

Calhoun: The NPS Institutional Archive DSpace Repository

A comparison of ship maneuvering characteristics for rudders and podded propulsors

Betancourt, Michelle K.
Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/1023

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A COMPARISON OF SHIP MANEUVERING CHARACTERISTICS FOR RUDDERS AND PODDED PROPULSORS
 by
 Michelle K. Betancourt

June 2003
Thesis Advisor:
Fotis Papoulias

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE June 2003	3. REPORT TYPE AND DATES COVERED
Master's Thesis		

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

A COMPARISON OF SHIP MANEUVERING CHARACTERISTICS FOR RUDDERS AND PODDED PROPULSORS

Michelle K. Betancourt
Ensign, United States Navy
B.S., University of Arizona, 2002

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

 June 2003Author: Michelle K. Betancourt
Approved by: Fotis Papoulias
Thesis Advisor
Young S. Kwon
Chairman, Department of Mechanical Engineering

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

A comparison of a high speed container ship using a rudder versus a podded propulsor is made to study replacing a rudder with a pod. A mathematical model is altered to simulate a ship operating with a rudder and with a pod to maneuver. The model incorporates the nonlinear maneuvering equations and couples the surge and sway forces, yaw and roll moment, and the roll angle induced during a steady turn with varying rudder and pod angles. The model uses the hydrodynamic derivatives and coefficients for a high speed container ship. The equations are numerically integrated in order to predict the roll angle, sway and surge velocities, and the ship's position in the xy-plane. Both transient and steady state results are utilized to quantify the relative efficiency of each system. The results are used as a preliminary study into replacing a rudder on a ship with a podded propulsor. The results indicate that the ship responds faster and has a shorter turning radius with the pod at lower initial speeds and pod angles, while the rudder responds better at high speeds regardless of angle. Further research is necessary to study the effects of changing the pod's position and increasing the number of pods used.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I. INTRODUCTION. 1
A. GENERAL1
B. SCOPE OF THIS THESIS 2
II. MATHEMATICAL MODEL 5
A. EQUATIONS OF MOTION 5
B. SIMPLIFYING ASSUMPTIONS 6
C. FORCE AND MOMENT REPRESENTATION 8
D. RUDDER FORCE AND MOMENT REPRESENTATION 9
E. FORCES AND MOMENTS FOR CONTAINER SHIP WITH RUDDER 11
F. POD FORCE AND MOMENT REPRESENTATION 12
G. FORCES AND MOMENTS FOR CONTAINER SHIP WITH POD. 12
H. DIMENSIONAL STATE DERIVATIVES 15
III. TRANSIENT ANALYSIS 17
A. INPUT PARAMETERS 17
B. TOTAL SPEED U VERSUS TIME 17
C. ROLL ANGLE ϕ VERSUS TIME 22
D. SWAY VELOCITY V VERSUS TIME 28
E. POSITION IN XY PLANE VERSUS TIME 31
IV. STEADY STATE ANALYSIS 39
A. PARAMETERS OF INTEREST 39
B. ANALYSIS OF PARAMETERS 39
V. CONCLUSIONS AND RECOMMENDATIONS 47
A. CONCLUSIONS 47
B. RECOMMENDATIONS 48
APPENDIX A. MATLAB CODE FOR SHIP WITH RUDDER 49
A. V07_CONT 49
B. V07_DATA 49
C. V07_RUDDER. 51
D. V07_SIM 56
E. V07RUDDER_PLOT 57
APPENDIX B. MATLAB CODE FOR SHIP WITH POD 59
A. V07_CONT 59
B. V07_DATA 59
C. V07_POD 61
D. V07_SIM 66
E. V07POD_PLOT 66
LIST OF REFERENCES 69

INITIAL DISTRIBUTION LIST

LIST OF FIGURES

Figure 1. Coordinate System [Ref. 7]. 5
Figure 2. Turning Path of a Ship [Ref. 7] 16
Figure 3. $\quad \mathrm{U}$ vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$ 20
Figure 4. U vs. Time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$ 20
Figure 5. $\quad \mathrm{U}$ vs. Time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$ 21
Figure 6. U vs. Time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$ 21
Figure 7. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$ 23
Figure 8. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$ 23
Figure 9. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$ 24
Figure 10. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$ 24
Figure 11. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$ (same as Figure 7) 25
Figure 12. $\quad \phi$ vs. Time, $\mathrm{U}=10$ knots and $\delta=5^{\circ}$ 25
Figure 13. $\quad \phi$ vs. Time, $\mathrm{U}=15$ knots and $\delta=5^{\circ}$ 26
Figure 14. $\quad \phi$ vs. Time, $\mathrm{U}=20$ knots and $\delta=5^{\circ}$ 26
Figure 15. $\quad \phi$ vs. Time, $\mathrm{U}=25$ knots and $\delta=5^{\circ}$ 27
Figure 16. ϕ vs. Time, $U=30$ knots and $\delta=5^{\circ}$ 27
Figure 17. v vs. time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$ 29
Figure 18. v vs. time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$ 29
Figure 19. v vs. time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$ 30
Figure 20. v vs. time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$ 30
Figure 21. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$. 32
Figure 22. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$. 32
Figure 23. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$ 33
Figure 24. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$. 33
Figure 25. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=5^{\circ}$. 34
Figure 26. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=10^{\circ}$. 34
Figure 27. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=15^{\circ}$ 35
Figure 28. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=20^{\circ}$ 35
Figure 29. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=5^{\circ}$ 36
Figure 30. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=10^{\circ}$ 36
Figure 31. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=15^{\circ}$. 37
Figure 32. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=20^{\circ}$. 37
Figure 33. Steady State Sway Velocity for Pod with Varying Initial Speed. 40
Figure 34. Steady State Sway Velocity for Rudder with Varying Initial Speed 41
Figure 35. Steady State Yaw Velocity for Pod with Varying Initial Speed 42
Figure 36. Steady State Yaw Velocity for Rudder with Varying Initial Speed 43
Figure 37. Steady State Roll Angle for Pod with Varying Initial Speed. 44
Figure 38. Steady State Roll Angle for Rudder with Varying Initial Speed 45

LIST OF TABLES

Table 1 Equations of Motion: Parameters. 6
Table 2 Nondimensional Parameter Relationships 8
Table 3 Rudder Force and Moment Parameters 11
Table 4 Hydrodynamic Derivatives and Coefficients [Ref. 3] 14
Table 5 Values of Varied Parameters 17
Table 6 Ship Speed Behavior at Different Initial Speeds and Deflection Angles 19

ACKNOWLEDGEMENTS

The author would like to thank Prof. Papoulias for his help throughout the thesis process.

THIS PAGE INTENTIONALLY LEFT BLANK

I. INTRODUCTION

A. GENERAL

Most modern ships use a rudder to provide the necessary forces and moments to allow the ship to turn. However, in recent years the development of podded propulsors has allowed ships with pods to increase their propulsive efficiency and maneuverability [Ref. 1]. The use of pods allows the ship to operate with a diesel-electric power plant. If the pods are aft on the ship, the pod can increase the forces generated while maneuvering at low speeds and eliminate the need for stern thrusters [Ref. 1]. Podded propulsors are currently used in cruise ships, where passenger comfort is the main concern, dredging vessels, and naval vessels such as mine hunters. The pod allows the ship to maneuver more rapidly with less adverse effect on the ship during turns, especially at slow speeds. Thus the ship can turn faster at low speeds and will have smaller roll angles. The ship also has a smaller turning diameter at slow speeds and pod deflections [Ref. 2]. Another advantage of pods is that they can be steered over 360°, allowing the ship to maneuver in any direction fairly easily. Pods also take up less space on a ship because the need for long shaft-lines, conventional rudders, and reduction gears is eliminated [Ref. 2].

Pods operate in a similar fashion as rudders. To turn a ship, one simply positions the rudder at the desired angle to accomplish the turn at a certain rate. A ship with a pod can apply the necessary angle by rotating one or all of the pods, if more than one pod is installed [Ref. 1]. Because of the weight of the pod, turning by using a pod is considered to cause more strain on the equipment than steering with rudders. However, rudders experience stall at about 35 degrees, whereas pods do not experience stall at all due to the fact that the force is in the same direction as the propeller thrust [Ref. 1]. Rudders are also used to help maintain the course of a ship when attempting to travel in a straight line. The ship may veer from its intended course due to ocean waves and currents. According to Toxopeus and Loeff, vessels with podded propulsion perform well at course keeping and yaw checking [Ref. 1].

However, pods do have some disadvantages. Pods can respond very rapidly and therefore may respond faster than a human operator, thus making it difficult for a
helmsman to control the ship [Ref. 2]. One solution may be to implement computer controls to allocate the thrusts of the propeller in such a way that the environmental loads do not have a detrimental effect on the ship's performance. Pods also tend to cause large heel angles. According to a study performed by MARIN, most passengers tend to panic at heel angles of 7°, and pods have exhibited heel angles of up to 25° in some ship models [Ref. 2]. Also, in order for the pod to operate in the most effective manner possible, the ship hull has to be altered and usually more than one pod is required to provide adequate power and maneuverability [Ref. 1]. However, because pods have proven so versatile, further study should be done to see if they can be used in more applications.

B. SCOPE OF THIS THESIS

The purpose of this thesis is to compare the performance of a ship using a pod with that of a ship using a rudder with different speeds and rudder and pod deflections. The comparison is made to help determine the viability of replacing rudders on naval vessels with pods. Since naval vessels may need to maneuver rapidly at high speeds, for example to avoid a torpedo, it is important to determine if a pod will perform well under such conditions.

The comparison of the two ships is made using a model that incorporates data for a high speed container ship. The model, described in Chapter II, uses the equations of motion for a ship to develop equations for the derivatives of several parameters. The original model simulates a ship with a rudder. The model is modified to simulate the use of a podded propulsor rather than a rudder. It is important to note that the modifications made on the model do not take into account any change in the hull that may be required for use of a pod, nor the possible need of more than one pod to properly maneuver. The model simply removes the rudder and assumes that the propeller, whose characteristics have not been altered, can now rotate in the same manner as a pod.

The analysis performed will help determine the general operating characteristics of a podded propulsor over a range of speeds and pod deflections. A description of the transient analysis performed is found in Chapter III. The steady state analysis performed is described in Chapter IV. The parameters for each ship that are compared are: the total speed U, the sway velocity v, the roll angle ϕ, and the ship's position in the xy-plane.

These parameters are plotted for each ship configuration and are then used to study the pod's operating characteristics.

The conclusions drawn from the analysis performed are shown in Chapter V. Areas of further research are also recommended.

THIS PAGE INTENTIONALLY LEFT BLANK

II. MATHEMATICAL MODEL

A. EQUATIONS OF MOTION

The nonlinear equations of motion in a body-fixed coordinate system for a ship are shown in equations (2.1). The equations assume symmetry along the longitudinal axis $\left(y_{G}=0\right)$. The orthogonal, right-hand coordinate system is shown in Figure 1 and the parameters are defined in Table I.

$$
\begin{align*}
& \text { Surge: } m\left[\dot{u}-x_{G}\left(q^{2}+r^{2}\right)+z_{G}(\dot{q}+p r)-r v+w q\right]=X \tag{2.1.a}\\
& \text { Sway: } m\left[\dot{v}+x_{G}(p q+\dot{r})+z_{G}(q r-\dot{p})+u r-w p\right]=Y \tag{2.1.b}\\
& \text { Heave: } m\left[\dot{w}+x_{G}(r p-\dot{q})-z_{G}\left(p^{2}+q^{2}\right)+p v-q u\right]=Z \tag{2.1.c}\\
& \text { Roll: } I_{x} \dot{p}+\left(I_{z}-I_{y}\right) q r-I_{x y}(p q+\dot{r})-m z_{G}(\dot{v}+u r-w p)= \tag{2.1.d}\\
& K-\Delta G Z(\phi) \\
& I_{y} \dot{q}-\left(I_{z}-I_{x}\right) r p-I_{x z}\left(r^{2}-p^{2}\right)+ \tag{2.1.e}\\
& m\left[z_{G}(\dot{u}+q w-r v)-x_{G}(\dot{w}+p v-q u)\right]=M \tag{2.1.f}
\end{align*}
$$

Yaw: $I_{z} \dot{r}+\left(I_{y}-I_{z}\right) p q+I_{x z}(q r-\dot{p})+m x_{G}(\dot{v}+u r-w p)=N$

Figure 1.
Coordinate System [Ref. 7]

Table 1 Equations of Motion: Parameters

Parameter	
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	Distance along the principal axes
$\mathrm{u}, \mathrm{v}, \mathrm{w}$	Translational velocity components of ship relative to fluid along body axes
$\mathrm{p}, \mathrm{q}, \mathrm{r}$	Rotational velocity components of ship relative to inertial reference system along body axes
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	Hydrodynamic force components along body axes
$\mathrm{K}, \mathrm{M}, \mathrm{N}$	Hydrodynamic moment components along body axes
ψ, θ, ϕ	ψ yaw angle: bow to starboard positive θ pitch angle: bow up positive ϕ roll angle: starboard down positive
$\mathrm{m}_{\mathrm{G}}, \mathrm{y}_{\mathrm{G}}, \mathrm{z}_{\mathrm{G}}$	Mass of ship
$\mathrm{I}_{\mathrm{X}}, \mathrm{I}_{\mathrm{Y}}, \mathrm{I}_{\mathrm{Z}}$	Coordinates of the center of gravity in the body axis system
$\mathrm{I}_{\mathrm{XZ}}, \mathrm{I}_{\mathrm{YZ}}, \mathrm{I}_{\mathrm{XY}}$	Moments of inertia about the body axis system
∇	Products of inertia about the body axis system
Δ	Displacement volume of ship
$\mathrm{GZ}(\phi)$	Displacement weight of ship
δ	Righting moment as a function of roll angle
V	Rudder angle in radians
ρ	Initial velocity of ship
L	Mass density of sea water
	Ship length between perpendiculars (LBP)

B. SIMPLIFYING ASSUMPTIONS

To simulate a ship maneuvering in the ocean without changes in depth, the following assumptions were made [Ref. 3]:

1. The rotational velocity and acceleration about the y-axis are zero. ($q=0$ and $\dot{q}=0$)
2. The translational velocity and acceleration in the z direction are zero. ($w=0$ and $\dot{w}=0$)
3. The vertical heave and pitch motions are decoupled from the horizontal plane motions.
4. The product of inertia I_{XZ} is small and can be neglected.
5. The surge equation is substituted by an algebraic equation which is a function of u, V, and δ.
6. The longitudinal center of gravity, (LCG), and the longitudinal center of buoyancy, (LCB), are at midship.
7. The vertical center of gravity, (VCG), is on the centerline.
8. The only important forces and moments acting on the ship induced by the rudder (or pod) are due to rudder (or pod) deflection. Forces and moments due to $\dot{\delta}$ and $\ddot{\delta}$ are negligible. [Ref. 4]

Applying these assumptions to Equations (2.1), the following simplified equations of motion are obtained [Ref. 5]:

$$
\begin{gather*}
\text { Sway: } m\left[\dot{v}+x_{G} \dot{r}-z_{G} \dot{p}+u r\right]=Y \tag{2.2.a}\\
\text { Roll: } I_{x} \dot{p}-m z_{G}(\dot{v}+u r)=K-\Delta G Z(\phi) \tag{2.2.b}\\
\text { Yaw: } I_{z} \dot{r}+m x_{G}(\dot{v}+u r)=N \tag{2.2.c}
\end{gather*}
$$

To simplify the analysis even further, equations (2.2) are converted to a nondimensional form. The nondimensional relationships are shown in Table 2.

To demonstrate the conversion to nondimensional terms, the appropriate values from Table 2 are substituted in Equation (2.2a) to yield the following:

$$
\left(\frac{1}{2} \rho L^{3}\right) m^{\prime}\left[\left(\frac{V^{2}}{L}\right) \dot{v}^{\prime}+\left(L x_{G}^{\prime}\right)\left(\frac{V^{2}}{L^{2}} \dot{r}^{\prime}\right)-\left(L z_{G}^{\prime}\right)\left(\frac{V^{2}}{L^{2}} \dot{p}^{\prime}\right)+\left(V u^{\prime}\right)\left(\frac{V}{L} r^{\prime}\right)\right]=\left(\frac{1}{2} \rho L^{2} V^{2}\right) Y^{\prime}
$$

Simplifying by factoring out $\left(\mathrm{V}^{2} / \mathrm{L}\right)$ gives

$$
\left(\frac{1}{2} \rho L^{2} V^{2}\right) m^{\prime}\left[\ddot{v}^{\prime}+x_{G}{ }^{\prime} \dot{r}^{\prime}-z_{G}{ }^{\prime} \dot{p}^{\prime}+u^{\prime} r^{\prime}\right]=\left(\frac{1}{2} \rho L^{2} V^{2}\right) Y^{\prime}
$$

Equation (2.2a) can then be rewritten as Equation (2.3) as shown.

$$
\begin{equation*}
m^{\prime}\left[\ddot{v}^{\prime}+x_{G}{ }^{\prime} \dot{r}^{\prime}-z_{G}{ }^{\prime} \dot{p}^{\prime}+u^{\prime} r^{\prime}\right]=Y^{\prime} \tag{2.3}
\end{equation*}
$$

Because Equations (2.2) and (2.3) are of the same form, the prime notation will no longer be included and all equations will be treated as nondimensional unless otherwise specified.

Table 2 Nondimensional Parameter Relationships
$\left.\begin{array}{|c|c|c|}\hline v^{\prime}=\frac{v}{V} & \dot{v}^{\prime}=\dot{v}\left(\frac{L}{V^{2}}\right) & Y^{\prime}=Y\left(\frac{1}{1 / 2 \rho L^{2} V^{2}}\right) \\ \hline r^{\prime}=r\left(\frac{L}{V}\right) & \dot{r}^{\prime}=\dot{r}\left(\frac{L^{2}}{V^{2}}\right) & N^{\prime}=N\left(\frac{1}{1 / 2 \rho L^{3} V^{2}}\right) \\ \hline \phi^{\prime}=\phi & \dot{\phi}^{\prime}=\dot{\phi}\left(\frac{L}{V}\right) & K^{\prime}=K\left(\frac{1}{1 / 2 \rho L^{3} V^{2}}\right) \\ \hline p^{\prime}=p\left(\frac{L}{V}\right) & \dot{p}^{\prime}=\dot{p}\left(\frac{L^{2}}{V^{2}}\right) & u^{\prime}=\frac{u}{V} \\ \hline m^{\prime}=m\left(\frac{1}{1 / 2 \rho L^{3}}\right) & x_{G}{ }^{\prime}=x_{G}\left(\frac{1}{L}\right) & \Delta G Z(\phi)^{\prime}=\Delta G Z\left(\frac{1}{L}\right) \\ \hline I_{x}^{\prime}=I_{x}\left(\frac{1}{1 / 2 \rho L^{5}}\right) & I_{z}^{\prime}=I_{z}\left(\frac{1}{1 / 2 \rho L^{5}}\right) & 1 / 2 \rho L^{3} V^{2}\end{array}\right)$

C. FORCE AND MOMENT REPRESENTATION

Using the method described by Abkowitz and Strom-Tejsen [Ref. 4], the sway force, roll moment, and yaw moment can be expressed as Equations (2.4).

$$
\begin{gather*}
\text { Surge Force: } X=f_{1}(u, v, r, \phi, \delta) \tag{2.4.a}\\
\text { Sway Force: } Y=f_{2}(u, v, r, \dot{u}, \dot{v}, \dot{r}, \phi, \dot{\phi}, \delta) \tag{2.4.b}\\
\text { Roll Moment: } K=f_{3}(u, v, r, \dot{u}, \dot{v}, \dot{r}, \phi, \dot{\phi}, \ddot{\phi}, \delta) \tag{2.4.c}\\
\text { Yaw Moment: } N=f_{4}(u, v, r, \dot{u}, \dot{v}, \dot{r}, \phi, \dot{\phi}, \delta) \tag{2.4.d}
\end{gather*}
$$

Using a third order Taylor expansion for $\mathrm{f}_{1}, \mathrm{f}_{2}$, and f_{3}, equations (2.5) are obtained.

$$
\begin{gather*}
f_{1}=X_{u u} u^{2}+X_{v v} v r+X_{v v} v^{2}+X_{r r} r^{2}+x_{\phi \phi} \phi^{2}+X(\delta)+X_{o} \tag{2.5.a}\\
f_{2}=Y_{v} v+Y_{\dot{v}} \dot{v}+Y_{v v} v^{3}+Y_{r} r+Y_{r r r} r^{3}+Y_{v v r} v^{2} r+Y_{\phi} \phi+ \tag{2.5.b}\\
Y_{\phi} \dot{\phi}+Y_{v v \phi} v^{2} \phi+Y_{v \phi \phi} v \phi^{2}+Y_{r r \phi} r^{2} \phi+Y(\delta)+Y_{o}
\end{gather*}
$$

$$
\begin{gather*}
f_{3}=K_{v} v+K_{v v v} v^{3}+K_{v v r} v^{2} r+K_{r} r+K_{r r r} r^{3}+K_{\phi} \phi+K_{\dot{\phi}} \dot{\phi}+K_{\ddot{\phi}} \ddot{\phi}+ \tag{2.5.c}\\
K_{v v \phi} v^{2} \phi+K_{v \phi \phi} v \phi^{2}+K_{r \phi \phi} r \phi^{2}+K(\delta)+K_{o}-\Delta G Z(\phi) \\
f_{4}=N_{v} v+N_{\dot{v}} \dot{v}+N_{v v v} v^{3}+N_{v r r} v r^{2}+N_{r} r+N_{\dot{r}} \dot{r}+N_{r r r} r^{2}+N_{\phi} \phi+N_{\dot{\phi}} \dot{\phi}+ \tag{2.5.d}\\
N_{v v \phi} v^{2} \phi+N_{v \phi \phi} v \phi^{2}+N_{r r \phi} r^{2} \phi+N_{r \phi \phi} r \phi^{2}+N(\delta)+N_{o}
\end{gather*}
$$

The coefficients in Equation (2.5) are called the hydrodynamic coefficients and represent the partial derivative of the force or moment with respect to the subscripted variable. For example, Y_{v} represents $\frac{\partial Y}{\partial v}$ and $\mathrm{Y}_{\mathrm{vrr}}$ represents $\frac{\partial}{\partial v}\left(\frac{\partial^{2} Y}{\partial r^{2}}\right)$. The terms $\mathrm{Y}_{\mathrm{o}}, \mathrm{K}_{\mathrm{o}}$, and N_{o} are the sway force, roll moment, and yaw moment induced by the propeller, respectively. Similarly, $\mathrm{Y}(\delta), \mathrm{N}(\delta)$, and $\mathrm{K}(\delta)$ represent the force and moments induced by the rudder. The righting moment due to the static stability of the ship is represented by the term $\Delta G Z(\phi)$.

D. RUDDER FORCE AND MOMENT REPRESENTATION

The expressions used to determine the rudder force and moments are shown in Equations (2.6) and (2.7) [Ref. 5]. The parameters are defined in Table 3.

$$
\begin{gather*}
X(\delta)=c_{R X} F_{N} \sin (\delta) \tag{2.6.a}\\
Y(\delta)=-\left(1+a_{H}\right) F_{N} \cos (\delta) \tag{2.6.b}\\
K(\delta)=\left(1+a_{H}\right) z_{R} F_{N} \cos (\delta) \tag{2.6.c}\\
N(\delta)=-\left(x_{R}+a_{H} x_{H}\right) F_{N} \cos (\delta) \tag{2.6.d}\\
F_{N}=\left(\frac{6.13 \Lambda}{\Lambda+2.25}\right)\left(\frac{A_{R}}{L^{2}}\right) V_{R}^{2} \sin \left(\alpha_{R}\right) \tag{2.7.a}\\
V_{R}=\sqrt{u_{R}^{2}+v_{R}^{2}} \tag{2.7.b}\\
u_{R}=u_{P} \varepsilon \sqrt{1+\frac{8 k K_{T}}{\pi J^{2}}} \tag{2.7.c}\\
J=\frac{u_{P} V}{n D} \tag{2.7.d}
\end{gather*}
$$

$$
\begin{gather*}
u_{P}=u\left[\left(1-w_{P}\right)+\tau\left\{\left(v+x_{P} r\right)^{2}+c_{p v} v+c_{p r} r\right\}\right] \tag{2.7.e}\\
v_{R}=\gamma v+c_{\delta r} r+c_{\delta r r r} r^{3}+c_{\delta r r v} r^{2} v \tag{2.7.f}\\
\alpha_{R}=\delta+\tan ^{-1}\left(\frac{v_{R}}{u_{R}}\right) \tag{2.7.g}
\end{gather*}
$$

Table 3 Rudder Force and Moment Parameters

Parameter	Description
a_{H}	Rudder to hull interaction coefficient
F_{N}	Normal force action on the rudder
z_{R}	z coordinate of point on which rudder force Y_{δ} acts
x_{R}	x coordinate of point on which rudder force Y_{δ} acts
x_{H}	x coordinate of point on which normal force F_{N} acts
Λ	Rudder aspect ratio
A_{R}	Rudder area
V_{R}	Effective rudder inflow velocity
α_{R}	Effective rudder inflow angle
$\mathrm{u}_{\mathrm{R}}, \mathrm{v}_{\mathrm{R}}$	Components of rudder effective inflow velocity
ε	Constant in Equation (2.7c)
u_{P}	Effective propeller inflow velocity
k	Constant in Equation (2.7c)
K_{T}	Thrust coefficient
J	Advance coefficient
n	Number of propeller revolutions per second
D	Propeller diameter
w_{P}	Effective propeller wake fraction
τ	Constant in Equation (2.7e)
x_{P}	x coordinate of propeller position
$\mathrm{c}_{\mathrm{pv}}, \mathrm{c}_{\mathrm{pr}}$	Propeller flow rectification coefficients
γ	Flow rectification coefficient
$\mathrm{c}_{\delta \mathrm{rr}}, \mathrm{c}_{\mathrm{\delta rrr}}, \mathrm{c}_{\delta \mathrm{rrv}}$	Rudder wake coefficients

E. FORCES AND MOMENTS FOR CONTAINER SHIP WITH RUDDER

The following equations are used to determine the forces and moments acting on the ship, including the forces and moments caused by the rudder. Equations (2.8) are used in the mathematical model and they combine all of the above equations with the rudder [Ref. 6]. The values of the hydrodynamic derivatives and coefficients are given in Table 4.

$$
\begin{gather*}
\text { Surge Force: } \begin{array}{c}
X=X_{u u} u^{2}+(1-t) T+X_{v v} v r+X_{v v} v^{2}+X_{r r} r^{2} \\
+X_{\phi \phi} \phi^{2}+c_{R X} F_{N} \sin (\delta)+\left(m+m_{y}\right) v r \\
Y= \\
Y_{v} v+Y_{r} r+Y_{p} p+Y_{\phi} \phi+Y_{v v v} v^{3}+Y_{r r r} r^{3}+Y_{v v r} v^{2} r \\
\text { Sway Force: }+Y_{v r r} v r^{2}+Y_{v v \phi} v^{2} \phi+Y_{v \phi \phi} v \phi^{2}+Y_{r r \phi} r^{2} \phi+Y_{r \phi \phi} r \phi^{2}+ \\
\left(1+a_{H}\right) F_{N} \cos (\delta)-\left(m+m_{x}\right) u r
\end{array}
\end{gather*}
$$

$$
\begin{gather*}
K=K_{v} v+K_{r} r+K_{p} p+K_{\phi} \phi+K_{v v v} v^{3}+K_{r r r} r^{3}+ \\
\text { Roll Moment: } \quad K_{v v r} v^{2} r+K_{v r r} v r^{2}+K_{v v \phi} v^{2} \phi+K_{v \phi \phi} v \phi^{2}+K_{r r \phi} r^{2} \phi+ \tag{2.8.c}\\
K_{r \phi \phi} r \phi^{2}-\left(1+a_{H}\right) z_{R} F_{N} \cos (\delta)+m_{x} l_{x} u r-W(G M) \phi \\
N=N_{v} v+N_{r} r+N_{p} p+N_{\phi} \phi+N_{v v v} v^{3}+N_{r r r} r^{3}+ \\
\text { Yaw Moment: } \quad N_{v v r} v^{2} r+N_{v r r} v r^{2}+N_{v v \phi} \nu^{2} \phi+N_{v \phi \phi} v \phi^{2}+ \tag{2.8.d}\\
N_{r r \phi} r^{2} \phi+N_{r \phi \phi} r \phi^{2}+\left(x_{R}+a_{H} x_{H}\right) F_{N} \cos (\delta)
\end{gather*}
$$

F. POD FORCE AND MOMENT REPRESENTATION

The expressions used to determine the pod force and moments are shown in Equations (2.9). These equations were derived by comparing the thrust term in the equations of motion to the rudder term. The thrust terms were then modified by the same sign, distance (for moments), and trigonometric relationship as the rudder term, and the rudder term was removed from the equations.

$$
\begin{gather*}
X_{o}=(1-t) T \sin \left(\delta_{p o d}\right) \tag{2.9.a}\\
Y_{o}=(1-t) T \cos \left(\delta_{p o d}\right) \tag{2.9.b}\\
K_{o}=-z_{R}(1-t) T \cos \left(\delta_{p o d}\right) \tag{2.9.c}\\
N_{o}=\frac{1}{2}(1-t) T \cos \left(\delta_{p o d}\right) \tag{2.9.d}
\end{gather*}
$$

G. FORCES AND MOMENTS FOR CONTAINER SHIP WITH POD

The following equations are used to determine the forces and moments acting on the ship, including the forces and moments caused by the pod. Equations (2.10) are used in the mathematical model and they combine all of the above equations with the pod. The values of the hydrodynamic derivatives and coefficients are given in Table 4.

Surge Force: $X=X_{u u} u^{2}+(1-t) T \sin \left(\delta_{p o d}\right)+X_{v v} v r+X_{v v} v^{2}+$

$$
\begin{gather*}
X_{r r} r^{2}+X_{\phi \phi} \phi^{2}+\left(m+m_{y}\right) v r \tag{2.10.a}\\
Y=(1-t) T \cos \left(\delta_{p o d}\right)+Y_{v} v+Y_{r} r+Y_{p} p+Y_{\phi} \phi+Y_{v v} v^{3}+ \tag{2.10.b}
\end{gather*}
$$

Sway Force: $\quad Y_{r r r} r^{3}+Y_{v v r} v^{2} r+Y_{v r r} v r^{2}+Y_{v v \phi} \nu^{2} \phi+Y_{v \phi \phi} v \phi^{2}+$

$$
Y_{r r \phi} r^{2} \phi+Y_{r \phi \phi} r \phi^{2}-\left(m+m_{x}\right) u r
$$

$$
K=-z_{R}(1-t) T \cos \left(\delta_{p o d}\right)+K_{v} v+K_{r} r+K_{p} p+K_{\phi} \phi+K_{v v v} v^{3}+
$$

Roll Moment:

$$
\begin{gather*}
K_{r r r} r^{3}+K_{v v r} v^{2} r+K_{v r r} v r^{2}+K_{v v \phi} v^{2} \phi+K_{v \phi \phi} v \phi^{2}+ \tag{2.10.c}\\
K_{r r \phi} r^{2} \phi+K_{r \phi \phi} r \phi^{2}+m_{x} l_{x} u r-W(G M) \phi \\
N=\frac{1}{2}(1-t) T \cos \left(\delta_{p o d}\right)+N_{v} v+N_{r} r+N_{p} p+N_{\phi} \phi+
\end{gather*}
$$

Yaw Moment:

$$
\begin{gather*}
N_{v v v} v^{3}+N_{r r r} r^{3}+N_{v v r} v^{2} r+N_{v r r} v r^{2}+ \tag{2.10.d}\\
N_{v v \phi} v^{2} \phi+N_{v \phi \phi} v \phi^{2}+N_{r r \phi} r^{2} \phi+N_{r \phi \phi} r^{2} \phi^{2}
\end{gather*}
$$

Table 4 Hydrodynamic Derivatives and Coefficients [Ref. 3]
A. Hull only

Y_{v}	-0.0116000	$\mathrm{~N}_{\mathrm{v}}$	-0.0038545	$\mathrm{~K}_{\mathrm{v}}$	0.00030260	
Y_{r}	0.0024200	$\mathrm{~N}_{\mathrm{r}}$	-0.0022200	$\mathrm{~K}_{\mathrm{r}}$	-0.00006300	
Y_{ϕ}	-0.0000630	$\mathrm{~N}_{\phi}$	-0.0001424	$\mathrm{~K}_{\phi}$	-0.00002100	
$\mathrm{Y}_{\mathrm{vvv}}$	-0.1090000	$\mathrm{~N}_{\mathrm{vvv}}$	0.0014920	$\mathrm{~K}_{\mathrm{vvv}}$	0.00284300	
$\mathrm{Y}_{\mathrm{vrr}}$	-0.0405000	$\mathrm{~N}_{\mathrm{vrr}}$	0.0015600	$\mathrm{~K}_{\mathrm{vrr}}$	0.00105650	
$\mathrm{Y}_{\mathrm{rrr}}$	0.0017700	$\mathrm{~N}_{\mathrm{rrr}}$	-0.0022900	$\mathrm{~K}_{\mathrm{rrr}}$	-0.00004620	
$\mathrm{Y}_{\mathrm{vvr}}$	0.0214000	$\mathrm{~N}_{\mathrm{vvr}}$	-0.424000	$\mathrm{~K}_{\mathrm{vvr}}$	-0.00055800	
$\mathrm{Y}_{\mathrm{vv} \phi}$	0.0460500	$\mathrm{~N}_{\mathrm{vv} \phi}$	-0.0190580	$\mathrm{~K}_{\mathrm{vv} \phi}$	-0.00120120	
$\mathrm{Y}_{\mathrm{v} \phi \phi}$	0.0030400	$\mathrm{~N}_{\mathrm{v} \phi \phi}$	-0.0053766	$\mathrm{~K}_{\mathrm{v} \phi \phi}$	-0.00007930	
$\mathrm{Y}_{\mathrm{rr} \phi}$	0.0093250	$\mathrm{~N}_{\mathrm{rr}}$	-0.0038592	$\mathrm{~K}_{\mathrm{rr}}$	-0.00024300	
$\mathrm{Y}_{\mathrm{r} \phi \phi}$	-0.0013560	$\mathrm{~N}_{\mathrm{r} \phi \phi}$	0.0024195	$\mathrm{~K}_{\mathrm{r} \phi}$	0.00003569	
X_{uu}	-0.0004226	X_{vr}	-0.00311	X_{vv}	-0.00386	
X_{rr}	0.00020	$\mathrm{X}_{\phi \phi}$	-0.00020	X_{G}	0.0	
m	0.00792	$\mathrm{~m}_{\mathrm{x}}$	0.000238	$\mathrm{~m}_{\mathrm{y}}$	0.000238	
I_{x}	0.0000176	I_{y}	0.0	I_{z}	0.000456	
$\mathrm{~J}_{\mathrm{x}}$	0.0000034	α_{y}	0.05	$\mathrm{~J}_{\mathrm{Z}}$	0.000419	
I_{x}	0.0313	I_{y}	0.0313			

B. Propeller and rudder

a_{H}	0.237	τ	1.090	$(1-\mathrm{t})$	0.825
x_{H}	-0.480	ε	0.921	x_{R}	-0.500
c_{RX}	0.710	k	0.631	x_{P}	-0.526
Z_{R}	0.033	$\mathrm{c}_{\delta \mathrm{r}}$	-0.156	$\mathrm{~K}_{\mathrm{T}}$	$0.527-0.455 \mathrm{~J}$
c_{Rr}	-0.156	$\mathrm{c}_{\mathrm{Rrrr}}$	-0.275	$\mathrm{c}_{\mathrm{Rrrv}}$	1.960
c_{pv}	0.000	$\mathrm{c}_{\text {万rrr }}$	-0.275	γ	$0.088 \mathrm{v}>0$ $0.193 \mathrm{v} \leq 0$
c_{pr}	0.000	$\mathrm{c}_{\text {}}$		1.960	$\mathrm{~N}_{\mathrm{rrv}}$

H. DIMENSIONAL STATE DERIVATIVES

Equation (2.11), which defines the derivatives of the desired variables, is used to find the variation of the following parameters over time: surge velocity u, sway velocity v , yaw velocity r , pitch rate p , roll angle ϕ, heading angle ψ, position in x direction, position in y direction, rudder deflection angle δ (or $\delta_{\text {pod }}$), and n (the actual shaft velocity). Using Euler Integration to find the desired variable, the derivative is multiplied by a specified time step and then added to the previous (or initial) value of the variable. The variable is then equal to the new calculated value. Only u, U, v, r, ϕ, and x and y were used for analysis. The equation is in dimensional form.

$$
\left[\begin{array}{c}
\dot{u} \\
\dot{v} \\
\dot{p} \\
\dot{r} \\
\dot{\phi} \\
\dot{\psi} \\
\dot{x} \tag{2.11}\\
\dot{y} \\
\dot{\delta} \\
\dot{n}
\end{array}\right]=\left[\begin{array}{c}
X\left(\frac{V^{2}}{L}\right) /\left(m+m_{x}\right) \\
\frac{\left(I_{x}+J_{x}\right)\left(I_{z}+J_{z}\right) Y+\left(-m_{y} l_{y}\right)\left(I_{z}+J_{z}\right) K+\left(m_{y} \alpha_{y}\right)\left(I_{x}+J_{x}\right) N}{\left(m+m_{y}\right)\left(I_{x}+J_{x}\right)\left(I_{z}+J_{z}\right)-\left(-m_{y} l_{y}\right)^{2}\left(I_{z}+J_{z}\right)-\left(m_{y} \alpha_{y}\right)^{2}\left(I_{x}+J_{x}\right)}\left(\frac{V^{2}}{L}\right) \\
\frac{-\left(m m_{y}\right)\left(I_{z}+J_{z}\right) Y+K\left(m+m_{y}\right)\left(I_{z}+J_{z}\right)-K\left(m_{y} \alpha_{y}\right)^{2}+\left(-m_{y} l_{y}\right)\left(m_{y} \alpha_{y}\right) N}{\left(m+m_{y}\right)\left(I_{x}+J_{x}\right)\left(I_{z}+J_{z}\right)-\left(-m_{y} l_{y}\right)^{2}\left(I_{z}+J_{z}\right)-\left(m_{y} \alpha_{y}\right)^{2}\left(I_{x}+J_{x}\right)}\left(\frac{V^{2}}{\left(m+m_{y}+J_{x}\right) Y+\left(-m_{y} l_{y}\right)\left(m_{y} \alpha_{y}\right) K+N\left(m+J_{x}\right)\left(I_{z}+J_{z}\right)-\left(-m_{y} l_{y}\right)^{2}\left(I_{z}+J_{z}\right)-\left(m_{y} \alpha_{y}\right)^{2}\left(I_{x}+J_{x}\right)}\right. \\
p\left(\frac{V}{L}\right) \\
(\cos (\psi) u-\sin (\psi) \cos (\phi) v) V \\
(\sin (\psi) u+\cos (\psi) \cos (\phi) v) V \\
\delta_{\text {commanded }}-\delta \\
\frac{1}{L^{2}}\left(n_{\text {commanded }}-n\right) \times 60
\end{array}\right]
$$

The commanded rudder/pod angle is the desired deflection angle of the rudder/pod for the turn. The actual angle is initially zero since the ship is traveling in a straight line, and
will increase each time step as $\dot{\delta}$ is integrated. The results obtained using Euler Integration are then plotted to observe and compare the ship response to a rudder versus a podded propulsor. The parameters compared are the total speed over time, the sway velocity over time, the roll angle over time, and the ship's position in the xy-plane. Analysis of the ship's position in the xy-plane enables a comparison of the turning path of each ship configuration. The definitions for the turning path of a ship are shown in Figure 2.

Figure 2. Turning Path of a Ship [Ref. 7]

III. TRANSIENT ANALYSIS

A. INPUT PARAMETERS

The ship's behavior is simulated at various initial speeds U and the rudder (or pod) angles as shown in Table 5.

Table 5 Values of Varied Parameters

Speed U [knots]	Rudder or Pod Angle $\boldsymbol{\delta}$ [deg]
5	5
10	10
15	15
20	20
25	
30	

At each speed, the rudder and pod angles are set to the values shown above. The results are then plotted. The following parameters are plotted: total speed U versus time, roll angle ϕ versus time, sway velocity v versus time, and position in the xy-plane. Each parameter is then studied at the varying speeds and rudder/pod angles.

B. TOTAL SPEED U VERSUS TIME

For the ship with a pod, the total speed U increases as pod angle increases (with the initial speed constant). The speed U does not vary as initial speed increases (with constant pod angle). For the ship with a rudder, the total speed U decreases as rudder angle increases (with constant initial speed). The speed U again does not change as initial speed increases (with constant rudder angle). The behavior of the speed for each ship is shown in Table 6 for each speed and deflection angle modeled. For both ships modeled the speed of the ship increases from its initial value for an initial speed of 5 knots and all deflections. At an initial speed of 10 and 15 knots, the ship with the pod slows down at deflections of 5 and 10 degrees, while the ship with the rudder speeds up (except at 15 knots and 10 degrees where it slows down). At all other initial speeds and deflections, both ships will slow down.

The model indicates that for the same initial speed U, the ship with a rudder tends to slow down as it maneuvers along a turn whereas the ship with a pod tends to speed up. This pod behavior is consistent with other studies performed on the high speed performance of ships with pods installed [Ref. 1]. The plots for a total speed of 5 knots and varying rudder/pod angles are shown in Figures 3 through 6.

Table 6 Ship Speed Behavior at Different Initial Speeds and

Deflection Angles			
Total Speed U [knots]	Rudder or Pod Angle [deg]	Ship Speed Behavior for Rudder	Ship Speed Behavior for Pod
5	5	\uparrow	\uparrow
5	10	\uparrow	\uparrow
5	15	\uparrow	\uparrow
5	20	\uparrow	\uparrow
10	5	\uparrow	\downarrow
10	10	\uparrow	\downarrow
10	15	\uparrow	\uparrow
10	20	\uparrow	\uparrow
15	5	\uparrow	\downarrow
15	10	\downarrow	\downarrow
15	15	\downarrow	\downarrow
15	20	\downarrow	\downarrow
20	5	\downarrow	\downarrow
20	10	\downarrow	\downarrow
20	15	\downarrow	\downarrow
20	20	\downarrow	\downarrow
25	5	\downarrow	\downarrow
25	10	\downarrow	\downarrow
25	15	\downarrow	\downarrow
25	20	\downarrow	\downarrow
30	5	\downarrow	\downarrow
30	10	\downarrow	\downarrow
30	15	\downarrow	\downarrow
30	20	\downarrow	\downarrow

Figure 3. U vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$

Figure 4. U vs. Time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$

Figure 5. U vs. Time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$

Figure 6. U vs. Time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$

C. ROLL ANGLE ϕ VERSUS TIME

For the ship with a pod, the roll angle ϕ decreases as the pod angle δ increases (with constant initial speed U). The roll angle ϕ is approximately constant for varying total speed U and same pod angle δ. For the ship with a rudder, the results are the same as for the pod, although the magnitude of the roll angle is less than that of the ship with the pod for the same rudder/pod angle. The model therefore indicates that the ship with the pod will tend to have a larger magnitude roll angle than the ship with the rudder. This means that the ship with the pod will be tilted at a steeper angle during a turn than the ship with the rudder. These results are consistent with other studies performed on ships with rudders [Ref. 1]. The plots for a total speed of 5 knots and varying rudder/pod angles are shown in Figures 7 through 10. The plots for a rudder/pod angle of 5 degrees and varying total speed are shown in Figures 7 through 16.

Figure 7. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$

Figure 8. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$

Figure 9. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$

Figure 10. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$

Figure 11. $\quad \phi$ vs. Time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$ (same as Figure 7)

Figure 12. $\quad \phi$ vs. Time, $\mathrm{U}=10$ knots and $\delta=5^{\circ}$

Figure 13. $\quad \phi$ vs. Time, $\mathrm{U}=15$ knots and $\delta=5^{\circ}$

Figure 14. $\quad \phi$ vs. Time, $\mathrm{U}=20 \mathrm{knots}$ and $\delta=5^{\circ}$

Figure 15. $\quad \phi$ vs. Time, $\mathrm{U}=25$ knots and $\delta=5^{\circ}$

Figure 16. $\quad \phi$ vs. Time, $\mathrm{U}=30$ knots and $\delta=5^{\circ}$

D. SWAY VELOCITY V VERSUS TIME

For the ship with a pod, the sway velocity v is approximately constant as the speed U increases (with constant pod angle δ). The sway velocity v increases in magnitude as the pod angle δ increases (with constant speed U). For the ship with a rudder, the sway velocity v is constant as the initial speed U increases (with constant rudder angle δ). The sway velocity v increases in magnitude as the rudder angle δ increases (with constant speed U). The plots for a speed of 5 knots and varying rudder/pod angle are shown in Figures 17 through 20.

As seen from the plots, the sway velocity is always negative for the rudder and is negative for pod angles greater than 5°, regardless of the speed. However, the magnitude of the sway velocity is always larger for the rudder than for the pod.

Figure 17. v vs. time, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$

Figure 18. v vs. time, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$

Figure 19. v vs. time, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$

Figure 20. v vs. time, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$

E. POSITION IN XY PLANE VERSUS TIME

The ship with a pod has a smaller turning radius than the ship with a rudder. The ship with the pod also has a smaller advance and transfer at the commanded pod angle for increasing pod angles until the total speed is 15 knots and the rudder/pod angle is 15 degrees. After this point, the ship with the rudder has a smaller advance. Also, as the rudder/pod angle increases, the pod progressively has a larger turning radius than before for the same rudder/pod angle (and different speed U). However, the ship with the pod still has a smaller turning radius than the ship with a rudder. As the total speed U increases, the advance of the ship with the pod is greatly increased. The advance increases to as much as 2000 m for a total speed of 30 knots and pod angle of 20 degrees. The transfer also increases so that at higher speeds U the pod requires more distance to begin the turn. These results are consistent with previous studies [Ref. 1]. The plots for varying rudder/pod angle and varying total speed U are shown in Figures 21 through 32.

Figure 21. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=5^{\circ}$

Figure 22. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=10^{\circ}$

Figure 23. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=15^{\circ}$

Figure 24. Position in XY Plane, $\mathrm{U}=5$ knots and $\delta=20^{\circ}$

Figure 25. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=5^{\circ}$

Figure 26. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=10^{\circ}$

Figure 27. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=15^{\circ}$

Figure 28. Position in XY Plane, $\mathrm{U}=15$ knots and $\delta=20^{\circ}$

Figure 29. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=5^{\circ}$

Figure 30. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=10^{\circ}$

Figure 31. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=15^{\circ}$

Figure 32. Position in XY Plane, $\mathrm{U}=30$ knots and $\delta=20^{\circ}$

THIS PAGE INTENTIONALLY LEFT BLANK

IV. STEADY STATE ANALYSIS

A. PARAMETERS OF INTEREST

The final integrated value of each parameter found from numerical integration of Equation 2.11 is obtained from Matlab; this value is the steady state value of the parameter. For the steady state analysis, the following parameters are studied: sway velocity v , yaw velocity r , and roll angle ϕ.

B. ANALYSIS OF PARAMETERS

The results are plotted for different initial speeds U and different rudder/pod angles δ. As observed from the plots, the steady state values of each parameter do not vary with a change in the initial speed U (with the same rudder/pod angle). This is the same result obtained from the transient analysis for the parameters studied. The parameters vary slightly when plotted using constant initial speed U and varying rudder/pod angle.

Figure 33. Steady State Sway Velocity for Pod with Varying Initial Speed

Figure 34. Steady State Sway Velocity for Rudder with Varying Initial Speed

Figure 35. Steady State Yaw Velocity for Pod with Varying Initial Speed

Figure 36. Steady State Yaw Velocity for Rudder with Varying Initial Speed

Figure 37. Steady State Roll Angle for Pod with Varying Initial Speed

Figure 38. Steady State Roll Angle for Rudder with Varying Initial Speed

THIS PAGE INTENTIONALLY LEFT BLANK

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, a mathematical model was modified to simulate the motion of a ship operating with a rudder and operating with a pod. The model was first used to simulate the ship operating with a rudder. The model was then modified to simulate operation with a pod. The two results were then compared to determine how well a ship with a pod operates at various speeds and pod deflections. Based on the comparison made, the following results were observed for the ship with the pod:

1. The results suggest that a ship with a pod will operate very well at speeds less than or equal to 15 knots and pod deflections of less than or equal to 15 degrees. After this point, the pod tends to have a larger advance and transfer as initial speed and deflection angle increase.
2. The results indicate that for a ship with a pod, the ship's total speed will increase during a turn if the initial speed is 5 knots or less. At all other speeds and deflections, the ship with the pod will slow down. This behavior is similar to that of a ship with a rudder.
3. The results show that a ship with a pod will tend to have a larger magnitude roll angle than a ship with a rudder; however, the roll angle does not exceed 8° regardless of the initial speed.
4. The results indicate that the sway velocity v will be approximately constant as the initial speed U increases if the pod deflection is constant. The sway velocity will decrease as the pod deflection increases and the initial speed is held constant.

Based on the results observed using the model as described, the rudder performs better than the pod at high speeds and high deflection angles. Naval vessels must have the capability of responding rapidly in an emergency, regardless of the initial speed of the vessel. The pod does not provide the necessary performance requirements to meet this constraint in the current configuration.

B. RECOMMENDATIONS

The results produced in this thesis were intended as an initial study into the viability of replacing a rudder on a naval ship with a podded propulsor. In order to accomplish this, an existing model was modified to simulate a podded propulsor in place of a propeller and no rudder. The model did not take into account any change in the hull configuration that may be required for use of a pod, nor the possible need of more than one pod to properly maneuver the ship. One area of further study is to further modify the model used to account for this, or to create a new model to simulate a ship that already uses a pod.

Further study is also necessary to determine the best possible pod and hull configuration for a given application. Previous studies have shown that pods do not operate as well as rudders at high speeds. Further study is needed to investigate the benefits of adding control surfaces to counteract this negative performance aspect of a pod.

APPENDIX A. MATLAB CODE FOR SHIP WITH RUDDER

A. V07_CONT

```
function u1 = V07_cont(k,x,u)
u1 = [ 20*pi/180; % delta (rad)
    85 ];
```

B. V07 DATA
\% V07_DATA datafile for v07.m. Contains initial state
$\% \quad$ vector, initial input and main dimensions.
\%
\% NTH 1994 Trygve Lauvdal
clc
echo on
\% Default parameters for High Speed Container Ship:
\%
\% Max rudder angle : 0 deg
\% Max rudder rate : $0 \mathrm{deg} / \mathrm{s}$
\% Max shaft velocity : 160 rpm
\% Length of ship : 175 m
\% Initial states, inputs and sample time (to be edited by user):

u	$=$	$15.433 ;$	$\%$ surge velocity
v	$=$	$(\mathrm{m} / \mathrm{s})$	
p	$=$	$\%$ sway velocity	$(\mathrm{m} / \mathrm{s})$
r	$=$	$\% ;$	$\%$ roll velocity
$(\mathrm{rad} / \mathrm{s})$			
phi	$=0 ;$	$\%$ roll angle	(rad)
psi	$=0 ;$	$\%$ yaw angle	(rad)
xpos	$=0 ;$	$\%$ surge position	(m)
ypos	$=$	$0 ;$	$\%$ sway position
delta	$=0 ;$	$\%$ actual rudder angle (rad)	
n	$=$	$10 ;$	$\%$ actual shaft speed (rpm)

```
d_c = 20*pi/180; % commanded rudder angle (rad)
n_c = 0; % commanded shaft speed (rpm)
h = 0.1; % sample time (s)
x = [u v p r phi psi xpos ypos delta n]'; % state vector
u = [d_c n_c]'
echo
current = pwd;
if ~exist(['sim.m']),
saveon = [current '/v07_data x u h'];
else
saveon = [current '/v07/v07_data x u h'];
end
eval(['save v07_data'])
```


C. V07_RUDDER

```
function xdot = V07_rudder(x,ui)
%
% xdot = V07(x,ui); returns the time derivate of the state vector :
%
% x = [ u v p r phi psi xpos ypos delta n ]' where
%
%u surge velocity (m/s)
% = sway velocity (m/s)
% p roll velocity (rad/s)
%r = yaw velocity (rad/s)
% phi = roll angle (rad)
%psi = yaw angle (rad)
% xpos = position in x-direction (m)
% ypos = position in y-direction (m)
% delta = actual rudder angle (rad)
% = actual shaft velocity (rpm)
%
% The input vector is:
%
% ui = [delta_c n_c ]' where
%
% delta_c = commanded rudder angle (rad)
% n_c = commanded shaft velocity (rpm)
%
% NTH 1994, Trygve Lauvdal
%
% Reference : Son og Nomoto (1982).
% On the Coupled Motion of Steering and
% Rolling of a High Speed Container Ship,
% Naval Architect of Ocean Engineering,
% 20:73-83. From J.S.N.A., Japan, Vol. 150, 1981.
```

```
% Check of input and state dimensions
if }~(length(x) == 10),error('x-vector must have dimension 10 !');end
if ~(length(ui) == 2),error('u-vector must have dimension 2!');end
% Normalization variables
L = 175; % length of ship (m)
sqrV = (x(1)^2 + x(2)^2);
V = sqrt(sqrV); % service speed (m/s)
% Check of service speed
if V == 0,error('The ship must have speed greater than zero');end
\begin{tabular}{lllll} 
delta_max & \(=\) & \(20 ;\) & \(\%\) max rudder angle & \((\mathrm{deg})\) \\
Ddelta_max & \(=\) & \(5 ;\) & \(\%\) max rudder angle rate & \((\mathrm{deg} / \mathrm{s})\) \\
n_max & \(=\) & \(160 ;\) & \(\%\) max shaft velocity & \((\mathrm{rpm})\)
\end{tabular}
% Non-dimensional states and inputs
delta_c = ui(1);
n_c = ui(2)/60*L/V;
u =x(1)/V; v = x(2)/V;
p =x(3)*L/V;r = x(4)*L/V;
phi =x(5); psi = x(6);
delta =x(9); n =x(10)/60*L/V;
\% Parameters, hydrodynamic derivatives and main dimensions
\(\mathrm{m}=0.00792 ; \quad \mathrm{mx} \quad=0.000238 ; \quad \mathrm{my}=0.000238 ;\)
\(\mathrm{Ix}=0.0000176 ;\) alphay \(=0.05 ; \quad 1 \mathrm{x}=0.0313\);
\(\mathrm{ly}=0.0313 ; \quad \mathrm{Ix} \quad=0.0000176 ; \quad \mathrm{Iz}=0.000456\);
\(\mathrm{Jx}=0.0000034 ; \mathrm{Jz} \quad=0.000419 ; \quad \mathrm{xG}=0\);
B \(=25.40 ; \quad \mathrm{dF}=8.00 ; \quad \mathrm{g} \quad=9.81 ;\)

```

% Masses and moments of inertia

```
```

m11 = (m+mx);
m22 = (m+my);
m32 = -my*ly;
m42 = my*alphay;
m33 = (Ix+Jx);
m44 = (Iz+Jz);

```
\% Rudder saturation and dynamics
if abs(delta_c) >= delta_max*pi/180,
    delta_c \(=\operatorname{sign}(\) delta_c)*delta_max*pi/180;
end
delta_dot = delta_c - delta;
if abs(delta_dot) \(>=\) Ddelta_max*pi/180,
    delta_dot \(=\operatorname{sign}\left(d e l t a \_d o t\right) *\) Ddelta_max*pi/180;
end
\% Shaft velocity saturation and dynamics
\(\mathrm{n}_{\mathrm{l}} \mathrm{c}=\mathrm{n}_{-} \mathrm{c} * \mathrm{~V} / \mathrm{L}\);
\(\mathrm{n}=\mathrm{n} * \mathrm{~V} / \mathrm{L}\);
if \(\operatorname{abs}\left(n_{-} c\right)>=n \_m a x / 60\),
    \(\mathrm{n}_{-} \mathrm{c}=\operatorname{sign}\left(\mathrm{n}_{-} \mathrm{c}\right) * \mathrm{n}_{-} \max / 60 ;\)
end
if \(\mathrm{n}>0.3, \mathrm{Tm}=5.65 / \mathrm{n}\);else, \(\mathrm{Tm}=18.83\);end
\(\mathrm{n} \_\operatorname{dot}=1 / \mathrm{Tm} *\left(\mathrm{n} \_\mathrm{c}-\mathrm{n}\right) * 60\);
\% Calculation of state derivatives
    \(\mathrm{vR}=\mathrm{ga}^{*} \mathrm{v}+\mathrm{cRr}{ }^{*} \mathrm{r}+\mathrm{cRrrr}{ }^{*} \mathrm{r}^{\wedge} 3+\mathrm{cRrrv}{ }^{*} \mathrm{r}^{\wedge} 2^{*} \mathrm{v}\);
    \(u \mathrm{P}=\cos (\mathrm{v})^{*}\left((1-\mathrm{wp})+\operatorname{tau}^{*}\left(\left(\mathrm{v}+\mathrm{xp} \mathrm{p}^{\mathrm{r}}\right)^{\wedge} 2+\mathrm{cpv}{ }^{*} \mathrm{v}+\mathrm{cpr}{ }^{*} \mathrm{r}\right)\right) ;\)
    \(\mathrm{J} \quad=\mathrm{uP} * \mathrm{~V} /(\mathrm{n} * \mathrm{D})\);
    \(\mathrm{KT}=0.527-0.455^{*} \mathrm{~J}\);
\% Forces and moments
\[
\begin{aligned}
X= & X u u^{*} u^{\wedge} 2+(1-t)^{*} T+X v r^{*} v^{*} r+X v v^{*} v^{\wedge} 2+X r r^{*} r^{\wedge} 2+X p h i p h i^{*} \text { phi }^{\wedge} 2+\ldots \\
& (m+m y)^{*} v^{*} r+c R X^{*} F N^{*} \sin (\text { delta }) ;
\end{aligned}
\]
\[
K v v r^{*} \mathrm{v}^{\wedge} 2 * \mathrm{r}+\mathrm{Kvrr}^{*} \mathrm{v}^{*} \mathrm{r}^{\wedge} 2+\mathrm{Kvvphi}^{*} \mathrm{v}^{\wedge} 2 * \text { phi }+ \text { Kvphiphi* } \mathrm{v}^{*} \text { phi }^{\wedge} 2+
\]
\[
\text { Krrphi* }{ }^{\wedge} 2^{*} \text { phi }+\ldots
\]
\[
\text { Krphiphi*r*phi^2 }+\mathrm{mx} * \mathrm{~lx}^{*} \mathrm{u}^{*} \mathrm{r}-\mathrm{W}^{*} \mathrm{GM}^{*} \text { phi }-(1+\mathrm{H}) * \mathrm{zR} * \mathrm{FN} * \cos (\text { delta }) ;
\]
\[
\mathrm{N}=\mathrm{Nv}^{*} \mathrm{v}+\mathrm{Nr}^{*} \mathrm{r}+\mathrm{Np}^{*} \mathrm{p}+\mathrm{Nphi}^{*} \mathrm{phi}+\mathrm{Nvvv}^{*} \mathrm{v}^{\wedge} 3+\mathrm{Nrrr}^{*} \mathrm{r}^{\wedge} 3+\ldots
\]
\[
\text { Nvvr* } \mathrm{v}^{\wedge} 2 * \mathrm{r}+\text { Nvrr*}^{*} \mathrm{v}^{*} \mathrm{r}^{\wedge} 2+\text { Nvvphi* }^{*} \mathrm{v}^{\wedge} 2 * \text { phi }+ \text { Nvphiphi* } \mathrm{v}^{*} \text { phi^ }^{\wedge} 2+
\]
\[
\text { Nrrphi* }{ }^{\wedge}{ }^{\wedge} 2 * \mathrm{phi}+\ldots
\]
\[
\text { Nrphiphi* }{ }^{*}{ }^{*} \text { phi }^{\wedge} 2+\left(x R+\mathrm{aH}^{*} \mathrm{xH}\right) * \mathrm{FN}^{*} \cos (\text { delta })
\]
\% Dimensional state derivatives
\[
\begin{aligned}
& \mathrm{xdot}=\left[\quad \mathrm{X}^{*}\left(\mathrm{~V}^{\wedge} 2 / \mathrm{L}\right) / \mathrm{ml} 1\right. \\
& -(-\mathrm{m} 33 * \mathrm{~m} 44 * \mathrm{Y}+\mathrm{m} 32 * \mathrm{~m} 44 * \mathrm{~K}+\mathrm{m} 42 * \mathrm{~m} 33 * \mathrm{~N}) /(\mathrm{m} 22 * \mathrm{~m} 33 * \mathrm{~m} 44-\mathrm{m} 32 \wedge 2 * \mathrm{~m} 44- \\
& \left.\mathrm{m} 42^{\wedge} 2^{*} \mathrm{~m} 33\right) *\left(\mathrm{~V}^{\wedge} 2 / \mathrm{L}\right) \\
& \left(-\mathrm{m} 32 * \mathrm{~m} 44^{*} \mathrm{Y}+\mathrm{K} * \mathrm{~m} 22 * \mathrm{~m} 44-\mathrm{K} * \mathrm{~m} 42^{\wedge} 2+\mathrm{m} 32 * \mathrm{~m} 42 * \mathrm{~N}\right) /(\mathrm{m} 22 * \mathrm{~m} 33 * \mathrm{~m} 44- \\
& \left.\mathrm{m} 32^{\wedge} 2^{*} \mathrm{~m} 44-\mathrm{m} 42^{\wedge} 2^{*} \mathrm{~m} 33\right)^{*}\left(\mathrm{~V}^{\wedge} 2 / \mathrm{L}^{\wedge} 2\right) \\
& (-\mathrm{m} 42 * \mathrm{~m} 33 * \mathrm{Y}+\mathrm{m} 32 * \mathrm{~m} 42 * \mathrm{~K}+\mathrm{N} * \mathrm{~m} 22 * \mathrm{~m} 33-\mathrm{N} * \mathrm{~m} 32 \wedge 2) /(\mathrm{m} 22 * \mathrm{~m} 33 * \mathrm{~m} 44- \\
& \left.\mathrm{m} 32^{\wedge} 2^{*} \mathrm{~m} 44-\mathrm{m} 42^{\wedge} 2^{*} \mathrm{~m} 33\right)^{*}\left(\mathrm{~V}^{\wedge} 2 / \mathrm{L}^{\wedge} 2\right) \\
& p^{*}(V / L) \\
& \cos (\mathrm{phi}) * \mathrm{r}^{*}(\mathrm{~V} / \mathrm{L})
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Y}=\mathrm{Yv}^{*} \mathrm{v}+\mathrm{Yr}^{*} \mathrm{r}+\mathrm{Yp} \mathrm{p}^{*} \mathrm{p}+\mathrm{Yphi}{ }^{*} \mathrm{phi}+\mathrm{Yvvv}^{*} \mathrm{v}^{\wedge} 3+\mathrm{Yrrr} \mathrm{r}^{\wedge} \text { ^ } 3+\ldots \\
& \text { Yvvr* } v^{\wedge} 2^{*} \mathrm{r}+\mathrm{Yvrr}^{*} \mathrm{v}^{*} \mathrm{r}^{\wedge} 2+\text { Yvvphi* }^{*}{ }^{\wedge} 2^{*} \text { phi }+ \text { Yvphiphi* }{ }^{*}{ }^{*} \mathrm{phi}^{\wedge} 2+ \\
& \text { Yrrphi*r}{ }^{\wedge} 2 * \text { phi }+\ldots \\
& \text { Yrphiphi* }{ }^{*} \text { *phi^2 }-(m+m x) * u^{*} r+(1+\mathrm{aH}) * \mathrm{FN}^{*} \cos (\text { delta }) \text {; }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{uR}=\mathrm{uP} * \text { epsilon*sqrt(1+8*kk*KT/(pi*J^2)); } \\
& \text { alphaR }=\text { delta }+\operatorname{atan}(v R / u R) \text {; } \\
& \mathrm{FN}=-((6.13 * \text { Delta }) /(\text { Delta }+2.25))^{*}\left(\mathrm{AR} / \mathrm{L}^{\wedge} 2\right)^{*}\left(\mathrm{uR}^{\wedge} 2+\mathrm{vR} \wedge 2\right)^{*} \sin (\text { alphaR }) ; \\
& \mathrm{T} \quad=2 * \text { rho }{ }^{*} \mathrm{D}^{\wedge} 4 /\left(\mathrm{V}^{\wedge} 2^{*} \mathrm{~L}^{\wedge} 2^{*} \text { rho }\right) * \mathrm{KT}^{*} \mathrm{n}^{*} \operatorname{abs}(\mathrm{n}) \text {; }
\end{aligned}
\]
\[
\left.\begin{array}{c}
(\cos (\mathrm{psi}) * \mathrm{u}-\sin (\mathrm{psi}) * \cos (\mathrm{phi}) * \mathrm{v}) * \mathrm{~V} \\
(\sin (\mathrm{psi}) * \mathrm{u}+\cos (\mathrm{psi}) * \cos (\mathrm{phi}) * \mathrm{v}) * \mathrm{~V} \\
\operatorname{delta} \_\operatorname{dot} \\
\mathrm{n} \_\operatorname{dot}
\end{array}\right] ;
\]

\section*{D. V07_SIM}
```

% SIM.m
%
% Main program for contship simulation
%
% NTH 1994, Trygve Lauvdal
clear

```
v07_data \% set model data
load v07_data \% load model data
\(\mathrm{N}=15000 ; \quad\) \% number of samples
table \(=\operatorname{zeros}(\mathrm{N}\), length \((\mathrm{x})+\) length \((\mathrm{u})) ; \%\) storage vector
disp('Simulating');
for \(\mathrm{i}=1: \mathrm{N}+1\),
    table(i,:) \(=\left[\mathrm{x}^{\prime}, \mathrm{u}^{\prime}\right]\);
    \% data storage
    \(\mathrm{u}=\mathrm{v} 07 \_\operatorname{cont}(\mathrm{i} * \mathrm{~h}, \mathrm{x}, \mathrm{u}) ; \quad \%\) input
    \(\mathrm{xdot}=\mathrm{v} 07 \_\)rudder \(\left(\mathrm{x}, \mathrm{u}^{\prime}\right) ; \quad \quad \% \mathrm{xdot}(\mathrm{i})=\mathrm{f}(\mathrm{x}(\mathrm{i}), \mathrm{u}(\mathrm{i}))\)
    \(\mathrm{x}=\mathrm{x}+\mathrm{h}^{*} \mathrm{xdot} ; \quad\) \% euler integration \(\mathrm{x}(\mathrm{i}+1)\)
end \(\quad\) \% END OF MAIN LOOP

\section*{E. V07RUDDER_PLOT}
function plot_data \(=\) V07rudder_plot(table,h,N)
```

figure (1)
x = table(:,7);
y = table(:,8);
plot(x,y)
legend('Pod','Rudder')
figure(2)
time = (0:N)*h;
u = table(:,1)*1.94384449244;
v = table(:,2)*1.94384449244;
U = sqrt(u.*u + v.*v);
plot(time,U),
legend('Pod','Rudder')
figure(3)
plot(time,v),
legend('Pod','Rudder')
figure(4)
phi = table(:,5)*(180/pi);
plot(time,phi)
legend('Pod','Rudder')

```

THIS PAGE INTENTIONALLY LEFT BLANK

\section*{APPENDIX B. MATLAB CODE FOR SHIP WITH POD}

\section*{A. V07_CONT}
```

function u1 = V07_cont(k,x,u)
u1 = [20*pi/180; % delta_pod (rad)
85];

```
B. V07_DATA
```

% V07_DATA datafile for v07.m. Contains initial state
% vector, initial input and main dimensions.
%
% NTH }1994\mathrm{ Trygve Lauvdal
clc
echo on
% Default parameters for High Speed Container Ship :
%
% Max pod angle :0 deg
% Max pod rate:0 deg/s
% Max shaft velocity : 160 rpm
% Length of ship : 175 m
% Initial states, inputs and sample time (to be edited by user):

```
\begin{tabular}{|c|c|c|c|c|}
\hline u & \(=\) & 15.433; & \% surge velocity & (m/s) \\
\hline v & \(=\) & 0, & \% sway velocity & (m/s) \\
\hline p & \(=\) & 0 ; & \% roll velocity & \((\mathrm{rad} / \mathrm{s})\) \\
\hline r & \(=\) & 0; & \% yaw velocity & ( \(\mathrm{rad} / \mathrm{s}\) ) \\
\hline phi & \(=\) & 0 ; & \% roll angle & (rad) \\
\hline psi & \(=\) & 0 ; & \% yaw angle & (rad) \\
\hline xpos & \(=\) & 0 ; & \(\%\) surge position & (m) \\
\hline ypos & \(=\) & 0; & \% sway position & (m) \\
\hline delta & pod= & 0 ; & \% actual rudder an & (rad) \\
\hline n & \(=\) & 10; & \% actual shaft spe & (rpm) \\
\hline d_c & \(=\) & 20 * \(\mathrm{pi} / 18\) & \% commanded rud & angle \\
\hline
\end{tabular}
n_c \(=0 ; \quad \%\) commanded shaft speed \(\quad(r p m)\)
\(\mathrm{h} \quad=\quad 0.1 ; \quad \%\) sample time
\begin{tabular}{|c|c|c|c|}
\hline x & & [u v p r phi psi xpos ypos delta n]'; & \% state vector \\
\hline u & \(=\) & [d_c n_c]'; & \% input vector \\
\hline
\end{tabular}
echo
current = pwd;
if \(\sim \operatorname{exist}([\) 'sim.m']),
saveon \(=\) [current \(1 / v 07 \_\)data \(x\) u h'];
else
saveon \(=[\) current 1/v07/v07_data x u h'];
end
eval(['save v07_data'])

\section*{C. V07_POD}
```

function xdot = V07_pod(x,ui)
%
% xdot = V07(x,ui); returns the time derivate of the state vector :
%
% x = [u v p r phi psi xpos ypos delta n]' where
%
%u surge velocity (m/s)
% = sway velocity (m/s)
% p roll velocity (rad/s)
%r = yaw velocity (rad/s)
% phi = roll angle (rad)
%psi = yaw angle (rad)
% xpos = position in x-direction (m)
% ypos = position in y-direction (m)
% delta_pod= actual pod angle (rad)
% = actual shaft velocity (rpm)
%
% The input vector is:
%
% ui = [delta_c n_c]' where
%
% delta_c = commanded pod angle (rad)
% n_c = commanded shaft velocity (rpm)
%
% NTH 1994, Trygve Lauvdal
%
% Reference : Son og Nomoto (1982).
% On the Coupled Motion of Steering and
% Rolling of a High Speed Container Ship,
% Naval Architect of Ocean Engineering,
% 20:73-83. From J.S.N.A., Japan, Vol. 150, 1981.

```
\% Check of input and state dimensions
if \(\sim(\) length \((x)==10)\), error('x-vector must have dimension 10 !');end if \(\sim(\) length \((u i)=2)\), error('u-vector must have dimension \(2!')\);end
```

delta_pod = 20; % pod angle (deg)
delta_pod = delta_pod*pi/180; % pod angle (rad)

```
\% Normalization variables
\(\begin{array}{ll}\mathrm{L} & =175 ; \quad \text { \% length of ship (m) } \\ \mathrm{sqrV} & =\left(\mathrm{x}(1)^{\wedge} 2+\mathrm{x}(2)^{\wedge} 2\right) ; \\ \mathrm{V} & =\quad \mathrm{sqrt}(\mathrm{sqrV}) ; \quad \text { \% service speed }(\mathrm{m} / \mathrm{s})\end{array}\)
\% Check of service speed
if \(\mathrm{V}==0\),error('The ship must have speed greater than zero');end
\begin{tabular}{lllll} 
delta_max & \(=\) & \(20 ;\) & \(\%\) max rudder angle & \((\mathrm{deg})\) \\
Ddelta_max & \(=\) & \(5 ;\) & \(\%\) max rudder angle rate & \((\mathrm{deg} / \mathrm{s})\) \\
n_max & \(=\) & \(160 ;\) & \(\%\) max shaft velocity & \((\mathrm{rpm})\)
\end{tabular}
\% Non-dimensional states and inputs
delta_c \(=u i(1)\);
n_c \(\quad=\quad \operatorname{ui}(2) / 60 * L / V\);
\(\mathrm{u}=\mathrm{x}(1) / \mathrm{V} ; \quad \mathrm{v}=\mathrm{x}(2) / \mathrm{V}\);
\(\mathrm{p}=\mathrm{x}(3)^{*} \mathrm{~L} / \mathrm{V} ; \quad \mathrm{r}=\mathrm{x}(4)^{*} \mathrm{~L} / \mathrm{V}\);
phi \(=x(5) ; \quad\) psi \(=x(6)\);
delta_pod \(=x(9) ; \quad n=x(10) / 60^{*} \mathrm{~L} / \mathrm{V}\);
\% Parameters, hydrodynamic derivatives and main dimensions
\(\mathrm{m}=0.00792 ; \quad \mathrm{mx} \quad=0.000238 ; \quad \mathrm{my}=0.000238\);
\(\mathrm{Ix}=0.0000176 ;\) alphay \(=0.05 ; \quad 1 \mathrm{x}=0.0313\);
\(\mathrm{ly}=0.0313 ; \quad \mathrm{Ix} \quad=0.0000176 ; \quad \mathrm{Iz}=0.000456 ;\)
\[
\begin{aligned}
& \mathrm{Jx}=0.0000034 ; \mathrm{Jz} \quad=0.000419 ; \quad \mathrm{xG}=0 \text {; } \\
& \text { B }=25.40 ; \quad \mathrm{dF}=8.00 ; \quad \mathrm{g} \quad=9.81 \text {; } \\
& \mathrm{dA}=9.00 ; \quad \mathrm{d}=8.50 ; \quad \text { nabla }=21222 ; \% \text { Displacement Volume } \\
& \mathrm{KM}=10.39 ; \quad \mathrm{KB}=4.6154 ; \mathrm{AR}=33.0376 ; \% \text { Rudder Area } \\
& \text { KG }=10.09 ; \quad \text { Delta }=1.8219 ; \text { \%Aspect Ratio } \\
& \text { D }=6.533 \text {; \%Propeller Diameter } \\
& \text { GM = .3/L; } \\
& \text { rho }=1000 ; \quad \mathrm{t}=0.175 ; \quad \mathrm{T}=0.0005 ; \\
& \left.\mathrm{W}=\text { rho*g*nabla/(rho* } \mathrm{L}^{\wedge} 2^{*} \mathrm{~V}^{\wedge} 2 / 2\right) \text {; } \\
& \text { Xuu }=-0.0004226 ; \text { Xvr }=-0.00311 ; ~ X r r=0.00020 \text {; } \\
& \text { Xphiphi }=-0.00020 ; \quad \mathrm{Xvv}=-0.00386 ; \\
& \mathrm{Kv}=0.0003026 ; \quad \mathrm{Kr}=-0.000063 ; \mathrm{Kp}=-0.0000075 ; \\
& \text { Kphi }=-0.000021 ; \quad \text { Kvvv }=0.002843 ; \text { Krrr }=-0.0000462 ; \\
& \text { Kvvr }=-0.000588 ; \quad \text { Kvrr }=0.0010565 ; \text { Kvvphi }=-0.0012012 \text {; } \\
& \text { Kvphiphi }=-0.0000793 ; \quad \text { Krrphi }=-0.000243 ; \text { Krphiphi }=0.00003569 ; \\
& \text { Yv }=-0.0116 ; \quad \mathrm{Yr}=0.00242 ; \quad \mathrm{Yp}=0 \text {; } \\
& \text { Yphi }=-0.000063 ; \text { Yvvv }=-0.109 ; \quad \text { Yrrr }=0.00177 \text {; } \\
& \text { Yvvr }=0.0214 ; \quad \text { Yvrr }=-0.0405 ; \quad \text { Yvvphi }=0.04605 ; \\
& \text { Yvphiphi }=0.00304 ; \text { Yrrphi }=0.009325 ; \quad \text { Yrphiphi }=-0.001368 ; \\
& \mathrm{Nv}=-0.0038545 ; \mathrm{Nr}=-0.00222 ; \mathrm{Np}=0.000213 \text {; } \\
& \mathrm{Nphi}=-0.0001424 ; \mathrm{Nvvv}=0.001492 ; \mathrm{Nrrr}=-0.00229 \text {; } \\
& \text { Nvvr }=-0.0424 ; \quad \text { Nvrr }=0.00156 ; \quad \text { Nvvphi }=-0.019058 ; \\
& \text { Nvphiphi }=-0.0053766 ; \text { Nrrphi }=-0.0038592 ; \text { Nrphiphi }=0.0024195 \text {; } \\
& \mathrm{kk}=0.631 ; \quad \text { epsilon }=0.921 ; \quad x \mathrm{R}=-0.5 \text {; } \\
& \mathrm{wp}=0.184 ; \quad \text { tau }=1.09 ; \quad \text { xp }=-0.526 ; \\
& \text { cpv }=0.0 ; \quad \text { cpr }=0.0 ; \quad \text { ga }=0.088 ;
\end{aligned}
\]
```

cRr =-0.156; cRrrr =-0.275; cRrrv = 1.96;
cRX = 0.71; aH = 0.237; zR = 0.033;
xH = -0.48;
% Masses and moments of inertia
m11 = (m+mx);
m22 = (m+my);
m32 = -my*ly;
m42 = my*alphay;
m33 = (Ix+Jx);
m44 = (Iz+Jz);
% Pod saturation and dynamics
if abs(delta_c) >= delta_max*pi/180,
delta_c = sign(delta_c)*delta_max*pi/180;
end
delta_dot = delta_c - delta_pod;
if abs(delta_dot) >= Ddelta_max*pi/180,
delta_dot = sign(delta_dot)*Ddelta_max*pi/180;
end
% Shaft velocity saturation and dynamics
n_c = n_c*V/L;
n = n*V/L;
if abs(n_c) >= n_max/60,
n_c = sign(n_c)*n_max/60;
end

```
if \(\mathrm{n}>0.3, \mathrm{Tm}=5.65 / \mathrm{n}\);else, \(\mathrm{Tm}=18.83\);end
n_dot \(=1 / T m *\left(n_{-} \mathrm{c}-\mathrm{n}\right) * 60\);
\% Calculation of state derivatives
    \(\mathrm{vR}=\mathrm{ga}^{*} \mathrm{v}+\mathrm{cRr} r^{*} \mathrm{r}+\mathrm{cRrrr}{ }^{*} \mathrm{r}^{\wedge} 3+\mathrm{cRrrv}{ }^{*} \mathrm{r}^{\wedge} 2^{*} \mathrm{~V}\);

\section*{\% Forces and moments}
\[
\mathrm{Y}=(1-\mathrm{t})^{*} \mathrm{~T}^{*} \cos (\text { delta_pod })+\mathrm{Yv}^{*} \mathrm{v}+\mathrm{Yr}^{*} \mathrm{r}+\mathrm{Yp} * \mathrm{p}+\mathrm{Yphi} \mathrm{p}^{*} \mathrm{phi}+\mathrm{Yvv} \mathrm{v}^{*} \mathrm{v}^{\wedge} 3+
\]
\[
\text { Yrrrr}^{*} r^{\wedge} 3+\ldots
\] Yrrphi* \({ }^{\wedge} 2^{*}\) phi \(+\ldots\)

Yrphiphi* \({ }^{*}{ }^{*}\) phi \(^{\wedge} 2-(m+m x) * u^{*}\);
\(\mathrm{K}=-\mathrm{zR} *(1-\mathrm{t})^{*} \mathrm{~T}^{*} \cos \left(\right.\) delta \(\_\)pod \()+\mathrm{Kv}^{*} \mathrm{v}+\mathrm{Kr}^{*} \mathrm{r}+\mathrm{Kp}{ }^{*} \mathrm{p}+\mathrm{Kphi}{ }^{*}\) phi + \(K_{v v v^{*}} \mathrm{v}^{\wedge} 3+K r r{ }^{*} \mathrm{r}^{\wedge} 3+\ldots\)
 Krrphi* \({ }^{\wedge}{ }^{\wedge} 2^{*}\) phi \(+\ldots\)
Krphiphi* \({ }^{*}{ }^{*}\) phi^ \(^{\wedge} 2+m x^{*} 1 x^{*} u^{*} \mathrm{r}-\mathrm{W}^{*} \mathrm{GM}^{*}\) phi;
\(\mathrm{N}=0.5 *(1-\mathrm{t}) * \mathrm{~T}^{*} \cos (\) delta_pod \()+\mathrm{Nv}^{*} \mathrm{v}+\mathrm{Nr}{ }^{*} \mathrm{r}+\mathrm{Np}{ }^{*} \mathrm{p}+\mathrm{Nphi}{ }^{*}\) phi + Nvvv*v^3 + Nrrr*r^3 + ...
 Nrrphi* \({ }^{\wedge}{ }^{\wedge} 2 *\) phi \(+\ldots\)
Nrphiphi*r*phi^2;
\% Dimensional state derivatives
```

xdot =[X*(V^2/L)/m11
-(-m33*m44*Y+m32*m44*K+m42*m33*N)/(m22*m33*m44-m32^2*m44-
m42^2*m33)*(V^2/L)
(-m32*m44*Y+K*m22*m44-K*m42^2+m32*m42*N)/(m22*m33*m44-
m32^2*m44-m42^2*m33)*(V^2/L^2)
(-m42*m33*Y+m32*m42*K+N*m22*m33-N*m32^2)/(m22*m33*m44-
m32^2*m44-m42^2*m33)*(V^2/L^2)

$$
\begin{aligned}
& X=X u u^{*} u^{\wedge} 2+(1-t) * T^{*} \sin (\text { delta_pod })+X v r^{*} v^{*} r+X v v^{*} v^{\wedge} 2+X r r^{*} r^{\wedge} 2+ \\
& \text { Xphiphi*phi^2 }+(\mathrm{m}+\mathrm{my}) *{ }^{*}{ }^{*} \mathrm{r} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{uP}=\cos (\mathrm{v})^{*}\left((1-\mathrm{wp})+\operatorname{tau} *\left(\left(\mathrm{v}+\mathrm{xp}^{*} \mathrm{r}\right)^{\wedge} 2+\mathrm{cpv}^{*} \mathrm{v}+\mathrm{cpr}{ }^{*} \mathrm{r}\right)\right) ; \\
& \mathrm{J} \quad=\mathrm{uP} * \mathrm{~V} /(\mathrm{n} * \mathrm{D}) \text {; } \\
& \mathrm{KT}=0.527-0.455 * \mathrm{~J} \text {; } \\
& \text { uR }=\mathrm{uP} \text { *epsilon*sqrt(} 1+8^{*} \mathrm{kk}^{*} \mathrm{KT} /\left(\mathrm{pi}^{*} \mathrm{~J}^{\wedge} 2\right) \text {); } \\
& \mathrm{T} \quad=2 * \text { rho }{ }^{*} \mathrm{D}^{\wedge} 4 /\left(\mathrm{V}^{\wedge} 2^{*} \mathrm{~L}^{\wedge} 2^{*} \text { rho }\right) * \mathrm{KT}^{*} \mathrm{n}^{*} \operatorname{abs}(\mathrm{n}) \text {; }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{p}^{*}(\mathrm{~V} / \mathrm{L}) \\
\cos (\mathrm{phi}))^{*} *(\mathrm{~V} / \mathrm{L}) \\
\left(\cos (\mathrm{psi}) * \mathrm{u}-\sin (\mathrm{psi})^{*} \cos (\mathrm{phi})^{*} \mathrm{v}\right)^{*} \mathrm{~V} \\
(\sin (\mathrm{psi}) * \mathrm{u}+\cos (\mathrm{psi}) * \cos (\mathrm{phi}) * \mathrm{v})^{*} \mathrm{~V} \\
\text { delta_dot } \\
\mathrm{n}_{-} \text {dot }
\end{gathered}
$$

D. V07_SIM

```
% SIM.m
%
% Main program for contship simulation
%
% NTH 1994, Trygve Lauvdal
clear
```

v07_data \% set model data
load v07_data \quad \% load model data
$\mathrm{N}=15000 ; \quad$ \% number of samples
table $=$ zeros(N,length $(\mathrm{x})+$ length (u)); \% storage vector
disp('Simulating');

```
for \(\mathrm{i}=1: \mathrm{N}+1\),
    table \((\mathrm{i},:)=\left[\mathrm{x}^{\prime}, \mathrm{u}^{\prime}\right] ; \quad \%\) data storage
    \(\mathrm{u}=\mathrm{v} 07 \_\)cont \(\left(\mathrm{i}^{*} \mathrm{~h}, \mathrm{x}, \mathrm{u}\right) ; \quad\) \% input
    \(\operatorname{xdot}=\mathrm{v} 07 \_\)rudder \(\left(\mathrm{x}, \mathrm{u}^{\prime}\right) ; \quad \quad \% \mathrm{xdot}(\mathrm{i})=\mathrm{f}(\mathrm{x}(\mathrm{i}), \mathrm{u}(\mathrm{i}))\)
    \(\mathrm{x}=\mathrm{x}+\mathrm{h}\) *xdot; \(\quad\) \% euler integration \(\mathrm{x}(\mathrm{i}+1)\)
end \(\quad\) \% END OF MAIN LOOP
```


E. V07POD_PLOT

function plot_data $=$ V07pod_plot(table,h,N)
clf
figure (1)

```
x = table(:,7);
y = table(:,8);
plot(x,y,'r')
grid on, xlabel('X [m]'), ylabel('Y [m]')
title('Position in the xy Plane')
hold on
figure(2)
time = (0:N)*h;
u = table(:,1)*1.94384449244;
v = table(:,2)*1.94384449244;
U = sqrt(u.*u + v.*v);
plot(time,U,'r'),
grid on, xlabel('Time [s]'), ylabel('U [knots]')
title('Total speed U')
hold on
figure(3)
plot(time,v,'r'),
grid on, xlabel('Time [s]'), ylabel('v [knots]')
title('Sway Velocity v')
hold on
figure(4)
phi = table(:,5)*(180/pi);
plot(time,phi,'r')
grid on, xlabel('Time [s]'), ylabel('\phi [deg]')
title('Roll Angle \phi')
hold on
```

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF REFERENCES

1. Toxopeus, S., and Loeff, G., "Maneuvering Aspects of Fast Ships With Pods," Third International EuroConference on High-Performance Marine Vessels HIPER'02, Bergen, Norway, pp 392-406, 14-17 September 2002.
2. van Terwisga, T., Quadvlieg, F., and Valkhof, H., "Steerable Propulsion Units: Hydrodynamic Issues and Design Consequences," $80^{\text {th }}$ Anniversary of Schottel GmbH \& Co., 11 August 2001.
3. Logsdon, M., "Coupled Roll and Directional Stability Characteristics of Surface Ships," Master’s Thesis, Naval Postgraduate School, Monterey, CA, June 1992.
4. Lewis, E.V., ed., Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, Vol. III, Jersey City, NJ, 1989.
5. Son, K., and Nomoto, K., "On the Coupled Motion of Steering and Rolling of a High Speed Container Ship," Journal of the Society of Naval Architects of Japan, Vol. 150, pp 232-244, December 1981. (In Japanese)
6. Lauvdal, T., and Fossen, T., "Matlab Simulation Program for Marine and Flight Vehicles," The University of Trondheim, The Norwegian Institute of Technology, Department of Cybernetics, NTH Report nr. 94-43-W, Trondheim, Norway, 7 November 1994.
7. Papoulias, F., "Notes on Maneuvering Motions", Naval Postgraduate School, Monterey, CA.

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia
2. Dudley Knox Library

Naval Postgraduate School Monterey, California
3. Professor Fotis Papoulias

Naval Postgraduate School
Monterey, California
4. ENS Michelle K. Betancourt

Naval Postgraduate School
Monterey, California

