[ 247 ]

XV. On a General Method in Dynamics; by which the Study of the Motions of all free
Systems of attracting or repelling Points is reduced to the Search and Differentiation
of one central Relation, or characteristic Function. By WiLLiam Rowan Hawmivton,
Member of several scientific Societies in the British Dominions, and of the American
Academy of Arts and Sciences, Andrews Professor of Astronomy in the University
of Dublin, and Royal Astronomer of Ireland. Communicated by Captain BEAUFORT,
R.N. F.R.S.

Received April 1,—Read April 10, 1834.

Introductory Remarks.

THE theoretical development of the laws of motion of bodies is a problem of such
interest and importance, that it has engaged the attention of all the most eminent
mathematicians, since the invention of dynamics as a mathematical science by
GavniLro, and especially since the wonderful extension which was given to that science
by NewroN. Among the successors of those illustrious men, LacranGe has perhaps
done more than any other analyst, to give extent and harmony to such deductive
researches, by showing that the most varied consequences respecting the motions of
systems of bodies may be derived from one radical formula; the beauty of the
method so suiting the dignity of the results, as to make of his great work a kind of
scientific poem. But the science of force, or of power acting by law in space and
time, has undergone already another revolution, and has become already more dyna-
mic, by having almost dismissed the conceptions of solidity and cohesion, and those
other material ties, or geometrically imaginable conditions, which LaGraNGE so hap-
pily reasoned on, and by tending more and more to resolve all connexions and
actions of bodies into attractions and repulsions of points: and while the science is
advancing thus in one direction by the improvement of physical views, it may
advance in another direction also by the invention of mathematical methods. And
the method proposed in the present essay, for the deductive study of the motions of
attracting or repelling systems, will perhaps be received with indulgence, as an
attempt to assist in carrying forward so high an inquiry.

In the methods commonly employed, the determination of the motion of a free
point in space, under the influence of accelerating forces, depends on the integration
of three equations in ordinary differentials of the second order; and the determina-
tion of the motions of a system of free points, attracting or repelling one another,
depends on the integration of a system of such equations, in number threefold the
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number of the attracting or repelling points, unless we previously diminish by unity
this latter number, by considering only relative motions. Thus, in the solar system,
when we consider only the mutual attractions of the sun and of the ten known
planets, the determination of the motions of the latter about the former is reduced,
by the usual methods, to the integration of a system of thirty ordinary differential
equations of the second order, between the coordinates and the time ; or, by a trans-
formation of LAGRANGE, to the integration of a system of sixty ordinary differential
equations of the first order, between the time and the elliptic elements: by which
integrations, the thirty varying coordinates, or the sixty varying elements, are to be
found as functions of the time. In the method of the present essay, this problem is
reduced to the search and differentiation of a single function, which satisfies two
partial differential equations of the first order and of the second degree: and every
other dynamical problem, respecting the motions of any system, however numerous,
of attracting or repelling points, (even if we suppose those points restricted by any
conditions of connexion consistent with the law of living force,) is reduced, in like
manner, to the study of one central function, of which the form marks out and cha-
racterizes the properties of the moving system, and is to be determined by a pair of
partial differential equations of the first order, combined with some simple considera-
tions. The difficulty is therefore at least transferred from the integration of many
equations of one class to the integration of two of another: and even if it should be
thought that no practical facility is gained, yet an intellectual pleasure may result
from the reduction of the most complex and, probably, of all researches respecting
the forces and motions of body, to the study of one characteristic function*, the un-
folding of one central relation.

The present essay does not pretend to treat fully of this extensive subject,—a task
which may require the labours of many years and many minds ; but only to suggest
the thought and propose the path to others. Although, therefore, the method may be
used in the most varied dynamical researches, it is at present only applied to the
orbits and perturbations of a system with any laws of attraction or repulsion, and
with one predominant mass or centre of predominant energy; and only so far, even
in this one research, as appears sufficient to make the principle itself understood. It
may be mentioned here, that this dynamical principle is only another form of that
idea which has already been applied to optics in the Theory of systems of rays, and
that an intention of applying it to the motions of systems of bodies was announced -

* Lacrance and, after him, Laprack and others, have employed a single function to express the different
forces of a system, and so to form in an elegant manner the differential equations of its motion. By this con-
ception, great simplicity has been given to the statement of the problem of dynamics; but the solution of that
problem, or the expression of the motions themselves, and of their integrals, depends on a very different and
hitherto unimagined function, as it is the purpose of this essay to show.

+ Transactions of the Royal Irish Academy, vol. xv. page 80. A notice of this dynamical principle was also
lately given in an article ““On a general Method of expressing the Paths of Light and of the Planets,” pub-
lished in the Dublin University Review for October 1833.
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at the publication of that theory. And besides the idea itself, the manner of calcu-
lation also, which has been thus exemplified in the sciences of optics and dynamics,
seems not confined to those two sciences, but capable of other applications ; and the
peculiar combination which it involves, of the principles of variations with those of
partial differentials, for the determination and use of an important class of integrals,
may constitute, when it shall be matured by the future labours of mathematicians, a
separate branch of analysis.
WiLriam R. Hamivron.
Observatory, Dublin,
March 1834.

Integration of the Equations of Motion of a System, characteristic Function of such
Motion, and Law of varying Action.

1. The known differential equations of motion of a system of free points, repelling
or attracting one another according to any functions of their distances, and not dis-
turbed by any foreign force, may be comprised in the following formula :

S.m@dz+ydy+dx)=0U. . . . . . . . . (L)
In this formula the sign of summation 3 extends to all the points of the system ; m is,
for any one such point, the constant called its mass; ', y", 2", are its component ac-
celerations, or the second differential coefficients of its rectangular coordinates z, y, =,
taken with respect to the time; d, dy, 2, are any arbitrary infinitesimal displace-
ments which the point can be imagined to receive in the same three rectangular
directions; and 3 U is the infinitesimal variation corresponding, of a function U of
the masses and mutual distances of the several points of the system, of which the
form depends on the laws of their mutual actions, by the equation
U=3.mmf(), . « « . . . . . . . . (2)
r being the distance between any two points m, m, and the function f (r) being such
that its derivative or differential coefficient /' (r) expresses the law of their repulsion,
being negative in the case of attraction. The function which has been here called U,
may be named the force-function of a system: it is of great utility in theoretical
mechanics, into which it was introduced by LAGRrANGE, and it furnishes the following
elegant forms for the differential equations of motion, included in the formula (1.):
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the second members of these equations being the partial differential coefficients of
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the first order of the function U. But notwithstanding the elegance and simplicity
of this known manner of stating the principal problem of dynamics, the difficulty of
solving that problem, or even of expressing its solution, has hitherto appeared insu-
perable ; so that only seven intermediate integrals, or integrals of the first order, with
as many arbitrary constants, have hitherto been found for these general equations of
motion of a system of n points, instead of 3 » intermediate and 3 » final integrals, in-
volving ultimately 6 » constants; nor has any integral been found which does not
need to be integrated again. No general solutiorn has been obtained assigning (as a
complete solution ought to do) 3 » relations between the n masses m,, my, ... m , the

3 n varying coordinates xy, ¥y, 2y, - - - £, ¥ , % , the varying time #, and the 6 = initial
data of the problem, namely, the initial coordinates ay, by, ¢y, . . . , bn, c» and their
initial rates of increase, &), ¥, ¢, ...a’n, b’n, c'n; the quantities called here initial

being those which correspond to the arbitrary origin of time. It is, however, possible
(as we shall see) to express these long-sought relations by the partial differential co-
efficients of a new central or radical function, to the search and employment of which
the difficulty of mathematical dynamics becomes henceforth reduced.

2. If we put for abridgement

T=13.m@2+92+22, . . . . . . . . . (4)

so that 2 T denotes, as in the Mécanique Analytique, the whole living force of the
system; (', ¥, &', being here, according to the analogy of our foregoing notation,
the rectangular components of velocity of the point m, or the first differential coeffi-
cients of its coordinates taken with respect to the time;) an easy and well known
combination of the differential equations of motion, obtained by changing in the for-
mula (1.) the variations to the dlﬂ“erentlals of the coordinates, may be expressed in
the following manner,

dT=dU, . . . . . . . . . . . .. (5)
and gives, by integration, the celebrated law of living force, under the form
=U+H . . . . . . . ... ... (6)

In this expression, which is one of the seven known integrals already mentioned,
the quantity H is independent of the time, and does not alter in the passage of the
points of the system from one set of positions to another. We have, for example, an
initial equation of the same form, corresponding to the origin of time, which may
he written thus,

To=U+H. . . . . . . . . .. .. (@)

The quantlty H may, however, receive any arbitrary increment whatever, when we
pass in thought from a system moving in one way, to the same system moving in
another, with the same dynamical relations between the accelerations and positions
of its points, but with different initial data ; but the increment of H, thus obtained,
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is evidently connected with the analogous increments of the functions T and U, by
the relation

AT=AU4+AH,. . . . . . . . . . . . . (8)
which, for the case of infinitesimal variations, may conveniently be written thus,
ST=3U~+sH;. . . . . . . . . . . . .. (9)

and this last relation, when multiplied by d¢, and integrated, conducts to an import-
ant result. For it thus becomes, by (4.) and (1.),

S m@dax.da+dy.dy +dz.0)=
SE m@dx dx+dy dy+d v+ SoH.de, . . . . . (10)
that is, by the principles of the calculus of variations,
V=3 m@de+ydy+23z)—3.m@da+b3b+c'dc)+¢3H,. . (A)
if we denote by V the integral
V= Sm@detydy+2dz)=/fy2Tdt, . . . . . . . (B)
namely, the accumulated living force, called often the action of the system, from its
initial to its final position.
If, then, we consider (as it is easy to see that we may) the action V as a function of

the initial and final coordinates, and of the quantity H, we shall have, by (A.), the
following groups of equations; first, the group,

L A I ANpRE I,
Sa, = M g, S Ml =M T
3V 3V’ 8V
S—y—lzmly’lga-y;:mzy'z;...gyjl:mny'n; N (03
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gz—lzmlzl;ggzmzzﬁ...m—mnzn,J

Secondly, the group,
3V , 3V , 3V _ BN
m:—mlal;m=—ﬂl2a2;...m——ﬂlnan, L
3V 3V 8V
57‘:—-17111;’1;8—32-:—7722 ’2;...8—1)—n=—nznb’n; MD.)
3V , 8V , 3V ,
-g?lz—mlcl;3;;:—7)1202;...m——mncn;

and finally, the equation,
3V

So that if this function V were known, it would only remain to eliminate H between
the 3 n + 1 equations (C.) and (E.), in order to obtain all the 3 n intermediate inte-
grals, or between (D.) and (E.) to obtain all the 3 » final integrals of the differential
equations of motion; that is, ultimately, to obtain the 3 n sought relations between
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the 3 n varying coordinates and the time, involving also the masses and the 6 » initial
data above mentioned ; the discovery of which relations would be (as we have said)
the general solution of the general problem of dynamics. We have, therefore, at
least reduced that general problem to the search and differentiation of a single func-
tion V, which we shall call on this account the cHARACTERISTIC FUNCTION of motion of
a system ; and the equation (A.), expressing the fundamental law of its variation, we
shall call the equation of the characteristic function, or the LAW OF VARYING ACTION.

3. To show more clearly that the action or accumulated living force of a system,
or in other words, the integral of the product of the living force by the element of the
time, may be regarded as a function of the 6 » 4 1 quantities already mentioned,
namely, of the initial and final coordinates, and of the quantity H, we may observe,
that whatever depends on the manner and time of motion of the system may be con-
sidered as such a function ; because the initial form of the law of living force, when
combined with the 3 » known or unknown relations between the time, the initial data,
and the varying coordinates, will always furnish 3 » 4 1 relations, known or unknown,
to connect the time and the initial components of velocities with the initial and final
coordinates, and with H. Yet from not having formed the conception of the action
as a function of this kind, the consequences that have been here deduced from the
formula (A.) for the variation of that definite integral, appear to have escaped the
notice of LaaranGg, and of the other illustrious analysts who have written on theo-
retical mechanics ; although they were in possession of a formula for the variation of
this integral not greatly differing from ours. For although Lacrance and others, in
treating of the motion of a system, have shown that the variation of this definite inte-
gral vanishes when the extreme coordinates and the constant H are given, they appear
to have deduced from this result only the well known law of least action ; namely,
that if the points or bodies of a system be imagined to move from a given set of initial
to a given set of final positions, not as they do nor even as they could move consist-
ently with the general dynamical laws or differential equations of motion, but so as
not to violate any supposed geometrical connexions, nor that one dynamical relation
between velocities and configurations which constitutes the law of living force ; and
if, besides, this geometrically imaginable, but dynamically impossible motion, be made
to differ infinitely Zit¢le from the actual manner of motion of the system, between the
given extreme positions; then the varied value of the definite integral called action,
or the accumulated living force of the system in the motion thus imagined, will differ
infinitely Jess from the actual value of that integral. But when this well known law
of least, or as it might be better called, of stationary action, is applied to the determi-
nation of the actual motion of a system, it serves only to form, by the rules of the
calculus of variations, the differential equations of motion of the second order, which
can always be otherwise found. It seems, therefore, to be with reason that LAGRANGE,
Larrace, and Porsson have spoken lightly of the utility of this principle in the
present state of dynamics. A different estimate, perhaps, will be formed of that
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other principle which has been introduced in the present paper, under the name of
the law of varying action, in which we pass from an actual motion to another motion
dynamically possible, by varying the extreme positions of the system, and (in general)
the quantity H, and which serves to express, by means of a single function, not the
mere differential equations of motion, but their intermediate and their final integrals.

Verifications of the foregoing Integrals.

4. A verification, which ought not to be neglected, and at the same time an illus-
tration of this new principle, may be obtained by deducing the known differential
equations of motion from our system of intermediate integrals, and by showing the
consistence of these again with our final integral system. As preliminary to such veri-
fication, it is useful to observe that the final equation (6.) of living force, when com-
bined with the system (C.), takes this new form,

__;_sz«%’ 2y (%)24_ (%)2}=U+ H; . . . . . . . (F)
and that the initial equation (7.) of living force becomes by (D.)
1 2%{(%’.)2 + (%;)2+ (g)z}_—_ U +H . . . . . .. (G)

These two partial differential equations, initial and final, of the first order and the
second degree, must both be identically satisfied by the characteristic function V: they
furnish (as we shall find) the principal means of discovering the form of that function,
and are of essential importance in its theory. If the form of this function were known,
we might eliminate 37 — 1 of the 3 n initial coordinates between the 3 » equations
(C.); and although we cannot yet perform the actual process of this elimination, we
are entitled to assert that it would remove along with the others the remaining initial
coordinate, and would conduct to the equation (6.) of final living force, which might
then be transformed into the equation (F.). In like manner we may conclude that
all the 3 » final coordinates could be eliminated together from the 3 z equations (D.),
and that the result would be the initial equation (7.) of living force, or the transformed
equation (G.). We may therefore consider the law of living force, which assisted
us in discovering the properties of our characteristic function V, as included recipro-
cally in those properties, and as resulting by elimination, in every particular case,
from the systems (C.) and (D.); and in treating of either of these systems, or in con-
ducting any other dynamical investigation by the method of this characteristic func-
tion, we are at liberty to employ the partial differential equations (F.) and (G.), which
that function must necessarily satisfy.

It will now be easy to deduce, as we proposed, the known equations of motion (3.)
of the second order, by differentiation and elimination of constants, from our interme-

MDCCCXXXIV. 2L
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diate integral system (C.), (E.), or even from a part of that system, namely, from the
group (C.), when combined with the equation (F.). For we thus obtain

my 2"y =%§—X =a 21;: + x’zazgfxe +...+ x’ns—i—i—;r—% |
sty e T
+z’1§§¥z—l+z'28—g-z—g+...+z'n§j—j%
=itn e Yt tamans, (- ()
ity reig gt o T T,
=2 ol () + () + (G f =5 U+ )

that is, we obtain

8 U
mlm"1=§7l:.............(12.)

And in like manner we might deduce, by differentiation, from the integrals (C.) and
from (F.) all the other known differential equations of motion, of the second order,
contained in the set marked (8.) ; or, more concisely, we may deduce at once the

formula (1.), which contains all those known equations, by observing that the inter-
mediate integrals (C.), when combined with the relation (F.), give

dadvVv a3V dVv 7
E.m.(m"Bx-I-y”By—{-z”Bz)=2(-{z—t—§}—.8‘r+d—t—§;.3y +EZ§?'BZ)

| 13V 8 8V 3 8V 3 5V 5V 5V

3 5 5 1 ([/6V\2 (3V\% & [3V)\2 s. (13.)
=3 (g +oygy +oe5) 3 g { G2) + () + (52)

5 5 )
=0 U. J

5. Again, we were to show that our intermediate integral system, composed of the
equations (C.) and (E.), with the 3 » arbitrary constants a,, b;, ¢, . . . @,; b,, ¢,, (and
involving also the auxiliary constant I,) is consistent with our final integral system
of equations (D.) and (E.), which contain 3 » other arbitrary constants, namely,
adynby, dy, .. dy, Y, d,. Theimmediate differentials of the equations (C.), (D.), (E.),
taken with respect to the time, are, for the first group,
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43V _ d 3V d 3V _
dthl_mlml’dtb‘x —mzxz’ “ccrdtdx,
a3V _ a2V a3V _
dt 3y, =my"s g3 5y, =my'y; - "didy
av. _ o, AV, AV
dtbz = TR Giha, T 2R3 iy T
for the second group,
d 8V AAY a3V I
dita, =05 @vq, = 0% - dive, = 03
d VvV a3V d Vv
d_ta"E=O5Zﬁb‘_bZ—O; ..E}ﬁ;=0;>
d Vv d 3V a3V
Tive, =05 dise, =05 - @ine, = 03
and finally, for the last equation,
243V _
dt 8 H — ™ :

255
m a" ;q
mn y"n 2 } . . (Ho)
m %'
. @)
. . (K)

By combining the equations (C.) with their differentials (H.), and with the re-
lation (F.), we deduced, in the foregoing number, the known equations of motion (3.);
and we are now to show the consistence of the same intermediate integrals (C.) with
the group of differentials (I.), which have been deduced from the final integrals.

The first equation of the group (I.) may be developed thus:

2V , BV , 2V
O"‘”l&a 8m1+x28a18w —r"‘+xn8a18x
2V eV *V
+y1‘o‘alby +y28a 1895 - +yn0a18y
2V 2V 2V

o .
+218a82+ 2%a, Sz+ S o nSaSz ’

and the others may be similarly developed.

-

vV

(14.)

J

In order, therefore, to show that they

are satisfied by the group (C.), it is sufficient to prove that the following equations

)

V

rue’():.s%iz. N )+( + (B
0=;€2.ﬁ{(§; )+( >}
o=z { () + () + ()}

the integer i receiving any value from 1 to » inclusive ; which may be shown at once,

and the required verification thereby be obtained, if we
the relation (F.) with respect to the initial coordinates,
2L2

merely take the variation of
as in the former verification
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we took its variation with respect to the final coordinates, and so obtained results
which agreed with the known equations of motion, and which may be thus collected,

%2-@%{( D)+ ) = ]
320y G) + Gy )+( )}_8% L
2~§rn{(—s—;)+(-sz + () } =4,

The same relation (F.), by being varied with respect to the quantity H, conducts
to the expression

(RN CH RN} EITHNENNEN

and this, when developed, agrees with the equation (K.), which is a new verification
of the consistence of our foregoing results. Nor would it have been much more dif-
ficult, by the help of the foregoing principles, to have integrated directly our integrals
of the first order, and so to have deduced in a different way our final integral system.

6. It may be considered as still another verification of our own general integral
equations, to show that they include not only the known law of living force, or the
integral expressing that law, but also the six other known integrals of the first order,
which contain the law of motion of the centre of gravity, and the law of description
of areas. For this purpose, it is only necessary to observe that it evidently follows
from the conception of our characteristic function V, that this function depends on
the initial and final positions of the attracting or repelling points of a system, not
as referred to any foreign standard, but only as compared with one another; and
therefore that this function will not vary, if without making any real change in either
initial or final configuration, or in the relation of these to each other, we alter at once
all the initial and all the final positions of the points of the system, by any common
motion, whether of translation or of rotation. Now by considering three coordinate
translations, we obtain the three following partial differential equations of the first
order, which the function V must satisfy,

3V 3V b

7+2§—&‘=0;|
3V 3V

2‘3‘3+2§g=0;¥ (0.
3V 3V

ETa—z‘-I-Ej{c:‘:O,J

and by considering three coordinate rotations, we obtain these three other relations
between the partial differential coefficients of the same order of the same charac-
teristic function,
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(o =) +3 (e —b5g) =05 |
E(y%—zsy)—l-E(b c%\bi =0; » (P.)
2(2,88 wSz)—f-E( a%%):O;J

and if we change the final coefficients of V to the final components of momentum,
and the initial coefficients to the initial components taken negatively, according to
the dynainical properties of this function expressed by the integrals (C.) and (D.), we
shall change these partial differential equations (O.) (P.), to the following,

Sima=3.md; 2. my=3.mb; 2. md=3.mc; . . . (15)
and

Sm@y —yd)=2.m@b —bd);

E.ﬂz(yz-—zy):E.m(bc-—cb’); N A 1)

S.m(id—z)=2.m(cd —acd). )

In this manner, therefore, we can deduce from the properties of our characteristic
function the six other known integrals above mentioned, in addition to that seventh
which contains the law of living force, and which assisted in the discovery of our
method.

Introduction of relative or polar Coordinates, or other marks of position of a System.

7. The property of our characteristic function, by which it depends only on the
internal or mutual relations between the positions initial and final of the points of an
attracting or repelling system, suggests an advantage in employing internal or relative
coordinates ; and from the analogy of other applications of algebraical methods to
researches of a geometrical kind, it may be expected that polar and other marks of
position will also often be found useful. Supposing, therefore, that the 3 » final coordi-
nates x, ¥, %, . .. €, Yy, %, have been expressed as functions of 3n other variables,

M Ay e Ag and that the 3 » initial coordinates have in like manner been expressed

as functions of 3 n similar quantities, which we shall call ¢, ¢, . . . e, , we shall pro-

8n’
ceed to assign a general method for introducing these new marks of position into the
expressions of our fundamental relations.

For this purpose we have only to transform the law of varying action, or the fun-

damental formula (A.), by transforming the two sums,
Sm@ox+ydy+ 2dx),and 3. m (dda+b0b+ 'dc),

which it involves, and which are respectively equivalent to the following more deve-
loped expressions,
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S.om@oe+ydy+ 20z) =m (@02, + ¥ 0y, + 21 0%) 1
+ my (@302, + Yy 8ys + 250 2y) L .
+&e.+m (@ 3z 4y Sy + < Bz);J
Sm@da+b0b4ddc)=m (d\da, + V,5b,+ 1d¢;) )
+ m, (@y 0 ay + U508 by + 50 ¢y)
+ &e. +m (d da + v, ob + c’nB cn)J'

Now «, being by supposition a function of the 3 » new marks of position 7, . . .

vatiation Bxi, and its differential coefficient w’i, may be thus expressed :

B.r.:(a-‘r‘iﬁn +8——xi3n + ...+ o 07y, 3
Z 87)1 1 3)72 2 . 87)311, 3n
! it b‘xl., 8xi .
mi:‘é‘—l”1+8—5:2}72+"'+37)3n;73"’,

and similarly for y, and 2, If, then, we consider #, as a function, by (20.), of # ..

involving also in general 7, . . .7, ,

of the first order with respect to 7, . .. 7, , we find the relations,

32, ¥,
i i

5ny

S,
-

o,

S,
l e ——

39, 3v,

and therefore we obtain these new expressions for the variations B.z*i, 8yi, Bzi,

!

et b‘x’z o, |
Bxi T Bnl-{- 3772 ! ...‘+¢5n3n,
n
by, 5y,
ay‘=8_r;’13”1+3 ,lan2+ ’+a_n_y—l n3n2>
34, 3. 3.
Bzi=m8nl+m3n2+...+8, BnSnJ

(17.)

(18.)
Ag o 1S
. (19.)

. (20.)

!
g

and if we take its partial differential coefficients

. (21.)

(22.)

Substituting these expressions (22.) for the variations in the sum (17.), we easily

transform it into the following,

S.om(@de+ydy+d)=3. m(

) o |

L. (23.)

2
+ 3. m( +‘y3ny+z ,2).8772
o’ oy 8
4 &e. +3.m (m’ m -+ y' g—n,—s; -+ zlg“n,—') ‘B”Sn
8T 3T 3T
= R TR T e

T being the same quantity as before, namely, the half of the final living force of the
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system, but being now considered as a function of 7, .. .7 , involving also the

masses, and in general 7, ... 7, and obtained by substituting for the quantities ' y' 2/
their values of the form (20.) in the equation of definition

T=33.m@*+y242%. . . . . . . . . (4)
In like manner we find this transformation for the sum (18.),
8T, 3T, - 8T,
E.m(a'Ba—!-b’Bb—l—c’Bc):a—ffBel+§;,—:-Bez+...+8—egi§esn. . (24)

The law of varying action, or the formula (A.), becomes therefore, when expressed
by the present more general coordinates or marks of position,
. 8T o T,
8V=2.v8—78n—2.—8—e,°3e+t8H; N (43
and instead of the groups (C.) and (D.), into which, along with the equation (E.),
this law resolved itself before, it gives now these other groups,

oV _ 8T 3V 8T 8V _ 3T | (R)

Sy T 0y Smy T 0aly” T T ¥mg, T Oy, 7T Tt T '
and

5V 8T, 8V _ 8T, 8V _ 3T, s)

Se, = TR Be T T Ndyd ley T T 8dy, - - (S

!
3n 3n

the manner of motion of the system ; and the 3 » final integrals, connecting these 6 »
initial data, and the » masses, with the time ¢, and with the 3 » final or varying quan-
tities #; 7 . . . 7, , which mark the varying positions of the » moving points of the

. Vo e . .
The quantities e e,...e, and ¢ ¢,...¢ are now the initial data respecting

system, are now to be obtained by eliminating the auxiliary constant H between the
37+ 1 equations (S.) and (E.) ; while the 3~ intermediate integrals, or integrals of
the first order, which connect the same varying marks of position and their first dif-
ferential coefficients with the time, the masses, and the initial marks of position, are
the result of elimination of the same auxiliary constant H between the equations (R.)
and (E.). Our fundamental formula, and intermediate and final integrals, can there-
fore be very simply expressed with any new sets of coordinates; and the partial dif-
ferential equations (F.) (G.), which our characteristic function V must satisfy, and
which are, as we have said, essential in the theory of that function, can also easily be
expressed with any such transformed coordinates, by merely combining the final and
initial expressions of the law of living force,

To=Uy+H, . . . . . . . . . .. @7
with the new groups (R.) and (S.). For this purpose we must now consider the func-
tion U, of the masses and mutual distances of the several points of the system, as
depending on the new marks of position #; 7, . . . 7, ; and the analogous function U,,
as depending similarly on the initial quantities e, e, ... e;,; we must also suppose
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3T 8T 8T
that T is expressed (as it may) as a function of its own coefficients 5 R TR
Sn
which will always be, with respect to these, homogeneous of the second dimension,
and may also involve explicitly the quantities #, #, . . . 75,5 and that T, is expressed
0T, °T, 3T
as a similar function of its coefficients >, , .. .552; so that
54,7 8y by,
o 5T 3T
I'= F(ﬂ,—l, W,...m),
b‘To"""“(%')

jo:F(aa ’ ae;"“aasn_ ;JI

and that then these coefficients of T and T, are changed to their values (R.) and (S.),
s0 as to give, instead of (F.) and (G.), two other transformed equations, namely,

5V 3V 3V .
F('?i—m’ﬂ";""m)"U"'H’ T
and, on account of the homogeneity and dimension of T,
3V
F(a i) =Uo+Ho oo ()

8. Nor is there any difficulty in deducing analogous transformations for the known
differential equations of motion of the second order, of any system of free points, by
taking the variation of the new form (T.) of the law of living force, and by attending
to the dynamical meanings of the coefficients of our characteristic function. For if
we observe that the final living force 2 T, when considered as a function of #, 7, . . . %,
and of #, 7, . . . #g,, is necessarily homogeneous of the second dimension with respect
to the latter set of variables, and must therefore satisfy the condition

8T 3T 8T
‘)T-—ﬂl 8"7' +’723n' + +773nan e s s e e (26.)
we shall perceive that its total variation,
8T 8T 3T 7
BT:WB”I.'_SW 8772+ -+§,)_S;B’73n
5T, \ 5T
+3—;)T18771+§n_,23772+ ...+m37]’3n,

v

N /)

may be put under the form

8T 8T 8T 7
BT:;}'IBW_*_%B——T;-I— .+ 7,0 5,
ST
3—5’71
> .« o« . . . (28)
"I‘ '1\
=3. 38’_2'8{3’7

=3 (135 — o),




PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 261

and therefore that the total variation of the new partial differential equation (T.) may
be thus written,

3V
s(1% —5r0n) =3 50040 H: L L L L L L (V)

in which, if we observe that » = —d—:—, and that the quantities of the form 7 are the

only ones which vary with the time, we shall see that
3V d 3V d 8V d 3V
sy =3(4h gy St s se0e) e s 0H, . L (29)
because the identical equation dV = d 3V gives, when developed,

z(aasv.dn-i-ag.de)-;-ag—‘f.dfl]

S ... .. (30)

_E(d—- drddiy . de) +dipy SH. |
J

Decomposing, therefore, the expression (V.), for the variation of half the living force,
into as many separate equations as it contains independent variations, we obtain, not
only the equation

d 3V
E=L - - - - - - <. .. (K
which had already presented itself, and the group
d 3V d sV d 8§V
EE:O, dtsea—o,...ﬁsew‘:o, e e e . (WD

which might have been at once obtained by differentiation from the final integrals (S.),
but also a group of 3 »n other equations of the form

d 3v 8T 33U

a7 87) W:W, . . . . . . . . . (X)

—-jza—’)l'——s—.'?':ﬂ‘: . . . . . . . . . (Y.)

“““““““ . (Z)

d 3T 3T _ %U
at Sn,Sn 8.'7311._-(&"737;.]

These last transformations of the differential equations of motion of the second
order, of an attracting or repelling system, coincide in all respects (a slight dif-
ference of notation excepted,) with the elegant canonical forms in the Mécanique
Analytique of LAGRANGE ; but it seemed worth while to deduce them here anew,

MDCCCXXXIV, 2™
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from the properties of our characteristic function. And if we were to suppose
(as it has often been thought convenient and even necessary to do,) that the = points
of a system are not entirely free, nor subject only to their own mutual attractions
or repulsions, but connected by any geometrical conditions, and influenced by any
foreign agencies, consistent with the law of conservation of living force; so that the
number of independent marks of position should be now less numerous, and the force-
function U less simple than before ; it might still be proved, by a reasoning very simi-
lar to the foregoing, that on these suppositions also (which, however, the dynamical
spirit is tending more and more to exclude,) the accumulated living force or action
V of the system is a characteristic motion-function of the kind already explained ;
having the same law and formula of variation, which are susceptible of the same
transformations ; obliged to satisfy in the same way a final and an initial relation be-
tween its partial differential coefficients of the first order; conducting, by the varia-
tion of one of these two relations, to the same canonical forms assigned by LacranGE
for the differential equations of motion ; and furnishing, on the same principles as
before, their intermediate and their final integrals. To those imaginable cases, indeed,
in which the law of living force no longer holds, our method also would not apply ;
but it appears to be the growing conviction of the persons who have meditated the
most profoundly on the mathematical dynamics of the universe, that these are cases
suggested by insufficient views of the mutual actions of body.

9. It results from the foregoing remarks, that in order to apply our method of the
characteristic function to any problem of dynamics respecting any moving system,
the known law of living force is to be combined with our law of varying action ; and
that the general expression of this latter law is to be obtained in the following manner.
We are first to express the quantity T, namely, the half of the living force of the
system, as a function (which will always be homogeneous of the second dimension,)
of the differential coefficients or rates of increase 7, 7,, &c., of any rectangular co-
ordinates, or other marks of position of the system : we are next to take the variation
of this homogeneous function with respect to those rates of increase, and to change
the variations of those rates 8 7, 8 75, &c., to the variations d #,, 3 7,, &c., of the marks
of position themselves; and then to subtract the initial from the final value of the
result, and to equate the remainder to 3V — ¢ H. A slight consideration will show
that this general rule or process for obtaining the variation of the characteristic
function V, is applicable even when the marks of position 7, 7,, &c., are not all inde-
pendent of each other ; which will happen when they have been made, from any mo-
tive of convenience, more numerous than the rectangular coordinates of the several
points of the system. For if we suppose that the 3 » rectangular coordinates x; ¥, 2,

. &, y, %, have been expressed by any transformation as functions of 8 » + k other

marks of position, 7, #, . . » Which must therefore be connected by & equations

3 n +
of condition,
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0= @y (m> 75 - - "73n+k)’ -i
0 =9, (771, Ngy «» "43n+k)’ '>

(31.)

0=¢k(771, n2,...773n+,r), J
giving % of the new marks of position as functions of the remaining 3 »,
773n+1 = '4’1 (7713 Mgy o oo 773,,)’ -]
Tange = Yo (o fo-oets) Lo 39

......

l
Mgk = Y, (’71: Nas -°-’73n)’ J
T=313.m@@*+y24+22),. . . . . . . . N %)

will become, by the introduction of these new variables, a homogeneous function of
the second dimension of the 3 n + k rates of increase 7', 7, . . . 7, Iy involving also

in general 7, 7, . . . 7, . ,, and having a variation which may be thus expressed :

3T = 2—;{)5#1 + (%?;)5”2 - (Snsnl—k) ant ]

the expression

. (33.)
3T 8T
-+ (8—%)3771‘[‘(‘3'”—2)3772"[' .+ (3.,)3 +]) 43"_*..75;‘[
or in this other Way,
ST = o 4 2 by b A |
37) 1 3' 2 37) Snl
. 34
FRLACH SRV AN R j (34)
Sy TH T Fy o 2 Ong, W

on account of the relations (32.), which give, when differentiated with respect to the
time,

A2 R AT
' = oy =22 ‘W 1
Tant1 =7 137) + 7 23 +.. 47 3n37)
R B2 Az
! Y2 ! 2 ! 2.
773n+2 771 8,7 +n2§g+"'+n3n§n—3n’ > e e e e e e (35)
..... \I,k axpk ' 3\[,
”3n+k ’71 S, + 7 "s,, +.oo 3n3,, Sy ° J

and therefore, attending only to the variations of quantities of the form 7#,

8y 3y, 8y
877’3n+1=8_11i8n!1+8_7‘)—;3n,2+ +31)3] B i 3 n?

Y bRV b}
TAES S I I LT IS

...... ” 54
! —_ k ! k !
Bﬂ3n+k~—8—m37i1+ ’8‘;’;3772"" et ‘—8—1;;;8”3"'
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Cdmparing the two expressions (33.) and (34.), we find by (36.) the relations

N/l ( S, ( o,
8’“ 87’1)—|_<?'\’73n+1 R L T Ay e

3T 8T) ( 8\!/1 ( S_xkg_l_ 4 o,
3’72 Oy 8’73 +1 8"72 8’73n-i—2> Oy (81)3”'1'7‘ m, $(37)

N] ( )8% ( )3%,
87731; <8n3n>+(8ﬂ8n+1 SﬂSn 8")Sn-}— 8”372 + 8n3n+k 8?13 J

which give, by (32.),

8T
81‘) 8771+3n 3772'*' +3

’7

)3m+( )3779 +(3r3 +,‘>B”3n+k’

we may therefore put the expression (Q.) under the following more general form,

av:z.(%%f,—)an_z.(z—ff)sewarl,.. (A

(38.)

. 8T . . ..
the coefficients (W) being formed by treating all the 3 » 4 k quantities #,, 7, .

1gn 4 @S independent ; which was the extension above announced, of the rule for
forming the variation of the characteristic function V.

We cannot, however, immediately decompose this new expression (A'.) for 3V, as
we did the expression (Q.), by treating all the variations 7, 9 ¢, as independent ; bat
we may decompose it so, if we previously combine it with the final equations of con-
dition (31.), and with the analogous initial equations of condition, namely,

0=®@ (e,e... €3ni1)s |
0==D, (e, e...04, ,,
( s ) (39.)
0="=>, (ee... €3n+k)’J
which we may do by adding the variations of the connecting functions ¢, ... ¢, .

D, ... O, multiplied respectively by factors to be determined, A}, . . . &, Ay, .. . Ax
In this manner the law of varying action takes this new form,

av:z.(.g%)an_z. T de+ O+ 3000+ 3. 4005 . . (B

and decomposes itself into 6 » 4 2 £ 4 1 separate expressions, for the partial differ-
ential coefficients of the first order of the characteristic function V, namely, into the
following,
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A b‘T o ¢ 0¢ o¢
8”1 )+7\1 1+;\2 Q+..'+;\l"§—f,

3V__ 3T 8¢1 6¢~2 3<pk
'372—' g—nz)'l" 15,) +7\2 + +7\.k;o\—’—)2-:

-

S (N

------

"( )+ st i
8’k).n-}-k 8”3n+k 18n3n+k "8’03 +7
and
3V ) 8D, ~
o= +A138+A236+..+Akae
5T @, s,
5?2—_(8 )+A18 +A28 +"'+Ak§g: } )
SV S
L — il U A et S _ k
de 37+k 8"’/Sn-;-1> Iae + -+ A koeg, k)

besides the old equation (E.). The analogous introduction of multipliers in the cano-
nical forms of LaGraNGE, for the differential equations of motion of the second order,

. 8¢ . 30 .
by which a sum such as 2. A '8% is added to Ty D the second member of the formula

(Y.), is also easily justified on the principles of the present essay.

Separation of the relative motion of a system from the motion of its centre of gravity ;
characteristic function for such relative motion, and law of its variation.

10. As an example of the foregoing transformations, and at the same time as an
important application, we shall now introduce relative coordinates, x, y, z,, referred to
an internal origin x, v, z,; that is, we shall put

@ =2+ 2, Y=Y+ Yu B=%+2, . . . . . . . (40)
and in like manner

a, = a,+ a, b.=1b,+1b, ¢, =c,+cs . . . . . . . (41)
together with the differentiated expressions

=7+, Y=y, + Y =g 4 o 0L (42)
and :

d.=d,+d, L=+, d=d,+d,. . . . . . . (48)
Introducing the expressions (42.) for the rectangular components of velocity, we find
that the value given by (4.) for the living force 2 T, decomposes itself into the three
following parts,

2711 — 2 .m (.I"Q +yle _+_ z!e) — 2 .m (xlla +ylle + z!lQ)

+2@,2.ma,+y, 2. my, +,Z.m)+ @ +Y A Im; (44)
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if then we establish, as we may, the three equations of condition,

Z.max =0, 2.my, =0, S2.omz,=0, . . . . . . . .(45)
which give by (40.),
S.max 3.my Z.mg
TW="Sm> YT Sm> . T ;> . (46.)

so that «, y, 2, are now the coordinates of the point which is called the centre of gra-
vity of the system, we may reduce the function T to the form

T=T4+7T, . . . . . . « « « . « . . . . . . .47
in which

T=3i3m@ +y+<), . . . . . . . . . . . . . .(48)
and

T,=3@ +y,+2)Sm.. . . . . . . ... . (49)

By this known decomposition, the whole living force 2 T of the system is resolved
into the two parts 2T, and 2 T, of which the former, 2 T,, may be called the relative
living force, being that which results solely from the relative velocities of the points
of the system, in their motions about their common centre of gravity «, v, z,; while
the latter part, 2 T, results only from the absolute motion of that centre of gravity in
space, and is the same as if all the masses of the system were united in that common
centre. At the same time, the law of living force, T = U -+ H, (6.), resolves itself by
the law of motion of the centre of gravity into the two following separate equations,

T=U+H, . . . . . . « .« « . « .« . . . . . .(0)
and

T“=H“;, e G )
H, and H, being two new constants independent of the time ¢, and such that their
sum

H+H,=H. . . . . . . . . . . . . ... .52
And we may in like manner decompose the action, or accumulated living force V,

which is equal to the definite integral ./(',‘ 2 T d t,into the two fellowing analogous parts,

V=V, 4+V, . . . . ..o (B
determined by the two equ/ations,

Vi=/fo2Tde, . . . . . . . ... L ()
and

V,=JSod2T,de. . . . . . . ., . . . . . . ... . (G
The last equation gives by (51.), °

V,=2H,¢; . . . . . . . o . o oo oL (83)

a result which, by the law of motion of the-centre of gravity, may be thus expressed,

V=, — a) + @,— b))%+ (3, — ¢)*. Vel Zm: .o L (HY)
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a, b, c, being the initial coordinates of the centre of gravity, so that

n %u
S.ma S.mb S.mc
= C“=——f7n—‘. . . o e . « e e (54.)

And for the variation 9 V of the whole function V, the rule of the last number gives
V=3 .m@dx,—dda+ydy —bdb-+203z—7dc) A
+ (‘v’uB‘ru - a,uaau +y'uayu - b'“3b“ + z,IIBzII - cluBcu) Zm L . (1)
+tdH+ A3 . mda, + 20,3 . mdy, +232 . mdx, l
+ A S . mda,+ AyS .mdb 4+ A3 mdc; J

while the variation of the part V,, determined by the equation (H'.), is easily shown
to be equivalent to the part :

6Vu = (.Z’”3.Z'“ - a'uaau +y,h'8yu - b,anu + z’,,Bz“ - (’JIIBCH) Zm+ 13 H,;. (K.
the variation of the other part V, may therefore be thus expressed,
3V, =3 . m(@dx, —dda,+y dy — 8364 20z — c’,Bc,)‘&

&Y= "Z3mo "= "m0

+3H, 4+ 72 .mdx, + 2,3 .mdy, + 232 . mog,
+ A3 .mda, 4+ NS . mdb, + A3 mde;: J

and it vesolves itself into the following separate expressions, in which the part V, is
considered as a function of the 6 + 1 quantities x, y,, 2, @, b, ¢, H, of which, how-
ever, only 6 » — 5 are really independent :

(L)

first group,

3V ‘ 8V, '
5}7::'”’1“"11'!‘7‘17”1; Loty = M W + Amy, ;)
5V, 3V, \
Sy = myy +raamy; .. 59, = Mn Y +Am, (ML)
A% 3V, !
‘g;;'f:ml.z"l"‘l")\aml; PN Sz/n =7nnzm+7\3m";
second group,
3V ) -
3‘;‘1:2"‘”’1“'11"*‘1\1"@1; "‘Sah“::_mna,m_!'Almn;
3V 8V
ET! ] ml b,ll + A2m1; “ .o b\b‘ = nlnb,‘n+A2mn H >. . (Nl.)
n in
3V, 3V
o, = —m Ay + Agmy; bc“: = —m,, +Aym, ;
and finally,
3V, .
2= 1
SH,t(O)

With respect to the six multipliers A; A, A3 A; Ay A; which were introduced by the

3 final equations of condition (45.), and by the 3 analogous initial equations of con-
dition,

3.ma=0, 2.mb=0, 3.mc=0; . . . . . . (53)
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we have, by differentiating these conditions,

2.mad,=0, 2.my,=0, 2.mz, =0, . . . . . (56.)
and ‘
2.md, =0, 3.mb,=0, Z.mcd,=0; . . . . . (57)
and therefore
3V, 5V, 5V,
s * 5 7,
7\1 P} Z.m 3 7\.2 —_— Sm . 7\3 = "'f‘;n—‘, . . . . . (58-)
and
5 By X
A]. —_— ZTnI ) A2 — —ﬂl—’ A3 = Em' » . - . 3 - (59.)

11. As an example of the determination of these multipliers, we may suppose that
the part V,, of the whole action V, has been expressed, before differentiation, as a
function of H,, and of these other 6 n— 6 independent quantities

‘rzl—mm=glﬁ m42"_'rm=£2, e Tp —‘z',n:‘in—p
Yn—=Yn=MNs Y2""Yn=12 ++« Yn-1 —Ymu = -1 . - (60')
Bp— R, = gl’ Zp=— R, = €2’ v By — R, = én—l)

and
Oy = Qp =015, Qp—Qp =0y ¢ oo Ay ) = Q) = 0y_4,
bll - bm = Bl’ b/z - bm = 623 ce. 6/71-1 - bm = Bn—l’ . . (61.)
C,l — C, =7 0’2 — Cm = %2 +++ Cp=1—C, =%, 15

that is, of the differences only of the centrobaric coordinates ; or, in other words, as a
function of the coordinates (initial and final) of z—1 points of the system, referred to
the »* point, as an internal or moveable origin: because the centrobaric coordinates
By Yoo Bp X b,, c,, may themselves, by the equations of condition, be expressed as

functions of these, namely,

S.még 3.my S.m
.I,"i=§i-——z,—ﬁ—', y‘i‘:—."ﬂi——z—rﬂ'z—, z“-:@;—- zme, o e . (62.)
and in like manner,
S.ma S.mp 3. .mey
an-=m'.-— —-z-.—;{—, b’i'-'—-‘ﬁi——‘—z-,—’-n—‘, cﬁ'=7i_' >m N . . . (63.)

in which we are to observe, that the six quantities £, », ¢, «, 3, 7, must be considered
as separately vanishing. When V, has been thus expressed as a function of the cen-
trobaric coordinates, involving their differences only, it will evidently satisfy the six
partial differential equations,

A I A/

28.1:’,__'0’ ESy._ s 25‘3;-—-0,

- 5 e e e (PL)
[ J— d —!—=0.

2'3-;‘—0, 286,—0’ h> =0;
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after this preparation, therefore, of the function V,, the six multipliers determined by
(58.) and (59.) will vanish, so that we shall have

M=0,4,=013=0A =0A,=0,A;=0,. . . . . . . (64)
and the groups (M".) and (N'.) will reduce themselves to the two following :

3V, .3, 3V )

3—'”,1 =m Xy, m =my ‘r’l2; oo 8.%/; = mnx,ﬁﬁ

3V, . ' 3V, _ ' 3V, . ! L

m—mlyll; m-——mzyﬂ; P ayln—'mny‘n; . . . . . . (Ql.)

8V, | 3V, ) 3V, .

52y my 25 az'l';:mzz/z; T, =M% s J
and

v, , 3V, ) 3V, r )

b‘aﬂ = —ma,; m._—mzalz; ...—5—;’;— -—m,a,;

3V 3V, 3V,

'8—b7:‘=—‘mlb,ll; 'gbﬁl;z'—mzbllz; PO Sb,n=_m"b,m; F . . . (Rl.)

svt_ (A BVI__ (. 8VI.__ I .

dc, —mCys _S_E; =omyCps ... gcm - mncm’J

analogous in all respects to the groups (C.) and (D.). We find, therefore, for the re-
lative motion of a system about its own centre of gravity, equations of the same form
as those which we had obtained before for the absolute motion of the same system of
points in space. And we see that in investigating such relative motion only, it is
useful to confine ourselves to the part V, of our whole characteristic function, that is,
to the relative action of the system, or accumulated living force of the motion about
the centre of gravity ; and to consider this part as the characteristic function of such
relative motion, in a sense analogous to that which has been already explained.

This relative action, or part V,, may, however, be otherwise expressed, and even in
an infinite variety of ways, on account of the six equations of condition which con-
nect the 6 n centrobaric coordinates ; and every different preparation of its form will
give a different set of values for the six multipliers &, A, A3 A; Ay A;.  For example,
we might eliminate, by a previous preparation, the six centrobaric coordinates of the
point m, from the expression of V, so as to make this expression involve only the
centrobaric coordinates of the other » — 1 points of the system, and then we should

have
5V,

4 b‘c,"

5V,

b} z,

5V,
>3y,
and therefore, by the six last equations of the groups (M'.) and (N'), the multipliers
would take the values

5V,

’831,,,

3V,

4 811,”

BV,
> 55,

=0 =0 =0 =0 =0 =0, . . . (S.

N=—d ==y, = — 2, Ay =)y, Ay = Uy By =16y . (65)
and would reduce, by (60.) and (61.), the preceding 6 » — 6 equations of the same
groups (M'.) and (N'), to the forms

MDCCCXXXIV., 2N
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3V ! 8V i 8‘71 ! i
b‘x,l_mlgl’ N —mz‘gz:---gxm_l—mn—l"gn—v
3V, ; 3V, o A !
——=1m T =m =m .
Sy, 1115y 212§y, n—1n— 15 $ (1)
3V, _ 5, 8V, , 3V,
_az“—mlél) lg—ngza- 'b‘z,n__l': "—lan—l’J
and
3V, y OV, ) 3V, -
Sd“ — —‘mlal, aa ——mzaz,.--sa - —m _lwn__l,
n — 1
3V, , dV, 3V,
'3_[7;= my B 55 b, ="m23’2:---351 __1'-—""7'n—-16ln—1> ro. (UL
3V, 8V, _ ' 8V, !
36“——7”171: Scp =My Y, -3%_1="‘mn-—17n-—1- J

12. We might also express the relative action V, not as a function of the centro-
baric, but of some other internal coordinates, or marks of relative position. We might,
for instance, express it and its variation as functions of the 6 » — 6 independent in-
ternal coordinates £ 7 ¢ « 3 v already mentioned, and of their variations, defining these
without any reference to the centre of gravity, by the equations

Ei:‘wi—wm =Y —Yw gi‘:%i_zm}

66.
ai=ai—an,ﬁi=bi—bn,'yz-:Ci——Cn. ( )

For all such transformations of 8 V, it is easy to establish a rule or law, which may be

called the law of varying relative action (exactly analogous to the rule (B'.)), namely,
the following :

V=3 (3) 3= 3. (F)de + O+ 3030, + 34305 . (V1)

which implies that we are to express the half T, of the relative living force of the
system as a function of the rates of increase 7, of any marks of relative position ; and
after taking its variation with respect to these rates, to change their variations to the
variations of the marks of position themselves; then to subtract the initial from the
final value of the result, and to add the variations of the final and initial functions
¢, ®, which enter into the equations of condition, if any, of the form ¢, = 0, @, = 0,
(connecting the final and initial marks of relative position,) multiplied respectively
by undetermined factors , A,; and lastly, to equate the whole result to 6 V, — ¢3 H,
H, being the quantity independent of the time in the equation (50.) of relative living
force, and V, being the relative action, of which we desired to express the variation.
It is not necessary to dwell here on the demonstration of this new rule (V'.), which
may easily be deduced from the principles already laid down; or by the calculus of
variations from the law of relative living force, combined with the differential equa-
tions of the second order of relative motion.
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But to give an example of its application, let us resume the problem already men-
tioned, namely to express oV, by means of the 6 » — 5 independent variations 8 &, 7,

3¢ 3, 33,3y, 0H, For this purpose we shall employ a known transformation of the

relative living force 2 T,, multiplied by the sum of the masses of the system, namely
the following :

2T, 3m=3.mm {(@, =)+ Y, —y)*+E—2)}: . . .(@67)

the sign of summation > extending, in the second member, to all the combinations of

points two by two, which can be formed without repetition. This transformation
gives, by (66.),

2T Im=m_ 3 .mE2+724 22 )
+ El'm,; m, {(‘%’i _ Erk)z + (”'i _ ’7'1:)2 + (gli - élk)z} ; Jk . . (68)

the sign of summation 2, extending only to the first » — 1 points of the system. Ap-
plying, therefore, our general rule or law of varying relative action, and observing
that the 6 n — 6 internal coordinates £ » { « 3 y are independent, we find the follow-
ing new expression :

3V, =¢3H,+ ;%.z,.m(g'sg—a'3a+n'3n—6'36+€’33— 7' 37)

+ zm 2, mimy { ;= 8,) OF, = 38) + (7, — 1) O, — dn) + (€, — &) 34, — %) } p (W)

1
— S 2 M, {(“'e_“'k) O, —de) + (B, — ') OB, —3B) + &;—7)) Cv,—d7) };J
which gives, besides the equation (01.), the following groups:

= S - D =m, (8 = T,
%%=fmf;z-2-m(n’i—n')=mi(n’i—%%j, > . (X1)
= s - 0=m (3 -5,

and
%’:_;_m S.om(,—d)=—m, (a —zg”'m“’), ]
ZX Em(B —B)=—m ({3 Emﬂ'), Lo e (YW
38\; STARE m(/, — o) =—m (7, —z—g’?’,—,,l 5

results which may be thus summed up :
2N2
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3V, =tdH, 4+ 3, . m(EE— Vet 73n—p 3B+ 232 —1939)

1 !
— 55, GmE. 3 mdE+ E,mj Zmdn43m .32 mdl) . (ZV)

+ 5o Gmd S mia+ ISmp I mdB 4 Zmy . 3mdy), ]
and migh-t have been otherwise deduced by our rule, from this other known trans-
formation of T,

T, = % Z,.mE 41"+ - (mEp + (i‘z,’:?e TER L (69)
And to obtain, with any set of internal or relative marks of position, the two partial
differential equations which the characteristic function V, of relative motion must
satisfy, and which offer (as we shall find) the chief means of discovering its form,
namely, the equations analogous to those marked (F.) and (G.), we have only to eli-
minate the rates of increase of the marks of position of the system, which determine
the final and initial components of the relative velocities of its points, by the law of
varying relative action, from the final and initial expressions of the law of relative
living force ; namely, from the following equations :

T,=U4+H, . . . . . . . . . . .. .00

and
To=Uy+H.. . . . . . . . . . ... .70

The law of areas, or the property respecting rotation which was expressed by the
partial differential equations (P.), will also always admit of being expressed in rela-
tive coordinates, and will assist in discovering the form of the characteristic function
V,; by showing that this function involves only such internal coordinates (in number
6n — 9) as do not alter by any common rotation of all points final and initial, round
the centre of gravity, or round any other internal origin ; that origin being treated as
fixed, and the quantity H, as constant, in determining the effects of this rotation. The
general problem of dynamics, respecting the motions of a free system of n points
attracting or repelling one another, is therefore reduced, in the last analysis, by the
method of the present essay, to the research and differentiation of a function V,,
depending on 6 » — 9 internal or relative coordinates, and on the quantity H, and
satisfying a pair of partial differential equations of the first order and second degree ;
in integrating which equations, we are to observe, that at the assumed origin of the
motion, namely at the moment when ¢ = 0, the final or variable coordinates are equal

C e . . . 3V .
to their initial values, and the partial differential coefficient 5’ vanishes; and, that
i

at a moment infinitely little distant, the differential alterations of the coordinates have
ratios connected with the other partial differential coefficients of the characteristic
function V,, by the law of varying relative action. It may be here observed, that,
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although the consideration of the point, called usually the centre of gravity, is very
simply suggested by the process of the tenth number, yet this internal centre is even
more simply indicated by our early corollaries from the law of varying action ; which

show that the components of relative final velocities, in any system of attracting or

repelling points, may be expressed by the differences of quantities of the form % g,

— ——, — = and therefore that in calculating these relative velocities, it is advan-

tageous to introduce the final sums 2 mx, 3my, 3 m z, and, for an analogous reason,
the initial sums 2 ma, = m b, > m c, among the marks of the extreme positions of the
system, in the expression of the characteristic function V; because, in differentiating
that expression for the calculation of relative velocities, those sums may be treated as
constant.

On Systems of two Points, in general ; Characteristic Function of the motion of any
Binary System.

13. To illustrate the foregoing principles, which extend to any free system of points,
however numerous, attracting or repelling one another, let us now consider, in parti-
cular, a system of two such points. For such a system, the known force-function U
becomes, by (2.),

U=mmf@), . . . . . . . « . . . (7L)

r being the mutual distance

r=@ -+ G =)+ k=% - . . . . (72)
between the two points m,, m,, and f (r) being a function of this distance such that
its derivative or differential coefficient f* (r) expresses the law of their repulsion or
attraction, according as it is positive or negative. The known differential equations
of motion, of the second order, are now, by (1.), comprised in the following formula :

my (2,0 +y" 0y + 2" 02) +my (&30 2+, 3y +2"50 29) =my my 8f(") ;. (78.)

they are therefore, separately,

8.f(r) 3.f(r) 8.1 (r)
'y = my Sa, ° Yy =m, Sy, &' =m, 52, ° |
. (740
o MO B B0 (74)
2 — 18.1;2’ 2 = 18y2’ 2 — 1322'

The problem of integrating these equations consists in proposing to assign, by
their means, six relations between the time ¢, the masses m, m,, the six varying
coordinates x; ¥, %; &, Y, %, and their initial values and initial rates of increase
a, bycpa,byc,d b, ay b, c, If weknew these six final integrals, and combined
them with the initial form of the law of living force, or of the known intermediate
integral

dmy (@2 42 4 22) + Fmy (72 + Y2+ ) =mmf(r)+H; . . (

~¥
<
N
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that is, with the following formula,

gm (@24 V2+d\2) +5my (@ + 02+ 0 =mym, f(r)) +H, . . (76.)
in which r is the initial distance
ro=n(—a)+ b —-b)+ (—c)% . . . . . (77)

and H is a constant quantity, introduced by integration ; we could, by the combina-
tion of these seven relations, determine the time #, and the six initial components of
velocity o, ¥, ¢, d, U, ¢, as functions of the twelve final and initial coordinates
Xy Yy %) Ty Yy 2y 4y by € @, by c,, and of the quantity H, (involving also the masses :)
we could therefore determine whatever else depends on the manner and time of
motion of this system of two points, as a function of the same extreme coordinates
and of the same quantity H. In particular, we could determine the action, or accu-
mulated living force of the system, namely,

1 3

V= mlﬁ @2+ y2+Pdt + 7”{/0. (@ + 2+ 20 de, . . (A%)

as a function of those thirteen quantities @, ¥, 2, @, ¥, 2, @; b; ¢; @, b, ¢, H: and
might then calculate the variation of this function,

3V -
BV—-a 1+3 3./1+3 321+5 ‘”2""3 B./2+az

+8_a18a1+5‘—b—{6b1+8 1+3 Baz"i‘gbbb +3 (B2)

v

TRASY |
But the essence of our method consists in forming previously the expression of this
variation, by our law of varying uction, namely,

OV =m (¢, 02, —d\da; + 7,0y, — U, 3b, + 2,02, — ¢, 3¢)

+ my (@30 @, — dyBay + Y0y, — Va0 by + %02, — dhdcy) - (C2)

4+ tdH;
and in considering V as a characteristic function of the motion, from the form of which
may be deduced all the intermediate and all the final integrals of the known differen-
tial equations, by resolving the expression (C2.) into the following separate groups,
(included in (C.) and (D.),)

3V LAV , 3V ,
S, = %y 5y =Y 5 T MR | -
3V , 8V , 3V ) (D%)
S, M2 Tw §u T MY 5y, =M%y

and
5V , , 3V
§a, - — ™%, ‘o‘—b;""—mlbl’ 8‘?,"""’”10'1’7 (E2)
bV 5V bV '
5;;:—-77;211'2, ﬂ=—m2b’2, E="m262;
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besides this other equation, which had occurred before,
3V
SE=4 - - - - - e e e e o (B

By this new method, the difficulty of integrating the six known equations of motion
of the second order (74.), is reduced to the search and differentiation of a single
function V; and to find the form of this function, we are to employ the following
pair of partial differential equations of the first order :

alGa) + () + @)+ G +G) + G}

=momfr +H, . . . .. (R
é’lﬁl {(% =t (;b) (w,) } + 2m2{<8a2) ( ) (a%) }
=mymyf(ry) +H, . . . . . N CC 5D

combined with some simple considerations. And it easily results from the principles
already laid down, that the integral of this pair of equations, adapted to the present
question, is

V=,\/(x“—a“)2+(y“—b“)z-]—(z“—-c“)2.J2Ii,,(m1+m2)
e (WA [Tedr)s L ()

m+m

in which ¢, y, %, @, b, c,, denote the coordinates, final and initial, of the centre of
gravity of the system,

- my Xy, + My Xy Yy, 4+ myy, Mm% 4 my 2
X, = ) - > - )
1] my + m, i my, + my 1T m, + my i ("’8 )
/0.
P + my a, _myb + myb, _mc +mye,
- b - ’ - >
i my + my i my + my i my + My J

and Y is the angle between the final and initial distances », r,: we have also put for
abridgement

Q:i\/2(ml+m2)(f(r)+mf]nlzg>-—é{‘;" N VD

the upper or the lower sign to be used, according as the distance » is increasing or
decreasing ;" and have introduced three auxiliary quantities 4, H, H , to be deter-
mined by this condition,

o—s+f’89d................(Ie.)

combined with the two following,

mymy, g Sg

_ XD
my + meS o 8 H, dr =/ (r, — a)* + (y,— b)* + (2, — ¢,)*. \/%H:lg; (K2)
H4+H,=H;
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which auxiliary quantities, although in one view they are functions of the twelve ex-
treme coordinates, are yet to be treated as constant in calculating the three definite
integrals, or limits of sums of numerous small elements,

_ﬁ’gdr,ﬁrggdr,ﬁ)’g—édr.

The form (H2.), for the characteristic function of a binary system, may be re-
garded as a central or radical relation, which includes the whole theory of the motion
of such a system ; so that all the details of this motion may be deduced from it by
the application of our general method. But because the theory of binary systems
has been brought to great perfection already, by the labours of former writers, it
may suffice to give briefly here a few instances of such deduction.

14. The form (H2.), for the characteristic function of a binary system involves
explicitly, when ¢ is changed to its value (79.), the twelve quantities z, v, %, @, b, ¢,
rry S h H, H,, (besides the masses m, m, which are always considered as given ;) its
variation may therefore be thus expressed :

8V 3V 3V 3V 3V 8V
3V=MBJTH+m3y“k+ﬁ;ﬁz“—i-mBa”—{—me”—{—chn }}
LAY LAY 8V 8V 8V 3V
+—§;—B7‘ -+ "3—71;37'0-[—375-33 -+ —é—k—Bh +3—H;BI{‘+3—H_“BH“J
In this expression, if we put for abridgement

2 H, (m; + my)
A= (i 2 S e e e e e e .o e .. (80.
\/(-Z'u —ay)* + (Y — 0y + (= — cn)’® ( )

we shall have

8V 3V 3V
5o, Az, —a,), Sy, A(yu— by)s Say A (), — Cu)’.l

9
5V 3V 3V j - (M.
5q, = A (a,— ), 30, =2 (b, —y.)> B, A(e,—=%,)

and if we put

H ht
§o=i\/2(m1+m2) (f(ro) +mlnlz) —pE e e e (8L)
the sign of the radical being determined by the same rule as that of ¢, we shall have
OV _ momge 3V _ —mmyg 3V _ mmh N
B T my 4my drg  my4my > 8% m +my’ Tt (N2.)
besides, by the equations of condition (I2.), (K2), we have
3V y

and
3V~ 38V rdr
g—H—z-s—H;:f—e—, BHI+8H“=3H. e e e e s e e s (P2)

] o
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The expression (L2.) may therefore be thus transformed :

8V =2 {(x,—a) @z, —da)+ (y,—6) Cy,—0b) + (3, — c,) 0=, — d¢,)}

+ o (gar..goaro+ms>+f'd—rm N ()

and may be resolved by our general method into twelve separate expressions for the
final and initial components of velocities, namely,

= i = o @ — @) + i o5k h5y), |
yﬁ:%%—ml:mg(«% b”)+m +m2 é)%/t:_'- %’
z'l'—‘%%’_‘m(zﬂ )+m+m ?%"' ‘0‘35‘1’

. . (R2
x'2=m—l-2g;=,71—‘:_‘ﬂ72(‘ a,,)+m+m ?38;+ 7::;’ > "
y’2=mlg%=ﬁﬁ72(yn_b~)+m + m, (§> g
z'2=7n1;§_§;=m,:m(ﬂ c”)+m +m 3*’+h32) J

and
b’1=7—n—:%‘§;f‘m(y” bu)+m + m, 50%%%_h%%’
= b = (e ) (070 — ) SRR CY
a’2=%:g;=ﬁl—“:_7nf(% a,) m+me(§0§_:;g— g—%’
b'2=%%}b—re_ml+m(yﬂ ”)+ml+mg(§°8ro h%’
C'2=_—’;';1%-}72—m11m(z” Cf‘)+m1”:-lmg(fo%— g:: J

besides the following expression for the time of motion of the system :

"dr
t—aHf ¢ k)

70
which gives by (K2), and by (79.), (80.),

my +mQ

t=A"""""""(U2')

The six equations (R2.) give the six intermediate integrals, and the six equations
(S%.) give the six final integrals of the six known differential equations of motion (74.)
for any binary system, if we eliminate or determine the three auxiliary quantities

MDCCCXXXIV. 20
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h, H, H,, by the three conditions (I2) (T2) (U2). Thus, if we observe that the
distances r, 7, and the included angle 9, depend only on relative coordinates, which
may be thus denoted,
=2 =5y— Y =1, 21"22=§>} (82.)
ag—a,=0,b—b,=8,¢c,—c,=y,

we obtain by easy combinations the three following intermediate integrals for the
centre of gravity of the system :

dit=x,—a,y,t=y,—b,2t=x—¢c, . . . . . . . (83)
and the three following final integrals,

dpt=x,—a,bl t=y,—b,t=x,—¢cp. . . . . . . . (84)
expressing the well-known law of the rectilinear and uniform motion of that centre.

We obtain also the three following intermediate integrals for the relative motion of
one point of the system about the other:

or PR
’é':fﬁ"l‘hé_g:

-

Sr 39 -
”'=?§§+hﬂ’>""""""""'(80')

or 09
{=¢sp+hsp |
and the three following final integrals,

8 ]
=5~ b |

37 Y
ﬁ,—_-fo—b‘_ﬁg*h%_ﬁ’ N - [
37, 33

’Y’=Eo§;"h§."},;

in which the auxiliary quantities 2, H, are to be determined by (I2) (T2), and in
which the dependence of 7, 7y, 3, on & 2,¢, o, 3, v, is expressed by the following
equations :

r=JE+r+Z ro=Jw2+@2+72,} &7
rrocosy =Ea 4+ 73+ vy. ’ .
If then we put, for abridgement,
—e 4 b gt e I
A= r +r"3tan3’ B T rrysin® C= r00+;’0—9_€z-lﬁ’ s e - (88)

we shall have these three intermediate integrals,

§=At—Be, y=Ay—-BB, ¢=A2~By,. . . . . . .(89)
and these three final integrals,

¢ =Bf{—Ca, 83 =B7s—CB, ¥=B2—=Cy, . . . . . . . (90)
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of the equations of relative motion. These integrals give,
Ef —nf=af — B =B (xr— %),
n@’—@n’:ﬁy—mﬂs(@a—m,} R (T
(¢—tl=yd—ay=B(yé—=«l,J

(@ —Be)+EBY —9B) +a(yd —ay)=0; . . . . . .(92)
they contain therefore the known law of equable description of areas, and the law of
a plane relative orbit. If we take for simplicity this plane for the plane & », the quan-
tities ¢ Z v o will vanish ; and we may put,

and

E=rcosd, p=rsind, (=0,
,’é } . (93.)
@ =rycosdy, B=nrysiné, y =0,
and
¥ =19'cosd — Orsind, y =r'sind 4 0 rcosd, { =0, } (04)

the angles 0 ¢, being counted from some fixed line in the plane, and being such that
their difference

0—0,= . . . . . . . ..o e o L (95)
These values give

tyf — ¥ =120, af — B =12l un— BE=rrsind, . . . . (96.)
and therefore, by (88.) and (91),

A R N 78

the quantity } % is therefore the constant areal velocity in the relative motion of the
system ; a result which is easily seen to be independent of the directions of the three
rectangular coordinates. The same values, (93.), (94.), give ,
£cosd +7sind=r, ¥cosd 47 sind =r, acosd 4 Bsind =r,cos, }(98.)
« cos 0, -+ B sin §y = ry, o/ cos 8, + B'sin &, =1y, £cosdy + 7sindy = r cos I,
and therefore, by the intermediate and final integrals, (89.), (90.),
Y=¢ Yy=¢y; . . . . .o . Ce e e e e (99)
results which evidently agree with the condltlon (T2 ), and which give by (79.) and
(81.), for all directions of coordinates,

2y P — 1
P2t e = 2 (m ) f () = )
... .. L (100)
B 1 1
r'20+;_§;-— 2(m1+m2)f(7'0)=2H,(—7h—1+”72); Jﬁ
the other auxiliary quantity H, is therefore also a constant, independent of the time,

. . i
and enters as such into the constant part in the expression for (r’2 + ﬁ) the square

of the relative velocity. The equation of condition (I2), connecting these two con-
202
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stants k2, H, with the extreme lengths of the radius vector r, and with the angle &
described by this radius in revolving from its initial to its final direction, is the equa-
tion of the plane relative orbit; and the other equation of condition (T2.), connecting
the same two constants with the same extreme distances and with the time, gives
the law of the velocity of mutual approach or recess.

We may remark that the part V, of the whole characteristic function V, which
represents the relative action and determines the relative motion in the system,

namely,
m, m
VimatPe (b4 [Tedr), (V)
may be put, by (I2.), under the form
m, m
V, = m11+:ne~ﬁ:(g— M)dr,. R 3 48

or finally, by (79.),
my my f(r) + H,

Vi=2/ c dry . o o o o oL o000 (X2)
the condition (I2.) may also itself be transformed, by (79.), as follows :
» d7r ’
=nh ri S A 65

results which all admit of easy verifications. The partial differential equations con-
nected with the law of relative living force, which the characteristic function V, of
relative motion must satisfy, may be put under the following forms:

3V)\2 1 (3V)\2 2

(Tr"‘ +7§(‘a‘§' "m"f;’ﬁf(U+H‘>, }
2 2 m, m,

8r0> +7“2( =ml-§l-mQQ(U0+Hl)5J

and if the first of the equations of this pair have its variation taken with respect to »
and 3, attention being paid to the dynamical meanings of the coefficients of the cha-
racteristic function, it will conduct (as in former instances) to the known differential
equations of motion of the second order.

(Z2)

On the undisturbed Motion of a Planet or Comet about the Sun: Dependence of the
Characteristic Function of such Motion, on the chord and the sum of the Radi.

15. To particularize still further, let

SO == o)

that is, let us consider a binary system, such as a planet or comet and the sun, with
the Newtonian law of attraction ; and let us put, for abridgement,

B2 — m, m.
my +my =, = p, SR T8 e e e e e e e (102)

l
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The characteristic function V, of relative motion may now be ekpressed as follows:

V,=”3%2(3J5+ﬁ’i 22T gy L (A

in which p is to be considered as a function of the extreme radii vectores r, ry, and of
their included angle &, involving also the quantity a, or the connected quantity H,
and determined by the condition

+dr

—[:rZJ Sy e e e e e (B

_.......—.___..—-..

that is, by the derivative of the formula (A3.), taken with respect to p: the upper
sign being taken in each expression when the distance r is increasing, and the lower
sign when that distance is diminishing, and the quantity p being treated ‘as constant
in calculating the two definite integrals. It results from the foregoing remarks, that
this quantity p is constant also in the sense of being independent of the time, so as
not to varyin the course of the motion ; and that the condition (B3.), connecting this
~ constant with » 7, § a, is the equation of the plane relative orbit; which is therefore
(as it has long been known to be) an ellipse, hyperbola, or parabola, according as the
constant a is positive, negative, or zero, the origin of r being always a focus of the
curve, and p being the semiparameter. It results also, that the time of motion may
be thus expressed : _
8V 3V,
P=gH ST ¢ e e ()
and therefore thus: -
+dr

t_‘/"\/————-}r~ (D3)

which latter is a known expression. Confining ourselves at present to the case a > 0,
and introducing the known auxiliary quantities called excentricity and excentric
anomaly, namely,

e=\/l——(103)

and
-] fa—7r .
v = Co8 s ), S g L1 )
which give
+/2ar—r2—pa=aesiny, . . . . . . . . . . . . (105)

v being considered as continually increasing with the time; and therefore, as is well
known, :
r=a(l —ecosv), 7y =a (1l — ecosyy), ‘

l 106.)

S=2tan“l{\/ii: -—} —2tan ‘l{\/l-*-e 20‘},}
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and

i
t=\/%.(v—vo—esinv-{-esinvo); R ¢ (178

we find that this expression for the characteristic function of relative motion,

"M ma‘/"
7

deduced from (A3.) and (B3.), may be transformed as follows :

V,=m1m2\/§(u—uo+esinv—esinu0): .o (B8

in which the excentricity e, and the final and initial excentric anomalies v, v, are to
be considered as functions of the final and initial radii », »,, and of the included
angle 3, determined by the equations (106.). The expression (F3.) may be thus
written :

(E3)

V,=2mlm2\/%(u,+e,sinv,), R (€3

if we put, for abridgement,

v — v + v,
=g ¢ =eC0s—5—35 . . . . . . . . (108.)

v

for the complete determination of the characteristic function of the present relative
motion, it remains therefore to determine the two variables v, and e, as functions of
r 19 3, or of some other set of quantities which mark the shape and size of the plane
triangle bounded by the final and initial elliptic radii vectores and by the elliptic
chord.
For this purpose it is convenient to introduce this elliptic chord itself, which we
shall call + =, so that
=124 —2rrpcosd; . . . . . . . . (109)
because this chord may be expressed as a function of the two variables v, e, (involving
also the mean distance a,) as follows. The value (106.) for the angle 3, that is, by
(95.), for 4 — 4,, gives

1
0 — 2tan {\/liitan }=90—2tan {\/”"tn%"—}:a, . (110.)

= being a new constant independent of the time, namely, one of the values of the
polar angle 4, which correspond to the minimum of radius vector; and therefore,

by (106.),
rcos (0 —w) =a(cosv —e), rsin(d —=) =a, JT— esiny,
rocos (6 — @) = a (cosv) — €), rysin (4 — =) = a, /T — esiny,;

(111.)

expressions which give the following value for the square of the elliptic chord :
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72 = {rcos (0 — w) —r,cos (§y—w»)}2 + {rsin (§ — @) —rysin (§, — =) }2
= a? {(cos v — co8 vy)% 4+ (1 — €?) (sin v — sin vy)?2}

2 2 > (112,
= tatint { (40 752) 4 1 = ) (s222)'} )

=4a?(l —e?)siny?:

J

we may also consider = as having the same sign with siny, if we consider it as
alternately positive and negative, in the successive elliptic periods or revolutions,
beginning with the initial position.
Besides, if we denote by ¢ the sum of the two elliptic radii vectores, final and
initial, so that
o=r4+r, . .« « « « < < « < <« . o (113)
we shall have, with our present abridgements,

ec=2a(l —ecosv); . . . . . . . . (114))
the variables v, e, are therefore functions of s, 7, a, and consequently the character-
istic function V, is itself a function of those three quantities. We may therefore put

V=B L ()

m, + my’

w being a function of g, 7, a, of which the form is to be determined by eliminating
v, ¢, between the three equations,

w=2,/pa (4 esinv),)
¢ =2a(l —ecosy), B ( E8)
r=2a(l —e?tsiny; |

and we may consider this new function w as itself a characteristic function of elliptic
motion ; the law of its variation being expressed as follows, in the notation of the
present essay :

Pwo=EdE—ddudin— BB+ 23— oy + 22 (Ke)

In this expression, £ 7 { are the relative coordinates of the point m,, at the time ¢,
referred to the other attracting point m, as an origin, and to any three rectangular
axes ; ¥ # { are their rates of increase, or the three rectangular components of final
relative velocity ; « (3 ¥ ¢ 8' o/ are the initial values, or values at the time zero, of
these relative coordinates and components of relative velocity ; a is a quantity inde-
pendent of the time, namely, the mean distance of the two points m,, m,; and w is
the sum of their masses. And all the properties of the undisturbed elliptic motion
of a planet or comet about the sun may be deduced in a new way, from the simplified
characteristic function w, by comparing its variation (K3.) with the following other
form,

Bw:%?&o-}-%%Br-{-%—?Sa; N ¢ 73
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in which we are to observe that
c=Etr 2+ VAT
r=tJE—a):+ 00— B+ (- 7))

By this comparison we are brought back to the general integral equations of the

relative motion of a binary system, (89.) and (90.); but we have now the following
particular values for the coefficients A, B, C:

(M3.)

1 8w 13w 1 dw 1 8w 10w
A=rot+rm B=rm C=5nt T (N*)
dw 8w dw

and with respect to the three partial differential coefficients, s, 5—, 55, we have the
following relation between them :

w

dw dw dw .
as';—f-d’za‘;-l—?‘s?:‘é‘,......,....,...(03.)

the function w being homogeneous of the dimension } with respect to the three quan-
tities a, 6, 7; we have also, by (I3. ),

=VE T =V S )
ety LEE L

and therefore

dwdw ——Qp.-r dw dw __ 4po
80- ar = "3~ (ao-) + (81-) +— a.Q_TQ, . - . - . N . (an)
from which may be deduced the following remarkable expressions :
e
30‘ + 81) ==z + T a’ L
(R%.)
Sw bw A J
(8' T ﬁ “o—1  a’

These expressions will be found to be important in the application of the present me-
thod to the theory of elliptic motion.

16. We shall not enter, on this occasion, into any details of such application ; but
we may remark, that the circumstance of the characteristic function involving only
the elliptic chord and the sum of the extreme radii, (besides the mean distance and
the sum of the masses,) affords, by our general method, a new proof of the well-
known theorem that the elliptic time also depends on the same chord and sum of
radii; and gives a new expression for the law of this dependence, namely,

22a% 3w

e e

We may remark also, that the same form of the characteristic function of elliptic
motion, conducts, by our general method, to the following curious, but not novel
property, of the ellipse, that if any two tangents be drawn to such a curve, from
any common point outside, these tangents subtend equal angles at one focus;
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they subtend also equal angles at the other. Reciprocally, if any plane curve possess
this property, when referred to a fixed point in its own plane, which may be taken as
the origin of polar coordinates r, 9, the curve must satisfy the following equation in
mlxed differences:

c_otan( ) A_—(A+2)dor’ R S 1)
which may be brought to the followmg form,

(de+d037“0""'~ A ¢ S A B
and therefore glve83 by integration, |

R vy = E AN (S VA

the curve is, consequently, a conic section, and the fixed point is one of its foci.
The properties of parabolic are included as limiting cases in those of elliptic mo-
tion, and may be deduced from them by making
H=0o0ora=ow®; . . . . . . . . . . . . . ... .(18)

and therefore the characteristic function w and the time ¢, in parabolic as well as in
elliptic motion, are functions of the chord and of the sum of the radii. By thus
making a infinite in the foregoing expressions, we find, for parabolic motion, the par-
tial differential equations ' _

3w, dw)2__ 4dp (3w dw _4;1..

WwtE) =ae Gomw) Se= - - - - (T
and in fact the parabolic form of the simplified characteristic function w ma.y easily
be shown to be

w=2./e(fotrFSo=) - « - - « . . . . (U

= being, as before, the chord, and ¢ the sum of the radii; while the analogous limit
of the expression ($3.), for the time, is

t=6.——%/-;{(o'+~r)%:1:(a—-r)%}: e e e e (VB

which latter is a known expression.

The formulee (K3.) and (L3.), to the comparison of which we have reduced the
study of elliptic motion, extend to hyperbolic motion also; and in any binary system,
with NewTon’s law of attraction, the simplified characteristic. function w may be
expressed by the definite integral

_./ \/HT- AT, . e e (W)

this function w being still connected with the relative action V, by the equation

(H3.) ; while the time ¢ which may always be deduced from this function, by the

law of varying action, is represented by this other connected integral,
MDCCCXXXIV. . 2p
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p \—3% . .
/,_{_,——4—; de: o . . . L L L0 (X8)

provided that, within the extent of these integrations, the radical does not vanish
nor become infinite. When this condition is not satisfied, we may still express the
simplified characteristic function w, and the time ¢, by the following analogous inte-

grals :
e, Y
w=fﬂ i¢;§_-gd«,, N &
and :
t= "4 B, (@)
in which we have put for abmdgement
=" n="55 . . . ... ... (19)

and in which it is easy to determine the signs of the radicals. But to treat fully of
these various transformations would carry us too far at present, for it is time to
consider the properties of systems with more points than two.

On Systems of three Points, in general ; and on their Characteristic Functions.

~17. For any system of three points, the known differential equations of motion
of the 2nd order are included in the following formula :

m, (2", 2, +y"131'/1 + 2", 8%y) + my (2,32, + ¥y 0y, + 2 2532)} . (120.)
+my ('3 + '3 8ys + 238 8) =3,
the known force-function U having the form
U=m, mzf(l’ 2 4 m, m3f(1’ R m2m3f(2’ Do (121.)
in which £ 2, f(” %, S %) are functions respectively of the three following mutual
distances of the points of the system :

r® = (@, — 2)* + (9, — 92 + (31 — 20)% .L
r*® = (@, — @)+ (1 — 93)% 4 (51 — 2,)°
r®% = (@ — 2>+ (45 — 97 + (% — =)
the known differential equations of motion are therefore, separately, for the point m,,

| T Asded
&'y = my Sy, +m'3j(

3 (1 2) 3f(1: 8)
y,(l =M _—’J-;yl + ms 8y, ’

8f(l 2) NP
+ m; j;zl »

"o
By =My 32

(122.)

(123.)

Vi

. J
with six other analogous equations for the points m, and my; 2", &c., denoting the
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component accelerations of the three points m, m, ms, or the second differential co-
efficients of their coordinates, taken with respect to the time. To integrate these
equations is to assign, by their means, nine relations between the timne ¢, the three
masses m, m, mg, the nine varying coordinates x, ¥, 2, %, ¥, %5 %3 Y3 %3, and their nine
initial values and nine initial rates of increase, which may be thus denoted, a, b, ¢,
ay by ¢y a3 b5 ¢c3d, b, ¢y dy ¥,y dy U5 ¢5. The known intermediate integral con-
taining the law of living force, namely,

,%_ml @2+ y2+ 29+ —;—mz (@ + 9 + =2P) + _;—m3(zl32 +Y 4 #) } (124.)

= mlmzf(l’z) +m1m3f(l’?) + mzmaf(g’s) +H,
gives the following initial relation :

%ml(dlg_*_ylz_i_dlz)+§1—m2(a'§2+b’22+da2)+-;'m3(d32+b’32+d32) }(125)

= mymy £, + my my "0+ mymy £, P - H,

in which £,(* A %, i ?), are composed of the initial coordinates, in the same
manner as /" 2 S % f(g’ %) are composed of the final coordinates. If then we knew
the nine final integrals of the equations of motion of this ternary system, and com-
bined them with the initial form (125.) of the law of living force, we should have ten
relations to determine the ten quantities ¢ o', ¥, ¢, &, ¥, ¢, a5 /5 (5, namely, the time
and the nine initial components of the velocities of the three points, as functions of
the nine final and nine initial coordinates, and of the quantity H, involving also the
masses ; we could therefore determine whatever else depends on the manner and time
of motion of the system, from its initial to its final position, as a function of the same
extreme coordinates, and of H. In particular, we could determine the action V, or
the accumulated living force of the system, namely, :

V=m1ﬁ(ﬂ12+¢12+Z'12)dt+mz‘/0"(w’22+y’22+z’f)dt .}
" [
+omy [ (@2 + g2+ 2 dt,

as a function of these nineteen quantities, , ¥, %) %, Y2 %2 @3 Y3 23 @, b, ¢, a, b, c,
a3 by ¢c; H; and might then calculate the variation of this function, '

5V 3V 5V 5V 3V, ., 8V, 1
YV = b+ 5,00 T tatagda +i500 5%

(AL)

3V 3V 3V 3V 3V 3V
+—3x23%‘2+ gyzayz +§‘z;3%2+§;2302 +;§b-23bz+§;;302
L (B
3V 3V 3V BV, . 8V 3V
+i50%+ m33/3}+§;;3%3+§7;83as+§7;363 + 35,06

3V
ERASY
' 2p2
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But the law of varying action gives, previously, the following expression for this
variation :
3V =m, (¢332, — a\da; + v 0y, —8,3b, + 218z, —,8¢)
- my (23 2y — @y day + Yo By, — Uy by + 2503, — 30 ¢y)
+ my (W3 — dydas + Y5 dy; — V3 dby + 230 25— 33 ¢,)
4+ ¢t3H;
and shows, therefore, that the research of all the intermediate and all the final integral
equations, of motion of the system, may be reduced, reciprocally, to the search and
differentiation of this one characteristic function V; because if we knew this one
function, we should have the nine intermediate integrals of the known differential
equations, under the forms °

(C4)

BV _ VAV

5z, = ™Mru 5y T MYv i, = ™%

VvV 3V 3V ‘

= ls g =Y =My b . . . (DY)
V. _ ' y 8V !

Sz, T §y, T MY §y = M3 %3

and the nine final integrals under the forms

3V 3V 3V n

5‘,,—1=“m1a’1’3"1,_1‘—' mlb'va = —m cy,

8V 3V A%

n;:‘_-—mzalz,s‘g— mzb'z,s =—m26"2, > e v e e . e . (E“.)
3V _ , 3V : sv
m—‘maazam——maba,ﬁ;=—m3d3,J

the auxiliary constant H being to be eliminated, and the time ¢ introduced, by this
other equation, which has often occurred in this essay,

3V
e ¢ o8

The same law of varying action suggests also a method of investigating the form
of this characteristic function V, not requiring the previous integration of the known
equations of motion ; namely, the integration of a pair of partial differential equations
connected with the law of living force ; which are,

M{Q044M)+@1}+ﬁﬂgy4%m +QJ}KM
+2m3{(8w3) +(8y3 (%—z; }—-ml Qf(l )+ 3f + mym 3f(’ )+H
and

i {2+ G2+ G} {2+ GO+ G

+2m8{ (Z Z;) +(3 1)3> +(8c3) }_mlmzf(l’ +m, 3/; b +m2m3f‘; 5 +H
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And to diminish the difficulty of thus determining the function V, which depends on
18 coordinates, we may separate it, by principles aiready explained, into a part V,
depending only on the motion of the centre of gravity of the system, and determined
by the formula (H'.), and another part V,, depending only on the relative motions of
the points of the system about this internal centre, and equal to the accumulated
living force, connected with this relative motion only. In this manner the difficulty
is reduced to determining the relative action V,; and if we introduce the relative co-
ordinates

L= —x =) —Y G=2% - 23,} (126.)
L=y — Xy =Yy — Ys = % — %,

and
w=ay—ay B=b—by y=0c-— ‘33’} (127.)
Uy =@ — @ Bo=0by — by, 2= ¢ — ¢,

we easily find, by the principles of the tenth and following numbers, that the function
V, may be considered as depending only on these relative coordinates, and on a quan-
tity H, analogous to H (besides the masses of the system) ; and that it must satisfy
two partial differential equations, analogous to (F*.) and (G*.), namely,

mid Ge) + () + (8{1)1+0m2{<8£2 + G+ G}

+é‘%{;{(agl +age) + g:z +a%) sgl agg) } ()
gy £ gy fD ey my £ 9 4 |
and
le{(3al) +(861 371> }‘*‘ng{(z sﬁg T+ g‘“};;)z}
+§‘:@{ 3a1+8a9) +(8V aﬁg) +(571+872> } e (1)
= g fOP oy 0 g £ 4 H: |

the law of the variation of this function being, by (Z'.),

3V, = t3H, 4+ m, (£,3¢ — oy Say 4+ o 3 — B19B + 104 — v1dn) 1
+ my (8205, — olyB ey + 7,07, — 808, + 2508, — 7'207,)
(M8 +my,) ()58, +-my08,) — O ) (B0 -1y D0t,) (K)
WE}T"{ + (my 7y +my7'y) (mmy 8y 1,0 77) — (my B +myB'5) (my 3B, +my0f3,) }
e + (m, 8y 4 mydy) (m13€1+m23§2)—(m17'1+m2y’2) (my 8y, +my0y5) J

which resolves itself in the same manner as before into the six intermediate and six
final integrals of relative motion, namely, into the following equations :
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_l_m_g _w. lm_g __mlgx"}‘maye‘ i
my8g T Pl mtmgtmg’ my 3L, T °2 0 my + my+my’
13V my 'y + my 13V my 'y -+ myf
— e ~an T Tele, 1 ~"mn 2 e, 4
my 8y —ﬂ,l m, + my+mg> My By, _’1’2 my + my + mg’ ’ (L)
lﬁy_!—a __M. lﬂ’;_g _mlt’1+m2t’2_
my 3% Tl omytmet+mg® my 88 T 2 my+my+mg’ J
and )
13V, g e bmdy 10V, omah b medy
my Say YT mytmytmg® mg Sy 2 my+mg +my’
-] BVI w. :__1 3V1= 6'2’— mlﬂl'*"”&ﬂ?. > (MQ)

—_—d = A Y |
m, 8B, —131 my+my,+ mg®  my, 3B, m, + my + mgy°

______4:_;.),:1_."11_1"&22_212. :l?._‘rl_yz_mleI'*“me')"z.

ml+mg+m3’, mz 372— m|+m2+m3’ J

which must be combined with our old formula,

3V
FIETE o e e e e e e e e e e e e (OY)

! :
18. The quantity H, in V,, and the analogous quantity H, in V,, are indeed inde-
pendent of the time, and do not vary in the course of the motion; but it is required
by the spirit of our method, that in deducing the absolute action or original character-
istic function V from the two parts V, and V,, we should consider these two parts
H and H, of the original quantity H, as functions involving each the nine initial and
nme final coordinates of the points of the ternary system; the forms of these two
tunctions, of the eighteen coordinates and of H, being determined by the two con-
ditions, '

s =G HAH=H. ... (N
However, it results from these conditions, that in taking the variation of the whole
original function V, of the first order, with respect to the eighteen coordinates, we may
treat the two auxiliary quantities H, and H,, as constant ; and therefore that we have
the following expressions for the partial differential coefficients of the first order of V,
taken with respect to the coordinates parallel to z, ’

3V _ 3V, m___ 8V, 3V _ 3V, m 8V, |
8z, = 3%, my + my + mg 32,°8a, _5‘?&; m, + my + mg 3@,

VoV, w3V, 0V _aV, w2, o
By~ 8E, T om +my+mg3x,°8a,  Sa, ' my + my+ mgday’ >( )
BV BV, Y, w3V, RV Y, 3V, w3V,

Sag — T BF  0F ' mtmytmg bz’ 8ay  Sa,  Bay | my+my+mg3a,”

together with analogous expressions for the partial differential coefficients of the same
order, taken with respect to the other coordinates. Substituting these expressions in
the equations of the form (0.), namely, in the following,
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A% 3V dV dV sV 3V 7
Sz, Tog, Tia, Tog tigTig=0
5V
N
3V 3V 3V 8V 3V dV
55 Ty T o5 Tog g Tog =0
we find that these equations become identical, because

LA + LAN 3V, 3V, 3V,
Sy day X ? ¥z, LEY

(P4)

v

3V 8V 3V 8V ¥V
to it Tt =0

3V, _ _
= O + ab” — O = 0. . ° ° . ° . (Q4.)
But substituting, in like manner, the expressions (O%) in the equations of the form
(P.), of which the first is, for a ternary system,
3V 8V 5V A 3V 5V
Ty, ~Yiim T by, T Reva T BEy,  Bvs

SV 3V 3V 5V BV 5V
+ a5y = b+ asy, — by + 4y — by

C .. (R4

and observing that we have

3V, 3V, bV,

3V,
Z, 39, — Y Sz, a, 50,

bus—a-;-=0,. B T

along with two other analogous conditions, we find that the part V,, or the charac-
teristic function of relative motion of the ternary system, must satisfy the three fol-
lowing conditions, involving its partial differential coefficients of the first order and
in the first degree,

. 3V, 3V, 3V, 3V, 8V, 3V, 3V 3V, 1

O—E] 8711_’713&'1—{-%23'19 '—’728_5:-}'“1'8_3;_613—&;4'“28—&2’—32372”

BV, LBV, BV, 3V, 3V, 5V, , , 8V 5V

O—”lb‘{l—€13n1+”23§;~€2§n_g+318—'}—1_718—ﬁ]+628—'2—728—ﬁ;’ f ('14.)
3V d3V 3V 3V 3V 3V, 3V 3V,

0=43g ~hsy Targ, —hig T gy —an, F g —an)

which show that this function can depend only on the shape and size of a pentagon,
not generally plane, formed by the point m; considered as fixed, and by the initial
and final positions of the other two points m, and m,; for example, the pentagon, of
which the corners are, in order, m; (m;) (my) m, m;; (m,) and (m,) denoting the
initial positions of the points m; and e, referred to m, as a fixed origin. The shape
and size of this pentagon may be determined by the ten mutual distances of its five
points, that is, by the five sides and five diagonals, which may be thus denoted :

mg (my) = /51, (my) (my) = N/ 3, (my) my = of 53, mym, =,\/;4,m1m3=,\/§,} (128.)

my (my) = \/‘Tv (my) my = J‘Tm (my) my =~/Z§, myms= '\/Ebml (m,) =~/d5;

the values of s, . .. d; as functions of the twelve relative coordinates being
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8§ = 0512 + 312 + 712> S = (“2 _.“1)2 + (62 - 61)2 + (72 - 71)2: M

5= (& — )2 + (1 — Bo)? + (o — %)%
s=82+mn*+ 845 =GE-8"+n—n)"+ (L—0)%
=0+ Bl tvhd=E—a)? 4+ (1,— L)+ (L — )%

dy = (§ — 5)> + (m — Bo)® + (§ — 72)%
=8 +n+4&%di= (5 — “1)2‘ + (m = B)? + (G — n)™

J

> . (1295

These ten distances +/s,, &c., are not, however, all independent, but are connected by
one equation of condition, namely,

0 = 5,282+ 8,252 + 8282 + 5,282+ 5,252

+ 52 d? + 52 d? + s d? + 52 d)? + 57 dyf

+d2d2+ d2d? + d2d2 + d2d? + d2dy?

— 282838, — 28,285,855 — 28528, 8, — 252885, — 2525,5;

— 2828;dy — 28,28, dy — 2828;ds — 2528, dy — 2s:25,d,
—28285,d; — 282 s5,dy — 2828,d; — 2828,d) — 25,.25,d,

— 28 dyd?—2s,d;d?— 28,d,d? —25,d;d\? — 25, d, dy?
—2s5d2dy — 25,d2dy —2s3d%d) — 25,d?dy— 25,d?d,

—2d d2dy—2d,d?dy — 2d;d2dy — 2d,d;?dy, — 2 d;d?d,

— 485,838, 0y — 48,8, 85dy — 45388, dy — 45,5, 5,d, — 458,830,

— 48 dydyd) — As,dydydy — 4s,ddydy — 4s,d5dy dy — 455d, d, d;
— 28, 8,8d, — 25,838, s — 2858, dy — 28,858, dy — 2558, 5,d,

— 28, 8d,dy — 28,8, dydy — 25;8,dydy — 28,8, dydy — 2 s55,d5d,
— 28 dydydy — 28,dydydy — 283d5dgdy — 25,dydy dy — 2s5d5d,d,
2885858, F 28,838, 85+ 288,858 + 28,5585 5+ 2855855

F 28,88, dy + 28,8585dy +2838,8,dy + 25,858, dy + 258558537,
d 28,838, dy + 28,8,8,dy + 25388 ds + 25,8 S, dy + 28558,5,d;
+ 28, 5,dsdy + 28,83dyds + 2855,d5dy +28,55d,dy +- 2558, d,ds
+ 28, 83dyds + 28,8, dydy - 2855,d,dy + 25,5, ds dy + 2 555, d, d,
428, 8,d1dy+28,85dydy +2835,dydy F25,8,d,dy + 2 858;d;d,
+ 28 5,dydy + 28,85dydy + 2535, dydy + 25,5, d,dy + 2 s5553d5d,
+ 28,8, dydy + 28,8,d5d;, + 2558, dydy + 28, 5,d5dy + 2855;d, d,
4288, dsdy +28,85d,dy + 2838, dsdy +25,5,dydy + 25553d,dy
+28d dydy +25,dydsdy + 2 83d5dyds 2 5,dydydy + 2 s5d5d, d,
+2s,dydydy + 2 5,dyddy + 2 5ydy dydy + 25, dy dydy + 2 5,y dy

L. (130.)
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they may therefore be expressed as functions of nine independent quantities ; for ex-
ample, of four lines and five angles, ) », ) »® rO(Q), o0 00(1) o 90(2) s, on which they
depend as follows:

$ = 7'0(1) 5

8§y = ro(l) 4 rO(Q) o2 ro(l) ro(g) (cos 00(1) cos 90(2) + sin 00(1) sin ()0(2) cos ),

5y = 7D @2 9, ®, @ gog (O _ @)

s =7 D2 9,0, (cos 6V cos 6 4 sin 6" sin 02 cos 1),

(1) 2
]

S5 =

s (131.)
dy= 7'0(“) %
dy =7 41 D2 = 25D O (o5 62 cos 4,7 + sin 6 sin 4,V cos 1),
dy = ro % 4% g rO(Q) Y (cos 00(?) cos 6 + sin 00(2) sin 6 cos 5,
d,=r®2
dy= D% 4 M2 g 0 0 goq (40 _ g ]

the two line-symbols 7" »® denoting, for abridgement, the same two final radii vec-

2, 8 2
%9 0()

tores which were before denoted by r" %) , and ro(l) ry ' representing the initial

values of these radii ; while &V ¢ 90(1) 00(2) are angles made by these four radii, with

the line of intersection of the two planes ro(l) r(l), 1'0(2) #® 5 and s is the inclination of
those two planes to each other. We may therefore consider the characteristic function
V, of relative motion, for any ternary system, as depending only on these latter lines
and angles, along with the quantity H,.

The reasoning which it has been thought useful to develope here, for any system of
three points, attracting or repelling one another according to any functions of their
distances, was alluded to, under a more general form, in the twelfth number of this
essay ; and shows, for example, that the characteristic function of relative motion in
a system of four such points, depends on the shape and size of a heptagon, and there-

fore only on the mutual distances of its seven corners, which are in number

6 . . o .
Z—%—- .-:.:) 21, but are connected by six equations of condition, leaving only fifteen

independent. It is easy to extend these remarks to any multiple system.

General method of improving an approximate expression for the Characteristic Function
of motion of a System in any problem of Dynamics.

19. The partial differential equation (F.), which the characteristic function V must
satisfy, in every dynamical question, may receive some useful general transfor-
mations, by the separation of this function V into any two parts

MDCCCXXXIV. 2qQ
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Vi Vo=V o oo (U

For if we establish, for abridgement, the two following equations of definition,

T,=3.2 (G + (2) + (52)), |
T,=3. (%) + sf)'+ 7)),

analogous to the relation

vt (G4 EHEY) -

which served to transform the law of living force into the partial differential equation
(F.); we shall have, by (U%),

1 /3V, 8V, 3V, 3V, 3V, 3V,
T=T+T+2 G T35y tosa)s - - - - - XY

and this expression may be further transformed by the help of the formula (C.), or
by the law of varying action. For that law gives the following symbolic equation,

1 /3V ¢ 8V 8 8V 23 d
—_ 4
2 (8.1'3-1'_!- Sysy"l’- 82' Oz) d/’. . . . . . o D . . .(Y.)

. (V&)

the symbols in both members being prefixed to any one function of the varying coor-
dinates of a system, not expressly involving the time ; it gives therefore by (U*), (V*.),

1 (8V, 8V, 8V, 8V, 8§V, 8V, A ’
2“(8x8x+8y8y+8z8y -——d?-"T N VAS |

In this manner we find the following general and rigorous transformation of the
equation (F.),

av

=T =T+Ty; . . . . . . . .. (A
T being here retained for the sake of symmetry and conciseness, instead of the equal
expression U 4+ H. And if we suppose, as we may, that the part V,, like the whole

function V, is chosen so as to vanish with the time, then the other part V, will also
have that property, and may be expressed by the definite integral,

Vo= =Ty +Tde. . . . . .. (B

More generally, if we employ the principles of the seventh number, and introduce
any 3 n marks 7, 7, ... s, , of the varying positions of the n points of any system,

(whether they be the rectangular coordinates themselves, or any functions of them,)
we shall have

T=F(

5V 3V sv> ()

87)1’ 'a_g, . .87)3_” )

and may establish by analogy the two following equations of definition,
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TI—F(Sm’ 5112 ?3’13,)

T —F(3n1 31)2 T 37)3

the function F being always rational and integer, and homogeneous of the second
dimension ; and being therefore such that (besides other properties)

"1
,>.............(D5.)
J

' L3V, 3T, 8V, §T, 3V, .
T=T+T,+ 8V EEN +‘o‘§‘l.1872- +38V 8’73 ... (BS)
b\m 8,’2 87)311
5
sv—av"'sv’-- v =Ty T av’- C .y
8, Sm Snl 87;3" Sng,, Sﬂsn
and
8T, 8V, 8T, 8V, 3T, .
IV, TV, ey, T T EY, a,,s 2=92T, . . . . . . .(G)
37}1 8% 8’753"

By the principles of the eighth number, we have also,

3T 8T 0T
;3_\7:”,1’ ;S—Tf=n'2,...;§—v— =n'3n; e e e e e e e e (H5.)
8”1 87)2 87)3% )
and since the meanings of 7y, . . . 74, give evidently the symbolical equation,
NI b _d ;
”‘3m+”23n2+"'+’73n3n3n—dt’ R ¢ 9

we see that the equation (AS.) still holds with the present more general marks of
position of a moving system, and gives still the expression (B®.), supposing only, as
before, that the two parts of the whole characteristic function are chosen so as to
vanish with the time.

It may not at first sight appear, that this rigorous transformation (B®.), of the partial
differential equation (F.), or of the analogous equation (T.) with coordinates not
rectangular, is likely to assist much in discovering the form of the part V, of the
characteristic function V, (the other part V, being supposed to have been previously
assumed ;) because it involves under the sign of integration, in the term T,, the par-
tial differential coefficients of the sought part V,. But if we observe that these un-
known coefficients enter only by their squares and products, we shall perceive that it
offers a general method of improving an approximation in any problem of dynamics.
For if the first part V, be an approximate value of the whole sought function V, the
second part V, will be small, and the term T, will not only be also small, but will be
in general of a higher order of smallness; we shall therefore in general improve an
approximate value V, of the characteristic function V, by adding to it the definite
integral,

2q2
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V2=‘/0"(T—T1)dt;. N ¢ .G

though this is not, like (B%.), a perfectly rigorous expression for the remaining part
of the function. And in calculating this integral (K5.), for the improvement of an
approximation V;, we may employ the following analogous approximations to the
rigorous formula (D.) and (E.),

3V, y OVy ) 8V, 1
b‘_al_—mlal;ga—g*—m2a2;"'3_5;=‘mna'";

5V, oV, , BV, ”
571“-——”21[71357,;—_7"2525' 5‘7”:_77’%5”5 . e e (L5)
8V1_ y.svl_ /. 8V1_ /

To, = T MO Fg, T T MO f = T M O

and

BV, ‘ ;
m:t; e e e e e e e e e e e e e e s e e e s .(M".)

or with any other marks of final and initial position, (instead of rectangular coordi-
nates,) the following approximate forms of the rigorous equations (S.),
5V, 3T, 3V, 3T, 3V, 3T,

5}1“"_57'1’”8?;——%;""'87;;"‘@’ e e e e e (ND)

together with the formula (M5.); by which new formulee the manner of motion of the
system is approximately though not rigorously expressed.

It is easy to extend these remarks to problems of relative motion, and to show that
in such problems we have the rigorous transformation

t
V,2=/O'(T,_T,1+T,Z)dt,. R (0 )
and the approximate expression
t
V,2=/O‘(T,—T,1)d:,. A ¢ N

V,, being any approximate value of the function V, of relative motion, and V, being
the correction of this value ; and T, T ,, being homogeneous functions of the second
dimension, composed of the partial differential coeflicients of these two parts V,;, V ,,
in the same way as T, is composed of the coefficients of the whole function V,. These
general remarks may usefully be illustrated by a particular but extensive application.

Application of the foregoing method to the case of a Ternary or Multiple System, with
any laws of attraction or repulsion, and with one predominant mass.

20. The value (68.), for the relative living force 2 T, of a system, reduces itself
successively to the following parts, 2 T,(I), 2 '1‘,(2), c. 2 T,(""l), when we suppose that
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all the » — 1 first masses vanish, with the exception of each successively ; namely, to

the part
m

2TV = o @A, - (182

1+

when only m;, m,, do not vanish ; the part

(E'2+71 +20, . . . . .. . . (183)

Mo My
2+m

2T® =

when all but m,, m,, vanish ; and so on, as far as the part

2TV = Mn1Mn o g2 422 Y L L. (134)

My 1 +m

which remains, when only the two last masses are retained. The sum of these » — 1
parts is not, in general, equal to the whole relative living force 2T, of the system,
with all the » masses retained ; but it differs little from that whole when the first
n — 1 masses are small in comparison with the last mass m, ; for the rigorous value

of this difference is, by (68.), and by (132.) (133.) (134.),
2T, —2T® —2T® — ... —2T" V=
2 2my, n— '
(T(l) - 1) + — me (T(Q) - TI) R : (T( D TI) S . (135.)

zml

+ ;n: 2, . mym, {(5’;‘ — 24+ (=)t + (i — élk)z}’

an expression which is small of the second order when the » — 1 first masses are

small of the first order. If, then, we denote by V,(l), V,(z), ces V,("_l), the relative
actions, or accumulated relative living forces, such as they would be in the n — 1
binary systems, (m, m,), (mym,), ... (m,_, m,), without the perturbations of the
other small masses of the entire multiple system of z points; so that

VP =2mPa, vO = 21 ar, .. VI = 21V dr, (@)

the perturbations being neglected in calculating these » — 1 definite integrals; we
shall have, as an approximate value for the whole relative action V, of the system, the
sum V; of its values for these separate binary systems,

Vo=V 4 v® 4 o4 veh oL (R

This sum, by our theory of binary systems, may be otherwise expressed as follows :

1) ©) (n)
V,y=""® el T T W (S5.)
! m, + m,, my + m,, My + M, :

if we put for abridgement
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-

, A1)
w(l) —_ h(l) 3(1) +/(1) r’(])dr(]),

@ _ 1@ o®@ o2 i
w = h’( S( +f @ 7"(2) d 7'(2)) e e e . . ('PO.)
7o

(n=1) __ (n=1) g(n=1) (=1 -
w = k" +_A}n-1> A1 g, =1

J
In this expression,
I \/ (1) (1 = ]
7’ =+ 2(my +m,) /" +2g —
K
_ > (U5)
V4 N N ol
reN =2V 20 +m)f 28— ey
R
+O ., »®D being abridged expressions for the distances r™, . . 7""" and

SO @D being abridgements for the functions Mo TN of these
distances, of which the derivatives, according as they are negative or positive, express
the laws of attraction or repulsion: we have also introduced 2 » — 2 auxiliary quan-
tities 2 g ... A"
tions of condition :

&™ Y, to be eliminated or determined by the following equa-

1) 5 ,(1) §
— (1) o 4 M
0="1 +_/;0(1) YIO) dr,
(2) 5 ,1(2)
— o2 NS N ) .
0=3"+/ o 5@ 475 RN
(n—1) 3 H(n—1)
— q(#—1) r o . (n=-1)
0 ) 1‘.O(n--l) Py }L(n—l) d7(n s J
and ( ( :
1) g @ 74+ n=1) g,n—-1) v
./w(l) iy =, 7;2) e == 27»-1) 1) = o+ o o+ e (W?)
7o r 7o r o 7
or
pu®  pw®  patD ,
Sg(l) = 8g(2) _ ... = ag(n:ﬁg e s e s+ s . s s (X‘).)
along with this last condition,
my o1 m, oD m. o) m, ., pn=1) H
mfm +mefm +m3-fm +.ee m”1g+m =" . . . (Y
1 'n 2 n 3 n N} n n

and we have denoted by 3, ... 9% the angles which the final distances

r®, .+« 71 of the first n— 1 points from the last or #th point of the system, make
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respectively with the initial distances corresponding, namely, ro, ... ro 0. The
variation of the sum V, is, by ($°.),
myom, 30D mym, 8w m,_y m, 3w

V=t ettt T - - (@)

in which, by the equations of condition, we may treat all the auxiliary quantities

gD A &""V as constant, if H, be considered as given: so that the part

of this variation 8 V;, which depends on the variations of the final relative coordinates,
may be put under the form,

_ omym, D) 3wl S'w()
Bs,n,év'l'"ml-i-mn —S_EI—BEI"I' 5, 3771+ Bél)

m2 My (3 w(2) ) : a w(2) 7y + 2 b) w(2) 0(®) o éz)

+ >, (A%)
+ ...
My—1 My (5 ln=1) 8 w(n—1) 3 wr=1)
+ My _1+my, ( 5, 1 08,1 + T 0 7,y + T LR ) ]

By the equations (T5.) (U5.), or by the theory of binary systems, we have, rigorously,
sw e w2 a2 ) W )
i)+ () + (i) =2 n b m) /¥ + 28
Sw(Q) b‘w@ 2 8'&7( ) 2) (2)

Ge) + () + Gg) =2+ m) £ + 26 b (B5)

......

(n“l) Sw("’—l) 2 Brw(n"—]) 2 -1 -1
—)’ ) + (i) =2 macs ) £ 267705

ss B,y
and the rigorous law of relative living force for the whole multiple system, is
T=U+H, . . . . . .. . ... .. ... .. (60)
in which

U =m, (m f +mpf O+ by D) 3y g O, ()

T/=—;— ){(851 3,,1 ) } 1
+ (m2 m ) {(852 + (3,7) + (3 §2> }
b D (G () ()

3V,3V, | 3V,3V, | 3V,3V,
“‘m2 5 58, T by, 3w, T 98 5)"

and

> . . (DS)

J
We have therefore, by changing in this last expression the coefficients of the cha-
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racteristic function V, to those of its first part V,, and by attending to the foregoing
equations,
; . ®30® | 5@ 50® | 5u® 5w
T. =m Eom'f(t)-{—H—}-m S m; m, (Bw ow +3'w Sw + W w );EG.
AT e T+ mym, + m, \BE, 8, Oy O, 8% 8%, (E)

and consequently

r —_ (i k) _ My, 3 sw® 5@ 5™ ‘o‘*w(k))
FI—TII—EI-mimk{f (my, + m;) (m,, + my) SEi SEk 8’71: 3,)/: ) :i 8§Ic -(FG-)

The general transformation of the foregoing number gives therefore, rigorously, for
the remaining part V, of the characteristic function V, of relative motion of the mul-
tiple system, the equation

r 3@ 5® 3w ® 5™ 5@ 5]
¢ (6 k) 0, SE/‘ 8’),’ Sﬂk 3@ 3§k
V12=‘/0]tT‘2dt+zl.mimk./O.Jf — :

1
;;l; (mn + mi) (m'n, + ml:)

dt; (GS)

and, approximately, the expression
(3 1 '
Vo= El'mimkﬁt{ f( Y- ,}'z;(%’i'slk + 754 + é,iélk)}dt: <o (HS)
with which last expression we may combine the following approximate formula be-

longing in rigour to binary systems only,

5 @ @ 5
gr____”'ﬁ"_ ;7'._:?-71—’——, "=~—7?—~, N ( U
2 SEz, ? Snl T sgl

O] su® 5@ .
“,i = '—8—6“—;“, ﬁ’i = - '“8'—6';', 72 — -8-:;/1.—’ . . ° . . ° . . . (KG')

and
= gjg@-. (Lﬁ')

We have also, rigorously, for binary systems, the following differential equations of
motion of the second order,
0] 0] 5 7O
g = (m, + m) “‘é-‘.; 7' = (m, + m) —“gf,}i ;s ¢ = (m, + m) -'gf-g-_—; .. (MS)
2 ?
which enable us to transform in various ways the approximate expression (HS.). Thus,
in the case of a ternary system, with any laws of attraction or repulsion, but with one
predominant mass ms, the disturbing part V, of the characteristic function V, of re-
lative motion, may be put under the form

Veo=mm,W, . . . . . . . . . . . . . . . . .. (N5
in which the coefficient W may approximately be expressed as follows :

W=./()ﬂ"{f(1,2)_mi3(5’1212+n'1,,f2+grlglz)}dt,. N (01
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or thus:
) (1) W 1
W s B b 4 ) |
> (P5)
37,0(1) () (1) wD Sl 8D
m(iz + 7 5, Z g, +e Zbu +8, kIS + 7 3y, )’JI
or finally,
WAL, 5 £ 5 £ |
W=/ (948 e+ 0 ) a o
(Q°
1 5 w® w? 5 w(? 3@ b‘*w(g) 8 S
(51 5E, +’71 N + & 5¢, + § oy + B T8, w )J|
In general, for a multiple system, we may put
V,= EI.mimkW(i’k); N (L
and approximately,
3 ¢ i 5 £® af(l) 5 £ 1
W( K =‘/0‘ (f( k) + Elc f + n/c b\ﬂ gk f )dt l
. . . . . . (S6)
b‘w(') 3w S'w(‘) 3l s @ r
m(gk 77k“§j7:+ k_E_g‘__‘_“k-Tb‘_a:_l_‘ng_I—%‘W)’ J
or
o) G, oW oW e ® 1
w —f (f +§; 28, T 7 oy, + 45 ) .
5 rp() 5 o) "G o) w(k) o) . (T%)
“(zgg + 7 81qk+gz 58, + 2 Sa, +6; 5B, 137)J

Rigorous transition from the theory of Binary to that of Multiple Systems, by means of
the disturbing part of the whole Characteristic Function; and approvimate ex-
pressions for the perturbations.

21. The three equations (K6.) when the auxiliary constant g is eliminated by the
formula (LS.), are rigorously (by our theory) the three final integrals of the three
known equations of the second order (M¢.), for the relative motion of the binary
system (m; m,) ; and give, for such a system, the three varying relative coordinates
& n; §;, as functions of their initial values and initial rates of increase ¢; 8; v; «; B 7/,

and of the time £, In like manner the three equations (I6.), when g is eliminated
by (LS.), are rigorously the three intermediate integrals of the same known differential
equations of motion of the same binary system. These integrals, however, cease to
be rigorous when we introduce the perturbations of the relative motion of this partial
or binary system (m; m,), arising from the attractions or repulsions of the other
points m, of the whole proposed multiple system; but they may be corrected and

rendered rigorous by employing the remaining part V,, of the whole characteristic
MDCCCXXXIV. 2 R
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function of relative motion V,, along with the principal part or approximate value V.
The equations (X!.) (Y!.) of the twelfth number, give rigorously

138V 1 3V 13V 1 8V 1
5’;—;"‘" 3f‘+ 2,3&-[,’1'; m, o,"'l" ,3,4,&' m, 3gi'+ Eng’ . (Uﬁs)‘

and
13V, 18V LoV, 1
= — + Elaa’_ 'i=m3ﬁl+ 2‘35’ ')/"—m37+ 2‘87 - (V)

¢ maa

and therefore, by (A°.),

2o _ _s pw® 13V, 153V ]

5E, — i T “ut m, tm, 9F m, 9§ m 1 BE’

w® s M w13V, 143V, (W)
aﬂ =T mk+mn 8ﬂk _mi 8”1 n /8‘3]‘.’ > T v
w0 oy m w® 13V, 1.2V,

ati RS " mlt+mn atk m; agz m, ISC‘.’ J

3V,

Se i m, +m, Goy m, Sa,
w® m sw® 13V, 1 L3V, .
T =fi+ 2, m,+m, 3B, ' m OB + o 2 3B.° ¢ (X)
3l m, su®) 13V, 1 L3V
T By i+2“°mk+mn 3y +;i873 +mn2'5'¥i’ J

the sign of summation 3, referring only to the disturbing masses m;, to the exclusion
of m; and m, ; and these equations (W6.) (X6.) are the rigorous formulse, corresponding
to the approximate relations (I6.) (K6.). In like manner, the formula (LS.) for the time
of motion in a binary system, which is only an approximation when the system is con-
sidered as multiple, may be rigorously corrected for perturbation by adding to it an
analogous term deduced from the disturbing part V, of the whole characteristic
function ; that is, by changing it to the following :
"‘ 3w 3V,
ag(‘)+3H""°"""""""(YG')
which gives, for this other coefficient of w(”, the corrected and rigorous expression
m:t—gﬁ;.(zb)
V,, being here supposed so chosen as to be rigorously the correction of V. If therefore
by the theory of binary systems, or by eliminating g® between the four equations
(K8.) (IS.), we have deduced expressions for the three varying relative coordinates
% #, {; as functions of the time ¢, and of the six initial quantities ¢; 3; ¥; «; 8; ¥/, which
may be thus denoted,
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& =0 (% B 76 %5 B Vs 1),

% = @p (% Bis Vo %5 B V' £)s (A7)
&= 03 (% B0 75 % B Vs 1) 5
we shall know that the following relations are rigorously and identically true,

3w(® () 5@ 3w 7

=0 (“ia B> Vi — S, 58> - 3y, ’sg(i) ’

7= @ (“p Bi Voo — Ssm 0(,:): - 8;;5(:): - 8810;:), Z:ﬁ: ’ (B7.)
sw® 3w aw(") 3w

= (“is Bo ¥ir — ba, " 3B, T Bg(') ]

and consequently that these relations will still be rigorously true when we substitute
for the four coefficients of w(” their rigorous values (X6.) and (ZS.) for the case of a
multiple system. We may thus retain in rigour for any multiple system the final in-
tegrals (A7.) of the motion of a binary system, if only we add to the initial com-
ponents o'; @, ¢'; of relative velocity, and to the time #, the following perturbational

terms: .
m 3™ 18V, 3V, 1
— kW - )
A“i_zll'mk-;-mn b‘uk +m au + 21 Sa'.’
m,  3u® 13V s Vs
I — k i -1
Aﬁi—Eu.mk-‘l—mn aﬁk +m aﬁ + 185’ >
m 3 w® 1 1
(- ok em 2 IQ
A'yi—zu'm&’*—mn 87/: m + 2‘ 871 J
and
§Vp
At — - SHI.

(€)

D7)

In the same way, if the theory of binary systems, or the elimination of g between
the four equations (I6.) (LS.), has given three intermediate integrals, of the form

Eli = ‘441 (5i’ P gp % 7i’t):.]

”'i = ‘4’2 (gp ”i’ ap “p Bi’ 7i’ t)’
él,- = '4‘3 (gp % C,-, Oy ﬁi: &) t)>j

(E)

we can conclude that the following equations are rigorous and identical,

) w(i)
3 n®
) "

dw®

B3

= Y (gi, M o % B Yo

=

= '4’2 (E‘-) 77," ép “,j) B,;) 7,')

P z’ :’63
2R2

(5,

3w
3
dg @)

372)()
2 Yo 5 ) bg ®

C e (FY)
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and must therefore be still true, when, in passing to a multiple system, we change

the coefficients of w® to their rigorous values (W6.) (Z6.). The three intermediate
integrals (E7.) of the motion of a binary system may therefore be adapted rigorously
to the case of a multiple system, by first adding to the time # the perturbational term
(D7.), and afterwards adding to the resulting values of the final components of rela-
tive velocity the terms

- me 3@ 13V, 1 <8V, 1
Ag.—zu.mk'{-mn SE/C m; 8Ez Ele ?
m, y® 18V 3V
"o koW CVp 2
A’7i"2u'm;,+mn S, +m KN T, 2’ on, roe e (G
m, s 1 5V 148V
" k0w 12 9 Ve
AG=2 p 5g Tm vy, Tm 2w

22. To derive now, from these rigorous results, some useful approximate expres-
sions, we shall neglect, in the perturbations, the terms which are of the second order,
with respect to the small masses of the system, and with respect to the constant 2 H,
of relative living force, which is easily seen to be small of the same order as the
masses : and then the perturbations of the coordinates, deduced by the method that
has been explained, become

3E; & 8 & 0k B
At=, EA +8ﬁ5’ AR, + E +5At
An=ind g+ VA, ‘A ;
ni - 8“I> Sﬁl B 8 , + t > . B . N (I’I/.)
g S &
Ay = - Aa+WAp + A + ot

in which we may employ, instead of the rigorous values (C7.) for Ao/, AB';, Ay, the
following approximate values :

my, § k) 1 8V, 1
" my, 8§ oy m; 8oy’

Ad, =32

= _7211.8";”(_]‘_) _I_SV‘Q
ol " om, 8By m; §6;°

oz M | 13Y,
’ " m, Sy my Syt

To calculate the four coefficients

oV, 8V, 8V, 8V,
Oa; > 8f; 2 8y, 2 8Hp?

which enter into the values (I.) (D”.), we may consider V,, by (RS.) (T%.),and by the
theory of binary systems, as a function of the initial and final relative coordinates, and
initial components of relative velocities, involving also expressly the time #, and the
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n — 2 auxiliary quantities of the form g® ; and then we are to consider those initial
components and auxiliary quantities and the time, as depending themselves on the
initial and final coordinates, and on I, But it is not difficult to prove, by the fore-
going principles, that when ¢ and g® are thus considered, their variations are, in the
present order of approximation,

3. m(ag) 8M+8H,

5 I3 .
3t = . ! ¢ . A
m b\gg
and (
32 i)\ —1 8 w(®)
7
(s w) (5¢— Blb‘g(’)) ¢ 72

the sign of variation 8, referring only to the initial and final coordinates ; and also
that
2@ & 2wl 0f 2wl B R  E
5g@ 8t T ;000 34 5B 3g® TR T Syiag® a7

(M7)

along with two other analogous relations between the coefficients of the two other
coordinates 7%, 29 ; from which it follows that # and g, and therefore o, B, ¥, may

be treated as constant, in taking the variation of the disturbing part V ,, for the pur-
pose of calculating the perturbations (H’.): and that the terms 1nvolv1ng At are
destroyed by other terms. We may therefore put simply

3 Ez 0&; o&; .
A% -_— A +85’ AB’ ')’IiA'y’“
A,,.=3”Z A +8”‘A5'.+b\lA RN (N7)
13 8“’1’ aﬁl 13 87’1 7 2 .
3 Cz 8¢ 3 &
A é —— A “li + Sﬁ’ A BI ')”z‘ — 4 7,z‘3
employing for A «; the following new expression,
;o ¢ 5 RG k) 3 “'i t 3 R R
AOCZ-—-EH {f ——;o\—;;— 8al\/0] 80(. dt ‘]
07)
861 ¢t 5 R(6 %) 871 ¢ aR(z, k) ( g
+5ad, g L, d}

together with analogous expressions for A 8/, A¢/;, in which the sign of summation 3,
refers to the disturbing masses, and in which the quantity
(%) (%) (*)
b8 — p6R of of of

R f + sz SE +”i 8ﬂk +Zi agk . . . . . . . . . . (P7.)
is considered as depending on «; 3; ¥, ¢; 8 ¥/; @, Br v: &4 8 ¥i &, by the theory of bi-
nary systems, while &', 8, /. are considered as depending, by the same rules, on
o, B, v, 7 ¢ and ¢
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It may also be easily shown, that

35 8o, BE 3,  BE 34, 3%,
TR SAT SR ST e, — s e e e s e e e s e e /.
PP TR TR IR T PR @)

* with other analogous equations: the perturbation of the coordinate % may therefore
be thus expressed,
, 8%, Le3REGD 8%, LisRGH

Ag=2,.m, {W,, e Pk L T S P
853. taR(i’ k) d 8Ei ‘aR(zﬁ k)
A L W A A
3 g ¢ s R0 BEi ¢ 3RG R
s e s ‘“}w
and the perturbations of the two other coordinates may be expressed in an analogous
manner.

It results from the same principles, that in taking the first differentials of these
perturbations (R?.), the integrals may be treated as constant; and therefore that we
may either represent the change of place of the disturbed point m; in its relative orbit
about m,, by altering a little the initial components of velocity without altering the
initial position, and then employing the rules of binary systems ; or calculate at once
the perturbations of place and of velocity, by employing the same rules, and altering
at once the initial position and initial velocity. If we adopt the former of these two
methods, we are to employ the expressions (07.), which may be thus summed up,

'

+ . (R7)

ot

Ad,= 2,,.m,¢3—f‘—;‘/0" RGP g,

'

8 ¢ i -
Aﬂ'i=2u'mk§'§;/o1 R k)dt, N B

3 i
Ayi=3,.m S;;/:R( k)dt; |

and if we adopt the latter method, we are to make,
JBRGD 7

(i k)
Ady=3,.m 15 R At Aoy= — 3, om [ g dt
6R’) 8R("")
AB’i=2“.mk‘/o~‘ 8ﬁ dt Aﬁ;——zu.mk\/t t,

| R‘ B BR(”">
Ayy= Eu'mkf o dt, Ayy==3,. mk‘/t

The latter was the method of LaGranGe: the former is suggested more immediately
by the principles of the present essay.

. (T7)

s
.
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General introduction of the Time, into the expression of the Characteristic Function in
any dynamical problem.

23. Before we conclude this sketch of our general method in dynamics, it will be
proper to notice briefly a transformation of the characteristic function, which may be
used in all applications. This transformation consists in putting, generally,

V=¢tH4+S, . . . . . . . . . ... 0000 (U
and considering the part S, namely, the definite integral

— /" 77

s__fo(l-;-U)dt,.................(v.)

as a function of the initial and final coordinates and of the time, of which the varia-
tion is, by our law of varying action,

0S=—Hdt+2Z.m@dx—dda+y'dy—bdb+2dz—dc). . (W)
The partial differential coeflicients of the first order of this auxiliary function S, are
hence,

S

Tt = U 0. O

23S 3S S

m:m,-w'p By, iy’i"rzi=miz’,-; N 0 4
and

8S 3 S 28

—~;i=—m,a’,, 86i=—m*b," __c:.=_miclt . (Z7)

These last expressions (Z7.),are forms for the final integrals of motion of any system,
corresponding to the result of elimination of H between the equations (D.) and (E.);
and the expressions (Y’.) are forms for the intermediate integrals, more convenient

in many respects than the forms already employed.

24. The limits of the present essay do not permit us here to develope the conse-
quences of these new expressions. We can only observe, that the auxiliary function S
must satisfy the two following equations, in partial differentials of the first order,
analogous to, and deduced from, the equations (F.) and (G.):

LY Qm{( )2+(%§-)2}=U, N .G
5,+22m*{( )+( )} Ups . - - . . . .(B8)

and that to correct an approximate value S, of S, in the integration of these equations,
or to find the remaining part S,, if

S=S;4S,, . . . . .o e s (es)
we may employ the symbolic equation

and



308 PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS.

d % 1,88 & 88 &  3S ® .
which gives, rigorously,

ds, 1 3 S, 2 PISAN 85,\2

Z=U-U+3. oG +G) +Go) b o my
if we establish by analogy the definition

RS 1 85,\2 S\ 2 ISR

U1=-871+2.2~;}—2{(87;) +(2) + (52) } ()
and therefore approximately

s2=_/0“(U—UI)dt, R (€

the parts S, S, being chosen so as to vanish with the time. These remarks may all
be extended easily, so as to embrace relative and polar coordinates, and other marks
of position, and offer a new and better way of investigating the orbits and pertur-

bations of a system, by a new and better form of the function and method of this
Essay.

March 29, 1834.



