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Characteristics of the initial condensate in 
the recent experiment on Bose-Einstein 
condensation (BEC) of "Rb atoms in an 
anisotropic magnetic trap are discussed. 
Given the aspect ratio R, the quality of 
BEC is estimated. A simple analytical 
ansatz for the initial condensate wave 
function is proposed as a function of the 
aspect ratio which, in contrast to the 
Baym-Pethick trial wave function, can be 
used for any interaction strength, repro- 
duces both the weak and the strong 

interaction limits, and which is in better 
agreement with numerical results than the 
latter. 

Key words: analytic Ansatz; aspect 
ratio; Bose-Einstein condensation; ground 
state wavefunction. 

Accepted: May 15, 1996 

1.    Introduction 

Bose-Einstein condensation (BEC) is a phenomenon 
where a macroscopic number of particles is in the 
ground state of the system at finite temperature. The 
phenomenon of BEC plays a significant role in many 
branches of physics [1]. Because of the presence of 
strong interactions, BEC has been inferred rather than 
directly observed so far. Recently, however, three 
different groups have reported the direct evidence of 
BEC in weakly interacting systems of atoms such as 
rubidium [2], lithium [3], and sodium [4], confined in 
anisotropic magnetic traps and cooled down to very 
low temperatures. These experiments show promise of 

becoming a new laboratory for quantum statistical 
phenomena that are inaccessible to other conventional 
techniques and of enabling us to experimental study 
phenomena that have been addressed only theoretically, 
such as spontaneous symmetry breaking and decay of 
unstable macroscopic states. They may also advance 
our understanding of superconductivity and superfluid- 
ity in more complex systems. Moreover, the technology 
used in the experiments has the possibility to be 
extended to produce a veritable atomic laser that is 
bound to have many applications in pure science and 
technology [5]. 
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In recent experiments in the system of rubidium 
atoms [2] and sodium atoms [4], the onset of BEC is 
signalled by a narrow peak on top of a broad thermal 
velocity distribution centered at zero velocity. This peak 
exhibits the nonthermal, anisotropic velocity distribu- 
tion expected of the minimum-energy quantum state of 
the magnetic trap in contrast to the thermal, isotropic 
velocity distribution observed in the broad uncondensed 
fraction. The parameter which characterizes the asym- 
metry of the velocity distribution function is the so 
called aspect ratio R = v{pz)/{Px)- In the experiment 
of Anderson et al. [2], rubidium atoms are initially 
trapped and cooled down in a strong magnetic trap 
which can be described as a three-dimensional (3D) 
harmonic potential cylindrically symmetric about the 
z-axis, with tunable frequency co- (in the z direction) and 
co± = w./\ (in the xy-plane), with the asymmetry 
parameter A = V8. The corresponding oscillator 
lengths are ax(-)=(;5/mwx(j))""=1.25(0.74)X 10^ cm, 
where m is the atomic mass. After some time, the cloud 
of rubidium atoms is adiabatically released to a weaker 
magnetic trap whose spring constants are 10 times 
weaker than when BEC forms. The condensate is then 
examined after ballistic expansion from the weak trap. 
The ballistic expansion is properly modelled numeri- 
cally by a self-consistent wavefunction calculated by 
Holland and Cooper [6] which generalizes previous 
investigation of the symmetric evolution [7]. 

Similarly to previous recent studies [8-10], we shall 
confine ourselves to the system of ^^Rb atoms and we 
will discuss the characteristics of the initial condensate 
formed. Although the characteristics of the initial 
condensate have not been measured directly yet, 
there is hope that it will be possible so in future 
experiments. 

A theoretical picture of the initial condensate was 
produced within the Hartree-Fock (HE) approximation 
[8-10] using the Ginzburg-Pitaevskii-Gross (GPG) 
energy functional [11] and associated with it the Non- 
linear Schrodinger Equation (NSE). Excitations, using 
the technique of the Bogoliubov transformation, have 
been described by Fetter [12]. Baym and Pethick [8] 
have gained an insight into the problem by assuming 
that, similarly to the noninteracting case, a gaussian 
gives a reasonable variational ground-state wave func- 
tion, the only effect of interactions being a renormaliza- 
tion of oscillator frequencies. They show that the first 
effect of interactions is to reduce the density of the cloud 
of particles in the central region from the free particle 
situation and expand it in the transverse direction. These 
qualitative features were confirmed by Edwards et al. 
[9] and Dalfovo and Stringari [10] by solving the NSE 
numerically. 

In the present paper it is shown that although, 
qualitatively, the Baym and Pethick (BP) scenario [8] 
is correct, nevertheless, the BP wave function does 
not describe BEC regime well. As we show in the 
next section, this can be explained by the fact that 
the BP wave function is actually the square root of the 
first order density function in the high temperature 
expansion of the partition function of the 5-function 
interacting Bose gas in the kinetic energy, and 
hence describes high temperature properties of 
the system. Higher order corrections are needed to 
obtain low temperature properties such as BEC in 
agreement with the numerics. In particular, this explains 
the unreasonably high aspect ratio in BP estimations 
(up to 4.2, i.e., 2.5 higher than in the noninteracting 
case). All these prompt a search for another trial 
variational function for the ground state. In Sec. 3 
we derive a simple analytical Ansatz (see Eq. (7) 
and Fig. 1) which, for a given numerical value of the 
aspect ratio, describes well the ground state properties 
of the system for all values of the interaction strength. 
The Ansatz interpolates smoothly between the weak 
and the strong interaction case. It is worthwhile 
to notice that the latter case cannot be described 
by the BP wave function and, instead, it is described 
by the Thomas-Fermi approximation in Ref. [8]. 
Using this Ansatz, correlation effects can be considered 
[13]. 
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Fig. 1. A comparison of the .i-dependence of the numerical solution 
of NSE for the ground state [10] (dashed line) and our approximate 
solution (solid line) in the case of W=5000 atoms of *'Rb, when 
A = 502 and Ca„satz = 2.2. The value of the aspect ratio, ff (A, A) = 2.3, 
is taken from Ref. [10]. 
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2.    Baym-Pethick Trial Wave Function and 
Higli Temperature Expansion 

Baym and Pethick argued [8] that the initial conden- 
sate wave function in the region of weak and up to 
intermediate interactions can be well approximated by a 
Gaussian. Let us take a different point of view and ask 
under which condition this Gaussian-like profile of the 
initial condensate wave function can be actually derived. 

If interactions between atoms are neglected, the 
physical system is equivalent to the system of non- 
interacting harmonic oscillators. In the latter case, one 
can show that the aspect ratio in thermal equilibrium is 
a monotonically increasing function of the inverse 
temperature 13= \IT, 

^(A,i3): 
l/2-i-(e fiKo ir 
l/2H-(e l3\o. \r 

At high temperatures R~\, and for low temperatures 
R ~ VA. In the latter case, the dominant contribution to 
the aspect ratio is given by the ground state of the system 
and reflects its anisotropy. 

In the presence of the interactions, the Hamiltonian of 
the system can be written as 

2m J 
dVlVip^Vip 

-H at'(p'+ A-z")!/<+t/(H-4'i7/!/<»(//] , 

(1) 

where p^ = x' +y^, a± and a- are oscillator lengths, and 
/ is the .j-wave scattering length [8,14]. Qualitatively, the 
temperature dependence of R(\, (3) preserves the main 
features of the noninteracting case. At high tempera- 
tures, the interaction is irrelevant and R~l. At low 
temperatures (for sufficiently small fraction of atoms 
out of BEG), the HF approximation is justified and the 
ground state wave function(giving the main contribution 

to the aspect ratio) satisfies the NSE. After rescaling of 
variables [10], the NSE can be written as 

[-A + x^ + y- + X'-z^+A\ilf{r)\-]ilj{r) = 2Ciljir). 

(2) 

Here, A = ^'TTlN/a± characterizes the interaction 
strength, N is the number of particles in the condensate 
(A ~ 520 for N ~ 5000 [15]), and C=fji/(^w^) > 0, 
fi being the chemical potential. In the case of large 
condensate fraction (strongly interacting case, A » 1), 
the kinetic term can be neglected [8,10] and the ground 
state (normalized to unity) wave function is given by the 
Thomas-Fermi approximation, 

fir) = 
1 

(2C-x--y--X^z^) 0 (2C-x--y^-X^z-). 

(3) 

where 2C= [15AA/(8T7)]"\ and 0 is the Heaviside 
step function. The aspect ratio, R(A,\), is increasing 
function of A, and the ground state solution Eq. (3) takes 
on its maximal possible value (R = \) among all ground 
state solutions to the NSE. In the present case (A = V8), 
this means that the maximal effect of interactions is to 
raise the value of the aspect ratio on 67 % with respect 
to the noninteracting case. Moreover, as shown by 
Dalfovo and Stringari [10], the aspect ratio for A = 520 
(corresponding to N= 5000 atoms in BEG) is R = 2.3, 
i.e., 37 % higher than in the noninteracting case. 

Let us now return to the BP wave function [8]. In 
order to simplify the derivation of the BP wave function 
from the high-temperature expansion, let us for a while, 
such as in Ref. [8], neglect the anisotropy of the oscilla- 
tor potential [16]. Because the kinetic energy of parti- 
cles in the system is approximately 200 times smaller 
than the characteristic interaction energy [8], it is 
reasonable to consider the expansion of the partition 
function of the system, Z(y8, ^^), in powers of the kinetic 
term. 

Z(/3,jLi) = \Dil/(x,T)DiP(x,T)e''' 2 
J « = 0 

Here ^o is the "unperturbed" action. 

[-^-/(2OT)]" f fdyvrv<A)"= 2 z„(i3,fji). 
Jo   J ' 11 = 0 

(4) 

-{7-{^*-£ 
with fields satisfying the periodic boundary conditions, 
i/'*(x, ;8) = i/'*(x, 0) and \\iix, P) = i()(x, 0). Expansion 
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[Eq. (4)] is the high temperature expansion and we are 
not exactly in the BEC regime. However, the HP approx- 
imation is avoided. 

In the first term (corresponding to « = 0) of the sum 
in Eq. (4) one finds a product of partition functions of 
the anharmonic oscillators {H;,}, labelled by the 
space point x. Using the lattice approximation 
X = /(mi, m2, m^) = Im with the scattering length /(the 

smallest length in the system) being the lattice spacing, 
one has for field operators i/'*(x) = (//„/V/' and 
ilj(x)=iJ/,jV?,and 

Zo(l3,iJi) = Uz"'(l3,fJi) 

Here, Z"'{ji, /ji) is the partition function of the one-site 
Hamiltonian //„, 

^ m — 
2mP 

l\   2       -        ^x    2m/' 
(m\ + 1712 + m^j - —;::r~ M ~ 4TT 

fix ^- 
(//+(X)!//(X)H-4T7(/'+(X)!/<(X) 

After redefining parameters, 

, = — {m\ + m2 + mi) 
a I 

one has 

Z"(/3,/i) 

= 2 e}ip(-4Tvpk'- + 0iJik + 4'n0k-0kb„). 

Let us assume that the value of the chemical potential 
jS /I is negative and order of 10 (self-consistency of this 
assumption will be shown below). By substituting 
T—lO'K for the temperature, one has 
4T7;8^ 12-17 X 10\ and 

Z"(;8, fx) = 1 +e^'^-^''"' (1 -H Cl(e-""'"'')) 

The resulting partition function 

Z„(;8,M) = n(l+ e *-''"*-■), 
m 

leads to the distribution function (i/'*(x)(//(x)) of the 
Fermi-Dirac type. 

<(//^(x)(//(x)) : 
1 

I + Q-I3fi + I3b„ 

with the chemical potential /I to be determined from the 
normalization condition, 

N 
I3b,„ 

(6) 

Let A^ — 5000 be the number of particles in the system. 
Using I'^/a'i ^ 2 X 10'", and, neglecting 1 in the de- 
nominator of Eq. (6), one gets e'^''— 1.3 X 10'" 
N/TV^'- which implies PfL ^ In (10') ^ - 16.1, in full 
accord with our assumption. 

We cannot justify our treatment for low temperatures. 
Nevertheless, under the assumption that our expansion 
holds up to low temperatures, the profile of the square 
root of the density function i/'o(x) of the system turns out 
to be the BP trial wave function [8], 

i/'o(x) = V {(/'^(x) (/((x)) = const X exp (- —5- 

where d± =a\/il Vj8 1. The very fact that the BP 

wave function is the first order result suggest that it may 
not describe BEC well. Therefore, the aspect ratio 
obtained from the BP wave function may not be reliable. 
Moreover, the profile of the BP function differs signifi- 
cantly from the exact ground state wave function calcu- 
lated numerically in Refs. [9,10]. 

3.    New Analytical Ansatz 

We shall show that the ground-state wave function 
f(r) of the system can be well described by a simple 
analytical Ansatz (cf. Fig. 1), 

f = -rW[Acxp(4C-p'-RHA,\)z')], (7) 

where W(x), defined as the principal branch (regular 
at the origin) solution to the Eq. We''' = x [17], is a 
standard MAPLE function [18]. The constant C in Eq. 
(7) is to be determined from the normalization condi- 
tion, //'(r)d'x=l. To approximate the ground-state 
solution to the NSE, the value of R should be supplied 
from the numerical solution [10]. On the other hand, 
given the experimental value of R, our Ansatz can serve 
to reproduce the profile of the ground state. 
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Equation (2) is a nonlinear equation and, in the 
present case, no exact solutions are known except for the 
two limiting cases, A = 0 and A/ « A/\ In what 
follows, we shall construct our Ansatz to reproduce 
correctly the two limiting cases and to interpolate 
smoothly between them as the interaction changes. Note 
that in the strong interaction limit the Baym-Pethick 
trial wave-function cannot be used at all and the 
Thomas-Fermi approximation was used in Ref. [8] in 
this limit. The main point in our derivation is to use 
instead of the second order differential equation 
[Eq. (2)] a set of first order differential equations which 
reproduce correctly both the noninteracting limit 
{A = 0) and the strongly interacting limit (A/ « Af^). 
In this sense, our Ansatz will be exact in the first deriva- 
tives. In the noninteracting limit, Eq. (2) reduces to the 
stationary Schrodinger equation for an anisotropic oscil- 
lator and the (normalized to unity) ground state wave 
function is 

/(/•) = —574 exp 
IT 

(x-H-y-H-Az') (8) 

with C = 2 + X and, in agreement with our previous 
discussion, R = VA. One notice that/(r) satisfies the 
set of first order differential equations, 

dj=-xf,   d2f=-yf,   X-'d,f=R-\\)d,f=-zf. 

(9) 

On the other hand, if A/« A/^ A/VA, the (normal- 
ized to unity) ground-state wave function is given by the 
Thomas-Fermi approximation [see Eq. (3)], and 

AfdJ^-xf,   Afd2f^-yf, 

\-'Afd,f=R-\\)Afrhf'^-zf. (10) 

Now, the first order differential equations (8,10) can 
be combined into the variational principle, E[f] = 
J Xj Pj Pjd^r,    where    Pt=[(l+Af)dt+x]f,    P,= 
[(l+Af)d2+yV, P3=[R-\A,X){l+Af)ds+zV- The 
actual form of /"s in the asymmetric case is fixed by the 
requirement to make simultaneous integration of the 
first order differential equations [Eq. (11)] possible. The 
variational principle implies the following set of first 
order equations for the ground state wave function. 

dj 
Pf 

1+Af 
d,f=-R\A,\) zf 

1+Af 

(11) 

By integrating Eqs. (11) one obtains 

fe^f''^ = exp[2C-p-/2-«-(A,A)zV2], 

from which our Ansatz [Eq. (7)] follows immediately. 
Provided that p^ + R^(A, X)z^ ^ 4C,f can be found 
explicitly using successive iterations. 

r = 7 In 72 = 7 In 

A        1 

> 0,    (12) 

In 

where s = exp [2C - p^I2-R-(A, X) z']. Obviously, 
/(r) given by Eq. (7) reproduces correctly the ground 
state wave function both in the noninteracting limit 
(A = 0) and in the strongly interacting limit (Af' » 1), 
and interpolates smoothly between the two limiting 
cases in the intermediate region (see Figs. 2,3). 
One can verify that if (A/^»l) then A/~- 
[l/(Af-y](x^ + y- + R\A,X)z- + 3Af)f, and the 
kinetic term is suppressed by the factor {Afy^ with 
respect to the remaining terms in Eq. (2). Our Ansatz 
can substitute for the BP trial wave function and can play 
the role of a new trial wave function in various varia- 
tional calculations. Given experimental values of the 
aspect ratio, our Ansatz can be effectively applied to 
describe the initial BEC wave function and to calculate 
all relevant properties of the initial BEC. We believe that 
the derivation of our Ansatz can be extended to deal with 
excited states too. 

/ 

0.10 

0.00 

Fig. 2. A comparison of the ;c-dependence of the ground-state 
solution of Baym and Pethick (solid line), strong limit (dot-dashed 
line) and our approximate solution (dashed line). The same values of 
the parameters were used as for Fig. 1. 
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Fig. 3. z-dependence of the ground-state solution of Baym and 
Pethick (dot-dashed line), strong limit (solid line) and our approximate 
solution (dashed line). 

4.    Discussion and Conclusions 

In this paper, only the properties of the initial conden- 
sate were considered. To find the connection with exper- 
iment, it is necessary to discuss properties of the system 
during the transition from the strong trap to the weak 
trap and its subsequent ballistic expansion from the 
weak trap. Obviously, the characteristics of the system 
will change after the expansion and will strongly depend 
on the condition of the expansion (i.e., whether it is 
adiabatic or abrupt). Nevertheless, the present study 
allows us to give an upper bound for the aspect ratio of 
the condensate after its expansion directly from the 
strong trap, i.e., in the absence of the intermediate weak 
trap, as it took place in [2]: the aspect ratio of the final 
system is always lower than that calculated for the ini- 
tial condensate. Indeed, after the expansion, (i) there is 
no more anisotropic potential applied, (ii) the self- 
interaction of bosons, which gives rise to the increase of 
the aspect ratio with respect to the noninteracting case, 
is decreasing. Note that if one can measure the aspect 
ratio directly after the expansion from the strong trap as 
it should be done in future experiments, it would be 
possible to estimate the real number of the particles in 
the condensate. 

We want to emphasize that, as can be found from 
comparison of the results obtained from the BP wave 
function, the Thomas-Fermi approximation, and from 
the exact numerical solution, the aspect ratio may be a 
very sensitive characteristic of the wave function and 
may change considerably even when other characteris- 
tics are not changed by a perturbation (such as an 
external potential or an interaction). That is why we 
expect that taking into account correlation effects may 

lead to considerable changes in the aspect ratio, 
although for other characteristics the Hartree-Fock 
approximation will give correct results. We will consider 
this question in detail in a forthcoming paper [13]. 

Summarizing, given the value of the aspect ratio, both 
the profile of the ground state and the quality of BEC 
can be estimated. This allows one to estimate the 
number of particles in the initial condensate. We showed 
that the Baym-Pethick trial wave-function (i) is only the 
first order approximation in the high temperature expan- 
sion for the system and (ii) does not describe the conden- 
sate wave function accurately even for weak and inter- 
mediate interactions. Note that in the strong interaction 
limit the Baym-Pethick trial wave-function cannot be 
used at all and instead the Thomas-Fermi approximation 
was used in Ref. [8]. In order to describe the ground 
state of the initial condensate in the whole range of the 
interparticle interactions, we proposed a simple analyti- 
cal Ansatz which, in contrast to the BP trial wave func- 
tion, reproduces correctly both the weak and the strong 
interaction limit and interpolates smoothly between the 
two limiting cases as interaction changes. 
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