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I. INTRODUCTION

In recent years, there has been renewed interest in the effects of

topography on atmospheric flows. Mountains of various shapes, sizes and

orientations force motions on all scales - from small, turbulent eddies

to planetary waves. The objective of this research is to determine the

crucial mechanisms in lee cyclogenesis, wherein cyclones form on the

downwind side of major mountain ranges.

It has been generally accepted for a number of years that a dynamical

connection exists between the presence of mountains and the occurrence of

lee cyclogenesis. This is based on evidence presented in both observa-

tional and numerical studies. Petterssen's (1956) climatological statis-

tics of cyclogenesis frequency established that the lee sides of large

mountain complexes such as the Rockies, the Alps and the Himalayas are

preferred regions for cyclogenesis. More recently, the observational

studies by Reitan (1974); Chung, Hage and Reinelt (1976); Zishka and

Smith (1980); as well as others, have produced similar findings. In

addition, various numerical studies, such as those by Egger (1974);

Manabe and Terpstra (1974); Bleck (1977); and Tibaldi, Buzzi and Malguzzi

(1980), have concluded that inclusion of topography in numerical models

is necessary to predict cyclogenesis in the "preferred" regions.

Consequently, it is generally accepted that mountains play a role in the

cyclogenesis process. However, the dynamical nature of that role is

still not well understood.
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The basic components of lee cyclogenesis appear to include: large

mountains, the presence of the jet stream normal to the mountain barrier,

and a pre-existing disturbance. The required mountain size is somewhat

arbitrarily defined, although the results of Petterssen (1956) and others

indicate that cyclogenesis is not observed with enhanced frequency in the

lee of mountains with smaller heights and widths, such as the Urals. The

presence of the jet stream during lee cyclogenesis has been thoroughly

documented in a number of studies, including Newton (1956), Klein (1957),

Hovanec and Horn (1975), and Whittaker and Horn (1980) for the Rockies,

and Trevisan (1976) and Buzzi and Tibaldi (1980) for the Alps. In the

typical case (see, for example, Hess and Wagner, 1945; Palmen and Newton,

1969; and Buzzi and Tibaldi, 1980), lee cyclogenesis is initiated as a

disturbance crosses a large mountain range. During the initial stages of

development, rapid intensification is observed with e-folding times of 12

hours or less (Buzzi and Tibaldi, 1980). This e-folding time is much

less than the rough estimate of 25-30 hours given for cyclogenesis

occurring away from mountains (Palmen and Newton, 1969; Hoi ton, 1971).

After moving away from the mountain, the growth and phase speed of the

lee cyclone approach those values normally associated with cyclone de-

velopment. Consequently, it has been suggested that topography alters

the baroclinic instability process in a way that results in more rapid

intensification on the lee side of large mountain ranges.

The basic objective of this research is to gain a better understand-

ing of how topography affects the cyclogenesis process. This investiga-

tion will provide insight into the dynamical basis for the rapid

intensification which is observed on the lee side of large mountain
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ranges, and, in so doing, provide a better understanding of why these

areas are preferred regions for cyclogenesis. Since the nature of the

orographic effect is dependent on the size, scale and orientation of the

mountains (Palmen and Newton, 1969; Chung et al ., 1976; and others) the

types of mountain ranges to be considered must be limited. This research

focuses on cyclogenesis in the lee of a long, meridional barrier which is

intended to simulate the Rocky Mountains. Cyclogenesis is treated as a

manifestation of baroclinic instability, and orographic effects are

sought which can explain the increased growth which is observed on the

lee side of large mountains.

Recent dynamical investigations of flow over topography provide a

number of possible mechanisms which could play a role in the cyclogenesis

process. Charney "and DeVore (1978), and Charney and Strauss (1979) con-

sidered topographic forcing of atmospheric flow and identified the form-

drag instability which results from the interaction of mean flows with

large-scale mountains. This mechanism, which depends on the Rossby wave

being nearly stationary, appears to play a role in the evolution of

planetary waves and blocking patterns; these waves occur on scales larger

than those observed in lee cyclogenesis. Pedlosky (1981) considered

resonant topographic forcing as a growth mechanism and found that slowly

moving long waves could experience large increases in amplitude due to

resonance. This mechanism also appears to be applicable to the longer

and more slowly moving planetary waves rather than the cyclone waves, and

it is not investigated here.

Merkine (1975, 1977) and Merkine and Israeli (1978) have considered

the interaction of baroclinic flows with topography using the
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quasi-geostrophic and semi-geostrophic equations. Merkine's (1975)

solution for a vertically sheared, steady, quasi-geostrophic flow past an

infinitely long ridge showed that the flow acquires a vertically sheared

northerly component of velocity along the lee side of the mountain. This

vertically sheared northerly component is in addition to the shear of the

basic state and indicates enhanced baroclinicity. According to Merkine,

the increased baroclinicity could explain the higher growth rates

observed in lee cyclogenesis. However, it has not been demonstrated how

such enhancement could increase the instability of lee cyclones.

Farrell (1982) used the linearized quasi-geostrophic equations to

demonstrate that continuous-mode solutions can, with the proper initial

conditions, exhibit large growth rates for periods of up to 12 hours

after excitation; this initial growth is followed by damping. The addi-

tion of these modes to the exponentially growing discrete modes could

explain the enhanced growth which is observed in lee cyclogenesis. The

selection of initial conditions is crucial for this effect, since one

could always pick a special initial state with will give rapid initial

growth.

Smith (1984) has proposed a baroclinic lee wave mechanism for lee

cyclogenesis in the Alps. This mechanism depends on a mean flow in which

the vertical wind shear is opposite to the surface component across the

mountain range. However, it does not appear to apply to the Rocky Moun-

tain cases where the vertical shear is usually in the same general

direction as the surface wind.

Still another possibility is that the mountains have only an apparent

effect on the cyclogenesis process. A steady flow over a synoptic-scale
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mountain forces a stationary high-pressure ridge over the mountain and a

pressure trough on the leeward side (see, for example, Smith, 1979). A

growing cyclonic disturbance of approximately the same scale as the moun-

tain would be cancelled by superposition with the high pressure ridge as

it moves over the topography. On the lee side, large growth rates would

be observed as the cyclonic disturbance continues to grow and become

superposed with the lee-side trough. With a high enough mountain, such

lee-side growth could appear as rapid deepening. In addition, the lee-

side superposition would induce a closed circulation at an earlier stage

of the amplification process than would occur over the mountain or flat

terrain. As a result, the initial appearance of the closed surface-

pressure contour (which is defined as cyclogenesis in most of the studies

quoted above) would be accelerated by the presence of the mountain. This

could explain the higher frequencies of lee cyclogenesis, since growing

waves placed randomly are more likely to have the first closed contour

over the lee than over the mountain top.

Of the dynamical mechanisms described above for lee cyclogenesis, the

three most likely are examined in this study: 1) enhanced, lee-side baro-

clinic instability; 2) continuous-mode growth; and 3) superposition.

Chapter II treats analytically the interaction between an infinitely long

mountain range and baroclinic waves in the basic state which was used by

Eady (1949). The quasi-geostrophic equations for this problem are linear

so that the mountain-forced solution and the unstable Eady solution are

mathematically independent. An example is given which shows that the

superposition of the two simple solutions can give a reasonable represen-

tation of lee cyclogenesis. Semi-geostrophic solutions are also
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derived which show some interaction between the mountain and the moving

disturbances. This interaction changes the phase speed of the moving

wave, but it does not change the intensity of the disturbance.

In Chapter III, the finite-difference and spectral numerical models

which will be used in later chapters are described. The topography and

initial conditions for the following numerical experiments are found in

Chapter IV. In Chapter V, the continuous-mode growth mechanism which was

proposed by Farrell (1982) is investigated. The initial conditions are

crucial to this mechanism. In this study, simple orographic forcing is

used to perturb a basic state that initially contains no perturbations.

Such a situation might be expected if the mean flow was rapidly increased

from zero to the limiting value. The linear study in this chapter uses

the spectral model and the nonlinear study uses the finite-difference

model. None of these experiments show any significant continuous-

spectrum growth.

Chapter VI contains the numerical experiments with more realistic

conditions which include a pre-existing disturbance and a baroclinic jet

with vertical and horizontal shear. A procedure is developed which

allows a comparison between a transient mountain solution and a solution

in which a no-mountain transient solution is superposed on a forced moun-

tain solution. The experiments are carried out for a range of initial

disturbance amplitudes so that the small -amplitude experiments show the

linear behavior of a wave in a mean flow forced by the mountain. The

larger amplitude experiments include nonlinear interaction between the

disturbance and the mountain-forced flow. The experiments show no signi-

ficant difference in intensity between the mountain interaction

18



cases and the superposition cases. Phase changes are found in the inter-

action cases which are consistent with those predicted by the semi-

geostrophic theory in Chapter II. The various studies included in this

research lead to the conclusion that superposition is the main mechanism

for lee cyclogenesis with mountain systems similar to the Rocky

Mountains.
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II. ANALYTICAL MODELS

Baroclinic instability has been accepted as a major source of propa-

gating synoptic-scale disturbances in the mid-latitudes. The success of

this theory in predicting the general scale, growth, and structure of

cyclone waves is undisputed. In this chapter, some simple analytical

models are introduced to provide a theoretical basis for investigating

the dynamical mechanisms involved in lee cyclogenesis.

In the first section, the model developed by Eady (1949) is briefly

reviewed. Although this model does not include topography, it provides a

good description of wave development in the early stages of cyclogenesis

and is useful for examining the linear dynamics of baroclinic instabil-

ity. In the second section, Eady's model is modified to include small-

amplitude topography through the lower boundary condition; the forced,

steady solution is derived for investigating orographic effects on wave

development. In the third section, a non-geostrophic model is used to

describe wave development in the presence of a finite-amplitude mountain.

The potential vorticity equation for this model is transformed following

Hoskins and Bretherton (1972) and solved analytically. Analysis of the

solution reveals that finite-amplitude topography distorts the structure

of a developing baroclinic wave while in the vicinity of the mountain,

but has no net effect on growth away from the mountain. As will be

demonstrated, these simple models appear to explain yery well some of the

dynamical features observed in lee cyclogenesis.
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A. REVIEW OF THE EADY MODEL

Eady (1949) considered a simple, yet realistic baroclinic instability

problem. His model uses the linearized form of the quasi-geostrophic

equations with the Boussinesq approximation to describe an inviscid atmo-

sphere confined between two rigid horizontal plates. The basic problem

is stated in terms of a single partial differential equation which

expresses conservation of potential vorticity. The vertical velocity is

assumed to vanish at the boundaries, z = 0, 1 (where z = - In p/p is the

non-dimensional vertical coordinate). The following assumptions are

made: The basic wind flow varies linearly with height - that is, U = Sz,

where S is a constant. The supporting horizontal temperature gradient is

constant. The basic state density, P, and the static stability, r, are

taken as constants, and the effect of the earth's sphericity is ignored

by assuming that the Coriolis parameter is constant. With these assump-

tions and the normal mode solution form

<P = Re *
F
(z)e

iy(x " ct) (2.1)

the quasi-geostrophic potential vorticity equation reduces to the ordin-

ary differential equation for ^p(z) given by Haltiner and Williams

(1980):

(U - c) (fV) ^F -u 2
eY

o dZ
= (2.2)
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The subscript, F, is used here to denote the free, or unforced, solution

The boundary conditions are obtained from the first law of thermodynamics

^t 3x
;

3z 3x 9z f
o

(2.3a)

If (2.1) is substituted into (2.3a) and the non-dimensional vertical

velocity

z = Re W ( z ) e
iU(x-ct) then (2.3a) becomes

dz 3z F iPfn

(2.3b)

At the upper and lower boundaries where z = 0, the boundary conditions

become

(U - c) — - S* =0, z = 0,1
d z F

(2.4)

The free solution takes the form

^F = A sinh (— ) + B cosh (—

)

(2.5)

where e =

IV
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Application of the boundary conditions yields the characteristic equation

for the phase speed, c. The condition for baroclinic instability is that

c must be complex, which occurs if

, >
r^2 and S f , (2.6)

2.4f
o

where L = 2 tt/u. When these conditions are satisfied, ^ in (2.1) becomes

an exponential function of time, with growth rate proportional to verti-

cal shear. Maximum growth rate is predicted for

,-^H

1.92f
o

this indicates that wavelengths of the order of 4,000 km will dominate

the spectrum of atmospheric waves, and is in approximate agreement with

the observed scale of mid-latitude cyclones.

B. EADY'S MODEL WITH SIMPLE TOPOGRAPHY

The effect of topography can easily be included in Eady's model if

the topography has a small amplitude compared to the scale height of the

atmosphere. In this case, the basic flow remains zonal and the effect of

the topography is felt through the lower boundary only. This simplifica-

tion is frequently made for mathematical convenience and provides a rough

approximation of the effect of the topography on the flow. As will be

shown, even with this weakness, the model is able to describe at least

qualitatively the increased growth observed on the lee side of the

mountain.
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1. Model Formulation

Consider the case of steady flow over a small-amplitude mountain

with a profile given by

Re h
s
e^ x

i

where h s is a constant. Notice that h is independent of y, which indi-

cates a mountain of infinite north-south extent. Let the basic flow be

given by

U = U s + Sz '
( 2,8)

where U s , the surface wind, is constant. It will be shown below that the

inclusion of the surface current is necessary to obtain an orographic

effect through the lower boundary. The surface current has no effect on

the preferred scale and growth rate of the basic Eady solution reviewed

above. If the solution form

, frf
,1u(x - ct)j , (2.9)

is substituted into the steady form of the quasi-geostrophic potential

vorticity equation, the equation becomes

^
2
o d ^M 2. % * > (

2 - 10 )
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where the subscript, M, indicates the steady, mountain-forced solution.

The boundary conditions are obtained from (2.3b). At the upper boundary,

where z = 0,

v
d trf > (2.11a)

< u s
+ s

) -a? - S
*M

=
°

while at the lower boundary,

u ^ - sym + -Iu lli- •
(2 - llb)

s dz M f s h
o

where H is the scale height of the atmosphere. The term in (2.11b) which

includes h s follows from the topographically-forced vertical velocity at

the lower boundary

•/ s 9n (2 12)
z x,0 = *

{d ' ld)

h ax

The solution of (2.10) with boundary conditions (2.11a, b) is

TU h e
2

s s ,z
x , z,

*M
= asinh (— ) + Ycosh (—

)

f H(U a - S% y) z z i2

(2.13)

where

Ty 2
a = (1 - r tanh

r = e
2
(-| + 1) Y = r - tanh e

2
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This result shows that the amplitude of the forced wave is proportional

to the magnitude of the surface wind and the height of the mountain. As

indicated previously, a non-zero surface wind is required for an oro-

graphic effect on the flow. The solution \p = ^e^* is shown for various

levels in Figure 2.1. A high-pressure ridge is centered over the moun-

tain with troughs on both the upstream and downstream sides. The phase

is constant with height, but the amplitude damps exponentially. The

amplitude of the meridional wind component, v = 3i|>/3x is shown versus

height for various wave numbers in Figure 2.2. The amplitude of v damps

in the vertical in each case, and the magnitude of the damping increases

with wave number. This latter result indicates that, as the horizontal

scale of the mountain is decreased, the vertical extent of the orographic

effect is reduced. These solutions are generally similar to those given

by Smith (1979) for an atmosphere with no vertical wind shear.

2. Model Application

The steady, forced solution given by (2.9) may be combined with

the free Eady solution to form a linear model of a wave passing over

topography. As a result of the linearity assumption, the free and forced

solutions do not interact. Therefore, this model does not predict any

new or enhanced instability mechanism associated with the mountain. How-

ever, due to superposition, a developing, small-amplitude, baroclinic

wave of the proper scale can be cancelled by the forced ridge as it moves

over the crest of the mountain and appear to grow rapidly as it moves

down the lee slope and into phase with the stationary trough.
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/ / —^A P
s/ fc?

Figure 2.1. Steady, forced solution ty
= ¥ ^(z) cos ux given by (2.13)

Solution is given at: z = 0.0 (solid curve), z = 0.5

(dotted-dashed curve), and z = 0.1 (dashed curve);
z = - In p/p s is the non-dimensional vertical coordinate.
The shaded region at the bottom represents the terrain,
h = h s cos yx.

Figure 2.2. Amplitude of the steady forced solution v = 3^/3x as a

function of non-dimensional height, z, for global wave

numbers: u* = 8 (solid), u* = 12 (dotted-dashed),
and u* = 16 (dashed).
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Let the constants in equations (2.1 - 2.13) be given the follow-

ing mid-latitude values: f = 10 -4 s~l, r = 104m2 s~ 2
, U s

= 5 m s~l, and

S = 40 m s~l. The constant B in (2.5) represents the initial amplitude

of the free wave and is arbitrarily assigned the value of 300 m2 s
_1

. Let

the mountain profile be given by the truncated Fourier series:

50

h(x) = z*(A +
I

A cos nx) »
(2.14a)

n=l

where

A = 1/4 , (2.14b)

A = sin mr/2 , (2.14c)
n

"'

mT(4-n 2
/4

and z* = 1.5 km. A2 is evaluated by taking the limit of An as n

approaches 2 and applying L'Hopital's Rule. The steady, forced solution

computed along 45°N is given in Figure 2.3 for a 45° sector of the globe.

A high pressure ridge is centered over the mountain, which is located at

the center of the sector, and weak troughs are observed both upstream and

downstream of the mountain.

When superposed upon a transient, growing wave, the forced solu-

tion will cause a cyclonic disturbance to appear more intense both on the

upstream and downstream side of the mountain, and to appear weaker over

the mountain. To demonstrate this effect, a developing free Eady-wave of

approximately the same scale as the forced wave (here, the global wave

number y^ = 8) is taken at various stages of its evolution (Figure 2.4)

and superposed on the steady solution. The resulting superposition (or

combined solution) is shown in Figure 2.5. At t = 0, when the free
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Ps »)

-20

_» i >

X (x 221.27 km)

Figure 2.3. Steady, forced solution for the linear model presented as

Ps, the deviation from mean-state surface pressure, for a

45° sector if the globe. Cyclic continuity is assumed at

the east and west boundaries of the sector. Profile of the

mountain given by (2.14) is included at bottom.
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Ps (mb)

I—
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1 1 T 1 1 1 I » ' ' < ' r-_T"

4 8 12

X (x 221.27 km)

Figure 2.4. Transient, free solution for the linear model given by

(2.1, 2.5) presented as p^ for a 45° sector of the globe.
Curves are given at six-hourly time intervals at 45°N.

Cyclic continuity is assumed at the east and west boundaries
of the sector.
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Ps (mb)

X (x 221.27 km)

Figure 2.5. As in Figure 2.4, except for combined (free + forced) linear
model solution. Profile of the mountain given by (2.14) is

included at the bottom.
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and forced solutions are in phase, the combined solution exhibits a

larger amplitude ridge-trough pattern than the free solution alone. As

the developing wave moves toward the mountain (at t = 6 and 12 h), the

amplitude of the combined solution decreases indicating an apparent weak-

ening, while the amplitude of the free solution continues to grow. As

the wave reaches the top of the mountain (at t = 18 h), it is almost

completely cancelled in the combined solution by the forced ridge and

only weak troughs are observed on the upstream and downstream sides of

the mountain. The cancellation would be exact if the wavelength and

amplitude of the mountain were the same as, and out of phase with, the

wave. Between t = 18 and t = 30 h, rapid deepening of the lee-side

trough is apparent in the combined solution as the free wave moves east

of the mountain and into phase again with the forced solution. When the

combined solution is viewed in isolation, it appears as if a well-

developed cyclonic disturbance dissipates as it approaches the mountain.

Later, a lee-side disturbance appears to form and amplify rapidly as it

moves down the mountain slope.

This behavior is \jery similar to observations preceding and dur-

ing Rocky Mountain lee cyclogenesis. In a typical case (Palmen and

Newton, 1969), a well-developed Pacific cyclone slows and weakens as it

approaches the west coast of North America. As in the example above, an

initially strong high pressure ridge centered over the Rockies appears to

weaken considerably during the next 12-18 hours. However, cyclogenesis

follows along the lee slopes as rapid deepening and slow eastward move-

ment are observed during the first 6-12 hours after formation. As the

cyclone moves away from the lee slopes, the intensification is less rapid
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and the eastward phase speed increases. In the words of Palmen and

Newton, the disturbance "behaves in a manner similar to a cyclone over

flat terrain."

A plot (Figure 2.6) of minimum p$ versus time for the combined

and free solutions, shows the major stages of this sequence quite well.

From t = to t = 18 h, the wave in the combined solution appears to

weaken rapidly (as indicated by rising p$) and suggests a weakening

surface cyclonic disturbance. Notice that during this period, the free

solution continues to grow. From t = 18 to t = 36 h, pressure in the

combined solution falls at a much faster rate than that of the free solu-

tion, which suggests a more rapid intensification. After t = 36 h, when

the free wave is away from the mountain, the two solutions appear to

deepen at the same rate.

Ps (mb)

5 Tin:e (h)

1>' " N 24 3(6 '

/ \^ \7\ \

' \\
' x\

10 * >,?

\\
\ \
\ \
\ \
\ \

20 \ \

\ \
\ \
\

Figure 2.6. Minimum p£ versus time at 45o N for free (solid) and combined
(dashed) linear model solutions.
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The effect of the mountain on the phase of the combined solution

is shown in Figure 2.7. As the disturbance approaches the mountain from

t = 6 to 18 h, the phase speed of the combined solution is less than that

of the free solution. That is, the trough appears to move more slowly as

observed in Pacific cyclones approaching the windward slopes of the

Rockies. From t = 24 h, when the lee trough is first observed in the

combined solution, to t = 36 h, the phase speed of the combined solution

is less than that of the free solution. This agrees with the observation

that the lee cyclone moves more slowly during the 6-12 hour period after

formation over the mountain slope. After t = 36 h, the phase-versus-time

curves become coincident, which indicate that the disturbance moving away

from the mountain has a phase speed characteristic of a cyclone over flat

terrain.

X (x 221.27 km)

12 24 36

Time (h)

Figure 2.7. Phase versus time for free (solid) and combined (dashed)
linear model solutions. Phase is inferred from the location
of the minimum value of p$ at 45°N.
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It is emphasized that this model is a linear one and does not

include potentially important nonlinear effects. For example, this model

requires that the mountain be of a small amplitude so that its effect on

the mean flow and the developing wave may be ignored. In reality, the

Rocky Mountain massif does affect the basic airflow. However, the

success of this conceptual model in describing at least qualitatively the

major features of lee cyclogenesis indicates the importance of linear

dynamics in the lee cyclogenesis process.

C. NON-GEOSTROPHIC MODEL WITH FINITE-AMPLITUDE FORCING

In the preceding section, the analysis was accomplished with the

quasi-geostrophic equations and did not consider ageostrophic advections.

The semi-geostrophic equations described by Hoskins (1975) provide a set

of equations which is capable of describing nongeostrophic processes such

as frontogenesis (Hoskins and Bretherton, 1972). This equation set is

formed by approximating the momentum geostrophically in the equations of

motion while retaining the complete advecting wind. With a transforma-

tion of horizontal coordinates, the quasi-geostrophic equations are

obtained in the new coordinate system. If the quasi-geostrophic equa-

tions are linear for the problem, these transformed equations are linear

and may be solved analytically. The solution must then be transformed

back to physical space for interpretation. The general development which

follows in section 1 is similar to Bannon (1984) who used the semi-

geostrophic equations to study the interaction of a front with an

infinitely long mountain range. In his study, there was no vertical

shear in the basic current and the frontogenesis was driven by horizontal
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deformation. Bannon also used an unbounded atmosphere, while in this

study, a lid is placed at the non-dimensional height z = 1.

1. Model Formulation

As before, consider a Boussinesq fluid. The potential vorticity

equation may be written in Cartesian coordinates (with z = -In p/p s ) as

follows:

dg=n , (2.15)
dt

u

n 3u 30 3v 86 3v 3u 36
. (2.16)

where Q= + (f + — )— l j

3Z 3y 3Z 3x ° 3x 3y 3z

The semi-geostrophic approximation is made by replacing (u,v) by (ug,Vg)

in (2.16).

Using the mean wind of the preceding section, let Ug = U = U s
+

Sz , where U s and S are constants. Equation (2.15) may then be re-written

as

dg__
, (2.17)

dt

.

9Vq 36 ,. L
3Vg, 36 • (

2 -18)
where q = * — + (f + —*) —

3z 3x ° 3x 3z

Here, the first term on the right-hand side of (2.16) does not appear

because it is independent of time. If the geostrophic angular momentum,

M = Vg + fx, is introduced, the potential vorticity equation becomes
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3M 89 3M 36 _ 3(M,0)
. (2.19)

3z 3x 3x 3z
"

3(x,z)

The Hoskins geostrophic coordinate system is introduced with

v a • (2.20)
X = x + A Z = z,T = t

In

The associated transformation formulas are:

— = —— (
2 - 21

)

3x
"

f 3X
o

L - 9 (JL) — — + — < 2 - 22 )

3z
"

f
2
9

l

f 3x 3X 3Zoo o

, 9 v
g

f . (2.23)
where n = f + -=*- = s—

o 3x _i 3y_g_

-

=
f 9X

If $, the geopotential in transform space, is defined as

$ = $ + _9_

where <t> is the geopotential in physical space, it follows that

3$ ge 3$
. (2.24)

f v = —
, and — = — v '

o 9 3X 6 3Z
o

37



If the initial v is very small, then the potential vorticity will

be constant, and according to (2.17), it will remain constant. Conse-

quently, by (2.18),

90 . (2.25)

«
=

qo
= f

o Sz

The potential vorticity equation may be transformed into the geostrophic

coordinate system as follows:

8(M,9) 8(M,9) 8(X,Z) n (M,9)
, (2.26)

Q
=

3(x,z)
=

3(X,Z) 3(x,z)
=

f
Q

3(X,Z)

and since M = f X,

(2.27)89
q = n —

8Z

Combining (2.23), (2.25), and (2.27), it follows that

80

80
f
o gz . (2.28)

•o
=

8z , 8v q
1 . -A—y

fo aX

and, using (2.24), this may be written

80 1 89 8
2
$

f
o 8

2
$

. (2.29)

8z f 8z 8X
2

g 8Z
2

o
3
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Now, it is convenient to remove the basic stratification by writing

$ = I
( z ) + ¥ ' (2.30)

8$ g6
where - = r

Substituting this into (2.29) results in the following

8
2
¥ f

o
8
o 3

2
¥

3X
2

g 3 0/3 z
9?"

= o '
(2 * 31)

which states that the disturbance potential vorticity is zero. The time

evolution, then, must come from the first law of thermodynamics,

-ft = 0, applied at boundaries z = z s and z - 1

The total derivative in the transform space may be written

d6 86 * 36 '86 * 86— = — +x — +Y — +Z —
dt 8T 8X 8y 8Z

(2.32;

Using (2.20), X can be written

J ' 1
'

i \ » (2.33)X=x+ — v=u-(u-u)=u '
v '

f„ g g g
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where the semi-geostrophic momentum equation has been used to evaluate

Vg. The first law of thermodynamics now becomes

30 , 30
f9

o * 86 (2 34}— + U + Sz Sv + Z — = "
u*^

8T s 9X g 3Z

At the upper boundary,

Z = at Z = 1 * (2 ' 35)

Following Bannon (1984), the lower boundary condition is linearized by

applying it at Z = rather than z s , and by replacing

86 85

-gj by the constant -gy

The forced vertical motion is given by

. dh
s . 8h

s . 8h s # ( 2 .36)
Z = =X = U

dt 8X 8X

Notice that the boundary condition, itself, is not linearized; it becomes

linear as a result of the assumption that z s
= 0.

Since the interior equation is linear and the boundary conditions

are linear, the solution may be separated into a steady-state forced

solution and a free solution:

* yx,Z) + Y
F
(X,Z,T)

• (2 - 37)
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The mountain solution, ¥.., satisfies

a
2
y
M + o o M _ q

3X 2
- „ 9Z

2

g 36/3z

(2.38a)

and the boundary conditions

3
^

(U + S) 51 - S
s 8X 3Z 3X

M
= , z = 1

(2.38b)

u J. _m . s -5 = - (-a ii) u -i
s 3X 3Z 3X 3z s 3X

o

, Z =
(2.38c)

The free solution must satisfy

3
2¥

F
f
o

9
o

3%
- + — =

3 x2 g 36/3z 9Z :

(2.39a)

and the boundary conditions:

JL+ (u + S) 2-
3T s 3X

3^ Wr.—- - S —- = , Z = 1

3Z 3X

— + U —
3T

u
s 3X

MF
- S^ . o

3Z 3X
, Z =

(2.39b)

(2.39c)
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Notice that the lower boundary condition for the free solution follows

from setting Z = at Z = 0. Both sets of equations are quasi-geostroph-

ic in transform space. Consequently, the mountain solution is given in

transform space by (2.13), which gives a high-pressure ridge over the

crest of the mountain which decays with height. The free solution in

transform space leads to the Eady (1949) baroclinic instability solutions

(2.1, 2.5), although the continuous modes (Pedlosky, 1964; Farrell, 1982)

are required for complete solutions. In transform space, the mountain

solution and the free solution do not interact. The interaction occurs

in physical space as expressed through the coordinate transformation

(2.20).

2. Model Application

Consider the interaction between a small-amplitude, baroclinic

wave and the flow forced by a finite-amplitude mountain. This requires

that

vM
^ v F (2.40)

and, consequently

V(X,Z,T) = V(X,Z) = vM (2.41)

The coordinate transformation (2.20) now becomes

x = x+ l(x^)
f z = z f T = t

(2.42)
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The solutions to (2.38) and (2.39) are transformed to physical space with

(2.42). In this case, the transformation is independent of time because

it is controlled by the steady mountain solution.

The effect of the mountain on the amplitude of the disturbance

may be seen by considering the effect of the transformation on the geo-

potential. In physical space, the pressure function, <|>, will change ac-

cording to

(J,

= $ = __v
2

. (2.42)

In this application, v = V^(X,Z), so that (2.43) may be rewritten as:

VM
2
(X,Z)

(X.Z.T) * *(Z) + <^(X,Z) - J2—

3

+ ^(X,Z,T)-V
M
(X,Z)V

p
(X,Z,T)

(2.44)

This indicates that the primary effect of the onographically forced solu-

tion is "felt" by the time-dependent, mountain term, $fa, because of the

squared term. The time-dependent V(vjVp term indicates that an orographic

effect is present. However, there is no orographic effect on amplitude

at the base of the free trough where Vp = 0. Consequently, changes in

amplitude (other than those due to the free wave) as the wave moves

across the mountain are due to the superposition of the forced and free

solutions. After the wave moves away from the mountain, its amplitude

will be the same as if there had been no mountain. In other words, for

the assumptions made above, a finite-amplitude mountain has no effect on

the growth of a small-amplitude baroclinic wave. Even over the
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mountain, the minimum $£ (where $p is the time-dependent part of $
) is

the same whether or not it is over the mountain. Only its location will

be affected by the mountain.

The effect of the mountain on the phase of the disturbance may be

seen by diffentiating (2.42) with respect to X:

9x , 1 9V . (2.45)

o

This result indicates that the horizontal dimension of the solution will

be stretched in physical space when

gy
< and compressed when ay °

In physical terms, the stretching of the horizontal dimension corresponds

to a phase acceleration of the solution, and the compression represents a

deceleration. These effects are caused by Uty, the divergent component of

the wind, which is forced by the mountain. The divergent component U|v|,

is a maximum at the mountain top because there is divergence on the up-

wind side and convergence on the downwind side. Consider Figure 2.8 in

which the solution V|vj(X,0) is plotted in transform space for a mountain

profile H S (X). The mountain forces a northward deflection of the wind

(V^ > 0) on the windward side and a southward deflection on the leeward

side. If -Xi and +Xi represent the points at which

9V
M

3y- = 0, a wave will be decelerated when it is west of -XI,
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HS«°

Figure 2.8. Steady, forced solution of the semi-geostrophic modej

,

V|vj,

in transform space. At the points -Xl and +Xi, V^/ X = 0;

these points separate the region of phase acceleration from

the regions of deceleration.

accelerated when it is between -Xi and +Xi (over the mountain), and de-

celerated again when it is east of +X]..

The phase acceleration may be seen by comparing the free

solution (of (2.38)) in transform space and physical space. As indicated

previously, the free solution is given by (2.1, 2.5). It is transformed

to physical space by reversing the Hoskins transformation to obtain

x = X -

v
M
(x,z)

, z = Z t = T
(2.46)
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where V^ is computed by taking the derivative of (2.9, 2.13) with respect

to X. The solutions in transform space and physical space may then be

computed using the same constants as in section II. B. 2, except

z = 3.0 km. The result is shown in Figure 2.9. The horizontal scale of

the developing Eady wave is approximately the same as the scale of the

mountain (global wave number u* = 8). To focus on the acceleration

caused by the mountain, the trough in transform space is initially posi-

tioned in phase with the trough in physical space at the point X = -X]_.

This point where the acceleration effect begins is determined analytical-

ly using (2.42). In this way, the phase difference between the two

troughs on the lee side of the mountain will be a maximum.

As the wave begins to move up the mountsin slope (t = 6 h), evi-

dence of acceleration is already present in the physical s-olution. At

t = 12 h, when the trough in transform space reaches the top of the

mountain, the trough in physical space is located half-way down the lee

side of the mountain. At t = 18 h, the trough in transform space has

moved over the lee slope and now trails the trough in physical space by

nearly 500 km. This phase difference has decreased by t = 24 h, which

indicates that the trough in physical space has slowed. This effect on

phase speed is caused by the divergent component of the wind which is

forced by the mountain. Bannon (1984) obtained similar results with a

front moving over a mountain range. After the disturbance moves away

from the mountain and Vm(X,Z)~*0, the phase speed of the physical solution

is approximately the same as that of the transform solution, and the lee

disturbance now behaves similar to a cyclone over flat terrain.
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Figure 2.9. Semi-geostrophic model solutions presented as p$ along 45°N

in transform space (solid) and in physical space (dashed).

The 3.0km mountain is included at the bottom.

This latter result is similar to that discussed in the preceding

section, but, in this case, the acceleration and deceleration of the dis-

turbance is actually caused by the interaction with the mountain. As the

disturbance moves down the lee slope and away from the mountain it is
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decelerated and moves more slowly than a similar disturbance over flat

terrain. After the disturbance has left the mountain's influence, its

phase speed increases to that of the disturbance over flat terrain. As

in the preceding section, a relatively simple model has been used to de-

scribe key aspects which are observed in Rocky Mountain lee cyclogenesis.

The results of this chapter suggest that the cyclogenesis which

is observed in the lee of the Rocky Mountains is largely unaffected

dynamically by the presence of the mountain. In both models, the rapid

intensification which is characteristic of lee cyclogenesis is observed

as the disturbance moves down the lee slope of the mountain. However, in

neither model is there a net orographic effect on the amplitude of the

disturbance. The characteristic phase behavior of cyclonic disturbances

on both the windward and leeward sides of the mountain is also observed

in these models. In the linear model, the effect was due to superposi-

tion of two solutions; in the semi-geostrophic model, the larger mountain

affects the phase speed of the wave. However, after the disturbance has

moved away from the mountain, it shows no net orographic effect. The

success of these models in explaining the major features of Rocky Moun-

tain lee cyclogenesis suggest that it is a manifestation of simple bara-

clinic instability distorted by the mountain - and not any new or

enhanced instability mechanism. This idea will be tested in Chapters V

and VI where the primitive equations are integrated with more realistic

initial conditions.
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III. ATMOSPHERIC MODELS

Two atmospheric prediction models are used in this study: the UCLA

general circulation model described by Arakawa and Lamb (1981) and the

Naval Environmental Prediction Research Facility (NEPRF) global spectral

model developed by Dr. T. Rosmond. These two models represent state-of-

the-art atmospheric research models and have many desirable features.

The UCLA model is designed specifically to provide an accurate repre-

sentation of air flow over and near topography. The basic numerical

scheme was developed for the shallow water equations which conserve abso-

lute potential vorticity. The UCLA finite-difference scheme is designed

to conserve the domain-averaged potential vorticity while it approximate-

ly conserves the potential vorticity of individual parcels. Arakawa and

Lamb (1981) have shown that, for a given coarse grid, simulations of the

airflow over steep topography improved significantly when this scheme is

used. In this study, airflow over a long, narrow mountain is considered,

and it is believed that the UCLA model provides the best available

representation.

The NEPRF model is a spectral version of the 1977 UCLA model. Al-

though it is not explicitly designed to conserve the domain-averaged

potential vorticity, it is quite accurate because of the spectral repre-

sentation. It is used in this study to investigate the continuous-mode

growth mechanism. Because this mechanism is a linear one, a linearized

model is sufficient for the investigation. The NEPRF model was selected

primarily because it can be linearized more easily and run more
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rapidly than a comparable finite-difference model. Since the physics are

^ery similar to those of the UCLA model, the results should be about the

same. Additionally, the fully nonlinear version of the NEPRF model can

be used as a check on the effect of truncation errors in the finite-

difference runs. The following sections describe these two models and

the integration schemes used.

A. THE UCLA MODEL

The UCLA general circulation model is described in detail by Arakawa

and Lamb (1977, 1981). A short summary of the version used in this study

is provided here. The model consists of the primitive equations for an

inviscid, adiabatic, and hydrostatic atmosphere; moisture and its effects

are not included. The prognostic variables are the horizontal components

(u, v) of the wind velocity, potential temperature (8), and pressure

(tt = p s
- pt). The model's vertical coordinate is a, which is defined as

a -
P ' "t , (3.1)

Ps
" pt

where p s is surface pressure and pt is the top of the model atmosphere.

In this study, pt = 200 mb. Channey and Drazin (1961) have shown that

wavelengths shorter than planetary scale are trapped in the vertical. In

addition, the results of Section II. B (Figure 2.2) indicate that the ono-

graphic wave is strongly damped in the vertical. Consequently, model

solutions should not be significantly affected by the boundary at 200 mb.
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The domain is a 450 sector of the Northern Hemisphere with a wall at

the equator and cyclic continuity at the east and west boundaries. The

model atmosphere extends from the earth's surface to 200 mb, and d is

assumed to vanish at both of these boundaries. The variables are stag-

gered horizontally according to Arakawa's Scheme C (Figure 3.1) with a

grid spacing of approximately 2.8° longitude by 2.750 latitude. Vari-

ables are staggered vertically as shown in Figure 3.2 in six layers

spaced equally in °. Rennick and Williams (1985) have shown that with an

upper boundary at 200 mb, the equal spacing in ° gives well-behaved

results for the forced mountain solution at the horizontal scales con-

sidered in this study. Spatial derivatives are approximated using a

fourth-order finite difference scheme. The vertical differencing scheme,

which was developed by Arakawa and Suarez (1983), has excellent integral

properties and it eliminates the systematic error in the hydrostatic

equation which was present in previous models. A nonlinear horizontal

diffusion of momentum is included to parameterize the effects of subgrid-

scale motions.

n-.e

Figure 3.1. Horizontal distribution of variables in the UCLA model grid,
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Figure 3.2. Vertical distribution of variables in the six-layer version

of the sigma-coordinate system.

The model integration proceeds in a series of Euler-backward time

steps followed by five centered time steps. Convergence of the meridians

toward the poles would normally require the use of an extremely short

time step to maintain computational stability. To avoid this require-

ment, the zonal smoothing technique described by Arakawa and Lamb (1977)

is used. In this technique a local stability criterion, S, is used; it

is defined as follows:

S = (AA/A4>)cos / sin(nAX/2) (At^/At) (3 * 2)

where AX = longitudinal grid size, A4> = latitudinal grid size,

At = 360 s, At = time step, and n = wave number.
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Smoothing is performed only when S < 1; this occurs generally at high

latitudes and for higher wave numbers. The smoothing is accomplished by

reducing the amplitudes of the Fourier components of the zonal pressure

gradient and the zonal mass flux by the factor S. As indicated by (3.2),

the amount of smoothing may be reduced by decreasing the time step. To

measure the effect of the zonal smoothing on the features of interest in

this study, runs were made in which a westerly mean flow was forced over

a 1.5 km mountain using three-, six-, and ten-minute time steps. Compar-

ison of the 36-h forecasts of surface pressure and 500 mb vorticity

revealed virtually no differences between the solutions with three- and

six-minute time steps. Therefore, it was concluded that a six-minute

time step was adequate.

B. THE NEPRF SPECTRAL MODEL

A linearized form of the NEPRF spectral model is used in this study

to investigate the continuous-mode growth mechanism. A short summary of

the basic model and the version used in this study is presented in this

section.

The spectral formulation was accomplished by Dr. T. Rosmond of NEPRF

and is described by Lubeck, Rosmond and Williams (1977). The model's

basic equations are obtained from the nonlinear primitive equations for

an inviscid, adiabatic, and hydrostatic atmosphere, the prognostic vari-

ables are the horizontal components of the wind velocity (u, v); temper-

ature (T); and the natural log of terrain pressure (q = In p s ). The

variables are represented spectrally in the horizontal with wave number

40 triangular truncation. The model's vertical coordinate is a
, which is

given by (3.1), with
p-t

= 0. The vertical derivatives are approximated
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using finite differences. Vertical velocity, a, is assumed to vanish at

the upper and lower boundaries. The model employs a semi -implicit time-

differencing scheme which allows a 15-minute time step.

The version of the model used in this study is linearized according

to Rennick and Williams (1985). This is accomplished by forcing the time

tendencies to be zero at all wave numbers except the one of interest.

The domain is restricted to one wavelength in the east-west direction,

and cyclic continuity is assumed. To simulate the wall placed at the

equator in the UCLA model, the Northern Hemisphere conditions are mirror-

ed in the Southern Hemisphere. Six- and 20-layer versions of the model

are used. A comparison of the results of these two versions will give an

indication of the effect of the vertical resolution. The layers are

spaced equally in a. Rennick and Williams (1985) found that this spacing

yields well-behaved solutions. Because the experiments are limited to

the linear domain, the use of semi -implicit time-differencing allows a

30-minute time step.
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IV. INITIAL CONDITIONS AND TOPOGRAPHY

Many factors must be considered in the development of the initial

conditions for experiments which treat the lee cyclogenesis problem. The

wind shear (both vertical and horizontal) of the mean flow determines its

stability and, consequently, plays a controlling role in the development

of the cyclone. In addition, the vertical structure of the disturbance

is critical to the rate at which mean kinetic energy is converted into

eddy kinetic energy in a developing wave. Finally, as indicated by the

climatology of cyclogenesis frequency, the size, scale and orientation of

topography appear to play a role in the occurrence of cyclogenesis. Con-

sequently, the initial conditions must be selected with care.

In this study, an attempt is made to reproduce the observed charac-

teristics of lee cyclogenesis as closely as possible using analytical

expressions. The structure of the mean flow is similar to that presented

in Palmen and Newton (1969) in their description of cyclogenesis. The

disturbance is specified using the results of Chapter II. The topography

is patterned roughly after the Rocky Mountains. In the following sec-

tions, the specific analytical expressions and techniques used to initia-

lize the model are described.

A. MEAN FLOW

In this study, lee cyclogenesis is viewed as a mid-latitude manifes-

tation of baroclinic instability. Consequently, the initial mean state

for all experiments consists of a baroclinically unstable westerly

current. The specific form of the upper-level wind is

55



2 > (4.1a)
uu B>,p(a,<l>)]

= u sech[Y(<i> - <t> )] (ln(p
s
/p)/ln(p

s /pmaX )

, ^ « . ( 4 -!b)
v
u <j) s p(a,(t)) =0

where u = 40 m s" 1 , <J> = 45 °N, Ps ' 1013.25 mb, pmax = 200 mb, and Y is

the halfwidth of the jet. The maximum wind at each level occurs at 45°N.

Wind speed varies linearly with the log of pressure and approximates

profiles given by Palmen and Newton (1969) in case studies of

cyclogenesis. The latitudinal variation is taken from Haltiner and

Williams (1980). By setting the halfwidth of the jet, Y, equal to 8°

latitude, a horizontal profile which agrees quite well with that observed

prior to cyclogenesis results. However, this profile meets the necessary

condition for barotropic instability in regions to the north and south of

the jet stream. Consequently, a profile in which Y = 16°, that does not

meet this criterion is included in this study to isolate the baroclinic

effects. Meridional cross-sections of the two initial mean state

velocity fields are shown in Figure 4.1.

A mean surface current is included with the same latitudinal struc-

ture as the upper-level flow,

G s (4>) G00sech
2

[Y(<t> - 4> )]

v
s
(») - •

(4 ' 2b >
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Figure 4.1. Meridional cross-sections of the initial mean wind, u, for
a) 16° jet, and b) 8° jet. Contour interval is 10 m s'*.

where y and <j> are as defined above and u 00 = 5 m s*l. The upper-level

wind given by (4.1) is modified by adding the surface current and apply-

ing the gradient correction to account for the earth's sphericity:

u[<j>,p(o,<i>)] = -ft a cos <j>
+

fta cos 4>[l+(2(u + u )/fia cos 9)]
- 5

u s

(4.3)

where a is the radius of the earth, ti is the earth's rotation rate, and

u u and u s are given by (4.1a) and (4.2a), respectively.
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Mean surface pressure and surface temperature are initialized from

the mean surface wind using the geostrophic wind equation:

i>s(4>) = exp[ln p s (4> ) - (a/R) J fu s (4>)/Ts (4>) t»] '
(4,4)

*o

where ps (<t>
= 45°N) = 1013.25 mb, u s (<|>) is given by (4.2a), and T s (<j>)

represents the mean surface temperature. The integral in (4.4) is evalu-

ated using a Simpson's rule approximation. Because the latitudinal

structure of T s (<j)) is unknown, Ps^) is computed interatively as follows:

an initial guess is made for T s ; ps (<t>) is computed using (4.4); Ts is

then adjusted to the NACA standard temperature for the computed p s and a

new p s (4>) is derived; this latter step is repeated until the adjustment

of Ts is less than 0.01°K. The solution converges in approximately 10

iterations.

Upper-level temperature is specified by integrating the geostrophic

thermal wind equation which gives:

4> (4 5)
T(4>,p) = T(4> ,p) + (a/R) S f(3u u /ln p) d*

*o

where Ts (<J> ,p) is the temperature at 45°N and u u is given by (4.1). The

integral in (4.5) is also evaluated using Simpson's rule.
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These initial conditions were integrated over a flat lower boundary

to test the balance of the mean state. Harmonic analysis of the v-com-

ponent of the wind at all levels and at a variety of latitudes showed

wave number zero amplitude fluctuations of less than 1 m s~l.

B. DISTURBANCE

Two types of disturbances are used in this study: a barotropic dis-

turbance (amplitude and phase independent of height), and an orographic-

ally-forced disturbance which decays exponentially with height. The

barotropic disturbance is used in the majority of the experiments to

study the effect of topography on the evolution of a baroclinic wave.

The orographically-forced disturbance is used only in Chapter V to study

the continuous-mode growth mechanism.

The barotropic disturbance consists of a weak wave which varies sinu-

soidal ly with longitude. The maximum amplitude of the disturbance occurs

at 45°N. Fields are balanced geostrophically with a constaft f and are

given by

2*' = f A*sin(nX)sirT(2<t>)

p' = p$'/RT

u' = -(l/f a) 8«'/3*

v' = l/f a cos *) 3*'/3*

T' =

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

where T = 273°K and p = 1013.25 mb. Test integrations were conducted in

which the initial wave number of the disturbance was varied to determine
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the most unstable wavelength. The wave number 8 perturbation exhibited

the most rapid growth and is the one used in this study.

The orographically-forced disturbance is specified using the steady

forced solution to Eady's model given by (2.9) and 2.13). The fields are

balanced geostrophically:

P^ = -p/RTtt^shs^ cos yx sin2(2
4)
))/(H(UsaE - S 6Se )]

(4.7a)

3\p
U s h s 2̂

af
o
H(U

saE-Se\)
a pSinh

YE
cosh cos yx (2 sin 4^)

(4.7b)

v' = aV U S hS£^y

9*
f H(U

saE -S £\)
ol. sinh — +

TE
cosh —

e
2

J

cos yx (2 sin
22(f))

(4.7c)

T' =

R 3Z

ru s hS"S

RH(U
s
a
E
-S e

'1

YE )

TE
sinh ~\

\
cosh — +

H
e

cos yx (sin 2
2(j))

(4.7d)

where r = 1.167 x lC^m^s"^, l) s is the mean surface wind, h
s

is the ter-

rain elevation, H = 8 km is the scale height of the atmosphere, and z is

non-dimensional; height (here Z = 1 - a)

.
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C. TERRAIN

The topography used in this study is designed to resemble the Rocky

Mountains as a long, meridional barrier to westerly flow. It is given by

z «>,X) =

m

z ($) cos
;

*
I 4AX 2

X - X < 4AX

, |X - X
|

> 4AX

(4.8a)

where AX is the longitudinal grid spacing and X is the longitude at

which the mountain is centered; z (<j>) is given by

r

z
s

COS

zj*) - 1

z^> COS

(— )
-

3A(J) 2 J

3A<J> 2

, (j>

N
> <j> >

<j>

s

, <J> M + 3A<{) > (j) >
<J>.

, <j)$ >
<J>

>
(|>S

- 3A4>

, elsewhere

:4.8b)

V.

where z s is the mountain height, A<J> is the latitudinal grid spacing, §\\

is approximately 61.75°N and
<j>s

is approximately 31.25°N. The resulting

mountain (Figure 4.2) is 22.5° wide and extends from approximately 23°N

to 70°N.
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Figure 4.2. Plan-view of the topography on a 45° sector of the globe.
Vertical line at the center of the figure represents the

mountain ridge line.

Terrain was initialized in the model by raising the mountain from

zero to the values in (4.8) during the first 12 hours of the integration.

This technique is designed to minimize the generation of inertia-gravity

waves during the initial part of the integration while the mean flow,

which is analytically balanced without topography, adjusts to the pre-

sence of the mountain. Topography is incremented at each time step

according to:

2 nt
( z + (A,4>) sin (— ) , t < 12 hours
1 m* v ' v

?4
z (X, 4>, t) = "

z (A,*)
m*

(4.9)

, t > 12 hours

This technique has been used successfully by Tibaldi et al_. (1980),

Williams et al . (1981), and Walker (1982) and has been found to produce a

smooth and rapid adjustment (within approximately 6-12 hours).
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V. CONTINUOUS-MODE GROWTH EXPERIMENTS

The results of Chapter II suggest that lee cyclogenesis may be inter-

preted as a manifestation of ordinary baroclinic instability distorted by

the mountain. In this chapter, the suggestion by Farrell (1982) that

continuous-mode growth plays a significant role in lee cyclogenesis is

considered. As indicated in Chapter I, the initial conditions are

crucial to this mechanism and must be based on a realistic flow. In this

study, the mean flow is assumed to contain no perturbations initially,

and, at the same time, t, a disturbance composed of a spectrum of dis-

crete and continuous modes is excited in response to orographic forcing.

This might be expected if the cross-topography flow increased rapidly

from zero. Two sets of numerical experiments are conducted in which an

orographically-forced disturbance is allowed to evolve for at least 24

hours in a baroclinically unstable mean flow. In the first set, a linear

model is used to examine the evolution of an orographically-forced dis-

turbance which is specified initially using the forced Eady solution

described in section II. B. Use of the linear model is justified because

the continuous-mode growth described by Farrell is a linear mechanism.

In the second set of experiments, the possibility is considered that the

structure of the orographically-forced disturbance is more complex than

the forced Eady solution. In these experiments, the forced disturbance

is not included in the initial conditions but develops during the inte-

gration in response to the mean flow being forced over the topography.
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In addition, a nonlinear numerical model is used to include all possible

orographic effects on the evolution of the continuous modes.

Results of these numerical experiments are examined for evidence of

enhanced growth which could indicate a significant contribution to the

amplification of the disturbance. According to Farrell's analysis, con-

tinuous-mode growth could occur for approximately 6-8 hours after excita-

tion for the magnitude of vertical shear used in these experiments.

Pedlosky (1964) has shown that, in the long term, these modes damp as

1/t^. Consequently, if the rapid algebraic growth predicted by Farrell

is present, it should be evident within the first 24 hours of the

integration.

A. EVOLUTION OF VERTICALLY TRAPPED DISTURBANCES IN A LINEAR MODEL

In this section, the excitation of an orographically-forced, vertic-

ally-trapped disturbance is considered as a possible trigger mechanism

for rapid continuous mode growth. Numerical experiments are carried out

in which the forced Eady solution described in section II. B is allowed to

evolve in a baroclinically-unstable, zonal mean flow. Topography is not

included because the continuous-mode-growth mechanism is linear, and,

once excited, these modes grow independently of the mountain. In any

case, the mountain solution is independent of time and it cannot interact

with the disturbance since the model equations have been linearized.

The six-layer, linearized version of the NEPRF spectral model is used

to carry out the experiments. The mean state is given by (4.3-4.5) with

Y = 8°, and the initial disturbance is given by (4.7a-d). The distur-

bance is allowed to evolve for at least 24 hours. Model runs are
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carried out with global wave number u* = 8, 12, and 16 because these wave

numbers represent disturbance wavelengths of interest in studies of lee

cyclogenesis.

The results of the wave number 8 experiment are shown in Figure 5.1.

After an intial period in which the disturbance amplitude damps, amplifi-

cation is observed at <* = 0.9167 (p = 930 mb) between t = 6 and 12 h.

However, this growth is confined to the lowest level of the model and is

not sustained beyong t = 12 hours. Little if any growth is observed at

upper levels. The model run is extended to t = 60 h to see if the dis-

crete mode growth predicted by baroclinic instability theory is observed.

In Figure 5.2, the amplitude of v at ^ = 8 for level 6 is plotted versus

time. Except for the growth spurt between t = 6 and 12 h noted above,

virtually no growth is observed during the first 42 hours of the run.

However, beginning at approximately t = 45 h, growth of the most unstable

discrete mode is indicated by the rapid amplification.

The results of the wave number 12 and 16 experiments are shown in

Figures 5.3 and 5.4, respectively. Behavior in both cases is roughly

similar to that observed in the wave number 8 experiment. A small spurt

of growth at the lowest level is observed in Figure 5.3 between t = 12

and 18 h between t = 6 and 12 h in Figure 5.4. Again, little if any

growth occurs at higher levels.

Walker (1982) suggested that higher vertical resolution may be

necessary to model the dynamics of lee cyclogenesis properly. Farrell

(1982) has also shown that continuous-mode growth is favored in distur-

bances with higher wave numbers, which indicates that a higher vertical

resolution may be necessary for the model. The three experiments
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described above were re-run using a 20-layer version of the NEPRF model

to determine if more than six layers is required to resolve continuous-

mode processes. In Figures 5.5a, b, and c, cross-sections at 45°N are

shown for the 20-layer solutions superposed on the six-layer solutions at

t = 12 h. In Figure 5.5a, the solutions are nearly coincident at all

levels, which indicates that there are essentially no differences between

the six-layer and 20-layer model runs. In Figures 5.5b and c, amplitude

differences between the two solutions are only slightly greater (less

than 1 m s~l), and the phases are yery close. No evidence of rapid

growth was observed in any of the high resolution runs. Therefore, it is

concluded that the six-layer resolution is sufficient for this research.

B. DISTURBANCED FORCED BY THE TOPOGRAPHY IN A NONLINEAR MODEL

In the preceding section, the structure of the forced wave was expli-

citly specified in the initial conditions and a linearized model was

used. The possibility exists that a more complicated structure is in-

volved than given in the analytically-specified initial condition. In

this section, cases are examined in which no attempt was made to control

the initial structure of the forced orographic wave. Numerical experi-

ments are conducted using the six-layer UCLA model, described in Chapter

III, which includes nonlinear processes. The initial conditions consist-

ed solely of the baroclinically unstable mean flow given by (4.3-4.5).

In each experiment, the mean flow is forced over a long, narrow mountain

(given by (4.8)) and was allowed to evolve for 90 hours.

Four experiments were conducted. In the first, the half-width of the

jet stream, "Y, was 8° and the mountain height, zm , was 1.5 km. In the

second experiment, Y = 8° and zm = 3.0 km were used. In the third
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experiment, Y = 16° and zm = 1.5 km, and in the fourth, "Y = 16° and

zm = 3.0 km. Topography was raised from zero to its final height in

12 hours according to (4.9). Forcing of the mean flow by the mountain

theoretically will excite a spectrum of discrete and continuous modes.

As in the preceding section, for continuous modes to be significant,

growth must occur earlier and be more rapid than that predicted for the

discrete modes.

Results of the first experiment (
Y = 8°, zm = 1.5 km) are shown in

Figure 5.6. When the mountain reaches its final height at t = 12 h, the

forces ridge-trough pattern predicted by the Eady solution is observed.

However, the high-pressure center is located over the lee slope of the

mountain rather than over the ridge line as in the results of section

II. B. The high-pressure ridge is maintained over the southern portion of

the mountain throughout the model integration. However, in the region

beneath the jet stream, the eastward elongation of the ridge indicates

that a portion of the high is advected downstream. These results are in

qualitative agreement with those of Huppert and Bryan (1975) who found

that topographically forced circulations were advected downstream in

strong mean currents and were bound to the topography in weak mean flows.

Examination of this sequence does not reveal any rapid continuous-

mode growth. Between t = 12 and t = 24 h, when the continuous-mode

growth should be evident, there is no significant cyclonic development.

A weak trough appears at t = 24 h, but only slight amplification is

observed during the following 24-30 hour period. This is certainly not

the type of growth normally associated with lee cyclogenesis.
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Figure 5.6a. Sea-level pressure contours for nonlinear Experiment 1 at

12 h. Contour interval is 2.5 mb. Domain is a 45° sector
of the globe with cyclic continuity at the east and west
boundaries.

Figure 5.6b. Sea-level pressure contours for nonlinear Experiment 1 at

18 h. Contour interval is 2.5 mb. Domain is a 45° sector

of the globe with cyclic continuity at the east and west
boundaries.
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Figure 5.6c. Sea-level pressure contours for nonlinear Experiment 1 at

24 h. Contour interval is 2.5 mb. Domain is a 45° sector
of the globe with cyclic continuity at the east and west
boundaries.

Figure 5.6d. Sea-level pressure contours for nonlinear Experiment 1 at

30 h. Contour interval is 2.5 mb. Domain is a 45° sector

of the globe with cyclic continuity at the east and west
boundaries.
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Figure 5.6e. Sea-level pressure contours for nonlinear Experiment 1 at

36 h. Contour interval is 2.5 mb. Domain is a 45° sector
of the globe with cyclic continuity at the east and west
boundaries.

Figure 5.6f. Sea-level pressure contours for nonlinear Experiment 1 at

42 h. Contour interval is 2.5 mb. Domain is a 45° sector
of the globe with cyclic continuity at the east and west
boundaries.
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Figure 5.6g. Sea-level pressure contours for nonlinear Experiment 1 at

48 h. Contour interval is 2.5 mb. Domain is a 45° sector
of the globe with cyclic continuity at the east and west
boundaries.

In Figure 5.7, the amplitude of v for global wave number 8 at

a = 0.9167 is plotted versus time. In the first 12 hours, the amplitude

grows rapidly in response to the "growing" mountain. Between t = 12 and

t = 24 h, the model atmosphere adjusts to the presence of the mountain.

A weak inertia-gravity wave (amplitude approximately 1-2 m s~*) is ob-

served. However, this wave does not grow and, in fact, appears to damp

slightly with time. Amplification is not observed between t = 12 and

t = 50 h. After t = 50 h, wave number 8 begins to amplify at an approxi-

mately exponential rate. This type of growth is predicted for distur-

bances in baroclinically unstable mean flows, but it is normally associ-

ated with the most unstable discrete mode, and not with continuous modes.
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Figure 5.7. Amplitude of wave number 8 at a = 0.9167 at 45°N versus time
for nonlinear Experiments 1 (solid) and 2 (dashed).

Results of the second experiment [y = 8°, zm = 3.0 km) are similar

as seen in Figure 5.7. As expected, the larger mountain forces a

stronger deflection of the mean flow during the first 12 hours. Doubling

of the mountain height approximately doubles the amplitude of the re-

sponse. A more intense forced ridge-trough pattern is observed in the

sea-level pressure contours (not shown), although no evidence of rapid

growth is observed during the first 24 hours of the integration. Growth

of the most unstable discrete mode is indicated here also, and it begins

at about the same time (t = 50 h).
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Results (Figure 5.8) of the third (y = 16°, zm = 1.5 km) and fourth

(y = 16°, zm^ = 3.0 km) experiments are qualitatively similar. The

response to the growing mountain during the first 12 hours is approxi-

mately the same ad in the y = 8° runs, and doubling the mountain height

approximately doubles the amplitude. A smaller gravity-wave oscillation

(amplitude less than 1 m s"l) is observed after t = 12 h, which indicates

a better geostrophic adjustment. No initial growth which might indicate

growing continuous modes is observed. In these two runs, baroclinic

growth associated with the most unstable discrete mode is observed after

t = 40 h (about 10 hours earlier than in the Y = 8° runs).
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Figure 5.8. Amplitude of wave number 8 at a = 0.9167 at 45°N versus time
for nonlinear Experiments 3 (solid) and 4 (dashed).

76



The results of this chapter do not support the hypothesis that con-

tinuous-mode growth plays a significant role in lee cyclogenesis. Evi-

dence of sustained, rapid growth is not observed during the first 24 h of

any of the numerical experiments examined in this chapter. In the linear

experiments, the vertically-trapped disturbance shows spurts of growth in

the lower levels, but this growth is not sustained beyone approximately

3 h after onset. The overall character of these solutions appears to be

oscillatory rather than amplifying.

In the nonlinear experiments, slight amplification of the forced sur-

face-pressure trough is observed after 12 hours. However, since no evi-

dence of rapid initial growth is observed in the v-component of the wind

at o = 0.9167, amplification must be confined to a region close to the

earth's surface. The growth observed in these experiments is attributed

to the most unstable discrete mode - and not to continuous modes. Con-

sequently, if as Farrell suggests, growing continuous modes play a role

in lee cyclogenesis, other justifiable initial conditions must be found.
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VI. BASIC NUMERICAL EXPERIMENTS

In this chapter, enhanced baroclinic instability and superposition

are considered as possible lee cyclogenesis mechanisms. Markine's (1975)

analysis of quasi-geostrophic flow past an infinitely long mountain

showed increased vertical wind shear on the lee side of the mountain,

which indicates enhanced baroclinicity. He has suggested that as a dis-

turbance moves into the lee of a mountain complex, it encounters a

signficantly destabilized mean flow and rapid cyclogenesis results.

Merkine's suggestion is investigated in this chapter using a series

of numerical experiments in which a free disturbance evolves in a baro-

clinically unstable flow. To isolate the effects of the mountain, runs

are made with and without topography. One of the two baroclinically un-

stable mean states that are considered also meets the necessary condition

for barotropic instability. Mountain height and length, as well as the

initial amplitude of the disturbance, are varied.

Results are examined for evidence of increased growth which could

indicate enhanced instability on the lee side of the mountain. As indi-

cated in Chapter II, observed lee-side growth could be explained by a

superposition of the growing wave on a steady, orographically forced lee-

side trough. Consequently, for the enhanced-instability mechanism to be

considered a significant contributer to lee cyclogenesis, it must be

demonstrated that disturbances moving over mountains develop more rapidly

than disturbances moving over flat terrain. That is, it must be shown
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that this development significantly exceeds that caused by a combination

of superposition and normal baroclinic growth.

A. NUMERICAL EXPERIMENTS

Numerical experiments are carried out using the version of the UCLA

model described in Chapter III. The initial mean state consists of a

baroclinically unstable, westerly current balanced analytically for a

flat lower boundary (that is, no topography). The basic current, given

by (4.1-4.5), possesses both horizontal and vertical shear and reaches a

maximum speed of 45 m s"l in the top layer of the model at 45°N. A mean

westerly surface current with a similar horizontal profile as the upper

level flow is included. The maximum surface wind is 5 m s~l at 45°N.

The mountain consists of a long, smooth barrier (approximately 47° lati-

tude by 24° longitude) oriented north-south as described by (4.8).

1. Experimental Techniques

Each experiment consists of three runs: Control, Interaction, and

Non-interaction. In the Control run, a weak disturbance, given initially

by (4.6), is allowed to evolve into a mature cyclone with no topography

included. The time-dependent solution for this run may be represented

as:

*c(t) =*F + ^c (t)

where <Fp is a zonal ly symmetric, time-independent state in gradient

balance over flat topography. Here, ¥' is the instantaneous deviation of

the solution from the mean state. Because the UCLA model is fully
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nonlinear, there are no implied constraints on the magnitude or mean

value of V£(t).

In the Interaction run, a growing baroclinic wave evolves as it

passes over the mountain. The initial conditions for the integration are

constructed by combining ¥' (taken from the Control run at some arbrit-

rary time t using (6.1) with an orographically forced, mountain mean

state such that

/ x
-

, ,
• (6-2)

*(t
)

= Ym + y C (to)

f|v| is a zonal ly asymmetric, time-independent mean state representing flow

in the presence of the mountain. These conditions are integrated forward

in time with full-height topography until the disturbance passes over the

mountain. The resulting Interaction solution may be formally separated

into two parts analogously to (6.1):

(6.3)
fj(t) = Y M +*J(t)

To isolate the degree of interaction between the growing wave and the

mountain-induced distortions in the mean state, a Non-interaction solu-

tion f|\|(t) is constructed without model integration by combining ^'(t),

taken from the Control run at each desired output time, with ^ such that

(6.4)
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In this way, the Non-interaction solution parallels the development in

Chapter II in which the time-dependent Eady solution was superposed on

the steady, orographically forced solution to describe the passage of a

wave over the mountain.

The observed growth is affected by the superposition of the

disturbance on the forced lee-side trough in both the Interaction and

Non-interaction runs. However, the growth of the disturbance in the

Interaction run is also affected by the stability of the orographically

forced mean flow, whereas the growth of the Non-interaction disturbance

is affected by the stability of a zonally uniform mean flow. Therefore,

comparison of these two runs will reveal differences in growth caused by

the orographically forced distortions to the mean flow. If mean flow

destabilization is a significant factor in lee cyclogenesis, large

increases in growth should be observed in the Interaction runs.

2. Derivation of the Mountain Mean State

The key to the experimental procedure described in the preceding

section is the steadiness of the mountain mean state. Because the mean

flow is baroclinically unstable and the mountain is a continous source of

disturbances, normal-mode growth is anticipated. Therefore, a strictly

time-independent mountain mean state is not achieveable. However, a

"locally" steady state can be derived by limiting the analysis to that

part of the solution in which the normal-mode amplitudes are negligibly

small

.

In this study, the locally steady, mountain mean state is derived

from a model run in which the Control mean flow, ¥p, is integrated in the

presence of the mountain. The mountain in this case is raised from zero
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to its full height in 12 hours. The solution is then time-averaged over

12 hours (using fields from t = 18 to t = 30 h) to filter out inertia-

gravity waves, and this time-averaged solution is defined as the mountain

mean state, ?m-

Test integration of
fy| revealed the presence of a weak transient

solution and some amplification of the forced modes at t = 24 h. These

effects are present in the Interaction run which includes fy| as part of

the initial conditions for a model integration. They are included in the

Non-interaction run by integrating fy| separately in the presence of the

mountain and using this time-dependent ^(t) in (6.4). Formally, then,

the Non-interaction solution is written

*N(t) = fyiU) + fi(t)

3. Description of Experiments

The numerical experiments conducted in this portion of the study

are listed in Table 6.1. In each, an Interaction run and a Non-inter-

action run are generated. Two basic states are considered: one in which

the Jetstream halfwidth, y (in (4.1) - (4.5)), is 16° latitude and one in

which y = 8°. Vertical cross-sections of the mean wind for these two

basic states are shown in Figure 4.1. As indicated earlier, the 8° jet

more closely resembles the upper level flow observed during cyclogenesis

(see, for example, Palmen and Newton (1969)). However, the 8° jet also

meets the necessary condition for barotropic instability in regions

immediately north and south of the jet. Therefore, a 16° jet which does

not meet this condition is included to isolate the baroclinic effects.
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Table 6.1. List of Experiments

Control A: 160 jet No Topography

Control B: 80 Jet No Topography

I 160 Jet 470x240x1.5 km Mountain

II 160 jet 470x240x3.0 km Mountain

III 80 Jet 470x240x1.5 km Mountain

IV 80 Jet 470x240x3.0 km Mountain

Va 160 jet 250x240x3.0 km Mountain

Vb 160 jet 570x240x3.0 km Mountain

In these experiments, the initial amplitude of the disturbance,

the mountain height, and the mountain width are varied. The initial dis-

turbance amplitude ranges from very weak to approximately finite-ampli-

tude, and is prescribed by setting t , the time at which the perturbation

fields are taken from the Control fun, to the appropriate value. Results

of Trevisan (1976) suggest that lee cyclogenesis is triggered only when

the disturbance has sufficient amplitude before encountering the

mountain. If this is so, the results of these experiments should identi-

fy a minimum amplitude.

Mountain height is varied between 1.5 km and 3.0 km. The anal-

ysis of Chung et al (1976) indicates that mountain height plays a role

in the generation of lee cyclones. In addition, the results of Williams

et al . (1981) suggest that the fundamental character of the mean flow

distortion differs with mountain height - with air parcels tending to

flow over smaller mountains and around larger mountains. The 1.5 km

mountain range is representative of smaller mountains such as the

83



Appalachians, whereas the 3.0 km mountain range roughly resembles the

Rockies. Because it represents a larger obstacle, the higher mountain is

expected to have a greater impact on the development of the wave.

The sensitivity of disturbance growth to mountain length is in-

vestigated by using three mountain lengths: 47°, 25°, and 57°. The 47°

mountain length was used in the majority of experiments and should be

assumed unless otherwise specified.

B. RESULTS

1. Control Runs

Control runs without topography were generated to: 1) measure

growth in the absence of topography (defined here as "normal" baroclinic

growth); 2) identify the portion of the solution dominated by linear

dynamics; and 3) create the ¥'(t) fields required for initializing the

Interaction run and defining the perturbation in the Non-interaction run.

A control run for each basic state (y = 16° and y = 8°) was required.

Results of Control Run A (16° jet) are shown in Figure 6.1. An

initially weak disturbance grows into a closed circulation by approxi-

mately t = 60 h (not shown) and by t = 96 h, a mature cyclone is observ-

ed. A log-linear plot of disturbance amplitude at wave number 8 versus

time is given in Figure 6.2. The exponential growth predicted by linear

theory is observed from approximately t = 30 to t = 75 h; the doubling

time is approximately 21 hours, and is in agreement with the rough

estimate of 24 hours for synoptic-scale baroclinic waves given by

Haltiner and Williams (1980). Growth is not observed at other wave

numbers until after t = 60 h, which indicates that linear processes

dominate through this period.
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Figure 6.1a. Sea-level pressure contours for control run A at h.

Contour interval is 2.5 mb.

Figure 6.1b. Sea-level pressure contours for control run A at 24 h

Contour interval is 2.5 mb.
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Figure 6.1c. Sea-level pressure contours for control run A at 48 h

Contour interval is 2.5 mb.

Figure 6. Id. Sea-level pressure contours for control run A at 72 h

Contour interval is 2.5 mb.
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Figure 6.1e. Sea-level pressure contours for control run A at 96 h,

Contour interval is 2.5 mb.

v (m s )

Time (h)

Figure 6.2. Amplitude of wave number 8 of v at a

45°N for control run A.

= 0.9167 versus time at
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Results of Control Run B (the 8° jet) are similar. Growth in

this case is slightly slower with a disturbance doubling time of 27 h, as

is indicated in Figure 6.3. Even though both jets have the same maximum

speed, the broader 16° jet leads to a larger growth rate. This is appar-

ently because the 16° jet has more available potential energy (because of

the larger temperature variance). Also, the stronger barotropic effects

in the 8° jet may reduce the growth rate as has been shown by Grotjahn

(1979).

Time (h)

Figure 6.3. Amplitude of wave number 8 of v at a = 0.9167 versus time at

45°N for control run B.
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2. Experiment I: 160 jet, 470x240x1.5 km Mountain

In this experiment, the effect of the 1.5 km mountain on distur-

bance growth in the presence of the 160 jet is considered. Four cases

are examined in which the initial wave amplitude is successively in-

creased. In Case 1, the initial perturbation fields are taken from the

Control at t = 24 h. In Cases 2, 3, and 4, the initial fields are taken

from 36, 48, and 60 h, respectively. In each of these cases, the distur-

bance is initially positioned upstream of the mountain.

In Figure 6.4, sea-level pressure contours are shown at 12-hourly

intervals for Case 1. The disturbance crosses the mountain, and a closed

circulation, indicative of cyclogenesis, develops on the lee side. This

growth exceeds that observed in the corresponding control run, where a

closed circulation is not observed until t = 60 h (at t = t + 36 h,

relative to the time units of Case 1). As noted previously, the increas-

ed growth is at least partially due to the superposition of the wave on

the forced lee-side trough. To account for this afect, the non-inter-

action run is introduced in Figure 6.4d. The closed circulation observed

at t = t + 24 h is also observed here. The similarity of the two solu-

tions suggests that the effect of the mountain on the stability of the

mean flow is not critical to the occurrence of lee cyclogenesis in this

case.
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Figure 6.4a. Sea-level pressure contours for the Interaction and Non-
interaction solutions of Experiment I, Case 1. Interaction
solutions are given at t . Contour interval is 2.5 mb.
Bold contours at center of figure represent mountain.

Figure 6.4b. Sea-level pressure contours for the Interaction and Non-
interaction solutions of Experiment I,. Case 1. Interaction
solutions are given at t +12 h. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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Figure 6.4c. Sea-level pressure contours for the Interaction and Non-
interaction solutions of Experiment I, Case 1. Interaction
solutions are given at t +24 h. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.4d. Sea-level pressure contours for the Interaction and Non-

interaction solutions of Experiment I, Case 1. Non-inter-

action solution is given at t +24 h. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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The solutions for Case 4 are shown at t +24 h in Figures 6.5a

(Interaction run) and 6.5b (Non-interaction run). The Interaction

cyclone appears more intense than the Non-interaction cyclone. The

central, closed pressure contour of the Interaction cyclone is 5 mb lower

than in the corresponding Non-interaction cyclone. In addition, the

pressure gradient east of the cyclone center appears stronger in the

Interaction run. However, as in Case 1, a lee cyclone is observed in

both runs. Similar results were observed in Cases 2 and 3 (not shown).

Although some destabilization of the mean flow may be indicated by the

more intense Interaction solutions, it does not appear to be critical to

the formation of the surface cyclone. In addition, in contrast to the

results of Trevisan (1976), the amplitude of the initial disturbance does

not appear to be a factor in the occurrence of lee cyclogenesis.

To isolate the effect of the mountain on disturbance growth, the

mountain mean state, ¥|Y|(t), 1S subtracted from each of these runs to

allow a direct comparison of yj(t) and y«(t). Recall that the latter is

by definition simply the perturbation field from the control case, yc(t).

A harmonic analysis (Figure 6.6) of the v field at a = 0.9167

(p = 930 mb) along 45°N was completed for each run. The curves represent

amplitude, A, which is computed according to

8 10.5

_n=0

(6.6)
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Figure 6.5a. Sea-level pressure contours at tg+24 h for Interaction
solutions of Experiment I, Case 4. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.5b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment I, Case 4. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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where an is the amplitude of the nth harmonic. In the first three cases,

the Interaction and Non-interaction curves are very close, which indi-

cates that the mountain has little effect on the growth rate of the

disturbance. In Case 4, the growth is similar through t + 15 h, after

which the Interaction disturbance appears to grow more slowly.

15

10
•

v (m s )

Time after t (h)
o

Figure 6.6. Amplitude of wave number 8 of v at a = 0.9167 at 45°N for

Experiment I, Cases 1, 2, 3, and 4. Interaction (dashed)

and Non-interaction (solid) solutions are shown.

Figure 6.7, the minimum value of Ps, the deviation from mean-

state surface pressure, along 45°N is plotted versus time for each of the

runs. As the wave moves up the mountain from t = to 12 h, the Inter-

action disturbance grows more slowly than the Non-interaction distur-

bance. In fact, the disturbance even weakens between t - t + 6 and

94



Time after t (h)
o
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Ps (mb)
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Figure 6.7. Minimum p£ (where p s
= P s -Ps) at 45°N versus time

for Experiment I, Cases 1, 2, 3, and 4. Interaction
(dashed) and Non-interaction (solid) solutions are shown

t + 12 h. As the disturbance moves down the lee side of the mountain,

more rapid growth is observed in the Interaction run. This latter result

suggests that enhanced instability may exist on the lee side of the

mountain. However, the net effect on the disturbance is small because of

the period of decreased growth (or weakening) which occurs when the

disturbance is on the windward slope. The minimum value of p£ along 45°N

for each case is listed in Table 6.2. The Interaction values are lower

than the Non-interaction values. However, the maximum difference between
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Table 6.2. Experiment I. Cases 1-4.

Disturbance Characteristics

Entries in the column labeled "min p s
" represent the lowest values of the

deviation from mean-state surface pressure along 45°N at t = t + 24 h.

Entries in the phase-speed column represent the average phase speed of

wave number 8 of v at a = 0.9167 along 45°N over the 24-hour period of

the model integration.

V|v| represents the orographically-forced, meridional wind component in the

Hoskins transformation estimated from the numerical results at

t = t + 24 h.

Phase differences, expressed in units of length, of wave number 8 of p s

at 45° are given in the two columns at the right. In the subcolumn

labeled "SG", entries represent the phase shift predicted by the semi-

geostrophic solution (2.46) using entries from the Vjvj column. In the

sub-column labeled "EXP", entries represent the differences in east-west

position between the Interaction and Non-interaction solutions.

Case

Min p^
(mb)

Phase
(m

Speed

(m s" 1
)

Phase
Differences

(km)

I* N I N SG Exp

1

2

3

4

-6.4 -4.2
-9.9 -6.8

-15.6 -11.3
-22.7 -18.7

17.8
17.9

18.3
20.0

16.1

15.4
15.4
15.6

-13.2
-14.2
-17.0
-17.7

256 135

276 215
330 235

344 488

* I - Interaction; N = Non-interaction
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the Interaction and Non-interaction values is less than 4 mb and does not

appear to be critical to the formation of a closed surface pressure

contour.

Comparison of the phases of the two sets of solutions reveals

that the Non-interaction cyclones lag the corresponding Interaction

cyclones. This effect is seen more clearly by comparing the phases of

the two solutions. In Figure 6.8, an acceleration of the Interaction

disturbance is apparent even at t = t + 6 h, and by t = t + 24 h, the

phase difference between the Interaction and Non-interaction solutions

has increased significantly. A similar phase difference is observed at

t = t + 24 h in Cases 2, 3, and 4 as shown in Figure 6.9.

This result is predicted by the semi-geostrophic solution con-

sidered in Chapter II. It was shown there that the disturbance is

accelerated as it passes over the mountain. Here, the Non-interaction

run represents the linear solution (in the transform space of Chapter II)

and the Interaction run corresponds to the semi-geostrophic solution (in

the physical space). The phase difference between the two solutions is a

result of the acceleration of the disturbance as it passes over the moun-

tain. A rough estimate of this difference may be obtained using the

transformation rule (2.46). The phase differences predicted by the semi-

geostrophic solution and those observed (between the Interaction and Non-

interaction solutions) in the four cases of Experiment I are given in

Table 6.2. The value of V^ required to calculate the semi-geostrophic

value is estimated by using the maximum value of v at a = 0.9167 observed

immediately downstream of the mountain. Qualitative agreement exists

between the observed and theoretical values.
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Figure 6.8 p£ (where p s = p s -p s ) versus X for Experiment I, Case 1 at

45°N at 6 h intervals from t to t +24 H. Dashed curves re-

present Interaction solutions; solid curves represent Non-
interaction solutions. East-west profile of mountain is

shown at bottom.
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Figure 6.9. p^ (where p s = p s -p s ) versus X for Experiment I, Cases 2, 3,

and 4 at 45°N at 6 h intervals from t to t +24 H. Dashed
curves represent Interaction solutions; solid curves repre-
sent Non-interaction solutions. East-west profile of
mountain is shown at bottom.
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Table 6.3. Experiment II. Cases 1-4.

Disturbance Characteristics

Phase
Min Ps Phase Speed Differences
(mb) (m VM .

(km)

Case (m s-1)

I* N I N SG Exp

1 -5.5 -4.2 18.1 16.1 -19.6 381 175

2 -9.1 -6.8 18.6 15.4 -23.6 459 280

3 -14.5 -11.3 18.9 15.4 -29.6 575 290
4 -22.6 -18.7 21.7 15.6 -33.9 659 510

* I - Interaction; N = Non-interaction

3. Experiment II: 16° Jet, 47Ox24Qx3.0 km Mountain

In this experiment, the effect of mountain height on disturbance

growth is considered. The four cases of experiment I corresponding to

initial disturbances from 24, 36, 48, and 60 h are repeated using a

3.0 km mountain. Results of Case 1 are shown in Figure 6.10. As in

experiment I, the disturbance moves over the mountain and cyclogenesis is

observed as the disturbance moves away from the lee slope. The higher

values observed in the surface pressure ridges in this and other figures

are due to a lack of downstream variation in the baroclinic stability of

the mean flow and the exclusion of friction from the numerical model. In

general, these factors will result in more intense cyclones and anti-

cyclones in the numerical simulations, but should not change the funda-

mental conclusions based on the comparison of the Interaction and

Non-interaction simulations. The maximum amplitude and phase speed of

the disturbance do not appear to be affected significantly by the higher

mountain. The minimum value of p£ in Case 1 is -5.5 mb (Table 6.3) which
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Figure 6.10a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment II, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.10b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment II, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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is close to the value of -6.4 mb observed in Case 1 of experiment I; the

phase speeds are within 0.3 m s~l. In addition, the difference in

development between the Interaction cyclone (Figure 6.10a) and the Non-

interaction cyclone (Figure 10b) in Case 1 is less than 2 mb as in exper-

iment I.

The magnitude of the orographically-forced meridional wind com-

ponent, Vm, (Table 6.3) in Case 1 is more than 6 m s~l higher than the

corresponding value of experiment I. This increase which is also ob-

served in Cases 2 through 4 is due to the stronger deflection of the flow

caused by a higher mountain, and is predicted by the solution (2.13).

Another significant difference from experiment I is observed in

the vicinity of the mountain top at t = t + 24 h (Figure 6.10a) in the

form of a second cyclone. This feature first appears as a weak trough on

the upwind slope of the mountain approximately 12 hours into the inte-

gration and it intensifies as it moves up the mountain slope in a north-

easterly direction. This same feature is observed in the Non-interaction

solution (Figure 6.10b), but its amplitude is much weaker. This second-

ary cyclone which was also observed by Walker (1982) appears to be relat-

ed to mountain height and is discussed further in experiment Vb.

The results of Cases 2 through 4 (not shown) are similar. In

each case, the Interaction lee cyclone appears to be more intense than

the corresponding Non-interaction cyclone. In Case 3, where the differ-

ence in intensity is most noticeable, the central closed isobar of the

Interaction cyclone is 7.5 mb lower than in the corresponding Non-inter-

action cyclone. However, when the mean state is subtracted from the

solutions, the difference is reduced to 3.2 mb (Table 6.3). This
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indicates that superposition is partially responsible for the observed

difference. In the other three cases, the minimum p£ for the Non-inter-

action run is within 4 mb of the value for the corresponding Interaction

run. These results are in agreement with those of Experiment I, and

again indicate that superposition is the dominant effect.

In Figure 6.11, the amplitude of v* at a = 0.9167 along 45°N is

plotted as a function of time for each of the four cases. From t = t to

t + 18 H, as the disturbance moves over the mountain and down the lee

side, the slopes of the Interaction and Non-interaction curves are very

close, which indicates, again, that the mountain has little effect on the

growth rate. From t = t + 18 h to t + 24 h, after the disturbance ha~s

begun to move away from the mountain, some increase is observed in the

growth rates of the Interaction disturbances. However, by this time, a

closed circulation, indicative of cyclogenesis, has already formed and

the additional growth does not appear to be critical to the formation of

a closed surface-pressure contour.

The phase acceleration noted in Experiment I is also observed

here. The semi-geostrophic and experimental phase differences are given

in Table 6.3. In these cases, the semi-geostrophic solution over-esti-

mates the acceleration experienced by the Interaction disturbance. This

is because of the large magnitude of v observed in the lee of the moun-

tain. As a result, the semi-geostrophic solution predicts a larger phase

acceleration. The smaller phase acceleration observed in the numerical

simulations may result from nonlinear blocking effects caused by the

larger mountain.
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Figure 6.11. Amplitude of wave number 8 of v at a = 0.9167 at 45°N for
Experiment II, Cases 1, 2, 3, and 4. Interaction (dashed)

and Non-interaction (solid) solutions are shown.

4. Experiment III: 80 Jet, 470x240x1.5 km Mountain

In this experiment, the effect of the horizontal structure of the

mean flow on the interaction between the disturbance and the mountain is

considered. The halfwidth of the jet, y (in 4.1 and 4.2), is reduced to

8° and the four cases of Experiments I and II are run with a 1.5 km moun-

tain. As noted earlier, this mean wind profile meets the necessary con-

dition for barotropic instability both to the north and south of the jet

stream axis. This led to a smaller growth rate in the Control B run, and

consequently, it is anticipated that the growth observed in this experi-

ment will be less than that observed in Experiments I and II.
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The Interaction and Non-interaction solutions for Cases 1 and 4

at t = t + 24 h are shown in Figures 6.12 and 6.13, respectively. As

anticipated, the growth is somewhat less than was observed earlier. The

maximum amplitudes of these disturbances (given as the minimum p$ in

Table 6.4) are from 3 to 15 mb weaker than those of Experiments I and II.

In addition, a closed cyclone does not occur in e^ery case. It is ob-

served only in the cases in which the initial disturbance amplitude is

large. This is in contrast to the results of Experiments I and II in

which the initial disturbance amplitude did not appear to be critical to

the formation of a closed surface isobar. It is also in better agreement

with the result of Trevisan (1976).

As in the previous two experiments, the final amplitudes of the

Interaction and Non-interaction disturbances are within a few millibars

of each other in eyery case. However, here, the Non-interaction distur-

bances are slightly more intense. In fact, closed circulations result in

all but the first Non-interaction run and only in the Case 4 Interaction

run. The amplitude of v along 45°N at a = 0.9167 is plotted versul time

for each of the four cases in Figure 6.14. During the first 15 hours,

the growth rates of the Interaction and Non-interaction disturbances are

in rough agreement. After t = t + 15 h, growth in the Interaction runs

occurs at a slower rate.

An interesting contrast to earlier results is in the location at

which a closed circulation is first observed. In Experiments I and II,

the closed low was not observed until the disturbance reached the bottom

of the mountain. Here, in Cases 2 through 4, the closed circulation is

first observed along the lee slope close to the mountain top.
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Figure 6.12a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment III, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.12b. Sea-level pressure contours at t +24 h for Non-interaction

solutions of Experiment III, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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Figure 6.13a. Sea-level pressure contours at t +24 h for Interation
solutions of Experiment III, Case 4. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.13b. Sea-level pressure contours at t +24 h for Non-interation
solutions of Experiment III, Case 4. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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Table 6.4. Experiment III. Cases 1-4.

Disturbance Characteristics

Phase
Min Ps Phase Speed

5-1)
Differences

(mb) (m
,

VM
1

(km)

Case (m s-1)

I* N I N SG Exp

1 -2.9 -2.7 15.5 12.5 -9.8 191 256

2 -4.1 -4.1 14.6 11.8 -10.2 198 243
3 -5.4 -6.0 13.6 11.0 -17.1 332 228
4 -7.6 -8.4 15.0 12.1 -19.0 369 246

* I - Interaction; N = Non-interaction
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Figure 6.14. Amplitude of wave number 8 of v at a = 0.9167 at 45°N for

Experiment III, Cases 1, 2, 3, and 4. Interaction (dashed)

and Non-interaction (solid) solutions are shown.
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Results of the phase calculations are shown in Table 6.4. As can

be seen, the presence of the mountain causes a 20-25% increase in phase

speed and in the Interaction runs (over the Non-interaction runs).

However, the average values observed here are 3-5 m s~l less than were

observed in the previous experiments. The phase lag observed here agrees

well with the value predicted by the semi-geostrophic solution.

5. Experiment IV: 80 Jet, 47Qx240x3.Q km Mountain

In this experiment, the mountain height is raised to 3.0 km to

examine the combined effect of the narrower jet and the higher mountain

on disturbance growth. The first three cases of Experiment III are re-

run for a 3.0 km mountain. In Case 4 (not shown), a large inertia!

oscillation was observed in the v fields of the Interaction run and this

prevented a meaningful comparison with the corresponding Non-interaction

run.

Based on the similarity of the results of Experiments I and II,

it is anticipated that the 3.0 km mountain will have essentially the same

net effect on disturbance growth as the 1.5 km mountain. That is the

final amplitudes of the Interaction disturbances should be slightly

weaker than those of the Non-interaction disturbance and considerably

weaker than those of Experiment II. Examination of the minimum values of

p s for each of the three cases in Table 6.5 reveals that both of these

expectations hold true. The Non-interaction disturbances have slightly

lower p^ than the Interaction disturbances and both sets of values are

approximately the same as those for the corresponding runs of Experi-

ment III (Table 6.4). In addition, the final amplitudes are from 2 to

20 mb weaker than those Df Experiment II (Table 6.3).
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Table 6.5. Experiment IV. Cases 1-4.

Disturbance Characteristics

Case

Min p^
(mb)

Phase
(m

Speed

vm .

(m s-1)

Phase
Differences

(km)

I* N I N SG Exp

1

2

3

-2.6 -2.7
-3.4 -4.1
-4.2 -6.0

20.5
20.1
19.8

12.5
11.8
11.0

-12.0
-13.0
-25.5

233 668
252 725

495 762

* I - Interaction; N = Non-interaction

The Interaction and Non-interaction solutions for Cases 1 and 4

at t = t + 24 h are shown in Figures 6.15 and 6.16, respectively. As in

Experiment III, a closed low is observed only in the Non-interaction runs

of Cases 2 and 3, not in the corresponding Interaction runs. Also, as in

Experiment III, the cyclogenesis occurs over the lee slope.

The secondary cyclone noted in Experiment II is also observed

here over the mountain top, although only in the Interaction runs.
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Figure 6.15a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment IV, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.15b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment IV, Case 1. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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Figure 6.16a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment IV, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.16b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment IV, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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The amplitude of the feature is less than that observed in Experiment II,

as might have been anticipated based on the comparison of the primary

disturbances. The lack of a secondary cyclone in the Non-interaction

runs may be related to the proximity of the primary disturbance to the

mountain top. In each of the Non-interaction solutions, the disturbance

is located over the lee slopes at t = t + 24 h. In the Interaction

runs, it has moved over the plain well east of the mountain top.

Results of the phase calculations are shown in Table 6.5. Phase

speeds of the Interaction disturbances are 8-9 m s-1 higher than those of

the Non-interaction disturbances, and 5-6 m s"l higher than those of the

Interaction runs of Experiment III. This latter result differs from that

of Experiment II in which the increase in mountain height resulted in

only a 1-2 m s~* increase in phase speed. This dramatic increase in

phase speed is also evident in the large differences between the semi-

geostrophic and experimental phase lags. It suggests that nonlinear

effects cause additional acceleration over that predicted by the semi-

geostrophic solution.

6. Experiment V: Short Versus Long Mountain

In this experiment, the effect of mountain length on disturbance

growth is considered. The evolution of the disturbance from Case 3 of

Experiments I and II is considered in the presence of shorter (25° lati-

tude, north-south) and longer (57°, north-south) mountains. Based on the

results of Walker (1982), it is anticipated that less development will be

observed with the shorter mountain than with the longer one.
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The Interaction and Non-interaction solutions at t = t + 24 h

for run Va, with the short mountain are given in Figure 6.17. Lee cyclo-

genesis is not observed in either run. The 24-hour track of the Inter-

action disturbance is shown in Figure 6.18. As can be seen, the distur-

bance moves to the north of the mountain and takes a more northerly

course than in the previous experiments where disturbances moved over the

mountain. Lee cyclogenesis is not observed in either run. These results

agree with those of Walker (1982) who found that disturbances tended to

move around smaller scale mountains and exhibited little tendency toward

cyclogenesis.

Figure 6.17a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment Va, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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Figure 6.17b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment Va, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

+ 24 h

Figure 6.18. Position of surface-pressure trough at t
, t +i2 h and

t +24 h in Experiment Va.
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The minimum values of p s for this experiment are given in Table

6.6. As before, little difference in amplitude exists between the Inter-

action and Non-interaction solutions. The secondary cyclone that was

noted in Experiments II and IV is also observed in Figure 6.17. In the

Interaction run, it appears as a weak low along the northern slope near

the mountain top. In the Non-interaction run, it appears further south

and west along the windward slope of the mountain. The phase acceler-

ation experienced by the primary disturbance is considerable. The inter-

action disturbance is approximately 564 km further east than the

Non-interaction disturbance. Its phase speed is nearly 6 m s~l greater

than that of the Non-interaction run, and some 3 m s"* greater than the

corresponding values observed in Experiments II and IV. This rapid move-

ment may be at least partially due to accelerations experienced by the

Interaction disturbance along the northern slope of the mountain.

Table 6.6. Experiment V. Cases 1-4.

Disturbance Characteristics

Case

Min p^
(mb)

Phase Speed
(m s- 1

)

(m s L
)

Phase
Differences

(km)

I* N I N SG Exp

Va
Vb

-10.1 -11.3
-13.3 -11.3

21.7 15.1
17.6 15.1

-13.0
-29.6

252 564

575 214

* I - Interaction; N = Non-interaction
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The Interaction and Non-interaction solutions at t = t + 24 h

are given in Figure 6.19. Lee cyclogenesis is observed in both cases,

and the closed circulation is first observed while the disturbance is

still over the lee slope of the mountain. This differs from the results

of Experiments I and II in which a closed circulation was not observed

until the disturbance reached the plain east of the mountain. The

earlier appearance of a closed surface circulation in both the Inter-

action and Non-interaction runs indicates that it results from the super-

position of the disturbance on a more intense lee-side trough. This

result, which is not predicted by the two-dimensional models considered

in Chapter II, suggests that the north-south dimension of the mountain

may play a role in the location and intensity of the cyclogenesis.

Minimum p£ values for this run are given in Table 6.6. As in all

previous experiments, little difference exists between the Interaction

and Non-interaction solutions indicating that the mountain has little net

effect on the disturbance. Comparison of these values with those of

Experiments II and Va yields a similar conclusion. The phase-speed cal-

culations given in Table 6.6 show that the phase speed of the Interaction

disturbance in this run is approximately the same as that in Experiment

II. The experimental phase acceleration is also much less than is pre-

dicted by the semi-geostrophic solution.

The secondary circulation noted in the previous 3.0 km mountain

cases is observed here as well in the Interaction run where an intense

small-scale cyclonic circulation exists over the mountain top. No such

circulation is observed in the Non-interaction run, though a pressure

trough is observed in approximately the same location. The position of
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Figure 6.19a. Sea-level pressure contours at t +24 h for Interaction
solutions of Experiment Vb, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.

Figure 6.19b. Sea-level pressure contours at t +24 h for Non-interaction
solutions of Experiment Vb, Case 3. Contour interval is

2.5 mb. Bold contours at center of figure represent
mountain.
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the secondary low-pressure center is shown at three-hourly intervals in

Figure 6.20. The secondary cyclone is first observed at t = t + 15 h as

a weak low pressure system along the windward slope of the mountain.

Over the next 12 hours, the low moves northeastward up the mountain,

intensifying and broadening slightly in horizontal scale. The low

reaches its maximum amplitude as it reaches the top of the mountain at

t = t + 24 h. Thereafter, the low drifts southward along the mountain

top and weakens. By t = t + 30 h, only 6 hours after it has reached its

maximum amplitude, the secondary cyclone has disappeared. This feature

and its behavior resemble the "type B" cyclone described by Schallert

(1962) in his study of Colorado cyclones. It also resembles the forced

Kelvin wave described by Gill (1977) and Murakami and Nakamura (1983).

Figure 6.20. Position of secondary surface-pressure low at three-hourly
intervals for Experiment Vb.
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In this chapter, Merkine's (1975) suggestion that lee cyclogene-

sis results from enhanced instability on the lee side of large mountain

ranges was considered using a rough approximation of the Rocky Mountains

as a model. Results of the numerical experiments indicate that distur-

bances moving over mountains appear to develop more rapidly and to

greater intensities than disturbances moving over flat terrain. However,

these increases are shown to be due predominantly to the effect of the

superposition of the baroclinic disturbance on the orographically forced

lee-side trough. When the basic states are subtracted, little difference

is observed between the amplitudes of disturbances developing on the lee-

side of the mountain and those developing over flat terrain. Slight

increases in growth are observed in the Interaction runs. However, the

effect of these increases is overwhelmed by the effect of the superposi-

tion. This basic result is not significantly different for the experi-

ments in which mountain height and length, initial disturbances ampli-

tude, and the horizontal structure of the basic state are varied. In

general, increases in the intensity of the lee-side cyclonic disturbances

considered in this study are due to increases in either the initial

amplitude of the disturance or the amplitude of the orographically forced

lee-side trough, and not to enhance baroclinic instability.

Two additional results are also noted. First, a phase accelera-

tion is observed as the disturbance moves over the mountain. This

acceleration is predicted by the semi-geostrophic, Eady model considered

in Chapter II. Qualitative agreement exists between the semi-geostrophic

and experimental values for the 1.5 km mountain experiments, although the

semi-geostrophic estimates tend to be larger than the experimental values
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in the 3.0 km mountain experiments. This latter result is attributed to

a nonlinear blocking effect caused by the larger mountain.

Second, a secondary cyclonic circulation similar to the small-scale

Colorado cyclone observed by Schallert (1962) and the Kelvin wave de-

scribed by Gill (1977) and Murakami and Nakamura (1983) is observed in

the 3.0 km mountain experiments. This feature develops rapidly as it

moves up the western slope of the mountain, but dissipates just as

rapidly as it moves southward along the mountain ridge after reaching the

top. At not time does this secondary cyclonic circulation appear to

affect the development of the primary (or lee) cyclone.
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VII. CONCLUSIONS

The objective of this research is to explain the high incidence of

cyclogenesis in the lee of the major mid-latitude mountain ranges. The

study is restricted to long, north-south barriers similar to the Rocky

Mountains. Three possible mechanisms were considered: 1) enhanced,

lee-side baroclinic instability; 2) continuous-mode growth; and

3) superposition.

Simple analaytical models were used to provide a theoretical basis

for the investigation. Eady's model was adapted to include the linear

effects of the mountain through the lower boundary condition. The evolu-

tion of a baroclinic wave crossing the mountain was simulated by super-

posing the classical, time-dependent Eady solution upon the steady oro-

graphically forced solution for Eady's model. The developing wave was

partially cancelled as it moved up the mountain by the orographically

forced high pressure ridge. As it reached the lee-side, however, the

disturbance appeared to grow rapidly as it became superposed with the

forced lee-side trough. This rapid development occurred in a manner not

unlike that observed in lee cyclogenesis - without any actual interaction

between the disturbance and the mountain.

A semi-geostrophic model was considered to include finite-amplitude

effects. It was shown that the model reduces to Eady's model if the

Hoskins transformation is used. As with the linear model, the solution

of this model indicated that the mountain affects the amplitude of the

baroclinic wave only through the steady, forced solution; in other words,
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there is no net orographic effect. However, a phase acceleration is pre-

dicted as the disturbance crosses the mountain. For the mean flow con-

sidered in this study, the phase acceleration, which is governed by the

Hoskins transformation, resulted in an additional phase displacement of

approximately 300-400 km over a 24-hour period.

Farrell (1982) proposed that continuous spectrum growth could be

important for lee cyclogenesis. He showed that rapid initial growth is

possible with the appropriate initial conditions, but that the long term

behavior gives dampening proportional to l/t2 (Pedlosky, 1964). In this

thesis, the initial disturbance was chosen to cancel the forced mountain

solution. The numerical experiments with the linearized spectral model

showed that this initial disturbance was oscillatory in time, and there

was no indication of any tendency for amplification. In experiments with

the fully nonlinear, potential enstrophy conserving UCLA model, distur-

bances forced by the mountain did not grow until some 30-40 hours after

initial excitation, at which time discrete-mode growth began to dominate.

Merkine (1975) proposed that lee cyclogenesis is more frequent

because the lee sides of. major mountain ranges are regions of enhanced

baroclinic instability. In this study, the fully nonlinear UCLA model

was used with a vertically and horizontally sheared westerly flow across

a long north-south barrier to determine the relative importance of the

enhanced baroclinic instability mechanism and the superposition mechan-

ism. Initial disturbance amplitude, mountain height and length, and the

horizontal structure of the mean flow were varied. In each experiment,

three simulations were generated: a Control run (without topography), an
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Interaction run, and a Non-interaction run. In the Interaction runs, the

perturbation fields from the Control run were superposed on a numerically

derived mountain mean state, and these conditions were integrated forward

in time without any imposed dynamical constraints. In the Non-

interaction runs, a time evolution of the same disturbance was

constructed without model integration by superposing upon the Mountain

mean state perturbation fields taken from the Control run at various

stages of development. These three runs were intercompared to estimate

the growth due to normal baroclinic processes and that due to the

superposition of. the disturbance on the orographically forced solution.

In this way, any additional growth resulting from destabilization of the

mean flow could be isolated.

The results indicate that the distortions of the mean flow caused by

the mountains do not result in significantly enhanced baroclinic insta-

bility for the cases studied. Disturbances in the distorted mean flow

developed at approximately the same rate as those in a parallel mean

flow. In addition, the amplitude of the disturbance as it begins to move

away from the mountain was approximately the same in both the Interaction

and Non-interaction runs. This basic result is not significantly

affected by varying the initial disturbance amplitude, the mountain

height or length, and the horizontal structure of the mean flow. Conse-

quently, superposition dominates over enhanced baroclinic instability in

this study.

Other features of the numerical solutions are also of interest. The

mountain-induced divergent flow caused an acceleration of the disturbance

as it moved over the mountain. This effect was predicted by the solution
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of the semi-geostrophic, Eady model and was observed in the Interaction

simulations of Chapter VI. The accelerations caused by the lower moun-

tains agreed well with those predicted analytically; however, those

caused by the higher mountain were overestimated by the semi-geostrophic

model. This latter result is an indication that nonlinear effects are

important, and may be a consequence of a tendency for air to flow around

rather than over the larger barrier.

A secondary cyclonic circulation which is not predicted by the ana-

lytical models was also observed in the simulations of Chapter VI. This

feature which is similar to the forced Kelvin wave described by Gill

(1977) and Murakami and Nakamura (1982) appeared in all simulations with

the higher mountains and in none of those with the lower mountains. The

secondary cyclone developed rapidly as it moved up the western slope of

the mountain and weakened, just as rapidly, as it drifted southward after

reaching the mountain top. At no time did this feature appear to affect

the development of the primary cyclonic disturbance nor did it show any

tendency to develop into a lee cyclone. However, the rapid development

of this forced disturbance suggests that enhanced instability may exist

over the mountain for scales shorter than the synoptic scale. Its de-

pendence on mountain height suggests that the feature is an orographic-

ally forced circulation which depends critically on mountain size.

Mountain length had an effect on disturbance intensity and rate of

growth. The longer mountain, because it represented a larger barrier to

the westerly mean flow, resulted in a larger amplitude forced ridge-

trough pattern. This, in turn, affected the observed amplitude and rate

of growth of the lee-side disturbance. Cyclogenesis was not observed in

126



the experiments with the shortest mountain indicating that the mountain

length may play a role in whether or not a closed circulation is

observed.

For the two mean flows considered, the horizontal structure of the

mean flow appeared to affect the growth rate of the disturbance. The

narrower jet resulted in a lower growth rate in the Control cases of

Chapter VI. This effect was also observed in the experiments with moun-

tains and appears to result from there being less available potential

energy in the narrower jet and possibly from barotropic effects.

This research has shown that superposition is the dominant mechanism

of lee cyclogenesis for long mountain ranges which are perpendicular to

the basic current. When the time mean flow is subtracted, the resulting

disturbances show little effect as they move over the mountain barrier.

However, when the total flow is viewed, rapid cyclogenesis occurs as the

disturbance moves down the lee-side slope under the influence of the

mountain-forced horizontal convergence. The superposition mechanism can

be expected to affect cyclogenesis whenever there are synoptic-scale

forced fields. In particular, the heating off the east coasts off mid-

latitude continents could produce a surface low which would increase the

frequency of cyclogenesis in those regions.

In addition, this research has shown that the amplitude of the oro-

graphically-forced, lee-side trough is a significant factor in the

occurrence of apparent cyclogenesis in the lee of a long meridional

barrier. It has further shown that the amplitude of the forced trough is

affected by the height and length of the mountain as well as the strength
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of the current perpendicular to the mountain. These results have appli-

cation to operational forecasting of lee cyclogenesis because they

suggest a more important role is played by the lee-side trough.

Hovanec and Horn (1975) have shown that static stability is decreased

in the lee of the Rockies just prior to cyclogenesis. Static stability

was allowed to vary in all but the linear models of this study and large

increases in disturbance growth were not observed. However, the effect

of feedback through diabatic mechanisms was ignored. This effect, which

is not thought to be significant, could be evaluated by including the

diabatic terms in the numerical simulations.

The procedure used in this study would be improved if true steady-

state solutions could be found for the basic flow over the mountain

range. Possible techniques include the method developed by Kalnay-Rivas

(1977) and the semi-geostrophic approach used by Bannon (1984) and in

this study.

The research in this study should be extended to other basic flows

and other mountain barriers. For example, Smith (1984) proposed a mech-

anism for lee cyclogenesis in the Alps which depends on a mean flow in

which the vertical wind shear is opposite to the surface wind component

across the mountain range. In this case, there is a large steady state

response and the "cyclogenesis" is not a true instability. This mechan-

ism needs to be investigated with more realistic conditions.
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