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ABSTRACT 

The cross-flow fan (CFF) is a lifting and propulsion device that retains the advantages 

of a fixed-wing aircraft by using a ducted lift fan.  There is no upper limit to the rotor 

length-to-diameter ratio of a CFF, allowing the device to be installed along the length 

of the wing or lifting device.  The CFF discharged vector can be easily rotated about 

the fan axis since the fan has no angular requirements, further allowing the capability 

of vertical take-off and landing (VTOL) by thrust vectoring.  CFF possess the potential 

to propel an airframe to flight; however adequate thrust must be produced by the CFF 

in order for it to realize VTOL. 

 Conventional CFFs designs with straight blades produce unacceptable noise 

levels for personal air vehicle operation.  It is believed that helical blades could solve 

the sound pressure level problem and produce more thrust to aid VTOL.  Using 

computational fluid dynamics software (CFD), ANSYS-CFX, a three-dimensional (3-D) 

straight-bladed model was validated against previous study’s experimental results.   

 A 3-D model with helical blades was constructed to investigate the 

performance.  The analytical results have shown that helical blades could increase 

the thrust performance of a CFF, and could possibly realize VTOL. 
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I. INTRODUCTION  

A. OVERVIEW 

The need for a small personal air vehicle to offset the reliance on the 

automobile for passenger transport has fueled the research in lift and propulsion 

devices for personal vertical take-off and landing (VTOL) vehicles.  Helicopters 

have traditionally offered the flexibility of VTOL applications, allowing for ingress 

and egress into a limited space where fixed-wing aircraft do not have access. 

The performance penalties for using helicopters as compared to fixed-wing 

aircraft have been low speed, limited range, and restricted operational ceiling.  

Lift-fan–powered fixed-wing aircraft trade hovering efficiency for the benefit of 

better cruise flight efficiency.  Additionally, ducted lift fans have the advantage of 

shielding users and bystanders from the rotating blades and loud noises.  The 

cross-flow fan (CFF) is a lifting and propulsion device that retains the advantages 

of both a fixed-wing aircraft and a ducted lift fan.  There is no upper limit to the 

rotor length-to-diameter ratio of a CFF, allowing the device to be installed along 

the entire length of the wing or lifting device.  Also, the CFF discharged vector 

can be easily rotated about the fan axis since the fan has no angular 

requirements, further allowing the capability of VTOL by thrust vectoring. 

B. BACKGROUND  

The CFF was patented over a century ago.  Today, CFFs are commonly 

found in heating ventilation and cooling (HVAC) systems, air curtains designed to 

maintain a boundary between two atmospheres, and within computer servers to 

circulate the air in cooling the electronic components.  Figure 1 illustrates an 

example of a commercial CFF used to circulate air in a departmental store. 
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Figure 1.   Commercial cross-flow fan (CFF) 

Vought Systems Division (VSD) of the Ling-Temco-Vought (LTV) 

Aerospace Corporation was the first to explore using the CFF as a means of 

propulsion to augment concepts in the development of subsonic transport 

aircraft [1].  VSD conducted numerous studies and concluded that a CFF is 

capable of producing enough thrust to augment a heavy-lift aircraft’s propulsion 

system. 

In 2000, the researchers at the Naval Postgraduate School’s 

Turbopropulsion Laboratory (TPL) sparked resurgence in the interest of CFF 

propulsion and conducted many CFF studies, such as: 

• Gossett [2] proposed using a CFF to augment the vertical thrust of 

a single-seat VTOL aircraft. 

• Cheng [3] performed an experimental and numerical analysis of a 

12-inch diameter, 1.5-inch span CFF to validate VSD’s research 

and develop a computational model of the CFF that could be further 

used for design modifications and improvements. 

• Schreiber [4], Yu [5], and Ulvin [6] continued researching the 

performance of CFF rotors by modeling rotors of a smaller, 6-inch 

diameter over a range of spans from 1.5 inches to 6 inches to 

determine the CFF fan scaling laws. 
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• Cordero [7], as well as Gannon, Utschig, Hobson, and Platzer [8], 

incorporated the performance characteristics of a 6-inch diameter 

rotor with 30 double circular arc blades. 

• Antoniadis [9] investigated altering the blade design and the 

number of blades on a CFF rotor to optimize its performance. 

In 2006, Propulsive Wing, LLC successfully integrated a CFF into the 

trailing edge of an aircraft wing and demonstrated a Short Take-Off and Landing 

(STOL) flying model [10].  Although the current models produced by Propulsive 

Wing do not have the capability for VTOL, they are capable of performing near-

vertical hovering when the plane is oriented at a steep angle of attack with the 

CFF operating.  The company not only has developed an aircraft whose sole 

means of propulsion is powered by a CFF but also presented optimism to the 

future of a VTOL aircraft powered by CFF. 

Most recently, Delagrange [11] analytically and experimentally modeled a 

CFF housing that resulted in a thrust-to-weight ratio of 0.616.  CFFs possessed 

the potential to propel an airframe to flight; however adequate thrust must be 

produced by the CFF in order for it to realize VTOL.  Most studies to date involve 

constructing CFFs with straight blades.  Straight blades, however, produce noise 

levels that at high rotational speeds are unacceptable for personal air vehicle 

operation [12].  Hence, helical blades are believed to be able to solve the sound 

pressure level (dB) problem.  Additionally, it is believed that helical blades could 

produce more thrust to aid in VTOL since helical blades transfer energy more 

efficiently from the rotor to the flow stream, allowing for faster rotational speeds 

of the rotor.  This leads to the motivation to conduct a study to investigate the 

performance of a CFF with helical blades.  This is the first time that such a study 

has been conducted.  Hence, the results obtained with the helical-bladed model, 

will be compared with the experimental results obtained by Delagrange [11].  

This thesis will specifically focus on computational fluid dynamic (CFD) modeling 

of CFF with helical blades. 
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C. OBJECTIVE 

The main objective of this thesis was to investigate the performance of a 

CFF with helical blades in comparison to the CFF with straight blades.  The 

helical-bladed CFF should reduce the sound pressure level as compared to 

straight-bladed CFF.  Additionally, it was hoped that the performance (thrust) of 

the helical CFF would be comparable or better than that of the straight-bladed 

CFF. 

D. SCOPE 

The scope of the thesis is as follows: 

• Construct both the straight- and helical-bladed CFFs using 

SOLIDWORKS. 

• Run the simulations for both the models using ANSYS-

WORKBENCH. 

• Capture and analyze the results using CFD-POST. 

• Conclude with the findings and make necessary recommendations.  
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II. DESCRIPTION OF THE ANALYTICAL MODEL 

A. OVERVIEW 

The previous study by Delagrange [11] treated the straight-bladed CFF 

simulation with CFD successfully.  His modeled results were also close to the 

experimental results that he conducted.  The experimental thrust measurements 

and analytically determined thrusts matched well over the entire CFF operating 

range, with a maximum error of 6.4% at the maximum operating speed of 8000 

rpm [11].  In the case of power, for rotor speeds up to 6000 rpm, his ANSYS 

model accurately predicted the power.  However, as the rotational velocity 

increased over 6000 rpm, the error between the measured and predicted powers 

grew extensively.  The divergence between the predicted and actual powers was 

explained by the drop in CFF efficiency at speeds greater than 6000 rpm, as 

described by Anthoniadis [9] in his CFF performance research.  Although 

Delagrange’s model had straight blades, his experimental and analytical data 

was useful for comparing with the CFD results generated for the helical blades 

CFF (e.g., thrust and power generation). 

The original CFF’s full-size fluid model and its housing were created 

based on the following steps.  Firstly, the rotor with straight/helical blades and the 

required housing were designed, created, and saved in PARASOLID format 

using SOLIDWORKS, a computer-aided drafting (CAD) program.  Secondly, the 

models were exported to ANSYS-CFX to mate both the rotor and housing into a 

single model, following which the model was exported to the meshing tool for grid 

generation.  Details of the mesh generation parameters were described in 

Appendix A.  Thirdly, the generated mesh was imported into ANSYS-CFX-Pre to 

set up the appropriate boundary conditions and the solution parameters (see 

Appendix B for details).  Once the changes in ANSYS-CFX-Pre were saved, a 

definition file (*.def) was created.  This was the file required by the ANSYS-CFX-

Solver to execute the simulation and generate the solution for the model.  Lastly, 

the generated results for each simulation were processed in CFD-POST.  
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B. GEOMETRY AND GRID GENERATION 

Initially, a 4-inch rotor with a greater turn (90°) helical blades was modeled.  

Details of this geometry were presented in Appendix C. 

The geometric models of the CFF were created in SOLIDWORKS.  The 

CFF model consisted of two major parts: the 8-inch rotor domain with 16 straight 

or helical blades, and the housing domain with the same length (as shown in 

Figures 2, 3, and 4).  The helicity on the 8-inch rotor was limited to 10° over its 

length, as this was deemed to be the most realistic rotor that could be produced 

in the near term.  The housing was designed by Delagrange [11].  

 

Figure 2.   SOLIDWORKS model of an 8-inch CFF with 16 straight blades 

 
Figure 3.   SOLIDWORKS model of an 8-inch CFF with 16 helical blades 
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Figure 4.   SOLIDWORKS model of a housing for the CFF 

Because the models for the study were three-dimensional (3-D), they were 

created in the format of a fluid (as shown in Figure 5).  Each model, in 

PARASOLID format, was imported into ANSYS-WORKBENCH to mate into a 

single model (as shown in Figures 6 and 7).  The advantage of this strategy, 

mating in ANSYS-WORKBENCH DesignModeler instead of assembling in 

SOLIDWORKS, was to ensure that there would not be any irrelevant features or 

parameters created while combining the two models into one.  In order to ensure 

that ANSYS-WORKBENCH recognized the model as two components, the 

material of the housing had to be chosen to be added as frozen.  The model was 

then defined as a fluid domain and exported for grid generation. 

 

 

Figure 5.   SOLIDWORKS model of rotor and housing domains illustrated in fluid 
format 

3.0725” 

8.0” 

2.0” 
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Figure 6.   DesignModeler assembly of a straight-bladed CFF within its housing 

 
Figure 7.   DesignModeler assembly of a helical-bladed CFF within its housing 
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Figure 8.   Locations where edge sizing were implemented 

The models’ mesh was generated within ANSYS-MESHER.  In order to 

ensure that similar quality of meshes was generated in both the rotor and 

housing (for both straight- and helical-bladed models), edge sizing was 

implemented on both components, and the number of divisions for each side of 

the rotor and the housing (see Figure 8 and further details of illustration in 

Appendix A) were chosen as follows: 

Table 1.   Number of divisions for edge sizing on both rotor and housing 

 Number of Divisions 

Sides Housing Rotor 

A 310 310 

B 45 - 

C 110 - 

D 25 - 

Housing 

Rotor 

Housing 
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The initial mesh for the 3-D CFD model of the straight-bladed CFF 

contained 4,655,488 nodes that were connected to form 23,913,666 elements.  

This coarse mesh was acceptable for the estimation of the airflow through the 

CFF for the study and was as shown in Figures 9 through 12. 

Similar considerations were applied to the helical-bladed CFF in order to 

ensure a fair comparison between the two models. 

 

Figure 9.   Mesh generated in the CFF assembly for the analysis (front view) 

 
Figure 10.   Mesh generated for the CFF assembly illustrated in 3-D 
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Figure 11.   Mesh generated for the CFF rotor in 3-D 

 

Figure 12.   Detailed highlight of a section at the rotor domain and housing domain 
interface of the CFF 
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Table 2.   CFF mesh assemblies’ statistics 

 Straight-Bladed CFF Helical-Bladed CFF 

Mesh Type Nodes Elements Nodes Elements 

Coarse 4,655,488 23,913,666 4,706,881 24,219,812 

Fine 4,709,936 23,952,965 4,756,224 24,224,653 

 

As listed in Table 2, the differences between the coarse and the fine 

meshes for both models were insignificant, given the large number of elements 

generated for the mesh.  Due to the significantly large mesh elements, there was 

no intention to make use of the fine mesh or attempt to refine the mesh for the 

study, as the computation time for the coarse mesh was on the magnitude of 0.5 

of a week per revolution.  Besides being time-consuming to generate the mesh, 

the process of generating the mesh was also resource intensive.  In order to 

reduce the time taken in generating the mesh, more resources in terms of high-

computing-power computers with more processors as well as more ANSYS 

licenses were required.  It was concluded that it would be excessively timely and 

computationally and resource expensive to perform the simulation runs if more 

elements were generated.  Hence, it was deliberately decided that the CFD 

model with coarse mesh was a good enough model to meet the modeling 

requirements.  While the method of mesh generation was significantly different 

than the mesh generated by Delagrange [11] during his analysis, the resulting 

mesh was assumed to be capable of producing results in an accurate 

representation of the experimental data when used in conjunction with the k-

epsilon (k-ε) turbulence model. 

C. METHODOLOGY AND BOUNDARY CONDITIONS 

The CFF flow field was chosen to be transient, and not steady-state, since 

the rotor was in continuous rotation.  Due to the transient nature of the simulation, 

the interface between the rotor and housing was selected as “Transient Rotor-
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Stator” in ANSYS-CFX-Pre.  Typically, the solver of the transient model needs 

the specification of some initial values by the user.  These values could be 

omitted by selecting transient initialization override.  The fluid was selected as 

air-ideal gas with constant specific heat at constant pressure.  The reference 

pressure was set at one atmosphere.  As shown in Figure 13, the inlet was 

specified as total pressure, while the outlet was specified as a free opening 

because an uncertainty existed with regard to the flow direction during the start of 

the simulation.  The static temperatures at both the inlet and outlet were specified 

as 300K.  The no-slip condition was selected for all the wall surfaces.  The 

straight-bladed CFF rotor walls were specified as symmetry whereas helical-

bladed CFF rotor walls were applied with free-slip condition. 

 

 

Figure 13.   CFX-Pre model of a CFF within a housing (side view) 

Two monitoring points were set for the simulation, one for measuring the 

rotor torque and the other for exit pressure.  The torque was set by inputting an 

expression (torque()_z@Default Rotor).  The purpose of this expression was to 

allow the user to monitor if the CFF had reached its stabilization point as well as 

to measure the torque, and power variations. As for the pressure, it was 

measured at a specific point within the CFF.  In this case, the specific point was 

located at X: 0.058m, Y: -0.025m, Z: 0.1021m, which was located very near to 

Inlet 

Outlet 

Rotating 
Domain 

Stationary 
Domain 
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the middle span of the outlet (see Figures 14 and 15 for the yellow plus sign).  

The purpose was to monitor the pressure at this particular point at the outlet, so 

that the exit pressure could be compared to future experimental measurements 

of sound pressure levels. 

 

 

Figure 14.   Pressure-monitoring point at the outlet (side and front view) 

 

Figure 15.   Pressure-monitoring point at the outlet (isometric view) 
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The center of rotation was the axis of the rotor, which coincided with the z-

axis.  Special care had to be given when defining the rotor speed to ensure the 

correct rotating direction (positive or negative, depending on the flow direction).  

The parameters for the total energy model and k-epsilon turbulence model were 

selected in order to include work input and turbulence phenomena.  The 

automatic time-stepping method was used, which was similar to Antoniadis [9].  

The following were the equations that the solver used, including continuity, 

momentum, energy, turbulence eddy dissipation, turbulent kinetic energy, and an 

equation of state: 

Continuity Equation: 

 ( )p ρU 0
t

∂
+∇• =

∂
 (1) 

 
 
Momentum Equation: 

 ( ) ( )( )( )TρU ρU U pδ μ U U
t

∂
+∇• ⊗ = ∇• − + ∇ + ∇

∂
 (2) 

 
 
Energy Equation: 

 ( ) ( ) Ttot
tot

ρh ρ 2ρUh μ T μ U U UδU
t t 3

∂ ∂  − +∇• = ∇• ∇ +∇• ∇ +∇ − ∇• ∂ ∂  
 (3) 

 
 

 ( ) ( ) 2
tot stat

1h p,T h p,T U
2

= +  (4) 

 

Turbulent Eddy Viscosity: 

 
2

t μμ C ρ
ε
k

=  (5) 
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Turbulent Kinetic Energy: 

 ( ) ( ) t
k

k

ρk μρUk μ k P ρε
t σ

 ∂  
+∇• = ∇• + ∇ + −  ∂   

 (6) 

 

Turbulent Eddy Dissipation: 

 ( ) ( ) ( )t
ε1 κ ε2

ε

ρε μ ερUε μ ε C P C ρε
t σ k

 ∂  
+∇• = ∇• + ∇ + −  ∂    

 (7) 

 

The Equation of State: 

 ( )
0

ρ p,T
R T

p
=  (8) 

D. SIMULATION PLAN 

The CFD simulation plan was developed to predict the performance of the 

CFF with straight and helical blades.  These were to determine whether the 

helical blades would contribute to the increase of the thrust and power when 

comparing the results of the two models.  After successfully proving the 

prediction that helical blades would produce higher thrust and power, the next 

step was to construct 3-D CFF models to predict their performance.  The CFD 

simulation plan was developed to predict the performance of the CFF with full 

8-inch straight blades in 3-D over a range of speeds from 6000 to 8000 rpm.  All 

of the simulations began with the same initial conditions at the inlet and outlet of 

0 Pa total pressure at subsonic flow regime and opening pressure respectively.  

Additionally, the initial air velocities normal to each of these boundaries was set 

at 0 m/s to represent the initial conditions of a stationary VTOL aircraft prior to 

take-off.  Each prospective CFF design was simulated to run for six revolutions 

(to ensure convergence of the rotor torque) at different speeds, and solved using 

CFX-SOLVER’s RADIAL partitioning.  The obtained results would be compared 

with those obtained experimentally by Delagrange [11].  If the simulated results 

were close to the experimental results, the simulation would advance to 8000 
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rpm.  Once the simulated results were close to the experimental results, the 

modeling of the CFF with helical blades would be conducted to predict its 

performance.  Similar parameters would be set as per those conducted for the 

CFF with straight blades, i.e., range of speeds from 6000 to 8000 rpm.  The 

ANSYS-CFX settings are listed in Appendix B. 
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III. BASELINE CFD MODEL RESULTS 

A. MODEL VALIDATION 

This was the first time the performance of a CFF with helical blades was 

investigated; thus, the approach taken was rather conservative.  It was important 

to ensure that the CFF with helical blades could indeed increase the thrust and 

power before attempting the next step of increasing the sweep (helicity) of the 

blades.   

The original carbon fiber CFF is of 8-inch length.  Before attempting to 

model the complete version of the 8-inch rotor, a 4-inch rotor was constructed 

using SOLIDWORKS, and CFD analysis was performed to determine if the 

quarter turn helical blades did contribute to increasing the thrust and power.  

From the results gathered for both the 4-inch straight- and helical-bladed CFF, as 

shown in Figure 16 and Table 3, it was clearly observed that the helical blades 

did aid the CFF to produce more thrust and power as compared to the CFF with 

straight blades. 

 

 

Figure 16.   Comparison between 4-inch straight- and helical-bladed CFF 
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Table 3.   Results for 4-inch straight- and helical-bladed CFF 

S/N 
Speed 
(RPM) 

Straight Helical 

Thrust (g) Power (W) Thrust (g) Power (W) 

1 4000 96.854 30.4661 113.176 31.8893 

2 6000 198.075 100.557 277.378 112.976 

3 8000 353.343 240.371 476.452 253.03 

  

1. 8-IN STRAIGHT-BLADED CFF MODELING 

The successful completion of the analysis of the 4-inch CFF led to the 

modeling of a complete 8-inch CFF 3-D model.  The 8-inch straight-bladed CFF 

models, together with the housing were constructed using SOLIDWORKS.  In 

order to compare the CFD model with the experimental results obtained by 

Delagrange [11], the simulation had to replicate his experimental (straight blades) 

results as closely as possible.  This was to ensure that the baseline (referring to 

the straight-bladed model) CFD model was able to achieve the same 

performances as in Delagrange’s experiment before proceeding to model the 8-

inch CFF with helical blades. 

2. CONVERGENCE OF ANALYTICAL RESULTS 

In Delagrange’s [11] study of the two-dimensional (2-D) analytical  model 

of the CFF, it was found that mass flow rate, total pressure ratio, total 

temperature ratio, and efficiency all converged to their steady state  values after 

five revolutions of the model.  This was also in accordance  with the findings of 

Yu’s [5] study.  Using these previous findings as a precedence, the assumption 

was made that the 3-D model should converge after completing five revolutions.  

In this 3-D modeling study of the CFF, to determine the convergence of the state 

values, the rotor torque was analyzed over six revolutions.  This approach was 

similar to the approach adopted by Delagrange [11].  The main difference was 

that an extra revolution was added as a conservative measure to ensure 
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convergence due to the complex nature of the 3-D simulation.  As seen in  Figure 

17, the rotor  torque was stabilized to a steady-state after six revolutions were 

completed. 

 

Figure 17.   Convergence of rotor torque for 3-D straight-bladed CFF at 8000 rpm 

3. RESULTS AND DISCUSSION 

Table 4.   Comparison of numerical and experimental results [From 11] 

Speed 
(rpm) 

Experimental Results [11] 3-D 8-inch Straight Blades CFD Results 

Thrust (g) Power (W) Thrust (g) Power (W) 

6000 668.677 348.48 795.373 305.054 

8000 1331.608 961.95 1371.469 703.333 

 

As shown in Table 4, the results obtained from the CFD model for  the 

straight-bladed CFF were quite close to the experimental results obtained by 

Delagrange [11].  In terms of the thrusts, the CFD results were very close to the 

experimental results as measured by Delagrange [11].  The powers that 

Delagrange [11] measured in his thesis were values required to drive the entire 

experimental set-up, which comprised  components such as the motor and the 
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CFF rotor.  This was the power consumption of the electric motor driving the CFF.  

The efficiency of the motor could  possibly be deduced from the torque variations 

of the  simulation.  From the stabilized data, a snapshot (of a single revolution) of 

the torque’s data from the 3-D CFD model was extracted (as shown in Figure 18).  

It was found out that the variations between the maximum and minimum torque 

were approximately 21.93%.  Taking into consideration the power applied by 

Delagrange [11], this percentile would equate to a power of approximately 

750.994W, whereby the CFD 3-D model’s power was quite close. 

 

Figure 18.   Graphical plot of the torque for 3-D CFF with straight blades model 

From the contour plots of both the experimental and analytical results 

shown in Figures 19 and 20 respectively, it was observed that the velocity 

generated by both models were agreed very well.  Both Delagrange’s 

experimental and the 3-D analytical straight-bladed models output a velocity 

about 55 m/s. 
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Figure 19.   Experimental outlet velocity distribution (From [11]) 

 

Figure 20.   Predicted outlet velocity distribution 

With the successful attempts in simulating the experimental results  using 

a 3-D CFF with the straight-bladed CFD model, the investigation of  the 

performance of the helical-bladed CFF was executed. 
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IV. HELICAL-BLADED CFF SIMULATION AND COMPARISON 
WITH STRAIGHT-BLADED CFF 

With the successful simulation of the straight-bladed CFF in ANSYS 

through a 3-D model, the focus was set to analyze the performance of the 

helical-bladed CFF.  The same parameters were used except that the blades 

were changed to one-tenth helically turned blades.  The findings on the 

performance of the helical-bladed CFF versus straight-bladed CFF are discussed 

in the following sections.  

A. CONVERGENCE OF ANALYTICAL RESULTS 

Similar to the 3-D straight-bladed CFF, the convergence of the rotor 

torque for the helical-bladed CFF was analyzed over six complete revolutions, 

and the same observation was made.  As seen in Figure 21, the rotor torque for 

the helical-bladed CFF also stabilized to a steady state after six revolutions were 

completed. 

 

Figure 21.   Convergence of rotor torque for 3-D straight-bladed CFF at 8000 rpm 
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B. FLOW VISUALIZATION 

Figure 22 illustrated the flow through the CFF during the operation at 

speed of 8000 rpm.  It could be observed that a vortex was formed both on the 

left and right side (circled in red in the figure) of the rotor.  Similar observations 

were made by Delagrange [11] and Yu [5].  This vortex formation was expected 

and agreed with the observations in both [5] and [11], although the CFF in this 

case had helical blades. 

 

 
Figure 22.   Air velocity through CFF at 8000 rpm 

Figure 23 shows the velocity streamlines that were developed in the 

model at 8000 rpm.  This figure illustrated that the CFF did not have stalled rotor 

blades across the entire inlet area surface.  Similar observations were also made 

in Delagrange’s experimental setup [11].   
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Figure 23.   Air velocity streamlines in CFF at 8000 rpm 

C. 3-D (HELICAL-BLADED) ANALYTICAL VERSUS EXPERIMENTAL 
(STRAIGHT-BLADED) RESULTS 

The comparison between the 3-D helical-bladed CFF’s analytical 

performance and Delagrange’s [11] straight-bladed CFF experimental 

performance was made by comparing the generated thrust and the power.  As 

highlighted by Delagrange [11], the comparison of the resulting velocities was the 

most crucial because both the thrust and the power were functions of the outlet 

velocity.  Thus, the analytical formulation of the thrust and the power were 

calculated from the predicted outlet velocity as determined from CFD-POST after 

the completion of each run. 

1. THRUST 

Table 5 listed the compiled results obtained from ANSYS for  the helical-

bladed CFF, and they were compared with the straight-bladed CFF experimental 

results obtained by Delagrange [11] as well as the 3-D straight-bladed CFF 

analytical results. 
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Table 5.   Comparison of numerical and experimental thrust results [From 11] 

Speed (rpm) Delagrange’s 
experimental thrust 

(g) results [11] 

3-D analytical 
straight-bladed 
CFF thrust (g) 

3-D analytical 
helical-bladed 
CFF thrust (g) 

6000 645.0000 795.3733 822.7510 
8000 1161.0000 1371.4693 1488.7951 

 
The thrust results were determined based on the outlet velocity and mass 

flow rate as obtained from the ANSYS CFX solutions.  As observed from Table 5, 

the one-tenth turn on the CFF blades did contribute to an increase in thrust as 

compared to both the analytical and experimental results of the straight-bladed 

CFF.  At 6000 rpm and 8000 rpm, comparing to the analytical 3-D straight-bladed 

CFF results, the increase in thrust generated by an one-tenth turn helical-bladed 

CFF was about 3.44% and 8.55% respectively.  Figure 24 illustrated the 

increased thrust generated by the helical-bladed CFF in comparison to both 

Delagrange’s experimental thrust  measurements [11] and the analytical results. 

 

Figure 24.   Graphical plot of numerical and experimental thrust results [From 11] 

Taking the torque into consideration and compared between both the 3-D 

straight- and helical-bladed CFFs, the variations in torque for the case of the 
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comparison of the torque between the two rotors, and  Figure 27 for  a blown-up 

view for the helical blades CFF’s torque  variations. 

This was a good phenomenon for the CFF because the lower the torque 

variations, the higher the efficiency of the rotor, which in turn produces more 

thrust. 
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Figure 25.   Comparing torque variations observed in both straight- and helical-bladed CFF 

Straight-bladed CFF Helical-bladed CFF 
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Figure 26.   Rotor torque comparison between helical and straight blades models at 6th 

revolution  

 

 
Figure 27.   Blown-up view for the torque of 3-D CFF with helical blades model at 6th 

revolution 
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2. POWER 

As described above, the helical-bladed CFF did contribute to increasing 

the thrust.  Power was directly related to the thrust.  Hence, the increase in thrust 

would lead to an increase in power absorbed.  Table 6 showed the experimental 

power consumptions for the straight-bladed CFF and analytically determined 

power results for the straight- and helical-bladed CFF.  As observed from the 

numbers in Table 6, with one-tenth helically turned blades, the CFF would 

generate 5.17% and 11.2% increase in power consumption as compared to the 

analytical straight-bladed CFF at 6000 rpm and 8000 rpm respectively.  The 

discrepancy in  power as observed between the experimental and analytical 

results for the straight-bladed CFFs was due to the fact that Delagrange [11] 

measured the power consumption of the electric motor driving the CFF.  This 

experienced significant heat losses as the motor overheated during a run.  

Additionally, this could be due to the calculation done within CFD-POST.  CFD-

POST retrieved results from the last iteration of each completed run to conduct 

any calculation.  Calculation done in this way could be inaccurate as the 

parameters were based on the last iteration and not based on an average over 

the entire run. 

Table 6.   Comparison of numerical and experimental power results [From 11] 

Speed (rpm) Delagrange’s 
experimental 

power (W) results 
(see Appendix D) 

3-D analytical 
straight-bladed 
CFF power (W) 

results 

3-D analytical 
helical-bladed 
CFF power (W) 

results 
6000 212.557 230.6710 242.6005 
8000 597.3308 532.9497 592.6698 

 

3. SOUND PRESSURE 

The analytically determined CFF sound pressure level at the outlet could 

be seen in Figures 28 and 29.  The analytical results were obtained by inserting a 

monitoring point at the outlet.  These figures illustrated the sound pressure level 
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for 8000 rpm.  As observed from the figures, the sound pressure level produced 

by the helical blades CFF was lower than the straight blades CFF, and was 

lowered by 6dB (calculated in terms of RMS value).  This observation showed 

that the CFF with helical blades could potentially solve the sound level problem, 

which was inherently noisy with the straight-bladed CFF. 

 

Figure 28.   Comparison of analytical pressure results at the CFF outlet
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Figure 29.   Sound pressure level comparison between straight-bladed CFF (left) and helical-bladed CFF (right)
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

It was concluded that the CFF with helical blades could increase thrust 

production over straight-bladed CFF, and the produced thrust was optimistic to 

realize VTOL. 

The propulsion system of a VTOL aircraft required maximum thrust during 

take-off and landing.  Hence, the CFF would need to operate at its highest speed 

in order to generate the maximum thrust.  As the VTOL aircraft transitioned to 

level flight, the CFF fan speed could be reduced to operate more efficiently 

during cruise.  The maximum speed of operation of the helical-bladed CFF for 

this study was 8000 rpm, which resulted in a generated thrust of approximately 

1488.7951 g.   

As described by Delagrange [11], based on his initial configuration of the 

assembly the total weight for the above assembly weighed about 1729 g.  His 

setup was able to provide sufficient power for his CFF operation.  However, due 

to the laden weight, the thrust-to-weight ratio was reduced to 0.616.  In the 

helical blades CFF case, basing on Delagrange’s setup [11], the thrust-to-weight 

ratio was 0.861.  Though the resulted thrust-to-weight ratio was also less than 1, 

it had increased with the aid of the helical blades.  This was an optimistic 

observation as it had shown that helical blades CFF could generate more thrust 

and improve the thrust-to-weight ratio. 

B. RECOMMENDATIONS 

Moving forward, to carry on the investigation of increasing the thrust by 

the helical blades CFF, the following are some recommended area of studies. 

Though expensive in terms of time and computations to run a simulation 

with a large number of mesh elements, it is recommended that generation of fine 
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mesh for the model should be explored to enable the determination of a more 

accurate fluid flow investigation.  

In this study, the degree of twist applied to the helical blades of the  CFF 

was one-tenth of a turn.  A sensitivity study on the performance of helical-bladed 

CFF should be conducted to determine the relationship between  the degree of 

turn and the performance of the CFF.  This would determine the optimum amount 

of turning required to produce the desired thrust and power of a helical-bladed 

CFF.  That understanding would, in turn, enable the researcher to know the 

requirements of the CFF before manufacturing and carrying out the actual 

experiment. 

The Turbopropulsion Laboratory currently possesses the capability to 

build its own CFF straight-bladed rotors.  With this capability, the 

Turbopropulsion Laboratory could build its own CFF helical-bladed rotors with 

various amounts of turning and different number of blades, and conduct 

experiments to investigate the performance of the helical-bladed CFF. 

To realize VTOL, adequate thrust is required.  Besides having helical 

blades to increase the thrust produced by the CFF, the CFF would  also need to 

be driven to higher speeds to increase the thrust.  Experimental runs could be 

conducted to investigate the amount of thrust a helical-bladed CFF will produce 

at higher speeds.  The experiments would also be able to determine the highest 

speed a CFF with helical blades could operate. 

In future, experimental studies could be conducted to measure the sound 

pressure level at the outlet of the rotor assembly by inserting a measuring probe 

at the outlet. 
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APPENDIX A. GENERATING MESH: EDGE SIZING 

A. DESCRIPTION 

Meshing was part of the modeling process to enable the communication of 

the model’s geometry to the flow solver.  Within the model, nodes were created 

and connected with elements, which allowed the communicating process for the 

simulation to take place.  For the CFF, as the rotor was rotating while the housing 

was stationary, the edges within them around the housing and the rotor (as 

labeled in Figure 8) would need to take an extra step to ensure that the elements 

created were of similar sizing.  This step was to enable smoother communication 

between the two components when the fluid was flowing through them.  Hence, 

edge sizing was chosen.    

B. SIZING PARAMETERS AND ILLUSTRATION 

The edge sizing parameters required for the model were illustrated as 

follows:  

 
Figure 30.   Blown-up view 1 

Number of divisions: 310 

Number of divisions: 25 
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Figure 31.   Blown-up view 2 

 

 
Figure 32.   Applying edge sizing on the housing 

Number of divisions: 310 

Number of divisions: 310 

Number of divisions: 110 
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APPENDIX B. ANSYS CFX PARAMETERS AT 6000/8000 RPM 

Analysis 
Type 

Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Transient 
• Time Duration 

o Option:    Total Time 
o Total Time:   0.06 / 0.045 [s] 

• Time Steps 
o Option:    Time steps 
o Time steps:   2.7778e-005 / 2.0833e-005 [s] 

• Initial Time 
o Option:    Automatic with Value 
o Time:    0 [s] 

Rotor Basic Settings 
• Location & Type 

o Location:    B305 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: Unchecked 

• Domain Models 
o Pressure 

 Reference Pressure: 1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Rotating 
 Angular Velocity 8000 [rev min^-1] 

o Axis Definition   
 Option:   Coordinate Axis 
 Rotation Axis:  Global Z 

o Mesh Deformation 
 Option:   None 

Fluid Models 
• Heat Transfer 

o Option:     Total Energy 
o Incl. Viscous Work Term:  Unchecked 

• Turbulence 
o Option:     k-Epsilon 
o Wall Function:   Scalable 
o High Speed (compressible): Unchecked 
o Turbulent Flux Closure for HT: Unchecked 

• Combustion  
o Option:     None 
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• Thermal Radiation 
o Option:     None 

• Electromagnetic Model:   Unchecked 
Initialization 

• Domain Initialization 
o Frame Type:   Rotating 
o Coord Frame:    Unchecked 

• Initial Conditions 
o Velocity Type:   Cylindrical 
o Cartesian Velocity Components 

 Option:    Automatic with Value 
 X Component:  0 [m s^-1] 
 Y Component:  0 [m s^-1] 
 Z Component:  0 [m s^-1] 

• Static Pressure  
o Option:     Automatic with Value 
o Relative Pressure:  1 [Pa] 

• Temperature  
o Option:     Automatic with Value 
o Temperature:   300 [K] 

• Turbulence 
o Option:    Medium (Intensity = 5%) 

Rotor Rotor Default Basic Settings 
• Boundary Type:  Wall 

o Location:  (automatically fills out) 
o Coord Frame: Unchecked 
o Frame Type: Rotating 

Boundary Details 
• Mass and Momentum 

o Option:  Free-Slip Wall 
o Wall Velocity: Unchecked 

• Wall Roughness 
o Option:  Smooth Wall 

• Heat Transfer 
o Option:  Adiabatic 

Sources 
• Boundary Source:  Unchecked 

 
Rotor Symmetry Basic Settings 

• Boundary Type:  Symmetry 
• Location:  RototSym1 

   RotorSym2 
Housing Basic Settings 

• Location & Type 
o Location:    B665 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 

 
 Morphology 
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• Option:   Continuous Fluid 
 Minimum Volume Fraction: Unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Stationary 
o Mesh Deformation 

 Option:   None 
Fluid Models 

• Heat Transfer 
o Option:     Total Energy 
o Incl. Viscous Work Term:  Checked 

• Turbulence 
o Option:     k-Epsilon 
o Wall Function:   Scalable 
o High Speed (compressible): Unchecked 
o Turbulent Flux Closure for HT: Unchecked 

• Combustion  
o Option:     None 

• Thermal Radiation 
o Option:     None 

• Electromagnetic Model:    Unchecked 
Initialization 

• Domain Initialization:   Checked 
o Coord Frame:    Unchecked 

• Initial Conditions 
o Velocity Type:   Cylindrical 
o Cylindrical Velocity Components 

 Option:    Automatic with Value 
 Axial Component: 0 [m s^-1] 
 Radial Component: 0 [m s^-1] 
 Theta Component: 0 [m s^-1] 

o Velocity Scale:    Unchecked 
• Static Pressure  

o Option:     Automatic with Value 
o Relative Pressure:  1 [Pa] 

• Temperature  
o Option:     Automatic with Value 
o Temperature:   288.15 [K] 

• Turbulence 
o Option:    Medium (Intensity = 5%) 

Housing Housing Default Basic Settings 
• Boundary Type:   Wall 

o Location:   (automatically fills 
   out) 

o Coord Frame:  Unchecked 
Boundary Details 

• Mass and Momentum 
o Option:   No-Slip Wall 
o Wall Velocity:  Unchecked 

• Wall Roughness 
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o Option:   Smooth Wall 
• Heat Transfer 

o Option:   Adiabatic 
Sources 

• Boundary Source:   Unchecked 
Housing Inlet Basic Settings 

• Boundary Type:   Inlet 
• Location   Inlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime 

o Option:   Subsonic 
• Mass and Momentum 

o Option:    Total Pressure  
   (stable) 

o Relative Pressure: 0 [Pa] 
• Flow Direction 

o Option:   Normal to BC 
• Turbulence 

o Option:   Medium (Intensity = 
   5%) 

• Heat Transfer 
o Option:    Static Temperature 
o Static Temperature: 300 [K] 

Sources 
• Boundary Source:   Unchecked 

Plot Options 
• Boundary Contour:   Unchecked  

Housing Outlet Basic Settings 
• Boundary Type:   Opening 
• Location   Outlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime  

o Option:   Subsonic 
• Mass And Momentum 

o Option:    Opening Pres. And 
   Dirn 

o Relative Pressure: 0 [Pa] 
• Flow Direction 

o Option:   Normal to BC 
• Turbulence 

o Option:   Medium (Intensity = 
   5%) 

• Heat Transfer 
o Option:    Opening  

   Temperature 
o Opening Temperature: 300 [K] 

Sources 
• Boundary Source:   Unchecked 

Plot Options 
• Boundary Contour:   Unchecked 

Housing Symmetry Basic Settings 
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• Boundary Type:   Symmetry 
• Location:   HousingSym1 

    HousingSym2 
Interfaces Housing to Rotor Basic Settings 

• Interface Type:   Fluid Fluid 
• Interface Side 1 

o Domain:   Housing 
o Region List:  F159.151 

• Interface Side 2 
o Domain:  Rotor 
o Region List:  F100.82, F123.82, 

   Rotor_Inner_Joints 
• Interface Models 

o Option:   General  
   Connection 

• Frame Change/ Mixing Model 
o Option:   Transient Rotor-

   Stator 
• Pitch Change 

o Option:   None 
Additional Interface Models 

• Mass and Momentum 
o Option   Conservative  

   Interface Flux 
• Interface Model 

o Option   None 
• Conditional Connection Control Unchecked 

Mesh Connection 
• Mesh Connection 

o Option   GGI 
• Intersection Control  Unchecked 

Solver Solution Units Basic Settings 
• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units:  [K] 
• Angle Units:   Checked 

o Angle Units:  [rad] 
• Solid Angle Units:  Checked 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Transient Scheme 

o Option:    2nd 
OrderBE 

• Time step Initialization 
o Option:    Automatic 
o Lower Courant Number:  Unchecked 
o Upper Courant Number:  Unchecked 

• Turbulence Numerics 
o Option:    First Order 
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• Convergence Control 
o Min. Coeff. Loops  1 
o Max. Coeff. Loops  5 
o Fluid Timescale Control 

 Timescale Control: Coefficient 
   Loops 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:  1e-4 
o Conservation Target:  Unchecked 

• Elapsed Wall Clock Time Control: Unchecked 
• Interrupt Control:   Unchecked 

Equation Class Settings 
• Equation Class:   Continuity,  

    Energy,  
    Momentum,  
    Turbulence Eddy 
    Disspation,  
    Turbulence Kinetic 
    Energy 

• Continuity:   Unchecked 
Advanced Options 

• Pressure Level Information: Unchecked 
• Body Forces:   Unchecked 
• Interpolation Scheme:  Unchecked 
• Temperature Damping:  Unchecked 
• Velocity Pressure Coupling: Unchecked 
• Compressibility Control:  Unchecked 
• Intersection Control:  Unchecked 

Solver Output Control Results 
• Option:    Standard 
• File Compression:  Default 
• Output Equation Residuals: Unchecked 
• Extra Output Variable List: Unchecked 

Backup Results:   Blank 
Trn Results:    Blank 
Trn Stats:    Blank 
Monitor 

• Monitor Objects:  Checked* 
 

*Under “Monitor Points and Expressions”, insert: 
• Monitor Point 1: Enter expression value: 

torque_z()@Rotor Default to monitor rotor torque.  
Unchecked “Coord Frame”. 

• Monitor Point 2: Under “Options,” choose Cartesian 
Coordinates.  Under “Output Variables List,” choose 
Pressure.  Under “Cartesian Coordinates,” enter 
0.058m, -0.025m, 0.1021m respectively.   
Unchecked “Coord Frame” and “Domain Name”. 

Define Run Partitioner Partitioning Detail 
• Partition Type:   Radial 
• Partition Weighting: Automatic 
• Option:Coordinate  Axis 
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• Rotation Axis:  Global Z 
• Multidomain Option: Coupled Partitioning 
• Multipass Partitioning: Transient Rotor Stator 
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APPENDIX C. INITIAL 4-INCH CFF MODEL 

A. DESCRIPTION 

The initial model of 4-inch CFF model was created to ensure that helical-

bladed CFF would contribute to produce more thrust and power as compared to 

straight-bladed CFF.  The created models for the straight-bladed CFF and the 

helical-bladed CFF as well as the assembly with the housing were illustrated in 

Figures 33 to 35 respectively. 

 

Figure 33.   4-inch straight-bladed CFF 

 

Figure 34.   4-inch helical-bladed CFF 
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Figure 35.   4-inch rotor and housing assembly 

The types of meshes generated are as shown in Table 7.  The medium 

mesh of 2,780,314 nodes and 14,814,742 is used.  The fine mesh is not chosen 

as the difference between the chosen mesh is not significant.  Due to the large 

model created, the required time to complete the simulation run took about 1 to 

1.5 weeks and the computational resources required were about 14 processors. 

Table 7.   Meshes generated for the 4-inch model 

  Coarse Medium Fine 

Rotor Nodes 2,687,202 2,688,298 2,693,972 
Elements 14,734,784 14,738,589 14,771,968 

Housing Nodes 75,922 92,016 169,452 
Elements 61,194 76,153 146,832 

Total Nodes 2,763,124 2,780,314 2,863,424 
Elements 14,795,978 14,814,742 14,918,800 

Difference Nodes  17,190 83,110 
Elements 18,764 104,058 
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APPENDIX D. RAW DATA FROM DELAGRANGE’S 
EXPERIMENT 

A. DESCRIPTION 

Shown in Table 8, was the raw data that Delagrange gathered from his 

experiments.  These data were not presented in his thesis.  To have a better 

appreciation of the power absorbed by the CFF instead of the measured power 

consumption [11] of the electric motor driving the CFF, Delagrange’s raw data 

were used for the power calculations in the current thesis. 

Table 8.   Raw data obtained from Delagrange’s experiment 

Speed 
(rpm) 

Average measured 
velocity (m/s) 

Mass flow 
(kg/s) 

Delagrange’s experimental 
power (W) results 

2000 9.1933 0.0574 4.8543 

4000 19.9367 0.1246 49.5067 

6000 32.4033 0.2024 212.5570 

8000 45.7267 0.2857 597.3308 
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