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Introductory Remarks. 

THE theoretical development of the laws of motion of bodies is a problem of such 
interest and importance, that it has engaged the attention of all the most enlinent 
mathematicians, since the invention of dynamics as a mathematical science by 
GALILEO, and especially since the wonderful extension which was given to that science 

by NEWTON. Among the successors of those illustrious men, LAGRANGE has perhaps 
done more than any other analyst, to give extent and harmony to such deductive 
researches, by showing that the most varied consequences respecting the motions of 

systems of bodies may be derived from one radical formula; the beauty of the 
method so suiting the dignity of the results, as to make of his great work a kind of 
scientific poem. But the science of force, or of power acting by law in space and 
time, has undergone already another revolution, and has become already more dyna- 
nmic, by having almost dismissed the conceptions of solidity and cohesion, and those 
othler material ties, or geometrically imaginable conditions, which LAGRANGE SO hap- 
pily reasoned on, and by tending more and more to resolve all connexions and 
actions of bodies into attractions and repulsions of points: and while the science is 
advancing thus in one direction by the improvement of physical views, it may 
advance in another direction also by the invention of mathematical methods. And 
the method proposed in the present essay, for the deductive study of the motions of 
attracting or repelling systems, will perhaps be received with indulgence, as an 
attempt to assist in carrying forward so high an inquiry. 

In the methods commonly employed, the determination of the motion of a free 
point in space, under the influence of accelerating forces, depends on the integration 
of three equations in ordinary differentials of the second order; and the deterInina- 
tion of the motions of a system of free points, attracting or repelling one another, 
depends on the integration of a system of such equations, in number threefold the 
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number of the attracting or repelling points, unless we previously diminish by unity 
this latter number, by considering only relative motions. Thus, in the solar system, 
when we consider only the mutual attractions of the sun and of the ten known 
planets, the determination of the motions of the latter about the former is reduced, 
by the usual methods, to the integration of a system of thirty ordinary differential 

equations of the second order, between the coordinates and the time; or, by a trans- 
formation of LAGRANGE, to the integration of a system of sixty ordinary differential 

equations of the first order, between the time and the elliptic elements: by which 
integrations, the thirty varying coordinates, or the sixty varying elements, are to be 
found as functions of the time. In the method of the present essay, this problem is 
reduced to the search and differentiation of a single function, which satisfies two 

partial differential equations of the first order and of the second degree: and every 
other dynamical problem, respecting the motions of any system, however numerous, 
of attracting or repelling points, (even if we suppose those points restricted by any 
conditons of connexion consistent with the law of living force,) is reduced, in like 
manner, to the study of one central function, of which the form marks out and cha- 
racterizes the properties of the moving system, and is to be determined by a pair of 

partial differential equations of the first order, combined with some siple e considera- 
tions. The difficulty is therefore at least transferred from the integration of many 
equations of one class to the integration of to of another: an even i iteofnt should be 

thought that no practical facility is gained, yet an intellectual pleasure may result 
from the reduction of the rost complex and, probably, of all researches respecting 
the forces and motions of body, to the study of one characteristic function*, the un- 
folding of one central relation. 

The present essay does not pretend to treat fully of this extensive subject,-a task 
which may require the labours of many years and many minds; but only to suggest 
the thought and propose the path to others. Although, therefore, the method may be 
used in the most varied dynamical researches, it is at present only applied to the 
orbits and perturbations of a system with any laws of attraction or repulsion, and 
with one predominant mass or centre of predominant energy; and only so far, even 
in this one research, as appears sufficient to make the principle itself understood. It 
may be mentioned here, thxat this dynamical principle is only another form of that 
idea which has already been applied to optics in the Theory of systems of racys and 
that an intention of applying it to the motions of systems of bodies was announced f 

* LAGRANGE and, after him, LAPLACE and others, have employed a single function to express the different 
forces of a system, and so to form in an elegant manner the differential equations of its motion. By this con- 

ception, great simplicity has been given to the statement of the problem of dynamics; but the solution of that 

problem, or the expression of the motions themselves, and of their integrals, depends on a very different and 

hitherto unimagined function, as it is the purpose of this essay to show. 
f Transactions of the Royal Irish Academy, vol. xv. page 80. A notice of this dynamical principle was also 

lately given in an article " On a general Method of expressing the Paths of Light and of the Planets," pub- 
lished in the Dublin University Review for October 1833. 
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at the publication of that theory. And besides the idea itself, the manner of calcu- 
lation also, which has been thus exemplified in the sciences of optics and dynamics, 
seems not confined to those two sciences, but capable of other applications; and the 
peculiar combination which it involves, of the principles of variations with those of 

partial differentials, for the determination and use of an important class of integrals, 
may constitute, when it shall be matured by the future labours of mathematicians, a 
separate branch of analysis. 

WILLIAM R. HAMILTON. 

Observatory, Dublin, 
March 1834. 

Integration of the Equations of Motion of a System, characteristic Function. of such 
Motion, and Law of varying Action. 

1. The known differential equations of motion of a system of free points, repelling 
or attracting one another according to any functions of their distances, and not dis- 
turbed by any foreign force, may be comprised in the following formula: 

. m (x x +y" y +z" z) = U. ... ... (1.) 
In this formula the sign of summation 2 extends to all the points of the system; m is, 
for any one such point, the constant called its mass; x", y", z", are its component ac- 
celerations, or the second differential coefficients of its rectangular coordinates x, y, z, 
taken with respect to the time; x, by, 6 z, are any arbitrary infinitesimal displace- 
ments which the point can be imagined to receive in the same' three rectangular 
directions; and $ U is the infinitesimal variation corresponding, of a function U of 
the masses and mutual distances of the several points of the system, of whicth the 
form depends on the laws of their mutual actions, by the equation 

U=. m mf (r), . . ....... (2.) 
r being the distance between any two points m, m,, and the function f (r) being such 
that its derivative or differential coefficientf' (r) expresses the law of their repulsion, 
being negative in the case of attraction. The function which has been here called U, 
may be named the force-function of a system: it is of great utility in theoretical 

mechanics, into which it was introduced by LAGRANGE, and it furnishes the following 
elegant forms for the differential equations of motion, included in the formula (1.): 

m x U ,, 8U , U ) 

11 _U n _ 1 _8U o 
a?mlyi- ,; '2= -Y; * ...m n-b 

. .. *. (3.) 

a 8U a U a ,U 
the second members of these equations being the partialn differential coefficients of 

the second meinbers of these equations being the partial differential coefficients of 
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the first order of the function U. But notwithstanding the elegance and simplicity 
of this known manne of stating the prin cipal problem of dynamics, the difficulty of 

solving that problem, or even of expressing its solution, has hitherto appeared insu- 

perable; so that only seven interlnediate integrals, or integrals of the first order, with 
as many arbitrary constants, have hitherto been found for these general equations of 
motion of a system of n points, instead of 3 n intermediate and 3 n final integrals, in- 

volving ultimately 6 n constants; nor has any integral been found which does not 
need to be integrated again. No general solution has been obtained assigning (as a 

complete solution ought to do) 3 n relations between the n masses m, m2, ... mn the 

3 n varying coordinates x1, yw, z1, ... x n yn, z ,, the varying time t, and the 6 n initial 

data of the problem, namely, the initial coordinates a, b1, cl, .. . a b, c , and their 
initial rates of increase, a , b', c', ... .a' , b, c the quantities called here initial 

being those which correspond to the arbitrary origin of time. It is, however, possible 
(as we shall see) to express these long-sought relations by the partial differential co- 
efficients of a new central or radical function, to the search and employment of which 
the difficiulty of mathematical dynamics becomes henceforth reduced. 

2. If we put for abridgement 
T=-2 . m(22 .+ y........ + (4.) 

so that 2 T denotes, as in the Mecanique Analytique, the whole living force of the 
system; (x', y', z', being here, according to the analogy of our foregoing notation, 
the rectangular components of velocity of the point m, or the first differential coeffi- 
ciernts of its coordinates taken with respect to the time;) an easy and well known 
combination of the differential equations of motion, obtained by changing in the for- 
mula (1.) the variations to the differentials of the coordinates, may be expressed in 
the following manner, 

dT=dU, ............ . (5.) 

and gives, by integration, the celebrated law of living force, under the form 

T=U + H. . ..... ..... (6.) 

In this expression, which is one of the seven kinown integrals already mentioned, 
the quantity H is independent of the time, and does not alter in the passage of the 
points of the system from one set of positions to another. We have, for example, an 
initial equation of the same form, corresponding to the origin of time, which may 
I)e written thus, 

To=Uo+It ............. (7.) 
The quantity LI may, however, receive any arbitrary increment whatever, when we 

pass in thought from a system moving in one way, to the same system moving in 
another, with the same dynamical relations between the accelerations and positions 
of its points, but with different initial data; but the increment of H, thus obtained, 
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is evidently connected with the analogous increments of the functions T and U, by 
the relation 

AT=AU+AIH, .. (8.) 

which, for the case of infinitesimal variations, may conveniently be written thus, 
T-U+ H . . . .; . .... (9.) 

and this last relation, when multiplied by d t, and integrated, conducts to an import- 
ant result. For it thus becomes, by (4.) and (1.), 

f 2 . m (d x . x' -+ dy . y' + d z . 3 z') = 

f,. m (dx'. 8 x+ dy'. y + dz'. z) +f H.dt, . . ... (10.) 

that is, by the principles of the calculus of variations, 
V= 2.m(x' x +y'Sy+ z'8z) - 2. m(a' a+b'Sb +c'c) +t H,. . (A.) 

if we denote by V the integral 
V =f .m n(x' dx +y'dy + z'd z) =f 2Td, ....... (B.) 

namely, the accumulated living force, called often the action of the system, from its 
initial to its final position. 

If, then, we consider (as it is easy to see that we may) the action V as a function of 
the initial and final coordinates, and of the quantity H, we shall have, by (A.), the 

following groups of equations; first, the group, 
8V , a V ,1 

x=I ,;; 
--- = 

^ m x n n n 
[ 

sV a SV' 8V ,r 8 = mly; y1 2- - m2Y2;' 8- my 

8V , SV , V , 
Zl= mlzl; Z:-2 z'n;*** '=m Z 

Secondly, the group, 

-h =- - Il; m=- . b2a2 . - b - n a, 

8V _ 8V V 
--= - bla l; sa 

- -2;''- - -- n b 

8V ,V 6 8V n n 
- = - i C; 1' = - d-_I 12; = - in ; 

ci -- an C'1; a Cn n n 

anld finally, the equation, 
8a V 
8 H- 

. e . . (C.) 

I 0 . e . (D.) 

. . . . . . (E.) 

So that if this function V were known, it would only remain to eliminate H between 

the 3 n + 1 equations (C.) and (E.), in order to obtain all the 3 n intermediate inte- 

grals, or between (D.) and (E.) to obtain all the 3 n final integrals of the differential 

equations of motion; that is, ultimately, to obtain the 3 n sought relations between 
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the 3 n varying coordinates and the time, involving also the masses and the 6 n initial 
data above mentioned; the discovery of which relations would be (as we have said) 
the general solution of the general problem of dynamics. We have, therefore, at 
least reduced that general problemr to the search and differentiation of a single func- 
tion V, which we shall call on this account the CHARACTERISTIC FUNCTION of motion of 
a system; and the equation (A.), expressing the fundamental law of its variation, we 
shall call the equation of the characteristicfunction, or the LAW OF VARYING ACTION. 

3. To show more clearly that the action or accumulated living force of a system, 
or in other words, the integral of the product of the living force by the element of the 
time, may be regarded as a function of the 6 n + 1 quantities already mentioned, 
namely, of the initial and final coordinates, and of the quantity H, we may observe, 
that whatever depends on the manner and time of motion of the system may be con- 
sidered as such a function; because the initial form of the law of living force, when 
combined with the 3 n known or unknown relations between the time, the initial data, 
and the varlying coordinates, will always furnish 3 n + 1 relations, known or unknown, 
to connect the time and the initial components of velocities with the initial and final 
coordinates, and with H. Yet from not having formed the conception of the action 
as afiinction of this kind, the consequences that have been here deduced from the 
formula (A.) for the variation of that definite integral, appear to have escaped the 
notice of LAGRANGE, and of the other illustrious analysts who have written on theo- 
retical mechanics; although they were in possession of a formula for the variation of 
this integral not greatly differing from ours. For although LAGRANGE and others, in 
treating of the motion of a system, have shown that the variation of this definite inte- 
gral vanishes when the extreme coordinates and the constant II are given, they appear 
to have deduced from this result only the well known law of least action; namely, 
that if the points or bodies of a system be imagined to move from a given set of initial 
to a given set of final positions, not as they do nor evein as they could move consist- 
ently with the general dynamical laws or differential equations of motion, but so as 
not to violate any supposed geometrical connexions, nor that one dynamincal relation 
between velocities and configurations which constitutes the law of living force and 
if, besides, this geometrically imaginable, but dynamically impossible motion, be made 
to differ infinitely little from the actual manner of motion of the system, between the 
given extreme positions; then the varied value of the definite integral called action, 
or the accumulated living force of the system in the motion thus imagined, will differ 
infinitely less from the actual value of that integral. But when this well known law 
of least, or as it might be better called, of stationary action, is applied to the determi- 
nation of the actual motion of a system, it serves only to form, by the rules of the 
calculus of variations, the differential equations of motion of the second order, which 
can always be otherwise found. It seems, therefore, to be with reason that LAGRANGE, 

LAPLACE, and POISSON have spoken lightly of the utility of this principle in the 
present state of dynamics. A different estimate, perhaps, will be formed of that 
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other principle which has been introduced in the present paper, under the name of 
the law of varying action, in which we pass froim an actual motion to another motion 

dynamically possible, by varying the extreme positions of the system, and (in general) 
the quantity H, and which serves to express, by means of a single function, not the 
mere differential equations of motion, but their intermediate and their final integrals. 

Verfications of the foregoing Integrals. 

4. A verification, which ought not to be neglected, and at the same time an illus- 
tration of this new principle, may be obtained by deducing the known differential 

equations of motion from our system of intermediate integrals, and by showing the 
consistence of these again with our final integral system. As preliminary to such veri- 
fication, it is useful to observe that the final equation (6.) of living for?ce, when com- 
bined with the system (C.), takes this new form, 

1 1 V /8 VX2 fA 2 2 )2 + ) +(\ I 2}=U+I;.* * . (F.) 

and that the initial equation (7.) of living force becomes by (D.) 

1 l[ lf V\2. ( V 2 V \2 1 - H 
:p mV\ a)" \)8av +\b (n +...... . e ((G.) 

These two partial differential equations, initial and final, of the first order and tile 
second degree, must both be identically satisfied by the characteristic function V: they 
furnish (as we shall find) the principal means of discovering the form of that function, 
and are of essential importance in its theory. If the form of this function were known, 
we might eliminate 3 n-- 1 of the 3 n initial coordinates between the 3 n equations 
(C.); and although we cannot yet perform the actual process of this elimination, we 
are entitled to assert that it would remove along with the others the remaining initial 
coordinate, and would conduct to the equation (6.) of final living force, which might 
then be transformed into the equation (F.). In like manner we may conclude that 
all the 3 n final coordinates could be eliminated together from the 3 n equations (D.), 
and that the result would be the initial equation (7.) of living force, or the transformed 

equation (G.). We may therefore consider the law of living force, which assisted 
us in discovering the properties of our characteristic function V, as included recipro- 
cally in those properties, and as resulting by elimination, in every particular case, 
from the systems (C.) and (D.); and in treating of either of these systems, or in con- 

ducting any other dynamical investigation by the method of this characteristic func-. 
tion, we are at liberty to employ the partial differential equations (F.) and (G.), which 
that function must necessarily satisfy. 

It will now be easy to deduce, as we proposed, the known equations of motion (3.) 
of the second order, by differentiation and elimination of constants, from our interme- 

MDCCCXXXIV. 2 L 

253 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

diate integral system (C.), (E.), or even from a part of that system, namely, from the 

group (C.), when combined with the equation (F.). For we thus obtain 
d aV V F a SV . V v 

MI1 
a- 1t 1*28 - ' 

2 
x + _ +- n + X i 

--- 1x - __ 

I V 8 8V 8, 'V , IV 8 V 8s V iV' v 
i + {QV)2QV)2QV)2}aUH)J + ai t ha tz 2 is'1 ,' z n x1 wsbzn 

1 aV 8sv 1 8V a8V I + V 0-V ' 
A imln Sl2l + wne mig dxe, by di fSe n in, * * *inr (I .)X 

1 8V 82V 1 SV YV 1 8V V 

I fv romv (F.)v l tv i sv ov 
co tan in t I sy, m2 .) y2 or, morY2 cn ay, weX ay 
1I V as I 1 a 8aV 1 aV 82V 

18 _ xi _ _ 1 __Z a xi a __ _M a _axi^, 

= 2 m *m a^Zvl I2 a1+ 
2 ..\ a "(U+H)n 1 im ax) +6 x } + ax) 

that is, we obtain 

ml x 1 ...X.I..'. . (12.) 

And in like manner we might deduce, by differentiation, from the integrals (C.) and 
from (F.) all the other known differential equations of motion, of the second order, 
contained in the set marked (3.); or, more concisely, we may deduce at once the 
formula (1.), which contains all those known equations, by observing that the inter- 
mediate integrals (C.), when combined with the relation (F.), give 

2 i. (Zc x+y"yy + xz= =( *. r+ d y + dt' z* 

1 (6V 6 6V 8 -V V I k a v a /, a v (v vv av\ 
=N- x ay ay ^3y zJ 

v aav 

6x -6 i> a 
-^^ 

l f \ ^vW2 (sv\, 1SV\2 
>* (13.) - X2 + + y + F ) + + 

=2 
L, 

+ Z+ ay ) Y (U + H) 

= U. 

5. Again, we were to show that our intermediate integral system, composed of the 

equations (C.) and (E.), with the 3 n arbitrary constants a,, bl, c . . an b, c,, (and 

involving also the auxiliary constant H,) is consistent with our final integral system 
of equations (D.) and (E.), which contain 3 n other arbitrary constants, namely, 
a't, b',l c'l, . . at', b', c'. The immediate differentials of the equations (C.), (D.), (E.), 
taken with respect to the time, are, for the first group, 
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d aV u d xaV t V d aV = I 
d -t 8x -- ml ; 1 d-t 8x - 2 ; ''' dt 8x n x 

d 8V d aV d (V 
dt aY, -de t 1, y dt yx n n 

d 8V d 8V d 8aV 

__ ._dt _-azn dt u,1 n n 

for the second group, 
d aV d AV d aV _; ^ , ,-0; -- ; (.) dt aa dt aa2 ' d an- 

d aV dV a d 8V 
dt ab - dt b2 = - ; 

d 8V d 0; d aV 
dt Sc ; dt c ; dt c 

and finally, for the last equation, 
d 8V 
dt .H=l 1. .*. a (K.) 

By combining the equations (C.) with their differentials (H.), and with the re- 
lation (F.), we deduced, in the foregoing number, the known equations of motion (3.); 
and we are now to show the consistence of the same intermediate integrals (C.) with 
the group of differentials (I.), which have been deduced from the final integrals. 

The first equation of the group (I.) may be developed thus: 
2 V - V 2, V V 

alx+ 2al ax2 T a + a VaX 

+YlaaI y +Y2ay+' .+Yn8a . .. . . (14.) 

a2 V aL 'V , V 
+ Z'l a + Z aala + 6 aaaaz J 

and the others may be similarly developed. In order, therefore, to show that they 
are satisfied by the group (C.), it is sufficient to prove that the following equations 
are true, 

a 1( /ayV\2 /aV\2 /aV\2 

a a /a\ 2 /av\2 /av\ 2 

-8 +(jy 1 

' 

()+ (8V)2}, . . . . . . . (L.) 

- = 8 c 
* 
. 2 { ( +-) ' (5\)j 

+ +J) 
j 

the integer i receiving any value from 1 to n inclusive; which may be shown at once, 
and the required verification thereby be obtained, if we merely take the variation of 
the relation (F.) with respect to the initial coordinates, as in the former verification 

2 L2 
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we took its variation with respect to the final coordinates, and so obtained results 
which agreed with the known equations of motion, and which may be thus collected, 

a8 1 r /aV2 ayVx2 ,aV\2 U a 
Xi m u x xi ,xx, 

8 I f/v \2 aV\2 /aV \2 

to the expression 
a 1 / aV2 a /aV\2 /VV\2 

and this, when developed, agrees with the equation (K.), which is a new verification 
of the consistence of our foregoing results. Nor would it have been much more dif- 
ficult, by the help of the foregoing principles, to have integrated directly our integrals 
of the first order,; and so to have deduced in a different way our final integral system. 

6. It may be considered as still another verification of our own general integral 
equations, to show that they include not only the known law of living force, or the 
integral expressing that law, but also the six other known integrals of the first order, 
which contain the law of motion of the centre of gravity, and the law of description 
of areas. For this purpose, it is only necessary to observe that it evidently follows 
from the conception of our characteristic function V, that this function depends on 
the initial and final positions of the attracting or repelling points of a system, not 
as referred to any foreign standard, but only as compared with one another; and 
therefore that this function will not vary, if without n aking any real change in either 
initial or final configuration, or in the relation of these to each other, we alter at once 

motion, whether of translation or of rotation. Now by considering three coordinate 
translations, we obtain the three following partial differesntial equations of the first 
order, which the function V must satisfy, 

av V 
I 2^-0. 6V - V 13 

x + . . . . . . .. . . . 

V 8V 

and by considering three coordinate rotations, we obtain these three other relations 
between the partial differential coefficients of the same order of the same charac- 
teristic function, 
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>,Z8V av aV _] 
\ ^/SV xV\ , bb 8a J-V\ , 2 
(y 13z -z jic) + 2 (b jw- ) 

= ? * ** 

%^ /sV av\ , ^ /,Sv av\ 
-y + b -- . - - =0 (P.) 0 ~- 

- 
-y+j b ---c --0; ....... (P.) 

( v/ 8V V / (V aV\ 
-2x --x +~ c0 --a =0; 

and if we change the final coefficients of V to the final components of mornenturn, 
and the initial coefficients to the initial components taken negatively, according to 
the dynamical properties of this function expressed by the integrals (C.) and (D.), we 
shall change these partial differential equations (0.) (P.), to the following, 

.m ' = .wma'; 2 . my' = .mb' ; . mz' = .c' . . (15.) 

and 

. m (xy' - y ') = - . m (a b' - b a'); 1 
2. mz (y z'- zy') = .n (b c' - c b'); (16.) 

. m (z x - x z') = . m (c a! - a c'). J 

In this manner, therefore, we can dedace froml the properties of our characteristic 
function the six other known integrals above mentioned, in addition to that seventh 
which contains the law of living force, and which assisted in the discoveiy of our 
method. 

Introduction of relative or polar Coordinates, or other marks of position of ( Systez. 

7. The property of our characteristic function, by which it depends only on the 
internal or mutual relations between the positions initial and final of the points of an 
attracting or repelling system, suggests an advantage in employing internal or relative 
coordinates; and from the analogy of other applications of algebrlaical inethods to 
researches of a geometrical kind, it may be expected that polar and other marks of 

position will also often be found useful. Supposing, therefore, that the 3 n final coordi- 
nates 1 y z.. * . 

n yn zn have been expressed as functions of 3 n other variables, 

.2 ... 3 n3,7 and that the 3 n initial coordinates hlave in like manner been expressed 
as functions of 3 n similar quantities, which we shall call el e2 .. e , we shall p'0- 

ceed to assign a general method for introducing these new marks of position into the 

expressions of our fundamental relations. 
For this purpose we have only to transform the law of varying action, or the fun- 

damental formula (A.), by transforming the two sums, 

. m ( S x +' y + y + z' z), and 2. m (a a + b' b + c6 c), 

which it involves, and which are respectively equivalent to the following more deve- 

loped expressions, 
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.m(x' T+y'+y +z'z) = m (x'l xs+y'l y,+z 'li) 1 

+ m2 (x' 2 + 2 + Y2 2 + z'2 S2) . . (17.) 
&c. + m (x' x b+ y + z z);j ' n n n B n n n J 

. nz(a' a b'+ b b + c' c) = ml (a', al + b'l b, + c'li c) 1 

+ m2 (a'2 a2 + b'2 b2 + C'2 c2) . . (18.) 

+ &c. + n (a' a + b' b + c' c). n n n n n n n J 

Now x. being by supposition a function of the 3 n new marks of position ... s its 

variation x, and its differential coefficient x'., may be thus expressed: 
S x. a x. ax. 

= + 2+... + .. . . . (19.) 
an , a1a1'n 

a 

ax. ax. 2x. 
'2 --L -t ylZ + ? ? $ Y$n; ? . ? ?' ? (2o.) X'.-1 + 4'7+ + a'.0 

and similarly for yi and z.. If, then, we consider x'i as a function, by (20.), of ' ... ?'s , 

involving also in general r ... s. and if we take its partial differential coefficients 

of the first order with respect to ... . g,, we find the relations, 

a x' x. xa 8x.'. 
8i_ 8ari_ 8/ 82 / _n .nn _-i^^=:: 

; 
--.=^t 

. ** . . * 
>?(21.) 

and therefore we obtain these new expressions for the variations 8 i , }y,, zi, 
ax'. ax'. a. 

6X. b~ v = ?L + v~ tY2 | ' '+ 8yti 8 77Snal 

j== 1 ^ + . +...+ , .... (22.) 

z'. a '. a '. 
Zi = ~, Vl 

4 a 8 
FI, 3 2 +'- + at a 

transform it into the following, 

. ,m(x^ +yy+L 
' 

m+ z2)=E ( : . n( 'x y' + + ' )' \ 
+ .nz (Tt/ t x ' ̂ . ' t 8 z'\ 

- ' + 
+ 

+ - ; J being the same quantity as before namely, the half of the fial living force of t 

a? aT _T_ 

T being the same quantity as before2 namely, the half of the final living force of the 
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system, but being now considered as a function of ' .. . ' ?,, involving also the 
masses, and in general 'h ... 3 n, and obtained by substituting for the quantities x' y z' 
their values of the form (20.) in the equation of definition 

T-- E.m (xM.2 + yr2 + z2). (4.) 
In like manner we find this transformation for the sum (18.), 

...... +T o0"e (24.) E.rna(a'a + 6'bb + c'c) = S el el-+ e e2+...+- - . (24.) 

The law of varying action, or the formula (A.), becomes therefore, when expressed 
by the present more general coordinates or marks of position, 

V=- - . _-. s et H, . . ...t . (Q.) 

and instead of the groups (C.) and (D.), into which, along with the equation (E.), 
this law resolved itself before, it gives now these other groups, 

V T aV v T a v T 
I 1; n= /2 S n ..... .. (St.) 

and 
_ v To V To sV _ To . ^ 

- i]^, j ^e, - ilo X. - . (S.) e---~--'--- -ei e- a ' ' 8es- 
' 

8et ' el 

The quantities e e2 ... e and e', e... e' are now the initial data respecting 
the manner of motion of the system; and the 3 n final integrals, connecting these 6 n 
initial data, and the n masses, with the time t, and with the 3 n final or varying quan- 
tities , 2 ... . . s, which mark the varying positions of the n moving points of the 

system, are now to be obtained by eliminating the auxiliary constant HI between the 
3 n -+- 1 equations (S.) and (E.); while the 3 n intermediate integrals, or integrals of 
the first order, which connect the same varying marks of position and their first dif- 
ferential coefficients with the time, the masses, and the initial marks of position, are 
the result of elimination of the same auxiliary constant H between the equations (R.) 
and (E.). Our fundamental formula, and intermediate and final integrals, can there- 
fore be very simply expressed with any new sets of coordinates; and the partial dif- 
ferential equations (F.) (G.), which our characteristic function V must satisfy, and 
which are, as we have said, essential in the theory of that functioii, can also easily be 
expressed with any such transformed coordinates, by merely combining the final and 
initial expressions of the law of living force, 

T= U + H, ...... (6.) 

rr =T U0 +- , ... .... (7.) 
with the new groups (R.) and (S.). For this purpose we must now consider the funce 
tion U, of the masses and mutual distances of the several points of the system, as 
depending on the new marks of position n, ;2 . . n ,; and the analogous function U0, 
as depending similarly on the initial quantities el e2 . . . er.; we must also suppose 
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aT aT aT 
that T is expressed (as it may) as a function of its own coefficients a ,, *, . n. .Sn 

which will always be, with respect to these, homogeneous of the second dimension, 
and may also involve explicitly the quantities ;12 . .. . .,; and that To is expressed 

as a similar function of its coefficients T . 
T 

. ; o that 
e'Kl/ e' ''' ; etat0 

T-F^ =T F 1 = (aT, ar T) - }!> 

o-? se, ? s_;2 ,3 .. To- F ___ 
o........ (25.) 

and that then these coefficients of T and To are changed to their values (R.) and (S.), 
so as to give, instead of (F.) and (G.), two other transformed equations, namely, 

(aV aV S F (8. )=U , --.... . . (T.) 

and, on account of the homogeneity and dimension of T., 

Fs) =U0 +11 . . - . (U .) 
8. Nor is there any difficulty in deducing analogous transformations for the known 

differential equations of motion of the second order, of any system of free points, by 
taking the variation of the new form (T.) of the law of living force, and by attending 
to the dynamical meanings of the coefficients of our characteristic function. For if 
we observe that the final living force 2 T, when considered as a function of ;7 * 2. e;3 
and of 'l 2 . . . n,5 is necessarily homogeneous of the second dimension with respect 
to the latter set of variables, and must therefore satisfy the condition 

32~ T 57 1 s + 4*2 +t+ **+ ;8 8t I * * * * * .. (26.) 

we shall perceive that its total variation, 

8r T a 8T 8 ,TT 

6~T 
= 

-8^ ?^ + %i, + +. . .+ 843 

aT aT aT (27.) 

a t . a. . (2.) 
_T [ l + 8+ W + * * * + 8 T SI 

a T.T aT'3 

41 r 6" a.... (28.) 

= 2 S- ̂  
- 

W ~ ^ 
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and therefore that the total variation of the new partial differential equation (T.) may 
be thus written, 

b / A T 3 r \ TT 

: 6 I l 6 = 6 . . . (V.) 

in which, if we observe tllat ' = d 
t, and that the quantities of the form v are the 

only ones which vary with the time, we shall see that 
8V ( d V d 6V d8V ) d aV 

2' * ' -8^n 
= 

:dt 8 e ' + dt 8H' H 

because the identical equation d dV = d ~ V gives, when developed, 

(Y .d? 
* de) J+rd v .dH 

(29.) 

. (30.) 
= (d . 8 d e) +dVH -- 

I 
d-an .8vq-d-~e.8e +-daH 

. 
H. 

J 
Decomposing, therefore, the expression (V.), for the variation of half the living force, 
into as many separate equations as it contains independent variations, we obtain, not 
only the equation 

d V 
. 

d 
.V . 5 .* . (K.) 

which had already presented itsel-, and the group 
which had already presented itself, and the group 

d aV d aV d aV 
dt e a- e ?O dtt a e2 = ? '' * .6. e * *e 

which might have been at once obtained by differentiation from the final 
but also a group of 3 n other equations of the form 

d V aT U 
d t 8 

- - - = ' . . . .. . 

which give, by the intermediate integrals (R.), 
d T T uT I 
dt 8~y -8 ~ : * ' 

. . (W.) 

integrals (S.), 

(X.) 

* . . (Y.) 
that is, more fully, 

d AT T _8U 

dt T U1 i 81 '8 i ; 

dt 812 - 8 n2 8= 2a 
; 

(Z.) 

d a T aT I 
dt 8,tlSn - Y73n = a)sn J 

These last transformations of the differential equations of motion of the second 
order, of an attracting or repelling system, coincide in all respects (a slight dif- 
ference of notation excepted,) with the elegant canonical forms in the MIcanique 
Analytique of LAGRANGE; but it seemed worth while to deduce them here anew, 

MDCCCXXXIV. 2 M 
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i'om the properties of our characteristic function. And if we were to suppose 
(as it has often been thought convenient and even necessary to do,) that the n points 
of a system are not entirely free, nor subject only to their own mutual attractions 
or repulsions, but connected by any geometrical conditions, and influenced by any 
foreign agencies, consistent with the law of conservation of living force so that the 
number of independent marks of position should be now less numerous, and the force- 
function U less simple than before; it might still be proved, by a reasoning very simi- 
lar to the foregoing, that on these suppositions also (wvhich, however, the dynamical 
spirit is tending more and more to exclude,) the accumulated living force or action 
V of the system is a characteristic motion-function of the kind already explained 
having the same law and formula of variation, which are susceptible of the same 
transformations; obliged to satisfy in the same way a final and an initial relation be- 
tween its partial differential coefficients of the first order; conducting, by the varia- 
tion of one of these two relations, to the same canonical forms assigned by LAGRANGE 
for the differential equations of motion; and furnishing, on the same principles as 
before, their intermediate and their final integrals. To those imaginable cases, indeed, 
in which the law of living force no longer holds, our method also would not apply; 
but it appears to be the growing' conviction of the perisons who have meditated the 
most profoundly on the nmathematical dynamics of the universe, that these are cases 
suggested by insufficient views of the mutual actions of body. 

9. It results from the foregoing remarks, that in order to apply our method of the 
characteristic function to any problem of dynamics respecting any moving system, 
the known law of living force is to be combined with our law of varying action; and 
that the general expression of this latter law is to be obtained in the following manner. 
We are first to express the quantity T, namely, the half of the living force of the 
system, a a function (which will always be homogeneous of the second dimension,) 
of the differential coefficient tesr rates of increase '1a, t &c., of any rectangular co- 
ordinates, or other marks of position of the system: we are next to take the variation 

the variations of those rates , g2, &c., to the variations ;1, ' 2, &c., of the marks 
of position themselves ; and then to subtract the initial from the final value of the 
result, and to equate the remnainider to V -t H. A slight consideration will show 
that this general rule or process for obtaining thte variation of the characteristic 
function V, is applicable even when the marks of positioln 1, 2, &c., are not all inde- 
pendent of each other; which will happen when they have been made, from any mo- 
tive of convenience, more numerous than the rectangular coordinates of the several 
points of the system. For if we suppose that the 3 n rectangular coordinates X y1 zl 
... x Y,n z, have been expressed by any transformation as functions of 3 n + k othler 

marks of position, , . k which must therefore be connected by k equations 
of condition, 
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0 = p1 (]1' 1) 
22' 

n q+ k)' 

o - P2 (1 ,2 * 3n n +?k) .(31.) 

0 = pk (3 ? ? ? n k) 

giving k of the new marks of position as functions of the remaining 3 n, 

r +l - '1 (i7 22, - n)3 n 

73n + 2421 ***2 , 2n) - ) . . t (32.) 

n-tk = 4 ( 42, . .* n,) J 
the expression 

T= 2 . m (x'2 + y'2 +2 z2), . .. .. (4.) 
will become, by the introduction of these new variables, a homogeneous function of 
the second dimension of the 3 n + k rates of increase 1l r2, . . . /gn 

I 
' involving also 

in general vl, 22, ? . . 7,n+ ,, and having a variation which may be thus expressed: 

bT= (,+) f + (, 2 ++(** Qr k)'3+k I 
aT T + 7 '2 T + r + 8 aTn 3 

T . ( ), , 
+ ... + Q$S) Tr 

k 
, ... ... (33.) 

T a ^i + all Z2 + * * * + k 7^n (4 

on account of the relations (32.), which give, when differentiated with respect to the 
time, 

'2Sn+k =7 1 + ?22-- + * 
+ 

* 3n , , j 

andr r in the aiatiotis o of he formway, 

a 8 a T Ta 8T2+n 1 

... 

2 M 2 

+tB'3nlls ~, $~+ +n's a +, (35.) 

on account of the relations (32.), which give, wuenadifferentiated wfth respect to tl, 

a %'a 8 v' 
- + 2'a 

I, a i, 

V'oo + .~ -- ~--~ ~ }i V2 q' q- '----n (36.) 

3 n + k + 2 8$ j 

2 I2 

263 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

Comparing the two expressions (33.) and (34.), we find by (36.) the relations 

aT a T a 4T ) 4( T a ~T ( 1T% 

8T _/ST\ ( ,T) 
ST 

) gi 3(ST a82 )n a 82 

a':=n - 1+ ', + + "3 + 2 ** + 

ST /8T\+t . T A^i,/ 8+1 T _]_ ... _ 

which give, by (32.), 

8X j, 8 T 
,2+ +, 

ST 
n 

nl + '12 a 2 
* + 

..n + 8 8 n 

asT /T T a 

12Js^ + te) ^2 + 0 ) n 3n+ 

( ST \ 8 I 1 
a1Ts n +k 48 

a 8T ), k;J 

\^'3n+k 6n3n j 

we may therefore put the expression (Q.) under the following more general form, 

V =-. () -- . ( ) e+ H, ........ (Al.) 

a T 
the coefficients ( -) being formed by treating all the 3 n + k quantities 1 2 . . .12 

Y3n +k' as independent; which was the extension above announced, of the rule for 
forming the variation of the characteristic function V. 

We cannot, however, immediately decompose this new expression (A1.) for ~ V, as 
we did the expression (Q.), by treating all the variations 3 ?, 6 e, as independent; but 
we may decompose it so, if we previously combine it with the final equations of con- 
dition (31.), and with the analogous initial equations of condition, namely, 

(39.) 

0o= (1 (el,e2,... e3 n+0), 

0 = (k (el, e2,.. e* + ,k) 

which we may do by adding the variations of the connecting functions 1, . . . 

,) ,.*. .Dk0, multiplied respectively by factors to be determined, ,.. . k, A1,... Ak. 

In this manner the law of varying action takes this new form, 

V =-E ) . W(^?) e + tH + E .X + E . AS; . . (B'.) 

and decomposes itself into 6 n + 2 k + 1 separate expressions, for the partial differ- 
ential coefficients of the first order of the characteristic function V., namely, into the 
following, 

~(37.) 

(38.) 

264 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

V 

= 

(T + 81 + 2 1 + . . + x 

V = T + a LI + A2 + + a P 
. . 

8a,2 + , k 3_ak),2,) + 1 a 2 + (C'.) 

aV / aT + , k 

% Sn3 a)J3 )sn+--k + k + 
s n + k 

and 
BV ar To(/) 1 Pk/) 

by which a esu such as 2 . is added to (in the second member of the formula 

aV __ aT o i. Aa + a 
ae1 ksac'2)l Z - + A[+ Al- ae+Akke, 

vsn+k - en + k + + A2 k an k 

besides the old equation (E.). The analogous introduction of multipliers in the cano- 
nical forms of LAGRANGE, for the differential equations of motion of the second ordert, 

a u 
by which a sum such as '. ; is added to -- in the second member of the formula 

(Y.), is also easily justified on the principles of the present essay. 

Separation of the relative motion of a system from the motion of its centre of gravity ; 
characteristic function for such relative motion, and law of its variation. 

10. As an example of the foregoing transformations, and at the same time as an 

important application, we shall now introduce relative coordinates, x,y, z,, r eferred to 
an internal origin x, y,, z,; that is, we shall put 

X. = x.i + x, Yi = Yi Y + = + .. . (40.) 

and in like manner 

ai = a,i -- a,, bi bi + hb, i c, c; . ...... (41.) 

together with the differentiated expressions 
X, . i + x y i Yi +Y 1 i j + .1.' I (42.) 

and 
a'' = a' , a=' b' = b',+ =, c' = c' + c'. .... .(43.) 

Introducing the expressions (42.) for the rectanguilar components of velocity, we find 
that the value given by (4.) for the living force 2 T, decomposes itself into the three 

following parts, 
2 T = 2. m (x' + y2 t+ z 2) = 2. m (x'2 + yl + z,2) 

+ 2 (x'2, . m x', + y',, 2 . my', + z',, . m z',) + (x',2 + yl' + z't,;) 2 m; (44.) 
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if then we establish, as we may, the three equations of condition, 
m. m =O, x. my- , . m = 0, . . . . . . . (45.) 

which give by (40.), 
Z.mx Z.my Z.mz 

-- Zm '~ y" - Zm ' / - =m S 
......... (46.) x11 = m ;m YIu = 

m %=; ' 
,. ** *e Xee(46.) 

so that x,, y,, z,1 are now the coordinates of the point which is called the centre of gra- 
vity of the system, we may reduce the function T to the form 

T = T + T,,, .......(47.) 
in which 

T = 2.m (x', +y' + ,, . . ... ..... . . (48.) 
and 

T,,= (',,2 + y/+',, m.. ............ .(49.) 

By this known decomposition, the whole living force 2 3T of the system is resolved 
into the two parts 2 T, and 2 T,, of which the former, 2 T,, may be called the relative 
living force, being that which results solely firomn the relative velocities of the points 
of the system, in their motions about their common centre of gravity x,, y,, ,,; while 
the latter part, 2 T,,, results only from the absolute motion of that centre of gravity in 

space, and is the same as if all the masses of the system were united in that common 
centre. At the same time, the law of living force, T = U + H, (6.), resolves itself by 
the law of motion of the centre of gravity into the two following separate equations, 

T,= U + H,, .......... (50.) 
and 

T,,= H,,; . ....... (51.) 

I-I, and H,, being two new constants independent of the time t, and such that their 
sum 

H,- + H,, = H. (52.) 
And we may in like manner decompose the action, or accumulated living force V, 

which is equal to the definite integral.jlt 2 T d t, into the two following analogous parts, 

V , + V,,, ........ .. (E.) 
determined by the two equations, 

V, t 2T,dt, . ....... . ..... . (F'.) 
and 

V, ft 2,, dt. . .... ... . . .(Gi.) 

The last equation gives by (51.), 
V,- 2I-I,,t . . . . . . . . . . . . . . . .. (53.) 

a result which, by the law of motion of the-centre of gravity, may be thus expressed, 

V,, = (X, - a,,)2 + (y,,- b,,)2 - (,, -c,,)2 . 2 IHl,, w: . . . . (H'.) 
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, b, c,, being the initial coordinates of the centre of gravity, so that 

.-- m a b . m - - m' ' ' M a =, - 
ir = - ' =.) . . (54.) 

And for the variation 6 V of the whole function V, the rule of the last number gives 

+ (x',, - ad, a,, + y',, y,, ',, b b,, z',, + , - c, - c,) m) 

+ t + . m + . mS y, M +- X32. m z, 

+ A1 2 . m S a, +A2 mS b, A3 -M . m c,; J 

while the variation of the part V,,, determined by the equation (H'.), is easily shown 
to be equivalent to the part 

V V,, = ( 'S, - - a', S a, + , + y ,, ,, - b' , ,+ .',, z ,, - c,, c,,) I m + t H, ; . (Kl.) 
the variation of the other part V, may therefore be thus expressed, 

s V = . m(', , - a' a, +y-, y, -b', b ', , - c, c,) 

+- t~ Hi+X, - .1 m. m +3- M . + m 2 y q Y m 3 , . (LZ.) 

+ A1 2 . m Sa, + A2 + . m b, : A3 . 

and it resolves itself into the following separate expressions, in which the part V, is 
considered as a function of the 6 n + 1 quantities x, y, z a, bi c. H,, of which, how- 
ever, only 6 n- 5 are really independent: 
first group, 

8 V w+X J 'n-m x +x . 

x m,, + 1 1; * 
in I M n = ? t + a VI a VI 

g M = mi y,1 + A2 i * *. in = mA n,? + . . (?ii.) 

av =, Z a.. r z'i - ' l ; +3M' 8 
x I 

11 = ?i Z1 + 3 ; * z Is = n + ;mn ; 

second group, 

a V, 8 V, m= ' - 1',1 + Am; . .. m= - m atn ' Al mn ;.) 

With respect to the six multipliers XA 2 3 A1 A2 Ab which were introduced by tAhe 
3 final equations of condition (45), and by the 3 analogous initial equations of con 

ditionay, 

8 aa 

3 final equatons of conditmon (45,c),' nd; .y the 3 analogous mintial equations of con- 

dlition' 
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we have, by differentiating these conditions, 
.mx r-- 0, 2 . my', =O, 2.m : z I 0, . . . .* (56.) 

and therefore 

and 

.m a' =-O, .mb',=0, . c', ; 

xh = Xi I . =__yM I X3 S _ ' 2^ - i ~X?9 " - I -.... -' 

*. . & . (57.) 

* . * . * (58.) 

8V' S-Hi' 
Al - 

m Sn A = b' 2 :- mC I 

Av, 
5m 

A3 
- 

X. ^--^OT- 
. . (59.) 

11. As an example of the determination of these multipliers, we may suppose that 
thle part V,, of the whole action V, has been expressed, before differentiation, as a 
function of H,, and of these other 6 n -6 independent quantities 

xI - x, - 2l, 

SJA -1 n - I1' 
z21- Z,n =,- ~I: 

Yz2 
- Z, -2, * * 

% -Zm = * * *#, 

*,"-i 
- n^ X- s--1 1 

^-1 , - =n = L-,1 

and 
^i~ a= , a - a, -2 oq, a.i, -, a, -- , il 

b, - b, = , b,2 - b,, 
= - , * * ,_,- B-, = , . , (61.) 

CA - ,n 
= r - = =C - . ,, -1-- c,,- n = n- ; 

that is3 of the differences only of the centrobaric coordinates; or, in other words, as a 
function of the coordinates (initial and final) of n- I points of the system, referred to 
the n^ point, as an internal or moveable origin: because the centrobaric coordinates 

Y z, ahb ,, macy themselves, by the equations of condition, be expressed as 

functions of these, namely, 

- SmS _ X. m-- 
d in li m ke ri 

- 
nm 

and in like manner, 

a4r =-- i -- ; m a 

,: Sm ' 

S 2.mf3 2 .my, 
b^,i = Pi Xm c - Xm 

in which we are to observe, that the six quantities , ,3 r must be considered 

as separately vanishing. When V, has been thus expressed as a function of the cen- 
trobaric coordinates, involving their differences only, it will evidently satisfy the six 

partial differential equations, 

a sV, a V, '-O (p' 

=0 =o , = o, 6 aa ab a 6 
-?; 

(60.) 

* (62.) 

(63.) 
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after this preparation, therefore, of the function V,, the six multipliers determined by 
(58.) and (59.) will vanish, so that we shall have 

x1 = 0 2 = , = 0 , 3 = 0, A = 0, A2 , A = .. . . 

and the groups (M'.) and (N'.) will reduce themselves to the two following: 
8V, , V, V, j - 

v, V, *V, i m m a Im y ,; 2 
X 

1y2; . . . i; 

a Vi--' m Z ,; * *l '-- m zn ; ' I2 
and 

- 
,-..... =--m ,a',,~;[ a A 

= -m1l; -m a2; .1 a ma1Ma '2 =- mna in; 

8_V, _8V, 8aV, = .-_ b Vt? b__ -- bV a bl --ml ; - - m2 Br2 --- - - mnb n,; 

V va V, 8 V, 
. -mc. 11; - -m2 C2; - mnlcn, 

ll cn ., 

(64.) 

(Ql.) 

(R1.) 

analogous in all respects to the groups (C.) and (D.). We find, therefore, for the re- 
lative motion of a system about its own centre of gravity, equations of the same form 
as those which we had obtained before for the absolute motion of the same system of 

points in space. And we see that in investigating such relative motion only, it is 
useful to confine ourselves to the part V, of our whole characteristic function, that is, 
to the relative action of the system, or accumulated living force of the motion about 
the centre of gravity; and to consider this part as the characteristic function of such 
relative motion, in a sense analogous to that which has been already explained. 

This relative action, or part V,, may, however, be otherwise expressed, and even in 
an infinite variety of ways, on account of the six equations of condition which con- 
nect the 6 n centrobaric coordinates; and every different preparation of its form will 

give a different set of values for the six multipliers xl x2 ?3 A1 A2 A3. For example, 
we inight eliminate, by a previous preparation, the six centrobaric coordinates of the 

point m. from the expression of VI, so as to make this expression involve only the 

centrobaric coordinates of the other n - 1 points of the system, and then we should 
have 

av_ O , _ Oo V-o, V . . . ( 
a x 

10 a 0 ?a o'l 0 ab 5 
c * (S ) In I 7 IYI -n In Irr 

and therefore, by the six last equations of the groups (M'.) and (N'.), the multipliers 
would take the values 

h1 =-- --- x '3 =i - Zin) A1 = a',, == b=',, A3 = C-- (65.) 

and would reduce, by (60.) and (61.), the preceding 6 n - 6 equations of the same 

groups (M'.) and (N'.), to the forms 
MDCCCXXXIV. 2 N 
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-x = kl lI-- --1 n-i 

a - ml , =- m2 =2 , . ' 8 , 1 

- 
= 

m1i'l, =_, } =m2f * * =. . .P- B (I1 ) 

aV, , V, sv 

and 
SV, ' SV, t 8v, M , 

__ = . m , - m-_ _ 1 m_' 

12 We might also express the relative action V not as a fution of the centro- 

baric, but of some other internal coordinates, or marks of relative position. We might, 
ternal coordinates already mentioned, and of their vaiations, defining these 

without any reference to the centre of gravity, by the equations 

= .. (66.) 

i = = -Va ig - w = - im,, l', _ ,, n 

which implies that we are to express the half T, of the relative living force of the 
system as a function of the rates of increase ', of an marks of relative potive position; an 
after taking its variation with respect to these rates, to change their variations to the 
variations of the mnarks of position themselves; then to subtract the initial from the 
final value of the result, and to add the variations of the final and initial functions 

P (>,, which enter into the equations of condition, if any, of the form p, = 0, , = 0, 
(connecting the final and initial marks of relative position,) multiplied respectively 
by undetermined factors x, A,; and lastly, to equate the whole result to V - t ? HI, 
wI- being the quantity independent of the time in the equation (50.) of relatise living 
force, and V, being the relative action, of which we desired to express the variation. 

It is not necessary to dwell here on the demonstratiox of this new rule (V1.), which 

may easily be ded from the principles already laid down; or by the calculus of 
variations from the law of relative living force, combined with the differential equa- 
tions of the second order of relative motion. 
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But to give an example of its application, let us resume the problem already men- 
tioned, namely to express 6 V, by means of the 6 n- 5 independent variations 6 j 6 . 

% s a. /i 8.i 8 H,. For this purpose we shall employ a known transformation of the 
relative living force 2 T,, multiplied by the sum of the masses of the system, namely 
the following: 

2T, 2= m . m {(. -m m)f( k 2 + ('-i 
- (k)2 + (i-k)2} . . . (67.) 

the sign of summation E extending, irn the second member, to all the combinations of 
points two by two, which can be formed without repetition. This transformation 
gives, by (66.), 

2T, m m n ,. m (2 _ 2+ I2+ f2) 

+ m, {(,- M) + (' Ik )2 + (' .- ,)2}; ? - (68.) 
the sign of summation 2, extending only to the first n - 1 points of the system. Ap- 
plying, therefore, our general rule or law of varying relative action, and observing 
that the 6 n - 6 internal coordinates j g ac 3 y are independent, we find the follow- 
ing new expression: 

+V, = t= H,m + { . 'i (!i 6 ( -C) + (' 1 )- (8n- k + (' - Y'i } ) 

1 

-+-. m' Q',.mimk {( ,-'k) (-- :) 
- 

(t'-- k) (W-3) t ('--'k) ( ,- )) }(W .) 

- 
7n m 8iMk {(Vi- k Ok k) (W si )k) + (3 (i3k) (ki-?) + 

(i;4) (yi ) 

which gives, besides the equation (01.), the following groups: 

- =. . m ( ' - ') =m /'s !n 

.V-- mi ) ._m) rYVI ni XIMV C _ _I m M.m ~ i 

a- ^. m.(,--,-' , - - , 

and 

.-v -m'. t 
::'= ?t .m (i-- ,') =-- Xm M 

8aV iZ. mm 'm 

results which may be thus summed up: 
2 N 2 

. . . * (XI.) 

. * ? (Y'?.) 
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V1= t H1+ m - + I -ytt ) 

lim:/s 2w*/^S. C II (Z1.) 

+ .- (2m w . ,ma s + m, .3 ,m + . , m . y), 

and might have been otherwise deduced by our rule, from this other known trans- 
formation of T,, 

T = 1 . m, , ((t, ~,) t:m')' + (Xia ') + (, m t).(69.) T,=-., m q - q- ... '~a ........... '' 

And to obtain, with any set of internal or relative marks of position, the two partial 
differential equations which the characteristic function V, of relative motion must 

satisfy, and which offer (as we shall find) the chief means of discovering its form, 
namely, the equations analogous to those marked (F.) and (G.), we have only to eli- 
minate the rates of increase of the marks of position of the system, which determine 
the final and initial components of the relative velocities of its points, by the law of 

varying relative action, from the final and initial expressions of the law of relative 

living force; namely, from the following equations: 

T, =U +H-, . ................. (50.) 
and 

To=Uo+ H,. ..........,. ...... . (70.) 
The law of areas, or the property respecting rotation which was expressed by the 

partial differential equations (P.), will also always admit of being expressed in rela- 
tive coordinates, and will assist in discovering the form of the characteristic function 
V,; by showing that this function involves only such internal coordinates (in number 
6 n - 9) as do not alter by any common rotation of all points final and initial, round 
the centre of gravity, or round any other internal origin; that origin being treated as 
fixed, and the quantity H, as constant, in determining the effects of this rotation. The 

general problem of dynamics, respecting the motions of a free svstem of n points 
attracting or repelling one another, is therefore reduced, in the last analysis, by the 
method of the present essay, to the research and differentiation of a function V, 
depending on 6 n - 9 internal or relative coordinates, and on the quantity II,, and 
satisfying a pair of partial differential equations of the first order and second degree; 
in integrating which equations, we are to observe, that at the assumed origin of the 
motion, namely at the moment when t = 0, the final or variable coordinates are equal 

to their initial values, and the partial differential coefficient ~-H vanishes; and, that 

at a moment infinitely little distant, the differential alterations of the coordinates have 
ratios connected with the other partial differential coefficients of the characteristic 
function V,, by the law of varying relative action. It may be here observed, that, 
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although the consideration of the point, called usually the centre of gravity, is very 
simply suggested by the process of the tenth number, yet this internal centre is even 
more simply indicated by our early corollaries from the law of varying action ; whicl 
show that the components of relative final velocities, in any system of attracting or 

repelling points, may be expressed by the differences of quantities of the form Im a, 
I av~ V --: and therefore that in calculating these relative velocities, it is advan- m y'rm Iz nz 

tageons to introduce the final sums n m x, 2 my, 2 m z, and, for an analogous reason, 
the initial sums 2 m a, I m b, 2 m c, among the marks of the extreme positions of the 

system, in the expression of the characteristic function V; because, in differentiating 
that expression for the calculation of relative velocities, those sums may be treated as 
constant. 

On Systems of two Points, in general; Characteristic Fiunction of the motion of anm, 
Binary System. 

13. To illustrate the foregoing principles, which extend to any free system of points, 
however numerous, attracting or repelling one another, let us now consider, in parti- 
cular, a system of two such points. For such a system, the known force-function U 
becomes, by (2.), 

U = m 2f (r), ........... (71.) 

r being the mutual distance 

r = S(x (-Xi )2 + (1-y 2)2 +(zl -z), . (72.) 
between the two points mi, m2, and f (r) being a function of this distance such that 
its derivative or differential coefficient .f (r) expresses the law of their repulsion or 
attraction, according as it is positive or negative. The known differential equations 
of motion, of the second order, are now, by (1.), comprised in the following formula: 

m1 (W'l B X1 +y"l $Y1 + z"1 1) ++ M2 ('2 2 +yY"2 tY2 + "2 w 22) = ml 2 (r); . (73.) 

they are therefore, separately, 

If(r) y - f(r) Z" f(r) 1 
~f'tl 

: 
~t 1"1I m2 axl ' l =` a y1 = m-2 n2 a - I 

n af () "z af(r) z f (r) t (74 . 
X.,^2 I 2 = "21 8a 2 - a1 * 

The problem of integrating these equations consists in proposing to assign, by 
their means, six relations between the time t, the masses mn m2, the six varying 
coordinates x1Y1 zI X Y2 z2, and their initial values and initial rates of increase 

a, bl cb a2 b2 c2 a'1 b'l c'l a'2 b'2 . If we knew these six final integrals, and combined 
them with the initial form of the law of living force, or of the known intermediate 

integral 
(75.) 
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that is, with the following formula, 

Mz1 (a'12 + b'12 + C12) + } m2 (a'22 + b22 + d22) = _1 m2f(r0) + H, . (76.) 

in which ro is the initial distance 

ro = V/(ai -a2)2 + (b b2) +2 (c .-'c2)2, ..... (77.) 
and H is a constant quantity, introduced by integration; we could, by the combina- 
tion of these seven relations, determine the time t, and the six initial components of 
velocity a'1 b'l c, a'2 bV c', as functions of the twelve final and initial coordinates 
't Yl z1 x2 Y2 z2 al b cl a2 b2 c2, and of the quantity H, (involving also the masses:) 
we could therefore determine whatever else depends on the manner and time of 
mlotion of this system of two points, as a function of the same extreme coordinates 
and of the same quantity H. In particular, we could determine the action, or accu- 
mulated living force of the system, namely, 

V = m,/ ' + ' + '1) t + 2o' (22 
+ Y + y 2 ) d t,. (A2.) 

as a function of those thirteen quantities 1 y z 2 y2 X2 a, b, cl a2 b2 C2 H: and 

might then calculate the variation of this function, 

V= a v 1,l + av, 1 Y+ a Z + y, ZV2 + ?v , , + v 
jZ21 

a a 
a b aal+ av 

a2+ 
a 

. (1B2.) + a a,l 8 b a b, + a c , $ 1 
- 

V a. + s b 6 bT 2 + F,- 2C, 

v I 
+ mH H. 

But the essence of our method consists in forming previously the expression of this 
variation, by our law of varying action, namely, 

6 V = m1 (x,1 x1 - a' a1 + y', Syl - bl b + zl zl - c'l ) 1 

+ m2 (x2 2 2 2 a2 + 2 Y2 - b'2 + y'22 2 - c'2 2 c2) } . (C2.) 

+ t H; 

and in considering V as a characteristic function of the mnotion, from the form of which 
mlay be deduced all the intermediate and all the final integrals of the known differen- 
tial equations, by resolving the expression (C2.) into the following separate groups, 
(included in (C.) and (D.),) 

aV , V a8V 
_ - qm \, 6M 

= 
m, yMI, _. - m l, I 

.- .t .Y v . . ., 1 . (D2.) 

a8- %2 ' 2, a = m 
Y2)y' a = m2 z2;] 

and 
8V 8V 8V 

1d, 
v 

_ a, - 
m - ' ml _l b,1 - 1 

t 

aV aV V I 
a-, 

= - 2 
2, 

= 
-- 

2 
, q2 

= - 2 2' J; 
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besides this other equation, which had occurred before, 
V 

= t. . (E.) 

By this new method, the difficulty of integrating the six known equations of rnotion 
of the second order (74.), is reduced to the search and differentiation of a single 
function V; and to find the form of this function, we are to employ the following 
pair of partial differential equations of the first order: 

1 /sv 2 /sv\2 /yV 2 1 rtV \2 sv2 v 2l 

i vxJ+ (\)y 2 + ( '} + V2 + ,2 + j2} 

= m1m2f (r) +H, .................(F2.) 

ZL aVW 2 (W 
a 2\ + +Qm J_ V + (V2Y . 2 

m, aLV n r V ?rV J bT I/ +a2 \a a. \a J J2 

-m mir2f (r0) +- , .......(G2.) 

combined with some simple considerations. And it easily results from the principles 
already laid down, that the integral of this paimr of equations, adapted to the present 
question, is 

V = /(x,,- a,,)2 + (, - b,,) + (z,, - ^,)2. * ,/2H1, (mn + mi) 

+ m, + m a2 +j dr); +,^Fm.(*&+X^'* .............(HP.) 
in which x,, y,, z,, a,, b,, c,, denote the coordinates, final and initial, of the centre of 

gravity of the system, 
m, x +- m2 X2 m,y1. + m2y2 I_ 11 z+ n2 Z2 

-1 m, 4iln + m2 ml + m2 ' 1 1 'm + m2 

,a, + ma b m, b, +- m2b2 c , c, + mr .c2 
ml- +-m +m m,2 ' m n J 

and S is the angle between the final and initial distances r, r0: we have also put for 

abridgement 

\/2 (m +2) (f ()+ ml ) . (79.) 

the upper or the lower sign to be used, according as the distance r is increasing or 
decreasing; and have introduced three auxiliary quantities hi, H,, I,,, to be deter- 
mined by this condition, 

(72.) 

combined with the two following, 

mn, + Jr _ H, - i2(, + , + (t,, --c,,)I. (/z, b,,)2 VQ)H 

--, +H- ,, ? II;. 
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which auxiliary quantities, although in one view they are functions of the twelve ex- 
treme coordinates, are yet to be treated as constant in calculating the three definite 

integrals, or limits of sums of numerous small elements, 

jr fdr,t fAdr,J 1 dr. 

The form (1H12.), for the characteristic function of a binary system, may be re- 

garded as a central or radical relation, which includes the whole theory of the motion 
of such a system; so that all the details of this motion may be deduced from it by 
the application of our general method. But because the theory of binary systems 
has been brought to great perfection already, by the labours of former writers, it 

may suffice to give briefly here a few instances of such deduction. 
14. The form (H2.), for the characteristic function of a binary system involves 

explicitly, when e is changed to its value (79.), the twelve quantities x,, y,, ,, a,, b,, c 
r ro h H, I--I , (besides the masses m1 m2 which are always considered as given;) its 
variation may therefore be thus expressed: 

z V T1 SY Y + 8X 
a 
?v + , a. a,, + bbb, + b c- 

v+ aVr + 
a 

ro + a h h + s avr -I,+ vv v ~ . (Ll . 

In this expression, if we put for abridgement 

x -= /( Q_o Hi (m, + -)2) 
(x,. -a,)- + (u, - z,,) + (z- c)' .... 

we shall have 

aV A( a - b )8V V -a 
xi,- (i -a,,) y (-y,, - 

,b,,), 8- 11 11 

a 
. a X(a,,- x,), bi = X (b,,- y,,), c= X (c - ) ; J 

and if we put 

o0 = + \/2 (m + m2) (f(r) + m- ) -rkg, 
ml 721 712l 

. (80.) 

. . (M2). 

0- . ~~~~(8 1.) 

the sign of the radical being determined by the same rule as that of s, 

av m- m2 g V - m mg o = 
V m_ m,ml h 

ar m~+ m2' + m +m' m, + m2 

we shall have 

. . . (N2.) 

besides, by the equations of condition (I2.), (K2.), we have 
8V 

- -- , ......... (02.) 

and 
aV _ aV rdr 

mH. 
- 

IHI 
- 

'o ~~-- LII1r H, + H,+ , = H. (P2.) 
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The expression (L2.) may therefore be thus transformed: 
V = k {(x, - a) (a , x- a,) (,, ,,) + (y,,- b,,) + (z- c,,) ( z,, - c,,) 

+m, +2 (gBr--g0 ro + ht) +J ..H;. . (Q2.) 

and may be resolved by our general method into twelve separate expressions for the 
final and initial components of velocities, namely, 

-1v - + %_mQh/)+m+ml?Gy 

I II A M2 ar a I, _1 8V _ ,-a)+, + 8r h (1) 

1-frl 
~ 

8-- m~l + m2 
~) 
- ml + m2 V 8. hi , 

m 1 A m 8r a+ > * * R 
Z 2-me 8 ^ = m ( + M + h a zS2J 

I2- 6 y I + m ?I + M2 zV-g1 
_ 1 V _ 

z2-~ mz~ m, + 

m m 

+ 
m a _ ml _z Z m;z2m+ + andc)+ m1-j- 

and 
-aI V A m2 r 3 @ 

a- ml '=ml+ m (Yu b/) + +(77o b -h 

b*, -- mz, 6b, ~O, $? :--- - ,-. 6+m,2 + (# fb, +a m aj 
-b' -1 

(,, 
- 

c) + mo, ( - - h 

t-- _ 
J __r ml (T / 

8, 

X' (x m? . .....a. 

c 
= m CM Ml + meI (. c,,) I I + Me T? 8ci 

~ 
c,/ | 

- -laV + ' / 20 

, _-18aV _ A a r)+ m l (ro a 8 

which gives by (K2.), and by (79.), (80.), 
t - - - - + ma 

t- H 9 g -. =.. . . . . . 

t - * * * ** 

The six equations (R2.) give the six intermediate integrals, and the six equations 
(S2.) give the six final integrals of the six known differential equations of motion (74.) 
for any binary system, if we eliminate or determine the three auxiliary quantities 

MrDCCCXXXIV. 2 0 

(S2.) 

(T2.) 

(U2.) 
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h, H, H,,, by the three conditions (12.) (T2.) (TJ2.). Thus, if we observe that the 
distances r, ro, and the included angle depend only on relative coordinates, which 
may be thus denoted, 

- X2 = 1 - Y2 == v, z - 2 = (82) 
al -' a2 l b-- , 2= c 2 - = >, 

we obtain by easy combinations the three following intermediate integrals for the 
centre of gravity of the system: 

X' t =-XI =- a^, y 'l t -= y- bll, z'II t = - , ....... (83.) 

and the three following final integrals, 

a',,t x,-a, b', t-y- - b,, ct = t .- c, ........ (84.) 

expressing the well-known law of the rectilinear and uniform motion of that centre. 
We obtain also the three following intermediate integrals for the relative motion of 
one point of the system about the other: 

ar a8 

a . . . . . . . . . . . .. . . 5.) 

a r a 8. 

and the three following final integrals, 

=e0o1--6 , j 

=t ao8ro 
= go 0-- 

j 

(86.) 

in which the auxiliary quantities h, H,, are to be determined by (12.) 
which the dependence of r, ro, 9, on a, v, P, , 3, y, is expressed by 
equations: 

r = de + 2 + 2o = ro 2 _ a + , . 
rro cos a-S + + .3 -+. . . 

If then we put, for abridgement, 
h h i- go A-=q- + B =sC= + r i tan ) 

~ - r ̂ rro sin F r0 r%2 tan e 

we shall have these three intermediate integrals, 
=t-A--B, ='-Ah-Bt, =-A--By, . . . 

'and these three final integrals, 
o'=B--C, tS'-=B~-C =B-Cy, ' .=.B.. 

) (T.), and in 
the following 

. . . (87.) 

. . (88.) 

. . . (89.) 

. . . (90.) 
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of the equations of relative motion. These integrals give, 

' - g7~ = o p' _ - (3 = B ( - 3t), 
~'--F-=-'--'-B(--,) . ..( * . . ),.(91.) 

_ ~, = 2 -'-c y'y = B ( y -), 
and 

( ( ' -f ') + E (p / - Y rP') + ) (r ' - a .') 0= .. . (92.) 
they contain therefore the known law of equable description of areas, and the law of 
a plane. relative orbit. If we take for simplicity this plane for the plane j ,, the quan- 
tities C 'y 7 will vanish; and we may put, 

| = r cos 8, n = r sin 8, = 0, (93.) 

a = ro cos o, r = ro0sin 0,) y- 
and 

' =r'cos0 -'rsin8, s ' = r'sin0- + a'rcos8, ~'=0, 
= r' cos 60 - 'o ro sin 0, J3' = r' sin 0 + 'o r cos 0, r' = O, 9 

the angles 8 00 being counted from some fixed line in the plane, and being such that 
their difference 

. ........ .....(95.) 
These values give 

' - -' = r2 a, 3-' - ,8 = ro20', e -- =rrosin, .... (96.) 

and therefore, by (88.) and (91), 
r r o ; . . . . . . . . . . . . . . . . . . (97.) 

the quantity i h is therefore the constant areal velocity in the relative motion of the 

system; a result which is easily seen to be independent of the directions of the three 

rectangular coordinates. The same values, (93.), (94.), give 
Mcos + sin = r, V'cosd + sin = r', acosO +(8sinO = rocosS, 9 
x cos 8O + 3 sin 61 = ro,c' cos + 13' sin O = rto, cosdo + sin8 = r cos , (98) 

and therefore, by the intermediate and final integrals, (89.), (90.), 

7 - , r'0 - ; .... ........... (99.) 

results which evidently agree with the condition (T2.), and which give by (79.) and 

(81.), for all directions of coordinates, 

,r2 + . - 2 (ml + m2)f (r) = 

L .. . (100.) 
+ - 2(m + m2)f (rO) 2 H,( + ) ; 

the other auxiliary quantity HI, is therefore also a constant, independent of the time, 

and enters as such into the constant part in the expression for (r2 + 72 the square 

of the relative velocity. The equation of condition (I2), connecting these two con- 
2 o 2 
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stants h, H,, with the extreme lengths of the radius vector r, and with the angle a 
described by this radius in revolving from its initial to its final direction, is the equa- 
tion of the plane relative orbit; and the other equation of condition (T2.), connecting 
the same two constants with the same extreme distances and with the time, gives 
the law of the velocity of mutual approach or recess. 

We may remark that the part V, of the whole characteristic function V, which 

represents the relative action and determines the relative motion in the system, 
namely, 

V,-=-^ (hm +:mr)- ............. (V2.) 

may be put, by (I2.), under the form 

m12 i -hag dr (W2) VI -m, + r * 
... . .. . * 

or finally, by (79.), 

V,= 2Jr m,mf(r) + H, dr; ...... (X2.) 

the condition (I2.) may also itself be transformed, by (79.), as follows: 

fr dr -h . . . . . . . . . . :.. . . . . . . Y ... a -A -T=-: t (Y2.) 

results which all admit of easy verifications. The partial differential equations con- 
nected with the law of relative living force, which the characteristic function V, of 
relative motion must satisfy, may be put under the following forms: 

a V 2 I a V 2 9i m j 1 ( 4Yi^)2~(- ')2= +,%;(U -- -+ H,), 
(8V)2 

+ (8V,A2 m m .. ...... 

,)~ 
' 

(+)a 
~"~ 

e (Uo +H) j +r r20 =\a ml + m2 

and if the first of the equations of this pair have its variation taken with respect to r 
and a, attention being paid to the dynamical meanings of the coefficients of the cha- 
racteristic function, it will conduct (as in former instances) to the known differential 

equations of motion of the second order. 

On the undisturbed Motion of a Planet or Comet about the Sun: Dependence of the 
Characteristic Function of such Motion, on the chord and the sum of the Radii. 

15. To particularize still further, let 

f(r)= . . . .... . . . . . . . . . . . . (101.) 

that is, let us consider a binary system, such as a planet or comet and the sun, with 
the Newtonian law of attraction; and let us put, for abridgement, 

= h - m1n m 
%+mz-2=-t*, =, -- a........ (102.) 
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The characteristic function V, of relative motion may now be expressed as follows 

-/ m+ _)- -C 1 
.d ; ...... .. w v~ A=~~l mzm~ * p + / *.d r;..... *(A3.) 

in which p is to be considered as a function of the extreme radii vectores r, r, and of 
their included angle 3, involving also the quantity a, or the connected quantity H, 
and determined by the condition 

+ dr 
2= / 2 1 ' *-*. *.... . (B3.) 

Jr rp - ap -- 

that is, by the derivative of the formula (A3.), taken with respect to p: the upper 
sign being taken in each expression when the distance r is increasing, and the lower 

sign when that distance is diminishing, and the quantity p being treated 'as constant 
in calculating the two definite integrals. It results from the foregoing remarks, that 
this quantity p is constant also in the sense of being independent of the time, so as 
not to vary in the course of the motion; and that the condition (B3.), connecting this 
constant with r ro a a, is the equation of the plane relative orbit; which is therefore 
(as it has long been known to be) an ellipse, hyperbola, or parabola, according as the 
constant a is positive, negative, or zero, the origin of r being always a focus of the 
curve, and p being the semiparameter. It results also, that the time of motion may 
be thus expressed: 

sV e aa V, 
t a= ... .. .. . . ,. (C,.) 

and therefore thus: 

?dr 
f _' 

_;_.2; 
........... (...) 

V r a r- 

which latter is a known expression. Confining ourselves at present to the case a > 0, 
and introducing the known auxiliary quantities called excentricity and excentric 
anomaly, namely, 

e \/ . . (103.) 
and 

-i a-r) 
C-os "7 ' ............- (104.) 

which give 
/2ar- r2- pa = aesin, . . . . . . . . . (105.) 

v being considered as continually increasing with the time and therefore, as is well 
known, 

r = a ( - ecos v), r0 = a (- e cos v), 1 

=2tan-{}-2tan {\/ ta }e I v .106.) a=2tan{V1 1 
tan -j2 ttan tan -e 4V/1 - e f o 
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and 
a 

t =\/-. (v-- v-- esin v + esin); . . . . . . . . . (107.) 

we find that this expression for the characteristic function of relative motion, 

_mm^ M -f \r a/ 

V a- 

deduced from (A3.) and (B3.), may be transformed as follows: 

V, =m m 2 m - (v- v0 + e sin v -e sin): . . (.) 

in which the excentricity e, and the final and initial excentric anomalies v, uv, are to 
be considered as functions of the final and initial radii r, rl, and of the included 
angle 3, determined by the equations (106.). The expression (F3.) may be thus 
written: 

V,= 2 n 2 v/ (v, + e, sin v), . (G3.) 

if we put, for abridgement, 
t - o 4- t+ 

UJ = V0ne, = e cos 2 ; * (108.) 

for the complete determination of the characterstic function of the e present relative 
motion, it remains therefore to determine the two variables v, and e,, as functions of 
r r0 S, or of some other set of quantities which mark the shape and sie of the plane 
triangle bounded by the final and initial elliptic radii vectores and by the elliptic 
chord. 

For this purpose it is convenient to introduce this elliptic chord itself, which we 
shall call + r., so that 

= r2 + r2- 2rr0cos; . . . . .. (109.) 
because this chord may be expressed as a function of the two variables v,, e,, (involving 
also the mean distance a,) as follows. The value (106.) for the angle a, that is, by 
(95.), for 0 - 8, gives 

d-2tanl {nl+.tanlt-J -2tanl^ { tan-t=a * (110.) 

-a being a new constant independent of the time, namely, one of the values of the 
polar angle 0, which correspond to the minimum of radius vector; and therefore, 
by (106.), 

r cos (0 - zr) =a (cos v - e), r sin (0 - w) = a ,i -e2 sin v, 

? Ocos ( 0-zav) = a (cos vO-e), ro sin (0l or) = aV o the2 sin vo t () 

expressions which give the following value for the square of the elliptic chord : 
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-2={rcos - (O-)-rocoS (go-)}2 +{rsin (O --z)-ro Sin (- _w)}2 

= a2 {(cos v -cos vo)2 + (1 e2) (sin v - sin v0)2} 

=4a2smin V2 {sin -) +(1 -e2)cos ( J 

=4a2 (l -e,2) sin V,2: 

we may also consider r as having the same sign with sin ,, if we consider it as 
alternately positive and negative, in the successive elliptic periods or revolutions, 
beginning with the initial position. 

Besides if we denote by a the sum of the two elliptic radii vectores, final and 
initial, so that 

= r+ ro, . ........... (113.) 

we shall have, with our present abridgements, 
= 2 a (1 - e, cos ,); . . . . (114.) 

the variables v, e, are therefore functions of o, r, a, and consequently the character- 
istic function V, is itself a function of those three quantities. We may therefore put 

m + m * * * * * * 

w being a function of ,, r, a, of which the form is to be determined by eliminating 
u, e, between the three equations, 

w- 2 /7 (v, + e, sin v,),] 
2 a (1 e, cos v,), . .... . (.) 

r =2 a (1 - e,2)1 sin v,; j 

and we may consider this new function w as itself a characteristic function of elliptic 
motion; the law of its variation being expressed as follows, in the notation of the 
present essay: 

~w = ~'~- +/' + 1- ~-'~ + Y+ 

In this expression, ~ n i are the relative coordinates of the point ml, at the time t, 
referred to the other attracting point n2 as an origin, and to any three rectangular 
axes ; f i/ are their rates of increase, or the three rectangular components of final 
relative velocity; a 3t y d are the initial values, or values at the time zero, of 
these relative coordinates and components of relative velocity, a is a quantity inde- 
pendent of the time, namely, the mean distance of the two points ml, n; and p is 
the sum of their masses. And all the properties of the undisturbed elliptic motion 
of a planet or comet about the sun may be deduced in a new way, from the simplified 
characteristic function w, by comparing its variation (K8.) with the following other 
form, 

w= + + a; ....... .) aa~~~~~~(A 
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in which we are to observe that 

tr = J02 + 22 + g2 + Aj + 2 + v2.1 

I = ? +/( - o)2 + (-0)2 + (t y)2. 

By this comparison we are brought back to the general integral equations of the 
relative motion of a binary system, (89.) and (90.); but we have now the following 
particular values for the coefficients A, B, C: 

A = 
I at 1 1 w I N3 A= --+ T B =C, C= + r ; . (N3.) - * ?' 'W T ro' 

and with respect to the three partial differential coefficients, a, -, a we have the 8-a, ~-4T, F e have t he 

following relation between them: 
w 8w 8w w 

a + O- +r = , ..... .......... (03.) 

the function w being homogeneous of the dimension } with respect to the three quan- 
tities a, o., ; we have also, by (13.), 

Sw . / u sinul w _* /I (P/- -e. 
e V , - COso,' - r V a 'cos VI - e, 

' 

and therefore 

ao ar - T azv 2 W2 a _ 42 3 

fiom which may be deduced the following remarkable expressions: 

8w aZ \2_ 4/ j 1 

(R3.) 

-; F 
~ 

-- - a J 
These expressions will be found to be important in the application of the present me- 
thod to the theory of elliptic motion. 

16. We shall not enter, on this occasion, into any details of such application; but 
we may remark, that the circumstance of the characteristic function involving only 
the elliptic chord and the sum of the extreme radii, (besides the mean distance and 
the sum of the masses,) affords, by our general method, a new proof of the well- 
known theorem that the elliptic time also depends on the same chord and sum of 

radii; and gives a new expression for the law of this dependence, namely, 

t =a * . . .. . . . . . . . . . . . . . . ( .) 
. (S3.) 

We mtay remark also, that the same form of the characteristic function of elliptic 
motion, conducts, by our general method, to the following curious, but not novel 

property, of the ellipse, that if any two tangents be drawn to such a curve, from 

ally common point outside, these tangents subtend equal angles at one focus; 
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they subtend also equal angles at the other. Reciprocally, if any plane curve posess 
this property, when referred to a fixed point in its own plane, which may be taken as 
the origin of polar coordinates r, , the curve must satisfy the following equation in 
mixed differences: 

/49\I d i cotan )A -(A + 2) .. ....... (115.) 

which may be brought to the following form, 

f+ - = .... ............ (116.) 

and therefore gives, by integration, 
p 

r =1 
+ ecos (0 _); 

. ... ..... w* . 
) (117 ) 

the curve is, consequently, a conic section, and the fixed point is one of its foci. 
The properties of parabolic are included as limiting cases in those of elliptic mo- 

tion, and may be deduced from them by making 

H, O, or a = ;, . . . ... . . (1) 
and therefore the characteristic function w and the time t, in parabolic as well as in 

elliptic motion, are functions of the chord and of the sum of the radii. By thus 
making a infinite in the foregoing expressions, we find, for parabolic motion, the par- 
tial differential equations 

aw Bto aW 4 . /S_ w aO\2 4p 
a; ' rT/ =~+-- \a- ~f, . (1-) 

and in fact the parabolic form of the simplified characteristic function w may easily 
be shown to be 

'w --=2 ,J (^s,.f~' ..+ . ./.'), ? . .(U3.) 

being, as before, the chord, and m the sum of the radii; while the analogous limit 
of the expression (S3.), for the time, is 

t ^- { --- ' (-r) }: . . . . . . . . (V3.) 

which latter is a known expression. 
The formulae (K3.) and (IL.), to the comparison of which we have reduced the 

study of elliptic motion, extend to hyperbolic motion also; and in any binary system, 
with NEWTON'S law of attraction, the simplified characteristic function w may be 
expressed by the definite integral 

w= / - d * ...... .. (W3.) Vr-T + 4a 

this function w being still connected with the relative action V, by the equation 
(H3.) while the time t, which may always be deduced from this function, by the 
law of varying action, is represented by this other connected integral, 

MDCCCXXXIV. 2 P 
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(- -- d-i : ....... . (X3.) 

provided that, within the extent of these integrations, the radical does not vanish 
nor become infinite. When this condition is not satisfied, we may still express the 
simplified characteristic function w, and the time t, by the following analogous inte- 
grals: 

Aw- i_ d-a . .... .. (Y.) 
and 

t = ? ( - ) d . . . . (Zi.) 

in which we have put for abridgement 
r '+ T O - - 

,_-2T 2' , 2 ** .? * ** * *vv* I=9 (119.) 

and in which it is easy to determine the signs of the radicals. But to treat fully of 
these various transformations would carry us too far at present, for it is time to 
consider the properties of systems with more points than two. 

On Systems of three Points, in general; and on their Characteristic Functions. 

17. For any system of three points, the known differential equations of motion 
of the 2nd order are included in the following formula: 

ml (X'll + X "l Y-l+ + Z"l z2) + m2 ( '2 xz2 +Y '2 2 + Z 2) . (120.) 
+ m3( 'X+3 +Y 3 + Y3 + t3 ̂  Z3) = j U, 

the known force-function U having the form 

U =n mm (l'S) + mm3f^(" s) mm3f(2 s), . . (121.) 

in whichf(l' 2), f(t 8), f(' S), are functions respectively of the three following mutual 
distances of the points of the system: 

r(" ') = (Xl- 2+' + (Yl .y2) + (l .2)-' 

" -3) X)2 + (Y Y3)2 +(2, . . . , (122.) 
r(28) = b/X2 + (Y2- 3)2 +( %-)2z 

the known differential equations of motion are therefore, separately, for the point ml, 
a/1, 2) 8/1 8) ! 

= n2 -^y + 3? , { .i.n.3. .... (123.) 

8(l'2 ) af(," 8) ; 
1 = m2 8-;1 + ms 8- a 

with six other analogous equations for the points m2 and in3; 1, &c., denoting the 
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component accelerations of the three points mi m2 n3, or the second differential co- 
efficients of their coordinates, taken with respect to the time. To integrate these 
equations is to assign, by their means, nine relations between the time t, the three 
masses n mn2 m23, the nine varying coordinates x1 y, zi y/2 Z2 X3 y z3, and their nine 
initial values and nine initial rates of increase, which may be thus denoted, a, b1 c 
a2 b2 c 3 b3 ,3 a' /1 1 1//2 '2 a3 13 cb 3. The known intermediate integral con- 
taining the law of living force, namely, 

m i 2 + y12 + + m + m + y2 + ) + m3 (X + 32 + 13) (124.) 

= m m,(l' a) + m m3/(l" 
8) + m M/2" 8) +_ H, 

gives the following initial relation: 

^m,W+V^+^)+^m,1 + 1 
-ml (112 + b12 + C12) + m2 (a 2+22+ 2 + 2) + m3 (32 +b32+ ) (125.) 

= ti m (2) + m1i m3,(1') + m2 m3f,/o' ) + H, 

in which fot' 2, o0(' s), fo2 ), are composed of the initial coordinates, in the same 

manner asf(" 2) j' 8)f(, s) are composed of the final coordinates. If then we knew 
the nine final integrals of the equations of motion of this ternary system, and com- 
bined them with the initial form (125.) of the law of living force, we should have ten 
relations to detrmine the ten quantities t a'1 1, C1 a'2 b2 C'2 3 b c3 nameleY, the time 
and the nine initial components of the velocities of the three points, as functions of 
the nine final and nine initial coordinates, and of the quantity H, involving also the 
masses we could therefore determine whatever else depends on the manner and time 
of motion of the system, from its initial to its final, position, as a function of the same 
extreme coordinates, and of H. In particular, we could determine the action V, or 
the accumulated living force of the system, namely, 

v = n (2 + y12 + 2+z2) dt+ n 22+ 22 2) dt 
+ Jd . (A4.) 

+ 93,(X32 + 32 + 32)df J 

as a function of these nineteen quantities, x1 y1 x2 y12 Z2 x3 y I z3 a1 bl C1 a2 b2 ca 
a3 63 c3 H; and might then calculate the variation of this function, 

W=v x i ~ + ayl 1 + zl ~ z1 + al al + 8b b+ b a eC1 
%V ~ V i V V V V 

+ 2 +2 aV2 + 22Y 
+ 8a +2 + b2 + 2 + 8 c 

8V 8V .V ,V IV 
V (B4') + 3 Y+ 3 + 

I- 3 + ^-- !3+ y^ 3 + , c3 

+~7 H. 

2r2 2 

287 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

But the law of varying action gives, previously, the following expression for this 
variation: 

IV = m1 (-1 x( l - al + y yal+1Y ~ '- bl bl +z'l zl -- c Cl) 

+ m2 (2 Xz -- a'2 a2 + Y' Y - b'2 b2 + z'2 z2 - '2 ) c2) 
(C4.) 

+ mW ( X- 3 3 a3 + y3 Y3 - b3 - b 3 + 3 z 3 - c'3 c3) 

+ t H; 
and shows, therefore, that the research of all the intermediate and all the final integral 
equations, of motion of the system, may be reduced, reciprocally, to the search and 
differentiation of this one characteristic function V; because if we knew this one 
function, we should have the nine intermediate integrals of the known differential 

equations, under the forms 
-V ? , VV 

S^ ?2^2'2==a ..... (D4.) 
-X == - rin ', Yi= - , mn by, l = Z-- 

m c', 
2Z ? Xp 2 

aV ,8V T,a, 
V 

and the nine final integrals under the forms 
av m l av m 1 

V / S / saa = 1 f,1 3b\ = c = l da ,,b 

V _ 8 mVa'2 - -m8b' -=-82 c1,, i,. (E42 
1 

= 
-- m2 a2, - m2 b2, c 8 - m2 Md2, . 

m at V 
I b 

V 
a -a m 3 a bs =-m3 b3, 3 ('3E ) 

the auxiliary constant H being to be eliminated, and the time t introduced, by this 
other equation, which has often occurred in this essay, 

aV t H M . * ...(E.) 
The same law of varying action suggests also a method of investigating the fornl 

of this characteristic function V, not requiring the previous integration of the known 
equations of motion; namely, the integration of a pair of partial differential equations 
connected with the law of living force; which are, 

\1(~)] ( + ) =mlmj1'l + m1m3fl' - +2m3f ' m + H, 1f ( a8 V (a V\\2 ) I ( V 2 a \2 /8 V\ 
+m 3 +a 8Y8 +at Z3 =MJ +MIM3f + 213 M3f 

and 
1t2'-"~l 

/8 
V\2 {8 

V\2 
av 1v 

X ria sv\e a v 2 a V\2' (1, 2) (1, 3) (2,3) 
+'{m +V + } mm2f, +mlm3fI +m2?z31o +H.J 
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And to diminish the difficulty of thus determining the function V, which depends on 
18 coordinates, we may separate it, by principles already explained, into a part V,, 
depending only on the motion of the centre of gravity of the system, and determined 
by the formula (HI.), and another part V,, depending only on the relative motions of 
the points of the system about this internal centre, and equal to the accumulated 

living force, connected with this relative motion only. In this manner the difficulty 
is reduced to determining the relative action V,; and if we introduce the relative co- 
ordinates 

~1 = X1 - X3' -1 = Y1 - Y3, . . ( 

2 
- 

X2 - X3, 2 = Y2 Y3' 2 -- 2 -- ;3 

and 

1a a = - a3, I= bl - b3 = Cl- (1C3 

2 = - - a3, 32 - b2 - b3, 72 -C2- C3 

we easily find, by the principles of the tenth and following numbers, that the function 

V, may be considered as depending only on these relative coordinates, and on a quan- 

tity H, analogous to H (besides the masses of the system) ; and that it must satisfy 
two partial differential equations, analogous to (F4.) and (G4.), namely, 

{ ( V)2 +$ t+ (V) } + { (Y+)2a + ( 2 + 2} 

_| (!73 
a 

) + ( X +-) + (- 2 + )V} >(I14) 
+_z 

m32, B V,1 8(2 2), (2, 

~ 

, 3 V, 

-_ m nm2f(l' 2)+ ml m3f(1' ) + In2 m3f(2'3) + H,; J 

and 
1( /8V1X2 a {8VJ 2 + VA 12] 1 V v} 2 6 V,\2 a VIV 2 2 

2I m vlV, aV,\2 'V, 
a2 V, +V,'2 

M sps yl "t" 6 y\ ; (14.) 

m= ml m2/('2) + ml m3fo(l' ) s + nz2 '3 f(2' ) + I-I,: 

the law of the variation of this function being, by (Z1.), 

$V, = t1E, + m1 (M 1 1 - i + 4181 - p13'31 + <1i1 - r'lr) 
- 

+ mn2(2 ( - 2 a + 2 '2 2 - 't 2 P + '2 2 - Y'2 72) 
) 

(ml'+lt2V2) (nzMl1 +m2t2) - (n1i'1 +Mr2a'2) (MIz1 +sm2) j (K4.) 

'- m, :- +m; + (n 11 + n1m2'2) (mnh l +m28i2) - (ml '1 +"m23'2) (mil il + m2 f32) 
1 

+ 
+ (mr 'l + ml2 ') (mil+ m2 2) - (ml ll 

' 
+ m2 '2) (ml y1 + m2 72) J 

which resolves itself in the same manner as before into the six intermediate and six 
final integrals of relative motion, namely, into the following equations: 
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17 

wI 
== f _ _ in, m ., _8 xa, s=^ mg * I 1 8 l 1 ?8i + I - s 2 7? 

1l $ m1l - + + ,8 mV. m? Me 2 2 

_ _ I1 
+ 

JI 
T 1 1 

*`T - t _ ? 
W \ 

,T 

*1 
1 i" + 

m 
2 ml8 2 M -- w2 

Me +n2 m , 4 8 
_ 

M 

T ,+ m, rj + m,' 1 , ; l Il + min-9 5 ;) 
M1 lV "1 m +m2+ e r _ -J -1 V _ m+ml2+m8i' (tL 1^ S a^ 1 e + 3 I M M_ _ 3 m1"1 m m1 2 +m3 nm; -2 a+m2+m3 

and 

-, l , _ - 2 r 1 a; ri 

ml 6 1 sa-l + Mn + m S= V1 2 _ l + inet + m J -1 aV' , 
+ mml t 1 . ,. -.I aV, mtn, , + m. 9 y 

a l qanv t _ i V-, ar vi di 

which nrust be combined with our oold formulat 

peundent of the time, and do not vary in the course of 'the moteion but it s required 
by the spirit of our method, that in deducing the absolute action or original character 
isticl function V from the two parts V, and V,rp we should consider these two parts 
H and of the o t rginal quantity H. as functions involving each the nlne initial and 

the following expressions for the partial differential nts of the first order of V 
taken wionsth respect ghto the coordinates and of H bng drned by the to con 

.? 
vI 

. 
V .i , 

=- 
H + H, 

+ H.. .=-. -. ~ + + H H H (N4.)- 

However it reults from these conditions, that 'in taking the variation of the wbole 

ttie following expressions e sfor the partial differential coffiieentt of the fist order of VS 

order,n with respet to the other coordinates. Substituting the expressions in 
the uations of the (O.), amely, in the llowin the equations of the form (O.), nmely, 'in the' followilng 
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v av __ __ av av v 
Z1 +^ "r 8a3+ + + a, 

- 0 

8V 8V 8V 8V 8V 8V 
Y+ 8 + + 8y + 8, + b, + o, () 
V V V 8V aV V v 
Z+ + 8z- + 6a +~ + 3, 

we find that these equations become identical, because 
V 8 V .l +a V ' 0 ', aV , VU ZV C 

T^ + T ^ 0T8+ T ?T^ + * C = ?' . '' (Q4.) 

But substituting, in like manner, the expressions (04.) in the equations of the form 
(P.), of which the first is, for a ternary system, 

+ a-- + + a-v2- + b: - 38;J 
and observing that we have 

8V, VI, V,, - V, 
x"~:y, -Y" - ,, + a,, -b,,a- ...... (S4.) 

along with two other analogous conditions, we find that the part V, or the charac- 
teristic function of relative motion of the ternary system, must satisfy the three fol- 
lowing conditions, involving its partial differential coefficients of the first order and 
in the first degree, 

.-8s eV, eV, v, asv, av, av, I 0-1 i -^ 1 + 2F -2 
: 

+ al + -3l a+ 2 

o = i1 8 - 1 8 sv, 
sv 

y, 

n ̂ v 8v av8 vIv, av VV, a V, o - 1 - s, s, 6 1 y - Y8 - a2 , 

I 

I 

(TP.) 

which show that this function can depend only on the shape and size of a pentagon, 
not generally plane, formed by the point m3 considered as fixed, and by the initial 
and final positions of the other two points mr and m2; for example, the pentagon, of 
which the corners are, in order, m3 (ml) (m2) mn ml; (ml), and (m2) denoting the 
initial positions of the points mi and mn2, referred to m3 as a fixed origin. The shape 
and size of this pentagon may be determined by the ten mutual distances of its five 
points, that is, by the five sides and five diagonals, which may be thus denoted: 

m3 (ml) = /Vs7 (ml) (m2)) =2 (8= ,/3, mm2l = /,4, ml m3.= /s) 
m13 (m2) = ^/d, (mt1) m2 = /d2, (m2) mi = ,/d, m2 m3 = /m4, (m,)=/d5; J 
the values of s ... d5 as functions of the twelve relative coordinates being 
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= o,2 + P12 + 712, = 
(2 \ )2 + (- 31)2 + (y2 - y)2, 

S3 == (%2- 2)2 + - ( 2- ) (2- 2)2, 

5 %1 t 1 + bln S1 3 (+ 122)2 + (8 - 2)2 + (2 -C )2 

d, - =2 + 2 + 72, d2 = (2 1)2 + (2 - 1)2 + (2 - 2I , 

d3 =22 (1 - 32)2 + () 1- 72)2, 

d4- = 22 + 22 + 2d5, ) =(-) ( ,I - + +-)2 + ( t_ - r)2. 
These ten distances sl, &c., are not, however, all independent, but are connected by 
one equation of condition, namely, 

0o = 2 S32 + S22 2 + 32 .52 + S42 + 852 8 

+ s2 d32 + 2 d42 + 832 2 + .42 d2 + .s2 d22 

+ d2 d22 + d22 d32 d32 d2 d2 d2 d2 d2 

- 2s12 - 
2S2^?S -_- 2s32581- 28421 -- 22$2. 3 1 2i3S4 ̂  2 2 3 4 4 5 2 

- 2 s12 s3 d - 2 s22 sd4 - 2 s32 5 d5 - 2 S42 1 d - 22 52 2 d2 

- 2 8s2 4 Cd3 - $22 954 -d 283281 5-- 2 428224-- 2252432 

-2s d32 2 S2 d3d42 - 232d42 d52 _ 2 52-2 dl d2 

-2 s 132 d4-2 d42d5-2 s3d52d, -2 $4 d12 d2-2 d22 d 

-2 d3- 4 '2 s-- A 4 d-- 2 d3 d5 d5 - 2 
34 d52 d - 2 d5 12 3d2 

-- 4SS3s4d3--4 4s2ssd4-4s3s5s, d-4 s4s2d - 4s2 s3 d2 
- 4sd2d3d4-4 S2d4 d5 434dd- 4 s4 d5dld2---4 5 d d2d 

- 2s1s.2s3d4 - 2s2S3 S4d -2S3 dl- 2 - 2 28 5182 

- 2 s 83 d d2- 2824 d2 d 3 -2 d 3 2 d44 25 s2 s 5 dls 

d-21 d2d3d-2 s2dd 4 d1-28713d d2-284d4d1d3-2 -5 d24 (13 

- 2sl s,3 Sp - 2 s,s,s,s, + 2 ssssl + 2 d+d5 $ 2sds5sds2 
+ 2 81 S2 + S4 d3 4- + 2 43 s5 d4 . +2 s3 s4 S1d5 1+2 s4 s5 S2 dl -+ 2 85 S 3 d 

- 2 ss3s4 dl +2 2 84d2 +2 3 1 d3+2S4 Sl12d4+2 s52S3 d5 

+r 2 sl 2 d3d4 + 2 2 s3 d4 2 3 4 5 2 4 2 s34 2s5 dl d2 2 s5 sl d2d3 

+r 28 183 d2d3 + 2 s2s4 d3d4 + 2s3s5d4d5 r+ 2 s4s1 d5d1 + 2s5s2d1 d2 q- 2 s~ s~ 4 dI -- 2 s s4 da d- - 2 s4 s5 di d- 2 s4s~ s, d2 q- s s. 5a d3 
+- 2 1s4 dl d2 + 2 2 sd2d3 -+ 2 s3 1 d3d4 + 2 s4s2 4 d2 + 2 s5s3 d d' 

+2 .184844.+ 2 d2 d4+ .J $s834d5 + 242d4+dl d- 25s5d5d 

+2$ 84 d2 d+ d3 2 2 d3 d4 4 - 2 s3 d4 d5 + 2 S4 S2 d5 di + 2 s853 d5 d2 

+ 2slsd3d44 + 2s2ssd445-2ddl 2 5d+ 2s452d, d2 + 2.ss3d2 4 

+ 2s2 4d d2 d + 2 s2 4 dd5 -+ 2 s3 d5 4 d + 24 4 d d + 2 s5 d d3 ; 4 

+ 2 sd4 d,d3 + 2 s 2d34d5 +2s3 d4 d5 +2 4d 5 d 2d+2sd2 5d d 
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they may therefore be expressed as functions of nine independent quantities ; for ex- 

ample, of four lines and five angles, r(1) r0(1) r(2) ro(2), (1) 00(l) (2,) 0 o(2) 6 , on which they 
depend as follows: 

(1) 2 
$1 ~ () 

2 = ro(1) 
2 

+ r(2) 
2 _ 2 ro(1) rO(2) (cos 0(1) cos 0o(2) + sin 0o(1) sin 00(2) cos ), 

s3 = r(2) + r(2) 2 
_ 

2) ro(2) CO (0(2) _ 00(2)) . 

4 = r() 2 r (l)2 2 r(2) (1) (cos (1) cos 0() + sin 0(') sin 0(2) COS ), 
_r (l)2 I s --r) 9 

(2) 2 j (131.) 
d" -- ro l o(2) 2- 2 n 

d2 = r( 2 + r() 2 - 2 r() r0(1) (cos 0(2) cos ot') + sin (2) sin 0o(1) cos )), 

d. = r(2) 2 
+ r(1) 

2 2 r(2) r(1) (cos o(2) cos 0(l) + sin 0o(2) sin 0(1) cos '), 

e -r / 
4 - , 

d5 = r() 2 + ro ) -2 r() r0() cos (0(1) - (1)), 

the two line-symbols r(1) r(2) denoting, for abridgement, the same two final radii vec- 
tores which were before denoted by r(' s) r(2 3), and ro(1) r(2) representing the initial 
values of these radii; while 0(1) 0(2) do() 0(2) are angles made by these four radii, with 
the line of intersection of the two planes ro() r( ro(2) r,(2) and i is the inclination of 
those two planes to each other. We may therefore consider the characteristic function 
V, of relative motion, for any ternary system, as depending only on these latter lines 
and angles, along with the quantity H,. 

The reasoning which it has been thought useful to develope here, for any system of 
three points, attracting or repelling one another according to any functions of their 
distances, was alluded to, under a more general form, in the twelfth number of this 
essay; and shows, for example, that the characteristic function of relative motion in 
a system of four such points, depends on the shape and size of a heptagon, and there- 
fore only on the mutual distances of its seven corners, which are in number 

7x6 =) 21, but are connected by six equations of condition, leaving only fifteen 

independent. It is easy to extend these remarks to any multiple system. 

General method of improving an approximate expression for the Characteristic Function 
of motion of a System in any problem of Dynamics. 

19. The partial differential equation (F.), which the characteristic function V must 
satisfy, in every dynamical question, may receive some useful general transfor- 
mations, by the separation of this function V into any two parts 
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V + V2 .... . . . . . . . . . . . . .. .(U . 

For if we establish, for abridgement, the two following equations of definition, 

"l- ="Q \ ' U/1 ( Uv,)2 + 8VI y 4 y + (fVy2)^ 1 T 3I 1 ( ( 2+ (~2V+ 
W2 

.* . . . . . . . . (V4.) 

T-2 + . I \Z2 + r 

analogous to the relation 

T=2.' d-\~z/ ' ........ .(W-, 

which served to teansform the law of living force into the partial differential euation 

(F.); we shall have, by (U4.), 

T = T, + TI/aV , aV2 + v i aV = vi _ 2i . (X4 ) m T--T+ 2+2 ax a A -y ay - Tz -J dt. . x. 
and this expression may be further transfor-med by the help of the formula (C.), or 

by the law of varying action. For that law gives the following symbolic equation, 

~iequation (F.), y yC,(y.) 

the symbols in both members being prefixed sto any one function of the varying coor- 

have that property, and may be expressed by the definit -- 2e inte (4.) 

expression U generally, ifas we employmay, that the principles of the seventh nber, and introduce 

have that property, and may be expressed by the definite integ2ral, 

(whether they be the rectangular coordinates themselves, or any funotions of them, 
we shall have 

T=F(, ( v , + ), ... ......... (C5.) 
d my e h a y te to f g e o d,. 

and may establish by analogy the two following equations of definition, 
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T = F ( 8V, 8V1 SVI l- 1 1 6 1S^ ,* S?3. 

T- F V,2 V,2 ... 2, 
('v2 - a n2 a nv 2 ^-*^SS^'*, ... Jl 

I 

J 
the function F being always rational and integer, and homogeneous 
dimension; and being therefore such that (besides other properties) 

8T 8T 8V1, ._.- 8V?+ - 

an a T2 a n3 V_ 
aT T1 
av- +- _ 1p 

- 

^l 8+ 1 

and 
6 T2 V2 
a8 T 8Va 
81a 

aT2 a V' 
a ' 

aT2 aV2 

+ 2 - +2 
6W21 

aT 
.... a 8 

8n 

. . (D5.) 

of the second 

. . . (E5.) 

aT1 sa T2 

an3 a 1 v'2, %-V?+ b%,. 
88%n srg 

. (F5.) 

(G5.) 
aT 2 Ta V2 

' aVs 2 * * * 

a n' 

By the principles of the eighth number, we have also, 
aT I T aT 

aV 8V--' V - - ; 
641 a 2 %3n 

. (H5.) 

and since the meanings of n5,j . . . g,t give evidently the symbolical equation, 

I a f a I - d _ 
+ 128 

8 
d+ an, a n 3n - an- d ..t . . tI5.) 

we see that the equation (A5.) still holds with the present more general marks of 

position of a moving system, and gives still the expression (B5.), supposing only, as 
before, that the two parts of the whole characteristic function are chosen so as to 
vanish with the time. 

It may not at first sight appear, that this rigorous transformation (B5.), of the partial 
differential equation (F.), or of the analogous equation (T.) with coordinates not 
rectangular, is likely to assist much in discovering the form of the part V2 of the 
char acteristic function V, (the other part V1 being supposed to have been previously 
assumed;) because it involves under the sign of integration, in the term T2, the par- 
tial differential coefficients of the sought part V2. But if we observe that these un- 
known coefficients enter only by their squares and products, we shall perceive that it 
offers a general niethod of improving an approximation in any problem of dynamics. 
For if the first part V1 be an approximate value of the whole sought function V, the 
second part V2 will be small, and the term T2 will not only be also small, but will be 
in general of a higher order of smallness; we shall therefore in general improve an 

approximate value V1 of the characteristic function V, by adding to it the definite 

integral, 
2 Q 2 
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V2, =f(T-T)d . ........... (K5.) 

though this is not, like (B5.), a perfectly rigorous expression for the remaining part 
of the function. And in calculating this integral (K5,), for the improvement of an 
approximation V1, we may employ the following analogous approximations to the 

rigorous formulae (D.) and (E.), 

6V, 6V, 8Vi , V, , ai 

. 

= - ml a; .a 
= -I m2a' . . I = --- m ar ; 

alV, , 8V 8V 
b=- ; b -m b2; a b = n b; (5. 

8V 1 6V, 8,V~ 

2 2n 

cC= - ml c; a - =b m22; . . 
.-n m c; J 

and 

. M - t; ....... 5. .. M5.) 

or with any other marks of final and initial position, (instead of rectangtular coordi- 

nates,) the following approximate forms of the rigorous equations (S.), 

sVI, _ ro aV, To _ To T v- -0 ___ 
(N5.) a elea e2 6 eP2'1 aee3n ae'.n 

together with the formula (M5.); by which new formulae the manner of motion of the 

system is approximately though not rigorously expressed. 
It is easy to extend these remarks to problems of relative motion, and to show that 

in such problems we have the rigorous transformation 

V,2 =-' (T,- T + T) d t, . . . . . . . . . (05.) 

and the approximate expression 

V12 =J (T,-T,1) d t, .......... .. (P.) 

V,a being any approximate value of the function V, of relative motion, and V, being 
the correction of this value ; and T,1, T,2, being homogeneous functions of the second 

dimension, composed of the partial differential coefficients of these two parts V,, V12, 
in the same way as T, is composed of the coefficients of the whole function V,. These 

general remarks may usefully be illustrated by a particular but extensive application. 

Application of theforegoing method to the case of a Ternary or Multiple System, with 

any laws of attraction or repulsion, and with one predominant mass. 

20. The value (68.), for the relative living force 2 T, of a system, reduces itself 

successively to the following parts, 2 T/1), 2 T(2), . . . 2 T/(-l), when we suppose that 
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all the n - 1 first masses vanish, with the exception of each successively; namely, to 
the part 

2 T,() 
- m,mn ('t12 + 2 + '12) ........ (132.) 

when only ml, m., do not vanish; the part 

2T,/2 = ma2m. (,22 + 22 + m22), . . . .' (133.) 
m2 +- m, 

when all but m2, m,, vanish; and so on, as far as the part 

2 T(n-1) n (12 + + 2 ), .. . (134.) 
M +m n_X + 

2 
n-i n 

which remains, when only the two last masses are retained. The sum of these n - 1 

parts is not, in general, equal to the whole relative living force 2 T, of the system, 
with all the n masses retained; but it differs little from that whole when the first 
n - i masses are small in comparison with the last mass Mn; for the rigorous value 
of this difference is, by (68.), and by (132.) (133.) (134.), 

2 T - 2 TJ' - 2 T,(-- .. 2 T 

(2, (T(1 - T) + - 
2 

(T,') 
- T,) .+ -... (T,( - T) , . (135.) mn T, mn (r I Mn? 

+ . m, mk { ('- k)2 + ( i- k)2 + (<'i - t,)2} 

an expiression which is small of the second order when the n - 1 first masses are 
small of the first order. If, then, we denote by V ,(2), ... V,(-1'), the relative 
actions, or accumulated relative living forces, such as they would be in the n - 1 
binary systems, (m m,m), (m2 n,),... (m,n m,), without the perturbations of the 
other small masses of the entire multiple system of n points; so that 

V, f 2 T;() d t v,(2 =vt 2 T,) dt,... V, () = t2 T1 dt, (Q5.) 

the perturbations being neglected in calculating these n - 1 definite integrals; we 
shall have, as an approximate value for the whole relative action V, of the system, the 
sum V,1 of its values for these separate binary systems, 

V V(l ) + V() +.. . + . . . . (R.) 

This sum, by our theory of binary systems, may be otherwise expressed as follows : 

V -(n s( ) 
r mnf1 rn_l mn rWn 

VIl f ) m ...- .wo .r. a ml m n+ mn ms q' inn * ' n-1 +n 
' 

if we put for abridgement 
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(2) (2(2) (2) 

w()=(I&()+ >(I^'(l (1 

- = h () +1 (2) d r, .. . (T,.) 

(n-1) (n= -1) -- +) ^-1) dr(- n) J w h +) 

In this expression, 

rW =)= ? \f2(mI + mj1,f + 2g 
(1) - |, 

rn) -- 
- 1 2 (n-n f + imn)f g) + 2 h ~_ i 

r('), . . , being abridged expressions for the distances r('), . r(l), and 

(1), . nf(n-l), being abridgements for the functions (' ),.. /f( -' ), of these 

distances, of which the derivatives, according as they are negative or positive, express 
the laws of attraction or repulsion: we have also introduced 2 n - 2 auxiliary quan- 
tities h(l) g() ... h('-1) g(n-l) to be eliminated or determined by the following equa- 
tions of condition: 

o=S Jo(') ?7 h(l) dr, 

0=:n(2) +y:(2) r,(2) 

o=^''' +j'b ^^dr - ^ * * (v5.) 

(n- ,.,,n-1) r1(--l 
) 

o(,- ) ah(- ) d 

and 

J(1) 7rt) ) r 2) r(2) * *J - n 
. (W ) 

01t 

8 w0(") 8 (2) 6 K(n- 1) 

. g(T) - g(2) .* .. 
* 

. g- ) ..... (X5.) 

along with this last condition, 
ml g(l) m g(2) m g() mn- ) g(n-l) H 

ml+ +% m+ +3 + m +' '+ + m. (Y-.) 1% MO+N M,3 Mn 'n- i Mran Mn 
' ' 

and we have denoted by ( ), . . . S-, the angles which the final distances 

r(), . .. r(-l1), of the first n- 1 points from the last or nth point of the system, make 
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respectively with the initial distances corresponding, namely, r(, . .. r 1T). The 
variation of the sum V, is, by (S5.), 

ml mn a w(l) m m. W(8) m.-, mm 5 ?-1) 
Ma m + m '++ m,_+ + m . . (n) 

in which, by the equations of condition, we may treat all the auxiliary quantities 

h(l) g(')... h( ) g((-l) as constant, if H, be considered as given: so that the part 
of this variation S V,1, which depends on the variations of the final relative coordinates, 
may be put under the form, 

-I mlm (nw(l)w 
_ 

m,1+mn /82( + i .^ 
tZ, ,,,vl = m'+mi ( 1 ta + ~aU ?7 71 + ^ . (K.)1 

M2 3 ?n n (2) ^ + t(2) +, t>(2) 

+ M2mnt 7 2+ - tt2+ -8 2 t.2" (A6.) 
+ .. 

mn-1r_ / + Tn-1) W+V(n- (+1) _ 8t)(?-1) \ 
+ + ( n+-1 (;n_l.l)-1 )+ -Jn 

By the equations (T5.) (U5.), or by the theory of binary systems, we have, rigorously, 

,(pw1) ,,l , () 2 ( 
)+ (1)) + 2 (mn + Mn)f ' + 2 (); 

(/8(2)2 /8?((2)\2 /W2) 2 ((2) + (2) 

w{,) + - 
) + 8Y 2 = (m2 + Mn-) f 2 g ,(B6 a 

E ? -\~l 

(n-1^ , /(w^-^Y / w^-13 ^_) 2?_I) 

,(I-w ) + (_-~) +2< =2 (mn-l + mn) f -)+ g ; 

and the rigorous law of relative living force for the whole multiple system, is 

T,=-- U + H ......... (50.) 

in which 
U = m, (mlf) + m2f2) + ... + m,_ f-ln - 1)) + , .mi Mt'(i'k) (C6.) 

and 

I z 1I 1 a , 
V,I 2 a6 VI 2 a 

+ +T,= n (+)(li)+ Q 2 ( + 
2 

+ t)2()2 

Im, I IE, 

W av+ tefo, ? ) c + th 

We have therefore, by changing in this last expression the coefficients of the cha- 
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racteristic function V, to those of its first part Vl,I and by attending to the foregoing 
equations, 

Ta --na *,. mif( H,+m . i m 
(m_(i) e - * >w ) + s 

w a (k) \ m n + mif? l. +Mk i ak ojk ^ 

and consequently 

+m(m +2 m_ )W(i) a (k) a (i) 6a(k) azW(i) )} (k (F6) 
T,-T-= ^^ J (mn + ^ ?+min (MS + mk) I 

The general transformation of the foregoing number gives therefore, rigorously, for 
the remaining part V,2 of the characteristic function V, of relative motion of the mul- 

tiple system, the equation 
r / aW(i) s(k) W(i) 8 (k) a (i) w(k)6 

V,2 t T,2 dt + +,.mm 7 f(i k) -Md 
6 i 

d t; (G6.) 
' 0i 

? -(mn +m) mn+ -n) 
n 

and, approximately, the expression 

V2 =- ~,. m kI ml- { V + i+ ,t7 + 'c')} dt . .. (H6.) 

with which last expression we may combine the following approximate formulae be- 

longing in rigour to binary systems only, 
a - ^(I) = a 8 (i) . ( 

i)= (')ai(-)- .^=- . * *. * (K (i) 
a/j (K6.) 

and 
a t(i) 

t^ =*** ********; -,***'(L6.) g-(i) . -.................. 

We have also, rigorously, for binary systems, the following differential equations of 
motion of the second order, 

? f(i 8f() af(M) 
i= (m + mi) m-i -; ti = (mn -- mi) i ; 

=i- 
(n + m) -; . .* (Mf.) 

which enable us to transform in various ways the approximate expression (116.). Thus, 
in the case of a ternary system, with any laws of attraction or repulsion, but with one 

predominant mass m3, the disturbing part V,2 of the characteristic function V, of re- 
lative motion, may be put under the form 

V12 = mi , ... . ............ (N) 

in which the coefficient W may approximately be expressed as follows: 

wi J=}7{ fJe- m- (I l2 + '1 12 + '1 2I) dt, . (O6.) 
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or thus: 

W -(r(l2)/ ?8-f(1 
) 

sf -. ((1) 4 f() if w ot f +S2-8- 7+2 dt-+^ s^- 
1 /sto) , zt(l)( , ) 6 twO(l) , So(^ , . 8 ( ) 

m3 @2 + -s + + 2 1 + f-32 1 + 72 y ), 

or finally, 

w=? a(/' + 2 +,) -a + 2 1xa /t 8W(2) (2) (2) f(2) \ (2) t( ( 

-m3~ 2 + + 2G + 81 + 8 + 1 ..+ + + 

In general, for a multiple system, we may put 

V,2 .= mi mk ;W.. . (W .) 

and approximately, 

W(ik) =Tf (f(ik) + f i sf(i) f(i)dt 

m (k 1 
' T ki k + 8. + TMk + Pk ai + k 8Yi 

or 

W(i'k) f/kt (. (i,k) + Ji + 
k 

, 
J ) 

+ -) k t i 

( tW(k) " (k) s o(k) , (k) ? 7(k) 1) (T. 

m (/ 8k 8+ ,s yan + +i 8 
M + i ak3 8 ) 3 

Rigorous transition from the theory of Binary to that of Multiple Systems, by means of 
the disturbing part of the whole Characteristic Function; and approximate ex- 
pressionsfor the perturbations. 
21. The three equations (K6.) when the auxiliary constant g(i) is eliminated by the 

formula (L6.), are rigorously (by our theory) the three final integrals of the three 
known equations of the second order (M6.), for the relative motion of the binary 
system (mi m) ; and give, for such a system, the three varying relative coordinates 
i zi ̂ , as functions of their initial values and initial rates of increase -i Pi y. a'i . '. ry 

and of the time t. In like manner the three equations (I6.), when g(i) is eliminated 
by (L6.), are rigorously the three intermediate integrals of the same known differential 
equations of motion of the same binary system. These integrals, however, cease to 
be rigorous when we introduce the perturbations of the relative motion of this partial 
or binary system (m mn), arising from the attractions or repulsions of the other 

points mk, of the whole proposed multiple system; but they may be corrected and 
rendered rigorous by employing the remaining part V,2 of the whole characteristic 

MDCCCXXXIV. 2 R 
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function of relative motion V,, along with the principal part or approximate value V,. 
The equations (XI.) (Y'.) of the twelfth number, give rigorously 

i v- ,i 8 avi aVi V - IVa 
V L, a ) 

+- , 

_ 

--,n~ 
__ ' - L 

_,'I+ 
- - ; e (v6.) m a otJi 1n - a - ^ 8a np i M 

I 
n yi 

and therefore, by (A6.), 
6 y ~e8 1 ~Va 1 v a V/' 

- ~w(i) l 
m 

a ~wM 1a V_a Va (W6 

T ̂  
" 

% - 
- - 

^ t 
^ + ^ 8 , a =, 

8 + n, e x 
and similarly 

~a(i)c mk Bt(k) 1 av 1 VI 
a 

~~ 
i a j Z mk + m a 8k +1 mk 8i + i 8 a 

i^-^^sZt> ^mk 6L tla~(k) f 6V, f 6 V, (rx^i.k 

8,(i) m 8() 8 V 8V 
-i - 11' r+ m= 8^ 8-yi 8 y 

the sign of summation E2, referring only to the disturbing inasses mk, to the exclusion 
of mi and mnt ; and these equations (W6.) (X6.) are the rigorous formulae, correspondiilg 
to the approximate relations (16.) (K6.). In likle manner, the formula (L6.) for the time 
of motion in a binary system, which is only an approximation when the system is con- 
sidered as multple, may be rigorously corrected for perturbation by adding to it an 
analogous term deduced from the disturbing part V,2 of the whole characteristic 
ftnction; that is, by changing it to the following: 

t - (i) + * , 
*.. * ** * *. . .. (Y6.) 

which gives, for this other coefficient of w(, the corrected and rigorous expression 

ag() - 

V. being here supposed so chosen as to be rigorously the correction of V,,. If therefore 

by the theory of binary systems, or by eliminating g(O between the four equations 
(K6.) (L6), we have deduced expressions for the three varying relative coordinates 
S i g as functions of the time t, and of the six initial quantities iozP f3y ra d'i 31 i which 
may be thus denoted, 
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= -Pi (1i t- Yi, 
' 

v i , 13 0 a ) 0) 
'7 - P2 (i), (3dP rV il, (, r'D thj. 

=- P3(aiO,il, ,Yi>,,a'il Pl i, t); 

we shall know that the following relations are rigorously and identically true, 

& 

6 
{4 a( 

8 
r(? t( ) a W( 0) a ( 1 

i- ,i, , pi 2a 
- a p i * 

Y _ SQ /> at(i) W(i) S(it) - (i) 
ti = i .- - 3- 8 - i- 8i E) a 8 g (i) 

(A7.) 

(B7.) 

and consequently that these relations will still be rigorously true when we substitute 
for the four coefficients of w(i) their rigorous values (X.) and (Z6.) for the case of a 
multiple system. We may thus retain in rigour for any multiple system the final in- 
tegrals (A7.) of the motion of a binary system, if only we add to the initial com- 
ponents ? (3', r' of relative velocity, and to the time t the following perturbational 
terms: 

A p~ mMk a w? (k) ^ V 

i 
32k~ m- 3nn sPEe i S 

-Ac g ' mk + N a (1 c o 8 I av ? 

AM1, k t ia 8(k ) v 8 (kV 
2 II.- fi + i+ 8- r + , n 8 2 i 

M1k + Mn / I n in i 
and 

I 

J 

(C7.) 

(D7.) . .. . . . . . . . . . . 

In the same way, if the theory of binary systems, or the elimination of g(') between 
the four equations (16.) (L6.), has given three intermediate integrals, of the form 

= 4, (, , ., a.,) ., ,, t),) 

wle can conclude that the following equations are rigorous and identical, 

*Si = 41 ,, ^ a, o ,, fi, VP i) 

2B2 

2~~32~ 

(F.) 
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and must therefore be still true, when, in passing to a multiple system, we change 
the coefficients of w() to their rigorous values (W6.) -(Z6.). The three intermediate 
integrals (E7.) of the motion of a binary system may therefore be adapted rigorously 
to the case of a multiple system, by first adding to the time t the perturbational term 
(D7.), and afterwards adding to the resulting values of the final components of rela- 
tive velocity the terms 

Mk a w(lC) 1,a V 1 a___ I 
' - mk+mn 4c mi i m, 18 

mk aW(k) 1 i 
V12 + a 2 Vl2 

A i 
J'mk + mnn 8 k m 8i a i n 8i 

I (G7.) 

mk 8$(k) +1 Iv + VI2 
ix ', - : m n,,. %j +mi +a; m I + . 

22. To derive now, from these rigorous results, some useful approximate expres- 
sions, we shall neglect, in the peirturbations, the terms which are of the second orlder, 
with respect to the small masses of the system, and with respect to the constant 2 H, 
of relative living force, which is easily seen to be small of the same order as the 
masses: and then the perturbations of the coordinates, deduced by the method that 
has been explained, become 

A 
z= 

A 
a 

(. a 4A i+ !' i 1+^t t, 

A yi = a-i d'i ,+ 3-r-a [3'+i + ---A Y'i - t A t, l 

8i + + 7 ti i t 

in which we may employ, instead of the rigorous values (C7.) for 

following approximate values: 
t,, S ~,f(k) 1 '\7 - 

A si- ai = 
T oa + mi ai Mn 6 Ak ii a aj I 

I m, + Mni 6p. 
A pt' mk W(k) 1 _ Vl2 

A y i =-- mi + m 
V( r 

mn $Tm k mi ayi' 

, . . . . (H7.) 

A ci, A PI, A y'i, the 

. . . . . (Fe.) 

To calculate the four coefficients 

a V,2 a Vi2 a VI12 a 12 

~-i' s/3- , 7i ' H~' 

which enter into the values (17.) (D7.), we may consider V,2, by (R6.) (T6.), and by the 
theory of binary systems, as a function of the initial and final relative coordinates, and 
initial components of relative velocities, involving also expressly the time t, and the 
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n - 2 auxiliary quantities of the form g(k) ; and then we are to consider those initial 

components and auxiliary quantities and the time, as depending themselves on the 
initial and final coordinates, and on H,. But it is not difficult to prove, by the fore- 

going principles, that when t and g(k) are thus considered, their variations are, in the 

present order of approximation, 

;j. in s\-g/ - g+ 8 H, g t = -- - . t( 2) 1**** *...(K7.) 

and 

(k)w) 
_I t - a g ) ]) . . ' (L(.) 

the sign of variation , referring only to the initial and final coordinates; and also 
that 

2 (i) a 82 wg(i) a j z 2 w(i) Fi , y ag(i) i. 
. - _. _ (M7. 

"g(i), at a_aisg(i) ali P i sg(i) aPi ' yia g(i)8 'i 

along with two other analogous relations between the coefficients of the two other 
coordinates ni), () ; from which it follows that t and g(), and therefore 'cck k y k, may 
be treated as constant, in taking the variation of the disturbing part V,2, for the pur- 
pose of calculating the perturbations (H7.): and that the terms involving A t are 
destroyed by other terms. We may therefore put simply 

i qS -j i + i A, 

A&i = A * + 
- 

-dt+ a 

h apR i 6II ' m ) 

A g, = n CI A V pI + (N7.) 

6aati o A 13 +-ai 0 -A- 

Aa-= o ~^~'. A 
a t + 

employing for A c2i the following new expression, 

refers to the disturbing masses, and in which the quantity 

R(k 8 8 (k) 
i . R(, (P.) 

is considered as depending on ai Pi yi a'i 3', 7'i ak P\k 7k tk P'k 'k t, by the theory of bi- 
nary systems, while ca' i d' are considered as depending, by the same rules, on 

aC P 7 y i, i. and t. 
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It may also be easily shown, that 

84 82. 8t Bor 8. 808^ 84 

8<8C 8i i 8 pi i8fi^ 8 (Q.) 

with other analogous equations: the perturbation of the coordinate 6 may therefore 
be thus expressed, 

af 8 t a R (it k) 8 t ai , R R(i.,) k 

Ae, y^ R(k" ) af 8 R(i,k) l 

A=---- -- -$Jfr -r dt 

/'bs pgR(kt) t8R() o t, 
?0 7~~~ i0i~CF.. 

. . . . - . (R7.) 

and the perturbations of the two other coordinates may be expressed in an analogous 
manner. 

It results from the same principles, that in taking the first differentials of these 
perturbatons (R7.), the integrals may be treated as constant; and therefore that we 
may either represent the change of place of the disturbed point mi, in its relative orbit 
about m,, by altering a little the initial components of velocity without altering the 
initial position, and then employing the rules of binary systems; or calculate at once 
the perturbations of place and of velocity, by employing the same rules, and altering 
at once the initial position and initial velocity. If we adopt the former of these two 
methods, we are to employ the expressions (07.), which may be thus summed up, 

A ̂=2,,m ^--4/ R('")d, 

A 1 -=i-. dR( )dt; 
A^ V Mk ,v, 

0 0 0 0 0 0 0 * ~~~(8'.) 

and if we adopt the latter method, we are to make, 

. R(id A - ~R(i k) 1 

oA<= ,,mo k 
dt, dA= - , .m -- 

dt, 
8 Ri, k) , R (Ji, k) 

A = E,1. dt?a 7 de, A r3 =-, 2. mk fd dt, 

k. 8 t d tn A ri- -^ m X /t 8R('), k, 

(?17.) 

The latter was the method of LAGRANGE: the former is suggested more immediaely 
by the principles of the present essay. 
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General introduction of the Time, into the expression of the Characteristic Function in 

any dynamical problem. 

23. Before we conclude this sketch of our general method in dynamics, it will be 
proper to notice briefly a transformation of the characteristic function, which may be 
used in all applications. This transformation consists in putting, generally, 

V=t H + S, ................... (U7.) 
and considering the part S, namely, the definite integral 

S =t (T +U) dt,....... ... .......(V7.) 

as a function of the initial and final coordinates and of the time, of which the varia- 
tion is, by our law of varying action, 

S = - dt+ 1 .m'(x'x-- aa + y' y- b'- b + z' z - c';c). . (W7.) 
The partial differential coefficients of the first order of this auxiliary function S, are 
hence, 

eS 
S =--H;. .................. (XI.) 

8 ,as -mi y i, Bzi = mi, za..... .a (y7.) 

and 
6S_ , $ I 6S as as 

as(Z aa_ - Pm, a ~, ab = c.-- m, i , , ? = - , c .. .. ..... 

These last expressions (Z7.), are forms for the final integrals of motion of any system, 
corresponding to the result of elimination of H between the equations (D.) and (E.); 
and the expressions (Y7.) are forms for the intermediate integrals, more convenient 
in many respects than the forms already employed. 

24. The limits of the present essay do not permit us here to develope the conse- 

quences of these new expressions. We can only observe, that the auxiliary function S 
must satisfy the two following equations, in partial differentials of the first order, 
analogous to, and deduced from, the equations (F.) and (G.): 

as Ca i s\ 2 / s\2 /s\, -1- .4 + + U 
(A8s.+( 

... () 

and 
aS I f/sS\2 aS\2 a/s\2 

6+G 2m $ Eaa + b)+ q- } 3- ?- * .: (Bs.) 

and that to correct an approximate value SI of S, in the integration of these equations, 
or to find the remaining part S., if 

S=S S,, ... ...s.... (C,) 
we may employ the symbolic equation 
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d -8 I1 S a8 S a8 S a^ 
dt--=t +--- ; .........(Ds.) dt t m \x x y y az } 

which gives, rigorously, 

-dS- U 
~+X u' +ky) +kz) S .... . (E8.) 

if we establish by analogy the definition 

U,=-- + . -; {- ( ;) +() + ( . .... (Fs.) a-- st I ax + ay 
( as) 

and therefore approximately 

S2,=- (u-U)t, ..............,. (G.) 

the parts S1 S2 being chosen so as to vanish with the time. These remarks may all 
be extended easily, so as to embrace relative and polar coordinates, and other marks 
of position, and offer a new and better way of investigating the orbits and pertur- 
bations of a system, by a new and better form of the function and method of this 
Essay. 

March 29, 1834. 
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