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ABSTRACT

A nondivergent. barotropic analytical model to predict steady tropical cyclone (TC)

propagation relative to the large-scale environment is developed in terms of a "self-

advection" process in which the TC is advected by an azimuthal wavenumber one gyre

flow that results from TC-environment interaction. The model is comprehensive in that

it includes the first-order effects of all of the dynamical influences that are presently un-

derstood to be important to barotropic propagation: gradients of planetary and envi-

ronmental vorticity, changes in TC wind structure, and environmental windshear. An

unforced version of the model is used to show that angular windshear in the symmetric

TC circulation acts to damp perturbations from axisymmetry by tilting the perturbations

downshear. The resultant transfer of kinetic energy from perturbation to symmetric

circulation thus tends to restore axisymmetry. Thus, steady propagation of TC-like

barotropic vortices is a manifestation of a stable response to asymmetric forcing. To

predict both the asymmetric gyre flow and the propagation it induces, the forced

Barotropic Self-Advection Model (BSAM) is closed by seeking a particular pattern in the

vorticity tendencies of the TC-cnvironmental interaction flow. For realistic combina-

tions of environmental vorticity gradients and linear windshear, the BSAM predicts

propagation speeds and directions that are consistent with TC propagation character-

istics obsened in composite data. The capability of the BSAM to account for variable

TC structure is used to show that errors in determining TC outer wind strength of ±1

m s can result in an 85 km forecast error at 48 h. Finally, and most importantly, the

capability of the BSAM to initialize a barotropic numerical model so that quasi-steady

TC propagation occurs almost immediately is demonstrated for several simple dynamical

situations.
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I. INTRODUCTION

It is well known that tropical cyclone (TO motion persistently differs from the mean

advective effect (i.e., the "steering") of the large-scale environment (e.g., George and

Gray 1°~6: Chan and Gray 19S2). The precise speed and direction of this velocity dif-

ference (hereafter referred to as "propagation") depends to some extent on the particular

steering flow definition employed, but is generally westward and poleward in direction

and 1 to 2.5 m s in magnitude (Carr and Elsberry 19S9). Although this propagation

velocity is typically smaller than the advection by environmental steering, it can induce

:ant TC track errors I 2 m s ^ 170 km d) if not properly accounted for in dynam-

ical models. Interestingly, it is well known that numerical model forecasts of TC tracks

eene have less skill than CLIPER (CLImatology and PERsistance) over the first

'.- -'
, and that the error is primarily an underestimation of TC speed (e.g., Neumann

. ssier 19S1: their Figs. 4.S respectively). Since TC's track generally westward and

poleward throughout much of their lifetimes, such statistics provide circumstantial evi-

..: dynamical forecast models do not as yet properly account for TC propagation

until about 1 day into the numerical integration. It will be shown that the initial

slowness of numerical models may result from initializing the model with a symmetric

any propagation-inducing asymmetries caused by

TC-environment interaction. Although past modeling experience indicates that both

barotropic and baroclinic processes can cause TC propagation asymmetries, the general

goal of this research is to develop an improved theoretical model for understanding and

predicting the barotropic contributions to TC propagation asymmetric*.

A. MODELING REVIEW

1. Status of basic understanding

a. ^-induced propagation

The propagation of an initially symmetric, nondivergent barotropic (NDBT)

vortex in a quiescent environment due to the influence of planetary rotation, as ap-

'•ldes the most basic dynamical scenario for beginning a

TC motion theory. The northwestward propagation at 2-3 m s noted by Chan

and Willi; 1 . reafter CYV) m a recent numerical study of this problem is gener-

ally consistent with the propagation observed in previous numerical studies (Anthes and

hereafter DM). The authors of the previous



numerical studies attributed their results to the traditional linear theories of barotropic

vortex propagation advocated in various forms {e.g., Rossby 1939. 1948; Kasahara 1957;

Kasahara and Platzmann 1963; Holland 1983). An interesting aspect of these theoretical

predictions is that the westward and poleward components of the propagation are asso-

ciated with different linear mechanisms, e.g., Rossby wave propagation by the TC to the

west as opposed to poleward acceleration due to net Coriolis force on the TC. In con-

trast, CW concluded that only the nonlinear "self-advection" (i.e., the TC adverting its

own vorticity) process associated with the development of a horizontal asymmetry in the

TC windficld was responsible for both the westward and poleward components of the

propagation.

The basis for this important distinction can be demonstrated by partitioning

the vortex flow into a steady symmetric (S) component and an asymmetric (A) compo-

nent that is generally small by comparison. In a coordinate system centered at any in-

stant on the symmetric component, the propagation process in a quiescent environment

is approximately described by

-77
1 = - v,.v:5 - vs .vr, - v5 .v/, (i.n

(a) (b) (c) (d)

where term (a) represents the vorticity tendency associated with motion and or dis-

tortion of the TC due to the combined effect of the two dominant self-advection terms

{b and c) and the advection of planetary vorticity (d). Linear theories regard the west-

ward component of propagation as a Rossby wave-like propagation associated with the

east-west dipole of vorticity tendency generated by term (d). and either eliminate self-

advection by requiring the TC to be symmetric at all times (e.g., Kasahara and Platzman

1963), or assume that self-advection is implicit in computations of observed steering

flows (e.g., Holland 1983. 1984). When the nonlinear self-advection term was omitted

from their model. CW noted that advection of planetary vorticity by the TC is a strong

dispersive distorting influence, but by itself generates negligible motion of the TC center

(^0.3 m s). Thus, they concluded that the linear process generates the asymmetric flow

essential to the existence of the self-advection process, but the self-advective interaction

of the symmetric and asymmetric TC components actually causes the propagation.

Fiorino (19.87) and Fiorino and Elsberry (1989; hereafter FF) clarified the

individual roles of the two primary self-advection processes (terms b and c) via a diag-



nostic technique that extracts Vs and V^ from a numerical model similar to that used

by CW. Their analysis showed that the structure of Y
4

is predominantly an azimuthal

wavenumber one asymmetry that consists of two counterrotating gyres (hereafter re-

ferred to as "wavenumber one gyres") that produce a near-uniform flow across the cen-

tral region of the TC. The average velocity of the uniform flow is very nearly equal to

the TC propagation vector, which indicates that NDBT ^-induced propagation is es-

sentially an advection of symmetric TC vorticity by the asymmetric flow component of

the TC, i.e., term (b) of (1.1). This is somewhat surprising since simple scale arguments

suggest that the advection of asymmetric vorticity by the symmetric tangential wind

(term c) should be equally important to the propagation process. However, FE demon-

strated that stream/unction tendencies associated with term (c) nearly cancel those as-

sociated with term idi after a quasi-steady state is achieved. Thus, term (c) acts

to limit the growth of the wavenumber one g>res and the resultant propagation

to nearly steady values after an initial adjustment period of approximately 24-48 h.

A theoretical model that accurately predicts /^-induced gyre structure and

the associated propagation based on this recently identified self-advection process has

yet to be developed, and this is the principal objective of this research. The successful

development of such a model that confirms the numerical work of CW and FE will be

an important step in establishing the nonlinear self-advection principle as the mechanism

responsible for barotropje TC propagation as opposed to the traditional linear Rossby

wave arguments.

•Since advection of planetary vorticity by a vortical flow represents essen-

mmetric forcing. FE's results suggest that advection by the symmetric

tangential wind tends to stabilize a barotropic approximation of a TC to such forcing.

Nonlinear advection is necessary to permit dispersion-resistant movement of model

vortices in general [e.g., McWilliams and Flier! 19 7 9; Mied and Lindemann 1979). or

nondispersive movement in the case of very specialized entities known as either modons

or solitary eddy solutions (see Flierl ei al. 19S<)). However, the precise mechanism by

which nonlinear advection stabilizes a vortex of arbitrary radial structure has not been

identified. Because steady barotropic vortex propagation is essentially a manifestation

of this stability to asymmetric forcing, a thorough analysis of this process is important

to improved understanding of barotropic TC propagation, and thus is another objective

l
f

is important to briefly address the question whether barotropic vortex

, sufficiently important process compared to potential baroclinic



influences to warrant the present barotropic modeling effort. Although Holland (1983)

has suggested that inertial stability accounts for near axisymmetry in the inner 300 km

of a TC, inertial stabilization cannot occur in NDBT or quasi-geostrophic models. The

qualitative similarity of TC propagation tracks in simple baroclinic models (e.g.,

Madala and Piacsek 1975: Kitade 1980) to barotropic results provides at least

circumstantial evidence that baroclinic TC stability/propagation is more a modification

to, as opposed to being fundamentally different from, the barotropic phenomenon.

Thus, it is reasonable to assume that TC propagation..' stability is fundamentally a

vorticity advection process that should be fully understood within a barotropic context

before additional baroclinic complexities are added.

b. Influence of TC structure

By using an initial vortex specification that permits independent variations

of the inner and outer tangential wind structure. FF clearly showed TC propagation is

strongly dependent on outer wind changes (strength), but is virtually independent of in-

ner wind changes (intensity) as predicted by earlier researchers (Holland 1983; DM). In

particular, an increase of only a few m s in the initial tangential wind between 300 and

800 km results in a faster and more westward TC propagation that can significantly alter

the />-induced TC track. Although the initial value of TC total relative angular mo-

mentum (RAM) has been cited as having a potentially important influence on TC tracks

(DeMaria 1987). Shapiro and Ooyama (19S9) have recently shown that ^-induced mo-

tion does not depend on initial TC RAM in any well-defined way. Since LAM is es-

sentially an integral (and therefore not unique) measure of TC strength, TC propagation

variations due to changes in RAM are likely a manifestation of the dependence on TC

strength described by FE.

In view of the above, it is clear that properly initializing dynamical forecast

models for TC strength, and ensuring that the model dynamics physics maintain an ac-

curate TC outer wind profile throughout the integration are important areas for ongoing

research. Without aircraft, improved measurements of TC structure for initializing op-

erational forecast models can only be achieved by advancement in remote sensing ca-

pabilities. Designing utilizing remote sensors to better detect TC strength and choosing

model parameterizations to best maintain a desired TC structure both depend on im-

proved understanding of the nature and sensitivity of TC propagation dependence on

outer wind strength. Thus, an additional objective of this research is to identify the dy-

namical basis fox this dependence and provide at least a preliminary assessment of the



wind measurement accuracy required to adequately account for the influence of TC

outer wind strength on the barotropic propagation process.

c. Influence of divergence

Anthes and Hoke (1975) noted significant differences in the /^-induced TC

motion tracks predicted by nondivergent and divergent (5 km depth) barotropic numer-

ical models, which they attributed to divergence-induced slowing of Rossby wave phase

speeds. Such a result would suggest that nondivergent forecast models such as

SANBAR (Sanders a al. 1975) fail to account for a significant propagation process.

In a model comparison similar to Anthes and Hoke, Shapiro and Ooyama (1989) found

nearly identical propagation tracks, even though substantially more divergence was in-

clude J ( 1 km depth). Thus, Shapiro and Ooyama concluded that the earlier result was

due to dissimilar initial TC structures that were employed in the divergent and nondi-

vergent models. This result is important for clarifying the minimal role divergence plays

in barotropic TC propagation, and also supports the choice of a NDBT dynamical

framework for the theoretical model employed in this study. In addition, their result re-

emphasizes the important influence of initial TC specification on the accuracy of TC

tracks predicted by a barotropic model.

</. Environmentally-inducedpropagation

Barotropic models also have been used to study the influence of horizontally

nonuniform environmental winds on TC propagation relative to steering. The additional

influences on the propagation process may be described by rewriting (1.1 ) as

^- = - vA .vcs - v5 .v:, - v5 .vr/+c£)
- v£ .v(cs + W, tf-2)

(a) ibi (c) (d) (e)

in which the environmental (I!) processes V f .V(/+C f ) and t\ T]ci have been omitted

since they relate to the evolution of the steering flow. Terms (a), (b) and (c) of (1.2) are

the same as in ( 1.1 |. However, term (d) of (1.2) now includes advection of environmental

vorticity by the TC. and a new term (e) accounts for both steering and shearing of the

trie TC and wavenumbcr one gyres by the environmental wind.

With the addition of variable environmental winds, it becomes essentially a

matter of convention whether \ A should be associated with the symmetric TC (Vs ) in

which case the term "self-advection" is still meaningful, or whether \ A should be re-

- a modification to V£ , and thus a contribution to steering. The comparison o\~



observational data with theory presented in Section C will provide strong evidence to

suggest that V^ will be manifested as propagation rather than a contribution to con-

ventionally computed environmental steering. Thus. \A will continue to be referred to

as a self-advection flow associated with TC-environment interaction, and will be re-

garded as distinct from the steering associated with V £ .

In a NDBT numerical study with steady zonal winds that varied only with

latitude, DM noted that the poleward component of propagation associated with a TC

in a poleward (equatorward) gradient of environmental vorticity increased (decreased)

the northward propagation component relative to /? alone. DM attributed his results to

the linear theory of Kasahara and Platzman (1963), which predicts that horizontal vari-

ability of the environmental winds will induce TC propagation in the direction of and

90° to the left of the large-scale gradient of absolute vorticity. This theory is essentially

a direct extension of Rossby's westward propagation (1939) and poleward acceleration

(1948) of TC's due to /> alone. The presence of C E in term (d) of (1.2) would make

Kasahara and Platzman's hypothesis intuitively plausible. However, the recent demon-

stration by CW that linear advection of planetary vorticity only distorts the TC must

also apply to the advection of environmental vorticity by the TC. DM's results clearly

indicate that environmental vorticity gradients alter barotropic TC propagation. This

suggests that Kasahara and Platzmann's theory of a linear absolute vorticity-induced

propagation due to the combined effects of fj and lE can be recast within the context of

the nonlinear self-advection mechanism recently identified. Thus, another objective of

this research will be to determine the extent to which a self-advection model for

/)-induced propagation can also accomodate the presence of a horizontally variable

windfield.

Any analogy between the propagation-inducing effects of /? and w £ is com-

plicated by the additional distorting influence of environmental wind shear in term (e)

of (1.2). In a barotropic model that includes /? and an environmental current with only

linear shear. Chan and Williams (1989) found that cyclonic (anticyclonic) shear induces

a westward (eastward) curving TC propagation relative to the tracks induced by /? alone.

They also noted that the orientation of the wavenumber one gyres rotates consistently

with the propagation changes, which suggests that this process is due to shearing of gyre

vorticity by the rotational part of the environmental current. Although curving TC

tracks are also evident in the results of DM who used a sinusoidal windfield. the effect

is much smaller than that seen by Chan and Williams. Because of the potentially im-



portant impact of environmental shear on TC propagation direction, modeling of this

linear shear process will be included in this research.

2. Status of propagation/gyre prediction models

a. Recent results

The preceding discussion of the self-advection mechanism for barotropic

TC propagation has been based on diagnostic analyses of numerical modeling results.

Theoretical models of TC motion that explicitly predict wave number one gyre structure

and associated propagation based on the self-advection concept are also being devel-

oped. The limited success of such models as discussed below has provided motivation

for this research.

Given the intense advective influence of the TC's tangential winds, the

quasi-steady nature of the /^-induced wavenumber one gyre observed by FE suggests that

it is a standing azimuthal wave. Such a wave would propagate clockwise in a Rossby

wave-like manner on the ba<>ic state vorticity gradient represented by the symmetric

component of the TC via term (b) of (1.1). On the basis of such a hypothesis and an

assumption as in (1.1) and (1.2) that \A < <\s over a large area, Willoughby (1988)

formulated a linear shallow model that explicitly predicts the structure of such "vorticity

wave 5;" as well as the propagation they induce. He solved the potential vorticity and

divergence equations in a polar coordinate system moving with the TC for a range of

possible propagation velocities, and assumed that the correct propagation velocity would

minimize the I.agrangian of the system as required by Hamilton's Principle from vari-

ational calculu'-. By incorporating a rotating mass source-sink pair to approximate

asymmetric eyewall convection, he obtained a vorticity wave angular frequency that

agrees well with that of small-scale trochoidal oscillations observed in TC tracks. This

result suggests that TC track oscillations are also explainable in terms of a barotropic

self-advection process associated with asymmetric convection, as opposed to the tradi-

tional Magnus force theory (Kuo 1950: Yeh 1950).

WiUoughby's model failed to predict a correct propagation velocity on a

/?-plane (quiescent environment), presumably due to a barotropic instability studied by

Peng and Williams (1989) in a nondivergent version of the model. Peng and Williams

showed tiiat existence of the instability depends on the vorticity gradient sign reversal

of the TC (necessary condition) and sufficient model resolution to resolve the small scale

of the instability (radius of maximum winds). Thus, they suggest that this linear insta-

bility is dynamically based, but i^ highly damped in full numerical models due to a

.nation of nonlinear interaction and coarse horizontal resolutionn. However, ana-



lytical gyre propagation models such as the one discussed in the next paragraph and the

one developed herein do not experience the instability. Further analysis of this process

is necessary to resolve the apparent paradox, but this issue is not considered within the

scope of the present research.

Smith el al. (1989) have devised an approximate analytical model for the

^-induced gyre structure by ignoring vortex propagation and computing the

streamfunction associated with a redistribution of the initial absolute vorticity by the

symmetric TC. The inner gyre uniform flow predicted by the model closely approxi-

mates the propagation speeds predicted by nonlinear numerical models up to about 24

h. Smith (personal communication, 1989) is presently modifying the model to extend the

period of accurate propagation prediction by empirically accounting for the movement

of the TC.

b. Application

A natural application for a barotropic TC propagation model would be as

part of a track prediction scheme that computes total TC motion at any time by

adding: i) a steering velocity obtained from a numerical model for the evolution of the

large-scale environmental winds; and ii) a propagation velocity derived from the theo-

retical model based on the gradient of absolute (or potential) vorticity of the numer-

ically generated environmental winds. Early efforts based on linear propagation theory

(Kasahara 1957; Kasahara and Platzman 1963) included the cross-vorticity gradient

propagation effect, but ignored the hypothesized up-vorticity gradient acceleration of the

TC. In fact, this supposed acceleration due to a net force on "the vortex" has never been

transformed into a calculated propagation velocity. A recent track prediction model

developed by Holland (19S3: 1984) computes westward propagation due to /? similar to

the earlier efforts, but also includes a northward propagation effect by empirically ac-

counting for net convergence into the TC. That these models have shown only limited

forecast skill is not surprising in light of the recent self-advection theory of propagation,

and the skill that they do possess is probably due to some portion of the actual nonlinear

self-advection phenomenon being parameterized by the linear models.

The present unavailability of an accurate TC propagation model based on

nonlinear self-advection has precluded any implementation into an "advection + prop-

agation'' track prediction model analogous to the linear models. Although the present

model may pro\e suitable for this type of endeavor, development and testing of such a

model is outside the scope of this research. Unlike the linear propagation models that

are insensitive to small deviations of the 1 C from axisvmmetrv, self-advection models



depend fundamentally on such asymmetries, and more importantly, actually predict their

structure (e.g., Willoughby 198S; Smith et al. 1989). Accurate predictions of such gyre

structures would be ideally suited for initializing barotropic numerical models such as

SANBAR (Sanders et al 1975) so that quasi-steady propagation occurs immediately at

the start of the integration rather than after the 24-48 h typically observed for an initially

symmetric TC (e.g., DM; CW; FE). This dissertation will conclude with a proof-of-

concept demonstration of how the gyre propagation model developed here can be used

to improve numerical model initialization.

B. OBSERVATIONAL EVIDENCE FOR PROPAGATION

Given the many barotropic models of TC propagation in the literature, it is natural

to ask whether observational evidence exists to support the predictions of the theoretical

or numerical models. Unfortunately, data deficiencies have made computation of prop-

agation for an individual TC difficult. However, studies that average the data from

many TC s to produce a "composite'' TC are available for this purpose. The propa-

gation vectors in Fig. 1.1 from Carr and Elsberry (1989) are based on data from two such

studies (George and Gray 1976; Chan and Gray 1982). A description of the process by

which the vectors were obtained is given in Appendix A.

1. Comparison with modeling results

The propagation vectors in Fig. 1.1 exhibit a number of interesting properties

that strongly resemble the TC propagation in the numerical models cited above. Except

lor the anomalous "after recurvature" vector (Fig. 1.10. the vectors have magnitudes

ranging from 1.0 to 2.5 m s and directions that tend to be westward and poleward in

both hemispheres, which is consistent with the numerical and analytical results previ-

ous cited. In addition, the rotation of the propagation vector direction from west-

southwestward for westward moving TC's to northwestward for eastward moving TC's

in the direction stratification (Fig. 1.1b) is consistent with DM s numerical results. DM
showed that the change in the direction of the environmental vorticity gradient from

poleward on the poleward side of the subtropical ridge to equatorward on the

equatorward side caused a decrease in the meridional component of TC propagation

to that in Fig. 1.1b. Finally, the propagation vectors in the intensity

stratification (Fig. l.ld) have a direct dependence on TC intensity. As discussed earlier,

the modeling studies of DM and FF demonstrate that a nondivergent barotropic pre-

diction of TC propagation due to (i is independent of TC intensity, but is well correlated

wn!i outer wind strength (see Merrill 1 9S4 for typical definitions of strength and inten-
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Fig. 1.1 Vector differences of composite TC motion minus steering for the (a) latitude,
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(e) direction and (f) recurvature stratifications of Holland (1984). The vector identifica-

tion labels correspond to those in column 1 of Tables A.l and A. 2.



sity). Since a weak correlation exists between the intensity and strength of TC s

(Weatherford and Gray 1988), the increase in propagation vector magnitude in Fig. l.ld

may be a manifestation of the numerically-predicted dependence of /^-induced -propa-

gation on TC strength.

The results m Fig. 1.1 also contain some apparent inconsistencies. Examples

are: i) the significantly larger meridional components of the Northern Hemisphere vec-

tors compared to that of the Southern Hemisphere vectors; and ii) the presence of

equatorward components in some of the propagation vectors. Such properties may be

associated with boundary layer or baroclinic processes not considered in the barotropic

theories. However, a possible barotropic explanation might be the presence of east-west

vorticity gradients in the TC environment that were excluded by DM. For example, a

large-scale westward relative vorticity gradient is present during the summer in the

troposphere between the anticyclone over the western North Pacific and the heat low

over southeastern Asia. Based on DM s results, a TC vortex embedded in such a

vorticity gradient should have a westward, and more importantly, a southward compo-

nent of propagation. Since the meridional gradient of environmental relative vorticity

and P arc in opposite directions south of the Northern Hemisphere subtropical ridge, the

zonal gradient of environmental vorticity might tend to dominate, and thus explain the

southward component of vector W in Fig. 1.1b. In contrast, the meridional environ-

mental vorticity gradient and /)' are in the same direction north of the Northern Hemi-

sphere subtropical ridge, and thus might dominate over the influence of a zonal vorticity

gradient in the ca^es of vectors N and E in Fig. I. lb. Differences in the direction of the

large-scale absolute vorticity gradients in the Northern and Southern Hemispheres thus

may contribute to the hemispheric variability of the data shown here. The present

propagation model will permit testing of such a hypothesis within a modeling context

since the influence of an east-west environmental vorticity gradient will be included.

Statistical influences in Fig. 1.1 also must be considered, such as: i) ambiguities

introduced by composite stratifications that may incorporate multiple propagation-

inducing influences; and ii) possible random or systematic errors in the composite data

that may be significant relative to the small size of the propagation vectors being ana-

lyzed (e.g., accuracy of rawinsonde wind measurements and error in locating the TC

sition). Random and systematic errors should be reduced as sample sizes are

increased and observational accuracies arc improved respectively.



2. Interpretation of observed propagation vectors

The fundamentally important issue that determines the mechanism responsible

for observed TC propagation is whether or not a TC-interaction flow (V^) will be man-

ifested as an essentially inseparable contribution to conventionally computed

environnmental steering. If V^ is included within the steering, then the observed TC

propagation vectors must be due to some mechanism other than self-advection. at least

within the context of the barotropic theory7
. If a self-advection flow is not accounted for

in the computed environmental steering flows, then the observed propagation vectors

may indeed represent the self-advection process.

Holland (1983) assumed that V^ is included in the steering, and he has proposed

a linear propagation model that is consistent with the near-zonal orientation of the

Australian-Southwest Pacific difference vectors (Fig. l.le-0- Holland assumes that

inertial stability constrains the inner core of the TC to move with the outer envelope,

which is assumed to propagate westward as a Rossby wave with a phase speed appro-

priate to an "effective radius." In practice, the "effective radius" parameter for a partic-

ular storm and time is chosen to give a barotropic Rossby wave propagation speed that

equals the observed westward component of TC propagation over a preceding time in-

terval. Although Holland proposed low-level convergence to account for small devi-

ations from pure westward motion, the above discussion of environmental shear in

addition to /> is an alternative explanation.

In contrast to Holland's assumptions, FF's explicit illustration of the

wavenumber one structure of the self-advection flow provides strong evidence that \A

is, for the most part, not included in the steering. Key aspects of this structure are that

the central uniform flow portion of the gyres that account for the propagation is con-

fined to radii less than 300 km from the TC center, and that the gyre flow is considerably

weaker outside that radius. Even allowing for somewhat larger gyres in actual TC's, this

suggests that the uniform flow region of the interaction flow would be largely unac-

counted for in a steering flow calculated over an annulus of 5°-7° lat. radius from the

TC center as is the case for the data used to produce Fig. 1.1. Thus, "self-advection"

should be manifested primarily as propagation, rather than as a contribution to con-

ventionally calculated steering flows. Thus. Holland's linear model may actually include

nonlinear motion-inducing processes since the selection of an effective radius is based

on the observed difference between TC motion and steering over a preceding time in-



Accurate measurement of steering near the TC center will continue to be prob-

lematic for the foreseeable future. Thus, it seems advisable as a practical matter to

continue to compute steering at a large scale (a 1000 km) as is now done, and to- regard

the self-advection flow as a propagation-inducing process that is distinct from steering

by the large-scale environment. In light of the subsynoptic scale region in which the

self-advective flow is influential, such a flow partitioning may also be a good approxi-

mation to the long-sought scheme to uniquely separate the TC from its environment.

Thus, this research will use the three-part partitioning scheme proposed in Elsberry

(1986) that consists of: i) a symmetric TC; ii) a propagation-inducing TC-environment

interaction flow; and iii) a large-scale environmental flow component that accounts for

TC steering.

C. DISSERTATION OVERVIEW

In summary, the specific objectives of this research are:

1. identification and analysis of the specific mechanism responsible for barotropic

vortex stability to asymmetric forcing, and how this stabilizing influence is related

to TC motion;

2. development and analysis of a theoretical model for barotropic TC propagation due
to both planetary and environmental vorticity efleas that is based on nonlinear

self-advection. and that accurately predicts gyre structure and associated propa-

gation velocity relative to equivalent numerical model solutions;

3. identification of the dynamical basis for the dependence of barotropic TC propa-

gation of outer wind strength, and an assessment of the wind measurements re-

quired to account for this phenomenon: and

4. provide' a preliminary demonstration of the viability of self-advection propagation

models for improved initialization of barotropic TC track forecasting models.

Because of the mathematical complexity of the model to be constructed, Chapter II

will be devoted to preliminary development and analysis. Objectives 1 and 2 above will

be addressed in Chapters III and IV respectively, and the theoretical aspect of Objective

3 will be addressed in Chapter IV as well. In Chapter V, the model will be applied to

satisfy the second half on Objective 3 and Objective 4. Chapter VI will conclude the

dissertation with an overview of the modeling approach and a summary of results.



II. PRELIMINARY MODEL DEVELOPMENT

A. REFERENCE FRAME TRANSFORMATION

The behavior of fluid motion in a NDBT system on a /?-plane is governed by the

conservation of absolute vorticity. which may be expressed as

JSL(C+/)-0 (2.1)

; = k.VxV (2.2)

f=f + Py- (2.3)

where C is the local vertical component of relative vorticity, fi is the linearized latitudinal

derivative of the Coriolis parameter/, and/ is the average value of/ in the domain. In

terms of Eulerian partial derivatives, (2.1) may be expressed as

-|y- + V.V(C +/) = 0. (2.4)

A formal partitioning of the total fluid flow that takes advantage of the near-

axisymmetry ofTC's as suggested by (1.1) and (1.2) requires (2.4) to be transformed to

a reference frame moving with the TC at a translation velocity C(/). In terms of

cartesian coordinates, the relationship between the position vectors for an arbitrary

point P in each reference frame is illustrated in Fig. 2.1, and is mathematically defined

by

R(.v, y) = R'(x',y') +
f
C(t)</t

, (2.5)

where the (') symbol denotes variables in the moving reference frame. Let the (') symbol

also define certain derivative operations in the moving reference frame

V =
' p .' \y',t=const ' I p,.i \x',t=const (.»-•")



Fig. 2.1 Relationship between the position vectors of an arbitrary point P in a reference

frame fixed to the surface of the earth (unprimed variables), and in a reference frame

moving at velocity C(tj (primed variables).



By using the chain rule and (2.5)-(2.7), it may shown that

V = V (2.8)

4- = 4~ - CV\ (2.9)
CI 01

which, when substituted into (2.4), results in the desired transformed expression

c.v); + V.Vf

(C +/')• (2.10)(t

It is important to note that a convention of leaving the dependent variables

untransformed in (2.10) has been employed. Although relative vorticity and the gradient

of the Coriolis parameter are invariant with respect to the coordinate transformation,

fluid velocity is not. Thus, the velocity transformation

V = V + C(/j, (2.11)

obtained from d dt of (2.5) has not been used. This results in explicit advection by C in

(2.10). but has the desirable property of avoiding an implicit dependence of the fluid (low

on C in the moving reference frame. Such a convention is necessary to justify the use

of the homogeneous boundary conditions that will be employed in solving this model,

and facilitates later use of the solutions in a numerical model initialization scheme.

B. FLOW PARTITIONING

As outlined in Chapter I, the total fluid flow is partitioned into

V = V5 + \E + VA ,
(2.12)

according to the following definitions: i) Vs is a known symmetric (S) TC flow com-

ponent that is steady in the moving reference frame; ii) V£ is a known environmental

(E) (low; and iii) \A is a predominantly asymmetric (A) flow component that repre-

sents as yet unknown interactions between the symmetric TC and the specified envi-

ronmental flow. Subject to these definitions, substituting (2.12) into (2.10) gives

(j- - c«v)(t, + : L )
- c.vfc + v5 -V(C, + cE +/')

+ (\E + vj.v(c5 + : A + :E +/') = o, (2.13)

16



in which the term Vs . V: s is absent since Ys is by definition orthogonal to V'£v Re-

moving the terms associated with the symmetric TC and interaction flows from (2.13)

gives

(-|- - CV')Ce+ V£ .V'(C£ +/') = 0, (2.14)

which defines the evolution of the environmental winds in the absence of the TC with

respect to the moving reference frame. Subtracting (2.14) from (2.13) gives

*j± + (
v5 + v£ - q.v{a + [\A - q.v;5

_ v,.v;;, + : E +f) = - v£ .v;5 - v5 .V(££ +/), (2.15)

in which the (') symbols have been omitted for simplicity. In all subsequent analysis,

independent variables will be relative to the moving reference frame. The various terms

of (2.15) have been grouped so that the left side represents a nonlinear partial differential

equation for the evolution of the interaction How in response to two asymmetry-

inducing forcing terms on the right side. The first forcing term includes: i) distortion of

the symmetric TC vorticity field due to large-scale horizontal windshear; and ii) steering

of the TC by the environmental winds. The second forcing term represents the dispersive

effect of Rossby wave radiation associated with the advection of large-scale absolute

vorticity by the tangential wind of the symmetric TC. The TC translation velocity C also

appears on the left side of (2.15), and represents an additional unknown.

The effect of requiring (2.14) to hold with the TC present is that the interaction flow

must represent all changes to both the svmmetric TC and the "basic state" environment

due to the interaction process. However, the earlier assumption that V5 may be regarded

as stead} in the moving reference frame simplifies the interpretation of (2.15) to a purely

asymmetric interaction flow that can cause TC propagation relative to the large-scale

environment described by (2.14). The assumption of a steady TC is regarded as a good

first-order approximation to lessen the considerable complexity of the TC motion prob-

lem evident even in NDBT dynamics. However, such an assumption excludes the po-

tential impact of TC strength and intensity changes from the scope of this research.

As noted above, the first term on the right side of (2.15) represents both steering and

2 of the TC b\ the cnvnonmcntal wind. As a result, the "1 C translation velocity

C incorporates both a known ad\cction by V£ as determined by (2.14). and an unknown



propagation velocity associated with the interaction flow VA . To separate the known

and unknown effects, a pure shearing component of the environmental wind relative to

the center of the symmetric TC may be defined as

V£(r, 6 j) = V£(r, Bj) - V£(0,0,')

,

(2.16)

where V£(0,0,/) represents the instantaneous value of V£ at the TC center. Note that

V£(0,0,/) provides a theoretically useful definition of environmental steering for this

model. A propagation velocity C then may be defined by

C(f) = C(f) - V£(0,0,0- (2.17)

Substituting (2.16) and (2.17) into (2.15) gives

4f- + (v5 + vE - t).nA + Va - Q-ns

+ Va'Wa + C£ + /) = - V VC5 - V5-^(Ce + /)

,

(2.18)

in which the unknowns are the self-advection flow field and the associated propagation

velocity C.

It should be noted that (2.14) and (2.18) represent the basis for a 'propagation +

advection" track prediction model based on self-advection that is analogous to the tra-

ditional linear versions discussed earlier. Equation (2.14) could be numerically inte-

grated to provide Vr(0,0,/) at appropriate time intervals, while a solution to (2.18) would

provide information on TC propagation. As discussed earlier, this research will focus on

solving and analyzing several approximate forms of (2.18). The remainder of this chap-

ter describes the additional assumptions and concepts on which the solutions in Chap-

ters 111 and IV are predicated.

C. SIMPLIFYING ASSUMPTIONS

1. Adjustment time concept

Except for special circumstances, (2.14) indicates that the environmental

windfield will evolve with time. The resultant temporal variability of V£ and ££ makes

(2.18) analytically intractable for use as a theoretical propagation model without some

simplifying assumption regarding the tune dimension in (2.18).



As discussed in Chapter I. an initially symmetric TC in a NDBT numerical

model will propagate in response to steady large-scale forcing at a nearly steady velocity

and with quasi-steady asymmetric structure after a transient adjustment period of about

24-4S h (DM; CW; FE). The transient phase results from choosing an initial TC struc-

ture that differs from the steady-state structure. Since TC's are continually subjected

to environmental forcing, it may be expected that mature TC's in a steady or slowly-

varying large-scale windfield possess an asymmetric structure that reflects nearly com-

plete adjustment to the asymmetric forcing of the environment. Thus, the temporal

varibility of V£ and ££ in (2. IS) will be eliminated by regarding the t variable in (2.18)

as a hypothetical "adjustment time" during which a "first-guess" symmetric TC will de-

velop a quasi-steady asymmetry appropriate to the forcing defined by (2.14) at any in-

stant.

In a rapidly varying large-scale environment, the TC may not be fully adjusted

to the asymmetric forcing of the environment, such as during TC interaction with a

rapidly moving midlatitude trough. Without high resolution observational data to ana-

lyze TC propagation and horizontal asymmetries under such circumstances, a quantita-

tive estimate for the amount of error associated with a steady-state propagation model

is not possible. Thus, it is simply noted that the present model may be less accurate in

such circumstances.

2. Matched solution approach

a. The transition radius

The magnitudes of the wind speed and vorticity of the symmetric TC com-

ponent are much larger than the corresponding asymmetric and environmental compo-

nents over a significant horizontal area in the lower and middle troposphere. Since TC

tangential winds decay to essentially zero at large radius, a region must exist in which

the magnitudes of the asymmetric interaction and environmental flows are as large as

the symmetric How. This radius is called the "transition radius," and will be denoted by

R T . The value of R r will depend on the structure of the symmetric TC and the envi-

ronmental windfield under consideration, and would vary with height in baroclinic situ-

Subject to some additional assumptions delineated in Chapter IV, a single

transition radius will be assumed to exist for the barotropic model used here.

b. Self-advection Region

lor r < R-. it is assumed that advective terms in (2.18) not involving the

symmetric flow will be negligible. Based on such an assumption. (2.18) simplifies to



-jf-
+ v5 .v:, + (V^ - C).V£5 = - v£ .vc s - V,.V(C£ +/). (2.19)

The circular area within which (2.19) applies will be called the Self-advection Region

since mutual advection by the asymmetric interaction flow and the symmetric TC flow

dominate the left side of (2.19). It should be noted that the Self-advection Region as-

sumption is equivalent to regarding the interaction flow as a linear perturbation to the

symmetric TC flow.

c. Dispersion Region

Tor r > R 7 . it is assumed that self-advection terms on the left side of (2.18)

will be negligible relative to advection terms involving the environment and either the

symmetric TC or interaction flow. Based on this assumption, (2.18) simplifies to

^f-
+ VE .VtA + Va-We+Z) = - V£ .VC5 - VS .V(C£ +/). (2.20)

The outer area in which (2.20) applies will be called the Dispersion Region since mutual

advection by the interaction and symmetric TC flows, which enables barotropic vortices

to resist dispersion, is excluded.

d. Asymptotic assumption

In an annular region where r ^ R r , the assumptions that distinguish the

Self-advection Region and Dispersion Region are not valid. However, (2.19) and (2.20)

are suitable for a developing a matched solution for a propagation-inducing interaction

How field that becomes asymptotically close to an exact solution to (2.18) as r becomes

larger or smaller than R 7
. Such a matched-asymptotic-solution approach will be used

in Chapter IV.

3. Isolating wavenumber one processes

The diagnostic analysis by FE showed that the interaction flow field (their

"ventilation flow") responsible for TC propagation due to just /? has a predominantly

azimuthal wavenumber one structure. Chan and Williams (1989) have shown that the

interaction flow maintains an predominantly wavenumber one structure in the presence

of horizontal wind shear in the environment, even though forcing at higher

wavenumbers is present. The absence of significant wavenumber two and higher com-

ponents in the interaction flow will be addressed in the stability analysis of Chapter III.

The observation that onh a wavenumber one flow structure should cause TC

propagation is intuitively plausible since only a wavenumber one gyre will produce



nonzero flow across the center of the symmetric TC (Fig. 2.2). Formally establishing

this concept and simplifying governing equations for the Self-advection and Dispersion

Regions is facilitated by writing (2.19) and (2.20) in component form. In a polar coor-

dinate system centered on the symmetric TC.

V5 = v
s[r)e, (2.21a)

V, = Mr, 0,0 * + vA(r,d,t)e, (2.21ft)

C(/) = C(i) [cos(0 - a) r - sin(0 - a) e]
, (2.2k)

where r and e are unit vectors in the radial and azimuthal directions respectively, and C

and y. are the propagation speed and direction respectively. The mathematical conven-

tion of measuring angles counter-clockwise from east has been used. In addition, let

V£ = uEU,d)i + v£(r.0)j, (2.22)

m which conventional cartesian symbology has been used for the environmental wind

components and unit vectors. Note that in view of the adjustment time concept, (2.22)

contains no dependence on time.

a. Wavenumber one Self-advection Region equation

Substituting (2.21a.b.c) and (2.22) into (2.19) gives

— r-^— +I>d- Ccos(0-cO]-^- =
oi r cB cr

•23)—
.

-
i

F
^- sin - vJ -^- + p ) cos $ + iv -r^ sin . (2.c

cr c cr \ 6y J ex

(a) (b) (c) (d)

Since both cljcr and C are independent of azimuth, the propagation term

on the left side of (2.25* is a wavenumber one process. Only projections onto

wavenumber one by the forcing terms on the rig!;! side of (2.23) can cause TC propa-

gation, because projections onto other wavenumbers are orthogonal to the propagation

. ;. of this result depends on the assumption that the term C • V.'„ may

. neg scted in both the Self-advection and Dispersion Regions. Since tA is by definition

:tions of forcing onto other wavenumbers can potentially influence



Fig. 2.2 Hypothetical streamfunction patterns (solid, positive; dashed, negative) for

Hows that are purely azimuthal wavenumber: (a) one; (b) two; and (c) three. Arrows in-

dicate general direction of the flow at that location.
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TC propagation via this term. However. FE's finding that TC propagation was almost

completely accounted for by advection by the wavenumber one gyre provides numerical

support for regarding the interaction flow as a linear perturbation to the symmetric TC.

Simplifying (2.23) to include only the dominant wavenumber one influence

of each term is facilitated by writing the environmental flow factors as truncated Taylor

series o^ the form

(2.24)

Since (2.16) requires A„ in (2.24) to be zero for uE and v£ , the forcing terms (a) and (b)

of (2.23) project onto wavenumbers zero and two to first order. In contrast. A„ is gen-

erally nonzero for the first derivatives of environmental vorticity. Thus, to first order the

Self-advection Region equation governing TC propagation is

[uA - Ccos(^-a)]
ct s

- i-
s (
-^- + 0) cos + vc-^M sin0, (2-25)

.. \r=0 J
CX

I

r=0

.;. be expressed more concisel) as

—- - -f -777 * 1«a ~ Ccos(0-a)]-^- = vsPef/
sm(6 - <p) . (2.26)

The parameter p,,. is the magnitude of the environmental absolute vorticity gradient {i.e.,

an "effective" /?) defined by

;('-*LM*UT' (2.27)

and 6 is the direction associated with /?,„ in degrees from cast as defined by

o = 90
c - arctan (2.28)



b. Wavenumber one Dispersion Region equation

A wavenumber one propagation term does not appear explicitly in (2.20).

Nevertheless, it may be anticipated that only wavenumber one processes 4n the

Dispersion Region are important to TC propagation since orthogonality between

wavenumbers would preclude the matching of higher order wavenumber solutions in the

Dispersion Region to the solutions of the wavenumber one Self-advection Region

equation (2.26). In addition, FE and Chan and Williams (1989) have shown that the

self-advection flow is predominantly wavenumber one throughout a large region where

the Dispersion Region assumption is applicable.

The analysis in Section C.3.a above has already shown that the term

V£ «V£5 is to first order a wavenumber two process, and by implication that the term

Vx • V(C F + f) is also to first order a wavenumber two process. Thus, substituting

(2.21a,b,c) and (2.22) into (2.20) gives

K* ,
a r c:A i

e:A .
~i—-— + «r —— cos - — -rr-sinO

6t
L

\_
cr ' c6

+ vJ-^f-smd + -J-^cosol = vsftef/
sm(0 -

<f>)

.

(2.29)

To further simplify (2.29), let uE and v£ be approximated by the truncated Taylor series

uE(r,d) = -^~- rcosO + 4rf r sin (2.30a)

vE(r,8)= 4^ rcosd + 4~- r sin 6

,

{2.30b)
ex |r=o ay |r=0

in which sin# and cos# terms have been used in lieu of the phase angle </> in (2.24). In

substituting (2.30a.b) into (2.29), only terms involving sin 2# and cos2 can contribute to

wavenumber one. Retaining only the wavenumber one components of such terms gives

-77- + ~i ff~
+ "Tlf = l5%sin(# - 0), (2.31)

where



~ CUE CXF CVF CUF
Dr = -zr- + T7 , Z£ a -rf r^ • (2.32a.£)

Noting that D f and Zf represent first-order estimates of environmental divergence and

vorticity respectively in the vicinity of the TC, and assuming that D £^0 simplifies (2.31)

-jf-
+ -f-jf = vsPef/

sm(d-4>), (2.33)

which is to first order the Dispersion Region equation governing TC propagation. Since

Z E 2 represents a constant angular velocity for the environmental wind, the second term

on the left side of (2.33 1 represents a gyre-rotating influence consistent with the numer-

ical results of Chan and Williams (1989).

D. SUMMARY AND NONDIMENSIONALIZATION

In summary, two equations have been developed that describe to first order the

wavenumber one interaction flow associated with barotropic TC propagation. A trans-

formation to a polar coordinate system moving with the TC and a partitioning of the

total flow into symmetric TC, large-scale environment and a TC-environment interaction

flow have been employed. A transition radius R r has been defined inside of which is a

Self-advection Region and outside of which is a Dispersion Region where mutual

advections by the symmetric and interaction flows are important and unimportant re-

The wavenumber one interaction (low within the Self-advection Region is

governed to first order by

-^ - -77" "7^- + [>., - C*cos(0-a)]-^- = vs.l3 e/J,sm(0 - 0) , (2.34)

and within the Dispersion Region is governed to first order by

4f- + -ip-if
= v>^ sin((? - *>• (2 - 35)

where the asterisk subscripts denote dimensional variables. In all subsequent analysis,

the absence of an asterisk will denote nondimensional variables.

This preliminary development is concluded by deriving a nondimensional form of

1 " iy. scaling r by the radius ofmaximum winds (RM.), all velocities by the



maximum symmetric wind (V^), time by RM.'VM . and all vorticities by VM.:RM.. The re-

sulting Self-advection Region equation is

^jf-
+ -y-^f + \MA - Ccos{6-a)-]^f- = vspeff

sm(d - </>) , (2.36)

and the Dispersion Region equation is

where

/V;-*fl?/*
, _ _ Zg./^,.

/? 7
a — and Z E m n

. (2.38«,£»)



III. BAROTROPIC VORTEX STABILITY

In this chapter, the specific mechanism responsible for barotropic vortex stability to

asymmetric forcing will be identified and analyzed. Since self-advection has been clearly

identified to be necessary for this stability to exist in barotropic numerical models (CW),

the scope of this chapter will be limited to the Self-advection Region as governed by

I
2.32 >. Despite the already simplified form of (2.32). a complete solution for an arbitrary

initial condition that includes both the transient and quasi-steadystate responses in TC

propagation models is in all likelihood analytically insolvable. As a result, the focus in

pter will primarily be on the transient adjustment process by transforming I
2.32 *

into the related unforced initial value problem. Equation (2.32) includes only the dom-

inant terms describing the wavenumber one interaction flow associated with barotropic

propagation of! C s. To explain the absence of higher wavenumber asymmetries in TC

propagation, the following development will address vortex stability to initial asymmet-

ric perturbations of arbitrary wavenumber.

\. MODEL DEVELOPMENT
1. Background

tion for the following analytical development is the study of NDBT

/-plane Couette flow b; . . I le obtained an integral solution for the time evo-

lution of linear perturbations imposed as initial conditions on the NDBT Couette flow,

which is a steady, zonally uniform flow with constant latitudinal shear (Fig. 3.1a).

Cases result] interpreted as an infinite summation of a continuum of singular

as continuous spectrum modes (Pedlosky 1964). For the

NDBT /-plane Couette flow problem, this continuous spectrum forms a complete basis.

jcrete normal modes are eliminated b> the lack of an environmental vorticity

superposition of these continuous spectrum modes results in a perturba-

tion strcamfunction structure that has an algebraic time dependence {i.e., depends on

nvolvins t to an integer power) as the perturbation is tilted down-shear by the

Couette flow. Although the baroclinic Couette flow study of Farrell (1982) showed that

initial gr dwi tion is possible for particular initial conditions, both Farrell

:: ptotically proportional to /
_:

for / -* do, as

I 3.1a. In terms of instability theory. NDBT /-plane
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Fig. 3.1 Schematic portrayal of perturbation damping with time due to (a) a

mcridionally sheared Couette How, and (b) a radially sheared axisymmetric vortical flow.



Couette How may be viewed as a barotropically stable "basic state" with respect to linear

perturbations.

The NDBT/-plane Couette flow model, as in the Eady or Charney models, may

be viewed as an idealization of the response of synoptic disturbances to a particular

planetary-scale flow. Along with other limitations, the accuracy of this approach de-

pends on the extent to which synoptic-scale disturbances may be regarded as linear

perturbations. In the case of an intense vortex such as a tropical cyclone, such an as-

sumption would be clearly unjustified since the TC winds can be substantially stronger

than the environmental flow at quite large distances from the center. However, the large

magnitude and nearly circular structure of the TC windfield suggests that a model anal-

ogous to NDBT /-plane Couette flow could be developed in a polar coordinate system

moving with the center of the TC. In such a model, the axisymmetric component of the

TC outside the radius of maximum winds \R„.) may be regarded as a radially sheared

NDBT "basic state" that is time-invariant in the moving reference frame, and the asym-

metric component of the vortex may be regarded as a perturbation to the symmetric

basic state. If the axisymmetric basic state has constant vorticity, then an initial per-

turbation can be expected to damp completely as it is tilted in the direction of the sym-

metric radial shear I Fig. 3.1b). A vortex model based on a constant vorticity basic state

and initial perturbations is clearly a special case, and the implications of such approxi-

mations will be addressed explicitly below.

2. Model formulation

The analysis o^ Chapter 1 Section C.3 showed that shearing of symmetric TC

vorticity by V£ is to first order a wavenumber two process. It is desirable to include this

physically-based process in the present analysis by rewriting (2.32) as

^r-^ + -t^t— + |>, - Ccos(0-a)]-r~ =

-iiE -^- cos 6 - vE -^-sin6 + v5jff^sin(0 - <£)

,

(3.1)

where the first two terms on the right side have been obtained from (2.23). The gov-

erning equation for the unforced initial value problem related to (3.1) is



-ff-
+ -f -jf-

+ [uA - Ccos(d -*)-}-+- = 0. (3.2)

(a) (b) (c)

Equation (3.2) describes the evolution of an asymmetric perturbation initially imposed

on a symmetric "basic state" vortex in a quiescent environment and on an/-plane. With

the addition of two homogeneous boundary conditions at specified radii, (3.2) becomes

the homogenous counterpart to (3.1) over the enclosed domain. Since these equations

are linear with respect to the asymmetric perturbation flow, linear differential equation

theory can be employed to show that certain relationships exist between the free-

perturbation response and the forced-perturbation response. This issue will be specif-

ically addressed in Section D.l within the context of the free-perturbation behavior

illustrated in Section B below.

The advection of perturbation vorticity by the radially variable symmetric flow

in term (b) of (3.2) is analogous to the shearing process that causes perturbation damp-

ing in the Couette flow model. In addition to manifesting vortex motion through the

advection of symmetric vorticity, term (c) permits the propagation of neutral and possi-

bly exponentially growing discrete normal modes on the radial gradient of £s . This term

represents a serious obstacle to an analytical solution approach since v 5 has a strong

radial dependence that varies with the particular vortex structure. To facilitate analysis

of the damping process associated with term (b). term (c) will be removed by: i) re-

quiring that v- has a Rankine radial dependence over a horizontal area bounded on the

inside by the radius of maximum winds {RM.)\ and ii) limiting the domain of the imposed

perturbation to that region. To facilitate specification of initial conditions in Subsection

3 below, the modified Rankine profile (see Anthes 1982, p. 22) will be used

vs =r"
A

'

r>\. (3.3)

The Rankine profile is the limiting value of (3.3) as X-> 1. Substituting (3.3) into (3.2)

gives

^-ff-
+ co5^- =0 r>\ (3.4a)



where cos represents the symmetric angular wind.

Choosing vs to be Rankine not only eliminates any discrete normal mode com-

ponents from solutions to (3.2). but also may have a significant impact on the contin-

uous spectrum response. Both these issues must be addressed before the results of this

model can be used to interpret the numerical studies cited earlier that used non-Rankine

vortices. The impact on the continuous spectrum can be assessed by drawing an analogy

between (3.2) and NDBT Couette How on a rotating sphere in the sense that the radial

gradient of C 5 has an influence analogous to the latitudinal variation of the Coriolis pa-

rameter. For a /)-plane approximation. Kao (1955) and Boyd (1983) have shown that /?

has no influence on the rate of continuous spectrum damping, but rather causes the

continuous spectrum wave to retrogress proportional to /? in a manner related to the

familiar discrete mode propagation. Because the retrogression is independent of latitude

for a constant /?, the damping rate depends only on the magnitude of the Couette flow

shear. Since the radial gradient of £s is inward in the inner part of a typical vortical flow

and decreases rapidly with increasing radius, it is anticipated that a continuous spectrum

wave will retrogress (i.e., clockwise for a cyclonic vortex) faster at smaller radii than it

would at larger radii. The result would be slower damping since the retrogression would

tend to counter the tilting induced by v . This effect should be negligible for any modified

Rankine vortical flow with Xzzl. In Section C.2. the numerical results of McCalpin

I 1987) will presented to show that significant perturbation retrogression can occur for a

vortex that has a large and highly variable symmetric vorticity gradient. In addition,

comparison of the results of this model with those of FE and DM will suggest that the

symmetric vorticity gradient of a tangential wind profile that approximates a TC causes

only minor slowing of perturbation damping due to variable retrogression. Finally.

analysis of McCalpin's results will also suggest that virtually no energy from an initial

perturbation projects onto any discrete modes. Thus, the use of a Rankine vortex will

be shown to be reasonable for analysis of unforced perturbation responses.

The model may now be solved by defining a perturbation streamfunction

\ . = k / Vi./., :., = V2
if/A . (3.5a,b)

\
homogeneous boundary conditions

9,i) =
i>A (b,6,t) = 0, (3.6a,fc)
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where a= 1 and b must be chosen to confine the perturbation to the Sclf-advection Re-

gion. Although the analysis of Chapter II defined the outer boundary of the Self-

advection Region to be a specific transition radius, here a convenient choice of-b = 10

will be used. The justification for this approach is that the Self-advection Region de-

pends on perturbation magnitude, and the Self-advection Region in an unforced model

can be made arbitrarily large by choosing sufficiently small perturbations. The

azimuthal dependence of \j/ A will also be expressed in terms of the complex Fourier series

<Mr,0,/) = ReiV V\r,t)e
lM

I. (3.7)

Substituting (3.5b) and the k'
h term of (3.7) into (3.4a) and integrating with respect to

time gives

¥*(,,/) = :yiktMs (3.8a)

* - [£ H - 4>"\>;Q) . (3.86)

Substituting (3.7) into (3.6a,b) gives

T\aj) = Y\bj) = , (3.8c,</j

where V
c

is the radial structure of the azimuthal wavenumber k component of the initial

asymmetric vorticity.

Equations (3.8a-d) constitute a fully specified boundary value problem. The

solution may be formally written in terms of a Green's function

¥fy.O =
\

b

G
{
r,p)£{P)e-

ikl^ ) dp. (3.9)

Using standard techniques (Case 1960), the Green's function is calculated to be

Ik 2k
a — r

, k+\ ,2k -A+K ^ ^
7—T-. TT" /

} -op a<r<p
2kr\a

2k - b
lk

)

CA>:p)=
"

k 2k
. (3.10)

b — r , k+] 2k -A-+K . . ,—
TJ.

7— (/' -a p )
p<r<b

7kr
L
(a

2k - b
2k

)



Finally, substituting (3.9) into (3.7) gives

Ur,e,i) = Re
I
fS

a

G^ p)^p)e
~m~tm^)dp

\
' (111)

which represents a formal solution for the time evolution of the perturbation

streamfunction. Although exact solutions to (3.11) do exist for certain initial conditions,

the integral generally must be evaluated numerically. A simple trapezoidal scheme will

be used.

3. Initial condition specification

To evaluate (3.11). an appropriate functional form and scale for £2 must be

It is not immediately clear what combination of radial and azimuthal depend-

encies to associate with asymmetries generated by the interaction of a TC with its

environmment. The right side of (3.1 ) is used for this purpose by writing

—— oc Vc/L/vSinfO - c>) - //,^r^-cosO — iv ~-r- sin 6
L

cr ( r

6<s ^Cs- Cv—— cos0 + Cy—

^

— sin 0, (3.12)A
cr CY

= C cos y and cr = C sin a are the zonal and meridional components ol~ the 1 C

propagation velocity respectively. Advection by C has been included from the left side

since "the propagation induced by uA is also an asymmetry-inducing influence (cf.

Willoughby 19S8). Since asymmetries associated with the two environmental shearing

terms will dilfer only with respect to phase, which is unimportant in the unforced re-

thc first term will be utilized here. Applying similar logic to the

two propagation terms in (3.12) results in the simplified form

—— or r5/?ĉ -sin(0
- 4>) - */,—r— costf + c v -r— cos . (3.13)

(a* (b) (c)

To determine the spatial structure of the forcing terms in (3.13), the radial gra-

ttric vorticity first is written in terms of (3.3). Now a Rankine profile

:ity as desired to delete term (c I from I 3.2). As noted in the Section

tion away from (A'= 1) may also be considered as a valid



model extension since the radial shear of vs would be essentially unchanged, and the as-

sociated damping should he little affected by the small radial gradient of C s that would

be introduced. Thus, using (3.3) with A'^l gives

% * ^r1 • ("4)

Second, let uE be approximated by a truncated Taylor series expansion about the present

position of the symmetric cyclone center

uE(y) = SEy = SEr sin 6
,

(3.15a)

diip

SE m -rM (3.156)
oy

J

>=o

where S£ represents the nondimensionalizcd linear shear component of the environ-

mental wind, and any zonal dependence of uE has been ignored due to the phase argu-

ment mentioned above.

Considering only term (a) of (3.13), substituting (3.3) gives

-4^ °c -7~ sin( ^ ~ ^)> (
3 - 16)

which represents the generation of a wave-number one asymmetry from the advection

of environmental absolute vorticity by the symmetric vortex. Such asymmetries repre-

sent the large gyres that have been identified in numerical models (FE) and in observa-

tions (Chan 19S6). An initial condition with equivalent spatial structure (hereafter

referred to as a "vorticity-induced asymmetry7") for use in this unforced model would be

r'o-) = -=y- k = ] ( 3 - 17
)

Vm*IRm*
' (3.18)

where a poleward gradient of absolute vorticity has been assumed ( <f>
= 90°), and ZA .

represents a scale for the perturbation vorticity that remains to be specified.



Considering only term (b) of (3.13), substituting (3.14) and (3.15a) gives

—^ oc {l-X )—^-sin20, "(3.19)

in which the identity 2 sin 6 cos = sin 26 has been used. The right side of (3.19) re-

the generation of a wavenumber two asymmetry due to linear shearing of sym-

metric vorticity by the TC-relative environmental wind. An initial condition with

equivalent spatial structure (hereafter referred to as a "shear-induced asymmetry") for

use here is

= ^~ k = 2. (3.20)
r

where it is has been assumed that SE is positive corresponding to anticyclonic shear

equ.itorward of the subtropical ridge.

Considering only term (ci of (3.13). substituting (3.14) gives

— x (JT
2
-l)^f cosfl. (3.21)

I condition with equivalent spatial structure (hereafter referred to as a

"motion-induced asymmetry") for use here is

= -V fc-1, (3-22)

t is assumed that cx is negative, which corresponds to the generally westward

movement of TC's relative to environmental steering documented by composite studies

(Chan and Gray 1982; Holland 1984). In both (3.20) and (3.22), it has been assumed

•

;. less than one so that the symmetric TC flow has cyclonic vorticity.

It is inappropriate in this simple model to assign an individual perturbation

'
. to each of the above initial conditions based on the scales of the as-

sociated forcing terms. Instead, all but one of the following model solutions will use a

ZA. such that c = 0.1 to facilitate analyzing the dependence of vortex stability

on perturbation :ture. The radial structures of the lour initial perturbations

I ;
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Fig. 3.2 Radial dependence of initial perturbation vorticity (ZA . (*) Tor convection-
induced (k=2, dot; k= 1, dash), motion-induced (chaindot), shear-induced (chaindash)
and /^-induced (solid) asymmetries.
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B. MODEL RESULTS

1. Perturbation damping

Before numerically evaluating (3.11) using the initial conditions developed

above, it is useful to obtain exact solutions by choosing initial conditions of the form

cSw = 7b- • < 3 - 23 >

An asymmetry of this type may be viewed as an approximation to the wavenumber k

component of a perturbation produced by localized asymmetric convection in a TC

eyewall cloud (hereafter refered to as a "convection-induced asymmetry"). Initial con-

dition (3.23) for k— 1 and k= 2 is also shown in Fig. 3.2. and results in solutions to (3.1 1)

of

At r(a*-b')
^cos{d-tla 2

)

2, 2r{b-a)
2

bUa-r)
cos(0-r/r ) + : —cos{d-tlb z

)

r(a -
i r(a — b~)

(3.24)

and

f «v-*4
) r 1 -

16r [ >-
2
|<;

4 -/0 L a
1
\ cos 2(0 - t\a) + ~ sin 2(0 - tja

2

)

— cos 2(0 - //r
2
) + 4" sin 2(0 - r//-

2

) (3.25)

(a - b ) \_ r

~^-
A
—

\ -V cos 2(0 - lib
2

) + 4" sin 2(0 - tjb
1

)

r\a-b*\ L b- 2l J

2,1]

1

respectively.

Both (3.24) and (3.25) damp algebraically with time as is characteristic of con-

tinuous spectrum mode solutions. It should be noted that the wavenumber two pertur-

bation damps four times as rapidly as the wavenumber one perturbation, which suggests

that the damping rate is proportional to the square of perturbation wavenumber. This

result is analogous to the dependence of damping on the perturbation zonal

wavenumber for plane Couette flow (Case I960). The evolution of (3.24) and (3.25) over

a 2 hour period arc shown in Tig. 3.3a-c and Fig. 3. 3d-f respectively. Unless otherwise
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Fig. 3.3 (a)-(c) Perturbation streamfunction (solid, positive; dashed, negative) for a k= 1

convection-induced asymmetry at t = 0, 1 and 2 hours respectivelv. Contour interval is

9.6 x 10 2 m 2
/.s. (d)-(f) Same as (a)-(c) except for a k=2 convection-induced asvmmetry

and a contour interval of 4.3 x 102 m 7
js.



noted, all illustrated solutions use the following parameter specifications: a= 1, b= 10.

!'.,.= 50 m s. R.,.= 50 km and c = 0.1. The contour interval is the same for each row of

panels to show clearly the damping process. This comparison emphasizes the-strong

dependence of the damping process on perturbation wavenumber. and also clearly illus-

trates how the radial variability of vs tilts the perturbations downshear.

The perturbation streamfunctions for the motion-induced and shear-induced

asymmetries (not shown) undergo a similar, but slower shearing and damping process.

A quantitative comparison of damping rates is facilitated by Fig. 3.4a. which shows the

decay of perturbation kinetic energy with time for each of the four cases. Although

perturbations of the same wavenumber damp at nearly the same rate initially, the

ping rates quickly diverge. As will be shown in Section C.l. this property is due

..ant differences in the radial dependences of the initial conditions, e.g., r
-4

for a

wavenumber two convection-induced asymmetry as compared to r'- for the shear-

induced asymmetry. Thus. NDBT vortex stability to asymmetric perturbations is quite

sensitive to the radial as well as azimuthal structure of the perturbation.

The kinetic energy decay for a vorticity-induced asymmetry is shown in Fig.

rbation kinetic energy decays by approximately S 1-
. :h agrees

. adjustment period observed in the NDBT numerical models of TC

motion cited earlier. The much slower damping rate in Fig. 3.4b is consistent with the

the preceding paragraph since the perturbation vorticity associated with a

vorticil symmetry decreases significantly slower with increasing radius than

any of the previous initial conditions (Fig. 3.2). The evolution of both the total and

perturbation streamfunction components over a 36-hour period is shown in Fig. 3.5.

The value ofc has been increased to 0.5 in Fig. 3.5 to emphasize how an initially per-

. NDB'I vortex is restored to axisymmetry. By S h. the inner part of the vortex

has already regained an essentially axisymmetric structure (Fig. 3.5b), while the outer

vortex remains appreciably distorted. No analogy to this behavior exists in horizontal

. Couette flow, since the linear shear in that model renders the damping process

independent of latitude.

2. Influence of boundary conditions

-:e chosen to facilitate development of the model

:al. Thus, it is important to determine the extent to which the

bou: -..
- results presented above. Two aspects of

- -



Fig. 3.4 (a) Decay of perturbation kinetic energy (normalized by initial value) with time
for convection-induced (k=2, dot; k= 1, dash), motion-induced (chaindot) and shear-
induced (chaindash) asymmetries, (b) Same as (a), except for a /?-induced (solid) and a

modified /i-induced (dash) asymmetry.
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Fig. 3.5 (a)-(c) Perturbation plus symmetric strcamfunction for a /^-induced asymmetry

att=0, S and 36 hours respectively. Contour interval is 7.4 x 105 m2
/s. (d)-(f) Same as

(a)-(c) except showing just the perturbation streaniiunction (solid, positive; dashed,

negative), and using a contour interval of 1.7 x 1U5 m 2
js.
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First, boundary influences will become increasingly significant with time if there

is a tendency for perturbation energy to propagate radially and cause a concentration

at either boundary. This problem may be formally addressed by considering

tA{r,e,t) = Re{Cj(r)e
tt<p- ft*)

}, (3.26)

which is obtained by substituting (3.5b) and (3.8a,b) into the Laplacian of (3.7).

Equation (3.26) indicates that perturbation vorticity is conserved following the symmet-

ric angular wind, which is a purely azimuthal motion. This result depends on the model

being linear and the symmetric vortex being Rankine, but does not depend on boundary

conditions. Thus, no mechanism exists in this model to propagate perturbation energy

radially, nor does an examination of Fig. 3.3 or 3.5 indicate that such a process is taking

place.

Second, the presence of the inner domain boundary at the location of maximum

perturbation vorticity may produce nonphysical results. A nonzero inner boundary was

used because a Rankine vortex is singular at the origin. The inner boundary may be

moved to the origin if the singularity is removed by modifying the wind profile to be

solid body rotation at all radii less than RM.. Recall that the choice of radial structure

for the various initial perturbations depends on the symmetric vortex. Thus, the radial

structure for a vorticity-induced asymmetry associated with a Rankine vortex altered as

just suggested would be

-/' < r < 1

&')- ^L ,< r < fc

(3-27)

Fig. 3.4b shows that the kinetic energy for such an initial perturbation decays at virtually

the same rate as the original vorticity-induced asymmetry.

Modifying the symmetric wind as described above causes the radial gradient of

is to be singular at r= 1. This singularity is equivalent to a large radial gradient of

vorticity, which would tend to cause clockwise retrogression and somewhat slower

damping of the continuous spectrum solution as discussed earlier. Although the present

model cannot give a quantitatively precise solution for the response of a perturbation

to a Rankine vortex with solid body inner rotation, the response of the model to (3.27)

is useful for demonstrating that solutions are not unduly sensitive to the location of the

inner boundarv.



C. MODEL INTERPRETATION

1. The stabilization mechanism

Within the context of fluid dynamical instability theory, the present stability of

a linear perturbation with respect to some "basic state" may be assessed by computing

the domain-averaged local time tendency of perturbation energy. For the particular

boundary conditions used in this model, the familiar NDBT result is that domain-

averaged perturbation kinetic energy must be presently increasing (decreasing) with time

if the perturbation tilts against (with) the horizontal shear of the basic state. Such a

result is readily obtainable for this model by substituting (3.5b) into (3.4a), multiplying

by \lfAl integrating over the domain, and performing a number of integrations by parts.

Using (3.5a), the result may be expressed as

(3.28a)— = -J^—' dr

E^
\

b

\{uA + v
2

A)rdr (3.286)

if (
)J0 . (3.28c)

Equation (3.28a) is analogous to the familiar result for stationary cartesian coordinates

{e.g., Farrell 1

1 <N~>. except that in this case it is the shear of the axisymmetric angular

wind that controls the energy transfer process. In (3.28a), a positive correlation develops

between the perturbation momentum flux and the symmetric angular wind shear when

initial!} "upright" perturbations are tilted downshear. Since the radial shear of cjs is

negative for a cyclone, the average perturbation momentum flux must also be negative.

This flux represents an inward transport of cyclonic momentum that tends to accelerate

the symmetric "basic state" at the expense of asymmetric perturbation kinetic energy.

Because the analysis thus far has been strictly linear, the symmetric vortex has

been regarded as steady in the moving reference frame. However, using the azimuthal

momentum equation and (3.28), the influence of perturbation momentum flux on the

symmetric basic state is described by

— = - hT^T). (3.29)



This expression may be evaluated to lowest order in c using (3.11) and (3.26), and then

integrated with respect to time to give

Av5 = ^" :'(>") ' '' [cos A/(co5(p) - «5(r)) - Y]dp %
(3.30a)

*-' J a
0}sv) ~ Ms\P)

Avs(r.i) = vs{r,t) - vs(r,0)

.

{330b)

The time evolution of Avs is illustrated in Fig. 3.6 using the same initial condition as in

Tig. 3.5, except that c has been reduced to 0.1, which corresponds to a more realistic

asymmetric windspeed of approximately 2.8 m s near the domain center. Although a

nearly complete transfer of perturbation kinetic energy occurs by 48 h. the majority of

the transfer has taken place by 24 h as anticipated from the damping rate in Fig. 3.4b.

The domain-averaged sign of Avs is positive as required, but a slight decrease is evident

for />(>. Interestingly, the radius at which Avs changes sign corresponds precisely with

the maximum in perturbation streamfunction at any time (see Fig. 3.5f)- It is also evi-

dent that the energy transfer begins initially at small radii and spreads outward with

time. This aspect will be explained later in this subsection.

The momentum flux asssociated with the convection-induced, motion-induced

and shear-induced asymmetries (not shown) had a similar impact on the symmetric basic

state, with the changes in Av s becoming smaller, more concentrated at small radii and

occurring over a shorter period of time for an initial condition that decreases more rap-

idly with radius. The extent to which perturbation flux tends to alter the basic state is

one measure of model linearity. Thus, the results here show that the assumptions made

in Section A. 3 (c < 0.1 . r< 10) were reasonable. This demonstration of how perturba-

tion flux transfers energy to the symmetric vortex will be particularly useful in Section

D.2 for understanding how a barotropic vortex achieves a quasi-steady asymmetric

structure in the presence of steady asymmetric forcing.

The availability of exact solutions to this model permits valuable insights into

the local dynamics oi^ the stability process that are not readily evident from the

"domain-averaged" analysis conducted above. Note that by virtue of the identity

V2|-
r
±y/e.«?+*(;»j s 0> (331)
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the first and third terms on the right side of (3.24) and (3.25) have no vorticity, and thus

are necessary solely to satisfy the boundary conditions. Therefore, substituting either of

the exact solutions into (3.5b) results in a form

{A {r, 0,1) = V 1
Re \A{r,i) e

lme- <os t)\

(3.32)

where A{r,t) is an appropriate amplitude function based on the second term on the right

side of either (3.24) or (3.25). Since a>s is a function of radius, (3.32) will include an ex-

plicit time dependence in some of the terms associated with radial derivatives of the

Laplacian. For sufficiently large t, only the term possessing the highest order explicit

dependence on t needs to be retained, which gives

ZA (r,$,t)* -Re ki*M-f)2

A(r,!)e
ik{0- Ms!)

(3.33)

in which the term generated by the azimuthal derivatives in the Laplacian has been re-

tained for comparison. Note that the expression k r inside the brackets represents the

inverse of the perturbation azimuthal length scale at radius r. If the first term in

brackets is treated similarly, and the lencth scales are defined as

LR = 1

(3.3-W>)

then (3.33) may be expressed as

: A {r. 0. t) * - Re-' (3.35)

The local dynamics of the damping process may be explained in terms of (3.35)

as follows. Under the influence of the radial shear of cos , the radial length scale of the

perturbation at any point in the domain exhibits an inverse dependence on t, while the

azimuthal length scale remains unaltered. Since this model conserves perturbation

vorticity, the left side of (3.35) maintains a constant magnitude. A continuing decrease

in LR thus requires the amplitude of the perturbation streamfunction to decrease pro-

portional to r 2 so that the right side of (3.35) maintains a constant magnitude. This

constraint may also be argued conceptually from the viewpoint that vorticity is a veloc-

ity change over some length scale. If the lencth scale is decreasing, then the velocity



change must also decrease to conserve vorticity. This process is shown in Fig. 3.7 which

is a time sequence of perturbation vorticity using (3.26) with a vorticity-induced initial

asymmetry. The reduction m the radial length scale due to the shearing process is clearly

illustrated by the decreasing radial spacing of the isolines of vorticity with time.

The results in Section B.l show that vortex stability to asymmetric perturba-

tions is strongly dependent on the spatial structure of the initial perturbation. From

(3.34b). this behavior can be associated with two factors that influence L R s inverse de-

pendence on t. The first is the perturbation wavenumber k, which results in perturba-

tions with a higher wavenumber damping faster than those with a low wavenumber, if

the radial structures are similar. This is the case for the wavenumber one and two

convection-induced asymmetries (Fig. 3.3), which differ little in radial dependence (Fig.

3.2). The second factor in (3.34b) is the radial shear of the symmetric angular wind,

which is strongly dependent on radius. Thus, the shearing process reduces LR much

more rapidly in the inner part of the vortex relative to the outer regions, which explains

why the perturbed vortex in Fig. 3.5b has achieved an essentially axisymmetric state in

the inner region while the outer region remains distorted. This shearing distribution also

why the speed ol~ the damping process depends on the radial structure o[ the

perturbation vorticity. An initial perturbation that decreases in magnitude more slowly

with increasing radius has a greater fraction of its kinetic energy at larger radii than does

nation that deci cases rapidly with radius. Since the radial shear of vj s decreases

rapidly with radius, it will take longer to transfer the same amount of kinetic energy from

the fir^t perturbation. Nevertheless, energy transfer still takes place rapidly near the in-

ner boundary. This is illustrated in Fig. 3.6 since the symmetric vortex windspeed in-

creases almost immediately near the inner boundary and is followed by speed increases

at larger radii with increasing time.

2. Verification «ith independent numerical results

Insight into the impact of using a Rankine basic state vortex in this model can

be gained by comparing the present results with a similar model that uses a non-Rankine

vortex. McCalpin's ( 1987) quasi-geostrophic reduced-gravity numerical model of an in-

itially perturbed ocean eddy will be used for this purpose. The difference between the

dynamical frameworks of the two models is not a significant issue since this NDBT

model can be readily reformulated as a quasi-geostrophic reduced-gravity model. The

•hat CA is replaced by perturbation potential vorticity in (3.4a) and that vs be-

comes a K- exponential Bessel function having /cio potential vorticity.
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Fig. 3.7 (a)-(c) Perturbation vorticity (solid, cyclonic; dashed, anticyclonic) for a

/^-induced asymmetry at t = 0, 1 and 2 hours respectively. Contour interval is

9.1 x lO-V.



The main difficulty in comparing the two models is McCalpin's choice of

Gaussian radial dependence for both the symmetric and asymmetric components of the

eddy. Additionally. McCalpin characterized the damping of perturbation energy in

terms of an exponential decay time scale, whereas the continuous spectrum response in

this model is algebraic in time. Nevertheless, if the convection-induced asymmetries used

here are considered to be roughly equivalent to Gaussian perturbations, then

McCalpin's wavenumber two decay time scale of 1.5 times the symmetric flow circu-

lation time (at the radius of maximum velocity) may be compared to the 0.8 h "expo-

nential' time scale given by Fig. 3.4a for a wavenumber two convection-induced

asymmetry. Using the 1.75 h circulation time for vs . at r.= RM. in this model, the

damping rate here is approximately 3 times faster than in McCalpin's model. This dif-

ference is not surprising since a Gaussian vortex has an extremely strong and rapidly

decreasing radial gradient of symmetric vorticity just outside RM., that should cause a

significant, radially variable retrogression that can substantially reduce the rate of per-

turbation tilting by the symmetric flow. This assertion is supported by McCalpin's ob-

servation that perturbations were advected around the eddy at only 20% of the

maximum tangential velocity. Tangential winds in a TC decay much more slowly with

increasing radius than a Gaussian vortex, and thus will have a symmetric vorticity gra-

dient that is comparatively much smaller and decreases more slowly with radius. Thus,

it may be reasonably argued that the damping rates of this model are more represen-

tative of those associated with typical TC wind profiles. This argument is also suported

by the good agreement between the 24 h adjustment period cited in NDBT numerical

studios of TC motion on a /i-plane and the kinetic energy transfer rates in Figs. 3.4b and

3.6. With regard to the influence of perturbation wavenumber. McCalpin's wavenumber

three decay time scale is 2.6 times shorter than the wavenumber two time scale, which

indicates a wavenumber dependence similar to that above.

Earlier it was noted that choosing Rankine symmetric vortex excludes poten-

tially important discrete normal modes. When McCalpin's model was run on an /-plane,

approximately 99
r
v, of the energy initially present in the imposed perturbation was

transferred to the symmetric component. Such a response indicates that virtually no

perturbation energy was projected onto any discrete normal modes that might exist due

to the presence of a symmetric vorticity gradient. Thus, the exclusion of discrete mode

processes by the choice of a Rankine vortex for this model appears justifiable for tran-

•jrbation analysis. However, this does not rule out the potential importance

of discrete modes in the steady-state component of a forced perturbation response.



D. MODEL APPLICATION

1. Free versus forced system relationships

The motivation for the present modeling approach has been to exploit the ana-

lytical tractahility of an unforced model for analyzing transient responses. The closed-

form solutions obtained via this technique have permitted a rigorous and illuminating

analysis of the perturbation damping process. To apply these results to the forced

problem, it is necessary to establish what aspects of a forced-perturbation response can

be reasonably inferred from the free-perturbation response.

First, it can be shown by superposition that the full solution of a linear partial

differential equation with steady forcing and nonhomogeneous boundary conditions can

be represented as a sum of a steady-state part that satisfies the original equation with

forcing and boundary conditions, and a transient part that satisfies the homogeous

equation, and that results from an initial condition that is different from the steady-state

solution. Implicit in such a partitioning of the full solution is the assumption that the

dynamical system actually supports a non-trivial steady-state condition. In the case of

vorticity-induced asymmetries, the NDBT numerical study of FE indicates that the

asymmetric component of the vortex does tend toward a steady-state condition over the

region where the symmetric vortex is significantly stronger than the asymmetric com-

ponent (i.e., over the region where the present linear model is valid). Although DM did

not comment on vortex asymmetries, his illustration of a slowly varying TC motion

track after 24 h indicates that vortex asymmetries associated with steady, spatially vari-

able environmental winds also tend toward a quasi-steady-state. Thus, the properties

(e.g., damping time scales, azimuthal wavenumber dependence, etc.) of the unforced

transient responses shown here may be expected to be relevant to the initial adjustment

phase of a symmetric NDBT vortex on a /?-plane with steady environmental winds.

Second, in a linear dynamical system that is first order in time and exhibits a

damped transient response to steady forcing, the magnitude of the steady-state condition

can be expected to be proportional to the magnitude of the forcing, but inversely pro-

portional to the magnitude of any parameter that acts to increase the rate of transient

damping. Such an assertion is formally verifiable in the case of a constant coefficient

ordinary differential equation, and may be reasonably extended to NDBT vortex dy-

namics for situations where numerical evidence (i.e., FE; DM) confirms a damped tran-

sient response to steady asymmetric forcing. Thus, the impact of perturbation azimuthal

and radial structure on the damping process in this model can be expected to influence

the steady-state response to asymmetric forcing.



2. Barotropic vortex adjustment to steady forcing

The process by which vortex adjustment to steady asymmetric forcing occurs in

the various NDBT simulations of TC motion (Anthes and Hoke 1975; Kitade 1981; DM;

CW; TE) may be explained as follows. As the initially symmetric vortex advects plane-

tary and environmental vorticity or is distorted by environmental wind shear and vortex

motion, an asymmetric component of vortex vorticity is generated from the symmetric

component as indicated in (3.12). This process is a transfer of kinetic energy from the

symmetric vortex to the growing asymmetry. If the self-advection process is omitted as

in CW, then the energy transfer continues unchecked and causes rapid dispersion of the

vortex. However, the analysis in Section C.l showed that advection of the asymmetric

vortex vorticity by the radially sheared symmetric angular wind acts to transfer pertur-

bation energy to the symmetric vortex (Fig. 3.6) in this model. In the NDBT models just

cited, the rate of energy transfer to the symmetric vortex apparently grows as the forced

asymmetry grows until a quasi-steady balance is achieved over the region in which the

symmetric vorticity is significantly greater than the asymmetric vorticity. This balance

is in large measure achieved by about 24 h for asymmetries associated with vortex

advection of environmental absolute vorticity (Fig. 3.4b). and occurs much faster for

asymmetries associated with distortion of the vortex by the environment, vortex motion,

or asymmetric convection (Fig. 3.4a). This variability in adjustment time scale for dif-

ferent asymmetries is due primarily to the difference in radial dependence between vs

(r~\ and the radial gradient of Cs <>" 3
' from which the asymmetries are generated. Al-

though these particular dependences are specific to a near-Rankine vortex, the principal

applies generally since the symmetric vorticity gradient must decrease faster than the

symmetric wind for all vortical flows that tend toward zero with increasing radius.

The steady-state phase and amplitude toward which the asymmetric structure

tends clearly cannot be addressed with a homogeneous model that also excludes the

potentially important influence of discrete normal modes. However, two aspects of the

steady state may reasonably be inferred. First, the steady-state asymmetry will likely re-

tain a down-shear tilt to maintain the vortex against the continuous dispersive effect of

the asymmetric forcing. Such a feature was noted by FF in the structure of a vorticity-

indu^ed asymmetry. The second inference concerns the combination of radial and

azimuthal dependence that is likely to be present in the steady-state asymmetry. In the

absence of environmental winds, the /^-effect results in a quasi-steady vortex asymmetry

that i^ essentially wavenumber 1 in structure (FF). However, as shown in Chapter II,

a horizontally variable environmental vvindfield will act to induce higher wavenumbers



through distortion of the symmetric vortex. The spatial structure of the resultant

asymmetry will depend on both the spatial structure of the environmental forcing and

the dependence of the damping mechanism on perturbation structure. The author is not

aware of any detailed analyses of the wavenumber distribution and radial structure of

TC asymmetries in either composite observations or model runs using realistic

windfields. Thus, it is merely noted that the wavenumber and radial dependences of the

stabilization mechanism shown here should contribute to the predominance of low

wavenumbers and increasing axisymmetry toward the vortex center respectively.

E. SUMMARY AND DISCUSSION

The principal objective of this chapter has been to identify the asymmetry-damping

influence of symmetric angular windshear as the mechanism by which a NDBT vortex

counters dispersive and distorting influences over the region dominated by nonlinear

self-advection. The present "linear" model captures the essence of the self-advection

process by linearizing with respect to a nonzero symmetric basic state. In the NDBT

models cited in Section D.2, the asymmetry-damping mechanism acts as a negative

feedback process in which a kinetic energy transfer from the asymmetric to the sym-

metric component of the vortex occurs as a result of, but in opposition to, the kinetic

energy transfer from symmetric to asymmetric component induced by external forcing.

In the previous section, the stabilization mechanism was applied to the initial ad-

justment of a symmetric NDBT model vortex subjected to steady asymmetric forcing.

However, the principle can also explain NDBT vortex adjustment to changes in the ex-

ternal forcing with time. For example, assume that a quasi-steady vortex asymmetry-

exists due to previously steady asymmetric forcing, and that a change now occurs in the

environmental windfield. e.g., in ft e
,, (3.16) or SE (3.19). If the change is such that the

magnitude of asymmetric forcing at a particular wavenumber is reduced (increased), then

the shear-induced feedback of energy from the existing asymmetry to the symmetric

vortex will be greater (less) than the environmentally-forced transfer of energy from the

symmetric vortex to the asymmetry. As a result, the vortex will adjust toward a less

(more) asymmetric state at that particular wavenumber until a quasi-steady balance is

reestablished. A similar adjustment process would take place if the radial distribution

of the forcing at any wavenumber is altered by changes in symmetric vortex structure.

If the duration of the external forcing change is brief compared to the time scale of the

stabilization mechanism (i.e., approximating a step-function), then the adjustment time

should be on the order of the stabilization time scale. Converselv. if the forcinc is slowly



varying m time compared to the stabilization time scale (e.g., a TC propagating

poleward through a steady, but latitudinally variable windfield as in DM), then the ad-

justment process should have a time scale appropriate to the "apparent variability" of

the environment from a reference frame moving with the vortex. Such a scenario is not

intended to be all inclusive, since dynamical situations may exit in which the vortex

might be barotropically unstable to asymmetric forcing, or in which temporary contin-

uous spectrum growth might occur analogous to the temporary baroclinic growth

mechanism studied by Farrell (1982).

Symmetric angular windshear outside the radius of maximum winds can be expected

to exert a dominant influence on the stability of any barotropic vortex. Shapiro and

Ooyama (1989) have shown that divergence had negligible influence on TC propagation,

and thus stability to asymmetric forcing within a barotropic context. In baroclinic

model vortices or in a TC. the role of a barotropic stability mechanism in influencing

vortex asymmetries will depend on the competing influence of the inertial

stability instability made possible by the introduction of a secondary circulation into the

dynamics. Modeling studies of ocean eddies indicate that coupling between vertical

modes can also be expected to alter vortex stability and associated motion (McWilliams

and Flier) 1979). Significant radial shear in the tangential winds exists to large heights

in a mature TC (e.g., Hawkins and Imbcmbo 1976. their Fig. 13; Frank 1977, his Fig.

9). Thus, the essential element that enables the barotropic vortex stability mechanism

to operate is certainly present in TC's. As mentioned earlier, the qualitative similarity

of 1C motion tracks in baroclinic models (Madala and Piacsek 1975; Kitade 1980) to

barotropic results prowdes at lca^t circumstantial evidence to suggest that baroclinic

vortex stability is a modification to. rather than being fundamentally different from,

barotropic vortex stability. Since, the magnitude of TC tangential windshear decreases

with height above the boundary layer and with increasing radius outside the radius of

maximum winds, a barotropic stability mechanism should be most influential in the re-

gion where the TC's convective forcing is initiated.



IV. BAROTROPIC VORTEX SELF-ADVECTION

In this chapter, an analytical NDBT model of TC propagation due to planetary and

environmental influences will be developed from the Self-advection Region and

Dispersion Region equations of Chapter II. The three principal obstacles that must be

overcome are: i) the temporal dependence of the equations; ii) the strong radial vari-

ability of the symmetric flow variables; and iii) the additional unknowns represented by

the speed and direction of TC propagation.

The problem of temporal variability will be eliminated by seeking only a steady-state

solution for TC propagation. Thus, it will be assumed that the model TC is fully ad-

justed to the asymmetric forcing of the environment at any time. The complex radial

variability of the symmetric flow will be simplified by approximating the tangential wind

by "piecewise-defmed" function. The presence of the propagation velocity in the Self-

advection Region equation will be addressed in two ways: i) using externally generated

values for C and a; and ii) devising an internal closure scheme that will enable the pres-

ent model to predict C and a.

A. MODEL DEVELOPMENT
1. Solution for the Self-advection Region

The analysis of Chapter 111 has shown that the damping influence of symmetric

angular windshear will permit (2.36) to evolve toward a steady-state from an unbalanced

initial condition. Thus, the analysis here will focus on solving

"T
1^- + uA ^jf-

= v5 /^sin(0 -
<f>) + C-^-cos(d-z). (4.1)

The propagation term appears as a forcing process in (4.1), and thus introduces the un-

known parameters C and a. as noted above. The streamfunction and complex Fourier

series definitions of Chapter III will also be used here. Thus, substituting (3.5a,b) and

(3.7) for k= 1 into (4.1) gives

1 d 1

T(/-) - -f-^fTO

-ivs Pefr e
• + C-^e- !\ (4.2



in which the identities

os 6 = Kc{e
19

}
sin 6 = Re! -/ e

!l
, (43a,b)

have been used, and the superscript on H' has been omitted since all subsequent analysis

will deal exclusively with wavenumber one asymmetries. Equation (4.2) is put in stan-

dard form by dividing through by -—, which gives

JL , JLjL T(r)
1

c^s

= -> r (4.4)

To obtain closed-form analytical solutions to (4.4), a convenient but realistic

functional form must be found for the symmetric flow. In particular, requiring

1 c,s

vs or
(4.5)

has the desirable property of making the left side of (4.4) equidimensional similar to

It may be readily verified that

v
s
-

( ,) = A„r " + B,

has an associated vorticity gradient

Xl - 1

-M v5 ('-)
,

(4.6)

(4.7)

and that the product of (4.6) and (4.7) satisfies (4.5). Thus, substituting (4.6) and (4.7)

into (4.4) gives

*>

F,(r) a -rp
e/f

e

('-) = F,(r)

.

C(X2

n -]) _h

(4.8a)

(4.86)



It is important to note that the radial gradient of the symmetric component of

the vorticity for any finite vortex such as a TC must change sign at least once. Subse-

quent calculations of R T will show that a vorticity gradient sign change occurs within the

Self-advection Region for TC wind profiles typically used in barotropic models. In

contrast, the vorticity gradient given by (4.7) is monodirectional for a single value of X„

in a region where vs is purely cyclonic. Thus, at least two segments of vs as defined by

(4.6) for different parameters (i.e., n= 1,2, . .) must be combined to approximate a TC

symmetric windfield. The two linear (A„ and B„) and one nonlinear (X„) degrees of

freedom in (4.6) permit such a "piecewise-defined" vortex to have continuous values of

velocity and vorticity, but a only piecewise-continous vorticity gradient. As a result,

(4.Sa.b) must be solved in at least two annular regions for particular values of X„. and

then a total solution must be constructed by applying matching conditions at the

interface(s) as shown in Subsections A. 3 and A. 4 below. The approach here is to cir-

cumvent the difficulty in obtaining closed-form analytic solutions (i.e., all derivatives

continuous) to (4.4). by seeking piecewise-analytic solutions based on a piecewise-

analytic approximation for the symmetric TC.

Consider one of the annular regions with r=a and r=b representing the inner

and outer boundary respectively. Within this region, a solution of (4.8a) may be ob-

tained by noting that the functions /-- x»-' are integrating factors for the left side.

Multiplying (4.8a) by rx«- 1 and integrating from a to r gives

I' TZ\ P
X" +1

-^T ~ Xy^'J/p - [p
X^Y,{p)dp. (4.9)

J a
c f

;)

L °P J J a

and multiplying (4.8) by r x»~ l and integrating from r to b gives

J*77
I

P'^^^ + *nP~
Xn
^nltp = JV

X" +1 F
1 (pMp, (4.10)

in which a n-subscript has been added to T to denote the n :h annulus. Performing the

indicated integrations and eliminating eYJcr from the equations gives

+*-*" +1

4rL L + *nh-
X
^'n\ tor k1 c

2X,



X.+1 Wn
+ X-aAnV

Fw

+ ~- G!(Xn,a,r,fe) a<r<b, (4.11a)

2X„r n

in which G, results from the right sides of (4.9) and (4.10), and is defined by

,v h~ X^3 - ," X" +3

G
l
(Xn .a.r,b) = + /W~

r x„ +3 x„

- X„ + 3

r x„+i _ x„+i A~ x« +1 _ ~ x n +1 ~l

+ c (x;-i),-"[
f

x;+
-; + ,"- * _ x;;,— J. (4.H6)

Solutions for as many annulae as necessary to approximate the symmetric wind profile

with segments defined by (4.6) may be constructed from (4.1

1

).

2. Solution for the Dispersion Region

Since (2.37) is a first-order hyperbolic equation in variable C A , the method of

characteristics may be used to give an initial value solution of

0,0,0 =
z

' cos(9 - -j~ - 4>) - cos(0-tf>) , (4.12)

in which l A {r. 0.0) = has been assumed. The response is an undamped oscillation with

period An Z£ about the steady-state solution to (2.37). which is

:,ir. (?) = 7-^-cos(0 -0). (4.13)

It should be noted that no steady solution exists in the limit as Z£ -+ 0, and that (4.12)

then reduces to

;,(/•. O.t) = tvs fieff
sm{6 -

<f>), (4.14)

with pef/
=.ji and = 90°.

In view of abundant numerical evidence for quasi-steady TC propagation, the

physical relevance of (4.12 1 and (4.14) for large t is doubtful. Such continually evolving

solutions are consistent with the Dispersion Region assumption that completely excludes

the stabilizing influence of self-advective processes. Within the present modeling con-



text, asymmetry damping due to self-advection can impact the Dispersion Region only

via dynamical matching conditions at the transition radius. Consequently, the evolution

of (4.12) will limited by determining an "adjustment time" (Tadj) such that the Dispersion

Region solution obtained below and the solution Tor the outermost annulus in the Self-

advection Region satisfies an appropriate matching condition at the transition radius

(Subsection 3).

Making the substitution t=T
orf; , and applying the streamfunction (3.5a,b) and

complex Fourier series definitions (3.7) to (4.12) gives

[£+*-*]4V) = F2
(r) (4.15a)

F2(r)
sWPeff

(4.156)

Given an appropriate form for vs in the Dispersion Region, (4.15) may be solved using

the integrating factors f- and r\ A convenient choice is

W) A„r~ IL. (4.16)

since An and B„ provide the necessary degrees of freedom to match both the value of the

function and the first derivative of (4.6) and (4.16) at r= R r . Also, the choice of expo-

nents in (4.16) ensures closed-form solutions to (4.15) that remain bounded as r-» oo.

By the same procedure used for (4.1 1), the solution to (4.15) is

VM = t
r v

l',
1 1

8Vn
+ aVn \ u

G 2(a,r,b)

+ -^G2{a,r,b)

2fi,

*-i-^-']

a<r<b.

A„{a-r) Bn(a
- r)

(4.17a)

3;7»'
,

4,-V
(4.176)



Only one annulus will be used to represent the Dispersion Region. Thus, r=a is the

transition radius and r=h is the outer boundary of the model in (4.17a.b). In the case

of a quiescent environment, evaluating the limit of (4.17b) as Z£ -» gives

G 2 (a.r,b) = - /rr
fl ,

An{a-r) B„{a-r') A n (r
- b)

3rb
J

B„(;
4 - b") 1

4rV J

'

3. Matching annular solutions

The solutions presented in Section B below will use at most three annular re-

gions to define the model domain. Fig. 4.1 gives a schematic view of the model domain

and annular subregions. and also shows the notation to be used to denote radial

boundaries. Limiting values for R and R
3
are the origin and infinity respectively. With

R- = R
: . two of the annulae are within the Self-advection Region, and the transition

radius is a matching interface. The alternate use of the symbol R2 f°r the transition ra-

dius will permit a concise statement of the matching conditions in the following sub-

section.

a. Transition radius specification

A scale analysis of (2.36) will be used to provide an empirical formula for

R
7

. Implicit in the transition radius concept is the existence of an annular region about

R r where interaction and symmetric How variables are roughly equal. For r&RT , let

VS { R r)
vs , C , uA as v5(R r) ls . : A % .

Substituting these relationships into (2.36) and assuming a quasi-steady balance gives

\uA - Ccos(tf-a)]-^-1 = vsPe/r
sm(6 - </>)

'• 86

v:;R
;

i ij(R r)

R>
^(Rr)^//

where the scales are shown below the respecti\e terms. Assuming that the two self-

advection terms do not cancel, it is necessary that



TRANSITION

~RADIulT

Fig. 4.1 An illustration of the model domain and three annular subdomains. The inner

and outer boundaries of the model domain are denoted by R and R
3
respectively. The

interface between the inner (n= 1 ) and outer (n= 2) annulus of the Self-advection Region
is denoted by R,. The interface between the Dispersion Region annulus (n=3) and the

inner annulae is denoted by R
2
and corresponds to the transition radius.
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from which the empirical formula

~ vJRr) ~U-
(4.19)

v^Rr) It

hf J

is obtained. Given an observed or specified radial profile ofTC tangential winds and the

magnitude of the environmental absolute vorticity gradient in the vicinity of the TC, a

transition radius may be calculated from (4.19).

The parameter 6 has been included in (4.19) to reflect the approximation in

(4. IS), as well as the uncertainty that will accompany any estimate of fi e/f
. Thus, 3 is a

"tunable" factor that could be adjusted in an "propagation + advection" forecasting

model to minimize forecast error in some statistical sense. The extent to which a sta-

tistically determined 6 approximates unity would tend to provide operational confirma-

tion of the dynamical validity of the transition radius and Self-advection Dispersion

Region concepts. It will be shown below that assuming 6= 1 provides realistic results,

and will be altered only to test model sensitivity in Section C.3 below.

b. Boundary/ Interface Condition Specifications

Eight boundary and interface conditions must be specified to construct a

solution for the entire model domain from solutions to (4.11a) or (4.17a) in three annular

subregions. The asymmetric streamfunction will be set to be zero at the boundaries of

the mode! domain, R, and R,. and the asymmetric streamfunction and velocity will be

made continuous at the interface radii R, and R
2

. The inner boundary condition is dy-

namically required if R
}
is the origin. The rationale for displacing R

p
from the origin is

related to functional properties of (4.6), as will be explained later.

The<;e conditions may be concisely expressed in terms of the complex vari-

able T as

^1^ = *3l R3
= ° (4.20a,/,)

Practical implementation of conditions (4.20a-d) involves evaluating (4.1 la,b) and

M.l'a.b) at radii R,. R.
2 . and R

3
to form a 6x6 linear system of equations in the variables

r->{'.
I

v/
c

viy
:

I w d%j I cMS I

?y R, •

X1 '

:: 'p •

?:r R- '

VI>2
' 3 'r; ' cr Uj ' cr MV



in which double subscripts denote a matched quantity. The linear equation system will

be solved using a standard computer algorithm.

Because (4.8a) and (4.15a) are second order in T, the associated

boundary, interface conditions provide only enough degrees of freedom to achieve con-

tinuous asymmetric streamfunction and velocity at R, and R
2

. Thus, l A is free to be

piecewise-continuous at the interface radii, which is generally the case to dynamically

balance (4.1) given the piecewise-continuous nature of the vorticity gradient associated

with (4.6) and (4.16). As discussed above, the parameter JodJ
provides an additional de-

gree of freedom to permit matching of asymmetric vorticity at R r . In general, it will be

possible to match only the magnitude of ^ A at R r , since varying l
0(ll

only influences G
2 ,

and because the interface condition term in (4.17a) is irrotational. Nevertheless, the

additional degree of smoothness given to model solution at R r should be beneficial. To

be consistent with this quasi-matching of l A at R r ,
parameters in (4.6) and (4.16) should

be chosen to eliminate any discontinuity in c^ sjcr there. Not only is it possible to do

this, but it is also desirable to facilitate closure of the model.

4. Outline of Solution Procedure

A NDBT solution for the propagation-inducing wavenumber one gyre

streamfunction associated with known symmetric TC and environmental windfields has

been obtained for an arbitrarily large domain R < > < R
3
by matching three partial sol-

utions that are separately valid in annular subdomains. In terms of the real

streamfunction variable \jjAt the solution is

<I/A (r.6) = Re{V n (r)e
iP

}
R„_, < r < Rn m = 1,2,3 (4.21)

where T, and M'
:
are defined by (4.1 la, b) and M'

3
is defined by (4.17a.b). The procedure

to compute the model results shown in the remainder of this dissertation is:

1. Given an analytic function that approximates a TC symmetric wind profile, deter-

mine R, and R T (
= R

2 ) based on where the symmetric vorticity gradient changes

sign and where the TC winds satisfv (4.19) respectivelv. Also, determine values for

RM. and I ',,,..

2. Determine parameters A„. B„ and X„ by constructing from (4.6) and (4.16) a

piccewisc-analytic approximation to the wind profile used in Step 1. Because of the

irrational function form of (4.6). this task is accomplished by successive trials using

interactive computer graphics. 1 he procedure is outlined in Appendix B.

3. Assign values to the environmental parameters /?,,,. and Z£ .



4. Determine propagation parameters C and a using either external information, or a

closure scheme internal to the dynamics of this model.

5. Solve the S.\S linear system of equations for the value and first derivative of the

complex streamiunction as determined bv the boundary interface conditions

(4.20a-d).

6. Iteratively compute the complete model solution (4.21) by varying Jad , until the

magnitude of asymmetric vorticity is continuous at r= R r .

B. MODEL RESULTS PART I: EXTERNAL CLOSURE

As indicated in Chapter I, many observations of TC propagation are clearly sug-

gestive of the barotropic theories, although little or no information is available con-

cerning the TC characteristics or the environmental windfields associated with those

vectors. Additional problems are the unknown influence of baroclinic processes on TC

propagation and possible random systematic errors associated with the compositing

process. Thus, only numerical predictions of TC propagation are suitable for externally

closing this model to the degree of accuracy that accurate interpretation and analysis of

the results can be made. The NDBT results of Fiorino and Elsberry (FE) (1989) will be

used since that study provides both an accurate calculation of TC propagation with

which to close this model, and detailed illustrations of the interaction flow from which

the accuracy of closure can be evaluated. Since FE used only a quiescent environment,

the parameter assignments /?,,,= /?. </> = 90° and Z£=0 will apply throughout this section.

The response of the model to environmental forcing will be addressed within the context

of the internal closure scheme developed in Section C below.

1. Symmetric TC Specification

The analytic function used by TE to approximate the symmetric windficld of a

TCi<

Vs(r) = re
(] - r

"
)!b

,
(4.22)

in which the parameter b varies the strength of the TC, but not the maximum intensity.

The windspeed and vorticity gradient given by (4.22) for FE's "basic vortex" (b = 0.96)

are shown in Fig. J. 2a and 4.2b respectively. According to (4.18). the function fieff
r2

(Fig. 4.2a) intersects vs(r) at the transition radius R r =4.75. The sign change of vorticity

slope in Fig. 4.2b provides a good first estimate for R,. The location of the inner

boundary R„ depend^ oi properties of the piecewisc-analytic wind profile as described

below.
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Fig. 4.2 (a) Radial profiles of the analytic TC windfield for the Fiorino and Elsberry
(1989) basic vortex (dashed) and the piecewise-analytic function used (solid) to approx-
imate it. Parameters that define the piecewise-analytic function according to (4.6) and
(4.16) are shown in the inset. Vertical dotted lines (left to right) correspond to the radial
boundaries, interfaces R , R, and R2 (=Rr). The chain-dashed curve represents the
function fiffr r\ (b) The analytic and piecewise-analytic vorticity gradient profiles asso-
ciated with the wind profiles in (a).
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A piecewise-analytic wind profile is defined by (4.6) and (4.16) for the parame-

ters shown in the inset in Fig. 4.2a. Because the functional properties of (4.6) do not

permit the piecewise-analytic wind to have negative curvature, the two wind curves de-

part markedly near the radius of maximum winds. As a result, the values for Rq and

v c(R c
) have been chosen to improve the fit of the two curves at larger radii at the expense

of poor fit at smali radii, which is justified based on the insensitivity of TC propagation

on TC intensity demonstrated by FE. It should be noted that the negative curvature

region given by (4.22) near r= 1 is not generally representative of TC winds, which are

much better fit by modified Rankine profiles just outside the TC eye (Anthes 1982; p.

24). Adjusting the piecewise-analytic profile to accomodate such an uncharacteristic

wind curvature is at present justified by the need to compare this theoretical model with

the results of FE that were based on (4.22).

The fit of the corresponding analytic and piecewise-analytic vorticity gradient

profiles is illlustrated in Fig. 4.2b. As discussed earlier, the piecewise-analytic curve has

a discontinuity at R, due to the change in X„ in (4.7) at that location. In contrast, the

piecewise-analytic vorticity gradient is nearly continuous at the transition radius

(R r
= R2 ) in anticipation of matching the magnitude of the wavenumber one gyre

vorticity there. The choice of R=3.5. instead of where the analytic vorticity gradient

changes sign (r= 3), was made to facilitate the matching of gyre vorticity at R T . As in

. the piecewise-analytic curve in Fig. 4.2b accurately approximates the analytic

profile at larger radii at the expense of a good fit at smaller radii. Because the vorticity

gradient depends on the second derivative of the corresponding windficld, two very

similar wind profiles can have quite dissimilar vorticity gradients. This fact has impor-

tant implications for the dependence of TC propagation on outer wind strength, and will

be addressed in Section C.3.b of this chapter and in Chapter V.

2. ^-induced g\re structure

Using an initial symmetric TC wind defined by (4.22) with b=0.96, and choos-

ing !',,.= 35 m s, R,,.= 100 km and /J. = 2 x 10 -» nr xsr l

, FE noted a /?-induced propa-

gation velocity of 2.65 m s at 330° measured clockwise from North. Using their

parameter specifications and the piecewise-analytic symmetric TC parameters in Fig.

present theoretical model lor gyre structure may be "closed" by requiring C.=

2.65 m s and y.= 12')"' (measured counterclockwise from East). The resulting asymmetric

streamfunction for an outer model boundary at 10,000 km (R3
= 100) is shown in Fig.

4.3 lor the central 2400x2400 km of the domain. For comparison, the gyre structure

'

. 3 from FE's numerical model after 4S h is shown in Fig. 4.4.
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Fig. 4.3 Model-predicted wavenumber one gyre strcamfunction (solid, positive; dashed,

negative) usine the piecewise-defined wind profile of Fig. 4.2a, and the parameter
specifications: V„. = 40 m s, RM.= 100 km, /?.= 2x 10"" rn^sr 1

, <f>
= 90, R = 1.5, R 3

= 100,

C=2.65 m.'s and a =120. The contour interval is 2xlQsm2
ls, and only the inner

2400x2400 of the domain is shown to correspond to the illustration from FE in Fig. 4.4.
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Fig. 4.4 Numerically predicted asymmetric streamfunction at 48 h due to /^-induced dis-

tortion of a TC wind profile initially defined as in Fig. 4.2a. Contour interval is

2 x l'i'm-7-s, and the distance between axis tick marks is 40 km (Fiorino and Clsberry

1989).
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The analytically and numerically generated gyres have central uniform flow re-

gions that agree quite closely with regard to flow strength and orientation, although

some distortion due to R =?H) is evident in Fig. 4.3. Such agreement is of fundamental

importance for the analytical gyres to be consistent with the propagation velocity input

from the FE numerical model. The radial positions of the streamfunction extrema are

also accurate. However, the magnitudes of the extrema are about 20% less in Fig. 4.3.

This is still a rather remarkable degree of agreement considering that the two potentially

adjustable parameters R r and TadJ
have not been adjusted to improve the fit. Thus, the

accuracy of the analytical gyre of Fig. 4.3 provides preliminary evidence that the con-

cepts on which this model is based are dynamically sound. Further evidence will be

provided in Chapter V by showing that wavenumber one gyres generated from this an-

alytical model can accurately initialize a numerical model so that steady TC propagation

begins almost immediately.

One of the differences between Figs. 4.3 and 4.4 is that the analytical gyres are

symmetric relative to a line drawn between the extrema and antisymmetric relative to the

zero contour line, whereas the numerical solution deviates somewhat from these condi-

tions. The first-order wavenumber one approximations in the theoretical model and the

cyclic east-west boundary conditions used in the numerical model are likely responsible

for this dissimilarity. By retaining only the wavenumber one processes, the theoretical

analysis has excluded the interaction process

^fj-
oc -\>V/\ (4.23)

which results in a westward propagation of the interaction flow on the gradient of

planetary vorticity. Such a propagation could explain the stretching weakening of the

cyclonic gyre and compressing strengthening of the anticyclonic gyre in Fig. 4.4. This

process is in effect generating a wavenumber two component from the wavenumber one

gyres. The cyclic boundary condition in the numerical model artificially enhances this

process by enabling the opposing gyres to interact in the eastern portion of the

anticyclonic gyre, which is displaced southward relative to the analytical counterpart in

Fig. 4.3. However. FE noted essentially negligible impact of these wavenumber two

processes on TC propagation out to 144 hrs. which is further confirmation that a

barotropic theory of TC propagation needs to retain only wavenumber one processes.



3. Influence of boundary conditions

As noted above, the choice of a nonzero inner boundary for the model has

perturbed the uniform-flow region of the analytical gyre (Fig. 4.3). It is desirable to

eliminate such an unphysical disturbance by moving R to the origin. For a wind profile

defined by (4.6). it is not possible to require the associated vorticity to be continuous for

all r>0 and also be nonsingular at r=0. As in a geostrophic point vortex, the velocity

in (4.6) and the higher derivatives are singular at the origin. Moving R to the origin can

be justified by noting that it is the ratio of the symmetric vorticity gradient to the sym-

metric velocity that influences the interaction flow within the Self-Advection Region

(4.4). Since the ratio of (4.6) and (4.7) contributes to a regular singular point at the or-

igin, the interaction flow streamfunction remains defined as r -* 0, even though vs as

defined by (4.6) is singular at the origin. The predicted gyre structure for R 2:0 (Fig. 4.5)

eliminates the disturbed portion of the uniform flow region, but leaves the rest of the

gyre structure essentially unchanged from that in Fig. 4.3. Since the TC associated with

Fig. 4.5 has essentially infinite intensity, this result is in effect the ultimate extension of

FE's numerical demonstration that barotropic TC propagation is virtually independent

of TC intensity. The inner boundary of this model will be placed at the origin for all

subsequent solutions.

The outer boundary of the theoretical model (R
3
= 100) is much larger than that

typically used by numerical models. The impact of choosing R
3
= 28, which is about the

distance from the center to the corners of the 4000x4000 km domain used by FE, is

shown in Fig. 4.6. Although the peak values of the gyre streamfunction have been re-

duced about 8°o compared to Fig. 4.5. the uniform flow region of Fig. 4.6 is virtually

unchanged, which confirms the domain size tests of Fiorino (1987). Increasing the outer

boundary of the theoretical model had no significant effect on the gyre structure, which

indicates the R = 100 is effectively infinity as far as the theoretical model response is

concerned.

C. INTERNAL CLOSURE FORMULATION

In the absence of external information on TC propagation under given environ-

mental conditions, determining the correct wavenumber gyre structure depends on a

closure scheme to predict the associated propagation. Such a scheme will be termed

"internal closure" since it is based solely on inherent dynamical characteristics of the

theory. The analysis that follows is founded on the basic hypothesis that the "correct"

tion velocity will be associated with a particular gyre structure that is unique and
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readily discernable. Since the work of FE will be used to provide both motivation for

and validation of this approach, the closure scheme will be developed within the context

of TC propagation in a quiescent environment, and then applied in Section D below to

illustrate the response of the model to variable environmental winds.

1. Preliminary Analysis

As noted in Chapter I, FE found that the advection of the wavenumber one gyre

by the symmetric winds of the TC produces a streamfunction tendency that nearly can-

cels the tendency associated with the advection of planetary vorticity by the symmetric

winds. Shapiro and Ooyama (1989) have recently refined this concept further by show-

ing that tangential windshear produces nearly uniform asymmetric absolute vorticity

within ^350 km of the TC center. As shown in Chapter II, this process is fundamentally

a kinetic energy feedback loop in which a transfer of energy from the asymmetry to the

symmetric TC due to symmetric angular windshear occurs as a result of, and in oppo-

sition to, the transfer of energy from symmetric TC to the asymmetry induced by a gra-

dient of planetary vorticity (/?).

The closure scheme developed here will implement the above concepts by seek-

ing a particular balance among the various processes that contribute to interaction flow

vorticity tendency. Using (4.1 ), the balance in the Self-Advection region must be

- "T"-^" - v5fi cos - uA ^- + C-y^cos^-a) = —^ = 0, (1.24)

in which a quiescent environment has been assumed, and the identity on the right em-

phasizes the steady-state nature of the present model. In light of Shapiro and Ooyama's

observation, (4.24) will be scaled by — c\ s/cr to give

4"^T + P cos e\ „/* + uA - Ccos(0-a) = 0, (4.25)

(a) (b) (c) (d)

which is valid at all radii except where the symmetric vorticity gradient goes to zero.

Terms (a)-(c) of (4.25) represent contributions to the vorticity tendency of the inter-

action flow associated with symmetric angular windshear, /^-induced dispersion, and

advection of symmetric TC vorticity by the uniform portion of this interaction flow re-

spectively (hereafter the "Shear", "Beta" and "Advection" terms). Term (d) represents a

vorticitv tendencv that is an artifact of the movement of the model reference frame with



the propagating TC (hereafter the "Motion" term). The quantity within the brackets in

(4.25) is in fact the asymmetric absolute vorticity gradient, which according to Shapiro

and Ooyama must become nearly zero inside about 350 km for a TC undergoing quasi-

steady propagation. Thus, the cancellation of the Shear and Motion terms results in the

Motion term being balanced solely by the Advection term, as observed by FE.

Since all the terms on the left side of (4.25) are wavenumber one processes, a

particular direction may be associated with the maximum vorticity tendency of each

term at any radius. The vectors in Fig. 4.7a,b show the magnitude and direction of such

vorticity tendency maxima at r=2 and 4 respectively associated with the wavenumber

one gyre streamfunction (Fig. 4.5) predicted by this model using a piecewise-analytic

approximation to FE "basic" vortex (Fig. 4.2a) and their reported propagation velocity

of 2.65 m s at 330° (a= 120). Since (4.25) has been scaled by the symmetric vorticity

gradient, the Shear, Beta and Advection terms appear in Fig. 4.7a.b as velocity compo-

nents that must together balance the imposed Motion vector. Since the symmetric

vorticity gradient changes sign in the Self-advection Region, two radii have been chosen

to permit comparison of the balance between the inner (r= 2) and outer (r=4) annulus

of the Self-advection Region.

A radial profile (Fig. 4.7c) of the amplitude and phase of the interaction flow

vorticit} (CA ) corresponding to the streamfunction in Fig. 4.5 highlights distinct ampli-

tude and phase changes between the inner and outer annulus of the Self-advection Re-

gion. Identifying specific patterns in both this profile of interaction flow vorticity and

the orientation of vorticity tendency vectors above is the basis for the following closure

scheme.

2. The Closure Scheme

Because the Shear and Beta vector tend to oppose each other in Fig. 4.7a and

b. the Advection \cctor balances most of the imposed Motion vector. Such a vector

pattern may be regarded as roughly consistent with FE's observation that the

streamfunction tendencies associated with the Shear and Beta terms of (4.25) nearly

cancel in their numerical solutions. If barotropic TC propagation is indeed precisely

steady propagation, then the Beta and Shear vector would be expected to cancel exactly.

The inexact cancellation in Fig. 4.7 may be attributed to inaccuracies in the theoretical

model and or the possibility that barotropic TC propagation is more a quasi-steady

process than a truly steady process. Assuming that the second factor is primarily re-

sponsible for the vector pattern in Fig. 4.7. a closure scheme based on precisely steady

i) a propagation velocity can always be found such that
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Fie. 4.7 (a)-(b) Vector diagrams showing direction and magnitude of £, tendency

maxima that have been scaled by -8C slor at (a) r=2 and (b) r = 4 respectively. The

vectors represent the terms of (4.24) "(see key above), and were computed using the

piecewise-defmed symmetric TC wind profile of Fig. 4.2a and the wavenumber one gyre

solution of Fig. 4.5'. (c) Radial profiles of the amplitude (solid) and phase (dashed) of (x

corresponding to the streamfunction field of fig. 4.5. The amplitude curve has been

scaled by the^amplitude of l A at r=0.2. Vertical dotted lines (left to right) correspond

to R, and R2 .
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theoretical model predicts precise cancellation of the Shear and Beta vectors: and ii) such

a propagation velocity is a reasonable approximation to the quasi-steady result obtained

from a dynamically equivalent numerical model. As shown in Fig. 4.8a, the propagation

velocity C= 1.9. a= 130 satisfies the first of the above conditions. Such a closure scheme

is clearly radius dependent since the Shear and Beta terms in Fig. 4.8b are opposite in

phase, but are somewhat unequal in magnitude. Although the theoretically predicted

propagation direction differs by only 10° from the propagation direction reported by FE.

the speed difference of 0.75 m s represents a significant error.

Both the speed error and the radius dependent nature of the above closure

scheme may be addressed by recalling FE's demonstration that TC propagation and

advection by V^ in the uniform flow region are nearly, but not precisely equal. They

observed vector differences between the propagation velocity of the TC and the uniform

portion of the interaction flow (their "ventilation flow") that are persistently westward

at about 0.? m s i Fig. 4.9). This difference is readily evident quite early (12 h) in the

integration, which suggests a linear Rossby wave-type propagation associated with the

subsynoptic scale Fourier components of the symmetric TC. Such a hypothesis is sup-

ported by Shapiro and Ooyama's ( 1989) Fourier-Bessel spectral analysis, which showed

that the squared angular momentum spectrum for a typical TC wind radial profile has

a distinct peak at a radial length scale of 2<»0 km. If this radial length scale is regarded

as approximately equivalent to the inverse of a sinusoidal wavenumber. then it may be

shown that a symmetric nondivergent Rossby wave of such a length scale will propagate

westward at 0.4 m c.

The requirement that the Shear vector exactly cancels the Beta vector in the

closure scheme is inconsistent with these numerical results that only the component of

the Beta vector over about 0.4 m s actually contributes to distortion of the TC circu-

lation. That is. only the relative linear propagation speeds of the large and small scale

Fourier components contributes to the distortion of the TC circulation. Thus, a better

closure formulation is to choose C. and x so that at a radial location 200 km from the

TC center the Beta and Shear vectors are 180° out of phase and differ in magnitude by

0.4 m s (Fig. 4.10ah The resulting values for C. and a for this closure scheme are 2.4

hich reduces the speed error to 0.25 ms. Such an error is

considered quite acceptable in view of the typical magnitudes of total TC motion

(advection - propagation). The Beta and Shear vectors in Fig. 4. lob also differ by

about 0.4 m s. winch results in Advection and Motion vectors at r=4 that closely ap-

= 2. In contrast to Fig. 4.7c, the phase of interaction flow vorticity
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Fig. 4.9 Vector differences between the TC propagation and an averaged interaction flow

velocity (0-300 km) at various times (sec legend) during a 120 h integration of a

barotropic numerical model (Fiorino and Elsberry 1989).
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is constant for 1.5 < r < R r in Fig. 4.10c, which indicates that the vector patterns in Fig.

4.10 are characteristic of most of the Self-advection Region. Such consistency of the

vorticity tendency balance is to be expected for a TC propagating as a quasi-steady en-

tity, and supports the dynamical validity of both the theoretical model and the modified

closure scheme.

It should be noted that the phase of 1A changes abruptly for r<1.5. In addition,

the amplitude of l A increases quite rapidly and actually becomes singular at the origin.

Both of these properties are characteristic of an intense "inner gyre" in the vorticity field

of the interaction flow, which must exist to balance the singular nature of the

piecewise-analytic symmetric flow at the origin. Thus, the inner vorticity gyre may be

purely an artifact of this theoretical model. By contrast, numerical modeling studies

suggest that such inner vorticity gyres result from a dynamical instability which is sup-

ported by the barotropically unstable structure of typical TC tangential wind profiles

{e.g., Willoughby 19SS; Peng and Williams 1989). Similar gyre patterns have been sug-

gested by aircraft observations of the inner wind fields of a TC. although these may be

to some extent due to mislocating the TC center. In this model, the inner gyres have

no significant impact on the propagation prediction capability q[ the internal closure

scheme just demonstrated.

The usefulness of the internal closure scheme depends on the "closure" vector

pattern {i.e., Fig - 10a) occurring at a well-defined and unique location in the C. and y.

parameter space. By showing that the vorticity tendency vector pattern changes dis-

tinctly in response to small adjustments of C. and a away from the "closure" values,

Tigv. 4.11-4.14 verify that the closure point may be quite precisely located. Changes in

j. to 137° (Fig. 4.11) and 12"° (Fig. 4.12) induce a meridional component into the Shear

vector. In contrast, changes in C. to 2.1 m s (Fig. 4.1?) and to 2.7 m s (Fig. 4.14) tend

to alter the relative magnitudes of the Beta and Shear vectors, although the processes

are coupled to a moderate extent. The phase uniformity of CA in the Self-advection Re-

gion is rapidly altered (Fig. 4.11c and 4.12c) when the specified propagation direction

differs by only ±5' from the correct value. Although all closures in this research are

obtained via interactive computer graphics, the well-defined nature of the closure vector

pattern should be amenable to computer automation. A formal proof that only one

closure pattern exists for a particular set of TC and environment parameters has not

been attempted. However, a careful search over a wide range of imposed propagation

\ciocitics has never revealed more than one closure point in C. and a parameter space.
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The closure scheme quite precisely locates a "predicted" direction of propagation

that is 12° to the left of the actual value found by FE. The cause for most of this bias

is that the phase of \p A converges to a value of 9° at large radii (Fig. 4.15), rather than

to zero, as would occur in a quiescent environment if the Dispersion Region equation

was solved over the entire model domain. The mathematical basis for this property of

the solution is that in (4. 17a) the terms associated with the inner boundary condition and

to first order the forcing term GJ2r both decay proportional to r l for r^>R r . As a result,

the symmetric angular windshear that produces the barotropically stable downshear

phase shift in and near the Self-advection Region (Fig. 4.15; r<8) still has a small but

measureable influence in the Dispersion Region at large radii. Since the phase shift of

\j; A at large radii may always be computed from the model solution, the closure-predicted

propagation direction could be corrected by this angle to increase the accuracy of the

model for applications in which a precise direction prediction would be of particular

importance (e.g., a propagation + advection track forecasting aid). Such directional

corrections will not be used here. As will be shown in Chapter V, the corrections are

not required when using this model to initialize a numerical model.

The accuracy of the internal closure scheme developed above may be put into

perspective by computing the 24 h forecast errors that would result solely from speed

and direction errors of 0.25 m s and 12°. which represent the difference between the

propagation predicted here via the internal closure scheme and that observed by FE.

The speed error translates into ^25 km of forecast error. Assuming a typical TC prop-

agation velocity of 2.5 m s. the direction error can cause z.45 km of forecast error.

These errors are about one quarter of the typical 24 h official forecast error (e.g.,

Thompson et al. 1981), and thus would be of secondary importance compared to errors

induced by poor inadequate observations.

3. Sensitivity testing

a. Transition radius adjustments

This model contains two potentially adjustable features: the location of the

transition radius as determined by 5 in (4.19), and the requirement for a relatively small

change in |(x | at r= R
7

. which may be defined in terms of the parameter y by

,-* |44. ,4.26,
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Thus, it is important to test the sensitivity of the closure scheme to moderate adjust-

ments of these conditions, and also to determine whether any physically unreasonable

changes occur in the predicted wavenumber one gyre structure.

Table 4.1 is a summary of the sensitivity tests performed, including the re-

sultant changes in Jcdj.. Test 1 and (2) shows that decreasing (increasing) R r results in a

less (more) westward direction of propagation, and a slower (faster) speed of propa-

gation. In contrast, decreasing (increasing) y in Test 3 (4) results in a less (more)

northward direction of propagation, and a slower (faster) speed of propagation. Since

changes in y are accomplished by adjusting TadJ. in (4.17b), Table 4.1 includes the values

of Tadr to show that changes in Todr are approximately proportional to the changes in

C, which is consistent with the idea that a stronger outer gyre structure will contribute

to stronger interaction flow across the center of the TC. In each test, the phase of
\J/ A

at large radii was found to be similar in magnitude to that noted above (e.g., Test 3,

11.1°; Test 4, 1.5°). In Test 4, the predicted propagation speed and direction are quite

close to FE's 2.65 m/s at 330° (a = 120°). The wavenumber one gyre structure associated

with the C. and a of Test 4 is shown in Fig. 4.16. If the wavenumber two component

Table 4.1 Response of the model-predicted propagation velocity (columns 5,6) to four

combinations of the parameters d (column 2) and y (column 3) as defined by (4.19) and
(4.26) respectively.

lest 5 > Tod,

(h)
C.

(m s)
(deg)

1 0.95 1.0 40.3 2.20 130

2 1.05 1.0 62.0 2.60 135

? 1 .00 o.s 39.3 2.15 139

4 1.00 1.2 59.3 2.65 128
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Fig. 4.16 As in Fig. 4.5, except using the parameter specifications of Test 4 of Table 4.1.



is ignored, then the numerical result of FE (Fig. 4.4) is quite closely approximated by the

theoretical result in Fig. 4.16. Thus, the sensitivity tests demonstrate that the theoretical

model depends of the adjustable parameters in a well-defined and physically reasonable

manner.

b. Piecewise-analytic symmetric TC specification

The piecewise-analytic TC winds profile (Fig. 4.2a) used above was con-

structed so that the associated vorticity gradient (Fig. 4.2b) is continuous and equal to

the analytic vorticity gradient at the transition radius. In contrast, the piecewise-analytic

vorticity gradient is discontinuous at the interface R
;
and only approximates the analytic

vorticity gradient in an average sense. The motivation for approximating the analytic

vorticity profile in this manner may be illustrated by determining the model-predicted

propagation for the piecewise-analytic profiles in Fig. 4.17. Note that the piecewise-

analytic wind profile approximates the analytic wind profile more closely than in Fig.

4.2a. In contrast, the piecewise-analytic vorticity gradient is now discontinuous and only

poorly approximates the analytic profile at both R, and R T . The model-predicted prop-

agation using the parameters of the figure inset is C.= 1.75 and a= 144°, which deviates

significantly from FE's results of 2.65 m s and 330° (a= 120).

The cause of this important error in model-predicted propagation may be

determined by eliminating the processes that cannot be responsible. Since the

piecewise-analytic wind profiles in figs. 4.2a and 4.17a are nearly identical, the change

in predicted propagation cannot be attributed to the Beta or Shear terms of (4.25). That

is. the asymmetric forcing associated with a planetary vorticity gradient and the sym-

metric angular windshear-induced stability of the TC remain essentially unchanged. The

change in the piecewise-analytic vorticity gradient in the Dispersion Region cannot be

responsible since self-advection processes are excluded there. The rough agreement be-

tween the piecewise-analytic and analytic vorticity profiles inside R, are also quite similar

in Figs. 4.2b and 4.17b, and FE have shown conclusively that changes in the symmetric

TC inside 300 km have a negligible effect on propagation. Thus, it must be concluded

that the significant reduction in the average magnitude of the piecewise-analytic vorticity

gradient in the outer annulus of the Self-advection Region must be responsible for the

change in predicted propagation. Since the piecewise-analytic vorticity gradient roughly

brackets the analytic curve in Fig. 4.17b near R,. the underestimation of the analytic

vorticity gradient just inside the transition radius is inferred to be the source of the error

in predicted propagation.
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This analysis suggests that the sensitivity of TC propagation on wind

strength in a 300-800 km "critical annulus" demonstrated by FE is actually a manifesta-

tion of the sensitivity of the self-advection process to the radial gradient of symmetric

TC vorticity via the Advection term of (4.25). Thus, barotropic TC propagation actually

depends on the second derivative of the symmetric windfield in the critical annulus,

which explains why seemingly modest changes in outer wind strength as used by FE can

cause significant changes in propagation. The piecewise-defined nature of the present

theoretical model tends to concentrate this dependence near the transition radius, and

also exaggerate the dependence by enabling very similar piecewise-analytic wind profiles

to have associated vorticity profiles that differ more severely than similar analytic pro-

files.

D. MODEL RESULTS PART II: INTERNAL CLOSURE

The availability of an internal closure scheme permits this model to predict TC

propagation for various TC wind profiles and environmental influences. Efforts are

presently underway to compute TC propagation relative to horizontally variable envi-

ronmental winds from numerical models (personal communication, R. T. Williams

1989). However, no published results are available against which the above internal

closure may be compared. Thus, it will be assumed that the closure scheme with 6 = 1

and y= 1 will give results of comparable accuracy when applied with spatially variable

environmental winds. An internal check of the likely accuracy of the prediction can be

made by comparing the closure vector plot for dynamical consistency with the associated

gyre structure predicted by the model for various environmental windficlds.

1. Influence of TC structure change

Chan and Williams (19S^: CW) also used (4.22) to specify the initial TC

windfield, and varied TC intensity and strength simultaineously by adjusting the pa-

rameter l'M. with b= 1. Three of their parameter specifications (Table 4.2; columns 2-4)

will be used here. In light of the closure testing above, the piecewise-analytic profiles

(Figs. 4.1S-4.20) have been constructed so that the analytical vorticity gradients are ac-

curately approximated near the transition radius. Note also the increase in the transition

radius (Table 4.2; column 5) in response to larger values of VM». The comparison of the

theoretically-predicted propagation speeds and directions with those reported by CW
(Table 2: columns 6.7) reveals slow speed biases and left direction biases quite similar to

those in Section C above, which indicates that the model results are quite consistent with

regard to changes in "1 C structure. As shown in subsection 3. a above, the persistent
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speed and direction biases could be reduced by moderately adjusting the parameters S

and ;•.

It should be noted that the theoretically-predicted propagation directions in

Table 4.2 are essentially independent of changes in TC structure, whereas FE noted a

more westward propagation direction in response to increases in TC outer wind strength.

The track of FE's "large-weak vortex" matched closely that of the "basic vortex" for the

first 2-4 h, but became increasingly westward as the integration proceeded. Thus, it is

possible that the numerical model includes some non-steady propagation process that is

excluded from this steady-state model. An alternate explanation is that cyclic boundary7

conditions in the numerical model may have a significant impact on the propagation

vector associated with a large and purely cyclonic vortex that radiates substantial

amounts of Rossby wave energy (cf. Shapiro and Ooyama 1989). Althougth domain size

tests were conducted by FE with the basic vortex, it does not appear that such tests were

conducted for the large-weak vortex. The combined evidence of the theoretical results

here and the numerical results of CW suggest that changes in TC strength result prima-

rily in changes in propagation speed, but not propagation direction.

Table 4.2 TC propagation velocity (columns 6.7) predicted by the theoretical model and

the numerical model (in parentheses) of Chan and Williams (1987) for three values of

maximum symmetric wind (column 2). The analytic and piccewise-analytic curves used

by the numerical and theoretical models respectively are shown in Figs. 4.18-4.20.

Case

(m s) (km)
b Rr C

(m s)

y.

(deg)

1 20 100 1.0 4.2 1.95(2.0) 130(121)

2 40 100 1.0 4.7 2.65(2.8) 132 (121)

3 60 1 00 1.0 5.1 3.35(3.75) 132 (118)



2. Influence of uniform environmental vorticity

The next step in complexity from /^-induced TC propagation in a quiescent en-

vironment is to include a uniform environmental vorticity field, i.e., Z£=H>. VC r = 0. Ex-

amples of this situation would be: i) approximating the trade winds as a nondivergent

zonal flow with linear meridional shear: and ii) approximating the subtropical ridge

(monsoon trough) region as a large-scale anticyclone (cyclone) that is in solid body ro-

tation (cf. Willoughby 1988).

Table 4.3 is a summary of the closure results for four different values of envi-

ronmental relative vorticity using the same piecewise-analytic TC as in Case 2 of Table

4.2. Recalling that closure occurs at C. = 2.65 m s. a= 132° for Case 2 of Table 4.2, a

cyclonic (anticyclonio environmental vorticity induces a counterclockwise (clockwise)

adjustment in the direction of TC propagation that is proportional to the magnitude of

Z f .. Note that the theoretical model also predicts a greater TC propagation speed as Z f.

progresses from anticyclonic to cyclonic, which suggests that TC propagation may be a

more dominant component of total TC motion in regions of large-scale cyclonic vorticity

such as the monsoon trough. Although no numerical model confirmation exists for this

Table 4.3 Theoretically-predicted propagation velocity (columns 3.4) for four values of

uniform environmental vorticity (column 2t.

z,.

-

S
5 |

C.

(m si
(deg)

1 -".5 2.30 122

141

3 +1.0 3.30 150

« ,55 1(0



aspect of the prediction, it is consistent with the faster propagation of westward moving

TC's in composite data (Fig. 1.1b). The wavenumber one gyre patterns associated with

Cases 1 and 4 of Table 4.3 are shown in Fig. 4.21a and b respectively. Chan and

Williams (1989) have noted gyre orientation and propagation changes in an equivalent

numerical simulation that arc consistent with the results given here.

It is important to note that this model cannot be internally closed if Z£- is much

less or greater than the range of values in Table 4.3. The mathematical explanation for

this problem is that the solution for (,A in the Dispersion Region depends inversely on

ZE.. For sufficiently large values of environmental vorticity, it becomes impossible to

iterate to a value of T
erf;

, such that the magnitude of {A is continuous at the transition

radius. From a dynamical perspective, the assumptions Vf<^V5 and l e4Zs become un-

acccptably inaccurate in the outer part of the Self-advection Region. As a result, the

present form of the theoretical model can accomodate only moderate values of large-

scale vorticity, and should not be applied to situations involving interaction of the TC

with an intense cyclonic system such as another TC. Such situations might be addressed

by extending the model to include some of the higher-order wavenumber one processes

that were excluded here (Chapter II).

3. Influence of environmental vorticity gradients

To determine the model response to gradients of absolute vorticity. combina-

tions of Z£ .. /?,,* and (/> are devised that approximate the horizontal variability of the

typical large-scale environments through which TC's move. Figs. 4.22a and b illustrate

parameter combinations that correspond to the regions south and north of the NW
Pacific subtropical ridge respectively. As indicated, Z f . is assumed to be moderately

anticyclonic in both regions. The westward component of the environmental vorticity

gradient reflects the influence of the intense Asian heat low throughout much of the

troposphere during the NW Pacific typhoon season. Similarly, the southward and

northward components reflect the influence of the equatorial trough and midlatitude

baroclinic regions respectively. Such parameter combinations produce an absolute

vorticity gradient that is larger and is directed more poleward north of the subtropical

ridge compared to south of the subtropical ridge (Table 4.4; columns 3,4). Although the

analytic TC wind profile of Table 4.3 Case 2 is used for both cases here, an additional

piecewise-analytic profile (Fig. 4.23) has to be constructed to account for the increased

magnitude of fieff
. north of the subtropical ridge.

If the phase shift of the environmental vorticity gradient is taken into account,

then the tendency vector patterns (Figs. 4.24a.b and 4.25a.b) from which the propa-



(a)

X-DISTANCE (U M .)

(b)

X-DISTANCE (R M .)

Fig 4.21 Theoretically-predicted wavenumber one streamfunction fields for (a) Case 1

and (b) Case A of Table 4.3. Contour interval is 2 x W'm 2
js.
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a

Z„ = -0.5
/».„ = 2-°

Fig. 4.22 Idealized planetary and environmental vorticity gradients for TC positions in

an anticyclonic vorticity region (a) south and (b) north of the subtropical ridge in the

lower to middle troposphere of the western North Pacific TC region. The units of the

vorticitv Gradients are \0-unr ls~ i

, and the units of Z E. are lO-5^-1 .
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gation velocities in Table 4.4 were obtained are consistent with those shown earlier (e.g.,

Fig. 4.10). In each case, the Shear vector phase is opposite that of the Beta vector,

which is now oriented 90" to the left of the direction of the environmental absolute

vorticity gradient. The characteristic patterns in the radial profiles o[ interaction flow

vorticity magnitude and phase are also evident (Figs. 4.24c and 4.25c). The orientation

and amplitude of the wavenumber one gyre streamfunction are also dynamically con-

sistent (Fig. 4.26), which suggests that the accuracy of the model with an environmental

vorticity gradient included should be similar to the results shown earlier. Although

equivalent numerical results are not available, the propagation directions predicted here

are quite similar to the observed propagation directions for westward (pre-recurvature)

and eastward (post-recurvature) moving TC's (Fig. 1.1b).

Table 4.4 Theoretically-predicted propagation velocities (columns 5.6) in response to

environmental parameter combinations (columns 2-4) representing TC locations south

(Case 1) and north (Case 2) of the subtropical ridge during the western North Pacific

typhoon season.

Case
(X 10 S S"') (x I0-" m'r'l (deg)

C
(m s)

(deg)

1 -0.5 2.0 150 2.3 183

2 -0.5 3.5 120 2.9 156

E. SUMMARY
An analytical NDBT model based on the principle of nonlinear self-advection has

been developed to predict the steady-state TC propagation and associated wavenumber

one interaction flow induced by planetary and environmental forcing. The model has

been made analytically tractable by dividing the highly complex and generally intractable

TC propagation process into a number of manageable pieces via a number of reasonable

assumptions. A pieccwisc-analytic solution for the wavenumber one interaction flow

and the associated propagation velocity was then constructed from analytic solutions to
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Fie. 4.24 (a Mb} Vorticity tendency vector diagrams, and (c) vorticity amplitude and

phase profiles as in Fig. 4.7, except for the model solution for Case 1 of Table 4.4.
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(a)

X-DISTANCE (R M .)

Fig. 4.26 Model-predicted wavenumber one streamfunction fields as in Fig. 4.3, except

lor (a) Case 1 and (b) Case 2 of Table 4.4. Contour interval is 2 x \0-m 2
ls.
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the individual pieces of the problem. The two key aspects of this piecewise-analytic

modeling approach are to:

• divide the model domain relative to a transition radius within which is a Self-

advection Region where mutual advections by the symmetric TC and the asym-
metric interaction flow are important, and outside of which is a Dispersion Region
where such advections are considered unimportant; and

• approximate the symmetric TC windfield by a piecewise-analytic modified Rankine
profile that closely matches the analytic TC wind profile, except near the radius of

maximum winds, and closely matches the analytic vorticity gradient in the Self-

advection region near the transition radius.

This theoretical model is distinguished from previous efforts by the capabilities to:

• accurately predict both the zonal and meridional components of TC propagation
by integrating linear and nonlinear mechanisms into a single self-advection process:

• accurately predict the wavenumber one gyre structure responsible for TC propa-

gation based on either a knowledge of the propagation velocity, or determining the

propagation from the model dynamics via a closure scheme;

• include the influence of changes in the symmetric wind of the TC;

• include the first-order effects of large-scale relative vorticity gradients of arbitrary

magnitude and direction; and

• include the first-order effects of moderate values of uniform relative vorticity of the

large-scale environment.

1 he close agreement between the TC propagation velocities predicted by this model

and the equivalent numerical solutions verifies that the piecewise-analytic construction

technique is dynamically sound. The propagation vector errors from this model have

small, well-defined biases that depend on the two adjustable parameters of the model in

a predictable and dynamically reasonable manner. This property, combined with the

capability of the model to predict TC propagation and gyre structure for many realistic

combinations of TC structure and environmental windfields, suggests that this model has

significant potential for use as either: i) an initialization scheme for barotropic numerical

forecast models such as SAXBAR: ii) or as part of a "propagation + advection" track

prediction aid. A demonstration of the potential usefulness of this model as an initial-

ization tool is provided in Chapter V.

The success of this theoretical model in reproducing the numerical results of C\V

and FE provides strong evidence that nonlinear self-advection. rather than linear prop-

agation, is the barotropic mechanism that contributes to the observed propagation of

TC's. It is important to emphasize that the individual effects of/?, environmental shear

and environmental vorticity gradients are integrated within this self-advection model.



since those processes together determine the phase and amplitude of a wavenumber one

interaction flowfield that advects the TC relative to the large-scale environment. By

providing a unified theory for barotropic TC propagation, this model represents an im-

portant step toward the development of a general theory of TC motion. For the sake

of brevity and to emphasize the unifying aspect of self-advection theory, this model will

hereafter be referred to as the Barotropic Self-advection Model (BSAM).
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V. BAROTROPIC SELF-ADVECTION MODEL APPLICATION

In this chapter, the usefulness and versatility of the BSAM will be demonstrated in

three important areas. First, the issue of how accurately the outer wind strength must

be measured to adequately account for propagation of TC's will be addressed by using

tangential wind profiles based on composited data as input. An alternate approach of

using the BSAM to predict an "effective" outer wind strength based on past TC propa-

gation will also be outlined. Second, a quantitative assessment of the extent to which

the asymmetric interaction flow will be accounted for in steering flow calculations will

be made based on the wavenumber gyre structure predicted by the BSAM for the com-

posite data. Suggestions on how to isolate the environment and interaction (low com-

ponents will also be included. Finally, the feasibility of using the BSAM to initialize

barotropic numerical forecast models will be demonstrated.

A. BSAM PREDICTIONS USING COMPOSITE DATA

1. Preliminary analysis

In Chapter IV, the BSAM propagation predictions were based on piecewise-

analytic TC wind profiles that closely approximated the exponential wind profile (4.22)

used in recent numerical studies (CW and FF). A similar exponential profile was also

used by DeMaria (19S5; DM). Exponential TC wind profiles were used in the BSAM

to verify the accuracy of the theoretical predictions relative to equivalent numerical sol-

utions. In light of the importance of TC structure on barotropic propagation, it is im-

portant to examine how well exponential profiles approximate TC winds, and whether

some other functional form might be better for propagation-prediction purposes.

As shown in Fig. 5.1a. FF selected a "basic vortex" profile to have a radius of

15 m/s winds at 300 km to agree with typical composite observations of TC surface

tangential winds, such as those given by Merrill (1984) for large Atlantic hurricanes.

For comparison, a "composite pressure-averaged typhoon" was calculated by taking a

950-150 mb pressure-weighted average of the western North Pacific composite TC

tangential wind data of Frank (1977; his Fig. 9). The basic vortex has greater intensity

and less outer wind strength than typical typhoons or large hurricanes, as represented

by either the surface or the pressure-averaged tangential winds (Fig. 5.1a). The com-

posite pressure-averaged wind profile for N\V Pacific typhoons is significantly weaker

at all radii than the composite suilace wind profile for large Atlantic hurricanes because
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fig. 5.1 la) Radial profiles or Fiorino and Elsberry's "basic vortex" (dashed), the com-

posite surface tangential winds of large Atlantic hurricanes (solid squares; Merrill 1984)

and the tangential winds of the composite pressure-averaged typhoon (open squares;

Frank 1977). Here ['.,.= 3.5 m s and RM.= 100 km. (b) Analytic approximations to the

radial profile of the composite prc^ure-averaged typhoon (open squares) a^ defined by

(4.22) with b= 0.6 (dashed) and (5.1) (solid; parameters in inset). Here I M.-20 m s.
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the tangential wind components decrease with elevation in TC's. Using surface wind

profiles to initialize barotropic models may cause an overestimation of TC propagation

associated with barotropic processes. The composite pressure-averaged typhoon wind

profile will be used here.

Both FE and DM adjusted the maximum wind scale VM. and the b parameter

in (4.22) to better fit the larger and weaker average typhoon/hurricane. Although the

exponential profile can be adjusted to approximate the wind profile of the composite

pressure-averaged typhoon (Fig. 5.1b), the exponential profile does not represent the

curvature (and thus the vorticity gradient) of the composite profile nearly as well as the

analytic function

vs(r) = DorX + D,(r- 1) + D
2
(r- l)

2 + D
3
(r - 1)\ (5.1)

which is a modified Rankine profile with a three-term Taylor series. Thus, (5.1) will be

used as an analytic representation for composite TC tangential windfields below.

2. Propagation speed versus composite TC strength

By adjusting the curvature of the piecewise-analytic wind profile via the param-

eter Xj in (4.6). the outer wind strength of" the composite pressure-averaged typhoon

may be underestimated, closely approximated and overestimated in the 300-800 km

annulus ( lies. 5.2-5.4 respectively), even though the inner wind speeds remain essentially

unchanged. In each case, the interface radius R, is located at 300 km as in FE so that

the same strength change methodology is used. An additional parameter C
3

is present

(see insets) because the functional form of vs in the Dispersion Region has been modified

vs(r) = A
3
r~

a
+ B

?
r + C

3
r\ (5.2)

to require that dtsldr be continuous at the transition radius. Although such a change

adds two additional terms to (4.17b). it has a negligible influence on the BSAM -predicted

propagation, and serves only to avoid overly large jumps in the piecewise-analytic

vorticity gradient at R T
. The magnitude of the analytic vorticity gradient at R r is about

four times smaller for the composite profile (Fig. 5.2b) than for the exponential profiles

used earlier (e.g., Fig. 4.2b). Also, the change of vorticity gradient sign occurs well into

the Dispersion Region for the composite data due to the significantly greater outer wind

strength. The vorticity gradient of the piecewise-analytic profile results in some under-

estimation of the analvtic vorticitv gradient at R r . However, it is not certain whether
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Fig. 5.3 As in Fig. 5.2, except for a piecewise-analytic wind profile that closely approx-

imates the outer wind strength of the composite pressure-averaged typhoon in the 300

to 800 km radius "critical annulus."
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this will introduce a speed bias into BSAM propagation predictions because the coarse

radial resolution and limited accuracy of the composite data allows for some subjectivity

in selecting the curvature and lit of (5.1).

Table 5.1 TC propagation velocities (columns 5.6) predicted by the BSAM for

piecewise-analytic wind profiles (see Figs. 5.2a-5.4a) that underestimate, approximate
and overestimate the outer wind strength of the composite pressure-averaged typhoon
(Cases 1-3 respectively). In each case, a quiescent environment has been assumed. The
wind speed at the transition radius R r (column 3) and at 550 km (column 4) are also

shown.

Case X, MM
(m s)

v,.(55o km)
(m s)

C
(m/s)

a

(deg)

1 o.l 5.4 5.0 1.8 137

2 0.6 6.2 6.2 2.2 132

0.9 7.0 7.4 2.S 127

The propagation speeds and directions predicted by the BSA.V1 (Table 5.1) in-

crease with increased TC outer wind strength, which is in general agreement with the

results of Chapter IV and previous studies. Quasi-linear relationships exist between the

propagation speed (column 5) and the wind speed at the transition radius (column 3),

and the wind speed at 550 km (column 4). The first relationship has more relevance to

the dynamics of the BSAM since i>(Rr ) is a rough measure of the amount the linear

asymmetric forcing generated in the Dispersion Region, which acts to strengthen the

wavenumber gyres and thus increase the propagation speed. The second relationship is

also dynamically relevant because 550 km would be the center of FE's "critical annulus"

between 300 and 800 km. The 1 m s propagation speed increase for a 2.4 m.'s increase

in TC tangential winds at 550 km represents a potential for about 85 km of forecast error

in 24 h. This result suggests that TC outer wind strength must be measured to within

±1 m's in order for numerical models to be initialized with sufficient accuracy to avoid



significant forecast errors due to misrepresentation of TC strength. Important related

questions are: i) do numerical model heating and dissipative parameterizations tend to

maintain the tangential wind profile to this accuracy throughout the forecast integration;

and h) are changes in TC strength that occur during a forecast period accurately re-

produced by numerical forecast models?

This sensitivity of TC propagation on outer wind strength poses a significant

challenge for present observing system technologies. However, the method just used to

demonstrate the wind-strength propagation-speed relationship offers a potential alter-

nate approach to determine an "effective" TC strength. In Table 5.1, the independent

adjustment of a single parameter X[ (R r varies as a result) causes related changes to TC

outer wind strength and propagation speed. It is therefore possible, in principle, to seek

a value otX; such that the propagation speed predicted by the BSAM matches the ob-

served value at the initial time. The associated wavenumber one gyre structure predicted

by the BSAM could then be used to initialize a barotropic forecast model like SAXBAR.

or provide guidance in selecting an appropriate bogus vortex for baroclinic forecast

models.

Implicit in such a scheme to predict TC strength are the requirements that:

i) the large-scale environment is known sufficiently well to provide
f}e/r , <fi and Z f. for the

BSAM; ii) the track of the TC is resolved well enough to compute propagation relative

to the barotropic steering of" the environment; and iii) an estimate of TC speed at about

300 km is available. Since it is likely that many combinations of inner intensity and

outer wind strength can give similar propagation velocities, such a scheme might not

need to reproduce the outer wind structure of the TC. but only an inner-

intensity outer-wind-strength combination (i.e., an "effective" TC strength) that will

produce the correct propagation. In addition, possible baroclinic contributions to TC

propagation might also be parameterized to some extent by such an approach.

B. INTERPRETATION OF COMPOSITE TC PROPAGATION VECTORS

In Chapter I. comparison of observations of TC propagation with numerically de-

rived depictions of /i-induced wavenumber one gyre structure (FE) led to the preliminary

conclusion that the uniform flow region of the gyres would not be accounted for in

steering flows calculated over an annulus of 5-7° lat. radius. However, the wavenumber

one gyres for the composite pressure-averaged typhoon due to /^-forcing only (Fig. 5.5)

.-'. hat larger than the gyres associated with the basic vortex profile of" I E (Fig.

. well resolved gyre structure provided by the BSAM will be used to calculate
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DISTANCE (R MJ

Fig. 5.5 Wavenumber one gyre streainfunction (dashed, negative) associated with Table
5.1 Case 2. Contour interval is 2.0 x l0-m 7

ls. Dotted circles have radii of 2°, 4°, 6°, 8°

and 10° lat. The middle circle corresponds to the center of the 5°-7° lat. radius annulus
typically used to compute steering from composite data (e.g., Chan and Gray 19S2;

Holland 1984). The parameter RM.= 100 km.
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the extent to which TC self-advection is included in such steering flow calculations or is

manifested as propagation.

By averaging the velocities around various circles centered on the BSAM-predicted

gyres (Fig. 5.5; dotted lines), a set of velocity vectors representing interaction flow con-

tributions to environmental steering may be obtained (Fig. 5.6a). Subtracting such

vectors from the BSAM -predicted propagation velocity for the composite pressure-

averaged typhoon (Table 5.1; columns 5.6) gives a set of vectors that represent the

propagation of the storm relative to the steering computed at a particular radius (Fig.

5.6b). For composite steering computed at a 2° lat. radius, most of the interaction flow

is accounted for in the steering, whereas the propagation vector is about 0.4 m s to the

west. In contrast, at the 6° lat. radius where steering is typically computed, all of the

westward component and about one quarter of the northward component are manifested

as propagation. This result is consistent with the structure of the wavenumber one gyre

uniform flow region in Fig. 5.5. which is oriented essentially north-south at 6° lat. radius,

but still has a velocity nearly as large as the innermost portion of the flow. This result

may then explain why TC propagation computed from composite data over a 5-7°

have a predominantly westward orientation (Fig. 1.1). Although the

analysis here has used gyres associated with only the influence of planetary vorticity. the

)ph to the more realistic environmental situations of Chapter IV

Section D.3. if appropriate phase shifting of the vector patterns is taken into account.

As discussed in Chapter 111. the angular windshear in the symmetric TC produces

..ear tilting of the inner portion of the wavenumber one gyre that barotropically

the TC to asymmetric forcing. It is this down-shear tilt that produces the

;ristic cyclonic rotation and increasing magnitude of TC propagation relative to

[lows computed at increasingly larger radi; i Fig. 5.6b). 1 his propagation vector

pattern was evident in early compositing studies (George and Gray 1976; their Figs. 12

and 13). and is a persistent feature of the recent compositing results based on much

larger data sets presented by W. Gray at a recent OlTice of Naval Research Workshop

on Tropical Cyclone Motion (Elsberry 19S9). Such vector patterns may be interpreted

• observed TC propagation is a manifestation of self-advection by

wavenumber one gyres produced by asymmetric forcing. Although baroclinic processes

• the total wavenumber one gyre pattern, the general agreement

red propagation Figs 1 1 I with the predictions of barotropic theory (Table 4.-4)

ic processes are the dominant influence.
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Fig. 5.6 (a) BSAM -predicted propagation (C) for the composite pressure-averaged

typhoon and contributions to environmental steering by the associated BSAM-generatcd
vvavenumber one gyre ilow evaluated around the 2.4,6,8 and 10° lat. radius circles of Fig.

5.5. (b) Differences between composite pressure-averaged typhoon propagation (C) and

the vvavenumber one gyre contributions to steering of (a).
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For the BSAM to be used as a numerical model initialization tool or as part of a

propagation+ advection forecasting aid. the interaction flow must be effectively excluded

from the environmental windfield. Although filtering is often used in an attempt to re-

move the influence of the TC from the large-scale environment, alternate methods to

compute steering that better exclude the uniform flow region of the gyres should also

be investigated. For example, the steering might be computed along circles as in Fig.

5.5, but including only the 90° arcs centered on a line normal to the direction of the

large-scale absolute vorticity gradient (Fig. 5.7). Using this approach (Fig. 5.8a), the

interaction flow contribution to the 6° lat. radius steering accounts for only half the

northward component of propagation, and the contribution to the 8° lat. radius steering

is essentially zero. As a result, nearly all of the interaction flow influence is manifested

as propagation relative to steering computed at 8° lat. radius or larger (Fig. 5.8b). Thus,

it may be desirable to depart from traditional steering computation methods to better

separate the large-scale environment from the influence of the TC.

C. NUMERICAL MODEL INITIALIZATION

The wavenumber one gyre structures provided by the BSAM (based on either an

external specification or an internal prediction of TC propagation) should be ideal for

rig a nondivergent, barotropic (NDBT) numerical model so that quasi-steady

motion occurs immediately. Comparisons with the NDBT numerical model ofCW will

be used to provide a preliminary verification of this assertion. The model uses a

/?-plane approximation, a 4000x4000 km channel domain with an east-west cyclic

boundary condition and a resolution of 20 km.

1. Quiescent environment predictions

Using the symmetric, exponential TC wind profile of Table 4.2 Case 2. the CW
model predicts a nearly constant /Mnduced propagation direction of about 330° during

the first 4s h | Fig. 5.9). In contrast, the propagation speed increases from zero initially

to about 2.65 m s at 48 h. During this period, the asymmetric gyres develop, and then

the propagation speed becomes almost constant (2.8 m s) after the gyres are established.

In a real storm, these gyres are presumably present continually, and change only in re-

sponse to variations in TC structure or environmmental forcing. The "forecast error"

associated with the transient acceleration period evident in Fig. 5.9 may be estimated

by compa -48 h track with a 48 h displacement between say 36 h and 84 h

- hich the propagation speed is quasi-steady. The comparison is facilitated by
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Fig. 5.7 As in Fig. 5.5, except for including in steering flow computation only the winds
in the 90° arcs to the right and left of the planetary vorticity gradient.
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As in Tig. 5.6. except for vectors calculated based on the arcs shown in Fig. 5.7.
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Fig. 5.9 ^-induced propagation tracks and 6-hour positions predicted by the numerical
model of Chan and Williams (1987) for an initial TC wind profile corresponding to Table
4.2 Case 2 from 0-4S h (solid circles), and for the period 36-84 h (crossed circles) except
translated so that the 36 h position corresponds to the initial position of the TC.
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translating the 36-84 h track so that the 36 h position of the TC corresponds to the in-

itial position.

The along-track error of about 150 km suggested by this approach may be an

underestimation since the TC has slowed to about 2.6 m s by 84 h due to a weakening

of outer wind strength as the TC is displaced northward on a /?-plane (cf, FF). The

much smaller cross-track error is caused by the slightly more northward track of the TC

from 36-S4 h as compared to 0-4S h. Since this error is small, and may be associated

with different TC strength during the two 48 h periods or boundary influences, it will

be ignored.

The numerical model is now modified to include the wavcnumber one gyre

structure generated by the BSAM given the propagation velocity of 2.8 m's at 330°

(a= 12"') reported by CW, or the BSAM-predicted propagation velocity (Table 4.2,

Case 2 1. as shown in Tigs. 5.10a and 5.10b respectively. In both cases, essentially steady

propagation of the model TC occurs immediately (Fig. 5.11). The propagation tracks

for the two asymmetric initializations agree remarkably well, despite the 12° difference

between the initial direction of propagation predicted by the BSAM and the value ob-

served by CW. This indicates that the numerical model has rapidly adjusted for difl'er-

-veen the analytically-predicted gyres and those that would be generated from

an initially symmetric TC wind profile (e.g., Fig. 4.4.). This is consistent with the results

of Chapter III regarding short adjustment times near the radius of maximum winds,

since only the' central uniform flow region of the BSAM-gencrated gyres is altered by

modest changes in propagation direction. Thus, the more important aspect of the in-

itialization with the BSAM-generated gvres included is that the proper propagation

speed is established immediately.

Using the 36-84 h track in Fig. 5.11 as a benchmark, the two initializations of

the numerical model with /^-induced gyre structures produce an along-track forecast er-

ror of about 60 km. As indicated above, this error is likely an overestimation, because

the 36-S4 h track includes an anomalously slow portion around 84 h. Thus, the along-

track error at 4S h has been reduced from greater than 150 km to a value under 60 km.

Part of the apparent cross-track error of 38 km relative to the translated 84 h position

of the TC is an artifact of the more northward track of the TC from 36 h to 84 h. as

mentioned above. Comparing the 'MS h track in Fig. 5.9 with the 0-48 h tracks in Tig.

that the cross-track error is actually about 20 km.
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Fig. 5.10 VVavenumber one gyre streanifunction patterns generated by the BSAM for

the symmetric TC of 'I able 4.2 Case 2 for (a) Chan and Williams propagation velocity

of 2.8 ms at 330° (a= 120°), and (b) a BSAM-predicted propagation velocity of 2.65

m s at a= 132°. Areal extent of the figures corresponds to the domain of the numerical

model, and the streamfunctions have been linearly adjusted to zero within 20 gridpoints

of the domain boundaries.
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2. Results in a linearly-sheared environmental current

As shown in Table 4.3, the BSAM predicts significant changes in TC propa-

gation speed and direction for different values of uniform environmental vorticity. In-

itialization tests may also be made with the CW numerical model by including a

linearly-sheared zonal current defined by

ue* = ~ZE.y*, (5.3)

which has zero velocity at the initial position of the TC. The numerical model is then

integrated for 48 h using the symmetric TC vortex of Table 4.2 Case 2 with and without

the BSAM-predicted gyres for Table 4.3 Cases 1 and 2. Only BSAM-predicted propa-

gation velocities can be used here since numerical predictions of TC propagation relative

to a sheared zonal current are not presently available, although work is proceeding in

this area (Williams 1989; personal communication).

Comparison of the 0-4S h tracks of the initially symmetric and BSAM-initialized

TC's in the uniformly anticyclonic (Fig. 5.12) and cyclonic (Fig. 5.13) zonal currents

reveals a peculiar aspect that warrants detailed analysis. In the anticyclonic shear case,

the distance between the 24 h and 30 h positions of the BSAM-initialized TC is equiv-

alent to a speed of 3.3 m s. Since the TC is moving essentially due north during this

period, such a movement can only be due to a /Mnduced propagation that is substan-

tially faster than the 2.3 m s initially provided by the BSAM-generated gyre. This result

may be due to the BSAM having a slow bias in the anticyclonic shear case. However,

other evidence suggests the propagation speed increase may be associated with a non-

steady process present in the numerical model. For example, the 42 h to 48 h movement

of the BSAM-initialized TC is equivalent to 3.9 m s, which is significantly faster than the

24 h to 30 h speed computed above. In additional, the 42-48 h speed of the initially

symmetric TC in Fig. 5.12 is faster (3.0 m s) than the counterpart in a quiescent envi-

ronment (Fig. 5.9). which was noted earlier to have a 42-48 h speed of 2.65 m s. Thus,

the evidence strongly suggests that the influence of uniform anticyclonic environmental

shear causes a nonsteady alteration of /^-induced TC propagation that cannot be ac-

counted for by a steady-state model such as the BSAM.

A similar result is not found for the cyclonic shear case. The 42-48 h speed of

4.2 m s for the BSAM-initialized TC in cyclonic shear (Fig. 5.13) also is substantially

faster than the propagation of 3.0 m s generated by the BSAM gyres (Table 4.3; Case

2, column 3). However, since this track is largely westward, a significant fraction of this
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Fig. 5.12 Tracks and 6-hour positions predicted by the numerical model for /?-induced

TC propagation in an zonal current with linear anticyclonic shear of

Z f . = — 5.0 x 10 6
5
_l using the symmetric initial TC wind profile of Fig. 5.9 with (open

circles) and without (solid circles) BSAM-generated wavenumber one gyres.
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total motion is due to the 1.5 m s westward speed of the environmental current at that

location. Subtracting the environmental velocity vector results in a /^-induced propa-

gation velocity of 2.9 m s in a direction a* 144°. The difference between this result and

initial propagation specified in Table 4.3 Case 2 is insignificant compared to the large

change in propagation velocity that occurs in the anticyclonic case above.

The solutions of Chan and Williams (1989) for /^-induced TC propagation in a

linearly-sheared zonal current also contain anomalously fast propagation in anticyclonic

shear, but no measurable changes in cyclonic shear. Thus, this unexplained behavior is

not limited only to the BSAM. The increased propagation speed in anticyclonic shear

is certainly not intuitively plausible, since the results of FE (if applicable) would suggest

that the weakening of the outer wind strength of the TC due to a superposition of an

anticyclonically sheared current should cause slower propagation. Additional numerical

integrations are being performed to gain a better understanding of the dynamical or

perhaps numerical basis for this behavior (personal communication. R. T. Williams

1989).

The potentially nonsteady influence of linear environmental windshear on

/?-induced TC propagation make a precise determination of how well the BSAM has in-

itialized the CW numerical model difficult. However, several qualitative observations

and comments can be made. It is evident in Figs. 5.12 and 5.13 that significant cross-

track as well as along-track errors exist between the positions of initially symmetric and

BSAM -initialized TC's when a spatially variable environment is present. As in the

quiescent environment case above, the along-track differences are due to the nonzero

initial speed of the BSAM -initialized TC. The cross-track differences are in part due to

a slightly different starting direction for the BSAM-initialized TC. which in effect ac-

counts for phase shifting of the wavenumbcr one gyres by the "past" influence of envi-

ronmental shear. Additional research will be necessary to understand to what extent the

present asymmetric structure of TC's reflects past environmental influences. The cross-

track differences arc also due to the nonzero initial propagation speed of the

BSAM -initialized TC which, continually subjects the TC to different environmental

winds compared to the initially symmetric TC. Thus, the tracks of the BSAM-initialized

and initially symmetric TC diverge with time. The divergence is much greater in the

cyclonic environment case due to the greater speed of propagation and the cyclonic ro-

tation of the /--induced gyres such that a larger zonal motion component (propagation

- environmental advection) is produced. It should also be emphasized that the 48 h

along-track and cross-track differences of up to 280 km and 8o km respectively in Figs.
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5.12 and 5.13 indicate that initializing a numerical model with only a symmetric TC wind

profile has much more serious consequences when spatially spatially variable environ-

mental winds are present than for a quiescent environment (Fig. 5.11).

D. SUMMARY
In this chapter, three basic but important applications of the BSAM have been

demonstrated. First, the BSAM has been used with composite observations to predict

the barotropic propagation due to /? for a composite pressure-averaged typhoon, and to

predict the change in propagation speed that might be expected for a typhoon with

larger or smaller outer wind strength. The results suggest that misrepresenting the outer

wind strength by about 2.5 m s will cause a 1 m s error in barotropic propagation, which

represents a potential forecast error of 85 km in 24 h. This application also outlined a

method by which the BSAM might be employed to predict an "effective" outer wind

strength based on a priori knowledge of TC propagation.

Second, analysis of the ^-induced gyre structure predicted by the BSAM for the

composite pressure-averaged typhoon provided evidence that the TC propagation vec-

tors in composite data (Fig. 1.1) are indeed manifestations of wavenumber one gyres

associated with self-advection processes. An alternate method for computing environ-

mental steering that better separates the large-scale environment from the self-advection

flow was also demonstrated.

Finally, and most importantly, the potential usefulness of the BSAM as an initial-

ization tool for barotropic numerical forecast models was demonstrated. In the case of

a quiescent environment, initializing the numerical model with BSAM-predicted

wavenumber one gyres reduced the along-track forecast error at 48 h from more than

150 km to less than 60 km. When a linearly-sheared zonal environmental current was

included, significantly larger along-track and cross-track differences of up to 280 km and

SO km respectively were observed between the 4S h positions of an initially symmetric

TC and a BSAM -initialized TC.



VI. CONCLUSION

The principal achievement of this research has been the development, testing and

preliminary application of a comprehensive theoretical model for predicting tropical

cyclone (TO propagation and associated asymmetries based on the barotropic self-

advection process identified in recent numerical studies. The model is comprehensive in

the sense that it includes the first-order effects of all of the dynamical processes that are

presently understood to be important to barotropic TC propagation: gradients of plan-

etary and environmental vorticity. changes in TC wind structure, and environmental

windshear. Since the model is based on a single self-advection principle through which

individual external forcing effects collectively determine the phase and amplitude of a

wavenumber one gyre flow that advects the TC, the nomenclature Barotropic Self-

Advection Model (BSAM) has been adopted. Because of the dynamical complexity of

barotropic TC self-advection. a rather lengthy chain of hypotheses, assumptions and

approximations were employed to make the problem analytically tractable. The princi-

. . o are summarized in Section A and a summary of

results follows in Section B.

A. OVERVIEW OF PRINCIPAL ANALYSIS TECHNIQUES

I. Dissection of the problem and model formulation

Based- on prior numerical findings that TC propagation relative to steering re-

sults from wavenumber one asymmetries induced by TC-environment interaction, the

total flow field has been partitioned into three components: i) a specified large-scale en-

vironment: in a symmetric cyclone circulation; iii) and an unknown asymmetric inter-

action How component that is presumed to be responsible for TC propagation. A

transformation to a reference frame moving with the TC has been utilized, and the

symmetric TC component is assumed steady in such a reference frame to further simplify

the problem. By subtracting from the total problem an equation governing the large-

scale environment in the absence of the TC. an equation for the evolution of the inter-

action flow in response to external forcing has been obtained. Thus, the partitioning and

transformation process significantly simplified the problem by focusing the analysis on

rtion of total flow field that is relevant to TC propagation.

1 he mathematical complexity associated with the polar symmetry of the prob-

py of the symmetric TC flow variables makes it very



difficult to find a single solution that is analytic in the whole model domain. Thus, it

has been assumed that a piecewise-analytic solution obtained using a matched-

asymptotic approach will be a reasonable approximation. In the preliminary model de-

velopment (Chapter II), this assumption entailed dividing the model domain relative to

a "transition radius." Inside this radius is a Self-advection Region in which mutual

advections by the symmetric TC and interaction flow dominate, and outside this radius

is a Dispersion Region in which those advections are unimportant relative to the ex-

ternal asymmetric forcing. After formally showing that only wavenumber one processes

can contribute significantly to TC propagation, the problem has been further simplified

by retaining only the first-order contributions to wavenumber one processes in the

interaction flow governing equation.

To overcome the problem of radial anisotropy noted above, the model domain

has been subdivided further (Chapter IV) by assuming that the symmetric TC winds in

the Self-advection Region can be reasonably represented by a set of piecewise-analytic,

modified Rankine segments. A solution valid for the whole model domain then has been

assembled from solutions valid in individual annular regions by imposing matching

conditions on solutions at the annulae interfaces. Thus, the intractability of the full

problem has been overcome by subdividing the problem sufficiently to make the indi-

vidual pieces analytically tractable. The success of this systematic dissection approach

to modeling TC self-advection has been demonstrated by several comparisons with

complete numerical solutions and with some observational results.

2. Free versus forced transient analysis

An examination of the response of initially imposed perturbations on a Rankine

vortex provides important theoretical insights into why TC-like vortices in the

barotropic numerical models propagate steadily in a slightly deformed state in response

to persistent environmental forcing, rather than rapidly distorting and dispersing. The

unforced initial value problem analyzed in Chapter III represents the homogeneous

counterpart to the forced steady propagation problem addressed in Chapter IV. By

choosing initial conditions with the same spatial structure as in the forcing terms of the

steady-state problem, the forced transient adjustments in numerical TC models may in-

terpreted in terms of the analytically tractable unforced problem. This modeling tech-

nique permits a formal mathematical analysis of barotropic vortex adjustment to

imposed asymmetries that was not possible for the related forced problem.



3. Closing the Barotropic Self-advection Model (BSAM)

Although the transformation to a reference frame moving with the TC was an

important step in dividing the TC self-advection problem into manageable pieces, the

presence of the propagation speed and direction in the interaction flow equation re-

presented two additional unknowns. Thus, a closure scheme based on numerical results

has been devised in which it is hypothesized that the correct propagation velocity will

be associated with a particular wavenumber one gyre structure that has an approximate

balance between vorticity tendencies due to the advection of large-scale absolute

vorticity by the symmetric TC and the shearing of interaction flow vorticity by the

symmetric TC winds. Specifically, the advection of the vorticity of the symmetric TC

by the wavenumber one interaction flow is assumed to account for all of the propagation

vector, except for a 0.-4 m s component associated with linear Rossby wave propagation

of the dominant scale of the TC. The closure scheme depends sensitively, but predict-

ably, on the two adjustable features of the BSAM associated with the transition radius.

In a comparison with equivalent numerical model solutions, the closure scheme error

was o.25 m s and 12° without any adjustment of the two available parameters.

B. SUMMARY OF RESULTS

1. Barotropic vortex stability

The first important result of this research is that the angular windshear of the

symmetric circulation of TC-like vortices acts to make the vortex barotropically stable

to small asymmetric perturbations from axisymmctry. The windshear in the symmetric

circulation tilts the perturbations downshear. which results in a barotropically stable

transfer of kinetic energy from the perturbation to the "basic state" represented by the

symmetric vortex. The damping dependence is an algebraic continuous spectrum-type

response analogous to the damping of perturbations imposed on an /-plane Couette

flow. The damping rate is proportional to perturbation wavenumber, and is faster

(slower) for perturbations with a radial structure that decays rapidly (slowly) with in-

creasing radius. A wavenumber one perturbation associated with the advection of

planetary vorticity by the symmetric TC loses about 80% of the initial kinetic energy

by 24 h. which agrees well with the adjustment times in recent numerical modeling

studies of TC adjustment on a /?-plane. Thus, the quasi-steady propagation of TC's in

barotropic models may be regarded as a balance between the transfer of kinetic energv

from the symmetric TC to the wavenumber one interaction flow due to external asym-



metric forcing and the transfer of kinetic energy to the symmetric TC from the

wavenumber one asymmetry due to the symmetric angular windshear.

The presence of significant tangential windshear in TC's, and the qualitative

similarity of TC propagation tracks in baroclinic and barotropic models, strongly sug-

gests that this barotropic vortex stability mechanism also may play a fundamental role

in actual TC propagation. It should be emphasized that the asymmetry-damping influ-

ence of symmetric angular windshear is not limited to vortices scaled to approximate

TC's. Rather, the shear-damping mechanism is applicable to any vortical flow that may

be reasonably approximated by barotropic dynamics, and in which the strength of the

vortical flow is strong compared to other influences over a significant horizontal area.

Examples are Gulf Stream rings and other intense ocean eddies.

2. Dependence of propagation speed on TC strength

The piecewise-analytic symmetric TC wind profile in the BSAM permits propa-

gation predictions for various tangential wind profiles. During testing of the closure

scheme, it has been demonstrated that the BSAM -predicted propagation speed depends

strongly on the magnitude of the symmetric vorticity gradient in the vicinity of the

transition radius. This result complements the conclusions of Fiorino and Elsberry

( 1 9 S 9 ) regarding strength changes quite well, since the transition radius is typically lo-

cated near the middle of their 300-800 km critical annulus. Specifically, the BSAM

demonstrates that the speed of TC propagation depends on the second derivative of the

TC tangential winds, which explains why the propagation.'wind-strength dependence is

so strong.

The model has also been used with composite TC tangential wind profiles to

obtain a practical estimate of the wind measuring accuracy required to avoid significant

forecast error due to misrepresenting TC strength. Piecewise-analytic wind profiles have

been constructed that underestimate, approximate, or overestimate the outer wind

strength of a composite pressure-averaged typhoon. A quasi-linear relationship is found

between the symmetric TC windspeed at 550 km and the associated propagation speed.

Specifically, the speed of propagation increases by 1 m s for a 2.4 m s increase in vs.(550

km), which suggests that the TC outer wind strength must be measured to about ±1

m s to avoid having 24 h forecast errors greater than 85 km. The capability to alter

outer wind strength by changing only one parameter suggests that the BSAM might be

used to estimate an "effective" TC outer wind strength given sufficiently accurate infor-

mation about the environmental windfield, the past propagation of the TC relative to

environmental steering and the intensitv of the storm.



3. Dependence of propagation on environmental vorticity

The influence of uniform environmental vorticity in altering the phase of the

wavenumber one gyres in the Dispersion Region can be included in the BSAM for values

of Z f. (x ICH5- 1

) inside the range -0.5 to 1.5. An increased (decreased) propagation

speed and a more (less) westward propagation direction is predicted when cyclonic

(anticyclonic) uniform vorticity is present compared to ^-induced propagation in a

quiescent environment. Although the direction changes are generally consistent with

propagation vectors in an unpublished numerical study by Chan and Williams (1989), a

verification for the BSAM -predicted speed changes is not available. An unresolved issue

here is that a steadily increasingly propagation speed is evident in the Chan and Williams

solutions for anticyclonic shear, whereas an essentially steady propagation speed is

found for cyclonic shear. If the steadily evolving propagation speed and asymmetry-

situation is relevant to TC's, then the question of how long the TC has been in a par-

ticular environment may be important to track forecasting.

BSAM predictions of TC propagation have been made for situations involving

zonal and meridional gradients of environmental vorticity, the influence of /?, and a

uniform component of environmental vorticity. For example, a TC north (south) of the

subtropical ridge where a westward gradient of environmental vorticity is also present is

predicted to have a more northward (westward) and faster (slower) propagation in gen-

eral agreement with composite observations in the western North Pacific {e.g., Fig. 1.1).

4. Numerical model initialization

An important potential application of the BSAM is to provide the initially

symmetric bogus vortex of a barotropic numerical model with the correct wavenumber

gyre structure so that quasi-steady propagation occurs immediately, and thus overcome

a well-known slow bias. Such an application may also be regarded as an indirect test

of the validity of the modeling concepts, techniques and assumptions employed in de-

veloping the BSAM. For a quiescent environment, the BSAM -predicted wavenumber

one gyre produces virtually steady propagation regardless of whether an internally or

externally-derived propagation velocity is used. Including the BSAM-generated gyres in

the numerical model initialization reduces the along-track forecast error from more than

150 km to less than 60 km. This preliminary result shows that the BSAM has significant

potential as an initialization tool for operational barotropic forecast models such as

SANBAR.

The unresolved issue regarding nonsteady /^-induced propagation in anticyclonic

shear mentioned above precludes a precise estimation ol the potential 4S h forecast error



reduction that might be achieved by a numerical model initialization with the BSAM.

Nevertheless, the along-track (cross-track) differences of up to 280 km (80 km) between

the 48 h positions of TC with and without BSAM-initialization illustrates the potential

sensitivity of TC track prediction to the initial asymmetric structure of the TC when a

spatially variable environment is present. Using the adjustable parameters in the BSAM
to minimize barotropic forecast model track error in some statistical sense may be a vi-

able approach for developing an initialization scheme that can improve barotropic nu-

merical model forecast skill, and provide additional insights into the interaction of TC s

with the surrounding environment.



APPENDIX A. COMPOSITE DATA CONVERSION

Composite studies have generally characterized TC propagation in relative terms

{e.g., speed and direction differences) using a rotated coordinate system aligned with

storm motion. This compositing methodology tends to make theoretical interpretation

of the data difficult because the analytical and numerical studies predict that TC prop-

agation will possess a particular orientation with respect to the direction of the large-

scale vorticity gradient. In particular, a rotated storm-relative coordinate system would

tend to obscure TC propagation associated with the gradient of the Coriolis parameter,

since that gradient has a storm and environment-independent northward orientation.

Thus, part of the difficulty in comparing theory with the composite observations may

be readily overcome by representing TC propagation as a vector quantity in a north-

oriented earth-relative coordinate system.

The TC motion and steering flow composite data are taken from the latitude, di-

rection, speed and intensity stratifications of Chan and Gray (1982) and George and

Graj I 1976) lor the western North Pacific region, and the direction and rccurvature

stratifications of Holland (1984) for the Australian-Southwest Pacific region. Holland

used a single steering How definition based on a 800 to 300 mb pressure-weighted mean

wind averaged over an annulus extending 5° to 7° lat. from the TC center. Although

Chan and Gray used the same horizontal domain, several vertical averaging schemes

were tested. Only the Chan and Gray steering flow based on a surface to 300 mb vertical

average is used here, since it most closely approximates the steering flow definition used

by Holland. Vertically-averaged steering flows have been chosen for this analysis rather

than individual steering levels (e.g., George and Gray 1976) to more appropriately com-

pare the observations with the theoretical modeling results that are predominantly based

on barotropic dynamics.

Table A.l summarizes the conversion process for the western North Pacific com-

posite data. The columns labelled VPM . DD. Vc and Dc contain previously published

ind the last two columns have been computed using the relationships

D B
= Dc + DD (A.l)

.. \ c + ^ r \i . . ,,

135



Table A.l Original and converted composite TC motion data for the western North
Pacific region. Column heading meanings: VPM is the speed of the steering flow compo-
nent parallel to the direction of the composite TC minus the speed of the TC; DD is the

difference between the direction of TC motion and the steering flow; Vc and D c are the

speed and direction of motion of the TC respectively; and VB and DB are the speed and

direction of the steering flow respectively. The data in columns VPM and DD are taken

directly from Chan and Gray (1982). and the data in columns Vc and Dc are taken di-

rectly from George and Gray (1976). The data in columns VB and D B have been com-
puted as described in the text. Directions are measured clockwise from North and the

data in the last four columns are relative to a reference frame fixed to the surface of the

earth.

Composite
Stratification

Vpv
(m s)

DD
(deg)

Vc

(m s) (deg)

vB

(m s) (deg)

Latitude:

>20 CN (Gl )

<20°N'(LT)
-1.0

-1.6

19

6

5.6

5.1

352

300

4.9

3.5

Oil

306

Direction:

Westward (W)
Northward (N)
Eastward (F)

-2.3

-1.0

-0.5

17

17

16

6.2

5.3

7.1

285
324

027

4.0

4.5

6.8

302

341

043

Speed:

Slow (SL)
Moderate (M)
Fast (F)

-0.9

-1.1

-1.3

20

14

2.4

10.1

338

326

006

1.7

4.4

9.1

005
346

020

Intensity:

Weak(WK)
Intense (1

1

Very Intense (VI)

-1.1

-1.1

-1.7

14

20

26

4.9

5.0

5.2

319

326

319

3.9

4.2

3.9

333

346

345

All column labels are defined in the table caption. Table A. 2 is analogous to Table A.l

lor the Australian-Southwest Pacific composite data. The columns labelled SD. DD. VB



and DB contain previously published data, and the columns labelled Vc and Dc have

been computed using (A.l) and

SD. (,4.3)

The TC propagation vectors shown in Fig. 1.1 were then computed for each composite

stratification using the last four entries in each row of Tables A.l and A. 2.

Table A. 2 Analogous to Table A.l for the Australian-Southwest Pacific region. The
column headings DD, Vc , D c . V B and D B have the same meanings as in Table A.l and
SD is the speed difference between the composite TC and steering. The data in columns
SD. DD. V

B and D B are taken directly from Holland (1984), except that the steering flow

directions are measured clockwise from North. The data in columns Vc and Dc have
been computed as described in the text.

Composite SD DD Vc Dc vB DB

Stratification (m s) (dec) (ms) (deg) (m s) (deg)

Direction:

Westward (W) 1? -4 4.0 247 2.7 243

Southwestward (SW) 1.1 -IS 3.6 241 2 ^ 223

Southward (S) -0.5 -32 3.0 172 15 140

Southeastward (SE) -1.1 -23 3.S 150 4.9 127

Eastward (E) -1.2 "3 4.2 106 5.4 103

Reeurvature:

Before - B I
1.1 -13 3.5 238 2.4 225

Near(N) 0.5 -2b 3." 193 3.2 167

Alter (A) -0.5 " 2 5.0 162 5.5 160



APPENDIX B. PIECEWISE-ANALYTIC VORTEX CONSTRUCTION

The following outline describes the procedure for constructing piecewise-analytic

radial profiles of TC tangential wind and relative vorticity. The approach here is to use

the linear degrees of freedom in (4.6), (4.16) and (5.2) to develop closed-form expressions

for the coefficients A,. A
2

, A 3 , B„ B 2 , B 3
and C

3
such that the piecewise-analytic profiles

must have continuous windspeed and relative vorticity. The remaining nonlinear degrees

of freedom are then used to adjust the fit of the piecewise-analytic profiles to the corre-

sponding analytic profiles by selecting various values for X, and X
2
and assessing the

results via interactive computer graphics.

1. Given the trial values of R and R, from Step 1 of the model solution procedure
(Chapter IV Section A. 4). choose trial values for v5(R ) and vs(R (

). Generally R
will be in the vicinity of the radius of maximum winds, and thus v5(R )^l will pro-

vide a good first estimate. The value of v5(R,) for the piecewise-analytic vortex is

chosen to closely approximate the windspeed of the analytic profile at R,.

2. Determine the coefficients A, and B, for (4.6) in the first annulus, by solving the

2x2 linear system that results from applying the boundary conditions of Step 1

above to (4.0).

3. Determine the coefficients A 2
and B, by requiring the windspeed and vorticity of the

piecewise-analytic TC structure to be continuous at R,. As in Step 2 above, this

entails solving a 2x2 linear system.

4. Repeat the process in Step 3 to determine the coefficients A
3
and B, in (4.16) by

requiring the piecewise-analytic windspeed and vorticity to match at the transition

radius Rr. For the piecewise-analytic profiles used in Chapter V, this step is mod-
ified to include evaluation of C

3
in (5.2) by solving the linear 3x3 system that results

from requiring the piecewise-analytic windspeed, vorticity and vorticity gradient to

be continuous at R 7
.

5. Using interactive computer graphics, vary the parameters X, and X 2
to adjust the

piecewise-analytic windspeed and vorticity profiles to approximate the analytic

counterparts as described in Chapter IV Section B.l. During this step, also adjust

R . R,. vs(R ) and v5(RJ if necessary to achieve an acceptable fit.
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