
aTD224 .W2W37

ed States artment of ulture

Natural Resources Conservation Service

Washington Basin Outlook Report January 1, 1996

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact: Local Natural Resources Conservation Service Field Office

or Scott Pattee Acting Water Supply Specialist Natural Resources Conservation Service W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Natural Resources Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for, the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-2791.

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C., 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.

Washington Water Supply Outlook

January 1996

General Outlook

January started off looking good with forecasts of much needed snow. However instead of 10 - 12 inches of forecasted mountain snow, Washington received light snow and then warm wet weather. Most SNOTEL sites in the state retained their current snowpack but several sites on the westside showed a decrease in snow. This was primarily caused from snow followed by rain. Rivers on the westside once again showed dramatic increases, reaching near flood stages and threatening already weak and damaged dikes and levees. Precipitation and temperature levels for the last thirty days have been above average. As expected snowpack accumulations have been below normal. Streamflow forecasts are for mostly normal summer runoff with a few streams forecast for slightly below normal.

Snowpack

The January 1 statewide SNOTEL reading showed the snowpack to be 81% Snowpack varied over the state, with the Walla Walla of average. River basin SNOTEL reporting the lowest with 54% of average, and the Methow River Basin the highest at 118% of normal. Westside averages from SNOTEL and January 1 snow surveys include the North Puget River Basins with 63% of normal, the Olympic Basins with 63%, and the Lewis-Cowlitz basins with 56% of normal. Snowpack along the east slopes of the Cascade Mountains include the Yakima with 84%, and the Wenatchee Snowpack in the Spokane River Basin was at 42%, and the with 92%. Pend Oreille River Basin, including Canadian data, had 101% of normal. Maximum snow cover was at Lyman Lake SNOTEL in the north-central Cascade Mountains, with a water content of 28.4 inches. This site would normally have 25.8 inches of water content on January 1. High average in the state goes to Harts Pass SNOTEL near Winthrop with 151% of normal. The lowest snowpack was at the Spirit Lake SNOTEL near Mt. Helens with 0 inches of snow-water-equivalent. Spirit Lake st. normally has 2 inches on January 1.

BASIN	PERCENT OF LAST YEAR	PERCENT OF AVERAGE
Spokane		
		N/A

Precipitation

The National Weather Service and Natural Resources Conservation Service climate stations during the month of December showed near to much above normal precipitation across the state. The highest percent of average in the state was at Salmon Meadows SNOTEL site in Okanogan County. Salmon Meadows reported 182% of normal for a total of 4.0 inches. Normal for this site is 2.2 inches for December. Averages for the water year varied from 123% of normal in the Okanogan - Methow River Basins to 178% of normal in both the Yakima and North Puget Sound River basins. The highest average for the year is 263% of normal at Concrete in Skagit County.

£.

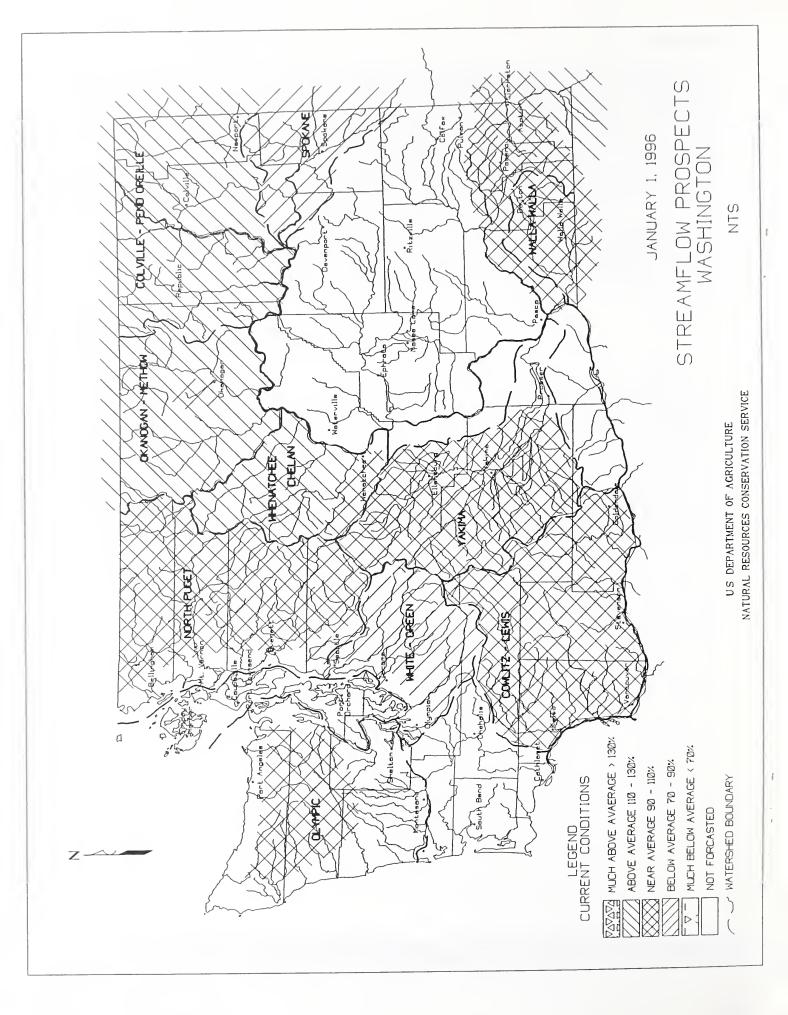
ł

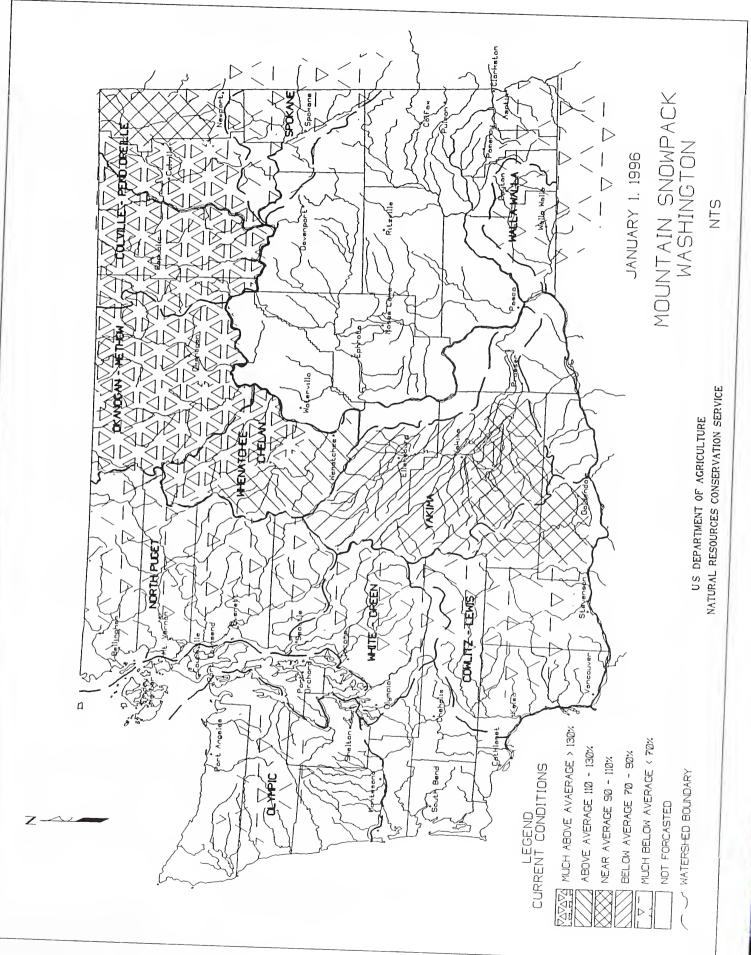
	DECEMBEI	2	WATER YEAR
BASIN	PERCENT OF AVERAC	E PERCENT	OF AVERAGE
Spokane			142
Colville-Pend	d Oreille112.		138
Okanogan-Meth	now107.		123
	elan		
	5		
	Cedar		
	Sound		
	sula119.		

Reservoir

Reservoir storage in Washington was generally above average for January 1. Reservoir storage in the Yakima Basin was 777,200 acre feet, 134% of normal. Storage at other reservoirs included Roosevelt at 103% of average, and the Okanogan reservoirs with 128% of normal for January 1. The power generation reservoirs include the following: Coeur d'Alene Lake, 146,500 acre feet, or 112% of normal; Chelan Lake, 629,500 acre feet, 166% of average and 93% of capacity; and Ross Lake at 161% of average and 90% of capacity. Greater than normal releases continue from most reservoirs across the state. These numbers may decline over the next few months in preparation for spring runoff and flood control.

BASIN	PERCENT	OF	CAPACITY	PERCENT	OF	AVERAGE
Colville-Pend Ore: Okanogan-Methow Wenatchee-Chelan. Yakima	ille	• • • •	61 91 73 93 73 73 93 93 93 90	· · · · · · · · · · · ·	••••	104 128 166 134


Streamflow


Forecasts for summer streamflow are mostly for near to above average with a few streams below average. They vary from 125% of average for the Methow near Pateros to 80% of normal for the Cedar River at Cedar Falls. January forecasts for some Western Washington streams include: Cedar River near Cedar Falls, 86%; Green River, 85%; and the Dungeness River, 97%. Some Eastern Washington streams include Mill Creek at Walla Walla, 97%; the Wenatchee River at Peshastin, 112%; and the Colville River, 114%. December streamflows varied greatly throughout the state but were all well above normal. The Similkameen at Nighthawk was the highest at 483% of average; and the Lewis at Ariel, with 145% of normal, was the lowest in the state. Other streamflows were the following percentage of normal: the Cowlitz River, 187%; the Okanogan River, 383%; the Spokane River, 322%; the Columbia at the Canadian border, 211%, and the Yakima River at Kiona, 329%.

BASIN

PERCENT OF AVERAGE MOST PROBABLE FORECAST (50 PERCENT CHANCE OF EXCEEDANCE)

Spokane	
Colville-Pend Oreille	
Okanogan-Methow	
Wenatchee-Chelan	
Yakima	
Walla Walla	
Cowlitz-Lewis	
White-Green-Cedar	
North Puget Sound	
Olympic Peninsula	

. . .

BASIN SUMMARY OF SNOW COURSE DATA

JANUARY 1996

SNOW COURSE	ELEVATIO	N DATE	SNOW	WATER	LAST	AVERAGE	SNOW COURSE	ELEVA	TTON	DATE	snow wa	TER LA	ST AVI	FRACE
			DEPTH	CONTENT	YEAR	1961-90					DEPTH	CONTENT	YEAR	1961-90
PEND OREILLE RIVER							YAKIMA RIVER							
BENTON MEADOW	2370	12/31/95	4	.5	3.5	2.7	BLEWETT PASS	2PILLOW	4270	1/01/9	6	5.45	12.7	8.3
BENTON SPRING	4920	12/31/95	15	2.9	12.5	8.0	BUMPING LAKE		3450	12/27/9		3.8		6.0
BUNCHGRASS MDWPILLO	W 5000	1/01/96		4.7	17.8	10.9	BUMPING LAKE		3400	12/27/9		5.2E	9.3	7.5
LOOKOUT PILLA		1/01/96		7.7	14.3	13.5	BUMPING RIDG	E PILLOW	4600	1/01/9		7.55	18.0	9.6
NELSON CAN	N. 3100	1/02/96	26	6.5	10.1	7.2	CORRAL PASS	PILLOW	6000	1/01/9		11.95	22.7	13.5
KETTLE RIVER							FISH LAKE		3370	12/27/9	5 30	10.2	23.7	10.7
BARNES CREEK CAN	1. 5300	12/28/95	43	13.0	10.9	8.7	FISH LAKE	PILLOW	3370	1/01/9	б	17.55	23.0	12.4
BIG WHITE MTN CAN	i. 5510	12/31/95	47	11.7	12.2	7.2	GREEN LAKE	PILLOW	6000	1/01/9	6	8.6S	13.5	9.0
FARRON CAN	4000	1/03/96	31	7.1		9.9	GROUSE CAMP	PILLOW	5380	1/01/9	б	6.95	14.0	8.9
MONASHEE PASS CAN	4500	12/28/95	29	7.7		6.2	DOMMERIE FLAT	rs	2200	12/29/9	5 10	2.0E	8.0	3.9
COLVILLE RIVER							LOST HORSE	PILLOW	5000	1/01/0	б	6.05	9.1	15.3
OMAK LAKE, TWIN LAKES							MORSE LAKE	PILLOW	5400	1/01/9	б	18.35	40.2	19.1
MOSES MTN PILLO	W 4800	1/01/96		9.15	8.5	6.5	OLALLIE MDWS	PILLOW	3960	1/01/9	б	16.65	29.2	20.3
SPOKANE RIVER							SASSE RIDGE	PILLOW	4200	1/01/9	6	10.05	22.3	12.4
FOURTH OF JULY SUM	3200	12/27/95	0	.0	6.4	3.4	STAMPEDE PASS	S PILLOW	3860	1/01/9	б	12.95	34.4	16.7
LOST LAKE (C	i) 6110	1/01/96		17.8E	28.7	23.6	TUNNEL AVENUE	E	2450	12/28/99	5 13	4.0E	16.4	8.1
MOSQUITO RDG PILLO	W 5200	1/01/96		9.4	19.4	15.7	WHITE PASS ES	S PILLOW	4500	1/01/9	б	5.95	15.5	9.8
SUNSET PILLO	₩ 5540	1/01/96		7.2	14.3	15.8	LEWIS - COWLITZ F	RIVERS						
LOOKOUT PILLO	W 5140	1/01/96		7.7	14.3	13.5	JUNE LAKE	PILLOW	3200	1/01/9	б	2.95	34.1	11.5
NEWMAN LAKE							LONE PINE	PILLOW	3800	1/01/9	б	6.4S	21.4	12.0
QUARTZ PEAK PILLO	W 4700	1/01/96		3.2	16.4	8.5	PARADISE PARK	<pre> PILLOW </pre>	5500	1/01/9	б	22.15	47.1	23.6
OKANOGAN RIVER							PIGTAIL PEAK	PILLOW	5900	1/01/9	б ———	19.7S	34.0	20.1
BLACKWALL PEAK CAN	. 6370	1/01/96		17.9		14.8	POTATO HILL	PILLOW	4500	1/01/90	5	6.35	15.9	10.5
ENDERBY CAN	6200	12/31/95	88	26.8	16.5	18.6	SHEEP CANYON	PILLOW	4050	1/01/9	б	4.25	22.3	15.2
GREYBACK RES CAN	. 5120	12/27/95	22	5.8	6.1	3.1	SPENCER MDW	PILLOW	3400	1/01/90	5	6.65	21.5	9.4
HAMILTON HILL CAN	4890	12/30/95	30	7.9	7.6	8.4	SPIRIT LAKE	PILLOW	3100	1/01/96	5	.65	3.1	1.8
HARTS PASS PILLO	W 6500	1/01/96		27.15	27.6	17.9	SURPRISE LKS	PILLOW	4250	1/01/90	5	9.0S	28.4	20.2
ISINTOK LAKE CAN	. 5500	12/27/95	16	3.7	3.7	3.5	WHITE PASS ES	S PILLOW	4500	1/01/90	б	5.95	15.5	9.8
MISSEZULA MTN CAN	1. 5090	12/29/95	22	5.4	7.6		WHITE RIVER							
MISSION CREEK CAN	i. 5800	1/01/96		9.8		8.9	CORRAL PASS	PILLOW	6000	1/01/90	6	11.95	22.7	13.5
MONASHEE PASS CAN	4500	12/28/95	29	7.7		6.2	MORSE LAKE	PILLOW	5400	1/01/90	5	18.35	40.2	19.1
MT. KOBAU CAN	. 5900	12/28/95	23	6.3	7.1	6.3	GREEN RIVER							
SALMON MDWS PILLC	W 4500	1/01/96		4.65	7.9	3.9	COUGAR MTN.	PILLOW	3200	1/01/90	6	4.45	13.8	8.3
SILVER STAR MTN CAN	6000	12/31/95	67	20.3	17.5	13.4	GRASS MOUNTA1	LN #2	2900	12/27/99	5 O	.0	6.1	4.8
SUMMERLAND RES CAN		12/28/95	20	5.2	5.3	4.5	LESTER CREEK		3100	12/29/95	5 0	.0E	14.6	8.0
WHITE ROCKS MTN CAN	. 6000	12/29/95	37	10.7	15.0	11.6	LYNN LAKE		4000	12/29/95	5 5	1.8E	15.8	7.6
METHOW RIVER							SAWMILL RIDGE	5	4700	12/29/95		6.8E	22.5	13.3
HARTS PASS PILLC	W 6500	1/01/96		27.15	27.6	17.9	STAMPEDE PASS		3860	1/01/96		12.95	34.4	16.7
SALMON MDWS PILLO		1/01/96		4.65	7.9	3.9	TWIN CAMP		4100	12/29/95	5 21	6.3	16.7	10.0
CHELAN LAKE BASIN							CEDAR RIVER							
LYMAN LAKE	5900	1/01/96		25.9E	38.9	23.5	MT. GARDNER	PILLOW	2860	1/01/96	5	2.75	11.9	5.8
LYMAN LAKE PILLO		1/01/96		28.15	42.1	25.4	TINKHAM CREEK		3000	1/01/96	5	7.95	19.0	7.6
MINERS RIDGE PILLC		1/01/96		27.15	33.4	25.6	MEADOWS PASS		3240	1/01/96		5.05	16.4	9.5
PARK CK RIDGE PILLC		1/01/96		21.65	23.2	18.4	SNOQUALMIE RIVER							
RAINY PASS PILLO		1/01/96		22.15	32.2	15.4	OLALLIE MDWS		3960	1/01/96	5	16.65	29.2	20.3
ENTIAT RIVER							SKYKOMISH RIVER							
POPE RIDGE PILLO	W 3540	1/01/96		12.25	14.9	9.1	STAMPEDE PASS	PILLOW	3860	1/01/96	5	12.95	34.4	16.7
WENATCHEE RIVER							STEVENS PASS		4070	1/01/96		13.05	32.5	15.3
BERNE-MILL CREEK (d) 3170	12/28/95	25	8.1	20.1	11.2	STEVENS PASS		3700	12/28/95		7.9	23.6	14.6
BLEWETT PASS#2PILLO		1/01/96		5.45	12.7	8.3	SKAGIT RIVER							
CHIWAUKUM G.S.	2500	12/28/95	18	5.5	9.3	4.8	HARTS PASS	PILLOW	6500	1/01/96	;	27.15	27.6	17.9
FISH LAKE PILLO		1/01/96		17.55	23.0	12.4	KLESILKWA	CAN.	3710	1/03/96		1.2		
LYMAN LAKE	5900	1/01/96		25.9E	38.9	23.5	LYMAN LAKE		5900	1/01/96		25.9E	38.9	23.5
LYMAN LAKE PILLO		1/01/96		28.15	42.1	25.4	LYMAN LAKE	PILLOW	5900	1/01/96		28.15	42.1	25.4
MERRITT	2140	12/28/95	16	4.5	12.5	7.1	RAINY PASS	PILLOW	4780	1/01/96		22.15	32.2	15.4
STEVENS PASS PILLO		1/01/96		13.05	32.5	15.3	THUNDER BASIN		4200	1/01/96		14.55	20.0	15.3
STEVENS PASS SAND S		12/28/95	26	7.9	23.6	14.6	BAKER RIVER							
TROUGH #2 PILLO		1/01/96		5.35	8.9	4.9	DOCK BUTTE	AM	3800	1/05/9€	28	9.8	48.0	25.7
UPPER WHEELER PILLO		1/01/96		4.95	7.5	5.9	EASY PASS	AM	5200	1/05/96		15.0	65.0	27.1
TEMILT CREEK		1/01/90		1.75		3.3	JASPER PASS	MA	5400	1/05/96		13.0	64.0	37.9
UPPER WHEELER P1LLO	W 4400	1/01/96		4.95	7.5	5.9	MARTEN LAKE	AM	3600	1/05/96		9.6	45.0	30.1
COLOCKUM CREEK		1/01/90		1.75		3.9	MT. BLUM	AM	5800	1/05/96		1.6	42.0	24.4
TROUGH #2 PILLO	W 5310	1/01/96		5.35	8.9	4.9	ROCKY CREEK	AM AM	2100	1/05/96		3.0	30.0	11.7
HTANUM CREEK	3310	1/01/90		3.35	0.7	9.7	SCHREIBERS MD		3400	1/05/96		8.2	33.0	21.9
GREEN LAKE PILLO	W 6000	1/01/96		8.65	13.5	9.0	SF THUNDER CK		2200	1/05/96		1.6	6.8	4.5
LOST HORSE PILLO		1/01/96		6.05	9.1	15.3	WATSON LAKES	AM	4500	1/05/96		9.5	35.0	24.2
MILL CREEK		1/01/30		0.05	2.1	10.0	QUILCENE RIVER	U 1	1000	1,03,90	20			
HIGH RIDGE PILLO	W 4980	1/01/96		5.1S	16.7	9.7	MOUNT CRAG	PILLOW	4050	1/01/96		7.15	16.7	11.3
TOUCHET #2 PILLO		1/01/96		5.2	20.0	12.9								
		., . 1, 70			2010		(d) Denotes disco							

(d) Denotes discontinued site.

FOR ADDITIONAL INFORMATION

Spokane River Basin

Scott Pattee, Acting Water Supply Specialist Natural Resources Conservation Service Spokane State Office (509) 353-2341

Okanogan - Methow River Basins

Randy Kelley, District Conservationist Natural Resources Conservation Service Okanogan Field Office (509) 422-2750

David Chain, District Conservationist Natural Resources Conservation Service Ellensburg Field Office (509) 925-5375

Gregory Schlenz, District Conservationist Natural Resources Conservation Service Dayton Field Office (509) 382-4773

David Guenther, District Conservationist Natural Resources Conservation Service Kelso Field Office (360) 425-1880

James Moore, District Conservationist Natural Resources Conservation Service Puyallup Field Office (360) 536-2804

Matthew Brady, District Conservationist Natural Resources Conservation Service Everett Field Office (206) 334-2828

John Gillies, District Conservationist Natural Resources Conservation Service Lynden Field Office (360) 354-2035

Kerry Perkins, District Conservationist Natural Resources Conservation Service Port Angeles Field Office (360) 457-5091

Colville - Pend Oreille River Basins

Jimmy Gleaton, District Conservationist Natural Resources Conservation Service Colville Field Office (509) 684-3680

Wenatchee - Chelan River Basins

Andrea Mann-Lower, District Conservationist Natural Resources Conservation Service Wenatchee Field Office (509) 662-4242

Yakima River Basin

Jay Kehne, District Conservationist Natural Resources Conservation Service Yakima Field Office (509) 454-5736

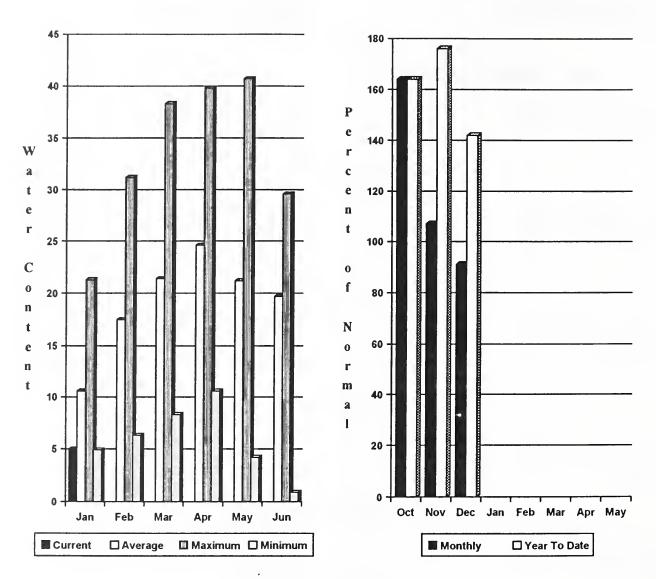
Walla Walla River Basin

Larry Hooker, District Conservationist Natural Resources Conservation Service Walla Walla Field Office (509) 522-6340

Cowlitz - Lewis River Basins

Gordon Franklin, District Conservationist Natural Resources Conservation Service Brush Prairie Field Office (360) 696-7631

White - Green - Cedar River Basins


Joseph Henry, District Conservationist Natural Resources Conservation Service Renton Field Office (206) 764-3325

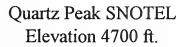
North Puget Sound River Basins

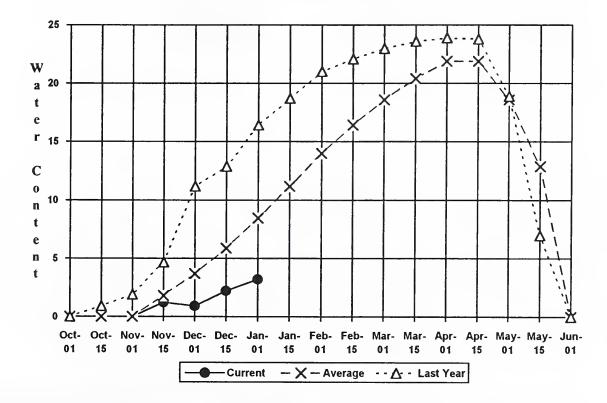
Steven Nissley, District Conservationist Natural Resources Conservation Service Mt. Vernon Field Office (360) 428-7684

Olympic Peninsula River Basins

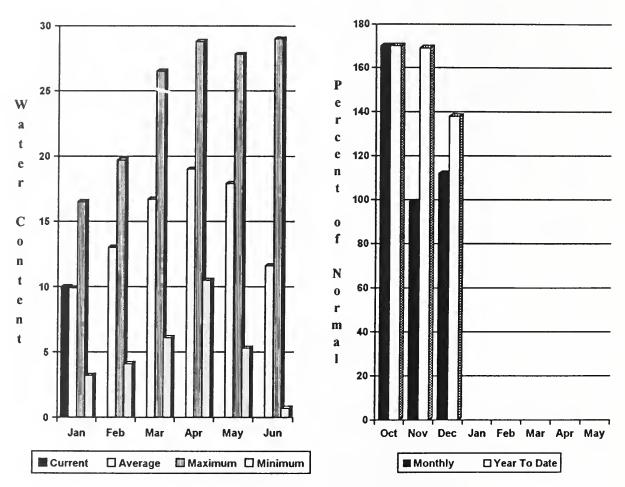
Precipitation* (% of normal)

*Based on selected stations


The January 1 forecasts for summer runoff within the Spokane River Basin are 88% of normal, compared to 103% last year at this time. The forecast is based on a basin snowpack that is only 47% of average and precipitation that is 142% of normal for the water year. Precipitation for December was 91% of average. Streamflow on the Spokane River was 322% of average for December. January 1 storage in Coeur d'Alene Lake was 145,500 acre feet, 112% of normal, and 61% of capacity. Temperatures in the basin were 1.2 degrees above normal during December.


		SPOR	KANE R	IVER B	ASIN			
	Stream	flow F	orecast	ts - Jar	nuary 1,	1996		
Forecast Point	Forecast Period	< 90% (1000AF)	Drier ==== 70% (1000AF)	= Chance Of 50% (Most			i	30-Yr Avg. (1000AF)
SPOKANE near Post Falls (2)	APR-SEP APR-JUL	1610 1540	2090 2010	2410 2330	88 88 88	2730 2650	3210 3120	2730 2633
SPOKANE at Long Lake	APR-JUL APR-SEP	1770 1930	2260 2440	2590 2780 	88 88 	2920 3120	3410 3630	2936 3159
! SPO Reservoir Storage	KANE RIVER BASIN (1000 AF) - End	of Decembe	er		-	POKANE RIVER owpack Analys		y 1, 1996
Reservoir	Usable Capacity 	*** Usabl This Year	e Storage * Last Year A	** Wate: vg	rshed	Numbe of Data Si		Year as % of Yr Average
COEUR D'ALENE	238.5	146.5	115.5 13	 0.5 Spoka 	ane River	12	34	47

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.

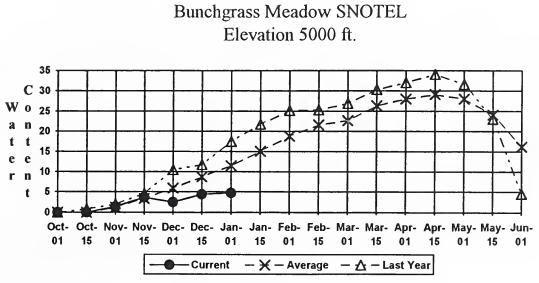
The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

Precipitation* (% of normal)

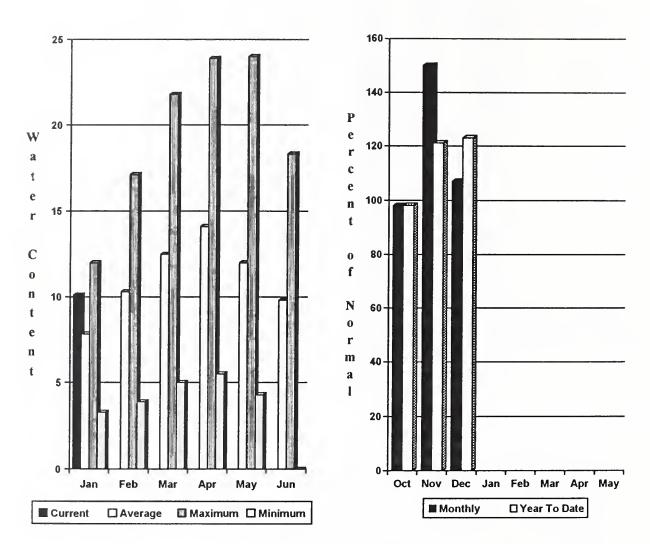
*Based on selected stations

The forecast for the Kettle River streamflow is for 120% of normal; the Pend Oreille, below Box Canyon, 112%; and the Priest River, near the town of Priest River, 108% of normal for the summer runoff period. Forecast for the Columbia River at Birchbank is for runoff to be 115% of average. December streamflow was 300% of normal on the Pend Oreille River, 211% on the Columbia at the International Boundary, and 349% on the Kettle River. January 1 snow cover was normal in the Pend Oreille Basin. Snowpack at Bunchgrass Meadow SNOTEL site contained 4.8 inches of water, compared to the average January 1 reading of 11.1 inches. Precipitation during December was 112% of average, bringing the water year-to-date to 138% of normal. Temperatures were 1.4 degrees above normal for December.

COLVILLE - PEND OREILLE RIVER BASINS


Streamflow Forecasts - January 1, 1996

***************************************							===== Wetter		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000A)	I 5 F) I	0% (Most (1000AF)	Probable) (% AVG.)	(1000AF)	10% (1000AF)	
PEND OREILLE Lake Inflow (1,2)	APR-JUL APR-SEP APR-JUN	9320 10100 7560	13000 14200 11100	i	14700 16000 12640	112 111 111 111	16400 17800 14200	20100 21900 17700	13150 14370 11390
PRIEST nr Priest River (1,2)	APR-JUL APR-SEP	570 610	785 835	•	880 940	108 108	975 1040	1190 1270	814 868
ÉEND OREILLE b1 Box Canyon (1,2)	APR-JUL APR-SEP APR-JUN	10300 11300 8990	13500 14800 11700		15000 16400 13000	112 112 112 112	16500 18000 14300	19700 21500 17000	13380 14590 11570
CHAMOKANE CK nr Long Lake	MAY-AUG	1.7	5.8		8.6	91	11.4	15.5	9.4
COLVILLE at Kettle Falls	APR-SEP APR-JUL APR-JUN	85 77 72	123 113 105		150 137 127	 114 114 115	176 162 150	215 198 183	131 120 111
KETTLE near Laurier	APR-SEP APR-JUL APR-JUN	1820 1730 1590	2060 1960 1790		2220 2110 1930	120 120 122	2380 2260 2070	2620 2490 2270	1854 1761 1585
COLUMBIA at Birchbank (1,2)	APR-JUL APR-SEP APR-JUN	32200 40100 23500	37900 47300 27600		40500 50500 29500	 115 115 115	43100 53700 31400	48800 60900 35500	35140 43810 25670
COLUMBIA at Grand Coulee Dm (1,2)	APR-SEP APR-JUL APR-JUN	56200 47400 37300	68700 57800 45500	1 1 1	74400 62600 49170	 115 115 115	80100 67400 52900	92600 77800 61000	64850 54543 42756
COLVILLE - PEND (Reservoir Storage (100	OREILLE RIVE 00 AF) - End	R BASINS of Decemb	er		1	COLVILLE - Watershed Sn	PEND OREILLE owpack Analys	RIVER BASI is - Januar	INS 79 1, 1996
Reservoir	Usable Capacity 	*** Usab This Year	le Storag Last Year	ge *** Avg	 Water 	shed	Numbe of Data Si	r This	Year as % of Yr Average
ROOSEVELT	5232.0		4837.7	4547.9	•	1le River	0	0	0
BANKS	715.0	688.2	135.5	618.3	l Pend	Oreille Rive	r 59	92	103
					 Kott]	e River	2	107	155


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

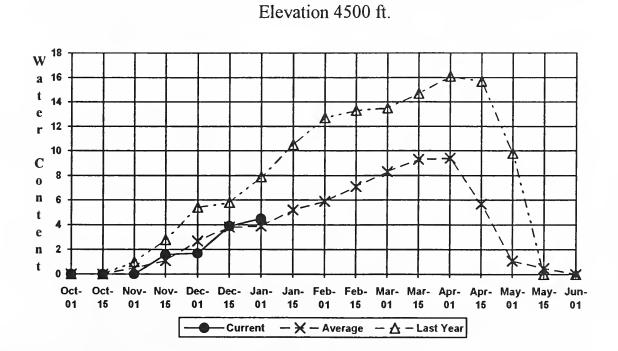
The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

Precipitation* (% of normal)

*Based on selected stations

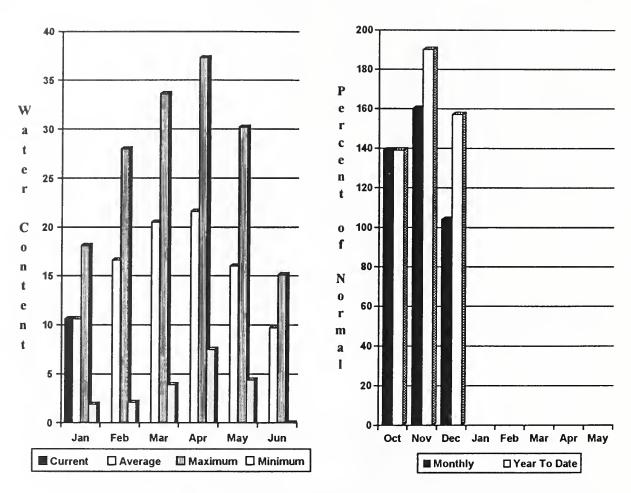
Summer runoff forecast for the Okanogan River is 120% of normal; the Similkameen River, 120%, the Methow River, 125%, and Salmon Creek, 88% of normal. January 1 snow cover on the Okanogan was 130% of normal, and the Methow, 145%. December precipitation in the Okanogan-Methow was 107% of normal, with water year-to-date at 123% of average. December streamflow on the Methow River was 312% of normal, 383% on the Okanogan River, and 483% on the Similkameen. Snow-water-content at the Harts Pass SNOTEL, elevation 6,500 feet, was 27.5 inches. Normal for this site is 18.2 inches. Temperatures were 2.6 degrees above normal for December. Storage in the Conconully Reservoir was 8,900 acre feet, which is 68% of capacity and 151% of the January 1 average.

OKANOGAN - METHOW RIVER BASINS


Streamflow Forecasts - January 1, 1996

			Deice			onditions						
		((======	Drier ==		ruture co	ondicions		wetter	*****	->>		
Forecast Point	Forecast			=== Cha	ance Of H	Exceeding '	* ======			===		
	Period	90%	70%	1 50	0% (Most	Probable)	1	30%	101	i i	30-Yr	r Avg.
	i	(1000AF)	(1000AF)			(% AVG.)		1000AF)	(1000		•	000AF)
SIMILKAMEEN nr Nighthawk (1)	APR-SEP	910	1500		1680	120		1860	246			1399
	APR-JUL	1060	1420	i	1580	121	1	1740	210	00		1304
	APR-JUN	960	1230	1	1350	121	ļ	1470	174	0		1113
OKANOGAN RIVER nr Tonasket (1)	APR-SEP	990	1720		1950	120	1	2180	291	0		1624
	APR-JUL	1140	1590	i i	1790	122	1	1990	244	0		1467
	APR-JUN	1000	1350	j.	1500	122	1	1650	200	00		1234
SALMON CREEK near Conconully	APR-JUL	1.6	10.7		16.8	88	1	23	3	32		19.1
	APR-SEP	1.8	11.2	1	17.5	88	1	24	3	33		20
METHOW RIVER near Pateros	APR-SEP	670	1060	1	1180	125	1	1310	169	0		942
	APR-JUL	820	985	1	1100	126	1	1210	138	10		873
	APR-JUN	700	840	1	940	126	1	1040	118	10		746
OKANOGAN - ME					1			ETHOW RIV				
Reservoir Storage (10	00 AF) - End	of Decembe	1			Watershed	Snowpac	k Analys:	is - J	lanuary	1, 19	96
	Usable		e Storage	***	1			Number		This Ye		
Reservoir	Capacity	This	Last		Water	rshed		of				
		Year	Year	Avg	 			Data Si		Last Y		verage
SALMON LAKE	10.5	8.3	7.4	7.5	Okano	ogan River		10		104	13	30
CONCONULLY RESERVOIR	13.0	8.9	5.7	5.9	Metho	ow River		2		89	14	15

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

Salmon Meadows SNOTEL

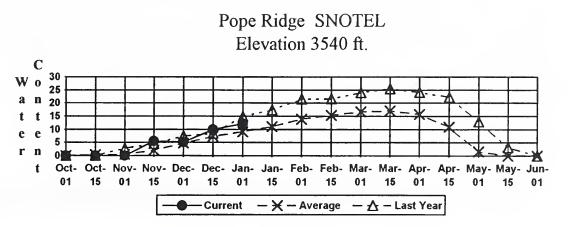
Precipitation* (% of normal)

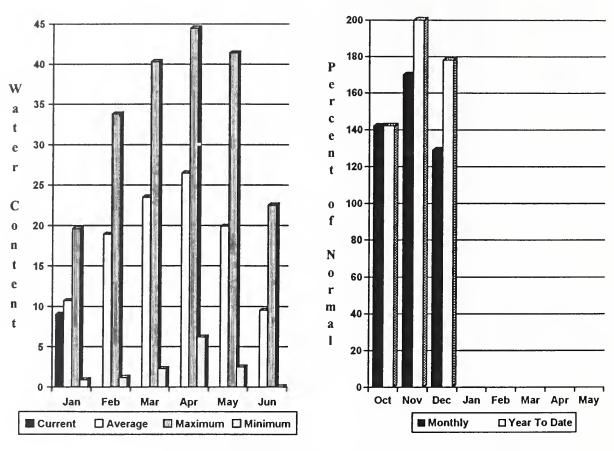
*Based on selected stations

Precipitation during December was 104% of normal in the basin and 157% Runoff for the Entiat River is forecast to be for the year to date. The April-September forecast for the 119% of normal for the summer. Chelan River is for 120%, for the Wenatchee River it is 109%, and 119% on the Stehekin. Icicle Creek is forecast to be 101% of normal this Streamflow for December on the Chelan River was 299% of summer. average and on the Wenatchee River it was 310% of normal. January 1 snowpack in the Wenatchee Basin was 92% of average, which is only 51% of last year. The Chelan Basin was 117% of average along with Trough SNOTEL on Colockum Ridge at 108% and Stemilt Creek at 83% of normal. Snowpack in the Entiat River Basin was at 134% of average. Reservoir storage in Lake Chelan was 629,500 acre feet or 166% of January 1 average and 93% of capacity. Lyman Lake SNOTEL had the most snow water with 28.1 inches of water. This site would normally have 25.4 inches and last year it had 42.1 inches.

WENATCHEE - CHELAN RIVER BASINS

Streamflow Forecasts - January 1, 1996


		<<=====	Drier ====	== Future C	onditions =	Wetter	=====>>	
Forecast Point	Forecast							
	Period	90% (1000AF)	70% (1000AF)	50% (Most) (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CHELAN RIVER near Chelan		1040	1220	1390	120	1450	1540	1160
CHELAN RIVER hear cheran	APR-SEP APR-JUL	1240 1110	1330 1180	1230	120	1450	1350	1024
	APR-JUN	895	945 1	975	120	1 1010	1050	812
	ATK-00N	095	10.00	,,,	12.0	1 1010	1050	012
STEHEKIN near STEHEKIN	APR-SEP	870	935	980	119	1030	1090	827
	APR-JUL	760	805	834	119	865	905	701
	APR-JUN	610	625	640	119	I 655	670	538
, ENT1AT RIVER near Ardenvoir	APR-SEP	198	240	270	119	300	340	227
	APR-JUL	178	220	245	118	270	310	206
	APR-JUN	144	175	196	116	215	245	169
WENATCHEE at Plain	APR-SEP	1010	1180	1300	109	1420	1590	1190
	APR~JUL	945	1080	1180	110	1280	1420	1072
	APR-JUN	780	880	950	110	1020	1120	864
WENATCHEE R. at Peshastin	APR-SEP	1230	1590 I	1830	112	2070	2430	1636
	APR-JUL	1120	1440	1660	112	1 1880	2200	1485
	APR-JUN	915	1170	1350	112	1 1530	1780	1204
STEM1LT nr Wenatchee (miners in)	MAY-SEP	86	115	135	98	1 155	184	138
ICICLE CREEK nr Leavenworth	APR-SEP	245	320	375	101	430	505	370
	APR-JUL	230	300	350	103	I 400	470	340
	APR-JUN	184	240	280	104	320	375	270
COLUMBIA R. bl Rock 1sland Dam (2)	APR-SEP	61300	73900	82000	116	90100	102000	70485
	APR-JUL	52500	62600 I	69500	116	76400	86500	59736
	APR-JUN	41200	49100 I	54500	116	59900	67800	47007


WENATCHEE -	- CHELAN RIVER B	ASINS		1	WENATCHEE -	CHELAN RIVER	BASINS	
Reservoir Storage ((1000 AF) - End	of Decemb	ber		Watershed Snowpa	ck Analysis -	January 1	, 1996

	Usable	*** Usał	ble Storag	e ***		Number	This Yea	r as % of
Reservoir	Capacity	This	Last	1	Watershed	of	*=======	*=*=*=
		Year	Year	Avg I		Data Sites	Last Yr	Average
				=======			********	
CHELAN LAKE	676.1	629.5	343.7	378.7	Chelan Lake Basin	4	76	117
				1	Entiat River	1	82	134
				1				
				1	Wenatchee River	11	51	92
				1				
				I	Squilchuck Creek	0	0	0
				I				
				1	Stemilt Creek	1	65	83
				I				
				1	Colockum Creek	1	60	108

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

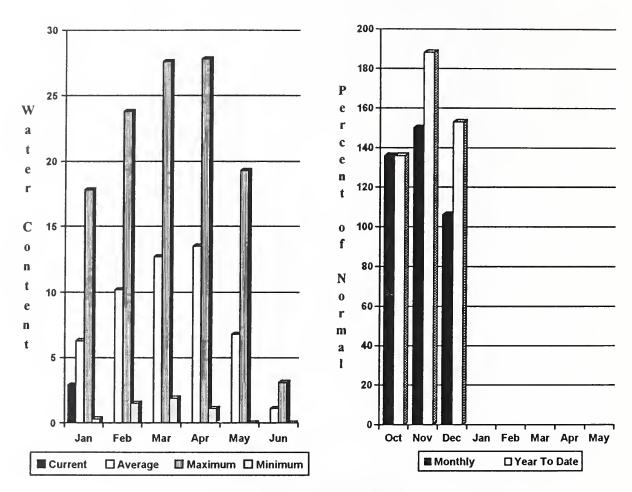
Precipitation* (% of normal)

*Based on selected stations

January 1 reservoir storage for the five major reservoirs was 777,200 January 1 summer streamflow forecasts are acre feet, 134% of average. for near to above normal in the Yakima Basin. Forecasts for the Yakima River at Cle Elum are for 105% of normal; Naches River, 100%; the Yakima River at Parker, 107%; Ahtanum Creek, 104%; and the Tieton The Klickitat River near Glenwood is forecast at 104% of River, 103%. normal flows this summer. December streamflows within the basin were; the Yakima River at Parker 208% of normal; the Yakima near Cle Elum, 150%; and the Naches River at 268%. January 1 snowpack was 84% based upon 15 snow courses and SNOTEL readings within the Yakima Basin. Precipitation was 129% of normal for December and 178% for the water year-to-date. Temperatures were 1.3 degrees above average for Volume forecasts for the Yakima Basin are for natural flow. December. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available which includes irrigation return flow.

YAKIMA RIVER BASIN

Streamflow Forecasts - January 1, 1996


					nuary 1			
						===== Wetter		
Forecast Point		90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	(1000AF)	10% (1000AF)	
KEECHELUS LAKE INFLOW	APR-JUL	96	118	1 133	107	148	170	124
	APR-SEP APR-JUN	104 88	128 105		107 107	160 129	184 147	135 109
KACHESS LAKE INFLOW	APR-JUL	82	103	118	106	132	153	111
	APR-SEP APR-JUN	87 77	110 94	125 105	106 106	141 116	163 133	118 99
CLE ELUM LAKE INFLOW	APR-JUL	340	400	442	108	l 485	545	409
	APR-SEP APR-JUN	370 295	440 340	I 485 I 373	108 108	530 405	600 450	448 345
2				i.		I		
YAKIMA at Cle Elum	APR-JUN	580 655	690 790	1 762 1 882	106 106	l 835 I 975	945 1110	721 832
	APR-JUL APR-SEP	720	865	963	105	1060	1210	915
BUMPING LAKE INFLOW	APR-SEP	101	125	141	104	 157	181	136
	APR-JUL	94	115	I 129	104	143	164	124
	APR-JUN	81	97	108 	104	119 	136	104
AMERICAN RIVER near Nile	APR-SEP	85	103	116	98	129	147	118
	APR-JUL APR-JUN	78 66	95 80	l 107 l 90	98 98	119 100	136 1 14	109 92
RIMROCK LAKE INFLOW	APR-SEP	190	225	l 1 245	103	 265	300	238
	APR-JUL	163	191	209	104	230	255	200
	APR-JUN	134	155	169	104	183	205	162
NACHES near Naches	APR-SEP	620	745	832	100	915	1040	8 3 2
	APR-JUL	560	675	1 755	100	835	950	755
	APR-JUN	485	585	651 	100	720	815	651
AHTANUM CREEK nr Tampico (2)	APR-SEP	27	40	I 48	104	57	69	46
	APR-JUL APR-JUN	25 21	36 31	44 37	104 104	52 44	63 54	42 36
YAKIMA near Parker	APR-SEP	1640	1930	 2130	107	2330	2620	1994
	APR-JUL	1470	1740	1 1930	107	2120	2390	1805
	APR-JUN	1310	1550	1710	107	1870	2110	1597
KLICKITAT near Glenwood	APR-JUN	79	101	115	105	129	151	110
	APR-SEP	100	127	I 145 I	104	163	190	140
YAKIM Reservoir Storage (A RIVER BASIN			============= 	У	AKIMA RIVER BANNYAR ANALYS	ASIN	

Reservoir	Capacity		Last		rshed	of		Yr Average
KEECHELUS	157.8	118.8			======================================	15	 47	84
KACHESS	239.0	186.9	62.0 15	 9.1 Ahta	num Creek	1	64	96
CLE ELUM	436.9	314.5		0.2				
BUMPING LAKE	33.7	15.2		1 6.3				
RIMROCK				I.				
עדייווייע ע	198.0	141.8	60.4 10	2.1				

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

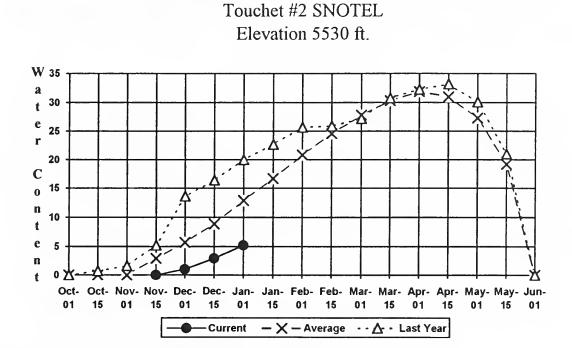
(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

Precipitation* (% of normal)

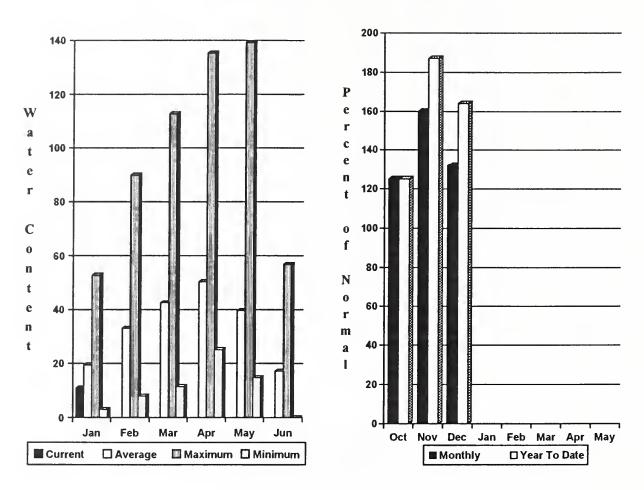
*Based on selected stations

December precipitation was 106% of average, bringing the year-to-date precipitation to 153% of normal. January 1 snowpack was at 46% of normal. The forecast is for 102% of average streamflow in the Walla Walla River for the coming summer, for the Grande Ronde at Troy, 114%, and 97% for Mill Creek. December streamflow was 258% of normal for the Walla Walla River, 218% for the Snake River, and 259% for the Grande Ronde River near Troy. The Touchet SNOTEL site had 5.2 inches of snow-water-equivalent. The normal January 1 reading for this site is 12.9 inches. Temperatures were near average for December.

WALLA WALLA RIVER BASIN


Streamflow	Forecasts	-	January	1,	1996
------------	-----------	---	---------	----	------

		<<======	Drier ====		Future Co	onditions		- Wette	r =====	>>	.*=======
Forecast Point	Forecast Period	 90% (1000AF)	70% (1000AF)	1 5 1	0% (Most	Probable) (% AVG.)	1	30% (1000AF)	10%)-Yr Avg. (1000AF)
GRANDE RONDE at Troy (1)	MAR-JUL APR-SEP	935 825	1450 1290	 	1680 1500	114 114		1910 1710	242 217		1471 1312
SNAKE blw Lower Granite Dam (1,2)	APR-JUL APR-SEP	10800 12200	18300 20600		21700 24400	100 100		25100 28200	3250 3660		21650 24360
MILL CREEK at Walla Walla	APR-SEP APR-JUL APR-JUN	6.8 6.7 6.7	12.6 12.5 12.5		16.6 16.5 16.4	97 98 98		21 21 20	2 2 2	6	17.1 16.9 16.7
SF WALLA WALLA nr Milton Freewater	APR-JUL	43	49	1	54	102	ļ	59	6	5	53
COLUMB1A R. at The Dalles (2)	APR-SEP APR-JUL APR-JUN	78200 67700 54800	96100 82700 66900		108000 92800 75100	109 109 109		20000 03000 83300	13800 11800 9540	0	98982 84760 68925
WALLA WALL Reservoir Storage (100	A RIVER BASI 0 AF) - End		e=====================================		 	Watershed		LLA RIVE k Analys			1996
Reservoir	Usable Capacity 		e Storage ' Last Year A	** **	 Wates	rshed		Numbe of Data Si		This Year Last Yr	as % of Average
					Mill	Creek		2		28	46


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

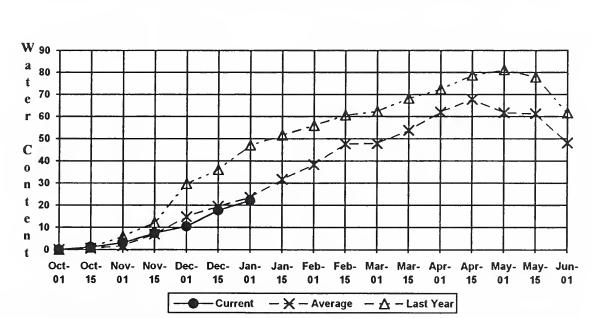
The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

Precipitation* (% of normal)

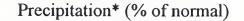
The forecast for summer runoff in the Lewis River Basin is 98% of normal. The Cowlitz River is forecast for 106% of normal runoff. December streamflow for the Cowlitz River was 187% of average, and 145% for the Lewis River. December precipitation was 132% of normal, 164% of average for the water-year. January 1 snow cover for the Cowlitz River was 73% and the Lewis River was 47% of average. The Paradise Park SNOTEL recorded the most water content for the basin with 22.1 inches of water. Normal January 1 water content is 23.6 inches. Temperatures were 2 degrees above normal for December.

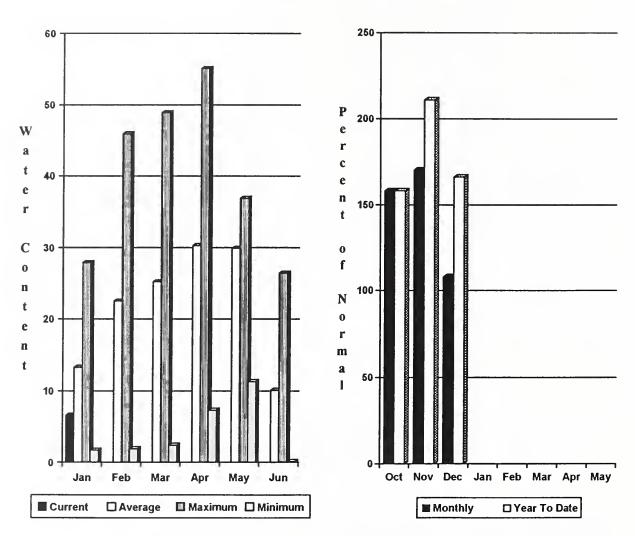
COWLITZ - LEWIS RIVER BASINS


Streamflow Forecasts - January 1, 1996

	n inn fan fan fan inn inn inn fan Rif tik Rif inn fan w									
		<<======	Drier ===		Future Co	onditions =	===== V	∛etter ≕	====>>	
Forecast Point	Forecast			== Ch	ance Of 1	Exceeding *				
	Period	90% (1000AF)	70% (1000AF)	i	(1000AF)	Probable) (% AVG.)	(100	00AF) (10% 1000AF)	30-Yr Avg. (1000AF)
LEWIS RIVER at Ariel (2)	APR-SEP	660	970	= = = =	1180	98		90	1700	1204
Benio River de Arrei (2)	APR-JUL	580	845	1	1030	98		210	1480	1051
	APR-JUN	515	755	i	915	98		080	1310	933
COWLITZ R. bl Mavfield Dam (2)	APR-SEP	730	1730	1	2100	107	1	70	3470	1970
Souling the bi hayirora ban (L)	APR-JUL	1040	1520	i	1840	106		60	2640	1731
	APR-JUN	885	1290	i	1565	106		40	2250	1477
COWLITZ R. at Castle Rock (2)	ADD CCD	935	2560	-	2830	106	1	00	4720	2667
COWLITZ R. at Castle Rock (2)	APR-SEP APR-JUL	1890	2230	-	2830	106		10	3050	2325
	APR-JUN	1610	1910	-	2110	106		310	2610	1995
0	APR-JUN	1010	1910	-	2110	100	1 23	510	2010	1995
LICKITAT near Glenwood	APR-JUN	79	101	i	115	105	i 1	29	151	110
	APR-SEP	100	127	I	145	104	1 1	.63	190	140
	WIS RIVER BAS						 TZ - LEWI		DACTNO	
Reservoir Storage (10			r		i	Watershed S				1, 1996
	Usable	*** Usabl	e Storage	***	 !			Number	This Ye	ar as % of
Reservoir	Capacity	Thi <i>s</i> Year	Last Year		Wate:	rshed	De	of ita Site:		
		Iear	iear	Avg =====	 		Da	ata Sites	5 Last II	Average
					Cowli	itz River		6	43	73
					l L Lewis	s River		4	24	47


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.


The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

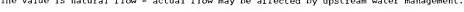
Paridise SNOTEL Elevation 5120 ft.

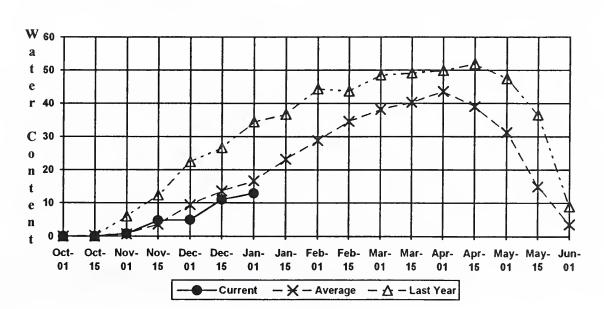
^{*}Based on selected stations

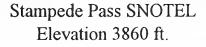
Summer runoff is forecast to be 85% of normal for the Green River and 86% for the Cedar River near Cedar Falls, 84% for the Rex River, 91% for the South Fork of the Tolt River and 80% for the Cedar River at Cedar Falls. January 1 snowpack was 93% of normal in the White River Basin and 47% in the Green River Basin. Water content on January 1 at the Morse Lake SNOTEL, at an elevation of 5,400 feet, was 18.3 inches. This site has a January 1 average of 19.1 inches. December precipitation was 108% of normal, bringing the water year-to-date to 166% of average. The National Weather Service reported temperatures at Stampede Pass to be 1.8 degrees below normal for December.

WHITE - GREEN - CEDAR RIVER BASINS

Streamflow Forecasts - January 1, 1996


			Drior	- Dituro C	onditions an	wetter		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	Chance Of 50% (Most (1000AF)	Exceeding * = Probable} (% AVG.)	30%	10% (1000AF)	30-Yr Avg. (1000AF)
GREEN RIVER below Howard Hanson Dam		150 159 124	192 210 169	220 242 200	86 85 85	250 275 230	290 325 275	257 285 234
CEDAR RIVER near Cedar Falls	APR-JUL APR-SEP APR-JUN	37 41 37	54 60 50	65 73 59	84 86 86	76 85 68	93 104 81	77 85 68
REX RIVER near Cedar Falls	APR-JUL APR-SEP APR-JUN	12.0 13.0 12.0	18.0 20 17.0	23 25 21	84 84 84	27 30 25	34 38 30	27 30 25
ZEDAR RIVER at Cedar Falls	APR-JUL APR-SEP APR-JUN	21 19.0 27	48 47 49	66 66 64	80 80 80	84 86 79	110 114 101	82 83 80
SOUTH FORK TOLT near Index	APR-JUL APR-SEP APR-JUN	10.0 11.9 8.6	12.2 14.5 10.5	13.7 16.2 11.8	90 91 90	15.2 17.9 13.1	17.4 21 15.0	15.2 17.8 13.1
WHITE - GREEN Reservoir Storage (1000					Watershed Sn	- GREEN RIVER owpack Analysi	s - Januar	
Reservoir	Usable Capacity 	This Year	e Storage ** Last Year Av	* Wate: g	r <i>s</i> hed	Number of Data Sit	This ===== es Last	Year as % of Yr Average
					e River	2	48	93
				i	n River r River	7 0	26 0	47 0


* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.

a

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

250 70 60 P 200 e W r a 50 С t e е n 150 r t 40 С 0 f 0 30 n 100 N t 0 e r 20 n m t a 50 l 10 Feh Oct Nov Dec Jan Feb Mar Apr May Jan Mar Apr May Jun Monthly □ Year To Date Current Average Maximum 🛛 Minimum

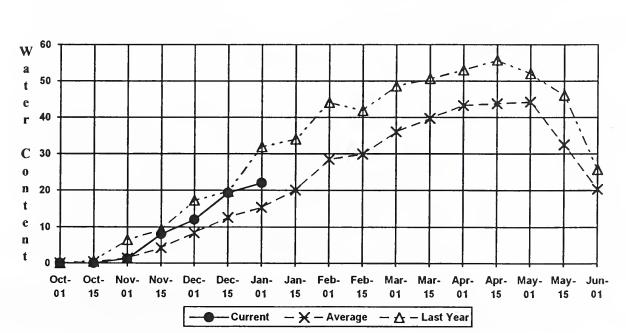
Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

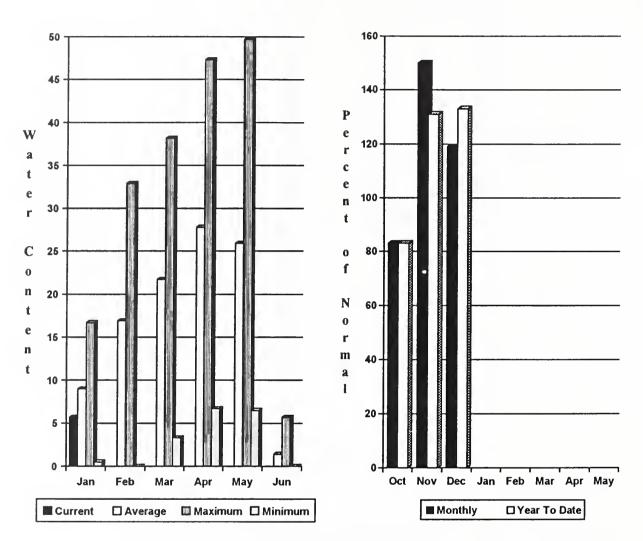
Forecast for the Skagit River streamflow is for 95% of normal for the spring and summer period. December streamflow in the Skagit River was 168% of average. Other forecast points included the Baker River at 90% and Thunder Creek at 92%. Basin-wide precipitation for December was 110% of average, bringing water-year-to-date to 178% of normal. January 1 snow cover in the Skagit River Basin was 132%, the Baker River Basin was, 34% and the Snohomish River Basin was 75% of average. Rainy Pass SNOTEL, at 4,780 feet, had 22.1 inches of water content. Normal January 1 water content is 15.4 inches. January 1 reservoir storage showed Ross Lake at 161% normal and 90% of capacity. December temperatures were 2 degrees above normal.

NORTH PUGET SOUND RIVER BASINS


Streamflow Forecasts - January 1, 1996

		<<=====	== Drier =		Future Co	onditions		Wetter	====>>		
Forecast Point	Forecast	-		==== Ch	ance Of I	Exceeding *	*******			i	
August & Grand	Period	90% (1000AF)	70% (1000AF			Probable) (% AVG.)		30% 000AF)	10% (1000AF))-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	APR-JUL	174	193		206	89		220	235		230
	APR-SEP	260	285	i	303	92	i	320	345		328
	APR-JUN	105	123	i	135	91	i	147	165		149
SKAG1T RIVER at Newhalem (2)	APR-SEP	1490	1830		2070	95	1	2310	2650		2185
Siddii Mitek de Kewhalem (2)	APR-JUL	1250	1540		1740	95	•	1940	2230		1830
	APR-JUN	970	1190	ł	1340	95	•	1490	1710		1410
4	ALL OUN	5.0	1150	i i	1510	23		1150	1.10		1.10
BAKER RIVER near Concrete	APR-JUL	585	685	i	750	90	i	820	915		836
	APR-SEP	775	885	1	960	90	1	1040	1150		1064
	APR-JUN	435	515	i	566	93	1	620	700		611
,				I			1				
NORTH PUGET	SOUND RIVER B	ASINS				NORTH	PUGET S	OUND RI	VER BASIN	•=====• \S	
Reservoir Storage (1			per		i	Watershed					1996
	Usable	*** Usat	ole Storag	e ***				Numbe	r Thi	s Year	as % of
Reservoir	Capacity	This	Last		I Water	rshed		of			
	1	Year	Year	Avg	i			Data Si	tes Las	st Yr	Average
Ross	1404.1	1260.8	1034.9	783.9	Snoho	omish River		4	42		75
DIABLO RESERVOIR		NO REPOR	T		l I Skagi	it River		3	76	5	132
GORGE RESERVO1R		NO REPOR	RΤ		l Bakeı	r River		9	19)	34

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.


The average is computed for the 1961-1990 base period.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural flow - actual flow may be affected by upstream water management.

Rainy Pass SNOTEL Elevation 4780 ft.

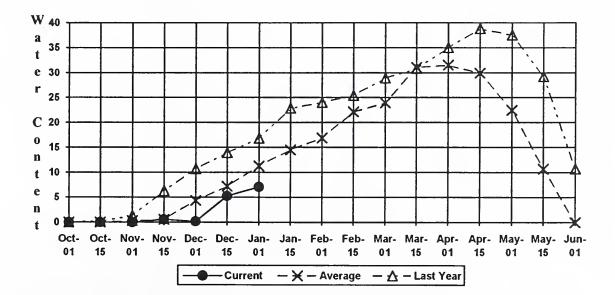
Precipitation* (% of normal)

*Based on selected stations

January forecasts of runoff for streamflow in the basin are for near normal for both the Dungeness and Elwha Rivers. The Big Quilcene can expect near normal runoff this summer also. December precipitation was 119% of average. Precipitation has accumulated at 133% of normal for the water year. December precipitation at Quillayute was 13.9 inches, which is slightly below normal at 95% of average. Average January 1 snow cover in the Olympic Basin was much below average at 63%. The Mount Crag SNOTEL near Quilcene had 7.1 inches of snowwater-equivalent on January 1. Normal for this site is 11.3 inches. Temperatures at Quillayute were 2.7 degrees above normal for December.

OLYMPIC PENINSULA RIVER BASINS

Streamflow Forecasts - January 1, 1996


Forecast Point	Forecast				onditions === Exceeding * ==		i	
	Period	90% (1000AF)	70% (1000AF)	50% (Most	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg (1000AF
DUNGENESS RIVER nr Sequim	APR-SEP APR-JUL APR-JUN	123 101 76	142 117 87	155 127 95	97 97 97 97	168 137 103	187 153 114	160 131 98
ELWHA RIVER nr Port Angeles	APR-SEP APR-JUL	365 310	435 365	477 400	95 96 	520 435	585 490	502 417
OLYMPIC PEN Reservoir Storage (INSULA RIVER BA 1000 AF) - End		:		OLYMPIC Watershed Sno	PENINSULA RI wpack Analys		y 1, 1996
leservoir	Usable Capacity 		e Storage ** Last Year Av	Wate	rshed	Numbe of Data Si		Year as % o: Yr Average
				Elwha	a River	0	0	0
				Morse	e Creek	0	0	0
				 Dunge	eness River	0	0	0
				 Quile	cene River	1	43	63

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

(1) - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

Mount Crag SNOTEL Elevation 4050 ft.

Interpreting Streamflow Forecasts	Using the forecasts—an example	a							
Introduction Fach month five forecoments in the second	Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-fect to flow past the gaging station on the Mary's River near Decth between March 1 and July 31.	st. Using the exa aging station on	nple forec he Mary's	asts showr River nea	i below, u r Deeth be	sers can r tween M	casonably arch l an	/ expect 1 July 31.	. 1
sectified, all streamflow forecasts are tor each forecast point and each forecast period. Unless otherwise influences. Water users need to know what the different forecasts represent if they are to use the information controlly when making operational decisions. The following is an explanation of each of the forecasts.	Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 activitient the Operating Correction Correction for the condine formers.	recasts. If users liable from the N pected shortage of om the 70 nerren	anticipate attional We f water con	a somewh: ather Serv ild cause r	at drier tre ice every problems,	nd in the two week they migl	future (m s), or if t [†] it want to	onthly ar icy arc plan on	put
Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent the the streamflow volume will be less than this forecast value. There is a 50 percent The most probable forecast will rarely be exactly right, due to encore streamfling from future weather conditions and the forecast value.	with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forcast. If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.	volumes will ev volumes will ev ceding forecast is ceding is exceeding c 5000 acre-foot	cceed the 2 ic remaind too great, orccast).] forecast.	Vine out of	foot force foot force cason, or i might pla f ten years	f they def if they def n on recei	the out of the contract of the	en years le risk of 5000 itions,	رم ل <u>مب</u>
and us provide the probable forecast, it must not mean that users should not use the most probable forecast, it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.	Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 75,000 acre-feet (from the 30 nerver) obvious	<i>ceasts.</i> If users <i>c</i> : litions would pro they might plan c	spect wette duce streau n receivin	r future co nflow volt	onditions, umes grea	or if the c ter than 3 rom the 3	hance thi 6,000 act	it five ou c-feet wa	ur 'as
To Decrease the Chance of Having Too Little Water If users want to make sure there is enough water available for their operations, they might determing the set	exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.	tential flooding p acre-foot foreca.	roblems.	Three out o	of ten year	s with sir	nilar conc	litions,	10
percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:	In years when users expect extremely wet conditions for the remainder of the season and the threat of sever flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.	mely wet conditi xists, they might nanagement oper	ons for the choose to ations. Str	remainder 1se the 76, camflow v	of the sea 000 acre- olumes w	ason and i foot (10 p ill exceed	the threat ercent ch I this leve	of seven ance of I only on	2 2
70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.		UPPER HUMBOLDT RIVER BASIN	BOLDT RIVE	R BASIN					[
90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the stream flow volume	-			STREAMFLOW FORECASTS	W FOREC	5			
will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.		<u> </u>			SNOLLIQNOO		ER>I		
To Decrease the Chance of Having Too Much Water If users want to make sure they don't have see and	FORECAST POINT	PERIOD 1 (10	I Charace of Exceeding I	Chance of Exceeding - 70% 1 50% (Most Probable) 1 00APJ (1000AP) (% AVG.)1 (Chance of Exceeding 50% (Moss Probable) 1 (1000AP) (% AVG.)1	30% (1000AF) (10% I	1 1 25 YR. 01 (1000 AF)	
streamflow being higher than the verse too much water, they might determine that a 50 percent chance of the having too much water available during the forecast is too much of a risk to take. To reduce the risk of the forecast with some the second stream period, users can base their operational decisions on one of	MARY'S RIVER of Deech	MAR-JUL APR-JUL	5.0 20.0 i 8.0 17.0 i	0 1 36	77 74	\$ 5	76	47	
30 Percent Chance of Exceeding Forecast. These include: will exceed this forecast value. There is a 30 percent chance that the streamflow volume.	LAMOILLE CREEK nr Lamoüle	MAR-JUL APR-JUL	6.0 16.0 4.0 15.0	77	79 75	32 30	43	30	
forecast value. 10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will record this forecast.	NF HUMBOLDT RIVER at Devils Gate MAR.JUL	MAR-JUL	6.0 120		8	74	121	59	
forecast value. Increast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.									
	For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".	amflow forecasti w Forecasts".	ng ask you	r local SC	S field off	ice for a c	" fo Kdo:	Field	

Issued by

,

2

Paul W. Johnson Chief Natural Resources Conservation Service U.S. Department of Agriculture Released by

Lynn A. Brown State Conservationist Natural Resources Conservation Service Spokane, Washington

The Following Organizations Cooperate With the Natural Resources Conservation Service in Snow Survey Work*:

Canada	Ministry of the Environment Investigations Branch, Victoria, British Columbia
State	Washington State Department of Ecology Washington State Department of Natural Resources
Federal	 Department of the Army Corps of Engineers U.S. Department of Agriculture Forest Service U.S. Department of Commerce NOAA, National Weather Service U.S. Department of Interior Bonneville Power Administration Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs
Local	City of Tacoma City of Seattle Chelan County P.U.D. Pacific Power and Light Company Puget Sound Power and Light Company Washington Water Power Company Snohomish County P.U.D. Colville Confederated Tribes Spokane County Yakama Indian Nation
Private	Okanogan Irrigation District Wenatchee Heights Irrigation District Newman Lake Homeowners Association

*Other organizations and individuals furnish valuable information for the snow survey reports. Their cooperation is gratefully acknowledged.

Rock Pointe Tower II, Suite 450 W. 316 Boone Avenue Spokane, WA 99201-2349

> 3 U. S. DEPT. OF AGRICULTURE NATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS BELTSVILLE, MD 20705

Washington Basin Outlook Report

Natural Resources Conservation Service Spokane, WA

