
THE UNIVTSSTTY OF MIAMI

The Dyn^nic Structure of a Wind -Induced Eddy

SY

Thomas Stephen <eefe, Jr.

A THES'ZS

Submitted to the Faculty
of the University of Mipmi

in partial fulfillment of the requirements for

tne cegiee of Master of Science

Cor'il Gables, Florida

August 1971



.0363



RAB3F

'

L POSTGRADUATE SCSOQD
CALIF.. 9394Q^>

O'KEEFE, THOMAS STEPHEN, JR. (M.S., Physical Oceanography)

The Dynamic Structure of a Wind-Induced Eddy . (August 1971).

Abstract of a Master's Thesis at the University of Miami. Thesis
supervised by Professor Claes Rooth.

The response of the ocean to an axisymmetric cyclone is

investigated using a model based on the conservation of potential
vorticity in the interior. The results, which confirm the conservation
potential vorticity, are used to obtain limiting values of the
vertical eddy diffusivity and an effective Ekman depth. Some aspects
of the response as a function of the horizontal wavenumber are al^o
investigated. It is found that high wavenumber motion does not penetrate
as deeply as low wavenumber motion.





THE UNIVERSITY OF MIAMI

The Dynamic Structure of a Wind -Induced Eddy

BY

Thomas Stephen O'Keefe, Jr.

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

August 1971

T-mzcz.i_





THE UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Subject

The Dynamic Structure of a Wind -Induced Eddy

Thomas Stephen O'Keefe, Jr.





ACKNOWLEDGEMENTS

During the time I studied at the School of Marine and Atmospheric

Science, I was fortunate to develop lasting friendships with many

people. I have also experienced a perceptible change in attitude

toward science and have developed a sympathy for the problems of the

scientist, and a respect for his motivation. The answer to the

question"why" remains man's greatest challenge. The friendships

made, and the change in perspective will be the most lasting and

beneficial effects of the last two years.

I am indebted to the members of my thesis committee, Dr. Kamal

Yacoub and Dr. Walter Duing . I am particularly grateful for the

infinite patience of Dr. Claes Rooth, the committee chairman, who

guided my efforts . I am thankful for the provocative advice of

Dr. C.N.K. Mooers who gave me a particularly valuable commodity,

his time.

Thanks are due Mr. Manuel Bascuas, who provided programming

assistance, and Miss Linda Monaco, who typed the several drafts of

the manuscript.

Finally, I thank my wife, Kathy, for understanding.

The financial support for this study was provided by the Office

of Naval Research Contract No. N00014-67-A-0201-0013, Project No.

NR 083-060.

in





TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF APPENDICES vi

I. INTRODUCTION 1

II. METHODOLOGY 5

III. DISCUSSION OF RESULTS 12

A. Discussion of the Solution and
Consistency of Results 12

B. The Mixing Process and Momentum Transfer 18

C. The Effect of Length Scale on Response 22

D. Geostrophic Velocities „ 25

IV. SUMMARY AND CONCLUSIONS 29

APPENDIX 31

LIST OF REFERENCES 39

IV





LIST OF FIGURES

FIGURE Page

1. The path of Hurricane Kara and stations of

R/V PILLSBURY. Wind speed in knots is indicated 2

2. The relation between density (p) , undisturbed
depth (Z«) and stretching (§) 7

3. Observed mass structure of ocean after passage of

Hurricane Kara. Isopleths are values of

sigma-t (o~
t) 11

4. Comparison between the observed mass structure
and the computed response after Hurricane Kara.
J (kr) = at 80 km 13

5. Log-linear plot of temperature (°C) vs depth (m) 19

6. Density difference (gm/cmJ ) plotted vs square of

depth (cm ) for potential energy calculation.
Station #24 is compared to the center of the
computed curves 21

7. Isopleths of stretching, £(m) , as a function of

depth and length scale. Values of § are normalized
to 100 meters pumping at 25 meters matching depth 24

6. Comparison of numerically calculated geostrophic
velocities (cm/sec) with velocities found using
the dynamic method (observed) 27

9. = constant surface separated into horizontal and
vertical components to illustrate coordinate
transformation technique 33





LIST OF APPENDICES

APPENDIX Page

A. The Natural Coordinate System 31

B. The Potential Vorticity Conservation Model 34

VI





I. INTRODUCTION

In October of 1968, Tropical Storm Kara forced R/V PILLSBURY

south from an operating area in the vicinity of latitude 30°25'N,

longitude 76°52'W. While in the stages of maturation, the tropical

storm displayed the curious behavior of slowing and crossing its own

path several times. Kara eventually reached hurricane force, increased

speed and moved on a generally northeast course. In transit to the

operating area after passage of the storm, the research vessel

experienced set to the right and then left, indicating that a hurricane-

induced eddy had been crossed. Bathythermograph stations were taken

in order to locate the associated dome-like density structure, and STD

stations across the presumed dome were taken after it had been located.

The track of Kara and the track of R/V PILLSBURY are shown in Figure 1.

The hurricane track was obtained from the advisories issued by the

National Hurricane Center.

Kara may be considered to have been quasi-stationary during the

period 14-15 October 1968. Therefore it affords an opportunity to

study some aspects of hurricane-induced dynamics through the upper

part of the water column. As Stevenson (1966) points out, hurricanes

are unique "laboratories" for the study of air-sea interaction and

ocean dynamics. Although the significant atmospheric effects of a

hurricane are spread over horizontal scales on the order of several

hundred kilometers, the most interesting oceanic effects take place

within an area which can be crossed in one day. Unfortunately,
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investigations of the response to hurricanes depend by necessity on

"cruises of opportunity." Given the availability of research vessels,

studies of this sort are further complicated by the unpredictability

of the occurrence, duration and track of a storm.

A study of low intensity storms such as Kara is particularly

relevant because the wind velocities are not too different from those

found in the winter storms in the North Atlantic Ocean. In particular,

the data provide a means of testing assumptions of conservation of

potential vorticity in the ocean. An analysis of those areas where

the conservation equations are not applicable is important because

understanding the causes of the differences between observed and

measured response contributes to an understanding of the response of

the ocean in the near surface layer. A third reason for studying such

storms is that the deep ocean response may be typical of numerous

storms of near hurricane force. If so, the associated changes in mass

structure are significant at great depths. For example, the

perturbation of the isopycnals will have drastic effects on acoustic

propagation at depths at least as great as the SOFAR channel. The

analysis also serves as an addition to a catalogue of techniques useful

in analyzing transient oceanic behavior.

Circular symmetry is assumed in the model used in this paper.

However, it can be seen from Figure 1 that insufficient stations have

been taken to positively identify the center of the vortex. Station 24

was made after the vortex had been crossed once, when the research

vessel returned to take a center station. It was felt that the station

was taken close to the center but the possibility that it was not





cannot be excluded. The stationarity of Kara increases the amplitude

of the response. Since the data were collected several days after the

storm passed, it may be assumed that most of the energy is found in

geostrophic motion.





II. METHODOLOGY

The existence of a cold water dome after the passage of a hurricane

is suggestive of upwelling. This was concluded by Leipper (1967) and

is supported by data collected by Landis (1966). Leipper's data

inspired O'Brien and Reid (1967) to pursue their study of upwelling in

a two layer ocean as a response to a stationary hurricane. O'Brien

and Reid established through a transient, non-linear model that the

wind stress associated with storms of hurricane force and structure is

capable of producing velocity divergence in the surface layer and large

scale upwelling. O'Brien (1967) added turbulent mixing to the model

and produced results which bear resemblance to Leipper's observations

of the near surface layer.

The problem can be approached somewhat differently. It is well

known that surface divergence and associated upwelling will stretch

water columns. A fluid will respond by spinning, thereby generating

relative vorticity about the vertical axis. The effect extends to

the bottom of the fluid and is transmitted much more efficiently than

momentum transfer by friction. The model in this study utilizes the

conservation of potential vorticity to describe the interior response.

The assumption of a frictionless interior makes the continuously

stratified problem tractable by allowing use of the conservation

equation in the interior. This model and O'Brien's differ because

they investigate different aspects of the response to axisymmetric

forcing. O'Brien solves the governing equations numerically as an
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initial value problem in time because he is interested in the evolution

of the response. By its very nature, his two layer model is incapable

of obtaining the structure of the interior. However, it is successful

in duplicating many aspects of the time dependent response, This

study seeks to model the steady-state response of the ocean independently

of the generating mechanism using a realistic density profile.

The model used in this study was derived by Rooth (1970) and is

presented fully in Appendix B. It makes use of the non-linear, time

dependent equations of motion in deriving the vorticity equation.

Hydrostatic equilibrium is assumed for the formation of the divergence

equation. It is assumed that the data were collected a sufficient

length of time after the storm passed to ensure that motion was

essentially geostrophic. Combining the divergence equation and the

vorticity equation results in a governing equation expressing the

conservation of potential vorticity in a geostrophic velocity field,

v2 § + *L <££ = o. n-i

§ is the lifting of a density surface from its undisturbed state (called

the matching level), f is the Coriolis parameter, and N^(Zq) is the

square of the Brunt-Vaisala frequency of the undisturbed state. Zq is

the geometric height in the undisturbed state. The observed mass

distribution perturbed from the undisturbed state. The equation is

the result of a transformation from cartesian coordinates with geometric

height as the independent variable in the vertical to a "natural"

coordinate system where density is the vertical coordinate. Figure 2

illustrates the relationship between § and Zq. Geometric depth is the

sum of Zq and \. Formally, Z = Zq(p) + § (Zq,t) , where r is the radius.
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Figure 2. The relation between density ( P) , undisturbed depth (Zq) and
stretching (£) .





Not only is the numerical solution considerably simplified in this

formulation, but solving in terms of the stretching is intuitively

appealing. It is the stretching which generates the relative vorticity.

The horizontal Laplacian of § transforms directly from cartesian

to cylindrical coordinates. Equation II-l is therefore the governing

equation in the latter system also. Let

§(Z Q ,r) = R(r)Z(Z )

in order to separate variables , and II-l becomes

,

f 2 Z
MR + ZV2R = 0. II-2

PTzo)

2 2
For notational convenience, N (Z n) will be written as N~.

Rearranging II-2 yields

f 2
• VL =

~v2r

nJ Z R
II-3

Since a function of Zq can be equal to a function of r only if they are

each constants, then

4 . 11 = -V2R = k2 TI _4
N| Z ^

Equation II -4 implies

lL Z" - k2Z = 0. II-5

Equation II-5 must be solved numerically because of the inclusion of

the Brunt-Vaisala frequency as a function of Zq, Note that the

selection of sign for the separation constant implies that solutions

are sought which are exponential in form in the vertical and harmonic

in the horizontal. Equation II-4 implies

V2R + k2R = o. II -6

Writing the Laplacian in full, one obtains





R" + R'+ k2R = 0, II-7
r

assuming axisymmetric motion. Equation II-7 is a form of Bessel's

equation and has the solution

R = B J (kr) + C N Q (k
2
)

.

II-8

Nq is a Neumann function or Bessel function of the second kind. Since

the solution must be finite at r =0, the constant C equals zero.

With no loss of generality, the radial solution is normalized to unit

amplitude at r = 0. The separation, then, is the following:
00

§
=
n?l

5 (z 0>°) Jo ( knr >- IX " 9

There is an infinity of solutions dependent on the value of l^ , the

arbitrary constant of separation called the wavenumber. In the appli-

cation of equation II-9 to this study, the solution can be reduced to

the response to a single, dominant wavenumber. The technique will be

discussed following a summary of the numerical method used to solve

equation II-l.

Equation II-l was solved numerically on the IBM 370/155 computer

at the University of Miami. A pre-programmed scientific subroutine

package was utilized which is a modification by Hamming of Milne's

predictor-corrector method. Since the predictor-corrector method is

not self-starting, a fourth order Runge-Kutta starting procedure is

used to generate sufficient points (Ralston, 1965). The numerical

method requires specification of £ and B^/SZq as initial conditions.

At the bottom the stretching of an isopycnal is zero. It is assumed

that a dominant wavenumber for the disturbance exists in the interior.

It will be shown later that this assumption is realistic. There are,

then, two arbitrary parameters, wavenumber and slope at the bottom,

which have to be determined. A solution for specific values of slope
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and wavenumber can be obtained by devising a scheme which matches the

numerical solution to the density structure in two dimensions. The

matching uses up the two degrees of freedom associated with the

arbitrary parameters. A numerical scheme could be devised which would

optimize the matching process by some best fit method. It was felt,

however, that a subjective graphical method was justified considering

the quality of the data. The approach chosen was to select an inter-

mediate density surface and vary the input to the computer program

until the amplitude of the response and the decay of the jQ(kr) Bessel

function matched the observed perturbation. Essentially, the numerical

solution, generated as an initial value problem, was forced to meet

conditions on a surface on which density is conserved.

The governing equation (II-l) requires the Brunt-Vaisala frequency

of an undisturbed ocean as input. The input was taken from the

temperature and salinity tables from R/V ATLANTIS stations 5446 and

5447 (Fuglister, 1960). The stations were selected because they display

temperature-salinity characteristics fairly typical of the Sargasso

Sea and are relatively unperturbed by local variations. Figure 3 shows

the observed response of the ocean to the storm.
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Figure 3. Observed mass structure of ocean after passage of Hurricane

Kara. Isopleths are values of sigma-t (a ) .





III. DISCUSSION OF RESULTS

A. DISCUSSION OF SOLUTION AND
CONSISTENCY OF RESULTS

Figure 4 shows a comparison between the computed and observed

curves. The observed mass distribution has been shifted to a common

vertical axis. This step is consistent with the assumption of

axisymmetric motion implied in the transformation of the Laplacian

in equation II-6 to cylindrical coordinates. As seen in Figure 3, the

axis of the observed curves slants slightly away from the vertical.

With the exception of the near surface layer and a few isolated spots

at the sides, where the assumption of axisymmetric motion is in doubt,

the difference between the curves is no more than 10% of the total

perturbation amplitude (trough to crest) of any isopycnal. In most

cases the percentage is considerably lower. The cross-hatched area

in Figure 4 indicates the areas where the deviation of the two curves

is significant. Considerable flattening of the density surfaces occurs

at least as deep as 230 meters , and there is no evidence of upwelling

above 100 meters.

The lack of information about the state of the near surface layer

prior to and during the storm precludes a complete analysis of the

causes of the deviation between the two curves. According to Fuglister

(1947) , average surface temperatures for October in the area of the

storm range from 25.8°C to 26.1°C. These temperatures correspond very

well to the surface temperatures found after passage of Kara. If the

12
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Figure 4. Comparison between the observed mass structure and the computed

response after Hurricane Kara. jQ(kr) = at 80 km.
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near surface layer did not cool significantly, then one must ask if

upwelled water penetrated the thermocline and was mixed in the upper

layer. It is possible that the apparent lack of surface cooling in

the presence of obvious upwelling is the result of either horizontal

advection in the surface layer moving the cold water away from the place

of formation, or advection in the interior. The former is more likely,

but the latter can partially explain the slanting of the axis of

rotation of the vortex and the fact that the dome is located significantly

to the south of the published hurricane track.

Upwelling clearly took place as a response to Kara. One would

expect to find evidence of downwelling at the sides to satisfy continuity

requirements. O'Brien (1967) finds downwelling in a numerical model

and Leipper (1967) finds evidence of it from the changes in shape and

depth of the thermocline. Surface data taken after Kara do not indicate

downwelling. The mixed layer depth is remarkably constant across the

vortex and is typical of the ocean in this region. At the sides of the

vortex, in the interior, downwelling definitely occurred in balance of

the upwelling in the center region. This can be seen by the dipping

of the isopycnals below the undisturbed level. Ths disparity between

the curves at the top of the pycnocline suggests significant downward

penetration of momentum below the depth of the mixed layer, leading to

an effective Ekman depth of about 230 meters. That is, if the Ekman

layer is considered that region where friction effects dominate, and

where the conservation equations are not applicable, then the depth

of significant differences between the observed and computed curves

may be identified as the Ekman depth.





15

It is possible to check the consistency of the results with

existing ideas of surface wind stress by working backwards from the

theoretical displacement of the isopycnals. The technique begins with

the Ekman pumping relation

pfw = curl t
, III-l

where p is density, w is vertical velocity, and t is wind stress.

Stokes' theorem may be written as

Jt. dS JJcurl T-dA, III-2
S A

or, by substituting equation III-l for curl T, as

JV-dS = pJJwf-dA. Ill -3

S A

Assuming an axisymmetric wind stress distribution, equation III-3

becomes

pwfrrr 2 = 2nrT , III -4

or

t = wfr/2. III-5

If w = 6?/6t where 6§ is the displacement of the most perturbed

density surface and 6t is the time the storm was stationary, then the

average stress distribution is

t = 6
|-f

r
. III-6

2-6t

The average stress may be found by taking an average over the curve

§ = §0 Jo< kr )
•

Then
R 2tt

t = I • I
f f

g-r-d0-dr m.y
2n R 0Q 2-6t

. f . |0 ? f JQ(kr)-r-d0-dr

2tt R
q

Jj 2- 6t

To simplify the integration, it was decided to utilize the series form
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of the Bessel function:

Z 2

Noting that

and us ing

J
°
(Z)=1 "IW + 2W + 2*W + -"

•

IIr " 9

2ttU d0 = 1,
2tt

ft

X = kr, dr = dX/k

to change variables and integration limits , then III-8 becomes

k2 -R § 2'6t

The dominant wavenumber found by matching the theoretical and observed

curves is 3.0 x 10"->. Therefore, the zero crossing occurs at r = 80 km.

Using the well known relation

" " Pa% = Pwv* = CDU10 ' p a "I""

enables one to use the average stress calculated in equation 111-10 to

find wind velocity, or

U?_ = T 111-12
10 CD -Pa

where u is the friction velocity in air, v is the friction velocity

in water, p is the density of air (1.3 x 10~ J gm cm~3) , pw is the

density of water (1 gm cm~3) , CD is the drag coefficient, and U^q is

the wind velocity at a specified height. The wind velocity is highly

dependent on the choice of drag coefficient. Unfortunately, there are

numerous estimates of the dependence of drag coefficients on wind speed

and few agree. From Roll (1965) there seems to be a bunching of

estimates for near hurricane force winds at C-q = 2.5 x 10"^. This is a

figure O'Brien (1967) also uses and terms "classical." The results of

this calculation for various values of the drag coefficient are
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tabulated below. C-q = 1.5 x 10~ 3 is a widely quoted value which Malkus

and Riehl (1960) found worked well in their model. 2.0 x 10-3 is the

mean of the two values.

CD U 10 (KTS)

1.5 x 10" 3 57.6

2.0 x 10" 3 50.2

2.5 x 10"3 45.2

Air Force penetrations of the storm during the time it was quasi-

stationary found wind speeds between 45 and 55 knots. According to

Colon (1966), the wind distribution in the lower few thousand feet is

uniform, or nearly so. Therefore the wind speeds should be repre-

sentative of those near the surface. The tabulated results of the

calculations are inconclusive. One may say there is no inconsistency

between the theoretical result and gathered data. Occasionally the

results of theoretical models are used to fix parameters upon which

the models critically depend. A definite statement cannot be made in

this case. However, the results indicate that the drag coefficient

probably falls within the above range for winds of near hurricane force.

As will be shown later in the paper, the penetration of the

response of high wavenumber motion is less than that of lower wave-

numbers due to the effect of the wavenumber on the exponential-like

solution in the vertical (equation II-5) . The ocean acts as a low-

pass filter to the response. This means that the difference between

the two curves at the level where they diverge significantly may be

due partially to the effect of the response at higher wavenumbers

,

which will change the height of a density surface in some unknown fashion
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It is also possible that the presumed center of the vortex was

not the exact center. If not, then missing the center can account for

some of the difference between the curves.

B. THE MIXING PROCESS
AND MOMENTUM TRANSFER

Several calculations can be made which place an upper limit on

the effects of the mixing process. The calculations assume a balance

in the vertical between the downward diffusion of heat due to mechanical

mixing and the upwelling of cold water from below the local thermo-

cline. The governing equation for this process is

w-St/SZ =<-o2T/az 2
, 111-13

where w is vertical velocity, T is temperature and < is the eddy

diffusivity of heat. The solution of 111-13 is

T = T exp(w/<)Z. 111-14

</w is the e-folding distance for the temperature decay and is therefore

the scale height of the local thermocline in this problem. H^, the

thermocline scale height, may be found by taking the logarithm of 111-14

obtaining the following:

&ff = 2jiTq +Z/Ht . 111-15

Plotting 8/riZ vs Z and finding the slope determines the scale height.

Equation 111-15 is the equation of a straight line on semi-log paper,

and 1/H-j is the slope of the line. Figure 5 is such a plot. Since

pure mixing is assumed, the vertical velocity may be approximated by

6h/6t, the difference in lifting between the observed and calculated

curves divided by the relevant time scale of one day. < determined in

this manner is 1400 cm /sec. This value of < is several orders of
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Figure 5. Log-linear plot of temperature (°C) vs depth (m)





20

magnitude too large for abyssal processes but is probably the correct

order for surface processes where eddy viscosity and eddy diffusivity

may be nearly the same. If the point of divergence of the curves is

at 230 meters, the eddy viscosity found from the Ekman depth formula,

do = Tf\j2\)/f , is 2000 cm /sec. 1400 cm2 /sec is almost certainly an

overestimate of the eddy diffusivity since Ekman divergence effects

are neglected. If the depth of the mixed layer is neglected in the

calculation of the eddy viscosity, dg = 180 meters and v = 1200 cm2 /sec.

This calculation assumes the existence of two separate regimes: the

mixed layer where eddy viscosity coefficients are very high; and the

layer of Ekman divergence below the frictional layer, indicated by the

disparity between observed and computed results. The similarity between

the values of eddy viscosity and eddy diffusivity is presented for

completeness and to suggest topics for further investigation.

Under conditions of negligible advection, it is possible to

extend an energy calculation by Turner (1969). Assuming pure mixing,

the change in potential energy between the observed and theoretical

curves can be used to work backwards to find wind velocity. Selecting

an isopycnal where the two curves do not diverge and calling the density

Pq a reference density, one can plot Pz~Po vs Z 2 (depth squared).

Taking one half the area under the resulting curve solves the energy

equation,

EP0T
=

gJ(Pz-Po) Z d Z '
111-16

graphically. Figure 6 is a plot of Ap vs Z^ for the center station,

where maximum upwelling occurred. The change in potential energy found

planimetrically is 10.14 x 107 ergs cm" 2
. By dimensional arguments,
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of the computed curves

.
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Turner asserts that it is reasonable to write the time rate of change

of energy as

dEp0T - C^Uxq = C
2PU 10

3
. 111-17

dt

The tabulation below gives values of wind speed for two values of the

constant Co found by Turner.

C2 Uiq(KTS)

2.6 x 10"8 71.4

1.3 x 10" 8 90

Both values of wind speed are too high if pure mixing is responsible

for the potential energy change. If one accepts 50 knots as a

reasonable value of wind speed during the storm, then surface mixing

accounts for about half the energy change. That is, at least half of

the density field discrepancy from the theoretical curves must derive

from the deep Ekman divergence. As the drag coefficient, Turner's

constants are not well defined. The dependence of Turner's constants

and the drag coefficient on wind speed is unknown. Turner's method

requires a one -dimensional process and a regime in which surface cooling

and resultant convective overturning are unimportant. Both processes

are usually significant under hurricane conditions, although their

effect may be minimal in this case since surface cooling apparently did

not occur. Selecting the center station minimizes the advective effects,

since § is a maximum there and d§/5r approaches zero. As Turner

correctly points out, his method is illustrative but hardly conclusive.

C. THE EFFECT OF LENGTH SCALE ON RESPONSE

Some interesting properties of the solution as a function of scale
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of forcing and depth are illustrated in Figure 7. The governing equation

(II-l) was solved using the same initial conditions and density profile

but different values of wavenumber. The Length scale was determined

by selecting the value of radius which corresponded to the first zero

of the Jq Bessel function, found from the formula (1 /wavenumber) x 2.4,

The values of § were normalized to 100 meters of Ekman pumping at

Zq = 25 meters and isopleths of constant § were plotted. The response

may be split into a barotropic and baroclinic regime. In the barotropic

regime, response is characterized by the stretching being a linear

function of depth, since stretching is proportional to vertical velocity.

The transition from a baroclinic to a barotropic response is rather

broad in scale, occurring between 300 to 500 km. For scales greater

than 500 km, the response may be continued to be barotropic. The

response for high wave numbers is confined to a shallow surface layer.

The latter provides the rationale for basing the solution of the

vorticity equation on the existence of a dominant wavenumber in the

interior. The dependence of the vertical structure of the response on

the scale of the motion suggests a definite problem in the representation

of a continuously stratified ocean by a two-layer model. For the higher

wavenumbers , the two layer model lacks sufficient resolution to describe

the response adequately.

The ordinate in Figure 7 is undisturbed depth (Zq) • Since depth

is equal to the sum of the undisturbed depth and the stretching, zero

depth in the figure should not be confused with the free surface. The

free surface lies considerably below Zq = 0.

It is anticipated that similar diagrams can be generated using
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25 meters matching depth.
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density distributions typical of other areas of the ocean. The diagrams

should prove useful in predicting the response in these areas . A

density profile with higher resolution than that obtained from

Fuglister's Atlantic Ocean Atlas is preferable.

D. GEOS TROPHIC VELOCITIES

It is possible to calculate geostrophic velocities using the

solution of equation II-l. Noting

Z(p,r) = Z (p) +?(Z
Q
,r), 111-20

and from Appendix A,

9p\ =-3z\ dp_

3rjZo " drjp SZ '

one may use the thermal wind equation,

111-21

M = z&. m\ , in-22
3z pf aryz

to find velocities throughout the column and for any radius.

Substituting 111-21 into 111-22, one obtains

|U = _g. |z\
Jg. . 111-23

dZ P f °*JP ^0

Equation 111-23 may be integrated in the vertical:

j^du-i; *!* -(%\ dz .

uz ^

f zy p ^o V3r Jp °

Noting Uz n (bottom) = and Nj* - Z&M , equation III -24 becomes
u p oZq

Introduce 111-20 for Z in 111-25, obtaining

111-24

f £" u \Sr/p
^0

Geostrophic velocities were calculated numerically using equation 111-26
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and the result established previously, § = §q jQ(kr) . The derivative

of § is

d^/Br = k § J 1 (kr)

.

111-27

Equation 111-26 is a valid expression for the velocities induced by

Kara, except in the Ekman layer, where the predicted density field

departs from the observed. Veronis (1956) showed that motion which

has forcing on scales larger than the baroclinic radius of deformation

is essentially geostrophic. In this case, the scale of forcing, 80 km,

is more than twice the baroclinic radius of deformation, 36 km.

Figure 8 is a comparison of the geostrophic velocities based on

equation 111-26 and velocities calculated using the dynamic method

(called the observed velocities) . The reference level for calculating

the observed velocities was found using Defant's method. The level

was conspicuously present in all the profiles. Although the percentage

of error is high at the lower depths, the absolute magnitude difference

is low. In general, the magnitude of error remains the same as depth

decreases. The two velocity profiles agree rather well in magnitude

and general shape. Aside from the reasons for the difference between

the curves in the Ekman layer, which have been discussed, the calculation

of geostrophic velocities poses special problems. In this case, the

distances between stations used to calculate the velocities by the

dynamic method were extreme. It was found that velocities at a given

radius and depth varied as much as 5 cm/sec depending on the particular

combination of stations used. The curves represent the smoothest

combination. The observed velocities were computed from the non-centered

observed data, which certainly accounts for some of the difference

between the curves. The effect of centripetal acceleration has been
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neglected in the calculation of velocities, and in the formulation of

the vorticity conservation model. The inclusion of centripetal

accelerations makes the model non-linear, introducing an undesired

degree of difficulty in solving the vorticity equation. A measure of

the importance of the centrifugal force term is the Rossby number, v
f -r

(Neumann and Pierson, 1966) . Choosing r = 40 km, v = 40 cm/sec, and

f = 7.5 x 10~5 sec"!, the Rossby number is 0.13. It can be shown that

geos trophic velocity is an overestimate of the gradient velocity if

curvature is important (Haltiner and Martin, 1957).

The success in obtaining substantial agreement between the

theoretical mass field and velocities and the observations supports the

validity of the initial model formulation.





IV. SUMMARY AND CONCLUSIONS

A model based on the conservation of potential vorticity was

solved numerically. The solution was utilized to investigate some

aspects of the oceanic response to a tropical storm as a function of

horizontal scale. In particular, the interior response of a moderately

intense, quasi-stationary cyclone was duplicated. The matching was

successful below a depth of 230 meters which was associated with the

Ekman depth. The lack of information concerning the state of the

ocean in the near-surface layer prior to the passage of Hurricane Kara

compounded the problem of discovering what caused the divergence of

the observed and computed curves. The divergence was attributed to the

neglect of high wavenumber modes when solving for the interior response ,

and to some ill-defined combination of vertical mixing and momentum

transfer by friction. Gross estimates indicate that the two processes

are of equal importance in this particular case. An upper limit for

the eddy diffusivity is 1400 cm /sec. Vigorous mixing, if it occurred,

may not have resulted in significant cooling of the mixed layer.

Geostrophic velocities were calculated from the raw data using

Defant's method to find a reference level of no motion. These

velocities were compared to those calculated from the numerical solution.

The velocities agree rather well below the near -surface layer. Since

the velocity computation integrates the stretching, the comparison of

velocities should not be expected to be as successful as the comparison

of § itself. The integration of § means that errors are accumulated

29
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over the entire column. Geostrophic vertical shear matches better

than geostrophic velocities. It is plausible that the nearly constant

error in magnitude between the velocity fields is a result of

inaccuracies in the dynamic computations; specifically, limitations in

the Defant method of obtaining the level of no motion may be the cause.

It was found that the scale of forcing can have dramatic effects

on the penetration of the response. For equal Ekman pumping, higher

wavenumber (short scale) response does not penetrate very deep into

the ocean compared to low wavenumber response. Thus the scale of the

disturbance must be considered when choosing the depth and number of

layers for modelling a continuously stratified fluid. A two layer

model may lack the resolution necessary to accurately describe the

response in the upper layer. Adequate modelling of the near-surface

layer by a model such as the one used in this study requires the

inclusion of high wavenumber motion.
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APPENDIX A

THE NATURAL COORDINATE SYSTEM
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Although the standard cartesian coordinate system is the one

normally used in hydrodynamics , there is no reason why the vertical

coordinate must be geometric height, a fact recognized long ago by

meteorologists and some oceanographers . The use of a "natural" vertical

coordinate, such as pressure, density or potential density, can simplify

an analysis but render boundary conditions formidable.

In the potential vorticity conservation model, density will be

utilized as the "natural" vertical coordinate. This is advantageous

because it enables one to solve directly for the displacement of an

isopycnal from equilibrium. The method of coordinate transformation is

discussed in Haltiner and Martin (1957) . It is summarized below since

the method is implied in the model and is used directly in deriving the

geostrophic velocities (equation 111-26)

.

Consider 0(x,y,z,t) = constant. The change of Tl(x,y,z,t) along

= constant is equal to the change along the horizontal plus the

change along the vertical due to the slope of 0, i.e. From Figure 9,

6lA =6^ + |Tl\ . A-l
/a-c Ja-b p-c

Now,

/y>0>to

= |lh 6x + JJfl 6z A-2
dx/y,z,t oz/x,y,t

by the chain rule at a constant time, tQ. A-2 may be written as

M\ - jnj\ + v$\ 2sN
, A - 3

dx/y,0,t o oX//y,z,t dzyx,y,t dx/y,0,t o

where ^2. is the slope of the surface in the x direction. Let T| = p

ox

and A-3 becomes

*b\ = 2eN . *£. . h. a-4
3xyz 9x/0 3z 3x
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Figure 9. = constant surface separated into horizontal and vertical

components to illustrate coordinate transformation technique.
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APPENDIX B

THE POTENTIAL VORTICITY CONSERVATION MODEL
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The governing equation for the interior motion of a hurricane, it

is hypothesized, expresses the conservation of potential vorticity.

The equations of motion used are non-linear, time dependent, hydrostatic

equations in a rotating system characterized by the Coriolis parameter,

f, which is a function of the horizontal coordinates alone:

B-lu,. + u • Vu - fv + TT =

V. + U * Vv + fu + TT = 0, B-2

where tt = *- + gZ . The vorticity equation may be formed by cross

differentiating equations B-l and B-2, resulting in B-3:

a a j. a_ + U 4j— + v ^~
dt "X Oy

B-3 may be written as

3__ + 3 + v a_
3t ox Oy

(vx -uy
)+(f-»vx -uy

)Cux-tv
y
)+ ufx + vf

y
= B-3

(f\-0 +(^v-"J(Uv\) 0»x y
since f is not a function of time. That is,

d

dt
(f-tvx -uy

)(ux+vy
) = 0,

B-4

B-5

where

dt — dt Ox Oy

The divergence equation may be formed by taking r— (equation B-4)
Bx

and adding to _ (equation B-2)

.

3y

.2.2.
§j (ux4vy

)-f(vx -uy
) + V^TT + f

y
u-fxvhax^4vx

u
y
^

y
v
x

= B-6

Assuming geostrophic motion reduces the balance equation to

f(v -u ) = V2tt.x X y'

The continuity equation is

u„+v +w„ = 0.X y Z

B-7

B-8

In the vertical, w depends only on z(p), therefore
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(u+v ) + Hw . *£ = 0.x y op oz

Noting w = dz/dt, equation B-8 becomes

op
x y dt\oP;

Substitute equation B-9 into the vorticity equation (B-4) to obtain

d J-(°z/5p)
a-(f + v - u ) - (f + vx - uv > • H 1 = o. B-io
dt x y x

y oz/op

Rearranging terms, equation B-10 becomes

ir< f + v* - V _ ^(°2 /aP ) = n b _u
f + VX

- ^ ^Z/^P

or, by definition of the logarithm,

X—*— >= 0. B-12
dt \ dz/dp

Equation B-12 implies that for each fluid element

"^""y"1^ = constant. B-13

oz/dp

The existence of a uniform reference state implies that the constant is

a function of density alone. If the reference state is rest, relative

vorticity is zero, and the constant, 0(p) , equals f/(3z/dp)Q. The

vorticity equation, then, becomes

^-V* = _f
. B-14

3z/op (oz/op)

Substituting equation B-7 into B-12 and rearranging, one obtains

B-15l+V2nVdz\ - dz

i /Wof2 Aapyo sp

Next, apply the hydrostatic equation,

TT = £ + gz. B-16

Rearranging and taking the partial derivative with respect to z results

in

|^(rr-gz)p =P
Z

. B-17
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Assuming hydrostatic equilibrium, B-17 becomes

—(n-gz)p = -gp. B _18
oz

Integrating B-18 results in the following:
Z

pTT-pgz = p Q TT - J pgdz. B-19

The last term in equation B-19 can be integrated by parts:
Z p

-Jpgdz = -pgz + Jgzdp . B-20

PO

Substituting B-20 into B-19, the desired forms of the hydrostatic

equation is achieved:

tt = tt + I Jgzdp . B-21
P

PO

Take the Laplacian of B-21:

p

V2tt = V2TT
Q
+ I JgV

2zdp . B-22
P

Po

Substitute equation B-22 into equation B-15:

aP WJo V o P J« w^
Q

Therefore, if Pq is chosen as the surface density, where h is the free

surface height,

32. YisN = %(y2h + I
fv2zdp)(|5.V . B-23

op \ OP;o f 2 p
J

Po W°
The depth, z, may be split into two parts,

Z = Ztfp) + §(x,y,z ).

Equation B-23 becomes, then, after rearranging,

V2h +ljv2 ?dp =£|i/k\ . B-24
P p § 9P W°

Next, take the derivative of B-24 with respect to p:

p gpo WV z/° gpo Bp
\
av

B-25
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Recall

i- = (*£\ i_
dp ""

V^P/O 3z

so equation B-25 becomes

I V2? = -f 2„, £l
PO PON^(Zo) dZ 2

'

or

V2§+-^ l^r- " 0. B-26
NZ (Z ) &z 2

Equation B-26 is the governing equation used in the analysis described

in the text. The basic derivation is attributed to Rooth (1970).

Several steps were expanded by this author for clarity and completeness.
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