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Several recent proposals to embed inflation into high-energy physics rely on inflationary dynamics
characterized by a strongly nongeodesic motion in negatively curved field space. This naturally leads to a
transient instability of perturbations on sub-Hubble scales, and to their exponential amplification.
Supported by first-principles numerical computations, and by the analytical insight provided by the
effective field theory of inflation, we show that the bispectrum is enhanced in flattened configurations, and
we argue that an analogous result holds for all higher-order correlation functions. These “hyper-non-
Gaussianities” thus provide powerful model-independent constraints on nonstandard inflationary attractors
motivated by the search for ultraviolet completions of inflation.
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Introduction.—Negatively curved field space plays a
crucial role in modern embeddings of inflation in high-
energy physics. Nonlinear sigma models with a hyperbolic
target space arise naturally in top-down realizations of
inflation, particularly within supergravity, giving rise to the
α-attractor class of models (see, e.g., Refs. [1–3]).
Independently of the question of their ultraviolet comple-
tions, nonminimal kinetic terms of the hyperbolic type lead
to interesting dynamics, allowing for nontrivial inflationary
trajectories characterized by a strongly nongeodesic motion
[4–7]. This in turn relaxes the conditions of slow-roll to
allow for potentials that are steep in Planck units [8,9], a
welcome feature in view of the eta problem and the recently
much discussed swampland conjectures [10–12]. Lastly,
internal field spaces with negative curvature are at the
origin of the phenomenon of geometrical destabilization
[13–17], in which noninflationary degrees of freedom, even
heavy ones, can dramatically affect the fate of inflation.
A concrete scenario in which the consequences of a

hyperbolic field space have been studied is the proposal of
“hyperinflation” [18], which has recently been under
scrutiny [19,20]. The intuitive picture of this setup is that
of an inflationary trajectory corresponding to a circular
motion around the minimum of a (circularly symmetric)
scalar potential. The hyperbolic geometry is crucial to
compensate for the loss of angular velocity to the Hubble
friction, allowing inflation to last long enough, even if the
potential is too steep to inflate along a radial trajectory.

Within this circumstance, hyperinflation proceeds along a
strongly nongeodesic trajectory, and a striking outcome is
an exponential growth of the curvature power spectrum
around the time of Hubble crossing, and the correspond-
ing suppression of the tensor-to-scalar ratio. With such an
amplification, assessing the size of nonlinear effects in
this setup appears to be crucial, while previous studies
have restricted their attention to the analysis of linear
fluctuations.
In this context, this Letter presents a general framework

to study non-Gaussianities in the presence of strongly
nongeodesic motion typical of hyperbolic-type geometry,
highlighting how this naturally leads to “hyper-non-
Gaussianities.” For definiteness we concentrate on the
specific example of hyperinflation as a particularly inter-
esting playground to analyze the effects of the nontrivial
field space in this class of models. However our results are
formulated in general terms and have a broad range of
applicability. Essentially, they indicate that in negatively
curved field space, inflationary models with strongly non-
geodesic motion are characterized by an enhanced non-
Gaussian signal, both for the bispectrum and for all higher-
point correlation functions, that can easily lead to tensions
with experimental bounds. These model-independent con-
straints sharpen the range of allowed theoretical construc-
tions, and are of utmost importance in view of the intense
current efforts to build nonstandard inflationary scenarios
in agreement with quantum gravity conjectures.
Hyperinflation.—The starting point is an action for two

scalar fields φI ¼ ðϕ; θÞ with noncanonical kinetic term
minimally coupled to gravity:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
GIJ∇μφI∇μφ

J − VðφÞ
�
: ð1Þ
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The matrix GIJ defines a metric in the internal field space
parametrized by the coordinates φI , in this case the
hyperbolic plane of curvature −2=M2, and is assumed to
have the form

GIJdφIdφJ ¼ dϕ2 þM2sinh2
�
ϕ

M

�
dθ2: ð2Þ

Moreover, the potential is assumed to depend only on the
“radial” field ϕ, V ¼ VðϕÞ, with V 0 > 0.
Consider now an inflationary background characterized

by homogeneous fields ϕðtÞ and θðtÞ, and a quasi–de Sitter
spacetime metric with scale factor aðtÞ and Hubble
parameter HðtÞ ¼ _a=a, with t the cosmological time.
Hyperinflation corresponds to a nonstandard attractor
solution of the action (1), with small parameters ϵ≡
− _H=H2 ≃ 3MV 0=2V and η≡ _ϵ=Hϵ ≃ 2ϵ − 3MV 00=V 0, that
arises under the conditions

3M
MPl

<
MPlV 0

V
≪

MPl

M
;

MjV 00j
V 0 ≪ 1: ð3Þ

More precisely, the equation of motion ϕ̈þ 3H _ϕ −
M sinh ðϕ=MÞ cosh ðϕ=MÞ_θ2 þ V 0ðϕÞ ¼ 0 admits a solu-
tion with _ϕ ≃ −3MH, independently of the slope of the
potential. Defining h2 ≡ ½V 0ðϕÞ=MH2� − 9, a positive
quantity for hyperinflation solutions [see Eq. (3)],
one has h2=9þ 1 ≃ ϵV=ϵ ≃ ηV=ð2ϵ − ηÞ, where ϵV ¼
1
2
M2

PlðV 0=VÞ2 and ηV ¼ MPlV 00=V are the standard poten-
tial “slow-roll” parameters, not necessarily small here. In
hyperinflation, potentials that verify the swampland de
Sitter conjecture (in its refined version [21,22]) should obey
either ϵV ≥ Oð1Þ or −ηV ≥ Oð1Þ, corresponding, respec-
tively, to a steep slope or steep negative curvature in Planck
units. From the above relations, one deduces that a
prolonged phase of hyperinflation supported by such
potentials is necessarily characterized by h2 ≫ 1 (see also
Ref. [20]). We will concentrate on this theoretically most
interesting regime, which, as we will see, corresponds to a
strongly nongeodesic motion. Actually, as emphasized
recently in a model-independent manner [9], the latter
feature is necessary in order to inflate on potentials whose
slope is steep in Planck units, and it is also a characteristic
feature of the sidetracked models studied in Ref. [6].
Strongly nongeodesic motion and dynamics of linear

perturbations.—Let us now consider linear fluctuations.
We employ gauge invariant variables QI that coincide with
the field fluctuations δφI in the spatially flat gauge, and
perform a decomposition in terms of the adiabatic and
entropic modes Qσ and Qs, defined as the projection of QI

in the direction tangential and perpendicular to the back-
ground trajectory respectively, the inner product being
defined by the field space metric GIJ (see, e.g.,
Ref. [23] for a review of perturbation theory in multifield
inflation). The adiabatic mode can be expressed as

Qσ ¼ ð _σ=HÞζ, with the definition _σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJ _φ

I _φJ
p

, and
where ζ is the comoving curvature perturbation. The
equation of motion for the entropic perturbation is given by

Q̈s þ 3H _Qs þ
�
k2

a2
þm2

s

�
Qs ¼ −2_ση⊥ _ζ; ð4Þ

where k is the Fourier wave number, we introduced

η⊥ ≡ −
V;s

H _σ
; m2

s ≡ V ;ss −H2η2⊥ þ ϵH2RfsM2
Pl: ð5Þ

Here V;s and V ;ss stand for the projections in the entropic
direction of the first and second (field-space covariant)
derivatives of the potential, respectively, and Rfs is the field
space scalar curvature. The “bending” parameter η⊥ is
physically important as it gives a measure of the deviation
of the background trajectory from a geodesic in field space
[24]. A strongly nongeodesic motion is characterized by
η2⊥ ≫ 1, resulting in a large negative contribution to the
entropic mass m2

s , something that a negatively curved field
space only reinforces. Without a stabilization from the
potential, a large negative m2

s=H2 is thus a built-in feature
of these models. Although unusual, this property is not
a priori in contradiction with the requirement of a stable
background. Indeed, on super-Hubble scales k=a ≪ H one
has _ζ ¼ 2H2η⊥= _σQs, and (4) yields an uncoupled equation
for Qs, now with a different effective mass m2

sðeffÞ≡
m2

s þ 4H2η2⊥, to which the bending contributes positively.
Specifying this general discussion to hyperinflation, we

find, to leading-order in the slow-varying approximation,

η2⊥ ≃ h2; m2
s ≃ −2H2h2; m2

sðeffÞ ≃ 2H2h2: ð6Þ

As anticipated, a strongly nongeodesic motion corresponds
to h2 ≫ 1. In this situation, the large and positive
m2

sðeffÞ=H
2 implies a rapid decay of Qs on super-Hubble

scales and the conservation relation _ζ ≃ 0. The decay of
homogeneous perturbations Qsðk ¼ 0Þ is a proof that the
background solution of hyperinflation is indeed a stable
attractor. On the contrary, the large and negative m2

s=H2

signals a transient instability of fluctuations on sub-Hubble
scales, observed also in some sidetracked inflationary
models [6] and earlier in Refs. [25,26]. These considerations
can be checked numerically. In Fig. 1 we consider the same
background as studied in Ref. [19], for the quadratic
potential VðϕÞ¼ 1

2
m2ϕ2 withm¼M¼10−2MPl. We display

the time dependence of the dimensionless curvature (Pζ) and
entropic (PS ¼ H2= _σ2PQs

) power spectra, for the scale k55
that crosses the Hubble radius 55 e-folds before the end of
inflation, which we take as the CMB pivot scale. The
normalization factor is the “standard” result P0 ¼ H2=
ð8π2ϵM2

PlÞk55¼aH. Soon after “entropic mass crossing” the
exponential growth of entropic fluctuations caused by the
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tachyonic instability feeds the adiabatic perturbation, before
entropic fluctuations decay and the curvature perturbation
becomes constant. The transient instability results in an
exponentially small tensor-to-scalar ratio r ¼ 3.6 × 10−16.
Bispectrum.—We now turn to the numerical calculation

of the bispectrum in hyperinflation. (See, e.g., Refs. [27,28]
for recent reviews on primordial non-Gaussianities, and
Ref. [29] for the most recent observational constraints from
the Planck Collaboration.) The results have been obtained
with PyTransport 2.0 [30,31], a code based on the transport
approach to compute two- and three-point correlation
functions in multifield models with curved field space
(see also CppTransport [32–34]). Figure 2 is a plot of the
reduced bispectrum fNLðk1; k2; k3Þ for the same represen-
tative model as above, as a function of the variables (α, β)
defined by k1 ¼ ð3k55=4Þð1þ αþ βÞ, k2 ¼ ð3k55=4Þ
ð1 − αþ βÞ, and k3 ¼ ð3k55=2Þð1 − βÞ. The resulting bis-
pectrum is quite unlike what is usually found in inflationary
models with a Bunch-Davies vacuum state. In particular,
hyperinflation generates a non-Gaussian signal that is
peaked near flattened triangle configurations, i.e., the ones
with k1 ≃ k2 þ k3 (the edges in Fig. 2), which is typical of
excited initial states. Explicitly, we find

feqNL ¼ −2.0; fflatNL ¼ 53.8; ð7Þ

where the two parameters simply denote the evaluation
of the reduced bispectrum, respectively, at k1 ¼ k2 ¼ k3
and at the representative flattened configuration k2 ¼ k3 ¼
k1=2. Although we have presented results for the particular
case of a quadratic potential and for a specific set of
parameters, we remark that the qualitative outcome—a
strong non-Gaussian signal in flattened configurations—is
quite robust. We find, for instance, fflatNL ≃ 25 for a
Starobinsky-type potential and fflatNL ≃ 100 for a quartic
potential, while feqNL ¼ Oð1Þ in each case.

Effective single-field description.—In a standard setup
with a single light degree of freedom, heavy entropic
fluctuations can be integrated out to yield an EFT for
the adiabatic mode (see, e.g., Refs. [25,35–38]). In the type
of models we consider, the entropic field is heavy but
tachyonic, yet the procedure can be carried out equivalently
to the standard case, as explained in Ref. [39]. In slowly
evolving backgrounds and in the regime k2=a2 ≪ jm2

s j,
one finds

Qs ¼ −2
_ση⊥
m2

s

_ζ; ð8Þ

which results in an effective quadratic action for the
curvature perturbation:

Sð2Þeff ¼
Z

dτd3xa2ϵM2
Pl

�
ζ02

c2s
− ð∇⃗ζÞ2

�
; ð9Þ

where τ ≃ −1=ðaHÞ is the conformal time, ζ0 ≡ dζ=dτ, and
the speed of sound cs is defined by

1

c2s
≡ 1þ 4H2η2⊥

m2
s

¼
m2

sðeffÞ
m2

s
: ð10Þ

An imaginary sound speed is thus a model-independent
consequence of a tachyonic entropic mass (m2

s < 0) and a
stable background (m2

sðeffÞ > 0). For instance, in hyper-

inflation we find c2s ≃ −1. In this class of models, the
curvature perturbation thus propagates with a “wrong sign”
dispersion relation: ω2 ¼ −jcsj2k2 ≃ −k2. Accordingly, the
mode functions do not oscillate but rather grow or decay
exponentially, affecting all wave modes k up to the cutoff of
the EFT—what in the two-field theory was a tachyonic

FIG. 1. Adiabatic (Pζ) and entropic (PS) power spectra as
functions of the number of e-folds, for the representative model
detailed in the main text. The spectra are evaluated for the scale
k55 that crosses the Hubble radius 55 e-folds before the end of
inflation, at N ¼ 0 in the plot. PS;EFT is the entropic power
spectrum deduced from the relation (8).

FIG. 2. Shape dependence fNLðα; βÞ, at fixed overall scale
k1 þ k2 þ k3 ¼ 3k55, for the same model as in Fig. 1. The
characteristic feature of the bispectrum is its dominant signal
near flattened configurations. Note that the equilateral configu-
ration corresponds to the point ðα; βÞ ¼ ð0; 1=3Þ.
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instability affecting low-energy modes has become in
the EFT a gradient-type instability to which the whole
spectrum is sensitive. Such a theory is not a priori
catastrophic, as the corresponding instability is only tran-
sient. However, our results will ultimately bound the
amplification of fluctuations.
It will prove useful to introduce the dimensionless

parameter x such that the wave modes k described by
the effective theory satisfy kjcsj=a < xH. Its dependence
on models’ parameters is x ∼ jcsjjmsj=H, where the
numerical factor in the right should be somewhat smaller
than unity. Quantitatively, x can be determined by examin-
ing when the power spectrum of the entropic fluctuation
computed in the full theory matches the one deduced
from Eq. (8), which is the central relation from which the
EFT derives. One can see in Fig. 1 that the two become in
very good agreement less than one e-fold after entropic
mass crossing, corresponding to x ∼ 10 in this example.
The general solution of the linear equation of motion reads,
for c2s < 0,

ζkðτÞ ¼
�
2π2

k3

�
1=2

α½ekjcsjτþxðkjcsjτ − 1Þ

− ρeiψe−ðkjcsjτþxÞðkjcsjτ þ 1Þ�; ð11Þ

where we omit the mild k dependence of ðα; ρ;ψÞ for
simplicity, and we stress that it only applies for
kjcsjτ þ x ≥ 0. The parameter ρ sets the relative amplitude
of the exponentially decaying mode compared to the
growing one at the time marking the validity of the EFT
(and ψ is a phase difference), while α can be taken to be real
and parametrizes their overall amplitude. [The amplitude of
the decaying mode is necessarily nonzero, as the quantiza-
tion condition entails the relation 2α2ρ sinðψÞjcsj ¼ P0.]
The final value of the curvature power spectrum Pζ ¼
α2e2x [assuming very conservatively that ρ≲Oð1Þ]
depends on the initial conditions of the EFT. Although
these can in principle be determined by matching to the
full computation of PζðτÞ, interestingly, this is not needed
to study higher-order correlation functions, to which we
now turn.
The cubic action of the EFT of inflationary perturbations

[40,41] reads (at lowest order in derivatives and in the slow-
varying approximation):

Sð3Þeff ¼
Z

dτd3x
aϵM2

Pl

H

�
1

c2s
−1

��
ζ0ð∇⃗ζÞ2þ A

c2s
ζ03

�
; ð12Þ

where A is a dimensionless constant of order 1 that can be
computed from the full theory [42]. Although the inter-
actions in Eq. (12) are standard, the behavior of
the mode function (11) is not, and the computation of
the bispectrum is nontrivial [39]. Contrary to what a naive
power counting would indicate, one finds that the reduced

bispectrum does not feature an exponential enhancement
by e2x, like the power spectrum. Instead, it is independent
of x for near equilateral configurations, with

feqNL ≃
10

9

�
1

jcsj2
þ 1

��
13A
6

−
5

24

�
: ð13Þ

Given the result c2s ≃ −1 in hyperinflation, we have the
analytical prediction that feqNL ¼ Oð1Þ, in agreement with
the numerical results. Away from the equilateral limit, one
finds a dependence of fNL on the cutoff scale xH (with the
exception of the squeezed limit, which can be shown to
verify the single-clock consistency relation via standard
arguments). Akin to models with excited initial states (see,
e.g., Refs. [43–47]) the constructive interferences between
two growing and one decaying mode result in a magnifi-
cation of the signal near flattened configurations
k1 ≃ k2 þ k3,

fflatNL ≃
1

192

�
1

jcsj2
þ 1

�
½39ðA − 1Þ þ 12x2 þ 4ðAþ 1Þx3�;

ð14Þ

and a global shape with a large overlap with the orthogonal
template (except for values of A ≃ −1) [39]. With x2 ∼
h2 ≫ 1 in hyperinflation with strongly nongeodesic motion
(e.g., x2 ∼ 100 in our example), we conclude that flattened
non-Gaussianities are large in this type of model, again in
agreement with the full two-field numerical results (see the
Supplemental Material [48] for a quantitative comparison).
Higher-order correlation functions.—We have seen that

the single-field effective theory of perturbations with
imaginary sound speed can unambiguously predict the
striking features of the reduced bispectrum, thus providing
a valuable device to gain analytical insight into the complex
multifield dynamics of models with large negative entropic
mass. But from a pragmatic perspective, the real power of
the EFT approach is that it can go beyond the reach of
current numerical methods, as we now show by providing
an estimate of higher-order correlation functions in this
class, including hyperinflation. Like for the bispectrum, for
n ≥ 4, the reduced connected n-point function hζni=hζ2in−1
does not feature an exponential amplification [49]. (This
has been shown in Ref. [49] using the EFT put forward in
the first version of this work.) In spite of this, we find that
some flattened configurations for the trispectrum and
higher-point correlators are enhanced by powers of the
parameter x, essentially due to the same phenomenon of
constructive interferences between growing and decaying
modes that occurs for the bispectrum.
Focusing on the dominant contributions in the large x

limit, one can find an explicit derivation of the trispectrum
in the Supplemental Material [48], where we also give
further details of our estimate for the higher-point functions
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and characterize which flattened shapes are enhanced.
Following the in-in formalism [50], the computation of
the n-point correlator can be organized as a sum of
connected Feynman diagrams with n external lines, and
with each insertion of the interaction Hamiltonian corre-
sponding to a vertex. We find that a diagram with v vertices
contributes as hζni=hζ2in−1 ∝ x2nþv−4 for the maximally
enhanced flattened configurations. This contribution is
largest when v ¼ n − 2, corresponding to diagrams of
the type shown in Fig. 3, with (n − 2) insertions of the
cubic Hamiltonian, yielding the estimate

hζni
hζ2in−1 ∼

��
1

jcsj2
þ 1

�
x3
�
n−2

: ð15Þ

Notice that, despite the rapid growth of the correlation
functions as n increases, the theory is nevertheless
under perturbative control for observationally relevant
models. Indeed, perturbativity is guaranteed provided

hζni=hζ2in−1Pðn−2Þ=2
ζ ∼ ðfflatNLA

1=2
s Þn−2 ≲ 1, which is a

weaker requirement than meeting the observational bounds
on the bispectrum.
Discussion.—In negatively curved field space, and in the

absence of a stabilizing effect from the potential in the
direction perpendicular to the background trajectory, a
strongly nongeodesic motion in field space automatically
induces a transient instability of fluctuations on sub-Hubble
scales. Under these general circumstances, we can make
use of an effective field theory for the curvature perturba-
tion that naturally explains the exponential amplification
of the power spectrum. Moreover, it predicts a reduced
bispectrum whose characteristics are in striking agreement
with first-principles numerical computations in the full
theory: order-one non-Gaussianities in equilateral configu-
rations, and a magnification near flattened ones. However,
contrary to the power spectrum, the reduced bispectrum
is not exponentially amplified. We have moreover argued
that an analogous outcome holds for all higher-order
reduced correlation functions, namely, a hierarchical
enhancement for particular flattened shapes proportional
to a power of the instability rate. When the latter is
very large, these hyper-non-Gaussianities lead to tensions
with observational constraints, as exemplified by models

of hyperinflation that satisfy the de Sitter swampland
conjecture.
Our model-independent results severely bound the mag-

nitude of a large negative entropic mass. Hence, it results in
a powerful selection criterion on models with negatively
curved field space and a strongly nongeodesic motion that
have been receiving much attention recently. Namely, at
least some stabilizing effect by the potential is needed to
counterbalance the otherwise strongly tachyonic mass of
entropic fluctuations on sub-Hubble scales. This compen-
sating effect can be large, to the extent that jm2

s=H2j ≪ 1 or
m2

s=H2 ≫ 1, which are well understood situations. It can
also be mild, resulting again in a negative entropic mass,
but not parametrically larger than the Hubble scale (a
feature shared by hyperinflation with a moderate degree of
bending). Without hierarchy, an EFT cannot be rigorously
derived, but we expect our results to give a qualitatively
correct picture, i.e., an enhancement of the bispectrum in
flattened configurations, and similarly for the trispectrum.
Thus, our results pave the way for future studies about the
role of field-space geometry in the dynamics of inflation,
and particularly in how nongeodesic motion of inflationary
attractors can lead to novel signatures that can be probed
with current and next-generation experiments.
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