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= 81 Introduction.
=
8The kinetic theory of gases can be developed accurately only after the distribution of

the molecular velocities has been determined. This was done by Maxwell* in the
case of a uniform gas, and by means of his well-known law of distribution the pressure
and temperature can be precisely expressed in terms of the molecular data. His law
does not suffice, however, for the investigation of diffusion, viscosity, or thermal
conduction, since these occur only when the gas is not uniform in composition, mean
velocity, or energy. An accurate theory of these phenomena must be based on the
evaluation of the modified velocity-distribution function, a task which for many
decades has constituted one of the classical unsolved problems of the kinetic theory.

* Maxwell, ‘Scientific Papers,” I., p. 377, Il., p. 23. The proofs were unsatisfactory, and have been
improved by Boltzmann, Jeans, and others.
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In one special case, as Maxwell found, the actual determination of this function
proves to be unnecessary for the purpose mentioned ; this is the case of a gas composed
of molecules which are point centres of force varying inversely as the fifth power of
the distance. The reasons for the peculiarity in this instance are analytical and not
physical, and unfortunately for the simplicity of the mathematical theory of gases,
Maxwell’s results* for such a gas do not accord with the observed data of actual
gases. This particular molecular model is therefore interesting chiefly on theoretical
grounds, and it is important to develop the theory for molecules of other types,
which may better represent the behaviour of real molecules.

Until recently no progress had been made towards the determination of the velocity-
distribution function for a non-uniform gas, beyond a theorem by Boltzmann,! who
proved that the function must satisfy a certain integral equation. In 1911, Enskogl
applied the method of solution by series to this equation ; he determined the form of
the function, but without evaluating its coefficients, and his numerical approximations
proved far from satisfactory. In 1912, Hilbert 8 showed that if the molecules of the
gas are rigid elastic spheres, Boltzmann’s equation may be transformed into a linear
orthogonal integral equation of the second kind with a symmetrical kernel, and
deduced the existence of a unique solution. Lunn]| and Pidduck”i have since removed
Hilbert’s restriction to a special type of molecule, and by means of the transformed
equation Pidduck has worked out a numerical solution of a special problem on
diffusion. These researches are of much importance and interest, especially from the
logical standpoint of the pure mathematician. The use of Boltzmann’s equation,
howevever, does not appear to be the best method of actually determining the formal
solution; thus Pidduck states that the symmetrical kernel of the transformed
equation shows no special properties in the case of Maxwellian molecules, and in the
numerical solution it appears to be necessary to repeat all the calculations, which are
very laborious, in every special case which is worked out.

In 1911, by the assumption of a simple form for the velocity-distribution function,
I endeavoured to extend Maxwell’s accurate theory of a gas to molecules of the most
general kind compatible with spherical symmetry.## Subsequent acquaintance with
E nskog’s work convinced me of the approximate nature of my results, and during the
last few years | have given much thought to the determination of the general velocity-
distribution function. By a method which is quite distinct from that based on

* Maxwell, *Scientific Papers,” Il., p. 23. Molecules which are point centres of force varying
inversely as the fifth power of the distance will, for the sake of brevity, be referred to as Maxwellian
molecules.

t Boltzmann, ‘Vorlesungen iiber Gastheorie,” I., p. 114.

\ Enskog, ‘Physikalische Zeitschrift,” XII., 58, 1911.

8 Hilbert, ‘Math. Annalen,” 1912, or ‘Linearen Integralgleichungen ’ (Teubner), 1912.

| Lunn, “‘Bull. Amer. Math. Soc.,” 19, p. 455, 1913.

HPidduck, *Proc. Lond. Math. Soc.,” (2), 15, p. 89, 1915; cf. p. 95 for the statement quoted.
** Chapman, ‘Phil. Trans.,” A, vol. 211, p. 433, 1911.
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Boltzmann’s equation, viz., by the use of the aggregate of the equations of transfer
for certain infinite sequences of functions of the molecular velocities, an expression for
the velocity-distribution function similar to that found by Enskog can be obtained,
and general formulae for the coefficients can be determined. The present paper contains
the solution for a gas in which the mean velocity and the temperature vary from
point to point, the results being worked out at all completely only for the case of a
simple gas; in a later paper | hope to give the solution in the most general terms,
so as to yield a complete theory of viscosity, thermal conduction, and diffusion in a
composite gas formed of two kinds of spherically symmetrical molecules of any type.

The formulae obtained by the present method lend themselves to numerical calcula-
tion, and are found to converge rapidly. The results for any particular molecular
model can be calculated to any desired degree of accuracy ; in this paper three special
types of molecule have been considered, viz., point centres of force varying inversely
as the nth power of the distance, rigid elastic spheres, and rigid elastic attracting
spheres. It is found that, for such molecules, the errors in the approximate formulae
for viscosity and thermal conduction which were given in my first paper do not exceed
two or three per cent, at most. The detailed numerical results, and comparison with
observed data, are given in §810-12.

82. Definition and Preliminary Consideration of the Problem.

TheNature of the Gas.

82 (A). The gas contemplated in our calculations is monatomic and nearly perfect,
“monatomic” implying nothing more than spherical symmetry of the molecules,
while “ nearly perfect” denotes a certain state as regards density and temperature ;
this state is such that the molecular paths are sensibly rectilinear for the majority
of the time, being altered by mutual encounters, the duration of which is a very
small fraction of the average interval between two encounters. In these circum-
stances the number and effect of encounters in which more than two molecules are
simultaneously engaged is negligible in comparison with the number and effect
of binary encounters.

The gas is supposed to be acted upon by external forces, and the variations of these
forces, and of the density, mean velocity, and temperature of the gas, with regard
to space and time, are small quantities of the first order at most. In the present
paper the density of the gas is supposed such that the mean length of path of
a molecule between collisions is small compared with the scale of the space-variation
of the above quantities ; the modifications of the theory in the case of highly rarefied
gases, where the mean free path becomes large, will be dealt with in a future
paper. As we are not interested in the mass motion or acceleration of the gas
as a whole, but only in the small variations with regard to space and time, it is
convenient to imagine that, by the addition of a suitable uniform motion and field

2 q 2
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of force to the whole gas, the mean velocity and acceleration at the particular point
and time under consideration are reduced to zero, the velocity and acceleration at
other points throughout the gas being small, though not actually zero.

Notation.

82 (B) We shall denote the mass of a molecule by m, the number of molecules per
unit volume at the point (a, Yy, 2)by v, the components of
molecule at (X, Y, z) by (X, Y, Z), the components of the velocity of a typical molecule
by (u, vw), and the components of the mean velocity of the gas at the point (X, ,2)
by (uavQ w0.The vector difference between the velocity of a typical molecul
the mean velocity (ug vQw0 will be called the peculiar velocity of the molecule; we
shall denote its components by (U, V, W), so that

(1) U=u—ul0 V= VW =

The Distribution of Velocities.

82 (C) The distribution of the molecular velocities may be specified by vQ w0
together with a function U V, W), called the velocity-distribution function,
which is defined by the following property: the number of molecules contained
within a volume-element dx dy dz about the point ( , Yy, z) which possess peculiar
velocities whose three components lie respectively between (U, V, W) and (U+ctU,
V+dV, \N+d\N) is

(2) v/(U, V, W)cU dV/ dwdxdydz

Besides being a function of U, V, W, f will depend on the mass ,the absolute
temperature T and its space derivatives at the point (X, , z), and on the space
derivatives of (uQ vOw0), but not on the absolute magnitudes of the
may evidently impart an arbitrary additional velocity ( ', V', w'), to the whole mass
of gas without affecting the distribution of the peculiar velocities of the molecules
at any point. It is therefore legitimate, and it will prove convenient, to suppose
that, at the actual point under consideration, 0; where ug v woO
occur in any expression which has to be differentiated, however, they must not be
made equal to zero till after the differentiation has been performed.

In consequence of the definition of f and of U, V, W, must satisfy the following
equations —

3) v, \N)dUd= 1,

@) fjj U/(U, V, W)dIdVd\N = jjj V/(U, V, W)dUcZVdW

= )] W/(U, V, W)d\JdVd\N = 0.
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If Q denotes any function of the velocity components w) of a typical molecule,

while Q denotes its mean value at the point (X, ,z), we have
(5) Q=jjj Q/(u, V, W)dudvdw,

in which, for purposes of integration, Q would be expressed in terms of %0+U, v0+V,
wO+\N by (2). In the integrals (3) to (5), and elsewhere throughout the paper,
integrations with respect to the velocity components are understood to be taken
over all values of the variables, from —00 to + co.

The equations (4) may, in the notation just introduced, be expressed as follows:—

(6) u=v=W=0.

The Velocity-distribution Functionfor Uniform Gas.

§2 (D) When the gas is uniform, all the derivatives of T and of (uQ vQ wQ) are zero,
and f must depend only on mT, and (U, V, W). It has, in fact
Maxwell and others* that

(7) / hm — hm@2+ v2+ W2
where

(8)

and It is the universal gas constant in the characteristic equation of a gas:

9 p= 1VT.

The Distribution Function for a Non-uniform Gas.

§2 (E) When the gas is slightly non-uniform, f will differ slightly from the value
given by (7), which we shall denote by f : we may therefore write

(10) 7(U, V. w) =/,,(U, VVWH{L1+FU, V,w)} ="y e tw){l +F(U, V, W)}

The function F will be of the same order of magnitude as the wvariations of
temperature and velocity in the gas ; these space derivatives we shall regard as being
of the first order, and as we shall neglect second order quantities throughout our
work, no products of derivatives will occur in F. Hence, since F vanishes when the
variations in the gas are zero, it must be a linear function of the space derivatives
of T and (W0 vQ w0), with no term independent of these derivatives. The coefficients
will be functions of m, T, and U, V, W.

Clearly the form of F cannot depend upon any special choice of axes of reference
(these are throughout taken to be mutually perpendicular), so that F is an invariant

* fJeans’ *Dynamical Theory of Gases.’
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with respect to any orthogonal transformation of the co-ordinate axes. This places

some restriction upon the possible modes of occurrence in F of (U, V, W) and of the

space derivatives of T and (uQ vQ wO0),though not, of cou
m and T. It is easy to see that the most general invariant function of the quantities
involved in F must be compounded of the following elementary invariants —

(id C2= u2+vz2+w2
dEO d 31 ONT
= VI - -
(12). (13) ST dx ¥ dy dx2 dy?2 ’
(14) DT = T,
. Y23 y2 div0 dw() Owvo fdUp | dw( dvo. Q
(15) S dx dy W Hz VW dy dz WU ax wV dx dy

together with derivatives of the last four expressions formed by operating on them
any number of times by the invariant differential operators V2and D, in the notation
of (13) and (14).

[ January 15,1916.—Except in the case of highly rarefied gases, which
expressly excluded in §2 (A), only the derivatives of the first order actually occur in
F, to the present degree of accuracy. The reasons for this will perhaps be more
clearly apparent after reading 8§11, but the following considerations will elucidate the
point. W hatever derivatives are contained in F must (811) appear either in the
equation of pressure or the equation of energy, so that, if the ordinary equations of
viscosity and thermal conduction are to hold good, only the first-order space deriva-
tives of temperature and mean velocity can be present; otherwise the ordinary
coefficients of viscosity and conduction do not exist. In actual gases at normal
densities the ordinary equations are shown by experiment to be valid; they fail,
however, in highly rarefied gases because the terms in F which contain second-order
differentials of T, u0 , vOwOare in this case comparable with those contain
of the first order, as will be seen in detail in the future paper mentioned in §2 (A).
The coefficients of the first and second order derivatives respectively contain (\/l) and
(A/02 where Ais the mean free path of a molecule and | is comparable with the scale
of length within which the temperature and mean velocity vary appreciably ; except
in rarefied gases (a//)2can be neglected in comparison with (A//). The same inferences
can be made also ( £86) from the equations of transfer of § 3.

For the present paper it is therefore sufficient (and it is convenient) to write down
the following form of F forthwith —e

(16) F=(@|™ +v W10 P, (C2+SP2(C2 +S'P3(C2,
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this being the only way in which the first-order derivatives can occur in F, in order
that F may be an invariant.

Here Pi (C2, P2(C2, P3(C2 denote certain undetermined functions of U, V, in
which these variables appear only in the form U2+ V3+W2or C2 The first term of F
is evidently of odd degree in U, V, W combined, and the second and third are of even
degree; it is convenient to denote them by O(U, V, W) and E(U, V, W), when we
wish to refer to the odd or even part of F separately.]

It is easy to see that, in a uniform gas, f Osatisfies the necessary conditions (3), (4).
In the non-uniform case these conditions require F to satisfy the equations

(17) jjj/oF du dw = o,

(18)  Jj|U/oFdUdVdW = jjjV/FdIldVdW = j|j W/FdUdVdW = 0.

Clearly the odd part 0(U, V, W) of F satisfies (17), and the even part E(1J, V, W)

satisfies (18), but not vice Bso that these equations place certain restri

0 and E.

83. The Equation of Transfer of Molecular Properties.

§3 (A) The rate of change of rQ, the aggregate value of Q (u, v, tv) per unit volume,
may be analysed into three parts, viz.,, that due to molecular encounters (which we
denote by AQ), that due to the passage of molecules in or out of the volume-element
considered, and that due to the action of the external forces. The equation
expressing this analysis may readily be shown* to be

19 * = - ru' - X
(19) Q) =AQ A& (WQ
We may define AQ by the statement that (AQ is the change produced

by molecular encounters during time dt in the sum 2Q taken over all the molecules

in the volume-element dx dy dz : evidently 2Q = t/Qdx dy dz.
If in (19) we make Q equal to unity, in which case AQ is clearly zero, the equation
becomes

— — —fdv» ., , dr?/:0
dt \ dx dy dz )

(dup d% dv
\ dx dy dz) M~ +,0" +Woa.

which is the equation of continuity.

* Cf. Jeans’ ‘Dynamical Theory of Gases.’
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Except under the differential sign we shall write U v=V,w—W, since we are
supposing that u0= V0= w0 =0 at the point (X, ,2). Th
reduces to

1 / du®, 3vo , 3
Ik dt\3sc 3

In taking mean values of functions of U, V, W, as in (5), we shall neglect the part
F in the velocity-distribution function f,in cases
differentiated or multiplied by a small factor, since the resulting error is only of the
second order.* Thus, in such cases, we shall write

(21) UX2= iC2stl), ULL2(-F= 1C2ASH), VWX = ;AC2AsH),
(22) C7=1.3.5...(25+1)

while, if either p, qr r is odd,

(23) LFVMr = 0.

Since the equation of transfer involves derivatives of the first order only, it is
sufficient, whenever the mean value of a function of u, v, w is to be differentiated, to
expand it by Taylor’s theorem in terms of so far as the first degree only;
if, then, the coefficient of uOvh w0 is of type (23), the correspon
omitted altogether.

Case l.Q= u
§3 (B) When Q = u (u2+v2+w32saccording to the principles just
have
A(iIwQ) = A v(U X3+ 2u0UC 3+ 2sU2(u0U +vOV +w0

1al/ 1.3.5...(28+3) 3 /1

3 dx ° dx VvOL

1.3.5...(s+3)/ 1 Yf 1 3V 3/ 1 i /L

A2 hm)i2 hmdx +tx)\ +Sv dx "2 ’

0 0
o WQ) = 0 5 (WQ) =0

* Except in gases of very low density.
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neglecting in each case quantities of the second order. Since Q is of the first order,
to the same degree of accuracy as in the above equations, we have

1l
o

" (vQ)

Again, writing u-—-uy, v V, w =W after differentiation, we h:

(i) - E-*t2,uW - i(2,+3)C=- *

y Here we have omitted UVC2s-1) and UWC2(s-1), since when multiplied by X, which
o

gis of the first order, the result is of the second order, and hence negligible.
gSimilarly

The equation of transfer consequently takes the form

: 1.3.5... (2s+3)/ 1 yf 1 dv 1\ *x
(24)  AUC 3 2hm)\2hrn dxm

When 5 = 0, this becomes

1 al i\ 1 x
AU + Vv - =
2 hmdx ‘dx\2hmJ m
Now mAU is the rate of change of momentum per unit volume due to the
Imolecular encounters, and, since action and re-action are equal and opposite, this

ochange is zero. Hence we have, remembering that (2 = RT =

ttps://royal societypublishing.org/ on 19 M

m

2hdx+ydx\2h dx \2h dx’

Downloaded fr
~
9

which is one of the equations of pressure of the gas.
On substituting the value of X given by (25) into (24), the latter may be written

(26) 2 N aufa. _ 1. Si
1.3.5... (254-3)5VAU( "Tar’

where we have used the equation (cf.B

2hmix (sL )=1T 8 -

There are two equations similar to (26) giving AVC2and AWCZin terms of ST
and dl/dz.

vol. ccxVi—A 2 R
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Case I1Q-=

83 (C) Making approximations and reductions as in Case I., we have

dtCQ) d_ >\ — )~ ( p2(s+|)\3_ 1-3.50.. (29+3)/ 1 \stl
1.3.5... 2*+3) / 1 YHfl a ,MiaTl
= 8 ta

ﬁl@'*{VUQ)= %C_U,,{uf{:2,+ 3MUC2+ 25U3K U + vOV+ wOW )C 3¢- 1)+...}

(O "+ 1sC " =1-3-5-(2s+5) /[ 1
dx 5 \2hmf ox

— {wQ) = — VPVC2s+vOUX B+ 2sUN (200U C26 1)+ ...}

A (JOAMN+Asc ™) = 1-3.572.9+5)v
2 hm) a *

s /~?T\ 1.3.5...(25+5) ( 1

P = 2UCX+ 2sU"CXk ] = -
a’\)/ UCx+ 2sU"Cx J) = 0, \av 0, \dwj

The equation of transfer may therefore be written

o rfigh [ Dian

(27 AULZ= 17 DY sy e (U

+(2»+5)(8g +g. +8§
When 5=0, this becomes

1 1alr pa0 a8 a0
a

AUZ- onm yatta& cx cy

If to this be added two similar equations giving AV2and AW?2 on the left-hand
side we have A (U2+ V2+W 2), which is the rate of change of molecular energy due to
encounters ; by the principle of conservation of energy this is zero, so that

3T +i ad +50+ad Iy, |
vdt tad dx 3 ’

or, by (20),
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On integration this gives T p~'u= constant, or, since p = RvT, it
pp~*u = constant; this is the law of adiabatic expansion for a gas which possesses only
translational energy.

Eliminating - ~ and i ~~ from (27) by tmeans of (20) and (28), we hav
vV ¢ c

1.35..25+3) | LYau
(29) AU 2 hmj

+ (2s+5)(3~r-“+ 1N + A
(25+5) (37

< 1,3.5... (2s+5)2v/ 1 VH/q dwO

N m H

IS 45 \2 & 8?7 cy dzj

%Or

=30) (2hm)*H 45 "y 02 08r0 dvQ 8w,

2] 1.3.5 ... (2s+5) 2v &? 8y dz

&

3 By transformation of axes, or otherwise, we may deduce the equation

o]

(o)) s+l -

£(31) (2km) — A2VWC3 Sor..

% 1.3.5... (25+5) dy)

o

>

S.

o 84, The Effect of Molecular Encounters.

[&]

%

T 84 (A) In this paper our primary concern is with simple gases containing molecules
gof one kind only ; the difficulties are much enhanced when molecules of two kinds are

Bpresent, especially as regards the equations of transfer, and the final determination
Eof the coefficients of F when AQ has been calculated. These matters will be dealt
gwith in a future paper, on diffusion and the general theory of composite gases. In
"—éthe calculation of AQ, however, there is scarcely any advantage in making the
@restriction to one kind of molecule only, and it is convenient to carry out the
ccalculation for a composite gas in order that the results may be quoted without
8repetition in the later, more general, investigation.

The notation of 8§82 may be adapted to the case of a composite gas without further
change than the addition of suffixes 1, 2 to denote to which group of molecules
a symbol such as ym U, V, W,/, F refers. The mean velocity of the two grol
will be supposed the same, so that (uQ w0 is the same for both, either
separately or together ; similarly, their temperature or mean energy, and their
relative densities (i'Yi'2 are supposed constant. All the remarks made concerning
f and F hold both for fxand Fx and f 2and F2 these being functions respectively
of (Uj, Vi, Wj) and (U2 V2 W2); they may each now be expected to involve w:V2
and mx:m2 in addition to the quantities mentioned in §2. A further important
consideration which did not arise there is that J\ and f2 or Fx and F2are similar,

2 R2
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in the sense that either may be obtained from the other by interchanging the
suffixes 1, 2.

Notation for an Encounter.

84 (B) Before proceeding to the actual consideration of the dynamics of an encounter

between two molecules m2 it is convenient to explain the notation to be used.
The symbols mQm, rH, M2>an(I ML are defined as follows:—

(32) m0—

(33) M = Wij/wo, u2 = o)

(34) M2 = = M/«2, 2 ULJUj — WU

so that *

(35) Md'M 1> MdM 1 JMM

(36) M2VEL = 1o

Velocities will be represented either by their X, y, z components or in vector
notation. The components of the actual velocities of the molecules will be written
(U, V, W), while those of other velocities, such as the velocity of the mass-centre G,
or the relative velocity, will be written (X, Y, Z). The amplitude of a velocity will
be denoted by C, and the vector itself by the same symbol in small type with a bar
beneath, viz., C.

The velocities of the molecules mxm2uand of G w

respective suffixes 1, 2, 0, while the suffix R, similarly, will indicate reference to the
molecular velocities relative to G or to one another. As regards time, square brackets
enclosing a symbol, such as [X,], [cq, will indicate reference to some particular
(arbitrary) instant during the encounter; a symbol without brackets but with an
accent (') will refer to any instant after the encounter,* while when there is neither
bracket nor accent it will refer to any instant before the encounter.

Analysis of the Motions in an Encounter.

84 (C) In the above notation the initial and final molecular velocities are respec-
tively c,, c2and c\, (-2 or (U,, V, W,), (U2 V2 W2 and (U\, V', W'), (U2 V2 W'2; also

(37) C2=U 2+V2+W2

* That is, any instant after the molecules have separated beyond the distance (which in actual gases
is, at most, very small) at which their inter-action is appreciable; the words “ before the encounter ” are
to be interpreted in a similar sense. In this sense the velocities of the molecules before and after the
encounter are definite and constant.
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where C, U, V, W all have the same suffix 1 or 2, with or without an accent ().
Similarly, the mass-centre G has the velocity c0 or (X, YO Z0), and since (by the
principle of conservation of momentum) this remains invariable throughout the
encounter,# we have

(38) f0= = MIfl+ M/2 = M[fI] + M2[f2

or
@ = fo = [fo].
Since, by (38),

(39) mx[fj-[fa} = -m R[fF-[fA} = {[fj-[f4} = mO(xiu2)
where [fR is defined by the equation
(40) [fit] = (miM)'R{[fi]-fo]}>

we see that the momentum of the molecules, relative to G, is equal in magnitude but
opposite in direction in the two cases, its value being [cr]. The relative
velocity of the two molecules is, by (40), equal to Wk?2)-L2[cK] ; this varies throughout
the encounter, owing to the inter-action of the molecules ; its initial and final values
are given by

(41) fn = (MM) (f1 £29 k = (MIMD) clijt

which are special cases of (40).
Equations (38), (41), and the reciprocal equations

(42) a—foTML-~G c2—f) M2'1thB
(43) di= &TMiV r f2= fo M2 R
indicate that e, c2 or w2 are equivalent to cO, cRor c'R as specification

initial or final velocities of the molecules. Hence the problem of determining the
final velocities of two molecules after an encounter, in terms of the initial velocities
and whatever further independent variables are necessary to define the encounter, is
equivalent to the determination of c¢'R in terms of cn and the variables of the
encounter. Thus, in consequence of the invariability of cQ the velocity of the mass-
centre, we need only consider the motion relative to G, i.e., the motion referred to
uniformly moving axes with G as origin.*

* We here suppose that the effect of the external forces during the brief interval of encounter is
negligible; this is legitimate if the gas is “ nearly perfect” {cf. §2).
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TheMotion Relative to the Mass-centre.

84 (D) Relative to these axes the molecules are initially moving along parallel lines
with equal and opposite momenta £m0 (nxn*Q"y (39)
two lines is clearly the plane in which the inter-action and motion of the molecules
will take place during the encounter. It is parallel to but its orientation e about

this direction is independent of c0, oR i.e.it isoneo
to specify the encounter, and, similarly, so also is the perpendicular distance between
the initial lines of relative motion. It is convenient to measure e from the plane

containing cOand cR
In the plane of relative motion so defined, the molecules describe orbits which are
similar to one another (the origin G being the centre of similitude), and symmetrical

about the line of apses foints of closest approach). Each ¢
asymptotes, one being the initial, the other the final line of motion ; the distance
between the pair of final asymptotes is clearly equal to that, between the initial

asymptotes. The angle X2between the two asymptotes of either orbit measures the
deflection of the relative motion due to the encounter; for molecules of given types
it is a function of pand CK# only, the nature of the function depending on
inter-action between a molecule mand a molecule We sh:
for the sake of generality as well as of brevity, to retain X2as an unspecified function
of p and CR in our equations; the special properties of the molecules under
consideration are, throughout our work, involved only through the dependence of
XR2onp and CR

It is easy to see that the magnitude of the relative velocity (*/x2-VZRis unaltered
by the encounter, i.e.,

(44) CR= CR:
for by the equation of energy we have
(45) i (nixC*+mAC2= V) = > 0(CV+CR) = CO+C'R)

by (42) and (43).

The Velocities in Spherical Polar Co-ordinates.

84 (E) The above analysis of a molecular encounter may be made clearer by the
following figure, in which X, y, z, cQ cR c'R are the points in which a unit sphere*

* That is, on p ad on the amplitude C,. of the vecto
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centred at O is cut by radii parallel respectively to the co-ordinate axes and to cQ cu,
and C'RThen we have %

(45a) e— QOC,,  X2— i

It is convenient also to use certain spherical polar co-ordinates, as follows, taking
Ox, Oxyas initial line and plane for cRand and OcR O or Oc'R OcfRx for cQ
Thus we write

(46) 6r = CROXR = c'RO X : 0 G c0OcR

(47) R =cRxy, 0= By, -

Evidently we have

(48) oS 6b= cos 00cos X12+ sin Oosin X12cos e,
(49) cos O'R = cos ORcos X12+ sin ORsin xJ2cos e+fa,
(50) cos \ = cos 0Ccos OR+ sin 0Gsin $Rcos B

= cos 0'ocos O'R+ sin 0'osin 0'Rcos g0

Expressionsfor the Velocities After an Encounter.

84 (F) We have thus indicated how the final molecular velocities c\, c'2are to be
determined (cf 43) in terms of the initial velocities  c2or cQ cRtogether withjo and e
(these being the eight independent variables of an encounter). This has been done
by showing how Cc'R depends upon cu, p and it has in fact been shown that the
spherical polar co-ordinates of ¢c'R referred to cRand the plane c0 cRas initial line and
plane, are CR X2 (a function of p and CR) and e Hence we may at once write down
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the expressions for the initial and final velocities and velocity components in terms
of c0, oR p and € as follows —

(51) nfiz 012(cosdd), mXV = 0ffl (cos d0), niC\2= e,2(cos 00, yfff = 02(cos0'),
f = fii"0 cos X+ W[CRABOR /MK2-U2= cos Rcos OR
QB X+/42C r A5 0R, = Z"Q)cos X—Ui"On cos O;R

where we have adopted the convenient notation* defined by

f 0,2 (cos 0) = MICR+/4ZR+2 (W2)/LCr cos 0,
(53) J
[ 02i (cos 0) — AMC@+/x,CR—2 (yu,"2 /IZ(Cr cos 0.

Equations (51) to (53) are merely particular cases of (42), (43), expressed in terms
of amplitudes (51, 53) and of *-components (52). The latter might also have been
written in terms of the components of COand CR as, for example,

(54) U, = Xot & X r= Xot+MiR{XRcos Xi.+(Y R+ ZR)VYXin Xi2cos (e+00},

by (49), writing (Xa Y0 Z0), (XR YR ZR), (X'R YR ZR), for the components of c0c Kc'R
Equations similar to (53), (54) may easily be written down also for the y and z
components of the velocities.

TheDependence of U', V', W', on X2

84 (G) From (51) and (54) it is clear that any function Q, (U\, V\, W') of Un, V'i, Wr

is a function of U, V,, W, U2 V2 W2 pad e, or of Ub\

since p is involved only through X2 (though X2 is not entirely independent of the
preceding six variables, since it depends upon CR). If Q, (U'i, V'i, W'i) be regarded as
a function of x,2 when X2 is made equal to zero it reduces to Q, (Ui, Vi, Wi) simply:
this may be seen either from (51)-(54) or, still more readily, from the figure on p. 293,
since when X2 = 0, c'Rbecomes identical with cR and hence by (42), (43), so also does
c'i with c,.

Transformation of Co-ordinates.

84 (H) In 85 we require the Jacobian of transformation
j o= a(u', fvri, ur v'2w'?)
" a(Ui, Vi, Wi, U2v2 w2

between the initial and final velocity components, p and <being constant. Since the
motion during an encounter is reversible, the relation between the two sets of velocity

* In 87, for the sake of brevity, we shall write 0,2 02i, 0'i2 0'ai respectively for Oi2(cos 00), 02 (cos do),
o 2 (COS 60» and 02 (cos 60).
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components is reciprocal, sothatJ = + 1. It may readily be seen that the positive sign
is the correct one, by considering a particular case of variation, say dUi = dlt, = dU,
d\li = d\I2—dV, dWi = dW2= dW. This is equivalent to the addition of a small
velocity (dll, dV, dw) to the whole system; obviously this will reappear in the final
velocities, so that also du'i = dIf2= dl), dV'i = dv'2= dV, dW\ = dW2= dW. In
this case, and therefore always, we have J = 1, so that

(55) dil'i dV'i dW'i dUu'2dVv'2dW'2= dUi dVi dWi dU2dV2dW2

W ith a little more trouble this might also be proved analytically from the equations
of this section.
From the component equations corresponding to (42), (43), ., from

J N — Vi — W, —Zo+V'Z*,
(56)

L —X M A, V2= Yo ANYr, W2= Z, MZk,
(57) C2= Xp+Y, 2+ z(y Cez = Xp2+Y,*+Z,*

it is easy to prove that

(58) 3(U, V, W, U2 V2 W2 _ v
3 (X, YO-Z,, XB Ye, Ze) "MWV

Hence, by further transformation to polar co-ordinates, we have

(59) dUj dVi dWxdU2dV2dW3= - (miM)"SdX0dY0dZ0dXRdYKdZR
Cr dCOdGRd cos d cos fiRApQd>R
Since dlh dVidWi dll2dv2dW 2is essentially positive, the negative sign on the right
of (59) must be made positive, if the limits of C, cos § and ” in each case are taken

as 0 to + 00? —I to +1, and O to 2tt respectively; it may readily be seen that the
negative sign corresponds to reversed limits of integration of one of the variables cos

85. The General Expression for AQ)j.
Definition of AnQi and AIXi.

85 (A) The rate of change of due to molecular encounters, AQi, may be
divided into the two parts AuQi, A"Qj due respectively to the encounters of the
molecules mi among themselves, and those with molecules m3 Thus

(60) AQi = AnQi+A jNi.

We shall chiefly consider AZXQBbwhence AnQi may be obtained by changing the suffix
2 into 1 throughout.
VOL. CCXVI—A 2 S
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TheExpressionfor A"Qj.

85 (B) The number of molecules mxhaving velocity components lying between the
limits (Ui, Vi, Wj) and (ih +dlh, Vi +dVu \Nk +dk, by
equal to

UM, woduxdVi d\Nx

per unit volume. The number of encounters in time dt of any one of these, with a
molecule m2 having velocity components lying between the limits (U2 V2 W2 and
(U2-fdU 2 V2+ dV2 W2+ dW 2, the variables™), e of the encounter lying between and

p +dp, eand e+de,is equal to the number of such molecules contained v
small cylinder of length dt and of sectional area p dp de, i.e., to

vAmiMy _1r2 (U2 V2 W2) 0 dp de dV2dw 2dt.

Thus the total number of encounters of the above type, per unit volume per unit
time, is

(61) w2W 2"Vi (Ui, VIFW ))/a(U2V2Wo0)C dp dedUxdVidWj dv2dw?2
At each such encounter the change in the value of Qj (ifi, VI5Wi) is clearly
(62) Ql (U'n Vln W 'O_Q, (Un Vu Wl)

or Q'l-Qj, as we shall write it for brevity.

We shall include the effect of all possible encounters per unit volume per unit time
if we integrate the product of (61) and (62) over all values of e (0 to 2«), (0 to 00)
and (Uj, Vi, Wj), (U2 V2 W2 (each from —<> to + o00). Such an integration will
include encounters which are not binary, but our postulate that the gas is nearly
perfect (82) implies that our integral would be altered only inappreciably if the
upper limit of integration for p were not infinity but equal to the very small distance
at which two molecules cease to exercise any appreciable inter-action. Hence,
throughout this paper, where no limits of integration are specified, it is to be under-
stood that they have the above values. Thus we have

(63) A = v (AXD) UsI fjjj{jj(Q/i~Q i)/i/2CKP dp de dUi dVi d\Ni dU2dV2dwW2
The term ff in the integrand may be written
(64) {' + FIl (UI( Mj Wi) + Fa(U,, V* w2}
= ("W h fj e->mW+o.i (1+F1+ Fa),

where, in the first line, we have neglected FiF2 which is a second-order quantity,
while in the second line we have made use of (45).
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Theunit term in (I+Fx + F2) may he omitted.

85 (C) It is easy to show that the part of (63) which arises from the unit term of
(I +Fi+F2in (64) is zero. For it may be written in the form

|| (pwiuifa (hm0w)? dp de,

where

P= i (U, Vi, W'O-Qi (Ub Vi, Wi)} e“Traoc2+c«@ dUx  d\Nx d\J2dVvV2 a
Now by (45) and (55) the latter is equal to
(65) 1D [1jQi (U'l, V', W') e-h(mIcs+m*CitftU'X AW'x dI/2dv'2,
- J11jJ|Qi (Ui, Vi, WO e-MriC2+#2C# d u xdVK d\Nx dU 2dV2dW 2

But the latter two integrals are equal, since they are definite integrals differing only
in the symbols used to denote the variables. Hence (65) is zero, and the unit term
in (I +Fi+F2 may be omitted from AIXi.

The same result can be seen also in another way : the part of AIXQi under
consideration is that obtained by putting Fx = F2= 0inf f 2 . it is equal to the
value of A1 xin a uniform gas. In a uniform gas, however, as we may see from the
general equation of transfer (19), AxQi = AIX)x = 0, whence the result follows at
once.

fqu, v, w) is of odd d.the even part F(U, Vv, W) contril
nothing to AIXQ, and vice vers&.

85 (D) We may now, therefore, write AjXQxin the following form, transforming
the variables (U,, VL W), (U, V>W2 to (X,, Y0 Z,), (xK Yb, Zb), by (56), (58).

(66) AIDi = W2 M2

fjjIW i-Q,))e-«*«.’(F1+F1)C > dp dedX,tdY,ldZlIdXHIYRdZn

W e here suppose the functions Q (U, V, W) and F (U, V, W) expressed in terms of the

new variables and (in the case of Q'x) of eand X2 (or p)- We are concerned both as

regards Q and F only with terms which are integral in the variables U, V, W in

reckoning their degree we shall make no distinction between Wx and U2 &c., or
2s 2
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between X0and XR# &c. Then since the equations of transformation (56) are linear,
any term UfVeWxU /V /W / in Qx(Fx+ F2) transforms into the sum of a number of
terms XAYWZEXBYEZ / such that

I+p = a+d, m +q = b+e,

This is not true in the case of Q'x(Fx+ F2), since (by 54) U'i, V'x W'xare not rational
functions of the variables X, Y, Z, but it is true of (Fx+ F2 JQ\ de, since the integration
with respect to e causes all the irrational terms in Q'xto disappear.! This may be
proved quite generally, but it will be sufficient here to indicate the proof for the case
Qi = UiCiX s being any positive integer. We may write

Q'i = UiC'x2*= (X+aCRsin ORcos e+ <€) (C2+ 2aC0CRsin 00cos e)s,
where

a-= sin xi2 X = XD+/xATX,, cos X3
C2= C@+ MiC I+ 2mal"- (XOXk+ YOYb+Z,,Zb) cos X2,

so that X is of the first degree in X0or Xu, and C2is of even degree in the variables
(X0 XR), (YO Yr), (Zq Zr). The only terms in Q'xwhich do not vanish on integration
with respect to e are of the form

X{tCP(C2,-2p (2aCOCRsin 60cos €)*}
or

(COCR2sin 60sin dRcosdH e cos e+ ) {2a2C  (Cs 2p 1(2aCOCRsin 0Q"}-
Now we have
(C A sine,f=C,2J2(1—0s2e0) = {c@ce3 ( x,xb+ yOye+ z0zr)2},

which is an even function of X Y, Z, and can be included under the symbol C2
Thus, on integration with respect to e the above expressions become (apart from
a factor not involving X Y, Z explicitly)

XC% (COCR2sin 00sin ORcos 0Q C2s 1)
and by (50) the latter may be written
COCr2(cos X -cos 00cos 0B) C2*-1) = [XOCR—XR(XOXR+ YOYR+ Z0ZR)]

Both these expressions, and consequently JQX(\J\, VA, Wri)  as a whole, are of the
form XCZin the sense above defined. Similarly it may be shown that JU'iZVsde is
even in all three variables (X0 XR), (YQ Yr), (ZQ Zr).

* So that, for instance, x@, x&xHand xE2will all be regarded as even functions of x.
t The explicit occurrence of x, y, - in JQ'xde is here referred to ; the latter may involve CRirrationally
through x«.
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In the integrand of (G6), the exponential term and Cu (whether occurring as an
explicit factor or implicitly in X122 are even functions of X, Y, Z. Hence a term such
as X@Y</ZEXHYRZR in f(Q'i—Qi) (Fi+ F2) dwll contribute nothing to A1
a, bc, d, e f and d fortiori a+d, b+e, care all se
what has been proved above, therefore, it appears that in Q (U, V, W) F (U, V, W)
only the terms which are even in U, V, W separately contribute anything to AIXQi.
Hence if Q is odd in U, only the part of F which is likewise odd in U need be
considered, while if it is even in U, only the even part of F need be considered.

Introduction of li (xX-

85 (E) We now make the final transformation of AIX)i by adopting polar co-ordi-
nates in place of (X0 YO Z0), (XR YR ZR), as follows —

(67) AiaQj = jlje-w<v+c,*i {li (X12) _il(0)} C,ZHpdp
where

(68) 1,(X2) =jf|jjQi(U 1V, W'D {F,(U, Vt W,) + F3(U2V.,,W.)}it(/cos6ud cos6Uipt.d<pH
(69) 11(0)=f|ffjQ L(UDV, WD{F,(ULVIWD+F2U2V2W2}Adcos0o2cosM 0.<fyd

Evidently ( 84 (G)) the latter is obtained when XRis made zero in li (xX), since X2
is not concerned in the integrations of (68), (69), being a function of and CRonly,

while when X2= 0 we have Qi (u'i, V'i,W'i) = Qi (Ih, Vi, Wi). Hence, in calculating

A1Q)i we shall concern ourselves only with Ix(xi2) until we come to the integration

with respect bop, CR, CQ In so doing we shall, from the outset, omit from F (U, V, W)

those parts which, in accordance with §5 (D), contribute nothing to the final result.

86. The Form of the Function F(U, V, W).

The two special forms of Qx which we consider are U”Ci2* and LhCi25; the only
parts of F(u, V, W) which are relevant in these cases are respectively the part of
Ex+ E2 which is even in V and W2 and Ox+ 02; the notation here used is that of
82 (E), p. 283. From (26) and (30) we see that AUjOiLinvolves the space derivatives

of mean properties of the gas only in the form lD—T , While AU~Ci2*similarly involves

1 OX
only 2 We deduce from this that O (U, V, W) must certainly include
the term
(70)

T(ui +vS twl) ,,'(c’1
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and that E(U, V, W) must similarly include the term

(71) (crU2+ c2V/2+ <9oW2+ c"VW + cAWV+ c12UV) P (02,
where

dv0 owQ

il ) ’ CB_gi/a*+ ay)'

. _ 0BvO 8w0 _ . (dw, 3w0

(72) B3 N dydz  dx @=3 \d x dz/*
0 o dvQ  _(du0 dvO

N3 8z dx dy” =3 xdy '

The factor of P(C2in (71) is equal to 3S'—C25, by (12) and (15), and is therefore
an invariant with respect to an orthogonal transformation of axes.

Further since, by (26) and (30), no other derivatives of T and (uQ v(, wO occur in
ALhCi2 or AIh2Cjx we conclude that none such appear in F (U, V, W)—at any rate,
to our degree of approximation ; thus the other terms in (12)-(15), while they
possess the invariant property, do not satisfy the other conditions which must be
fulfilled by F (1), V, W).

We therefore conclude that F(U, V, W) is composed only of (70) and (71) to our
order of accuracy, and we shall suppose that the two functions P (C2) are expansible
as power series in C2 Throughout this paper we shall assume that all convergency
conditions necessary for the validity of our analysis are satisfied ; the justification
of this assumption would offer serious difficulty, and the investigation would lead
us into regions of pure mathematics which are largely unexplored, and would be
unsuitable in the present paper. In 8§10 we shall see that numerical approximations
for the most important molecular models confirm the assumption of convergence
sufficiently for our purpose.

It is convenient to write our expression for F (U, V, W) in the form

(73) F(U.V,W)- -BOT(U” +V T)S/IW Yz(flgT)-Ts,s\,, (*.+3)r A-.C*

%ZAm)r
- C®2 MmecuU2+ c2V2+ c»W24-cBVW + c3AWU + clUV)?2 X, 3 5 ... (2r+5)"

In the first line, when r =0 the factor r in the denominato

The suffix 1 or 2 must be added to m, U, V, W, C, j8 y when we wish to distinguish
between Fi(lh, Vb Wi) and F2(U2 V2 W2.
Since, by (72),

(74) al+ 2+ CB —d,



Downloaded from https://royal societypublishing.org/ on 19 March 2024

THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 301

it is easy to see that (18) is satisfied by this form of F, while in order to satisfy (17)
we must have

(75) ft_L+23(r+1) = 0

The products BQ3r, BOyr are quite definite, but BOand COcan evidently be assigned
arbitrarily; we shall decide that their values, though* unspecified for the present, are
alike for Fxand F2

The above expression for F (U, V, W) is equivalent to that obtained by Enskog (8 1),
by an entirely different method. But the chief difficulty of our problem, and one
hitherto unsolved, lies in the determination of the coefficients (3and y ; this is effected
in the present paper by means of AQ.

87. The Calculation of AQ"

87 (A) In calculating AQi we shall deal chiefly with AIX)i 85 (A) and (67)).
The particular forms of Qxwhich we shall consider are

(76) Q, = (2Aoti)+*UICT*= 357 '

(77) Q, = (2Am,)*+1U,XC 2 =

In accordance with 85 (D), the only part of F(U, V, W) which is relevant to
ABi@ is

(2hm)r & iCh

78
(78) | OX o1 3.5...(2r+3) -

while that which alone concerns A(£i(@ is

2hmy

79 ' ’ o
(79 m2fime, (¢, UIH eV WD 2y 3 & g 7.CR

As to the latter, since the remainder of the integrand of ACi@ is symmetrical with
respect to V and W, the parts of this integral arising from V2 and W2in (79) are
equal, so that c2V2+ cBW2 can be replaced by j-(c2+cB (V2+ W3 = A i (C2—U2),
by (74). Hence for our purpose (79) is equivalent to

(80) -*(2hm)Cln (3U2—C2 1 1 3 ~Ar+5)

We shall denote by bR (rxSi)the part of AIBi@E which arises fror
—2hmD)r+\JICIZ in Fi(Ub Vb Wi), and by b12(rXSi) the part arising from the corre-
sponding term of F2(U2 V2 W2), in each case the numerical and other factors in F
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being excluded.# The corresponding portions of T (xi2 will be denoted by I fasi, xi2
and | (r2Zh, xi2) respectively. Then

81) 1 fashxid = “J\]] (@hfiimOB/C'izUICIiZ d cos dcos

(82) 1 (rzbXe) = [JIff (2/MmOr+stVii+W +RJ'ICTRUXL 22X ded cos 60 cos dfa

(83)  fi2(nSi)

jjj e-A<oaS{l K X2)— (n*i, 0)} CGCKp dp dCO R

(84) = -, 12(MiD)-i.("»)3
Jij <r*-<RL{l (rA, X2 -1 (rA>0)} C&CRpdp dCOdCR
The similar quantities relating to AJ2ZCiWwill be denoted by 1), ¢ and

J (ri5i, X2), J fa#i> Xo)respectively, so that

85) J {risk)

= [[[[[ h(2 LM QBVCV* (3Ui2—Q 2 ded cos 00 cos 6Udg0

86) J {raix)
= jifii @ hmOr+s+2 fisHild+\j' IC,i 3U2—CDV ded
(87) CufaSx) = —w2fa

jij e-fimoy+ca>{j (rA> X2) _J (rlISlt o)} C&C  dp dCOdCR

(88) cl2fas,)= - IV2fa”ry ~ y
jije-w « +=J{j (rA) X2 _J (rA, «)} C,XRp dp dC,, dCR

* We have here included a factor (2 hm)Pwhich does not occur in F
subsequently.
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Thelntegration withrespect to S|

87 (B) In I (rs, X1 and J (rs, Xw)it is clear from (48) to (53
appear at all in the integrand, while On and occur only in the products U'iU and
Uri2(3U2—C2) respectively. We have

U'tUj = C@cos2X+ju2lCR cos #Rcos OMi1ZZ0C R cos .

U\U2= C®cos2X—CR2cos (Rcos O'R+ COCRcos X(/"y2cos 6'K— cos OR),

and, remembering the values of cos Xand cos we have
[|| U'jUjd GOB80R do deR= | r2{C@+ " iCr2aBX "-
11 j Uiu2d cos ORd(pO d(pR— 37" {Gy CRcos xi2~t  (ma ’cos 00

ln the notation of (53) the latter two equations may be conveniently re-written as
follows:—

M 11l U'alhdcos OR d(pOdipn= |7r2{0i2(cos 09+ O ]2(cos -2 />2r2( |- cos>
(miM®) "|]j UiUu2 des ORdipad<pgR — 37" W 221 (cos 00) +/x21"0 2(cos 0Q

+ 2 (miM)'fZr2(1 —cos xX) —

Substituting in (81) and (82), we thus have
B(89) I (?vh, xu) = i-m2(2hmi)rsHl |j {02+ 0/12-2 MCR2(l-cos X2} 60

(90) | (rz, X = b? (2K )r+s+11| {MiziD2i+ Mi%O, 2+ 2 (mMNMC r2(l - cos Xi2)

—(miM2) - /1 2} 0120 i2 de d cos 0Q
§7 (C) In the case of J (rs, xidj we have
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(91) M2U'i2Ui2 = (MIMCOcos X+ u2lXr cos 9r)2(mi*CoQB X—m2X r cos 0'r)2

in which (cf.the figure on p. 293) X= c0 @R = cROx, OF
over the sphere, with respect to OR and < since #0, e, XI2 are constant the triangle
CkR'R preserves its form, so that we may, if we please, regard X as the variable
point and cwR'R as fixed. Now it may readily be proved, by the method of
“poles” in the theory of harmonic functions, that if A, B, C are three fixed points
on a unit sphere, and P a variable point, then the integral over the spherical

surface of
_ cos2PA cos PB cos PC
is
x 57 (2 cos AB cos AC+ cos BC).
VOL. CCXVI.—A. 2T
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Applying this result to (91), identifying A, B, C with one or more of the points
cO cX c'Rand P with X, we may with but little difficulty prove that
M2 || JUVU/dcos ORd(pfid(pn = 7T {0i2+ 4010 /2+ 0 '3 —4/xD R (0 2+ 0'1) (I —cos X12)

+ 4/52Cr4( 1 —cos xid2}.
Similarly we may show that

MiJJ| U rdos ORdfa dR = | uD '12
so that
M2 f1l U? (3UX%—C"2d cos OR dfad<pR=|x 2{0 i2+ fOiD"

4/2Cr2(0i2+0 12 (I  cos Xi2) + 4/2'Gr4(l —cos X"}’
Hence we have

92) j(rA, XA = ixaArHskjj{emt+Sere'r+t eV -sLv(enste'd) (i- cosX?)

+ 4x2CRI(1 —cos X122} B~/Bi/  d cos 0Q
and it may be proved in a similar manner that

93) J (rsMid —i7 (2 hMOB [mid 2 + §0210 2+ M210 i2
+ 2Cr2(m2LoeL + MeND /12) {2 (UDOR(1 — QOB XI2) ~

+ CRH{2 (mM)R(L- QBXLD)- Wa)"**}7 0i2%02ir d cos 00

(p2+o2—2 pos 0)”in a Legendre’s Series.

87 (D) In order to effect the integration of | and J with respect to e and 00Owe must
have recourse to the expansion of

(94) P n(p, o CBO) =

in a series of Legendre’s functions. In a recent paper* | have shown that

(95) P nég; cos 0) =2 (—)A(2&+ 1) ) P,.(cos

/;=0

where P A(cos 6) is the ordinary Legendre’s function of cos 9, of type  andt

k n A N
90 s (r 2 (" + D<fe 2
(°0) (n <® 67 t=l(t+ ")t ( t—k
PRI hi o (n+ 2)tk x
\pj  t= (t—K)t—k
* Chapman, ‘Quarterly Journal of Mathematics,” p. 16, 1916. The expansion is there not limited to
integral values of n,though these are alone considered in the present paper,

t The constant kis necessarily a positive integer; if nAk = 0.
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In the last equation the symbol p gvhere q is integral, is def

(97) p.=p{p-D(p-2) .. {p-q +I).
From (53) it is clear that

(98) {022(cos 9)}” = Pn(<iC® m'V , - cos 6) = /Z_L:O(Zk+1) "A*, Ps(cos 9),

(99) {02 (cos 0)}B= Pn(/xXC@ ™C K2 cos - g 2 (-1)*

where we have written, for brevity,
(100) "A*R2 = pA* U C @ MCLB) M*2L = »A*(mC® miCk2).

In our expressions for AQi, 0 takes the values $0 and 6'Q and the variable e
is involved only through the latter angle, which occurs in 0'2 or 0 2(cos 00.
In the expansion of the latter B) in terms of PAos0
P A(cos 90cos xis+ sin 0Csin X. cos c¢), we shall make use of the following well-known
formula in the theory of spherical harmonic functions

(101) PACcos 0'9 = PA(cos #0cos xi. + sin 00sin X.. cos €)

= PACcos 0Q PA(cos X1+ 2 5 PA (cos 0) P A(cos x,d) cos le..

Thelntegration

87 (E) Since the integral of cos lewith respect to € between 0 and 27r, is zero unless
1=0, from (98) and (101) we deduce the result,
r2ir n
(102) J 0'lnh / de = 2412 (2k B "A*12P a(cos 00) P a(cos Xi2)
0 ~0
Now from (89), (90), and (92), (93), it is evident that as far as concerns integration
with respect to eand  we have to consider a number of terms such as

(103) JJ 0"0'Ihde d cos 00

where 0"1may have the suffix 12 or 21, while 0'walways has the suffix 12. Now 0"1
does not involve e so that (102) suffices for the integration with respect to € and
leaves us with

(104) 27rj NM2 (£ 1)*(2&+1) mA'B A(cos 0Q |
fn

1
\ 2 §2k +1) "A*1P a(cos Pa(cos X12) r
Uo «
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in place of (103); in the first bracket the ambiguous sign is to be + in the case of

0 Imand —in that of 02271
By the theory of Legendre’s functions we have

(2 k)| P/, (cos6QP icos 0Qd cos o= 0 if ~

(2&+1) j {P*(cos 00}2d cos 60= 2.

Consequently

fe m, n
(105) 10210 'iaw @lcos 00= 412 (2&+ 1) BAXIHA*L;
(106) || 0xe\.d‘dedcos@= 4x2 (-)*(2i+)-AVA*,P»(«*X,,),

where the upper limit of k is the lesser of the two integers n.
Applying these results to (89), (90), (92), (93), we have, therefore,

(107) 1 (rA) X>) = (2hmOr+stl

r+1, s+1

\% fr+lAE ,\ s\_h_izr\k +IA*

k=0
27 20"ij1IAN2SARR2 (I cos xis)} P~ (cos Xi.))

(108) 1 (rA) Xis) = W ( 2/imQ)"+*

,+K12:6-1(-i)* OV 'AVAWYVA"""A
+ 2G"KrA*2isA \2 {{v-ifj-z) ”(1 cos X12)

~h (MIND) /)] P K (Q0S X12X

(109) J(r™, X =W (2H ) ++2
r+2,s+2
X [R2A*IBA 12+ |«> AV > AL "ATITA D
k=0

- 4 aC2r (H1IA*12A* 12+ rA*15+1A* 1) (1—C0s X«)
+ 4020V A\2SAM2(I  cos XJ2) ] 1 (cos X12X

(110) J Ov™xu,) = | 3(2 hmQr+s+2

r+2, 8+2
2 (-1) [u2+2A\nsA RJ+ §r+1A*2Is+1A*12+ MArAL, st2A b2
A= 0

+ 2C\ (MZ*r+A U A 2+MA*Ai2l" 1AID) {2 (W 2),fco(1-c05X2) - (mmd
+ CiltAIZTA*2{2 (1-cosXid (miFd)-"*}3 P* (cos X2).
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Thelntegration wnespect

87 (F) On referring back to equations (81) to (88) it is clear that before executing
the integration with respect to p .,in the calculation of h(vs
subtract from B and J §r2)> as given by (107) to (1
corresponding to X2= 0. Now when X2= 0, we have

1- QBXR2= 0, P* (OB X12) = 1.

Thus where P*(cos X12) occurs alone in (107) to (110), it must be replaced by
P*(cosxi2)~ 1 in the expressions for h(rs)and the terms P A
and P~ (cos X129 (I-cos X122 remaining unchanged, since the corresponding terms in
I (rs, 0) and J (rs,0) vanish.

The variable @ involved in h(rs) and c(rs) only through p dp and xi2>the latt
being also a function of C{ We may therefore formally execute the integration
with respect to p by writing

(112) (dae r) = o (2k+l) (mv-?) “Pr [ {1 P*(cos X2)}
ro

(112) <P\V2(C.) = (2£+1) (mny kCRJI0 (I -cos XI2) P* (cos Xi2

(113) <A2(CH) = (2&+1) (M")“Ur £ (I —cos X122P* (cos X12)

The nature of these functions depends on the law of inter-action between molecules
at collisions, and by keeping this law unspecified we retain the utmost generality
in our theory, which implies no property of the molecules save that of spherical
symmetry.

By means of the well-known equation

(114) (k+1) PAH (cos x)— (2k +1) cos xP/,(cos X)+ ~P*_1(cos X)

the function $I2(CR can be expressed in terms of 2(CR), for different values of Kk,
as follows—

(115) A 2(Cb)=~ | +IACK)-A (0,) +

and by a repeated application of (114) we may obtain a similar expression (involving
02 (CR) for | = k, *+ 1, &+ 2) for K2(CR.
fo avoid unnecessary formulae, we shall not write down the forms taken by h

and c(rs) on substitution of the results of this section till after we have considered
the next step in the integration.
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Thelntegration withrespect to COand CK

87 (G) In the expressions for h §ndc integrated out
variables save COand CR it is now convenient to make the transformation

(116) x2=hm@C® = R
In connection with this we shall use the following notation —

(117) B \ 22(m, n)= {2hm0) "+ AKIZA \ =
_ MKuhm@®  2uhm0GR)
= MAKKK2A ) .PAk  Ry%2),

(118) B*21(m, n) = (2hmOmmn . M KINA \2

= mA k (2yX2, 2 yyf)mk (
We have here used the fact—cf. (96)-(100)—that is a homogeneous
polynomial of degree 2n in p, <k

We now use equations (83), (84), (107), (108), in exjunction with 87 (F), to
write down the following expressions* for h(r, ), taking particular note of the signs
of the various terms —

o ff 13+l ~ ]

(119) b\2 (viSi) 1 =-If- wE~kHy] 2 \lé%qz{rIA/) {BA(r+1, + B7
+ 4 Bk(r, s)]22x%2dx

(120) &2("i) = MDil2jj e~u —Mk\jpk: (5)

-2 W -V B * (r, 5)+/*3/aB* (r, 5+ 1)}
- 4 (miMY i2IV*D(e12) B* (r, 8922 dx

In a similar way, from (87), 88), (109), (110) we obtain the following expressions
for c(r, 5) —

(121) c2Arlsl) = [<P2(rB)s) + |B*(r:
+B(r, 5+2)} + 8p3 2pK2 +1, 5)
+ Bkf+1)} -1 6y » AAr /) BAr, 5)]220 y ~

* In (119)—(122) the suffixes 1212 or 2112, which should be appended to the symbols Bft(m, —the
same for all those within any one square bracket—are for convenience of printing indicated only by
being placed after the bracket itself.
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rr r+2, s+2

(122) cR(rBi)5 nEXy) A (D
+hABA s+ 2)— (/al28B* (r +1, s)
+ MINBE(r, +1)) + AMuZi4B* (r, 9)}
—8 4>"*ia(Tiag /) {pIsINB * (r + 1, 5)
-2 W -V B In «)+VAB*(™ *+1)}

-16 MII2IV% (£12)) BA(r, s)]2R2a?y

The symbol «in 2(r\g) is defined by the equation

123 TR
(123) \/

The integration with' respect to X in the above expressions is of a quite elementary
nature, but it will not be executed in general terms owing to the complexity of the
polynomials Bk(r, S), which are integral in X2 Any individual term in the integrands
of (119) to (122) is of the form (so far as concerns X)

(124) J[0 e~xXIxZm+)dx = (m+J)m

The integration with respect to y will similarly not be executed in general; in any
case, owing to the unspecified functions <KR2(ry), this integration could be only
formally completed, and until we come to consider special types of molecular models

ynizz)) {1

we shall be content to leave b(r, s) and c(r, s) in the above form.

The Complete Expressionfor AINt.

§7 (H) O1lreferring back to §7 (A), and the definition of b(r, ), c ), it is clear
that we are now able to write down the complete expressions for A1 tin the two cases
we have considered. This involves taking into account all the terms (r 0 to oo) in
F (1, V, W), with their appropriate coefficients, as in (78), (80); and in order to
make the expressions more symmetrical, it is convenient to change the values of Qi
slightly, by multiplying them by certain numerical factors (cf 26, 30). Thus
writing

1
1.3.5... (2r+3)r 1.3.5... (2s+ 3)s*

(125)

1

(126) X'
" . 1.3.5 ..(2r+5).1.3.5... (2s+5)’
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we have the following equations for AIX), in the two cases under consideration —

(127) st 10T @
135 (28+3)$A,,UA2 B0~ A s UAT—11A 1 2 181) MI2Z IAr—1.2/12(M28 D) ) >
(21mix)>*L

(128) | 575 (25+ 5)

Cfitn gjo Xr,{yr.]CL (nSi) + yr,2C12(r29,)}.

The corresponding values of AnQi in the two cases are obtainable from (127), (128)
by replacing the suffix 2 by 1 throughout. We will write (rgsj) and (r™j)

respectively for the values taken by b2(riSi) +bR(r31) and when the
distinction between the suffixes 2 and 1 in these expressions is abolished. In place of
Ju and y2 we now write \ and
B/f2 (m, n) become identical, and equal to
(129) mAK (x2y2

It is convenient to express bt~i) and cn ) in terms of
Kkn (ry) and @) by means of (115) and a similar equation for (ry). Whe
this is done it is found that the coefficient of vanishes for odd values of k, on

account of the factor (—I)* in b12(r&1) and cl12(r%:). The following are the results
thus obtained* —m

(130) bgsi) = @jHje<2n2r2 i BA(r+1,s)+BA )
FON P FEA BRML(rS)+ Ak+1B2r1  *)-Bx % XF2 &
(131) @(nsi) = «n2. _, (1) BA(r+2, 9+ BAr+l, 1)+Bx  +2)
+ar 'Ei;:'l B2A(r +1, s)+ B2A(T, S +1)
+ 4;'11 B2AN(r +1, S)+ B2A(r, s+1))—(B.

41229+ 2)(27;+1) jp+a/ \
+41 1(4& + 3) (4&+1) 45
(2&+1)2
(4&+3)(4&+1) (4&-f-1)(4&-1)
2&(2&—I1)  Tp-2/ \
(ar+ D) (anm)

+ 1) BA(r,

- quk%ti B2~ 1(r, s+ d x&/2dx, s)

4&F 1

* In these expressions $ku (Tny) is the equivalent, for an encounter between two molecules of the same
kind, of < (vn y)for molecules of different kinds. Thus (cf. 111)

Ha (th y)= 2 (2k+)

where the law connecting xn with pand Ca may differ from that for xi.- Also rn
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The term corresponding to k= 0 is absent in both the above cases, ¢
is itself zero, so that < (rny) is the function @na (rny) of lowest order = 2)in
bn(n-Si) or cn(tiSi). The upper limit of h in the case of bn (riSi) is equal to the

integral part of the lesser of the two quantities J (r+1) and i(s +1); this is denoted
by (r,s). Similarly the upper limit of k in the case of cn (nsi) is the integral part
of the lesser of the two quantities |r(r +2) and J(s +2), which we denote by [ ,s].
Thus, when r=0or s= 0, bn (?T$i) = 0.

We can now write down the complete expressions for AQ, in the two cases above,
as follows—

(132) (2hmiy+l
K * 1.3.5...(2s+3)sAU'01
R 18Ty. .
[P T{ oA —Ls—a[fir-1 {™ (n«l) +K{riSI)}
(2hmi)
(133) 1.3 5 1(2"+5)AUI2CI2S = CoCn~AX'rl[yril{cn(nSi) +yr,2c12(rx1)].

In the present paper we are concerned with the application of these formulae only
to simple gases, in which v2= 0 and hence fri2(?9Si) = ¥ = c12(r51) = c12('r2
It is convenient to write the reduced equations in the following form i—e

R N — 2AM)t 2 e - auC2<H) = | &8,
1.3.5... (2s+5)(s+ 1)y 1 dx r=oH
*H
(2hm) AUXZ = Cn 2
A135A 1.3.5...(2»+5)2x r=0

In (134) we have substituted r+ 1, s+1 for r, s in (132), multiplied by 3/v, and
used the notation given by

(136) brsee —BQXrsbn (r 1, +1);
\

the first term in (132), with factor /3_i, vanishes, since &n(0,s) = 0. Similarly in
(135) we have written 1

(137) crs - — cox'rten (n«i).

88. The Expressions for the Coefficients in the Velocity-

Distribution Functions.

88 (A) We have now obtained expressions for AQ, the rate of change of a function
of the molecular velocities due to encounters, in two different ways : in 83 AQ was
found from the equation of transfer, while in 84— it has been determined by direct
calculation. By comparison of (26) and (134)—substituting s'+1 for s in the former

—and of (30), (72) and (135), we deduce from these different expressions for AQ the
VOL. ccxvi.—a. 2 u
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following linear equations connecting the unknown coefficients in the velocity-
distribution function —

(138) ftft, — 1,

N
o

Q

(139) 2 Yrys

r=0
These are true for all values of s from 0 to oot the coefficients ft, and cmgbeing
completely determined, in terms of the molecular data, by (130), (I31),# and (136),
(137). If we assume that certain convergency conditions are satisfied (138) and (139)
lead (in the way usual in the case of afinite system of linear equations) to the following
expressions for ft and yr:—

(140) ft =V, (ft,)/V (ft,), = Vr (c,)/V (c,),

where V ( bri)md V (cr,) denote the infinite determinants formed from the arrays (ft

and (cr,), thus,

(141) V(&)= fto fto fto no V(€)= do M0 D "D
ftl ftl ft1 o ftl cn Oh A ca
A be ~2 fts R L d2 &2
N3 ft3  fts 33 A3 A13 0 A23 433

and Vr (ft,), Vr(cr,)) denote the determinants obtained by replacing each element of
column (?) in V (ft,) and V (c,) respectively by unity.

The General Expression for the Velocity Distribution Function.

88 (B) This completes our solution of the fundamental problem of this paper,
the determination of the velocity-distribution function for a “ nearly perfect ” simple
gas, composed of monatomic molecules of the most general type, and which is slightly
non-uniform as regards temperature and mass-velocity. The solution will be sum-

marized as follows (cf.(20), (73)):—
hm\ VW)
142) [/ (U, V,W
(142) 1/ ( )WY e
ANw 1/.,ST , ,,al , ...3T\ * (2

ft-iC*
1 B#T\U3s +VZy + WSz),?201.3.5...(2r+3)r

—CO@  JEnU2+ CAV2+ CBN2+ CBAW+ GWU-I-c1AUV)
’ (2 r.Cx
91.3.5... (2r+ 5)

* The suffix 1 throughout these equations may now be omitted.
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where cncl2 &c., are given by (72). The coefficients /3r and yr, forr = 0 to 00,
are given by (140), where f36), (137), (130), (131)),
(143) brs = 32BUAS] Je-(2%2) 2. GKBr+2, +1)+BA +1 +

+2y2 gxiB->(r+1,.+D)+ J|U B“»(r+l,.+ 1)

—B2Xr+1,s+1) x%2dx

rr [rs r
(144) crs= 72(5%;\',, e~k(>:<2{yz) 2 TKBA(r+2,5)+8BA(r+1, 1)

+V ||l 1 (B - (r+1,s)+B“+(r, s+ 1)

+aro1 (V7'V + 1)+ BZ(r,s - 1)) - (B2(r+1»)+ Ba(r,s+1))}

(2fc+1)2
(4&+ 3)(4&+I1) (4&+1) 1)

i 2fc@ZZ-—) A2/ \

+1) BA(r,

2 +1B“H(r,$)+ mf K—B21 *))jJ d* rf
(4&+1 ( ) 4&+1 )] y

where (c/1 (123))

(145)

and, by (ill),

(146) (X(2)= 2 (4&+1)z f {1—P 2(cos x)}i> dp,
where PA(cos x) is the usual Legendre’s coefficient, and x is a function ol and z

which depends (84 (D)) on the law of inter-action between two molecules at an

encounter. The factors \s and \'rs are defined by (125), (126), while the functions

BA(r, s), which are integral polynomials in X and «, with merely numerical coefficients,

are defined by (129) and (96). In the upper limit of I [r, s] denotes the integral

part of the lesser of the two quantities mpr+1, |-s+1.
The factors BQ CO are, as yet, arbitrary; we now assign to them the values

determined by the equations

(147) &0 — 1, Go— 1

This makes B0 and CO each equal to v'lmultiplied into a function of (2 i.e., of
2u 2
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the absolute temperature. The elements birs and
functions of the temperature only.
The coefficient f$ Xis not determined by the above equations, but is given (75)) by

(148) Sx= - 2 [a(r+ 1),
r=

Properties of the Determinants V (brs), V (c,,).

88 (C) On inspection of (143) and (144) it is evident that

(149) brs = bsr, Crs = csf,
so that V ( by and V (cr9are symmetrical determinants.

In expression (143) for brsithe variables of integration, X and v, «
so that (cf (129), (96)) rAk, SAkand B/:(r, s) are essentially p
integral values of r, s, and Jc; further, since P* (cos x) never exceeds unity, (ry) is

also always positive. It is evident, therefore, that brs must be essentially positive
if this can be proved true of

(150) B2(r+2, s+1)—2yBRr+1, 1)+ B2A(r+ 1,
Now
(151) B2dr+ 2, s+1)-yB2k(r+1l,s+1) ="A &K[r+2A %y 2r+1A K

"r+2 1
s+1jr &ty 2 (r+2)t(r+1) ok y_gmagags 11+ 1), (20+8) ok oy 2¢r+2-1)
S (i (t—2k)\ Y t=2k(t-\-A)t XY

K- 2 A A X 2y A2 (r +2—t) (t—2K) +t(r+%)}

every term of which is positive. Interchanging r and S in (151), and adding the result
to the latter, we obtain (150), which, with brs also, in consequence, is essentially
positive.

From (151), moreover, it is clear that the numerical coefficients in (151) or (150)
increase with r or s, and the same is readily seen to hold good also in the case of
B*(r,s). As r or sncreases, therefore, the numerical coefficients and the c
(in x and y) of the integrand of (143) increase, while if both r and s increase, new
positive terms are added to the integrand. Hence, provided that the functions
K (r  Yyatisfy certain simple conditions,* brs steadily increases with r or s, and the
consideration of even a single term of (151) or the integrand of (143) shows that this
increase is without limit, €. brstends steadily to infinity with r or

* |t is easy to see that the increase with y of p ki less rapid
or steadily increases, though less rapidly than y, brs will steadily increase with r or s. But much less
restrictive conditions might be devised, e.g., if p k (ty)decreases lik
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| have little doubt that, with rather more trouble, crscould be shown to share the
above properties of brsbut I have not made any serious attempt to prove th
the numerical calculations in 810 (A) it appears probable that the increase of  with
r, sis more rapid than that of brs,

Properties of the First Roiv or Column of V (brs) and V (cr).

§8 (D) The numerical values of brs and cIs obtained in §10 suggest that many
further general properties of these elements might be determined, with sufficient
trouble, and that the convergence of the determinants V ( ) and V (crs) might thus
be demonstrated. Owing to the considerable algebraic difficulties involved, however,
T have so far made little progress towards the proof of such properties, except for
the case when re s zero, gbr the elements o
V  (brsxnd V (crs). It will be shown that

(152) bro= bOr = ci0 = cor

for all values of r.
This will be proved as a particular case of the more general residt that

(152a) (s+ 1) brs(k) = crs(k) when the lesser of r and s is even, and = [r, s],

where brs (k),crs(k) denote the parts of brs and crs respectively which are due to a
particular value of k in (143), (144), while [r, 5] denotes the upper limit of k, as usual,

i.e., &= Jr+lor~-s + 1, whichever is the less. Thus if we suppose that S, and

that s is even, (152a) takes the form

(153) (s+D)6,»(|s+1) = c,(Is +1).
W hen s =0, this value of k is unity, and 5r0(l), cro(l), which usually form only
a part of bs crs, become the whole, so that (152) is the particular case of (153)

corresponding to this value of s.
Since B;i(r, S) is zero when either r or is less than k, some of the terms in

5rs("s+ 1), Crsd'S+ 1) vanish. In fact, as may readily be seen from (143), (144), we
have

(154) M l-s+1) = 32BOIXS jj e- (24N +2(t?) |B s+2(r+ 1, s+ 2)

+ 2AB*L(p+1, 4-1)| x32dx dy,

(155) cr,(is +1) =72CO/\,, jj e-(*3420s+2 b s+2 (r,2) +



Downloaded from https://royal societypublishing.org/ on 19 March 2024

316 DIl. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

From (96) it is easy to see that
(156) ‘A= (u k (~»
so that

(157) B*+2(r+1, s+2) + ?ittfVv B '"+1(r+1, s+ 1)

(st 2) oyl (r+Dt (r+ 2 )t—
(»+«. ¢, «=-»i (t+i), (*-«-1)! Vv

By putting r in place of (r+1) in (157), and adding {2 (s+ 2) 5)} times a
similar expression in which r, S replace r+1, s+ 1 in (157), we also have
(158) B -+ . +2)+4ixfW *(r, "+ + °)

_ (s+2) 41 M_ (r+])t8nn2
~ . (*+«

We now substitute the expressions on the left of (157) and (158) into (154) and
(155), and integrate with respect to X by means of the well-known formula
(159) 3‘0 e-"2+)dx  IV'2 +i)t;
we thus obtain the equations

(160) 6,(|s+1) = 2 (r+ ) (+f
J Is+ fo+2 <=«+! {t—S—L)\

(161) c,(is+1) = 18C,«rV,je~ ~ (T ¥(H sH ™I

or, changing the notation so as to make the lower limit of t zero, and inserting the
values of X3, \'saccording to (125), (126), i

2_(r+s+4) 2 “(r+5+4)
(162> A= (r+ D) (s+ D) (r+i)r+2(s+f)1+27  Xre= (r+f)r2(«+*)+
we have
(163) 6rs("s+ 1)
— O-(r+s+)T> \5 n L %t .
(s+1) (r+1) r2 {(s+ Drsgyzd M2z (r+l),y2 30

(164) cbgs+1)

= 9.2-(+CcomB " (s+2)! fenV+a(-") 2 1-,0,(r+ ) 2zr3-bay.
(r+ f)r+2 {(S+ f)s+2}' t=0
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The ratio of these two expressions is given by

B +1) . A
Crs(i5+ 1) + 1’

where A is a quantity independent of r and s. When s = 0, as we have seen,

and crs(is+ ) become identical with and crs respectively. Hence
N2 = A,
Cr0
and since BOand COhave been chosen so that = 1 c®= 1, the value of A must be
unity. Hence, when s is even and r = S,

(s+1) bs(*s+1) = crs(J-s+1),

with the consequence that
bro Go
as a special case.
It is convenient to introduce the notation

(165) fe-ve(r e dy - (m+]),

so that if Ex(ry)had the value unity, the value of would also be'unity, by
(159). In terms of this notation (163) and (164) may be written as follows :—

166
(166) S+ <0
*+2)1

(167) Crs(Js+1) = 9 .2~(4s45) C (+ r SCtK

( ) ( +5) qﬂT {(5+ f)5+2}2<:0 _ r—s—t, os-f!
By writing t= r— s—1'it is evident that
(168) 2 -0,K, ,u,H= 2r_ ,CKu.+.

(=0 t=0

By giving to r and s in (166), (167) the value zero, we have
(169) bm= ~|5B 0/7rK0%, Go = ACo”Kot,

whence, remembering that (cf. (147)) BOand CO are so defined as to make bMand c0
each equal to unity, we have

(170) F—=Iiyi Co= 25 g, -~ BO—ICO

ITVI
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We will substitute these values into (166), (167), and write 0, in order to obtain
expressions for brind ci0as follows —
(171) bﬂ) r ooy

where we have written

(172) K= 2~ri rCtKtil,
t=0
so that
(173) o=Kai = 2 6dy.

It is of interest to examine also the rth successive difference of brOor cr0, which we
shall denote by $J)Oor &cr0. We have

(174) ST (r) =f(r)-rC¥(r-1) +rCX(r-.

Then, from (172), it is easyto see that

k16 =2

2-'2 CtKu 2*(-2)V,C,
t=0 m=0

(-2)- 2 (-:InC K.,

since
m2_0(-2)V,C,, =(1-2)-"=(-1)-".
Hence
(175) YOYO= NYOQ0 = (—2) r(K) 1tg)0( N*rCjKtl.

Similarly the rth difference of
r—s
2 s 2 r_sC(KtiiiZsH,
t=o0

which is the part of 6rs(®,9+1) or crs(®s+ 1) which depends on r (s being even and
r S)is equal to

2. (-1)r ,CK,WI.
£ t—0

Symmetrical Expressions for 2 frand 2 yr.
r=0 r=0
88 (E) While V ( brand  V (crs) are symmetrical, the derived de
Vr ( by, Vr( cy are necessarily lacking in symmetry, and our expressions for /3r ar

when we attempt to make successive numerical approximations to their values
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for particular types of molecular models (cf. §10), appear not to converge at all
rapidly. Fortunately, in our applications of the velocity-distribution function to the
theory of viscosity and thermal conductivity, we need to know not the individual

values of the /3 and y’s, but only the sums 2
r=0

to determine symmetrical expressions which are found, in practice, to be highly
convergent.

f3r and ; yr; for these it is possible
r=0

In what follows we shall use the symbol placed before a function of the
integral variables IS(such as brsa crs) to deno
of this function, with respect to rmd s respectively. Thus
Lof(r,s) =/{r, s)-rfij'ir-1,,5)-...
4»/(**,s) =1f(r, s)-nG i f{ r ,s-1)5-2)-...
Lnf(r,s) = Sntf (s)-nC1S)a(r, 5-2)-...
=4 fi9-nCisf (r - 1 s)+,nC2",/(r-2,5)-...

When we substitute brs or crs for f(r, 5) in the above formal expressions, any term
with a negative suffix is to be omitted as being zero.

Since the value of a determinant is unaltered by subtracting from the elements ot
any one row or column the corresponding elements of any other row or column, and
since this process can be repeated indefinitely often, it is clear that from (141), by
subtracting the (5—I)th row from the sth, for all values of 5 from 1 onwards, we have#

(if6) V ( by — Vv {S0lbrs),V (crs) — V (<hi.crs).

The same process applied to Vr(6,s), Vr (crs)leads to de
V ( Sbrspnd V (SOcrs) respectively, save that in the rth column all the elements are

zero except the one in the first row, which is unity. Evidently, therefore, V., (

and Vr(crs) are the rth minors of determinants which are respectively identical with

V (SQbrs) and V (&Hlcrs), except that in each case all the elements of the first row have

the value unity. Consequently the sums 2 Vr( brsand 2 Vr(crs) are equal to the
r=0 r=0

sums of the minors of the two determinants just described, i.e,, they are equal to
these determinants themselves. Thus, by (140),

20 _Vv("yj - vag,c'
. "V (*,&,)* ot» 7r v (w
where we have
(178) Ue 1, ¢g=1, (5= 01000), b'r,=br, c', =0,, (s= Otoco, »== 1toco).
* When s =0, &1 should be replaced by S0

VOL. CCXVI.-——A. 2 X
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To the above determinants we now apply the same process of differencing by columns
which has already been applied by rows, and we thus obtain the equations

17 y o _ Y Vv . —YiMri)
(179) = v(ju by v Suc, )m
The determinants V (30 Db'rs)and V (Snbrs) are identical save in their firs

elements of the first row of the former are zero save the first, which is unity. Hence
V,(Snh'rs) is equal to the principal minor of V (Snbrs); we shall denote it by
V' (Snbr9Hence, and with a similar notation for the principal minor of V (Sncr),
we have*

y o _ iY~rs) y _ ($nCrs)
to7"  V(anc,,)

All these determinants have now regained a symmetrical form.

It is convenient, partly for the sake of elegance, and also because it imparts a
highly convergent form to the elements of our determinants (of. §10) to continue
this process of differencing still further, as follows. We repeat the whole of the
above operation of differencing by rows and columns an indefinite number of times,
beginning now at the second row and column (thus leaving unchanged the values
both of V and its principal minor), and afterwards successively at the next later row
and column than on the previous occasion. The general element thus becomes Srs
or 8rsand we have

£ « v'(U>J ) V' (S..C..)
(180) vV (S.b,.) 2 v (L)

where the dash (') denotes the principal minor of the corresponding determinant.
These expressions could, of course, have been obtained directly by a re-arrangement
of the original equations of transfer, but it seems preferable to use the latter in the
more simple, natural forms chosen, and to make this transformation by differencing
in relation to the determinants formed by the elements brs, crs

89. Consideration of Particular Molecular Models.

89 (A) While, as we have seen, certain general properties of the elements brs crscan
be demonstrated without the assumption of any property of the molecules save
spherical symmetry, it is possible to carry our investigations much further when we
represent the molecules by particular models of simple type, such as point centres of
force, or rigid elastic spheres. This involves, primarily, the examination of the

functions (X« y).

* When r or § zero, the corresponding suffix of <t should also be written as zero.
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Molecules which are Point Centres of Force varying as r~n

§9 (B) When the molecules are point centres of force varying inversely as the nth
power of the distance, the angle x in the expression (146)—cCf § 4 (D)—-is given by
the following integral* —

(181) X=2£[1
Here 10 is the least positive root of the equation [|— 0, and a is a
multiple of pthus,
2_
(182) 7—1

p[k») Cr” -

where K is a constant which measures the intensity of force between two molecules
at unit distance. Hence (cf (ill))

(183) X (ry) = 2 (4&+1) lcbl ™ |o

I y2s ()
YKiohmy 9

where MKis a constant depending on N and K but not on y or h . not on the
absolute temperature).

When this value of (fk (ry) s substituted in our expressions for

becomes possible to execute the integration with respect both to X and to Y in terms
of gamma-functions. Thus (Cf (165))

(184) J1‘0 e (ry) dy = (»+]), K,,_iU

7n—5

>T(m+2- 711/

so that
7n—5
(185) =N =a”'-a (-L) r(4_
* Cf. 814, p. 454, of my former memoir, ‘Phil. Trans.,” A, vol. 211 (1911). The Vo of the formula
there given is the relative velocity of two molecules, which in our notation is = 2CKwhen the
gas is simple.

2 X2
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and t+3e
(186) "1 Ko

(" +)t

Hence the values assumed by BO and CO in this special case are as follows
(170), 88 (D )):-

/ \ - o1

(187) B, 3 (2/7m)aw a _ 375  (2/2m)fki
; 8 AA . r(4-_2
Wt (4- 52,

From (186) we have

br0 — Go — Kr/KD — 2 rtZ_OrGthI/K 01

. ga3— 2
2r2H n—1

t=0G  (*+ N«
2~rF (— 4 u

( B >\5e 11>

in the notation of the hypergeometric function. It may hence be shown, without
much difficulty, that (if n > 5) brand crt steadily increas

71—5

rate of increase being comparable with that of rn~l.

Since the functions (@k(ry) all depend on h in the same way, it is clear that, with
the above values of B0 and CQ the elements brsand crs and consequently, also, the
coefficients /3r and yr in the velocity-distribution function for molecules of this type,
are independent of h, i.e., they are independent of temperature. They are, indeed,
pure numbers, depending only on the molecular mass and on the force constant of the
molecules.

It is of interest to determine the value of the elements Srbr0 (or Si(cr() of the outer
row or column of V (Sribrs), in this special case. We have, by (175),

W= (-2)"" 2 (-1)',C K tl/Kqp

t+3m 2 =

(L2)--2 (_i)<ty

=(— F(4

in the notation of hypergeometric functions, or, in terms of gamma-functions,

+ JR—
r(l)rr o 1 f+7l_l/

(188)  <y>0= = (-2)- | S
r(r+|)r\§]’\_{—|
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As r tends to infinity, the last expression tends to zero more quickly that

o~

5

and also it is alternately of positive and negative sign, after the first two terms
(both SWbr0and ~BDbeing positive).

MaxwellianMolecules 5.

89 (C) It is now easy to see what are the special properties of the fifth-power law
{n= 5), the law obeyed by the molecules which we term Maxwellian, which enabled
Maxwell to work out the theory on this hypothesis with such great simplicity and
accuracy. When n = 5, we have from (186)

(189) K,1= 51

which is independent of t. Hence, by (170), (171), (172),

(190) K (1—KO0x= gAj, . N‘OZZ 2 rCfKti —2 rKo,i2 rGt= K01=
t= t=

(191) = 3r0c,, =(-2)- 20(-I)'rC, = (—=2)-r(l—l)r=10, (r>0);
t=

(192) BO—f- (A% \ CO0—25 (r:a)) |

From (191) and the equation b= c®= 1 we deduce that in this case the principal
minors of V (SrsbrX) and V (tirscrs) are equal to these determinants themselves, I.e.,

(193) 2 A =1, 7r (Maxwellian molecules),

0 r—o0

while from- (190) it appears that all the elements of the first row and column of
V ( brssnd V (crs) are unity. Hence in Vr( and Vr(crs) the first column and
column (r) are identical, so that we have

(194) V.,(6,) = 0, v, (c,,) = 0, r> o0

(Maxwellian molecules),
(195) v, (b,,) =V (briy,, =V (c,)
whence also, by (140), we have

(196) 0=1, y0= 1, fir=yr=6, > 0) (Maxwellian molecules),
and also, by (148),

(197) 8 x —0= —1 (M
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In the case of molecules which obey the fifth-power law, therefore, the velocity
distribution function has the simple finite form (142))

(298) /(u,v,w)=
[1-(,sAD-1{ ¥ A (u |l +V<|+wA”)(-1+ i2AmC)

+f B1U2+ c2V2+ cBNV2+ 2 cBVW + 2c3WU + 2c12U V)|J

(Maxwellian molecules),

where C2= U2+ V2+ W2 cn, Ccr2&c., are given by (72), and (183))
(199) BAj .= 10 (J-K ] m)P {1—Pz(co§x)} = AN(Km)R[ sin2y .¢
o o
o
Maxwell* calculated the value of the integral ] sin2x ea da, the forces being
o

repulsive, by numerical quadrature, and found that

poo

T  sin2x ea-da = 1'3682,
Jo
so that, for repulsive forces proportional to the inverse fifth power of the distance
(200) ,AX= — 1-3682 (Km)'E
VA S

where Km2is the force between two molecules at unit distance.

Molecules which are Rigid Elastic Spheres.

§9 (D) We next consider molecules which behave at encounter like rigid elastic
spheres of radius < This particular molecular model has been more used than any
other, in researches on the kinetic theory, on account of its simplicity and concreteness,
which aid the imagination in following or constructing “ descriptive ” theories of
gaseous phenomena. As regards the analytical development of the theory, also, it is
probably the simplest case after that of Maxwellian molecules. The difference
between the two models in this respect is, however, enormous, the rigid elastic
spherical molecule requiring the infinity of terms /3, yr in the velocity-distribution
function, just as in the case of the most general molecular model. The comparative
simplicity of the present model lies in the moderately tractable expressions for brs, crs
to which it leads. Apart from the methods of the present and my former paper,

Fo

* Maxwell, ‘Collected Papers,’ii, p. 42. His constant A2equals it sin2x e¢ada in our notation.
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however, it has not been found possible in the past to obtain any close numerical
accuracy in calculations based on this molecular model, the errors resulting in previous
theories (although these have been carefully constructed and closely scrutinized)
ranging from 10 to 50 per cent. (cf 811 (F)).

It is readily seen# that in the present case

(201) y=0 (£>>2<r) sinJx="/20- (p=2a)
so that
p dp = 202sin Jy cos |-y <X—02sin XX = Cos Y.

As p ranges from 0 to 2y ranges from 0 to 27r, and —cosy from —

Hence (cf.(ill))
(202) 0Mrr) = 2(4E+1)(V 2] M1-P2A(cosy)}d cosy

= 4 (4&+1) a2(2 hm)~

since j PA (f) dp.= 0. Hence K (ry)depends

factor (4&+1), and the present case is, analytically, the same as that considered in
§8 (B) if we write (cf (183))
‘o

(203) y—j =1, or n =oo, and nAA= 4 (4&+

We may therefore quote from the formulm of §8 (B) as follows without further
discussion —

(204) i f'2(m+JI)nKm25* = 2 (4&+ 1) 02 (m+

= 2(4&+1) (m+ 1)'a2(

(205) Ko — Ko,i = 647t_ 32kl = KOl (t+3)7(t +-2x
(206) Po=fie® —ip2 > "™ Pugy 22 )"
(207) =Aap=2- 2 3 =:%t'!F(c+fh4’ -1),
15
(208) ~ " = (—2)~r~ = ~(~iY(2r_ 1} (2r+1)(2r+3)(2r+5)+

As in the case of molecules which are point centres of force varying inversely as

* Cf813, p. 453, of my former paper, ‘Phil. Trans.,” A, 211 (1911).
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the nhower of the distance, the elements and crs, and the coefficients /f3r and
are pure numbers, independent of the temperature (i.e., of

Molecules which are Rigid Elastic Spheres which Exert Attractive Forces.

89 (E) Experiments on the phenomena of actual gases, as, for example, on the
variation of viscosity with temperature, indicate that none of the molecular models
so far discussed in this chapter gives a really adequate representation of these
phenomena. The best of all the simple models which have been used in the Kkinetic
theory seems to be that considered by van der Waals and Sutherland, Vviz., a
rigid elastic sphere surrounded by a weak field of attractive force. This agrees with
the known fact of slight cohesion in gases. The effect ofthis field of force on the velocity-
distribution function, or on viscosity and thermal conductivity, may be referred
mainly to the deflections of molecular paths for which it is responsible ,
through the collisions which it induces between molecules which would otherwise
pass one another without mutual inter-action, rather than to its direct effect in the
absence of collisions. The latter effect will be expressly neglected in our calculations,
which will therefore be inapplicable to vapours in which the cohesion is large enough
to render this neglect invalid.

A detailed account of the dynamics of collisions in these circumstances is given in
815 of my former paper, from which the following results are quoted. If the potential
of the force between two molecules in contact be denoted by 2 (reckoning this
potential as zero when the separation is infinite), the condition that a collision may
take place is

(209) p < p0 where = 2<(1+

(since the relative velocity, in my former paper written V(Q is here denoted by 2CR.
The angle y corresponding to such a collision is given by

(210) smix=PIPo-

The angle y corresponding to larger values of p, which do not correspond to actual
collisions, is given by (181) if the molecular forces obey the nih power law, but we
will here make no assumption on this point, as the deflections produced by the inter-
molecular forces alone will be rejected after equation (211). Consequently

(211)  EK{ry) = 2(4&+D)<r2(l + &T4CRYC K+ 2 (4& +1)CK{ {1-P 2 (cosy)}
= 4 (4&+1) a2 Zhm)~B o + @)

by analogy with (202) and (183). The latter term represents the negligible
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deflecting effect of the forces alone, as above mentioned, and it will be omitted
henceforward. Hence, corresponding to the equation (204) of §9 (D), we have

(212) 2(4* + 1) r3(2Am)-, T (< +2)(I+
=2 (ik+1) (t+ 1)! «3(2 (1+
where we have written
Janr
~12R *
Similarly we have
(214) . K= K®=64"-V(2M-[HI+ y )’
(215) K11= 64T-V (2 M -v.(g|(l +-1-3S))
M 225 @2hm» 1 p _ 2a” 1
0 25 uvV v 1+S/T°’ 0 64 xVr 1+S/T*

It will be seen later that S is the well-known “Sutherland’s constant” (8§11 (F)).

810. Numerical Calculations for Particular Molecular Models.
Rigid Elastic Spheres.

810 (A) In the last section we determined the complete expression for the velocity-
distribution function for a gas composed of Maxwellian molecules. In the other cases
there considered we must be content to make numerical approximations, which can,
of course, be carried to any desired degree of accuracy. We shall consider in most
detail the case of rigid elastic spherical molecules, for which we shall calculate
hrsand crsfor 0 = r=3, 0= s= 3. These are chosen fo
because of their simplicity, and partly as representing the limit between which, and
the case of Maxwellian molecules, the molecules of actual gases appear to lie.
In making such numerical approximations the following table of expanded formulae
for B* (r,s) is useful:—

Table |.—Expressions for B* (r, s).
B°(0,0)0 = 1 BHBI) =f yB(2,2) = B3(3,3) = « B<(4,4) =
B° (1, 0) = X% B1(2, 1) = |
B3(4,3) = ff XY (X 2+yB*(5,4
. B°(2,0) = x4+ JWx¥2+y4 B1(3, 1) = 2 (x*+18

B2(4, 2) = M-x2'2(x4+h"xTy2+ y4)

B° (3, 0) = X6+ 7xdy2+ Txy4+ 2 Bl(4, 1) = f (X6+x h f+2\x¥i+y*)

B2(5, 2) = X 32(XQ+ ~j-xdy 2+ -x3 4+ if).
VOL. CCXVI.-—A. 2 VY
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It is wuseful also to recall that
r< kor s< k.

By using these formulae in connection with (143), (144), (147) and (204)-(208) the
elements brs, cs have been calculated,# as above mentioned, and are given
following expressions —

BA(r, s) = BA(s, r), and that BA(, 0 if

Downloaded from https://royal societypublishing.org/ on 19 March 2024

15 41 741
217 V bro)4
(217) (brs) 2.7 2232 237.11 v
15 269 5993 7571
2.7 2272 233272 243.7.11
41 5993 152537 1517873
28 23272 243472 25337211
741 7571 1517873 50375871
237.11 243.7.11 25337211 263372112 * ¢
15 41 741
218 V(c,, +
( ) (€.) 2.7 2232 237.11
15 877 6893 3889
2.7 223.72 233272 243211
41 6893 193329 6202777f
2232 233272 243472 23347211
741 3889 6202777f 225937695
237.11 243211 253347211 2347211 2
or, writing out the elements in decimals to six places,
(219) v(6,) = 1-000,000 * 1-071,429 1-138,889 1-202,922
1-071,429 1*372,449 1-698,696 2-048,431
1*138,889 1-698,696 2-402,006 3-259,364
1*202,922 2-048,431 3-259,364 4-916,968
V(c,) = 1-000,000 1-071,429 1-138,889 1-202,922
1-071,429 1*491,497 1-953,798 2-455,177
1-138,889 1-953,798 3*044,359 4-439,790
1*202,922 2-455,177 4*439,790 7*350,929

* A considerable part of the computations of §10(A) have been made by Mr. J. Marsnhar1, Scholar
of Trinity College, Cambridge, who has thus been of much assistance in bringing the results into a

useful form.
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As explained in 88 (E), however, the determinants V (Srsrs) and V (S,,c,,) derived
from the above by successive differencing are much more useful and suitable for
numerical calculation.* They may conveniently be written as follows, where the
factor above each column or before each row is to be multiplied into all the elements
of that column or row as written ( g.the right-hand element on
V ( S9pis equal to —59 . {23.7.11.2.7}-1) :—
1 (2.7)-1  (2821)"x (233.7.11)-1

(221) v
1 1 1 -1 1
(2.7)-1 1 45 103 59
(2827)-1 -1 103 5657 6783
(223.7.11)-1 1 -59 6783 149749

1 @n"1  @37)'1 (238.7.11)"1

(222) \%
1 1 1 -1 1
(2.7)"1 1 205 * 163 o o
2xz21) 1 - -1 163 11889 16798%
(238.7.11)-1 1 -£81 16798f 329573-|x o

As we are throughout concerned with ratios of determinants, the above fractional
expressions for the elements, from which the column-factors or row-factors can for
many purposes be omitted, are the most suitable for calculation. The following
£ values of the elements in decimal notation (to six places) are of interest, however, as

/Iroyal societypublishing.org/ on 19 March 2024

tps

gshowing the relativeemagnitudes of the various terms :—

B223) v (w = 1*000,000 0*071,429 -0-003,968 0*000,541
E 0*071,429 0%229,592 0-029,195 -0*002,280
[

3 -0*003,968 0*029,195 0*089,081 0*014,565
a)

0*000,541  -0*002,280 0*014,565 0*043,849

(224) VvV (frci=" 1-000,000 0*%071,429 -0*003,968 0*000,541
0-071,429 0*348,639 0-046,202 -0*003,698
-0-003,968 0%046,202 0*187,216 0%036,072
0*000,541  -0*003,698 0%036,072 0-096,504

* This process of differencing renders the determinants much more convergent in appearance (cf. (219)
and (220) with (223) and (224), without really altering in the least their value or the value of any of the
partial determinants formed by the first n rows and columns.

2Y 2
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By taking-these determinants with one, two, three, and four columns we get
successive approximations to V, V' ( 88 (E)), and to the ¢
as follows—

Table Il.—Rigid Elastic Spheres.

\ (brt). V (prsy- yR 'V (Srsbrs) 2 V' (8rr)

p rv(U.)* V (@rsor) !
1st approximation 1*000,00 1*000,00 1*000,000 1*000,000
2nd ” 0%224,49 0*343,54 1*022,727 1*014,851
3rd 0*019,13 0*062,15 1*024,818 1*015,879
4th ” 0*000,79 0*005,54 1*025,134 1*016,065

The determinants V (Srrs), V (Qers) are obviously much more convergent in form
than V (br), V (crs). Table Il. shows that in each case these determinants converge
rapidly to the value zero, but that the principal minors of the former determinants
converge also to the samp value in nearly constant ratios. These ratios, the
successive approximations to which are given in the two last columns of Table II.,
are the quantities 2/3r and 2yr which we require; they evidently converge rapidly,
the successive differences being as follows —

Table IlIl.—Rigid Elastic Spheres.
2/7r. Differences. Differences.

1st approximation 1*000,00 1*000,00
2273 1485

2nd ” 1*022,73 1*014,85
209 103

3rd 1*024,82 1*015,88
31 29

4th 1*025,13 1*016,07

We may therefore conclude that, within a small fraction per cent., 2/3r and 2yr
have the following values for rigid elastic spheres:—

(225) £& = 1*026, £yr = 1*016, £/3r/£yr = 1*010.
0 0 0 0
It should be noticed that even the second approximations to these quantities give

results which are very nearly accurate, owing to the rapid diminution of the successive
differences.
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While we may thus obtain a close approximation to the values of the series 20r
and 2yr with little difficulty, the approximations to the values of the individual
coefficients 0 and y converge by no means quickly, as the following table

shows:—

00
01
02

70
7i
72

Table |IV.—Rigid Elastic Spheres.

1st approximation. .2nd approximation.  3rd approximation.  4th approximation.

1-000,0 1-340,9 1-520,2 1-623,0
_ - 0-318,2 -0-652,1 -0-943,2
- - 0-156,7 0-432,8
- — - -0-087,5
1-000,0 1-222,8 1-309,4 1-366,3
- -0-207,9 -0-368,8 -0-526,3
- - 0-075,4 0-221,8
— - — -0-045,7

Evidently the 0’s and y’s alternate in sign, and successive terms do not seem to
diminish quickly, at any rate near the beginning. To obtain an accurate estimate
of the real values of these coefficients it is clearly necessary to carry the approxi-
mation much further than we have done, but for our purpose this is not required.

Molecules which are Point Centres of Force varying asr n

810 (B) The next simplest case, analytically, to that which has just been discussed
is the case of molecules which are point centres of force varying inversely as the
nth power of the distance. By comparison of (186) and (205), in conjunction with
the general expressions for hrs and cp it is easy to see tha

the values of hrisor crs in the two cases consists of a power series in " ! N the constant

term of which is zero, while the term of highest order is ) _(4s). Numerically
the difference is small, as may easily be verified in any particular case; it appears
to be of constant sign, hrsand crsbeing greatest for molecules which are rigid elastic

spheres.
similar in
instance.

The behaviour of the determinants vV ( ), V (crs) or V (Srsbrs), V ($rscrs) is
the two cases, the convergence being slightly the more rapid in the present
Since for rigid elastic spheres the second approximation to 20r and 2yr

proved so satisfactory, we shall be content with a second approximation only, for

molecules

which are point centres of force ; this very materially lightens the labour
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of numerical calculation. The following are the expressions found for the deter-
minants V (Srrs), V (5,,c,,) as far as regards the first four elements . —

(226) V(S8J=,) = 1 J+ |—\
114 —2tn-1)S
7 2 [45 4 4 1
114 2 (w-T)J 1196 49(n-1) +49(n-1)2 *

V(.0 = i 21

11— tw—h)J * ok
[1 7 1 At i1
114 2 (n—1)j 49 (n—l) 49(n-Hh2yg ' =

When n is made infinite these become identical with (221), (222); it is interesting
to notice that the additional terms are the same in the two determinants, though
whether this is true for other values of r and 5 is not clear.

The first approximations to 2/3,., 2yr are, of course, unity; the second are found
to be approximately as follows

, 16 ,_ 48 n—=2
(227) 45 ) 45 i)2 X, 205 295(n-1)2
44 2 1 =202 "~jg.J L ‘'
11  n1 101 1
From 89 (C), (196), we know that when = 5 the values of %/3r and gyr are

unity, and this is also true of any approximation to their values made in the present
manner. From 810 (A), however, we know that for oo the second approxi-
mations are slightly too small, by 0'003 and O'OOl very nearly. In the following
table, therefore, which gives the approximate values of 2/3r and 2yr for various

values of nting between 5 and oo, the results obtained from (227) have be

increased by O'OO0I, 0'002, or 0'003, as seemed most appropriate in each case.

Table Y.— Molecules which are Point Centres of Force varying as r n

Maxwell’s ft = GO,

case, n=29 n = 15. P rigid elastic
n=>5 spheres.
(08}
%ft. 1 1-007 1-013 1-018 1-026
ocEE%yr 1 1-004 1-007 1-011 1-016

00 00
8CEE%f3r/20yr 1 1-003 1-006 1-007 1-010
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Rigid Elastic Attracting Spherical Molecules.

810 (C) Considering next the case of rigid elastic spherical molecules which exert
attractive forces, as in 89 (E), we shall neglect the effect of the attractions in
producing deflections without actual collisions, and, as in 8§10 (B), we shall content
ourselves with a second approximation to 2/3r and 2yr. The difference between this

case and that of rigid elastic spheres without attraction is small. The expressions
for V (Srbrs) V ( Srcy, as far as regards the first four elements, are as follows —
(228) V ($3>rs) = 1-S/T1
I+S/Tj
'IJAI_S/TI 45 1+ |S/T\
I+S/Tj 19S T+S/T]J
v = 1 fi i-srn

t14 1+S/T1 o

i 1-S/T) 205 1+ M sS/T|
14 1+S/TJ 588 |+S/T /

When S = 0, i.e.,, when there is no attraction, these reduce to (221), (223).
The second approximations to 2/3,. and 2yr are hence found to be as follows —

(229) Z/3r = 45 (i +|S/T)-0 -s/1? (1+S/T)"1”" aPProxImately

(230) 2y, = 205 (1 +fg8§S/T)-3 (T—S/T)a(l + S/T)-* > aPProxImately-

Since S/T is never negative, it is clear from (229), (230) that the second approxi-
mations to 2/3r and 2yr are never less than wunity. Their values, without any
estimated correction for the error of approximation, are given in the following table,
for various values of S/T. The correction as estimated is appended as a suffix, and
is to be added to the last digit of the corresponding number.

Table YI.—Bigid Elastic Attracting Spherical Molecules.

Low temperatures. Moderate temperatures. High temperatures.

S . 5, 4, 3 2 1 0-7. 04  0-2. o-i 0.

1
0]
%J8r 1-038 1-015., 1-0122 1-008i |I-0040 1 1-0010 [-005i 1-0112 1-0162 1-0233

5= 1-016 1-009! 1-007! 1-005i 1-0020 1 1-0010 1-0040 1-009i 1-013i 1-015i
Y

. i
8a=|)08|1%y, >w  |-006i 1-005x [-0030 1%0020 1 |-O0Co0 I-001i 1002i 1003i 10082

[3=Y
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In the case of the actual gases for which S has been determined, it has an extreme
range from about 50 to 250, while the range of absolute temperature over which
experiments are usually made is from about 50° C. to 500° C. Thus the limits 5 and £
are rather extreme values of S/T, but from the above table it appears that the variation
in 2/3r, 2yror their quotient hardly exceeds 1 per cent, over this range. The variation
is especially slow in the neighbourhood of S/T = 1

811. Viscosity and Thermal Conduction.

We now proceed to apply the expression for the velocity-distribution function
(8 8 (B)) to the determination of the coefficients of viscosity and thermal conduction.
We shall first obtain general formulae for these coefficients, true for any monatomic
gas, afterwards considering special molecular models in conjunction with the results

of § 9, 10.

TheCoefficient of Viscosity.
811 (A) The system of pressures at any point of a gas is given by the equation
(231) P, = P\i\ P,y= puv, &c.
By means of (5) and the velocity-distribution function (142), we find that

(232) P. =p\f = BP~C7Y,

2 hm15

(233) p* = -8
Since, by (74),

Cn + C22+ C33 = o,

we have

(234) PA+Pyy+ P = 3 =

p being the hydrostatic pressure as usually defined.
By comparing (232), (233) with the equations giving the system of pressures in a
viscous fluid having a coefficient of viscosity /* viz., with

(235) P,

i, f. (27 -M-§) >
= fyucn .

(236) Ws=- A~ +7) =-yCa
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(remembering the meaning of cn, c12 &c., as defined in (72)), it appears that the two
are identical if we write

(237)

Hence, according to the kinetic theory, a gas behaves like an ordinary viscous
fluid having a coefficient of viscosity defined in terms of the molecular data by (237).
By (170), (173) we have

(238) C,= — ,
m
whence, also,
5
239 .
(239) 2 JKO
As we have seen in 88 (B), 0 Kand 2yr are functions of the temper
and v does not appear at all in the formula for u Hence, within the limits of
applicability of our theory (cf82), the coefficient of viscosity of a gas |

of its density, varying only with the temperature. The law of this variation depends

on the law of inter-action between two molecules at encounter, this being involved
through Bk (¥ As this function has remained unspecified, the expression in (237)
is perfectly general and valid for any nearly perfect monatomic gas.

TheEquation of Energy for a Simple Monatomic Gas.

811 (B) In the discussion of the equation of transfer in 83, we consistently neglected
such second order quantities as products of differentials, or differentials of small
guantities like UV, C2—3U2 and so on. In this way we have obtained an expression
for the velocity-distribution function which is correct to the first order. By means
of this function we can now determine the values of UV, C2—3U2 UC2 and similar
nexpressions which are of the first order of small quantities, and by substitution in the
equation of transfer obtain this in a form accurate to the second order. This we shall
do for the special case Q = (w)2+ (v)3+ (w)2 in order to get a second approximation to
the equation of energy.

Downloaded from https://royal societypublishing.org/ on 19 March 2024

From the velocity-distribution function, using the formula (237) for the coefficient
of viscosity, we have

(240) c2= 3{km)-1=
(241) 3us—c2=—2 Up) (2" oy - A
(242) OV=-("I"K & +7) -

VOL. OCXVI.—A. 2 7



Downloaded from https://royal societypublishing.org/ on 19 March 2024

336 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

In finding I)C3it is convenient to write

(243) | =" Pr/*Vr
and to recall (cf. (170)) that

(244) * BO= fCQ

Thus we have

(245) r-1
- _fB, (2hm) g/l Wit 0T
” p m )
where we have eliminated /3_xby means of (148).
Again, if Q = (w)2+ (t)2+ (W)2 we have
Q u 4-v 2+ w 2 2 (WOU + Vdvi+ wOwW) + C2

Q u 2+v 2+ w2+ Cjq
W Q uO(u@+v 2+w 2 +ulC2+ 2 (uoU2+ vOUV + wOUW) + UO2

3Q
d(u)
Hence, putting uG vO= w0=0 except in differential coeffic
1 =31fe) =271
_o RVT / du"0% +O§/\B, 0T
m \dx m dx

SE(Pu) Q)= *2(c2+2U3"+2U v s +2aw [+) +sA(,UC2

£ o . BANO dvo 0 A
W2ifC2"  +f3U2C %Em + 20v A0+ 2Dw +2 - (uc)

dx

¢ Ri/T /OWO, 0VO,
5Arla”r +/ + 7

M (§)t (28 ]SS tH )] 2t
m 2% \d w)

Also, since no energy is gained or lost in molecular encounters,

AQ’= 0.
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The equation of transfer becomes, consequently, after a little reduction,

2 rp/970 . 970 , 07O

(246) 8 a)7 ai
i duQ 4 (2 Y _2 (3w + checo
+tr7 dx orc/ 0z 37/

which is the equation of energy.

TheThermal Conductivity of a Gas.

811 (C) In the equation of energy which we have just obtained, the second term
on the right-hand side represents the change of heat per unit volume due to the
variation in density at the point considered, while the third term may be proved
equal to the heat produced by internal friction. The first term, by comparison with
Fourier’s equation of conduction of heat (3- being the thermal conductivity and C,, the
specific heat at constant volume), i.e.,with

is seen to represent the change of heat by conduction, and to indicate that the
coefficient of thermal conductivity of a gas is given by

(247) & =/mC.

The value of f in this well-known formula is, for a general monatomic gas, given by
(243), i.e.,

248 /= fE/3r/Eyr.
(248) ISHA
In general fs a function of the temperature only.

Formulasfor /x and 3 for Particular Molecular Models.

8§11 (D) By substitution of the values of COand 2/3r/2yr given in 89, 10, for the
particular molecular models there discussed, we obtain the following special cases of
(237) and (248)

(249) Bigid elastic spheres,

5m /1t -

M= 1-016
47T  \m

f= |. 1-010 = 2’525,

(250) Attracting spheres,

5 /1 Y12 1
(I +e) 647Tm(t ST J —2(1+<ap

22 2
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(251) Centres of force r n,

n+3
@+0 om 20 g (i
BAAIr(4-_A)

In these formulae ea and ¢c denote the values of 20yr in the cases respectively when

the molecules are attracting spheres and centres of force, and Saand Scsimilarly denote
2/3W2yr; their values are given in Tables Y. and VI., and in no case differ from
unity by more than two per cent.

The mode of variation of nwith the temperature affords a guide to the law of inter-
action between the molecules of actual gases. By comparison with experimental
determinations of n at various temperatures it is thus found that of the above models
the one which most closely represents the behaviour of actual molecules in this respect,
at ordinary temperatures, is the second, i.e., a rigid elastic attracting sphere.*

Comparison of the presentformulaefor &x and Swith those
811 (E) The general formulae (237) and (248) for viscosity and thermal conductivity

agree with those of my former paper,! except that the factors %/3r and g/3dozyrwere
there omitted. This was in consequence of the assumption on which the analysis of
that investigation was based, that F (U, V, W) is sufficiently represented by the
terms of the first three degrees in U, V, W. We have seen in 89 (C) that this is true
for a gas composed of Maxwellian molecules, but not otherwise. It seems of interest
to consider why the neglect of all the coefficients /3r, yrafter r = 0 led to results of
such accuracy; for the errors arising from the assumption are represented in the
special cases (249)-(251) of (237) and (248) by the factors 1*016, 1*010, | +ea, | + &,
l+ec 1+ Ssothat the necessary corrections to my previous formulae do not exceed or
or two per cent. Enskog, on the other hand, after deducing formulae similar to (237),
(248), but without evaluating the coefficients (3, yr, made a first approximation by
neglect of all these coefficients after r =0, and arriv
elastic spheres.J This was due to the fact that such a use of (237), (248), as they
stand, involves not only the neglect of all the coefficients afterr 0, but also requires an
assumption as to the values of /) yOthemselves, as, for instance, that they are approxi-
mately the same as for Maxwellian molecules ; a comparison of (196) with Table 1Y.
(p. 331) will show that this is far from being the case.

It may readily be seen, however, that the method of my former paper required no

* At very low temperatures, however, the nth power centre of force is the molecular model which gives
by far the best representation of the relation between p. and T, in the case of helium; cf. Kamertingii
Onnes and Sophus Weber, “Comm. Phys. Lab. Leyden,” 134b, p. 18, or seans’ “Dynamical Theory
of Gases,” 2nd ed., 8405, 407.

t Chapman, ‘Phil. Trans.,” A, vol. 211, p. 433, et S

Xenskog, ‘Phys. Zeit.,” XII., p. 58, 1911.
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hypothesis as to the values of /30, y0, which were determined from AUC2and AU2as in
this paper ; in effect, the later coefficients were neglected, while yd and yOwere obtained
from the equations (138), (139) corresponding to s = 0. Viewed otherwise, my

previous formulae were equivalent to (237), (248) divided respectively by 20v,.yriv0

and ZKrl3r/ZicryrThus the neglected factors in fland f were
m  E£*ryr
$— and %,
ZKryr Zyr ZKfir
0 0 0

which evidently reduce to unity if we neglect all the /30and y*, after r = 0, without
any assumption as to the values of /0and yoQ

One of the main results of the former paper was that f for all monatomic gases,
and not only for those composed of Maxwellian molecules. This is now seen to require
modification, but the values here found for in the special cases which have been
considered in 89, 10 show that the correction needed to make the equation accurate
is very small; it appears probable that for all likely molecular models f is very
slightly greater than 2'5, and that it is nearly but not quite constant with change
of temperature (except when the molecules are elastic spheres or centres of force
proportional to r~n).

rison of the Formuleefor mand S with the Results of other Theories.

811 (F) The only kinetic theory of viscosity and thermal conductivity which could
hitherto lay claim to numerical accuracy (within the limits imposed by the initial
postulates) is Maxwell’s theory* of a gas composed of molecules of the kind dealt
with in 89 (C). The results of his theory are special cases of the general formulas of
this paper.

The theory of a gas composed of molecules which are point centres of force varying
inversely as the nth power of the distance had not been discussed in detail, previous
to my own former paper. Rayleigh,f however, from considerations of dimensions
alone, had deduced the law of variation of viscosity with temperature, and the same
argument would also show that for such a gasf is an absolute constant (for any given
value of n). Nothing was known as to the value of this constant, or of the numerical
coefficient in the expression for fuand it is a surprising resul
have been guessed d pthat as n ranges from 5to oo the value off should \
only from 2*500 to 2*525 approximately.

The theory for molecules which are rigid elastic spheres exerting attractive forces
was equally undeveloped. SutherlandlJ had taken an important step, however, in

* Maxwell, ‘Collected Papers,”’ vol. Il., p. 23.

t Rayleigh, ‘Roy. Soc. Proc.,” vol. G p. 68, 1900.
t Sutherland, ‘ Phil. Mag.,1 (5), 31, 1893.



Downloaded from https://royal societypublishing.org/ on 19 March 2024

340 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES,

deducing the correction to the law connecting and T( C ccT@ for molecules
which are rigid elastic spheres without attraction ; he showed, without attempting
numerical accuracy, but by a method which is correct in its main outlines, that the
attractive forces necessitate an additional factor (|+S/T)-l as in (249). The law
pocT/JI +S/T)-1 is more successful than any other in representing the observed

relation between p and Tover a considerable range of temperature, and SiS(

known as Sutherland’s constant.

The theory of a gas composed of molecules which are rigid elastic spheres, which
was taken by Sutherland as the basis of his modified formulae, has been developed
along lines different from those of this paper by Clausius, Maxwell,Boltzmann,
Meyer, Stefan, Jeans, and others. Their method was less analytical than the
present one, and while it gave correctly the general relationships between :
and T, its results do not possess numerical precision. Jeans* notably improved
certain of the formulae due to earlier authors by taking into account the tendency
of a molecule to persist, after a collision, in the general direction of its original course.
For this reason his expression for the viscosity, viz.,

(252) m= 4x mha\m 1 (Jeans)
approaches more nearly to the correct expression (249) than does the formula of any
other authorf. A comparison of (249) with (252) indicates that the latter is still too
small by 12 per cent.; the error of the original formula, without Jeans’ correction,
was 30 per cent.

The numerical inaccuracy of the earlier prevailing theory of conductivity, which
was due to Meyer was very great. Its result was generally given as

« N = fixGy where * 1*6027,

but Prof. L. Y. King, of McGill University, has pointed out to me by letter that
Meyer’s argument really leads to the result

/= 1*4161,

a numerical mistake having crept into his work which had not previously been
detected. The correct value of,/for rigid elastic spheres is given in (249), i.e.,

f = 2*525.

This large error in Meyer’s theory indicates the difficulty of arriving at numeri-
cally accurate formulae by the older “ mean free path ” method, and diminishes

* Cf. seans’ “Dynamical Theory of Gases.’
t Apart from that in my former paper, which was 1'6 per cent, too small.
I meyer’s “Kinetic Theory of Gases,” 2nd English edition, chap. IX.
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confidence in other parts of that theory where detection of error is less easy. Until
recently Meyer’s value of f received support from experimental data for diatomic
gases, to which it does not really apply ; only lately have data for monatomic gases
been obtained, which, as we shall see, give values of/nearly equal to f.

§12. Comparison of the Theory with Experimental Data.

TheVariation of Viscosity with Pressure.

812 (A) The main objects of a comparison of a mathematical theory with experi-
mental data are either to test whether the postulates underlying the theory are valid, or
whether the theory is itself mathematically correct. The present theory being exact,
within certain defined limits, our purpose in this chapter is to consider how far the
hypotheses underlying the analysis are well founded. The general validity of the
foundations of the kinetic theory is attested in many ways, one of the most striking
being the independence of viscosity and pressure in a gas. This law, when first
discovered by Maxwell, seemed so improbable that it gave a great stimulus to
experimental research on gases, and the constancy of /* when T is kept constant, has
been verified over a range of pressure extending from a few millimetres of mercury up
to more than one atmosphere. W arburg and yon Babo have found that, in the case
of carbon dioxide, the law begins to fail when the pressure becomes so great as 30 to
120 atmospheres, Mrising appreciably. In very rarefied gases, on the other ha
viscosity falls below the value appropriate to the existing temperature. This must be
referred to the failure of the postulates of our theory to represent the facts in these
extreme cases, the molecules becoming too few for our statistical method to apply, on
the one hand, while on the other our assumption that the molecular paths are
rectilinear for the major part of the time, and our neglect of multiple encounters,
become illegitimate.

The Variation of Viscosity Temperature*

812 (B) Over a wide range of pressure and temperature, undoubtedly, the general
postulates of our theory are true for actual gases. We cannot discover directly,
however, the nature of the molecules or their mode of collision, and it is important,
therefore, to examine which molecular model yields formulae most in accordance with
experimental data. For this purpose we naturally choose those properties which are
most affected by the nature of the molecule; the chief of these is the variation of
viscosity with temperature. Maxwell abandoned his theory of a gas composed of
rigid elastic spherical molecules because it led to the relation ocTX while his experi-
ments gave the result fxoc T. This caused him to develop the theory ofa
gas (8 9 (C)), for which koT, but later experimenters have failed to confil
and we must conclude that the molecules of actual gases behave during encounters
neither like elastic spheres nor like Maxwellian molecules. The observed relation

* The reader may be referred with advantage to the discussion of this point by Jeans in the second
edition of his * Dynamical Theory of Gases,” &§399-407.
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between xand T agrees much more closely with Suthertand’ law ju oc TIXl +S/T)
than with any other; for example, Schmitt* has found that the law is valid for
hydrogen and helium from —60° C. to 185° C., and Barus has shown that it holds

good for air over a wide range of temperature. The law has not been tested, for the
former gases, above 185° C.

This seems to indicate that for the kinetic theory of gases at ordinary temperatures
the best molecular model is an attracting sphere, and it is interesting to notice that
this model is the one used by van der W aals with such success in deducing his
famous law. Further confirmation is supplied by the excellent agreement between
the values of the molecular diameters deduced on this hypothesis from the constant
b of van der Waals’ law and from the viscosity by means of my formula (250)—

cf. § 12 (F).
At low temperatures Schmitt*, Bestelmeyerl, Vogeld and others have shown
that the observed values of fare greater than those predi

law. This may be compared with the rise in the value of when the pressure is
greatly increased, both effects probably having a like cause ; in these states, when the
mean free path of the molecule is much reduced, the molecular paths may cease to be
approximately rectilinear between collisions, and multiple encounters will grow in
importance. Since our theory rules out these contingencies, its results cease to be
applicable, and a modification of the theory and its postulates is necessary if a proper
account of these phenomena is to be given. In regard to this, one point which should be

noticed is that in §9 (E) a term f X (y)in
retained, would cause the law connecting Mand T 1
pA
I+ (S/T)+/(T)
where f (T) can be expanded in the form AT~2+ BT~3+.... This term is due to the

effect of the attractive forces in producing deflections without the occurrence of
collisions, and is probably always small; but it may readily be seen that it is always
positive, and that this correction would lead to a diminution in the theoretical value
of Kat low temperatures. Clearly, therefore, the observed discrepancies cannot be
attributed to our neglect of this small quantity. 8

* schmitt, “Ann. d. Pliys.,” 30, p. 399, 1909.

t Besteimeyer, “Munich dissertation,” 1903.

t Vogel, ‘Berlin dissertation,” 1914, where full references, and an interesting discussion of low
temperature work on viscosity, are given.

8 Voger, in his dissertation, suggests as possible causes of the failure of the theory to represent the
observed variation of p with T at low temperatures (i.) a failure of the ordinary mechanics, such as is
contemplated in Piranck’s theory of quanta; (ii.) that the attracting sphere model no longer represents
the molecule; (iii.) that 1+S/T should be replaced (according to my suggestion in ‘Phil. Trans.,” A,
vol. 211, p. 474, 1912) by 1+ (S/T) £ (C'/T)2 By the latter means a better accordance with observation
is obtained, but the new term has the minus sign, and is therefore illegitimate.
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TheThermal Conductivity of Monatomic Gases.

812 (C) It is convenient to discuss the thermal conductivity of gases in terms of the
constant f in the formula 3 =f/].Cv as this eliminates the necessity for a separate
discussion of the dependence of S on pressure and temperature ; this is parallel with
that of /x, andf is nearly or quite independent of pressure and temperature in normal
conditions. As we have seen in § 11 (F), the value of f has been a matter of some
uncertainty ; so long as its value for rigid elastic spheres was supposed to be 1'6027,
while for Maxwellian molecules it was known to be f, it seemed to offer a means of
testing the suitability of different molecular models. On the ground of the
discrepancy between the theoretical and observed relation between and T,
Maxwellian molecules were known to be unsatisfactory representations of actual
molecules. Until about 1900 no reliable determinations of/had been made for mona-
tomic gases, and those found for diatomic gases agreed fairly well with Meyer’s value
of f ( €. 1'6027 or, more accurately, 1*416); at the time this was regarded as a
confirmation of the rigid elastic spherical model of the molecule, and as indicating
that the internal molecular energy, which isnot taken into account in these theories of
a monatomic gas, is transmitted at the same rate as the translational energy. When,
in 1902, Schwarze obtained the values of f for argon and helium, and found them
nearly equal to f, the conclusion to be drawn was not obvious. It certainly
contradicted Meyer’s theory, but left the question open as to whether the analysis, or
the assumption of the rigid elastic spherical model, was at fault; also if = f indicated
that the molecules are Maxwellian, the failure of the corresponding law connecting
iXx and T remained unexplained. It should be remembered, moreover, that the law
NocT'Mor rigid elastic spherical molecules is equally contradictory to experiment.

These difficulties were removed by the theorem of my former paper, according to
w hich/is an invariable constant f for all monatomic molecules. This is now seen to
be incorrect as a general theorem, but the deviations found for the various particular
molecular models discussed leaves little room for doubt thatf is very nearly equal to
8 in the case of all likely models. The fact simply is, therefore, that f is very
unsuitable as a means of discrimination between different models, and Schwarze’s
observations indicate some mathematical fallacy in Meyer’s theory, without supporting
any particular molecular model. The observed values of f are hardly known with
sufficient accuracy to enable any conclusion to be drawn from a slight divergence
from the value f,within the limits prescribed in (249) to (251). They are important,
however, as confirming the general validity of the Kkinetic theory, apart from any
hypothesis as to the nature of the molecules.

The following table contains all the available data concerning the value o f/ for
monatomic gases. Only very recently has the conductivity of neon been deter-

mined, owing to the scarcity of the gas; for krypton and xenon its value is still
unknown.

VOL. CCXVI— A. 3 A
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Table Y Il.—Values off for Monatomic Gases.
Gas. Absolute temperature. Jo Authority.
. °C. r 2-51 Schwarze*
Helium 273 \ 5-20 E o enont
81 2-23 Eucken
21 2-02 *Eucken
2-50 Schwarze
Argon ) 213 2-49 Eucken
9 2-57 Eucken
Neon . 283 2-50 Dorn]|

These results for argon and neon and, to a less extent, for helium at normal tempe-
ratures agree very well with the theoretical value of,/, especially since the combined
experimental errors in their determination may easily exceed one per cent, at ordinary
temperatures, and much more at low temperatures.

The diminution in the value of f for helium at low temperatures, if confirmed by
further experiment, is very interesting and important. Helium is peculiar at low
temperatures also in the striking divergence of its viscosity from Sutherland’s law.
Eucken suggests as the explanation of the former phenomenon a partial failure of
interchange of molecular energy at collision, but Table VI. of his paper) down to
81° C., at any rate, the value of C, for helium remains constant and appropriate to a gas
which possesses only translational energy. A failure in interchange of translational
energy would contradict the ordinary dynamical laws, and it is certainly desirable to
seek some other explanation, if this be at all possible.

The alternatives are not numerous, and will be examined in turn. AVe may rule
out a numerical error in the theory, of more than one per cent., as being quite
improbable; but though aﬁ the molecular models discussed in this paper lead to
values of f equal to or slightly greater than 2*5, it is conceivable that for some

peculiar model fray have rather different values and a wider temperature range.

think this is unlikely, and that it is probably possible to prove that f always
exceeds 2'5, but this is only a speculation ; helium agrees so well at high tempera-
tures, however, with Sutherland’s law connecting n and T, that its molecules can
hardly be supposed so different in behaviour from rigid elastic attracting spheres as
to make fheoretically equal to 2*0 at low temperatures.

Again, molecular aggregation might seem to afford an explanation, since if part of
the gas were polyatomic through clustering of the molecules, the value of f would

* schwarze, ‘Halle dissertation, Ann. d. Phys.,” (4), 11, p. 303, 1903.

t Eucken, ‘Phys. Zeit.,” 14, p. 324, 1913, Tables 3, 6. Eucken (footnote 4 to p. 328) states that
schwarze’s Value of/ for helium is too large owing to a miscalculation in determining C,.

t This result was kindly communicated to me by Prof. born, of Halle, as an extract from ‘ Mitt. d.
Naturf. Ges. z. Halle,” 4, 1914.
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probably lie between 2"5 and the lower values characteristic of polyatomic gases. In
this case, however, the value of C,, the specific heat at constant volume, should rise
to correspond with the internal energy of such molecules ; as the experiments indicate
a constant value of Cv, the suggestion must be abandoned.

The only possible remaining hypothesis seems to be to attribute the fall in/ to the
neglect of multiple collisions between molecules, including also the effect of the
attractive forces (in Sutherland’s case) in producing deflections without collisions;
at low temperatures the molecules may be too close together for these postulates of
our theory to continue valid. 1f we determine 3 for helium from the formula 2'5~ G,
using the value of fx calculated from Suthertand’s formula (which is less than the
observed value at low temperatures, as we have seen), the result is less than that
observed at low temperatures. Hence both 3-and &diminish with temperature less than
is predicted by Sutherland’slaw, the divergence being greater for Xthan for S, so that
/also diminishes. We cannot enter here into a test, by calculation, of this suggested
hypothesis, but some confirmation might be sought experimentally by examining
whether/is less than 2*5 for helium at normal temperatures but under considerably
increased pressure. The latter would bring the molecules closer together in the same
way as would a diminution of temperature, and this is all that our suggestion requires.
It is known that over a large range of pressure and 3 are constant, hut that at
high pressures /X increases ; the independence of 3- on pressure has usually been tested
by diminishing the normal pressures/ and experiments under increased pressure
might throw valuable light on the present phenomenon. Gases other than helium
may be expected to behave similarly, though perhaps only with lower temperatures
or higher pressures.

8§12 (D) The case of mercury vapour may also be mentioned, as it was the first
monafomic gas for which/ was determined. Kochl determined n for mercury vapour
at 203° C., 273° C., and 380° C., while Schleiermacher]) determined 3 at 203° C.
These data, together with the theoretically calculated value of C,, led to/= 3‘15.
Meyer and others have raised objections to the determinations of n (a) because the
three values show an improbable amount of variation with temperature, and
(b) because of the vitiating effect of condensed mercury on the walls of the capillary
tube used in the experiments. Y ogel8hasmade are-calculation of i for mercury from
an interesting formula which he gives, and finds that at 573° C. absolute|| n should
equal 593'10~7; this, combined with Schleiermacher’sresult, reduces/to 2*80. But
it is desirable that more accurate experiments should he made in order that a
thoroughly reliable value of/m ay he obtained.

* Eucken, ‘Phys. Zeit.,” 12, p. 1103, 1911, Table 2.

t Koch, ‘Wied. Ann./ 19, p. 857 (1883).

{ Schleiermacher, ‘Wied. Ann./ 36, p. 346 (1889).

§ Vogel, ‘Berlin dissertation/ p. 57, 1914,

| So given by Voger; it may be a misprint for 473° C.
3 A2
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TheThermal Conductivity of Polyatomic Gases at Low Temperatures.

812 (E) The formula 3 —fuC, is true for polyatomic as well as

f being independent of pressure and temperature over a considerable range. Under
normal conditions, however, its value is 2'0 or less, being greatest for diatomic gases

and diminishing down to about 1*5 for complex molecules. Eucken* has made the
interesting and important discovery, however, that diatomic gases show an increase

in f at low temperatures, the conductivity varying with temperature in the sense
opposite to that observed in the case of helium. This is apparent, to a slight extent,

in nitrogen, but is most striking in the case of hydrogen. It is found that, simul-
taneously with the rise in fhe specific heat C, progressively fa
21° C. absolute its amount is that appropriate to a monatomic gas of the same molecular
weight. At these low temperatures the rotatory motion of the molecules seems to

fail, for some reason as yet undiscovered, so that the gas behaves in certain respects

as if its molecules were of the spherically symmetrical type discussed in this paper.

It is highly interesting and significant that this approach to monatomicity is
accompanied by an upward tendency of f towards the value (2*5 approximately)
which is appropriate to monatomic gases. The same phenomenon may be expected in

the case of the other diatomic gases, at lower temperatures corresponding to their
lower boiling points. In the following table* the results for hydrogen alone are
given ; the number n in the third column represents the number of “degrees of
freedom ” of the molecule, as calculated from the observed values of C,.

Values for f for Hydrogen.

Absolute n
temperature. e '
0C.
273 1-96 4-80
195 2-09 4-41
81 2-25 3*16
21 2-37 2-98

The Diameter of the Molecule.

812 (F) In my former paper tables were given showing the values of the molecular
diameters for several gases, calculated on the hypothesis that the molecules are rigid
spheres, with or without attractive force. These require a small correction to be
strictly accurate, on account of the factor (2yr)'Bthere omitted from the formula for

* Cf. Eucken, “Phys. Zeit.,” 14, p. 329, 1913, Table 6.
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€ in terms of In this paper | shall give only a few values of < calculated from
recent data and from the exact formula

appropriate to attracting spherical molecules.

<'I'2 0+

2'W

Q--

5m_ IR

t V-

64irv (1+§7'I:)\m I
0-491 (I+e,)pC

(1+S/T)

The values of S are determined from

the variation of viscosity with temperature, C is the mean molecular velocity, while

ea is found from Table VI. (in all the cases here considered it is quite negligible).

In the following table values of the diameters calculated from the constant of

van der W aals’ law are also given for comparison.

The agreement between the two

sets of values is in most cases remarkable, and the table as a whole is a testimony to
the close numerical accuracy now attained by the kinetic theory ; where there is
disagreement in the table there is in most cases uncertainty as to the data.

W hile exact agreement may be expected only for monatomic gases, the values for
diatomic gases show that our theory gives a mean diameter, in other cases, which agrees

with that found for b; the internal energy which prevents the application of our

formulae to the conductivity of polyatomic gases hardly affects viscosity.

Table Y IlIl.—Molecular Diameters Calculated from Viscosity and
Van der Waals’ Law.

Gas. /IvioT S.
Argon .o 2107 162
Krypton . . . . 2334 182 x
XEenon....coenene. 2107 252
Helium......cccooenneee 1885 75
Oxygen . . . . 1923 130
Hydrogen . . . . 854 76
Nitrogen . . . . 1672 112
Al 1721 111
Carbon dioxide . . 1388 249

Viscosity At 273°

1+ @
(Table V.)

1-002
1-001
1-000
1-006
1-005
1-006

1-003
1-004
1-000

Van der Waals’ 20vI08 20vI08
o} (ViSCOSity). (Van der Waals.)
0-001347 ' -84 2-85
0-001774 3-12 3-14
0-002304 3-47 3-42
0-000432 1-89 1-96
- 2-93 2-89
0-00096 2-36 [2-52]
0-00255 3-10 308
0-00209 3-08 3-30
| 3%27 3-40
0-00228 \3-20 3-20

References.

my first memoir, where full references may be found. T
list given by Eucken (‘Phys. Zeitschr.,” 14, Table 3, 1913), in which Vogel’s
determinations are included with other recent values in taking means.

C.absolute.— These values are taken from
hey agree very well with the
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Sutherland’s constant S.—These values are those given in the same table of my
former memoir (what is called S in this paper was there, and is usually, denoted by C),
where references to sources may be found. The value for krypton was there given
incorrectly ; I am indebted to Dr. G. Rudorf for the correction.

van der Waals’ b—The values for helium (Kamerlingh Onn

nitrogen, air (Rose-lnnes), and carbon-dioxide (van der W aals’) are taken from
Jeans’ ‘Dynamical Theory of Gases,” 2nd edition, § 194. Those for argon, krypton,
and xenon (Ramsay and Travers), from Rudorf, ‘Phil. Mag.,” June, 1909,
p. 795, are not direct experimental values, however, but are calculated from critical
data.

Diameter 22 from viscosity.— These are practically twice the values for the radii
given on pp. 476, 481 of my former memoir, where, however, errors of calculation
(here corrected) were made in the case of argon and krypton (as Dr. G. Rudorfkindly
indicated to me).

Diameter 2cr2 from van der Waals’ b.—The value for oxygen, and
values for nitrogen and carbon-dioxide (as well as 20j for the latter) are from Table 7
of Eucken’s paper ; he does not give his authorities, but his values are probably the
most recent and reliable. The value for hydrogen, he says, is doubtful.

the se



