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ABSTRACT

Sea levels from two locations , the alongshore sea

level gradient and direct measurement of currents by

moored current meters are examined and discussed. The

observations were made off the central California coast

during the Davidson Current period 1978-9.

Analysis for spectral variance of hourly and low pass

filtered sea levels, alongshore sea level gradient and

alongshore and cross shelf currents was performed.

Comparison of spectral estimates of low pass filtered

data indicate that current and sea level gradient

energy distributions are in close agreement. This is

interpreted to suggest that a relationship may exist

between the observed currents and the longshore sea

level gradient. In contrast, the low pass filtered sea

level spectrum indicates energy concentrated at lower

frequencies than was observed for currents.
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I. INTRODUCTION

Eastern boundary current systems, like that of the

California Current, are increasingly the subject of

investigation. In particular, upwelling conditions

associated with the southward flowing surface water (s)

are of economic importance, due to the connection between

upwelling and local fisheries. During periods of

upwelling, cold, nutrient rich water from mid-depths flows

shoreward and rises to the surface, stimulating

concentrations of food fish in relatively accessible

locations.

The occurrence of upwelling, however, varies through

the year. On the California coast the upwelling period -

in spring and summer seasons - is preceeded by a period

during which warm, saline surface water flows in a

northerly direction inshore of the southward flowing

California Current. This is the Davidson Current, possibly

a surface manifestation of the California Undercurrent,

a year-round poleward flow, whose core is at a depth of

some few hundreds of meters.

The main objective of this study is to examine

connections between coastal sea levels and currents

by identifying similarities between their variance

spectra. The assumption is made that where similarities





in the spectra exist, the two observed phenomena may be

considered to be interrelated, or responding to a common

driving mechanism.

There is precedent for this type of study. Many

authors (including Hickey, 1978, Huyer et al. , 1978)

recognize that low frequency fluctuations in ocean

currents are coherent with fluctuations in wind stress.

Smith (1974) finds that the cross spectra between winds

and sea levels have significant coherence in the vicinity

of 0.25 and 0.4 cpd. Huyer et al. , (1979) report that

there is good correlation between alongshore currents

and sea levels on the Oregon coast, and in particular

observe that low frequency near surface alongshore flow

is approximately in balance with the offshore sea surface

slope. Huyer et al. , (1978) indicate that current

fluctuations are well correlated with sea level observations

at a tide station 50 to 75 km distant from their current

meter arrays. Bretschneider and McLain (1979) observe

that since 1940 anomalously high sea levels, in a long

term sense, have coincided with the occurrence of

El Nino in the South Pacific Ocean.

Smith (1974 and 1978) reports significant coherence

at low frequencies (< 0.25 cpd) between currents and sea

levels. He further reports that low frequency fluctuations

in current are independent of local winds, but that

10





coherence between sea level and currents is significant

in this frequency band.

Osmer and Huyer (1978) conclude that sea level

fluctuations along the Pacific Northwest coast of the

United States propogate northward, although wind stress

fluctuations tend to propogate southward. They suggest

that a significant portion of the sea level fluctuation

is probably associated with coastally trapped waves. This

is supported by Smith (1978) who observed that poleward

propagating current fluctuations along the coast of

Peru were internally coherent over distances of hundreds

of kilometers, and that the speed of propagation was

consistent with that of trapped waves. Chelton (19 80)

concurs that there is a connection between coastally

trapped waves and sea levels at low frequencies.
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II. OCEAN PROCESSES IN THE STUDY AREA

The large scale sub-tropical oceanic circulation in

the North Pacific ocean is dominated by a clockwise

ocean-wide gyre driven by the anticyclonic atmospheric

flow of the North Pacific High. When the eastward

flowing North Pacific Current impacts the North American

continent and continental shelf in the vicinity of

southern Canada, it bifurcates, one limb heading north

to the Gulf of Alaska to form the counterclockwise

flowing Alaskan Current, and the other becoming the

southward flowing California Current, a diffuse, slow

moving eastern boundary current. This current is the

dominant large scale oceanographic feature in the Monterey

Bay area.

The ocean regime in Monterey Bay exhibits a three-

season variability (Skogsberg, 19 36) ; Skogsberg refers

to the "Upwelling Period," the "Oceanic Period," and

the "Davidson Current Period." The calendar period

of these seasons varies from year to year, but on the

average is as follows: During the Upwelling period,

generally March through August, anti-cyclonic atmospheric

circulation is especially strong. As the atmosphere

warms during spring, the large wintertime low pressure

cell centered over the Aleutian Islands weakens, and

the North Pacific high strengthens and drifts northward.

12





This anticyclonic flow of the North Pacific high causes

persistent north and northwesterly winds over the waters

west of the United States reinforcing the southward

flowing California current. Near the coast there may be

a submerged poleward flow, the California undercurrent.

Ekman transport assoicated with the northerly winds

causes a westward surface flow, water pile-up offshore,

and a general lowering of sea level along the coast.

The offshore/onshore sea level gradient stimulates a

subsurface onshore flow beneath the offshore surface

flow. The onshore flow extends to a depth of several

hundred meters.

When this onshore flow enters relatively shallow

water, some of it is driven down and returns to deeper

water. The remainder is driven upward and manifests

itself as coastal upwelling of cold, nutrient laden

water. Upwelling generally reaches a maximum in May or

June (Bakun, 1975)

.

The Oceanic period begins in late summer and early

fall. The North Pacific high weakens and drifts

southward, and the Aleutial Low reforms. During this

period the persistent northerly winds associated with

the summertime North Pacific high decrease, becoming

weak and variable, reducing surface offshore water

mass transport and allowing the sea level to equalize.

13





With this change, subsurface onshore flow and upwelling

cease.

Closing out the seasonal year, the Davidson Current

period, generally from November into March, is character-

ized by continued weak and variable northerly winds.

During this season the California Current moves offshore

and becomes more diffuse. Inshore of the California

Current, a warm, salty northward flow appears in the

surface layers, the Davidson Current. Periodically,

strong southerly winds interrupt the anticyclonic

atmospheric circulatory pattern of the weakened North

Pacific high, stimulating and reinforcing the northward

flowing Davidson Current. The southerly winds also

generate onshore Ekman transport, resulting in a general

rise in sea level due to water pile-up at the coastal

boundary. The elevated sea level, in turn, causes

downwelling and offshore cross shelf flow below the

Ekman layer.

14





III. FLUCTUATIONS IN SEA LEVEL - AN OVERVIEW

The observed elevation of the ocean's surface at

any location or time is influenced by a combination of

factors, including the large scale atmospheric circulation

described in the preceeding section. Generally, the

12.5- and 24- hr tide-raising forces of the earth-moon-sun

system generate the most conspicuous and easily recognized

of all ocean tides with periodicities of minutes or

longer. The observed sea level however, is modified by

combinations of other less predictable and quantifiable

factors, operating individually or in concert. These

include atmospherically driven on- and offshore Ekman

mass transport, direct set-up or set-down of water due

to winds, spatial and temporal variations in atmospheric

pressure, wind generated waves and swell, density

variations in the water column, crustal subsidence or

uplift, eustatic sea level variations resulting from

changes in the mass of the polar ice packs, surge from

distant storms or tsunamis, and low frequency astronomical

tide-raising forces.
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XV. SEA LEVEL DATA

Sea level data from two NOS tide observation stations

were used in the study. Observations from the stations

were compared to determine if a sea level difference - an

indication of an alongshore sea surface slope - could

be detected. The calculated sea level differences,

and the station data were low pass filtered to eliminate

powerful diurnal and semidiurnal tidal signals, and

variance spectra for the filtered records were determined

using a fast fourier transform technique.

Hourly heights of tide from Port San Luis and

Monterey, California, were provided by the National

Ocean Survey (NOS) , National Oceanic and Atmospheric

Administration (NOAA) . These stations were selected

for their proximity to and because they bracket current

meter deployment locations to be discussed later (see

Figure 1) . The stations are approximately 100 nmi

(185 km) apart and are nearly equidistant from the current

meter sites.

The height-of-tide records for both stations were

continuous for the period 1 January 1978 - 31 July 1979,

except for occasional short gaps. The longest break in

either record occurred at Port San Luis on 25-26 June 1978,

when 24 hours of data were missed. This number of

missed records falls well within the NOS 72-hr limit for

16
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interpolation of missed tidal observations. Appendix A

is a list of missing records. The missing records were

interpolated for according to NOS standard practice

(Manual of Tide Observations, Coast and Geodetic

Survey). This involves analysis of several days'

records both preceeding and succeeding the break in

the data. The gap is filled with records conforming

with the adjacent preceeding and succeeding observations.

Hourly values for both stations were low pass

filtered in order to remove the large diurnal and semi-

diurnal tidal signals. Godin's (1966) filter accomplished

this effectively. The filter performs an unweighted

arithmetic running mean of the data set, passing over

the data three times. It averages sequences of 24

values on the first and second passes, and 25 values

on the third pass. The hourly and filtered data are

presented in Figures 2 and 3. The three presentations

in each figure contain seven months of data to allow

overlap.

The filtered data from both tide stations show

greater variability during the winter months (November

through March) than for the remainder of the year.

Analysis for spectral variance was performed on two-month

blocks of filtered data for eighteen of the nineteen data

months. (January-February, March-April, etc.). Variance

18
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Figure 2. Monterey sea level data,
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spectra of these two-month analyses are graphically

presented in Appendix B. The results were ensemble

averaged in order to increase the stability of the

spectral estimates and are presented in Figure 4

(Af = 1/512 hr is the resolution). The ensemble

average is k;

5(k)^£[S(k)l

where S(k) is the estimated variance spectrum for each

(i ) data set (low pass filtered sea level, in this

case, N the number of data sets in the ensemble,

S(k) the ensemble average, and k is a frequency index.

In summary, the S (k) (throughout this thesis) have

resolution Af = 1/512 hr and four degrees of freedom,

and the ensemble averages S (k) have the same resolution

and 4N degrees of freedom.

Since, for the eighteen month ensemble average, the

ensemble consisted of nine two-month variance spectra

for each station, Monterey and Port San Luis. (All

references to "two-month" spectra in this thesis

actually refer to the first 1024 hourly (43 days)

values occurring during the two-month time block.)

After ensemble averaging these spectral values have

36 degrees of freedom. The energy in frequencies above

.014 cycles per hour (periods less than 73 hrs) quickly

tends toward zero, and consequently these frequencies

21
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are omitted. This sharp cut-off held true for both

hourly and filtered data, with the exception of the

extremely strong energy peaks at the 12.5- and 24-hr

lunar-solar tidal periods in the hourly data.

The variance spectra of filtered data are similar

for both stations , as might be expected due to their

geographic proximity. Both spectra show energy concentrated

at periods of 256 hr and at 128 hr. This suggests that

the non-tidal components of sea level at both stations

respond to the same driving mechanisms, such as passing

weather systems.

In order to examine seasonal differences, filtered

data from each station were then ensemble averaged as

referenced earlier using Skogsberg's three-season annual

cycle to define three corresponding ensembles. As

before, sea levels were analyzed for spectral variance

in two-month segments, and the nine two-month blocks

were ensemble averaged by season: Davidson Current

period (winter) , Upwelling period (spring- summer) , and

Oceanic period (fall) . Due to the constraints imposed

by the two-month analysis process, the seasonal periods

each contain an even number of months, with "transition

months" - March and August - included in the Upwelling

period. Winter, the Davidson Current period, is defined

as the four-month period November through February,

23





spring- summer, the Upwelling period, is the six-month

period March through August, and September and October

comprise fall, the Oceanic period. These spectra are

presented in Figure 5.

The variance spectra from both stations are similar

on a seasonal basis, and each resembles the 18-month

ensemble averaged spectrum. During winter, both stations

exhibit maximum energy at 256 hr with secondary maxima

at the 128-hr period. Winter spectra from both staions

show much more energy at 64-hr period than appears in the

other seasons.

The summer and fall spectra are similar to the winter

spectra at both stations, except that neither exhibits the

high frequency energy observed in the two winter spectra.

Both show high energy concentrations at the low

frequency end of the spectrum, although this may be

slightly misleading. Included in the lowest frequency

of the spectra is energy whose periods are unresolveable

with the existing record length and confidence interval.

Both also show energy concentrations with a period of

102 hr. At higher frequencies, variance density quickly

falls off.

Some work has been done to evaluate the influence

of alongshore pressure gradients on longshore oceanic

flow. Mittelstaedt (1978) suggests that large scale

24





>1P
•H
w
c
<D

Q
0)

O
c

•H
H

>

rHinr-»o4ooor*voininIDNHHH lOtNHHH

Period (hrs)

Figure 5. Ensemble averaged low pass filtered sea
level spectra according to season. A Davidson
Current period (winter) , eight degrees of freedom;
B Upwelling period (spring/summer) , twelve degrees
of freedom; % Oceanic period (fall) , four degrees
of freedom.

25





atmospheric pressure gradients contribute to the longshore

oceanic pressure variation. Preller and O'Brien (1979)

consider the relationship between alongshore atmospheric

pressure gradient forcing and alongshore flow using

Hurlburt's (1974) numerical model.

It can be assumed that at some depth in the ocean

a level surface exists common to both Monterey and Port

San Luis. The pressure at this surface is given by

P-pa +pgh
where p is the atmospheric pressure, n the height of

the water column above the level surface, and p is the

mean density of that column. The pressure difference

between Monterey and Port San Luis observed at this

level surface is given by

p«- p«L = [cp.v WpsJ +Mvn PJ
where Tj is the sea surface elevation, and a and & are

considered to be equal at both locations.

If the atmospheric pressure contribution to this

equation is considered to be small due to the proximity

of Monterey and Port San Luis tide stations to each other,

the equation for the pressure differential (gradient)

can be simplified to

P ~ I*-
7
!
PSL

Ideally (pj)^ *~(pa^Psi should be obtained from
meteorological records ana steric influences evaluated at
each station, but time did not permit the inclusion
of such analysis in this thesis.
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In order to evaluate T
| M

~'
r
|p.c,L

/ the hourly data for

the entire 19-month period for each station were summed

and an average value determined. This value, an average

"height of tide," is then defined as the "mean sea level"

for the time interval of the data used in this thesis

and is assumed to be constant and equal at both stations,

and therefore, parallel to the level surface previously

discussed. This terminology should not be confused

with the standard NOS definition of mean sea level,

which is derived from evaluation of sea level heights

for an entire 18.61 year lunar nodal cycle. Since the

19-month observational period is less than 10% of the

lunar nodal cycle, the variations caused by this long

term periodicity are neglected. The mean sea level

values for the two stations were compared, and a correction

of +0.84 ft was applied to the Monterey data in order

to make its mean value consistent with the Port San Luis

mean sea level value. The "correction" permits the

differences in level "H^-Tj to be interpreted as

(approximately) absolute differences. To examine the

alongshore sea level gradient Tj -Tj was formed from

hourly values of the sea levels. The height differences

were then low pass filtered in the same manner as

previously mentioned, and the results presented in

Figure 6. Again, the seven-month format has been used

27
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for presentation of these data. (Note that the vertical

scale on the bottom presentation is twice as great as

the upper two.

)

The variance spectra of the low pass filtered sea

level difference data for the winter periods November-

December 1978 and January-February 1979 were calculated

and ensemble averaged. The results are presented in

Figure 7. At periods shorter than 39 hr, the calculated

variance approached zero, and is therefore, not presented.
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V. CURRENT OBSERVATIONS

A. DESCRIPTION OF METERING AND NATURE OF DATA

Current data from two of the mooring sites to the

west of Cape San Martin were used in this study. The

mooring sites are roughly midway between the Monterey

and Port San Luis tide stations (Figure 1) . Station 2

lies 3.8 nmi (7.0 km) offshore (Latitude 35°52'N,

Longitude 121 33 *W) in 350 m of water, a short distance

seaward of the narrow and steeply sloping shelf break.

Station 5 lies seaward of station 2, 10.2 nmi (18.9 km)

offshore (Latitude 35°52'N / Longitude 121°41'W) in

730 m of water. Figure 8 illustrates the relative meter

locations in the water column.

Aanderra RCM-4 current meters were deployed on both

moorings which were anchored by railroad wheels and

connected by 5/32", 7x7 stainless stell wire. Buoyancy

for the mooring was provided by strings of 17-in Benthos

glass spheres housed in plastic "hard hats," and

connected in pairs with 3/8-in galvanized chain. No

surface markers or surface floatation were used. This,

combined with a 100-m nominal depth for the uppermost

meter, minimized noise in the current record caused by

surface pumping of the mooring. Figure 9 schematically

portrays the arrays, except that three meters were

deployed on each mooring, instead of the two illustrated.
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Both moorings were deployed on 27 November 1978 and

were recovered on 22 January 1979. All three meters

deployed at Station 2 operated well. The upper meter

was deployed at 100-m depth, the mid-depth meter at

175-m, and the deepest meter at 300-m, approximately

50-m above the bottom.

Two of the three meters deployed at Station 5

operated well. The upper meter was deployed at 140-m

depth, and the mid-depth meter at 215-m. The third

meter, which did not produce a speed record due to an

inoperative rotor, was deployed at a depth of 340-m,

440-m above the bottom. Consequently, data from this

meter were not available for use in subsequent variance

density analysis. Since the direction records were good,

a constant speed of 20 cm/sec was introduced into the

record to permit observation of the direction record

on stickplots (Appendix C)

.

B. DATA PROCESSING

All current meters used a ten minute sampling

interval. Occasionally, the recorded meter reference

number did not match that specified by the manufacturer,

and this was taken as an indication that the digitizer

had malfunctioned for that record. During the initial

stage of processing these records were zero filled.

Before stickplots were made of the current records, and
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before the record was subjected to spectral analysis,

speed and direction records associated with incorrect

reference numbers were replaced by interpolated values.

This was done to avoid biasing later results by including

records which were completely out of line with the

remainder of the data.

Interpolated speed values were obtained by arithmetic-

ally averaging four adjacent speed values, two preceeding

and two following the erroneous data point. A direction

was assigned to this speed value by averaging the

directions immediately preceeding and following the

erroneous data point. Since two solutions are possible

when averaging two angles (directions) , the solution

used was always that which produced the smallest

angular difference in bisecting the "parent" angles

(directions) . This technique worked well when a single

record was missed - which was the usual case - but was

increasingly less effective as the number of successive

erroneous records increased. In the few cases where

numerous - on the order of 10-12 - successive records

were missing, the interpolation technique tapered the

record from good data to none, where zeros occurred.

Following the insertion of interpolated values for

missed records, 10 min records were filtered via a

nine-point binominal filtering process (Hickey and
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Hamilton, 19 79) to produce hourly speed values. The

observed (recorded) direction coincident with the time

of the calculated hourly speed observation was assigned

to the hourly speed for later analysis. The effect of

this procedure on the data is discussed in Data and

Reliability of Spectral Estimates (page 46).

The hourly current vectors for each meter - including

the meter with the blocked rotor - are shown as stickplots

with true north "up" (Appendix C) . Progressive vector

diagrams for the five operating meters are presented in

Appendix D (from Coddington, 1979)

.

Subsequently, current records were converted into

"alongshore" and "cross shelf" components for further

study. An alongshore direction was defined for each

station. The direction chosen was the average direction

of the bottom contour between the mooring site and a

point 15-nmi to the south, estimated by eye from

National Ocean Survey Bathymetric Map NOS 1306N-20,

19 75. The directions selected for the stations were

Station 2, 340° (true); Station 5, 350° (true). Although

this procedure may seem arbitrary, calculated alongshore

vs. cross shelf variances tend to confirm the choice

(Figure 10 shows that alongshore variance density

is nearly ten times the cross shelf variance density.)
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C. ANALYSIS

Spectral analysis was performed on current obser-

vations to permit a more detailed comparison of current

to sea level data than would otherwise be possible.

This analysis showed that the semi-diurnal signal was

large in both the alongshore and cross shelf records

for all meters. The diurnal signal also appeared in

both records/ but with less energy than the semidiurnal

signal.

Both components were low pass filtered with the

Godin (1966) filter, again using 24-, 24-, and 25-hr

running means. These data were spectrally analyzed.

Their spectra along with spectral analysis of the

hourly data, are presented in Appendix E and show that

little energy is contained in frequencies above .04

cycles per hour (25-hr period) . These spectra were

then ensemble averaged and are presented in Figure 10

.

The resolution in that spectrum is 1/512 hr , and

each spectral estimate has four degrees of freedom.

In the cross shelf component, energy is concentrated

above background in minor peaks at 256-, 102- and 51-hr

periods. The alongshore spectrum shows energy concentrated

in prominent peaks at 256-, 73-, 51-, and 43-hr periods,

and generally large high frequency energy. The 256-hr

peaks agree with both the spectra of the 18-month sea
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level record (Figure 4) , and the winter sea level

record (Figure 5) . The 102-hr signal in each component

current spectrum (especially alongshore) has a corres-

ponding peak in the winter sea level spectrum (Figure 5)

,

and may be associated with the 128-hr peak in the

18-month ensemble averaged sea level spectrum (Figure 4)

.

The higher frequency signals in the alongshore flow

do not match up with any high frequency peaks in the

sea level data from either station, but do coincide

with peaks observed in the sea level difference data,

suggesting that the alongshore sea level gradient and

the alongshore poleward flow are interrelated, or are

responding to the same driving mechanism. Cross-

spectral analysis is a logical next step in defining

this relationship.
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VI. CONSIDERATION OF POSSIBLE LOCAL FORCING

The relation between wind stress and ocean currents,

and wind stress and sea levels has been examined by

other authors. To examine these relationships, coastal

upwelling indices (Figure 11a and lib) for Latitude

36 N, Longitude 122°W were obtained, derived by Bakun

(personal communication, 1980) . Index units are metric

tons per second per 100-m of coastline,, and are an

indication of relative fluctuations in onshore/offshore

Ekman transport, estimated from wind stress, not an

absolute measure. Coastline distance is measured along

a straight line following the dominant trend of the

coast (Bakun, 1975)

.

During 1978 the largest average week- long index

value occurred during the week beginning 30 April, but

the sustained maximum (in weekly averages) occurred

during June and July, slightly later than "average."

From this sustained maximum period, the index declined

steadily in a general sense, approaching the zero, or

no upwelling level, during the week beginning 12 November

The weekly average remained at a relatively low value for

two weeks , when a sudden positive pulse occurred

during the week of 26 November. This pulse was sustained

for a period of about a week, from 29 November through

6 December.
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Figure lib. Coastal upwelling indices
(from Bakun)

.

41





The impact of this impulse may be observed in the

current record of five of the six meters (see stickplots,

Appendix C) . The upper two meters at Station 2, and all

three meters at Station 5 showed predominantly northward

flow at the time of deployment on 27 November 1978.

Following the upwelling pulse on 29 November, the flow at

all five meters changed. The middle meter at both

stations (175-m at Station 2, 215-m at Station 5) and

the deepest meter at Station 5 responded most quickly,

with flow rapidly changing in a clockwise direction to

become eastward, then more southward. The upper meter

(100-m) at Station 2 recorded a similar direction change,

but about a day later. The upper meter at Station 5,

also recorded a similar change, but about two days after

the upwelling pulse.

After the pulse subsided on 7 December, the current

reocrds from the five meters again show a clockwise

rotation of current, passing through westward flow.

The stickplots show that the upper two meters at

Station 2 changed most rapidly, indicating northward

flow within a day of the decrease in positive upwelling

index. The three meters at Station 5 responded almost

in unison, but about a day later than the response

at Station 2.
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The deepest meter at Station 2 (300-m depth)

apparently did not show a clear response to the upwelling

index changes. Its record appears to be dominated by

strong and periodic reversals of flow which suggest a

coastal or bottom trapped wave.

Following the upwelling pulse, the index becomes

weakly negative during the week of 10 December 1978.

A negative index indicates downwelling at the coast and

offshore cross shelf flow at depth, which is deflected

poleward by the Coriolis force. The current record

confirms this activity (Appendix C)

.

The variance density spectrum of six-hourly

upwelling indices was also obtained from Bakun (personal

communication, 1980) and is presented (Figure 12). It

presents the mean spectrum for eight consecutive

(196 8-1975) three-month periods (December-February)

for Latitude 33 N.

The spectrum shows a spike at the diurnal period,

which was also observed in the spectra of unfiltered

sea level and current meter data discussed earlier.

In addition to this spike, some variance above background

is also observed at 120-hr, and 80- and 60-hr periods.

The remainder of the record is largely "red noise,"

a general decrease in energy with increasing frequency,

but with a relatively high level remaining at high
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frequencies. Sea level and current data discussed

earlier were low pass filtered, and this noise in the

high frequency end of the spectra was not observed.

These observations demonstrate that at least large

scale amplitude fluctuations in the upwelling indices

manifest themselves in corresponding local current

fluctuations. This is not surprising, since wind

stress is recognized to be a major driving force in

the establishment and maintenance of nearshore current

system. Further, the periods at which there are peaks

in the winter upwelling index spectrum correspond to those

observed in the longshore and cross shelf spectra of

the current records obtained during the Davidson Current

period. Together, they tend to confirm the interrelated-

ness of wind stress, up- and downwelling, and nearshore

flow.
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VII. DATA AND RELIABILITY OF SPECTRAL ESTIMATES

An inherent problem in dealing in spectral estimates

is balancing loss of resolution with increased confidence

Since a fast fourier technique was used in determining

the spectral estimates, the number of records analyzed

had to be a power of two. The largest record length in

a two month data set of hourly values which meets this

requirement is 1024. To achieve even four degrees of

freedom in the spectral estimates, frequency resolution

was reduced to 1/512 hr~ . Attempting to reduce further

the confidence interval of a two month record would have

caused unacceptable loss in resolution. The solution,

therefore, was to ensemble average the spectra in order

to achieve more stable estimates. The shortcoming in

this approach is recognized, since the ensemble

averaging process smooths strong activity occurring in

some data sets but not in others, e.g., summer vs. winter

spectra. When the members of the ensemble are carefully

chosen, however, the averages are both stable and

meaningful. In summary, then, the data sets were handled

in a way which was a compromise among resolution,

confidence, and meaning in the spectral estimates.

This study addressed events with subtidal frequencies,

Since the accuracy of spectral estimates is influenced

by leakage, it was decided to filter higher frequencies,
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which were not of interest, in order to minimize

potential inaccuracies from this source. The spectral

estimates, (aside from the red noise background) therefore,

are believed to be fairly accurate, within the confidence

interval limitations which accompany the number of

degrees of freedom inherent to each estimate.

The spectral estimates developed for the alongshore

and cross shelf components of created hourly currents still

display considerable high frequency energy. Since the

Nyquist frequency for hourly observations is 1/2-hr,

potential aliasing of high frequency energy into lower

frequencies presents a threat to the accuracy of

spectral estimates. Consequently, current records

were low pass filtered in the same manner as the sea

level records in order to minimize the influence of

frequencies higher than tidal frequency. With these

considerations in mind, the analyses will be discussed,

considering sea levels first.

Hourly sea level data were separated into two month

blocks, each containing between 1416 and 1488 hourly

values. The spectra calculated for the two month data

sets via a fast fourier technique are derived from only

the first hourly 1024 values, a power of two as required

by that analysis method. Those 1024 values were

further divided into two data "windows ,
" each containing
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512 records. The fundamental record length is thus

512 hours and the corresponding resolution for all

spectra shown is 1/512 hours. This is sufficient to

resolve frequencies as low as 1/20 cycles per day.

Since each data window provides two degrees of

freedom, each two month sea level energy spectral

estimate has a statistical variation of a Chi-squared

distribution with only four degrees of freedom. Whenever

data sets seemed to belong to a common family, as for

sea levels or current records in the same season, they

were ensemble averaged to increase the number of degrees

of freedon, thus increasing stability (narrowing the

confidence interval) . The 18-month ensemble averaged

sea level energy spectrum (Figure 4) contains 36 degrees

of freedom, and consequently has the narrowest confidence

interval. However, since 18 months does not contain an

integral number of annual cycles, this spectrum is not

truly representative of the yearly distribution of

variance in sea level, being weighted toward the winter

regime

.

The weakest record is the fall sea level energy

spectrum (Figure 5) , derived from only a single two-month

data period (September-October 1978). Consequently, this

spectrum has only four degrees of freedom, and a

correspondingly large confidence interval. Because of
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this, relatively little reliance should be put on

details of the information contained in this record,

and it is presented principally as a reference, for want

of a larger data set. There is, however, a strong

similarity between the spectra at Monterey and Port San

Luis during this "interval," lending some credence to

the spectral form for this period.

Similarly, the spectrum of the sea level difference

data has rather wide confidence limits. Since only

three two-month blocks of "winter" hourly heights of

tide were obtained from NOS, the ensemble averaged sea

level difference energy spectrum could contain 12 degrees

of freedom (four from each two-month block, as before)

.

However, by including sea level data from the January-

February 1978 data block (ten months before the experiment)

in an attempt to narrow the confidence interval, the

sea level energy spectrum could easily be distorted

into one not physically related to the experimental

setting. This is a problem when dealing with small

data sets: zeal in trying to stabilize the spectral

estimates by appending data must be balanced by careful

consideration of the negative impacts of including data

not properly a part of the process being studied. With

this in mind, only the data for the 1978-9 winter were

used in evaluating the sea level difference variance
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spectrum. Because of this decision, the spectrum has

only eight degrees of freedom and a large confidence

interval.

The current meter data sets are of two months

duration, recorded at ten minute intervals. The ten

minute sampling interval was favored over a longer

sampling interval - which would have permitted a longer

record - to avoid aliasing of high frequency signals

into lower frequencies, which were of interest to this

study. It is felt that the alongshore and cross shelf

variance spectra (found from ensemble averaging spectra

of all five meters) each containing 20 degrees of

freedom, are fairly representative of winter (Davidson

Current period) flow, since averaging the spectra of

all meters tends to smooth out the positional-dependent

variations, such as coastal or bottom trapped motions.

The derived hourly current values suffer potential

error from another source. The speed values were

obtained via a nine-point binomial filtering technique

(Hickey and Hamilton, 1980) . The direction assigned to

this speed was the direction which was recorded at the

regular ten minute observation coinciding with the

hourly speed value. It is recognized that Aanderra meters

record the direction of meter orientation at the time

of the observation, and that no vector averaging is
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performed by the instrument. These instantaneous

direction values, thus, differ randomly from the mean

for the interval. However, the stickplots - especially

for strong currents - demonstrate that the hourly records

for all meters are internally consistent, except for

only a few "wild" directions. This suggests that the

process used in establishing directions for hourly

values did not create significant distortion in either

the stickplots, or in the spectral estimates. Errors

in the hourly direction value tend to increase the

variance by aliasing high frequency events into low,

but the general shape of the variance spectra should

not be affected, as the aliased high frequency energy

was likely distributed evenly to all frequencies. No

quantitative estimates were made of this effect.
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VIII. CONCLUSIONS

The spectra for low pass filtered hourly sea levels

at two stations were ensemble averaged over each season

and compared. Winter records contained energy peaks at

periods of 256- and 128-hr at both Monterey and Port

San Luis.

Sea level differences between the two stations were

calculated for the study period and the spectrum of

this difference was examined to consider the relationship

of alongshore sea level gradients between Monterey and

Port San Luis to nearby ocean flow. This spectrum showed

energy peaks at 128- , 85-, and 57-hr periods. These are

considered to indicate response in the longshore sea

surface gradient to two energy periods: the first of

two to three days , and the second of about five days

.

Spectral analysis was also performed on current meter

data. The analyses showed energy concentrations above

background in the 102- and 51-hr periods for both the

alongshore and cross shelf components of current, with

the alongshore component almost an order of magnitude

greater in these peak bands than the cross shelf component,

This is interpreted to be in close agreement with the

energy bands found in the alongshore sea level gradient

previously discussed. Since resolution between adjacent

frequency bands is not perfect, it is believed that peaks
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in adjacent bands of the sea level difference and current

spectra may indicate response to the same driving

mechanism, or that one is responding to the other. In

either case, the longshore sea surface gradient and the

alongshore flow are interpreted to be interrelated,

as suggested by Preller and O'Brien (1979).

In the cross shelf component, energy is concentrated

above background in minor peaks at 256-, 102- and 51-hr

periods. The alongshore spectrum shows energy concentrated

in prominent peaks at 256-, 73-, 51-, and 43-hr periods,

and generally large high frequency energy. The 256-hr

peaks agree with both the spectra of the 18-month sea

level record (Figure 4) , and the winter sea level

record (Figure 5) . The 102-hr signal in each component

current spectrum (especially alongshore) has a corresponding

peak in the winter sea level spectrum (Figure 5) , and

may be assoicated with the 128-hr peak in the 18-month

ensemble averaged sea level spectrum (Figure 4)

.

The variance spectra from both stations are similar

on a seasonal basis, and each resembles the 18-month

ensemble averaged spectrum. During winter, both stations

exhibit maximum energy at 256 hr with secondary maxima at

the 128-hr period. Winter spectra from both stations

show much more energy at 64-hr period than appears in

the other seasons.
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The summer and fall spectra are similar to the winter

spectra at both stations, except that neither exhibits

the high frequency energy observed in the two winter

spectra. Both show energy high concentrations at the

low frequency end of the spectrum, although this may be

slightly misleading. Included in the lowest frequency

of the spectra is energy whose periods are unresolveable

with the existing record length and confidence interval.

Both also show energy concentrations with a period of

102 hr. At higher frequencies, variance density quickly

falls off.

The winter season sea level spectral estimates

indicated energy concentrations in the 256-, 128- , and

64-hr periods. In comparison, the mean winter season

spectrum of Bakun's upwelling indices does not indicate

energy concentrated in the 256-hr period, but does

indicate concentrations at 120- , 80-, and 60-hr periods,

which are interpreted to agree with the referenced sea

level spectra.
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APPENDIX A

List of missing records from hourly heights of tide.

Monterey

0300-0800 15 June 1978 (5 hours)

0900 1 April 1979 - 0800 2 April 1979 (23 hours)

Port San Luis

1100-1200 1 April 1978

1000-1500 20 April 1978

0100-0500 5 June 1978

1400 25 June 1978 - 1400 26 June 1978

1400-1500 29 June 1978

1200 - 23 March 1979

(2 hours)

(5 hours)

(4 hours)

(24 hours)

(2 hours)

(1 hour)
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Figure 13. Monterey, January-February,
1978. (Four degrees of freedom for
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Figure 14. Monterey, March-April, 1978.
(Four degrees of freedom for each
spectral estimate.)
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Figure 15. Monterey, May-June, 19 78

(Four degrees of freedom for each
spectral estimate.)
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(Four degrees of freedom for each
spectral estimate.)

59





o
I- 400.

0. I— i i—ft I S«n ij.

FREQUENCY (CYCLES PER HOUR)

0.2

~
t.o

FREQUENCY (CYCLES PER HOUR)

Figure 17. Monterey, September-
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Figure 18. Monterey, November-
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freedom for each spectral estimate.)
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Figure 19. Monterey, January-
February, 1979. (Four degrees of
freedom for each spectral estimate.)
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Figure 20. Monterey, March-April, 19 79.

(Four degrees of freedom for each
spectral estimate.)
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Figure 21. Monterey/ May-June, 1979
(Four degrees of freedom for each
spectral estimate.)
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Figure 22. Port San Luis, January-
February, 1978. (Four degrees of
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Figure 23. Port San Luis, March-April,
1978. (Four degrees of freedom for each
spectral estimate.)

66





_ uoo.

rr i a—

—

4
0.2

FREQUENCY (CTCLES PER HOUR)

o
~ 1.0

I > >l I I I ''•

0.1

FREQUENCY (CYCLES PER HOUR)
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Figure 25. Port San Luis, July-August,
1978. (Four degrees of freedom for
each spectral estimate.)
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Figure 26. Port San Luis, September-
October, 1978. (Four degrees of
freedom for each spectral estimate.)
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Figure 27. Port San Luis, November-
December, 19 78. (Four degrees of
freedom for each spectral estimate.)
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Figure 28, Port San Luis, January-
February, 1979. (Four degrees of
freedom for each spectral estimate.)
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APPENDIX D
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Figure 32. Progressive vector diagram
for the current meter at 100 meters depth
at station 2 from 27 November 19 78 to
22 January 19 79. Crosses are positioned
at three day intervals. Vertical axis
indicates Magnetic North. (Coddington, 1979)
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Figure 33. Progressive vector diagram for the
current meter at 175 meters depth at station 2

from 27 November 1978 to 22 January 1979. Crosses
are positioned at three day intervals. Vertical
axis indicates Magnetic North. (Coddington, 19 79)
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Figure 34. Progressive vector diagram for the
current meter at 300 meters depth at station 2

from 27 November 1978 to 22 January 19 79.
Crosses are positioned at three day intervals.
Vertical axis indicates Magnetic North.
(Coddington, 1979)
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Figure 35. Progressive vector diagram for
the current meter at 140 meters depth at
station 5 from 27 November 1978 to
22 January 1979. Crosses are positioned at
three day intervals. Vertical axis indicates
Magnetic North. (Coddington, 19 79)
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Figure 36. Progressive vector diagram for the
current meter at 215 meters depth at station 5

from 27 November 1978 to 22 January 1979.
Crosses are positioned at three day intervals.
Vertical axis indicates Magnetic North.
(Coddington, 1979)
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Figure 37. Station 2, 100 m depth
11/27/78-1/22/79. Low pass filtered
and hourly alongshore current.
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Figure 38. Station 2, 175 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly alongshore current spectra
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Figure 39. Station 2, 300 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly alongshore current spectra,
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Figure 40. Station 5, 140 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly alongshore current spectra,
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Figure 41. Station 5, 215 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly alongshore current spectra
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Figure 42. Station 2, 100 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly cross shelf current spectra,
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Figure 43. Station 2, 175 m depth,

11/27/78-1/22/79. Low pass filtered

and hourly cross shelf current spectra
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Figure 44. Station 2, 300 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly cross shelf current spectra
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Figure 45. Station 5, 140 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly cross shelf current spectra,
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Figure 46. Station 5, 215 m depth,
11/27/78-1/22/79. Low pass filtered
and hourly cross shelf current spectra,
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