
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-09

Aerodynamic design using parallel processors

Brawley, Stephen C.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/39914

Downloaded from NPS Archive: Calhoun

AD-A2 7 5 470

NAVAL POSTGRADUATE SCHOOL
Monterey,. ICalifonia

DTIC
flI~QDTATflhILECTE~DISSERTATION I.B101994

AERODYNAMIC DESIGN USING

PARALLEL PROCESSORS

by

LT Stephen C. Brawley

September 1993

Dissertation Supervisor. Garth Hobson

Approved for public release; distribution is unlimited.

Reproduced From
Best Available Copy DTIC QUALITY ISPECTD

94-04502
904 2 0 9 03 7 illll~illi!l~'

Feirm Approved

REPORT DOCUMENTATION PAGE ___o_._ ___,
ftah.c roortfl g bur$den for this collectiOn of informattio is ettimated to average I hour 1.14uip on". including the tim for reviewing instructro . searching earting date i•owvc"gathefing ad mantaenng the data needed. andfcomlfln and reiewtng tSee ollectdon Of nfOrmato lend comments regarding this burden estimate or any other •s*air of this
colletie of ,nt'matuon. snlu gng e saagrtions for educing this burfden to *nhington srleades te•t Secrete, Directorate for mnformaiou Oerations and Repons. 12 IS N"efirson
Davis ghway. Suite 1204. Arlington. V 222024302. and to the Office of Management and udgel. P.perwork union Protect (070441M). Washingon,. DC 20S0)

1. AGENCY USE ONLY (Leave b•ank) 2. REPORT DATE L. REPORT TYPE AND DATES COVERED

I- FI issertatior. Dec 1091 to Sent '0
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Aerodynamic Design Using Parallel Processors

6. AUTHOR(S)

Brawley, Stephen C.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

Naval Air Systems Command
AIR - 53 011
:Jashington, D.C. 203?1

I. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense
or the U.S. Government.
12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Aprroved for public release; distribution is
unli:rited.

13. ABSTRACT (Maximum 200 words)

An airfoil design technique has been developed which decreases the
computational processing time by more than an order of magnitude
when optimizing aerodynamic performance. The practicality of airfoil
design using parallel processors and Navier-Stokes flow solvers
has been demonstrated.

Typically, an airfoil is designed to meet certain criteria based
upon its aerodynamic performance at set flight conditions. If an
optimization technique is used for airfoil design, the shape of
the airfoil is varied, and the aerodynamic perfomance of numerous
airfoil geometries are evaluated using computational fluid dynamics.
"MFultiple aerodynamic performance evaluations require the vast
majority of computational processing time used in airfoil design
optimization.

14. SUJSECT TERMS IS. NUMBER OF PAGES

Aerodynamic Design Parallel Processing 153
Optimization Pungr-*rutta Euler Solver 1s. PRICE CODE

17. SECURITY CLASSIFICATION II. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified nclassified Unclassified Unlimited
NSN 7540.01-280-5S00 Standard Form 298 (Rev 2-89)

ftescr'bed by ANSI iltd 139-11

Efficient Euler and Navier-Stokes flow solvers which take advantage of the vector

processing capabilities of modern processors are used with optimization schemes for

internal and external aerodynamic design. Processors of the iPSC/860 Intel

hypercube parallel computer are utilized to simultaneously evaluate the

performance of numerous airfoil shapes. The utilization of multiple processors in

parallel greatly decreases the computational processing time and increases the

efficiency of the optimization design process.

ii

-Accesioni For

Approved for public release; distribution is unlim ited. "- - -- -------r

NTIS C,'•

Aerodynamic Design Using Parallel Processors (-I

by

Stephen C. Brawley F' A
Lieutenant, United States Navy

B.S., United States Naval Academy, 1984

M.S., Naval Postgraduate School, 1991 Dct '

Submitted in partial fulfillment of the 1/

requirements for the degree of

DOCTOR OF PHILOSOPHY IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September, 1993

Author:

Approved by: L

Daniel JVollins Oscar Biblarz

Professor of Aeronautics Professor of Aeronautics

H'1arold A. Titus Beny Neta
Professor of Electrical Engineering Professor of Mathematics

Garth V. Hobson

Professor of Aeronautics
Dissertation Supervisor

Approved by
Danie

Approved by:
Richard S. Elster, Dean of Instruction

iii

ABSTRACT

An airfoil design technique has been developed which decreases the

computational processing time by more than an order of magnitude when

optimizing aerodynamic performance. The practicality of airfoil design using

parallel processors and Navier-Stokes flow solvers has been demonstrated.

Typically, an airfoil is designed to meet certain criteria based upon its

aerodynamic performance at set flight conditions. If an optimization technique is

used for airfoil design, the shape of the airfoil is varied, and the aerodynamic

performance of numerous airfoil geometries are evaluated using computational

fluid dynamics. Multiple aerodynamic performance evaluations require the vast

majority of computational processing time used in airfoil design optimization.

Efficient Euler and Navier-Stokes flow solvers which take advantage of the

vector processing capabilities of modern processors are used with optimization

schemes for internal and external aerodynamic design. Processors of the iPSC/860

Intel hypercube parallel computer are utilized to simultaneously evaluate the

performance of numerous airfoil shapes. The utilization of multiple processors in

parallel greatly decreases the computational processing time and increases the

efficiency of the optimization design process.

iv

TABLE OF CONTENTS

I. IN T R O D U C T IO N .. 1

A . BA CK G R O U N D ... 1

B . P U R P O SE .. 5

C. ORGANIZATION OF DISSERTATION .. 6

If. GOVERNING EQUATIONS OF TWO-DIMENSIONAL CFD 7

A. FUNDAMENTAL EQUATIONS .. 7

B. EULER EQUATIONS IN VECTOR FORM ... 11

C. EQUATIONS OF STATE ... 13

I11. DEVELOPMENT OF AN EXPLICIT EULER FLOW SOLVER 14

A. COMPARISON OF FLOW SOLVER SCHEMES 14

B. IMPLEMENTATION OF THE TWO-STEP RUNGE-KUTrA SCHEME

FOR AN EULER FLOW SOLVER... 18

C. COMPARISON WITH A CRANK-NICHOLSON EULER SOLVER 34

IV. OPTIMIZATION USING PARALLEL PROCESSORS 56

A. OPTIMIZATION METHODS FOR MULTIVARIABLE FUNCTIONS 57

B. OPTIMIZATION VIA NEWTON'S METHOD .. 58

C. QUASI-NEWTON OPTIMIZATION METHOD 62

D. DEVELOPMENT OF A QUASI-NEWTON OPTIMIZATION ROUTINE

UTILIZING PARALLEL PROCESSING ... 64

E. DEVELOPMENT OF A FULLY-NEWTON OPTIMIZATION ROUTINE

UTILIZING PARALLEL PROCESSING ... 80

F . S U M M A R Y ... 85

V

V. AIRFOIL DESIGN VIA OPTIMIZATION .. 87

A . OV ER VIEW .. 87

B. UTILIZATION OF THE CONCURRENT FILE SYSTEM 89

C. DESIGNATION OF AIRFOIL GEOMETRY .. 90

D. OPTIMIZATION RESTART FILE ... 92

E. EVALUATION OF THE OBJECTIVE FUNCTION 92

F. DETERMINATION OF MACHINE PRECISION 97

G . SU M M A R Y .. 97

V I. R E S U L T S .. 98

A . O VE R VIE W .. 98

B. TEST CASE 1: SUBSONIC NON-LIFTING AIRFOIL 98

C. TEST CASE 2: DESIGN OF A LIFTING SUBSONIC AIRFOIL 111

D. TRANSONIC AIRFOIL DESIGN ... 116

E. CASCADE BLADE DESIGN ... 122

VII. SUMMARY AND CONCLUSIONS ... 133

A . S U M M A R Y ... 133

B . C O N CLU SIO N S .. 134

C . FU T U R E W O R K ... 137

R E F E RE N C E S ... 140

INITIAL DISTRIBUTION LIST ... 143

vi

ACKNOWLEDGMENTS

Funding for this work was provided through the 1992 Vice Admiral Wilkinson

Fellowship sponsored by the Naval Air Systems Command and the Naval

Postgraduate school. Computer facilities essential for this research were provided

by the National Aerodynamic Simulation laboratory located at NASA Ames.

There are not enough words and paper to thank everyone sufficiently for their

contributions to this dissertation, so I will briefly thank a few. First, I thank the

United States Navy, the Naval Postgraduate School and the Naval Air Systems

Command for giving me the opportunity and resources to complete this research.

In particular, I would like to thank my advisor Mr. Tom Lawrence of the Naval

Air Systems Command and CDR Wade Duym of the Naval Postgraduate School for

their efforts which made this research possible. Furthermore, I am indebted to Mr.

Augustus Verhoff and Mr. Dave Stookesberry of the McDonnell Douglas

Corporation for their guidance and support in many areas. I want to thank my

dissertation supervisor and friend Professor Garth Hobson for the inspiration and

assistance he has given me. It has been my pleasure to know and to work with all

these gentlemen.

Finally, I thank my wonderful family, Kimberly, Austin and Cameron, who

always gives me an endless amount of support and love.

vui

I. INTRODUCTION

A. BACKGROUND

Computational fluid dynamics or CFD has become a valuable engineering tool

in both aerodynamic analysis and design. CFD has evolved in the last 20 years and

is presently undergoing extensive development in many areas such as turbulence

modeling, hypersonics and the utilization of more powerful computers leading to

parallel computation.

1. CFD As A Design Tool

Computational fluid dynamics involves the numerical solution of the

governing equations of fluid flow and can be used for both design and analysis

purposes. Design methods can be classified as either inverse or optimization

techniques. Inverse methods solve for the geometry directly based upon a

prescribed pressure distribution. Optimization methods vary the geometry of an

initial body until an objective function, typically based upon a pressure distribution

or drag, is minimized. Inverse methods are generally faster but do not allow the

designer as much flexibility in the design process.

The problem of designing an airfoil to match a desired pressure distribution

was first addressed by Lighthill [1] in 1945. He solved the problem for

incompressible potential flow around an airfoil by conformally mapping the profile

into a unit circle.

Jameson [21 suggests regarding airfoil design as a control problem. A desired

pressure distribution and an initial airfoil shape are selected. Similar to Lighthill's

technique, mapping functions conformally map the shape of the airfoil into a unit

1

circle. Flow tangency conditions are set at the surface of the circle and free-stream

conditions are set at the far-field boundaries. The Euler equations or the potential

flow equations are used to solve the flow-field. Potential flow solvers can only be

used up to low transonic Mach numbers where insignificant entropy changes occur.

The conformal mapping function is then varied in the optimization routine using

calculus of variation techniques.

Giles and Drela [31 developed a two-dimensional inverse design code based

upon the simultaneous solution of multiple streamtubes coupled through position

and pressure on the streamline faces. The inviscid Euler equations are assembled

and solved in conservative form. The airfoil surface or pressure distribution can be

specified for either analysis or design. Viscous effects are included by displacing the

surface streamline by the calculated displacement thickness around the airfoil. An

intrinsic finite-volume grid is used to evaluate the finite-difference equations in

which one family of grid-lines represents streamlines. The continuity and energy

equations require a constant mass flow rate and constant enthalpy along each

streamtube, and the momentum equation is simplified due to no mass flux across

the streamlines. A Newton numerical method is used to solve the system of

equations. Geometric constraints can be incorporated for design purposes by

specifying the geometry for part of the airfoil and its pressure distribution for the

remainder of the airfoil.

Campbell and Smith [4] have developed an optimization method to analyze

the flow around an initial airfoil geometry and to modify the geometry based on

differences between the calculated and target pressures. Geometric constraints are

included in this method to ensure reasonable results. This predictor/corrector

approach relates differences in the pressure field to changes on the airfoil surface.

2

The procedure predicts a change in the pressure distribution along the airfoil and

relates this to the change in the curvature of the airfoil, which in turn is used to

perturb the geometry. Many design iterations are required in transonic flow

because small geometric changes result in large pressure changes near shocks. A

significant advantage to this and other optimization methods is that they can be used

in conjunction with various flow solvers; however, a new grid and a new flow-field

solution are required after every geometric correction.

Bock 151 designed a transonic airfoil using the optimization code CONMIN

(Constrained Function Minimization) developed by G. N. Vanderplaats [6J. A set

of independent variables were defined which describe the airfoil geometry. The

objective function to be minimized was defined as the wave drag coefficient

evaluated by an Euler flow solver. In CONMIN, the gradient method is used to vary

the independent variables.

Sanger [71 also used the CONMIN routine for optimization of compressor

blade design. A potential flow solver with momentum-integral boundary layer

calculations was used for performance evaluations based upon the suction side

boundary layer separation point on the blade.

Kennelly 181 developed the optimization routine QNMDIF based upon a

quasi-Newton method and compared the routine to CONMIN for utilization in

airfoil design. QNMDIF provides the capabilities for central-difference

approximations for the gradient and restart of the problem after a computer run.

Kennelly 18 :p. 2] also points out the following characteristics relevant to airfoil

design using optimization techniques:

1. Performance evaluations which include computational flow-field analysis

dominate the required processing time in a design application.

3

2. The values of derivatives necessary for the optimization routine are

approximated by finite differences and require numerous performance evaluations.

3. More design variables and more precise performance evaluations increase

the processing time required in a design problem.

4. The designer should anticipate user intervention in the design process.

All of these points will be addressed in this dissertation.

2. Parallel Computers

Supercomputers are important to CFD because of the speed and storage

capabilities that they bring to aerodynamic simulation which can supplement or

sometimes replace experimental methods. Miel [9] observes that NASA and

aircraft manufacturers routinely use supercomputers to calculate air flow over wings

in new designs to eliminate weeks of wind tunnel testing on physical models.

Miel [9:p. 33] adds that an important trend in supercomputing is the

emergence of parallel processors, and he divides high performance computers into

three categories. The first category consists of course grain vector machines which

include the Cray supercomputers. Moderately parallel machines such as the Intel

hypercube with 128 relatively inexpensive processors constitute the second category.

The third category of high performance computers consists of fine grain, massively

parallel machines such as the Connection Machine CM-3. There is also a significalt

trend toward merging vector-parallel capabilities in supercomputing.

In Miel's report 19:pp.33-34J, Peter Denning of NASA-Ames points out

several reasons for the growing importance of parallel computers which include:

* Decreasing cost of processors

4

* The nonlinear relationship between a problem's size and the computer

power needed to solve it, such as multiplying two n x n matrices requires n3

operations

* The physical limit on the speed of a single processor is already being

approached.

In general, the difficulty and cost of programming parallel computers have

hindered their usefulness to CFD analysis and design; however, they can have a

particularly important role in aerodynamic design using CFD and optimization

methods. Computers have the capability of easily analyzing various geometries for

comparison, which makes them a more practical design tool than experimental

methods in many circumstances. Parallel processing machines can provide the

additional capability of analyzing the performance of numerous geometries

simultaneously for comparison in an optimization design routine. Therefore,

numerous processors working on the same optimization problem can greatly

increase the speed of the design process.

B. PURPOSE

Optimization methods for airfoil design have many advantages; however, their

main disadvantage is the amount of computer time required for the design criteria

to be optimized. Multiple CFD solutions are necessary to evaluate the performance

of airfoils of various geometries and constitute the vast majority of computer

processing time. Parallel optimization routines, when coupled with efficient flow

solvers, can greatly reduce the computational time necessary to design an airfoil to

match or optimize a desired aerodynamic performance.

5

In order to significantly speed up the design process, the time required for each

flow-field calculations must be reduced. An efficient flow solver is required to

quickly evaluate the aerodynamic performance associated with various airfoil

geometries in a design application. Also, parallel processors can evaluate multiple

airfoil geometries simultaneously to speed up the design process and increase the

efficiency of the optimization routine.

The goal of this research is to decrease the time required for aerodynamic

optimization design by utilizing efficient flow solvers and parallel processing

machines. Sequential and parallel quasi-Newton and Newton optimization routines

are evaluated in airfoil design test cases. The efficiency and relative speed of each

is determined. In addition, the benefits and costs of using multiple parallel

processors for the parallel optimization methods are discussed.

C. ORGANIZATION OF DISSERTATION

Airfoil optimization is a multi-disciplinary science, and this dissertation primarily

discusses the importance of efficient flow solvers and the utilization of parallel

processors in the design process. Chapter II discusses the governing equations

applied in two-dimensional CFD. Chapter III presents the development of an

explicit Euler flow solver used for airfoil design. Chapter IV describes the

utilization of parallel processors in the optimization scheme, and Chapter V

explains the utilization of the flow solver and optimization routine for airfoil design.

Chapter VI presents the results of four airfoil design test cases and applications.

Chapter VII presents the summary and conclusions of this research and suggests

future work in this field.

6

H. GOVERNING EQUATIONS OF TWO-DIMENSIONAL

COMPUTATIONAL FLUID DYNAMICS

A. FUNDAMENTAL EQUATIONS

The fundamental equations of fluid flow are based upon the following physical

laws of conservation:

1. Conservation of Mass

2. Conservation of Momentum

3. Conservation of Energy

In addition, it is necessary to establish relationships between fluid properties to

complete the set of equations.

1. Continuity Equation

The continuity equation is derived from the application of the Conservation

of Mass applied to a fluid passing through an infinitesimal, fixed control volume.

The net outflow of mass through the surface of a control volume must equal the net

decrease of mass inside the control volume. For the simplified case of two-

dimensional flow shown in Figure 2.1 with velocity u in the x direction and velocity u

in they direction, the following equation is formulated:

,9P + -0(pi) + -?(pv) = 0 (2.1)

2. Momentum Equation

The equation for the Conservation of Linear Momentum in fluid dynamics is

obtained by applying Newton's second law to a fluid particle.

7

/

PV ax (PV

a (PU A i X x

Iv a -2-

pva-pv 2

Figure 2.1: Fixed volume element in two-dimensions

Using an inertial coordinate frame, the equation of conservation of linear

momentum can be written:

F = rni - (2.2)di

where F is the total force vector acting upon a fluid particle, m is the particle's mass,

and V is the particle's velocity which in general is a function of time and position.

Forces acting upon a fluid element include body forces such as gravity and shear

stresses which act upon the surface of the element. Figure 2.2 illustrates the stresses

acting upon a two-dimensional element. For the special case of a Newtonian fluid,

the stress T on a fluid element in all directions is directly proportional to the rate of

strain fl on the elements surface:

r = Ai •(2.3)

8

In an isotropic fluid, the proportionality constant p known as the coefficient of

viscosity is the same in all directions.

Y

ay 2

21 + -L(7 Y
V. y 2'

aa .2
dx 21 a A

f. ax "2

a~ Ax

~ 1~'~Y 2
"TV ay ' 2

x

Figure 2.2: Stresses acting on a two-dimensional fluid element

For a Newtonian, isotropic fluid in two-dimensional flow with a Cartesian

coordinate system, the momentum equation can be written:

P d +P9 du +PV'u =_ f .9P

+ aŽ~ 2±('u- ±]+ ' [p(d + Ž')] (2.4)

9

9v dv '0 epp- + PU + pv- pf,-
d -x OyY •Ly

Ox Ox IO y [3 dy O9x)J 25

Equations (2.4) and (2.5) are known as the Navier-Stokes equations. Here f refers

to body forces per unit volume.

3. Energy Equation

The First Law of Thermodynamics in equation form can be written:

+ & fh± = (2.6)

It states that the heat transferred from the surroundings to a system plus the work

done to the system by its surroundings equals the change of the energy of the

system. Figure 2.3 illustrates the work done on an infinitesimal two-dimensional

fluid element and its heat transfer terms. Applying Fourier's law of heat transfer by

conduction and the results of the continuity and momentum equations for an

isotropic two-dimensional fluid in a Cartesian coordinate system, the energy

equation can be written:

10

19(k-) T+ 9 (k OT+ 2p[dil + I 0- I2'0 X dX(y loy [(O)J0

-p +- +1 + - (2.7)
3 Ox--) Lt dy Ox

dt di

Here T is the temperature, k is a coefficient of thermal conductivity, and s is the

specific internal energy of the fluid element.

B. EULER EQUATIONS IN VECTOR FORM

Aerodynamic problems involving high Reynolds number flows behave as inviscid

flows over most of the flow-field except for a small but important region known as

the boundary layer near the surface of the body. For initial design of aerodynamic

bodies in high Reynolds number flows, the inviscid solution may give an adequate

flow-field solution provided that viscous effects such as skin friction drag are not

incorporated in the design criteria. For a more detailed design analysis, the

boundary layer solution may be included after the initial inviscid design is

determined.

The Euler equations consist of the continuity, momentum and energy equations

without the viscous terms. In the formulation of the Euler equations, shear stresses

caused by viscosity are ignored, and only normal stresses are considered.

11

u ,÷ (ur,. --•

a y 2
VT" -& (VT.,) A"

ax 2

UT aU A t Ax
a 2 ur-- + (ur., 22

VT. aT a
ay 2

x

Y (a)

aV d nay 2

ax ax ax 2 a ax a-x 2

Ax

ay by ayk

x

Figure 2.3: a) Work done by stresses acting on two-dimensional fluid element
b) Heat transfer to a two-dimensional element

The Euler equations for two-dimensional flow in a Cartesian coordinate syrstem

can be written in vector form

OQ + OE +OF(28
'Ot Ox dy

12

where

P tp11 2 + P puit j7,,/ ,:,u , j +h,,
Q PV EP11 1,F P1ý2+

e(j + p)"J L(e + p) vJ

and e is total energy of the fluid per volume related to the internal energy by the

relation:

e= ,06+ 1(,12+ 1) (2.9)

C. EQUATIONS OF STATE

Since there are 4 equations and 5 unknowns, additional relationships between

fluid properties are necessary to solve for the system of fundamental equations. The

equation of state for a perfect gas supplies the following relationship between

pressure, density, and temperature:

p = pR T (2.10)

where R is the individual gas constant for the gas. Also for a perfect gas, the

following relationship is held between specific internal energy , and temperature:

. = C,. T (2.11)

where Cv is the specific heat at constant volume.

13

III. DEVELOPMENT OF AN EXPLICIT EULER FLOW SOLVER

The design of an aerodynamic body by an optimization routine requires

numerous CFD flow-field evauations in order to improve one or more selected

performance criteria. Therefore, the vast majority of computer processing time in

aerodynamic design with an optimization scheme is used solving the flow-field

around various geometries. In this work, an efficient explicit Euler flow solver has

been developed to reduce the computational time used in the CFD flow-field

evaluations. The solution of the two-dimensional Euler equations in vector form is

performed to estimate the pressure distribution around an airfoil in external flow.

A. COMPARISON OF FLOW SOLVER SCHEMES

Two basic types of schemes can be utilized in updating a flow-field in order to

reach a CFD solution; namely, those based upon implicit or explicit algorithms. A

Crank-Nicholson scheme contains a mixture of methods found in explicit and

implicit schemes.

1. Implicit Schemes

A representative computational molecule for an implicit scheme is shown in

Figure 3.1 for a one-dimensional case. The updated properties at a point depend

upon the updated properties at adjacent points. Therefore, the properties of the

entire flow-field are updated at the same time and require matrix inversion.

14

Time At

N 0

I A x I L\x I
i-1 i i+1

Space
Figure 3.1: Computational Molecule for an Implicit Scheme

Implicit two-dimensional flow solvers using an Alternating Direction Implicit

(ADI) method evaluate the properties of the flow-field through alternating sweeps

in both directions. These schemes solve for the updated properties of the entire

flow-field in a single step and require the inversion of large tri-diagonal matrices.

Flow-field properties are advanced in time to solve for their steady-state values.

Because all updated properties are solved for in the same step, there are no

restrictions to the value of the time step applied to advance the flow-field solution.

For implicit scheme flow solvers, large time steps can be used to estimate the

steady-state solution to the governing equations, although the time steps can be too

large and make the solution physically unrealistic. Also, an optimum time step

exists for the fastest convergence to a steady-state flow-field solution. Because of

the required matrix inversions, implicit schemes are not easily vectorizable for

vector processors.

15

2. Explicit Schemes

The computational molecule for an explicit scheme is shown in Figure 3.2.

The updated properties at a point depend upon the present properties at adjacent

points. The properties of the entire flow-field are updated point by point, and

matrix inversions are not required.

N+1 Q
Time

N

i-I i i+1
Space

Figure 3.2: Computational Molecule for an Explicit Scheme

In general, explicit flow solving schemes are easier to code than implicit

schemes. Also, explicit codes are more easily vectorized than implicit ones and can

execute faster on computers with vector processors. Because the properties in the

flow-field are updated point by point, stability considerations restrict the maximum

value of the time step utilized for explicit schemes. Merkle [101 suggests that multi-

dimensional explicit scheme flow solvers are better suited to execute on processors

with vectorization capabilities and on massively parallel computers than implicit

scheme flow solvers. Furthermore, Merkle [101 notes that explicit schemes may be

16

the appropriate choice for unsteady CFD problems. The flow-field properties in

unsteady CFD problems change over time, and small time steps are required to

calculate the time-accurate solution.

3. Crank-Nicholson Schemes

The computational molecule for a Crank-Nicholson scheme is shown in

Figure 3.3. The updated properties at a point depend upon the present and updated

properties at adjacent points. The properties of the entire flow-field are updated at

the same time which requires matrix inversion.

N+I
Time

N

i-1 i i+1
Space

Figure 3.3: Computational Molecule for a Crank-Nicholson Scheme

Crank-Nicholson scheme flow solvers are a mixture of both implicit and

explicit schemes. Like implicit flow solvers, Crank-Nicholson flow solvers using the

ADI method require inversions of large tri-diagonal matrices and are

unconditionally stable. Crank-Nicholson schemes also are not easily vectorizable.

17

J. A. Ekaterinaris [11] has developed a two-dimensional Crank-Nicholson

flow solver for high speed, high Reynolds number flow over an oscillating airfoil.

The numerical integration uses a central-difference ADI method. Second-order

dissipation is added for treatment of shocks and fourth-order dissipation is added

for stability. The inviscid version of this scheme was modified to form a two-step

Runge-Kutta scheme for the solution of the two-dimensional Euler equations

describing steady flow.

B. IMPLEMENTATION OF THE TWO-STEP RUNGE-

KUTTA SCHEME FOR AN EULER FLOW SOLVER

1. Formulation of two-step Runge-Kutta Scheme

In order to formulate the two-step Runge-Kutta algorithm, a second-order

Taylor series in time for the vector Q in Equation (2.8) is taken:

c9Q" 1A ,9Q"
Qn'• = Q" + At + At2 + H.O.T (3.1)

t 2 6t2

An equivalent system of equations can be written to solve for the updated Q vector:

Q" = Q" + a Ai- (3.2)
Ot

QWO = Q" + At OQ" (3.3)

19t

where the * represents an intermediate state in this scheme. The scalar cc would

equal 0.5 to exactly match the second-order Taylor series, which is equivalent to the

18

Lax-Wendroff method, and can be varied for stability and convergence

considerations. The Euler equations are used in the form

S OE + OF(3.4)

to solve for the time derivative aQ / Ot terms in Equations (3.3) and (3.4). For the

two-step Runge-Kutta scheme, an intermediate Q* vector is evaluated throughout

the flow-field in the first step, and the Q vector is updated the following step.

2. Calculation of Jacobian of Transformation and the Metrics

The C-type grid generated around the airfoil describes the physical domain in

Cartesian coordinates. In order to calculate the flux terms in Equation (3.4) and

to calculate dissipation terms, it is desirable to transform the irregularly spaced grid

in the physical plane into a uniformly spaced rectangular grid in a computational

plane. The Jacobians and metrics of this grid transformation are then needed to

evaluate the flux and dissipation terms calculated in the computational plane.

For this problem, the (x,y) Cartesian coordinates in the physical plane are

transformed to the (tj1) coordinates in the computational plane. Here, t and 71 are

functions of x and y :

4= 4x,y)

= 10(x,y)

The differential expressions of the computational grid coordinates are written

19

dý = ýd A + ý Ydy (3.5)

dr = 7 , A + ?I , dy (3.6)

where •x, ýY, ?l7, and 7ly are the metrics. The Jacobian of the transformation is

defined:

4 . 4 - 4 . R y=- 4y h,1 (3 .7) .

The following relationships for the metrics can then be derived:

.= J y,, (3.8)

4= J x1 (3.9)

77. = -J y (3.10)

?= J X, (3.11).

Equations (3.8) through (3.11) are used to determine the metrics for each point in

the computational domain.

3. Initialization of the Flow-field Properties

Unless the problem is a restart of a previously run solution, similar properties

throughout the flow-field are initialized to the same value. The density and pressure

throughout the flow-field are initialized to values of 1.0 and the reciprocal of the

ratio of specific heats for a perfect gas respectively. The velocity components and

20

energy per unit volume are calculated based upon the freestream Mach number,

angle of attack of the airfoil, and equations of state.

4. Advancement of the Flow-field Solution

After the flow-field is initialized, the Q vector for each point in the flow-field

is advanced in time using the two-step Runge-Kutta scheme until a convergence

criterion is satisfied or the maximum number of iterations are completed.

The Courant number, or CFL, is selected to calculate the time step to

advance the flow-field properties to their steady-state solution and is defined as

CFL - (3.12).

The time step, At, is dependent upon a characteristic velocity, (o, and a characteristic

length, I. The characteristic velocity is calculated in the computational plane, and

the characteristic length is set to 1.0, which is the distance between adjacent points.

The characteristic velocity is determined from the eigenvalues of the Jacobian

matrices of the 2-D Euler equations. Equation (2.8) in quasi-linear form is written

__ + A --Q + B Q - 0 (3.13),
£91 O~X

where A - and B = . A and B are the Jacobian matrices. Merkle [10]
OQ IQ

shows the Jacobian matrices are evaluated as

21

0 1 0 0
y3u 2 + v2 -(y-3)u -(y-l)1 (y-1)

-uv ' j1 0 (3.14)

-yell + (y_1),(12+v2) -e - -'l(3u2 +1,2) -(y-I)uv y (.
p p 2

and

0 0 1 0

-uv 1 11 0

B = y-3 ,2 + Y- 1 U2 -(y-1)I -(y-3)v y-I (3.15)
2 2

-yev + (y- l)1,(n2 + v 2) -(y-l), ye y- L(12+31,2) ('
p p 2

where y is the ratio of specific heats for a perfect gas. The eigenvalues of A and B

are

A= ("I, l, u+c, u-c) (3.16)

and

V= (v, 1', v +c, v-c) (3.17)

where c is the speed of sound in the fluid.

22

For stability purposes, the characteristic velocity is based upon the largest

eigenvalues of the A and B Jacobian matrices:

o = 1/(U" +c)2 + (V. +c) 2 (3.18)

where tico, and vc," are the contravariant velocity components in the computational

plane and are calculated from the relationships

".. = ýu + y yV (3.19)

1),, = r/,1 + 17yV (3.20).

The contravariant velocities and speed of sound are calculated at each interior point

of the initialized flow-field. The same time step is used throughout the entire flow-

field for a constant CFL. Using the maximum characteristic velocity helps ensure

stability at each point throughout the flow-field but may restrict convergence to a

steady-state solution.

5. Stability Analysis

The elements of a Fourier or von Neumann stability analysis are presented for

the two-step Runge-Kutta scheme.

For the Fourier or von Neumann stability analysis, the numerical solution of a

finite-difference equation, N , is written

N =D + (3.21)

23

where D is the exact solution, and 1 is the round-off error which is machine

dependent. A Fourier solution for a typical finite-difference equation is assumed to

have round-off error in the form

Ax, = 0 e" e*-' (3.22)
m

where k. is a Fourier coefficient. Equations (3.21) and (3.22) are substituted into

the finite-difference equation, and the value for the error amplification factor is

solved.

The stability criteria are determined from limiting the amplification factor:

l 1.0 (3.23).

For a system of equations, the stability criteria are determined based upon the

largest eigenvalue of the system of equations in matrix form.

Equations (3.2) and (3.3) of the two-step Runge-Kutta scheme are repeated in

the form:

Q" = Q" - a At (x + (3.24)

Q"÷'-- " -•(A O"X BOQ"

24--: + B (3.25).

24

Central-differencing is used to calculate the flux terms, and the finite-difference

equation in vector form for equation (3.24) is written

Q = Q" - aA A A Ax + B (3.26).

The amplification factor G*, where

Q" = G" Qf (3.27)

is derived to be

G* = 1-iaa(ASA + SB Ay(3.28)(A x Ay

based upon the quasi-one-dimensional analysis found in Merklej 10]. SA and SB

represent the sine of the components in the A and B matrices, and i is the square

root of negative one. I is the identity matrix.

The finite-difference equation for the second step of the Runge-Kutta

scheme, equation (3.25), is written

Qfl+I =Qfl - AtAQ:+Ax Q -A- + B Q*4% -Q'A(329)

AI(A 2Ax (3)

The total amplification factor G, where

25

Qfl = G Q" (3.30)

is evaluated to be

G =I - i(> SA + (3.31).

Equations (3.28), (3.30) and (3.31) show that the stability of the two-step

Runge-Kutta scheme depends upon the maxinum CFL and the scalar a used.

Chima [121 explains the maximum CFL of the two-step Runge-Kutta scheme is 1.0

to ensure a stable convergence of the flow-field solution. A CFL value of 0.81 was

utilized with the two-step Runge-Kutta scheme to provide for some stability margin

and resulted in the fastest convergence rate for the test cases attempted.

Furthermore, Chinma [12] adds that the scalar a must be in the range of

0.5 _• a ! 0.85 for stability and that a % 0.6 provides for the best convergence.

Merkle [10] suggests using a scalar value of -- 0.615, which was verified to provide

faster convergence to a steady-state flow-field solution than the Taylor series

derived value of a = 0.5. Using the scalar value of a = 0.615 makes the two-step

Runge-Kutta scheme first-order accurate in time.

6. Dissipation Computation

The wave-like nature of the Euler equations requires the addition of

numerical or artificial dissipation in order in reach a steady-state flow-field solution

in a fimite domain. Artificial viscosity is calculated and added to decay the transient

solution of the Euler equations and for shock treatment in transonic flow. Second

and fourth-order spatial derivatives are determined at each point in the flow-field.

26

These viscous-like terms are multipied by factors which are sufficiently small not to

appreciably change the steady-state solution.

Dissipation terms are calculated using the routine written by Ekaterinaris

[111. Second-order derivatives, 692 Q / ax2 and 2 Q / ay 2 , are evaluated using

finite-difference equations and added for shock treatment to both steps of the two-

step Runge-Kutta scheme. Second-order dissipation factors are equal to zero for

subsonic flow evaluation. For transonic flow, the dissipation factor is selected

higher in the x direction than they direction because greater property changes occur

across the shock. The second-order x and y direction dissipation factors, w2x and

w2y, are selected by the user from ranges of 0.25 to 0.50 and 0.10 to 0.20

respectively. Second-order dissipation, D2 , is ralculated in the form

D2 =w2x ex, + w2 O, (3.32).

Fourth-order artificial viscosity is used to decay the transient solution and is

also added to both steps of the Runge-Kutta scheme. Fourth-order spatial

derivatives, M Q / &.x4 and M Q / ay4 , are calculated at each point based upon the

estimated second-order derivatives. The derivatives are multiplied by factors, w4 x

and w4y, which are selected by the user within the range of 0.03 and 0.05.

Mathematically, the fourth-order dissipation vector, D 4 , is formulated

D,= w4xt 4) + w4, (.04 (3.33).

27

7. Delta Form of the Two-Step Runge-Kutta Scheme

The two-step Runge-Kutta scheme is implemented in delta form. The

intermediate flow-field Q* is calculated

Q'= Q" + AQ" (3.34)

where AQ* is composed of flux and dissipation terms computed from the Qn flow-

field,

AQ* = a At 'E + + D2 + D4 (3.35).

Next, the updated flow-field, Qn + 1, is computed:

Q"+= Q" + AQ'P4 (3.36)

where AQn + 1 is composed of flux and dissipation terms computed from the Q*

flow-field,

AQ"4 ' = -A + OX y + D; + D4 (3.37).

8. Calculation of Flux Terms and Dissipation

The flux terms, O-E / &x and OF / ay, and dissipation terms, D2 and D4, for

both stages of the two-step Runge-Kutta scheme are computed in the computational

28

plane and transformed using the Jacobian of transformation for evaluation in the

physical plane.

9. Boundary Evaluations

Explicit boundary conditions are enforced for both the intermediate and

updated stages of the two-step Runge-Kutta scheme to calculate the flow-field

properties at the boundary grid points.

The boundaries are defined at the airfoil surface, the inlet and exit

boundaries, and the wake of the airfoil. Boundary conditions to be applied include

the inviscid requirement for flow tangency on the airfoil surface and freestream

conditions in the farfield. The properties at the boundaries which cannot be

calculated from the boundary conditions are extrapolated from the interior flow-

field or the farfield.

Flow tangency is first required at the surface of the airfoil for inviscid flow.

This is enforced by setting the velocity component normal to the surface of the

airfoil to zero in the computational plane,

"co, I airfoil surface 0 (3.38)

Since there are four 2-D Euler equations and one boundary condition at each

boundary, three properties along the airfoil's surface must be derived from the

equations of motion. The tangential velocity components, density, and energy are

extracted from the interior grid points.

Flow-field properties extrapolated from interior points at the inlet and exit

boundaries are dependent upon the nature of the eigenvalues of the Jacobian

matrices. For subsonic flight, three eigenvalues of both the A and B matrices are

29

positive, and one is negative. At the boundary points with incoming flow, three

properties are extrapolated from the farfield and one property is extrapolated from

interior grid points. Total pressure, velocity, and entropy are assigned freestream

values at the inlet boundaries, and static pressure is extrapolated from interior grid

points.

At the exit boundaries, three properties are extrapolated from the interior

grid, and one property is assigned freestream values. Static pressure is assigned its

freestream value, and density, entropy, and velocity are extrapolated from the

interior points.

Flow-field properties in the wake of the airfoil are determined by averaging

the properties on both sides of the wake.

10. Force and Moment Calculations

The coefficient of pressure, Cp, where

CP I P P• (3.39),

is calculated for each grid point on the surface of the airfoil and stored in a fide.

Next, the coefficient of lift, C1 ,

C, -(3.40)

v2

30

and coefficient of wave drag, Cdw,

pdw dV, (3.41)

are calculated where 1 is the two-dimensional lift, dw, is two-dimensional wave drag

with no viscous contributions, and c is airfoil chord length.

11. Storage

After the final iteration is performed, necessary information including the Q

vector at each point is stored in a file for a future restart of the solution and for

graphical analysis.

12. Residuals

A residual is computed after each iteration to check the convergence of the

flow-field solution. Stability analysis requires a means to check the convergence and

convergence rate of the flow-field solution. Density residuals are computed to

measure the change in the values of density throughout the flow-field after each

iteration.

Every iteration the density is updated at each point (ij) in the form

P n- = ,,14 .jp,•

pj P: +1 ,+ (3.42).

The density residual, 0, is calculated as the summation of the absolute values of the

density changes throughout the flow-field,

31

,max JmaX ,
1-l J=l

When a typical solution converges, 0 initially increases and then steadily decreases

for remaining iterations.

13. Variations

Several variations of the two-step Runge-Kutta scheme were examined and

evaluated. Local time-stepping requires each grid point be assigned its own time

step for advancement of the flow-field solution during each iteration. A time step

for each point in the flow-field was calculated based upon a constant CFL and the

contravariant velocities at each point throughout the flow-field. Local time-stepping

did not accelerate the convergence of the two-step Runge-Kutta scheme and was

not implemented in the final version of RK2EULER.

Explicit residual smoothing was also attempted to increase the convergence

rate of the solution. Here, the delta form of the Q vector at each point is weighted

with the changes in the Q vector at adjacent points for both steps of the Runge-

Kutta scheme. Several variations of explicit smoothing were attempted, and none

resulted in improved convergence

Different procedures for the application of dissipation were investigated in

ord-r to decrease computer processing time. The calculation of second and fourth-

order dissipation for both stages of the Runge-Kutta scheme require the majority of

computer processing time. When dissipation was only calculated in the updated

flow-field, the scheme was always unstable, even if it was added to both stages.

Similarly, if boundary conditions were not applied each step of the two-step

scheme, the schpme was unstable and a steady-state solution would not be reached.

32

14. Flowchart

A flowchart of the two-step Runge-Kutta scheme Euler flow-solver,

RK2EULER, is shown in Figure 3.4.

MAIN PROGRAM

READS PHYSICAL GRID

CALCULATES MUTRICES AND JACOBIANS

Ifl

INITIALIZES FLOWFIELD

CALCULATES TIME STEP

APPLIES BOUNDARY CONDI=TIONS T

CNINTEMUAE FLONFIELD EAUTO

STEPS
CALCULATES DISSIPATION (DISSIPS)

SOLVES UPTRMDIATED FLOWFIELD (RNSS)

INTECALCULATE FORCESEL

IIR

SSTOP

FigCUrAES 3.4:PAIO Flochrt f K2E

SOLVS UDATD FLWFILD 33S

C. COMPARISON WITH A CRANK-NICHOLSON EULER SOLVER

1. Purpose

RK2EULER was compared with a similar Crank-Nicholson scheme Euler

flow solver developed by J. A. Ekaterinaris [111. The purpose of the comparison

was to determine which flow solver could evaluate the pressure distribution around

an airfoil in subsonic or transonic flow in the shortest amount of computer

processing time. The fastest flow solver would then be coupled to an optimization

routine to be utilized in the design of airfoils to match a target pressure distribution.

Three test cases were used for the comparison. These test cases are also

utilized in the evaluation of the optimization routine. The stopping criterion for the

flow solvers was chosen to determine when the steady-state pressure distribution

around an airfoil was computed. Trial and error with both flow solvers in these test

cases were used to determine when this criterion was satisfied.

Both flow solvers were programmed to end their flow-field evaluations when

the summation of the square of the change in the coefficient of pressure after 200

iterations was less than 0.1% of the summation of the square of the Cp around the

airfoil. Mathematically the stopping criterion is written as

,=lte i < 0.001 (3.38)
lieu)2

i~stel

where 1iel is the summation at the grid points on the airfoil surface from the

lower trailing edge point to the upper trailing edge point and n is the iteration

count.

34

All the grids used in the test cases were generated using the program

GRAPE (Grids about Airfoils using Poisson's Equation) developed by Sorenson

[131. A Stardent workstation with vector processing capabilities was used for each

test case, and both schemes were compiled to optimize vectorization.

2. Test Case 1

For the first test case, the inviscid flow-field around a NACA 0012 symmetric

airfoil was calculated. The freestream Mach number was set at 0.6, and the airfoil

was given an angle of attack of 0 degrees. A course 133 x 34 grid was generated for

the analysis of the Euler equations and is shown in Figure 3.5.

Figure 3.5 133 x 34 Grid around NACA 0012 airfoil

35

The CFL for the Crank-Nicholson scheme was set at 5.0, which is the

optimum CFL for this scheme according to Merkle [101. The two-step Runge-Kutta

scheme utilized a CFL of 0.81 for the scalar a = 0.615.

The Mach contours generated by the Crank-Nicholson and the Runge-Kutta

schemes are given in Figure 3.6 and Figure 3.7 respectively. The two solutions are

nearly identical. Slight differences exist away from the surface of the airfoil where

the steady-state pressure distribution is calculated for the stopping criterion.

The convergence histories of the two flow solvers are illustrated in Figure 3.8,

which shows the logarithm of the density residuals for each iteration count. The

convergence rate for both solutions were similar with the two-step Runge-Kutta

scheme having a higher initial residual.

The results of the first test case are shown in Table 3.1. The two-step Runge-

Kutta scheme reached a flow-field solution based upon the stopping criterion 6.6

times faster than the Crank-Nicholson scheme, even through 200 more iterations

were required for the Runge-Kutta scheme. This is primarily due to the

vectorizability of the Runge-Kutta scheme which does not require matrix inversion.

Table 3.1: Comparison of Flow Solvers
NACA 0012 133 x 34 grid

M = 0.6 AOA = 0.0

Flow Solver CFL Iterations CPU time

Scheme (min:sec)

Crank Nicholson 5.0 1000 34:01

Scheme

Two-Step Runge- 0.81 1200 5:08

Kutta scheme

36

-4---
ii

'�1* /I -

/
7

N 7

Figure 3.6: Mach Contours from Crank-Nicholson Scheme

/

N /

/

I N

,'

/

Figure 3.7: Mach Contours from Runge-Kutta Scheme

37

10

,-,, LEGEND

0 ' • Cr. Ni.
.. . • , - -. R K 210

10 "
-..........

-2 1:

0 300 600 900 1200

Figure 3.8: Convergence History for Crank-Nicholson and Runge-Kutta Schemes

The same test case was run on a frner grid for comparison. The 201 x 52 grid

shown in Figure 3.9 was used with both flow solvers. The larger number of grid

points requires the inversions of larger matrices for the Crank-Nicholson scheme

and approximately twice the number of point-by-point updates for the Runge-Kutta

scheme.

The Mach contours generated by the Crank-Nicholson and the Runge-Kutta

schemes are given in Figure 3.10 and Figure 3.11 respectively. Once again the

solutions are similar with minor differences noticeable in the wakes of the airfoils.

The convergence histories for the two solutions are shown in Figure 3.12. The

Runge-Kutta solution's convergence rate decreases as the number of iterations

increases. The Crank-Nicholson solution's convergence rate oscillated around an

average convergence rate which was higher than the Runge-Kutta's decreased rate.

38

<'•~~~~~- .v.•t-• '

• , " . . "• -•.......... .

Figure 3.9 201 x 52 Grid around NACA 0012

The results are shown in Table 3.2. The two-step Runge-Kutta scheme

reached a flow-field solution over 5 times faster than the Crank-Nicholson scheme.

The Crank-Nicholson flow solver required fewer iterations to solve the steady-state

pressure distribution using the greater number of grid points. Also, the Mach

contours of the flow-field solutions were similar when both grid sizes were used with

the Crank-Nicholson and Runge-Kutta schemes.

The Runge-Kutta solution's convergence rate decreased as the iteration count

increased with the larger number of grid points, which was not apparent with the

smaller number of grid points. This behavior of the convergence history is directly

related to the low CFL of 0.81 utilized for the two-step Runge-Kutta scheme. The

39

I - "

Figure 3.10: Mach Contours from Crank-Nicholson Scheme

Figure 3.11: Mach Contours from Runge-Kutta Scheme

40

convergence rate was constant when using both grid sizes for the Crank-Nicholson

flow solver with a CFL of 5.0. The Crank-Nicholson flow solver was run at a CFL of

0.81 and its convergence history is shown in Figure 3.13. The convergence of the

Crank-Nicholson solution with the smaller CFL is similar to the Runge-Kutta

solution with a decreased convergence rate requiring 1200 iterations to reach the

stopping criterion.

Table 3.2: Comparison of Flow Solvers
NACA 0012 201 x 52 grid

M = 0.6 AOA = 0.0

Flow Solver CFL Iterations CPU time

Scheme (min:sec)

Crank Nicholson 5.0 800 63:39

Scheme

Two-Step Runge- 0.81 1200 10:29

Kutta scheme

3. Test Case 2

The second test case compares the flow solvers for subsonic flow over a

NACA 2412 airfoil for a freestream Mach number of 0.6 with 2 degrees a,,gle of

attack. The 133 x 34 grid is shown in Figure 3.14.

The Mach contours generated by the Crank-Nicholson and the Runge Kutta

schemes are given in Figure 3.15 and Figure 3.16 respectively. The two solutions are

also nearly identical for the same stopping criteria.

41

10

,,__ __Cr. Ni.

... .. • . . •. : :'* -. R K 2

.....•......
10

I...

10 0 250 500 750 1000 1250

Figure 3.12: Convergence History for Crank-Nicholson and Runge-Kutta Schemes

10

I0

10 0 250 500 750 1000 1250

Figure 3.13: Convergence History for Crank-Nicholson Scheme with CFL -0.81

42

17 r -- - 2- "

i71 -tr- It

-K 4-

Figure 3.14: 133 x 34 Grid around NACA 2412

The convergence histories for both solutions are shown in Figure 3.17. Again

the convergence rate for the Runge-Kutta scheme decreased after higher numbers

of iterations. After approximately 500 iterations, the convergence rate of the Crank-

Nicholson flow solver decreases.

The results are shown in Table 3.3. The two-step Runge-Kutta scheme

reached a flow-field solution roughly 5 times faster than the Crank-Nicholson

scheme. More iterations were required to reach a solution for both flow solvers

than in the first test case because of the more complicated flow-field around the

cambered airfoil.

43

Figure 3.15: Mach Contours from Crank-Nicholson Scheme

Figure 3.16: Mach Contours from Runge-Kutta Scheme

44

10

LEGEND

-Cr. Ni.

10

10 -

10 0 400 800 1200 1600

Figure 3.17: Convergence Histories for Crank-Nicholson and Runge-Kutta Schemes

Table 3.3: Comparision of Flow Solvers

NACA 2412 133 x 34 grid

M = 0.6 AOA - 2.0

Flow Solver CFL Iterations CPU time

Scheme (min:sec)

Crank Nicholson 5.0 1000 36:34

Scheme

Two-Step Runge- 0.81 1600 7:25

Kutta Scheme

The same test case was run using a finer grid with 201 x 52 grid points shown

in Figure 3.18 to compare with results from the coarser grid. The Mach contours

45

-. -- -4 - ---- - ---

.....7

Figure 3.18 201 x 52 Grid around NACA 2412

generated from solutions using the Crank-Nicholson and the two-step Runge-Kutta

flow solvers are shown in Figures 3.19 and 3.20 respectively. The solutions are again

similar using both schemes.

The convergence histories of both solutions are show in Figure 3.21. The

Crank-Nicholson flow solver converges faster per iteration than the Runge-Kutta

scheme, however the convergence rate of both schemes decreases at higher iteration

cycles.

A comparison of the performance of both flow solvers for the evaluation of

the subsonic flow-field over a NACA 2412 airfoil at 2 degrees angle of attack with a

46

Figure 3.19: Mach Contours from Crank-Nicholson Scheme

Figure 3.20: Mach Contours from Runge-Kutta Scheme

47

101.

LEGEND
0 - Cr. N i.

10. RK2

10

-2

100 400 800 1200 1600

Figure 3.21: Convergence Histories for Crank-Nicholson and Runge-Kutta Schemes

201 x 52 grid is shown in Table 3.4. The Crank-Nicholson flow solver reached a

solution in half the number of iterations that the Runge-Kutta flow solver required.

However, the Runge-Kutta flow solver reached a solution 4.5 times faster than the

Crank-Nicholson one because of the vectorizability of the explicit scheme.

Table 3.4 : Comparison of Flow Solvers
NACA 2412 201 x 52 grid

M = 0.6 AOA = 2.0

Flow Solver CFL Iterations CPU time

Scheme (min:sec)

Crank-Nicholson 5.0 800 64:57

Scheme

Two-Step Runge- 0.81 1600 14:28

Kutta Scheme

48

4. Test Case 3

The third test case compares the flow solvers ability to reach the inviscid

solution for an airfoil generating lift in transonic flight. A NACA 0012 airfoil at a

freestream Mach number of 0.8 and 0.5 degrees angle of attack is evaluated using

the Euler flow solvers. The grids used are the same as those in Test Case 1.

The Mach contours generated by the Crank-Nicholson and the two-step

Runge-Kutta flow solvers using a 133 x 34 grid are given in Figure 3.22 and Figure

3.23 respectively. The two solutions are also similar for the same stopping criterion.

The solutions show the approximate locations of shocks on the upper and lower

surfaces of the airfoils for inviscid flow. The lower shock is better defined by the

two-step Runge-Kutta scheme; this illustrates that second-order dissipation added

for shock treatment was more effective in this case with the Runge-Kutta scheme.

The convergence history of the density residuals are plotted against the

iteration count for both solutions in Figure 3.24, The Crank-Nicholson and Runge-

Kutta flow solvers both require more iterations than in the previous test cases. Also,

the convergence rate for both solutions decreases after roughly 200 iterations.

The results are shown in Table 3.5. The two-step Runge-Kutta scheme

calculated a steady-state pressure distribution around the airfoil 5.4 times faster

than the Crank-Nicholson scheme.

The Crank-Nicholson and Runge-Kutta flow solvers were also used to

calculate the flow-field solution around a NACA 0012 airfoil using a 201 x 52 grid

and the same freestream conditions. The finer grid allows a more accurate

prediction of the position of the shocks along the airfoil. The Mach contours

generated from both solutions are shown in Figure 3.25 and Figure 3.26. Again the

Runge-Kutta scheme provided a better resolution of the lower shock position.

49

/ ' \ :

I,,

/ ,

Figure 3.22: Mach Contours from the Crank-Nicholson Scheme

1' \

\ \..

Figure 3.23: Mach Contours from Runge-Kutta Scheme

50

1010:

LELEGENDD

• Cr. Ni.No .. i..........- --.. R K 2

10

10-

100 300 600 900 1200 1500 1800

Figure 3.24: Convergence Histories of Crank-Nicholson and Runge-Kutta Schemes

Table 3.5: Comparision of Flow Solvers
NACA 0012 133 x 34 grid

M - 0.8 AOA = 0.5

Flow Solver CFL Iterations CPU time

Scheme (min:see)

Crank Nicholson 5 1200 41:52

Scheme

2 Stage Runge 0.81 1800 7:43

Kutta scheme

The convergence histories of both flow solvers for the transonic test case

using the 201 x 52 grid are shown in Figure 3.27. For this case, the Crank-Nicholson

flow solver reached a higher initial residual and showed a similar decrease in

51

1/
/ S

/ / , ',

/ *II

' / // /

/ '1'
/ ,

II -

* Sr

\ji 1 I

.�S

-. 7.

Figure 3.25 : Mach Contours from Crank-Nicholson Scheme

/ 'S

/ N

'S
,� / X�\i.

/ , I /
Ii

II

5,
-5-

Figure 3.26: Mach Contours from Runge-Kutta Scheme

52

10

S~LEGEND

S• Cr. ni......... ,............................
10

I1 0 500 1000 1500 2000

Figure 3.27: Convergence Histories of Crank-Nicholson and Runge-Kutta Schemes

the convergence rate to the Runge-Kutta solution. Unlike the other test cases, the

Crank-Nicholson flow solver took 50 % more iterations to reach a solution than

with the coarser grid. These factors gave the Runge-Kutta solution a more

impressive speed advantage than in the previous test cases.

A comparison of both flow solvers are shown in Table 3.6. The two-step

Runge-Kutta scheme reached a flow-field solution over 8 times faster than the

Crank-Nicholson scheme.

The Crank-Nicholson flow solver was run for this final test case with the fine

grid using a CFL of 0.81. Its convergence history is shown in Figure 3.28. The

Crank-Nicholson scheme showed neutral stability characteristics at higher iterations

and required more iterations to reach a solution. This demonstrates a larger CFL

can provide more robustness and a faster convergence of a solution.

53

Table 3.6: Comparision of Flow Solvers
NACA 0012 201 x 52 grid

M -0.8 AOA - 0.5

Flow Solver CFL Iterations (P]U time

Scheme (niin:see)

Crank-Nicholson 5.0 1800 146:56

Scheme

Two-Step Runge- 0.81 2000 18:04

Kutta Scheme

10

o
10

10

10 0 500 I000 1500 2000 2500

Figure 3.28: Convergence History of Crank-Nicholson Scheme, CFL -0.81

54

5. Observations

The two-step Runge-Kutta flow solver calculated the pressure distributions

around the airfoils significantly faster in each test case. The advantage of the

explicit scheme over the Crank-Nicholson scheme is primarily due to the Runge-

Kutta scheme utilization of the vectorization capability of the workstation.

The two-step Runge-Kutta scheme convergence rate decreases significantly

between one to two orders of magnitude reduction of the highest density residual.

The Crank-Nicholson scheme showed a similar decrease in convergence rate for

solutions of more complex flow requiring larger numbers of iterations. This

decrease is related to the size of the time step used to advance the steady-state

solution. The Crank-Nicholson scheme was more robust than the two-step Runge-

Kutta scheme because larger CFL's were used. The low CFL limitations of the two-

step Runge-Kutta scheme resulted in more iterations for the explicit flow solver

than the Crank-Nicholson flow solver.

Due to its ability to solve the inviscid pressure distribution around an airfoil

faster than schemes requiring large matrix inversions, the two-step Runge-Kutta

scheme will be used with an optimization program on computers with vector

processing capabilities for airfoil design.

55

IV. OPTIMIZATION USING PARALLEL PROCESSORS

Airfoil design via optimization methods require numerous CFD solutions to

compute the aerodynamic performance of different airfoil geometries. In the

design process, independent variables are perturbed to determine which geometry

best approximates the design criteria.

For airfoil design, the designer must first select the desired performance criteria.

Next, independent variables are used to describe the geometry of the airfoil's shape.

After an initial CFD solution and performance evaluation are calculated,

multivariable calculus determines a direction to vary the independent variables to

match or optimize the performance criteria. The performance of many airfoil

shapes are then evaluated using CFD, and the geometry which comes closest to the

desired performance becomes the baseline solution to vary for the next optimization

cycle. If there are no limitations to the allowable computer processing time, this

process is repeated until an airfoil geometry is found which matches or optimizes

the desired performance.

An optimization routine has been developed which divides the required

performance evaluations among multiple processors. This optimization routine,

when coupled with a flow solver, evaluates the aerodynamic performance of

numerous airfoil geometries simultaneously and greatly decreases the time required

for airfoil design.

56

A. OPTIMIZATION METHODS FOR MULTIVARIABLE FUNCTIONS

Elementary calculus defines a local minimum for a function of a single variable,

f - f(x), to be a point where the following criteria are met:

(I) df 0
dx

(2) d 2f 0

If the first criterion alone is met, the point may also represent a local maximum or a

saddle point.

For a range ofx, where xl _< x _< x2, a global minimum is the point x which

corresponds to the minimum value of f(x) in that range. One or more local minima

can also be found in that range as shown in Figure 4.1.

f(x)

I I I I
xl Iocal global x2minimum minmum

X

Figure 4.1 : Local and global minima for a single variable function

57

If f is a function of more than one variable,

f = f(x x 2 x1, ... , X.

local minima, local maxima, and saddle points are all found at points where

Of 0-- 0
Ox,

Of 0-0-

Ox 2

Of 0-- 0
Ox 3

Of

Ox"

B. OPTIMIZATION VIA NEWTON'S METHOD

An optimization technique is used in a design process to minimize an objective

function which represents the difference between the actual and desired

performance. The objective function, f, is a function of a set of n independent

variables, X, placed in vector form:

f = f(X)

58

X = [xI, x 2 , X2.X3 ., x.].

The gradient vector, G, is defined as a vector of the partial derivatives of the

objective function with respect to X, or

G_ f [Of Of 'of Of
OX gxI ' x2 1x3 e .,

The Hessian matrix, H, is a symmetric matrix of mixed second-order derivatives of

the objective function with respect to the independent variables:

c9G _ 2f
H O- l

OX OX2

or

e 2f e 2f elf
exi2 Ox1 Ox 2 OxI ex'
elf e 2f 92f

H Ox l OX2 oX 2
2 OX 2 Oxn

0"2 f o 2f d 2f

dxI dx. Ox2 ex. dx.2

For an iterative optimization method, the set of independent variables is varied

slightly each iteration. A vector 8 composed of small perturbations of the

59

independent variables is added to the set of independent variables at iteration k,

where

Xk÷l = Xk + 5k (4.1).

Newton's method is used to determine the updated set of independent variables to

minimize the objective function.

Newton's method is derived from a second order Taylor series for f(Xk + 1)

centered at f(Xk) :

f(Xk+,) = f(Xk) + [Gk] T 6 + 1 [6k]]T k 51+ HOT. (4.2).

The optimization method requires that the function and the components of its

gradient vector and Hessian matrix be defined for each set of independent variables

evaluated. Ot'ier requirements include that f(Xk + 1) must have a unique minimizer,

and that H is positive definite to ensure convergence to a minimum.

The updated objective function is minimized with respect to the perturbation of

the independent variables. Solving

Of(xk4I) - 0

gives

60

Gk + H k 6k = 0

or

Hk6' = -Gk (4.3).

The vector 6k gives the variation of the independent variables to minimize the

objective function for the next iteration.

The basic Newton method is not suitable for a general purpose algorithm if the

evaluation of Hk or the quadratic model of the function is not accurate. Newton's

method with line search is an iterative optimization technique well suited for

computational applications.

Newton's method with line search solves for a direction of search, pk, where

Pk = - [Hk]-1Gk (4.4).

P is a vector which gives a ratio to vary the independent variables in order to

minimize the objective function. The new set of independent variables is then

calculated from the relation:

Xk, = Xk + qpk (4.5),

where q is a positive scalar.

After pk is calculated, the objective function becomes a function of the scalar q.

A directional search using Equation (4.5) to define the set of independent variables

is conducted to minimize the objective function. In the directional search, q is

61

varied and the objective function is evaluated until a minimum is found. A new set

of independent variables is then perturbed to find P for the next iteration.

The primary disadvantage of using Newton's optimization method with a line

search is the computational time necessary to evaluate the components of the

Hessian matrix H. Also, if the quadratic model described in Equation (4.2) is not

sufficiently accurate or if H is not positive definite, the objective function may not

decrease using a line search in the direction P.

C. QUASI-NEWTON OPTIMIZATION METHOD

Robert Kennelly [8] has written an optimization program, QNMDIF, which

utilizes a quasi-Newton method with a line search. The main advantage of the

quasi-Newton method is that the second-order partial derivative components of the

Hessian matrix do not require numerous function evaluations. Instead, the Hessian

matrix is estimated based upon first-order derivative calculations and is updated

each optimization cycle.

QNMDIF, like Newton's method with line search, attempts to minimize a

quadratic model of the objective function. The direction of search, pk, is

determined each iteration based upon the linear system of equations

Bk pk = - Gk (4.6),

where B is an approximation to the Hessian matrix. A search is then conducted

along the ray pk requiring new function evaluations based upon the set of

independent variables defimed in Equation (4.5).

62

Instead of calculating the Hessian matrix which would require a large amount of

processing time for the calculation of numerous expensive objective functions, the

quasi-Newton method uses a sequence of matrices to form the matrix B to

approximate H. After the new point Xk + 1 has been found and Gk + 1 evaluated,

the Hessian approximation is modified according to the quasi-Newton relation

Gk+I - Gk = Bk+l [xk+I - xk] (47)

Equation (4.7) would be satisfied if the objective function was quadratic and if

Bk+ 1 was the true Hessian. The approximate Hessian's symmetry and positive

definiteness are preserved using a rank 2 update to B developed by Gill and Murray

[14,pp.91-108]. The matrix B is represented by the factors LDLT, where L is a unit

lower triangular matrix with a transposed matrix LT, and D is a positive definite

diagonal matrix. In the program, B can first be set to the identity matrix, or the

diagonal elements in D can be calculated using finite-difference methods requiring

several function evaluations.

QNMDIF uses parabolic interpolations to estimate the minimum of the

objective function in its directional search. Using this method, a multivariable

objective function of n independent variables should converge to a minimum in n

searches or less in the direction P. The quasi-Newton method does not depend

upon exact line searches and is more efficient if coarse line searches are used

because less function evaluations are required. This iterative scheme requires

multiple function evaluations for the gradient vector calculation and a line search

after each new set of independent variables are found.

63

QNMDIF includes several reliability features to ensure convergence of the

objective function to a minimum. If a line search fails with no decrease in the

objective function, the components of the gradient are calculated using central-

difference approximations for the derivatives instead of forward-difference

approximations. The gradient components are later calculated using forward

differences if the objective function later decreases.

The optimization routine uses machine precision to evaluate if a change in the

objective function is significant. If central-difference approximations for the

gradient do not result in a reduction of the objective function, a sophisticated local

search is applied. Line searches are conducted in orthogonal directions from

perturbed positions around the set of independent variables. The local searches

help protect against convergence to a local minimum or a saddle point.

Finite-difference step sizes are required for the forward or central-difference

estimations of the components of the gradient vectors. The step sizes need to be

large enough to produce a significant change in the objective function and small

enough for accurate approximations of derivatives.

The optimization program can begin as a restart from a previous problem. Also,

QNMDIF periodically updates and stores information in a restart file during an

optimization problem.

D. DEVELOPMENT OF A QUASI-NEWTON OPTIMIZATION ROUTINE

UTILIZING PARALLEL PROCESSING

An objective function appropriate for airfoil optimization design is based upon

the aerodynamic performance of the airfoil. Objective functions necessary for the

gradient calculations and line searches require numerous CFD solutions to calculate

64

the flow-fields around airfoils of different geometries. Therefore, the vast majority

of computational time needed to design an airfoil is spent calculating the flow-fields

around various airfoil geometries. A simple airfoil design test case using QNMDIF

and RK2EULER requires over 96% of the processing time to be spent calculating

various flow-field solutions.

A quasi-Newton optimization method was developed for aerodynamic design

utilizing the Intel iPSC/860 hypercube parallel computer. The hypercube is used to

simultaneously calculate the flow-fields over multiple airfoil geometries for the

estimation of the gradients and in directional searches for minimum objective

functions. Conducting the gradient calculations and line searches in parallel greatly

increases the speed of the design procedure.

1. The Intel Hypercube Parallel Computer

The Intel iPSC/860 hypercube is a distributed memory parallel

supercomputer consisting of 128 nodes with a peak performance of 7.7 gigaflops in a

64 bit architecture. The hypercube used for this research is located at the

Numerical Aerodynamic Simulation laboratory at NASA Ames.

The System Resource Manager, or local host, is a UNIX machine and is used

to communicate with the cube. The cube consists of 128 i860 processing nodes with

8 megabytes of memory per node. A user can utilize a group of 1, 2, 4, 8, 16, 32, 64,

or 128 nodes for an application. Each node has a 40 megahertz clock and has access

to the Concurrent File System.

The Concurrent File System (CFS) provides fast, simultaneous access to

secondary storage for the nodes. Large data files can be written to and read from

the CFS.

65

The iPSC/860 is a Multiple Instruction Multiple Data (MIMD) computer. An

application must be designed to run in parallel in order to effectively use the

hypercube. Since the iPSC/860 is a distributed memory computer, Intel provides

message passing routines for communication of pertinent data between the nodes.

An application can consist of a host and a node program or just a node

program. The host program runs on the local host only and communicates with the

node programs. Each node of the cube executes the node program and can use

different sets of data. Also, each node can perform different instructions based

upon conditional statements in the program. A manager node can be used to direct

the flow of information with other nodes.

The hypercube has both FORTRAN and C compilers augmented with special

routines for programming in a parallel distributed memory environment. These

special routines decrease internode communication time, determine individual node

information, perform global operations, and write to the CFS.

Internode communications increase the computational time required in a

parallel application. Communication time can be minimized by decreasing the

number of messages sent. Fewer large messages can be sent faster than more

numerous smaller messages. Global messages provide the most efficient

communications from a single node to all other nodes assigned to an application.

Global operation routines provided by Intel effectively perform mathematical

operations requiring information from all nodes in an application.

Node information is also available using special routines. For an application,

each node is assigned a unique identification number of 0 or higher. Intel

subroutines are used to identify the number assigned each node and the total

66

number of nodes used in the process. These numbers can be used for conditional

statements in the application.

2. A Quasi-Newton Optimization Routine for Parallel Processors

The quasi-Newton optimization program, QNMDIF, was modified for

efficient application on the Intel iPSC/860 hypercube. The parallel quasi-Newton

optimization subroutine, PARQNM, is written to decrease the computational

processing time necessary in airfoil design by optimization. PARQNM assigns

multiple processors to simultaneously calculate objective functions with different

sets of independent variables. Although PARQNM was written for use with a flow

solver for aerodynamic design, the optimization program can beneficially be applied

to other optimization problems requiring evaluations of expensive objective

functions.

PARQNM is written in FORTRAN as a node program. It makes efficient use

of the Concurrent File System so that each node can separately evaluate the

performance of different airfoil geometries described by different sets of

independent variables. The vast majority of an airfoil design application is designed

to run in perfectly parallel decomposition with each node operating on different

data sets. Node information subroutines are used to generalize the number of

nodes used in an application. The minimum number of nodes required for an

application is dependent upon the number of independent variables of the problem.

The communication strategy is designed to minimize internode

communication time. Global operations are used for simple mathematical

operations when practical. Multiple single node to single node communications are

done simultaneously in the routine. Also, communication time is reduced by

sending large global messages instead of smaller node to node messages.

67

a. Overview of PARQNM

A flowchart of the optimization program is shown in Figure 4.2. The

scheme for PARQNM is similar to QNMDIF, but the primary difference is the

utilization of parallel processing for the evaluation of the objective functions

necessary for the gradient calculation and directional line searches.

The program calling PARQNM must calculate an initial value of the

objective function. The main program must send arguments for the initial value of

the objective function, factors of the initial estimation of the Hessian matrix, and the

original set of independent variables to the optimization program. Next, PARQNM

calculates the gradient vector utilizing parallel processors. A set of linear equations

is then solved to calculate the direction of search to minimize the objective function.

Also, a parallel line search is performed to minimize the objective function for each

new set of independent variables.

If the line search successfully reduces the objective function, the set of

independent variables is updated. Then the cycle is repeated with new parallel

gradient calculations and parallel line searches. When the maximum iterations are

completed or the convergence criteria are satisfied, the optimization program is

complete. If the directional search is unsuccessful in reducing the objective

function, a local search is performed in parallel to minimize the objective function.

b. Parallel Gradient Calculation

The calculation of components of the gradient vector requires significant

computational time. With the utilization of parallel processors, all function

evaluations necessary for the estimation of the gradient vector can be calculated

simultaneously instead of sequentially as on serial computers.

68

PARQNM

I
PARALLEL
GRADIENT

CALCULATION

T RUE FNTO AS

UPDATE PERFORM
INDEPENDENT LOCAL

VARIABLES SEARCH

EPARALLEL

ESIN GRADIENT RTR

APRXMAINCALCULATIONOBETVFAS
DECAASSES

Figure 4.2: Flowchart of PARQNM

69

A flowchart for the parallel gradient calculation is shown in Figure 4.3.

For a second-order accurate estimation of each component of the gradient, two

function evaluations are required. For example, the first gradient component is

estimated from the central-difference calculation:

Of = f(x, +A x,, x 2, . ,X) - 6 , -A x,, x2, ,X(.
- x1 (4.8).OxI 2A x,

For n independent variables, 2n processors are used in PARQNM to calculate all

function evaluations simultaneously for the estimation of the gradient vector.

Communication time is minimized by directing each processor which

evaluated a function using backward-differencing of an independent variable to

send its information to the corresponding processor which calculated the forward-

difference estimation of the objective function. These n short messages are sent at

the same time, and the components of the gradient are calculated at different

processors. A manager node then collects the components of the gradient from n

processors and sends the entire gradient vector to all nodes in a global message.

A comparison of the communication time required for this method versus

each processor independently calculating the gradient is presented to demonstrate

its advantage. For n independent variables, 2n processors on the hypercube ai e

required for the optimization problem. A variable z is defined as 2z = 2n and

represents the order of the number of processors. A global message to all nodes

requires approximately the same amount of communication time as z node-to-node

messages of the same length.

70

PARALLEL GRADIENT CALCULATION
(n INDEPENDENT VARIABLES)

1st n PROCESSORS 2nd n PROCESSORS
CALCULATE FORWARD CALCULATE BACKWARD
DIFFERENCE FUNCTION DIFFERENCE FUNCTION
EVALUATIONS EVALUATIONS

1st n PROCESSORS
EACH CALCULATES A

DIFFERENT COMPONENT
OF THE GRADIENT

MANAGER NODE
COLLECTS INDIVIDUAL

GRADIENT COMPONENTS AND

GLOBALLY SENDS GRADIENT
TO ALL NODES

RETURN

Figure 4.3 : Flowchart of Parallel Gradient Calculation

71

For the method described, the first n messages are sent simultaneously.

Next, n-1 messages are sent to a single node followed by a global message.

Therefore, the total communication time required to compute the gradient is

approximately equal to the time required to pass n + z single node to single node

messages. For example, a problem involving 8 independent variables requires the

communication time needed to pass 12 node-to-node messages for each gradient

calculation.

By comparison, if each processor performed its own calculations of the

gradient, each processor would need to send its forward or backward-difference

function calculation to the remaining processors in a global message. Therefore 2n

global messages would be sent requiring the time to send 2nz messages. For

example, an optimization problem involving 8 independent variables would require

the communication time needed to send 64 node-to-node messages for each

gradient calculation.

The method of gradient calculation used in PARQNM has several

advantages over the method used in QNMDIF. Most importantly, all function

evaluations are done simultaneously instead of sequentially. This alone typically

halves the required processing time of the entire optimization routine. Also, the

central-difference estimation of the parallel routine is more accurate than the

forward-difference estimation of the gradient used in QNMDIF. If the forward-

difference estimation of the gradient fails to provide a direction which reduces the

objective function in a line search, QNMDIF will waste valuable processing time

before computing the gradient vector based upon the central-difference

approximations used in PARQNM.

72

c. Parallel Line Search

Similar to the gradient calculation, the line search used to minimize the

objective function requires the evaluation of numerous objective functions

corresponding to different sets of independent variables. Each objective function

requires significant computational processing time. A parallel line search was

developed which minimizes the objective function more efficiently and many times

faster than the line search used in the sequential optimization program.

A flowchart of the parallel line search is given in Figure 4.4. After the

direction pk is determined, the new set of independent variables is determined from

Equation (4.5). The objective function now becomes a function of the scalar q and

is illustrated in Figure 4.5. For a problem, the designer selects maximum and

minimum values of q. For example, in an airfoil design application, q can be

assigned maximum and minimum values for the amount that the airfoil's thickness

or camber can be varied in one iteration.

The line search employed in PARQNM assigns different sets of

independent variables to search for a minimum objective function in the direction

pk. Maximum and minimum values of the scalar q must be assigned for the design

application. The minimum value of q, q0, may be a small number based upon the

computer's machine precision, and the maximum value of q, ql, may depend upon

the physical constraints of the problem. Different values of q are assigned in equal

intervals between q0 and q1. Next, each processor is assigned a unique value of q

and simultaneously computes the objective function for a set of independent

variables based upon Equation (4.5) and illustrated in Figure 4.6. A global

73

{ PARALLEL LINE SEARCH3

ALL PROCESSORS COMPUTE

OBJECTIVE FUNCTIONS OF

UNIQUE SETS OF INDEPENDENT

VARIABLES

GLOBAL OPERATION SELECT

INDEPENDENT VARIABLES

CORRESPONDING TO MINIMUM

OBJECTIVE FUNCTION

OBJECTIVE
FALSE FUCINTRUE

NEW SET OF INDEPENDENTS~VARIABLES AND OBJECTIVE

FUNCTION ASSIGNED

RETURN

Figure 4.4 Flowchart of Parallel Line Search

74

f(q)

I I
qO q1

q
Figure 4.5 Objective Function Dependence Upon Scalar q

f(q)

-F I
qO ql

q
F•a•rer 4.6 Equal Spacing Parallel Line Search

operation is used to determine which set of independent variables yields a minimum

objective function. If the minimum objective function is less than the previously

calculated minimum, the new set of independent variables are globally sent to all

processors.

The parallel line search also has several advantages over the line search

used in the sequential optimization program. PARQNM completes its line searches

roughly n times faster than QNMDIF because all required function evaluations are

performed in parallel. Also, the parallel line search protects against convergence to

a local minimum instead of a global minimum because it searches a wide range of

independent variables using equal intervals, and the accuracy of the parallel search

can be improved by assigning more processors to the application. The sequential

line search is more likely to converge to a local minimum because it uses parabolic

interpolation for its estimation.

Some more considerations for the parallel line search are presented.

Different methods of dividing the intervals between various values of q between q0

and ql could have been chosen. Instead of equal intervals between different q

values, an exponential distribution could have been used to evaluate more values of

q closer to q0 with larger intervals between q's assigned as the value of q increases.

Also, a more thorough search could have been performed by conducting a second

line search near the best value of q found in the first search. Unlike the parallel

gradient routine which can utilize only 2n processors for the calculation, the parallel

line search utilizes all available processors assigned to the application. If a

sufficient number of processors are assigned, the r'me line search divides the

possible values of q among the processors. The single line search with equal spewing

between q values was chosen becamuse it provided the most effectivp niumizatumi o1

-7t,

the objective function in the shortest amount of processing time for the airfoil

optimization test cases attempted.

d. Local Search for Minimum

A local search is performed when a line search fails to reduce the

objective function. The local search uses random directional searches to check

whether a point can be found lower than the estimated minimum. The purpose of

the search is to avoid convergence to a saddle point or a local minimum. A

flowchart of the local search is given in Figure 4.7.

During the local search, two sets of line searches are conducted. A

minimum is first searched in a directional search from a slightly offset vector of

independent variables

Y = X + e (4.9).

The offset vector e is based upon the finite step sizes used to calculate the

derivatives. A directional search is first conducted in the direction Po, where

Po = - P (4.10).

The second local search is dependent upon the success of the first. If the

first local search reduces the objective function, the second search is conducted in

an orthogonal direction. P o t from the set of independent variables X. If the first

"local earch did not reduce the objective function, a directional search is conducted

in the direction P 1 where

I LOCAL SEARCH

OFFSET VECTOR OF

INDEPENDENT VARIABLES

PARALLEL LINE SEARCH

IN DIRECTION -P

FALSE OJC/ETRUE

PARALLEL LINE SEARCH IN PARALLEL LINE SEARCH IN

NEGATIVE DIRECTION OF DIRECTION -P FROM ORIGINAL

OFFSET VECTOR INDEPENDENT VARIABLES

UPDATE INDEPENDENT VARIABLES

AND OBJECTIVE FUNCTION

RETURN

Figure 4.7 : Parallel Local Search

711

P, = X-Y (4.11).

If a lower objective function is not found in the local search or if the

maximum number of iterations are completed, the results are printed and

information is saved in a restart file. Otherwise, the values for the objective

function and independent variables are updated, a new gradient is calculated, and

the quasi-Newton method is continued.

The local search of the optimization routine provides robustness against

several factors including:

1. Convergence to a local minimum

2. Convergence to a saddle point

3. Inaccurate quadratic estimation of objective function in

Equation (4.2)

4. Poor estimation of Hessian matrix

Many additional objective function evaluations are required for the local

search. The local search routine in PARQNM is identical to the local search used

in QT.'MDIF except that each of the two directional searches is conducted in

parallel.

A quasi-Newton optimization program with line search is a proven method

to reduce an objective function dependent upon a set of independent variables. For

the case of expensive objective functions, computation of the gradient and

directional searches require the vast majority of computer processing time. This

computational time can greatly be reduced with the utilization of multiple

processors in these calculations.

79

E. DEVELOPMENT OF A FULLY NEWTON OPTIMIZATION ROUTINE

UTILIZING PARALLEL PROCESSING

An optimization scheme utilizing a fully Newton's method with line search was

developed for applications using the Intel hypercube parallel computer. The

Newton method optimization scheme uses finite difference estimates of the

components of the gradient vector and Hessian matrix. Then a direction of search is

determined to vary the independent variables and minimize the objective function.

1. Overview

A flowchart of the Newton method optimization scheme is shown in Figure

4.8. The parallel Newton optimization scheme, PARNM, is similar to the quasi-

Newton scheme except that parallel processors are used to estimate the components

of the Hessian matrix in addition to the components of the gradient vector.

Therefore, PARNM utilizes more processors for an application than PARQNM.

Also, PARNM does not require a subroutine to update the estimation of the

Hessian matrix since it is calculated directly. A parallel line search using all

available processors is also used in PARNM.

2. Utilization of Parallel Processors

PARNM uses multiple processors in parallel for second-order accurate

estimates of the gradient vector and the Hessian matrix. The parallel Newton's

method optimization scheme calculates all objective functions necessary for

estimations of the Hessian matrix and gradient vector in parallel and utilizes a

Choleski decomposition scheme to calculate the direction of search with Equation

(4.4). A flowchart of the calculation of the search direction is shown in Figure 4.9.

As is the case for the parallel quasi-Newton optimization scheme, the

components of the gradient vector are calculated using central-differencing similar

NA'

PARNM

I
PARALLEL
GRADIENT AND
HESSIAN
CALCULATION

LINE

SEARCH

INDEPENDENT

VARIABLESEAC

RGDAEDIANDRETUR
HEESSIAN

FALC
ULAONN

PARRALLEGRAADIENCLCNTITESIN ETR

T!ý FUNCIOSEL,

Fig~un' 4 q Flowchart o(1~uily Nf, wtir M•,thiml I'aurall•d ()ltanun~liiia S-Iw~n.

Rl

PARALLEL NEWTON METHOD SEARCH CALCULATION
(n INDEPENDENT VARIABLES)

2n PROCESSORS 4n(n-1) PROCESSORS

CALCULATE FORWARD AND CALCULATE FUNCTION
BACKWARD DIFFERENCE EVALUATIONS FOR OFF-

FUNCTION EVALUATIONS DIAGONAL HESSIAN TERMS

MANAGER NODE
1. COLLECTS ALL FUNCTION EVALUATIONS

2. CALCULATES HESSIAN MATRIX AND

GRADIENT VECTOR
3. CALCULATES DIRECTION OF SEARCH
4. SENDS GRADIENT AND SEARCH VECTORS

TO EACH NODE IN GLOBAL MESSAGES

SRETURN

F'qurr4g t ara l~ad ('aktrtlt~i of.Span-hi l)re.•tvm t Itulg Newtoal' Me.t h,,

to Equation (4.8). The number of processors required for an application depends

upon the number of independent variables n. For a second-order accurate

estimation of the gradient vector, 2n processors are required for the calculations of

2n objective functions based upon forward and backward differences using n

independent variables.

The number of additional objective function evaluations required for the

parallel calculation of the components of the Hessian matrix is determined by its

number of off-diagonal terms. No additional objective function evaluations are

required for second-order accurate estimates of the n diagonal terms in the Hessian

matrix. Central-differencing is used to calculate each diagonal component of the

Hessian matrix. For example, the first diagonal term is computed using the

relationship

e 2 f _ f(x+ A x1, 1x,2 ,x) - 2f(x,.X2 ., XI) + f(x, -Ax,, ,Xn) (4.12
22 A(x.12

All necessary objective function evaluations are available from the forward and

backward function evaluations used in the calculation of the gradient vector plus the

known objective function for the current set of independent variables.

For a symmetric n x n matrix, the total number of off-diagonal terms which

needs to be evaluated is (n2 - n) / 2. A typical equation for the calculation a

second-order accurate estimate of an off-diagonal component of the Hessian nmtrix

is as follows

t92 f _ f(X1 + +Ax,, X2 +A X2, . Xn) - 6~ 1 +A x,, x2 -A x 2 , . .x)

e•xtx 2 4A x1 Ax 2t6X1OX2 A XI X2(4.13)

f(x,-Ax1 ,, X2 +Ax 2 ,.. ,x) - f(x, -Ax 1 , x2 -Ax 2 ,..),x)

4AxA x 2

Four function evaluations are required to obtain second-order accurate estimates

for each off-diagonal term because combinations of forward and backward-

differences for two independent variables must be evaluated.

Therefore, 2ti2 function evaluations are required to determine the gradient

vector, Hessian matrix and subsequently the search direction for a function of n

independent variables using the fully Newton optimization method. If the function

evaluations are to be calculated in parallel, 2n 2 processors must be available for the

application. This limits the maximum number of independent variables to 8 which

would require all 128 processors of the Intel hypercube for an application. For

comparison, the parallel quasi-Newton optimization routine requires only 2n

processors for an application.

3. Calculation of the Search Direction

A single manager node is used to calculate the direction of search. The

parallel Newton method program allows for optimization of functions described by a

maximum of eight independent variables. If more than eight independent variables

are used or not enough processors are selected for an application, an error message

is printed and the optimization routine stops.

The manager node receives all objective function calculations from the

remaining processors used in the application. Next, the manager nodi calculates

the components of the gradient vector and Hessian matrix using equations similar to

84

(4.8), (4.12), and (4.13). In order to help ensure that the search direction minimizes

the objective function, the Hessian matrix is checked for positive definiteness. If a

diagonal term in the estimated Hessian matrix is less than zero, then the term is

replaced by a small positive value determined by the machine precision. If an off-

diagonal term is calculated to be less than zero, it is replaced by a zero to ensure

positive definiteness.

The gradient vector, G, and the upper triangular portion of the Hessian

matrix, H, are both stored in first order arrays. An efficient Choleski decomposition

routine is used to solve for the search direction P where:

H P = -G (4.14).

The search direction and gradient vectors are then globally sent from the manager

node to all other nodes.

All processors assigned to the application are then used for a parallel line

search to minimize the objective function. This line search is more thorough than

one from the parallel quasi-Newton optimization application due to the greater

number of processort, available. After a set of independent variables is found which

corresponds to the minimum objective function evaluated in the parallel line search,

the optimization cycle will repeat itself until the stopping criteria is met or the

maximum number of iterations are completed.

F. SUWMAAARY

Parallel quasi-Newton and parallel Newton optimization schemes have been

developed to decrease the time required to reach solutions to optimization

K "

problems involving expensive objective functions. Parallel processors calculate

multiple function evaluations simultaneously and can greatly increase the speed and

efficiency of similar sequential optimization routines. The parallel Newton and

quasi-Newton optimization schemes are used in airfoil design applications and

compared with a sequential quasi-Newton optimization routine.

V. AIRFOIL DESIGN VIA OPTIMIZATION

A. OVERVIEW

The Newton and quasi-Newton method optimization schemes are utilized with

various other programs for airfoil design. The complete airfoil optimization process

requires the understanding and application of multiple disciplines including vector

calculus, computational fluid dynamics, grid generation, and parallel computer

programming.

The design process begins with selection of the desired aerodynamic

performance for the target airfoil to optimize. An initial airfoil is chosen and its

performance is evaluated. Independent variables which describe the shape of the

airfoil are varied each iteration, and the performance of various shapes of airfoils

are compared to determine which geometry optinmzes the desired performance

criteria. The hypercube parallel processing machine is the most suitable computer

for airfoil design via optimization techniques because the calculation of expensive

objective functions require CFD solutions which can be performed on multiple

processors simultaneously.

The flowchart for an airfoil design application is given in Figure 5.1. First, files

are opened on a sequential computer or the Concurrent File System of the

hypercube Next, information describing the shape of the baseline airfoil is read

from a file If the problem Ls a restart of a previous design problem, pertinent data

is reed from a restart ftile A flow "olver deternunes the aerodynamic performance

of the baseline airfod, and the objective function a, then cak'ulated A subroutine

then determines the prrecusi of the computer running the application Fuully. the

1OI1onIrNUATxON UZ8IGH

o1PU NUscuas" VIL3S

READ IUOPM roit GEOR~MY

Or AB&SLINE AIRFOILJ

r~~xPRoBLEM TRUt

RESTART

COqYITE ONJECTIVEC rtUCTIOt4

FO" DAELINE AIRFOIL

DETEMrNS MACUINE PRCIS IAC

[OPINISTIOWROMtINE

Figure 5.1: Flowchart of airfoil optimidzation design scheme

optimization program uses a quasi-Newton or fully Newton method to vary and

evaluate the independent variables for optimization of the desired aerodynamic

performance. The airfoil design scheme will be examined with emphasis on the

utilization of the Intel hypercube parallel computer.

B. UTILIZATION OF THE CONCURRENT FILE SYSTEM

The Concurrent File System is effectively utilized to manage multiple files

necessary for parallel airfoil design with the Intel hypercube. The CFS assists all

processors used in the airfoil design application with the parallel evaluations of the

aerodynamic performance of different airfoil shapes.

Each processor assigned to the airfoil design application executes the same

instructions from identical node programs. For effective use of the hypercube, the

different processors need different sets of data to analyze in the design application.

Utilization of the CFS is the most efficient means for the nodes to access input files

and to write data into output files necessary for the application. Some of the input

files are read only once during an airfoil design problem, and other input and output

files are read and written into each cycle of the optimization scheme.

The CFS manages several files for the determination of the aerodynamic

performance of different airfoil shapes. A single file is used by all processors to

read the flight conditions for the performance evaluations of all airfoil geometries.

The parallel optimization schemes assign each processor an individual grid input file

containing points on the surface of a unique airfoil geometry being evaluated and

points throughout the flow-field. Each processor evaluates the aerodynamic

performance of its airfoil shape with the flow solver assigned to the application.

89

The output from the flow solver executed by each processor includes a file

containing the flow-field properties and a file containing aerodynamic performance

information such as the pressure distribution around the airfoil. These output fides

from each processor are assigned file numbers including its processor identification

number and are written into the CFS. During each cycle of the optimization

scheme, new grid files are assigned to each processor. The information from the

output files is used to evaluate the objective function for the assigned airfoil shape.

C. DESIGNATION OF AIRFOIL GEOMETRY

The geometry of an airfoil is defined by a set of independent variables placed in

vector form. These independent variables are varied during the optimization

process, and the aerodynamic performance of each subsequent airfoil shape is

evaluated. A geometry package developed by Verhoff, Stookesberry and Cain [151

of the McDonnell Douglas Corporation for airfoil optimization design is used to

designate the independent variables for the application.

An airfoil geometry can be defined by a thickness distribution and a camber

distribution along its chord. The position of each point on the airfoil surface is

found by the addition and subtraction of the thickness from the mean camber line

along the chord. The geometry package evaluates the coefficients of Chebychev

polynomials for the representation of the thickness and camber distributions of the

airfoil.

Chebychev polynomials possess excellent qualities for use in the representation

of the thickness and camber distributions. Each point of the thickness and camber

distributions is defined by a Chebychev polynomial in the form

y = ao + aix + a 2x 2 + a3x 3 + + avxv

90

where x is the chordwise coordinate, y is the coordinate perpendicular to x, and v is

the order of the polynomial. The accuracy of the representation generally improves

with an increase in the order of the polynomial. All coefficients of a Chebychev

polynomial are orthogonal to each other. Therefore, the addition of higher order

coefficients to describe a distribution does not effect the lower order terms. For

most cases, only a few coefficients are necessary for an accurate representation of

the shape of an airfoil.

Several options are available with the geometry package for the choice of

independent variables to be used in the application. The independent variables can

be designated the coefficients of the Chebychev polynomials representing the

thickness and camber distributions of the airfoil. Also, the independent variables

can be the collocation points along the thickness and camber distribution, and the

geometry package then calculates the coefficients of the Chebychev polynomials

through interpolation.

Additionally, the airfoil can be described by the upper and lower surfaces

instead of the thickness and camber distributions. For this case, the independent

variables are designated as the Chebychev coefficients or the collocation points for

both surfaces.

The geometry package must be used to describe the baseline airfoil from which

to begin the optimization process. The geometry package contains algorithms to

describe NACA 4, 5, and 6 series airfoils. Also, the Chebychev coefficients

describing an airfoil can be input to define the baseline airfoil.

The primary advantage of using Chebychev polynomials for representation of

the airfoil is the relatively few number of independent variables required for the

optimization process. With fewer independent variables, fewer objective function

91

evaluations are required by an optimization routine each iteration. The

orthogonality of the Chebychev coefficients helps ensure that the selected

independent variables are truly independent of each other, which is an important

assumption in the formulation of the optimization methods. Also, utilization of the

Chebychev polynomials provide for smooth airfoil profiles.

D. OPTIMIZATION RESTART FILE

If the optimization application is a restart of a previous design problem,

optimization data is read from a restart file. Data which is read includes the values

of the independent variables, the gradient vector, components of the estimated

Hessian matrix, and the last evaluated objective function. The objective function is

then recomputed for the independent variables read, and a warning is printed if it

does not correspond with the value read from the restart file. Information is

updated into this file following the completion of the optimization process.

E. EVALUATION OF THE OBJECTIVE FUNCTION

The objective function is first computed for the baseline airfoil and then

recomputed multiple times for the calculation of the gradient components and in

the directional search for a minimum. The objective function represents the

difference between the actual airfoil performance and its desired aerodynamic

performance. A flow solver is required to evaluate the properties of the flow-field

around the airfoil which is used to determine its aerodynamic performance. In

airfoil design, the vast majority of processing time is used solving the flow-field

around various airfoil shapes for the computation of their objective functions.

92

1. Overview

A flowchart of the evaluation of the objective function is given in Figure 5.2.

The number of independent variables and variations to the independent variables

are sent to a subroutine. The variations are added to the independent variables, and

the geometry package is used to define the surface of the airfoil. Next, a grid is

generated around the airfoil. A flow solver then evaluates the flow-field around the

airfoil, and the objective function is calculated based upon the desired performance

criteria.

2. Variation of the Independent Variables

Objective functions are calculated for the baseline airfoil, for the estimation

of the gradient vectors, and in directional searches. For the calculation of the

objective function of the baseline airfoil selected for the optimization process, the

independent variables are normally not varied. However, the baseline airfoil can be

varied with the variations written into an input file.

The independent variables are varied in the estimation of the gradient vector.

In the parallel gradient calculations, each processor varies a single independent

variable either a forward or backward finite difference step size to estimate

different components of the gradient vector.

In the parallel directional search, the direction of the variation, P, is

calculated using the quasi-Newton or fully Newton optimization method. The

variation of the independent variables for each processor is determined by

multiplying P by a unique scalar value q. Then the variations are added to the set of

independent variables as shown in Equation (4.5).

93

EVALUATION OF AERODYNAMIC

OBJECTIVE FUNCTION

VARY INDEPENDENT VARIABLES

DEFINE SURFACE OF AIRFOIL

GENERATE GRID AROUND AIRFOIL

SOLVE FOR AERODYNAMICS

OF AIRFOIL

CALCULATE OBJECTIVE FUNCTION

RETURN

Figure 5.2 Calculation of Objective Function for Airfoil Design

94

3. Grid Generation

Grids are generated around the airfoil surface using the program GRAPE

1131. GRAPE was modified for use as a subroutine so that each processor can

generate numerous grids throughout the design application. The geometry package

developed by the McDonnell Douglas Corporation 115] is used to define the surface

of the airfoil based upon the independent variables. The coordinates of the surface

of the airfoil are then read into an input file for GRAPE.

4. Calculation of the Objective Function

The calculation of the objective function needs to be based upon the

aerodynamic performance of the airfoil. The optimization program is written to

minimize the objective function. If the desired criteria needs to be maximized, the

objective function must represent a value to be minimized.

A common airfoil design criterion is to match or optimize a desired pressure

distribution around an airfoil. The target pressure distribution is read from an input

file. The objective function, f, is calculated by summing the square of the difference

between the desired and actual pressure distribution around the airfoil, or in

equation form:

"f'= (cp" -
itel

where itel and iteu are points at the lower and upper trailing edges respectively.

Many other possible objective functions can be incorporated into the design

program. In order to maximize lift, the objective function is defined as the

reciprocal of the square of the lift coefficient. Other objective functions can be

95

defined by combinations of performance criteria based upon the airfoil's pressure

distribution, lift, drag, and moment coefficients. Physical constraints upon the

geometry of the airfoil can also be incorporated into the objective function including

* maximum thickness

* location of maximum thickness

* trailing edge angle

* maximum camber

* location of maximum camber

* minimum leading edge radius

* minimum volume

The design criteria and objective function selected depend upon the flow-field

properties computed by the flow solver. The flow solver RK2EULER can be used

for design applications such as the optimization of an inviscid target pressure

distribution at set flight conditions. If viscous effects are to be included in the

design criteria, another flow solver must be u3ed.

The optimization process involves only the objective function and is not

directly dependent upon the flow solver. Therefore, the optimization schemes can

be coupled with different flow solvers for different applications. The selection of

the most suitable flow solver to be used for an airfoil design application depends

largely upon the design criteria for the problem. The versatility of optimization

design methods to use different flow solvers in airfoil design problems is not

available with inverse airfoil design techniques.

96

F. DETERMINATION OF MACHINE PRECISION

The determination of machine precision is important for use in the calculation of

the finite difference step sizes. In addition, the calculated machine precision is used

as a measure of the smallest significant change in the objective function. A routine

written by Forsythe, Malcolm, and Moler [16] is utilized to determine a value e to

represent the precision of the processing machine. This value, F, is an

approximation for the smallest quantity such that

(1+ >) 1

in floating point arithmetic.

G. SUMMARY

The parallel quasi-Newton and parallel fully Newton optimization schemes have

been incorporated into an airfoil design program. Advantages for the use of an

optimization method in airfoil design include the various performance criteria and

flow solvers which can be used in a design application. The utilization of multiple

processors of the hypercube parallel computer for simultaneous CFD solutions of

different airfoil shapes significantly reduces the required processing time. The

presented design procedures was evaluated for test cases with known solutions and

used for actual design cases. These results are presented in the next chapter.

97

VI. RESULTS

A. OVERVIEW

Two test cases and two airfoil design applications were performed utilizing

optimization schemes coupled to a flow solver. The test cases were constructed to

design an airfoil to match the pressure distributions corresponding to airfoils of

known shapes. If successful, the airfoils designed in the test cases should approach

the shapes of the airfoils used to calculate the target pressure distributions. The

results of the first test case were used to compare the solutions found using the

sequential and parallel optimization programs.

Airfoil design applications were completed utilizing a parallel optimization

routine. One design application involved transonic flow and another used an

internal flow Navier-Stokes flow solver to design a symmetric cascade blade to

minimize viscous losses while maintaining adequate volume in the blade for cooling

purposes. These test cases and design applications demonstrate the practicality,

versatility, and possible design utilizations for aerodynamic design via optimization

using parallel processors. Also, these results demonstrate the necessity of the

designer's intervention in an optimization application to ensure a practical solution.

B. TEST CASE 1: SUBSONIC, NON-LIFTING AIRFOIL DESIGN

The first test case varied the thickness of a symmetric airfoil to match the

pressure distribution around a thicker symmetric airfoil in subsonic flight conditions.

Also, the airfoil was set at no angle of attack for further simplification of the

problem. This test case utilized both parallel optimization schemes and the

98

sequential version. First, the parallel and sequential quasi-Newton optimization

schemes are compared, and then the parallel Newton scheme is evaluated.

The goal of this test case was to use the optimization routines to design an airfoil

to match the inviscid pressure distribution around a symmetric airfoil. The design

pressure distribution was calculated using RK2EULER to solve the flow-field

around a NACA 0012 at no angle of attack with a freestream Mach number of 0.6.

1. Baseline Airfoil and Independent Variables

The baseline airfoil used in this application is a NACA 0008 symmetric airfoil.

Thicknesses of the airfoil at eight different positions along the chord of the airfoil

were chosen as the independent variables. Five thicknesses were varied at positions

in the forward third of the airfoil where the largest pressure changes occur. The

geometry package was utilized to fit a ninth-order Chebychev polynomial through

the collocation points to describe the airfoil's thickness distribution. The

coefficients of the polynomial describing the camber line were set to zero for this

test case. The airfoil shapes were perturbed slightly each optimization cycle for the

calculation of the gradient vector and for the directional search to minimize the

objective function.

2. Grid Generation

The geometry package computed the points on the surface of the airfoil. Next,

the GRAPE subroutine generated a grid of 133 x 34 points around the airfoil. The

grid file was then read by the flow solver.

3. Flow Solver

The flow-field properties and aerodynamic performance of various airfoil

shapes were calculated by the two-step Runge-Kutta Euler flow solver RK2EULER.

Experience with airfoil design showed the importance of accurate aerodynamic

99

performance evaluations by the flow solver for use in the calculation of the objective

function. The number of flow-field iterations was set to ensure complete CFD

solutions and to ensure that parallel flow-field evaluations were performed in

approximately the same amount of time. The performance of the NACA 0008

baseline airfoil was calculated using 2000 iterations of RK2EULER with the flow-

field initialized at the freestream Mach number of 0.6. The Mach contours for this

calculation are shown in Figure 6.1. The following airfoil shapes were calculated

using only small thickness variations of no more than 1% of the airfoil's chord, and

the flow-field properties were initialized with values of the previous flow-field

solution. These subsequent flow-field evaluations required a fewer number of flow-

field iterations to reach the steady-state CFD solutions which decreased the amount

of processing time. After a complete baseline solution is obtained, all subsequent

performance evaluations were calculated in 600 flow-field iterations with the flow-

field initialized with the values of the previous solution.

/\/

," . /

/ , •

Figure 6.1: Mach Contours around NACA 0008 Baseline Airfoil

100

4. Performance Criteria

The Mach contours around the target airfoil are shown in Figure 6.2. Also,

the pressure distributions for the baseline and target airfoils are shown in Figure

6.3; only two curves are shown because of the symmetry of the flow around the

upper and lower surfaces over both airfoils. The desired coefficient of pressure at

73 points around an airfoil was read from an input file.

The objective function associated with each airfoil shape was determined by

summing the square of the difference between the desired and calculated

coefficients of pressure,

73 2

f = (C "Iculated, - C P.Lqf 3 I)

where the 73 points were located around the airfoil surface.

5. Stopping Criteria

The parallel quasi-Newton optimization routine, PARQNM, and the

sequential quasi-Newton version, QNMDIF, were first used in the airfoil design

process for comparison. Both routines were instructed to quit based upon the same

criteria. A successful optimization application would be completed when the

objective function was reduced to a value less then 10% of the objective function

calculated for the baseline airfoil. Otherwise, the application would quit after 20

optimization cycles were completed.

101

* /"

.- -. t - .* :

- N1

Figure 6.2 Mach Contours around NACA 0012 Target Airfoil

-1.0 :

............. - . .., •.......... :..-0.5

AIRFOIL
0 5 A A 0 08...........

--. NACA 0012

0.0 0.2 0.4 0.6 0.8 1.0

x/C

Figure 6.3 : Pressure Distributions around Baseline and Target Airfoils

102

6. Computers

The parallel quasi-Newton optimization design was performed using sixteen

processors on the Intel iPSC/860 hypercube computer. Sixteen processors were

necessary because the calculation of each of the eight gradient components required

two processors for the parallel estimation of two objective functions. The sequential

optimization design was performed using a UNIX workstation with a single i860

processor.

7. Comparison of Sequential and Parallel Quasi-Newton Schemes

The baseline airfoil objective function was calculated to be a value of 0.831.

The parallel quasi-Newton optimization routine reduced the objection function

more efficiently each optimization cycle than the sequential routine, and only the

parallel optimization routine decreased the objective function to less than 10% of its

original value. Also, PARQNM reached the stopping criteria in a small fraction of

the processing time required for airfoil design using QNMDIF to reach its maximum

number of iterations.

Table 6.1 compares the performances of the two optimization routines. The

parallel optimization scheme completed the airfoil design test case approximately 18

times faster than the sequential case and in a fewer number of optimization cycles.

The utilization of parallel processors significantly decreased the processing time

necessary for the airfoil design test case and increased the efficiency of the

optimization scheme.

103

Table 6.1 : Comparison of Quasi-Newton Optimization Routines
Baseline Airfoil NACA 0008
Target Airfoil NACA 0012
M - 0.6, AOA - 0 degrees

OPTIMIZATION OPTIMIZATION FINAL CPU TIME

ROUTINE CYCLES OBJECTIVE (HtR:M[N:SEC)

QNMDIF 20 0.124 72:06:53

PARQNM 7 0.064 4:01:20

Figure 6.4 compares the convergence history of the objective function using

the two quasi-Newton optimization schemes. After 4 optimization cycles which

consisted of 5 parallel CFD solutions, the parallel quasi-Newton optimization

scheme reduced the objective function at a steady rate and decreased the objective

function to 26% of its initial value. The following 3 optimization cycles reduced the

objective function at a slower rate to a final value of 7.7% of its initial value. This

run required each of the 16 processors to calculate 8 objective functions in parallel

and was completed in roughly 4 hours.

In comparison, the sequential optimization scheme showed a much lower

convergence rate and did not reach the successful stopping criterion after

completing 20 optimization cycles. After 4 optimization cycles including 73 flow-

field evaluations by a single i860 processor, the objective function was only reduced

to 84% of its initial value. The final objective function was reduced to 15% of its

initial value after completing 407 flow-field evaluations.

The parallel airfoil design was more efficient than the sequential airfoil design

because of the utilization of multiple processors for the parallel gradient calculation

and the parallel directional searches. The parallel optimization scheme used

central-difference estimations of the derivatives for the calculation of each

104

component of the gradient vector. The sequential optimization scheme would first

attempt to use forward-difference estimations of the derivatives because less

objective function evaluations would be required. If the directional search used by

QNMDIF did not reduce the objective function based upon the forward-difference

estimation of the gradient, QNMDIF would then have to recompute central-

difference estimations and conduct another directional search. This resulted in

great inefficiencies for the sequential airfoil design test case, especially during the

early stages of the design process when central-difference estimations were

necessary to decrease the objective function.

0.9

0.3

-*-QNMDIF

0.4

OA

0.3

0.2 '' ' -

0.1 -

0

0 2 4 6 8 10 12 14 16 1i 20

Figure 6.4 Convergence of Sequential and Parallel Optimization Schemes

105

Also, the parallel line searches were more efficient in reducing the objective

function than the sequential line searches. The minimum variation for directional

searches were determined by the value of the estimated machine precision, and the

maximum variation of the thickness was set to 1% chord to ensure only small

perturbations of the airfoil shape. These values were used by both optimization

schemes. Each sequential line search evaluated a maximum of eight objective

functions in the direction of search and estimated a minimum using parabolic

interpolation. The parallel line searches were more thorough than the sequential

searches because they evaluated 16 objective functions in the direction of search

including the maximum and minimum variations. Also, a local search was required

to decrease the objective function with the sequential scheme after an unsuccessful

directional search. Local searches were not required for the parallel optimization

scheme which decreased the objective function after each directional search.

The baseline airfoil geometry and the geometries of the design airfoil after

three and seven optimization cycles are shown in Figure 6.5. The baseline airfoil is

the thinnest airfoil shown, and the thicknesses along the design airfoil increased

each optimization cycle. Their corresponding pressure distributions are shown in

Figure 6.6. As the optimization scheme varied the shape of the airfoil, its pressure

distribution approached the target pressure distribution.

The final shapes and resulting pressure distributions of the design and target

NACA 0012 airfoils are shown in Figure 6.7 and Figure 6.8 respectively. The design

airfoil's shape and pressure distribution are nearly identical to those of the target

airfoil from the leading edge to the point of maximum thickness where the majority

of the thicknesses were varied. The remaining shape of the design airfoil remains

thinner than that of the target airfoil.

106

Figure 6.5 Airfoil Shapes Using the Parallel Optimization Scheme for Test Case I

-0.5 * ':A; :...

U 0.0 -

AIRFOIL

- BASELINE
0.5 ...- 3 ITER.

A.... 7 ITER.

1.0 1 T T

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 6.6 : Pressure Distributions Using Parallel Optimization for Test Case I

107

Figure 6.7: Parallel Optimization Design and Target Airfoil Shapes for Test Case I

-1.0

-0.5 -.

U 0.0-

* AIRFOIL0 5 7 M R
* -.- NACA0012

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 6.8: Pressure Distributions for Parallel Design and Target Airfoil Shapes

108

8. Importance of Designer Intervention

Every airfoil design scheme requires a significant amount of intervention and

supervision by the designer. The designer must select the design criteria, the

mathematical formulation of the objective function, and the input variables for the

flow solver and the optimization routine. The importance of user intervention in a

design scheme is demonstrated by the designer's selection of the maximum variation

of airfoil thickness for the directional searches in this test case. If a maximum

variation was chosen to be a very small value, the convergence of a design solution is

delayed because the optimum set of independent variables were not found in the

directional search.

An example of this is shown in Table 6.2 where the maximum variation is

shown using 0.5% chord and 1.0% chord. Selection of the smaller maximum

variation of airfoil thickness increased the number of optimization cycles required.

However, if too large of a maximum thickness variation was selected, impractical

airfoil geometries would be calculated and result in unstable flow-field solutions.

For this test case, 1% chord maximum variations proved the best whole percentage

selection, and flow-field instabilities resulted with selections greater than 4%.

Table 6.2 : Selections of Maximum Thickness Variations
Baseline Airfoil NACA 0008
Target Airfoil NACA 0012
M = 0.6, AOA = 0 degrees

THICKNESS OPTIMIZATION FINAL CPU TIME

VARIATION CYCLES OBJECTIVE (HR:MIN:SEC)

0.5% CHORD 10 0.091 5:46:03

1.0% CHORD 7 0.064 4:01:20

109

9. Results from the Fully Newton Parallel Optimization Scheme

The fully Newton method optimization scheme was also applied to this test

case. Because 8 independent variables were used to describe the shape of the

airfoil, all 128 processors of the hypercube were used for the parallel calculations of

estimations of the gradient vector and the Hessian matrix. Also, 128 evaluations of

objective functions were calculated in parallel for each directional search.

The convergence history for the first seven cycles of the airfoil design using

the parallel Newton and the parallel quasi-Newton optimization schemes are shown

in Figure 6.9. The convergence rate of the parallel Newton optimization routine is

much slower than for the parallel quasi-Newton optimization routine. Twice, the

line searches of the parallel Newton optimization scheme failed to reduce the

objective function, and local searches were required. The parallel quasi-Newton

estimation of the Hessian matrix resulted in more effective line searches than the

second-order accurate fimite-difference computation of the full Hessian matrix.

10. Summary of Test Case 1

The parallel quasi-Newton optimization scheme proved superior to the

sequential quasi-Newton and the parallel fully Newton schemes. The sequential

version contained numerous inefficiencies due to its reliance upon forward-

difference gradient estimations and parabolic interpolation used in directional

searches. Also, the parallel scheme's utilization of multiple processors for parallel

estimation of the gradient vector and for directional searches greatly decreases the

time required to reach a solution. The parallel Newton method shows a much lower

convergence rate than the parallel quasi-Newton scheme and is limited to only 8

independent variables for the 128 processor machine used. For the remaining test

cases, only the parallel quasi-Newton optimization scheme is evaluated.

110

0.9

0.6 ARN

0.7

0.6

0.5

0.4

0.2 _

0.1 -1

0

0 1 2 3 4 5 6 7

Figure 6.9: Convergence Histories for Parallel Newton and Quasi-Newton Methods

C. TEST CASE 2: DESIGN OF A LIFTING SUBSONIC AIRFOIL

A similar test case to the first was conducted for an airfoil generating lift in a

subsonic flow-field. The second test case utilized only the parallel quasi-Newton

optimization routine to design an airfoil to match the pressure distribution of a

cambered airfoil at a small angle of attack. The efficiency of the parallel

optimization design scheme is evaluated.

1. Baseline Airfoil

The baseline airfoil used in this test case is a NACA 1410. This airfoil has a

maximum camber of 1% and a maximum thickness of 10%. The airfoil geometries

involved in the second test case were more complex than those in the first because

the camber and thickness of the airfoils were varied each optimization cycle.

ill

2. Independent Variables

The independent variables used for the second test case were selected to be

eight collocation points describing the surface of the airfoil. Four independent

variables were collocation points on the lower surface of the airfoil, and four

independent variables were collocation points on the upper surface of the airfoil.

The McDonnell Douglas geometry package was used to compute two fifth-order

Chebychev polynomials describing the surfaces. The collocation points were varied

slightly each optimization cycle to recompute airfoil shapes needed for the gradient

calculation and the directional search.

3. Grid Generation

The GRAPE subroutine was used to compute a 133 x 34 grid around each

airfoil shape described by the independent variables.

4. Flow Solver

The inviscid pressure distributions around the airfoil shapes evaluated in the

second test case were calculated using the explicit Euler solver RK2EULER.

RK2EULER updated the flow-field properties around various airfoil shapes at an

angle of attack of two degrees and a freestream Mach number of 0.6 to solve for

their steady-state pressure distributions. The pressure at the surface points of the

airfoil shapes were again used for the calculation of the objective function in the

optimization process.

Since the flows around the airfoil shapes were not symmetric like those in the

first test case, more iterations were assigned for the flow-field evaluations. Based

upon the results of Chapter I11, 1600 flow-field iterations were performed for each

objective function evaluation. Also, the flow-field properties were initialized to

112

freestream conditions prior to every evaluation due to the more complicated flows

than the first test case.

5. Performance Criterion

The performance criterion for the second test case was similar to that for the

first. The goal of this test case was to design an airfoil to match or optimize the

inviscid pressure distribution around a NACA 2412 airfoil at 2 degrees angle of

attack and a Mach number of 0.6. The coefficients of pressure for 73 points around

the NACA 2412 at the design flight conditions were read from an input file.

The Mach contours around the baseline airfoil are shown in Figure 6.10, and

the Mach contours around a NACA 2412 in identical flight conditions are shown in

Figure 6.11. Also, the corresponding pressure distributions around both airfoils are

shown in Figure 6.12.

6. Stopping Criterion

The stopping criterion was simply set as six optimization cycles based upon

estimated processing time.

7. Results

The results of the second test case are similar to those of the first. The test

case was completed using 16 processors and 8 hours of prorcessing time on the

hypercube. More processing time was required than with the first test case due to

the more flow-field iterations required for each flow-field evaluation.

The convergence history of this case is shown in Figure 6.13. The airfoil

design application reduced the objective function to less than 10% of its original

value in only five iterations.

113

Figure 6.10: Mach Contours Around Baseline Airfoil for Test Case 2

,/

J \

Figure 6.11: Mach Contours Around Target Airfoil for Test Case 2

114

-1.0"

-0.5 -

AIRFOIL
0.5 N A CA 2412

....... BASELINE

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 6.12: Pressure Distribution Around Baseline and Target Airfoils

0.7

0.6

0.8

0.4

0.3

0.2 -

0.1 h

0

0 1 2 3 4 1 6

Figure 6.13: Convergence History for Test Case 2

115

Mach contours around the optimization design airfoil solution are shown in

Figure 6.14. The design and target airfoil shapes and their pressure distributions are

compared in Figure 6.15 and Figure 6.16 respectively. The airfoil shapes and their

resulting pressure distributions are similar. This test case demonstrates the parallel

quasi-Newton optimization scheme's capability of designing more complicated

airfoil geometries.

8. User Intervention

In order to obtain a solution for this test case, the flow-field must be

initialized based upon freestream conditions and a density of one prior to each flow-

field evaluation. When the flow-field was not re-initialized to freestream conditions

such as in the first test case, the solution would not converge to match the target

pressure distribution and airfoil shape.

D. TRANSONIC AIRFOIL DESIGN

A parallel design application was performed to maximize the lift-to-drag ratio of

an airfoil in transonic flight conditions. In transonic flow, a small change in the

shape of an airfoil results in a large change in its pressure distribution due to

changes in shock locations. Unlike the previous test cases, a specific airfoil shape

was not used as a target for the solution.

1. Baseline Airfoil and Independent Variables

The baseline airfoil used in this test case was a NACA 0012. Eight

independent variables were chosen as the thicknesses at eight points along the chord

of the airfoil. The McDonnell Douglas geometry package was used to compute a

ninth-order Chebychev polynomial describing the thickness distribution of the

airfoil. The camber along the airfoil was set to zero and not varied.

116

/ \ /

,/

S\ /

Figure 6.14: Mach Contours Around Design Airfoil, Test Case 2

Target

........ Design

Figure 6.15: Comparison of Design and Target Airfoils, Test Case 2

117

-1.0
S0.00

0 .5 A I R F O I L
6-- 6ITER

--- NACA 2412

1.0x0.0 0.2 0.4 0.6 0.8 1.0

x/C

Figure 6.16: Pressure Distributions for Design and Target Airfoils, Test Case 2

3. Grid Generation

The GRAPE subroutine was again used to compute a 133 x 34 grid around

each airfoil shape described by the independent variables.

4. Flow Solver

The flow-field around each evaluated airfoil shape was calculated using the

explicit Euler solver RK2EULER. RK2EULER updated the flow-field properties

around various airfoil shapes at an angle of attack of one-half degree and a

freestream Mach number of 0.8 to solve for their steady-state pressure distributions.

The evaluated lift and drag coefficients for each geometry were used in the

calculation of the objective function.

fi1

Similar to the second test case, flow-field properties were initialized to

freestream conditions prior to each evaluation, and 1800 flow-field iterations were

performed due to the presence of shocks in the flows.

5. Performance Criteria

The goal of this application was to design a symmetric airfoil to maximize its

inviscid lift-to-drag ratio. The objective function to be minimized was selected as

the square of the inviscid drag-to-lift ratio:

(C,

The Mach contours around the baseline airfoil are shown in Figure 6.17.

6. Stopping Criterion

Three optimization cycles were set for this design application.

7. Results

Mach contours around the design airfoil are shown in Figures 6.18. The

geometries and the pressure distributions of the baseline and design airfoils are

shown in Figure 6.19 and Figure 6.20. The thickness of the design airfoil is more

evenly distributed than with the NACA 0012. Subsequently the shock on the design

airfoil is weaker and farther aft.

The convergence history of this design application is shown in Figure 6.21.

Unlike the first two test cases where the objective function would equal zero if the

geometry of the design and target airfoils matched exactly, the minimum theoretical

objective function was not known. The parallel optimization routine reduced the

objective function to 30% of its original value after three iterations. Also, the

119

\ . /"

,\ //

- I
- \ / il //

t /

Figure 6.17 : Mach Contours Around Baseline Airfoil, Test Case 3

/ "

\, // /N~

// N

Figure 6.18: :Mach Contours Around Design Airfoil, Test Case 4

120

Baseline
------.. Design

Figure 6.19: Comparison of Baseline and Design Airfoils, Test Case 3

...................' ': "

-0.5-

0 .0 " ..A...

SNACA 00 12
0. e .3I E

.0.5-"

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 6.20: Comparison of Baseline and Design Pressure Distributions

121

0.14

0.12

0.03

0.06

0.04

0.02

0

0 1 2 3

Figure 6.21: Convergence History for Test Case 3

convergence rate of the routine decreased significantly with the final two iterations

as the objective function approached a minimum. The test case was completed

using 16 processors and 7 hours of processing time on the hypercube.

E. CASCADE BLADE DESIGN

The objective of the final test case was to design a two-dimensional symmetric

cascade blade shape to minimize viscous losses while maintaining adequate volume

to allow for such concepts as cooling of the blade. Most turbomachinery blade

design relies upon subsonic analyses or transonic potential analysis which may not

provide the best analyses of the internal flow-field. This test demonstrates the

practicality of utilizing an efficient Navier-Stokes flow solver with the parallel quasi-

Newton optimization scheme for aerodynamic design.

122

This test case has several variations from previous ones. Unlike the previous

external aerodynamic design test cases, flows in turbomachinery are highly

rotational and can be dominated by shock waves and viscous effects. Since the

design criteria is based upon viscous losses, a Navier-Stokes flow solver is used.

Also, this application involved internal rather than external flow, and different

boundary conditions must be applied. These variations demonstrate the versatility

of using an optimization routine for the design of airfoils or cascade blades for

numerous performance criteria.

1. Baseline Airfoil and Independent Variables

The baseline cascade blade used for this application was a symmetric NACA

0012 airfoil. Eight independent variables were chosen to represent the thickness at

eight points along the chord of the cascade blade. The McDonnell Douglas

geometry package was used to calculate the coefficients of a ninth-order Chebychev

polynomial which described the thickness distribution of each cascade blade shape

evaluated in the design process.

2. Grid Generation

A modification to the GRAPE grid generation program was used to generate

a 250 x 60 C type grid around the airfoils evaluated in the design process. This

version of GRAPE was modified to allow a more general clustering of points

around the leading and trailing edges of turbomachinery blades and to improve the

generation of periodic boundaries in blade rows. Grids used for Navier-Stokes flow

solvers require more grid points than those used with inviscid flow solvers, especially

near the surface of the airfoil for calculation of flow-field properties within the

boundary layer where viscous effects are significant. The number of grid points was

123

chosen based upon previous experience with the Navier-Stokes flow solver. Figure

6.22 shows the grid around the baseline compressor blade row.

3. Flow Solver

The selected performance criteria required a Navier-Stokes flow solver to

evaluate the viscous losses of the internal cascade flow. A multi-stage Runge-Kutta

scheme flow solver with a Baldwin-Lomax turbulence model was chosen.

Chima [121 developed an explicit algorithm for quasi three-dimensional flows

in turbomachinery. This efficient Navier-Stokes code was developed for

turbomachinery design and analysis. The flow solver is easily vectorizable because

of its explicit scheme and uses both variable time steps and implicit residual

smoothing. The flow solver allows for many user inputs for the application including

the number of Runge-Kutta stages to be used and whether the flow is inviscid or

viscous.

a. Governing Equations

The two-dimensional thin-layer unsteady Navier-Stokes equation in

conservative form for an arbitrary coordinate system can be written as follows:

dq+ 0, E + , - Re-'S =0 (6.1),

where

124

Figure 6.22: 250 x 60 Grid Around Baseline Airfoil, Test Case 4

ppU p V

The viscous flux vector is written as

125

0

q6" + C2 ,.'

J-1 C2t9,ii + C30,11'^,., e cI (U, + V2 "

+ (c,,, + C2 I'),,), + (C2 1 + +c ,,,4,

where

4 1 c ~4 . C Y'• +',)
C, = -411,2 + Ily 2, C2 =-11,17y, C3 = 1 -.' + 4 .and C4 2p

32 3 ' Pr

The contravariant velocities are defmed using the metrics to be

U = 4:, +

V 711iu + yv.

These equations are nondimensionalized using reference quantities and assume the

specific heat and Prandtl number, Pr, are constant. The effective viscosity may be

written as

p = /i. + Ptuftlent (6.2).

The thin viscous layer assumption has been invoked to eliminate the

streamwise viscous derivatives, which reduces the processing time and allows for the

126

computation of separated flows. The algebraic two layer eddy-viscosity model

developed by Baldwin and Lomax [17J is used for the evaluation of turbulent flows.

The turbulence model is applied to an expanding C shaped region that expands

downstream from the leading edge and covers the entire wake region.

b. Boundary Conditions

For boundary conditions, the total pressure, total temperature and flow

angle are specified. The velocity at the inlet is extrapolated from the interior. Also,

the inlet density and pressure are calculated from isentropic relationships. For

viscous flows, the velocity components are set equal to zero on the surface. Surface

pressure and a specified wall temperature are used to calculate surface densities.

The overall total to static pressure ratio is also specified which fixes the back

pressure.

c. Multistage Algorithms

A five-stage Runge-Kutta scheme is applied to this problem with the level

of time integration being user selectable. Residuals and dissipative terms are

calculated at each point in delta form and added to the previous values of the flow-

field properties every iteration.

Artificial dissipation is added to prevent odd-even point decoupling and to

allow shock capturing. Second-order dissipation is added to prevent pre-shock

oscillations and is based upon density rather than pressure for computational

efficiency.

d. Variable Time Step

A spatially variable time step is used to accelerate the convergence of the

fine grid algorithm to steady-state. The time step at each point in the grid is

calcldated using a constant Courant number.

127

e. Flow-field Evaluations

Because of the complexity of the flow, the flow-field around each cascade

blade geometry was initialized based upon freestream conditions prior to each

performance evaluation. The larger grid size, more Runge-Kutta steps and viscous

calculations require significantly more processing time per flow-field iteration than

was needed using RK2EULER in the previous test cases. Therefore, 400 flow-field

iterations were performed for each geometry evaluated. Mach contours around the

baseline airfoil are shown in Figure 6.23.

4. Performance Criteria

The purpose of this design application was to design a cascade blade which

minimizes viscous losses while maintaining adequate volume for the blade. An

objective function was formulated which accounted for a trade-off of these two

factors.

The explicit Navier-Stokes flow solver was used to evaluate a loss coefficient

for the viscous losses through the cascade. The loss coefficient, Closs, was based

upon the loss of total pressure from the cascade inlet to the cascade exit due to

viscous effects.

For a decrease in viscous losses, the symmetric cascade blade would decrease

in thickness and volume. The change in airfoil volume from its original volume was

incorporated in the calculation of the objective function, f, with

f = Co VOl NACA W 12

VOIDESIGN BLADDE

where Vol is the volume of the cascade blade.

128

, : I

Figure 6.23 Mach Contours Around Baseline Cascade Blade

5. Stopping Criteria

The stopping criteria was set for 2 optimization cycles because of the

increased processing time required for the viscous flow evaluations. Each

optimization cycle requires approximately 4 hours processing time on 16 processors.

6. Results

The parallel optimization routine successfully reduced the objective function.

Two optimization cycles were completed using 16 processors of the iPSC/i860

parallel computer. Mach contours around the design airfoil are shown in Figure

6.24. The baseline and design geometries are compared in Figure 6.25. Also, the

values of airfoil volume, coefficient of viscous losses and objective function each

optimization cycle are shown in Figure 6.26.

129

Figure 6.24: Mach Contours Around Design Cascade Blade

Baseline
---------------Design

Figure 6.25: Comparison of Baseline and Design Cascade Blades

130

0.08

0.07 0.09--Vol
-- Arclos$

0.04

0.03
0 1

Figure 6.26: Convergence History for Cascade Blade Design

The optimization scheme decreased the thickness of the airfoil near its nose

and increased its thickness aft of 60% chord. The flow over the design airfoil

accelerated more gradually which resulted in a smaller wake. The overall volume of

the airfoil increased 5%, and the viscous loss coefficient decreased 19% in the

design process.

7. Observations

The viscous design test case was simplified to demonstrate the capability for

aerodynamic optimization involving both internal and external viscous flows.

Numerous variations to this design problem are possible including changes to the

type and number of independent variables, geometric constraints and nature of the

objective function. The utilization of explicit schemes and parallel processors allows

131

solutions to optimization problems involving viscous flows to be reached in

reasonable time periods.

132

VII. SUMMARY AND CONCLUSIONS

This research is the first to demonstrate the successful utilization of a parallel

supercomputer and a Navier-Stokes flow solver in aerodynamic design. Many topics

were investigated including the advantages of explicit flow solvers and of a fully

Newton optimization scheme utilizing parallel processors for airfoil design.

Airfoil design via optimization techniques requires intensive CFD solutions over

different airfoil geometries. The aerodynamic performance of these various shapes

are evaluated to search for a shape which optimizes the desired performance

criteria. The utilization of explicit flow solvers and multiple processors for the

evaluation of the aerodynamic performance of various shapes can greatly decrease

the processing time required for an airfoil design application.

A. SUMMARY

A two-step Runge-Kutta scheme inviscid flow solver was developed and

compared to a similar Crank-Nicholson scheme flow solver. For subsonic and

transonic test cases, the two-step Runge-Kutta scheme flow solver solved for the

steady-state pressure distribution around an airfoil roughly five times faster than the

Crank-Nicholson scheme.

A superior quasi-Newton optimization scheme utilizing parallel processors and a

fully Newton optimization scheme were developed and utilized for airfoil design.

The parallel quasi-Newton optimization scheme was used to design an airfoil to

match the inviscid pressure distribution of a symmetric airfoil shape over an order of

magnitude faster and more efficiently than a quasi-Newton optimization scheme

133

using an identical processor. The fully Newton parallel optimization scheme was

not as successful as the parallel quasi-Newton scheme.

The parallel quasi-Newton optimization routine was further utilized in another

test case and two design applications. The camber and thickness of an airfoil were

varied to match the inviscid pressure distribution of a known lifting airfoil. Also, a

symmetric airfoil in inviscid transonic flow was designed to maximize its lift-to-drag

ratio. Furthermore, a Navier-Stokes flow solver was coupled with the parallel quasi-

Newton optimization scheme to design a cascade blade to minimize viscous losses

and retain sufficient volume for cooling purposes.

B. CONCLUSIONS

1. Advantages of Explicit Flow Solvers

Explicit scheme flow solvers are capable of solving for the steady-state flow-

field around an airfoil many times faster than implicit or Crank-Nicholson scheme

flow solvers. Implicit and Crank-Nicholson scheme flow solvers require inversions

of large matrices to update the properties at each point in the flow-field

simultaneously. Explicit scheme flow solvers such as the two-step Runge-Kutta

scheme flow solver developed for this research are more easily vectorizable than the

implicit or Crank-Nicholson schemes and require no matrix inversions.

The vast majority of processing time required for airfoil design via

optimization is used calculating the aerodynamic performance of different airfoil

shapes. Therefore, utilization of an explicit flow solver with an optimization scheme

can greatly decrease the required processing time for an airfoil design application.

134

2. Parallel Optimization Schemes

Parallel processing machines such as the Intel hypercube parallel

supercomputer can be used to greatly increase the speed and the efficiency of airfoil

design via optimization. For airfoil design via optimization, expensive objective

functions based upon CFD solutions are calculated to describe the performance of

the airfoil. Parallel processors are used during different stages of the optimization

cycle to evaluate the performance of multiple airfoil shapes simultaneously. These

parallel performance calculations greatly decrease the time required for airfoil

design.

a. Parallel Quasi-Newton Method

The parallel quasi-Newton optimization routine developed in this research

is superior to a similar sequential version. The utilization of parallel processors for

second-order accurate gradient vector estimations and in directional searches to

minimize the objective function increases the efficiency of the quasi-Newton

routine. For the particular case of airfoil design via optimization which requires

multiple calculations of expensive objective functions, the utilization of the parallel

quasi-Newton routine can result in design solutions in hours instead of days using

the sequential version.

b. Parallel Fully Newton Method

The fully Newton method optimization scheme developed in this research

is not as effective and requires numerous more processors than the parallel quasi-

Newton scheme. Variations to the scheme may prove its worthiness in future

optimization applications.

135

3. Optimization Utilizing a Navier-Stokes Flow Solver

A major advantage of airfoil design via optimization over inverse airfoil

design techniques is the independence of the optimization routine from the flow

solver. This allows various flow solvers to be used with the same optimization

routine, and the flow solver can be selected based upon the desired performance

criteria which may vary each problem.

In the past, Navier-Stokes flow solvers have not been used in aerodynamic

design due to the large amount of required processing time. This restriction in the

choice of flow solvers has also restricted the designer's selection of desired

performance criteria. This research has proven that successful design applications

involving viscous phenomena can be accomplished in a reasonable amount of

processing time utilizing an efficient explicit Navier-Stokes flow solver and the

parallel quasi-Newton optimization scheme.

4. Importance of Designer Intervention

The single most important factor in any aerodynamic design application is the

supervision and intervention of the designer in a design process. The designer must

decide the desired performance criteria to optimize and mathematically formulate

this criteria into an objective function. The designer must also select the

appropriate flow solver and independent variables for the optimization routine

based upon the performance criteria. Furthermore, the designer must carefully

examine the results and make necessary changes to the problem in order to ensure a

meaningful solution.

136

C. FUTURE WORK

The subject of aerodynamic design involves multiple disciplines including

aerodynamics, CFD, computer science, and optimization techniques. A single

person could spend his entire life conducting research any one of these fields. Some

suggestions for future work in these areas as they relate to aerodynamic design are

presented.

1. Flow Solvers

The two-step Runge-Kutta Euler flow solver developed for airfoil design

solved the steady-state pressure distribution many times faster than a similar Crank-

Nicholson scheme but also showed a decreased convergence rate after higher

numbers of iterations were completed. This is primarily due to the low CFL

stability limitations for the two-step Runge-Kutta scheme. The overall convergence

history of the inviscid flow solver may be improved using a four-step Runge-Kutta

scheme and residual smoothing to increase the allowable CFL. The addition of

more stages to the Runge-Kutta scheme may also increase the processing time

required to reach a solution depending upon the stopping criteria selected. The

number of stages used for a Runge-Kutta flow solver must be considered for each

application.

2. Parallel Programming

The utilization of parallel processors greatly decreases the required

processing time in an airfoil design problem by solving multiple objective functions

corresponding to different airfoil shapes in parallel. These calculated objective

functions are passed between processors for the estimation of the gradient vector

and for line searches to locate a minimum. Simultaneous internode message

passing, global messages and global operations are used to minimize the

137

communication time, but new techniques further reducing the communication time

could be employed.

3. Optimization Techniques

Optimization techniques are continually being updated and evaluated. Any

optimization routine involving the evaluation of expensive multivariable objective

functions can probably use parallel processors advantageously to reduce the

required processing time.

The parallel quasi-Newton optimization routine successfully utilizes parallel

processors for the gradient calculations and for directional searches. When the

directional search fails to locate a minimum, a local search including two parallel

line searches is performed to find a set of independent variables which corresponds

to a lower objective function. Different methods of local searches should be

investigated to determine one which best employs the parallel processors.

Variations of the fully Newton method parallel optimization program are

worthy of future evaluations. One reason that the parallel Newton optimization

routine did not perform as well as the quasi-Newton one may be the simplification

used to ensure that the estimated Hessian was positive definite. A parallel Newton

optimization routine may prove more efficient and faster than the parallel quasi-

Newton routine. Also, a fully Newton optimization routine may not require a line

search after the gradient vector and Hessian matrix estimations are performed.

4. Design Applications

Many areas of aerodynamics could benefit using parallel optimization design

applications, especially areas with little empirical data. Hypersonic wing design and

helicopter rotor design may be ideal applications if the desired performance is

formulated correctly in the objective function. Also, design of compressor and

138

turbine blades utilizing Navier-Stokes flow solvers may prove to be successful

endeavors.

The primary purpose of this research was to demonstrate the advantages of

using a parallel computer with multiple vector processors for airfoil optimization. It

seemed logical to apply the relatively new technology of parallel supercomputing to

an intuitively parallel problem. Future advances in computer technology should be

evaluated and applied to airfoil optimization and other areas of science.

139

REFERENCES

1. Lighthill, M. J., A New Method of Two Dimensional Aerodynamic Design, ARC,

Rand M 2112, 1945.

2. Jameson, A., Aerodynamic Design Via Control Theory, Journal of Scientific

Computing, Vol. 3, 1988, pp233-260.

3. Giles, M. B. and Drela, M., Two-Dimensional Transonic Aerodynamic Design

Method, AIAA Journal Vol. 25, No. 9, 1987.

4. Campbell, R. L. and Smith, L. A., A Hybrid Algorithm for Transonic Airfoil and

Wing Design, AIAA-87-2552-CP, 1987.

5. Bock, K. W., Aerodynamic Design By Optimization, AGARD Conference

Proceedings No. 463, 1989.

6. Vanderplaats, G.N., CONMIN -FORTRAN Program for Constrained Function

Minimization, NASA TMX-62.282, 1973.

7. Sanger, N. L., The Use of Optimization Techniques to Design Controlled Diffusion

Compressor Blading, NASA Technical Memorandum 82763, 1982.

140

8. Kennelly, R. A., Improved Method for Transonic Airfoil Design-by-Optimization,

AIAA-83-1864, 1983.

9. Miel, G., Supercomputers and CFD, Aerospace America, January 1992.

10. Merkle, C. L., Computational Fluid Dynamics of Inuiscid and High Reynolds

Number Flows, Department of Mechanical Enginerring, Pennsylvania State

University at University Park.

11. Ekaterinaris, J. A., Clarkson, J. D., and Platzer, M. F., Computational

Investigation of Airfoil Stall Flutter, 6 th International Symposium on Unsteady

Aerodynamics and Aeroelasticity of Turbomachines and Propellers, 1991.

12. Chima, R. V., Inviscid and Viscous Flows in Cascades with an Explicit Multi-Grid

Algorithm, AIAA Journal, Vol. 23, No. 10, 1986.

13. Sorenson, R. L., A Computer Program to Generate Two-Dimensional Grids About

Airfoils and Other Shapes by the Use of Poission 's Equation, NASA TM-81198,

1980.

14. Gill, P. E., and Murray, W., Quasi-Newton Methods for Unconstrcined

Optimization, J. Inst. Maths. Applics. 9, 1972.

141

15. Verhoff, A., Stookesberry, D. and Cain, A., An Efficient Approach to Optimal

Aerodynamic Design, Part 1: Analytic Geometry and Aerodynamic Sensitivities,

AIAA 93-0099, January 1993.

16. Forsythe, G. E., and others, Computer Methods for Mathematical Computations,

Englewood Cliffs: Prentice Hall, 1977.

17. Baldwin, B. S. and Lomax, H., Thin -Layered Approximation and Algebraic

Model for Separated Turbulent Flows, AJAA paper 78-257, Jan. 1978.

142

INITIAL DISTRIBUTION LIST

1. Library, Code 52 2

Naval Postgraduate School
Monterey, CA 93943-5000

2. Mr. Tom Lawrence
Naval Air Systems Command Headquarters
AIR-53011
Washington, DC 20381

3. Associate Professor Garth V. Hobson 2
Department of Aeronautics and Astronautics
Code AA/Hg
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Daniel J. Collins
Department of Aeronautics and Astronautics
Code AA/Co
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Oscar Biblarz
Department of Aeronautics and Astronautics
Code AA/Bi
Naval Postgraduate School
Monterey, CA 93943-5000

6. Professor Harold A. Titus
Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

143

7. Professor Beny Neta 1
Department of Mathematics

Code MA/Nd
Naval Postgraduate School
Monterey, CA 93943-5000

8. Dr. Augustus Verhoff 1
McDonnell Aircraft Company

Mail ,;ode 034-1260
St Louis, MO 63166

9. LT Stephen C. Brawley 3
1655 Harbor Drive
Vista, CA 92083

10. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

144

