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Epilepsy is a prevalent condition characterized by recurrent,
unpredictable seizures. Monitoring with surface electroencepha-
lography (EEG) is the gold standard for diagnosing epilepsy, but
a time-consuming, uncomfortable and sometimes ineffective
process for patients. Further, using EEG over a brief
monitoring period has variable success, dependent on patient
tolerance and seizure frequency. The availability of hospital
resources and hardware and software specifications inherently
restrict the options for comfortable, long-term data collection,
resulting in limited data for training machine-learning models.
This mini-review examines the current patient journey,
providing an overview of the current state of EEG monitoring
with reduced electrodes and automated channel reduction
methods. Opportunities for improving data reliability through
multi-modal data fusion are suggested. We assert the need
for further research in electrode reduction to advance brain
monitoring solutions towards portable, reliable devices that
simultaneously offer patient comfort, perform ultra-long-term
monitoring and expedite the diagnosis process.
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1. Introduction

Epilepsy is a severe neurological condition that affects millions of people worldwide. The main symptoms are
recurrent seizures which can be a traumatic experience for the individual [1]. Epilepsy diagnosis requires
attendance at a specialized epilepsy clinic or hospital. The incidence of false-positive diagnosis reportedly
ranges from 2% to 71% [2]. Hospital-based monitoring depletes financial, mental, physical and time
resources. In 2016, the global prevalence of active epilepsy was 45.9 million individuals with 126 055
epilepsy-related deaths, 13.5 million disability-adjusted-life-years, 5.9 million years of life lost (YLL) and 7.5
million years of life with a disability (YLD) [3]. In low- and middle-income countries, greater premature
mortality has been associated with lack of access to medical facilities [4]. These statistics emphasize the need
for improved tools for epilepsy diagnosis and treatment.

Surface or scalp electroencephalography (herein termed ‘EEG’), recorded from the head surface rather
than inside the scalp, has been a requisite initial diagnostic test in epilepsy since the 1940s [5]. Clinically,
the fundamental role of scalp EEG is to non-invasively capture electrical signals that can indicate states of
seizure (‘ictal’) or non-seizure (‘interictal’), in turn enabling identification of the seizure onset zone. For
individuals who require intracranial monitoring, scalp EEG is integral in assessing the optimal location
for electrode placement. Likewise, in the assessment of surgical candidacy or other minimally invasive
treatments, such as stereotactic laser thermal ablation and responsive neurostimulation (RNS), scalp
EEG can guide the initial delineation of the seizure onset zone. The likelihood of surgical success can
also be determined using scalp EEG [6–8].

This mini-review focuses on surface EEG rather than alternative EEG monitoring such as intracranial
or stereotactic EEG (sEEG). Briefly, sEEG involves the placement of electrodes in the deep brain
structures, where the electrical activity cannot be effectively monitored from the head surface. A more
extensive explanation of intracranial, microelectrode-based recordings in epilepsy is made elsewhere
[9]. This review will first introduce the concepts of the electrode, channel and the current seizure
logging and detection process, where the number of channels is most important. Next, channel
selection methods and the scenarios where they may be most applicable are presented. Lastly, the
opportunities for channel reduction are discussed, including options to augment EEG data with multi-
modal physiological data and the future of EEG wearables.
2. Electrode versus channel—what is the difference?
In scalp EEG, electrodes serve as a crucial hardware component for recording electrical activity in the brain
[10]. The conventional EEG electrode, known as a ‘wet electrode’, is a disc-shaped silver/silver chloride
sensor. The sensor is coated with conductive gel, securing the electrode to the scalp and enhancing the
electrical signal quality. Scalp EEG electrodes are typically classified as ‘macro-electrodes’ with a diameter
greater than 3 mm, while ‘micro-electrodes’ used in sEEG have a diameter of less than 1 mm. When two
electrodes capture a signal between them, they are considered a ‘channel’. The amplifier, which doubles as
the recording device, is connected to the electrode via wires. The user selects the channels in most cases
since EEG software typically enables channel manipulation through the ‘montage’ settings. Reducing the
number of physical electrodes on the scalp could decrease the number of available channels, limiting the
number of channels available during the EEG analysis phase. Consequently, the question arises regarding
the impact of reducing the physical electrodes used during recording.
3. How is electroencephalography recorded and what does it represent?
The electrical activity recorded from the scalp generally represents the summation of the postsynaptic
potentials from the electrical dipoles between the soma and apical dendrites of large populations of
pyramidal neurons. Therefore, EEG recordings continuously monitor neural activity and capture
spontaneous or induced changes. Visually, scalp EEG enables the analysis of the spectral characteristics of
the electrical signals, usually ranging in frequency from 1 to 30 Hz. Also captured in the spectral
frequencies are evoked potentials—electrical signals that vary due to external or internal stimuli. Changes
in EEG signals could represent spontaneous electrical brain activities that exhibit dynamic, stochastic,
nonlinear, non-stationary and complex behaviour with high temporal resolution. Given the electrode
position on the scalp, the spectral power can be used as a marker of local synchronization. Such markers
can then be altered with computations to infer synchronization between two distant regions in the brain.



ho
sp

ita
l:

in
pa

tie
nt

/o
ut

pa
tie

nt
ho

m
e:

ou
tp

at
ie

nt

Imaging:
SPECT, MRI,
MEG, PET, CT
scan

Ward: 24 hours to 5 days
Telemetry = 6 hours
(3 asleep, 3 awake)
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Figure 1. Schematic of the typical inpatient and outpatient journey. In the hospital setting (a, Journey A), a carer accompanies the
patient for the entire ward stay. Patient comfort, mobility and limited hospital resources restrict the time a patient can spend in the
hospital and whether they can even be accommodated. Conversely, the home setting (b, Journey B) facilitates patient comfort and
mobility. Patients can continue their daily activities while being monitored for an extended duration. Unfortunately, improving
patient comfort and mobility through home monitoring may come at a potentially higher cost financially than a ward stay.
Further, electrodes do not last long on the scalp; the patient must inevitably return to the hospital or pay for a home visit, where
a technician can perform electrode adjustment, replacement or removal. Using an in-home video camera during the monitoring
period increases the potential for, and risk of, data privacy issues and data breaches. Improvements to this imperfect process lie in
extending the research in electrode reduction to enable long-term wearable solutions for the patient. Key: SPECT: single photon
emission computed tomography, MRI: magnetic resonance imaging, MEG: magnetoencephalography, PET: positron emission
tomography, CT: computerized tomography, ECG: electrocardiogram, EMG: electromyography, EOG: electrooculogram.
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4. The current patient journey
The lengthy epilepsy diagnosis process involves multiple tests and continuous monitoring of EEG and
video (vEEG). The diagnostic process can occur in a hospital ward or via an ‘ambulatory’ service
where the EEG device is worn at home. Figure 1 depicts the journey through the healthcare system
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Figure 2. EEG signals are recorded from electrodes placed on the scalp in the 10–20 format (a). The signals are then displayed on readout
software. An EEG technician, neurologist or epileptologist then visually identifies and labels the interictal, pre-ictal and ictal phases (b).
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from the first seizure to epilepsy diagnosis. The various monitoring scenarios (ward/ambulatory/
routine) begin when a patient is referred to a tertiary epilepsy centre after a first seizure. A full-time
carer must be present if ward monitoring is required, placing additional strain on carers and the
patient’s ecosystem. If a ward stay is not required or not possible due to lack of resources, a clinician
may obtain a 20–40 min routine EEG recording (as is the case in Germany).

The possibility of delayed diagnosis or misdiagnosis arises through several aspects of the diagnosis
process. First, if seizures are not evident on the EEG or vEEG, there is a high likelihood of inconclusive
EEG results, where epilepsy is neither confirmed nor excluded. Thus the risk of misdiagnosis must be
weighed against that of a false positive diagnosis, a complex decision for clinicians with severe
outcomes for patients [2]. The nature of current scalp electrodes presents complications regardless of the
monitoring setting. Existing devices require abrasive conductive gel for 19 or more electrodes, which
can irritate or even damage the skin. The water-based conductive gel dries over time, impacting the
signal impedance. Individual characteristics, such as hair and scalp thickness and pathological state, can
influence EEG recordings. Electrode application for individuals with neurological or sensory disorders is
especially challenging, and the electrodes can fall off easily during a motor seizure. This requires
electrodes to be re-applied multiple times in a monitoring period, resulting in technician variance.

A valuable extension of the relatively short EEG monitoring periods could be sending the individual
home with a wearable device suitable for long-term daily EEG recordings, which a reduced electrode set
would make feasible. Yet this path has its challenges. From an engineering perspective, technological
advances have made automated seizure detection and device portability a reality. The longest scalp
EEG recording using wet or dry electrodes is approximately 10 days. From a patient’s perspective,
mobile EEG systems must be comfortable and appealing to wear, and current designs are lacking.
Since patients’ self-record of their seizures can be inaccurate, achieving a balance between technical
features and patient comfort in a portable EEG system would further evolve home EEG monitoring.
5. Seizure logging and detection—current state
5.1. Human-based manual seizure detection
Currently, EEG is the gold standard to detect interictal, ictal and subclinical epileptic activity, including
critical conditions like status epilepticus [11,12]. Typical EEG monitoring requires up to 19 head and two
reference electrodes, based on the international 10–20 electrode placement system [13]. This standard
electrode placement applies in various settings, including epilepsy centres and hospital inpatients. In
ambulatory monitoring in the home setting, a device with up to 19 electrodes is often used.

Electrode positioning and a typical ictal event are illustrated in figure 2. Here, an interictal period
precedes an ictal event (red highlighted section), shown on a montage of five channels out of the
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standard 21. Recording EEG data with a complete electrode set over an extended period yields reliable,

interpretable EEG that can inform clinical decisions. In routine clinical practice, human experts (experts)
may be highly trained nurses, EEG technicians, neurophysiologists and neurologists who identify, label,
and classify the seizure onset and type. The experts label the EEG with the seizure time, length and
location. However, this manual process is highly time-consuming and can be error-prone.

5.2. Computer-based automated seizure detection
Computer-automated techniques, such as machine learning (ML) algorithms, can detect and label seizures.
Channel selection involves reducing the number of electrodes to be analysed or utilizing a range of feature
selection and classification techniques, or both [14–18]. The model is trained on individual patients or
across all patients, then tested on the dataset of interest [19,20]. The quantity of recorded EEG signals often
plays a fundamental role in the success of the seizure detection model [21], as does the seizure type [22].

In automated seizure detection, digital signal processing allows extracting typical EEG signal features,
which can be raw or engineered. Prior human studies examined engineered features such as relative
average amplitude, relative scale energy, average cross-correlation function, relative power, bounded
variation [23], phase-amplitude coupling [24], root mean square [25], energy [26], median frequency [27],
entropy [28,29], correlation dimensions [30–32], maximal Lyapunov exponent [33], skewness and kurtosis
[34] and even models from game theory [35]. Such features may be the sole focus of the model [28] or
combined and applied to a selected EEG frequency band [36–38]. Raw features can be directly extracted
from the raw EEG or after signal processing with short-time Fourier transform (STFT) or wavelet transform.

Conventional ML methods can then be trained to classify the EEG signals based on the selected EEG
features [38–40]. During training, the EEG features are fed to the model, and additional threshold
mechanisms may be applied to the output via the selected ‘classifier’ technique [41]. Standard classifier
techniques include but are not limited to Bayesian, K-nearest neighbours (KNN), decision tree, random
forest and support vector machine (SVM) classifiers [21]. Such classification models typically group patients
based on their seizure type. EEG-based biomarkers can represent features such as seizure susceptibility [42]
and intra-patient seizure morphology variability [43], which may improve automated seizure detection
models. However, convolutional neural networks (CNN) are advantageous over conventional ML models
as they allow training and inference directly from the raw data, spawning many encouraging studies from
the seizure detection community [44–47]. Indeed, our recent work used a Bayesian CNN-based model to
show that interictal slowing activity is a promising feature for seizure susceptibility prediction [42].

The reliance of automated seizure detection models on engineered features highlights their
vulnerability to changes in the brain state, electrode count, recording region, EEG artefacts and signal
noise [48,49]. Subsequently, the reliability of channel selection algorithms is also affected when models
are fed insufficient data. Thus it is evident why electrode reduction is considered problematic and
receives little enthusiasm in the clinical setting. However, channel selection algorithms are improving;
several of the current channel selection models and their viability will now be discussed.

5.3. Channel selection methods
Channel selection involves applying a computational or statisticalmethodology such asmachine learning to
extract the channels with the most importance at any given moment. If machine learning techniques are
used, then sensitivity and specificity scores are applied to the result, indicating whether the model
successfully extracted the most important channels. Sensitivity is taken to measure the true positive rate
(TPR), whereas specificity measures the true negative rate (TNR). Sensitivity and specificity act as widely
accepted, essential measures to evaluate the machine learning model’s performance. The important
channels can be selected across a group of patients, or they can be patient specific [50], inferring unique
channels for individual patients depending on their epilepsy type and onset zone [51,52].

A foundational study by Shih et al.used the so-called ‘greedy backward elimination’ algorithm to select a
subset of seven features that produce the lowest false positive rate from each channel [53]. The reduced
number of channels was between 18 and 4.6, achieving improvement in false-positive rate (FPR), from
0.35 to 0.19 h−1, yet sensitivity and detection delay worsened, from 99% to 97% and 7.8 s to 11.2 s,
respectively. More recently, Moctezuma and Molinas compared the popular greedy backward elimination
algorithm with two versions of the non-dominated sorting genetic algorithm (NSGA), NSGA-II and
NSGA-III [54]. They achieved an accuracy between 0.98 and 1 using one to two channels, comparable to
their detection result with the full electrode count (accuracy ranged from 1 to 0.97).

The role of variance contributed by individual channels has also been widely explored. Duun-
Henriksen et al. reduced channels by selecting the largest variance in channels, achieving a detection
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performance on three channels near equivalent to a clinical neuro-physiologist’s review on the same

dataset EEG [55]. Birjandtalab et al. used a random forest algorithm to determine which channels
contributed the most variation to discrimination of seizure versus non-seizure events [56]. However,
their minimal channel reduction, from 23 to 18 channels, provides little difference in a clinical
application where 19 electrodes are standard. Bhattacharya and colleagues pre-selected 5 out of 23
channels to perform a multivariate analysis of EEG signals [57]. The one channel that displayed the
least standard deviation informed the selection of the remaining four channels based on their
interdependency level and similarity to the first channel. The model’s performance ranged from 0.95
to 0.99, making it comparable to other channel selection methods.

Aunique approachbyShah et al. focusedondomainknowledge to inform the channel selection [58]. They
exploited insights on brain hemisphere function, the proximity of a given electrode to other electrodes,
electrode position on the scalp, and the region the electrode covered in terms of signal capture. Their eight-
electrode montage produced the most favourable results (sensitivity 30.66%, specificity 88.79%) yet their
work affirmed the scarcity of superior techniques that permit electrode reduction while maintaining model
sensitivity. A prospective study by Kjaer et al. investigated automated seizure detection in a paediatric
population of six patients aged 7–12 years [16]. Using three electrodes with references, they achieved a
mean sensitivity of 98.4%, a specificity of 100% and a mean false detection rate of 5.5 per 24 h. Their study
lacked comparisons with a full electrode set, but the prospective design and facilitation of at-home device
usage were advantageous. The reviewed studies indicate that the availability of sufficient and reliable EEG
data is critical to translating automated seizure detection into the clinical realm.
30022
6. Limitations of reduced electrodes/channels
Despite the clear benefits of using fewer electrodes, the recording of less data, or poor spatial resolution
compromising the quality and reliability of the diagnostic method remains a concern. Thus, reducing
electrodes requires a trade-off between electrode count and signal quantity and quality.

The impact of electrode reduction on human and computer seizure detection performance is
problematic. Deterioration in performance is attributed to the reduced availability and accuracy of the
EEG data and technological challenges prevail in data collection and hardware design. Stevenson et al.
[59] found electrode reduction negatively impacted visual interpretation by human experts. They
misjudged seizure burden, and seizure annotation was significantly higher when they used 19 rather
than eight electrodes. Rubin et al. [60] had two epileptologists label cases as seizure or no seizure.
Compared with ground truth data, the epileptologists achieved a combined 70% sensitivity and 96%
specificity for seizure detection. The reduced arrays were believed to contribute to the inferior sensitivity
score. In a similar study, Herta et al. compared human expert seizure annotations of intensive care unit
(ICU) EEG recordings with an automated electrode reduction model [61]. A step-wise method reduced
the electrodes, calculating the sensitivity and specificity for each eliminated electrode. A minimum of
nine electrodes was deemed necessary to detect the same ictal patterns as the human experts.

Indeed, since much data is discarded during pre-processing steps, beginning with the maximum
amount of data may be advantageous. Further, a complete electrode set-up enables the EEG recording
to capture the seizure activity’s complete spatial and temporal evolution compared with the sparse
spatial coverage by a few electrodes. This substantially helps to differentiate between seizure activity,
‘normal’ EEG and artefacts, as artefacts often contaminate EEG due to muscle activity or movements.
A higher number of electrodes used in monitoring provides a higher chance that some of the
electrodes capture mostly brain activity (rather than artefacts) which can be clearly assigned to a seizure.

For instance, if an individual experiences an unexpected seizure type not captured in their ward stay
(i.e. a focal to bilateral tonic-clonic seizure occurring in someone diagnosed with focal seizures), a channel
or electrode in only one or two regions may miss valuable information. Additionally, though channel
selection studies highlight the wealth of possibilities in channel selection, the model combinations and
interchangeably used terms (electrode and channel) make delineation, comparison and reproducibility
of best-in-class models challenging. These impositions illustrate the need for further research.
7. Benefits of reduced electrodes/channels
Achieving the balance between data quality and fewer electrodes in a portable EEG system would greatly
evolve home EEG monitoring. In particular, a low channel device could provide reliable information
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about seizure frequency to monitor treatment and get a better ground truth for drug trials, thus

improving patient comfort while maintaining diagnostic reliability.
Accuracy of patient-reported seizures is highly dependent on seizure type, and patient ability [62].

Such dependence can lead to under-reporting of seizures, a long-standing, significant clinical problem
[62–70], which patients themselves are aware of [71]. Ultimately, inaccurate seizure reporting impacts
patient diagnosis and treatment, and conflates the evaluation of medication efficacy [72].

Non-invasive mobile EEG systems offer solutions to such challenges and have been reported by
patients as valuable in seizure detection and management [73]. Reducing the number of electrodes
required in these systems or incorporating channel selection methods would extend their adoption in
the following scenarios. In the first scenario, channel selection may be a second step for first-seizure
or new-diagnosis patients after data is collected in the ward using the full set of electrodes. A low-
channel device could be worn beyond the clinic if seizures were not recorded during the ward stay.
This would alleviate the need for patients to manually log seizures, possibly yielding more reliable
information about seizure occurrence and frequency, and providing a ground truth for comparisons
during medication trials.

In the second scenario, the channel selection methods can augment other neuroimaging data, such as
MRI, to corroborate imaging findings and aid the determination of treatment pathways. In the third
scenario, channel selection methods would be valuable for highlighting the optimal brain regions for
placement of invasive or ambulatory devices for ultra-long-term monitoring. In such cases, the onset
zone is likely to be established using gold standard clinician assessment.

In the clinical setting of the ICU, the use of a reduced number of electrodes for continuous EEG
(cEEG) without compromising seizure detection accuracy is a common practice [74–76]. The nature of
critical care provided in neonatal and adult ICUs makes it challenging for technicians to apply and
review a full electrode set, resulting in the current consensus on the reliability and use of a reduced
number of electrodes [77,78].

Several studies in paediatric and adult ICUs demonstrate that electrode reduction does not
significantly compromise the sensitivity and specificity of seizure detection. One recent study
exploring the impact of electrode reduction in a paediatric epilepsy monitoring unit showed the
sensitivity and specificity of human detection were only marginally lower for the reduced montage
(0.65) compared with the full montage (0.76) [79]. Another study evaluated simultaneous recordings
from a 23-electrode EEG and a six-electrode EEG in 12 adult ICU patients to detect non-convulsive
seizures, with two neurophysiologists achieving consensus regarding the seizure activity in all 12
patients [80]. Thus the importance of fewer electrodes has been emphasized [61], especially in
neonatal ICUs [81]. However, a recent systematic review of amplitude-integrated EEG (aEEG), which
uses just two to four electrodes to diagnose neonatal seizures, highlighted the relatively low
sensitivity and specificity and called for future studies to address this concern [82].

All the studies noted that including a human assessor could greatly enhance automated seizure
detection; thus, electrode reduction may be less problematic with human assessors involved. Perhaps
it is only in the non-human evaluation of EEG recordings, such as in computer-based automated
seizure detection, where electrode reduction poses a problem. Therefore opportunities to boost
reduced electrode EEG recordings and channel selection methods may be through incorporating data
from diffusion magnetic resonance imaging (dMRI) and wearables.

7.1. Combining electroencephalography with diffusion magnetic resonance imaging data
Advances in neuroimaging of brain structural connectivity may offer a unique solution whereby a
patient’s MRI scan guides electrode placement. The role of structural connectivity in focal seizures, as
observed in the brain’s white matter, is largely established [83]. Therefore imaging such as dMRI
presents a worthwhile aid for patient-specific determination of electrode placement. Diffusion MRI
enables the assessment of white matter fibre or tissue characteristics [84] and the derivation of metrics
that represent the microstructural organization [85]. Further explanation of dMRI is beyond the scope
of this review. However, the potential for dMRI to augment EEG in a range of diseased populations
has recently been shown [86]. In epilepsy populations specifically, a relationship was identified
between source localization metrics and alterations in white matter tracts [87–90] and event-related
potentials and diffusion tensor metrics [91]. Further, microstructural white matter alterations have
been shown to be predictive of surgical outcomes using dMRI [92].

Although the previous works focused on concurrently recorded dMRI and EEG using the standard
full set of electrodes, the advantages of including dMRI in an analysis pipeline are evident.
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Figure 3. A proposed method for dMRI-guided EEG electrode placement. The MRI scans (T1 and diffusion) (a) are processed through
an imaging pipeline to obtain tractography and tract-weighted tensor metrics (b). The EEG signals (c) are processed, applying
machine learning (ML) and automated channel selection (ACS) for seizure detection (d ), and the critical electrodes specific to
that patient are selected and ranked (e). Further, clinicians could use the results of the tract-weighted tensor metrics and the
patent-specific EEG electrodes to guide optimal placement for a wearable or implantable device.
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Individualized dMRI data combined with the automated ranking of EEG signals can support a patient-
specific pipeline for seizure onset zone selection by indicating the optimal electrode placement and the
number of electrodes required to optimize automated seizure detection. Figure 3 portrays a theoretical
process for using EEG and dMRI to obtain the optimal electrode placement. Items (a) and (b) were
imaging pipelines explored in our previous work [93] while (c) and (d) illustrate a schematic
workflow for the addition of EEG data, resulting in (e), identifying the optimal implant site for a
long-term sub-scalp electrode or device.

However, obtaining a dMRI scan is costly, and its analysis with EEG can add additional time and
computational expense. Realistically, it would take several hours for the dMRI metrics to be produced,
making them unrealistic for real-time monitoring. An alternative would be to use interictal spikes
from a short (less than 20 min) recording to guide automated channel selection; however, this requires
interictal spikes to be present in the recording and also align with clinical information.

To realize the vision of combining multiple data modalities in real time, hospitals must be equipped
with high-throughput computer systems and hardware, an unlikely position for most publicly funded
hospitals, especially those in low-resource settings. Therefore the combination of dMRI and EEG,
though valuable, remains feasible primarily for the pre-monitoring stage where clinicians might use
dMRI metrics to guide the placement of EEG electrodes before monitoring or electrode reduction in
home monitoring. Fusing EEG with data from wearables may be another practical solution.
7.2. Combining electroencephalography with wearable data
Non-invasive wearable devices can also augment data recorded from fewer EEG channels. A recent
systematic review and meta-analysis evaluated the utility of non-invasive wearable devices in
identifying epileptic seizures [94]. The review highlighted that biometric physiological data (i.e. three-
dimensional accelerometry, surface electromyography, heart rate and heart rate variability) were
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beneficial in detecting tonic-clonic and psychogenic non-epileptic seizures with reasonable sensitivity

and varied false alarm rates.
Electrocardiogram (ECG) data has been commonly evaluated as an added seizure marker, with some

studies finding it improved seizure detection when combined with a limited channel EEG [95]. Other
biomarkers of seizure severity gleaned from non-brain wearables include autonomic changes,
frequency, type, post-ictal position and seizure duration [96,97].

Given the promise of these devices and EEG channel selection methods, researchers should combine
the two modalities to determine their suitability for augmenting the EEG data so that seizures can be
accurately and reliably detected. Research shows patients with epilepsy prefer wearables with higher
sensitivity over those with lower false alarm rates [98]. Therefore, combining a reduced-channel EEG
with a wearable may be an appealing option for improving the patient experience during the
diagnosis and monitoring phases.
 os
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8. Future of scalp electroencephalography wearables
Advances in EEG wearables primarily seek to reduce the number of electrodes and fuse innovative
techniques with the optimal locations for securing the electrodes to the scalp. An extensive review of
modern EEG wearables with reduced electrodes is available elsewhere [99]. However, noting some of
the clinical and research-grade devices and their benefits here is worthwhile.

The ‘Insight’ device by EMOTIV (EMOTIV) offers five channels, while the Neurotrail by Neuro-Pro AG
starts at eight electrodes and can be reduced to one; both utilize dry electrodes. The Neurotrail exemplifies
themulti-modal physiological signal fusiondiscussed in §7.2, as it contains a gyroscope andaccelerometer to
support its algorithms in real-time artefact detection and removal. The Advanced Brain Monitoring device
(Advanced BrainMonitoring Inc.) also offersmulti-modal signal fusion, using three frontopolar channels to
record EEG, electrooculography and electromyography signals. Ceribell Inc. offers an eight-channel seizure
monitoringdevicewith an inbuilt seizure alert system,making it advantageous for low-resource or intensive
care settings where experienced clinicians may not be available.

The REMI device (Epitel) attaches to the skin using a disposable sticker containing a hydrogel that
acts as both the adhesive and the conductive gel [100]. The attachment method enables continuous 24-
hour capture of EEG for up to a week; the recording is then given to clinicians for data analysis.
Though Epitel’s device is comparable to a full-electrode EEG recording, a key shortcoming is the
hydrogel base, which dries over time, resulting in similar outcomes to the conductive gel electrodes
[99]. However, the requirement to place it on a hairless skin patch (such as behind the ear) may be an
advantage of the device given the growing interest in ‘behind-the-ear’ or ‘in-ear’ EEG.

Indeed, aside from the REMI device, most of these devices are hardly discreet, deterring their use
beyond a clinical or research setting. Behind-the-ear or in-ear EEG addresses such concerns through
discreet placement, and recent studies have shown it can achieve a reasonable level of accuracy in
seizure detection [101,102].

At the forefront of the EEG wearable innovation are liquid metal-based wearables [103]. Gallium-
based liquid metals are a promising class of materials, with a key advantage being the concurrent
offering of low toxicity and high electrical conductivity while maintaining malleability [104,105]. The
products resulting from liquid metals have been termed ‘soft electronics’, as their properties afford
moulding into a range of desirable formations that are micrometres thin, stretchable, discreet and
attachable using stickers [103]. Still, the inherent challenges to be addressed before liquid metal
products become commonplace include bio-compatibility, toxicity, solidification, oxidation and
corrosion, which researchers are beginning to investigate [106,107].
9. Discussion and conclusion
SinceEEG is an establishedand reliablemethod forcapturingand identifying seizure activity, evolvingbeyond
the current scalp electrode requirements would amplify its utility. Given the challenges in automated seizure
detection and logging, a portable, reduced electrode device presents an invaluable solution to improve
diagnosis and the patient journey. A portable device with only a few electrodes would enable long-term
recordings, providing rich neurophysiological data for patient-specific data processing.

The analysis of existing works highlights the inspiration researchers can take from settings like the
ICU to improve electrode reduction study designs and methodologies. In epilepsy, automated seizure
detection models could be refined and enhanced by adding selective neuroimaging biomarkers and
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metrics from dMRI. The opportunity to improve the biometric and physiological data capture while

maintaining reliable seizure assessment may lie in the augmentation of EEG with additional data
from non-invasive wearables.

A resurgence of research into electrode reduction in the clinical setting will support the development
of portable, reliable devices, thereby enabling long-term monitoring and enhancing patient quality of life.
Future research should prospectively explore precisely how much long-term data with a full electrode set
is required to produce an optimal channel selection outcome. Similarly, researchers should look to
quantify the number of reduced electrodes, that are sufficient to produce a diagnosis or act as an
effective long-term monitoring device when combined with wearable device data. Personalized
models for such multi-modal data analysis would also be beneficial.

Transforming the existing solutions from a diagnosis-only state to a seizure logging and management
aid for clinicians and patients will enhance the patient journey. Neurobehavioural and psychiatric
comorbidities of epilepsy might be better understood [108,109]. The diagnosis and treatment
pathways for epilepsy comorbidities could be optimized [110,111]. Overall, a faster, reliable diagnosis,
with fewer hospital visits, would improve the patient journey in low-, middle- and high-income
countries, offering a safer and greater quality of life.
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