Mathematik für Anwender II

Vorlesung 52

Hinreichende Kriterien für lokale Extrema

Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

$$f\colon G\longrightarrow \mathbb{R},$$

die auf Eigenschaften der zweiten Richtungsableitungen, genauer der Hesse-Form, beruhen und die entsprechenden Kriterien in einer Variablen verallgemeinern. Zunächst brauchen wir ein Lemma, das beschreibt, wie die Definitheit (oder der "Definitheitstyp") der Hesse-Form vom Punkt abhängt.

Lemma 52.1. Es sei V ein endlichdimensionaler reeller Vektorraum, $G \subseteq V$ eine offene Teilmenge und

$$f: G \longrightarrow \mathbb{R}$$

eine zweimal stetig differenzierbare Funktion. Es sei $P \in G$ ein Punkt, in dem die Hesse-Form $\operatorname{Hess}_P f$ positiv (negativ) definit sei. Dann gibt es eine offene Umgebung $U, P \in U \subseteq G$, derart, dass die Hesse-Form $\operatorname{Hess}_Q f$ in jedem Punkt $Q \in U$ positiv (negativ) definit ist.

Beweis. Sei v_1, \ldots, v_n eine Basis von V, und sei H(Q) die Gramsche Matrix zur Hesse-Form $\operatorname{Hess}_Q f$ im Punkt $Q \in G$ bezüglich dieser Basis. Aufgrund der Differenzierbarkeitsvoraussetzungen hängt H(Q) stetig von Q ab. Daher hängen auch die Determinanten der quadratischen Untermatrizen von H(Q) stetig von Q ab. Die Determinanten

$$D_k(P) = \det((H(P)_{i,j})_{1 \le i,j \le k})$$

sind nach Korollar 44.13 alle von 0 verschieden. Daher gibt es eine offene Umgebung $U, P \in U \subseteq G$, derart, dass für alle $Q \in U$ die Determinanten

$$D_k(Q) = \det((H(Q)_{i,j})_{1 \le i,j \le k})$$

das gleiche Vorzeichen haben wie $D_k(P)$. Da diese Vorzeichen nach Korollar 44.13 über die Definitheit entscheiden, folgt die Behauptung.

Satz 52.2. Es sei V ein endlichdimensionaler reeller Vektorraum, $G \subseteq V$ eine offene Teilmenge und

$$f: G \longrightarrow \mathbb{R}$$

eine zweimal stetig differenzierbare Funktion. Es sei $P \in G$ mit $(Df)_P = 0$. Dann gelten folgende Aussagen.

(1) Wenn $\operatorname{Hess}_P f$ negativ definit ist, so besitzt f ein isoliertes lokales Maximum in P.

- (2) Wenn $\operatorname{Hess}_P f$ positiv definit ist, so besitzt f ein isoliertes lokales Minimum in P.
- (3) Wenn $\operatorname{Hess}_P f$ indefinit ist, so besitzt f in P weder ein lokales Minimum noch ein lokales Maximum.

Beweis. (1). Aufgrund von Lemma 52.1 gibt es ein $\delta>0$ derart, dass die Hesse-Form $\operatorname{Hess}_Q f$ für alle $Q\in U(P,\delta)$ negativ definit ist. Für alle Vektoren $v\in V,\ v\in U(0,\delta)$, gibt es nach Satz 50.5 ein $c=c(v)\in [0,1]$ mit

$$f(P+v) = f(P) + \sum_{|r|=2} \frac{1}{r!} D^r f(P+cv) \cdot v^r = f(P) + \frac{1}{2} \operatorname{Hess}_{P+cv} f(v,v),$$

wobei die erste Formulierung sich auf eie fixierte Basis bezieht und wobei die zweite Identität auf Aufgabe 52.15 beruht. Da die Hesse-Form negativ definit ist, steht rechts für $v \neq 0$ eine Zahl, die echt kleiner als f(P) ist. Daher liegt ein isoliertes lokales Maximum vor. (2) wird wie (1) bewiesen oder durch betrachten von -f darauf zurückgeführt. (3). Sei Hess $_P$ f indefinit. Dann gibt es Vektoren v und w mit

$$\operatorname{Hess}_P f(v, v) > 0 \text{ und } \operatorname{Hess}_P f(w, w) < 0.$$

Wegen der stetigen Abhängigkeit der Hesse-Form gelten diese Abschätzungen auch für $\operatorname{Hess}_Q f$ für Q aus einer offenen Umgebung von P (mit den gleichen Vektoren v und w). Wir können durch Skalierung von v und w annehmen, dass P + v und P + w zu dieser Umgebung gehören. Wie im Beweis zu Teil (1) gilt daher (v und w sind nicht 0)

$$f(P+v) = f(P) + \frac{1}{2} \text{Hess}_{P+cv} f(v,v) > f(P)$$

und

$$f(P+w) = f(P) + \frac{1}{2} \operatorname{Hess}_{P+dw} f(w,w) < f(P)$$

mit $c, d \in [0, 1]$. Also kann in P kein lokales Extremum vorliegen.

Beispiel 52.3. Wir betrachten die Funktion

$$f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}, (x, y) \longmapsto x + 3x^2 - 2xy - y^2 + y^3.$$

Die partiellen Ableitungen sind

$$\frac{\partial f}{\partial x} = 1 + 6x - 2y$$
 und $\frac{\partial f}{\partial y} = -2x - 2y + 3y^2$.

Zur Berechnung der kritischen Punkte dieser Funktion eliminieren wir x und erhalten die Bedingung

$$9y^2 - 8y + 1 = 0,$$

die zu

$$y = \frac{\pm\sqrt{7}}{9} + \frac{4}{9}$$

führt. Die kritischen Punkte sind also

$$P_1 = \left(\frac{2\sqrt{7} - 1}{54}, \frac{\sqrt{7}}{9} + \frac{4}{9}\right) \text{ und } P_2 = \left(\frac{-2\sqrt{7} - 1}{54}, \frac{-\sqrt{7}}{9} + \frac{4}{9}\right).$$

Die Hesse-Form ist in einem Punkt Q = (x, y) gleich

$$\operatorname{Hess}_Q f = \begin{pmatrix} 6 & -2 \\ -2 & -2 + 6y \end{pmatrix}.$$

Zur Bestimmung des Definitheitstyps ziehen wir Korollar 44.13 heran, wobei der erste Minor, also 6, natürlich positiv ist. Die Determinante der Hesse-Matrix ist

$$-16 + 36y$$
,

was genau bei $y>\frac{4}{9}$ positiv ist. Dies ist im Punkt P_1 der Fall, aber nicht im Punkt P_2 . Daher ist die Hesse-Matrix im Punkt P_1 nach Korollar 44.13 positiv definit und somit besitzt die Funktion f im Punkt P_1 nach Satz 52.2 ein isoliertes lokales Minimum, das zugleich ein globales Minimum ist. In P_2 ist die Determinante negativ, so dass dort die Hesse-Form indefinit ist und somit, wiederum nach Satz 52.2, kein Extremum vorliegen kann.

Beispiel 52.4. Wir betrachten die Abbildung

$$\varphi \colon \mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{R}, (x, y) \longmapsto x^y.$$

Es ist

$$x^y = e^{(\ln x) \cdot y}.$$

Die partiellen Ableitungen sind

$$\frac{\partial \varphi}{\partial x} = \frac{y}{x} \cdot e^{(\ln x) \cdot y} = \frac{y}{x} \cdot x^y \text{ und } \frac{\partial \varphi}{\partial y} = (\ln x) \cdot e^{(\ln x) \cdot y} = (\ln x) \cdot x^y.$$

Da die Exponentialfunktion stets positiv ist, ist P = (1,0) der einzige kritische Punkt. Die Hesse-Matrix in einem Punkt (x,y) ist

$$\begin{pmatrix} \frac{-y+y^2}{x^2} \cdot e^{(\ln x) \cdot y} & \frac{1+y \ln x}{x} \cdot e^{(\ln x) \cdot y} \\ \frac{1+y \ln x}{x} \cdot e^{(\ln x) \cdot y} & (\ln x)^2 \cdot e^{(\ln x) \cdot y} \end{pmatrix} = \begin{pmatrix} \frac{-y+y^2}{x^2} \cdot x^y & \frac{1+y \ln x}{x} \cdot x^y \\ \frac{1+y \ln x}{x} \cdot x^y & (\ln x)^2 \cdot x^y \end{pmatrix}.$$

In P ist dies

$$\operatorname{Hess}_P \varphi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Nach Korollar 44.13 ist daher die Hesse-Form im kritischen Punkt weder positiv definit noch negativ definit. Man kann direkt zeigen, dass diese Matrix indefinit ist (vom Typ (1,1)), da diese Bilinearform auf $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ positiv und auf

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ negativ definit ist. Nach Satz 52.2 liegt in diesem Punkt also kein Extremum vor.

Dies kann man auch ohne Differentialrechnung erkennen. Für x=1 oder y=0 ist $x^y=1$. Ansonsten gelten die folgenden Beziehungen.

- (1) Für 0 < x < 1 und y > 0 ist $x^y < 1$.
- (2) Für x > 1 und y > 0 ist $x^y > 1$.
- (3) Für 0 < x < 1 und y < 0 ist $x^y > 1$.
- (4) Für x > 1 und y < 0 ist $x^y < 1$.

Daher gibt es in jeder Umgebung von (1,0) Punkte, an denen die Funktionswerte größer bzw. kleiner als 1 sind.

Bemerkung 52.5. Es sei

$$g \colon [a, b] \longrightarrow \mathbb{R}$$

eine stetige Funktion und

$$a = x_0 < x_1 < x_2 < \ldots < x_n < b = x_{n+1}$$

eine Unterteilung des Intervalls durch n Zwischenpunkte (in n+1 Teilintervalle). Dazu gehört die Treppenfunktion, die auf $[x_i, x_{i+1}]$ den konstanten Wert $g(x_i)$ annimmt. Wenn g monoton wachsend ist, so ist dies eine untere Treppenfunktion, und das zugehörige Treppenintegral ist eine untere Schranke für das bestimmte Integral $\int_a^b g(t)dt$. Das Treppenintegral ist durch

$$f(x_1,...,x_n) = \sum_{i=0}^{n} g(x_i)(x_{i+1} - x_i)$$

gegeben. Wir fragen uns, für welche Intervallunterteilung mit n Teilpunkten das Treppenintegral maximal oder minimal wird. Dazu kann man die differentiellen Methoden zur Bestimmung von Extrema für Funktionen in mehreren Variablen verwenden (nämlich den variablen Unterteilungspunkten x_1, \ldots, x_n), vorausgesetzt, dass g (hinreichend oft) differenzierbar (in einer Variablen) ist. In diesem Fall sind die partiellen Ableitungen von f gleich

$$\frac{\partial f}{\partial x_i} = g'(x_i)(x_{i+1} - x_i) - g(x_i) + g(x_{i-1})$$

für i = 1, ..., n (wobei $x_0 = a$ und $x_{n+1} = b$ zu lesen ist). Als Definitionsbereich von f kann man die offene Menge

$$\{(x_1, \dots, x_n) \mid a < x_1 < x_2 < \dots < x_n < b\} \subseteq \mathbb{R}^n$$

oder aber $[a, b]^n$ wählen. Es ist im Allgemeinen schwierig, die kritischen Punkte dieser Abbildung zu bestimmen.

Beispiel 52.6. Wir wollen für die Funktion

$$q: \mathbb{R} \longrightarrow \mathbb{R}, t \longmapsto q(t) = 1 - t^3,$$

und das Einheitsintervall [0,1] bestimmen, für welche zwei Unterteilungspunkte 0 < x < y < 1 das Treppenintegral der zugehörigen (dreistufigen) unteren Treppenfunktion maximal wird. Das Treppenintegral wird durch die Funktion

$$f(x,y) = x(1-x^3) + (y-x)(1-y^3)$$

= x-x^4 + y - y^4 - x + xy^3

$$= -x^4 + y - y^4 + xy^3$$

beschrieben. Die partiellen Ableitungen dieser Funktion sind

$$\frac{\partial f}{\partial x} = -4x^3 + y^3$$

und

$$\frac{\partial f}{\partial y} = 1 - 4y^3 + 3xy^2.$$

Wir bestimmen die kritischen Punkte. Aus der ersten partiellen Ableitung ergibt sich die Bedingung

$$y = \sqrt[3]{4}x$$

und daraus ergibt sich mit der zweiten partiellen Ableitung die Bedingung

$$1 - 16x^3 + 3 \cdot 4^{2/3}x^3 = 0$$

also

$$(16 - 3 \cdot 4^{2/3})x^3 = 1$$

bzw.

$$x = \frac{1}{\sqrt[3]{16 - 3 \cdot 4^{2/3}}}.$$

Somit ist

$$P = \left(\frac{1}{\sqrt[3]{16 - 3 \cdot 4^{2/3}}}, \frac{\sqrt[3]{4}}{\sqrt[3]{16 - 3 \cdot 4^{2/3}}}\right) \cong (0, 4911, 0, 7796)$$

der einzige kritische Punkt. Wir bestimmen die Hesse-Matrix in diesem Punkt, sie ist

$$\operatorname{Hess}_{P} f = \begin{pmatrix} -12x^{2} & 3y^{2} \\ 3y^{2} & -12y^{2} + 6xy \end{pmatrix}$$

und in P gleich

$$\begin{pmatrix} -2,8942 & 1,8233 \\ 1,8233 & -4,9961 \end{pmatrix},$$

also negativ definit nach Korollar 44.13. Daher liegt in P ein Maximum nach Satz 52.2 vor.

Beispiel 52.7. Wir wollen für die Funktion

$$g: \mathbb{R} \longrightarrow \mathbb{R}, t \longmapsto t,$$

und das Einheitsintervall [0,1] bestimmen, für welche n Unterteilungspunkte $0 < x_1 < \ldots < x_n < 1$ das Treppenintegral der zugehörigen ((n+1)-stufigen) unteren Treppenfunktion maximal wird. Das Treppenintegral wird durch die Funktion

$$f(x_1, \dots, x_n) = x_1(x_2 - x_1) + x_2(x_3 - x_2) + \dots + x_{n-1}(x_n - x_{n-1}) + x_n(1 - x_n)$$

=
$$\sum_{i=1}^{n-1} x_i x_{i+1} + x_n - \sum_{i=1}^n x_i^2$$

beschrieben. Die partiellen Ableitungen dieser Funktion sind

$$\frac{\partial f}{\partial x_1} = x_2 - 2x_1,$$

$$\frac{\partial f}{\partial x_i} = x_{i-1} + x_{i+1} - 2x_i$$

für $i = 2, \ldots, n-1$ und

$$\frac{\partial f}{\partial x_n} = x_{n-1} + 1 - 2x_n.$$

Wir bestimmen die kritischen Punkte, indem wir die partiellen Ableitungen gleich 0 setzen. Die ersten n-1 Gleichungen ergeben sukzessive die Bedingungen

$$x_i = ix_1$$

für alle i. Dies zeigt man durch Induktion, der Induktionsanfang (i=1) ist trivial, i=2 folgt direkt aus der ersten Gleichung und der Induktionsschritt ergibt sich aus

$$x_{i+1} = -x_{i-1} + 2x_i = -(i-1)x_1 + 2ix_1 = (i+1)x_1.$$

Aus der letzen Gleichung folgt schließlich

$$0 = x_{n-1} + 1 - 2x_n = 1 + (n-1-2n)x_1 = 1 - (n+1)x_1$$

und somit $x_1 = \frac{1}{n+1}$. Der einzige kritische Punkt liegt also in der äquidistanten Unterteilung vor. Die Hesse-Matrix ist (unabhängig vom Punkt) gleich

$$\begin{pmatrix} -2 & 1 & 0 & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & \dots & 0 & 1 & -2 \end{pmatrix}.$$

Diese Matrix ist negativ definit nach Korollar 44.13. Daher liegt in der äquidistanten Unterteilung nach Satz 52.2 das Maximum vor.

${\bf Abbildungs verzeichnis}$

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	7
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	7