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In this paper a number of explic it a priori inequalities for solutions of the plate equation are 
derived. These inequalities together with the Rayleigh-Ritz tec hniqu e may be used to .compute error 
bounds in various mixed boundary value problems for elas tic plates. 

1. Introduction 

In two recent papers [2,3] I the authors prese nted methods for obtaining pointwise bounds 
in the three most common boundary value problems for elasti c plates . These bounds were of a 
priori type, that is they held for a class of functions r equired to sati sfy only smoothness condi­
tions . Hence one could approximate the (unknown) solution of one of these proble ms in terms of 
essentially arbitrary functions, and the inequaliti es gave bounds on the error. 

In this paper we derive s imilar a priori bounds in the three most common mixed boundary 
value problems for elastic plates . For simplicity we consider only the case of a simply conn ec ted 
region R whose boundary I consists of two disjoint portions II, and I 2 (each co nnected) on which 
different se ts of boundary conditions are imposed. It will be clear how the results are to be ex­
tended if II, and/or I 2 are not connec ted or if R is multiply connected. 

In this paper we shall res tric t our atte ntion to the proble m of obtaining bounds for the L2 
integrals of an arbitrary sufficiently smooth function w in term s of L2 integrals of quantities which 
are data whenever the arbitrary fun c tion w is actually the solution u to the problem in ques tion. 
By use of mean value inequalities and the Rayleigh-Ritz technique as indicated in [2,3], the desired 
pointwise bounds are then obtained. The well known Rayleigh-Ritz tec hniqu e consis ts in choosing 

tV 

w = U - L a;<Pi, where the <Pi are N linearly indepe nde nt sufficiently smooth fun ctions, and the ai 
1= 1 

al'e de termined in such a way as to minimize the terms involving the data of u. 
The particular problems treated here are the following: 

PROBLEM I: 

PROBLEM II: 

!l2u prescribed in R 

au 
u, an given on II 

u, M(u) given on I2 

!l2u prescribed in R 

au 
u, an given on II 

M(u), V(u) given on I 2 

1 Figures in bracke ts indicate the lit erature refe re nces at the e nd of thi s paper. 
·Univers ity of Ma ryland, ColJege Park, Md.: pa ri-lime worker at National Bureau of Standards., Washington, D.C. This research was supported in pari by the 

National Science f oundation under Grant NS F'--c P- 3. 
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PROBLEM III: /}.2U prescribed in R 

u, M(u) given on II 

M(u), V(u) given OJ! I2' 

a4 a4 a4 
Here /}.2 is the biharmonic operator ax4 + 2 ax2ar + ayA (8 denotes 

aan denotes the normal derivative directed outward on I. Also 

the Laplace operator), and 

M(u)=8u-(I-<T) -+--( a2u 1 au) 
as2 pan (1.1) 

and 

V(u)=-(8u) + (1-<T) ---- --a [a 3u a (1 au)] 
an as2an as pas (1.2) 

where aas denotes the derivative with respect to arc length on I, <T is Poisson's ratio and p is the 

radius of curvature. The quantities M(u) and V(u) are proportional to the normal moment and the 
reaction normal to the plate on I, respectively. 

In subsequent sections we shall refer to the bounding of integrals of an arbitrary function W 

in terms of L2 integrals of its "data." For example, in problem I the data of ware the quantities 

8 2w in R, wand ~: on II and wand M(w) on I2. In the other two problems the "data" of ware 

defined analogously. 
Throughout this paper we assume the boundary I of R to be sufficiently smooth so that all 

of the applications of the divergence theorem used are valid. It will be apparent that if the deriva· 
tives of the curvature of I are continuous then there is no question of the validity of the indicated 
operations provided the functions themselves are smooth enough. It will also be clear that less 
smoothness of I can actually be tolerated in each problem, but the determination of the minimum 
smoothness requirements is not investigated in this paper. 

We make use of the summation convention throughout and employ a comma to denote differ­
entiation, e.g., W,j = ~:::. We denote the points at which II and I 2 join as PI and P2 • Arc length 
will be measured along I in the counterclockwise direction. 

Additional notation will be defined as the need arises in the text. We turn now to the question 
of obtaining bounds in problems I, II, and III. These will be discussed separately in sections 
2, 3, and 4. Certain auxiliary inequalities which will be required in treating the three mixed 
problems will be derived in appendix A . . 

2. Problem I 

In a recent paper [4, eq (2.1)] the authors derived the following inequality for a function w 
with piecewise continuous second derivatives: 

(2.1) 

where the constants KI and K2 were explicit. (As indicated in [4,5] appropriate constants KI and 
K2 are obtained by making use of results of Payne and Weinberger [10]) . Using (2.1) as a starting 
point we shall derive the desired L2 inequality in problem I. 

We first define E(w,w) as 

E(w, w) = L[<T(/}.W)2 + (1- <T)w, ijW, ij]dA. (2.2) 
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It is well known that E (u, u) is proportional to the strain energy. Since (~w)2 :s:: 2W,ijW, ij it follows 
that 

jylW)2dA :s:: 1 ~ (T E(w, w). (2.3) 

Thus inserting (2.3) into (2.1) we obtain 

(2.4) 

where 

We seek now to bound E(w, w) in terms of the data of proble m I. In order to simplify our 
computations we shall assume that 

lim aw(Q) = 0 lim a2w(Q) = 0 
Q-P" P, an ' Q-->p .. p, asan (2.5) 

where Q is a point on !,I. This res tri ction is by no means necessary, since bounds could be 

derived which involve the values of ~~ and ~l::n at PI and P2. In applying the a priori type inequali. 

ties , however, w will be set equal to u - <I> where u is th e solution to problem I and <I> is an approxi· 
mating function. The func tion <I> will the n be represe nted as a linear combination of N linearly 
indepe ndent functions <Pi. with arbitrary real coefficie nts . The res tri c tion (2.5) prescribes four 
relations among the coeffi cie nts. The Rayleigh.Ritz techniqu e togethe r with these four conditions 
then determine the coefficients. He nce, for prac tical purposes, (2.5) is no res tri c tion at all. Con· 
dition (2.5) permits us to treat the cases in which };I and };2 do not have e nd points in common 
(e.g., certain multiply connec ted configurations) and the case in whic h points PI and P2 do occur, in 
a unified manner. 

In order to bound E(w, w) in term s of the data of problem I, we deco mpose w as follows: 

where 

Clearly then 

w= B +cp 

/::,.2B = 0 in R 

B=w on}; 

cp = 0 on }; 

acp ~ -a = 0 on"::'l 
It 

M(cp ) = M(w) - M(B) on };z· 
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We now consider the identity 

E(w, w) = E(B, B) + 2E(w, r.p) - E(r.p, cp) (2.9) 

and note that 

(2.10) 

By Schwarz's inequality we have 

I E(w, cp) I ~ {JJ~~rdS JI~2(W)dS } 1/2 + {JRr.p2dA JR(Ll2w)2dA } 1/2. (2.11) 

Since r.p vanishes on ~, it follows from the duality principle of Fichera [8] that 

(2.12) 

where KI is the same constant as the KI appearing in (2.1). (In the determination of the explicit 
value for KI in [5] and [10] the quantity was actually determined for (2.12) rather than (2.1).) It 
is well known also that if r.p has piecewise continuous second derivatives in R and vanishes on 
~ then 

(2.13) 

where Al is the first eigenvalue in the fixed membrane problem for R. If this number is not known, 
lower bounds for it can be easily computed from monotony principles, the Faber-Krahn [7,9] 
inequality, or other considerations. Inserting (2.12) and (2.13) into (2.11) we obtain 

IE(w,r.p) I ~ [KI{JI
2 

[M(W)]2dSr2 +;1 {JR (Ll2W)2dAf2] {JR (Llr.p)2dAf'2 

~ [KI {f 12 [M(w))2dS f'2+ ;1 {t (Ll2w)2dA f'2] [1 ~ 0- E(r.p, r.p) r2 
(2.14) 

the last inequality resulting from (2.3). From (2.14) and (2.9) it follows then that 

E(w, w) ~ E(B, B)+ 2 (I! o-t2 [ KI {J [M(W)]2dS rz + ~I {J (Ll2w)2dA r2] [E(r.p, r.p)]I /2 - E(r.p, r.p) 
12 R (2.15) 

or, using the arithmetic geometric-mean inequality, 

E(w, w) ~ E(B, B) + I! 0- [ KI {J 22 [M(w))2dS f2 + ~I {J R (Ll2w)2dA f2] 2. (2. 16) 

By combining (2.4) and (2.16) we now have a bound for J R w2dA in terms of L2 integrals of the 

data and E(B, B), where B is the solution to (2.7). We seek now to bound E(B, B) in terms of the data 
ofw. 

From the divergence theorem we have 

E(B, B) = J 1LlB)2dA + (1- 0-) J R[B, uB, ij - (LlB)2]dA 

= J (LlB)2dA + (1- 0-) 1 B . (n . ...L - n...L) BdS 
Il J I " J ax' I ax) , ) 

= J (LlB)2dA + (1- 0-) 1 {aB ~ _ aB a2B _ 1. [(aB)2 + (aB)2]}dS. 
II J1 as asan an as2 p an as (2.17) 
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N 'f aB d aB . ~ d' h a2B ( a2B). . bl ~ h ow I as an an are contmuous on 4 an eIt er asan or ~ I S square mtegra eon 4 , t en we 

may integrate the firs t (or second) term in the boundary integral on the right by parts on l to obtain, 
for in stance, 

J J aw a2w f 1 (aw)2 J 1 (aw)2 E(B,B)~ (flB)2dA - 2(1-a) ---2 - - - dS- - - dS. 
/I l, an as l p as l, p an 

(2.18) 

We have also made use of the boundary conditions (2.7). An application of the arithmetic-geo­
metric mean inequality yields for any positive a 

(2.19) 

An inequality bounding the firs t term on the right of (2.19) in terms of the data of w is derived in 
appendix A. The insertion of (A.2S) into (2.19) together with (2. 7) r esults in the inequality 

(2 .20) 

with explicit cons tants £h. If the region R is simply connec ted we can ac tually obtain the inequal­
ity (see appendix A, in particular (A.26)- (A.28)) 

E(B, B) :s::: d61 aB, i aB, idS. 
) l as as (2.21) 

We now insert (2.20) and (2 .16) back into (2.4) to obtain the desired inequality, whi ch may be 
writte n in the form 

Lw2dA :S::: Alfl w2dS + A2f l (~~r dS +A3f~ (~:~r dS 

+ A4Jl l ( ~~r dS + A5Jl l (~2:nr dS + A6Jl
2 
[M(w))2dS + A7J/I (t,2w)2dA. (2.22) 

Here again the constants Ai may be explici tly computed. 
In many of our intermediate inequalities sharper results could have been obtain ed by leaving 

certain positive weight functions under the integral signs rather than factoring the m out. 
It is now possible to e mploy the technique used in [2] and [3] to obtain pointwise bounds in R 

for wand its derivatives in terms of L2 integrals of the data of problem I. It appears likely that by 
using the results of Bramble and Hubbard [1] it would be possible , if sufficie nt s moothness of the 
boundary and data is ass umed, to obtain an inequality of the form (2.22) in whi ch A2, A3 , and As 
are zero. However, the remaining constants would then be 1110re complicated functions of the 
geometry of ~l and l 2. 

3. Problem II 

We assume in thi s section that R and the portion l 2 of l are suc h that we can de fine a vector 
fieldji which has piecewise continuous fi rs t de rivatives in R and sati s fi es 

j, i - jiji > P > 0 in R 

- jini > q > 0 on I t. (3.1) 
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This is of course always possible if 1 is sufficiently smooth and 11 is nonempty. In fact, if we take 
any sufficiently smooth function cp which is superharmonic in R and whose normal derivative is 
positive on 12 then one suchJi is given by 

Ji ==.!PJ..i 
cp+a 

where a is chosen so large that cp + a >0 in R. 

In thi s section we derive a bound for the L2 integral of an arbitrary C3 function W in terms of 
L2 integrals of the data of proble m II. Again in the application of our inequalities we shall set 
W = u - <1>, where u is the solution to proble m II and <I> is the approximating function. In this 
section we assume that <I> has been so chosen that 

(3.2) 

If we choose 

N 

<I> = 2:ai<l>i (3 .3) 
i= t 

where the <l>i are linearly indepe ndent functions, the n (3.2) imposes ten conditions on the ai . If 
11 and 1 2 have no points in common then conditions (3.2) are unnecessary. 

We now consider the following application of the divergence theorem. 

Upon rearranging and applying the arithmetic-geometric mean inequality, we obtain 

Using (3.1) we have 

Let us now rewrite (3.4) with w2 replaced by Igrad W12. It follows then in the same way that 

p ( Igrad wI 2dA +q ( Igrad wI 2dS ~ ( fn;jgrad w l2dS+ ( w, ijW, ijdA. 
JR J12 Jl1 JR 

Combining the two inequalities and dropping the integrals over 1 2, we obtain the inequality 

(w2dA ~ p- I ( jiniw2dS+p- 2( jindgrad w i2dS +p-2 ( W, ijW, ijdA. 
JR Jl1 Jl 1 JR 

Clearly for u- ;::,: 0 

In w, ijW, ijdA ~ (1- u-)- IE(w, w). 
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If (J"< 0, the factor (1- (J") - I mus t be re placed by 2(2 - (J") - I. W e assume, however, in the following 
that (J" ;?: O. The n 

In order to bound E(w, w) in terms of the desired quantities, we decompose w as follows: 

w = S+cp (3.11) 
where 8 satisfies 

t:,.28=OinR 

l
won II 

S-
O on l 2 

law 
a8 a on II _= n 
an 

o on l2 
(3. 12) 

The function cp then satisfies 

(3.13) 

M(cp)=M(w)-M(8), V(cp)=V(w)-V(8) on l2' 

We again make use of the iden ti ty 

E(w, w) = E(8, 8) + 2E(cp, w) - E(cp, cp) (3.14) 
where now 

E(cp, w) = ( aacp M(w)dS - ( cpV(w)dS + ( cpt:,.2wdA. Jl2 n Jl2 JII (3.15) 

We apply the Schwarz inequality as follows: 

IE(cp, W)I ~ {q Jl 2 (~~r dS + p2Ju cp2dA + pq Jl 2 cp2dS f2 {q-Jl2 [M(w»)2dS 

+ p- 2L (t:,.2w)2dA + p - lq-Jl2 (V(w»2dS} I /~ (3.16) 

Now, in view of (3.6), the first term on the right of (3. 16) may be bounded by 

qJ (~~)2 dS+p2J cp2dA+pqJ,. cp2ds ~ pJ I grad cpl2dA+qJ Igrad cpl2dS. (3.17) 
l2 u - 2 II ~2 

We have also made use of the fact that G~r ~ Igrad cp1 2. But from (3 .7) it follows then that 

pf Igrad cpI2dA + qJ. Igrad cpl2dS ~ f Cp , ijcp,ijdA = (l-(J") - IE(cp, cp). (3.18) 
II l2 II 

Thus 

IE(cp , w)1 ~ {(l-(J") - IE(cp , cp)}1 /2{ q-Jl2 (M(w»)2dS + r 2JII (t:,.2W)2dA + r 1q-Jl2 (V(w))2dS r~ (3.19) 
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The insertion of (3. 19) into (3.14), followed by an application of the arithmetic-geometric mean 
inequality, yields 

(3.20) 

A combination of (3.10) and (3 .20) thus gives us a bound for L w2dA in terms of the data of wand 

E(B ,B). We seek now a bound for E(B ,B) in terms of the data of w. 
From (2.17), it follow s as before that 

E(B, B) =1 (t1B)2dA + 2(1-CT) ( aw a2w dS - ( l [(aw)2 + (aw)2] dS. R )"2\ as asan )"2\ p as an 

Using the arithmetic· geometric mpan inequalitv we obtain for positive as 

As in the previous section we require a bound for L (t1B)2dA in terms of the data of w. 

desired bound was computed in appendix A and is given by (A.25), i.e., 

This inequality may be rewritten , using (3.12), as 

(3.21) 

(3.22) 

The 

(3.23) 

A combination of (3.10), (3.20), (3.22), and (3 .24) thus leads to the desired inequality, which 
is of the form 

(3.25) 

where the B/s are explicit constants. 
In many cases (3.25) may be simplified by exploiting some of the geometric properties of ~. 

For ins tance, whenever p is positive on ~d some quantities may be dropped from (3.21) or used to 
cancel other quantities . 

Pointwise bounds in this pro!: " m follow from the results of [2] and [3]. 

4. Problem III 
This problem is the most difficult of the three since for certain geometrical configurations 

it does not have a unique solution . Suppose, for instance, that the domain R lies in the right 
half plane and I I is a portion of the y-axis. In this case the plate may rotate as a rigid body 
about the y-axis. The solution will be unique only up to a rigid body rotation, a term of the form 
w = ax. Note, however, that if II is not a straight line then this rigid body motion is no longer 
possible. Because of the inherent difficulty in treating problem 3 we shall derive in this section 
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only an L2 bound for the e nergy integral E(w, w) in terms of the data of the problem. It is possible 
with such a bound, u sing the techniques of [2 , 3], to obtain pointwise bounds for any second deriva­
tive of w in terms of L 2 integrals of the data. In order to simplify the problem so mewha t, we assume 
that w vanishes with its first two tange ntial derivatives at P J and P 2• This means merely (as 
pointed out before) that we put certain restrictions on the approximating functions, and it amounts 
to six conditions on the arbitrary parameters in the application of the Rayleigh-Ritz tec hnique. 
With this restriction we decompose w as follows : 

where h satisfies 

Then 

w=h+w 

tlh=O in R 

h={ won!J 
o on ! 2' 

_ _ . [a2w 1 ah] w= O, M(UJ)=M(w) -(1- cr) -2+-- on!J 
as pan 

1- crah a3h 
M(w) = M(w)----a ,V(w)= V(w)+(1-cr)-2-on L2' 

p n as an 

Making use of the triangle inequality , we obtain from (4. 1) 

W e compute first a bound for E(h, h). 
Since h is harmonic it follows that 

E(h, h) = (1-cr) I nh, ij h, ijdA· 

But, as in (2. 17), we observe that 

=- 2 J [ah a2h +1: { (ah) 2 + (ah)2}] dS. 
}; an as2 p an as 

Applying the arithmetic-geome tri c mean inequality we obtain 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

If the region is convex, we could choose 0'9 = max p and drop the last two terms. If not, we may use 
the inequality (A.4) given in appendix A, i.e., 

Upon inserting (4.8) and (4.7) into (4.5), and us ing the boundary conditions on h, we arrive at the 
inequality 

(4.9) 

where bo, bJ and b2 are explicit. 
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In order to bound E(w, w), we decompose w as follows: 

w = B+<p (4.10) 
where 

M(B) = M(w) on I 

V(B) = { V(w) on I~ _ _ 
- V(h) + C I + C~x + Cay on }; (4.11) 

with G1, G2 , and Ga c hosen to insure existence of the function B. We indicate now how the Gi are 

to be determined. J J J 
Le t us choose the coordinate axes in such a way that xds = yds = xyds = O. Then, 

I, 1\ 1\ 

in order that (4.11) may have a solution, it is necessary that the following three equilibrium condi­
tions be satisfied: 

1. V(B)dS = J b..2BdA 11 R . 

Tl xV(B)dS - Tl nxM(B)dS = In xb..2BdA 

1. yV(B)dS-1. n!lM(B)dS = f yb..2BdA. (4.12) 11 11 II 

These three conditions are now used to determine GI, G2, and Ca. We note first that since h is 
harmonic 

Jl V(h)dS=O 

Jl xV(h)dS - Jl nxM(h)dS = 0 

J yV(h)dS-J nyM(h)dS=O. 
1 1 

Thus conditions (4.12) are equivalent to 

GJ1=f xb..2wdA+J nxM(w)dS-J xV(w)dS 
R 1 12 

GaI2 =f yb.. 2wdA +J nyM(w)dS -J yV(w)dS 
R 1 ~ 

where S I denotes the length of};1 and 

II =J x2dS, 
1\ 

Equations (4.14) thus determine the constants GI , G~, and G3 in terms of the data of problem III. 

(4.13) 

(4.14) 

(4.15) 

In determining the bound for E(w, w) of (4.4), we shall, according to (4.10), need a bound for 
E(B, B). We first indicate how E(B, B) is to be bounded in terms of the data of the problem. We 
presen t here a method which is applicable only if the domain R is simply connected_ The function 
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B is of course de termined only up to a rigid body motion, whic h we assume to be fixed by the 
conditions 

(4. 16) 

From the results of [3, e q (4.18)], if R is simply connected, it follows that 

( 217) 2J. B2dS + J. (aB)2 dS ~ 2 £(B, B) 
L J 1 J1 an Dji2(1- a) 

(4.17) 

wherep2 is de fine d in [3, eq (4.31)]. 
From the ide ntity 

(4 .18) 

we obtain, using the arithmetic-geometric mean inequality 

(4 .19) 

A repe tition of the inequality with B2 re placed by B, i8, i yields 

I 8 2dA ~ rAt J. B2dS + rtf J. I grad 8 1
2dS + r'~f I 8 , uB, ijdA . 

R J 1 J 1 II 
(4.20) 

Her e r M de notes the maximum value of r == ~ on~ . W e obse rved in the proof of (4.17) th a t 

J.l gradB I 2dS ';;: ~ I8'U8,ijdA. 
J 1 P2 /I 

(4.21) 

Thus from (4.20) and (4.21) we have 

I 8 2dA ,;;: JJ I 8, ijB, ijdA ,;;: 1 ~ £(B,8) 
If Ii a 

(4.22) 

where 

JJ = {rAt(2:)2 +'-;:1 } (J5z) - ) + r,~ · (4.23) 

By Green's identity 

£ (B, B)=j aaB M(w)dS-J BV(W)dS-j BV(B)dS+J B1l2wdA =J aB M(w)dS 
1 n 12 :1] R 1 an 

j aB j J . " J = -a M(w)dS- BV(w)dS- (C)+C2X+C3y)BdS+ BIl2wdA -£(8, h). 
1 n 12 1) R 

(4.24) 

It follows then from Schwarz's inequality that 

£(8, B) ~ {I1(~!r dS + CZr I/2dS f2 {If M(w)r dS + (2:r I 1(V(W)Y dS r'2 
+ {IRB2dA I } 1l2w)2dA f2 + { £(8, B) f2 { £ (h, h) f2. (4.25) 
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Here V(w) is defined as 

V(w) = {~(w) ~n '12_ 
C,+C t x+C3yon'1l. (4.26) 

From the definition of (;" (;2, and (;3 we observe that V(w) is data. Using (4.17) and (4.22) we 
obtain then 

{E(B, B)}'/2~ ~2( 1 ~a) [J~(M(w))2dS + (2~ rI~(V(w))2dS J}"2 

+ L ~ a In (/l2W)2dA r\ {E(h, h)}1 /2, (4.27) 

where the bound for the last term is given by (4.9). With (4.27) we now compute the bound for 
E(w, w). 

From (4.10) it follows that 

E(w, w)=E(B, B) + 2E(w, cp)-E(cp, cp) (4.28) 

where 

=0 (4.29) 

from (4.10) and (4.11). Thus 

E(w, w) ~ E(B, B). (4.30) 

Combining (4.4), (4.9), and (4.27) we now obtain (after an application of the arithmetic-geometric 
mean inequality) an inequality of the form 

which is the desired result. 

5. Appendix A 

In treating the problems discussed in sections 2, 3, and 4 we required bounds for certain 
integrals of derivatives of biharmonic functions in terms of their Dirichlet data. We derive the 
necessary inequalities here, the most important of which is (A.2S). 

Consider the following Dirichlet problem for R.-

/l2B=0 in R 

B aB . ~ 
, an gIven on 4 . 

Let us compute a bound for In (/lB)2dA in terms of the data of B. 

that a2B/as2 and a2B/asan are square integrable on '1 . 
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Let h be the harmonic function which is equal to B on the boundary. Then from Green's 
identity we have 

Using the arithmetic-geometric mean inequality we obtain, for any positive lXo, the inequality 

L (LlB)2dA ~ ~o Tl (LlB)2d5 + 2~oTl [aan (B- h)Yd5 

~ lXo 1 (LlB)2dS +.l [1 (aB)2 d5 + 1 (ah)2 d5J. (A.3) 
2 )l lXo )l an )l an 

In [10, 11] Payne and Weinberger have obtained the following inequality for the last integral 
in (A.3): 

(A.4) 

The constants bo and bJ are explicitly determined. We seek now a bound for the first integral on 
the right of (A.3). 

For an arbitrary sufficiently s mooth vec tor field It and an arbitrary harmonic function H we 
consider the following ide ntity: 

0 = J tt,(B - 8), h·Ll2BdA = 1 tt'(B - 8), k -a a (LlB)dS 
Il )l n 

-f 15, f (B - 8), .. LlB, Ids - J{ !f(B - 8), kILlB, IdA. (A.S) 
Il Il 

Integrating by parts further we obtain 

J ItLlB[n .. ~- ni _a ] (B - 8), kdS +! 1 !fn .. (LlB)2dS +J !f(B - 8), k a(LlB) d5 
~ ax' axk 2)l l: an 

+ f Ig, Lnk(B - 8), iLlBdS = fll {Llgi(B - 8), i + 2g, i,(B - 8), ik -~ g,jLlB }LlBdA . (A.6) 

S uppose now that a vector function gi with bounded second derivatives has been found suc h 
that 

gi= n j (A. 7) 

on l . It lEC:2 one possible vector field gi is.given in appendix B. With gi so chosen we take H 
to satisfy 

LlH=O in R 

aH = aB -5- 11 aB dS 
an an )l an (A.8) 

where 5 denotes the length of l. From (A.7) and (A.8) it follows that the third boundary integral 
on the left of (A.6) vanishes (since B is biharmonic). 

Since gi = ni on l, the first term in (A.6) becomes 

(A.9) 

while the fourth term on the left may be written as 

(A. 10) 
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Inserting (A.9) and (A.lO) into (A.6), and making use of (A.7) and (A.8), we obtain 

.! 1 (t:.B)2dS = 1 t:.B £ (B - H)dS + s-11 (t:.B)p - 1dS1 aB dS _1 at {~ (B - H) axi 
2 )1 )1 as2 )1)1 an )1 an as as 

+nS-111 ~~ dS }t:.BdS+ In t:.B{ t:.gi(B- H), i+ 2g:k (B- H)'ik-~ g,It:.B}dA. (A.ll) 

We assume now that gi and its second derivatives are uniformly bounded in R. Then by mak­
ing use of the arithmetic-geometric mean inequality we obtain for arbitrary positive constants ai 

C41 H) C51 +- (B-H),i(B- ,idA+- (B-H),;iB-H),ijdA. 
a5 R as R 

In (A.12) we have used the abbreviations 

C,=max -[M aXiJ2 
1 an as 

C2 =max !!15.:. ni [a i J2 
1 an 

C3 =max(g, 1)2 
R 

C4 =max[t:.git:.t)2 
R 

C5 = 4 maxlg, kg, U· 
R 

(A.12) 

(A.13) 

We need now bounds for iR (B - H), i(B - H), idA, iR (B - H), ;j(B - H), ijdA and L2 integrals 

over I of the first and second tangential derivatives of H, in terms of the data of B. We consider 

first iR (B-H), ij(B-H),ijdA. An integration by parts gives (see 2.17) 

J (B-H) oo(B-H) odA=21 a2(B-H)a(B-H)dS 
R ,IJ , IJ )1 asan as 

+ J (t:.B)2dA _1 .! [(B - H), i(B - H), ;]dS. 
R )1 P 

(A.14) 

The first term on the right vanishes in view of (A.8). Thus 

J (B - H),ij(B - H), ijdA = J (t:.B)2dA - s-21 1 dS(l aB dS)2 _1 .! [.i. (B - H)J2 dS 
R R)l P h an )1 p as 

(A.IS) 

where Cs is given by 

{
o if P ~ ° on I 

Cs = 1. . 
(- -) If P changes sIgn on I . 

p max (A.16) 
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In a recent paper [6] the authors obtained the following inequality: 

fR (B-ll),;(B -H), idA ~ C711 [aan (B - ll) TdS+ CSfR (!::.B)2dA 

~ C711 (~!) 2 dS + Cs fR (!::.B)2dA (A.17) 

with explicit constants C7 and Cs. The second inequality results from insertion of the boundary 
condition in (A.8) followed by an application of Schwarz's inequality. The insertion of (A. IS) and 
(A.17) into (A.12) then gives 

(A.IS) 

We now c hoose the cons tants aj in suc h a way that 

(A. 19) 

For simplicity we write (A. 18) as 

Yt { (!::.B)2dS ~ Yz 11 [:S22 (B -ll) rdS + Y3 1I (~~rdS 

+ Y4 { [aas (B -ll) TdS + Y5 { (!J.B)2dA. (A.20) 

We now insert (A.4) and (A.20) back into (A.3) to obtain 

(A.21) 

The constant ao may be taken as YI/Y5 which yieJds the inequality : 

i l 
{ (!J.B)2dA ~ Yz 11 [:S22 (B -ll) rdS + (Y3 + Y5) 11 (~!rdS 

+ Y4 1I [:s (B -ll) TdS + boys 11 B2dS + b l Y5 11 (~~rdS . (A.22) 

We need now to bound the tangential derivatives of H in terms of its normal derivatives. 
From the results of [10, 11] we have 

f (aH)2 - 1. (aH)2 - f r (aB)2 I as dS ~ C9fI ~ dS+C9 II H, B , idA ~ C9 JI an dS (A.23) 

with explicit constants (;9, [;9, and Cg. An inequality of type (A.17) has been used to obtain (A.23). 

f a2H We require finally a bound for -a.2 dS· 
I S 

89 



Since H is harmonic we obtain, on applying an inequality of Bramble and Hubbard [1], 

(A.24) 

with explicit constants C10 and ell (see Appendix C). A use of the arithmetic-geometric mean 
inequality in the first and third terms on the right of (A.22), together with (A.23) and (A.24), yields 
the inequality 

(A.2S) 

which was to be derived. 
It might be noted that the left hand side is unaffected by considering B instead of B, where 

B= B + ao + alx + a2Y' (A.26) 

In (A.26) the constants ai are determined by the conditions that 

t/dS= t/3,x.dS= tli,ydS=O (A.27) 

Then, as indicated in [3], it is possible, if R is simply connected, to replace (A.2S) by 

J (6.B)2dA ~ d5 1 as,; as,; dS = d5 1 aB,i aB,; dS . 
R )'2: as as ) L as as 

(A.28) 

6 . Appendix B. The Vector Field It 
We make the assumption that 2EC3 and consider the family of parallel surfaces to 2 in R 

given by N(x) = constant, with 2 defined by N(x) = O. The parallel surfaces need only be defined 
in the neighborhood of 2 and we shall be interested in the subdomain of R given by 0 ~ N(x) ~ K- I 
where K is a bound on the curvature of 2. The outward normal vector ni on the parallel surface 
is given by 

It is clear then that if we define gi as 

. = {(1- KN)2ni, 0 ~ N ~ K - I 
g' 0 otherwise 

7. Appendix C 

The inequality (A.24) follows from eq (2.6) of [1] by making use of [1, eq (2.2)] to prescribe the 
arbitrary vectors gi and symmetric tensors Aij. We sketch here briefly how the argument goes. 

For sufficiently smooth gi and Aij we have the following identity for any harmonic function H: 

J [2(g"'Aij), IH,jm-(g"'Aij), ",H,j[]H, ildA =1 g"'AijH, u(2H,jmn{-H,j{nm)dS. (C.l) 
II )'2: 
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Suppose gi and AU to be so c hose n that on? 

(C.2) 

If 2 is sufficiently smooth, we may choose gi as in appendix Band 

We now decompose the derivatives on the boundary into normal and tangential derivatives to 
obtain 

Inserting (e.3) back into (e.l), we have upon rearranging and dropping the last two terms 

1 (a2!£\2dS ,,;;;1 {(a2H)2_~aH a2H +l.(aH)2}dS+kJ H,ijH,ijdA, (e.4) 
Jl as2) J l asan p as asan p2 as R 

where k is easily dete rmi ned once gi and Aij are given. From (A.S) it follow s that 

(e.S) 

But from (4.16) 

J § a2B aH § 1 [(aH)2 (aH)2] H,ijH,ijdA =2 ---- dS - - - +- - dS. 
R l asan as l p an as 

If we now use the arithmetic-geometric mean inequality in the seco nd term on the right of (C.S) and 
the second term on the right of (e.6), we obtain an inequality of the form 

f (a2H) 2 - ~ (a2B)2 - f (aH)2 - f (aH)2 dS -2 dS ,,;;; K\ -- dS+K2 -a dS+K3 a . 
l as 1: asan l s l n 

(e.7) 

W e now use (A.23) and apply Schwarz's inequality to the last term on the right after insertion of the 
boundary condition. This leads to (A.24). 
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