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§ 1. I ntroduction .

T h e  k inetic  th eo ry  o f gases can be developed accu ra te ly  only a fte r  th e  d is trib u tio n  o f 
th e  m olecular velocities has been determ ined . This was done by M a x w e l l * in th e  
case of a uniform  gas, and  by  m eans of his w ell-know n law  of d is trib u tio n  th e  pressure 
and  tem p era tu re  can be precisely expressed in term s of th e  m olecular da ta . H is law  
does no t suffice, how ever, for th e  in v estiga tion  o f diffusion, viscosity, or th e rm al 
conduction, since these occur only w hen th e  gas is not uniform  in  composition, m ean 
velocity, or energy. A n accurate  th eo ry  o f these phenom ena m ust be based on th e  
evaluation  o f th e  modified velocity -d istribu tion  function, a ta sk  which for m any 
decades has co n stitu ted  one of th e  classical unsolved problem s of th e  k inetic  theory .

* Maxwell, ‘Scientific Papers,’ I., p. 377, II., p. 23. The proofs were unsatisfactory, and have been 
improved by Boltzmann, J eans, and others.
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280 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In  one special case, as M a xw ell  found, th e  actua l de term ination  of th is  function 
proves to  be unnecessary for the  purpose m entioned ; th is  is th e  case of a gas composed 
of molecules which are point centres o f force vary ing  inversely as the  fifth power of 
the  distance. The reasons for th e  peculiarity  in th is  instance are analy tical and not 
physical, and u n fo rtunate ly  for th e  sim plicity of th e  m athem atical theory  of gases, 
M a x w ell’s resu lts*  for such a gas do no t accord w ith  the  observed d a ta  of actual 
gases. This particu la r m olecular model is therefore in te restin g  chiefly on theoretical 
grounds, and it  is im p o rtan t to  develop th e  theory  for molecules of o ther types, 
which m ay b e tte r rep resen t the  behaviour of real molecules.

U n til recently  no progress had  been m ade tow ards th e  determ ination  of th e  velocity- 
d istribu tion  function for a non-uniform  gas, beyond a theorem  by B oltzmann,! who 
proved th a t  the  function m ust satisfy  a certain  in teg ra l equation. In  1911, E nskogJ 
applied th e  m ethod of solution by series to th is  equation ; he determ ined the  form of 
the  function, b u t w ithou t evaluating  its  coefficients, and  his num erical approxim ations 
proved far from satisfactory. In  1912, H ilbert  § showed th a t  if  the  molecules of the  
gas are rig id  elastic spheres, B oltzmann’s equation  m ay be transform ed into a linear 
orthogonal in teg ra l equation of th e  second k ind w ith  a sym m etrical kernel, and 
deduced th e  existence o f a unique solution. L u n n || and P idd u ck î have since removed 
H ilbert’s restric tion  to  a special type  of molecule, and  by m eans of th e  transform ed 
equation P idduck  has w orked ou t a num erical solution of a special problem on 
diffusion. These researches are of m uch im portance and in te rest, especially from th e  
logical standpo in t of th e  pure m athem atician . The use o f B oltzmann’s equation, 
howevever, does not appear to  be th e  best m ethod of actually  determ in ing  th e  formal 
so lu tio n ; th u s  P idduck  s ta tes  th a t  th e  sym m etrical kernel of th e  transform ed 
equation shows no special properties in th e  case of M axwellian molecules, and in the  
num erical solution it appears to  be necessary to  repeat all th e  calculations, which are 
very laborious, in every special case which is w orked out.

In  1911, by th e  assum ption of a simple form for th e  velocity-d istribution  function, 
I  endeavoured to  ex tend  M a x w e ll ’s accurate theory  of a gas to molecules of th e  most 
general k ind com patible w ith  spherical sym m etry .## Subsequent acquaintance w ith 
E nskog’s work convinced me of th e  approxim ate n a tu re  of my results, and during  the 
last few years I  have given much th o u g h t to the  determ ination  of the  general velocity- 
d istribution  function. By a m ethod w hich is quite d is tinc t from th a t  based on

* Maxwell, * Scientific Papers,’ II., p. 23. Molecules which are point centres of force varying 
inversely as the fifth power of the distance will, for the sake of brevity, be referred to as Maxwellian 
molecules.

t  Boltzmann, ‘Vorlesungen iiber Gastheorie,’ I., p. 114.
\ Enskog, ‘ Physikalische Zeitschrift,’ XII., 58, 1911.
§ Hilbert, ‘ Math. Annalen,’ 1912, or ‘ Linearen Integralgleichungen ’ (Teubner), 1912.
|| Lunn, ‘Bull. Amer. Math. Soc.,’ 19, p. 455, 1913.
H Pidduck, * Proc. Lond. Math. Soc.,’ (2), 15, p. 89, 1915; cf. p. 95 for the statement quoted.

** Chapman, ‘Phil. Trans.,’ A, vol. 211, p. 433, 1911.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MON ATOMIC GAS. 281

Boltzmann’s equation, viz., by  th e  use o f th e  a g g re g a te  o f th e  equations of tran sfe r 
for certa in  infinite sequences o f functions o f th e  m olecular velocities, an expression for 
th e  velocity -d istribu tion  function  sim ilar to  th a t  found by  E nskog  can be obtained, 
and  general formulae for th e  coefficients can be de term ined . T he p resen t paper contains 
th e  solution for a gas in w hich th e  m ean velocity  and  th e  te m p e ra tu re  v a ry  from 
poin t to  poin t, th e  resu lts  being  w orked o u t a t  all com pletely only for th e  case o f a 
sim ple g a s ; in a la te r  paper I  hope to  g ive th e  solution in th e  m ost general term s, 
so as to  yield a com plete th eo ry  o f v iscosity , th e rm a l conduction, and  diffusion in a 
com posite gas form ed of tw o k inds o f spherically  sym m etrical m olecules o f an y  type.

The formulae ob tained  by th e  p re sen t m ethod  lend them selves to  num erical calcula
tion, and  are found to  converge rap id ly . The re su lts  for an y  p a rticu la r m olecular 
m odel can be calcu lated  to  an y  desired  degree o f accuracy  ; in  th is  paper th ree  special 
ty p es  o f m olecule have  been considered, viz., po in t cen tres  o f force v a ry in g  inversely 
as th e  nth pow er o f th e  d istance, rig id  e lastic  spheres, and  rig id  e lastic  a ttra c t in g  
spheres. I t  is found th a t ,  for such m olecules, th e  e rro rs  in th e  ap p ro x im ate  formulae 
for viscosity  and  th e rm a l conduction w hich w ere g iven in m y first paper do n o t exceed 
tw o or th ree  per cent, a t  m ost. The d e ta iled  num erical resu lts, and  com parison w ith  
observed d a ta , are g iven in §§ 10-12.

§ 2. D e fin it io n  and  P r e l im in a r y  C onsideration  of t h e  P roblem .

The N ature o f the Gas.

§ 2 (A). The gas con tem pla ted  in  our calcu lations is m onatom ic and  nearly  perfect, 
“ m o n a to m ic” im ply ing  n o th in g  m ore th a n  spherical sy m m etry  o f th e  molecules, 
while “ nearly  perfect ” deno tes a certa in  s ta te  as regards d en sity  and  tem p e ra tu re  ; 
th is  s ta te  is such th a t  th e  m olecular p a th s  a re  sensibly rec tilin ear for th e  m ajo rity  
of th e  tim e, being a lte red  by  m u tu a l encounters, th e  d u ra tio n  o f w hich is a very  
sm all fraction  o f th e  average in te rv a l between tw o encounters. In  these  circum 
stances th e  num ber and  effect of encounters in w hich m ore th a n  tw o molecules are 
sim ultaneously  engaged is neglig ible in com parison w ith  th e  num ber and  effect 
of b inary  encounters.

The gas is supposed to  be acted  upon by  e x te rn a l forces, and  th e  varia tions o f these  
forces, and  of th e  density , m ean velocity, and  tem p era tu re  of th e  gas, w ith  regard  
to  space and  tim e, are  sm all q u an titie s  of th e  first o rder a t  most. In  th e  p resen t 
paper th e  density  of th e  gas is supposed such th a t  th e  m ean leng th  o f p a th  o f 
a molecule betw een collisions is sm all com pared w ith  th e  scale o f th e  space-variation 
of th e  above q u an titie s  ; th e  m odifications o f th e  theo ry  in th e  case of h igh ly  rarefied 
gases, w here th e  m ean free p a th  becomes large, will be d ea lt w ith  in a fu tu re  
paper. As we are  no t in te rested  in th e  mass m otion or acceleration of th e  gas 
as a whole, b u t only in th e  sm all varia tions w ith  reg ard  to  space and  tim e, it is 
convenient to  im agine th a t ,  by th e  add ition  of a su itab le uniform  m otion and field

2 q 2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



282 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

of force to th e  whole gas, th e  m ean velocity and acceleration a t  the  particu lar point 
and tim e under consideration are reduced to  zero, th e  velocity and  acceleration a t 
o ther points th ro u g h o u t the  gas being small, though  no t actually  zero.

Notation.

§ 2 (B) W e shall denote th e  mass o f a molecule by  m, th e  num ber of molecules per 
u n it volume a t  th e  point (aj, y, z) by v, th e  com ponents of ex tern al force acting  on a 
molecule a t  (x, y, z) by (X, Y, Z), th e  com ponents of th e  velocity of a typical molecule 
by (u, v,w), and th e  com ponents o f th e  m ean velocity of th e  gas a t  th e  point (x, , z) 
by (u0, v0, w0). The vector difference betw een th e  velocity of a typ ical molecule and
th e  m ean velocity (u0j vQ, w0) will be called th e  peculiar velocity of th e  m olecu le; we 
shall denote its  com ponents by (U, V, W), so th a t

(1) U =  u —u0, V =  v — W =  w —w0.

The Distribution o f Velocities.

§ 2 (C) The d istribu tion  o f th e  m olecular velocities m ay be specified by v0, w0) 
to g e th e r w ith  a function U, V, W), called th e  velocity-d istribution  function, 
which is defined by th e  following p ro p e r ty : th e  num ber of molecules contained 
w ith in  a volum e-elem ent d x  dy dz abou t th e  point ( , y, z) which possess peculiar 
velocities whose th ree  com ponents lie respectively betw een (U, V, W) and (U+c£U, 
V + dV, \N + d\N) is

(2) v /(U , V, W) c?U d\/ d W d x d y d z

Besides being a function of U, V, W, f  will depend on th e  m ass , th e  absolute 
tem peratu re  T and its  space derivatives a t  th e  point (x, , z), and on th e  space
derivatives of (u0, v0, w0), b u t not on th e  absolute m agnitudes of the  l a t t e r : for we 
m ay evidently  im part an a rb itra ry  additional velocity ( ' , v', w'), to th e  whole mass 
of gas w ithou t affecting the  d istribu tion  of the  peculiar velocities of the  molecules 
a t  any point. I t  is therefore leg itim ate , and  it  will prove convenient, to  suppose 
th a t, a t  th e  actual point under consideration, 0 ; w here u0, v0, w0
occur in any  expression which has to  be d ifferentiated, however, th ey  m ust not be 
made equal to  zero till a fte r th e  d ifferentiation has been performed.

In  consequence of th e  definition of f  and of U, V, W, m ust satisfy  the  following 
equations :—

(3) V, \N)dUd = 1,

(4) fjj U /(U , V, W )d(Jd\/d\N  =  j j j  V /(U , V, W)dUcZVdW

=  f | |  W /(U , V, W )d\JdVd\N  = 0.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 283

I f  Q denotes any  function  o f th e  velocity  com ponents w) o f a typ ica l molecule, 

while Q denotes its  m ean value a t  th e  po in t (x, , z), we have

(5) Q = j j j  Q /( u ,  V, W )dudvdw ,

in which, for purposes o f in teg ra tio n , Q w ould be expressed  in  te rm s o f %0+ U , v0+V, 
w0+\N by  (2). In  th e  in teg ra ls  (3) to  (5), and  elsew here th ro u g h o u t th e  paper, 
in teg ra tio n s  w ith  respect to  th e  velocity  com ponents are  understood  to  be ta k en  
over all values o f th e  variables, from  — 00 to  +  co.

The equations (4) m ay, in th e  n o ta tio n  ju s t  in troduced , be expressed  as fo llo w s:—

(6) u  =  v  =  W =  0.

The Velocity-distribution Function fo r  Uniform Gas.

§ 2 (D ) W h en  th e  gas is uniform , all th e  d e riv a tiv es  o f T and  of (u0, v0, w0) a re  zero, 
and  f  m u st depend only on m, T, and  (U, V, W). I t  has, in fac t, been show n by 
M a x w e ll  an d  o thers*  th a t

(7)
w here

/ hm — hm (u 2 +  V2 +  W 2)

(8)

and  I t  is th e  universal gas co n stan t in  th e  ch arac te ris tic  equation  o f a g a s :

(9) p  =  1VT.

The D istribution Function fo r  a Non-uniform  Gas.

§ 2 (E ) W h en  th e  gas is s lig h tly  non-uniform , f  w ill differ s lig h tly  from  th e  value 
given by  (7), w hich we shall deno te  by  f  : we m ay therefo re  w rite

(10) / ( U, V, w) = /„ (U ,  V, W){1 + F(U, V, w)} =  ^ y ,e-'i“ (u’,+v,+w,){ l + F(U, V, W)}.

The function F  will be o f th e  sam e o rder o f m agn itude  as th e  varia tions o f 
tem peratu re  and velocity  in th e  gas ; these  space derivatives we shall reg a rd  as being 
of th e  first order, an d  as we shall neg lec t second order q u an titie s  th ro u g h o u t our 
work, no p roducts o f derivatives will occur in F . H ence, since F  vanishes w hen th e  
varia tions in th e  gas are zero, i t  m u st be a linear function o f th e  space derivatives 
o f T and  (w0, v0, w0), w ith  no te rm  independen t of these derivatives. The coefficients 
will be functions of m, T, and  U, V, W.

Clearly th e  form of F  cannot depend upon any  special choice o f axes o f reference 
(these are th ro u g h o u t tak en  to  be m u tu a lly  perpendicular), so th a t  F  is an in v arian t

* Cf.Jeans’ ‘ Dynamical Theory of Gases.’
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284 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

w ith  respect to  any  orthogonal transform ation  of the  co-ordinate axes. This places 
some restriction  upon th e  possible modes o f occurrence in F  of (U, V, W) and of th e  
space derivatives of T and  (u0, v0, w0), though  not, of course, on the  scalar quan tities 
m  and T. I t  is easy to  see th a t  the  m ost general in v arian t function of th e  quan tities 
involved in F  m ust be com pounded of th e  following elem en tary  invarian ts :—

( i d

(12), (13)

C2 = u2+v2+ w 2,

s  =_  du0 d+ +dx dy
V2T _31 _01\ T

dx2 dy2 ’

(14) D T = T,

(15) S ' y2 3Uo y2 
dx dy + W div0

Hz
+ VW dw()

dy
0Vo
dz + WU fdUp l dw()

dx + UV dvo . Q
dx dy

to g e th er w ith  derivatives of th e  la st four expressions form ed by operating  on them  
any num ber of tim es by th e  in v arian t differential operators V2 and D, in th e  notation 
of (13) and (14).

[ January 15, 1916.— E xcep t in th e  case of h ighly  rarefied gases, which were 
expressly excluded in § 2 (A), only the  derivatives of th e  first order actually  occur in 
F , to  th e  p resent degree of accuracy. The reasons for th is  will perhaps be more 
clearly apparen t a fte r read ing  § 11, b u t th e  following considerations will elucidate the  
point. W h atev er derivatives are contained in F  m ust (§11) appear e ither in the  
equation of pressure or th e  equation of energy, so th a t, if th e  o rd inary  equations of 
viscosity and th erm al conduction are to  hold good, only th e  first-order space deriva
tives of tem pera tu re  and m ean velocity can be p re s e n t; otherw ise th e  ordinary  
coefficients of viscosity and conduction do not exist. In  actual gases a t norm al 
densities th e  ordinary  equations are shown by experim ent to  be v a l id ; th ey  fail, 
however, in h ighly  rarefied gases because the  term s in F  which contain second-order 
differentials of T, u0 , v0, w0 are in th is  case comparable w ith  those containing derivatives 
of th e  first order, as will be seen in detail in th e  fu tu re  paper m entioned in § 2 (A). 
The coefficients of th e  first and second order derivatives respectively contain (\/l)  and 
(A/02, where A is th e  mean free p a th  of a molecule and l is comparable w ith the  scale 
of leng th  w ith in  which the  tem peratu re  and  m ean velocity vary  appreciably ; except 
in rarefied gases (a/ / )2 can be neglected in comparison w ith  (A//). The same inferences 
can be made also ( cf’ § 6) from the  equations of transfer of § 3.

For th e  present paper it is therefore sufficient (and it is convenient) to  w rite  down 
th e  following form of F  fo rthw ith  :—•

( 16) F = ( u | ^  + v W1 0  P, (C2) + SP2 (C2) + S'P3 (C2),
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 285

this being th e  only w ay in w hich th e  first-o rder derivatives can occur in F , in order 
th a t  F  m ay be an  invarian t.

H ere  P i (C2), P 2(C2), P 3(C2) denote  certa in  un d e term in ed  functions of U, V, in 
which these variab les appear only in th e  form  U2 +  V3+ W 2 or C2. The first te rm  of F  
is ev iden tly  of odd degree in U, V, W com bined, and  th e  second and  th ird  are of even 
d eg ree ; it  is convenient to  denote  th em  by  0 ( U ,  V, W) and  E (U , V, W), w hen we 
wish to  refer to  th e  odd or even p a r t  o f F  sep ara te ly .]

I t  is easy to  see th a t ,  in  a  uniform  gas, f 0 satisfies th e  necessary conditions (3), (4). 
In  th e  non-uniform  case these  conditions requ ire  F  to  satisfy  th e  equations

(17) j j  j /o F  dU dwdW =  0,

(18) J j | U /o F d U d V d W  =  j j j V /0F d l ld V d W  =  j | j  W /0F d U d V d W  =  0.

C learly  th e  odd p a r t 0 ( U , V, W) of F  satisfies (17), and  th e  even p a r t  E ( lJ ,  V, W) 
satisfies (18), b u t no t vice versa, so th a t  th ese  equations place certa in  restric tions on 
0  and E.

§ 3. T h e  E quation  of T r a n sfer  of M olecular  P r o pe r t ie s .

§ 3 (A) The ra te  o f change o f rQ, th e  a g g re g a te  value o f Q (u, v, tv) per u n it volume, 
m ay be analysed  in to  th ree  p a rts , viz., th a t  due to  m olecular encounters (which we 
denote by  AQ), th a t  due to  th e  passage o f m olecules in or o u t o f th e  volum e-elem ent 
considered, and  th a t  due to  th e  action  o f th e  ex te rn a l forces. The equation  
expressing th is  analysis m ay readily  be show n* to  be

(19) (*Q) = A Q -  2
z,y, z

A  (ru'Q) _  -  X
ox m

W e m ay define AQ by th e  s ta te m e n t th a t  (AQ is th e  change produced
by m olecular encounters du rin g  tim e dt in th e  sum  2 Q  tak en  over all th e  molecules 
in th e  volum e-elem ent dx dy dz : ev iden tly  2 Q  =  t/Q dx dy dz.

I f  in (19) we m ake Q equal to  un ity , in w hich case AQ is clearly  zero, th e  equation 
becomes

— — — f dvU» _l  , dr?/;0\  
dt \ dx dy dz )

( dup d%
\ dx dy d z )

dv
M“^ + ,,o ^ +Wo a .

which is th e  equation of con tinu ity .

* Cf. Jeans’ ‘Dynamical Theory of Gases.’
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E xcept under th e  differential sign we shall w rite  U, v =  V, w — W, since we are 
supposing th a t  u0 =  v0 = w0 = 0 a t  th e  point (x, , z). The last equation consequently 
reduces to

1 / du^ , 3v_o , 3^o\
j/ dt \3sc 3

In  tak in g  m ean values of functions o f U, V, W, as in (5), we shall neglect th e  p a rt 
F  in the  velocity-distribution function f ,  in cases w here the  m ean value i$ to be 
d ifferentiated or m ultiplied by a small factor, since th e  resu lting  error is only of the  
second order.* Thus, in such cases, we shall w rite

(21) U2C2* =  i C 2(s+1), U4C2(,- 1} =  1C2(S+1), V2W2C2(s_1) =  ;^ C 2(s+1),

(22) C7 =  1 . 3 . 5 ... (2s + 1) 

while, if  e ither p, qor r  is odd,

(23) LFV'7Wr =  0.

Since th e  equation of transfer involves derivatives o f th e  first order only, it is 
sufficient, w henever th e  m ean value of a function of u, v, w is to be differentiated, to 
expand it by T aylor’s theorem  in term s of so far as th e  first degree o n ly ;
if, then, the  coefficient o f u0,vh, w0 is o f type  (23), th e  corresponding term  m ay be 
om itted  a ltogether.

Case I .Q =  u

§3 (B) W hen  Q =  u (u2+v2 + w2)s,according to  th e  principles ju s t  laid down we 
have

286 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

^(i/w Q ) =  ^  v(U 2C2s + 2u0UC2s + 2sU2 (u0U + v0V + w0

1 a / 1 . 3 . 5 . ..(2 8  + 3) 3 / 1
3 dx ° v OLdx V \2

\ s + l

1 . 3 . 5 . . .  (2s + 3) /  1 Y f 1 3 V _3_ / _1
^ 2 hm) I 2 h m d x +* dx \,2 +Sv dx ^2 ’

i _ / _ L

0   o ______
(wQ) =  0, — (vwQ) = 0,Gy CZ

* Except in gases of very low density.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 287

neglecting  in each case q u an titie s  o f th e  second order. Since Q is o f th e  first order, 
to  th e  sam e degree o f accuracy  as in th e  above equations, we have

^  (vQ) =  0.

A gain, w ritin g  u — U, v =  V, w = W a f te r  d ifferen tia tion , we have

( i )  -  E - * t 2 ,u W  -  i(2 , + 3)C= -  *

H ere  we have om itted  UVC2(s-1) and  UWC2(s-1), since w hen  m u ltip lied  by  X, which 
is o f th e  first order, th e  re su lt is o f th e  second order, an d  hence negligible. 
S im ilarly

1 . 3 . 5 . . .  (2 s + 3) / 1 y  f 1 dv 1 \ * x
3 2hm) \2hrn dx m  dx \2hmJJ

The equation  o f tra n s fe r  consequently  tak es  th e  form  

(24) AUC

W h en  5 =  0, th is  becomes

a l  i  \ _ _ l xAU 1
+  v2 hm dx dx \2hmJ m

N ow  mAU is th e  ra te  o f change o f m om entum  per u n it volum e due to  th e  
m olecular encounters, and, since action  an d  re-action  are  equal and  opposite, th is  
change is zero. H ence we have, rem em bering  th a t  (2 = R T  =

(25) =  L  ( jl
dx \2h2 h d x + y d x \2 h

dp
d x ’

w hich is one of th e  equations of p ressure  o f th e  gas.
On su b s titu tin g  th e  value of X  given by  (25) in to  (24), th e  la t te r  m ay be w ritten

(26) (2 hms+ 1 ^ a u f a .  _  I . S i  
" AU( " T a r ’1 . 3 . 5 . . .  (254 -3 )5  v 

w here we have used th e  equation  (c f.8)

2 h m i x ( s L ) =1T d£ -

There are tw o equations sim ilar to  (26) g iv ing  AVC2* and  AWC2s in te rm s of ST
and dl/dz.

vol. ccxV i.— A. 2 R

 D
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288 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

Case I I .Q =

§ 3 (C) M aking approxim ations and  reductions as in Case I., we have 

d_ (f>\ — —  (i p2(s+i)\ _  1 - 3 . 5 . . .  (2.9 +  3) /  1 \ s+1d tCQ) ) 3 0

1 . 3 . 5 . . .  (2  ̂+  3) /  1 Y+1 f l  a , ^ i a T l
= ------------ 8-------------- t a

■~{vuQ) =  d_ „ { u 3C2, +  3^,U aC2* +  25U3K U + v 0V + w0W )C 3>(' - 1)+ .. .}
(jOC (joU

=  ( O ^ + l s C ^  =  1 - 3 - 5 - ( 2 s +5 )  /  1 '
dx 5 \2hm f ox

— {vvQ) =  — v{U2VC2s+ v 0U2C2s +  2sU2V (?/0U C2(s_1)+ ...}

=  A  ( J 0 ^ + A s c ^ )  =  1 - 3 . 5  ^ (2 .9  +  5) v

s / ~?T\ 1 . 3 . 5 . . . ( 2 5  +  5) (  1

.2 hm) a *

P ' )  =  2UC2< + 2sU'’C2<- 1) =  0,
a ^ / \a v

The equation of transfer m ay therefore be w ritten

0, aQ
\dwj

(27) AU2C2* =  1 ‘ -  5 (2g +  3)
\ s + l

2 hm,
r f i a>/ / 1 \ i ar)
5 u  & ( l U  a< /

+ (2» + 5 ) ( 8 g  +  g .  +  §

W hen  5 = 0 ,  th is becomes 

AU2 -
2 hm

i a»/ i aT p â 0 â , â 0 
y  a t t a« cx  cy a

I f  to  th is  be added tw o sim ilar equations giving AV2 and AW2, on the  left-hand 
side we have A (U2 +  V2 + W 2), which is th e  ra te  of change of molecular energy due to 
encounters ; by th e  principle of conservation of energy th is  is zero, so th a t

3 (T + i ax\ + 5 /â o + âo _l â „
v dt t a dx 3 0,

or, by (20),

 D
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 289

On in te g ra tio n  th is  gives T p~'u = constan t, or, since p  = RvT, i t  is equ ivalen t to  
pp~*u = c o n s ta n t ; th is  is th e  law  o f ad iab a tic  expansion for a gas w hich possesses only 
tran s la tio n a l energy .

E lim in a tin g  -  ^  and  ~^ from  (27) by  m eans o f (20) an d  (28), we have
v c t 1 ct

(29) AU2C2s 1 . 3 .5  ... (2s +  3) i_LY+1
\2  hmj

+  (2 s +  5 ) ( 3 ^ - “ +  ^  +  ^cx

1 , 3 . 5 . . .  (2s +  5) 2v / 1 V+1 / q dw0\
45 "" \2 hmj\~ 8a? cy d z j

or

(30) (2hm)*+l 45 ^ y 2Q2* _  o 8r0 dvQ 8w,,
1 . 3 . 5  ... (2s +  5) 2v 8a? 8y dz

By transfo rm ation  o f axes, or o therw ise, we m ay deduce th e  equation

(31) (2 km) s+ l

1 . 3 . 5 . . .  (25 +  5)
—  A2VWC2s 8or„-,

d y )

§ 4. T h e  E ffect  of M o lecular  E ncounters.

§ 4 (A ) In  th is  paper our p rim ary  concern is w ith  sim ple gases con tain ing  molecules 
o f one k ind  only ; th e  difficulties are  m uch enhanced  w hen molecules o f tw o k inds are 
p resen t, especially as reg a rd s  th e  equations o f tran sfe r, and  th e  final de term ina tion  
of th e  coefficients o f F  w hen AQ has been calcu lated . These m a tte rs  will be d ea lt 
w ith  in a fu tu re  paper, on diffusion and  th e  genera l th eo ry  o f com posite gases. In  
the  calculation o f AQ, how ever, th e re  is scarcely an y  ad v an tag e  in m ak in g  th e  
restric tion  to  one k in d  o f m olecule only, and  it  is convenient to  carry  o u t th e  
calculation for a com posite gas in  o rder th a t  th e  resu lts  m ay be quo ted  w ith o u t 
rep e titio n  in th e  la te r, more general, investigation .

The n o ta tio n  of § 2 m ay be ad ap ted  to  th e  case of a com posite gas w ith o u t fu r th e r  
change th an  th e  add ition  of suffixes 1, 2 to  denote  to  w hich group  of molecules 
a sym bol such as v,m, U, V, W ,/ ,  F  refers. The m ean velocity o f th e  tw o groups 
will be supposed th e  sam e, so th a t  (u0, w0) is th e  sam e for both, e ith e r
separa te ly  or to g e th e r ; sim ilarly, th e ir  tem p era tu re  or m ean energy, and  th e ir  
re lative densities (i'1/i'2) a re  supposed constan t. All th e  rem arks m ade concerning 
f  and F  hold bo th  for f x and  F x, and  f 2 and  F 2, these being functions respectively 
o f (Uj, Vi, Wj) and  (U2, V2, W2) ; th ey  m ay each now be expected  to  involve vx: v2 
and m x: m2 in add ition  to  th e  q u an titie s  m entioned in § 2. A  fu r th e r im portan t 
consideration w hich did not arise th e re  is th a t  J\ and  f2, or F x and  F 2 are similar,

2 R 2

 D
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290 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

in th e  sense th a t  e ith e r m ay be obtained from the  o ther by in terchanging  the  
suffixes 1, 2.

Notation fo r  an Encounter.

§ 4 (B) Before proceeding to  th e  actual consideration of th e  dynam ics of an encounter 
betw een tw o molecules m2, i t  is convenient to  explain th e  notation  to be used. 
The symbol’s m0,m, n-i, Mi2> an(l  M21 are defined as fo llow s:—

(32) m 0 —

(33) Mi =  Wj/wo, u-2 =  o,

(34) Ml2 =  =  Mi/«2, fJ-2\ Ul.JiU j — U-jjU\ i

so th a t *

(35) Mi d” M2 1 > Mi d- M2 1 -1jMiM2j

(36) M12M21 =  1 •

Velocities will be rep resen ted  e ith e r by th e ir  x, y, z com ponents or in vector 
notation. The com ponents of th e  actual velocities o f th e  molecules will be w ritten  
(U, V, W), while those of o th e r velocities, such as th e  velocity of th e  m ass-centre G, 
or th e  relative velocity, will be w ritten  (X, Y, Z). The am plitude o f a velocity will 
be denoted by C, and  th e  vector itse lf by th e  same symbol in sm all ty p e  w ith  a bar 
beneath, viz., c.

The velocities of the  molecules m x, m2 u and of G  will be d istinguished  by the 
respective suffixes 1, 2, 0, while th e  suffix R, sim ilarly, will indicate reference to  the  
molecular velocities relative to  G or to  one another. As regards tim e, square brackets 
enclosing a symbol, such as [X„], [cx], will indicate reference to  some particu lar 
(a rb itrary ) in s tan t du ring  the  e n co u n te r; a symbol w ithou t brackets b u t w ith  an 
accent (') will refer to any  in s ta n t a fte r th e  encounter,*  while when there is neither 
bracket nor accent it will refer to  any  in s tan t before the  encounter.

Analysis o f the Motions in an Encounter.

§ 4 (C) In  the above notation  th e  in itia l and final m olecular velocities are respec- 
tively c„ c2 and c\, (-'2, or (U„ V, W,), (U2, V2, W2) and (U\ ,  V'„ W',), (U '2, V'2, W'2) ;  also

(37) C2 = U 2+V2+ W 2,

* That is, any instant after the molecules have separated beyond the distance (which in actual gases 
is, at most, very small) at which their inter-action is appreciable; the words “ before the encounter ” are 
to be interpreted in a similar sense. In this sense the velocities of the molecules before and after the 
encounter are definite and constant.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 291

'  w here C, U, V, W all have th e  sam e suffix 1 or 2, w ith  or w ith o u t an  accent ('). 
S im ilarly, th e  m ass-cen tre  G  has th e  velocity  c0 or (X„, Y0, Z0), and  since (by th e  
principle o f conservation o f m om entum ) th is  rem ains invariab le  th ro u g h o u t th e  
encoun ter,# we have

(38) f 0 =  =  Mlf'l +  M2/2 =  Ml [fl] +  M2[ f2l

or
Co = f'o =  [fo].

Since, by (38),

(39) m x{ [ f j - [ f 0]} =  - m 2{[f2] - [ f 0]} =  { [ f j - [ f 2]} =  m 0 (/xiyu2),/2 [cR],

w here [ f R] is defined by  th e  equation

(40) [fit] =  (miM2)'/2 { [ f i] - fo ]} >

we see th a t  th e  m om entum  o f th e  m olecules, re la tiv e  to  G, is equal in m ag n itu d e  b u t 
opposite in d irection  in th e  tw o cases, its  value being  [cr ]. The re la tive
velocity o f th e  tw o molecules is, by  (40), equal to  (yu1(«2)-1/2 [cK] ; th is  varies th ro u g h o u t 
th e  encounter, ow ing to  th e  in te r-ac tio n  o f th e  m olecules ; its  in itia l and  final values 
are g iven by

(41) fn =  (M1M2) (f  1 £2)9 k == (M1M2) c’ijt

which are special cases o f (40).
E quations (38), (41), and  th e  reciprocal equations

(42) Ci — fo T M21 ~Cr c2 — ft) M)2"!tb{3

(43) d  1 =  & T Mai V r f  2 =  fo M12 ^ f  Rj

indicate th a t  e, c2 or c\,c'2 a re  eq u iv alen t to  c0, cR or c'R, as specifications o f th e  
in itia l or final velocities o f th e  molecules. H ence th e  problem  o f d e term in ing  the  
final velocities of tw o m olecules a f te r  an  encounter, in te rm s of th e  in itia l velocities 
and  w hatever fu r th e r  independen t variab les are  necessary  to  define th e  encounter, is 
equivalent to  th e  d e term in a tio n  o f c 'R in te rm s o f cn and  th e  variables o f th e  
encounter. Thus, in consequence o f th e  in v ariab ility  o f c0, th e  velocity  o f the  mass- 
centre, we need only consider th e  m otion re la tive  to  G, i.e., th e  m otion referred  to  
uniform ly m oving axes w ith  G as origin. *

* We here suppose that the effect of the external forces during the brief interval of encounter is 
negligible; this is legitimate if the gas is “ nearly perfect ” {cf. § 2).
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292 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

The Motion Relative to the Mass-centre.

§ 4 (D) R elative  to these axes the  molecules are in itia lly  moving along parallel lines 
w ith  equal and opposite m om enta ± m 0 (nxn^Q b̂y (39). The plane containing these 
tw o lines is clearly th e  plane in which th e  in ter-action  and  m otion of the  molecules 
will tak e  place d u ring  th e  encounter. I t  is parallel to  b u t its o rien ta tion  e about 
th is  direction is independent o f c0, oR, i . e ., it  is one of the  additional variables needed 
to  specify the  encounter, and, sim ilarly, so also is th e  perpendicular d istance between 
th e  in itial lines of re la tive motion. I t  is convenient to  m easure e from the  plane 
containing c0 and  cR.

In  th e  plane of re la tive  m otion so defined, th e  molecules describe orb its which are 
sim ilar to  one ano ther (the  origin G being the  centre o f sim ilitude), and sym m etrical 
about th e  line of apses (i.e.,points o f closest approach). Each o rb it has two
asym ptotes, one being th e  initial, th e  o th er th e  final line of m otion ; th e  distance 
betw een the  pair of final asym pto tes is clearly equal to  th a t, betw een th e  in itial 
asym ptotes. The angle X12 betw een the  tw o asym pto tes of e ither orb it m easures the  
deflection of the  re la tive  motion due to  th e  e n co u n te r; for molecules o f given types 
it is a function of p  and CK# only, th e  n a tu re  of th e  function depending on th e  law of 
in ter-action  betw een a molecule m 1 and  a molecule W e shall find it convenient,
for the  sake of generality  as well as of b rev ity , to  re ta in  X12 as an unspecified function 
of p  and CR in our e q u a tio n s ; th e  special properties of th e  molecules under 
consideration are, th ro u g h o u t our work, involved only th ro u g h  th e  dependence of 
X12 on p  and CR.

I t  is easy to  see th a t th e  magnitude o f the  re la tive velocity (^,/x2)-1/2cR is unaltered  
by th e  encounter, i.e.,

(44) CR = C'R : 

for by the  equation of energy we have

(45) i  (nixC*+m2C22) = V) =  > 0(CV + CR2) =  C0’+ C 'R’)

by (42) and (43).

The Velocities in Spherical Polar Co-ordinates.

§ 4 (E) The above analysis of a molecular encounter m ay be made clearer by the 
following figure, in which x, y, z, c0, cR, c'R are the  points in which a u n it sphere *

* That is, on p and on the amplitude C,. of the vector £it-
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 293

cen tred  a t  O is cu t by  rad ii para lle l respec tive ly  to  th e  co-ord inate  axes and  to  c0, cu, 
and c'R. Then we have %

(45a ) e —  C0CKC r , X12 — i

I t  is convenient also to  use certa in  spherical polar co-ordinates, as follows, tak in g  
Ox, Oxy  as in itia l line an d  p lane for cR an d  and  OcR, O or O c'R, OcfRx  for c0.
Thus we w rite

(46) 6r =  cR0  x,0'R = c'R O x , 0 O = c0OcR, Of0 = A =  c0

(47) <pR = cRxy, (j) 1{ =  cRxy, =  (f>f0 = c0cfRx.

E v id en tly  we have

(48) cos 6'o =  cos 00 cos X12+  sin 0o sin X12 cos e,

(49) cos 0'R = cos 0R cos X12+  sin 0R sin x]2 cos e+fa,

(50) cos \  =  cos 0O cos 0R+  sin 0O sin $R cos <J>0,

= cos 0'o cos 0'R +  sin 0'o sin 0'R cos <p'0.

Expressions fo r  the Velocities A fte r  an Encounter.

§ 4 (F) W e have th u s  ind ica ted  how th e  final m olecular velocities c\, c'2 are  to  be 
determ ined  (c f  43) in te rm s of th e  in itia l velocities c2 or c0, cR to g e th e r w ith jo  and  e 
(these being th e  e ig h t independen t variables of an  encounter). This has been done 
by showing how c'R depends upon cu, p  and it  has in fact been shown th a t  th e  
spherical polar co-ordinates o f c'R, referred  to  cR and  th e  plane c0, cR as in itia l line and 
plane, are CR, X12 (a function o f p  and  CR) and  e. H ence we m ay a t  once w rite  down

 D
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294 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

th e  expressions for the  in itial and  final velocities and velocity components in term s 
of c0, oR, p  and e, as follows :—

(51) n f i 2 =  0 12 (cos d0), m2CV =  0 ffl (cos d0), niC\2 =  e , 2 (cos 0'o), y f f f  =  0 21 (cos 0'o),

f  = fii^ o  cos X +  yU21/jCR COS 0R, /x2'-U2 =  cos R cos 0R,

COS X+/421/2Cr COS 0rR, =  Z ^ Q )cos X—jUi^On cos 0;R,

w here we have adopted th e  convenient no tation*  defined by

f  0,2 (cos 0) =  MiC02+/42C R2+ 2  (W 2),/3C0Cr cos 0,
(53) J

[_ 02i (cos 0) — /x2C02+/x,CR2—2 (yu,^2) /2C0Cr cos 0.

Equations (51) to  (53) are m erely p a rticu la r cases of (42), (43), expressed in term s 
of am plitudes (51, 53) and  of ^-com ponents (52). The la tte r  m igh t also have been 
w ritten  in term s of the  com ponents of C0 and  CR, as, for example,

(54) U', =  Xo + ẑ X r =  Xo + ̂ 2i1/2 {XR cos Xi2 +(YR2 + ZR2)1/2s in Xi2cos (e+0o)},

by (49), w riting  (Xa, Y0, Z0), (XR, YR, Z R), (X'R, Y R, ZR ), for th e  com ponents of c0,c K c'R. 
Equations sim ilar to  (53), (54) m ay easily be w ritten  down also for th e  y  and z 
components of th e  velocities.

The Dependence o f  U'„ V',, W', on Xl2.

§ 4 (G) From  (5l )  and (54) it is clear th a t  any  function Q, (U\ ,  V\, W'i) of Uri, V'i, Wr 
is a function of U„ V„ W,, U2, V2, W2, pand e, or of Ub V,, W,, U2, V2, W2, x ,2 and e, 
since p  is involved only th ro u g h  Xl2 (though Xl2 is no t en tire ly  independent of the 
preceding six variables, since it depends upon CR). I f  Q, (U 'i, V'i, W'i) be regarded as 
a function of x,2, when Xl2 is m ade equal to  zero it  reduces to Q, (Ui, Vi, Wi) s im p ly : 
this m ay be seen e ith e r from (5 l) -(5 4 )  or, s till more readily, from the  figure on p. 293, 
since when Xl2 =  0, c'R becomes identical w ith  cR, and hence by (42), (43), so also does 
c'i w ith  c,.

Transformation o f  Co-ordinates.

§ 4 (H ) In  § 5 we require th e  Jacobian of transform ation

j  =  a (u ' i ,  yfwri, u r2, v '2> w '2)
"  a(Ui,  Vi, Wi, u2, v 2, w 2)

between the  in itial and final velocity components, p  and <• being constant. Since the 
motion during  an encounter is reversible, th e  relation betw een the  two sets of velocity

* In § 7, for the sake of brevity, we shall write 0 ,2, 02i, 0'i2, 0'ai respectively for Oi2 (cos 00), 02, (cos do), 
0 i2 (cos 6'0)» and 0 2, (cos 6’0).
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 295

com ponents is reciprocal, so th a t  J  =  ±  1. I t  m ay read ily  be seen th a t  th e  positive sign 
is th e  correct one, by considering a p a rtic u la r  case o f varia tion , say dUi = dlt, = dU, 
d\li =  d\l2 — dV, dWi = dW2 =  dW. This is equ ivalen t to  th e  add ition  of a small 
velocity  (dll, dV, dw) to  th e  whole sy s te m ; obviously th is  will reappear in th e  final 
velocities, so th a t  also du'i = d lf2 = dl), dV'i =  dv'2 = dV, dW\ = dW'2 =  dW. In  
th is  case, and  th e refo re  alw ays, we have J  =  1, so th a t

(55) d ll 'i  dV'i dW'i dU '2dV'2dW '2 =  dUi dVi dWi dU 2dV2dW 2.

W ith  a little  more troub le  th is  m ig h t also be proved an a ly tica lly  from  the  equations 
of th is  section.

From  th e  com ponent equations corresponding to  (42), (43), ., from

(56)

(57)

J  ^  i — Vi — W, — Z o + V 'Z * ,

L — X0 M32 SXr, V2 = Yo A*12^Yr, W2 = Z„ M12^Zk, 

C„2 = X„2 +Y„2+ z 0a, c E2 = X,2 +Y,*+Z,*

i t  is easy  to  prove th a t

(58) 3 ( U „  V„ W,, U2, V2, W2) _  v
3 (X„, Y0> Z„ XE) Ye, Z e) ' MlM2'

H ence, by  fu r th e r tran sfo rm atio n  to  polar co-ordinates, we have

(59) dUj dVi dW x dU 2 dV2 dW 3 =  -  (miM2)"S/j dX0 dY0 d Z 0 dXR dYK d Z R

Cr dC 0 dG R d  cos d  cos fiR d(pQ d^>R.

Since d lh  dVi dWi d l l2 dV2 dW 2 is essen tia lly  positive, th e  n egative  sign  on th e  r ig h t 
of (59) m ust be m ade positive, if  th e  lim its  o f C, cos <9, and  ^  in each case are tak en  
as 0 to  +  00? —l to  + 1 , and  0 to  2tt re sp ec tiv e ly ; i t  m ay read ily  be seen th a t  the  
negative sign corresponds to  reversed lim its o f in teg ra tio n  o f one o f th e  variables cos

§ 5. T h e  G en er a l  E x pression  for  AQ j.

Definition o f  A nQi and  A12Q i.

§ 5 (A) The ra te  o f change of due to  m olecular encounters, AQi, m ay be 
divided in to  th e  tw o p a rts  Au Qi, A^Qj due respectively  to  th e  encounters o f th e  
molecules mi am ong them selves, and  those w ith  molecules m 3. Thus

(60) AQi =  AnQi + A j3Q i.

W e shall chiefly consider A 12Q l5 w hence AnQi m ay be ob tained  by changing  th e  suffix 
2 in to  1 th roughou t.

VOL. CCXVI.— A. 2 S
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296 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

The Expression fo r  A^Qj.

§ 5 (B) The num ber of molecules mx having  velocity components lying between the 
lim its (Ui, Vi, Wj) and ( ih  + d lh , Vi + dVu \Nx + d is, by our definition of (U1} Vi, W ^, 
equal to

v\f(U1} Vi, WOdUxdVi  d\Nx

per u n it volume. The num ber of encounters in tim e dt of any one of these, w ith  a 
molecule m 2 having  velocity com ponents ly ing  betw een th e  lim its (U 2, V2, W2) and 
(U 2-fd U 2, V2 +  dV2, W2 + dW 2), th e  variables^), e of th e  encounter ly ing  betw een and 
p  + dp, e and e + de, is equal to  th e  num ber of such molecules contained w ith in  a 
small cylinder of leng th  dt and of sectional area p  dp de, i.e., to

v2 (miM2 ) _ 1 / j / 2  (U 2, V2, W2) 0  d p  de d V 2 dW 2 dt.

Thus th e  to ta l num ber of encounters of th e  above type, per u n it volume per u n it 
tim e, is

(61) vxv2 W 2) " V i  (Ui, Vlf W ,) /a (U2, V2, Wo) C d p  d e d U x dVi dWj dV2 dW 2.

A t each such encounter th e  change in th e  value of Qj (ifi, Vl5 Wi) is clearly

(62) Q, (U '„ V'„ W 'O -Q , (U„ V„ W,).

or Q 'l-Q j, as we shall w rite  i t  for brevity .
W e shall include th e  effect of all possible encounters per u n it volume per u n it tim e 

if  we in teg ra te  the  p roduct of (61) and (62) over all values of e (0 to  2tt), (0 to oo)
and (Uj, Vi, Wj), (U2, V2, W2) (each from — <*> to  + oo). Such an in tegra tion  will 
include encounters which are no t b inary , b u t our postu late  th a t  th e  gas is nearly 
perfect (§2) implies th a t  our in teg ra l would be a lte red  only inappreciably if  the  
upper lim it of in teg ra tion  for p  were no t infin ity  b u t equal to  the  very small distance 
a t which tw o molecules cease to  exercise any  appreciable inter-action. Hence, 
th roughou t th is  paper, w here no lim its of in teg ra tion  are specified, i t  is to  be under
stood th a t  th ey  have th e  above values. Thus we have

(63) A12Q i =  VXV2 (/AiA*a)_1/s J fj j j{ j j ( Q /i ~ Q i ) / i / 2C!KP d p  de dUi dVi d\Ni dU 2dV2 dW2.

The t e r m f f  in th e  in teg rand  m ay be w ritten

(64) {! + Fl (Ul( Vlj Wi) + Fa (U„ V* w 2)}

=  ( ^ W  h f j  e->mW+o.i ( 1 + F 1 + F a),

where, in the  first line, we have neglected F iF 2, which is a second-order quan tity , 
while in the  second line we have made use of (45).
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 297

The unit term in  ( l + F x  +  F 2) m ay he omitted.

§ 5 (C) I t  is easy to  show th a t  th e  p a r t  o f (63) w hich arises from  th e  u n it term  of 
( l  +  Fi +  F 2) in  (64) is zero. F o r i t  m ay be w ritte n  in th e  form

w here 

<P =

| |  (pwiuifa (hm0/ tt)?' dp de,

i (U'x, V'i, W 'O -Q i (U b Vi, Wi)} e“7lrao(c°2+c«2) dUx d\Nx d\J2 dV2 a

N ow  by (45) and  (55) th e  la t te r  is equal to

(65) 11J | | jQ i  (U'l, V'l, W 'l) e -h (m lC,S+m*C'it)̂ U'x ^W'x d l / 2 d v '2 J W ' g

-  J11 j J|Qi (U i, Vi, WO e-MmiC,2+m2Ca*) d u x dMx d\Nx dU 2 dV2 dW 2.

B u t th e  la t te r  tw o in teg ra ls  are equal, since th e y  are  defin ite  in teg ra ls  differing only 
in the  sym bols used to  deno te  th e  variables. H ence (65) is zero, and  th e  u n it te rm  
in ( l  + Fi +  F 2) m ay  be o m itted  from  A 12Q i.

The sam e re su lt can be seen also in an o th e r w ay : th e  p a r t  o f A12Q i under 
consideration is th a t  ob ta ined  by  p u tt in g  Fx =  F 2 =  0 in f f 2, ., i t  is equal to  th e  
value o f A12Q x in a uniform  gas. In  a uniform  gas, how ever, as we m ay  see from  th e  
general equation  of tra n sfe r  (19), A xxQ i =  A12Qx =  0, w hence th e  re su lt follows a t  
once.

IfQ(U,  V, W) is o f  odd degree, the even p a r t  F ( U ,  V, W) contributes
nothing to A12Q, and  vice vers&.

§ 5 (D ) W e m ay now, therefore, w rite  A j2Q x in th e  following form, transfo rm ing  
th e  variables (U„ V1; W,), (U„ V2> W2) to  (X„, Y0, Z„), (x K, Yb, Zb), by  (56), (58).

(66) A12Q i =  VlV.JMP-2 h m ^z

f j j | W i - Q , ) e- « * « . ’ (F 1+F 1) C >  dp dedX,tdY,1dZ IIdXHdYRd Z n.

W e here suppose th e  functions Q (U, V, W) and  F  (U, V, W) expressed in term s of th e  
new variables and  (in th e  case o f Q'x) o f e and X12 (or p)- W e are concerned both as 
regards Q and F  only w ith  term s w hich are in teg ra l in th e  variables U, V, W ; in 
reckoning th e ir  degree we shall m ake no d istinction  betw een Ux and U2, &c., or

2 s 2
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betw een X0 and XR,# &c. Then since th e  equations of transform ation  (56) are linear, 
any term  U f  Vxm WxnU /V /W / in Qx (F x +  F 2) transform s in to  th e  sum of a num ber of 
term s X0aY06Z0eXBrfYEeZ /  such th a t

l+ p  = a + d, m + q = b + e,

This is not tru e  in th e  case o f Q 'x (F x +  F 2), since (by 54) U'i, V'x, W'x are not rational 
functions of the  variables X, Y, Z, b u t i t  is tru e  of (F x + F 2) JQ \ de, since th e  in teg ra tion  
w ith  respect to e causes all th e  irra tional term s in Q 'x to  d isappear.! This m ay be 
proved quite generally, b u t i t  will be sufficient here to  indicate the  proof for th e  case 
Qi =  UiCi2s, s being any  positive in teger. W e m ay w rite

Q 'i =  U'iC'x2* =  (X + aC R sin 0R cos e +  <£0) (C2 +  2aC 0CR sin 00 cos e)s,
where

a =  sin xi2, X =  X1)+/x2l'i'X„ cos Xl3)

C2 =  C02+ M2jC k2+ 2 m31‘'- (X0Xk +  Y0Yb+Z„Z b) c o s  Xl2,

so th a t  X is of th e  first degree in X0 or Xu, and C2 is of even degree in th e  variables 
(X0, XR), (Y0, Yr ), (Zo, Zr ). The only term s in Q 'x which do n o t vanish on in teg ra tion  
w ith  respect to  e are of the  form

X {tC2p (C2),-2p (2aC 0CR sin 60 cos e)*} 
or

(C0CR2 sin 60 sin dR cos2p+1 e cos e + >̂0) {2a2,C (C2)s_2p_1 (2aC 0CR sin 0O)^}-

Now we have

( C A  sin e„f = C„2C,J2 (1 — cos2 e0) =  {c 02c e3- ( x„xb +  y0ye+ z 0z r )2},

which is an even function of X, Y, Z, and can be included under th e  symbol C2. 
Thus, on in teg ra tion  w ith  respect to  e, th e  above expressions become (ap a rt from 
a factor not involving X, Y, Z explicitly)

XC2s, (C0CR2 sin 00 sin 0R cos 0O) C2(s_1)

and by (50) th e  la tte r  m ay be w ritten

C0Cr2(cos X - cos 0O cos 0B) C2̂ -1) =  [X0CR2—XR (X0XR + Y0YR + Z0ZR)]

Both these expressions, and consequently JQX (\J\, V^, Wri) as a whole, are of the  
form XC2s in th e  sense above defined. Sim ilarly it  m ay be shown th a t  JU'i2CVs de is 
even in all th ree  variables (X0, XR), (Y0, Yr ), (Z0, Zr ).

* So that, for instance, x02, x0xH and xE2 will all be regarded as even functions of x. 
t  The explicit occurrence of x, y , z  in J Q'x de is here referred to ; the latter may involve CR irrationally 

through x«.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 299

In  th e  in teg ran d  o f (G6), th e  exponen tia l te rm  and  C u (w hether occurring  as an 
explicit fac to r or im plicitly  in X12) are even functions o f X, Y, Z. H ence a term  such 
as X0aY</'Z0cXEdYReZ R/  in f(Q 'i—Qi) (F i +  F 2) dewill co n trib u te  n o th in g  to  A12Q X unless 
a, b, c, d, e, f  and  d fo rtio r i a + d, b + e, c are  all sep a ra te ly  even. In  view  of 
w h a t has been proved above, therefo re , i t  appears th a t  in Q (U, V, W) F  (U, V, W) 
only th e  te rm s w hich are  even in U, V, W sep a ra te ly  co n trib u te  an y th in g  to  A12Q i. 
H ence if  Q is odd in U, only  th e  p a r t  o f F  w hich is likew ise odd in U need be 
considered, w hile if  i t  is even in U, only  th e  even p a r t  o f F  need be considered.

Introduction o f  Ii (xX2)-

§ 5 (E ) W e now m ake th e  final tran sfo rm a tio n  of A 12Q i by  ad o p tin g  polar co-ordi
n a tes  in place o f (X0, Y0, Z0), (XR, YR, ZR), as follows :—

(67) AiaQj =  j ] j  e -w<v+c,*i {Ii (Xl2) _ i l (o)} C„2C H(p dp  „

w here

(68) I , (Xl2) = j f | j j Q i ( U '1,V'„W'1) {F,(U,,Vt,W,) + F3(U2,V.,,W.)}fit(/cos6ud cos6Ud<pt,d<pH,

(69) I 1(0) = f | f f j Q 1(U1> V„ W1){F ,(U 1,V1)W1) + F 2(U2>V2,W2)} A d c o s0o<2c o s M 0.<fy>1

E v id en tly  ( cf§ 4 (G )) th e  la t te r  is ob ta ined  w hen X12 is m ade zero in Ii (xX2), since X12 
is no t concerned in th e  in teg ra tio n s  o f (68), (69), being  a function  o f and  CR only, 
while w hen X12 =  0 we have Qi (u 'i, V 'i,W 'i) =  Qi (lh , Vi, Wi). H ence, in calcu la ting  
A12Q i we shall concern ourselves only  w ith  I x (xi2) u n til we come to  th e  in teg ra tio n  
w ith  respect bop , CR, C0. In  so doing we shall, from  th e  ou tse t, om it from  F  (U, V, W) 
those p a rts  which, in accordance w ith  § 5 (D), co n trib u te  n o th in g  to  th e  final resu lt.

§6. T h e  F orm of th e  F unction  F ( U ,  V, W).

The tw o special form s of Q x w hich we consider a re  U^Ci2* and  LhCi25; th e  only 
p a rts  of F ( u ,  V, W) which are  re lev an t in these  cases are respectively  th e  p a r t o f 
E x +  E 2, w hich is even in V and  W2, and  Ox +  0 2; th e  no ta tion  here used is th a t  of 
§ 2 (E), p. 283. F rom  (26) and  (30) we see th a t  AUjOi25 involves th e  space derivatives

1 7) Tof m ean properties o f th e  gas only in th e  form  — — , w hile AU^Ci2* sim ilarly  involves
1 OX

only 2 W e deduce from th is  th a t  O (U, V, W) m ust certa in ly  include

th e  term

(70) T (u i + v S t w I ) ,,' (c’1'

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



300 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, 

and th a t  E( U,  V, W) m ust sim ilarly include th e  term

(71) (c^U2+ c22V2+ <%W2+ c^VW + c31 WV+ c12U V) P  ( 0 2),

where

11 dxa ’ c23 — 3 1fdv0 0WO\
Va* + a y ) '

(72) „ _  0 Bv0 8w0 
28 ^ dy dz dx C31 =  3

(dw, 3w0\  
\d x  dz/*

_0 dWpdui} dvQ 
 ̂ 33 8z dx dy ’ 1̂2 =  3

(du0 dv0\  
xdy '

The factor o f P ( C 2) in (71) is equal to  3S '—C2S, by ( 12) and  (15), and is therefore 
an invarian t w ith  respect to  an orthogonal transform ation  of axes.

F u r th e r  since, by (26) and  (30), no o ther derivatives o f T and (u0, v(), w0) occur in 
ALhCi2* or A lh 2Cj2s, we conclude th a t  none such appear in F  (U, V, W)— a t any  rate, 
to our degree of approxim ation ; th u s  th e  o th er term s in (12)-(15), while th ey  
possess th e  invarian t property , do no t satisfy  th e  o ther conditions which m ust be 
fulfilled by F  (l), V, W).

W e therefore conclude th a t  F ( U,  V, W) is composed only of (70) and (7l )  to  our 
order of accuracy, and we shall suppose th a t  th e  tw o functions P  (C2) are expansible 
as power series in C2. T hroughou t th is  paper we shall assum e th a t  all convergency 
conditions necessary for th e  va lid ity  of our analysis are satisfied ; th e  justification 
of th is  assum ption would offer serious difficulty, and  th e  investigation  would lead 
us into regions of pure m athem atics which are largely  unexplored, and would be 
unsuitable in th e  present paper. In  § 10 we shall see th a t  num erical approxim ations 
for the  m ost im p o rtan t molecular models confirm th e  assum ption of convergence 
sufficiently for our purpose.

I t  is convenient to  w rite  our expression for F  (U, V, W) in the  form

ST'
(73) F  (U. V, W) -  - B 0 T (U ^  +  V Ty  +  W Yz)2 o 1 - 8 , s\ „ (^ . + 3 ) r  A -.C *

(2/zm)T

(2Am)r
- C02 hm(cu U2 + c22V2 + c»W2 4- c23VW + c31 WU + c12U V)^2 X , 3 5 ... (2r + 5 ) ^

In  the  first line, when r = 0, th e  factor r  in th e  denom inator is to  be om itted. 
The suffix 1 or 2 m ust be added to  m, U, V, W, C, j8, y when we wish to  distinguish 
betw een F i( lh , Vb Wi) and F 2(U2, V2, W2).

Since, by (72),

(74) Cll +  C22 + C33 — d,
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it  is easy to  see th a t  (18) is satisfied  by  th is  form o f F, w hile in o rder to  satisfy  (17) 
we m ust have

(75) ft_1 + '2(3r/( r + l)  =  0.
0

The products B0/3r, B0y r are  q u ite  definite, b u t B0 and  C0 can ev iden tly  be assigned 
a rb i t r a r i ly ; we shall decide th a t  th e ir  values, though* unspecified for th e  present, are 
alike for F x an d  F 2.

The above expression for F  (U, V, W) is eq u iv a len t to  th a t  ob ta ined  by  E nskog  (§ l) , 
by an  en tire ly  d ifferen t m ethod. B u t th e  ch ief difficulty  o f our problem , and  one 
h ith e rto  unsolved, lies in th e  d e te rm in a tio n  of th e  coefficients (3 and  y ; th is  is effected 
in th e  p resen t paper by  m eans of AQ.

THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 301

§ 7. T h e  C a lcu la tio n  of AQ^

§ 7 (A ) In  calcu la ting  AQi we shall deal chiefly w ith  A 12Q i § 5 (A ) and  (67)). 
The p a rtic u la r  form s o f Q x which we shall consider are

(76) Q, =  (2Aoti)!+*U1C12* =  35,“ .'

(77) Q, =  (2Am,)*+1U,2C,2* =

In  accordance w ith  §5 (D), th e  only p a r t o f F ( U ,  V, W) w hich is re lev an t to  
A B i(s) is

(78)
l  OX o 1

(2 hm)r
3 . 5 . . .  (2r + 3) & _ iC2h

while th a t  w hich alone concerns A(£i(s) is

(79) ■2/im€, (c„UJ+ e2JV2+ c^W2) 2 (2 hmY
o 1 . 3 . 5  ... (2r + 5) 7;.C2r.

As to  th e  la tte r , since th e  rem ainder o f th e  in te g ra n d  of A C i(s) is sym m etrical w ith  
respect to  V and W, th e  p a r ts  of th is  in teg ra l arising  from  V2 an d  W2 in (79) are 
equal, so th a t  c22V2 + c33W2 can be rep laced  by  j-(c22 +  c33) (V2 + W3) =  — |A i (C2— U2), 
by (74). H ence for our purpose (79) is equ ivalen t to

(80) - * ( 2 hm) C0cn (3U2—C2) 1 1 3 ^ ^ r + 5 )

W e shall denote by b12 (rxSi)the p a r t o f A12B i(s) w hich arises from  th e  term  
— (2hm1)r+h\JlCl2r in F i ( U l5 Vb Wi), and  by b12(r2Si) th e  p a r t arising  from th e  corre
sponding term  of F 2(U2, V2, W2), in each case th e  num erical and  o ther factors in F
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302 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

being excluded.# The corresponding portions of T (xi2) will be denoted by I fasi, xi2) 
and I (r2$i, xi2) respectively. Then

(81) I fa sh xi2) =  [ j  J J j  (2hfji1m0)r+s+lU/iC'i2sUiCi2r d cos d cos dfa ,

(82) I (r2sb X12) =  [ J | f f  (2/m 0)r+s+Vii+W +® U'iC'i2sU2C22r de d cos 60 cos dfa ,

(83) fri2(nSi) =  —

j j j  e-A-<c»2+cK> {I K  X12)—I (n*i, 0)} C02CK3p  dp dC0 R,

(84) =  - , 1,2(MiJu2) - i' . ( ^ » ) 3

j j j  < r*-<c-,+<V> {I (rA , Xl2) - I  (rA> 0)} C02CR3p d p  dC0 dCR.

The similar quantities relating to A]2C iW will be denoted by 1), c12 and
J  (r i5i, X12), J  fa#i> X12) respectively, so tha t

(85) J  {r isiiX12)

= [ [ [ [ [  h (2 h/uL1m0)r+s+2UVCV* (3Ui2—Q 2) de d cos 00 cos 6U d<p0 ,

(86) J  {r2suX12)

=  jj jfj i  (2 hm0)r+s+2 fi1s+1iuL2r+i\j'12C,i s(3U22—C22) V  de d cos 0o d cos

(87) CufaSx) = —vxv2f a

j j j  e-ftmo«y+ca*> {j  (rA> Xl2) _  J  (rlSlt 0 )} C02C dp dC0 dCR,

(88) cl2fa s ,)  = - VlV2f a ^ 2y ^ y

j j j  e- w « +<V) {j  (rA) Xl2) _  J  (r A , 0 )} C„2CR3p  dp dC„ dCR.

* We have here included a factor (2 hm)1!*which does not occur in F ; this will be allowod for 
subsequently.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC C4AS. 303

The Integration with respect to </>0.

§7 (B) In I  (rs, X12) and  J  (rs, X1 2)it is clear from  (48) to  (53) th a t  </>R does no t 
appear a t  all in th e  in teg ran d , w hile 0n and  occur only in th e  p roducts  U' iU and 
Uri2 (3U 2—C2) respectively . W e have

U'tUj =  C02 cos2 X+ju21CK2 cos #R cos 0' M2i1,2C0C R cos X (cos 0R + cos fl'R), 

U\U2 =  C02 cos2 X — CR2 cos (9R cos 0'R + C0C R cos X (/^ y 2 cos 6'1{— cos 0R), 

and, rem em bering  th e  values of cos X and  cos we have

| | |  U'jUj d  COS 0R dipo d<pR = | tr2 {C02 +  ̂ iC r2 COS X ^ - W ^ Q A i (cos 0O+  cos e'0)},

11 j U iU2 d  cos 0R d(p0 d(pR — 37r” {Gy CR2 cos xi2~t (m2i ’ cos 0 0 cos 0o)}.

I 11 th e  n o ta tio n  o f (53) th e  la t te r  tw o  equations m ay  be conven ien tly  re -w ritten  as 
fo llow s:—

Ml III U 'a lh d c o s  0R d(p0 dipn =  |7 r2 { 0 i2(cos 0o) + O ]2(cos - 2 / x2Cr2 ( l -  cos Xl2)}.

(miM2) " | |j  U iU2 dcos 0R dipa d<pR — 3-7r" W  ^21  (cos 0o) +/x21' '0 12 (cos 0 O)

+  2 (miM2)'/2Cr2 (1 — cos x) —

S u b s titu tin g  in ( 8 l )  and  (82), we th u s  have

(89) I  (?vh, xu>) =  i-rr2 (2hmi))r+s+1 | j  { 0 12 + 0 /12- 2 M2CR2( l - c o s  Xi2)} 60,

(90) I  (r2s,, X12) =  b ?  (2K )r+S+11 | {Mi21/'202i +  M2i1/l>O,12 +  2 (miM2)V2Cr2 ( l  -  cos Xi2)

— (miM2) - ,/2Cr 2} 0 ']2S0 i2r de d  cos 00.
§ 7 (C) In  th e  case of J  (rs, xi2)j we have

(91) Mi2U'i2Ui2 =  (MiViC0 cos X +  u21/2Cr cos 9r)2 (mi^Co COS X —m21/2Cr cos 0'r )2,

in w hich (cf.the figure on p. 293) X =  c0 Ox,0R = cROx, 0'R — In  th e  in teg ra tio n  
over th e  sphere, w ith  respect to  0R and  </>0, since #0, e, X12 a re  co n stan t th e  trian g le  
c0cRc'R preserves its  form , so th a t  we m ay, if  we please, reg a rd  x  as th e  variable 
poin t and  cucRc'R as fixed. N ow  it  m ay  read ily  be proved, by  th e  m ethod  of 
“ p o les” in th e  th eo ry  of harm onic functions, th a t  if  A, B, C are th ree  fixed points 
on a u n it sphere, and  P  a variab le point, th e n  th e  in teg ra l over th e  spherical 
surface of

cos2 P A  cos P B  cos P C  
is

x 57r (2 cos A B cos A C +  cos BC).
2 TVOL. CCXVI.--- A.
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304 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

A pplying th is  resu lt to  (91), iden tify ing  A, B, C w ith  one or more of the  points 
c0, c1{, c'R, and  P  w ith  x, we m ay w ith  b u t little  difficulty prove th a t

Mi2 || j U V U / d c o s  0Rd(pt}d(pn = 7T { 0 i22 +  4 0 120 /12 +  0 '12j —4/x20 RJ ( 0 12 + 0 '12) ( l  — cos X12)

+ 4/x22Cr4 ( l — cos xi2)2}.
Sim ilarly we m ay show th a t

MiJJ|  U r 1 dcos 0R dfa d<pR = | tt20 '12,

so th a t

Mi2 f 11 U ?  (3UX2—C^2) d  cos 0R dfa d<pR = | x 2 {0 i22+ f 0 i20 'i2+ 0 'i22

4/x2Cr2 ( 0 i2+ 0  12) ( l  cos Xi2) + 4/x2"Gr4 ( l  — cos Xi2)"}’
H ence we have

(92) j ( r A, Xl2) = ix2 (2 Awo)r+s+2 j j{ e 132+Se12e '12+ e V - 4 lU3c v (e 13+ e 'J2) ( i -  cosXl2)
+ 4/x22CR4 (1 — cos Xl2)2} B ^ /B i/  d  cos 0O, 

and  it  m ay be proved in a sim ilar m anner th a t

(93) J (r2suXi2) — i 7̂  (2 hM0)r+s+2|”j [mi20 2F + §0210 12 +  M210 i22

+  2Cr2 (m 121/"021 +  M21V20 /l2) {2 (yUj/Xo)72 ( l  — COS Xl2) ~

+ CR4 {2 (miM2)1/2 (1 -  COS X12) -  W a)"*'*}2] 0'i2S02ir d cos 0O.

The Expansion o f  (p2+ o-2—2 pa-cos 0)” in a L egendre’s Series.

§ 7 (D) In  order to  effect th e  in teg ra tio n  of I  and J  w ith  respect to  e and 0O we m ust 
have recourse to  the  expansion of

(94) P n(p, cr, COS 0) =  (p— 2/3(7 cos 0)* 

in a series of L egendre’s functions. In  a recent paper* I  have shown th a t

(95) P  n(p,cr, cos 0) = 2 ( — l ) /l (2& + 1) ) P,.(cos 0),
/;=0

w here P A (cos 6) is th e  o rd inary  L egendre’s function o f cos 9, of type  a n d t

(90) ■A* ( r \  <r2)
k n

C 2.07 t=!:(t + ̂ ) t (
(^ +  |)<-/c 2̂

rr\k 11 
^ 2

t—k

hi (^  + 2 )t-k 2t'
\ p j  t = (t — k)t — k

* Chapman, ‘ Quarterly Journal of Mathematics,’ p. 16, 1916. The expansion is there not limited to 
integral values of n,though these are alone considered in the present paper, 

t  The constant k is necessarily a positive integer; if nAk = 0.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 305 

In the last equation the symbol p q,where q is integral, is defined thus :—-

(97) p , =  p { p - l ) ( p - 2 )  ... { p - q  + l).

From (53) it is clear th a t

(98) { 0 12 (cos 9 )}” = Pn (/<iC02, m/ V ,  -  cos 6) = 1  (2k + 1) "A*,, Ps (cos 9),
/;=0

(99) { 0 21 (cos 0 )}B =  P n(/x2C02, ^ C k2, cos 0 =  2  ( - 1 ) *  (2& +1) nA*21 PA(cos 0),
k=0

where we have w ritten, for brevity,

(100) "A*12 =  nA* U C 02, M3CU3) MA*21 =  »A*(m,C02, miCk2).

In  our expressions for AQi, 0 takes the values $0 and 6'0, and the variable e 
is involved only through the la tte r angle, which occurs in 0 '12 or 0 12 (cos 0'0). 
In the expansion of the la tte r (cf.98) in terms of P A (cos or, by (48), of
P A. (cos 90 cos xis + sin 0O sin X12 cos c), we shall make use of the following well-known 
formula in the theory of spherical harmonic functions

(101) PA (cos 0'q) = PA (cos #0 cos xi2 + sin 0o sin X12 cos e)

=  PA (cos 0O) P A (cos X12) + 2 2S PA (cos 0) P A* (cos x,a) cos le..

The Integration with respect to e and 00.

§ 7 (E) Since the integral of cos le w ith respect to <?, between 0 and 27r, is zero unless 
1=0, from (98) and (101) we deduce the result,

r2ir n
(102) | 0 '12n de = 2-7T2 (2k +1) ”A*12P a (cos 0o) P a (cos Xi2)*

Jo /.-=o

Now from (89), (90), and (92), (93), it is evident th a t as far as concerns integration 
with respect to e and we have to consider a number of terms such as

(103) JJ 0"‘0 '12n de d cos 0O,

where 0"1 may have the suffix 12 or 21, while 0 'w always has the suffix 12. Now 0"1 
does not involve e, so th a t (102) suffices for the integration with respect to <?, and 
leaves us with

(104) 27rj  ̂|^2 ( ± 1 )* (2& +1) mA'cP A (cos 0O) |

f n 1
\ 2  (2k + l )  ”A*12P a (cos P a (cos X12) r d  cos 00
U=o “ J

2  t  2

 D
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306 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

in place of (103); in the first bracket the ambiguous sign is to be + in the case of 
0 12m, and — in th a t of 0 21”1.

By the theory of L egendre’s functions we have

(2 k+1) | P/, (cos 60) P  i(cos 0O) d cos 0o = 0 if ^

(2& + l )  j  {P*(cos 0o)} 2 d  cos 60 =  2 .

C onsequently

/• e m, n
(105) 11 0 i2”l0 'i2W ded cos 0O = 4tt2̂ (2& + 1) BlA*12ttA*12P A (cos Xi2),

r r m, n
(106) || 02re \.J ‘d e d c o s0o = 4x2 (-l)*(2i+l)-AVA*„P»(«*x„),

w here th e  upper lim it of k is the  lesser o f th e  tw o in tegers n.
A pplying these resu lts  to  (89), (90), (92), (93), we have, therefore,

(107) I (rA) Xl>) =  (2hm0)r+s+1
r+1, s + 1

V  f r + l A £  s \ k  i _ r \ k  s + l A *\̂ -n- 12 12̂  -n- 12̂  12
k = 0

2^20 ' ij1 A^j2sAft12 ( l  cos xis)} P^ (cos Xi.'))

(108) I  ( rA ) Xls) =  W ( 2/im0) '+*+I

,+12 +1( - i ) *  O V ' A V A W V A ' . " ^k = 0
+  2G"KrA *2isA \ 2 {{v-if j-z)  ” (1  c o s  X12)

~~ h (^1 M2) /J}] P k (C0S X12X

( 109) J ( r ^ , X12) =  W  (2H ) ,+,+2
r+2 ,  s + 2

X [’•+2A*12sA‘12+  |« > A V * ,A‘13+ ”A‘11*+>A‘1>
k  =  0

- 4 ac2C2r (r+1 A*12sA*12+ rA*12s+1 A*12) (1 —cos x«)

+ 4/u“2O V A \2sA/t12( l  cos X]2) ] 1 (cos X12X

(110) J  Ov^xu,) = | tt3(2 hm0)r+s+2
r+2 ,  8 +  2

2  ( - 1)' [/u12r+2A \n sA kVJ + §r+1A*21s+1 A*12+ M2irAL, s+2Ab2
A: =  0

+ 2 C \  (Ml2''*r+‘A‘21’A‘12+M2i‘'”'Ai21" 1Ai12) {2 (W 2),fc(1 - c o s Xl2) - ( m,m2) 

+  Cilt’'Ai21'A *,2 {2 ( 1 - cos Xi2) (mi/*2)- '*}3] P* (cos Xl2).
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 307

The Integration w respect p .

§ 7 (F ) On re fe rrin g  back to  equations (81) to  (88) it  is clear th a t  before execu ting  
th e  in teg ra tio n  w ith  respect to  p ,in th e  calcu lation  o f h (vs and  c we m ust 
su b tra c t from l(rs,xi2) an d  J (rs,xia)> as g iven  by  (107) to  (110), th e ir  values
corresponding to  X12 =  0. N ow  w hen X12 =  0, we have

1 -  COS X12 =  0, P* (COS X12) =  1 •

Thus w here P* (cos X12) occurs alone in (107) to  (110), i t  m u st be replaced by 
P * (cosx i2) ~  1 in th e  expressions for h (rs)and th e  te rm s P A. (cos X12) ( l  — cos X12)
and  P̂ . (cos X12) ( l - c o s  X12)2 rem ain ing  unchanged , since th e  corresponding term s in 
I  (rs, 0) and  J  (rs, 0) vanish.

The variab le  pis involved in h (rs) and  c (rs) only th ro u g h  p  dp  and  xi2> th e  la t te r 
being also a function  o f C]{. W e  m ay  th e refo re  form ally execu te  th e  in teg ra tio n  
w ith  respect to  p  by  w ritin g

(111) (pk12(P r) =  (2k + l)  (mv-?) ‘‘ P r [ {1 P*(cos X12)}
Jo
r o°

(112) <p'\2(C .) =  ( 2 £ + 1) (mn2y k CR I ( l  - c o s  Xl2) P* (cos Xi2)
Jo

(113) < A 2 (C1{) =  (2&+1) (Mi^2)“1/2C r f ( l  — cos X12)2 P* (cos X12)
Jo

The n a tu re  of these  functions depends on th e  law  o f in te r-ac tio n  betw een  molecules 
a t  collisions, and  by  keeping  th is  law  unspecified we re ta in  th e  u tm o st g en era lity  
in our theory , w hich implies no p ro p e rty  o f th e  molecules save th a t  o f spherical 
sym m etry.

By m eans of th e  w ell-know n equation

(114) (k + l)  P A+1 (cos x )— (2k + 1) cos xP/,(cos X) +  ̂ P*_1 (cos x) =  0

th e  function </>//l12 (CR) can be expressed in te rm s of <f>\2 (C R), for d ifferent values o f k, 
as fo llow s:—

(115) A 2(C b) =  ^ / +112(C k) - A ( 0 „ )  +

and by a repeated  application o f (114) we m ay ob tain  a sim ilar expression (involving 
0*i2 (CR) for l =  k, ^ +  1, & + 2) for <p,fkV2 (CR).

fo  avoid unnecessary formulae, we shall no t w rite  down th e  form s tak en  by h 
and c (rs) on su b stitu tio n  o f th e  resu lts  of th is  section till a f te r  we have considered 
th e  nex t step  in th e  in tegration .
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The Integration with respect to C0 and  CK.

§ 7 (G) In  th e  expressions for h (rs)and c in teg ra ted  out w ith  respect to  all the  
variables save C0 and CR, it  is now convenient to  m ake th e  transform ation

(116) x 2 = hm0 C02, =  R2.

In  connection w ith  th is  we shall use th e  following no tation  :—

(117) B \ 212(m, n) =  {2hm0)’"+nn' Ak12nA \ 2 = ( M2CB2) . "A*(MlC02,

_  mA k (2/u1hm0G02, 2/u2hm0GR2).

= mA k(2fx1x2,2fi j f ) . nA k (2y2y2),

(118) B*2112(m, n) =  (2hm0)m+n . mA k2lnA \ 2,

=  mA k (2y2x2, 2 y y f ). nA k (

W e have here used th e  fa c t— cf. (9 6 )-( l0 0 )— th a t  is a homogeneous
polynomial of degree 2n in p, <r.

W e now use equations (83), (84), (107), (108), in e x ju n c t io n  w ith  §7 (F), to  
w rite  down the  following expressions* for h(r, ), ta k in g  particu la r note of the  signs 
of th e  various term s :—

f f  r+1,3 + 1
(119) bV2 (viSi) = -If- vp>2e~{x +y ] 2  \_<pki2 {rl2y) {B/l (r + 1 , + B7 s + 1 )}

J J k = o
+ 4 Bk (r, s)]1212 x 2y2 dx  ,

(120) &i2( ^ i )  =  J#Di/2j j  e~u +y)̂  ( — ̂ )k\jpk\2 (,5)

- 2  W - V B *  (r, 5) +/*2i,/aB* (r, 5 +  1)}

-  4 (miMo),/j 2/V*12 (t122/) B* (r, 6*)]2112 dx

In  a sim ilar way, from (87), 88), (109), (110) we obtain th e  following expressions 
for c (r, 5) :—

(121) c12(rlSl) = [<p\2(r12y) s) +  | B * ( r + l ,  5 +  1)

+ B* (r, 5 + 2)} + 8p2y2<p,kl2 +1, 5)
+ Bk(r,5+1)} - 1 6yu2y ^ /'A12( r 12f/) BA(r, 5)]1212̂ y ^

308 1)R. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

* In (119)—(122) the suffixes 1212 or 2112, which should be appended to the symbols Bfc(m, —the 
same for all those within any one square bracket—are for convenience of printing indicated only by 
being placed after the bracket itself.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 309

r r  r + 2 ,  s + 2

(122) c12 (r2Si) =  11 £ x̂+y) A ( l)* \J(Ti22/) {.Mia®* (^+ 2 , s) +  jf B* (t + 1 , s +  l )
J J /.'=0

+ /x2iB/l s +  2) — ( /a12AB* (r + 1 , s)

+ M2iV2B/c (r, + 1 ) )  +  4Miyu2?/4B* (r, ,9)}

— 8 4>'*ia(Tiag /){p ls1/MB * ( r + l , s)

-2  W - V B I n  « ) + V AB*(^  * + l ) }

- 1 6 Mi//2?/V %  (t12?/) B /l (r, s ) ]2112 a?y

The sym bol t in <j>\2 (rV2y) is defined by  th e  equation

(123) T12
\ /  hm

The in teg ra tio n  w ith ' respec t to  x  in th e  above expressions is o f a q u ite  e lem en tary  
n a tu re , b u t it  w ill n o t be execu ted  in g en era l te rm s ow ing to  th e  com plexity  of th e  
polynom ials B/c (r , s), w hich a re  in te g ra l in  x 2. A ny  ind iv idua l te rm  in th e  in teg ran d s 
o f (119) to  (122) is of th e  form  (so fa r  as concerns x)

(124) [ e~x‘1x 2{m+') dx  =  (m  +  J ) m.
Jo

The in teg ra tio n  w ith  respect to  y  w ill s im ila rly  n o t be execu ted  in g e n e r a l ; in any  
case, ow ing to  th e  unspecified functions <j>k12 (ry), th is  in teg ra tio n  could be only 
form ally com pleted, and  u n til  we come to  consider special ty p es  of m olecular models 
we shall be co n ten t to  leave b (r, s) and  c (r, s) in  th e  above form .

The Complete Expression fo r  A12Q t.

§ 7 (H ) O11 re ferring  back to  § 7 (A ), an d  th e  defin ition  o f b (r, ), c s), i t  is clear 
th a t  we are now able to  w rite  dow n th e  com plete expressions for A 12Q t in th e  tw o cases 
we have considered. This involves ta k in g  in to  account all th e  term s (r  0 to  00) in 
F  (ll, V, W), w ith  th e ir  ap p ro p ria te  coefficients, as in (78), (80) ;  and  in order to 
m ake th e  expressions m ore sym m etrical, i t  is convenient to  change th e  values of Qi 
sligh tly , by m u ltip ly ing  th em  by certa in  num erical factors (c f  26, 30). Thus 
w ritin g

(125) ___________________1__________________
1 . 3 . 5 . . .  ( 2 r + 3 ) r  . 1 . 3 . 5 . . .  (2s +  3 )s*

X' 1(126)
” -  1 . 3 . 5  ... ( 2 r +  5) . 1 . 3 . 5 . . .  (2s +  5 ) ’

 D
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310 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

we have the  following equations for A12Q, in the  tw o cases under consideration :—

(127)

(128)

s+l

1 . 3 . 5 . . .  (2s + 3)$ A „ U A 2

(2 Imix)5+1

1 . 3 . 5 . . .  (2 s+ 5)

1 f)T 00
B 0 ^  ^  —1, s —1 l /^ r  —1,1 ^ 1 2 l ^ l )  Ml2 /^r — 1,2 ^ 1 2(^ '2^ l)  }  >

QO

CflCn 2  X'r,{yr.]Cl2 (nSi) + yr,2C12(r2.9,)}.
r =  0

The corresponding values of AnQi in th e  tw o cases are obtainable from  (127), (128) 
by replacing th e  suffix 2 by 1 th roughou t. W e will w rite  (rqsj) and (r^ j)  
respectively for th e  values tak en  by b12 (riSi) + b]2 (r2s1) and when the
distinction betw een the  suffixes 2 and 1 in these expressions is abolished. In  place of 
/ui and yu2 we now w rite  \, and /a12 = Mai — 1? — 2wi, w hile BA]2(m, n) and
B/;2i (m, n ) become identical, and equal to

(129) mA k (x2, y2) nA k (x2, y2) =  W  (m,

I t  is convenient to  express bn(n^i) and  cn ) in term s of <pkn only, elim inating
<k'kn ( r y )  and <p"\i(ry) by m eans of (115) and  a sim ilar equation  for (ry). W hen 
th is  is done it is found th a t  th e  coefficient of vanishes for odd values of k, on
account of th e  factor ( —l)* in b12(r2s1) and  c12(r2s 1). The following are th e  resu lts 
th u s  obtained* :—■

(130) bn(n s i)  =  -i-vI2 j*je-<l2+y2)̂ 2 ^ 2hi B2A ( r + 1, s) +  B 2A l )

+ 2^ i f f ^ B3*+1 ( r> s ) + B2*_1 * ) - B2* *)4k +1 x2?/2 dx

(131) Cn (n s i) =  « n 2 ( r ll2/)
J  J  k = 1

f 2 £ + l
+ 4 r [4& + 1 

2k+
4 & + 1

B2/l ( r +2 , .s-) +  |B 2A (r + 1 , 1) + B2/c + 2)

B2A+1-(r + 1 , s) +  B2A+1 ( r, s + 1)

B2A-1(r + 1 , s) + B2A-1(r, s + 1 ) ) —( B2A(r + 1 , + B2A (r , 1))

41(2Z) + 2) (27;+l )  jp + a  / \
+ 41/ l(4& + 3) (4& + 1 ) 45

+ (2& + 1  )2
(4& + 3 ) ( 4&+l )  (4&-f- l ) (4&-l )

+ 1) B2A (r,

2&(2&—l )  T p -2 / \
(4^+ 1) (4^—1) '  ’ '

-  2 m ± l  B2'^ 1 (r, s +  d A  (r, s)
ik+ 1 4&-F 1

x2y2 dx

* In these expressions <f>ku (Tny) is the equivalent, for an encounter between two molecules of the same 
kind, of <£fci2 (vn y)for molecules of different kinds. Thus (cf. I l l )

4>kn (th y) =  2 (2k + 1) CR{1 - (cos xn)}pdp,

where the law connecting xn with p  and Ca may differ from that for xi2- Also rn now becomes
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 311

The term corresponding to k =  0 is absent in both the above cases, since </>°u (m?/) 
is itself zero, so th a t </)2n (rny) is the function (f>n (rny) of lowest order =  2) in 
bn (n-Si) or cn (tiSi). The upper limit of h in the case of bn (riSi) is equal to the 

integral part of the lesser of the two quantities J ( r + l )  and i ( s  + l ) ; this is denoted 
by (r, s). Similarly the upper limit of k in the case of cn (n si) is the integral part 
of the lesser of the two quantities |r (r  + 2) and J ( s  + 2), which we denote by [ , s]. 
Thus, when r  =  0 or s =  0, bn (?T$i) =  0.

W e can now w rite  dow n th e  com plete expressions for AQ, in th e  tw o cases above, 
as fo llow s:—

(132) _____(2hm iy+l____
K ’ 1 . 3 . 5 . . . ( 2 s +  3 ) s AU' 01

R l 8 T y .
777 *7 ^  AI  OX T = 0 r—1, s—1 [fir-1.1 {^1 (n«l) +K{riSl)}

(2hmi)
(133) 1...3 5 1( 2 " + 5 ) AUl2Cl2S =  Co C n ^ X 'r l [y r i l{ c n (n S i)  + y r,2c12( r 2s1)].

In  th e  p resen t paper we are concerned w ith  th e  app lication  o f th ese  formulae only 
to  sim ple gases, in w hich v2 = 0 an d  hence fri2(?qSi) =  x) =  c12(r151) =  c12('r2s1) =  0.
I t  is convenient to  w rite  th e  reduced  equations in th e  follow ing fo r m :—•

----------- (2^ m )*t 2 ------ , - a u C 2(<+1) =  i  & & „ ,
1 . 3 . 5 . . .  (2s +  5) ( s +  l )  y 1 dx r = oH

(2hm),*+i
AU2C2s =  Cn 2

r = 0

(134)

^135  ̂ 1 . 3 . 5 . . . ( 2 » + 5 ) 2 x

In  (134) we have su b s titu te d  r  +  1, s + 1  for r, s in (132), m ultip lied  by  3/v, and 
used the  no ta tio n  g iven by

(136) brs EE — B0Xr sbn (r  1, + 1 ) ;
V

th e  first te rm  in (132), w ith  fac to r /3_i, vanishes, since &n(0, s) =  0. S im ilarly  in 
(135) we have w ritten  1

(137) crs -  —  C 0X'rtCn (n«i).

§ 8. T h e  E xpressions for  t h e  C oefficien ts  in  th e  V elocity-
D istribu tio n  F unctions.

§ 8 (A ) W e have now obtained  expressions for AQ, th e  ra te  o f change o f a function 
of th e  m olecular velocities due to  encounters, in tw o different w ays : in § 3 AQ was 
found from the  equation  of tran sfe r, w hile in §§ 4—7 it  has been determ ined  by d irect 
calculation. By comparison of (26) and  (134)— su b s titu tin g  s '+ l  for s in th e  form er 
— and of (30), (72) and  (135), we deduce from  these d ifferent expressions for AQ th e  

VOL. c cx v i.— a . 2 u
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312 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

following linear equations connecting th e  unknow n coefficients in th e  velocity- 
d istribu tion  function :—

(138) 2  f t f t ,  — 1 ,
r = 0

(139)
0°
2  Yr r̂s 

r = 0

These are true for all values of s from 0 to oo t the coefficients ft, and crg being 
completely determined, in terms of the molecular data, by (130), ( l3 l ) ,# and (136), 
(137). I f  we assume that certain convergency conditions are satisfied (138) and (139) 
lead (in the way usual in the case of a finite  system of linear equations) to the following 
expressions for f t  and y r :—

(140) f t  =  V„ (ft,)/V  (ft,), =  Vr (c„)/V (c„),

where V ( bri)and V (cr,) denote th e  infinite de term inan ts  formed from th e  a rrays (f ts) 
and  (cr,), thus,

(141) V (&,,) = fto fto fto ^30 V (c„) = doo 1̂0 2̂0 3̂0

f t l  f t l  f t  1 f t l C01 Cn C21 C31

A b 02 1̂2 fts 3̂2 <?02 d12 C22 C32

^ 03 f t  3 f t s  ^33 ^03 ^13 ^23 ^33

and  Vr (f t,), Vr (cr,) denote the  de term inan ts obtained by replacing each elem ent of 
column (?*) in V (ft,) and  V (c„) respectively by un ity .

The General Expression fo r  the Velocity Distribution Function.

§ 8 (B) This completes our solution of th e  fundam ental problem of th is  paper, 
the determ ination of th e  velocity-distribution function for a “ nearly  perfect ” simple 
gas, composed of monatom ic molecules of th e  m ost general type , and which is slightly  
non-uniform  as regards tem peratu re  and mass-velocity. The solution will be sum 
m arized as follows (cf. (10), (7 3 )):—

(142) / ( U,V,W ) h m \  v ’ +  W'-')

V )  e
 ̂ w 1 / . , ST , ,, aT , ... 3T\ * (2

1 B# T \,U 3as +  V Zy +  W Sz) ,?o 1 .3 .5 . . . ( 2 r + 3 ) r

— C0 (2 hm)(cnU2 + c22V2 + c33W2 + c23VW + G*31WU-l-c12UV)
^  (2

f t- iC *

= 0 1 .3 .5 . . .  (2 r+  5) r,.C2r

* The suffix 1 throughout these equations may now be omitted.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 313

w here cn, c]2, &c., are  given by  (72). The coefficients /3r and y r, for r  =  0 to  oo, 
are g iven by (140), w here (cf.(136), (137), (130), (131)),

r  r  Lr, S J
( 143) brs = 32B0i'Ars j Je-(z*+y2) 2  <p2k B2A ( r +2, + 1) + B2A + 1, +  2)

+ 2 y2

x 2y2 dx  ,

g ± i B - > ( r + l , .  + l)+ j | U  B“-»(r+l, .+ l)

— B2A( r + 1, s + 1 )

r r [r* s] r
(144) crs =  72C0p\'„  e~(x2+y2) 2  <p2k {ry)B2A ( r  +  2, s) +  §B 2A (r + 1, l )  +  B2A (r, s +  2)

J J k = 1 _

+  V  | | l ± i  ( B -  ( r + 1, s) +  B“ +1 (r, s + 1)'

+ 4  J + T  ( V ’ V  + 1, s) +  B2*-*(r, s - 1)) -  (B2‘(r +  !,» ) +  Ba (r, s + 1 ) )}

+ (2 fc + l)2 +
(4& +  3 ) (4 & + l)  (4& + 1 ) l )

+ 1 )  B2A (r,

i 2fc (2Z.- —l) g2A-2 / \

2 ( + 1 B “ +1 (r , $) +  ■ f k — B2*”1 *)) j J  d *  rfy
4& +  1

w here (c/1 (123)) 

(145)

4& + 1

and, by  ( i l l ) ,

(146) (p2k (z) =  2 (4 & + l)z  f {1— P 2*(cos x)}i> dp,

w here P A (cos x) is th e  usual L egendre’s coefficient, and  x is a function  ol and  z 
which depends (§ 4 (D )) on th e  law  of in te r-ac tio n  betw een  tw o molecules a t  an 
encounter. The factors \ rs and  \ ' rs are defined by  (125), (126), while th e  functions 
BA (r, s), w hich are in te g ra l polynom ials in x  and  «/, w ith  m erely num erical coefficients, 
are  defined by  (129) and  (96). In  th e  upper lim it o f Jc, [ r , s] denotes th e  in teg ra l 
p a r t of th e  lesser o f th e  tw o q u an titie s  rpr + 1 , |-s + 1 .

The factors B0, C0 are, as yet, a r b i t r a r y ; we now assign to  them  th e  values 
determ ined by  th e  equations

(147) &00 — 1, Coo — 1.

This m akes B0 and C0 each equal to  v '1 m ultip lied  in to  a function o f (2 i.e., of
2 u  2
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314 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

th e  absolute tem peratu re . The elem ents brs crs and  th e  coefficients /3r, y r then  become 
functions of the  tem pera tu re  only.

The coefficient f$_x is not determ ined  by  th e  above equations, b u t is given (75)) by

(148) S_x =  -  2 /3r/ ( r +  1).
r = 0

Properties o f the Determinants V (brs), V (c„).

§ 8 (C) On inspection of (143) and (144) it  is ev iden t th a t

(149) brs = bsr, crs = csr,

so th a t  V ( brs) and V (crs) are symmetrical determ inan ts.
In  expression (143) for brs,the variables of in teg ra tion , x  and  y, are  never negative, 

so th a t  (c f  (129), (96)) rA k, sA k and  B/,:(r, s) are essentially  positive (or zero) for all 
in teg ra l values of r , s, and Jc; fu rth er, since P* (cos x) never exceeds un ity , (ry) is 
also alw ays positive. I t  is evident, therefore, th a t  brs m ust be essentially  positive 
if  th is  can be proved tru e  of

(150) B2* ( r + 2 , s + l ) — 2y21B2k( r  +  1, l )  +  B2A ( r + 1,

Now

(151) B2/c(r  +  2, s + l ) - y 2B2k(r+ l, s+ l)  = ^ A 2k[r+2A 2k- y 2r+1A 2k]

s + l j ^ 2k f  y ' r+2
2 (r+ 2)t ( r  +  | ) t - 2 k  nr,2t/}.2{r+

_ t=  2k (t + j jr ) t (t — 2k)\
x~y ' I 1 ( r + l ) ,  (?•+§) t - 2 k  ry,2t/, .2 ( r  + 2 - t )

t = 2k(t-\-^)t ! x y

-xA 2k[-^) 2  ^ ^  x 2ty2(r+2~t]{(r + 2 — t) (t — 2k) + t(r+%)},\x,

every term  of which is positive. In te rch an g in g  r  and s in (151), and adding the  resu lt 
to  th e  la tte r, we obtain (150), which, w ith  brs also, in consequence, is essentially 
positive.

From  (151), moreover, i t  is clear th a t  th e  num erical coefficients in (151) or (150) 
increase w ith  r  or s, and  the  same is readily  seen to  hold good also in the  case of 
B* (r, s). As r  or sincreases, therefore, th e  num erical coefficients and the  degree 
(in x  and y) of th e  in teg rand  of (143) increase, while if both  r  and s increase, new 
positive term s are added to  th e  in tegrand. Hence, provided th a t  th e  functions 
<p2k ( r  y)satisfy certain  simple conditions,* brs steadily  increases w ith  r  or s, and th e  
consideration of even a single te rm  of (151) or the  in teg rand  of (143) shows th a t th is 
increase is w ithou t lim it, i.e., brs tends steadily  to  infinity w ith  r  or .

* It is easy to see that the increase with y of p k (ry) is less rapid than that of if 4>2k (ry) is constant 
or steadily increases, though less rapidly than y, brs will steadily increase with r or s. But much less 
restrictive conditions might be devised, e.g., if p k (ty)decreases like y~l, the above result still holds good.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 315

I  have lit t le  do u b t th a t , w ith  ra th e r  m ore troub le, crs could be show n to  share  th e  
above properties o f brs, b u t I  have n o t m ade any  serious a t te m p t to  prove t h i s ; from 
th e  num erical calculations in § 10 (A ) i t  appears probable th a t  th e  increase o f w ith  
r, s is m ore rap id  th a n  th a t  o f brs.

Properties o f  the F irst Roiv or Column o f  V (brs) and  V (crs).

§ 8 (D ) The num erical values o f brs an d  crs ob ta ined  in § 10 su g g est th a t  m any 
fu r th e r  general p roperties o f th ese  e lem ents m ig h t be determ ined , w ith  sufficient 
trouble, and  th a t  th e  convergence o f th e  d e te rm in a n ts  V ( ) and  V (crs) m ig h t th u s
be dem onstrated . O w ing to  th e  considerable a lgebraic  difficulties involved, however, 
T have so fa r  m ade l it t le  progress to w ard s  th e  p roof o f such properties, except for 
th e  case w hen ror sis zero, i.e.,for th e  e lem ents o f th e  first row  or colum n of
V (brs)and  V (crs). I t  w ill be show n th a t

(152) br0 = b0r = cr0 =  c0r 

for all values o f r.
This will be proved as a  p a rtic u la r  case o f th e  m ore general re s id t th a t

(152a ) (s +  l )  brs(k) = crs(k) w hen th e  lesser o f r  and  s is even, and  =  [r, s],

w here brs (k), crs (k) denote  th e  p a rts  o f brs and  crs respec tive ly  w hich are due to  a 
p a rticu la r value o f k in (143), (144), w hile [r, 5] deno tes th e  up p er lim it o f k, as usual, 
i.e., & =  J r + l o r ^ - s  +  l ,  w hichever is th e  less. T hus if  we suppose th a t  s, and 
th a t  s is even, (152a ) tak es  th e  form

(153) ( s + l ) 6 ,» ( |s  +  l )  =  c „ ( J s  +  l).

W h en  s = 0, th is  value o f k is u n ity , and  5r0( l) ,  cr0( l) ,  w hich usually  form  only 
a p a r t of brs, crs, become th e  whole, so th a t  (152) is th e  p a rticu la r case o f (153) 
corresponding to  th is  value o f s.

Since B;,:(r, s) is zero w hen e ith e r r  or is less th a n  k, some of th e  term s in 
5rs(^s +  l) ,  Crsd'S +  l )  vanish. In  fact, as m ay read ily  be seen from  (143), (144), we 
have

(154) M l - s  + l )  =  32B0i/Xrs j j  e- ("2+yV +2(t?/) |B s+2( r + l ,  s + 2)

+ 2/2B*+1 (p  + 1 , 4-1 ) |  x 2y2 dx dy,

(155) cr, ( i s  + l)  = 72C0i/\'„ j j  e-(*3+y2)0s+2 {ry){b s+2 (r, 2) +  ^ ^ 2/3Bs+1(r,
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316 Dll. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

From  (96) it  is easy to  see th a t

(156) ‘A‘ =  ( u k ( ^

so th a t

(157) B*+2( r + l ,  s +  2) +  ? i t t f V B ' +1( r + l ,  s +  l )

_ (s +  2)! ’y 1 ( r + l) t  (r + 2  )t— —1

(» + « .♦ ,  « -» i ( t + i ) ,  ( * - • - ! ) !  V

By p u ttin g  r  in place o f ( r + l )  in (157), and adding  {2 (s +  2) 5)} tim es a
sim ilar expression in w hich r , s replace r + l ,  s +  l  in (157), we also have

(158) B - +  . + 2) +  4 i ± f W * (r, '  + + •)

_  (s + 2)! 4 1 Vt_ (r  + | ) t_8 ,̂2̂ .2
~  (s+. . .  ( * + « . ( * - « ) !  V

W e now su b stitu te  the  expressions on th e  left of (157) and (158) into (154) and 
(155), and in teg ra te  w ith  respect to x  by  m eans of th e  w ell-known form ula

(159) f  e - ^ 2(t+1) dx  JV '2 +  i ) t ;
Jo

we th u s  obtain th e  equations

(160) 6 „ ( |s  +  l )  = 2  (r  + l ) ‘(>’+ f
J l s +  fb + 2  < = «+! {t — S— L)\

(161) c „ ( i s  +  1) =  18C„«rV„ j e~ ^ ( T y)’̂ ( H s H ^ l/3<r+!+3‘ ‘><%>

or, changing the  notation  so as to  m ake the  lower lim it of t zero, and inserting  the  
values of Xrs, \ ' rs according to  (125), (126), i

2_(r+s+ 4)  2 “ (r+5+4)

(162> A"  =  ( r + l ) ( s + l ) ( r + i ) r+2(s + f ) !+2’ X'r* =  ( r + f ) r+2 ( « + * ) +

we have

n

(163) 6rs(^s + l )
— 0-(r+s+l)T> Vs _____

(s + 1 ) (r + | ) r+2 {(s + | ) s+2}

(164) crs(-g-s + 1 )

=  9 . 2 - (r+,+3)C0,/7r1/3

f «_!,V*+2M  2* ( r  +  l ) ,  y2̂ 3- 0s + £ h ,  ol2J t = o

n  (s+ 2 )!
(r  +  f)r+2 { ( S +  f ) s+2}'

fe-»V'+a(-^) 2 r-,0,(r + 1),2/zfr+3~l>dy.J t = o

 D
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TIIEOEY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 317 

The ratio of these two expressions is given by

Ks(̂  + l )  _  A
Crs ( i 5 +  1) +  1 ’

where A is a quantity  independent of r  and s. W hen s =  0, as we have seen, 
+ and c r s ( i s +  l)  become identical w ith and crs respectively. Hence

^2 =  A,
Cr0

and since B0 and C0 have been chosen so th a t =  1, c00 =  1, the value of A  must be 
unity. Hence, when s is even and r  =  s,

(s + 1) brs (^s + 1) = crs(J -s+ l) ,

with the consequence th a t
bro Cj-o

as a special case.
I t  is convenient to introduce the notation

(165) f e - 'V *  ( r  y)>/2'"‘+” dy -  (m + | ) „
Jo

so th a t  if  (f>2k (ry )had th e  value u n ity , th e  value o f w ould also b e 'u n ity , by
(159). In  te rm s of th is  n o ta tio n  (163) and  (164) m ay be w ritte n  as follows : —

(166)

(167)

S+ i < = 0

crs ( J s + 1) =  9 . 2~(r+s+5) C0|/7T (* +  2)1
{(5 +  f ) s+2}2< = 0

2  r_sCtK r —s — t, os-f !•

B y w ritin g  t =  r — s —t'it is ev iden t th a t

(168) 2  ,- .0 ,K ,_ ,_ u , +1 =  2  r_,C ,K u .+1.
(=0 t = o

By giving to  r  and  s in (166), (167) th e  value zero, we have

(169) bm =  ^ |5 B 0i/7rK0>1, Coo =  A C o^K ot,

whence, rem em bering th a t  (cf. (147)) B0 and  C0 are so defined as to  m ake bM and  c0 
each equal to  u n ity , we have

(170) ■R — iSJiJ-)0 — 4 C„ =  25
IT VI 0 IT ’Try-tV,, ,

B0 — |C 0
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318 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

W e will su b stitu te  these values in to  (166), (167), and w rite  0, in order to  obtain 
expressions for br0 and  cr0 as follows :—

(171) brQ r ^rO0̂ r

w here we have w ritten

(172) Kr = 2~r i  rCt K til,
t = 0

so th a t

(1^3) *o =  K 0t i =  2 6 dy.

I t  is of in te re st to  exam ine also th e  r th successive difference of br0 or cr0, which we 
shall denote by $rJ)r0 or <5r0cr0. W e have

(174) Sr0f ( r )  = f ( r ) - rC1f ( r - l )  + rC2f ( r -  .

Then, from (172), it is easy to  see th a t
r r —m

$rOKr = 2 r2  ( —2)'WrCm 2  r_ „ A K t>1
= 0 t = 0

= 2 - ' 2  ,CtK u  2* ( -2 )V ,C „
t = 0 m = 0

=  ( - 2 ) -  2  ( - i n C .K , , , ,
* = 0

since

2  ( -2 )V ,C „  =  ( 1 - 2 ) '- ' =  ( - 1 ) - ' .
m — 0

H ence

(175) r̂Ô rO =  r̂0Cr0 =  ( — 2) r (k0) 1 2) ( l)*rCjKt l.
t = 0

Sim ilarly th e  r th difference of
r —s

2 rvs 2  r_sC(K tii/2S+1,
t = o

which is the  p a r t of 6rs(^ ,9+ l) or crs(^s + l )  which depends on r  ( s being even and 
r s)is equal to

2 , ( - l ) ‘r_,C1K,,W l.
£  t — 0

00 00

Symmetrical Expressions fo r  2  /3r and  2  yr.
r = 0 r = 0

§ 8 (E) W hile V ( brs)and V (crs) are sym m etrical, the  derived determ inants 
Vr ( brs), Vr ( crs) are necessarily lacking in sym m etry, and our expressions for /3r and yr, 
when we a tte m p t to  m ake successive num erical approxim ations to  th e ir values

 D
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for p a rticu la r ty pes o f m olecular m odels (cf. § 10), appear no t to  converge a t  all 
rap id ly . F o rtu n a te ly , in  our app lications o f th e  v e lo city -d is trib u tio n  function  to  th e  
theo ry  o f v iscosity  and  th e rm a l conductiv ity , we need to  know  no t th e  individual

QO 00

values o f th e  /3’s and  y ’s, b u t only th e  sum s 2  /3r and  2  y r ; for these i t  is possible
r = 0 r = 0

to  de term ine  sym m etrical expressions w hich are found, in  practice, to  be h igh ly  
convergent.

In  w h a t follows we shall use th e  sym bol placed before a  function  o f th e  
in te g ra l variab les r,s (such as brs or crs) to  d eno te  th e  , n)th successive difference
of th is  function, w ith  respec t to  rand  s respective ly . T hus

L o f( r ,  s) = /{ r ,  s ) - nf i j ' i r - l ,  , 5) - . . .

4»/(**, s) = f ( r , s ) - nG i f { r , s - l )  5 - 2 ) - . . .

L n f( r ,  s) = Sm0f  (r, s ) - nC1S„l0f ( r ,  5 - 2 ) - . . .

=  4  nf(r, s) - mCi $onf ( r - 1, s)+,nC2^ , / ( r - 2 ,  5 ) - . . .

W hen we su b s titu te  brs or crs for f ( r ,  5) in th e  above form al expressions, an y  te rm  
w ith  a negative  suffix is to  be o m itted  as being zero.

Since th e  value of a d e te rm in a n t is u n a lte red  by  su b tra c tin g  from  th e  elem ents ot 
any  one row or colum n th e  corresponding  e lem ents o f an y  o th e r row or column, and  
since th is  process can be rep ea ted  indefin ite ly  often, i t  is clear th a t  from  (141), by 
su b trac tin g  th e  (5 —l ) th row from  th e  sth, for all values o f 5 from  1 onw ards, we have#

THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 319

( i f  6) V ( brs) — V {S0lbrs), V (crs) — V (<bi.crs).

The same process applied  to  Vr (6,.s), Vr (crs)leads to  d e te rm in an ts  iden tical w ith
V ( S0lbrs)and  V (S0lcrs) respectively, save th a t  in th e  r th colum n all the  elem ents are 
zero except th e  one in th e  first row, w hich is u n ity . E v iden tly , therefore , V,. ( 
and  Vr (crs) are th e  r th m inors o f d e te rm in an ts  w hich are  respectively  iden tical w ith
V (S01brs) and  V (<501crs), excep t th a t  in each case all th e  e lem ents o f th e  first row  have

th e  value un ity . C onsequently  th e  sum s
00 00

2  Vr ( brs)and  2  Vr (crs) are equal to  th e
r  = 0 r  =  0

sum s of th e  m inors o f th e  tw o d e te rm in an ts  ju s t  described, i.e,, th e y  are equal to  
these d e term inan ts  them selves. Thus, by (140),

-? o _ v ( ^ y j
, t . * “  V (*,&„)*

w here we have

- v  q , c ' j  
• t» 7r v ( w

(178) U0, =  1, c'0, =  l ,  (5 = 01000 ), b'r, = br„ c '„  =  o„, (s =  Otoco, »•= 1 toco).

VOL. CCXVI.----A .

* When s = 0, 801 should be replaced by S00.
2 x
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320 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

To th e  above determ inan ts we now apply th e  same process o f differencing by columns 
which has already been applied by rows, and we th u s  obtain  th e  equations

(179) y  o _  Y  v  . — Y iM r i )
=« v ( j u bry v ( S u c „ ) m

The determ inan ts V ($n b'rs)and V (Snbrs) are identical save in th e ir first rows ; all the
elem ents of th e  first row of th e  form er are zero save th e  first, which is unity . Hence 
V,(Snh'rs) is equal to  the  principal minor o f V (Snbrs) ; we shall denote it  by 
V' (Snbrs).Hence, and  w ith  a sim ilar no ta tion  for th e  principal minor of V (Sncrs),
we have*

y  o  _  iY ^ rs )  y  _  ($nCrs)
.to7' V(3nc„)

All these determ inan ts  have now regained a sym m etrical form.
I t  is convenient, p a rtly  for th e  sake of elegance, and  also because it  im parts a 

h ighly  convergent form to  th e  elem ents of our de te rm in an ts  (of. § 10) to  continue 
th is process of differencing still fu rther, as follows. W e repeat the  whole of the  
above operation of differencing by  rows and columns an indefinite num ber of times, 
beginning now a t th e  second row and column (thus leaving unchanged the  values 
both  of V and its principal minor), and  a fte rw ards successively a t  th e  nex t la te r row 
and column th a n  on th e  previous occasion. The general elem ent th u s  becomes Srsbrs 
or §rscrs,and we have

(180) £  « v '  (U > J
V (S„b„) ’

2
r  =  0

"Y r
V' (S„c„)
V (L^rs) ’

where th e  dash (') denotes th e  principal m inor of th e  corresponding determ inant. 
These expressions could, of course, have been obtained d irec tly  by a re-arrangem ent 
of th e  original equations of transfer, b u t it  seems preferable to  use the  la tte r  in th e  
more simple, n a tu ra l forms chosen, and to  m ake th is  transform ation  by differencing 
in relation to  th e  determ inan ts  formed by the  elem ents brs, crs.

§ 9. Consideration  of P articular  M olecular Models.

§ 9 (A) W hile, as we have seen, certain  general properties of th e  elem ents brs, crs can 
be dem onstrated  w ithou t th e  assum ption of any property  of th e  molecules save 
spherical sym m etry , it  is possible to carry  our investigations m uch fu rth er when we 
represent the  molecules by particu lar models of simple type, such as point centres of 
force, or rigid elastic spheres. This involves, prim arily, th e  exam ination of the 
functions (j>2k ( t  y).

* When r or sis zero, the corresponding suffix of <$n should also be written as zero.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 321

Molecules which are Point Centres of Force varying as r~n.

§ 9 (B) W h en  th e  m olecules are  po in t cen tres  o f force v a ry in g  inversely  as th e  nth 
power o f th e  d istance, th e  angle  x in th e  expression (146)— cf § 4 (D )—-is given by 
the  following in teg ra l*  :—

(181) X =  2 £  [1

H ere  rj0 is th e  leas t positive  roo t o f th e  equation  [ l — 
m ultip le  o f p, thus,

0, and  a  is a

(182)
2_

71—1
p [ k ^ )  C r” •

w here K  is a co n stan t w hich m easures th e  in te n s ity  o f force betw een  tw o molecules 
a t  u n it  d istance. H ence (cf (ill))

(183)
2

<t>2k(ry) =  2 (4& + 1 )  1c b1_^ | o

n-̂ k
/ y2 \s (»—l)
\2 h m )  9

w here nAk is a co n stan t depend ing  on n and  k, b u t n o t on y or h ., no t on the  
absolute tem p era tu re).

W h en  th is  value of (fk (ry) is s u b s titu te d  in our expressions for brs and  crs, i t  
becomes possible to  execu te  th e  in te g ra tio n  w ith  respec t bo th  to  x and  to  y in te rm s 
of gam m a-functions. T hus (cf (165))

(184)

so th a t  

(185)

f e (ry) dy = (»»+J ) ,  K „_ iU
Jo

- M £ T t ‘ - r .......
71 — 5

'>T(m + 2 - 71— 1 / ’

71 — 5

=  ^ =  a ^ ' - a  ( - L )  r ( 4 _

* Cf. §14, p. 454, of my former memoir, ‘Phil. Trans.,’ A, vol. 211 (1911). The Vo of the formula 
there given is the relative velocity of two molecules, which in our notation is = 2CK when the
gas is simple.

2 x 2
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322 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

and

(186)
t +  3 •

n — 1
(^ + f)t

- K 0 , 1*

H ence th e  values assum ed by B0 and C0 in th is  special case are as follows 
(170), § 8 ( D ) ) : -

/ \ 11 71—5 . 01—5
153 (2/?m )/2w-i q  _  375 (2/?m )/i!«-i(187) B„

x W  4 - n —1-

375

8 A A , r ( 4 -  2
71—1

From  (186) we have

br0 — Go — Kr/K0 — 2 r 2  rGtK t l / K 01

2
r A.

2 _r 2  H

t = o

£ 4- 3 —n — 1
t = oG (  ̂+  “|)« 

2~rF  ( — r,4-
n —1 > \  5 “  1 I >

in th e  no tation  of th e  hypergeom etric function. I t  m ay hence be shown, w ithou t 
much difficulty, th a t  (if n >  5) br0 and  crt stead ily  increase to  infin ity  w ith  r, the

71 —  5

ra te  of increase being com parable w ith  th a t  of rn~l.
Since th e  functions (p2k (ry) all depend on h in th e  same way, it is clear th a t, w ith  

the  above values of B0 and C0, th e  elem ents brs and  crs and  consequently, also, the  
coefficients /3r and  yr in th e  velocity-d istribution  function for molecules of th is  type, 
are independent of h, i.e., th ey  are independent of tem pera tu re . They are, indeed, 
pure num bers, depending only on th e  m olecular m ass and on th e  force constant of th e  
molecules.

I t  is of in te rest to  determ ine the  value of th e  elem ents Sr0br0 (or Sr()cr()) of th e  ou ter 
row or column of V (Sribrs), in th is  special case. W e have, by (175),

■Ww =  ( - 2 ) " '  2  ( - l ) ' ,C ,K t l /K
t =  0

0, 1?

t -f- 3 ■ 2 ■

( _ 2 ) - - 2  ( _ i ) < ty  
1 = 0 ^

. = (— 2)~rF ( 4 n — 1 > 1  )>

in th e  notation of hypergeom etric functions, or, in term s of gam m a-functions,

(188) <y>r0 =  =  ( - 2 ) -
r ( l ) r r +

71— 1

r ( r + i ) r ( ^ r - i\n —1

( - 2 )'
1— f  +

71 —  1 /

(^ +  l )r

 D
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 323

As r  tends to  infinity , th e  la s t expression ten d s  to  zero m ore quickly  th a t

- ( *2 ~rr'
5

and  also it is a lte rn a te ly  o f positive an d  neg a tiv e  sign, a fte r  th e  first tw o term s 
(both  SMbr0 and  ^10610 being  positive).

Maxwellian Molecules 5.

§ 9 (C) I t  is now easy to  see w h a t a re  th e  special p roperties  o f th e  fifth-pow er law  
{n =  5), th e  law  obeyed by  th e  m olecules w hich we te rm  M axw ellian, w hich enabled 

Maxw ell  to  w ork o u t th e  th eo ry  on th is  hypo thesis  w ith  such g re a t sim plicity  and  
accuracy. W h en  n = 5, we have  from  (186)

(189) K , 1 = 5A 1,

w hich is in d ependen t o f t. H ence, by  (170), (171), (172),

(190) K ( 1 — K 0 x =  gAj, Kr = 2 2  rCfK ti i — 2 rKo, i 2  rGt =  K 0 1 =  bri) =  cr0 — 1 ;
t = 0 t = 0

(191) =  3r,0c„ = ( - 2 ) -  2  ( - l ) ' rC, =  ( —2 )- r ( l  —l ) r =  0, ( r > 0 );
t = 0

(192) B0 — - f -  (i/5Ax) \ C0 — 25 (r5Aj) l.
From  (191) and  th e  equation  b00 = c00 =  1 we deduce th a t  in th is  case th e  principal 

m inors o f V (Srsbrx) and  V (tirscrs) a re  equal to  th ese  d e te rm in an ts  them selves, i.e.,

(193) 2  A  =  1,
r  =  0 r  — 0

7r (M axw ellian  molecules),

while from- (190) i t  appears th a t  all th e  elem ents o f th e  first row and  column of 
V ( brs)and  V (crs) are un ity . H ence in Vr ( and  Vr (crs) th e  first column and 
column (r)  are identical, so th a t  we have

(M axw ellian molecules),
(194) V ,( 6 „ )  =  0, V , (c„) =  0, r >  0

(195) V„ (b„) = V (brl),V„ = V (c„) 

whence also, by  (140), we have

(196) /30 = 1 ,  y0 =  1, fir = y r = 6, >  0) (M axw ellian molecules),

and also, by (148),

(197) 8_x =  —/30 = —1 (M axw ellian molecules).
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324 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OP MOLECULAR VELOCITIES,

In  th e  case of molecules which obey th e  fifth-pow er law, therefore, th e  velocity 
d istribu tion  function has th e  simple finite form (142))

(198) / ( u, v, w ) =

[ l - ( , sA I) - I { ¥ ^ ( u | I  +  V < |' +  w ^ ) ( - l + i 2AmC3)

+  f  (2hm)(c11U2 +  c22V2+ c33W2+ 2 c23VW +  2c31WU +  2c12U V )|J

(M axwellian molecules),

w here C2 =  U2 +  V2 + W2, cn, cr2, &c., are given by  (72), and  (183))

(199) 5A j .= 10 (J-K m )'1'2[ {1 — P 2 (cosx)} =  ^ ( K m )‘/2 [ sin2y . a da.
Jo Jo

roc
M a x w ell* calculated th e  value o f th e  in teg ra l sin2 x • a  da, the  forces being

Jo
repulsive, by num erical quad ra tu re , and  found th a t

poo

7r sin2 x • a-da = 1'3682,
Jo

so th a t, for repulsive forces proportional to  th e  inverse fifth power o f the  distance

(200 ) ,A X = — 1-3682 (Km)'1*,
Ztt

w here K m 2 is th e  force betw een tw o molecules a t  u n it distance.

Molecules which are R igid Elastic Spheres.

§ 9 (D) W e n ex t consider molecules which behave a t  encounter like rig id  elastic 
spheres of rad ius <r. This particu lar m olecular model has been more used th an  any 
other, in researches on the  k inetic  theory , on account of its  sim plicity and concreteness, 
which aid the  im agination in following or constructing  “ descriptive ” theories of 
gaseous phenomena. As regards the  analy tical developm ent of the  theory, also, it  is 
probably the  sim plest case a fte r th a t  of M axwellian molecules. The difference 
betw een the  tw o models in th is  respect is, however, enormous, the  rig id  elastic 
spherical molecule requ iring  th e  infinity  of term s /3r, yr in the  velocity-distribution 
function, ju s t as in the  case of the  m ost general molecular model. The com parative 
sim plicity of the  p resent model lies in the  m oderately trac tab le  expressions for brs, crs 
to which i t  leads. A part from the  m ethods of the  present and my former paper,

I* oo
* Maxwell, ‘ Collected Papers,’ ii, p. 42. His constant A2 equals it sin2 x • a da in our notation.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 325

however, i t  has no t been found possible in th e  p a s t to  ob ta in  any  close num erical 
accuracy in calculations based on th is  m olecular model, th e  erro rs re su ltin g  in previous 
theories (a lth o u g h  these  have been carefu lly  co n stru c ted  and  closely scru tin ized) 
ran g in g  from  10 to  50 per cent. (c f  § 11 (F )).

I t  is readily seen# th a t in the present case

(201) y = 0  (£>>2<r) si n J x = ^ / 2 o -  (p = 2 a )

so th a t
p  dp = 2o-2 sin Jy  cos |-y <̂ X — 0-2 sin X^X = cos y.

As p  ranges from 0 to 2<r, y ranges from 0 to 27r, and — cos y from — 1 to 1.
Hence (cf. ( i l l ) )

(202) 02M r^) =  2 ( 4 £ + l ) ( V 2j   ̂{ 1 - P 2A (cos y )} d  co sy

=  4 (4& + 1 )  a-2 (2 hm)~

since j  P 2A. ( f)  dp. =  0. H ence <p2k (ry) depends on k only as reg a rd s  th e  num erical

facto r (4& +1), and  th e  p re sen t case is, analy tica lly , th e  sam e as th a t  considered in
§ 8 (B) if we write (c f  (183))

' #■

(203) y — j  =  1, or n = oo, and  nAA. =  4 (4& + 1 )  a2.

W e m ay therefo re  quote  from  th e  form ulm  of § 8 (B) as follows w ith o u t fu r th e r  
discussion :—

(204)

(205)

(206)

(207)

i f ' 2 ( m + J ) mK  m_2*,* =  2 (4& + 1) o-2 (m+

=  2 (4& + 1) (m  + 1 ) ! a-2 (

Ko — Ko,i == 647t_ ,3<t2 (2hm)~K f)1 =  K 0il (t + 3)t/(t + -2~)t

■r _  2 25 (2hm) p̂ _  25 )^r̂ o — l i e  —ij2 2 >
7r <J V

"B'4 i/2 2ir cr v

=  <V> =  2 -  2  3  =  2 - F  4, - l ) ,t= 0 t ! (c +  f h

15
(208) ^  ^  =  ( —2)~r ^  =  ~ ( ~ i Y ( 2 r _ l} ( 2 r  + 1 ) ( 2 r + 3 ) ( 2 r + 5 ) •

As in th e  case o f molecules which a re  poin t centres o f force vary ing  inversely as 

* Cf.§ 13, p. 453, of my former paper, ‘Phil. Trans.,’ A, 211 (1911).
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326 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

th e  nthpower of th e  distance, th e  elem ents and  crs, and th e  coefficients /3r and
are pure num bers, independent of th e  tem p era tu re  (i.e., of

Molecules which are Rigid Elastic Spheres which Exert Attractive Forces.

§ 9 (E) E xperim ents on the  phenom ena of actual gases, as, for example, on the 
variation of viscosity w ith  tem pera tu re , indicate th a t  none of th e  molecular models 
so far discussed in th is  chap ter gives a really  adequate  representation  of these 
phenomena. The best o f all the  simple models which have been used in th e  kinetic 
theory  seems to  be th a t  considered by van  der  W aals and Suth erla n d , viz., a 
rig id  elastic sphere surrounded by  a w eak field of a ttra c tiv e  force. This agrees w ith  
the  known fact of s ligh t cohesion in gases. The effect of th is  field of force on th e  velocity- 
d istribu tion  function, or on viscosity and  therm al conductivity , m ay be referred 
m ainly to  th e  deflections of m olecular pa th s for which it  is responsible ,
th rough  th e  collisions which it  induces betw een molecules which would otherwise 
pass one ano ther w ithou t m utua l in ter-action , ra th e r th a n  to  its  d irect effect in the  
absence of collisions. The la tte r  effect will be expressly neglected in our calculations, 
which will therefore be inapplicable to  vapours in w hich th e  cohesion is large enough 
to render th is neglect invalid.

A detailed  account of th e  dynam ics of collisions in these circum stances is given in 
§ 15 of my form er paper, from which th e  following resu lts are  quoted. I f  the  potential 
of th e  force betw een tw o molecules in contact be denoted by 2 (reckoning th is 
po ten tia l as zero when th e  separation is infinite), th e  condition th a t  a collision m ay 
tak e  place is

(209) p  <  p 0 w here =  2<r (1 +

(since th e  relative velocity, in m y form er paper w ritten  V 0, is here denoted by 2CR). 
The angle y corresponding to  such a collision is given by

(210) smix=PlPo-

The angle y corresponding to  larger values of p, which do not correspond to  actual 
collisions, is given by  (181) if  the  molecular forces obey the  nih power law, bu t we 
will here m ake no assum ption on th is  point, as th e  deflections produced by the  inter- 
molecular forces alone will be rejected  afte r equation (211). Consequently

(211) E k {ry) =  2(4& +l)<r2( l  +  &74CR3)C K + 2 (4 & + l)C K f {1 - P 2* (cosy)}
Jpo

=  4 (4& +1) a-2 (2hm)~1,2y ( 1  + 2(y)

by analogy w ith  (202) and (183). The la tte r  term  represents the negligible

 D
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 327

deflecting effect of the forces alone, as above mentioned, and it will be omitted 
henceforward. Hence, corresponding to the equation (204) of § 9 (D), we have

(212) 2 (4*  + l ) tr3(2Am)-,,T (<  + 2 ) ( l +

= 2  (ik+ 1) (t + 1)! «r3 (2 ( 1 + ,

where we have w ritten
J)2mr

~  12R *
Similarly we have

(214) • K0 =  K 0>1 =  6 4 ^ - V ( 2 M - 1/s( l +  y ) ’

(215) K 1.1 =  64T- V ( 2 M - v . ( g | ( l  + - l - 3 S ) )

■p 2_2 5 (2hm)  ̂  1 p  _  2 a   ̂ 1
0 256 ttV v 1+S /T  ’ 0 64 x V r  1 + S /T *

I t  will be seen later th a t S is the well-known “ Sutherland’s constan t” (§11 (F)).

§ 10. N umerical Calculations for P articular Molecular Models.
R igid  Elastic Spheres.

§ 10 (A) In the last section we determined the complete expression for the velocity- 
distribution function for a gas composed of Maxwellian molecules. In  the other cases 
there considered we must be content to make numerical approximations, which can, 
of course, be carried to any desired degree of accuracy. W e shall consider in most 
detail the case of rigid elastic spherical molecules, for which we shall calculate 
hrs and crs for 0 = r  =~ 3, 0 =  s =  3. These are chosen for the fullest treatm ent partly
because of their simplicity, and partly  as representing the limit between which, and 
the case of Maxwellian molecules, the molecules of actual gases appear to lie.

In making such numerical approximations the following table of expanded formulae 
for B* (r, s) is u sefu l:—

Table I.—Expressions for B* (r, s).
B°(0,0) =  1 B H B l) =  f  xyB2(2,2) =  B3(3,3) =  «  B<(4,4) =

B° (1, 0) =  x2+y2 B 1 (2, 1) =  |  xy( 2) B 2 (3, 2) =  |  ( 2) 

B3(4 ,3 )  =  f f  x Y ( x 2+ y2)B * (5 ,4  

• B° ( 2 ,0) =  x 4 +  JJ1x 2y2 +  y4 B 1 (3, l )  =  2 (x* + 1§
B2 (4, 2) =  ^f-x2̂ 2 (x4 + h^xTy2 + y4)

B° (3, 0) =  x6 + 7x4y2 + 7x 2y4 + ?J] B1 (4, 1) = f  (x6 + ̂ x h f + 2̂ -x2yi + y*)
B2(5, 2) = Ĵ x 2y2 (xQ + -~j-x4y2 + - f̂-x2y4 + if).

2 YVOL. CCXVI.----A .

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



328 DR S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

I t  is useful also to  recall th a t  BA (r, s) = BA (s, r), and th a t  BA (r, 0 if
r  <  k or s< k.

By using these formulae in connection w ith  (143), (144), (147) and (204)-(208) the  
elem ents brs, crs, have been calculated ,# as above m entioned, and are given in the  
following expressions :—

(217) V (brs) =

(218) V (c„)

1 15 41 741
2.7 2232 237 .11 ' *

15 269 5993 7571
2.7 2272 233272 243.7.11

41 5993 152537 1517873

CO<N 233272 243472 25337211

741 7571 1517873 50375871
237.11 243.7.11 25337211 263372112 * ‘

15 41 741±
2.7 2232 237.11

15 877 6893 3889
2.7 223.72 233272 243211

41 6893 193329 6202777f
2232 233272 243472 25347211

741 3889 6202777f 225937695
237.11 243211 25347211 2ti3472l l 2

or, w riting  out th e  elem ents in decimals to  six places, 

(219) v (6 „ )  = 1-000,000 * 1-071,429 1-138,889 1-202,922

1-071,429 1*372,449 1-698,696 2-048,431

1*138,889 1-698,696 2-402,006 3-259,364

1*202,922 2-048,431 3-259,364 4-916,968

V (c„) = 1-000,000 1-071,429 1-138,889 1-202,922

1-071,429 1*491,497 1-953,798 2-455,177

1-138,889 1-953,798 3*044,359 4-439,790

1*202,922 2-455,177 4*439,790 7*350,929

* A considerable part of the computations of § 10(A) have been made by Mr. J. M a r s h a l l , Scholar 
of Trinity College, Cambridge, who has thus been of much assistance in bringing the results into a 
useful form.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 329

As explained  in § 8 (E ), how ever, th e  d e te rm in an ts  V (Srsbrs) and  V (S„c„) derived 
from th e  above by successive differencing are m uch m ore useful and  su itab le  for 
num erical calculation.* T hey m ay  conven ien tly  be w ritte n  as follows, w here th e  
fac to r above each colum n or before each row  is to  be m ultip lied  in to  all th e  elem ents 
o f th a t  colum n or row  as w ritte n  ( e.g., th e  r ig h t-h a n d  e lem en t on th e  second row of 
V ( Srsbrs) is equal to  —59 . {233.7 .11 .2 .7}-1) :—

(221) V

(222) V

1 (2 .7 )-1 (22327 )" x (233 .7 .11 )-1

1 1 1 - 1 1 . .

(2 .7 )-1 1 45 103 - 5 9  . .

(22327 ) -1 - 1 103 5657 6783 . .

(223 .7 .1 1 )-1 1 - 5 9 6783 149749 . .

1 (2 .7 )"1 (22327 )"1 (233.7 .11)"1

1 1 1 - 1 1 . .

(2 .7 )"1 1 2 0 5 * 163 • •
(22327)_1 ’ - 1 163 11889 16798$ . .

(233 .7 .1 1 )-1 1 _ £ 8 i
3 16798f 329573-|x • .

As we are  th ro u g h o u t concerned w ith  ra tio s  o f d e te rm in an ts , th e  above fractional 
expressions for th e  elem ents, from  w hich th e  colum n-factors or row -factors can for 
m any  purposes be om itted , a re  th e  m ost su itab le  for calculation. The following 
values of th e  elem ents in decim al n o ta tio n  (to  six places) are  of in te re s t, how ever, as
show ing th e  re la tive• m ag n itu d es  o f th e  various te rm s :—

(223) v  ( W  = 1*000,000 0*071,429 -0 -0 0 3 ,9 6 8 0*000,541

0*071,429 0*229,592 0-029,195 -0*002,280

-0*003,968 0*029,195 0*089,081 0*014,565

0*000,541 -0*002 ,280 0*014,565 0*043,849

(224) V ($rscrt = 1-000,000 0*071,429 -0*003,968 0*000,541

0-071,429 0*348,639 0-046,202 -0*003,698

-0 -0 0 3 ,9 6 8 0*046,202 0*187,216 0*036,072

0*000,541 -0*003,698 0*036,072 0-096,504

* This process of differencing renders the determinants much more convergent in appearance (cf. (219) 
and (220) with (223) and (224), without really altering in the least their value or the value of any of the 
partial determinants formed by the first n rows and columns.

2 Y 2
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330 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, *

By ta k in g -th e se  de term inan ts w ith  one, two, three, and four columns we g e t 
successive approxim ations to  V, V' ( cf§ 8 (E )), and to  th e  actual coefficients /3 and y, 
as fo llow s:—

T a b l e  I I .— R igid  E lastic  Spheres.

V (brt). V (prs)- yR V (Srsbrs)
p  r v (U .) ‘

2  _ V' (8rscrs)
V (8rscrs) '

1st approximation 
2nd „
3rd
4th „

1*000,00
0*224,49
0*019,13
0*000,79

1*000,00
0*343,54
0*062,15
0*005,54

1*000,000
1*022,727
1*024,818
1*025,134

1*000,000
1*014,851
1*015,879
1*016,065

The determ inan ts  V (Srsbrs), V (<̂rgcrs) are obviously m uch more convergent in form 
th an  V (brs), V (crs). Table II . shows th a t  in each case these  de term inan ts  converge 
rapidly  to  th e  value zero, b u t th a t  th e  principal m inors of th e  form er determ inan ts 
converge also to  th e  samp value in nearly  constan t ratios. These ratios, th e  
successive approxim ations to  which are given in th e  tw o last columns of Table II., 
are the  quan tities  2/3r and 2 y r which we re q u ire ; th e y  ev idently  converge rapidly, 
the  successive differences being as follows :—

T a b l e  I I I .— R igid  E lastic  Spheres.

2/?r. Differences. Differences.

1st approximation 1*000,00
2273

1*000,00
1485

2nd „ 1*022,73
209

1*014,85
103

3rd 1*024,82
31

1*015,88
29

4th 1*025,13 1*016,07

W e m ay therefore conclude th a t, w ith in  a sm all fraction per cent., 2/3r and 2 y r 
have the  following values for rig id  elastic sp h e re s :—

(225) £ &  =  1*026, £ y r =  1*016, £/3r/£ y r =  1*010.
0 0 0 0

I t  should be noticed th a t  even th e  second approxim ations to  these quan tities give 
results which are very nearly  accurate, owing to  th e  rapid dim inution of th e  successive 
differences.
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While we may thus obtain a close approximation to the values of the series 2 0 r 
and 2 y r with little  difficulty, the approximations to the values of the  individual 
coefficients 0  and y converge by no means quickly, as the following table 
show s:—

T a ble  IV .— R ig id  Elastic Spheres.

THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 331

1st approximation. .2nd approximation. 3rd approximation. 4th approximation.

00 1-000,0 1-340,9 1-520,2 1-623,0
01 — -  0-318,2 -0-652,1 -0-943,2
02 — — 0-156,7 0-432,8

• 03 —" —7
— -0-087,5

7o 1-000,0 1-222,8 1-309,4 1-366,3
7i — -0-207,9 -0-368,8 -0-526,3
72 — — 0-075,4 0-221,8
73 — — — -0-045,7

Evidently the 0 ’s and y’s alternate in sign, and successive terms do not seem to 
diminish quickly, a t any rate  near the beginning. To obtain an accurate estimate 
of the real values of these coefficients it is clearly necessary to carry the approxi
mation much further than we have done, but for our purpose this is not required.

Molecules which are Point Centres o f  Force varying as r  n.

§ 10 (B) The next simplest case, analytically, to th a t which has just been discussed 
is the case of molecules which are point centres of force varying inversely as the 
n th power of the distance. By comparison of (186) and (205), in conjunction with 
the general expressions for hrs and crs, it is easy to see th a t the difference between

the values of hrs or crs in the two cases consists of a power series in 1
n — 1

the constant

term of which is zero, while the term  of highest order is l ) _(r+s). Numerically 
the difference is small, as may easily be verified in any particular case; it appears 
to be of constant sign, hrs and crs being greatest for molecules which are rigid elastic 
spheres. The behaviour of the determinants V ( ), V (crs) or V (Srsbrs), V ($rscrs) is
similar in the two cases, the convergence being slightly the more rapid in the present 
instance. Since for rigid elastic spheres the second approximation to 2 0 r and 2 y r 
proved so satisfactory, we shall be content with a second approximation only, for 
molecules which are point centres of force ; this very materially lightens the labour

■ *
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332 DR. S. CHAPMAN ON THE LAW OF DISTRIPAJTION OF MOLECULAR VELOCITIES,

of num erical calculation. The following are th e  expressions found for the  d e te r
m inants V (Srsbrs), V (S„c„) as far as regards th e  first four elem ents :—

(226) V(SJ>„) = 1

J i _____ ? _ i
114 2 ( w - l ) J

J± ___l— \
114 2 ( n - l ) S  * *

[ 4 5  4 4 1
1196 4 9 ( n - l )  + 4 9 ( n - l ) 2J * ‘

V (S„c„) =

[1  7 1
114 2 (n —l ) j

|J___ 2_1
114 2 (w —l)J * *-

____^ _  + ____ i ___ 1
49 (n —l)  4 9 ( n - l ) 2J ' *

W hen  n is m ade infinite these become identical w ith  (221), (222); i t  is in teresting  
to notice th a t  th e  additional term s are th e  same in th e  tw o determ inants, though  
w hether th is  is tru e  for o ther values of r  and 5 is no t clear.

The first approxim ations to  2/3,., 2 y r are, of course, u n i ty ; the  second are found

, _  48 n —2 
x, 205 205 ( n - 1 ) 2

=  202 " ~ j g .  J L '
101 1

oo oo

From  § 9 (C), (196), we know th a t  w hen =  5 th e  values of 2/3r and 2 y r are
0 0

un ity , and  th is  is also tru e  of any  approxim ation to th e ir values m ade in the  present 
m anner. From  § 10 (A), however, we know th a t  for oo th e  second approxi
m ations are s ligh tly  too small, by 0'003 and  O'OOl very  nearly. In  th e  following 
table, therefore, which gives th e  approxim ate  values of 2/3r and 2 y r for various 
values of nlying betw een 5 and oo, th e  resu lts obtained from (227) have been 
increased by O'OOl, 0'002, or 0'003, as seemed m ost appropria te  in each case.

Table Y.— Molecules which are Point Centres of Force varying as r  n.

Maxwell’s 
case, 

n =  5.
n =  9. n = 15.

dlisS

ft  =  GO,

rigid elastic 
spheres.

00
2ft.
0

1 1-007 1-013 1-018 1-026

OO

cc EE 2yr 
0

1 1-004 1-007 1-011 1-016

00 oo
8C EE 2f3r/2yr 

0 0 1 1-003 1-006 1-007 1-010

to  be approx im ately  as follows

(227)

, 1 6
45 45 i ) 2
4 4 “  2 1

11 n  1

 D
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 833

R igid  Elastic A ttracting  Spherical Molecules.

§ 10 (C) C onsidering n e x t th e  case o f rig id  e lastic  spherical molecules w hich ex ert 
a ttra c tiv e  forces, as in § 9 (E ), we shall neg lec t th e  effect of th e  a ttra c tio n s  in 
producing deflections w ith o u t a c tu a l collisions, and , as in § 10 (B), we shall co n ten t 
ourselves w ith  a second ap p rox im ation  to  2/3r and  2 y r. The difference betw een th is  
case and  th a t  o f rig id  e lastic  spheres w ith o u t a ttra c t io n  is small. The expressions 
for V (Srsbrs) V ( Srscrs), as fa r  as reg ard s  th e  first four elem ents, are  as follows :—

(228) V  ($ J>rs) =

1T4
l - S / T l
l + S / T j

1 - S /T 1  
l + S / T  j

4 5 1 +  |S / T \  
19S T + S /T J

*

v  = 1

i 1 - S / T ) 
14 1 + S /T J

f i  i - s r n
t 14 l + S / T 1 •

2 05 1 +  M s S /T |
588 l + S/T /

W h en  S =  0, i.e., w hen  th e re  is no a ttra c tio n , th ese  reduce to  (221), (223).
The second approx im ations to  2/3,. an d  2 y r are  hence found to  be as follows :—

(229) Z/3r =  45 ( i  +  | S / T ) - 0  - s / l ?  ( 1 + S /T ) " 1 ’ a PPro x lm ate ly<

(230) 2 y,. =  205 (1 + f g § S /T ) - 3  ( T — S /T )a (1 + S /T )-* ’ aPProxlmately-

Since S /T  is never negative, i t  is c lear from  (229), (230) t h a t  th e  second approx i
m ations to  2/3r and  2 y r are  never less th a n  u n ity . T heir values, w ith o u t any  
estim ated  correction for th e  e rro r of approxim ation , a re  g iven in th e  following tab le , 
for various values o f S /T . The correction as e stim ated  is appended  as a suffix, and 
is to  be added  to  th e  la s t d ig it o f th e  corresponding num ber.

Table Y I.— B ig id  E lastic  A ttra c tin g  S pherica l Molecules.

Low temperatures. Moderate temperatures. High temperatures.

s
T* 00. 5. 4. 3. 2. 1. 0-7. 0-4. 0-2. o-i. 0.

00
2j8r0 1-038 1-015., 1-0122 l-008i

_______

|l-004o 1 l-001o l-005i 1-0112 1-0162
1

l-0233

=>
IIIw8 1-016 1-009! 1-007! l-005i l-0020 1 l-001o l-0040 l-009i 1-013i 1-015i

8a=i)8r/2y, 
0 0

§^
 

1

l-006i
i

l-005x l-0030 1 * 0020 1 l-OOOo l-001i 1 • 002i 1•003i 1•0082
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334 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In  th e  case of th e  actual gases for which S has been determ ined, it has an extrem e 
range from about 50 to  250, while th e  range of absolute tem p era tu re  over which 
experim ents are usually  m ade is from abou t 50° C. to  500° C. Thus th e  lim its 5 and £ 
are ra th e r ex trem e values of S /T , b u t from th e  above tab le  it  appears th a t  the  variation 
in 2/3r, 2 y r or th e ir  quo tien t h ard ly  exceeds 1 per cent, over th is  range. The variation 
is especially slow in th e  neighbourhood of S /T  =  1.

§11. V iscosity and  T herm al  Conduction .

W e now proceed to  apply th e  expression for th e  velocity-d istribution  function 
(§ 8 (B)) to  th e  determ ination  of th e  coefficients o f viscosity and  therm al conduction. 
W e shall first ob tain  general formulae for these coefficients, tru e  for any  m onatomic 
gas, afterw ards considering special m olecular models in conjunction w ith  the  resu lts  
of §§ 9, 10.

The Coefficient o f Viscosity.

§ 11 (A) The system  of pressures a t  any  point of a gas is given by the  equation

(231) P „  =  P\ i \  P ,y =  pUV, &c.

By m eans of (5) and  th e  velocity-d istribution  function (142), we find th a t

(232) P „  = p \ f  = bC'LP^C 7,

2 hm  15

00

( 2 3 3 )  p *  =  - 8  

Since, by (74),
C n  +  C 2 2  +  C 3 3  =  0 ,

we have

(234) P ^  + Pyy +  P** =  3 =

p  being the  hydrosta tic  pressure as usually defined.
By com paring (232), (233) w ith  th e  equations giving the  system  of pressures in a 

viscous fluid having a coefficient of viscosity /*, viz., w ith

(235) P „ = i , _ f , ( 2 ^ - ^ - af ) >

=  fyUCn .

(236) Vxs = - ^  + ^ )  = - y Ca

 D
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 335

(rem em bering th e  m eaning  of cn , c12, &c., as defined in (72)), i t  appears th a t  the  tw o 
are identical if we w rite

(237)

H ence, according to  th e  k ine tic  th eo ry , a gas behaves like an  o rd inary  viscous 
fluid hav ing  a coefficient o f v iscosity  defined in te rm s of th e  m olecular d a ta  by (237). 

By (170), (173) we have

(238) C„ =  — ,
7TI

whence, also,

(239) _5_
2tT JlK0

As we have seen in § 8 (B), k0 and  2 y r are functions o f th e  te m p e ra tu re  (or ) only,
0

and v does no t appear a t  a ll in th e  form ula for /u. H ence, w ith in  th e  lim its  of 
app licab ility  o f our th eo ry  (c f  § 2), th e  coefficient o f v iscosity  o f a gas is independen t 
of its  density , v a ry in g  only w ith  th e  tem p era tu re . The law  of th is  v a ria tion  depends 
on th e  law  of in te r-ac tion  betw een  tw o m olecules a t  encounter, th is  being involved 
th ro u g h  (f>k (Ty). As th is  function  has rem ained  unspecified, th e  expression in (237) 
is perfectly  genera l and  valid  for an y  nearly  perfec t m onatom ic gas.

The Equation o f  Energy fo r  a Simple Monatomic Gas.

§ 11 (B) In  th e  discussion of th e  equation  o f tra n s fe r  in § 3, we consisten tly  neglected
such second order q u an titie s  as p ro ducts  o f d ifferentials, or d ifferentials o f sm all
quan titie s  like UV, C2—3U2, and  so on. In  th is  w ay we have  ob ta ined  an expression
for th e  velocity -d istribu tion  function  w hich is correct to  th e  first order. By m eans-----  -------------  -------
of th is  function we can now determ ine  th e  values of UV, C2—3U 2, UC2, and  sim ilar 

^expressions w hich are o f th e  first o rder o f sm all q u a n titie s , and  by su b s titu tio n  in th e  
equation  of tran sfe r obtain  th is  in a form  accu ra te  to  th e  second order. This we shall 
do for th e  special case Q =  (w)2 +  (v)3 +  (w)2, in o rder to  g e t a second approxim ation  to  
th e  equation  of energy.

From  th e  velocity-d istribution  function, using th e  form ula (237) for th e  coefficient 
of viscosity, we have

(240) C2 =  3 {km )-1 =

(241) 3US—C2 =  —2 Up) ( 2 ^  _  ^ > )
\  cy

(242) 0 V = - ( " / ' >K & + ^ ) -
2 zVOL. OCXVI.---- A.
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336 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In  finding l)C3 it is convenient to  w rite

(243) /  =  ^ P r /^ V r  

and to  recall (cf. (170)) th a t

(244) * B0 =  fC 0.

Thus we have 

(245)

=  - f B „ ( 2 hm)

r - 1

g /. yU I t  0T
p  m  ’

where we have elim inated /3_x by m eans of (148). 
A gain, if Q =  (w)2 +  (t’)2 + (w)2, we have

Q
Q

W Q

3Q
d(u)

u 24-v 2 + w 2 +  2 (w0U + VqM + w0W) + C2, 

u 2 + v 2+ w 2 + Ca,

u0(u02 + v 2 + w 2) + u0C2 + ‘2 (uoU2 +  v0UV + w0UW) + UO2.

Hence, p u ttin g  u0 =  v0 = w0 = 0 except in differential coefficients, we have

1 = 3 1 f e )  = 2^1
_  o  RvT / du^ 0% 0WO 

m \dx + 3 E ,  0T 
m dx

s £ ( P u )  Q) =  * 2 ( c 2 +  2U3| ^ + 2 U v | ^  + 2 a w | ^ )  + s A ( , U C 2)dx 
i2 du0

dx 
dv o,,2 j f C 2^  + f  3U2- C 2| ^  + 2UV ^  + 2DW + 2  (^UC2)

l 0£C 0CC dx dx

c Ri/T /0WO , 0VO ,
5 ^ r l a ^  + ^  + ^

_0_
0£C

-  ^<142 
P ( S ? ) 2- * ( 2 S ) - 2 S ( t +  t ) ) + 2 ^ ^ u c 2 } ’

-  2 Xm \d (w)
0.

Also, since no energy is gained or lost in m olecular encounters,

AQ’=  0.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 337

The equation  o f tran sfe r becomes, consequently , a fte r  a li t t le  reduction ,

(246) , § 2 rp  / 9 ^ 0  . 9 ^ 0  , 0 ^ 0

a)7 a i

, 2

+ t r 7
duQ
dx 4  ( 2 Y _ 2  (3 vo +  cbco 

0z 3?/07C /

which is th e  equation  o f energy .

The Thermal Conductivity o f  a Gas.

§ 11 (C) In  th e  equation  o f en erg y  w hich we have ju s t  ob tained , th e  second term  
on th e  r ig h t-h an d  side rep resen ts  th e  change of h e a t per u n it  volum e due to  th e  
varia tion  in d en sity  a t  th e  po in t considered, w hile th e  th ird  te rm  m ay  be proved 
equal to  th e  h e a t produced by  in te rn a l friction. The first term , by com parison w ith  
F o u r ie r ’s equation  o f conduction o f h e a t (3- being  th e  th e rm a l co n d u ctiv ity  and  C„ th e  
specific h e a t a t  co n stan t volum e), i.e., w ith

n  3T _  y  c
^ ¥ _ z 5

is seen to  rep resen t th e  change of h e a t by  conduction, and  to  ind icate  th a t  the  
coefficient o f the rm al co n ductiv ity  o f a  gas is g iven  by

(247) & = / mC.

The value o f f  in th is  w ell-know n form ula is, for a general m onatom ic gas, given by 
(243), i.e.,

(248) / =  f£ /3 r/ £ y r.
0 / 0

In  general fis a function  of th e  te m p e ra tu re  only.

Formulas fo r  /x and  3- fo r  P articular Molecular Models.

§ 11 (D ) By su b stitu tio n  o f th e  values o f C0 and  2/3r/2 y r given in §§ 9, 10, for th e  
p articu la r m olecular models th e re  discussed, we ob ta in  th e  following special cases of 
(237) and  (248)

(249) B ig id  elastic spheres,

M =  1-016 5 m  / I t— T
64-7T \m

(250) A ttra c tin g  spheres,

(l + ea) 5 m  / I t  mY/2 1
647T (t \m r+s/T

2 z 2

f =  | .  1-010 =  2 ’525,

J  — 2 (1 +<̂ a)>

 D
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338 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

(251) C entres of force r  n,

(1 + 0
_______ 75m_______

8 A A l r ( 4 - _ A )

n + 3  
2 (n - 1 ) /  — t  (i + •

In  these formulae e a and e c denote the  values of 2 y r in th e  cases respectively when
0

the  molecules are a ttra c t in g  spheres and  centres o f force, and  Sa and  Sc sim ilarly denote 
2/3r/2 y r ; th e ir  values are given in Tables Y. and  V I., and in no case differ from 
u n ity  by  more th a n  two per cent.

The mode of varia tion  of n w ith  th e  tem p era tu re  affords a guide to  th e  law of in te r
action betw een th e  molecules of actual gases. B y comparison w ith  experim ental 
determ inations of n a t  various tem pera tu res it  is th u s  found th a t  of th e  above models 
th e  one which m ost closely represen ts th e  behaviour of actua l molecules in th is  respect, 
a t  o rd inary  tem peratu res, is th e  second, i.e., a rig id  elastic a ttra c tin g  sphere.*

Comparison o f the present formulae fo r  fx and S with those
§ 11 (E) The general formulae (237) and  (248) for viscosity and  therm al conductivity

oo oo oo

agree w ith  those of m y form er pap er,! except th a t  th e  factors 2/3r and 2/3r/2 y r were
0 0 0

th ere  om itted . This was in consequence o f th e  assum ption on which th e  analysis of 
th a t  investigation  was based, th a t  F  (U, V, W) is sufficiently represen ted  by the 
term s of the  first th ree  degrees in U, V, W. W e have seen in § 9 (C) th a t  th is  is tru e  
for a gas composed of M axw ellian molecules, b u t no t otherw ise. I t  seems of in te rest 
to  consider w hy th e  neglect of all th e  coefficients /3r, yr a fte r r  =  0 led to  resu lts of 
such accu racy ; for th e  errors arising from th e  assum ption are represented  in the  
special cases (2 4 9 )-(2 5 l) of (237) and (248) by th e  factors 1*016, 1*010, l  +  ea, l  + <5a, 
1 + ec, 1 + Sc,so th a t  th e  necessary corrections to m y previous formulae do no t exceed one 
or tw o per cent. E nskog, on th e  o ther hand, afte r deducing formulae sim ilar to  (237), 
(248), b u t w ithou t evaluating  th e  coefficients (3r, yr, m ade a first approxim ation by 
neglect of all these coefficients a fte r r  = 0, and  arrived a t  the  resu lt f  =  5 for rigid 
elastic spheres. J This was due to  th e  fact th a t  such a use of (237), (248), as they  
stand , involves not only th e  neglect of all the  coefficients a fte r r  0, b u t also requires an 
assum ption as to  the  values o f /30, y0 them selves, as, for instance, th a t  th ey  are approxi
m ately  th e  same as for M axwellian molecules ; a comparison of (196) w ith Table IY . 
(p. 331) will show th a t  th is  is far from being th e  case.

I t  m ay readily  be seen, however, th a t  th e  m ethod of my former paper required no

* At very low temperatures, however, the nth power centre of force is the molecular model which gives 
b y  far the best representation of the relation between p. and T, in the case of helium; cf. K a m e r l i n g i i  

O n n e s  and S o p h u s  W e b e r , ‘Comm. Phys. Lab. Leyden,’ 134b, p. 18, or J e a n s ’ ‘Dynamical Theory 
of Gases,’ 2nd ed., §§ 405, 407.

t  C h a p m a n , ‘Phil. Trans.,’ A, vol. 211, p . 4 3 3 ,  et s
X En s k o g , ‘ Phys. Zeit.,’ XII., p. 58, 1911.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 339

hypothesis as to  the  values o f /30, y0, w hich w ere determ ined  from  AUC2and  AU2 as in 
th is  paper ; in effect, th e  la te r  coefficients w ere neglected , while yd, and  y0 w ere obtained 
from  th e  equations (138), (139) corresponding  to  s =  0. V iew ed otherw ise, my

• oo
previous formulae w ere eq u ivalen t to  (237), (248) d iv ided  respectively  by  2v,.yr/v0
' 0

OO QO

and  ZKr/3r/Zicryr.T hus th e  neg lec ted  fac to rs in /jl and  f  w ere

m  £*ryr
_0____, _0_______
Oo oo 5

Z y r Z Krfir
0 0

which ev iden tly  reduce to  u n ity  if  we neg lec t all th e  /3'0 and  y', a fte r  r  = 0, w ithou t 
an y  assum ption  as to  th e  values o f /30 and  y0.

One of th e  m ain  re su lts  o f th e  form er p aper w as th a t  f  for all m onatom ic gases, 
and  n o t only for those composed o f M axw ellian  molecules. This is now seen to  require  
m odification, b u t th e  values here found for in th e  special cases w hich have been 
considered in §§ 9, 10 show th a t  th e  correction  needed to  m ake th e  equation  accurate  
is very  s m a l l ; i t  appears probable th a t  for all likely  m olecular models f  is very  
s lig h tly  g re a te r  th a n  2 '5 , and  th a t  i t  is nearly  b u t n o t q u ite  co n stan t w ith  change 
of te m p e ra tu re  (excep t w hen th e  m olecules a re  e lastic  spheres or cen tres  o f force 
proportional to  r~n).

Comparison o f the Formulee fo r  m and  S- with the Results o f  other Theories.
§ 11 (F) The only kinetic theory of viscosity and therm al conductivity which could 

hitherto lay claim to numerical accuracy (within the limits imposed by the initial 
postulates) is Maxw ell’s theory* of a gas composed of molecules of the kind dealt 
with in § 9 (C). The results of his theory are special cases of the general formulas of 
this paper.

The th eo ry  o f a gas composed o f m olecules w hich a re  po in t cen tres o f force v a ry in g  
inversely as th e  nth pow er of th e  d istance  h ad  n o t been discussed in detail, previous 
to  m y own form er paper. R a y l e ig h , f  how ever, from  considerations o f dim ensions 
alone, h ad  deduced th e  law  of v a ria tio n  of v iscosity  w ith  tem p era tu re , and  th e  same 
a rg u m en t w ould also show th a t  for such a gas f  is an  absolute co n stan t (for any  given 
value of n). N o th in g  w as know n as to  th e  value o f th is  constan t, or o f th e  num erical 
coefficient in th e  expression for /u., and  i t  is a su rp ris ing  resu lt, w hich could ha rd ly  
have been guessed d priori, th a t  as n ranges from  5 to  oo th e  value o f f  should v ary  
only from 2*500 to  2*525 approx im ately .

The th eo ry  for molecules w hich are  rig id  elastic spheres ex ertin g  a ttra c tiv e  forces 
was equally  undeveloped. S u t h e r l a n d J had  ta k en  an im p o rtan t step , however, in

* Maxwell, ‘ Collected Papers,’ vol. II., p. 23. 
t  Rayleigh, ‘Roy. Soc. Proc.,’ vol. G, p. 68, 1900. 
t S u t h e r l a n d , ‘ Phil. Mag.,’ (5), 31, 1893.

_0______
OD
ZKryr
0

and
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deducing th e  correction to  th e  law connecting and  T ( . , cc T'/2) for molecules
which are rigid elastic spheres w ith o u t a ttra c tio n  ; he showed, w ithou t a ttem p tin g  
num erical accuracy, b u t by a m ethod which is correct in its  m ain outlines, th a t  th e  
a ttra c tiv e  forces necessitate an  additional factor (l+S/T)-1, as in (249). The law 
p oc T'/,J ( l  +S/T)-1 is more successful th an  any  o th er in represen ting  th e  observed 
relation betw een p  and T over a considerable range o f tem pera tu re , and S is deservedly 
known as Su th er la n d ’s constan t.

The theory  of a gas composed of molecules which are rigid elastic spheres, which 
was tak en  by Sutherland  as th e  basis o f his modified formulae, has been developed 
along lines different from those of th is  paper by Cla u siu s , M a x w e ll , B o l t z m a n n , 

M ey er , Stefa n , J eans, and others. Their m ethod  was less analy tical th an  the 
present one, and while it  gave correctly  th e  general relationships betw een ,
and T, its resu lts  do no t possess num erical precision. J eans* notably  improved 
certain  of th e  formulae due to  earlier au tho rs  by tak in g  in to  account th e  tendency 
of a molecule to  persist, a fte r a collision, in th e  general direction of its original course. 
For th is  reason his expression for th e  viscosity, viz.,

(252) m =  ( J eans)
4 X  7T h  <7 \m  1

approaches more nearly  to  th e  correct expression (249) th a n  does th e  form ula of any 
o ther au th o rf. A comparison of (249) w ith  (252) indicates th a t  th e  la tte r  is still too 
small by 12 per c e n t . ; th e  erro r of th e  original form ula, w ithou t J eans’ correction, 
was 30 per cent.

The num erical inaccuracy of th e  earlier prevailing theory  of conductivity , which 
was due to  M eyer  was very g reat. I ts  resu lt was generally  given as

«. ^  =  ffxGv w here * 1*6027,

b u t Prof. L. Y. K in g , of McGill U niversity , has pointed ou t to  me by le tte r  th a t  
M eyer’s argum ent really  leads to th e  resu lt

/ =  1*4161,

a num erical m istake having crept into his w ork which had no t previously been 
detected . The correct value o f , / fo r  rig id  elastic spheres is given in (249), i.e.,

f  = 2*525.

This large error in M ey er’s theory  indicates th e  difficulty of arriv ing a t num eri
cally accurate formulae by the older “ m ean free p a th  ” m ethod, and diminishes

* Cf. J e a n s ’ ‘ Dynamical Theory of Gases.’
t  Apart from that in my former paper, which was 1'6 per cent, too small.
I M e y e r ’s  ‘ Kinetic Theory of Gases,’ 2nd English edition, chap. IX.

340 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 341

confidence in o th e r p a r ts  o f th a t  th e o ry  w here de tec tio n  o f e rro r is less easy. U n til 
recen tly  M e y e r ’s value o f f  received su p p o rt from  ex p erim en ta l d a ta  for diatom ic 
gases, to  w hich i t  does n o t rea lly  app ly  ; only la te ly  have d a ta  for m onatom ic gases 
been obtained , w hich, as we shall see, give values o f / n e a r l y  equal to  f .

§ 12. Com parison  of th e  T h eo r y  w it h  E x pe r im e n t a l  D a t a .

The Variation o f  Viscosity with Pressure.
§ 12 (A ) The m ain  objects o f a  com parison o f a m a th em atica l th eo ry  w ith  experi

m ental d a ta  are e ith e r to  te s t  w h e th e r th e  p o stu la tes  u n d e rly in g  th e  th eo ry  are valid, or 
w h e th er th e  th eo ry  is itse lf  m a th em atica lly  correct. The p resen t th eo ry  being  exact, 
w ith in  certa in  defined lim its, our purpose in  th is  c h ap te r is to  consider how fa r th e  
hypotheses un d erly in g  th e  analysis a re  w ell founded. T he g enera l v a lid ity  o f th e  
foundations o f th e  k ine tic  th eo ry  is a t te s te d  in  m any  w ays, one o f th e  m ost s trik in g  
being th e  independence o f viscosity  and  p ressure  in  a  gas. This law , w hen first 
discovered by  M a x w e l l , seem ed so im probable th a t  i t  gave a g re a t stim ulus to  
experim en tal research  on gases, and  th e  constancy  o f /*, w hen T is k e p t constan t, has 
been verified over a ran g e  o f p ressu re  ex ten d in g  from  a few  m illim etres o f m ercury  up  
to  more th a n  one atm osphere. W a r b u r g  an d  yon  B abo  have found th a t ,  in th e  case 
of carbon dioxide, th e  law  begins to  fail w hen th e  p ressure  becomes so g re a t as 30 to  
120 atm ospheres, /x ris ing  appreciably . In  ve ry  rarefied  gases, on th e  o th e r hand, th e  
viscosity falls below th e  value ap p ro p ria te  to  th e  ex istin g  tem p era tu re . This m u st be 
refe rred  to  th e  fa ilu re  o f th e  postu la tes  o f our th eo ry  to  rep resen t th e  facts in these  
ex trem e cases, th e  molecules becom ing too few  for our s ta tis tic a l m ethod  to  apply, on 
th e  one hand, w hile on th e  o th e r our assum ption  th a t  th e  m olecular p a th s  are 
rec tilinear for th e  m ajor p a r t o f th e  tim e, an d  our neg lec t o f m ultip le  encounters, 
become illeg itim ate .

The Variation o f  Viscosity Tem perature*
§ 12 (B) O ver a w ide ran g e  of p ressu re  and  tem p e ra tu re , undoub ted ly , th e  general 

postu la tes of our th eo ry  are tru e  for a c tu a l gases. W e canno t discover d irectly , 
however, th e  n a tu re  of th e  molecules or th e ir  mode o f collision, and  i t  is im p o rtan t, 
therefore, to  exam ine w hich m olecular m odel y ields formulae m ost in accordance w ith  
experim ental data. F or th is  purpose we n a tu ra lly  choose those properties w hich are 
m ost affected by  th e  n a tu re  o f th e  m o lecu le ; th e  chief o f these is th e  varia tion  of 
viscosity  w ith  tem p era tu re . M a x w e l l  abandoned his th eo ry  o f a gas composed of 
rig id  elastic spherical molecules because i t  led to  th e  re la tion  oc T1/2, while his experi
m ents gave th e  re su lt f x  oc T. This caused him  to  develop th e  th eo ry  o f a M axw ellian 
gas (§ 9 (C)), for w hich /xoc T, b u t la te r  experim enters have failed to  confirm th is  law, 
and  we m ust conclude th a t  th e  molecules o f ac tu a l gases behave du rin g  encounters 
n e ither like elastic spheres nor like M axw ellian molecules. The observed relation

* The reader may be referred with advantage to the discussion of this point b y  J e a n s  in the second 
edition of his ‘ Dynamical Theory of Gases,’ §§ 399-407.
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342 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

betw een / x  and T agrees m uch more closely w ith  S u t h e r l a n d ’s law ju  oc Tl/2( l  + S /T )-1 
th an  w ith any o th e r ; for exam ple, S chmitt* has found th a t  th e  law is valid for 
hydrogen and helium  from —60° C. to  185° C., and B arus has shown th a t  i t  holds 
good for air over a wide range of tem peratu re . The law has not been tested , for the  
form er gases, above 185° C.

This seems to  indicate th a t  for th e  k inetic  theo ry  of gases a t  ordinary  tem peratu res 
the  best molecular model is an a ttra c tin g  sphere, and i t  is in te restin g  to  notice th a t  
th is  model is th e  one used by v a n  der  W aa ls  w ith  such success in deducing his 
famous law. F u r th e r  confirm ation is supplied by the  excellent agreem ent betw een 
th e  values of the  m olecular d iam eters deduced on th is  hypothesis from th e  constant 
b of v a n  der  W a a l s’ law and from th e  viscosity by m eans of m y form ula (250)— 
cf. § 12 (F).

A t low tem peratu res S chmitt*, B estelm eyerI, V ogelJ and o thers have shown 
th a t  th e  observed values of /u are g rea te r th a n  those p red icted  by S u th er la n d ’s 
law. This m ay be com pared w ith  th e  rise in th e  value of w hen th e  pressure is 
g rea tly  increased, both  effects probably having  a like cause ; in these s tates, when the  
m ean free p a th  of th e  molecule is m uch reduced, the  m olecular pa th s  m ay cease to be 
approxim ately rectilinear betw een collisions, and  m ultip le  encounters will grow in 
im portance. Since our theory  rules ou t these contingencies, its  resu lts cease to be 
applicable, and  a modification of th e  theory  and its  postu lates is necessary if a proper 
account of these phenom ena is to  be given. In  regard  to  this, one point which should be 
noticed is th a t  in § 9 (E ) a te rm  f 2k (y) in f was neglected (211)) which, if
retained, would cause th e  law connecting /x and  T to  take  th e  form

rp'Ai

l+ (S /T )+ /(T )

where f  (T) can be expanded in the form AT~2 + BT~3 + ... .  This term is due to the 
effect of the attractive forces in producing deflections without the occurrence of 
collisions, and is probably always sm all; but it may readily be seen tha t it is always 
positive, and that this correction would lead to a diminution in the theoretical value 
of /x at low temperatures. Clearly, therefore, the observed discrepancies cannot be 
attributed to our neglect of this small quantity. §

*  S c h m i t t , ‘ Ann. d. Pliys.,’ 30, p. 399, 1909.
t  B e s t e l m e y e r , ‘ Munich dissertation,’ 1903.
t Vogel, ‘Berlin dissertation,’ 1914, where full references, and an interesting discussion of low 

temperature work on viscosity, are given.
§ V o g e l , in his dissertation, suggests as possible causes of the failure of the theory to represent the 

observed variation of p with T at low temperatures (i.) a failure of the ordinary mechanics, such as is 
contemplated in P l a n c k ’s  theory of quanta; (ii.) that the attracting sphere model no longer represents 
the molecule; (iii.) that 1+S/T should be replaced (according to my suggestion in ‘Phil. Trans.,’ A, 
vol. 211, p. 474, 1912) by 1 + (S/T) ± (C'/T)2. By the latter means a better accordance with observation 
is obtained, but the new term has the minus sign, and is therefore illegitimate.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 343

The Thermal Conductivity o f  Monatomic Gases.

§ 12 (C) I t  is convenient to  discuss th e  th e rm a l conductiv ity  o f gases in te rm s of th e  
co nstan t f  in th e  form ula 3- = f/j.Cvi as th is  e lim inates th e  necessity  for a separa te  
discussion o f th e  dependence of S- on p ressure  and  te m p e ra tu re  ; th is  is parallel w ith  
th a t  o f /x, and  f  is n ea rly  or q u ite  in d ep en d en t o f p ressu re  and  te m p e ra tu re  in norm al 
conditions. As we have seen in § 11 (F ), th e  value of f  has been a m a tte r  o f some 
u n c e rta in ty  ; so long as its  value for rig id  e lastic  spheres w as supposed to  be 1'6027, 
while for M axw ellian m olecules i t  w as know n to  be f , i t  seem ed to  offer a m eans of 
te s tin g  th e  su ita b ility  o f d ifferen t m olecular models. O n th e  g round  of th e  
d iscrepancy betw een  th e  th eo re tica l an d  observed re la tio n  betw een  and  T, 
M axw ellian m olecules w ere know n to  be u n sa tisfac to ry  rep resen ta tio n s  o f ac tu a l 
molecules. U n til  ab o u t 1900 no reliable d e te rm in a tio n s  o f / h a d  been m ade for m ona
tom ic gases, and  those found for d ia tom ic gases ag reed  fa irly  well w ith  Meyer’s value 
o f f  ( i.e., 1 '6027 or, m ore accu ra te ly , 1*416); a t  th e  tim e  th is  w as reg ard ed  as a 
confirm ation o f th e  rig id  e lastic  spherical m odel o f th e  m olecule, an d  as ind ica ting  
th a t  th e  in te rn a l m olecular energy , w hich is no t ta k e n  in to  account in these  theories of 
a m onatom ic gas, is tra n sm itte d  a t  th e  sam e ra te  as th e  tran s la tio n a l energy. W hen , 
in 1902, S chwarze ob ta ined  th e  values o f f  for a rgon  and  helium , and  found them  
nearly  equal to  f ,  th e  conclusion to be d raw n  w as n o t obvious. I t  certa in ly  
con trad icted  Meyer’s th eo ry , b u t le ft th e  question  open as to  w h e th er th e  analysis, or 
th e  assum ption  of th e  rig id  e lastic  spherical model, was a t  f a u l t ; also if =  f  ind icated  
th a t  th e  molecules are  M axw ellian, th e  fa ilure  of th e  corresponding  law  connecting 
ix and  T rem ained  unexplained . I t  should be rem em bered, m oreover, th a t  th e  law 
^ocT '^ fo r rig id  elastic  spherical molecules is equally  co n trad ic to ry  to  experim ent.

These difficulties were removed by the theorem of my former paper, according to 
w h ic h /is  an invariable constant f  for all monatomic molecules. This is now seen to 
be incorrect as a general theorem, but the deviations found for the various particular 
molecular models discussed leaves little room for doubt th a t f  is very nearly equal to 
§ in the case of all likely models. The fact simply is, therefore, tha t f  is very 
unsuitable as a means of discrimination between different models, and S chwarze’s 
observations indicate some mathematical fallacy in Meyer’s theory, w ithout supporting 
any particular molecular model. The observed values of f  are hardly known with 
sufficient accuracy to enable any conclusion to be drawn from a slight divergence 
from the value f  , within the limits prescribed in (249) to (2 5 l) . They are important, 
however, as confirming the general validity of the kinetic theory, apart from any 
hypothesis as to the nature of the molecules.

The following table contains all the available data concerning the value o f /  for 
monatomic gases. Only very recently has the conductivity of neon been deter
mined, owing to the scarcity of the gas ; for krypton and xenon its value is still 
unknown.

3 AVOL. CCXVI.— A.
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344 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, 

Table Y II .— V alues o f f  for M onatom ic Gases.

Gas. Absolute temperature. /• Authority.

Helium
° C . r
273 \ 2-51

2-40
S c h w a r z e * 

E u c k e n f
81 2-23 E u c k e n
21 2-02 * E u c k e n

Argon . 273 | 2-50
2-49

S c h w a r z e
E u c k e n

91 2-57 E u c k e n
Neon . 283 2-50 D o r n |

These resu lts for argon and neon and, to  a less ex ten t, for helium  a t norm al tem pe
ra tu re s  agree very  well w ith  th e  theore tical value o f ,/ ,  especially since the  combined 
experim ental errors in th e ir  de term ination  m ay easily exceed one per cent, a t  ordinary 
tem peratu res, and  m uch more a t  low tem peratures.

The dim inution in th e  value of f  for helium  a t  low tem peratu res, if  confirmed by 
fu rth e r experim ent, is very  in te resting  and  im portan t. H elium  is peculiar a t  low 
tem pera tu res also in th e  s trik in g  divergence of its  viscosity from Sutherland’s law. 
E ucken suggests as th e  explanation of th e  form er phenom enon a partia l failure of 
in terchange of molecular energy  a t  collision, b u t Table V I. of his paper) down to 
81° C., a t  any  ra te , the  value of C„ for helium  rem ains constan t and appropria te  to  a gas 
which possesses only transla tional energy. A failure in in terchange of transla tional 
energy would contradict the  o rd inary  dynam ical laws, and  i t  is certain ly  desirable to 
seek some o ther explanation , if  th is  be a t all possible.

The a lte rnatives are not num erous, and will be exam ined in tu rn . AVe m ay rule
ou t a num erical error in th e  theory , of more th a n  one per cent., as being quite

%

im p ro b ab le ; b u t though  all th e  m olecular models discussed in th is  paper lead to 
values of f  equal to  or s ligh tly  g rea te r th a n  2*5, it is conceivable th a t  for some 
peculiar model fmay have ra th e r different values and a w ider tem peratu re  range. I  
th in k  th is  is unlikely, and th a t  it  is probably possible to  prove th a t f  always 
exceeds 2'5, b u t th is  is only a speculation ; helium  agrees so well a t  h igh tem pera
tu res, however, w ith  Sutherland’s law  connecting n and T, th a t  its molecules can 
hard ly  be supposed so different in behaviour from rigid elastic a ttra c tin g  spheres as 
to make ftheoretically  equal to  2*0 a t low tem peratu res.

Again, molecular aggregation  m igh t seem to  afford an explanation, since if  p a rt of 
the  gas were polyatomic th rough  clustering o f th e  molecules, the  value o f f  would

* S c h w a r z e , ‘Halle dissertation, Ann. d. Phys.,’ (4), 11, p. 303, 1903.
t E u c k e n , ‘Phys. Zeit.,’ 14, p. 324, 1913, Tables 3, 6. E u c k e n  (footnote 4 to p. 328) states that 

S c h w a r z e ’s  value of /  for helium is too large owing to a miscalculation in determining C„.
t  This result was kindly communicated t o  me b y  Prof. D o r n , o f  Halle, as an extract from ‘ Mitt. d . 

Naturf. Ges. z. Halle,’ 4, 1914.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 345

probably  lie betw een  2"5 and  th e  low er values ch arac te ris tic  o f polyatom ic gases. In  
th is  case, how ever, th e  value o f C„, th e  specific h e a t a t  co n stan t volum e, should rise 
to  correspond w ith  th e  in te rn a l en erg y  o f such m olecules ; as th e  experim en ts indicate 
a co n stan t value o f Cv, th e  suggestion  m u st be abandoned.

The only possible rem ain ing  hypo thesis  seem s to  be to  a t t r ib u te  th e  fall i n /  to  th e  
neg lec t o f m ultip le  collisions betw een  m olecules, inc lud ing  also th e  effect of th e  
a ttra c tiv e  forces (in S uth erland’s case) in  p roducing  deflections w ith o u t co llisions; 
a t  low tem p era tu res  th e  m olecules m ay  be too close to g e th e r  for these  postu la tes  o f 
our th eo ry  to  continue valid. I f  we de te rm in e  3- for helium  from  th e  form ula 2 '5^  C„, 
using th e  value o f fx ca lcu la ted  from  Suth er la n d ’s form ula (w hich is less th a n  th e  
observed value a t  low tem p e ra tu res , as we have  seen), th e  re su lt is less th a n  th a t  
observed a t  low tem p era tu res . H ence b o th  3- and  /x dim inish  w ith  te m p e ra tu re  less th a n  
is p red ic ted  by  S uth erland’s law , th e  d ivergence b e in g  g re a te r  for /x th a n  for S-, so th a t  

/ a l s o  dim inishes. W e canno t e n te r  here  in to  a te s t, b y  calculation, o f th is  suggested  
hypothesis, b u t some confirm ation m ig h t be so u g h t exp erim en ta lly  by  exam ining 
w h e th er / i s  less th a n  2*5 for helium  a t  norm al te m p e ra tu res  b u t u n d er considerably 
increased pressure. The la t te r  w ould b rin g  th e  m olecules closer to g e th e r  in th e  same 
w ay as w ould a d im inu tion  o f tem p era tu re , and  th is  is all th a t  our suggestion  requires. 
I t  is know n th a t  over a la rge  ran g e  o f p ressu re  and  3- are  co n stan t, h u t th a t  a t  
h ig h  pressures /x increases ; th e  independence o f 3- on p ressure  has usually  been te s ted  
by diminishing  th e  norm al p re s s u re s /  and  ex perim en ts  un d er increased pressure 
m ig h t th ro w  valuable  lig h t on th e  p re sen t phenom enon. G ases o th e r th a n  helium  
m ay be expected  to  behave sim ilarly , th o u g h  perhaps only w ith  low er tem p era tu res  
or h igher pressures.

§ 12 (D ) The case o f m ercu ry  vapour m ay  also be m entioned, as i t  was th e  first 
m onafom ic gas for w hich /  w as determ ined . K och I  d eterm ined  n for m ercury  vapour 
a t  203° C., 273° C., and  380° C., w hile S c h leie r m a c h e rJ determ ined  3- a t  203° C. 
These da ta , to g e th e r w ith  th e  th eo re tica lly  ca lcu la ted  value o f C„, led t o / =  3 ‘15. 
M eyer  and  o thers have raised  objections to  th e  d e term in a tio n s  o f n (a) because th e  
th ree  values show an  im probable am oun t o f v a ria tio n  w ith  tem p era tu re , and  
(b) because o f th e  v itia tin g  effect o f condensed m ercury  on th e  w alls o f th e  capillary  
tu b e  used in th e  experim ents. Y ogel§ has m ade a re -ca lcu la tio n  o f /u. for m ercury  from 
an in te re s tin g  form ula w hich he gives, and  finds th a t  a t  573° C. absolu te || n should 
equal 593'10~7 ; th is , combined w ith  S c h l eier m a c h er ’s resu lt, reduces / t o  2*80. B u t 
i t  is desirable th a t  m ore accura te  experim en ts should he m ade in order th a t  a 
thoroughly  reliable value o f / m a y  he obtained.

* E u c k e n , ‘ Phys. Zeit.,’ 12, p. 1103, 1911, Table 2.
t  Koch, ‘ Wied. Ann./ 19, p. 857 (1883).
{ Schleiermacher, ‘ Wied. Ann./ 36, p. 346 (1889).
§ Vogel, ‘ Berlin dissertation/ p. 57, 1914.
|| So given by V o g e l ; it may be a misprint for 473° C.

3 A 2
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346 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

The Th ermal Conductivity o f Polyatomic Gases at Low Temperatures.

§ 12 (E) The form ula 3- — fu  C„ is tru e  for polyatom ic as well as for m onatom ic gases, 
f  being independent of pressure and  tem pera tu re  over a considerable range. U nder 
norm al conditions, however, its  value is 2'0 or less, being g rea te s t for diatom ic gases 
and dim inishing down to  abou t 1*5 for complex molecules. E u c k e n * has m ade the  
in te restin g  and im p o rtan t discovery, however, th a t  diatom ic gases show an increase 
in f  a t  low tem pera tu res, th e  conductiv ity  v a ry ing  w ith  tem p era tu re  in th e  sense 
opposite to  th a t  observed in th e  case of helium . This is ap p aren t, to  a s ligh t ex ten t, 
in n itrogen , b u t is m ost s trik in g  in th e  case of hydrogen. I t  is found th a t, sim ul
taneously  w ith  th e  rise in fth e  specific h e a t C„ progressively falls in value u n til a t 
21° C. absolute its am ount is th a t  app rop ria te  to  a m onatom ic gas of th e  same molecular 
w eight. A t these low tem p era tu res  th e  ro ta to ry  m otion of th e  molecules seems to 
fail, for some reason as y e t undiscovered, so th a t  th e  gas behaves in certain  respects 
as if  its  molecules were o f th e  spherically  sym m etrical ty p e  discussed in th is  paper. 
I t  is h igh ly  in te restin g  and  significant th a t  th is  approach to  m onatom icity  is 
accompanied by an upw ard  tendency  of f  tow ards th e  value (2*5 approxim ately) 
which is appropria te  to  m onatom ic gases. The same phenom enon m ay be expected in 
th e  case of th e  o ther diatom ic gases, a t  lower tem p era tu res  corresponding to  th e ir 
lower boiling points. In  th e  following tab le*  th e  resu lts  for hydrogen alone are 
given ; th e  num ber n  in th e  th ird  column rep resen ts  th e  num ber of “ degrees o f 
freedom ” of the  molecule, as calculated  from th e  observed values of C„.

V a l u e s  for f  for H ydrogen .

Absolute
temperature. /• n.

0 C.
273 1-96 4-80
195 2-09 4-41
81 2-25 3*16
21 2-37 2-98

The Diameter o f the Molecule.

§ 12 (F) In  my form er paper tab les were given showing the  values of the  molecular 
diam eters for several gases, calculated on th e  hypothesis th a t  the  molecules are rigid 
spheres, w ith or w ithou t a ttra c tiv e  force. These require a small correction to  be 
s tric tly  accurate, on account of the  factor (2 y r)'/3 there  om itted  from the  formula for

* Cf. E u c k e n , ‘Phys. Zeit.,’ 14, p. 329, 1913, Table 6.
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THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 347

<t in te rm s o f In  th is  paper I  shall give only a few values o f <x, calcu lated  from 
recen t d a ta  and  from th e  ex ac t form ula

<T2 0 + <0 _ _ _ 5 m _ _ _ _ / R t V'-
64ir‘V  ( 1 + S / T ) \m  I

0-491 ( l+ e „ )p C  
2 ' W  (1 + S /T )

appropria te  to  a ttra c t in g  spherical molecules. The values o f S are  determ ined  from 
th e  varia tion  o f viscosity w ith  tem p era tu re , C is th e  m ean m olecular velocity , while 
ea is found from Table V I. (in all th e  cases here  considered it  is q u ite  negligible).

In  th e  following tab le  values o f th e  d iam eters  calcu la ted  from  th e  constan t o f 
van  der W aals’ law  are  also g iven for com parison. The ag reem en t betw een th e  tw o 
sets o f values is in m ost cases rem arkab le , and  th e  tab le  as a whole is a testim ony  to  
th e  close num erical accuracy now a tta in e d  by th e  k ine tic  th eo ry  ; w here th e re  is 
d isagreem ent in th e  tab le  th e re  is in m ost cases u n c e rta in ty  as to  th e  d a ta .

W hile  exact ag reem en t m ay be expected  only  for m onatom ic gases, th e  values for 
d iatom ic gases show th a t  our th e o ry  gives a m ean diam eter, in o th e r cases, which agrees 
w ith  th a t  found for b ; th e  in te rn a l en erg y  w hich p rev en ts  th e  application  o f our 
formulae to  th e  conductiv ity  o f polyatom ic gases h a rd ly  affects viscosity.

Table Y I I I .— M olecular D iam eters  C alcu lated  from  V iscosity and
V an  der  W aals’ Law.

Gas. / v i o 7. S. 1 + €a. 
(Table V.)

V a n  d e r  W a a l s ’ 
b.

2 o v l0 8
(viscosity).

2ov l08
(V a n  d e r  W a a l s .)

Argon .................... 2107 162 1-002 0-001347 ' 2-84 2-85
Krypton . . . . 2334 182 x 1-001 0-001774 3-12 3-14
X enon .................... 2107 252 1-000 0-002304 3-47 3-42
Helium.................... 1885 75 1-006 0-000432 1-89 1-96
Oxygen . . . . 1923 130 1-005 — 2-93 2-89
Hydrogen . . . . 854 76 1-006 0-00096 2-36 [2-52]
Nitrogen . . . . 1672 112 1-003 0-00255 3-10 J3 -54

\3 -0 8
A i r ......................... 1721 111 1-004 0-00209 3-08 3-30
Carbon dioxide . . 1388 249 1-000 0-00228 /  3*27 

\3 -2 0
3-40
3-20

R eferences.

Viscosity /ul0at 273° C. absolute.— These values are  tak en  from th e  tab le  onp . 476 of 
my first memoir, w here full references m ay be found. They agree very  well w ith  th e  
list given by  E ucken (‘ Phys. Z eitschr.,’ 14, Table 3, 1913), in which V ogel’s 
determ inations are included w ith  o ther recent values in tak in g  means.
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348 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, ETC.

Sutherland’s constant S.— These values are those given in th e  same tab le of my 
form er memoir (w hat is called S in th is  paper was there , and is usually, denoted by C), 
w here references to  sources m ay be found. The value for k ryp ton  was th e re  given 
incorrectly ; I  am indebted  to  D r. G. R udorf for th e  correction.

van  der W aals’ b.— The values for helium  (K amerlingh Onnes), hydrogen, 
nitrogen, air (R ose-Innes), and carbon-dioxide (van  der W aals’) are tak en  from 
J eans’ ‘D ynam ical Theory of G ases,’ 2nd edition, § 194. Those for argon, k ryp ton , 
and xenon (R amsay and Travers), from R udorf, ‘ Phil. M ag.,’ Ju n e , 1909, 
p. 795, are not d irect experim ental values, however, b u t are calculated from critical 
da ta.

Diameter 2 ^  from  viscosity.— These are practically  tw ice the  values for th e  radii 
given on pp. 476, 481 of my form er memoir, where, however, errors of calculation 
(here corrected) were m ade in th e  case of argon and  k ryp ton  (as D r. G. R udorf kindly 
indicated to  me).

Diameter 2cr2 from  van  der W aals’ b.— The value for oxygen, and th e  second 
values for n itrogen  and  carbon-dioxide (as well as 2o-j for th e  la tte r)  are from Table 7 
of E ucken’s paper ; he does not give his au tho rities , b u t his values are probably the 
m ost recent and  reliable. The value for hydrogen, he says, is doubtful.
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