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ABSTRACT

The high-speed transport protocol, SNR, has never been completely analyzed.
SNR's design incorporates a novel feature, specifically, periodic and frequent exchange
of state information to coordinate the actions of the transmitter and receiver. This
innovation exploits the higher bandwidth of modern fiber-optic networks to increase data
transmission rates.

Traditional methods used to verify SNR have been largely unsuccessful because
of the protocol’s inherit complexity. The protocol functions as an asynchronous
concurrent system and for that reason we apply a mechanical verification tool called
Murphi. The Murphi Verification System is used to verify two phases of SNR, the
connection establishment phase and data transfer phase operating under Mode 0 (no
error or flow control) and Mode 1 (flow control only). The connection establishment
phase functions as intended. Murphi detected apparent design flaws in both Mode 0 and
Mode 1 of the data transfer phase. Buffer overflow can occur in Mode 1. An unexpected
termination of the connection by the receiver is possible in both modes. The feasibility of

applying Murphi to verify communication protocols in general is also addressed.
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I. INTRODUCTION

A. BACKGROUND

When building a program or system, proper operation of the entity is desired
However, often it does not behave as expected. The improper behavior may be the result
of a flawed conceptual design used as the basis for the implementation. Detecting and
eliminating errors in the design and implementation of a program or system greatly
enhances the likelihood it will function correctly. It is very difficult to assure a non-trivial
program is free of logical errors. Concurrent systems -- such as a communication
protocol -- turn out to be some of the most complex programs.

Checking the correctness of a concurrent program is usually extremely challenging.
Manual analysis methods are often inadequate because of the inherent complexity. Testing
techniques, such as simulation, fall short because of the difficulty of exercising all possible
interactions in the context of nondeterministic execution. Computer aided verification
techniques and tools have been developed to address the problem. One such automatic
tool is the Murphi Verification System developed by D. Dill et al. [DDHY92]

The Murphi Verification System allows the user to specify properties for a finite
state asynchronous concurrent system and then check whether they are violated by the
system. The properties to be checked, the initial conditions, and allowable state
transitions of the system being verified are written in the Murphi Description Language.
The Murphi Compiler is then used to produce an executable program that will: 1)
generate all system states, 2) check the invariance of the designated properties in each of
these states, and 3) report violations of correctness properties. Verifiable properties
include the absence of deadlock, mutual exclusion, and others specified by the tool user
which are considered important to the desired behavior of the concurrent system being
examined

This thesis verifies the design of a non-trivial concurrent system, specifically, the
high speed transport protocol SNR [NRS90]. SNR may play a significant role in the




context of very high-bandwidth communications made possible by optical fiber. SNR’s
design incorporates a novel feature, specifically, periodic and frequent exchange of state
information to coordinate the actions of the transmitter and receiver. This innovation
exploits the higher bandwidth of modern networks to increase data transmission rates.
The essential properties of SNR have not been verified, or for that matter even
adequately formalized. Attempts to verify that the protocol is free of logical errors have
produced only limited results [McAr92], [Tipi93]. The analysis of SNR, described in

these two d was conducted without first ri ly asserting specific properties

being ined. A more approach, with verification as the primary goal,

should to be taken. There is without question, a need to begin identifying key properties,
formally describing them, and finally verifying that SNR has these properties.

B. OBJECTIVES

Because of the complexity of communication protocols, formal verification of a

protocol’s design is typically not Instead testing i such as si
are often used to determine if the protocol will operate as expected. A relatively mature
mechanical verification system has yet to be applied to SNR.

The primary objectives of this thesis are:

 identify and develop formal specifications of key properties of SNR, and

o verify these properties using the Murphi Verification System.

A secondary objective is to explore the feasibility of applying a mechanical

verification tool, such as Murphi, to communication protocols.

C. THE RESEARCH QUESTION

This thesis will attempt to answer the following specific questions:

« What particular properties must SNR exhibit to ensure proper behavior when
used as the transport layer for a high speed communication network?

e Is SNR’s behavior consistent with these desired properties?

* What properties of the protocol can be checked with Murphi?



® Are there properties that can not be checked? If so, what limitations in the tool
prevent their verification?

* State-space explosion is likely to be encountered. Can state-space reduction
methods be employed to overcome the problem, if it occurs?

* What advantages and disadvantages are inherent to the application of automatic
verifiers to protocols?

D. SCOPE, METHODOLOGY, AND LIMITATIONS

This thesis examines the high speed transport protocol, SNR as presented in
[NRS90]. No attempt is made to improve upon or redesign the protocol. The focus is
verifying SNR’s design, not discussing the strengths or weakness of a specific protocol

Since success in the application of Murphi to SNR is uncertain, the verification is
conducted in stages. The least complex aspects of SNR are examined first. This approach
facilitates the early identification of potential “show stoppers” and allows work done in the
initial steps to serve as a foundation for the later and more complicated stages

Inconsistencies in the original specification of SNR and state space explosion
p d i ification of SNR. Verification is limited to the
establishment phase of SNR, and two of the three operating modes of SNR’s data transfer

phase (Mode 0 -- no error or flow control and Mode 1 -- flow control only). SNR’s data
transfer phase operating in Mode 2 (both flow control and error enabled) is not verified
The verification effort of SNR would be greatly enhanced by either 1) the
existence of a single source accurate specification for SNR, or 2) coupling verification
with a redesign effort so that problems discovered during verification could be address as

part of the design process.

E. RELATED WORK

Previous work on SNR, [McAr92] and [Tipi93], provides comprehensive
specifications of SNR and alternative interpretations of some of its design objectives.

Although these documents are not the primary reference for the thesis, they aided




significantly the translation of SNR into Murphi’s Descriptive Language. The effort in
[McAr92], focused mainly on obtaining an accurate specification for SNR and on analysis
of its functional efficiency. Further refinements to the specification and an attempt to
examine the behavior of SNR more deeply was made in [Tipi93] and [LuTi94].

A software i ion of the SNR’s itter portion and receiver portion

is presented in [Mez95] and [Wan95] respectively. Test results of this implementation are
given in [Gri9S]

F. ORGANIZATION

Concurrent systems and their basic properties are discussed in Chapter II. First
concepts fundamental to concurrent systems are introduce and then examples are used to
illustrate a few of the central ideas

In Chapter I11, system verification methods are di: ed

verification and manual proof methods are demonstrated. A brief introduction to the
concept of state space explosion and state space reduction techniques is also provided.
Finally, verification concerns specific to protocols are addressed.

Chapter IV covers the Murphi Verification System. Its key features are explained.

The SNR protocol is described in Chapter V. An overview of the protocol is
given followed by a detailed treatment of its organization. The operation of SNR’s data
transfer phase is also explained.

The verification of SNR’s i i phase and its data transfer

phase (operating in Mode 0 and Mode 1) is presented in Chapter VI and Chapter VII,
respectively. Each chapter covers the key properties of the phase being examined and the
Murphi description used for its verificati ion problems d and

in SNR’s ification are also discussed

Conclusions and recommendations are provided in Chapter VIIL



II. CONCURRENCY CONCEPTS

A. FUNDAMENTALS

Many practical situations involve concurrent systems and related concepts. For
example, the preparation of a meal often allows performing tasks in parallel -- two or
more dishes can be cooking at the same time. Typically, communication protocols
execute as a concurrent system. Another example, familiar to all computer users, is a

computer's operating system. While systems are

formal terms and analysis methods relevant to concurrency are often unfamiliar. This
chapter introduces basic concepts of concurrent systems. These concepts are then

revisited in the next chapter in the context of verification
1. General
In [Ben93], a concurrent program is defined as follows, “A concurrent program

consists of a set of program fragments called processes that can potentially be executed in

parallel ” This definition suggests izing a system as ing of
individual entities that operate in parallel. These distinct modules could be programs,
machines, or any other types of agents that perform a process. A concurrent system may

use some method of ization or ion to inate the actions of the

separately running units. Typically, global variables shared by the individual units are used
for the exchange of information. Message passing is another method employed to
facilitate cooperation among the separate entities. When explicit synchronization is not
part of the system and the separate processes can run at arbitrary speeds, the concurrent
system is referred to as an asynchronous concurrent system

It should be clear that a concurrent program is a type of concurrent system.
Although only concurrent programs are used in the examples in this chapter, the ideas
discussed below apply to all types of current systems, even a concurrent system whose

implementation may include hardware in addition to software.



2. States and Transitions

The set of allowable states (or reachable states) consist of those states which can
be reached via an execution path. The initial system state is refereed to as the start state
There also may be states that can only be entered if an error occurs in the system. The
global system state (or global state) is defined by the values of variables comprising the
concurrent system, both global variables and variables local to the separate units. System
variables may by explicit or concealed. A program counter, local to a process, is an
example of a hidden variable. The size of the global state-space is determined by the
domain of each variable. A global state can be represented by a n-tuple, with each
component representing one of the system variables. If a system consists of n variables,
and each variable can take on a value from domain D;, then D; x D x ... x D, defines the
total size of the system state space. The number of states available to the system can be
very large. It is typical, in real world systems, for the number of reachable state to be so
large as to preclude exhaustive system analysis. When this situation occurs it is referred to
as "state space explosion”.

When and how the values of system variables can change, characterize the
transitions allowed in a concurrent system. Each process of a concurrent system can

perform atomic actions. These actions define the system transitions. Once started an

atomic action is executed indivisibly until complete. Individual i ions that may
comprise the action are assumed to execute instantly. The granularity of the atomic
actions depends on the level of abstraction used for a particular representation. The level
of abstraction, in tur, determines the kind of analysis that can be performed

An important aspect of any concurrent system is the interleaving of its atomic

actions. Under many conditions the execution ordering, among the atomic actions of the

various modules ising the system, is inistic. This greatly

increases the

when systems.
The history of a concurrent program's transitions can either be described using a

sequence of states or working from the start state and applying the sequence of atomic



actions executed. Either history can be used to generate the other. The sequence of
atomic actions can be reconstructed from a listing of states by noting the change in the
program counter from one state to the next. From a sequence of transitions the sequence
of states is obtained by simulating the actions. Each history corresponds to one possible
interleaving for the system. The set of all histories characterizes completely the behavior
of the concurrent system. Correct behavior of the system depends on whether the set of

all possible interleavings exhibits certain properties.

3. Properties

Various properties can be attributed to a concurrent system. Properties commonly
belong in one of two categorizes, safety or liveness. A liveness property asserts progress
will be made by a program. A safety property says that, if a program makes progress it
does so without error. Some general properties are deadlock, fairness (starvation), and
livelock. For concurrent systems, deadlock has occurred when no other states can be
reached other than the current state. Livelock is similar to deadlock, but with some
number of transitions occurring (i.e., altering the global state) before the current state is
repeated and where no overall progress takes place. Fairness (or absence of starvation) is
the condition that if a module is ready to perform an action it will be given the opportunity
to carry out that action (no appropriate action is indefinitely delayed)

B. EXAMPLES

To illustrate concepts and properties discussed above, four programs that attempt
to implement the familiar notion of mutual exclusion, are analyzed. These examples are
based on material from [Ben90] and [Ben93]. The programs introduced below will again
be used in Chapter IV to demonstrate some of the features and behavior of Murphi

1. Program Description

The programs used in the examples consist of two processes, each executing a
loop containing a sequence of instructions. The two processes are referred to as P1 and

P2. The statements are presented using an Ada-style syntax. Each process contains a



non-critical section, a critical section, some means to signal the other process when it is in
its critical section (global variables C1 and C2), and a method to control critical section
entry. A process may stay in its non-critical section indefinitely. When ready, a process
requests entry to its critical section and waits until admitted. Once in its critical section

the process will eventually exit. The general pattern is shown below.

subtype TEST_VAR_TYPE is integer range 0..1;
C1,C2: TEST_VAR = 1; - global

Process P1 Process P2
loop loop
L1.1  non_critical_section; L2.1  non_critical section;
L1.2  entry request_section; 122 entry_request_section;
L1.3  critical_section; L23  critical_section;
L14  post_critical_section; L24  post_critical_section;
end loop; end loop;

Important locations in each process are labeled. For purposes of the thesis, these
labels function as program counters. The first label in P1is L/./. It indicates P1 will next
execute the statement(s) between L./ and L1.2. (In a single processor system, this will
be the next time it is P1’s turn to run.) Similarly the first statement in P2 is L.2. /, second
L2.2, etc

The system consists of four variables, two global variables - C1 and C2, and two
local variables -- the program labels for P1 and P2. Specifying their values defines a
global state of the system. An example of a global state: P1 at L./ (or in a short hand
notion, /.1), C1=1,P2at L./, and C2 = 1. Written as a 4-tuple, (L1.1,1,12.1,1).
The domain of C1 and C2 is {0,1}. The domain of locations, for P1is {L/./, L1.2, L1.3,
L1.4}, likewise for P2. The size of the global space state is

|C1|x|C2| x|P1_Locations| x |P2_Locations|=2x2x4x4=64.



A process’s action may cause the value of a variable (or variables) to change. For
example, (L1.1,1,123,1) — (L1.2,1,L23, 1) is a state transition where the program
counter for P1 went from L/./ to L1.2. Note changing the program counter for a process
is considered an atomic action even when multiple processor instructions are involved.

The entry_request_section and post_critical _section are instantiated with specific
instructions for each example presented below in Sections 3, 4, 5, and 6. The sequence of
statements from one example to the next change only slightly but the mutual exclusion
algorithm's behavior is usually significantly altered

2. Program Properties

The desired properties for the example programs attempting to provide mutual
exclusion are:

Category Property

Safety 1. Mutual Exclusion - the two processes can not be in their critical regions
at the same time.
Liveness | 2. Fairness - if a process seeks to enter its critical region, eventually it will
be allowed. (Or stated differently -- all execution interleavings allow a
process to eventually enter its critical section if the process seeks entry)
3. Absence of Deadlock -- no execution interleaving exists that results in
both processes attempting to enter their critical region, but neither can
succeed
4. Absence of Livelock -- no execution interleaving exists, which could
continue indefinitely, that does not allow either process to enter its critical
section

Table 1. Desired Properties for Mutual Exclusion Algorithms
The first three programs used in the examples violate one or more of the above
properties. In contrast to the other examples, Peterson's Algorithm satisfactorily achieves
mutual exclusion and the safety property without violating the liveness properties.
3. Example 1 — Mutual Exclusion Violation
The program listed below operates as follows. When P1 desires to enter its critical
section, it tests C2 to determine if it can safely enter. If C2 =0, P1 waits in the inner loop

until P2 has departed its critical section and sets C2 to 1. When C2 =1, PI sets C1to 0




and enters its critical section. After P1 exits its critical section it sets C1 to 0. Process P2

is analogous to P1

subtype TEST_VAR_TYPE is integer range 0..1;
Cl1, C2: TEST_VAR

-- global, set to 0 inside critical section, set to 1 after exiting

task body P1 is task body P2 is
begin begin
loop loop
L1 Non_Critical _Section_1; 121 Non_Critical Section 2;
L12 loop exit when C2=1; end loop; 122 loop exit when C1=1; end loop,
Lr3 Cl:=0; 123 C2 =0
L1.4  Critical_Section_1; L24 Critical_Section_2;
Lrs Cl =1, a2y =1
end loop; end loop;
end P1; end P2;

This program violates mutual exclusion (MUEX). The following interleaving
results in P1 and P2 in their critical sections simultaneous: L/./, L2.1, L1.2,L2.2, L1.3,
L2.3, L1.4, L2.4. From the starting condition, (L1.1, 1, L2.1, 1), alternate execution of
statements in each process can set up an unsafe situation. The system can find itself with
P1 waiting at L1.3, after testing C2 and exiting the inner loop but prior to setting C1 to 0,
when P2, with its program counter at L.2.2, gets its turn to run. P2 test CI, finds it
equals 1, and exits its inner loop. P2’s program counter changes to L2.3. At this point,
executing statements from each process alternately results in the violation. Figure 1

illustrates the transitions leading to the violation of MUEX



start state

L12,1,123,1
L13,1,123,1

[L130, L2.3,ﬂ [Li3 23,0

L14,0,123, 1

L14,0,L23.0 L13,0,L2

mutual exclusion violated

Figure 1. State Transitions Leading to MUEX Violation."

4. Example 2 — Deadlock

Unlike the first example this program satisfies mutual exclusion. When P1 seeks
critical section entry, it sets C1 to 0 and then tests C2 to determine if can enter. If C2 =0,
P1 waits in a loop until P2 has set C2 to 1. When C2 = 1, P1 enters its critical section.
After P1 leaves its critical section Cl is set to 0. Process P2 works the same as P1

State labels have the following format: P1s program location, C1's value, P2’s program location, C2’s value. Only

those states immediately available from the pervious state are shown. The path leading to the violation of MUEX is
indicated by arrows.




subtype TEST_VAR_TYPE is integer range 0..1;
C1,C2: TEST_VAR :=1; - global, set to 0 when process wishes to enter critical
section,

-- set to 1 after exiting

task body P1 is task body P2 is
begin begin
loop loop
L1.1 Non_Critical_Section 1, 121 Non_Critical Section_2;
LL2 Cl:=0 L22 C2 :=0;
L13 loop exit whenC2=1; endloop, L23 loop exit when Cl1=1; end loop;
Li4 Critical Section_1; 124 Critical_Section 2,
LLs Cl:=1; L2s C2:=1,
end loop; end loop;
end P1; end P2;

Although the program accomplishes MUEX, it exhibits deadlock. The following
interleaving results in a situation with P1 and P2 unable to make further progress: L/./,
L2.1,L1.2,12.2,L1.3, L2.3. At L1.2P1 signals its intention to enter its critical section
and then stops at /.3, while P2 executes. P2 does the same thing. P1 sets C1 and P2
sets C2 just before the other process checks if entry is allowed. Both P1 and P2 become
"stuck” in their inner loops unable to exit. The global state remains at (L1.3, 0, L2.3,0)
since the action of the inner loop does not change the value of any system variables.

Deadlock occurs in this program when atomic actions from each process execute

that do not set C1 and C2 to 0 do not violation this
liveness property.

5. Example 3 — Starvation and Livelock

The program listed below works as follows. When P1 desires to enter its critical
section, it sets C1 to 0 and then tests C2 to determine if it can safely enter. If C2= 0, P1
gives ups its attempt to enter its critical region by setting C1 to 1. P1 then resets C1 to 0,



and tries once again to enter its critical region. When C2 = 1, P1 exits the inner loop and
enters its critical section. After P1 completes its critical section it sets C1 to 0. Process
P2 works just like P1. Because of the concurrent nature of this program, the two
statements inside the inner loop, where C1 is assigned one value and then another value,
are important to the behavior of the algorithm. Each assignment is atomic and the

resulting state transition may enable an action in the other parallel process.

subtype TEST_VAR_TYPE is integer range 0..1;
C1,C2: TEST VAR :=1; --global, set to 0 when process wishes to enter critical
section,

- setto | after exiting

task body P1 is task body P2 is.
begin begin
loop loop
L1 Non_Critical Section I 121 Non Critical_Section 2;
L12 Cl =0 122 C2 :=0;
113 loop exit when C2=1, 123 loop exit whenC1 = 1;

L14 124 ;
LLs Cl = 0; L2s C2:=0

end loop; end loop;
L1.6 Critical _Section_I; L26 Critical_Section 2;
L7 Cl:=1, L27 C2:=1;

end loop; end loop;
end P1; end P2;

Starvation and livelock are both possible in this program. Explained first is the
circumstances leading to starvation, then livelock is covered

Starvation occurs under the following situation: P1at L/.2 and P2 at 2.2, P2
transitions to 2.3 and checks C1. Since C1 = 0, P2 cannot exit the inner loop and enter
its critical region so P2 transitions to L2.4 setting C2 anto 1 (Note since arbitrary
interleaving is possible, P2 could have stayed at £.2.3 and P1 transition to L1.3), P1

transitions to L /.3, checks C2 and advances to L/.6, entering its critical section, P1 can




now exit its critical section, set C1 to 1, execute its non-critical section, set C1 to 0 and
end up back at L/.2. This particular sequence can continue without P2 getting an
opportunity to enter its critical section. Likewise, starvation of P1 can occur.
The following interleaving illustrates a situation where P1 and P2 continue to

execute a sequence indefinitely (livelock) :

L1.2,122,L1.3,L2.3. L1.4,L2.4,L15, L2.5,

L13, 123 L1.4,L24,L15, L2.5,
L1.3, 123, L14,12.4. L1.5, 125 ...

In this particular interleaving, neither P1 nor P2 enters its critical section. This occurs
because the setting and resetting of the global variables C1 and C2 is not coordinated with
the test of the loop exit condition. Any deviation in the sequence will break the livelock
and allow progress.

6. Example 4 — Peterson's Algorithm

Peterson's Algorithm, as implemented below, is similar to the program given in
Section I1.B.4 (example 2 above), except the addition of the global variable LAST
prevents violation of desired program properties. LAST indicates which process, P1 or
P2, most recently executed its critical section. If both processes request entry to their
critical section at the same time, LAST is used to break the tie. The process that has
waited the longest is allowed to enter. The global variables C1 and C2 are used, as
before, to indicate a process’s desire to enter its critical section.

subtype TEST_VAR_TYPE is integer range 0..1;

subtype LAST_TYPE is integer range 1..2;

C1,C2: TEST_VAR:=1; - global, set to 0 when process wishes to enter its critical
-- section, 1 after exiting

LAST: LAST_TYPE :=1;  -- global, indicates most recent process to execute its critical
-- section, used to break ties



task body P1 is task body P2 is

begin begin

loop loop
L1.1 Non_Critical Section_1; L2.1 Non_Critical_Section 2;
L2 Cl: 122
L13 LAST =1, 123
L4 loop L24

exit when C2 =1 or LAST /=1, exit when C1 =1 0r LAST /=2;
end loop; end loop;

L5 Critical_Section I, 126  Critical_Section 2,
L16 Cl:=1, L27 C2:=1,

end loop; end loop;
end P1, end P2;

The safety property, mutual exclusion, and the liveness properties are satisfied by
Peterson’s Algorithm. To gain some insight into its behavior let’s compare the programs
from example 2 and 3 with Peterson’s Algorithm. In example 2, deadlock occurred when
atomic actions from each process were executed alternately. Both P1 and P2 became
"stuck” in their inner loops when each process signaled their intentions to enter its critical
section just before the other process checked if entry was allowed. With a similar
alternating execution interleaving, deadlock is avoided in Peterson’s Algorithm because
both P1 and P2 set the variable LAST. Suppose P1is at L/.4 and P2 is at L2.4 and P2
had just assigned LAST the value 2. Assume now P1 starts to execute again, and the loop
condition at Z/.4 is checked. Since LAST = 2, P1 can exit its inner loop and enter its
critical section. Starvation and livelock as demonstrated in example 3 is avoided in
Peterson's Algorithm. The assignment made to LAST in each process prohibit that
process from starving the other process. Analogously, since an execution sequence can
not be immediately repeated, livelock is also prevented.




C. COMMUNICATION PROTOCOLS

Communication protocols are often i das

programs. Thus, like all concurrent systems protocols can be ascribed properties. Correct
information transfer is the desired primary property of any protocol. The liveness
properties covered above also apply and safety properties specific to a particular protocol

can be formulated. Some examples include:

Safety -- The number of messages acknowledged by the receiver is the same as
the number sent by the transmitter.

Safety -- If any data is delivered to the destination it is the same as the data
given to the protocol by the source.

Liveness - If the transmitters host has a message to send it is eventually
delivered to the receiver's host

Another interesting concept applicable to protocols (and other concurrent systems)
is self stabilization as discussed in [GoMu91]. A concurrent system is usually designed so
that only safe states are reachable from the start states of the system and program
execution from any safe state results in another safe state. Under normal execution,
transitions to unsafe states are not allowed. A system is self stabilizing if a system in an
unsafe state can reach a safe state after completing a finite number of actions. The system
could have ended up in an unsafe state as a result of any number of causes. A
communication protocol could find itself in an unsafe state by such actions as, improper
initialization, the corruption of a packet's sequence number, the transmitter or receiver
‘crashes’ and then recovered, etc.



III.  VERIFICATION OF CONCURRENT SYSTEMS

A. METHODS

in the of software engineering, entails checking if the
program meets its specification. In the context of this paper, verification involves
characterizing the concurrent system in some language, deductive system or modeling
scheme and then showing that the behavior of this description satisfies the correctness
criteria given in the specification. One method of specifying the correctness criteria for a
system is to list required program properties. The task then is to show these properties
remain true in all reachable states. This chapter introduces formal methods for verifying
concurrent systems.

Various approaches for modeling and verifying concurrent systems have been
employed. Finite-state modeling methods, such as communicating finite state machines
(CFSMs), Petri nets, and Kripke structures have been used to represent concurrent
systems. The model chosen usually depends on the type of analysis being performed and
the behavior exhibited by the system. Concurrent system verification includes such
activities as:

e proof construction using axioms and inference rules of a logic, or

* analyzing the set of possible system states.

Each approach has particular ad and di: ing on the

system being examined

1. Formal Proofs in Logical Systems

Formal proofs are the most familiar approach used for concurrent system

proofs are showing the truth of system properties
expressed as propositions. Various types of logical systems have been used, including
temporal logic. A proof constructed manually may require considerable ingenuity to

manageably organize the proof. The process can be quite tedious, and, due to limitations




on human's abilities to deal with complex system, is prone to errors. Mechanical theorem
provers have not provided as much help as hoped in constructing mathematical proofs for
concurrent systems. The task of proving the correctness of programs described in even
some of the more simple deductive logical systems is inherently difficulty. To illustrate the
manual proof procedure, a formal proof for the mutual exclusion algorithm of example 2

(from Section I1.B.4) is given below.

@ Formal Proof Example

This section illustrates the formal proof verification approach. It uses the
mutual exclusion algorithm presented in Section I1.B.4. This algorithm satisfies the
mutual exclusion property but can deadlock. To prove mutual exclusion it must be shown
that this property is satisfied in all allowed states. A proof of mutual exclusion is given
below using propositional logic.

The program is reproduced in this section for easy reference.

subtype TEST_VAR_TYPE is integer range 0..1;
C1,C2: TEST_VAR = 1

task body P1 is task body P2 is
begin begin
loop loop
L1.1 Non_Critical_Section_1; £2.1 Non_Critical Section_2;
L12 Cl :=0, 22 C2:=0;
LL3 loop exitwhenC2=1; endloop, 123 loop exit when C1=1; end loop,
L1.4 Critical_Section_1, L24  Critical_Section_2;
Ls Cl:=1; . L2s C2:=1,
end loop; end loop;
end P1; end P2;

The mutual exclusion property is false if P1 is at L./.4 and P2 is at L2.4 at
the same time. Expressed as a logic formula, — (at(L/.4) v at(L2.4)). This formula must

be shown to be invariant through all transitions. The proof is based on induction on the



execution sequence and was originally presented in [Ben90] It is reproduced here using
notation consistent with that used in this thesis.
First two lemmas are required for the proof.

Lemma 1. C1=0 = at(L1.3) v at(L1.4) v at(L1.5) is invariant
This states, when P1is at 1.3 or L.1.4 or L1.5 the variable C1 is 0 and when C1 is 0, P1
isatLl3orLl4orLl5.
Proof of Lemma 1
Basis Step: Cl is initialized to 1 and the first statement label in P1is L/./. Thus both
sides of the equivalence are false, so the formula of Lemma 1 is true prior to executing any
of the statements in the program
Inductive Step: Assume the formula is true before any statement is executed. We need to
show that the formula is true after each statement is executed. All possible transition of
P1 and P2 will be examined.

L1.1 toL1.2: The truth of the formula is not affected by this transition. If the
formula was true before making the transition, it is true after the transition

5

L1.2 toL1.3: Cl is assigned 0, making the left side of the formula true. The
process advances to L /.3, making the right side true since P1 is now at L/.3.

w

L1.3to0 L1.3: For this transition to take place, the test of C2 = 1 must be false.
The loop is not exited. The truth of the formula is not affected by this
transition since no assignment to C1 occurred and P1 remained at L/.3

IS

L1.3t0 L1.4: The test of C2 = | must be true for this transition, however
there is no affect on the formula

w

L1.4t0L1.5: Again no affect on the formula.

o

L1.5t0 L1.1: Cl is assigned 1 and the program location for P1 changes to
L1.1 The left side of the formula is now false. Also the right side becomes
false since P1 is not at L1.3, L1.4 or L1.5. The equivalence remains true

<

Transitions in P2: The formula is not affected since assignment to C1 does not
occur in P2, and the execution location in P1 is not changed by P2

Hence the formula of Lemma 1 is invariant since it is initially true and remains true

through all transitions. ...




Lemma 2. C2=0=at(L2.3) v at(L2.4) v at(L2.5) is invariant
Proof of Lemma 2
A symmetric proof of the invariance of the formula of Lemma 2 follows from the proof

above for Lemma 1

Theorem 1. The formula — (at(L/.4) A at(L2.4)) is invariant

Proof of Theorem 1.
Initially P1 and P2 are at L./ and L2.1, respectively. Each proposition is false, so the
conjunction is false, and the negation makes the formula true. Thus the formula is initially
true.
The only transitions that can affect the truth of the formula are £.2.3 to L2.4 in P2 while
at(L1.4) or advancing from L/.3 to L1.4 in P1 while at(L2.4). By Lemma 1, at(L/.4)
implies C1 = 0, so the transition L2.3 to L2.4 can not occur since C1 = 1 must be true for
P2 to exit the loop and make the transition. By Lemma 2 at(L2.4) implies C2 = 0, so the
transition 1.3 to L1.4 is impossible for P1
The formula is not falsified by any of the program's possible transitions, thus the formula is
always true. ..

(The proof can be simplified by using a proof by contradiction as follows
Suppose (at(L/.4) A at(L2.4)) is true. Then C2=1 or C1 = 1 which contradicts Lemmas
1and 2. Therefore — (at(L/.4) A at(L2.4)) must always be true.)

It is interesting to note that a different proof of this algorithm is given in
[Ben82]. Its approach is to show that the proposition, (P1 in its critical section), implies
the proposition, (P2 is not in its critical section). Similarly, multiple formulations of
correctness proofs for the alternating bit protocol can also be found in the research
literature on concurrent system verification. They are usually constructed to demonstrate

some particular proof technique or system.



2. State Enumeration and Analysis
Verification based on state enumeration usually proceeds by describing the
concurrent system in a particular model. Transition relations and properties of the

concurrent system are described at the level of detail appropriate for the desired analysis

The description can be in such forms as fini machines, ing-language like
notion, a Petri net, or a finite Kripke structure. The system states are then generated
based on this description. Each generated state is examined to determine if it is consistent

with the ification. The ification includes p

perties required to be true in all
reachable states. If an undesirable state can be reached then the concurrent system’s

design has been shown to contain an error.

The main of using state ion and analysis for verification is it
can be automated. The Murphi Verification System and the SMV model checker
[McMi92] are examples of automatic verification tools. Verifying a concurrent system
with Murphi involves describing its behavior in the descriptive language recognized by
Murphi, generating a C++ program from the Murphi description, and then running the
program to check the invariance of desired properties in all reachable states. See Chapter
1V for a detailed discussion of the Murphi Verification System. Section [V.D. presents
the Murphi descriptions for the same mutual exclusion algorithm used in the manual proof
example.

The process of describing the actions and properties of a concurrent system for a

system has its di: The difficulty is assuring the
description will generated all allowable states. Will some interleaving be omitted because
of an error in the iption? Also ing correct iptions of desired

can be more problematic than it appears. It is not always easy to translate a simple

property expressed in natural language into the formal language used by the verifier.

Another signi isads is the problem of state-space explosion. An
exponential growth in the size of possible system states occurs as the complexity of the

system increases. Verification may not always be feasible, because of time and space




constraints, without employing space state reduction techniques. The next section
discusses methods to lessen the state space explosion problem.
B. STATE SPACE REDUCTION TECHNIQUES

The size of a concurrent system’s state space may grow very rapidly as the domain

or number of system variables increases. ing state-space reduction

such as eliminating redundant interleaving, folding related states, and down-scaling the
concurrent system under analysis, can help. The basic idea is to develop an approximation

of the concurrent system. The approximation is achieved by

such as symmetry or equivalence classes inherit in the structure of the concurrent system

The trick is to eliminate states without loss of analysis precision by ignoring some level of

detail (i ing the level of i igni space state reduction has been

achieved by the application of these methods. A reduction of over 90% is reported in
[IpD93] when state reduction based on symmetry was applied to the verification of a

cache coherence protocol. In [CGL92] verification of a pipelined ALU circuit design
containing more than 10°** states was reported

1. Eliminati .

An example of state space reduction based on symmetry is available from the
mutual exclusion algorithms used in Chapter II. Each program contained two processes

P1and P2. These two processes are ic in their actions. ing all possible

interleaving generates one state with P1 in its critical section and P2 waiting to enter and
another state with P2 is in its critical section while P1 waits. From an analysis perspective
these two states are equivalent in the sense that one process is in its critical section and the
other is waiting to enter. Which particular case is examined in the verification process is
not important, the same results are obtained from either choice. This is an example of
eliminating redundant interleavings discussed in [ChHa94] and exploiting symmetry
covered in [IpDi93]



2. Folding Related States

Abstraction is another method for reducing the state space by considering the
domains of the concurrent system's variables. It may be possible to partition a variable’s
domain. Instead of using the full range of a variable it may be only necessary to examine
situations where the variable is greater or less than some particular value. ‘Folding related
states’ is also referred to as abstract interpretation, see [ChHa92], [ChHa%4], and
[CGL92]

A variation of the mutual exclusion problem can be used to illustrate state folding.
Consider a mutual exclusion implementation for N processes that uses a queue to store the
process id of all processes waiting to enter its critical section. Let a variable queue_count
represent the number of queued processes. To individual processes, the specific process
id’s contained in the queue and their ordering is generally not significant. What is
important is whether the process requesting entry is allowed to enter its critical section
(i.e. queue_count is zero). The full domain of the variable queue_count does not need to
be modeled. As an approximation, queue_count could be replaced by a boolean variable
that would indicate yes or no when a process requests entry into its critical section

This granularity of abstraction may not be suitable for all analyses. For example, if
a particular process execution sequence is required to ensure the correct operation of the
overall system (say process P3 must complete its critical section prior to P10 entering its
critical section) then an abstraction level that prevents checking the queue’s ordering of

process ids is unacceptable. An essential detail of the system has been lost

3. Down-scaling

“One of the most important ways to make verification of large systems possible is
down-scaling - pretending that they are small systems > Dill argues [DDHY92]. The idea
of down-scaling is to conduct the verification using a subset of the concurrent system.
‘When a system is scaleable, analysis precision is not lost. Results obtained from work

with a subset should reflect problems that exist in the full-scale system.




The concept of down-scaling can be extended further. When a system consists of
discrete phases, each phase can be analyzed separately. For this approach to succeed each
phase must have a distinct start and end. This idea was used successfully in the
verification of SNR conducted for this thesis.

C. COMMUNICATION PROTOCOLS

The parallel actions occurring in protocols makes reasoning about their design
difficult. Adding to the inherit complexity of the interactions among the protocol’s
components are the affects of the transmission media. Data and control errors can be
introduced by the channel. Also, there can be a significant time delay from when
information is sent until it is received. Specific problems that can be introduced by a
network include:

* Data packets delivered out of order.

* Variable round trip delay.

* Anintermittent or broken connection.

* Data corruption
‘When a verification technique is applied to a protocol, both its concurrent nature and the
characteristics of the communication channel should be considered

The verification process can be simplified if the communication channel is assumed
to be perfect (i.e. reliable, packets are always delivered in order, constant delay time,
congestion free, data is never corrupted by the channel, etc.). This is a fairly reasonable
assumption in the context of fiber optic networks. Invoking this restriction can facilitate
the initial verification of a protocol design. However, even under the most ideal
conditions network problems can occur. After an initial attempt, verification should be
applied to more complex characteristics of a specific target network. It should be kept in

mind that if all relevant details are included, complete verification of a protocol may not be
feasible.



IV. THE MURPHI VERIFICATION SYSTEM

A. OVERVIEW

The Murphi Verification System is a tool designed to facilitate the verification of
finite-state asynchronous concurrent systems. Murphi consist of a description language
and compiler. The Murphi Description Language furnishes a fairly rich set of features for
characterizing the behavior and properties of concurrent systems. Two important
constructs of the descriptive language are rule and invariant. Invariants are used to
express system properties. Rules portray a portion of the system’s overall behavior
Carrying out the action of a rule usually changes one or more system variables, resulting in
a transition to another state. The Murphi compiler is used to create an executable
program that automatically tests invariants and error conditions while generating all
reachable system states.

Four steps are required to use Murphi. First, the concurrent system’s specification
is translated into the descriptive language recognized by Murphi. Next, the Murphi
description is transformed into C++ code using the Murphi compiler. The C++ code
produced contains code to generate all allowed state transitions, (i.e., the behavior of the

concurrent system) and, code to check for error conditions and the violation of invariants

contained in the source i (ie., the p ies of the system). The
C++ code is then complied with a standard C++ language compiler, creating an executable
program. The executable program is referred to as the “special purpose verifier”

Running the program results in either a verification of the concurrent system or a
simulation of the system’s execution.

In the next section, a summary of the Murphi Description Language is given The
following section describes the basic operation of the special purpose verifier In the last
section Murphi is applied to the already familiar, mutual exclusion example from Section
ILB.4. The Murphi description and the output produced for the example are explained in

detail. This demonstration of the tool in the context of a familiar and relatively simple




program should provide the necessary to d the application of
Murphi to SNR. Additional information about Murphi can be found in [DDHY92] and
[MeDi93]

B. MURPHI DESCRIPTION LANGUAGE CONSTRUCTS

The Murphi description of a typical system’s specification has four

parts: a declaration part; a rules' section; a startstate portion; and a collection of invariants.

For the most part, the syntax and ttics of the

pressi and
declarations used in the description language are similar to those of general purpose
programming languages, such as Pascal, C, and Ada. Their employment is usually
straightforward, and no explanation is required. However, since rules, invariants,
startstate, and rulesets are not found in general purpose languages, they will be explained
in detail

1. Declaration Part

The declaration part contains definitions for constants, data-types, variables,
procedures and functions used in a description. Constants and types are declared first
They are then used in the declarations of global and local variables. Types that can be
defined by the user include: simple types -- enumerations and finite integer subranges; and
compound types -- arrays and records. Boolean is the only predefined type available.

A potentially powerful feature found in Murphi is a data-type called Scalarset.
When the concurrent system being investigated exhibit's symmetry with respect to one or
more variables, these variables can be declared type scalarset. The use of a scalarset
variable allows Murphi to automatically reduce the system’s state-space.

? The user manual and excoutable software are available via ftp from Stanford University.



2. Rules

Rules come after the declarations in a Murphi description. They are used to
describe the conditions under which transitions are allowed to take place and the action to
occur in each global state. Rules have the form:

Rule “name”
expression
—
in
statement(s)
End;

The expression is a guard and must evaluate to a Boolean value. The kinds of
operators available are quite extensive and include such things as logical implication, and

universal and existential ification. If the ion is true, then the rule’s body is

executed. The sequence of statements between the keywords begin and end comprise the
body of the rule. A rule’s entire body is executed indivisibly. Example of statements
available in Murphi are: Switch statements; for and while loop statements; procedure and
function calls; assertions; and output statements.
Rules can be grouped in a set by the Ruleset construct. It has the form:
Ruleset identifier: range of identifier Do
set of rules
Endruleset;
The variable identifier is local, and only effects those rules within the sef of rule. As the
verifier executes, identifier takes on each value in its range. A ruleset essentially
duplicates the behavior of the individual rules contained in the set of rules for each value
in range of identifier.
3. Startstate
Variable initialization is accomplished using a special rule called Startstate. All
variables must be given initial values by the startstate rule. The startstate is only executed

once, at the beginning of the verification process.




4. Invariant
Invariants are used to specify properties of the concurrent system. They have the
form:
Invariant “name”
expression
The expression must evaluate to type Boolean. Its value will be checked in each state
generated during execution of the verifier.
Similar to Invariant is a construct called Liveness’. With Liveness a property
can be written using a subset of Linear Time Temporal Logic (LTL). The temporal

operators, EVENTUALLY, ALWAYS, and UNTIL, are supported
C. SPECIAL PURPOSE VERIFIER

1. State Generation and Property Checking

The executable program generated from the Murphi description, called the special
purpose verifier, (or just verifier) can run in two modes - verification or simulation. The
first rule executed in either mode is the Startstate rule. The body of Startstate initializes
all system variable and defines the first global state available to the verifier. Based on the
values of the system variables, the verifier identifies all rules with guards that evaluate to
true. The body of each enabled rule is executed. The state generated is checked for

various error conditions (i.e., run-time errors, deadlock, violation of user-defined asserts

error and invariants). If no error is detected, then these newly
generated states are inserted into a queue. After all enabled rules have fired, a state is
extracted from the queue to become the new system state. Execution of the verifier then
continues from this state. The process of determining all state transition rules satisfied,
generating the new states, checking for errors in those states, inserting the states into the

queue, and extracting a state from the queue, is repeated. In the verification mode, the

? Liveness is supported in Murphi Version 2.7L.



user can select either a depth-first or a breadth-first state ion path. During
execution, Murphi chooses among the enabled rules arbitrarily to generate the next state.
If an error condition occurs, the verifier halts and reports the cause, otherwise its
termination depends on the run mode. In the verification mode the verifier runs until all
states have been generated. In the simulation mode it continues to execute until

terminated by the user.

2. Execution Report

When ran in the verification mode, the verifier displays, every 1000 events, the
number of states explored and the amount of time expended. When execution is complete,
the errors encountered and the total size of the state space explored are reported. In the
simulation mode the verifier normally displays the total number of rules fired every 1000
event. Murphi has various options available for controlling its output. The level of detail
in the execution report can be increased, decreased or changed to meet the user’s need
Examples of these options include: “make simulation or verification verbose”, “print out

rule information”; and “write a violation trace”
D. APPLICATION OF MURPHI TO MUTUAL EXCLUSION

1. The Murphi Description

‘The verification process begins by translating a concurrent program to a Murphi
Description. For this example, the mutual exclusion algorithm discussed in Section I1.B.4
has been translated into the descriptive language recognized by Murphi. The description is

presented on the next two pages. Note the between the

program (shown in the box) an its description
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- Murphi Description of MUEX algorithm
~ exhibiting deadlock

~Declarations

Type
test_var_type: 0.1;
PI_label_t: Enum{L1_I, ~ non critical section
L1_2, - assignC
L3, -

0
loop while other process in critical

critical section

assign Cl:=1};

|_t: Enum{L2_1, -~ non critical section
assign C1 =0

critical section
assignCl:=1};

PI: P1_label t,
P2: P2 label_t.
CI: test_var_type;
C2: test_var_type;

- Rules

Rule "P1 non-critical section”
PI=LI_| =>

Begin
Pl:=L12;
End;

Rule "P1 assign C1 0"

30

loop while other process in critical section

Portion of Program

subtype TEST_VAR_TYPE is integer range
0.1;
C1,C2: TEST_VAR :=1;
task body P1 is
begin
loop

L1
L2

Non_Critical_Section_1;
Cl=0;
L1.3 loop exit when C2
L1.4 Critical_Section_I;
L15 Cl =1,

end loop;

end loop;
end P1;

Rule "P1 critical section "

Rule "P1 assign C 1"
PI=L15 —>

Rule "P2 non-critical section”

P2=12 1 =—>
Begin

P2=122
End



Rule "P2 assign C2 1"

Rule "P2 assign C1 0" P2=125 —=>
P2=122 —> Begin
Begin =1,
c2:=0; P2=12 1
P2=123; End,
End,
Rule "P2 wait" ~ initialization
P2=123 —> Startstate
Begin Pl =LI_I
If(C1
P2
End, ~If
End,
Rule " P2 critical section " — safety
P2-12.4 —> Invariant "Mutual Exclusion Violated"
Begin |PI=LI4&P2=124)
P2:=12_5;
End;

a. Declarations
Three data-types are declared. The statement ‘test_var type: 0..1;”
specifies an integer subrange with domain {0, 1}. The next declaration is an enumeration-
type, called “P1_label t* with domain {L1_1, L1 2, L1 3,L1_4,L1_5} P2 label t’is
also an enumeration-type with domain {L2_1,1L2 2,12 3,L2 4,L2 5};
Next to appear is the declaration of variables. Four variables are declared
The first variable, ‘P1°, represents the “program counter” of process P1 and can take on
values of type ‘P1_label t’. Similarly, the second variable represents the “program
counter” of process P2. The two variables C1 and C2 are of type ‘test_var_type’ and can
be assigned a value of 0 or 1. They serve a binary semaphores
b, Rules
The first rule in the description, named "P1 non-critical section”, is enabled
if its guard ‘P1 =L1_1" is true. The action of its body is to assigns P1 the value L1_2




Behavior of the other rules is similar to the first rule. The table below explains the

purpose of each rule.

Name

Purpose

P1 non-critical section

When at /.1, advance P1’s program counter to /.2

P1 assign C 0 When at L.1.2, assign C1 the value 0, advance P1’s program |
counter to 1.2
P1 wait ‘When at L 1.3, check the value of C2, if C2 = 1 then advance

P1’s program counter to L/.4, if C2 = 0 then the program
counter remains at L/.3

P1 critical section

When at L/.4, advance P1’s program counter to L1.5

PlassignC 1 When at L1.5, assign C1 the value 1, change P1’s program
counter to L1.1
P2... to the first five, except for process P2

Table 2. Explanation of Rules for Mutual Exclusion Description.
The rules used in this example are very simple. Rules can be much more

involved. For example, a rule’s guard can consist of a complicated expression. Also,

declarations of local variables, constants and types can be inserted between the rule’s

condition and body.

¢ Startstate

In this example four variables must be initialized. The initial value of these

variables are as expected for the MUEX program. P1 and P2 start at /.2 and L2.1,
respectively. C1 and C2 are both assigned a value of 1

d. Invariants

This example has only one invariant. The invariant’s name is ‘Mutual

Exclusion Violated”. The expression is read as : —~((P1=L1_4) A (P2=L2_4)). Itis

false (i.e., the invariant is violated) if a state is generated where both P1 and P2 are in their

critical sections. After each new state is generated, the invariant is checked. If false,

execution of the verifier terminates and a report is displayed



2.  Murphi’s Output

Below is the report generated by the special purpose verifier produced from the

Murphi description presented in paragraph IV.D.1. Only the first few states and the final

states of the report are shown. See Appendix A for a complete listing of this report

Verbose option selected.
The following is the detailed progress

Firing startstate Startstate 0
Obtained state:

PLLI_I

P212_1

(GBS

c2:1

Unpacking state from queue
PILI_L

P2L21

Cl:1

c2:1

‘The following next states are oblained:

Firing rule P2 non-critical section
Obtained state:
PLLLI

P2:L22

cr:t

c2:1

Firing rule P1 non<ritical section
Obtained state:

PILI 2

P2L21

Cl:1

c2:1

Unpacking state from queue
PLLI_I

P2L22

cil

c2:1

The following next states are obtained:

Firing rule P2 assign C1 0
Obtained state:

PILI_I

P2L23

C1:1

c2:0

Firing rule P1 non-critical section

Unpacking state from queue:
PILI 2

P212_1

Rzl

C2:1

“The following next states are obtained:

... skipping to the last few
transitions of the trace report ...




Unpacking state from queue: Firing rule P1 wait
PLL13

= Obtained state:
P2:12 3 PLL13
C1:0 P22 3
c2:0 CL:0
C2:0

The following next states are obiained:

Firing rule P2 wait
Obtained state:
PILI_3

P2L23

C1:0

c2:0

Result:
Deadlocked state found.

State Space Explored:
17 states, 26 rules fired in 0.40s.

Rules Information:
Fired 1 times - Rule "P2 assign C2 1"
Fired 2 times - Rule " critical section "
Fired 3 times - Rule "P2 wait"
Fired 3 times - Rule "P2 assign C1 0"
Fired 4 times - Rule "2P non-critical section”
Fired O times - Rule "P assign C 1"
Fired 1 times - Rule " critical section
Fired 3 times - Rule "P1 wait"
Fired 4 times - Rule "P1 assign C1 0"
Fired 5 times - Rule "P1 non-critical section”

The first state of the execution path - (L1.1, 1,L2.1, 1) - is that defined by the
startstate. In this state, two rules are enabled: ‘P1 non-critical section’ and ‘P2 non-
critical section’. The body of each of these rules engender separate transitions and

produce distinct states as shown below.

Name of rule enabled - P1 non-critical section P2 non-critical section
State produced: L12,1,121,1) L1, 1,122, 1)



Since no error or violation of the invariant occurred, both of these states are
placed on a queue. The state produced from rule ‘P2 non-critical section’ is extracted
first. In this state, the guards of two rules, ‘P2 assign C1 0’ and ‘P1 non-critical section’,
are true. The states produced by these rules are checked for errors and placed in the
queue. The queue now contains three states {(L12, 1, L2.1, 1), (L1.1, 1,12.3, 0), (L1.2,
1,122, 1)}. (Note, even though the execution of a rule is repeated -- ‘P1 non-critical
section’ -- a different state is obtained since in this interleaving, rule ‘P2 assign C1 0” has
already fired.) The verifier is using a breadth first search strategy, so state (L12, 1,L2.1,
1) is chosen, and the verification continues. After ten more states are reached, the state
(L1.3,0,L2.3, 0) is the next state removed from the queue. Two rules are enabled in this
state, ‘P2 wait” and ‘P1 wait’. Execution of the body of either rule produces the state
(L1.3,0,12.3,0). However this state is the same as the previous state - deadlock. Since
an error condition has been detected, the verification process stops and a report is
displayed. The report shows all states examined, rules fired, and the error detected. The
sequence of states leading to the deadlocked condition can be determined and analyzed.

A report tracing the path to an error can be helpful for identifying flaws in the
design of a concurrent system. Based on insight gained from an analysis of the verifier’s
output, it may be possible to modify the concurrent system and prevent occurrence of the

execution interleaving that results in the undesirable state.







V. THE SNR TRANSPORT PROTOCOL

A. INTRODUCTION

At the top level, the transport protocol SNR is a set of rules controlling the
exchange of data between a transmitter and receiver connected by a network. The
transmitter and receiver run in parallel. They cooperate to transfer data from a sending
host (interfaced with the transmitter), and the receiving host (linked to the receiver). The
transmitter and receiver use packets to exchange data and control information

The data transfer process consists of four basic steps. The transmitter is given data
by its host to send. The transmitter encapsulates the data into packets and inserts them
into the network for transmission. After the propagation delay intrinsic to the channel, the
data packets arrive at the receiver and are extracted from the network. The receiver
processes the packets and then delivers the data to its host. This process would be
relatively straight forward if not for finite receiver resources and problems* introduced by
the network. The constraints of the receiver are: 1) an upper bound on the rate at which
it can process data packets, and 2) a limit of the size of its buffer. (A buffer is required to
temporarily hold and reorder packets prior to delivery to the receiver’s host.)

The actions of the transmitter and receiver must be coordinated to reliably transfer
data over a network. Information is passed between these two entities to achieve the
coordination required to carry out the five functions provided by SNR. These functions

are

e C i - ishing the ion, detection of an
: - ination. and - ination after

the data transfer.

e Flow Control -- restricting the number of packets in transit from the transmitter
to prevent buffer overflow in the receiver.

* Problems that can be introduced by a network include, data corruption, out of order data packets, lost data packets,
variable round trip delay, broken connection, etc.




o Error Control -- detecting and recovering from lost packets or corrupted data.
SNR employs a modified selective repeat error recovery meth

Ordered Delivery -- delivering data packets to the receiver’s host in the
sequence sent by the transmitter.

. iplexi iplexing - ishing and icating on more than
one ion at a time. (Multiplexi iplexing will not be covered in
this thesis.)

The description of SNR’s organization and operation will be introduced in steps.
First a block diagram of SNR is presented. Second, a brief overview of the protocol's

operation is given. This is followed by a iption and of

parameters, packet formats, variables, and data structures used in SNR. Next, state
transition diagrams of the machines internal to the transmitter and receiver are presented
Finally, a detailed example of a portion of a typical data transfer session is given to
illustrate the actions of these machines.

The following concepts are useful to keep in mind when reading the following
sections:

© The transmitter attempts to send as many data packets as possible without

overflowing the receiver’s buffer. When the transmitter believes the receiver’s

buffer is full, the transmitter must halt transmission of data packets and wait
until a receiver control packet arrives acknowledging blocks previously sent.

The transmitter must retain a copy of data already sent (in case retransmission is
required) until that data has been acknowledged by the receiver.

The state of the receiver, as known by the transmitter, is never current. Any
state information sent by the receiver takes a finite amount of time before it gets
to the transmitter.

B. DESIGN FEATURES

Most transport protocols in use today fail to deliver the performance expected
with networks utilizing advanced components such as fiber optics. Existing protocols, for
of i
used in modern networks. To overcome the deficiencies present in older, less reliable, and

the most part, were ived and i prior to the




slower networks, current protocols employ complex control procedures and thus suffer
from high processing overhead. The large processing demands placed on a system
running an inefficient protocol, reduces its ability to transfer data to and from the network.
This creates a mismatch between the communication channel’s capacity for sustained high
transmission rates and the system’s slower throughput. The transport protocol SNR has
been proposed to address this problem. It is specifically designed to take advantage of the
extended bandwidth, high speed switching, and lower error rate of modern networks.

The design goal of SNR is to increase its overall performance while still coping
with problems that can be encountered even in modern networks. Two primary
innovations in SNR’s design aim to achieve this goal. They are:

o frequent and periodic exchange of complete state information between the
transmitter and receiver, and

* flow and error control based on packets grouped in blocks vice individual
packets.

The concepts of periodic state exchange and blocking are intended to simplify the
protocol’s overall design, diminish its processing demands, and permit an implementation
based on parallel processing. Parallel processing coupled with lower processing overhead
should significantly increase the throughput of the system running the protocol. The

expected result is a faster transport protocol even in the presence of transmission errors.
1. Periodic State Exchange

SNR exchanges complete state information of the transmitter and receiver

ly and periodi apart from the of signi events. Most other
protocols pass the status of the transmitter or receiver only after detecting an error such as
alost data packet. The error detection procedures typically involve explicit round-trip
delay timers, large data structures and complex packet acknowledgment schemes.
Decoupling state exchange from specific events and frequently passing complete state

information, reduces the protocol's processing requirements for two reasons.




First, the loss of a control packet (a packet containing state information not data)
has no significant impact in SNR. A new one, with the same or more current information,
will be along shortly. Other protocols must have some means, usually complicated, for
dealing with lost state packets since the information in each of these is accumulative. With
most protocols the information in the most recent control packet augments a history of

state information. In SNR, the information of individual control packets is complete and

can be pi d i of previ itted control packets

Second, frequent and periodic transmission of control packets can be used to
implement implicit timers. SNR uses simple counters to achieve the functionality of clock
based timers. The control packets are transmitted at a frequency linked to the reception
rate of data packets. Each time a control packet is received, a counter is incremented
Thus the interval between control packets and the rate at which a counter is altered
roughly corresponds to the current round trip delay of the network. With this approach,

SNR can automatically adjust to varying network conditions. SNR uses these “implicit

timers” for its ission and broken timers. The elimination of explicit,
clock-based, round-trip delay timers, and their associated problems potentially provides
the greatest gain from using periodic state exchange. See [Zha86] for a detailed
discussion of timer problems in network protocols

It may appear that passing state information in a fashion as in SNR might reduce
the throughput of the system. After all, this approach places extra packets into the
communication channel. However, it must be kept in mind that the transmission rate of
the channel is not limiting. Since a high speed network is normally running below
capacity, a protocol design that speeds up the transmitter and receiver, even though

additional packets are generated, should increase the achievable overall data transfer rate

* The problem with explicit timer is: to what valuc should it be set? Too small, and unnccessary retransmissions
occur. Too large and the protocol responds too slowly to a lost packet. Any static timer sefting strategy will be
unable to respond to changing network conditions. Proposed schemes to dynamically modify the value so far have
failed to provide an adequate solution.



2. Blocks of Packets

To take advantage of a fiber optic network’s low error rate, SNR implements a
block-based flow control and error control scheme. Rather then acknowledging and
retransmitting individual data packets, groups of packets are managed. This approach has
two effects on the data transfer process. First, the size of tables and the complexity of the
procedures used by the protocol to track the status of data packets are reduced. Second,
the number of packets sent during a session may increase because blocks (all packets in
the block not just the single lost or damaged packet) are retransmitted when data is lost or
corrupted. The first has a positive impact on the protocol’s performance while the second
tends to reduce its throughput. In networks with low error rates, the retransmission of a
full block should not occur very often and therefore unnecessary packets are sent very
infrequently. The processing speedup is expected to outweigh the higher packet count,
resulting in better overall efficiency compared to a non packet-blocking protocol

3. Operating Modes

SNR’s design allows the level of service provided by the protocol to be controlled.
Three operating modes are available in SNR. In Mode 0, SNR runs with flow and error
control omitted. In Mode 1, flow control is provided but not error control. Both error
and flow control function in Mode 2

The reliability of the network and the type of data being transferred influences
mode selection. Mode 0 is used when a fast data transfer rate without concern for errors
is the principal objective, Mode 1 is best suited for real time applications. The preferred
choice for transferring large files over a network likely to introduce errors is Mode 2.
According to [NRS90] the efficiency of SNR is optimized when large packets are used in
Mode 2, and small sized packets with Modes 0 and 1

C. THE SNR ARCHITECTURE

The formal specification for SNR, provided in [NRS90], is based on a finite-state

machine model. The protocol is specified by seven machines, three machines for the

a1




transmitter (T1, T2, T3) and four for the receiver (R1, R2, R3, R4). The machines
internal to the transmitter and the receiver are intended to run in parallel without explicit
synchronization. The machines cooperate to pass data from the transmitter to the
receiver. Their actions are coordinated by means of shared variables and message passing.
A block diagram of SNR is displayed in Figure 2 and a table summarizing the purpose of
each machine is presented in Table 3. The arrows in the diagram represent information

flow across the network accomplished by passing messages.

D. OVERVIEW OF SNR’S OPERATION

Below is a sequence of actions performed during a data transfer session under
SNR. Most of the details have been omitted. See the last section of this chapter for an
example with actions at the state transition level of the internal machines.

1. The transmitter’s host signals T2 that it has a message to send

2. T2 and R2 negotiate the parameters for the session and establish the
connection.

w

T1 transmits blocks of new data packets until the preset limit on the capacity of
the receiver’s buffer is reached or retransmission of a block is required.

IS

RI processes the incoming data packets and updates the receiver’s tables used
for tracking the reception status of packets and blocks. These two tables
indicate the need for data retransmission

5. At the appropriate interval, R3 sends receiver state information to T2. This
information is used to update the status of the receiver’s buffer (as known by
the transmitter) and acknowledge blocks of data.

6. T3 periodi sends itter state i ion to R2. There are a set
number of blocks transmitted between each control packet.

=

R1 reorders the data packets as appropriate.

®

The processed packets are passed to the host by R4.

©

Control packets continue to be exchanged and blocks of data packets sent until
the entire message has been acknowledged by the receiver.



: :
R

7 RCHAN
(xtmr ¢ revr)

Figure 2. Block Diagram of SNR

Machine Purpose
T1 Transmits/retransmits data packets.
T2 Manages the connection and flow control for the transmitter.
T3 Sends the transmitter’s state information to the receiver
Rl Processes incoming data packets
R2 Manages the connection and flow control for the receiver.
| R3 Sends the receiver’s state information to the transmitter
F R4 Passes processed data packets to the host

Table 3. Purpose of Each Machine in SNR.




10. T1 will retransmit a block of data packets if the receiver fails to acknowledge a
packet from that particular block prior to its retransmission counter expiring.

11. T1 temporally halts transmission of data packets if its information indicates the
receiver’s buffer will be full when all of the data packets it has sent arrive at the
receiver. T1 resumes sending data packets when state information from the
receiver indicates buffer space is once again available

12. T3 will terminate the connection if it has not received a receiver control packet
within the required time limit

E. COMMUNICATION PARAMETERS AND STRUCTURES

1. Connection Parameters

Parameters particular to each ion are ined during the

establishment phase. They include: number of bits per packet; number of packets per
block; buffer size; round trip delay (RTD); and bandwidth. Their values are then used for

other and initial values for protocol variables.
Discussed below are important connection parameters calculated by SNR

a L - Largest Allowed Number of Quistanding Blocks
The value of L is chosen be slightly larger than

RID x bandwith |
bits per block J
For example, assuming
RTD = 20 msec bandwidth = 1 Gbit/sec

1000 bits per data packet 8 packets per block,

for the connection gives the result

(20x10™ sec) x(1x10” bits per sec)
=2500 blocks
(1000 bits per packet)x (8 packets per block) |
Based on these values, L must be greater than 2500 blocks.
b.  Ti - Periodic Time Interval
Control packets are transmitter at interval

44



T,, = max (@,IPT)
kou

The constant kou is typically a power of 2 such as 32, and IPT is the average time between
the transmission of two data packets. The value of 7;, changes when the connection
becomes inactive. If a data packet has not been sent within the period 7., the value of 7,

is increased by a factor of 2. While the connection remains inactive, 7,, continues to

. P : " RID
increase by a factor of 2. However, it never exceeds the maximum of the either or

IPT, where m is another constant such as 8. The value of 7, immediately changes back to

RTD
kou

max [ APT ] when data packet transmission resumes.

For example, using RTD = 20 msec, kou =32 and [PT = 0.05 msec gives,

20x107 sec

T, = max ( ,005x107 secJ= 0.625 msec.

If the connection is inactive 7}, increase to 1.25 msec, then to 2.5 msec.

2. Packets

The formats of the packets used by SNR for transferring data and exchanging state
information over the network are shown below. Following the packet formats are

descriptions of the fields comprising the packets (Table 4).

Packet Type Format
Data Packet eI Typc!ZJ Seqh l Data Llirmr Check "l

Transmitter Control Packet l Lcj Type=1 | Saer 3 l oW, IND of blocks queued |meChu—_T|

Receiver Control Packet ‘ L(,H Type=0 ] Sﬂ 3 ‘ LW, IB\llTefjwsl.hhl: 4[ LOB llim;lchnck |




FIELD NAME PURPOSE

Lcr Logical Connection Identifier, indicates with which connection the packet
is associated._Only significant when multiple are established

Seqi ‘The packet’s sequence number.

Data Contains the data being transferred. The number of bits used for this field
is negotiated during connection

Type Receiver control packet - 0, Transmitter control packet - 1, Data packet - 2.

k The interval between sending two sequential state control packets in units

of Ty

W, Sequence number of the highest block transmitted but that may not have.
(Upper Window | been acknowledged. (UW, is analogous.)

Transmitter)
LW, Every block with a sequence number less than this number has been
(Lower Window acknowledged. (LW, is analogous.)
Receiver)

No. of blocks queued | The number of blocks that have not yet been

Buffer_available The space remaining in the receiver’s buffer (in blocks).
LOB Table of Outstanding Blocks - A bit map maintained by the receiver
indicating the blocks in its window.

Error Check Error detection code.

Table 4. Fields of SNR's Packets.
3. Shared Variables
Presented below are the primary variables of the transmitter and receiver used in
the implementation discussed in [NRS90]. These variables are local to either the

transmitter or receiver and used for coordinating the actions of their internal machines



VARIABLE

PURPOSE

Start_signal | Sent by T2 and R2 to indicate the connection has been established

‘ busy In the transmutter it indicates whether a data packet has been sent recently.
In the receiver it indicates whether a date packet has arrived recent

clock_tick Periodic event occurring at interval 7,

[ scount Counter employed to implement a timer used to detect a broken connection or a
failed transmitter or receiver

‘ count Counter used to implement a timer that marks the interval between sending
control packets

k The interval, in units of 7,, between sending two sequential state control

packets.

f LUP ‘A table used by the transmitter to maintain the acknowledgment status of
transmitted blocks. It has three fields for each element, [Seq#, count, ack]

buffer_available | The amount of space available in the receiver's buffer, as known by the
transmitter. This variable is updated with the information in the
buffer_available field contained in receiver control packet
NOU The number of blocks sent by the transmitter but not yet acknowledged by the
receiver. NOU must always be less than L.
AREC[] ‘A table used by the receiver to maintain the status of received blocks.
ARECIi] is set to 1 when all packets in block ‘i received error free.
RECEIVE[] | A table used to maintain the status of received packets. RECEIVE[] is set to

1 when packets ' received error free

Table 5. Variables and Data Structures

Additional details of the variables required for the operation of the connection

establishment phase and flow control will be provided, as appropriate, in Chapter VI and

Chapter VII respectively

F. THE SNR MACHINES

A state transition diagram of each machine used in SNR is given below along with

an explanation of its transition. These diagrams mimic the FSM’s given in [NRS90]

They are provided as a means of illustrating the concurrent action of the various entities

comprising SNR and are not intended to serve as a specification.




Figure 3 Machine T1 State Diagram

TRANSITIONS EXPLANATION

01 Occurs after start_signal received from T2

152 Occurs if Mode 2 (flow control and error control) is being used

154 Occurs if Mode 0 (no flow or error control) is being used, or if Mode 1 is being,
used and information at the transmitter indicates there is space in the receiver’s
buffer for a block of data packets.

253 Oceurs if the counter for an block reaches zero.

24 Occurs if there are no outstanding blocks to retransmit, and the receiver's buffer
has space for another block even after all blocks in transit have arrived

352 ‘Oceurs after an outstanding block has been retransmitted and the variable busy
has been set to truc.

51 Occurs afier the transmitter has: sent a new block; updated the table of

outstanding blocks (LUP); and signals T3 that a block of data has been sent (busy
set 1o true).

Table 6 Transitions for Machine T1.




Figure 4 Machine T2 State Diagram.

TRANSITION EXPLANATION
051 ‘Occurs after a connection request i received by T2 from the transmitier’s host
152 Occurs after scount, UW, LW, and LUP are initialized
253 ‘Occurs after the connection is established with the receiver.
354 Occurs after start_signal is sent to T1 and T3
455 Occurs if a control packe is received from the receiver.
556 Occurs afier updating the receiver's state information maintained at the transmitier
and the disconnect counter (scount) has been reset.
64 Occurs if Mode 0 or Mode 1 are being used
67 Oceurs if Mode 2 is being used.
754 Occurs after updating the block retransmission table LUP

Table 7. Transitions for Machine T2.

49




scount < Limit

scount = Limit

Figure 5. Machine T3 State Diagram

TRANSITION EXPLANATION ]
01 Occurs after receiving start_signal and variables k and count are initialized
152 ‘Occurs if Mode 2 is being used and the periodic event, clock_tick, is detected.
Additionally, the shared variable scount is incremented
253 Occurs if the transmitter has sent data since the last occurrence of clock_fick.
the shared variabl is
254 Occurs if the transmitter has not sent any data since the last clock_fick.
| 354 Occurs if count = k, indicating the transmitter's current state is required 10 be sent
Y Occurs if count <.
455 Occurs after the transmitter’s state has been sent and count reset to zero.
556 Occurs if the transmitter has not recently sent data (busy = false). Additionally, k is
| notbusy increased to lengthen the interval between control packet transmissions J
5 > 6 busy ‘Occurs if the transmitter has sent data recently (busy = true). |
61 Occurs if scount < Limit (the disconnect “timer” has not expired) and after busy set
o false
‘ 6 — Disc Oceurs if scount = Limif (a receiver control packet has not been received in the
expected interval and scount reached the value

Table 8. Transitions for Machine T3



start signal
received

Figure 6. Machine R1 State Diagram.

TRANSITIONS EXPLANATION
051 Occurs after start_signal received from R2.
152 Occurs if a data packet is received from the transmitter.
251 Occurs if operating in Mode 0. The packet is delivered to the host without any
processing in Mode 0.
253 ‘Occurs if Mode 1 is being used.
254 Oceurs if Mode 2 is being used
351 Occurs after data is stored in the receiver's buffer.
=y he receiver has processed the data packet and updating the two tables

Occurs after
RECEIVE and AREC.

Table 9. Transitions for Machine R1.

© The specification for R in [NRS90] shows this as transition 4 — 2. However this must be an error because after

returning to state 2 from 4,

the machine would be stuck in state 2 since Mode =2, not 1 or




connection
established

start signal
sent
control packet scount
reccived reset

Figure 7. Machine R2 State Diagram.

TRANSITIONS EXPLANATION
01 Occurs after the connection has been established with the transmitter.
152 Occurs after start_signal sent to R1, R3, and R4.
23 Occurs if a control packet is received from the transmitter.
392 Occurs after the variable scount is reset to zero.

Table 10. Transitions for Machine R2.

¥




Figure 8. Machine R3 State Diagram

TRANSITIONS EXPLANATION

051 Occurs after start_signal received from R2 and vaniables initialized (busy to
false, k10 1, and count 10 0).

152 Occurs if event clock_tick detected and after scount incremented.

253 Occurs if a new data packet has not been received and after count

254 Occurs if a new data packet received and afer count

31 Oceurs if it is not yet time to send a control packet (count <)

354 Ocaurs if count = k and after k has been modified to reduce the transmission
rate of receiver control packets”

41 Occurs after a control packet is sent. and after busy and coun are reset.

4 Disc Occurs if the receiver has not received a control packet from the transmitter in

the expected interval (scount reached value)

Table 11. Transitions for Machine R3

7 The CFSM diagram in [NRS90] incorrectly indicated that k is modified during the transition from state 4 to state |
and that a control packet is sent during the transition from state 3 to state 4




establishment phase. It assumes the

Onmitted from [NRS90] are the details of machine R4 and the connection

will be

d based on the th

The ification in [McAr92] includes the details of the connection

phase and R4.

to serve as an interface to the

’s host. The

is refined in [Tipi93] and [LuTio4]

G. THE OPERATION OF SNR’S MACHINES

it adds another machine to the transmitter, T4,

d in [McAr92]

A fragment of a data transfer session is used to illustrate interactions of SNR’s

‘machines internal to the transmitter and the receiver. Only the most basic actions will be

shown. It is assumed that no errors are caused by the network during the exchange. For
this example assume the transmitter’s host (called source) has a large file to send to the
receiver’s host (called destination), and data transfer phase Mode 2 will be used. The
value of variables will be given only when significant. The state of each machine will be
given after the occurrence of major events that modify its state. Additional details relating
to an event are provided following the table as appropriate (event numbers marked with an

asterisk). Two or more events written in the same table row, indicate that in this

particular example, the actions are concurrent

State of State of Receiver's
EVENT Transmitter’s Machines after event
Machines after
No Description T | T2 RI | R [ RS
1 and receiver idle, no connection 0| o 0 [ 0
2 | Source signals the transmitter that it has a 1
message to send.
3| Variables initialized 2
4*"| The parameters of the connection are determined. 3 1
T2 and R2 establish the connection.
5| Start_signal sent by T2 to T1 and T3. 4 2
Start_signal sent by R2 to R1 and R3. |
6 | Start_signal received at Tl and T2 andatRland | 1 1 [ ‘
R3
7_| Mode 2 being used for connection. 2

Check of retransmission tablc indicates there are
1o blocks to retransmit and information indicates
spacc available in the receiver’s buffer.

N




State of State of Receiver's

EVENT Transmitter's | Machines after event
Machines after event
No. Description
9| T1 transmits a block of data packets, updates the
ion table, and set busy o true.
10| Mode 2 being used for connection
11| Check of retransmission table indicates there are
1o blocks to retransmit and the information at the
transmitter indicates there is space for another
block in the receiver’s buffer.
12% | T1 transmits block of data packets, update the
table, and set busy to true
13 | Clock_tick detected at R3 (0.625 msec since event
6).
14_| Clock tick detected at T3
15 [ busy is true in the transmitter, so state 3 in T3 is
bypassed.
busy is false in the receiver, so count incremented
by R3.
16 | A control packet is sent by T3,
17_| T1 is sending data so k is not increased by T3
18 | count = k and since no data has been received at
RI, K is increased.
19| A control packet is sent by R3
20 | The disconnect timer has not expired (scount <
Limit), 50 T3 sets busy to false,
21 | T1 continues to send data packets, T3 confinues to | 1,2, L2,
send control packets every 0.625 msec. R3 41 4,5,
increased k (at event 18), so receiver control &1 o
packets are sent less frequently until a data packet . 41,
is received.
22 | The first data packet arrives at the receiver
(approximately 10 msec since event 9). busy is set
23 | Mode 2 being used for connection.
24 | The data packet is processed and RECEIVE[1] set
tol
25 | RI continue to receive and process data packets 12,
41
26 | A transmitter control packet arrives. 3
27 | R2 sets scount 10 0 and waits for the arrival of
another control packet
28 | R3 sends a control packet acknowledging some of
the data packets processed by R1
29% | At approximately 20 msec since event 9, data

transmission stops while T1 waits for an
from the receiver




f State of State of Receiver's
| EVENT Transmitter’s | Machines after event.
Machines after event.
No. Descript TI | T2 | 13 RI | R2 | R3 |
30 | Control packet from the receiver containing 5
is received at the transmitter.
31 | Control packet processed by T2 3
32 | Mode 2 is being used. 7
33 | T2 updates LUP and waits for another receiver 4
control packet.
34 Space for a block exist in the receiver’s buffer. 4
35+ of data packets resumed by T1. 1
Table 12. Data Transfer Example.
Details of significant events marked with an asterisk:
4 Connection Parameters for this example are:
RTD = 20 msec bandwidth = 1 Gbit/sec 1000 bits per data
packet 8 packets per block L > 2500 blocks T,=0.625
msec
12*  Events 10, 11, and 12 are a repeat of events 7, 8 and 9. These actions continue to
repeat until retransmission of a block is required, the transmitter has filled the
receiver’s buffer and must wait until space is again available, or the entire message
has been sent.
29*  The transmitter has sent 2500 blocks and an acknowledgment has not been
. received. buffer_available was set initially to 2500 block and has not yet changed
The number of outstanding blocks, NOU, now equals 2500.
The condition (buffer_available - NOU) > 0 is no longer true, so T1 must wait in
state 2 until control packets from the receiver reflect available buffer space or
acknowledge some of the transmitted blocks.
35%

The protocol will continue to operate, executing actions similar to those described
in the table above, until the entire message is transferred.
The operation of the protocol is significantly more complex then presented above.

Only one of many possible execution interleavings is given and many of the finer details

are omitted. The example above demonstrates the difficulty of attempting to investigate

the correctness of SNR manually. The next two chapters cover the verification SNR’s

connection establishment phase and data transfer phase, with the assistance of Murphi.



VI. VERIFICATION -- CONNECTION ESTABLISHMENT PHASE
OF SNR

A. INTRODUCTION

This chapter describes the verification of SNR’s i i phase.

The Murphi Verification System is used to determine if properties attributed to the
connection establishment phase remain true in all reachable states. The reader may

wonder why formal verification of the it it phase is addressed,

considering the designers of SNR omitted its details in a detailed description of the
protocol in [NRS90] . Why not just assume the connection establishment phase functions
as required, skip its verification, and jump into the analysis of the more interesting data
transfer phase? There are four reasons for proceeding with its verification:

1. The function of the connection establishment phase is to prepare the
transmitter and receiver for a data transfer session. It is during this phase that
connection parameters are negotiated and variables used by SNR are
initialized. After it is complete, the protocol should be ready to commence the
data transfer phase. The correct operation of the connection establishment
phase is necessary for the protocol to function as intended. Therefore
verification of this phase is a natural start to verifying SNR

2 The ity of the phase is appropriate for the initial application of Murphi
to the SNR protocol. Starting out with a simple phase of SNR provides an
opportunity to gain insight on the workings of the protocol and a better
understanding of how best to employ Murphi for protocol verification. The
work can serve as a “stepping stone” for applying Murphi to the more
complicated data transfer phase of SNR.

3. A detailed analysis of this phase had already been attempted using the system
state analysis method [LuTi94]. The system state analysis approach
encountered difficulties and was unable to provide a complete analysis of SNR.
Problems with the method arose because the role of local variables, such as
counters, were ignored. A modification to the techniques was employed in
[LuTi94] to overcome this problem and a fairly complete analysis resulted. It
is important to determine early whether Murphi will encounter similar
difficulties.

4 A comparison of the results obtained with Murphi and the system state analysis
method can serve as a “validation” of the mechanical verification approach.




The remainder of this chapter covers five topics. First, a complete and detailed

of the i i phase is given. Next, the operation of the
connection establishment phase is explained. This is followed by a discussion of the
significant properties to be verified. The Murphi description of SNR’s connection
establishment phase is then presented. Finally, the verification results are discussed.

B. SPECIFICATION

The formal ification of the i i phase is provided below.

This specification is based on the systems of communicating machine (SCM) model
discussed in [McAr92] and the specification of SNR given in [Tipi93]. The SCM model
uses a combination of finite state machines with their associated Predicate Action Tables
(PAT) to characterize the behavior of a concurrent system. The finite state machines
denote the states of individual machines comprising the system, and the allowable state
transitions. The PAT describes the enabling predicates and actions for every transition in
the system.

Only three of SNR’s machines are involved in connection establishment. Two
machines from the transmitter participate. Machine T4* interfaces with the transmitter’s
host (Figure 9 and Table 16). T2 is the machine responsible for establishing the
connection over the network with the receiver (Figure 10 and Table 17). In the receiver,
only one machine, R2, is concerned with this phase (Figure 11 and Table 18). R2
cooperates with T2 to set up the connection.

In this specification, two shared variables, T_CHAN and R_CHAN are used to
represent the network connecting the transmitter and receiver. T_CHAN is used for
passing data and state information from the transmitter to the receiver. R_CHAN is used
to pass the receiver’s state information to the transmitter. They are both based on a FIFO

* The specification given in [McAr92] added this machine.
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data structure. T_CHAN(front) and R_CHAN(front) refer to the head elements of the

queues. Additi arepl faithful to the istic of a
network would prevent packet delivery prior to a specific time delay. Network
propagation delay is ignored in this implementation

Messages and variables used in this phase of the protocol are described in Table 13
and Table 14, respectively. Non-trivial processing required by an action or predicate,
associated with a transition, is performed using a pseudo procedure call. Procedures
required for the connection establishment phase are explained in Table 15. Procedure

names are in bold type in the PAT’s

MESSAGES ]
Name Flow Purpose
(From — To)
Conn_req T2—>R2 | Connection request, contains the connection parameters desired by
the transmitter.
Conn_ack R2 > T2 Connection acknowledgment, contains the connection parameters

the receiver is capable of supporting,

Conn_conf | T2 »R2 | Connection confirmation, indicates that the response send by

receiver is acceptable to the transmitter.

T_state T2 >Rz | Control packet, contains transmitter’s state information.
Data T2 >Rz | Data packet, contains data for the receiver's host

Table 13. Connection Establishment Messages.




ARIABLES

Name

Accessed by

Type

0se

Transmit

T2, T4

Boolean

Purp
Set to TRUE by T4 to indicate that a connection
should be established

T_active

T2, T4

Boolean

Set to TRUE by T2 when the connection has been
successful established with the receiver. Used to
signal the start of the data transfer phase in the
transmitter.

Fail

T2, T4

Set to TRUE by T2 when the aftempt (o cstablish a
connection failed because a responds to the Con_req
‘was never received.

T2, T4

Set to FALSE by T2 when parameters contained in
Con_ack are unsatisfactory for the data transfer
session.

R_active

T

Boolean

Set to TRUE by R2 when the connection has been
successful established with the transmitter. Used to
signal the start of the data transfer phase in the
receive

Clock_tick (T2)
clock_tick

T2

periodic
event

‘A timing event occurring at intervals of 7,

delay (T2)

T2

counter

Used as an implicit timer for determining when T2 has
waited a sufficient time period for a response 10 the
previous Con_req message and that another one
should be sent.

delay (R2)

‘counter

Used as an implicit timer for determining when R2
has waited long enough for a response to the Con_ack
‘message it sent.

attempts

T2

counter

Used as an implicit timer for determining when T2 has
sent ample Con_req messages and waited long enough
without a response from the receiver and the attempt
to establish the connection should be aborted.

Table 14. Connection Establishment Phase Variables.
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PROCEDURES
Name Parameter(s, Function
‘Acceptable message Evaluates the connection parameters in the Conn_ack message.
Returns true if the parameters are acceptable.
Dequeue channel identifier’ | Removes the data packet from the front of the indicated
channel.
Empty channel identifier | Returns true if the channel is empty.
Enqueve ‘message and Inserts the message (passed in as a parameter) into the
channel identifier | indicated channel for
Evaluate ‘message. Processes the Con_req sent by the transmitter and determines
the connection parameters to be sent in the Con_ack message.
Increment counter variable Increments the indicated counter variable.
Table 15. Ce Phase P
signal
fail
‘unaccept
start
Figure 9. Machine T4 -- Host Interface
Transition Predicate Action
signal transmission request signal from host Transmil 3
fail Fail = TRUE Transmit := FALSE,
notify host of failure to connect
‘unaccept ‘Accept = FALSE ‘nolify host of unacceptable
connection
start T_active = TRUE oull

Table 16. Machine T4 Connection Establishment PAT

*T_CHAN or R_CHAN.
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Figure 10. Machine T2 -- Transmitter Connection Management

Transitio Predicate Action
n
request Transmit = TRUE A Accept = TRUE Enqueue(Conn_req, T_CHAN);
A Fail = FALSE
accept R_CHAN(front) = Conn_ack A T_active = TRUE;
Acceptable (R_CHAN(front)) ‘Enqueue(Conn_conf, T_CHAN);
Dequene(R_CHAN):
unaccept, R_CHAN(front) = Conn_ack A Accept == FALSE
not (Acceptable (R_CHAN(front))) Dequeue(R_CHAN),
clock Empty(R_CHAN) A clock tick
ok delay < reset null
timeout delay = reset delay =0;
retry attempts < max_attempts Enqueue(Conn_reg, T_CHAN)
quit attempts = max_attempts Fail = TRUE;

Table 17. Machine T2 -- Connection Establishment PAT




Figure 11. Machine R2 -- Receiver Connection Management.

Transition Predicate Action
ack T_CHAN(front) = Conn_req Evaluate(Conn_req).
Dequeue(T_ ;
Engqueue(Conn_ack, R_CHAN),
clock Empty(T_CHAN) A clock tick
ok delay < reset Enqueue(Conn_ack, R_CHAN).
timeout delay = reset null
start T_CHAN(front) = Conn_conf v/ active = TRUE,
T_CHAN(fron) = 7_state V' if T, CHAN(fmm) Conn_conf then
T_CHAN(front) = Data Dequeue(T_CHAN);
end if;
Tost_ack T_CHAN(front) = Conn_req CHAN),

Dequeue(T_(
Enqueue(Conn_ack, R_CHAN);

Table 18. Machine R2 Connection Establishment PAT.
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C. OPERATION

When the transmitter’s host has data to send, the transmitter attempts to establish
a connection between e itself and the receiver using a standard three-way handshake. This
process was outlined in steps two through five of Table 10 in the previous chapter. A
more comprehensive description of the actions of each machine is presented in this
section. The operation of the connection establishment phase will first be explained when
no error occurs. The names of variables are in bold type.

In the absence of errors, the actions of connection establishment phase occur as
follows. T4 signals T2 that the transmitter’s host has data to transfer to the receiver
(Transmit set to TRUE). T2 checks Transmit, finds it value is TRUE, and sends a
connection request message (Con_req) to the receiver. Information in Con_req specifies

desired by the itter for the ion. After ing the Con_req

message, R2 respond with a connection acknowledgment message (Con_ack). Con_ack

contains the connection parameters the receiver is able to accommodate. If the parameters
returned by the receiver in the Con_ack message are acceptable to the transmitter, T2
sends a connection confirmation message (Con_conf) and signals the transmitter’s other

machines that the i i phase was and to begin

data (T_active set to TRUE). Upon receiving the Con_conf, R2 signals the receiver’s
other machines to start the data transfer phase (R_active set to TRUE). The connection
establishment phase of the protocol is complete and the transmitter and receiver begin the
data transfer phase. If the transmitter finds the response of the receiver to its proposed
connection parameters unacceptable, T2 quits its attempt to establish a connection and
notifies T4 (Accept set to FALSE).

If the i i phase was as i as described above, its
verification would be relatively simple. However, other situations may occur that must be
taken into account. For example, if T2 fails to receive a Con_ack within a set time delay it

sends another Con_req message. After a preset number of Con_req messages have been



transmitted and no response has been received, T2 terminates the connection
establishment phase and notifies T4 (Fail set to TRUE). Likewise, if R2 does not receive
a response to its Con_ack within a set time delay the linkup routine in the receiver is
terminated.

The coupling of concurrent actions and the possibility of problems due to failed
‘machines or errors introduced by the network makes this apparently simple phase of the

protocol more complex than expected.

D. PROPERTIES

The desired outcome of the connection establishment phase can be characterized
intuitively as follows.
o If the transmitter’s host has data to send one of two outcomes is acceptable.

1. A connection is correctly established so that the data transfer can take
place.

2. If the connection cannot be established as required then the attempt is
terminated and the transmitter’s host is informed of the failure. Both the
receiver and the transmitter should return to a ready condition.

o If data transfer has not been requested then a connection establishment is not
attempted

lly, the i it phase must possess the safety and
liveness properties listed in the table below. Additionally, the desired outcome is not

guaranteed if deadlock is possible during this phase.




PROPERTIES

Type | Label Behavior Cl ized

Safety SI | If T2 signals that the connection has been successfully established (T_active =
TRUE). then all variables relating to the connection establishment phase are
consistent with this condition (Accept = TRUE and Fail = TRUE). it would be
inappropriate for T4 to notify the host of  failure to connect while T1 is
attempting to transmit data.

Safety 2 ‘When the connection phase leted ly, both the
transmitter and receiver are ready to commence the data transfer phase
(T_active = TRUE and R_active = TRUE)

Safety S3 | If an atiempt to establish the connection is unsuccessful, then either the response
of the receiver was unacceptable (Accept = FALSE) or T2 failed to obtain a
response from the receiver in the preset time limit (Fail = TRUE).

Liveness | LI | If T4 receives a transmission request from the transmitter’s host then eventually

ither the connection is established (T_active = TRUE) or the attempt to
establish the connection is unsuccessful and either Accept = FALSE or Fail =
TRUE (see S3 above). In other words, the actions taken in the transmitter must
produce an expected result.

Liveness | L2 | If eventually the transmitter is ready for the data transfer phase (T_active = truc)
then the receiver will become ready to accept data (R_active = true) or the
attempt to establish the connection is unsuccessful (again S3 above) or R2 times
out and terminates its connection establishment effort. L2 differs from L1 in that
it is based on the receiver — actions taken in the receiver produce an

result but only under the condition that the transmitter behaves properly.

Table 19. Connection Establishment Phase Properties.
Now that the ies have been ined the verification process can begin.

Recall the task of verification is to show that these properties remain true in all reachable
states of the connection establishment phase. Murphi is used to check for deadlock and

the invariants of the above properties.

E. MURPHI DESCRIPTION

The first step for using Murphi to verify the connection establishment phase is to
translate its SCM specification into a Murphi description. The SCM guarded transitions
convert easily into Murphi’s rules. Correctly expressing the properties is the more difficult
task. The Murphi iption of the i it phase is displayed on the
next three pages. Significant elements of each section of the description are discussed
following the Murphi description.




/* Declarations */

Const
reset T2:2; ~ number of clock_ticks between Con_req retransmissions
resel R2:2, ~ number of clock_ticks before quitting
max_attempts : 2, ~ number of times Con_req retransmitted before quitting
Type
State_labels : 0.7;
Message_type : Enum {None, Conn_req, Conn_ack, Conn_conf, T_state, Data};
Counter_type : 0..2; - used for variables that increment or decrement
Var

T2_state : State_labels;

T4_state : State_labels;

R2_state : State_labels;

T_CHAN : Message_type;

R_CHAN : Message_type;

Host_T : Boolean; ~ truc if transmitier host has data to send
Transmit : Boolean,

T_active : Boolean;

R active - Boolean;

Accept : Boolean;

Fail : Boolean;

delay_T : Counter_type;

delay R : Counter_type,

attempts : Counter_type,

R2_timeout : boolean; - true if transition timeout taken by R2

/% Rules Section */

/* T4 transitions */

Rule "signal® Rule "unaccept_T4"
T4_state = 0 & Host_T = true T4_state = 1 & Accept = false
= -
T4_state = 1; T4_state = 0,
Transmit := true; Host_T
End: End;
Rule "fail" Rule "start_T4"
T4 state=1& Fail = true T4_state = 1 & T_active = true

T4_state
End;
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/* T2 transitions */

Rule "request”
T2_state = 0 & Transmit = true &
Accept = true & Fail = false

T2_state = 1;
T_CHAN := Conn_req;
End;

Ruleset P_acceptable : Boolean Do
Rule "accept”

T2_state = 1 & R_CHAN = Conn_ack
& P_acceptable = true

End;

Rule "unaccept_T2"

T2 state = 1 & R_CHAN = Conn_ack
& P_acoeptable = false
==

End,
Endruleset;
Rule "clock_T2"
T2_state = 1 & R_CHAN = None
-
T2_state :=6;
delay_T = delay T+1;
End;
Rule "ok_T2"
T2_state = 6 & delay_T < reset_T2
=
T2_state := 1,
End;

Rule "timeout_T2"
T2_state = 6 & delay_T = reset_T2
—

End,

Rule "retry
T2_state = 7 & attempts <
max_attempts
=
T2_state
T_CHAN
End,
Rule "quit”
T2_state = 7 & attempts =
‘max_attempts
=
T2_state :=0;
Fail = true;
End;

/* R2 transitions */

Rule "ack”
R2_state = 0 & T_CHAN = Conn_req

Rule "clock_R2"
R2_state = 1 & T_CHAN = None

=

R2_stat
delay R '=delay R+ 1;
End;

Rule "ok R2"
R2_state = 3 & delay_R < reset_R2

R2_state
R_CHAN := Conn_ack;

End,

Rule "timeout_R2"
R2_state = 3 & delay_R = reset R2
>

R2_state :=0;
delay_R =0,
R2_timeout := true;

End,



End;

1&
(T_CHAN = Conn_conf | T_CHAN = Rule *lost_ack"
T_stae | T_CHAN = Data) R2_state = 1 & T_CHAN = Conn_req
—

R2_state =2, R2_state =
R_active = true; T_CHAN = None.
if T_CHAN = Conn_conf then R_CHAN ‘= Conn ack;

T_CHAN = None, End;
endif,

mpts = 0,
R2_timeout := false;

End;
/% Properties */
Invariant "-- consistent conditions at connection establishment "
T_active = true — (Accept = true & Fail = false);

Invariant *-- transmitter and receiver ready at end of phase ~*
R_active = true — T_active = true;

Invariant "-- not both fail and unaccept -
!(Fail = true & Accept = false),

Liveness " - connection established if desired "
Always Transmit = true — Eventually (( T_active = true) |
(Fail = true | Accept = false));

Liveness "-- xmitter ready followed by rovr ready —*
Eventually Always (T_active = true & R_active = true) | Fail = true |
Accept = false | R2_timeout = true;




1. Declarations

First three constants are declared. The value of “reset_T2” limits the number of
times the “clock — ok’ loop (state 1 to state 6 back to state 1, etc.) is executed by T2
prior to retransmitting a Con_req message. Since clock_tick occurs at an interval of 7,

this loop serves as a retransmission timer T2. The constant “max_attempts” fixes the

number issions of Con_req prior to giving up the attempt to establish
the connection. A similar limit on the number of times Con_ack is retransmitted is found
in R_2 with the constant “reset_R2”.

Next, three data-types are defined. The type “State_labels” specifies an integer
subrange which ranges over the reachable states of T2, T4, and R2. The next type
declaration is an enumeration type, called “Message_type”. Its domain includes all
messages that could be sent during the connection establishment phase. “None” indicates
that the channel is empty.

The variable required for the connection establishment phase comprise the final
part of the declaration section. They have already been explained in Table 13. In this
description, T_CHAN and R_CHAN are implemented as scalars. A queue is unnecessary
since the ordering of message in the channel has no impact on the operation of the
connection establishment phase. Also, any time delay corresponding to the network’s
propagation delay is ignored.

The introduction of a variable to i a periodic clock event is not required.
The presence or absence of a variable that alternates between two values has no impact on
the verification of the i i phase.

2. Rules

The rules are grouped by the machine to which they apply. Note the
correspondence between each rule and the associated predicate and action of the guarded
transitions listed in the PAT’s. The guard for all rules involve the current state of the

associated machine and the value of one or more variables. For most rules, the actions



and the conditions under which the their bodies are executed is clear and no explanation is
required.

Slightly more complicated is the ruleset that is part of T2’s description. The two
rules “accept” and “unaccept_T2” comprise the body of the ruleset. The ruleset, causes
the value of quantifier “P_acceptable” to alternate between TRUE and FALSE. This
allows the behavior of the connection establishment phase to be examined when the

receiver responds with i ble to the itter and also when

unacceptable parameters are sent.

3. Startstate
Variable initialization is as expected. The machines all start from state zero. The
channels are empty. The values of Boolean variables reflect an idle transmitter and

receiver. All counters used for the implicit timer are set to zero.

4. Invariants

The invariants and liveness to the p

perties defined in
Table 18. The second invariant’s formula, R_active = TRUE — T_active = TRUE,
states “if the receiver is ready for the data transfer phase then the transmitter is also. This
differs slightly from what is written in Table 18 (T_active = TRUE and R_active =
TRUE). The modification is necessary to prevent a false invariant violation. During
execution, T_active is set to TRUE prior to R_active being set to TRUE. (R_active is
not set to TRUE until after the message sent by the transmitter in respond to a Con_ack,
is received by R2). Since'they are not both set to TRUE simultaneously, the formula
T_active = TRUE & R_active = TRUE is not invariant

The first liveness formula, as implemented in Murphi is equivalent to:

ALWAYS ( p — EVENTUALLY gq).

The second liveness formula, of the form EVENTUALLY ALWAYS (p), means at some point

p is true and remains true from then on
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F. RESULTS

Analysis of results obtained from Murphi indicates the connection establishment
phase of SNR functions properly. However, two interesting circumstances were
observed

The first is a condition flagged by Murphi as a deadlocked state. If near the end of
the connection establishment phase, R2 times out before it receives a Con_conf message, a
data packet, or a state packet from the transmitter, and after T2 has set T_active to
TRUE, the protocol ends up in a condition with the transmitter ready to send data but the
receiver has quit the connection ' This appears to be a liveness violation, however, when
the connection establishment phase and the data transfer phase are taken together,

deadlock is avoided The protocol eventually returns to the initial state since the

will timeout and di when receiver state packets are not received
(occurs in the data transfer phase). The sequence of events pertaining to this situation is
given in the table below.

Event Description State of Machines
T | R
|_A Con_ack message is sent by R2 T 1 1
R2 increments delay. 3
delay is less than reset so another Con_ack message is sent by R2. 1
Con_ack reccived at T2 and the connection parameters it contains are acceptable 2
to the transmitter. T_active is set to TRUE. A Con_conf message is sent by T2
R2 increments delay

3
delay is less than reset so another Con_ack message is sent by R2 1
R2 continues to execute the “clock” “ok” transition. delay is incremented each 131
cycle.
‘The value of T_active checked by T4 and found to by TRUE. The transmitter 2
| begins the data transfer phase and sending data packets to th receiver
[delay = reset o the “timeout” transition is taken by R 0

After a period of time the transmitter will terminate the connection since T3 will o o
never receive a control pack from the receiver.

Table 20. Events Leading to Unexpected Condition.

'° This problem is inherit to the three way handshake and is known as the “three army problem”.

n




Also of interest is the need for a conjunction of three variables in the guard of
transition “request” of machine T2 to prevent livelock. If Transmit = TRUE was the only
component of the predicate for “request”, then once the host signaled it had data to
transfer, the rule would be enabled until Transmit was reset by T4. However, if T4 was
never again given an opportunity to execute its actions (T2 and T4 running on a single
CPU and starvation of T4 occurs) then the “request” rule could fire infinitely often.
Including Accept = TRUE and Fail = FALSE with Transmit = TRUE eliminates the
possibility of livelock.







VIL. VERIFICATION -- FLOW CONTROL MODE OF SNR

A. INTRODUCTION

The of SNR’s i i phase was examined in the

previous chapter. The next step is verifying the protocol’s data transfer phase. Instead of
attempting to investigate the data transfer phase in its entirety, a modular approach is
employed. Recall, in SNR the data exchange can occur without flow or error control
(Mode 0), with only flow control (Mode 1), or with both error and flow control (Mode 2).
Even though Mode 0 is the least complicated of the three modes, and therefore its
verification is the next logical step, its explicit verification is skipped. Mode 1 essentially
includes all of the states and actions of Mode 0. (The only difference is in machine R1. In
Mode 1, R1 changes from state 2 to state 3 and then back to state 1, while in Mode 0 R1
changes directly back to state 1 from state 2.) This chapter describes the verification of
SNR’s data transfer phase operating with flow control only. The verification is
accomplished with the assistance of the Murphi Verification System. Additionally, state
space explosion, as it applies to the Murphi description of SNR’s Mode 1, is explored. Tt
is important to determine whether state space explosion will prevent the full verification of
SNR

This chapter follows a format similar to the previous chapter. The architecture of
SNR applicable to flow control is addressed first, followed by a description of actions in
Mode 1. Next the safety property applicable to flow control is explored and then the
Murphi description is presented. Finally verification results and state space explosion are

discussed




B. MACHINE DIAGRAMS -- MODE 1

No new material is present in this section. Chapter V, serves as the framework for

this chapter.'" The packet types, variables, i etc., appli to
Mode 1 are the same as in Mode 2 and have already been discussed in Chapter V. Only
TI, T2, R1 and R3 perform functions in Mode 1. Presented below are extracts from the
diagrams and tables of Section V.D.6 for these four machines. Just those states and

transitions involved in flow control are shown.

buffer space send new
available block

Figure 12 Machine T1 State Diagram

[ TRANSITIONS EXPLANATION
154 Occurs when information at the transmitter indicates there is sufficient space in the
receiver's buffer for a block of data packets (buffer_available > 0).
‘ 4-1 Occurs after the transmitter has: sent a new block; updated the table of outstanding
blocks (LUP); and set busy 10 true.

Table 21 Transitions for Machine T1

' A principal goal of this thesis is verifying the SNR protocol as introduced in [NRS90). Therefore the specification
given in [McAr92] and as refined in [Tipi93] does not play a primary role in the verification of the data transfer phase



control packet
received

war | (5)

rovr state

updated

Figure 13 Machine T2 State Diagram

TRANSITION

EXPLANATION

45

Oceurs if a control packet is received from the receiver.

556 Occurs affer updating the receiver's state information maintained at the transmitter
and the disconnect counter (scount) has been reset.
64 Occurs if Mode 1 are being used
Table 22. Transitions for Machine T2
data
received
data stored in
buffer
Mode 1
Figure 14. Machine R1 State Diagram
TRANSITIONS EXPLANATION |
152 Occurs if a data packet is received from the transmitter. 1
253 Occurs if Mode 1 is being used. |
351 Occurs after data is stored in the receiver's buffer. |

Table 23. Transitions for Machine R1
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count = k

lclock tick

send control

wait to send
control packet

Figure 15. Machine R3 State Diagram.

TRANSITIONS EXPLANATION |
152 Oceurs if event clock_tick detected and after scount. |
23 Occurs if a new data packet has not been received and after count |
254 Occurs if a new data packet received and after count i
351 Occurs if it is not yet time to send a control packet (count < k)

354 ‘Occurs if count = k and after & has been modified (0 reduce the transmission
rate of receiver control packets.
451 Occurs afier a control packet is sent, and after busy and. coun, are reset.
4 - Disc

Occurs if the receiver has not received a control packet from the transmitter in

the e interval (scount reached value)

Table 24. Transitions for Machine R3.

C. OPERATION

The purpose of flow control in SNR s to permit the transmitter to send as many
data packets as possible without overflowing the receiver’s buffer. This is accomplished
by regulating the transmission of data packets using information about the receiver as

know at the transmitter. In SNR flow control is based on blocks of data packets not

dual packets.



After the connection establishment phase is complete the protocol enters the data
transfer phase. Below are the basic operations performed during a data transfer session
utilizing Mode 1

T1 transmits blocks of data packets until the preset limit on the capacity of the
receiver’s buffer is reached.

R1 stores the incoming data packets in its buffer. Packets are removed from
the buffer by the receiver’s host. The status of buffer space (value of variable
buffer_available) is updated as new packets are inserted and the host removes
packets.

At the appropriate interval, R3 sends receiver state information to T2. This
information is used to update the state of the receiver’s buffer (as known by the
transmitter)

T1 temporally halts transmission of data packets when its information indicates
the receiver’s buffer will be full when all of the data packets it has sent arrive at
the receiver. T1 resumes sending data packets when state information from the
receiver indicates buffer space in once again available.

Control packets and blocks of data packets continue to be exchanged until the
entire message has been acknowledged by the receiver

* R3 terminates the connection if data packet is not received within the required
time limit
The basic operations performed in Mode 1 are similar to those explained in
Chapter V for SNR transferring data using Mode 2. The primary difference is that in
Mode 1 errors are ignored. As a result, retransmission of data packets and all the

d ing needed to ission is omitted. There are six areas

impacted significantly.

1. InMode 1, T1 sends data packets as along as (buffer _available iusmer > 0)
is true. In Mode 2 new data packets are transmitted when the retransmission
of a block of data packets is not required and the predicate
(buffer_available apsmuer - NOU > 0) is true.

The retransmission table (LUP) is not maintained in Mode 1

wop

InMode 1, T3 remains in state 1. Therefore transmitter state packets are not
sent to the receiver




IS

R1 stores, without processing, data packets in the buffer for the host to
retrieve. It does no processing of the data packets since errors are ignored.

5. R2 remains in state 2 since a control packet is never received from the
transmitter (because of number 3 above).

o

Since data packets are not processed by the receiver (see number 4 above), no
meaningful status information other than buffer space available can be sent in
control packets by R3

The differences in these six areas simplify considerable, as compared to Mode 2,
the behavior and the Murphi description for Mode 1
D. PROPERTIES

The primary safety property for SNR operating with only flow control is, the
receiver’s buffer must not overflow. That is the condition (buffer available,cccie > 0)

must always be true.

E. MURPHI DESCRIPTION

The Murphi description for SNR’s data transfer phase operating in Mode 1 was
developed with three goals in mind.

The description must correctly characterize the behavior of Mode 1

2. The description should serve as the groundwork for SNR’s data transfer phase
operating in any mode (allow scaling up to Mode 2).

3. The description should be as simple as possible (to enhance its
understandably). Only those actions specifically required for flow control
should be implemented and the number of variables kept to the absolute
minimum (to reduce the size of the state space).

A fact important to achieving goal number three above is: flow control is
accomplish in SNR by managing blocks of data packets. As a result, the state space is
reduced since the description can be based on data blocks and the variables and data
structures needed for tracking individual data packets can be eliminated

Displayed on the next six pages is the Murphi description for Mode 1. At this

point the reader has been exposed to numerous descriptions written in the Murphi



Descriptive Language and much of this description should be familiar. Therefore only a
few points specific to this particular description are covered below.

The name of each rule has been formatted to facilitate understanding the purpose
of the rule as follows:

machine identification - description of guard or action for rule - current state of
machine.
For example: “R1 - receive data packet - rs1” indicates this is a rule for machine R1, the
body of the rule is executed when a data packet is received, and R1 must be in state 1
(rs1) for the rule to fire.

In this description T_CHAN and R_CHAN are implemented as circular arrays.
Each element of T_CHAN can contain either a block of data packets or is empty.
Likewise each element of R CHAN contains a receiver control packet or is empty.
Again, the network’s propagation delay is ignored. (Note the size of the arrays is only
two elements. This is because these data structures contribute to the overall state space.
Increasing their size significantly impacts the state space.)

The description also contains bold type and italicized code. When the bold type
code is removed and the italicized code added, an alternate implementation based on the
SCM specification from [McAr92] is created. The specification as given in [McAr92] is
examined because the design of SNR, with flow control based strictly on the variable
buffer_available, is flawed. See Section F below for a full explanation.

= Declarations
Const
chan_cap: 2; ~ channel capacity in blocks
message._size: 3; -- number of blocks in message
max_time_interval: 8; - maximum change in k
rovr_buffer_size: 2; - size of rovr buffer
scount_lim: 12; — upper bound on the value of scount

— connection terminated if scount reaches this value
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Type

counter_type: 0.30;

time_interval_type: 0.. max_time_interval;
buffer_type: -1..rcvr_buffer_size;

block seq_type: 0..message_size — basic counter type for blocks and block sequence numbers

T_states_type: Enum {11, 152, 153, ts4, 155, 1s6};
R_states_type: Enum {rsl, rs2, rs3, rs4};
chan_slot: 0..(chan_cap - 1);

T_packet_type: Enum {none_T, datapac};
R_packet_type: Enum {none_R. conpac};

T,Packu_:ecmd
packct kind: T_packet_type: - kinds of packet
~ (NOU) seq_num: block seq_type; — packet sequence number
End;
T_CHAN_type: array [chan_slot] of T_Packet_record;
n_mkn;emm-
Recor
paclm kind: R_packet_type; — kind of packet
- (NOU) LW R: block_seq_type; ~ — below LW_R all blocks received
bulfer_avail: buffer_type; — rove bulfer status

R_CHAN_type: array [chan_slot] of R_Packet_record,

T_CHAN: T_CHAN._type; - communication channel from xtmr to reve
R_CHAN: R_CHAN_type, — communication channel from rcvr to xtmr
xtmr_end_TC: chan_slot; — transmitter end of T_CHAN
rovi_end_TC: chan_slot; - receiver end of T_CHAN

xtmr_end_RC: chan_slot; ~ transmitter end of R_CHAN
rove_end_RC: chan_slot; — receiver end of R_CHAN

k_T: time_interval_type; -- value of time interval at xtmr

K_R: time_interval_type; - value of time interval at rovr
latest_Tpacket: T_Packel_record; — block at rovr from xtmr
latest_Rpacket: R_Packet_record; — control packet at xtmr from rovr
blk_seq_num: block_seq_type; - seq num for entire block
OUTBUF: block_seq_type; — contains message to be sent

buffer_avail: buffer_type; -- buffer space available in rcv
buffer_avail T: buffer_type, - value at xtmr

- (NOU) NOU: block _seq_type: - mumber of blocks outstanding
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UW_T: block_seq_type: — blk seq # < UW_T have all been sent

LW_R: block_seq_type; - blk seq # <LW_R have all been received
LW_T: block_seq_type; ~- value of LW_T at xtmr
T_busy: Boolean; - status of sending data packets
R_busy: Boolean; ~ status of receiving data packets
scount_R: counter_type, -~ counter for disconnect if no flow
count_R: time_interval_type;  — counter for adjusting k R

- PROCEDURES

” send_block *

Procedure send_block(); ~ places blocks worth of data packets in T_CHAN

Var

niext_Tpacket: T_Packet_record; - next packet at xtmr 1o send
Begin

blk_seq_num = blk_seq_num + I;

next_Tpacket packet_kind := datapac;
— (NOU) next_Tpacket.seq_num := blk_seq_num;

T_CHAN(xtmr_end_TC] := next_T

ximr_end_TC := (xtmr_end_TC + I)%clnn _cap;
UW_T = bik_seq_num;

- (NOU) NOU := NOU + I;

OUTBUF = OUTBUF - I;

buffer_avail_T := buffer_avail_T - 1;

End, — send_block

” receive_conpac _ *

Procedure receive_conpac(); -~ Xtmr receives control packet form rovr
Begin
lzlesl _Rpacket = R_CHAN[xtmr_end RC};
CHAN[xtmr_end_RC] packet_kind = none_R;
xI.mr end RC := (xtmr_end_RC + 1) % chan_cap; - consumes packet

End; - receive_conpac
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" receive_block *
Procedure receive_block(); — rovr receives an entire block of data packets
Begin

latest_Tpacket = T_CHAN(rcvr_end_TC;

T_CHAN[revr_end_TC}.packet_kind = none_T;
rovr_end TC := (rcvr_end_TC + 1) % chan_cap;

receive_block
” store_block *
Procedure store_block(); - makes block available to rovr host
Begin
buffer_avail := buffer_avail - 1;
End; — store_block
” send_control_packet_R *
Procedure send_control_packet_R(), -- sends rcvr control packet

Var
next_Rpacket: R_Packet_record, — next packet at rovr to send

Begin
- load data in packet
next_Rpacket.packet_kind := conpac;
- (NOU) next_Rpacket.LW R := LW }
next_Rpacket buffer_avail = buffer_avail;

~ place packet in channel
R_CHAN([rovr_end_RC] = next_Rpacke;
rovr_end_RC:= (revr_end_RC + 1) % chan_cap;

End; ~ send_control_packet R



- RULES

o .. T1 transitions ........... */
Rule "T1 - transmit possible - ts1"

(T1_state =ts1) & (buffer_avail_T > 0)
~ (NOU) (T _buffer_ avan NOU)

>0
—

TI_state = ts4;
End;

Rule "T1 - transmit block - ts4"

(T1_state =ts4) & (OUTBUF > 0)

s:nd |_block();

T_busy = true;
T1_state = tsl;
End;

/% ... T2 transitions -
Rule "T2 - receive rovr state info - ts4"

(T2_state = 1s4) &
(R_CHAN[xtmr_end_RC].packet_kind =

conpac)
—
receive_conpac(),
 state = ts5;
End;

Rule "T2 - update info about rvr - ts5"

(T2_state = 1s5)

update information at xtmr
- (NOU) LW _T :~ latest_Rpacket.LW_R:

buffer_avail T := latest_Rpacket buffer_avail;

T2_state = 1s6;
End;
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Rule "T2 - go back to ts4 - is6”

(T2_state = ts6)
=
T2_state := ts4;
End,
/* ... Rl transitions __.... */

Rule "RI - receive data packet - rs1"

(RI_state = 1s1) &
(T_CHAN|revr_end_RC].packet_kind =
datapac)
=

receive_block();

R_busy := true;

RI_state = 1s2;
End;

Rule "R1 - process data packet - 1s2"

(R1_state = 1s2)
>

(NOU) LW_R -~ latest_Tpacket.seq_num;

RI_state = rs3;
End,

Rule "R1 - store data packet - rs3"

(R1_state =rs3) - (NOU) &
- (latest_Tpacket.seq_num > LW R - 1)
-

store_block();
RI_state = rs1;
End.

/5 TOVE hOSE ... ¥
- included to simulate action ofme rovr’s host
Rule "remove packet from
buffer_avail < reve_buffer_size
—

buffer_avail = buffer_avail + 1;




" . R3 transitions ....... */

Rule "R3 - clock_tick - rs1" Rule "R3 - modify k_R - 1s3"
(R3_state = rs1) (R3_state =153) & (count_R =k R)
= =
scount_R := scount R + 1;
R3_state = 1s2;
End;
R3_state = rs4;
Rule "R3 - not busy - rs2" End;
(R3_state = 1s2) & (R _busy = false)
= Rule "R3 - send rovr state - rsd”
count_R = count R+ 1
R3_state :=rs3; (R3_state = rs4) & (scount_R < scount_lim)
End; =
send_control_packet_R();
count R
Raule "R3 - busy - rs2" R_busy := false;
R3_state = 1s1;
(R3_state = rs2) & (R_busy = true) End;
—
kR:=1;
R3_state = rs4; Rule "R3 - disconnect - rs4"

(R3_state = rs4) & (scount_R = scount_lim)

-
Rule "R3 - wait (count R <k_R) - rs3" error "disconnect”;
(R3_state = rs3) & (count R <k_R) End;
=
R3_state :=rs1;
End,



Startstate

TI_state :=tsl;
T2_state = ts4;
RI1_state = rsl;

R3_state =

For cs: chan_slot Do~ fill channels with cmpty packets
T_CHANcs) packet_kind := none_T,
- (NOU) T_CHAN{es]. seq_um = 0.
R_CHAN(cs].packet_kind := none_R;
~(NOU) R CHAN[cs].LW R := 0;

rovr_buffer_size:;

— (NOU) latest_Tpacket.seq_mum : = 0;
latest_Rpacket.packet_kind = none R;
— (NOU) latest_Rpacket LW R
latest Rpacketbuffer_avail = rov.t buffer_size;

=0;

‘message_size,

2 reve_buffer_size;
buffer_avail_T := rovr_buffer_size:
- (NOU) NOU := 0;

- Invariant

Invariant "-- no buffer overflow ~"
buffer_avail > -1, ~ overflow occurs when buffer space is zero




F. RESULTS

The data transfer phase of SNR operating with flow control only (Mode 1) does
not behave as desired. Two problems were discovered.

1. The receiver’s buffer can overflow.

2. The improper termination of the connection can occur.
Mode 0 also exhibits problem number two. State space explosion did not prevent
verification of Mode 1 using the description based on [NRS90] or based on [McAr92]
However, the size of the channels and message must be severely restricted to avoid
significantly increasing the state space. The errors discovered in the design of Mode 1 and

state space explosion are discussed in greater detail below.

1. Buffer Overflow

The first problem arises because the variable buffer_availableumine used to
prevent does buffer overflow does not reflect the current status of the buffer space
available at the receiver. In Mode 1, T1 checks that the value of buffer_availableamiter is
greater than zero 0, sends a new block of data packets and then decrements
buffer_availableiransminer. Data blocks continue to be transmitted by T1 until
buffer_availablewammine reaches zero. The problem occurs when R3 sends a control packet
to T2 just prior to R1 storing some number of data packets in the receiver’s buffer. The
control packet sent by R3 in this situation contains a value for the space available in the
buffer that reflects space in the buffer subsequent to R1 storing data packets. The value of
buffer_availablemmine is updated by T2 using information that indicated there is more
space in the buffer than actually exist. So, if buffer_availablewamine Was zero it will be set
to a value larger than the actual space available in the buffer. T1 checks and finds
buffer_availableyaamine > 0, so T1 resumes sending blocks of data packets. If the host

linked to the receiver has not yet removed any packets from the buffer prior to the arrival
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of the latest batch of data blocks, the capacity of the receiver’s buffer will be exceed. The
following example uses an arbitrary sized message and bufFer to illustrates how buffer
overflow arises:

Assume
‘The transmitter has 100 blocks to send.
The receivers buffer capacity is 10 blocks.

Initial Conditions.

[ Transmitter T Receiver |
Blocks to Transmit 100_| Blocks Received

[0 ]
buffer_availablecue: | 10| buffer availablecens | 10 ]

T1 sends 10 blocks of data packets.

Transmitter | Receiver |
| Blocks to Transmit | 90 | Blocks Received o]
[buffer_availabl 0| buffer_availabl [10]

R3 sends a control packet with a value of 10 in the buffer_available field.

Transmitter Receiver
Blocks to Transmit 90 _[ Blocks Received 0
buffer_availablewmmie: | 0 | buffer availablerecene: 10

The data blocks arrive at R1 and are place in the buffer.

[ ‘Transmitter | Receit |
[ Blocks to Transmit | 90 | Blocks Received 10 |
| buffer_availabl |0 [ buffer_availabl [ o

iver

The receiver’s host removes 3 blocks from the buffer.

Transmitter Receiver ]
[ Blocks to Transmit___ | 90 | Blocks Received T 10 |
buffer_availablegyee | 0 | buffer available,ue 3

T2 receives the control packets and updates buffer_availableummer.

[ Transmitter | Receiver |
[ Blocks to Transmit___| 90 [ BlocksReceived | 10 |
buffer_availablepmemne | 10 | buffer_availablesne | 3




T1 sends 10 more blocks.

[ Transmitter | Receiver |
[Blocks to Transmit | 80 | Blocks Received [ 10
[buffer_availabl [0 [ buffer_availabl 3

The receiver’s host removes 3 more blocks from the buffer.

Transmitter | Receiver
Blocks 10 Transmit 80 | Blocks Received 10
buffer_availabl 0| buffer_availabl 6

RI receives 10 data blocks, 6 are placed in the buffer. The remaining 4 blocks overflow the
buffer.

The trace of the execution path produced by Murphi for this design error is provided in
Appendix B.

To prevent buffer overflow the condition on the transition from state 1 to state 4 in
machine T1 must be changed. If the predicate (buffer_availableyapmine: - NOU > 0) is used
in place of (buffer_availableyasmina > 0), the overflow problem is eliminated. In addition
to this change in T1, the sequence number of the most recent blocks processed by R1
must be send to T2 by R3 in the receiver control packet. This information is then used to
update NOU. Removing the bold type faced code in the Murphi description and adding
the italicized code produces a description that does not exhibit the buffer over flow
problem. This alternate description for SNR’s Mode 1 comes from the specification given
in [McAr92]

2. Undesired Disconnection

The second problem, undesired disconnection, occurs because SCOunt,c.civr is never
reset in Mode 1. R3 increments scount,.c...- each time the transition from state 1 to state
2 is taken. The value of SCOUNt,.cene- is checked against its upper bound (scount_lim) in
state 4. If SCOuNt,ecemer equals scount_lim then the connection is terminated at the receiver,
otherwise the data exchange continues. The variable scountcciver is Only reset to zero by

machine R2 when a control packet arrives at the receiver from T3. However in Mode 1,



T3 never sends a control packet SO SCOUNL,e.cir is NEVer reset to zero. Therefore unless
the message is very short, SCOUnt ecener Will reach scount_lim and R3 will terminate the
connection prematurely.

This problem is masked by buffer overflow when using the Murphi description
based on specification from [NRS90]. The alternate description produced from the
specification in [McAr92] does not cause the receiver’s buffer to overflow. As a result,

the error in the design of the receiver’s disconnect timer was discovered.

3. State Space Explosion

State space explosion was avoided in the verification of SNR’s data transfer phase
operating using flow control only by using a very small message, short channels and a tiny
buffer. The buffer overflow problems in the description based on [NRS90], was detected
by Murphi after 19,652 states had been explored. The scount reset problem encounter
when the alternate description (based on specification in [McAr92]) was used, occurred
after examining 442,369 states. Changing the size of the channel from two to three, in the
alternate description, resulted in over 671,000 states examined prior to detecting the
scount error. Adding the extra states and variables required to fully describe SNR’s data
transfer phase operating with both flow control and error will significantly increase the

number of states generated by Murphi
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VIIL. CONCLUSIONS AND RECOMMENDATION

In this thesis the correctness of SNR’s design was examined. Key properties of
SNR’s connection establishment phase and data transfer phase operating in Mode 1 were
identified and verified. A summary of the verification results is present in the first section
of this chapter. The second section discusses the feasibility of using the Murphi
Verification System for verifying communication protocols. The final section provides

for the verification of SNR and for enhancing Murphi’s

capabilities with respect to protocol verification

A. SUMMARY -- VERIFICATION OF SNR

The design of SNR as presented in [NRS90] appears to contain inconsistencies.
Two problems in the actions of the protocol’s data transfer phase operating with flow
control only (Mode 1) were detected by Murphi. The first is a violation of the key
property of flow control -- buffer overflow must not occur. The second is a violation of
the basic liveness property applicable to all protocols -- the message is eventually
delivered. Both problems are the result of improper coordination between the transmitter
and the receiver.

1. The receiver’s buffer can overflow. The strategy expected to halt the
transmission of blocks of data packets prior to exceeding the capacity of
receiver’s buffer, does not function as intended. The scheme as specified fails
to take into account that there may be data blocks in transit (sent by the
transmitter but have not yet arrived at the receiver). In this situation each
individual machine functions properly but it is the coordination between the
transmitter and receiver that is flawed.

2. The network connection between the transmitter and receiver can be
terminated unexpectedly by the receiver. The connection termination timer
implemented in machine R3 functions as expected, however the condition that
resets this counter never occurs. The receiver only reset the timer when it
receives a control packet from the transmitter. However, when SNR is
operating in Mode 1, the transmitter never sends a control packet. The
interaction expected by the receiver with the transmitter does not take place




The problem detected in the SCM specification of the
phase [Tipi93], where the transmitter is ready to send data but the receiver has terminated
the connection, is not considered serious. Even though the connection establishment
phase seems to exhibit incorrect behavior, actions in the data transfer phase result in the

also inating the ion and all machines reset to their initial

conditions.
The verification of SNR’s data transfer phase operating with both error and flow

control (Mode 2) was not due to dif It d during the

examination of Mode 1. These issues are discussed in the next section.

B. APPLYING MURPHI TO PROTOCOLS

Murphi was used to verify ies of the

phase and the data transfer phase operating in Mode 0 and Mode 1. It appears possible
but very difficult to apply Murphi to SNR’s data transfer phase operating in Mode 2 and
to the entire protocol (using a Murphi description that includes all phases and modes).
Addressed below are issues related specifically to protocol verification with Murphi and
limitations of Murphi in general

The prevailing models used for protocols employ finite state machines and shared
variables. For some asynchronous concurrent processes, the shared variables are relatively
simple and easily implemented in Murphi’s Descriptive Language. However for protocols,
a network channel when included as one of the shared variables adds significantly to the

of the Murphi description. Three dif ies arises when impli

communication channel in Murphi.

1. Implementing the channel as an array of records (each array element is a slot
for a packet and each of the record’s field corresponds to a packet field) or a
similar data structure adds a very large number of states to the state space. For
example, a full description of SNR would requires a minimum channel length
of four slots (two blocks of two packets) with each slot containing six fields.
The domain of each field varies and depends on the actual values used in the
description, however if roughly the same magnitude as used for the
description in Chapter VII is assumed, then the number of states contributed by



the channels alone is approximately 7,000 states. Remember changing the
value of any field of one of the channel slots changes the global state of the
protocol being checked

©

. Real network channels are unreliable. They lose packets, corrupt data, and
reorder packets. An accurate implementation must simulation network
introduced errors

w

Propagation delay is inherit in networks. The implementation should account
for the time delay associated with the arrival of packet at their destination.

A clock mechanism to properly simulate the value of variable clock tick was not
required for the work done in this thesis. However, when all of SNR’s machines are
included in the Murphi description, it appears clock_tick will be required to accurately
characterize SNR behavior. A practical implementation of a clock mechanism in Murphi
should be developed and tested.

Once deadlock is reached on any execution path, verification halts and other paths
are not checked. There is no simple method to ensure the first deadlock encountered is
not masking another deadlocked path. Checking all paths for deadlock requires either the
use of specific invariants coupled with disabling the detection of deadlock (a option of
Murphi’s special purpose verifier) or conditions causing deadlock must be corrected as
they are detected. Under some conditions selecting a depth-first search strategy may
uncover a deadlock different from one reached using a breadth-first search.

‘When an invariant fails, verification halts. If there are other invariants listed in the
description after the one that failed, they are not tested. To check other invariants, the
failing invariant must be removed and then the verification started again. This is really
only an annoyance vice an actual limitation

Overall Murphi is fairly easy to use. Producing an accurate Murphi description

froma i ion can be fairly i (However ing a SCM
with its guarded transitions, into Murphi’s descriptive language is straight forward.) The
most difficult task is correctly expressing the desired invariants. Once this is done initial

analysis can start immediately. Interpreting Murphi’s output is not difficult, however as




the number of states increases detecting implementation errors and identifying their source
becomes extremely tedious.

C. FURTHER RESEARCH OPPORTUNITIES
1. SNR

The primary opportunity to expand upon the groundwork established with this
thesis is to complete the verification of SNR. First the a single source specification must
be written. The differences between the various documents describing SNR should be
resolved and their content

into a p ification. This master

specification could then be analyzed and modified as design flaws are discovered. After
modification each new version should be reanalyzed. The cycle should continue until the

protocol exhibits the desired behavior. Specific behavior recommended to be checked
include:

* Examine the situation where the receiver’s buffer is full of partial blocks (i.e.,
blocks missing one or more packets). In this situation, none of the blocks will
be acknowledged so retransmission is required. However since the buffer is
full, retransmission can not occur. It appears deadlock will occur, does it?

Does the protocol function properly when control packets containing erroneou:

s
information (corrupted by the channel) are encountered?.

Wha\ happens if the values of 7}, in the transmitter and 7, in the receiver differ
? Does an occurs?

.

Investigate self stabilization in SNR. (If placed in an unsafe state, eventual the
protocol reaches a safe state.) The originator of SNR claim SNR is self
stabilizing in paragraph VII of [NRS90] . Is the periodic exchange of state
information sufficient to recover from an unexpected condition, such as a
momentary failure of T3?

2. Murphi
Two areas within the context of Murphi to explore further are: 1) support of
communication channels and 2) using Murphi to investigate self stabilization.

It would be beneficial to eliminate network channels from the global state space
and allow real network itions to be

d. This could be i by



incorporating data channels as part of the underlying implementation of Murphi_ It would
allow the user to focus on the protocol being verified, vice the modeling and
implementation of the network. The user would be reasonably sure that the channels are
free of errors, and that any errors encountered were in the protocol under development
To permit the verification of various protocols the channels should be able to be tailored
by the user. A channel implementation should include the following controllable

parameters

Type of channel -- simplex, duplex, o multipaths - between each node

Number of nodes comprising the network.

* Type of errors the channel could inject, such as data loss, garbling of data, lost
packets, ing of packets, ici it ion, etc.

Error injection rate.

Channel capacity and data rate
o Prorogation delay.

* Type of network -- datagram or virtual circuit.

It would be interesting to explore further how an automatic verifier such as Murphi

could be exploited for ining self stabilization of a system. Murphi can be

used to determine is a system placed in an unsafe state reaches a safe state. The steps are

Generate the description for the concurrent system

Write an invariant for safe states

Negate the invariant so that when in an unsafe state the invariant is now true
and is violated when a safe state is entered

Use the startstate construct to begin the verification process in an unsafe state.

Run Murphi from an unsafe state and violation of the negation of the invariant
will indicate when a safe state has been entered.

The problem comes in generating all possible unsafe state to be tested as start states.
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APPENDIX A. DEADLOCK EXECUTION TRACE

Murphi Beta Release 2.73S (With Symmetry)
Finite-state Concurrent System Verifier.

Copyright (C) 1992, 1993
by the Board of Trustees of Leland Stanford Junior University.

‘This program should be regarded as a DEBUGGING aid, not as a
certifier of correctness.

Call with the -1 flag or read the license fle for terms

and conditions of use.

Run this program with "-b" for the lst of options.

Bugs, questions, and comments should be directed to
“murphi@snooze.stanford. edu".

Murphi compiler last modified date: Apr 14 1994
Include files last modified date: Apr 14 1994

Algorithm:
Verification by breadth first search.
with symmetry algorithm 1 — fast canonicalization

Memory usage:

* The size of each state is 10 bits (rounded up to 2 bytes).
* The memory allocated for the hash table is 2 Mbytes.
With two words of overhead per state, the maximum size of
the state space is 153871 states.
* Use option "-k" or "-m" to increase this, if necessary.
* Capacity in queue for breadith-first scarch: 38467 states.
* Change the constant gPercentActiveStates in mu_verifier.h
10 increase this, if necessary.

Verbose option selected. The following is the detailed progress.
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Firing startstate Startstate 0
Obtained state:

PLLI_I

P212_1

Cl:1

C2:1

'Unpacking state from queue:
PILI_I

P212 1
crl
c2:1

The following next states are obtained:

Firing rule 2P non-critical section
Obtained state:

PILL_I

P2L22

(R

c2:1

Firing rule P1 non-critical section
Obtained state

PILL1 2

P2L2_1

Ci:1

c2:1

Unpacking state from queue:
PILI_L

P2122

crl

c2:l

‘The following next states are obtained

Firing rule P2 assign C1 0
Obtained state:

PLLI_I

P2123

crl

c2:0



Firing rule P1 non-critical section
Obtained state:

PILI2

P2122

crl

c2l

Unpacking state from queue
PLLL2

P2L201

cr:1

c2:1

The following next states are obtained:

Firing rule 2P non-critical section
Obtained state:

PILI 2

P2122

crl

c2:1

Firing rule P1 assign C1 0
ined state:

PILI_3
P2L2]1
C1:0
c2:1

Unpacking state from queue
PILLI

P22 3
cil
c2:0

‘The following next states are obtained

Firing rule P2 wait
Obtained state:
PILI_1

P22 4

crol

c2:0
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Firing rule P1 non-critical section

Unpacking state from queue
PLL1_2

P2122

cr:l

c2:1

The following next states are obtained:

Firing rule P2 assign C1 0
Obtained state:

PILI_2

P2123

Cl:1

C2:0

Firing rule P1 assign C1 0
Obtained state:

PIL13

P2L22

c1:0

C2:1

Unpacking state from queue:
PILI3

P2L2_1
C1:0
c2:1

The following next states arc obtained:

Firing rule 2P non-critical section
Obtained state

PILI3

P2L2 2

C1:0

c2:1
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Firing rule P1 wait
Obtained state
PILI 4

P2L2_1

Cl:0

c2:1

Unpacking state from queue
PLLI_I

P2L2 4

cril

c2:0

The following next states are obtained:

Firing rule critical section
Obtained state

PLLI_I

P2125

Cr:1

C2:0

Firing rule P1 non<critical section
Obtained state:

PLLI2

P2124

Ci:1

Cc2:0

Unpacking state from queue:
PILI2

P2L2 3

[

c2:0

The following next states are obtained:

Firing rule P2 wait
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Firing rule P1 assign C1 0

Unpacking state from queue:
PILI3

P2L22

cl:o

c2:1

The following next states are obtained:

Firing rule P2 assign C1 0
Obtained state:

PLLI 3
P2123
clio
c2:0

Firing rule P1 wait
Obtained state:
PLLI 4

P2122

Cl:0

c2:1

Unpacking state from queue:
PILI 4

P2L2 1

cr:o

c2:1

The following next states are obtained:

Firing rule 2P non-critical section
Obtained state:

PILI 4

P2L22

c1:0

C2:1



Firing rule critical section
Obtained state:

PILLS

P2L2_1

C1:0

c2:1

Unpacking state from queue
PLLI_I

P212.5

cl:1

c2:0

‘The following next states are obtained:

Firing rule P2 assign C2 |
Obtained state:

PILI_1

P2L2_1

Cl:1

c2:1

Firing rule P1 non-critical section
Obtained state:

PILI2

P2L2°5

cr:1

c2:0

Unpacking state from queue:
PILI2
P22 4

Cl:1
C2:0

The following next states are obtained:

Firing rule critical section
Obtained state:

PILI 2

P212s

CL:1

c2:0
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Firing rule P1 assign C1 0
Obtained state:

PIiL13

P2L2 4

Cl1:0

c2:0

Unpacking state from queuc:
PILI 3

P2L2 3

cl:o

c2:0

The following next states are obtained:

Firing rule P2 wait
Obtained state:
PLLL 3

P2L23

c1:0

c2:0

Firing rule P1 wait

Result:
Deadlocked state found.

State Space Explored:
17 states, 26 rules fired in 0.40s.

Rules Information:
Fired 1 times - Rule "P2 assign C2 1"
Fired 2 times - Rule " critical section *
Fired 3 times - Rule "P2 wait"
Fired 3 times - Rule "P assign C1 0"
Fired 4 times - Rule "2P non-critical section"
Fired 0 times -Rule "P assign C 1"
Fired 1 times - Rule " critical section "
Fired 3 times - Rule "P1 wait"
Fired 4 times - Rule "P1 assign C1 0"
Fired 5 times - Rule "P1 non-critical section”
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APPENDIX B. BUFFER OVERFLOW EXECUTION TRACE

Murphi Beta Release 2735 (With Symmetry)

Finite-state Concurrent System Verificr.

Copyright (C) 1992, 1993

by the Board of Trustees of Leland Stanford Junior University.

‘This program should be regarded as a DEBUGGING aid, not as a
certifier of correctness.

Call with the -1 flag or read the license file for terms

and conditions of use.

Bugs, questions, and comments should be directed to
“murphi@snooze.stanford edu”

Murphi compiler last modified date: Apr 14 1994

Include files last modified date: Apr 14 1994

Algorithm:
Verification by breadth first search
with symmetry algorithm | — fast canonicalization
Memory usage:
* The size of each state is 83 bits (rounded up 10 11 bytes)
* The memory allocated for the hash table is 2 Mbytes.
With two words of overhead per state, the maximum size of
the state space is 95239 states
* Use option "" or "-m" 1o increase this, if necessary.
* Capacity in queue for breadth-first scarch: 23809 states
Progress Report
1000 states explored in 1 80s, with 2225 rules fired and 322 states in the queue.
2000 states explored in 3.16s, with 4740 rules fired and 603 states in the queue.
3000 states explored in 4.57s, with 7344 rules fired and 864 states in the queue
4000 states explored in 6.00s, with 9985 rules fired and 1113 states in the queue.
5000 states explored in 7.49s, with 12746 rules fired and 1326 states in the queue.
6000 states explored in 8.99s, with 15501 rules fired and 1536 states in the queue.
7000 states explored in 10.37s, with 18025 rules fired and 1814 states in the queue.
8000 states explored in 11.90s, with 20845 rules fired and 1997 states in the queue.
9000 states explored in 13.32s, with 23451 rules fired and 2259 states in the queue
10000 states explored in 14.72s, with 26034 rules fired and 2513 states in the queue.
11000 states explored in 16.23s, with 28816 rules fired and 2724 states in the queue.
12000 states explored in 17.64s, with 31441 rules fired and 2989 states in the queue.
13000 states explored in 19.04s, with 33996 rules fired and 3244 states in the queue.
14000 states explored in 20.51s, with 36690 rules fircd and 3489 states in the queue
15000 states explored in 22 01s, with 39495 rules fired and 3722 states in the queue.
16000 states explored in 23 44s, with 42135 rules fired and 3983 states in the queue.
17000 states explored in 24.84s, with 44713 rules fired and 4239 states in the queue.
18000 states explored in 26.21s, with 47278 rules fired and 4552 states in the queue.
19000 states explored in 27.72s, with 50072 rules fired and 4757 states in the queuc.

107




The following is the error trace for the error:
Invariant - no buffer overflow — failed.

Startstate Startstate 0 fired.
TI_state:ts]

T2_state:ts4

RI_state:rs]

R3_state:rs]
T_CHANJ0].packet_kind:none_T
T_CHANI[1].packet_kind:none_T
R_CHAN(0].packet_kind:none_R
R_CHAN[0].buffer_avail : 2
R_CHAN[1] packet_kind:none R
R_CHAN(1] buffer_avail : 2
xtmr_end_TC : 0

reve_end TC : 0

xtmr_end RC : 0
rovi_end RC : 0

KT 1

kR:1
latest_Tpacket.packet_kind:none T
latest_Rpacket.packet_kind:none_R
latest_Rpacket buffer_avail : 2
blk_seq_num : 0

‘OUTBUF : 3

buffer_avail : 2
buffer_avail_T:2

UW_T:0

LWR:0

Rule R3 - clock_tick - rs1 fired.
R3_state:rs2
scount R : 1

Rule T - transmit possible - ts] fired.
TI_statetsd

Rule T1 - transmit block - ts4 fired.
T)_state:ts]
T_CHANI0].packet_kind:datapac
xtmr_end TC : 1

blk_seq_mum : 1



OUTBUF : 2
buffer_avail T |
UW_T: 1

T _busy - true

Rule R - receive data packet - rs] fired.
RI_state:rs2

T_CHAN[0] packet_kind:none_T
rovr_end TC 1

latest_Tpacket packet_kind:datapac
R_busy : true

Rule R3 - busy - rs2 fired.
R3_state:rsd.

Rule R3 - send rovr state - rs4 fired.
R3_state:rs]
R_CHAN([0].packet_kind.conpac
rovi_end RC: 1

R_busy - false

Rule R3 - clock_tick - rsl fired.
R3_state:rs2
scount R < 2

Rule R1 - process data packet - rs2 fired
RI_state:rs3

Rule RI - store data packet - rs3 fired
RI_state:rs]

buffer_avail : 1

Rule T2 - receive rovr state info - tsé fired
T2_state:tsS
R_CHAN([0].packet_kind:none_R
xtmr_end RC: 1

latest_Rpacket packet_kind'conpac

Rule T2 - update info about revr - 155 fired.

T2_state:ts6
buffer_avail T : 2

Rule T1 - transmit possible - ts1 fired
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Rule T1 - transmit block - ts4 fired.
T1_state:ts]

T_CHAN[1] packet_kind:datapac
xtmr_end_TC : 0

blk_seq_num : 2

OUTBUF : |

buffer_avail T : 1

UW T:2

Rule RI - receive data packet - rsl fired.
RI_state:rs2
T_CHAN[1] packet_kind:none_T
rovi_end_TC : 0

busy : true

Rule R3 - busy - rs2 fired
R3_state:rs4

Rule R3 - send rovr state - rs4 fired.
R3_state:rs]
R_CHAN(1].packet_kind:conpac
R_CHAN[1] buffer_avail : 1
rovr_end RC : 0

R_busy : false

Rule R1 - process data packet - rs2 fired.
RI_state:rs3

Rule R1 - store data packet - rs3 fired
RI_state:rsl
buffer_avail : 0

Rule T1 - transmit possible - ts1 fired
TI_state:ts4

Rule T1 - transmit block - ts4 fired.
TI_state:ts}
T_CHAN[0].packet_kind:datapac
xtmr_end_TC : |

blk_seq_num : 3

OUTBUF : 0
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buffer_avail T:0
UW.T:3

Rule RI - receive data packet - rs1 fired.
RI_state:rs2
T_CHAN[0].packet_kind:none_T
rovr_end TC 1

R_busy - true

Rule R1 - process data packet - rs2 fired.
RI_staters3

Rule R1 - store data packet - 153 fired
TI_state:ts]

T2_state:ts6

RI_statersl

R3_state:rsl

T_CHAN[0] packet_kind:none_T
T_CHAN([1].packet_kind:none_T
R_CHAN][0].packet_kind:none_R
R_CHANJ0] buffer_avail : 2
R_CHAN[1].packe!_kind:conpac
R_CHAN(1].buffer_avail : 1
xtmr_end TC

revi_end_TC : 1

xtmr_end RC: 1

rovi_end RC -0

KT 1

KR

latest_Tpacket packet_kind datapac
latest_Rpacket.packet_kind.conpac
latest_Rpacketbuffer_avail : 2
blk_seq_num : 3

OUTBUF : 0

buffer_avail : -1

w‘-lzggg
R
‘Oo.ug

S

s

I

i
S

l
|

End of the error trace.
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Result

Invariant - no buffer overflow — failed
State Space Explored:

19652 states, 51943 rules fired in 28 81
Rules Information

Fired 0 times - Rule "R3 - disconnect - rs4”

Fired 1904 times - Rule "R3 - send rovr state - rsd”

Fired 1564 times - Rule "R3 - modify k_R - rs3"

Fired 1556 times - Rule "R3 - wait (count R <k_R) - rs3"
Fired 1126 times - Rule "R3 - busy - rs2"

Fired 3033 times - Rule "R3 - not busy - rs2"

Fired 5557 times - Rule "R3 - clock_tick - rs1"

Fired 5900 times - Rule "remove packet from buffer”
Fired 3229 times - Rule "R1 - store data packet - rs3"
Fired 4292 times - Rule "R1 - process data packet - rs2"
Fired 2116 times - Rule "R1 - receive data packet - rs1"*
Fired 5746 times - Rule "T2 - go back to ts4 - 16"

Fired 2914 times - Rule "T2 - update info about rcvr - 1s5"
Fired 3714 times - Rule "T2 - receive rovr state info - ts4"
Fired 3534 umes - Rule "T1 - transmit block - ts4"

Fired 5758 times - Rule "T1 - transmit possible - ts1"
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