

REPORT

Computer Simulation of Copper and Tungsten Crystal Dynamics With Vacancies and Interstitials
by

Gary Lee Vine
Ensign, United States Navy
B.S., United States Naval Academy, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS
from the

NAVAL POSTGRADUATE SCHDOL
Junc 2971

Abstract

The effeets of point defect implantation in copper and tungsten crystal lattice have been studied by computer simulation techniques. Vacancies, interstitials, and replacement impurities have been created in the first five layers of the free (100) surface of these crystals. The subsequent binding energies of these defects in tungsten were compared with experimental temperature dependent desorbtion peaks, corresponding to binding energies of neon defects in a tungsten crystal. Interstitial ard replacement impurity positions in the first three to five layers were found that seem to correspond to the experimental data. Significant results were also obtained which were associated with general surface effects, especially crowdion migration.

TABLE OF CONTENTS

I. INTRODUCTION -7
A. HISTORICAL BACKGROUND -7

1. The Problem -7
2. The Pioneers and Their Contributions -8
3. The Potential Function Problem 10
4. The Point Defect Problem 11
B. THE EXPERIMENT 12
II. OBJECTIVE 14
III. THE MODEL 16
A. THE CRYSTAL 16
B. THE POTENTIAIS 17
5. The W-W Composite Potential 17
6. Purely Repulsive Potentials 18
C. THE TIMESTEP 19
D. FOREIGN INTERSTITIALS- 20
7. Unequal Mass Implications -20
8. Ionization State and Repulsive Potentials--2l
E. RUNNING TIME 21
F. SUMMARY 22
IV. RESULTS 24
A. THE CRYSTAL 24
B. CROWDION MIGRATION 25
9. Choice of Atom -26
10. Range of Potential 27
11. Energy Damping 29
C. INTERSTITIAL IMPLANTATION 30
D. THE TUNGSTEN LATTICE SELF DEFECT 31
12. Interstitials 31
13. Replacement Impurities 34
E. THE NEON DEFECT IN TUNGSTEN 36
14. Interstitials 36
15. Replacement Impurities 36
F. CORRELATION WITH EXPERIMENT 38
16. Scaling and Levels and Peaks 38
17. Probes of Potential Wells 39
V. CONCLUSIONS 41
APPENDIX A: CRYSTAL GEOMETRY 43
APPENDIX B: POTENTIALS 45
APFENDIX C: AVERAGE FORCE HETHOD AND TIMESTLR DURATION
METHODS 48
APPENDIX D: SUBROUTINE STEP, ENERGY, AND LOCAL 52
APPENDIX E: COMPUTER PROGRAM GLOSSARY 54
APPENDIX F: FIGURES AND GRAPHS 61
COMPUTER PROGRAM 68
BIBLIOGRAP HY 85
INITIAL DISTRIBUTION LIST 88
DD FORM 1473 89

LIST OF FIGURES

1. Binding Energies of Tungsten Defects in a Tungsten Lattice--32
2. Binding Energies of Neon Defects in a Tungsten Lattice---37

3. Tungsten Experimental Desorbtion Peaks-.---.-.-.-.----62

4. Effects of Method, DTI, and Damping on Results.-.-.--64
5. BCC (100) Orientation------------..-----------------------65
6. Neon Interstitial Binding Energy vs Tungsten

7. Potential Function Erosion and Force Function Modification-67

ACKNOWLEDGEMENT

I am deeply indebted to Professor Don E. Harrison, Jr., for the time, effort, and resources which he has contributed to this project, as well as the interest and encouragement he has offered. I am indebted to the many people in the NPS Computer Facility for their help, personal attention, and valuable computer time. I am especially indebted to my wife for the many hours of effort and encouragement which she has contributed to this project.

I. INTRODUCTION

Extensive research has taken place in the last decade in the area of computer simulation of radiation damage in crystal lattices. Two major areas of simulation have been defined. "Dynamic simulation" suggests the firing of an atom or ion against a crystal and the observation of the resulting many-body collisions. Examples include sputtering simulation $[1,2,3]$, in which atoms are ejected from the surface of an ion-bombarded crystal; and channeling simulation [4], in which ions are fired down open channels in non-close-packed structures such as body-centered cubic and diamond lattices. "Static simulation", on the other hand, is concerned with equilibrium positions and energies for point defects in crystals $[5,6,7]$. This latter area was the concern of this research. Specifically, this simulation attempted to correlate equilibrium potential energies of point defects with experimentally determined binding energies of point defects in Tungsten $[8,9]$.

A. HISTORICAL BACKGROUND

1. The Problem

Historically, all crystal dynamics computer simulation has been based on the assumption that the complicated many-body problem can be reduced to many two-body problems. This assumption has repeatedly been shown to be a valid one when employed incrementally. Incremental calculations are necessary since a complete solution in closed form is impossible. Small time increments Δt approximated the true time differential dt of the impossible closed form
solution. Specifically, the desired type, size, and orientation of crystal lattice is stored in the computer, appropriate interatomic potentials are chosen, and all mutual forces between atoms are calculated, based on the analytic potential functions. Point defects are introduced, and each atom is then allowed to move incrementally, based on these forces and Newtonian Mechanics [5]. Through proper choice of time increment duration, damping of forces and velocities in each time increment, and sufficient repetition of the procedure, realistic results are obtained.

2. The Pioneers and Their Contributions

Pioneering work in this field kegan in the early 1960's at the Brookhaven National Laboratory. Gibson, Goland, Milgram and Vineyard (GGMV) [5] published the results of extensive work in buth static and dynamic simulation. In static simulation they determined equilibrium positions for interstitials and associated potential energies of formation. In dynamic simulation they investigated momentum propagation directions of energetic knock-on atoms (focusing), collision chains, and related topics. They used a central-difference method to obtain velocities and positions from calculated forces. All work was done with copper, and results were correlated with experimental data. Johnson and Brown (JB) [6] did extensive work in static simulation, again with copper. They established that only one stable position exists for a single facecentered cubic (FCC) self-interstitial: the 〈100〉 split interstitial. Johnson [10] later published further work in this area, with formation and activation energies for various point defects. Enginsoy, Vineyard, and Englert (EVE) [7] and Johnson [11?
repeated most of the earlier calculations in GGMV and Johnson for the body-centered cubic (BCC) case, based on α iron. They, too, established the existence of only one stable interstitial position, $\mathrm{a}\langle 110\rangle$ split interstitial.

Girifalco and Weizer (GF) [12] calculated Morse Potential

$$
\Phi_{i j}=D\left[\exp \left\{-2 \alpha\left(r_{i j}-r_{o}\right)\right\}-2 \exp \left\{-\alpha\left(r_{i j}-r_{o}\right\}\right]\right.
$$

parameters for various metals, based on experimental values for the energy of vaporization, the lattice constant, and compressibility. Resulting elastic constants and equations of state agreed satisfactorily with experiment. Girifalco and Weizer [13] later published results of using these Morse parameters in simulating vacancy relaxation dynamics. Anderman [14] used GW's technique of calculating Morse parameters, but instead of summing over an entire crystal, (GW calculated out to the l50th nearest neighbor) Anderman found parameters as a result of summing out to second, third, and fourth nearest neighbors, for use in short-range approximations.

Harrison $[1,2,3]$ has investigated sputtering phenomenon and other surface effects with a modified Brookhaven model, the most significant change being the use of an average force method [15] instead of the central difference method in integrating the equations of motion. (See Appendix C.) He has also calculated repulsive potentials of the Born-Mayer type ($\left.V_{i j}=\exp (A+B r i j)\right)$ for many combinations of atoms and ions based on secondary electron emission, and Hartree-Fock atomic electron distributions [16].

 le

$\square=$

$+\frac{1}{2}=$$(1)$
3. The Fotential Function Problem

The nost difficult problem encountered by computer simulation has been the proper choice of the potential function. No simple analytic expression, based on either theory or experimental data, has ever been found that completely describes crystal dynamics [17], although many analytic expressions are partially correct. The problem has been three-fold: First, present analytic expressions have narrow regions of validity; i.e., some correctly describe atomic behavior at equilibrium distances, but fail at shorter or greater distances. Second, some analytic expressions are limited because they only apply to interactions between identical atoms. Third, the assumed functions have spherical symmetry, and are technically limited to interactions between closed shell atoms or ions [18]. Although our assumption of a spherically symmetric potential in crystals is only approximately correct, it is nevertheless a very good approximation for FCC structures, and a reasonably good approximation for $B C C$ structures. It is grossly in error when applied to diamond structures.

The atomic potential, with the familiar potential well, sharply repulsive wall and gently attractive tail, varies greatly between different pairs of atoms: Since theory can give only approximate parameters for this complete potential function, experimental data have been used extensively in the formulation of potentials. Other avenues have been opened by computer simulation. Since potential well depths are typically on the order of a few eV , the characteristics of the well can be ignored in high energy dynamic simulation. Low energy dynamic simulation, and even static
simulation, have also been based upon this approximation with useful results. Historically this is how crystal simulation began. GGMV [5] employed a purely repulsive potential of the Born-Mayer (BM) type and applied external forces on all crystal boundaries to hold the crystal together. JB [6] used basically the same technique. For improved equilibrium studies a potential with a well was necessary so GW [$3.2,13]$ used a Morse potential in their simulation. The Morse function, however, fails at strongly repulsive distances. To satisfy the need for a more versatile potential, capable of handling both high energy and near-equilibrium dynamics, composite potentials were developed, which resemble BM or Bohr

$$
\left(v_{i j}=\frac{r^{\prime}}{r_{i j}} \exp \left(A+B r_{i j}\right)\right)
$$

functions at short separations, and Morse functions at equilibrium and greater separations. Specifícally, EVE [7] combined a screened Coulomb or Bohr potential, a BM potential, and a Morse potential, in the higher repulsive, lower repulsive, and attractive regions, respectively, of the atomic potential.

Johnson $[10,11]$ in his later papers, used three cubic equations to approximate the true potential. Anderman [14] and Harrison [1,2, 3,4] have used the BM repulsive term together with a Morse well and attractive tail, smoothly fit together by a cubic equation in the region near their intersection.
4. The Point Defect Problem

All early simulation was done with homogeneous systems:
All atoms were exactly the same, limiting high energy dynaric simulation to bombardment by atoms identical to the lattice atoms,

and static simulation to consideration of only the vacancy and self-interstitial cases. This limitation was forced by the potential functions, because parameters for the Morse function were based on experimental data for homogeneous media [12]. The methods used could not yield parameters for different-atom pairs. BM parameters, however, are obtainable for different-atom pairs, by methods such as the Hartree-Fock method [16] mentioned previously.

In spite of these limitations, dynamic computer simulation of bombardment by foreign atoms, or static simulation of foreign interstitials, can be done by two alternate methods. First, Harrison [4] has neglected the attractive interactions and has done foreign particle dynamics using repulsion only. Alternately, Johnson [11] has darived a cubic equation for a comnlete potential with a potential well, based on limited experimental data on carbon defects in iron. However, experimental substantiation for a foreign-particle potential well is much more difficult than for an identical atom potential well.

B. THE EXPERIMENT

The experimental data which this simulation proposed to explain, were published by Kornelsen and Sinka (KS) [8]. They have bombarded a clean (100) tungsten surface with $\mathrm{Ne}^{+}, \mathrm{Ar}^{+}, \mathrm{Kr}^{+}$, and Xe ${ }^{+}$, in the energy range of 40 eV to 5 keV . The subsequent "damaged" crystal was heated at a constant rate, and gas desorbtion rates were measured. Instead of a constant desorbtion of ions, various distinct peaks were found, categorized into two basic types: a
single large peak at $1800^{\circ} \mathrm{K}$, the same for all four ions; and four or five smaller peaks in the $400^{\circ} \mathrm{K}$ to $1650^{\circ} \mathrm{K}$ range, which were not in the same position for all four ions. These latter peaks were postulated to correspond to binding energies of various point defects in the first few layers of the tungsten crystal. (See Figure 4.)

This simulation used Harrison's assumption of a repulsive potential only, for interactions between a foreign point defect and other atoms in the lattice. When investigating neon defects in tungsten, all tungsten lattice interactions were based on composite Morse and repulsive Born-Meyer potentials, and all neontungsten (Ne-W) interactions were based on a purely repulsive BM potential.

II. OBJECTIVE

The long-range objective of this simulation was to correlate simulated and experimental binding energies of neon point defects in tungsten. Since the assumption that all Ne-W interactions are purely repulsive was not realistic, the degree to which subsequent simulation results are valid must be based on a known standard. If the simulated binding energies are not correct, a valid correction factor can be applied, if derivable from the known standard. One standard which proved to yield this information was the tungstentungsten (W-W) interaction. A tungsten point defect could be treated as an atom of the lattice, and given an interatomic potential identical to all other lattice atoms, the composite Morse and BM potential. This was Method l. A tungsten defect could also be treated as foreign, and allowed to interact with other lattice atoms with a repulsive potential only (Method 2). If a specific tungsten point defect is treated by both of these methods, an empirical relationship between the repulsive potential assumpt.ion and the "true" potential for W-W interactions is obtained.

The objectives of this research were fourfold:

1. Demonstrate that the two methods of treating tungsten point defect in a tungsten lattice yield basically the same physical results, and agree with published results $[7,11]$ concerning split interstitial positions.
2. Develop a general empirical relationship between the binding energies derived by the two methods.
3. Obtain values for binding energies of neon defects in all possible positions in a tungsten surface. Transform these values to more realistic ones using the empirical relationship derived in 2.
4. Compare these results with KS's experimental data.
 2ind

III. THE MODEL

A. THE CRYSTAL

The model used in this research is the Gay-Harrison [19] model, with modifications by Levy [20], Johnson [21], Effron [22], and Moore [23]. Abbreviations in brackets refer to computer program names for the variable in question.

Both copper and tungsten crystals were simulated. Copper was simulated only to provide an interface between this research and published simulation results. Copper forms a face-centered cubic crystal with an experimentally determined lattice constant, (LC) or cube edge distance of $3.615 \AA$. The lattice unit (LU), defined as $\frac{1}{2} \mathrm{C}$ C, is $1.8075 \AA$; and the nearest neighbor distance, as in all FCC structures, is $\sqrt{2} L U$. Tungsten forms a body-centered cubic crystal, with a LC of $3.16 \AA$, a LU of $1.58 \AA$, and a nearest neighbor distance, peculiar to all $B C C$ structures, of $\sqrt{3} L U$. All distances in the program are measured in LU. The program could construct (100), (110), and (lll) orientations of face-centered and bodycentered cubic structures. The copper crystal size was $8 \times 8 \times 8$, and contained 256 atoms for the (100) orientation.

The major portion of the simulation was done on the (100) orientation of tungsten, corresponding to KS 's experimental work. This tungsten crystal size for Neon point defects was $10 \times 10 \times 10$, and contained 250 atoms. Some W-W simulation was done on a $14 \times 14 \times 14$ crystal; the reasons are explained in RESULTS. The bottom two layers of the lattice were not allowed to move, although they had potential energy, and exerted force on all atoms

-

in the crystal. The other eight layers were completely free to move, and were included in the dynamic calculations of each timestep.

The surface layer ($Y=0$) and the second layer ($Y=1$) were moved forward, simulating actual surface relaxation in the crystal. This relaxation was calculated by Moore [24] using simulation techniques, and tested against previous results by Burton and Jura [25]. Definitions and use of mobile layers, relaxation, etc., were analagous in the copper model, as were all other aspects of the model to be described in this chapter.

B. THE POTENTIALS

1. The $W-W$ Composite Potential

The attractive potential used was the Morse potential, with tungsten parameters calculated by Gw [12]. The interaction energy $\varnothing_{i j}$, of a pair of particles i and j is:

$$
\begin{equation*}
\emptyset_{i j}=D\left[\exp \left\{-2 \alpha\left(r_{i j}-r_{o}\right)\right\}-2 \exp \left\{-\alpha\left(r_{i j}{ }^{-r_{o}}\right)\right\}\right] \tag{1}
\end{equation*}
$$

where $D[D C O N]$ is the dissociation energy of the pair, r [RE] is the equilibrium separation, $r_{i j}[D I S T]$ is the actual separation, and α [ALPHA] is a constant.

The repulsive potential is of the BM type, with Harrison's Hartree-Fock parameters. The interaction energy $V_{i j}$, is

$$
\begin{equation*}
v_{i j}=\exp \left(A+B r_{i j}\right) \tag{2}
\end{equation*}
$$

where B [EXB] is always negative, A [EXA] is always positive, and $r_{i j}$ [DIST] is the actual separation. The constants [EXA] and [EXB] are peculiar to the $W-W$ interaction.

The ranges of the $W-W$ composite potentials were as follows: the BM repulsive potential operated from 0 to $1.5 \AA$; and the Morse potential from $2 \AA$ [ROEB] to $5.38 \AA$ [ROEC]. In LU, the dimension in which all calculations were done, these constants were .9494 , 1.2658, and 3.4000 LU . [ROEC] was chosen to include interactions out to the fourth nearest neighbor (NN4) at $\sqrt{11} \mathrm{LU}=3.317 \mathrm{LU}$ but not NN5 interactions, at $\sqrt{12} \mathrm{LU}=3.464 \mathrm{LU}$. Note, however, that slight displacements of NN5's might allow their inclusion in potential and force calculations. The gap between $1.5 \AA$ and $2 \AA$ was filled with a cubic function, which matched to the other potentials and slopes at [ROEA] and [ROEB].
2. Purely Repulsive Potentials

For foreign point defect interactions, i.e., Ne-W, or W-W Method 2: a repulsive potential only was used. The potential was again a BM , with the constants labeled [PEXA] and [PEXB]. For the $W-W$, Method 2 interaction, [PEXA] = [EXA] and [PEXB] = [EXB]. Ranges for foreign point defect interactions, however, were different, and the potential itself was modified at the cutoff point. Whereas the BM part of the composite potential extended out to about . 95 LU, the modified BM potential used for foreign defects was allowed to extend to $\sqrt{3} \mathrm{LU}$, corresponding to the NNl distance [ROE]. Cutting the potential off at [ROE] left a step of about .05 eV for $\mathrm{Ne}-\mathrm{W}(.2 \mathrm{eV}$ for $\mathrm{W}-\mathrm{W})$ at the NN 1 equilibrium position. Since neither discontinuities nor repulsive potentials were desired at this equilibrium position, we "eroded" [15] the potential by subtracting $V([R O E])$, or about .05 eV from $\mathrm{V}\left(\mathrm{r}_{\mathrm{ij}}\right)$ for $r_{i j}<[R O E]$. Calculated forces, based on these eroded potentials must be modified also, but for a different reason. It is possible

$1=$
$==$
$+$

\square

=

2

5

to conceive of a case where an atom is further away from the defect than [ROE] at the beginning of a timestep, but closer than [ROE] at the end. The force has essentially "turned on" in the middle of the timestep. The modification gives such an atom a force which is less than the final force by approximately a factor proportional to the ratio of distance traveled outside [ROE] to the total distance traveled during the timestep [15]. (See Appendix B.)
C. THE TIMESTEP

Motion caused by these forces must be found by an approximate numerical method of time integration. As in previous work with this model, the average force method [15] was used. In this method, all mutual forces were calculated in subroutine STEP. Based on these forces, new temporazy velocities and positions were found. Forces were again calculated, based on the temporary positions. The final positions were then calculated from the average of these two force determinations. All velocities were then either zeroed or halved as a damping method. This constituted one timestep.

For this average force method to work properly, the $\Delta t[D T]$ which approximates $d t$ in the integration must be kept small. Too small a value for $[D T]$, however, would result in excessive computer time. The choice of [DTj was also complicated by the fact that [DT] must be kept much smaller earlier in the program, when velocities, forces, and energies are large, but can be allowed to grow larger as the simulation approaches equilibrium. For this reason, at the end of each timestep, a new [DT] was calculated
for use in the next timestep. The parameter chosen to control [DT] was [DTI], the distance, measured in LU, which the most energetic atom was allowed to move before starting a new timestep. [DII] has varied between . 001 and .02 , depending on such conditions as original position of the point defect, relative masses of atoms, etc. In general, [DTI] must be kept very small when high velocities are expected, and can be increased when all motion is expected to be "sluggish". In actual practice [DT] and [DTI] are related to both the velocity of each particle and the force on each particle. To insure that no particle traveled more than [DTI] we ensured that [DT] was small enough so that neither the velocity of the most energetic atom nor the force on the most stressed atom would result in motion greater than [DTI]. (See Appendix C.)

D. FOREIGN INTERSTITIALS

1. Unequal Mass Implications

Many changes in the program were necessary when a foreign defect was included in the lattice. These changes were especially necessary when the defect was much lighter than the lattice atoms; i.e., neon in a tungsten lattice. First, in the average force calculations, a separate section had to be added for the calculations for the primary, or "bullet", based on the bullet mass [BMAS]. Second, the potential energy between two unequal mass atoms was split in proportion to their reduced masses (see Appendix D). Third, the section that determined the new timestep duration was originally based on the lattice atom mass. Since the light interstitial is usually the most energetic or most stressed
atom, very erratic behavior was observed until the timestep duration calculations were revised to handle two different masses (see Appendix C). Finally, a significant mass difference between defect and lattice atom required a reduction in [DTI]. For the neon-tungsten simulation, a [DTI] of $.5 \%$ was used.
2. Ionization State and Repulsive Potentials

The major portion of the $\mathrm{Ne}-\mathrm{W}$ work was done with the assumption that tungsten was in a +6 state, and neon was neutral in the lattice. Experimentally k fired neon in $a+l$ state into tungsten, but once emplanted, the ionization of neon was unknown. All combinations of W°, W^{+1} and W^{+6} with Ne° and N^{+1} were subjected to Hartree-Fock analysis. (See Figure 5.) Only $N e^{\circ}-W^{+6}$ interacted in an approximately exponential manner and could therefore possess realistic BM parametors. Attemnts to linearize $N e^{\circ}-W^{+1}$ and $N e^{\circ}-W^{\circ}$ were made, and subsequent $B M$ parameters were determined. The results of such changes did not significantly influence the results of this investigation.

E. RUNNING Time

The following factors effected the problem running time: range of potential, size of crystal, depth of mobile layers, and degree of damping. First, the range of the potential was picked to include at least NN4 interactions. The range used for the tungsten simulation was 3.4 LU , which includes interactions out to NN4. The error made by neglecting NN5 interactions was only 3% in the binding energy of an interstitial, but the omission of NN5 interactions cut running time almost 10%. Second, the size of crystal and depth of mobile layers were picked as small as possible, for
reduced running time, but were at least large enough to completely contain the potential range. Third, the half velocity method of damping was used whenever possible. In general, when velocities were zeroed at the end of each timestep, a timestep took about ten seconds, and equilibrium was reached in about 300 timesteps. When velocities were halved, each timestep again took about ten seconds, but equilibrium was reached in about 150 timesteps.

It was originally expected that increasing [DII] would decrease running time. Most W-W simulation was done with [DTI] $=2 \%$; i.e., the most energetic or stressed atom could travel. 02 LU before the damping of velocities and the starting of a new timestep. When [DTI] was increased, the atoms moved more erratically toward equilibrium, and vibrated there, but did not achieve equilibrium significantly socner. (Sec figure 6.)

F. SUMMARY

In summary, the steps of the program are outlined:

1. Variables are initialized, constants established, and input data read in.
2. Scaling factors and time saving multipliers are calculated.
3. Morse and BM potential functions are calculated based on input data. Subsequent forces, based on derivatives of these functions are calculated. Potential erosion and force modifications are performed.
4. Potential cutoff's [ROEA], [ROEB], [ROEC'] are established and the smooth fitting cubic equation is placed in the gap. 5. The desired crystal type, size, and orientation is built, and the point defect positioned (see Appendix A).
5. Mutual potential energies of all atoms in the crystal are calculated. Local potential energy is calculated. (See Appendix D.)
6. All iniさial positions and potential energies are printed, along with total potential and total kinetic energy, local potential energy, and the change in local potential energy. 8. The first timestep is started, with an arbitrary running time of $10^{-14} \mathrm{sec}$. Velocities and positions are calculated by the average force method, and the maximum velocity [EMAX] and maximu:n force [FMAX] are found.
7. A new [DT], based on [EMAX], [FMAX], and [DTI] is calculated for use in the next timestep. (See Appendix C.)
8. All velocities are zeroed or halved as an energy damping method; and the process (8. to 10.) is repeated.
9. At selected timesteps, all changes in position ([DX], [DY], [DZ]), velocities ([VX], [VY], [VX]), and kinetic, potential, and total energies [PKE], [PPE], [PTE] for each atom in the crystal are printed.
10. The program is ended after a pre-selected timestep, with a final printout of position and potential energy of each atom, as in Step 7.
年车

\square
（1n）

IV．RESULTS

KS＇s experimental data indicated that four or five interstitial positions in the first few layers of a tungsten lattice could be found that would result in different binding energies．It was soon found that many parameters in the program could effect the results， and so a systematic attempt to isolate the effects of each indivi－ dual parameter was undertaken．

A．THE CRYSTAL

As explained in Appendix A，the $Y=0$ plane was the crystal surface；the $Y=1$ plane was the first layer beneath the surface， etc．Each atom in each layer was then designated by appropriate x and z coordinates．This construciion was independent of rype of lattice；i．e．，the surface layer in either BCC（100）or FCC （100）was $Y=0$ ，etc．An interstitial that escaped the lattice normal to the surface travelled in a $\langle 010\rangle$ direction，and an ion that escaped normal to a side travelled in either a 〈100〉 or 〈001〉 direction．

The dimensions of the lattice had a great bearing on the re－ sults．In general，the larger the crystal，the more realistic the results，but increased computer time prevented the use of a size bigger than absolutely necessary．All point defects were placed as close to the center of each plane as possible，and the x and z dimensions of the lattice［IX］and［IZ］were chosen to completely enclose a circle of radius［ROEC］from the point defect．In this way any point defect in the center of the lattice would not feel
the effect of the sides of the lattice, especially unequal numbers of atoms in all directions. In the y direction, the lattice was again built deep enough to completely contain the radius of the potential of a point defect placed at the center of the lattice. To simulate the effect of an infinitely deep lattice, the bottom two layers of the crystal were held immobile, but still allowed to interact with all mobile atoms above them. The tungsten crystal size used most often was a $10 \times 10 \times 10$ cube with the bottom $10 \times 2 \times 10$ volume held rigid.

Often erratic behavior in the simulation could be eliminated by simply increasing the crystal size. This was especially true for the problem of crowdion migration.

B. CROWDION MIGRATION

Crowdion migration is a chain reaction of single lattice cite jumps initiated by interstitial implantation. If the chain reaction ends by pushing the surplus atom into an already existing vacancy, the interstitial-vacancy pair is called a Frenkel pair. A Frenkel pair can also be created dynamically by moving an atom from its lattice site to a nearby interstitial position, from where it can cause migration back to the vacancy. If the migration cannot find a vacancy, and travels all the way to the surface, the surplus atom forms a "stub". Normally, migration is always in a closed packed direction; i.e., in the 〈III〉 direction in BCC. It was discovered, however, that this rule was modified near a surface, since an imbalance of forces in the direction normal to the surface automatically pushed a crowdion in that normal direction into a stub position. In the tungsten
lattice，for instance，a tungsten interstitial that did not initiate crowdion migration would reach equilibrium in a 〈110〉 split interstitial position，as previously found by EVE［7］．A tungsten interstitial that did initiate crowdion migration would sometimes migrate in a 〈lll〉 direction because of closed－packedness， or sometimes in a 〈100〉 direction if implanted near a（100）sur－ face．Crowdion migration was never found in a 〈110〉 direction， since this is the least closed－packed of these three directions． （Hence the tendency toward split－interstitials in this direction）．

Crowdion migration was a very common process near a lattice surface．It was found，however，that varying the choice of atoms， the range of the potential，and the rate of energy damping could enhance or reduce the tondency towned crowdicn migration．Also， already mentioned was the fact that increased crystal size re－ reduced crowdion migration．Particular attention was paid to the proper choice of values for these parameters，in order to cor－ rectly determine whether or not crowdion migration actually existed． This question of crowdion migration was especially critical in this simulation，since the binding energy of a particular atom is a di－ rect function of the nearness of its neighbors．An atom in a split interstitial position feels a more repulsive potential than an interstitial that has initiated crowdion migration and ＇stolen＇a lattice site and has thus reformed the original perfect lattice with every atom in a normal lattice site．

1．Choice of Atom

Some elements tended to initiate crowdion migration more than others．This applied to both choice of lattice atom，and

=

choice of interstitial atom. For instance, crowdion migration was much more common in tungsten than in copper. This was due to both the size of the tungsten atom and the nature of the crystal. Also it was found that different element point defects in the same lattice produced varying degrees of crowdion migration. A neon interstitial is so small and light that it never initiated crowdion migration, even when only one layer separated it from the surface. An argon interstitial initiated crowdion migration at the surface, but not deeper in the lattice. A tungsten interstitial always initiated crowdion migration, unless placed at the center of a huge $14 \times 14 \times 14$ tungsten lattice. This is an example of increasing crystal size to prevent crowdion migration. In general it can be stated: the more massive the interstitial, the more probable crowdion migration.
2. Range of Potential

In surface simulation, the range of the potential was a critical factor, since it determined wheiner or not an atom could "see" the surface. Because copper has been the standard element for lattice simulations, many versions of a copper potential with various ranges, have been determined. As mentioned previously, GW [12] calculated a Morse potential for copper that effectively had an infinite range (l50th nearest neighbor). If this potential is truncated at very close ranges, i.e., NN1 or NN2, the potential is seriously underestimated. This under estimate rapidly diminishes as the truncation range increases. Since GW parameters for the Morse potential could not be used for $N N 2$ interactions, Anderman [14] calculated parameters for a Morse copper pot?ntial that would approximate GW's results in simulations truncated after

$=$

C．

> 安

NN2. He did this by deepening and broadening the well. Although Anderman parameters and GW parameters led to very similar results in an infinite lattice, they led to quite different results in this simulation. In general, if the range of a point defect potential function overlapped a surface, crowdion migration would take place toward that surface, because of an imbalance of forces in the normal direction. The effect was a little more complex than this because of surface relaxation: if the range of the point defect potential function overlapped a relaxed surface layer, the slight force imbalance would again result in crowdion migration. According to GGMV, "the machine calculation showed that this atom rapidly moved...in a direction determined by minor asymmetries in the starting conditions..."1. In this copper simulation, an interstitial placed in the forth layer with a GW potential range of 3.1 LU (NN4) caused complete crowdion migration, resulting in a copper stub on the surface. An identical run with Anderman parameters for an NN2 potential to a range of 2.4 LU resulted in a〈100〉 split interstitial with minor, damped migration to the surface. Instead of a stub copper atom as before, four copper atoms in the surface layer bulged about .4 LU .

Another example of a short range potential which demonstrated this lack of ability to initiate crowdion migration was the repulsive foreign defect potential, with a range of $\sqrt{3}$ LU. In copper, this potential quickly led to split interstitial positions and no crowdion migration for all copper interstitials
${ }^{1}$ Gibson, J.B., Goland, A.N., Milgram, M., and Vineyard, E.H., "Dynamics of Radiation Damage, "The Physical Review, V. 120, No. 4; p 1237, Nov 15, 1960.
except those placed in the first two layers. In tungsten, even this short range potential could not retard crowdion migration in the $10 \times 10 \times 10$ lattice. Only in the center of a $14 \times 14 \times 14$ was a tungsten split interstitial stable. This stability applied only to the short range repulsive potential: a repeat run using the standard composite potential with a range of 3.4 LU initiated crowdion migration. This increased range enabled the interstitial to find minor asymmetries in even a $14 \times 14 \times 14$ lattice.

3. Energy Damping

Energy damping was accomplished in this simulation by reducing each atom's velocity at the end of each timestep. Two methods were used: at first, each velocity component of every atom in the crystal was zeroed at the end of each timestep. Later, the halving of each velocity component at the end of each timestep was employed to save computer time. In a tungsten lattice the results of both methods were the same; all final positions and binding energies were identical. Neither method prevented crowdion migration. In copper, these two methods led to slightly different results. Although the final position and binding energy of an interstitial was almost identical, and although crowdion migration was initiated in both cases (GW's parameters and a 3.1 LU range were used), the zeroed velocity method had damped the migration significantly by the time it reached the surface, whereas the halved velocity method caused a complete, undamped migration to the surface.
C. INTERSTITIAL IMPLANTATION

All interstitials were placed in the obvious holes in a hard sphere, close-packed lattice model. (See Figure 7.) Every "hole" in the tungsten lattice had exactly the same geometry; i.e., two neighbors 1 LU away; four neighbors 2 LU away, four neighbors 3 LU away, etc. The only factors which differentiated between these identical holes and thus led to different binding energies were: layer number, or lattice depth, and open channel direction. An interstitial in the third layer was more tightly bound than one in layer two, etc. Also, an atom in a given layer could be placed in two types of holes: one in which the interstitial was in the $B C C\langle O 10\rangle$ open channel direction, in which case the interstitial could "see" the surface; and one in which the interstitial was in the $B C C\langle 100\rangle$ or $\langle 001\rangle$ open channel, in which the interstitial could not "see" the surface. Note, however, that if an atom could not "see" the surface, then there was no difference between these two positions, since both have two neighbors 1 LU away, four neighbors 2 LU away, etc. Note also that even if these two sites are identical and possess exactly the same binding energies, the difference might still show up in diffusion probababilities: an interstitial in a 〈010〉 open channel in the second layer must only move two lattice units to escape the crystal. An interstitial in $\langle 100\rangle$ or $\langle 001\rangle$ open channel must move 1 LU in either the x or z direction into an open channel, and then 2 LU to escape; i.e., it must move like a knight in chess. This extra step might lead to a different diffusion probability.

电

$=-2$
$=-2$

(h)

D. THE TUNGSTEN LATTICE SELF DEFECT

The tungsten self interstitials and self replacement defects were the chosen standard for this analysis, as explained in the in the OBJECTIVE. The tungsten defects could be treated as lattice atoms and allowed to interact with all other atoms with the composite potential (Method l); or they could be treated as foreign defects and allowed to interact with only a repulsive potential (Method 2). A total of three different defect positions were simulated: an interstitial in $a\langle 010\rangle$ open channel (int A), an interstitial in $\mathrm{a}\langle 100\rangle$ or $\langle 001\rangle$ open channel (int B), and a replacenent atom (rep) in a lattice site. (See Figure 7.)

1. Interstitials

As previously mentioned, all tungsten interstitials initiated crowdion migration whっn treated by methor 1 . An jnterstitial treated by method 2 also initiated crowdion migration unless buried in the center of an enlarged $14 \times 14 \times 14$ lattice. Because an interstitial that has pushed its neighbors away has a lower potential than one that has not done so, the numerical values for binding energy of tungsten interstitials could not serve as a true standard for comparison with W-Ne results. Qualitatively, however, much could be learned from the W-W energy levels. First, it was expected that all energy levels of a defect found by Method 1 would be negative at equilibrium. Values for the composite potential can be either negative or positive, but are positive only at very small separations. A negative potential energy means the atom is bound in the crystal. As shown in Figure l, on the next page, the first two interstitial levels for the $W-W$ reaction, Method 1 , were at -3.0 eV and -3.1 eV , corresponding to

1

FINGURI.
the two interstitials in the first layer (int A and int B). The next two levels were at -5.4 eV and -5.9 eV , corresponding to the interstitials in the second layer. Interstitials in the third layer and deeper had binding energies ranging from -7.4 eV to -8.1 eV . The value of -8.1 eV , labeled "110" was obtained from the interstitial placed in the center of the seventh layer of a $14 \times 14 \times 14$ lattice. Since this value, and all other values for Method 1 binding energies were reached after crowdion migration, they were all expected to be lower than they would be without crowdion migration. The only way the true binding energy of a tungsten interstitial could have been found would have been to find a tungsten crystal size large enough to contain the crowdion migration of a tungsten interstitial with the long-range composite potential. Compute running time made this impossible.

Also shown in Figure 1 are the binding energies for the Method 2 W-W interstitials. Note, first, that they were all positive. This was again expected, since the potential equation for Method 2 is positive over all space. Note, second, that the binding energies for interstitials in the first two layers were zero. This was because all purely repulsive atoms in these first layers escaped the lattice completely. The other positive levels shown, were incomplete, because many interstitial positions did not possess stable energy levels. The unstable levels oscillated because of significant lattice motion, caused by crowdion migration, and measured by a short range potential. The range was so short, that significant jumps in binding energy occured when an atom moved into, or out of the range of the potential. Evidently,
small vibrations in atoms with an equilibrium distance of about
$\sqrt{3}$ LU from the interstitial, frequently caused crossings of this range limit, adding or subtracting energy from the binding energy each time one of them crossed, thus invalidating many of the interstitial binding energies.

The energy levels shown, however, demonstrated the meaning of a positive "binding energy". The numbers reflected the "amount of repulsion" associated with different positions in the lattice. The ordering of the levels, i.e., higher energies for deeper layers was expected. An interstitial deeper in the lattice felt more repulsion, because it was surrounded by a greater number of repulsive neighbors. Again, the level labeled "m" represented an interstitial in a $14 \times 14 \times 14$ lattice; but in this case of a Method 2 interstitial, crowdion migration did not occur.

The concept of a positive binding energy may or may not be the actual physical situation, but it is still academically valuable. Instead of an atom resting near the bottom of a potential well, as in Method l, an atom can be "wedged" between the repulsive walls of its neighbors. In both cases, the atom is "bound" in the lattice. The ordering, spacing, and other correspondences between the positive and negative levels validate the qualitative use of the positive levels.
2. Replacement Impurities

A tungsten lattice with a replacement impurity is a perfect tungsten lattice, but Method 1 or Method 2 could be used on the atom. in question. For Method 1 , a perfect crystal was allowed to relax with time, yielding only negligible motion; and the
binding energies of the center atom in each layer was recorded (see Figure l). The binding energies of atoms in the first, second, and third layers were-5.3 eV,-6.8 eV, and-7.0 eV respectively. The subsequent reversal of order for levels corresponding to deeper layers is a program anomally, caused by the use of a finite depth crystal. Runs on larger crystals indicated that the order would not reverse in an infinite lattice. The " $⿻$ (" level at-8.8 eV is the experimentally determined heat of sublimation [26] of tungsten. These numerical values for the binding energies were valid as standards of comparison for the $N e-W$ data, since the motion and equilibrium positions of the replacement atoms and their neighbors were nearly identical, and usually less than .3 LU in both cases. Note that the binding energies of the Method leplacement atoms were lower than the interstitial atom levels. As previously stated, this was to be expected, since a replacement atom rests in the bottom of a periodic potential well in the lattice, whereas an interstitial rests in a higher well, because it is nearer to its neighbors than the normal equilibrium separation. Also note that if the entire Method 1 spectrum of binding energy levels were used as a standard of comparison for Ne-W levels, then the W-W interstitial levels should be higher with respect to the replacement levels, than shown in Figure l, because of crowdion migration.

The Method 2 replacement level labeled " $⿻$ " corresponded to a replacement atom in the center of the fifth layer in a 10 x 10×10 lattice. Note that it was not above the interstitial levels, as it should have been by comparison with Method l. This
was the major weakness of Method 2: because it was a measure of repulsion only, and neglected the potential well, it under estimated the values of the binding energies of atoms whose normal position was in that well; i.e., replacement defects.

E. THE NEON DEFECT IN TUNGSTEN

The neon atom defect was again placed in any one of the three lattice positions, labeled "int A", "int B", and "rep". The neon defect could be treated by Method 2 only. The neon energy levels are shown in Figure 2, on the next page. Note that the energies have been multiplied by a mass correction factor. (See Appendix D.)

1. Interstitials

The neon interstitial never initiated crowdion migration, but as in the $W-W$ case, atoms placed in the first two layers escaped the crystal, and therefore had zero binding energy. Again, the ordering of the levels was a measure of the replusion on the interstitial, which increased as the interstitial was placed deeper in the lattice. Again the " ∞ " level was the result of placing a neon interstitial in the center of a $14 \times 14 \times 14$ tungsten lattice.
2. Replacement Impurities

Again note that the replacement levels are lower than
would be expected by comparison to the W-W Method l standard. It is hypothisized that these replacement levels should be higher than the interstitial levels, by comparison to the standard. This assumption is valid if a Ne-W potential well exists. It is feasible that since neon is almost incapable of binding, that no Ne-w well exists. On the other hand, the ionization state of both reon
and tungsten in the lattice is unknown, so the existence of a shallow potential well is quite possible.

F. CORRELATION WITH EXPERIMENT

1. Scaling the Levels and Peaks

Since no direct way of transforming the Ne-W energy levels into correctly scaled negative values exists, an arbitrary linear scaling factor between KS's data and the Ne-W levels has been used. Note that every level or group of levels corresponded to an experimental peak in Figure 2, except in two places: first, the broad peak at about $2000^{\circ} \mathrm{K}$ had no energy level counterpart, but could be assumed to correspond to the closely ordered replacement levels, shifted above the interstitial levels by the above hypothesis. Second, the narrow peak at $450^{\circ} \mathrm{K}$ was without an energy level counterpart. Note that three interstitiai ieveis had zero simulated binding energy because they had escaped the crystal. If, however, the assumption that a Ne-W well exists was true, then some or all of these three interstitial locations, (i.e., two surface layer positions and the open channel position in the second layer) would be stable, bound positions, and would be expected to generate an energy level in the vacinity of the $450^{\circ} \mathrm{K}$ peak. If the arbitrary scaling of the peaks and levels was correct, then the peak at $450^{\circ} \mathrm{K}$ is proof that a Ne-W well exists, since a purely repulsive potential would not allow a first layer or second layer open channel interstitial energy level to exist. The existence of this well, then, would in turn substantiate the shift of the replacement levels above the interstitial levels, to correspond to the $2000^{\circ} \mathrm{K}$ peak.
2. Probes of Potential Wells

Various attempts to substantiate the scaling between the levels and peaks were made. No approximation to a Ne-W potential well could be justified, and the correspondence between $W-W$ and Ne-W results was not complete enough to invert and scale the potential energy levels to realistic, negative, binding energies.

Attempts were also made to match both Method 1 and Method $?$ $W-W$ energy levels to KS's data. The Method 2 levels were too incomplete, and the Method levels required an unknown arbitrary reduction of interstitial energy levels to compensate for crowdion migration. Too many alternate reductions were possible to choose one as the correct rescaling.

Another approach that yielded little information was a plot oí the difíerences veiween iniersifiiai and replacement energy levels for each layer in the lattice.

One valuable method of investigating the nature of possible Ne-W negative binding energies was to probe the perfect lattice with an interstitial at various initial positions and plot the resultant potential energy of an interstitial vs. position. Since the potential was always positive, the results of this investigation were potential wells above the x-axis. Although the positive location of these wells was not realistic, the relative depth of the wells was significant. The average depth of a neon interstitial well, deep in the Lattice, was about 4.2 eV (see Figure 8). The graph was made by placing interstitials in positions in the 〈OlO〉 open channel, and thus represents the barriers that the interstitial must penetrate as it escapes the crystal. Note that the rils we:e not at the sbvious holes in the BCC lattice, but were Detween layers.

In the actual simulation, the interstitial rarely fell into this well, but instead pushed its two nearest neighbors away and made the initial position the low potential position. Here again, surface effects and relaxation reduced the tendency for interstitials to relax into expected infinite lattice equilibrium positions. Slight differences in the final equilibrium positions were not of significant importance to binding energies. The actual numerical values for the depths of these positive wells were not necessarily scaled properly since they ignored the actual Ne-W potential well, and were found from perfect lattice probes at time zero, before relaxation. Nevertheless, the depth of a well deep in the lattice of 4.2 eV agreed well with $\mathrm{KS}^{\prime} \mathrm{s}$ prediction of 4.5 eV [8] for the desorbtion energy corresponding to $1720^{\circ} \mathrm{K}$, at the front edge of the highest peak. $1720^{\circ} \mathrm{K}$ closely approximated the temperature that the arbitrary scaling had assigned to a deep interstitial. Note that the initial position of a replacement atom was
$\sqrt{3} I, U$ from its neighbors, and thus because of potential erosion, it had a potential of zero eV initially. To climb out of this well, about 17.5 eV must be supplied. Although this number was inaccurate for the same reasons listed above, it did demonstrate that even a purely repulsive potential can predict a greater binding energy for replacement atoms than for interstitial atoms.

V. CONCLUSIONS

An arbitrary scaling has been used to correlate the simulation results with experimental data. Although the method was not analytically sound, no other avenues of apprach to the problem could be found that could further justify our hypothesis.

Satisfaction can be gained, however, from the fact that these results compare favorably with known data at many interfaces. Our model was a tried and proven one, with many successful sputtering, channelling, and similar simulations to its credit. This present model invariably behaved in a physically valid manner or a manner which could be made physically acceptable by varying the controlling parameters in the program. Specifically, many previous experimental and simulated results for infinite crystals were reprocuced when simulation took place deep in a large lattice, such as the $\langle 110\rangle$ split interstitial position for BCC structures. The Method 1 replacement levels, if found for a much deeper crystal, would have asymptotically approached very close to the $8,8 \mathrm{eV}$ heat of sublimation. The simulated depth of the positive potential well for interstitials of about 4.2 eV closely approximated KS's prediction of 4.5 eV .

All avenues in additional computer simulation have not been exhausted. Future simulation of Argon, Krypton, and Xenon defects in tungsten should be fruitful. Comparisons between the relative locations of these new energy levels might further substantiate this research. In particular, if simulation can explain why KS's neon data contains five desorbtion peaks, while their Argon, Krypton, and Xenon data containfour peaks, it will be a major
success. KS also gathered data for different crystal surfaces and different angles of incidence, which might be investigated by computer simulation.

This simulation was also important in that it investigated the lattice surface; a topic which has not received as much attention as infinite crystal dynamics. Since radiation damage theory and modern transistor theory is very much concerned with the crystal surface, the computer simulation field will undoubtably increase their emphasis on surface effects, with considerable attention toward better ways of treating a foreign interstitial. A new exhaustive book which reports on the present state of knowledge in all these areas, with emphasis on experimental results has just been published. It is a report on the proceedings Of the interrational Conference on Vacancies and Interstitials in Metals, 1968 [27].

The computer program can call any one of nine lattice generator subroutines: three face-centered cubic subroutines ([L100], [L110], [Lll1]), three body-centered cubic subroutines ([B100], [B110], [Blll]), and three diamond subroutines ([D100], [D110], [D111]). The diamond subroutines are never used and therefore not compiled; but provision has been made for their future inclusion in the program. The dimensions of the lattice chosen were controlled by the input data variables [IX], [IY], and [IZ]. Each atom in the crystal was numbered, in the order x followed by z, followed by y. For the surface layer $(\mathrm{Y}=0)$ of the tungsten $10 \times 10 \times 10$ lattice, atoms were numbered from 2-26; for the first layer below the surface, atoms were numbered 27-51, etc. Atom number 1 was the primary, or point defect aton. [LD] was the mumber of the last mobile atom, or the last atom in the eighth layer, number 200; and [LL] was the number of the last atom in the crystal, number 250.

The placement of point defects was accomplished as follows: after the desired perfect lattice was built to the desired size, subroutine PLACE was called. Three types of defects were allowed: vacancies, interstitials, and replacement impurities. The type and location of the defect were controlled by input data variables: the type of defect [ITYPE], an atom number [NVAC] and a displacement vector [DlX, DlY, DlZ] in LU. If [ITYPE』 = 1, a vacancy was created in site number [NVAC]. This "removal" was accomplished by setting [LCUT (NVAC)] = 1 which "turned off" the atom, removing it from all calculations. If [ITYPE] = 2, an interstitial was created in a position [-DIX, -DIY, + DIZ] LU IICM
site number [NVAC]. This interstitial was always atom number 1. Since atom number 2 was always at the origin, number 1 could be placed using a displacement vector from the origin (from [NVAC] $=2$) or using a displacement vector from a site next to the interstitial. If [ITYPE] $=3$, a vacancy was created in site number [NVAC] and a replacement impurity, put in its place. Note that for both [ITYPE] $=2$ and 3, either a foreign or self defect could be placed. For the case of either the self-interstitial or the selfreplacement atom (giving us back the perfect crystal), either method 1 or method 2 of calculating the potential could be used. The choice of methods was also an input parameter: for method 1 , $[\mathrm{IQ}]=1$, and for method $2,[\mathrm{IQ}]=2$.
(In this appendix and all subsequent appendices, the brackets denoting program language are dropped. Program language is still written in all capital letters.)
A. BORN-MAYER REPULSIVE POTENTIAL

1. Potential Energy: For the lattice atom interactions, the Born Mayer potential equation is:

$$
\begin{equation*}
v_{i j}=\exp \left(A+B r_{i j}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { POT }=E X P(E X A+E X B * D I S T) \tag{lA}
\end{equation*}
$$

For bullet-lattice atom interactions,

$$
\begin{equation*}
v_{i j}=\exp \left(A^{\prime}+B^{\prime} r_{i j}\right)-v_{i j}(R O E) \tag{3}
\end{equation*}
$$

where $V_{i j}($ ROE $)$ is subtracted to retard the potential so that it goes to zero at the nearest neighbor distance. in the program, the $V_{i j}$ equation is:

$$
\begin{equation*}
\text { POT }=\operatorname{EXP}\left(P E X A+P E X B^{*} D I S T\right)-P P T C \tag{3A}
\end{equation*}
$$

2. Force: For the lattice atom interaction,

$$
\begin{align*}
\text { Force }=\frac{-\partial V_{i j}}{\partial r_{i j}} & =-B \exp \left(A+B r_{i j}\right) \\
& =\exp \left[(\ln -B+A)+B r_{i j}\right] \tag{4}
\end{align*}
$$

in the program, $\ln (-B+A)=(\operatorname{ALOG}[-E X B * C V E D]+E X A)=F X A$, where CVED is a conversion factor for units, and

$$
\begin{equation*}
\text { FORCE }=\left[F X A+E X B^{*} D I S T\right] \tag{4A}
\end{equation*}
$$

For bullet-lattice atom forces,

$$
\begin{equation*}
\text { Force } \left.=\frac{-\partial V_{i j}}{\partial r_{i j}}=-B^{\prime} \exp \left(A^{\prime}+B^{\prime} r_{i j}\right)=\exp \left[\ell m-B^{\prime}+A^{\prime}\right)+B^{\prime} r_{i j}\right] \tag{5}
\end{equation*}
$$

where $\left(2 n-B^{\prime}+A^{\prime}\right)=(\operatorname{ALOG}[-$ PEXB*CVED $]+\mathrm{PEXA})=\mathrm{PFYA}$, and

$$
\begin{equation*}
\text { FORCE }=\operatorname{EXP}[P F X A+P E X B * D I S T] \tag{5A}
\end{equation*}
$$

For bullet-lattice atom forces for which lattice atoms enter the range of the bullet's force during the timestep, a first approximation to the force is given by:

$$
\begin{equation*}
\text { Force }=\frac{V_{i j}-V_{i j}(R O E)}{r_{i j}-R O E} \tag{6}
\end{equation*}
$$

(See Figure 9). $V_{i j}-V_{i j}(R O E)$ is the retarded potential given above. A conversion factor is needed to preserve the proper units, so the following substitutions are made in the retarded potential equation (3A): (PEXA) becomes (2n CVED+PEXA) = PAC, so $V_{i j}=\operatorname{EXP}[P A C+P E X B * D I S T]$, and $V_{i j}(R O E)=$ PPTC becomes PFPTC, which is $V_{i j}(R O E)$ calculated after the PAC substitution. Finally, $r_{i j}-$ ROE $=D I S T-R O E=D F F$, and

$$
\begin{equation*}
\mathrm{FORCE}=\frac{\left(\mathrm{EXP}\left[\mathrm{PAC}+\mathrm{PEXB} \mathrm{~B}^{*} \mathrm{DIST}\right]-\mathrm{PFPTC}\right.}{\mathrm{DFF}} \tag{6A}
\end{equation*}
$$

Note: (5A) is used for $0 \leq$ DTST \leq ROE - DTI $=$ ROEM, and (6A) is used for ROEM $<$ DIST $<$ ROE.
$\rightarrow \therefore ;:$

1. Potential Energy: For. lattice atom interactions, the Morse potential equations is:

$$
\begin{equation*}
\Phi_{i j}=D\left[\exp \left\{-2 \alpha\left(r_{i j}{ }^{-r}{ }_{o}\right)\right\}-2 \exp \left\{-\alpha\left(r_{i j}{ }^{-r}{ }_{o}\right\}\right]\right. \tag{2}
\end{equation*}
$$

$=\exp \left[\left(\ln D+2 \alpha_{r_{o}}\right)-(2 \alpha) r_{i j}\right]-\exp \left[\left(\ln (2 D)+\alpha r_{o}\right)-(\alpha) r_{i j}\right]$
$=\operatorname{EXP}[(A L O G(D C O N)+2 . * A L P H A * R E)-(2 . * A L P H A * C V R) * D I S T]$
$-\operatorname{EXP}[(\operatorname{ALOG}(2 . * \mathrm{DCON})+\operatorname{ALPHA} * R E)-(A L P H A * C V R) * D I S T]$.
$=\operatorname{EXP}[\mathrm{CGD1}-\mathrm{CGB1} * \mathrm{DIST}]-$ EXP [$[\dot{\mathrm{CGD}} 2-\mathrm{CGB} 2 * \mathrm{DIST}]$
2. Force: For lattice atom interactions,

$$
=\exp \left[\ln (2 \alpha)+\left(\ln D+2 \alpha r_{o}\right)-(2 \alpha) r_{i j}\right]-\exp \left[\ln \alpha+\left(\ln (2 D)+\alpha r_{o}\right)-(\alpha) r_{i j}\right]
$$

$=\operatorname{EXP}[\operatorname{ALOG}(2 * A L P H A * C V R * C V E D)+A L O G(D C D N)+2 . * A L P H A * R E$

$$
\left.-\left(2 . * A_{L P H A}^{*} \mathrm{CVR}\right) * \mathrm{DISI}\right]
$$

- $\operatorname{Exp}[\operatorname{ALOG}(\operatorname{ALPHA} * C V R * C V E D)+A L O G(2 . * B C O N)+A L P H A * R E$

$$
\left.-\left(\text { ALPHA }^{*} \mathrm{CVR}\right) * \text { DIST }^{\circ}\right]
$$

$=\operatorname{EXP}\left[\begin{array}{l}\text { ALOG } \\ (- \text { CGBI }\end{array}\right.$ CVED $)+$ CGDI $)-$ CGBI $*$ DIST $]$

$$
\begin{equation*}
-\operatorname{EXP}[(\operatorname{ALOG}(-\mathrm{CGB} 2 * \mathrm{CVED})+\mathrm{CGD} 2)-\mathrm{CGB} 2 * \operatorname{DIST}] \tag{7A}
\end{equation*}
$$

$=\operatorname{EXP}[\mathrm{CGFL}-\mathrm{CGBL} * \mathrm{DIST}]-\operatorname{EXP}[\mathrm{CGF} 2-\mathrm{CGB} 2 * \mathrm{DIST}]$
C. CUBIC FIT

1. Potential Energy: The best cubic fit between the BM and Morse potentials is calculated in Subroutine CROSYM. The potential equation, defined between ROEA and ROEB, is

$$
\mathrm{POT}=\mathrm{CP} 3 \mathrm{r}_{i j}^{3}+\mathrm{CP} 2 \mathrm{r}_{i j}{ }^{2}+\mathrm{CPIr} \mathrm{ij}^{2}+\mathrm{CP} \vec{r}
$$

or POT + DIST $^{*}($ DIST*(DIST*CP $3+$ CP 2$)+$ CP 1$)+$ CP \varnothing
2. Force: Force $=\frac{-\partial P O T}{\partial r_{i j}}=-3 C P 3 r_{i j}^{2}-2 C P 2 r_{i j}-C P I$
$=(-3 . * \operatorname{CP} 3 *$ CVED $) r_{i j}{ }^{2}+(-2 . *$ CP $2 *$ CVED $) r_{i j}{ }^{+}(-$CP $1 *$ CVED $)$
$=C F 2 r_{i j}{ }^{2}+C F 1 r_{i j}+C F \varnothing$, or

$$
\begin{equation*}
\text { FORCE }=\text { DIST }^{*}(\text { DIST*CF2 } 2+\text { CFI })+C F \varnothing . \tag{9A}
\end{equation*}
$$

APPENDIX C: AVERAGE FORCE METHOD AND TIME DURATION THEORY
A. AVERAGE FORCE METHOD: The average force technique has been explained in great detail in Ref. 15. It was summarized in

Chapter 3, and therefore discussion here is limited to the average force method in the program language.

When the desired lattice is built, the position of the ith atom is stored simultaneously in $R X(I), R Y(I), R Z(I) ; R X K(I), R Y K(I)$, RZX(I); and RXI(I), RYI(I), RZI(I). The latter set of coordinates never change and are used for comparing new positions to original positions, and in calculating $D X(I), D Y(I)$ and $D Z(I)$ for output. The middle set of coordinates containing the letter K are for storing the initial positions at the beginning of each timestep. A step by step summary of the average force method, showing X coordinate calculations oniy, foilows:

1. Based on the position, $R X(I)$, of the ith particle at the beginning of the timestep, the force $F X(I)$ is calculated in STEP. 2. $R X(I)$ is stored in RXK(I).
2. The new, temporary position, $R X(I)$ is calculated, based on the force at RXK(I):

$$
\begin{equation*}
x^{1}=x+v \Delta t+F(\Delta t)^{2} / 2 m \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
R X(I)=R X(I)+D T O D *(H D T O M * F X(I)+V X(I) . \tag{10A}
\end{equation*}
$$

4. A new force is calculated, based on this new position RX(I).
5. VSS stores VX(I), the original velocity of the ith atom. This velocity is half the velocity of the ith atom in the previous timestep: the $\frac{1}{2}$ factor being an arbitrary damping multiplier. A
new velocity, based on the new force, is found:

$$
\begin{equation*}
V^{l}=V+F \Delta t / 2 m \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
V X(I)=V S S+H D T O M^{*} F X(I) \tag{11A}
\end{equation*}
$$

6. The final position is calculated, based on the average of these two velocities

$$
\begin{equation*}
X^{1}=X+\frac{1}{2} \Delta t\left(V+V^{1}\right) \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
R X(I)=R X K(I)+(V X(I)+V S S) * H D T O D \tag{12A}
\end{equation*}
$$

The resultant velocities are halved, a new timestep duration is calculated, and the process repeated.

B. TIMESTEP DURATION THEORY

This simulation uses the best possible estimate of a timestep duration, DT, as calculated from the present state of the forces and energies in the lattice for use in the next timestep. io limit motion to an increment small enough to preserve the accuracy of the average force approximation, we define DTI as the maximum distance any atom is allowed to move in one timestep.

From (10), we find

$$
\Delta X_{i}=\left(V_{i}+F_{i} \Delta t / 2 m\right) \Delta t
$$

Therefore,

$$
\begin{align*}
& \Delta t=\Delta X_{i} /\left(V_{i}+F_{i} \Delta t / 2 m\right) \tag{13}\\
& V_{i}>F_{i} \Delta t / 2 m, \quad \Delta t \stackrel{m}{ } \quad \Delta X_{i} / V_{i} \tag{14}
\end{align*}
$$

For

If we find the fastest moving atom and assure that it does not move more than DTI, we have limited the motion of all other atoms to less than DTI.

Thus,

$$
D T=(D T I * C V D) / E M A X=F D T I / E M A X
$$

where

$$
\operatorname{EMAX}=\operatorname{SQRT}(V X(I) * V S(I)+V Y(I) * V Y(I)+V Z(I) * V Z(I) .
$$

For

$$
\begin{align*}
& v_{i}>F_{i} \Delta t / 2 m, \\
& \Delta t=\Delta X_{i} / F_{i} \Delta t / 2 m=\frac{2 m \Delta X_{i}}{F_{i}} . \tag{15}
\end{align*}
$$

Anatagous to above, we find the most stressed atom and assure that it does not move more than DTI. Thus,

$$
\begin{align*}
\mathrm{DT} & =\operatorname{SQRT}\left[\left(2 \cdot * \mathrm{PTMAS}^{*} \mathrm{DT} I * \mathrm{CVD}\right) / \mathrm{FMAX}\right] \\
& =\mathrm{SQRT}[\mathrm{TFAC} / \mathrm{FMAX}] \tag{15A}
\end{align*}
$$

where $\operatorname{FMAX}=\operatorname{SQRT}[F X(I) * F X(I)+F Y(I) * F Y(I)+F Z(I) * F Z(I)]$.
Since rigorously we cannot make either or these limiting assumptions, we must go back to our original equation for DT, equation (13).

Since this equation involves DT, we proceed as follows:

1. Assume $\mathrm{V}_{\mathrm{i}} \ll \mathrm{F}_{\mathrm{i}} \Delta \mathrm{t} / 2 \mathrm{~m}$ and caiculate $\Delta \mathrm{t}$ from (15A).
2. Insert this preliminary value for $D T$ in (13) and compare V_{i} to $F_{i} \Delta t / 2 m$. If V_{i} is larger, calculate $D T$ from (14A). If $F_{i} \Delta t / 2 m$ is larger calculate $D T$ from (15A).

A complication arises when a foreign impurity is in the lattice, because of a variation in the value for m in (15). This is especially acute when the differences in masses are great. The method used to solve this problem is as follows:

1. If either $\operatorname{FMAX}=\mathrm{F}_{1}$ or $\operatorname{EMAX}=\mathrm{V}_{1}$, the entire proceedure, above, is followed using the mass of the bullet for m.
2. If both $\operatorname{FMAX} \neq \mathrm{F}_{1}$ and $\operatorname{EMAX} \neq \mathrm{V}_{1}$, the entire proceedure is followed using the mass of a lattice atom.

The requirement that the bullet mass be used if either EMAX or FMAX describe the bullet circumvents the problem of having the
bullet the fastest moving atom, but not the most stressed atom, or visa versa.
To begin the problem, an arbitrary value of 10^{-14} seconds is assigned to DT. If at any time in the program EMAX = FMAX = zero, 10^{-14} is again assigned to DT to prevent division by zero.

```
APPENDIX D: SUBROUTINES STEP, ENERGY, AND LOCAL
```


A. DISTANCE CALCULATIONS

In all three subroutines, STEP, ENERGY, and LOCAL, a method of finding all atoms within a given radius of another atom was needed. For lattice atom interactions, atoms inside ROEA, ROEB, and ROEC were found; for the foreign interstitiad interactions, atoms inside ROE were found; and for LOCAL, atoms inside ROEL of a point defect were found. The time saving technique used to do this was to successively eliminate all atoms with an x component difference greater than the given radius, then similarly for y components, then for z components. The resulting volume not eliminated is a cube circumscribing the desired sphere. Finally the time-consuming test of eliminating all atoms for which the desired radius is Iess than SQRT (DRX*DRX i DRY'䒑DRY + DRZKDRZ) is applied to only atoms inside the cube.
B. SUMMATION INDICES IP AND IQ

Interactions $V_{i j}, \varnothing_{i j}$, and $F_{i j}$ are found by evaluating all values in the half matrix. For example $\mathrm{F}_{12}, \mathrm{~F}_{13}, \mathrm{~F}_{14} \ldots$ are found, then $F_{23}, \mathrm{~F}_{34}, \cdots$ etc. The variable $I P$ controls the starting point for the j summation. IP is always set to $I+1$ to avoid the repetition of finding $F_{i j}$ and $F_{j i}$. IQ controls the starting point for the i summation. If the primary is to be treated as a lattice atom, $I Q=1$. If it is to be treated as a foreign particle, $I Q=2$, and all $F_{i j}$ are found separately.
C. DISTRIBUTION OF FORCES AND POTENTIAL ENERGIES The forces $F_{i j}$ are equal and opposite on i and j : $i \cdot e ., F_{i}=-F_{j}$ The potential energies are split in proportion to the reduced

- $=$

$1+2=-1$
Co
$=-$
$=-$
Colle
Coseres,

mass of the interacting particles. This is easily understood by observing the kinetic energy distribution of an elastic collision of m and M where $M>m$. We find that m carries away almost all the kinetic energy: specifically it carries away $\left(\frac{M}{m+M}\right) E_{\text {TOT }}^{\sim} E_{\text {TOT }}$. If a pair of atoms are to behave elastically, the potential energies which are transformed into kinetic energies of motion must be split in the same manner. For this reason,

$$
\operatorname{PPE}(1)=\left(\frac{\mathrm{TMAS}}{\mathrm{TMAS}+B M A S}\right) * \operatorname{POT}=\mathrm{BSAVE} * P O T ;
$$

and

$$
\operatorname{PPE}(J)=\left(\frac{\mathrm{BMAS}}{\text { TMAS }+\mathrm{BMAS}}\right) * \mathrm{FOT}=\mathrm{TSAVE} * P O T .
$$

note, for $B M A S=T M A S, B S A V E=T S A V E=\frac{1}{2}$, and the energies are split equally.
D. SUBROUTINE LOCAL

LOCAL measures the change in potential energy associated with a sphere of radius ROEL surrounding a point defect. It sums up the potential energies of each atom found inside this sphere at time zero. It remembers these atoms, and for each timestep re-sums the potential energies of these same atoms. The sum, total local potential energy TLPE, is subtracted from TLPE at time zero (TLPEØ), to give a measure of the change in potential energy (DLPE) inside ROEL.

APPENDIX E: COMPUTER PROGRAM GLOSSARY

NOTE: In this glossary, the terms "point defect atom", "bullet", and "primary" are synonymous; and the terms "lattice atom" and "target" are synonymous.

ALPHA: Input Morse potential parameter

BSAVE: Target mass/(target mass + bullet mass); distributes potential energy between target and bullet

BIND: Negative of the total potential energy (TPOT) at time zero

BMAS: Mass of bullet in amu

BULLET: Alpha-numeric array for point defect material

CFO, CF1, CF2:- Force parameters of cubic fit between Morse and Born-Mayer functions

CGB1, CGB2: Morse potential parameters
CGDI, CGU2: Morse poteniiai parameiers

CGFl, CGF2: Morse force parameters

CPO, CP1, CP2, CP3: Potential parameters of cubic fit between

Morse and Born-Mayer functions
CVD: CVR $\times 10^{-10}$, converts lattice units to meters CVE: 1.6×10^{-19}, converts electron volts to joules

CVED: CVE/CVD, a ratio used to avoid repeated division
CVM: 1.672×10^{-27}, converts atomic mass units to kilograms

CVR: LU in angstroms; converts lattice units to angstrom units

DlX, Dly, DlZ: Displacement coordinates for location of interstitial

from reference atom, NVAC

-

DCON: Input Morse potential parameter

DFF: ROE-DIST, the distance closer than ROE that an atom is to the primary

DIST: Distance between any two atoms
DLPE: TLPE-TLPE \varnothing, the change in total local potential energy since time zero

DRX, DRY, DRZ: x, y, z components of DIST
DT: Length of a timestep in seconds
DTI: Number of lattice units most energetic atom may move in one timestep

DTOD: DT/CVD--a ratio used to avoid repeated division
DTOM: DT/PTMAS--a ratio used to avoid repeated division
DTOMB: DT/PEMAS--a ratio used to avoid repeated division
$D X(I), D Y(I), D Z(I): C h a n g e ~ i n ~ p o s i t i o n ~ o f ~ i t h ~ a t o m ~ f r o m ~ i n i t i a l ~$ position at time zero

EMAX: The maximum energy encountered in any cycle
EV: Primary energy in electaon volts
EVR: Primary energy in kilo-electron volts
EXA, EXB: Input Born-Mayer potential function parameters for the target

F2: Square of the force on a specific atom
FA: The component force increment on an atom
FDTI: DTI X CVD, a parameter used to determine DT my maximum energy method

FM: A small number used in checking potential energy zero point

FM2: FM squared
FMAX: Maximum total force on the most stressed atom in the crystal

FOD: FORCE/DIST--a ratio used to avoid repeated division

FORCE: Numerical value of the force function with a variable parameter

FX(I), $\mathrm{FY}(\mathrm{I}), \mathrm{FZ}(\mathrm{I}): x, y, z$ components of total force on an atom FXA: Born-Mayer force function parameter

HBMAS: $\frac{1}{2}$ BMAS--a ratio used to avoid repeated division HDTOD: $\frac{1}{2}$ DTOD--a ratio used to avoid repeated division HDTOM: $\frac{1}{2}$ DTOM--a ratio used to avoid repeated division HDTOMB: $\frac{1}{2}$ DTOMB--a ratio used to avoid repeated division HTMAS: $\frac{1}{2}$ TMAS--a ratio used to avoid repeated division Il: Variable in cubic fit subroutine
I3: " " " " "

IDEEP: Number of mobile layers
IHl: Alpha numeric array for program title

IH2:	$"$	$"$	$"$ Morse function parameters	
IHB:	$"$	$"$	$"$	$"$ bullet element
IHS:	$"$	$"$	$"$	$"$ type and or ientation of crystal
IHT:	$"$	$"$	$"$	" target element

ILAY: Same as IDEEP
IN: Odd-even integer used to determine atom site establishment
IP: Subscript value of atom. Used in subroutines STEP and ENERGY

IQ: Parameter that determines whether or not a self defect is to be given a repulsive potential or a composite attractiverepulsive potential

ISHUT: A parameter used to shut down the program
IT: Unscaled fixed point x coordinate used in lattice generation
ITT: Odd-even integer used to determine atom site estabishrent

ITYPE: Parameter used to determine the type of point defect: vacancy, interstitial, or replacement

IX, IY, IZ: Number of x, y, z planes of crystal
J2: Variable in the cubic fit subroutine

JJ: Parameter in the $B C C(111)$ lattice generation subroutine
JT: Unscaled y coordinate used in crystal generation
JTS: Variable used to establish atom sites
JTT: " " " " "

KF: Final K in LOCAT (K) assigned to an atom
KT: Unscaled z coordinate used to establish atom site
LCUT(I): Used to identify an ith atom which is not included in calculations

LD: The highest numbered atom in the mobile layers
Li: The highest numbered atom in the crivac axystal
LOCAT(K): Dimensioned variable that remembers the numbers of the atoms within a radius ROEL of the primary at time zero LS: Variable associated with each of the nine lattice generator subroutines

MCRO: One number higher than the order of the fit between the Born-Mayer and Morse potentials, always 4 in this simulation

ND: Data output increment, in numbers of timesteps

NEW: Parameter used to determine whether or not atom numbers have been stored in LOCAT (K)

NPAGE: Page numbering variable
NRUN: Parameter used to determine whether or not to read additional data cards

NS: Initial print statement timestep number
NT: Timestep number
NTT: Timestep number limit before shutdown
NVAC: An atom number used to establish point defects or used as a reference point for interstitial placement

PAC: Parameter for bullet force function correction

PBMAS: Primary mass in kilograms

PEXA, PEXB: Input Born-Mayer potential function parameters for the bullet-target interaction

PFPTC: Primary force function evaluated at ROE
PFXA: Primary force function parameter
PKE(I): Kinetic energy of the ith atom
PLANE: Alpha-numeric array for lattice orientation
POT: Fotential anergy betwcen tuo atoms
PPE(I): Potential energy of the ith atom
PPTC: Primary potential function evaluated at ROE
PTE(I): Total energy of the ith atom (potential + kinetic)
PTMAS: Target mass in kilograms

RE: Input Morse potential parameter
RO: Spacing constant in FCC(110) lattice generation subroutine
ROE: Nearest neighbor distance

ROE2: ROE squared
ROEA: Maximum cut off for Born-Mayer potential
ROEB: Minimum cut off for Morse potential
ROEC: Maximum cut off for Morse potential

ROEC2: ROEC squared
ROEL: Radius inside of which local potential cnergy is found

ROEL2: ROEL squared
ROEM: ROE-DTI, region in which modification of repulsive force must be made
$R X(I), R Y(I), R Z(I): x, y, z$ coordinates of an ith atom at any time RXI(I), RYI(I), RZI(I): x, y, z coordinates of an ith atom's initial position

RXK(I), RYK(I), RZK(I): x, y, z coordinates of temporary position of an ith atom during force cycle

SAVE: $\frac{1}{2}$ POT
SCX, SCY, SCZ: x, y, z coordinate scale factors
SSCZ: A z scale factor used for the $\operatorname{FCC}(111)$ lattice generator subroutine

START: An optional timing variable, not used in this simulation SUM: Variable in cubic fit subroutine

TARGET: Alpha-numeric array for target material
TSAVE: Bullet mass/(target mass + bullet mass); distributes potential energy between target and bullet

TE: Total energy of all crystal atoms (kinetic + potential)
TEMP: Temperature of lattice in degrees Kelvin. Not used in this simulation

TFAC: A time factor ratio used to determine DT by maximum force method

TFACB: TFAC for the bullet
THERM: Thermal energy of atom. Not used in this simulation
TIME: Elapsed problem time in seconds
TLPE: Total local potential energy of atoms within a radius ROEL
TLPE, TLPE at time zero

TMAS: Target atom mass in amu
TPKE: Total kinetic energy of all crystal atoms

TPOT: Total potential energy of all crystal atoms

VSS: Storage variable for velocity components
$V X(I), V Y(I), V Z(I): x, y, z$ components of ifh atoms velocity
X, Y, Z: Unscaled coordinates used in crystal generation

YLAX(I): Relaxation in $-y$ direction of ith layer in L.U.

ZP: Floating point form of JTT

-
 $\begin{array}{ll} \\ & \end{array}$

desorbtion rate (linear scale)

Figure 7.

EC (lOO) ORIENTATION
HARD SPHERE MODEL

SOLID LINE: "Y" PLANE
dASHED LINE: "Y-1" PLANE
interstitial in "y" plane:
INT A IN <OlIO> OPEN CHANNEL
INT B HIDDEN FROM SURFACE

C
THIS PROGRAM GENERATES VARIOUS TYPES AND ORIENTATIONS OF CRYSTAL LATTICES, AND INJECTS A VACANCY, INTERSTITIAL, OR REPLACEMENT IMPURITY AT A DESIRED LOCATIONO IT THEN, BY USE OF ATGMIC POTENTIAL PARAMETERS AND NEWTONIAN MECHANICS, CALCULATES THE OYNAMIC RESULTS OF THE SYSTEM; OUTPUTING POSITICN, VELOCITY, ANO ENERGY VALUES FOR EACH ATOM IN THE CRYSTAL.
C
DIMENSIONING OF VARIABLES NOT NEEDED IN COMMON
DIMENSION VX(100C), VY(10NC), VZ (100N), PKE(1000)
DIMENSION DX (1000), DY(1000), DZ (1000), PTE(1000)
DIMENSION RXK(100G), RYK(1000), RZK(1000)

CCMMON LABELING OF VARIABLES REQUIRED IN OTHER SUBROUTINES COMMON/COMI/RX(1COC), RY(1000),RZ(1000), LCUT(1000), 1LL, LD, ITYPE, NVAC COMMON/COM2/IH1 (20), IH2(8), IHS (10), IHB(6), IHT(6),
1 TARGET (4), TMAS, BULLET(4), BMAS, PLANE, TEMP, THERM
COHMON/COM3/RXI (IOUO), RYI (100U), RZI (10ÚO), CVR,EVR,
INT, TIME, DT, DTI, ILAY
COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,D1X,DIY,DIZ COMMON/COM5/ROE,ROE2,ROEM, EXA, EXB, PEXA, PEXB,FXA, PFXA,
$1 I Q, T S A V E, B S A V E$ COMMON/COMG/FX(1COO),FY(1COO),FZ(1000), PAC, PFPTC,FM COMMON/COM7/PPTC, TPOT, PPE (1OOU), TLPE,ROEL, ROEL2, NEW COMMON/COM8/ROEA, ROFB, ROEC, ROEC2, CPC1, CP1,CP2,CP3,
$1 \mathrm{CFO}, \mathrm{CF} 1, \mathrm{CF} 2, \mathrm{CGD1}, \mathrm{CGO} 2, \mathrm{CGB1}, \mathrm{CGB} 2, \mathrm{CGF1}, \mathrm{CGF} 2$
COMMON/COMA/ A(4,5),MCRO
C
READ STATEMENT FORMATS

```
    9010 FORMAT (20A4)
    9020 FORMAT ( 3 A4, 3F8.5,2F5.2)
    9030 FORMAT ( 4 A4, 3 F8.5,6A4,F6.2)
    9040 FORMAT (F6.2,F5.3,15,614,3F5.2,12)
    0050 FORMAT (1)A4:A4,413,F8.4, I4)
```

C
WRI TE STATEMENT FORMATS
9610 FORMAT (1HI)

9630 FORMAT ($3(15,3$ F6. $2, F 8.4,8 \mathrm{X}$))
9640 FORMAT $/ 74 \mathrm{X}$, FiC. $3,25 \mathrm{H}$ EV, TOTAL KINETIC ENERGY, F FIC. 3 ,
127H EV, TOTAL POTENTIAL ENERGY,FIO, $3,13 H$ EV, REDUCTION.
IOF RADIUS $=, F 5.2,130 \mathrm{X}, 16$ HCHANGE IN TLPE $=$ F FIO.3)
9650 FORMAT (IO5X, $4 \mathrm{HPAGE}, I 3,1,1 \mathrm{HI})$
9660 FORMAT / $/$ ATOM DX DY DZ
$1 V X \quad V Y$ VE $V E$ VE $\quad \mathrm{VE} / 1$
9670 FORMAT (II $8,3 F 10.3,3 F 10.1,3 F 10.4$)
C
INITIALIZING

2 RZI (I) $=0.0$
I SHUT=1
NRUN $=0$
INPUT DATA

READ
READ
READ
READ

IH1
IH2,DCON, ALPHA,RE,ROEC, ROEL
BULLET, BMAS, PEXA, PEXB, IHB, THERM
TARGET, THAS, EXA, EXB, IHT, TEMP
EVR,DTI,NTT,NS,ND,IP,IDEEP, ITYPE, NVAC,
IDIX, DIY, DIZ,IQ
IHS, PLANE,LS,IX,IY,IZ,CVR,MCRO
FACTORS

ROE $2=3.0$
ROE =SQRT (ROE2)
ROEM = ROE-DTI
ROEL2=ROEL*ROEL
CVE=1.6OE-19
$E V=E V R * 1 \cdot 0 E+3$
$C V M=1.672 E-27$
$F M=1: 0 E-10$
$F M 2=F M$ 次 $F M$
$C V D=C V R * 1 \cdot 0 E-10$
CVED=CVE/CVD
PTMAS = TMAS $* C V M$
PBMAS = BMAS $\because C V M$
HTMAS $=0.5 \%$ PTMAS/CVE
HBMAS $=0.5 * P B M A S / C V E:$
TSAVE = BMAS/(BMAS + TMAS)
BSAVE=TMAS/(BMAS+TMAS)
CEPULSIVE POTENTIAL PARAMETERS
$F X A=A L O G(-E X B * C V E D)+E X A$
$P F X A=A L O G(-P E X B Z C V E D)+P E X A$

PAC=A!CG!CVED!+PEXA
PFPTC $=E X P(P A C+P E X B * R O E)$
C TTRACTIVE POTENTIAL PARAMETERS
$C G D 1=$. $\mathrm{LOG}(D C O N)+2.0 * A L P H A * R E$
CGO2=ALOG(2.CㄴDCON) +ALPHA*RE
CGEI $=-2.0$ *ALPHA*CVR
CGB2 $=-$ ALPHA 2 CVR
CGFI $=A L O G(-C G B 1$? CVED$)+\mathrm{CGD1}$
CGF2 $=\mathrm{ALOG}(-\mathrm{CGB} 2 * \mathrm{CVED})+\mathrm{CGD2}$
ĆUTOFF DISTANCES FOR ATTRACTIVE AND REPULSIVE POTENTIALS
ROEA $=1.50 / C V R$
ROEB $=2.0 / C V R$
ROEC $2=R O E C * R O E C$
CARAMETERS FOR CALCULATION OF THE BEST CUBIC FIT IN THE GAP BETWEEN MAXIHUM DISTANCE CUTOFF OF THE PEPULSIVE POTENTIAL
(ROEA), AND MINIMUM DISTANCE CUTOFF OF THE ATTRACTIVE POTEN-
TIAL (ROEB). SUBROUTINE CROSYH ACTUALIY PERFORMS THIS CURVE
FITTING。

```
\(A(1,1)=1.0\)
    \(A(1,2)=\) ROEA
    \(A(1,3)=\) ROEA \(\div\) ROEA
    \(A(1,4)=R O E A * * 3\)
    \(A(1,5)=E X P(E X A+E X B * R O E A)\)
    \(A(2,1)=1.0\)
    \(A(2,2)=R O E B\)
    \(A(2,3)=R O E B * R O E B\)
    \(A(2,4)=R O E B * * 3\)
    \(A(2,5)=E X P(C G D i+C G B 1 * R O E B)-E X P(C G D 2+C G B 2 * R O E B)\)
    \(A(3,1)=0.0\)
    A \((3,2)=-1.0\)
    \(A(3,3)=-2 \cdot 0\) \%ROFA
    \(A(3,4)=-3.0 \%\) ROEA 2 ROEA
    \(A(3,5)=E X P(F X A+E X B * R O E A) / C V E D\)
```

$A(4,1)=0.0$
$A(4,2)=-1.0$
$A(4,3)=-2.0 * R O E B$
$A(4,4)=-3 \cdot 0$ ※ROEB*ROEB
$A(4,5)=(E X P(C G F 1+C G B 1 * R O E B)-E X P(C G F 2+C G B 2 * R O E B)) / C V E D$
CALL CROSYM
$C P O=A(1,5)$
$C P 1=A(2,5)$
$C P 2=A(3,5)$
$C P 3=A(4,5)$
CFO $=-\mathrm{CPI}$ ※ C VED
CF1 $=-2 \cdot 0 * C P 2 * C V E D$
C
SELECTION OF THE DESIRED CRYSTAL STRUCTURE AND ORIENTATION. 100, 110 , AND 111 PLANES OF FACE-CENTERED, BODY-CENTERED, AND DI AMOND STRUCTURES ARE ALLOWED. ILAY' AND IDEEP APE VARIABLES ESTAELISHING THE NUMBER OF MOBILE LAYERS IN THE
CRYSTAL. PXI(I) AID RXK(I) ARE VARIABLES SAVING THE ORIGINAL X-POSITION OF THE I TH ATOM. Y AND Z POSITIONS ARE
ANALOGOUS.
GO TO ($11,12,13,14,15,16,17,18,19)$, LS
11
CALL 100

13 CALLL.111
14 CALL EIOO
GO TO 30
15
GOLLO 30
CALL $01 C 0$
GO 1020
GAL 210
GO TO 30
19 CALL Dİ1
30 ILAY= IDEEP
IF (IDEEP) 35,35,4C
35
ILAY=IY

RYK (I) $=$ RY(I)
RZK (I) $=$ R.Z(I)
RXI(I) $=$ RX(I)
RYI (I)=RY(I)
$45 \operatorname{RZI}(I)=R Z(I)$
C
THIS SECTION ALLOWS UNE TO REPEAT A RUN OF THE PROGRAM WITH DIFFERENT DATA WITHOUT REPEATING INITIALIZATION, POTENTIAL parameter calculations aino crystal lattice buildingo subROUTINE PLACE USES LCUT(I) AND NVAC TO CREATE VACANCIES: INTERSTITIALS, AND PEPLACEMENT IMPURITIES AT DESIRED LOCATIONS IN THE LATTICE。

50 READ (5,9040$)$ EVR,DTI,NTT,NS,ND,IP,IDEEP, ITYPE,NVAC, 1D1X, DIY, DIZ, 12
IF(DTI.EQ.O) GO TO 9999
DO $55 \mathrm{I}=1, \mathrm{LL}$
$\operatorname{LCUT}(I)=0$
RX(I) $=R \times I(I)$
RY(I) $=$ RYI (I)
RZ(I) $=$ RZI(I)
RXK(I) $=$ RXI(I)
RYK (I) = RYI (I)
55
NRUN=1
CALL PLACE
$\operatorname{RXI}(1)=\operatorname{RX}(1)$

```
            RYI(1)=RY(1)
            RZI(1)=RZ(1)
            RXK(1)=RX(1)
            RYK(1)=RY(1)
            RZK(1)=RZ(1)
            DO 65 I =1,LL
            VX(I) =C.O
            VY(I)=C.0
            VZ(I)=(1.0
            PPE (I)=0.0
            PKE (I) =C.0
                            TPOT=0.0
                            NEW=C
C
THE ENERGY SUBROUTINE CALCULATES THE POTENTIAL ENERGY OF EACH ATOM IN THE LATTICE SUBROUTINE LOCAL SUMS UP THIS ENERGY FOR ALL ATCMS WITHIN A SPECIFIC RADIUS OF THE POINT DEFECT.
CALL ENERGY
CALL LOCAL
BIND \(=-\) TPOT
TPKE=0.0
TLPEO=TLPE
DLPE=YLPE-TLPEO
\(T E=T P O T+B I N D\)
c
THIS SECTION PRINTS OUT \(X\), \(Y\), AND \(Z\) COOROINATES, IN LATTICE UNITS, AND BINDING ENERGIES OF EACH ATOM IN THE CRYSTAL AT TIME ZFRO.
TIME \(=0.0\)
NT=0
WRITE \((6,9610)\) IH2,NT
WPITE
( 6,9620\()\)
IH2,
DO \(70 \quad I=1\), LL, 3
\(K=I+1\)
WRiTE ( 6,9630) I, RX(I), RY(I), RZ(I), PPE(I), K,RX(K),
1.RY(K),RZ(K), PPE(K), J,RX(J),RY(J),RZ(J),PPE(J)
WRITE ( 6,964C') TPKE,TPOT,TE,TLPE,ROEL,DLPE
NPAGE = 1
NPAGE=NPAGE+1
WRITE ( 6,9650) NPAGE
C
THIS IS THE MAIN BODY OF THE PROGRAM. BY USE OF THE AVERAGE FORCE METHOD, EXPLAINED IN DETAIL IN APPENDIX C, IT DOES ALL THE DYNAMICS FOR EACH INDIVIDUAL ATOM: SUBROUTINE STEP CALCULATES ALL MUTUAL FORCES AMONG THE ATDHS. BASED ON THE FORCES, THIS SECTION THEN CALCULATES TEMPORARY POSITIONS FOR THE PRIMARY, AND ALL OTHER ATDMS; RECALCULATES FORCES IN STEP: AND THEN RECALCULATES FINAL POSITIONS FDP. THE PRIMARY AND ALL OTHER ATOMS, BASED ON THE AVERAGE OF THESE TWO FORCES. THIS SECTION ALSO INCLUDES ALL KINETIC ENERGY CALCULATIONS, BASED ON THE VELOCITIES INVOLVED; AND FINALLY CALCULATES A NEW TIMESTEP DURATION FOR USE IN THE NEXT TIMESTEP, BASED ON EITHER A MAXIMUM ALLOWED FORCE, DR MAXIMUM ALLOWED ENERGY. (SEE APP. C) VELOCITIES ARE. HALVED AT THE END OF FACH TIMESTEP AS A METHOU OF DAMPING.
95 TFAC=2.0\%PTMAS*DTI*CVI
```



```
DT \(=1.0 E-14\)
100 DTOD=DT/CVD
HDTOD \(=\mathrm{C} \cdot 5 *\) DTOD
DTOM \(=\) DT / PTMAS
HOTOM=C.5\%DTOM
DT \(O M B=D T / P B M A S\)
HDTOMB \(=0.5 *\) DTOMB
200
CALL STEP
IF(LCUT(1).GT.O) GO TO 240
\(\mathrm{I}=1\)
RXK (I) \(=\) RX(I)
RYK (I)
```

```
    RZK(I)=PRZ(I)
    RX(I)=RX(I)+DTOD*(HDTOMB*FX(I)+VX(I))
    RY(I)=RY(I) +OTOD*(HOTOMB*FY(I) +VY(I)
    RZ(I) =RZ(I) +DTOD*(HDTOMB*FZ(I)+VZ(I))
240
245
    DO 245 I =2,LD
    IF(LCUT(I).GT.O)GO TO 245
    RXK(I) = RX(I)
    RYK(I)=RY(I)
    RZK(I)=RZ(I)
```



```
    RY(I)=RY(I)+DTOD*(HOTOM*FY(I)+VY(I))
    RZ(I) =RZ(I) +DTOD*(HDTOM*FZ(I)+VZ(I))
    CALL STEP
    EMAX=0.0
    FMAX=0.0
    TIM位=TIME+DT
    NT = NT+1
    IF(LCUT(1).GT.0) GO TO 265
    I=1
    VSS=VX(I)
    VX(I) = VSS+HOTOMB*F FX(I)
    RX(I) = RXK(I) +(VX(I) +VSS)㴗HDTOD
    VSS=VY(1)
    VY(I)=VSS+HDTOMB*FFY(I)
    RY(I)=RYK(I)+(VY(I)+VSS)%HDTOD
    VSS=VZ(I)
    VZ(I)=VSS+HOTOMB*FZ(I)
    RZ(I)=RZK(I)+(VZ(I)+VSS)*HDTOD
    PKE(I)=VX(I) * * VX(I) +VY(I) & VY(I) +VZ(I) 凉VZ(I)
    EMAX=PKE(I)
    FMAX=FX(I)*FX(I) +FY(I)次FY(I) +FZ(I)芳FZ(I)
    FORCl= FMAX
2 6 0
    X(I)=0.0
    FY(I)=0.0
    265
    IF(LCUT(I): 2BOC
    VSS=VX(I)
    VX(I)=VSS+HDTOM秋FX(I)
    RX(I)=RXK(I)+(VX(I)+VSS)*HDTOD
    VSS=VY(I)
    VY(I) =:VSS+HOTOM*FY(I)
    RY(I)=RYK(I) +(VY(I) +VSS)*HOTOD
    VSS=VZ(I)
    VZ(I)=:VSS+HDTOM*FZ(I)
    RZ(I) = PZK(I) +(VZ(I) +VSS)*HDTOD
    PKE(I)=V湆(I)*VX(I)+VY(I)次VY(I)+VZ(I)*VZ(I)
    FX(I)=0.C
    FY(I)={00
    FZ(I)=6.0
    IF(F2.GT.FMAX) FMAX=F2
    IF(PKE(I)。GT。EMAX) EMAX=PKE(I)
    CONTINUE
    IF(EMAX.EQ.O.U) GO TO 285
    GO TO 287
GO T0 300)
287 IF(EMAX.EQ.PKE(1)) GO TO 290
    IF(FMAX.EQ.FORCI) GO TO 290
    EMAX=SQRT (EMIAX)
    FMAX=SQRT(FMAX)
    DT =SQRT (TFAC/FMAX)
    FTERM=FMAX*DT/(2.0*PTMAS)
    GO TO 295
    290 EMAX=SQRT(PKE11))
    FMAX=SORT(FORC1)
    IF(FORC1.EQ.O.O) GO TO 285
    DT=SQRT (TFACR/FMAX)
    FTERM=FMAX*DT/(2.0#PBMAS)
```

 FDT I=DTI \#CVD
 DT=FDTI/EMAX
 300
 310
320
IF (ISHUT.EQ.-1) GO TO 400
IF (NS-NT) $400,4 \mathrm{CO}, 320$
DO $325 \quad \mathrm{I}=1$, LL
$V X(I)=0.5 * V X(I)$
$V Y(1)=0.5 * V Y(I)$
$325 \mathrm{VZ}(\mathrm{I})=5.5 * V Z(I)$
340
DO $350 \quad \mathrm{I}=1, \mathrm{~L}$
$R X(I)=R X K(I)$
350 RZ(I) $\begin{aligned} & \text { RY } \\ & \text { RZK (I) }\end{aligned}$

C
THE PRINT SUBROUTINE PLACES A HEADING OF PERTINENT INFORMATION AT THE TOP OF EACH TIHESTEP PRINTOUT. 400 CALL PRINT
C
POTENTIAL ENERGY AND LOCAL POTENTIAL ENERGY FOR EACH ATOH
ARE CALCULATED BASED ON THE NEW POSITIONS. SUMMATIONS OF
TOTAL POTENTIAL AND KINETIC ENERGY FOR THE LATTICE ARE PER-
FORMED. DX, DY, AND DZ KEEP TRACK OF MOTIDN RELATIVE TO THE
INITIAL POSITION AT TIME ZERO FOR EACH ATOM.
410 TPOT $=(1.0$
DO $450 \mathrm{I}=1, \mathrm{LL}$
450
CTEC1: = C, U
CALL ENERGY
CALL IOCAL
DLPE=TLPE-TLPEO
PKE(1)=HBMASㅍPKE(1)
TPKE=PKE(1)
PTE(1)=PKE(1)+PPE(1)
DO $620 \quad 1=2$, LL
PKE II)=HTMAS*PKF(I)
TPKE =TPKE+PKE(I)
620
PTE (I) =PKE(I) +PPE(I)
$T E=T P O T+B I N D$
WRITE (ó,9663)
700 DO 750 1=1, LD
$D X(I)=R X(I)-R X I(I)$
$D Y(I)=R Y(I)-R Y I(I)$
$D Z(I)=R Z(I)-R Z I(I)$
CHIS SECTION PRINTS THE RELATIVE MOTION, VELOCITY, AND ENERGY OF EACH ATOM, FOR EVERY TIMESTEP SO DESIGNATED: IE, EVERY ND'TH TIMESTEP, BEGINNING WITH \#NS AND ENDING WITH
\#NTT。
720° HRITE (6,9670) I, DX(I), DY(I), DZíI), VX(I), VY(I), IVZ(I), PKE(I), PPE(I), PTE(I)
750 CONTINIJE
WRITE (6,9640) TPKE,TPOT,TE,TLPE,ROEL,DLPE
WRITE (6,9650) NPAGE
NPAGE=NPAGE+1
IF (NT-NTT) 760,950,950
760 DO $780 \mathrm{I}=1$, LL
$V X(I)=0.5 * V X(I)$
$V Y(I)=0.5 * V Y(I)$
$V Z(I)=0.5 * V Z(I)$
780 CONTINUE
790 NS = NS + ND
950 CONTINUE
C
THIS SECTION PRINTS OUT X, Y, AND Z COORDINATES AND BINDING ENERGIES OF EACH ATOM IN THE CRYSTAL AT THE END OF THE
PROGPAM.
955 WRITE $(6,9620)$ IH2,NT
DO $965 \mathrm{I}=1, \mathrm{LL}, 3$
$k=1+1$
$J=1+2$
965 WRITE (6,9630$) I, R X(I), R Y(I), R Z(I), P P E(I), K, R X(K)$, $1 R Y(K), R Z(K), P P E(K), J, R X(J), R Y(J), P Z(J), P P E(J)$ WRITE (6,9645$)$ TPKE, TPOT, TE, TLPE, RCEL, DLPE WRITE (6,9656) NPAGE
1000 IF (ISHUT) $9999,50,50$
9999 STOP
END

SUBROUTINE CROSYM
SOLVES N SIMULTANEOUS EQUATIONS BY THE METHOD OF CROUT THIS SUBROUTINE FITS THE BEST CUBIC BETWEEN THE REPULSIVE AND ATTRACTIVE PARTS OF THE POTENTIAL.

COMMON/COMA/ A(4,5),MCRO
M=MCRO
$\mathrm{N}=\mathrm{M}+1$
100
$11=1$
I $3=11$
$S U M=A B S(A(I 1, I 1))$
OO $120 \quad I=11, M$
IF(SUM-ABS(A(I, J1))) $110,120,120$
110
$\operatorname{SUM}=A B S(A(I, I 1))$
CONTINUE 1,11$) 1$
130
DO $140 \mathrm{I} \mathrm{J}_{\mathrm{J}=1,1, \mathrm{~N}}^{130,150,130}$
$S U M=-A(I 1 ; J)$
A(II, J) $=A(I 3, J)$
$140 \mathrm{~A}(\mathrm{I} 3, \mathrm{~J})=$ SUM
$00160 \quad I=I 3, M$
$160 \mathrm{~A}(\mathrm{I}, \mathrm{Il})=\mathrm{A}(\mathrm{I}, \mathrm{I} 1) / \mathrm{A}(\mathrm{I} 1, \mathrm{I} 1)$
i 3 (
I2 $=11+1$
$18000100 \mathrm{~J}=13, N$
190 A $(I I, j)=A(I 1, J)-A(I 1, I) * A(I, J)$
IF(II-M) 200,220,200
$J 2=I 1$
$I 1=11+1$
00210
00
210 A(I, 1$)=A(1, I 1)-A(I, J) * A(J, I 1)$
$\operatorname{IF}(11-M) 100,170,100$
$1=1, M$
$\mathrm{J} 2=\mathrm{M}-\mathrm{I}$
I $3=52+1$
$A(I 3, N)=A(I 3, N) / A(I 3, I 3)$
IF(J2) 230,250,230
MNN
DO $240 \mathrm{~J}=1, \mathrm{~J} 2$
250
$A(J, N)=A(J, N)-A(I 3, N) * A(J, I 3)$
RETURN
END

SUBROUTINE LIOO

C
THIS IS A LATTICE GENERATOR FOR THE FCC (100) ORIENTATION. THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y, FOLLOWED BY X IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION PARAMETER.
C
CO:AMON/COMI/RX (1000), RY(1000),RZ(1000), LCUT (10CO), $1 \mathrm{LL}, L D$, ITYPE, NV AC
COMMON/COM4/IX, IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
DIMEINSION YLAX 20 ,

```
YLAX(1)=-0.097
YLAX(2) =-0.024
SCX=1.0
SCY=1.0
M=2
JT=0
Y=-SCY
DO 60 J=1, I Y
Y=Y+SCY
KT=0
Z=-SCZ
DO 59 K=1,IZ
Z=Z+SCZ
IT=0
x=-Sc}
DO 58 I = 1, IX
X=X+SCX
ITT=IT+JT+KT
IF(ITT-(ITT/2)*2) 57,30,57
RX(M)=X
RZ(M)=Z
M=M+1
INUE
IT =IT+1
KT=KT+1
59 CONT INUE
JT = IT + 1
IF(IDEEP-JT) 60,110,60
CONTINUE
LL=M-1
100
110 LD=M-1
GO TO 60
END
SUBROUTINE LIIO
C
THIS IS A LATTICE GENERATOR FOR THE FCC (110) ORIENTATION。 THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y, FOLLOWED BY \(X\). IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION PARAMETER. C
```

```
COMMON/COM1/RX(1000),RY(1000),RZ(1000), LCUT(1000),
```

COMMON/COM1/RX(1000),RY(1000),RZ(1000), LCUT(1000),
1LL,LD, ITYPE,NVAC
1LL,LD, ITYPE,NVAC
COMMOI' / COM / IX, IY, IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
COMMOI' / COM / IX, IY, IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
DIMENSION YLAX(20)
DIMENSION YLAX(20)
DATA YLAX $120 * 0.01$
DATA YLAX $120 * 0.01$
$\mathrm{YLAX}(1)=-0.07$
$\mathrm{YLAX}(1)=-0.07$
$Y \operatorname{LAX}(2)=-0.012$
$Y \operatorname{LAX}(2)=-0.012$
RO=1.0/SQRT(2.0)
RO=1.0/SQRT(2.0)
SCX=RO
SCX=RO
$S C Y=R O$
$S C Y=R O$
SC $Z=1.0$
SC $Z=1.0$
$M=2$
$M=2$
JT=0
JT=0
$Y=-S C Y$
$Y=-S C Y$
DO $60 \mathrm{~J}=1$, IY
DO $60 \mathrm{~J}=1$, IY
$Y=Y+S C Y$
$Y=Y+S C Y$
$\mathrm{KT}=0$
$\mathrm{KT}=0$
$z=-S C z$
$z=-S C z$
DO $59 \mathrm{~K}=1$, IZ
DO $59 \mathrm{~K}=1$, IZ
$Z=z+S C Z$
$Z=z+S C Z$
$\mathrm{I} T=0$
$\mathrm{I} T=0$
$x=-\operatorname{sc} x$
$x=-\operatorname{sc} x$
DO 58 I =1, I X
DO 58 I =1, I X
$x=x+S C x$
$x=x+S C x$
$\operatorname{IF}(I T-(I T / 2) * 2) 21,11,21$

```
\(\operatorname{IF}(I T-(I T / 2) * 2) 21,11,21\)
```

```
11 IF IF(JT-(JT/2)*2)
IF(KT-(KT/2)*2
RX(M)=X
RY(iM) =Y +YLAX(J)
RZ(M)=Z
M=M+1
    CONTINUE
    CONTINUE
    KT=KT+1
    59 CONTINUE
    JT = JT + + I 6 60,110,60
6 0
    CONTINUE
    LL=M-1
1 0 0
    RETURN
!'
    LD=M-1
```

SUBROUTINE LIII C HIS IS A LATTICE GENERATOR FOR THE FCC (111) ORIENTATION. THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y, FOLLOWED BY X. a nonstandard use of the surface relaxation IT CONTAINS
PAR AMETER.
C

```
    COMMON/CCM1/RX(1C00), RY(1G00),RZ(1000),LCUT(1000),
    1LL, LD, ITYPE, NVAC
    COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
    DIMENSION YLAX \((20)\)
    OATA YLAX/20~3.01
    \(Y \mathrm{Y} \hat{\mathrm{Y}} \mathrm{XX}(1)=-0.04\)
    \(\operatorname{SCX}=1.0 / \operatorname{SQRT}(2.0)\)
    SCY=2.0/SQRT 3.0 )
    \(S C Z=S Q R T(1.5)\)
\(S C C Z=S C Z / 3.0\)
    \(\mathrm{M}=2\)
    JT=0
    \(Y=-S C Y\)
    \(0060 \mathrm{~J}=1\), IY
    \(Y=Y+S C Y\)
    \(J T S=J i+J T / 3\)
    \(Z=-S C Z\)
    \(\mathrm{KT}=0\)
    DO \(59 \mathrm{~K}=1\), IZ
    \(z=Z+S C Z\)
    IT \(=0\)
    \(x=-\operatorname{sc} x\)
    \(0058 \quad I=1, I X\)
    \(x=x+s c x\)
    \(I N=I T+J T S+K T\)
    IF (IN-(IN/2)*2) \(57,30,57\)
    \(R X(M)=X\)
    \(R Y(M)=Y+Y L A X(J)\)
    IF (JT-3w \(=(J T / 3)\) ) 41,45,41
    41 JTT=JT
    \(J T T=J T T-3\)
    IF (JTT) 43,45,42
    \(43 \mathrm{JTT}=\mathrm{JTT}+3\)
    \(Z P=J T T\)
    \(R Z(M)=Z+Z P * S S C Z\)
    GO TO 50
45
    \(R Z(M)=Z\)
    \(\mathrm{M}=11+1\)
    CONTINUE
    \(\mathrm{I} T=\mathrm{I} T+1\)
```

58 CONT INUE
$\mathrm{KT}=\mathrm{KT+1}$
COHTINUE
59
$J T=J T+1$
IF IDEEP-JT) $60,110,60$
60
LL $=M-1$
100 RETURN
110
GU TO 60

SUBRDIJTINE B100
CHIS IS A LATTICE GENERATOP. THE THE BCC (100) ORIENTATION. THE CRYSTAL IS DEVELOPED IN THE ORDER, X FOLLOWED BY Z, FOLLOWED BY Y
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION PARAMETER. C

COMMON/COM1/RX(10C0),RY(1000),RZ(1000), LCUT(1000),
LLL, L.D, ITYPE, NVAC
COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
DIMENSION YLAX 2 ZG)
DATA YLAX/20.0.0.0).
$Y \operatorname{LAX}(1)=-0.20$
$Y \operatorname{LAX}(2)=-0.03$
SCX=1. ()
$S C Y=1.0$
$S C Z=1.0$
$\mathrm{M} T=0$
$Y=-S C Y$

KT-0
$z=-s c z$
DO $59 \mathrm{~K}=1, I 2$
$Z=Z+S C Z$
$1 T=0$
$x=-5 C x$
DO $58 \mathrm{I}=1, I x$
$x=x+S C x$
IF (IT-(IT/2)*2) $21,11,21$
IF (KT-(KT/2):2) 57,30,57
IF (JT-(JT/2)*2) 22,57,22
$\operatorname{IF}(K T-(K T / 2) * 2) \quad 30,57,30$
$R \times(1.1)=x$
$R Y(M)=Y+Y \operatorname{LAX}(J)$
$R Z(M)=Z$
$M=11+1$
57
+1
59
$K T=K T+1$
59 CONTINUE

60 CONTINUE
$L L=M-1$
100
110
LD=M-1
$G O T O 60$
END

SUBROUTINE B110
C
THIS IS A LATTICE GENERATOR THE THE BCC (110) ORIENTATION. THE CRYSTAL IS DEVELOPED IN THE ORDER, X FOLLOWED BY Z, FOLLOWED BY Y.
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION PARAMETER.
C
COMMON/CCMI/RX(1000), RY(10CO),RZ(100C), LCUT(1000),
1LL,LD, ITYPE, NVAC
COMMON/COM4/IX, IY,IZ,SCX,SCY,SCZ, IDEEP,DIX,DIY,DIZ
DIMENSION YLAX (20)
CATA YLAX/2C*C.O/
YLAX (1$)=-0.10$
$Y \operatorname{LAX}(2)=-0.01$
SCX $=$ SQRT (2.0)
SCY $=\operatorname{SQRT}(2.0)$
$\mathrm{SCZ}=1 . \mathrm{C}$
$\mathrm{M}=2$
$J T=(1$
$Y=-S C Y$
0060
$Y=Y+S C Y$
$K T=0$
$\mathrm{Z}=-\mathrm{SC} \mathrm{Z}$
DO $59 \mathrm{~K}=1$, IZ
$Z=Z+S C Z$
$\mathrm{I} T=0$
$x=-S C x$
DO $58 \quad I=1$, I X
$x=x+S C X$
$I T T=I T+J T+K T$
IF (ITT-(ITT/2)*2) 57,30,57
30
PY (M) $=Y+Y \leq \Delta X(1)$
$R Z(1: i)=Z$
$M=M+1$
57 CONTINUE
58 CONTINUE
$K T=K T+1$
59 CONTINUE
$J T=J T+1$
IF (IUEEP-JT) $60,110,60$
60
$L L=M-1$
RETURN
$110 \mathrm{LD}=M-1$
GC TO 60
END

SUBROUTINE BIII
C
THIS IS A LATTICE GENERATOR FOR THE BCC (111) ORIENTATION。 THE CRYSTAL IS DEVELDPED IN THE ORDER, X FOLLOWED BY Z, FOLLOWED BY Y CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION parame ter.

```
COMMON/CCM1/RX(1000), RY(100U),RZ(1000), LCUT(1000),
ILL,LD, ITYPE, NYAC
    COMMON/COM4/IX, IY,IZ,SCX,SCY,SCZ, IDEEP,DIX,DIY,DIZ
    DIWENSION YLAX (20)
    DATA YLAX/20\%0.0/
    YLAX (1) \(=-0.10\)
    \(Y \operatorname{LAX}(2)=-0.91\)
    SCX \(=\) SQRTi(2.0)
```

```
            SCY=SQRT(1.0/3.C)
    M = 2
    Z =-SCZ
    10 Z=-SCZ+SCZ/3.0
    GO TO 20
    Z. =-SCZ+(2.0*SSCZ/3.0)
    00 59 59 K=1,Iz
    IT=0
    X=-SCX
    00 58 I=1,IX
    x=x+SCX
    ITT=IT+JJ+KT-1
    IF(ITT-(ITT/2)水2) 57,30,57
    RY(M)=Y+YLAX(J)
    RZ(M)=Z
    M=M M I I
    57 IT=IT+1
    KT=KT+1
    59 CONTINUE
    JT = JTT+1 +IDEEP JT) 60,110,60
    CONIINUE
    LL=M-1
    RETUPN
110
    SUBROUTINE D100
    COMMON/COMI/RX(1000),RY(1COO),RZ(1000), LCUT(1000),
    1LL,LD:ITYPE,NVAC
    CCMMON/ CCM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
    RETURN
    END
        SUBROUTINE DIIO
    COMNON/COM:/RX(1000),RY(1000),RZ(1000), LCUT(10CO),
    1LI,LD, ITYPE,NVAC
    COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
    RETURN
    END
    SUBROUTINE D111
    COMMON/COMI/RX(1000),RY(1000),RZ(1000),LCUT(1000),
    ILL,LD, I TYPE,NVAC
    COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
    RETURN
    END
    SUBROUTINE PLACE
CTHIS SUBROUTINE LOCATES A VACANCY, INTERSTITIAL, GR REPLACE-
MENT IMPURITY IN THE LATTICE.
        COIAMON/COM1/RX(1OOU),RY(1OUOO),RZ(1COO),LCUT(1OEO),
    ILL,LD, ITYPE,NVAC
```

COMMON／COM4／IX，IY，IZ，SCX，SCY，SCZ，IDEEP，DIX，DIY，DIZ
LCUT（NVAC）＝ 1
$\operatorname{LCUT}(1)=1$
$R X(1)=0.0$
$R Y(1)=0.0$
$R Z(1)=0.0$
RO TO 40 RX（NVAC）－DIX
$R Y(1)=R Y(N V A C)-D 1 Y$
$R Z(1)=R Z(N V A C)+D 1 Z$
GO TO 40
LCUT（NVAC）$\overline{=} 1$
$R X(1)=R X(N V A C)$
$R Y(1)=R Y(N V A C)$
$R Z(I)=R Z(N V A C)$
RETURN
END

SUBROUTINE STEP

C
THIS SUBROUTINE DOES THE DYNAMICS FOR ONE TIMESTEP．
THE FIRST HALF DOES THE DYNAMICS FOR ATOM \＃I；THE SECOND HALF FOR ALL OTHERS．
C
COMMON／CCMI／RX（1000），RY（1000），RZ（1000），LCUT（1000），
1LL，LD，I TYPE，NV AC
COMMON／COM5／ROE，ROE2，ROEM，EXA，EXB，PEXA，PEXB，FXA，PFXA，
IIQ，TSAVE，BSAVE
COMMON／COM6／FX（1003），FY（100U），FZ（1000），PAC，PFPTC，FM
COMMON／COM8／ROEA，ROES，ROEC，ROEC2，CPJ，CP1，CP2，CP3，
1 CFO，CF1，CF2，CGD1，CGO2，CGB1，CGB2，CGF1，CGF2
IF（IQ．EQ．I）GO TO 200
$\mathrm{I}=1$
IF！ICUT（I）！200，105，200
105
IP $=1+1$
DO 195
IF（LCUT（J））＇10
110 （1）
DRX＝RX（J）－RX（I）
IF（DRY）113，117，117

113 IF	
117 IF（DRX X R ROE	$195,195,120$

117 IF（DRX－ROE） 120
120 DRY $2 \mathrm{RY}(J)-R V(I)$
IF（DPY）123，127，127
123 IF（DRY＋ROE $) 195,195,130$
127 IF（DRY－ROE $) ~$
$130,195,195$
130 DRZ＝RZ（J）－RZ（I）
IF（DRZ）133，137，137
133 IF（DRZ + ROE $195,195,140$

$D I S T=D R X * D R X+D R Y * D R Y+D R Z * D R Z$
IF（DIST－ROE2）150，195，195
150 DIST＝SQRT（DIST）
160 IF（DIST－ROEN） $162,162,165$
162 FQRCE EXP（PFXA＋PEXB 冫欠IST）
GO TO 180
165 DFF＝ROE－DIST
IF（DFF－1．0F－10）195，195，167
167 FORCE $=(E X P(P A C+P E X B \cdot \operatorname{DIST})-P F P T C) / D F F$
180 IF（FM－FORCE） $190,190,195$
190 FCD＝FORCE／DIST
$F A=F O D * D R X$
$F X(J)=F X(J)+F A$
$F X(I)=F X(I)-F A$
FA＝FODれDRY
$F Y(J)=F Y(J)+F A$
$F Y(I)=F Y(I)-F A$
$F A=F O D * D R Z$
$F Z(J)=F Z(J)+F A$
$F Z(I)=F Z(I)-F A$

C

```
    200 DO 300 I=IQ,LD
    IF(LCUT(I)) 300,205,300
    2 0 5
    IP=I+1
    DO 295 J=IP,LL
    IF(LCUT(J)) 295,210,295
    210 DRX=RX(J)-RX(I)
    IF(DRY) 213,217,217
    213 IF(DRX+ROEC) 295,295,220
    217 IF(ORX-ROEC) 220,295;295
    220 DRY=RY(J)-RY(I)
    IF(DRY) 223,227,227
    223 IF(DRY+ROEC) 295,295,230
    227 IF (DRY-ROEC) 23C;295;295
    230 DRZ=RZ(J)-RZ(I)
    IF(DRZ) 233,237,237
    233 IF(DRZ+ROEC) 295,295,24C
    247 IFISRI-ROECX 24(Y*29Y%295
    IF(DIST-ROEC2) 250,295,295
    250 DIST=SQRT(DIST)
    IF(DIST-ROEA) 260,255,255
    255 IF(DIST-RDEB) 265,27U,270
    260 FORCE=EXP(FXA+EXB`DIST)
    GO TO 280
    265 FORCE=DIST*(DIST*CF2+CF1)+CFU
    GO TO 280
    270 FORCE=EXP(CGF1+CGB1*DIST)-EXP(CGF2+CGB2*DIST)
    280 IF(ABS(FORCE).LE.FM) GO TO 295
    FOD = FORCE/DIST
    FA=FOO*DRX
    FX(J)=FX(J)+FA
    FX(I)=FX(I)-FA
    FA=FOD*DRY
    FY(J)=FY(J)+FA
    FY(1)=FY(1)-FA
    FA=FOO*OR?
    FZ(J)=FZ(J)+FA
    FZ(I)=FZ(I)-FA
    295 CONTINUE
    RETURN
    END
```

SUBROUTINE ENERGY

C

THIS SUBROUTINE CALCULATES THE MUTUAL POTENTIAL ENERGIES. THE FIRST HALF DOES THE DYNAMICS FOR ATOM \#I; THE SECOND HALF FOR ALL OTHERS.
C
COMMON/COM1/RX(10C0),RY(1000),RZ(1000), LCUT(1000), 1 LL , LDs ITYPE, NVAC
COMMDN/COM5/ROE,ROE 2, ROEM, EXA, EXB, PEXA, PEXB,FXA, PFXA,
1 IQ,TSAVE, BSAVE
COMMON/CU11/PPTC,TPOT,PPE(1000), TLPE,ROEL,ROEL2,NEW
COMMON/COM8/ROEA,ROEB,ROEC,ROEC2,CPO,CP1,CP2,CP3,
1 CFD, CF1, CF2, CGD1,CGD2,CGB1, CGB2, CGF1, CGF2
IF (IQ.EQ. 1) GO TO 200
$I=1$
IF(LCUT(I)) 60C,505,600
$505 \mathrm{IP}=\mathrm{I}+1$
$00.595 J=I P, L L$
IF(LCUT (J)) 595,51心.595
510
DRX=RX(J)-RX(1)
IF(DRY) 513,517,517
513 IF (DRY+ROE) $595,595,520$
517 IF DRX-ROE $520,595,595$
520 DRY RY (J) RY(I)
523 IF DRY $523,527,527$
527 IF (DRY+RDE) $595,595,530$
$5(D R Y-R O E) ~$
$530,595,595$

```
    530 DRZ=RZ(J)-RZ(I)
    IF(DRZ) 533,537,537
    533 IF(DRZ+ROE) 595,595,540
    IF(DRZ-ROE) 540,595,595
    IF(DIST-ROE2) 550,595,595
    500 DIST=SQRT(DIST)
    560 POT=EXP(PEXA+PEXB*DIST)-PPTC
    TPOT=TPOT+POT
    PPE(I)=PPE(I) + BSAVE*POT
    PPE(J) = PPE(J) +T SAVE*POT
    5S5 CONTINUE
C
    200 DO 300 I=IQ,LL
    IF(LCUTT(I))'300,205,300
    205 IP=I+1
    DO 295 J=IP,LL
    IF(LCUT(J)) 295,210,295
    210 DRX=RX(J)-RX(I)
    IF(DRX) 213,217,217
    213 IF(DRX+RDEC) 295,295,220
    217 IF(DRX-ROEC) 220,295,295
    220 DRY=RY(J)-RY(I)
    IF(DRY) 223,227,227
    223 IF(DRY'ROEC) 295,295,230
    227 IF(DRY-ROEC)}23
    IF(DRZ.) 233,237,237
    233 IF(DRZ+ROEC) 295,295,240
    DIST=ORX*DRX+ORY*ODYYORZ*DRZ
    IF(DIST-ROEC2) 250,295,295
    250 DIST=SQRT(DIST)
    IF(DIST-ROEA) 260,255,255
    255 IF(OIST-ROFR) 265,270,270
    260) POT=EXP(EXA+EXB2OISTI
    GO TO 280
    265 POT=DIST*(DIST*(DIST*CP3+CP2)+CP1)+CPO
    GO TO 280
    270 POT=EXP(CGO1+CGB1*DIST)-EXP(CGD2+CGB2*DIST)
    280 TPOT=TPOT+POT
    SAVE=0.5: % POT
    PPE(I)=PPE (I) +SAVE
    PPE (J) =PPE (J)+SAVE
    295
    CONTINUE
    CONTINUE
    RETURN
    END
SUBROUTINE LOCAL
C
THIS SUBROUTINE CALCULATES THE TOTAL POTENTIAL ENERGY IN A SMALL VOLUME AROUND A VACANCY.OR INTERSTITIAL.
COMMON/COM1/RX(100C),RY(10JU),R2(1000), LCUT(1000),
1LL,LD, ITYPE,NVAC
C.CMMON/ COMT/PPTC,TPOT,PPE(1000), TLPE,ROEL, ROEL2,NEW
DIMENSION LCCAT(500)
\(K=1\)
TLPE=0.0
IF (NEW.EQ. 1)GO TO 305
8 GO TO (10,20,20), ITYPE
10 I = NVAC
GO TO 200
20 I=1
\(20000300 \mathrm{~J}=1, \mathrm{LD}\)
IF (IeEQ.J) GO TO 250
210 ORX=RX(J)-RX(I)
213 IF (DRX) 213,217,217
213 IF (DRX+ROEL) \(295,295,220\)
```


SUBROUTINE PRINT
C
THIS SUBROUTINE PRINTS THE HEADING OF ALL PERTINENT INFORMATION AT THE TOP OF EACH TIMESTEP PRINTOUT.

```
COMMON/COMI/RX(1000),RY(1000),RZ(1000),LCUT(1000),
``` 1LL,LD, I TYPE, NVAC
COMMON/COM2/IH1 (2C), IH2 (8), IHS (10), IHB(6), IHT (6).
1 TARGET (4), TMAS, BULLET(4), BMAS, PLANE, TEMP, THERM
CCMMON/CCM3/RXI (1000), RYI (100C), RZI(100C), CVR,EVR,
INT.TIMF.DT.OTI, ILAY

COMMON/COMS/ROE, ROEZ, ROEM,EXA, EXBG PEXA, PEXB,FXÁ,PFXA,
1 IQsTSAVE, BSAVE
COMMON/CCMB/ROEA, ROEB, ROEC, ROEC2, CDO, CP1, CP2, CP3,
\(1 \mathrm{CFO}, \mathrm{CF} 1, \mathrm{CF} 2, \mathrm{CGD1}, \mathrm{CGD} 2, \mathrm{CGB1}, \mathrm{CGB2}, \mathrm{CGF} 1, \mathrm{CGF} 2\)
9710 FORMAT (4 UX, 10A4, /,28X,2CA4, /)
9720 FORMAT 9 H TARGET - ,4A4, IOHPRIMARY - ,4A4, \(1 \mathrm{X}, 14 \mathrm{HLATTICE}\) 1 UNIT \(=, F 7.4,4 \mathrm{H}\) ANG)
9730 FORMAT \((4 X, 6 H M A S S=, F 7.2,13 X, 6 H M A S S=, F 7.2,9 X, 14 H L A T T I C\) 1E TEMP \(=F 5.2,7 H\) DEG \(K, 18 H\) THERMAL CUTOFF \(=, F 5,2,3 H E\) 1V/)
9740 FORMAT \((2 H(, A 4,8 H)\) PLANE, 18 H PRIMARY ENERGY \(=\),
1 F5.2,21HKEV, CRYSTAL SIZE (I2, \(3 \mathrm{HXX}, I 2,3 H X, I 2,3 H\)
1), \(4 \times 16\) VVACANCY IN SITE, I4 1)
9741 FORMAT \(2 \mathrm{ZH}(, 44,8 \mathrm{H})\) PLANE, 18 H PRIMARY ENERGY \(=\),
1 F5.2,21HKEV, CRYSTAL SIZE (, I2, \(3 \mathrm{HXX} I 2,3 H \times, 12,3 H\)
\(1,14 X, 15 H I N T E R S T I T I A L(-, F 5.2,2 H,-, F 502,2 H,+, F 5.2\), 112H) FRCM SITE, I4/I
9742 FORMAT \((2 H(, A 4,8 H)\) PLANE, \(18 H\) PRIMARY ENERGY \(=\) =
1 F5.2, 21 HKEV, CRYSTAL SIZE , I2, \(3 H X, I 2,3 H \bar{X}^{\prime}, I 2,3 H\)
\(1,1,4 \mathrm{X}, 20 \mathrm{HREPLACEMENT}\) IN SITE S I \(4 / 1\)
9750 FORMAT 30 H PRIMARY START POINT (LU) \(X=, F 5.2,5 \mathrm{H}, Y=\), 1F5.2,5H, \(Z=, F 5 \cdot 2,5 X, I 3,1\) LAYERS ARE FREE TO MUVE', \(110 \times 4 \mathrm{HIQ}=, ~ I 211\)
9760 FURMAT (12HPOTENTIAL, \(6 A 4,3 X, 5 H P E X A=, F 9.5,2 X, 5 H P E X B=\), 1F9:5, 2X,5HPFXA \(=, F 9.51\)
9765 FORMAT (\(12 \mathrm{X}, 6\) A4, \(3 \mathrm{X}, 5 \mathrm{HEXA}=, F 9.5,2 \mathrm{X}, 5 \mathrm{HEXB}=, F 9.5,2 \mathrm{X}, 5 \mathrm{HFX}\) \(1 A=, F Q \cdot 5 / 1\)
 1 TIAL PARAMETERS ARE \(1,1 / 1\) CPO \(=1 ; F 10.3,1, C P 1=1\) \(1 F 10.3,1, C P 2=1, F 1 C \cdot 3,1, C P 3=1, F 10 \cdot 3,1,1 \quad C F C=1\) 1E10. 3,1 , \(C F 1=1, E 10 \cdot 3,1, C F 2=1, E 10 \cdot 3,1 / 1\)
9780 FORMAT ' CUT-OFF ATi,F5:'2, ', WHENR \(>1, F F 6,3,1\) US
 1': CGF1 \(=1, F 8.4,1\), CGF2 \(=1, F 8.4,1 / 1\)

9790 FORMAT \(110 H\) TIMESTEP, \(4,22 X, 6 H D T I=, F 5.3,5 H, L U\), 122 H ELAPSED TINE \((S E C)=, E 10.4,21 H\), LAST TIMESTEP WA \(1 S=, E 10.4 / 1\)

WRITE (6,971 C) IHS,IHI
WRITE (6,9720) TARGET,BULLET, CVR
WRITE \((6,9736)\) TMAS, BMAS, TEMP, THERM
GO TO \((401,4 \mathrm{C} 2,403)\), ITYPE
401 WRITE (6,974C) PLANE,EVR,IX,IY,IZ,NVAC
402 WRITE \({ }^{\text {GO }} 6,5741\)) PLANE, EVR, IX, IY, IZ, DIX, OIY,DIZ, NVAC GOTO 405
403 WRITE \((6,0742)\) PLANE, EVR, IX, IY, IZ, NVAC
405 WRITE (6,9750) RXI(I),RYI(I),RZI(I),ILAY,IQ
WRITE (6,9760) IHB,PEXA, PEXB, PFXA
WRITE (6,9765) IHT,EXA, EXB,FXA
WRITE (6,O77U) ROEA, ROEB, CPO, CP1, CP2, CP3,CFO,CF1, CF2
WRITE (6,97801\()\) ROEC, ROEB, IH2,CGD1, CGD2, CGB1, CGB2, 1CGF1, CGF2

WRITE (6,9790) NT,OTI,TIME,DT
RETURN
END

\section*{BIBL IOGRAPHY}
1. Gay, W.L., Harrison, D.E. Jr., "Machine Simulation of Collisions Between a Copper Atom and a Copper Lattice", The Physical Review, V. 135, No. 6A, p Al780-Al790, 14 Sept 1964.
2. Harrison, D.E. Jr., Levy, N.S., Johnson, J.P. III, and Effron, H.M., "Computer Simulation of Sputtering", Journal of Applied Physics, V. 39, No. 8, p 3742-3761, July 1968.
3. Harrison, D.E., Jr., "Additional Irformation on Computer Simulation of Sputtering", Journal of Applied Physics, v. 40, No. 9, p 3870-3872, Aug 1969.
4. Harrison, D.E., Jr., Greiling, D.S., "Computer Studies of Xenon-Ion Ranges in a Finite-Temperature Tungsten Lattice", Journal of Applied Physics, V. 38, No. 8, p 3200-3211, July 1967.
5. Gibson, J.B., Goland, A.N., Milgran, M. and Vineyard, G.H., "Dynamics of Radiation Damage", The Physical Review, V. 120, No. 4, p 1229-1253, Nov 15, 1960.
6. Johnson, ㄱ.A., Brown, E., "Point Deferts in Copper", The Physical Review, V. 127, No. 2, p 446-454, 15 juiy, \(\overline{9} \overline{9} 62\).
7. Erginsoy, C., Vineyard, G.H., and Englert, A., "Dynamics of Radiation Damage in a Body-Centered Cubic Lattice", The Physical Review, V. 133, No. 2A, p A595-A606, 20 Jan 1964.
8. Kornelsen, E.V., Sinka, M.K., "Thermal Release Inert Gases from a (100) Tungsten Surface", Journal of Applied Physics, V. 39, No. 10, p 4546-4555, Sept 1968 .
9. Kornelsen, E.V., Sinka, M.K., "Thermal Release Inert Gases from Tungsten; Dependence on the Crystal Face Bombarded", paper presented at Conference on Atomic Collision and Penetration Studies Using Energetic Ions, Chalk River, Sept 1967.
10. Johnson, R.A., "Point Defect Calculations for an fcc Lattice", The Physical Review, V. 145, No. 2, p 423-433, 13 May 1966.
11. Johnson, R.A., Diffusion in Body-Centered Cubic Metals, American Society for Metals, p 357-370, 1965.
12. Girifalco, L.^., Weizer, V.G., "Application of the Morse Potential Function to Cubic Metals", The Physical Review, V. 114, No. 3, p 687-690, 1 May 1959.
13. Girifalco, L.A., Weizer, V.G., "Vacancy Relaxation in Cubic Crystals", Journal of the Physics and Chemistry of Solids, v. 12, p 260-264, 1960.
14. Anderman, A., Computer Investigation of Radiation Damage in Crystals, prepared for Air Force Cambridge Research Laboratories, Office of Aerospace Research, U.S.A.F., Bedford, Mass. 1966.
15. Harrison, D.E., Jr., Gay, W.L., and Effron, H.M., "Algorithrn for the Calculation of the Classical Equations of Motion of an \(N\)-Body System", Journal of Mathematical Physics, V. 10, No. 7, July 1969.
16. Harrison, D.E., Jr., private communication.
17. Hard, D.W. The Search for a Simple Analytic Representation for a Repulsive Atomic Interaction Potential, M.S. Thesis, Naval Postgraduate School, Monterey, California 1970.
18. Abrahamson, A.A., "Repulsive Interaction Potentials Between Rare-Gas Atoms. Heteronuclear Two-Center Systems", The Physical Review, V. 133, No. 4A, P A990-Al004, 17 Feb 1964.
19. Gay, W.I.., Machine Calculations of Energy Transfer Phenomena in a Bombarded Lattice, M.S. Thesis, Naval Postgraduate School, Monierey, Caliíurnia 19úz.
20. Levy, N.S., Computer Simulation of the Sputtering Process M.S. Thesis, Naval Postgraduate School, Monterey, California 1965.
21. Johnson, J.P., Calculation of Surface Binding Energies by Computer Simulation of the Sputtering Process, M.S. Thes is, Naval Postgraduate School, Monterey, California 1966.
22. Effron, H.M., Correlation of Argon-Copper Souttering Mechanisms with Experimental Data Using a Digital Computer Sjmulation Technique, M.S. Thesis, Naval Postgraduate School, Monterey, California 1967.
23. Moore, W.L., Digital Computer Simulation of Xenon Ions Channeling in the 〈 100 〉 Tungsten Channel at Various Lattice Temperatures, M.S. Thesis, Naval Postgraduate School, Monterey, California 1969.
24. Moore, W.L., unpublished research.
25. Burton, J.J., Jura, G., "Surface Distortion in Face-Centered Cubic Solids", Journal of Physical Chemistry, V. 71, No. 6, May 1967.
26. Harrison, D.E., Jr., Magnuson, G.D., "Sputtering Thresholds", The Physical Review, Vol. 122, No. 5, p 1421-1430, June 1961.
27. Seeger, A., and others, Vacancies and Interstitials in Metals, proceedings of the International Conference on Vacancies and Interstitials in Metals, Julich, Germany, 1968.

\section*{INITIAL DISTRIBUTION LIST}

No. Copies
1. Defense Documentation Center

2
Camer on Station
Alexandria, Virginia 22314
2. Library, Code 0212

2
Naval Postgraduate School
Monterey, California 93940
3. Professor D.E. Harrison, Jr., Code 61Hx 3

Department of Physics
Naval Postgraduate School
Monterey, California 93940
4. Ensign Gary L. Vine
Naval Training Center
Bainbrige, Maryland 21905

2a. REFORT SECURITY CLASSIFICATION
Unclassified
2b. GROUP

Monterey, California 93940

\section*{3 REPORT TITLE}

Computer Simulation of Copper and Tungsten Crystal Dynamics with Vacancies and Interstitials
- DESCRIPTIVE NOTES (Type of report and.inclusive dales)

Master's Thesis; June 1971
5 AUTHORISt (First name, middle inifial, last name)
Gary L. Vine

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.
12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, CaIifornia 93940

The effects of point defect implantation in copper and tungsten crystal lattice have been studied by computer simulation techniques. Vacancies, interstitials, and replacement impurities have been created in the first five layers of the free (100) surface of these crystals. The subsequent binding energies of these defects in tungsten were compared with experimental temperature dependent desorbtion peaks, corresponding to binding energies of neon defects in a tungsten crystal. Interstitial and replacement impurity positions in the first three to five layers were found that seem to correspond to the experimental data. Significant results were also obtained which were associated with general surface effects, especially crowdion migration.
mputer Simulation

32768001927833```

