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Role of a four-quark and a glueball state in pion-pion and pion-nucleon scattering
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We consider the two-flavor version of the extended linear sigma model (eLSM), which contains (pseudo)scalar
and (axial-)vector quark-antiquark mesons, a scalar glueball [predominantly corresponding to f0(1710)], as
well as the nucleon and its chiral partner. We extend this model by the additional light scalar meson f0(500),
predominantly a putative four-quark state. We investigate various interaction terms of the four-quark and glueball
states with the other particles, some of which preserve and some of which explicitly break the U(1)A symmetry.
We test our model by performing a global fit to masses and decay widths of the scalar resonances and pion-pion
scattering lengths. We also discuss the influence of the scalar four-quark state and the glueball on the baryon
sector by evaluating pion-nucleon scattering parameters. We find that the inclusion of f0(500) improves the
description of pion-pion and pion-nucleon scattering lengths.
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I. INTRODUCTION

A major task in low-energy hadron physics is the uni-
fied description of masses, decays, and scattering properties
(including scattering lengths, phase shifts, etc.) of all light
hadrons (both mesons and baryons) below ≈2 GeV [1]. This
problem is exceptionally difficult, due to the large number of
hadrons and the intrinsically strong interaction between them.

Since quantum chormodynamics (QCD), the fundamental
theory of the strong interaction, cannot be directly solved in
the low-energy domain, various methods were developed to
describe mesons and baryons. The relativistic quark model
of Refs. [2,3] solidly reproduces properties of conventional
quark-antiquark and three-quark states. Even after many
years, it still provides a useful starting point for many con-
siderations. Yet, the effect of mesonic quantum corrections is
not taken into account (for an extension in this direction, see
Ref. [4]) and various candidates for nonconventional mesons
(such as glueballs, hybrids, and multiquark states) cannot be
easily accounted for. On the other hand, numerical simulations
of QCD on the lattice are now capable of reproducing a large
part of the QCD spectrum (see, e.g., Ref. [5]). Nowadays
even scattering lengths can be computed; see, e.g., Ref. [6].
However, there is still a long way to go towards an exhaustive
description of all properties of low-energy QCD using lattice
simulations.
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Another line of research has been the development of
effective chiral approaches. Some make use of quark de-
grees of freedom, such as the famous Nambu–Jona-Lasinio
(NJL) model [7–11] (and the related quark-meson model;
see Refs. [12–14] and references therein). More recently,
Dyson-Schwinger equations have been employed to calculate
meson and baryon masses in an approach which starts directly
from the QCD Lagrangian and respects chiral symmetry (for
reviews, see Refs. [15,16]).

Another approach to describe meson properties in the
low-energy domain is chiral perturbation theory (ChPT); see,
e.g., Refs. [17–21]. It is based on a nonlinear realization of
chiral symmetry and the primary method to study hadronic
low-energy properties in a systematic and well-defined way.
ChPT is originally devised to study the interactions of the
(pseudo-)Goldstone bosons emerging from chiral symmetry
breaking, i.e., for two quark flavors the pions. The description
of other (and heavier) mesons becomes more difficult [22,23].

Other chiral approaches, so-called linear sigma models
(see, e.g., Refs. [24–29]), are based on the linear realization of
chiral symmetry, hence they contain hadrons and their chiral
partners on the same footing. In particular, within the last ten
years a chiral model, called the extended linear sigma model
(eLSM), has been developed [27,28,30] in an attempt to in-
clude as many resonances as possible. The eLSM is based on
both chiral symmetry and dilatation invariance and correctly
models their respective explicit, anomalous, and spontaneous
breaking mechanisms. In the mesonic sector, the eLSM con-
tains also (axial-)vector meson degrees of freedom besides the
standard (pseudo)scalar mesons. The lightest scalar glueball
is included as a dilaton field in the Lagrangian. Moreover, the
model was extended to include the lightest pseudoscalar glue-
ball [31], a vector glueball, pseudovector and excited vector
mesons [32], as well as excited (pseudo)scalar mesons [33].
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In the low-energy limit, the eLSM correctly reduces to ChPT
[34], thus showing the compatibility of these two different
approaches to hadronic physics. In the baryonic sector, the
eLSM was developed for two flavors in Ref. [35] and for
three flavors in Ref. [36] on the basis of the mirror assignment
for the chiral partner of the nucleon [37], in such a way that
chirally invariant mass terms for baryons are possible.

In general, the eLSM offers a satisfactory description of
hadronic properties below 2 GeV (see Ref. [28]). In particular,
the eLSM has a clear answer concerning the interpretation of
scalar mesons [30]: the chiral partner of the pion is predom-
inantly f0(1370), its quark structure being (ūu + d̄d )/

√
2,

while f0(1500) is predominantly s̄s. Then, the state f0(1710)
is mostly gluonic and could be the lightest scalar glueball
in agreement with calculations within lattice QCD [38,39]
and holographic QCD [40–43] (for other interpretations sug-
gesting a mixing of quarkonium states, see Refs. [44–47]
and references therein). The isovector state a0(1450) and
the isodoublet states K∗

0 (1430) complete the nonet of q̄q
states, respectively. In this way, the light scalar resonances
f0(500), f0(980), a0(980), and K∗

0 (800) are not part of the
eLSM. Hence, these resonances are not predominantly quark-
antiquark states, but something else.

There is nowadays consensus that these resonances are
most likely four-quark states. This still leaves different pos-
sibilities for the internal structure of these states: following
the original proposal by Jaffe [48], they could be bound states
formed by a colored diquark (in the antisymmetric color-
antitriplet and antisymmetric flavor-antitriplet representation)
and a colored antidiquark (in the corresponding color-triplet
and flavor-triplet representation) [49–52]. In this picture, the
resonance f0(500) is a [u, d][ū, d̄] four-quark state. The other
members of the nonet are formed similarly using also [us],
[ds], and the corresponding antidiquarks.

Alternatively, the light scalar mesons could be (loosely
bound) molecular states formed from, or unbound states
in the scattering continuum of [53–62], two color-neutral
mesons. The latter possibility is supported by studies where
they emerge as companion poles of conventional q̄q seed
states [4,63–67] (for the dynamical generation of a0(980)
and K∗

0 (800) starting from an eLSM-inspired Lagrangian, see
Refs. [68,69]). Thus, even if the above mentioned approaches
differ in the interpretation of the internal structure, all agree
on a predominantly four-quark nature of the light scalars. In
this respect, the findings of the eLSM are consistent with these
results.

The scalar state f0(500) is particularly important since it is
the lightest state with the quantum numbers of the vacuum
(for a review, see Ref. [62]). It is expected to be relevant
both in pion-pion, pion-nucleon, as well as nucleon-nucleon
scattering. However, this state was not yet included in the
eLSM, although some preliminary attempts were made in
studies at nonzero density [70], at nonzero temperature [71],
and of neutron-proton scattering [72]. Moreover, in a compar-
ison of the eLSM with ChPT it was recently stressed that the
f0(500) is necessary for a proper description of the pion-pion
scattering lengths [34].

The main goal of the present work is the inclusion and
systematic investigation of the light four-quark state f0(500)

within the eLSM. To this end, we consider masses, decay
widths, as well pion-pion and pion-nucleon scattering lengths,
where f0(500) plays a decisive role. At the same time, we
shall also investigate the effects of the glueball/dilaton field
[identified with f0(1710)] on these quantities. We show that
the presence of both f0(500) and f0(1710) offers a satisfactory
description of experimental results in the meson sector and, in
the baryon sector, at least an improved description of data in
comparison to models without these states.

This paper is organized as follows: in Sec. II we couple
a four-quark field [which is the predominant component of
f0(500)] both to the mesonic and to the baryonic sector of
the eLSM as an additional chirally invariant scalar (thus, in
order to avoid double counting one should not generate it
via loop contributions within this approach). For the sake
of definiteness, we will use the diquark-antidiquark picture
of this state in our considerations, but this is actually of
secondary importance for the two-flavor version of the eLSM
studied here.

In the baryonic sector, we make use of the so-called mirror
assignment, first proposed in Ref. [37] and further studied
in Refs. [35,73–79]; here, the condensation of f0(500) (cor-
responding to a four-quark condensate) and of the dilaton
f0(1710) (corresponding to a gluon condensate) contribute
to the baryonic mass terms of the mirror model in addition
to the condensation of the standard quark-antiquark meson
f0(1370).

Then, in Sec. III we present our results for masses, decay
widths, and pion-pion as well as pion-nucleon scattering
lengths and volumina. Here, one observes that f0(500) is
crucial to obtain a correct description of data for the pion-pion
scattering length a0

0 and at least an improved description of
data for the pion-nucleon scattering length a(+)

0 . Moreover,
a detailed study of mixing between a bare four-quark state,
a bare quark-antiquark state, and a bare glueball confirms
that the field f0(500) is mostly a four-quark state, f0(1370)
is mostly quarkonium, and f0(1710) is mostly gluonic. We
conclude this work with a summary and a discussion of the
results in Sec. IV. Details of the calculations are deferred to
the Appendix. We use natural units h̄ = c = 1; the convention
for the metric tensor of flat Minkowski space-time is gμν =
diag(+,−,−,−).

II. THE MODEL

A. Quarkonium multiplets

For an arbitrary number of flavors we can arrange
(pseudo)scalar quarkonium fields into multiplets using the
current

�i j ≡ q̄i
Rq j

L, (1)

which is a matrix in flavor space and where the color indices
are implicitly contracted. This is a so-called heterochiral [80]
scalar because it transforms under the global chiral symmetry
Gfl × U(1)A = SU(Nf )L × SU(Nf )R × U(1)A as

� −→ e−2iαUL �U †
R, (2)
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where UL,R are SU(Nf )L,R transformations and α is the param-
eter of the U(1)A transformation. For two flavors � can be
written as

� =
3∑

a=0

�ata = (σ + iη)t0 + (�a0 + i�π ) · �t, (3)

where t a = τ a/2 are the generators of U(2), namely half the
Pauli matrices for a = 1, 2, 3, and half the unit matrix for
a = 0. Similarly, we define the right- and left-handed vector

currents,

Ri j
μ ≡ q̄i

Rγμq j
R, Li j

μ ≡ q̄i
Lγμq j

L. (4)

These are homochiral multiplets, i.e., they transform under the
chiral symmetry Gfl × U(1)A as

Lμ −→ UL Lμ U †
L , Rμ −→ UR Rμ U †

R. (5)

For two flavors the (axial-)vector fields are contained in the
right- and left-handed meson matrices

Rμ =
3∑

a=0

Ra
μt a = (ωμ − f1,μ)t0 + (�ρμ − �a1,μ) · �t, (6)

Lμ =
3∑

a=0

La
μt a = (ωμ + f1,μ)t0 + (�ρμ + �a1,μ) · �t . (7)

These non-exotic multiplets lead to the well-known chirally invariant Lagrangian [28,34,35]

LeLSM = Tr

[
(Dμ�)†(Dμ�) − μ2 G2

G2
0

�†� − λ2(�†�)2

]
− λ1(Tr[�†�])2 + c(det �† + H.c.) + h0Tr[�† + �]

− 1

4
Tr[(Lμν )2 + (Rμν )2] + m2

1

2

G2

G2
0

Tr[(Lμ)2 + (Rμ)2] + h1

2
Tr[�†�] Tr[(Lμ)2 + (Rμ)2] + h2Tr[�†LμLμ�

+ �RμRμ�†] + 2h3Tr[�Rμ�†Lμ] + i
g2

2
(Tr[Lμν[Lμ, Lν]] + Tr[Rμν[Rμ, Rν]]) + Lg3,g4,g5,g6 − Vdil(G), (8)

where Dμ = ∂μ + ig1(�Rμ − Lμ�) and

Vdil(G) = 1

4

m2
G

�2
dil

G4

(
ln

∣∣∣∣ G

�dil

∣∣∣∣− 1

4

)
(9)

is the dilaton potential, responsible for the breaking of dilata-
tion symmetry (trace anomaly) [81–84]. The scalar glueball
with mass mG emerges upon the shift G → G0 + G. The
scalar glueball represents a color-neutral gluonic bound state.
Since it is not composed of any quarks of any flavor, it is
trivially a chiral singlet.

The Lagrangian Lg3,g4,g5,g6 describes (axial-)vector meson
interactions; see the Appendix of Ref. [35]. After chiral sym-
metry breaking and a shift of the axial-vector fields to elim-
inate bilinear mixing terms between the latter and the pions,
derivatively coupled four-pion interactions emerge. Therefore,
in principle the coupling constants g3, g4, g5, g6 have an in-
fluence on the pion-pion scattering lengths. However, it was
shown in Ref. [34] that varying the values for these coupling
constants between ±100 (i.e., a range of values that is in
agreement with ChPT and moreover appears to be of a natural
order of magnitude) the change in the pion-pion scattering
lengths is only of the order of a few percent. Therefore, we
will neglect these coupling terms in the following.

B. Four-quark multiplets

There are several ways to incorporate four-quark states into
a chiral model. Here, we will follow the approach of Ref. [85].
We start with the three-flavor case and then reduce it to two
flavors. There are several reasons for choosing this approach:

(1) Writing down all relevant terms for three flavors facil-
itates an extension of the current work to the case of
three flavors.

(2) We will be able to compare our approach with other
ones, e.g., those of Refs. [86,87].

(3) It is easier to see which terms are large-Nc dominant,
enabling us to choose only the most relevant terms.

(4) For three flavors a four-quark nonet has the same chiral
structure as the quarkonium nonet, while for Nf �= 3
the four-quark multiplet will have a different chiral
structure, which makes three-flavor models somewhat
special when considering four-quark states [88].

Here, we use a diquark-antidiquark picture as a concrete
framework to construct the multiplet of light scalars and to
couple them to conventional mesons. However, it is also possi-
ble to construct the same terms in the meson-meson molecular
picture [87]. In the two-flavor eLSM both approaches yield
the same effective Lagrangian at leading order in the large-Nc

expansion. In general, when we refer to four-quark states we
understand both diquark-antidiquark as well as meson-meson
components; even if the latter are expected to be dominant
[62], an admixture of the former configurations is possible.

For Nf = 3 the right- and left-handed diquark fields are
defined as

LcC = εcabεCAB qT
aACPLqbB, (10)

RcC = εcabεCAB qT
aACPRqbB, (11)

with the charge-conjugation matrix C = iγ 2γ 0 (in the Dirac
representation), where the flavor indices are in small letters
and color indices in capital letters. For the sake of simplicity
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we will drop the color indices in the following. In the next
step, we construct the right- and left-handed diquark matrices

DL,ab = (Ac)abLc, DR,ab = (Ac)abRc, (12)

where (Ac)ab ≡ εcab. They transform as e−2iαULDLU T
L and

e2iαURDRU T
R under Gfl × U(1)A, respectively. Under parity

DL/R transforms into −DR/L and under charge conjugation into
−D†

R/L, such that we obtain diquark matrices with well defined
parity via the linear combinations

D = DR − DL√
2

, D̃ = DR + DL√
2

. (13)

These are composed of scalar and pseudoscalar diquarks,
defined as

ScC = 1√
2
εcabεCAB qT

aACγ 5qbB, (14)

PcC = 1√
2
εcabεCAB qT

aACqbB, (15)

such that (again suppressing color indices)

Sc = Rc − Lc√
2

, Pc = Rc + Lc√
2

. (16)

In the following we will only be interested in scalar diquarks,
assuming that the pseudoscalar ones are not relevant for low-
energy hadron phenomenology. A strong attraction between
two quarks in a color antitriplet (3C), a flavor antitriplet (3F),
and a spin-zero configuration [48] is obtained in studies based
on one-gluon exchange [89], instantons [90,91], the NJL
model [92], and Dyson-Schwinger equation (DSE) [93]. In
these studies it is also shown that the pseudoscalar diquark
turns out to be considerably heavier.

Considering only scalar diquarks, we can therefore con-
struct a scalar four-quark nonet by

Tab = S†
aSb, (17)

which explicitly reads

T =
⎛
⎝ [d̄, s̄][d, s] [d̄, s̄][u, s] [d̄, s̄][u, d]

[ū, s̄][d, s] [ū, s̄][u, s] [ū, s̄][u, d]
[ū, d̄][d, s] [ū, d̄][u, s] [ū, d̄][u, d]

⎞
⎠

=

⎛
⎜⎜⎝
√

1
2

(
χs − a0

0

) −a+
0 K∗+

0

−a−
0

√
1
2

(
χs + a0

0

) −K∗0
0

K∗−
0 −K̄∗0

0 χ

⎞
⎟⎟⎠, (18)

where a0 and K∗
0 are identified with a0(980) and K∗

0 (800), and
admixtures of χ and χs are assigned to the physical states
f0(500) and f0(980). Now we are able to construct chirally
invariant interaction terms that couple scalar four-quark states
to scalar quarkonia:

LT�� = g(1)
χ

G

G0
Tr[DR�TD†

L� + DL�∗D†
R�†]

+ g(2)
χ

G

G0
Tr[DRD†

R�†� + DLD†
L��†]

+ g(3)
χ

G

G0
Tr[DRD†

R + DLD†
L] Tr[��†]. (19)

In each term there is a diquark and an antidiquark such
that the expression becomes color neutral. Furthermore, all
terms are also invariant under parity, charge conjugation, and
U(1)A transformations. In order to keep our effective model as
simple as possible, in the following we will only consider the
first term in Eq. (19), which is the leading one in the large-Nc

expansion:

LT�� = −g(1)
χ

2

G

G0
Tr
[
D�TD†� + D�∗D†�†

]+ · · ·

= −g(1)
χ

2

G

G0
Tab Tr

[
Ab�

TAT
a � + Ab�

∗AT
a �†

]+ · · · ,

(20)

where we used Eqs. (13) and (17) and neglected all terms
containing pseudoscalar diquarks.1

For two flavors, Eq. (20) reduces to

LT�� = 2gχ

G

G0
χ (det � + H.c.)

= gχ

G

G0
χ
(
σ 2 + �π 2 − η2 − �a 2

0

)
, (21)

where we abbreviated g(1)
χ ≡ −2gχ and only considered T33 ≡

χ because this is the only four-quark state that exists for
two flavors. This term is similar to the determinant term in
Eq. (8), which models the U(1)A anomaly. Since the chiral
condensate also induces a condensate of the scalar four-quark
state, Eq. (20) generates a contribution to the masses of σ and
π and, of the same magnitude but with opposite sign, to those
of η and a0.

Very similar terms are obtained for the coupling to (axial-)
vector quarkonia:

LT-AV = g(1)
AV

G

G0
Tr
[
DRRT

μD†
RRμ + DLLT

μD†
LLμ

]
+ g(2)

AV

G

G0
Tr[DRD†

RR†
μRμ + DLD†

LL†
μLμ]

+ g(3)
AV

G

G0
Tr[DRD†

R + DLD†
L] Tr[R†

μRμ + L†
μLμ].

(22)

Again, we are only interested in the leading-order term at large
Nc. Neglecting the pseudoscalar diquark D̃, we obtain

LT-AV = g(1)
AV

2

G

G0
Tr
[
DRT

μD†Rμ + DLT
μD†Lμ

]

= g(1)
AV

2

G

G0
Tab Tr

[
AbRT

μAT
a Rμ + AbLT

μAT
a Lμ

]
. (23)

1We note that this term is precisely the same as the one in Eq. (16)
of Ref. [87]. However, in that work the interaction term is constructed
by using the four-quark matrix analog of �, which transforms in the
same manner as � except under U(1)A transformations. Although
both approaches yield the same interaction term as above, the other
two interaction terms of Eq. (19) are only found using our approach.
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For two flavors, this term reduces to

LT-AV = −2 gAV
G

G0
χ (det Rμ + det Lμ)

= gAV
G

G0
χ
(�ρ 2

μ + �a 2
1,μ − ω2

μ − f 2
1,μ

)
, (24)

where we abbreviated g(1)
AV ≡ −2gAV. Interestingly, this term

looks structurally similar to Eq. (21). It generates a contribu-
tion to the masses of the isoscalar (axial-)vector mesons and,
of the same magnitude but with opposite sign, to those of the
isovector (axial-)vector mesons.

Introducing also a kinetic and mass term for the scalar
tetraquark, we find the complete two-flavor four-quark

Lagrangian to be

Lχ-int = 1

2
∂μχ∂μχ − 1

2
m2

χ

G2

G2
0

χ2

+ gχ

G

G0
χ
(
σ 2 + �π2 − η2 − �a2

0

)
+ gAV

G

G0
χ
(�ρ 2

μ + �a2
1,μ − ω2

μ − f 2
1,μ

)
. (25)

From this Lagrangian and Eq. (8) we can derive masses and
decay widths as well as the pion-pion scattering lengths.

C. Masses of the scalar-isoscalar resonances

The terms in the Lagrangian which, upon condensation
of σ , G, and χ , give rise to the mass matrix for the scalar-
isoscalar resonances are

−1

2
μ2 G2

G2
0

σ 2 + c

2
σ 2 − 1

4

(
λ1 + λ2

2

)
σ 4 − 1

2
m2

χ

G2

G2
0

χ2 + gχ

G

G0
χσ 2 − 1

4

m2
G

�2
dil

G4

(
ln

∣∣∣∣ G

�dil

∣∣∣∣− 1

4

)
. (26)

We perform a shift of the scalar-isoscalar fields by their respective vacuum expectation values, σ → ϕ + σ , G → G0 + G,
χ → χ0 + χ . This leads to mass terms for these three fields, which can be compactly written in matrix form as

Vmass(χ, σ, G) = 1

2
(χ, σ, G)

⎛
⎜⎜⎝

m2
χ −2gχϕ gχ

ϕ2

G0

−2gχϕ m2
σ

2ϕ

G0
(μ2 − gχχ0)

gχ
ϕ2

G0

2ϕ

G0
(μ2 − gχχ0) M2

G

⎞
⎟⎟⎠
⎛
⎝χ

σ

G

⎞
⎠ ≡ 1

2
(χ, σ, G) M

⎛
⎝χ

σ

G

⎞
⎠, (27)

where m2
σ is given in Eq. (B4) and

M2
G = μ2ϕ2 + m2

χχ2
0

G2
0

+ m2
G

G2
0

�2
dil

(
1 + 3 ln

∣∣∣∣ G0

�dil

∣∣∣∣
)

. (28)

Note that the (13) and (31) elements of M were simplified
using the condition that χ0 is an extremum of the potential
energy density. The real, symmetric mass matrix M can be
diagonalized by an orthogonal transformation O, OT MO =
Mdiag:

Mdiag =
⎛
⎝M2

H 0 0
0 M2

S 0
0 0 M2

G′

⎞
⎠, (29)

where the eigenvalues M2
H , M2

S , and M2
G′ correspond to the

(squared) masses of the physical fields f0(500), f0(1370),
and f0(1710). These fields are linear combinations of the
unphysical fields χ , σ , and G, given by⎛

⎝ f0(500)
f0(1370)
f0(1710)

⎞
⎠ =

⎛
⎝H

S
G′

⎞
⎠ = OT

⎛
⎝χ

σ

G

⎞
⎠. (30)

D. Baryons

Baryons are implemented in the eLSM in the so-called
mirror assignment [35,37,73]. One introduces two baryon
doublets, �1 and �2, where �1 has positive parity and �2 is
its chiral partner with negative parity. In the mirror assignment

these fields transform under chiral transformations as

�1,R/L → UR/L�1,R/L, �2,R/L → UL/R�2,R/L, (31)

i.e., �1,R/L transforms like a vector under SU(Nf )R/L, as
expected, while �2,R/L transforms in a mirror way, like a
vector under SU(Nf )L/R. Both fields are singlets under U(1)A

transformations.
The mirror assignment allows for the existence of a new

chirally invariant mass term, which contributes to the baryon
masses in a different manner than the chiral condensate. Thus,
baryons can have nonzero masses even when the chiral con-
densate vanishes. Demanding dilatation invariance, the new
mass term must necessarily arise from coupling the baryons
to the four-quark field χ ,

−aχ (�̄1L�2R − �̄1R�2L + H.c.), (32)

and/or the glueball field G,

−bG(�̄1L�2R − �̄1R�2L + H.c.), (33)

and subsequent condensation of χ and G. Both G and χ are
chiral singlets, as shown in Appendix A.

Furthermore, it is possible to introduce another interaction
term that violates U(1)A symmetry but gives a contribution to
the nucleon mass as well. This term is given by

Lanom. = −cN (det � + H.c.)(�̄1L�2R − �̄1R�2L + H.c.)

= − cN

2

(
σ 2 + �π2 − η2 − �a2

0

)
× (�̄1L�2R − �̄1R�2L + H.c.). (34)
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Such an anomalous term (which also breaks the dilatation
symmetry) yields a four-point vertex that has not been consid-
ered before in this model; see also the last diagram of Fig. 2
(found in Appendix E).

The terms in the baryon Lagrangian which are relevant for
pion-nucleon scattering are then

Lbar
eLSM = �̄1LiγμDμ

1L�1L + �̄1RiγμDμ
1R�1R + �̄2LiγμDμ

2R�2L

+ �̄2RiγμDμ
2L�2R − ĝ1(�̄1L��1R + H.c.)

− ĝ2(�̄2L�†�2R + H.c.)

−
[
aχ + bG + cN

2
(σ 2 + �π2)

]
× (�̄1L�2R − �̄1R�2L + H.c.) + · · · , (35)

where Dμ
1/2,R = ∂μ − ic1/2Rμ, Dμ

1/2,L = ∂μ − ic1/2Lμ.
Upon condensation of χ , G, and σ a baryonic mass term is

generated:

m0 ≡ aχ0 + bG0 + cNϕ2

2
. (36)

The mass term mixes �1 and �2, so that the physical fields
are obtained by a unitary transformation,

(
N
N∗

)
= 1√

2cosh δ

(
eδ/2 γ5e−δ/2

γ5e−δ/2 −eδ/2

)(
�1

�2

)
, (37)

where δ is the mixing parameter.
We recall that the quantity m0 does not represent the baryon

mass in the chiral limit (i.e., when the bare quark masses are
set to zero), but represents the chirally invariant contribution
to the nucleon mass, which is the same for both the nucleon
N (939) and its chiral partner N (1535). As Eq. (36) shows,
in our case m0 consists of three contributions: the scalar
tetraquark condensate χ0, the dilaton condensate G0, and also
the chiral condensate ϕ. The difference in mass between N
and N∗(1535) is, in contrast, solely proportional to the chiral
condensate ϕ. If we consider the limit ϕ → 0 (no SSB) one
obtains m0 → bG0 �= 0, hence without SSB the nucleon and
its chiral partner would have an identical nonzero mass. (Note
that χ0 vanishes also when ϕ → 0 since it is proportional to
ϕ2 [71]).

III. RESULTS

In this section we first perform a global fit of the parameters
in the meson sector. Here we consider two different scenarios:
first we neglect the scalar glueball and investigate the mixing
of the scalar four-quark with the quarkonium state only. Then,
we present the results for the full three-scalar mixing problem,
which includes the scalar glueball, the four-quark, and the
quarkonium state. This allows us to estimate the importance
of the scalar glueball for the calculation of the decay widths
of the scalar-isoscalars and the pion-pion scattering lengths.
Subsequently, we will take the results from the global fit
of the meson sector and calculate pion-nucleon scattering
parameters.

TABLE I. The masses of the fields as given by the PDG [1].

Field Assignment Masses

H f0(500) 475 ± 75 MeV
S f0(1370) 1350 ± 150 MeV
G′ f0(1710) 1723 ± 5 MeV
a0 a0(1450) 1474 ± 19 MeV
a1 a1(1260) 1230 ± 40 MeV
ρ ρ(770) 775.26 ± 0.25 MeV
f1 f1(1285) 1281.9 ± 0.5 MeV
ω ω(782) 782.65 ± 0.12 MeV

A. Global fit in the meson sector

The assignment of our effective hadronic degrees of free-
dom is given in Table I. For this assignment the experimental
data for the decay widths and the pion-pion scattering lengths
are given in Table II. For the mass of the pion we use the
isospin-averaged mass, mπ = 138 MeV. For the mass of a1

we choose 1277 MeV, which is slightly above the upper error
band of the Particle Data Group (PDG) data. The reason for
this choice is the mass splitting between the isoscalar and
the isovector (axial-)vector mesons generated by the coupling
between the four-quark state and the (axial-)vector mesons in
Eq. (24),

m2
ρ − m2

ω = m2
a1

− m2
f1

= 4gAVχ0; (38)

see also Appendices B 2 and B 3. Since the masses of ρ, ω,
and f1 are known to very good precision (see Table I), we are
forced to increase the theoretical value for the mass of a1 such
that the mass splitting between that state and f1 is of the same
order as that between ρ and ω.

Furthermore, the physical η meson contains a considerable
s̄s admixture, which, in a pure two-flavor scenario, has to be
eliminated by a rotation in the η-η′ sector. The result is the
value mη = 755 MeV for the mass of the purely nonstrange η

meson [28].
The pion-pion scattering parameters in the eLSM were

first calculated in Ref. [27], but without a scalar four-quark
state and without a dynamical scalar glueball. It was found
that the pion-pion scattering length mπa0

0 is in the range of
experimental data only for a small mass of the scalar-isoscalar
quarkonium σ field, while mπa2

0 agrees well with experimen-
tal data for all values of the σ mass (cf. Fig. 2 in Ref. [27]).
Here we examine how the results change if we consider a

TABLE II. The decay widths �H→ππ and �G′→ππ

as given by the PDG [1], the decay width �S→ππ is
taken from Ref. [94], and the scattering lengths from
Ref. [95].

Observable Experimental data

�H→ππ 550 ± 150 MeV
�S→ππ 350 ± 150 MeV
�G′→ππ 29.3 ± 6.5 MeV

mπ a0
0 0.218 ± 0.02

mπ a2
0 −0.046 ± 0.013
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TABLE III. In the upper left box the fitted parameters are given.
The parameters in the lower left box are calculated from the fitted
parameters. θ is the mixing angle between χ and σ . In the right box
the numerical results for the observables are given.

Param. Value Observ. Value

gχ 2.86 ± 0.53 MeV MH 533 ± 33 MeV
h −0.22 ± 4.7 MS 1405 MeV
mχ 533 ± 33 MeV �H→ππ 504 ± 148 MeV
gAV −12018 ± 1365 MeV �S→ππ 420 ± 144 MeV

μ2 −879 × 103 MeV2 mπ a0
0 0.210 ± 0.016

m2
1 ≈7752 MeV2 mπ a2

0 −0.027 ± 0.005
c 99±0.4 × 103MeV2

mσ 1405 MeV χ 2 test Value

χ0 0.24 ± 0.02 MeV χ 2 3.5
θ ≈0 χ 2

red 1.8

scalar four-quark state χ in addition to the quarkonium state
σ . At first, we neglect the scalar glueball.

The Lagrangians (8) and (25) contain ten parameters
that are of relevance for our fit: μ2, λ1, λ2, c, m2

1, h1 + h2 ≡
h, h3, gχ , gAV, mχ . The parameters λ2, h3, c, μ2, m2

1, gAV can
be expressed by the physical masses of Table I or by the
remaining model parameters; see Appendix B. Furthermore,
λ1 is large-Nc suppressed and is therefore set to zero. Thus,
only the three parameters h, gχ , mχ need to be fitted. We used
the standard χ2 procedure to fit the parameters and determine
the errors [χ2 = χ2(h, gχ , mχ )]:

χ2 =
(

MH − 475 MeV

75 MeV

)2

+
(

MS − 1350 MeV

150 MeV

)2

+
(

�H→ππ − 550 MeV

150 MeV

)2

+
(

�S→ππ − 350 MeV

150 MeV

)2

+
(

mπa0
0 − 0.218

0.02

)2

+
(

mπa2
0 + 0.046

0.013

)2

. (39)

The result of this fit is presented in Table III.
Next, we consider the scalar glueball as dynamical field as

well. Now, MG and G0 are additional fit parameters. Then the
χ2 function is given as

χ2 =
(

MH − 475 MeV

75 MeV

)2

+
(

MS − 1350 MeV

150 MeV

)2

+
(

mG′ − 1720 MeV

50 MeV

)2

+
(

�H→ππ − 550 MeV

150 MeV

)2

+
(

�S→ππ − 350 MeV

150 MeV

)2

+
(

�G′→ππ − 29.3 MeV

6.5 MeV

)2

+
(

mπa0
0 − 0.218

0.02

)2

+
(

mπa2
0 + 0.046

0.013

)2

. (40)

The results of the fit for this scenario are given in Table IV.

TABLE IV. The result of the fit where the glueball is included.

Param. Value Observ. Value

gχ 3.06 ± 0.54 MeV MH 546 ± 33 MeV
h 5.53 ± 2.75 MS 1238 ± 113 MeV
MG 1564 ± 84 MeV MG′ 1696 ± 49 MeV
G0 428 ± 135 MeV �H→ππ 539 ± 148 MeV
mχ 547 ± 33 MeV �S→ππ 503 ± 98 MeV
gAV −11820 ± 738 MeV �G′→ππ 29 ± 7 MeV
μ2 −873 × 103 MeV2 mπ a0

0 0.210 ± 0.016

m2
1 7302 MeV2 mπ a2

0 −0.028 ± 0.005

c 99 × 103 MeV2 χ 2 test Value

mσ 1401 MeV χ 2 5.1
χ0 0.24 ± 0.02 MeV χ 2

red 1.7

From this fit the following scalar-isoscalar mixing matrix
is obtained,

OT =
⎛
⎝1.00 0.00 0.00

0.00 0.81 −0.59
0.00 0.59 0.81

⎞
⎠, (41)

which corresponds to the following admixtures of the physical
states:

f0(500) : 100% χ, 0% σ, 0% G, (42)

f0(1370) : 0% χ, 65% σ, 35% G, (43)

f0(1710) : 0% χ, 35% σ, 65% G. (44)

Let us briefly discuss these results:

(1) Our aim was to correctly reproduce the masses and
decay widths of f0(500), f0(1370), and f0(1710).
The fit agrees well with experimental data, only for
the scattering length mπa2

0 the theoretical and experi-
mental error bands overlap just barely (the theoretical
value is slightly too large). In both fits, with and
without a dynamical glueball, similar parameters are
obtained, which results in very similar observables.

(2) The parameter determining the mixing of the
four-quark state with the quarkonium state is
−2gχϕ/(m2

σ − m2
χ ), which is (approximately) zero,

explaining why f0(500) is (almost to) 100% a four-
quark state.

(3) Although the value of gχ is very small, it is numeri-
cally not negligible. In Appendix B we show that gAV

is proportional to the inverse of gχ . Thus, gAV would
diverge if we send gχ → 0.

(4) Since gχ is very small, the coupling gAV between the
scalar four-quark state and the (axial-)vector mesons
is rather large, gAV ≈ −12 GeV in both fits.

(5) We also tried to identify H = f0(980), another possi-
ble candidate for a four-quark state, but no reasonable
fit results were obtained. Our investigation clearly
favors the (nonstrange) scalar four-quark state to be
a light and broad state.

(6) The value of �S→ππ used in our fit is somewhat
problematic due to its uncertain value in the literature
[1,94]. If we exclude this width from our fit, we
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TABLE V. Parameters determined by a fit of
gN

A , gN∗
A , �N∗→Nπ , �a1→πγ , where N∗ is assigned to

N (1535); see Ref. [35].

Parameter Value

c1 −3.0 ± 0.6
c2 11.6 ± 3.6
Z 1.67 ± 0.2
m0 462 ± 136 MeV

obtain �S→ππ ≈ 3 GeV for the case without dynam-
ical glueball and �S→ππ ≈ 750 MeV for the case
with dynamical glueball, while the other observables
change only slightly.

(7) We obtain a fit of similar quality if we assign G′ =
f0(1500), but at a cost of a very large dilaton con-
densate G0 > 1.5 GeV. Thus, we cannot make any
prediction about whether f0(1500) or f0(1710) is
more likely the glueball candidate. This question
has been addressed in a model similar to ours [30],
where the authors found f0(1710) to be the scalar
glueball while f0(1500) was found to be mostly an
s̄s quarkonium state.

(8) The elements of the matrix (41) which correspond
to the mixing between σ and G are somewhat larger
than those of Ref. [30], most likely due to the missing
strange scalar-isoscalar σS in our two-flavor model.

(9) We find in both fits very similar values for the
pion-pion scattering lengths, indicating that the scalar
glueball is actually not important for pion-pion scat-
tering, which is not too surprising because of its large
mass.

(10) We checked that the pion-pion scattering lengths
vanish in the chiral limit, i.e., mπ → 0, as required
by low-energy theorems.

(11) To further underline the importance of a light scalar-
isoscalar resonance we can take the limit gχ → 0 and
gAV → 0 to turn off the interactions of the four-quark
state. Performing a fit in this limit leads to mπa0

0 =
0.156 and mπa2

0 = −0.044, i.e., results comparable
to those of Ref. [27] for large σ masses. This result is
obtained for both cases, with and without a dynamical
scalar glueball.

B. Pion-nucleon scattering parameters

Some of the parameters of the baryon Lagrangian have
been already determined in Ref. [35] and are reported in
Table V.

In Ref. [35] the isospin-even and isospin-odd scattering
lengths have been calculated in a model without a scalar four-
quark state and a scalar glueball. The authors found mπa(−)

0 =
0.0834 ± 0.0087 for the isospin-odd scattering length, which
is in surprisingly good agreement with the experimental value,
see the first entry of the last column in Table VI. However,
there were several errors in Eq. (19) of Ref. [35]. The correct
formula is given in Appendix E, and the correct value is the
first entry of the second column in Table VI. This value is now
outside the experimental error band.

TABLE VI. Isospin-odd scattering parameters.

Parameter Value Experiment

mπ a(−)
0 0.0782 0.0861 ± 0.0009

m3
π a(−)

1+ −0.048 −0.081 ± 0.002

m3
π a(−)

1− −0.042 −0.013 ± 0.003

m3
π r (−)

0 0.022 0.007 ± 0.005

As experimental inputs for the scattering lengths, we use
the results of the analysis of Refs. [96,97], which are based
on experimental results (see, e.g., [98,99]) and isolate the
contributions of isospin-breaking electromagnetic interactions
(which are not present in our model). The remaining scattering
parameters are taken from Ref. [100].

The isospin-even scattering length mπa(+)
0 has also been

calculated in Ref. [35]. There was also a sign error in Eq.
(18) of Ref. [35], which changes the behavior of mπa(+)

0 as
a function of the parameter m1 as shown in Fig. 2 of Ref. [35].
The correct formula is also given in Appendix E. We do not
show the corrected graphs; in the first entry of the second
column in Table VII we simply list the corresponding value
for m1 = 643 MeV obtained from the global fit of Ref. [28].
The theoretical value of the scattering length has the opposite
sign compared to the experimental value.

In addition, here we also calculate isospin-even and
isospin-odd scattering volumes and effective range parameters
within the setup of Ref. [35]. The corresponding values are
shown in the second to fourth rows in Tables VI and VII.
The isospin-odd scattering volumes and the range parameter
deviate by factors of 0.5 to 3 from the experimental values, the
isospin-even scattering volumes by factors of 0.4 to 2, while
the isospin-even range parameter is about a factor 7 too small.
Note that all scattering parameters have also theoretical errors
originating from the uncertainties of the χ2 fit in determining
the parameters. However, we omitted the errors because they
are smaller than 5% and therefore not a reliable measure of
uncertainty.

The theoretical values in Tables VI and VII were computed
without a scalar four-quark state or scalar glueball, i.e., they
are just a correction and extension of the results of Ref. [35].
While the isospin-odd scattering parameters are influenced
neither by a scalar four-quark state nor by a scalar glueball,
and thus cannot be further improved within our model, we
can still study the question whether the introduction of these
states can at least improve the description of the isospin-even

TABLE VII. Isospin-even scattering parameters for m1 =
643 MeV and mσ = 1370 MeV as obtained in the model of Ref. [35]
(shown are the corrected values).

Parameter Value Experiment

mπ a(+)
0 −0.0083 0.0076 ± 0.0031

m3
π a(+)

1+ 0.049 0.130 ± 0.003

m3
π a(+)

1− −0.093 −0.056 ± 0.010

m3
π r (+)

0 0.009 −0.06 ± 0.02
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TABLE VIII. Results with a = 1897.33, b = cN = 0.

Parameter Value Experiment

mπ a(+)
0 11.196 0.0076 ± 0.0031

m3
π a(+)

1+ −3.422 0.133 ± 0.004

m3
π a(+)

1− −3.365 −0.056 ± 0.010

m3
π r (+)

0 9.061 −0.06 ± 0.02

scattering parameters. The explicit calculations of the pion-
nucleon scattering amplitudes and the isospin-even scattering
parameters are deferred to Appendix E. Compared to the
model of Ref. [35] we have three new couplings, a, b, and
cN , the values of which are only constrained by the linear
combination (36), which should have the correct value of m0

in order to reproduce the mass of the nucleon and its chiral
partner. In a first step we consider only one parameter at a
time, while setting the other ones to zero. In this way we
distinguish three cases:

A: a = m0

χ0
= 1897.33, b = cN = 0, (45)

B: b = m0

G0
= 1.078, a = cN = 0, (46)

C: cN = 2
m0

ϕ2
= 0.0388

MeV
, a = b = 0. (47)

In Table VIII we consider case A, where only the scalar
four-quark state contributes to the explicit mass term. In this
case the scalar glueball contributes only indirectly to the pion-
nucleon scattering parameters via the G-σ and G-χ mixing.
Due to the small value of the four-quark condensate found in
the fit of the meson sector the coupling between the scalar
four-quark state and the nucleons must be extremely large
in order to obtain m0 = 462 MeV. This leads to scattering
parameters that are off by several orders of magnitude.

In Tables IX and X we consider the cases B and C, where
m0 originates either exclusively from the gluon condensate or
from the anomaly contribution, respectively. In these cases,
the scalar four-quark state contributes to pion-nucleon scat-
tering only via the χ -σ and χ -G coupling. The results are
rather similar for both cases, and the numerical values rather
close to those of the model of Ref. [35]; cf. Table VII. This is
expected because on the one hand the glueball is rather heavy
and thus cannot substantially influence the scattering parame-
ters in case B. On the other hand, the additional anomalous
contribution ∼cNϕ � 6 to the σNN∗ coupling is about a
factor of 2 smaller in magnitude than the Yukawa coupling
(ĝ1eδ − ĝ2e−δ )/4, and thus case C is, as far as pion-nucleon

TABLE IX. Results with b = 1.078, a = cN = 0.

Parameter Value Experiment

mπ a(+)
0 −0.0079 0.0076 ± 0.0031

m3
π a(+)

1+ 0.048 0.133 ± 0.004

m3
π a(+)

1− −0.091 −0.056 ± 0.010

m3
π r (+)

0 0.009 −0.06 ± 0.02

TABLE X. Results with cN = 0.0388/MeV, a = b = 0.

Parameter Value Experiment

mπ a(+)
0 −0.0078 0.0076 ± 0.0031

m3
π a(+)

1+ 0.048 0.133 ± 0.004

m3
π a(+)

1− −0.091 −0.056 ± 0.010

m3
π r (+)

0 0.008 −0.06 ± 0.02

scattering is concerned, essentially identical to the model of
Ref. [35]. Case A is markedly different from cases B and C
because of the presence of the light four-quark field f0(500),
which has a substantial impact on pion-nucleon scattering
parameters.

We now perform a simultaneous χ2 fit for all three param-
eters a, b, and cN , respecting the constraint (36). Using the
constraint that b is positive yields the results of Table XI. It
should also be noted that we find basically the same results if
we set either b = 0 or cN = 0. It is important, however, that a
is nonvanishing. Although the agreement between the theoret-
ically calculated scattering parameters and experimental data
is now in general better, the values still deviate by factors of
1.5 to 3 (and the scattering length a(+)

0 and the range parameter
have the wrong sign).

IV. SUMMARY AND DISCUSSION

In this paper, we studied the influence of the light four-
quark state f0(500) and the scalar glueball on pion-pion and
pion-nucleon scattering in the framework of the eLSM for
Nf = 2 flavors. We first performed a χ2 fit to properties in the
mesonic sector. We found a physically acceptable minimum
for which the resonance f0(500) is (almost) exclusively a four-
quark state, f0(1370) predominantly a light quark-antiquark
state, and f0(1710) predominantly a gluonic state. The masses
and the decay widths of these resonances as well as pion-pion
scattering lengths can be correctly described; in particular a0

0
is strongly dependent on the additional attraction on account
of f0(500), and the presence of the latter is necessary for a
good description of the data. The resonance f0(1710) is quite
heavy, hence it does not affect the results in a substantial
way, but its presence is nevertheless important to stabilize
the fit (due to smaller errors and a reasonable upper limit
for the gluon condensate G0). Another notable result is the
observation that the (axial) vectors turn out to interact quite
strongly with the scalar four-quark state (gAV/G0 ≈ −30),
while the coupling to the (pseudo)scalar quarkonia is rather
small (gχ/G0 ≈ 0).

TABLE XI. Best fit where a = 1.237, b = 1.036, cN = 0.0015
(the glueball contribution dominates).

Parameter Value Experiment

mπ a(+)
0 −0.0029 0.0076 ± 0.0031

m3
π a(+)

1+ 0.047 0.133 ± 0.004

m3
π a(+)

1− −0.092 −0.056 ± 0.010

m3
π r (+)

0 0.012 −0.06 ± 0.02
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Then we studied the role of f0(500) and f0(1710) in the
baryonic sector of the eLSM. The nucleon and its chiral
partner were incorporated into the model in the so-called
mirror assignment and theoretical expressions for the pion-
nucleon scattering parameters, namely the isospin-even and
isospin-odd scattering lengths, scattering volumes, and effec-
tive range parameters were derived. First, we presented results
without the scalar four-quark and glueball state, correcting
and extending results of Ref. [35]. Our results are found to be
in the correct order of magnitude compared to experimental
data, but there is still room for improvement.

For instance, the inclusion of the � resonance is expected
to be important, since this state is just slightly heavier than
the nucleon and it couples strongly to Nπ . Indeed, as a
preliminary study shows [101], the effect of the � pushes a(+)

0
toward positive values, in agreement with Refs. [96,97]. A
proper study of this issue would require the inclusion of the
� and its chiral partner into the eLSM in the framework of
the mirror assignment.

Another straightforward extension of this work would be
to consider the three-flavor case. Two additional resonances
appear in the scalar-isoscalar sector: the strange-antistrange
quarkonium [predominantly f0(1500)] and the four-quark
state f0(980) (a kaon-kaon state in the molecular picture,
a [u, s][ū, s̄] + [d, s][d̄, s̄] state in the tetraquark picture).
Moreover, also the quarkonium states a0(1450) and K∗

0 (1430)
and the four-quark states a0(980) and K∗

0 (800) would enter
this extended scenario. In this context, the difference between
different internal structures of the four-quark states (meson-
meson or diquark-antidiquark) would also become visible in
terms of different Clebsch-Gordon coefficients.

In the baryonic sector, an interesting future work would
be to continue the nonzero-density study of Ref. [70]. Due
to the recent discovery of gravitational waves emitted by
neutron-star binary mergers, it is expected that the equation of
state of nuclear matter at high density can be more precisely
determined in the future.
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V. APPENDICES

We used Mathematica® for the numerical evaluation and
the fits performed in this work. The notebooks can be found
on GitHub [102].

APPENDIX A: TETRAQUARK-BARYON
INTERACTION TERMS

As in the meson sector, we construct possible tetraquark-
baryon interaction terms for Nf = 3 and then reduce them

to Nf = 2 in order to verify that the effective interaction of
Eq. (32) can be derived within our approach. To this end, we
use the formalism of Ref. [36], where four baryonic multi-
plets, N1, N2, M1, and M2, were constructed using the quark-
diquark picture for baryons; cf. Table III of Ref. [103] for the
transformation properties under chiral symmetry, parity, and
charge conjugation. We find the following terms where scalar
tetraquarks couple to baryons:

LχB = κ1 Tr[M̄1RDLD†
LN1L + M̄2LDRD†

RN2R + H.c.]

+ κ2 Tr[M̄1LDRD†
RN1R + M̄2RDLD†

LN2L + H.c.]

+ {κ3 Tr[M̄1RN1L + M̄2LN2R + H.c.]

+ κ4 Tr[M̄1LN1R + M̄2RN2L + H.c.]}
× Tr[DRD†

R + DLD†
L] (A1)

which reduces to Eq. (32) for two flavors using the same
approach as in Sec. II B. We show this explicitly for one term:

Tr[M̄2LDRD†
RN2R]

= Tr[M̄2DRD†
RN2] + · · ·

= 1

2
Tr[(B̄M∗ − B̄M )DRD†

R(BN∗ − BN )] + · · ·

= 1

4
Tr[(B̄M∗ − B̄M )(DD† + · · · )(BN∗ − BN )] + · · ·

= 1

4
Tab Tr

[
B̄M∗AbAT

a BN
]+ · · ·

Nf=2−→ 1

4
χ ψ̄2ψ1 + · · · . (A2)

From the first to the second line we used the definition of
the baryon fields with definite parity and charge-conjugation
properties as defined in Ref. [103]. The Nf = 2 limit in the last
line is obtained by setting a = b = 3 and by reducing

BM∗
Nf=2−→

⎛
⎝0 0 ψ2,1

0 0 ψ2,2

0 0 0

⎞
⎠, BN

Nf=2−→
⎛
⎝0 0 ψ1,1

0 0 ψ1,2

0 0 0

⎞
⎠.

(A3)

APPENDIX B: MASSES AND PARAMETERS

1. Axial-vector–pseudoscalar mixing

After spontaneous symmetry breaking, the field σ is shifted
by its vacuum expectation value, i.e., σ → ϕ + σ . This yields
mixing terms between axial-vector and pseudoscalar mesons,
e.g., ∼�aμ

1 · ∂μ�π . Such terms can be eliminated by a redefini-
tion of the fields,

�aμ
1 → �aμ

1 + Zw ∂μ�π, �π → Z�π, (B1)

where

w = g1ϕ

m2
a1

, (B2)

with m2
a1

from Eq. (B10), and

Z =
(

1 − g2
1ϕ

2

m2
a1

)−1/2

. (B3)
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2. Masses

The masses of the resonances are calculated from the
second partial derivative of the potential density [which is
obtained from Eqs. (8) and (25)] with respect to the corre-
sponding fields:

m2
σ = μ2 − c + 3

(
λ1 + λ2

2

)
ϕ2 − 2gχχ0, (B4)

m2
π = Z2

[
μ2 − c +

(
λ1 + λ2

2

)
ϕ2 − 2gχχ0

]
, (B5)

m2
η = Z2

[
μ2 + c +

(
λ1 + λ2

2

)
ϕ2 + 2gχχ0

]
, (B6)

m2
a0

= μ2 + c +
(

λ1 + 3λ2

2

)
ϕ2 + 2gχχ0, (B7)

m2
ρ = m2

1 + (h + h3)
ϕ2

2
+ 2gAVχ0, (B8)

m2
ω = m2

1 + (h + h3)
ϕ2

2
− 2gAVχ0 (B9)

m2
a1

= m2
1 + (

2g2
1 + h − h3

)ϕ2

2
+ 2gAVχ0, (B10)

m2
f1

= m2
1 + (

2g2
1 + h − h3

)ϕ2

2
− 2gAVχ0. (B11)

3. Parameters

The vacuum expectation value of σ , ϕ = Z fπ , is deter-
mined from the axial current. The vacuum expectation value
of the scalar four-quark state is determined by the minimum
of the potential density:

χ0
(
gχ , m2

χ

) = gχϕ2

m2
χ

. (B12)

We can use the masses, whose values are given by experimen-
tal data, to fix some of the model parameters:

λ2 = 1

ϕ2

(
m2

a0
− m2

η

Z2

)
, (B13)

h3 = 1

ϕ2

(
m2

ρ − m2
a1

+ g2
1ϕ

2
)
, (B14)

c = c
(
gχ , m2

χ

) = 1

2Z2

(
m2

η − m2
π

)− 2gχχ0
(
gχ , m2

χ

)
,

(B15)

μ2 = μ2(λ1) = 1

2

[
1

Z2

(
m2

η + m2
π

)− ϕ2(2λ1 + λ2)

]
, (B16)

m2
1 = m2

1

(
gχ , m2

χ , h
)

= 1

2

[
m2

ρ + m2
a1

− 4gAV
(
gχ , m2

χ

)
χ0
(
gχ , m2

χ

)
− ϕ2(g2

1 + h
)]

, (B17)

gAV = gAV
(
gχ , m2

χ

) = m2
ρ − m2

ω

4χ0
(
gχ , m2

χ

) = m2
χ

m2
ρ − m2

ω

4gχϕ2
, (B18)

where we used Eq. (B12) in the last step of the last line. Note
that gAV and gχ are inversely proportional to each other, i.e., a
small value of gχ requires a large value of gAV and vice versa.

APPENDIX C: MESON SECTOR WITHOUT
DYNAMICAL SCALAR GLUEBALL

1. Scalar mixing angle

The shift σ → ϕ + σ and χ → χ0 + χ leads to a non-
diagonal mass matrix. We rotate the fields via an SO(2)
transformation,(

χ

σ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
H
S

)
, (C1)

and demand that the mass matrix in the basis of the new fields,
H and S, must be diagonal. This leads to a mixing angle

θ = 1

2
arctan

4gχϕ

m2
σ − m2

χ

. (C2)

We then relate the physical masses to the unphysical ones:

M2
H = m2

χ cos2 θ + m2
σ sin2 θ − 2gχϕ sin 2θ, (C3)

M2
S = m2

σ cos2 θ + m2
χ sin2 θ + 2gχϕ sin 2θ. (C4)

2. Decay widths

We are interested in the decay of the scalars σ and χ into
two pions. The information of this decay is contained in the
Lagrangians

Lσ→ππ = Aσ σ �π2 + Bσ σ∂μ�π · ∂μ�π − Cσ σ �π · ��π, (C5)

Lχ→ππ = Aχχ �π2 + Bχχ∂μ�π · ∂μ�π, (C6)

where

Aσ = −Z2ϕ

(
λ1 + λ2

2

)
, (C7)

Bσ = Z2w
[
−2g1 + wϕ

2

(
2g2

1 + h − h3
)]

, (C8)

Cσ = −g1Z2w, (C9)

Aχ = gχZ2, (C10)

Bχ = gAVw2Z2. (C11)

The Feynman amplitudes of the physical fields are obtained
from the mixings

MHππ = Mσππ (mH ) sin θ + Mχππ (mH ) cos θ, (C12)

MSππ = Mσππ (mS ) cos θ − Mχππ (mS ) sin θ. (C13)

where

−iMσππ (mX ) = i

(
Aσ − Bσ

m2
X − 2m2

π

2
− Cσ m2

π

)
, (C14)

−iMχππ (mX ) = i

(
Aχ − Bχ

m2
X − 2m2

π

2

)
. (C15)

The decay widths are given by

�H→ππ = 3
k f (mH , mπ , mπ )

4πm2
H

|−iMHππ |2, (C16)
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FIG. 1. The dashed lines correspond to the pion, the wavy line
to the ρ meson, and the double-dashed line to the σ or the χ . (Each
diagram with internal double-dashed lines occurs twice, once with
the exchange of σ and once with the exchange of χ .)

�S→ππ = 3
k f (mS, mπ , mπ )

4πm2
S

|−iMSππ |2. (C17)

3. Pion-pion scattering

The scattering amplitude is calculated from the tree-level
amplitudes in Fig. 1. The pion-pion interaction consists of
three parts,

Lππ = L4π + Lσππ + Lρππ , (C18)

which can be extracted from the eLSM Lagrangian (8). From
this we obtain the scattering amplitude

Mππ (s, t, u) = iδabδcdA(s, t, u) + iδacδbd A(t, u, s)

+ iδadδbcA(u, s, t ), (C19)

where

A(s, t, u) = (
g2

1 − h3
)
Z4w2s − 2

(
λ1 + λ2

2

)
Z4

− (h + h3)Z4w2
(
s − 2m2

π

)
− 1

s − m2
σ

[−2m2
πCσ + Bσ

(
2m2

π − s
)+ 2Aσ

]2

+
(

Aρ + Bρ

t

2

)2 u − s

t − m2
ρ

+
(

Aρ + Bρ

u

2

)2 t − s

u − m2
ρ

. (C20)

The coefficients Aσ , Bσ , and Cσ are given in Eqs. (C7)–(C9),
while Aρ = g1Z2m2

ρ/m2
a1

and Bρ = g2Z2w2.
The scattering amplitude in the I = 0 channel is given by

the relation [104]

T 0(s, t, u) = 3A(s, t, u) + A(t, u, s) + A(u, s, t ), (C21)

from which the isospin-zero scattering length is computed as

mπa0
0 = 1

32π
T 0
(
4m2

π , 0, 0
)
. (C22)

On the other hand, the scattering amplitude for isospin I =
2 is given by

T 2(s, t, u) = 2A(u, s, t ), (C23)

and the s-wave scattering length is extracted as

mπa2
0 = 1

32π
T 2
(
4m2

π , 0, 0
)
. (C24)

After the introduction of the scalar four-quark field, the
term

1

s − m2
σ

[−2m2
πCσ + Bσ (2m2

π − s) + 2Aσ

]2
(C25)

in Eq. (C20) is replaced by

1

s − M2
H

[−2m2
πCH + BH

(
2m2

π − s
)+ 2AH

]2

+ 1

s − M2
S

[−2m2
πCS + BS

(
2m2

π − s
)+ 2AS

]2
. (C26)

The new coefficients are given as

AH = Aσ sin θ + Aχ cos θ, (C27)

AS = Aσ cos θ − Aχ sin θ, (C28)

BH = Bσ sin θ + Bχ cos θ, (C29)

BS = Bσ cos θ − Bχ sin θ, (C30)

CH = Cσ sin θ, (C31)

CS = Cσ cos θ. (C32)

Thus, at threshold (s ≡ 4m2
π , t = 0, u = 0), we obtain the

scattering lengths

mπa0
0 = 1

32π

{
12
(
g2

1 − h3
)
Z4w2m2

π − 10

(
λ1 + λ2

2

)
Z4 − 2(h + h3)Z4w2m2

π + 12

M2
H − 4m2

π

[
(BH + CH )m2

π − AH
]2

+ 12

M2
S − 4m2

π

[
(BS + CS )m2

π − AS
]2 + 8

M2
H

[
(BH − CH )m2

π + AH
]2 + 8

M2
S

[
(BS − CS )m2

π + AS
]2 + 16g2

1Z4m2
π

m2
ρ

m4
a1

}

(C33)

and

mπa2
0 = 1

16π

{
− 2

(
λ1 + λ2

2

)
Z4 + 2(h1 + h2 + h3)Z4w2m2

π − 4g2
1Z4m2

π

m2
ρ

m4
a1

+ 4

M2
H

[
(BH − CH )m2

π + AH
]2 + 4

M2
S

[
(BS − CS )m2

π + AS
]2
}
. (C34)
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APPENDIX D: MESON SECTOR WITH DYNAMICAL
SCALAR GLUEBALL

1. Decay widths

From Eqs. (8) and (25) we read off the relevant terms for
the decay �G→ππ :

LGlueball-Int = − Z2

G0
(μ2 − gχχ0)G�π2

+ Z2w2

G0

(
m2

1 + gAVχ0
)
G(∂μπ )2. (D1)

This yields another contribution which is of the same form as
the σ �π2 and the χ �π2 interaction. The corresponding partial
amplitudes are

AG = − Z2

G0
(μ2 − gχχ0),

BG = Z2w2

G0

(
m2

1 + gAVχ0
)
. (D2)

We define the inverse mixing matrix as Q = OT [see Eq. (30)]
such that the new coefficients are given as

AH = Q11 Aχ + Q21 Aσ + Q31 AG, (D3)

AS = Q12 Aχ + Q22 Aσ + Q32 AG, (D4)

AG′ = Q13 Aχ + Q23 Aσ + Q33 AG, (D5)

BH = Q11 Bχ + Q21 Bσ + Q31 BG, (D6)

BS = Q12 Bχ + Q22 Bσ + Q32 BG, (D7)

BG′ = Q13 Bχ + Q23 Bσ + Q33 BG, (D8)

CH = Q21 Cσ , (D9)

CS = Q22 Cσ , (D10)

CG′ = Q23 Cσ . (D11)

With these amplitudes the decay widths are given by

�H→ππ = 3
k f (MH , mπ , mπ )

4πM2
H

|−iMH |2, (D12)

�S→ππ = 3
k f (MS, mπ , mπ )

4πM2
S

|−iMS|2, (D13)

�G′→ππ = 3
k f (M ′

G, mπ , mπ )

4πM2
G′

|−iMG′ |2, (D14)

where

−iMH = i

(
AH − BH

M2
H − 2m2

π

2
− CH m2

π

)
, (D15)

−iMS = i

(
AS − BS

M2
S − 2m2

π

2
− CSm2

π

)
, (D16)

−iMG′ = i

(
AG′ − BG′

M2
G′ − 2m2

π

2
− CG′m2

π

)
. (D17)

2. Pion-pion scattering

For the pion-pion scattering amplitude, we simply need
to add the corresponding expression for the scalar glueball
exchange to Eq. (C26). Then, the dimensionless scattering
lengths are given as

mπa0
0 = 1

32π

{
12
(
g2

1 − h3
)
Z4w2m2

π − 10

(
λ1 + λ2

2

)
Z4 − 2(h + h3)Z4w2m2

π + 12

M2
H − 4m2

π

[
(BH + CH )m2

π − AH
]2

+ 12

M2
S − 4m2

π

[
(BS + CS )m2

π − AS
]2 + 12

M2
G′ − 4m2

π

[
(BG′ + CG′ )m2

π − AG′
]2 + 8

M2
H

[
(BH − CH )m2

π + AH
]2

+ 8

M2
S

[
(BS − CS )m2

π + AS
]2 + 8

M2
G′

[
(BG′ − CG′ )m2

π + AG′
]2 + 16g2

1Z4m2
π

m2
ρ

m4
a1

}
(D18)

and

mπa2
0 = 1

16π

{
− 2

(
λ1 + λ2

2

)
Z4 + 2(h + h3)Z4w2m2

π − 4g2
1Z4m2

π

m2
ρ

m4
a1

+ 4

M2
H

[
(BH − CH )m2

π + AH
]2 + 4

M2
S

[
(BS − CS )m2

π + AS
]2 + 4

M2
G′

[
(BG′ − CG′ )m2

π + AG′
]2
}
. (D19)

APPENDIX E: PION-NUCLEON SCATTERING
PARAMETERS

The Feynman diagrams which contribute to the pion-
nucleon scattering amplitude are shown in Fig. 2. The isospin-
even and isospin-odd scattering lengths, scattering volumes,
and effective range parameters can be calculated using [105]

a(±)
0 = η(A(±)

0 + mπB(±)
0 ), (E1)

a(±)
1+ = 2

3
ηC(±)

0 , (E2)

a(±)
1− = 2

3
ηC(±)

0 − η

4m2
N

[A(±)
0 − (2mN + mπ )B(±)

0 ], (E3)

r (±)
0 = η

{
−2C(±)

0 + (mN + mπ )2

mN mπ

D(±)
0 − 1

2mN mπ

×
[(

1 − mπ

2mN

)
A(±)

0 −
(

mN + m2
π

2mN

)
B(±)

0

]}
,

(E4)
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FIG. 2. Pion-nucleon scattering diagrams at tree level. The solid
line represents the nucleon, the double line its chiral partner, the
dashed line the pion, the double-dashed the scalar-isoscalars H , S,
and G′, and the wavy line the ρ meson.

where

η = 1

4π
(
1 + mπ

mN

) , (E5)

C(±)
0 = ∂

∂t
(A(±) + mπB±)

∣∣
t=0, (E6)

D(±)
0 = ∂

∂s
(A(±) + mπB±)

∣∣
t=0. (E7)

The partial amplitudes A(±) and B(±) can be extracted by
rewriting the scattering amplitude into the form

Tab =
[

A(+) + (/q1 + /q2)

2
B(+)

]
δab

+
[

A(−) + (/q1 + /q2)

2
B(−)

]
iεbacτc, (E8)

where a and b are the isospin indices of the initial and final
pion states.

The correct result for the partial amplitudes for the model
of Ref. [35] reads

A(+) = 4
(
gπN g∂πN + g2

∂πN mN − gN∗πgN∗∂π

)− 2g2
N∗∂π (mN∗ − mN ) + 2gNNππ

+ {−g2
N∗π (mN + mN∗ ) + (

m2
N − m2

N∗
)[

2 gN∗πgN∗∂π + g2
N∗∂π (mN∗ − mN )

]}( 1

s − m2
N∗

+ 1

u − m2
N∗

)

− 2 gNσ

t − m2
σ

[
gπσ + g∂πσ

(
m2

π − t

2

)
+ g∂σπ

t

2

]
(E9)

A(−) = {−g2
N∗π (mN + mN∗ ) + (

m2
N − m2

N∗
)
[2 gN∗πgN∗∂π + g2

N∗∂π (mN∗ − mN )]
}( 1

s − m2
N∗

− 1

u − m2
N∗

)
,

B(+) = −(gπN + 2 g∂πN mN )2

(
1

s − m2
N

− 1

u − m2
N

)
− [gN∗π − gN∗∂π (mN∗ − mN )]2

(
1

s − m2
N∗

− 1

u − m2
N∗

)
, (E10)

B(−) = −(gπN + 2g∂πN mN )2

(
1

s − m2
N

+ 1

u − m2
N

)
− [

gN∗π + gN∗∂π (mN∗ − mN )
]2
(

1

s − m2
N∗

+ 1

u − m2
N∗

)

− 2 g2
∂πN − 2 g2

N∗∂π + 2 gNρ

t − m2
ρ

(
gπρ + g∂π∂ρ

t

2

)
. (E11)

The couplings can be read off from the meson and the baryon Lagrangian:

gπρ = −g1Z2 + g2
1ϕwZ2 − ϕwZ2

[
m2

ρ − m2
a1

+ (g1ϕ)2
] 1

ϕ2
= −g1Z2

m2
ρ

m2
a1

, (E12)

g∂πσ = g1wZ2(g1ϕw − 1) + ϕ

2
w2Z2(h1 + h2 − h3), (E13)

gπσ = −ϕZ2

(
λ1 + λ2

2

)
= − Z

2 fπ

(
m2

σ − m2
π

Z2

)
, (E14)

g∂σπ = g1wZ2, (E15)

g∂π∂ρ = g2Z2w2, (E16)

gχπ = gχZ2, (E17)

gχ∂π = gAVZ2w2, (E18)

gπN = −Z
eδ ĝ1 + e−δ ĝ2

4 cosh δ
, (E19)

gπNN∗ = −gπN∗N = Z
−ĝ1 + ĝ2

4 cosh δ
, (E20)
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g∂πN = Zw
eδc1 − e−δc2

4 cosh δ
, (E21)

g∂πNN∗ = g∂πN∗N = −Zw
c1 + c2

4 cosh δ
. (E22)

From this we obtain the isospin-even and isospin-odd scattering parameters:

a(+)
0 = 1

4π
(
1 + mπ

mN

)( Z

2 cosh δ

)2
(

−1

2
(ĝ1 − ĝ2)2

[
1 − Z fπ

2
w (c1 + c2)

]2 (mN∗ + mN )
(
m2

N + m2
π − m2

N∗
)

(
m2

N + m2
π − m2

N∗
)2 − 4m2

N m2
π

− w (c1 + c2)(ĝ1 − ĝ2)

[
1 − Z fπ

4
w(c1 + c2)

]
− w (c1eδ − c2e−δ )[ĝ1eδ + ĝ2e−δ − w mN (c1eδ − c2e−δ )]

+ (ĝ1eδ − ĝ2e−δ )
cosh δ

Z fπ

{
1 + m2

π

m2
σ Z4

[
Z2 − 2 − 2(Z2 − 1)

(
1 − Z2m2

1

m2
a1

)]}
+ mπ

{
(ĝ1 − ĝ2)2

[
1 − Z fπ

2
w (c1 + c2)

]2

× mN mπ(
m2

N + m2
π − m2

N∗
)2 − 4m2

N m2
π

+ [ĝ1eδ + ĝ2e−δ − 2 w mN (c1eδ − c2e−δ )]2 mN

mπ

1

m2
π − 4m2

N

})
. (E23)

Notice the change of sign in front of the third term in brackets in the third line as compared to Eq. (18) of Ref. [35]. The correct
result for the isospin-odd scattering length reads

a(−)
0 = 1

4π
(
1 + mπ

mN

)( Z

2 cosh δ

)2(
(ĝ1 − ĝ2)2

[
1 − Z fπ

2
w (c1 + c2)

]2 (mN + mN∗ )mN mπ(
m2

N + m2
π − m2

N∗
)2 − 4m2

N m2
π

+ mπ

2

{
−(ĝ1 − ĝ2)2

[
1 − Z fπ

2
w (c1 + c2)

]2 m2
N + m2

π − m2
N∗(

m2
N + m2

π − m2
N∗
)2 − 4m2

N m2
π

− [ĝ1eδ + ĝ2e−δ − 2w mN (c1eδ − c2e−δ )]2

1

m2
π − 4m2

N

− w2[(c1 + c2)2 + (c1eδ − c2e−δ )2] + 4 cosh δ
g1

m2
a1

(c1eδ + c2e−δ )

})
. (E24)

Errors in Eq. (19) of Ref. [35] were (i) the sign of the first
term in braces, (ii) the sign in front of the second term in the
second set of brackets in the third line, (iii) the coefficient of
the last term (1/m2

a1
instead of 1/Z2m2

ρ), and (iv) the sign in
front of the last term in parentheses in the fourth line.

In order to obtain the expressions for the scattering param-
eters for our model with scalar four-quark state and dynamical
scalar glueball we need to modify the pion-nucleon scattering
amplitudes by replacing the last term of A(+) with the expres-
sion

− 2 gNH

t − M2
H

[
gπH + g∂πH

(
m2

π − t

2

)
+ g∂Hπ

t

2

]

− 2 gNS

t − M2
S

[
gπS + g∂πS

(
m2

π − t

2

)
+ g∂Sπ

t

2

]

− 2 gNG′

t − M2
G′

[
gπG′ + g∂πG′

(
m2

π − t

2

)
+ g∂G′π

t

2

]
, (E25)

where

gNH = Q11 gNχ + Q21 gNσ + Q31 gNG, (E26)

gNS = Q12 gNχ + Q22 gNσ + Q32 gNG, (E27)

gNG′ = Q13 gNχ + Q23 gNσ + Q33 gNG, (E28)

gπH = Q11 gπχ + Q21 gπσ + Q31 gπG, (E29)

gπS = Q12 gπχ + Q22 gπσ + Q32 gπG, (E30)

gπG′ = Q13 gπχ + Q23 gπσ + Q33 gπG, (E31)

g∂πH = Q11 g∂πχ + Q21 g∂πσ + Q31 g∂πG, (E32)

g∂πS = Q12 g∂πχ + Q22 g∂πσ + Q32 g∂πG, (E33)

g∂πG′ = Q13 g∂πχ + Q23 g∂πσ + Q33 g∂πG, (E34)

g∂Hπ = Q11 g∂σπ , (E35)

g∂Sπ = Q12 g∂σπ , (E36)

g∂G′π = Q13 g∂σπ , (E37)

and

gNG = − b

cosh δ
, (E38)

gπG = −Z2 μ2

G0
+ Z2 gχ

G0
χ0, (E39)

g∂πG = Z2w2

(
m2

1

G0
+ gAVχ0

G0

)
. (E40)
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