
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

PERFORMANCE ANALYSIS OF ROS 2

NETWORKS USING VARIABLE QUALITY OF

SERVICE AND SECURITY CONSTRAINTS FOR

AUTONOMOUS SYSTEMS

Chen, Zhaolin

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/63441

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

PERFORMANCE ANALYSIS OF ROS 2 NETWORKS USING
VARIABLE QUALITY OF SERVICE AND SECURITY

CONSTRAINTS FOR AUTONOMOUS SYSTEMS

by

Zhaolin Chen

September 2019

Thesis Advisor: Preetha Thulasiraman
Second Reader: Brian S. Bingham

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2019 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
PERFORMANCE ANALYSIS OF ROS 2 NETWORKS USING VARIABLE
QUALITY OF SERVICE AND SECURITY CONSTRAINTS FOR
AUTONOMOUS SYSTEMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Zhaolin Chen

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 This thesis studies the network performance of the Robot Operating System (ROS) 2 when used in a
network of nodes similar to how a group of unmanned assets would operate. Specifically, this thesis
evaluates the impact of combining varying Quality of Service (QoS) and security settings in the ROS 2. It
also explores the effect that scaling to multiple nodes has on network performance. This is the first work to
comprehensively study ROS 2 network performance using QoS and security classification as a function of
scale and message size. Network performance metrics include latency and message drop rate between nodes.
Our research uniquely integrates ROS 2 with NS-3, developing a simulation architecture that is effective for
rapidly studying ROS 2 network performance. Our simulation results demonstrated the trade-offs in
choosing different QoS policies as well as the trade-offs in performance when security settings were
enabled. We found that enabling security resulted in a higher message drop rate across all QoS profiles. We
also found that scaling the network to more nodes resulted in various consequences with the use of different
QoS settings. Scaling up to more nodes in a network also resulted in an equivalent increase in the average
latency of messages. This work contributes to evaluating and configuring ROS 2 parameters for different
unmanned system use cases while providing a simulation framework on which tests can be run.

 14. SUBJECT TERMS
ROS2, Robot Operating System 2, NS3 network simulator, QOS, quality of service, network
performance

 15. NUMBER OF
PAGES
 87
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

PERFORMANCE ANALYSIS OF ROS 2 NETWORKS USING VARIABLE
QUALITY OF SERVICE AND SECURITY CONSTRAINTS FOR

AUTONOMOUS SYSTEMS

Zhaolin Chen
Major, Republic of Singapore Air Force

BEE, National University of Singapore, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2019

Approved by: Preetha Thulasiraman
 Advisor

 Brian S. Bingham
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This thesis studies the network performance of the Robot Operating System

(ROS) 2 when used in a network of nodes similar to how a group of unmanned assets

would operate. Specifically, this thesis evaluates the impact of combining varying

Quality of Service (QoS) and security settings in the ROS 2. It also explores the effect

that scaling to multiple nodes has on network performance. This is the first work to

comprehensively study ROS 2 network performance using QoS and security

classification as a function of scale and message size. Network performance metrics

include latency and message drop rate between nodes. Our research uniquely integrates

ROS 2 with NS-3, developing a simulation architecture that is effective for rapidly

studying ROS 2 network performance. Our simulation results demonstrated the trade-offs

in choosing different QoS policies as well as the trade-offs in performance when security

settings were enabled. We found that enabling security resulted in a higher message drop

rate across all QoS profiles. We also found that scaling the network to more nodes

resulted in various consequences with the use of different QoS settings. Scaling up to

more nodes in a network also resulted in an equivalent increase in the average latency of

messages. This work contributes to evaluating and configuring ROS 2 parameters for

different unmanned system use cases while providing a simulation framework on which

tests can be run.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. UNMANNED SYSTEMS ..1
B. ROBOT OPERATING SYSTEM AS A COMMON

FRAMEWORK ..2
C. THESIS CONTRIBUTION ..3
D. THESIS ORGANIZATION ..4

II. BACKGROUND AND RESEARCH WORK ...5
A. ROS 2 ARCHITECTURE ...5
B. ROS 2 QUALITY OF SERVICE SETTINGS ..6
C. SECURE ROS 2 ...8

1. DDS-Security ..8
2. ROS 2 Security Settings and Roadmap10
3. Performance ...10

III. EXPERIMENTAL DESIGN AND SETUP ...13
A. ROS 2 COMMUNICATIONS..13
B. SIMULATION ARCHITECTURE ...14
C. NS-3 SETTINGS ..16
D. DDS VENDOR ...17
E. QOS POLICIES IN ROS 2 ...18
F. SECURITY SETTINGS ..20

1. Authentication ..21
2. Access Control ..21
3. Cryptography ...21

G. CONFIGURING SECURITY SETTINGS IN ROS 222
H. SYSTEM SETUP ...24

IV. SIMULATION AND ANALYSIS OF RESULTS ...25
A. VALIDATION OF SECURITY SETTINGS ..25

1. Authentication ..25
2. Access Control ..26

B. EVALUATION METHODOLOGY FOR RESULTS26
1. Rate of Message Loss ...28
2. Latency ..28

C. NETWORK PERFORMANCE WITH DIFFERENT QOS
SETTINGS..28

viii

1. Message Loss Rate ...28
2. Latency ..32

D. SIMULATION RESULTS WITH SECURITY ON AND OFF34
E. IMPACT ON NETWORK SCALE ON PERFORMANCE41

1. Message Drop Rate ..41
2. Latency ..43

F. SUMMARY OF FINDINGS ...44

V. CONCLUSION ..45
A. SUMMARY ..45
B. FUTURE WORK ...45

1. Tuning of Additional QoS and Security Settings45
2. Use Case for a Swarm UxS Network ..46
3. Performance Testing through Actual Hardware46

APPENDIX A. SCRIPT TO GENERATE NAMESPACES47

APPENDIX B. ROS 2 PUBLISHER SCRIPT ..51

APPENDIX C. ROS 2 SUBSCRIBER SCRIPT ...57

APPENDIX D. NS-3 SIMULATOR SCRIPT ...65

LIST OF REFERENCES ..67

INITIAL DISTRIBUTION LIST ...69

ix

LIST OF FIGURES

Figure 1. ROS 2 architecture and DDS. Adapted from [7]. ..6

Figure 2. Interaction between application component, DDS, and security
plugins. Source: [10]. ...9

Figure 3. NS-3 network configuration for two nodes. Source: [17]..........................15

Figure 4. Simulation architecture showing simulation of five ROS 2 nodes16

Figure 5. Top down view of the position of Subscriber nodes relative to
Publisher node ..17

Figure 6. Wireshark capture of message sent in the clear ...22

Figure 7. Wireshark capture of message encrypted ..22

Figure 8. Commands to configure ROS 2 environment variables to enable
security ...23

Figure 9. Example of a security policy. Adapted from [19]......................................23

Figure 10. Error messages when the node fails to authenticate25

Figure 11. Screenshot of ROS 2 error when a node attempts to connect to an
unauthorized topic ..26

Figure 12. Rate of packet loss versus Distance (m) as simulated in NS-327

Figure 13. Message Loss Rate versus Distance for QoS profiles shipped with
ROS 2 ...29

Figure 14. Wireshark capture of packets sent from the Publisher node30

Figure 15. Comparison of Message Loss Rate when Depth = 1 and Depth = 10
for Default ..32

Figure 16. Latency of messages with different QoS profiles33

Figure 17. Latency of messages with different QoS profiles in a lossy network34

Figure 18. Message loss rate with security turned on and off using the Sensor
profile ...35

x

Figure 19. Message loss rate with security turned on and off using the Default
profile ...35

Figure 20. Message loss rate with security turned on and off using the
Parameters profile ..36

Figure 21. Wireshark capture showing size of messages with security turned off36

Figure 22. Wireshark capture showing size of messages with security turned on37

Figure 23. Latency of messages with the Sensor profile and with security turned
on and off (0-24 m) ..38

Figure 24. Latency of messages with the Default profile and with security
turned on and off (0-24 m) ...38

Figure 25. Latency of messages with the Parameter profile and with security
turned on and off (0-24 m) ...39

Figure 26. Latency of messages for the Sensor profile with security turned on
and off (beyond 24 m)..40

Figure 27. Latency of messages for the Default profile with security turned on
and off (beyond 24 m)..40

Figure 28. Message drop rates comparing two nodes and five nodes with the
Sensor profile ...42

Figure 29. Message drop rates comparing two nodes and five nodes with the
Default profile ..42

Figure 30. Wireshark capture of packets sent by Publisher node with five nodes
in the network and using the Default profile ...43

Figure 31. Wireshark capture of messages sent by Publisher43

xi

LIST OF TABLES

Table 1. List of DDS vendors supported by ROS. Adapted from [8].6

Table 2. Description of ROS 2 QoS policies ...7

Table 3. QoS policies for specific QoS profiles in ROS 218

Table 4. Summary of compatibility of QoS policies ...20

Table 5. Latency of Messages for each node in a one Subscriber network and
a four Subscriber network (nanoseconds) ..44

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programming Interface
CA Certificate Authority
DDS Data Distribution Service
DoD Department of Defense
EDP Endpoint Discovery Protocol
IDL Interface Definition Language
IPV4 Internet Protocol version 4
LTS Long Term Support
MAC Message Authentication
PDP Participant Discovery Protocol
QoS Quality of Service
RMW ROS Middleware
ROS Robot Operating System
RTI Real Time Innovations
RTPS Real-Time Publish-Subscribe
SPI Service Plugin Interfaces
SROS Secure Robot Operating System
TCP Transmission Control Protocol
UAV unmanned aerial vehicles
UDP User Datagram Protocol
UxS unmanned systems
VPN Virtual Private Network
XML Xtensible Markup Language

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

In the process of writing of this thesis, I have received much guidance and support

from many people. I would first like to thank my thesis advisor, Professor Preetha

Thulasiraman, whose expertise and guidance were invaluable in enabling me to

successfully complete this thesis.

To Professor Brian Bingham and Bruce Allen: the weekly meetings were especially

helpful in ensuring progress in this thesis. I started off not knowing what the Robotic

Operating System and NS-3 were, and to have conquered the learning curve necessary for

this thesis would not have been possible without the both of you.

Finally, I must express my profound gratitude to my wife, Kai Ling. Her support

and encouragement, especially in raising our children, Matthias and Ruth, were invaluable

throughout my year of study. This thesis would not have been possible without her.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. UNMANNED SYSTEMS

Unmanned aerial vehicles (UAV) were first used in a military application in 1849,

where unmanned balloons were used to attack the city of Venice, Italy. Modern-day

unmanned systems (UxS) gained prominence with the use of UAVs by the Israeli Air Force

in their victory over the Syrian Air Force [1]. Since then, the military application for UxS

has continued to grow in popularity, with UxS used in the air, surface, and subsurface

domains.

Advances in the technology of UxS have enabled their use in a growing variety of

military applications. One such advance is the development of mini and micro UxS. Their

small size makes them cheaper, easier to deploy, and able to access physical areas which

larger UxS cannot. The small size of these UxS also brings with them their own limitations.

These include a small payload size and a small communication range. These limitations

can be overcome through the use of swarming tactics, which allows the interaction between

all UxS entities to achieve a common goal. In [2], the author demonstrates multiple

situations where the limitations of UxS could be overcome through the use of swarm

tactics. An example of swarming tactics is the use of multiple micro UxS to conduct search

or reconnaissance of a single large area.

In [3], the authors explain how UxS are seen as game changers for the military in

the additional capabilities that this technology brings. Yet, the introduction of UxS

technology for both military and civilian applications has brought with it its own set of

challenges. The Unmanned System Integrated Roadmap (2017–2042) released by the U.S.

Department of Defense (DoD), listed interoperability and network security as critical UxS

needs [4]. Interoperability is described as allowing for interactions between systems and

allowing for information to be transmitted in a timely fashion between different users. A

common or open architecture is seen as a key enabler for interoperability. Network security

is described as being vital to protect the integrity, availability, and confidentiality of

information flow between UxS assets.

2

B. ROBOT OPERATING SYSTEM AS A COMMON FRAMEWORK

One of the difficulties in the development of any new robotics or UxS program lies

in the amount of resources required to establish the software infrastructure. Code has to be

written to interface and drive the hardware within the system being developed. This means

that across multiple programs, the software infrastructure has to be re-developed instead of

being reused. The use of a common software infrastructure would mitigate this wastage of

resources, as well as any interoperability issues.

The Robot Operating System (ROS) was developed as a framework that provided

the software infrastructure on which others could build their UxS. As a framework, ROS

provides a set of tools and libraries that simplify the task of creating a new robot. ROS is

now managed by Open Robotics as a free and open-source software. It has built up a large

set of tools supported by an equally large ROS community, which any developer can

utilize.

The second version of ROS, ROS 2, was initiated by the Open Source Robotics

Foundation, the predecessor of Open Robotics, to address the shortcomings of ROS 1 that

were identified by the industry. Deficiencies of ROS 1 include the fact that it is dependent

on a central node (roscore), which is seen as single point of failure for any UxS. ROS 1

was also built without cyber security in mind, and while there were attempts to secure the

software, it was concluded that a redevelopment of the framework from the ground-up

would be required to address cyber security concerns. ROS 2 was first released in 2015,

while the first version with long term support (LTS) was released in June 2019.

ROS-M is the militarized version of ROS and is built upon the ROS 2 framework.

ROS-M is meant to address the specific needs of military UxS. Similar to the purpose of

ROS, ROS-M seeks to reduce development cost by promoting code sharing and reuse. It

also seeks to meet security requirements of the military. In addition to the lower cost

associated with the use of a common platform, the use of ROS 2 would enable ROS-M to

tap into the existing work executed by many researchers and industry participants.

3

C. THESIS CONTRIBUTION

In this thesis, we assess the network performance of ROS 2 when used in a network

of nodes similar to how a group of UxS would operate. Given the recent introduction of

ROS 2, there have not been many studies of the network performance of ROS 2.

Information regarding network performance when different Quality of Service (QoS) and

security settings are enabled contributes to evaluating and configuring ROS 2 for different

UxS use cases.

For this thesis, simulations are performed using NS-3, which is a discrete-event

network simulator. Our tests focus on the effect of QoS network settings, security settings

and scalability, on network performance. Network performance is evaluated based on

message transmission latency and message loss rate.

The contributions of this thesis are:

• Development of a simulation framework that integrates NS-3 and ROS 2,

allowing for the network performance of multiple ROS 2 nodes to be

evaluated without the need for multiple hardware to host the ROS 2 nodes.

• Simulation and evaluation of the network performance with ROS 2 nodes

under varying QoS profiles.

• Simulation and evaluation of the network performance with ROS 2 nodes

with security settings turned on and off.

• Simulation and evaluation of the network performance of two ROS 2

nodes versus five ROS 2 nodes.

To the best of our knowledge, this is the first work that comprehensively studies

ROS 2 network performance using QoS and security classifications as a function of scale

and message size.

4

D. THESIS ORGANIZATION

The remainder of this thesis is organized as follows: In Chapter II, we provide an

overview of the ROS 2 architecture, as well as the available QoS and security settings. We

also study the related work on the network performance of ROS 2. In Chapter III, we

describe the simulation setup of how NS-3 is used to simulate the network between

multiple ROS 2 nodes. In addition, the chapter details the expected effect of each QoS and

security setting. In Chapter IV, we present the simulations results and discuss the

significant implications for each of the performance metrics studied. Finally, we draw

conclusions and propose recommendations for future work in Chapter V.

5

II. BACKGROUND AND RESEARCH WORK

A. ROS 2 ARCHITECTURE

ROS 1 was first developed to be used with the Willow Garage PR2 robot. The PR2

robot enabled the development team to showcase the capabilities of what ROS 1 could do.

This meant that development choices of ROS 1 were partly guided by the use case of the

PR2 robot as explained in [5]. This resulted in development decisions such as the use of a

central node as well as assuming that optimum network connectivity existed, given that all

nodes were physically on a single robot. Also, communication between nodes was not

secured from a cyber security perspective. The vulnerability of ROS 1 was shown in [6],

when the authors searched the entire Internet Protocol version 4 (IPV4) space of the

internet for ROS 1 instances that were exposed to the public. The authors were then able

to read data and control multiple ROS 1 nodes given the lack of security of the

communications.

ROS 2 addresses many of the shortcomings of ROS 1. One significant change is

the use of the Data Distribution Service (DDS) for communication between nodes in ROS

2. DDS is a middleware framework to address the need for real-time data exchange by

various applications. As part of the framework, messages are exchanged between nodes

using the Real-Time Publish-Subscribe (RTPS) protocol. The use of DDS means that ROS

2 is able to make use of features implemented by supported DDS vendors. The

implementation of QoS and security settings is handled within the DDS application. Users

do not have to change their code should there be any programming change in the DDS

layer as it would be taken care of by the ROS interface between the application and the

DDS layer. All ROS code would be agnostic to the DDS implementation, while all DDS

code would be agnostic to the ROS code, with the intra-process application programming

interface (API) handling the interface between the two. Figure 1 illustrates how the ROS

application layer works with the DDS middleware.

6

Figure 1. ROS 2 architecture and DDS. Adapted from [7].

ROS 2 currently supports three different DDS vendors as shown in Table 1. The

different DDS vendors are expected to be compatible, as they are implementations of the

same DDS framework. As such, each node in a network could be using a different DDS

vendor and still be able to communicate with the others.

Table 1. List of DDS vendors supported by ROS. Adapted from [8].

Product Name License Status
eProsima Fast RTPS Commercial, Research Full support available.
RTI Connext Commercial, Research Full support available. Needs to

be installed separately
ADLINK Opensplice Apache 2, Commercial Only partial support available.

Needs to be installed separately
OSRF FreeRTPS Apache 2 Only partial support available.

Development paused.

B. ROS 2 QUALITY OF SERVICE SETTINGS

ROS 1 originally made use of the Transmission Control Protocol (TCP) as its

transport protocol. TCP, however, is unsuitable for use in a lossy wireless network. ROS

2’s use of DDS makes it more suitable for use in a lossy network. DDS uses the RTPS

7

protocol, which was designed to run over an unreliable network, using the User Datagram

Protocol (UDP).

On top of the UDP layer, DDS allows for different QoS policies, providing the user

with control over the behavior of the network. These policies address four main aspects of

network performance: Real-time Delivery, Bandwidth, Redundancy, and Persistence.

Although DDS supports a multitude of QoS policies, as of the ROS 2 Dashing Diademata

release, ROS 2 only supports seven different policies. The policies are: History, Depth,

Reliability, Durability, Deadline, Lifespan, and Liveliness. The last three policies are

newly supported in the Dashing Diademata release, with the first three releases only

supporting the first four policies. Table 2 provides a description of each QoS policy

supported by ROS 2. This thesis focuses on the first four policies: History, Depth,

Reliability, and Durability.

Table 2. Description of ROS 2 QoS policies

QoS Policy Description
History There are two settings, “Keep last” and “Keep all.” History serves to

configure the number of messages that the Publisher or Subscriber will
keep in its cache.

Depth Size of the queue if “Keep last” is configured as the history setting.
Reliability There are two settings, “Reliable” and “Best effort.” The Reliable

setting helps ensure that all messages are delivered. Best effort
attempts to send each message only once.

Durability This policy determines whether the Publisher sends past messages to a
newly joined Subscriber.

Deadline Ensures that messages are sent or received within a specified duration.
Lifespan Determines the duration for which a message is valid.
Liveliness Configures the Publisher and the Subscriber to check that the

connection is still valid.

In [7], the authors compared the network performance of ROS 1 and ROS 2. The

authors showed that the use of DDS middleware did indeed help address the short-falls in

ROS 1. This included the fact that a user no longer had to launch a Subscriber node before

the Publisher node, as the Durability QoS policy in DDS ensured that the Publisher still

receives messages published before it was launched. ROS 2, however, showed large

8

latency increases when the message size was increased. This was attributed to the fact that

RTPS was designed for lightweight communication. As such, messages were divided into

small packet sizes, with a corresponding increase in overhead when the message size was

large.

In [9], the authors measured the latency for messages using three different DDS

vendor implementations. There were minimal differences among each implementation,

with all three implementations demonstrating similar impact on network performance

depending on the QoS policies used.

The work in this thesis extends the existing research by exploring the impact of

varying QoS profiles within a lossy network. We also explore the specific impact that

different QoS policies have on network performance. Given the similarities in DDS

implementation, eProsima Fast RTPS was used for our simulations, as it’s the default

middleware chosen by ROS2.

C. SECURE ROS 2

DDS security features are made available for use with ROS 2 through a set of tools

named Secure ROS 2 (SROS 2). Through SROS 2, ROS 2 as the application layer checks

for security settings in the application layer and executes the appropriate security plugins

in the middleware layer.

1. DDS-Security

Figure 2 depicts how the ROS 2 application, DDS middleware and security plugins

interact with one another.

9

Figure 2. Interaction between application component, DDS, and security
plugins. Source: [10].

DDS-Security is a set of specifications that expands on the original DDS and

includes a set of Service Plugin Interfaces (SPI). SPIs implement the security model as

defined or required by the user [10]. As of the Dashing Diademata version, ROS 2 makes

use of only three SPIs. The three SPIs are:

• Authentication: Verification of the identity of the Publisher/Subscriber

nodes.

• Access Control: Enforces to which topics the authenticated nodes can

publish or subscribe.

• Cryptography: Implementation of cryptographic operations. DDS has

separate SPIs that perform encryption, signing as well as hashing.

A user can choose to use one of the SPIs or all of them as part of the security model

desired.

10

2. ROS 2 Security Settings and Roadmap

The security features in DDS-Security are only accessible to the user in ROS 2 via

SROS 2. SROS 2 currently does not allow the user to define the SPIs used by the DDS.

The settings available to the user are limited to the following:

• A global setting to apply security to all nodes in the network. The setting

would apply authentication, access control, and encryption to

communications between all nodes.

• Controlling access of each specific node through authentication and access

control.

• Allowing the user to control whether the security settings are to be

enforced. If the settings are not to be enforced, security would only be

applied when the related security files are found. If security needs to be

enforced, the node would not be initiated when the security files cannot be

found.

The roadmap for ROS 2 development includes plans to allow the user to have finer

control over the security settings in the future [11]. This includes the ability to define the

SPIs that are used for cryptography (allowing the user to perform only signing, for

example). Control over the type of SPIs used will allow a user to understand the appropriate

trade-offs between performance and security requirements. ROS 2 also currently stores the

security keys in file storage, with the roadmap planning to improve the means of key

generation and storage.

3. Performance

At the ROSCON 2018 conference, authors from the DDS vendor Real Time

Innovations (RTI) presented the results from the study that they did on the impact of

network performance at the DDS layer itself [12]. The study made use of RTI Connext

DDS and explored the impact that turning on security settings had on latency and

throughput. Simulations were performed using eight different message sizes (32 Bytes, 256

Bytes, 2 Kbytes, 16 Kbytes, 128 Kbytes, and 1 Mbytes) and four security settings (No

11

security, Sign message, Sign message + Encryption, Sign message + Encryption + Origin

Authentication). Results showed that using sign message, encryption, and origin

authentication, similar to what is used for ROS 2, caused a 25%–41% overhead in terms of

latency. It also resulted in an overhead of 1%–32% in terms of throughput. There was also

no noticeable difference in impact when scalability was taken into consideration, with

simulations run on one, two, and four Subscribers.

In [13], the authors conducted experiments with ROS 2 to examine the overhead

incurred when security was enabled. When performed using two nodes in a single computer

with a lossless network, having security enabled incurred an overhead of 32% in

throughput and 37% in latency. The authors also presented the results from running the

experiments performed using two computers with a lossy wireless network and QoS profile

set as Reliable. The authors found that the overhead increased linearly as a function of

message size.

In [14], the authors compared the impact on performance of using SROS 2 versus

using a Virtual Private Network (VPN) to secure communications between two nodes. The

authors noted that the overhead for SROS 2 was significantly higher than that of a VPN in

terms of latency. A VPN also had a minimal impact on throughput, while SROS 2 caused

a significant decrease in throughput. Hardware constraints, however, could limit the use of

a VPN. Most VPN protocols also do not inherently support multicast features, which makes

it difficult to implement in a swarm network if each node needed to communicate with the

others.

Existing work focuses on the impact of SROS 2 on network performance between

two nodes. The work in this thesis extends this to exploring the network performance when

scaled up to more nodes, with varying QoS profiles and with SROS 2.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. EXPERIMENTAL DESIGN AND SETUP

In this chapter, we describe the simulation architecture used to evaluate the network

performance of ROS 2. The architecture allows for the simulations to be carried out with

different network settings like antenna and transmit power, as well as QoS and security

settings, as required.

A. ROS 2 COMMUNICATIONS

ROS 1 utilizes a Publisher/Subscriber architecture to pass messages between nodes.

Nodes register with a ROS master through which the nodes can discover other nodes.

Depending on the topic that the nodes are subscribed to, they then establish communications

with the relevant nodes that are subscribed to the same topics.

ROS 2 utilizes a similar Publisher/Subscriber architecture, but without a ROS master.

Instead ROS 2 makes use of DDS as its messaging layer. To do so, the ROS Middleware

(RMW) in ROS 2 translates ROS messages into Interface Definition Language (IDL) messages

that are supported by all DDS vendor implementations. To establish communications between

nodes, the DDS framework provides for a set of discovery services, which enable nodes that

subscribe to the same topic to dynamically discover one another. When a ROS node is

initialized, it broadcasts its presence to all nodes on the same domain by using the Participant

Discovery Protocol (PDP). Nodes then respond to this broadcast with their own data, including

the type of QoS settings that they are using, via the Endpoint Discovery Protocol (EDP).

Connections are then made between nodes if they are compatible in settings. Nodes also

continue to periodically send out messages about their own data in order to allow for discovery

by nodes that are newly created.

Each DDS participant consists of a data reader and a data writer. The data reader and

data writer are responsible for subscribing to the relevant topics and to read and write messages

to other participants as necessary. DDS then makes use of the RTPS protocol to send messages

on multicast and best-effort transports such as UDP [15]. QoS profiles are used to configure

how the messages are sent and ensure that messages can still be sent in a reliable manner over

the RTPS protocol if needed.

14

B. SIMULATION ARCHITECTURE

The intent of the simulations is to evaluate the network performance of ROS 2 with

different QoS and security settings. Different simulations are performed with a varying number

of ROS 2 nodes in order to evaluate the impact of network performance when the number of

ROS 2 nodes is scaled up. Studies involving ROS 2 network performance have previously

involved either communications through a network loopback, or two separate computers

connected by a wired or wireless network, as described in Chapter II.

The use of a simulator allows the performance of ROS 2 on a wireless network to be

studied without requiring a corresponding hardware. This allows us to study the impact of

multiple ROS 2 nodes running in the same network. Our simulations utilize NS-3 to simulate

a lossy wireless network between the ROS 2 nodes. NS-3 is a discrete-event network simulator

that supports the use of different simulation models, allowing it to be used as a real-time

network emulator [16]. An example of how virtual hosts can be used to simulate a virtual Wi-

Fi network is shown in Figure 3.

15

Figure 3. NS-3 network configuration for two nodes. Source: [17].

Our simulation architecture makes use of network namespaces to virtualize the

network stack. Each network namespace creates its own network stack for processes within

each unique network namespace, including its own network interfaces. For our simulations,

a Wi-Fi network interface is created for each individual network namespace. Each ROS 2

node is then executed within its own network namespace, with NS-3 simulating a Wi-Fi

network connecting each ROS 2 node. Figure 4 depicts how five ROS 2 nodes within their

own network namespace communicate with each other via the simulated NS-3 Wi-Fi. The

instructions and script to initialize each network namespace is provided in the appendices.

16

Figure 4. Simulation architecture showing simulation of five ROS 2 nodes

C. NS-3 SETTINGS

NS-3 allows for simulations of different Wi-Fi models. The models used as well as

the settings such as antenna strength and throughput can be changed as required. For our

simulations, we used the following settings:

• Wi-Fi standard: 802.11a

• Type of network: Ad-hoc

• Data mode: Constant rate OFDM 54 Mbps

• Mobility Model: Constant Position

The remaining settings were the default values provided by NS-3.

17

In NS-3, nodes are positioned using a 2D Cartesian coordinate system. Using the

constant position model, the NS-3 simulator starts with nodes at a distance x from a central

node. Figure 5 depicts how four ROS 2 Subscriber nodes are positioned around the central

node, which contains the ROS 2 Publisher node. The simulation is run for two minutes,

during which the data for the network performance is collected. After collection of the

required data, the simulation is re-started with a new distance. Through multiple iterations

of this process, network performance at different distances is measured. This provides data

regarding network performance of ROS 2 in a lossy network for analysis. Although the

position of the four Subscriber nodes does not affect network performance for the

simulations in this thesis, the 2D Cartesian coordinate system allows for nodes to be

appropriately positioned as required in future simulations.

Figure 5. Top down view of the position of Subscriber nodes relative to
Publisher node

D. DDS VENDOR

As described in Chapter II, DDS is a middleware framework that has been

implemented by multiple vendors. Table 1 lists the different vendor implementations

currently supported by ROS. The choice of RMW implementation is left to the user and

Publisher
(0 , 0)

Subscriber
(0 , x)

Subscriber
(x , 0)

Subscriber
(0 , -x)

Subscriber
(-x , 0)

18

can be made based on considerations such as license, platform availability, or an

implementation that was designed to be targeted at a specific platform. Otherwise, the

choice of DDS is considered agnostic to the running of ROS 2. The RMW used by ROS

can be switched by changing the RMW_IMPLEMENTATION environment variable. For

our experiments, we made use of eProsima Fast RTPS, an open-source DDS

implementation. For the purpose of the simulations, only DDS settings, which can be

accessed via the ROS 2 application layer, are used as variables.

E. QOS POLICIES IN ROS 2

QoS policies allow communication to occur in a reliable manner over a lossy

wireless network even though messages are transmitted over the UDP transport layer. The

policies can be applied specifically to each ROS node. This allows each node to be

configured flexibly to meet requirements, depending on the type of network that is being

used. A QoS profile is made up of different QoS policies. ROS 2 defines four default

profiles: Default, Sensors, Parameters, and Services, defined with four policies each. If

required, however, ROS 2 also allows specific policies in each QoS profile to be amended

as necessary. Table 3 lists the details of the QoS policies used in the QoS profiles defined

within ROS 2. The Services profile has the same policies as the Default profile, and thus

is not specifically tested for in this thesis.

Table 3. QoS policies for specific QoS profiles in ROS 2

QoS profile History Depth Reliability Durability
Default KEEP_LAST 10 RELIABLE VOLATILE
Sensors KEEP_LAST 5 BEST_EFFORT VOLATILE
Parameters KEEP_ALL 1000 RELIABLE VOLATILE
Services KEEP_LAST 10 RELIABLE VOLATILE

The QoS policies of Reliability, History, and Depth are used together to determine

the overall reliability with which messages are sent between nodes. These policies affect

the reliability of delivery of messages sent from Publisher to Subscriber nodes, especially

in a lossy network.

19

The Reliability policy affects the level of reliability enforced by DDS in delivering

messages to Subscribers. Within the Reliability policy, there are two sub-policies:

RELIABLE and BEST_EFFORT. If the RELIABLE policy is used, the Publisher waits for

an acknowledgment from the Subscriber after each message. If an acknowledgment is not

received, the original message is re-transmitted by the Publisher until the Subscriber

receives the message. If a BEST_EFFORT policy is used, the Publisher does not listen for

any acknowledgment message, and transmits new messages as required.

History controls whether messages are stored in the cache of the data writer or the

data reader of a node. Within the History policy, there are two sub-policies: KEEP_LAST

and KEEP_ALL. If a KEEP_ALL policy is used, all messages transmitted by a node are

stored in the cache of the data writer, up to the system resource limit. If a KEEP_LAST

policy is used, then the DEPTH parameter is used to determine the number of messages

that are kept in the cache

After nodes discover each other as part of the PDP, they exchange data about each

other as part of the EDP. This data includes the index of the messages stored in the cache

of the data writer and reader. Publisher nodes and Subscriber nodes compare the messages

stored in their data writer and reader respectively, and the messages that are in the writer

cache but not the reader cache are transmitted over the network. If a RELIABLE policy is

used, this comparison of the writer and reader caches is performed as part of each message

acknowledgment. If a BEST_EFFORT policy is used, this comparison is only done during

EDP as part of discovery. Subsequently, only the latest message will be sent.

Durability policies control what to do with nodes that join the network late.

Durability has two sub-policies: TRANSIENT_LOCAL and VOLATILE. If the

TRANSIENT_LOCAL policy is used, all messages stored in the cache of the data writer

are sent over to the Subscriber. If the VOLATILE policy is used, data is not stored in the

cache, and is not sent to any nodes that join the network later. In the case of our simulations,

the Durability policies are not changed between simulations as all nodes are initialized and

join the network together. Nevertheless, the policies are included as part of the QoS profiles

that are shipped with ROS 2.

20

Before ROS 2 nodes are able to communicate, their QoS policies need to be

compatible. With regards to the Durability policy, both Publisher and Subscriber need to

be TRANSIENT_LOCAL before messages can be sent using the TRANSIENT_LOCAL

policy. If a Subscriber is using a VOLATILE policy, both Subscriber and Publisher need

to communicate using a VOLATILE policy, regardless of the policy used by the

Subscriber. Similarly, for the Reliability policy, both Publisher and Subscriber need to be

RELIABLE before messages can be sent using the RELIABLE policy. If a Subscriber is

using a BEST_EFFORT policy, both Subscriber and Publisher communicate using a

BEST_EFFORT policy, regardless of the policy used by the Subscriber. Table 4

summarizes the compatibility of the QoS policies.

Table 4. Summary of compatibility of QoS policies

Policy Publisher Subscriber Result

Durability

VOLATILE VOLATILE VOLATILE
VOLATILE TRANSIENT_LOCAL Not compatible
TRANSIENT_LOCAL VOLATILE VOLATILE
TRANSIENT_LOCAL TRANSIENT_LOCAL TRANSIENT_LOCAL

Reliability

BEST_EFFORT BEST_EFFORT BEST_EFFORT
BEST_EFFORT RELIABLE Not compatible
RELIABLE BEST_EFFORT BEST_EFFORT
RELIABLE RELIABLE RELIABLE

F. SECURITY SETTINGS

SROS 2 makes use of three DDS-security SPIs, namely Authentication, Access

Control and Cryptography. The DDS-security specifications provide compliance points

associated with the implementation of the SPIs by vendors. Each vendor implements the

specifications using plugins, which can be replaced by the user if so desired. However, all

plugins must conform to the DDS-security specifications [10]. DDS-security provides the

option of choosing which security plugins to use, including allowing configuration of

which parts of the RTPS messages need to be encrypted. SROS 2, however, currently

mandates the use of all three SPIs, without providing for finer control over the security

21

plugins that are used. A user can only either turn on all three SPIs on (turn security on), or

not have any security at all (turn security off).

The following paragraphs elaborate on the security plugins provided by the Fast-

RTPS DDS that is shipped by default with ROS 2. Nonetheless, the implementation of the

SPIs is similar to other DDS vendors. By default, security support is not compiled for Fast-

RTPS, and must be activated by adding “-DSECURITY=ON” when compiling Fast-RTPS.

1. Authentication

The authentication plugin allows for mutual authentication between discovered

nodes. After initial discovery, authentication must be completed before information can be

exchanged between nodes. A trusted Certificate Authority (CA) is used as part of the

authentication process. The Elliptic Curve Digital Signature Algorithm is used to generate

the public key [18]. The Elliptic Curve Diffie-Hellman Key Agreement Method is then

used to derive a shared key between both nodes.

2. Access Control

After a node is authenticated, validation of its permission is performed. Permissions

for each node are configured through the use of two XML documents in the filesystem:

governance.p7s and permissions.p7s. Both documents must be signed by the trusted CA

using a X.509 certificate. The governance document provides control over how access

control is enforced, while the permissions document expresses the type of access granted

to each type of node for each specific topic.

3. Cryptography

The cryptography plugin used by Fast-RTPS provides authenticated encryption

using Advanced Encryption Standard in Galois Counter Mode [18]. Message

authentication is provided through message authentication codes (MACs) using Galois

MAC. In Figure 6, a Wireshark capture of a message being sent in the clear is shown, while

Figure 7 illustrates the Wireshark capture of the same message being encrypted.

22

Figure 6. Wireshark capture of message sent in the clear

Figure 7. Wireshark capture of message encrypted

G. CONFIGURING SECURITY SETTINGS IN ROS 2

Security in ROS 2 can be turned on and off by configuring the ROS 2 environment

variables. Figure 8 shows the environment variables that need to be configured.

ROS_SECURITY_ROOT_DIRECTORY states the location where all security policies

and keys are stored. ROS_SECURITY_ENABLE toggles whether security is turned on or

off. If ROS_SECURITY_STRATEGY is set to Enforced, the node checks to ensure that

the security keys are present. If it is not set as enforced, it allows the node to fall back to

no security when the security keys are absent.

23

Figure 8. Commands to configure ROS 2 environment variables to enable
security

The “ros2 security create_permission” command is used to generate relevant

security XML files expected by the DDS-security. A sample security policy file used to

generate the relevant security XML keys is shown in Figure 9. The security policy allows

for configuration of which nodes have access to which specific topics. In the Dashing

Diademata release, keys are simply stored in the filesystem, with the ROS 2 roadmap

promising to address key storage security [4]. Manually attempting to amend the security

XML files to get finer control over the security settings used by the DDS would result in

errors in the ROS 2 application.

Figure 9. Example of a security policy. Adapted from [19].

24

H. SYSTEM SETUP

Simulations were performed on a single computer. The computer used for the

simulations had the following hardware:

• Processor: Intel(R) Core (TM) i7-8700K CPU @ 4.60GHz (6 cores)

• Memory: 32 GB DDR4

• OS: Ubuntu 18.04

• ROS 2.0 version: Dashing Diademata Patch Release 1

• NS-3 version: NS-3.29

25

IV. SIMULATION AND ANALYSIS OF RESULTS

In this chapter, we discuss the results obtained from performing simulations using

different QoS policies and with the security setting switched on or off. We also discuss the

difference in network performance between having two and five ROS 2 nodes, in order to

evaluate the impact of node scaling on the network performance.

A. VALIDATION OF SECURITY SETTINGS

In [20], the author demonstrated that the redesign of ROS 2 would enable it to be

effective against rogue nodes and message spoofing. We modify the security certificates to

verify that the security settings correctly protect against rogue nodes.

1. Authentication

Figure 10 depicts two scenarios in which a ROS 2 node fails to correctly

authenticate itself, and the error messages that ROS 2 produces. The first scenario

demonstrates how the node fails to initialize when no security certificate matches to the

node. The second scenario demonstrates how the node fails the security initialization when

the security keys are amended manually. This simulates a rogue node with a fake

certificate.

Figure 10. Error messages when the node fails to authenticate

26

2. Access Control

Access to specific keys is dictated by an XML file used to create the security keys

for the nodes. The XML file specifies the list of topics that each node has access to, either

as a Publisher or as a Subscriber. Figure 11 shows the error given by ROS 2 when the node

is attempting to access a node that it is not authorized to access. This results in the node

failing to initialize.

Figure 11. Screenshot of ROS 2 error when a node attempts to connect to an
unauthorized topic

B. EVALUATION METHODOLOGY FOR RESULTS

In order to observe whether NS-3 correctly simulates packet loss in a wireless

network, we performed a simulation using NS-3 without ROS 2. Packet sizes of 60 bytes

were sent between two nodes in NS-3. Figure 12 illustrates the average percentage of

packet loss at different distances for an 802.11a ad-hoc network. The results indicate that

packet loss begins to increase at the 25 meter mark.

27

Figure 12. Rate of packet loss versus Distance (m) as simulated in NS-3

Next, sets of simulations were carried out, each with a specific QoS profile and

security setting. Each set consisted of a series of simulation runs in which the nodes were

placed at different distances from one another. With different distances, the wireless

network has a different simulated packet drop rate, which affects the message transmissions

in ROS 2.

For each simulation run, ROS 2 messages were published by a single Publisher

node at a frequency of 2 Hz. Each simulation ran until either 200 messages were received

by the Subscriber nodes or a time-out error was reached. Each message was 45 bytes long

and consisted of a generic “Hello World!” string. A counter and time stamp were also

appended to the message. For each run, the rate of message loss and the average latency

incurred by each message was recorded.

28

1. Rate of Message Loss

The rate of message loss is defined as the ratio of messages received by the

Subscriber to the total messages that the Subscriber was supposed to receive. Each

published message is stamped with a counter indicating the index of the message. Based

on the counter in the message, the Subscriber node determines whether any message was

not properly received. The Subscriber then compares the counter of the message received

to that of the last message received. If the counter is not in running sequence, the Subscriber

is able to determine the number of messages that were lost.

2. Latency

Latency is defined as the delay between the time that a specific message is

published by a Publisher and the time that it is read by the Subscriber. Each message

includes the system time of when the message was prepared. When the Subscriber receives

a message, it compares the current system time with the system time included in the

message. In this way, the measured latency includes the delay incurred by RMW to

translate the message, the delay incurred by the DDS middleware to process each message

packet, as well as the actual network propagation delay.

C. NETWORK PERFORMANCE WITH DIFFERENT QOS SETTINGS

We used the ROS 2 QoS profiles shown in Table 3 as a baseline to measure network

performance. We ran additional simulations with QoS policies set at custom values in order

to measure the specific impact of changing the settings of that specific QoS policy.

Simulations were initially performed with one Publisher and one Subscriber node.

1. Message Loss Rate

The message loss rates for the three QoS profiles shipped with ROS 2 are shown in

Figure 13. With a Sensor profile, the message loss rate starts to increase gradually as the

distance between nodes is increased. This is to be expected as the Sensor profile utilizes a

Best_Effort policy. As the distance between nodes increases, the rate of packet loss

increases, similar to what is shown in Figure 12. Thus, the chance of a message being

dropped increases as well.

29

Figure 13. Message Loss Rate versus Distance for QoS profiles shipped with
ROS 2

The Default profile has a Depth = 10 (see Table 3). The Default profile produced a

lower message drop rate until 25.7m, as compared to using the Sensor profile. The Default

profile utilizes a Reliable policy, which resends the messages if the Publisher does not

receive an acknowledgment message from the Subscriber. Figure 14 shows the Wireshark

capture of messages sent to and from the Publisher node. The Publisher regularly sends a

heartbeat message to the Subscriber to check that the Subscriber is still connected to the

network. The Subscriber then sends an acknowledgment message, either in the reply to the

original message sent, or as a reply to the heartbeat message. The acknowledgment

message includes a list of messages that have not been received by the Subscriber. The

Publisher then immediately sends out these messages again, as long as the messages are

still available in the writer cache.

30

Figure 14. Wireshark capture of packets sent from the Publisher node

Yet, because the Publisher retransmits all the missing messages in a single packet,

the message loss rate becomes larger than that experienced by the Sensor profile when the

distance between nodes is larger than 25.7m. As seen in the highlighted row of Figure 14,

the acknowledgment message in packet number 183 indicates that eight out of the past ten

messages were not received. These eight messages were then retransmitted together in the

next message, resulting in a packet size of 1006 bytes (shown in Figure 14). This is much

larger than if only a single message was sent. In a lossy network, the larger packet size

results in a higher chance of packet loss. As such, the retransmission of messages was too

large to be successfully transmitted to the Subscriber node.

With retransmission of messages usually not being successful after 25.7 m, the

Default profile has a higher message drop rate than the Sensor profile. This is due to the

Default profile transmitting the heartbeat message together with the message data in a

31

single packet. This results in packets that are much larger than if the Sensor profile was

used. The overall effect is a higher message drop rate using the Default profile.

The Parameter profile has a History policy of Keep_All and a Depth policy of 1000.

As such, the packets that are sent are very large, as it would include both the current

message as well as all past messages. In this situation, either the Subscriber receives all the

messages or all the messages are dropped. It performs slightly better than the Sensor profile

for a small set of distances (24.8 m–25.3 m), as the Subscriber can still retrieve any dropped

messages from subsequent message deliveries. When the network gets more lossy with

increased distance, however, none of the messages manage to be delivered; the packet drop

rate for such a large packet size was very high.

In our next experiment, the Depth of the Default profile is changed to one, and the

results of the simulations are compared to that of the original Default profile (Depth = 10).

The results are shown in Figure 15. With Depth = 1, the network performs similarly to that

of the Sensor profile, with only a slightly higher message loss rate. This is due to the fact

that with a Depth policy of only one, the Subscriber is unable to retransmit most of the

dropped messages, and thus initially exhibits a higher message drop rate. Since the packet

sizes are smaller due to the smaller depth size, even with greater distance, more packets are

delivered as compared to the profile with a large Depth (Depth = 10).

Although the message drop rate of the Default profile with a Depth of one is similar

to that of the Sensor profile, it is overall slightly higher. This is because the packet sizes

sent using the Default profile are higher than that of Sensor profile, due to the inclusion of

the heartbeat message.

32

Figure 15. Comparison of Message Loss Rate when Depth = 1 and Depth = 10
for Default

2. Latency

The simulation results that measure the impact of the QoS profiles on latency are

plotted on two separate graphs. The first graph plots the latency for distances from 0 to 24

m, while the second graph examines the latency from 24 m and beyond. As seen in Figure

12, given a packet size of 60 bytes, packet loss occurs starting at 25 m. As such, in order

to review the impact that the QoS profiles have on a lossless network, we first evaluate the

latency from 0 to 24 m for the different QoS profiles. We also separately look at the results

between 24 and 26 m to review the impact QoS profiles have in a lossy wireless network.

The latency of the messages when the QoS profiles from Table 3 are used is shown

in Figure 16. As distance is increased, the latency increases as well, due to the impact of

propagation delay. The Sensor profile demonstrated the least latency, with the Default and

Parameters profiles exhibiting a much higher latency. This higher latency is attributable to

processing time by the RMW, which translates the messages from ROS 2 to IDL messages

transmitted by the DDS middleware.

33

Figure 16. Latency of messages with different QoS profiles

We next compare the impact of the Default profile versus the Sensor profile on

latency. The results are shown in Figure 17. As the distance increases, the network

experiences increasing packet loss. Accordingly, the latency for messages with the Default

profile increases significantly. This is due to the time incurred from the retransmission of

messages not received by the Subscriber node. This can take multiple retransmissions in a

lossy environment, with the Subscriber node receiving the message much later than when

it was originally sent by the Publisher node.

There is no significant trend for using the Parameters profile, as all messages are

dropped from distances 25.2 m and beyond (as was shown in Figure 13).

34

Figure 17. Latency of messages with different QoS profiles in a lossy network

D. SIMULATION RESULTS WITH SECURITY ON AND OFF

We next study the performance of ROS 2 when security is turned off or on. The

results shown in Figures 18–20 depict the message loss rates for the QoS profiles from

Table 3 with security turned on and off. Simulations were performed with one Publisher

and one Subscriber node. It can be seen that for all profiles (Sensor, Default and

Parameters), messages are dropped at a shorter distance when security is turned on as

compared to when security is turned off. Wireshark captures of the transmitted packets

using the Default profile, as shown in Figure 21 and Figure 22, illustrate the overhead

incurred when security is turned off or on, respectively. The packet size when security is

turned off is 170 bytes versus 330 bytes when security is turned on. The larger the packet

size, the more likely the message is to be dropped.

35

Figure 18. Message loss rate with security turned on and off using the Sensor
profile

Figure 19. Message loss rate with security turned on and off using the Default
profile

36

Figure 20. Message loss rate with security turned on and off using the
Parameters profile

Figure 21. Wireshark capture showing size of messages with security turned off

37

Figure 22. Wireshark capture showing size of messages with security turned on

In Figure 24 to Figure 26, we show the latency of the messages using the QoS

profiles from Table 3 and when security is turned on and off. In Figure 21, it can be seen

that from 0 to 24 m, the Sensor profile incurs an average of 19% overhead. The Default

profile incurs an average 60% overhead for that same distance (Figure 24) while the

Parameter profile incurs an average of 32% overhead for that same distance (Figure 25).

There is a higher overhead incurred for the Default profile because the packet size is larger,

and therefore, the process to encrypt the packet is more time consuming. The overhead

incurred is also dependent on the processing power used to encrypt the messages.

38

Figure 23. Latency of messages with the Sensor profile and with security turned
on and off (0-24 m)

Figure 24. Latency of messages with the Default profile and with security turned
on and off (0-24 m)

39

Figure 25. Latency of messages with the Parameter profile and with security
turned on and off (0-24 m)

Figure 26 and Figure 27 show the impact on latency with security turned on and off

for the Sensor profile and the Default profile in a lossy network, respectively. Latency

increases for both profiles when security is turned on. In Figure 26, it can be seen that from

24 m, the latency starts to increase immediately with security turned on, as compared to

24.5 m with security turned off. Using the Default profile, latency starts to increase at 24.7

m with security turned on as compared to 25.2 m with security turned off, as shown in

Figure 27. In order to achieve a comparable latency with security turned on for both

profiles, the distance between nodes must be decreased by 0.5 m. For example, to achieve

a latency of 4000 ms, the distance between nodes can go up to 25.7 m with security turned

off. With security turned on, however, the distance between nodes can only go up to 25.2

m to achieve a latency of 4000 ms.

40

Figure 26. Latency of messages for the Sensor profile with security turned on
and off (beyond 24 m)

Figure 27. Latency of messages for the Default profile with security turned on
and off (beyond 24 m)

0

500

1000

1500

2000

2500

3000

3500

4000

24
24

.1
24

.2
24

.3
24

.4
24

.5
24

.6
24

.7
24

.8
24

.9 25
25

.1
25

.2
25

.3
25

.4
25

.5
25

.6
25

.7
25

.8
25

.9 26

La
te

nc
y

(µ
s)

Distance (m)

Sensor - No Security

41

E. IMPACT ON NETWORK SCALE ON PERFORMANCE

In this section, we compare the network performance of ROS 2 when the number

of nodes in our simulations is increased to five.

1. Message Drop Rate

Figure 28 compares the message drop rates using the Sensor profile when the

network has two nodes (one Publisher and one Subscriber) and five nodes (one Publisher

and four Subscribers). The results show that as long as the network has sufficient

bandwidth, the message drop rate is not affected when scaling up to more nodes when using

the Sensor profile. Nevertheless, there is a difference when the Default profile is used.

Figure 29 shows that five nodes have a lower message drop rate with the Default profile

than when the network has only two nodes with the Default profile. When the network has

only two nodes, the Publisher node sends out all unreceived messages in a single packet,

as was shown in Figure 14. In Figure 30, the Wireshark capture for the Default profile with

five nodes is shown. As seen in Figure 30, after the Publisher receives an acknowledgment

message that the Subscriber has not received multiple messages, it sends out those

messages in individual packets in sequence. This results in the Publisher resending dropped

messages in smaller packets. These smaller packets are less likely to be dropped as

compared to the large packets sent by the Publisher when there are only two nodes in the

network.

42

Figure 28. Message drop rates comparing two nodes and five nodes with the
Sensor profile

Figure 29. Message drop rates comparing two nodes and five nodes with the
Default profile

43

Figure 30. Wireshark capture of packets sent by Publisher node with five nodes
in the network and using the Default profile

2. Latency

ROS 2 transmits each message sequentially to each individual node. This means

that for a single message with four Subscribers, the same message is transmitted four times.

This is depicted in the Wireshark capture shown in Figure 31. These sequential

transmissions result in a significant increase in latency as more nodes are added to the

network. Table 5 shows the latency experienced by each node in a five-node network that

has one Publisher and four Subscribers as compared to the latency in a two-node network

with only one Subscriber.

Figure 31. Wireshark capture of messages sent by Publisher

44

Table 5. Latency of Messages for each node in a one Subscriber network
and a four Subscriber network (nanoseconds)

QoS
profile

Two-node
network

Five-node network

One
Subscriber

Node 1 Node 2 Node 3 Node 4

Sensor 614 292 684 854 10 645 701 20 617 056 30 396 675
Default 639 480 712 332 10 706 034 20 725 019 30 793 318

Parameters 647 597 716 007 10 724 211 20 734 675 31 384 246

F. SUMMARY OF FINDINGS

The simulation results demonstrated that the integration of NS-3 as a simulation

platform for ROS 2 is useful and an effective way to rapidly test network performance. The

different QoS profiles affect the network performance in distinctive ways. The results from

the various simulations demonstrated the trade-offs in network performance when using

different QoS profiles. The Sensor profile delivers messages as quickly as possible, with a

minimal impact on latency. It also outperforms the Default profile in terms of message

drop rate in a network of high wireless loss. The Parameter profile has a large depth to

cater to situations where the Subscriber node is repeatedly unable to reach the Publisher

node. This results in a larger latency compared to the other profiles. In addition, the

percentage of messages delivered is either 100% or 0% and would be not be suitable for

all occasions.

There was also significant overhead when security settings were turned on. Using

the Default profile, it incurred a 60% increase in latency, with the overhead likely to be

much higher if performed using a slower processor. The overhead from having security

turned on also meant a higher message drop rate across all QoS profiles.

Scaling up the number of nodes in the network to five nodes from two nodes

resulted in varying consequences with the use of different QoS settings. Of significance is

the increase in latency when the Default profile is used. It is likely that in a swarm network

with 30–50 unmanned assets, a Reliable QoS policy cannot be used at all as the latency

incurred would be too high.

45

V. CONCLUSION

A. SUMMARY

In this thesis, we proposed and validated a simulation architecture to study the

network performance of ROS 2 using varying QoS profiles and security settings. The

integration of ROS 2 with the NS-3 network simulator is unique to this thesis, and it was

shown that the simulation architecture is effective for rapidly studying ROS 2 network

performance.

Using the Default profile allows messages to be delivered in a reliable manner.

Nonetheless, this comes at a cost of increased latency as compared to using the Sensor

profile. The Sensor profile delivers messages as quickly as possible, with a minimal impact

on latency. It also outperforms the Default profile in terms of message drop rate in a

network of high packet losses.

Turning on the security features results in significant overhead in terms of latency,

while producing a much higher message drop rate. In addition, scaling up the network to

five nodes resulted in a significant increase in latency, with messages sent sequentially. On

the other hand, it did result in an unexpectedly better performance in terms of message drop

rate when the Default profile was used. As ROS 2 continues to evolve, the network

performance of ROS 2 in a swarm network needs to be addressed, as it is not viable to scale

up the number of nodes to a significant swarm due to the existing impact on latency.

B. FUTURE WORK

The work in this thesis contributes towards evaluating and configuring ROS 2

parameters for different unmanned system use cases, while providing a simulation

framework on which tests can be run. Additional research would contribute towards the

evaluations of the network performance of ROS 2.

1. Tuning of Additional QoS and Security Settings

There are many DDS settings that can affect ROS 2 network performance. Most of

these settings are not available to the user for fine-tuning in the current ROS 2 Dashing

46

Diademata version. For example, DDS allows for specific security plugins to be turned on

or off individually, but ROS 2 only allows security settings to be turned on or off entirely.

As these setting controls are exposed in the future through ROS 2, additional work would

have to be performed to evaluate their impact on network performance.

2. Use Case for a Swarm UxS Network

This thesis demonstrated the trade-offs in network performance incurred by

different QoS and security settings. It would be useful to formulate a use case in a swarm

UxS network using the appropriate QoS settings and validate the network performance

through the simulation architecture.

3. Performance Testing through Actual Hardware

Simulations through the use of NS-3 allowed us to rapidly test and prototype

networks of different settings. It would still be important to test out the network

performance using actual hardware. A typical UxS would not have the processing power

used in the simulations of this thesis. This will have an impact on the network performance

with different QoS and security settings and will need to be validated.

47

APPENDIX A. SCRIPT TO GENERATE NAMESPACES

The following script is used to generate five different namespaces.

#!/usr/bin/env python3

calculate IP values given index
def _ip_from_index(i):
 if i < 1 or i > pow(2,20)//3:
 raise Exception(“bad”)

 # wifi IP values are contiguous starting at 1
 j=(i-1)*3+1
 k=(i-1)*3+2
 l=(i-1)*3+3
 wifi_veth = “10.%d.%d.%d/9”%(j//65536, (j//256)%256, j%256)
 wifi_vethb = “10.%d.%d.%d/9”%(k//65536, (k//256)%256, k%256)
 wifi_tap = “10.%d.%d.%d/9”%(l//65536, (l//256)%256, l%256)

 # direct IP values are triplets step 8 starting at 1
 j=(i-1)*8+1
 k=(i-1)*8+2
 l=(i-1)*8+3
 direct_br = “10.%d.%d.%d/29”%(128+j//65536, (j//256)%256, j%256)
 direct_vethn = “10.%d.%d.%d/29”%(128+k//65536, (k//256)%256, k%256)
 direct_default = “10.%d.%d.%d”%(128+l//65536, (l//256)%256, l%256)

 return wifi_veth, wifi_vethb, wifi_tap, \
 direct_br, direct_vethn, direct_default

create tap device: ip tuntap add tap1 mode tap; ip link set dev tap1 up

from argparse import ArgumentParser
import subprocess
import sys

def _run_cmd(cmd):
 print(“Command: %s”%cmd)
 subprocess.run(cmd.split(), stdout=subprocess.PIPE).stdout.decode(‘utf-8’)

def do_setup_nns(i):

 # network namespace

48

 _run_cmd(“ip netns add nns%d”%i)

 # enable loopback - helps Ctrl-C activate on first rather than second
 _run_cmd(“ip netns exec nns%d ip link set dev lo up”%i)

def do_setup_wifi(i):

 wifi_veth, wifi_vethb, wifi_tap, direct_br, direct_vethn, direct_default = \
 _ip_from_index(i)

 # create veth pair
 _run_cmd(“ip link add wifi_veth%d type veth peer name wifi_vethb%d”%(
 i,i))
 _run_cmd(“ip address add %s dev wifi_vethb%d”%(wifi_vethb,i))

 # associate wifi_veth with nns
 _run_cmd(“ip link set wifi_veth%d netns nns%d”%(i,i))

 # set wifi_veth IP at nns
 _run_cmd(“ip netns exec nns%d ip addr add %s “
 “ dev wifi_veth%d”%(i, wifi_veth, i))

 # create bridge
 _run_cmd(“ip link add name wifi_br%d type bridge”%i)

 # bring up bridge and veth pair
 _run_cmd(“ip link set wifi_br%d up”%i)
 _run_cmd(“ip link set wifi_vethb%d up”%i)
 _run_cmd(“ip netns exec nns%d ip link set wifi_veth%d up”%(i,i))

 # add wifi_vethb to bridge
 _run_cmd(“ip link set wifi_vethb%d master wifi_br%d”%(i,i))

 # create tap device
 _run_cmd(“ip tuntap add wifi_tap%d mode tap”%i)
 _run_cmd(“ip addr flush dev wifi_tap%d”%i) # clear IP
 _run_cmd(“ip address add %s dev wifi_tap%d”%(wifi_tap, i))
 _run_cmd(“ip link set wifi_tap%d up”%i)

 # add tap to bridge
 _run_cmd(“ip link set wifi_tap%d master wifi_br%d”%(i,i))

def do_setup_direct(i):

 wifi_veth, wifi_vethb, wifi_tap, direct_br, direct_vethn, direct_default = \

49

 _ip_from_index(i)

 # direct bridge
 _run_cmd(“ip link add direct_br%d type bridge”%i)

 # direct veth pair
 _run_cmd(“ip link add direct_veth%d type veth peer name direct_vethn%d”%(
 i,i))

 # veth to bridge
 _run_cmd(“ip link set direct_veth%d up”%i)
 _run_cmd(“ip link set direct_veth%d master direct_br%d”%(i,i))

 # bridge IP
 _run_cmd(“ip address add %s dev direct_br%d “%(direct_br,i))

 # veth to nns
 _run_cmd(“ip link set direct_vethn%d netns nns%d”%(i,i))
 _run_cmd(“ip netns exec nns%d ip addr add %s “
 “dev direct_vethn%d”%(i,direct_vethn,i))
 _run_cmd(“ip netns exec nns%d ip link set direct_vethn%d up”%(i,i))
 _run_cmd(“ip netns exec nns%d ip route add default via %s”%(i,direct_default))

 # bridge up
 _run_cmd(“ip link set direct_br%d up”%i)

def do_teardown_wifi(i):
 # wifi
 _run_cmd(“ip link set wifi_br%d down”%i)
 _run_cmd(“ip link set wifi_tap%d down”%i)
 _run_cmd(“ip link set wifi_vethb%d down”%i)
 _run_cmd(“ip link delete wifi_vethb%d”%i)
 _run_cmd(“ip link delete wifi_tap%d”%i)
 _run_cmd(“ip link delete wifi_br%d type bridge”%i)

def do_teardown_direct(i):
 # direct
 _run_cmd(“ip link set direct_br%d down”%i)
 _run_cmd(“ip link delete direct_br%d”%i)
 _run_cmd(“ip link set direct_veth%d down”%i)
 _run_cmd(“ip link delete direct_veth%d”%i)

def do_teardown_nns(i):
 # network namespace

50

 _run_cmd(“ip netns del nns%d”%i)

if __name__==“__main__”:
 DEFAULT_COUNT=5
 parser = ArgumentParser(prog=‘lxc_setup.py’,
 description=“Manage containers used with ns-3.”)
 parser.add_argument(“command,” type=str, help=“The command to execute.”,
 choices=[“setup,” “teardown”])
 parser.add_argument(“-c,” “--count,” type=int, default=DEFAULT_COUNT,
 help=“The number of network namespaces to set up for, “
 “default %d.”%DEFAULT_COUNT)
 parser.add_argument(“-d,” “--include_direct,” action=“store_true”,
 help=“Suppress direct connection setup”)
 args = parser.parse_args()

 print(“Providing ‘%s’ services for %d network namespaces...”%(
 args.command, args.count))

 if args.command == “setup”:
 for i in range(1,args.count+1):
 do_setup_nns(i)
 do_setup_wifi(i)
 if args.include_direct:
 do_setup_direct(i)
 elif args.command == “teardown”:
 for i in range(1,args.count+1):
 do_teardown_wifi(i)
 if args.include_direct:
 do_teardown_direct(i)
 do_teardown_nns(i)
 else:
 print(“Invalid command: %s”%args.command)
 sys.exit(1)

 print(“Done providing ‘%s’ services for %d network namespaces.”%(
 args.command, args.count))

51

APPENDIX B. ROS 2 PUBLISHER SCRIPT

The following script is used to generate the ROS 2 Publisher node. The script

accepts arguments that allow you to specify the QoS policies to be used.

#include <chrono>
#include <cstdio>
#include <memory>
#include <string>
#include “rcl/time.h”
#include “rclcpp/rclcpp.hpp”
#include “rcutils/cmdline_parser.h”
#include “std_msgs/msg/string.hpp”

using namespace std::chrono_literals;

class Talker: public rclcpp::Node {
public: explicit Talker(const std::string & topic_name,
 const std::string & zlvarmsg,
 const std::int16_t & qos1,
 const std::size_t & qos2,
 const std::int16_t & qos3,
 const std::int16_t & qos4,
 const std::int16_t & zlcount): Node(“talker”) {
 msg_ = std::make_shared < std_msgs::msg::String > ();

 // Create a function for when messages are to be sent.
 auto publish_message = [&]() - > void {

 auto now = std::chrono::high_resolution_clock::now();
 auto now_ns = std::chrono::time_point_cast < std::chrono::nanoseconds > (now);
 auto value = now_ns.time_since_epoch();

52

 long duration = value.count();

 msg_ - > data = “Hi!” + zlvarmsg + “ : “ + std::to_string(count_++) + “ % “ +
 std::to_string(duration);

 RCLCPP_INFO(this - > get_logger(), “Publishing: ‘%s’,” msg_ - > data.c_str());

 pub_ - > publish(msg_);

 if (count_ == zlcount) {
 rclcpp::shutdown();
 }

 };

 auto var1 = RMW_QOS_POLICY_HISTORY_KEEP_LAST;;
 auto var3 = RMW_QOS_POLICY_RELIABILITY_RELIABLE;
 auto var4 = RMW_QOS_POLICY_DURABILITY_VOLATILE;

 if (qos1 == 2) {
 var1 = RMW_QOS_POLICY_HISTORY_KEEP_ALL;
 }
 if (qos3 == 2) {
 var3 = RMW_QOS_POLICY_RELIABILITY_BEST_EFFORT;
 }
 if (qos4 == 2) {
 var4 = RMW_QOS_POLICY_DURABILITY_TRANSIENT_LOCAL;
 }

 rmw_qos_profile_t custom_qos_profile = {
 var1,

53

 qos2,
 var3,
 var4,
 false
 };

 pub_ = this - > create_publisher < std_msgs::msg::String > (topic_name,
 custom_qos_profile);

 // Use a timer to schedule periodic message publishing.
 timer_ = this - > create_wall_timer(500 ms, publish_message);
}

private: size_t count_ = 1;
std::shared_ptr < std_msgs::msg::String > msg_;
rclcpp::Publisher < std_msgs::msg::String > ::SharedPtr pub_;
rclcpp::TimerBase::SharedPtr timer_;
};

int main(int argc, char * argv []) {
setvbuf(stdout, NULL, _IONBF, BUFSIZ);

if (rcutils_cli_option_exist(argv, argv + argc, “-h”)) {
 print_usage();
 return 0;
}

rclcpp::init(argc, argv);

// Parse the command line options.
auto topic = std::string(“chatter”);

54

char * cli_option = rcutils_cli_get_option(argv, argv + argc, “-t”);
if (nullptr != cli_option) {
 topic = std::string(cli_option);
}

auto msg_string = std::string(“ Hello World! “);
char * zl_string = rcutils_cli_get_option(argv, argv + argc, “-s”);
if (nullptr != zl_string) {
 msg_string = std::string(zl_string);
}

std::int16_t zqos1 = 1;
char * qos_choice1 = rcutils_cli_get_option(argv, argv + argc, “-q1”);
if (nullptr != qos_choice1) {
 zqos1 = std::atoi(qos_choice1);
}

std::size_t zqos2 = 10;
char * qos_choice2 = rcutils_cli_get_option(argv, argv + argc, “-q2”);
if (nullptr != qos_choice2) {
 zqos2 = std::atoi(qos_choice2);
}

std::int16_t zqos3 = 1;
char * qos_choice3 = rcutils_cli_get_option(argv, argv + argc, “-q3”);
if (nullptr != qos_choice3) {
 zqos3 = std::atoi(qos_choice3);
}

std::int16_t zqos4 = 1;
char * qos_choice4 = rcutils_cli_get_option(argv, argv + argc, “-q4”);

55

if (nullptr != qos_choice4) {
 zqos4 = std::atoi(qos_choice4);
}

std::int16_t zzlcount = 15;
char * cou = rcutils_cli_get_option(argv, argv + argc, “-c”);
if (nullptr != cou) {
 zzlcount = std::atoi(cou);
}

auto node = std::make_shared < Talker > (topic, msg_string, zqos1, zqos2, zqos3,
 zqos4, zzlcount);

rclcpp::spin(node);

rclcpp::shutdown();
return 0;
}

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX C. ROS 2 SUBSCRIBER SCRIPT

The following script is used to generate the ROS 2 Subscriber node. The script

accepts arguments that allow you to specify the QoS policies to be used.

#include <cstdio>
#include <memory>
#include <string>
#include <iostream>
#include <fstream>
#include “rclcpp/rclcpp.hpp”
#include “rcutils/cmdline_parser.h”
#include “std_msgs/msg/string.hpp”

class ListenerBestEffort : public rclcpp::Node {
public:
 ListenerBestEffort(const std::int16_t& qos1, const std::size_t& qos2, const
std::int16_t& qos3, const std::int16_t& qos4, const std::int16_t& distance, const
std::int16_t& duration_time)
 : Node(“listener”)
 {

 auto callback =

 [&](const typename std_msgs::msg::String::SharedPtr msg) -> void {

 int totalpacket = 30; //number of initial packet to ignore
 long time;

 counter++;

 if (counter == 1) {
 auto initial = std::chrono::high_resolution_clock::now();

58

 }

 //get time
 auto now = std::chrono::high_resolution_clock::now();
 auto now_ns = std::chrono::time_point_cast<std::chrono::nanoseconds>(now);
 auto value = now_ns.time_since_epoch();
 long duration = value.count();

 if (counter > 1) {
 std::chrono::duration<double, std::micro> Elapsed = now - initial;
 auto zlabc=((duration_time)*1000000)-1000000;

 if (Elapsed.count() >= zlabc) {

 using namespace std;
 if(lostpacket<0) { rclcpp::shutdown();
 }
 ofstream myfile(“result.txt,” std::ios_base::app);
 if (myfile.is_open()) {
 myfile << qos1 << “,”;
 myfile << qos2 << “,”;
 myfile << qos3 << “,”;
 myfile << qos4 << “,”;
 myfile << distance << “,”;
 myfile << lostpacket << “,”;
 myfile << receivedpacket << “,”;
 myfile << totallatency / receivedpacket << “,”;
 myfile << packetnumber << “,”;
 myfile << “\n”;
 myfile.close();
 }

59

 else {
 cout << “Unable to open file”; }

 rclcpp::shutdown();
 }
 }

 std::string zlstr = msg->data; //copies the data in C++ format

 packetnumber = std::stoi(zlstr.substr(zlstr.find(“:”) + 2));
 time = std::stol(zlstr.substr(zlstr.find(“%”) + 2));

 if (packetnumber >= totalpacket) {
 if (lastpacket == 0) {lastpacket=packetnumber-1;}
 totallatency = totallatency + (duration - time);
 RCLCPP_INFO(this->get_logger(), “I heard: [%s],” msg->data.c_str());

 if (packetnumber - lastpacket != 1) {
 lostpacket = lostpacket + (packetnumber - lastpacket - 1);
 }
 lastpacket = packetnumber;

 RCLCPP_INFO(this->get_logger(), “[lost / received] : [%d/%d] packets,”
lostpacket, receivedpacket);

 receivedpacket++;
 }
 else {
 lostpacket = 0;
 }

60

 if(lostpacket<0) { rclcpp::shutdown();
 }

 };

 auto var1 = RMW_QOS_POLICY_HISTORY_KEEP_LAST;
 ;
 //auto var2=10;
 auto var3 = RMW_QOS_POLICY_RELIABILITY_RELIABLE;
 auto var4 = RMW_QOS_POLICY_DURABILITY_VOLATILE;

 if (qos1 == 2) {
 var1 = RMW_QOS_POLICY_HISTORY_KEEP_ALL;
 }
 if (qos3 == 2) {
 var3 = RMW_QOS_POLICY_RELIABILITY_BEST_EFFORT;
 }
 if (qos4 == 2) {
 var4 = RMW_QOS_POLICY_DURABILITY_TRANSIENT_LOCAL;
 }

 rmw_qos_profile_t custom_qos_profile = {
 var1, qos2, var3, var4,
 false
 };

 sub_ = create_subscription<std_msgs::msg::String>(
 “chatter,” callback, custom_qos_profile);
 }

61

private:
 size_t counter = 0;
 long totallatency = 0;
 int receivedpacket = 1;
 int lostpacket = 0;
 int packetnumber = 1;
 int lastpacket = 0;
 std::chrono::time_point<std::chrono::system_clock> initial =
std::chrono::high_resolution_clock::now();
 rclcpp::Subscription<std_msgs::msg::String>::SharedPtr sub_;
};

int main(int argc, char* argv [])
{
 // Force flush of the stdout buffer.
 setvbuf(stdout, NULL, _IONBF, BUFSIZ);

 rclcpp::init(argc, argv);

 std::int16_t zqos1 = 1;
 char* qos_choice1 = rcutils_cli_get_option(argv, argv + argc, “-q1”);
 if (nullptr != qos_choice1) {
 zqos1 = std::atoi(qos_choice1);
 }

 std::size_t zqos2 = 10;
 char* qos_choice2 = rcutils_cli_get_option(argv, argv + argc, “-q2”);
 if (nullptr != qos_choice2) {
 zqos2 = std::atoi(qos_choice2);
 }

 std::int16_t zqos3 = 1;

62

 char* qos_choice3 = rcutils_cli_get_option(argv, argv + argc, “-q3”);
 if (nullptr != qos_choice3) {
 zqos3 = std::atoi(qos_choice3);
 }

 std::int16_t zqos4 = 1;
 char* qos_choice4 = rcutils_cli_get_option(argv, argv + argc, “-q4”);
 if (nullptr != qos_choice4) {
 zqos4 = std::atoi(qos_choice4);
 }

 std::int16_t zzlcount = 15;
 char* cou = rcutils_cli_get_option(argv, argv + argc, “-c”);
 if (nullptr != cou) {
 zzlcount = std::atoi(cou);
 }

 std::int16_t distance = 1;
 char* dis = rcutils_cli_get_option(argv, argv + argc, “-d”);
 if (nullptr != dis) {
 distance = std::atoi(dis);
 }

 std::int16_t time = 30;
 char* ztime = rcutils_cli_get_option(argv, argv + argc, “-t”);
 if (nullptr != ztime) {
 time = std::atoi(ztime);
 }
 auto Start = std::chrono::high_resolution_clock::now();
 auto node = std::make_shared<ListenerBestEffort>(zqos1, zqos2, zqos3, zqos4,
distance, time);

63

 while (1) {
 auto End = std::chrono::high_resolution_clock::now();
 std::chrono::duration<double, std::milli> Elapsed = End - Start;

 rclcpp::spin_some(node);

 if (Elapsed.count() >= ((time) * 1000) + 10000) {
 break;
 }
 }
 return 0;
}

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

APPENDIX D. NS-3 SIMULATOR SCRIPT

The following script is used to generate the simulated Wi-Fi network within NS-3.

#include <iostream>
#include <fstream>

#include “ns3/core-module.h”
#include “ns3/network-module.h”
#include “ns3/mobility-module.h”
#include “ns3/wifi-module.h”
#include “ns3/tap-bridge-module.h”

// network devices, do not exceed COUNT in nns_setup.py
static const int COUNT=5;

using namespace ns3;

NS_LOG_COMPONENT_DEFINE (“LxcNs3Wifi”);

int
main (int argc, char *argv [])
{
double distance = 1.0;
int zltime = 60;

CommandLine cmd;
 cmd.AddValue (“distance,” “Distance apart to place nodes (in meters).”,
 distance);
 cmd.AddValue (“time,” “time to run experiment (in seconds).”,
 zltime);
cmd.Parse (argc, argv);
distance=distance/10;
std::cout << “Providing ns-3 Wifi network emulation for “ << COUNT << “ devices\
n”;
std::cout << “Distance: “ << distance << “ \n”;
std::cout << “Time: “ << zltime << “ \n”;

GlobalValue::Bind (“SimulatorImplementationType,” StringValue
(“ns3::RealtimeSimulatorImpl”));
GlobalValue::Bind (“ChecksumEnabled,” BooleanValue (true));

NodeContainer nodes;
nodes.Create (COUNT);

66

WifiHelper wifi;
wifi.SetStandard (WIFI_PHY_STANDARD_80211a);
wifi.SetRemoteStationManager (“ns3::ConstantRateWifiManager,” “DataMode,”
StringValue (“OfdmRate54Mbps”));

WifiMacHelper wifiMac;
wifiMac.SetType (“ns3::AdhocWifiMac”);

YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());

NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, nodes);

MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
for (int i=0; i<COUNT; i++) {
 positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (distance, 0.0, 0.0));
positionAlloc->Add (Vector (-distance, 0.0, 0.0));
positionAlloc->Add (Vector (0.0, distance, 0.0));
positionAlloc->Add (Vector (0.0, -distance, 0.0));
}
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel (“ns3::ConstantPositionMobilityModel”);
mobility.Install (nodes);

TapBridgeHelper tapBridge;
tapBridge.SetAttribute (“Mode,” StringValue (“UseLocal”));
char buffer [10];
for (int i=0; i<COUNT; i++) {
 sprintf(buffer, “wifi_tap%d,” i+1);
 tapBridge.SetAttribute (“DeviceName,” StringValue(buffer));
 tapBridge.Install (nodes.Get(i), devices.Get(i));
}

 Simulator::Stop (Seconds (zltime));
 Simulator::Run ();
 Simulator::Destroy ();
}

67

LIST OF REFERENCES

[1] S. O’Donnell, “A short history of unmanned aerial vehicles,” Media Centre Blog,
Jun. 16, 2017. [Online]. Available: https://consortiq.com/media-centre/blog/short-
history-unmanned-aerial-vehicles-uavs

[2] B. T. Clough, “UAV swarming? So what are those swarms, what are the
implications, and how do we handle them?,” Air Force Research Laboratory,
Wright-Patterson Air Force Base, Ohio, AFRL-VA-WP-TP-2002-308, 2002

[3] S. Brimley, B. FitzGerald, K. Sayler, and P. W. Singer, “Game changers:
Disruptive technology and U.S. Defense strategy,” Center for a New American
Security, Sep. 27, 2013. [Online]. Available: http://www.cnas.org/files/
documents/publications/CNAS_Gamechangers_BrimleyFitzGeraldSayler_0.pdf

[4] Department of Defense, “Unmanned systems integrated roadmap: 2017–2042,”
Defense Daily. [Online]. Available: https://www.defensedaily.com/wp-content/
uploads/post_attachment/206477.pdf

[5] ROS 2, “Why ROS 2?” Accessed Jul. 24, 2019. [Online]. Available:
https://design.ros2.org/articles/why_ros2.html.

[6] N. DeMarinis, S. Tellex, V. Kemerlis, G. Konidaris, and R. Fonseca, “Scanning
the internet for ROS: A view of security in robotics research,” Jul. 23, 2018.
[Online]. Available: arXiv:1808.03322 [cs]

[7] Y. Maruyama, S. Kato, T. Azumi, “Exploring the performance of ROS2,” in
EMSOFT ‘16 Proc. of the 13th Int. Conf. on Embedded Softw., Article no. 5. Oct.
2016. [Online]. DOI: http://dx.doi.org/10.1145/2968478.2968502

[8] ROS, “ROS 2 and different DDS/RTPS vendors.” Accessed Aug. 08, 2019.
[Online]. Available: https://index.ros.org/doc/ros2/Concepts/DDS-and-ROS-
middleware-implementations/

[9] C.S.V. Gutierrez, L.U. San Juan, I.Z. Ugarte, V.M. Vilches, “Towards a
distributed and real-time framework for robots: Evaluation for ROS 2.0
communications for real-time robotic applications,” Sep. 7, 2019. [Online].
Available: arXiv:1809.02595v1 [cs.RO]

[10] Object Management Group, “DDS security version 1.1,” Jul. 2018. [Online].
Available: https://www.omg.org/spec/DDS-SECURITY/1.1

[11] ROS, “Roadmap.” Accessed Jul. 25, 2019 [Online]. Available:
https://index.ros.org/doc/ros2/Roadmap

68

[12] G. Pardo, R. White, “Leveraging DDS security in ROS2,” presented at ROSCon,
Madrid, Sep. 29, 2018. [Online]. Available: https://roscon.ros.org/2018
/presentations/ROSCon2018_DDS_Security_in_ROS2.pdf

[13] V. DiLuoffo, W. R. Michalson, B. Sunar, “Robot operating system 2: The need
for a holistic security approach to robotic architectures,” Int. J. Adv. Robot. Sys.,
May 3, 2018. [Online]. DOI: 10.1177/1729881418770011.

[14] J. Kim, J.M. Smeraka, C. Cheung, S. Nepal, M. Grobler, “Security and
performance considerations in ROS 2: A balancing act,” Sep. 24, 2018. [Online].
Available: arXiv:1809.09566v1 [cs.CR]

[15] Object Management Group, “The real-time publish-subscribe protocol (RTPS)
DDS interoperability wire protocol specification Version 2.2,” Sep. 2014.
[Online]. Available: https://www.omg.org/spec/DDSI-RTPS/2.2

[16] NSNAM, “About NSNAM.” Accessed Jul. 28, 2019. [Online]. Available:
https://www.nsnam.org/about/

[17] NSNAM, “ns-3: src/tap-bridge/examples/tap-wifi-virtual-machine.cc Source
File.” Accessed Jul. 28, 2019. [Online]. Available: https://www.nsnam.org/
doxygen/tap-wifi-virtual-machine_8cc_source.html

[18] Eprosima, “Security — Fast RTPS 1.9.0 documentation.” [Online]. Available:
https://fast-rtps.docs.eprosima.com/en/latest/security.html

[19] ROS, “Sample policy.” [Online]. Available: https://github.com/ros2/sros2/blob/
master/sros2/test/policies/sample_policy.xml

[20] S. Sandoval, “Cyber security testing of the robot operating system in unmanned aerial
systems,” M.S. thesis, Dept. of Elec. Eng., NPS, Monterey, CA, USA, 2018.
[Online]. Available: http://hdl.handle.net/10945/60458

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	19Sep_Chen_Zhaolin_First8
	19Sep_Chen_Zhaolin
	I. Introduction
	A. Unmanned Systems
	B. Robot Operating System as a Common Framework
	C. THESIS Contribution
	D. Thesis Organization

	II. Background and Research work
	A. ROS 2 architecture
	B. ROS 2 Quality of Service Settings
	C. Secure ROS 2
	1. DDS-Security
	2. ROS 2 Security Settings and Roadmap
	3. Performance

	III. Experimental Design and Setup
	A. ROS 2 communications
	B. simulation architecture
	C. NS-3 Settings
	D. DDS Vendor
	E. QoS policies in ROS 2
	F. Security Settings
	1. Authentication
	2. Access Control
	3. Cryptography

	G. Configuring Security Settings in ROS 2
	H. System Setup

	IV. Simulation and Analysis of Results
	A. Validation of Security Settings
	1. Authentication
	2. Access Control

	B. evaluation methodology for results
	1. Rate of Message Loss
	2. Latency

	C. Network performance with different QOS settings
	1. Message Loss Rate
	2. Latency

	D. Simulation Results with Security on and off
	E. impact on network scale on performance
	1. Message Drop Rate
	2. Latency

	F. Summary of Findings

	V. Conclusion
	A. Summary
	B. Future work
	1. Tuning of Additional QoS and Security Settings
	2. Use Case for a Swarm UxS Network
	3. Performance Testing through Actual Hardware

	appendix A. Script to generate namespaces
	appendix B. ROS 2 Publisher script
	appendix C. ROS 2 SUBSCRIBER script
	appendix D. NS-3 simulator script
	List of References
	initial distribution list

