THE NEWS LETTER OF THE BUREAU OF PUBLIC ROADS
 VOL. 2, NO. 5
 MARCH, 1927
 A.C.ROSE, EDITOR

CONTENTS

Chracteristics Of A Gcod Jourmal Article - 1

Chiohgo Road Show Exhelt Booth - Highay Financing - - - 7

Hillite Pavement Patent No. 1,190,615 Held Invalid By U.S. Circuit Court Of Appeals - - - 8

Status Of Current Federal. Aid Road Mork, February 28, $1927 \ldots \ldots \ldots$

Chicha Rond Show Exhert Booth - Suberade Surveys - 13

Preernt Practice in Highway Subdrankee, Foumoation Design, And Subgrade
Treatment In the New England Area - - 14
New A.S.T.M. Specifichions For Portland Cement In Force - - 20

Estimated State Ano Local Mighay Ano Brage Expenomures For 1927 - . . - 22

Fotcr Vehicle Registration Fees And Disposition Of Recepts For 1926- - - - 23

Motor Vehicle Registrations For 1926 24

Progress Of Federal Highway Legislation- - 26

CHARACTERISTICS OF A GOOD JOURNAL ARTIOLE

EXTRACTS FROM A PADER READ AS A PART OF THE SYMPOSIUM ON "PUELICATION of Results of Agronomic research" at the meeting of the amer:can Society of Aeronomy at Washington, d. C., on Novemeer 18, 1926, By
Ur. M. C. NEfR!li.: Editorial Ch!ef of pueligations, United states [igpartment of Agriculture.

Character

Abstract

"A oISTIPGU!SH!NG feature in the character of a solentific JOURNAL ARTICIEE IS THAT IT iS SCIENTIFIC. THE ARTICLE IS SASED ON FACTS. It is ineormäive. it is not desigined to fepsuade to action, ALTHJUGH IT MAY EE ARGUMENTATIVE. BUT HOW ARGUMENTATIVE? YOU CAN AL.L RECAL! SUPPOSED-TO-EE SC!ENTIFIC PAPERS THAT CONTAIN A GRAM OF EXPER:MENTAL DATA AND A KILOGRAM OF THEORETICAL ARGUMENTATION. THE QUESTION MIGHT APPROPR! ATELY EE ASKED, WHY ARGUE AGOUT DENONSTRATED FACTS INSTEAD OF LETTING THEM SPEAK FOR THEMSELVES? TECHNICAL WRITING SHOULC RECOGN! ZE CLEEAN-CUT D!ST!NOTIONS ZETWEEN FACT AND THEORY, KNOWLEDGE ANC EELIEF, ACCOMPLiSHMENT AND PROPAGANDA.

"The techn!cal artiole must have stability and dependaeility. ITS FOUNCATION MUS: eE WELL LAID AND REACH DOWN TO SOLID SUBSTANTIAL DATA DEQIVEC FRCN. GAREFUL EXPERIMENTATION OR STUOY. THE READER MUST HAVE CONFIDENCE : $\mathrm{N}: T$ THERE MUST EE NO TRICKINESS AND NO SUETERfuges, the structure must be suestantial and endurine, not flif!sy AND TEMPORARY - : T MUST BE SOLID STONE, NOT STUCCO.
"AN ELEMIENT : N THE CHARACTER OF TECHNICAL JOURNAL PAPERS THAT IS SOMETIMES OVERLGOKED iS THAT THEY ARE TECHNICAL, AND ARE WRITTEN FOR THOSE WHG CAN UNDERSTAND THEM. THEY ARE THEREFORE WRITTEN IN THE LANGUAGE OF THE PROEESSION, AND IT SHOULD NOT SE NEOESSARY TO DEFINE: EXPLAIN, OR DISCUSS THE TERMS AND PRINCIFLES THAT CONGTITUTE THE COLLEGE COURSE iN THE SUEJUCT. THE AUTHOR OF ONE OF THE JNURNAL OF AER!CUS.TURAL PESEAIRCH PAPERS CDULD EE ONLY PARTLY CONVINOED THAT HIS PAPER WAS MALE MUCH STRONGER EY THE OMISSION OF A DETHII.EC DISCUSSION OF ELEMENTARY FR:NCIPLES OF CHEMISTRY AND PHYSICS AS GEPLIED TO SOIIS WHICH ARE STJDIED TODAY EY EVEN HIGH SCHOOL STUDENTS. IN ANOTHEP. CASE IT TOOK A TWO-HOUR ARGUMENT TO PERSUADE THE WRITER OF A TECHNICAL GULLETIN TO CONSENT TO THE ELIMINAT!ON OF AEOUT 30 PAGES OF INTRODUCTORY ELEMENTARY MATERIAL WITH WHICH ANY FRESHMAN COLLEGE STUDENT OF the sueject is acquainted.
"What is the purpose of technical writing? Is it to enasle WORKERS TO ESTAGLISH REPUTATIONS FOR ACHIEVEMENTS IN SC!ENCE, OR IS It to make contrieutions to scientific knowledge? In a good journal article the susject and the results are of paramount importance and the personality of the author is kept sugordinate. his viewpoint is objective, not suejective. The data are therefore objectively conSIDERED FOR WHAT THEY ARE WORTH. THAT HIGHEST TYPE OF HONESTY SCIENT!FIC hoinesty with one's self - should ee a guiding influence in presenting the results and conclusions to the world. prejudice and personal eias should play no part whatsoever. If the data run counter to the writer's pet theories they should nevertheless be courageously given even though the writer thereey falls to attain scientific eminence. If fame comes to the scientific writer as a ey-product of h!s CONTRIEUTION, WEL' AND GOOD. BUT THE UNDERLYING PURPOSE FOR WHICH he writes, however, should ee to increase the worlo's knowledge, not HIS OWN PRESTIGE.
"It is a strange thing that many scientific workers are aglow W:TH ENTHUSIASM IN THE PROSECUTION OF THAT part OF THEIR RESEARCH perta!ning to the obtaining of data which elaze the way to new truths, sut when the discoveriy is made and the scientific curlosity is satisFIED THE AUTHORS ARE VERY LOATH TO STOP, S!T DOWN, TAKE STOCK, AND CARRY ON the laeorious process of assembling, verifying, tabulating, COMPARING AND CHECK!NG THE DATA, AND ESPECIALLY OF INTERPRETING, EXPLAINING, AND DISCUSSING THEM AND POINTING OUT THEIR SIGNIFICANT REI-AT:ONSHIPS. UNDER SUCH CIRCUMSTANCES WRITERS ARE APT TO FORGET OR NOT EE FULLY CONSCIOUS OF THE PURPOSE OF THEIR WRITING AND OF THE fact that the ultimate value of research !s determined ey either its use or its avallability to others. puelication of the results in creditaele form should therefore ee a paraniount consideration.

Scope

"The scope of a journal paper needs careful attention at the outset. How aroad find inclusive, how narrow and exclusive, in other WORDS JUST HOW COMPREHENSIVE SHOULD IT EE? SHOULD IT be Short and CONFINED TO A SINGLE ASPECT OF THE SUEJECT, OR SHOULD IT BE LONG AND MONOGRAFHIC AND GIVE RELATIVELY COMPLETE INFORMATION AGOUT A CERTAIN SUBJECT? APPARENTLY HERE IS A FIELD UPON WHICH NO HARD AND FAST lines can ee crawn. So much depends upon the subject, upon the WRItER's relation to it, upon the extent of the investigation and the nature of the results.
"Unnecessary length and extreme grevity should eoth be avoided. We are all famil!ar with journal papers which are so long and disJOINTED, AND THE parts so distantly related, that we wonder why the material was not presented in twi or three concise articles. On the other hand, there are impatient workers in science who eurden the LItERATURE WIth fragmentary gits of information. This frequent rush

INTO PRINT WITH THESE FRAGMENTS GIVES RISE TO THE SUSPICION THAT THE AUTHOR CARES MOFE AECUT SEEING H！S NAME．IN PRINT THAN AZOUT ADDING TO THE D！FFICULTIES OF HIS COWOFKERS W：1O MAV EE EARNESTLY TRYING TO FOLLLOW HIS WORK．SUCH PRACT：CE UNINECESSARILY CLOES THE LISTS OF ＇LITERATURE CITED。i ONE SOLUTICN WOULD EE FOR JOURNALS TO REFUSE TO ACCEFT SUC：H FRAGMENTS FOR PUELICATION LNTIL THEY HAD EEEN JOINED INTO AN IMPORTANT CONSTRUCTIVE CONTRIEUTION．＂＊＊＊＊＊

Technic of presentation

＂InTRODUCTION．－SOME AUTHORS PI＿UNGE SO SUCEENLY INTO THEIR SUEJECT THAT THE READER NUST EEG：N TO STR！IgGLE AT ONGE IN THE STRANGE SURROUNDINGS TO GET HIMEELF PROPERLY ORIENTED EEFCRE HE CAN PROCEED． IT IS ORCINARILY CCNSIDERED ELTTER TO INTRODJCE THE READER MOPE gently and formai．Ly to the sueject．He is trius informed in sufficient DETAIL OF THE 戸LRPOSE OF THE EXPERINENT OR RESEAROH，AND EXACTLY UHEN AND W！HERE IT WAS PERFORMED．THE SPEC：FIC RELATION OF THE PRESENT WORK TO PREVIOUE FESEARCH，IF ANY，ALRNG THE SANE LINE GHOULD ALSO EE GIVEN IN ORDER THAT A PROPER ORIENTATION OF THE FIELD MAY EE HAD AT THE OUT－ SET．$:$ ：＊＊＊＊＊
＂METhods of Experimentation．－The question＇how＇shouid se ANSWERED FULLY AND CLEARLY．OTHER WORKERS IN THE FIELD MAY WISH TO dUPLICATE THE WORK．TO DO SO THEY SHOULC EE AELE TO UNDERSTAND THE METHODS，APPARATUS，AND COND：TIONS UNDER WH：CH THE WORK WAS DONE．IF THE TECHNIC IS IJEW OR OIFF：CULT TO UNDERSTAND，DRANINGS．OR PICTURES are very desiraele．at this point it is well to note that apparatus OR TECHNIC WH：CH MAY APPEAR VERY S！MPLE TO THE WRITER MAY EE VERY DIF－ F！CULT FOR OTHERS TO UNDERSTAND．IT SHOULD ミE NOTED，HOWEVER，THAT WHILE THE READER：S INFORMATION SHOULD NOT EE OVERESTIMATED，NEITHER SHOULD HIS INTELLIGENCE BE UNDEREST！MATED．HENCE WHEN THE METHOD IS ONCE DESCRIBED IT IS NOT NECESSARY TO REPEAT IN LATER PARTS OF THE PAPER WHAT HAS ALREADY BEEN GIVEN．
＂Data．－In the prosecution of research it must needs ge that data are oetalned．They are the materials of which solentiflc dis－ COVERIES ARE MADE．NOTEEOOK AFTER NOTEEOOK EECOMES FILLED WITH THEM． BUT HOW ARE THEY TO EE HANDLED IN PREPARING A MANUSCRIPT FOR DUELICA－ TION？THAT IS ONE OF THE EIG PROSLEMS Wi－ICH THE WRITER FACES．MANY PROCESSES ARE USED FOR THE EXTRACTION OF THE DATA FROM THE MATERIALS at hand，eut whatever the process，each figupe is oatained with some EFFORT AND AFTER MUCH PLANN！NG AND CEL！EERATION．NATURALLY ALL THE DATA ARE THEREFORE FRIZED：FOR THEY ARE IN LARGE PART THE OFFSPRING OF PAINS，INGENUITY；AND FORETHOUGHT．HENCE THE WRITER OFTEN FINDS IT DIFFICULT TO DISCARD ANY OF THEM，AND FINALLY CONSIDERS THAT THE only just and impart：al plan is to include them all．The result is taEle after taele of detailed figures of littie sign！ficance．Ffom THE VIENPOINT OF THE REACER HE HAS NOT DROPERLY EVALUATED AND SEGRE－ GATED HIS DATA．MANY A LIFELESS PAPER HAS BEEN VITALIZED EY A PROPER GROUPING，CLASSIFICATION，AND SUMMATION OF CATA INTO SIGNIFICANT values reacily seen and appreciated．
"Most data are presented either in tagulaf or graphic form. In This pader oniy the tabul.ar fopm w:ll ae discussed. proferly PREFIRED, A TAELE HAS UNJFIED ORGANIZAT!ON AND IOGICAL ORCER AND IS NOT A CONGLOMERATION OF UNAELATED FIGURES. THE PRIMARY pURPOSE OF A TASLE !S TO GROUP AND ARRANGE THE DATTA SO THAT S!GNJFICANT RELATIONSHIPS MAY EE READILY COMPREHENDED. HENCE IF A TAELE IS NOT CLEAR OR EASILY UNDERSTOOD IT LARGELY FA!LS OF ITS MISSION." * * *
"Interpretation of Data. - Now that the data are all assemELED, ASSORTED, AND ASSIMILATEC, WHAT DO THEY MEAN? WHAT IS THEIR SIGNIf!CANCE? SHALL the READER EE LEFT TO GUESS? THIS HAPpENS IN MANY PAPERG。 THE WRITER APPGRENTLY FEELS THAT HdS DUTY IS FULLY dONE - THAT HE HAS G:VEN THE READER THE FACTS, LET HIM ANALYZE aND INTERPRET THEM AS HE WISHES, THE NATURAL FEEULT IS THiAT THE DATA WIPLL GO DOWN IN HISTORY UNINTERPRETED, UNNEPT, UNHONOFED, AND UNSUNG.

Abstract

"ANother type of m: sdemeanor for which there shoulc ee jail penalty is the listiess repetition in the text of the data that can BE GEEN MUCH MORE PLAINLY IN THE TAELES, W! THOUT AINY ATTEMPT TO INDICATE SIGNIFICANT RELAT!ONSHIPS OR TO INTERPRET THEM IN ANY WAY WiATSOEVER.

"In the Interaretat ion of data it is eyceedingly important that the author gage his analysis upon the figures as they are and Be GUIDED ACCORDINGLY. SOME PADEFIS SHOW EVIDENCE OF EIAS IN FAVOR OF CERTAIN CONCLUSIONS WH:CH ARE NOT SUESTANTIATED EY THE DATA. A manuscript suam! tted to the journal of agricultural research had to 3E REJECTED EECALISE THE AUTHOR DREW CONCLUSIONS IN SUPPORT OF A FINE THEDRY FROM DATA WHICH IN THEMSELVES WERE HOPELESSLY CONFLICTING AND inconclusive.
"Conclusions and Summary. - Too often there seens to ee conFUSION REGAFDING THE CONOLUSIONS AND THE Sl'mMARY. THESE have ENTIRELY DIFFERENT FUNCTIONS. TIG CONC!-US!ONS CONE NATURALLY AFTER A LOGICAL DISCUSSION IN WH:CH VARIOUS PHASES OF THE SUミJECT ARE ANALYZED, WEIGHED, ANE EALANCED AEAINST RESULTS FRESENTED EV OTHERS. THE CONCLUSIONS OF A PAPER CONSTITUTE THE ESSENCE OF THE AUTHOR'S INTERPRETATION OF H!S RESULTS. THE SUMMARY IS JUST WHAT ITS NAME IMPL!ES. IN VERY AESREVIATED FORM IT SUMMARIZES THE IMPIRTANT DOINTS IN THE ENTIRE PAPER.
"For the average reader the sections containing the concluSIONS ANO THE SUMMARY ARE THE MOST IMPORTANT PARTS OF A SCIENTIFIC paper. HERE HE WILL TURN FIFET TO GET A EIRD's-EyE VIEW OF THE pafPer and to ascertain what it is all asout. If he is especially interested he will turn gack and read all or parts of it, eut if he IS INTERESTED ONLY IN a genERaL WAY HE WILL aE ENTIRELY SATISFIED W!TH the information in the summary if it is well prepared." * * * *
"SCiEfice is exact and its l.anguage should ee precise. AnyONE, THERE:GRE, WHO WRITES A SCIENTIFIC ARTICLE SHDULD EE PAINSTAKING IN HiS CHOICE CF WORES, AND THESE SHOULD PRECISELY EXPRESS H!S mean:ng. Not infrequently a sentence is sueject to two or more INTERFRETATIONS. THE WRITER KNOWS DEFINITELY WHICH HE HAD IN MIND gut not so the reader.
"Closely related to precision in the use of words is clearNESS. THis qUaLity in Writing is intimately associated with ciear THINKING. IF CLEARNESS AND LOGIC CHARACTERIZE AN AUTHOR'S THINKING, these vifitues are l!kely to be reflected in his waiting. Many SC!ENT:FiC FAPERS ARE EXCEEDINGLY WELL WRITTEN. OTHERS CONTAIN VAGUE OR NEEDEESS WOFDS OR NORDS USED INCORRECTLY. COMMON FAULTS ARE THE USE OF fBSTRACT WORDS instead of CONCRETE AND THE HOPELESS m: xiune of the t'no in the same sentence. For example, can one ANALVZE THE SUGAR CONTENT? WHAT ARE ROOTY CHARACTERISTICS? CAN the staroh content of potato varieties be determined? Does the PRESENE OF WATER PUDDLE THE SOIL? WHEN DID A CONDITION OF SATURAtIon lower the temperature? Une critic calls such writing ijargon, as also the indiscriminate use of such phrases as, on the easis of, IN THE PROSECUTION OF, THE OCCURRENCE OF, THE PROPOSITION, FROM THE STANOFOINT OF, ACCORDING AS TO WHETHER OR NOT, in the CASE WHERE, in Connection with, the situation in regard to.
"A Consideration much neglected in scientific writings is brevity. Brevity is not altogether determined by the number of pages. Some manuscrifts of 10 pages are tou long: others of 50 PAGES ARE TOJ SHORT. LACK OF EREV:TY IS AN INDICATION OF LACK OF definiteness in the writeris mind of gF appreciation of the reader's intelligence, or goth. CoUp:ED with this lack there is commonly a fallure to discriminate eetween the essential and the unessential. As in the tabular matter, so in the text the author puts in written form many ideas wilich were incusated during the experiment sut which have nd real function in tie presentation of h!s results. prosably THE WORST SIN AGA!NST EREV!TY, HOVIEVER, IS NEEDLESS AND TIRESOME REPET!TION. INSTEAD OF LENDING EMPHASIS IT AROUSES EXASPERATION.
"the purpose of scientific writing eeing serious, the style SHOULD EE CONSERVATIVE AND APPROPRIATE, AND FREE FROM IND!CATIONS OF STR:VING FOR FLASHY UN:QUENESS SO CHARACTERISTIC OF MODERN COMPOSITION. SIMPLICITY NOT ONLY OF EXPRESSION §UT OF ARRANGEMENT shoul. je sought. Roman numerals so long in use for numgering theless platrs, text figunes, journal numbers and volume numbers should give way to Arabic.
"A good art:cle will have been rewfitten and revised SEVERAL TIMES BEFORE !T !S CONSIDERED TO EE IN FINAL FORM. NO MA!TEF: HOW WEL!- A MAN WRITES, HIS F!RST DRAFT OF A PAPER CAN 3E IMPROVED. CUNY THE LIPERARY GEN:US CAN RUN OFF A THOROUGHLY SAT! OFAC:CRY ART: JLE ON THE FIRET WRITING, AND HE IS SELDOM FOLND IN RESEAACCH LAEORATOR:ES.
"BUT HOW THE ENTHUS:ASM RISES AND THE DESIRE FOR A FERFEGT PRODUCT EEG:NS TO GURN WHEN THE AUTHOR SEES H!S MANUSCRIPT IN PROOF! THEN !T IS THAT HE PERCEIVES THE NUMEROUS OPPORTUNITIES FOR IMDROVENENT THERE SEEMS TO DE A COMNON AFFLICTION AMONG AU゙HORS WHICH RENDERS THEM UNABIS TO SEE PLACES NEEDING IMPROVEMEOUT UNT IL THE MANUSCR:PT GETS INTO PRINT. IF AN AUTHOR WOULD AT THE OUISEF GIVE THOUGHT TO THE CHARACTERISTICS OF A GOOD ARTICLE, THKE PAINS IN ITS PREPGRATION AND PEVISE IT UNTIL HE IS THOROUGHILY SAIISF:ED W!TH IT AND IT CAN WITHSTAND THE ONSLAUGHTS OF CRIT:CS, THETM: GI. EE NO NEED FOR DOING MOPE TO THE PROOF THAN CORRECTINA MiISTAKEG IN FRINTING. THE WHOLE PROCESS WILL REQUIRE OF THE WFITER M:UCH EFFORT EUT IT WILL EE EFFORT WELL EXPENDED."

WI LLITE PAVEMENT PATENT No. $1,190,615$ HELD INVALID BY U. S. CIRCUIT COURT OF APPEALS

Contrieuted ey l. E. Boykin Ch:ef of the legal Section. (Not for release)

The United States Circuit Court of Appeals on December 8, 1926, affirmed the decree of the lower court that the Willite pavement patent No. 1,190,615 was invaljd.

The sult in which the decree was rendered grew out of a CONTRACT FOR CERTAIN PAVING 'NORK IN THE CITY OF ST. LOUIS. IN 1924, the CITY CALLED FOR BIDS IN DUE FORM FOR THE PAVING OF A section of pendleton avenue under specifications prescribing "Willite." These specifications were formulated ey the plainTIfFS AND WERE CLAIMED TO EMEODY THE INVENTION DESCRIEED AND clalmed in letters patent $1,190,615$. At the letting, the defendant, the Trinidad asphalt Manufacturing Company, was the lowest bidder and received the contract. It declined, however, to become a licensee of the Missouri Willite Company and refused to euy the materials for the paving from that company. Thereupon sult was filed.

At the trial the defendants assailed the validity of the patent and denied INFRINGEment. Numerous prior art patents were CITED OISCLOSING COMPOSITIONS COMPRISING CERTAIN GENERALLY DESCRIEED MINERAL OR EARTHY AGGREGATES COMEINED WITH VARIOUS EITUMINOUS AND PITCHY MATERIALS, TO WHICH WERE ADDED VARIOUSLY FOR HARDENING PURFOSES, SULPHUR IN COMEINATION WITH METALLIC BASES, INCLUDING BLUE VItriol and eluestone, which are recognized terms for copper sulphate. The court held that these comeinations, described in the PRIOR ART, DEPRIVED THE PATENT IN SUIT OF THE ESSENTIAL QUALJTY OF INVENTION UNDER THE DOCTRINE OF EQUIVALENTS.

The original suit was filed in 1924 in the District Court of the United States for the Eastern Judicial district of Missour! (Eastern Division) ey the Western Willite Company, the Missouri Willite Company, the american Willite Company, and the Western Willite Road Construction Company, plaintiffs, against the trinidad asphalt Manufacturing Company, Sheley L. Heman, john C. Heman, and the city of St. Louis, defendants, alleging infringement of letters patent Nos. 1,190,615 and 1,328,310, and also alleging infringement of a trade mark consisting of the word "Willite" in Gothic letters.

Patent No. 1,190,615 was issued on July 11, 1916, to Harzy P. Willis, and was gy him assigned to the Western Willite Road Construction Company of america, one of the plaintiffs. Suesequently, the Western Willite Road Construction Company granted an exclusive license fon the State of Missouri to the Western Willite Company, Which, in turn, granted an exclusive license for that State to the Missouri Willite Company. The apdlication for this patent was filed Decemeer 7, 1914, and on July 10, 1916, Harry P. Willis made application for letters patent upon "asphaltic pavement and foundatION FOR pavements." This latter application was filec as a diviS:ON of the prior àslication of Decemeer 7, 1914, which later secame patent No. 1,190,615. This divisional application of July 10, 1916, finally, on January 20, 1920, pesulted in letters fatent 1,328,310 eeing issued. While the eill of ciomplaint charged infringement also of this latter patent (No. $1,328,310$) complainants formally withorew this shortly before the trial and announced they WJULD Not Charge infringement therega. The decision, therefore, does not go to the validity of this patent. Uoon final hearing the district Court, under cate of Jul.y 3 , 1925, adjudged the patent (No. $1,190,615$) INVALID FOR ANTICIPATION AND OISMISSED THE EILL, from which decision the case was appealec to the Únited States circuit Court of appeals, E!ghth Circuit. the district Court also found that there was not sufficient evidence to estaglish infringement of the trade-mark consisting of the word "Willite" in gothic letters, and no evidence of infringement of this trademark was urged in the appeal to the circuit Court.
the Circuit Court of Appeals, in reviewing the case and affirming the decree of the lower court, under date of December 8, 1926, SA10, in part, the following:

```
"The court gelow found ithat the chemical reactions, if they are such, or the catalytic effect, if this ee the fact: are the same in the case of all the metallic sulphaties.' This, the record seems to establish. It is contended, however, that there is a DIfference in the degree of effectiveness; this, if true, can not aid appellants. The selection from KNOWN EQUIVALENT MATERIALS ONE WHICH DOES THE WORK EETTER THAN DTHERS PREVIOUSL.Y USED AND KNOWN DOES NOT amount to inventioñ, when the difference is only one of degree.
"all the elements in this patent, or their equivalents, have been frequently employed in some COME INATION FOR THE PRODUCTION OF THE SAME OR A KINdRED PRODUCT; THEIR FUNCTIONS REMAIN UNGHANGED. IN
```

```
THE PRESENT CIMMEINATION IT IS ClAIMED THAT A EETTER RESULT IS OETAINED, EUT THIS EOES NOT ANO:NNT TO INVENTIDN. AS SAID EY THE SUPDEME COURT IN SM!TH V. N:chols supia, find ey Judge Hook in Sloan fil.ter Co. V. Pofrtland Goild Mi:Ning Company: OUPRA, it involves THE MERE CAREYiNG FOKWARD, DR MORE EXTENDEC APPLICATION CF, AN OR!G!NAL ICEA :NVOLVING A CHANGE ! N FORM, PROPORTION OR DEGQEE, AIV RESULTING IN THE DOING OF THE SAME WORK iN THE SANE INAY AND EY SUSSTANTIALLY THE SAME NEAMS. A...SO EY THE SUPREME COURT IN FLORSHEIM V. SCHI!IMING: 137 L'S. E7, A NEW ARRANGEMENT OR GROUPING OF PARTS OR EIEMMNTS OF A FATEINTEC ART:CLE, WHICH IS THE MEFE RESULT OF MECHAN:SAL JUDGMENT, AND THE NATURAL OUTGROMH OF VECHANICAL SKILL, IS NOT INVENT!ON.' IT REGUIRED NO INVENTIVE GEN!US TO EELEOT A EITUMINOUS SUESTANOE, A Mi:NFFAL AGGREGATE CR FILLER, AND A METALL:C SA:-T AS A HAÑUENING AGENT - ALL WELL-KNOWN IN THE PRIOR 4RT - TO FSCDUCE A FESULT D:FFERINA: IFAT ALL, ONLY IN DEGREE FROM THAT ALREGDY KNOUN AND OEVIOUS." * * * * *
```

"in support of the:r patent appellants devote MUCH TIME AND SPACE IN ARGLNENT, PECORD AND ERIEF, TO THE UTILITY C'AIMED FC? THE PATENTED COMPOSITION; THIS CLA!M IS VIGOROUSIY CONTESTED EY APPELLEES. THE SIGNIFICANCE OF USEFULNESS TO THE VAL!DITY OF A PATENT IS WELL UNDERSTOOD. A PATENT W!LL NOT EE DECLARED VOID FOR LACK OF UTILITY IF IT POSSESSES ANY UTILITY WHATSOEVER. (GIEES V. HOEFNER, ET al., 19 FED. 323). EXTENsive use of a pateinted article is strong proof of UTILITY, EUT NOT OF INVENTION, AND IS ENTITLED TO CONSIDERATION, ON THAT ISSUE, ONLY IN DOUETFUL CASES. THE MERE FACT THAT A P\&.TENTED ARTICLE IS POPULAR AND MEETS W!TH LARGE AND INCREASING SALE IS UNIMPORTANT WIGEN the aileged lnvention !s clearly without patentasle NOVEI.TY.' DUER V 。 CCREIN CAEINET LOCK COMPANY, 14 gi U. S. 2!6." * * * * *
"Measured ey these rules, appellants' device FA!LS TO MEET THE TEST. IT IS IN EVIDENCE IN THE TEN YEARS SINCE THE ! SSUE OF THE PATENT IN SUJT APPROXImately ten m:llion square yards of Willite pavement HAVE EEEN LAID, AN AVERAGE OF ONE MILLION SQUARE YARDS PER YEAR, EUT IT IS LIKEWISE IN EVIDENCE THAT IN ONE OF THESE YEARS ALONE THERE WERE LAID ONE HUNDRED AND TWELVE MILLION SQUARE YARDS OF ASPHALT PAVEMENT OF ALL TYPES, NOT INCLUDING THE CONGRETE PAVEMENTS OF DIFFERENT CHARACTER. IT THUS APPEAFS THAT THE PATENTED COMPOSITION, AS APPLIED TO PAVEMEINTS, HAS NE: THER GONE INTO

```
WIDE, GENERAL USE, NOR DISPLACED OTHER FORMS OF
pavement Wh!ch mad previously seen used. In fact,
ITS USE FALLS FAR SHORT OF EVICENCING A DEMAND
WHICH THE PR!OR ART WAS NOT ACEQUIGTE TO SUPPLY.
The effect of that use upon the val!dity of the
patent, even though that Were douerful, may ee dis-
reganded.
                            "The examiner of the patent office ev!dently
eECame lmpressed ey the allegec ecinomical chirmaOTER
OF THE PROPOSEO FILLER, TAKEN INDISCRIMINATELY FROM
ANY pLACE AT WHICH THE PATENTED COMPOSITION WAS TO BE
USED, AND gY tHE ARGUMENT THAT SULDHATE OF COPPER KH:S
MINERAL ASPHALT WERE NOT SHOWN TO SE ASSOC:ATED IN ANY
Single patent of the prior art. He lost sight of the
WIDE USE iN THE ALLIED ARTS OF OEV:OUS EQU!VALENTS.
                            "APDELLANTS MAKE THE SUGGESTION CDNMONLY URGED
IN pATENT SUITS, WhERE THE DEfENSE OF aNtIClPATION IS
intERPOSED, tHAT IF OTHER ELEMENTS ARE DEEMED TO EE
equivalent to those specified in the patent, the way was
OPEN TO APPELLEES TJ USE SUCH CLAIMED EQUIVALENTS, AND
thus avOID CONFLICT. BuT IT IS NOT DISCLOSED in the
PRESENT CASE THAT APJEIL.EES ARE VOLU'NTAR!LY, AND FP.OM
CHOICE, APPRDPRIATING THE FORMULA DF ADPELLLANTE; SUCH
A DESIRE IS EXPRESSLY DISCLAIMED. FJR SOME REASON,
Not maire clear ey the record, the city had, in subutance,
specifiec the Willite formula for this fendleton avenue
pAVEMENT, AND HAC ADVERTISED FOR COMPETITIVE EIDS, UINDER
WHICH ALL SUCH CONTRACTS FOR MUN!C:PAL IMPROVEMENTS ARE
let. Appellees were compelled either to conform to the
SPECIFICATIONS OR TO AEANDON THE FIELD AS BldDERS. UNDER
such Clrcumstances, they elected to challenge appellants'
CLAIMED MONOPOLY."
```

in the foregoing excerpts, the words appellante and appellees REFER, RESPECTIVELY, TO PIAINTIFFS AND DEFENDANTS.

Statis		UNOLA ：＇NSTRMCTICN			approved for icustajction			$\begin{aligned} & \text { AMUNT } \\ & \text { PMIO SIMTES } \\ & \text { OURING } \\ & \text { H } 15 \text { CAL YEAR } \end{aligned}$	Conple teo inno palo OUHING F ISCAL YEAB			aghements now iv firce			H．S．RE，RLC MMENOLD ：Y APPR VAL CY OUIST－ICT LN：INEER		
		henehal alo	Miles		reneral mio	Miles			feneaal ato	Miles		fencpal alo	Miles		† eneral	M1Les	
			31	St		AIOINAL	stage			－aloinal	Stage		Oaigival	stage	heneral ato	（alsival	Stat
$\begin{aligned} & \operatorname{Ln} E A M A \\ & A H I \angle C N A \end{aligned}$	$\begin{aligned} & 3,469,415,48 \\ & 3,523,146,31 \end{aligned}$	$\begin{array}{r} 2.812,159.58 \\ 839,667,40 \end{array}$	$\begin{array}{r} 336.4 \\ 71.9 \end{array}$		16，607．49			$\begin{aligned} & 959,727.38 \\ & 394.244 .89 \end{aligned}$	$\begin{array}{\|l\|} \hline \$ 99,114.95 \\ \\ 426,049.45 \end{array}$	$\begin{array}{r} 101.9 \\ 39.9 \end{array}$	4.6	$\begin{array}{r} 2,435,647.14 \\ 856,274.99 \end{array}$	$\begin{array}{r} 270.6 \\ 71.9 \end{array}$		375，512．44	65.8	
\rightarrow－KA V V SAS	1，902，595．09	1，372，942．68	240.3		590.151 .53	52.4		739，903．04	1，351，422．35	157.1		1，529，338．78	242.3		333，655．43	59.9	
－mbirosvia	$4,307.475 .04$	4.0 E9，081．60	156.3	0.4	263.959 .72	18.2		2，163，213．97	2，906，144．34	199.6	17.3	3，877．622．71	157.7	0.4	461.417 .51	26.8	
colomajo	2．575．624．05	2，931，014．29	266.8	9.1	436.228 .34	54.2		936，043．14	522.177 .14	37.9		2．697．120．07	254.7	9.1	680.122 .56	68.3	
－iCNnECTİJt	873.063 .51	1．580，996．95	70.4					559．543．59	245，719．74	13.6		1，444，212．28	59.6		136，794．67	0.9	
OELamat	234，628．32	241，755．90	17.6		129．565．50	14.9		316.554 .52	452，067．18	23.0		213.310 .30	15.0		153.010 .50	17.4	
HLurija	1．624．016．98	3，568， 934.53	201.2	24.8	359，553．23	24.5		732，979．45	1，507，479．94	30.9		3，276，443．98	199.1	11.3	752，077．73	26.5	13.0.
	1，959，029，90	4，397，796．94	395.4	97.5	90，594．24	0.3	12.7	1，929，094．39	2，299，503．16	264.0	42.2	4.331 .390 .98	325．4	37.5	157，010，20		
12 ma	1．079．141．52	1，363，755．66	170.1	15.5	105，900．20	11.1	0.1	1，064，904．01	1，057，912．12	102.9	13.1	1.244 .836 .07	169.7	6.4	230，819．59	11.5	9.2
	5.115 .447 .60 777.159 .06 10.	4．549，927．23	339.5 467.2	11.5	1，240．229．14	96.5 125.0		$2,059,014.08$ $1,725,204,99$	1．761．027．29	102.2	2.0	$4,483,59.56$ 7 7599.014 .76	336.3 455,7	11.6	1.306 .559 .31	100.7 156.5	
luna	234．035．53	5，745，290．30	614.6	232.4	1，859，747．08	111.3	35.4	1，759，247．57	1．765，186．99	237.7	43.3	5，524，743．13	670.2	235.3	2，040，294．20	55.7	32.5
mmisus	1，995．332．77	$5,477.172 .90$	706.1	4.0	581，376．14	67.1	4.5	1，823，513．31	903，552．04	171.6		5，252，593．16	713.2	5.0	785，980．73	¢0．0	3.5
KELTUCKY	695， 158.92	3， $6.34,9=6,55$	359.2	49.7	955， 932.04	85.9	4.9	1，175，463．37	952，819，24	89.7	14.6	3，639，070．37	365.5	48.7	952，629．22	79.6	4.8
LOUISIAN	1，250，391．34	2，244，095．30	205.5		94，457．90	3.7		657，767．34	562，031．47	54.5		1， $356,574,37$	196.1		371．978．33	23.1	
Mal ．E	1，421，968．90	991， 364.43	68.0		43， 956.00	5.6		955．009． 11	595， 925.29	43.4		935，320．43	73.5				
aticling	657，5¢P． 23	455，369，54	42.4					535，792．45	334，258．01	46.0		441.313 .54	42．4		14．050．00		
V－ssachusetis	2，577．065．51	1，493，354．92	${ }^{72.2}$		3F2，195．10	24.3		74，035．25	121，949．75	5.1		1，403，435．02	85.7		235.115 .00	15.6	
vizulgan	2，292．112．91	6，594，975．58	392.9	39.3	1，033，575．00	57.5	6.5	$2,231,127.96$	H07， 340.11	55.0		6，395，735．68	401.5	39.3	1，332．915．00	49.0	6.5
Mivisisa	567， 276.43	1，110，993．90	229.5	46.2	988， 100.00	172.3	69.5	2，479， 945.13	3，450，029．11	461.6	114.6	494．900．20	151.7	49，？	1.514 .299 .90	249.2	E2．5．
vis，I5s IFP｜	1，431，395．15	3，749，082．00	395.		170，310．37	33.9		1，056．144．98	670．574．99	94.9		3，432，357．23	354.5		497．035．64	71.1	
WISSOLRI	1．552，705．62	4．590，775． 97	308.5	40.3	781.334 .30	101.3	3.7	3．195，432．91	4．430，770．36	301.0	22.9	4，309，549．32	299.4	36.1	1，062．550．95	111.4	7.9
M NTaNa	5，950，802， 11	1，365．907．90	131.5	8.2	469，991．30	94.1		791，263．48	457，209．60	82.9	60.1	1，305，409．51	220.6	8.2	29，490．19	5.1	
VEE8aSka	3．151．595．24	5，919，993．10	1．310．2	619.5	211．753．97	40.2	56.4	1，996，970．24	1，402，928．17	27.9	132.3	6，045．027．97	1．343．5	634.6	145，719，10	ϵ.	1.
vevan	1．142，120．55	1，299，930．30	198.5	32.1				637.940 .29	$2,171,938.96$	259.6	5.1	1，295，989．40	139.5	32.1	2，932．40		
Vi．HAMPSmize	467，325．97	303，902．51	16.7					$414,921.59$	396，537．45	26.4		303， 902.51	19.7				
NEM JEMSEY	946.532 .96	855.223 .56	55.9		104，910．00	7.0		732.592 .59	2，397．022．27	26.0		855．223．56	55.0		104.910 .00	． 6	
via Mexico	2，004，957． 30	2，351，013．57	278.5		389．782．29	7.9		607，411．30	73，736．96	15.5		1，991，554．92	234.4		749，240．94	52.0	
NL1．YOHK	7．007．374．59	9，234，162．70	573.3		1，050，747．50	57.0	8.6	3，933，944．31	2，475，669．92	158.4		10，178，267．70	631.9		106，642．50	3.5	8.5
Vath Omation	1.714 .652 .58	2．025，475．48	135.6		233，440．59	20.1		1，537，423．25	2.374 .655 .41	124.7	37.5	2.168 .916 .07	147.7		95.000 .00	9.9	
VCHTH OnK．Jm	1．216，972．87	2，465，214．07	656.3	61.4	560，006．20	82.7	254.9	2．245，720．64	1，669，657．09	506.1	362.9	2，541，878．03	719.7	114.3	383，342．24	19.3	201.5
$\mathrm{CH}_{1} 10$	4，550，705．29	4，437，869．14	352.5	10.9	542，398．22	17.9		2，246，279．78	1，541，246．32	123.1	6.7	4，503，747．29	343.1	10.9	5：6，519．07	22.3	
CHLAHCYA	1．315．475．22	1，80E，E6， 2.90	212.9	20.9	675，049．17	102.5	20.7	1，005，234．86	553.473 .55	47.0	7.1	1，958，325．64	250.4	29.1	423，336．43	64.	12.5
LGEN	1，610．327．07	1，701，704．59	116.7	23.5	241.271 .15	12.0	12.3	792．924．04	514.971 .40	34.3		1，914，959．27	123.7	29.9	24．016．47		6.3
inusplymy ${ }^{\text {a }}$	3，454， 313.19	6，223，433．86	432.5		1，031，149．14	¢0．0		2，347，453．93	2．393， 976.77	174.0		1．074．566．27	430.9		136．021．73		
teccie liglano	754，874．94	205，665．00	13.7		74，175．00	4.9		465.586 .24	439．6．0．00	＋293		279.840 .00	18.6				
SC：THC C．といい	1，673，720．52	2.283 .560 .24	197.9	8.0	15，000．00	2.2		831.126 .66	711，908．31	75.3	15.4	2．220， 760.24	169.5	6.2	83，800．00	29.7	1.8
SOUIM JakCia	1，230，170．96	1，719，482．12	571.4	35.0	89，849．59	23.7	56.2	1.007 .312 .07	144．524．46	261.5	129.4	1.669 .031 .30	584.3	57.6	139．250，41	10.3	23.6
f6nNLSoli	1．872．296．07	3，363．994．70	265.0	54.1	35，000．00	0.3		1．599．559．96	747.432 .21	49.1	7.9	3，495，260．60	217.3	50.1	503.724 .10	47.4	4.0
T：\times AS	6，174，С36． 35	7．349，945．18	656.2	174.7	1，270，190．30	76.9	13.4	3，411，264．90	2，970，231．95	387.9	27.2	7，140．527．58	617.7	178.1	1，473．507．90	115.4	70.0
UTAH	1，145，5C2．35	$1,375,360.14$	139.5		423，767．73	32.7		54.544 .98	615.514 .05	19.1		1，389，403．39	146.7		415，724．53	25.9	
d－mucy	731．224．73	84？．，673．73	32.9					581．139．86	235，929．73	11.1		647．644．23	32.0		1，034．55		
V1てGいい－	570．879．02	2，056，910．00	131.1		513，269．32	34.9		1，565，412．66	1，417，440．95	100.2		1，593，567．32	111.9		96．C12．60	54.	
Aminivgran	1， $2 \times 1.156 .05$	1，638，600．00	61.1		52， 000.00	7.0		$1.657,059.01$	463.642 .49	42.5		$1.673,600.00$	51.3		77.000 .00	16．）	
－EST VIAGG\14	593．219．82	2.212 .606 .59	154.3	12.0	776，573．58	79.6		64，155．60	432，685．36	26.5		2，589，372．07	210.1	12.0	399，908．10	33.9	
－1ser Sin	4．303，063．00	3，514．754．09	322.5	6.8	120，000．00	4.7	4.3	2，162，027．66	889，747．18	95.1	7.8	3，387，279．38	309.9	6.8	247．374．71	17.	4.3
ercming	$\begin{array}{r} 1,230,472.32 \\ 905,975.36 \\ \hline \end{array}$	$\begin{array}{r} 1115,591.63 \\ 464,352.64 \\ \hline \end{array}$	$\begin{array}{r} 114.1 \\ 23.1 \\ \hline \end{array}$	33.7	$\begin{aligned} & 42,256.00 \\ & 93.010 .00 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.7 \\ 6.5 \\ \hline \end{array}$		$\begin{array}{r} 683,248.42 \\ 124.275 .80 \\ \hline \end{array}$	$\begin{array}{r} 1,011,436.00 \\ 97,440.00 \\ \hline \end{array}$	172.5 6.5	32.8	$\begin{array}{r} 1115.591 .63 \\ 562,362.54 \\ \hline \end{array}$	$\begin{array}{r} 114.1 \\ 29.6 \\ \hline \end{array}$	33.7	42，256．00	16	
1JTaLS	99．7¢4．7c1． 10	（ 139，974，399．02	13，310．6	1649.6	\＄ $20,910,263.82$	1，861，8	624，0	62，894，894．49	\＄52，771，933．48	6，011．5	1，111，9	\＄138，438，364．44	13，377．0	1，741．4	22，346，297．40	1，795．4	532.2

[^0]

PRESENT PRAOTIOE IN HIGHHAY BUSDRAINAGE. FQUNDATION DEOI GN, ANU SUBGRADE TREATMERI IN THE NEW ENGLAND AREA

Contrieuted ey E. J. Wakefielo of the Uivis:on of Design (Not for release)

THE DESTRUCTIVE FROST ACTION AND WIDE VAR!ATION IN SOIL textures which occur in the Nen England areas most of New York STATE, ANב THE NOR:HEFN PART OF NEN JERSEY GCCOUNT FOR THE CONSPICUOUE PLACE WHICH FOUNEAT:ON DESIGN, SUEDRA!NAGE, AND SUSGRADE TREATMENT HO-D iN THE HIGHWAY ENG:NEER:NG PRACTICE OF THOSE STATES. Winter temperaturis faill as low as 50 degrees eelow zero in the EXTREME NORIGERN FDRT!CNS AND THE GROUND; IN THE AESENCE OF A HEAVY BLANKET OF SIVCW: SUNET:MES FREEZES TO A DEPTH OF SEVERAL FEET. THE
 BRACES EVERY GRADAT: JN GF TEKTURE: FFGM HEA\%Y, PLASTIJ CL.AYS THRJUGH LOAMS: SANDS, GRAVEI.S AND HAPDPAN, TO VER!TASLE NESTS OF EOWLDERS。 FREQUENTLY THERE IS A WIDE VAR:ATION WITHIN THE L:MITS OF A SINGLE FROUECT, ALTHOUGH TMERE AFE CONSIDEFADLE AREAS WITHIN WHICH THE SOIL IS REMAFIKAELY UN: FOSM IN CHARAOTER: SUCH AS THE SAND COUNTRY OF NORTHERN NEW YORK WHERE ALMOET FURE SAND OVERL!ES MANY SQUARE MILES.

DUE to the oc caeional. al.ternation of pepgious and impervious strata depositeg orer mioh of this arita ey the Glacial period ice SHEET: THE PEROOLATION OF GROUMD WATER IS FREQUENTLLY !NTERRUPTED, AND NOT UNCOMMRLIY ENOOUNTEAED IN THE FORM OF SURFACE SEEPAGE IN SHAl-LOW CUTS ON HiLLLS:DES. THE COME:NATION OF EXCESS MO!STURE AND
 NATURAL CONE:TION WiTH WH:CH THE ENG:NEER, EIVGAGEO IN HIGHWAY DESIGN AND MAINTENANCE, HAS TO CCNTEN:. THE CRITICAL PER!OD OCCURS IN early spizing when "the frcsi is coming out." the initial thawing JE THE SUSGRADE, PARTICUGARILY A CLAY SUEGRATE, LEAVES THE PAVEVENT UNEQUALLY SUPFORTCD ON A SUPER-SATURATED STFIATUM OF SO:L, THE COMpact texture of which has een, to a consideraele degree, destroyed by freezing. The mo:sture released ey this initial thawing is often impoundec getween the lower surface of the pavement and the Still frozen suesoil. Unless provision is made for the lateral ESCAPE OF TH!S EXCESS MO:STURE, THE SUESEQUENT ALTERNATIONS OF freezing and thawing are quite likely to result in the formation of ice uncer the =avement at points where the water in the suegrade tends to concentrate. The result is the familiar frostsOIL OF NORTHERN LATITUDES, THE DESTRUCTIVE ACTJON OF WHICH IS WELL KNOWN TO HIGHWAY'MAINTENANCE ENGINEERS OF THAT SECTION.

In general, the purpise of subgrade treatment - using the aroader meaning which covers the relateo features of sugdralnage, foundation cesign anj suggrade replacement -- is fourral.d. First, it is desired to reduce the content of moisture in the suegrade !f pract:casle; secono, it !s desired to drevent the rise of CAPILIARY MOISTURE TO THE LOWER GURFACE OF THE PAVEMENT AND TO FURNISH A MEANS OF ESCADE FOR ANY FREE WATER WH:CH MAY ACCUM'ULATE on the surface of the suegrade; third, it is cesired to improve the. distrieution of concentrated traffic loads gy spreading them over wider areas on weak suegrades, and to insure a more un!form SUPPORT FOR THE PAVEMENT: AND, FOURTH, IT IS DESIRED TO DROVIDE an insulating layer against the spring fluctuations of thawing and freezing which will, at the same time, make for greater uniFORMITY IN THESE PROCESSES.

The practice in this field of highinay design differs in the several states of this area, eut chiefly in the thoroughness of the fROVISIONS RATHER THAN IN THE INATURE OF THE TREATMENT OF SIM!LAR cases, SUSGfade treatment pract;ce has thoroughly crystallized in a numeer of these States; aido: althoueh there has eeen considerA ll Le IMPROVEMENT AND PRDGRESS DURiNG THE PAST FEW YEARS, THE GENERAL trend IS cleariy cefineo and the following general:ties may ee taken as typical of modern practice in new england.

Two eariy types of corrective provisions, nanely, heriaingoone dra:ns and V-drains, appear to hiave seen completely aeandoned - probaely eecause equally effective results are ogtainable at less exPENSE WITH OTHER METHODS OF TREATMENT.

The use of an underdrain is now confineo chiefly to the drainage of wet side-ifill cuts, where it may function properly as an ! intercepting drain to cut off the laterral seepage of percolating GROUND WATER. THESE UNDERDRAINS ARE COMMONLY CONSTRUCTED WITH VITRIFIED-CLAY PJPE, OF 6 inches diameter or larger, usually laid ON AEOUT 2 inghes of crusheo stone or gravel in the gottom of the trench: Which is then reflllec with coarse sroken stone or screened GRavel for the greater part of its depth. Careful construction and olEars refill material are emphasized in most of the standard specifloations for this item. The cepth and width of trench vary in the severial states, gut a depth of 4 feet and gottom width of 18 inches, WITH 6-INCH VITRIFIED-CLAY PIPE, MAY EE TAKEN AS FAjRLY TYつICAL.

For maximum effectiveness the underdrain is usually constructed under the shoulcer, near the edge of the pavement. This PRACTICE IS OPEN TO CRITICISM EECAUSE OF THE LIKELIHDOD OF SERIOUSLY impalring the lateral support of the suegrade, no matter how thoroughly the refill material is tamped in place in the trench. FROM the standpoint of ultimate staEility it is progajly eetter to KEEP THE UNDERDRAIN WELL AWAY FROM THE EDGE OF THE PAVEMENT; PARTIcularly since its true function as an interceptor of lateral seepage will not ee serlously affected thereey.

Formerly it was not unusual to provide underdrains with a View to reducing the capillary moisture in the suegrade where wet CLAY SOILS WERE ENCOUNTERED. THIS USE OF UNDERDRAINS APPEARS TO have jeen largely discredited in the New England area, not only eecause of douetful efficacy, eut eecause superior results, from the standpoint of pavement staeility, are oetainaele sy an equal expenditure for gravel subease. There are, perhaps, some conditIons (such as may se found in parts of New jersey where the water-taele lies close to the surface and the soil is falrly porous) UNDER WHICH THE USE OF UNDERDRAIN FOR THIS PURPOSE WOULD EE JUSTIfiable; gut, in general, the provision of extra subease is a more ECONOMICAL INVESTMENT OF FUNDS.

The most common method of treatment for wet and unstajle suegrades in New England is the provision of porous foundation COURSES, DESIGNED TO MEET THE REQUIREMENTS OF EACH SPECIFIC CASE and Varied within the limits of a single project to meet the varying conditions of soll anc suegrade molsture. This method of treatment may vary from the provision of an additional thickness OF EROKEN STONE OR SLAG EASE COURSE, OR THE PROVISION OF A 2 OR 3-INCH BLANKET OF SAND and gravel under the pavement; to the virtual replacement of inferior suegrades such as is often practiced in Massachusetts. In this state it is not uncommon for an improvement to be constructed in four stoarate courses with an aggregate thickNESS OF 20 INCHES OR MORE. THE TYPE OF FOUNDATION COURSE WILL USUALLY SE determined, to some degree, ey the kind of local materials availagle. Field stone from old stone fences is availaele in many parts of New England, and suitajle gravel is generally availaele WIthin easy haul. these two materials are, therefore, in most COMMON USE FOR FOUNDATION AND SUEEASE COURSES; ALTHOUGH QUARRY STONE, eroken slag and cinders are also suitaele for the same purposes and are used where more availagle than field stone or gravel, as in many parts of New York and New Jersey.

TyOICAL practice in foundation design, particulafily for 3ITUM!NDUS MACACAM JAVEMENTS, IS THE PROV!SION OF 9 to 12 INCHES of heavy stone founcation course, dedded on sanc or gravel 2 inches or more in thlckness, with a leveling or intermediate COURSE OF EROKEN STONE EETWEEN THE HEAVY ETDNE AND THE E:TUMINOUS COURSE. THE HEAVY STONE FOUNDATION, CONS:STING OF FIELO OR QUARRY Stone, rJughly hand-placed, CHinked with smaller fragments, and Fillec with groken stone and coarse sand or gravel, furnishes the necessafiy lateral rigidity in the case of flexigle pavements; the sand of gravel becding course or subaase effectualiy prevents the upwarc fenetration of piastic suggrade material and facilitates the drainage of water from the surface of the suzgrame; while the GROKEN STONE L.EVELING, OR INTERMEDIATE GOURSE TAKES UP THE IRREguLarities of the heavy stone foundation and serves as a cushion FOR THE RITUM!NDUS SURFACE UNDER TRAFFIC. THIS TYPE OF FOUNDATION CONSTRUCTION: WHEN PROVIDEO WITH ADEQUATE OUTLET DRAINS THROUGH the shoulders at frequent intervals, will generally take care of the most unfavoraele suegrade conditions. Where the suegrade is espectally ead, an additional th!okness of gravel suebase under the heavy stone foundat:on w!ll usuaily provide the necessary bearING POWER.

Although the asove descrieed type of foundation has geen used to a consiceraele extent under condrete pavements, it is progaily not so well suitec to that type of pavement as gravel e!ther screenec or run-of-3ank. The trend of recent practice SEEMS to se toward the use of run oofeank gravel under concrete PAVEMENTS - PROEAQLY BEGAUSE IT FULF: !! S THE REQUIPEMENTS AT A lesser cost, ane is actually eetter acapted to satisfy those reQUIREMENTS. A CONORETE PAVEMENT REQUIRES, PROEAELY MORE THAN ANY OTHER TYPE, A UNIFORM FOUNDATION SUPPORT, AND THIS IS VERY DIFFICULT TO OETAIN IN FOUNCAT:ONS CONSTRUCTED OF LARGE FRAGMENTS OF varying size Rigidity of the suegrade is less needful since the fLEXIRAL RESistance of the sla is suffic!ent to distrigute the tiraffic loads over a wide area of support. the main desiderata in foundatione for concrete pavements ape, that they ee suffiCIENTLY PORQUS AND OF SUFFICIENT DEPTH TO TAKE CARE DF EXCESS WATER AND MINIMIZE FRDST ACTION, AND THAT THEY FURNISH A UNIFORM SUPPORT to the pavement at all times. Broken slag, cinders, or other EQUALLY POFOUS MATERIALS SATISFACTORILY FULF!LL THESE REQUIREMENTS.

A RECENT ::REND in SUミEASE and foundation construction is the USE OF A WIDTH IN EXCESS OF THAT OF THE PAVEMENT, WITH THE FOUNDATION CAREIED OUT FROM 6 INCHES TO AS MUCH AS 3 FEET ON EACH SIDE OF the pavement area. This is advantageous in a numeer of ways: it

STRENGTHENS THE SUPPORT OF THE JAYEMENT AT ITS WEAKEST PO:NT - THE EDGE; IT PFOVILES A MORE STABLE FOUNDATION FOR THE SHOULDERS; AND, IT =ROVIDES A FOUNDATION FOR FUTURE WIDENING, WHICH MAY WELL EE ANTICIPATED ON MANY OF THE MAIN ROUTÉS AT THE TIME OF INITIAL IMPROVEMENT.

PERHAPS NOT SUFFICIENT CARE IS TAKEN TO DRAIN FREE WATER FROM THE EOTTOM OF FOUNDATION AND SUEEASE COURSES, PARTICULARLY ON GRADES. EFFECTIVELY TO INTERCEPT SUCH WATER AND CARRY IT THROUGH THE SHOULDERS REQUIRES CAREFULLY CONSTRJJTED OUTLET DRAINS, PREFERAELY EXTENDING UNDER THE FOUNDATION OR SUEEASE IN THE FORM OF SHALLOW iNTERCEPTION TRENCHES, AND EMPTYING FREELY INTO THE SIDE DITCHES AT AN ELEVATIIN LOWER THAN THE LOWEST PART DF THE DRAIN. It is suggested that small-size tile might well ee installed in the EOTTOM JF THESE DRAINS UNDER THE SHOULDERS, EECAUSE OF THE TENDENCY OF SHALLOW ELIND DRAINS OF EROKEN STONE OR GRAVEL TO BECOME CLOGGED AND INOPERATIVE AFTER A FEW YEARS.

The use of telford gase, with its more elaeorate care in CONSTRUCTION, HAS EEEN PRACTICALLY AZANDONED EECAUSE OF THE HIGH COST. TELFORD CONSTRUCTIJN MAY HAVE EEEN A GOCD INVESTMENT IN THE DAYS JF WATEREOUND MACADAM AND LOW LAEOF COSTS. AND IT WAS especially sultaele as a heavy ease for watereound macadam, eut W: TH PRESENT PRICES AND THE PREVAILING TYFES OF PAVEMENTS, THERE APPEARS TO EE NO PLACE FOR THIS RATHER COSTLY REFINEMENT IN HIGHWAY PRACTICF。

In the interest of avoiding unfavoraele suegrade conditions and reducing the cost of foundation construction, new Hampshire APPEARS TO HAVE A CONSISTENT POLICY OF AVOIDING DEEP CUTTING, AND SO LAYING THE GRADE LINE AS TO TAKE ADVANTAGE OF THE EXISTING ROAD CRUST WHEREVER PRACTICAELE, WITH THE CONSEQUENT INTRODUCTION OF EORROW FILLS FOR PURPOSES OF GRADE CORPECTION AND WIDENING. IN MASSACHUSETTS, ON THE OTHER HAND, IT IS NOT UNCOMMON FOR GRADE ELEVATIJNS TO EE GOVERNEC EY THE ELEVAT!ONS OF AEUTTING PROPERTY AND MANY HUNDRED FEET OF DREVIOUS IMPROVEMENT MAY EE TORN UP AND REPLACED WITH NEW CONSTRUN••ION IN OREER TO AVOID RAISING THE PAVEment surface an excessive hejght aeove the adjacent property elevaTION.

The use of an increased thickness of concrete pavement and heavier re!nforcement over unstaele suegrades has eeen practiced TO A LIMITED EXTENT, AND DNE STATE VARIES THE POSITION OF THE PAVEMENT REINFORCEMENT, PLACING IT NEAR THE UPDER SURFACE IN CUTS AND NEAR THE LOWER SURFACE ON FILLS, ON THE THEORY THAT HJGHER TENSILE STRESSES WILL OCCUR AT THE TOP OF THE دAVEMENT IN THE ONE CASE AND AT THE BOTTOM IN THE OTHER. THESE VAFIATIONS IN DESIGN (W)THIN ECONJMICAL LIMITS) ARE, OF COURSE, ENTIRELY INADEQUATE UNDER REALLY UNFAVORABLE SUBGRAEE CONDITIJNS UNLESS SUPPLEMENTED EY SOME SORT OF SUEGRADE TREATMENT.

The use of clay or loam as a material for suegrade treatMENT MIGHT SEEM PARADOXICAL; EUT SUCH MATERIAL MAY SOMETIMES SE USED ON SAND SUBGRADES VERY. ADVANTAGEOUSLY. IN THESE CASES THE pURPJSE OF the treatment is not so much the correction of surgrade WEAKNESS AS TO IMPROVE THE FACILITY OF PAVEMENT CONSTRUCTION. IN GENERAL, SAND SUEGRADES GIVE NO TROUSLE WHEN CONFINED EY AN ADEQUATE PAVEMENT, EUT IT IS OFTEN IMPOSSIELE PROPERLY TO SHAFE AND COMPACT A SAND SUEGRAEE UNLESS A SMALL QUANTITY OF CLAY OR LOAM IS SPREAD AND admixed with the upper stratum of the sand. This use of clay is provided In the stancarc specifications of Malne and has been pracTICED VERY EFFECTIVELY ELSEWHERE UNDER THE WRITER'S OBSERVATJON.

Massachusetts hag developed a type of construction for the SAND COUNTRY OF CAPE COD, aND the similar conditions on the contiaUOUS MAINLANC, WHICH IS AN EXCELLENT EXAMPLE OF THE ACAPTATION OF des: gn to local conditions and materials avallaeie. Here a sandasphalt pavement is Constructed, using the local sand for aggregate. For a ease course, 4 inches of clay or loam are spread on the sand SUZGRADE AND COMPACTED TO PROVIIE A FIRM AND SMOJTH SURFACE, ON WHICH THE SAND-ASPHALT MIXTURE IS THEN SPREAD AND COMPACTEC IN TWO 2-INCH COURSES. THERE IS NO ADMIXTURE OF THE CLAY OR LOAM WITH THE SAND SUGGRADE, EUT THE MATERIAL ACTS AS A MORE OR LESS COHESIVE BLANKET WHICH PREVENTS THE CISPLACEMENT OF THE LOOSE SAND SUZGRADE DURING CONSTFUCTION, AND AFTER CIMPLETION, SERVES TO DISTRISUTE THE WHEEL LOADS TO SOME EXTENT.

The concitions of soil ane dralnage in the new england area are so variaele that highway cesign is not amenảle to any fixed RULES; AND THE ENGINEER IN CHARGE OF CONSTRUCTION MAY WELL BE ALLOWEC CONSIDERAELE LATITUCE IN THE EXERCISE OF HIS DISCRETION IN THE ACTUAL LOCATION OF UNDERERAINS, EXTRA FOUNDATION, ETC. ORDINARILY THE SUEDRAINAGE AND FOUNCATION REQUIREMENTS CAN EE DETERMINEL, WITH A FAIR DEGREE OF APPROXIMATION, EY INSPECTION OF THE TERRAIN DURING THE SORING MONTHS; EUT DFTEN CONDITIONS ARE DESERVED DURING CONSTRUCTION W'HICH CAN NOT EE FOREGEEN WHEN THE PLANS ARE PREPARED. ProEaミly a more thorough study of suesoll and ground water condit Ions PRIOR TO PFEPARATION OF THE PLANS WOULD PERMIT WORTH-WHILE ECONOMIES IN THE CISTRIEUTION OF EXPENDITURE FOR THESE ITEMS. THE JUDICIOUS USE OF A POST-HOLE AUGER IN THE SEASON OF MAXIMUM SATURATION WOULD UNDOUETEDLY AFFORD MUCH MORE RELIAELE INFORMATION REGARDING SUEGRADE CONDITIONS THAN CAN EE OETAINED EY ANY SUPERFICIAL EXAMINATION OF THE HJGHWAY LOCATION.

SO FAR, THE DETERMINATIDN OF SUQDRAINAGE AND FOUNDATION REQUIREMENTS HAS BEEN LARGELY DEPENDENT ON THE PERSONAL JUOGMENT OF THE DESIGNING ENGINEER, AND THERE HAS EEEN ONLY A LIMITED APPLICATION OF THE VALUAZLE INFORMATION RESPECTING SOIL QEHAVIOR FAST

ACCLINULATING THROUGII RECENT RESEARCH. A CERTAIN AMOUNT OF INERTIA IN THIS CONNECTION IS NATURALLY TO BE EXPECTED, ESPECIALLY IN VIEW of the extreme novelty of the science. qule offthume methods may EE EXPECTED TO PREVAIL IN THIS FIELD FOR SOME TIME TO COME, PARTICULARLY WHERE RULE-OF-THUMB METHODS HAVE DEVELOPED OVER A LONG PERIOD OF YEARS TO A STAGE OF REASONAELY SUCCESSFUL PRACTICE. HOWEVER, AS TRAFFIC DEMANDS AND EXDENDITURES FOR HIGH-TYPE PAVEMENTS INCREASE, INCREASING STUDY WILL UNDOUBTEDLY EE GIVEN TO ECONOMIES IN DESIGN, AND RECOGNITION OF THE PFIMARY IMPORTANCE OF SUミGRADE SOIL analysis in that connect ion may confidently ee expected.

Proeaely no expenditure for highway improvement has greater JUSTIFICATION THAN FUINDS PROPERLY SPENT TO CORRECT WEAK SURGRAEES. IT $1 S$ EEL!EVED PERMISSIELE TO SAY THAT, GIVEN COMPAFAEIE STANDARDS IN TYDE AND QUALITY OF בAVEMENT CONSTRUCTION, THE EEST ROADS AND THE LOWEST MAINTENANCE COSTS WILL EE FOUND IN THOSE STATES WHICH GIVE MOST ATTENTION TO SUEDRAINAGE, FOUNDATION DESIGN, AND SUEGRADE treatment.

NEW A:S.T.M. SPECIFICATIONS FOR PORTLAND CEMENT IN FORCE
Contrieuted ay the Division of Tests
(NOT FOR RELEASE)

THE ATTENTION OF THE DISTRICT MATERIALS ENGINEERS IS CALLED TO The NEW A.S.T.M. SpECIFICATIONS AND TESTS FOR PORTLAND CEMENT WHICH ARE NOW IN FORCE. TIUESE SPECIFICATIONS DIFFER FROM THE OLD STANDARDS IN A NUMEER OF PARTICULARS. THE PRINCIPAL CHANGES CONSIST OF THE RAISING OF THE TENSILE STRENGTH REQUIREMENTS FROM 200 TO 225 POUNDS PER SQUARE INCH AT 7 DAYS, AND FROM 300 TO 325 POUNDS PER SQUARE INCH AT 28 DAYS. THESE CHANGES WERE RECOMMENDED EY THE COM mittee on Cement of the american society for testing materials, with the aparoval of the fepresentatives of the portland Cement associaTION WHO SAT UPON THE COMMITTEE.

Certain changes have likewise eeen made in Section V - RejecTION - OF THE SPECIFICATIONS. ONE CHANGE COVERS THE RETESTING OF CEMENT WHICH HAS EEEN IN STORAGE FOR PERIODS LONGER THAN SIX MONTHS, AND THE OTHER GIVES THE JURCHASER THE RIGHT TO REJECT CEMENT gASED UPON A RETEST OF THE SOLNDNESS OR THE TIME OF SETTING AT THE TIME OF delivery on the work, even though the cement may have reen previously accepted at the mill.

Numerous changes have also eeen made in the section entitleo Method of Test. The requirements relative to temperature conditIons durlivg the testing period have geen changed so as to frovide SDECIFIC MAXIMUM AND MINIMUM TEMPERATURES AT WHICH THE VARIOUS operations may oe performed. A specific requirement relative to the pressure which may ge exerted in molding cement griquettes has also geen inserted. These features were covered gy general clauses only in the olc specifications and the comilittee felt that the lack of sUch specific requirements accounted in large measure for the WIde variations in results reforted ey cifferent lagoratories on identical samples.

The American association of State Highway Officials has also amended its portland cement specifications in so far as the strenath requirements are concerned. The association specifications have always olffered from the americail Soclety for testing miaterials specifications as regards certain saragraphs under Section V - RejectION. THIS SECTION HAS NOT BEEN AMENDED AS YET EY THE ASSOCIAT:ON anc still olffers from the new A.S.T.M. Specifications in two important particulars. ihe association specifications contain a uniformity CLAUSE WHICH STATES THAT MARKED DEVIATIONS FROM UNIFORM RESULTS MAY be considered cause for rejec:ion even though the test requirements may be othenwise fulfilleg. The association specifications also CONTAIN A CLAUSE WHICH PERMITS THE PURCHASER OR ENGINEER TO EASE rejection upon the fiesults of retests at any time, regardless of the RESULTS OF PREVIOUS DECISIONS. THE NEW A.S.T.M. SPECIFICATIONS Limit retesting to ceterminations of soundness and time of setting.

The Association has not as yet revised its. methods of test to CONFORM TO the New A.S.T.M. Standard and, until such action is taken which will droeably ee dur!ng the coming year, the bureau feels that the A.S.T.M. method of test should ee employed ey the State highway cepartments.
 FON CALENDAR YEAR - 1927.

stateb	grano total EXPENOITURES (estimateo) ON STATE ANOLOCAL ROAOS	Probatle expenoitures er state higuma oexarteetr							PROEASLE EXPENDITURES SRIDGES BY LOCAL AUTHORITIES	Est imated roao mile eage to se sulti br state migimay departments				$\begin{aligned} & \text { MILES } \\ & \text { OF ROAD } \\ & \text { MINAINED SY } \\ & \text { SIATE HEGWAY } \\ & \text { OEPARTMENT } \end{aligned}$
		TOTAL STATE AOAD XPENOITURES	$\begin{aligned} & \text { CONSTRU } \\ & \begin{array}{l} \text { COTAL RONOS } \\ \text { AND BRIOGES } \end{array} \end{aligned}$	$\frac{\text { RTION EXPENDI }}{\text { ROAOS }}$	Tures sRIDGES	$\begin{aligned} & \quad \text { MIN } \\ & \text { STRUCON- } \\ & \text { STION } \end{aligned}$	TENANCE (1) UPKED UPKEP	MISCELLANEous incluoind overhead (2)					BRICN $\begin{array}{\|l\|} \text { ASPALTI, } \\ \text { CNOCREE } \\ \text { ANO } \end{array}$	
	$20,950.000$ 3,600.000 42,550,000		$9,500,000$ $2,2000,00$ $4,600,000$ 3 $3,280,0000$		$\begin{array}{r} 1,500.000 \\ 20.000 \\ 60.000 \\ 780.000 \\ \hline \end{array}$	$6,500,000$	$\begin{array}{r} 750,000 \\ 700,000 \\ 2.000,000 \\ 5.000,000 \\ \hline \end{array}$	$\begin{gathered} 700,000 \\ 300000 \\ 770,000 \end{gathered}$	$\begin{array}{\|r\|} \hline 10.000,000 \\ 700000 \\ 9,100000 \\ 27,000,000 \\ \hline \end{array}$	$\begin{aligned} & 406 \\ & 100 \\ & 580 \\ & 580 \\ & \hline 80 \end{aligned}$	$\begin{array}{r} 67 \\ 30 \\ 250 \end{array}$	$\begin{gathered} 279 \\ 67 \\ 300 \\ \hline 65 \end{gathered}$	60 30 3 15 15	
$\begin{aligned} & \text { COLOMAOO } \\ & \text { COnnecticut } \\ & \text { DClamane } \end{aligned}$	9,020,000 2,625,000	6,020,000 2,325,000	4,090,000 2,000,000	3,550,000 1,600,000	500,000 400.000	none	$1,600,000$ 200.000	12F.000	3,000,000 300000	4	2	15	43	8,647 800
flomion	38,674,800	$\frac{13,674,800}{10,1000}$	16,557,300	13,057.320	3.500.000		1,977,400	140.000	20.000,000	775	275	100	100	2.104
Grosola	23,600,000	10.100,000	7,800.000	6,900.000	900,000	. 0.000	1,600.000	${ }^{600.000}$	13.500.000	${ }^{506}$	100	\%	196	6,300
1оamo	3.230.000	2,780,000	1,700,000	1,200,000	${ }^{500} 0000$		(3) 1,019.900	(4) ${ }^{60,000}$	500,000	145		105		2.200
1 Llinola	68,091,000	41.091.000	36,049,000	33,261,200	3, 5887.300		2,740,000	(4) 1,492.000	27,000,000	. 25.5	19	\bigcirc	. 036	5,857
Inoiava	39,840,000	14,040,000	11,000,000	9,500,000	1,500,000	nove	3,000,000	-840,000	25,000,000	415	40		75	¢.000
	$32,032,000$ $33,031,000$	$17,432,000$ $21.031,000$	13.787 .000 $18.396,000$		1.500 .000 $2,544.000$	none	3, ${ }_{\text {2,000,000 }}$	645,000 135,000	12,000,000	- $1,0.098$			263 240	$\underset{\substack{\text { E.674 } \\ 8.680}}{\text { c, }}$
Kentuc	19,500,000	13,500,000	10,000,000	10.000,000	(5)		3,000,000	500,000	6,000,000		400	330	170	3,200
	19,000,000	11,500,000	8, 500,000	6,500,000	2,000,000		3,000,000		7,500,000	500			5	4.7
${ }_{\text {M }}^{\text {Maine }}$	$15.151,300$ $10.400,000$ 1	$\begin{array}{r}11,251.300 \\ 7,500.000 \\ \hline\end{array}$	8,761,300 $3,500.000$		(6) $\begin{array}{r}3,0000.740 \\ 500,000\end{array}$		$1,0936,000$ 4.000000	554,000	3.900.000 2,900,00					
Maseactuo	30,358,000	16,356,000	7,750,000	7,500,000	250,000	5.500,000	3.000,000	108.000	14,000,000	240		50	190	(8) $\begin{aligned} & 2,00 \\ & 1,565\end{aligned}$
Mis mioan	$52,750,000$	20,750,000	16,600,000	15,000,000	1,600,000	nowe	4,150,000		32,000,000	415				(8) 7,300
Minctiory	31.700.000	$14.500,000$ $4.630,000$ 1	8, $\substack{8,765,000 \\ 2,780,000}$ 1	T,860,000	-000		- ${ }^{4} .400000000$	(9) 1.047×0000				${ }_{238}^{330}$	$\underset{55}{127}$	(10) 6,956
				2,790,000		${ }^{6}$	1,700,000		5,000,000	-		238 350 1		4,000 7.640
M1800us,	28,893, 825	18, 893.825	14,543,825	13,043.025	1.500.000		3.000.000	(11) 1,350.000	10,000,000	922	4.0	350	122	. 640
Neotana	0,6\%,06	,65,000	4, $4,600,000$	2,050,000	60, 0000	200,000	$\xrightarrow{\text { 2,000,000 }}$	(12) 20.0000	10.000, 0000	2, 10	+	700		
Nevad	2.,360, 53	1,860,5	1,390, 185	1,330,185	60,000	11,000	279,000	120.345	500,000			145		1,502
Newn muponine	5,520,000	020,000	,400,000	1,300,000	100,000	700,003	1,800,000	120,000	1,000,000	100	10	75	15	2,000
Nen Jenerv	35, 4000,000	19,400,000	14,600,000	11,600,000	3,000,000		2,000,000	(13)2, 2000,000	16,000,000	120	10		10	3,990
Nem Mexico	3.882,000	3.582,000	2,410,000	1,900,000	${ }^{5100.000}$	125	8380000	209.	300		${ }^{45}$			
Nem Yoak	85,400.000	61,400,000	54,000,000	51.000.000	(c) ${ }^{3,000}$ -		7,400,000 $4,000,000$		${ }^{24,0000000}$. 606	-	\cdots		9.781
	(14) $4,4,490,0000$	1,900,000	$1,060,000$	17.960,000	100,000	60,000	590,000	190,000	2, 5950,000	1,002	521	(2)		
0×10	53,000,000	25.000,000	13,000,000	12,000,000	1.000	.000,00	${ }^{8,000}$,000		28.00					
,	${ }^{26,265,000}$	11.250,000	8,650,000	6,900,000	1,750,000	vowe	2.000,000	600.00	15.000	${ }^{8950}$	300			
coom	15,000.000	${ }^{6,750.000}$	$\begin{array}{r}3,600.000 \\ \hline 1.000,000\end{array}$	3,0000000 48,000	, 500,000	5,000,000	2,400,000 $12.500,000$		$8,260.000$ $16.400,000$	252	125 100	125	号	
Rroor 10	$\frac{24,350,000}{7, .475,000}$	6,650,000	5,660,000	2,600,000	(17) $3,150,000$		8225,000	175,000	825,000					
South		12,925,000	10,250,000	9,250,000	1.000,	475.	2.200		11.000.000	600	-	350	2.5	0
	-	30,956,6	$2,3344,500$ $16,000,000$	(er $\begin{gathered}2,1000000 \\ 10,150,000\end{gathered}$			$\begin{array}{r}\text { a } \\ \text { 4,000,000 } \\ \hline 180000\end{array}$		17,000,000	529	23	4.40 113	93	4.669
Texat	,000.000	22.000,000	13,350,000	11,350,000	2,000,000	1,000,000	7,000,000	650.00	9,000.000					15.000
	3,770.000	2,540,000		, 600,000	200,000	140,000	600,000		.230,000	100				3,300
Vemona	(14) $4.500,000$	3,750,000	2,000,000	1,500,000	500,000		1,780.000		.000	110		100	10	
Vimolvia	O39	13,089,950		-,200,000	(5) -		3,266		8,000,000		50			
\%eor vin	17,	9,250,000	7.250000		, 50000	,000	1.2000						50	2.200
\%,	(14) 214.7020 .000	21,462,000		15,262,000	500,000 2,000,000		1,3000000 $3,000,000$		$3.310,000$	1.569	200		374	(8) $\begin{array}{r}2,200 \\ 10,000\end{array}$
Avou lno	4,214,000	3,215,000	2,180,000	1,700,000	480,000	-109,000	666,000	260,000	-990,000	. 350	1.5	1200		2,925
rotals	1.123.e07.055	648,483,055	477,356,130	420,844,090	56,472,040	26,990,650	125,699.710	18,536,565	475.124,000	26,841	6,957	12,395	7,489	239,8

[^1] rotals
(excemp

STuTul ante		1＇0L2＇sz	＇204＇s											そ\％て＇	7101 arver
Sm10103719130						599＊62ist	11	ce． 1	200	12\％$\frac{18}{}$	－（01）	－（b）		i03＇p98＇152	ع） 52716103716130
												986．86 －999＊ 10 O 	82 4021 148．6ED 		
	－	\％		$\left.\right\|_{\text {a }} ^{\text {a }}$			$\varepsilon 20{ }^{\circ} \mathrm{ER}$ $21 \varepsilon^{\circ} \mathrm{bel}$			${ }^{\text {950 }}$					
	OLL＇109（01）														
	OL4＇160（00）	$0^{000^{\prime} 100^{\prime}}$			$000^{\circ} 002$ 000 ＂0 （£1）	L23． 9 ¢8． e									
					$020^{\circ 96}$		E	239 ${ }^{\text {a }}$				 	998.060		
					（e）				（en	－200＇59			028 602 		
	－			（e）	$\begin{aligned} & 881.08 \\ & 100.108 \cdot 1 \\ & 200^{6} 69 \end{aligned}$		929. 92L．OR								
		¢99＇¢59	000 0000×9	ع68．00 ${ }^{\circ}$	 L28＇262 608.92	$260^{\circ} 206$ $65 \cdot 811$	$\text { b98 } 1 \angle \Sigma$								
	182¢ 68 E （ 4 ）	920＇rs					132\％	ors ${ }^{\circ} \mathrm{c}$	soi＇，			Ls＇zui＇s			$\underset{\substack{\text { vursinol } \\ \text { avonin3x }}}{ }$ －StSV浬 －v40
	－	Ev8＊015＊					${ }_{0 \times 1}^{k \varnothing R}$ $001 \cdot 3$								
	\vdots \vdots	\square \vdots								602°					\square
			${ }^{\text {a }}$												
						$83 \mathrm{HIO}$		$\begin{array}{r} 35 N 3017 \\ .8807 v 30 \end{array}$		$\frac{1883719+1}{8131}$	$\begin{aligned} & \text { 8yOLJVE1 } \\ & \text { y sxonel } \\ & \text { S1d } \end{aligned}$			StdI303y S9089 7 7V101	
	ө1d 133 y														

PROGRESS OF FEDERAL HIGHWAY LEGISLATION

(Not for release)
The following information gives the status of federal highway legislation at the close of the second Session of the Sixty-ninth Congress on March 4, 1927. At that t!me no further action had seen taken upon the following gills mentioneo in previous issues of the News Letter:

$$
\begin{aligned}
& \text { H.R. } 14254 \text { - O. C. DOWELL, IOWA } \\
& 14565 \text { - Scott Leavitt, Montana } \\
& 14828 \text { - S. S. Arentz, Nevada } \\
& 14923 \text { - W. F. Stevenson, South Carolina } \\
& 15422 \text { - B. C. Reece, tennessee } \\
& 15669 \text { - C. J. MCLEOD, Michigan } \\
& 15970 \text { - Scott Leavitt, Montana } \\
& 16464 \text { - E. E. Denison, Illinois } \\
& 16777 \text { - 0. B. Burtness, North Dakota } \\
& 17250 \text { - A. M. Wyant, Pennsylvania } \\
& \text { S. } 4675 \text { - C. Eupont, Delaware } \\
& 5730 \text { - J. E. WATSON, INDIANA } \\
& 5776 \text { - G. W. Norzis, Neeraska }
\end{aligned}
$$

TWO gills were previously reported as having eecome acts, AS FOLLOWS:

> H.R. 14827 - INTERIOR DEPARTMENT APPROPRIATION BILL, PUELIC 541
> 15008 - AGR!CuLTURAL DEJARTMENT APPROPRIATION EILL, PUELIC 552.

In addition to these, new bills were introduced and action Was taken on those al eady introduced as follows:
H.R. 16249 - War department appropriation bill. Introduced in the House on January 13. Signed ey the president and eecame an act on Fegruary 23, as puelic 630. As signed, the jill prov!des $\$ 1,000,000$, INSTEAD OF THE $\$ 700,000$ OF THE ORIGINAL EILL, FOR the construction, repalr and malntenance of roads, tramways, ferries, eridges and trails in the territory of alaska. the $\$ 15,000$ FOR REPAIRS TO ROAOWAYS TO NATIONAL CEMETERIES CONstructed ey special authority of Congress remains unchangec.
H.R. IS462. - Urgent deficiency appropriation bill. introduceo in the house on January 19. Signed ey the president and eecame an act on fegruary 28, as puolic 660.

FZOVIDES AN ADPROPRIATION DF \＄1，$\therefore 00$, DOO FOR FDREST FOACS AND tizalls，jeing the remainder of the sum of $\$ 7,500,000$ authorizeo to se appropriatec for the fiscal vear 1927.

H．R．1．6551．－Introouceg in the House on Januafy 21，jy W．A． Oldfield jf Arkansas．Signed zy the presioent and secame an ACt on i iarch 4，as fuミlic 773.
Pajvides that existing federal－aic road legislation ee so amended as to permit feceral alc to ge granted，on the same Easis as in the construction of a enee grioge，to any toll ERIJGE AND APRTOACHES THERETO，CONSTRUCTED छY A State，COUNTY or other political sujoivision．provides that all tolls，less maintenance costs，shall de afdlied to the repayment of the fortion of the cost palo jy the State，county or other political SUミDIVISION，ANC THAT WHEN THIS ！S ACCOMPL！SHEC THE TOLLS SHALL cease and the eridge shall thereafter je free．The Committee on Interstate and foreign Commerce reportec a suestitute छill to require operiation gy the state or the political suegivision， and added a nel section making the provisions apoly to apprioach ROADS TO ANY TOLL ERIDGE OR TOIL FERRY．THIS SECTION WAS RULED out gy the speaker of the house on a puint of order，and the suミstitute elll minus this section was passed．
h．R．13576．－afpropriation sill for the departments of State， Justice，Commetice and Lacor．Introduced in the houss on January 22．Signec ey the paesident and eecame an act on fee－ ruary 2＇f，as fuミlic 638，BIll as passec provides $\$ 40,000$ （ORIGINAL EILL $\$ 30,000$ ）FOR ROAD CONSTRUこTION WORK IN ALASKA under the bureau of fisheries．

H．R．17372．－introcuced in the house on March I，Ey Charles brand of Ohio，and referred to the Committee on roads．prodoses to amend sections 8， 11 and 12 of the federal highing act as amend－ ed to provide essentialiy that the plans of federal－aio road pRoJects and the construction of such projects shall ee suaject to the approval of the Secretary of agriculture onlv when the share of the cost payajle gy the Uniteo States exceeds 50 per cent of the total estimatec cost．
The reference to the Committee was the only action taken on this eill，anc it oled with the adjourniment of Congress．It is opposed ey the bureau．

H．J．Res．329．－Intrinduced in the house on January lo，ey J．C． Linthicum of Matyland，and referited to the Committee on foreign Affalits．Passec ey the House without amendment on january 17. beported out vithout amendment zy the Senate Committee on Foreign relations，January 18 ．Passed over without consider－ ation ey the senate on Fegruary 2，7，and 28，and died with the aduournment of Congress．
PRJVIDED FOR AN AUTHDRIZATION OF \＄15，000 FOR THE EXPENSES OF darticipation ey the United States in the Second pan－American Conference on Highways at rio de Janeiro．

S．3889．－Introcuced in the Senate छy E．B．Mayfield of texas． Signed jy the President and eecame an act on March 4，as デUミレIc 805.
The ミill as passed authorizes the Secretary of War to prescribe rates of toll over highway gridges agross the red river between oklahoma and texas．

S．4530．－Introcucec in the Senate on June 23，1926，ey T．L． Odoie of Nevada，anc referred to the Committee on post Offices and post roads．Reportec without amendment on fesruary $4,1927$. Passed over ey the Senate without consideration on Feeruary 7, 28，and March 2，and ciee with the adjournment of Congress． The Eill contained three provisions：（l）To amend existing Federal－aid moac acts to permit uncer certain conditions，in－ creased federal ald on projects in puzlic－land States to any percentage up to and including the total cost，with the proviso that the aggregate of the federal alo allotted on projects apDroved dufing any fiscal year for construction in any State shall not exceed the pro rata heretofore payagle in such State under the provisions of the law；（2）to make \＄20， 000 the minimum year＇s allotment of federal ald for forest roads in any State；（z） ty allow increased feoeral aid on projects involving construc－ TIJN IN MOUNTAINOUS，SWAMPY OR FLOOD LANDS ON WHICH THE AVERAGE COSt per mile for the grading ane drainage structures other than三RIJGes df mofe than 20 feet clear span will exceec $\$ 10,000$ per mile，and also in the case of any project which，ey reason of density of population or character and volume of traffic，the State highway department and the Secretary of agriculture may cetermine shall छe improved with a surface of greater wioth than 18 FEET．
an amendment pfopdsed ey Senator Oddie on Fejruary 23，was designed to eliminate the $\$ 20,000 \mathrm{~min}$ imum for federal ald on FOREST ROADS．

S．4502．－Introcuced in the Senate on decemaer 7，1926，玉y T．L． Odjie of Nevaca anc passed ey the senate without amendment on Feszuary 28，1927．Dic not secome an a⿱夂口． paovided：（1）That the shileld or other ivsign：a of the United States shall not ee usec as a highway miraser except oy the State highway departments or the U．S．Department of Agricul－ ture；（2）that not more than 60 per cent of all federal alo allotted to any state shall ge spent on the primary or inter－ state highwaye until padvision has eeen made for the improve－ ment of the entire system．

S．4933．－Introcuced in the Senate on Decemeer 20，1926，oy hiram bingham of Connecticut．Signeg gy the president ano zecame an act on fezivary 25，as r̈பslic 650. THE＝ILL AS PASSEC WOULE AUTHORIZE THE APPROPRIATION OF $\$ 100,000$ from the Treasury to enagle the Seotetary of agri－ CULTURE TO CONETRUCT，RECONSTRUCT GNE MAIMTA：N DUEL！C HIGHWAYS in the Virgin islands．No moneys appfiopriateo under the author－ ！IZATION CONTAINEL IN THIS ACT SHALL BE EXPENCED TOR CONSTRUCTION，
 contracts have seen made ey all owners of lanes adjoining such H！GHWAY WITH THE SECRETARY OF AGR：GUMURE，WHEREEY SUCH OWNERS agree that they will sell at least one－half of such lands to actual settlers．
The appropriation authorized छy this act was not made．
S．5031．－Introcucec in the Senate on January 3，by r．H．Cameron of minizina：．Passed the Senate without amendment on Fegruary 28. DID NOT SECOME AN ACT．
Provides for the creation of a Pan－american peoples Great highivay COMMISSION W＇HOSE DUTY WILL EE TO LODATE THE MOST FEASIELE HIGHMAY route from canada，through the l＇n！tey Biates，Mexico，and demtral and south america．To carry on the wiork \＄200，000 is authosized to se appropriatel．

S．5717．－Introtuced in the Senate on fegruafy 15，ay G．H．Nioses of New Hampshire and reporitec out without amendment sy the Com－ mittee on post offices anc post roads on Fegruary 25．Fassed over ey the Senate without consideriation on march 1．Did not gecome an act．
AUTHORIZES THE ADOROPRIATION OF FUNDS FOR THE CONSTRUCTION OF A highway from rec lodge，Montana，to the joundary of the Yellow－ stone national pank，near Cooke City，Niontana．（this aill is ioEntical with h．i．15970）

$$
+2
$$

[^0]:

[^1]: inary oucaete
 chlocation

