
8 58 55 58 10 56 42 55 4 53 43 52 54 22

10 58 54 58 5 56 36 54 58 53 38 52 52 20
12 58 53 58 56 29 54 52 53 34 52 50 18
14 58 51 57 55 56 22 54 46 53 30 52 49 16
16 58 49 57 49 56 16 54 40 53 26 52 47 14
18 58 46 57 44 56 9 54 34 53 22 52 46 12
20 58 44 57 38 56 3 54 29 53 19 52 45 10
22 58 41 57 32 55 56 54 23 53 15 52 44 8
24 58 38 57 26 55 49 54 18 53 12 52 43 6
26 58 34 57 20 55 43 54 12 53 9 52 43 4
28 58 31 57 14 55 36 54 7 53 6 52 43 2
30 58 27 57 8 55 30 54 2

VIHs

53 3 52 43

L—.-. — XIs Xs IXs VIIs 1



TABLE XXV
I

Equation of Moon's Center. Argument.—Anomaly corrected.

Vis VIIs VIIIs IXs
|

Xs XIs

0° 70 0' 0" 40 1' 31" ic 43' 39

'

0o 42' 25" lc 21' 16" 3c 39' 2"
1 6 53 49 3 56 3 1 40 12 42 1 1 24 22 3 45 1

2 6 47 39 3 50 38 1 36 50 41 44 1 27 35 3 51 4
3 6 41 28 3 45 15 1 33 34 41 35 1 30 54 3 57 11
4 6 35 18 3 39 56 1 30 23 41 32 1 34 20 4 3 22
5 6 29 8 3 34 40 1 27 17 41 36 1 37 53 4 9 37
6 6 22 59 3 29 26 1 24 17 41 46 1 41 32 4 15 55

6 16 50 3 24 17 1 21 22 42 4 1 45 18 4 22 18
8 6 10 42 3 19 10 1 18 33 42 29 1 49 10 4 28 44
9 6 4 34 3 14 7 1 15 50 43 1 1 53 8 4 35 13

10 5 58 28 3 9 7 1 13 12 43 40 1 57 13 4 41 45
11 5 52 22 3 4 11 1 10 41 44 26 2 1 24 4 48 21
12 5 46 17 2 59 19 1 8 15 45 19 2 5 42 4 54 59
13 5 40 14 2 54 30 1 5 55 46 19 2 10 5 5 1 40
14 5 34 12 2 49 46 1 3 42 47 26 2 14 35 5 8 24
15 5 28 11 2 45 5 1 1 34 48 40 2 19 11 5 15 10
16 5 22 11 2 40 28 59 33 50 1 2 23 52 5 21 59 i

17 5 16 13 2 35 55 57 37 51 30 2 28 39 5 28 50
18 5 10 16 2 31 27 55 48 53 5 2 33 32 5 35 43
19 5 4 21 2 27 3 54 6 54 47 2 38 31 5 42 37
20 4 58 28 2 22 43 52 29 56 37 2 43 35 5 49 34
21 4 52 36 2 18 27 50 59 58 33 2 48 45 5 56 32
22 4 46 47 2 14 16 49 36 1 37 2 54 6 3 31
23 4 40 59 2 10 10 48 19 1 2 48 2 59 21 6 10 32
24 4 36 14 2 6 8 47 8 1 5 5 3 4 46 6 17 34
25 4 29 31 2 2 11 46 4 1 7 30 3 10 17 6 24 37
26 4 23 50 1 58 19 45 7 1 10 1 3 15 52 6 31 41
27 4 18 11 1 54 31 44 16 1 12 40 3 21 33 6 38 45
28 4 12 35 1 50 49 43 32 1 15 25 3 27 18 6 45 50 1

29 4 7 2 1 47 11 42 55 1 18 17 3 33 8 6 52 55
30 4 1 31 1 43 39 42 25 1 21 16 3 39 2 7

2c*



40 TABLE XXVII.

VARIATION.

Argument.—Variation, corrected.

0s Is lis Ills IVs Vs

o o ' a O ' a o / it o / a o / a o / II

38 1 8 1 1 6 58 35 54 5 29 6 2
2 40 26 1 9 7 1 5 36 33 27 4 21 7 24
4 42 52 1 10 3 1 4 5 31 3 22 8 55
6 45 16 1 10 50 1 2 27 28 34 2 33 10 34
8 47 38 1 11 26 1 42 26 11 1 54 12 22

10 49 57 1 11 53 58 49 23 51 1 24 14 17
12 52 13 1 12 9 56 50 21 34 1 5 16 19
14 54 24 1 12 15 54 45 19 22 57 18 27
16 56 30 1 12 10 52 35 17 15 59 20 41
18 58 30 1 11 55 50 21 15 13 1 11 23
20 1 24 1 11 30 48 2 13 17 1 34 25 23
22 1 2 11 1 10 55 45 40 11 28 2 8 27 50
24 1 3 51 1 10 10 43 16 9 47 2 51 30 20
26 1 5 23 1 9 15 40 50 8 13 3 45 32 52
28 1 6 47 1 8 11 38 22 6 47 4 48 35 26
30 1 8 1 1 6 58 35 54 5 26 6 2 38

Vis VIIs VIIIs IXs Xs XIs

o o 1 a o / a o / a o ' a o / a O ' a

38 1 9 58 1 10 30 40 6 9 2 7 58
2 40 34 1 11 11 1 9 13 37 38 7 49 9 13
4 43 8 1 12 15 1 7 47 35 10 6 45 10 37
6 45 40 1 13 9 1 6 13 32 44 5 50 12 9
8 48 10 1 13 52 1 4 31 30 19 5 5 13 49

10 50 37 1 14 26 1 2 42 27 58 4 29 15 36
12 53 1 14 48 1 47 25 39 4 4 17 30
14 55 19 1 15 1 58 45 23 25 3 50 19 30
16 57 33 1 15 3 56 38 21 15 3 45 21 36
18 58 41 1 14 54 54 25 19 10 3 51 23 47
20 1 1 43 1 14 35 52 9 17 11 4 7 26 3
22 1 3 38 1 14 6 49 49 15 18 4 34 28 22
24 1 5 25 1 13 27 47 26 13 33 5 10 30 44
26 1 7 5 1 12 38 45 11 54 5 57 33 8
28 1 8 36 1 11 39 42 33 10 24 6 53 35 33
30 1 9 58 1 10 30 40 6 9 2 7 58 38



TABLE XXVIII.
moon's distance from the north pole of the ecliptic.

Argument. Supplement of Node-j-Moon's Orbit Longitude.

41

nis IVs Vs Vis VIIs VIIIs

0° 84° S9' 16" 85° 20' 43" 87° 13' 47" 89° 48' 0" 92° 22' 13" 94° 15' 17" 30°

2 84 39 27 85 26 16 87 23 12 89 58 46 92 31 27 94 20 31 28
4 84 40 1 85 32 9 87 32 48 90 9 31 92 40 30 94 25 25 26

6 84. 40 58 85 38 20 87 42 33 90 20 14 92 49 19 94 29 59 24
8 84 42 17 85 44 50 88 52 28 90 30 55 92 57 56 94 34 12 22

10 84 43 58 85 51 37 88 2 31 90 41 33 93 6 18 94 38 4 20

12 84 46 2 85 58 42 88 12 42 90 52 7 93 14 27 94 41 35 18

14 84 48 27 86 6 3 88 23 91 2 36 93 22 20 94 44 45 16

16 84 51 15 86 13 40 88 33 24 91 13 93 29 57 94 47 32 14

18 84 54 25 86 21 33 88 43 53 91 23 18 93 37 18 94 49 58 12

20 84 57 56 86 29 42 88 54 27 91 33 29 93 44 23 94 52 2 10

22 85 1 48 86 38 4 89 5 5 91 43 32 93 51 10 94 53 43 8

24 88 6 1 86 46 41 89 15 46 91 53 27 93 57 40 94 55 2 6

m 85 10 35 86 55 30 89 26 29 92 3 12 94 3 51 94 55 59 4

28 85 15 29 87 4 32 89 37 14 92 12 48 94 9 44 94 56 33 2
30 85 20 48 87 13 47 89 48 92 22 13 94 15 17 94 56 44

ns Is 0s XIs Xs IXs
i

TABLE XXIX.
EQUATION II OF THE MOON'S POLAR DISTANCE.

Argument II, corrected.

His IVs Vs Vis VHs VIHs

0° 0' 14" 1' 24" 4' 37" 9' 0" 13' 23" 16' 36" 30°

2 14 1 34 4 53 9 18 13 39 16 45 28
4 15 1 44 5 9 9 37 13 54 16 53 26
6 17 1 54 5 26 9 55 14 9 17 1 24

8 19 2 5 5 43 10 13 14 24 17 S 22

10 22 2 17 6 10 31 14 38 17 14 20

12 25 2 29 6 17 10 49 14 52 17 20 18

14 29 2 41 6 35 11 7 15 5 17 26 16

16 34 2 54 6 53 11 25 15 18 17 31 14

18 40 3 8 7 11 11 43 15 31 17 35 12

20 45 3 22 7 29 12 15 43 17 38 10

22 52 3 36 7 47 12 17 15 55 17 41 8

24 59 3 51 8 5 12 34 16 6 17 43 6

26 1 7 4 6 8 23 12 51 16 16 17 45 4

28 1 15 4 21 8 42 13 7 16 26 17 46 2

30 1 24 4 37 9 13 23 16 36 17 46

ns Is Os XIs Xs IXs

TABLE XXX.
EQUATION III OF THE POLAR DISTANCE.

Argument. Moon's True Longitude.

His IVs Vs Vis VIIs VTHs

0°

6

12

18

24

30

16"

16

16

16

15

15

15"

14

14

13

13

12

12"

11

10

10

9

8

8"

7

6

5

5

4

4"

3

3

2
1

1

1"

1

30°

24

18

12

6

ns Is Os XIs Xs IXs

23



42 TABLE XXXI.

EQUATIONS OF POLAR DISTANCE.

Arguments.—20 of Longitude; V to IX, corrected; and X, not corrected.

Arg. 20 V. VI. VII. VIII. IX. X Arg.

260 0" 56" 6" 3" 25" 3" 11" 240
280 1 55 6 3 25 3 11 220
300 1 55 7 4 25 4 11 200
320 2 53 8 5 24 6 32 180
340 3 52 10 6 23 7 13 160
360 4 50 12 8 23 9 14 140
380 5 48 14 10 22 11 16 120
400 6 45 16 12 21 14 17 100
420 8 42 18 14 20 17 19 80
440 10 39 21 17 19 20 21 60 ;

460 11 36 24 19 17 23 23 40
480 13 33 27 22 16 27 25 20
500 15 30 30 25 15 30 27 000
520 17 27 33 28 14 33 29 980
540 19 24 36 31 12 37 31 960
560 20 20 39 33 11 40 33 940
580 22 17 41 36 10 43 35 920
600 24 15 44 38 9 46 37 900
620 25 12 46 40 8 48 38 880
640 26 10 48 42 7 51 40 860
660 27 8 50 44 6 53 41 840
680 28 7 52 45 6 54 42 820
700 29 5 53 46 5 56 42 800
720 29 5 53 47 5 56 43 780
740 30 4 54 47 5 57 43 760

TABLE XXXII.

REDUCTION

Argument.—Supplement of Node -J- Moon's Orbit Longitude.

0s Vis Is VIIs lis VIIIs Ills IXs IVt Xs Vs XIs

0° 7' 0" 1' 3" 1' 3" 7' 0" 13' 57' 12' 57"

2 6 31 49 1 18 7 29 13 10 12 42
4 6 3 38 1 35 7 57 13 22 12 25
6 5 34 28 1 54 8 26 13 32 12 6
8 5 6 20 2 14 8 54 13 40 11 46

10 4 39 14 2 35 9 21 13 46 11 25
12 4 12 10 2 58 9 48 13 50 11 2
14 3 46 8 3 22 10 13 13 52 10 38
16 3 22 8 3 46 10 38 13 52 10 13
18 2 58 10 4 ]2 11 2 13 50 9 48
20 2 35 14 4 39 11 25 13 46 9 21
22 2 14 20 5 6 11 46 13 40 8 54
24 1 54 28 5 34 12 6 13 32 8 26
26 1 35 38 6 3 12 25 13 22 7 57
28 1 18 49 6 31 12 42 13 10 7 29
30 1 3 1 3 7 12 57

1
12 57 7 ,



TABLE XXXIV.
moon's semidiameter.

Argument. Equatorial Parallax.

43

Eq. Parallax.

53' 0"
53 20

53 40

54

54 20

54 40

55

55 20

55 40

56

Semidiam.

14' 27"

14 32

14 37

14 43

14 48

14 54

14 59

15 5

15 10

15 16

Eq. Parallax.

56' 0"

56 20

56 40

57

57 20

57 40

58

58 20

58 40

59

Semidiam.

15' 16"

15 21

15 26

15 32

15 37

15 43

15 48

15 54

15 59

16 5

Eq. Parallax

59' 0"
59 20

59 40

60

60 20

60 40

61

61 20

61 40

62

Semidiam.

16' 5"
16 10

16 16

16 21

16 26

16 32
16 37

16 43

16 48

16 54

TABLE XXXV.
AUGMENTATION OF MOON'S SEMI-

DIAMETER.

Argument. Apparent Altitude.

Ap. Alt. Angm.

6° 2"

12 3

18 5
24 6

30 8

36 9

42 11

48 12

54 13

60 14

66 15

72 15

78 16

84 16

90 16

TABLE XXXVI.
moon's hourly motion in lon-

gitude.

Arguments. 2, 3, 4, and 5 of Lon-
gitude.

Arg. 2 3 4 5 Arg.

6" 1" 3' 3 100

5 5 2 3 3 95
10 5 2 3 3 90

15 4 2 3 3 85
20 4 3 2 2 80

25 3 3 2 2 75

30 2 3 2 2 70

35 2 4 1 1 65
40 1 4 1 1 60

45 1 4 1 1 55

50 5 1 1 50

TABLE XXXVII.
moon's hourly motion in longitude

Argument. Argument of the Evection.
'

0s Is Us IHs rvs Vs

0° V 20" 1' 15" 1' 0" 0' 39" 0' 20" 0' 6" 30°

2 1 20 1 14 58 38 19 5 28

4 1 20 1 13 57 37 18 5 26

6 1 20 1 12 56 35 16 4 24

8 1 20 1 11 54 34 15 4 22

10 1 20 1 11 53 33 14 3 20

12 1 19 . 10 52 31 13 3 18

14 1 19 1 9 50 30 12 2 16

16 1 19 1 8 49 29 11 2 14

18 1 18 1 7 48 27 11 2 12

20 1 18 1 5 46 26 10 1 10

22 1 17 1 4 45 25 9 1 8

24 1 17 1 3 44 23 8 1 6

26 1 16 1 2 42 22 7 1 4

28 1 15 1 1 41 21 7 1 2

30 1 15 1 39 20 6 1

Xls Xs IXs VHIs VIIs Vis



44 TABLE XXXVIII.

moon's hourly motion in longitude.

Arguments. Sum of preceding equations, and Anomaly, corrected.

j

0" 20" 40" 60" 80" 100"
1

Os 0° 4" 6" 9" 11" 14" 16" XHs 0°

10 4 7 9 11 13 16 20

20 5 7 9 11 13 15 10

Is 5 7 9 11 13 15 XIs
10 6 7 9 11 13 14 20
20 7 8 9 11 12 13 10

lis 7 8 9 11 12 13 Xs
10 8 9 10 10 11 12 20
20 9 10 10 10 10 11 10

THs 10 10 10 10 10 10 IXs
10 11 11 10 10 9 9 20

20 12 11 10 10 9 8 10

IVs 13 12 11 9 8 7 vnis
10 14 12 11 9 8 6 20
20 14 12 11 9 8 6 10

Vs 15 13 11 9 7 5 VHs
10 15 13 11 9 7 5 20
20 15 13 11 9 7 5 10

Vis 15 13 11 9 7 5 Vis

0" 20" 40" 60" 80" 100"

TABLE XXXIX.
moon's hourly motion in longitude.

Argument. Anomaly, corrected.

0s Is Hs IHs IVs Vs

0° 34' 51" 34' 14" 32' 39" 30' 45" 29' 6" 28' 1" 30°

2 34 51 34 9 32 32 30 38 29 27 58 28

4 34 51 34 4 32 24 30 31 28 55 27 55 26

6 34 50 33 59 32 17 30 23 28 50 27 53 24

8 34 49 33 53 32 9 30 16 28 45 27 50 22

10 34 47 33 47 32 2 30 9 28 40 27 48 20

12 34 45 33 41 31 54 30 2 28 35 27 46 18

14 34 43 33 35 31 46 29 56 28 30 27 45 16

16 34 41 33 28 31 38 29 49 28 26 27 43 14

18 34 38 33 22 31 31 29 42 28 22 27 42 12

20 34 34 33 15 31 23 29 36 28 18 27 41 10

22 34 31 33 8 31 15 29 30 28 14 27 40 8

24 34 27 33 1 31 8 29 23 28 10 27 39 6

26 34 23 32 54 31 29 17 28 7 27 39 4

28 34 19 32 47 30 53 29 12 28 4 27 38 2
30 34 14 32 39 30 45 29 6 28 1 27 38

XIs Xs IXs vnis VHs Vis



TABLE XL.

moon's hourly motion in longitude.
Arguments. Sum of preceding equations, and Argument of Variation.

45

27' 29' 31' 33' 35' 37'

Os 0° 0" 2" 5" 7" 10" 12" XTTs 0°

10 3 5 7 9 12 20
20 1 3 5 7 9 11 10

Is 3 4 5 7 8 9 XIs
10 5 5 6 6 7 7 20
20 7 7 6 6 5 5 10

Hs 9 8 7 5 4 3 Xs
10 11 9 7 5 3 1 20
20 12 10 7 5 2 10

ms 12 10 7 5 2 IXs
10 12 10 7 5 2 20
20 11 9 7 5 3 1 10

IVs 9 8 7 5 4 3 vms
10 7 7 6 6 5 5 20

20 5 5 6 6 7 7 10

Vs 3 4 5 7 8 9 VHs
10 1 3 5 7 9 11 20

20 2 5 7 10 12 10

Vis 2 5 7 10 12 Vis

27' 29' 31' 33' 35' 37'

...,

TABLE XLI.

MOON'S HOURLY MOTION IN LONGITUDE.

Argument. Argument of the Variation.

0s Is Hs IHs IVs Vs

3 1' 17" 0' 58" 0' 20" 0' 2" 0' 22" 1' 0" 30°

2 1 17 55 18 3 24 1 2 28
4 1 17 53 16 3 26 1 4 26
6 1 16 51 14 3 29 1 6 24
8 1 16 48 12 4 31 1 8 22

10 1 15 45 11 5 34 1 10 20
12 1 14 43 9 6 37 1 12 18

14 1 13 40 8 7 39 1 13 16

16 1 11 38 6 8 42 1 15 14

18 1 10 35 5 10 44 1 16 12

20 1 8 32 4 11 47 1 17 10

22 1 6 30 4 13 50 1 18 8

24 1 4 27 3 15 52 1 18 6

26 1 2 25 3 17 55 1 19 4

28 1 23 2 19 57 1 19 2
30 58 20 2 22 1 1 19

XIs Xs IXs VIHs VHs Vis



TABLE XLII.

MOON'S HOURLY MOTION IN LONGITUD
Argument. Argument of the Reduction.

0s Is lis Ills IVs Vs

0° 2" 6" 14" 18" 14" 6" 30°

2 2 7 14 18 13 6 28

4 2 7 15 18 13 5 26

6 2 8 15 18 12 5 24

8 2 8 16 18 12 4 22

10 3 9 16 17 11 4 20

12 3 9 16 17 11 4 18

14 3 10 17 17 10 3 16

16 3 10 17 17 10 3 14

18 4 11 17 16 9 3 12
20 4 11 17 16 9 3 10

22 4 12 18 16 8 2 8

24 5 12 18 15 8 2 6

26 5 13 18 15 7 2 4

28 6 13 18 14 7 2 2

30 6 14 18 14 6 2

XIs Xs IXs VIIIs VIIs Vis

TABLE XLIII.
moon's hourly motion in latitude.

Argument. Argument I, of Latitude.

[

0s+ Is+ IIs+ IIIs— IVs— Vs—

0° 2' 58" 2' 34" V 29" 0' 0" V 29" 2' 34" 30°

2 2 58 2 31 1 24 6 1 35 2 37 28
4 2 58 2 28 1 18 12 1 40 2 40 26

6 2 57 2 24 1 13 19 1 45 2 43 24
8 2 56 2 20 1 7 25 1 50 2 45 22

10 2 55 2 17 1 1 31 1 55 2 47 20
12 2 54 2 12 55 37 1 59 2 49 18

14 2 53 2 8 49 43 2 4 2 51 16

16 2 51 2 4 43 49 2 8 2 53 14
18 2 49 1 59 37 55 2 12 2 54 12
20 2 47 1 55 31 1 1 2 17 2 55 10

22 2 45 1 50 25 1 7 2 20 2 56 8

24 2 43 1 45 19 1 13 2 24 2 57 6

26 2 40 1 40 12 1 18 2 28 2 58 4
28 2 37 1 35 6 1 24 2 31 2 58 2
30 2 34 1 29 1 29 2 34 2 58

XIs+ Xs-f IXs-f VIIIs— VIIs— Vis—

TABLE XLIV.
moon's hourly motion in latitude.

Argument. Argument II, of Latitude.

0s+ Is+ IIs+ IIIs— IVs— Vs—

0° 4" 4" 2" 0" 2" 4" 30°

6 4 3 2 3 4 24

12 4 3 1 1 3 4 18

18 4 9 1 1 3 4 12

24 4 3 2 3 4 6

30 4 2 2 4 4

XIs+ Xs+ IXs+ VHIs— VHs— Vis—
1



TABLE XLV.—PROPORTIONAL LOGARITHMS. 47
i

0' 1/ 2' 3' 4'
1

5'
I

6' 7'

0" ooooo ~ 17782 14771 13010 11761 10792 10000 9331
1 35563 17710 14735 12986 11743 10777 9988 9320
2 32553 17639 14699 12962 11725 10763 9976 9310

3 3 0792 17570 14664 12939 11707 10749 9964 9300

4 29542 17501 14629 12915 11689 10734 9952 9289

5 28573 17434 14594 12891 11671 10720 9940 9273

6 27782 17368 14559 12868 11654 10706 992S 9269

7 27112 17302 14525 12845 11636 10b92 9916 9259

8 26532 17238 14491 12821 11619 10678 9905 9249

9 26021 17175 14457 12798 11601 10663 9S93 9238

10 25563 17112 14424 12775 11584 10649 9881 9228

11 25149 17050 14390 12753 11566 10635 9869 9218
12 24771 16990 14357 12730 11549 10621 9858 9208
13 24424 16930 14325 12707 11532 10608 9846 9198
14 24102 16871 14292 12685 11515 10594 9834 9188
15 23802 16812 14260 12663 11498 10580 9828 9178

16 23522 16755 14228 12640 11481 10566 9811 9168
17 23259 16698 14196 12618 11464 10552 9800 9158
18 23010 16642 14165 12596 11457 10539 9788 9148
19 22775 16587 14133 12574 11430 10525 9777 9138
20 22553 16532 14102 12553 11413 10512 9765 9128

21 22341 16478 14071 12531 11397 10498 9754 9119
22 22139 16425 14040 12510 11380 10484 9742 9109
23 21946 16372 14010 12488 11363 10471 9731 9099
24 21761 16320 13979 12467 11347 10458 9720 9089
25 21584 16269 13949 12445 11331 10444 9708 9079

26 21413 16218 13919 12424 11314 10431 9697 9070
27 21249 16168 13890 12403 11298 10418 9686 9060
28 21091 16118 13860 123S2 11282 10404 9675 9050
29 20939 16069 13831 12362 11266 10391 9664 9041
30 20792 16021 13802 12341 11249 10378 9652 9031

31 20649 15973 13773 12320 1 1233 10365 9641 9021
32 20512 15925 13745 12300 11217 10352 9630 9012
33 20378 15878 13716 12279 11201 10339 9619 9002
34 20248 15832 13688 12259 11186 10326 9608 8992
35 20122 15786 13660 12239 11170 10313 9597 8983

36 20000 15740 13632 12218 11154 10300 9586 8973

37 19881 15695 13604 12198 11138 10287 9575 8964

38 19765 15651 13576 12178 11123 10274 9564 8954

39 19652 15607 13549 12159 11107 10261 9553 8945

40 19542 15563 13522 12139 11091 10248 9542 8935

41 19435 15520 13495 12119 11076 10235 9532 8926

42 19331 15477 13468 12099 11061 10223 9521 8917

43 19228 15435 13441 12080 1 1045 10210 9510 8907

44 19128 15393 13415 12061 11030 10197 9499 8898

45 19031 15351 13388 12041 11015 10185 9488 8888

46 18935 15310 13362 12022 10999 10172 9478 8879

47 18842 15269 13336 12003 10984 10160 9467 8870

48 18751 15229 13310 1 1984 10969 10147 9456 8861

49 18661 15189 13284 11965 10954 10135 9446 8851

50 18573 15149 13259 11946 10939 10122 9435 8842

51 18487 15110 13233 11927 10924 10110 9425 8833

52 18403 15071 13208 11908 10909 10098 9414 8824

53 1 8320 15032 13183 11889 10894 10085 9404 8814

54 18239 14994 13158 11871 10880 10073 9393 8805

55 1,8? 59 14956 13133 11852 10865 10061 9383 8796

56 18081 14918 13108 11834 10850 10049 9372 8787

57 18004 14881 13083 11816 10835 10036 9362 8778

58 17929 14844 13059 11797 1 0821 10024 9351 8769

59 17855 14808 13034 11779 10806 10012 9341 8760

60 17782 14771 13010
1

11761 10792
1

10000 9331 8751

2d



TABLE XL V.—PROPORTIONAL LOGARITHMS.
8'

0" 8751

1 8742

2 8733

3 8724

4 8715

5 8706

6 8697

7 8688

8 8679

9 8670

10 8661

11 8652

12 8643

13 8635

14 8626

15 8617

16 8608

17 8599

18 8591

19 8582

20 8573

21 8565

22 8556

23 8547

24 8539

25 8530

26 8522

27 8513

28 8504

29 8496

30 8487

31 8479

32 8470

33 8462

34 8453

35 8445

36 8437

37 8128

38 8420

39 8411

40 8403

41 8395

42 8386

43 8378

44 8370

45 8361

46 8353

47 8345

48 8337

49 8328

50 8320

51 8312
52 8304
59 8296
54 8288
55 8279

56 8271

57 8263

68 8255

59 8247

6C 8239

8239

8231

8223

8215

8207

8199

8191

8183

8175

8167

8159

8152

8144

8136

8128

8120

8112

8104

8097

8073

8066

8058

8050

8043

8035

8027

8020

8012

7997

7989

7981

7974

7966

7959

7951

7944

7936

7929

7921

7914

7906

7899

7891

7884

7877

7869

7862

7855

7847

7840

7832

7825

7818

7811

7803

7796

7789

7782

10' 11' 12' 13' 14'

7782 7368 6990 6642 6320

7774 7361 6984 6637 6315

7767 7354 6978 6631 6310

7760 7348 6972 6625 6305

7753 7341 6966 6620 6300

7745 7335 6960 6614 &d94

7738 7328 6954 6609 6289

7731 7322 6948 6603 6284

7724 7315 6942 6598 6279
7717 7309 6936 6592 6274

7710 7302 6930 6587 6269

7703 7296 6924 6581 6264

7696 7289 6918 6576 6259
7688 7283 6912 6570 6254
7681 7276 6906 6565 6248

7674 7270 6900 6559 6243

7667 7264 6894 6554 6238

7660 7257 6888 6548 6233

7653 7251 6882 6543 6228

7646 7244 6877 6538 6223

7639 7238 6871 6532 6218

7632 7232 6865 6527 6213

7625 7225 6859 6521 6208

7618 7219 6853 6516 6203

7611 7212 6847 6510 6198

7604 7206 6841 6505 6193

7597 7200 6836 6500 6188

7590 7193 6830 6494 6183

7583 7187 6824 6489 6178

7577 7181 6818 6484 6173

7570 7175 6812 6478 6168

7563 7168 6807 6473 6163

7556 7162 6801 6467 6158

7549 7156 6795 6462 6153

7542 7149 6789 6457 6148

7535 7143 6784 6451 6143

7528 7137 6778 6446 6138

7522 7131 6772 6441 6133

7515 7124 6766 6435 6128

7508 7118 6761 6430 6123

7501 7112 6755 6425 6118

7494 7106 6749 6420 6113

7488 7100 6743 6414 6108

7481 7093 6738 6409 6103

7474 7087 6732 6404 6099

7467 7081 6726 6398 6094

7461 7075 6721 6393 6089

7454 7069 6715 6388 6084

7447 7063 6709 6383 6079

7441 7057 6704 6377 6074

7434 7050 6698 6372 6069

7427 7044 6692 6367 6064

7421 7038 6687 6362 6059

7414 7032 6681 6357 6055

7407 7026 6676 6351 6050

7401 7020 6670 6346 6045

7394 7014 6664 6341 6040

7387 7008 6659 6336 6035

7381 7002 6653 6331 6030

7374 6996 6648 6325 6025

7368 6990 6642 6320 6021

15'

6021

6016

6011

6006

6001

5997

5992

5987

5982

5977

5973

5968

5963

5958

5954

5949

5944

5939

5935

5930

5925

5920

5916

5911

5906

5902

5897

5892

5888

5883

5878

5874

5869

5864

5860

5855

5850

5846

5841

5836

5832

5827

5823

5818

5813

5809

5804

5800

5795

5790

5786

5781

5777

5772

5768

5763

5758

5754

5749

5745

5740

16'

5740

5736

5731

5727

5722

5718

5713

5709

5704

5700

5695

5691

5686

5682

5677

5673

5669

5664

5660

5655

5651

5646

5642

5637

5633

5629

5624

5620

5615

5611

5607

5602

5598

5594

5589

5585

5580

5576

5572

5567

5563

5559

5554

5550

5546

5541

5537

5533

5528

5524

5520

5516

5511

5507

5503

5498

5494

5490

5486

5481

5477



TABLE XLV.—PROPORTIONAL LOGARITHMS, 49
l

17' 18' 19' 20' 21' 22' 23' 24' 25'

0" 5477 "5229 4994 4771 4559 4357 4164 3979 3802
1 5473 5225 4990 4768 4556 4354 4161 3976 3799
2 5469 5221 4986 4764 4552 4351 415.8 3973 3796
3 5464 5217 4983 4760 4549 4347 4155 3970 3793
4 5460 5213 4979 4757 4546 4344 4152 3967 3791
5 5456 5209 4975 4753 4542 4341 4] 49 3964 3788

6 5452 5205 4971 4750 4539 4338 4145 3961 3785
7 5447 5201 4967 4746 4535 4334 4142 3958 3782
8 5443 5197 4964 4742 4532 4331 4139 3955 3779
9 5439 5193 4960 4739 4528 4328 4136 3952 3776

10 5435 5189 4956 4735 4525 4325 4133 3949 3773

11 5430 5185 4952 4732 4522 4321 4130 3946 3770
12 5426 5181 4949 4728 4518 4318 4127 3943 3768
13 5422 5177 4945 4724 4515 4315 4124 3940 3765
14 5418 5173 4941 4721 4511 4311 4120 3937 3762
15 5414 5169 4937 4717 4508 4308 4117 8934 3759

IS 5409 5165 4933 4714 4505 4305 4114 3931 3758

17 5405 5161 4930 4710 4501 4302 4111 3928 3753

18 5401 5157 4926 4707 4498 4298 4108 3925 3750

19 5397 5153 4922 4703 4494 4295 4105 3922 3747

20 5393 5149 4918 4699 4491 4292 4102 3919 3745

21 5389 5145 4915 4696 4488 4289 4099 3917 3742

22 5384 5141 4911 4692 4484 4285 4096 3914 3739

23 5380 5137 4907 4689 4481 4282 4092 3911 3736

24 5376 5133 4903 4685 4477 4279 4089 3908 3733

25 5372 5129 4900 4682 4474 4276 4086 3905 3730

26 5368 5125 4896 4678 4471 4273 4083 3902 3727

27 5364 5122 4892 4675 4467 4269 4080 3899 3725

28 5359 5118 4889 4671 4464 4266 4077 3896 3722

29 5355 5114 4885 4668 4460 4263 4074 3893 3719

30 5351 5110 4881 4664 4457 4260 4071 3890 3716

31 5347 5106 4877 4660 4454 4256 4068 3887 3713

32 5343 5102 4874 4657 4450 4253 4065 3884 3710

33 5339 5098 4870 4653 4447 4250 4062 3881 3708

34 5335 5C94 4866 4650 4444 4247 4059 3878 3705

35 5331 5090 4863 4646 4440 4244 4055 3875 3702

36 5326 5086 4859 4643 4437 4240 4052 3872 3699

37 5322 5082 4855 4639 4434 4237 4049 3869 3696

38 5318 5079 4852 4636 4430 4234 4046 3866 3693

39 5314 5075 4848 4632 4427 4231 4043 3863 3691

40 5310 5071 4844 4629 4424 4228 4040 3860 3688

41 5306 5067 4841 4625 4420 4224 4037 3857 3685

42 5302 5063 4837 4622 4417 4221 4034 3855 3682

43 5298 5059 4833 4618 4414 4218 4031 3852 3679

44 5294 5055 4830 4615 4410 4215 4028 3S49 3677

45 5290 5051 4828 4611 4407 4212 4025 3846 3674

46 5285 5048 4822 4608 4404 4209 4022 3843 3671

47 5281 5044 4819 4604 4400 4205 4019 3840 3668

48 5277 5040 4815 4601 4397 4202 4016 3837 3665

49 5273 5036 4811 4597 4394 4199 4013 3834 3663

50 5269 5032 4808 4594 4390 4196 4010 3831 3660

51 5265 5028 4804 4590 4387 4193 4007 3828 3657

52 5261 5025 4800 4587 4384 4189 4004 3825 3654

53 5257 5021 4797 4584 4380 4186 4001 3922 3651

54 5253 5017 4793 4580 4377 4183 3998 3820 3649

55 5249 5013 4789 4577 4374 4180 3995 3317 3646

50 5245 o009 4786 4573 4370 4177 3991 3814 3643

57 5241 5005 4782 4570 4367 4174 3988 3811 3640

58 5237 5002 4778 4566 4364 4171 3985 3808 3637

59 5233 4998 4775 4563 4361 4167 3982 3805 3635

60 5229 4994 4771 4559 4357 4164 3979 4802 3632



50 TABLE XLV.—PROPORTIONAL LOGARITHMS,
!

26' 27' 28' 29' 30' 31' 32' 33' 34'

0" 3632 3468 3310 3158 3010 2868 2730 2596 2467

1 3629 3465 3307 3155 3008 2866 2728 2594 2465

2 3626 3463 3305 3153 3005 2863 2725 2592 2462

3 3623 3460 3302 3150 3003 2861 2723 2590 2460

4 3621 3457 3300 3148 3001 2859 2721 2588 2458

5 3618 3454 3297 3145 2998 2856 2719 2585 2456

6 3615 3452 3294 3143 2996 2854 2716 2583 2454

7 3612 3449 3292 3140 2993 2852 2714 2581 2452

8 3610 3446 3289 3138 2991 2849 2712 2579 2450

9 3607 3444 3287 3135 2989 2-847 2710 2577 2448

10 3604 3441 3284 3133 2986 2845 2707 2574 2445

11 3601 3438 3282 3130 2984 2842 2705 2572 2443

12 3598 3436 3279 3128 2981 2840 2703 2570 2441

13 3596 3433 3276 3125 2979 2838 2701 2568 2439

14 3593 3431 3274 3123 2977 2835 2698 2566 2437

1

15 3590 3428 3271 3120 2974 2833 2696 2564 2435

!
16 3587 3425 3269 3118 2972 2831 2694 2561 2433

17 3585 3423 3266 3115 2969 2828 2692 2559 2431

18 3582 3420 3264 3113 2967 2826 2689 2557 2429

19 3579 3417 3261 3110 2965 2824 2687 2555 2426

20 3576 3415 3259 3108 2962 2821 2685 2553 2424

21 3574 3412 3256 3105 2960 2819 2683 2451 2422

22 3571 3409 3253 3103 2958 2817 2681 2548 2420

23 3568 3407 3251 3101 2955 2815 2678 2546 2418

24 3565 3404 3248 3098 2953 2812 2676 2544 2416

25 3563 3401 3246 3096 2950 2810 2674 2542 2414

26 3560 3399 3243 3093 2948 2808 2672 2540 2412

27 3557 3396 3241 3091 2946 2805 2669 2538 2410

2S 3555 3393 3238 3088 2943 2803 2667 2535 2408

29 3552 3391 3236 3086 2941 2801 2665 2533 2405

30 3549 3388 3233 3083 2939 2798 2663 2531 2403

31 3546 3386 3231 3081 2936 2796 2060 2529 2401

32 3544 3383 3228 3078 2934 2794 2658 2527 2399

33 3541 3380 3225 3076 2931 2792 2656 2525 2397

34 3538 3378 3223 3073 2929 2789 2654 2522 2395

35 3535 3375 3220 3071 2927 2787 2652 2520 2393

36 3533 3372 3218 3069 2924 2785 2649 2518 2391

37 3530 3370 3215 3066 2922 2782 2647 2516 2389

38 3527 3367 3213 3064 2920 2780 2645 2514 2387

39 3525 3365 3210 3061 2917 2778 2643 2512 2384

40 3522 3362 3208 3059 2915 2775 2640 2510 2382

41 3519 3359 3205 3056 2912 2773 2638 2507 2380

42 3516 3357 3203 3054 2910 2771 2636 2505 2378

43 3514 3354 3200 3052 2908 2769 2634 2503 2376

44 3511 3351 3198 3049 2905 2766 2632 2501 2374

45 3508 3349 3195 3047 2903 2764 2629 2499 2372

46 3506 3346 3193 3044 2901 2762 2627 2497 2370

47 3503 3344 3190 3042 2898 2760 2625 2494 2368

48 3500 3341 3188 3039 2896 2757 2623 2492 2366

49 3497 3338 3185 3037 2894 2755 2621 2490 2364

50 3495 3336 3183 3034 2891 2753 2618 2488 2362

51 3492 3333 3180 3032 2889 2750 2616 2486 2359

52 3489 3331 3178 3030 2887 2748 2614 2484 2357

53 3487 3328 3175 3027 2884 2746 2812 2482 2355

54 3484 3325 3173 3025 2882 2744 2610 2480 2353

55 3481 3323 3170 3022 2880 2741 2607 2477 2351

56 3479 3320 3168 3020 2877 2739 2605 2475 2349

57 3476 3318 3165 3018 2875 2737 2603 2473 2347

58 3473 3315 3163 3015 2873 2735 2601 2471 2345

59 3471 3313 3160 3013 2870 2732 2599 2469 2343

60 3468 3310 3158
|

3010 2868 2730 2596 2467 2341



TABLE XL V.—PROPORTIONAL LOGARITHMS. 51

35'
!

26'
i

37' 28' 39' 40' 41' 42' 43'

1

a" 2341 2218 2099 1984 1871 1761 1654 1549 1447
1 2339 2216 2098 19S2 1869 1759 1652 1547 1445

2
;

2337
,

2214 2096 1980 1867 1757 1650 1546 1443
3 2:335 2212 2094 1978 1865 1755 1648 1544 1442

4 2233
1 2210 2092 1976 1863 1754 1647 1542 1440

5 2331 2208 2090 1974 1862 1752 1645 1540 1438

6 2328 ! 2206 2088 1972 1860 1750 1643 1539 1437

7 2326 2204 2086 1970 1858 1748 1641 1537
i

14.35

8 2324 2202 2084 1968 1856 1746 1640 1535 1433

9 2322 2200 2032 1967 1854 1745 1638 1534 1432

10 2320 2198 2080 1965 1852 1743 1636 1532 1430

11 2318 2196 2078 1963 1850 1741 1634 1530 1428

12 2316 2194 2076 1961 1849 1739 1633 1528 1427

13 2314 2192 2074 1959 1847 1737 1631 1527 1425

14 2312 2190 2072 1957 1845 1736 1629 1525 1423

15 2310 2188 2070 1955 1843 1734 1627 1523 1422

16 2308 2186 2068 1953 1841 1732 1626 1522 1420

17 2306 2184 2066 1951 1839 1730 1624 1520 1418

18 2304 2182 2064 1950 1838 1723 1622 1518 1417

19 2302 2180 2062 1948 1836 1727 1620 1516 1415

20 2300 2178 2061 1946 1834 1725 1619 1515 1413

21 2298 2176 2059 1944 1832 1723 "1617 1513 1412

22 2296 2174 2057 1942 1830 1721 1615 1511 1410

23 2294 2172 2055 1940 1828 1719 1613 1510 1408

24 2291 2170 2053 1938 1827 1718 1612 1508 1407

25 2289 2169 2051 1936 1825 1716 1610 1506 1405

26 2287 2167 2049 1934 1823 1714 1608 1504 T403

27 2285 2165 2047 1933 1821 1712 1606 1503 1402

28 2283 2163 2045 1931 1819 1711 1605 1501 1400

29 2281 2161 2043 1929 1817 1709 1603 1499 1398

30 2279 2159 2041 1927 1816 1707 1601 1498 1397

31 2277 2157 2039 1925 1814 1705 1599 1496 1395

32 2275 2155 2037 1923 1812 1703 1598 1494 1393

33 2273 2153 2035 1921 1810 1702 1596 1493 1392

34 2271 2151 2033 1919 1808 1700 1594 1491 1390

35 2269 2149 2032 1918 1806 1698 1592 1489 1388

36 2267 2147 2030 1916 1805 1696 1591 1487 1387

37 2265 2145 2028 1914 1803 1694 1589 1486 1385

38 2263 2143 2026 1912 1801 1893 1587 1484 1383

39 2261 2141 2024 1910 1799 1691 1585 1482 1382

40 2259 2139 2022 1908 1797 1689 1584 1481 1380

41 2257 2137 2020 1906 1795 1687 1582 1479 1378

42 2255 2135 201S 1904 1794 1686 1580 1477 1377

43 2253 2133 2016 1903 1792 1684 1578 1476 1375

44 2251 2131 2014 1901 1790 1682 1577 1474 1373

45 2249 2129 2012 1899 1788 1680 1575 1472 1372

46 2247 2127 2010 1897 1786 1678 1573 1470 1370

47 2245 2125 2039 1895 1785 1677 1571 1469 1368

48 2243 2123 2007 1893 1783 1675 1570 1467 1367

49 2241 2121 2005 1891 1781 1673 1568 1465 1365

50 2239 2119 2003 1889 1779 1671 1566 1464 1363

51 2237 2117 2001 .888 1777 1670 1565 1462 1362

52 2235 2115 1999 1886 1775 1668 1563 1460 1360

53 2233 2113 1997 1884 1774 1666 1561 1459 1359

54 2231 2111 1995 1882 1772 1664 1559 1457 1357

55 2229 2109 1993 1880 1770 1663 1558 1455 1355

56 2227 2107 1991 1878 1768 1661 1556 1454 1354

57 2225 2J05 1989 1876 1766 1659 1554 1452 1352

58 2223 2103 1987 1875 1765 1657 1552 1450 1350

59 2220 2101 1986 1873 1763 1655 1551 1449 1349

60 2218 2TO9 1984 1871 1761 1654 1549 1447 1347

23 2d*



0'2 TABLE XLV.—PROPORTIONAL LOGARITHMS.
44' 45' 46' 47' 48' 49' 50' 51' 52'

0" 1347 1249 1154 1061 969 880 792 706 621
i 1345 1248 1152 1059 968 878 790 704 620
2 1344 1246 1151 1057 966 877 789 703 619
3 1342 1245 1149 1056 965 875 787 702 617
4 1340 1243 1148 1054 963 874 786 700 616
5 1339 1241 1146 1053 962 872 785 699 615

6 1337 1240 1145 1051 960 871 783 697 613
7 1335 1238 1143 1050 959 769 782 696 612
8 1334 1237 1141 1048 957 868 780 694 610
9 1332 1235 1140 1047 956 866 779 693 609

10 1331 1233 1138 1045 954 865 777 692 608

11 1329 1232 1137 1044 953 "863 776 690 606
12 1327 1230 1135 1042 951 862 774 689 605
13 1326 1229 1134 1041 950 860 773 687 603
14 1324 1227 1132 1039 948 859 772 686 602
15 1322 1225 1130 1037 947 857 770 685 601

18 1321 1224 1129 1036 945 856 769 683 599
17 1319 1222 1127 1034 944 855 767 682 598
18 1317 1221 1126 1033 942 853 766 680 596
19 1316 1219 1124 1031 941 852 764 679 595
20 1314 1217 1123 1030 939 850 763 678 594

21 1313 1216 1121 1028 938 849 762 676 592
22 1311 1214 1119 1027 936 S47 760 675 591
23 1309 1213 1118 1025 935 846 759 673 590
24 1308 1211 1116 1024 933 844 757 672 588
25 1306 1209 1115 1022 932 843 756 670 587

26 1304 1208 1113 1021 930 841 754 669 585
27 1303 1206 1112 1019 929 840 753 668 584

28 1301 1205 1110 1018 927 838 751 666 583

29 1300 1203 1109 1016 926 837 750 665 581

30 1298 1201 1107 1015 924 835 749 663 580

31 1296 1200 1105 1013 923 834 747 662 579

32 1295 1198 1104 1012 921 833 746 661 577

33 1293 1197 1102 1010 920 831 744 659 576

34 1291 1195 1101 1008 918 830 743 658 574

35 1290 1193 1099 1007 917 828 741 656 573

36 1288 1192 1098 1005 915 827 740 655 572

37 1287 1190 1096 1004 914 825 739 654 570

38 1285 1189 1095 1002 912 824 737 652 569

39 1283 1187 1093 1001 911 822 736 651 568

40 1282 1186 1091 999 909 821 734 649 566

41 1280 1184 1090 998 908 819 733 648 565
42 1278 1182 1088 996 906 818 731 647 563
43 1277 1181 1087 995 905 816 730 645 562
44 1275 1179 1085 993 903 815 729 644 561
45 1274 1178 1084 992 902 814 727 642 559

46 1272 1176 1082 990 900 812 726 641 558
47 1270 1174 1081 989 899 811 724 640 557
48 1269 1173 1079 987 897 809 723 638 555
49 1267 1171 1078 986 896 808 721 637 554
50 1266 1170 1076 984 894 806 720 635 552

51 1264 1168 1074 983 893 805 719 634 551
52 1262 1167 1073 981 891 803 717 633 550
53 1261 1165 1071 980 890 802 716 631 548
54 1259 1163 1070 978 888 801 714 680 547
55 1257 1162 1068 977 877 799 713 628 546

36 1256 1160 1067 "975 885 798 711 627 544
57 1254 1159 1065 974 884 796 710 626 553
58 1253 1157 1064 972 883 795 709 624 541

59 1251 1156 1062 971 881 793 707 623 540

eo 1249 1154 1061 I 969 880 792 706 621 539



TABLE XLV.—PROPORTIONAL LOGARITHMS.

53' 54' 55' 58' 57' 58' 59'

0" 539 438 378 300 228 147 73

1 537 456 377 298 221 146 72

2 536 455 375 297 220 145 71

3 535 454 374 296 219 148 69

4 533 452 373 294 218 142 68

5 532 451 371 293 216 141 67

6 531 450 370 292 215 140 66

7 529 448 369 291 214 139 64

8 528 447 367 289 213 137 63

9 526 446 366 288 211 136 62

10 525 444 365 287 910 135 61

11 524 443 363 285 209 134 60

12 522 442 362 284 208 132 58

13 521 440 361 283 206 131 57

14 520 439 359 282 205 130 56

15 518 438 358 280 204 129 55

*6 517 436 357 279 302 127 53

17 516 435 356 278 201 126 52

18 514 434 354 276 200 125 51

19 513 432 353 275 199 124 50

20 512 431 352 274 197 122 49

21 510 430 350 273 106 121 47

22 509 428 349 271 195 120 46

23 507 427 348 270 194 119 45

24 506 426 346 269 192 117 44

25 505 424 345 267 191 116 42

26 503 423 344 266 190 115 41

27 502 422 342 265 189 114 40

28 501 420 341 264 187 112 39

29 499 419 340 262 186 111 38

30 498 418 339 261 185 110 36

31 497 416 337 260 184 109 35

32 495 415 336 258 182 107 34

33 494 414 335 257 181 106 33

34 493 412 333 256 180 105 31

35 491 411 332 255 179 104 30

36 490 410 331 253 177 103 29
37 489 408 329 252 176 101 28
38 487 407 328 251 175 100 27
39 486 406 327 250 174 99 25
40 484 404 326 248 172 96 24

41 483 403 324 247 171 96 23
42 482 402 323 246 170

, 95 22
43 480 400 322 244 169 94 21
44 479 399 320 243 167 93 19
45 478 398 319 242 166 91 18

46 476 396 318 241 165 90 17
47 475 395 316 239 163 89 16
48 474 394 315 238 162 88 15
49 472 392 314 237 161 87 13
50 471 391 313 235 160 85 12

51 470 390 311 234 158 84 11
82 468 388 310 233 157 83 10
53 467 387 309 232 156 82 8
54 466 386 307 230 155 80 7
55 464 384 308 229 153 79 6

56 463 383 305 228 152 78 5
57 462 882 304 227 151 77 4
58 460 381 302 225 150 75 2
59 459 379 801 224 148 74 1
60 458 378 300 223 147 73
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