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The shape of urban settlements plays a fundamental role in
their sustainable planning. Properly defining the boundaries of
cities is challenging and remains an open problem in the science
of cities. Here, we propose a worldwide model to define urban
settlements beyond their administrative boundaries through
a bottom-up approach that takes into account geographical
biases intrinsically associated with most societies around
the world, and reflected in their different regional growing
dynamics. The generality of the model allows one to study
the scaling laws of cities at all geographical levels: countries,
continents and the entire world. Our definition of cities is
robust and holds to one of the most famous results in social
sciences: Zipf’s law. According to our results, the largest
cities in the world are not in line with what was recently
reported by the United Nations. For example, we find that
the largest city in the world is an agglomeration of several
small settlements close to each other, connecting three large
settlements: Alexandria, Cairo and Luxor. Our definition of
cities opens the doors to the study of the economy of cities
in a systematic way independently of arbitrary definitions that
employ administrative boundaries.

1. Introduction

What are cities? In The Death and Life of the Great American Cities,
Jacobs argues that human relations can be seen as a proxy for
places within cities [1]. A modern view of cities establishes that
they can be defined by the interactions among several types of
networks [2,3], from infrastructure networks to social networks. In
recent years, an increasing number of studies have been proposed
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to define cities through consistent mathematical models [4-15] and to investigate urban indicators at
inter- and intra-city scales, in order to shed some light on problems faced by decision-makers [16-31].
Despite the efforts of such studies, properly defining the boundaries of urban settlements remains an
open problem in the science of cities. A minimum criterion of acceptability for any model of cities
seems to be the one that retrieves a conspicuous scaling law found for USA, UK and other countries,
known as Zipf’s law [6,7,32-42]. In 1949, Zipf [43] observed that the frequency of words used in the
English language obeys a natural and robust power law behaviour, i.e. a few words are used many times,
while many words are used just a few times. Zipf’s law can be represented generically by the following
relationship between the size S of objects from a given set and its rank R:

R S7¥, (11)

where ¢ = 1is Zipf’s exponent. The size of objects is, in the original context, the frequency of used words.
On the other hand, if such objects are cities, then the sizes stand for the population of each city, taking
into account Zipf’s law and reflecting the fact that there are more small towns than metropolises in the
world. We emphasize that it is not straightforward that Zipf’s law, despite its robustness, should hold
independently of the city definition, as other scaling relations are not, such as the allometric exponents for
CO; emissions and light pollution [24,31]. Many other man-made and natural phenomena also exhibit
the same persistent result, e.g. earthquakes and incomes [44,45].

Here, we propose a worldwide model to define urban settlements beyond their usual administrative
boundaries through a bottom-up approach that takes into account cultural, political and geographical
biases naturally embedded in the population distribution of continental areas. After all, it is not
surprising that two regions, e.g. one in western Europe and another one in eastern Asia, spatially
contiguous in population or in commuting level have different cultural, political or geographical
characteristics. Thus, it is also not surprising that such issues yield different stages of the same mechanics
of growth. The main goal of our model is to be successful in defining cities even in large regions. Our
conjecture is straightforward: there are hierarchical mechanisms, similar to those present in previous
studies of cities in the UK [14] and brain networks [46], behind the growth and innovation of urban
settlements. These mechanisms are ruled by a combination of general measures, such as the population
and the area of each city, and intrinsic factors which are specific to each region, e.g. topographical
heterogeneity, political and economic issues, and cultural customs and traditions. In other words, if
political turmoil or economic recession plagues a metropolis for a long time, all of its satellites are affected
too, i.e. the entire region ruled by the metropolis will be negatively impacted.

2. The models
2.1. ity clustering algorithm

In 2008, Rozenfeld et al. [6] proposed a model to define cities beyond their usual administrative
boundaries using a notion of spatial continuity of urban settlements, called the city clustering algorithm
(CCA) [6-8,11,15,24,30,31]. The CCA is defined for discrete or continuous landscapes [7] by two
parameters: a population density threshold D* and a distance threshold £. These parameters describe the
populated areas and the commuting distance between areas, respectively. Here, we adopt the following
strategy to improve the discrete CCA performance. (i) Supposing a regular rectangular lattice Ly x Ly
of sites where the population density of the kth site is Dy, we perform an initial agglomeration by D*
to identify all clusters. If Dy > D*, then the kth site is populated and we aggregate it with its populated
nearest neighbours. Otherwise, the kth site is unpopulated. (ii) For each populated cluster, we define its
shell sites, i.e. sites in the interface between populated and unpopulated areas. (iii) Lastly, we perform
a final agglomeration by ¢, taking into account only the shell sites. If dl-]- < ¢, where d,-]- is the distance
between the ith and jth shell sites, and if they belong to different clusters, then the ith and jth sites belong
to the same CCA cluster, even with spatial discontinuity. Otherwise, they indeed belong to different CCA
clusters. This simple strategy improves the algorithm’s computational performance because the number
of shell sites is proportional to L, where L = Ly ~ L, is a linear measure of the lattice.

2.2. City local clustering algorithm

We propose a worldwide model based on the CCA, called the city local clustering algorithm (CLCA),
not only to define cities beyond their usual administrative boundaries, but also to take into account
the intrinsic cultural, political and geographical biases associated with most societies and reflected in
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Figure 1. CLCA: representation of the conditions (ii) and (iii). (a) The growth of the reference cluster without the merging process. (b) The
rising of the usual clusters. The usual clusters are the CCA clusters at the imminence of the merging process between D? and D'+ (c)
For tth, sth and rth reference clusters (tth is prior to sth which is prior to rth), the merging processes are performed as described in (b),
even though there are clusters already defined close to and within the current analysed region in the second and third case, respectively.
In the latter, there is the emergence of a forbidden region. The forbidden regions are the complementary areas of the reference clusters
already defined within the usual clusters. In order to define the clusters inside those areas, we force the region defined by the largest
value of D* to grow to the limits of the forbidden region. Here, we suppose that DV > D®). The filled dots stand for the reference sites.

their particular growing dynamics. The traditional CCA, with fixed ¢ and D*, when applied to a large
population density map, can introduce biases defining a lot of clusters in some regions, while in others
just a few. We present the CLCA with the aim of defining cities even in large regions in order to overcome
such CCA weakness. Hence, it is possible that other models, such as the models based on street networks
proposed by Masucci ef al. [13] and Arcaute et al. [14], carry the same CCA burden and that local
adaptations are necessary for their applications into large regions.

The main idea of our model is to analyse the change of the CCA clusters through the variation of D*
under the perspective of different regions. First, we define a regular rectangular lattice Ly x Ly of sites,
where the population density of the kth site is Dy. We sort all the sites in a list according to the population
density, in descending order. Therefore, the site with the greatest population density is the first entry in
this list, which we call the first reference site. The reference site can be considered as the current core of
the analysed region. Second, we apply the CCA to the lattice, keeping a fixed value of ¢, for a range of
D* decreasing from a maximum value D™®) to a minimum value D™ with a decrement §. During
the decreasing of D*, clusters are formed and they spread out to all regions of the lattice. Eventually, the
cluster that contains the reference site (from now on the reference cluster), together with one or more of
the other clusters, will merge from D to D1, where D@1 = D@ — §. In order to accept or deny the
merging of these clusters, we introduce three conditions:

(i) If the area A,(D?) of the reference cluster 7, i.e. the cluster that contains the rth reference site at
D, obeys
A (DY) < A%, 2.1)

then the reference cluster r always merges with other clusters, because it is still considered very
small. In this context, the area A* can be understood as the minimal area of a metropolis.
(i) If the difference between the areas of the reference cluster r at D@1 and D@ obeys

A/DY) — A,(DY) > H*A(DY), (2.2)

then the reference cluster r has grown without merging (figure 1a) or there is a merging of at
least two large clusters (figure 1b). In the last case, we emphasize that if there are more than two
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clusters involved in the merging process, the reference cluster r may not be one of the largest. As
the first case is not desirable, we can avoid it by reducing the value of § and keeping the value
of H* relatively high. The parameter H* can be understood as the percentage of the area of the
reference cluster r at D). If the second case happens, we consider the entire region inside of the
reference cluster r at D@1, but the clusters of this region (which we call the usual clusters) are
defined by those at D). The usual clusters are the CCA clusters at the imminence of the merging
process between D) and DU*1). This includes the reference cluster r itself and one or more of the
other clusters before the merging (figure 1b). Furthermore, all of the sites of the reference cluster
r at DU+D are removed from the initial list of reference sites. This condition is necessary because
we should not merge two large metropolises.

(iii) In condition (ii), when a reference cluster r is merging with another cluster that covers one or
more regions already defined by previous reference clusters at different values of D*, there is a
strong likelihood of the emergence of a forbidden region within that cluster. In this case, we force
the region already defined by the largest value of D* to grow to the limits of the forbidden region
(figure 1c). The forbidden regions are the complementary areas of the reference clusters already
defined within the usual clusters. As a consequence of this procedure, some CCA clusters that
were hidden after the analysis of the previous reference cluster arise in this forbidden region. We
justify this condition by the idea that a metropolis rules the growth of its satellites, as it plays a
fundamental role in their socioeconomic relations.

We apply the same procedure to the second reference cluster, to the third reference cluster and so on.
Finally, we also define the isolated clusters with the minimum value of D* for all the cases accepted in
condition (ii). In order to make our model clearer, we chose the descending order to sort the population
density for one reason: to favour the merging process of the high-density clusters that arose from the
decreasing of D*. In practice, we run our revised discrete CCA just once for the entire range of input
parameters and store all of the outputs in order to improve the performance of the model. The apparent
simplicity of this task hides a RAM management problem of storing all of the outputs in a medium-
performance computer. We overcome such a barrier through the zram module [47], available in the newest
linux kernels. The zram module creates blocks which compress and store information dynamically in the
RAM itself, at the cost of processing time.

3. The dataset

We use the GRUMPV1 [48], available from the Socioeconomic Data and Applications Center (SEDAC) at
Columbia University, to apply the CLCA to a single global dataset. The GRUMPv1 dataset is composed of
georeferenced rectangular population grids for 232 countries around the world in the year 2000 (figure 2).
Such a dataset is a compilation of gridded census and satellite data for the populations of urban and rural
areas. These data are provided at a high resolution of 30 arc-seconds, equivalent to 30/3600° or a grid of
0.926 x 0.926 km at the Equator. We note that despite the heterogeneous population distributions that
built the GRUMPV], its overall resolution is tolerable to the CLCA, since we can identify well-defined
clusters around all continents in the raw data.

We calculate the area of each site by the composition of two spherical triangles [49]. The area of a
spherical triangle with edges 4, b and c is given by

A= 4R§ tan~! [tan (%) tan (%) tan (%) tan (%)]l/z , (3.1)

where s =(a/R, + b/Re + c/R.)/2, s, =s —a/R,, sy =s — b/R, and s, =s — ¢/R,. In this formalism, R, =
6378.137km is the Earth’s radius and the edge lengths are calculated by the great circle (geodesic)
distance between two points 7 and j on the Earth’s surface:

dij=Re cos ™ Msin(¢;) sin(¢;) + cos(¢;) cos(¢;) cos(r; — ;)] (3.2)

The values of %; (%)) and ¢; (¢;), measured in radians, are the longitude and latitude, respectively, of
the point 7 (j). Thus, we are able to define the population density for each site of the lattice, since its
population and area are known.

We also pre-process the GRUMPv1 dataset, dividing all countries and continents—and even the
entire world—into large regions which we call clusters of regions, to apply our model in a feasible
computational time using medium-performance computers. These regions are defined by the CCA with
lower and upper bound parameters D* = 50 people km > and ¢ = 10km, respectively. We believe that

80v08L s uado 205y B1o‘Buiysigndiaposiefor'soss



1 102 10* 10°

Figure 2. The Global Rural-Urban Mapping Project (GRUMPV1) dataset. The population map of the entire world from the GRUMPv1
dataset in logarithmic scale.
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Figure 3. The largest cluster of regions for the USA. (a) The single population density cluster from the eastern USA is defined by the CCA
with lower and upper bound parameters 0* = 50 people km 2 and £ = 10 km, respectively. The population, provided by the GRUMPv1
dataset, is shown in logarithmic scale within each populated area. (b) Application of the CLCA for the cluster of regions of the eastern
USA. The CLCA cities are represented in several colours, e.g. New York in mustard, Philadelphia in light brown, Washington-Baltimore in
light green, Boston in green and Chicago in red. The CLCA parameters used were D™ = 100 people km =, D™ — 1000 people km 2,
8 =10 people km~2, ¢ = 3 km, A* = 50 km” and H* = 0.05.

such large clusters can hold the socioeconomic and cultural relations among different urban settlements
of a territory. Figure 3a shows the largest clusters of regions in the USA; as we can see, all of the eastern
USA is considered a single cluster.

4, Results

To show the relevance of our model, we apply the CLCA to the GRUMPv1 dataset at three different
geographical levels: countries, continents and the entire world. For each case, we consider only a
single set of CLCA parameters. We justify our choices with the following assumptions: (i) D™ =
100 people km ™2, a value slightly greater than the lower bound CCA parameter (D* = 50 people km~2)
used to define the regions of clusters; (ii) Dmax) = 1000 people km™2, a loosened value of DM = oo; (iii)
5 =10 people km 2, a small enough value to avoid the reference clusters growing without merging; (iv)
£ =3km, the critical distance threshold, already extensively analysed by previous CCA studies [6,7,24];
(v) A* =50 km?, the minimum area of a metropolis, as it is required that A* be reasonably greater than the
minimum unit of area from the dataset and smaller than a metropolis” area; and (vi) H* = 0.05, a large
enough value to favour the merging of clusters which are similar in size. Figure 3b shows the CLCA
cities defined by the single set of CLCA parameters. For other regions, see the electronic supplementary
material.

We study the population distribution using the maximum-likelihood estimator (MLE) proposed by
Clauset et al. [50]. Their approach combines maximum-likelihood fitting methods with goodness-of-fit
tests based on Kolmogorov-Smirnov statistic. Figure 4 shows the log-log behaviour of the cumulative
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Figure 4. CDF Pr(P > P) versus population P, in log—log scale, for the countries with the highest number of cities in each continent (for
other countries, see the electronic supplementary material). (a—f) Cities proposed by the CLCA are represented by light blue circles. The
solid black line is the maximum-likelihood power-law fit defined by the MLE [50]. The value of the lower bound Py, and the exponent
¢ are also shown. The CLCA parameters used were D™ =100 people km 2, D™ = 1000 people km—, § = 10 people km 2, £ =
3km, A* = 50 km” and #* = 0.05.
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Figure 5. Normalized histogram, with frequency F, of the £ exponent at the country level. The plot shows those countries (145 out of
232) with at least 10 cities defined by the CLCA in the region covered by the maximum-likelihood power-law fit. We find the mean value of
the Zipf exponents £ = 0.98 and its variance o> = 0.09. The dashed red line stands for the normal distribution A/(Z, o'%). Therefore,
Zipf's law holds for most countries.
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by light blue circles. The solid black line is the maximum likelihood power-law fit defined by the MLE [50]. The value of the lower
bound P and the exponent ¢ are also shown. The CLCA parameters used were D™ = 100 people km 2, D™ — 1000 people km 2,
8 =10 people km 2, £ = 3 km, A* = 50 km? and H* = 0.05.
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Table 1. African countries. We show the name, the 150 3166-1alpha-3 code, the number of cities obtained by the CLCA and the number n
of those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Py, and the
Zipf exponent .

country 150 CLCA cities CLCA cities* i ¢

Angola AGO 20 16 43937 0.780 £ 0.195
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Table 1. (Continued.)

country CLCA cities CLCA cities' i ¢

Uganda UGA 155 33 30587 1.386 £ 0.241
ot o o o am 0 oms
zamb|a ............................ e 55 ................................ 34 .................................... 7“8 ,,,,,,,,,,,,,,,,,,,,, 0666 j:0114
B we e s e 0t

distribution function (CDF) for the population of the CLCA cities, considering only the countries with the
highest number of CLCA cities for each continent (for other countries, see the electronic supplementary
material). The Pr(P > P) represents the probability that a random population P takes on a value greater
than or equal to the population P. In all CDF plots, we also show the maximum-likelihood power-law
fit, as well as the value of the exponent { =« — 1, where « is the MLE exponent, and the value of Pp;n,
the lower bound of the MLE.

In figure 5, we show a normalized histogram, with frequency F, of the { exponents for all countries
(145 out of 232) with at least 10 CLCA cities in the region covered by the maximum-likelihood power-law
fit. The mean value of the ¢ exponents is ¢ =0.98, with variance o2 =0.09. The dashed red line stands for
the normal distribution N'(Z, o2). In spite of the ¢ exponent heterogeneity illustrated by figure 5, Zipf’s
law holds for most countries around the globe. We emphasize that such results corroborate with previous
studies performed for one country or a small number of countries [6,7,32-42]. In particular, the figure 5
also endorses an astute meta-analysis performed by Cottineau [51]. Cottineau provided a comparison
among Zipf’s law exponents found in 86 studies. Our results strongly corroborate those presented in
such study, except that our exponents are ranged between 0 and 2.

Furthermore, we challenge the robustness of our model at higher geographical levels: continents and
the entire world. We performed the same analyses and find that our results persist on both scales, i.e. the
CLCA cities follow Zipf’s law for continents and the entire world, as illustrated in figures 6 and 7.

We summarize our results in a set of seven tables: tables 1-6, for countries from Africa, Asia, Europe,
North America, Oceania and South America, respectively. Table 7 contains similar information for all
continents and the entire world. In all cases, we show the name of the considered region (country,
continent or globe), the ISO 3166-1 alpha-3 code associated (only for countries), the number of cities
obtained by the CLCA and those covered by the MLE, the lower bound Ppyi,, and the Zipf exponent ¢.

It is remarkable that the top CLCA city, with a population of 63 585039 people, is composed of three
large urban settlements (Alexandria, Cairo and Luxor) connected by several small ones. Figure 8a—c
shows the largest cluster of regions in Egypt for the GRUMPv1 dataset, CLCA cities and night-time
lights from the National Aeronautics and Space Administration (NASA) [52], respectively. We believe
the main reason for this finding has been present in the northeast of Africa since before the beginning
of ancient civilization—namely, the Nile river. Actually, it is well known that almost the entire Egypt
population lives in a strip along the Nile river, in the Nile delta and in the Suez canal on 4% of the total
country area (10° kmz), where there are arable lands to produce food [53]. The river and delta regions are
composed by some large cities and a lot of small villages, making them extremely dense. Therefore, our
results raise the hypothesis that the cities and villages across the Nile can be seen as a kind of ‘megacity’,
despite spatially non-contiguous, due to the socioeconomic relation, reflected in the high commuting
levels, among close subregions.

Table 8 shows the top 25 CLCA cities in the entire world by population, and their associated areas.
After the top CLCA city, Alexandria-Cairo-Luxor, we emphasize that the 13 next-largest CLCA cities are
in Asia. Indeed, we can see that the shape of the tail end of the entire world population distribution (in
figure 7) is roughly ruled by the greater CLCA city in Africa and several CLCA cities in Asia.

These facts are not in line with what was recently reported by the United Nations (UN) [54], e.g. the
largest CLCA city, Alexandria-Cairo-Luxor, is just the 9th largest city according to the UN, and the largest
UN city, Tokyo, is just the 4th largest according to our analyses.

5. Conclusion

We propose a model to define urban settlements through a bottom-up approach beyond their usual
administrative boundaries, and moreover to account for the intrinsic cultural, political and geographical
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Table 2. Asian countries. We show the name, the IS0 3166-1alpha-3 code, the number of cities obtained by the CLCA and the number of
those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Pyy;y, and the Zipf
exponent Z.

country IS0 CLCA cities CLCA cities* Puin ¢
Afghanistan AFG 95 38 29242 0.809 £ 0.131

80v08L:5 s Uado 205y BioBuysiqndAraposjeforsos:



Table 3. Eurapean countries. We show the name, the 150 3166-1alpha-3 code, the number of cities obtained by the CLCA and the number n
of those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Py, and the
Zipf exponent .

country 150 CLCA cities CLCA cities* Prin c
Albania ALB 46 32 6030 0.783 £ 0.139
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Table 4. North American countries. We show the name, the 150 3166-1alpha-3 code, the number of cities obtained by the CLCA and the n
number of those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Pp,
and the Zipf exponent £ .

country

(anada CAN 135 308 4879 0.815 1 0.046
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Table 5. Oceanian countries. We show the name, the 150 3166-1alpha-3 code, the number of cities obtained by the CLCA and the number
of those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Py, and the
Zipfexponent .

country 150 CLCA cities CLCA cities® Punin Iy

Australia AUS 177 145 5332 0.788 £ 0.065
W R W e a0 o
G o o Lo o 0o
Mg o e o e oo
tenganes we . s sos imssosn

Table 6. South American countries. We show the name, the 150 3166-1alpha-3 code, the number of cities obtained by the CLCA and the
number of those covered by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Py,
and the Zipf exponent ¢ .

country 150 CLCA cities CLCA cities? Prin ¢

Argentina ARG 749 227 10 880 0.994 + 0.066
e o s ven o
e o w b e ot oo
B G o W woe Lot ome
Colombia o wo 6 nsw 0.886 0,069
B W o G by ve ot
e O o e oy vsr 000
e o o L o 0ot
sy o e L e otom
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Alexandria-Cairo-Luxor r g
4 .
10 Cairo
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10

Figure 8. Northeastern region of Egypt. (a) The cluster of regions defined by the pre-processing of the GRUMPV1 dataset for the
northeastern region of Egypt. (b) The largest ity defined by the CLCA in the entire world is formed by several cities, including Alexandria,
(airo and Luxor. (c) Night-time lights of the northeast of Egypt provided by National Aeronautics and Space Administration (NASA).
The CLCA cities found exhibit a remarkable similarity with the lights across the Nile.

Table 7. Continents and the entire world. We show the name, the number of cities obtained by the CLCA and the number of those covered
by the maximum-likelihood power-law fit defined by the MLE [50] (represented by 1), the lower bound Py, and the Zipf exponent ¢ .

continent/globe CLCA cities CLCA cities*

biases associated with most societies and reflected in their particular growing dynamics. We claim that
such a property qualifies our model to be applied worldwide, without any regional restrictions. We
also propose an alternative strategy to improve the computational performance of the discrete CCA. We
emphasize that the CCA can still be used to define cities; however, it depends upon a different tuning of
its parameters for each large region without direct socioeconomic and political relations. Furthermore,
we show that the definition of cities proposed by our approach is robust and holds to one of the most
famous results in social science, Zipf’s law, not only for previously studied countries, e.g. the USA, the
UK or China, but for all countries (145 from 232 provided by GRUMPv1) around the world. We also find
that Zipf’s law emerges at different geographical levels, such as continents and the entire world. Another
highlight of our study is the fact that our model is applied upon one single dataset to define all cities.
Furthermore, we find that the most populated cities are not the major players in the global economy (such
as New York City, London or Tokyo). The largest CLCA city, with a population of 63 585039 people, is
an agglomeration of several small cities close to each other which connects three large cities: Alexandria,
Cairo and Luxor. Finally, after the top CLCA city of Alexandria-Cairo-Luxor, we find that the next-largest
13 CLCA cities are in Asia. These facts are not in full agreement with a recent UN report [54]. According
to our results, the largest CLCA city, Alexandria-Cairo-Luxor, is just the 9th largest city according to the
UN, while the largest UN city, Tokyo, is just the 4th largest according to our analyses.
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Table 8. Top 25 cities, by population, in the world. We emphasize that, after the top CLCA city (Alexandria-Cairo-Luxor), the 13 next-largest
CLCA cities are in Asia. The largest United Nation city, Tokyo, is just the 4th according to our analyses.

CLCA city country CLCA population (people) CLCA area (km?)
Alexandria-Cairo-Luxor Egypt 63585039 34434

Data accessibility. The data supporting this article are available at http://sedac.ciesin.columbia.edu/data/collection/
grump-vl. More specifically, the reader can click on ‘Data sets’ and, after that, on ‘Population Count Grid, v1
(1990,1995,2000)". We also provide the codes for the proposed model that are available at https://doi.org/10.5061/
dryad.968nq8n [55].
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