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ABSTRACT 
 
 
 
In order to address the requirements of the rapidly growing Internet, network 

processors have emerged as the solution to the customization and performance needs of 

networking systems. An important component in a network is the router, which receives 

incoming packets and directs them to specific routers elsewhere in the system. Network 

processors and the associated software control the routers and switches and allow soft-

ware designers to quickly deploy new systems such as multicasting forwarders and fire-

walls. 

This thesis introduces network processors and their features, focusing on the Intel 

IXP1200 network processor. A multicast design for the IXP1200 using microACE is pro-

posed. 

This thesis presents an approach to building a multicasting forwarder using the 

IXP1200 network processor layer -3 forwarder microACE that carries out unicast routing. 

The design is based on the Intel Internet exchange architecture and its active computing 

element (ACE). The layer -3 unicast forwarder microACE is used as a basic starting point 

for the design. Software modules, called micoblocks, are developed to create a multicast 

forwarder that is flexible and efficient. 
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EXECUTIVE SUMMARY 
 
 
 

The main goal of this thesis was to design a multicasting forwarder using Intel 

Internet exchange architecture and the IXP1200 network processor. The combat system 

computers on warships are connected to each other with a network to respond any attack 

immediately. The sensors and the weapons of the ships communicate with each other by 

using this network. The communication between systems must be lightweight to increase 

the respond time. This thesis can be used in these systems to eliminate network over-

heads. The sensors can send the information packets to control consoles by using unicast 

based multicasting to eliminate network overhead. 

Originally, conventional CPU-based systems were used to build networking sys-

tems (routers and switches). They had sufficient computing capacity to handle the net-

work requirements. Around 1990, the Internet begun to become a global network, and 

CPU-based systems could no longer handle the Internet applications requirements be-

cause of demand for wide bandwidth and high packet processing rates. In the middle of 

1990, the application specific integrated circuit (ASIC) was introduced to address new 

requirements. ASIC is an integrated circuit with networking functions built- in perma-

nently. ASICs are fast and have a high packet processing rate. However, since functions 

are permanently built into ASIC, they cannot be easily modified. As the number and vari-

ety of Internet applications grew, new networking functions were needed. It is very ex-

pensive and time consuming to design and produce new ASICs. This is one of the main 

reasons network processors were introduced. Network processors are processors that are 

designed for network processing and have special features to handle the high packet rate, 

new networking functions, and new services. 

Network processors are fully programmable processors. This makes them flexible 

enough to address new application needs in a short time. They use parallelism and pipe-

lining to increase the throughput and support high packet processing rates.  

Intel designed and produced Internet Exchange Architecture (IXA) and its 

IXPxxxx family network processors. IXP1200 is one of them. Internet Exchange Archi-



 xvi

tecture introduced the programming model Active Computing Element (ACE) to modu-

larize network processor programming. The IXP1200 has six hardware multithreading 

RISC MicroEngines, and one StrongARM core RISC processor. Microengines and 

StrongARM work in parallel using a 5-stage pipelining execution queue. 

Intel provides the IXP systems with a hardware testbed and platforms to help de-

signers evaluate their applications. The Software Development Kit (SDK) is one of these 

platforms. SDK includes sample applications and library codes to help the designer.  

The ACE software programming structure divides the tasks performed by an IXP-

based system and allows each task to be handled by a module. MicroACE has two com-

ponents, microblocks which run in MicroEngines and a core component, which runs in 

the StrongARM core processor. Microblocks handle the common packets and provide a 

fast data path. If they encounter a packet requiring special handling, they pass it to the 

core component. 

The multicast forwarder, simply a router that also performs multicast forwarding, 

forwards each packet to one or more receivers. This thesis investigates a unicast-based 

design that provides multicast service using the existing unicast forwarder. It is an effec-

tive and flexible methodology because the system does not require additional routing pro-

tocols or another routing algorithm. End hosts in the network are responsible for multi-

cast state maintenance. 
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I. INTRODUCTION 

A. BACKGROUND 

The Internet has improved the quality of our lives. It has made it more convenient 

to do our jobs, to communicate with each other, to shop, to conduct research and a host of 

other tasks. Today, the Internet is everywhere. Even the telephone system is changing 

from the old dedicated analog transmission system to voice-IP technology over the Inter-

net. Military applications use computer network systems to communicate in the battle-

field. On warships, data from the sensors can be used as input to weapon systems. This 

combination can be is achieved using a computer network. A sensor must send its info r-

mation to the control consoles of the combat information center to decide about the 

threats. Our unicast-based multicast design can be used in the warship combat systems as 

multicasting forwarder. It provides effective and reliable way to deliver information to 

the consoles.  

The Internet grew rapidly especially after 1990, and it is still growing. Table 1 

shows the growth of the Internet as measured by the total number of hosts. 

Year: Number of Hosts on Internet: 

1977 111 

1981 213 

1983 562 

1984 1,000 

1986 5,000 

1989 100,000 

1992 1,000,000 

2001 150 – 175 million 

2002 Over 200 million 

By 2010 About 80% of the planet 

 
Table 1.   Internet Growth Trends (From Ref. 1.). 
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Since the number of hosts on the Internet is growing, applications and services 

also are being developed. These growing applications and services require high band-

width to work reliably.  

Networking technology has an important role in supporting this growth. Protocol 

systems, transmission media, processing systems like routers, switches, and bridges are 

the main components of computer networking.  

To handle the huge demand on the Internet, networks must be fast, reliable, and 

flexible. As a result, processors used in networking hardware have evolved from general 

CPU to specialized packet handling type Network Processor Units that are faster and op-

timized for moving data. 

B. THESIS PROBLEM STATEMENT 

The main goal of this thesis was to propose a design of multicasting forwarding 

service that uses the existing IXP1200 ACE programming design module. To support the 

multicast design, this thesis explores the network processor and its features, and investi-

gates the Intel IXP1200 network processor and its ACE programming model. 

C. THESIS OVERVIEW 

Chapter II examines network processors. First, it introduces the evaluation of the 

network processors. Second, it gives the features of network processors that must address 

the high bandwidth requirement. Third, it presents the Intel Internet Exchange Architec-

ture techno logy. 

Chapter III describes the hardware and the architectural concepts of the Intel ne t-

work processor IXP1200. It explains the external and internal blocks of the IXP1200 and 

introduces the concepts of hardware multithreading, memory management, and intercon-

nection between blocks.  

Chapter IV explores the software component of the IXP1200. It explains the pro-

gramming structure and models of IXP1200, including the software development kit, 

IXA application-programming interface, and the advanced programming model, the ac-

tive computing element. 
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Chapter V provides our design for a multicasting forwarder. Our methodology is 

done by modifying the layer-3 unicast forwarder microACE. The microACE of the uni-

cast forwarder includes three main microblocks. We modify the ingress and egress mi-

croblocks to duplicate specific packets effectively converting from a unicast mode to a 

multicast mode. 

The last chapter discusses the conclusions and recommendations for future work. 
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II. NETWORK PROCESSORS 

A. INTRODUCTION 

Communication over the Internet is built on packet switching. The processing of 

packets is the main job of the network systems such as switches and routers [2]. These 

network systems examine each packet, and then decide what to do with them. Typically, 

this decision depends on the headers of the packets. They can be forwarded to interfaces 

of the system or returned to the sender as an error message. 

The functions and the services that the network system provides depend on the ar-

chitecture of the network system processor.  

Bandwidth is important and critical to network applications. Because emerging 

Internet applications increase the network traffic, it is pushing the limit of the capacity of 

communication lines and semiconductor technologies. Therefore, network equipment 

providers are searching for better technologies and methods to handle, support and man-

age the traffic. 

Network processors present a solution, which can help maximize bandwidth utili-

zation and traffic flow [3,4]. Network processors are becoming the main component in 

the network systems to meet the new bandwidth, speed, and performance requirements.  

A network processor, unlike the conventional computer processor unit (CPU), 

combines hardware functional units with software, and is designed and highly optimized 

to perform network functions [2,3,4]. For high bandwidth and performance, parallelism 

and pipelining are used in the design of Network Processors. 

This chapter examines the features of Network Processors, focusing on the system 

processor IXP1200 in the INTEL Network Processor Architecture. 

B. THE EVALUATION OF THE NETWORK PROCESSORS 

Over the last 15 years, network systems especially router architectures, have 

evolved through three generations, each marked by improvements in packet processing 

mechanisms.  
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1. First-Generation Systems  

Up to the mid 1990’s, router architecture was similar to the conventional PC sys-

tems. Figure 1 illustrates a CPU that performs networking functions, controlled by the 

router’s operating system. Like conventional PCs, the router’s operating system resides in 

the system’s volatile memory in RAM and controls all the system’s functions and ser-

vices.  

       

 

Figure 1.   Software-Based Architecture. 

 

In such a system, all tasks are controlled and performed by software, and routers 

built in this system are called software-based routers. Because routing is software-based, 

adding new functions and services to the router can be done by simply changing or add-

ing new instructions to the software [2,3,4]. 

It is good for the vendors because it does not take much time to change or upgrade 

the router’s software. They could quickly develop new or special purpose products within 

a short time. 

The Cisco 2500 Router is an example of a software-based router (Figure 1). Cisco 

2500 uses its Central Processor Unit to execute and conduct its routing instructions stored 

in nonvolatile RAM. 
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As Networking technology and applications changed, the drawback of this system 

became apparent. Software-based architectures had a limited ability to scale to higher 

bandwidth demands and new routing services [4]. For example, the majority of software-

based routers can only support wire speed throughput for less than 155 Mbps [4]. When 

you want to make them perform complex ne tworking functions, like filtering, policy-

based routing, and examining traffic statistics, the throughput of software-based routers is 

reduced. This creates a bottleneck in the network [4]. 

Networking technology was constantly developing, but software-based architec-

ture could not keep up with the bandwidth demand and started to suffer in performance. 

In addition, maintaining this architecture became very expensive. 

2. Second-Generation Systems  

After the mid 1990s, companies started to find new solutions to support high 

bandwidth and fast processing ne tworking systems. Vendors used Application Specific 

Integrated Circuits (ASIC) and combined them with embedded Reduced Instruction Set 

Computer (RISC) processors yielding greater speed and performance. Companies that 

built high-speed network systems started to hire VLSI design engineers to design ASICs 

for their systems and products [2]. 

ASIC-based forwarding and switching have resulted in a new generation of very 

high-speed routers and switches. ASIC is an integrated circuit manufactured with embed-

ded instructions to perform specific functions. The functions are programmed in silicon 

hardware permanently. So, for ASIC, since there is no memory instruction fetch cycle, it 

is significantly faster than software-based systems. It works at wire speed. That is, in the 

software-based architecture, the CPU must make memory accesses to execute instruc-

tions, and memory accesses take too much time compared with the execution time of 

ASICs. 

With ASICs, manufacturers improved the performance by creating special chips 

that could do packet forwarding directly in the hardware. These chips make decisions 

about packet forwarding and, when packets need special treatment, they are forwarded to 

the RISC processor for special treatment. With very high packet forwarding speeds (ap-

proximately tens of millions of packets/second), routers became very inexpensive. They 
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became common in academic and industrial networks [2,4]. Now, one can buy sophisti-

cated routers for $100 or less. 

ASIC technology became very popular because it can process packets at wire 

speed. But, after several years, its drawbacks started to be understood. ASICs are created 

by designing and fabricating networking functions into silicon permanently. In the mean-

time, Internet applications are becoming more complex. Thus, they need still more func-

tionality. Some of those applications, such as Firewall Capability (stateful firewalls), Vir-

tual Private Networks (VPN), and Quality of Service (QoS) implementation demand new 

processing capability from the network hardware [6].  

To add a new function to an ASIC, you have to design and produce it from the 

beginning. This procedure takes from several months to two years. ASIC can be designed 

for several different functions, but since those functions are embedded into silicon, add-

ing new functions, or designing new ASICs are very expensive and time consuming [6].  

To summarize, ASICs have numerous disadvantages: They are costly, require 

much time to market, and exhibit difficulties in simulation, design, and modification [2]. 

3. Third-Generation Systems  

Network systems vendors can no longer afford to wait as long as two years de-

signing and developing ASICs for an application. The network requirements could 

change during the development of a special purpose ASIC, and a lot of effort and money 

could be wasted [7]. 

The solution is Network Processors. Network Processors were introduced in the 

market in the late 1990s. Network Processors combine two approaches, hardware struc-

ture (about as fast as ASIC) and software that makes the system flexible.  

Network processors are not for a special application. A vendor can produce dif-

ferent systems with different network functions with only one type of network processor. 

Today, designers can build a layer-3 unicast router; tomorrow designers can build a state-

ful firewall. Applications that are overwhelming for ASICs, because of the complex func-

tionality, are implemented with network processors, such as Virtual Private Networks, 

firewalls, and Quality of Service mechanisms.  
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These functions require more scalability, flexibility, and programmability. These 

features are implemented with parallelism and pipelining and are discussed in detail in 

the next section.  

C. FEATURES OF NETWORK PROCESSORS 

Network Processors brought new concepts and new technologies to networking 

systems. In this section, the INTEL IXP1200 Network Processor will illustrate the fea-

tures of network processors in general. The IXP1200 has StrongARM, a core RISC proc-

essor, 6 pipelined Multithreaded (4 threads for each Microengine) RISC-type Microengi-

nes for packet processing, SDRAM to store packet data, SRAM to store packet headers 

and variables, and system buses to establish communications between the units.  

1. Flexibility with Programmability 

Internet technology and applications are changing every day. New network sys-

tems must be adapted to new protocols, functions and services at low cost. Unlike ASICs, 

Network Processors are not limited to a particular layer stack or a protocol.  

Flexibility of network processors arises from programmability [2]. With fre-

quently changing network requirements and standards, programmability is an important 

characteristic of network processors. Rather than designing and producing a new chip 

like ASIC, one can design and create systems for new protocols or applications by only 

developing new algorithms and implementing them in programs.  

Programmability allows designers to reuse the components and programs for dif-

ferent versions of protocols. System software tools designed for network processors 

shorten the development time for a system. Tools allow extensive testing capabilities 

with intelligent debugging features [4] with real-world conditions. 

The flexibility of Network Processors means one can develop any network system 

with a network processor for any network protocol or services by just programming the 

network processor. Network processors yield low cost, reduce the development cycle, 

and allow programs to be reused. 

The flexibility of network processors also means new chips may allow system de-

signers perform tasks that people never imagined before [6]. Network Processors let de-
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signers handle complex functions and edge systems, like quality of service implementa-

tion and firewall mechanisms. 

Also vendors are not stuck with only switches and routers. With the Network 

Processor, they can design and manufacture new systems. 

2. Scalability 

Scalability is an important issue for Computer Engineering. Processors and chips 

must handle the growing load demand by new applications and services. VLSI silicon 

systems have working limits, such as a maximum clock rate and latency. These cond i-

tions allow processors and chips to handle a limited amount of load for network systems 

packets.  

With an increasing number of packets to be processed, systems must be scalable 

enough to handle that amount of packet load. It must have the ability to scale high data 

and packet rates. Responding each time by making faster processors for new systems is 

difficult and costly. 

Instead of using faster processors for scalability, designers used parallelism, pipe-

lining, and memory management to achieve scalability for network processors. These 

features are keys to scale high packet rates. Figure 2 shows simple internal structure of 

the IXP1200 to illustrate parallelism, pipelining, and memory management.  
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Figure 2.   Scalability Achievement. 

 

3. Pipelined Processing 

Pipelining is one method of achieving scalability. With pipelining, instead of 

making processors faster, more instructions are executed with the same clock frequency.  

The main goal of pipelining is to keep processors as busy as possible. Without 

pipelining, instructions are executed one-by-one. Instructions wait for completion of pre-

vious instruction execution cycle. Pipelining allows several instructions to be issued per 

clock cycle instead just one [8]. 

Pipelining increases throughput, at the expense of latency [8]. Latency in pipe-

lined architecture is larger because every instruction must pass through all stages. If there 

are five stages, every stage block has a separate register block. At any time, several in-

structions are in the execution queue, having just completed some stages of their execu-

tion cycle, and waiting to pop from the queue. Unfortunately, dependencies among in-

structions in a pipeline can be cause delay. For example, there is branch delay for branch 

instructions. Branch delay is  discussed in the next chapter.  
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The six RISC MicroEngines in IXP1200 have five stage-pipelined structure. Ta-

ble 2 shows each stage and its functionality. This allows all instructions to execute in one 

clock cycle [9].  

 

Pipeline Stage Description 

P0 Lookup of instruction 

P1 
Initial instruction decode and formation of the source register 

address 

P2 Reads operand from source registers 

P3 
Perform ALU, shift, or compare operations and generate the 

condition codes  

P4 Write result to the destination register  

 
Table 2.   MicroEngine Execution Pipeline (From Ref. 9.). 

 

For Table 2, in stage P0, the instruction is fetched from the instruction store. In 

P1, the instruction is decoded and the operation to be performed is determined. In P2, the 

operands of the instruction are read from registers. In P3, operands are passed through the 

ALU [9]. In P4, the result from the fourth stage is written to the destination registers.  

This design allows a complete instruction to be executed each clock cycle, except 

for branch instructions.  

4. Parallel Processing 

Network processors employ more than one MicroEngine RISC processor in paral-

lel to increase the packet rate. At any point in time, every RISC inside of the Network 

Processor can be computing a different networking function.  

There must be a control mechanism to control the synchronization and communi-

cations between the RISCs. It can be another RISC processor or a simple control unit. 

The functions of each parallel processor can be determined by programming the network 
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processor. Since the various RISCs process packets at the same time, this increases the 

packet rate. 

Intel’s Network architecture uses this concept. The IXP1200 network processor 

has six RISC processors or MicroEngines (Figure 3) that can run in parallel. Each Mi-

croEngine has four separate threads running in the MicroEngine concurrently. When a 

thread in a MicroEngine processes an instruction to access memory, it can permit another 

thread to run, while the previous thread performs its memory access.  

Every MicroEngine has a separate program counter for each thread. One can par-

tition memory into blocks for each thread or let them share memory with each other.  

As shown in Figure 3, an IXP1200 Network Processor actually has six Microen-

gines and each of these has four separate threads, and so it can have a total of 24 different 

threads in parallel. This approach allows the IXP1200 to handle high data rates. 

 

 

Figure 3.   Parallelism in the IXP1200 NPU. 

 

5. Memory Management 

The most time-consuming process in computing is memory access. Reading and 

writing or transferring data from memory takes more time than most other processing 

jobs.  

SRAM has low latency, but its cost is very high. SDRAM is cheaper than SRAM, 

but it has higher latency. Therefore, a trade-off between latency and cost must be consid-

ered when designing a new chip. 
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As shown in Figure 2, the INTEL IXP1200 has 8 Mbytes SRAM and 256 Mbytes 

SDRAM. It uses SRAM to store the routing table for lookups where low latency is im-

portant, and SDRAM to store packet data, payload, or very large tables where latency is 

not important [9]. 

As mentioned in the previous section, while a thread in the same Microengine 

executes a memory reference command, the MicroEngine can swap threads that are ready 

to process. So, no one has to wait for a memory cycle to be completed. Therefore, a proc-

ess does not have to be blocked while waiting for memory access to be completed. This 

eliminates the unused time frames. It keeps the Network Processors busy as much as pos-

sible. 

D. INTEL EXCHANGE ARCHITECTURE 

Networks and Internet have become a core component of daily operations [10]. 

The applications are getting bigger and more complex. The Intel Internet Exchange Ar-

chitecture was designed to address the new application requirements.  

IXA has all the features of the network processors mentioned in the previous sec-

tion. The programmability and high packet rate performance allow systems to be deve l-

oped in a short time. 

There are four important features of the IXA [11]: 

• Flexibility, 

• High Performance (ability to process high packet and data rates), 

• Scalability, and  

• Software Portability. 

To meet these requirements, Intel created the Intel IXPxxxx series Network Proc-

essors and Intel software portability framework. They are the components of the Intel 

Internet Exchange Architecture (IXA) [11].  

There are three basic task levels in the IXA software architecture [10]. 
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1. Data Plane  

The data plane takes care of packet processing. The forwarding of incoming 

packets is done at high speed. The data plane receives packets from a network interface, 

makes a classification, and determines the required action. Rules determine which action 

is taken on the packet. 

The data plane handles the fast data path and is controlled by the MicroEngines. 

2. Control Plane 

This part of the IXA application is the controller. It handles the time-consuming 

and complex tasks that are encountered while packet processing [11].  

The control plane is implemented in the StrongARM core component. When the 

data plane encounters an unexpected packet or a packet that does not have any forward-

ing table entry, it passes that packet to the control plane where that packet is processed.  

3. Management Plane  

The management plane performs the managing functions. It is a manager program 

at the top of the hierarchy. The manager can be an application off the chip or a Linux ap-

plication running on the chip [11]. The management program of the IXA application is 

part of the main system, and can have a user interface to interact with the user. 

E. SUMMARY 

Network systems, such as routers and switches, started as conventional central 

processing units. They have a CPU, RAM and ROM to store the operating system and 

interfaces to connect to the network. At the beginning, their performance was sufficient. 

With the rapid growth of the Internet and applications, they became a bottleneck. They 

could not reach the required speed for packet throughput.  

To solve this bottleneck, ASIC was introduced. ASIC is an integrated circuit de-

signed to perform the networking functions at wire speed. The networking functions are 

designed into silicon hardware permanently. ASIC played an important role in network 

systems. After different Internet and networking applications were introduced, the draw-

backs of ASICs became apparent. Designing and producing ASICs to address the re-

quirements of a new application was very expensive and time consuming. 
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Finally, vendors introduced network processors. Network processors are now in 

every networking system. They contain more than one RISC processor to increase the 

packet processing performance using parallelism and pipelining, and they are program-

mable. This allows software reusability, and the product can be produced quickly.  

Intel introduced its Internet Exchange Architecture for networking systems. With 

IXA, Intel designed IX technologies, which included the IXPxxxx network processor 

family and the ACE programming structure. 

IXP1200 is one of the Intel’s network processors. The next chapter examines the 

IXP1200 hardware and its concepts. IXP1200 has six multithreaded programmable RISC 

MicroEngines, StrongARM core processor, memory interfaces and buses.  
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III.   INTEL IXP1200 ARHITECTURE 

A. INTRODUCTION 

The previous chapter described the main concepts of network processors, includ-

ing which features they have to address new bandwidth requirements. 

Network processor functions are managed through system software; therefore, 

they provide the programmability and reusability features of software together with high-

performance processing of the hardware in aiding system design. As a result, network 

processors enable designers to design and to manufacture more intelligent and compact 

network systems. Intel’s network processor is part of their Internet Exchange Architec-

ture. The IXPxxxx is a family of network processors produced by Intel. Currently, the 

second-generation IXP2xxx network processors are being developed. 

The IXP1200 is one of the first network processors of the Intel IXA technology. 

This chapter presents an in-depth examination of Intel’s IXP1200 structure and concepts 

with hardware. 

Because of the complexity of Intel processors, some internal units unrelated to 

this thesis will not be discussed. 

B. OVERVIEW OF IXP1200 

IXP1200 addresses the requirements of today’s networking technology. To 

achieve high-speed data manipulation, and high packet rate, the IXP1200 includes pro-

grammability, pipelining, parallel processing, and memory management. These give the 

IXP1200 flexibility, scalability, high performance, and low power consumption [9]. 

Figure 4 shows the internal blocks, the external, and internal interfaces of 

IXP1200. The IXP1200 contains one RISC StrongARM core processor, six multithreaded 

programmable RISC MicroEngines, memory interfaces, and system bus interfaces.  
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Figure 4.   IXP1200 Block Diagram (From Ref. 9.). 
 

Unlike ASICs, the IXP1200 allows the implementation of networking systems 

with software without considering the hardware structure. Within the software develop-

ment environment, it is easy to develop, debug, and modify networking systems. 

 

C. IXP1200 COMPONENTS 

1. StrongARM Core 

The StrongARM is a 32-bit RISC microprocessor. It runs at 232 MHz. The Stron-

gARM RISC core is a 5-stage pipelined processor. Figure 5 shows that it has 16 Kbytes 

of instruction cache, and 8 Kbytes of data cache. It also has 512 bytes of mini-cache to 

decrease transfers to and from the main data cache. 
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Figure 5.   StrongARM Block Diagram (After Ref. 9.). 
 

Depending on the system architecture, StrongARM may or may not be used. If 

the system has a main host CPU, the host CPU can maintain the system, upload the soft-

ware, and operate the system. The StrongARM can do the exception handling and be the 

higher layer processor [9]. The StrongARM leaves the packet forwarding to the Micro-

Engines, but runs the routing protocols. It controls the IXP1200 system, MicroEngines 

and interfaces between components. If there is not any host CPU, StrongARM can as-

sume the role of a host processor and perform system maintenance.  

2. MicroEngines 

IXP1200 contains six 32-bit multithreaded RISC Microengines. The Microengi-

nes can handle packet processing at a high rate. The six MicroEngines run in parallel to 

increase the total throughput of the system. The Microengines are fully programmable. 

The MicroEngines, shown in Figure 6, have four hardware threads. Each of them 

has its own Program Counter to execute different instruction parts of the MicroEngine.  
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Figure 6.   MicroEngine Internal Structure (From Ref. 9.). 

 

The MicroEngines operate at 233 MHz. They are implemented as a 5-stage pipe-

lined RISC processor. This pipelined structure makes the IXP1200 faster and scalable to 

higher rates in the future. A non-pipelined architecture would execute an instruction with, 

for example, five clock cycles. However, because of pipelining, the IXP1200 executes an 

instruction in each clock cycle. Table 1 in Chapter 1 shows the IXP1200 pipelined execu-

tion stages.  

Branch instructions are a problem with pipelining architectures [7,8]. The instruc-

tions after the branch instruction may have already been inside the pipelining queue 

stages with their operands, but if the branch is taken, execution of these instructions will 

have to be aborted, consuming extra time and sacrificing performance. There are several 

solutions for this problem. The instructions can be pushed into a pipelining queue with 

the probability of not executing the branch instruction. By putting bubbles after the 

branch instructions, this problem can be solved, but this reduces the performance of the 
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MicroEngine. Bubbles are no operation instructions. Instead of doing this, instructions 

before the branch would be put after the branch to maintain performance [9]. The instruc-

tions before the branch will be executed anyway whether the branch is taken or not. An-

other solution is using the guess-branch-taken instruction. When the guess-branch-taken 

instruction is used, the instruction at the branch destination will be started [9]. 

While a processor executes instructions, memory accesses consume a lot of time. 

To reduce this problem, the IXP1200 has several memory access reduction features.  

The first is to store instructions in a separate memory near the MicroEngine. This 

special memory stores 1K x 32 bits instructions. Each instruction is 32 bits long.  

The second feature is hardware thread context swapping. The IXP1200 has 8 

Mbytes of SRAM, and 256 Mbytes of SDRAM. SRAM is used to store table lookups 

where low latency is an important issue [9]. SDRAM is used to store packet data, pay-

load, and very large tables where latency is not very an important issue [9]. To access 

data that is external to the Microengine, like SRAM or SDRAM, the Microengine exe-

cutes memory access and transaction commands. These commands are called Reference 

Commands.  

Every MicroEngine has four hardware threads (Figure 7). Each thread has its own 

program counter. Four threads can be executing the same code or different code pieces of 

the MicroEngine’s instruction store at any one time.  
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Figure 7.   Thread Context Swapping (From Ref. 9.). 
 

When Thread 0 executes a reference command to access memory, the Microen-

gine does not wait for that thread to complete its memory access. The control unit gives 

execution priority to the other thread, Thread 1, and the Thread 0 swaps out. Thread 0 

goes to sleep until Thread 1 completes its cycle. This is called Hardware Multithreading. 

There is a difference between hardware and software threading. With hardware threading 

each thread has its own program counter, register and memory block, if relative address-

ing is used. With software threading, there is only one program counter and register set. 

The operating system makes all threads of processes share execution time according to 

priorities. In the IXP1200, all multithreading coordination and context swapping are han-

dled by hardware only. The programmer need not worry about programming the threads. 

In software threading, all thread processing is coordinated by the operating system. 

Every MicroEngine has 256 32-bit registers. Of these 128 are general purpose 

registers (GPR) and the other 128 are transfer registers.  

The MicroEngines use two types of addressing of registers, context relative ad-

dressing and absolute addressing. 
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With context relative addressing, each thread in the same Microengine uses its 

registers block. It is assured that none of the threads overwrites another’s registers. GPRs 

and transfer registers are divided into equal size blocks for each thread. If one or more 

threads require sharing some registers or communicating with each other, absolute ad-

dressing is used. With absolute addressing, the threads do not have to go beyond the Mi-

croEngine to communicate with each other. Relative and absolute addressing is con-

trolled on an instruction-by-instruction basis [9]. 

General-purpose registers are divided into two banks, the A bank and the B bank. 

This structure allows the IXP1200 to fetch two separate operands in the same clock cycle 

(one from SRAM and one from SDRAM). Each bank supports a port and a write port as 

shown in Figure 8. 

 

 

 

Figure 8.   GPR Addressing (From Ref. 9.). 

 

GPRs are divided into four logical register regions. Each region has 32 registers. 

This structure eliminates the overhead of switching among threads [9]. Absolute address-

ing in GPRs allows sharing registers between threads in a MicroEngine.  
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Each MicroEngine has 128 32-bit transfer registers (Figure 9). Transfer registers 

are intended for transferring data to and from memory components. 

 

 

Figure 9.   Transfer Register Addressing (From Ref. 9.). 

 

As shown in Figure 9, transfer registers are divided into two-memory type blocks. 

Sixty-four SDRAM transfer registers and sixty-four SRAM transfer registers are con-

nected to the SRAM/SDRAM memory busses. The two blocks are divided into 32 read 

and write registers blocks.  

3. SRAM and Internal SRAM Interface Unit 

The IXP1200 has 8 Mbytes of SRAM to quickly store any data needed, such as 

lookup tables, free buffer lists, and data buffer queue. It is important to lookup these data 

with low latency. For example, in a routing table, the lookup table must be done quickly. 

This is because all processing depends on that lookup. So, lookup tables are stored in 

SRAM because SRAM is faster than SDRAM. While the lookup tables are stored in 

SRAM, SDRAM is for a large data structure like a Routing Table.  
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The SRAM interface is 32 bits wide. It supports either pipelined or flow-through 

SRAMs. Recall that SRAM is not for bulk data, rather, it is used for fast access.  

4. SDRAM and Internal SDRAM Interface Unit 

The IXP1200 has 256 Mbytes of SDRAM to store bulk data like routing tables. 

The SDRAM unit, like a SRAM unit takes Reference Commands from the MicroEngines 

and StrongARM and fetches data in an optimal fashion. The SDRAM has a 64-bit data 

bus and a 14-bit address bus.   

5. PCI Unit 

The PCI Unit is a standard 32-bit PCI 2.1 interface. It can run at 33 MHz with the 

standard number of loads [9]. It also runs at 66 MHz with a point-to-point configuration 

[9]. 

The main purpose of the PCI Unit is to communicate with the host system and 

make the IXP1200 reachable by the user who can modify it. 

D. SUMMARY 

The IXP1200 addressed current networking requirements. It succeeded in this by 

using parallelism, pipelining and programmability. To manage these features, the 

IXP1200 network processor contains six hardware multithreading RISC MicroEngines, 

one core StrongARM processor, memory interfaces and fast data buses. The MicroEngi-

nes work in parallel, and every one of them is a 5-stage pipeling RISC processor.  

Each MicroEngine contains four hardware threads with separate program counters 

for each thread. Multi-threading allows each MicroEngine to increase its performance by 

not wasting time while waiting for memory access instructions.  

Common packets are handled by MicroEngines while exception packets are han-

dled by StrongARM, because MicroEngines perform fast data processing. Exceptions 

reduce the performance of the system. So, exceptions are handled by the StrongARM 

core processor. 

Every MicroEngine and StrongARM is a programmable processor. The next 

chapter explains programming of the IXP1200. First, the basic programming concepts 

and structures are introduced. Second, advanced programming models, such as IXA API, 

and ACE, are explained. 
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IV. IXP1200 PROGRAMMING AND MICROACE STRUCTURE 

A. INTRODUCTION 

In this chapter, the software of the IXP1200 network processor will be explained. 

This chapter includes two sections, IXP1200 programming and the MicroACE structure. 

In the first section, the IXP1200 Software Development Kit, instructions and program-

ming structures such as assembly directives and macro will be explained. In the second 

section, advanced IXP1200 programming and MicroACE structure will be discussed. 

Network processors are software-based processors. The functions and services 

depend on the program written for that processor. The software-based approach provides 

reusability, low-cost, rapid production, and easy maintenance. Each processor has its own 

assembly language programming structure, and concepts.  

Network processor vendors offer a reference platform or an evaluation testbed [2]. 

These platforms help designers to produce, test, and evaluate their software and hardware 

implementations before adapting a network processor into a new network system. A ref-

erence platform includes the following five items [2]: 

• Hardware testbed 

• Development software 

• Simulator and emulator 

• Download and bootstrap software 

• Reference implementations 

With these tools, designers can write, test, simulate, and run the software without 

a current network system. Development software includes libraries and some sample 

codes to help the designer create his own code. 

 

 

 

B. IXP1200 PROGRAMMING 
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1. Software Development Kit 

The Intel Corporation also provides a reference platform for its network proces-

sors [2,13]. This platform is divided into two sub-systems, a hardware testbed and a Soft-

ware Development Kit (SDK) [2,13].  

The hardware testbed is a PCI card that can be plugged into the PCI bus of a PC. 

The card has four 100-Mbps ports. After the software is written and tested with the 

IPX1200 SDK, it can be downloaded into the hardware testbed and run. 

With an average personal computer and an IXP1200 hardware testbed, an inex-

pensive router can be built that forwards minimum-sized packets at a rate of 3.47 Mbps 

[14].  

The Intel IXP1200 SDK has some software components to support IXP1200 

software development. These components are shown in Table 3.  
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Software Purpose 

C complier Compile C programs for the StrongARM 

Network Classification 

Language (NCL) com-

plier 

Compile NCL programs for the StrongARM 

MicroC complier Compile C programs for the MicroEngines 

Assembler Assemble programs for the MicroEngines 

Simulator Simulate an IXP1200 code to debug 

Downloader Load software into the network processor 

Monitor Communicate with the network processor and interact with 

running software 

Bootstrap Start the network processor running 

Reference Code Example programs for the IXP1200 that show how to imple-

ment basic functions 

 
Table 3.   IXP1200 SDK Items (From Ref. 2.). 

 

To work with this system, two operating systems are needed. Linux runs on the 

StrongARM, and Windows NT runs on the MicroEngines [2,16]. One does not need two 

separate PCs to work two operating systems. One main operating system and one emula-

tor program that runs inside the main are sufficient to work with the SDK. For example, 

the main system can be Linux. For the secondary system a Windows emulator such as 

Wine can be used [2]. 

2. Instruction Set 

Because each IXP1200 MicroEngine is a RISC processor, it has few basic op-

codes; the MicroEngine instruction set has 32 basic opcodes (Table 4) [15]. All instruc-

tions are 32-bits in length.  
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Instruction Description 

Arithmetic, Rotate, And Shift Instructions 

ALU Perform an arithmetic operation 

ALU_SHF Perform an arithmetic operation and shift  
DBL SHIFT  Concatenate and shift two longwords 

Branch and Jump Instructions 

BR, BR=O, BR!=O, BR>O, BR>=O, BR<O, 
BR<=O, BR=count, BR!=count Branch or branch conditional 

BR_BSET, BR_BCLR Branch if bit set or clear 

BR=BYTE, BR!=BYTE Branch if byte equal or not equal 

BR=CTX, BR!=CTX Branch on current context 

BR_INP _STATE Branch on event state 

BR_!SIGNAL Branch if signal deasserted 

JUMP  Jump to label 
RTN Return from branch or jump 

Reference  Instructions 

CSR CSR reference 

FAST_WR Write immediate data to thd_done CSRs 
LOCAL_CSR_RD, LOCAL_CSR_WR Read and write CSRs 
RJIFO_RD Read the receive FIFO 

PCI_DMA Issue a request on the PCI bus 

SCRATCH Scratch pad memory request 

SDRAM SDRAM reference 

SRAM SRAM reference 
T FIFO WR Write to transmit FIFO 

Local Register Instructions 

FIND_BST, FIND_BSET_WITH_MASK Find first 1 bit in a value 

IMMED Load immediate value and sign extend 

IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3 Load immediate byte to a field 

IMMED_WO, IMMED_W1 Load immediate word to a field 

LDJIELD, LDJIELD_W_CLR Load byte(s) into specified field(s) 

LOAD_ADDR Load instruction address 

LOAD BSET RESULT1, LOAD BSET RESULT2 Load the result of find bset  

Miscellaneous Instructions 

CTX_ARB Perform context swap and wake on event 

NOP Skip to next instruction 

HASH1- 48, HASH2- 48, HASH3- 48 Perform 48-bit hash function 1, 2, or 3 
HASH1 64, HASH2 64, HASH3 64 Perform 64-bit hash function 1, 2, or 3 

 
Table 4.   MicroEngine Basic Inst. Set (From Ref. 15.). 

 
 
Detailed explanations and descriptions of instructions are found in the Reference 

15. 
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3. MicroEngine Assembly Syntax 

The general syntax is the same for all assembly languages. That is, they have la-

bels, operators and operands [2]. MicroEngine assembly conforms to this format. 

label: operator operand token 

The label specifies the beginning of that code piece and is used by the reference 

instructions to branch or jump to that piece. The operator denotes the instruction to be 

executed. The operand specifies the data that will be processed with that operator. The 

token is optional [2]. 

For example, for the alu instructions, the format is 

 alu[dest_op,src1_op,operation,src2_op]. 

This is an arithmetic and logic unit instruction [15]. The dest_op refers to the destination, 

which is usually a register, to store the result of this operation. The src1_op and src2_op 

specifies the operands of this alu operation. The operation refers the alu operation. It can 

be +, -, AND, OR, etc. 

Registers are important for RISC processors because every instruction refers to 

registers to process an operation. Referring and naming registers is a problem, especially 

if there are many registers. The MicroEngine assembler allows the programmer to name 

registers manually or to leave this task to the assembler [15]. There are two kinds of reg-

ister assignments [15]. Table 5 shows the assembly directives used for manual assign-

ment.  

 

Directive Register Type  

.areg GPRS A-Bank 

.breg GPRS B-Bank 

.$reg SRAM Transfer Register 

.$$reg SDRAM Transfer Register 

 
Table 5.   Manual Register Assignment Directives (After Ref. 15.). 
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There are two basic types of addressing modes. These are context relative and ab-

solute modes. Chapter 3 describes the hardware difference between them. Table 6 shows 

the different naming syntax of the addressing modes. 

 

Register Type  
Context Relative Address-

ing Syntax 

Absolute Addressing Syn-

tax 

GPRS reg_name @reg_name 

SRAM transfer $reg_name @$reg_name 

SDRAM transfer $$reg_name @$$reg_name 

 
Table 6.   Register Addressing (After Refs. 2,15.). 

 

The IXP1200 assembler responds to the assembler’s directives. These directives 

make the programmer’s job easier. The assembler understands each directive and re-

places each with an actual machine code or links the code with the other programs. These 

directives include an assembler loop, assembler macro, conditional assembly, error re-

porting, structured assembly and subroutine directives.  

The IXP1200 assembler also allows macros. Macros help the programmer reuse 

the software pieces. The IXP1200 hardware testbed and SDK are supplied with macros. 

For example, SDK has layer-3 forwarder software, macros and subroutines. Macros can 

be defined and invoked at any point in a program [15]. Macro directives are used to de-

fine and invoke the macros. Macros already written as a separate file must be included by 

using a file inclusion assembly directive into the program.  

Figure 10 shows a macro used in layer-3 forwarder software. Macros are used to 

make programming easy. For example, it is hard to remember the exact alu instructions 

for addition, but they can be written as shown in Figure 10. Instead of “alu_op[out_dst, 

in_src_a, +, in_src_b]”, it can be used in a program as an instruction like add(out_dst, 

in_src_a, in_src_b). 
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// add 

//  description: 32 bit add in_src_a + in_src_b  

//   outputs: 

//   out_dst  GPR 

//  inputs: 

//   in_src_a register or constant  

//   in_src_b register or constant  

//  size: 1-5 instructions 

//  example: add(output, 0x1234, 0x12345678); 

// 

#macro add(out_dst, in_src_a, in_src_b) 

alu_op[out_dst, in_src_a, +, in_src_b] 

#endm 

 

Figure 10.   IXP1200 Macro Example (From Ref. 18.). 
 
 
4. Simple Packet Data Flow in IXP1200 

This packet data flow [9] is given in the introduction to the advanced IXP1200 

programming. Figure 11 shows the simple packet flow hardware diagram, and Table 7 

explains each step that occurs in the diagram. 

 
Figure 11.   Simple Data Flow Hardware (From Ref. 9.). 
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Step: Packet Data Flow Steps: 

1. 
The data is received by the Ethernet Media Access Control (MAC) unit from 

the incoming Ethernet port. 

2. 

A MicroEngine executes an IX bus unit reference command to get data from 

MAC to store it in the receive FIFO queue. The IX bus unit does transfer, inde-

pendent of the MicroEngine. 

3. The IX bus unit signals a MicroEngine thread that the data has been transferred. 

4. 

The MicroEngine instructs the SDRAM unit to transfer the data from the re-

ceive FIFO to SDRAM. The SDRAM unit, independent of the MicroEngine, 

does the transfer. 

5. The MicroEngine transfers the first few bytes (header) into its transfer registers. 

6. 
The MicroEngine Thread processes the header and determines what to do about 

that packet. It can make use of tables stored in SRAM to do lookups. 

7. 
If necessary, it modifies and adds bytes to the packet header and writes the new 

header to SDRAM. 

8. 

The MicroEngine instructs the SDRAM unit to write the packet data out to the 

transmit FIFO of IX bus unit. When the transfer is complete, the SDRAM unit 

notifies the MicroEngine. 

9. 
The MicroEngine instructs the IX bus unit to transfer ready data to the appro-

priate MAC. 

 
Table 7.   Data Flow Steps (After Ref. 9.). 

 

C. ACE PROGRAMMING MODEL 

1. IXA Application Programming Interface  

Network applications for the Intel Exchange Programming Interface can be de-

signed by using the IXA application programming interface (API). The IXA API consists 

of basic modules for the programmer to create the application. The IXA software deve l-
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opment kit provides tools and libraries that allow the designer to quickly develop IXA 

applications [16]. 

Since the goal is to design a network system, the main component of the applica-

tion is to handle the data packets. The application processes the packet, as shown in Fig-

ure 12, and outputs the packet or an error message. The specific action depends on the 

goal of the system. The system can be a simple router, firewall, network address transla-

tor (NAT) or intrusion detection system. 

 

 
Figure 12.   Packet Flow (From Ref. 16.). 

 

Applications manipulate packets, independent of the protocol layer [16]. The ap-

plication can be divided into many jobs. We view each job as a single process. Each 

process in turn can be divided into simple task modules. This division is derived from the 

concept of object-oriented programming. Each simple task can be handled by a single 

module [16]. MicroEngines or threads in a MicroEngine can be assigned one or more 

modules to perform. For example, a single module can receive packets from the IX bus 

and put them into memory. 

2. Active Computing Element 

The active computing element (ACE) encapsulates and modularizes the unique 

tasks involved in packet processing [16]. ACEs are fundamental software blocks used to 

construct packet-processing systems [2].  

Each ACE usually performs one type of packet handling or data control task [16]. 

Tasks can be distributed among ACEs.  

There are three types of ACEs [16]: user ACEs, library ACEs and system ACEs. 

User ACEs are those the user deve loped. Library ACEs are supplied by Intel for common 

application functionality. System ACEs implement hardware network interfaces or proto-

col stacks. 
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An ACE can take advantage of the speed of a processor [16]. Such an ACE is 

called an accelerated ACE [16,17]. An ACE that does not use a hardware acceleration 

component is called a conventional ACE [16,17]. 

3. MicroACE 

The microACE programming model provides a framework for designing a packet 

processing application that makes use of the IXP1200’s MicroEngines and StrongARM 

processor [2,16].  

A microACE has two main components that run on different processors [2,16]: 

• Core Component: This is a conventional ACE written in a C/C++ network 

classification language. The Core component runs in the StrongARM, the 

core processor of the IXP1200. 

• Microblock: This is the acceleration component of the microACE. It is 

hardware specific and runs on MicroEngines. Microblocks perform fast-

path processing. They can exchange and communicate with the core com-

ponent to handle exception packets. 

Figure 13 shows the pseudo-code of a microACE application. This microACE ap-

plication is responsible for [17]: 

• Initializing the resource manager. 

• Setting up the port configuration. 

• Loading the microcode image onto each MicroEngine according to the 

MicroEngine configuration. 

• Launching microACEs and any other conventional StrongARM ACEs. 

• Configuring the microACE’s and the conventional StrongARM ACE’s us-

ing the IDL interface defined for these ACEs. 

• Binding the microACEs with each other and with other conventional 

StrongARM ACE’s. 

• Enabling the MicroEngine. 
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int main(int argc, char**argv) 
{ 

// Initialize the resource manager 
RmInit() 
 
// Set the port configuration 
RmSetPortConfiguration() 
 
// Set the microcode image onto each microengine 
for (i = 0; i < MAX_NUM_UENG; i++) 

RmUengSetUcode() 
 

// Launch microACES. This call is synchronous. So by the time it returns, //the ix_init() of the microACE has 
been called. The application assumes //that all imported variables were patched in during the ix_init() 
for (i = 0; i < numberOfMicroaces; i++) 

RmCreateMicroAce() 
 

// Launch conventional ACES 
for (i = 0; i < numberOfRegularAces; i++) 

ix_res_create_ace(); 
 

// Configure the microACEs and aces with IDL 
ConfigureACEs() 
 
// bind the microACE’s together with static targets 
for (i = 0; i < numberOfStaticBinds; i++) 

RmBindMicroAce() 
 

// bind microACEs and other ACEs with regular targets 
for (i = 0; i < numberOfRegularBinds; i++) 

ix_res_bind() 
 

// Load the microcode 
RmUengLoad() 
 
// Enable the microengines 
RmUengEnable() 
 
// Loop for ever 
while (1); 

} 
 

Figure 13.   MicroACE App. Using Pseudo-code (From Ref. 17.). 
 
 
4. An Example of MicroACE Processing 

Figure 14 shows a system for doing IP (layer- 3) forwarding. There are microb-

locks that run in MicroEngines and core components that run in StrongARM core proces-

sor.  

The reason for dividing MicroACE into two components is to maintain a high 

packet throughput [2]. The MicroEngines have a fast data path and process the typical 

packets. When a MicroEngine encounters a packet that is not expected (Figure 14), the 
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microblock does not try to handle the packet. Instead it passes it to the core component to 

process [2]. 

 
Figure 14.   IP Forwarding MicroACE  (After Refs. 2,16.). 

 

The Ingress ACE microblock takes packets from input ports, and examines the 

packet header. If it encounters an unexpected condition or an error, it passes it to the core 

ingress ACE to handle the situation. This scenario repeats at every step until the packet 

exits the loop. 

5. The Dispatch Loop 

There must be a system to control packet flow among microblocks (every packet 

does not follow the same path [2]). When an unexpected condition occurs, the packet can 

follow a path different from the usual one.  

To control packet flow between microblocks, a dispatch loop is used. The dis-

patch loop is a small program code segment that contains an infinite loop (Figure 15). 

Each hardware thread executes the dispatch loop [2].  
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// Example Dispatch Loop Algorithm  
Allocate global registers; 
Initialize dispatch loop; 
Initialize Ethernet devices; 
Initialize ingress microblock; 
Initialize IP microblock; 
while (1) { 
 Get next packet from input device(s);  
 Invoke ingress microblock; 

if (return code == 0) { 
  Drop the packet; 
 } else if (return code == 1 ) { 
  Send packet to ingress core component;  
 } else { // IP packet  
  Invoke IP microblock; 
  if (return code == 0) { 
   Drop packet; 
  } else if ( return code == 1 ) { 
   Send packet to IP core component; 
  } else { 
   Send packet to egress microblock; 
  } 
 } 
} 

Figure 15.   Dispatch Loop  (From Ref. 2,17.). 

 

The first loop invokes the microblocks. When a microblock finishes its job, it re-

turns a return code. The return code tells the dispatch loop what to do next with that 

packet. For example, after it invokes the ingress microblock, the ingress microblock 

chooses a return code and gives control to the dispatch loop. If the return code is “0”, the 

dispatch loop discards the packet. If it is “1”, it passes the packet to the core component. 

If the return code is anything else, the dispatch loop continues with the next microblock 

to process. 

 

D. SUMMARY 

Intel provides a software development kit with its network processor system test-

bed and platforms. This includes compilers and debuggers for various languages used to 

program the processor. 

The assembly language for MicroEngines consists of 32 32-bit instructions. There 

are two kind of addressing modes. The context relative mode allows each MicroEngine 
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thread to use its own register block, and the absolute mode allows threads to communi-

cate with each other by sharing registers.  

Using macros makes the code easier to write and understand. There are also as-

sembler directives for macro usage. 

Intel’s SDK provides a designer application programming interface. This API 

contains library codes to allow software reusability. Intel IXA API defines a software 

construct called “active computing element” (ACE) to encapsulate and modularize the 

unique tasks involved in packet processing [16]. ACEs are program blocks used by Mi-

croEngines and StrongARM core. ACEs provide modularity to divide tasks into modules. 

Each module performs a job and communicates with each other. 

ACEs for MicroEngines and StrongARM are called MicroACE. MicroACE has 

two main components: Microblocks for MicroEngines and core components for Stron-

gARM. 

SDK provides several sample microACEs for the designers. Layer -3 forwarder 

microACE is one of them. It is examined and used to produce a multicasting forwarder 

described  in the next chapter. 
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V. A MULTICASTING FORWARDER DESIGN USING 
MICROACE 

A. INTRODUCTION 

Unicast forwarding involves one sender and one receiver. The packet is only de-

livered to the intended destination. But, a number of network applications are required for 

delivering information to more than one receiver. With unicast, if the sender wants to 

send a packet to more than one receiver, the sender must send the same packet many 

times, one to each receiver. For example, if there are five receiver hosts, the sender must 

send it five times. To deliver information with more efficient bandwidth usage to a group 

of receivers, multicast services have been proposed. A multicasting system includes one 

sender and more than one receiver. The sender only sends one packet, and the system du-

plicates it and sends it to the receivers in a multicasting group. The multicast conserves 

bandwidth because the sender does not have to send the same packet more than once. 

Multicast is used in group communication applications where more than one re-

ceiver is involved. For example, to transmit audio, video, and information of a live lec-

ture to a group of receivers, multicasting transmission is preferred over unicast.  

In this chapter, the design of a multicasting forwarder using the IXP1200 network 

processor with microACE is proposed.  

 

B. MULTICASTING FROM UNICAST FORWARDING 

Routers are the main components in networks. Routers support the packet switch-

ing architecture, whereas packets are forwarded based on the IP destination address in the 

IP header. 

In unicast forwarding, each packet is routed according to the routing algorithm 

running on the routers. The routing tables are defined by an algorithm that specifies the 

next hop for a packet to follow.  

Several IP multicasting protocols have been proposed and standardized [DVMRP-

RFC1075, PIM-RFC2362]. Class D IP addresses are used to identify a group of receivers. 

The sender sends the packet with a class D IP address as the destination address and the 
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routers send the packet to the receivers that are registered in that class D address group. 

Class D addresses range from 224.0.0.0 to 239.255.255.255. 

Conventional IP multicasting is a useful service abstraction for many applications, 

but, for various reasons, its wide scale deployment has been slow [19]. Problems with IP 

multicasting include the complexity and variety of routing protocols used and applica-

tion-to-abstraction mismatches [19]. 

The IXP1200 is a fully programmable network processor that can implement IP 

multicasting. In addition, its programmability makes the IXP1200 a good platform to im-

plement other multicast designs that avoid problems of IP multicasting. In this thesis, we 

investigated the implementation of a multicasting forwarder that uses unicast IP forward-

ing to send packets to the destinations. The design of such a multicasting forwarder using 

the layer-3 forwarding microACE on the IXP1200 network processor is examined. 

In the unicast-based multicast design [19], routers are installed with a small piece 

of code that duplicates packets. The code is enabled when a receiver wants to join a mul-

ticast group. In the example shown in Figure 16, the edge multicast router to which the 

four hosts are connected maintains an additional code to implement the unicast-based 

multicast. 

 
Figure 16.   Basic Multicasting System. 

 

Every multicast group has a group identifier to specify the group. When the 

sender sends the packets for multicasting, it puts the multicast group identifier into the 
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option field of the IP header. Group management is done by the hosts by communicating 

with the router. Routers maintain a list of unicast addresses that correspond to a multicast 

group. 

This approach eliminates the multicast routing algorithms for the class-D ad-

dresses. The unicast-based approach is flexible because maintenance of the multicast tree 

is left to the end hosts. This can achieve a balance of flexibility and efficiency. 

A layer-3 forwarder in the IXP1200 works as follows. When it gets a packet, it 

lookups the IP destination address in the header. Based on the destination address in the 

routing table, the layer -3 forwarder determines the interface to which that packet should 

be sent. According to the routing table, the router forwards the packet to the appropriate 

interface. 

When the router first gets the packet, it examines the packet’s header to learn 

whether the packet is intended for multicasting. A multicast packet is a unicast packet 

carrying a multicasting identifier. If it is a usual unicast packet, the router does its usual 

forwarding process. If the packet is a multicast packet, according to the number of IP ad-

dresses in the multicast group table, it duplicates the packet and changes the destination 

address of each duplicated packet based on the addresses in the group table. 

The next section describes in detail the design of multicasting forwarder with Mi-

croACE on the IXP1200.  

 

C. MULTICASTING FORWARDER MICROACE 

Every multicasting group must have a group identifier. In the unicast-based de-

sign, the destination addresses of multicast packets are still unicast IP addresses. There-

fore, something is needed to specify them as multicasting packets. The IP header has an 

option portion to specify application specific information. We proposed to write the mul-

ticast group identifier into the options field of the IP header. The sender application pro-

gram must then know where to write the multicast identifier to the IP header. Every 

group identifier corresponds to one or more IP addresses and must be long enough to 

prevent a collision. The derivation of a multicast identifier is beyond the scope of this 
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thesis. In an IXP1200-based router, the IP addresses of a multicasting group can be stored 

as a table in SRAM along with the group identifier. An example is shown in Table 8. 

 

Identifier IP Addresses 

1 
131.120.41.56 

131.120.34.32 

131.120.42.67 

5 131.120.41.45 

131.120.45.43 
 

Table 8.   Multicast Identifier Examples. 
 

The SRAM in IXP1200 is smaller in size but has faster access time compared to 

SDRAM. So, we believe it is appropriate to store a reasonably small-multicast table in 

SRAM. 

To implement the multicast forwarder on the IXP1200, we want to use as much of 

the existing software design as possible. The IXP1200 SDK has a unicast forwarder mi-

croACE. In the unicast forwarder, there are three main microblocks. The ingress ACE 

microblock takes the packets from input port, examines them, and sends them to the IP 

ACE microblock. The IP ACE microblock does the IP forwarding processing. The egress 

is responsible for delivering the packets to the appropriate ports. Our design is to make 

only a modification in the ingress and egress microblocks of the unicast forwarder and 

leave the IP forwarder microACE unchanged.  

To explain our design, as shown in Figure 17, the process algorithm (Figure 18) is 

described below. 
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Figure 17.   Multicasting MicroACE (After Ref.2,16.). 

 

The ingress ACE takes the packets from the receiver FIFO buffer. It examines 

them to determine which is unicast and which is multicast. If an IP header field has an 

option field with multicasting identifier, it checks whether it is a multicasting packet. 

That identifier specifies the multicasting group table to lookup the IP addresses. 
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Figure 18.   Multicasting MicroACE Algorithm. 

 

If a packet is a unicast packet, ingress simply sends it to the next target IP fo r-

warder microblock. If it is a multicasting packet, ingress lookups the table to determine 
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how many destinations IP addresses there are. It sets the IpCount variable to the number 

of destination addresses for that multicast packet. The IpCount variable is used to count 

the packet duplication times. Since every multicast packet must have an IpCount variable, 

it must be stored with the multicast packet to specify the packet needs to be duplicated. 

Packets are duplicated and sent according to the IpCount variable.  

The ingress ACE sends the multicast packet to the IP fo rwarder microblock. 

Then, the egress ACE sends each packet to the appropriate output port. If it is a unicast 

packet, it sends it to the output port. If it is a multicasting packet, it takes the destination 

IP address from the table, changes it, and decreases the IpCount by one. Egress duplicates 

the multicasting packet untill the IpCount is zero. It sends one of the duplicated packets 

to egress to forward it output port, and it sends the other to the ingress again to duplicate 

that packet for all receivers. This process goes on until the IpCount variable goes to the 

zero. 

For each multicast packets, an IpCount variable is created with the multicast 

group identifier  

setIpCount(groupID); 

With this method call, IpCount is created with the group identifier. This variable 

is controlled by the ingress and egress microblocks. Figure 19 shows the initialization 

program block. 
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ix_error ix_init(int argc,char** argv,ix ace **acepp) 

{ 

// Allocate an ix_ace structure 

*acepp = AllocateAceStructure() 

// Get the name of the ACE  

name = argv [1] 

// call the standard ASL ix_ace_init() to set up //the ix ace structure  

ix_ace_init(*acepp, name) 

//Initialize the resource manager 

RmInit () 

// Allocate SRAM for control block  

controlBlock = RmMalloc() 

// Allocate SRAM/SDRAM/SCRATCH for other data //structures  

otherMemory = RmMalloc() 

//Set up these data structures 

SetupDataStructures() 

// Register an exception handler with the Re //source Manager and get a unique tag for the 
mi //croblock. This tag can be used to send pack//ets to the microblock 

RmRegister () 

//Get the microengine mask for this ACE 

meMask = atoi(argv[2]) 

// For each microengine in the mask patch vari//ables for this ACE 

for (i = 0;i < numberOfImportedVariables; i++) 

RmUengpatchSymbol() 

// Do other ACE specific stuff 

//like creating targets 

return 0; 

} 
Figure 19.   Initialization Routine. 

 

While in these processes, if any unexpected condition occurs, the microblocks 

send the packet to the core component running in the StrongARM to solve the problem. 

Processing exceptions in the core component is more time consuming. 
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D. SUMMARY 

In this chapter, unicast-based multicasting design is discussed. Multicasting is 

used to send information to more than one receiver hosts. Teleconferencing and lecturing 

are using multicasting. 

Conventional IP multicasting uses extra protocols and multicasting forwarding al-

gorithms. Our design is using unicast IP addresses to send multicast packets. The edge 

multicasting router takes every packet and examines them to determine whether they are 

unicast-based multicasting packets or unicast packets. 

Every unicast-based multicast packet contains a multicast group identifier to spec-

ify the receiver hosts.  

Our design is effective and reliable, because there is no extra protocol and routing 

algorithms. The receiver hosts handle the group creation and modifications.   
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VI. CONCLUSIONS AND RECOMMENDATIONS 

Our design takes advantage of the programmability of IXP1200. Using the pro-

posed design, an IXP1200 router can still run unicast forwarding and IP multicasting and 

unicast-based multicasting. The new functions can be added to the system by just re-

programming certain components. 

The ACE programming module design allows the components to be reused, modi-

fied, or added. It is much easier than re- implementing the entire system. We used a uni-

cast forwarder to design a unicast-based multicast forwarder. However, the IXP1200 is a 

very complex system.  

Our unicast-based multicasting forwarder design is effective and reliable. This is 

done by hosts directly connected to multicasting edge router. Hosts are responsible to 

configure multicasting groups. This eliminates extra protocol overhead for multicasting. 

This thesis is the first thesis at the Naval Postgraduate School for the implementa-

tion of the multicasting forwarder with the Intel IXP1200 network processor. 

Therefore, for further research, I would recommend that students consider the fo l-

lowing. My research began with an in-depth study of the processor. With few sources or 

documents to follow, I found that designing a system required an enormous amount of 

time. I would advise future researchers to focus on learning the programming rather than 

conducting an extensive survey of the hardware architecture. The basic concepts can be 

learned while using the IXP1200 for programming. 
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