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B-Spline-Bezier Representation of Tau-Splines

Dieter Lasser

Fachbereich Mathematik, AG3
Technische Hochschule Darmstadt
6100 Darmstadt, West Germany

Abstract: We present a B-spline-Bezier representation of r splines, curvature and

torsion continuous quintics which have been introduced in CAGD by Hagen in

1985. Explicit formulas are given for the conversion of the B-spline-Bezier represen-

tation to the t spline representation and vice versa, and conditions and certain ranges

of tension values are derived which insure the positivity of the design parameters.

0. Introduction

In 1974 Nielson \_Nielson 74] gave a piecewise polynomial alternative to splines under tension

[Schweikert 66], \Cline 74], the so-called v spline. The v splines are curvature continuous in-

terpolating cubics and they are the solution of the minimization of

t
N

(
"

\\X"(i)\\
2
dt + 2]v,||X'(f

7)||

2
,

v7 >0 (1)

over the space

H = { X: X" e L \_t§,tN], X''absolutely continuous on [t ,tN]}

subject to interpolation conditions and certain end conditions. [Nielson 74, 86]

In \_Boehm 85] a B-spline-Bezier representation of v splines was given, the y spline, and Boehm
also pointed out the close relation to Barsky's /? splines. [Barsky 8/] Some details on this relation

can be found in [Fritsch 86] especially conversion equations between /? splines and v splines.
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In 1985 Hagen [Hagen 85] generalized Nielson's approach by using

f " ||X
w

(0H
2
dt + J]E VU H

X<Z,)
('/)II

2 * .
V/X £ (2)

J f /=0L=I

(A;> 2), rather than (1), minimizing now with respect to

HK = {X: X{K)
s L 2

[tQ , tN], X{K~ l}
absolutely continuous on [t , („]}

and satisfying interpolation and generalized end conditions. Hagens's concept of 'geometric spline

curves' includes for K=2 Nielson's v splines and yields for K = 3 to curvature and torsion con-

tinuous quintics, the t splines.

The aim of this paper is to give a B- spline-Bezier representation of t splines. We also derive the

conversion equations between the Bezier and the originally given Hermite representation in [Hagen
55]. We discuss positivity conditions on the design parameters of the Bezier representation and
value ranges for the point weights, the v/s.

Because we like to find a B-spline-Bezier representation of t splines, we first introduce the Bezier

representation of segmented curves. In section II we give a short discussion of Nielson's v splines

while Hagens's t splines are discussed in section III.

/. Bezier representation of segmented curves

Let X(f) be a planar or spatial parametrized curve defined with respect to a partition of the domain
space by 'knots'

t < f, < ... tN .

The parameter space segmentation induces a curve segmentation in Segments
X7: [th tM~] -» PJ (d= 2,3). A local parameter u e [0, 1] can be introduced such that

f-0,...,tf-l X(0 = KM for tmltfit^

by the linear interpolation of tt and tM \

t = (1 — u)t[ + u tjjL.\ ,
where u e [0, 1].

The derivatives have to be calculated now by the chain rule, i.e.

x,»
(0 . d-m . ^^l(u)

. -L.JLXM

where At = tM — tt .

Now the segments might be given in Bezier representation, that means

n

X/(«) = X hnl+k*k(«) 0)
k=0

where bn!+ k e R rf (d= 2,3) , u s [0,1] and

i-kB» =
(

n
k
)uk (l-«)"-

are the (ordinary) Bernstein polynomials of degree n in u. The coefficients b
y

are called Bezier

points. They form in their natural ordering given by their subscripts the vertices of the so called

Bezier polygon.
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The derivatives of X,(u) with respect to u are given by

d
r

v , , n\
n—r

duT - (n-r)l ^
where

A\ = Ar
-'(ba +l-bJ

so that in X(/
;)
= X

/_ ]
(l) = X/0) , the common boundary point of X

;_,(«) and of X,{u) , we have
for the left sided derivatives of X(t)

X<V) = lim X%) = -i- -^- A\
t_ r

t-it A/_, (« -r)\

and for the right sided derivatives

X<V) = Hm X«(0 = -V 7^-7 A\
; •

77. Nu-splines

Nie/son's v splines are solutions of the minimization of (1) over the space H2 subject to the in-

terpolation conditions

1 = 0,... ,N Xfo) = X,

and one of the following end conditions

i.) X'(r ) = Xo, X'(f/V) = x;,

ii.) X"(r
+

) = v X'(r ) , X"(Q = v^X'(^)

,

iii.) X(r )
= X(^) , X'(r ) = X'(tN ) , X'Vo) - *"(Q = (v + v„) X'(f )

.

v splines fulfill at any knot t
l

(I = 1, ... , TV — 1) the continuity conditions

X(f;
+

) = X(tT) (4)

X'(tf) = XV7) (5)

X'(t+) = X"(tD + v
7
X'(0 (6)

what can be written in matrix form as

x; - a, x;
The (r+ l)

2 matrix A; is called connection matrix and the 'vector' X* with r + 1 elements of

Rd {d > r, here is r=2) is sometimes called the r-jet of X. .

Because the curvature of a planar resp. spatial curve is given by

|X',X"| HX' x XII tr.

resp. k = -" r—"- (7)

iixf HX'"-

we see that a v spline is curvature continuous.
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A Bezier representation of v splines can be derived by inserting (3) for n = 3 into (4) to (6). We
get as continuity conditions of the Bezier representation (Figure 1)

(1 + <7/)b
7
= <7/b3/_j + b3/+1

(1 + y/<?/)b3/_, = y/<7/b3/_ 2
+ s

7

(Yl + <?/) b3/+l = <?7 S/ + y/b3/+2

where

<?/ =
and >/-i

'// =
1 +

(8)

1+^2? v
'

I = I, ... , N — \ . (8) allows the evaluation of the y, 's of the Bezier representation of a v spline,

i.e. the evaluation of the y, 's for given v
;
values. On the other side, the corresponding v spline

to a given curvature continuous cubic Bezier spline, a so-called y spline, has v, values given by

/=!, 1 v/ = -f-(l + */)(T7-D
Yl

(9)

(9) was first given by Boehm in [Boehm 85]. He also presented a B-spline representation for cur-

vature continuous cubics. and pointed out the relation to Barsky's uniformly-shaped B splines.

[Barsky 81] The connection to general /? splines, sometimes called explicit, discrete or discretely-

shaped B splines [Hoellig 86], \_Bartels et al. 87], was also pointed out by Nielson and given by
Fritsch (see \_Fritsch 86])} In fact, looking at the connection matrices of y splines, v splines and
(general) /? splines \_Dyn et al. 85] we see that (1, y and v splines are nothing else than different

representations of curvature continuous cubics.

Figure 1. Construction of the Bezier polygon for v splines

Dyn and Micchelli [Dyn et al. 85] have shown that the existence of non-negative local support basis

functions which sum to one follows - for geometrically continuous spline curves, i.e. spline curves

with continuous differential geometric invariants like curvature, torsion, etc. - from the total

positivity of the connection matrix. For v splines the total positivity of A; has the meaning
v

7
> and that is exactly the range for the tension parameters v

;
covered by the minimum norm

1 The first local basis for CC2 splines was developed by Nielson and Lewis in 1975. [Lewis 75] A local

basis for uniformly-shaped ft splines was given in [Barsky 81] and for discretely-shaped /? splines in

[Bartels et al. 34], see also [Cohen 37].
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characterization of v splines. [Nielson 74, 86] For v,>0 we obtain from (9) the y, range:

Yi <. 1 (remark: v, = <* y, = 1 is the usual C2 cubic spline). But working with y splines we know
that V; > 1 are possible as well. Indeed, if we request positive design parameters, i.e. y, > 0, so that

such important properties like the convex huli and the variation diminishing property are given, (8)

yields to

/= 1......V- 1
"
7 > -—-(1 + 4/)- (10)

Hence not only positive tension values but v, values in the range given by (10) guarantee positive

design parameters (remark: v
7
< yields to y, > 1) and therefore properties like the two mentioned

above. This result goes conform with work done by Barsky [Barsky 84] who extended the theory

of v splines by identifying certain ranges for the v/s that guarantee a unique solution of the in-

terpolation problem. In the special case of a uniform, an equidistant parametrization, i.e. qt
— 1,

Barsky gives the range v
;
> —4 which is also given by (10).

///. Tau-splines

Hagens's t splines are solutions of the minimization of (2) over the space HK for K = 3 subject

to the interpolation conditions

[ = 0,...,N X(r;) = X,

and one of the following end conditions (L = K, ... , 2(K — 1)

)

i.) x?K
- l-L

\t ) = x<
2/^- L)

, *2K- l
-L

\t„) = xg*- 1 -^

,

ii.) X<%+ ) = vo^..,.^
2*- 1-^) , X{L\Q = v^.,.^" 1-^,)

,

iii.) X(f ) = \(tN) , X{2K- l
-L

\t ) = X(2*-'-L)
(;,v)

,

X(L)
(r
+

)
- X{L\® = (v

0>2JP_,_L - v.^.^jX'^-'-^o)

.

t splines fulfill at any knot t, (/ = 1, ... , N — 1) the continuity conditions

X(r,
+

) = X(0 (ID

X'(r+) = X'(r7) (12)

X'Vt) = X"(fD (13)

X'"(r/
+

) = X'VT) + »uX'(0 (14)

X~(tf) = X'VT) " v
/,i
x'('D ( 15)

Because the curvature of a spatial curve is given by (7) and the torsion by

I X', X", X'" I

T =
IX' x XI!

2

we see that a t spline is curvature and torsion continuous.
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The connection matrix of a general torsion continuous contact of two curve segments of

U d (d> 3) of degree n (n > 4) - we speak about geometric C 3 continuity , briefly GO continuity

- is given by [Dyn et al. 85], [Lasser,Eck 88]:

AGC>

1

0i
0),-, COii

'23 CO,

Comparing AGC3 with (11) to (14), we see that r splines do not take advantage of all shape pa-

rameters offered by the concept of torsion continuity. They rather form a subset of the set of GO
continuous curves.

Furthermore we like*to mention that t splines and visual C 3 continuous curves, briefly VC 3 con-

tinuous curves, i.e. curves having contact of order r \_Geise 6Z] with r = 3 , are spanning two 'almost

totally separated subsets of the set of GO continuous curves. The connection matrix of two curve

segments having contact of order 3 is given by [Dyn et al. 55], [Lasser 88y.

A KC 3

1

oj

u->

u
3

Zv^j o,

and therefore, comparing A vci with AGC3, VO continuous curves form a subset of the set of

GO continuous curves, and, comparing A KC3 with (1 1) to (14), we see that the only curves beeing

t splines as well as VO continuous curves are the usual O continuous curves.

To find a Bezier representation of t splines we insert (3) for n = 5 into (11) to (15) and get as

continuity conditions of the Bezier representation (Figure 2)

(1 + <7/)b
7
= <7/b5/_, + bs/+1 (16)

(1 + y/^/) b5/_ 1

= y/<7/b
5/_2

+ s
;

(y 7 + <7/)bs/+1
= qjs, + y/b5/+2

(1 + S
IqI)b5[_2

= <5/<7/b5/_3 + e7

((5 Z
+ trfj) s

;
= t

[q[
ej + 5fi[

(£/ + <?,) b5/+2
= qj ej" + £/b5/+3

(1 + P/^/)bs/_3

(<t
7

4- rtfi) e[

(t7 + qj) b5/+3

=
Prfl b5l-4 + f?

= arfjij + Pl t
{

= Ttfili + <*ft

= 4lrf + T
/
b5/+4

17.1)

17.2)

18.1)

18.2)

18.3)

19.1)

19.2)

19.3)

19.4)
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where

and

and

and

with

VI = 1

*i = ; (20)

(21)

(l + <7/)

1

3
v«

(l + <7/)

1

A/

3
V
'.2

Mi - R
t

i 1

>>/ = i„. _ P ,
(2

7-
7
- 3+ (77-S,)-^-

I 4-
1

A
/~ v

!,2

+<//)'
3

3

71

°1 = <ll qf (23)

•/ - «/ 73-77 (24)

2(i-^) + r-^r vM

A 3

3 ~ ?/ + ~—
7~^r vu

T oW -4

1 +
T< TT V^2
(l + <7/)

3 3

(20) to (24) allows the evaluation of the design parameters of the Bezier representation of a t spline

and by this the Bezier representation is given. The design parameters are of course not independent

of each other any longer. This is obvious because two shape parameters are given by (l l) to ( 15)

but five are given by (16) to (19). The dependences are

Oi = — resp. it = ;
— (2b)

1
1 - (1-<77)S/

'

qt + ( 1 — c7/ )c5 /

B-Splinc-Bezier Representation of Tau-Splines



fi fr
+

Figure 2. Construction of the Bezier polygon for a t spline

and

Pi = J_ (1 +ql
d

I
)(e

I + S
[
)a

l

6 j 3(1 +qj)a
1
- (<5 7 + <?/£/)

resp. 7 =
(Sj + tipfidjpt

3(1 + <?,)<) /P/ - U + <?/<>/)(£/+ <*/)

(26)

a, =
(6, + qfi[)tft t

i{\+q
[
)tIr[

- (cj + qjKcj + Sj)
resp.

1
(fi/ + <?/)(£/ + 5/)<7/

7 3(1 +c7
/
j<7 /

- (Sj+qjtj)
(27)

T; =
(zj + qjjdjpj

{{\ + ql
d

l
)t

l

resp. Pi =
(1 + <7/(3)e

/
T
/

(28)

That means if an interpolating t spline is given, i.e. vw and v /2 values, then the design parameters

of the Bezier representation of the t spline have to be determined in such a way, that they fulfill the

equations (25) to (28) And the equations (25) to (28) are valid if the design parameter are deter-

mined by (20) to (24). On the other side, the design parameters of a torsion continuous quintic

Bezier spline curve have to fulfill the conditions (25) to (28) to make the quintic Bezier spline beeing

an interpolating t spline in Bezier representation. That means either 6, or t, can be chosen as

independent design parameter and, let's say in case of 6, , t, has to be determined by (25) as_

£
7
= s/<57) and in addition either p, or a, or i

l
can be chosen as independent design parameter

and. e.g. in case of ph <jj and t
;
have to be determined by (26) and (28) as a, = <?/(/>/) and

Tj = Tjipf). If the design parameters of the Bezier representation are determined in this way, then

the Bezier spline is equivalent to an interpolating t spline having the property of niiiiirnizing (2)

and we can calculate the v
;> , and v

/: that means the point weights defining the jumps of the third

and fourth derivatives in the knots of the t spline by

A/ 0/
resp. 7,2

-LJi + fl^J.-,,
A/ <il e

l

B-Spline-Bezier Representation of Tau-Splines



and

resp.

7.1 ,r,(l + q,y\ (l + <7/)(l-3<fr) -
("J"

+?/)(-

v
7,l =

resp.

v
/,i =

24 (! + <//)'

A,
3 " cl<

24 (!+<//)'

A,
3

«'

1
.

'?/ w ft

7 '>

(V +
77 )(~ + ^- 2) +

£;
/
U

/

e
;
-r t);

(l + ^X^-3) - (H--^")(-f
L -3)

and so on.

The t splines form a subset of the set of GO continuous quintics. The B-spline-Bezier represen-

tation of Tau splines is therefore identical with the B-spline-Bezier representation of GO contin-

uous quintics which was given in \_Eck 87], [Lasser.Eck 55], with the restriction that for a r spline

the design parameters y ; , S,, s /? p It
a, and r

l
can not be chosen independently of each other as in

case oi the GO continuous quintic spline curve. We rather have to set y , = 1 and have to choose

8j, £
; , p,, a, and r

1
according to the dependences given by (25) to (28).

Let's discuss now the positivity of the design parameters for t splines. The dependences (25) to

(28) imply the following:

Because of (25), positivity of 6, = <5,(£,) needs

<£< 1

1-'//
in case of q, < 1 <=> A, < A;_j

in case of ql
> 1 <=> A, > A,.,£ >

On the other side, positivity of z, = e/d;) needs

6 > in case of ql
< 1 <=> A, < A,_,

<<$<
l-qi

in case of q, > 1 <* A, > A,_

Because of (27) and (28), positivity of p, = p,{t,) and of a, = c/t,) needs

(e, + <?/)(£/ + <57)
T >

3(l + c
7/ ) £/

On the other side, because of (26) and (27), positivity of p, = p t
{a,) and of r, = r^a,) needs

<5/+ <-U^i
a >

3(1 + *?/)

and because of (26) and (2S), positivity of a
I
= a^p,) and of r

}
= T,{p,) needs

(l + ^(5 /
)(e

/
+5 /)

P >
3(1 + ^5/
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The minimum norm characterization of t splines works for non-negative tension parameter vn
and v/2 only. As for v splines we can extend the theory- of t splines by requesting the positivity

of the design parameters.

Because of (20) and (21), for z
l
> and 6, > the tension parameter v /2 has to be within the

ranee

that means

•^-{-Wi.-^i}

(l + <7/)

2

3
v
/,2 > J.

7- </<?/> * *> A, > A;_!

(29)

p
v
/,2 > - "£- // ^ = 1 -»• A/ = A/.,

2 3
v
/,2 > -(1+tf/) T" jr?/<l <* A7 < A,,

Thus not only non-negative but also certain negative vu values are allowed.

Because of (22) to (24), for P/>0, cr
;
>0 and t

;
>0 the tension parameter vri has to be within

the ranges given by (30).

v
/,i < -^[(l^/) 3

+ <7/V/,2 ]
(30.1)

a;

2,
A

/

" >
"t7

—

r i
z±

(30 - 2)

1 + li 3
v«

First v /2 has to be chosen such that t, > and S, > is fulfilled, i.e. v ;2 has to be chosen within

the range given by (29), than v ;i can be chosen within the range given above.

For q, = 1 (30) yields for example to

"7,1 < -^-(S + Vu)
A/ a/

Barsky \Barsky 84] extended the theory of v splines by identifying certain ranges for the v/s that

guarantee a unique solution of the interpolation problem. This idea allows especially the consider-

ation of different end conditions. The same can be done for t splines, and is indeed the topic of

actual research.

Furthermore the idea of [Sa/kauskas 75] and [Foley 86,37] of introducing interval weights can be

picked up to create interval weighted geometric spline curves2 rninimizing

(V
t

N K-\

YjPiV HXw(0ll

2
dt + XE v^ !l

x(L
V/)ll

2
dt .

1=0 Jtt-i 1=0 L=\

For K= 3 we get interval weighted t splines. Actually we are working on this too.

2 These interval weighted geometric spline curves are in general not curvature, torsion, etc. continuous.
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