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Inequalities for Solutions of Mixed Boundary
Value Problems for Elastic Plates
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.In this paper a number of explicit a priori inequalities for solutions of the plate equation are
derived. These inequalities together with the Rayleigh-Ritz technique may be used to compute error
bounds in various mixed boundary value problems for elastic plates.

1. Introduction

In two recent papers [2,3]' the authors presented methods for obtaining pointwise bounds
in the three most common boundary value problems for elastic plates. These bounds were of a
priori type, that is they held for a class of functions required to satisfy only smoothness condi-
tions. Hence one could approximate the (unknown) solution of one of these problems in terms of
essentially arbitrary functions, and the inequalities gave bounds on the error.

In this paper we derive similar a priori bounds in the three most common mixed boundary
value problems for elastic plates. For simplicity we consider only the case of a simply connected
region R whose boundary 3 consists of two disjoint portions 2, and X, (each connected) on which
different sets of boundary conditions are imposed. It will be clear how the results are to be ex-
tended if %, and/or 2. are not connected or if R is multiply connected.

In this paper we shall restrict our attention to the problem of obtaining bounds for the L,
integrals of an arbitrary sufficiently smooth function w in terms of L, integrals of quantities which
are data whenever the arbitrary function w is actually the solution « to the problem in question.
By use of mean value inequalities and the Rayleigh-Ritz technique as indicated in [2,3], the desired
pointwise bounds are then obtained. The well known Rayleigh-Ritz technique consists in choosing

N
w=u— 2 a;®;, where the ®; are N linearly independent sufficiently smooth functions, and the a;
=
are determined in such a way as to minimize the terms involving the data of u.
The particular problems treated here are the following:

ProBLEM I: A%y prescribed in R

u, given on 3,

o
an
u, M(u) given on 2,

ProBLEM II: A’y prescribed in R

u, given on 3,

ot
an
M(u), V(u) given on 2

! Figures in brackets indicate the literature references at the end of this paper.
*University of Maryland, College Park, Md.: part-time worker at National Bureau of Standards, Washington, D.C. This research was supported in part by the
National Science Foundation under Grant NSF-GP-3.
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PrOBLEM III: A%y prescribed in R
u, M(u) given on 3,
M(u), V(i) given on 2.
1 ad o Lol d
A o (A denotes the Laplace operator), an

0 .. .
Y denotes the normal derivative directed outward on 2. Also

4
Here A? is the biharmonic operator %+2

2
M@)=Au—(1—0o) (g%ﬁ%%) (L.1)
and
3
V(u)=%(Au)+(l—0') [a‘;gn—%eg—';)] (1.2)

where 35 denotes the derivative with respect to arc length on 3, o is Poisson’s ratio and p is the

radius of curvature. The quantities M(u) and V(u) are proportional to the normal moment and the
reaction normal to the plate on 2, respectively.

In subsequent sections we shall refer to the bounding of integrals of an arbitrary function w
in terms of L, integrals of its ““data.” For example, in problem I the data of w are the quantities

. J
A%w in R, w and £ on 2; and w and M(w) on X». In the other two problems the “data’ of w are

defined analogously.

Throughout this paper we assume the boundary % of R to be sufficiently smooth so that all
of the applications of the divergence theorem used are valid. It will be apparent that if the deriva-
tives of the curvature of 2, are continuous then there is no question of the validity of the indicated
operations provided the functions themselves are smooth enough. It will also be clear that less
smoothness of 2 can actually be tolerated in each problem, but the determination of the minimum
smoothness requirements is not investigated in this paper.

We make use of the summation convention throughout and employ a comma to denote differ-
entiation, e.g., w,i=-&u—;' We denote the points at which X; and 2 join as P; and Ps. Arc length
will be measured along % in the counterclockwise direction.

Additional notation will be defined as the need arises in the text. We turn now to the question
of obtaining bounds in problems I, II, and III. These will be discussed separately in sections
2, 3, and 4. Certain auxiliary inequalities which will be required in treating the three mixed
problems will be derived in appendix A.

2. Problem I

In a recent paper [4, eq (2.1)] the authors derived the following inequality for a function w
with piecewise continuous second derivatives:

{ L wsz}” < K,{ﬁ wzds} § +1<2{ fR (Aw)‘ldA}%, @D

where the constants K; and K, were explicit. (As indicated in [4,5] appropriate constants K; and
K, are obtained by making use of results of Payne and Weinberger [10]). Using (2.1) as a starting
point we shall derive the desired L, inequality in problem I.

We first define E(w,w) as

Ew, w)= fR [o(Aw)* + (1 — o)w, yw, yldA. 2.2)
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It is well known that E(u, u) is proportional to the strain energy. Since (Aw)? < 2w, jjw, ; it follows
that

2
L(Aw)sz s g Ew, w). (2.3)

Thus inserting (2.3) into (2.1) we obtain
% - %
{ fR deA} sK1{£ w2ds} +K2{E(w, w)} o

where
Ko =Ko[2(1+ o) 1]%.

We seek now to bound E(w, w) in terms of the data of problem I. In order to simplify our
computations we shall assume that
2
Q) _o tim 2WQA_, ©.5)

im
Q—P,P, On Q—P,.P. 0SON

where Q is a point on X;. This restriction is by no means necessary, since bounds could be
derived which involve the values of— and 3s0m Y atPyand P,. In applying the a priori type inequali-
ties, however, w will be set equal to u—(I) where u is the solution to problem I and ® is an approxi-
mating function. The function ® will then be represented as a linear combination of N linearly
independent functions ®; with arbitrary real coefficients. The restriction (2.5) prescribes four
relations among the coefficients. The Rayleigh-Ritz technique together with these four conditions
then determine the coefficients. Hence, for practical purposes, (2.5) is no restriction at all. Con-
dition (2.5) permits us to treat the cases in which %, and X, do not have end points in common
(e.g., certain multiply connected configurations) and the case in which points P; and P, do occur, in
a unified manner.

In order to bound E(w, w) in terms of the data of problem I, we decompose w as follows:

w=B+¢ (2.6)
where
A’B=01in R
B=won 3
aB _ -6_1,4} on 21
o an
0 onZX,- 2.7
Clearly then
A2 =Aw in R
¢=0o0n2
¢ _
on =0 on X,
M(p) = M(w)—M(B) on - (2.8)
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We now consider the identity
E(w, w)=E(B, B) + 2E(w, ¢) — E(p, ¢) (2.9)
and note that

_[ 9 f ‘
E = — M(w)dS + | ¢A2wdA -
(w, ¢) Lz an M(w) R(P w (2.10)

By Schwarz’s inequality we have
. a‘p 2 1/2 1/2
| Ew, @) | < { f\<55> dS 2Mz(w)dS } + { f};p?dA fR(AZw)ZdA } . (2.11)

Since ¢ vanishes on X, it follows from the duality principle of Fichera [8] that

Ux<g_i>2ds }1/2 =l { L(A‘P)zd/’ }1/2 2.12)

where K; is the same constant as the K; appearing in (2.1). (In the determination of the explicit
value for K; in [5] and [10] the quantity was actually determined for (2.12) rather than (2.1).) It
is well known also that if ¢ has piecewise continuous second derivatives in R and vanishes on

3 then
) 1/2 1 1/2
{f};pldA } < }\—1{ fk(mp)?dA } (2.13)

where )\ is the first eigenvalue in the fixed membrane problem for R. If this number is not known,
lower bounds for it can be easily computed from monotony principles, the Faber-Krahn [7, 9]
inequality, or other considerations. Inserting (2.12) and (2.13) into (2.11) we obtain

o =[] o] { ] wrad] ") ] sra]

2

=[x [ woras) " X { [ woran]™] [ me. 0]
< w = w ——E(p,
Uy, MU g RO (2.14)
the last inequality resulting from (2.3). From (2.14) and (2.9) it follows then that
B, < BB, +2(722) [k f [ imeoras | +L] [ @aoraa]™ | igie. e1e—Bie. )
3, 1 R
2.15)

or, using the arithmetic geometric-mean inequality,

Ew, w) < EB, B)+——| K Maopds) 1{ Aeadl” |
wow < BB B+ | K [ nopas] o [ @morad T 2ae

By combining (2.4) and (2.16) we now have a bound forj w?dA in terms of L, integrals of the
R

data and E(B, B), where B is the solution to (2.7). We seek now to bound E(B, B) in terms of the data
of w.
From the divergence theorem we have

E(B, B)ZJ(AB)ZdA—Hl—U)f [B, 4B, ij— (AB)*ldA
R

R

— 2 — Y .i) .
f}iAB)dA—Hl 0)3523,,<n18x,. ni=5) B, jdS

- [@Braa+a-of {8 LB _sB 2B _1[(oB):, (aB))
L(AB)dA+(1 ")3g2{as rrieee et o IHE N 1 (2.17)
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2 2
Now if £ and e are continuous on 2, and either o5 ( 91

s o 3san \°F gz—) is square integrable on X, then we

may integrate the first (or second) term in the boundary integral on the right by parts on 2 to obtain,
for instance,

= —9(1— dwdw_ [1(dwy,e [ 1 (dw)?
E(B,B)= j (ABydA —2(1—0o) L, on 952 ( as> ds L‘ <6n) ds. (2.18)

R s P p

We have also made use of the boundary conditions (2.7). An application of the arithmetic-geo-
metric mean inequality yields for any positive &

EB.B) < f (ABpdA+(1—of #)2 5 (%ﬁ) dS+ f _@—p (%f)zds— fﬁ o (%—f)zds. (2.19)

An inequality bounding the first term on the right of (2.19) in terms of the data of w is derived in
appendix A. The insertion of (A.25) into (2.19) together with (2.7) results in the inequality

E(B,B)Sd.?gxw2d5+d;£<a)dS—I—df( )dS+d4§< )dS+df <a2w)dS, (2.20)

with explicit constants d, If the region R is simply connected we can actually obtain the inequal-
ity (see appendix A, in particular (A.26)—(A.28))

7 aB?iaB,i
gt B)sd“iT R

dS. (2.21)

We now insert (2.20) and (2.16) back into (2.4) to obtain the desired inequality, which may be
written in the form

] 2dA<A3€ st+Aff< >d5+A3§< )dS

0w

+A4, <_ui>- dS+ A ( ) dS + Ag [M(w)]zdS+A7f (A%w)*dA. (2.22)
S on 3, \dsdn R

Here again the constants 4; may be explicitly computed.

In many of our intermediate inequalities sharper results could have been obtained by leaving
certain positive weight functions under the integral signs rather than factoring them out.

It is now possible to employ the technique used in [2] and [3] to obtain pointwise bounds in R
for w and its derivatives in terms of L. integrals of the data of problem I. It appears likely that by
using the results of Bramble and Hubbard [1] it would be possible, if sufficient smoothness of the
boundary and data is assumed, to obtain an inequality of the form (2.22) in which 4., A3, and 45
are zero. However, the remaining constants would then be more complicated functions of the
geometry of 2; and ...

3. Problem II

We assume in this section that R and the portion 2. of 2 are such that we can define a vector
field f? which has piecewise continuous first derivatives in R and satisfies

Li=ffi>p>0inR
—f’n,->q>00n 23. (3.1)
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This is of course always possible if 3 is sufficiently smooth and %, is nonempty. In fact, if we take
any sufficiently smooth function ¢ which is superharmonic in R and whose normal derivative is
positive on 2 then one such fis given by
1 ()31
S ¢ta

where a is chosen so large that ¢ +a >0 in R.

In this section we derive a bound for the L, integral of an arbitrary C?® function w in terms of
L, integrals of the data of problem II. Again in the application of our inequalities we shall set
w=u—®P, where u is the solution to problem Il and ® is the approximating function. In this
section we assume that ® has been so chosen that

im wQ)= lim Q_ jy EWQ_ jy, #QA_ g PO _, g,
0—Pu P Q— P, P, 0S Q- P, P, 0S 0—P,P. ON Q—P, P, 00N
If we choose
N
@2201(131' (3.3)
=1

where the ®; are linearly independent functions, then (3.2) imposes ten conditions on the a;. If
3, and 2, have no points in common then conditions (3.2) are unnecessary.

We now consider the following application of the divergence theorem.
ﬁf"medS=ff,§w2dA +2 ff"ww, dA. (3.4)
R R
Upon rearranging and applying the arithmetic-geometric mean inequality, we obtain
|\ pirrmeas < §pnacs + [ lerad wlias. (35)
R ] R
Using (3.1) we have

p jwsz—FqJ deSSffiniwzdS+f |grad w|*dA. (3.6)
R 5 5 R

Let us now rewrite (3.4) with w? replaced by |grad w|2. It follows then in the same way that

p f |grad w|2dA+qL |grad w|2dS < Lfndgrad w|2dS+fw, iw, ydA. 3.7)
R % ; R

Combining the two inequalities and dropping the integrals over 3., we obtain the inequality

ijdA =< p‘lf finaw?dS +p‘2J;f"n,-|grad w|*dS -f-p*zf w, iw, ijdA. (3.8)
R S : R

Clearly for o0 =0

fw, iw, ijdA < (1— o) 'Ew, w). (3.9)
R
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If o< 0, the factor (1 —o)~! must be replaced by 2(2—0)~'. We assume, however, in the following
that 0= 0. Then

fwsz < p“L f"n,'wzdS—i—p*-Lf’:n,-lgrad w|2dS+ [p2(1 — o) 'E(w, w). (3.10)
R 1 1
In order to bound E(w, w) in terms of the desired quantities, we decompose w as follows:
w=B+¢ (3.11)
where B satisfies
A’B=01in R
won 3,
B:
0on 3,
a )
| aB_ |5n on %
‘ on
| 0 on 3,
| (3.12)
The function ¢ then satisfies
A2p=A%w in R
J
“’:a_(szo"" 21 (3.13)
M(e)=M(w)—M(B), Vie)=V(w)—V(B) on 3.
We again make use of the identity
E(w, w)=EB, B)+2E(p, w)— E(p, ¢) (3.14)
where now
E(ep, W):f g—:—yM(w)dS—- goV(w)(lS-i-J eA%*wdA. (3.15)
> 9 R

We apply the Schwarz inequality as follows:
a 1/2
<o ] ]t | o
1/2
+p‘2J (A%w)*dA +p*1q*‘J’ (V(w))zdS} - (3.16)
R 3,
Now, in view of (3.6), the first term on the right of (3.16) may be bounded by

2
qu @%) dS‘LPZf ’dA+P'1f pds < flgrad <p|dA+qf lgrad oldS.  (3.17)
2 2

We have also made use of the fact that <a—‘p> |erad ¢|2. But from (3.7) it follows then that
pJR lgrad <p|2dA+qﬁ |grad ¢[dS < fk@ i, iidA=(1—a)'E(p, ¢). (3.18)

Thus

|E(p, w)| < {1 —0)'E(e, <P)}”2{q‘ J

>

/
(w))2dS +p‘2f (A2w)2dA +p"q‘1f (V(w))zdS}1 2 (3.19)

2 2

8l
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The insertion of (3.19) into (3.14), followed by an application of the arithmetic-geometric mean
inequality, yields

E(w, w) < EB, B)+(1 —-cr'“l{q“'L (M(w))*dS +p‘2f (A%w)*dA -§-p“q“1J’Z (V(w))zdS}. (3.20)
2 1 2

A combination of (3.10) and (3.20) thus gives us a bound for f w?dA in terms of the data of w and
R

E(B,B). We seek now a bound for E(B,B) in terms of the data of w.
From (2.17), it follows as before that

dw *w 1 [ [/ow)\*, [ow)?
EB, B)—f AB)*dA +2(1—o) : s 30 dS N 5 [<¥> +<5;> ] ds. (3.21)

Using the arithmetic-geometric mean inequalitv we obtain for positive ag

2
BB, B) < [ (aBrad+—orasf () as+ [ = (G as— [ (G as. w22

As in the previous section we require a bound for f(AB)sz in terms of the data of w. The
R

desired bound was computed in appendix A and is given by (A.25), i.e.,

f AB)ZdA<d3§Bst+d§ ( )ds+d3£ ( )dS+d4 (::fn>2ds+35£ (gz—f)zds. (3.23)

This inequality may be rewritten, using (3.12), as

fAB)ZdA<df ds+dle<a )ds+df ( )ds+d4j ((,fza)dSnLds] (?:’f) ds. (3.2

A combination of (3.10), (3.20), (3.22), and (3.24) thus leads to the desired inequality, which
is of the form

. dw\2
fWZdAsBlf w2ds+32f < ) +B3f (*) ds
R > >y aon
+Bf ( )ds+3f (azw)zds+3f [Mao)dS
‘s, \os? °Js, \ason Sfs,

-+-B7f2 [V(w)]ZdS—i—Bgf [A%w]dA, (3.25)
5 R

where the Bi’s are explicit constants.

In many cases (3.25) may be simplified by exploiting some of the geometric properties of 3.
For instance, whenever p is positive on 2; some quantities may be dropped from (3.21) or used to
cancel other quantities.

Pointwise bounds in this prob' :m follow from the results of [2] and [3].

4. Problem III

This problem is the most difficult of the three since for certain geometrical configurations
it does not have a unique solution. Suppose, for instance, that the domain R lies in the right
half plane and 3, is a portion of the y-axis. In this case the plate may rotate as a rigid body
about the y-axis. The solution will be unique only up to a rigid body rotation, a term of the form
w=ax. Note, however, that if 2, is not a straight line then this rigid body motion is no longer
possible. Because of the inherent difficulty in treating problem 3 we shall derive in this section
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only an L, bound for the energy integral E(w, w) in terms of the data of the problem. It is possible
with such a bound, using the techniques of [2, 3], to obtain pointwise bounds for any second deriva-
tive of w in terms of L. integrals of the data. In order to simplify the problem somewhat, we assume
that w vanishes with its first two tangential derivatives at P; and P,. This means merely (as
pointed out before) that we put certain restrictions on the approximating functions, and it amounts
to six conditions on the arbitrary parameters in the application of the Rayleigh-Ritz technique.
With this restriction we decompose w as follows:

w=h+w (4.1)
where A satisfies
Ah=01n R
_[won 3,
h—{ 0 on 3,- (4.2)
Then
A2w=A%2win R
w=0 M(u‘/)ZM(w)—(l—a)[ +la—h] by
> st pan on 2, (4.3)
M(d/)ZM(w)—l—i—o-gz w)—V(w)-Hl—o-) onzz-

Making use of the triangle inequality, we obtain from (4.1)
{E(w, w)}'2 < {E(h, h)}'"*+ {E(i, w)}'/*. (4.4)

We compute first a bound for E(h, h).
Since h is harmonic it follows that

E(h, h)=(1—0')fh, ijh, ijdA - (4.5)
R

But, as in (2.17), we observe that

_ [ [0k *h _oh&*h L[ (dh\*  (9h)*
f,fh”"h”"‘d/’_f;{ ds dson o 9s p[<as> +<an>” @

ef st 2

Applying the arithmetic-geometric mean inequality we obtain

0%h)\? _ WN(ahe _ (0h)\?
fﬂh, il i;dASJia9<5§)dS+fz(a9 '—p ')(5) dS—flp l(;\;) ds. (4.7)

If the region is convex, we could choose ag= max p and drop the last two terms. If not, we may use
the inequality (A.4) given in appendix A, i.e.,

%(%) <b03€ h2dS+ b, 3§ (ah> dS= b(,f‘ w2ds+bf ) ds. 4.8)

Upon inserting (4.8) and (4.7) into (4.5), and using the boundary conditions on h, we arrive at the

E, h)<(1—o){bof wzds+bf ( ) ds+bf (azw> ds} 4.9)

where by, b, and b, are explicit.

(4.6)

inequality
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In order to bound E(w, w), we decompose o as follows:

w=B+¢ (4.10)
where

A2B=A%2win R
M(B)= M) on 3,

_JV@)onx, _
V‘B)_{—V(h)+Cl+ng+ny0n2 sl

with C;, C., and Cs chosen to insure existence of the function B. We indicate now how the C; are

to be determined.

Let us choose the coordinate axes in such a way thatf xds=f yds=f xyds=0. Then,
S 3, o

in order that (4.11) may have a solution, it is necessary that the following three equilibrium condi-
tions be satisfied:

% V(B)dSZf A2BdA

s R

§ xV(B)dS—§ nIM(B)dS=J xA2BdA
s s R

% yV(B)dS—i) n_,,M(B)dSZf yA2BdA. (4.12)
s s R

These three conditions are now used to determine C;, C>, and C;. We note first that since A is
harmonic

f V(h)dS=0

b}

LxV(h)dS —L n:M(h)dS =0

J\_ yV(h)dS —J; nyM(h)dS =0. (4.13)

Thus conditions (4.12) are equivalent to

C.S:= f A2wdA— | V(w)dS
R

2y

C.ly= f xA2wdA + f nMw)dS — |  xV(w)dS
R 2

P
Csl>= f yA2wdA + f nMw)dS — | yVw)dS (4.14)
R 3 2,
where S; denotes the length of %, and
1 =L 2 L= | y%dS. (4.15)
1 3,

Equations (4.14) thus determine the constants él, ég, and C; in terms of the data of problem III.

In determining the bound for E(w, @) of (4.4), we shall, according to (4.10), need a bound for
E(B, B). We first indicate how E(B, B) is to be bounded in terms of the data of the problem. We
present here a method which is applicable only if the domain R is simply connected. The function
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B is of course determined only up to a rigid body motion, which we assume to be fixed by the

conditions 8B
é BdS = fﬁ —dS= % =0. (4.16)
From the results of [3, eq (4.18)], if R is simply connected, it follows that
) ras+g, G s =g
== B2dS + —)dS<s—EMB, B .
(L 3 ' \on Dol—o) (B, B) (4.17)
where p: is defined in [3, eq (4.31)].
From the identity 41
ff xiniB2dS =2 f B2dA+2 f BB dA (4.18)
>3 SRR R

we obtain, using the arithmetic-geometric mean inequality

B2dA < ry fﬁ B2dS+r2 j B, B, dA- (4.19)
>3, R

R

A repetition of the inequality with B? replaced by B, B, ; yields

j 2dA = ruéB dS +r‘,§ | grad B |2dS +r‘,fB, iiB, iydA - (4.20)
R

Here ry denotes the maximum value of r= Vaix’ on X. We observed in the proof of (4.17) that

fos < (L) (2

(4.21)
§|gradb’|2dSS: B, iiB, ijdA -
by P2Jg
Thus from (4.20) and (4.21) we have
B*dA = VfB, iB, jdA < —V_‘E(B, B) (4.22)
R R =@
where
L =1 4 5%
V=1Tm e +’:{I (p2)~ 'ty (4.23)

By Green’s identity

EB, B)=f aB M(w)dS — f BV(w)dS — f BVB)dS+f BA2wdA = j —M (w)dS
j BV(w)dS — f (C1+ Cax +Csy) BdS+f BA2wdA — f —M(h)dS+f BV(h)dS
=f —M(w)dS—f BV(w)dS—f (€, +(:"zx+(:'3y)BdS+f BA*>wdA— E(B, h). (4.24)
s on % 3, R

It follows then from Schwarz’s inequality that

L )
{fBldAj A% } : {E(B B)} {E(h,h)}”z_ .25



Here V(w) is defined as

)_{V(w) on X»
C,+Cox+Csyon 3. (4.26)

From the definition of é,, éz, and C; we observe that V(w) is data. Using (4.17) and (4.22) we
obtain then

{EB, 15*)}”%{1—_72(117(’)UX (M(w ))st+< ) f Piaw )st]}

v oo 1/2 1/2
+{1— f (Azw)ZdA} +{E(h, h)} ", (4.27)
= |

where the bound for the last term is given by (4.9). With (4.27) we now compute the bound for
Ew, w).
From (4.10) it follows that

E@w, w)=E(B, B)+2Ew, ¢) — E(p, ¢) (4.28)
where

W, o= f 2 Mip)as f WV (@)dS+ f wA%pdA
zon 3 R

=0 (4.29)
from (4.10) and (4.11). Thus
Ew, w) < E(B, B). (4.30)

Combining (4.4), (4.9), and (4.27) we now obtain (after an application of the arithmetic-geometric
mean inequality) an inequality of the form

E(w, w) < D; f wdS+ D, f ("’—“’)‘ds +D, f (32—’;’)35
3 s, \0s 3, \0s
+D4j§2 (M(w)PdS + Dsﬁ(V(w))st +Ds f (AwPdd,  (4.31)
R

which is the desired result.

5. Appendix A

In treating the problems discussed in sections 2, 3, and 4 we required bounds for certain
integrals of derivatives of biharmonic functions in terms of their Dirichlet data. We derive the
necessary inequalities here, the most important of which is (A.25).

Consider the following Dirichlet problem for R:

A’B=01in R

oB .
B, S, gven on s. (A.1)

Let us compute a bound forj (AB)2dA in terms of the data of B. We assume that the data are such
R

that 92B/ds? and 92B/dsdn are square integrable on 3.
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Let A be the harmonic function which is equal to B on the boundary. Then from Green’s
identity we have

f (AB)*dA = f [A(B— h)]PdA = f (B—h)ABdS. (A.2)
Using the arithmetic-geometric mean inequality we obtain, for any positive ay, the inequality

= % 2 _.1__ _a_ - g
L(AB)sz =3 ﬁ(AB) dS+2a0 £ [an(B h)] ds

—° 2(AB)2dS+al0 [ ff;; (3—13-)2 ds+j§2 (%)2 dS] (A.3)

In [10, 11] Payne and Weinberger have obtained the following inequality for the last integral

R (T o (e Tt AT DR

The constants by and b, are explicitly determined. We seek now a bound for the first integral on
the right of (A.3).

For an arbitrary sufficiently smooth vector field g' and an arbitrary harmonic function H we
consider the following identity:

D= f g“(B—H), xA*BdA :§ g (B—H), ki(AB)ds
R 5 an

_J'Rg, KB —H), 1AB, ds —J(Rg"'(B —H), uAB, dA. (A.5)
Integrating by parts further we obtain

6(AB)

fg’AB{nA 2 n ](B H), cdS+3 fngnA(AB)Z¢S+f g B—H), 222 45

+Lg, ink(B—H), ,-ABdSzf {Agf(B-—l{),i+2g, (B—H), ik—%g, {AB}ABdA. (A.6)
R

Suppose now that a vector function g' with bounded second derivatives has been found such
that

g =n; (A.7)

on 3. It 2eC? one possible vector field g' is_given in appendix B. With gi so chosen we take H
to satisfy

AH=0in R
oH 3B . [ 9B
iR ‘jﬁands (A.8)

where S denotes the length of . From (A.7) and (A.8) it follows that the third boundary integral
on the left of (A.6) vanishes (since B is biharmonic).
Since gi=n; on %, the first term in (A.6) becomes

d 2 19
ffzniw(nka, o) (B = H i = f [——2—;a—n](B—H)dS (A.9)

while the fourth term on the left may be written as
4t
s cnu(B— H)ABdS = § % (B—H) B, (A10
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Inserting (A.9) and (A.10) into (A.6), and making use of (A.7) and (A.8), we obtain

9€(AB)2dS %AB (B—H)dS+5- ff(AB)p ldsfﬁ dS— 35 { i
+n,S § - dS}ABdS+fAB{AgB H),1+2g,,l B H)ylk‘ 2 g,lAB}dA (A.l].)

We assume now that g and its second derivatives are uniformly bounded in R. Then by mak-
ing use of the arithmetic-geometric mean inequality we obtain for arbitrary positive constants «;

(l—al—ag—a;;—a4)f#;2(AB)2dS<—§ [ (B— H)] dS+(p )maxﬁ (—g—g)zds
+g—;3§2 [;’—S(B—m]zds leﬁ(a )dS+(a5+a6+C3)f(AB)ZdA
f(B H),(B— H),,dA+ f(B H),(B—H),;dA. (A.12)

In (A.12) we have used the abbreviations

C, _max[ag axl] e

s | dn ds
i 2
C2=max[aﬁnf]
s [dn

C; =max(g, :)l
R
C, =mRaX[Ag"Ag"]2
Cs=4 rlr;aXIg, ikl (A.13)
We need now bounds for j (B—H),(B—H), idA, f (B—H), j(B—H), jdA and L, integrals
R R

over 2, of the first and second tangential derivatives of H, in terms of the data of B. We consider

first f (B—H), {B—H), ijdA. An integration by parts gives (see 2.17)
R

fB H), ;(B—H), ydA= 29§ fanmaBasH)

+ [ @BraA—§ SiB—H),B—H, . (A9
R

The first term on the right vanishes in view of (A.8). Thus

> dS 2 1[0 2
I(B H), i(B—H), jdA = f (AB)?dA —S— jg (ﬁ o= >_£E[£(B_H)] dS
. dB\? ad 2
< f (AB)ZdA+CG§ (—) ds+063€ [—(B—H)] s (A15)
R s \dn s [ ds
where Cg is given by

0Oif p=0o0n 3
Cez

(— l) if p changes sign on 3, .
max

p (A.16)
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In a recent paper [6] the authors obtained the following inequality:

f(B—H),i(B—H),idASC73€ [i(B—H)]ZdS—f-CxJ (AB)*dA
R s Lon R

< C7?§2 (gB> dS—i—Cgf (AB)*dA (A.17)

with explicit constants C; and Cs. The second inequality results from insertion of the boundary
condition in (A.8) followed by an application of Schwarz’s inequality. The insertion of (A.15) and
(A.17) into (A.12) then gives

(1—a1—ax— a3 —oa;)é2 (AB)2dS < allfz [aa—; (B —H)]zdS

e Cz CSC() C4C7]§ [Cl %] % [i _ ]2
+[ 4o z<3ﬂ) dS+ |35 B—H | ds

[67) Cl4 (673 (73 a3 (e 73

+[a +a¢,+C;+C + Cf*‘J

f (AB)2dA. (A.18)
R

We now choose the constants «; in such a way that
yEl—aI*ag—a;(—a4>0. (Alg)

For simplicity we write (A.18) as

4 fﬁ (ABYdS = v2 ff [6—2 (B~ H)]zdS + 72 fﬁ (&Yas
3 B 5 882 . 5 an

2
tvid [Lm—mlas+v [ wpras a0
> R

We now insert (A.4) and (A.20) back into (A.3) to obtain

_ Y > p_ml ( ﬂ) (ﬁ)z
(% : ) fk (AB)2dA < 3€ [882 (B H)] as+ (vt o) ¢ (5,) @S

2 2
+y43§ [E(B—H)]ds+y'—}’°5{532ds+y‘—b‘9§ (@) dS.  (A21)
s L0s s ag Js \ds

(871}

The constant @y may be taken as y;/ys which yields the inequality:

%f (AB)szsY23( [ (B — H)]ds+(y;+y5)3§ ( )ds
R 53
+yd [Z@—m[as+bod B2dS+b1y55£ (BYas. a2
s L0s s '

We need now to bound the tangential derivatives of H in terms of its normal derivatives.
From the results of [10, 11] we have

fﬁ @’j) ds < Gy f (‘9’1) S+ Gy f H, H,dA<C f (gf)zds (A.23)
with explicit constants ég, Cy, and Cy. An inequality of type (A.17) has been used to obtain (A.23).
*H
We require finally a bound for 95 o UK
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Since H is harmonic we obtain, on applying an inequality of Bramble and Hubbard [1],

02H J0*H oH\? d’B B
§L 50 [ as=tug g ] ss+Eng (G dSSC“’?gz[asan] ks C“ﬁan) iz

with explicit constants C;o and Cy; (see Appendix C). A use of the arithmetic-geometric mean
inequality in the first and third terms on the right of (A.22), together with (A.23) and (A.24), yields
the inequality

2 2 2
%f(AB)‘sz <2y, ﬁ(%g) ds+2yzcm?§(;f) dS + (2ys+b, y,)ﬂ ) dS
! ‘

et 2y 2iCs) f#; (5) i 55 B2dS (A.25)
> 3

2 2 . .
<di$pras+a. §(2) a5+ (%) as+af [t
2 s\ 0s s\on sl ds  0s
which was to be derived.

It might be noted that the left hand side is unaffected by considering B instead of B, where

B: B+a0+a1x+a2y' (A.26)
In (A.26) the constants a; are determined by the conditions that
SEBdsz f#; Hods= f#; B,,dS=0 (A.27)
5 s s

Then, as indicated in [3], it is possible, if R is simply connected, to replace (A.25) by

aB,,aB,, _ %83,583,.'
=ds 2=

f (AB) sz<d59€ i &t g5 = g Lt 2t as. (A.28)

6. Appendix B. The Vector Field g

We make the assumption that %eC? and consider the family of parallel surfaces to % in R
given by N(x) = constant, with 2, defined by N(x) =0. The parallel surfaces need only be defined
in the neighborhood of % and we shall be interested in the subdomain of R given by 0 < N(x) < K-!
where K is a bound on the curvature of %. The outward normal vector n; on the parallel surface
is given by

—N,; .
{NajNaj}llz

ni—

It is clear then that if we define g as
g{.z{(l—KN)?n,-,O<NSK'1

0 otherwise

then g =n; on % and geC? in R.

7. Appendix C

The inequality (A.24) follows from eq (2.6) of [1] by making use of [1, eq (2.2)] to prescribe the
arbitrary vectors g¢ and symmetric tensors 4%.  We sketch here briefly how the argument goes.
For sufficiently smooth g' and AY we have the following identity for any harmonic function H:

f [2(g™AY), H, jm—(g"AY), nH, jy1H, iudA = i g"AH, u(2H , juny — H, jnm)dS. (C.1)
R
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Suppose g’ and A to be so chosen that on X
g =ni
A= 8;— nin; (C.2)
If % is sufficiently smooth, we may choose g’ as in appendix B and
V=8~ g

We now decompose the derivatives on the boundary into normal and tangential derivatives to
obtain

§ [nm{8y— nin;} H, w(2H, jmn, — H, jinm)]dS
5

f -2 Ay
s (\dsdn ds? p ds dsdn p*\ s

_(9ni 0H _ dny 0H\* _ (dn, 0H @my}
(6s ds  on an) (as as+8n an ds. (C.3)

Inserting (C.3) back into (C.1), we have upon rearranging and dropping the last two terms

92H\? 0*H\* 20H o*H oH
— = —== +k| H,yH,ydA, C.4
ﬁ(as2>d5<£{<asan) p ds asan+p (a )}ds J s (€9
where k is easily determined once g and A% are given. From (A.8) it follows that
92H\? J*B 20H 3*°B
?i(aﬂ)dssi{(asaJ e ( )}ds+kf H, iH, ydA. (C.5)

But from (4.16)

B B oH o oH
LH’UH*UdA—QﬂgXasan G ipﬁan) +(<’s)]ds

If we now use the arithmetic-geometric mean inequality in the second term on the right of (C.5) and
the second term on the right of (C.6), we obtain an inequality of the form

217\ 2 _ 2P \2 — 2 — dH\?2
§, () as =R (G5e) as &, (5) as+Kd, (5,) . a0

We now use (A.23) and apply Schwarz’s inequality to the last term on the right after insertion of the
boundary condition. This leads to (A.24).
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