
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-12

SOFTWARE-DEFINED RADIO PAYLOAD DESIGN

FOR CUBESAT AND X-BAND COMMUNICATIONS

Lovdahl, Bianca L.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/61218

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOFTWARE-DEFINED RADIO PAYLOAD DESIGN FOR
CUBESAT AND X-BAND COMMUNICATIONS

by

Bianca L. Lovdahl

December 2018

Thesis Advisor: James H. Newman
Second Reader: Giovanni Minelli

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
SOFTWARE-DEFINED RADIO PAYLOAD DESIGN FOR CUBESAT AND
X-BAND COMMUNICATIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Bianca L. Lovdahl

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 With traditional radio frequency (RF) bands becoming congested and the Department of Defense (DoD)
expanding its efforts in the field of small satellites, the need for an on-orbit software-defined radio (SDR)
has emerged. SDRs are a compact, off-the-shelf, low-cost, low-risk options for small satellite
communication and can provide the flexibility of on-orbit configurability. This study includes the research
toward the development of an on-orbit SDR CubeSat payload that can transmit on X-band spectrum (8–12
GHz). This band of interest can provide higher data rates and more bandwidth. Work in CubeSat
transmitters and receivers supports development of national capabilities in space of benefit to warfighters.
The payload designed, built, and tested for this research is called Com-Cube. Com-Cube utilizes hardware
components and software considered for incorporation into a future CubeSat payload. Com-Cube was tested
on a low altitude balloon (LAB) flight and demonstrated the transmission of images taken in-flight to a
ground station via an amateur radio C-band frequency (5.75 GHz). This work directly supports a transmitter
and receiver needed for future telemetry, tracking, and command (TT&C) and payload applications in the
field of small satellites. This type of payload provides a test platform for further NPS research in the Mobile
CubeSat Command and Control (MC3) ground station network operations and broadcast and receive
experiments at frequencies of interest.

14. SUBJECT TERMS
software-defined radio, small satellite, cubesat, satellite communication, x-band, mobile
cubesat command and control, high altitude balloon, cubesat payload

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

197

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SOFTWARE-DEFINED RADIO PAYLOAD DESIGN FOR CUBESAT AND
X-BAND COMMUNICATIONS

Bianca L. Lovdahl
Lieutenant, United States Navy
BS, U.S. Naval Academy, 2012

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: James H. Newman
 Advisor

 Giovanni Minelli
 Second Reader

 Garth V. Hobson
 Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 With traditional radio frequency (RF) bands becoming congested and the

Department of Defense (DoD) expanding its efforts in the field of small satellites, the

need for an on-orbit software-defined radio (SDR) has emerged. SDRs are a compact,

off-the-shelf, low-cost, low-risk options for small satellite communication and can

provide the flexibility of on-orbit configurability. This study includes the research toward

the development of an on-orbit SDR CubeSat payload that can transmit on X-band

spectrum (8–12 GHz). This band of interest can provide higher data rates and more

bandwidth. Work in CubeSat transmitters and receivers supports development of national

capabilities in space of benefit to warfighters. The payload designed, built, and tested for

this research is called Com-Cube. Com-Cube utilizes hardware components and software

considered for incorporation into a future CubeSat payload. Com-Cube was tested on a

low altitude balloon (LAB) flight and demonstrated the transmission of images taken

in-flight to a ground station via an amateur radio C-band frequency (5.75 GHz). This

work directly supports a transmitter and receiver needed for future telemetry, tracking,

and command (TT&C) and payload applications in the field of small satellites. This type

of payload provides a test platform for further NPS research in the Mobile CubeSat

Command and Control (MC3) ground station network operations and broadcast and

receive experiments at frequencies of interest.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...1
B. CUBESATS ..2
C. SOFTWARE-DEFINED RADIOS ...2
D. CHOICE OF RADIO FREQUENCY ..3
E. WEATHER BALLOON TESTING ...4
F. FLIGHT TEST UNIT ..5
G. ORGANIZATION OF STUDY ..5

II. BACKGROUND ..7
A. DIGITAL COMMUNICATIONS ..7
B. INTRODUCTION TO SOFTWARE-DEFINED RADIOS8
C. ANTENNA DESIGN ...10
D. LINK BUDGET ...16
E. STATE-OF-THE-ART APPLICATIONS ...19
F. RELATED NPS RESEARCH ..20

III. HARDWARE ...23
A. MISSION REQUIREMENTS ..23
B. COM-CUBE HARDWARE ..24

1. Overview ...24
2. Payload Hardware ...28
3. Bus Hardware...37

IV. SOFTWARE ...41
A. GNU RADIO ..41
B. COM-CUBE SOFTWARE CONCEPT OF OPERATIONS44
C. SOFTWARE DEVELOPMENT ..46

1. Com-Cube Payload Transmitter Software46
2. AX.25 Protocol ...48
3. Com-Cube Receiver Software ...48
4. Com-Cube Bus Software ...50

V. TESTING AND VERIFICATION ...53
A. GNU SIMULATION AND BENCH TESTING53
B. OUTDOOR TESTING ..54
C. ENVIRONMENTAL TESTING ..57

viii

D. LOW ALTITUDE BALLOON FLIGHT TEST58
1. Federal Regulations ...58
2. Flight Test Concept of Operation ...58
3. Flight Test Planning ...59

VI. LOW ALTITUDE BALLOON FLIGHT TEST RESULTS AND DATA
ANALYSIS ...63
A. LOW ALTITUDE BALLOON TEST ..63

1. Test Summary ..63
2. Low Altitude Balloon Flight ..64
3. Recovery Efforts...73

B. PAYLOAD DATA ANALYSIS ..77
C. FLIGHT DATA ANALYSIS ..78
D. LESSONS LEARNED FROM LAB FLIGHT TEST83

1. Balloon Release...83
2. C-band Link ...84
3. Solar Panels ..84
4. Software ..85

VII. CONCLUSION AND FUTURE WORK ...87
A. SUMMARY ..87
B. FUTURE WORK ...88

1. New Payload Software for Com-Cube88
2. S- and X-Band Communications Payload for CubeSat89
3. Future Payload Testing with Mobile CubeSat Command

and Control ...91

APPENDIX A. U.S. AMATEUR RADIO BANDS [60] ...93

APPENDIX B. COM-CUBE LINK BUDGET SPREADSHEET95

APPENDIX C. USRP B205MINI-I SPECIFICATION SHEET97

APPENDIX D. ZVBP-5800-S+ BAND PASS FILTER DATA SHEET99

APPENDIX E. CBAND_TX.PY ..101

APPENDIX F. CBAND_RX.PY ..107

APPENDIX G. CBAND_RX.PY PARSE AX.25 BLOCK PYTHON CODE119

ix

APPENDIX H. CHUNKING.PY ...135

APPENDIX I. CFR TITLE 14 PART 101.1 AND 101.7 [44]153

APPENDIX J. SPOT FLIGHT DATA..155

APPENDIX K. GPS FLIGHT DATA ...157

APPENDIX L. CUBESAT LINK BUDGET SPREADSHEET161

APPENDIX M. BLOCK UPCONVERTER DATA SHEET163

APPENDIX N. BLOCK DOWNCONVERTER DATA SHEET165

LIST OF REFERENCES ..167

INITIAL DISTRIBUTION LIST ...173

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Transmitter Block Diagram. Adapted from [16] [17, p. 1].8

Figure 2. Receiver Block Diagram. Adapted from [16], [17, p. 1].8

Figure 3. Software-Defined Radio Block Diagram. Adapted from [19] and
[20]. ..9

Figure 4. Helical Antenna Dimensions. Source: [23]. ..11

Figure 5. Helical Antenna. ..12

Figure 6. MATLAB-Generated Polar Plot of C-Band Helical Antenna
Radiation Pattern. ...13

Figure 7. MATLAB-Generated Polar Plot of C-Band Dipole Antenna
Radiation Pattern. ...14

Figure 8. Com-Cube C-Band Dipole Antenna. ...15

Figure 9. Photo of C-Band Dipole Antenna Tuning. ..15

Figure 10. Com-Cube Interface Diagram. ...26

Figure 11. NX Model of Com-Cube. ..27

Figure 12. Photo of Com-Cube. ..28

Figure 13. B205mini-i without Enclosure Compared to a Coin [33].29

Figure 14. B205mini-i with Enclosure. Source: [33]. ...30

Figure 15. Raspberry Pi 3 Model B without Enclosure Box.31

Figure 16. Raspberry Pi 3 Model B with Commercial Vendor Enclosure Box
Compared to a Coin. ..32

Figure 17. Raspberry Pi Wide Angle Camera Lens. Source: [36].33

Figure 18. Photo of Keysight FieldFox Spectrum Analyzer Measurement of
Com-Cube’s Payload Occupied Bandwidth. ...33

Figure 19. ZVBP-5800-S+ Band Pass Filter. Source: [37]. ..34

Figure 20. Mini-Circuits ZX60-83LN-S+ Low Noise Amplifier. Source: [40].35

xii

Figure 21. NX Screen Capture of Com-Cube Payload Mount and Cover Model.36

Figure 22. NX Models of SAVIOR-Cube and Com-Cube Payload Mounts.36

Figure 23. NX Screen Capture of 2U Rail Structure. ..37

Figure 24. Com-Cube C&DH and EPS Printed Circuit Boards.39

Figure 25. GNU Radio Deprecated Category of Blocks Library.41

Figure 26. Screenshots of MATLAB QPSK Transmitter with USRP Hardware.42

Figure 27. Screenshots of MATLAB QPSK Receiver with USRP Hardware.43

Figure 28. Com-Cube Software Concept of Operations. ..45

Figure 29. C-band Transmitter GNU Radio Flowgraph. ...47

Figure 30. Com-Cube Data Transmission Packet Frame. ...48

Figure 31. C-band Receiver GNU Radio Flowgraph. ...49

Figure 32. Photo of Bench Testing with Helical Antennas. ..53

Figure 33. Payload Bench Testing with Payload Dipole Antenna.54

Figure 34. Photo of C-Band Dish Antenna. ..55

Figure 35. Photos of Outdoor Testing. ..56

Figure 36. Photo of Outdoor Testing from Spanagel Hall Roof.57

Figure 37. Flight Test Concept of Operations. ..59

Figure 38. habhub Balloon Burst Calculator with Com-Cube LAB Flight Inputs
[47]. ..60

Figure 39. habhub Flight Prediction with Com-Cube LAB Flight Inputs [47]
Generated Morning of LAB Flight Test. ...61

Figure 40. Google Maps Image of Launch Site Location [49].63

Figure 41. Photo of Launch Team Filling Balloon. ..65

Figure 42. Photo of Launch Preparation. ..65

Figure 43. Com-Cube Payload Photo #01. ..66

xiii

Figure 44. Photo of Com-Cube Launch. ...67

Figure 45. Stored Payload Photo Taken at Time of Launch.68

Figure 46. Stored Payload Photo Taken Five Seconds After Launch.68

Figure 47. Com-Cube Payload Photo #02. ..69

Figure 48. Com-Cube Payload Photo #04. ..70

Figure 49. Com-Cube Payload Photo #05. ..70

Figure 50. Com-Cube Payload Photo #09. ..71

Figure 51. Com-Cube Payload Photo #10. ..71

Figure 52. Photo of Com-Cube In-Flight from Ground Station.72

Figure 53. Photo of LAB at 1245 PDT. ..73

Figure 54. Photo of Com-Cube’s SPOT Online Updates from 1432 PDT to
1947 PDT. ..75

Figure 55. Photo of Com-Cube After Landing in King City, California.76

Figure 56. Photo of Woman who Found and Returned Com-Cube, with Author.77

Figure 57. Last High-Resolution Photo Taken by Payload. ..79

Figure 58. Google Earth Imagery Corresponding to Last High-Resolution Photo
Taken by Payload. ..80

Figure 59. LAB Flight Altitude Data vs. Time Plot for Operational Life of
Com-Cube. ...81

Figure 60. Full LAB Flight Altitude Data vs. Time Plot. ...81

Figure 61. Full LAB Flight Data with Adjustments: Altitude vs. Time.83

Figure 62. Cross Technologies Block Up and Down-converter [52], [53].89

Figure 63. National Instruments USRP-2922 SDR [54]. ..89

Figure 64. X-band Conversion Circuitry. ..90

xiv

 THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Helical Antenna Dimensions: Adapted from [23].11

Table 2. Summary of Assumptions and Findings for Link Budget Analysis.18

Table 3. Requirements for Com-Cube. ..23

Table 4. Com-Cube Payload and Bus Systems and Components.25

Table 5. C-Band Dish Antenna Characteristics and Calculated Gain......................55

Table 6. Requirements Met/Not Met for Com-Cube. ..64

Table 7. Summary of Assumptions and Findings for Revised Link Budget
Analysis..78

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

A ampere
ADCS attitude determination and control
BPF band pass filter

°C degrees Celsius

C2 command and control
C&DH command and data handling
CFR Code of Federal Regulations
cm centimeter
COTS commercial-off-the-shelf
CONOPS concept of operations
CubeSat cube satellite
dB decibel
DoD Department of Defense
DSP Digital Signal Processor
EIRP equivalent isotropic radiated power
EDU engineering design unit
EPS electrical power system
FAA Federal Aviation Administration
FCC Federal Communications Commission
g gram
GHz gigahertz
GPIO general purpose input output
GPS Global Positioning System
GUI graphical user interface
HAB high altitude balloon
HDLC high level data link control
HPA high power amplifier
Hz hertz
I/O Input/Output

xviii

in inch
ISS International Space Station
kg kilogram
kHz kilohertz
km kilometer
KML keyhole markup language
kPa kilopascal
kph kilometer per hour
LAB low altitude balloon
lbs pounds
LOS line of sight
m meter
m/s meters per second
mAh milliamp hour
MATLAB Matrix Laboratory
Mbps megabits per second
MC3 Mobile CubeSat Command and Control
mL mililiter
mm millimeter
MHz megahertz
NTIA National Telecommunications and Information Administration
NPS Naval Postgraduate School
oz ounce
PCB printed circuit board
PDU protocol data unit
PST Pacific Standard Time
RF radio frequency
rPi Raspberry Pi
Rx receive
SATCOM satellite communication
SDP software-defined payload
SDR software-defined radio

xix

SHF super high frequency
SmallSat small satellite
SNR signal power-to-noise ratio
SSAG Space Systems Academic Group
TRL Technology Readiness Level
TT&C telemetry, tracking, and command
Tx transmit
UART universal asynchronous receiver transmitter
UDP user datagram protocol
UHD USRP hardware driver
USB universal serial bus
USRP universal software radio peripheral
W watt

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

ACKNOWLEDGMENTS

I would like to thank my thesis advisor and professor, Dr. Jim Newman, and second

reader, Dr. Giovanni Minelli, for their instruction, guidance, and support throughout my

time at NPS. Thank you to Mr. David Rigmaiden for the many, many hours spent teaching

me about communications and electrical engineering, and helping me prepare for and

execute my flight experiment. Thank you to Mr. Jim Horning for his tireless efforts while

editing, writing, and testing Python code for my payload and bus software. Thank you to

Mr. Dan Sakoda for helping me with the structure of Com-Cube and for bearing with my

endless 3D printing requests. Thank you to Mr. Ron Phelps for building the majority of

Com-Cube’s bus. Thank you to Mr. Alex Savattone for his help with bus software, flight

test support, and for capturing the launch with some fantastic photos and video footage. I’d

also like to thank Dr. Wenschel Lan and Mrs. Lara Magallanes for helping and encouraging

me throughout my thesis process.

I could not have written a grammatically correct thesis without my wonderful

writing coach, Dr. Cheryldee Huddleston. I also could not have launched and flown Com-

Cube without the following enthusiastic volunteers: LT Logan West, LCDR Laura

Anderson, MAJ Dane Sagerholm, LTJG Niko Wooten, LT Jonathan Chitwood, and

LTJG Harrison English. Finally, thanks to Rich and Sharon Casey—I could not have

landed Com-Cube (or “Amelia”) on a better driveway!

I would like to dedicate my thesis to my grandfather, Alvaro Ramirez, and my late

grandmother, Ana Ramirez. Without their love, courage, determination, and sacrifice, I

would not be here. I am so inspired by their courage to immigrate to the United States and

endure such a tough beginning in this country all while also raising five children, to include

my mother. Mom, Dad, and Beau, I am so grateful for all the love and support you’ve given

me throughout my time at NPS.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THESIS OBJECTIVE

The objective of this thesis is to develop a design for a CubeSat payload supporting

S-band and X-band communications using a software-defined radio (SDR). With space

technology and space launch opportunities becoming more accessible around the world,

there is a rapid increase of spacecraft operating on orbit. As a result, traditional radio

frequency (RF) bands used for transmitting data between spacecraft and Earth are

congested. This congestion creates a competition for the remaining bandwidth. As stated

in NASA’s 2015 “Small Spacecraft State of the Art” technical paper:

Higher data rates are more readily achievable with higher frequencies
because data rate is proportional to bandwidth used for communication, and
bandwidth is more readily available in the higher frequencies. There is
currently significant crowding of the lower RF frequencies, especially S-
band from cell phones. [1, pp. 100–101]

X-band represents one of the higher frequency bands of interest to the Department of

Defense (DoD) for space communications applications.

Technology advancements in commercial-off-the-shelf (COTS) SDRs allow for

on-orbit configurability while minimizing the mass and size of the communication system.

Consequently, SDRs are appealing for CubeSat applications and future national

capabilities in space. In a conference paper for the 26th American Institute of Aeronautics

and Astronautics (AIAA), researchers from the European Space Agency (ESA) defined

software-defined payloads (SDPs) as satellite communication payloads “consisting of on-

board hardware and software technologies to in-flight reconfigure satellite payloads for

multiple different communications scenario” [2, p. 2]. The DoD can benefit from the use

of SDRs on small satellites in that CubeSat SDPs can provide low-cost, low-risk, and

flexible communication capability to warfighters. This research will also increase

opportunities for experimentation with the Mobile CubeSat Command and Control (MC3)

ground station network and CubeSat telemetry, tracking, and command (TT&C)

capabilities and missions at frequencies of interest.

2

B. CUBESATS

CubeSats are a category of spacecraft of interest to the Naval Postgraduate School

(NPS) Space Systems Academic Group (SSAG) Small Satellite (Sat) Laboratory. CubeSats

are a type of nanosatellite and have standardized dimensions in terms of cubic units 1U up

to at least 6U. According to the CubeSat Design Specification developed at the California

Polytechnic State University, each unit side is 10 cm and must remain within a mass limit

of 1.33 kg [3]. CubeSats typically are secondary payloads on launch vehicles and utilize

adapter systems such as the NPS CubeSat Launcher [4] or the NanoRacks CubeSat

deployer systems on the International Space Station [5]. There are launch vehicles in

development designed for dedicated CubeSat launches such as Spaceflight’s Sun

Synchronous Orbit – A (SSO-A) rideshare mission [6] and Rocket Lab’s Venture Class

Launch Services-1 (VCLS-1) mission [7]. Therefore, CubeSats are a low-cost and low-risk

platform for technology demonstrations and missions in Lower Earth Orbit (LEO). Many

educational institutions and industries have already taken advantage of this more affordable

accessibility to space and, according to the Nanosatellite and CubeSat Database, as of 11

August 2018, 875 CubeSats have been launched since 1998 [8].

C. SOFTWARE-DEFINED RADIOS

Many CubeSats utilize COTS components. As technology progresses in the area of

SDPs for spacecraft, many types of COTS SDRs now exist that fit within the dimensions

and mass and power constraints of CubeSats. Ettus Research (a National Instruments brand

company) carries at least six SDR products that fit within the CubeSat form factor.

Companies such as GomSpace [9] and Tethers Unlimited sell space qualified SDRs

designed for small satellites (1U or 3U) operating in LEO [10]. SDRs reduce the hardware

required by traditional radios to provide signal processing and tuning over a wide range of

frequency bands.

SDRs are also much more flexible than hardware radios since they are

reprogrammable. The versatile nature of SDRs should be advantageous for spacecraft in

that SDRs can offer on-orbit configurability. This versatility provides much more mission

capability over a traditional hardware radio payload that is not reprogrammable once

3

launched. The ability to reconfigure a communications payload and utilize multiple

channels or frequency bands enables operators to accomplish different communications

missions with one spacecraft.

The compact size, affordability, and adaptability of many state-of-the-art SDRs

make them appealing for CubeSat communication systems and payloads. The NPS Small

Satellite Lab is conducting continuing research in the area of CubeSat ground station

systems. NPS currently uses its MC3 ground stations to communicate with several

CubeSats on orbit and conduct research with a growing MC3 network around the world.

The MC3 network has replaced its Icom Inc. radios and now utilizes SDRs for its

communication systems. NPS graduate student Jan Malte Roehrig stated the following in

[11]:

In order to improve this communication the SSAG seeks to replace
hardware radio components with a software defined radio (SDR). The
objective is to use off-the-shelf components and run them using software
generated in-house. One SDR can replace many thousands of dollars’ worth
of equipment at the groundstation. Also, with its flexibility to handle many
frequencies and various modulations an SDR allows the SSAG to
communicate with more satellites while using fewer hardware components.
It also enables the SSAG to change parts of the communication systems on-
the-fly.

D. CHOICE OF RADIO FREQUENCY

All types of spacecraft and launch technology have advanced greatly in the past

few years. As a result, radio frequency bands typically used for data transmission between

spacecraft and the Earth have become more and more congested. S-band, which covers

frequencies between 2 and 4 GHz, represents one of these bands. At the same time, the

demand for larger bandwidth and higher data rates, or throughput, has increased in order

to support more powerful spacecraft mission payloads. These advanced missions require a

downlink (transmission from the spacecraft to the ground) capability for larger volumes of

data. Higher frequency bands provide these desirable characteristics and, consequently, are

of interest to spacecraft users pursuing data transmission between the Earth and space and

data downlink and relays [12, p. 8]. One of these bands, X-band, includes frequencies that

fall within the range of Super High Frequency (SHF) on the electromagnetic spectrum and,

4

specifically, is the band between 8 and 12 GHz. Spacecraft operators can take advantage

of using X-band to downlink data from Space to the Earth and transmit larger amounts of

data at higher speeds. Additionally, the higher frequency allows many more users to

operate over that frequency range as opposed to S-band.

The Federal Communications Commission (FCC) and the National

Telecommunications and Information Administration (NTIA) are responsible for

regulating radio frequency use. The FCC allocates radio frequency use for non-Federal

applications and the NTIA does the same for Federal users [13]. In order to use the

appropriate X-band frequency channel for the purposes of this research, a Certificate of

Spectrum Support from the NTIA and official Radio Frequency Authorization is required.

Though the application process for this is underway, the authorization was not going to be

granted within the time allotted for this specific thesis research. Therefore, the author chose

a different frequency band for this research.

The FCC allocates certain bands under its purview to users who hold amateur radio

licenses. Amateur radio bands include frequencies used for satellite communications and

several of the faculty and staff at the SSAG Small Sat Lab are amateur radio license

holders. The amateur radio X-band frequency range is 10.0 to 10.5 GHz and exceeds the

capability of the hardware used for this research. The next lower amateur radio frequency

range is 5650 to 5925 MHz. Appendix A shows the U.S. amateur radio bands. This range

falls within C-band (4 to 6 GHz) and is within the capability of the available hardware. The

ground station dish antenna on-hand for this research is built for a center frequency of 5750

MHz. Therefore, for the purposes of this research, the payload will operate at amateur radio

C-band with a center frequency of 5750 MHz.

E. WEATHER BALLOON TESTING

“Weather” balloon flight testing represents a method to test components of payload

designs intended for use on-orbit by providing a rapid deployment cycle and an opportunity

to retrieve the unit after the launch. A high altitude balloon (HAB) refers to a weather

balloon used to carry and test a payload in a near-space environment. HAB flight testing is

less expensive, less complex, and offers an accelerated path to a flight demonstration,

5

compared to a CubeSat space launch. HABs typically fly to altitudes considered to be near

space or above 18 km (59,000 ft). In 2017, a directed study conducted by SSAG students

flew a HAB payload to 35 km (115,000 ft), a record altitude for the Small Sat lab [14].

The ground station antenna for the flight test unit, named the Com-Cube, was

pointed manually and required the payload to remain in visual range of the antenna

operators. Accordingly, the author chose to plan Com-Cube’s flight to reach only 610 m

(2,000 ft). As a result, payload for this research flew on a low altitude balloon (LAB) to

demonstrate C-band data transmission capability with a SDR.

F. FLIGHT TEST UNIT

Com-Cube consists of a payload and bus similar to that of a CubeSat. The Com-

Cube design is for operation within the atmosphere on a LAB flight test, while also closely

following the CubeSat size specifications. The whole Com-Cube structure is a 2U, and the

payload consists of an Ettus Research USRP B205mini-i SDR, a Raspberry Pi (rPi) 3 single

board computer with an attached wide-angle camera lens, a high power amplifier (HPA),

and a dipole antenna. The mission of the Com-Cube is to collect and transmit image files

via C-band using an SDR payload. As part of this work, Com-Cube has demonstrated the

capacity of the B205mini-i with a rPi 3 to transmit imagery data while in-flight over C-

band. The test results provide insight into how this payload may perform on-orbit.

G. ORGANIZATION OF STUDY

Chapter II provides a background to digital communications, SDRs, antenna

design, link budget analysis, and a summary of the author’s literature review for this thesis.

Chapter III and IV describe the hardware and software implemented for the flight test

experiment, respectively. Chapter V discusses accomplished testing and verification of the

flight test unit system and its components. Chapter VI discusses the flight test results and

data analysis. Chapter VII summarizes the author’s conclusions and recommendations for

future work in this area of study. Appendix A shows a diagram listing the U.S. amateur

radio bands. Appendix B includes the link budget spreadsheet for Com-Cube. Appendix C

and D provide the specifications for the B205mini-i and the ZVBP-5800-S+ band pass

filter, respectively. Appendix E and F show the Python code used for the Com-Cube C-

6

band transmitter and ground station receiver, respectively. Appendix G shows the Python

code included in the receiver GNU Radio flow graph. Appendix H shows the additional

Python code used to packetize imagery data for transmission. Appendix I provides the

regulations governing unmanned free balloon flights. Appendix J and K include flight data

from the SPOT tracker and GPS devices onboard Com-Cube, respectively. Appendix L

includes the link budget analysis for a CubeSat application of Com-Cube. Appendix M and

N are data sheets for X-band block up and downconverters, respectively.

7

II. BACKGROUND

A. DIGITAL COMMUNICATIONS

In a digital communications system that includes SDRs, the information or data to

be transmitted and received goes through a process depicted more simply in Figure 1. On

the transmitting end, information or data source can be originally formatted as text, audio,

data, etc. This information is then sampled and encoded into a stream of bits. Bits (b) are

the smallest units of data storage, or memory, used in computers and are binary, consisting

of 0’s or 1’s. Bytes (B), each typically made up of eight bits, can represent or store coded

characters based on their value.

In order to transmit bits and bytes of information through a communications system

and, ultimately, into a discernable format for the user on the receiving end, the data must

be transformed from a bit stream into a digital waveform. The bits are first converted to

modulation symbols by a bit-to-symbol mapper [15]. Modulation symbols are complex-

valued functions grouped based on the digital modulation scheme, implemented by the

communications system designer. The output of the bit-to-symbol mapper is the complex

baseband signal.

Digital modulation schemes are techniques used to modify a carrier signal with a

discrete signal that holds digital data for transmission. Some typical digital modulation

schemes include phase-shift keying (PSK), frequency-shift keying (FSK), and amplitude-

shift keying (ASK). Modulation schemes have advantages and disadvantages for different

types of communications links and applications. These schemes can differ in terms of

detectability, simplicity, bandwidth, and bit error rate (BER) [16].

The QPSK modulation scheme was of interest to the author since it has proven to

be a preferred scheme in existing and developing spacecraft X-band communications

systems. A few of the X-band satellite applications researched as background for this thesis

employed quadrature PSK (QPSK) or offset QPSK (OQPSK) for the digital modulation

technique. The RASAT and GomSpace Express-3 (GOMX-3), described in Section B of

Chapter II, are two examples of existing and successful on-orbit reprogrammable

8

communications systems that utilize QPSK and OQPSK digital modulation schemes for an

X-band downlink. The TREX X-band transmitter utilizes both of these schemes onboard

RASAT for its payload data downlink at X-band (8.23 GHz). GOMX-3 utilizes OQPSK

with convolutional coding for its telemetry downlink over X-band. Chapter IV discusses

the author’s final choice of modulations scheme for implementation with Com-Cube.

The next step for signal transmission is conducted by the quadrature modulator.

The quadrature modulator transforms the signal from complex baseband to real bandpass

by mixing the RF carrier frequency with a complex sinusoidal waveform [16]. The

bandpass signal is now ready for filtering, amplification, and transmission via an antenna.

Figure 1. Transmitter Block Diagram. Adapted from [16] [17, p. 1].

On the receiving side, the process is reversed so that waveform is transformed back

into a bit stream and then decoded and reformatted into a form that can be understood by

the receiver user. The receiver must be synchronized with the transmitter in terms of

timing, frequency, and phase. These types of synchronization required by the receiver (Rx)

add complexity over the transmitter (Tx) side. Figure 2 shows the receiver block diagram.

Figure 2. Receiver Block Diagram. Adapted from [16], [17, p. 1].

B. INTRODUCTION TO SOFTWARE-DEFINED RADIOS

An SDR is a communication system which utilizes software for radio functionality

and conducts signal processing with minimal hardware. Roehrig states that SDRs “can

9

handle a wide range of carrier frequencies and modulation formats” and “can be integrated

into multiple networks with various interfaces and different protocols” [11]. Figure 3 shows

a block diagram for the signal path of a typical SDR transceiver (a device that has both

receive and transmit capabilities). The main components of an SDR transceiver are an RF

front end, an analog-to-digital converter (ADC), a digital-to-analog converter (DAC), a

digital front end, and a field programmable gate array (FPGA). The RF front end represents

the components that convert the signal between raw RF and intermediate frequency (IF).

For the receiving side, the RF front end amplifies the signal power and converts the signal’s

center frequency to “a range compatible with the ADC” [18, p. 12]. The RF back end

accomplishes the opposite process for transmitting an optimal signal.

Figure 3. Software-Defined Radio Block Diagram.
Adapted from [19] and [20].

The digital front end provides channelization, sample rate conversion, and

synchronization of the signal for baseband processing [19, p. 152]. The digital signal

processor (DSP) for the Ettus B205mini-i is a FPGA. The FPGA drives the desired signal

processing algorithms using “an array of configurable logic blocks (CLBs) surrounded by

configurable routing” [19, p. 152]. The input/output (I/O) section represents the interface

with the SDR user platform (a USB 3.0 port for the B205mini-i). References [17], [18],

and [19] provide more in-depth descriptions and explanations of digital communications

and SDRs.

SDRs can employ different types of signal processing software and support various

programming languages. Many off-the-shelf SDRs support software programs and coding

10

languages such as MATLAB, GNU Radio, Python, and C/C++. GNU Radio advertises “a

free and open-source software development toolkit that provides signal processing blocks

to implement software radios” [21]. The GNU Radio program is a user-friendly GUI-based

system which offers an accessible method to code a software-defined radio for users with

limited coding experience. The program provides a library of blocks that users combine to

create flowgraphs. The program generates code in Python and can be hardcoded with the

Python or C++ language based on the finished flowgraphs.

Unlike GNU Radio, MATLAB is not free and has a higher computer-processing

requirement. Ettus maintains GNU Radio support for its SDRs, including the B205mini-i

and, consequently, GNU Radio-generated code is easy to implement and load onto the SDR

board. Though MATLAB offers Simulink programs compatible with SDRs, the rPi 3 used

for this research cannot handle MATLAB code, making GNU Radio flowgraphs and

Python code the natural choice to program the B205mini-i for this research.

C. ANTENNA DESIGN

Antennas are hardware used to transmit or receive radio wave signals. The design

characteristics of an antenna have significant impact on the performance of a radio.

Because dipole and helical antennas designed for C-band frequency transmission are small

and minimize the mass of the Com-Cube payload, the author considered dipole and helical

antennas for the Com-Cube payload antenna. Both dipole and helical antennas are widely

used for communication systems [22]. Dipole antennas represent one of the simpler types

of antennas and consist of two terminals through which the RF signal flows. The antenna

has two sections, or elements, of length equal to 1/4 the center frequency wavelength.

Based on Equation 1, where c represents the speed of light in meters per second (m/s) and

f represents frequency in hertz (Hz), the wavelength is 5.2 cm for a center frequency of

5750 MHz. Therefore, the total length of a dipole antenna for this frequency is 2.6 cm.

𝜆𝜆 =
𝑐𝑐
𝑓𝑓

Equation 1. Wavelength and Frequency Relationship

11

Helical antennas consist of a wire element wound as a helix. Helical antenna design

depends on the type of desired antenna mode, wavelength, number of desired helix turns,

and the spacing, or pitch, of the turns. Helical antenna modes include normal, axial, and

conical. These modes provide different radiation patterns and polarization. Axial mode

generates a circular polarized signal. For an axial mode helical antenna with four turns and

spacing equivalent to 0.23 times the wavelength, Figure 4 and Table 1 indicate the antenna

dimensions. The total length of the helical antenna is 4.8 cm.

Figure 4. Helical Antenna Dimensions. Source: [23].

Table 1. Helical Antenna Dimensions: Adapted from [23].

Dimension Value (mm)

L Length 48

d Wire diameter 1

S Winding step 12

D Internal diameter 17.6

a Separation between helix and ground plane 0.5

12

The author used Siemens NX software to create a digital version of the helical

antenna shape and mount and then used a 3D printer to print the antenna support structure.

The completed antenna used a wire of comparable diameter and connected to a metal

ground plane and coaxial cable port as shown in Figure 5.

Figure 5. Helical Antenna.

In order to assess the performance and effectiveness of the antenna, the author

conducted far-field range testing. Far-field range testing involves observing the reflected

energy received from the antenna when it is pointed various degrees from another antenna.

The results of the test provide the antenna radiation pattern in terms of measured gain (dB)

in a polar plot (degrees), as shown in Figure 6.

13

Figure 6. MATLAB-Generated Polar Plot of C-Band Helical
Antenna Radiation Pattern.

The results of the far-field range testing show that the antenna has a measured gain

of approximately 9.5 dB and a beamwidth of approximately 54 degrees. Though this

performance is sufficient for the purposes of the expected range of the Com-Cube flight

testing, the antenna would perform best if it could continuously point directly at the ground

station receiving antenna. Com-Cube does not have pointing capability and weather

balloon payloads experience significant dynamics during flight due to wind. Dipole

antennas are more forgiving in the intended flight environment and have lower

directionality. Dipole antennas, therefore, do not require the same level of pointing in order

to establish a link with the receiving antenna. Consequently, the author chose to utilize a

14

dipole antenna for the Com-Cube payload antenna. The author, however, was able to utilize

the helical antennas for lab testing of Com-Cube’s software.

Dipole antenna design is driven by the wavelength of the intended center frequency.

For Com-Cube’s center frequency of 5.75 GHz, the wavelength is 0.052 m. The total length

of the antenna radiating elements matches the wavelength and splits into two equally sized

elements. The elements are separate and both originate at the ground plane of the antenna.

One element is a braided shield. Unlike axial mode helical antennas, dipole antennas are

omnidirectional and radiate in a donut-like shape. The polar plot of an ideal dipole antenna

radiation pattern (as seen from the ground plane looking down the antenna) is shown in

Figure 7.

Figure 7. MATLAB-Generated Polar Plot of C-Band Dipole Antenna
Radiation Pattern.

15

SSAG staff designed, built, and tuned a simple dipole C-band antenna for the Com-

Cube payload (Figure 8). This purpose of this design was to output as much energy as

possible without the complexity of a balun circuit. The antenna was tuned to the desired

center frequency of 5.75 GHz using a Keysight FieldFox RF Analyzer (see Figure 9) and

trimming the edges of the radiating elements. Due to the small and delicate nature of the

antenna, an epoxy covering was applied to the elements and covered with Kapton tape to

provide rigidity.

Figure 8. Com-Cube C-Band Dipole Antenna.

Figure 9. Photo of C-Band Dipole Antenna Tuning.

16

D. LINK BUDGET

Link analysis is vital to ensuring that a signal link can be established and maintained

between the transmitting and receiving antennas in a communication system. A positive

link margin, or the difference between the signal power-to-noise ratio (SNR) and signal

detection threshold, is necessary to “close” or ensure the signal detection at the receiver.

As explained in The New Space Mission Analysis and Design (SMAD) handbook, “The

link consists of three parts: transmitter, the propagating electromagnetic signal, and a

receiver” [24, p. 467]. The link equation, shown below, indicates each of these parts.

𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑇𝑇𝑅𝑅 + 𝐺𝐺𝑇𝑇𝑅𝑅 + 𝐺𝐺𝑅𝑅𝑅𝑅 − 𝐿𝐿

Equation 2. Link Equation.

PRx represents the signal power at the receiver, PTx at the transmitter, GTx is the gain of the

transmitter antenna, GRx is the gain of the receiver antenna, and L represents the total losses.

Gain expresses the performance of an antenna and is calculated in units of dB using

Equation 3, as shown below.

𝐺𝐺 = 20.4 + 20log(𝑓𝑓) + 20 log(𝐷𝐷) + 10𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂)

Equation 3. Antenna Gain.

Gain is a function of the antenna efficiency (dimensionless), η, the diameter of the antenna,

D, and the wavelength of the signal, λ. D has units of meters (m) and f has units of GHz.

Signal power, gain, and losses, are measured in watts (W) or decibels (dB).

Equation 4, below, is used to convert from a physical unit, such as W, to dB. Working in

units of dB allows for simplified calculations (addition and subtraction) instead of

multiplication and division.

𝑃𝑃(𝑑𝑑𝑑𝑑) = 10log �
𝑃𝑃
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

�

Equation 4. Conversion to Decibels [24, p. 469].

The signal power changes as the signal travels through the link and it decreases as

the distance between the transmitter and receiver increases. Signal power loss occurs due

to atmospheric effects and due to power conversion, line loss, and thermal noise in

17

hardware components. Use of a larger antenna or higher signal frequency (as λ and f are

indirectly proportional) increases the gain value. Increasing the power of the transmitter

(utilizing a stronger amplifier) also increases the SNR of a communications link. Though

practices exist to help minimize hardware losses, losses due to the atmospheric

environment are impossible to eliminate.

The sum of transmitter and receiver losses, free space path loss, and miscellaneous

losses provides the total losses in a link. Equation 5 provides the method to calculate free

space path loss, LS, in units of dB.

𝐿𝐿𝑆𝑆 = 92.45 + 20log10(𝑟𝑟) + 20log10(𝑓𝑓)

Equation 5. Free Space Path Loss [24, p. 476].

r refers to the separation distance (km) between the transmitting and receiving antennas.

Decreasing the range between antennas or operating at a lower frequency minimizes LS.

The energy per bit to noise ratio, 𝐸𝐸𝑏𝑏
𝑁𝑁𝑜𝑜

, is an important ratio related to the SNR for

predicting the BER and link margin for a given communications modulation scheme [24,

p. 474]. Chapter IV includes further discussion of modulation schemes. 𝐸𝐸𝑏𝑏
𝑁𝑁𝑜𝑜

 is based on the

carrier power (received signal power) to noise ratio (𝐶𝐶
𝑁𝑁𝑜𝑜

) and the data rate (𝑅𝑅𝑏𝑏) as shown in

Equation 6. The SMAD provides several other equations necessary to calculate complete

link analysis (also referred to as a link budget), specifically the different types of losses

needed to find C, “the total RF power required to carry all of the information … to be

transmitted” [24, p. 478]. Chapter III includes the link budget calculations and assumptions

used for Com-Cube.
𝐸𝐸𝑏𝑏
𝑁𝑁𝑜𝑜

=
𝐶𝐶
𝑁𝑁𝑜𝑜

− 𝑅𝑅𝑏𝑏

Equation 6. Bit Energy to Noise Power Spectral Density Ratio.

Equation 7 provides the link margin, “or excess above the minimum threshold requirement

for the composite link, in received signal-to-noise power ratio at the receiver,” as explained

in the SMAD [24, p. 476].

18

Link Margin = �
𝐸𝐸𝑏𝑏
𝑁𝑁𝑜𝑜
�
𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃

− �
𝐸𝐸𝑏𝑏
𝑁𝑁𝑜𝑜
�
𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃

Equation 7. Link Margin

The author conducted link budget analysis specifically for Com-Cube’s intended payload

and LAB flight test ground station antennas. The author utilized an Excel spreadsheet

(Appendix B) that incorporated the equations listed above to determine the link margin at

various ranges expected during the flight. Table 2 lists a summary of the assumptions the

author made (based on [24] unless otherwise stated) and the findings of the link budget

analysis. Chapter V further discusses Com-Cube link budget analysis and how the author

incorporated the analysis into flight test planning.

Table 2. Summary of Assumptions and Findings for Link Budget Analysis.

Item Units Notes

Assumptions

Elevation Angle deg 12.5 Based on flight predictions
discussed in Chapter V for a
maximum slant range of
approximately 1 km
(LS=107 dB)

System Noise Temperature K 479

Bit Error Rate 1.00E-05

Required Eb/No for BER 10–5 dB 9.6

Calculated Coding Gain dB 0

Achievable Coding Gain dB 0

Transmitter Power W 0.05 Includes high power
amplifier

Receiver Polarization Loss—La dB -3

Receiver Line Loss—La dB -1

Findings

Link Margin Range dB 56.28 –
44.21

Ample positive margin

19

E. STATE-OF-THE-ART APPLICATIONS

Due to recent advances in CubeSat and SDR technology, various SDR space

applications have flown on-orbit and are in development. NASA currently operates the

Space Communications and Navigation (SCaN) Testbed onboard the International Space

Station (ISS): “The objective of the SCAN Testbed is to study the development, testing,

and operation of SDRs and their associated applications in the operational space

environment to reduce cost and risk for future space missions” [25, p. 1]. Three SDRs

employed by the SCaN Testbed operate in S-band, Ka-band, and L-band. These radios

support communication with the Tracking and Data Relay Satellite (TDRS) system, receive

and validate Global Positioning Satellite (GPS) signals, and conducting ranging operations

with approaching spacecraft [26].

In terms of systems currently on-orbit and operating at X-band, in 2011, Turkey

launched the RASAT Earth Observation MicroSat with a TREX X-band transmitter. The

spacecraft is approximately 95 kg in mass, and the TREX transmitter only contributes 3%

of this total mass [27]. The TREX transmitter provides selectable data rates as high as 100

Mbps for a data downlink at 8.23 GHz. RASAT provides an example of a small satellite

taking advantage of a higher data rate for an imaging mission.

The GOMX-3 is a 3U CubeSat developed by GomSpace and sponsored by the ESA

to demonstrate L-band and X-band communications. GOMX-3 launched to the ISS as a

secondary payload and deployed from the ISS in October 2015 [28]. This CubeSat

conducted the first test of the Syrlinks EWC27 X-band transmitter with a GomSpace SDR

for a high data-rate telemetry data downlink at frequencies between 8.025 and 8.4 GHz

[28]. GOMX-3 achieved its mission and objectives in less than three months [29].

ESA has also developed the OPS-SAT 3U CubeSat which employs an SDR payload

to provide re-configurability of multiple levels of the satellite. OPS-SAT will launch in

early 2019. OPS-SAT will operate at S-band for up and downlink and X-band for

downlink. The SDR is a receiver that can operate between 300 MHz and 3.8 GHz, act as a

“spectrum analyzer in space,” and monitor and evaluate incoming UHF signals [30]. The

SDR is accessible while on-orbit via: the ESA Space Operations Centre, NanoSat Mission

20

Operations software framework direct App interface, or direct commanding of the SDR

will be possible via Internet in real-time.

The University of Colorado Boulder Laboratory for Atmospheric and Space

Physics is currently developing a dual-frequency radio transceiver that will receive at S-

band and transmit at X-band. Requirements for this communication system include fitting

the 6U CubeSat form factor, operating in LEO for a year, and closing the link between

LEO and the NASA Near Earth Network of ground stations worldwide. The X-band

transmitter side includes an SDR that supports a 50 Mbps data rate. The transmitter has

reached Technology Readiness Level (TRL) 5 (component validation in relevant

environment).

These state-of-the-art and developmental systems are indicators of the significant

interest in using SDRs for higher frequency and higher data rate communications on-orbit.

This interest exists within government, commercial, and educational institutions

worldwide.

F. RELATED NPS RESEARCH

Several students at the NPS Small Satellite lab have conducted research in SDR

payloads for CubeSats. This research includes the development of and experimentation

with the MC3 satellite operations center (SOC), the growing MC3 ground station network,

and on-orbit CubeSats. The NPS MC3 utilizes SDRs for communication with three

Picosats Realizing Orbital Propagation Calibrations using Beacon Emitters (PropCube)

CubeSats. A number of NPS students have published theses regarding the utilization of

SDRs for ground stations.

Multiple theses, directed studies, and the Payload Design Course have included

HAB flights for CubeSat payload demonstrations. The following list includes the NPS

theses referred to in this section:

• M. Correa de Souza, “NPS Terahertz Project: IR HAB Flight Testing and

Integration,” M.S. thesis, Space Sys. Academic Group, NPS, Monterey,

CA, USA, 2018. [Online]. Available: http://hdl.handle.net/10945/58288

21

• J. Kopitzki, “Development and Implementation of a Communication

Scheme for Software Defined Radios,” M.S. thesis, Space Sys. Academic

Group, NPS, Monterey, CA, USA, 2014. [Online]. Available:

http://hdl.handle.net/10945/44973

• J. M. Roehrig, “Development of a Versatile Groundstation Utilizing

Software Defined Radio,” M.S. thesis, Space Sys. Academic Group, NPS,

Monterey, CA, USA, 2016. [Online]. Available:

http://hdl.handle.net/10945/49949

• P. C. Swintek, “Critical Vulnerabilities in the Space Domain: Using

Nanosatellites as an Alternative to Traditional Satellite Architecture,”

M.S. thesis, Space Sys. Academic Group, NPS, Monterey, CA, USA,

2018. [Online]. Available: http://hdl.handle.net/10945/59600

In 2017, the Software Assisted VHF Information Overhead Relay-CubeSat

(SAVIOR-Cube) flew via HAB flight [31]. SAVIOR-Cube demonstrated the use of a

B205mini-i SDR with a rPi processor for a very high frequency (VHF) relay for beyond

line of sight (LOS) communication. Com-Cube employs a similar payload to that of

SAVIOR-Cube in terms of hardware and software but differs in terms of frequency band,

digital modulation, and data transmission format.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. HARDWARE

A. MISSION REQUIREMENTS

The mission of the Com-Cube is to collect and transmit image files to a ground

station via C-band using an SDR payload. The following operational requirements that

support this mission drove the design for Com-Cube’s hardware and software components

and functions. Table 3 categorizes the requirements as threshold, objective, and stretch.

Meeting threshold requirements achieves a successful flight test. Objective and stretch

requirements are desirable for higher payload performance but not necessary for mission

success.

Table 3. Requirements for Com-Cube.

Threshold

Launch Com-Cube via LAB

Transmit one 480 x 640 pixels (67.5 kB) image from payload and receive at
ground station during flight at approximately 1 km slant range (LS=107 dB)

Objective

Transmit multiple images during flight

Recover intact Com-Cube after flight and relaunch for additional test

Recover intact Com-Cube and full flight data

Stretch

Transmit images at various resolution and data rates during flight

Transmit telemetry data via Com-Cube payload to ground station during flight

24

These requirements accomplish the following:

• Flight demonstration of potential baseline X-band SDR mission software

• Assessment of performance of SDR meant for CubeSat payload

• Estimate requirements to close link with payload on-orbit

Additionally, this flight demonstration represents the first time Small Sat lab students

have attempted to transmit imagery from a payload during flight, and the first time

attempting to conduct same-day re-flight of a weather balloon payload.

B. COM-CUBE HARDWARE

1. Overview

Satellite subsystems and components fall into two categories: payload and bus. The

payload includes all elements of the satellite that perform the mission. The bus represents

all elements that provide infrastructure to or support the payload. Satellite buses typically

include the following subsystems: command and data handling (C&DH); electrical power

system (EPS); propulsion; attitude determination and control system (ADCS); and

structure. In Com-Cube, no propulsion system or ADCS exist since the flight

demonstration is via high altitude balloon. Table 4 lists the payload and bus elements that

make up Com-Cube. Later in this chapter, the author will discuss the structure subsystem.

25

Table 4. Com-Cube Payload and Bus Systems and Components.

System/Component Description

Payload

SDR Receives image file data from the rPi 3, conducts signal
processing, and transmits the signal to the high power amplifier
for transmission via the dipole antenna

rPi 3 Single-board computer

rPi wide angle camera Takes images of ground during flight

Band pass filter Filters out frequencies outside of 5725-5875 MHz

High power amplifier Amplifies transmissions from SDR to the dipole antenna

Dipole antenna Transmits signal from payload to the ground station

Bus

C&DH circuit board Provides commanding of components of Com-Cube and
includes rPi Zero, MHX radio, and interface to P/L rPi 3

EPS circuit board Directs required power to Com-Cube components from
batteries

AA lithium batteries Source of power to EPS

Byonics GPS
Receiver

Provides positional data to C&DH

SPOT Provides positional data via smartphone SPOT App for users to
locate Com-Cube post-flight

Whip antenna Receives and transmits signals to and from the C&DH MHX
radio at 915 MHz

rPi camera Bus camera faces balloon and collects video during flight (video
file stored onboard bus rPi Zero)

Balloon and primary
parachute

High altitude balloon and primary parachute, associated mount,
connections, release mechanism, and interface with EPS

Back-up parachute Secondary parachute and actuator

26

Figure 10 shows a general interface diagram of the Com-Cube elements listed in

Table 4. Within the payload, the EPS provides power to the payload rPi, SDR and HPA.

Within the bus, the EPS powers the C&DH board, whip antenna, GPS receiver, and balloon

release actuator. The SPOT is a stand-alone component and includes its own batteries. The

C&DH board receives data and commands via the 915 MHz whip antenna and provides

separate commands to the payload rPi 3. The C&DH board also sends commands and

collects data from the EPS board in order to control and monitor the status of the connected

bus components.

Figure 10. Com-Cube Interface Diagram.

27

Figure 11 shows different views of the NX model of Com-Cube. The model does

not include the following components: dipole antenna, BPF, HPA, rPi cameras, cabling,

power switch, and the balloon and parachute rigging. Figure 12 shows photos of the

complete Com-Cube.

Figure 11. NX Model of Com-Cube.

28

Figure 12. Photo of Com-Cube.

Federal Aviation Administration (FAA) regulations state that the total mass of an

unregulated, unmanned free balloon payload can be no more than four lbs unless the total

mass per surface area is less than 13.8 mL per square cm (3 oz per square in) on the smallest

surface area for a mass up to 2.7 kg (6 lbs). The mass budget of Com-Cube (without balloon

or parachutes and associated rigging) is approximately 1.1 kg (2.5 lbs) and well within the

mass constraint.

2. Payload Hardware

The following sections describe the hardware components of the payload and the

reasons that the author chose these components for Com-Cube. The SAVIOR-Cube design

included the same SDR and rPi models and was successfully flight tested via HAB. This

successful test for a VHF relay provided additional confidence in component selection for

follow-on research [31].

29

a. USRP B205mini-i

The author chose the B205mini-i (shown in Figure 13), a COTS USRP built by

Ettus Research, for the SDR for Com-Cube for several reasons. The NPS Small Sat lab

utilizes various types of Ettus USRP models for research and the B205mini-i is a relatively

low-cost model with appealing mass and dimension characteristics, capacity for multiple

communication applications, and software for FPGA programming. Ettus Research

advertises that this SDR is “the size of a business card” [32], which makes it an attractive

candidate for incorporation into a CubeSat form factor. The B205mini-i can has a wide

frequency range reaching 6 GHz, which supports the frequency band of choice for this

flight demonstration. This SDR supports software types such as GNU Radio and Python

(further discussed in Chapter IV). Appendix C provides the full specifications for the

B205mini-i.

Figure 13. B205mini-i without Enclosure Compared to a Coin [33].

30

The Small Sat Lab purchased the B205mini-i with an Ettus aluminum enclosure.

The author chose to include the enclosure in the payload mount design in order to protect

the SDR board, take advantage of an improved operating temperature range, and utilize the

enclosure’s shielding from external RF noise and interference. Ettus advertises that this

enclosure (see Figure 14) increases the “range from 0 – 45 °C to -40 – 75 °C” [34]. Screw

holes on one side of the enclosure provide a means to connect the SDR to the payload

mount (described later in this chapter).

Figure 14. B205mini-i with Enclosure. Source: [33].

b. Raspberry Pi 3 Model B

As stated in NASA’s Mission Design Division 2015 Small Spacecraft Technology

State of the Art report, “A number of open source hardware platforms hold promise for

small spacecraft systems… rPi is another high-performance open source hardware platform

capable of handling imaging, and potentially, high-speed communication applications” [1,

p. 91]. The Small Sat lab utilizes various models of the rPi small form-factor computer for

both payload and bus components. Similar to the B205mini-i, the rPi 3 (see Figure 15) is

low-cost, lightweight, fits within the CubeSat dimension specifications, and provides high

31

computing performance. The rPi 3 board contains ports for USB, Ethernet, HDMI, micro

SD card, micro USB power source, and general-purpose input output (GPIO) pins. These

connections provide multiple ways to interface, interact with, and display programs and

data stored on the rPi. The board also includes a port for a rPi camera attachment which is

critical to the Com-Cube mission. [35] provides the full specifications for this rPi model.

Figure 15. Raspberry Pi 3 Model B without Enclosure Box.

Multiple commercial vendors sell a protective case enclosure box for the rPi 3

Model B shown in Figure 16. However, the author found that this box is larger than desired

for the Com-Cube payload and impedes access to many of the ports previously described.

In order to provide protection and user access to the rPi ports, the author designed a smaller

cover for the rPi board and screw connections to the Com-Cube payload mount.

32

Figure 16. Raspberry Pi 3 Model B with Commercial Vendor
Enclosure Box Compared to a Coin.

c. Wide Angle Raspberry Pi Camera

The author chose to use a rPi-compatible COTS wide angle fish eye camera lens

with five megapixel resolution (Figure 17) for the payload camera. For the purposes of the

flight test experiment, this camera takes both low and high resolution images—the low

resolution images are ultimately transmitted during flight to the ground station and the high

resolution images are stored onboard the Com-Cube payload rPi.

33

Figure 17. Raspberry Pi Wide Angle Camera Lens. Source: [36].

d. ZVBP-5800-S+ Band Pass Filter

The author chose to include a band pass filter (BPF) to precede the HPA and

payload antenna. This filter is used to mitigate spurious emissions from being transmitted

by the dipole antenna. The filter attenuates frequencies outside of its pass band range of

5725 to 5875 MHz. Appendix D includes roll-off and other performance data for this BPF.

The author used the Keysight FieldFox spectrum analyzer to measure Com-Cube’s payload

transmitter occupied bandwidth as shown in Figure 18.

Figure 18. Photo of Keysight FieldFox Spectrum Analyzer
Measurement of Com-Cube’s Payload Occupied Bandwidth.

34

The occupied bandwidth is only 10.13 kHz and so the BPF provided a very

conservative means to ensure Com-Cube’s transmissions remained within the intended

channel. The author also chose this particular model for its small size and weight, its SMA

(SubMiniature version A) connectors for interfacing with coaxial cables, and because it

was readily available. Figure 19 shows the chosen BPF for Com-Cube.

Figure 19. ZVBP-5800-S+ Band Pass Filter. Source: [37].

e. High Power Amplifier

In order to increase the signal power output from the payload SDR and assist in

closing the link between the Com-Cube and ground station, the author chose to incorporate

a HPA (Figure 20) between the BPF output and the payload dipole antenna input. This

component, sold by Mini-Circuits, is advertised and typically used as a low noise amplifier

(LNA). LNAs are traditionally used in a communications system to amplify weak signals

picked up at the receive antenna.

For the purposes of Com-Cube, due to size and power constraints, the functionality

was reversed to amplify the signal from the SDR and radiate it out of the transmit antenna.

This application of the amplifier functioned well due to the shorter distances involved in

the intended flight testing. The author chose to use this particular type of amplifier for

Com-Cube because the part was on-hand, small and lightweight, drew minimal power, and

supported the frequency range needed for C-band by providing about 20 dB of gain to the

signal [38]. The full specifications for this rPi model are provided in [39]. For a CubeSat

35

application, there would be a higher range to the receiver and so a different HPA

component and power requirement would be identified to close the link.

Figure 20. Mini-Circuits ZX60-83LN-S+ Low Noise Amplifier.
Source: [40].

a. Dipole Antenna

The payload dipole antenna, built in the Small Sat Lab, is shown in Figures 8 and

9.

b. Payload Structure

The Com-Cube payload structure (Figure 21) contains, protects, and connects the

B205mini-i and the rPi 3 to the chassis frame of the Com-Cube 2U structure. This structure

consists of a mount and cover that rigidly and compactly hold the SDR and rPi 3 together

in order to minimize volume. The payload structure was designed to fit within 1U, leaving

more than 1U of space for bus components. The height of the payload slightly exceeds 10

cm with cabling but does not interfere with any of the bus components. The HPA and BPF

are screwed into the outside of the payload cover. The positioning of the BPF points the

dipole antenna in the direction of the ground when Com-Cube is in flight.

The author designed the payload structure using Siemens NX software. The author

also modeled the payload structure used for the SAVIOR-Cube and improved upon the

design for Com-Cube. Figure 22 shows both the SAVIOR-Cube and Com-Cube payload

mounts for comparison. The parts were produced, using the Small Sat lab Stratasys Fortus

400mc 3D printer, as polycarbonate material. The 3D printed polycarbonate provides a

lightweight and strong material for CubeSat prototypes tested via weather balloon flight

testing.

36

Figure 21. NX Screen Capture of Com-Cube Payload Mount and
Cover Model.

Figure 22. NX Models of SAVIOR-Cube and Com-Cube Payload
Mounts.

37

3. Bus Hardware

The Com-Cube bus refers to the systems making up the infrastructure and

supporting the payload mission. These bus subsystems are the same as those used in

previous NPS Small Sat Lab HAB test buses. This section describes the Com-Cube bus

hardware components.

a. Structure

The overall rail structure of Com-Cube is that of a 2U CubeSat, shown in Figure

23. The chassis parts are modeled after the CubeSat specifications, designed with NX

software, and 3D printed.

Figure 23. NX Screen Capture of 2U Rail Structure.

38

b. EPS and Power

The EPS provides and manages the flow of power to other satellite subsystems. The

EPS consists of two batteries made up of five AA lithium iron disulfide cells in series. A

3D printed holder contains the batteries within the 2U. The EPS also includes sensors that

measure, collect, and send Com-Cube component voltage, amperage, and temperature

readings to the C&DH system. These readings are included in the telemetry data

downlinked from the bus MHX radio and provide information about the status and health

of Com-Cube’s systems.

Each cell provides a nominal voltage of 1.5 V and a capacity of 2000 mAh [41]. A

total voltage of approximately 5.0 V is required to power Com-Cube. When Com-Cube is

powered on and its payload is not transmitting, the current draw from the EPS is an average

of between 0.24 and 0.60 A. When the payload is transmitting, the current draw can reach

up to approximately 1.52 A. The EPS batteries, assuming constant current discharge,

should last up to 3 hours. The author’s plan to conduct as many as two 20-minute LAB

flights with Com-Cube’s flight batteries would drain only up to a third of the batteries’

capacity.

c. C&DH

The C&DH system commands Com-Cube’s subsystems. The C&DH system

receives user-sent commands via the MHX radio and whip antenna, and then sends the

appropriate commands from its rPi Zero board to the other Com-Cube components, to

include the payload. The C&DH also sends data back to the ground station such as system

statuses and GPS data. Figure 24 shows a photo of the bus C&DH and EPS printed circuit

boards (PCBs).

39

Figure 24. Com-Cube C&DH and EPS Printed Circuit Boards.

The rPi Zero has an attached rPi camera module v2 to record video during the LAB

flight. The video is stored onboard the rPi Zero memory card and is reviewed after the LAB

flight and Com-Cube recovery. During past HAB launches with this bus camera set up, the

recorded video provided insight into the dynamics experienced by the HAB payload during

flight.

d. GPS Receiver and SPOT Trace

The GPS receiver sends latitude and longitude data to the C&DH during the LAB

flight. The C&DH sends this data back to the ground station and enables the user to track

the location of Com-Cube. The SPOT Trace device broadcasts latitude, longitude, and

altitude information to the Globalstar satellite constellation that relays the position data to

a terrestrial gateway. This makes the position data available on the Internet via the SPOT

smartphone app. The GPS receiver and SPOT Trace updates during flight and post-flight

are valuable for chasing and recovering the payload.

40

e. Balloon and Parachutes

The weather balloon itself is a latex balloon filled with helium that carries Com-

Cube up into the air. The balloon rig attaches to one side of Com-Cube and is connected to

the primary parachute. Once the balloon is released (or bursts), the primary parachute is

allowed to catch air and inflate. A back-up parachute rig and Jolly Logic Chute Release

actuator attaches to a separate side of Com-Cube and deploys once the Com-Cube returns

to a pre-determined altitude. This back-up parachute mitigates the risk of a hard landing

for Com-Cube should the primary parachute fail.

41

IV. SOFTWARE

A. GNU RADIO

The software chosen for the Com-Cube SDR was GNU Radio due to the following

advantages. GNU Radio is free, user-friendly, flexible, modifiable, and is supported by the

B205mini-i. During the development of Com-Cube software for the SDR, however, GNU

Radio proved to have several limitations.

The author researched several examples of SDRs using GNU Radio to transmit and

receive data, imagery, or video. When the author attempted to recreate these examples,

however, some of the flow graph blocks did not function as expected. The GNU block

library lists several flow graph blocks as “deprecated” (Figure 25). This category refers to

blocks that do not function properly or no longer provide the preferred method to

implement a function.

Figure 25. GNU Radio Deprecated Category of Blocks Library.

42

GNU Radio sometimes hires third parties to create some of the blocks included in

the library. The use of third parties proved to be a program disadvantage in that, when GNU

Radio releases a new version of the overall program, third party block creators do not

always update their blocks for the newly released version. This can cause blocks to become

deprecated. In addition, new preferred methods for providing functions of deprecated

blocks are not necessarily clear to the user or reflected in the block library.

GNU Radio provides limited official documentation about its blocks and their

functions. GNU Radio does provide online guided tutorials and a user manual; however,

in order to find information regarding higher-level GNU Radio applications and

troubleshooting, users must research other users’ work online on personal websites,

academic assignments and reports, or utilize public message forums. In comparison,

MATLAB Simulink has blocks that can support the use of SDRs (to include the B205mini-

i). MATLAB also provides extensive, related documentation.

One of the many MATLAB Simulink examples provided online sends data packets

between SDRs, using QPSK modulation (a modulation scheme of interest to the author)

via SDRs (see Figures 26 and 27).

Figure 26. Screenshots of MATLAB QPSK Transmitter with USRP Hardware.

43

Figure 27. Screenshots of MATLAB QPSK Receiver with USRP
Hardware.

44

The author attempted to repurpose the example for Com-Cube SDR programming (such as

[42] and [20]), but decided this method was not the best use of time since the B205mini-I

and rPi 3 set up would not store and run MATLAB code on the rPi 3 computer. MATLAB

Simulink SDR examples, however, are helpful for studying and understanding the

functions of some GNU Blocks. Chapter VII includes further discussion of future SDR

software development.

The author considered three methods to mitigate these challenges with designing

Com-Cube GNU Radio software: work around deprecated blocks by using a different

combination of functioning blocks; use MATLAB Simulink to build the receiver software

and GNU Radio for the transmitter; or download an older version of GNU Radio to use

blocks before they became deprecated. Finding a work around for deprecated blocks

proved to be very time consuming and difficult to troubleshoot. The author assessed that

attempting to integrate MATLAB Simulink and GNU Radio for the Com-Cube

communication system would be more complicated than the first method. Using an older

version of GNU Radio only provided a temporary solution.

The best way to mitigate the limitations and disadvantages of GNU Radio is to

write code for new blocks or flowgraphs in order to meet specific requirements for a desired

SDR communication system. GNU Radio is accessible to users with limited coding

experience, but a competent understanding of communication theory concepts and coding

languages (such as Python and C++) is required to write code for new blocks. Due to

challenges encountered while creating new GNU Radio flowgraphs for Com-Cube’s

payload SDR software, the author chose to adapt PropCube GNU Radio flowgraphs and

associated Python code used by the MC3 SOC for satellite communication to achieve Com-

Cube mission requirements.

B. COM-CUBE SOFTWARE CONCEPT OF OPERATIONS

The software CONOPS for Com-Cube and the receiving ground station are

depicted in Figure 28. In order to meet mission requirements, the software for Com-Cube

conducts the following functions. The payload rPi camera takes and stores an image. Then

the Python script chunker.py, written by NPS Software Engineer James Horning, runs on

45

the payload rPi 3 and “chunks,” or packetizes, the image file. The rPi 3 runs the GNU

Radio Python script Cband_Tx.py to transmit the image data via the SDR. Cband_Tx.py

encodes, modulates, and transmits the data via the C-band dipole antenna to the ground

station.

Figure 28. Com-Cube Software Concept of Operations.

At the ground station, the receiver system utilizes a C-band dish antenna connected

to a laptop. The laptop runs the receiving version of chunker.py and GNU Radio flowgraph

to receive the C-band signal and reverse the functions of the transmitter. The flowgraph

demodulates and decodes received packets to recreate and store the image taken by the

payload rPi camera.

Simultaneously, the ground station uses a 915 MHz radio and antenna to

communicate with the Com-Cube bus MHX radio. In addition to providing command and

control (C2) of Com-Cube, the ground station uses this link to request data packets lost

over the C-band downlink. The chunker.py program identifies and requests dropped

imagery data packets via the C2 link. Onboard Com-Cube, these requests are sent from the

bus rPi to the payload rPi so that these packets can be resent to the ground station via the

SDR. The payload continuously sends the data for one image until ground station feedback

indicates all packets are received before sending another image.

46

C. SOFTWARE DEVELOPMENT

PropCube CubeSats’ downlink frequency is 913.97 MHz at a 9600 baud rate. [43]

and [11] provide background and discussion of the software used to receive and decode

signals from PropCube. The digital modulation scheme implemented in the GNU

flowgraphs for PropCube is Gaussian Minimum Shift Keying (GMSK), also known as

Continuous Phase Frequency Shift Keying (FSK). Kopitzki explains that, in this scheme,

“[T]he frequency change in the modulated signal takes place at the carrier zero crossing

point. That leads to a unique signal characteristic, where the frequency difference between

logical zero and logical one is always half the data rate, which leads to a constant

modulation index of 0.5” [43, p. 6].

This scheme works well for the data rate of 9600 baud used with PropCube

communications but is not well suited for higher data rates. The author was unable to

increase the data rate of the adapted PropCube GNU Radio flowgraphs without impairing

the overall functionality. In order to develop successful software in time for a LAB flight

test, the author maintained the 9600 baud rate for Com-Cube software. Chapter VII

discusses possible future improvements for Com-Cube software.

1. Com-Cube Payload Transmitter Software

The PropCube uplink GNU Radio flowgraph, designed by the Small Sat Lab faculty

and staff, was adapted and used as the transmitter flowgraph and ran on the Com-Cube

payload rPi 3 with the SDR. Figure 29 shows the adapted flowgraph called Cband_Tx.grc.

Appendix E includes the GNU Radio-generated Python code for Cband.Tx.grc.

The Options block indicates the name and running options for the code and the

Variable blocks define changeable values used in the flowgraph. The Socket PDU block

represents the source of data for transmission. This source allows data to enter the

flowgraph via a defined user datagram protocol (UDP) server port in the PDU (protocol

data unit) format. The HDLC (high level data link control) Encoder block encodes the PDU

data to mark the beginnings and ends of samples, or frames, of data. The preamble and

postamble lengths match those of the data frames to be transmitted.

47

Figure 29. C-band Transmitter GNU Radio Flowgraph.

48

The type of data is then changed from PDU to a tagged bit stream using the PDU

to Tagged Stream block. The bit steam is packed by the Unpacked to Packed block before

modulation by the GMSK Mod block. The data format is changed to complex type before

rational resampling and undergoing a low pass filter. The UHD: USRP Sink block defines

the SDR device and radio frequency details for transmission to include the sample rate,

center frequency, bandwidth, and transmit antenna port.

2. AX.25 Protocol

The data sent to the Socket PDU source block of Cband_Tx.grc was organized into

frames that could be properly encoded by the HDLC Encoder and, ultimately, decoded and

logged by the Com-Cube receiver software. The receiver flowgraph utilizes the AX.25

digital communication protocol to decode received data. This protocol is based on the X.25

protocol and was developed for Amateur Radio operators wishing to send and receive

different kinds of data packets [43, p. 31]. SSAG faculty developed the chunker.py script

to packetize the imagery data transmitted by Com-Cube. The chunker.py script organized

imagery data frames as shown in Figure 30.

 Preamble
40 x “7E”

Header
4 x “66”

File
Name

File
Size

Sequence
Number

Max
Sequence

Data CRC Postamble
20 x “7E”

Size (B) 8 4 12 4 2 2 256 4 4

Figure 30. Com-Cube Data Transmission Packet Frame.

3. Com-Cube Receiver Software

The PropCube receiver GNU Radio flowgraph was adapted to operate at a center

frequency of 5.75 GHz and decode the received packetized imagery data. Figure 31 shows

the adapted flowgraph used for receiving Com-Cube transmissions called Cband_Rx.grc.

Appendix F includes the GNU Radio-generated Python code for Cband.Rx.grc.

49

Figure 31. C-band Receiver GNU Radio Flowgraph.

50

The source block for the receiver flowgraph is the receiver (ground station) SDR.

The transmitter and receiver SDRs utilize an internal clock for measuring frequency instead

of a high-precision external oscillator. The frequency error increases between the radios as

the frequency increases. The author mitigated the frequency offset by making the receiver

center frequency adjustable while running Cband_Rx.grc.

The main path of the receiver flowgraph reverses the transmitter flowgraph

processes with the addition of a Frequency Xlating FIR Filter block used to account for

Doppler shift varying the center frequency [11]. The GFSK Demod block conducts GMSK

demodulation and its following blocks achieve the remaining data processing to return

received data to decoded bits and eventually reformat the data into a .jpeg file depicting

the original image taken by Com-Cube’s payload. The Parse AX.25 block represents an

embedded Python script that conducts the protocol discussed in the previous section.

Appendix G includes this script developed by Jan Malte Roehrig, Julian Brown, Giovanni

Minelli, James H. Newman, and James Horning.

4. Com-Cube Bus Software

The chunker.py script (Appendix H) is ran by both the Com-Cube rPi 3 and the

ground station laptop in a transmitter and receiver mode, respectively. On the transmitter

side, chunker.py packetizes imagery data. On the receiver side, the script determines what

packets have arrived and what packets were dropped and must be resent by Com-Cube.

The master.py script, ran on Com-Cube’s bus C&DH rPi Zero conducts the following

functions:

• Receive and execute commands from the ground station

• Command functions of payload SDR, rPi 3, and bus components

• Collect and transmit I2C data from bus sensors to the ground station

The command functions include requesting dropped packets identified by the receiver

chunker.py program. The bus communicates with the ground station via the 915 MHz whip

antenna. The User Interface for Command and Control of Embedded Systems, or

COSMOS, is ran on the laptop in order for the user to send commands to and receive data

51

from the bus. The ground station also logs all commands sent and received by COSMOS

on the laptop.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

V. TESTING AND VERIFICATION

A. GNU SIMULATION AND BENCH TESTING

During Com-Cube software development, the author ran GNU Radio flowgraphs

and Python scripts using a Linux laptop and two B205mini-i SDRs connected via USB and

coax cables. The author inserted an attenuator between the radio coax cables in order to

assess the performance of the software with decreased signal power. Once the software

functioned as desired, the author removed the coax cable connection between the SDRs

and connected them to BPFs and helical antennas, facing one another, to test the software

over air (Figure 32). This helical antenna bench testing provided an opportunity to assess

the performance of the radio software with added noise.

Figure 32. Photo of Bench Testing with Helical Antennas.

Once SSAG staff built and integrated the payload dipole antenna, the author

conducted a similar bench test (Figure 33). The author replaced the payload helical antenna

with the dipole antenna (along with BPF and HPA) and conducted the same tests with the

receiver SDR and receiver helical antenna. The performance of the entire payload assembly

was acceptable and the author was comfortable with transitioning to outdoor testing.

54

Figure 33. Payload Bench Testing with Payload Dipole Antenna.

B. OUTDOOR TESTING

In order to best predict the performance of Com-Cube in its flight environment, the

author conducted outdoor testing with the fully completed and integrated Com-Cube bus

and payload with the C-band dish antenna (shown in Figure 34) and laptop intended for

the LAB flight test. Small Sat lab personnel assembled the C-band dish antenna with the

characteristics listed in Table 5.

55

Figure 34. Photo of C-Band Dish Antenna.

Table 5. C-Band Dish Antenna Characteristics and Calculated Gain.

Diameter 1.2 m

Frequency Range 5750 GHz

Estimated Efficiency 60 %

Antenna Gain 37.2 dB

After fully integrating the Com-Cube payload and bus (in terms of both software

and hardware) and observing reliable performance during bench testing, the author tested

Com-Cube’s flight software outdoors with the C-band dish antenna intended for the LAB

flight test ground station (Figure 35). This testing provided not only an opportunity to

56

practice setting up hardware for the flight test, but also an assessment of Com-Cube’s

performance in an environment more similar to that of the flight test. The author separated

the C-band dish antenna from Com-Cube by 30 m to provide 77 dB free space loss. Com-

Cube successfully transmitted imagery data during the test.

Figure 35. Photos of Outdoor Testing.

In order to provide additional separation and further weaken the signal between the

C-band receiver and transmitter, the author repeated the outdoor test with Com-Cube,

stationed atop Naval Postgraduate School Spanagel Hall, and the dish antenna outside the

building at ground level (Figure 36). This provided approximately 106 m separation

between Com-Cube and the dish antenna (88 dB free space loss). Com-Cube continued to

transmit data successfully despite the added range. These successful outdoor tests instilled

confidence that Com-Cube would perform as desired during a LAB flight test.

57

Figure 36. Photo of Outdoor Testing from Spanagel Hall Roof.

C. ENVIRONMENTAL TESTING

As part of both the Payload Design Course and thesis work, vibration and thermal

vacuum chamber testing was conducted for the SAVIOR-Cube engineering design unit

(EDU). This EDU consisted of the same rPi 3 and B205mini-i components as Com-Cube.

The vibration testing for SAVIOR-Cube simulated the high winds expected during its HAB

flight test in the jet stream. HAB flight testing can subject payloads to a wide range of

temperatures. Students conducted thermal vacuum testing for SAVIOR-cube to ensure the

payload could survive temperatures between 35°C and -40°C. Students conducted

successful functional tests with the SAVIOR-Cube EDU during and after thermal vacuum

testing, and before and after vibration testing. Additionally, the EDU was undamaged by

the vibration testing [31].

The author did not expect the same winds and temperatures for Com-Cube’s LAB

flight test. In order to keep Com-Cube within visual range of the ground station and

58

manually pointed C-band dish antenna, onboard software would only allow Com-Cube to

reach an altitude of 610 m before the balloon would automatically release. SAVIOR-

Cube’s successful environmental testing proved to the author that the rPi 3 and B205mini-

i would perform successfully in the less harsh environment of a LAB flight as expected for

Com-Cube. For this reason and also due to time constraints, the author chose not to conduct

environmental testing such as vibration or thermal vacuum chamber testing.

D. LOW ALTITUDE BALLOON FLIGHT TEST

As a final flight demonstration, the author tested Com-Cube during a LAB flight.

Com-Cube launched from the Salinas Valley near Chualar on a Hwoyee 1000 weather

balloon on 18 October 2018.

1. Federal Regulations

Both FAA and FCC rules and regulations applied to the Com-Cube LAB flight test

and the author considered these policies during flight planning and followed same during

execution. Appendix I includes the FAA policies for unregulated and unmanned balloon

payloads listed in 14 Code of Federal Regulations (CFR) Part 101.1 and 101.7. Com-Cube

weighed under four lbs and, during launch and flight, the author ensured Com-Cube

operated in a safe manner that did not create a hazard to other persons or property [44].

According to FCC 47 CFR Part 97, an individual with an FCC-issued Amateur Radio

License is required to be present in order to use amateur radio services [45, p. 9]. The

author ensured an amateur operator attended Com-Cube testing using the amateur C-band

channel.

2. Flight Test Concept of Operation

Figure 37 depicts the CONOPS for the LAB flight test. The author planned to start

the payload software just before launching Com-Cube so that the payload could collect and

transmit images during the entire duration of the planned flight. The ground station C-band

antenna operator would need to maintain visual of the LAB to point the dish accurately so

the author planned to release the balloon before Com-Cube would fly out of visual range.

59

Figure 37. Flight Test Concept of Operations.

After launch, if at least one image was received by the ground station, the author

would decide whether or not to command balloon release based on the altitude and visual

range of Com-Cube. At the 20-minute elapsed time mark, or when Com-Cube reached 610

m in altitude, the balloon would automatically release. After balloon release and once Com-

Cube landed, recovery personnel would attempt to retrieve Com-Cube. The author would

then conduct a visual inspection of Com-Cube and a function test. If the inspection and test

were satisfactory, the author would consider relaunching for a second test.

3. Flight Test Planning

The author planned the LAB flight test primarily based on weather predictions for

the intended launch area in the Salinas Valley. Desirable weather for a LAB flight test is

warm temperatures, clear and sunny skies, and winds below 9.7 kph (6 mph). Low clouds

or rain would be reason to postpone the flight test. Higher wind speeds would make it

difficult for balloon handlers to maintain control of the balloon before launch.

60

The author chose to conduct the flight in the Salinas Valley in order to take

advantage of the flat rural terrain. By launching from the corner of a field in Chualar, the

LAB flight path would avoid local airports and highly populated areas. The author

generated flight path predictions for potential launch sites during the days and hours

leading up to the planned launch time (early afternoon), using the website habhub.org.

The habhub website provides resources for high altitude balloon flight planning.

The author utilized the burst calculator and predictor tools to plan Com-Cube’s flight path

and determine the best launch time and site location (Figure 38). The burst calculator tool

requires user inputs for both payload and balloon masses and either the target burst altitude

or ascent rate. The output of the calculator includes the altitude and time of burst, and

balloon volume and neck lift. The values from the burst calculator are inputs for the

predictor tool [46].

Figure 38. habhub Balloon Burst Calculator with Com-Cube LAB
Flight Inputs [47].

61

The predictor tool uses Google Maps and weather data to estimate the total flight

path of the balloon and payload. User inputs include the location and altitude of the launch

site, the date and time of launch, burst calculator outputs, and the descent rate of the

payload. The prediction data can be exported as a keyhole markup language (KML) file

and opened in Google Earth to depict the elevation profile of the predicted flight path [48]

(Figure 39).

Figure 39. habhub Flight Prediction with Com-Cube LAB Flight
Inputs [47] Generated Morning of LAB Flight Test.

The weather predictions for the afternoon of launch day were favorable; however,

indicated winds would exceed 6 mph after 1300 PDT. The author desired winds from the

north or northwest in order to avoid flying Com-Cube over Highway 101 or the town of

Chualar. Therefore, the author planned to launch Com-Cube no later than 1300 to take

advantage of low wind speeds and no earlier than 1100 to ensure the LAB would travel

west or southwest.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

VI. LOW ALTITUDE BALLOON FLIGHT TEST RESULTS
AND DATA ANALYSIS

A. LOW ALTITUDE BALLOON TEST

1. Test Summary

On October 18, 2018, the author conducted a successful Com-Cube LAB flight test.

Com-Cube launched at 1219 PDT from Chualar, California, in the Salinas Valley (36.5594

N, 121.5096 W shown in Figure 40). The payload transmitted five photos to the ground

station while in flight, meeting and exceeding the threshold requirements for the test.

Figure 40. Google Maps Image of Launch Site Location [49].

Table 6 shows the original mission requirements introduced in Chapter III and

indicates whether these were met or not met during the LAB flight experiment: All

threshold requirements were met and two of three objective requirements were met. Neither

stretch requirement was met, however due to locking software development in time for the

launch date. Chapter VII discusses software development for future Com-Cube

applications.

64

Table 6. Requirements Met/Not Met for Com-Cube.

Threshold Met/Not Met Notes
Launch Com-Cube via LAB Met
Transmit one 480 x 640 pixels
(67.5 kB) image from payload
and receive at ground station
during flight at approximately 1
km slant range (LS=107 dB)

Met Last photo received at
1.11 km slant range
(LS = 109 dB)

Objective
Transmit multiple images during
flight

Met Five images
transmitted during
flight

Recover intact Com-Cube after
flight and relaunch for additional
test

Not Met Com-Cube did not
release its balloon,
flew for over six
hours, landed
approximately 54 km
from the launch site,
and was recovered the
day after the flight test

Recover intact Com-Cube and
full flight data

Met

Stretch
Transmit images at various
resolution and data rates during
flight

Not Met Software not
developed with this
capability

Transmit telemetry data via
Com-Cube payload to ground
station during flight

Not Met Software not
developed with this
capability

2. Low Altitude Balloon Flight

The launch team set up the launch site and ground station in a clear area off Foletta

Road, less than half of a mile southeast of the town of Chualar. Students set up and operated

the C-band ground station dish antenna, pointing it southeast in the direction of the

predicted LAB flight path. Once a functional test was completed and the ground station

was in receipt of telemetry from Com-Cube’s bus (indicating the GPS receiver was synched

to GPS satellites), students and SSAG faculty and staff filled the balloon with helium and

attached it to Com-Cube. The team filled the balloon (Figures 41 and 42) until the pressure

gauge of the helium tank indicated 3,447 kPa (500 psi) (tank began with 16,203 kPa [2,350

65

psi]) in order to avoid overfilling and to ensure the balloon would ascend slowly once

launched.

Figure 41. Photo of Launch Team Filling Balloon.

Figure 42. Photo of Launch Preparation.

66

The payload operators sent the “plstart” command to the bus to begin taking photos

with the payload rPi camera and initiate imagery data transmission from the payload SDR

to the ground station. Figure 43 shows one of the first photos taken by and received from

Com-Cube’s payload, moments before launch.

Figure 43. Com-Cube Payload Photo #01.

Once it was apparent that the payload software was functioning, the author

launched Com-Cube into the air (Figure 44 through 46).

67

Figure 44. Photo of Com-Cube Launch.

68

Figure 45. Stored Payload Photo Taken at Time of Launch.

Figure 46. Stored Payload Photo Taken Five Seconds After Launch.

69

The LAB ascended slowly but flew northwest rather than southeast—the observed

flight path was completely different from the predicted path. The C-band antenna operators

adjusted the direction of the antenna to maintain the link with Com-Cube. The

groundstation received Com-Cube’s imagery data continuously and successfully received

five photos (Figures 47–51) during the first 15 minutes of the flight. The Com-Cube

payload chunking.py script assigned the indicated photo numbers.

Figure 47. Com-Cube Payload Photo #02.

70

Figure 48. Com-Cube Payload Photo #04.

Figure 49. Com-Cube Payload Photo #05.

71

Figure 50. Com-Cube Payload Photo #09.

Figure 51. Com-Cube Payload Photo #10.

72

Once the ground station had received more than one photo via C-band, the test

threshold was complete and the team shifted focus to preparing for balloon release and

recovery efforts. Figure 52 shows a photo of the LAB from the ground station.

Figure 52. Photo of Com-Cube In-Flight from Ground Station.

One of the chase teams followed the LAB in a car and waited directly below for Com-Cube

to descend. The LAB stopped moving north and continued to gain altitude. Figure 53 shows

the view of the LAB from the chase team’s location.

73

Figure 53. Photo of LAB at 1245 PDT.

3. Recovery Efforts

Due to the unexpected flight path north over Highway 101 and the town of Chualar,

the author chose to delay commanding balloon release until telemetry indicated that the

LAB had completely flown past the town of Chualar and was above an altitude of 300 m.

This was to avoid landing Com-Cube onto the town itself and allow the back-up parachute

to deploy once it returned to an altitude of 300 m during Com-Cube’s descent.

74

Unfortunately, the bus software experienced a malfunction at 1230 PDT

(approximately 11 minutes after launch), and the team was no longer able to control Com-

Cube. From 1230 PDT and 1449 PDT, the payload software continued to run but bus

software did not. Consequently, the bus did not release the balloon automatically after

reaching 610 m in altitude.

The time-dependent automatic balloon release failed for a different reason. Upon

reviewing data logs stored on the bus, the author discovered that the bus attempted to

actuate balloon release while still on the ground at the launch site. A few minutes after

powering on Com-Cube, GPS time synched and the bus interpreted this time jump as more

than 20 minutes of elapsed time. The intent for the software was to use the time the bus

received the “plstart” command as the reference for the timed automatic balloon release.

Instead, the start time was based on the time the bus was first powered on.

In another effort to regain control of Com-Cube after the bus malfunctioned at 1230

PDT, the payload operators attempted unsuccessfully to log into the bus and payload rPi

via their Wi-Fi feature from the ground. The team determined that it was not possible to

regain command and control of the LAB from the ground station and, at approximately

1330 PDT, packed up the ground station and returned to NPS. At approximately 1450 PDT,

one of the payload operators received a telemetry packet from the bus from outside the

Small Sat Lab—a sign that the bus rebooted. The operator was able to collect telemetry

data for a few more minutes, but was still unable to command balloon release. The bus

logged its last telemetry data and lost power at approximately 1458 PDT. The flight

batteries lasted about three hours. The team had no choice but to watch online updates from

the SPOT onboard Com-Cube (Figure 54) and wait to see where it would eventually land.

75

Figure 54. Photo of Com-Cube’s SPOT Online Updates from 1432
PDT to 1947 PDT.

The SPOT Trace website updates included altitude along with GPS coordinates,

however provided the following disclaimer: “Altitude reporting is currently in Beta phase.

Altitude accuracy may vary considerably or may not be displayed at times” [50].

Accordingly, the altitude data provided by the SPOT (shown in Appendix J) suggested that

Com-Cube had potentially landed in Big Sur but was showing continued flight path

coordinates. The author estimated the altitude of Com-Cube and ran additional habhub

predictions from its last SPOT coordinates to try to determine where Com-Cube would

land. Chapter VI Section C discusses flight data in more depth.

Over the following four hours, the LAB flew south over Big Sur National Park and

then turned east toward King City. At approximately 1937 PDT, the team noticed multiple

SPOT Trace location updates appearing near the driveway of a house near King City. This

indicated that Com-Cube had landed in this position. Sure enough, the owners of the house

found Com-Cube in a tree next to their driveway and contacted the author via the phone

number provided on Com-Cube’s structure. Figure 55 shows one of the photos taken by

the owners after they retrieved it from the tree.

76

Figure 55. Photo of Com-Cube After Landing in King City,
California.

The following day, the author met one of the house owners to retrieve Com-Cube

(Figure 56). Com-Cube landed with both parachutes deployed and the burst balloon still

attached. The time and altitude at which the balloon burst is unknown. Upon return to the

Small Sat Lab, the author determined that all of the components were still functional and,

aside from the burst balloon, there were no signs of damage to Com-Cube.

77

Figure 56. Photo of Woman who Found and Returned Com-Cube, with Author.

B. PAYLOAD DATA ANALYSIS

The five successfully transmitted and received images from Com-Cube’s flight

demonstration prove that the B205mini-i and rPi 3 perform adequately at C-band and can

successfully achieve imagery data downlink while in-flight. The rPi 3 successfully ran the

GNU Radio generated Python scripts with the B205mini-i and the data transmission test

via C-band was successful. The B205mini-i performed well at a center frequency of 5.75

GHz, a frequency close to its higher frequency limit of 6 GHz and the highest center

frequency used during a SSAG weather balloon flight demonstration.

78

At a range of approximately 1.11 km between payload transmitter and ground

station receiver (LS = 109 dB), there was ample link margin. If the same Com-Cube payload

was incorporated into a CubeSat with a transmitter power of 1.0 W (increased from Com-

Cube’s 0.05W), the CubeSat would have a typical positive link margin with the same

ground station up to an altitude of approximately 1,860 km while directly overhead

(elevation angle ≈ 90 degrees). Table 7 lists the revised link calculation assumptions and

Appendix L shows the link budget calculation for an altitude of 1,860 km.

Table 7. Summary of Assumptions and Findings for
Revised Link Budget Analysis.

Item Units Notes

Assumptions

Altitude km 1860 Maximum altitude for
payload with positive link
margin

Elevation Angle deg 90 CubeSat directly overhead
ground station receiver

System Noise Temperature K 290 Estimated temperature on-
orbit

Transmitter Power W 1.0 With increased transmitter
power

Findings

Link Margin dB 3.00 Conservative link margin for
initial scoping analysis [24]

C. FLIGHT DATA ANALYSIS

The balloon release failure resulted in a much longer flight for Com-Cube than

planned. The author collected flight data from both the recorded telemetry received at the

ground station and the logs stored on Com-Cube’s bus rPi. Due to the bus malfunction,

telemetry data was neither received or nor stored from 1230 PDT until 1449 PDT (when

the Com-Cube bus rebooted). The bus stored its last telemetry data packet at time 1451

79

PDT before Com-Cube died due to depleted batteries. The payload continued to operate

and take high-resolution photos of the ground after the bus malfunctioned. Figure 57 shows

the last high-resolution photo taken and stored by the payload. Based on Google Earth

imagery, this photo corresponds to Com-Cube flying over location of 36.65, -121.53 (see

Figure 58).

Figure 57. Last High-Resolution Photo Taken by Payload.

80

Figure 58. Google Earth Imagery Corresponding to Last High-
Resolution Photo Taken by Payload.

Unfortunately, because Com-Cube’s flight outlasted its batteries, the bus did not

have power to record GPS data at its maximum flight altitude. The SPOT remained on

during the entirety of the flight, however as stated earlier, did not provide reliable altitude

data. Figure 59 shows the predicted and recorded altitude data from launch until two

hours and 31 minutes into the flight up to when Com-Cube’s battery was exhausted. The

data colored red represents the predicted altitude data based on the planned flight ascent

rate of 0.5 m/s.

Figure 60 shows the predicted and recorded altitude data from launch until after

Com-Cube landed and was found in King City. Appendix K incldues GPS flight data.

81

Figure 59. LAB Flight Altitude Data vs. Time Plot for Operational
Life of Com-Cube.

Figure 60. Full LAB Flight Altitude Data vs. Time Plot.

82

The author and SSAG staff received Com-Cube’s final telemetry packets with an

MHX radio and laptop set up in the courtyard at NPS. The last telemetry packet was

received at time 1458 PDT and reported Com-Cube in position 36.54, -121.63 and at an

altitude of 5585 m. Based on the location and elevation of the receiving radio and laptop,

the author calculated a slant range of 23.8 km to Com-Cube.

The orange data represents the SPOT altitude updates. These updates are erratic, as

expected and do not make sense based on the flight path from the launch site to its landing

site in King City shown in Figure 54. Based on the data provided by the GPS and SPOT,

the author is unable to verify the maximum altitude reached by the LAB and when the

balloon burst.

The jumps in the SPOT data appeared to occur after the SPOT altitude increased

by approximately 10,000 m. The data showed that after these jumps, the altitude continued

to increase at a realistic rate up until 1736 PDT. The author plotted the flight data a second

time but stacked the SPOT altitude data where it jumped (Figure 61) to show what could

be corrected altitude values.

This plot suggests that Com-Cube reached up to 22,986 m (75,413 ft) in altitude

before descending. If the LAB burst at this maximum altitude, the LAB burst prematurely

perhaps due to leaking during flight or a material defect—the habhub flight prediction

projected a burst altitude of approximately 32,000 m and a significantly longer flight time.

The author predicted a 5 m/s descent rate and, based on the estimated maximum altitude,

Com-Cube would have taken 1.28 hours to reach the ground. This time correlates with the

time between the maximum altitude and the time SPOT appeared to be at ground level.

83

Figure 61. Full LAB Flight Data with Adjustments: Altitude vs. Time.

D. LESSONS LEARNED FROM LAB FLIGHT TEST

1. Balloon Release

As with every balloon flight test, the author collected many lessons learned from

the Com-Cube LAB flight. In terms of hardware, the author and SSAG staff chose to

develop a new balloon release mechanism and software for the Com-Cube flight.

Mechanisms, especially those without any flight history, introduce risk and uncertainty into

a design. The author and SSAG staff tested the mechanism at the component level in the

lab during the week prior to the flight test. The author first tested the mechanism at the

system level with its associated flight software on the morning of the flight. The mechanism

functioned as expected during both tests.

Unfortunately, during the flight test, the mechanism failed to open due to both

software and mechanical issues. After reviewing the bus and telemetry data logs from the

flight, the author discovered that the software issue commanded the balloon mechanism to

84

open minutes before launching Com-Cube. Due to the mechanical issue, the mechanism

failed to open, and so the author and launch team did not see the evidence of the problem

before launching.

Because the balloon never released from Com-Cube, the LAB flew Com-Cube for

over six hours rather than 20 minutes. Fortunately, once the balloon ultimately burst, both

parachutes deployed and inflated during Com-Cube’s descent. Com-Cube was eventually

recovered, completely undamaged. For future balloon payloads, the author recommends

more thorough risk analysis and extensive testing of any new mechanisms before flight

testing. Additionally, the author recommends implementation of redundancies to ensure

balloon release for future flights.

2. C-band Link

The C-band link was very strong over the entirety of the Com-Cube flight test. If

the Com-Cube payload was updated as a C-band transceiver (by adding a C-band uplink

capability), the same LAB flight test could be performed over a much longer period of time

due to the excess signal gain. The performance and strength of the C-band link could make

the amateur C-band channel appealing for a C2 or telemetry frequency for future balloon

flight tests. Building in tracking functionality for the ground station C-band dish antenna

will further improve this link.

3. Solar Panels

Many of the past SSAG HAB payloads included photovoltaic cells, or solar panels,

as a back-up power source. The author chose not to include solar panels in Com-Cube’s

design since she did not expect the bus AA batteries to drain significantly within the

planned flight time of 20 minutes. Due to the balloon release failure, the batteries drained

within about three hours of launching and Com-Cube did not have any power to collect

bus data or payload images for the second half of the LAB flight. The author recommends

including solar panels in all future payload designs so that, should operators lose control

of the balloon payload, there is a better chance of collecting data throughout an extended

flight.

85

4. Software

The chunker.py code could have been improved to increase the amount of images

received during the LAB flight test. The chunker.py had the payload continuously send

data for only one image until it received feedback from the ground station indicating all

packets were received before sending another image. The code could be changed to limit

the amount of attempts to resend dropped packets or limit the time spent resending dropped

packets. This way, the software would allow the payload to move onto transmitting a newer

image if it took too long to send a previous image or if the C2 link was interrupted or lost.

In general, the author found she should have planned more slack into her thesis

schedule for the development and, especially, the testing of new payload and bus software.

Software development, especially for new functions and capabilities, requires additional

dedicated time and effort. The author could have improved the timing of the software

development and testing for Com-Cube by defining and scoping software CONOPS earlier

in the schedule.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

VII. CONCLUSION AND FUTURE WORK

A. SUMMARY

As this thesis demonstrates, COTS SDRs can provide a powerful low-cost,

configurable, powerful solution for a nanosatellite communications payload. An SDR like

the B205mini-i is programmable with free and accessible software such as GNU Radio. By

operating at higher frequency bands such as C-band, the payload can take advantage of

increased throughput. Communications at higher frequencies enable faster transmissions

of larger amounts of data between the Earth and space compared to traditional RF bands

such as S-band.

This author’s thesis research included the design, building, testing, and LAB flight

demonstration of the Com-Cube payload. The Com-Cube payload utilizes a B205mini-i

and rPi 3, components considered for incorporation into a future CubeSat payload. During

the LAB flight test, Com-Cube took photos of the ground and transmitted imagery data

using GNU Radio software and Python code via amateur satellite C-band with a center

frequency of 5.75 GHz. This flight test demonstrated that the B205mini-i SDR could

effectively transmit data over higher frequencies than previous SSAG HAB flight tests.

This was the first SSAG balloon flight test during which a payload transmitted imagery

data while in-flight.

The author determined the B205mini-i SDR to be a good candidate for a CubeSat

payload supporting S-band and X-band communications. In order to reach a final design

for a CubeSat payload with the B205mini-i SDR, additional research should be conducted

in the following areas: new custom software using GNU Radio; additional hardware to up-

convert to the X-band frequency channels assigned by sponsor for this research; and

environmental and flight testing. With software and hardware updates, Com-Cube can

serve as a test platform for continued NPS research in ground station operations and

communications experiments at frequencies of interest.

88

B. FUTURE WORK

1. New Payload Software for Com-Cube

The Com-Cube LAB flight represents the first time a Small Sat Lab student

transmitted imagery from a payload to a ground station in-flight. The GNU Radio software

used for the Com-Cube payload and LAB flight test ground station was based off the

software used by the MC3 SOC to receive PropCube downlink data. Though Com-Cube’s

GNU Radio software achieved mission threshold and objective requirements, it was not

designed efficiently for C-band data communications. The GMSK modulation scheme

utilized by the GNU Radio software works effectively for a 9600 baud rate but not for

faster data rates that could be achieved with frequencies in the C-band range or above.

Future NPS students could develop new GNU Radio software to achieve near real-

time or real-time data rates, with the same power budget as that of Com-Cube for X-band

frequencies. The author recommends using GNU Radio to program the B205mini-i FPGA

and specifically recommends that future students incorporate new custom GNU Radio

blocks using Python or C++. Additionally, the author recommends a digital modulation

scheme such as QPSK or OQPSK for data transmission at frequency bands such as X-band.

These schemes are simpler to implement than GMSK and are better suited for higher data

rates and bandwidth.

By incorporating multiple GNU Radio flowgraphs in its software, students could

program the B205mini-i SDR to operate as a transceiver over multiple frequency bands,

specifically S-band and X-band. This could enable the use of an S-band uplink and X-band

downlink, a capability desirable to the DoD for a CubeSat. The research sponsor’s assigned

channels for an X-band capable CubeSat payload are from 7190 to 7250 MHz for uplink

and 8025 to 8400 MHz for downlink. In order to transmit outside of the lab environment,

frequency authorization for the X-band channels would be required from the NTIA. The

author does not advise using the amateur radio X-band channel as its range of 10.0 to 10.5

GHz exceeds the sponsor’s chosen channel and the capability of the hardware on-hand in

the Small Sat Lab.

89

2. S- and X-Band Communications Payload for CubeSat

Students could update the Com-Cube payload to support S-band and X-band

communications with the software discussed in the previous section and with the addition

of hardware. The hardware required to achieve S-band and X-band communications would

include the circuitry necessary to up-convert and down-convert to the channel chosen by

the research sponsor, a power amplifier, and antennas for S-band and X-band. The

preliminary circuitry hardware for up-converting is on hand in the Small Sat Lab. The

author has successfully assembled the hardware to build an X-band simulated satellite

using Cross Technologies up and down-converters (Figure 62) and an USRP 2922 SDR

(Figure 63). In the lab, author achieved a frequency of 7.5 GHz by up-converting from a

center frequency of 1.0 GHz generated by the USRP 2922 with additional Mini-Circuits

and Analog Devices hardware (Figure 64). Appendices M and N include data sheets for

the Cross Technologies models and [51] includes the specifications for the USRP 2922.

Figure 62. Cross Technologies Block Up and Down-converter [52], [53].

Figure 63. National Instruments USRP-2922 SDR [54].

90

Figure 64. X-band Conversion Circuitry.

The Small Sat Lab will acquire an X-band ground station dish antenna for receiving

signals, and future students could use this for testing of an X-band capable payload once

the NTIA authorizes use of the channels listed in the previous section. In terms of the

payload antennas, the author recommends using separate dipole antennas for the S-band

and X-band frequencies in a payload designed for a balloon flight test. The author

recommends helical or patch antennas for a CubeSat payload. In order to minimize the

payload’s number of antennas, the CubeSat payload could utilize a dual frequency patch

antenna. Antenna Development Corporation designs and manufactures space qualified

microstrip patch antennas for frequency bands including X-band and S-band [55]. This

company designs several of their antennas specifically for CubeSats. The CubeSat would

need an ADCS to provide a pointing capability for its antennas. Companies such as

GomSpace, Clyde Space, and CubeSatShop all advertise ADCS products for nanosatellites

[56], [57], [58].

The future CubeSat prototype should undergo environmental testing to ensure it

can operate in the launch and space environment. The author recommends that vibration

testing be conducted to the NASA general environmental verification specification

(GEVS) at a minimum in order to demonstrate that the CubeSat hardware can survive

91

launch and meets minimum workmanship standards [59]. Thermal vacuum testing for the

range of temperatures expected on-orbit should be conducted as well.

3. Future Payload Testing with Mobile CubeSat Command and Control

As stated in the Small Spacecraft Technology State of the Art 2015 report, “[An]

SDR can operate at various frequencies and various modulation schemes with a simple

change in software” [1]. Payloads utilizing the B205mini-i and SDRs in general, can

achieve a countless number of applications. The addition of up and down-converting

technology increases opportunities. Experiments and operational applications could

include data transmission and relay over various frequency channels and bands, TT&C,

and communication links between satellites. The MC3 SOC can operate, monitor, and

manipulate these experimental payloads while assessing the payloads’ viability for on-orbit

applications and incorporation into the MC3 network.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

APPENDIX A. U.S. AMATEUR RADIO BANDS [60]

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

APPENDIX B. COM-CUBE LINK BUDGET SPREADSHEET

Item Units
Altitude km 0.152 0.305 0.457 0.61
Elevation Angle deg 12.5 12.5 12.5 12.5
Frequency GHz 5.75 5.75 5.75 5.75
Wavelength m 0.052 0.052 0.052 0.052
Propagation Path Length km 0.70 1.41 2.11 2.82
Free Space Loss - Ls dB -104.56 -110.61 -114.12 -116.63
System Noise Temperature - Ts k 479 479 479 479
Bit Error Rate 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Required Eb/No for BER 10–5 dB 9.6 9.6 9.6 9.6
Calculated Coding Gain dB 0 0 0 0
Achievable Coding Gain dB 0 0 0 0
Data Rate - Rb kbps 19.2 19.2 19.2 19.2
Symbols Per Bit 2 2 2 2
Symbol Rate - Rs kbps 9.6 9.6 9.6 9.6
ro 1.50 1.50 1.50 1.50
Required C/No dB 52.43 52.43 52.43 52.43
Bandwidth - BW MHz 0.024 0.024 0.024 0.024
Required C/N dB 8.63 8.63 8.63 8.63
Receiver Bandwidth - B MHz 40 40 40 40
Ground Station Antenna Diameter m 1.2 1.2 1.2 1.2
Ground Station Antenna Feed Efficiency % 60% 60% 60% 60%
Ground Station Antenna Half Power
Beamwidth deg 3.04 3.04 3.04 3.04
Ground Station Antenna Pointing Error deg 2.0 2.0 2.0 2.0
Ground Station Antenna Pointing Error
Loss - La dB -7.29 -7.29 -7.29 -7.29
Ground Station Antenna Gain - G dBi 37.18 37.18 37.18 37.18
Payload Antenna Diameter m 0.023 0.023 0.023 0.023
Payload Antenna Feed Efficiency % 60% 60% 60% 60%
Payload Antenna Half Power Beamwidth deg 78.00 78.00 78.00 78.00
Payload Antenna Pointing Error deg 10.0 10.0 10.0 10.0
Payload Antenna Pointing Error Loss - La dB -1.98 -1.98 -1.98 -1.98
Payload Antenna Gain - G dBi 3.00 3.00 3.00 3.00
Transmitter Power Watts 0.05 0.05 0.05 0.05
Transmitter Power - P dBW -13.01 -13.01 -13.01 -13.01
Transmitter Line Loss - Ll dB -0.5 -0.5 -0.5 -0.5
Transmitter Feed Loss - La dB -2.22 -2.22 -2.22 -2.22
Transmitter EIRP dBW -12.72 -12.72 -12.72 -12.72

96

Transmission Path Losses - La dB -0.50 -0.50 -0.50 -0.50
Receiver Polarization Loss - La dB -3 -3 -3 -3
Receiver Line Loss - La dB -1 -1 -1 -1
Receiver Feed Loss - La dB -2.22 -2.22 -2.22 -2.22
Received Carrier Power - C dBW -96.10 -102.15 -105.66 -108.16
Total Received Noise Power - N dB -125.78 -125.78 -125.78 -125.78
Received Carrier To Noise Ratio - C/N dB 29.68 23.63 20.12 17.61
Received Energy Per Bit - Eb dB -135.92 -141.97 -145.48 -147.99
Received Noise Spectral Density - No dB -201.80 -201.80 -201.80 -201.80
Calculated Eb/No dB 65.88 59.83 56.32 53.81
Eb/No Margin dB 56.28 50.23 46.72 44.21
Power Flux Density Limit NTIA 8.2.36 dBW/m2 -150.25 -144 -144 -144
Calculated PFD 4kHz Bandwidth dBW/m2 -81.27 -87.31 -90.82 -93.33

97

APPENDIX C. USRP B205MINI-I SPECIFICATION SHEET

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

APPENDIX D. ZVBP-5800-S+ BAND PASS FILTER DATA SHEET

100

101

APPENDIX E. CBAND_TX.PY

#!/usr/bin/env python2
-*- coding: utf-8 -*-

GNU Radio Python Flow Graph
Title: Cband_Tx
Generated: Tue Oct 16 07:15:04 2018

if __name__ == '__main__':
 import ctypes
 import sys
 if sys.platform.startswith('linux'):
 try:
 x11 = ctypes.cdll.LoadLibrary('libX11.so')
 x11.XInitThreads()
 except:
 print "Warning: failed to XInitThreads()"

from PyQt4 import Qt
from gnuradio import blocks
from gnuradio import digital
from gnuradio import eng_notation
from gnuradio import filter
from gnuradio import gr
from gnuradio import qtgui
from gnuradio import uhd
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from gnuradio.qtgui import Range, RangeWidget
from optparse import OptionParser
import SimpleXMLRPCServer
import sip
import sys
import threading
import time
import tnc

class Cband_Tx(gr.top_block, Qt.QWidget):

 def __init__(self):
 gr.top_block.__init__(self, "Cband_Tx")

102

 Qt.QWidget.__init__(self)
 self.setWindowTitle("Cband_Tx")
 try:
 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
 except:
 pass
 self.top_scroll_layout = Qt.QVBoxLayout()
 self.setLayout(self.top_scroll_layout)
 self.top_scroll = Qt.QScrollArea()
 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
 self.top_scroll_layout.addWidget(self.top_scroll)
 self.top_scroll.setWidgetResizable(True)
 self.top_widget = Qt.QWidget()
 self.top_scroll.setWidget(self.top_widget)
 self.top_layout = Qt.QVBoxLayout(self.top_widget)
 self.top_grid_layout = Qt.QGridLayout()
 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "Cband_Tx")
 self.restoreGeometry(self.settings.value("geometry").toByteArray())

 ##
 # Variables
 ##
 self.data_rate_slider = data_rate_slider = 9600
 self.uplink_freq = uplink_freq = 5750e6
 self.tx_gain = tx_gain = 1
 self.samples_per_symbol = samples_per_symbol = 10
 self.samp_rate = samp_rate = 200e3
 self.max_number_outputs = max_number_outputs = 8096
 self.data_rate = data_rate = data_rate_slider

 ##
 # Blocks
 ##
 self._tx_gain_range = Range(0, 1, .1, 1, 200)
 self._tx_gain_win = RangeWidget(self._tx_gain_range, self.set_tx_gain, 'Gain',
"counter_slider", float)
 self.top_layout.addWidget(self._tx_gain_win)
 self.xmlrpc_server_0 = SimpleXMLRPCServer.SimpleXMLRPCServer(('', 2652),
allow_none=True)
 self.xmlrpc_server_0.register_instance(self)
 self.xmlrpc_server_0_thread =
threading.Thread(target=self.xmlrpc_server_0.serve_forever)
 self.xmlrpc_server_0_thread.daemon = True

103

 self.xmlrpc_server_0_thread.start()
 self.uhd_usrp_sink_0 = uhd.usrp_sink(
 ",".join(("serial=3132D4F", "")),
 uhd.stream_args(
 cpu_format="fc32",
 channels=range(1),
),
)
 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)
 self.uhd_usrp_sink_0.set_center_freq(uplink_freq, 0)
 self.uhd_usrp_sink_0.set_normalized_gain(tx_gain, 0)
 self.uhd_usrp_sink_0.set_antenna('TX/RX', 0)
 self.uhd_usrp_sink_0.set_bandwidth(50e3, 0)
 self.tnc_hdlc_framer_1 = tnc.hdlc_framer(preamble_length=40,
postamble_length=20,verbose=True, use_scrambler=True)
 self.rational_resampler_xxx_0 = filter.rational_resampler_ccc(
 interpolation=int(samp_rate/1000),
 decimation=int(data_rate*samples_per_symbol/1000),
 taps=None,
 fractional_bw=data_rate/ samp_rate,
)
 self.qtgui_sink_x_0 = qtgui.sink_c(
 1024, #fftsize
 firdes.WIN_BLACKMAN_hARRIS, #wintype
 uplink_freq, #fc
 samp_rate, #bw
 "", #name
 True, #plotfreq
 True, #plotwaterfall
 True, #plottime
 True, #plotconst
)
 self.qtgui_sink_x_0.set_update_time(1.0/10)
 self._qtgui_sink_x_0_win = sip.wrapinstance(self.qtgui_sink_x_0.pyqwidget(),
Qt.QWidget)
 self.top_layout.addWidget(self._qtgui_sink_x_0_win)

 self.qtgui_sink_x_0.enable_rf_freq(False)

 self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass(
 1, samp_rate, 12.5e3, 3e3, firdes.WIN_BLACKMAN, 6.76))
 self.digital_gmsk_mod_0 = digital.gmsk_mod(
 samples_per_symbol=samples_per_symbol,

104

 bt=0.5,
 verbose=False,
 log=False,
)
 self._data_rate_slider_range = Range(9600, 614400, 1e3, 9600, 200)
 self._data_rate_slider_win = RangeWidget(self._data_rate_slider_range,
self.set_data_rate_slider, 'data_rate_slider', "counter_slider", float)
 self.top_layout.addWidget(self._data_rate_slider_win)
 self.blocks_unpacked_to_packed_xx_0 = blocks.unpacked_to_packed_bb(1,
gr.GR_MSB_FIRST)
 self.blocks_socket_pdu_0 = blocks.socket_pdu("UDP_SERVER", '', '10000', 1000,
False)
 self.blocks_pdu_to_tagged_stream_0 = blocks.pdu_to_tagged_stream(blocks.byte_t,
'packet_len')

 ##
 # Connections
 ##
 self.msg_connect((self.blocks_socket_pdu_0, 'pdus'), (self.tnc_hdlc_framer_1, 'in'))
 self.msg_connect((self.tnc_hdlc_framer_1, 'out'),
(self.blocks_pdu_to_tagged_stream_0, 'pdus'))
 self.connect((self.blocks_pdu_to_tagged_stream_0, 0),
(self.blocks_unpacked_to_packed_xx_0, 0))
 self.connect((self.blocks_unpacked_to_packed_xx_0, 0), (self.digital_gmsk_mod_0,
0))
 self.connect((self.digital_gmsk_mod_0, 0), (self.rational_resampler_xxx_0, 0))
 self.connect((self.low_pass_filter_0, 0), (self.qtgui_sink_x_0, 0))
 self.connect((self.low_pass_filter_0, 0), (self.uhd_usrp_sink_0, 0))
 self.connect((self.rational_resampler_xxx_0, 0), (self.low_pass_filter_0, 0))

 def closeEvent(self, event):
 self.settings = Qt.QSettings("GNU Radio", "Cband_Tx")
 self.settings.setValue("geometry", self.saveGeometry())
 event.accept()

 def get_data_rate_slider(self):
 return self.data_rate_slider

 def set_data_rate_slider(self, data_rate_slider):
 self.data_rate_slider = data_rate_slider
 self.set_data_rate(self.data_rate_slider)

 def get_uplink_freq(self):
 return self.uplink_freq

105

 def set_uplink_freq(self, uplink_freq):
 self.uplink_freq = uplink_freq
 self.uhd_usrp_sink_0.set_center_freq(self.uplink_freq, 0)
 self.qtgui_sink_x_0.set_frequency_range(self.uplink_freq, self.samp_rate)

 def get_tx_gain(self):
 return self.tx_gain

 def set_tx_gain(self, tx_gain):
 self.tx_gain = tx_gain
 self.uhd_usrp_sink_0.set_normalized_gain(self.tx_gain, 0)

 def get_samples_per_symbol(self):
 return self.samples_per_symbol

 def set_samples_per_symbol(self, samples_per_symbol):
 self.samples_per_symbol = samples_per_symbol

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)
 self.qtgui_sink_x_0.set_frequency_range(self.uplink_freq, self.samp_rate)
 self.low_pass_filter_0.set_taps(firdes.low_pass(1, self.samp_rate, 12.5e3, 3e3,
firdes.WIN_BLACKMAN, 6.76))

 def get_max_number_outputs(self):
 return self.max_number_outputs

 def set_max_number_outputs(self, max_number_outputs):
 self.max_number_outputs = max_number_outputs

 def get_data_rate(self):
 return self.data_rate

 def set_data_rate(self, data_rate):
 self.data_rate = data_rate

def main(top_block_cls=Cband_Tx, options=None):

 from distutils.version import StrictVersion

106

 if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):
 style = gr.prefs().get_string('qtgui', 'style', 'raster')
 Qt.QApplication.setGraphicsSystem(style)
 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()
 tb.start(8096)
 tb.show()

 def quitting():
 tb.stop()
 tb.wait()
 qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)
 qapp.exec_()

if __name__ == '__main__':
 main()

107

APPENDIX F. CBAND_RX.PY

#!/usr/bin/env python2
-*- coding: utf-8 -*-

GNU Radio Python Flow Graph
Title: Cband_Rx
Author: Jan Malte Roehrig, Julian Brown
Description: receives and demodulates PropCube signal
Generated: Tue Oct 16 07:21:23 2018

from distutils.version import StrictVersion

if __name__ == '__main__':
 import ctypes
 import sys
 if sys.platform.startswith('linux'):
 try:
 x11 = ctypes.cdll.LoadLibrary('libX11.so')
 x11.XInitThreads()
 except:
 print "Warning: failed to XInitThreads()"

from PyQt5 import Qt
from PyQt5 import Qt, QtCore
from gnuradio import analog
from gnuradio import blocks
from gnuradio import digital
from gnuradio import eng_notation
from gnuradio import filter
from gnuradio import gr
from gnuradio import qtgui
from gnuradio import uhd
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from gnuradio.qtgui import Range, RangeWidget
from optparse import OptionParser
import SimpleXMLRPCServer
import epy_block_0
import math
import sip
import sys
import threading

108

import time
from gnuradio import qtgui

class Cband_Rx(gr.top_block, Qt.QWidget):

 def __init__(self):
 gr.top_block.__init__(self, "Cband_Rx")
 Qt.QWidget.__init__(self)
 self.setWindowTitle("Cband_Rx")
 qtgui.util.check_set_qss()
 try:
 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
 except:
 pass
 self.top_scroll_layout = Qt.QVBoxLayout()
 self.setLayout(self.top_scroll_layout)
 self.top_scroll = Qt.QScrollArea()
 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
 self.top_scroll_layout.addWidget(self.top_scroll)
 self.top_scroll.setWidgetResizable(True)
 self.top_widget = Qt.QWidget()
 self.top_scroll.setWidget(self.top_widget)
 self.top_layout = Qt.QVBoxLayout(self.top_widget)
 self.top_grid_layout = Qt.QGridLayout()
 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "Cband_Rx")

 if StrictVersion(Qt.qVersion()) < StrictVersion("5.0.0"):
 self.restoreGeometry(self.settings.value("geometry").toByteArray())
 else:
 self.restoreGeometry(self.settings.value("geometry", type=QtCore.QByteArray))

 ##
 # Variables
 ##
 self.offset_cal = offset_cal = -2e3
 self.samp_rate = samp_rate = 400000
 self.offset = offset = offset_cal
 self.freq_offset = freq_offset = 30e3
 self.downlink_freq = downlink_freq = 5750e6
 self.bw = bw = 0
 self.USRP_IP = USRP_IP = '192.168.101.70'

109

 self.xlate_filter_taps = xlate_filter_taps = firdes.low_pass(1, samp_rate,
samp_rate/2, 25000, firdes.WIN_BLACKMAN, 6.76)
 self.squelch_threshold = squelch_threshold = -100
 self.samp_per_sym = samp_per_sym = 5
 self.master_gain = master_gain = 18
 self.fsk_deviation_hz = fsk_deviation_hz = 7e3
 self.device_address = device_address = 'addr=' + str(USRP_IP)
 self.data_rate = data_rate = 9600
 self.bandwidth = bandwidth = bw
 self.USRP_freq = USRP_freq = downlink_freq-freq_offset+offset

 ##
 # Blocks
 ##
 self._squelch_threshold_range = Range(-140, -20, 1, -100, 200)
 self._squelch_threshold_win = RangeWidget(self._squelch_threshold_range,
self.set_squelch_threshold, 'Threshold', "counter_slider", float)
 self.top_layout.addWidget(self._squelch_threshold_win)
 self._master_gain_range = Range(0, 60, 1, 18, 200)
 self._master_gain_win = RangeWidget(self._master_gain_range,
self.set_master_gain, 'USRP Gain', "counter_slider", float)
 self.top_layout.addWidget(self._master_gain_win)
 self._bw_range = Range(0, 5000, 1, 0, 200)
 self._bw_win = RangeWidget(self._bw_range, self.set_bw, 'bw', "counter_slider",
float)
 self.top_layout.addWidget(self._bw_win)
 self.xmlrpc_server_0 = SimpleXMLRPCServer.SimpleXMLRPCServer(('', 2651),
allow_none=True)
 self.xmlrpc_server_0.register_instance(self)
 self.xmlrpc_server_0_thread =
threading.Thread(target=self.xmlrpc_server_0.serve_forever)
 self.xmlrpc_server_0_thread.daemon = True
 self.xmlrpc_server_0_thread.start()
 self.uhd_usrp_source_0 = uhd.usrp_source(
 ",".join(("serial=3132D59", "")),
 uhd.stream_args(
 cpu_format="fc32",
 channels=range(1),
),
)
 self.uhd_usrp_source_0.set_samp_rate(samp_rate)
 self.uhd_usrp_source_0.set_center_freq(USRP_freq, 0)
 self.uhd_usrp_source_0.set_gain(master_gain, 0)
 self.uhd_usrp_source_0.set_antenna('RX2', 0)
 self.rational_resampler_xxx_0_0 = filter.rational_resampler_ccc(

110

 interpolation=data_rate*samp_per_sym*5,
 decimation=samp_rate,
 taps=None,
 fractional_bw=None,
)
 self.rational_resampler_xxx_0 = filter.rational_resampler_ccc(
 interpolation=data_rate*samp_per_sym*5,
 decimation=samp_rate,
 taps=None,
 fractional_bw=None,
)
 self.qtgui_waterfall_sink_x_0_0 = qtgui.waterfall_sink_c(
 1024, #size
 firdes.WIN_BLACKMAN_hARRIS, #wintype
 0, #fc
 data_rate*samp_per_sym*5, #bw
 "Waterfall Plot", #name
 1 #number of inputs
)
 self.qtgui_waterfall_sink_x_0_0.set_update_time(0.10)
 self.qtgui_waterfall_sink_x_0_0.enable_grid(True)
 self.qtgui_waterfall_sink_x_0_0.enable_axis_labels(True)

 if not True:
 self.qtgui_waterfall_sink_x_0_0.disable_legend()

 if "complex" == "float" or "complex" == "msg_float":
 self.qtgui_waterfall_sink_x_0_0.set_plot_pos_half(not True)

 labels = ['', '', '', '', '',
 '', '', '', '', '']
 colors = [5, 0, 0, 0, 0,
 0, 0, 0, 0, 0]
 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0]
 for i in xrange(1):
 if len(labels[i]) == 0:
 self.qtgui_waterfall_sink_x_0_0.set_line_label(i, "Data {0}".format(i))
 else:
 self.qtgui_waterfall_sink_x_0_0.set_line_label(i, labels[i])
 self.qtgui_waterfall_sink_x_0_0.set_color_map(i, colors[i])
 self.qtgui_waterfall_sink_x_0_0.set_line_alpha(i, alphas[i])

 self.qtgui_waterfall_sink_x_0_0.set_intensity_range(-120, -30)

111

 self._qtgui_waterfall_sink_x_0_0_win =
sip.wrapinstance(self.qtgui_waterfall_sink_x_0_0.pyqwidget(), Qt.QWidget)
 self.top_layout.addWidget(self._qtgui_waterfall_sink_x_0_0_win)
 self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
 1024, #size
 data_rate*samp_per_sym*5, #samp_rate
 "Time Plot", #name
 1 #number of inputs
)
 self.qtgui_time_sink_x_0.set_update_time(0.10)
 self.qtgui_time_sink_x_0.set_y_axis(-1, 1)

 self.qtgui_time_sink_x_0.set_y_label('Amplitude', "")

 self.qtgui_time_sink_x_0.enable_tags(-1, True)
 self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,
qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
 self.qtgui_time_sink_x_0.enable_autoscale(True)
 self.qtgui_time_sink_x_0.enable_grid(False)
 self.qtgui_time_sink_x_0.enable_axis_labels(True)
 self.qtgui_time_sink_x_0.enable_control_panel(False)
 self.qtgui_time_sink_x_0.enable_stem_plot(False)

 if not True:
 self.qtgui_time_sink_x_0.disable_legend()

 labels = ['', '', '', '', '',
 '', '', '', '', '']
 widths = [1, 1, 1, 1, 1,
 1, 1, 1, 1, 1]
 colors = ["blue", "red", "green", "black", "cyan",
 "magenta", "yellow", "dark red", "dark green", "blue"]
 styles = [1, 1, 1, 1, 1,
 1, 1, 1, 1, 1]
 markers = [-1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1]
 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0]

 for i in xrange(1):
 if len(labels[i]) == 0:
 self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i))
 else:
 self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
 self.qtgui_time_sink_x_0.set_line_width(i, widths[i])

112

 self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
 self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
 self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
 self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])

 self._qtgui_time_sink_x_0_win =
sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
 self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
 self.qtgui_number_sink_0 = qtgui.number_sink(
 gr.sizeof_float,
 0,
 qtgui.NUM_GRAPH_NONE,
 1
)
 self.qtgui_number_sink_0.set_update_time(0.10)
 self.qtgui_number_sink_0.set_title("Center Frequency")

 labels = ['Center freq ', '', '', '', '',
 '', '', '', '', '']
 units = ['MHz', '', '', '', '',
 '', '', '', '', '']
 colors = [("black", "black"), ("black", "black"), ("black", "black"), ("black",
"black"), ("black", "black"),
 ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"),
("black", "black")]
 factor = [1, 1, 1, 1, 1,
 1, 1, 1, 1, 1]
 for i in xrange(1):
 self.qtgui_number_sink_0.set_min(i, -1)
 self.qtgui_number_sink_0.set_max(i, 1)
 self.qtgui_number_sink_0.set_color(i, colors[i][0], colors[i][1])
 if len(labels[i]) == 0:
 self.qtgui_number_sink_0.set_label(i, "Data {0}".format(i))
 else:
 self.qtgui_number_sink_0.set_label(i, labels[i])
 self.qtgui_number_sink_0.set_unit(i, units[i])
 self.qtgui_number_sink_0.set_factor(i, factor[i])

 self.qtgui_number_sink_0.enable_autoscale(False)
 self._qtgui_number_sink_0_win =
sip.wrapinstance(self.qtgui_number_sink_0.pyqwidget(), Qt.QWidget)
 self.top_layout.addWidget(self._qtgui_number_sink_0_win)
 self._offset_cal_range = Range(-100e3, 100e3, 1e3, -2e3, 200)
 self._offset_cal_win = RangeWidget(self._offset_cal_range, self.set_offset_cal,
'offset_cal', "counter_slider", float)

113

 self.top_layout.addWidget(self._offset_cal_win)
 self.low_pass_filter_0_0 = filter.fir_filter_ccf(5, firdes.low_pass(
 1, samp_per_sym*data_rate*5, 8000, 1e3, firdes.WIN_BLACKMAN, 6.76))
 self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass(
 1, data_rate*samp_per_sym*5, 5000, 3e3, firdes.WIN_BLACKMAN, 6.76))
 self.freq_xlating_fir_filter_xxx_0_0 = filter.freq_xlating_fir_filter_ccc(1,
(xlate_filter_taps), freq_offset, data_rate*samp_per_sym*5)
 self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(1,
(xlate_filter_taps), freq_offset, data_rate*samp_per_sym*5)
 self.epy_block_0 = epy_block_0.blk(ip='172.20.73.49', port=10005)
 self.digital_gfsk_demod_0_0 = digital.gfsk_demod(
 samples_per_symbol=samp_per_sym,
 sensitivity=samp_rate/(5*2*math.pi*fsk_deviation_hz),
 gain_mu=0.175,
 mu=0.5,
 omega_relative_limit=0.005,
 freq_error=0.0,
 verbose=False,
 log=False,
)
 self.digital_diff_decoder_bb_0_0_0 = digital.diff_decoder_bb(2)
 self.digital_descrambler_bb_0 = digital.descrambler_bb(0x21, 0x00, 16)
 self.dc_blocker_xx_0 = filter.dc_blocker_ff(int(1e3), True)
 self.blocks_repack_bits_bb_0 = blocks.repack_bits_bb(1, 8, "", False,
gr.GR_MSB_FIRST)
 self.blocks_not_xx_0 = blocks.not_bb()
 self.analog_quadrature_demod_cf_1 =
analog.quadrature_demod_cf(samp_rate/(2*math.pi*fsk_deviation_hz/8.0))
 self.analog_pwr_squelch_xx_0 = analog.pwr_squelch_cc(squelch_threshold, 100e-
6, 0, True)
 self.analog_const_source_x_0 = analog.sig_source_f(0,
analog.GR_CONST_WAVE, 0, 0, downlink_freq/1e6)

 ##
 # Connections
 ##
 self.connect((self.analog_const_source_x_0, 0), (self.qtgui_number_sink_0, 0))
 self.connect((self.analog_pwr_squelch_xx_0, 0), (self.rational_resampler_xxx_0, 0))
 self.connect((self.analog_quadrature_demod_cf_1, 0), (self.dc_blocker_xx_0, 0))
 self.connect((self.blocks_not_xx_0, 0), (self.epy_block_0, 0))
 self.connect((self.blocks_repack_bits_bb_0, 0), (self.blocks_not_xx_0, 0))
 self.connect((self.dc_blocker_xx_0, 0), (self.qtgui_time_sink_x_0, 0))
 self.connect((self.digital_descrambler_bb_0, 0),
(self.digital_diff_decoder_bb_0_0_0, 0))

114

 self.connect((self.digital_diff_decoder_bb_0_0_0, 0),
(self.blocks_repack_bits_bb_0, 0))
 self.connect((self.digital_gfsk_demod_0_0, 0), (self.digital_descrambler_bb_0, 0))
 self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.low_pass_filter_0, 0))
 self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.low_pass_filter_0_0, 0))
 self.connect((self.freq_xlating_fir_filter_xxx_0_0, 0),
(self.qtgui_waterfall_sink_x_0_0, 0))
 self.connect((self.low_pass_filter_0, 0), (self.analog_quadrature_demod_cf_1, 0))
 self.connect((self.low_pass_filter_0_0, 0), (self.digital_gfsk_demod_0_0, 0))
 self.connect((self.rational_resampler_xxx_0, 0), (self.freq_xlating_fir_filter_xxx_0,
0))
 self.connect((self.rational_resampler_xxx_0_0, 0),
(self.freq_xlating_fir_filter_xxx_0_0, 0))
 self.connect((self.uhd_usrp_source_0, 0), (self.analog_pwr_squelch_xx_0, 0))
 self.connect((self.uhd_usrp_source_0, 0), (self.rational_resampler_xxx_0_0, 0))

 def closeEvent(self, event):
 self.settings = Qt.QSettings("GNU Radio", "Cband_Rx")
 self.settings.setValue("geometry", self.saveGeometry())
 event.accept()

 def get_offset_cal(self):
 return self.offset_cal

 def set_offset_cal(self, offset_cal):
 self.offset_cal = offset_cal
 self.set_offset(self.offset_cal)

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.set_xlate_filter_taps(firdes.low_pass(1, self.samp_rate, self.samp_rate/2, 25000,
firdes.WIN_BLACKMAN, 6.76))
 self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)

self.analog_quadrature_demod_cf_1.set_gain(self.samp_rate/(2*math.pi*self.fsk_deviati
on_hz/8.0))

 def get_offset(self):
 return self.offset

 def set_offset(self, offset):
 self.offset = offset

115

 self.set_USRP_freq(self.downlink_freq-self.freq_offset+self.offset)

 def get_freq_offset(self):
 return self.freq_offset

 def set_freq_offset(self, freq_offset):
 self.freq_offset = freq_offset
 self.set_USRP_freq(self.downlink_freq-self.freq_offset+self.offset)
 self.freq_xlating_fir_filter_xxx_0_0.set_center_freq(self.freq_offset)
 self.freq_xlating_fir_filter_xxx_0.set_center_freq(self.freq_offset)

 def get_downlink_freq(self):
 return self.downlink_freq

 def set_downlink_freq(self, downlink_freq):
 self.downlink_freq = downlink_freq
 self.set_USRP_freq(self.downlink_freq-self.freq_offset+self.offset)
 self.analog_const_source_x_0.set_offset(self.downlink_freq/1e6)

 def get_bw(self):
 return self.bw

 def set_bw(self, bw):
 self.bw = bw
 self.set_bandwidth(self.bw)

 def get_USRP_IP(self):
 return self.USRP_IP

 def set_USRP_IP(self, USRP_IP):
 self.USRP_IP = USRP_IP
 self.set_device_address('addr=' + str(self.USRP_IP))

 def get_xlate_filter_taps(self):
 return self.xlate_filter_taps

 def set_xlate_filter_taps(self, xlate_filter_taps):
 self.xlate_filter_taps = xlate_filter_taps
 self.freq_xlating_fir_filter_xxx_0_0.set_taps((self.xlate_filter_taps))
 self.freq_xlating_fir_filter_xxx_0.set_taps((self.xlate_filter_taps))

 def get_squelch_threshold(self):
 return self.squelch_threshold

 def set_squelch_threshold(self, squelch_threshold):

116

 self.squelch_threshold = squelch_threshold
 self.analog_pwr_squelch_xx_0.set_threshold(self.squelch_threshold)

 def get_samp_per_sym(self):
 return self.samp_per_sym

 def set_samp_per_sym(self, samp_per_sym):
 self.samp_per_sym = samp_per_sym
 self.qtgui_waterfall_sink_x_0_0.set_frequency_range(0,
self.data_rate*self.samp_per_sym*5)
 self.qtgui_time_sink_x_0.set_samp_rate(self.data_rate*self.samp_per_sym*5)
 self.low_pass_filter_0_0.set_taps(firdes.low_pass(1,
self.samp_per_sym*self.data_rate*5, 8000, 1e3, firdes.WIN_BLACKMAN, 6.76))
 self.low_pass_filter_0.set_taps(firdes.low_pass(1,
self.data_rate*self.samp_per_sym*5, 5000, 3e3, firdes.WIN_BLACKMAN, 6.76))

 def get_master_gain(self):
 return self.master_gain

 def set_master_gain(self, master_gain):
 self.master_gain = master_gain
 self.uhd_usrp_source_0.set_gain(self.master_gain, 0)

 def get_fsk_deviation_hz(self):
 return self.fsk_deviation_hz

 def set_fsk_deviation_hz(self, fsk_deviation_hz):
 self.fsk_deviation_hz = fsk_deviation_hz

self.analog_quadrature_demod_cf_1.set_gain(self.samp_rate/(2*math.pi*self.fsk_deviati
on_hz/8.0))

 def get_device_address(self):
 return self.device_address

 def set_device_address(self, device_address):
 self.device_address = device_address

 def get_data_rate(self):
 return self.data_rate

 def set_data_rate(self, data_rate):
 self.data_rate = data_rate

117

 self.qtgui_waterfall_sink_x_0_0.set_frequency_range(0,
self.data_rate*self.samp_per_sym*5)
 self.qtgui_time_sink_x_0.set_samp_rate(self.data_rate*self.samp_per_sym*5)
 self.low_pass_filter_0_0.set_taps(firdes.low_pass(1,
self.samp_per_sym*self.data_rate*5, 8000, 1e3, firdes.WIN_BLACKMAN, 6.76))
 self.low_pass_filter_0.set_taps(firdes.low_pass(1,
self.data_rate*self.samp_per_sym*5, 5000, 3e3, firdes.WIN_BLACKMAN, 6.76))

 def get_bandwidth(self):
 return self.bandwidth

 def set_bandwidth(self, bandwidth):
 self.bandwidth = bandwidth

 def get_USRP_freq(self):
 return self.USRP_freq

 def set_USRP_freq(self, USRP_freq):
 self.USRP_freq = USRP_freq
 self.uhd_usrp_source_0.set_center_freq(self.USRP_freq, 0)

def main(top_block_cls=Cband_Rx, options=None):

 if StrictVersion("4.5.0") <= StrictVersion(Qt.qVersion()) < StrictVersion("5.0.0"):
 style = gr.prefs().get_string('qtgui', 'style', 'raster')
 Qt.QApplication.setGraphicsSystem(style)
 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()
 tb.start()
 tb.show()

 def quitting():
 tb.stop()
 tb.wait()
 qapp.aboutToQuit.connect(quitting)
 qapp.exec_()

if __name__ == '__main__':
 main()

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

APPENDIX G. CBAND_RX.PY PARSE AX.25 BLOCK
PYTHON CODE

Jan Malte Roehrig
malte.roehrig@gmx.de
Julian Brown
brownj4@mit.edu
Summer 2016
2016-11-28 gm, jhn, jah working it
2016-12-07 pkt_generator working, updates working, move to production
2016-12-08 next rev, also try at AFIT
2016-12-12 next rev, added logging info to see more info on bad pkts (dropped bits or
what)
2016-12-14 added code to look at buffer when no sync_words in 3x10^4 bits
2016-12-15 clean up and test
2016-12-16 store failed packets for analysis
2016-12-19 store bad packets as pickled bitarrays or analysis
2016-12-20 store good packets, too
2017-01-02 write raw pkts to file for bitstring code
2017-01-06 updated to save single file, cleaned up log code
2017-01-10 look for fragments 2 and 3 after fragment 1 from sys-stat
2017-01-11 adapt program to just look for three packets after a preamble
2017-01-12 able to get n packets
2017-01-13 now put back everything needed to unstuff, crc, and kiss and log
2017-01-14 update to keep track of pkt #, need to add done with FF FF FF after blocks
2017-01-19 add ACK spoof capability by storing an ACK
2017-02-02 take spoof out, didn't work
2017-02-08 add pass info catcher to improve file naming of logged and printed data
2017-02-10 take pass catcher out, too hard to do UDP receive
2017-02-19 add in pass_info_filename_reader code to do file naming
2017-03-05 added the pass_ID to PASS_INFO_FOR_PARSE_AX25.txt

UPDATE Version in init when you update the code!!!

"""
Embedded Python Blocks:

Each this file is saved, GRC will instantiate the first class it finds to get
ports and parameters of your block. The arguments to __init__ will be the
parameters. All of them are required to have default values!
"""

"""
Python notes:

120

indentation level = 2 spaces, not tabs
"""

from gnuradio import gr
from bitarray import bitarray

import calendar
import datetime
import itertools
import numpy as np
import pickle
import select
import socket
import threading
import time
from sys import stdout

class blk(gr.sync_block):

############################
def - initialze the object
############################

 def __init__(self, ip='192.168.101.64', port=10001): # only default arguments here
 gr.sync_block.__init__(
 self,
 name='Parse AX.25',
 in_sig=[np.uint8],
 out_sig=None
)

 #
 # set up the socket and threading
 #

 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # create UDP
socket
 self.send_lock = threading.Lock() # create lock to ensure UDP packets are sent
one at a time
 self.server_address = (ip, port)

 #
 # these variables are associated with this instance of the class/object
 #

121

 self.buff = bitarray(endian='big') # create bitarray data buffer to store received packets
 self.filename_raw = ''
 self.filename_KISS = ''
 #self.flag = bitarray('10111110111011111100101011111110', endian='big')
 # now BEEFCAFE*2 (the flag is a 7E in hex (AX.25))
 #self.flag = bitarray('1011111011101111', endian='big') # now BEEFCAFE*2
(the flag is a 7E in hex (AX.25))
 self.flag = bitarray('01100110'*4, endian='big') # 2018-10-01 66 - the flag is
a 7E in hex (AX.25)
 self.last_length = 0
 #self.log_filename = "/home/satrnuser/PropCube/Log_files/Log_AX25_RX.txt"
 # default file name for log_packet
 self.log_filename = "/home/ssagadmin/Desktop/lovdahl/Log_AX25_RX.txt"
 # default file name for log_packet
 self.max_num_pkts_after_sync = 1 # 2018-10-01 total number of pkts to
look for before waiting for preamble
 self.number_of_overflows = 0 # how many times work hit
the 30k mark without a preamble flag ... flag
 self.number_of_packets = 0 # if sys-stat, want to
try to get all 3 fragments
 #self.sync_word = bitarray('01'*20, endian='big') + self.flag
 self.sync_word = bitarray('01111110'*5, endian='big') + self.flag
 #self.sync_word = self.flag
 #
 # identify who is running this program
 #

 ip_address = socket.gethostbyname(socket.gethostname())
 if(0): print "ip_address = ", ip_address
 if (ip_address == "192.168.101.1"): self.location = "NPS"
 elif(ip_address == "192.168.101.2"): self.location = "PTSUR"
 elif(ip_address == "192.168.102.1"): self.location = "AFIT"
 #elif(ip_address == "127.0.1.1"): self.location = "SDL"
 elif(ip_address == "192.168.103.1"): self.location = "SDL"
 elif(ip_address == "192.168.101.248"): self.location = "HSFL"
 elif(ip_address == "192.168.104.1"): self.location = "HSFL"
 elif(ip_address == "192.168.105.1"): self.location = "UNM"
 elif(ip_address == "192.168.106.1"): self.location = "USNA"
 else: self.location = "UNK"

 Version = "2018-10-04 working1"
 print "\nLocation = ", self.location, " ip_address = ", ip_address, " port = ", port
 print "Version: ", Version, " Parse AX.25 Pkt Decode and Logging Program\n"

###################################

122

def - send a KISS packet over UDP
###################################

 def send_one_message(self, kiss_packet): # a KISS packet is just a string
 self.send_lock.acquire()
 # a semaphore, this acquire will block if lock already being used

 try:
 self.sock.sendto(kiss_packet, self.server_address)
 except:
 print "exception sendto() failed"
 finally:
 self.send_lock.release() #
releases the lock, now next acquire can proceed

####################
def - calc the crc
####################

 def calc_crc(self, packet):
 crc_poly = bitarray('0001000000100001', endian='big') # 0x1021
 shift_reg = bitarray('1'*16, endian='big') # two bytes of ones
 for bit in packet[:-16]:
 shift_reg.append(False) # 16 1's then only zeros in shift_reg
 if shift_reg.pop(0) != bit: # remove 1st element and check it against the
current packet bit
 shift_reg = shift_reg^crc_poly # if not the same, then update the calc'd CRC
(shift_reg)
 sr = shift_reg.tobytes()

 if(0): print "work: calculated crc = 0x ", ''.join('%02X'%ord(x) for x in sr)
 if(0): print "work: calculated crc =", shift_reg # shift_reg is the calculated
CRC
 if(0): print "work: recovered crc =", packet[-16:]

 return shift_reg

make the KISS Frame packet - KISS pkt is a string
then send it and log it

 def kiss_the_packet(self, packet):
 kiss_packet = ""

123

 for byte in list(bytearray(packet[:])): # CRC is being stripped out of the KISS packet
 kiss_packet += chr(byte)
 # append the next byte

 ###
 # create thread to send KISS packet over UDP socket #
 ###

 send_thread = threading.Thread(target=self.send_one_message, args=(kiss_packet,))
 send_thread.daemon = True
 send_thread.start()

 self.log_kiss_packet(kiss_packet) # displays and
logs kiss_packet

Produce a meaningful file name to store data in

 def file_name_maker(self):

 # try reading the pass info and if successful,
 # check against the current date and time and
 # if not more than TBD minutes ago, make the name from the pass info
 # if more than TBD minutes old, the file data is stale and
 # so should use some default name
 #
 # string 1 = "xxxxx_201x-mm-dd_HH-MM-SS_UTC" # pass_ID, date, time
 # string 2 = "NPS_10MERRYW_180_359_090" # gs,
sat name, Az-start, Az-end, Max elevation
 # string 3 = "duration"
 # pass duration in seconds

 try:
 file_path = "/home/ssagadmin/Desktop/lovdahl/"
 pass_info_filename = file_path + "PASS_INFO_FOR_PARSE_AX25.txt"
 #pass_info_filename = "PASS_INFO_FOR_PARSE_AX25.txt"
 pass_info_fp = open(pass_info_filename, "r")
 string1 = pass_info_fp.readline()
 string2 = pass_info_fp.readline()
 string3 = pass_info_fp.readline()
 pass_info_fp.close()
 #print "string1 = ", string1
 #print "string2 = ", string2
 #print "string3 = ", string3

124

 [pass_ID, datestring, timestring, UTCstring, nullstring] = string1.split("_")
 duration = float(string3)
 #print "pass_ID = ", pass_ID
 #print "datestring = ", datestring
 #print "timestring = ", timestring
 #print "duration = ", duration
 pass_datetime_string = datestring + " " + timestring
 #print "pass_datetime_string = ", pass_datetime_string

 current_datetime_in_seconds = time.time() # all sites should be on UTC,
this result in seconds
 #print "current_datetime_in_seconds = ", current_datetime_in_seconds
 pass_datetime_in_seconds = calendar.timegm(time.strptime(pass_datetime_string,
"%Y-%m-%d %H-%M-%S"))
 #print "pass_datetime_in_seconds = ", pass_datetime_in_seconds
 beg_of_pass = pass_datetime_in_seconds
 end_of_pass = pass_datetime_in_seconds + duration

 #
 # check to see if a pass is going on right now, with +/- 5 seconds for relative clock
drift from UTC
 # if a pass is going on, make the same name to append data to
 # otherwise, make a simplified name
 #

 if((current_datetime_in_seconds > beg_of_pass-5) & (current_datetime_in_seconds
< end_of_pass+5)): # pass going
 self.filename_raw = file_path + string1[:-1] + 'raw_' + string2[:-1] + '.txt'
 self.filename_KISS = file_path + string1[:-1] + 'KISS_' + string2[:-1] + '.txt'

 else: # either clock is off (if pre-pass) or pass has ended and no new pass
info has come in
 datestr = time.strftime("%Y-%m-%d", time.gmtime(current_datetime_in_seconds))
 self.filename_raw = file_path + datestr + '_' + self.location + '_raw.txt'
 self.filename_KISS = file_path + datestr + '_' + self.location + '_KISS.txt'

 # test if can open and write to the filename
 #tstr = time.strftime("%Y-%m-%d %H:%M:%S",
time.gmtime(current_datetime_in_seconds)) + " UTC"
 #print "file_name_maker: writing a test file"
 #test_file_name = file_path+self.filename_raw
 #test_fp = open(test_file_name, "a")
 #test_fp.write("Opened file and wrote something at " + tstr + "\n")
 #test_fp.close()

125

 except IOError:
 print "Pass_info file '" + pass_info_filename + "' failed to open"
 datestr = time.strftime("%Y-%m-%d", time.gmtime(current_datetime_in_seconds))
 self.filename_raw = file_path + datestr + '_' + self.location + '_raw.txt'
 self.filename_KISS = file_path + datestr + '_' + self.location + '_KISS.txt'

except:
print "unknown error"

 #print "filename_raw = ", self.filename_raw
 #print "filename_KISS = ", self.filename_KISS

def - log KISS packet to file and print to screen
log_status:
1 - crc_good: packet_to_log is kiss_packet and is bytes

 def log_kiss_packet(self, kiss_packet_to_log):

 if(0): print "log_pkt: kiss_packet_to_log = ", list(kiss_packet_to_log)

 now = time.time()
 milliseconds = '.%03d' % int((now - int(now)) * 1000)
 tstr = time.strftime("%m/%d/%y %H:%M:%S", time.gmtime(now)) + milliseconds + "
UTC"

 file_date = time.strftime("20%y-%m-%d", time.gmtime(now))

self.file_name_maker()
2018-10-01 updates

 self.log_filename = "/home/ssagadmin/Desktop/lovdahl/Logs/"
 self.log_filename += file_date
 self.log_filename += "_Log_RX_pkts.txt"

 if(1):
 #print "file_date = ", file_date
 print "log_filename = ", self.log_filename # 2018-10-01

 f = open(self.log_filename, "a") # ADD try: except: for the open process?

 data_prt = ""

126

 l = len(kiss_packet_to_log) # length of string is # of bytes
 len_to_log = l
 data_prt = kiss_packet_to_log[:] # this DOES copy packet_to_log to data_prt, don't
need the [:], on Ubuntu!
 data_wrt = kiss_packet_to_log[:]
 if(0): print "log: len of data_prt, kiss_packet_to_log = ", len(data_prt),
len(kiss_packet_to_log)

 if(0): print "log: l, l_to_print = ", l, l_to_print
 if(0): print "log: len data_prt, l_to_print = ", len(data_prt), l_to_print

 ##
 # write the time, status, len, and data to the file
 # ALSO add try: except: for the write process
 ##

 write_str = "%s %s pkt # = %d of %d KISS packet len = %d bytes"%(self.location,
tstr, self.number_of_packets, self.max_num_pkts_after_sync, len_to_log)

 pkt_len = len(data_wrt)

 f.write(write_str + '\n')

 f.write(str(pkt_len) + '\n')
 write_pkt = ''.join('{:02X}'.format(ord(x)) for x in data_wrt) # 2017-01-02
extra space gone, use for both
 f.write(write_pkt + '\n')
 # logging pkts twice if
logging raw_pkts, unneccesary
 if(0): print "KISS packet logged!"
 f.close()

def - log raw_packets to file and print to screen
log_status:
0 - crc_failed, but packet_to_log is bitarray (not kiss_packet, because crc failed)
2 - crc_failed, packet not byte length, lost a bit somewhere: packet_to_log is a bitarray
3 - short packet: packet_to_log is a bitarray

 def log_packet(self, packet_to_log, log_status, fname=None):

 len_packet_to_log = len(packet_to_log) # length in bits
 #raw_packet = packet_to_log[:] # this copies the packet_to_log to a bitarray
or list

127

 if(0): print "log_pkt: type raw_packet = ", type(raw_packet)
 if(0): print "log_pkt: packet_to_log = ", packet_to_log

 now = time.time()
 milliseconds = '.%03d' % int((now - int(now)) * 1000)
 tstr = time.strftime("%m/%d/%y %H:%M:%S", time.gmtime(now)) + milliseconds + "
UTC"
 file_date = time.strftime("20%y-%m-%d", time.gmtime(now))

2018-10-03 to have same file name
 self.log_filename = "/home/ssagadmin/Desktop/lovdahl/Logs/"
 self.log_filename += file_date
 self.log_filename += "_Log_RX_pkts.txt"

 if(0):
 self.log_filename = "/home/ssagadmin/Desktop/lovdahl/"
 self.log_filename += file_date
 self.log_filename += "_Log_AX25_RX_"
 self.log_filename += self.location
 self.log_filename += "_raw_pkts.txt"
 #else: self.log_filename = fname

 if(0):
 print "file_date = ", file_date
 print "log_filename = ", filename_raw

 #2018-10-03: change filename_raw to self.log_filename
 f = open(self.log_filename, "a") # ADD try: except: for the open process?

 data_prt = ""

 # need to pad the packet_to_log to an even 8 bits
 len_to_pad = (8 - (len_packet_to_log % 8)) % 8
 if(0): print "log: len_to_pad = ", len_to_pad

 for i in range(len_to_pad):
 packet_to_log.append(0)

 if(0): print "packet_to_log = ", packet_to_log

 data = ''
 if(0): print "log: bytearray(packet_to_log) = ", list(bytearray(packet_to_log))
 for byte in list(bytearray(packet_to_log)): # need to turn the bitarray into bytes
for printing
 data += chr(byte)

128

 data_prt = data[:]
 data_wrt = data[:]

 ##
 # write the time, status, len, and data to the file
 # ALSO add try: except: for the write process
 ##

 #write_str = "%s status = %s len = %d"%(tstr, log_status, len_packet_to_log)
 write_str = "%s %s pkt # = %d of %d status = %s len = %d bits"%(self.location, tstr,
self.number_of_packets, self.max_num_pkts_after_sync, log_status, len_packet_to_log)

 if(log_status == 0): write_str += " CRC Fail: "
 elif(log_status == 1): write_str += " Good pkt: "
 elif(log_status == 2): write_str += " Pkt bit drop: "
 elif(log_status == 3): write_str += " Pkt too short: "
 else: write_str += " Unexpected: "

 data_wrt_len = len(data_wrt)

 f.write(write_str + '\n')

 f.write(str(len_packet_to_log) + '\n')
 write_pkt = ''.join('{:02X}'.format(ord(x)) for x in data_wrt) # 2017-01-02
extra space gone, use for both
 f.write(write_pkt + '\n')

 if(0): print "raw packet logged!"
 f.close()

 ##
 # print the time, status, len, and data to the screen
 ##

 #if(log_status == 0): print_str = "%s %s l =%4d"%(tstr, log_status, l)
 #else:
 #print_str = "%s status = %s len = %d"%(tstr, log_status, len_packet_to_log)
 #print_str = "%s pkt # = %s status = %s len = %d"%(tstr, str(self.number_of_packets),
log_status, len_packet_to_log)

 print_str = "%s %s pkt # = %d of %d status = %s len = %d bits"%(self.location, tstr,
self.number_of_packets, self.max_num_pkts_after_sync, log_status, len_packet_to_log)

 if(log_status == 0): print_str += " CRC Fail: "

129

 elif(log_status == 1): print_str += " Good pkt: "
 elif(log_status == 2): print_str += " Pkt bit drop: "
 elif(log_status == 3): print_str += " Pkt too short: "
 else: print_str += " Unexpected: "

 print_len = 15
 print_str += ''.join(' {:02X}'.format(ord(x)) for x in data_prt[0:print_len])
 if(len(data_prt) > print_len): print_str += " ..."
 print print_str
 return

##
########
the real work here
- input_items is a list of lists
in this particular case input_items[0] is a numpy.ndarray (n-dimensional)
and the ndarray items are numpy.uint8
- GNU Radio input_items[0][0] is big-endian bit
- turn the numpy.ndarray into a bitarray to work on - frombytes() appends!
- first do the byte alignment, based on sync word and final flag
- then calc and check crc, if good, get rid of crc, reverse the bytes
- then create the kiss_packet

the preample bytes are big endian
the data bytes are little endian
the crc is big endian and comes inverted (is this bizarre or expected?)
the flag is symmetric

NOTE: data is little endian, but crc is big endian and inverted!
these are combined into a big endian buff,
so crc is written byte reversed by the data
logger!!! FIX!

##
########

 def work(self, input_items, output_items):

 PAYLOAD_SIZE = 256*8
 AFTER_PAYLOAD_SIZE = 4*8
 EXPECTED_BIT_COUNT = PAYLOAD_SIZE + AFTER_PAYLOAD_SIZE

 if(0): print "work: the top"

 #

130

 # start working on the bits
 #

 status = 0
 # default status is simple CRC fail
 self.buff.frombytes(np.array(input_items, dtype=np.uint8).tobytes()) # magic -
makes a bitarray from an ndarray
 # frombytes() APPENDS the input_items
to buff
 #print "delta length = ", (len(self.buff) - self.last_length)
 # shows how often work gets called!
 #self.last_length = len(self.buff)
 # every byte
just about

 sync_word_pos = self.buff.search(self.sync_word, 1) # find the index of the
1st sync word
 if sync_word_pos:
 self.number_of_packets = 0

 #restart packet counter

 if(0):
 #print "work: input_items type is ", type(input_items) # input_items is a 'list'
 #print "work: len input_items is ", len(input_items) # len always = 1
 #print "work: input_items = ", input_items
 #print "work: input_items[0][0] type is ", type(input_items[0][0]) #
input_items[0][0] is a 'numpy.ndarray'
 #print "work: len input_items[0][0] is ", len(input_items[0][0])
 #print "work: input_items[0][0] = ", input_items[0][0]
 print

 if bool(sync_word_pos) | bool(self.number_of_packets): # starting over either
for sync_word OR any pkts already
 self.number_of_overflows = 0
 # reset the number_of_overflows counter
 if sync_word_pos: start_pos = sync_word_pos[0] + len(self.sync_word) #
sync_word is 48 bits long
 else: start_pos = 0
 if(0): print "work: start_pos = ", start_pos

 flag_pos = self.buff[start_pos:].search(self.flag,1) # find the index of the next 7E
flag
 if(0): print "work: flag_pos = ", flag_pos

131

 fragment_num = 0
 # looking at
first packet after sync word

 if flag_pos:
 # if no flag yet, return to wait for more bits
 end_pos = start_pos + flag_pos[0]
 if(0): print "work: end_pos, buff_len = ", end_pos, len(self.buff) #2018-10-02 0 to
1s
 self.number_of_packets += 1
 if(0): print "work: raw packet len = ", end_pos - start_pos + 1 # 2018-10-02
 if(0): print "work: number_of_packets = ", self.number_of_packets
 if(0): print "work: payload and crc = ", self.buff[start_pos:end_pos]
 # print the payload and crc

 ###
 # extract packet (a bitarray) from buff #
 ###

 packet = self.buff[start_pos:end_pos] #
packet is after sync+7E to the next 7E and is a bitarray.
 raw_packet = packet[:]
 # save for logging all raw packets
 if(0): print "work: raw_packet = ", raw_packet

 # unstuff and check if bits make up bytes (if bits%8!=0 something wrong)

 num_unstuffs = 0
 for stuffing_pos in packet.search(bitarray('111110', endian='big'))[::-1]:
 # packet is big-endian, right?
 packet.pop(stuffing_pos+5)
 # gets rid of
that zero
 num_unstuffs += 1
 if(1):
 print "work: after unstuff packet len = ", len(packet) # 2018-10-02 to print the
sequence number
 seq = packet[16*8:16*8+16]
 #print "work: len(seq) = ", len(seq)
 seq[:] = bitarray(seq, endian = 'little')
 #print "work: len(seq) = ", len(seq)
 #print "work: len(bytearray(seq)) = ", len(list(bytearray(seq)))
 s = ""
 for d in list(bytearray(seq)):
 s += "%02X "%d

132

 print "work: seq2 = ", s

 if(len(packet) % 8 != 0):
 #2018-10-04: turn off print # check len(packet) modulo 8 = 0!?
 if(0): print "work: packet not pure bytes after unstuff. Must fail CRC check."
 status = 2
 # status = 2 for packet byte problem
 #self.log_packet(bitarray(raw_packet, endian='big'), status)

 # check if packet too short (len < 24)

 elif(len(packet) < 24):
 # catch too short packets = CASE 3
 if(0): print "work: packet len < 24! = ", len(packet)
 status = 3

 # then crc check, but only if possibly good (status not 2 or 3)

2018-10-01
 if(status < 2):
 if(0): print "IN status < 2"
 shift_reg = bitarray(endian='big') # two bytes of ones
 shift_reg = self.calc_crc(packet)
 if(0): print "work: shift_reg = ", shift_reg

 if all(shift_reg^packet[-16:]): # compare the calc'd CRC with the received ~CRC,
they must be ~.
 status = 1
 packet[:] = bitarray(packet, endian='little') # Makes an le version of the
bitarray packet
 # this somehow reverses the bits in every
"byte"
 self.kiss_the_packet(packet) # KISSs the packet, sends it out, and logs it

 #2018-10-05: changed len(packet) check

 if(len(packet) == EXPECTED_BIT_COUNT):
 if(1): print "work: IN status = 4"
 status = 4
 packet = packet[:2048]
 packet[:] = bitarray(packet, endian='little') # 2018-10-03 Do this to good packets.
Makes an le version of the bitarray packet.

133

 self.kiss_the_packet(packet) # 2018-10-03 now logs good pkts! does not
KISSs the packet, but sends it out, and logs it

 # 2018-10-04: add more logging for debug
 elif(len(packet) > 2048):
 if(1): print "work: > 2048"
 packet = packet[:2048]
 packet[:] = bitarray(packet, endian='little') # 2018-10-03 Do this to good packets.
Makes an le version of the bitarray packet.
 self.kiss_the_packet(packet) # 2018-10-03 now logs good pkts! does not
KISSs the packet, but sends it out, and logs it

 # then log the raw packet

2018-10-01 self.log_packet(bitarray(raw_packet, endian='big'), status)

 # always look for max_num_pkts_after_sync, but then start over

 end_of_pkts_marker = bitarray('1'*24, endian='big') # 3 x 'FF'
seems to follow every set of blocks
 if(0): print "work: end_of_pkts_marker = ", end_of_pkts_marker
 if(0): print "work: packet[:48] = ", packet[:48]
 end_of_pkts_marker_pos = packet.search(end_of_pkts_marker)
 if(0): print "work: end_of_pkts_marker_pos = ", end_of_pkts_marker_pos
 if(end_of_pkts_marker_pos):
 # done with that set of blocks
 self.number_of_packets = 0
 # resets and starts looking for sync word
 elif(self.number_of_packets >= self.max_num_pkts_after_sync):
 self.number_of_packets = 0

 self.buff = self.buff[end_pos+8:]
 # clear buffer up to end of sync word
flag ... flag
 return len(input_items[0])
 # what is it really returning? the number 1

 ##
 # clear buffer if sync word hasn't been seen
 # for the the last 10kb of data
 # CONSIDER only clearing buff up to an
 # occurrence of sync_word (obviously no
 # following 7E yet)
 ##

134

 elif len(self.buff) > 1*10**4:

 now = time.time()
 tstr = time.strftime("%m/%d/%y %H:%M:%S", time.gmtime(now)) + " "
 file_date = time.strftime("20%y-%m-%d", time.gmtime(now))
 self.number_of_overflows += 1
 self.fragment_num = 0

 if(0):

 # to collect "noise" from the buff overflow
 self.log_filename = "/home/ssagadmin/Desktop/lovdahl/"
 self.log_filename += file_date
 self.log_filename += "_Noise_data"
 f = open(self.log_filename, "a") # ADD try: except: for the open process?

 temp_buff = bitarray(endian = "big")
 temp_buff = self.buff[:-len(self.sync_word)]
 temp_buff.bytereverse()
 data = ''
 for byte in list(bytearray(temp_buff)):
 data += chr(byte)

 data_log = data[:] # PERHAPS
should log the bitarray instead of the bytearray???
 write_str = ""
 write_str += ''.join(' {:02X}'.format(ord(x)) for x in data_log)
 f.write("buff: " + write_str + "\n")

 f.close()

 print self.number_of_overflows, " ", tstr, " work: no sync_words, buff len =",
len(self.buff), "\r"
 self.buff = self.buff[-len(self.sync_word):]

 return len(input_items[0])
 # what is it really returning?

135

APPENDIX H. CHUNKING.PY

from __future__ import print_function
import collections
import glob
import math
import os
import pickle
import random
import select
import serial
import shutil
import socket
import struct
import subprocess
import sys
import time

import crc32_cadet
import packet
import payload_UART

USE_SEEK_HAB = False
USE_SEEK_GROUND = True

RND_TX_HAB = 0
RND_TX_GROUND = 0

PAUSE_HAB_TX = 1.05
PAUSE_COUNT = 4

CAMERA_TAKE_INTERVAL = 5 # seconds
CAMERA_TODOWNLOAD_INTERVAL = 60 # seconds

USE_MHX = True
USE_PAYLOAD_SERIAL = True

SDR_UDP_GROUND_RX_PORT = 10005
SDR_UDP_HAB_RX_PORT = SDR_UDP_GROUND_RX_PORT
SDR_UDP_HAB_TX_PORT = 10000
SDR_UDP_GROUND_IP = '172.20.73.49'
#SDR_UDP_HAB_IP = '172.20.73.22'

136

SDR_UDP_HAB_IP = '127.0.0.1'

GROUND_FEEDBACK_TIME = 2

AFTER_PAYLOAD = 4*'\xAA'
PREAMBLE = '\x55'
#HEADER = '\xBE\xEF\xCA\xFE'
#HEADER = '\xBE\xEF'
HEADER = 4*'\x66'
FILENAME_SIZE = 12
FILESIZE_SIZE = 4
SEQ_SIZE = 2
MAX_SEQ_SIZE = 2
CRC_SIZE = 4
PAYLOAD_OFFSET = len(PREAMBLE) + len(HEADER)
DATA_OFFSET = PAYLOAD_OFFSET + FILENAME_SIZE + 8

MAX_PAYLOAD_SIZE = 256
MAX_DATA_SIZE = MAX_PAYLOAD_SIZE - FILENAME_SIZE - FILESIZE_SIZE
- SEQ_SIZE - MAX_SEQ_SIZE - CRC_SIZE

MAX_DOWNLOAD_COUNT = 4

GROUND_TO_HAB_CMD_LEN = 2
CHUNK_BIT_MASK_BYTES_LEN = 2 # number of bytes
CHUNK_BIT_MASK_BITS_LEN = CHUNK_BIT_MASK_BYTES_LEN*8
CHUCK_ASCII_VALUES = 15 # set to None if using bitmasking

max seq = 65535
therefore, maximum bit mask size = 65535/CHUNK_BIT_MASK_BYTES_LEN: so
for 80 bytes (800 bits) ==> 82 bit mask planes
1 MByte file: 4096 chunks; 80 bytes for bit mask (800 bits) ==> 5 bit mask frames
MHX up structure is:
offset size items
====== ==== =====
0 5 Command

for Command == file complete
5 12 filename

for Command == file progress
5 12 filename
17 2 bitmask chunk sequence offfset
19 80 bitmask for frame N
MHX_COMMAND_FILE_COMPLETE = "PLDN "

137

MHX_COMMAND_FILE_PROGRESS = "PLST "
MHX_COMMAND_START = "PLSTART"
MHX_COMMAND_CLEAR = "PLCLEAR"
MHX_COMMAND_TIME = "PLTIME"
FNAME_START_OFFSET = 5
BIT_MASK_SEQ_OFFSET = 17
BIT_MASK_START_OFFSET = 19

class CHUNKER(object):
 def __init__(self, mode=None):
 self.CRC32 = crc32_cadet.CRC32()
 if mode == 'Ground' and USE_MHX:
 self.eol = '\x0D'
 self.ser = serial.Serial(port='/dev/ttyUSB0', baudrate=9600,
bytesize=8, parity='N', stopbits=1, timeout=0, xonxoff=0, rtscts=0)
 self.ser.flushInput()
 self.ser.flushOutput()

 def prep_file_for_chunking(self, fname):
 self.fname = fname
 self.fname_padded = get_fname_padded(fname)
 fp = open(os.path.join('todownload', fname), 'rb')
 data = fp.read()
 self.data = data
 fp.close()
 self.file_size = len(data)
 (self.num_chunks, self.remainder) = divmod(self.file_size,
MAX_DATA_SIZE)
 if self.remainder > 0:
 self.num_chunks += 1
 self.chunk_i = 0
 self.received = set()

 def prep_file_for_dechunking(self, fname):
 pass

 def start_over(self):
 self.chunk_i = 0

 def remove_download_data(self):
 self.data = None

138

 def mark_received(self, i):
 self.received.add(i)

 def make_next_chunk(self, count):
 if self.chunk_i == self.num_chunks:
 return ''
 elif self.chunk_i == self.num_chunks -1:
 if self.remainder > 0:
 if self.chunk_i in self.received:
 return ''
 else:
 payload = self.fname_padded + struct.pack('>IHH',
self.file_size, self.chunk_i, self.num_chunks)
 if USE_SEEK_HAB:
 fp = open(os.path.join('todownload',
self.fname), 'rb')
 fp.seek(self.chunk_i*MAX_DATA_SIZE,
0) # goto absolute position, relative to start of file
 payload += fp.read(self.remainder)
 fp.close()
 else:
 payload += self.data[-self.remainder:]
 payload += (MAX_DATA_SIZE-
self.remainder)*'\x00'
 crc32 = self.CRC32.calc_str(payload)
 print('%d, <%s>, fsize=%d, Nchunks=%d,
remainder=%d, i=%d'%(count, self.fname_padded, self.file_size, self.num_chunks,
self.remainder, self.chunk_i))
 self.chunk_i += 1
 return payload + crc32
 else:
 while True:
 if self.chunk_i not in self.received:
 break
 else:
 self.chunk_i += 1
 if self.chunk_i == self.num_chunks:
 return ''
 payload = self.fname_padded + struct.pack('>IHH', self.file_size,
self.chunk_i, self.num_chunks)
 if USE_SEEK_HAB:
 fp = open(os.path.join('todownload', self.fname), 'rb')

139

 fp.seek(self.chunk_i*MAX_DATA_SIZE, 0)
 # goto absolute position, relative to start of file
 payload += fp.read(MAX_DATA_SIZE)
 fp.close()
 else:
 payload +=
self.data[self.chunk_i*MAX_DATA_SIZE:self.chunk_i*MAX_DATA_SIZE+MAX_D
ATA_SIZE]
 crc32 = self.CRC32.calc_str(payload)
 print('%d, <%s>, fsize=%d, Nchunks=%d, remainder=%d,
i=%d'%(count, self.fname_padded, self.file_size, self.num_chunks, self.remainder,
self.chunk_i))
 self.chunk_i += 1
 return payload + crc32

 def MHX_write(self, data):
mhx_data = MHX_escape(data, self.eol) + self.eol
 mhx_data = data + self.eol
print('MHX_write(', end='')
for d in mhx_data:
print('%02X '%ord(d), end='')
print(')')
print('MHX_write(): %s'%data)
 self.ser.write(mhx_data)

 def send_bitmask(self, fname, file_info, sock):
 # send up information about chunks that have been received (NOT
missing)
 bitmask_seq_count = file_info['bitmask_seq_count']

 if CHUCK_ASCII_VALUES == None:
 (bit_mask_seq_start, remainder) = divmod(bitmask_seq_count,
CHUNK_BIT_MASK_BITS_LEN)
 bit_mask_seq_start =
bit_mask_seq_start*CHUNK_BIT_MASK_BITS_LEN
 seq_end = bit_mask_seq_start +
CHUNK_BIT_MASK_BITS_LEN
 else:
 (bit_mask_seq_start, remainder) = divmod(bitmask_seq_count,
CHUCK_ASCII_VALUES)
 bit_mask_seq_start =
bit_mask_seq_start*CHUCK_ASCII_VALUES
 seq_end = bit_mask_seq_start + CHUCK_ASCII_VALUES

140

 if seq_end >= file_info['max_seq']:
 seq_end = file_info['max_seq'] - 1
 if CHUCK_ASCII_VALUES == None:
 bitmask = CHUNK_BIT_MASK_BYTES_LEN*[0]
 # assumes ALL missing
 else:
 bitmask = ''
 for seq in range(bit_mask_seq_start, seq_end+1):
 if seq not in file_info['missing_seq']:
 # we have this chunk, so indicate it
 if CHUCK_ASCII_VALUES == None:
 mi = int((seq-bit_mask_seq_start)/8)
 mb = (seq-bit_mask_seq_start)%8
 try:
 bitmask[mi] |= (1<<mb)
 except IndexError:
 print('Index error mi=%d'%mi)
 else:
 bitmask += '%d,'%seq
 if CHUCK_ASCII_VALUES != None:
 if bitmask != '':
 bitmask = bitmask[:-1] # get rid of trailing comma

 file_info['bitmask_seq_count'] += CHUNK_BIT_MASK_BITS_LEN
 if file_info['bitmask_seq_count'] > file_info['max_seq']:
 file_info['bitmask_seq_count'] = 0
 if CHUCK_ASCII_VALUES == None:
 payload = MHX_COMMAND_FILE_PROGRESS +
get_fname_padded(fname) + struct.pack('<H', bit_mask_seq_start)
 for m in bitmask:
 payload += chr(m)
 else:
 if bitmask == '':
 payload = MHX_COMMAND_FILE_PROGRESS +
get_fname_padded(fname)
 else:
 payload = MHX_COMMAND_FILE_PROGRESS +
get_fname_padded(fname) + bitmask
 if USE_MHX:
 self.MHX_write(payload)
 else:
 crc32 = self.CRC32.calc_str(payload)
 sock.sendto(payload+crc32, (SDR_UDP_HAB_IP,
SDR_UDP_HAB_RX_PORT))

141

 def send_file_complete(self, fname, sock):
 payload = MHX_COMMAND_FILE_COMPLETE +
get_fname_padded(fname)
 crc32 = self.CRC32.calc_str(payload)
 if USE_MHX:
 self.MHX_write(payload)
 else:
 sock.sendto(payload+crc32, (SDR_UDP_HAB_IP,
SDR_UDP_HAB_RX_PORT))

 def dechunk(self, rx_ip, rx_port):
 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 sock.bind((rx_ip, rx_port))
 sock.setblocking(0)

 files = collections.OrderedDict()
 file_feedback_list = []
 file_feedback_count = 0 # which file that last was used to give
feedback to HAB

 last_feedback_time = time.time()
 last_dbase_time = time.time()
 while True:
 if time.time() - last_feedback_time >
GROUND_FEEDBACK_TIME:
 if USE_MHX:
 # check if TLM incoming on MHX
 N = self.ser.inWaiting()
 if N > 0:
 data = self.ser.read(N)
 fp = open('mhx_rx.txt', 'a')
 fp.write(data+'\n')
 fp.close()

 # send some feedback about chunks received
 last_feedback_time = time.time()
 if len(file_feedback_list) > 0:
 fname = file_feedback_list[file_feedback_count]
 file_feedback_count += 1
 if file_feedback_count >= len(file_feedback_list):
 file_feedback_count = 0
 if not files[fname]['ack_done']:

142

 if len(files[fname]['missing_seq']) > 0:
 self.send_bitmask(fname,
files[fname], sock)
 else:
 self.send_file_complete(fname,
sock)

 (rd, wr, err) = select.select([sock], [], [], 0)
 if sock not in rd:
 continue
 chunk = sock.recv(4096)
 if chunk[:5] == MHX_COMMAND_FILE_COMPLETE:
 fname =
chunk[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].stri
p()
 if fname in files:
 files[fname]['ack_done'] = True
 continue

 a = struct.unpack('<I', self.CRC32.calc_str(chunk[:-4]))[0]
 b = struct.unpack('<I', chunk[-4:])[0]
 if a != b:
 print("*** CRC32 ERROR (%08X != %08X) ***" %(a,
b))
 continue

 fname = chunk[:FILENAME_SIZE].strip()
 (fsize, seq, mseq) = struct.unpack('>IHH',
chunk[FILENAME_SIZE:FILENAME_SIZE+8])
 data = chunk[FILENAME_SIZE+8:-4]
 if fname not in files:
 n = 0
 print('fname=<%s>, fsize=%u, seq=%u, mseq=%u,
complete=%d%%'%(fname, fsize, seq, mseq, n))
 else:
 n = float((len(files[fname]['data']))/float(mseq))*100
 if len(files[fname]['missing_seq']) == 0:

 print('fname=<%s>, fsize=%u, seq=%u, mseq=%u,
complete=100%%'%(fname, fsize, seq, mseq))
 else:
 print('fname=<%s>, fsize=%u, seq=%u, mseq=%u,
complete=%d%%'%(fname, fsize, seq, mseq, n))

 if not os.path.exists(os.path.join('downloads', fname)):

143

 # if os.path.exists(fname) then file is already completely
downloaded
 # otherwise, ".download" is added to the temporary file as
it is being created and filled up
 if not os.path.exists(os.path.join('downloads',
fname+'.download')):
 print('first chunk from %s, setting up'%fname)
 files[fname] = {'missing_seq':set(range(0, mseq)),
'max_seq':mseq, 'bitmask_seq_count':0, 'data':{}, 'ack_done':False}
 # create full file (zeros)
 fp = open(os.path.join('downloads',
fname+'.download'), 'wb')
 if USE_SEEK_GROUND:
 fp.seek(fsize-1)
 fp.write('\0') # writing a byte to the
end of the file forces os to create full file
 fp.close()
 file_feedback_list.append(fname)

 if seq in files[fname]['missing_seq']:
 # fill in the chunk we just received (as long as it has
not already been)
 if seq == mseq-1: # the last one
 # possibly need to chop off end of the data
to correct file size
 (N, remainder) = divmod(fsize,
MAX_DATA_SIZE)
 if remainder > 0:
 data = data[:remainder]
 if USE_SEEK_GROUND:
 files[fname]['data'][seq] = data[:]
 fp = open(os.path.join('downloads',
fname+'.download'), 'r+')
 fp.seek(seq*MAX_DATA_SIZE, 0)
 # goto absolute position, relative to start of file
 fp.write(data)
 fp.close()
 else:
 files[fname]['data'][seq] = data[:]
 files[fname]['missing_seq'].remove(seq)

 if len(files[fname]['missing_seq']) == 0:
 print('all chunks from %s received,
finished.'%fname)
 if USE_SEEK_GROUND:

144

 os.rename(os.path.join('downloads',
fname+'.download'), os.path.join('downloads', fname))
 else:
 fp = open(os.path.join('downloads', fname),
'wb')
 for seq in sorted(files[fname]['data']):
 fp.write(files[fname]['data'][seq])
 fp.close()
 os.remove(os.path.join('downloads',
fname+'.download'))
 files[fname]['data'] = {}

def take_picture(camera, resize=None, quality=85):
 print('take_picture(): resize=', resize, ', quality=%d'%quality)
 t = time.time()
 tstr = time.strftime('%Y-%m-%d_%H-%M-%S-%Z.jpg')
 fpath = os.path.join('images', tstr)
 found = False
 if os.path.exists(fpath):
 # file exists, try some variants
 found = True # assume found until otherwise (which might not happen)
 for i in range(0, 20):
 fpath = os.path.join('images', time.strftime('%Y-%m-%d_%H-
%M-%S-%Z') + '-%d.jpg'%i)
 if not os.path.exists(fpath):
 found = False
 break
 if found:
 return ''
 if True: #try:
 camera.capture(fpath, resize=resize, quality=quality)
 else: #except:
 return ''
 return fpath

def MHX_escape(data, FEND='\x0D'):
 FESC = "\xDB"
 TFEND = "\xDC"
 TFESC = "\xDD"
 packet = ""
 for d in data:
 if d == FEND:
 packet = packet + FESC + TFEND

145

 elif d == FESC:
 packet = packet + FESC + TFESC
 else:
 packet += d
 return packet

def MHX_unescape(data_escaped, FEND='\x0D'):
 FESC = "\xDB"
 TFEND = "\xDC"
 TFESC = "\xDD"
 data = ""
 i = 0
 while i < len(data_escaped)-1:
 if data_escaped[i] == FESC and data_escaped[i+1] == TFEND:
 data += FEND
 i += 2
 elif data_escaped[i] == FESC and data_escaped[i+1] == TFESC:
 data += FESC
 i += 2
 else:
 data += data_escaped[i]
 i += 1
 return data

def get_fname_padded(fname):
 if len(fname) < FILENAME_SIZE:
 return fname + (FILENAME_SIZE-len(fname))*' '
 else:
 return fname[:FILENAME_SIZE]

def multi_file_send(rx_ip, rx_port):
 files = collections.OrderedDict()
 for file in glob.glob('todownload/*'):
 fname = file.split('/')[1]
 files[fname] = {'chunker':CHUNKER(mode='HAB'), 'started':False,
'downloaded':False, 'download_count':0}
 file_feedback_list = []
 for fname in files:
 file_feedback_list.append(fname)
 file_feedback_count = 0

 if USE_PAYLOAD_SERIAL:

146

 ser = payload_UART.UART("/dev/ttyAMA0", 9600, '\x0D')

 try:
 import picamera
 camera = picamera.PiCamera()
 payload_start = False
 photo_count = 0
 except:
 camera = None
 payload_start = False
 photo_count = 0

 # Jah
 #payload_start = True

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 sock.bind((rx_ip, rx_port))
 HAB_TX_count = 0
 fname_processing = ''
 last_camera_time = time.time() - CAMERA_TAKE_INTERVAL
 last_todownload_time = time.time() - CAMERA_TODOWNLOAD_INTERVAL
 while True:
 now = time.time()
 if camera != None and payload_start:
 if now - last_camera_time > CAMERA_TAKE_INTERVAL:
 last_camera_time = now
 photo_fpath = take_picture(camera)
 elif now - last_todownload_time >
CAMERA_TODOWNLOAD_INTERVAL:
 photo_fpath = take_picture(camera, resize=(640, 480),
quality=15)
 if photo_fpath != '':
 fname = '%08d.jpg'%photo_count
 shutil.copyfile(photo_fpath,
os.path.join('todownload', fname))
 last_todownload_time = now
 photo_count += 1
 time.sleep(1)

 if USE_PAYLOAD_SERIAL:
 data = ser.get_line() # this is NOT blocking!

 else:
 (rd, wr, err) = select.select([sock], [], [], 0)

147

 if sock in rd:
 try:
 data = sock.recv(4096)
 except socket.error:
 data = None

 if data != None:
 if data[0:5] == MHX_COMMAND_FILE_COMPLETE:
 if
data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].strip(
) not in files:
 print('%s is not in download list
(completion)'%fname)
 else:
 fname =
data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].strip(
)
 if fname in files:
 files[fname]['downloaded'] = True

 files[fname]['chunker'].remove_download_data()
 payload = MHX_COMMAND_FILE_COMPLETE
+ data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE]
 payload += (MAX_PAYLOAD_SIZE-
len(payload))*'\x00' # zero pad it to full length

 crc32 =
files[fname]['chunker'].CRC32.calc_str(payload)
 payload = HEADER + payload + crc32 +
AFTER_PAYLOAD + HEADER
 sock.sendto(payload, (SDR_UDP_HAB_IP,
SDR_UDP_HAB_TX_PORT))
 HAB_TX_count += 1
 if HAB_TX_count >= PAUSE_COUNT:
 if PAUSE_HAB_TX > 0:
 HAB_TX_count = 0
 time.sleep(PAUSE_HAB_TX)
 elif data[0:5] == MHX_COMMAND_FILE_PROGRESS:
 if
data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].strip(
) not in files:
 print('%s is not in download
list'%data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].
strip())
 else:

148

 fname =
data[FNAME_START_OFFSET:FNAME_START_OFFSET+FILENAME_SIZE].strip(
)
 if CHUCK_ASCII_VALUES == None:
 seq_start = struct.unpack('<H',
data[BIT_MASK_SEQ_OFFSET:BIT_MASK_SEQ_OFFSET+2])[0]
 format =
"<%sB"%CHUNK_BIT_MASK_BYTES_LEN
 received = struct.unpack(format,
data[BIT_MASK_START_OFFSET:BIT_MASK_START_OFFSET+CHUNK_BIT_M
ASK_BYTES_LEN])
 print('Ground RX chunks: ', end = '')
 for i in range(0,
CHUNK_BIT_MASK_BITS_LEN):
 mi = int(i/8)
 mb = i%8
 if received[mi]&(1<<mb):
 if seq_start+i not in
files[fname]['chunker'].received:

 files[fname]['chunker'].mark_received(seq_start+i)
 print('%d
'%(seq_start+i), end='')
 print()
 else:
 try:
 s =
data[FNAME_START_OFFSET+FILENAME_SIZE:].split(',')
 if len(s) >= 1:
 print('Ground RX chuncks: ',
end = '')
 for i in s:
 if i == '':
 continue
 i = int(i)
 if i not in
files[fname]['chunker'].received:

 files[fname]['chunker'].mark_received(i)
 print('%d
'%(i), end='')
 print()
 except:
 print('Error in comand progress list,
skipping')

149

 if fname != fname_processing:

 # need to allow fname to have precedence
 files[fname]['download_count'] = 0
 i = 0
 found = False
 for name in file_feedback_list:
 if fname == name:
 found = True
 break
 else:
 i += 1
 if found:
 file_feedback_count = i
 elif MHX_COMMAND_START in
data[0:len(MHX_COMMAND_START)]:
 print("PLSTART received")
 payload_start = True
 ser.write('Payload <PLSTART> processed, starting image
taking.', send_eol=True)

 elif MHX_COMMAND_CLEAR in
data[0:len(MHX_COMMAND_CLEAR)]:
 print("PLCLEAR received")
 try:
 shutil.rmtree('images')
 except OSError:
 pass
 finally:
 os.mkdir('images')
 try:
 shutil.rmtree('todownload')
 except OSError:
 pass
 finally:
 os.mkdir('todownload')
 files = collections.OrderedDict()
 file_feedback_list = []
 file_feedback_count = 0
 ser.write('Payload <PLCLEAR> processed, images
cleared.', send_eol=True)

 elif MHX_COMMAND_TIME in
data[0:len(MHX_COMMAND_TIME)]:
 tstr = data[len(MHX_COMMAND_TIME):]

150

 p = subprocess.Popen(['date', '--utc', tstr],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 results, err = p.communicate()
 p.wait()
 t = time.time()
 tstr = time.strftime('%Y-%m-%d %H:%M:%S')
 print('Time synched from Bus to %s'%tstr)
 ser.write('Payload time synched.', send_eol=True)

 if not payload_start:
 time.sleep(0.5)
 continue

 if len(file_feedback_list) == 0:
 # this only happens in the beginning before any image for
downloading has been taken
 file_list = glob.glob('todownload/*')
 if len(file_list) == 0:
 continue
 for file in file_list:
 fname = file.split('/')[1]
 if fname not in files:
 files[fname] = {'chunker':CHUNKER(),
'started':False, 'downloaded':False, 'download_count':0}
 file_feedback_list.append(fname)
 if fname_processing == '':
 fname_processing = fname
 else:
 print('selecting file')
 while True:
 fname_processing =
file_feedback_list[file_feedback_count]
 print('fname_processing=%s'%fname_processing)
 if ((not files[fname_processing]['downloaded'])) and
(files[fname_processing]['download_count'] < MAX_DOWNLOAD_COUNT):
 break
 else:
 print('%s completed, skipping'%fname_processing)

 fname_processing = ''
 for fname in files:
 if not files[fname]['downloaded']:
 fname_processing = fname
 break

151

 if fname_processing != '':
 break
 else:
 # update files to download by examining the
todownload directory again
 print('checking for new files.')
 file_list = glob.glob('todownload/*')
 print(file_list)
 for file in file_list:
 fname = file.split('/')[1]
 if fname not in files:
 files[fname] =
{'chunker':CHUNKER(), 'started':False, 'downloaded':False, 'download_count':0}

 file_feedback_list.append(fname)
 fname_processing = fname
 break
 break

 if fname_processing == '':
 print('no file to process')
 time.sleep(0.5)
 continue

 if not files[fname_processing]['started']:
 files[fname_processing]['started'] = True

 files[fname_processing]['chunker'].prep_file_for_chunking(fname_processing)

 chunk =
files[fname_processing]['chunker'].make_next_chunk(files[fname_processing]['download
_count'])
 if chunk != '' and chunk != None:
 payload = HEADER + chunk + AFTER_PAYLOAD + HEADER
 sock.sendto(payload, (SDR_UDP_HAB_IP,
SDR_UDP_HAB_TX_PORT))
 HAB_TX_count += 1
 if HAB_TX_count >= PAUSE_COUNT:
 if PAUSE_HAB_TX > 0:
 HAB_TX_count = 0
 time.sleep(PAUSE_HAB_TX)
 else:
 files[fname_processing]['download_count'] += 1
 files[fname_processing]['chunker'].start_over()

152

 if files[fname_processing]['download_count'] >= 5:
 files[fname_processing]['download_count'] = 0
 file_feedback_count += 1
 if file_feedback_count >= len(file_feedback_list):
 file_feedback_count = 0
 fname_processing = file_feedback_list[file_feedback_count]

if __name__ == "__main__":
 random.seed()

 if sys.argv[1] == 'a':
 multi_file_send('', SDR_UDP_HAB_RX_PORT)
 sys.exit()

 elif sys.argv[1] == 'd':
 c = CHUNKER(mode='Ground')
 c.dechunk('', SDR_UDP_GROUND_RX_PORT)

153

APPENDIX I. CFR TITLE 14 PART 101.1 AND 101.7 [44]

154

155

APPENDIX J. SPOT FLIGHT DATA

SPOT Time (PDT) SPOT Latitude SPOT Longitude SPOT Altitude (m)
14:32:00 36.57714 -121.60678 4484
14:38:00 36.56967 -121.60693 4766
14:42:00 36.56262 -121.61411 5048
14:47:00 36.55273 -121.62177 5333
14:52:00 36.54404 -121.62535 5609
14:57:00 36.53744 -121.62952 5924
15:02:00 36.52982 -121.63509 6263
15:07:00 36.51927 -121.63275 6593
15:12:00 36.5118 -121.62357 6899
15:17:00 36.50034 -121.61343 7283
15:22:00 36.489 -121.60184
15:27:00 36.47162 -121.59678
15:32:00 36.4551 -121.59326 8522
15:37:00 36.43325 -121.5988 8996
15:42:00 36.41034 -121.60829 9455
15:46:00 36.38864 -121.61505 9935
15:52:00 36.36759 -121.62431 446
15:57:00 36.34237 -121.63535 1046
16:04:00 36.31804 -121.64195 1766
16:11:00 36.29395 -121.64053 2585
16:16:00 36.28178 -121.6379
16:21:00 36.26805 -121.62357
16:26:00 36.24728 -121.61336 4283
16:31:00 36.22886 -121.6044 4862
16:37:00 36.21651 -121.59514 5552
16:41:00 36.21203 -121.5799 6089
16:46:00 36.20662 -121.56662 6719
16:51:00 36.2041 -121.55127 7373
16:56:00 36.19995 -121.53505 8051
17:01:00 36.19279 -121.52499 8738
17:07:00 36.18716 -121.51968 9494
17:12:00 36.19306 -121.50836 263
17:16:00 36.18565 -121.4984 788
17:21:00 36.18637 -121.50205
17:26:00 36.20066 -121.49055 2183

156

17:31:00 36.20613 -121.47469 2858
17:36:00 36.1972 -121.44942 3557
18:27:00 36.2175 -121.16432 4982
18:46:00 36.16774 -121.1631 1490
19:22:00 36.16361 -121.15977
19:27:00 36.16387 -121.15977 164
19:32:00 36.16385 -121.16101 155
19:37:00 36.16361 -121.15781 182
19:47:00 36.16389 -121.15787 -103

157

APPENDIX K. GPS FLIGHT DATA

GPS Time (PDT) GPS Latitude GPS Longitude GPS Altitude (m)
12:19 36.5593 -121.5096 9
12:20 36.5596 -121.5098 34
12:20 36.5597 -121.5099 35
12:20 36.5597 -121.5099 38
12:20 36.5597 -121.5099 38
12:20 36.5599 -121.51 67
12:20 36.5601 -121.5101 73
12:21 36.5603 -121.5101 101
12:21 36.5605 -121.5102 113
12:21 36.5606 -121.5102 127
12:21 36.5608 -121.5104 139
12:21 36.5611 -121.5104 156
12:21 36.5612 -121.5104 183
12:22 36.5614 -121.5104 200
12:22 36.5616 -121.5103 223
12:22 36.5619 -121.5103 264
12:22 36.5621 -121.5102 274
12:23 36.5622 -121.5102 288
12:23 36.5622 -121.5102 288
12:23 36.5624 -121.51 308
12:23 36.5626 -121.5102 290
12:23 36.5626 -121.5101 287
12:23 36.5628 -121.5101 276
12:24 36.563 -121.5101 257
12:24 36.5633 -121.5102 239
12:24 36.5636 -121.5102 225
12:24 36.5638 -121.5101 214
12:24 36.5641 -121.51 209
12:24 36.5643 -121.51 208
12:25 36.5645 -121.51 208
12:25 36.5647 -121.5099 205
12:25 36.5649 -121.5099 200
12:25 36.5652 -121.5099 195
12:25 36.5654 -121.51 187
12:26 36.5656 -121.5099 182

158

12:26 36.5659 -121.5099 182
12:26 36.5661 -121.51 192
12:26 36.5663 -121.51 187
12:26 36.5665 -121.5101 182
12:26 36.5667 -121.5102 187
12:27 36.5669 -121.5103 175
12:27 36.5671 -121.5104 182
12:27 36.5672 -121.5104 184
12:27 36.5674 -121.5106 173
12:27 36.5676 -121.5106 183
12:27 36.5677 -121.5108 192
12:28 36.5678 -121.5108 186
12:28 36.5679 -121.5109 197
12:28 36.568 -121.5111 211
12:28 36.5682 -121.5111 209
12:28 36.5682 -121.5112 211
12:29 36.5682 -121.5112 211
12:29 36.5682 -121.5112 211
12:29 36.5684 -121.5113 245
12:29 36.5686 -121.5115 232
12:29 36.5688 -121.5116 234
12:29 36.5688 -121.5116 229
12:30 36.5691 -121.5116 219
12:30 36.5692 -121.5117 215
12:30 36.5694 -121.5118 211
12:30 36.5695 -121.5117 212
12:31
14:49 36.549 -121.6234 5427
14:49 36.5489 -121.6234 5428
14:49 36.5485 -121.6235 5443
14:49 36.5481 -121.6237 5458
14:49 36.5478 -121.6238 5457
14:49 36.5475 -121.624 5461
14:50 36.5472 -121.6241 5477
14:50 36.5469 -121.6242 5494
14:50 36.5466 -121.6244 5509
14:50 36.5463 -121.6245 5513
14:50 36.5461 -121.6247 5517
14:51 36.5458 -121.6248 5529

159

14:51 36.5455 -121.625 5538
14:51 36.5451 -121.6251 5554
14:51 36.5449 -121.6252 5567
14:51 36.5446 -121.6253 5580

160

THIS PAGE INTENTIONALLY LEFT BLANK

161

APPENDIX L. CUBESAT LINK BUDGET SPREADSHEET

Item Units
Altitude km 1860
Elevation Angle deg 90
Frequency GHz 5.75
Wavelength m 0.052
Propagation Path Length km 1859.66
Free Space Loss - Ls dB -173.02
System Noise Temperature - Ts k 290
Bit Error Rate 1.00E-05
Required Eb/No for BER 10–5 dB 9.6
Calculated Coding Gain dB 0
Achievable Coding Gain dB 0
Data Rate - Rb kbps 19.2
Symbols Per Bit 2
Symbol Rate - Rs kbps 9.6
ro 1.50
Required C/No dB 52.43
Bandwidth - BW MHz 0.024
Required C/N dB 8.63
Receiver Bandwidth - B MHz 40
Ground Station Antenna Diameter m 1.2
Ground Station Antenna Feed Efficiency % 60%
Ground Station Antenna Half Power
Beamwidth deg

3.04

Ground Station Antenna Pointing Error deg 2.0
Ground Station Antenna Pointing Error
Loss - La dB

-7.29

Ground Station Antenna Gain - G dBi 37.18
Payload Antenna Diameter m 0.023
Payload Antenna Feed Efficiency % 60%
Payload Antenna Half Power Beamwidth deg 78.00
Payload Antenna Pointing Error deg 10.0
Payload Antenna Pointing Error Loss - La dB -1.98
Payload Antenna Gain - G dBi 3.00
Transmitter Power Watts 1
Transmitter Power - P dBW 0.00
Transmitter Line Loss - Ll dB -0.5
Transmitter Feed Loss - La dB -2.22
Transmitter EIRP dBW 0.29

162

Transmission Path Losses - La dB -0.50
Receiver Polarization Loss - La dB -3
Receiver Line Loss - La dB -1
Receiver Feed Loss - La dB -2.22
Received Carrier Power - C dBW -151.55
Total Received Noise Power - N dB -127.96
Received Carrier To Noise Ratio - C/N dB -23.59
Received Energy Per Bit - Eb dB -191.37
Received Noise Spectral Density - No dB -203.98
Calculated Eb/No dB 12.60
Eb/No Margin dB 3.00
Power Flux Density Limit NTIA 8.2.36 dBW/m2 -111.5
Calculated PFD 4kHz Bandwidth dBW/m2 -136.72

163

APPENDIX M. BLOCK UPCONVERTER DATA SHEET

164

THIS PAGE INTENTIONALLY LEFT BLANK

165

APPENDIX N. BLOCK DOWNCONVERTER DATA SHEET

166

THIS PAGE INTENTIONALLY LEFT BLANK

167

LIST OF REFERENCES

[1] Mission Design Division, Ames Research Center, “Small spacecraft technology
state of the art,” NASA, Moffett Field, 2015. [Online]. Available:
https://www.nasa.gov/sites/default/files/atoms/files/small_spacecraft_technology_
state_of_the_art_2015_tagged.pdf.

[2] P. Angeletti, R. De Gaudenzi, and M. Lisi, “From ‘bent pipes’ to ‘software
defined payloads’: Evolution and trends of satellite communications systems,” in
Proceedings of the 26th AIAA International Communications Satellite Systems
Conference, 2008.

[3] T. C. Program, “CubeSat design specification.” San Luis Obispo: California
Polytechnic State University, 2005.

[4] M. R. Crook, “NPS CubeSat launcher design, process and requirements,” M.S.
thesis, Space Systems Academic Group, NPS, Monterey, CA, USA, 2009.
[Online]. Available: http://hdl.handle.net/10945/4752.

[5] NanoRacks, “NanoRacks cubesat deployer (NRCSD) Interface Definition
Document (IDD),” NanoRacks, 2018. [Online]. Available:
http://nanoracks.com/wp-content/uploads/NanoRacks-CubeSat-Deployer-
NRCSD-Interface-Definition-Document.pdf.

[6] EO, “SSO-A,” eoPortal directory, 2018. [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sso-
a. [Accessed 15 October 2018].

[7] EO, “VCLS-1,” eoPortal directory, [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/vcls-1.
[Accessed 15 October 2018].

[8] E. Kulu, “Nanosatellite database,” 11 August 2018. [Online]. Available:
https://www.nanosats.eu/.

[9] GomSpace, “Software defined radio,” GomSpace, [Online]. Available:
https://gomspace.com/Shop/payloads/software-defined-radio.aspx. [Accessed 15
October 2018].

[10] Tethers Unlimited, “SWIFT-UTX,” [Online]. Available:
http://www.tethers.com/SpecSheets/Brochure_SWIFT_UTX.pdf. [Accessed 15
October 2018].

[11] J. M. Roehrig, “Development of a Versatile Groundstation,” Naval Postgraduate
School, Monterey, 2016.

168

[12] NASA Office of Inspector General, NASA’s Management of Electromagnetic
Spectrum, NASA, Washington, D.C., 2017.

[13] Federal Communications Commission, “Radio spectrum allocation,” [Online].
Available: https://www.fcc.gov/engineering-technology/policy-and-rules-
division/general/radio-spectrum-allocation. [Accessed 15 October 2018].

[14] J. Yungbluth, A. Forbes, A. Writt, K. Herren, and S. Kline, “Directed study
report: High Altitude balloon (HAB) experiment,” Space Systems Academic
Group, NPS, Monterey, CA, 2017.

[15] M. Matthews, “Space Systems Academic Group Communications Software-
Defined Radio Course Lecture 4,” Dept. of Mechanical and Aerospace
Engineering, Naval Postgraduate School, Monterey, CA, USA, 2018.

[16] M. Matthews, “Space Systems Academic Group Communications Software-
Defined Radio Course Lecture 2,” Dept. of Mechanical and Aerospace
Engineering, Naval Postgraduate School, Monterey, CA, USA, 2018.

[17] B. Sklar, Digital Communications Fundamentals and Applications, Upper Saddle
River: Prentice Hall, 2001.

[18] J. H. Reed, Software Defined Radio: A Modern Approach to Radio Engineering,
Upper Saddle River, NJ.: Prentice Hall PTR, 2002.

[19] W. Tuttlebee, Software Defined Radio: Enabling Technologies, Chichester,
England: Wiley, 2002.

[20] S. Jordan and B. Patel, Image Transfer and Software Defined Radio using USRP
and GNU Radio, Cleveland, OH: Cleveland State University, 2016.

[21] GNU Radio, “About GNU radio,” [Online]. Available:
https://www.gnuradio.org/about/. [Accessed 15 October 2018].

[22] C. A. Balanis, Modern Antenna Handbook, Hoboken, NJ: John Wiley & Sons,
2011.

[23] Antennas, “Helix antenna,” [Online]. Available:
http://jcoppens.com/ant/helix/calc.en.php. [Accessed 15 October 2018].

[24] J. R. Wertz, D. F. Everett, and J. J. Puschell, Space Mission Engineering: The
New SMAD, Portland, OR: Microcosm Pressw, 2011.

[25] D. Chelmins, J. Downey, S. Johnson, S. Nappier, and J. Nappier, Unique
Challenges Testing SDRs for Space, NASA Glenn Research Center, Cleveland,
OH: NASA, 2013.

169

[26] NASA, “International Space Station,” [Online]. Available:
https://www.nasa.gov/mission_pages/station/research/experiments/162.html.
[Accessed 2015 October 2018].

[27] EO, “RASAT,” eoPortal Directory, 2018. [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rasat. [Accessed 15
October 2018].

[28] EO, “GOMX-3,” [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gomx-3. [Accessed
29 October 2018].

[29] GOMSpace, “GOMX-3,” [Online]. Available: https://gomspace.com/gomx-
3.aspx. [Accessed 29 October 2018].

[30] A. Donati, Director, 2017: OPS-SAT and SDR Payload—Alessandro Donati
(ESA). [Film]. Milton Keynes: International Space Colloquium, 2017. [Online].
Available: https://www.youtube.com/watch?v=OrTWOdSK12g.

[31] P. C. Swintek, “Critical vulnerabilities in the space domain: Using Nanosatellies
as an alternative to traditional satellite architectures,” M.S. thesis, Dept. of
Defensis Analysis, NPS, Monterey, CA, USA, 2018. [Online]. Available:
http://hdl.handle.net/10945/59600.

[32] Ettus Research, “USRP B200mini series,” Ettus Research, [Online]. Available:
https://www.ettus.com/content/files/USRP_B200mini_Data_Sheet.pdf. [Accessed
15 October 2018].

[33] Ettus Research, “USRP B205mini-i (board only),” Ettus Research, [Online].
Available: https://www.ettus.com/product/details/USRP-B205mini-i-Board.
[Accessed 15 October 2018].

[34] Ettus Research, “Enclosure kit for USRP B205mini-i (I-Grade),” Ettus Research,
[Online]. Available: https://www.ettus.com/product/details/USRP-B205mini-i-
enclosure. [Accessed 15 October 2018].

[35] Raspberry Pi, “Raspberry Pi 3 Model B,” [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 4
November 2018].

[36] eBay, “SainSmart wide angle fish-eye camera lenses for Raspberry Pi Arduino,”
eBay, [Online]. Available: SainSmart Wide Angle Fish-eye Camera Lenses for
Raspberry Pi Arduino. [Accessed 15 October 2018].

[37] Mini-Circuits, “ZVBP-5800-S+,” Mini-circuits, [Online]. Available:
https://www.minicircuits.com/WebStore/dashboard.html?model=ZVBP-5800-
S%2B. [Accessed 15 October 2018].

170

[38] Mini-Circuits, “Low noise amplifier ZX60-83LN+,” [Online]. Available:
https://www.minicircuits.com/pdfs/ZX60-83LN+.pdf. [Accessed 15 October
2018].

[39] Mini-Circuits, “Low noise amplifier ZX60-83LN+,” [Online]. Available:
https://www.minicircuits.com/pdfs/ZX60-83LN+.pdf. [Accessed 4 November
2018].

[40] Mini-Circuits, “ZX60-83LN-S+,” Mini-circuits, [Online]. Available:
https://www.minicircuits.com/WebStore/dashboard.html?model=ZX60-83LN-
S%2B. [Accessed 15 October 2018].

[41] Energizer, “ENERGIZER L91 Ultimate Lithium AA,” [Online]. Available:
http://data.energizer.com/pdfs/l91.pdf. [Accessed 24 October 2018].

[42] O. N. Samijayani, P. Gitomojati, D. Astharini, S. Rahmatia, and N. I. H. Pratama ,
“Implementation of SDR for video transmission,” University Al Azhar of
Indonesia, Jakarta.

[43] J. Kopitzki, “Development and implementation of a communication scheme for
software defined radios,” Helmut Schmidt University, Hamburg, 2014.

[44] Federal Aviation Administration , “Code of Federal Regulations Title 14 Part
101,” 1 January 2018. [Online]. Available: https://www.gpo.gov/fdsys/pkg/CFR-
2018-title14-vol2/xml/CFR-2018-title14-vol2-part101.xml#seqnum101.1.
[Accessed 31 October 2018].

[45] Federal Communications Commission, “Code of Federal Regulations Title 47:
Telecommunication,” [Online]. Available:
http://www.arrl.org/files/file/Regulatory/March%208,%202018.pdf. [Accessed 31
October 2018].

[46] habhub, “habhub,” [Online]. Available: http://habhub.org/. [Accessed 24 October
2018].

[47] habhub, “Balloon burst calculator,” [Online]. Available: http://habhub.org/calc/.
[Accessed 18 October 2018].

[48] habhub, “Predictor,” [Online]. Available: http://predict.habhub.org/. [Accessed 19
October 2018].

[49] Google, “Launch site location at 36.5594 N, 121.5096 W,” [Online]. Available:
https://www.google.com/maps/place/36%C2%B033’33.8%22N+121%C2%B030’
34.6%22W/@36.5594,-
121.5096,893m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d36.5594!4d-
121.5096. [Accessed 20 October 2018].

171

[50] SPOT, “My locations,” [Online]. Available: https://login.findmespot.com/spot-
main-web/myaccount/locations/history.html. [Accessed 20 October 2018].

[51] National Instruments, “Specifications USRP-2922 software defined radio device,”
[Online]. Available: http://www.ni.com/pdf/manuals/375868c.pdf. [Accessed 1
November 2018].

[52] Cross Technologies, Inc., “Instruction manual model 2115-123 block
upconverter,” 2013. [Online]. Available:
http://www.crosstechnologies.com/manuals/2115-123_MANUAL.pdf. [Accessed
18 October 2018].

[53] Cross Technologies, Inc., “Instruction manual model 2116-114 block
downconverter,” 2008. [Online]. Available:
http://www.crosstechnologies.com/manuals/2116-114_MANUALA.pdf.
[Accessed 24 October 2018].

[54] National Instruments, “USRP-2922,” [Online]. Available: http://www.ni.com/en-
us/support/model.usrp-2922.html. [Accessed 24 October 2018].

[55] Antenna Devleopment Corporation, “Microstrip patch antennas,” Antenna
Devleopment Corporation, [Online]. Available: https://www.antdevco.com/ADC-
0509251107%20R7%20Patch%20data%20sheet_non-ITAR.pdf. [Accessed 24
October 2018].

[56] GomSpace, “ADCS,” GomSpace, [Online]. Available:
https://gomspace.com/Shop/subsystems/adcs/default.aspx. [Accessed 24 October
2018].

[57] Clyde Space, “High-Precision Attitude Determination and Control System
(ADCS),” Clyde Space, [Online]. Available:
https://www.clyde.space/products/51-highprecision-attitude-determination-and-
control-system-adcs. [Accessed 24 October 2018].

[58] CubeSatShop, “Cube ADCS,” CubeSatShop, [Online]. Available:
https://www.cubesatshop.com/product/cube-adcs/. [Accessed 24 October 2018].

[59] NASA, “General environmental verification specification,” NASA Goddard
Space Flight Center, Greenbelt, MD, 2013.

172

THIS PAGE INTENTIONALLY LEFT BLANK

173

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Dec_Lovdahl_Bianca_First8
	18Dec_Lovdahl_Bianca new
	I. Introduction
	A. Thesis Objective
	B. CubeSats
	C. Software-Defined Radios
	D. Choice of Radio Frequency
	E. Weather Balloon Testing
	F. Flight Test Unit
	G. Organization of Study

	II. Background
	A. Digital communications
	B. Introduction To Software-Defined Radios
	C. Antenna Design
	D. Link Budget
	E. State-of-the-Art Applications
	F. Related NPS Research

	III. Hardware
	A. Mission Requirements
	B. COM-CUBE Hardware
	1. Overview
	2. Payload Hardware
	a. USRP B205mini-i
	b. Raspberry Pi 3 Model B
	c. Wide Angle Raspberry Pi Camera
	d. ZVBP-5800-S+ Band Pass Filter
	e. High Power Amplifier
	a. Dipole Antenna
	b. Payload Structure

	3. Bus Hardware
	a. Structure
	b. EPS and Power
	c. C&DH
	d. GPS Receiver and SPOT Trace
	e. Balloon and Parachutes

	IV. Software
	A. GNU Radio
	B. Com-Cube Software Concept of Operations
	C. Software Development
	1. Com-Cube Payload Transmitter Software
	2. AX.25 Protocol
	3. Com-Cube Receiver Software
	4. Com-Cube Bus Software

	V. Testing and Verification
	A. GNU Simulation and Bench Testing
	B. Outdoor Testing
	C. Environmental Testing
	D. Low Altitude Balloon Flight Test
	1. Federal Regulations
	2. Flight Test Concept of Operation
	3. Flight Test Planning

	VI. Low Altitude Balloon Flight Test Results and Data Analysis
	A. Low Altitude Balloon Test
	1. Test Summary
	2. Low Altitude Balloon Flight
	3. Recovery Efforts

	B. Payload Data Analysis
	C. Flight Data Analysis
	D. Lessons Learned from LAB Flight Test
	1. Balloon Release
	2. C-band Link
	3. Solar Panels
	4. Software

	VII. Conclusion and Future Work
	A. Summary
	B. Future Work
	1. New Payload Software for Com-Cube
	2. S- and X-Band Communications Payload for CubeSat
	3. Future Payload Testing with Mobile CubeSat Command and Control

	Appendix A. U.S. Amateur Radio Bands [60]
	Appendix B. Com-Cube Link Budget Spreadsheet
	Appendix C. USRP B205mini-i Specification Sheet
	Appendix D. ZVBP-5800-S+ Band Pass Filter Data Sheet
	Appendix E. cband_tx.py
	Appendix F. cband_rx.py
	Appendix G. cband_rx.py Parse AX.25 Block Python Code
	Appendix H. chunking.py
	Appendix I. CFR Title 14 Part 101.1 and 101.7 [44]
	Appendix J. SPOT Flight Data
	Appendix K. GPS Flight Data
	Appendix L. CubeSat Link Budget Spreadsheet
	Appendix M. Block Upconverter Data Sheet
	Appendix N. Block Downconverter Data Sheet
	List of references
	Initial Distribution List

