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ABSTRACT

The effects of point defect implantation in copper and tungsten

crystal lattice have been studied by computer simulation techniques

Vacancies, interst it ials , and replacement impurities have been

created in the first five layers of the free (100) surface of these

crystals. The subsequent binding energies of these defects in

tungsten were compared with experimental temperature dependent de-

sorbtion peaks, corresponding to binding energies of neon defects

in a tungsten crystal. Interstitial and replacement impurity

positions in the first three to five layers were found that seem

to correspond to the experimental data. Significant results were

also obtained which were associated with general surface effects,

especially crowdion migration.
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I. INTRODUCTION

Extensive research has taken place in the last decade in the

area of computer simulation of radiation damage in crystal lat-

tices. Two major areas of simulation have been defined. "Dynamic

simulation" suggests the firing of an atom or ion against a crystal

and the observation of the resulting many-body collisions. Ex-

amples include sputtering simulation LI, 2, 33, in which atoms are

ejected from the surface of an ion-bombarded crystal; and chan-

neling simulation l4j , in which ions are fired down open channels

in non-close-packed structures such as body-centered cubic and

diamond lattices. "Static simulation", on the other hand, is con-

cerned with equilibrium positions and energies for point defects

in crystals [5,6,7]. This latter area was the concern of this

research. Specifically, this simulation attempted to correlate

equilibrium potential energies of point defects with experimentally

determined binding energies of point defects in Tungsten [8,9].

A. HISTORICAL BACKGROUND

1 . The Problem

Historically, all crystal dynamics computer simulation has

been based on the assumption that the complicated many-body problem

can be reduced to many two-body problems. This assumption has re-

peatedly been shown to be a valid one when employed incrementally.

Incremental calculations are necessary since a complete solution

in closed form is impossible. Small time increments At approximated

the true time differential dt of the impossible closed form





LOnsolution. Specifically, the desired type, size, and orientati*

of crystal lattice is stored in the corn-outer, appropriate inter-

atomic potentials are chosen, and all mutual forces between atoms

are calculated, based on the analytic potential functions. Point

defects are introduced, and each atom is then allowed to move in-

crementally, based on these forces and Newtonian Mechanics C 5l

.

Through proper choice of time increment duration, damping of forces

and velocities in each time increment, and sufficient repetition

of the procedure, realistic results are obtained.

2. The Pioneers and Their Contributions
—' ' ' ' | ' -^ '" ' - - ' '- "—
Pioneering work in this field began in the early 1960's

at the Brookhaven National Laboratory. Gibson, Goland, Milgram

and Vineyard (GGMV) L 5l published the results of extensive work

in both static and dynamic simulation. In static simulation they

determined equilibrium positions for interstit ials and associated

potential energies of formation. In dynamic simulation they in-

vestigated momentum propagation directions of energetic knock-on

atoms (focusing), collision chains, and related topics. They used

a central-difference method to obtain velocities and positions frcm

calculated forces. All work was done with copper, and results were

correlated with experimental data. Johnson and Brown (JB) [6 J did

extensive work in static simulation, again with copper. They es-

tablished that only one stable position exists for a single face-

centered cubic (FCC) self-interstitial: the < 100) split inter-

stitial. Johnson [lo] later published further work in this area,

with formation and activation energies for various point defects.

Enginsoy. Vineyard, and Englert (EVE) [7] and Johnson [llj





repeated most of the earlier calculations in GGMV and Johnson

for the body-centered cubic (BCC) case, based on QL iron. They,

too, established the existence of only one stable interstitial

position, a (lio) split interstitial.

Girifalco and Weizer (GF) [l2] calculated Morse Potential

§.. = D[exp {-2a(r..-r )}- 2 exp{-a(r..-r }]
ij r v 13 o' r v ij o

parameters for various metals, based on experimental values for

the energy of vaporization, the lattice constant, and compressi-

bility. Resulting elastic constants and equations of state agreed

satisfactorily with experiment. Girifalco and Weizer L13j later

published results of using these Morse parameters in simulating

vacancy relaxation dynamics. Anderman Ll4l used GW's technique

of calculating Morse parameters, but instead of summing over an

entire crystal, (GW calculated out to the 150th nearest neighbor)

Anderman found parameters as a result of summing out to second,

third, and fourth nearest neighbors, for use in short-range approxi-

mations .

Harrison [l,2,3] has investigated sputtering phenomenon and

other surface effects with a modified Brookhaven model, the most

significant change being the use of an average force method L 1 5

J

instead of the central difference method in integrating the

equations of motion. (See Appendix C. ) He has also calculated

repulsive potentials of the Born-Mayer type (V. . = exp(A+Br. .))

for many combinations of atoms and ions based on secondary elec-

tron emission, and Hartree-Fock atomic electron distributions L 16 J

.





3 . The Potential Function Problem

The most difficult problem encountered by computer sim-

ulation has been the proper choice of the potential function. No

simple analytic expression, based on either theory or experimental

data, has ever been found that completely describes crystal dy-

namics L17J, although many analytic expressions are partially cor-

rect. The problem has been three- fold: First, present analytic

expressions have narrow regions of validity, i.e., some correctly

describe atomic behavior at equilibrium distances, but fail at

shorter or greater distances. Second, some analytic expressions

are limited because they only apply to interactions between iden-

tical atoms. Third, the assumed functions have spherical symmetry,

and are technically limited to interactions between closed shell

atoms or ions Ll-J - Although our assumption of a s^her ic? 13 y sym-

metric potential in crystals is only approximately correct, it is

nevertheless a very good approximation for FCC structures, and a

reasonably good approximation for BCC structures. It is grossly

in error when applied to diamond structures.

The atomic potential, with the familiar potential well,

sharply repulsive wall and gently attractive tail, varies greatly

between different pairs of atoms; Since theory can give only ap-

proximate parameters for this complete potential function, experi-

mental data have been used extensively in the formulation of po-

tentials. Other avenues have been opened by computer simulation.

Since potential well depths are typically on the order of a few

eV, the characteristics of the well can be ignored in high energy

dynamic simulation. Low energy dynamic simulation, and even static

10





simulation, have also been based upon this approximation with

useful results. Historically this is how crystal simulation

began. GGMV L5l employed a purely repulsive potential of the

Born-Mayer ( BM ) type and applied external forces on all crystal

boundaries to hold the crystal together. JB C6] used basically

the same technique. For improved equilibrium studies a potential

with a well was necessary so GW [ 12,13] used a Morse potential in

their simulation. The Morse function, however, fails at strongly

repulsive distances. To satisfy the need for a more versatile

potential, capable of handling both high energy and near-equili-

brium dynamics, composite potentials were developed, which re-

semble BM or Bohr

r '

(V. . = exp(A+Br . .) )

functions at short separations, and Morse functions at equili-

brium and greater separations. Specifically, EVE L7J combined

a screened Coulomb or Bohr potential, a BM potential, and a Morse

potential, in the higher repulsive, lower repulsive, and attractive

regions, respectively, of the atomic potential.

Johnson [lO,ll] in his later papers, used three cubic equations to

approximate the true potential. Anderman [ l4l and Harrison Ll,2,

3,4] have used the BM repulsive term together with a Morse well

and attractive tail, smoothly fit together by a cubic equation in

the region near their intersection.

4. The Point Defect Problem

All early simulation was done with homogeneous systems:

All atoms were exactly the same, limiting high energy dynamic

simulation to bombardment by atoms identical to the lattice atoms,

11





and static simulation to consideration of only the vacancy and

self-interstitial cases. This limitation was forced by the po-

tential functions, because parameters for the Morse function were

based on experimental data for homogeneous media [12], The

methods used could not yield parameters for different-atom pairs.

BM parameters, however, are obtainable for different-atom pairs,

by methods such as the Hartree-Fock method Cl6J mentioned pre-

viously .

In spite of these limitations, dynamic computer simulation

of bombardment by foreign atoms, or static simulation of foreign

interst it ials , can be done by two alternate methods. First,

Harrison [4l has neglected the attractive interactions and has

done foreign particle dynamics using repulsion only. Alternately,

Jchnscn 111] has derived a cubic equation for a complete DOtential

with a potential well, based on limited experimental data on car-

bon defects in iron. However, experimental substantiation for a

foreign-particle potential well is much more difficult than for

an identical atom potential well.

B. THE EXPERIMENT

The experimental data which this simulation proposed to explain,

were published by Kornelsen and Sinka (KS) L8]. They have bom-

+ + + +
barded a clean (100) tungsten surface with Ne , Ar , Kr , and Xe ,

in the energy range of 40 eV to 5 keV. The subsequent "damaged"

crystal was heated at a constant rate, and gas desorbtion rates

were measured. Instead of a constant desorbtion of ions, various

distinct peaks were found, categorized into two basic types: a

12





single large peak at 1800 k, the same for all four ions; and four

or five smaller peaks in the 400 K to 1650 K range, which were

not in the same position for all four ions. These latter peaks

were postulated to correspond to binding energies of various point

defects in the first few layers of the tungsten crystal. (See

Figure 4.

)

This simulation used Harrison's assumption of a repulsive

potential only, for interactions between a foreign point defect

and other atoms in the lattice. When investigating neon defects

in tungsten, all tungsten lattice interactions were based on com-

posite Morse and repulsive Born-Meyer potentials, and all neon-

tungsten (Ne-W) interactions were based on a purely repulsive BM

potential

.

13





II. OBJECTIVE

The long-range objective of this simulation was to correlate

simulated and experimental binding energies of neon point defects

in tungsten. Since the assumption that all Ne-W interactions are

purely repulsive was not realistic, the degree to which subsequent

simulation results are valid must be based on a known standard. If

the simulated binding energies are not correct, a valid correction

factor can be applied, if derivable from the known standard. One

standard which proved to yield this information was the tungsten-

tungsten (W-W) interaction. A tungsten point defect could be

treated as an atom of the lattice, and given an interatomic po-

tential identical to all other lattice atoms, the composite Morse

and BM potential. This was Method 1. A tungsten defect could

also be treated as foreign, and allowed to interact with other

lattice atoms with a repulsive potential only (Method 2). If a

specific tungsten point defect is treated by both of these methods,

an empirical relationship between the repulsive potential assumpt-

ion and the "true" potential for W-W interactions is obtained.

The objectives of this research were fourfold:

1. Demonstrate that the two methods of treating tungsten point

defect in a tungsten lattice yield basically the same physical

results, and agree with published results [7,ll] concerning

split interstitial positions.

2. Develop a general empirical relationship between the binding

energies derived by the two methods.

14





3. Obtain values for binding energies of neon defects in all

possible positions in a tungsten surface. Transform these

values to more realistic ones using the empirical relationship

derived in 2.

4. Compare these results with KS's experimental data.

15





III. THE MODEL

A. THE CRYSTAL

The model used in this research is the Gay-Harrison [l Q ] model,

with modifications by Levy [20], Johnson [2l], Effron [22], and

Moore L23]. Abbreviations in brackets refer to computer program

names for the variable in question.

Both copper and tungsten crystals were simulated. Copper was

simulated only to provide an interface between this research and

published simulation results. Copper forms a face-centered cubic

crystal with an experimentally determined lattice constant, (LC)

or cube edge distance of 3«6l5A. The lattice unit (LU), defined

as %LC. is 1.8075A: and the nearest neighbor distance, as in all

FCC structures, is \T~2LU . Tungsten forms a body-centered cubic

crystal, with a LC of 3-16A, a LU of 1 . 58A , and a nearest neighbor

distance, peculiar to all BCC structures, of \|3lU. All distances

in the program are measured in LU. The program could construct

(100), (110), and (111) orientations of face-centered and body-

centered cubic structures. The copper crystal size was 8x8x8,

and contained 256 atoms for the (100) orientation.

The major portion of the simulation was done on the (100)

orientation of tungsten, corresponding to KS's experimental work.

This tungsten crystal size for Neon point defects was 10 x 10 x 10,

and contained 250 atoms. Some W-W simulation was done on a

l4 x 14 x l4 crystal; the reasons are explained in RESULT S . The

bottom two layers of the lattice were not allowed to move, al-

though they had potential energy, and exerted force on all atoms

16





in the crystal. The other eight layers were completely free to

move, and were included in the dynamic calculations of each time-

step.

The surface layer (Y = 0) and the second layer (Y = 1) were

moved forward, simulating actual surface relaxation in the crystal.

This relaxation was calculated by Moore [24] using simulation

techniques, and tested against previous results by Burton and

Jura L"25]- Definitions and use of mobile layers, relaxation, etc.,

were analagous in the copper model, as were all other aspects of

the model to be described in this chapter.

B. THE POTENTIALS

1. The W-W Composite Potential

The attractive potential used was the Morse potential, with

tungsten parameters calculated by GW L 12J . The interaction energy

0. ., of a pair of particles i and j is:

0. . = D[exp{-2a(r . .-r )} - 2 exp[-a( r . .-r )}] (1)
ij r v ij o' r v ij o' v

where D [dC0n] is the dissociation energy of the pair, r [re] is

the equilibrium separation, r. .[DISTj is the actual separation,

and Ci [ALPHA] is a constant.

The repulsive potential is of the BM type, with Harrison's

Hartree-Fock parameters. The interaction energy V. ., is

V. . = exp (A+Br . .) (2)

where B [exb] is always negative, A [exa] is always positive, and

r. . [diSTJ is the actual separation. The constants [exa] and

[exb] are peculiar to the W-W interaction.

17





The ranges of the W-W composite potentials were as follows:

the BM repulsive potential operated from to 1 . 5A; and the Morse

potential from 2$ [ROES] to 5.38A* Croec] . In LU , the dimension

in which all calculations were done, these constants were -9494,

1.2658, and 3.4000 LU. CROEC] was chosen to include interactions

out to the fourth nearest neighbor (NN4) at \[Tl LU = 3-317 LU but

not NN5 interactions, at \|T2 LU = 3-464 LU. Note, however, that

slight displacements of NN5's might alloiv their inclusion in po-

tential and force calculations. The gap between 1 . 5A and 2A was

filled with a cubic function, which matched to the other po-

tentials and slopes at [ROEA] and [r0Eb].

2 . Purely Repulsive Potentials

For foreign point defect interactions, i.e., Ne-W, or

W-W Method 2. a repulsive potential only was used. The potential

was again a BM , with the constants labeled [PEXAJ and Cpexb] . For

the W-W, Method 2 interaction, LpEXA] = [exa'J and [>EXB] = [exb] .

Ranges for foreign point defect interactions, however, were dif-

ferent, and the potential itself was modified at the cutoff point.

Whereas the BM part of the composite potential extended out to

about .95 LU, the modified BM potential used for foreign defects

was allowed to extend to \|3 LU, corresponding to the NNl distance

[ROE]. Cutting the potential off at [roe] left a step of about

.05 eV for Ne-W (.2 eV for W-W) at the NNl equilibrium position.

Since neither discontinuities nor repulsive potentials were de-

sired at this equilibrium position, we "eroded" L15J the potential

by subtracting V([R0E]), or about .05 eV from V(r. .) for

r. . < [roe]. Calculated forces, based on these eroded potentials

must be modified also, but for a different reason. It is possible





to conceive of a case where an atom is further away from the

defect than [roe] at the beginning of a timestep, but closer than

[ROE] at the end. The force has essentially "turned on" in the

middle of the timestep. The modification gives such an atom a

force which is less than the final force by approximately a fac-

tor proportional to the ratio of distance traveled outside [roe!

to the total distance traveled during the timestep Cl5l. (See

Appendix B. )

C. THE TIMESTEP

Motion caused by these forces must be found by an approximate

numerical method of time integration. As in previous work with

this model, the average force method L 1 5J was used. In this

method, all mutual forces were calculated in subroutine STEP.

Based on these forces, new temporary velocities and positions

were found. Forces were again calculated, based on the temporary

positions. The final positions were then calculated from the

average of these two force determinations. All velocities were

then either zeroed or halved as a damping method. This consti-

tuted one timestep.

For this average force method to work properly, the Atforl

which approximates dt in the integration must be kept small. Too

small a value for Ldt], however, would result in excessive com-

puter time. The choice of LDTj was also complicated by the fact

that Cdt] must be kept much smaller earlier in the program, when

velocities, forces, and energies are large, but can be allowed to

grow larger as the simulation approaches equilibrium. For this

reason, at the end of each timestep, a new LDT] was calculated

19





for use in the next timestep. The parameter chosen to control

Cdt] was [DTl],the distance, measured in LU, which the most

energetic atom was allowed to move before starting a new timestep.

LCTlJ has varied between .001 and .02, depending on such con-

ditions as original position of the point defect, relative masses

of atoms, etc. In general, L DTll must be kept very small when

high velocities are expected, and can be increased when all motion

is expected to be "sluggish". In actual practice [dt] and [DTl]

are related to both the velocity of each particle and the force

on each particle. To insure that no particle traveled more than

CdTI] we ensured that LDX] was small enough so that neither the

velocity of the most energetic atom nor the force on the most

.stressed atom would result in motion greater than LDTlJ. (See

Appendix C.

)

D. FOREIGN INTERST IT IALS

1 . Unequal Mass Implications

Many changes in the program were necessary when a foreign

defect was included in the lattice. These changes were especially

necessary when the defect was much lighter than the lattice atoms;

i.e., neon in a tungsten lattice. First, in the average force

calculations, a separate section had to be added for the calcu-

lations for the primary, or "bullet", based on the bullet mass

CbMAS] . Second, the potential energy between two unequal mass

atoms was split in proportion to their reduced masses (see

Appendix D) . Third, the section that determined the new timestep

duration was originally based en the lattice atom mass. Since the

light interstitial is usually the most energetic or most stressed
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atom, very erratic behavior was observed until the timestep du-

ration calculations were revised to handle two different masses

(see Appendix C) . Finally, a significant mass difference between

defect and lattice atom required a reduction in TdTI] . For the

neon-tungsten simulation, a [DTl] of .5% was used.

2. Ionization State and Repulsive Potentials

The major portion of the Ne-W work was done with the

assumption that tungsten was in a +6 state, and neon was neutral

in the lattice. Experimentally KS fired neon in a +1 state into

tungsten, but once emplanted, the ionization of neon was unknown.

All combinations of W , W and W with Ne and N ' were sub-

jected to Hartree-Fock analysis. (See Figure 5-) Only Ne -W

interacted in an approximately exponential manner and could there-

fore possess realistic BM parameters. Attempts to linearize

o +1 , o o
Ne -W and Ne -W were made, and subsequent BM parameters were

determined. The results of such changes did not significantly

influence the results of this investigation.

E. RUNNING TIME

The following factors effected the problem running time: range

of potential, size of crystal, depth of mobile layers, and degree

of damping. First, the range of the potential was picked to

include at least NN4 interactions. The range used for the tungsten

simulation was 3-4 LU, which includes interactions out to NN4 • The

error made by neglecting NN5 interactions was only 3% in the

binding energy of an interstitial, but the omission of NN5 inter-

actions cut running time almost 10%. Second, the size of crystal

and depth of mobile layers were picked as small as possible, for
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reduced running time, but were at least large enough to completely

contain the potential range. Third, the half velocity method of

damping was used whenever possible. In general, when velocities

were zeroed at the end of each timestep, a timestep took about ten

seconds, and equilibrium was reached in about 300 timesteps. When

velocities were halved, each timestep again took about ten seconds,

but equilibrium was reached in about 150 timesteps.

It was originally expected that increasing LdTIJ would decrease

running time. Most W-W simulation was done with LDTlJ = 2%; i.e.,

the most energetic or stressed atom could travel .02 LU before the

damping of velocities and the starting of a new timestep. When

fDTl] was increased, the atoms moved more erratically toward equi-

librium, and vibrated there, but did not achieve equilibrium

significantly scorer . (See Figure 6.)

F. SUMMARY

In summary, the steps of the program are outlined:

1. Variables are initialized, constants established, and input

data read in.

2. Scaling factors and time saving multipliers are calculated.

3. Morse and BM potential functions are calculated based on

input data. Subsequent forces, based on derivatives of these

functions are calculated. Potential erosion and force modifi-

cations are performed.

4. Potential cutoff's [R0Ea] , CROEbI , [rOECJ are established

and the smooth fitting cubic equation is placed in the gap.

5. The desired crystal type, size, and orientation is built,

and the point defect positioned (see Appendix A).
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6. Mutual potential energies of all atoms in the crystal are

calculated. Local potential energy is calculated. (See

Appendix D.

)

7- All initial positions and potential energies are printed,

along with total potential and total kinetic energy, local

potential energy, and the change in local potential energy.

8. The first timestep is started, with an arbitrary running

-14
time of 10 sec. Velocities and positions are calculated

by the average force method, and the maximum velocity L EMAX

J

and maximum force IFMAXJ are found.

9. A new [or], based on [EMAX] , CfMAX'] , and [DTI] is calculated

for use in the next timestep. (See Appendix C.)

10. All velocities are zeroed or halved as an energy damping

method; and the process (8. to 10.) is repeated.

11. At selected timesteps, all changes in position ( L DX J , CdyJ ,

CdzJ), velocities ([vx], L w] , LvxJ), and kinetic, potential,

and total energies L'pKe] , [pPe] , [pTe] for each atom in the

crystal are printed.

12. The program is ended after a pre-selected timestep, with a

final printout of position and potential energy of each atom,

as in Step 7.
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IV. RESULTS

KS's experimental data indicated that four or five interstitial

positions in the first few layers of a tungsten lattice could be

found that would result in different binding energies. It was soon

found that many parameters in the program could effect the results,

and so a systematic attempt to isolate the effects of each indivi-

dual parameter was undertaken.

A. THE CRYSTAL

As explained in Appendix A, the Y = plane was the crystal

surface; the Y = 1 plane was the first layer beneath the surface,

etc. Each atom in each layer was then designated by appropriate

x and z coordinates. This consxruction was independent of type

of lattice; i.e., the surface layer in either BCC (100) or FCC

(100) was Y = 0, etc. An interstitial that escaped the lattice

normal to the surface travelled in a (Oio) direction, and an ion

that escaped normal to a side travelled in either a (l00> or (001>

direction

.

The dimensions of the lattice had a great bearing on the re-

sults. In general, the larger the crystal, the more realistic the

results, but increased computer time prevented the use of a size

bigger than absolutely necessary. All point defects were placed

as close to the center of each plane as possible, and the x and z

dimensions of the lattice Cix] and [ iz] were chosen to completely

enclose a circle of radius [rOEC] from the point defect. Tn this

way any point defect in the center of the lattice would not feel
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the effect of the sides of the lattice, especially unequal numbers

of atoms in all directions. In the y direction, the lattice was

again built deep enough to completely contain the radius of the

potential of a point defect placed at the center of the lattice.

To simulate the effect of an infinitely deep lattice, the bottom

two layers of the crystal were held immobile, but still allowed

to interact with all mobile atoms above them. The tungsten crystal

size used most often was a 10 x 10 x 10 cube with the bottom

10 x 2 x 10 volume held rigid.

Often erratic behavior in the simulation could be eliminated

by simply increasing the crystal size. This was especially true

for the problem of crowdion migration.

B. CROWDION MIGRATION

Crowdion migration is a chain reaction of single lattice site

jumps initiated by interstitial implantation. If the chain re-

action ends by pushing the surplus atom into an already existing

vacancy, the interstitial-vacancy pair is called a Frenkel pair.

A Frenkel pair can also be created dynamically by moving an atom

from its lattice site to a nearby interstitial position, from

where it can cause migration back to the vacancy. If the mi-

gration cannot find a vacancy, and travels all the way to the

surface, the surplus atom forms a "stub". Normally, migration

is always in a closed packed direction; i.e., in the (ill) di-

rection in BCC. It was discovered, however, that this rule was

modified near a surface, since an imbalance of forces in the di-

rection normal to the surface automatically pushed a crowdion in

that normal direction into a stub position. In the tungsten
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lattice, for instance, a tungsten interstitial that did not

initiate crowdion migration would reach equilibrium in a (llO>

split interstitial position, as previously found by EVE C7] • A

tungsten interstitial that did initiate crowdion migration would

sometimes migrate in a (ill) direction because of closed-packedness

,

or sometimes in a (lOO) direction if implanted near a (100) sur-

face. Crowdion migration was never found in a (llO) direction,

since this is the least closed-packed of these three directions.

(Hence the tendency toward split-inter st it ials in this

direction )

.

Crowdion migration was a very common process near a lattice

surface. It was found, however, that varying the choice of atoms,

the range of the potential, and the rate of energy damping could

already mentioned was the fact that increased crystal size re-

reduced crowdion migration. Particular attention was paid to the

proper choice of values for these parameters, in order to cor-

rectly determine whether or not crowdion migration actually existed.

This question of crowdion migration was especially critical in this

simulation, since the binding energy of a particular atom is a di-

rect function of the nearness of its neighbors. An atom in a

split interstitial position feels a more repulsive potential than

an interstitial that has initiated crowdion migration and

'stolen' a lattice site and has thus reformed the original perfect

lattice with every atom in a normal lattice site.

1 . Choice of Atom

Some elements tended to initiate crowdion migration more

than others. This applied to both choice of lattice atom, and
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choice of interstitial atom. For instance, crowdion migration

was much more common in tungsten than in copper. This was due

to both the size of the tungsten atom and the nature of the crystal

Also it was found that different element point defects in the same

lattice produced varying degrees of crowdion migration. A neon

interstitial is so small and light that it never initiated crowd-

ion migration, even when only one layer separated it from the sur-

face. An argon interstitial initiated crowdion migration at the

surface, but not deeper in the lattice. A tungsten interstitial

always initiated crowdion migration, unless placed at the center

of a huge l4 x l4 x 14 tungsten lattice. This is an example of

increasing crystal size to prevent crowdion migration. In

general it can be stated: the more massive the interstitial, the

more probable crowdion migration.

2 . Range of Potential

In surface simulation, the range of the potential was a

critical factor, since it determined whether or not an atom could

"see" the surface. Because copper has been the standard element

for lattice simulations, many versions of a copper potential with

various ranges, have been determined. As mentioned previously,

GW [l2] calculated a Morse potential for copper that effectively

had an infinite range (150th nearest neighbor). If this potential

is truncated at very close ranges, i.e., NNl or NN2 , the potential

is seriously underestimated. This under estimate rapidly dimin-

ishes as the truncation range increases. Since GW parameters for

the Morse potential could not be used for NN2 interactions,

Anderman Cl4] calculated parameters for a Morse copper potential

that would approximate GW ' s results in simulations truncated after

27





NN2 . He did this by deepening and broadening the well. Although

Anderman parameters and GW parameters led to very similar results

in an infinite lattice, they led to quite different results in this

simulation. In general, if the range of a point defect potential

function overlapped a surface, crowdion migration would take place

toward that surface, because of an imbalance of forces in the nor-

mal direction. The effect was a little more complex than this be-

cause of surface relaxation: if the range of the point defect po-

tential function overlapped a relaxed surface layer, the slight

force imbalance would again result in crowdion migration. Accord-

ing to GGMV, "the machine calculation showed that this atom rapidly

moved... in a direction determined by minor asymmetries in the

starting conditions..." . In this copper simulation, an inter-

stitial placed in the forth layer with a GW potential range of

3-1 LU (NN4) caused complete crowdion migration, resulting in a

copper stub on the surface. An identical run with Anderman para-

meters for an NN2 potential to a range of 2.4 LU resulted in a

( 100) split interstitial with minor, damped migration to the sur-

face. Instead of a stub copper atom as before, four copper atoms

in the surface layer bulged about .4 LU.

Another example of a short range potential which demon-

strated this lack of ability to initiate crowdion migration was

the repulsive foreign defect potential, with a range of \[~3~ LU.

In copper, this potential quickly led to split interstitial

positions and no crowdion migration for all copper interst it ials

Gibson, J.B., Goland , A.N., Milgram, M., and Vineyard, E.H.,
"Dynamics of Radiation Damage, "The Physical Review , V. 120, No. 4 3

p 1237, Nov 15, I960.
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except those placed in the first two layers. In tungsten, even

this short range potential could not retard crowdion migration in

the 10 x 10 x 10 lattice. Only in the center of a 14 x 14 x l4 was

a tungsten split interstitial stable. This stability applied only

to the short range repulsive potential: a repeat run using the

standard composite potential with a range of 3.4 LU initiated

crowdion migration. This increased range enabled the interstitial

to find minor asymmetries in even a l4 x l4 x 14 lattice.

3 • Energy Damping

Energy damping was accomplished in this simulation by

reducing each atom's velocity at the end of each timestep. Two

methods were used: at first, each velocity component of every

atom in the crystal was zeroed at the end of each timestep. Later,

the halving of each velocity component at the end of each time-

step was employed to save computer time. In a tungsten lattice

the results of both methods were the same; all final positions and

binding energies were identical. Neither method prevented crowd-

ion migration. In copper, these two methods led to slight ly
' dif-

ferent results. Although the final position and binding energy

of an interstitial was almost identical, and although crowdion

migration was initiated in both cases (GW's parameters and a

3.1 LU range were used), the zeroed velocity method had damped the

migration significantly by the time it reached the surface, where-

as the halved velocity method caused a complete, undamped mi-

gration to the surface.
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C. INTERSTITIAL IMPLANTATION

All inter stitials were placed in the obvious holes in a hard

sphere, close-packed lattice model. (See Figure 7.) Every

"hole" in the tungsten lattice had exactly the same geometry;

i.e., two neighbors 1 LU away; four neighbors 2 LU away, four

neighbors 3 LU away, etc. The only factors which differentiated

between these identical holes and thus led to different binding

energies were: layer number, or lattice depth, and open channel

direction. An interstitial in the third layer was more tightly

bound than one in layer two, etc. Also, an atom in a given layer

could be placed in two types of holes: one in which the inter-

stitial was in the BCC (010) open channel direction, in which case

the interstitial could "see" the surface; and one in which the

interstitial was in the BCC ( 100) or (OOl) open channel, in which

the interstitial could not "see" the surface. Note, however, that

if an atom could not "see" the surface, then there was no difference

between these two positions, since both have two neighbors 1 LU

away, four neighbors 2 LU away, etc. Note also that even if these

two sites are identical and possess exactly the same binding

energies, the difference might still show up in diffusion pro-

bababilities : an interstitial in a (010) open channel in the

second layer must only move two lattice units to escape the cry-

stal. An interstitial in a (lOO) or (001) open channel must move

1 LU in either the x or z direction into an open channel, and then

2 LU to escape; i.e., it must move like a knight in chess. This

extra step might lead to a different diffusion probability.
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D. THE TUNGSTEN LATTICE SELF DEFECT

The tungsten self inter stitials and self replacement defects

were the chosen standard for this analysis, as explained in the

in the OBJECTIVE. The tungsten defects could be treated as

lattice atoms and allowed to interact with all other atoms with

the composite potential (Method 1); or they could be treated as

foreign defects and allowed to interact with only a repulsive

potential (Method 2). A total of three different defect positions

were simulated: an interstitial in a \010) open channel (int A),

an interstitial in a < 100) or (001) open channel (int B) , and a

replacement atom (rep) in a lattice site. (See Figure 7.)

1 . Interst it ials

As previously mentioned, all tungsten interst it ials initi-

ated crovvdion migration when treated by method 1, An interstitial

treated by method 2 also initiated crowdion migration unless buried

in the center of an enlarged l4 x l4 x 14 lattice. Because an

interstitial that has pushed its neighbors away has a lower po-

tential than one that has not done so, the numerical values for

binding energy of tungsten interstitials could not serve as a

true standard for comparison with W-Ne results. Qualitatively,

however, much could be learned from the W-W energy levels. First,

it was expected that all energy levels of a defect found by

Method 1 would be negative at equilibrium. Values for the compo-

site potential can be either negative or positive, but are posi-

tive only at very small separations. A negative potential energy

means the atom is bound in the crystal. As shown in Figure 1, on

the next page, the first two interstitial levels for the W-W

reaction, Method 1, were at -3-0 cV and -3.1 eV, corresponding to
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the two inter st itials in the first layer (int A and int B) . The

next two levels were at -5.4 eV and -5.9 eV, corresponding to the

interstitials in the second layer. Interstitials in the third

layer and deeper had binding energies ranging from -7.4 eV to

-8.1 eV. The value of -8.1 eV, labeled Mo°" was obtained from the

interstitial placed in the center of the seventh layer of a

14 x 14 x l4 lattice. Since this value, and all other values for

Method 1 binding energies were reached after crowdion migration,

they were all expected to be lower than they would be without

crowdion migration. The only way the true binding energy of a

tungsten interstitial could have been found would have been to

find a tungsten crystal size large enough to contain the crowdion

migration of a tungsten interstitial with the long-range composite

potential. Compute running time madp this impossible.

Also shown in Figure 1 are the binding energies for the

Method 2 W-W interstitials. Note, first, that they were all

positive. This was again expected, since the potential equation

for Method 2 is positive over all space. Note, second, that the

binding energies for interstitials in the first two layers were

zero. This was because all purely repulsive atoms in these first

layers escaped the lattice completely. The other positive levels

shown, were incomplete, because many interstitial positions did not

possess stable energy levels. The unstable levels oscillated be-

cause of significant lattice motion, caused by crowdion migration,

and measured by a short range potential. The range was so short,

that significant jumps in binding energy occured when an atom

moved into, or out of the range of the potential. Evidently,
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small vibrations in atoms with an equilibrium distance of about

^~3~ LU from the interstitial, frequently caused crossings of this

range limit, adding or subtracting energy from the binding energy

each time one of them crossed, thus invalidating many of the inter-

stitial binding energies.

The energy levels shown, however, demonstrated the meaning

of a positive "binding energy". The numbers reflected the "amount

of repulsion" associated with different positions in the lattice.

The ordering of the levels, i.e., higher energies for deeper layers

was expected. An interstitial deeper in the lattice felt more

repulsion, because it was surrounded by a greater number of re-

pulsive neighbors. Again, the level labeled " °°" represented an

interstitial in a l4 x l4 x l4 lattice; but in this case of a

Method 2 interstitial, crnwdion migration did not occur.

The concept of a positive binding energy may or may not

be the actual physical situation, but it is still academically

valuable. Instead of an atom resting near the bottom of a po-

tential well, as in Method 1, an atom can be "wedged" between the

repulsive walls of its neighbors. In both cases, the atom is

"bound" in the lattice. The ordering, spacing, and other cor-

respondences between the positive and negative levels validate the

qualitative use of the positive levels.

2 . Replacement Impurities

A tungsten lattice with a replacement impurity is a per-

fect tungsten lattice, but Method 1 or Method 2 could be used on

the atom. in question. For Method 1, a perfect crystal wasallowed

to relax with time, yielding only negligible motion; and the
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binding energies of the center atom in each layer was recorded

(see Figure 1). The binding energies of atoms in the first,

second, and third layers were-5.3 eV,-6.8 eV, and-7.0 eV respec-

tively. The subsequent reversal of order for levels corresponding

to deeper layers is a program anomally, caused by the use of a

finite depth crystal. Runs on larger crystals indicated that the

order would not reverse in an infinite lattice. The Mao " level

at~8.8 eV is the experimentally determined heat of sublimation [26]

of tungsten. These numerical values for the binding energies

were valid as standards of comparison for the Ne-W data, since the

motion and equilibrium positions of the replacement atoms and their

neighbors were nearly identical, and usually less than .3 LU in

both cases. Note that the binding energies of the Method 1 re-

placement atom?? wprp lowpr than the interstitial atom levels. As

previously stated, this was to be expected, since a replacement

atom rests in the bottom of a periodic potential well in the

lattice, whereas an interstitial rests in a higher well, because

it is nearer to its neighbors than the normal equilibrium sepa-

ration. Also note that if the entire Method 1 spectrum of binding

energy levels were used as a standard of comparison for Ne-W levels,

then the W-W interstitial levels should be higher with respect to

the replacement levels, than shown in Figure 1, because of crowdion

migration

.

The Method 2 replacement level labeled " a"' cor responded

to a replacement atom in the center of the fifth layer in a 10 x

10 x 10 lattice. Note that it was not above the interstitial

levels, as it should have been by comparison with Method 1. This
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was the major weakness of Method 2: because it was a measure of

repulsion only, and neglected the potential well, it under esti-

mated the values of the binding energies of atoms whose normal

position was in that well; i.e., replacement defects.

E. THE NEON DEFECT IN TUNGSTEN

The neon atom defect was again placed in any one of the three

lattice positions, labeled "int A", "int B" , and "rep". The neon

defect could be treated by Method 2 only. The neon energy levels

are shown in Figure 2, on the next page. Note that the energies

have been multiplied by a mass correction factor. (See Appendix D.

)

1 . Inter stitials

The neon interstitial never initiated crowdion migration,

but as in the W-W case, atoms placed in the first two layers es-

caped the crystal, and therefore had zero binding energy. Again,

the ordering of the levels was a measure of the replusion on the

interstitial, which increased as the interstitial was placed

deeper in the lattice. Again the M<:o " level was the result of

placing a neon interstitial in the center of a l4 x l4 x l4 tung-

sten lattice.

2 . Replacement impurities

Again note that the replacement levels are lower than

would be expected by comparison to the W-W Method 1 standard. It

is hypothisized that these replacement levels should be higher

than the interstitial levels, by comparison to the standard. This

assumption is valid if a Ne-W potential well exists. It is fea-

sible that since neon is almost incapable of binding, that no N'e-W

well exists. On the other hand, the ionization state of both noon
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and tungsten in the lattice is unknown, so the existence of a

shallow potential well is quite possible.

F. CORRELATION WITH EXPERIMENT

1 . Scaling the Levels and Peaks

Since no direct way of transforming the Ne-W energy levels

into correctly scaled negative values exists, an arbitrary linear

scaling factor between KS's data and the Ne-W levels has been

used. Note that every level or group of levels corresponded to

an experimental peak in Figure 2, except in two places: first,

the broad peak at about 2000 K had no energy level counterpart,

but could be assumed to correspond to the closely ordered replace-

ment levels, shifted above the interstitial levels by the above

hypothesis. Second, the narrow peak at 450 K was without an

energy level counterpart. Note that three interstitial levels

had zero simulated binding energy because they had escaped the

crystal. If, however, the assumption that a Ne-W well exists was

true, then some or all of these three interstitial locations,

(i.e., two surface layer positions and the open channel position

in the second layer) would be stable, bound positions, and would

be expected to generate an energy level in the vacinity of the

450 K peak. If the arbitrary scaling of the peaks and levels was

correct, then the peak at 450 K is proof that a Ne-W well exists,

since a purely repulsive potential would not allow a first layer

or second layer open channel interstitial energy level to exist.

The existence of this well, then, would in turn substantiate the

shift of the replacement levels above the interstitial levels, to

correspond to the 2000 K peak.
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2 . Probes of Potential Wells

Various attempts to substantiate the scaling between the

levels and peaks were made. No approximation to a Ne-W potential

well could be justified, and the correspondence between W-W and

Ne-W results was not complete enough to invert and scale the po-

tential energy levels to realistic, negative, binding energies.

Attempts were also made to match both Method 1 and Method 2

W-W energy levels to KS ' s data. The Method 2 levels were too

incomplete, and the Method 1 levels required an unknown arbitrary

reduction of interstitial energy levels to compensate for crowdion

migration. Too many alternate reductions were possible to choose

one as the correct rescaling.

Another approach that yielded little information was a

plot of the differences between interstitial and replacement

energy levels for each layer in the lattice.

One valuable method of investigating the nature of possible

Ne-W negative binding energies was to probe the perfect lattice

with an interstitial at various initial positions and plot the re-

sultant potential energy of an interstitial vs. position. Since

the potential was always positive, the results of this investigation

were potential wells above the x-axis . Although the positive lo-

cation of these wells was not realistic, the relative depth of the

wells was significant. The average depth of a neon interstitial

well, deep in the lattice, was about 4.2 eV (see Figure 8). The

graph was made by placing inter stitials in positions in the (010)

open channel, and thus represents the barriers that the interstitial

must penetrate as it escapes the crystal. Note that the wells v.o:e

not at the obvious holes in the BCC lattice, but were between layers
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In the actual simulation, the interstitial rarely fell into this

well, but instead pushed its two nearest neighbors away and made

the initial position the low potential position. Here again, sur-

face effects and relaxation reduced the tendency for inter st it ials

to relax into expected infinite lattice equilibrium positions.

Slight differences in the final equilibrium positions were not of

significant importance to binding energies. The actual numerical

values for the depths of these positive wells were not necessarily

scaled properly since they ignored the actual Ne-W potential well,

and were found from perfect lattice probes at time zero, before

relaxation. Nevertheless, the depth of a well deep in the lattice

of 4.2 eV agreed well with KS's prediction of 4-5 eV [8] for the

desorbtion energy corresponding to 1720 K, at the front edge of

the highest pe^k. 1720 K closely approximated the temperature

that the arbitrary scaling had assigned to a deep interstitial.

Note that the initial position of a replacement atom was

\[3~ LU from its neighbors, and thus because of potential erosion,

it had a potential of zero eV initially. To climb out of this

well, about 17-5 eV must be supplied. Although this number was

inaccurate for the same reasons listed above, it did demonstrate

that even a purely repulsive potential can predict a greater

binding energy for replacement atoms than for interstitial atoms.
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V. CONCLUSIONS

An arbitrary scaling has been used to correlate the simulation

results with experimental data. Although the method was not ana-

lytically sound, no other avenues of approach to the problem could

be found that could further justify our hypothesis.

Satisfaction can be gained, however, from the fact that these

results compare favorably with known data at many interfaces. Our

model was a tried and proven one, with many successful sputtering,

channelling, and similar simulations to its credit. This present

model invariably behaved in a physically valid manner or a manner

which could be made physically acceptable by varying the con-

trolling parameters in the program. Specifically, many previous

experimental and simulated results for infinite crystals were

reproduced when simulation took place deep in a large lattice,

such as the (lio) split interstitial position for BCC structures.

The Method 1 replacement levels, if found for a much deeper cry-

stal, would have asymptotically approached very close to the

8,8 eV heat of sublimation. The simulated depth of the positive

potential well for interst itials of about 4.2 eV closely approxi-

mated KS's prediction of 4.5 eV.

All avenues in additional computer simulation have not been

exhausted. Future simulation of Argon, Krypton, and Xenon defects

in tungsten should be fruitful. Comparisons between the relative

locations of these new energy levels might further substantiate

this research. In particular, if simulation can explain why KS's

neon data contains five desorbtion peaks, while their Argon,

Krypton, and Xenon data contain four peaks, it will be a major
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success. KS also gathered data for different crystal surfaces

and different angles of incidence, which might be investigated

by computer simulation.

This simulation was also important in that it investigated

the lattice surface; a topic which has rot received as much

attention as infinite crystal dynamics. Since radiation damage

theory and modern transistor theory is very much concerned with

the crystal surface, the computer simulation field will undoubtably

increase their emphasis on surface effects, with considerable

attention toward better ways of treating a foreign interstitial.

A new exhaustive book which reports on the present state of

knowledge in all these areas, with emphasis on experimental re-

sults has just been published. It is a report on the proceedings

of the International Conference on Vacancies and Interstit ials in

Metals, 1968 [27'J .
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APPENDIX A: CRYSTAL GEOMETRY

The computer program can call any one of nine lattice generator

subroutines: three face-centered cubic subroutines (LlIOO] , [lIIO],

[LIU]), three body-centered cubic subroutines ([bIOO], [bIIO],

[Bill]), and three diamond subroutines ([dIOO], CdIIO], [Dill]).

The diamond subroutines are never used and therefore not compiled;

but provision has been made for their future inclusion in the pro-

gram. The dimensions of the lattice chosen were controlled by the

input data variables [ix], Liy], and [ iz] . Each atom in the cry-

stal was numbered, in the order x followed by z, followed by y.

For the surface layer (Y = 0) of the tungsten 10 x 10 x 10 lattice,

atoms were numbered from 2-26; for the first layer below the sur-

face, atoms were numbered 27-51, etc. Atom number 1 was the pri-

mary, 01 point defect atom. lLDj was the ijumber of the last mobile

atom, or the last atom in the eighth layer, number 200; and LllJ

was the number of the last atom in the crystal, number 250.

The placement of point defects was accomplished as follows:

after the desired perfect lattice was built to the desired size,

subroutine PLACE was called. Three types of defects were allowed:

vacancies, inter st it ials , and replacement impurities. The type

and location of the defect were controlled by input data vari-

ables: the type of defect [iTYPe], an atom number [nVAC] and a

displacement vector CdIX, D1Y, Dlz] in LU . If ClTYPEj = 1, a

vacancy was created in site number [NVAC] . This "removal" was

accomplished by setting ClCUT (NVAC)] = 1 which "turned off" the

atom, removing it from all calculations. If LiTYPE] = 2, an

interstitial was created in a position [-DIX, -DIY, + Dlz] LU from
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site number lNVACj . This interstitial was always atom number 1.

Since atom number 2 was always at the origin, number 1 could be

placed using a displacement vector from the origin (from [nvac] = 2)

or using a displacement vector from a site next to the interstitial.

If L ITYPe] = 3, a vacancy was created in site number LNVAC] and

a replacement impurity, put in its place. Note that for both

[iTYPEj = 2 and 3, either a foreign or self defect could be

placed. For the case of either the self -inter stitial or the self-

replacement atom (giving us back the perfect crystal), either

method 1 or method 2 of calculating the potential could be used.

The choice of methods was also an input parameter: for method 1,

[iq] = 1, and for method 2, [ IQ] = 2.
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APPENDIX B: POTENTIALS

(In this appendix and all subsequent appendices, the brackets

denoting program language are dropped. Program language is still

written in all capital letters.)

A. BORN-MAYER REPULSIVE POTENTIAL

1. Potential Energy : For the lattice atom interactions, the

Born Mayer potential equation is:

V. . = exp(A + Br . .) (1)

°r
POT = EXP(EXA + EXB*DIST) (1A)

For bullet-lattice atom interactions,

V. . = exp(A' + B'r . .) - V. .(ROE) (3)

where V. .(ROE) is subtracted to retard the potential so that it

goe^ to zero at the nearest neighbor distance. in the progiam,

the V. . equation is:
ij

POT = EXP(PEXA + PEXB*DIST) - PPTC (3A)

2. Force : For the lattice atom interaction,

-bv. .

Force = t—^ = -B exp(A + Br . .

)

Or . .

r v ij

= exp [(^2 -B + A) + Br . .] (4)

in the program, 0n(-B + A) = ( ALOC-C -EXB*CVEd] + EXA) = FXA,

where CVED is a conversion factor for units, and

FORCE = [FXA + EXB*DIST] (4A)

For bullet-lattice atom forces,

-0V. .

Force = -s—^1 = - B' exp( A' +B ' r . .) = expOi-B'+A 1 )+3'r . .] (5)
Or . .

r v in' ij

where (^-B 1 +A* )
=

( ALOC-C -PEXB*CVED] +PEXA ) =PFXA, and

FORCE = EXP[PFXA + PEXB*DIST] (5A)
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rSt aPP r °*i-ee ls given by :

Force =

(6)
(See Figure

9
ij Vi/0E

)
is the retarded potent^ i^ove. A conversion factor

Potential giVen

equation ( 3A) .

(p
etarded potential

V. -BpfpJ ^ '* CVED+PEM
' « ^, so

- V"«> ca lculated a/ter
* b— "PIC *i*

(6A)

F0RCE = ^^PACiPEXB^DTSTj- PFPTr
DFF ' ^

Not^ (5A) is used for S D1ST £ „

( A) " USed f°r "OEM < OIST < R0E
,

• • .* • i '• •

B- MORSE POTENTIAL - .'

1? -^^Iltia2__E
i2erqy : For -,_.y£. hor. lattice atom intpr o, + .

Potential equations i S;
Actions, the Morse

$
ij

= D^exp{-2a(r
. .r ,)'. t

| ij
r )i-2exp{-a r .

j

j

~ exp[(^D + 2ar w
(aa1

-
-,

=
^C(ALOG(DCON) +2 .,AL

p

' '.' J -

.
;• V

D, r '

~ (2 -*AlpHA*CVR)*DT9tT '•-*
-E^L(ALaG(2..DcON)+ • •

}

.

DISTj
';./.-

EXPLCGD1-CGB1*DIST]-
EXPfrrro

'^'
t-XPLCGD2-CGB2*D!STl "'

2 - (2A )
-«- Force- For i a + +1-~. "^ '*" factions/ .! .

Force = * 1 _ r-

6r DL2a exp{-2a (r . ._ r )f _^J ij ;J -a exp[-a( r _ _ r
,-

ij o ;
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= exp[0n(2a)+(0nD+2ar ) -
( 2a )r . .]-exp!>ia +(&n( 2D) +ar )-(a)r..]

= exp[alog( 2*alpha*cvr*cved) +alog( dcon) +2 . *alpha*re

- ( 2 . *alpha*cvr ) *dist]

- exp[ alog( alpha*cvr*cved) +alog( 2 . *bcon) +alpha*re

-( alpiia*cvr) *dist'j

= exp[ alog( -cgb1*cved) +cgd1 ) -cgb1*dist]

- exp[(alog(-cgb2*cved)+cgd2)-cgb2*dist"j

= exp[cgfi-cgbi*dist]- exp[cgf2-cgb2*dist] (7a)

c. cubic fit

1. Potential Energy : The best cubic fit between the BM and

Morse potentials is calculated in Subroutine CROSYM. The po-

tential equation, defined between ROEA and ROEB, is

? 2
POT = CP3r . . + CP2r . . + CPlr . . + CP0 (S)

ij iJ iJ

or POT + DIST*(DIST*(DIST*CP3+CP2)+CP1)+CP0 (8a)

-&POT 2
2. Force: Force = x = -3CP3* • . -2CP2r . .

- CP1 (9)
Or . . in ii

lj

2
= (-3-*CP3*CVED)r . . + (-2.*CP2*CVED)r . .+ (-CPl*CVED)

2
= CF2r . . + CFlr . . + CF0 , or

FORCE = DIST*(DIST*CF2+CFl)+CF0. (9A)
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APPENDIX C: AVERAGE FORCE METHOD AND TIME DURATION THEORY

A. AVERAGE FORCE METHOD: The average force technique has been

explained in great detail in Ref. 15. It was summarized in

Chapter 3, and therefore discussion here is limited to the average

force method in the program language.

When the desired lattice is built, the position of the ith atom is

stored simultaneously in RX(I), RY(I), RZ(I); RXK(I), RYK(I),

RZK(I); and RXI(I), RYI(I), RZI( I) . The latter set of coordinates

never change and are used for comparing new positions to original

positions, and in calculating DX(I), DY(I) and DZ(I) for output.

The middle set of coordinates containing the letter K are for

storing the initial positions at the beginning of each timestep.

A step by step summary of the average force method, showing X

coordinate calculations only, follows:

1. Based on the position, RX(I), of the ith particle at the be-

ginning of the timestep, the force FX(I) is calculated in STEP.

2. RX(I) is stored in RXK(I).

3. The new, temporary position, RX(I) is calculated, based on

the force at RXK(I)

:

X
1

= X + VAt + F(At) /2m (10)

or

RX(I) = RX( I)+DTOD*(HDTOM*FX(I)+VX( I) . (10A)

4. A new force is calculated, based on this new position RX(I).

5. VSS stores VX(I), the original velocity of the i th atom. This

velocity is half the velocity of the ith atom in the previous

timestep

:

the \ factor being an arbitrary damping multiplier. A
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new velocity, based on the new force, is found:

V
1

= V + FAt/2ra (11)

or

VX(I) = VSS+HDTOM*FX( I) . (HA)

6. The final position is calculated, based on the average of

these two velocities

X
1

= X + %At(V+V
1

) (12)

RX(I) = RXK(I)+(VX(I)+VSS)*HDTOD (12A)

The resultant velocities are halved, a new timestep duration is

calculated, and the process repeated.

B. TIMESTEP DURATION THEORY

This simulation uses the best possible estimate of a timestep

duration, DT, as calculated from the present state of the forces

and energies in the lattice for use in the next timestep. To

limit motion to an increment small enough to preserve the accuracy

of the average force appr oximation , we define DTI as the maximum

distance any atom is allowed to move in one timestep.

From (10), we find

Therefore,

For

AX. = (V.+ F.At/2m)At.
l v l l

'

At = AX./(V.+F.At/2m) . (13)

V. » F.At/2m, At = AX./V.. (14)li ll

If we find the fastest moving atom and assure that it does not

move more than DTI, we have limited the motion of all other atoms

to less than DTI.

ThUS
' DT = (DTI*CVD)/EMAX = FDTI/EMAX (l^A)
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where
EMAX = SQRT(VX(I)*VS(I)+VY(I)*VY(I)+VZ( I)*VZ( I)

.

For V. » F.At/2m,
1 1

2raAX.

At = AX./F.At/2m = —— . (15)
l

Anatagous to above, we find the most stressed atom and assure

that it does not move more than DTI. Thus,

DT = SQRTC (2.*PTMAS*DTI*CVI))/FMAX]

= sqrt[tfac/fmax] (15A)

where FMAX= SQRTC FX( I ) *FX( I) +FY( I) *FY( I) + FZ( I) *FZ( I) "J .

Since rigorously we cannot make either or these limiting assumpt-

ions, we must go back to our original equation for DT , equation (13)

Since this equation involves DT , we proceed as follows;

1. Assume V. « F.At/'2m and calculate At from (15a).

2. Insert this preliminary value for DT in (13) and compare

V. to F.At/2m. If V. is larger, calculate DT from (lAA). If11 l v '

F.At/2m is larger calculate DT from (15A).

A complication arises when a foreign impurity is in the lattice,

because of a variation in the value for m in (15). This is

especially acute when the differences in masses are great. The

method used to solve this problem is as follows:

1. If either FMAx = F or_ EMA X = V , the entire proceedure, above,

is followed using the mass of the bullet for m.

2. If both FMAX / F_ and EMAX f V , the entire proceedure is fol-

lowed using the mass of a lattice atom.

The requirement that the bullet mass be used if either EMAX or

FMAX describe the bullet circumvents the problem of having the
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bullet the fastest moving atom, but not the most stressed atom,

or visa versa.

-14
To begin the problem, an arbitrary value of 10 seconds is

assigned to DT. If at any time in the program EMAX = FMAX = zero,

-14 ... ...
10 is again assigned to DT to prevent division by zero.
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APPENDIX D: SUBROUTINES STEP, ENERGY, AND LOCAL

A. DISTANCE CALCULATIONS

In all three subroutines, STEP, ENERGY, and LOCAL, a method of

finding all atoms within a given radius of another atom was needed.

For lattice atom interactions, atoms inside ROEA, ROEB, and ROEC

were found; for the foreign interstitial interactions, atoms inside

ROE were found; and for LOCAL, atoms inside ROEL of a point defect

were found. The time saving technique used to do this was to

successively eliminate all atoms with an x component difference

greater than the given radius, then similarly for y components,

then for z components. The resulting volume not eliminated is a

cube circumscribing the desired sphere. Finally the time-con-

suming test of eliminating all atoms for which the desired radius

is less than SQRT ( ERX*DRX + DRY*DRY h DRZ*DRZ) is applied to

only atoms inside the cube.

B. SUMMATION INDICES IP AND IQ

Interactions V. ., 0. ., and F. . are found by evaluating all values

in the half matrix. For example F , F , F ,
••• are found, then

F„_, F_i ,
••• etc. The variable IP controls the starting point

23 3h

for the j summation. IP is always set to I + 1 to avoid the re-

petition of finding F.. and F... IQ controls the starting point

for the i summation. If the primary is to be treated as a lattice

atom, IQ = 1. If it is to be treated as a foreign particle,

IQ = 2, and all F. . are found separately.

C. DISTRIBUTION OF FORCES AND POTENTIAL ENERGIES

The forces F.. are equal and opposite on i and j: i.e., F.=-F..

The potential energies are split in proportion to the reduced
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mass of the interacting particles. This is easily understood by

observing the kinetic energy distribution of an elastic collision

of m and M where M > m. We find that m carries away almost all

the kinetic energy: specifically it carries away I
—— 1 E ~E .

If a pair of atoms are to behave elastically, the potential

energies which are transformed into kinetic energies of motion

must be split in the same manner. For this reason,

PPE < 1 »=
(toas^as)

* POT BSAVE*POT ;

and

PPE
< J >= (tMAS^Ias)

*P0T = TSAVE*POT.

note, for BMAS = TMAS, BSAVE = TSAVE = h, and the energies are

split equally.

D. SUBROUTINE LOCAL

LOCAL measures the change in potential energy associated with a

sphere of radius ROEL surrounding a point defect. It sums up the

potential energies of each atom found inside this sphere at time

zero. It remembers these atoms, and for each timestep re-sums

the potential energies of these same atoms. The sum, total local

potential energy TLPE, is subtracted from TLPE at time zero

(TLPE0) , to give a measure of the change in potential energy

(DLPE) inside ROEL.
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APPENDIX E: COMPUTER PROGRAM GLOSSARY

NOTE: In this glossary, the terms "point defect atom", "bullet",

and "primary" are synonymous; and the terms "lattice atom" and

"target" are synonymous.

ALPHA: Input Morse potential parameter

BSAVE: Target mass/(target mass + bullet mass); distributes

potential energy between target and bullet

BIND: Negative of the total potential energy (TPOT) at time zero

BMAS: Mass of bullet in amu

BULLET: Alpha-numeric array for point defect material

CFO, CF1 , CF2: Force parameters of cubic fit between Morse and

Born-Mayer functions

CGBl , CGB2: Morse potential parameters

CGD1 , CGU2: Morse potential parameters

CGF1 , CGF2: Morse force parameters

CPO, CP1, CP2, CP3: Potential parameters of cubic fit between

Morse and Born-Mayer functions

CVD: CVR x 10 , converts lattice units to meters

-19
CVE: 1.6 x 10 , converts electron volts to joules

CVED: CVE/CVD, a ratio used to avoid repeated division

-27
CVM: 1.672 x 10 , converts atomic mass units to kilograms

CVR: LU in angstroms; converts lattice units to angstrom units

D1X, D1Y, DlZ: Displacement coordinates for location of interstitial

from reference atom
, NVAC

DCON: Input Morse potential parameter

DFF: ROE-DIST, the distance closer than ROE that an atom is to

the primary
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DIST: Distance between any two atoms

DLPE: TLPE-TLPE0, the change in total local potential energy

since time zero

DRX, DRY, DRZ: x,y,z components of DIST

DT: Length of a tiraestep in seconds

DTI: Number of lattice units most energetic atom may move in

one times tep

DTOD: DT/CVD— a ratio used to avoid repeated division

DTOM: DT/PTMAS--a ratio used to avoid repeated division

DTOMB: DT/PEMAS--a ratio used to avoid repeated division

DX(I), DY(I), DZ(I): Change in position of it_h atom from initial

position at time zero

EMAX: The maximum energy encountered in any cycle

EV: Primary energy in electron volts

EVR

:

Primary energy in kilo-electron volts

EXA , EXB: Input Born-Mayer potential function parameters for the

target

F2

:

Square of the force on a specific atom

FA: The component force increment on an atom

FDTI : DTI X CVD, a parameter used to determine DT my maximum

energy method

FM: A small number used in checking potential energy zero

point

FM2: FM squared

FMAX: Maximum total force on the most stressed atom in the

crystal

FOD: FORCE/DIST--a ratio used to avoid repeated division
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FORCE:

FX(I),

FXA:

HBMAS

:

HDTOD:

HDTOM:

HDTOMB

HTMAS:

II:

13:

I DEEP:

IH1

IH2

IHB:

IHS:

IHT:

ILAY:

IN:

IP:

IQ:

Numerical value of the force function with a variable

parameter

FY(I), FZ(I): x,y,z components of total force on an atom

Born-Mayer force function parameter

\ BMAS--a ratio used to avoid repeated division

^§ DTOD--a ratio used to avoid repeated division

\ DTOM--a ratio used to avoid repeated division

% DTOMB—a ratio used to avoid repeated division

^ TMAS--a ratio used to avoid repeated division

Variable in cubic fit subroutine

11 it

I SHUT:

IT:

ITT:

Number of mobile layers

Alpha numeric array for program title

" " " " Morse function parameters

" " " " bullet element

" " " " type and orientation of crystal

" " " " target element

Same as I DEEP

Odd-even integer used to determine atom site establishment

Subscript value of atom. Used in subroutines STEP and

ENERGY

Parameter that determines whether or not a self defect is

to be given a repulsive potential or a composite attractive-

repulsive potential

A parameter used to shut down the program

Unsealed fixed point x coordinate used in lattice generation

Odd-even integer used to determine atom site establishment
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ITYPE: Parameter used to determine the type of point defect:

vacancy, interstitial, or replacement

IX, IY, IZ: Number of x,y,z planes of crystal

J2 : Variable in the cubic fit subroutine

JJ: Parameter in the BCC(lll) lattice generation subroutine

JT: Unsealed y coordinate used in crystal generation

JTS: Variable used to establish atom sites

JTT : " " " " " "

KF: Final K in LOCAT (K) assigned to an atom

KT: Unsealed z coordinate used to establish atom site

LCUT( I) : Used to identify an ith atom which is not included in

calculations

LD: The highest numbered atom in the mobile layers

LL: The highest numbered atom in the entire crystal

LOCAT(K) : Dimensioned variable that remembers the numbers of the

atoms within a radius ROEL of the primary at time zero

LS: Variable associated with each of the nine lattice

generator subroutines

MCRO: One number higher than the order of the fit between the

Born-Mayer and Morse potentials, always 4 in this simu-

lation

ND: Data output increment, in numbers of timesteps

NEW: Parameter used to determine whether or not atom numbers

have been stored in LOCAT(K)

NPAGE: Page numbering variable

NRUN: Parameter used to determine whether or not to read

additional data cards
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NS: Initial print statement timestep number

NT: Timestep number

NTT: Timestep number limit before shutdown

NVAC: An atom number used to establish point defects or used as

a reference point for interstitial placement

PAC: Parameter for bullet force function correction

PBMAS: Primary mass in kilograms

PEXA, PEXB: Input Born-Mayer potential function parameters for

the bullet-target interaction

PFPTC: Primary force function evaluated at ROE

PFXA: Primary force function parameter

PKE(I): Kinetic energy of the i th atom

PLANE: Alpha-numeric array for lattice orientation

POT:

PPE(I): Potential energy of the ith atom

PPTC: Primary potential function evaluated at ROE

PTE(I): Total energy of the ith atom (potential + kinetic)

PTMAS: Target mass in kilograms

RE: Input Morse potential parameter

RO: Spacing constant in FCC(llO) lattice generation subroutine

ROE: Nearest neighbor distance

R0E2: ROE squared

ROEA: Maximum cut off for Born-Mayer potential

ROEB: Minimum cut off for Morse potential

ROEC: Maximum cut off for Morse potential

R0EC2: ROEC squared

ROEL: Radius inside of which local potential energy is found

Potential energy between two atoms
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ROEL2: ROEL squared

ROEM: ROE-DTI, region in which modification of repulsive force

must be made

RX(I), RY(I), RZ(I): x,y,z coordinates of an ith atom at any time

RXI(I), RYI(I), RZI(I): x,y,z coordinates of an ith atom's initial

position

RXK(I), RYK(I), RZK(I): x,y,z coordinates of temporary position of

an i th atom during force cycle

SAVE: h POT

SCX, SCY, SCZ: x,y,z coordinate scale factors

SSCZ: A z scale factor used for the FCC(lll) lattice generator

subroutine

START: An optional timing variable, not used in this simulation

SUM: Variable in cubic fit subroutine

TARGET: Alpha-numeric array for target material

TSAVE: Bullet mass/( target mass + bullet mass); distributes

potential energy between target and bullet

TE: Total energy of all crystal atoms (kinetic + potential)

TEMP: Temperature of lattice in degrees Kelvin. Not used in

this simulation

TFAC: A time factor ratio used to determine DT by maximum force

method

TFACB: TFAC for the bullet

THERM: Thermal energy of atom. Not used in this simulation

TIME: Elapsed problem time in seconds

TLPE: Total local potential energy of atoms within a radius ROEL

TLPE0: TLPE at time zero
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TMAS: Target atom mass in amu

TPKE: Total kinetic energy of all crystal atoms

TPOT: Total potential energy of all crystal atoms

VSS: Storage variable for velocity components

VX(I), VY(I), VZ(I): x,y,z components of ith atoms velocity

X, Y, Z: Unsealed coordinates used in crystal generation

YLAX(I): Relaxation in -y direction of it_h layer in L.U.

ZP: Floating point form of JTT
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c
THIS PROGRAM GENERATES VARIOUS TYPES AND ORIENTATIONS OF
CRYSTAL LATTICESt AND INJECTS A VACANCY, INTERSTITIAL, OR
REPLACEMENT IMPURITY AT A DESIRED LOCATION, IT THEN, BY USE
OF ATOMIC POTENTIAL PARAMETERS AND NEWTONIAN MECHANICS, CAL-
CULATES THE DYNAMIC RESULTS OF THE SYSTEM; OUTPUTING POS-
ITION, VELOCITY, AND ENERGY VALUES FOR EACH ATOM IN THE
CRYSTAL.
C
DIMENSIONING OF VARIABLES NOT NEEDED IN COMMON

DIMENSION VX(IOCO) , VY( 100C) ,VZ( 10()o ) , PKE( 10CC)
DIMENSION DX(IOOC) , DY( 1000) , DZ( 1000 ) , PTE( 1000)
DIMENSION RXK( 1000 ) ,RYK(1000 ) ,RZK( 10C0)

C
CCMMON LABELING OF VARIABLES REQUIRED IN OTHER SUBROUTINES

C0MM0N/CCM1/RX ( ltOC ) ,RY(1000 ) ,RZ( 100C ) » LCUT( 1000 )

,

1LL,LD, ITYPF,NVAC
COMMON/COM2/IHK20) , I H2 ( 8 ) , I HS ( 10 ) , IHB ( 6 ) , I HT ( 6 )

,

1 TARGET (4) ,TMAS , BULLET (4 ) , BMAS , PLANE

,

TEMP , T HERM
C0MM0N/C0M3/RXI ( lOoC) ,RYI( 1000) ,RZI( 1000) ,CVR,EVR,

INT, TIME, DT, DTI

,

ILAY
COMMON /C0M4/IX, I Y, I Z , SCX , SCY , SC Z

,

IDEE P , Dl X , Dl Y , Dl

Z

COMMON/COM5/ROE,ROE2,ROEM,EXA,EXB,PEXA,PEXB,FXA,PFXA,
1 IQ,TSAVE,BSAVE
COMMON/COM6/FX(1000) , F Y ( 10 00 ) , F Z ( 1000) ,PAC,PFPTC, FM
COMMON /C 0M7/ PPT C,T POT, PPE( 1000 )

,

TLPE , ROEL , R0EL2 , NEW
C0MM0N/C0M8/R0EA,R0EB, ROEC , R0EC2 , CPO , CPl ,CP2,CP3,
1CF0,CF1,CF2,CGD1,CGD2,CGB1,CGB2,CGF1,CGF2
COMMON/CCMA/ A(4,5),MCR0

C
READ STATEMENT FORMATS
9010 FORMAT! 20 A4)

FORMAT (8A4,3F8. 5, 2F5.2)
F0RMAT(4A4,3F8.5,6A4,F6.2)
FORMAT (F6. 2,F5o3,I5,6I4,3F5.2, 12)
FORMAT! 1UA4.A4.4I3 ,F8.4,I4)

90 20
90 30
90 40
90 50

ro
WRITE
9610
9620

STATEMENT FORMATS
FORMAT! 1H1

)

F0RMAK47X, 'SUMMARY OF ATOMS «//, 35X , 8A4 , • , NT =«I4,//,
13! ' ATOM POSITION BIND ENERGY '),//)

96 30 FORMAT (3( I 5 , 3F6. 2 , F 8. 4 , 8X ) )

9640 F0RMAT(/4X,F1C.3,25H EV, TOTAL KINETIC ENERGY, , F10. 3

,

127H EV, TOTAL POTENTIAL ENERGY , FIG . 3 , 13H EV , REDUCT I ON,
1//,20X,F10.3,50HEV, LOCAL POTENTIAL ENERGY, IN VOLUME
10F RADIUS = ,F5.2, /30X, 16HCHANGE IN TLPE = , FIG. 3)

96 50 FORMAT! 10 5X,4HPAGE , 13, /,1H1)
9660 FORMAT!/ ATOM DX DY DZ

1VX VY VZ KE PE TE«/)
9670 FORMAT! 118, 3F10. 3, 3F10. 1,3F10,4 )

C
INITIALIZING

START=G.01*ITIME(XX)
DO 2 1=1,1000
LCUT! I )=C
RXK! I }=0.0
RYK! I )=0.0
RZK!

I

)=OeU
VX( I )=G.0
VY( I) =0.0
VZ! I) =0.0
PKE! I )=0.0
PPE! I)=0.0
PTE(I)=0.0
RX( I »=C.O
RY(I)=C.O
RZ( I) =0.0
FX( I )=0.0
FY! I )=0.C
FZ( I ) =0.0
RXI ( I )=O.0
RYK I)=0.0
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c
INPUT

RZI( I )=0.0
ISHUT=1
NRUN=0

C
CONSTA

DATA
READ
READ
READ
READ
READ

DlXtDlY
READ (

5,9C1P )

5,9C20 )

5,9030 )

5,9C30)
5,9C40)
D1Z, IQ
5,9050)

IH1
IH2,DCON,ALPHA,RE,ROEC,ROEL
BULLET,BMAS,PEXA,PEXB,IHB,THERM
TARGET, TM AS

f

EXA,EXB,1HT,TEMP
EVR, DT I ,NTT,NS, ND, IP, IDEE P , I TYPE , NVAC

,

IHS,PLANE,LS, IX, I Y, IZ,CVR,MCRO

C
REPULS

NTS AND SCALING FACTORS
ROE2=3.0
ROE=SQRT(ROE21
ROEM = RGE-DTI
R0EL2=R0EL*R0EL
CVE=1.60E-19
EV=EVR*1.0E+3
CVM=1.672E-27
FM=l„OE-10
FM2=FM*FM
CVD=CVR*l«OE-10
CVED=CVE/CVD
PTMAS=TMAS*CVM
PBMAS=BMAS*CVM
HTMAS=0.5*PTMAS/CVE
HBMAS=U.5*PBMAS/CVE
TSAVE=BMAS/( BMAS+TMAS)
BSAVE=TMAS/ ( BMAS+TMAS

)

C
ATTRAC

C
CUTOFF

C
PARAME
BETWEE
(ROEA)
TIAL (

F I T T I N

IVE POTENTIAL PARAMETERS
FXA=ALOG(-EXB*CVED)+EXA
PFXA=ALOG(-PEXB*CVED)+PEXA
PPTC=EXP(PEXA+PEXB*ROE)
PAC~ ALQG(C^ pn> +dp y a

PFPTC=EXP( PAC+PEXB*ROE)

TIVE POTENTIAL PARAMETERS
CGDl=ALOG(DCON)+2.0*ALPHA*RE
CGD2=ALOG(2.0*DCON)+ALPHA*RE
CGB1=-2.0*ALPHA*CVR
CGB2=-ALPHA*CVR
CGF1=AL0G(-CGB1*CVED)+CGD1
CGF2=ALOG(-CGB2*CVED)+CGD2

DISTANCES FOR ATTRACTIVE AND REPULSIVE POTENTIALS
ROEA=3 . 5G/CVR
ROEB=2oO/CVR
R0EC2=ROEC*R0EC

TERS
N MAX
, AND
ROEB)
G.
A(l
A(l
A(l
A(l
A(l
A(2
A(2
A(2
A(2
A(2
A(3
A(3
A(3
A(3
A(3

FOR CALCULATION OF THE BEST CUBIC FIT IN THE GAP
IMUM DISTANCE CUTOFF OF THE PEPULSIVE POTENTIAL
MINIMUM DISTANCE CUTOFF OF THE ATTRACTIVE POTEN-

SUBPOUTINE CROSYM ACTUALLY PERFORMS THIS CURVE

,1
,2
,3
,4
,5
,1
,2
,3
,4
,5
,1
,2
,3
1

4

,5

)=1.0
) = ROE
)=ROE
)=ROE
) = EXP
)=1.0
)=ROE
)=ROE
)=R0E
)=EXP
)=0.0

)=-2.

A
A*ROEA
A**3
( EXA+EXB*ROEA)

B*R0EB

(CGD1+CGB1*R0EB)-EXP(CGD2+CGB2*R0EB)

C-ROEA
0*ROEA*ROEA

)=EXP(FXA+EXB*ROEA)/CVED
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c
SEL
100
AND
IAB
CRY
AL
ANA

A(4,l)=0.0
A(4,2)=-1.0
A(4 f 3)=-2.0*R0
A(4»4)=-3.0*R0
A(4,5)=(EXP(CG
CALL CROSYM
CP0=A(1,5)
CP1=A(2,5)
CP2=A(3,5)
CP3=A<4,5)
CF0=-CP1*CVEP
CF1=-2.0*CP2*C
CF2=-2.0*CP3*C

EB
EB*ROEB
F1+CGB1*RGEB)-EXP(CGF2+CGB2*R0EB) )/CVED

ECTION
i 110,
DI AMG

LES ES
STAL.
X-POSI
LOGOUS

GO

OF THE DES
AND 111 PL

ND STRUCTUR
TAELISHING
PXI(I) AND

TION GF THE

VED
VED

IRED CRYSTAL STRUCTURE AND ORIENTATION.
ANES OF FACE-CENTERED, BODY-CENTERED,
ES ARE ALLOWED. ILAY AND IDEEP ARE VAR-
THE NUMBER OF MOBILE LAYERS IN THE
RXK(I) ARE VARIABLES SAVING THE ORIGIN-
I«TH ATOM. Y AND Z POSITIONS ARE

11

12

13

14

15

16

17

19
30

35

40

45
C
THIS S
DIFFER
PARAME
ROUTIN
INTERS
TIONS

50

CAL
GO
CAL
GO
CAL
GO
CAL
GO
CAL
GO
CAL
GO
CAL
GO

TO ( 11
L L100
TO 30
L 1.110
TO 30
L LI 11
TO 30
L B100
TO 30
L B11C
TO 30
L Bill
TO 30
L D100
TD 30
L Dim

12, 13, 14, 15, 16, 17, 18, 19), LS

GO TO 30
CALL Dill
ILAY=IDEEP
IF (IDEEP) 3 5,3 5,40
LD=LL
ILAY=IY
DO 45 I=1,LL
RXK( I )=RX( I )

RYK( I ) = RY( I )

RZK(

I

J=RZ( I

)

RXI ( 1 )=RX( I

)

RYI ( I )=RY( I

)

RZI (I )=RZ(I

)

55
60

ECT ION
ENT DAT
TER CAL
E PLACE
TITIALS
IN THE
IF(NRUN
READ (

D1X,D1Y
IF(DTI.
DO 55 I

LCUT( I )

RX( I )=R
RY( I)=R
RZ( I ) = P
RXK( I)=
RYK( I

)=
RZK( I)=
NRUN=1
CALL PL
RXI (1)=

ONE TO REPEAT A RUN OF THE PROGRAM WITH
UT REPEATING INITIALIZATION, POTENTIAL
NS AND CRYSTAL LATTICE BUILDING. SUB-
CUT(I) AND NVAC TO CREATE VACANCIES,

GO TO 60
) EVR,DTI ,NTT,NS , ND , I P , I DEE P , I TYPE, NVAC,

ALLOWS
A WITHO
CULATIO
USES L

, AND REPLACEMENT IMPURITIES AT DESIRED LOCA
LATTICE
•EQ.t

)

5,9040
,D1Z, IQ
EO.O) GO TO 9999
= 1,LL
=
XI ( I )

YI( I )

Z I ( I )

RXI ( I

)

RYI { I

)

RZK I)

ACE
RX(1)
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RYI (1)=RY(1
RZI(1)=RZ( 1

RXKU )=RX(

1

RYK(1)=RY( 1

RZK(1)=RZ(1
DO 65 1=1, LL
VX( I ) = C.O
VY( I )=0.0
VZ( I) =0.0
PPE( I J=0.0
PKE( I)=0.0

65 PTE(I)=0.0
TPOT=C.O
NEW=C

C
THE ENERGY SUBROUTIN
EACH ATOM IN THE LAT
ENERGY FOR ALL ATOMS
DEFECT.

CALL ENERGY
CALL LOCAL
BIND=-TPOT
TPKE=0.0
TLPEO=TLPE
DLPE=TLPE-TLPEi
TE=TPOT+BIND

E CALCULATES THE POTENTIAL
TICE. SUBROUTINE LOCAL SUM
WITHIN A SPECIFIC RADIUS

ENERGY OF
S UP THIS
F THE POINT

C
THIS S
UNITS,
TIME

ECTION PRINTS
AND BINDING E

ZFRO.
TIME=0.0
NT =

( 6,961
( 6,962

1=1, LL,

3

OUT X, Y, AND Z COORDINATES
NERGIES OF EACH ATOM IN THE

, IN LATTICE
CRYSTAL AT

C
THIS
FORCE

WRITE ( 6,9610)
WRITE ( 6,9620) IH2,NT

DO 70
K=I + 1
J = 1+2

70 WRJTE ( 6,963
1RY(K) ,RZ(K) ,PP

WRITE ( 6,964
NPAGE=1
NPAGE=NPAGE+1
WRITE ( 6,9650) NPAGE

G) I ,RX( I ),RYU ) ,RZ( I ) ,PPE(
E ( K ) , J , R X ( J ) , RY ( J ) , R Z ( J ) , P P
C) TPKE ,TPOT,TE,TLPE,ROEL,D

IS THE MAIN BODY OF THE PRO
METHOD, EXPLAINED IN DETAI

THE DYNAMICS FOR EACH INDIVIDUAL
CALCULATES ALL MUTUAL FORCES AMU
FORCES, THIS SECTION THEN CALCUL
THE PRIMARY, AND ALL OTHER ATOMS
STEP; AND THEN RECALCULATES FINA
AND ALL OTHER ATOMS, BASED ON TH
FORCES. THIS SECTION ALSO INCLU
CULATIONS, BASED ON THE VELOCITI
CALCULATES A NEW TIMESTEP DURATI
STEP, BASED ON EITHER A MAXIMUM
ALLOWED ENERGY. (SEE APP. C) V
END OF EACH TIMESTEP AS A METHOD

95 TFAC=2.0*PTMAS*DTI*CVD
TFACB=2 . 0*PBMA S*DT I *C VD
DT=1.0E-14

100 DTOD-DT/CVD
HDT0D=0.5*DT0D
DTOM=DT/PTMAS
HDT0H=0.5*DT0M
DTOMB=DT/PBMAS
HDT0MB=0.5*0T0

200 CALL STEP
IF(LCUT( D.GT.
1=1
RXK( I )=RX( I

)

RYK( I ) = RY< I

)

GRAM. BY
L IN APPE
ATOM. S

NG THE AT
ATES TEMP
; RECALCU
L POSITIO
E AVERAGE
DES ALL K
ES INVOLV
ON FOR US
ALLOWED F
ELOCITIES
OF DAMPI

USE
NDIX C
UBROUT
OMS.
ORARY
LATES
NS FOR
OF Th
INETIC
ED; AN
E IN T
ORCE,
ARE H

NG.

I ) , K,RXl K) ,

E(J)
LPE

F THE AVERAGE
, IT DOES ALL
INE STEP
BASED ON THE
POSITIONS FOR
FORCES IN
THE PRIMARY

ESE TWO
ENERGY CAL-

D FINALLY
HE NEXT TIME-
OR MAXIMUM
ALVED AT THE

MB

0) GO TO 240
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RZK( I)=RZ( I

)

RX( I )=RX( I )+DTOD*(HDTOMB*FX( I ) + VX( I ) )

RY( I )=RY( I )+DTOD*(HDTOMB*FY( I)+VY( I )

)

RZ( I )=RZ(I )+DTOD*(HDTOMB*FZ< I ) + VZ( I ) )

2 40 DO 245 1=2, LO
IF(LCUT( I ).GT.O )G0 TO 245
RXK( I J=RX( I

)

RYK( I )=RY( I )

RZK( I )=RZ( I

)

RX( I)=RX(I )+DTOD*(HDTOM*FX( I )+VX( I ) )

RY( I)=RY( I )+DTOD*(H0TOM*FY( I )+VY( I )

)

RZ( I )=RZ( I )+DTOD*( HDTOM*FZ( I )+VZ( I ) )

245 CONTINUE
CALL STEP
EMAX=0.0
FMAX=0.0
TIME=TIME+DT
NT=NT+1
IF(LCUT( D.GT.O) GO TO 265
1 = 1

VSS =VX( I )

VX( I)=VSS+HDTOMB*FX(I )

RX( I)=RXK( I )+( VX( I )+VSS)*HDTOD
VSS=VY( I)
VY(

I

)=VSS+HDTOMB*FY(I )

RY( I)=RYK(I )+CVY(I )+VSS)*HDTOD
VSS=VZ< I )

VZ(

I

)=VSS+HDTOMB*FZ(I )

RZ( I )=RZK( I ) + (VZ(I )+VSS )*HDTOD
PKE( I )=VX< I )*VX( I )+VY( I)*VY<I)+VZ(I)*VZ(I)
EMAX=PKE( I )

FMAX=FX(I )*FX(I)+FY(I)*FY(I)+FZ(I)*FZ(I)
FORCl=r: MAX

260 FX(I)=0.0
FY( I )=C.O
FZ( I 1=0.0

265 Dn 9Q
I =2 » LD

IF(LCUT( I).GT.O)GO TO 2 80
VSS = VX( I )

VX( I)=VSS+HDTOM*FX( I )

RX(

I

)=RXK( I ) + ( VX(I )+VSS)*HDTOD
VSS = VY( I )

VY( I )-VSS+HDTOM*FY< I )

RY( I)=RYK( I )+( VY(I )+VSS)*HDTOD
VSS=VZ( I )

VZ( I )~VSS+HDTOM*FZ( I )

RZ( 1)=F ZK( I ) + (VZ(I ) +VSS )*HDTOD
PKE( I)=VX( I )*VX( I )+VY( I )*VY< I ) +VZ ( I )*VZ ( I )

27 5 F2=FX( I)*FX(I)+FY(I)*FY(I)+FZ(I)*FZ(I)
FX( I )=0.0
FY(I)=0.0
FZ( I >=C.Q
IF(F2*GT«FMAX) FMAX=F2
IF(PKE( I ).GT.EMaX) EMAX=PKE( I

)

280 CONTINUE
IF(EMAXoEQ.O.Q ) GO TO 285
IF(FMAX.EQ.O.O) GO TO 285
GO TO 287

285 DT=1.0E-14
GO TO 300

287 IF(EMAX.EQ.PKE( 1 ) ) GO TO 29U
IF(FMAX.EQ.FORCl) GC TO 290
EMAX=SQRT( EMAX

)

FMAX=SQRT( FN!AX

)

DT=SQRT(TFAC/FMAX)
FTERM=FMAX*DT/ ( 2.0*PTMAS)
GO TO 295

290 EMAX=SQRT(PKE( 1 )

)

FMAX=SORT(FORC1 )

IF(FORCl.EQ.O.C) GO TO 285
DT=SQRT(TFACB/FMAX)
FTERM=FMAX*OT/ <2.0*PBMAS)
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295

300
310
3 20

325

340

3 50

C
THE PR
TION A

400
C
POTENT
ARE CA
TOTAL
FORMED
INITIA
410

4 50

IF(EMAX.LE.FTERM)
FDTI=DTI*CVD
DT=FDTI/EMAX
IF( ISHUT.EQ.-l
IF(NS-NT) 400,
DO 325 1=1 ,LL
VX( I )=0.5*VX(

I

VY( 1 )=0.5*VY(1
VZ( I )=C.5*VZ(

I

GO TO 100
DO 350 1=1, LL
RX( I)=RXK( I )

RY( I)=RYK( I

)

RZ( I )-P.ZK( I )

GO TO 300

) GO TO
4C0, 320

I

)

)

400

620

700

C
THIS S
ENERGY
EVERY
#NTT.

720
1

7 50

NTT=NT

INT SUBROUTINE PLACES A HEAD
T THE TOP OF EACH TIMESTEP P
CALL PRINT

IAL ENERGY AND LOCAL POTENTI
LCULATED BASED ON THE NEW PO
POTENTIAL AND KINETIC ENERGY

DX, DY, AND DZ KEEP TRACK
L POSITION AT TIME ZERO FOR
TPOT=0.0
DO 450 I=1,LL
PPE( I )=0.0
PTE( I )=0.0
CALL ENERGY
CALL LOCAL
DLPE=TLPE-TLPEO
PKE( 1)=HBMAS*PKE(1 )

TPKE=PKE(1 )

PTE(1)=PKE(1)+PPE( 1)
DO 62 1=2, LL
PKFf T ) = HTMAS*PKF ( I )

TPKE=TPKt+PKE( I

)

PTE( I)=PKE( I )+PPE( I

)

TE=TPOT+BIND
WRITE ( 6,9660)

DO 750 1=1, LD
UX( I)=RX( I )-P.XI ( I )

DY( I)=RY( I )-RYI ( I

)

DZ( I) = RZ( D-RZI ( I )

ING OF PERTINENT
RINTOUT.

INFORM-

AL ENERGY FOR EACH ATOM
SITIONS. SUMMATIONS OF
FOR THE LATTICE ARE PER-
OF MOTION RELATIVE TO THE

EACH ATOM.

ECTION PRINTS THE RELATIVE M
OF EACH ATOM, FOR EVERY TIM

ND'TH TIMESTEP, BEGINNING WI

OTION, VELOCITY, AND
ESTEP SO DESIGNATED: IE,
TH #NS AND ENDING WITH

WRITE ( 6,967 0) I , DX ( I ) , DY ( I ) , DZ { I ) , VX ( I ) , VY ( I )

,

VZ( I ) ,PKE( I) ,PPE( I ) ,PTE(I

)

CONTINUE
WRITE ( 6,9640) TPKE,TPOT,T
WRITE ( 6,9650) NPAGE

E,TLPE,ROEL,DLPE

760

780
7 90

9 50
C
THIS S
ENERGI
PROGRA
955

NPAGE=NPAGE+1
IF(NT-NTT) 760,950,950
DO 780 I=1,LL
VX( I)=0.5*VX(I )

VY( I)=0.5*VY(I )

VZ( I )=0.5*VZ( I )

CONTINUE
NS=NS+ND
GO TO 100
CONTINUE

ECTION PRINTS OUT X, Y, AND
ES OF EACH ATOM IN THE CRYST
M.
WRITE ( 6,9620) IH2,NT

DO 965 1=1, LL,

3

K=I + 1

Z COORDINATES AND BINDING
AL AT THE END OF THE
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J=I+2
965 WRITE ( 6,9630) I , RX ( I ) , RY ( I ) , RZ ( I ) , PP E < I ) , K ,RX( K )

,

1RY(K) ,RZ(K) ,PPE (K) , J,RX< J) ,RYU) ,RZ( J ),PPE( J)
WRITE ( 6,9640) TPKE , TPOT , Tc

,

TLPE , RCEL ,

D

LPE
WRITE ( 6,965C) NPAGE

1000 IF(ISHUT) 9999,50,50
9999 STOP

END

SUBROUTINE CROSYM
C
SOLVES N SIMULTANEOUS EQUATIONS BY THE METHOD OF CROUT
THIS SUBROUTINE FITS THE BEST CUBIC BETWEEN THE REPULSIVE
AND ATTRACTIVE PARTS OF THE POTENTIAL.
C

COMMON/COMA/ A(4,5),MCR0
M=MCRQ
N = M+1
11 = 1

100 13=11
SUM=ABS(A( 11,11))
DO 120 1 = 11,

M

IF(SUM-ABS(A( 1,11))) 110,120,120
110 13=1

SUM=ABS(A( 1,11 ) )

120 CONTINUE
IF ( 13-1 1 ) 130,150,130

130 DO 140 J=1,N
SUM=-A( II, J)
A( II, J)=A( 13, J )

140 A( 13, J)=SUM
150 13=11+1

DO 160 I=I3,M
160 A( 1,11 )=A( I, II )/A( 11,11)
170 ,12=11-1

13=11+1
IF(J2) 180,200,180

180 DO 190 J=I3,N
DO 190 1=1, J2

190 A(I1,J)=A(I1,J)-A(I1,I)*A(I,J)
IF(Il-M) 200,220,200

200 J2=I1
11=11+1
DO 210 I = U,M
DO 210 J=1,J2

210 A(I,11)=A(I,I1)-A(I,J)*A(J,I1)
IF(Il-M) 10 0,170,100

2 20 DO 24 1=1,

M

J2=M-I
I3=J2+1
A( I3,N)=A( I3,M)/A( 13,13)
IF(J2) 230,250,230

230 DO 240 J=1,J2
2 40 A(J,N)=A(J,N)-A(I3,N)#A(J,I3)
250 RETURN

END

SUBROUTINE L100
C
THIS IS A LATTICE GENERATOR FOR THE FCC (ICO) ORIENTATION,
THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y,
FOLLOWED BY X.
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION
PARAMETER.
C

C0MM0N/C0M1/RX( 100C ) ,RY( 1000 ),RZ( 1C00),LCUT( 100C)

,

1L'L,LD,ITYPE,NVAC
C0MM0N/C0M4/IX,IY, I Z , SC X , SCY , SC Z

,

IDEEP,D1X,D1Y,D1Z
DIMENSION YLAX(2C)
DATA YLAX/2C^0.O/
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YLAX(l)=-0.097
YLAX(2)=-0.024
SCX=1.0
SCY=1.0
SCZ=1.0
M = 2
JT =
Y=-SCY
DO 60 J=1,IY
Y=Y+SCY
KT =
Z=-SCZ
DO 59 K=l, IZ
Z=Z+SCZ
IT =
X=-SCX
DO 58 1=1, IX
x=x+scx
ITT=IT+JT+KT
IF( ITT-( ITT/2)*2) 57,30,57

30 R X ( M ) = X
RY(M)=Y+YLAX(J)
RZ(M)=Z
M=M+1

57 CONTINUE
IT =IT+1

58 CONTINUE
KT=KT+1

59 CONTINUE
JT = JT + 1

IF( IDFEP-JT) 60,110,60
60 CONTINUE

LL=M-1
100 RETURN
110 LD=M-1

GO TO 60
CllL'

SUBROUTINE L110
C
THIS IS A LATTICE GENERATOR FOR THF FCC (110) ORIENTATION.
THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y,
FOLLOWED BY X.
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION
PARAMETER.
C

C0MM0N/C0M1/RX( 1000) ,RY( 1000) ,RZ(1000) ,LCUT( 1000)

t

1LL,LD, ITYPE,NVAC
C0MM0N/C0f-'.4/IX,IY, I Z , SC X , SCY , SCZ t IDEEP,D1X,D1Y,D1Z
DIMENSION YLAX(20)
DATA YLAX/2C*0«0/
YLAX( l)=-0.07
YLAX(2)=-Oo02
RO=1.0/SQRT(2.0)
SCX=RO
SCY=RO
SCZ=1.0
M = 2
JT =
Y=-SCY
DO 60 J=1,IY
Y=Y+SCY
KT=0
Z=-SCZ
DO 59 K = l, IZ
Z=Z+SCZ
IT =
X=-SCX
DO 58 1=1, IX
X= X + SC X
IF{ IT-( IT/2)*2) 21,11,21
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11 IF( JT-( JT/2)*2) 57,12,57
12 IF(KT-(KT/2)*2) 57,30,57
21 IF< JT-( JT/2)*2) 22,57,22
22 IF(KT-(KT/2)*2) 30,57,30
30 RX(M)=X

RY(M)=Y+YLAX( J)
RZ(M)=Z
M = M + 1

57 CONTINUE
IT = IT+1

58 CONTINUE
KT=KT+1

59 CONTINUE
JT = JT + 1
IF(IOEEP-JT) 60,110,60

60 CONTINUE
LL=M-1

100 RETURN
110 LD=M-1

GO TO 60
END

SUBROUTINE Llll
C
THIS IS A LATTICE GENERATOR FOR THE FCC (111) ORIENTATION.
THE CRYSTAL IS DEVELOPED IN THE ORDER, Z FOLLOWED BY Y,
FOLLOWED BY X.
IT CONTAINS A. NONSTANDARD USE OF THE SURFACE RELAXATION
PARAMETER.
C

C0MM0N/CCM1/RX( 1C00),RY( 1G00) , R Z ( 1000 ) , LCUT( 1000)

,

1LL,LD, ITYPE,NVAC
C0MMCN/CGM4/IX, IY, I Z , SCX , SCY , SCZ

,

IDEEP,D1X,D1Y,D1Z
DIMENSION YLAX(20)
DATA YLAX/?0*.T.O/
YLAX! l)=-0.04
YLAX(2)=-0.01
SCX=1.0/SQRT(2.0)
SCY=2«0/SQRT(3.0)
SCZ-SQRTC1.5)
SSCZ=SCZ/3.C
M = 2
JT=0
Y=-SCY
DO 60 J=l, IY
Y=Y+SCY
JTS=JT+JT/3
z=-scz
KT=0
DO 59 K=1,IZ
Z=Z+SCZ
IT =
X=-SCX
00 58 1 = 1, IX
X=X+SCX
1N=IT+JTS+KT
IF( IN-( IN/ 2)*2 ) 57,30,57

30 RX(M)=X
RY(M)=Y+YLAX( J

)

IF( JT-3*(JT/3) ) 41,45,41
41 JTT=JT
42 JTT=JTT-3

IF(JTT) 43,45,42
43 JTT=JTT+3

ZP=JTT
RZ(M)=Z+ZP*SSCZ
GO TO 50

45 RZ(M)=Z
50 M=M+1
57 CONTINUE

IT=IT+1
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58

59

60

100
110

CONTINUE
KT=KT+1
CONTINUE
JT=JT+1
IF( IDEEP-JT)
CONTINUE
LL=M-1
RETURN
LD=M-1
GO TO 60
END

60,110,60

THE THE BCC (100) ORIENTATION,
THE ORDER, X FOLLOWED BY Z,

SUBROUTINE B100
C
THIS IS A LATTICE GENERATOR
THE CRYSTAL IS DEVELOPED IN
FOLLOWED BY Y.
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION
PARAMETER.
C

COMMON/ COM 1/RX(10C0),RY( 1000 ),RZ( 1000),LCUT( 1000)

,

1LL,LD, ITYPE,NVAC
C0MM0N/CCM4/IX,IY. I Z , SCX , SCY , SCZ , I DEEP , Dl X , Dl Y, Dl

Z

DIMENSION YLAX (20)
DATA YLAX/2C'*0.0/
YLAX( 1)=-0.2G
YLAX(2)=-0.03
SCX=1.0
SCY=loO
SCZ=1.0
M = 2
JT =
Y=-SCY
DO 60 J=1,IY
Y=Y+SCY
i/T-ri

z=-scz
DO 59 K=1,IZ
Z=Z+SCZ
IT=0
X=-SCX
DO 58 1 = 1, IX
X = X+ SC X
IF( lT-( IT/2)*2) 21,11,21

11 IF( JT-( JT/2)*2) 57,12,57
12 IF(KT-(KT/2)*2) 57,30,57
21 IF(JT-( JT/2)*2) 22,57,22
22 IF(KT-(KT/2)*2) 30,57,30
30 RX(M)=X

RY(M)=Y+YLAX( J)
RZ(M)=Z
M = M + 1

57 IT=IT+1
58 CONTINUE

KT=KT+1
59 CONTINUE

JT = JT + 1

IF(IDEEP-JT) 60,110,60
60 CONTINUE

LL=M-1
100 RETURN
110 LD=M-1

GO TO 60
END
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c
THIS
THE C
FOLLO
IT CO
PARAM
C

SUBROUTINE BllO

IS A LATTICE GENERATOR
RYSTAL IS DEVELOPED IN
WED BY Y.
NTAINS A NONSTANDARD USE
ETER.

THE THE BCC (11C) ORIENTATION,
THE ORDER, X FOLLOWED BY Z,

OF THE SURFACE RELAXATION

COMMON/CCM1/RXC1000J t RY( 1000 ) , RZ ( 100C ),LCUT( 10C0)

,

1LL,LD, ITYPE,NVAC
COMMON/ C0M4/ IX, IY, I Z, SCX , SCY , SCZ

,

IDEEP,D1X,D1Y,D1Z
DIMENSION YLAX(20)
DATA YLAX/2G*C.O/
YLAX(1)=-0.10
YLAX(2)=-0.C1
SCX = SQRT(2.C)
SCY = SQRT(2cO)
SCZ=1.C
M=2
JT=0
Y=-SCY
DO 60 J = l, IY
Y=Y+SCY
KT=0
Z=-SCZ
DO 59 K=l, IZ
Z=Z+SCZ
IT=0
X=-SCX
DO 58 1=1, IX
X=X+SCX
ITT=IT+JT+KT
IF< ITT-( ITT/2)*2) 57,30,57

^P) RX(M)=X
DVIM)rV+YI AX( J

)

RZ(M)=Z
M = M+l

57 CONTINUE
IT =IT+3

58 CONTINUE
KT=KT+1

59 CONTINUE
JT = JT + 1

IF(IDEEP-JT) 60,110,60
60 CONTINUE

LL=M-1
RETURN

110 LD = M-l
GO TO 60
END

SUBROUTINE Bill
C
THIS IS A LATTICE GENERATOR FOR THE BCC (111) ORIENTATION.
THE CRYSTAL IS DEVELOPED IN THE ORDER, X FOLLOWED BY Z,
FOLLOWED BY Y.
IT CONTAINS A NONSTANDARD USE OF THE SURFACE RELAXATION
PARAMETER.
C

C0MM0N/CCM1/RX( 1G0C ) ,RY( 1000 ) ,RZ( 1000 ) ,LCUT( 1000)

,

1LL,LD, ITYPE ,NVAC
COMMON/ C0M4/ IX, IY, I Z , SCX , SCY , SCZ

,

IDEEP,D1X,D1Y,D1Z
DIMENSION YLAXC20)
DATA YLAX/2C*0.0/
YLAXQ )=-0.10
YLAX<2)=-0.01
SCX = SQRT(2.0)
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SCY = SQRTd. 0/3.0)
SCZ = SQRK6.0)
M = 2
JT=0
Y=-SCY
DO 60 J=1,IY
Y=Y+SCY
KT =
JJ = J-( JT/3)*3
GO TO (5,10 ,15 ) , JJ

5 Z =-SCZ
GO TO 20

10 Z =-SCZ+SCZ/3.0
GO TO 20

15 Z =-SCZ+(2.0*SCZ/3.0)
20 DO 59 K = l, IZ

Z=Z+SCZ
IT =
X=-SCX
DO 58 1=1, IX
X=X+SCX
ITT=IT+JJ+KT-1
IF( ITT-( ITT/2)*2) 57,30,57

30 RX(M)=X
RY(M)=Y+YLAX< J)
RZ(M)=Z
M = M+l

57 IT=IT+1
58 CONTINUE

KT=KT+1
59 CONTINUE

JT = JT + 1

IF(IDEEP-JT) 60,110,60
60 CONTINUE

LL=M-1
RETURN

110 LD=M-1
GO TO 60
END

SUBROUTINE D100
C0MM0N/C0M1/RX( 10001 ,RY(1000) ,RZ(1000)

,

LCUT(IOCO) ,

1LL,LD, ITYPE,NVAC
CCMM0N/CCM4/IX, I Y, I Z , SCX , SCY , SCZ

,

IDEEP,D1X,D1Y,D1Z
RETURN
END

SUBROUTINE DUO
C0MM0N/C0M1/RX( 1000),RY( 1000 ), RZ ( 1000 ), LCUT( 1000)

,

1LL,LD, I TYPE, NV AC
C0MM0N/C0M4/IX,IY,IZ,SCX,SCY,SCZ, I DEEP , Dl X , Dl Y, Dl

Z

RETURN
END

SUBROUTINE Dill
COMMON/ C0M1/RX( 1000 ), P Y ( 1C00 ), RZ ( 1000 ), LCUT ( 1000)

,

1LL,LD,ITYPE,NVAC
COMMON/ C0M4/ IX, IY, I Z , SCX , SCY , SCZ , I DEE P , Dl X , Dl Y, Dl

Z

RETURN
END

SUBROUTINE PLACE
C
THIS SUBROUTINE LOCATES A VACANCY, INTERSTITIAL, OR REPLACE-
MENT IMPURITY IN THE LATTICE.
C

COMMON /C0M1/RX( lOOu) ,RY( 1000) ,RZ ( 1G0C ) , LCUT( 1000)

,

1LL,LD, ITYPE,NVAC
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COMMON/C0M4/IX , IY, I Z,SCX, SCY,SCZ, IDEEP,D1X,D1Y,D1Z
GO TO ( 10,20,30), ITYPE

10 LCUT(NVAC) = 1

LCUT(l) = 1

RX(1)=0.0
RY(1)=0.0
RZ( 1)=C0
GO TO 40

20 RX(1) = RX(NVAC) - D1X
RY(1) = RY(NVAG) - D1Y
RZ( 1 » = RZ(NVAC) + D1Z
GO TO 40

30 LCUT(NVAC) = 1

RX(1) = RX(NVAC)
RY(1) = RY(NVAC)
RZ(1) = RZ(NVAC)

40 RETURN
END

SUBROUTINE STEP
C
THIS SUBROUTINE DOES THE DYNAMICS FOR ONE TIMESTEP.
THE FIRST HALF DOES THE DYNAMICS FOR ATOM #1; THE SECOND
HALF FOR ALL OTHERS.
C

COMMON/CCMl/RXdGOO) ,RY( 1000) ,RZ( 1000) ,LCUT( 1000) ,

ILL, LD, ITYPE, NV AC
COMMO\!/CCM5/ROE,ROE2,ROEM,EXA,EXB,PEXA,PEXB,FXA,PFXA,

1IQ,TSAVE,BSAVE
COMMOi\!/COM6/FX(1000) ,FY(100U) ,FZ( 1000) , PAC , PFPTC , FM
COMMON/COM8/ROEA,ROEB,ROEC,RUEC2,CPO,CP1,CP2,CP3,
1CF0.CF1 ,CF2,CGD1,CGD2,CGB1,CGB2,CGF1,CGF2
IF( IQ.EQ.l) GO TO 200
1 = 1
IF ( LCUT i I » ) ?00 .1 05,200

105 IP- 1 -*-!

DO 195 J=IP,LL
IF(LCUTU)) 195,110,195

110 DRX = RX(

J

)-RX(I )

IF(DRX) 113,117,117
113 IF<DRX+ROE) 195,195,120
117 IF(DRX-ROE) 12J, 195,195
120 DRY=RY( J)-RY(I )

IF(DP.Y) 123,127,127
123 IF(DRY+ROE) 195,195,130
127 IF(DRY-ROE) 130,195,195
130 DRZ=RZ( J)-RZ(I )

IF(DRZ) 133,137,137
133 IF(DRZ+ROE) 195,195,140
137 IF(DRZ-ROE) 140,195,195
140 DIST=DRX*DRX+DRY*DRY+DRZ*DRZ

IF(DIST-R0E2) 150,195,195
150 DIST=SQRT(DIST)
160 IF(DIST-POEM) 162,162,165
162 FGRCE=EXP(PFXA+PEXB*DIST)

GO TO 180
165 DFF=ROE-DIST

IF(DFF-l.OE-lO) 195,195,167
167 FORCE=(EXP(PAC+PEXB*DIST)-PFPTC)/DFF
180 IF(FM-FORCE) 190,190,195
190 FCD=FORCE/DIST

FA=FOD*DRX
FX( J)=FX( J)+FA
FX( I ) = FX(I )-FA
FA=FOD*DRY
FY( J)=FY( J)+FA
FY( I ) = FY( I )-FA
FA=FOD*DRZ
FZ( J )=FZ( J)+FA
FZ( I ) = FZ{

I

)-FA
195 CONTINUE
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200 DO 300 I=IQ,LD
IF(LCUT( I ) ) 300,205,300

205 IP=I+1
DO 295 J=IP t LL
IF(LCUT( J) ) 295,210,295

210 DP.X=RX( J)-RX( I )

IF(DRX) 213,217,217
213 IF(DRX+RCEC) 295,295,220
217 IF(DRX-ROEC) 220,295,295
220 DRY=RY( J)-RY( I

)

IF(DRY) 223,227,227
223 IF(DRY+ROEC) 295,295,230
227 IF(DRY-ROEC) 23Ct295,295
230 DRZ=RZ< J)-RZ(I

)

IF(DRZ) 233,237,237
233 IF(DRZ+ROEC) 295,295,240
237 IF(DRZ-ROEC) 240,295,295
2 40 D1ST=DRX*DRX+DRY*DRY+DRZ*DRZ

IF(DIST-R0EC2) 250,295,295
250 DIST=SORT(DIST)

IF(DIST-ROEA) 260,255,255
255 IF(DIST-ROEB) 265,27u,270
260 FORCE=EXP(FXA+EXB*DIST)

GO TO 2 30
2 65 F0RCE=DIST*(DIST*CF2+CF1)+CF0

GO TO 280
2 70 F0RCE=FXP(CGF1+CGB1*DIST)-EXP(CGF2+CGB2*DIST)
280 IF(ABS( FORCE). Lb. FM) GO TO 295

FOD = FORCE/DIST
FA=FOO*DRX
FX( J)=FX( J)+FA
FX( I ) = FX( I )-FA
FA=FOO*DRY
FY( J)=FY( J)+FA
FY( I )=FY( 1 )-FA
FA=F0D*nR7
FZ(J )=FZ( J)+FA
FZ( I )=FZ( I )-FA

295 CONTINUE
300 CONTINUE

RETURN
END

SUBROUTINE ENERGY
C
THIS SUBROUTINE CALCULATES THE MUTUAL POTENTIAL ENERGIES.
THE FIRST HALF DOES THE DYNAMICS FOR ATOM #1; THE SECOND
HALF FOR ALL OTHERS.
C

COMMON/ C0M1/RX( 10C0) , PY(IOOO) ,RZ( 1000) , LCUT( 10CC)

i

1LL,LD, I TYPE, NV AC
COMMON /COM5/ROE,ROE2,R0EM,EXA,EXB,PEXA,PEXB,FXA,PFXA,
1IQ,TSAVE, BSAVE
COMMON/ C0M7/PPTC,TPOT,PPE( 1000 ) , TLPE , ROEL , R0EL2

,

NEW
C0MM0N/C0M8/R0EA,R0EB,R0EC,R0EC2,CP0,CP1 ,CP2,CP3,
1CF0,CF1,CF2,CGD1,CGD2,CGB1,CGB2,CGF1,CGF2
IF(IQ.EQ.l) GO TO 2G0
1 = 1

IF(LCUT( I) ) 600,505,600
505 IP=I+1

DO 595 J=IP,LL
IF(LCUTU)) 595,510,595

510 DRX=RX( J)-RX( I

)

IF(DRX) 513,517,517
513 IF(DRX+ROE) 595,595,520
517 IF(DRX-ROE) 520,595,595
520 DRY=RY( J )-RY(I

)

IF(DRY) 523,527,527
523 IF(DRY+ROE) 595,595,530
527 IF(DRY-ROE) 530,595,595
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530 DRZ=RZ( J)-RZ(I

)

IF(DRZ) 533,537,537
533 IF(DRZ+R0E) 595,595,540
537 IF(DRZ-ROE) 540,595,595
540 DIST=DRX*DRX+DRY*DRY+DRZ*DRZ

IF(DIST-R0E2) 550,595,595
550 DIST=SQRT(DIST)
560 POT=EXP(PEXA+PEXB*DIST)-PPTC
580 TPOT=TPOT+POT

PPE(I)=PPE(I )+BSAVE*POT
PPE( J)=PPE( J)+TSAVE*POT

595 CONTINUE
600 CONTINUE

C
200 DO 300 I=IQ,LL

IF(LCUT( I) ) 300,205,300
205 IP=I+1

DO 295 J=IP,LL
IF(LCUT(J)) 295,210,295

210 DRX=RX( J)-RX( I

)

IF(DRX) 213,217,217
213 IF(DRX+ROEC) 295,295,220
217 IF(DRX-ROEC) 220,295,295
2 20 DRY=RY( J)-RY( I

)

IF(DRY) 223,227,227
223 IF(DRY+ROEC) 295,295,230
227 IF(DRY-ROEC) 230,295,295
230 DRZ = RZ( J)-RZ( I )

IF(DRZ) 233,237,237
233 IF(DRZ+ROEC) 295,295,240
237 IF(DRZ-RCEC) 240,295,295
240 DIST = ORX*DRX+DRY-DRY-f DRZ*DRZ

IF(DIST-R0EC2) 250,295,295
250 DIST=SQRT(DIST)

IF(DIST-ROEA) 260,255,255
255 TF(niST-RnFB) 265,270, 27U
260 POT=EXP( F*A+EYB*nT ST)

GO TO 280
2 65 P0T=DIST*(DIST*(DIST*CP3+CP2)+CP1)+CP0

GO TO 2 80
270 P0T=EXP(CGD1+CGB1*DIST)-EXP(CGD2+CGB2*DIST)
280 TP0T=TP0T+P0T

SAVE=0.5*P0T
PPE( I)=PPE( D+SAVE
PPE( J) =PPE( JJ+SAVE

295 CONTINUE
300 CONTINUE

RETURN
END

SUBROUTINE LOCAL
C
THIS SUBROUTINE CALCULATES THE TOTAL POTENTIAL ENERGY IN A
SMALL VOLUME AROUND A VACANCY OR INTERSTITIAL.
C

COMMON/ CCM1/PXQ00C ) ,RY( 1000 ) ,RZ( 1000) ,LCUT( 1000) ,

1LL.LD, ITYPE,NVAC
CCMM0N/CCM7/PPTC,TP0T, PPE( 1000) , TLPE , ROEL , R0EL2, NEW
D I MENS I ON LCCAT(50C )

K=l
TLPE=0.0
IF(NEW.EQ.1)G0 TO 305

8 GO TO ( 10,20,20)

,

ITYPE
10 I=NVAC

GO TO 200
20 1 = 1

200 DO 300 J=1,LD
1FU.EQ.J) GO TO 250

210 DRX = RX( J )-RX( I

)

IF(DRX) 213,217,217
213 IF(DRX+RGEL) 295,295,220
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217
220

223
2 27
2 30

233
237
240

2 50

295
300

305

310

IF(DRX-
DRY=RY(
IF(DRY)
IF(DRY+
IF(DRY-
DRZ=RZ(
IF(DRZ)
IF(DRZ+
IF(DRZ-
DIST=DR
R0EL2=R
IF(DIST
L0CAT( K
K = K + 1

CONTINU
CONTIiMU
KF=K-1
DO 31G
TLPE=TL
CONTINU
NEW = 1

RETURN
END

ROEL
J)-R
223

ROEL
ROEL
J )-R
233

ROEL
ROEL
X-DR
OEL*
-ROE
)=J

E
E

K=1,KF
PE+PPE( LOCAT(K)
E

) 220,295,295
Y( I )

,227,227
) 295,295,230
) 230,295,295
Z( I )

,237,237
) 295,295,240
) 240,295,295
X+DRY*DRY+DRZ*DRZ
ROEL
L2) 250,295,295

C
THIS
TION
C

SUBROUTINE PRINT

SUBROUTINE
AT THE TOP

PRINTS TH
OF EACH T

E HEADING OF ALL PERTINENT INFORMA-
IMESTEP PRINTOUT.

9710
9720

9730

9740

9741

9742

9750

97 60

9765

9770

9780

COMMON/
1LL,LD,I
COMMON/
1TARGET(
COMMON/

] NT, T IMF
CO NIMQfvl /

COMMON/
1 IQ,TSAV
COMMON/
1CFCCF1
FORMAT

(

FORMAT

(

1 UNIT =
FORMAT

(

IE TEMP
1V/)
FORMAT

(

1 F5.2,2
1 ), , 4X
FORMAT

(

1 F5.2,2
1 ) , , 4X
13.2H) FR
FORMAT (

1 F5.2,2
1 ), , 4X
FORMAT

(

1F5.2,5H
110X,4HI
FORMAT

(

1F9.5,2X
FORMAT

(

1A = ,F9.
FORMAT

(

1TIAL PA
1F10.3,

'

1E10.3,
FORMAT

(

1SE POTE
1F8.4, «

-

C0M1
TYPE
COM2
4),T
COM3
• DT.
rr.M/x

COM 5
E,BS
CCM8
,CF2
40X,
OH T
,F7.
4X,6
= F5.

2H (

1HKE
, 16
2H (

1HKE
, 15
CM S
2H (

1HKE
i 20
30 H
i Z
Q =1
12H
,5HP
12X,
5/)

WH
RAME
i CP
t CF
« cu
NTIA
CGD

/RX(
,NVA
/IH1
MAS ,

/RXI
DTI ,

/IX,
/ROE
AVE
/ROE
,CGD
10A4
ARGE
4,4H
HMAS
2,7H

1000),RY(1000),RZ( 1000 ),L CUT ( 1000)

,

C
(20)
BULL
(100
TLAY
ty. I

,ROE

,IH2(8) ,IHS( 10) , IHB(
ET(4) ,BMAS, PLANEtTEM
(0) ,RYI(100C ) ,RZI(100

v. <;ry Arv,qr7. jdffp-
: 2iR0EMtEXA^EXB,PEXAi

6) , IHT(6)

,

P, THERM
) ,CVR,EVR,

ni y . Div. ni

7

PEXBjFXA^PFXA,

1,CP2,CP3,
,F2

A,ROEB, ROEC,ROEC2,CP0,CP
1,CGD2,CGB1,CGB2,CGF1,CG
,/,28X,2CA4, /)
T -,4A4,1CHPRIMARY - ,4A4 , 1 X , 1 4HL ATT I CE
ANG)

S =,F7.2,13X,6HMASS =,F7
DEG K, ,18H THERMAL CUT

«2,9X, 14HLATTIC
OFF =,F5e2,3H F

,A4,8H)
V, CRYS
HVACANCY
,A4,8H)
V, CRYS
HINTERST
ITE ,14/
,A4, 8H)
V, CRYS
HRE PLACE
PRIMARY
= ,F5.2,5
12/ )

POTENTIA
FXA=,F9.
6A4,3X, 5

EN« ,F8.4
TERS ARE
2 =• ,F10
1 = • , E 1
T-OFF AT
L PARAME
2 =• ,F8.

PLANE, , 18H
TAL SIZE (

IN SITE ,

PLANE, ,18H
TAL SIZE (

PRIMARY
, 12, 3H X
14/)
PRIMARY

ENERGY =,
, 12, 3H X , 12 ,3H

ENERGY =,
,I2,3H X ,12 ,3H

(-,F5,2,2H,-,F5c2,2H,+,F5.2,ITIAL
)

PLANE, ,18H PRIMARY
TAL SIZE ( ,I2,3H X
MENT IN SITE , 14/)
START POINT (LU) X
X,I3,« LAYERS ARE FR

L ,6A4,3X, 5HPEXA=,F
5)
HEXA =,F9.5,2X,5HEXB

< R <•
//

.3,

CGF1 = ,F8.4,

«

,F8,4,« THE
CPO =',

CP3 =' ,F10.3,/
.3, • , CF2 =' ,E10.3,/
1

, F5.2, • , WHEN R > •

TERS ARE* , 8A4,//,10
4. «

7 CGB1 =«
,
c 8 a 4, ' ,

CGF2 =• ,F8.4, //)

ENERGY =,
, 12, 3H X , 12, 3H

=,F5.2,5H, Y =,
EE TO MOVE '

,

9. 5,2X,5HPEXB=,

=,F9.5,2X,5HFX

MATCHING POTEN
F10.3, • , CP1 ='

, « CFG ='

/)
,F6,3,' LU, MOR
X," CGD1 =',
CGB2 ='•

, F8.4,
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9790 FORMAT (10H TIMESTEP , 1 4, 22 X , 6HDT I = , F5.3, 5H LU, ,

122H ELAPSED TIME (SEC) = , E10.4,21H, LAST TIMESTEP WA
IS = , E10.4/)

WRITE ( 6,971C) IHStlHl
WRITE ( 6,9720) TARGET, BULL ET, CVR
WRITE ( 6,9730) TMAS, BMAS , TEMP , THERM

GO TO (401,402,403), I TYPE
401 WRITE ( 6,9740) PL ANE , EVR, I X, I Y, I Z , NVAC

GO TO 405
402 WRITE ( 6,9741) PL ANE ,E VR , I X , I Y , I Z

,

D1X , 01 Y , Dl Z, NVAC
GO TO 405

403 WRITE ( 6,^742) PL ANE , EVR , I X , I Y , I Z , NVAC
405 WRITE ( 6,9750) R X I ( 1 ) , RY I ( 1 ) ,RZ I ( 1 ) , I LAY , I

Q

WRITE ( 6,9760) IHB, PEXA, PEXB , PFXA
WRITE ( 6,9765) I HT

,

EXA , EXB

,

FXA
WRITE ( 6,9770) ROEA, ROEB , CPO ,CP1 , CP2, CP3 ,CF0 ,CF 1 , CF2
WRITE ( 6,9780) ROEC , ROEB , I H2 , CG01 , CGD2 , C GB1 , CGB2 ,

WRITE ( 6,9790) NT ,DT I ,

T

IME , DT
RETURN
END
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