TE 662 .A3 no. FHWA-RD-75-10

port No. FHWA-RD-75-10

N INVESTIGATION OF THE EFFECTIVENESS OF KISTING BRIDGE DESIGN METHODOLOGY IN ROVIDING ADEQUATE STRUCTURAL RESISTANCE ID SEISMIC DISTURBANCES. Phase III: Analytical Investigations of Seismic Response of Short, Single, or Multiple-Span Highway Bridges.

M. Chen and J. Penzien

October 1974 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D.C. 20590

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

JUN 2.1975

Lippa Cilliana, mandro

TE HB NO.

TH W

3-10

4.5

Technical Report Documentation Page

		2 . C	ata a Na	2 Proiningt's Catalog h	1
I. Report No.	§.	2. Government Acces	sion No.	5. Recipient's Catalog I	•0.
FHWA-RD-75-10					
4. Title and Subtitle An Invost	inatio	n of the Effe	ctiveness of	5. Report Dote	
Existing Bridge Design M	lethod	ology in Prov	iding Adequate	October 1974	
Structural Resistance to	o Seis	mic Disturban	ces. Phase III:	6. Performing Orgonizati	on Code
Analytical Investigation	ns of	Seismic Respo	nse of Short.	3 · 3 · · · · · · · · · · · · · · · · · · ·	
Single, or Multiple-Spar	h High	way Bridges.	,	8. Performing Orgonizati	on Report No.
7. Author(s)					
M. Chen and J. Penzien					
9. Performing Orgonization Nome on	•	10. Work Unit No. (TRAI	S)		
University of Californi	a			35A2-012	
Campus Research Office				11. Controct or Gront No	».
118 California Hall		DOT-FH-11-7798			
Berkeley, California 9	4720			13. Type of Report and F	Period Covered
12. Sponsoring Agency Nome and Ade	dress				1.5. /
Office of Research and	Develo	opment		Phase III - Fi	nal Report
Federal Highway Adminis	stratio	on i			
U. S. Department of Tra	insport	tation		14. Sponsoring Agency C	ode
Washington, D. C. 2059	0			4	>\$314
15. Supplementary Notes FHWA CC	ontract	t Manager: J	. D. Cooper, HR	S-11	1
This report is the thir	rd in a	a series. The	e others in the	series are:	
Phase I Report, FHWA-RE)-73-10	3, Literature	Sunvey, NTIS	PB 226-718 AS	
Phase II Report, FHWA-F	<u>RD-74-3</u>	3, Long Bridge	es, NTIS PB 23	3-711 AS	
16. Abstract	، مثر ام	a contac to m	cult from the	ctudy "An Invo	stigation of
Inis report is the thir	ictina	a Series to re	an Mothodology	in Providing Ad	oniato Struc-
the Effectiveness of Ex	(ISTING	j Bridge Desig	" chonsoned by	the IL S Denar	tmont of
tural Resistance to Sel	ISINIC L	Jisturbances,	sponsored by	tions are given	to the
iransportation, rederal	n rigm	the coismic	cosponse of sho	ort single or m	ultinle-span
highway bridges of the	type	whore soil-st	ructure interac	tion effects ar	e important.
ingnway bridges of the	cype i	where somest		d dute the sem	e imper sanst
Six different mathemati	ical m	odel elements	are incorporat	ed into the com	c Einito
which possess the capat	bility	of performing	g linear or non	dock nions a	nd abutments
element modeling is use	ed for	the Dackfill	Solls. bridge	olomont is use	d to model the
are modeled using prish	natic I	beam elements	. A INICLIONAL	c and abutments	Discontinu-
discontinuous behavior	at the	e interface o	n packilli suli	s and abutments	ments provide
ous type expansion joir	ous type expansion joint elements are also included. Linear spring elements provide				bilities under
flexibility at the veri	flexibility at the vertical soil boundaries. The soil foundation flexibilities under				near mathe-
columns are established		y elastic har	nd impact at the	o interface bet	ween abutments
and backfills the vie	lding	separation a	olumns and back	fill soils and	slippage at
the expansion joints a	ro tak	at concrete c	deration	and solid and	or pp age at
Che expansion joints an	re lak	en muo consi	acrationing 2 mi	aid wall backfi	11 soil system
Parameter studies are i	TIRST	carried out c	invostigated w	ith full coil-s	tructure
A short, stiff, three-s	span p	Finally b	acod on the ana	lutical results	a general
Interaction effects ind		. Finally, D	ity is doduced	liytical results	, a general
conclusion regarding ci	ne ana	Tyses capabil	ity is deduced.	,	
17. Key Words			18. Distribution Stoten	ent .	
Earthquake, Bridge Sei	smic A	nalysis,	No restriction	is. This docume	nt is avail-
Structural Analysis, Seismic Design able through			the National lec	Ninginia	
mation Servi				e, Springfield,	Virginia
			22151		
19. Security Clossif. (of this report)		20. Security Closs	if. (of this poge)	21. No. of Pages	22. Price
Unclassified		Unclassi	fied	176	
Form DOT F 1700.7 (8-72)		Perroduction of			J

Reproduction of completed page authorized

FORM FHWA-121A (REV. 4-70) UNITED STATES GOVERNMENT

Memorandum

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

FEB 1 8 1975

то

FROM

Individual Researchers

In reply refer to: HRS-11

DATE:

Project Manager, FCP Project 5A, Improved Protection Against Natural Hazards of Earthquake and Wind

SUBJECT: Transmittal of Research Report No. FHWA-RD-75-10 "Effectiveness of Existing Bridge Designs in Resisting Earthquakes, Phase III: Short, Single or Multiple-Span Highway Bridges"

> Distributed with this memorandum is the subject report intended primarily for research audiences. This report will be of interest to structural researchers concerned with earthquake resistant highway bridges.

This recently issued report is the third in a series to result from research being conducted at the University of California, Berkeley, for the Federal Highway Administration. Analytical investigations of the seismic response of short, single or multiple-span highway bridge structures of the type which suffered heavy damage during the San Fernando earthquake of February 9, 1971, are described in the report.

Additional copies are available from the National Technical Information Service (NTIS), Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151. A small charge is imposed for copies provided by NTIS.

Attachment

PREFACE

The investigation with interpretation as described in this report was sponsored by the U. S. Department of Transportation, Federal Highway Administration, under Contract No. DOT-FH-11-7798 covering the period July 1, 1971 through September 30, 1974.

The general investigation called for in this contract is under the supervision and technical responsibility of Professors R. W. Clough, W. G. Godden, and J. Penzien. Professor Penzien acts as principal investigator.

ACKNOWLEDGEMENT

The authors wish to express their sincere appreciation to the California State Division of Highways, Department of Public Works, for providing the engineering data of the bridge structures studied in this investigation.

Page

PREFAC	E.	••••••••••••••••••••••••••••••••••••••
ACKNOW	LEDO	EMENT
TABLE	OF C	CONTENTS
LIST C	OF TA	ABLES
LIST C	F FJ	GURESix
I.	INTE	RODUCTION
	A	Statement of Problem
	в.	Review of Pertinent Investigations
	c.	Review of Damages Caused by Earthquakes
	D.	Scope of Present Investigation
II.	ELAS	STIC STIFFNESSES OF MODEL ELEMENTS
	Α.	Soil Finite Element of a Continuum
	в.	Soil Boundary Element 14
	с.	Prismatic Beam Element
	D.	Frictional Element
	Е.	Expansion Joint Element
	F.	Equivalent Column for Foundation
III.	MATI	ERIAL PROPERTIES OF SOIL
	Α.	Stress-Strain Relationship
	в.	Mohr's Envelope, p-q Diagram
	с.	Active and Passive Stress
	D.	Damping
IV.	NON	LINEAR STIFFNESSES OF MODEL ELEMENTS
	Α.	General Elastic-Perfectly Plastic Stress-Strain
		Relations
	в.	Soil Finite Element
	с.	Column Element
	D.	Frictional Element 61
	E.	Expansion Joint Element

TABLE OF CONTENTS (cont.)

Page

	F.	Soil Boundary Element and Equivalent Column of										
		Foundation	62									
v.	DYN	DYNAMIC ANALYSIS PROCEDURES										
	A.	Equation of Motion	66									
	в.	Stiffness Matrix	67									
	c.	Mass Matrix	67									
	D.	Damping Matrix	68									
	E.	Step-by-Step Integration Techniques	69									
	F.	Time Interval Δt	74									
	G.	Earthquake Input	75									
VI.	PAR	RAMETER STUDIES										
	A.	Rigid Wall-Backfill System	78									
	в.	Integration-Time-Interval Sensitivity Analysis	84									
	C.	Bridge-Soil System	85									
	D.	Comparison of Resultant Abutment Backfill Force Obtained										
		by Analysis and the Monobe-Okabe Method	39									
VII.	GENI	ERAL CONCLUSION	18									
BIBLI	OGRAI	РНҮ	19									
APPEN	DIX C	COMPUTER PROGRAM LISTINGS	30									

LIST OF TABLES

- Table 1 Details of Rigid Wall Systems for Study of Lateral Extent
- Table 2 Comparison of Responses of Rigid Wall System at Different Lateral Extent
- Table 3 Comparison of Responses of Rigid Wall System With Different Length to Height Ratio R = a/b
- Table 4 Comparison of Response of Rigid Wall System with R = 2 for x < 2H and R = 10 for x > 2H at Different Time Step
- Table 5 Comparison of Maximum Total Seismic Force on the Bridge With or Without Soil Interaction

- Fig. 1 Bridge Structure and Analytical Model
- Fig. 2 Two Dimensional Isoparametric Element
- Fig. 3 Boundary Element
- Fig. 4 Beam Element Coordinate System
- Fig. 5 Frictional Element, Height = 0, Local Coordinate
- Fig. 6 Expansion Joint Element
- Fig. 7 Displacement Types
- Fig. 8 Pier with Four Columns
- Fig. 9 Hysteretic Stress-Stráin Relationships at Different Strain Amplitudes - Secant Modulus
- Fig. 10 Secant Shear Modulus of Sands at Different Void Ratios
- Fig. 11 'Typical Reduction of Secant Shear Modulus with Shear Strain for Saturated Clays
- Fig. 12 Variation of Tangent Modulus with Shear Strain for Sand
- Fig. 13 Idealized Stress-Strain Relationship
- Fig. 14 In-Situ Secant Moduli for Saturated Clays
- Fig. 15 Variation of Tangent Modulus with Shear Strain for Clays
- Fig. 16 Mohr's Envelope for Soil Sample
- Fig. 17 Stresses at Maximum Shear Plane
- Fig. 18 p-q Diagram
- Fig. 19 Mohr Circle
- Fig. 20 Stress Paths for Rankine Active and Passive Conditions
- Fig. 21 Stress Conditions at Field
- Fig. 22 Mohr Circle in 3 Planes
- Fig. 23 Active and Passive Failure

- Fig. 24 Equivalent Viscous Friction vs. Yield
- Fig. 25 Mohr Coulomb Yield Function
- Fig. 26 Column Interaction Curve
- Fig. 27 Interaction Diagram of Concrete Column
- Fig. 28 Situation at Overshooting
- Fig. 29 Overshooting at Discontinuity
- Fig. 30 Simulated Ground Acceleration Record of the San Fernando Earthquake at the Olive View Hospital Site
- Fig. 31 General Plan of North Connector Undercrossing
- Fig. 32 Abutment and Backfills
- Fig. 33 Rigid Wall System for Studying the Effects of Lateral Extent of Backfills
- Fig. 34 Static and Maximum Dynamical Total Lateral Earthpressure for Different Lateral Extent L/H
- Fig. 35 Maximum Horizontal Displacement at Points 1 to 6 for Different Lateral Extent L/H
- Fig. 36 Maximum Horizontal Accelerations at Points 1 to 6 for Different Lateral Extent L/H
- Fig. 37 Finite Element Model for Studying the Length to Height Ratio R
- Fig. 38 Static and Maximum Dynamical Total Lateral Pressure for Different Element Size R = a/b
- Fig. 39 Maximum Horizontal Displacement at Points 1 to 6 for Different Element size R = a/b
- Fig. 40 Maximum Horizontal Acceleration at Points 1 to 6 for Different Element Size R = a/b
- Fig. 41 Static and Maximum Dynamical Pressure Distribution with Different Number of Layers - Rigid Wall System
- Fig. 42 Total Lateral Earthpressure Rigid Wall System

х

LIST OF FIGURES (cont.)

- Fig. 43 Static and Maximum Dynamical Pressure Distribution with Different Soil Properties - Rigid Wall System
- Fig. 44 Model for Studying Frictional Element, Rigid Wall System
- Fig. 45 Effect of Stiffness of Frictional Element on Total Lateral Force - Rigid Wall System
- Fig. 46 Lateral Force and Horizontal Acceleration at Point No. 1 -Rigid Wall System
- Fig. 47 Vertical Acceleration at Point No. 1
- Fig. 48 North Connector Undercrossing, Bridge-Soil Systems
- Fig. 49 Static and Maximum Dynamical Pressure Distribution with Different Boundary Conditions at the Base of Abutment
- Fig. 50 Static and Maximum Dynamical Pressure Distribution of Bridge-Soil System with Different Substructures
- Fig. 51 Static and Dynamic Pressure Distribution of Bridge-Soil System with Different Degrees of Non-linearity
- Fig. 52 Static and Maximum Dynamical Pressure Distribution of Bridge-Soil System with Different Foundation

I INTRODUCTION

A. STATEMENT OF PROBLEM

The seismic response of short, single or multiple span, highway bridges are greatly affected by the phenomenon of soil-structure interaction. The dynamic forces exerted by backfills on the abutments often add significantly to the maximum seismic forces developed in the overall structural system. Also, bridges of this type usually have relatively short and stiff columns which interact strongly with their supporting foundations. Neglecting these interaction effects can lead to large errors in predicting design loads. It is therefore the objective of this investigation to establish appropriate mathematical models which will yield realistic seismic response for certain soil-structure systems of this type. Further, computer programs are written to carry out time-history dynamic analyses as an aid to the design process.

B. REVIEW OF PERTINENT RESEARCH INVESTIGATIONS

Numerous analytical investigations have been carried out in the past to determine dynamic earth pressures acting on retaining walls. One of the earliest was carried out by Okabe and later a similar study was reported by Mononobe and Matsuo [80, 74]*. In each of these investigations an equivalent static earth pressure was determined as a function of acceleration with its resultant acting on the wall at a

*Numbers in square brackets refer to Bibliography numbers.

-1-

position corresponding to that of static fluid pressure, i.e. at a height one-third the distance from the base. Much later, Valera used the finite element method to predict the intensities of seismic earth pressures acting on rigid walls [106]. In this investigation, nonlinear soil behavior was considered. Seed and Whitman summarized 31 investigations carried out from 1926 to 1969 and made valuable suggestions for their application to design [97]. Later, Wood derived analytical expressions for earth pressures acting against rigid and rotating walls using linear soil properties [117]. All of these investigations were concerned with intensities of dynamic pressures but in each case they assumed the pressures to act independently of the dynamic response of the wall itself.

In recent years, the influence of soil conditions on the seismic response of structural systems has received considerable attention. Seed recently published a report covering two main aspects of this problem: (1) changes in seismic ground motions adjacent to buildings as a result of physical interaction effects, and (2) changes in seismic response of buildings as a result of the changes in ground motions due to different soil deposits. This investigation did not, however, include full dynamic soil-structure interaction effects for structures other than buildings [98].

Few analytical investigations have been reported in which dynamic soil-bridge interaction effects were treated rigorously. One such study was reported by Penzien in 1970 [82]. In this particular investigation, the soil foundation was represented by a series of lumped masses interconnected by bilinear hysteretic shear springs having properties which varied with soil depth and also interconnected with

-2-

viscous linear dashpots. The bridge deck, supporting piers, and pile foundations were also modelled as lumped mass systems. The three dimensional effects of the foundation soils were determined using the Mindlin Theory of the elastic half-space. Equations of motion were developed which considered all dynamic interaction effects. Recently, Tseng and Penzien reported an investigation on the seismic response of long multiple span bridges in which the mathematical modelling included soilstructure interaction effects at the bases of columns; however, due to the long structural types considered, soil-abutment interaction effects were neglected [105].

As far as experimental results are concerned, most investigations have been carried out on simple wall-soil systems. Important contributions have been made by Matsuo, Ishii and Arai and Tsuchida, Matsuo and Ohara, Tschebotanoff, Ohara, and Niwa [68, 52, 69, 104, 79, 78].

Shepherd and Charleson, and Shepherd and Sidwell have conducted field experiments on an existing bridge in the small loading range [100, 101]. Their results show that the soil around the bridge displayed high energy absorption qualities, i.e. provided considerable damping to the overall soil-structure system. Broms and Ingelson have also conducted field experiments to determine the static earth pressures acting on abutment walls [11].

C. REVIEW OF DAMAGES CAUSED BY EARTHQUAKES

Iwasaki, Penzien, and Clough prepared an extensive summary of the damages caused to bridges during earthquakes for the period 1923 to 1971 [53]. Jennings and Wood, and Lew, Legendecker, and Dikkers have

-3- -

reported on the damages to bridges during the San Fernando earthquake of February 9, 1971 [59, 65]. Duke and Leeds reported similar damages caused by the Chilean earthquake of 1960, while Rose, Seed, and Migliaccio reported on the Alaskan earthquake of 1964 [29, 92]. As indicated in these reports, short bridges have suffered damages ranging from column failures to cracking, tilting, and even overturning of piers, abutments, and wing walls. Clearly, this evidence shows that large dynamic forces are induced in the overall structural system by backfill earth pressures.

D. SCOPE OF PRESENT INVESTIGATION

The present investigation is a study of the seismic response of short, single or multiple span, highway bridges having narrow abutment backfills as shown in Fig. 1.

Since the earth pressures acting against the abutments can greatly affect the seismic response of the bridge, the mathematical modelling includes a two-dimensional soil element representation of the abutment backfills. This representation accounts for nonlinear soil properties and allows different vertical boundaries to be present as shown in Figs. ID, IE and IF. The bridge deck, piers (or columns), and abutments are modelled using prismatic beam elements which may be permitted to have hysteretic yielding properties. A frictional element is used to model the nonlinear, discontinuous behavior at the interfaces of backfill soils and abutments and nonlinear, discontinuous type of expansion joint element is included. The soil foundation flexibilities under the columns are represented by equivalent columns. The mathematical model

-4-

of the overall soil-structure system permits the study of interaction effects and yields the distribution of forces throughout the system.

Chapter II of this report describes the different elements used in the mathematical modelling and presents the derivations of elastic stiffnesses used for these elements. Chapter III discusses soil material properties used in the modelling with particular emphasis on nonlinear properties. Chapter IV develops the stiffnesses of nonlinear elements with emphasis on the derivation of the elasto-plastic forcedisplacement relations for the soil finite elements and the bridge column elements. Chapter V presents the numerical techniques used in the time-history dynamic analysis while Chapter VI presents the results of parameter studies. Chapter VII presents certain conclusions and recommendations. Finally, listings of the computer program are presented in Appendix A.

-6-

II ELASTIC STIFFNESSES OF MODEL ELEMENTS

Six basic elements are used in the mathematical modelling of the bridge-soil system (1) soil finite element of a continuum, (2) soil boundary element, (3) frictional element at interface of soil and abutment wall, (4) prismatic beam element, (5) expansion joint element, and (6) equivalent column of foundation. It is the purpose of this chapter to describe these elements and to derive their elastic stiffnesses.

A. SOIL FINITE ELEMENT OF A CONTINUUM

The bridge-soil system shown in Fig. 1 is subjected to earthquake motions in the vertical direction and in one horizontal direction coinciding with the longitudinal axis of the bridge. Because of the conditions of symmetry, it is assumed that the soils adjacent to the abutments respond to these motions in a two-dimensional manner. This assumption allows these soils to be modelled using two-dimensional finite elements of a continuum interconnected at their nodal points. Material properties are defined individually for each element which may have an arbitrary quadrilateral or triangular shape.

The quadrilateral element used is the isoparametric element for which the geometry and displacements are described in terms of the same parameters of similar order. Using the natural coordinate system and interpolation displacement models, the isoparametric formulation has several advantages over the generalized coordinate method [25]. First,

-7-

the nodal displacements provide a more direct visualization of actual structural deformations than do the generalized displacements. Second, it is computationally more efficient since no transformation from one coordinate system to another is required. Finally, the local coordinate system of the isoparametric approach coincides with the global coordinate system; thus, eliminating the need for transformation of loads and stiffnesses from one coordinate frame to the other.

The following derivation of the stiffness matrix for the twodimensional quadrilateral isoparametric element is similar to that found in certain textbooks [25, 34, 118].

1. <u>Coordinate System</u> - The global Cartesian coordinates (x,y) and the local (or natural) coordinates (s,t) as shown in Fig. 2 are related through an interpolation function h, by the relations

$$x = \sum_{i=1}^{4} h_{i} x_{i}$$

$$y = \sum_{i=1}^{4} h_{i} y_{i}$$
(1)

where

$$h_{1} = \frac{1}{4} (1-s) (1-t)$$

$$h_{2} = \frac{1}{4} (1+s) (1-t)$$

$$h_{3} = \frac{1}{4} (1+s) (1+t)$$

$$h_{3} = \frac{1}{4} (1-s) (1+t)$$
(2)

2. <u>Strain-Displacement Equations</u> - The displacements are approximated using the same interpolation function which can provide for both

-8-

flexible and rigid body modes. In this case, one can state

$$u_{x} (s,t) = \sum_{i=1}^{4} h_{i} u_{i}$$

$$u_{y} (s,t) = \sum_{i=1}^{4} h_{i} u_{y_{i}}$$
(3)

The two-dimensional strains are obtained by taking derivations of the displacements with respect to x and y in the following manner:

$$\underline{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial u_x}{\partial x} \\ \frac{\partial u_y}{\partial y} \\ \frac{\partial u_y}{\partial y} \\ \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial x} & u_x \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & u_y \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y} \\ \frac{\omega}{\Sigma} & \frac{\partial h_i}{\partial y} & \frac{\partial h_i}{\partial y$$

Since functions h_i (i=1,2,3,4) are expressed in terms of s and t, the chain rule of derivations can be applied using the equations

$$\frac{\partial h_{i}}{\partial x} = \frac{\partial h_{i}}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial h_{i}}{\partial t} \frac{\partial t}{\partial x}$$

$$\frac{\partial h_{i}}{\partial y} = \frac{\partial h_{i}}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial h_{i}}{\partial t} \frac{\partial t}{\partial y}$$
(5)

The chain rule is

$$\begin{cases} \frac{\partial ()}{\partial s} \\ \frac{\partial ()}{\partial t} \\ \frac{\partial ()}{\partial t} \end{cases} = \begin{bmatrix} \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \\ \frac{\partial y}{\partial t} \\ \frac{\partial ()}{\partial y} \\ \frac{\partial ()}{\partial y} \end{cases}$$
(6)

$$\begin{cases} \frac{\partial ()}{\partial x} \\ \\ \frac{\partial ()}{\partial y} \end{cases} = \frac{1}{J} \begin{bmatrix} \frac{\partial y}{\partial t} & -\frac{\partial y}{\partial s} \\ \\ -\frac{\partial x}{\partial t} & \frac{\partial x}{\partial s} \end{bmatrix} \qquad \begin{cases} \frac{\partial ()}{\partial s} \\ \frac{\partial ()}{\partial t} \end{cases}$$
(7)

where the Jacobian J is defined by

$$J = \frac{\partial x}{\partial s} \quad \frac{\partial y}{\partial t} - \frac{\partial x}{\partial t} \quad \frac{\partial y}{\partial s}$$
(8)

Thus, the required derivatives are given by

$$\begin{bmatrix} \frac{\partial s}{\partial x} & \frac{\partial t}{\partial x} \\ \\ \\ \frac{\partial s}{\partial y} & \frac{\partial t}{\partial y} \end{bmatrix} = \frac{1}{J} \begin{bmatrix} \frac{\partial y}{\partial t} & -\frac{\partial y}{\partial s} \\ \\ \\ -\frac{\partial x}{\partial t} & \frac{\partial x}{\partial s} \end{bmatrix}$$
(9)

Taking derivatives of Eqs. (1), one can write

$$\frac{\partial x}{\partial s} = \sum_{i=1}^{4} \frac{\partial h_{i}}{\partial s} x_{i}$$

$$\frac{\partial x}{\partial t} = \sum_{i=1}^{4} \frac{\partial h_{i}}{\partial t} x_{i}$$

$$\frac{\partial y}{\partial s} = \sum_{i=1}^{4} \frac{\partial h_{i}}{\partial s} y_{i}$$

$$\frac{\partial y}{\partial t} = \sum_{i=1}^{4} \frac{\partial h_{i}}{\partial t} y_{i}$$
(10)

.

Making use of Eqs. (2) and (10), the Jacobian, as defined by Eq. (8) becomes

$$J = \frac{1}{8} [s(x_3 - x_4)(y_1 - y_2) - (x_1 - x_2)(y_3 - y_4)] + t(x_2 - x_3)(y_1 - y_4) - (x_1 - x_4)(y_2 - y_3)$$
(11)
+ $(x_1 - x_3)(y_2 - y_4) - (x_2 - x_4)(y_1 - y_3)] \leq 1$

- 2

and the strain vector defined by Eq. (4) becomes

$$\underline{\varepsilon} = \begin{bmatrix} \frac{\partial h_{4}}{1} & 0 & \frac{\partial h_{2}}{2} & 0 & \frac{\partial h_{3}}{3} & 0 & \frac{\partial h_{4}}{\sqrt{\partial x}} & 0 \\ 0 & \frac{\partial h_{1}}{1} & 0 & \frac{\partial h_{2}}{2} & 0 & \frac{\partial h_{3}}{3} & 0 & \frac{\partial h_{4}}{\sqrt{\partial x}} & 0 \\ \frac{\partial h_{1}}{1} & \frac{\partial h_{2}}{2} & 0 & \frac{\partial h_{2}}{2} & 0 & \frac{\partial h_{3}}{3} & 0 & \frac{\partial h_{4}}{2} \\ \frac{\partial h_{1}}{1} & \frac{\partial h_{1}}{2} & \frac{\partial h_{2}}{2} & \frac{\partial h_{2}}{2} & \frac{\partial h_{3}}{3} & \frac{\partial h_{3}}{2} & \frac{\partial h_{3}}{2} & \frac{\partial h_{4}}{2} & \frac{\partial h_{4}}{2} \\ \frac{\partial h_{1}}{2} & \frac{\partial h_{1}}{2} & \frac{\partial h_{2}}{2} & \frac{\partial h_{2}}{2} & \frac{\partial h_{3}}{2} & \frac{\partial h_{3}}{2} & \frac{\partial h_{3}}{2} & \frac{\partial h_{4}}{2} & \frac{\partial h_{4}}{2} \\ \end{bmatrix} \begin{bmatrix} u_{1}y \\ u_{2}y \\ u_{2}y \\ u_{3}y \\ u_{4}y \\ u_{4}y \\ u_{4}y \end{bmatrix}$$

(12)

11

or in compact form may be expressed as

$$\underline{\varepsilon} = \underline{B} \underline{u} \tag{13}$$

The derivatives in the coefficient matrix of Eq. (12) can now be expressed in their final maniputable form

$$\frac{\partial h}{\partial x} = \frac{1}{16J} \left[y_2(h_1 + h_2) + y_3(h_4 - h_2) - y_4(h_1 + h_4) \right]$$

$$\frac{\partial h}{\partial x} = \frac{1}{16J} \left[-y_1(h_1 + h_2) + y_3(h_2 + h_3) + y_4(h_1 - h_3) \right]$$

$$\frac{\partial h}{\partial x} = \frac{1}{16J} \left[y_1(h_2 - h_4) - y_2(h_2 + h_3) + y_4(h_3 + h_4) \right]$$

$$\frac{\partial h}{\partial x} = \frac{1}{16J} \left[y_1(h_1 + h_4) + y_2(h_3 - h_1) - y_3(h_4 + h_3) \right]$$

$$\frac{\partial h}{\partial y} = \frac{1}{16J} \left[-x_2(h_1 + h_2) + x_3(h_2 - h_4) + x_4(h_1 + h_4) \right]$$

$$\frac{\partial h_{2}}{\partial y} = \frac{1}{16J} [x_{1}(h_{1} + h_{2}) - x_{3}(h_{2} + h_{3}) + x_{4}(h_{3} - h_{1})]$$

$$\frac{\partial h_{3}}{\partial y} = \frac{1}{16J} [x_{1}(h_{4} - h_{2}) + x_{2}(h_{2} + h_{3}) - x_{4}(h_{3} + h_{4})]$$

$$\frac{\partial h_{4}}{\partial y} = \frac{1}{16J} [-x_{1}(h_{1} + h_{4}) + x_{2}(h_{1} - h_{3}) + x_{3}(h_{3} + h_{4})]$$
(14)

Using standard index notation with i permutating 1 through 4, Eqs. (14) can be written in the two single equations

$$\frac{\partial h_{i}}{\partial x} = \frac{1}{16J} \left[y_{i+1} (h_{i} + h_{i+1}) + y_{i+2} (h_{i+3} - h_{i+1}) - y_{i+3} (h_{i} + h_{i+3}) \right]$$

$$\frac{\partial h_{i}}{\partial y} = \frac{1}{16J} \left[-y_{i+1} (h_{i} + h_{i+1}) + x_{i+2} (h_{i+1} - h_{i+3}) + x_{i+3} (h_{i} + h_{i+3}) \right]$$
(15)

3. Element Stiffness and Numerical Integration - Considering a thickness ω (normal to the plane of element shown in Fig. 2), the element stiffness matrix can be expressed in the form

$$\frac{K}{vol} = \int \frac{B^{T}C}{D} \frac{B}{dv} = \int \frac{B^{T}C}{area} \frac{B}{\omega} dA$$
(16)

where \underline{C} is the stress-strain matrix with integration being carried out over the entire area of the element. For purposes of numerical integration, Eq. (16) can be written in terms of the s and t coordinates giving

$$\underline{K} = \int_{-1}^{1} \int_{-1}^{1} \underline{B}^{\mathrm{T}} \underline{C} \underline{B} \text{ (det J) } \omega \mathrm{ds dt} \qquad (17).$$

Upon application of standard one-dimensional numerical integration formulas, Eq. (17) becomes

-12-

$$\underline{K} = \sum \sum \omega_{j} \omega_{k} \quad (\det J) \stackrel{B^{T}}{=} (s_{j}, t_{k}) \stackrel{C}{=} \stackrel{B}{=} (s_{j}, t_{k}) \omega \quad (18)$$

in which s_j and t_k are integration points and ω_{j} and ω_{k} are the appropriate weighting functions. Using the Gauss-Legendre quadrature formula of degree 2, one obtains

$$\begin{array}{c} s_{i} = \pm \ 0.577350 \\ t_{i} = \pm \ 0.577350 \\ \omega_{i} = 1 \end{array} \end{array} \right) \qquad i = 1,2$$
 (19)

For plane stress, matrix C has the form

$$\underline{C} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix}$$
(20)

while for plane strain it becomes

$$\underline{C} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$
(21)

where E is Young's Modulus and $\boldsymbol{\nu}$ is Poisson's ratio.

As shown above, the final form of the element stiffness matrix is a function of geometry, element thickness, and material properties. The overall stiffness matrix of the entire system is assembled by the direct stiffness method [22]. The band width of this matrix depends upon the system of numbering nodal points. Therefore, the nodal points should be numbered in a manner to minimize computer storage requirement

B. SOIL BOUNDARY ELEMENT

Boundary elements are used in the mathematical model to account for the elastic action which occurs at the vertical boundaries of the soils being considered. The type of element used for this purpose is a simple elastic spring as shown in Fig. 3. This element has a stiffness matrix k in the local coordinate system of the form

$$\underline{\mathbf{k}} = \mathbf{E} \begin{bmatrix} \mathbf{1} & -\mathbf{1} \\ & \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}$$
(22)

where E is the equivalent stiffness of the spring, which can be obtained using standard methods [82,89].

C. PRISMATIC BEAM ELEMENT

Prismatic beam elements are used to model the bridge deck, piers, abutment walls and equivalent columns for soil foundations. The derivation of the stiffness matrix for a beam element considering axial, shear, and bending deformations can be found in many textbooks [86]. Therefore, only the main features of this matrix will be presented here.

The force components acting on the beam element are axial forces s_1 and s_4 , shearing forces s_2 and s_5 , and bending moments s_3 and s_6 as shown in Fig. 4. The positive directions of these force components (s) and their respective displacement components (u') correspond to those shown in the figure. The stiffness matrix for this element in terms of

$$\mathbf{k}_{(6\times6)} = \begin{bmatrix} \frac{EA}{\lambda} & & \\ 0 & \frac{12EI_{z}}{\lambda^{3}(1+\phi_{y})} & & \text{SYMMETRICAL} \\ 0 & \frac{6EI_{z}}{\lambda^{2}(1+\phi_{y})} & \frac{(4+\phi_{y})EI_{z}}{\lambda(1+\phi_{y})} \\ - \frac{EA}{\lambda} & 0 & 0 & \frac{EA}{\lambda} \\ 0 & \frac{-12EI_{z}}{\lambda^{3}(1+\phi_{y})} & \frac{-6EI_{z}}{\lambda^{2}(1+\phi_{y})} & 0 & \frac{12EI_{z}}{\lambda^{3}(1+\phi_{y})} \\ 0 & \frac{6EI_{z}}{\lambda^{2}(1+\phi_{y})} & \frac{(2-\phi_{y})EI_{z}}{\lambda(1+\phi_{y})} & 0 & \frac{-6EI_{z}}{\lambda^{2}(1+\phi_{y})} & \frac{(4+\phi_{y})EI_{z}}{\lambda(1+\phi_{y})} \end{bmatrix}$$

(23)

where

$$\phi_{y} = \frac{12EI_{z}}{G \operatorname{Asy} l^{2}} = 24(1+\nu) \frac{A}{\operatorname{Asy}} \left(\frac{\gamma_{z}}{l}\right)^{2}$$
(24)

represents the shear deformation parameter for reinforced concrete elements and where

l	=	element length
Υ _z	=	radius of gyration about z axis
I, z	=	Moment of inertia about z axis
A	=	cross sectional area
Asy	=	equivalent shear area in y direction

-15-

.

- E = modulus of elasticity
- G = modulus of elasticity in shear
- v = Poisson's ratio

The matrix equation relating displacements in the local coordinates u' to displacements in the global coordinates u is given by

$$\underline{u}^* = \underline{\lambda} \underline{u} \tag{25}$$

where λ has the two-dimensional form

$$\underline{A} = \begin{bmatrix}
 D_{\mathbf{x}} / D_{\boldsymbol{\ell}} & D_{\mathbf{y}} / D_{\boldsymbol{\ell}} & 0 & 0 & 0 & 0 \\
 - D_{\mathbf{y}} / D_{\boldsymbol{\ell}} & D_{\mathbf{x}} / D_{\boldsymbol{\ell}} & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & D_{\mathbf{x}} / D_{\boldsymbol{\ell}} & D_{\mathbf{y}} / D_{\boldsymbol{\ell}} & 0 \\
 0 & 0 & 0 & -D_{\mathbf{y}} / D_{\boldsymbol{\ell}} & D_{\mathbf{y}} / D_{\boldsymbol{\ell}} & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}$$

(26)

and where

$$D_{x} = x_{j} - x_{i}$$

$$D_{y} = y_{j} - y_{i}$$

$$D_{k} = \sqrt{D_{x}^{2} + D_{y}^{2}}$$
(27)

Thus, the stiffness matrix K in global coordinates becomes

$$\underline{\kappa} = \underline{\lambda}^{\mathrm{T}} \underline{\kappa} \underline{\lambda}$$
(28)

as indicated above, the stiffness matrix is linearly proportional to the areas and moments of inertia. Therefore, a unit width analysis can be carried out, if desired, by dividing all areas and moments of inertia by the width of the bridge deck.

D. FRICTIONAL ELEMENT

A so called frictional element is used to model the frictional action, separation, and impact which take place at the interfaces of soil backfills and abutment walls. This element has the following characteristics (1) the frictional force per unit area is proportional to the normal interface pressure and a coefficient of friction; thus, slippage occurs when the direction angle of the resultant of pressure and friction exceeds the soil angle of friction, (2) impact occurs at the interface upon closure of any gap which may have earlier developed, and (3) no frictional resistance can develop at the interface when wall and soil surfaces have separated. Discontinuous elements similar to this have been developed by Ghaboussi and Wilson, Scholes and Strover, White and Enderly, and Tseng and Penzien [40, 94, 111, 105]; however, the element developed by Goodman and Taylor has been adopted here [41].

This frictional element is a four nodal element as shown in Fig. ⁵ having length L but with a height equal to zero, i.e. nodal points 1 and 4 coincide as do points 2 and 3. It is shown in a local coordinate system with the origin at the center of the element and the x axis directed along the length of the element.

The relative displacement vector \underline{u} is expressed in terms of the displacement vector $\underline{u}_{\underline{i}}$ through the linear interpolation function formula

-17-

$$\underline{u} = \begin{cases} (u_x^{\text{top}} - u_x^{\text{bottom}}) \\ (u_y^{\text{top}} - u_y^{\text{bottom}}) \end{cases}$$

or

$$\underline{u} = \begin{bmatrix}
-(1 - \frac{2x}{L}) & 0 & -(1 + \frac{2x}{L}) & 0 & (1 + \frac{2x}{L}) & 0 & (1 - \frac{2x}{L}) & 0 \\
0 & -(1 - \frac{2x}{L}) & 0 & -(1 + \frac{2x}{L}) & 0 & (1 + \frac{2x}{L}) & 0 & (1 + \frac{2x}{L})
\end{bmatrix}$$

$$\underbrace{u}_{2y}^{u} \underbrace{u}_{2y}^{u} \underbrace{u}_{3y}^{u} \underbrace{u}_{4y}^{u} \underbrace{u}_{$$

^uıx

(31)

•4

The material property matrix k expressing the stiffness per unit length in the normal and tangential directions is given by

$$\underline{k} = \begin{bmatrix} k_{s} & 0 \\ 0 & k_{n} \end{bmatrix}$$
(30)

Upon applying the variational principle of solid mechanics, the elastic stiffness matrix in the local coordinate system becomes

$$\underline{K} = \frac{1}{6} \begin{bmatrix} 2k_{s} & 0 & 1k_{s} & 0 & -1k_{s} & 0 & -2k_{s} & 0 \\ 0 & 2k_{n} & 0 & 1k_{n} & 0 & -1k_{n} & 0 & -2k_{n} \\ 1k_{s} & 0 & 2k_{s} & 0 & -2k_{s} & 0 & -1k_{s} & 0 \\ 0 & 1k_{n} & 0 & 2k_{n} & 0 & -2k_{n} & 0 & -1k_{n} \\ -1k_{s} & 0 & -2k_{s} & 0 & 2k_{s} & 0 & 1k_{s} & 0 \\ 0 & -1k_{n} & 0 & -2k_{n} & 0 & 2k_{n} & 0 & 1k_{n} \\ -2k_{s} & 0 & -1k_{s} & 0 & 1k_{s} & 0 & 2k_{s} & 0 \\ 0 & -2k_{n} & 0 & -1k_{n} & 0 & 1k_{n} & 0 & 2k_{n} \end{bmatrix}$$

E. EXPANSION JOINT ELEMENT

An expansion joint may be present between the bridge deck and an abutment as shown in Fig. 6. This joint can develop horizontal frictional forces which should be modelled properly. For this purpose, the frictional element previously described can be adopted; however, two additional boundary conditions must be imposed, namely, (1) the relative displacement of the upper and lower part of the joint element, $u_{3X} - u_{2X}$, cannot cause a gap closure (between deck and abutment) greater than the original gap dimension, and (2) frictional forces can be developed only when the relative displacement, $u_{1X} - u_{3X}$, causing a widening of the gap is less than the original "seat" dimension. As soon as the relative displacement ($u_{1X} - u_{3X}$) exceeds the original seat dimension, the bridge deck falls from its support; thus, the computer analysis is stopped at this point.

F. EQUIVALENT COLUMN FOR FOUNDATION

Various mathematical models have been used for structural foundations. As reported in the literature, Parmelee, Whitman and Roesset, Dobry, and others [81, 108] used a simple spring dashpot model; Jennings and Bielak and Richart, Hall, and Woods [58, 89] used the elastic half space; Whitman [109] used an equivalent lumped mass model; and, Dans and Butterfield, Finn, Lysmer and Kuhlemeyer, and Wilson [31, 36, 66, 114] used a finite element mesh. Various methods have been reported for estimating the lateral stiffness of foundations employing piles [84, 88].

-19-

The replacement of the foundation flexibility with an equivalent column through use of the elastic half space theory and under the assumption of quasi-static behavior has been reported by Penzien, et. al. [8]. This method has been adopted in the present investigations.

The first step in finding the equivalent column for the foundation is to determine the lateral, vertical, and rotational stiffnesses of the foundation at the footing (or pile cap) level. Once these three stiffnesses have been determined, the foundation is replaced by a column of length L, flexural stiffness EI, and axial stiffness AE which when fixed at its base provides the equivalent lateral, vertical, and rotational stiffnesses to the footing. The stiffness matrix for this column is given in the form of Eq. (23) under the assumption of no shear deformation, i.e. $\phi_{ij} = 0$.

The foundation stiffnesses can be obtained by either the numerical procedure outlined by Penzien or by a closed form approach reported by Gerrand and Harrison [82, 39].

1. <u>Closed Form Solution for Lateral Stiffness of Circular Foot-</u> <u>ing</u> - The closed form solution for lateral stiffness is available for a circular shaped footing as shown in Fig. 7-c. If the footing is rectangular in shape, an equivalent radius r_0 should be calculated for a circular footing having the same area, then

$$k_{x} = \frac{8 r_{0} G}{2 - \nu}$$
(32)

where

k = lateral stiffness for a single footing
r = radius of footing

G = shear modulus of soil

v = Poisson's ratio

For a pier of multiple supports, the interactions between footings are estimated by Eq. (33) which describes the lateral displacement at a distance r from a loaded footing.

$$u = T_{h} \frac{1}{4\pi r_{o}G} \left[(2-\nu) \cdot \sin^{-1} \frac{1}{r} + \nu \cdot \frac{(r^{2}-1)^{\frac{1}{2}}}{r^{2}} \right]$$
(33)

where

u = the displacement

T_h = the total applied force at a single footing
r = the distance in terms of radius r

By calculating the average displacement of all footings in a pier and dividing the total force by the average displacement, the equivalent stiffness of a pier with multiple footings is then obtained.

2. Numerical Solution Using the Mindlin Equation to Calculate

Lateral Stiffness - The Mindlin equation has the following form. When the x component of displacement on the surface is to be calculated, as produced by a single concentrated force P located at the origin (o, o, o) on the surface of an isotropic half space and acting in the x-direction

$$u_{\mathbf{x}}(\mathbf{x},\mathbf{y},\mathbf{o}) = \frac{P(0,0,0)}{16\pi(1-\nu)G} \left\{ \frac{(3-4\nu)}{R} + \frac{1}{R} + \frac{4(1-\nu)(1-2\nu)}{R} + \mathbf{x}^{2} \left[\frac{1}{R^{3}} + \frac{3-4\nu}{R^{3}} - \frac{4(1-\nu)(1-2\nu)}{R^{3}} \right] \right\}$$
(34)

-21-

in which

 $R^2 = x^2 + y^2$

Under the assumption that the lateral force is uniformly distributed over the area of the footing, the procedure to calculate the lateral stiffness of a single footing is (1) replace the uniform pressure by as many concentrated loads P as accuracy requires, (2) calculate the lateral displacement of each load point over the footing area due to each concentrated load, (3) sum the resulting displacements at each load point within the footing as caused by the full set of loads, (4) average the load point displacements, and (5) divide the total resultant force by the average of the load point displacements to obtain the lateral stiffness.

Again, if a pier has many footings, the same averaging procedure is applied by assuming a concentrated force at the center of each footing; thus, the lateral stiffness of each pier foundation can be obtained.

3. <u>Comparison of Two Methods for Lateral Stiffness</u> - To compare the two previously described methods for obtaining foundation lateral stiffness, consider the pier shown in Fig. 8 having four footings. Assuming the footing is 8.5 x 8.5 ft and the distance between footings is 26 ft, the individual footing stiffness k_x and pier stiffness k_p obtained by the two approaches have the following values in k/ft:

$$k_{x} = \begin{cases} 32.5 \text{ G} & \text{Numerical method} \\ 25.5 \text{ G} & \text{closed form solution} \end{cases}$$
$$k_{p} = \begin{cases} 100.6 \text{ G} & \text{Numerical method} \\ 80.0 \text{ G} & \text{closed form solution} \end{cases}$$

-22-
Where the unit of G is in k/ft^2 .

In each case the stiffnesses differ by approximately 20%. In the numerical solution the footing is considered to have 36 concentrated forces applied at equal grid intervals over the area. If the resultant force had been discritized at more than 36 points, the differences in stiffness would have decreased.

4. <u>Vertical Stiffness with Friction Piles</u> - Assuming the friction force per unit length of pile varies in a linear manner from a maximum value at the top to zero at the bottom, and assuming zero vertical displacement at the bottom of the pile, the vertical stiffness of the pile k, is

$$k_{\rm L} = 3AE/L \tag{35}$$

Where L, A, and E are the length, area, and modulus of elasticity, respectively, of the pile.

5. <u>Vertical Stiffness Without Piles</u> - Assuming uniform vertical displacements as shown in Fig. 7-a, the vertical stiffness of a circular footing without piles is given by

$$k_{v} = \frac{4 r_{0} G}{1 - v}$$
(36)

For other footing shapes, similar stiffness relations have been reported by Lysmer and Duncan [67].

 <u>Rotational Stiffness Without Piles</u> - Assuming rotational displacements as shown in Fig. 7-b, the rotational stiffness of a circular footing without piles is given by

$$k_{\theta} = \frac{8 r_{0}^{3} G}{3(1-\nu)}$$
(37)

The rotational stiffness of a rigid footing with piles can be calculated directly from the vertical stiffness of each pile.

FIG. 3 BOUNDARY ELEMENT

GLOBAL COORDINATE

FIG. 4 BEAM ELEMENT COORDINATE SYSTEM

FIG.5 FRICTIONAL ELEMENT, HEIGHT = O LOCAL COORDINATE

- GAP

(a) UNIFORM VERTICAL DISPLACEMENT

(b) ROTATIONAL DISPLACEMENT

(c) LATERAL DISPLACEMENT

8.5

FIG. 8 PIER WITH FOUR COLUMNS

III MATERIAL PROPERTIES OF SOIL

In this chapter, the pertinent soil material properties used to establish a non-linear finite element model are discussed. The nonlinear stress-strain relations, Mohr's envelope and p-q diagram, the concepts of active and passive stresses, and the damping characteristics of soil are described.

A. STRESS-STRAIN RELATIONSHIP

Basic to establishing the force-displacement relationships for soil elements as employed in the mathematical model are the stressstrain relationships for the materials involved. These materials include both cohesionless and cohesive soils.

Numerous authors, including Bishop and Henkel, Bishop, Comforth and Seed, have reported procedures for determining the shear modulus of sand [9, 10, 23, 96]. The investigators show that the shear modulus is strongly influenced by confining pressure, strain amplitude, and void ratio. In the present investigation, the equivalent secant shear modulus as determined by extreme points on the hysteresis loop, Fig. 9, is adopted. This modulus can be estimated using the relation proposed by Seed [96], namely,

$$G = 1000 k_2 (\sigma_m^{\prime})^{\frac{1}{2}} \text{ psf}$$
 (38)

where G is the secant modulus of sand, σ'_m is the effective mean stress and k is a parameter which depends upon void ratio e and strain amplitude

-29-

as shown in Fig. 10. Triaxial tests show that k_2 depends only upon void ratio e at very low strain levels ($\gamma \leq 10^{-3}$ percent). At intermediate strain levels ($10^{-3} \leq \gamma \leq 10^{-1}$ percent), it still depends primarily upon void ratio but is also slightly influenced by state of stress and the friction angle ϕ . At very high strain levels, k_2 is essentially a constant which is almost independent of state of stress, friction angle, and the void ratio. Thus for practical purposes, the values of k_2 can be assumed to vary only with strain amplitude and void ratio as shown in Fig. 10.

For prescribed values of void ratio and confining pressure, the stress-strain relationship is non-linear with the shear modulus changing with shear strain. Upon the initiation of yielding the modulus becomes very small. A tangent modulus curve transformed from the equivalent shear modulus curve, Fig. 10, is shown in Fig. 12. Theoretically, one could use a revised tangent modulus over each time interval of a dynamic analysis; however, it is believed to be more practical to use a more simplified form of stress-strain relationship. In the present investigation a trilinear stress-strain relationship, Fig. 13-a, has been adopted with the shear modulus remaining constant during each of three different loading stages. In the initial stage, the soil element is in its geostatic state, i.e. the vertical stress is equal to the weight of soil (per unit area) above the point of interest as given by

$$\sigma_{v} = \int_{0}^{y} w \, dy \tag{39}$$

where y is the depth and w is the unit weight of soil. The lateral stress in the principal horizontal direction is

-30-

$$\sigma_{h} = k_{0} \sigma_{v}$$
(40)

while in the orthogonal horizontal direction (z) the stress $\sigma_{\rm z}$ for plane stress is

$$\sigma_z = 0 \tag{41}$$

and for plane strain is

$$\sigma_{z} = \mu(\sigma_{v} + \sigma_{h}) = \frac{k_{0}}{1+k_{0}}(\sigma_{v} + k_{0}\sigma_{v}) = k_{0}\sigma_{v} = \sigma_{h}$$
(42)

where μ is Poisson's ratio. The shear modulus in this stage is evaluated by Eq. (38) with k_2 selected in accordance with the very low strain level shown in Fig. 10. In the second stage the soils in the backfill are no longer in the geostatic state due to loadings from the bridge. In this case the shear modulus is calculated using Eq. (38), but k_2 is revised to be consistent with the maximum shear strain in the element. The third stage occurs after the initiation of yielding in which case the stress-strain relation is evaluated in accordance with a theory of plasticity as described in Chapter IV.

In those cases where curves of k_2 vs. γ as shown in Fig. 10 are unavailable, a bilinear stress-strain relationship is adopted with the initial modulus being estimated by an empirical method and the second stage modulus being calculated by the theory of plasticity as shown in Fig. 13-b.

Turning our attention now to certain clay materials, test data show that at very low strain levels, the shear modulus varies almost linearly with shear strength [112]. In a summary report, Seed has presented a curve of secant shear modulus versus shear strain for

-31-

saturated clays [96]. The shear modulus expressed by this curve, Fig. 14, is in the normalized form G/s_u where s_u is the undrained shear strength of the material. A curve showing the degradation of secant shear modulus with shear strain, as obtained by a number of investigators, is shown in Fig. 11 [96]. These relationships can be used as a guide for estimating the initial modulus of clay when laboratory test data on the specific material are unavailable.

Fig. 15 gives a tangent modulus curve for clay which is consistent with the secant modulus curve of Fig. 11. Test results show that the shear modulus is essentially independent of the confining pressure. A re-evaluation of shear modulus before the initiation of yielding becomes much less important for this material than for sand. For this reason, a bilinear stress-strain relation has been assumed for cohesive soils in the present investigation. This initial modulus is estimated from the data previously described and the tangent stiffness after yielding is obtained using the same basic procedure as used for sands. No hardening effects after the initiation of yielding are considered.

B. MOHR'S ENVELOPE, p-q DIAGRAM

The most widely used yield criterion in soil mechanics is the Mohr-Coulomb criterion which relates the normal stress σ_f and the shear stress τ_f at the failure plane by the equation

$$\tau_{f} = c + \sigma_{f} \tan \phi \tag{43}$$

where c is the cohesion of the soil and ϕ is its friction angle. The soil coefficients are usually obtained by conducting triaxial tests at

-32-

various confining pressures and by drawing a common tangent line to the resulting Mohr's circles as shown in Fig. 16. It should be noted that since the confining pressure of the triaxial test is uniform, i.e. $\sigma_2 = \sigma_3$, the Mohr's circle can be used in its familiar twodimensional form. Equation (43) when plotted on the σ -T plane is called Mohr's yield envelope which implies (1) elastic behavior for a state of stress whose Mohr's circle lies entirely below the envelope, (2) yielding, or impending yielding, for a state of stress whose Mohr's circle has the envelope as its tangent, and (3) that any state of stress whose Mohr's circle crosses the envelope'is not permitted.

An alternate way of plotting the results of triaxial tests is to plot the stresses at the plane of maximum shear on the p-q plane, namely,

$$p = \frac{\sigma_1 + \sigma_3}{2} \tag{44}$$

and

$$q_{,=} \frac{\sigma_{1} - \sigma_{3}}{2}$$
(45)

In Fig. 17, points A, B, and C in the σ -T plane represent the stresses on planes of maximum shear. A line drawn through these same points in the p-q plane, as shown in Fig. 18, is called the k_{f} line. The equation of this line is

$$q_f = a + p_f \tan \alpha \tag{46}$$

Strength parameters c and ϕ can be computed from Eq. (46) through the relations

$$\sin \phi = \tan \alpha \tag{47}$$

C. ACTIVE AND PASSIVE STRESS

Using the previously defined yield criterion, active and passive soil stresses can be defined as they relate to the backfill pressures exerted on abutment walls. Starting with soil equilibrium in its geostatic state which has principal axes in the vertical and horizontal directions, decrease the horizontal compressive stress continually until the shear strength of the soil is reached and failure occurs. The horizontal compressive stress at the point of failure is active stress. On the other hand, if the horizontal compressive stress is continually increased, the shear strength of the soil will again be reached at a much higher stress level called the passive stress. The Mohr's circles representing these two failure conditions are shown in Fig. 19 where $\sigma_{\rm p}$ and $\sigma_{\rm p}$ represent the vertical and horizontal stresses, respectively, in the geostatic state and σ_a and σ_p represent the active and passive stresses, respectively. It should be noted here that since the two horizontal stresses are assumed equal, only two stress components are required to describe the stress conditions.

The stress conditions in the σ -T diagram of Fig. 19 are again shown in the p-q diagram of Fig. 20, where point A is the geostatic state of stress, point B is the passive state of stress, and point C is the active state of stress. Lines AC and AB are stress paths which depict the successive states of stress which occur in changing from the geostatic condition to the active and passive conditions, respectively.

-34-

When applying the concepts of active and passive stresses to more complex stress conditions, certain modifications are needed. For example, the stress conditions of the bridge backfill-soil 'treated in this investigation is essentially three-dimensional. In this case shear stresses may exist on both vertical and horizontal planes even under gravity loadings. Referring to Figs. 1-A and B for the element coordinates, the Mohr's circle for this condition may be as shown in Fig. 21. Further, it should be noted that if the side slopes of the embankment as seen in Fig. 1-B are not sufficiently flat, the yield plane will show as a line in the y-z plane. In the present study however it is assumed that these slopes are sufficiently flat so that the yield plane shows as a line in the x-y plane. Thus the state of stress at failure as shown on an element of soil in the x-y plane, can be represented by a Mohr's circle tangent to the Mohr's envelope as shown by Circle 1 in Fig. 22. States of stress in the x-z and y-z planes would be represented by Mohr's circles falling entirely within the above defined circle as shown by Circle II and III in Fig. 22. Because of these restrictions, the problem can be treated as a two-dimensional problem in the x-y plane. Finally, in the present investigation, all stresses vary prior to reaching a state of yield. Based on the previous assumptions, active and passive states can be defined in an equivalent manner. Referring to Fig. 23 where the absolute values of the p and q stresses are plotted, p values at static loading and failure conditions can be compared. If p is assumed to decrease continually with increasing g stress until the Mohr's envelope is reached, active failure occurs. On the other hand, if p is assumed to increase continually with increasing q stress until the envelope is reached, passive failure

-35-

occurs. Stresses p_a and p_p represent the active and passive stresses in this case.

D. DAMPING

Soils, like all materials, exhibit energy dissipation when subjected to cyclic loading. Different methods have been used for measuring damping depending upon the strain levels involved [96]. Forced vibration tests have been used for strain levels in the range 10^{-4} to 10^{-2} percent, free vibration tests have been used for strain levels in the range 10^{-3} to 1.0 percent, and static tests have been used to measure the hysteretic energy absorption for strain levels in the range 10^{-2} to 5 percent. The energy dissipation in the latter case has been expressed in terms of equivalent viscous damping ratios [102, 103].

Experimental evidence shows that two major factors influence the amount of damping exhibited by sands, namely, confining pressure and strain amplitude. Damping in this case tends to decrease with an increase in confining pressure and tends to increase with strain amplitude. Clay materials, on the other hand, exhibit damping which is essentially independent of confining pressure but, like sands, the damping increases with strain amplitude.

In modelling the damping as measured in soils, it has generally been carried out by using an equivalent viscous damping system. An important basic study carried out along these lines, using a wide range of yield values, has been reported by Hudson [47]; see Fig. 24. In this case, the equivalent viscous damping ratio corresponding to elasto-plastic hysteretic damping for a single degree of freedom system

-36-

is given.

In the present investigation, hysteretic damping has not been converted to an equivalent viscous form. Rather, it is treated in its true strain dependent form. Since hysteretic damping treated in this manner accounts for energy dissipation only for strain levels above yield, it is necessary to also include viscous damping to represent the low strain level velocity dependent damping. For this purpose, Rayleigh damping has been used in the present investigation.

FIG. 9 HYSTERETIC STRESS-STRAIN RELATIONSHIPS AT DIFFERENT STRAIN AMPLITUDES-SECANT MODULUS

(After Seed and Idriss)

(b) BILINEAR CURVE

FIG. 17 STRESSES AT MAXIMUM SHEAR PLANE

FIG. 20 STRESS PATHS FOR RANKINE ACTIVE AND PASSIVE CONDITIONS

FIG. 21 STRESS CONDITIONS AT FIELD

FIG.24 EQUIVALENT VISCOUS FRICTION VS YIELD RATIO

IV NON-LINEAR STIFFNESSES OF MODEL ELEMENTS

During periods of low amplitude oscillation, a bridge-soil system can be modelled using the linear elements as described in Chapter II. It may be necessary in this case to treat the friction and expansion joint elements in a piece-wise linear fashion. For a severe earthquake however inelastic deformations may occur in the concrete columns and/or backfill soils, separations and impacts may develop between the abutments and backfills, slippages may take place in the expansion joints, and yielding may take place at the soil boundaries or in the foundation to complicate the behavior.

It is the purpose of this chapter to describe the non-linear behaviors of all elements and to derive their non-linear stiffnesses.

A. GENERAL ELASTIC-PERFECTLY PLASTIC STRESS-STRAIN RELATIONS

Presently, extensive literature exists on the theory of plasticity and its application to different types of materials and structural elements [30, 46, 85]. Recently, its application has been extended to soil structures and frame structures as reported by Dibaj and Penzien, and by Porter and Powell [28, 83].

The first step in deriving the stress-strain relations for an elastic-perfectly plastic material is to assume a yield function expressed in terms of the stress space. This stress function can be expressed as

$$f(\tau_{ij}) = 0 \tag{49}$$

-49-

By application of the flow rule, the plastic strain increment tensor is derivable from this function using the relation

$$\delta \epsilon_{ij}^{P} = \lambda \frac{\partial f}{\partial \tau_{ij}}$$
(50)

where λ is a non-negative scale factor. The total strain increment tensor is thus decomposed into its elastic and plastic components as expressed by

$$\delta \varepsilon_{ij} = \delta \varepsilon_{ij}^{E} + \delta \varepsilon_{ij}^{P}$$
(51)

The generalized Hooke's law, relating the increment of stress tensor to the increment of elastic strain tensor, can be written in the form

$$\delta \tau_{ij} = C^{E}_{ijkl} \delta \varepsilon^{E}_{ij}$$
(52)

Using Eq. (51), Eq. (52) can be rewritten as

$$\delta \tau_{ij} = c_{ijkl}^{E} (\delta \varepsilon_{kl} - \delta \varepsilon_{kl}^{P})$$
 (53)

For an elastic-perfectly plastic material

$$\delta f = \frac{\partial f}{\partial \tau_{ij}} \delta \tau_{ij} = 0$$
 (54)

Substituting Eqs. (53) and (50) into Eq. (54), one obtains

$$\frac{\partial f}{\partial \tau_{ij}} C^{E}_{ijkl} \left(\delta \xi_{kl} - \delta \varepsilon^{P}_{kl} \right) = 0$$
(55)

or

$$\frac{\partial f}{\partial \tau_{ij}} c^{E}_{ijkl} \delta \varepsilon_{kl} - \frac{\partial f}{\partial \tau_{ij}} c^{E}_{ijkl} \frac{\partial f}{\partial \tau_{kl}} \lambda = 0$$
(56)

Solving for λ gives

$$\lambda = h C_{ijkl}^{E} \frac{\partial f}{\partial \tau_{ij}} \delta \varepsilon_{kl}$$
(57)

where

$$\frac{1}{h} = C_{ijkl}^{E} \frac{\partial f}{\partial \tau_{ij}} \frac{\partial f}{\partial \tau_{kl}}$$
(58)

Substituting Eq. (57) into Eq. (50) results in the relation

$$\delta \varepsilon_{ij}^{P} = h C_{mnkl}^{E} \frac{\partial f}{\partial \tau_{mn}} \delta \varepsilon_{kl} \frac{\partial f}{\partial \tau_{ij}}$$
(59)

A further substitution of this relation into Eq. (53) gives

$$\delta \tau_{ij} = c^{E}_{ijkl} (\delta \varepsilon_{kl} - h c^{E}_{ijmn} \frac{\partial f}{\partial \tau_{ij}} \frac{\partial f}{\partial \tau_{kl}} \delta \varepsilon_{mn})$$
 (60)

or

$$\delta \tau_{ij} = C_{ijkl}^{E} (\delta \varepsilon_{kl} - A_{klmn} \delta \varepsilon_{mn})$$
 (61)

where

$$A_{klmn} = h C_{ijkl}^{E} \frac{\partial f}{\partial \tau_{ij}} \frac{\partial f}{\partial \tau_{mn}}$$
(62)

The final form of the stress-strain relation for elasto-perfectly plastic material can now be written in the form

$$\delta \tau_{ij} = C_{ijkl} \delta \varepsilon_{kl}$$
(63)

where

$$C_{ijkl} = C_{ijkl}^{E} - C_{ijmn}^{E} A_{klmn}$$
(64)

$$C_{ijkl}^{P} = C_{ijmn}^{E} A_{klmn}$$
 (65)

B. SOIL FINITE ELEMENT

*The Mohr-Coulomb criterion as stated in Eq. (43) of Chapter III may be expressed in terms of the principal stresses, namely

$$(\sigma_1 - \sigma_3) + (\sigma_1 + \sigma_3) \sin \phi = 2c \cos \phi$$
(66)

where $\sigma_1 \ge \sigma_2 \ge \sigma_3$ with tension as positive. In the case of two dimensional stress in the x,y plane, this relationship takes the form

$$(\sigma_{x} + \sigma_{y}) \sin \phi + 2R - 2c \cos \phi = 0$$
 (67)

where

$$R = \left[\left(\frac{\sigma_{x} - \sigma_{y}}{2} \right)^{2} + \left(\tau_{xy} \right)^{2} \right]^{\frac{1}{2}}$$
(68)

is the radius of the failure stress circle as shown in Fig. 25.

1. <u>Tangent Stiffness In Plain Strain</u> - The derivative of tangent stiffness given by Eqs. (49) through (65) will now be presented in matrix form for the case of plain strain. Using the Mohr-Coulomb criterion as the yield function $f(\tau_{ij})$, and the index notation for stresses such that $\tau_{11} = \sigma_x$, $\tau_{22} = \sigma_y$, and $\tau_{12} = \tau_{xy}$, one obtains

$$f = (\tau_{11} + \tau_{22}) \sin \phi + 2 \left[\left(\frac{\tau_{11} - \tau_{22}}{2} \right)^2 + \tau_{12}^2 \right]^{\frac{1}{2}} - 2c \cos \phi = 0$$
(69)

$$q_{ij} = \frac{\partial f}{\partial \tau_{ij}}$$
(70)

Equation (50) becomes

$$\{\delta \varepsilon^{\mathbf{P}}\} = \lambda\{\mathbf{q}\} \tag{71}$$

where

$$\{q\}^{T} = \langle q \rangle = \langle q_{11} q_{22} q_{12} \rangle$$

$$= \langle [\frac{1}{2} \sin \phi + (\frac{\tau_{11} - \tau_{12}}{R})], [\frac{1}{2} \sin \phi - (\frac{\tau_{11} - \tau_{22}}{R})],$$

$$[2 \frac{\tau_{12}}{R}] \rangle$$
(72)

Equation (51) in matrix form can be written as

$$\{\delta \varepsilon\} = \{\delta \varepsilon^{E} + \delta \varepsilon^{P}\}$$
(73)

where

.

$$\begin{split} \left\{ \delta \ \epsilon \right\}^{\mathrm{T}} &= \langle \delta \ \epsilon \rangle = \langle \delta \ \epsilon_{11} \ \delta \ \epsilon_{22} \ \delta \ \epsilon_{12} \\ \left\{ \delta \ \epsilon^{\mathrm{P}} \right\}^{\mathrm{T}} &= \langle \delta \ \epsilon^{\mathrm{P}} \ \rangle = \langle \delta \ \epsilon_{11}^{\mathrm{P}} \ \delta \ \epsilon_{22}^{\mathrm{P}} \ \delta \ \epsilon_{12}^{\mathrm{P}} \\ \left\{ \delta \ \epsilon^{\mathrm{E}} \right\}^{\mathrm{T}} &= \langle \delta \ \epsilon^{\mathrm{E}} \ \rangle = \langle \delta \ \epsilon_{11}^{\mathrm{E}} \ \delta \ \epsilon_{22}^{\mathrm{E}} \ \delta \ \epsilon_{12}^{\mathrm{P}} \\ \left\{ \delta \ \epsilon^{\mathrm{E}} \right\}^{\mathrm{T}} &= \langle \delta \ \epsilon^{\mathrm{E}} \ \rangle = \langle \delta \ \epsilon_{11}^{\mathrm{E}} \ \delta \ \epsilon_{22}^{\mathrm{E}} \ \delta \ \epsilon_{12}^{\mathrm{E}} \\ \left\{ \delta \ \tau \right\} = \ [\mathrm{C}^{\mathrm{E}}] \ \left\{ \delta \ \epsilon^{\mathrm{E}} \right\} \end{split}$$

and where

$$\{\delta \tau\}^{T} = \langle \delta \tau \rangle = \langle \delta \tau_{11} \delta \tau_{22} \delta \tau_{12} \rangle$$
(74)

$$[C^{E}] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$
(75)

-53-

and

$$h = h{q}^{T} [C^{E}] \{\delta \varepsilon\}$$
(76)

$$\frac{L}{h} = \{q^{T}\} [C^{E}] \{q\}$$

$$= \frac{E}{1+\nu} \left[\frac{\sin^{2} \phi}{2(1-2\nu)} + \frac{1}{2} + \frac{3}{2} \frac{\tau^{2}}{R^{2}} \right].$$
(77)

$$\frac{1}{h} = \frac{E}{1+\nu}$$
(78)

where

)

ì

$$B = \frac{\sin^2 \phi}{2(1-2\nu)} + \frac{1}{2} + \frac{3}{2} \frac{\tau_{12}^2}{R^2}$$
(79)

.

Equations (62) through (65) in matrix form become

$$[A] = h \{q\} \{q\}^{T} [C^{E}]$$
(80)

$$[\delta \tau] = [C] \{\delta \varepsilon\}$$
(81)

$$[C] = [C^{E}] - [C^{E}] [A]$$

= $[C^{E}] - h[C^{E}] \{q\} \{q^{T}\} [C^{E}]$
= $[C^{E}] - [C^{P}]$ (82)

Letting

$$\{Q\}^{T} = \{q\}^{T} [C^{E}]$$

$$= \frac{E}{1+\nu} < Q_{1} Q_{2} Q_{3} >$$

$$= \frac{E}{1+\nu} < \frac{\sin \phi}{2(1-2\nu)} + \frac{\tau_{11} - \tau_{12}}{4R}, \frac{\sin \phi}{2(1-2\nu)} - \frac{\tau_{11} - \tau_{22}}{4R}, \frac{\tau_{12}}{R} >$$
(83)

, the matrix $[C^P]$ can be expressed in the form

$$\begin{aligned} \mathbf{C}^{\mathbf{P}} &= \mathbf{h} [\mathbf{C}^{\mathbf{E}}] \{q\} \{q\}^{\mathbf{T}} [\mathbf{C}^{\mathbf{E}}] \\ &= \mathbf{h} \{Q\} \{Q\}^{\mathbf{T}} \\ \\ &= \frac{\mathbf{E}}{\mathbf{B} (1+\nu)} \begin{bmatrix} Q_1^{2} & Q_1 Q_2 & Q_1 Q_3 \\ Q_2 Q_1 & Q_2^{2} & Q_2 Q_3 \\ Q_3 Q_1 & Q_3 Q_2 & Q_3^{2} \end{bmatrix} \end{aligned}$$
(84)

Finally, the tangent stiffness in explicit matrix notation becomes

$$[C] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} - \frac{E}{B(1+\nu)} \begin{bmatrix} Q_1^2 & Q_1Q_2 & Q_1Q_3\\ Q_2Q_1 & Q_2^2 & Q_2Q_3\\ Q_3Q_1 & Q_3Q_2 & Q_3^2 \end{bmatrix}$$
(85)

2. <u>Postulate for Application of Tangent Stiffness to the Case of</u> <u>Plane Stress</u> - In order to use the previously derived tangent stiffness for the case of plane stress, one must make two assumptions as follows: (1) no yielding occurs in the third direction and (2) the results of triaxial tests are directly applicable to the case of plain stress. Under these assumptions, the above derivations for plane strain also apply to the case of plane stress except that the matrix [C^E] is changed to the form

$$[C^{E}] = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
(86)

This results in the following changes

$$\{q\}^{T} [C^{E}] \{q\} = \frac{2E}{1-\nu^{2}} [(1+\nu) \sin^{2}\phi + (1-\nu) (\frac{\tau_{11}^{2} - \tau_{22}}{4R})^{2} + (1-\nu) (\frac{\tau_{12}^{2}}{R})^{2}$$

. 2

$$\frac{1}{h} = \frac{2EB}{1-v^2}$$
(88)

$$B = [(1+\nu) \sin^2 \phi + (1-\nu) (\frac{\tau_1 - \tau_{22}}{4R})^2 + (1-\nu) (\frac{\tau_{12}}{R})^2] (89)$$

$$\{Q\}^{T} = \{q\}^{T} [C^{E}]$$

$$= \frac{E}{1-\nu^{2}} \langle Q_{1} Q_{2} Q_{3} \rangle$$

$$= \frac{E}{1-\nu^{2}} \langle \frac{1}{2} (1+\nu) \sin \phi + (1+\nu) \frac{\tau_{11} - \tau_{22}}{4R},$$

$$\frac{1}{2} (1+\nu) \sin \phi - (1+\nu) \frac{\tau_{11} - \tau_{22}}{4R}, (1-\nu) \frac{\tau_{12}}{R} \rangle$$
(90)

$$[C^{P}] = h[C^{E}] \{q\} \{q^{T}\} [C^{E}]$$
$$= h\{Q\} \{Q\}^{T}$$

$$= \frac{E}{2B(1-v^{2})} \begin{bmatrix} Q_{1}^{2} & Q_{1}Q_{2} & Q_{1}Q_{3} \\ Q_{2}Q_{1} & Q_{2}^{2} & Q_{2}Q_{3} \\ Q_{3}Q_{1} & Q_{3}Q_{2} & Q_{3}^{2} \end{bmatrix}$$
(91)

Finally, one obtains

.

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} C^{E} \end{bmatrix} - \begin{bmatrix} C^{P} \end{bmatrix}$$

$$= \frac{E}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} - \frac{E}{2B(1 + \nu)} \begin{bmatrix} Q_{1}^{2} & Q_{1}Q_{2} & Q_{3} \\ Q_{2}Q_{1} & Q_{2}^{2} & Q_{2}Q_{3} \\ Q_{3}Q_{1} & Q_{3}Q_{2} & Q_{3}^{2} \end{bmatrix}$$
(92)

C. COLUMN ELEMENT

1. <u>Trilinear Yield Surface of the Moment-Axial Force Interaction</u> <u>Diagram</u> - Moment-axial force interaction curves for the most commonly used sections of reinforced concrete columns are available in handbooks published by the American Concrete Institute [2]. These sections include the spirally reinforced, circular and square columns, and the symmetrically reinforced, rectangular tied columns. Three typical sections are shown in Fig. 27. For other types of sections, a computer program has been developed to obtain the interaction curves by a direct analysis method [105].

There are three controlling points on the interaction curve which can be used to approximate its form using a trilinear relationship. These points are the minimum eccentricity point B, the balanced point C, and the pure moment point D, as shown in Fig. 26. Segment AB having a horizontal slope defines the ultimate axial load capacity as that axial load given by the ACI code for the minimum eccentricity condition [35]. Segment BC defining the compression failure zone connects point B with the balanced point C which corresponding to a concrete strain of 0.003 and a steel strain equal to the yield strain. Finally, segment CD connects point C with point D which corresponds to the yield moment in the presence of no axial load. This latter segment defines the tension failure zone. Since tension seldom occurs in the columns of short bridges, it is not necessary to define the interaction diagram in the negative (tension) region of P. Line segment OD therefore is considered the boundary line for the yield surface which signifies zero tension capacity.

-57-

Using the approximate trilinear form of the interaction curve, the normalized yield stress function can be written as

$$f_{i}(S_{1}, S_{2}) = a_{i}S_{1} + b_{i}S_{2} + c_{i} = 0$$
 (93)

where

$$S_1 = \frac{P}{p^2}$$
; $S_2 = \frac{M}{M^2}$ (94)

For line segments AB, BC, and CD, coefficients a_i, b_i, and c_i are, respectively,

$$a_{1} = 1 \qquad a_{2} = \frac{M_{1}}{M_{2}} - 1 \qquad a_{3} = \frac{M_{3}}{M_{2}} - 1$$

$$b_{1} = 0 \qquad ; \qquad b_{2} = 1 - \frac{P_{1}}{P_{2}} \qquad b_{3} = 1 - \frac{P_{3}}{P_{2}} \qquad (95)$$

$$c_{1} = -\frac{P_{1}}{P_{2}} \qquad c_{2} = \frac{P_{1}}{P_{2}} - \frac{M_{1}}{M_{2}} \qquad c_{3} = \frac{P_{3}}{P_{2}} - \frac{M_{3}}{M_{2}}$$

2. <u>Tangent Stiffness</u> - Using the trilinear interaction relationship, the derivation of the elastic-perfectly plastic tangent stiffness of a column follows the same procedure used previously for soils except one must consider that (1) plastic deformations are concentrated at the ends of the element with the deformations taking place independently over zero lengths at each end of the element, (2) plastic deformations are independent of the shear forces present, and (3) the stiffnesses are expressed in terms of element end forces and displacements rather than in terms of stress and strain as in the case of soil elements. In this case, one obtains

-58-
where du_{I}^{P} and du_{J}^{P} are the plastic deformation increments at ends I and J of the element, respectively, and λ_{I} and λ_{J} are the associated proportionality factors. It follows therefore that

$$\{du^{P}\}^{T} = \langle du^{P}_{1} du^{P}_{2} du^{P}_{3} du^{P}_{4} du^{P}_{5} du^{P}_{6} \rangle$$
(97)

$$\{q\}_{m}^{T} = \left\{ \frac{\partial f_{i}}{\partial s_{j}} \right\}_{m}^{I} = \langle a_{i} \ 0 \ b_{i} \rangle_{m}^{I} m = I \text{ or } J \qquad (98)$$

$$\{du\} = \begin{cases} du_{I} \\ du_{J} \end{cases} = \begin{cases} du_{I}^{E} \\ du_{J}^{E} \end{cases} + \begin{cases} du_{J}^{P} \\ du_{J}^{P} \end{cases}$$
(99)

$$\{ds\} = \begin{cases} ds_{I} \\ ds_{J} \end{cases} = [\kappa^{E}] \begin{cases} du_{I}^{D} \\ du_{J}^{E} \end{cases}$$
(100)

where $[\kappa^{E}]$ is the elastic stiffness matrix appearing in Eq. 23. Further, one obtains

$$\{\lambda\} = \begin{cases} \lambda_{I} \\ \lambda_{J} \end{cases} = [h] [q]^{T} [\kappa^{E}] \{du\}$$
(101)

$$[h]^{-1} = [q]^{T} [K^{E}] [q]$$
(102)

$$[A] = [q] [h] [q]^{T} [K^{E}]$$
(103)

$$\{as\} = [K] [du]$$
 (104)

$$[K] = [K^{E}] - [K^{E}] [A]$$

= $[K^{E}] - [K^{E}] [q] [h] [q]^{T} [K^{E}]$
= $[K^{E}] - [K^{P}]$ (105)

3. <u>An Approximation Used in Numerical Iteration</u> - Due to the occurence of impact upon the frictional element at the interface of soil and abutment wall elements, the time interval used in a dynamic analysis to obtain a stable numerical solution must be quite small. It must be sufficiently small so that "overshooting" of the interaction diagram during a single interval as shown in Fig. 28 is minimized. Even though this interval is kept small, the error introduced into a solution by "overshooting' has been corrected [16, 60, 105].

In the present investigation, a simple procedure has been adopted for the overshooting. If, as shown in Fig. 28, the elastic stress state assumed during an interval moves the applied forces from point A to point B then a transition from an elastic to a yield state is indicated. While the new force vector $S_{t+\Delta t}$ as represented by point B is adopted without correction, point C which is the intersection of the new stress vector $S_{t+\Delta t}$ and the yield segment EF is used to calculate the slope of the plastic deformation vector du^P. This same procedure is used when overshooting occurs at a discontinuity point on the interaction curve as shown in Fig. 29. In this case, the elastic stress state assumed during an interval moves the applied forces from point A' to point B'. The new force vector $S_{t+\Delta t}$ intersects line EF; thus, the slope of EF is used to calculate the plastic deformation increment. Other investigators have used somewhat different procedures for this correction [73, 77, 83, 107].

D. FRICTIONAL ELEMENT

The non-linear behavior of the frictional element is described in terms of normal and shear stiffnesses k_n and k_s during three distinct stages, namely, (1) when reparation occurs, in which case $k_n = k_s = 0$, (2) when compression occurs at the interface but the shear strength of the element is not exceeded in which case k_n and k_s are assigned high values, and (3) when compression occurs but the shear strength of the element is exceeded in which case $k_s = 0$ and k_n retains a high value. The shear yield strength of the element can be defined by the Mohr-Coulomb yield criterion, i.e.,

$$\tau = \sigma \tan \phi_{w} \tag{106}$$

where ϕ_w is the angle of wall friction between the soil and the abutment wall.

Before discussing the value of ϕ_w to be used, two terms must be defined [63]. Firstly, the constant volume frictional angle is defined by $\phi_{cv} = \sin^{-1} \left(\frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3} \right)_{cv}$, where σ_1 and σ_3 are the axial stress and confining pressure, respectively, in a triaxial test at that stage when the sand strains without further volume change. Secondly, peak friction angle ϕ is defined as the slope of Mohr envelope which is a function of the stresses indicated at the peak of stress-strain curve of a triaxial test.

For backfill against a concrete wall, Lamb suggests that the angle of wall friction ϕ_w is about equal to ϕ_{cv} and that it typically has a

-61-

numerical value of about 30° [63]. Seed and Whitman in a discussion of dynamically active pressure against walls suggest that $\phi_w = \phi/2$ is satisfactory for most practical purposes [97].

E. EXPANSION JOINT ELEMENT

The stiffnesses of the expansion joint element can be defined in terms of normal and shear stiffnesses k_n and k_s during three stages, (1) when the frictional resistance between the deck and abutment is not exceeded in which case k_n and k_s are assigned high values, (2) when the frictional resistance is exceeded, but the gap between deck and abutment as shown in Fig. 6a is not closed, in which case $k_s = 0$ and k_n retains a high value, (3) when the frictional resistance is exceeded and the gap is closed in which case, if the relative displacement indicated is consistent with gap closure, high values k_n and k_s are retained.

F. SOIL BOUNDARY ELEMENT AND EQUIVALENT COLUMN OF FOUNDATION

The non-linear behavior of the soil boundary element and the equivalent column foundation element can be approximated by defining yield . levels using standard methods and adopting elasto-plastic hysteretic models. In the present investigation, only elastic behavior has been considered.

(a) CIRCULAR SECTION WITH BARS CIRCULARLY ARRANGED

(b) SQUARE SECTIONS WITH BAR CIRCULARLY ARRANGED

(c) RECTANGULAR SECTION

FIG. 27 INTERACTION DIAGRAM OF CONCRETE COLUMN

FIG. 29 OVERSHOOTING AT DISCONTINUITY

V DYNAMIC ANALYSIS PROCEDURES

In the subsequent sections, the nonlinear coupled equations of motion for the discrete parameter soil-structure system are formulated and the method used to establish their associated stiffness, mass, and damping matrices are described. Also presented are the step-by-step integration techniques employed in their solution.

A. EQUATIONS OF MOTION

Although some previous investigations have considered spacial variations in the earthquake ground motions [27, 32, 43], the present investigation assumes identical motions at all base points of the soil-structural system. This assumption is considered reasonable due to the relatively short lengths of bridges being considered.

The coupled equations of motion at time t for an N degree of freedom system subjected to rigid base excitation can be expressed in the matrix form

$$[M] { [u]}_{t} + [C]_{t} { [u]}_{t} + [K]_{t} { [u]}_{t} = { R }_{t}$$
(107)

where [M] is the constant mass matrix, $[C]_t$, and $[K]_t$ are the time dependent damping and stiffness matrices, respectively, and where $\{u\}_t$, $\{u\}_t$, and $\{u\}_t$ are the nodal point displacement, velocity, and acceleration vectors, respectively. The excitation force vector $\{R\}_t$ due to rigid base motions is given by the relation

$$\{R\}_{t} = -[M] \{I\} (\ddot{u}_{gt}^{X} + \ddot{u}_{gt}^{Y})$$
(108)

-66-

where $\{I\}$ is the unit vector and \ddot{u}_{gt}^{x} and \ddot{u}_{gt}^{y} are the horizontal and vertical components of ground acceleration.

B. STIFFNESS MATRIX

The complete stiffness matrix [K]_t is assembled from the individual element stiffness matrices using the direct stiffness method [22]. The individual element stiffnesses during the elastic and inelastic ranges in each time interval are obtained by the procedures described in Chapters II and IV. The complete stiffness matrix takes on a symmetric banded form; thus, only the diagonal and the off-diagonal terms on one side need be stored in the computer.

C. MASS MATRIX

The mathematical model used assumes all mass as concentrated at the nodal points. The diagonal mass matrix which results represents a significant saving in computer storage and computational time when compared with similar requirements for the consistent mass matrix [21]. One-third of the mass of each triangular element, one-fourth of the mass of each quadrilateral element, and one-half of the mass of each beam element are lumped at their respective nodal points. No rotational moments of inertia are assigned to these masses. The resulting mass matrix for the complete soil-structural system takes the form

$$[M] = diag < M_1 M_2 --- M_p >$$
(109)

where M, is the mass associated with the ith degree of freedom and n

-67-

is the total number of degrees of freedom present in the system. The static condensation procedure is used to eliminate the degree of freedom of zero rotational masses in the solution of eigenvalues.

D. DAMPING MATRIX

Various methods have been used by investigators to determine the viscous damping matrix corresponding to matrix [C]_t in Eq. (107) [44]. Wilson and Penzien have described two methods for evaluting orthogonal damping matrices [115]. The first method relates the modal damping ratios to the coefficients in the Caughey series form [15]. The second method is a direct approach which expresses the damping matrix as a sum of a series of matrices each of which produces damping in only one particular mode. The second approach has the advantage that prescribed damping ratios in all modes are easily controlled.

The Rayleigh damping matrix which constructs a damping matrix from a scaled linear combination of the mass and stiffness matrices is used in the present investigation. This type of damping matrix has the advantage that it can be calculated directly using the relation

$$[C]_{t} = \alpha[M] + \beta[K]_{t}$$
(110)

where α and β are scalar quantities to be prescribed. By properly selecting these scalar values, the damping ratios can be controlled in two normal modes. It can be shown that these quantities are related to the damping ratios (ξ) and circular frequencies (ω) of the ith and jth normal modes through the equations

-68-

$$\alpha = \frac{2 \omega_{i} \omega_{j} (\xi_{j} \omega_{i} - \xi_{i} \omega_{j})}{(\omega_{i}^{2} - \omega_{j}^{2})}$$
(111)
$$\beta = \frac{2 (\xi_{i} \omega_{i} - \xi_{j} \omega_{j})}{(\omega_{i}^{2} - \omega_{j}^{2})}$$
(112)

Further, it can be shown that if α and β satisfy Eqs. (111) and (112), the damping ratio in nth normal has the value given by

$$\xi_{n} = \frac{\alpha + \beta \omega_{n}^{2}}{2 \omega_{n}}$$
(113)

In the present investigation, the numerical values of α and β are determined by using the initial elastic soil-structural system and by prescribing the damping ratios of any two modes of the system. These quantities are then held constant at these values throughout the time history of response including those periods of time when the system responds inelastically.

As shown by Eq. (107), the stiffness matrix varies with time due to nonlinear effects; therefore, the damping matrix also varies with time. Because the stiffnesses in the system decrease considerably during periods of element yielding, the viscous damping present during these periods also decreases. It should be kept in mind, however, that the major sources of energy dissipation during these periods are the hysteresis loops in the force-deformation relations as described in Chapter III.

E. STEP-BY-STEP INTEGRATION TECHNIQUES

-69-

Having the solution of the coupled equations of motion at time t, the step-by-step integration procedure allows one to obtain their solution at a later time t+ Δ t. To develop this procedure, the matrix equation of motion is transformed to its incremental form by subtracting Eq. (107) for time t from the corresponding equation for time t+ Δ t as given by

$$[M] (\{\ddot{u}\}_{t} + \{\Delta\ddot{u}\}_{t}) + [C]_{t} (\{\dot{u}\}_{t} + \{\Delta\dot{u}\}_{t}) + [K]_{t} (\{u\}_{t} + \{\Delta u\}_{t})$$
$$= \{R\}_{t} + \{\Delta R\}_{t}$$
(114)

In this equation, the incremental quantities represent those changes taking place during the interval Δt following time t. Thus, one obtains the incremental form

$$[M] \{\Delta \ddot{u}\}_{t} + [C]_{t} \{\Delta \dot{u}\}_{t} + [K]_{t} \{\Delta u\}_{t} = \{\Delta R\}_{t}$$
(115)

To find the incremental changes, various procedures can be employed [7, 76]. The differences in these procedures relate to the analytical form of the variation in response over the time interval Δt . In the present investigation, two different analytical forms have been programmed for computer solution, namely, constant acceleration and linear acceleration. These forms lead to the following equations for velocity and displacement at time t+ Δt expressed in terms of the state vectors at time t and the acceleration vector at time t+ Δt :

Constant Acceleration

$$\left\{\dot{\mathbf{u}}\right\}_{\mathbf{t}+\Delta\mathbf{t}} = \left\{\dot{\mathbf{u}}\right\}_{\mathbf{t}} + \frac{1}{2}\Delta\mathbf{t} \left\{\ddot{\mathbf{u}}\right\}_{\mathbf{t}} + \frac{1}{2}\Delta\mathbf{t} \left\{\ddot{\mathbf{u}}\right\}_{\mathbf{t}+\Delta\mathbf{t}}$$
(116)

$$\{u\}_{t+\Delta t} = \{u\}_{t} + \Delta t \{\ddot{u}\}_{t} + \frac{1}{4} \Delta t^{2} \{\ddot{u}\}_{t} + \frac{1}{4} \Delta t^{2} \{\ddot{u}\}_{t+\Delta t}$$
(117)

Linear Acceleration

.

$$\{\mathbf{\hat{u}}\}_{t+\Delta t} = \{\mathbf{\hat{u}}\}_{t} + \frac{1}{2}\Delta t \{\mathbf{\ddot{u}}\}_{t} + \frac{1}{2}\Delta t \{\mathbf{\ddot{u}}\}_{t+\Delta t}$$
(118)

$$\{u\}_{t+\Delta t} = \{u\}_{t} + \Delta t \quad \{\dot{u}\}_{t} + \frac{1}{3}\Delta t^{2} \quad \{\ddot{u}\}_{t} + \frac{1}{6}\Delta t^{2} \quad \{\ddot{u}\}_{t+\Delta t}$$
(119)

Using the following definitions for the incremental vectors

$$\{\Delta \ddot{u}\}_{t} = \{\ddot{u}\}_{t+\Delta t} - \{\ddot{u}\}_{t}$$
(120)

$$\{\Delta \mathbf{u}^{\dagger}\}_{t} = \{\mathbf{u}^{\dagger}\}_{t+\Delta t} - \{\mathbf{u}^{\dagger}\}_{t}$$
(121)

$$\{\Delta u\}_{t} = \{u\}_{t+\Delta t} - \{u\}_{t}$$
(122)

the incremental velocity and acceleration vectors can be expressed in the form

Constant Acceleration

$$\{\Delta \ddot{u}\}_{t} = \frac{4}{\Delta t^{2}} \{\Delta u\}_{t} - \{A\}_{t}$$
(123)

$$\left\{\Delta \hat{\mathbf{u}}\right\}_{t} = \frac{2}{\Delta t} \left\{\Delta \mathbf{u}\right\}_{t} - \left\{B\right\}_{t}$$
(124)

where

$$[A]_{+} = \frac{4}{\Lambda_{+}} \{ \dot{u} \}_{+} + 2 \{ \ddot{u} \}_{+}$$
 (125)

$${B}_{t} = 2 {u}_{t}$$
 (126)

$$\left\{\Delta \ddot{\mathbf{u}}\right\}_{t} = \frac{6}{\Delta t^{2}} \left\{\Delta \mathbf{u}\right\}_{t} - \left\{\mathbf{A}\right\}_{t}$$
(127)

$$\{\Delta \dot{u}\}_{t} = \frac{3}{\Delta t} \{\Delta u\}_{t} - \{B\}_{t}$$
(128)

where

$$\{\mathbf{A}\}_{t} = \frac{6}{\Delta t} \{\mathbf{\ddot{u}}\}_{t} + 3 \{\mathbf{\ddot{u}}\}_{t}$$
(129)

$$\{B\}_{t} = 3 \{\tilde{u}\}_{t} + \frac{1}{2} \Delta t \{\tilde{u}\}_{t}$$
(130)

Using these relations, the incremental equation of motion, Eq. (115), can be written in the form

.

$$\left[\overline{K}\right]_{t} \left\{\Delta \overline{u}\right\}_{t} = \left\{\Delta \overline{R}\right\}_{t}$$
(131)

where

.

$$\{\Delta \overline{R}\}_{t} = \{\Delta R\}_{t} + [M] \{A\}_{t} + C_{2} [M] \{B\}_{t}$$
(132)

$$\left[\overline{K}\right]_{t} = \cdot \left[K\right]_{t} + C_{1} \left[M\right]$$
(133)

and the actual incremental displacement vector can be expressed as

۰.

$$\{\Delta u\}_{t} = C_{3} \left(\{\Delta \overline{u}\}_{t} + \beta\{B\}_{t}\right)$$
(134)

Constants C_1 , C_2 , and C_3 are given by the relations

Constant Acceleration

$$C_{1} = \frac{2 \alpha \Delta t + 4}{\Delta t^{2} + 2 \beta \Delta t}$$

$$C_{2} = \alpha - C_{1} \beta$$
(135)
(136)

$$C_{3} = \frac{\Delta t}{\Delta t + 2\beta}$$
(137)

Linear Acceleration

$$C_{1} = \frac{3 \alpha \Delta t + 6}{\Delta t^{2} + 3 \beta \Delta t}$$
(138)

$$C_2 = \alpha - C_1 \beta \tag{139}$$

$$C_{3} = \frac{\Delta t}{\Delta t + 3\beta}$$
(140)

After computing the incremental displacement vector using Eq. (134), the corresponding incremental acceleration and velocity vectors are determined using Eqs. (123) and (124), or Eqs. (127) and (128), respectively. The displacement, velocity and acceleration vectors at time $t+\Delta t$ are then evaluated using Eqs. (120), (121) and (122), respectively. The tangent stiffness, strain, and stress for each element can now be calculated for time $t+\Delta t$.

An alternative solution of the incremental equilibrium equation, Eq. (115) can be obtained by separating the tangent stiffness matrix $[K]_t$ into its elastic and plastic parts, $[K^E]$ and $[K^P]_t$, as described in Chapter IV. That term associated with plastic deformation is then transferred to the right hand side of the equation of motion and is treated as an equivalent load vector [21].

In the above described step-by-step integration procedures, the initial displacements and velocities at time t = 0 are assumed equal to zero. The very first incremental acceleration vector is then computed directly from Eq. (115), i.e.,

 $[M] \{\Delta \ddot{u}\}_{0} + [C]_{0}\{0\}_{0} + [K]_{0}\{0\}_{0} = \{\Delta R\}_{0}$

-73-

$$\{\Delta \ddot{u}\}_{0} = [M]^{-1} \{\Delta R\}_{0} = [M]^{-1} \{R\}_{0} = -\{\ddot{u}_{g}\}_{0}$$

The initial forces existing in the elements cannot be assumed zero but must be taken equal to the static gravitational forces since tangent stiffness is dependent upon total force (gravity plus seismic).

While step-by-step integration procedures similar to those described above must be used for nonlinear analyses, they may or may not be used for linear analyses since the mode superposition method is an alternate method which can be used for linear analyses [116]. In the present investigation, it was found computationally convenient to use the stepby-step method for both linear and nonlinear analyses.

F. TIME INTERVAL Δt

The step-by-step integration method is accurate only if the time interval Δt is small compared with the shortest period T of the soilstructural system and is also small compared with the predominant periods in the excitation. Assuming the latter condition is satisfied, the ratio $\Delta t/T$ must be selected less than a certain critical value to insure a convergent and stable solution in the case of the linear acceleration method; however, it can be shown that the constant acceleration method is always stable for a linear system [76]. In the present study, the presence of the nonlinear friction elements tend to encourage an unstable response, if the $\Delta t/T$ ratio is taken too large. Therefore, extreme care must be taken in selecting the numerical value of this ratio. The effects of this particular parameter on dynamic response are discussed

or

G. EARTHQUAKE INPUT

In the present investigation, the horizontal ground motion was prescribed in accordance with the acceleration time-history shown in Fig. 30. This artificial accelerogram was generated by A. K. Chopra to simulate the ground motions produced by the San Fernando earthquake at the site of the Olive View Hospital located about 6 miles southwest of the epicenter [18]. It has a peak acceleration of 0.5 g and a uniform phase of high intensity shaking for 8 seconds.

The vertical ground motions were assumed zero for the present study, but the computer program has the option to permit input of vertical ground motions.

SIMULATED GROUND ACCELERATION RECORD OF THE SAN FERNANDO EARTHQUAKE AT THE OLIVE VIEW HOSPITAL SITE FIG.30

ACCEL (G) 100

VI PARAMETER STUDIES

The previously defined mathematical modelling and dynamic analysis procedures have been applied to a straight version of an existing slightlycurved skewed bridge, namely, the North Connector Undercrossing located approximately 800 ft. northerly of Route 5 - San Fernando Road Interchange in the city and county of Los Angeles. Plan and elvation views of this bridge are shown in Fig. 31 along with cross-sectional views of the decks and the centrally located supporting columns. Figure 32 shows a sectional view of the left abutment with a portion of the backfill of extent L and height H.

It is the purpose of this chapter to present the results of dynamic analyses for the North Connector Undercrossing when subjected to one component of earthquake excitation in its longitudinal direction. The ground motions used in this study were the Olive View Hospital accelerations shown in Fig. 30 during the time interval 2-4 seconds. This relatively short duration was chosen to minimize computer time and yet to provide sufficient time for a representative dynamic response to occur. The peak acceleration in this excitation is approximately 0.3 g.

In order to establish an appropriate mathematical model of the entire bridge-soil system, parameter studies were first carried out using a rigid wall with uniform elastic backfill. The complete bridge-soil system was then analyzed with certain parameter variations. The results of these studies along with the results of an integration-time-interval sensitivity analysis are presented in the subsequent sections of this chapter.

-77-

A. RIGID WALL-BACKFILL SYSTEM

1. Lateral Extent of Backfills - To study the longitudinal dimension or extent of backfill required in the mathematical modelling of bridge-soil systems, analyses were conducted using a single rigid wall and a uniform linear-elastic backfill having the properties $\gamma = 110 \text{ pcf}$, v = 0.35, and G = 10 ksi. Five cases with L/H ratios equal to 4.8, 6.0, 10.0, 14.0, and 22.0, as shown in Fig. 33, were used in this investigation. The finite element idealization consists of 5 elements in the vertical direction and a variable number in the horizontal direction. The element length to height ratio R = a/b was maintained at a constant value equal to 2 throughout the extent of the backfill in Cases 1 and 2 but was maintained only over a distance 2H from the wall in Cases 3, 4, and This ratio was set equal to 4 for all elements beyond the distance 5. 2H in the latter cases. No friction elements were placed between the rigid wall and the backfill in these particular studies and the left vertical boundary of the backfill was assumed free in each case. The fundamental period of the soil system under these conditions is about 0.08 seconds in each case with slight increases occurring with increasing values of L/H as shown in Table 1.

Assuming rigid body earthquake excitations to occur along the entire base of the backfill and at the rigid-wall vertical-boundary and assuming 5 percent of critical damping in the first two modes of vibration, time histories of response were obtained for all 5 cases. Response quantities of greatest interestwere the maximum or peak values of (1) total lateral dynamic force exerted on the rigid wall, and (2) horizontal displacements and accelerations at various location in the backfill.

-78-

Figure 34 shows the maximum total lateral dynamic force F_d exerted on the wall for each of the 5 cases studied. This force is reasonably constant at a value of approximately 14.5 kips over the range studied; i.e. 4.8 < L/H < 22, and is about 3.9 times greater than the average static value which is approximately 3.7 kips. The mean location of the resultant force F_d was found to be at a distance 0.52 H above the base which is considerably higher than the position of the resultant static force F_d located at 0.34 H.

The maximum horizontal displacements relative to the moving base at 6 different locations in the backfill are shown in Fig. 35 for all 5 cases. While these displacements are reasonably constant over the range of L/H studied, large differences are noted from one point to another. The displacements for points 1 and 2 are very small due to the fact they are located only one element away from the rigid wall. Points 3 and 4 which are 5 elements away from the wall experienced much larger displacements than points 1 and 2 and points 5 and 6 at the left boundary experienced even larger displacements. These relative displacements reflect the manner in which the rigid wall boundary effects decay with increasing distance from the wall. The displacements for points 3 and 5 are considerably larger than the corresponding displacements for points 4 and 6, respectively; thus, demonstrating the increase in displacements with vertical distance above the rigid base.

Figure 36 shows the maximum total horizontal acceleration at locations 1-6 for all 5 cases studied. The relative variations of this response quantity with L/H, horizontal distance from the wall, and vertical distance above the base are similar to those previously described

-79-

for horizontal displacement. It should be noted that the average acceleration with L/H ranges from about 0.5 g for points 1 and 2 to about 1.1 g for point 5. These values represent a rather small amplification of acceleration at points 1 and 2 and a fairly large amplification of the acceleration at point 5 over the peak excitation acceleration of about 0.3 g.

Based on the numerical results shown in Figs. 34-36 and summarized in Table 2, it appears that an L/H ratio equal to 14 is sufficient for use in any bridge-soil analysis. This ratio may even be reduced to a value of 6 with little loss in accuracy in determining the maximum values of abutment backfill forces. However, this reduction could introduce significant changes in the predicted maximum horizontal accelerations.

2. Length to Height Ratio of Finite Elements - Length to height ratios R = a/b for the finite elements of the backfill model were rather arbitrarily assigned values as shown in Table 1 for the 5 cases previously defined. To investigate the influence of changing these ratios, 4 new cases as shown in Fig. 37, each having an L/H ratio equal to 10, are defined. The length to height ratio equals 2 throughout the model for Case 1 and over a distance 2H from the wall for Cases 2, 3, and 4. Beyond 2H, the length to height ratio equals 4, 6, and 10 for Cases 2, 3, and 4, respectively. Five elements are again used in the vertical direction of the model and fixed and free boundaries are prescribed at the right and left ends, respectively. Linear elastic soil properties are again assumed equal to the values previously assigned.

As before, rigid body earthquake excitations are assumed to occur along the entire base of the backfill and 5 percent of critical damping

-80-

is assigned to the first two modes of vibration. Time histories of response are obtained for all 4 cases, including (1) total dynamic force exerted on the rigid wall, and (2) horizontal displacements and accelerations at 6 locations in the backfill.

Figure 38 shows total static force F_s and the maximum total dynamic lateral force F_d exerted on the wall for each of the 4 cases defined above. This force is fairly constant at a value of approximately 14.5 kips over the range of R assigned beyond x = 2H and is about 3.9 times greater than the average static value. The mean location of the resultant force F_d is at a distance about 0.52H above the base. The average position of the static resultant is 0.34H.

The maximum horizontal displacements relative to the moving base and the maximum total horizontal accelerations at the 6 different locations are shown in Figs. 39 and 40, respectively, for all 4 cases. The results in these figures are quite similar to the results shown the corresponding Figs. 35 and 36. Thus, it is apparent that the changes introduced in R for x > 2H have introduced relatively small changes in overall response and that Case 4, Fig. 37, can be considered a reasonable model of the backfill.

Table 3 presents a summary of maximum response for the above described 4 cases.

3. <u>Number of Finite Elements in the Vertical Direction</u> - All previous cases analyzed have used 5 finite elements in the vertical direction of the backfill. To check the adequacy of this number the distributions and resultant magnitudes of the static and dynamic backfill pressures on the rigid retaining wall are compared using 5 and 10 elements

-81-

in this direction.

Two cases as defined in Fig. 41 are used for this comparison. Both cases use an L/H ratio equal to 10 and R ratios equal to 2 and 10 for x < 2H and x > 2H, respectively. Case 1 uses 5 elements in the vertical direction while Case 2 uses 10 elements.

"It is quite clear from the results in Fig. 41 that the distributions and maximum resultant magnitudes of the backfill forces are very similar for Cases 1 and 2 and that the positions of the corresponding resultants almost coincide. Considering this fact and the fact that their time histories (see Fig. 42) are very similar, one may conclude that 5 finite elements in the vertical direction of the backfill is sufficient for engineering purposes.

4. <u>Soil Stiffness</u> - To study the influence of soil stiffness on the dynamic response of the backfill soil system, the finite element model identified as Case 4 in Fig. 37 was analyzed for three soil conditions, namely, a uniform soil modulus equal 10 ksi, a uniform soil modulus equal to 2.5 ksi, and a variable soil modulus in accordance with Eq. (38) for $K_2 = 50$. Poisson's ratio v was assumed equal to 0.35 and the unit weight was again assigned the value 110 pcf. These new soil conditions are identified as Cases 1 - 3 in Fig. 43.

While the shapes of the distributions of maximum total wall pressures and their resultant force positions are quite similar for all three cases, the magnitudes of the resultant dynamic wall pressures vary considerably with the soil stiffness condition. This variation ranges from $F_d =$ (100) (13.06) for Case 3 to $F_d =$ (154.0) (13.06) for Case ². Obviously, for the particular excitation used, the less stiff backfill soils produce

-82-

higher backfill forces on the rigid wall. If an excitation having a different amplitude distribution with frequency had been used, this observation could be changed considerably. Therefore, one must use caution in interpreting the results of this particular study. It is important to recognize however that soil stiffness can be an important parameter which should be studied using realistic earthquake excitations.

5. Frictional Element Stiffnesses - As pointed out previously, the shear and normal stiffnesses of the frictional elements located between backfill soil and abutment walls are arbitrarily assigned finite but very high values rather than infinite values to avoid discontinuities in their force displacement relations. To study the influences of these stiffnesses on dynamic response, the rigid wall-soil system shown in Fig. 44 was analyzed assuming linear soil behavior. In these studies the shear and normal stiffnesses (K_S and K_N) for each frictional element were assigned equal values ranging from 1 to 10⁹ ksi.

The total static and total maximum dynamic lateral wall forces (F_s and F_d) obtained in these studies are plotted in Fig. 45 for stiffnesses $K_s = K_N$ equal to 1, 10³, 10⁶, and 10⁹ ksi. As one would expect, these forces are reasonably constant over a wide range of stiffnesses. However, as the stiffnesses approach zero, F_s and F_d also approach zero which represent unrealistic values. Theoretically both F_s and F_d should approach constant values asymptotically with increasing stiffnesses, however the value of F_d for $K_S = K_N = 10^9$ ksi is much larger than for the smaller values of stiffness. This large increase is due to a numerical instability which developed in the analysis procedures and therefore

-83-

should be ignored. It appears therefore that realistic wall forces can be obtained by selecting stiffnesses in the range $10^3 < K_s = K_N < 10^6$ ksi.

Although the asymptotic static value of wall force in Fig. 45 is consistent with values previously presented for cases having no friction elements, the maximum dynamic force of about 40.0 kips is considerably larger than the average value (14.5) previously presented. This increase in dynamic wall force is due to the separations and associated impacts which occur between the backfill soil and the upper part of the rigid wall. Thus it appears that for high intensity excitations, the friction element is essential to realistic modelling.

B. INTEGRATION-TIME-INTERVAL SENSITIVITY ANALYSIS

Throughout the rigid wall-backfill parameter studies previously described, the numerical integration time step was assigned a value equal to 0.01 seconds and the constant acceleration method was used which enables response to be stable, but not necessarily convergent, for all modes of vibration. To study the adequacy of using 0.01 seconds for Δt , the rigid wall-soil system defined by Case 4, Fig. 37, was re-analyzed using $\Delta t = 0.001$ seconds. The total number of degrees of freedom for this system is 90 with the fundamental period being 0.084 seconds and the highest period estimated at 0.0065 seconds. The convergent limit of the ratio of time step duration to period, i.e. $\Delta t/T$, is 0.39 for the constant acceleration method. Thus, for $\Delta t = 0.01$ seconds, the convergent period T is 0.026 seconds. Since this period corresponds to the period of the 22nd mode of vibration, only the lowest 22 modes are

-84-

convergent in the constant acceleration method of analysis when $\Delta t = 0.01$ seconds. If on the other hand, $\Delta t = 0.001$ seconds, all modes are convergent.

To check the accuracy of response obtained for the above case using $\Delta t = 0.01$ seconds, the time histories of lateral dynamic wall force and horizontal acceleration at point No. 1 (see Fig. 40) are obtained for $\Delta t = 0.001$ and are plotted in Fig. 46 where they can be compared with corresponding results for $\Delta t = 0.01$ seconds. The vertical acceleration time histories for point No. 1 are plotted in Fig. 47 for $\Delta t = 0.01$ and 0.001 seconds. A summary of the maximum values of response for this case is presented in Table 4.

Obviously, the results of Fig. 46 indicate that a time step interval of 0.01 seconds is quite adequate in predicting total lateral wall force and horizontal acceleration time histories. However, the results of Fig. 47 indicate the very low level vertical acceleration time histories caused primarily by very high frequency modal responses cannot be predicted accurately by $\Delta t = 0.01$ seconds. Since this high frequency response is relatively unimportant from an engineering point of view, it is concluded that $\Delta t = 0.01$ seconds is adequate for the previously described rigid wall-soil parameter studies and also for the bridge-soil system studies to be described subsequently.

C. BRIDGE-SOIL SYSTEM

To study the dynamic response of the combined bridge-soil system, 3 mathematical models of the North Connector Undercrossing as shown in Fig. 48 were defined. Model A has fixed boundary conditions at depth H

-85-

of the backfills, at the base of abutments, and at the base of all columns. Model B has fixed boundary conditions at depths 2.2H and 2.5H of the backfills, leveling with bases of pier columns, which allows the base of abutments to translate and rotate with the soil system, and fixed boundary conditions are also provided at the base of all columns. Model C has fixed boundary conditions only along the base of the backfills as in Model B. The bases of abutments and columns of this model are attached to equivalent columns representing the foundation flexibility. These equivalent columns of course, have fixed boundary conditions at their bases.

The soil elements in all three models can be assumed linear or nonlinear as desired and friction elements can be included in Models A and C, but not in Model B. The backfills extend a distance 6H in all models as shown. The bridge deck is linear in each model; however, either linear or nonlinear columns can be used. Backfill and foundation soils were assumed to have the properties G = 10.0 ksi, v = 0.35, $\gamma = 110$ lb/ft^3 , c = 0, and $\phi = 30^\circ$.

1. <u>Soil Pressures on Abutments</u> - The static and maximum dynamic pressure distributions on one abutment wall for two cases are shown in Fig. 49. The model used for Case 1 is Model A with no friction elements and with all other elements assumed linear. The model used for Case 2 is Model B in its complete linear form. Due to the characteristic response of the bridge-soil system, the static and dynamic pressure distributions are quite different in form in each case. The resultant lateral static force F_s for Case 2 is about 17% less than for Case 1, due to the change in abutment flexibility and the maximum resultant

-86-

dynamic force F_d for Case 2 exceeds the value for Case 1 by 170%. This latter difference is undoubtedly due to a closer matching of the lower mode periods of vibration for Case 2 with the predominant periods in the excitation. The location of the resultant static force is at about H/3 for Case 1 and at about H/2 for Case 2 while the location of the maximum dynamic resultant force is at about 0.53H and 0.6H, respectively.

Another check on the influence of bridge structure flexibility on the resultant abutment soil forces can be made by comparing the results for Cases 1 and 2 in Fig. 50. In this figure, Case 1 is identical to Case 1 in Fig. 49 but Case 2 is different. Here, Case 2 is actually the same as Case 1 except that the abutment wall and column stiffnesses have been reduced by a factor of 10. It is seen that Case 2 shows a 75% increase in the maximum dynamic resultant force over Case 1 due to the decrease in bridge structure flexibility. This increase is consistent with the similar increase previously noted for Case 2 in Fig. 49. The location of the resultant dynamic lateral force is again at about midheight. The increase in the resultant static force for Case 2 over the value for Case 1 is due to the increase in rotation (due to deck dead loads) at the top of the abutment caused by the reduced abutment flexibility.

Further results of analysis are shown in Fig. 51 identified as Cases 1, 2, and 3. In this figure, Case 1 is again the complete linear version of Model A. Cases 2 and 3 are also based on Model A but Case 2 has introduced one nonlinearity, namely the friction elements, and Case 3 has employed two nonlinearities - friction elements and nonlinear soil elements. The very large increase in maximum dynamic force F_d for

-87-

Cases 2 and 3 over Case 1 is due primarily to the impact wall forces following separations between wall and backfill.

Finally the results of two additional analyses are shown in Figure 52. Cases 1 and 2 in this figure are based on Model C using friction elements and linear soil elements; however, Case 2 uses the equivalent foundation columns while Case 1 does not. The most significant result to note in Fig. 52 is that force F_d is more than twice as great for Case 2 over the value shown for Case 1. Again this increase is due to the fact that the more flexible bridge system has a closer matching of frequencies with the predominant frequencies in the excitation.

2. Total Seismic Force Carried by Columns and Abutments - To investigate the maximum total base shear carried by columns and abutments, five cases were analyzed as indicated in Table 5. Case 1 represents the bridge alone with no soil-structure interaction, i.e. Model A, Fig. 48, but with no backfill; Case 2 is Model A with linear backfill and no friction elements; Case 3 is Model B, Fig. 48, with linear backfill; Case 4 is Model A with linear backfill and friction elements; and Case 5 is Model A with non-linear backfill and friction elements. Clearly, the presence of backfill contributes significantly to the maximum total base shear, also it appears from Case 3 that the total base shear increases with overall flexibility which is again evidence of a better matching of the lower natural frequencies with the predominant frequencies in the excitation. The relatively large displacement shown for Case 3 is due to the large flexibility of the system for this case in comparison with the other cases. D. COMPARISON OF RESULTANT ABUTMENT BACKFILL FORCE OBTAINED BY ANALYSIS AND THE MONONOBE-OKABE METHOD

One commonly used formula in calculating the resultant dynamic lateral force on the abutment wall is the Mononobe-Okabe formula [53, 55, 97]. This formula has the following form

$$P_{p} = (1-K_{v}) \cdot r \cdot x \cdot K_{Ep}$$
(141)

where

- P_{p} = Passive earthpressure at depth x
- K = vertical seismic coefficient
- γ = Unit weight of soil
- x = arbitrary depth

K_{FD} = Passive earthpressure coefficient during earthquake

The coefficient K is given by

$$\kappa_{\rm Ep} = \frac{\cos^2 (\phi - \theta_0 + \theta)}{\cos^2 \cdot \cos^2 \cdot \cos^2 (\theta - \theta_0) \left[1 - \sqrt{\frac{\sin \phi \cdot \sin(\phi + \alpha - \theta_0)}{\cos(\theta - \theta_0) \cdot \cos(\theta - \alpha)}}\right]^2}$$

(142)

where

 ϕ = Angle of friction of soil $\theta_0 = \tan^{-1} \frac{K_h}{1-K_v}$

K_b = Horizontal seismic coefficient

 θ = Angle between the backline of the wall and the vertical line

 α = Angle between ground surface and the horizontal line Using ϕ = 30°; θ = 0°; θ_0 = tan⁻¹ $\frac{0.1}{1-0.0}$ = 6°; α = 0°; γ = 110 lb/ft³

 $K_{Ep} = 2.86$

The earthpressure at bottom of wall is

 $p_p = (1-0.0) * 110 * 13.5 * 2.86 = 4.25 K/ft^2$ and the total lateral force on the wall is

$$F_d = \frac{1}{2} * 13.5 * 4.25 = 28.6 \text{ K/ft}$$

Using the non-linear form of Model A, Fig. 48, or Case 3 of Fig. 51, analysis gives

 $F_{d} = 35.0 \text{ K/ft}$

This analytical result is a higher value than that formula given by the Monobe-Okabe. The position of the resultant force is assumed a distance H/3 above the base when using the formula; however, the analysis shows it to be 0.44H above the base. This higher position given by an analysis is consistent with other investigations [97, 117].

	-					
	1. Time step for all cases	 Damping ratio is 0.05 for first two modes G = 10.0 ksi 				
Fundamental Period (Sec.)	0.0825	0.0838	0.0846	0.0848	0,0849	
Subdivision of System	R=2 Uniformly	R=2 Uniformly	R=2 for x < 2H R=4 for x > 2H	R=2 for x < 2H R=4 for x > 2H	R=2 for x < 2H R=4 for x > 2H	
П/Н	4.8	6.0	10.0	14.0	22.0	
Case	Ч	5	m	4	ហ	

Details of Rigid Wall Systems for Study of Lateral Extent Table 1

Comparison of Responses of Rigid Wall System at Different Lateral Extent, Using Case 5 as a Basis for Calculating the Percentage Table 2

									,
n 6		97.6	104.7	110.9	100.2	100		5.31	
u s		98.4	107.3	113.5	100.3	100		8.75	
ב,		115,1	109.7	96.7	99.3	100	0_2	2 .99	
D.		115.9	110.5	94.8	99.4	100	l x nł	4,65	vlav
U 2		104.1	102.5	99.2	97.5	100		1.21	respectiv
ם,		115.2	108.9	1.99	98.2	100		1.12	oint i
Å		96.2	103.1	113.2	100.3	100		2.87	4 4 4 4
A °	8	97.4	106.8	117.3	98.86	100		4.23	- acome
A 4		116.8	110.2	99°5	0°66	100	10 ²	1.96	and Die
A 3		124.4	115.8	102.3	104.5	100	/sec ² x	2.21	ora+i on
A		6.82	100.1	99.5	98.9	100	ļ	1.88	lond m
A		100.3	100.2	98.9	97.9	100		1.90	imiveM o
יס גע		105.8	103.3	99.4	97.9	100	sdi	14.54	4+ 04 0
м Бч		1.99.1	1.99	100	100	100	Ϋ́	3.73	11 pue
Case		Ч	N	m	4	ഗ	Case 5 in	Abso- lute Value	

Fs and Fd are the Static and Maximum Dynamical Lateral Forces. 2.

.

H

н

Comparison of Responses of Rigid Wall System With Different Length to Height Ratio R = a/b, Using Case 1 as Basis for Calculating the Percentage rable 3

- F		T I	1	1				
	U 6		100	97.4	93.1	80.5		6.05
-	u s		100	95.8	89.7	75.0		10.36
	u,		100	97.6	94.3	0.66	< 10 ⁻²	2.96
	n 3		100	97.6	95.1	100.4	INCH *	4.52
	U 2		100	99.2	97.5	99.2		1.21
	u 1		100	97.4	94.7	97.4		1.14
	A 6		100	100	97.2	87.4		3.25
	Å	90	100	97.3	92.2	75.9		5.10
	Å		100	97.0	93.0	96.0	× 10 ²	2.01
	A 3		100	9.66	97.4	1.99	in/sec ²	2.27
	A 2		100	99.5	98.9	99.5		1.88
	Å		100	98.9	98.4	98.4		1.90
	ъ Ч		100	98.8	0.66	98.6	ips	14.63
	ល ម្		100	100	100	100	X	3.73
	Case		Г	2	m	4	Case 1 in	Abso- lute Value

1. A_1 and U_1 are the maximum acceleration and displacement at point i respectively

2. F_{s} and F_{d} are the static and maximum dynamical lateral force

3. Refer to Fig. 37 for details of subdivision

Comparison of Responses of Rigid Wall System With R = 2 for x < 2H and R = 10 for x > 2H at Different Time Step. Using Case 2 as basis Table 4

A 3V		82.1	100	Kips in/sec ² × 10 ²	0.51	
A ₃ h		95,3	100		2.98	
Å. 2V		0,001	100		0.041	
A ₂ h		96,0	100		2.01	
Alv	eko	233.3	100		0.056	
Alh		96.4	100		1.94	
ъ Ч		0.66	100		14.58	
ហ ជ្រ		100	100		3.725	
Time Step	Sec	10.01	100.0	Sec	0.001	
Case		ч	7	Case 2 in	Abso- lute Value	

 \mathbf{F}_{s} , \mathbf{F}_{d} are the static and maximum dynamical lateral forces ч.

2. A_{ih} , A_{iv} are the maximum horizontal and vertical acceleration at point 1.

-94-
Comparison of Maximum Total Seismic Force on the Bridge With or Without Soil Interaction Table 5

	Remarks		1. Fmax is the maximum total	2. A., U is the horizontal acceleration and displacement at	the center of deck at the time of F _{max}	3. Case 2 - Fig. 48-A, no fric- tion element	Case 4, 5 - Fig. 48-A, with friction element		
	Fmax		100	168	205	276	225	KIPS	408.0
	×c	9 0	100	140.	1120	186	151	INCH 10 ⁻²	3 • 63
	Åx		100	73	237	138	163	ي ۲	0.50
	Case Bridge Model		Bridge alone	linear bridge-soil system, abutment base fixed	linear bridge-soil system, abutment on soil	Bridge-soil system, linear soil, non-linear friction	Bridge-soil system, non-linear soil and friction	1 Absolute Value	
			н	2	ę	4	ы	Case	

-96-

FIG. 32 ABUTMENT AND BACKFILLS

CASE I L/H = 4.8 CASE I L/H = 4.8	CASE 3 L/H = 10.0 $R = \alpha/b$ $R = \alpha/b$ CASE 4 L/H = 14.0 $R = \alpha/b$	FIG.33 RIGID WALL SYSTEM FOR STUDYING THE EFFECTS OF LATERAL EXTENT OF BACKFILLS

-98-

-101-

R= a/b L/H = 10.0 FOR ALL CASES		
CASE 1, R=2 UNIFORMLY	CASE 2, R=2 FOR X < 2H R=4 FOR X > 2H R= 4 FOR X > 2H CASE 3, R=2 FOR X < 2H	CASE 4, R = 2 FOR X > 2H CASE 4, R = 2 FOR X < 2H R = 10 FOR X > 2H

7

FINITE ELEMENT MODEL FOR STUDYING THE LENGTH TO HEIGHT RATIO FIG. 37

۲

-103-

REMARKS	 Fs, Fd ARE THE STATIC AND MAXIMUM DYNAMIC LATERAL FORCES CASE 2 AS BASIS FOR CALCULATING PERCENTAGES 			FS FS CASE 2 CASE 2	ESSURE DISTRIBUTION WITH DIFFEREN YSTEM	
P L Q	94.2	100	IPS	15.32		AL PRI
Fs %	95.2	100	×	3.91		rnamic Rigid W
SUBDIVISION	R = 2 FOR X<2H R=10 FOR X>2H	L/H = 10		TE VALUES	CASE I (b)	JP MAXIMUM DY
TOTAL LAYERS	w	10		ABSOLU		TATIC AN UMBER
CASE	-	2		CASE 2	CASE (a)	FIG. 41 S

	REMARKS	I. REFER TO FIG. 37 , CASE 4 FOR MODEL 2. CASE 3, THE NON-UNIFORM MODULUS CASE AS BASES FOR CALCULATING THE PERCENTAGE FOR K ₂ = 50				PERCENTAGE FOR K ₂ = 50
Fd	.0	110.5	154.0	001	PS	13.06
Fs	%	101.3	101.3	001	KII	3.67
	SOIL PROPERTY	G = 10.0 UNIFORM	G = 2. 5 UNIFORM	G =1000. K ₂ (σm) ^{1/2}		ALUF.
SUBDIVISION		R=2 FOR X<2H	R = 10 FOR X > 2 H	L/H = 10.0		3, ABSULUIE VI
	CASE	-	N	ю		CAU

PROPERTIES - RIGID WALL SYSTEM

-108-

R ≈ 2 FOR X < 2H R ≈ 6 FOR X > 2H L/H = 115/13.5 = 8.5 G = 10.0 KSI

K_S = K_N RANGING 1, 10³, 10⁶, 10⁹ KSI F: THE FRICTIONAL ELEMENTS NEAR WALĹ S: SOIL ELEMENT

FIG. 44 MODEL FOR STUDYING FRICTIONAL ELEMENT, RIGID WALL SYSTEM

(b) $\Delta t = 0.001$ SEC

FIG. 47 VERTICAL ACCELERATION AT POINT NO. I

D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	- NEWANNO	I. ALL SOILS ARE ASSUMED UNIFORM, WITH G= IO KSI	2. CASE I, REFER TO FIG. 48-A CASE 2, REFER TO FIG. 48-B		
Fd	6	100	270.0	PS	6.32
Fs	0	100	83.0	KII	3.42
MOVEMENT AT	ABUTMENT BASE	NO MOVEMENT	ROTATION AND TRANSLATION		
	SYSTEM BRIDGE - SOIL SYSTEM FIXED BASE BRIDGE - SOIL SYSTEM COLUMN ON SOIL		I, ADOULUIE VALUE		
	CASE	-	0		

-114-

REMARKS		I. ALL SOILS ARE ASSUMED UNIFORM, WITH G = 10 KSI	2. REFER TO FIG.48-A FOR THE MODEL		
Fd	6	001	175.0	IPS	6.32
Fs	0	100	120.0	Y	3.42
o, sec.	IO th.	0.063	0.076		
PERIO	l st.	0.195	0.232		
	0 TO LEIM	BRIDGE - SOIL SYSTEM FIXED BASE	SAME AS I, EXCEPT WITH SOFTER SUB- STRUCTURE		I, ABSOLUTE VALUE
L	CASE	- 1	2		0400

0.44 H

0.46 H

0.53 H

3

CASE

CASE 2

CASE

CASE 3

Fs CASE2

CASE

Fs

Ъs

0.33H

0.33H

0.32H

ЪЧ

Fd

Ъd

STATIC AND MAXIMUM DYNAMICAL PRESSURE DISTRIBUTION OF BRIDGE - SOIL Fd CASE 2 0.54 H REFER TO FIG. 48-C FOR MODEL REMARKS SCALE DOWN 1/2 FOR Fd _. 225.0 15.3 Еd 000 CASE KIPS ЪЧ 0.69 H % 129.0 3.30 00 ЪS L SYSTEM WITH DIFFERENT FOUNDATION WITH EQUIVALENT FIXED AT TOP OF EQ.COL. FOUNDATION COLUMN CASE 2 0.28H BRIDGE - SOIL SYSTEM SL CASE I, ABSOLUTE VALUES FRICTION ELEMENT, THE REST IS LINEAR WITH NON-LINEAR SYSTEM CASE CASE 2 S 0.32 H FIG. 52

VII GENERAL CONCLUSION

Based on the results of this investigation, it is concluded that soil-structure interaction effects must be considered when analyzing the dynamic response of short, stiff, single or multiple span bridges. The mathematical modelling and computer programs presented herein provide an effective means of conducting such analyses.

Since the numerical results obtained in this investigation are very limited, caution should be exercised when interpreting them in a quantitative sense. Further analyses are recommended to complete the parameter studies.

BIBLIOGRAPHY

- AASHO (1969) "Standard Specification for Highway Bridges," 10th Ed.
- ACI (1970)
 "Ultimate Strength Design Handbook," Vol. 2, Columns, Special
 Publication No. 17A, American Concrete Institute.
- 3. ACI-ASCE Committee 326 (1962) "Shear and Diagonal Tension," Journal, ACI, Proc. 59, Jan. 1962, Feb. 1962 and March 1962.
- 4. Ang, H. S., Chang, G. C. (1967) "Numerical Calculation of Inelastic Plane Structure Soil Interaction," Proceedings International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, New Mexico, Aug. 23-25, 1967, pp 393-410.
- Arnold, R. N., Bycroft, G. N., and Warburton, G. B. (1955) "Forced Vibration of Body on an Infinite Elastic Solid," Journal of Applied Mechanics, Transaction, ASME, Vol. 77, pp 391-401.
- 6. Basavanna, B. M. (1970) "Dynamic Earth Pressure Distribution Behind Retaining Walls," 4th Symposium on Earthquake Engineering, Indian Society of Earthquake Technology, Nov. 14-16, 1970, pp 311-320.
- Bathe, K. J., and Wilson, E. L. (1973)
 "Stability and Accuracy Analysis of Direct Integration Methods,"
 International Journal of Earthquake Engineering and Structural
 Dynamics, Vol. 1.
- Bertero, P. F., Fratessa, S. A., Mahin, J. H., Sexton, A. C., Scordelis, E. L., Wilson, E. L., Wyllie, L.A., Seed, H. B., and Penzien, J., Chairman (1970) "Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," EERC 70-4, Earthquake Engineering Research Center, University of California, Berkeley.
- 9. Bishop, A. W., and Henkel, D. L. (1957) "The Measurement of Soil Properties in the Triaxial Test," Edward Arnold Ltd., London, 2nd Ed.
- Bishop, A. W. (1966) "The Strength of Soils as Engineering Materials," 6th Rankine Lecture, Geotechnique, Vol. 16, No.2, pp 91-130.
- 11. Broms, B. B., and Ingelson, I. (1971) "Earthpressure Against the Abutments of a Rigid Frame Bridge," Geotechnique, Vol. 21, No. 1, March, 1971, pp 15-28.

- 12. Bull, Keith D. (1972) "Seismic Design of Highway Structure," Journal of the Structure Division, ASCE, Vol. 98, No. ST8, Proc. paper 9135, Aug. 1972, pp 1741-1755.
- 13. California State, the Department of Public Works, Division of Highways - Bridge Department, "Bridge Planning and Design Manual." (1966)
- 14. California State, the Department of Public Works, Division of Highways - Bridge Department (1963), "Manual of Bridge Design Practice."
- 15. Caughey, T. K. (1960) "Classical Normal Modes in Damped Linear Dynamic Systems," Journal of Applied Mechanics, Vol. 27, Trans. ASME, Vol. 82, Series E, pp 269-271.
 - 16. Chi, H. M., and Powell, G. H. (1973) "Computational Procedure for Inelastic Finite Element Analysis," SESM 73-2, Department of Civil Engineering, University of California, Berkeley, January 1973.
 - 17. Chopra, A. K., and Perumalswani, P. R. (1969) "Dam-Foundation Interaction During Earthquake," Proc. 4th World Conference of Earthquake Engineering, Vol. III, A6-37.
 - 18. Chopra, A. K., Bertero, V. V., and Mahin, S. (1973) "Response of the Olive View Medical Center Main Building During the San Fernando Earthquake," Proceedings, 5th World Conference on Earthquake Engineering, Rome, June 1973.
 - 19. Chopra, A. K. (1970) "A Computer Program for Earthquake Analysis of Dams," EERC 70-5, Earthquake Engineering Research Center, University of California, Berkeley, Sept. 1970.
 - 20. Christian, I. J. (1966) "Plane Strain Deformation Analysis of Soil," Report by MIT, Department of Civil Engineering to U.S. ARmy Engineering Water Experimental Station.
 - 21. Clough, R. W., and Bathe, K. J. (1972) "Finite Element Analysis of Dynamic Response," of "Advances in Computational Methods in Structural Mechanics and Design," Edited by Oden, J. T., Clough, R. W., and Yamamoto, Y., UAH Press, The University of Alabama in Huntsville, Huntsville, Alabama, pp 153-180.
 - 22. Clough, R. W. (1965) "The Finite Element Method in Structural Mechanics," Chapter 7 of "Stress Analysis," Ed. O. C. Zienkiewicz and G. S. Hoister, Wiley, 1965.
 - 23. Cornforth, D. H. (1964) "Some Experiments on the Influence of Strain Conditions on the

Strength of Sand," Geotechnique, Vol. 14, 1964, pp 143-167.

- 24. Cornforth, D. H. (1961) "Plane Strain Failure Characteristics of a Saturated Sand," Ph.D. Thesis, University of London
- 25. Desai, C. S., and Abel, J. F. (1972) "Introduction to the Finite Element Method," Van Nostrand Reinhold Company.
- 26. Dezfulian, H. (1969) "Seismic Response of Soil Deposits Underlain by Inclined Boundaries," Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley.
- 27. Dibaj, M., and Penzien, J. (1967) "Dynamic Response of Earth Dams to Traveling Waves," Report No. TE 67-3, Soil Mechanics and Bitumous Material Research, University of California, Berkeley, August 1967.
- 28. Dibaj, M., and Penzien, J. (1969) "Non-Linear Seismic Response of Earth Structures," EERC 69-2, Earthquake Engineering Résearch Center, University of California, Berkeley, January, 1969.
- 29. Duke, C. M., and Leeds, D. J. (1963) "Response of Soils, Foundations and Earth Structures," Bulletin of the Seismological Society of America, Vol. 53, No. 2, pp 309-357.
- 30. Drucker, D. C. (1960) "Plasticity," Proceedings 1st Symposium Naval Structural Mechanics, pp 407-455.
- 31. Duns, C. S., and Butterfield, R. (1967) "The Dynamic Analysis of Soil-Structure Systems Using the Finite Element Method," Proceedings International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, New Mexico, Aug. 23-25, 1967, pp 59-70.
- 32. Ewing, W. M., Jardetzkg, W. S., and Press, F. (1957) "Elastic Waves in Layered Media," McGraw-Hill Book Company, Inc., N. Y.
- 33. Farhoomand, I., and Wilson, E. (1971) "A Non-Linear Finite Element Code for Analyzing the Blast Response of Underground Structures," U.S. Army Engineer Waterways Experiment Station, Contract Report N-71-1, January 1971
- 34. Farhoomand, I. (1970) "Non-Linear Stress Analysis of 2-Dimensional Solids," Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley, June 1970.

- 35. Ferguson, P. M. (1973) "Reinforced Concrete Fundamentals," 3rd Ed., 1973, John Wiley & Sons, Inc.
- 36. Finn, W. D. Liam, and Reimer, R. B. "Effect of Soil Structure Interaction on Seismic Responses," Soil-Mechanics Series No. 14, Department of Civil Engineering, University of British Columbia.
- 37. Fleming, J. F., Screwvala, F. N., and Konder, R. L. (1965) "Foundation Superstructure Interaction Under Earthquake Motion," Proc. 3rd World Conference of Earthquake Engineering, New Zealand, 1965, pp I-22-30.
- 38. Gallagher, R. H. (1964) "A Correlation Study of Methods of Matrix Structural Analysis," New York, Macmillan.
- 39. Gerrand, C. M., and Harrison, W. J. (1971) "Stresses and Displacements in a Loaded Orthorthombic Half Space," "The Analysis of a Loaded Half Space Comprised of Anisotropic Lagers," "Circular Loads Applied To a Cross-Anisotropic Half Space," Division of Applied Geomechanics Technique Paper, No. 8, 9 and 10, Commonwealth Scientific and Industrial Research Organization, Australia.
- 40. Ghaboussi, J., and Wilson, E. L. (1973)
 "Finite Element for Rock Joints and Interfaces," Journal of the Soil Mechanics and Foundation Division, ASCE, Proc. paper 10095, Vol. 99, No. SM10, Oct. 1973.
- 41. Goodman, R. E., and Taylor, R. L. (1968) "A Model for the Mechanics of Jointed Rock," Journal of the Soil Mechanics and Foundation Division, ASCE, Proc. Paper 5937, Vo. 94, No. SM3, May 1968.
- 42. Goto, H., and Kaneta, K. (1960) "Analysis With an Application to Seismic Design of Bridge Piers," Proceedings, the 2nd World Conference on Earthquake Engineering, Tokyo, Vol. 2, pp 1449-1463.
- 43. Grant, F. S., and West, G. F. "Interpretation Theory in Applied Geophysics," McGraw-Hill, New York, 1964.
- 44. Hart, G. C., and Collin, J. D. (1972) "Study of Modeling of Structural Damping Matrice," Society of Automotive Engineers, Oct. 1972.
- 45. Harr, M. E. (1966) "Foundation of Theoretical Soil Mechanics," McGraw-Hill.

- 46. Hill, R. (1950)"The Mathematical Theory of Plasticity," Oxford.
- 47. Hudson, D. E. (1965) "Equivalent Viscous Friction for Hysteretic Damping Systems With Earthquake-Like Excitation," Proc. 3rd World Conference on Earthquake Engineering, Vol. 2, part II, pp 185-202.
- 48. Ichihara, M. (1965) "Dynamic Earth Pressure Measured by a New Testing Apparatus," Proceedings, 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, Sept. 1965, Vol. 2, pp 386-390.
- 49. Idriss, I. M. (1968) "Finite Element Analysis for Seismic Response of Earth Dams," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM3.
- 50. Idriss, I. M. (1968) "Response of Earth Banks During Earthquakes," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 93, SM4, 1968.
- 51. Idriss, I. M., and Seed, H. B. (1968) "Seismic Response of Horizontal Soil Layers," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, Proc. Paper, 6043, July, 1968, pp 1003-1031.
- 52. Ishii, Y., Arai, M., and Tsuchida, H. (1960) "Lateral Earthpressure in an Earthquake," Proceedings, 2nd World Conference on Earthquake Engineering, Tokyo, Japan, July 1960, Vol. 1, pp 211-228.
- 53. Iwasaki, T., Penzien, J, and Clough, R. (1972) "Literature Survey - Seismic Effects on Highway Bridges," EERC 71-11, Earthquake Engineering Research Center, University of California, Berkeley, Nov. 1972.
- 54. Jacobsen, L. S. (1930) "Steady Forced Vibration as Influenced by Damping," Transaction, ASME, Vol. 52, Part 1, APM 52-15, pp 169-181.
- 55. The Japan Society of Civil Engineers (1968) "Earthquake Resistant Design for Civil Engineering Structures -Earth Structures and Foundation in Japan."
- 56. Jennings, P. C. (1967) "Forced-Deflection Relations From Dynamic Tests," Journal of the Engineering Mechanics Division, ASCE, Vol. 93, No. EM2, Proc. paper 5199, Apr. 1967, pp 115-129.

- 57. Jennings, P. C. (1968) "Equivalent Viscous Damping for Yielding Structures," Journal of the Engineering Mechanics Division, ASCE, Vol. 94, No. EMI, Feb. 1968, pp 103-116.
- 58. Jennings, P. C., and Bielak (1972)
 "Dynamics of Building-Soil Interaction," EERL 72-01, California Institute of Technology, Earthquake Engineering Research Laboratory, April 1972.
- 59. Jennings, P. C., and Wood, J. H. (1971) "Earthquake Damage to Freeway Structures," Chapter 6 of "Engineering Features of the San Fernando Earthquake, February 9, 1971," EERL 71-02, California Institute of Technology, Earthquake Engineering Research Laboratory, June 1971.
- 60. Kanaan, A., and Powell, G. H. (1973) "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," EERC 73-6, Earthquake Engineering Research Center, University of California, Berkeley.
- 61. Konder, R. L., and Zelasko, J. S. "A Hyperbolic Stress-Strain Formulation for Sands," proc. 2nd American Conference Soil Mechanics Foundation Engineering, Vol. 1, pp 289-324.
- 62. Khanna, J. (1969) "Elastic Soil-Structure Interaction," proc. of the 4th World Conference on Earthquake Engineering, Santiago, Chile, 1969, Vol. 3, pp A 6-143-152.
- 63. Lambe, T. W., and Whitman, R. V. (1969) "Soil Mechanics," John Wiley and Sons, Inc.
- 64. Lastrico, R. M. (1970) "Effects of Site and Propagation Path on Recorded Strong Earthquake Motion," Ph.D. Thesis, University of California, Los Angeles.
- 65. Lew, H. S., Legendecker, E. V., and Dikkers, R. D. (1971) "Damages to Bridges and Highways," Chapter 7 of United States, Department of Commerce, Building Science Series 40, Dec. 1971.
- 66. Lysmer, J., and Kuhlemeyer, R. L. (1969) "Finite Dynamic Model for Infinite Media," Journal of the Engineering Mechanics Division, ASCE, Vol. 95, No. EM4, proc. paper 6719, August 1969, pp 859-877.
- 67. Lysmer, J., and Duncan, J. M. (1969) "Stressea and Deflections in Foundations and Pavements," Department of Civil Engineering, Institute of Transportation and Traffic Engineering, University of California, Berkeley, 4th Ed. 1969.

- 68. Matsuo, H. (1941) "Experimental Studies on the Distribution of Lateral Earthpressure in Earthquake," Journal of the Japan Society of Civil Engineers, Vol. 27, No. 2, 1941.
- 69. Matsuo, H., and Ohara, S. (1960) "Lateral Earthpressure and Stability of Quay Walls During Earthquake," proc. 2nd World Conference on Earthquake Engineering, Tokyo, Japan, Vol. 1, July 1960, pp 165-181.
- 70. Marcal, P. V. (1965) "A Stiffness Method for Elastic-Plastic Problems," International Journal of Mechanics Science, Vol. 7, No. 4, Apr. 1965, pp 229-238.
- 71. McCormick, J. M., and Salvadori (1964) "Numerical Methods in Fortran," Prentice-Hall, Inc., New Jersey.
- 72. Minami, T. (1972)
 "Elasto-Plastic Earthquake Response of Soil-Building System,"
 Ph.D. Thesis, University of California, 1972.
 - Morris, G. A., and Fenves, S. J. (1967)
 "A General Procedure for the Analysis of Elastic and Plastic Frameworks," Structural Research Series No. 325, Civil Engineering Studies, University of Illinois, Urbana, Illinois, Aug. 1967.
 - 74. Mononobe, N., and Matsuo, H. (1929) "On the Determination of Earthpressure During Earthquake," proc., World Engineering Congress, Tokyo, 1929, Vol. IX, paper no. 388, pp 177-186.
 - 75. Nandakaumaran, P., and Prakash, S. (1970) "The Problem of Retaining Walls in Seismic Zones," 4th Symposium on Earthquake Engineering, Indian Society of Earthquake Technology, Nov. 1970, pp 307-310.
 - 76. Newmark, N. M. (1959) "A Method of Computation for Structural Dynamics," proc. ASCE, Vol. 85, No. EM3, 1959.
 - 77. Nigma N. C. (1970) "Yielding in Framed Structures Under Dynamic Loads," Journal of the Engineering Mechanics, ASCE, Vol. 96, No. EM5, Oct. 1970, pp 687-709.
 - 78. Niwa, Shin (1960) "An Experimental Study of Oscillating Earth Pressure Acting on a Quay Wall," 2nd World Conference on Earthquake Engineering, Tokyo, 1960, pp 281-296.
 - 79. Ohara, S. (1960) "Experimental Studies of Seismic Active and Passive Earthpressure," proc., 3rd Japan Earthquake Engineering Symposium, Tokyo, Nov. 1960.

- 80. Okabe, S. (1926) "General Theory of Earthpressure," Journal of Japanese Society of Civil Engineering.
- 81. Parmelee, R. A. (1967) "Building-Foundation Interaction Effect," proc. ASCE, Vol. 93, No. EM2, Apr. 1967, pp 131-152.
- 82. Penzien, J. (1970) "Soil-Pile Foundation Interaction," "Earthquake Engineering," R. L. Wiegel, Coordinating Editor, Prentice-Hall.
- 83. Porter, F. L., and Powell, G. H. (1971) "Static and Dynamic Analysis of Inelastic Frame Structures," EERC 71-3, Earthquake Engineering Research Center, University of California, Berkeley, 1971.
- 84. Poulos, H. G. (1971) "Behavior of Laterally Load Piles: I - Single Pile, II - Pile Group," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, proc. paper 8092, May 1971, pp 711-751.
- 85. Prager, W. (1955) "The Theory of Plasticity: A Survey of Recent Achievements," proc. Institute of Mechanical Engineering, Vol. 169, 1955, pp 41-52.
- 86. Przemieniecki, J. S. (1968) "Theory of Matrix Structural Analysis," McGraw-Hill.
- 87. Radhakrishnan, N., and Reese, I. C. (1970)
 "A Review of Application of Finite Element Method of Analysis to Problems in Soil and Rock Mechanics," Soil and Foundation, Vol. X, No. 3, The Japanese Society and Foundation Engineering, Sept. 1970, pp 95-112.
- Reddy, A. S., and Valsangkar, A. J. (1970)
 "General Solutions for Laterally Loaded Pile in Elastic-Plastic
 Soil," Soil and Foundation, The Japanese Society of Soil Mechanics
 and Foundation Engineering, Vol. X, No. 3, Sept. 1970, pp 66-80.
- Richart, F. E., Hall, J. R., and Woods, R. D. (1970)
 "Vibration of Soils and Foundations," Prentice-Hall, Inc.
- 90. Richart, F. E., Jr. (1963) "Foundation Vibration," Transaction of ASCE, Vol. 127, 1962, Part 1, pp 863-878.
- 91. Richart, C. F. (1958) "Elementary Seismology," W. F. Freeman and Co.
- 92. Ross, G. A., Seed, H. B., and Migliaccio, R. (1969) "Bridge Foundation Behavior in Alaska Earthquake, Journal of Soil

Mechanics and Foundation Division, ASCE, July 1969.

- 93. Sarrazin, Mauricio A. (1972) "Dynamic Soil-Structure Interaction," Journal of the Structural Division, ASCE, Vol. 98, No. ST7, proc. paper 9026, July 1972, pp 1525-1544.
- 94. Scholes, A., and Strover (1971) "The Piecewise-Linear Analysis of Two Connecting Structures Including the Effects of Clearance at the Connections," International Journal for Numerical Methods in Engineering, Vol. 3, No. 10, 1971, pp 45-52.
- 95. Seed, H. B., and Idriss, I. M. (1969) "The Influence of Soil Conditions on Ground Motions During Earthquakes," Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 95, No. SMl, Jan. 1969.
- 96. Seed, H. B., and Idriss, I. M. (1969) "Soil Modulus and Damping Factors for Dynamic Response Analysis," EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, Dec. 1970.
- 97. Seed, H. B., and Whitman, R. V. (1970) "Design of Earth Retaining Structures for Dynamic Loads," Specialty Conference "Lateral Stress in the Ground and Design of Earth-Retaining Structures," Sponsored by Soil Mechanics and Foundation Division, ASCE, Ithaca Section, Cornell University, June 22-24, 1970.
- 98. Seed, H. B. (1972) "Dynamic Characteristics of Soil-Structure System," Conference on Planning and Design of Tall Building, Lehigh University, Aug. 1972.
- 99. Shackel, B. (1968) "Damping Characteristics of Soils," proc. 4th Conference, Australia Road Research Board, Vol. 4, part 2, pp 1126.
- 100. Shepherd, R., and Charlson, A. W. (1971) "Experimental Determination of the Dynamic Properties of a Bridge Structure," Bulletin Seismological Society of America, 1971, Vol. 61(6), pp 1529-1548.
- 101. Shepherd, R., and Sidwell, G. K. (1973) "Investigation of the Dynamic Properties of Fine Concrete Bridges," 4th Australasian Conference on the Mechanics of Structures and Materials, University of Queensland Brisbane, August 1973, pp 261-268.
- 102. Silver, M., and Seed, H. B. (1969) "The Behavior of Sands Under Seismic Loading Conditions," EERC 69-10, Earthquake Engineering Research Center, University of California, Berkeley, Dec. 1969.

- 103. Taylor, P. W. (1971) "The Properties of Soils Under Dynamic Stress Conditions With Applications to the Design of Foundation in Seismic Stress," Ph.D. Thesis, School of Engineering, University of Auckland, Nov. 1971.
- 104. Tschebotanoff, G. (1949)
 "Large Scale Earthpressure Tests With Model Flexible Bulkheads,"
 Bureau of Yards and Docks, Department of the Navy.
- 105. Tseng, W. S., and Penzien, J. (1973) "Analystic Investigation of the Seismic Response of Long Multiple Span Highway Bridge," EERC 73-12, Earthquake Engineering Research Center, University of California, Berkeley, June 1973.
- 106. Valera, J. E. (1968) "Seismic Interaction of Graular Soils and Rigid Retaining Structures," Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley.
- 107. Wen, R. K., and Farhoomand, F. (1970) "Dynamic Analysis of Inelastic Space Frames," Journal of the Engineering Mechanics Division, ASCE, Vol. 96, No. EM5, Oct. 1970, pp 667-686.
- 108. Whitman, R., Roesset, J., and Dobry, R. (1972) "Accuracy of Model Superposition for One-Dimensional Soil Amplitude Analysis," Structural Publication, No. 351, Department of Civil Engineering, School of Engineering, Massachusetts Institute of Technology, 1972.
- 109. Whitman, R. (1972) "Dynamic Soil-Structure Interaction," Structural Publication No. 352, Department of Civil Engineering, School of Engineering, Massachusetts Institute of Technology.
- 110. Whitman, R. V., Miller, E. T., and Moore, P. J. (1964) "Yielding and Locking of Confined Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 90, No. SM4, proc. paper 3966, July 1964, pp 57-84.
- 111. White, D. F., and Enderby, L. R. (1970) "Finite Element Stress Analysis of a Non-Linear Problem: A Connecting-Rod eye by Means of pin," Journal of Strain Analysis, Vol. 5, No. 1, January 1970, pp 41-48.
- 112. Wilson, S. D., and Dietrich, R. J. (1960) "Effect of Consolidation Pressure on Elastic and Strength Properties of Clay," proc., Research Conference on Shear Strength of Cohesive Soils, ASCE, Boulder, Colorado, 1960.

- 113. Wilson, E. L. (1968) "A Computer Program for the Dynamic Stress Analysis of Underground Structure," Report No. 68-1, SESM, Department of Civil Engineering, University of California, Berkeley, Jan. 1968.
- 114. Wilson, E. L. (1969)
 "A Method of Analysis for the Evaluation of Foundation-Structure
 Interaction," proc. 4th World Conference on Earthquake Engineering,
 Santiago, Chile, 1969, Vol. 3, pp A 6-87-99.
- 115. Wilson, E. L., and Penzien, J. (1972) "Evaluation of Orthogonal Damping Matrices," International Journal for Numerical Method in Engineering, Vol. 4, Jan. 1972, pp 5-10.
- 116. Wilson, E. L., and Clough, R. W. (1962) "Dynamic Response by Step-by-Step Matrix Analysis," proc., Symposium on the Use of Computers in Civil Engineering, Lisbon, Portugal, 1962.
- 117. Wood, J. H. (1973) "Earthquake-Induced Soil Pressures on Structures," EERL 70-05, Ph.D. Thesis, California Institute of Technology, May 1973.
- 118. Yong, R. N., and McKyes, E. (1971) "Yield and Failure of a Clay Under Triaxial Stress," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM1, proc. paper 7790, Jan. 1971, pp 159-176.
- 119. Zienkiewicz, O. C. (1971)
 "The Finite Element Method in Engineering Science," McGraw-Hill,
 Inc.

APPENDIX

Computer Program Listings
				A TANADA
	PROCRAM BAISOT(IMPUT.OUTPUT.TAPES-OUTPUT.TAPE1.TAPE3.TAPE4.TAPE10.8	BALSOT.1	CODM CLASTIC STRAIN RELATIONSHIP	BAI SOT . 80
	I TAPELL, TAPEL2, TAPEL3, TAPEL4, TAPE21, TAPE22, TAPE23, 8	BRISOT.2	NT10=N17+5+NUMEL	BRISOT.61
	2 IAPE 1, IAPE 30, IAPE 20, IAPE 40, IAPE 41, 6	BRISULS BRISULS	NT19=NT10+NUMGE	BRISOT.03
	§*************************************	BRISOT.5	NT21=NT20+5=NUMATC=NUMGE	BALSOT
	TWO DIMENSIONAL NONLINEAR OVNAMIC ANALYSIS OF SOIL-BRIDGE INTERACTO	BRI SOT 6	NT22=NT2)+5eNUMATF	BAI SOT- 85
	JULY,1973-MA-CHI CHEN		NT23=NT22+50NUNATE	ALSUL OF
,	COMMON/TITLE/HEAD(12).EOMANE(12)	BALSOT.9	rizerizatoriala rii eccepciaimo).aimei.aimei.aimo).aimo).aimo).aimo).aimo).aimo).aimo).	6AI SOT - 86
	CONNON / MATER / NUMATS, NUMATC, NUMATF, NUMATE, NUMATB, NUMGE, NINTCV, THICKB	BAISOT. 10	14(N12).4(N13(,A(N17(,A(NT18(,A(NT29(,A(NT20),A(NT2L),A(NT22),	BRISOT.89
	D. WPLAN .	BAI SOT.11	24(NT23), NUMATS, NUMATC, NUMATF, NUMATE, NUMATB, NUMGE, NPLAN)	BRISOT-90
	CURROR/ELYAK/NUMWF,NUMEL.REU.NOWDANU.KLIN FDamon/TIME/NUMMF,TAT.MEDTW.MTAGE.KODIMT		CALL SECOND(S(6))	BRI SOT. 92
	COMMON/ABS/UGAT, UGAT, VEXT, VEXT, OACCA, OACCA			6R1SOT . 93
	COMNON/SPECIL/ISTOP	BALSOT.15 C	FORN TOTAL ELASTIC STIFFMESS FOR STATIC AMALYSIS	BRISOT -94
	CONMON/OMEGA/OMEGA2.MF1.MF2	BRI SOT . Ib		CA-IDSING
	CUMMUN TAYES/NSTIT WIMSS	BAISOT . 16	NIG=NIT+SFNUMEL NIG=NIA-NECAMRAND	0.1507.97
	COMMON A(35500(BRISOT-19	MT2 CIENT 9 4 NUMBEL	BRISOT.96
		BRISOT + 20	CALL ETSTIFIA (M1), A (M2), A (M3), A (M5), A (M9), A (M12), A (M13), A (M14),	BRI SOT. 99
	PROGRAM CONTROL DATA	BALSOT.21	1 AINIT(,AINLG),AINL9),MONEL,NEQ,MBANO)	001-105140
1000	CALL SECOND(S(1))	DALSOT.23	CALL SECUNDISITY	BAI SOT. 102
	15T0P=0	BALSOT-24	CALCULATE LONEST ?NF? FREGUENCIES	BAISOT . 103
	JUMP=0 DEAA 1 VEAD WINNE MINEL NETVAE VITH. MINATE, MINATE, MINATE, D		1010 MARKED AND A A AND AND AND AND AND AND AND AN	ALLSUL 104
	1 NUMATB NUMCE NINTEV NALAM, THICK	Balsor.2T	CALL MUDESINE Versus tom suicituter	BRISOT-106
	IF (MUMMP .EO. 0) STOP	BRISOT-26	SOLVE FOR DISPLACEMENT-STATIC CASE	BAI SOT. 101
	. MRITE (6,101 (MEAD, NURREY, NUREL, NETTY E, KLIN, NUNAIS, NUNAIC, MUNAIT, U 1			BRISOT . 109
		BRISOT.31		BRI SOT.110
	HALTE(6,)06(MF1,MF2 6	BRISOT+32	N21=N20+NEQ	BRISOT-111
		BRISOT.33	N22=N21+NEQ	BRI 50T-112
	a and solar of the second seco	BRISOT.34	N23=N22+NEQ	BRISOT.113
		DRI SDT. 36	N24=N23+NE0	BRISOT-114
	N2=N1+3¢MUMUP	BRISOT.37	NZ5=NZ6+NEQ //// ////////////////////////////////	ALL TOTAL
	dww.cw=cw=cw	BRI SOT. 30	CALC STATTOCAM PYDATMLUTATMATTYTATMCUTATWCUTATWCZTTATWCGT 14(M24) .NEO.NBAND)	BALSOT-11 T
	TATING THE TREAT THE TATING THE T	BR1501.459	CALL SECOND(S(0()	BRISOT-118
		BALSOT.41 C		BRISOT-119
		BRISOT-42	COMPUTE STRAIM	BRISDT-121
	READ IN NATERIAL PROPERTIES DATA, AND BEAN, COLUMN GEOMETRIC DATA U		N24=N25+3+NUMEL	BAI SOT-122
,	NS=N4+8=NUMATS	BAI SOT - 45	N2T=N2 6+ 3 eNUMEL	BRISOT-129
	N6=N5+5=NUMATC	BR ISOT - 46	NZB=NZ1+39900044L CALL STPATH(A fM1) - A fM21 - A fM31 - A fM221 - A fM251 - A fM261 - A fM271)	BRISDT-125
		BRI 501 . 41 A 8 1 5 1 1 . 48	CALL SECOND(S(9))	BRI SOT-126
	N9=NB+2=NUMATB	BRISOT.49		BRISOT-120
	N) 0=KA+3+KNMEE	DRI SOT - 50	CUMPULE SIRESS	BRI SOT. 129
	a minimum is a second and a second a se	BRI SDT . 52	N29=N28+8eMUMEL	0K1507-130
	00 301 I-1, NETYPE	BRISOT.53	N30=N29+@eMUREL	BRISUT-132
	READ 2.NTYPE	DAISOT.54	rst=rsupper	BAISOT-133
	MALTE (0+102) MITTE CALL MATPRO(NTYPE A4M4) A4M5(A4M4) A4M7) A4MAL A4M9) A4M10) A	RISOT - 54	CALL SECOND(S(10()	BRISOT-134
		Det Cont. ST	THANT ARITHENT MALL THERMATTIM CALCUMATE FARTHERESS ON MALL	001.102140
30	I CONTINUE	BRISOT.50 C		BRISOT.13T
	CALL SECONDISIBIL	041 S01 - 59	READ 3.NTW 	BR1501-130 Rel 501-130
	READ IN FLEMENT DATA	DRISOT-61	READ 4. (NELW(I), [=].NTW)	BRISOT-140
		BALSOT.62	WRITE(6,103(NTW: (MELW(E), I=1, NTW)	BRI SOT-141
		BRI SOT.63	NL=0	API-1021AB
	CALL ELOATA(A(N1),A(N12),A(N13),NDANO,NUNEL)	BAL SOT. 65	UU 3U2 ("140"""""""""""""""""""""""""""""""""""	BRISOT-144
	CALL SECOND(S(4))	BRISOT - 66	IF (LENGTH .GT. NL (ML-LENGTH	BAISOT.145
	B INPUT AND CALCULATE NDDAL MASS.LDAO.AND FIXED END MOMENT OF BEAN B	BALSUT.67 30, BALSOT.68	60 T0 403	BRISOT-14T
		BRISOT.69 40	CONTINUE	BRI SOT-148
	NI SENISANEO	BALSOT.71	15ma2cm 133en42c	BR 1507 . 150
	NIT=NI6+NEO	BAI SOT.72	Natewa3	BRISOT.151 BRISOT.152
	NT19=NT18+NEO	BAISOT.74	IFINTW .EQ. 01 GO TO 401	6A1507-153
	Calt LOAO(A(N)(,A(N2(,A(N3),A(N4),A(N5(,A(N)(,A(N)2(,A(N)3(, 6 latmiat.Atmisi.Atm16(,Atm)7(,AtM120),MUMEL.MEQ)	BRISOT.75 40 BRISOT.76	CONTINUE I FMCTHamtHami	BRISOT 1 59 BRISOT 1 55
			LENGTHTM.M.H.L.	BR1501.156
		RKTCHT - 70		

ABISNT . 23	BRISOT.23 BRISOT.23 BRISOT.23	BRI SOT . 23 BRI SOT . 24 BRI SOT . 24	BRISOT-24 BRISOT-24 BRISOT-24	BR I SOT - 24: BR I SOT - 24:	BRI SOT .241 BRI SOT .241 BRI SOT .24			INPUTJ.2	4.LTU9NI 0000 2.LTU9NI 3.LTU9NI 0000	1.LTUPUL	INPUT J. IO	INPUTJ-12 INPUTJ-13	INPUTJ-14	TI-LTUPUT	INPUTJ-19 INPUTJ-20		INPUT J. 24	I NPUT J. 26	INPUT J. 20	INPUTJ.30	INPUT J-32	AC-LIUMNI	Se L'TUANI	INPUT J. 30	INPUTJ-39	INPUTA-41	IMPUT-43	INPUT J. 45	INPUT J. 44 INPUT J. 47	64-1 TURNI	INPUT J. SI	IMPUTJ-54	INPUTJ-55 INPUTJ-56	INPUTA-57
) a fabit mattalai baabtattes a.fa.3//	 THAPUT ELEMENT ONDER TO ELEMENT OF A CONTRACT OF A CONTRACT	7 • STATIC SOLUTION OF DISPLACEMENT • • F-B-27/ 9 • COMPUTE STREAT OF SOLL ELEMENT • • F-B-22/ 9 • COMPUTE STREES OF ALL ELEMENT • F-B-27/		• • TOTAL SOLUTION TIME •,F9.2) 105 FORMATI• LENGTH OF BLANK COMMON A•,10)	106 FORMATI//* MO. OF FREQUENCIES TO BE CALCULATEO*:15/ 1 * The modes to control the ravleigh dan'ing*219) End			SUGROUTINE INFUTATION X.Y. MUMMP. NEQ)	С аналлизательные сотакто по сотакто со	C DIMENSION XII).VIII.IDI3.MUMNP)	WAITE (+, 502) WAITE (+, 502) NOLDOO	1000 CONTINUE EEAT 1-M-41041-N1-1-1-31-X4N1-V4N1-KM	WRITE(6.101 N.(1011,N), 1=1,3), XIN), V(N), KN IF(NOLD .ED. D) 60 TO 401	C CHECR IF GENERATION IS REQUIRED IFIRN .EG. 0) GD TO 401	C MUM-MD. OF INTERVALS BETWEEN INAUT NODE	C NUMPERIO UT NUCES IU DE VERERATEU C DIAPY, THE LENGTH OF INTERVAL			WMWZ / ((TOW) A - (W)A) = A0	C GENERATE NEW NOOAL POINT Remolo	Value 1-1, Autor			D0 301 1=1,3 [D(1,K)=]O(1,KR)	301 CONTINUE 401 CONTINUE	NOLO=N NEL MENNED CO TO 1/040		WITE(6,503)	WITEL6,902) WITEL6,201)IN, (IOI1,N), I=1,31,X(N), YIN), A-1, MUWNP)	C CALCULATE THE EQUATION NUMBERS FOR EVERY DEGREE OF FREEDOM	G 302 N=1 - MWWP	00 902 111,93 filol *N)-1) 402,403,403 402 CONTINUE	MEG-MEG+1 10(1,M)=MEG	G0 T0 302
ARTCHT.167	BRISOT.159 BRISOT.159 BRISOT.159 BRISOT.160 BRISOT.161	BRISOT.162 BRISOT.163 BRISOT.164	BRISOT.165 Brisot.166 Brisot.167	BRISDT.160	BRISOT-169 BRISOT-170 BRISOT-171	BRISOT.172 Brisot.173 Brisot.174	BALSOT 76 BALSOT 176	041507-170 041507-179 041507-170	BRISOT.101 BRISOT.162	BR1507.105 BR1507.104 BR1507.105	BRISOT-196 BRISOT-107 BRISOT-107	001-105 IN0	BRISDT.191 BRISDT.192	BRISOT.193 BRISOT.194	041507 . 196 041507 . 197	BRISOT . 199 BRISOT . 199	BRISOT - 200 BRISOT - 201	041 \$01 • 203	BRISOT-204 BRISOT-205	BRISOT -206 BRISOT -207 BRISOT - 208	BRI 507 - 209	041507.210 041507.211	0R1507.212 6R1507.213	6RI SOT.214 6RI SOT.215	BRI SOT.216	641507-210	BRISDT -220	BRISOT.221 -	BRI 507 .223 BRI 507 .224	BR1501-225	BRISOT.22T	BRISOT.229 BRISOT.229	BR1507.231 BR1507.232	BRISOT.233
International Activity of the second s		L SECOND(S(11))	NT RESULTS.AND STORE ON TAPE2 FOR PLOTTING	ELE-NUMEL	403549404EL 1304404EL	L PATINELA (NI), A (NIS), A (NIS), A INZ), A (NZ), A (NZ), A (NZ) NJ), A (NZ), A (NZ), A (NZ), A (NZ), A (NZ), A (NZ), A (NZ) L SECONDIS(12))	RT DYNAMIC AMALYSIS-STEP-BY-STEP M MOMLINEAR TOTAL STIFFNESS	MT 38+36 • wrstners men - atmat. atmat. atmat. atmat. atmat. atmat. atmat.	0) - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	139) \$55.0KE Qa MBAND #NOVEL #KL LN) 1390 MEO M3 34.0KE Q	MAL # 160	M43+NEO		(0), AIN29), AIN30), AIN31), A(N32), AIN33), A(N34), A(N35), A(N34), AIN739), AIN30), A(N39), A(N40), AIN411, A(N42), AIN43), MELU, MTU, AIN40, ARA AND, AIN, ANART, ANART, AIN411, A(N42), AIN43), MELU, MTU,	OUTPUTAINT, NUMMP, NUMPP, N	03 1=1,12 =5(1+1)-511)	.0 04 1=1,12	11+5(1)	E(6,104) S E(6,105) MA		AT(12A6/(1215,F10.4))	ATIES) ATES)	MTI16[5] MTI3[5]	AT(1H1,1246// • HD. OF MODAL POINTS	e NO. OF ELENENTS	NUL INEAR OR LIMEAR ANALYSIS, O-LIMEAR, I-MONLINEAR, IS/	* NU. OF SULL MATERIAL TYPES * NO. OF CONCRETE MATERIAL TYPES * NO. OF CONCRETE MATERIAL TYPES	 NO. OF FRICTION ELEMENT TYPES NO. OF EXPANSION JOINT TYPES 	 M0. OF BOUNDARY ELENENT TYPES M0. OF CONCRETE GEOMETRIC PROPERTIES N15/ 	• NO. OF P-M INTERACTION CURVES OF CONCRETE ••15/	e FLENENT THICKNESS	ATTEIMATERIAL TVE NTVE ²⁴⁰ 12//J Atte Informations of Mallse/ • Tith No. of Mallee. 15/	* ND. OF ELEMENT ON WALL 1,2,=*,1015) ATT@ITHE LOG#//	a NDOAL POINT INPUT

1507.239 1507.2395 1507.2395 1507.2395 1507.2395 1507.2395 1507.245 1507.25

000

0000

AT 780.57 AT 780.59 AT 780.59 AT 780.59 AT 780.59 AT 780.50 AT 780		MATPHC.93 NATPHC.94 NATPHC.94 NATPHC.94 NATPHC.96 NATPHC.100 NATPHC.100 NATPHC.100 NATPHC.100 NATPHC.100 NATPHC.103 NATPH	MATPRO_111 MATPRO_1115 MATPRO_1115 MATPRO_1115 MATPRO_1115 MATPRO_1115 MATPRO_1115 MATPRO_1125 MATPRO_1225 MATPRO_1225 MATPRO_1225 MATPRO_1225 MATPRO_1225 MATPRO_1225 MATPRO_1230 MATPRO_1230 MATPRO_1230 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_13300 MATPRO_1330
CO TO 312 READ IN PRICTIONAL ELEMENT PROPERTY 403 CONTINUE DO 3091-11,WUMATF DO 3091-11,WUMATF 309 KEAD 1-14,19AAAFR1J,M).J=1,4),W=1,MUMATP) 401 FE60.5101 MITE60.5101 MITE60.5101 MITE60.5101 ACC EXAMSION JOINT OATA 404 CONTINUE ACC ACONTINUE ACC ACO	READ IN BOUNDARY ELEMENT DATA 405 CONTINUE 00 311 1-1.NUMATB 00 311 1-1.NUMATB 11 CONTINUE 12 CONTINUE 12 CONTINUE 13 CONTINUE 13 CONTINUE 14 TEE 0-113)10.1PAMABOLJ.NN.J-1.2).M-1.NUMATB) 13 CONTINUE 14 TEE 0-113)10.1PAMABOLJ.NN.J-1.2).M-1.NUMATB) 14 TEE 0-113)10.1PAMABOLJ.NN.J-1.2).M-1.NUMATB) 15 CONTINUE 16 TEURE 17 CONTINUE 17 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 19	2 PORMATILIO(19010.31) 3 PORMATILIO(19010.31) 102 PORMATILIO(19010.31) 103 PORMATILIZ:#FIO.31(21.2:10.10.31) 103 PORMATILIZ:#FIO.31(21.2:10.3.10.3.10.3.10.3.10.3.10.3.10.3.10.3	9 0
2. CTUCHE 2. CTUCHE	MA TPR0.2 MATPR0.3 MATPR0.3 MATPR0.5 MATPR0.5 MATPR0.6 MATPR0.6 MATPR0.10 MATPR0.12 MATPR0.12 MATPR0.12 MATPR0.13	MATPRU. 14 MATPRU. 16 MATPRU. 18 MATPRU. 10 MATPRU. 20 MATPRU. 20	
	KE MATPROLIMTYPE., PANASO, PANACO, PANAFR, PANAEX, PALABO. S25.GVP) S25.GVP) S25.GVP) S25.GVP) S25.GVP) S25.GVP) S25.GVP) S25.GVP) S25.GVP) S26.GV	901) 01.402,403,404,409).NTVPE SOL PRDFERTY DATA 1.6WJMYTS M. [PARASO(J.M).J=1,0).N=1,0).N=1,000ATS) 022 M. [PARASO(J.M).J=1,0).N=1,00.N=1,000ATS) 023 0102 M. (PARASO(J.M).J=1,0).N=1,00.N=1,000ATS) 023 0103 M. (PZS(J.0.M).J=1,20) 039 M. (PZS(J.0.M).J=1,20)	DUCKETE PROPERTY DATA L.MUMATC LANACCOLJ.N.J=L.5) FARACOLUNI GEOMETRIC DATA AND INTERACTION CURVE 53) (N.(PARACOLJ.N.J-L.5).Am-LINUMATC) 53) (N.(PARACOLJ.N.J-L.5).Am-LINUMATC) 10 N.(CORDEJ.M.J-L.3) 11 N.(CORDELJ.N.J-L.3) 11 N.(CORDELJ.N.J-L.3) 11 N.(CORDEJ.N.J-L.3) 10 N.(CORDEJ.N.J-L.3) 10 N.(CORDEJ.N.J-L.9) 10 N.(CORDEJ.N.J-L.9)

ELDATA-30 ELDATA-31 ELDATA-35 ELDATA-35 ELDATA-35 ELDATA-35 ELDATA-35 ELDATA-36 ELDATA		
IFIDE(T) .ME. 0) G0 T0 406 406 CONTINUE 000 306 Jel.4 101 401 001 506 Jel.4 101 401 000 306 Jel.4 101 401 000 306 Jel.4 101 401 000 306 Jel.4 101 401 000 304 Jel.4 101 401 401 101 401 401 101 401 401 101 401 401 101 401 401 101 401 401 101 401 401 101 4141	<pre>PrinkLi -GT. MINI MARCHARIL PILMUL -GT. MINI MARCHARIL BODATAME FIRMA -GT. WANDO-MA MANDO-MA FIRMA -GT. WANDO-MA MANDO-MA FIRMA -GT. WANDO-MA MANDO-MA FIRMA FIRMA - GT. MANDO-MA FIRMA FIRMA - GT. MANDO-MA MARCHARITA FIRMA - GT. MANDO-MA MARCHARI MARCHARIA MARCH</pre>	
RATPRO.135 RATPRO.135 RATPRO.137 RATPRO.137 RATPRO.139 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.149 RATPRO.159		ELOATA.47 ELOATA.48 ELOATA.49
<pre>53M m.9%.ida all.200w.9%.idi//) 50% GTMART all.200w.00CHTM iffEAACTION CURVE// 12% M.33.12%ECCENTRICTTV-4%.iduAlid.10.0 K195.1% 12% M.33.12%ECCENTRICTTV-4%.iduAlid.10.0 K195.1% 13% COMMAND STEFF ALL NATA// 1 % MALT OF NATA// 2 % MALT OF</pre>	SUMMONTING ELANTAIIO.IIA.IBC.MAMD.AUPELI SUMMONTING ELANTAIIO.IIA.IBC.AMAD.AUPELI TYPE.AMTERIAL TYPE. INTERPORT EL BENNI MODAL POINT.ELENNIT TYPE.AMTERIAL TYPE. INTERPORT ELENNIA MODAL POINT.ELENNIELD.LAUI21 INTERPORT POINT.ELENNIA MODELD.IBC.(4.AMPEL).LAU121 INTERD.OD	IFING. CT. NGANO. NGAND-NG 155.00-1145.40-11 1416.40-1416.40-11

υu

υu

00000000

ບບ

L040.97 L040.97 L040.96 L040.96 L040.96 L040.96 L040.95 L040.97 L040.77 ACCURATE STATE LAD VECTOR-S.V. CALCULATE STATE LAD VECTOR-S.V. DVAMIC LODD IM Z DIRECTION-DLY DVAMIC LODD VECTOR IN V DIRECTION-DLY DVAMIC LODD VECTOR IN V DIRECTION-DLY OIMENSION ID13.1).XL1J.YL1I.PARASOI8.1).PARAGO19.1J.COPROP13.1). 11X(6.11.106C4.11 01MENSION XX143.YU41.UN89 01MEMSION XL43.YU403.QLYIMED).7MASSIMED).TLCADOIMEOI JABJAG LN1JJ-1 = F012, MD0E 1 LN1JJ-1 = F012, MD0E 1 XX1J = F012, MD0E 1 XX1J = F1030E 1 MATPE F X10, M ALL FSOIL XX, VV, AMSS, WT, PAMASOI 1, MATVFE I, I X11, MI 1 ALL FSOIL XX, VV, AMSS, WT, PAMASOI 1, MATVFE I, I X11, MI 1 DO 304 JSL 4 JSL 1 = LN1JJ I = LN1JJ SUBADUTINE LDAD(ID.X.Y.PARASD.PARACD.COPRDP.IX.IBC. 15LV.OLX.DLY.TMASS.TLDAD.NUMEL.NED) OFTERNIME MMICH ELEMENT TYPE MTYPE=IX(5,M) GO TO (401,402,403,403,4031,MTYPE CALCULATE LOAD ELENENT BY ELENENT DO 302 N=1,MUNEL aza«COPROP(1, NG) WT-azabacc(0, s. MTYPE)/144.0 AMSS=aza>PAACO(4, MAYPE)/144.0 CAL FBECOL(1, XX, YY AMASS, WT, FEN) TYPE 2,CONCRETE ELEMENT CONTINUE DO 305 Jel,2 JJm3eJ TYPE 1,SOIL ELEWENT CONTINUE 00 303 Je1,4 NODE=1XH J.M) WDDE=1xt3.w) LMt3J)=10t3.wCDE) LMt3J-1)=10t2.wCDE) LNt3J-2)=10t1.wDOE) XXt4J=xt4bOE) INTTIZATION 00 301 1-1,ME0 51V(1)=0.0 0LV(1)=0.0 0LV(1)=0.0 0LV(1)=0.0 IX(4.N) NIDOE) 306 J=1,2 [T=LM(JJ) [TT=LM(JJ-L) ·18C(1,M 60 10 403 CONTINUE DLXCITTI DLVLITT CONT IN L-9E =LL 8 301 808 ş 100 204 ş 305

υu

,	SUBROUTINE FSOILIXX, YY, AMASS, WT, FARASO, IX)	FSOLL.2 FSOLL.3	s	U08001
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r solt • 4		
, U	CALCULATE LUMF MASS OF SOIL ELEMENT	FSOIL •5		NPUT C
0.		FSOLL.6 FSOLL.T	•	
,	CONNON/NATER/NUMATS,NUMATC,NUMATF,NUMATE,NUMATB,NUMGE,NIMTCV,THIC	(F SOIL . 8 FSOIL . 9	, o	I SHENS I
	OINENSION PARASO(8). XXI4). YY(4). IX(4)	FS011.10	33	RITEIS
	V24=VY(2]-YY)4)	F 5011.12 F 5011.12	01	100 00
	7428-724	F SOIL - 13		10007.
	Υξ3ο-Υ3ξ 485 4-ΥΥΥΓΙΑΥ24-ΥΥΥΓ2ΙαΥ31-ΥΥΥΓ3ΙαΥ42+ΧΥΙ4ΙΦΥ13	FSOIL.15 FSOIL.15	3 105	UNITIO
	AREA=AREA/2.0	FS01L - 16	-	NPUT J
υ.	total Macc. And Mcrout	FSULLTY FSOLLTB	0	302
ر	RHD=FARAS017)	F 501L . 19	× -	FIN F
	W=PARASO(B)	FSOIL .20	. 3	AITE 6
	THASS-RHOGAREASTHICK	F 5011.21 F 5011.22	- (FC N .
U		FSOIL.23		I=10(J
J	LUMPEO MASS.WEIGHT AT MODE.FOR QUADLATERAL ELEMENT	F 5011-24		F(11 .
	JF(JX(3) .EQ. JX(4)) 60 TO 401	F 501L • 25 E 5011 - 24	-	I (SSM
	R 74 6 0 % 1 M 8 5 0 % 4 6 0 6 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	F\$01L.2T		LOAOJI
	60 T0 402	F 50ft20	- 1-	LOADLI
\$	1 CONTINUE	FSOIL.29	303 C	ONTINU
	The success as Rs members	FSULLOSU ECOLI . 31	302 C	ONTINU
ر	IRIAR CLEATENI AMA 55=TRASS/34000.0	FSOIL.32	304 0	CNTINU
	WT=WT/3000.0	F 501L . 33		DAMATI
\$	2 CONTINUE	FSOIL 34	TOLE	ORNAT
	RET UTAN END	FSOIL.36	501 F	OR MATI
			2	HL CAD-

Factor
Facou.5 Facou.6 Facou.4 Facou.4 Facou.4
Facou.
FBECOL.
FRECOL.
FAECOL .
F DECOL .1
FSECOL.1
P BECOL.
F DECOL.1
FBECOL .1
FBECOL.1
FAECOL.1
F BECOL . 1
FAECOL.1
F&ECOL.
F BECOL.2
FBECOL.2
FBECOL.2

	SUBROUTINE INCNLIIO, TNASS, TLOAO)	INCM. + 2
		ENCRL.3
	IMPUT CONCENTRATED MASS OR LOAD	INCHL.5
		+ INCHI +
	OTHENSION [0]3.1).TNASS)1).TLOAO)1).RN(3).RL(3)	I NCML . 0
	COMNON/ELPAR/NUMMP, NUMEL, MEQ. NBAND, KLIN	ENCINL . 9
	WRITE16,501)	I NCML - 10
	00 301 1=1.MEQ	1MCNL-11
	TMA 55(L)=0.0	1MCML - 12
	TLOA0111=0.0	INCHL.13
IOE	CONTINUE	IMCHL - 14
		INCNL-15
	INPUT JOINT MASS AND LOAD	INCHL.16
	00 302 NN=1.*NUMNP	I MCML.17
	REAO [.W.]RM]J],J=[.3],[RL]J],J=1.3]	INCM10
	JEJN .EQ. 0) 60 TO 304	INCNL-19
	WRITE16,1011 N.RM.RL	INCHL.20
	IF(N .GT. NUMMF) GO TO 304	1MCNL.21
	00 303 J=1,3	INCIL. 22
	11=10(1,**)	INCHL.23
	JF(11 .EQ. 0) 60 TO 303	INCM. 24
	TMASSII) JERNIJI	1 NC/R 25
	TL0A0)11)-RL(J)	INCHL.26
	TMA SS(L1) -TMASS(L1)/L2000-0	INCM. 2T
	TLQAO[1])-TLOAD(1])/1000-0	1 MCML . 28
303	CONTINUE	INCH. 29
20	CONTINUE	I NCML 30
10m	CONTINUE	INCIN. 31
	RETURN	INCM. 32
-	FORMATII10.4F10.3)	ENCHL. 33
3	FORMAT(15.6F10.3)	INC. "NO
201	FORMATIO INPUT DATA DE COMCENTRATED MASS AMD LOAD IN LOVET'SSO//	INCR35
	LJTI RQUE +44+01984450-4++44+6194455-1+944+17914554-149 2446 AAA-4,446 AAA-4,34,148 AAA-77/1	I MCML - 30
-		I NCNL . 38

ESEEPS.113 ESEEPS.114 ESEEPS.114 ESEEPS.114 ESEEPS.115 ESEEPS.119 ESEEPS.1122 ESEEPS.122	ESEEPS.125 ESEEPS.126 ESEEPS.126 ESEEPS.120 ESEEPS.120 ESEEPS.130 ESEEPS.130 ESEEPS.130 ESEEPS.130 ESEEPS.130		ESEEPS-140 ESEEPS-140		ESEEPS.1710 ESEEPS.171 ESEEPS.171 ESEEPS.173 ESEEPS.177 ESEEPS.177 ESEEPS.177 ESEEPS.177 ESEEPS.179 ESEEPS.179 ESEEPS.179 ESEEPS.180	ESEEPS.102 ESEEPS.103 ESEEPS.103 ESEEPS.105 ESEEPS.105 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103 ESEEPS.103
00 313 1-1,MUNATF AKS-PARAFI2-11 AKN-PARAFI2-11 AKN-PARAFI2-11 AKN-PARAFI2-10 0311,11-AKK/5.0 0313,11-AKK/5.0 0313,11-AKK/5.0 13 CONTINUE 40 CONTINUE CONTINUE	FFINMALCA DIA 911 ANALA DIA 911 FFINMALCA DIA 911 ANALA DONODO.O AKS-3000000.O AKS-3000000.O 0 314 -11-ANAMTE 0 314 -11-AKX/3-0 0 411.11-AKX/3-0 314 -11-AKX/6-0 314 -11-AKX/6-0 314 CMTIME	C BOUNDARY ELEMENT FORCE-DISPLACEMENT RELATIONSMIP DISTRUMMIA = Go. 01 GO TO 400 DO 319 -11-NUMATO E-PAARDL1.1) 315 CONTIME 315 CONTIME C FORM STRESS-STAIN MATRIXC15.N).ELEMENT OY ELEMENT 400 CONTIME DO 310 M-1.NUMEL	C DETENTINE WHICH ELEMENT TYPE NTYPE=TX19,41 60 T0 1401.402.403,404,4991,41TYPE 401 CONTINUE C DETENTINE C DETENTINE C12.411=0112.4MT1 C12.4M1=0112.4MT1 C12.4M1=0112.4MT1 C12.4M1=0112.4MT1 C0 T0 112.4MT1 C0 T0 112.4MT1	CONCRETE ELEMENT CONCRETE ELEMENT A ATTIVION METRATINA METRATINA METRATINA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIANIA CIANIPOZIA CIANIPICIA	C FRICTIONAL ELENENT +	C15.W1=0412.MAT) C15.W1=0413.MAT) C15.W1=0413.MAT) C18.W1=0413.MAT) C18.W1=0413.MAT) C18.W1=0413.MAT) C18.M1=0411.MAT) A18.C11.M1=0511.MAT) 316.C0M11WUE FND FND FND FND FND FND FND FND FND FND
ESCEPS, 33 ESCEPS, 33 ESCEPS, 34 ESCEPS, 34 ESCEPS, 34 ESCEPS, 44 ESCEPS, 44 ESCEPS, 44	E SEEP 5. 45 E SEEP 5. 44 E SEEP 5. 44 E SEEP 5. 44 E SEEP 5. 49 E SEEP 5. 40 E SEE	E SGE P.S. 97 E SGE P.S. 97 E SGE P.S. 97 E SGE P.S. 96 E	E 562 P.5. 45 E 562 P.5. 45 E 562 P.5. 45 E 562 P.5. 45 E 562 P.5. 70 E 562 P.5. 71 E 562 P.5. 72 E 562 P.5. 73 E 562 P.5. 75 E 562 P.5. 75 E 562 P.5. 75		E SGEP 5, 90 E SGEP 5, 91 E SGEP 5, 92 E SGEP 5, 94 E SGEP 5, 101 E SGEP 5, 101	ESEP \$,103 ESEP \$,103 ESEP \$,103 ESEP \$,104 ESEP \$,104 ESEP \$,104 ESEP \$,100 ESEP \$,100 ONE \$,55 \$,110 ESEP \$,111 ESEP \$,111 ESEP \$,111
0411.JJ=0.0 00 302 J=J=WUMATB 05 11.JJ=0.0 0511.JJ=0.0 0511.JJ=0.0 0511.JJ=0.0 0511.JJ=0.0 0511.JJ=0.0 0511.ST=0.5	FINANCIA S. C. UT 00 10 408 FINAN .EO. 11 60 10 408 O 309 T1-INUMITS GO 309 T1-INUMITS GO 309 T1-INUMITS GO 309 T1-IO-ANU S12-2.09ANU S2-1.0-2.09ANU/82 0111:11-602.09ANU/82	300 0113/11-6 60 0113/11-6 60 10 407 406 CONTIMUE 406 CONTIMUE FLAWE STRESS FLAWE STRESS 60 310 1-1, WUMATS 60 310 1-1, WUMATS 60 310 1-1, WUMATS 61 21-0, 0013, 11 9 MUUPARANDI, 11	0111.11-602.00/81 0113.11-602.00AMU/81 0113.11-62.00AMU/81 0113.11-62.00AMU/81 0113.11-62.00AMU/81 00111-11-62 00111-11-00 0111-11-00 0111-00	00 316 M-1.4UNEL MG-1661.4M1 00 319 1-1.2 M005=1X11.4M 1X111 - 1.4.10051 XX111 - 1.4.10051 XX111 - 1.4.10051 A.4.5.X121 - XX113 A.4.5.X121 - XX113 A.5.5.X121 - XX121 - XX123 A.5.5.X121 - XX121 - XX123 A.	0 311 1-1.4UMATC E=PAMACD13.1) AMM=PAMACD13.1) G=[12.0F11.00AMU1) 0 312.1-11.00AMU1) 0 0 312.1-11.00AMU1) AT=CORPORT2.4) AT=CORT2.4) AT=CORPORT2.4) AT=CORPO	0212;1:J=6(/06CLJ)=9.0011.0+8ETAI) 0213;1:J=6(/06CLJ)=9.0011.0+8ETAI) 0215;1:J=0.98ETA/16CLLJ)=11.0+8ETAI) 0215;1:J=0235;1:J=0.8ETA/16CLLJ]=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=11.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(10CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(10CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLLJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-8ETA/9E+AI/(6CLJJ)=12.0+8ETAI) 0215;1:J=12.0-9E+AI/(6CLJJ)=12.0+8E+AI/(6CLJJ)=12.0+8E+AI/(6CLJLZ) 0215;1:J=12.0+8E+AI/(6CLJJ)=12.0+8E+AI/(6CLJJ)=12.0+8E+AI/(6CLJLZ) 0215;1:Z=12.0+8E+AI/(6CLJZ)=12.0+8E+AI/(6CLJZ)=12.0+8E+AI/(6CLJLZ) 0215;1:Z=12.0+8E+AI/(6CLJZ)=12.0+8E+AI/(6CLJZ)=12.0+8E+AI/(6CLJZ)=12.0+8E+AI/(6CLZ)=12.0+8E+AI/(6C-AI/(6CLZ)=12.0+8E+AI/(6C-A

00 316 J-1.2 11-44(1)-11:1 15(1)-44(1)-11:1 15(1)-46(11,J)+454(1,J) 316 CONTINUE 315 CONTINUE 315 CONTINUE 315 CONTINUE 316 CONTINUE 316 CONTINUE 316 CONTINUE 317 CONTINUE 318 CONTINUE	Concorrent Latitory 13,0,0,0 Concorrent Latitory 13,0,0,0 Category ENVLute 1,0,0,0,0 Category ENVLute 1,0,0,0,0 Category ENVLute 1,0,0,0,0 Category 10,1,1,1,1,1,1,1,1,0,0,0 Category 10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	00 302 1=1.2 M006=11.12 M016=11.14 M016=11.14 M1.11-11=01.3 M00E LM1.1-11=01.3 M00E LM1.1-11=01.3 M00E LM1.1-11=01.3 M00E LM1.1-11=01.4 M00E M1.11=01.4 M00E M1.11=01.4 M00E M01 M1.11=01.4 M00E M1.11=01.4 M00E M01 M1.11=01.4 M00E M01 M1.11=01.4 M01 M1.11=01.4 M00E M01 M1.11=01.4 M01 M1.11=01.4 M01 M1.
LV.C.AE.MIMD.4WIEL.ETSTF.2 ETSTF.3 ETSTF.3 ETSTF.3 ETSTF.4 ETSTF.4 ETSTF.4 3.1.1.1(6.1). ETSTF.9 3.1.1.1(6.1). ETSTF.9 ETSTF.10 ETSTF.12 ETSTF.13 ETSTF.13 ETSTF.13 ETSTF.14 E		0.c(1W.44V.5V. 615176.40 615776.40 615777777777777777777777777777777777777

DIMENSION [013,1],X[1],Y[1],PARACO(5,1],COP 1 51(5,1),52V(1),C(5,1),AE(MEO,1), 51(5,6) COMMONTANEAD COMMONTANEAD LOCATION OF MASS LOCATION OF MASS CALL LANICXX,YFX,YY,N) CALL CONCTSIXX,YFFMACO.COMOP.IX(1,M),18C (ALL CONCTSIXX,YFFMACO.COMOP.IX(1,M),18C (ALL STORE OM TOTAL STIFFMESS MATRIX AE CALL STORE(AE,MEO) 60 TO 400 FORN ELEMENT STIFF NATRIX, ONE BY ONE, AND ST SUBROUTINE ETSTIFLID.X.Y.PARACO.COPROP.IX. 1 TYPE S. BOUNDARY ELEMENT DO 314 1-12 MODESTICAN TI-1011,MODE) II-1011,MODE) II-1011,MODE) COTTAME CALL BOUNDSC(1,M) STORE ON TOTAL STIFFNESS MATRIX AE CALL BOUNDSC(1,M) STORE ON TOTAL STIFFNESS MATRIX AE ICALL BOUNDSC(1,M) STORE ON TOTAL STIFFNESS MATRIX AE ICALL BOUNDSC(1,M) STIFFNESS MATRIX AE LOCATION OF NASS CALL LANIIO.X.Y.IX.X.YY.N) CALL QUADSIXX.YY.C(1.N).SY.NIND(N)) TYPE 3. FRICTIONAL ELEMENT STIFFNESS TYPE 4. EXPANSION JOINT STORE DN TOTAL STIFFNESS MATRIX AE Call Store(Ae,Ned) GD TO 404 CALL FRICTS(XX, VV.C(1,M)) STORE DN TOTAL STIFFMESS MATRIX AE CALL STORE(AE,MEQ) COLL STORE(AE,MEQ) CO TO 406 DETERNINE THE ELEMENT TYFE GO TO (401,402,403,403,405),MTYPE LOCATION OF MASS CALL LANGIO.X.Y.IX.KK.YY.H TYPE 2,8EAN,COLUMN ELEMENT 402 CONTINUE TYPE 1.SOIL ELEMENT CONTINUE INTTLLZATTON MELAND 00 351 1-1, NED 00 351 1-1, NED 00 351 1-1, 6 00 352 1-1, 6 00 352 1-1, 6 00 351 1-1, 0 353 1-1, 0 353 1-1, 0 353 1-1, 403 CONTINUE 104 ş 116 υ 000 0000 υυ υU υu υu **.**... 00 J

J	SUBROUTINE STORE (AE, WEQ) \$	TE-2 C PVT=0Y/01, PVS=0Y/05, PXS=0X/01 PV701 C XJ=JACOBIAN=(0X/05)=(0Y/01)=(0Y/01)=(0Y/05)	QUADS . 57 QUADS . 56 QUADS . 56
υu	STORE ELEMENT STJFFMESS INTO TOTAL STJFFMESS MATRIX AEIMEQ.MBAND) S saessassassassassassassassassassassassas		09" SQUID
	COMMON/EM/LM(8), ASA(8,8) O)MEMSJON AE(MEO,1) Si	IE PXS	QUADS . 62
	00 301)=1+0 51		QUADS. 64
	JFI(1, -EQ. 0) GO TO 301 5 DO 302 J=1,6 51		QUAD 5 . 66
	JJ=LM(J)-J)+1 5 1F4JJ -LT. 1) 60 TO 302 51		00405.68
2	AE))),JJ)=AE()),JJ)+ASA(1,J) 12 FONTING		QUAD 5. 70
i M	DI CONTINUE	HX(1)=PXX+HX(1)=PXX+HX(1)+PTX+HT(1) HX(1)=PXY+HX(1)+PTY+HT))	QUADS. 71 QUADS. 72
	END SI END SI	TE-10 MX(1)=MX(1/1/2.0	QUADS. 73
		306 CONTINUE	9UADS. 75
		C FORM STRA(N-D)SPLACEMENT MATR)X 8(3,8)	01.0005.77
		8(1,1)=HX(1) 6)1,3)=HX)2)	QUADS. 78 QUADS. 79
		B)1,57=HX(3)	QUADS. 60
	SUBROUTINE QUADSIXX, YY.E, SY., IND)	8(2,2)=HY(1) 55.2 6(2,2)=HY(1)	QUADS 82
		1543 5124 514 514 514 514 514 514 514 514 514 51	OUADS . 64
	FORM SOLL ELEMENT STIFFMESS MATRIX, AND STORE ON TAPE 1	55.5 C C 512.61=H7 (4)	QUADS . 86
. ი			QUADS. 87
	0(MEMS)0M XX(4),YY(4),E(5),SS(4),TT(4),M(4),M3)4),HT)4), U	05.0 B(3,4)=B(2,4) D5.9 B(3,4)=B(1,3)	04.20AUD
	DJMENS(DN 8(3,8),S(6,6),SA)3,8),SY)6,6)	15.10 B13.51=012.61	QUADS . 91
	COMMON/MONL/MREAD		24.50WD
	COMMON/MATER/NUMATS,NUMATC,NUMATF,NUMATE,NUMATB,NUMGE,NIMTCV,TWICKON	05.13 013,01=0(1,7) 013,01=0(1,7)	0UADS94
	COMMON/ELASTC/SE(0+0)	15.15 JFJ TND .EQ. 1) 60 TO 401	OUADS. 96
	COMMOM/TIME/JUMP-T-01.MPRTM.MIAPE.WPRIMI 04TA SS/-1.0.1.0.1.0.1.01.0/, TT/-1.01.0.1.0.1.0.1.0/	DS-LG C ELASTIC CASE DS-L7 C STRESS-STRAIM WATRIX S(3,3)	QUADS.97 QUADS.96
	00 00 00 00 00 00 00 00 00 00 00 00 00	55.10 511,41 = 611)	00405-99
ر	9'1=1 10E 00	55.20 S(1,3)=0.0	101-S0409
30	00 302 J=1,8)2 ASA(1,J)=0.0	56-21 S(2,1)=E(2) 15-22 S(2,2)=E(1)	QUABS-102 QUADS-103
ē		55.23 512.31=0.0 512.31=0.0	QUADS - 104
		55-25 S13,11=0,0 15-25 S13,21=0,0	QUAD 5. 105 QUAD 5. 106
n n	04 B)),J)=0.0)3 CONTINUE	25-26 SJ3-31=EJ3) 25-27 Ana Chirthine	QUADS . 108
			QUADS-109
ر	00 305 11=1.4	55.30 C CMIINUE	QUADS.111
	SC=SS))))00.57735026910963 TC=TT((1)+0.57735026918963	DS-31 C PLAST(C STRESS-STRAIN MATRIX SI3+3)	01405+112
	Sam 1.0 - SC	5,33 Exercise 200 209 Jely 200 Exercise 200	QUADS.113
		35.35 309 5(1,J) =5Y(1,J) 55.35 402 CONTINUE	QUADS.115
J		156.37 C	0UADS-117
J	FORM INTERPOLATION FCTMS CHILLESCHATHALD	IS.30 C FURM ELEMENT STIFFMESS MATRIX ASA(1,J) Fac-Thickexjei728.0	QUADS-118 QUADS-119
	H) 2) = SP=7#/4. 0	55.40 00 307 J=1.6 0 J=5.11.23+612.13+511.33+613.13	QUADS - 1 20 01405 - 1 21
	H(3)=SP=7P/4.0 H)4)=SM=7P/4.0	25.42 25.42 23=42	QUADS-122
00	DERIVATIVE OF M W.R.T. S.O(M(1))/OS=MSJL) 00	05.43 00 306 1-1,6	QUAD 5 . 124
,	MS(1)=-TM/4.0 Ct	ASA() + 0) = 45A((, 0) + 8(1, 1) + 8(2, 1) + 02 + 8(3, 1) + 703 ASA(), () = ASA(), () = ASA(), 0)	QUADS.125 QUADS.126
		35.47 308 CONTANE 307 CONTANE	QUAD 5. 127 QUAD 5. 128
0		25-49 305 CONTINUE 25-49 16/100640 -60, 1) GD TO 410	QUAD 5. 129
J	0EP(VATIVE M.R.T. T.DIMI(I)/UT=MI(J) HT(L)==-SM/4.0	25.51 C STORE ELEMENT STIFENESS INFORMATION ON TAPE 1	QUAD S. 131
	HT(2)=-5P/4.0 HT(3)=-HT(2) HT(3)=-HT(2) 0	55.52 00-8 00-8 NG=8 NG=8 NG=8	461.20MU0
υ.	0 2.1. 5.1 0	55.55 56 E4	

ບບ

υU

00 00

......

່ມ

306 KU=KD/ID IF(NREAD .ED. 1) GO TD 413	CONCTS+135 CONCTS+136 C	SUBROUTIME FRICTS(XX,YY,C)	FRICTS.2 Fricts.3
C FIXED EMD FDRCE RF16) IM GLOBAL COORDINATE	CONCTS+137 C	ааааааааааааааааааааааааааааааааааааа	##FRICTS.4 FRICTS.5
00 331 LA-1.4.3	CONCTS-139		BeFRICTS.6
DD 331 1L-1+3	CONCTS+141	DIMEMSIOM XX(4), YY(4), C(5), S(8, 8), SA(8, 8), T(2, 2)	FRICTS.0
1=1L+L8 X4=D.0	CONCTS.142 CONCTS.143	COMMDM/EM/LM(0),ASA(0.0) Communi/MDMI/MEEAD	FRICTS.9 FRICTS.10
00 332 K=L,3 332 XA=XA=T(K,1L)+SF(K+10)	CONCTS+144 CONCTS+145	COMMONT TWEF JUNE , 8.01. MPATM. WTAPE. KPR INT COMMONT I WEF JUNE , 8.01. MPATM. WTAPE. KPR INT	FRICTS.11 FRICTS.12
331 RF(1)=XA	CONCTS-146		FRICTS.13
c curtinue	CONCTS+140	IMITILI2ATIOM D0 301 1=1,64	FRICTS-19
<pre>c DBTAIM SA(6.6) RELATING ELEMENT END FORCES(LDCAL) TO c Joint Displacement(Global)</pre>	CONCTS.149 CONCTS.150	S(I)=0.0 301 COMTINUE	FRICTS.16 FRICTS.11
DD 311 1=1.64	CONCTS-151 C		FRICTS.18
311 CONTINUE	CONCTS+193	FDRM ELEMEMT STIFFMESS IN LOCAL COORDS	FRICTS.19 FRICTS.20
DD 312 LA=1.4.3	CONCTS-154 CONCTS-155	S(1,3) -C(3)	FRICTS-21
D0 312 MA=1,4,3	CONCTS+156	512.41=C14) S12.41=C14)	FRICTS.23
NG=NA-I DD 312 I=LA.LB	CUNCTS+151 CONCTS+158	S(3,3)=S(1,1) S(4,4)=S(7,2)	FRICTS.24 Fricts.25
DO 312 JM-1,3	CONCTS-159 CONCTS-140	S(1,5)=-S(1,3)	FRICTS.26
XA=0.0	CONC 75. 161	5(1+1)==5(1+1) 5(2+6)==5(2+4)	FRICTS.28
DU 313 K=L+3 313 XA=XA+S([+K+MB)+T(K+JM)	CONC 75-163	S(2,0)S(2,2) S(3,5)S(1,1)	FRICTS.29 FRICTS.30
AX=(L,1)A2 216	CONCTS.164	513,71 5(1,3)	FRICTS.31
C ELEMENT STIFFMESS MATRIX ASA16,6) IN GLOBAL CODRDS	CONC 75 - 166	5(4,0)=-5(2,4) 5(4,0)=-5(2,4)	FRICTS.33
DO 314 I=1.64 314 ASA(I)=D.D	CONCTS=167 CONCTS=168	00 303 1=1.4	FRICTS.34 FRICTS.34
D0 315 LA=1.4.3	CONCTS. 140	303 S(1+4, 1+4) = S(1, 1)	FRICTS. 36
L0=LA-1 D0 315 MAA-1.4.2	CONCT 5.170	00 304 [=2,68 kst-1	FRICTS.37 FRECTS.30
	CONCTS.ITI CONCTS.IT2	00 304 J=1.4K	FRICTS.39
DD 315 [L=1.3 I=[L+L0	CONCTS-173	304 CONTINUE	FRICTS.41
00 315 J=M4,M0	CONCTS+115	SCHEM TRAMSCORMATION MATRIX 112.21	FRICTS.42 FRICTS.43
D0 316 K=1,3	CONCTS-176 CONCTS-177		FRICTS.44
316 MA=KA+T(K,[L]+SA(K+L0,J) Asaff 11-Ya	CONCTS+178	OV=VV(2)-VV(1) Case ne horizomtal friction strnent	FRICTS.45 FRICTS.46
als continue	CONCTS.179 CONCTS.180	IF(DX .ME. 0.0 .0M. DY .ME. 0.0) 60 TO 421	FRICTS.4T
IFENREAD .EQ. 1) 60 TO 41D NS=6	CONCTS-101	(T)44-(4)44-40 (T)44-(4)44-40	FRICTS.49
MD=6	CONCTS+182 CONCTS+183	421 COMTINUE	FRICTS.50
HMITETLI NU.MS.(LM(I).I=1.MD).((SL(I.J).I=1.MS).J=1.MD). 1 ((SA(I.J).I=1.NS).J=1.ND).	CONCTS.184 CONCTS.184	STIFFNESS FOR TOTAL LENGTH L.K/INCH	FRICTS.52
2 (SF(1), 1=1, MD)	CONCTS-184	00 351 1=1.6 00 341 1=1.8	FRICTS.53 Fricts.54
410 CONTINUE	CONCTS.187 CONCTS.180	S(1,J)=S(1,J)=OL=12.0	FRICTS.55 EDICTC.54
D D D D D D D D D D D D D D D D D D D	CONCTS.189 CONCTS.160		
DD 318 J=1,6 Sat1,J)=Sat1(,J)-Sat1,J)	CONCTS-191		FRICTS
318 CONTINUE MATTERATION AS AMAIN 1-1 AND 452 40 11 -1 AND 42 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	CONCTS.193	T(2,1)=-T(1,2)	FRICTS.00
MAILERAANSONCHALLAILEAUUUAALELAUUUAALEUUUAALEUUUUAELEUUUUUUUU	CONCTS-194 C	FORM SA(0.0), RELATING ELEMENT END FORCES (LOCAL) TO JOINT DISPLACEMENTIGLOBAL)	FRICTS.61 FRICTS.62
Z (SF(I),I=1,ND) 421 CONTINUE	CONCTS.196	00 305 I-1 64	FRICTS.63
AE TURN END	CONCT 5. 198	00 306 LA=1.7.2	FRICTS.64 FRICTS.65
	661°510000	L0=L4+1 DD 306 MA=1+7+2	FRICTS.66 FRICTS.67
		MG=MA-1 DD 3D6 1=LA.LB	FRICTS.68 FRICTS.69
		D0 3D6 JM=1,2 J=JM+HA	FRICTS.70
		XA=0.0 XA=0.0 0 20 20 20	FRICTS.72
		3D7 XA=XA+S(1,K+M8)=T(K,JM)	FRICTS. T4
		304 COMTINUE	FRICTS. 76 FRICTS. 76

SUBROUTIME STATICISLV.AE.U.Y.AC. SUDION OF STATIC CASE-DISPLA SOLUTION OF STATIC CASE-DISPLA CONCOMPANTION OF STATIC CASE-DISPLA OTHENSION SLVIL).UIL).VIL).ACCT CONCOMPANTION.T.OT.MPRTN.MTA CONCOMPANTION	V(1)-0.0 ACC(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-0.0 ACC(1)-0.0 DV(1)-0.0 ACC(1)-	EXAUST (ALELIJ).=1.NEG)1.1. 00 301 1-1.NEG) U(1)-5LV(1) 301 CONTINE CALL TRIAAE.NEG.MBAND) CALL TRIAAE.NEG.MBAND) CALL TRIAAE.NEG.MBAND) 00 302 1-1.NEG 00 302 1-1.NEG 00 302 CONTINUE END END	SUBROUTINE TRIA(A,MEQ,MBAND) C SUBROUTINE TRIA(A,MEQ,MBAND) C STANGULIZE STIFFNESS MATRIX A (C SONONNONSONONNONNONNONNONNONNONNONNON C DIMENSION A(1) ME-MEQ-1
FRICTS-71 FRICTS-78 FRICTS-78 FRICTS-80 FRICTS-81 FRICTS-82 FRICTS-85 FRICTS-78 FRICTS-85 FRICTS-75 FRICTS	FRICTS.00 FRICTS.00 FRICTS.01 FRICTS.01 FRICTS.02 FRICTS.03 FRICTS.04 FRICTS.04 FRICTS.04 FRICTS.04	FRICIS.00 FRICIS	BCMICS - 2 BCMICS - 2 BCMICS - 4 BCMICS - 4 BCMICS - 6 BCMICS - 7 BCMICS - 7 BCMICS - 7
ELEMENT STIFFMESS ASA(8,8) IN GLOBAL COORDS 00 308 11.04 00 309 141.7.2 00 309 1441.7.2 00 304 1441.7.2 00 304 1441.7.2 00 304 1441.2 00 304 1441.2 00 304 1441.2	X40.07 JONNATION X40.07 JONNATION 310 X41X411/954(K+L8-J) 310 X44X474(L1)954(K+L8-J) 306 Continue Continue Continue 16(Merado .eo. 1) 50 TO 410 (F(Merado .eo. 1) 50 TO 410 Merado .eo. 100 TO 410 Merado .eo. 100 TO 410 Merado .eo. 100 TO 410 Merad	1 ((SA(1,J),I=1,WS),J=1,MO) (G T 0 411 (SA(1,J),I=1,WS),J=1,MO) (C CONTHUE WAITE WOW-LINEAR INFORMATION ON TAPE 41 00 312 J=1,0 00 312 J=1,0 312 CONTHUE WAITE (41)NO.M(1,J),I=1,MO),((S(1,J),I=1,MS),J=1,MD), 11 CONTHUE 11 CONTHUE 12 CONTHUE 12 CONTHUE 13 CONTHUE 14 CONT	SUBROUTIME BOUNDS(C) SUBROUTIME BOUNDS(C) FORM BOUNDARY ELEMENT STIFFHESS MATRIX AMA STDDE OM TAFE L SOUNDARY ELEMENT STIFFHESS MATRIX AMA STDDE OM TAFE L COMMON/EN/LM/LM(B), ASA(B,B)
00		U	00000

	SUBROUTINE BOUNDS(C)	BOUNDS . 2
		8:0UND 5 - 3
	***************************************	+ SONDBee
	FORN BOUNDARY ELEMENT STIFFNESS MATRIX ANA STORE ON TAPE 1	BOUNDS.5
		A S CINCO S 6
		BOUNDS . 7
	COMMON/EM/LN(8), ASA(8,8)	BOUNDS.B
	01MENSION C(5), S(8, 8), SA(8, 8)	6.20W05.9
	CONMON/ NONL/ NREAO	BOUNDS.10
	COMMON/ELASTC/SE(8,8)	BOUNDS.11
	00 301 1=1,64	BOUND S.12
	S(1)=0°0	BOUNDS . 13
100	CONTINUE	9 CUNDS. 1 4
	S(1,1)=C(1)	BOUNDS-15
	S(1,2)=-S(1,1)	60UNDS . 16
	S(2,1)=S(1,2)	BOUND 5.17
	S(2,2)=S(1,1)	BOUNDS . 1.8
	00 302 1=1.8	BOUNDS.19
	00 302 J=1.6	BOUNDS-20
	SA(1,J)=S(1,J)	BOUNOS.21
	ASA(1,J)=S(1,J)	80UND 5+22
302	CONTINUE	BOUNDS.23
	IF(NREAD .EG. 1) GO TO 410	80UND 5 - 24
	ND=2	80UND 5 . 25
	NS=2	8 OUND 5 . 26
	WRITE(1) ND,NS,(LM(1),[=1,ND),((S(1,J),I=1,NS),J=1,NO)	6 OUND 5 . 2 T
	60 T0 411	BOUNOS - 28
10	CONTINUE	80UNDS+29
	WRITE NON-LINEAR INFORMATION ON TAPE 41	BOUND S. 30
	00 304 1=1,2	BOUNDS. 31
	00 304 J=1,2	BOUND 5.32
	S(1, 1) =SE(1, 1) -S(1, 1)	BOUNDS.33
\$0	CONTINUE	8 OUNO 5 . 34
	WRITE(41)N0,NS,(LN(I),I=1,N0),((S(1,J),I=1,NS),J=1,ND)	BOUNOS.35
Ţ	CONTINUE	BOUNDS.36
	RETURN	8 CUNO 5. 37
	two	BOMMON 30

J

SUBROUTIME STATIC(SLV,AE,U,V,ACC,DU,OV,DA,MEO,MBAMD)	STATIC.2 STATIC.3
SCLUTION OF STATIC CASE-DISPLACEMENT AT NODES Solution of Static Case-Displacement at NODES	STATIC 5 STATIC 5 STATIC 6
DIMENSION SLY(1).U(1).V(1).ACC(1).DU(1).OV(1).DA(1).AE(MEQ.1) COMMOUNTIME.JUMP.T.D(1.MERTH.WIAME.MEMIT	STATIC.7 STATIC.8 STATIC.9
INITILIZATION 00 351 1-1-MEQ	STATIC-10 STATIC-11 STATIC-12 STATIC-13
ACC(1)-0.0 DU(1)-0.0 DV(1)-0.0	STATIC-15 STATIC-15 STATIC-16 STATIC-17
CONTINUE LUMP-O NRTINO FRENATO	STATIC-18 STATIC-19 STATIC-20 STATIC-21 STATIC-22
REMIND 3 (AE(1,J),]=L,NEQ),J=L,NBAND) 00 301 =1,NEQ F(AE(1,1) -NE, 0) U(1)-SLV(1) Cott Tria(AE,NEQ,NBAND) Call Anckiae,NEQ,NBAND) 0 302 1-144EQ	STATIC-23 STATIC-24 STATIC-25 STATIC-25 STATIC-27 STATIC-28 STATIC-28 STATIC-28
CONTINUE Continue Return Eeno	STATIC.31 STATIC.32 STATIC.33 STATIC.33 STATIC.33

	SUBROUTINE TRIA(A, NEQ, MBAND)	TRIA.2
		TRIA.3
	TRIANGULIZE STIFFNESS NATRIX A OF AX-8	TRIA.5
	***************************************	assTRIA.6
		TRIA.7
	UTRENSION ALL)	TRIA. 8
	MC=NC4=1 MM=H2AMD_1	TRIA.9
	Reserved D	Tere II
	MX = NEQ-MN	TRIA.12
	00 301 N=1,ME	TRIA-13
	NT=R-HK	TRIA. 14
	IF(NT .GT. 0) NM=NM-NEQ	TRIA.15
	IF(A(N) .EQ. 0.0) GT TO 301	TRIA.16
	[=H	TRIA.17
	IL = N+ NEQ	TRIA. 16
		TRIA-19
	UU 302 I=IL+IH+NEQ	TRIA.20
		TRIA-21
		TRIA. 22
	DD 303 K=f.1H.MFD	TRIA. 23
	A(J)=A(J)-C+A(K)	Tela. 25
303	J=J+MEQ	TRIA-26
-	A(1)=C	TRIA.27
205	CONTINUE	TR1A-28
	RETURN	TRIA-29
	END	TRIA. 31

STRAIN-41	STRAIN.43	STRAIN.44 Strain.45	STRAIN. 46	STRAIN-4T STRAIN-4D	STRAIN.49	STRAIN-50	STRAIN-52	STRAIN.53	STRAIN-54	STRAIN.56	STRATH ST	STRAIN.50	STRAIN.59	STRATM.61	STRAIM.62	STRAIN.43	STAIN.65	STRAIN-66	STRALM.60	STRAIN.69	STALIN. TL	STRAIN. 72	STRAIN.13 STRAIN.TA	STRAIN. TS	STRAIN.TO STRAIN.77	STAAIN.70 STAAIN.70	STRAIM.BU	STAIN.BI	STRALM.03	STRAIM.64 Straim.65	STAATN. 86	Level and STRAIN. AN	STRAIN-89	STRAIM-90	STAALN.92	STRAIN. 93	STRAIN-95	STRAIM.96	STRAIN-97 STRAIN-98	STRAIN.99	STRAIN-101	STAAIN.102	STRAIN.104	STRAIM.105	STRAIN.10T							
K=IX(3,W)	144111-1	DISPLACEMENT STAAIN TAANFORMATION MATAIX	XI3=X(()-X(K)	X24=X(J)-X(L(Y13=Y11(-Y(K)	724=V(J(-V(L)	XJ=XI3+Y24+X24+Y13	FORN OTHE ()/OX=HX((),AND D(H(]((/OY=HY())	MK(1)=Y24/XJ	MX(2(=-Y13/XJ MX(3b=-MX(1))		HY(1(=-K24/XJ	NV(2(=X13/X)	12177-12177-12177	00 305 (=1++	[[e]+]	B(1,JJ)(=HX(1)/12.0	B(2, 11(-HY(1)/12.0	0(3,JJ)=MY(1)/12.0	5 CONTINUE	EVALUATION OF INCREMENTAL STRAIM-DEPSI3.N3	00 306 [=[+3	00 301 J=1,6	IF(JJ .60. 01 60 TO 307	DEFS(1+M(=DEPS(1,M)+8(1,J)+DU(JJ)	5 CONTINUE	A00 UP TOTAL STRAINTEPS(3,N)	00 308 (=1,3	TEPSIL #MC=TEPSIL#MC+DEPSIL#N)	EVALUATE DETUCTON CTEATU-DESCUMULATION	MAX SHEAR STRAIM PEPS(3,M)	0E=TEPS(1,M(-TEPS(2,M) If(DE .EQ. D(ED TO 402	TAM-TEPS(3, M1/DE	THETAl=ATAN(TAN)/2.0	THE FAZET HE FAL + 1. > 101963268 TEMP1=TEPS(1, N(+ COS(THETAL) + COS(THETAL)	TEMP1=TEMP1+TEPS(2.W)+SIN(TMETA1(+SIN(TMETA1(TEMPL=TEMPL+TEMP(3,N)#SIM(THETAL)#COS(TMETAL) TEMP2=TEMP(1,M(#COS(THETA2)#COC(THETA2)	TEMP2=TENP2+TEPS(2+N(+SIM(THETA2(+SIN(THETA2)	TEMP.4=TENP2+TEP5(3,M)=SIM(TMETA2)=COS(TMETA2) PEPS(1, M(=AMAX)(TFMP1,TFMP2)	PEPS(2,N) =ANINI (TEMP1, TEMP2)	GO TO 303 .	CONTINUE	PEPS(2.N)=TEPS(2.M)	PEPS(3.W)=TEPS(3.M(RETURN	END							
	U	04	•		-		. U												30	. U				IUE	306	J U		308	00	, U											402		CO F									
BACKS.2 BACKS.3	**BACKS.*	**BACKS *	BACKS.T	BACKS.9	BACKS.10	BACKS.12	DOCKS-13	BACKS-14	BACKS-16	BACKS-17	BACKS. 19	BACKS.20	BACKS, 21	BACKS.23	BACKS.24	BACKS.25 BACKS.25	BACKS . 2T	BACKS.20	BACKS.30	BACKS. 31 BACKS. 32	Pre- cuato						STRAIN.2	STRAIN.3 005TRAIN.4	ELSTRAIN.5	DesTaal N. T	STRAIN.B	STRAIN. 10	STAAIM.11	STRAIN.12 STRAIN.13	STRAIN-14	STRAIN-15	STRAIM.17	STRAIN.18 STRAIM.19	STRAIN. 20	STRAIN.22 STRAIN.22	STRAIN.23	STRAIN-25	STRAIM.26	STRAIN.28	STRAIN.29	STRAIM.3U	STRAIN.32 STRAIN.33	STRACH. 34	STRAIN-35 STRAIN-36	STRAIN.37	STRACN. 39	STRAIN.40
SUBROUTINE BACKSIA, B, NEQ, NBANOI	404665566546655666655555555555555555555		DIMENSION ALLI, BILD	MAME NBAND-1	000 MHH+H	C=8(N)	IFLA(M, .NE. 0.01 B(M(=B(M(/A(M)		(M= M(NO (NEQ, N +MMM)		Memory Contraction of the second seco	101 B(()=B())-V(W(+C	60 10 1000	01 (F=W	I-New I	ITTR .E.C. UT KE LUKW	Z BE	00 302 (= (L, (M	02 B(N)=B(M(-A(M(+B(I)(60 TO 401							SUBROUTINE STRAIN()0,X,Y,IX,OU,TEPS,OEPS,PEPS(CALCULATE THE INCREMENTAL STRAIN, AND THEN TOTAL STRAIN OF SOIL	IN BUIN X,T COUND ARD FAIRLIFAL UNACTIONARI CENTER OF LEEDEN Assassessessessessessessessessessessesses	AT 13 - AMA AM - AMA IN 13MILM - AMAMINA ANA 137 MAMMAAT	COMMON/T(ME/JUMP,T,0T,NPRTM,NTAPE,KPRINT	DIMENSION MX(4(.WY(4).B(3.6).LM(B)	O(MENS(ON IG(3,1(,X(1),Y(1),IX(6,1),GU(1(,TEPS(3,1),DEPS(3,1), 1 PEPS(3,1((F(JUMP .NE. 0) 60 TO 401	Twitter czatiow	00 301 (-1,3	00 301 J=1, NUMEL	0EPS((, J1=0.0	PEPS(I.J)=0.0	DO 302 (=1,3	00 302 J=1,5 B(1,J)*0.0	302 CONTINUE	60 CONTINUE 00 303 N=1.NUMEL		MATERIAL TYPE=MTYPE MTYPE=lx(5,N)	(F(MTYPE .ME. 1(GO TO 303 00 304 (st.4		MODE=[X(),+N) M(_1,1)= 10(2,-NDDE)	LM(JJ-L)+(0(1+N00E)		J={X{2+N}
U	•••		J.		-	•								,														.		ას	J					0.	,								0	U						

SUBROUTINE STRESSILX, DU, OEPS, OSIG, SIG, PSIGI	TAGESS.2 C NON-LINEAR CASE	5.0
		12
CALCULATE INCREMENTAL STRESSAMO TUTAL STRESS OF ALL ELEMENTS sessessessessessessessessessessessesses	77455.5 6 722 CUM7 ANUC 277655.5 6 REAQ(1) (55))+)=1,06) 278655.7 422 CUM7 ANUC	512
COMMON/ELPAR/MOMMP,MUMEL.MEQ,MBAND,KL(N Simension 1974 11 Distributions11,055512,11 Distribution	57NE55.0 KK=38	57 S 7
COMMON/71ME/JUMP.7.07.MPRTN.NTAPE.KPRINT	C SET UP STRESS-DISPLACEMENT MATRIX-SA216.61	12 T
0) RENSION [N(6) + SS(138) + SL/3 + SA2(0+0) + SA3+(0+0++ SA3) < 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	574E55s12 K(=KK+60)	5
EQUIVALENCE/SS, ISS)	5TRE55.13 00 307 J=1.6 2TRE55.14 J(=K)+J	15
LFLJUMP .NE. 0) 60 70 406	7NESS.15 307 SA2(J,))-SS(J() 7NESS.16 306 CONT(NUE	LS LS
DUTTLPZATJON	STRESS.17 C C SET UP LOCATION OF MASS	STI STI
00 301 J=1,NUMEL	774ESS_19 DO 306 1=1,6	12
	STRESS.20 LN())=155(2+)) 2016-21 and CM21Hile	ES S
CONT) NUE	5776-5.22 C	1S 1
COMT) NUE	ITRESS.23 C ADD UP FIXED END FORCES Itress.24 (Filump .ME. D) 60 70 451	52
DEMIND 1	STRESS-25 00 351 J=1.6	12 T
DD 302 N=1, NUMEL	5TRE55.26 5JG(),W)=55(80+() 5TRE55.27 35L COM7(RUE	5
DETERNINE ELEMENT TYPE	TRESS=20 451 CONTINUE	55
NTYPE=)X(5,N) Go 70 (401.402.403.403.405.405).NTYPE	STRESS.29 C CALCULATE (NCREMENTAL STRESS-DS16(0,M),AND 707AL STRES STRESS.30 C CALCULATE (NCREMENTAL STRESS-DS16(0,M),AND 707AL STRES	SIG(++H) ST
	tress.al 00 309 (=1.6	5
TYPE 1.SOIL ELEMENT	57RE55-32 00 310 J=1,6	12
LUMINUCE JFIKLIM .EQ. 0) CO 70 411	STRESS_34)F(1,1 .EQ. 0) 60 TO 310	IS
JF(NREAD .EO. 0) 60 70 411	STRESS.35 DS(G((,N)=05(G((,N)+SA2((,J)=0U(JJ)	15
MON-LINEAR CASE	TREES.30 3L0 CONTINUE	IS
MEAUTAL [331]///***/*!? GO TO 412	STRESS-36 309 CDW71MUFF 309 CDW71MUFF	50
CONTINUE	FTRESS-39 60 TD 302	ST S
XEAULI ISSUIGTELOIF? CONTINUE	STRESS.41 C TYPE 3.FAIFTIMMAL ELEMENT	5
KKe7	STRESS.42 C TYPE 4, EXPANSION JOINT ELEMENT	15
SET UP STRESS-STRAIN MATRIX-SL(3,3)	STRESS.44 403 CONTINUE	LS .
00 352)=1,3	STRESS.45 (F)MREAD .E0. 0) 60 70 431	51
X)=KX+30) 60 203 1=1.2	STRESS-46 REA0(41) (SS((),[-1,138)	LS
J)=K(+]	57RESS.48 431 CRM21AME	52
S1(4,))=SS(41)	TRESS.49 REAO(1) (SS((),(a1,138)	15
	arcson 432 CONTINUE	5
CALCULATE INCREMENTAL STRESS-DS(G(3,N), AND ADD UP TOTAL STRESS S		1S
641a1 406 D0 205 1a1 at a to	STRESS-55 C SET UP STRESS-DISPLACEMENT MATRIX SA34(8,8)	LS
0516((,N)=0516(1,N)+51((,J)+0EPS(J,N)	210555-55 K(=KK+80)	1S
5)6)(,W)=5(6)(,W)+05(6)(,W)		ST
CALCULATE PRINCIPAL STRESSES, OIRECTION, AND MAK. SHEAR	TRESS-50 312 SA34(J.()=SS(JT)	22
D=(S)6(1,*)-S16(2,*))/2.0	TRESS.59 BLL CONTINUE	STI
2=(5(6(1,0K)+5/6(20M))/2.0 7AU=5(6(3.0)	THESS.61 C SET UP LOCATION OF MASS	ES.
R=SQRT) D=0+7 AUeTAU)	TRESS-62 00 313 [-1,0	115
PSIG(1,0H)=S+R PS/G(2,0H)=S-R	TRESS.04 BIS CONTINUES '	55
PS)6(3,N)=(PS(6(1,N)-PS16(2,N))/2.0		15
(FID "NE. 0.47 64 70 447 PC1614.N1445.0	TITLESSOOT	S(G(B.N) ST
60 10 302	TRESS_66 00 315 J=1,8	T S T
CONTINUE Bui 3-3 Americia, Mizzecett, Mi-secet2, Mit	JIRESS.70 JJJL[] JJL[]	S71
PH(2=A05(PH(2)	TRESS-71 0516((,N)=05(6(),N)+5A34((,J)*DU(JJ)	115
PS(G)4,N)=0.5947AN(PH)2) PS(G)4_M)=PS1C(4_M)+57_29477	STRE 556.72 315 CONTANUE STRE556.73 STERT - MILETERT - MILETERT - MILETERT - MI	LS
60 70 302	STRESS.74 314 CONTINUE STRETCH THE STRESS.74	STR STR
TYPE 2.BEAM.COLUMN ELENENT	514E55.75 C G0 T0 302 C S1RES5.76 C	IIS IIS
CON7) NUE	STRESS.77 C TYPE 5, BOUNDARY ELEMENT	578
JFJKL(N .E0. 0) 60 70 421 JF(NREAD .E0. 0) 60 70 421	STRESS.78 405 CONTINUE	STI

C 305 352

402

υv

101

109

υu

MFDRCE.2 MFORCE.3 MFDRCE.4 MFDRCE.6 MFDRCE.6 MFDRCE.6	WFORCE.8 KWFDRCE.9 WFORCE.10 WFORCE.11 WFORCE.12	WFORCE.13 WFORCE.14 WFORCE.14 WFORCE.16 WFORCE.17	MFORCE_10 MFORCE_19 MFORCE_20 MFORCE_21 MFORCE_22	MFDACE.25 MFOACE.25 MFOACE.25 MFOACE.21 MFOACE.23 MFOACE.23 MFOACE.23 MFOACE.23	WFORCE,32 NFDRCE.33 NFDRCE.33 NFCDRCE.35 NFCDRCE.35 NFCDRCE.33 NFCDRCE.33	MF0ACE.39 MF0ACE.40 MF0ACE.41 MF0ACE.42 MF0ACE.43 MF0ACE.44 MF0ACE.44 MF0ACE.44 MF0ACE.44 MF0ACE.44 MF0ACE.44	WFORCE.49 WFORCE.50 WFORCE.51 WFORCE.52 WFORCE.53 WFORCE.53	WFONCE.55 WFONCE.56 WFONCE.51 WFORCE.58	MFORCE59 MFORCE01 MFORCE01 MFORCE02 MFORCE04 MFORCE04 MFORCE04	HF00555.00 HF00555.00 HF00555.00 HF00555.00 HF00555.10 HF0055.11 HF0055.11 HF0055.11 HF0055.11	MFORCE.75 MFORCE.75 MFORCE.76 MFORCE.71 MFDRCE.79 MFDRCE.79
SUBROUTINE WFONCEIY,IX,SIG,MELW,IMFW,WFX,YBAR,WFY,MTWI connections connections calculate the total fonces fx,fy,qlocal acting on the Wall, and ITS line of Action the Base.	C CONMON/NATER/NUMATS,NUMATC,NUMATF,NUMATE,NUMAEG,NUMGE,NINTCY,THICI I.NPLAN DIMENSION Y11),1X16,11,5IC(8,11,MELMIL1,INFUNCAT) DIMENSION Y11),1X16,111,5FND0101	00 301 1=1.4TW C 1MTTL12AT10M MTT=0.0 MFX11=0.0	MATCHIFSO.U NARLMIC NARMA-20 NARMA-20 LONEST ELEMENT MO. LUELSIVE(LINK.)	C LOMEST MODAL POINT NO. LNOD=INFN(1,NP f D0 302 Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan 1Jan	C CHECK THE SEQUENCE OF NODE ON ELEMENT DO 303 K-1,4 Nod-11(K,4NE(1 1F1MO1 - ME. MO0) GO TO 401 K-2MC+K K1=K2-1	C CMANGE THE CENTER STRESS TD MODAL FORCES IN CASE OF SOIL ELEMENT NTTYPE-IX(5,MEL(IF(MTF) = E0, 3) (CD 10 402 IF(MTF) = E0, 3) (CD 10 403 IF(SIGL) = C5, 0,01 (CD 10 403 IF(SIGL) = C5, 0,01 (CD 10 403 IF(SIGL) = C1, 001, X (CS) = C1 0 404 FND0(K1)=0,59THICKTVESIG(3,MEL) 404 FND0(K2)=0.59THICKTVESIG(3,MEL)	60 T0 406 403 FWOD(K1)=0.0 FWOD(K1)=0.0 60 T0 406 402 CONTINUE	C FRILIDM ELEMENT AN MAL. Signilado.So(Sig(1,MEL)Sig(4,MEL)) Signiado.So(Sig(1,MEL(+Sig(1,MEL)) If(signi2_0f, 0f, 0.0 AMD, Signi34 .LT. 0.01 GD TO 405	C TENSION FMODIALIJ=D.D FMODIALIJ=D.D FMODIAZI=D.0 60 TO 406 405 CONTINUE	FUNCTION FOR THE STATE S	KI=KZ-1 KI=KZ-1 NTYPE=CX(5.NEL) F(SIGG1-WEL) - 60 TO 407 F(SIGG1-WEL) - 65. D0) GD TO 408 F(NO0(K1)=0.56FH(CK@+L@SIG61.MEL)
574655.157 574655.159 574655.150 574655.154 574655.151	574255,162 574255,163 574255,164 574255,166 574255,166	STRESS.100 STRESS.160 STRESS.160 STRESS.1TD STRESS.1TD	STRESSALT3 STRESSALT3 STRESSALT4 STRESSALT5 STRESSALT7 STRESSALT7 STRESSALT7	574655-170 2.44) 574655-170 574655-100 574655-100 574655-100 574655-109 574655-109	STRESS-100 STRESS-101 STRESS-100 STRESS-100 STRESS-100	NADA TA.2 NADA TA.2 NADA TA.3 Decementa TA.4.	TURCE STATE A - 5 000000011011 01111111111111111111111	WADATA-12 WADATA-13 WADATA-14 WADATA-15	WADATA.JO WADATA.IT WADATA.IB WADATA.20 WADATA.22 WADATA.22	WAONTA.25 WADATA.24 WADATA.25 Q.•. WADATA.25 WADATA.27 WAOATA.27	
<pre>clw .23, 3) .0 TC 441 WEEU .23, 3) .0 TC 441 O(4) (SS(1),124,0) D(4) (SS(1),124,0) D(104)</pre>	(:) (5511),1=1,0) [Vuc] Jp 512:5515Pld(Ement Matrix 5A5(2,2)	11 J-1,2 11 J-1,2 1.1.1.2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.	ITOPE UP LOCATION DF MASS 12 (41,2) 9415(2*1 (JLATE INCREMSNTAL STRESS OSIGI2,MJ,AMD TOTAL STRESS SIG 191=1,2 0.J=1,2 1.J=1,2 1.e.0, d) GO TO 320 1.e.0, d) GO TO 320 1.e.1 = distributed	. M. = 516(1, M(+0516(1, M) MUE MUE	OUTIME MAOAFA(MELW,IMFW,MTW) soossoossoossoossoossoossoossoossoosso	F OATA OF ELEMENTS AGAINST MALL FON CALCULATE THE TUTAL Bessessessessessessessessessessessessess	15 JUN RELATIONATION CONTROL INFORMATION E 66 5021	IN ELEMENT DATA ON MALL, FROM TOP TO BOTTOM D1 14:1.WTW Pecchati 2.2.W.M.Thyfuth,111,11-1.MM) 2.2.W.D21 MW F16.JD21 MM F16.JD31 (1MFM(MW,111(,11-1.MM)	LINC: Art(19/13151) Art(19/15,15,197,(5,197,15) Art(18,(15,197,(5,197,15) Art(18,15,15,197,15) Art(18,15,15,197,15) Art(18,15,15,15) Art(18,15,15) Art(19,	

	SUBRDUTINE PRINTRATO, IX, U. V. ACC. TEPS. PEPS. SIG. PSIG. WFK. YBAR. WFY.	PRINTR.2
ų	I NPASS,NING, HSIG,NTW, NUMELE)	PRINTR.5
	***************************************	*PRINTR.5
υ,	PRINT THE CALCULATED RESULTS AND STORE ON TAPE 2 FOR PLOTTING	PRINTR.6
0.4		PRINTR.6
,	COMMON/NATER/MUNATS, MUMATC, MUMATF, NUMATE, MUNATB, NUMGE, MINTCV, THIC	KPRINTA.9
	LeNPLAN Formom/El Dag/Minmup - Minkel - MEG. Mgamb, Ki TM	PRINTR-10
	CONNON/TIME/JUMP, T.DT., NPATM, NTAPE, KPRINT	PRINTR.12
	CONNON/ABS/UGYT, UGYT, VGYT, VGYT, OACCX, OACCY Stretting tota 1, 1744 1, 1414, VII, ACCTI, TERCAR, 1, MERCAR, 11,	PRINTR.13
	UINENSIUN IU(3+11+10(0+11+0(11++4))+11+455513+11+5555313+11+ 1 S[6(0,1)+PS[6(4,1)+NPASS[1)+NFN(1)+VFN(1)+V6AR(1)+	PRINTR-15
	2 WFY(I),D(9)	PRINTR.16
	COMMON/SPEC)L/ISTOP Dimemetry witcle.wimmetei	PRINTR.17 PRINTR.16
U		PRINTR-19
	offraudus th as natur of unit	PRINTR.20
ر	LEFELUMP . EQ. 1) KPRENFRTM	PRINTA-22
	[F(JUNP .EQ. 1) GO TO 401	PRINTR.23
	IF(ISTOP .EQ. 1) GO TO 401	PRINTR.24
	ITIJUMP	PRINTR.26
	KPRINT=KPRINT+NPRTN	PRINTR.2T
J	STATIC RESULT TELMIND .ME. 01 CO TO 401	PRINTR.20 PRINTR.29
	DO 351 I=1, WUMEL	PRINTR.30
-	0=(1)SSVAN	PRINTS.31
160	NINULIJ=U DD 352 M=T.MUMEL	PRINTR.33
	DD 352 [=1,9	PRINTR.34
	HS 16(1, M)=0.0	PRINTR.35
355	CUMITINUE METTE(A. 501)	PRINTR. 30
	60 TD 402 ·	PRINTR.36
104	CONTINUE	PRINTR.39
402	WRTTE (6, 502) CONTINUE	PRINTR-40
0		PRINTR.42
<u>ں</u>	NODAL POINT DISPLACEMENT,VELOCITY,ACCELERATION Meitfia.4031	PRINTR-45
	WRITE(6,101) JUMP,T	PRINTR.45
ο.	COMMO DISALACMENT USI DETTY AFFEI CRATION	PRINTR.46
د	GROWN UISTAACEMENINELUUIITAACCECEMENIUN Ifijump .eg. 0) 60 TO 405	PRINTA.46
	WRITE(6, 104) UGXT, UGYT, VGXT, VGYT, CACCX, DACCY	PRINTR.49
403	CONTINUE	PRINTR.50
	00 302 1=1,9	PRINTR.52
302	D([]=0.0 Poi 303 [=].3	PRINTR.53
	H=[D(1,N]	PRINTR-55
	IFIM .EQ. 0) 60 TO 303	PRINTR.56
	D(1)=U(N) D(1+3)=V(N)	PRINTS.56
	OII+6)=ACC(M)	PRINTR.59
SUS	untimuc Write(6.102) N.(D([),[=1.9)	PRINTR.61
loe	COMTINUE	PRINTR.62
ب د	STRESS.STRAIN AT CENTER OF SOIL ELEMENT	PRINTR.64
	WRITE(6,504)	PRINTR-65
114	CONTINUE DO 304 N=1,NUMEL	PRINTR.60
	NIYPE=IX(5,N)	PRINTR.68
	[F(NTYPE .NE. 1) GO TD 304 DO 305 [=1.9	PRINTR. 57
305	0111=0.0	PAINTR.T1
	DU 305 /=[.30] NO 305	PRINTR. T3
	0(1)=SIG(1,N)	PRINTR. 14
	O()+3)=TEPS(1,N) O()+6)=PEPS(1,N)	PRINTR. 75
306	CONTINUE	PRINTR.77
	HSJG(9.N)=FLOAT(NPASSINJ) Jf()STOP .EO. I .OR. JUMP .EO. I) GO TJ 416	PRINTN. 10 PRINTR. T9

FORCE = 00 FORCE = 01 FORCE = 01 FORCE = 05 FORCE = 111 FORCE = 112 FORCE = 122 FORCE =

IF(ISTOP .NE. 2) GO TO 304	PRINTR.80	NTN	YPE=1X(5.M)
416 CONTINUE	PRINTR.61 Prints.61	1F	(NTYPE .ME. 5) GO TO 311
304 CONTINUE	PRINTR.63	HSH	IG(1,N)=SIG(2,N)
IF(ISTOP .EO. 1 .OR. JUMP .EQ. 11 60 TO 417	PRINTR.84	ISH	IG(9.MI =FLOAT (MIND(N))
IF(ISTOP .NE. 2) GO TO 412	PRINTR.05	15	(ISTOP .EO. 1 .OR. JUMP .EO. 1) VISTOP .ME. 21 GO TO 311
MITE(6,509)	PRINTR.OT	423 CON	NTINUE
00 321 N=1,NUMEL	PRINTR.00	MRI	ITE(0,102) M.O(1)
WIYPE=IX(5,N)	ALMIN'S CO.	311 CO	
IF(MITPE are 1) 60 10 341 Weitf(A.105) N.(PSIG(1,W),I=1,41,MPASS(MI	PRINTR.91	10 000 CT	
321 CONTINUE	PRINTR.92	C F01	RCES AGAINST THE WALL
412 CONTINUE	PRINTR.93	1	(NTM .EQ. 0) GO TO 410
IF(NUMATC *EQ* 0) GO TO 406 Teristro -eo. 1 .00. Jump .50. 1) GO TO 410	PRINTR.95	E.	(ISTOP .EO. 1 .OR. JUNP .EQ. 1)
IF(ISTOP .NE. 2) 60 TO 413	PRINTR.96	11 434 60	(1210P .Me. 21 50 10 410
418 CONTINUE	PRINTR.91	14-4-4 C.C.	ITE(6,508)
	PRINTR.95 Detuto.00	8	312 N=1,NTW
END FORCES OF BEAM, CULUMM	PRINTA-100	N/R	ITE(6.102) N.WFX(MI.YBAR(MI.WF
413 CONTINUE	PRINTR.101	312 CO	ATTNUE
DO 30T M=1, NUMEL	PRINTR.102	, U	ITE INFORMATION ON TAPE 2 FOR
NTYPE=IX(5,N)	CULATINUM CONTRACTOR	410 COI	ATTMUE
IF(NITFE ONE. 21 GUIU 301 DA 353 fel.6	PRINTR.105	1	(JUMP .EQ. 0) 60 TO 403
HSIG(1, N) =SIG(1, NI	PRINTR.106	15	LEAD AND A CONTRACT OF A CONTR
353 CONTINUE	PRINTS-101 Pethte-108	403 CO	AT I NUE
MSIG(V,M]=FLUAI(MIMUINI) DD 308 1=1.4	PRINTR.109	5	TTE(21) (U(1),1=1,NEQ1,(ACC411
308 D(1)=0.0	PRINTR.110	AR.	TTE(22] ((M316(1,M),1=1,V1,M=1 /MTM .50. 01 CO TO 404
0(1 1=S16(4,NI	PRINTR.111	A M	TTE(231 (MFX(1), YBAR(1), MFY(1)
D(2)=SIG(2,N)	PRIMINS AL	404 CO	AT INUE
0(3)=SIG(3,N)	PRINTR.113	5	TOP=0
IF(ISTOP .EO. 1 .OR. JUMP .EO. 11 GO TO 419	PRINTS_114	101 FO	RMAT(15,F10.4)
IF(ISTOP .ME. 2) 60 TO 30T	PRINTR.116	102 FD	RMAT(154,15,9E12.41
419 CONTINUE	PRINTR-11T	103 F0	RMAT(15%,18,413,8E11.3] Beatte conten motions.4%.2512.
307 CONTINUE	PRINTS_119	105 50	RMAT(15%,15,4€12.4,110)
406 CONTINUE	PRINTR-120	501 F0	RMATIOLSTATIC AMALYSIS RESULTO
IF(NUMATF .EO. 0 .ANO. NUMATE .EO. 0) 60 TO 40T IELISTOP EO 1 DO NUMB EO 11 60 TO 400	PRINTR.121	902 FU	RMAT (#IUTMANIC ANALTSIS NESULI BMAT (# BELATIVE DISB-11-VELDC-V
IF(ISTOP .NE. 2) 60 T0 414	PRINTR.123		a TIME TIME NODEs.
420 CONTINUE	PRINTR.124	2	4X+0 U-X++4X+0 U-
MODAL SORFE AT SEPTITOMAL LAND SYRANCION DINT SLENGAT	PRINTR.125	m 4	4X,8 V-X8,4X,9 V- 4X,8 ACC-X8,4X,9 ACC-
WRITE(6,506)	PRINT A.12T	P 10	• STEP SEC ND. •.
414 CONTINUE	PRINTR.120	-01	AX.e INCHe.AX.e INC
DO 358 N=1, WHEL NTVPF=Ir(5, M)	PRINTR.129 Beinte.120		4%,"INCH/SEC",4%,"INCH/SC 4%," IM/S20,4%," IN/S
IF(NTYPE .ME. 3 .AND. NTYPE .ME. 41 GO TO 350	PRINTR.131	504 FD	RMAT(154. STRESS, STRAIN AT TO
	PRINTR,132	- •	15X, a SIGK , SIGY , SIGXY-THE
	PRINTR.133 Detrib.134		151. 8 PEDS1. PEPS2. PEPS12-THE
Nor IX(4,N)	PRINTR.135	•	e ELENe,
00 309 I=1.6	PRINTR.136	en v	64,8 SIGX8,64,8 SIGY8,64,8
00 U(1)=U.U PO 310 f=1.A	PRIMIR.13T	a 1-	DAST TEPSATSASTA TEPSTASTAS
HSIG(I, MI=SIG(I, N)	PRINTR.139	• •	*00***
310 D(1)=SIG(1,W)	PRINTR.140	6	6X.e KSIe.6X.e KSIe.6K.
MSIG(9,W)=FLUAT(MINO(N)] If(ITTOP .FO. 1 .OR	PRINTR.141 Delinte 1.22	04 505	SKHAT(ISX,* BEAN,CULUMN TUNCES) BEENS
IF(ISTOP .NE. 2) GO TO 350	PRINTR.143	~	54.º AXIALº.54.º SHEARº.51
421 CONTINUE HETTELE TOBLE MENT HOLMAN HELVETTER FOR	PRIMTR.144	69 4	/0 100-00 57 0 7100-57-0 7100-51
356 CONTINUE	PRINTR_146	506 FD	IRMAT(15%, + NOAL FORCES AT FR
407 CONTINUE	PRINTR.14T	T	e ELEMENT
IF(WUMAIS .EQ. 0] GO TO 408 IF(ISTOP .Fo. 1 .OBNUMP .FO. 11 .CO TO 422	PRINTR.148		
IF(ISTOP .NE. 2) 60 TO 415	PRINTR.150		
422 CONTINUE	PRINTR.151		
AXIAL FORCE AT BOUNDARY SPRING	PRINTR.153		
MRITE(6,50T)	PRINTR-154		
TO BUILING	FRINK-100		

.....

MISTIFIX, Y, PAMASO, PAMACO, PAL MISTIFIX, Y, PAMASO, PAMACO, PAL 180, SLV, C, AKN, UJ, Y, QU, TEPS, DA 57, 65, VC, MAMASO, MUNEL, INI 28, SLA, TO'AL, TAMASO, MUNEL, STRESS, DA					3.AND	BY ONE
UBROUTINE (125.04P,11x, PASS,NINO PRANCOLO	COMPARTS (CONTRACTION CONTRACTION CONTRACTION CONTRACTION (CONTRACTION CONTRACTION CONTRAC	MPLAN COLYALENCE(SS, ISS) COLYALENCE(SS, ISS) DIMENSION ISS(130) DIMENSION SL(54) COMMONTEASTC/SEI8,8)	F LINEAR AMALYSIS.GO BACK Refadi a go diretuan Histar ego diretuan Mittlization Di sei lei.s	211-11-0-0 00 347 1-1-8 241-1-1-0-0 247 1-1-0-0 20111MC	(EAD TOTAL ELASTIC STIFFWESS FADM TAFE Emind 3 Eadijj (Iaenii,J),I=1,Meq),J=1,Mband) Eadijj (Iaenio 41 Eenind 1	CHECK VIELD COMOITION OF ELEMENTS-ONE D0 302 Ma, Numel Tyve=txt5, M1 MTYVE=txt5, M1 MTYVE=txt6, M1 D1 tol1,+02,+03,+03,+051, MTYVE D0 T0 tol1,+02,+03,+03,+051, MTYVE

00 00 00

000

 2
 8%,0
 H10.48%,0
 V20.48%,0
 V20

-148-

310 CONTINUE 00 343 1-1.0 5611.19 343 CONTINUE 343 CONTINUE	C LOCATION OF MASS 00 312 (41.6 312 Lu(1)=(55(2+1) c Find Incarental Nodal Displacement,and modal Forces 0 313 14.6	11=(1+1/2 11=(1+1/2 11=1.4.10 11=1.4.0 010(11)=0.0 001(11)=0.0 000(11)=0.0 0	DUCLI-POULJ) FF(MOCL.21 -66. D) 60 TO 409 UCLIL-U(LJ) 409 F(1)-516(1,M) 409 F(1)-516(1,M) 409 F(1)-516(1,M) 313 CANTIMUE C FR(1)-66 F(1)-M) (MIMD(N)) C CALL PERICTPARAFR(1,MATVPE), \$44,0TU,6,C(1,M), MIMD(N)) C CATTAN	CALL PEYPANIPANAFRIL, MATYPEL, PARAEX(L, MATYPEL, SAA, UE, OTU, VE, F, 1 CONTINUE 4.1 CONTINUE C CNECK IF IT IS VIELD C CNECK IF IS VI	C CONTINCE C FORM TANGENT STIFFMESS-MSAGELOBALF CALL SUGTECTSTR, VY.C(1.M)) CALL SUGTECTSTR, VY.C(1.M)) CALL SUGTERN-MEQ) C C T SUGTERN-MEQ) C C T SUGDART ELEMENT C C T SUGDART ELEMENT C C C T T OF MASS C O C 315 1-1-1.2	315 LW (1)=155(2*1) 340 CW (1)=0 - 3+8 340 CW (1)=0 - 3+8 340 CM TWWE BO 344 -1-2 BO 344 -1-2 BO 345 -1-2 345 St(-1)=51,1) 345 St(-1)=51,1) 345 St(-1)=51,1) 345 St(-1)=61,1) 345 St(-1)=61,1) 346 St(-1)=61,1) 347 St(-1)=61,1) 347 St(-1)=61,1) 348 St(-1)=61,1) 348 St(-1)=61,1) 348 St(-1)=61,1) 348 St(-1)=61,1) 348 St(-1)=61,1) 348 St(
MTSTIF.129 MTSTIF.120 MTSTIF.130 MTSTIF.132 MTSTIF.133	NTSTIF.134 NTSTIF.135 NTSTIF.136 NTSTIF.136 NTSTIF.139 NTSTIF.139 NTSTIF.149	NTSTF-141 NTSTF-142 NTSTF-143 NTSTF-145 NTSTF-145 NTSTF-145 NTSTF-145 NTSTF-145	NISTF.100 NISTF.100 NISTF.120 NISTF.120 NISTF.123 NISTF.123 NISTF.123 NISTF.123 NISTF.129 NISTF.129	MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_160 MTSTF_116 MTSTF_116 MTSTF_117MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117 MTSTF_117MTSTF_117MTSTF_117 MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_117MTSTF_		MISTIF106 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF104 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200 MISTIF200
00 305 J-1.6 Jietta-J 305 SAZ(J,1)-55(JJ) 344 CONTINUE 0.346 LOU 346 LOU	00 346 Jelie 50 146 Jelie 346 Conting C form displacement stress matrix.LocalSlie.61 C 355 Ielie 00 355 Ielie	00 356 Jal.6 Jakasar 356 Sturiles(J1) 355 Contiude 307 (e1.6 307 (e1.6 307 (e1.6	LMD:-0 C FINO INCREMENTAL WODAL OISFLACEMENT JJJLMI) JJLMI) J	C CALCULATE COEFFICIENT OF YIELO FCTN MANT-18C(4,N) AC(1)-1-0 CC(1)COP(2,N)MY)/COP(4,N)MT) CC(1)COP(2,N)MY)/COP(4,N)MT) CC(2)COP(2,N)MY1/COP(4,N)MT) AC(2)COP(2,N)MY1/COP(4,N)MT)-1-0 CC(2)COP(2,N)MY1/COP(4,N)MT)-1-0 CC(2)COP(4,N)MY1/COP(4,N)MT)-1-0 CC(2)COP(4,N)MY1/COP(4,N)MT)-1-0 CC(2)CC(2)-COP(2,N)MT)/COP(4,N)MT)-1-0 CC(2)CC(2)-COP(2,N)MT)/COP(4,N)MT)-1-0 CC(2)CC(2)-COP(2,N)MT)/COP(4,N)MT)-1-0 CC(2)CC(2)-COP(2,N)MT)/COP(4,N)MT)-1-0 CC(2)CC(2)-CC(2)-CC(C [F1JUMP -EQ. 01 MINO(M)=0 C CMECK IF (11 S VIELO F(MINO(M, -ME. 0) E TO 323 MATTE 411 (55(1)+1=1+0 ⁰) AATTE 411 (55(1)+1=1+0 ⁰) 323 COMTINUE 20 10 302 FORM VIELO STIFFMESS ASA-GLOBAL MODE TAI(1) MATII)=X(MODE) X(11)=X(MODE)	309 CONTINUE CALL CONCTSIXX,VY,MAAGO.COPHOF.IXII.M).IBC(I,M).C(I,MI.SLV.SV. I AIMONNI) COLL CONCTSIXTFRESS ON SUBTRACTING ASA FROM AEM FORM TANGENT STIFFNESS ON SUBTRACTING ASA FROM AEM COLT SUBTRCTARN.WEQ) 403 CONTINUE TYPE 4.ERASTON JOINT READ ELEMENT INFORMATION FROM TAFE I READ INFORMATION FROM TAFE I READ INFORMATION FROM TAFE I READ ELEMENT INFORMATION FROM TAFE I READ INFORMATION FROM TAFEN TAFENTION FROM TAFEN TAFENTION FROM TAFEN TAFENTION

-	SUBROUTIME SOILME (PARASO,KZS.TEPS.OEPS.PEPS.OSIG.PSIG. Sv.GS.SIGMST.NIMD.MPASS) accordent of the solid state of the solid stiffmess matrix check the solid styres subroutime pool.		.NE -2 .NE -3 .NE -5 .NE -5 .NE -7
	UCALI	105	NE 9
0 INI	ENSION PARASO(6).K25(20).TEPS(3).0EPS(3).PEPS(3).DS16(6). Sic(6).PS5(c).SY(6.4).PS5(c)(3) Dom/Timp.Limp.T.01.upgTim.Stape.KPBINT	10S 10S	LNE . 10 LNE . 11 . NE . 12
ND.	MON/MATER/NUMATS, NUMATC, NUMATF, NUMATE, NUMATB, NUMGE, NINTCV, THI Lan	CKS01	LNE.13
CON CON	ENSION SIGNSM(350) Mon/Melen/n	202	LNE.15
REA	L RZS un i turitation and maeir pamametens de soli	105	LNE.10
NIN	UP LINEAR INULAR UNARNO UNARU PARATELENS OF ULL D-0	202	LNE . 20
	PARASO(1) PARASO(2)	105	LNE .23
33	#PARAS03} ARAS04141	201	LNE . 24 LNE . 25
IHA	=PARASO(5) =PH1/57.2976 Mav-2004cr.a.	105	LNE-26 LNE-21
DET O	TERMINE MHICH STRESS-STRAIN LAW IS USED	000	LNE 29
E	FAR CASE G1 .eg. G2) Return	0.00	LNE .32 LNE .32
BIL	INEAR CASE MITH SHEAR STRAIN CONTROL-FOR ONE DIMENSIONAL SHE In Case Only Gannay .ne. 0.01 GO TO 408	SOI	LNE.35 LNE.35 LNE.35 LNE.35
CAL SA	JUNF .Mc. UT UL TU 403 E STATIC MEMA STRESS EN DEFECTIME ACTIVE ON PASSIVE FAILUNE. CULATE MEM STREPAESS AT THE END OF STATIC AMALYSIS	2222	LNE . 30 LNE . 39 LNE . 40
IF (NPLAN "EO" D) GO TO 402 Me streks.mean so. stress		LNE - 41 LNE - 42 LNE - 43
516 516	MST=t SIGt 1)+SIGt 2))/2.0 MSNtMJ=SIGtST	201	LNE . 44
SIG	.NST=ABS(S[GNST) Me=SQRT(S[GNST) To	555	LNE 40 LNE 41 LNE 41
3	TO 403	0.00	LNE 49
555	TTNUE ME-(516(1) +5 [5(2][+(1,00+AMU)/3,0	0.0	LNE - 51 LNE - 52
S16 S16 S16	#SS=FS1641.9516(2)//2.0 #Asetty = 51645 #== 8851516#E) #== 8851516#E)	2000	LNE .55 LNE .55
5	TIMUE	105	ME.57
- EE	INEAR CASE WITH COLONG-MOME, WITHOUT STRAIN-MANDENING MASILI	0.00	NE - 60
	JUMP - MC - 0 0 0 0 0 0 0 0	2222	NE 63 NE 63 NE 64
5	CEC WITH SHEAR MODULUS CURVE K2S FOR COFF. K2 (Ganara, J., K23(2)) refure	0000	ME .66 ME .66 NE .68
8100	301 -1.10 [GAMMAK .GE. K2S(2+1) .ANO. GAMMAX .LT. K2S(2+1+21) 60 TO 405 TTHUE MTHUE	200	NE TO
33	CK IF IT IS VIELO	201 201 201	NE . 75
LE R	L PSOIL(OSIG.SIG.PSIG.SV.GS.ANU.C.PHI.NIMD) NINO. EQ. 1) 60 10 406	10S	LNE . 76 LNE . TT NE . TA
	(GANNAK .NE. KZSI44171 60 10 407	2	

NTSTE-202 NTSTE-203 NTSTE-	SUBTIC.2 SUBTIC.3 SUBTIC.3 SUBTIC.3 SUBTIC.3 SUBTIC.4 SUBTIC.4 SUBTIC.4 SUBTIC.10 SUBTIC.14 SUBTIC.14 SUBTIC.14 SUBTIC.14 SUBTIC.14 SUBTIC.14 SUBTIC.14 SUBTIC.14
5 F(1)-S)G(1,M)-OS)G(1,M) CONTING CALTRUE CAL PROUMERAMO(1,MATYFE, OTU-F.C(1,M).MINO(N)) FARMNO(N) AK. 0) GO TO 325 MATE(41) (55(1)-1-1.0) GO TO 302 GO TO 302 CAL SUPTK(AKN-REO) CAL SU	SUBROUTINE SUBTRCIAEN.WEG) SUBROUTINE SUBTRCIAEN.WEG) EXERCISES STREAMESS AND EXERCISES STREA
31 32 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41	Ö Ö
U U	00000

	AK2=K2S(2+1-1)	SOLLME.79	15
	60 70 410	SOILNE . BO	J
604	AK2=[K25[2+I-1]+K25[2*I+1]]/2.0	SOILNE	
01¢	CONTINUE	SUILNE.82	
, u	MODIFIED ELASTIC STIFFMESS IN KSI	SOILNE . 04	
	GS=AK2+2. 63 8+ SI GNE	SOILNE .85	10
	65=G1-65 M1W0=2	SOLUE SOLUE	
	RETURN	SOILNE .00	5
451	CONTINUE	SOLLNE .09	12
	CALL PSOIL(OSIG,SIG,PSIG,SY,GS,AMU,C,PMI,MINO) Teimima ea. 11 co to aa4	SUILME . 90	
	RETURN	SOI LNE.92	
404	CONTINUE	SOILNE.93	1
υ.	Anithe strate of states and states and strate is a strate states.	SOILME.94	;
ب ر	CHECK IF IT IS ALTIVE ON PASSIVE FAILUME,WFASSEL ALTIVE FAILUME, Mbassag daskive failime	SOLLNE - YS	
, ر	NPASS=0 EALSTIC	SOILNE.97	1
	IFININO .EQ. D) RETURM	SOILNE .90	~
	SIGN=(SIG(1)+SIG(2))/2.0	SOILNE . 99	æ
	(L SIGN CE · SIGNSN(N) NPASS=1	SOILNE .100	0
	IFISION		53
J		SOILNE . LOB	5 2
	BILINEAR WITH COULOND-NOHR NO MARDENING	SOI LNE.104	
U	*** ** *** * 444***********************	SOILME . LOS	IN
401	CONTINUE	SOILNE.106	
	65=61 Controperto esto acto ave de Anni C Ant Memor	SULUE JU	
	LALL PSUIL(USI6+SI6+PSI6+ST+GS+ANU+L+PHINU) Tel mimo eo 11 co to 11	SUILNE +100	20
		SOTUME 110	ě,
411	CONT (AUF	SOILME .111	2
U	CHECK IF IT IS ACTIVE OR PASSIVE VIELO	SOILNE .112	
U		SOILME.113	10
	SIGM=(SIG(1)+SIG(2))/2*0	SOILNE.114	8
	IF(SIGN .GE. SIGNSM(M)) MPASS=1	SOI UNE . 115	90
	IF(SIGN .LT. SIGNSN(M)) NPASS=2	SOILNE .116	, E
ţ	RETURN 		5
ن د	SUFAR STRATH CONTROL - SUFAR AFAN ONLY	SOILME.119	
		SOILME.120	8
408	CONTINUE	SOILME.121	s
,	GANMAX=TEPS(3)	SOILME.122	AS COC
	Calfillate (19860 1811 - 280 0865 1817 1866	SUILME +124	302 10
J	UNICOUNT OFFICE THE ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS	SOLUME 125	1
	TAL =GANNA Y* (G2-61) +62*64NMAX	SOILNE.126	
U	ELASTIC CASE	S01LME.127	
	IF(SIG(3) .LT. TAU .AMO. SIG(3) .GT. TAL) RETURN	SOILME .120	
ي د	CNFCM I MADTING OF HIM DADTING WHEN VIEL DING	SOLLME .1290	
,	PSSIG(3)=SIG(3)+0EPS(3)+61	SOILME.131	
J	UNLOADING FROM VIELDING, ELASTIC CASE	SOI LME . 132	
	IF(PSSIG(3) .LT. TAU .AND. PSSIG(3) .GT. TAL) RETUNN	SOILNE 133	
ی د	PLAME STRATH FOR SMEAR BEAM AMALYSIS	SOLLME 135	
,	IF(62 .69. 0.D) 62=61/10000000.D	SOILME.136	
	GP=61-62	SOILME . 137	
	00 452 I=1,6	SOLUNE 130	
452	0, 42, 42, 42, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40	SOILNE .140	
	SY(1,1)=2.00(1.0-AMU)06P/(1.0-2.00ANU)	SOILNE.141	
	SY(1,2)=2.0*ANU*GP/(1,0-2.0*ANU)	SOILNE.142	
	ST(3,3)=5V(1,1) SY(2,2)=5V(1,1)	SOILME .144	
	SY(2,1)=SY(1,2)	SOILNE .145	
	I NINO=1	SOILNE .146	
	RETURN	SULLIE-14 C	

SUBROUTINE PSOIL(OSIG,SIG,PSIG,SY,GS,ANU,C,PHI,MIND)	PS011.2
88838888888888888888888888888888888888	** 11050
ATMEMETAN ATATATA NOTITAL ATTATA ATATATA	PS01L.7
OINENSION PARASOUTINGS (01,000,000,000,000,000,000,000,000,000,	PSOIL.9
	PS01L.10
CHECK IF IT IS VIELO FOR BILIMEAR CASE	P SOIL-11
T3=2.0+6605(PHI)/1000.0 T1=(1.0+51M(PHI))+P516(1)	PSOIL-12
T2=(1.0-SIM(PHI))+PSIG(2)	PS01L.14
F=f1-f2-f3	PSOIL.15
IF(F .LT. D.O) RETURN	P SOIL-16
CHECK IF IT IS LOADING OR UNLOADING	P SOIL.16
T=(SIG(1)+SIG(2))/2.0	PS01L.19
1.2=1.0=2 R=T2+516(3)0+2	PSOIL-20
R=SQRT(R)	PS01L.22
DF(1)=T/R/2.0+0.5+SIM(PHI)	P SOIL.23
OF(2)=OF(1)	PSOIL.24
01.37-316.377 01_06.01.1406.02.01406.02.01406.02.01406.02.02.0000.02.02.02	PSOIL 24
IF(DL .LT. 1.0E-10) RETURN	PS011.27
1-ONIN	P SOIL.20
8=0.5451M(PHI)	PS01L.29
82=SIG(3)=+2/R=+2	PSOIL.3U
AC=81+0.5+1.5+82	PS01L-32
	P SOIL. 33
FURN CONFONEMIS OF PLASIIC SIRESS-SIRAIN LAW-QP(3) Te=(516(1)-516(2))/4.0/R	PSOIL.34
QP(1)+B/(1.0-2.0*4NU)+TE	PS01L.36
2P(2)=B/(1.0-2.0*AMU)-TE	PSOIL-37
4P(3)=S1G(3}/R FA=6542.D/AC	PSOIL . 30
	P SOI L . 40
FORN PLASTIC MOOLUS-SY(3,3)	PSOIL.41
D0 302 Jel.3	PSOIL-43
5V(I, .J)=QP(I)+QP(J)	PSOIL.44
SV(I,J)=EA=SV(I,J) STORTINE	PSOIL.45
RETURN	PSOIL.47
END	PSOIL.46

CONCINE	CONCINE . A	CONCNE . 7 CONCNE . B	CONCNE .9 CONCNE .10	CONCHE .11	CONCINE . 13	CONCNE .14 CONCNE .15	CONCNE-10 CONCNE-17	CONCINE .19	CONCINE 20 CONCINE 21	CONCINE	CONCNE.24 CONCNE.25	CONCINE 26 CONCINE 27	CONCINE	CONCINE .30 CONCINE .31	CONCINE .32	CONCINE -34 CONCINE -34 CONCINE -35	CONCINE -34	CONCINE	CONCINE . 39 CONCINE . 40	CONCINE .42 CONCINE .42	CONCINE 44 CONCINE 44	CONCINE -44	CONCINE . 48	CONCINE -50 CONCINE -50	CONCINE . 52	CONCINE	CONCINE 55 CONCINE 54	CONCINE5T CONCINE50	CONCNE59 CONCNE40	CONCINE +61 CONCINE +62	CONCNE63 CONCNE63	CONCINE - 65	CONCINE -61	CONCINE-69	CUNCHE . T1	CONCRET 12 CONCNET 3 CONCNET 12	CONCINE . TS	CONCNE.TT CONCNE.TB	
SUBROUTINE CONCINE (CMP.F.OTU.S.A.8.C.SY.NIND.SL)	CHECK (F THE ELMENT IS VIELO, AND FORM VIELO STIFFMESS SVLLOCAL)		01MEMSIQM F14),0F141,0TU(6),S16,6),FM(2),FP(2),FV12), 1	01 ME KS (0 / SY (6.6.), SL (6.6.)		SET UP LINEAR INGICATOR MIND=0 ELASTIC, NIND=1 PLASTIC MINO=0	CALCULATE APPARENT ELASTIC INCREMENTAL END FORCES-DF16)	0.011	00 302 J=1.6 XA=XA+5(1,J)+0TU(J)	2 CONTINUE OF(1)=XA	1 CONTINUE CHECK VIELOING COMOITION	Fe(1)=F(1)+OF(1)	FV(1)=F(2)+OF(2) Fw(1)=F(3)+OF(2)	FP(2)=F(4)+OF(4) FV(2)=F(5)+OF(5)	FW1 2)=F (6)+OF (6)	TENSIONAL VIELO AT BUTH ENDS (fefeil) .it. 0.0 .Ann. FP(2) .ct. 0.0) cn to 405		MORMALLICE THE ENU PURCES	FNN(1)=FN(1)/CMP(6) FPN(2)=FP(2)/CMP(5)	FMM(2)=FM(2)/CMP(6) FMM(1)=ABS(FMM(1))	FMM(2)= ABS(FMM(2)) FPM(2)=ABS(FPM(2))	DETERMINE THE ECCENTRICITY IN INCHES	ECLEFA(1)/FP(1)	CLI-BONCLIV 60 TQ 413 1 FCLI-100-0	3 CONTINUE	IF(FF(2) .60. 0.0) 60 10 412 EC2=FM(2)/FP(2)	EC2=ABS(EC2) 60 T0 414	2 EF2=100.0 4 CONTINUE	FORM VIELO FCTN AT I END	0.010 303 [=1.3	1=1=1 1+1/=1/	IF(ECI LE. CNP(3+11+1)) 60 TO 401			CM1=C1.0.0 PH1(1)=1.0+CM1/(AM1=FPM(1)+BM1=FMM(1))	SIGNET LITERIES CASE OF ONE EMD TENSION-OME EMD COMPRESSION TREAT AS ELASTIC TREATEM CFT 0.010 MMC112-0.1	EADW VIELD EFTW AT 1 EWO	JJ=0 10 304 1=1,3	lielel
			,		U	J				ň	ຮັ	J				ں ر					,			1	4			77	00			2	4			J		,	

CONCINE = 01 CONCINE = 01 CONCINE = 01 CONCINE = 03 CONCINE = 03 CONCI	CONCRE90 CONCRE91 CONCRE92 CONCRE93 CONCRE95 CONCRE95 CONCRE99 CONCRE99 CONCRE99 CONCRE99	CONCINE 101 CONCINE 101 CONCINE 101 CONCINE 103 CONCINE 103 CONCINE 103 CONCINE 103 CONCINE 103 CONCINE 103 CONCINE 103 CONCINE 110 CONCINE 110 CONCINE 110 CONCINE 110 CONCINE 110	CONCRE.113 CONCRE.113 CONCRE.114 CONCRE.115 CONCRE.1115 CONCRE.1116 CONCRE.1116 CONCRE.1119 CONCRE.1119 CONCRE.1119 CONCRE.1210	CONCINE
JJ-JJ-I FIEGZ -LE. CMP[3011+1]) 60 TO 402 CONTINUE MC-ALJJ MC-ALJJ MC-ALJJ MC-ALJJ MC-ALJJ CASE OF ONE BMC FML[2]+BMZ0FMM[2]) MI[2]-10+CMZ/(MZ0FM[2]+BMZ0FMM[2]) MI[2]-10+CMZ/(MZ0FM[2]+DMZ0FM[2]+DMZ0FMM[2]) MI[2]-10+CMZ/(MZ0FM[2]+DMZ0FM[2]+DMZ0FMM[2]) MI[2]-10+CMZ/(MZ0FM[2]+DMZ0FMM[2]+DMZ0FM[2]+DMZ0FM[2]+DMZ0FMM[2]) MI[2]-10+CMZ/(MZ0FM[2]+DMZ0FMZ0FM[2]+DMZ0FM[2]+DMZ0FM[ANTAN/CAN ANTBN/CAN ANZBNZ/CA2 BNZBNZ/CN2 BNZBNZ/CN2 BNZBNZ/CN2 BNZBNZ/CN2 BNZBNZ/CN2 I FUD YOU CO I FUD Y	J EMO YIELO J EMO YIELO J F(MHILI) .LT. 0.0. AMO. PHIL2) .GE. 0.01 GO TO 404 BOTH ENDS YIELO J F(MHIL1) .GE. 0.0. AMO. PHIL2) .GE. 0.01 GO TO 406 LEASTIC-PLASTIC BEAN WITH I EMO YIELO AMO-THULE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE	ELASTIC-PLASTIC BEAM WITH J EMD YIELD A CONTINUE	ANZCHP(5) ANZCHP(5) BAZ-OLO BAZ-OL
2 ¥ %		ου ου ου φ	ະ ະ . ບບ ບ	¥ ¥ U

	SUBROUTINE PCOL (NOOE, AMI, BMI, AM2, BM2, S, SY, SL (PCOL.2	AA12
00	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PCOL.3	100 CONT
	CALCULATE THE STIFFMESS-SVILOCALI	PCOL. 5	00
00		PCOL. 6	0-9X
,	01MENS(ON Store(.SY(e.et, YSIe,2(.88(2.2(.AAI2.2(.8AIe,2(.8SI2.et	PCOL - 8	XA-X
	O(MENSION SL(&.&) Common/Time/Jump,T.ot.mpatn.ntape.kprint	PCOL. 10	BALL
U		PC0L-11	BD7 CONT
0	INITLIZATION	PC0L.12	6 6
	20 301 Jet 10 20	PCOL = 14	XA=0
102		PCOL-15	2 00 3 × 4 ×
2	D0 311 (=1, 2	PCOL . 17	THO CONT
	00 311 J=1,2	PCOL. 18	1) AS
111	AA((,J(=0.0 Contenis	PCOL. 20	1N03 609
5	SET UP LOCAL STRESS-STRAIN RELATIONSMIP	PC0L.21	IFIS
	00 312 1=1.6	PG01.22	00 3
	0.1 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 =	PCDL 24	ILS CONT
312	CONTINUE	PCOL-25	RETU
	MODE-1 1 END VIELD-MC-1	PCUL 25	ENO
ں ر	MODE=2, J END YIELD, NC=1	PC01.20	
J	NODE=3,80TH END Y(ELO,NC=2	PC0L.29	
	IFIMODE .EQ. 3(GO TO 402	PC0L.31	
	IFINODE .EQ. 21 60 TO 401	PCOL. 32	
	I BUD VICIO	PCUL . 33	
,	YS(1,1)=AML	PCOL. 35	SUBRI
	YS(3,1(-8ML	PCOL - 34	
107	GO TO 403	PCUL.37	CHEC
5		PCOL. 39	STAE
J	J ENO VIELO	PCOL-40	
	YS(4,1(=4M2 VSTA.1(=4M2	PC0L+41 PCM_42	OIME
	60 TO 403	PC01. 43	CONN
405	CONTINUE	PCOL. 44	
00	ADTM FMD VIELD	PC01.45	NIND.
,	NG=2	PCOL . 47	ARS=(
	YSEL, L(eANL	PCOL.46	AKNet
	7515+11=0ML YS(4,2(=AMZ	PC01.50	CALCI
	YS(6,21=8M2	PCOL-51	00 3
104	CONTINUE DO 301 K=1.MC	PCDL - 52 PCDL - 53	000
	00 303 1=1.6	PCDL . 54	XaeX
	XA=0.0	PC01.55	02 CONTI
		1.cut.50	OL CONT
304	CONT RUCE	PCOL 50	AVEN
	BS(K, 1 (= XA	PC01-59	SIGNI
	D0 305 1=1,MC	PCOL. 61	SIGN
	00 305 J=1.MC	PCOL . 62	SIGS
	XAED.O DO 30A KEL.A	PCDL . 64	IFI S
	XA=XA+BS(1,K(+YS(K,I))	PC01.45	TENSI
306	CONTINUE	PCOL. 66 PCOL. 64	CITC
305	CONTINUE	PCOL. 60	C12(-
	OET=05(1,1(PCOL. 69	
	IFINUOE .ME. 31 60 10 404 0ET=8811,1169512,21-55(1,2195512,11	PCOL. 71	ON IN
404	· COMTINUE ////////////////////////////////////	PCOL. 72	OL CONTI
	AA(1,1)=1.0/DET	PCOL. 74 C	C CHE
	IF(NOOE .ME. 31 GO TO 405 AATI.TI=AAT2.21/0ET	PCOL. 75	FU=P1
	AA11.2(==00(1,2(/DET	PC01 17	SHEAD
	AA12.11-AA11.21	PCOL. 70	11110

PCOL. 79 PCOL. 80 PCOL. 81	PCOL . 82 PCOL . 83 PCOL . 85 PCOL . 85	PCOL.85 PCOL.85 PCOL.89	PCOL.90 PCOL.91 PCOL.92 PCOL.93	PCOL . 94 PCOL . 95 PCOL . 96 PCOL . 91	PCOL. 99 PCOL. 100 PCOL. 101 PCOL. 102 PCOL. 103
AAI2,21-0011.1(/0ET 405 CONTINUE 00 307 1-1-0	00 301 Juliewc Xwarawc a second a secon	306 CONTINUE BAI(1,J)=XA 307 CONTINUE 307 A04 TAL 4	00 309 Jalie Xaoo.0 0 310 Kal.WC Xoo XAobAf (sKiebStk.Jt	31.) CONTINUE SVI1.JIEXX 309 CONTINUE 00 313 F1.6	00 111 July 00 00 00 00 00 00 00 00 00 00 00 00 00

OUTINE PERICT (PARAFR, SA, OTU, P, C, NIND)

	SUBROUTINE PFRICT(PARAFR, SA, DTU, P, C, NINO) .	PRICT7-2	
	CHECK IF THE FAIGTIONAL ELEMENT IS VIELO.AND THEN FORN THE VIEL	PALCTT_5	
	STRESS-STRAIN CONSTANTSCVI4(=CI4(PRICTT-6	
	OIMENSION PARAFRI4(, SAI8, 8(, DTUI8(, FI8(, CI4), DFI8]	PRICTT.0	
	COMMON/TIME/JUMP.T.DT.WPRTM.WTAPE.KPRIMT	PRICTT.10	
	SET LIMEAR INDICATOR	PRICTT-12	
	AKS=PARAFRI1 (AKW=PARAFRI2 [PRICTT-14	
	CALCHATE ABOADENT FLATHE INCREMENTAL FNO PONCEL-NETAL	PAICTT-16	
		PRICTT-10	
	00 302 Jel.0	PAICTT-20	
2	XA=XA+SAII.J(=DTUIJ(CONTINUE	PRICTT-21	
	OF 11 (=XA	PRICTT-23	
-	CONTANUE	PRICTT_24	
	AVERAGE APPARENT STRESS AT CENTER OF ELEMENT	PRICTT-26	
	SIGN12=0.50IF(2(+0F12(+F14(+0F14)) SIGN14=0.54/F14/40F14/4F14/4F14/1	PRICTT-27	
	SIGS12=0.54(FIL(+0FL3(+0))))))))))))	PRICTT-29	
	SIGS34=D.50(F(S(+DF(S(+F]7(+OF[7() TFTSICH12 .ct. 0.0 .4MD. SICH24 .17. 0.0(CO TO A0)	PAICTT.30	
		PRICTT.32	
	TENSION CASE	PRICTT.33	
	CII(=AK>/3.0-AK>/1000000.0 CI2(-AKN/3.0-AKN/1000000.0	PRICTT-34	
	C(3(=4KS/6.0-4KS/10D0000.0	PRICTT-34	
	CI4(=AKM/6.0-AKM/L000000.0 MTM0-2	PRICTT-37	
		PRICT 1.30	
=	CONTINUE	PRICTT-40	
		PRICTT-41	
	COMPRESSION, ELASTIC CASE	PRICTT.42	
	FUEPAKAPR(J(Puebb.0 Refeetsetsetsetsetsetsetsetsetsetsetsetsets	PRICTT 43	
	5786646190.504865454654674780545465444444 5786646190.50486454684474646445165434444	PAILIT-44	
	(FISHEAR .LT. STREG) RETURN	PRICTT.46	

PEKPAN. 59 PEKPAN. 59 PEKPAN. 50 PEKPAN. 61 PEKPAN. 63 PEKPAN. 65 PEKPAN. 65 PEKPAN. 60 PEKPAN. 71 PEKPAN. 71 PEKPAN. 77 PEKPAN. 77 PEKPAN. 77 PEKPAN. 77 PEKPAN. 77 PEKPAN. 77 PEKPAN. 77		PE29AN.100 PE29AN.101 PE29AN.101 PE29AN.101 PE29AN.101 PE29AN.101 PE29AN.101 PE29AN.101 PE29AN.101 PE2040.11 PE2040.115 P
COMPRESSION.ELASTIC CASE FUPPAREX13 FUPPAREX13 FUPPAREX13 FUPPAREX13 FUPPAREX13 FUPPAREX13 FFGFFUPO.SACARSISICAN34(1 FFGFRA .LT. STREGI RETUNAN FFGFRA .LT. STREGI RETUNAN COMPRESSION.SHEAR FAILURE.LEFT LOWER CAPPARATINI .ME .O.O. GO TO 409 FFFGRA .LT. STREGI RETUNAN FFGFRA .CT. SC. GAPI GO TO 407 FFGFRA .CT. STREGI RETUNAN 400 CONTINC.	SLIPPAGE OCCUR SLIPPAGE OCCUR CITI-ANS/3.0-ANS/10000000.0 CITI-ANS/6.0-ANS/10000000.0 CITI-ANS/6.0-ANS/10000000.0 CITI-ANS/10000000.0 CITI-ANS/10000000.0 CONTINUE ANS/10000000.0 CONTINUE	RETURN RETURN SUGROUTINE POUND(PARABO.DTU.F.C.MIND) SUGROUTINE POUND(PARABO.DTU.F.C.MIND) SUGROUTINE POUNDARY JOINT IS VIELO.AND VIELD STIFFWESS SUGROUTINE POPER LINIT AND LONER LINIT LINES SUGROUTINE UPPER LINIT AND LONER LINIT LINES SITE APARABOLI SITE NOT ANABOLIA CALCUATE UPPER LINIT AND LONER LINIT LINES SITE APARABOLIA FUFFY
	50 55	
PRICTI-47 PRICTT-40 PRICTT-50 PRICTT-51 PRICTT-51 PRICTT-55 PRICTT-55 PRICTT-55 PRICTT-55 PRICTT-55 PRICTT-55	PE27AN.2 PE27AN.2 PE27AN.5 PE27AN.5 PE27AN.6 PE27AN.6 PE27AN.6 PE27AN.11 PE27AN.11 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.12 PE27AN.23 PE2	
COWPRESSION-SHEAR FAILURE MIMO-1 CIT-0AS/3.0-AKS/10000000.0 CIT-0AS/3.0-AKS/10000000.0 CIT-0AS/0.0-AKS/10000000.0 CIT-1ANUE CIT-1ANUE RETURN ENO	SUBROUTIVE PERPANIPLARFA, PARAEX, SA, UE, OTU, V, F. G. MINDI SECK IF EPPANSION JOINT IS YIELOON (F THE BRIDGE FALLS OF SUPPORTINATION FORM INNERN MODULUS CONSTRATA-CIA) ONNERSION PARAETIALS OF JULIALS OFF ONNERSION PARAETIALS OFF CHECK IF THE SUPERSTRUCTURE FALLS OFF CHECK IF THE SUPERSTRUCTURE FALLS CHECK IF THE SUPERSTRUCTURE FALLS CHECK IF THE SUPERSTRUCT	<pre>cci (0 *0) c for twe FFIN 1 c for twe FFIN 2 c for twe FFIN 2 c for twe FFIN 2 c for twe FFI 1 c for the c for</pre>

-154-

		5116 - 285 5116 - 285
C TOTAL RESPONSE OF ALL MODAL PDINT FROM STATIC 420 CONTINUE FF1.JUPP M.E. 11 GO TO 452 352 UST11=UL1 452 CONTINUE 452 CONTINUE 452 CONTINUE 453 UST11=0.0 133 1=1.NEG 415 CONTINUE 913 JOINT 913 1=1.NEG 913 TOTAL 913 1=1.NEG 913 1=1.NE	UNVERTIGATION OF AND	C CHECK IF IT IS A LIMEAN ON MOM. INEAN AMALYSIS FERLINW. O) GC TO 412 FERLINW. O) GC TO 412 REUTIND 3 REUTIND 3 REUTIND 312 III.MCO FEAN FFECTIVE AMARIX FEAN-LIN (LILI).FEAN TENN-LIN (LILI).FEAN TENN-LIN (LILI).FEAN 12 COLTING 12 COLTING 12 COLTING 13 COLTING 14 COLTING 14 COLTING 14 COLTING 15 CONTING 15 CONTING 15 CONTING 16 COLTING 16 COLTING 16 COLTING 16 COLTING 17 COLTING 18 COLTING 18 COLTING 18 COLTING 18 COLTING 19 CONTING 10 COLTING 10 COLTING 10 COLTING 10 COLTING 10 COLTING 10 COLTING 10 CONTING 10 COLTING 10 CONTING 10 CONTING
STEP.1.53 STEP.1.54 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.66 STEP.1.73 STEP.1.73 STEP.1.73 STEP.1.73 STEP.1.73 STEP.1.73 STEP.1.73 STEP.1.74 STEP.1.74 STEP.1.74 STEP.1.74 STEP.1.75 STEP.1		
<pre>401 ACCY-0.0 401 ACCY-0.0 101ACCF-0ACCY 01ACCF-0ACCY 01ACCF-0ACCY 01ACCF-0ACCY 01ACCF-0ACCY 014C1-0.0 11.460 11.4000 11.400 11.400 11.4000 11.400 11.4000</pre>	FIGLIN FG. 11 GG TO 430 FFGURD 3 REMOND 1 REMOND 1 CONTENC FORM FFECTIVE MATRIX MARANCLINA FORM FFECTIVE MATRIX MARANCLINA FORM FFECTIVE MATRIX MARANCLINA FFFP-LG OLUCITIO-OLUCITIO-OLUCITIO DO 311 T1-MEG 00 311 T1-MEG 11 CONTENC SCONTINUE CONTINU	UNUTIL-TRUIT-SUIT WUTIL-TRUIT-SUIT TRUTTLE SUITE TRUTTLE SUITE SO FORMATEL STRUTURE TIELO-AMALYSIS OUTLAT JUMP.I.TRU215.EL2 IFTOPAL CALL RETURE TIELO-AMALYSIS OUTLAT JUMP.I.TRU215.EL2 ISTOPAL CALL RETURE TIELO-AMALYSIS OUTLAT JUMP.I.TRU215.EL2 ISTOPAL CONTIME CALL RETURE TIELO-AMALYSIS OUTLAT STRUMELE CALCUATE STRAIN CALCUATE WALF FOR CONTRUCE CALCUATE STRAIN CALCUATE STR

	SUBROUTINE SECANTO 14.8.V.MAXA.W.VV.WW.ROOT.TIM.ERAVL.ERRVR.	MODE 5.46
•	N T LE . N. TA, NMA, NKOU . NC I	MUDE 5 . 4 P
ر	COMMON/TAPES/NSTIF, NMASS	MODE 5 . 49
	DIMENSION AINMA) , BIN) , VIN) , VSII) , WIM) , VVIN, WC) , WMIN, WC) , ROOTIMC)	*MODE 5 . 50
•	TIMINC), EKKVLINC), EKKVRINC) (NTEGER NITE(NC), MAXAINC)	MUDE 5. 52 MODE 5. 52
J		MODES.53
υ,	FOLLOWING TOLERANCES ARE SET FOR COC 6400	MODES. 54
ر	AC TOL=1.0E-04	MODE S. 56
	RCBTOL = 1 - DE - 06	MODES. 57
	KIUL=1.DE→1U BOTO!=1.DE→12	NODES. 59
	SCALE=2.0009900	MODE S . 60
J		MODE 5.61
	111EM-10	NODE S. 63
	N1 TEM=40	MODE 5 . 64
U		MODES . 65
	READ INMASS) 0	MODE 5. 67
J		NODE 5 . 68
	ETA=2.0	MODES. 69
	JRel	MODE 5. 71
	MSK=0	MODES.72
		MODE 5 . 74
J		MODES. 75
,	CALL SECOND (TIM1)	MODE 5 . 76
	RA=0.D	MODES. 77
	CALL BANDET (A.O.V.MAXA,N.MMA,RA,MSCH,DETA,ISC,1)	MODE 5 . 79
	FA=DE TA	PODES . 80
	FREFA	MODE S. 61
	DE IK «DE IA	MDDE S . 83
	FIND LOWER BOUND ON SMALLEST EIGENVALUE	MODE 5 . 84
J		MODES . 85
	DO LOO I-1 M	MODES.87
1 00	W(()=B(()	MODES. 88
	RT=0.0	MODES. 89
	KK=2	NODES.91
. 110	1(TE=(1 TE+1	MODES.92
120		MODE 5. 94
	CALL BANDET (A.B.V.MAXA,M.MMA,RA.NSCM,OETA,(SC,KK)	NODES. 95
	KK=2	MODE S. 96
	M0 130 (=1.M	MODES. 96
130	RQT=RQT+W(1)=V1(1)	M00ES. 99
	D0 16D 1=1,0N	MODES . 100
0.01		101 = 2004
		MODES.103
140	RQB=RQB+H([)=V([)	MODE 5-105
	RQ=RQT/ROÐ Hette (4.1004) RQ	MODES . 106
	BS=SQRTIRQB)	MODE 5 - 10 /
	TOL-ABS(RQ-RT)/RQ	MODES-109
	(F (IDL-LI-KCOUL) 60 10 100 DO 140 (*1.N	MODE 5.110
(60	M(()=M(1)/02	MODE S.112
	RT=RQ 15 (1115_LT_(17EM) 60 TD 110	MODES . 113
C C		MODES-115
22	V(1)=V(1)/85 Ac-oncit c.4MfW1(0.1,1000T0L))	MODE 5-117
		MODE 5.110 MODE 5.119
230	CALL BANDET (A,B.V.MAAA,N.MMA,NUGUSUTOULIUTISYS) WR(TF (6.1020) RB.NSCH	MODE 5-120 MODE 5-121
	F8=0E18 15 INCTU F0_01 (0 10 300	MDDE 5.122

CALL SECOND (TJN3) HRITE (5,1100) HOR	(F (JR.EG.I) GO TO 410 00 420 1=1.N 200 420 1=1.N			15=0 RTA=0.0		C INVERSE HERATIUN C	440 NJTE(JR)=MITE)JR)+1 00 450 I=1,*M	450 V(1)=W(1) C41L BANDET J4.B.V.,MAXA.M.MMA.RC.MSCH.DETC.ISC.KK)	JF JJS.EG.JJ GO TU 460 Rez Botelo	00 470 1=1.4 470 807=807-401194011	00 475 1=1.M	R08=0.0	450 R05-R04-M(1)*V)1) R0-R01/RC5	RT=ROOTJR1+RQ Write 16.11109 Jr.Wite(Jr).RT.RQ	TOL=RT=ROTOL IF (ABSIRT-RTA)_6T_TOL) GO TO 510	15=1 60 T0 440	C SIO RTA=RT	85=50R11R08) 00 490)=1.M	490 WII)=W)I)/05 IF (NOR.EQ.0) 60 TO 550		AL=0.0 0 330 1=1,M		5-0 WILTERCTARKIICS	C SSO IF IMITEIJRI.LE.MITEMI GO TO 440	WRITE 16.1015) WITE(JR).JR GO TO 900	460 RQT=0.0	00 570 1=1.M	5/0 RGT=RGT+V(L)=W(L) DD 560 L=L+M	560 W(I)=B(I)=V(I) RQB=C.O	00 580 I=1,M 580 RQ8=RQ8+V(I)=W(I)	C OBTAIM A RATHER LARGE EARDR BOUND	RG=RQT/RQB	ROOTJJRJ-ROOTJJRJ-RQ ERA-SQRTJERT/RQB	ERRVL)JRJ=EROTIJRJ=ERR			
MODE5.123 MODE5.124	MODE 5.125 MODE 5.126 MODE 5.127	MODE S. 120 MEDE S. 120	MODE 110	MODE5.131 MODE5.132 MODE5.133	MODES 134	MOOES.136	IO NOV=O FOUND MODES.137 MOV=O FOUND MODES.136	* MODES.149 * MODES.140 MODES.141	MODES.142 MODES.143	MODES.144 MODES.145	MODES.146 MODES.147	MODE S.148 MDDES.149	MODE 5.150 MODE 5.151	MODE 5+152 MODE 5+153	MODES-154 MODES-155	MODES.156 MODES.157	MODE 5.150 Mones 150	MDDES 160	MODE 5 - 162	MDDES.163 MDDES.164	MCDES.165 MCDES.166	MODES.167 MODES.166	MODE 5.169 MODE5.170	MODE 5 . 171 MODE 5 . 172	MODE 5.173 MODE 5.174	MODES.175 NODES.276	MODE5.177 MODE5.178	MODE S . 179 MODE S . 180	NODE S. 181 MODE S. 181	MODE S. LES	NODES.165 NODES.185	MODES.167 MODES.168	MODE 5.189 MODE 5.190	MODE 5.191 MDDE 5.192	MUC5.193 MODE 5.194 MODE 5.06	MODES.196 MODES.197 MODES.197	MODES . 199 MODES . 200
S= S+ F)SsLEsMTF 60 TO 240	WR)TE (0,1030) 510P 858_864/WSCH011	60 T0' 230	ITERATION FOR INDIVIDUAL ROOT	MRITE (6.1040)	MITE (6,1050) JR.NITE(JR),RA,OETA,FA,ETÅ,ISC MRITE (6,1050) JR.NITE(JR),RA,OETA,FA,ETÅ,ISC	MRITE (0,1050) JR.W)TE(JR), R8.0ET8, F8.ETA, ISC	STOP WHEN REQUIRED NO. OF ROOTS SMALLER THAM RC AN	JF (NSCH.GE.MRDOT) 60 TO 900	0)F=F8-FA 1F j01F.NE.0.0) G0 T0 320	WRITE 16,1060) 60 TO 900	0EL=F80)R8-R4)/0)F RC=R8-ET4*DEL	TCL=RCBTOL+RC IF (ABS)RC-RB).GT.TOL) GO TO 330	WRITE (6,1070) Rodt(Jr)=Rb	G0 T0 400	CALL BANDET JA, B, V, MAXA, M, MMA, RC, MSCH, DETC, ISC, I} FC=DETC	NITE(JR)=MITE)JR)+1 IF (JR.EQ.I) GO TO 340	JJ=JR-1 00 360 K-1 11	CONTRACTION CONTRACTION (K)) CONTRACTION (CONTRACTOR OF CONTRACTOR		START JMVERSE JTERATIONS	MES=0 If JJR.EQ.1) GO TO 380	00 340)=1,JJ IF R00T11).LT.RC) MES=MES+1	NOV=MSCM-NES IF INOV.EQ.0) GD TO 370	MRITE 16.1080) NOV RODI(JR)=RC	JF JNDV.GT.1) MSK=1	GD TO 400 RR=RA	FR=FA OETR=OETA	RÅ=RØ Få=F8	DETA=0ETB 88=0C	DETA-DETC	RESET ETA IF MECESSARY	TOL=RB*ACTOL	IF {ABS(RA-R0).LT.TOL) ETA=ETA+2 IF {NITE(JR).LE.MITEM) GO TO 310	WRITE (6.1015) NITEJJRJ.JR 60 to 900	CHECK FOR STORAGE	IF JJR.LE.NC) GO TO 405 Maite (0.1090) An to goi	NOR=JR-I
	240			300				310			320				066			350	2			360	360			370		•								004	405

HORES 220 HORES 220 HORES 200 HORES 211 HORES

MODES. 347 MODES. 347 MODES. 346 MODES. 345 MODES. 345	MODES-362 MODES-363 MODES-364 MODES-365 MODES-365	MODES.367 MODES.369 MODES.369 MODES.370 MODES.370 MODES.372 MODES.372	MODES 374 MODES 375 MODES 375 MODES 377 MODES 378 MODES 379	MODES-380 MODES-381 MODES-383 MODES-383 MODES-385 MODES-385	MODES - 347 MODES - 340 MODES - 340 MODES - 340 MODES - 340 MODES - 342	NODES.394 NODES.395 NODES.395 NODES.396 NODES.399 NODES.400 NODES.400	MODES 402 MODES 403 MODES 403 MODES 405 MODES 405 MODES 405 MODES 405	0045540055.410 1045540055.410 100055.412 100055.412 100055.412 100055.415 100055.415 100055.415 100055.418 100055.418 100055.418	MODE 5 421 MODE 5 422 MODE 5 423
HITE(JR)=0 FORTJALTEC FF MOTALEC FF MOTALEC G TO 300 G TO 300 G TO 300 HATE (0.1004) (MOT(J),J=1,MROOT) FF (0.1004) (MOT(J),J=1,MROOT) MATE (0.1104) (MOT(J),J=1,MROOT)	WRITE (S.1160) (TINUSTETTATOUS) WRITE (S.1160) (ERRV(J).JELMROOT) WRITE (S.1004) (ERRVR[J].JELMROOT) WRITE (S.1004) (ERRWR[J].JELMROOT) ARRAMGE EIGEWVALUES AND VECTORS IN ASCEMDIMG OMDER)F (JR.E0.2) GO TO 950 JR.gr-2 15.02)=1.JR OO 920)=1.JR 15 (ROOT(1+1).GE.ROOT(1)) GO TO 920	RT=8001(1+1)=8001(1) R001(1+1)=8001(1) R001(1+1=81 R1=8(1+1)=80(1+1) VV(K+(++1))	VV(K;1)=KT CONTRIL=KT JF (J5.6T.0) 60 T0 910 MRJTE (6.1170) MRODT-MSCH	IF (NOTTI).LE.C.O. 60 70 960 MODTI).LE.C.O. 60 70 960 CONDITI-SCAT(NOD711)) CONDITIE (0.2000) MT MATE (0.2000) MT F (MT/ME.7) MT-7 MATE (MT) (NOTTI).LE.NME007)	PRINT FREQUENCIES AND NODE SHAPES WAITE (6,2000) VALTE (6,2000) PERION (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	MARTE (MT) ((VV(1.J),1=1.M),J=1,MROO7) Re Toka Format (14 .12611.4) Format (140.6620.12)	FORMAT (1141.0-0420.2) FORMAT (1141.0-0411WERSE ITEM GIVES FOLLOWING APPROXIMATM TO LI T Elecanat (4140WE AAMOON ITEM BECAUSE NO OF ITEM IS 13.94 FOR FORMAT (4140WE AAMOON ITEM BECAUSE NO OF ITEM IS 13.94 FOR T 1 3) FORMAT (31010WE ERFERS (41.84.1) FORMAT (1141.44.44.101.44.1) FORMAT (1141.44.44.14.44.14.12.1) FORMAT (1141.44.44.14.44.14.12.1) FORMAT (1140.44.14.44.14.14.13.1) FORMAT (1140.44.14.44.14.14.11.13.1) FORMAT (1140.44.14.44.14.14.11.13.1) FORMAT (1140.44.14.44.14.14.11.13.1) FORMAT (1140.44.14.44.14.14.11.13.1) FORMAT (1140.44.14.44.14.14.11.13.1) FORMAT (1140.44.14.44.14.14.14.11.13.11.1	FORMAT 116+10+E_UNPEG OVER (*.16+ UNEWEDUM" GOT(S)) FORMAT 111+13-84-00 MORE STOVAGE FOR VECTORS WE GUIT) FORMAT [1140]-34-54-14000[*18:X.2140_18:4.4*4400=.12)
000 0	υu	0 1 6	1	930 920 950 950	096		1006 1006	1000 1010 1010 1010 1010 1010 1010 101	10001
MORES.270 MORES.271 MORES.273 MORES.273 MORES.275 MORES.276 MORES.270 MORES.270 MORES.270 MORES.270 MORES.270 MORES.270 MORES.280 MORES.280	NODES.284 NODES.285 NODES.285 NODES.28 NODES.28 NODES.28	MODE 5.290 MODE 5.291 MODE 5.292 MODE 5.293 MODE 5.294 MODE 5.294 MODE 5.294	MODES - 207 MODES - 208 MODES - 290 MODES - 300 MODES - 301 MODES - 301	NODE 5- 303 NODE 5- 304 NODE 5- 304 NODE 5- 305 NODE 5- 305 NODE 5- 308	MOUES - 310 MOUES - 310 MOUES - 311 MOUES - 313 MOUES - 315 MOUES - 316 MOUES - 316	NOCES.317 NOCES.319 NOCES.319 NOCES.320 NOCES.322 NOCES.322 NOCES.322 NOCES.322	MODES - 226 MODES - 226 MODES - 326 MODES - 328 MODES - 328 MODES - 331 MODES - 331	NDDE 5, 33 2 NDDE 5, 33 3 NDDE 5, 33 3 NDDE 5, 33 3 NDDE 5, 33 7 NDDE 5, 33 7 NDDE 5, 33 7 NDDE 5, 34 0 NDDE 5, 34 0 NDDE 5, 34 0 NDDE 5, 34 0 NDDE 5, 34 0	NODE 5, 344 NODE 5, 345 NODE 5, 345
ERVALAD-==001(JAD=ERA 65-5071800) 00 500 11.4 V(1)==V(1)/65 V(1)==V(1)/65 V(1)==V(1)/65 V(1)==V(1)/65 V(1)==V(1)/65 V(1)=PV(1)=PV(1) V(1)=PV(1)=	IFIN2 OG STRTECY FOR JTERATION TOWARD MEXT ROOT Rederdotijri Navesta.01 to 700	IASSIROOTIAT-REJ.CT.TOL) GO TO 710 184561-01-01 GO TO 720 - BANGET (4.9.V.MAXA.M.NMA.RA.MSCH.DETA.ISC.1) - BANGET (4.9.V.MAXA.M.NMA.RA.MSCH.DETA.ISC.1)	9-0514 48 4-0518 10 710	(#00T(JA).GT.RC MSK=1 (MSKE=6.1) GO TO 7300 (MSKE=R0DT(JAN).LT.TOL) GO TO 740 (ASS(ROOT(JAN)-48).LT.TOL) GO TO 750 ASS(ROOT(JAN)-48).LT.TOL) GO TO 750	AUCE B FC FC 10 710 14551007[JR1-R8].67.70L) 60 T0 710 (4551007[JR1-R8].67.70L) 60 T0 710	L BANDET (A.D.V.MAKA.M.NMA.RA.MSCH.DETA.ISC.1) Let A Det a Moet a Moet a	a/(Ma-ROOT(JR)) 6/(Ma-ROOT(JR)) 6/(Ma-ROOT(JR)) 2/0 0 30 0 4.01 0, 50 70 740	МА2. L ВАЮЕГ (А.8, V.МАХА, М.МИА, RA. WSCH, OETA. I SC. I) L BASTROOTIJRJ-R8). 67.70L) GO 70 770 LASSTROOTIJRJ-R8). 67.70L) GO 70 770 LASSTA BACTA BACTA ACTA ACTA ACTA ACTA ACTA	FRA/RR-RODI.ANT (ROOTJARRODI.ANT) (ROOTJARLE.RC) MOV-NOV-1
	TOL		Der 199	11.000 A	202 - 00	Page Page Page Page Page Page Page Page		A PART A	, i i i i i i i i i i i i i i i i i i i

MODE 5, 491 MODE 5, 491 MODE 5, 494 MODE 5, 494 MODE 5, 494 MODE 5, 491 MODE 5, 491 MODE 5, 491 MODE 5, 912 MODE 5, 912 MODE 5, 913 MODE 5, 914 MODE 5 460 VINI-VINI-ALILI-VIKI 400 CONTINUE 900 FURN 1000 FORMAT LIH.20H TALANG FACTORIZATN 13,32H TIMES ABOMDONED.CHECK 1000 FORMAT LIH.20H TALANG FACTORIZATN 13,32H TIMES ABOMDONED.CHECK IF (ISCALE_LT.1000) GD T0 340 GD T0 900 GF 115C-15CALE1 350,900,370 GF 115C-15CALE1 350,900,370 GF 105CALE GT T0 900 GF 105CALE GD T0 900 IL-NN 00 400 N-1, NR 62 V(N) V(N)-C/A(N) IF (MAX-NNI \$10,400,410 IF-11.41 IL-11.41 IF INVA-MNI 430,900,430 Henn Henn Hen-I II-Henkan Henazaan Kan Kan Kan VIKI-VIKI-C+AIII VIKI-VIKI-C+AIII CONTIMUE VINNI-VINNI/AIMM) 00 420 1=1L,1H, MN K=K+1 N=X C 700 600 430 420 320 300 340 410

NODES - 223 NODES - 223 NODES - 223 NODES - 223 NODES - 423 NODES - 433 NODES - 433	NODE 5. 440 NODE 5. 441 NODE 5. 443 NODE 5. 443	MODE 5. 445 MODE 5. 445 MODE 5. 446 MODE 5. 448	NODES 449 NODES 450 NODES 450 NODES 451 NODES 453	MODE 5.454 MODE 5.455 MODE 5.455 MODE 5.456 MODE 5.458	NODES.459 NODES.440 NODES.440 NODES.441 NODES.443	MODE S • 464 MODE S • 465 MODE S • 466 MODE S • 468 MODE S • 469 MODE S • 469	MODES.470 MODES.471 MODES.473 MODES.473 MODES.473 MODES.475 MODES.476 MODES.470 MODES.470	MODE S.479 MODE S.480 MODE S.481 MODE S.483 MODE S.483 MODE S.483	MODE 5, 485 MODE 5, 486 MODE 5, 484 MODE 5, 489 MODE 5, 489 MODE 5, 491 MODE 5, 492 MODE 5, 493	NCOES-494
COMMAT (140-541-541)+643.252.14) COMMAT (20014K FOR INV 116M F5.23 COMMAT (20011K FOR INV 116M F5.23 COMMAT (20011K FOR INV 116M F5.23 COMMAT (20010K FIGEWALUE 7) COMMAT (201010W FAE EARD BOUNDS ON FIGEWALUE 7) COMMAT (1411-0.21W E ACEFF FOLLOHIN FIGEWALUE 7) COMMAT (1411-0.21WE ACEFF FOLLOHIN FIGEWALUE 7) N ORDER 7 N ORDE 7 N ORDE 7 N ORDE 7 COMMAT (110-220-41 COMMAT (110-2220-41 COMMAT (110-220-41 COMMAT (110-2220-41 COMMAT (110-220-41 COMMAT (110-	SUBROUTINE BAMOET (1.8.V.MAXA,HN.MMA.RA.NSCM.DET,ISCALE,KKI Dikension Athaai,bitti,VI1),MAXA(11 Common/Tapes/MSTF,MMASS	TRIANGULARIZE BANGEO STIFFWESS MATRIX NR-NN-1 IF (KX-2) 100.700.600	TOL-1.0E-07 RTOL-1.0E-10 RTOL-1.0E-10 SCALE=2.0e*900 NTF-3	15-10 NTIF Reviou NTIF Revio (NSTIF) A 00 140 T=1,NN 00 140 T=1,NN	IF INNA.EG.NNI GO TO 230 00 200 ML.AR HH-AMMA-NN IF (AILHII 220.215,220 IH-ILHOI	60 70 210 Maximith Fivalmi IF (Pivi 221.c	D0 240 I=IL-IM-M [=1+1] C=411 C=411 F IC1 225.240.225 C=(/PIV 225 F IC1 225.240.225 F IC1 225.240.225 F IC1 225.240.225 F IC2 245 F I	STOP Ramaril.O-RTOL) GD TO 120 J=L-1 AD 250 Kel.H.M.MM AIK-JJ-Ceak(K)	AIII-C AIII-C CONTAWE CONTAWE CONTAWE F IAKWI-NE-0.01 GO TO 280 AF IAKWI-NE-0.01 GO TO 280 AF AAAAASIAIII AA-AAAASIAIII AAAAAASIAIII AAAAAASIAIIII AAAAAASIAIIII	NSCHeO.
C 2000			100 C	120	160 210 215	220	225 226	245 235 260	240 230 230 230	280

	001F01.106 001F01.107 001F01.107 001F01.109 001F01.110 001F01.111 001F01.112		
CALL JUTHISA (HHI, ATVAZ), A (HH), A (HHH), A (HH), A (HH), A (HH), A (HH), A (HH),	SUBROUTINE INOUTTIO,TOIS,ISTR,IMALL,MUWNP,MUMEL,MEQ,MTW) SUBROUTINE INOUTTIO,TOIS,ISTR,IMALL,MUWNP,MUMEL,MEQ,MTW) SECTETIONS INPOUT SPECIFICATIONS FON OUTPUT RESPONSE THE MISTORY INPOUT SPECIFICATIONS FON OUTPUT RESPONSE THE MISTORY OTHENSTON TOISINEON,ISTRIP,MUMELL,IMALLIJ,MTML,ICIJL,ISI9(,IMI3) OTHENSTON TOISINEON,ISTRIP,MUMELL,IMALLIJ,MTML,ICIJL,ISI9(,IMI3)	UNTICLE AT A CONTRACT	ALCONTINCT OF A CONTINUE AND A CONTINUE
00 00 000	00000	00	000 0

	SUGRDUTTINE OUTPUTTIO, NUMNP, NUMEL, NEO, NTMI	OUTPUT .2
0.0	,	OUTPUT
	OUTPUT THE SELECTED RESULTS IN TIME HISTORY essessessessessessessessessessessessess	**************************************
	COMMON A(1)	OUTPUT.8
	CONMONTTINE/JUMP.T.DT.MPRTM.MTAPE.KPRINT OTMENSTON (0(3.NUMNP)	DUTPUT.9 DUTPUT.10
	CONMON/BLOCK/NSO,NSS,NSW,KKL,KK2,KK3,MOIS,MSTR,NMAL,NBO,NBS,NBU COMMON/ED/OUD AAA,DDT	OUTPUT.11 OUTPUT.12
	UNITED FOR DEPARTMENT FOR BEITRIE DE BECODUCE TIME METORY	OUTPUT. 13
	INFUL SPECIFICATION FOR BUILDE OF ACSTONSE LATE MOTORY	OUTPUT 15
	NH2=NH1+3*NUNNP NH3=NH2+NEQ	OUTPUT.16
	NH4 = NH3+9¢MUNEL NH5=NH4¢3¢MTH	OUTPUT.18
	CALL INDUTIATANI (,ATANZ(,ATAN31,ATAN41,NUMAP,NUMEL.MEO.MTW)	DUTPUT.20
	PACK TINE HISTORY IN BLOCK	OUTPUT .22
	NNT0T=20000 DDT=0TemTAPE	OUTPUT-23
	NOS=OURANA/DOT+1	OUTPUT.25
	ND (58= (MNTOT - NH5 - 9=NOS (/ (MDI 5=2 (OUTPUT-27
	IF(NOISB .GT. MOISB(NOISB=MDISB IF(NDISB .GT. NOS(NDISB=NDS	001PU1.29
	NB0= (NOS-1)/NDIS8+1	OUTPUT.30
	NSTRB=(NNTOT-NH5-9=NUMEL)/(MSTR=2)	OUTPUT.32
	mstrb=(nmtot-nh5-99mos(/(mstrez) if(nstrb .61. nstrb=mstrb	DUTPUT.
	IFINSTRB .GT. NOS) NSTRB=MOS	OUTPUT.35
	1+9×15N/1-50N/=58N	OUTPUT.31
	[FINWAL © EQ. 0) GD TO 4D2 NHEB=[NNTDT-AHH5-30NTH]/NHAL	OUTPUT.36
	NWF DE (MMTOT-WH5-9 eNOS) / MWAL	OUTPUT-40
	IFINUER .GT. NDS(NUERSHOS	OUTPUT. 42
U	NBW= (NOS-1)/NWF8+1	OUTPUT. 43 OUTPUT. 44
402	GO TO 4D3 CONTINUE	OUTPUT. 45
	XWEBED	OUTPUT
604	NBM=0 CONTINUE	OUTPUT.49
	NH6=NH5+NE0	OUTPUT-50
		OUTPUT . 5
	WHIQ=MH5+9eNUMEL WHIZ=MH5+3eMTH	OUTPUT.53
	NH13=NH12+NMAL=NMFB	OUTPUT-55
	LALL REPARTIATION IS ANNEL FALANCE	DUTPUT.51
	2 NOISB.NUMEL.MSTR.NSTR8.NTM.RMAL.NMF8.NB0.NBS.NBM.	OUTPUT.58
		OUTPUT .60
	MILLE=0	DUTPUT. 62
	(F(KK] °EO° 21 NFILE=NF(LE+NSO*2 TF4KK2 .FO. 2) MFILE=NFILE+NSS	DUTPUT
	FIRKS . EQ. 2) NFILE=NF(LE+NSH	OUTPUT .65
	IF(MFILE .EO. 01 60 TO 401 MT=3D	00TPUT-66
	REWIND MT Maitemet, Maite, Mait, Add. Add	OUTPUT.68 OUTPUT.69
401	CONTINUE	OUTPUT. 70
		OUTPUT. 72
	AND - ANT FRO LEAD - AND LEAD - A	OUTPUT. 74
	Iff=0	OUTPUT. TO
	DUTPUT SELECTED ABSOLUTE OISPLACEMENT TIME HISTORY Rewind id	DUTPUT. 78

PRINT WALL FORCE OUTPUT SPECIFICATION 60 T0 406 63 T0 406 1F1x .60 0.AND. L .69. 01 WNJTE16.504) 1F1x .60 0.AND. L .69. 01 WNJTE16.504) 00 305 1-1.9 11-151) .1c 0.6 13-991WEL-11.41 11-151) .1c 0.6 13-991WEL-11.41 13-91WEL-11.41 13-11.11 13-11. READ AND INPUT STRESS OUTPUT SPECIFICATION CONTINUE READ 1.KK3 READ 1.WK1 N CONTING NEAD 1.WK1 N TEAN 0.71 0.60 TO 400 FFL .60.01 60 TO 400 FFL .60.01 60 TO 400 KK41 KK41 CO TO 400 IFN 460 0.4M0. L.EQ. 01 MAITE(6.505) IFN 460 0.4M0. L.EQ. 01 MAITE(6.505) JF(JJ .LE. NEQ) GO TO 403 CONTINUE READ 1,4K2 2 CONTINUE READ 1,4VTPE,4KE1215 A 8LAMK CAND FOR ENDING FIAMK CAND FOR ENDING FIAMK CAND FOR ENDING FIAL - 50, 01 CD 70 406 WAITE1201 K0-1 KG(1:1)=WP KG(3:1)=JJ KG(3:1)=JJ KG(3:1)=J KG(3:1)=J JOIS(JJ)=J JOIS(JJ)=J JOIS(JJ)=J KG(1 0) 404 5 WRITE 0.502) NP. (1 GO TO 304 14111 .LE. 01 GO KKL WAITE 6. 5031 CONTINUE GO TO 2000 CONTINUE MSS=K CONTINUE READ AND CONT) NUE NSD=K 2 22 P Ĭ 2000 9 10 504 904 402 305 3000 5 504 ບບ υU U

IN BUFFER FOR DISPLACEMENTIACCELENATIONI. FORMATIGILALL FORCES FOR WHICH OUTPUTG, TIME MISTORY IS REQUIRED 0/ P WALL NO. CONPOENTS(1-FX.2-VAAR.3-FVIG/1 TO 309 308 307 멑 WR)FE/6.104) WW.1W 00 306)=1.3 11-10(1) 11-10(1) E.G. 01 GO 70 306 11-11(1.00) 11-10 HW 11-11(1.00) 11-10 HW 11-11 HW 1 5 8 8 01 60 ō TYPE NO. 4/1 00 300 M-1.WUMEL 00 300 11.9 FF157A11.MJ .60.01 MSTGMASTR-1 557311.ML M-557 157311.ML M-557 00 309 M-1.MT 00 309 M-1.MT 1571MALL11.MJ .60.01 MMALL11.MJ .60.01 MMALL11.MJ .60.01 6 CALCULATE LOCATION STRESS, WALL FORCE MDIS=0 MAL-0 MAL-0 00 307 1=1,MEQ 00 307 1=1,MEQ 00 S-MDIS+1 1015411=MDIS 00NTIMUE 5.4X.3I41 INALLII.NI = NVAL CONTINUE Return Formatii4is) CONTINUE GO TO 3000 CONTINUE FORMATCIS FORMATCIS FORMATC21 FORMATS 2 END 306 10010 307 202 505 308 00 •

4172 104400 5172

-162-

001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355 001F01.355	0UTPUT.3T1 0UTPUT.3T2 0UTPUT.3T3 0UTPUT.3T4 0UTPUT.3T6 0UTPUT.3T6	11001701.377 001701.378 001701.378 001701.380 001701.380 001701.382 001701.382	001F01 - 365 001F01 - 365 001F01 - 365 001F01 - 369 001F01 - 369 001F01 - 362 001F01 - 362 001F01 - 365	001F01599 001F01599 001F01599 001F01599 001F01599 001F01590 001F01590 001F01590 001F01590 001F0150 001F0150 001F0150 000F101700	
IFIII 305.409 0 CONTINUE 5 CONTINUE 15 CONTINUE 16 FLLIT. NUEDI CO 17 FLLIT. NUEDI CO 17 FLLIT. NUEDI CO 17 FLUI 1. LAWA 17 FLUI 1. LAWA 17 FLUI 1. LAWA 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE 18 CONTINUE	SUBROUTINE OUTHISIID,IOIS,ISTR,IMALL,TA.K.UH.MUMMP,MUMELMTH. NDS.MOI.MOJ.MOB.MHB.KKK.KKI.IT.JT.MT.IFF.MEGI Seesseesseesseesseesseesseesseesseessee	DIMENSION THIGI.KHIGI.IDI3.NUMMPI.ISTR(9.NUMELI.IMALLI3.NTMI.TAI DIMENSION KD14.01 DIMENSION KD14.01 COMMON/TIME/JUMP.T.OT.WPATM.HTPE.KPMINT COMMON/FOURANA.DOT	TAPE IT INPUT TAPE STORE KOL4-01.LSI,K2MIMDIS.MDISBI TAPE JT INPUT TAPE STORE KMIMDIS.MDISBI. IFINDB. EG. DI RETURM DD 301 M-11.MOB RFF-11.MOB REMIND JT REMIND JT REM	DA CUTITOL PRINT APPROPRIATE TITLE 60 TO 1401.402.403.4041 KKK 41 CONTINUE 10 TE16.5011 KG11.11.4012.11.1-1.41.1 10 TE16.1011 KG11.11.4012.11.1-1.41.1 60 TO 405 10 TE16.1011 KG11.11.KG12.11.1-1.41.1	03 CONTINUE WHITE(6,1D2) KNOIL,1L,KDI2,1L,KDI3,1L,1-L,LI WHITE(6,1D2) KNOIL,1L,KDI2,1L,1-L,LI WHITE(6,1D3) KNOIL,1L,KDI2,1L,1-L,LI WHITE(6,1D3) KNOIL,1L,KDI2,1L,1-L,LI WHITE(6,1D3) KNOIL,1L,KDI2,1L,1-L,LI MARANGE TIME HISTORY IN OUTPUT FORM ARAANGE TIME HISTORY IN OUTPUT FORM ARAANGE TIME HISTORY IN OUTPUT FORM OO 303 MONL,WHI NO 303 MONL,WHI NO 303 MONL,WHI NO 304 JL,K MANAI TTTTOTTOT OO 305 JL,LK MANAI TTTTOTTOT OO 305 JL,LK
09 GE GE 14 14 14				1	* * * uu
872.1010 872.1000 872.1000 872.1000 872.1000 872.10000 872.1000000000000000000000000000000000000	007PUT_301 007PUT_302 007PUT_303 007PUT_305 001PUT_305	DUFUT.301 DUFUT.308 DUFUT.308 DUFUT.310 DUFUT.311 DUFUT.313 DUFUT.313	216,14010 216,141,141 216,141,141 216,141 21	755, 10470 255, 10470255, 10470 255, 10470255, 10470 255, 10470 255, 10470255, 104700 255, 104700255, 104700 255, 10470000000000	etc: etc:
ROUTIVE REPACKID.IDIS.ISTA.IMALL.X.X2.XH.MSIG.STM.HMALL. WHA.U.NOS.MEG.0015.MOISS.WUNEL.MSTR.MSTR.MTM. MAAL.MFB.MB0.VBS.MBL.MUMP) MAAL.ANEB.MB0.VBS.MBL.MUMP) KESPONSE TIME HISTORY IN OPTIMAL AVILABLE STORAGE BLOCKS KK RESPONSE TIME HISTORY IN OPTIMAL AVILABLE STORAGE BLOCKS MAALLIJ.MTVI.WENIMAL.NUFBI MAALLIJ.MTVI.WENIMAL.NUFBI MAALLIJ.MATLIJ.MTVI.WENIMAL.NUFBI MAALLIJ.MATLIJ.MATLIJ.MTVI MAALLIJ.MATLIJ.MTVI.WENIMAL.NUFBI MAALLIJ.MATLIJ.MATLIJ.MTVI MAALLIJ.MATLIJ.MATLIJ.MTVI MAALLIJ.MATLIJ.MATLIJ.MTVI MAALLIJ.MATLIJ.MATLIJ.MATLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MTVI MAALLIJ.MATLIJ.MATLIJ.MTAI MAALLIJ.MATLIJ.MATLIJ.MTAI MAALLIJ.MATLIJ.MATLIJ.MATLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAALLIJ.MAAL MAALLIJ.MATLIJ.MATJ.MATLINABI MAALJIJ.MATLIJ.MATLIJ.MATLIJ.MATLIJ.MAALNAALNAALMAALMAALMAALMAALMAALMAALJAANAALJAANALMAALJAANAAAAAAAA	TI JD 302.302.402 TT MUE 11.1.1.4.111 TI.1.1.4.2111 TT MUE L1., MD 580 GO TO 301	TELLIL L,XM TELL21 L,XZM •1 TINUE TINUE TINUE TELLIL ,XM	TELIZI L.X.ZH TTINUE NBD.,ME. K. NBO-K CK STRESS-STH FROM TAPE 22 CK STRESS-STH FROM TAPE 22 01221 HALLANDES 01221 HALLANDES	303 TLT 0 115 RLT 0 111 203 03 + 0 111 10 - 103 03 + 0 111 1 - 15 RT 1 0 111 1 - 15	TTTNUE TTTNUE TELI31 L.5TH MMS.M.E.K.1 MMS-K. MMS.M.MALL MMS-K. E.OF MD MALL PORCE ARAV-WFH FRDW TAPE 23 MOLAL FORCE ARAV-WFH FRDW TAPE 23 304 M-1, MOS 305 M-1,
م 1912ء ************************************	40: C0 40: C0 302 C0 302 C0	30 0 10 10 10 10 10 10 10 10 10 10 10 10	6 6 8 8 0 7 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9		

corroited: software strefs.contents stref NO.-COMPOENTS, 1=X, 2=YBAR, 3=Ye/) Ľ [F(AX-XMII)] 416.416.417 CONTINUE CONTINUE CUL-MCILI-II LI-MCILI-II LI-MCILI-II LI-MCILI-II MCILI-II ALS CONTINE ALS CONTINE ALS CONTINE CONTIN 20%, •WALL N 411 CONTINUE JJJCK013-11 JJJCK013-11 XX-04111JJJ XX-04111JJJ XX-04111JJJ XX-04111JJ 11-1013-11 11-1013-11 11-1013-11 11-1013-11 11-1013-11 11-115 XX-04111JJJ XX-04111JJJ XX-04111JJ XX-0411JJ XX-0411J 416 CONTINUE XII,M)=XX TAIN)=TT 305 CONTINUE 304 CONTINUE 303 CONTINUE I=(I I WX END THT

0.01PUT ~22 0.01PUT ~25 0.01PU

J

DOT LIBRARY