

597.6
c79b


## THE

## BATRACHIA

## NORTH AMERICA

BY'

E. D. COPE

Originally published as
United States National Museum
Bulletin No. 34, 1889
Reprinted 1963 by
Eric Lundberg
Ashton, Maryland

PRINTED IN U.S.A. BY
Quick Lithographers, Inc., New York 12, N. Y.

## LETTER OF TRANSMITTAL.

## Philadelphia, February 18, 1887.

Dear Sir: I have the honor to present to you for publication among the Bulletins of the United States National Museum the manuscript of a general work on the Batrachia of North America. It embraces the results of a thorough study of the characters of the species, with their rariations, which has been rendered effective by the very full collection contained in the National Museum, and which this work thus illustrates. Besides this descriptive part, I have presented the results of a thorough atudy of the osteology of the class, based on the material contained in variot:s museums of the United States and Europe. I have expressed these results largely in systematic form, in the belief that descriptive zoölogy will never be complete until the structure is exhausted in furnishing definitions. Wherever practicable, reference is made to the relations between the extinct and living forms.

I hare been greatly indebted to you for the use of the manuscript prepared by yourself and Dr. Girard many years ago with such a publication as the present one in view. Of the descriptions of the fifty-three Urodela, nineteen are from your pen, and of the forty-seven Salientia, twentr-one are the work of jourself and Dr. Girard. This has materally lightened my labor, the only additional work necessary to these descriptions being such as increase of material has required. In the same way the figures of the external characters of the Urodela of which your descriptions appear in the text, were prepared under your direction, and the drawings of the crania of the same Urodela were partially prepared at the same time, and have been completed by myself, now appearing for the first time. The other drawings were made by myself, excepting some which are credited to others at the proper places.

Besides the collection of specimens in alcohol, the collection of skele. tons prepared by sourself, and now part of the National Museum, has been of the greatest service in the preparation of this work and of the various papers by myself which have preceded it.

I am, with much respect, jours, truly,
E. D. Cope.

[^0]
## CONTENTS

Page.
Letter of transmittal ..... 5
Batrachia ..... 7
General characters ..... i
General anatomy ..... i
Larral characters ..... 1:
Classification ..... 13
Affinities ..... 13
Plylogens ..... 14
Explanation of terms ..... 16
Nomenclature and histors ..... 16
Proteida ..... 21
Urodela ..... 29
Trachsstomat: ..... 203
Salientia ..... - $2: 3$
Recapitnlation ..... 451
Adlenda ..... $4: \%$
Bibliography ..... 461
Addendum to bibliographs ..... $1=$.
List of cuts ..... $4=9$
Explanation of lettering on plates ..... 443
Explanation of plate- ..... $49:$
Inilex ..... 51\%

## THE BATRACHIA OF NORTH AMERICA.

## BATRACHIA.

Bongniart, 1800. Amphibia Latreille, 1825 (not of Linnæas 1766).

## GENERAL CHARACTERS.

Vertebrata with a distinct coracoid element of the scapular arch and with an os quadratum. The limbs consist of a single proximal element, two propodials (sometimes united), a carpus and tarsus, metapodials, and phalanges. The cartilage of the basis-cranii unossified (except sometimes a basioccipital ossification), but supported by the single membrane bone, the parasphenoid; vertebral column consisting entirels or in part of intercentra. Stapes present.

Brain with the cerebellum small, and the mesencephalon smaller than the prosencephalon ("hemispheres"); the latter with the rentricles on the inner side of their principal mass.

Heart with three chambers, two auricles, and a rentricle. Three or four aorta bows on each side. Lungs always present.
Gall-bladder and urinary bladder present; oriducts entirely distinct, and opening by fontanelles into the abdominal carity at a distance from the ovaries. Reproductive, renal, and digestive products discharged into a cloaca. Male without distinct intromittent organ.

In development the embryonic life is prolonged during a period of freedom subsequent to leaving the egg, constituting a larval stage. During this period the young is branchiferous and generally aquatic in its habits. No amnion nor allantois. Segmentation of the yolk complete or holoblastic.

> GENERAL ANATOMY.

The anditory organs resemble those of other terrestrial vertebrata, and differ from those of tishes, in the presence of a fenestra ovalis of the internal ear, which is closed by a stapes. The other ear bones or their equivalents are fused at an early stage of growth with the sus. pensorial cartilage of the lower jaw (Parker). There are three semicircular canals, but the helix is represented only by a diverticulum of the sacculus.
The hyoid apparatus is less complicated than that of the J'isces, and more so than that of the rertebrate classes above them in the series.

There are always a distinct so-called ceratohyal; one or more axial ele. ments or basibranchials, and lateral pieces, or ceratobranchials. There is no glossohyal. Further than this nothing can be said of the class, as the orders differ among themselves in the details.

In the carpus and tarsus there is alwars an os centrale, except in the tarsus of the Salientia. In the extinct Carboniferous genera Eryops ${ }^{1}$ and Archegosaurus, ${ }^{2}$ there are two centralia iu each foot (pes of Eryops unknown). The intermedium is either present or fused with one of the adjacent bones of the first row. There is a series of carpalia and of tarsalia, giving attachment to the metapodials, whose number and condition differ in the different families. The number of digits is generally not more than four in front and five behind. There is rery often a rudimental thumb on the anterior foot in the Salientia, and in the extinct rhachitomous genus Eryops there are five well-developed digits on the manus. (Plate 45 , fig. 1.) In the Salientia there is often a rudimental sixth toe internal to the hallux. (Plate 67-8.)

The shoulder-girdle is not counected with the skull in the Batrachia, excepting in the genus Hemisus. There is a large supra-scapula. The osseous coracoid is of various proportions, and it has various cartilaginous extensions, as epicoracoid and procoracoid. These are ossified in some of the extinct forms. There is much rariety in the pieces which occupy the middle line of the scapular arch. The orders may be arranged as follows on this basis:

An episternum and no sternum: Ganocephala, Rhachitomi, Embolomeri, Stegocephali. An nmosternum and sternum ; no episternum, Salientia. No median sternal elements: Trackystomata, Proteida, Crodela (except Trematodera).
The pelvis is always furnished with an ilinm, but the pubis is wanting or represented by rudiments, except in the extinct forms, where it is present. The ischium is primitively an undivided cartilaginous plate. No obturator foramen. There are some characters which are common $t_{0}$ all or nearly all Batrachia, but which maz be fnund on further knowledge of the extinct forms not to have been alwass present. Dis of these is the continuity or fixed articulation of the quadrate cartilage or bone with the skull. The proximal part of this bone is intercalated between the squamosal and exoccipital, and the ptersgoid when present, so as to present only its distal extremity free. In the Salientia it is an insignificant element, being generally cartilaginous.

The vomeropalatine bones are always double, except where wanting, which is only the case in the Trachystomata. They are nearly always dentigerous.

The orbitosphenoid bone is always well developed.
In the existing orders the atlas is undivided. I have put forth the hypothesis ${ }^{3}$ that the rertebral bodies in the existing and most of the

[^1]extinct orders of Batrachia are not the centra of the higher vertebrata, but are intercentra, which are occasionally seen in the higher vertebrates in a rudimental condition. This is especially the case in the remarkable saurian of New Zealand, the Sphenodon, and in the extinct order of the Theromora. Oren has shown that the intercentra exist also in the mole. I have given the following reasons for this view :

1. The intercentra are very large in the Ganocephala and Rhachitomi.
2. They support the neural arch in the Embolomeri.
3. They are not rudimental in existing Batrachia.
4. The cherron bones, which originate from the intercentra of Reptilia, are continua with the caudal vertebral bodies in Batrachia.
5. The ribs, which originate from the intercentral cartilages in Reptilia, originate from the rertebral bodies of Batrachia.

The paleontology of the Batrachia and Reptilia shows that the order Embolomeri is the only one with complete rertebral bodies, and so probably gave origin to the reptiles; while the intercentra in some Batrachians become so connected with the neural arches as to lead to the belief that they become the rertebral bodies of later forms of the class which have descended from them.

In all the orders, genera with well-developed anterior limbs display well-dereloped distal coudyles of the humerns. They are better dereloped than in any order of reptiles, with the exception of the Theromora.

With regard to the cranial nerves, it is to be remarked that the lateralis branch of the ragus is present, as in fishes; also that the glossoplaryugeal is united with the ragus. In the Urodela the nervus facialis is distinct from the trigeminus (Fig. 1), but in the Salientia they are united. (Plate 43.)


Fig. 1. Diagranı of chondrocranium and cranial nerres of Salamandra, side riew (from Wiedersheim).
In the muscular system the Batrachia differ from the fishes in the modifications which partially take the place of the myocommata, and the development of the muscles of the limbs and their extension on the dorsal and rentral surfaces of the body. Myocommata persist in
the caudal regions of all the tailed orders, and are transient in the tails of the larve of the Salientia. Remains of the same are seen in the segmented dorsal muscles of the Uro-


Fig. 2. Diagram of chondrocraninm and cranial nerres of Salamandra, from below (from Wie. dersheim). dela, and the segmented median ventral, or pubosternal muscles of the tailed and tailless orders. Between these median series of muscles extend two layers, which support the sides of the body carity, the external and internal oblique. In the Urodela the external oblique is divided up at the superior border into separate heads, each of which arises from the extremity of a rib. Betreen the ribs is a band of narrow longitudinal mus-cles-theintercostals-which are par. allel to the dorsal muscles. Owing to the modification of the skeleton the dorsal muscles in the Salientia are mucb modified, and form che $\%$ rons with the apex posterior. Tie limb musoles are much like those of higher vertebrata.

The lieart of the Batrachia pos. sesses three chambers, two auricles and one ventricle, and there is a sinus venosus at the entrance of the vena cara. The bulbus arterijsus is not muscular, and has a longitudinal ralre or partial septum, or is completely divided into two in the Proteida. In the Urodela there are four aortic branches on each side, which are in the larral state branchial arteries. As many reins return from the branchiæ and unite above the heart to form the aorta. In derelopment to maturity the arteries become connected with the reins by longitudinal ressels, the ductus botalli, which complete the "aorta bors" where the branchial syster:1 disappears. The first and last of these arches become subordinate, and the intermediate on each side function as "aorta roots," whose union forms the aorta. The carotid artery is a continuation of the ductus botalli connecting the first and second bows, and the last bow is modified into the pulmonary rein. In the Proteida and Trachystomata three aorta borrs remain on each side, and the branchial arteries and veins persist. In the Salientia three aorta bors remain, but the second on each side only form the aorta, the first and last forming the carotid artery and pulmonary vein.

The renous system consists primitively, as in other rertebrata, of two anterior and two posterior cardinal reins, which unite on each side into a single transrerse ressel, the Inctus curieri, which empties into the sinus renosus. Subsequently two other pairs of longitudinal reins
arise parallel to the cardinal veins, and empty into the anterior cardinals on each side, in front of the Ductus cuvieri. These are the rertebral veins. The portion of the posterior cardinals between the Ductus cuvieri and the kidney disappears, so that what remains of the pos. terior cardinals are only renales advehentes. The anterior cardinals become the jugulars. The principal posterior vein is the vena cava posterior, which is median, and consists originally of the renales revehentes from the kidney. It receives the hepatic rein before emptying into the sin us venosus. The iliac veins pass directly into the kidney after receiving the $v$.caudalis.

The lymph carities of the body in the Batrachia are extensive. This is especially the case with the Salientia, where the skin is loosely attached, and incloses large spaces immediately below it. The lymphatic vessels from the digestive system open into these cavities. The ressels also empty into the veins, and present at such points enlargements which contract rhythmically, and are known as "lymph-hearts." They are situated in the sacral region, one on each side, in the tailed forms, while an additional pair is present in the scapular region in the Salientia.

The reproductive and urinary systems are closely connected in the Batrachia, and wust be treated of together. Both discharge their contents into the alimentary canal, forming a cloaca. Their structure is best understood by reference to that of the sharks. In these fishes a primitive longitudinal vessel on each side of the dorsum of the abdominal cavity sends branches to the outer side, which there form convoluted lobules, the primitive kidney. In the Batrachia this longitudinal or archinephric duct divides longitudinally, and the inner portion remains as the Miillerian duct. This becomes the oviduct of the female. The external half with its series of brauches becomes the urogenital duct. The testes and ovaries are developed independently external to the kidneys, and the former send their efferent ducts directly into the latter. The ovaries discharge the aggs into the abdominal cavity, whence they pass into the oviducts by the free open extremities of the latter, and are thence ejected by the anus, after receiving a covering of albumen. The male organ homologous with the Mïllerian duct is of reduced size in all the Salientia except the Ranæ and allies, where it is aborted. It has been shown, however, to persist in our Rana virens. In the Urodela the vasa deferentia pass through the kidney and euter the genitoiirinary duct, and so into the cloaca; but in the Salientia the efferent ducts of the kiduey collect themselves into a separate tube or ureter, which, however, joins the single vas deferens before entering the cloaca. But the Discoglossidæ agree with the Urodela in this, as in several other respects. A urinary bladder is always present in the Batrachia. The testes are single on each side in the Salientia; there are several in the Urodela, especially in the Cæciliidæ. The penis is wantiug. Impreguation is accomplished bs copulation in the Urodela,
but in the Salientia the spermatozoöids are discharged on the ova after leaving the body of the female. (Plates $18,19,32,42$.)

The alimentary canal in the Batrachia is simple, since it is not highly specialized into distinct parts. The liver is large and is divided into a rarying number of lobes, which are especially numerous, and arranged like a roll of coins in the Cæciliidæ. The gall-bladder and pancreas are present. The teeth are not implanted in alveolæ, and are in the recent forms more or less pleurodont.

## LARVAL CHARACTERS.

In the course of the growth of a batrachian there is always a period which follows the freedom of the embryo, in which there are structures for securing respiration in the water. These gills differ from those of fishes, in that the fringes in which the blood is aerated stand on fleshy processes of the branchial arches, and not directly on the arches themselves. Similar structures are found in the preliminary stages of some fishes. During this stage the tail is more or less modified as a swimming organ, and the condition of the skull differs materially in character from that of the adult. In the tailless or anurous Batrachia the limbs do not appear until this period has nearly closed, while in the tailed or urodele order the limbs appear almost immediately atter the gills. Besides these transitional characters, the Urodela possess in their early larval condition a long process in front of the first gill on each side, which is termed a balancer. This remains in a few abuormal cases in salamanders, but is permanent in the suborder of the cæcilians or worm-like Batrachia. A similar process exists in the larra of the frogs of the geuus Xenopus, which resembles superficially a siluroid fish; but in the Salientia generally the balancers are wanting.

The gills in the Salientia (frogs, toads, etc.) are soon concealed by a growth of the skin, which leaves a small orifice for the discharge of water from the pharyngeal cavity. In one group of these animals this opening is on the middle line below, but in the great majority it is single and is situated on the left side.

The changes undergone by the skull in the metamorphosis are much more important in the Salientia than in any other order, and are treated of under the head of that order.

The eggs of Batrachia are always deposited in the water or in damp places. In a few instances the soung do not seek the water, and in one species (Salamandra atra) they are born free from the egg.

Under the head of the Salientia will be found a table of the various modes in which the eggs and larræ of those animals are deposited and cared for prior to maturity.

Under the respective orders the descriptions of their characteristic peculiarities of development will be found. (Plates $30,44,78$.)

There are several orders of Batrachia, and they display remarkable diversities of skeletal structure. For the better understanding of these I give the following table of their principal definitions:
I. Basioccipital, supraoccipital, intercalars, ${ }^{2}$ aud supratemporal bones present. Propodial bones distinct.
a. One cotyloid occipital condyle.

Vertebral centra repliced by one basal and two lateral elements with one neural arch.

Ganocephala.
na. Two occipital condyles.
Vortebral bodies, including atlas, segmented, oue set of segments


Vertebral bociies, including atlas, not segmented; one to each
arch............................................................................... Stegocephali.
II. Basioccipital, suprayccipital, and supratemporal bones wanting. Frontal and propodial hones distinct.
a. An os intercalare.

A palatine arch and separate caudal vertebræ ............................. Proteida.
aa. No os intercalare.
A maxillary arch and romers; palatine arch present, imperfect; nasals, premaxillaries and caudal vertebre distinct .................. Urodela.
No msxillary or palatine arches; no vomers; nasals aud premaxillary, also caudal vertebre, distinct Trach ystomata. III. Basioccipital, surraoccipital, intercalare, and supratemporal bones wantingFrontals and parietals connate; propodial boues and lumbosacral vertebræ each confluent.

Palatines distinct from vomers; a palatine arch ; astragalus and calcaneum elongate, forming a distinct segment of the limb..... Salientia.
The animals of the Division I are all extinct. Division II includes the Salamanders and their allies, with the worm-like Cœcilians (Apoda), while the third division embraces the frogs, toads, etc.

## AFFINITIES.

The Batrachia are, then, intermediate in characters, and therefore in position, between the fish-like forms and the reptiles. Among the former the Dipnoi approach them most nearly, while the extinct reptiles of the oldest order, the Theromora, ${ }^{3}$ are the nearest allies on the reptilian side. It belongs to the series of vertebrates which have a distinct coracoid bone in the shoulder-girdle, and a distinct quadrate bone in the skull. The greater part of the basicranial axis is cartilaginous, but it is protected below by the membrane bone, the parasphenoid. In all these respects, and in the absence of an amnion of the embryo, the Batrachia agree with the fishes. They differ from this class in the presence of legs and absence of fins, and in the absence of rarious bones which belong to the branchial and opercular systems, and to the suspensor of the lower jaw.

[^2]The characters displayed by the three divisions in question indicate their relationship to be as follows: The orders of Division I present in their cranial structure a greater resemblance to the limb-finned or crossopterygian fishes than do either of the others. The third disision is the most divergent from the type, and is in various respects the most specialized. This specialization consists not only in a departure from the primitive Batrachia, but also from all other forms of vertebrata. Its specialization is seen in the loss and coössification of various parts of the skeleton. The Urodela display characters intermediate between the extremes of the class. Near them the Trachystomata (Sirenidæ) are still more inferior by loss of parts of the skull and of the pelvic arch. The Proteida have lost the maxillary arch of the Stegocephali, but retain their os intercalars.

## PHYLOGENY.

The class Batrachia holds an important position in the history of the vertebrata, as the first member of that kingdom which occupied the land on the advent of the conditions suitable for air-breathing types. It thus stands in ancestral relation to the lines of the Sauropsida and Mammalia, and as the immediate descendants of the fishes. As regards the extinct orders, the primitive type is evidently the Ganocephala, whose vertebral column displays an arrest of characters which are transitional in the higher vertebrata. From this group the orders Rhachitomi, Embolomeri, and Stegocephali have been evidently derived. We may then present the following genealogical table of the class Batrachia :


As regards the comnectiou of the class, as a whole, with other classes of vertebrata, it is rery probable that the extinct orders, as the Ganocephala, were derived from some extinct form of Dipnoan fishes, more or less related to the group of which the genus Ceratodus is a representative. In this type we have a persistent chorda dorsalis, fins which present the type from which ambilatory limbs were derived, a pelvis, and a cranium nearer that of the batrachians than most other fishes present. The Crossopterygia are a little on one side of the parental stem, since they have no pelvis, and their limbs begin to show a beginning of that reduction and specialization which is carried to such an extent in the Actinopterygia, or typical fishes.
From the Ganocephala we derive the remaining orders, all of which possess two occipital condyles. The intercentra, which are small in the prepelvic rertebral axis of the Ganocephala, assume a large development in the Embolomeri, which thus have two bodies to each neural arch thronghout the series. It is probable that the reptiles took their origin from this group by the gradual reduction of the intercentra, and the continued dominance of the centra. It is possible also that the Embolomeri possess but one occipital condyle, which, uniting with an intercentrum, formed the single occipital condyle of the Reptilia.

In the direction of the Rbachitomi there is reason to beliere that the intarcentra became predomiuant in the vertebral axis, and that the centra soon disappeared. This order gave origin to the Stegocephala, in which the centra are wanting; and this order was the source of the Proteida on one hand, and the Salieutia on the other. The former, of all the existing orders is the only one which retains the os intercalare of the Palæozoic types. From the Proteida we get the Urodela, and from the latter the Trachystomata, as will be more especially shown under that order.

The Ganocephala (Trimerorhachis) and the Rhachitomi (Zatrachys) had a well developed columella auris, which extended from the fenestra ovale and turned upwards and backwards to the notch of the posterior outline of the skull between the os intercalare and the base of the quadrate. It is highly probable that this notch was occupied by a tympanic drum. ${ }^{1}$ In the Proteida, Urodela, and Trachystomata, there is no columella. In the Salientia there is a chain consisting of one bone and tro cartilages extending between the stapes and the membranum tym. pani. Thus the Urodela in this respect hare undergone degeneration, while the Salientia have undergone specialization. With regard to other parts of the skeleton all the later and recent orders must be regarded as having undergone degeneration, in riew of the extensive loss of parts. (See Origin of the Fittest, by E. D. Cope, On the Erolution of the Vertebrata, progressive and retrogressive.)

[^3]The Canthus rostralis is the ridge more or less defined which marks the line of separation anterior to the eyes, between the top and side of the head. The outer nares or external nostrils are situated in or a little below this angular line, and between the eje and tip of suout. The Canthus orbitalis is the corner of the eye, either anterior or posterior. By ramus of jaw is meant either of the two branches, one on each side. The rictus is the point of junction between the upper and lower jarrs. The commissure is the line along which the two jaws meet when closed. The internal nares or choance are in the roof of the mouth a little auterior to the ejes. The Eustachian apertures, or ostia pharyngea, are sitnated very far back in the roof of the mouth near the end of the jaw, one on each side. The angle of the jaw is just behind the point of articulation of the two jaws. The concealed surfaces of the body are those which are internal aud pressed against each other when the limbs are flexed. The teeth in the roof of the mouth are vomerine or vomeropalatine when they are within or near the inner nares, and on the bone of same name; and they are parasphenoid, or loosely, palatine, when considerably behind the level of the inner nares and placed on the parasphenoid bone.
The enumeration of the fingersand toes commences, with the inner ones, the fourth finger and the fifth toe being the external. The term finger always belongs to the anterior extremities, and toe to the posterior. The phalanges are numbered from the metapodial bone. By articula. tion is understood the hinge between two adjacent bones, which themselves are called segments. The tympanum or membranum tympani is the circular disk seen on each side the head, posteriorly and just back of the eye, in the Salientia.

## NOMENCLATURE AND HISTORY.

By Linnceis, in the tenth edition of the Systema Naturæ (1760), in the twelfth (1766), and in the thirteenth (1788) reptiles and batrachians are included in a class "Amphibia." The two classes were not recognized even as subordinate divisions of the Amphibia. These divisions were the Reptiles, Serpentes, and Nantes. The last named included only fishes. Four genera were included in the reptiles, one of which was Raua, which embraced all the Batrachia Salientia. The Urodela were enumerated as species of the genns Lacerta. The genus Cœcilia was placed among the Serpentes.

Laurenti, in the Tentamen Systema Reptilium, 1768, first used the class name Reptilia for a combination of the two classes, Reptilia and Batrachia, as at present recognized. He proposed three orders of Reptilia, the Salientia (= Batrachia Anura), the Gradientia (=lizards and Batrachia. Urodela), and the Serpentes, in which he included the Cocilias.

Lacépè̀e, 1788-90, did not distinguish Reptiles from Batrachia, and
did not give distanctive names for the groups which he proposed, which were very artiticial.

Bronfuiart published his system in 1800-03, in the Mémoires cles Savans Etrangers de l'lustitnt. He did not distinguish the Batrachia as a class from the lientilia, but he distinguished it first as a natural sroup and named it. He divided the Reptilia into the four orders, CheIonia, Sauria, Ophidia, and Batrachia. He placed the salaman'er's in the Batrachia for the first time.

Latreille published a system of Reptilia in the Nourean Dictionaire (1' IListoire Naturelle in 1S04, Vol. xxiv, page 61. He adopts the sys. tem of Brongniart. The Batrachia are divided into two sections: I B. courcurs, and II B. pisciformes. The second section inciuded the genera l'rotens and Siren; section I, all other Batrachia known to the athor. In 1825 Latreille published another classification in the brochure "Les Familles Naturelles du Régue Animal." He divitles the vertebrata into warm-blooded (IIaemathermes) and cold-blooded (Haematrymes). The latter include P'nlmonées amb Solibranches. 'The latter inclutes the tishes. The former division has two subdivisions, lepp. tiles amb Amphibia or Batrachia. We here find the systen of De Blainville adopted in the recognition of the Batrachia as distinct from the Reptilia, and the name Amphibia is used for it for the first time.

Daudin in 180?-'03 published his Traité Générale. He adopted the classification of Bronguiart.

Inméril, in 1804, in the Traité élémentaire d'histoire naturelle, also aloped the system of Brongniat. He paced tha Cuciliidse among the Ophidia. In his Zö̈logie Analytique, published in 1807, he followed He same arangement, and divided the Batrachia into Amura and UroNela. The latter included four genera: Triton, Salamandra, Proteus, and Siren.

Lamarek, in 1809, published a Distribution Genérale des Animaux, as the chapter vin of the Philosophie Zoöloginue. He din not distinguish the Batrachia from the Reptilia as a class, bat recognized the fom orders of Reptilia alrealy propused by Bronguiart. The Batrachia atre divided into two divisions: Urorlela and Anmra. Guecilia is placed in the serpents.

Cuvicr, in the Leçons d'Anatomio Comparée, in 1500 , and in the liegne Animal, in 1S17, alopted the system of Brongniart. In the secomal edition of the latter, published in 1839 , he divides the Batrachia into five genera, viz: Cocilia, Rama, Salamantra, Proteus, amd Siren.

Oppel published his "Ordumgen Familien u. Gattungen der Rep" (ilien" in 1811 (Munich). He alopts the class name Reptilia, and divides it into three orlurs : Testmlinata, Synamata (shakes and lizards), and Nuda or Batratha. The Batrablian are dividul into three families : the Apoda (Cereilides), Ecambata or Aumra, and the Urotela.

Je Blainville publisherl in 1 slif in the Nomvean labletin des Seiences de la Sociétr Philomathiute of l'aris a Protrome d'une nouv. distribu-
tion systematique du Règne Animal. He first proposed to regard the Batrachia as a distinct class of vertebrata, the iv of his series, under the name "Nudipelliferes, les Amplybiens." Ou a subsequent page he divides the class Reptilia into two subclasses, "les Reptiles" and les Ichthyoïdes. The latter are subdivided into four divisions, viz: Batraciens (Grenouilles); Psendosauriens (Salamandres) ; Amphibiens (les Protées et les Sirènes); Pseudophidiens (Coecilies). We here fiud the Batrachia for the first time set off from the Reptilia as a division of equal rank with it.

Merrem, Tentamen Systemæ Amphibiarum, 1820, reverts to the Linnxan name Amphibia for the combined reptiles and batrachians, but recognizes the two as subordinate divisions. He calls these Pholidota and Batrachia. The Batrachia he divided into the Apoda (Caecilia), Salientia, and Gradientia. The Gradientia or Salamandres are divided into Mutabilia (Salamandra, ete.) and Amphipmeusta, or the forms with permanent branchise.

Gray published in 1825, in the Aunals of Plilosophy of Philadelphia, a synopsis of the genera of Reptilia and Batrachia of North America. He separates the two elasses distinctly as such under the names Reptilia and Amphibia. The former are divided into the orders Emydosauria (crocodiles and ex inet marine reptiles), Sauria, Saurophitlia, Ophidia, and Chelonia. The Amplibia were divided into Mutabilia and Amphipneusta. The latter division included the branchiate forms, with the Cryptobranchidæ a d the Cocilidx. The Mutabilia embraced all other Batrachia.

Harlan also, in 1825, $]$ ublished Genera aud Synopsis of Species of Repr. tiles of Ameriea in the Journal of the Acalemy of Natural Sciences of Philadelphia. He adc pts the system of Brongniart, and slivides the Batrachia into three dirsions, lependent on the characters of the external respiratory organs. In the first there is an external fissure only; in the second, external branchix and fissures; and in the third, neither the one nor the other.

Fitzinger, Nene Classitication der Reptilien (1826), adopts the names of Lenckart for the primary divisions of the Reptilia, the Monopmoa corresponeling to the Reptilia and the Dipmoa to the Batrachia. He places Cuecilia among the Monopmoar. The Dipmoare ardided into Mntabilia and Immutabilia. The latter includes the families Cryptobranchoida and Phanerobranchoida. The Mutabilia include all other Batraciaia.

Duméril and Bibron, in the "Erpetologie Générale," pmblished between 1834 and 1841, alopt the system of Brongniart. The fourth order of reptiles, the Batrachia, is divided into three suborders, viz: the Peromela (Cœeiliidse), Amma, and Urodela. The Urodela are divided into Atretodera (Salamandres) and Trematodera, which embraces the Cryptobranchida and forms with permanent branchia.
Johannes Miiller, in Stannius' Handbuch der Zoötomie (1Să6), uses the Limman name Amphibia for the combined Reptilia and Batra-
chia. The latter two divisions he regards as subclasses, nuder the names Monopnoa and Diphoa. The Dipnoa (Batrachia) are divided into Urodela and Batrachia ( $=$ Amma). The Urolelain tmrnare divided i to Peremibranchiata, Derotremata (Trematodera pt. of Duméril and Bibron), and Myctodera (salamanders in general).

Hackel published in 1866 his Generelle Morphologie. He then distinguished the Batrachia not only as a elass from the Reptilia, but pated it in a separate group of the rertebrata, which he called the Anamnia, from the absence of the ammon, along with the fishes. He uses indiscriminately the nanes Batrachia and Amphibia for the class. Ite divides it into two primary divisions, the Plaractamphibia and Lissamphibia. The former are the extinct forms, together with the C.ecilidec. The Lissamphibia are divided into three divisions: Suzobanchia (P'eremibranchs), Sozura (Urodela), amı Anma.

Cope, in a "Synopsis of the Extinct Batrachia of North Ameriea," 186s (Procedings of the Aculemy Philadelphia), recognized the Batrachia as a class distinct from the Reptilin, and divided it into six orders, ats follows: Trachystomata (Sirens), Prot:ida, Urolela, Gymmophitia (the C'eciliidae), Stegocephali (extinct forms), and Anara. In a paper on the Batrachia of the Permian Period of North America, 1851 (American Nituralist), two orders were added, the Rhachitomi and Emboloneri, buth extinct. In the "Origin of the Fittest" (Philadelphia, 1886) still another orler is added to the Batrachia, the Ganocephala of Owen and the Gymmophiona (Coeciliidae) are united with the Urodela, making eight onders in all. This system is aloptell in the present work. In 1865, in a paper on the Primary Divisions of the Batrachia Salientia (Natural llistory Review) the Anura were dividel into $\Lambda$ glossa, Bufoniformia, Arcifera, and Raniformia. These divisions are here adoptel, excepting the Bufoniformia.

IIuxley, Anatomy of Veitebrated Animals, 1871, diviles the rertebritta into Ichthyopsida, Sauropsida, and Mammalia. The Ichthyopsila correspond to the Anamnia of Haeckel, plus the Leptocardii and Mursipobranchii. This division is divided into two classes, the Pisces and Amphibia (Batrachia). The Reptilia and Aves form the Sauropsital. The Amphibia embrace, according to Huxley, four orders, viz: Urodela. Labyrinthodonta, Gymnophiona, and Batrachia or Anura. The Urolela are divided into Proteida and Salamandrida, which correspond to the Trematodera and Atretodera of Daméril and Bibron. Professor Huxley gave the first clear osteological definition of the class.

Gegenbaur, in the Elements of Comparative Anatomy, 18 IIV, follors the $^{\text {Ge }}$ system of Hacekel so far as regards the higher groups of vertebrata. The Batrachia are called Amphibia, and have the three divisions propused by Merrem, but under the names Urodela, Anma, and Gymno. phiona.

In the precelling review no attemp, has been made to present the views of all natmalists who have written on the ventebrata, but I have
enteavored to include all the works mothel the Batrachia and their internal and external relations lave been expressly considereil and new views intronnced. The system which appears to the writer to express most fully the natural relations of the contents of the class is presented in the following pages. But I devote a few words to nomenclature.

The earliest name for a given conception derived from individuals is adoptet. Species must be defined or fignred; genera and all higher groups must be definel, since figures can not express the generalizations such names are intended to represent. As the conception of the extent of a genus varies with discovery, it is impossible to require that the definition accompanying its earliest name shall be necessarily exact, so that a bona fide definition is all that is obligators, according to the rules. In the case of the higher gromps the case is lifferent. It has been customary to require that the defintion aceompanying the name adonted shall correspond with the thing alopter!. If the definition does not so correspond, the mame has generally remainel musal. Such names are the Mutabilia and Immutabilia, Caducibranchiata and I'erennibranchiata, which have been applied to systematic ideas mot in correspondence with the true relationships of the members of the batrachia. They have fallen accordingly intodisuse. Such are also the so called orlers Emydosanria and Samrophidia. The division then receives the name which was first applied to it, and not to something more or less corresponding to it on ommission or addition of contents. The rank assigned to such division is immaterial; the itea of the division itself is everything.

Applying these principles to the vertebrates which form the subject of this book, I find the following to be the nimes to be adopten. I find that Brongniart first perceivel the correct limitation of the Batrachia, and that in 1800 he gave it that name. In this he was followed by Latreille in 180t; by Dandin, in 1802-3; by Dmméril, in 1804; by Lamarek, in 1809; by Cuvier, in IS00 and in 1817 ; by Merrem, in 1820; by Harlan, in 1825; by Duméril and Bibron, in 1841 ; and by varions modern writers since that late. The name Amphibia I find first used by De Blanville in 1816 as interchangeable with the name Nudipelliferi, and also as a subdivision of itself equal to the Peremibranchiates of some later anthors. The name is first definitely adopted by Latreille in 1825, a quarter of a century after the introduction of the name Batrachia. IIe is followed after a long interval by Hacekel in 1866, who, howerer, uses the name Amphibia as interchangeable with Batrachia. It is exclusively used by Huxley and by Gegenbanr, and by a number of modern naturalists, chiefly anatomists. From the above record it is quite evident that the proper name for this class is Batrachia.

The true classification of the contents of the class was of much later discorery. The tailless division was recognized, it is true, ly the earlier anthors; and, first of all, in 1768 by Lamenti, who called it the Salientia aud gave it adefinition. This namemust be therefore retained. The divis-
ion of true Salamanders was not properly distinguished before the publication of the system of De Blainville, in 1816, who called them the I'seudosatia. He, howerer, omitted from them the Ceciliide. In this gmission he was followed by all subsequent authors, except Cope, who called the entire order, including the Coeciliidae, the Urolela, adopting a name already proposed by Duméril, in 1804, for a division of wider scope. On this aceount the name Urodela is adopted in the present work. The name Gradientia was first usell to include only Batrachia, without lizards, by Merrem, in 1820. The two branchiate orders, Proteida and Trachystomata, were included in the Urodela or Gradientia by all authors except the following: De Blainville combined them in one order, the Amphibia; Gras, Harlan, and Fitzinger followel, but com
bined them with unrelated forms; Duméril and Bibron kept them together with the Cryptobranchide in a division, Trematoleres, follow. ing Fitzinger (1826); Haeckel follows De Blainville, but renames the Pseudosauria of that author Sozobranchia, and inchudes in his Amphibia the non-related Axolotls. In 1866* Cope first distinguished the Traclystomata and Proteida as orders, and purged them of the Axolotls, which he placed in the Urodela.

## PROTEIDA.

Os intercalare present ; no supra or basioceipitals; O. maxillare and prefrontalia wanting; vomero-palatinum and pterygoidemn present, continuous; orbitosphenoil elongate, not forming part of palate; ceratohyals commate.
This order agrees generally with the Urodela, but presents one most important feature of difference, in the presence of the Os intercalare. It is this point that gives the Proteida its position between the Stegocephali and the Urodela, and which indicates the line of connection between the extinct forms of the Carboniferous period and the moderil types.

The hyoid apparatus liffers from that of adult Urodela, and resembles their larve in having three epibranchials, instead of one only. The second basibranchial is also comnected with the first, which is not the case with the Urolela. The centrale is present in both earpus and tarsus.
No extinct genera are certainly known to belong to this order, but there is one that resembles it nearly, and may belong here. This is the Cocytinus $\dagger$ (Cope), which has been found in the coal measures of eastern Ohio. If it be not a larval Stegocephal, it belongs to this order. It wonld not enter the same family as the recent forms, as it has a small maxillary bone. Another extinct type from the Wealden of Belgium has been suspected to belong to the Proteida, but the craminu is not

[^4]sufficiently well presere to allow of a positive determination. This is the Hyleohatruchus croyii of Dollo.* It differs from any of the known genera of the orler in having five digits on all the feet.

There is but one existing family of Proteida, which is defined as follows:

## PROTEİD Æ.

No median sternal clements. Vertebre amphicelons. Carpus and tarsus cartilaginous. Inner wall of restibule osseous. Nasalia wanting. Teeth on all the nsual bones except the maxillaries, which are wanting. The second ceratobranchial is present, as in Urodela generally. Stapes directly connected with the suspensorimm.

Of this family but two genera are known. They are the following:
External branchise; digits 4-4; eyes exposed ........................................ Necturus. External branchie ; digits, 3-2; ejes hidden....................................... Proters.

Of these Necturus is North Ameriean ant: Protens is Europan. The latter is represented by three or foar species, which live in subterranean waters in the sonthern parts of Anstria.

These genera differ somewhat in the hyoid apparatus. The hypobyal is present in Necturus, but is, accorling to Wiedersheim, wanting in Proteus. In the former the second ceratobranchial is much smaller than in the latter, and is not connectel with the busibranchials.
The connections between the inferior arches ant the skill are interesting. In Necturus the columella is os.eoous aml is bent abruptly forwards, and articulates with a short posterior proees of the squamosal bone. The ceratohyal is free from the skull, but is connectel with it, loy the two ligaments, the hyosuspensorial to the middle of the quadrate, and the mandibulohyoid, to the angle of the mandible. (I'late 48, fig. 1.) In Protens (Fig. 2) the arrangement is similar, except that the processes of the stapes and squamosal do not meet, bat are conneeted by a strong ligament.
The intermedium of the earpos and of the tarsus is confluent with the adjacent esternal element, the uluare and the fibulare. There are three carpalia and three tarsalia, the internal on the inner side of the carpus and tarsus. The earpus and tarsus are thas very moch alike. (Plate 45, fig. 2.)
The procoracoid cartilages are distinguished from the coracoids, but are continuons at the point of junction with them. They are much produced forwards in Necturus. The coracoids meet on the midnle line. No sternmm. The ilimm is the only ossified part of the pelvis. It is connected with the siugle sacral vertebra by a true rib, which is rather larger than the others. The inferior elements of the pelvis are continuous cartilage. [u Necturus the ischatic portion is subquadrate, while the public portion forms a triangle, well prodne sod forwards to an acnteangled aper. Femur with a trochanter in Neeturus.

[^5]
## NECTURUS Rafinesque.

De Blainville's Joumal Physique, Lxxxyin, 1819, p. 417 ; Wagl. Nat. Syst. Auphib., 1830, p. 210; Gray, Catal. Brit. Mns., ed. I, l. 65 ; Bonlenger, Catal. Bat. Grad. Brit. Mns., el. ir, 1882, p. 83.
Phancrobranchus, part., Lenckart, Isis, 1891, p. 260. Fitzing., Nene. Classif. Rept., 1. 68,18 ! 6.

Mcnebranchus, Harlan, Ann Lsc. N. Y., i, 185., p. 22t ; Tsehudi, Batr., p. 97 ; D'ım. \& Bibr., $1 \times$, p. 183.
Exterual gills persistent. Fingers and toes, four; vomeropalatine teeth in a single series. Eyes exposert.

This genns is distributed thronghont the eastern district of North America only, where it is represented by two species. These are distinguished among other characters by the following :
Muzzle longer, more ilepressed ; branchise shorter ; teeth, premaxillaries 11-15; vomerines 12-16; brown, darker spotted; larger............................. N. maculatus. Muzzle shorter, less depressed ; branchise longer; teeth, premaxillaries 6-8; vom erines 8-9; pale, unspotted ; smaller...................................... N. pumetatus.

## NECTURUS MACULATUS Raf.

## Plates 1-111.

Necturus maculatus, Rufiu., l. c.; Holbr., N. A. Herp., v, p. 111, pl. 37 ; Bonlenger, Cat. Batr. Gral. Brit. Mins., ed. il, 188:, p. 81.
Triton lateralis, Say, in Long's Expel. Rocky Mts., i, p. 5.
I'hanerobranchas tetraductylus, Lenekart, l. c.
Menobranchus latralis, Marlan, l. с.; Tschudi, Batr., p. 97; Hollı., l. с., p. 115, pl. :2*; Dekay, N. Y. Famu., Rept., p. 87, pl. 18, f. 45 ; Dum. © Bibr., p. 183; Wied, Noria Acta Leop.-Carol xxxir, p. 138, pl. 7, f. 1.
Menoluranchus tetradactylus, Harlan, Journ. Ac. Phla., iv, p. :324; Gray, Amm. Philos., x, 18:;, p. 216.
Menobrtuchus sayi, Gray, l. c.
Necturus maculosus, Gray, Cat. Batr. Gral. Brit. Mus., ell. r, p. 66.
Protcus maculatus, Barnes, Amer. Journ., xi, p. 2:8.
Menolranchus laccpedii, Gray, in Griff. A. K., ix, p. 10※.
Phancrolranchus lacrpedii, Fitz., l. e.
A'cturus lateralis, Wagl., I. c.
Sirrdon liycmalis Knceland Proceeds. Boston Soc. Nat. Hist., vol. vi, Iי. 15, 1856; p. $218(1857)$.
Menobranchus hycmalis Knceland, l. c., pַ. 2s0, 18in.
In this species the borly is only moderately elongate, moasuring, with the head, fonr and a lialf to five times the greatest width of the latter. The body is depressed, though not so much so as that of the known species of Cryptobranchas. The section of the tail at the base is a vertical oval ; beyond this point it is more commressed, so that the distal half is flat and oar-like, with a wide dermal border above and below. The length of the tail varies somewhat. It usually enters twiee into the length from its base to a point posterior to the eye, but sometimes this point is anterior to the eye, and eren rarely as far as the end of the muzzle.

The head is a flat oral, and the muzole is flat, rathor short, and somewhat trmeate in ontline. The eye is sithated anterior to the middle of the head and is quite small, its longer diameter cutering t.te interorbital
space five times. The nostrils are small, and are situated near the border of the lip. The distance between them equals from threc-fifths to tro-thirds the interorbital space. The upper lip is rather full and bas a thin edge. It overhangs the lower lip, concealing the posterior part of it, and embracing it at the canthus, since it is attached within the groove which bomms it below. The lower lip is decurved, and the anterior part is deeper, or more convex downwards, than the posterior lalf, and is separated from the corresponding part of the opposite side by a considerable interspace, which is without groove.


Fig. 3. 1-7, Neeturus maculatus Raf., No, 8815, Mount Carmel, Ill.; 8, Siredon mexicanum Waml., larra, head; 9, Chondrotus tenebrosus B. \& G., larva, head. All natural size.

The branchial processes are undivided, and form vertical plates, which thin out downwards. The external and internal faces, the inferior margin, and the free extremity are fringel with rather slort fimbria. The anterior processes are shorter than the two others, which are sulbequal. The longest about equals the length of the muzzle from the eye;
they are frequently shorter. In two specimens from Kingston, Upper Canada, they exceed the length of the mazze, hat this is very sehtom the case.
The tongue does not reach the symphysis of the lower jaw, and is obtusely romded in front. It is considerably free anteriorly. The internal nostrils are an oblique slit on each side, which lies obliguely and oppiosite to the interval between the romenine and ptergoid teeth. The premaxil!ary teeth are in two straight divergent series, which unite at a rommed angle in front, which would be, if completed, a little less than a right angle. Eoch side usually contains eleventecth, but there are sometimes thinten and in one large specimen (No. Sis60) filtern teetlo. The romerine series is parallel within the premaxillary, forming, like them, an obtuse angle anteriorly. There are twelse or thirteen teeth on each side, but sixteen in the large specimen (No. Sjefo). Immediately posterior to thee and at a short interval, the perygoin series rommences. It is slightly conrex outwards, and embraces usually six tee h, marely fire, and in the large (No. S: 60) ten teeth. The dentary boue supports twelve or thirteen terth, which are directed obliqueiy inwards at a slight angle. The splenial bone supports four and somefimes five teeth, which form a short series postrior to those of the dentary bome, whose base ascends gently backwards. In two specimens from Grass Riser, N. Y. (No. 7038) the teeth are rather fewer in number, viz: Iremaxillaries, eleven; romeropalatines, eleven; pterggoids, fonr.
The limbs are well developed, but short and weak, as in salamanders generally. The two external fingers are subequal in length, and shorter than the two middle ones, whieh are also subequal. There are no distinct palmar or subligital warts. The phalanges are, begiming on the imner side, 1-3-3-3. The toes are all unequal. The imer is the shortest ; then follow in order the fourth, the second, and the third. There are no solar or subdigital tubercles. The phalanges number $1-2-2-2$. The limbs are of about equal length, and are equal to the width of the heall just in front of the branchia. Pressed to the side, they are separated by a distance equal to one length and a half of eitiner of them.

The skin is entirely smooth, and has no lougitudinal lateral fold. 'ī...e are fourten transverse folds-very rarely tifteen-which are not visible on the belly nor on the median dorsal region. A fold crosses the throat, comectine the branchial fissures; it is not very profomel, and becomes obsenre in speefimens which have not been well preserved. There are two branchial fissures only, there being none behind the jos terior hramehial areh. The rent presents two short obtuse processes inwards and backwards at the posterior part of its lateral borlers. Antorior to these there are three short processes, one on each sille and one at the anterior angle, which are principally eomposed of fine pappille. benders these, the entire walls are pappillose. These are especeially prominent at the hreeding season.
M.
Total length ..... 0. 360
Length to end of vent ..... 250
Length to opposite groin ..... 220
Length to opposite axill: ..... 0 0
Length to opposite anterior branchia ..... 055
Length to opposite eye ..... 01i
Width of head at eyes ..... 036
Width of head between eyes ..... $03: 3$
Greatest width of head .....  046
Length of anterior limbs ..... 010
Length of posterior limbs ..... 043
Depth of tail at middle ..... $0: 3.3$

The ground color is a light chocolate brown, which is sometimes tinged with pink, and which is usually rendered lighter in tint by an infinitude of whitish specks and small spots, which reduce the gromed to a minute reticulate pattern. On this ground are distributed several rows of spots of dark brown, which are quineuncially arranged, not.very close together, in from four to eight or nine irregular longitudinal rows. These are wanting on the belly, but are continued on the tail. The inferior surfaces are dirty white, clouded with the color of the back, but they are sometimes colored like the back, including the dark spots. The soles and palms are yellowish. A dark brown band passes along the canthus rostralis through the eje, and extends some distance posterior to it. in young specimens this band extends to the end of the tail, involving the greater part of the sides. It is bordered above by an ochreous yellow band, which also extends from the end of the muzzle to the end of the tail. The median line of the head and back is dark brown, this color ceasing above the vent.

An entirely black variety has been sent me by Dr. J. G. Garnier of Luckuow, Ontario, which he has obtained from the Maitland and Lucknow Rivers. The only variation in the color consists of tiro obscure band-like aggregates of yellowish-brown specks along the inferior and superior borders of the muscular part of the tail.

Habits.-Dr. Samuel Kneeland, of Boston, gives an account of the habits of two induviduals of this species which he kept sereral months in confinement. They were very hardy, having been frozen and thawed several times during the winter. They were quite rapacions, eating worms and fishes. They were most active at niglt, and during the day aroided the light. They cleaned their branchise by stroking them with their anterior feet. The fibrille were alteruately expanded and contracted by pressure of blood and its absence.

As may be seen from the following list, this species ranges thronghont the tributaries of the Great Lakes and the Mississippi, as well as the rivers that flow into the Gulf of Mexico and the Atlantic Ocean, as far north as the Tar River, North Carolina. It has not yet been found in either the Floridan or the Texan districts.

FESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collecterl. | From whem received | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8348 | 2 | Kicston, N. C. |  | Mason \& Welsher. | Alcoltolic. |
| 7897 | 2 | Grand Ecorse, Mich |  | J. W. Milner...... | I) 0. |
| 8350 | 2 | Clarkston, Mich.... |  |  | Do |
| 8560 | 1 | Mauitoba....... |  | M. Banks.. | No. |
| 8815 | 1 | Monnt Carmel, Ill | June - , 1875 | Samuel T'urner | Do. |
| 9203 | 1 | Great Lakes.......... <br> (irand Ecorse, Mich |  |  | Do. |
| 98207 7967 | $\stackrel{2}{3}$ | (irand Ecorse, Mich |  | C, M. Clark | Do. |
| 10896 | 1 | Geneva Lake, wis | July 26, 1881 | II, W. Wels | 1). |
| 10897 | 1 | .... do.......... |  | P... do | Do. |
| 4530 | 2 | Burlington, Vt |  | Prof. S. F. Baird | Do. |
| 7041 | 1 | Tyree Springs, Tenn |  | Dr. R. Owen | Do. |
| 7607 | , | Lake Superior |  | D. Gunn. | 1 DO |
| 3967 | 3 | Cook Connty, Ill |  | R. Kendicott. | Do. |
| 54.50 | 1 | Toledo, Ohio | -, 1861 | Dr. Thembley. | 1 Do |
| 7008 7038 | 4 | Portage Lake. <br> Grass River, Madrill, N. Y |  | Wm. Dickinson | Do. |
| 7038 7016 | 4 | Grass River, Madrid, N. Y Clercland, Ohio. |  |  | Do. |
| 7057 | 3 | Detroit, Mich. |  | Captaiu Gunnison, U. | Do. |
| 7042 | 1 | Tuscumbia, Alı .. ...... |  |  | Do. |
| 7015 | 3 | '1arboro, N. C.....i. ..... |  | J. L. Eridger. |  |
| 12071 4058 | ${ }_{1}^{6}$ | Mount Carmil, Ill Arkansas River, n"al Fort | --1881 | L. M Tumer G. Shumard. | Do. Do. |
| 4058 | 1 | Arkansas River, m"ar Fort Smith. |  | G. Shumard. | Do. |
| $\begin{aligned} & 12761 \\ & 13390 \end{aligned}$ | 1 | Morehonse Prarish, La....-Montgomery, Alia.:..... | ${ }_{18 \times 2}^{1882}$ | T. S. Doran .............. | Do. |
|  | 2 |  |  |  |  |
|  | 49 |  |  |  |  |

GENERAL SERIES.


## NECTURUS IUNCTATUS Gıbes.

Journal of the Boston Society of Natural History, 1853, vi, p. 369.


1


2


Fic. 4. Necturus punctatus, No. 1!813. Charlesten, S. C., natural size.
The general appearame of this speceiss is quite different from that of the $N$. maculatus, and this is sirported by several structural characters.

The animal is not common in collections, and there are but four in the National Museum.

The general form is much like that of the N. maculatus, but the muzzle is differeut. Instead of being depressed or even concave above, and rather wide, it is piuched at the sides, so as to be ratherelerated at the end, and to have a truncate profile. 'I he head is wide in proportion toits length, the two measurements being abont equal. The length of the tail is the same as in $N$. maculatus, twice its length marking a point posterior to the ese. The limbs are not quite so long as in the N. maculatus, the space between them, when they are appressed to the sides, equaling twice the extent of the anterior leg, which is little longer than the posterior. In the speeimens in the Musem the body is decidedly compressed, and there is a distinct median dorsal groove. These eharacters are less marked in the N. moculatus.

The upper lip is more pendulous than in N. maculatus, or perlaps such an appearance may be ascribed to an eleration of the premaxillary horder, in accord with the more elevated muzzle. The nostrils are a little closer together than in the larger species, the distance between them equaling half the interorbital space, instead of two thirds. However, in one of the four sperimens this space measures two-thirds that hetween the orbits. The branchial processies are relatively considerally longer than in $N$. maculatus in all the specimens, and they are more acuminate in form. Their length considerably exceeds that of the muzzle in front of the eye. In N. maculatus they are usually shorter than this length ; in two or three specimens, however, they are as long as in the N. punctatus. There are but two branchial fissures. The width of the head enters 5.6 times the length of the head and bong together.
The numbers of the teeth furnish distinctive characters for this species. They are: Premaxillaries, $6-8$; vomeropalatines, $8-9$; pterygoids, 6. Thus while the pterygoids are as numerous as in N. maculatus, the numbers of the other tecth are reduced. There are eleven dentabies and three splenials in the lower jaw. The posterior nares are a longitudinal slit opposite the space between the vomeropalatine teeth and the pterygoids. The tongue is short and rounded, and extensively frice in front. The phalanges of the anterior foot are 2-2-3-2. The metacarpals are connected by a slight web to their distal ends. Tl.e middle toes are equal, and the external and internal ones are equal. The posterior phalanges number $2-2-3-2$, and the digits are al! menfual, and are very slightly webbei at the base.
The skin is entirely smooth. The lateral folds number fonrteen, as in $N$. maculatus. The muscular part of the tail has a wide, free, dermal border above and below. The former is more slender than in most specemens of the N. macnlatus; but this character does unt alwas: hold good. There are five cloacal papilla, with the three anterion fillely fringen, as in $N$. maculatus.

Measurementy of No. 11818 (tyle).

$$
M
$$

Total lengrth ..... 171
Length to end of vont ..... 120
lenerth to opposite groin ..... 093
Length to opposite axilla. ..... 0.35
Length to opposite anterior branchia ..... 0:3
length to opposite eye ..... 006
Wialth of head at eyes ..... 015
liidth of bead betwerl ryes ..... 010
(ircatest width of head ..... 017
Length of anterior limb ..... 019
length of posterior limb ..... 016
Depth of tail at middle ..... 014
In life the colors are very indistinct and admitably adapted for concealment in water. In alcohol they fale to light brown or slate color; the lower surfaces paler. There are no spots or tlarker markings of any kind, but in life there are momerons minute white punctae scattered on the sides and upper surfaces.
As may be seen from the accompanying list of specimens, the range of this species is quite limited. It has not been foumd ont of the rivers of North and South Carolina.


## URODELA.

Duméril pt. 1804 ; Cope, 1887 ; Preudosauria pt. De Blainville, 1816.
No intercalary, supraoceipital, nor basioccipital bones. O. maxillare present ; prefrontale present (with one exception); vomero malatila present, not approximated to usually present pterygoidea; orbitosphenoid large, not reaching palatal surface; mandible with teeth on the dentale.

Body of proatlas coössified, with the atlas forming the orlontoid process of the latter. Cervical vertebre without rertebrarterial canal. No rudimental centra or intercentra. Ribs with two, frequently closely approximated, heads.
No median sternal elements. Coracoid bone rudimental. Sacral rib well developed. Pubes represented by a singie eartilaginous phate, which sometimes contains a median osseous center. Ischia in mutual contact thronghout their length. No obturator foramen. Femur with distinet great trochanter.

The stapes has uo comertion with the suspensorimm in the adult exeept in the Cerptohranchidie aml Amphimmide. It is comnected with the suspensory cartilage, which is comtimons with the quadrate cartilage, in the latter fimilies, and in the yomig of other Urodela. The
ceratolyal is either free at its posterior extremity, as in the Proteida, or in the more tapical forms it joins the quadrate cartilage loy direct articulation or by ligament.
The hyoid apparatus has a very uniform charaeter in the various fanilies, excepting in the Cryptobranchiidae, Amphiumidae, and Coeciiider, where it is quite different. In the typical forms it is constructed as follows: Its suspensor is, as usual, the ceratohyal, which is mudivided. This is commected with a median basal piece, the first basibranchial, by a segment, generally slender, the hypohyal. Sometimes this piece does not tonch the eeratohyal. From the posterior lateral border of the basibranchial there originates on each side a rod, the first ceratobranchial, which is contimed after a joint, as the first cpibranchial. From a process which originates between the bases of these, on the superior side of the basibranchial, there originates on each side of its postenior extremity another rod, shorter than the first, the second ceratuhranchial. In some genera (Hynobiide) thete is attached to the distal extremity of this rod a second one, continuons with it, the second epibranchial. The second basibranchial is separated from the first, and is situated far posterior to it, not far in advance of the coracoid bones. It is better ossifiel than most of the rest of the hyeids, and was called the thyroid bone by Cuvier. That it is the distal extremity of the second basibranchial is shown by the fact that it is continnous with the first by a medan rod in the larva. (Plates $15,25,2(6,36,37$.)
'ille important differences displayed by the different forms of the hyoid in the Urodela may be tabulated as follows.

1. Median and lateral clements distinct.
a. 'I'wo ceratobranchial pairs.

Cewatohyals molivided; cpibranchials, first and rarely seconsl present. Pseudosatwia l3s.
Ceratohyals divided; epihsamehials, 2,3 , aud 4 present. Trematodera Dum. ad. One pair of ceratobranchials.

Ceratohyals modivitled; epibranchials, 2, 3, and 4 present. Amphiumoidea Cupe.
II. Lateral elements comtinuons across middle line.

No median clements.
Apoda Oppel.*
The Trematoder., Amphimmoidea, and Apoda contan one family each, viz: the Cryptobrachidae, Amphimmidie, and Corciiide. The value of the differences separating them is diminished by the fact that in the larva of the 1 'sembsumia the $1,2,3$, and 4 epitiranchials are present, and the ceratohyal is fremuently divided (e.g, Chondrotus tenebrosus, Plate 25, fig. 1).

The subordinate difterences presented by the families and genera are indicited under their respective heads.
The Vrolela, excepting the Apmila, have limbs. The toes number from two in both feet to five in the posteriur foot, and fon in the anterior foot. No Urolde aldees with the extinet genus Bryops (Cope), from the

* Opjel, lol1, not Ipoder of Limmens (in tishes); L'scalophidia De Bl., 1816.

Permian beds of North America, where there are five toes in the anterior foot. In the carpus there is at least one intermedium, except in so:ne Satamandride and Plemrodelide,* where it is mited with the mo ar:Centrale always present. The carpalia are fise in Cryptubranchus and Amblystoma, and three in Plethodon and Diemyctylus. In the tarsus there are three bones in the first row, a large fibulare and intermedium, and a small tibiale. There is one centrale, as in the carpus. The tarsalia number five, except that there are four in the Salamandridar and Plemodelide, where the carpatia are ouly three. The intermal or first tibiale is not distal, but lateral in Amblystoma and Plethodon. It is distal in Cryptobranchus. (Plat: $\mathbf{s} 45,46$ ).

Development. -The eggs of Urodela are laid in the water or on land. In the former case they are attached singly or in small numbers to the leaves of aquatic plants. In the later case they are laid in little concavities beneath stones or bark. In Desmognathus the albmen connecting them dries into threads, which hold the eggs together. One of the parents lies by and watches them. In the Amphimmoideat and the Aporla $\ddagger$ the female coils herself in a circle ored the eggs.

In the growth of the lar ae the branchia and balancers are first developed, and afterwards the anterior limbs. The posterior limbs follow. Those spiracles or manchial fissures between the epibranchial bones which support the gills give passage for water from the pharyma. There are no internal gills such as are fomd in Anura. The branchial processes vary in fom, but all terminate in fringes, in cach of which is at vasenlar loop. The varicties displayed lys larva of Urodela as compared with those of genera with permanent branchice are as follows: (Plate $\quad 3$. .)
I. Supta with bipimate rami.

Rami with many thread-like fimbriar................................................ Seren. 11. Supta with mapimate rami.

A rulimental imer row of rami ; timbria thead-like............... Iroteas. 11I. Septa with sinple ranni.
J. Rami long, compressed ; limbrie dependent from lower elge.

Fimbriae threat-like, extending on both outer and inner face of proces.
Nicturas.
Fiubria dat, long, chictly contined to the lower margin of process. Larvat of Spelcopes ruber ; S. bilinctus, and (iyrinophilns porphyriticus. Fimbriar fen, subelavate.................................. I'lithodon cinerens.
Ad. Rami long, narrow; hearing fimbine only on the side next the booly.
Fimbrise simple, that, subequal.................................... Amblystona.
did. Rami very short; fimbrise extending on the wertical septa.
Fimbriae in mmerons rows on the edge of the septa ; slender, mbranched. Larra of Chondrotns temberosirs.
IV. Scpta withont rami.

Septa bearing flat, thread-like fimbria, which arise posteriorly, and are oftemdivided. Larva from Simialmoo, Washington Territory, probabls of a Chomlrotur.

[^6]In the development of the vertebre all are first biconcale, or fish-like. The intervertebral cartilage ossifies later, and attaches itself to the centrum posterior to it, forming an opisthocolous articulation. There are no procolous vertelire among Urodela.

The feet are first simple at the extremity (Plate " 0 , lig. 6), but soon become bifureate (Fig. 5), or with two digits. This was insi ahserved by Rasconi in 1821 in the European Ifcmisalamandra cristata. L'rofessor Bairl* first observed this in the Amblystoma punctatum in larvae of $1.4^{\text {mum }}$ in length. The same has since been observed by myself in $1869, \dagger$ and later by Gïitte $\ddagger$ in his essay on the development and regeneration of the foot-skeleton in the triton; also by Strasser and by Hos. In Amblystoma punctatum the numbers of digits sinceed each other as follows: First stage, 2 hefore, hind limb none; second, 3 before, hime limb none; third, 3 before, hind limb 2 ; fourth, 3 before, himd limb is. Sometimes the anterior digits are complete in num. ber before the posterior foot appears, and we have combinations of numbers from $4-0$ to $4-3$, and $4-4$ to the full number, $4-5$, which is fimmed in alt specimens of 2.5 min and upwards.

As already observed, the Batrachia are supposed to have been derivet from tine Dipnoi. Specimens of Lepidosiren annectens have been deseribed § which have the extremity of the limbs ahmormably bifnreate, but the abomarity is perhans in the direction of the erolntion of digits. Dr. G. Banr believes that the thirl, fonth, and fifth digits have grown or spronted successively in time from the external distal angle of the ulna and fibula, while the first and second are represented by the two original branches. |l
In the cranium a gool many important changes occur before the benes abluar.ff Among the first of these is the division of the five simple transterse brauchial cartilages into two segments each, epibranchials and ceratobranchials, or, in the case of the anterior areh, into ceratohyal and hypohyal. So the mandibular cartilage immediately anterior to the ceratohyal, divides into the snperior quadrate, and the inferior meckelian or mandibular. A subsequent change is the finsion of the quadrate cartilage at its superior end with the trabeculnum of its side, and with the ptergopalatine arch with the inferior end. (Sce Ilate 4゙, figs. $7-9$ ) At this time the chordadorsalis has retreated till it is ouly present between the exoceipital cartilage below. Whenossification commences, the vomers, palatines, and pterygoids are all distinct. Towards the emb of the metamorphosis the former two mite, and the perygoid separates from the palatine. Both these elements contract away from each other ontil they are widely separated, and the pterygoids are moth

[^7]reduced in size. In some families the perygoids never ossify, and dis. appear. An illustration of the late persistence of the osseons pteag go palatine arch is seen in the larva of Chondrotus tencbrosus. (See Plate $\because 4$.
The systematic arranyement of the Urodela may be represented as follows:

1. Lateial and median liyod elements distinct.
A. Two pairs of eeratolmanchial bones ; stapes comected with quadrate arch; no double hypopophyses. Trematodera.
No tirst epibranchial ; no donble hy popphyses of vertebre; vertebrae anphicolons; ceratohal connected with gnadrate by ligatment only; vomeropalatine bones with teeth on the anterior margin; vestibule with membranous inner wall; no parasphenoid teeth.

Ciryptobranchidtr.
B. One pair of ceratobranchial bones; stapes conuected with quadrate areh; hyper. pophyses double. Amphinmoidea.
No itrst epibranchial, several others present ; vertebrat amphicwloms; an whmoid; seapular amd pelvic arches present; ceratohyal contuected with quadrate by ligament only; liver little sub divided..... Imphimmidr.
C. Two pairs of ceratobranchials; stapes not connected with quadrate arch in adult; only the first and rarels second epibranchials prescot; vertebree withont donble hypopophesses. Pscudosauria.

1. Vertebre amphicrelons.

Vomeropalatine bones with teeth on the posterior margin; ceratolyal connected with quadrate ly cartilage; no parasphenoid teeth; vestibule with osseous walls; carpus and tarsus ossitied ; an otoglosssal eartilage ; no second epibranchial element $\qquad$ Imblystomidn:
Vomeropalatine bones with teeth on the posterior margin ; no parasphenoid teeth; no otoglossal cartilage ; a second epibranchial.

IIynobiidner
Vomeropatatine bones with teeth on the posterior margins; parasphemind teeth; restibule with osseons walls; ceratohyal comeeted will Ifuadrate by eartilage; no otoglossal cartilage ; no sceond epibn:utchial; carpusand tarsus cartilaginous; no pterygoid.... Plethodontithe.
2. Vertebre opisthoertons.

Vomeropalatine bones not seuding processes over parasphenoid bone; ceratolyal comected with guadrate by cartilage; parasphenoid tecth; no postfrontosquamosal arch; earpus and tarsins cartilagi nons
. Desmognuthillu.
Vomeropalatine bones not produced posteriorly ; parasphenoid tecth; no post frontosunamosal areh; carpus and tinsins osscons...... Thorïdn.
Vf meropalatine bones extended ower parasplenods in two dentigerons processes ; no parasphenoid tecth; no osseons prostfrontosquamosal arch; ceratohyal only eomected with quadrate by ligament, carpins and tarsus osscons . . Salumamiridu: Vomeropatine bones extended ower parashenod in two dentigerous processes; !o parasphenoid teeth; an osseons post frontostmamosai arch ; ceratohyalonly comucted with quadrate ly ligament ; earpus and tarsus osseons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pleurodelida. 1I. Hyoid elements contimous across midhle line. No distinct median elements. Stapes commeeted with ghadrate lome. Ipola.
Vertebrar with domble hypopophyse; an ethmoid bone; seapular alad pelvio arches wanting; liver greatly subdivided
. Cuciliida.
1951-Liull 34——3

The Ceciliida are generally regarded as representing a distinct order, which bears the names Aporla or Gymnophiona. The definition given to this order by Mr. Boulenger" is: "No limbs; tail rudimentary. Males with an intromittent eopulatory organ. Adapted for burrowing." Of these definitions none is of ordinal value. The tail in some species is distinct. The intromittent copulatory organ in Dermophis mexicanus, Gymnopis proximus, and Herpele ochrocephala is not an especial organ, but is merely the ere"ted cloaca. The hard papille observed by Giinthert in the Ichthyophis glutinosus are wanting in the above specees. The protrusion of the cloaca is effected by two especial muscles, which are wanting in $\Lambda$ mphiumide. As to limbs, their extremely rudimentary character in Amphinma is well known. To regard their condition as indicating ordinal separation from the Ceciliide is not in accordance with our practise in similar cases in the Reptilia, as in the order Lacestilia.

I have endearored to sustain the orter Gymmophona by the character of the fusion of the nasal and premaxillary bones found in the majority of the genera. $\ddagger$ But Stamius § shows that these bones are distinct in Ichthyophis. Husley states (Anatomy of Vertebrate Animals, p. 155) that in Ichthyophis glutinosus a distinet bone nearly encireles the orbit. This he compares to the supra and postorbital bones found in the Stegocephali. But in Chthonerpeton, Cacilia, Dermophis, and other genera, this bo:e forms part of the maxillary, so that it is not characteristic of the family, and may not be homologous with the bones which ocenpy the same positiou in Stegocephali. Wiedersheim calls it maxillary:

With these fact in view I have nuited || the Caeciliida with the Urodela, a propositiou which I fully believe to be sustained by the evidence. The Ceccilidee is a family of Lrodela, connected with the typical forms through the Amphilemide.

Gcographical distribution. - The distribution of the families of the Urodela and their contents is as follows: None exist in the Australian realm aud, excepting some Ceciliide, in the Ethiopian realm. In the Neotropical they are restricted to the Central American aud Mexican districts, with a few species iu the northern Aules, amb oue reputed to be from the West Indian island, Santo Domingo.

The Caciliide are more widely distributed, belonging especially to tropical regions.

[^8]

The temperate regions of the New World is, then, the home of the greatest ummber of species of Urodela, after which the tempreate regions of the Old World follow.

The distribution of the families and their species in North Amerieia is as follows:

| Families. | Legions. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eastern. | Alistro. iparian. | Central. | Sonoran. | Pacific. |
| Cryptubranchida | 2 |  |  |  |  |
| Amblystomide.. | 12 | 8 | 1 | 1 | 8 |
| Plethoduntidic... | 8 <br> 3 | 8 |  |  | 11 |
| pleurorlelidse... | 1 | 1 |  |  | $i$ |
|  |  |  |  |  |  |
|  | 26 | 17 | 1 | 1 | 20 |

The details of distribution are given under the family and generie heads.

Ihylogeny-This order is probably of considerable antiquity, but no species positively referable to it is known from any pretertiary format tion. In tertiary beds we have representatives of different types. The gemus Chelotriton Pomel from the Miocene of Allier, France, has opisthococlous rertebre like most of the existing species of Europe, ant has in addition an expansion of the neural spine of each vertebra, to which the epidemis was elosely adherent, giving a row of rough plates down the middle line of the back. Meliarehon and I'olysemia of Von Meser are known from specimens from the Miocene beds of Germany. They have apparently the eartilaginons carpus and tarsus of the American genela. The Miocene of Switzerland has furnished the remains of at species, probably of Cryntobranchidar, which has been referred to the gentis Andrias by Tschudi. It is very much like Cryptobranchus.

In older formations we have in the North American Laramie the genus Scapherpeton Cope, which may well belong to the Urodela, but the skinll is mknown. In the Wealden of Belsium the genus Hylaobatrachus Dollo may belong to this order, but the skull is not yet well known.

The most primitive form of the existing Urodela is apparently Cryptobranchins.

Wictershcim* (l. c., 1. 95) has attempted to trace the ancestry of the Cieciliida to the Stegocephali of the Carboniferous period, from which he supposes them to have arisen by a process of degeneration. He remarks that in order to demonstrate this proposition it is only necessary to discorer a type with radimental limbs which shall comect the two.

That the Ceciiitio is a type which has resulted from a degeneration, 1 have also proposed, $t$ but I have derived them fiom the Urodela rather than from the Stegocephali direct. They Lave, like Amphimma, essemtially the satne cranial structure as the Urodela, which is widely different from that of the Sterocephali, in the absence of the interealare, supra temporal, basioceipital and postorbital bones. And these characters are fully maintained in rarions genera of Stegocephati which have rudimental limbs. Amphimma then is the annectant type with rudimental limbs which Dr. Wiedersheim songlat for. The circumstance that his eyes were turned toward the Stegocephali indisposed him to recognize this fact.
The adtinities of the recent families, which may be regarded as phylegenetic, may be representel as follows:


## CRYPTOBRANOHIDAE.

Vertebre amphicelons, withont anterior donble hypopophysis. Tail developed. Parietal and prefrontal bones embracing frontals, and meeting above orbits. Vestibule with internal wall membranous. No ethmoid bone. Carpas and tarsus cartilaginons. Vomeropalatine teeth on anterior border of bone of that name. Pterygoid bone present.

[^9]Oit this ranily but two existing genera are kiown, althongh it is $r_{1}$ dite probable that a thirl has left remains in the Mincene lachstrine beds at Oeningen, in Germany, which is linown under the mane of Andrias. The existing genera differ as follows:
Branchial lisure present..................................................... . Cryptobranchus.
Nu hraurhial tissure.................................................................. . . . . .
The Megulobetrachus muximus is fomd in Japan and castern Asia as far southwest as eastern Thibet. It exceeds in dimensions the species of Cryptohamelnis, which are exclusively North American, but has a great general resemblance to them.

The nearest aproach to this fanily among other Urodela is made by the family of Amblystomidar. The structural differences are, however, important.

## CRYPTOBRANCIUS Lenckart.

Isis, 1821, p. W60. Bonlenger, Catal. Batr. Grad. Britr. Mus., 1882, p. Z1.

Menopoma. Marlan, I. c., p. 270 ; Tswhmli, Batr., 96; Dum, Bibr., Eop. Gén., Ix, p. 20. Sulamutrops. Wiagl., Nat. Syst. Amphilo., 1s:30, p. 209.
Emycta. Latinesine (teste Bairl), Athantie Jonrual, I8*32, p. 121.
Crotompsis. "13arton", Gray, Catal. Batr. Grad. Brit. Mus., ed. i, p. 53.
In this gems the rom rine teeth form a regularly arched series, concentrie with the maxillary selies. The tongne is but little free, and that only romad the edges. The eolumella of the stapes is cartilaginons, and is comected by a close articular contact with the quadrate eartilage and with the under side of the squamosal bone. The ceratohyal is comnected by a ligament with the posterior side of the quadrate, with the intervention of an oval cartilage, which has the position of the stylohyal bone of fishes. The posterior extremity of the ceratolyal is not incurved, and is free from the sliull. (Plate 48, fig. 3.)
The hyoid apparatus is quite chanateristic. They have been ahready described so far as they define the suborder Trematodera. They resemble the Pseudosanria in having two ceratobranchials, but differ from them and resemble the Amphinmoidea in having no first epibranchial. This element may, however, be confluent with the first ceratobranchial, but uo suture appears in very young specimens. The ceratohyals are divided transversely and the hypohyals are large. They are not in contact with each other or with the first basibranchial, as in other orders and suborders, but are separated by a pair of transverse elements, which are probably true basihyals. The first basibranchial appears to be interrupted at its middle, the anterior part remaining attached to the basihyals. No second basibranchial.

A broal cartilaginous plate rises from the basibranchial and supports the tongue. It resembles a good deal the otoglossal cartilage of tle Amblystomida, with which it is probably homologons.* The second,
third, and fourth epibranchials are present. Between the bases of the second and third is a rudimental third ceratobranchial. (Plat:s $1 \bar{u}$, tif. 4.)

The carpus in Cryptobranchus is somewhat variable in the typical species. The centrale carpi always separates the intermedinm from the ulnare, thus reaching the ulna, while the contrale tarsi is always shat off from the fibnla by the intemedim. (Plate 45 , fig. 3.) There may be two centralia tirsi (Plate 4f, tig. 3), as has been shown by Wiedirsheim. There are fom carpalia and five tarsalia, but the fomth and filth tarsalia may be fused. (Plate 46, fig. 3.)

The bon's of the extremities are simple, the frmm being withont the t.obhanter found in the Psendosanaia, and the lomerus being withont the comlyfes. The scapular arch is entirely cartilaginons, excepting the seapula, which is small. There is a large cartilaginoms coracoid plate which overlaps that of the opposite side, and is deeply fissured transwerse obliquely in front fom the interior border, cutting off a narrow fremacoid. There is a cartilaginons stermm posterime th the coracoids. The pelvie arch has an osseous ilium, which is in contart with an osseons ischium on each side, which does not meet its fellow on the midule line below. The pubie region is represented by a large sim. ple cartilage, which is produced intu a style on the middle line anteriorly, as in the Psendosamria.

In its tisceral anatomy this genus resembles the Psendosauria. The stomach is distinct, and there is a pylorie flexure. (Plates 6 and 5 , fig. 4.)

Thers is one widely-distributer species of this genus, and probalily a secom, known only as get from the upper waters of the Temmessee Liver, but the latter requires further investigation, as I have seen but a single speremen of it. The distinguishing features are the following: Posterion digits fres; tonge free in front, its sumerior surface thrown into plica; intermal hares opero. C. allegheniensis. Posterion digits whber, the external to the tip; tongue not free, covered with large closels-placed pappillar ; internal nares valvular
C. fuscus.

CRYPTOBRANCIUS ALLEGHENIENSIS Dandin.
(Plates 5-8.)
Cegptubranchus alleyfenichsis, Van der Hoeren, Tijilscher, v. Nat. Gesch. en Physiol. iv, p. 334, Pl. v A, f. 3-4, \& v. B; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. 11, $18=2$, p. 81.
Selfamanlra alleghtuiensis, Dand., Rept., viii, p. 231.
Suhamandra giganfea, Bartom, On Siren lacertina.
1/ol!p !ifyantea, Merr. Tent., p. 187.
('r!ppfobranchus sultmandreills, Lenckart, I. c.
. Hranchus allegheniensix, Harl:a, I. c.




Salamandrops gig(autea, W:igl., l. c.
Finrycea mucrouabu, Ratin., l. c.
Memopoma giggaulece, 'lsclnali, l. c.
P'rotonopsis horvida, Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 53.


Fic. 5. Cruntulurtuchus allegheniensis Dand.; No. 9752. Penneylvania; natural size.
Body moderately elongate amd depressed ; the limbs quite shot. The tail much compressed, ahont one hatl the length of the head and bod? The neek wide; the head a little wider, plane ahove, that and much depressed, with very short, wide, and rommed muz\%le.

The nostrils are near the labial harer, and look forwards. The space separating them is abont half the interomitalwidth. The eyes are quite small, amt are cosered with a mather thin comea, hat are withont dis.
tinct eyelisk. They are owal in outhere, the long diameter anteropos. terion. They are widely sepanateal fom cathother and are not far from the labial border. The jaws are embal in front, and the muzale is perfectly flat. The upper lip is mot pemblulns except at its posterior emb, where it is also thick. The free lower lip is decurved, and extends only about one thind the distance romm the lower jaw.
The month is wide, and the rictus tatls below the posterior canthes of the ege. The maxillopremaxillay are of tert's extembls to a point at little posterior to a line dropped from the posterior colge of the exe. The vomeropalatine seris:s is quite close to the maxilopremaxillary, and extend about one half way as far posteriorly as the external row. At the middle of the are it sometmes present a a convexity backwards for a short distance. At eachof its extremities is sitnated the posteriornostril, which is an oral more or less open, and never a slit, as in the C. fuscus. Its position differs from that secm in Amphiuma merns and Necturus in its being at the end of the row, and not extermal to it. The roof of the month is everywhere flat. The tonge is wide and is considerably free in front, the free borter narowing laterally and posteriorly. It nearly fills the floor of the month, leaving but a narrow space between it and the mandibular are. Its surface is thrown into nomerous elerated folds, which are thin, and generally anteroposterior in direction. They intereommunicate by lesser oblique folds, which with other deliate ridges form a net-work between the principal ones. In old specimens or badly-preservor owes the plicae may be flatened or lowered.

The legs are quite short; when pressed to the side they are separated by a space equal to 1.25 the length of the anterior limb. The fingers are short and rather free, and the extermal one is considerably shorter than the internal one. The others are subsequal. An extensive fold of the skiu extends from the axilla to near the extremity of the external finger, forming the posterior expanded border of the limb. It is most prominent at the lower part of the upper arm. The posterior toes ate rather short, and are free from web as to the phalanges. The first is the shortest, and the second a little exceeds the fifth. The thiod ami fourth are subequal, and, with the fifth, are somewhat depressed. This appearance is produced by a dermal wing on the external border, which increases in willth from the thirl to the fifth, becoming very wide on the latter. It continues from the fifth toe on the hinder border of the leg to the base of the thigh, corresponding with the similar fold on the fore leg. The epidermis is not harlened into ungues in this species.
The skin is perfectly smooth, but is thrown into a longitndinal undulating fold on the sides between the fore and hind legs. This fold is olvolete in some specimens, apparently on account of the distension of the body with food or eggs. There are a shallow median dorsal groove and fourteen costal grooves. The latter are not distinet on the back or belly, and are best seen on the silles of the latter. The tail has a free dermal border or: its superior cilge, but none on the inferior enge, thins
differing from the species of Nectmos. $\Lambda$ groove along the side of the tail divides it into a superior and inferior portion, and a lateral wedgeshaped mass, covered with longitndinally fohled skin, intervenes between the two for abont one third the length of the member. Dermal mucons pores are especially abundant on the head of this species. They generally appear in the midule of a low, clongate, dermal papilla, diviling it into two papill: These are closely placel in a triangular patch, of which the maxilhary bonder forms the hypotennse, a line extembing backwards from the mostril parallel to the middle line, another side; and the other border transwerse, bissing abont its own diameter posterior to the eye. But there are mumerons other similar papilla posterior to this pateh, and on the sides of the anterior half of the neek. A series of donble papille extents romul neat the border of the lower jaw, becoming obsolete on the symphyseal region. A conspicuous arehed row of the same extemfs romm opposite the inferior edge of the lower jaw ; and between it and the superior row are mumeroms other pores ant papillae. A row of pores passes romm within eath arm on the sides of the thorax ; and there are two rows on the sides, one above ant the other below, the lateral foll. The upuer row is continum on the wetge like portion of integument, forming the middle of the basal third of the side of the tail.

The branchial fissure is half-way between the angle of the lower jaw and the shoulder. The rent is small.
Mcasurements of No. 9752. ..... M.
Total length ..... 480
Lengtl from end of muzzle to end of vent ..... 319
Lengtin from end of muzale to line of groin ..... 975
Length from end of muzale to line of axilla ..... 100
Width between nostrils ..... 01:3
Widlb between eyes ..... 029
Greatest widtlo of hearl ..... 0.6
Width between axillir ..... 045
Width at base of tail ..... 030
Depth of tail at middle ..... 0455
Length of fore limb from axilla ..... 0.44
Length of fore foot ..... 011
Length of hind limb ..... 061
Lemgth of hind foot ..... $0: 0$
Lengilt of lower leg ..... 036
Width between internal nostrils ..... 0.45

The largest specimen (No. 10043) measures 545 mm .
The usual color is rather light leadeolored above and a still paler shate of the same below. There are indistinct darker spots on the surface above, only visible when the animal is in flicl. Sometimes these -harles are represented by very distinct dark-brown spots (Nos. 4ij31, 7001). Some specimens have the gromid color brown of a lighter hue (No. 7005 ), the dark spots being present or absent. Three specimens (No. 920.5 ) are almost entirely black.

This species is distributed from western New York and Peansyl. vania aml the Great Lakes to Iowa, amb sonth to Ceorgia, North Caro.
liua, and Lonisiana. It is not jet known from Florida or Texas. A single specimen in the National Museum was taken in the Susquehanua River, Pennsylvania.

The "hellbender" is entirely aquatic in its habits, and is frequently taken by fishermen on their hooks. It is very tenacions of life, and is perfectly harmless. Its larval period must be of brief duration, sir ce it has not been yet observed. The eggs are rather large, and are ittached by two strong suspensors at opposite poles.

RESERVE SER1ES.


GENERAL SERIES.

| 7069 | 1 | Tyreo Springs, Tenn. Nolichucky River, ''emn (?) $\qquad$ | Prof. IR. Owen......... | Alcololic. 1 ). 1) |
| :---: | :---: | :---: | :---: | :---: |
| 7001 | 1 |  |  |  |
| 9316 | 14 |  |  |  |
|  | 16 |  |  |  |

There is some variation in specimens in the relative distance of one nostril from the other and from the eye. In some specimens these distances are identical; in others the former is somewhat less than the latter, and the same measurement, usually one-half the wilth between the ejes, may enter it 2.25 times.

A local variety is seen in three specimens (No. 7005) from Abbeville, S. C. These are a light brown, much resembling the C. fuscus, lint are spotted with a darker brown. The donble papillie are not visible on the superior surface of the head, and are faintly marked on the inferior aspect. The rows of pores are, however, as in C. alleghenicnsis, as are the tongue and internal nares. The digits are all more slender, and the durmal ala on the external toe and that of the elbow are much reduced.

Besides the generic character, the following differences may be observed on comparison of this species with the Megalobatrachus maximus of Asia. In the latter the tongne is not free, but is sessile, and without pliex; head with rows of oltuse tubercles; sides and limbs withont derual folds.

## CRypTOBRANCHUS FUSCUS Holbrook.

Menopoma fuxcum Holbrook, N. Am. Herpetology, 1842, v, p. 99.


Fin. G.-Cryptobranchus fuscus, Knovville, Tennessec: natnu:al siz,
Besides the characters already assigned to this species, the single specimen on which it rests differs firm most of those of the " alleghe-
niensis in the absence of the longitudinal dermal fold on the side, aim of the papille on the upper surface of the heal. In both thesid respects it agrees with some specimens firm Abbeville, S. C. (No. 700J), alrealy referred to. I do not attach much importance to the absence of the lateral folds, as distension of the abdomen fromany canse womld be apt to cause it to disappear. These two characters, however, with the brown color, supplement the three important ones given in the diagnosis, an! confirm the propriety of recognizing the species. Nevertheless, the observa ion of other specimens presenting the same features will be neeressary before the species can be regarited as fully establisherl.

The hean has the wide, flat form of the other species, with the very shen and broally rombded mazle, but these characters are exaggerated. This the length from the end of the mazzle to the lines commecting the angles or canthus of the mouth enters the greatest wilth of the himi foar times and a fraction; while in the C. allegheniensis it is one-half the: :ane measurement of the width of the head, or even a little longer. The shorthess of the gape as compared with its width is also indicaltial by the fact that the ranthus oris is below a point anterion to the anterner ranthus of the eye in the C.fuscus, while in the C. allegheniensis the angle is below the posterior canthus of the latter. The eye is smaller than is usual in the C. allegheniensis, its, long diameter entering the interocular space a little orer seren times; while in the more abondant species it enters five times to nearly six times. The extremity of the maxillary suries of teeth corresponds with the eanthas of the month. The vomerimes have ouly half as much length. The internal nostril is a slit, neariy closed, in line with the series of vomerine tereth at their extremity. I have not found it closed in this way in any specimens of the C. alleghe. niensis. The characteristics of the tongue form one of the strongest characters of this species. Its superior surface is covered with harge truncate papillie, so closely placed as to be everywhere in continet. They are only distinguished, as in the hmman tongne, by bending the surfiace. Nothing like this is known in the other species. Here the surlace of the tongue is marked with longitudinal plicee, separated by considerable intervals, which are themselves smbdivided by smaller and lower plice, the general result being an apparanee something like tripu. The width between the external nares is half of that between the orbits or the posterior nares.
The crypts of the skin of the superior surfaces are emarser than in the $C$. allegheniensis, especially on the posterior half of the leatl. The anterior half of the latter is smonth. No trate of the duable papillat is to be found on the suprior surfaces, but they exist in the arthed series romad the lower jaw below the lip, as in the other species, hat with this difference: the papille one above the other are mot rombl, but short longitndinal keels, so as to be parallel to cach other.

The fingers are entirely free, and the phatanges are, beginning on the:

well developed, and terminates just below the elbow. The toes come in the orter of length as follows, beginning with the short imer, 1,5 , $2,3,4$; and the phalanges, in the same order, are $2,2,3,3,2$. The three external are ribbed from the tips; the notch between the third and fourth reaching the end of the first phalange, but between the fourth and fifth extending from tip to tip, with a very slight noteh (easily eularged by tearing) ; the legs are about as long as in C. alleghe. miensis. When they are pressed to the side they are separated by a distance equal to one and a quarter times the length of the linder leg. This measurement must be taken with some allowance, as the specimen has been coilel in strong alcohol, and its true form is not easily restored.

It is impossible to distinguish the true lateral folds. An estimate makes them equal those of the other species, fourteen. The tail has the usual form. Its superior outline rises from the base, and is convex, and consists partly of a thin dermal border. The extremity is thin, as is also the distal fourth of the inferior edge.

Measuremonts.
M.
Total length. ..... 0.440
Length to end of vent ..... 295
Length to groin ..... 215
Length to axilla ..... 100
Length to line of canthus oris. ..... 015
Length of anterior leg ..... 039
Length of anterior foot ..... 015
Length of posterior leg. .....  053
Length of posterior foot ..... 0245
Width between external nares .....  01 ?
Wialth between orbits ..... 025
Wi.lth of head .....  051
Depth of tail at middle ..... 042

The color of this specimen is a rich chocolate brown; the inferior surfaces rather paler than the superior. No spots.

| Catalogne number. | No. species. | Locality. | Donor. |
| :---: | :---: | :---: | :---: |
|  | 1 | Knoxville, Tenn | Professor Mitchell. |

## AMBLYSTOMIDE.

This family is of particular interest among the Urodela, as furnishing connecting forms between the ordinary types of the order and those larger species which we smpose to be more characteristic of former periods of the earth's history. It also furnishes us with transitional conditions of characters which have been regarded as indicating very diverse origin and nature. The species are mostly of large size, and are probably confined to North America; perhaps a species exists in Farther India.

The chamaters which restrict the family are as follows:
Noethmoid. P'abatine bones mot polonged over parasphenoids, bearing teeth on their posterior margins. Orbitospheneid separated from proitic by membanous watls. Internal wall of vestibule osseons. Carbins and tarsus ossified. Vertebra amphiculons. Prefroutals and pterygoids present. P'remaxillaries fully developed. I'arasphenoid without dentigerous plates. An otoglossal cantilage; only one, the first rpibrathehal ; seeond basibranchial isolated.

We may here observe the signiticance of the features detining this family. Two of the eharacters assigned are what I have termed morphic; that is, one has not been assumed after possession of the other, nor is it inentime with the immatme stage of the same. Such are the shortened form of the palatine bones, as compared with the posteriorly prodncel lamine of the Salamandidar, amb the absence of dentigerous plates on the parasphenoil in the Pletholontida is a ehameter of the same kind. Umler such circmastances we infer that the fimilies exlibit an ontogeny morlitied by canogeny.

The biconcave vertebre constitute a persistence of a larral feature.
The presence of jotergoids has the same significance with reference to other families.

The ossification of the earpus and tarsus are characters in which this group derelops beyond the larval contition which is permanent in the family l'lethodontida.

Thas of eight characters two are morphic and six developmental; of the sis, two are of advanced development and fom of repressed development, as compared with other families.

The witer elaracterized this family nearly as above in the dournal of the Dhilateluhia Academy, 1806, 105. Dr. Hahowell proposed it in the same work, 1855,337 , hat on insufficient characters. Many of the characters of the principal genns Amblystoma hat been already pointed out by Professor Bairl. The genera included by llallowell were $\Lambda \mathrm{m}$ hystoma, Viphonura 'Tseh, and Onychomactylus Tsehudi. Gray had previonsly embraced the same gemera with Meterotriton Gray, in his first section of the l'lethodontidar, which corresponds with this family:
 ('ope, and Mesalobathathas T'schudi. In the above cited essay of 1866 lhe geme ra are limited to the two tirst mentionel with Eansatimu Gray.

The marestigation of the sulpeet which I save in my monograph of this family, published in ls: $\%$, resulted in the following disposition of these suppused gemma, Baind having alrady shown the identity of Xiphomira with Amblystoma. "Hetcrotritom is illentical with Amblystoma. Hegalobatrachas, the great sabamander of Japan, I have determined to pertain to the Cryptobranchidie. The genus Comerorataxis, as will appear further on, was established on a larial eharacter, permanent in some individnals it is true, but not permanent in any species. On the other hand, there is some probability that one or looth of the species of Dynobins Tschndi from Japan enter the tamily, but this I am not
able to establish." The latter gemus, together with Ramidens, Onyehodactylns and Sulamambella from Asia, have been since refered to the Amblystomide by Bonlanger, but I now time the hyoid apparatus to be guite differn int in the two groups.

Three gesera of this fanily are known to me. Another has heen distingnished on dental characters (Dicamptodon), but whether identical with or distinct from those I have seen 1 do not yet know.
I. Vomeropalatine tecth in a transverse line, which is straight or angulated and hut much interrupted at the middle.
Otoglossal cartilage forming a ring, attached posteriorly to the tirst basibranchial cartilage ........................................................... Imblystomin.
Otoglossal cartilage forming a subtriangular plate attached posterionly to the first basibrancbial. ................ ..................................... . Chondrotus.
1I. Vomeropolatine tecth in two series, separated by a wide interspace.
Otoglossal cartilage not ammar, free from the basibramehial, wn which it moves;
tail romud............................................................... Lingnulapsus.
Tail compressed; dental series converging backwaril
Dicamprodon.
The species of these genera are all North American exeepting the Amblystoma persimilis Gray of Siam.

## AMBLISTOMA, Tschudi.

Tselmali, Batr., p. 92 ; Baird, Jomm. Ac. Phila.(2), r, 1850, p. De1; Gray, Cat., 1. 34 ;
Dum. \& Bibr. 1., p. 101 ; Cope, Proe. Ac. lhila., $1 * 6$, p. 166 ; slrauch, Salam, p. (io; Boulcnger, Cat. Batr. Granl. Brit. Mus., Bl ed., 18
Siphomura, 'Tschudi, l. c., p. 9.5; Gray, l. c. ; Dum. d Bibr., p. I61.
Salamambroides, Fitzing., Syst. Rept., p. :3:3.
Hetcorriton, Gray, l. c., p. :3:3.

P'čiogloxsa, Mivart, Proc. Zoül. Soc., I-if, p. 693.
Latcal loms:
Sicclun, Wagl., Syst. Amplı., 1>30, 1. 20! ; Dum. \& Bibr., p. 1 iti.
dicolotex, Owen, Ann. amil Mas., N. M., Xiv. p. 2:3.

Vombrine series of teeth in the same kine, thongh often intermpted.
Gnadratojugal bone wanting. Premaxillary bones distant from each other, not embracing a fontanelle.

Tongue alt.med by its whole base, but with a natow free margin on all hat the posterior portion, capable of hat a moderate protrusion.

The otnglossal cilltilage forms a ring, which passes entirely round the cirmaference of the interior base of the tomgere. It semls a process oll earh sinle near its base, which terminates above the ceratohyals without articulating with them.

IIymhyal eartilages slember, ot moderate length. (Pate 20.)
Coratohyal articulating by its abruptly recurvel superior extrenity with the posterior distal part of the quadrate. (Plate 48, figs. S-10.)

A strattam of erypts more or less thickened on the parotod region and allong the superior lateral region of the tail.

A series of mucous pores round the orbit and for some distance auterior to it.

The second basibranchial element is transverse, generally angulated forwards, and is well ossified. The other parts of the hyoid apparatus that are ossified are the proximal portion of the ceratolyal, the anterior part of the first basibranchial, and the free extremity of the first (pibrauchial.

The larve are characterized by the long, slender processes of the three branchial lamine, which bear the vascular fimbrie, rather than the lamine themselves, as in Chondrotus. The interual nostrils are confined between the maxillary series of teeth and the palatine arch, which is concentric with the former and near to it, and is continued backwards on each side in line with a similar series on the pterygoid bones. A relation of nostrils to palatine teeth similar to the above is permanent in Amphinma, anio one intermediate betreen it and the adult condition of Amblystomæ of groups in and Iv characterizes Cryptobranchus.

The tail and back hare a free dermal margin, but there is none on the limbs or digits. The tail is short and deep.

The following are some of the most readily observed characters which are assumed by the Amblystome at the period of their transformation: (1) The series of teeth on the splenial bone is shed; (2) the carpus and tarsus ossify ; (3) the tail narrows and lengthens; (4) the branchia disappear; (5) the tongue enlarges and covers the floor of the moutb; (6) the pterygopalatine series of teeth becomes more nearly transverse; (7) trightly colored pigment is deposited in the chromatophore of the derm. These changes are stated in the order of their occurrence. But in some of the protean species this order is not exactly observed in all individuals, and in consequence of the assumption of one or the other character of maturity in advance of another the number of species has been supposed to be greater than it is. The same irregularity in the successional appearance of-structures is rell known in the earlier periods of embryonic life, as stated by Von Baer in the scholia of his Ent-wickelungs-geschichite. In the chick, different portions of the vertebral axis and the abdominal plates may or may not appear in the usual order of succession.

In Amblystoma the approximation of the period of reproduction to that of transformation raries with the species, and it is evident that the closer this approximation, under the above principle of variation, the more protean will the species be. As we know from the experiments of Hogg, Duméril, and others that metamorphosis is greatly hastened or delayed by the conditious of temperature and light, what would not be the effect on individuals of such a protean species of a change of topographical situation, such as the elevation or depressiou of the land? And I have no hesitation in saying that if the peculiarities of series of individuals of $A$. tigrinum, in the respects above enumerated, were permanent, they would characterize those series as species as completely as any that zoölogists are accustomed to recognize. For the evidences on this head, see the discussion of this species below.

The expriments of Hogry, above alluded to, are as follows, as given by him in the Annals anm Magazine of Natural History.

Ho placed a number of impregnated ova of frogs in vessels arranged at regular distances from the light in a cave. The lessening degrees of light were of course accompanied by a corresponding but much less rapid deeline in temperature. The resulting effects on the metamorphosis may be tabulated as follows:


Other experiments, which will not be quoted now, are equally conclusive as to the effects of light and heat on their process. The distinction between maturity; or adult age, and complete development must be borne in mind. The former condition is attaned when the ova are fitted for impregnation and the spermatozouids are capable of accomplishing that result. Development may or may not advance muelh beyond this periol. As one or more periols in the life of every species is characterized by a greater rapidity of development (or metamorphosis) than the remainder, soin proportion to the approximation of such a period to the epoch of maturity or reproduction is the offispring liable to variation.

The great difference between the different species and between individuals of the same species in this respect, may be illustrated by the following eompariso: between the sizs of the animals at the time of losing the branchia, so far as known, and that to which they ultimately attained:


In this comnection it is desirable to ascertain how far characters dis. tinguishing undoubted species fall into the line of successional changes common to all the species, ats answer to this question would solve an important part of the inquiry as to the o igin of species. We can not go into it exhaustively at this time, but direct attention to these characters in the synoptic table. The following are developmental characters which distinguish known species: (1) The direction of the palatine series of tecth; (2) the leugth of the borly and tail, as compared with the width of the head, is greater in large and old individuals of A. tigrinum ; (3) the widening of the muzzle and greater separation of the external nares ; (4) the spotted as distiuguished from the uniform coloration.

Characters to which no such relation can be assigned: (1) The number of costal folds, whose interspaces correspond with the vertebrat ; (2) the number of phalanges.

Baird, in the first synopsis of this genus published, cummerates eight species; Gray in $18 \tilde{0} 0$ catalognes ten, after we exclude some species of other genera erroneously included. Duméril, likewise inchuding species of other genera, gives five true Amblystome. Hallowell, 185̈8, inereased the number to sixteen. In my monograph of this genus, published in 1867, the species described numbered eighteen, six new ones being added. Dr. Boulenger, in the Catalogue of the British Museum, second edition, published in 1882, gave the number as seventeen, including a Siamese species. lu the present work thirteen species are admitted, one of which is the Siamese species $A$. persimilis, after the subtraction of nine species placed in the genera Chondrotus and Lingucelapsus. For the study of this genus the collection of the Smithsonian Institution is unequaled. Probably the second best collection existing, that of the Acadeny of Natural Sciences of Philadelphia, has also furnished its numerous types, and several species mostly described by the late Dr. Edward Hallowell.

## Synopsis of species.

I. Series of teethextending along the external tissuno of the internal nares. Plicit of tongue radiating from its posterior pertion. Pirotod glamels not forming an ovoid distinct mass. Four phalanges in fonth toc.
A. Costal grooves, ten.
a. Vomerino series, three.

Head broad; width 3.5 to gioin; mazzle contratede ; external nares much eloser than internal ; palatine seres convex backwards; tail short, compressed; blackish-brown, gray speeked. ............ d talpoideum.
B. Costal grooves, eleven.
a Vomerine series three.
$\beta$ No, or one indistiuct plantar tuberele.
Middle series transverse or concave to behind posterior margins of nares; width of head in specimens of 3 inches, greater than one-fourth lengths to groin; in adnlts, 4.7 times; black above, with gray cross-hands.

[^10]Tueth as in the last ; width of heal in small specimene, 3.5 to groin; in adults, 4.5 times; a strong dorsal groove and longer tatil; blackish above, with it series of romed yellow spots on each side of the back. A. punctatum.

Median series of tep th convex, advancing beyond posterior margin nares; width of head much loss that one-fouth length to groin; tail short, no dorsal gronvo; lead-colored, with au inferior latoral and nsually superior series of small irregular yellowish gray spots.. A. conspersum. $\beta \beta$ Two distinct plintar tubercles;

Median serics of teeth straight, nearly divided; external nares much closer together than internal; width of head more than one-fourth length to groin; muzzle very short ; tail much compressed ; blackish above, with large, irregular, sellow spots, contluent ou sides; below yellow
A. bicolor.
ace Vomerino series four.
Tecth in four series, which form an obtuse angle directed forwards; width of head, 3.6 times in length to groin; length from muzzle to axilla equal leugth from axilla to groin; tail nearly as long as hean and borly; dark brown, with a dark brown baud ou side ...A. copeanum. 1. Costal grooves, twelve;
if Larreer species, with tiro distinct plantar, tubercles and mucous pores on the side of the muzzle.
$\beta$ No canthis rostralis; tail shorter than head and body ; chin not projecting.
Vomeropalatine tooth series with the median portion presenting a very obtuse angle forwards, rarely straight, sometimes with the lateral portious separated; brown, with large yellow spots of larger or smaller size... ................................................... . A. tigrinum.
Muzzlo broad obtuse; dark brown, with vertical yellow spots ou sides; teeth in four distinct series, in a nearly transverse line.
A. trisruptun.
$\beta \beta$ Canthus rostralis dietinct ; chin projecting.
External nares nearer tngether than internal ; muzzloobtuse ; head small, width 5 times to groin; front convex; tail louger than head and body; vomerine teeth in one series, slightly convex forwards; yellow, with irregular brown bauds above....................... A. xiphias.
$\alpha \alpha$ Smaller species; the suncous pores not extending beyond the orbits; teeth in three saries; no, or one indistiuct plantar tubercles.
Exterual and internal uares equidistant; vomerine serics nearly transverse; willh of head, 4.5 to 6 times in length to groin; length of eye, 1.75 to 2.5 times in width between anterior canthus of same; lead colured to brown or black, with or without pale or distinct lateral spots. ............................................. A. jeffersonianum.
Nares equidistant; width of hoad, 5 times to groin; muzzle contracted; leugth o" eye, entering 1.66 times in width between canthus of same, once to nostril; metian deutal serios angulated forwards; digits loug; brown or lead colored, usually a broad gray baud on vertebral line of tril and borly expandiug on occiput: sides, dark reddish-brown.
A. macrodactylum.

Muzzle wide; width of heal entering length to groin 4 times; tail long as head and body to groiu; ligits short; black, upper surfaces bright yellow
d. epixanthuni.

These species are distributed as follows: One, the A. persimile Gray, is said to be an inbabitant of the mountain regions of Siam. The others are all North Ameritan. One species only, the A.tigrinum, extends
southwards on the Mexican platean as far as the City of Mexico. The remaining species are distributed as follows:

Easterin Region.-A. opacunt ; A. punctatum ; A. conspersum ; .I. bicolor; A. cope anит (?) ; A. tigrinum ; A. xiphias; .1. jeffersonianим.

Austroridialian region.-A. talpuidenm.
Central Region.-A. tigrinum; A. trisruptim.
l'acific Region.-A. tigrinum; A. macrodectylum; A. cpixanthum.
As but one specimen of the $A$. copeanum is kinown, little can be said of its distribution.

## AMBLYSTOMA TALPOIDEUM Holbrook.

> Gray. Catal. Batr. Grad. Brit. Mus., 1850, 1. 36 ; Dıméril \& Bibron, Erp.
> Gen., Vin, p. 109; Cope, Proceeds. Acad. Phila., 1867, p. 172; Stranch,

$$
\begin{aligned}
& \text { Salamandra talpuidea Holbrook, N. Amer. Herp., v, 73, Pl. } 24 .
\end{aligned}
$$

Shortest, stoutest, and most clumsily formed of all the terrestrial Amblystomata. Character of skin as to glands pits, ete., mach as in A. punctatum and opacum. A row of large pores on the head, interior to the eye and nostrils, extending auterior to the latter. This passes behind and beneath the eye, reaching forwand nearly to the nostril ; a patch on the cheeks above the lateral groove and another below it, probably extending forward along the lower jaw.

The head is very broad, and large, and is wider than the body anterior to the constriction at the neck. Its width is abont equal to the distance from suout to gular fold (thas wider than long), and is contained about 3.2 times to the groiu. The eyes are superior and rather small, separated anteriorly by nearly three lengths of the orbit; about one orbit from the nostrils, which are separated about $1 \frac{1}{2}$ orbits. The mazzle is rather angular. The upper jaw is visible beyond the lower when viewed from below.
The body is short, squat, and depressed. There are 10 costal grooves on the side.
The tail is contained about $1 \frac{1}{2}$ times in the rest of the animal. It is mach as in $A$. opacum, but higher, though without a crest.

The digits are rather long and slender, scarcely different from those of $A$. opacum.
The palatine teeth are in a transverse series of three seetions. The middle section is not interrupted along the median line. In the type it is slightly concave anteriorly, seareely rathing to the inner line of the imner nares, and behind the range of the lateral seetions, which begin a little interior to the outer line of the nostrils. The middle and lateral sections are separated by the wilth of the inner nostril. In another specimen the middle patel is nearly straight; in another, composed of two ares concave anteriorly.
The tongue is thick, tleshy, and adherent, though the edges are free: at the sides; less so at the tip. Its width is not more tham half that of the head. The papillose pertion is separated pesteriorly by the exten-
sion forward of the plain basal portion of the tongne, althongh there is no groove, and exhibiting two prominent comua to the tongne proper. The papillose ridges are longitudinal and nearly parallel.

In alcohol this species is a light brown alove, paler beneath, irregnlarly sprinkled, blotched, and marbled with silvery or plumbeons gras, of a lichen-like character. Specimens when alive show the ground color to be a dark brownish or liver black, more livid on the sides, and perhaps lighter beneath; everywhere sprinkled with the silvery gray dots of larger size on the back. The apper part of the tail is of a purer brown than elsewhere, and is borlered hy a series of obscure blackish spots; seen also near the lower margin. A few similar dusky spots appear seattered on the back. The iris appears to be a dark brown withont metallic luster.
A series of specimens from Prairic Mer Ronge, Louisiana, is quite similar. Some of them appear to have just completed the change from the tadpole state, and the tail is higher, more compressed, and somewhat eresterl; the toes, shorter, flatter; the papillose folds of the tongue. more indistinct.

## Mcasurements.

Inches.
Length from snont to transverse line of month ........................................ . . 30
Length from snont to gular fold ................................................................... . . . . . .
Leugth from snout to groin ....... ....... .. .. ............................................... . 1.90
Lengtl from snont to behind arnis ............................................................. . . . . 2.30
Length from snout to end of tail.................................................................. . 3.80
Length of tail ........................................................................................... 1.50
Width of head ........................................................................................... . . . . 52
Length of fore-arm..................................................................................... . . 46
Longth of hind leg from knee ............................................................................... .
Extent of hind legs ................................................................................. 1. 70
Greatest longth of tail................................................................................. . . 31
Greatest width at same place..................................................................... . . 15
I found this species abundant in the high valley in southwestern North Carolina in which the French Broad River takes its origin from mountain streams. Thenceit extends through the southern Atlantic and Gulf States to and including Louisiana, west of which it has not yet been found. It is not aquatic, but lives in damp places below logs and stones.


Fig. 7.-Amblystnma talpniteum No. 38i9. Prarie Mer Ronge, La.

line.

| 1 | 3906 |
| :--- | :--- |
| 2 | $357!$ |
| 3 | 3972 |

No: of No. of
spec.

Locality.

Liberty Comnts, (ia l'rairi Mor Romare, La
Nuar Cairo, 111

From whom receired.

Dr. Jones

1. Fiairin.
R. Kemnient

## AMBLYSTOMA OPACITM (Gavenhomst.

(1'lates 19-91.)
Anlblystoma opaca, Baird, Jnırn. Ac. Phila. (2) i, 18:0, p. 2×3; Gray, Cat. Batr. Graıl. Brit. Mus., ed. i, p. 3i, 1850 ; Hallowell, Joura., Philit. A
Sulamandra opaca, Gravenh., Ueber d. Zoül. Syst., p. 4:31, and Delic., 1. \%-, Pl. 10; Пım. \& Bilor., p. 66.
Salamandra fasciata, Green, Journ. Ac. Phila. 1, 1818, p. 3.ol); Iolhr. N. A. IIerp., v, p. 71, Pl. xxin; IMokay, N. Y., Falli, Rept., 1. 77, P1. 17, lig. 10.

Amblystomu fasciatum. Dum. \& Bibr., p. 10;i, Pl. 101, lig. 5.
Amblystoma opacum, Cope, Proc. Ac. Plıila. 1867, p. 173; Stranch, Salan., p. 6.3; Bonlonger, Cat. Batr. Grail. Buit. Mas., ed. m, 1882, p. 40.
Body swollen, thick, eylindrical, depressel; skin perfectly smooth, althongh under a lens every where showing minute simple pores or pits connected with the glands, which are seen everywhere on the body and tail, except, perhaps, on the lower part of sides, belly, and beneath the head ; on the tail, however, they are most developed on the upper hali.: There are no regular patches of more conspicuons pores on the head and parotoids, as seen in A. punctatum.

Head rather broad, depressed, its greatest width about $\%$ the length from snont to gular fold, and about $\frac{2}{11}$ the distance to insertion of hime legs. Axial length of month half that to gular fold, which is interrupted on the nape; a constriction behind the angle of the month, with a lateral groove (or ridge) connecting the two as in A. punctatum. Distance from snont to gular fold not quite $3 \underline{2}$ times in that to insertion of hind leg. The eyes are moderate; the pupil cirenlar. The general relation much as in A. punctatum.

Body nearly cylindrical, but decidedly depressed. No indication of a dorsal furrow. Eleven well marked costal fiurows inchuling the inguinal. There are abont four pelvic furrows; those on the base of the tail are distinct anteriorly, but gradually become fainter.

The tail is oval or subelliptical in cross section, though withont any indication of a keel. It is nearly cylindrical at base, thongh slightly: compressed, becoming more and more so to the pointed tip. It is thicker above than below, and measured from behind the ams is contained $1 \frac{1}{2}$ times in rest of the length. The lateral groove on the tail is less distinct than in $A$. punctatum.

The digits are linear, depressed, but withont any indication of web or margin. The third or longest finger is one-third the distance from its tip to the elbow (contained three times). The lateral ones are quite short. The fourth toe is longest, and contained 2.2 times in the distance from its tip to the knee; the $3,5,2,1$ are successively shorter, or the fifth and second are about equal. The distance between the ontstretched toes is contained abont once and two-sevenths in the length from snout to behind ams.

The tongue is thick and tleshy, as in $A$. punctatum, though larger in proportion, and filling the month more. The teeth are in one transverse
line, in three series, much as in $A$. punctutum. The central is a double are. The lateral series are not so far forward, or pass more obliquely backwards, so that their extreme end is even behind the convexity of the central series, not anterior to it. The lateral series is abont half the length of the central, with a decided interval.

In alcohol the general color is a livid back. There is a dorsal series of transverse light slate-colored bands, which widen at each end into at $\mathbf{V}$ on the back, but are more linear on the tail. These vary in mumber; about seven on the body and as many on the tail; sometimes more or less; sometimes confluent with those before and behind them; sometimes interrnpted in the midde. They to not descemb one third the depth on the sides, being confined abruptly and well lefined to tho dorsal region. There is a similar patch on the snout.

## Measurements.

Inches. Inches.

Length of month ....................... . . 30 Length of tail

1. 50

Length to gular foll. ................ . . . 3 Width of liead .......................... . . . . .

Longth to himl log ................... I. 90 Lenrth from knce ..................... . . . . . . .
The principal difference in form and structure between this species and $A$. punctatum are seen in the absence of any dorsal furror, and a less prominence of that on the side of the tail. The limbs are more feeble, the head narrower, the tail shorter, ete.
In specimens from Prairic Mer longe, 4033 ? the body is thicker and more chmes, the legs weaker, the toes shortor then in Pennsylvaia specimens. The teeth, too, appear more transerse, and there is little or no interval between the midde and lateral combs.
This species is fomd in drier gromad than is congenial to most salamanders. I have taken it in the sandy regions of New Jersey and Delaware.


le ESElive selites.

|  |  | Lacality. | When colhecter. | Fiom whon recoived. | Nature of specimell. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ¢268 | 3 | Ricehorongh, (ia |  | Dr. W. L. Jones . | Alcoholie. |
| 4877 | 2 | Nortolk, Via |  |  | 1). |
| !191 | $\stackrel{2}{2}$ | Kinston, N. ${ }^{\text {c }}$ | 187 | J. W. Milme, | 1)\%. |
| 9288 | 2 | Monlton, Ala. |  |  | ! 10. |
| 4100 | 3 | Sontliern llinais |  | 12. Komuirott | 1\%. |
| 4037 | 8 | Prairio Mer Liongo, La |  | James I'airio. | 11\%. |
| 10892 | 10 | Wheatland, Imd | Apr. -, 1881 | liohert Lidgway | 1 co |
| 120.51 | 10 | Monnt ( 'armel, 11 | Nov.-, 1881 | 1. M. Tmuer ....... | 110. |
| 4085 8079 | 5 | Lanasater, Ohio |  | Protil Lestumernx | 111. |
| 8979 3981 | 1 | Kinston, N. $\%$ ( | - -, 1873 | J. W. Milner | 11. |
| 4920 | 1 | Hiorita |  | T. chower | 11, |
| 3954 |  | Toxas |  |  | 17. |
| 12598 | 4 | St. Jerome Creok, Md | Fr\%. -, 18.22 | 1, N. Wialier. | 11., |
| 3811 | 1 | Abreville, S. ${ }^{\text {c }}$ |  | J. B. Bamtat | $11 \%$. |
| 13555 | 1 | Nuw hedford, Mass. |  | W. Nro.jr | 11\%. |
| 3933 | 1 | Tyron Spings, Jomn |  |  |  |
| 4018 | 1 | Nuw Orleans, Lat |  | N. 0 A Amd. N:tt. Sei | 11. |
| 3038 | 13 | Oarlisle, Pa |  |  | 14. |
| 3941 | 1 |  |  | 1) C. Llogal ... | $1 \%$. |
| $3!164$ 31518 3 | 1 | liarime Wis ${ }_{\text {Sax }}$ |  | (!) | 110 |
| 3453 | 1 | Anx Pamins Ravar, 11 |  | 14. Kimnicott. <br> J. T. Lind bach | $\begin{aligned} & \text { son } \\ & \text { so } \end{aligned}$ |
|  | 73 |  |  |  |  |

GENERAL SER1ES.

| 8.347 | 1 | Kinston, N. C | ---, 1873 | J. W. Miluer | Alcoliolir. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37.11 | 3 | Crloucestur, Vil |  | (\% Manl | $1) \mathrm{l}$ |
| $408{ }^{\circ}$ | 85 | Irairin Mor Jonge, La. |  | Jas. F'airie | 110. |
| ;3928 | 9 | Andarsom, S. |  | - ] aniel | 10. |
| 3080 | 3 | (reorria .... |  | J. I.e Soute. | 1)o. |
| 3918 | 1 | 'Tarbotm, N. (\%. |  | J. I. Bridger | J!. |
| 3927 | 8 | Glimeestor, Va |  | (!) .......... | 10. |
| 41008 14481 | 2 | ( 0 lumbus, Ga. |  | ]r. Geaner | 1:0. |
| 14484 | 1 | -....erlo |  | ......ilo | In. |
| 394.3 | 1 | Meadville, Pa |  | J. F. Thickston. | 10. |
| 31924 | 6 | Georria |  | Jr.J. Lo Conte. | 1\%. |
| 396 | 1 | Iiplry, Ohio.... . . . . . . . . . . . |  | - Ilay.................... | $1) 0$. |
|  | 114 |  |  |  |  |

## AMBLYSTOMA PUNCTATUM Linn.

(Plates 14-18, 25, figs. 4, 5 ; llate 48, fig. 10.)
Amblystoma puctutum, Cope., Proc. Ac. Phila., 1sfi7, 1. 175; Stranch, Salam., p. 63; Moulenger, Cat. 13atr: Grad. Brit. Mus., ed. If, IA×2, p. 41.
Lacerta îlenctata, Limı., S. N., I, p. 370.
Lacrrta maculata, Shaw, Zool., iri, p. 304.
Salamandra renenosn (Bart.), Dand. Rept., viri, 1' 229?: Hollr., N. A. ITerp., v, p. fi7, Pl. 22.
Lacerta subniolacea, Barton, Amer. Pliil. Trans., vi., p. 10e, Pl. 4 fig. (i,
Salamandra subriolucea, Harlan, Journ. Ac. Plila., v, p. 317 ; Dekay, N. Y. Famn., Rept., p. 74, Pl. 2, fig. :3i.
Amblystoma subriolueum, Tschmali, Bar., p. ! ! .
 Soc. 18.53, p. 11.
 1]. 351.
Amblystoma argus, Dum. \& Bibr., viri, p. 103.
No. 3950 di . Body swollen, stout, eylindrical. Meard depressed. Sikin entirely smooth, though pitted with pores, which are most mumerons on
the tail. Of these there is a patch of larger ones on the parotoid region, amb another on the top of the head inside of the orbits aud extending anteriorly in a straight line towards the nostrils and passing back wards semicirenlarly behind the efe. A donble row aromal the edge of the lower jaw ; a pair on each onter eostal space along the side of the body, and a row on each side of the top of the tail; the latter indicated generally by a whitish dot.

Ileal broad; lepressed ; width nearly equal to distance from snont to gular fold, amd nearly one fourth the distance to insertion of hime legs. Length of month along axis of body half distance from snont to gular fohl, which is nearly contimous across the nape. There is a constriction behind the angle of the jaws, interrupted above and below, and a furrow connecting the two along the parotoid region and extended in a lateral line to the orbit. Distance from snont to gular fold contained 3.2 times in distance to insertion of hind legs (four times in another speeimen).

The eyes are moderately large; the length of the orbitcontained $4 \frac{1}{2}$ times in distance from snont to grlar fold; about once in listance from the nostrils, and abont once in the distance between the two nostrils; nearly twice in listance between the anterior extremities of the orbits.

Borly nearly eylindrical, perhaps slightly depressed, and swollen a little in the middle; on each side are eleven costal grooves, including ingninal and axillary ones; all strongly marked and nearly continnons above and below ; the axillary is, however, usually quite inconspicuons; four more of these furrows to behind the anns, where the last is confluent with the first candal furrow; these become less and less distinct to near the middle of the tail. There is a slight groove down the middle of the back.

The tail is oval in section, the larger end of the oval below; becoming more and more compressed to the tip, without indication of any ridge. There is a lateral indentation along the whole length, which is abont eqinal to the rlistance from the hase to the snout. In alcoholic specimens the tail is bent or curved, sometimes upwards, sometimes down, sometimes laterally.

The rligits are nearly cylindrical, or slightly depressed, withont web or margin. The third or longest finger is contained abont 2.2 times in the distance to the elbow. The second finger reaches to the last articnlation ; the fourth to the pennltimate.

The fonrth toe is longest, containel $2 \frac{1}{3}$ times in the distance to the knee; the thirl, second, fifth, and first successively shorter. The distance between the ontstretehed hind toes is rather more than 1 is the length to behind anns.

The tongne is thick, fleshy, and attached, althongh free at the edges except behind; it is abont two-thirds the width of the upper jaw, nearly orbicular, thongh the outline of the papillose portion is a little emarginate behind. It almost seems as if the tongue were capable of elosing round an object in its center, as in the hollow of the hand.

The tramserse line of tecth is in three parts or combs; a central about two-fiftles the width of the head, and separated from the lateral by a slight interval. The central patch is nearly straight in its middle, but the ends curve a little forwards, and contimuously with the lateral portion of the line which forms a curve concave backwards, bomeding the orbit. The inner elge of the posterior nares marks the extent of the central row of teeth. The lateral comb of teeth is about half the length of the central.
The color of the specimen described is, in alcohol, of a dark liver brown above, abruptly light olivaceous beneath. On each side of the back is a series of nearly circular ronnded spots about the size of the orbit, about three on each side of the head, eiglit or nine on the body, and as many on the tail, where they are sometimes confluent. These spots are white in alcohol, but yellow in life. Nong the sides and more sparingly beneath are some scattered, quite small whitish spots, not very conspicuons. The legs are of the color of the under parts, not of the upper; they show some of the small light spots seen on the sides.

Measurements.
Total length of 3950 ................. 6. 50 Length of tail behind anns.......... 3. 10

Length of month .................... . 40 Winth of head......................... . .6.)
Length to gular fold................ . . 82 Arm from clbow....................... . . . . . . 0
Length to groin .................... . . 2.80
Himl leğ from kneo................... . . 0
Length to behind ams
3. 40

In the preceding paragraph I have deseriber a suecimen from Abbe. ville, S. C., as a loeality nearest to that whenee the original of Limman's description was obtained. An examination of a large series of specimens from different localities shows tertain differences, which, howerer, are not of a character to indicate specific separation.

The external appearance of the skin varies considerably with the strength of the alcohol used for preservation, and probably with the season when captured. The animal, when alive, is perfeetly smooth and lustrous, and readily exules a large quantity of a white milky juice from the upper half of head, body, and tail, or from the dark-colored portion. This is the to the presence of glands closely implanted in the skin, the pores of whith are sometimes quite ineonspicuous; sometimes very distinct. On the tail they are much largest and deepest, and the lateral groore marks their inferior boundary, being there implanted vertically. When these pores are very full of their milky juice and the alcohol is very strong the contraction of the skin between the mouths of these pores gives more or less the appearance of rommed, thick-set gramules, of rather large size. This also gives rise to an apparent depression of the rligits, the skin forming quite a margin.
The proportions of the borly vary slightly. The tail is generally not so long as the rest of the animal, the groin being more nsinally nearer
the middle point of the axis. Yonnger specimens appear to have shorter tails.
There is considerable diversity in the curve of the transverse series of palatine teeth. In nearly all more northern specimens the central row is formed of two ares, concave anteriorly, more or less contimons with the lateral, which are anterior and convex anteriorly. The two central ares are continnous at their inner ends, forming an inverted angle on the axial line. Sometimes, however, as in most of the specimens from Prairie Mer Rouge, this central angle is wanting, and there is only a single are or curve, concave anteriorly. In the type specimen deseribed this central row of teeth is nearly or quite straight (which is quite apt to be the case in very large ones), whale in one specimen of No. 4684 it is convex anteriorly. The transverse extent of this middle line of teeth raries. Sometimes there is quite an interval between it and the lateral, while in 3930, from New York, they are contimuous without appreciable interruption.

There are no very great variations in the pattern of coloration. Generally the onter surface of the limbs is eolored like the back, in which case there are one or more large, rounded light spots. The under parts are generally dark bluish; the sprinkling of small white specks on the sides and beneath varies considerably in prominence. The large dorsal spots are always nearly circular, and vary in number, generally only one series on each side.

In living specimens from Carlisle, Pa., the iris is dark brown, without metallic color, scarcely distinguishable from the pupil. The color of the animal above is a deep anthracite black; beneath, dull livid. On each side the dorsal line is a series of large, nearly circular, gambogeyellow spots, somewhat symmetrically disposed. These vary from 10 to 20 from head to tail, and sometimes are larger than the eye; usually abont its size. On the sides and beneath are sparingly seattered small bluish-white specks. The spots, both yellow and bluish-white, are sometimes found on the legs.

In younger individuals the yellow spots are brighter and the black ground deeper.-S. F. B.

Protessor Baird (Iconographic Encyelopedia, 1851,) thins leseribes the reproduction of this species:

Early in April, or towards the end of March, large masses of gelatinous matter may be observed in ditches, pools of water, or mountain streamlets, which on closer inspection will be fond to consist of a mumber of hollow spheres, abont a quarter of an inch in diameter, embedded in or combined together loy a perfectly transparent jelly. Within each sphere is a dark olyject, a spheroidal yolk, which in the course of some days becomes considerably elongated and exhibits signs of animation. Omitting, as msnited to our pages at present, any acconnt of the embryonic development of the animal, we resme its history at the time when its struggles bave freed it from the shell of the splere in which it
was inelosel. At this time it is about half an incl in lengtl, and consists simply of hear, body and tail, the latter with a well-developed fin, extending from the head and anns to the extremity of the body. Respiration is performed ly means of three gills projecting from each side of the neck, of rery simple construction, however, and with but few branches. The absence of limbs is eompensated by the existence of a clubshaped appendage on each side of the head, proceeding from the angle of the month, and representing the cirri observed in some adult salamanders. By means of these appendages the young salamanders are enabled to anchor themselves securely to objects in the water. In the course of a few days a tubercle is seen to form on each side, just hehind the head and under the gills, which elongates, and finally forks at each end, first into two, then three, and at last into four branches, thus exhihiting the anterior extremities, with the four fingers, which latter, in the larva, are very long. Before the fore-legs become completely formed those behind sprout ont in a similar manner, with first three, then four, and finally five toes. During this time the gills have increased in the mumber of branches, and finally exhibit a heantiful arboreseent appearance, in which the circulation of the bood ean be distinetly seen ly means of a simple lens. (See plate 16.)


Fig. 9.- A mblystoma punctatum. Hampton, Va.



## AMBLYSTUMA CUNSPERSUM CO！＂．

 ii3；Boulenger，Ciat．13．（i．Brit．Mins．，cil．11， $18 \mathfrak{j}$ ，11．I？
This in one of the smallest species of the gemes，aml thongh less stont than the two preceling，is more so than the A．jeffersonianum，which it resembles in general features．

Skin everywhere smooth．In some specimens only a series o！pores may be traced along the superciliay region and in a line to near the nostrils；several are on the paroterid reaton．The skin of the borly is remarkably fiee from visible pores，while，as usual，the superior pat of the tail is thickly stmbled with them．

The head is a broad oval，its width making the length to the gronn 4．5 times or a little more，and is a littlo over thres－fomrths distance to かular fold．Eye tissure equal length to mostril，and $1 . \overline{\mathrm{J}}$ times hetween anterior angles，and a little more than distance betwern mostrik．Tho last distanco is a litthe less than that between inmer mares．Dosterior
 site mindle of mper lip from anterior point．Muzzle longer than chin．

Furows behime the orbit inconspiconas，hat present．Costal groures
eleven. Tail short, everywhere compressed, measuring from its origin (at end vent) to axilla or to gular fold. No marked dorsal groove.
The limbs are short; the digits long and slender. When appressed the fingers reach to the heel, or beyond bases of toes. Digits subeylindrical; anteriorly, third longest, then $2,4,1$; posteriorly, $4,3,2,5,1$. Two small tubercles on edges of sole. Expanse of outer toes efual from end muzzle to posterior canthus of eye.

Teeth in three patches, the median longest, commencing opposite imer margin of nares, and convex to between nares, or nearly so, in one speeimen. Tongue longer than broad, the laminar portion prolonged in two lateral bands posteriorly.
Measurements. Liнes.
Length from snout to gular fold. ..... 4. 1i)
Length from snout to groin ..... 11. : 2 ,
Length from snont to end arms ..... 19. 3
Length from smont to end tail ..... 31.4
Length of month on median line ..... 3
Length of fore-arm and hand from elbow ..... 3
Length of leg and foot from knee ..... 5
Width of head ..... 3.7

General color above leaden, below pale leaden, the latter uswally bounded by the line of the limbs, but in one specimen rising as high as the line of the eye. Lower parts of sides amd sides of tail more or less varied with small whitish spots, the former often in a regular line. $\Lambda$ similar line on the upper part of the sides is present in some specimens; in others wanting. The end of the muzzle is sometimes pale marbled.

Eight specimens of this species before me confirm its validity in every respect. Specimens of the developed young of both $A$. opacum and $\Lambda$. punctutum are of considerably swaller size, and maintain their peculiar colorations and a greater width of the lead, etc.

From the appended localities from which it has been sent the range is seeu to be extensive.


Fig. 10.- 4 mblystoma conspersum. Nu. 3934. Carlisle, Pa.
U. S. NATIONAL MUSEUM.


## AMBLYS'TOMA COI'EANUM H:ッソ.

## 

The head is large, somewhat wider than the borly, and llattened; the body short, and the tail long and compressed. The siint is for the most part smooth, but everywhere, as seen umber a lens, is pitted with the openings of the entaneons follicles. Of these, there are a few enlarged ones in a band surromding the or bit and extending forward to the nostril. Others are fomd above the angle of the jaw, and a few still larger ones on the posterior border of the parotoid rewion. The prominent keel and the whole tip of the tail are so richly povided with enlargel pores as to present a gramulated appearance.
The width of the head is somewhat greater than that or the body. It is possible that the breadth and flatness of the head have been exag. gerated somewhat by the injories that it has received; but this can be trae only to a very slight extent. The breadth is about the same at the angle of the jaw and the eomer of the month. From the fermer point the head tapers backward, the outline being concave to its posterior border, where it is suddenly constrieted into the neck. From the corners of themouth the head tapers forward to nearly opposite the nostrils, beyond which it is rapidly romaled to form the snout. The width of the head is a little less than the distance from the snout to the gular fold, and is contained in the distance from the snont to the groin 3.6 times. The distance to the gular fold is contaned in the distance to the groin 3.2 times. The depth of the head, on a line joining the angles of the jauss, is a little less than one half its width. The gular fold does not overlap, as it does in some species. It may have done so in life, but manipulation of the skin fails to restore an overlapping fold. The upper jaw projects beyond the lower. Eyes of moderate size. External nares small; their distance apart somewhat less than the width of the interorbital space.

The tongue is not notably different from that of A. Aigrinum. Thes teeth are arranged in fom series, which together form an inverted $V$, the angle of which is very obtuse. The limbs of the V , as seen with the unaided eye, appear nearly straight, and are seen to extend beyond the internal nares along their external fissure. Examination with a lens proves that the inner series are each slightly $\sim$ shaped, and so disposed as to make the angle of the V romided off. The onter series on each sile is nearly as long as the corresponding inner series ; is panly separated from it, and nearly straight or slightly concave on the posterior side. luner nares more distant than the external. The boly is somewhat depressed, but has not the swollen appearance presented by A. opacum. The distance from the snont to the axilla is. just ennal to that from the axilla to the groin. There are eleven well-marked costal grooves. There is a median furrow, not deep but distinet, begiming on the occiput amb rmaning alon; the batis, deepeningon the sacral region, and ending


The cloacal region is considerably swollen, and is broad and romeded, or slightly emarginate hehind. The distance from the groin to the pos. terior end of the vent in this species is greater proportionally than in any other of the genus so far as I liave been able to determine. It is contained in the distance from the snout to the groin but $3 \frac{1}{6}$ times.

The tail is equal in length to the distance from the suont to the beginning of the vent. It is much compressed and rather high. It has a well-dereloped keel or crest, which begins immediately over the sloacia and extends to the tip of the tail. The keel is sharp above, and is bounded below on each side by a shallow groove. Inferiorly the tail is broadly rounded for its anterior third or more, and is traversed by a median longitudiaal groove. The remainder of its lower border is compressed to a sharp edge. A transverse section of the tail, taken just behind the cloaca, would form approximately an isosceles triangle whose base would be about one half its height. Une-thied of the distance back toward the tip the height of the tail is three times its thickness.
The limbs are well developed. The posterior are a little longer, somewhat stouter, and the foot broader than the same limbs of a specimen of $A$. tigrinum that measures the same distance from the snout to the end of the vent. They are also fully as long as the same limbs of a specimen of $A$. punctutam that measures from snont to the end of the vent three-fourths of an inch more than the specimen I an deseribing. The toes are alat, much like those of A. tigrinum, perhaps not so broad, while they are not so slender as those of a specimen of $A$. penctutum now before me. They are provided with a narow marginal and basal membrane. There are two distinct plantar tubereles.
Mensurements.
Length: Inchers. Lines.
Fronn stont to cual of tail ..... $5 \quad x$
From shout tor gular fold ..... 6. 5
From shout to line joining axille ..... 1.5
From stout to groin ..... 3
From shout to end of vent ..... 0
From end of vent to tip of tail ..... $\gamma$
From axilla to groin. ..... 1.5
From groin to end of vent ..... 8.5
Width of head at angle of jatw ..... 7.5
Distance between anterior canthi ..... 4. 1
laterorbital space ..... 3.25
Greatest height of the tail ..... 5,
Thickness of tail at highest pmint ..... $\because$
Length of whole fore-leg ..... 11
Lower arm and haul ..... 7.5
Lexyeth of thist finger ..... $\because .5$
llimer limb, totial hemeth ..... 1. 10.
Lower leer and foot ..... $!$
Free portion forrth tor ..... 3
Expanse of ontstretehed himber homs ..... $\therefore$
Distamed betwern external names. ..... $\therefore 1 ;$
bistane between inner nams. ..... :3. 1 ;

Proportional dimensions.


Fig. 11. A mblystoma copeanum Hay, natural size; copied from Hay.
The color is dark brown, almost black, above, brownish yellow below Between the fore and hind legs the light color of the belly monnts up on the sides to a level with the npper surfaces of the 1 mbs. The middle of the belly is of a duskier hue than its sides. Pectoral, inguinal, and pubic regions slightly brighter yellow than the sides of the belly. Head above like the back, below like the other lower parts. Just behind the symphysis of the lower jaw are indications of a bright yellow spot. The upper half of the tail is not so dark as the back, the lower half duskier than the belly. The limbs below and in front yellowish, as other lower parts. Feet, especially above, dark.

This species must be compared with $A$. bicolor and $A$. tigrinum. The last belongs to the group which has twelve costal grooves. A.tigrinum has the internl nares no more widely separated than are the outer; the limbs of the vomerine $V$ are decidedly concave, and the inner series of teeth are about twice the length of the outer. It is also a rather long. bodied species, the distance from the snout to the axilla being contained in the distance from the snout to the groin nearly 2.4 times, while in $A$. copeanum the latter distance is but twice the former. Indeed, this form differs from all others, in the shortness of the body, or the ennality of the distances from snout to axilla and from axilla to groin. A. bicolor approaches it most nearly, but this species liffers further in having no traces of the sellow spots so characteristic of that form. A. copeanum has also a broader and more depressed head, a more compressed tail, and longer limbs.
A. bicolor is described as having the palatine teeth in three entirely transrerse series; as having a very short muzzle, and as heing more or less spotted. A comparison of some of the dimensions of the two spe-1951-Bull 34-5
cies is necessary. The type of A.bicolor now in the muselm of the Academy of the Natural Sciences of Philadelphia furnishes the measurements found in the first column.


The abore table of comparative measurements shows that $A$. bicolor has, in comparison with $A$. copeanum, a longer and still broader head; in spite of this, a distance from the axilla to the groin greater than that from the suout to the axilla, a much shorter pelvic region, and shorter fore and hind limbs.

Fonnd at Irviugton, near Indianapolis, April 7, 1885, by Mr. George II. Clarke.

The specimen on which the description is based was found dead and somewhat mutilated. The injury that it has suffered does not, however, in any wiy obscure the characters of the species, amounting, as it does, only to a loss of the entire left fore-limb and slight fractures of a few of the bones of the anterior part of the head.

I have not seen this species, and know it only from the description and tigures of l'rofessor Hay. I have copied the greater part of the former in the preceding paragraphs. It is evidently a distinct species, characterizer among other things by the shortness of its body. In coloration it is about ideutical with the Amblystoma jeffersonianum fiuscum.

## AMBLYSTOMA BICOLOR Hallowell.

Proc. Ac. Phila., 1857, p. 215; Cope, eod. loc., 1867, p. 178; Strauch, Salam., p. (3; Bonlenger, Cat. Batr. Grad. Brit. Mus., ed. II, 1882, p. 42.

In the type specimen of this species the usual superorbital and lateral frontal serin's of large pores are not discernible. In a second specimen they are well marked. In the former the skin is quite smooth, with eleren lateral groores, and the folds of the throat and side of the head not strongly marked. The head is broad and obtuse, entering the length of the groin 3.75 times. The front convex in protile, containing the length of the fissure of the eye in its width between anterior cauthus of same 2.75 times. The same measure is a trifle less than the
distance from same to nostril and one and a quarter the distance between the latter. These are much closer together than the imer nares. Distance between onter margin of nares equal length from end muzzle to midinterorbital space.

Dorsal line with a faint groore. Tail much compressed, equal from end vent to canthus oris. Body stont and heary. The limbs are stout and the digits not elongate or depressed. The appressed limbs overlap by the length of the toes. Two well-marked palmar tubercles. Third and fourth toes nearly equal; fiftha little longer than first.

Tongue large, disciform, not emarginate behind. Palatiue teeth in three entirely transverse series, the interruption taking place cousiderably inside the line of the uares. The teeth themselves are in numerous rows on each of their bony erests, presenting a brush-like arrangement. Mediau series notched behind.

## Mectsurements.

Inches. Lines.
Length from end muzzle to galar fold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0. 95
Lengtlı from end mizzle to groin......................................................... 2 . 2
Leugth from end muzzle to end vent..... .................................................. 3 2. 3
Length from end muzzle to end tail.. ........................................................ 5 10.05
Length of monlh (straight). ...................................................................... 0.1
Length of fore-arm and foot . ....................................................................... 0 0.75
Length of lower leg and foot...................................................................... 0 . 8
Width of head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .............. . . . 0 . 8.75
Color ahove, olive brown; below, sellowish, olive shaded in the middle. The inferior yellow rises on the sides as short blotehes; above them are several ill-defined yellowish spots. Parotoid region yellow, with a distinct black rertical bar. Limbs brown, cross-banded; tail sellow, with brown spots.

The above description is taken from the type from Beesley's Point, N. J., in the Museum Academy Philadelphia. Another speeimen ( 4692 ) from the same locality, in the National Musemm, differs in two important particulars: The palatine teeth are not brush-like, but are confined to the crest of the ridge, and the tail is a little longer than the head and body. The muzzle is rather longer and the mucous pores more momerous. It may belong to another species, as the A. tigrinum, which it much resembles, but its eleven costal folds are a notable peenliarity. The A. bicolor, thongh nearest the A. tigrinum, appears distinct, after a carcful scrutiny of several individuals.

RESERTE SERIES.

| Catalogue number. | No. of speec. | lucality. | W6 h 11 collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4692 | 4 | Beesley's Point, N.J |  | Prof. s. F. Baird |  |
| 13391 | 1 | Montormery, Ala.. |  | T. S. Doran..... | Do. |

## AMBLYSTOMA TIGRīNUM Green.

(Plate 25, fig. 7.)
Cope, Proc. Ac. Phila., 1867, p. 179; Stranch, Salam., p. 63; Boulenger, Cat. Batr. Grad. Brit. Mus., 1882, ed. Ir, p. 43.
Salamandra tigrina, Green, Journ. Ac. Phila., v., p. 116.
Salamandra ingens Green, l. c., vi, p. 254.
Salamaudra lurida, Sager, Amer. Jomin. xxxvi, p. 322, 1839.
Triton tigrinus, Holbr., N. A. Herp., v, p. 79, P1. 2G; De Kay, N. Y. Faun., p. 83, Pl. 15, fi. 32. Triton ingens, Holbr., l. c., p. 85, Pl. 29.
Anbystoma tigrina, Baird, Journ. Ac. Phila. (2), 1, p. 284 ; Dum. \& Bibr., p. 108 ; Hallow., Journ. Ac. Philia., (2), ini, p. 350.
Anbystoma lurida. Baird, l. c., Hallow., l. c., p. 353.
Ambystoma mavortia, Baird, l. c., pp. 284, 292; Hallow., l. c., p. 352.
Ambystoma episcopus, Baird, l. c., pp. 284, :93; Hallow., l. c.. p. 354.
Ambystoma lroserpine, Baird, l. c., 284, 239 ; Hallow., l. c., p. 354 ; U. S. Mex. Bound. Surv., if ; Rept., Pl. 35, fig. 7-14.
Heterotriton ingens, Gray, Cat. Batr. Grad., Brit. Mus., ed. r, p. 33.
Xiphonura jefjersoniana, id., ibid., 1. 34.
Ambystoma tigrimum, id., ibid., p. 35.
Ambystoma marortinm, ill., ibid., p. 37.
Ambystoma califormiense, Graỵ, Proc. Zö̈l. Soc., 1853, p. 11, Pl. 7; Hallow., l. c., p. 355: ; Baird, Rep. U. S. Expl. Surv, xir, Part iv, Pl. 30, fig. 1-3.
Ambystoma fasciatum, var., Dum. \& Bihr., p. 107, Pl. 105, fig. 1.
Ambystoma nebulosum, Hallow., l. c., p. $35 \%$.
Anbystoma ingens, Hallow., l. c., p. 353; Cooper, U. S. Expl. Surv., Xir. Part iI, Pl. 31, fig. 2. Ambystoma maculatnm, Hallow., l. c., p. 355, and Proc. Ac. Phila., 185), p. 215.
Camarataxis maculata, Cope, Proc. Ac. Plila., 1-59, p. 122.
Amblystema matortium, Cope, l. c. : Strauch. l. c. ; Cope, in Yarrow's Report, Zoöl., p. 631.
Amblystoma obscurum (Bairl), Cope, l. c., p. 192; Stranch, l. c.
Amblystoma weismanni, Weidersh., Zeitschr. wiss. Zoöl., xxxir, p. 210, Pl. 11,12.

## Larval form.

Siredon lirhenoides, Bairl, Proceeds. Phila. Acad., 1852, p. 68; Stansbury's Report, 185: p. p336, Pl. i ; Rept. U. S. Pac. R. R., expl. x, Pl. xliv.
Siredon gracilis, Baird, U. S. Pac. R. R. Rept., x, Williamson's Rept., p. 13, Pl. xliv, fig. 2.
Desminstoma maculahum, Sager, Penins. Jonm. Merlic., 1858, p. 428, fig 1.
Sircton pisciformis, Dumèril, Journal de la Soc. Acelimatation, 1866, figs.
Siredon tigrinus, Velasco, Naturaleza, Mexico, iv, 1878, figs.


General form very thick an! massive, although the head is propor. tionally small in mature specimens; not as broad as the body. The skin appears quite smooth when fresh, especially when eovered with its epidermis. On rumoving this, howerer, the skin is seen everywhere closely eovered with slatlow pits, interspersed with granule-like projections of the glands. There is an indistinct line of pores on each side of the head interior to the eye, but they can be sarcely traced elsewhere.

The parotoid region is much swollen, wider than the skull, and abont equal to the uistance from snont to gular fold. The width of the jaws is contaned abont four amd one-half times in the distance to the groin, a little more than fire to the end of the anns. The gular iold is rery distinct, and even overlapping. The grooves belind the jaws and from the eye, obliquely along the side of the head and neek, are also very strongly marked.

The eyes are moderate; not prominent; the pupils eirenar. They are distant from the nostrils one orbit length and separated anteriorly $2 \frac{1}{2}$ orbits; the nostrils are separated one orbit. There is a decided constriction at the neck.

The bodiy is swollen and large, a little depressed; its circumference at the widest is nine tenths the distance from snont to groin. There are twelre well-marked costal furrows from fore to hind leg, and five pelvie; the fourth aud fifth miting just behind the amos.

The tail is about equal to the distance from snout to groin; it is subquadrate at base; $1 \frac{1}{3}$ as high as wide, but becomes immediately oval in section, larger below, and more and more compressed to the tip. The edges are, however, rounded to the terminal third, where they gradually become shary.

The legs are stont, thickened, and rather short in proportion. The digits are much depressed; short, triangular in shane, tapering from the broad oase to the tips, which are hardened and somewhat horny in appearance. The free porticn of the longest is abont one third the total length of the limb from ellow or knce; sometimes even less. In the individuals which live on land the digits appear longer and more eylindrical. The expanse of the outstretcheal toes is about four fifths the distance from snout to groin.

The tongue is fleshy, broad, about half tho width of the heat, and with the ontline of the papillose portion sliglitly emarginate behind.

The palatine teeth of this speces extend across the palate rery nearly from one side of the upper jaw to the other. The series is ony interrupted along the median line; sometimes scarcely so. The me is obtusely angularly rombled anterinly, the concavity behind reaching forward to abont opposite the middle of the internal nares. The shghtly convex anterior branches diverge backwarts regularly nearly to the line of the inner nares, where the angle of divergence becomes still greater, and the line becomes nearly straight or even concave anteriorly.

There is some variation in the specimens, of the precise outline of the curve of palatine teeth. Sometimes this is less angular anteriorly and does not reach beyond the posterior border of the inner nares.

In life this species is of a dark, livid blackish-brown above, olivaceous on the sides, and from light olise to dirty white bencath. On the upper surface, generally on the side of the tail and limbs, are nearly circular yellow spots abont the size of the eye, and generally sharply defined. These are much like those of $A$. punctatum, though not quite so distinet, and althongh a faint indication of arrangement in ten dorsal rows may be traced, yet these are less symmetrically disposed, and single ones are seattered betwe en the others along the back. Similar seattered spots are seen along the belly, which again is bordered, as on the lower part of the siles, with larger, more quadrate spots, which are more or less confluent, giving rise to elongated blotches, overpowering the ground color. This is also sometimes the case on the belly and almost always on the chin or beneath the head and neck.

The rounded spots above sometimes vary considerably in size, and occasionally are almost wanting. Sometimes they are more or less conflucut, in which ease there is usually a predominance of yellow on the belly. In a large series of specimens I have not observed any rertical yellow bands ou the side of the tail.

In the yomng, just perfected from the larva, the upper parts are dark brown; the under parts of a miform brownish-yellow. The yellow spots next make their appearance, becoming more and more prominent to a certain age. In very old specimens the dorsal spots become indistinct. but may generally be discovered when held under water or alcohol.

## Dimensions of 4691.

Inches.

| From snont along axial line |  |
| :---: | :---: |
| From snout to gnlar fold | 1.00 |
| From shont to groin. | 3.50 |
| From shout to end of anns | 4.40 |
| From smont to end of tail. | 8.00 |
| Width of head | 0 |
| Fore-arm from elbow | 8 |
| Hind leg from knee. | 1.10 |

The longest specimen before me measures 10 inches ( 4003 Racine). In this the tail from behind anus is as long as the rest of the animal. De Kay describes one of 11 inches in length.

Measurements of a typical specimen of the rar. tigrinum (4692).
Inches.
Length from suont to end of mouth along median line............................... . 45
Length from snont to gnlar foll................................................................. . . . 90

Length from snont to lwhind anns............................................................. 3. 50
Lebgth from smont to tip of tail...................................................................... 7.55
Length of tail. ........................................................................................ 3.80

Width of head ............................................................................... . . 70
Fore-arm from elbow ......................................................................... . . . 75
Hind leg from knee. ................ ..... ..................................................... . . . 95
Greatest height of tail.................................................................................. 65
Streteh of hind legs.2.80

In this variety the appreciable difference in color consists in the tendeney to transverse or vertieal bars of yellowish on the side of the tail more or less contluent.

I find no difference in form between the two series, the supposed $A$. episcopum now at hand ( 3899 and 3857 ) and young specimen of A. luridum (as 3971 ), from Marietta, Ohio. The color above is a light redilishbrown; the siles a sharply letined dusky brown; the belly of a lighter shate of the color of the back. There are some very obsolete indications of whitish spots in the belly and sides.

The following examination of the nature of the variation to which the Eastern form of this species is subject and their caluses may be added to the preceding diagosis from Baimes manuscript.

The color varieties are as follows:
$\alpha$. Uniform brown above, yellow below, sides darker brown; 3857, 3899 ; three specimens.

乃. Blackish-brown, with small scattered yellow spots abore and large ones on the sides, in the majority of the indiviluals; Nos. 4003, 4097, $4691,3974,3595,3966,3983,3970,3950,2971,4692,4706$, and eight in in musenm of the Philatelphia Academy.
$\gamma$. Nearly equally and not coarsely marbled above, with blotelies of deep brown and bright yellow; 4059.
$\delta$. Entirely yellow, with brown linear patches irregularly arranged; type of $A$. ingens, from New Orleans; one specimen.

The above coloration varieties, it will be observed, coincide in part with those of Western individuals.

The conditions of preservation of immature stages in the dentition are as follows :
a. Palatine series nearly entirely transverse behind the internal nares; eight specimens, all from New Jersey except two from Root Liver, Wisconsin, $(4093 a)$, and one from Lonisiana, 4706 . All are fully developed and many of the largest size; one of 4093 has the postnarial dental series separated on one side. Uf these the largest example of the species is from Root Rirer. With the other mentioned, the wilth of the head enters the length to the groin 4.5 times, and the tail is longer than head and body. The same relations are seen in two New Jersey specimens. Two from the latter State have the long tail, but the wilth of the head is only one fourth length to groin, while one of the same has the longer body ( 4.5 times), but the tail shorter than heal and body; two speeimens have both the short body and tail. The elongation of the tail and body scarcely ocenrs in eonnection with any other type of den-
tition, and it is mentioned here to show the greater general completeness of development in these Eastern individuals.
$b$. Series slightly arched, not passing between nares. Two specimens, large. In No. 3993 both outer segments are well separated from the median; the tail is longer than head and body, and width of jaws 4.33 to line of groin. This individual is aberrant.
c. Series angulated, not extending anterior to anterior margin of inner nares. Nos. $3956,2971,3983,3895,3899$, embracing fire specimens, three large ones, in Philadelphia Academy museum, and type of $A$. ingens Greeu in same.
This latter specimen is peeuliar in some respects, as already noted, in coloration. The head is relatively a little wider than in other specimens of the same large size, the width entering the length to the groin fonr times, as in individuals of the smaller average size of the species. The length of the ege fissure enters 2.5 times the interorbital width, instead of twice, though in one of equal size from Root River it enters 2.2 times. The haves are not more than usually separated; hence the muzzle is more contracterl than ustial. It is also depressed in profile, but not more than in some other specimens. I believe it not to be a distinct species, but a form dependent on causes similar to those producing others here enumerated, and not more permanent than those, so long as those canses are not mniversal. Iu other words, it is a large specimen, with teeth, bead, and tail of adult character, but body and mazzle more larval. The fold on the hind leg and outer toe, mentioned by Green, is not marked, or different from that seen in the species generally.

No. 4097, sixteen specimens from western llinois; two have the serie's dividell into four; 4093, two specimens; No. 4691, Cook County, 1ll., thirty-four specimens; one has the three interruptions, and five, with one of 4093, a median, making two series of teeth.

Of the above the tongue is of normal size and the branchise absorbed, except in twelve specimens (No. 4691) of which five present stumps of the branchis; and two (4097) where both the tongne is rery small and the gill-stmms remaiu. The wialth of the heal is .25 to groin, and the tail never longer than head and body.
d. Median series arched, extending anterior to anterior margin of inner nares. One specimen (3966) is fully developed in all other points.
$e$. Palatine series angulated, extending anterior to inner uares' anterior border. Nos. $4057,3974,3070$, two of $4093,3557,3599 b$, four of 4097, nine of 4691. All of these have the short head and tail given in the preliminary diagnosis. The small or larval tongne occurs in one of $4093,3070,3974$, nine of 4691 , two of 4097 ; branchial rudiments remain in two of 4097 and nine of 4691 . No. 4057 is remarkable in baving a very small tongue, and short deep tail, no stmmps of branchise, and brilliant coloration, with large size and genemal adult appearence. It compares with rertain specimens ( 4693,395 ) of the form marortium in this strong retention of some larval characters, and, like them, is from northern Minnesota, a region noted for its cold and late seasons.

Measurements of No. 4057.
Inches.
Length from snout to end of gape of month ............................................... . 55
Length from snont to gular fold ... ........................................................ . . . 1.00
Length from snont to groin . ......................... ...................................... 3. 3. 50
Length from snont to behind anus........................................ ............... 4. 30
Length from snout to end of tail (about).................................................. 8. 85
Length of tail (abont)......... ............................................................... 4. 4. 25
Depth of tail (at end vent)............................................................................. 1.95
Width of head...... ............................................................................... . . . . 1.00
Length of fore-arm from elbow . ................................... ......................... . . . . . 90
Length of hind leg from knee................................................................. 1.10
Stretch of hind leg ............. ....... .................................................... . 3. . 40
A specimen entirely similar, except in size and coloration, was found by Dr. Horn near Beesley's Point, N. J., a well-known locality for the species. The tail is remarkably thick and deep at the base, and only equal from its basis to the canthus of month; a groove in the dorsal line behind; tail not grooved. The color is a dark leaden brown, sprinkled everywhere with small yellow spots; spots larger on tail; belly yellowish. Total length, 6 inches and 5 lines.

From the preceding investigation we gather that larval characters in this species are in part only contemporaneous; that the branchise are lost first; the tongue develops next, and the teeth last; that the development extends in older age to the lengthening of the bolly aud tail; that the progress may be arrested at a time when any degree of combination of these and other features exists. That reproluction may take place at any of such different stages is evident from the condition of development of the ova of many of the varions specimens, and it is known to take place in other species at earlier stages than any recorded here as adult.

It is also to be noted that specimens from Nem Jersey are almust, always more fully developed than those from the Western regions; the former is a warmer district than the latter. Of two specimens from New Orleans, however, one ouly exhibits the dentitional characters of the New Jersey individuals. The characters common to the Western individuals have oceasioned the opinion that it was another species, which was called A. marortium.

Of this form I remarkedin my monograph of the genus Amblystoma, published in 18:7, already referred to, that it "differ's absolutely only in the broader mazzle and wider separation of the onter nares. The $A$. tigrinum retains in this case a feature characteristic of the larva of $A$. mavortium and of all other siredon species. The range of color variation is only partly different in the two, but the majority of specimens each belong to different color types. Each ocenpies at different geographical area, both of which are well marked in the distribution of many other reptiles. Nevertheless, ultimately 1 think it quite possible that they will have to be viewed as invelnomental forms, like so many other supposed species which are not sufficiently isolated from one
another at the present time to warrant them distinet places and mames in the system." Dr. G. Bonlenger, in the last edition of the catalogne of the species of salamanders in the British Musemm 15: ${ }^{\text {a }}$, has taken this riew of the case, and has reduced the name matortinm to the position of a syongm of tigrimam. In the present work 1 take the same view of the relations of the Bastern and Western forms.
The following is a description of a specimen of the Western animal:
labatine teeth in a transrerse series, more or less angular anteriorly, reaching to the posterior border of the inner nares, or one diameter beromd; the angle sometimes Hattened or rombled. The series searcely or not at all internpten on the median line; never (?) on the limbs, which are generally a little modulating.

Imer nostrils separated by the same space as the onter; rarely a litthe firther ap:art.
Tonge bromber than long; more than half the width of the hean, which is Hesles.

Body heay, with twede costal furows. Inead very broad, comtained about three and whe-hall time in distance from shout to groin. Tail about equal to the sallue distamee. mudh compressed from the base. Males in bremling spasm with a distimet tin from mear the base of the tail above, amd fom beromed the midalle below; tail mome wal at other seasoms. (Chamal rewion of male much swollen, emargimate; alloular brhind.
Legs momate; digits much depressed. very broal at hase, triangular, and allapted for swimins. Frer pertion of digits abont one-thiad the dixamer firm their tips to ellow or line


Flu. 13.-A mblustuma figrimm" Cireen, No. 4059. Natural size. Fort Ripley, Minn.
(iencral colderdak hown or hackish, in almond, varied with blotehes of yedow. These are disposed along the median line of the back and
tail, extending tow: on the sides as thansverse ellipsuid bands of hage size, perhaps ergual to the space between rwo costal grooses; the blotehes of opposite sides sometimes alternate, sometimes are opposite, and are frequently conflout here and there, which is generally the case on the tail, where they form yellow encireling rings, interrupted below. Along the sides of belly and lower part of the sides is a similar series of yellow ellipses, but usially larger; those of the same side usually somewhat conflumt, sometimes entirely so, leaving a dusky central line of the bells. The limbs are blotehel hack and sellow.

The yellow sometimes predominates so as to almost form the ground color, encroaching largely, too, on the yellow of the belly. In general, however, there is little or no tendency to an anastomosis or reticulation of the dark interspaces, as in an allied species. Smaller, romoded, irregularly scattered spots of yellow are seldom, if ever, seen as in Eastern form.
The ground color is sometimes miformly dasky above, although the lighter transverse ellipses can be usially mate out ; perhaps they are always appreciable in life.

Duméril and Bibron have given a goon colored figure of this form under the name Ambystome a' bandes. The grent is, however, too brilliant.

In the preceding general description I have endeaved to represent the distinguishing features of what l helieve to be a single species vary. ing very much in shape of palatine teeth, proportions, color, ete. From the symonymy it will be seed that 1 combinn madre the oldest name of matortium, proserpine and nelulasum aiso. Althomath the type specimens of these supposed species diftire sufficiontly among each other, get there are sulficient comnecting tinkin the lane series brome me, and it would be no difticult task to piek out a dozain more specimens each as distinct from the other and the above as the latter are anong themselves.


 will have been acomphished with at hength of there or form inches, in others the hamehier are still visible at at much sheitere siar. In one
 preciable, the fissures in the merk not being elosed mp, althminh the


 adtherent, not at all er very little bere at the odges, and little met at all papillose, but exhibiting a cartilagimote surtare. The palatine

 and extending a less distance laterally. The diwits are more depresed,
their outlines more oval than triangular, the third and fourth toes and second and third fingers more nearly equal. The development of the different embryonic conditions may be carried ou very unequally in different specimens, so that one canot see the true specific characters in small individuals, or even in large ones in which there is the slightest indication of the brauehial slits or their tufts.

The same adult individual differs, too, in different seasons. While some species appear to reside almost eutirely in water, others do so only partially. Eren the same species may pass a more aquatie life in one year than in another. A more persistent residence in water is shown by the broader and more depressed digits, higher and more compressed tail, and more or less decided ridge (sometimes even membranous). I have no doubt that an ammal while possessing these features in marked degree when in the water would luse them to a measurable extent after a lengthened residence on land. This aquatic habit is generally greatest during the breeding scason.
The preceding paragraph is taken from Professor Baird's manuseript. I will further extend and illustrate the same, and add that the names $A$. californiense and A.maculatum have been applied by Gray and Hallowell to forms of this species.

Various changes of form during the late metamorphosis of this animal have been already enumerated in the prefatory remarks on the genus. A feature of difference mentioned above-the varying leugth of the fourth digit-appears to be quite independent of other developmental conditions. In a specimen in the Museum of the Philadelphia Academy from Kausas, this digit has but three phalanges on both feet; in another locality three on one, four on the other foot, and the same occurs in No. 3994, of the National Museum. In all the other specimeus at my disposal they are, as in this section of the genus, 4-4.

The rarieties of this speeies which may be distinguished by their coloration are as follows:
$\alpha$ (Califoruieuse.) Blackish, with slightly paler belly; a series of large, oval, yellow spots on lower part of side and tail (in one specimen a few on each side of dorsal line). System of mucous pores well developed, especially below ramus of the jaw on each side. From California ouly; eight specimens; No. 4081.
$\beta$ Brown, yellowish below; larger lateral and smaller dorsal yellow spots, irregularly arranged. Fewer mucous pores on each side the gular region. Fourteen specimens; mostly from Kansas and Nebraska, one from Missouri, one from latitude $38^{\circ}$; two from New Mexico, and two from Chihuahua; Nos. 4065, 4040, 3955a, 4062, 4084, 4908, $3984 a$. The type of $A$. nebulosum belongs here. There is no material difference betreen this and the coloration of $A$. tigrinum.
$\gamma$ Ground brown, crossed by transverse yellow bands, which inoseulate more or less on the dorsal region, so as to obscure, sometimes almost
entirely, the ground; mucous pores, as in the last; belly with a median dark or black band; sometimes the yellow is shaded with olive; Nos. $4613,4705,3990,4703,4694$ to $4690,3955,4078,4079,4066,3982,5359$, 4082, 3994. No. 4020 might be assigned to either $\beta$ or $\gamma$ :
$\delta$ Ground olive, with numerous small brown spots; otherwise as above; No. 4693 , and the type of $A$. maculatum.
$\varepsilon$ Brown above, yellowish below, otherwise as above; 3984b, 4702, $3992,3955 b$, from most diverse localities.
$\zeta$ Color as in $\gamma$, the yellow learing only inosculating lines of brown; no frontal, nasal, or mandibular series of mucous pores; one specimen, No. 4698.

So much as to the prineiple of ornamental variation. The following are the forms resulting from unequal development of parts. The reader will observe by the numbers how little they coincide with each other and with the preceding.

Type A.- P'alatine teeth in a gentle areb, convex forwards, not extend. ing between nares; the teeth (but not the ridge) interrupted inside the series behind the nares. Nos. 4908 and 5359 (2 specimens); in all respects fully grown, the former not more than half the size of the usual type. Approach distantly A. trisruptum Соре.

Type B.-Palatine teeth forming a straight series on each side, meet ing at a more or less open angle between the nares. Host of the specimens; Nos. $4702,3992,4705,4613,4065,4040.4695,3900,4703,4694$, to $4699,4081,3955,4079$. Of these, the augle of the tooth series does not exteut beyond the auterior margin of the nares in twentysix specimens, of which one exhibits a small, undeveloped tongue, and none have the stumps of the branchit remaining. In eleven specimens the angle extends beyond this point (in 3990, and another approaching all arch in form), and of these the tomgne is small and larral in six, and in one of these stnmps of the branchise remain; this last is of medium size only, but Nos. 4693 and 3694 are large, the firs rery large; they add the larval character of a short, decp tail. It is to be noted that these specimens are from Mimesota and the borders of British America-regions sulbject to great cold-to which cause we may with much probability assign their characters. Two iudividuals presenting the same peculiarities are described under the head of $A$. tigrinum.

Of two specimens from Chihualma, fully developed, the teeth are of the two types; of cight from California, one presents the second type only; it is otherwise fully developed.

Type C.-The postnarial portion of the palatine series has nearly or quite assumed its transrerse position, while the median series remains in its larval arch, extending more or less in advance of the nares. Eight specimens, four of the largest size; 3955a, 4073, 4062, 4084; two Museum of Philadelphia Academy, one type of A. maculatum Hall. Of these, two have the small tonsne and traces of branchix, while four are fully developed in these respects.

Tope ll.-l'alatine series forming a mabnlicare from ome extremity to the other, extenting an adrane of the names. The spee simens, two of them of full but not large size; one of the former fully domber the size of others from the same loeality (the Platte Valley), which are referred to types $\mathcal{C}$ and B , with laval tongue and banchial stumps. The others ( 4066 ), with laral tongue, but the bramehia absorbed.

Here may be mentioned a remarkable specimen (390'2), whieh is in all other respects fully develoned, where the larab areh of teeth remains, but has become open and slightly transerse, extending but little beyom the anterior margin of the nares. It is intermediate between types 1 ) and $\Lambda$, and is the result of a rexardation in development of the laveal arch, while type $b^{\text {a }}$ is produced ly a retardation by the presed wation of the oblique lateral series of the larva at the expense of the ard.

I ald here a deseription of the rat. obsenrm (Amblystoma obscurum Bairl, Proceeds. Aead. Phila., 1869, p. 192).
The head is sery broad and the gape masmally large. The internal nostrils are very large, their width half the diameter of the ere ; the distance betwem their inner borders is the same as that between the outer. The tongue is lage, broader than long, its width about two thirds that of the upere jatw.

The palatine teeth are in for series, collectively foming a boad inrerted V ; the angles anterion, and wombl bequite sham, but that there is an interruption abong the median line. The branches reach as far forward as the anterior border of the imernostrik. They are decidedy: concave anteroexternally. The ten imer anterior sections of the palatine series are each abont twiee the length of the external ones; they fall short of the immer border of the imer nares bey nemp a dianeter of the latter, which space separates them from the onter section, which, immediately behime the immerares, are about ans long as the latter are wide, and do not pass exterion to their onter border.

There are twelse costal finrows. The tail is eompressed, but not high.

The color appears to have been of a miform brown ahove and on the sides, brownish yellow bemeath. On the sides danker tertical blotehes can be detected in the single specimen before me. Similaly indistinct makings are visible on the tail.

The very consex frontal region and the coneave interrupted sides of teeth alome distingnish this varioty from the A. Cigrinum of the West.

It differs from .t tigrinzm of the East in much larger inner nares and more widely separated nostrils, the inner borders of the two being at about the same distance, instead of having the latter more approximated. The thagne is widner, as well as the heat. The teeth are more V - whaped amb reach larther forwarl. The ontline of the limbs of the $\mathbf{V}$ is ennate antero extermally and is interrupted by spaces equal to the wide nostrils, the outer surtion mot exteming beromd the nostrils.

The sperimen which rencents this variety is from Fort Des Moines, Iowa (Nu. B994.)

The characters of the sariety califormiense (. 1 mblystomu culiforniense Gray) are as follows:

The proportions and general character of the glands, pits, ete., appear much like those of A. tigrinum; in some sespects of A. punctatum. I do not detect any patches of large pores on the top of the heall and neek in one specimen, but in another a series of large whitish dots beneath the epidermis seems to indicate their preseme. Of these one patch is phaced on top of the head, within the orhit; another on the parotid region. Some pores, howerer, are distinetly visible behind the angle of the month, sending formard a senies along the margin of the lower jaw under the chin.

The head is broad, but alsolong, the width heing ine idedly less that the distance from shont to gular fold. The gape is rery latere, the ${ }^{\text {a }}$ length nearly tro-thirds the width. The width in seren specimens is contained $4 \frac{1}{2}$ times in the distance from smont to groin ; in ome sperimen 4 times only. The eyes are separated only he 2! lengthe of the orhit.

The tongue is very large, neaty filling the whole lower.jaw. It is there fonthe the width of the head.

There is quite a difterence in the wamater of the palatine teeth of the ten specimens before me. In looth the central part of the series forms a decided V , the angle sharp, and reaching to the anterior margin of the inner nostrils. The limbs extend baekwards, slighty in an S mape, a short distance behind the inner nostrils and in line with their inmer border, and then comeet with the external segments of the palatine series, which extend (nearly transersely, hut a little obliquely back wards) to a line with the outer margin of the immer nostrils. In both specimens the two sides of the palatine series and not symmetrical ame of megual length. One specimen shows a distinct interval between the central V and the lateral segment, as well as at the angle of the V ; in the other the four elements are contimous.
There appear to be twelve costal furows. The tail is rompressen, but not high; in one specimen it is as long as head and bods; in another shorter. Shows a sharp ridge above from hear the base and for the terminal half below in one specimen; not sommeh in another.
The limbs are well developed, the digits depressed and triangular, but less so than in many aquatic; Amblystomatu.
The color of the species is haekish in alcohol; rather paler below. On each side of the belly or lower part of the sides of body and tail is a series of bright sulphur yellow spots, mostly nealy eireular, sometimes oblong, and varying in size, though generally larger than the orbit. The spots are few in mmber; fire or six from heal to tail and four or five on the side of tail.

In one of the specimens are some smaller rombled spots on each side of the dorsal line, three or four in cach series. These are not symmetrically disposed, as in d. punctutum.

As Dr. Gray remarks, this variety hats a certain resemblance exter-
nally to A. punctatum, which, however, never exhibits the series of spots ou the side of belly and lower part of sides of body and tail, the spots being confined to the vicinity of the median line abore. In A. $\boldsymbol{t}$. californiense when dorsal spots occur they are less regular, though of much the same size. In typical A. tigrinum the yellow spots are much smaller, more numerous, and more scattered; very prominent on the belly. There are many essential differences in form from A. puncta-tum-as the more widely separat ed external nostrils, the anterior angle of the palatines, the depressed short digits, wore compressed and sharply ridged tail, etc.

A description of a specimen of var. $\gamma$ may also be useful for reference.

The form is very heary and clumsy; the head rery broall ; the gape twice as wide as loug. The inner nares are about as far apart as the outer. The gular fold is very distinct and overlapping; the neek much constricted. There is no dorsal groove distinctly evident.
The tail is much compressed and elevated. In the type selected there is a sharp ridge above and below near the tip.

The limbs are rather short ; the rligits rery broad at the base, triangular, and much depressen. There is little appreciable difference in the length of the third and fourth toes.

The tongue is very broad, wider than long, filling the rami anteriorly and considerably more than half the width of the head.

The palatine teeth form a nearly contimous series; nearly straight, but slightly obtuse anteriorly where it reaches to the line of the posterior border of the inner nares. Laterally the series extends one diameter of the inner nares beyond their outer margin. The limbs of the rery obtuse V are not straight, but slightly bow-shaped. There is a slight interruption along the mediau line.

The ground color is purplish black, with transversely elongated blotches of yellow. These appear to be arranged in one dorsal series on each side the median line of the back (coming up, to it and the opposite ones sometimes confluent), and another on the side of the belly, of larger size and ascending high on the sides. The latter are sometimes more or less confluent on the same side. The central region of the belly is generally of the dark gromd color. There may le six or eight of these blotches from head to base of tail, aml as mayy on the side of the tail, where, indeed, they generally form yellow rings, interrupted below. The limbs are blotched black and yellow in about equal proportions.

Proportional dimensions.
(Spec.-39551. Imbystoma tigrinum, Fort Bliss, N. Mex.)
Head:
Length of gape of mouth to its width one-half.
Width of gape of month to distance from suont to gular iold. equal.
Width of gape of month to distance from suont to groin..... contained $3 \frac{3}{2}$ times.
Width of gape of mouth to distance from snout to behind anus........ $4 \frac{1}{3}$ times.
Hearl-Continned.
Fiom smant to gular fold contained in distane from shont to groin ... 32 times.
From shont to gilar fold containm in listance from snont to behind:llillsDistance anteriorly between eyes in Jength of orbit3 tillues.
Distance from eyes to nostrils in length of orbit ..... $1+$ time.
Distance between extomal nostrils in lphgth of orbit. ........... ucarly 2 times.
Distanco between internal nostrils in length of orbit ..... 2t times.
Wilth of tongre to width of head rather more than $\frac{1}{2}$ time.
limbs:
Free portion of longest finger contained in distance from elbow to tip.. 3 times.
Free portion of longest toe contained in distance from knee to
tip. ..... nearly 4 times.
Distance betwen outstreteherl toes in lengh from shont to groin. ..... once.
T:at: Lemgh from behiml anms to rest of animal ..... nearly equal.
Borly: Number of costal furrows (incluling axillary aud inguinal). ..... 12
Measurcments, in inches.

Lemeth, measured along axis of body:
Head-Contimed:
from shont to grape............. . (i)
Froms shout to gular told ..... 1.00
From shont to groin ..... 3.50
From smont to behiind anns ..... 4. 50
From shont to end of tail ..... 4. 00
lirand:
Widlh of head ..... 1. Ui
Wislth of tongue ..... 5
latigh of tongue ..... 45
Lemoth of orbit ..... :
Distance between oyes anteri-urly.65
Distance between outer mostrils ..... 40
Distance between inner nostrils ..... 45
Tail:
Ifeight of tail where highest. ..... 75
Breallh of tail where highest. ..... 45
Limbs:
Free portion of longest tinger.. ..... 30
From ellbow to tip oi longest linger ..... 95
Free pution of longest toc ..... 3
From knee to tip of longest toe ..... 1.15
Distaner between outstretehedtoes.3.50

## I'roporfional dimensions.

Number of costal turnors (incluting avillat: ambleminal) ..... 12


## Measurement, in inches.

Length, measured along axis of borly:
From shont to gape 55
From snont to gular fold ..... 1.00
From snout to armpit ..... 1.55
From suout to groin ..... 3.90
From snout to behind anus ..... 4. 75
From suout to end of tail ..... 8. 75
Head:
Width of head ..... 1.00
Length of orbit ..... 20
Distance between eyes anteri- orly ..... 56
Distance between onter nostrils .....  35
Distance between inner nostrile ..... 36
Body:
Body-Continued:
Distance between armpit and groin ..... 2.25
Tail:
Height of tail where bighest ..... 70
Breadth of tail where highest. ..... 40
Limbs:
Free portion of longest finger. ..... 27
From elhow to tip of longest finger ..... 95
Free portion of longest toc. .....  32
From knce to tip of longest toe ..... 1.25
Distance between outstretched toes. ..... 3.55

Proportional dimensions.
(Spec. 4082. Tspe of A. proserpine, Tamaulipas).

## Hesid:

Length of gape of month to its width............................. more than half.
Widtlo of gilpe of month to distance from smont to gnlar fold... not cquite equal.
Width of gape of month to distance from snont to groin........ nearly 4 times.
Wialth of gape of month to distance from suont to behind anus....... $4 \frac{1}{2}$ times.
From surent to gular fold contained in distance from snont to groin.... $3 \frac{3}{2}$ times.
From suont to gular fold contained in distance from snout to behind auns

4 times.
Distance anteriorly between eyes in length of orbit....................... 3 times.
Distance from eyes to nostrils in length of orbit.......................... 1 time.
Distance between external nostrils in length of orbit............ nearly 2 times.
Distance between internal nostrils in length of orbit............. nearly 2 times.
Width of tongue to width of head.................................. more than half.
Limbs:
Free portion of longest finger contained in distance from elbow to tip .. 3 times.
Free portion of longest toe contatined in distance from kuee to tip...... 3 times.
'fiil: Lengtl from behiml anus to rest of amimal...................................... less.
Boaly: Number of costal furrows (includiug axillary and ingainal)................. 12
Measurements, in inches.

Length, measnred along axis of body:
From shout to gape............. . . 34
From suout to gular fold. ...... . . 60
From shont to ampit........... . . 90
From shout to groin . . . . . . . . . . . 2.00
From snont to behiml anis. ..... 2. 40
From swout to end of tail ...... 4. 10
Head:
Width of head .................... . . 52
Distance between eyes anteri-
orly................................. 32
Distance between onter mostrils . $2: 3$
Distance between inner nostrils . 24

## Tail:

Height of tail where highest... . .
Brealth of tail where highest.. . 12
Limbs:
Free portion of longest linger .- . 20
From elbow to tip of longest finger. .......................... . . $\mathrm{f}_{0}$
Free prortion of longest toc. .... . . 19
From kine to tip of longest toe. . 61
Distance between ontstretehed toes.

1. 75

Promortional dimensions.

Hearl:
Width to distance from shont to ghlar fold. ..................................... $1 \frac{1}{4}$ times.
Widlh to distance fiom shout to groin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $4 \frac{1}{2}$ times.
From suout to grular fold contamed in distance from shont to eroin.... $3_{3}^{2}$ times.
From shont to grolar fold eontaned in distance brom shont to behind
anıs ................................................................................... $4 \frac{1}{2}$ tines.
Distance anteriorly between cyes in length of orbit........................ $2 \frac{1}{2}$ tines.
Distance from eyes to mostrils in lengtlo of orbit ............................. $1_{3}^{1}$ times.
Distance between external uostrils in length of orlit.................... $1_{3}^{2}$ times.
Distance between internal nostrils in length of orbit................. not 2 times.
Width of tongue to width of head . ................................................. two-thirds.
Limbs:
Free nortion of longest tinger contained in distance from elbow
to tip.
not quite 3 times.
Free portion of longest toe contaned in distance from knee to tip..... 3 times.
'lail: Lengtlı from behind anns to rest of auimal.......................................... less.
Mcasurements, in inches.

Length, measmred along axis of body:
From shout to gape.......... .40
From suont to gular fold....... . . 85
From snout to armpit ............ 1.
From shout to groin............. 3.00
from snout to behind anns. .... 3. 75
From snout to end of tail...... 6. 20
Itcal:
Width of head .................. . . 70
Width of tongne ................ . . 45
Length of orbit . ................ . . 18
Distance between oyes anteri-
orly..................................... 40
Distance between onter nostrils . 30
Distanee between inner nostrils . 30
Borly: Distance between armpit and groin ..... 1.75
Tail:
Height of tail where highest. ..... 30
Breadth of tail where highest. ..... 18
Limbs:
Free portion of longest finger.. ..... ¿ご
From elbow to tip of longest filuger ..... 80
Free portion of longest toe .....  30
From knee to tip of longest toe ..... 90
Distance between ontstretched toes. ..... 2. 85

Habits, etc.-The larvac of this species are exceedingly abundant in all still water in the Rocky Mountain Region and the Plains. They are rapacious, eating animal food, and taking the hook readily. Late in the summer they complete their metamorphosis and take to the laud, where they lide in the holes of marmots, badgers, ete. From these they emerge during and after rains. The larva are much less frequently seen in the East, where the species is less abundant, and the opportunities of concealment are greater. Market Lake is a temporary body of water covering many square miles in eastern Idaho. It is formed by the overflow of the Suake River in spring. On its shores 1 have found this species. On the shore of an adjacent pond of more permatnent character I have observed this species occupying vertical holes, which were kept tilled with water by occasional waves, but from which their heads emerged into the air. In this position their branchie were gradually absorbed. An adnlt from New Jersey ocempied a burrow in the soil of my fernery for several weeks. The burrow hat two orifices, in one or the other of which its head could be generally seen, observing what was going on.

Prefessor Baind first reached the conclusion that the early stage of this species is a Sirerlon，and he suspected on that acconnt that the Sircdon mexicanus of the valley of Mexico is the larva of ant unkown species of Amblystoma．Long afterwards lrof．Auguste Duméril received some larvie of the $A$ ．tigrimum from Mexico and observed their metamorphoses in the reptile－house of the Jamlin des Plantes of P＇aris． He supposed the species to be the Sircdon mexicenum，but I showed that it was the $A m b l y s t o m a ~ t i g r i n u m ~(" ~ m a v o r t i u m "), ~ a f t e r ~ a n ~ e x a m i n a-~$ tion of specimens sent by him to me to Philalelphia．＊Since then Professor Marsh at New Itaren，and Madame Chanrin in Switzerland， have observel the metamorphosis of the same spesies．Professor Du－ méril also showed that it can reproduce while still branchiferous．

Siredon mexicannm Wagl．（Amblystoma mexicanum Cope）inhabits Lakes Chalco and Xochimilco，in the valley of Mexico．Its metamor－ phosis has never been observed，but it is asserted by I．M．Velasco to take place．It is readily distinguished from the larva of the $A m b l y$－ stoma tigrinum by its color．It is of a pinkish gray，and is covered with numerous small round，dusky spots，rather closely placed．While nearly related to the larva of the $A$ ．tigrinnm，it is clearly a different form．Should it prove to be the case that it does mot mulergo a meta－ morphosis，the genus Siredon，of which it is the type，must he retained． A second species，the $S$ ．dumérili，has been described hy Dugés fiom Lake Patzeutor in the State of Guanimato．Its color is miform．

Imblystoma figrianm Green．
liESERVE SERIES．

| Catalogut number． | Nu．ol spec． | Locality． | When collecterl． | From whom receival． | $\begin{gathered} \text { Natlow or spreri } \\ \text { mest. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ：1979 | 1 | Detroit，Mich |  | A．Numer | Acolotir：tıre． |
| 9273 | ， | Virsinia | Sut．－1874 |  |  |
| 10889 | 1 | Weloster City，Iowa | May 21,1878 | ＇lias．Aldrich | 110. |
| ． 1097 | 8 | Northerm Illinois． |  | 12．Krminient． | 110. |
| 4691 | 10 | West Norchaicla， 111. |  |  | 1／0． |
| 9188 | $\stackrel{2}{2}$ | Chicago，III ．．．．．．．．．． | Sut 7， 1877 | Swror | 11. |
| Lu\％z | ， | Eitgrtich，S．C．．．．．． | Ар\％－1879 | S．II．Limil | 110. |
| 939 | 1 | Welnter City，Iowa |  | Chats．Mhtrichi | 116. |
| 40.93 | 1 | Fort Ripley，Minn．． |  | Hr．J．F．Ifoad，U．\＆A．．．．． | 110. |
| $395 \%$ | ， | New York．．．．．．．． |  |  | 110. |
| 4908 | 1 | ludependonce，Mo |  | Dr．J．（4．C＇sury | $1{ }^{1}$ |
| 319193 | 1 | linssullville，Ky |  | 1r．Those II Widr， | 11. |
| 39 ic | 2 | Mississippi |  | 1）．13．F゙，Shmmatid | 10. |
| 4097 | 3 | Northem Illinois |  | R．Kemment | 10. |
| 8189.3 | 1 | Saint Lonis，Mo ．．．．．． |  |  | 110 |
| 4040 | 2 | Lake Encinite，（hi hualum． |  | J．lotls | jo |
| 4691 | （ | West Northitin，111． |  | 12．Kınniant | 16． |
| 410014 | 6 | Ranma，W＇is |  | I＇rol：A M Matal | 1）o． |
| ：1974 | 5 | Colamblins Ohio |  | I＇rot：L．Lasturem | 1）\％， |
| 3941 |  | Now Maxico |  | 1hr ．1．L．Ledemte ．．．．．．．．． | Alcolvolie：1spe． |
| 9145 | 6 | Fort Union，N．Mox |  | 1＇口曲（\％mbel1．．．．．．．．．．． | Alenhowlic． |
|  | 5 |  |  |  | 3o． |
| 81294 81.515 | I | Bonito Cañon，入riz． Arizonit |  |  | lo． |
| $7 \times 39$ | ， | Fort Regholis |  | A．（j） $01 \pm 5$ | 1\％． |
| 91 к6 | 1 |  |  | livut．W．L．Carpentor，U． s．$\Lambda$ ． | $1 \%$ ． |
| 3955 | 1 | Fort Blisw，N．Mux |  | 1r．s．iv．emwlom，It．s．A． | Ib． |
| 41179 | 1 | Furt Bratom，M10 |  | Mr．Fr．Y Masden．．．．．．．．．．． | 1）6， |
| ＋082 | ： | Tamanlpate．Max |  | 1m．L．．I．Satwals，IT．S．A | 13） |
|  |  | ＊Proterdinges |  | Sralems．lrix． |  |

## Imblystoma tigrinum Green－Continned．

IBSELVE SERIES－Contiand．

| Batalogue ntimber． | No．of apre | Lucality． | When collected | From whom recoised． | Nature of spuei men． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4694 | 1 | Month of Cimarem． |  | J．I．Clark | At：oholic． |
| 4695 | 1 | Fort Lisley，Kims． |  | Mr．W．A．llammoml，U．S．A， | 1 l \％ |
| 4697 | 1 | Lowner l＇lath |  | 1r．J．II．Cunper | 16. |
| 10775 | 1 | Fort Laramin，Wyo． |  | Chas．Linly | 1 l |
| 10776 $10: 77$ 108 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |  |  |  |  |
| 10777 10888 | $1$ | Syducy，Nobr |  | Lient．S．W．Crawtord，U． | Ho． |
| 10888 |  | Sjducy，Nobr | Fcb．10，18\％ | $\mathrm{S} . \mathrm{A} .$ |  |
| 10217 | 5 | Mexico |  |  | 1 o ． |
| 11900 | 7 | Dakota ．．． |  | C．A． K | Do． |
| 10301 | 5 | Peterson，Utah | Dec．5，1878 | F．lirst | $1) \mathrm{o}$ |
| $3: 184$ | 2 | Lacqui－pale，Mimn．． |  | \＆li．Riggs | 1）． |
| 4702 | ， | Fort Trion，Cal．．．．．．． |  | 1）r．S．W．Woothoust | Do． |
| 54.57 | ， | Fort Bridger，Wso． |  |  | 1\％\％． |
| 53350 | 1 | Nebraska． |  | Linutenant keynolds amb Dr．F．V．Itayden． | $\begin{aligned} & 10 . \\ & 10 . \end{aligned}$ |
| 4061 | 2 | Santa Fé Creek |  | 12．1I．Kearl | $1 \%$ \％． |
| 40636 | 2 | Ruck Cree |  | Lient．F．T．liyan，U．S．A | 110. |
| 10：17 | 5 | Mexico． |  | Mus．Nat．，Mexica | 110. |
| 4693 | 1 | North liod liver |  |  | $1) \mathrm{O}$ |
| 126013 | 6 | Utah Lake．． | ，1882 | Fondian A Cilluert | ［1o． |
| 4068 | 1 | Now Moxico South I＇ark，Colo |  |  | Alcololie type． Alcoholic． |
| 84.57 9187 | 3 3 3 | Sonth l＇ark，Colo ．．．． saita Fí，N．Mex．．． | Jıne－－， 1873 | Ir．J．T．Rothrock | Alcoholic． 1） |
| 12.512 | 2 | Fort steele，Wyo |  | Chas．Ruhy | 1 l ． |
| 11928 | 4 | Northern Bobndary Smery． | －－，1874 | Ir．E．Come | $1 \%$. |
| 12013 | 1 | Fort Ramdall，Dak． |  | U．S．A．Mospital | I） |
| ：1994 | 1 | Dos Monines，Lowid |  | （！）．．．．．．．．－ | 110. |
| 8675 | 1 | Arizona | －187． | Lientenant Berglatad | 10. |
| 4078 | 1 | Fort Thorn |  | （：aptain lopu． | 110. |
| 12541 | 1 | Fort stacle，Wyo |  | Chias．Ruly | $1 \%$. |
| $\begin{gathered} 1: 1394 \\ 41165 \end{gathered}$ | 1 | Ottawa，Canada， R （ Mimbres， | －－－，188：3 | 1）Rebmet Bell 1）r：Wrols | 10\％． |
| 4167 <br> 106 |  | San Elezario，Tex ．．．． |  | 11：Wrab | 1）0． |
| 9186 | 3 | Santa lón，N．Mox |  |  | Do． |
| 3992 | 2 | Sonthern Illinois |  | 12．Kennicot | 1 l |
| 11888 | 1 | Camp Supply，Ind．＇T |  | Dr：T．E．Wilcox，U．S． | Ino． |
| 13623 | 1 | Areher，Fla．．．．．．．．． |  | Dr．Clian．C．Neal． | 10． |
| $\begin{aligned} & 11427 \\ & 148 \times \end{aligned}$ | 1 | Y Inlowstone Lako．．．． <br> Auhute Me |  | Liontenant Hayden （i．I．Marill |  |
| $\begin{aligned} & 11484 \\ & 14490 \end{aligned}$ | 1 | Fort Wingate，N．Mex． | －二， 1888 |  | 10． |
| 4706 | 4 | Gramed Cotuan，La ．．．． |  | Saint Charles College | 1 O. |
| 38ヶi | 1 | Amintrbor，Mich． |  | Prot．S．F．Bairal | Do． |

GENERAL SERIEN．

| 5119 | 2 | Kansas |  |  | Alcoliolic． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 112：38 | 1 | Old Fort Conld，Tox．．． |  | 1）r．E．I＇almer ．． | 1 m |
| 41160 | 7 | Iridger＇s［ass，Wyo．． |  | Linut．F．T．Mryan，U．S．A ． |  |
| 4613 | 1 | Chepmne Pasa ．．．．． |  | 1r．E．Swit，t．s． | 120． |
| ＋1020 | 1 | Fort Laramio，Wyo．． Patto Valley，N：V．． |  | Lient．S．Warme，U．S．A ．．． c Drever | In． |
| $\begin{array}{r}11730 \\ 3955 \\ \hline\end{array}$ | 4 | Platto Yalley，Noy ．．． Fort Miss，N．Mex．．． |  | C．Drexler <br> Dr．S．W．Craw ford，U．S．A | 1\％． |
| 10895 | 5 | （？）．．．．．．．．．．．．．．．．．．．．． |  | E．Intrisoll | 1 o ． |
| 10890 | 1 | Капsas |  | 1）r．E．Patmer | I\％． |
| 1089．4 | 1 | （！） |  |  | 10. |
| 3899 | 2 | Detroit，Mich |  | A．Sager | Do． |
| 9416 | 1 | Waukegan，Ill．．．．．． |  | J．W．Milner ．．．． | 1 \％． |
| 11925 | 1 | Northern bondary Snvey． | －－，1871 | 1）r．E．Cones．． | Do． |
| 11：49 | 2 | （？）．．．．．． |  |  | Do． |
| 4057 | 1 | Now Mexico |  |  | Do． |
| 11710 4181 | 1 | （？） |  | S．F．ISaird | 110． |
| 4 | 1 | Santa For，N，Mex ．．． liock Laland，Ill |  | （＇）13．Sargent | lo． |
| 14112 | 1 | Indiama ．．．．．．．．．．．．．． | －－，18～5 | O．I＇，Iay | 1 mo ． |
| 1.4424 | 1 | sonthom Kansas | 少 | Clias．Ruby | In． |
| 14427 | 1 | $\cdots{ }^{\text {ar．}}$ do | ． $110 . . . .$. ． |  | bo． |
| 3971 | 1 | Marietta，Ohio |  | 1 rofessor Androw | 1 ln D． |
|  | ${ }_{2}$ | （？） |  |  | Do． |
| 14481 | I | Now Muxio |  | A．s．acelalian | Arololic tyar． |
| 14483 | 1 | （？） |  | （！）．．．．．．．．．．．．． | Aleoholic． |
| 144×6 |  | （？） |  |  | Do． |
| 14487 | ， | （！） |  | Dr．F．V．Itayden | 13 ． |

Amblystoma tigrimum califormiense (Gray.


AMBLYSTOMA TRISRUPTUM Cope.
Proceeds. Acal., Phila., 1867, 1. 194.
The species is stont and heary in build; the head very broad and much depressed. The skin is granulated by contraction of the alcohol, but in respect to glands, pits, etc., appears much like other species. There is, however, a decided feature in certain particles which crowd the parotoid region, and are seen also on the top of the head along the inner margin of the orbit, and perhaps below the eye. I have not noticed this character in any other species east of the Rocky Momntains.
The head is broad, ovate, rather pointed anteriorly. The inner and outer nostrils are nearly the same distance apart. The tongue is broader than long, more than half the width of the head, filling the interspace of the same anteriorly.
The teeth are in four very distinct patches, with decided intervals. They form one transverse series, nearly straight centrally (where they are in a line with the posterior border of the internal nares), but curving slightly backwards laterally. The two central patches are wider than the lateral, which vary a little in length and are separated by an interval half the diameter of the inner nares. Their distance from the exterior patches is abont twice as great, the center of the interval falling about opposite to the inner border of inner mares. The onter patches extend abont half a diameter beyond the outer border of inner nares.

The remaining external characters of the specinen are not different from those of $A$. tiyrinum.

The colors of the specimen are much obsenred by bad preservation. It appears to have been of a miform dark blackish or bluish brown, with a single series of large transtersely elliptical blothes of yellow from head to tip of tail, lalf on body and half on tail; the foremost one rounded and placed behind the eyes. Those of opposite sides nearly meet on the back, and are confluent on the upper edge of the tail.
This is the only species I have seen of the gromp in which a strictly transverse series of palatine teeth behind the eye is divided into four gromps.

The only known specimen is the following:
No. 406: ; 1 specimen; Ocate Creek, New Mexico. of.
Ocate Creek is on the eastern side of the Sangre de Cristo Momatains, the sonthera part of the eastern range of the liocky Momitains in New Mexico.

Proportional dimensions.
(Spue. 40Gz. Ocate River, New Mexico. \&.)
Heal:
Length of gape of month to its width..................... . littlo more than half.
Width to distance from snont, to gralar fold....................... not , gnitr equal.
Wilth to distance from sunt to groin................................... 4 times.
From snont to gralar fold contained in tistance from shout to groin.... $2 \frac{2}{2}$ times.
Distanco anteriorly between eyes in length of orlit..................... 3 times.
Distance from eyes to nostrils in length of orbit......................... If times.
Distance between oxternal nostrils in length of orhit. ......... not quite 2 times.
Distance between internal nostrils in length of orbit..................... \& times.
Width of tongue to width of head....................... ........... over ome-hialf.
Limbs:
Free portion of longest finger contained in distance from ellow to tip little over St times.
Freo portion of longest toe contained in distanco from knec to tha..... $3!$ times.
Distance lietween ontstretehed toce in length from somit to groin.. alont minal. Tail: Lengll from hohind anns to rest of animal less. Boily: Number of costal furrows (inclading axillary and inguinal)............. 12 (?).

Measuremсиts, in inches.

| Length, measured along axis of borly: <br> From snout to gapo.............. . . 45 | Body: Distance between armpit and groin $\qquad$ |
| :---: | :---: |
| Fromi snout to gular fold. ...... . . 90 | Tail: |
| From smont to armpit.......... 1. 45 | Height of tail where highest... . 46 |
| From suont to groin . . . . . . . . . . 3.15 | Breadtly of tall where highest.. |
| From snout to behind amis .... 3, 80 | Limbs: |
| From snont to end of tail ...... (6. 80 | Free portion of longest finger.. |
| Hearl : | From ellow to tip of longest |
| Wilth of liead. . . . . . . . . . . . . . . 80 | linger |
| Width of tongue .............. . 45 | Freo portion of longest toon |
| Length of orhit . ............... . 18 | From knee to tip of longest toe. |
| Distance between eges anteriorly $\qquad$ | Distance between ontstretched toos............................. . . 3. |

Distance between onter unstrils . 22
Distance between inner nostrils . 30
groin ..... 1. 5
Height of tail where highest. ..... $4 i$Limbs:Free portion of longest finger.. . 26From elbow to tip of longestlinger! 1
Fer9
Distance betireen ontstretched toos ..... 3.00

## AMBLYSTOMA XIPIIIAS Cope.

Proceeds. Aeal. Phila., 1867. p. 192 ; Stranel, Salam., p. 64; Boulenger, Catal. Batr. Grail., Brit. Mus., el. ir, 1882, p. 45.

The specimen selected as the type of the description has the skin somewhat altered by alcohol, so that an exact description can not be made of tho glands, pits, and pores. Thers does not, howerer, appear to bo any material difference from $A$. tigrinum in these respects.

The head appears small in proportion to the size of the animal, and the cheeks unusually swollen; the width of the head is contained about four and one-half times in the distance to groin. The eyes are rather small, distant three lengths of the orbit; the inner nostrils are considerably more distant than the outer. The tongue is large and fleshy, filling
the rami anteriorly, and more than half the width of the heal. The imer nostrils are guite lateral.
The palatine teeth form a very obtise angle anteriorly, reaching to about opposite the middle of the inner nares and extending laterally beyond them by abont one diameter. There is a slight intermption alng the median line, but wo appreciable one elsewhere. The limbs of the $V$ are not eutirely straight, but form a donble eurve (scarcely appreciable) on each side. There are twelve costal growes. The pelvic grooves are not appreciable, and ouly those at the base of the tail.


The tail is very long, consilerably exereding the west of the animal, muth compressed from the hase, thomgh not elevated; walm eross-sec. tion, and only bemming sharp mear the tip, withont any crest. No grooves are visible along dorsal or ventral ontline.

There do not aprear to he aty perentiatios in the feet distinguishing it from other aguatic $\lambda$ amblystomas.

The color of this speres is a yellowish olive; brighter yellow beneath, with more or less amastomosing or reticulating bands of wellde-
 same on the belly. These hames in wilth areage, perhaps, the diamefer of the eye, thongh variable in this respect. 'ompared with A. tigrinum, this species has a poportionally smaller lieal, more prominent lower jaw, much longer tail, and differnt eolor; rellow predominating in the ont and brown in the other. 'Tha relationship, howerer, appeass to be very close. The diewte, prisibs, are narower, though also triamgular :atul depressed.

The only seremen of the A. riphiers yat known is from Colmmbus, Ohio (No. 41:35).

## AMBLASTOMA JEFFERSONIANUM Green.

## (l'ate 25, lig. 9.)

Cope, Proceeds. Aeal. l'hilit., 186z, p. 195, Stranch, Salam., p. (i4; Bon-
Lenger, Cat Batr., Grad. Brit. Mns., ed. n, 1×22, p. 4ti, l’l. n, fig. . .
Salammalrajeffersomiana, Green, Contr. Machrean Lateomin, p. 4; Inolbr., N A. Ibrp., v, p. 51, Pl. 14.

Triton miger, De Kay, N. Y. Faun., иif., p. 8is, Pl. 15, fig. ;35.
Sulamundra granulata, De Kiay, N. Y., l. c., p. 78, Pl. 23, fig. fif; IIolbr., N. A. Herp. v, p. 6.3.
Ambystoma jeffersoniana, Bairıl, Journ. Ac. I'hila. (: 2 ), 1, 1, ©Sis.
Amblystoma fuscum, Hallow., Journ. Ac. l’ila. (2), sи, p. 35\%, 1865.
Amblystoma jeffersonianum, var. fuscum, Cope, Proc. Ac. Phila., Ikif, ]. 197 ; 13nlenger, Cat. Batr. Grad. Brit. Mns., ed. it, 18w2, p. 46.
Costal grooves twelve; mincous pores on each side of the mazole not avtanding beyond the orbits. Teeth transverse, or nearly so, in three series. No or vin indistinct plantar tuberele. External and intural nares equidistant; lead colnred to lorown and black, with or withont pale or distinct lateral spots.
'This definition covers a considerable range of variation, which is ex, pressed in the following diagnoses of haree subspecies:
Width of head 4 to 4.5 times in length to groin; length of eye 2.5 times in width of heal above; miform lead eolor to brown.......................... i. j. jeffersoniainnm. With of head 5 times in length to groin; length of eye ome half wilth of head hetween anterior canthas of cyes; black with white spots on sides and bells. A. j. Interale.

Width of heal 5 times to groin; length of oye 1.75 in wilth of heal as alowe: tooth series slightly convex ; slender; uniform liad color ................... j. pherinenm.

## Amblystoma jeffersonianum jeffersominmum Green.

The synonymy given under the head of this species in general is applicable to this subspecies only.

Body decidedly more slender and elongated than in $A$. pmotatum. Skin everywhere smooth, and showing throngh the tramsparent epidermis the ends of the glands which thickly stad the entire surface. Under a lens are seen mumerous small, romilerl, shallow pits betwern the glands, not on them. The contraction of the skin in strong aleohol hetween these glauds wonld readily impart a grambated appearance. The glandules are accmmulated into a thin stratum above the parotoid groove.

The head is elongated, with the muzzle obtuse or trmeate, the greatest width contained 1.5 times in the distance to the gular fold, and from fonr and a half to five times to the groin; the diatanea to the grubr fold
 and situated far behind. They are distant once the length of the orbit from the nostrils (which are separated ly nearly twice this lemgth). The anterior extremities of the orbit are distant more than twice their length.

The gular fold or furrow is distinet, not very prominent above; that behind the angle of the jaws is inconspicuons, as is the lateral parotoid furrow.

There are twelve costal furrows, including the inguinal and axillary.
The tail is a little shorter than the body and head (measuring from posterior extremity of vent). It is oval in cross-section, widest below, though without, any ringe or crest. It is little higher than broal at the amus, but becomes more and more compressed to the tip, the upper and under outlines remaining nearly parallel for a considerable distance. The anal slit is prolonged into a groove, which extends beneath the tail to its very tip.

The limbs are largely developed and the toes very long. The digits are cylindrical, depressed, withont any lateral or basal web. The third finger is longest, then the secomb, fourth, and first. It is one third the length of arm from elbor. Whe fourth toe is longest; then the thime (but little slorter), second, filth, and first ; it is contained about two and one-half times in the length of leg from knee. The expanse of the outstretched toes is very nearly equal to the distance from suont to the groin. The length of the limbs varies a little; when extended on the sides they may scareely meet or considerably overlap.

The tongue is thick and fleshy, much as in $A$. munctatum.
The teeth are in four patches; the two central in a nearly stmight line, or forming in smaller individuals a very obtuse $\wedge$, the angle anterior but not passing the posterior border of the internal nares. The sidess of the $\mathbf{V}$ are perhaps slightly concare anteriorly. This pateh or line extends to the imer nares, and is there contimuons with the laterad patches, which are short, nearly straight, abont one-fourth the central patch, and form the posterior border of the inner nares. These are large, far back, and widely separated.

In alcohol, after long imenersion, the specimen is mearly miform light liver brown, paler beneath, without any spots.

Metsurements.
Inclios.
Length from snont to gular fold...........................................................................






Le氏 irom knee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The specimen from which the preceling deserption has bern taken is, if not the original mpon which 1). Green's sinecies was fommen, at least one collected in the same locality and mamed by him, having formed part of his collection and presented many vears ago bey its owner to the Smithsonian Institntion. The "light-bhe spots" so conspicnons in fresh specimens have disappeared.

Dr. ITolbrook, in deseribing this species, has mixed with it the accombt of the tongue and teeth of I'lethorlon glutimosus, which it somewhat resembles, but which may readily be distinguished externaliy by the lighter silvery spots and much shorter digits. This induced Dr. Hallowell amoneonsly to make the species a synonym of $I^{\prime}$. ghatinosus. The eror had its origin, no donbt, in the nearer resemblance of the var. A.j. laterale to the latter species.


A comparison of the specimen deseriberl with the type of De Kay's N゙alamandra !franulatu exhibits no appreciable difference except in the darker eolor, bather more depressed toes, and perhaps more massivelooking jaws of the latter, the muzale a little more pointed-all merertain characters in alcoholic specimens. The palatine teeth are in better preservation than in the specimen here described. The central patch is intermpted along the median line, and does not extend quite so far laterally. The legs and digits are much lengthened, the figure and description of llobrook (see lo Kily) conveging a very erroneous impression in this respect. The grammation referred to is in part the optical effect of the glands of the skin showing through the transparent epidermis, partly the result of contraction of the skin by aleohol.

In the type specimen there are no symmetrically arranged patehes of pores on the hear. Their absence may be owing to the long-eontinned preservation of the specimens, or to some aceidental deticieng. In the type of s. gramuluta these are quite visible. They are very distinctly shown in No. 4635 , where there is seen a straight series interior to the rye and mostril (not reaching to the latter), bending abruptly behind the eye and passing bencath it. On the parotoid region above the lateral groove is a slightly curved line of six or eight pores and a shorter stamghtone above it. Below the erroove is a erowded pateh, which is eontimed in a simple serias along the immere edge of the lower jaw. One or two are seen at the side of the hase of the lower jaw, and others abong the sides al hols.

It has been stated that in the type mo imbleation of light spots was visible. In others, howerer, of more recent preservation these are
quite evident. In the smallest specimen of 3998 are visible munerous romaded, irregularly disposed light s!ots on the lower part of the sides, with some scattered over on the belly, averaging half the size of the eye, but with faintly defined margins. Some scattered ones are seen on the side of the tail. These may be phmbeons or bhish in life. In the largest, specimen of 3979 , Ripley, Ohio, these huish spots are quite evident on the side of body and tail.
Generally the ground color of the alcoholic specimen is lead-colored to olive brown and blackish; light beneath. The color of the living animal is similar to that seen in alcoholie specimens. Specimens have been fomb at localities rather distant from each other of a dark brown color, with a lateral shade of a still darker lue. Such specimens are of the stonter type of the species as to proportions. Of two specimens from Clark Comnty, Va., the width of the head enters the length to the groin 42 times in one specimen, and the other but little orer four times. Other specimens are from Saint Catherine's, Ontario, in the National Musemm, and from southern Indiana in the Philadelphia Academy. They have been referred to as distinct species and described as Amblystoma fuscum by Hallowell, but I camot find any characters to distinguish them from the $A$. jeffersoniamum proper. They resemble almost exactly the $A$. copecturm in color, but differ entirely in proportions. In that species the hody is not longer than the length anterior to the axilla, while in this one the former dimension mueh exceeds the latter.



6




Fta. 16. Amblystoma grfirsomianum, type of var. fusenm. No. 3897. Clarke Connty, Va.
A specimen of $A$. jefficisomionum abont 2 inches long is not materially different from the adnle, althongh the two imer patatine patches are more archert.

## Amblystoma jeffersoniunim laterale Itallow.

Amblystoma laterale, Hallow., l. c., p. 35:
Amblystoma jeffrsonianmm, var. Iaterale Cope l. r., Bonlenger; Cat. Bati. Grah. Brit. Mus., ed. if, 1ss2, p. 47.
This form is quite distinct from the typieal A. jeffersomianm, and would rank as a species were it not that its character and those of the latter interblend. In typical specimens of the $A$. $j$, laterale the head is narrower and the body more slender. When the limbs are laid along the sides they frequently do not meet by a short interval, while those
of the A.j. jeffersaniamm touch zw... sther and even overlap a little. The median portion of the dental series usuali'y ualibits a slight angulatiou anteriorly, while that of the typical subspecies is straight; but this character is in some cases not retained. The color is generally easily recognized : black with light lateral spots. It resembles in this respect the Plethodon glutinosus, and to a less degree the Amblystoma microstomum as pointed out by Hallowell, and the unway observer may easily confom it with one or the other of these species. But lateral spots appear in some specimens of the typical variety, and the ground color varies, as has been already described.

This form is altogether northern in its distribution, being especially abundant in Cauada.

## Amblystoma jefficrsonianum platineam Cope.

Check-list, 1 . 26 ; Boulenger, Cat. Batr. Grad. Brit. Mis., ed. if, 18*゙, p' 47.

Amblystoma platineum, Cope, l. c., p. 198; Stranch, Salam., p. (i5.
This is a very elongate form of the $A$. jeffersonianum.
The heal is oval and the muzzle rounded. The length of the fissure of the eye equals the distance of the nostril from the same ; is but little less than the distance between nares, and half or a little more of the distance between the anterior canthus of the same. Inner amb onter nares the same distance apart. Greatest width of head 5.5 to six times in length from end muzale to wioin, fivesevanths langth from ehin to gular fold. Canthns of month behind canthus of eye. A series of pores along the supereiliary, which pass round the orbit behind and below; a scattered longitudinal series on the parotoid region, and a transverse aggregation of the same on each side below parotoid groove; a single series of the same for a short distance inside the ramus of the mandible. The parotoid region possesses a thiu stratum of dermal crypted.

Costal folds twelve. The anterior is a little distance behind the axilla. Toes subeylindric, similar to those of the A. jeffersoniamum; in one specimen (type) they are separated by nearly an intercoslal space when the limbs are pressed to the sides; in another they meet. Tail rounded above at base, finally much compressed, but not elevated; equal in one specimen to body and head to middle of orbit, measured from posterior extremity of vent. In the type, however, it is much shorter, extembing from its basis only to the eighth costal fold (from groin), but I suspect that this is abmormal.

Color leaden; in type paler below, with mmerous indistinct whitish blotehes. Eyelids yellowish margined. Specinen 4688 has the abdo men darker and without spots.

The narrower head and more elongate body will distinguish this species from the typical $A$. jeffersoniunum. It is readily distinguishable
among many individuals. Nevertheless many of those of the subspecies $A$.j. laterale approach it in the proportions of the parts of the liead to each other, including the closer apmoximation of the eyes and of the nostrils. The body is, however, always shorter. The size of the A. j. laterale is considerably less. Those of the typical rabiety of the same subspecies are invariably stonter, not only in borly, but especially in the head.

Amblystoma jeffrsomiunam jeffersonianmm Grecu.
RESERVE SERIES.


Amblystoma jeffersoniunum fuscum Hallow.

| C:Italognte nisuber: | No. $1 \mathrm{l}^{\circ}$ spec. | Locality, | $\begin{gathered} \text { Whes. } \\ \text { eolluetard. } \end{gathered}$ | From whom received. | Naflure of speci Hen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4023 | 2 | st. Catherine's, Canad!. | -. - .-... | 1)r. 1). WV. Jicadle. | Alenholic. |
| 3897 | 2 | Clarke Connty, Va . |  | (?) | 110. |
| 14171 | 3 | St. Cathrones, Canada. |  | Dr. D. W. Beadle. | Do. |

Imblystoma jeffersonianmm platinemm Cope.

. 1 mblystuma jeffersonianam laterule Hallow.


## AMBLYSTOMA MAĆRODACTYLUM Baird.

(Plate 25, 1ig. 6.)
P', 31, lig. 3; Cope, Proc. Ac. Pbila., 18tia, p. 193; Strauch, Salau.,

This species is the slenderest of all our species of ${ }^{\prime}$ Amblystoma; in this respect, as well as length of digits, exceeding the typical A. jeffersonianum, but resembling the $A . j$. platineum.

The head is rather large, depressed, and elongated, with a monerate constriction at the neck. The eyes are prominent, and distant less than two lengths of the orbit. The outer and inner nostrils are each about one orbit distant. The width of the head is about three-quarters the distance to gular fold.

The tongue is oval and longitudinal. The matine teeth are in three or four patches, the central largest, oceasioually separated by au interval less than half the dianeter of the inner nostrils. Together they form a line slightly angular anteriorly where they reach to about opposite the center of the inner nostrils; laterally they pass a little the outer margin of the inner nostrils.

The body is cylindrical, depressed, with twelve costal furrows. The tail is long and is compressed for its distal half. The digits are longer than in any other species of the genus, the interior being well developed on both extremities. On the fore foot it equals the extermal toc in leugth, while on the hind limb it is a little shorter than the fifth. The phalanges are: In frout, $2,2,3,2$; behind, $2,2,3,4,2$.

The color in alcohol is leaden brown, with a well-defined broad dorsal stripe of grayish-brown, which, involving the whole upper surface of the head and neck, contracts on the nape, swelling again on the back, with an a verage breadth of the outer orbital space. This stripe extends to the end of the tail. On each side of this dorsal stripe is a suffinsion of dark brown, which gradually pates through the color of the sides onto the belly. There are also a few spots of the same in the dorsal stripe. There are a few grayish-white dots seattered along the sides, and perhaps on the limbs.

Two specimens (4054) from l'aget Sound agree in form with the preceding specimen, the two central patehes of palatine teeth perhaps a little more angularly arrangel. Instead of the grayish dorsal stripe, however, there is a brownish-red one, ame the sides are of a datker and more contimons brown. No. 1711 has a similar charaterer of palatines, but a coloration more like the type. The palatines, in fact, extend a little in front of the anterior border of the inner nostrils.
l'roportional dimensions.
Spec. No. 4042, (typer).
Head :

[^11]Head-Continued.
From shout to grlar fold contained in distance from suout to grom.... $3 \frac{1}{\frac{1}{2}}$ times Distance anteriorly between ejes in length of orbit .......... less than 2 times.
Distancebetween external nostrils in length of orbit..................... . ove orbit.
Distance between internal nostrals in ler gth of orbit.................. . one orbit Limbs:

Free portion of longest finger contained in distance from elbow to
$\mathrm{ti}_{1}$, ......................................................................... about $2 \frac{1}{2}$ times.
Free pertion of longest toe contrined in distance from knee to tip..... 號 times.
Distance between ontstretched toes in length from shont to groiu.. about ciual.
Boily: Number of costal furrows (iucludiag axillary and ingniual) ........... 1:2
Measurments, in inchex.
Length, moisnred along axis of body:

From shout to gape ............. . . 20
From shont to gular fold. ....... . . 44
From smout to armpit. .......... . . 6 .
Fiom shout to groin ............. 1.50
From shont to behind amis .... 1.82
From snont to end of tail.. broken.
Head :
Width of head ................... . . 30
Width of tongue. ................. . . 17
Lengtli of orbit . . . . . . . . . . . . . . . . 2
Distance between eyos anteri-
only.............................. .21
Distance between outer nostrils . I 2
Distance between inner nostrils. . 12Borly: Distance between armpitand groin................... . . 90
Tail: INeight of tail where highest ..... 18
Limbs:
Free portion of longest tiager. ..... 15
from elbow to tip of longest filuger ..... 39
Free portion of longest toe ..... 20
From knee to tip of longest too ..... 50
Distance between ontstretehed toes. ..... 1. 50
Total length of a larger speci-men4 in. 4 lin.

This species is found in suitable locatities thronghout Oregon and Washington, ranging as far east as Fort Walla Walla, and even as far as Fort Custer, near the Big Horn River, Wyoming, inom which a specimen was bronght, by Capt. Chas. Bendire.

Numerous specimens from Fort Walla Walla and six from Fort




3


7

Fig. 17. Amblystuma macrodactylum. No. 4042. Astoria, O regon. $\frac{2}{3}$
Klamath differ from those from more western regions in the absence of the dorsal color stripe. In some of the forms the widtlo of the head enters the length to the groin 5 ! times, showing a narrower form than in the typical form. In others of them the head has the usual width. The single specimen from Fort Custer has the dorsal band. A salamander from the Flathead River, Montana, was deseribed by Professor Peters under the name of Amblystoma liranssii.* There is nothing in the description to show that this specimen does not belong

[^12]to the A.macrodactylum. The width of the head, says Peters, enters the leugth to the groin $4 \frac{2}{3}$ times. The dorsal band is ochraceons, while in typical $A$. macroductylum it is glancons or manve color.

Amblystoma macrodactylum Baird.
RESERVE SERIES.

| Catalogue number. | No. ol spec. | Locality. | When collecterk. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40.34 | 2 | Puget Sound, Oregon |  | Dr. Gro. Suckley, U. S. A.. | Alcoholic. |
| 4012 | 1 | Astoria, Oregron... .- |  | A.N. S., lhila ............. | Do. |
| 5982 | 6 | Chilowyuck Lake, Oreg. |  | Ir. C. B. R. Kennerly...... | Do. |
| 6878 | 3 |  |  |  | Do. |
| 8863 | 2 | Fort Klamath, Oregon. | Oct. 2,1876 | Whlis Wattich | Do. |
| 12591 | 2 | Garrison Creek, Wash. |  | Capt. Chas. Bendire......... | Do. |
| 11468 | 1 | Fort Walla Walla, Wash. | June -, 1881 | ......do............... ...... | De. |
| 5248 | 1 | .......do ................ |  | Lienteuant Mullen | Do. |
| 12587 | 2 | Oregon................ | - -, 1881 | Capt. Chas. Bendite........ | Uo. |
| 10922 | 4 | Fort Walla Walla, Wash. | - -, 1ヶ81 | ......ddo....................... | Du. |
| 11591 | 6 | do | ---, 1881 | -....do. | Jo. |
| 14466 | 2 | F-...do ........... | - -, 1881 | H...do ......... | 110. |
| 14594 | 6 | Fort Klamath. Oregon |  | H. McElderry, M. D | Do. |
| 14.594 | 1 | Fort Custer, Mont . . |  | Capt. Chas. Bendire......... | 10. |
| $\begin{aligned} & 4711 \\ & 4035 \end{aligned}$ | 1 | Semiahmoo, Wash .... |  | A. Campliell ............. . . | Jo. |
| 4035 | 2 | Washington l'urritory | - | I):. J. G. Coopur ............. | Alcoholic litrva. |

## AMBLYSTOMA EPIXANTHUM Cope.*

## Proceed. Acad. Philad., 1883, p. 16.

Nearly related to Amblystoma mac roductylum Baird, and to be placed next to that species in any synopsis of the genus. Costal folds twelve. No canthas rostralis. Upper jaw or erlapping lower. Tail strongly compressen, as long as head and body to groin. Head wide oval; its greatest width one fourth in total length to the groin. Digits all rather short; four phalanges in fourth posterior digit. Internal nares as widely separated as the external. Eye-fissure one-half width between the anterior canthus. Median dental series presenting an angle forwards. Tongue large, deeply plicate. Leugth, m. . 083 ; length to axilla, . 017 ; to groin, .040 ; length of anterior limb, . 012 ; of anterior foot, .004 ; of hind limb, .014 ; of posterior foot, .0065 .

Sides of bolly and tail and superior surfaces of limbs, shining black. Dorsal region to end of tail and muzzle, gamboge-yellow. The sellow expands on the head and forms two cross bands on the upper surfaces of each of the limbs. The black of the sides is occasionally interrupted by the yellow spots irregularly placed. Below, dilute black, dusted with minute white speekles.

The structural differences hetween this and the A. macrodactylum are not many, but are well marked. They are: (1) The greater width of the heal, which enters the length (withont the tail) five times in the latter, and four times in the A. epixanthum; and is also seen in the greater interorbital width; (2) in the short toes, which are very much longer in the $A$. macrodactylum. In color this species is the more bril-

[^13]lint；the coast species being described as brown with a gray dorsal stripe，instead of black with a yellow dorsal stripe．In it the limbs are not banded，and the belly is uniformly pale，contrary to what holds in the present species，which is the handsomest of the genus．I ob－ tanned four specimens of this salamander，under logs，in a swamp near the head of the South Boise River，on the south side of the Sawtooth Mountain range，Idaho．


This species is in all respects more robust than the A．macroductylum， and is more brilliantly colored．Its tints are those of the European sulamandra macnlosa，and are brighter than those of any other species of the genus．Its hyoid apparatus is represented on Plate es，fig．s．

## chondrotus Cope．

```
American Naturalist, 1287, 1. 8% (J:muary)
```

Otoglossal cartilage triangular，attached by a base to each side of the hypobranchial cartilage．

In other respects this genus agrees with Amblystoma．The larva of the type species（C．tenebrosus），the only one I have identified，differs from those of $A m b l y s t o m a$ in the absence of basal brachial processes， and of splenial teeth．（Plates $20-21$ ．）

I have examined the hyoid apparatus of five species of this genus， and I refer two others to it．One of these，C．cingulutus，very probably belongs here；the position of the other，C．texans，is altogether ier－ tain as yet．

Considered with respect to the forms of their utoglossal cartilages these species fall into three sections，as follows（wee Plates 25 and 26 ）：
（1）The cartilage uninterrupted in front．C．tencbrosus，C．atcrimus， and C．decorticates．（Figs．1，4－5，3－9．）
（2）The cartilage divided in front，and without median processes．U． paroticus．（Figs．6－7．）
（3）The cartilage divided，each half with an internal and external proc－ ass in front．（Figs．1－2，Pl．26．）O．microstomus．

In addition to these characters，it may be observed that in the $C$ ． tenebrosus and C．aterrimus there is a sheet of strong fibrous tissue extending anteriorly from the otoglossal cartilage，and forming the base of the tongue．A few similar fibers are formed in the correspond－ ing position in the $A$ ．paroticum．

Besides the characters of the otoglossal cartilage I have already given，I may add that in the species with entire anterior border，the crest of the superior surface of the basibranchial appears to pass through a
foramen in the base of the otoglossal cartilage. Whate the latter is fissured the erest appears to be decurved throngh it, as in C. paroticus, Pl. 25, Tig. 6.

The species of this gemus are distributed as follows:
Austroriparian legion.-C. microstomus and C. cingulatus.
Pacific legion.-C'. paroticus, C. decorticatus, C. uterrimus, and C. tenclrosus.
The C. microstomus is not common in the eastern part of the Anstioriparian region, but is chiefly fomm in the Mississippi Valley and Texas. The Pateific species are all northern, none being yet known from the middle and sonthern parts of California.
The species of Chondrotus are characterized as follows:

1. Voneropaliatine tooth series extending exterior to the line of the internal nares; lingual plicar radiating from behime ; parotoils not distinct.
$\alpha$. Canthens rostralis distinet; tail shorter than head and hody.
Muzzio elongate, flat, produced beyond nostrils; vomeropalatine teeth in two rather short series, which present an open angle latckwards; hrown, marbled with darker lrown spots C. tenebrosns.
II. Series of teeth extending to external tissure of imernares ; lingual plie: radiat ing from behind; parotoid glands forming a listinet ovoid mass.
$\alpha$. Teeth in three series (no canthins rostralis or ${ }^{1}$ lantar tubercles) ; fonrth too with three phalanges.
Muzzle not produced; median series of teeth foming an open angle forwards; width of head 4.5 to groin ; legs stout ; toes long; tail longer than body; uniforn: brown
C. paroticus.
III. Series of teeth not extending beyond inmer line of mares; lingnal plicar radiating from behind; no distinet parotod mass (speeies large).
$\alpha$. Twelve costal fohls; no plantar tubercles; fourth toe with thee phalanges.
Vomerine teeth in one transverse series behind posterior line of chomar; tail wearly as long as heal and body; muzale very obtuse; nostrils terminal; light brown, with reticnlations of dark brown ............ . . decontimans.
Vomerine teeth in twosigmoids, which converge and join anterior to chownir; tail only as long as body; muzale lat, prodncel beyond nostrils; uriform black
C. aterrimas.
ark. Fonrterll costal folds; fourth toe with four phalanges.
Teeth arehed between inner nates; heal one-fonrth to groin (in small specimens) ; eye one-half width between canthes; mazale howald witer nearer together than inmer hatres; brown, with as series of lighter spots on upprer bart of sides, below yellowish; muzzle and tail mambed with the same.

## ('. testhths.

IV. Series ot teeth not extembling heyond immer margin of nares; lingnal plicar raliating from a median longitulinal furvow of the temger ; mo distinet parne toitl mass (species small).
$\alpha$. Two series of teeth; no canthes rostralis (fouth toe with fomr phatinges).
$\beta$. Tail compressed, crabl to the bolly.
Matable shorter than mazale; head mongate, willh betwern oyes behime equal from same to mares; wilth of heal dis times in telugh to groin ; limbs longer, separated when appressed, by two interestal spaces; black, with numerons narow gray anmuli on boety and tail.. .... © cingulatus.

 times in lemgth to groin : limbs short, soparaterd bex six costal spaces; leanmolored, with a fiew gray shandes loblow
( ${ }^{\text {r. }}$ mirrostom"я.

[^14]This species approaches the $C$. microstomus in general, but may be readily known liy its more elongate ovoid head, with long muzzle, more slender form of body, and peculiar coloration.

Mucous crypts and pores are not much developed in this animal ; a few only of the latter extend along the superciliary region. The costal folds are fourteen, and are visible across the abdomen.

The head is elongate, convex both transversely and longitudinally; the upper face of the muzzle is narrowed, and projects beyond the mandible. The width at the jaws enters the length to the groin $6 \frac{1}{2}$ times, and $1 \frac{3}{4}$ to the edge of the gnlar fold. The external nares are quite close together, nearer than the loug diameter of the eye, and nearly 1.5 this diameter in advance of the eye. The anterior angles of the latter are 2.33 diameters apart. The folds on the side of the head and neck are as in other species. The distance between the inner nares is 1.66 times the distance between the external.

The tongue is oval, quite elongate, but not filling the space between the rami of the mandible; its median groove strongly marked. The palatine teeth are in a single row, slightly convex forwards, entirely between the inner nares, their posterior margins of the ends of the series and nares corresponding. The gape of the month is short, but longer than in C. microstomus; its external canthos falls anterior to the posterior canthus of the eye, while the anterior canthus of the same measures the posterior third of the gape, commencing at the middle of the premaxillary region.

Costal grooves fourteen; a median dorsal groove strongly marked. An unusually strong fold across between angles of mandible, which sends a branch to the orbit; gular fold continued on neck, seuding a parotoid groove forwards. Length to gular fold 3.75 in length to groin.

Length of tail nearly equal from basis of same to the meutal crossfold. It is of rather uniform depth, much compressed, keeled above and for its distal half below. General form of the body slender and compressed, elevated at the scapular and pelvic regions.

Limbs stout; the fingers slender, but not very elougate. Appressed to the sides they fail of meeting by the length of the sole and longest toe; length from tip to tip when outstretched, 66 length to groin. Length of lower leg and foot, scarcely . S from muzzle to gular fold. No visible plantar tubercles. Fourth toe distinctly longer than third ; then 2, 4, 1. Fingers 3, 2, 4, 1 .

Color in alcohol black, the under surfaces thickly speckled with gray. A vertical narrow gray line passes between every pair of costal folds and meets its fellow on the clorsal liue or bifureates to meet a similar bifureation in like manner, embracing arra. These narrow annuli ex-
tend nearly as far forwards as the orbits, and surronnd the tail to its extremity. Muzzle black.

|  | Measurements. | In. Lin. |
| :---: | :---: | :---: |
| Total length. |  | 6. |
| Length to camthus oris |  | 2. 2. |
| Length to gular fold.. |  | 6. |
| Leng ${ }^{\text {th }}$ to groin. |  | 18.7 |
| Width of head |  | 3.2 |
| Width above fumora |  | 2. 25 |

The shades of coloration in this creature are those of the Amblystoma opacum, but are differently arranged.

No. 37.54 ; 1 spee.; Grahamville, S. C.; ——Bailey.

## CHONDROTUS MICROSTOMUS Cope.*

$$
\text { American Naturalist, 1887, p. } 83 .
$$

Amblystoma porphyriticum, Lallow., Proc. Ac. Phila., 1856, p. 8 (nee Salamandra porphyrilica, Green).
Amblystoma microstomum Cope Proc. Ac. Phila., 1き67, p. 206; Strauch, Salam., p. 6̄̈; Bonlenger, Cat. Batr. Grad. Brit. Mns., ed. ir, 18*?, p. 50, P'l. if, fig. 4.
This species is among the most slender of American Amblystomide, and has other peculiarities by which it is readily recognizable. The skin is very smooth and slippery, with the glands less evident in the skin than in A. opacum, jeffersonianum, etc. The skin is everywhere covered with small shallow pits, only visible when the mucus is removed, which shows the tail to be sometimes conspicuously granulated, the granules probably corresponding to the ends of the glands. There are no evipores or pits of larger size than the others on the head and parotid, as dent in some Amblystomata.

The head is very small, narrower than the body, with little or no constriction at the neek. It is contained abont six and one-half to seven times in the distance to the groin. The muzzle is short and wide. The head is much arehed in every direction, the eyes far forward and lateral. The lower jaw projects a little beyoud the border of the upper, concealing the latter when viewed from above. The eges are distant less than the length of the orbit from the nostrils, their anterior extremities separated by $1 \frac{2}{2}$ times this unit. The nostrils are oue orbit length apart. The anterior edge of the orbit falls opposite the middle of the gape instead of in its posterior third, as in Amblystoma jeffersoniamum. The gular fold is distant from the shont one-fifth the distance to the groin.

The body is slember for the genus. There are fourteen costal furrows, including the inguinal and axillary. There is a slight indication of a dorsal groove posterionly.

The tail is about two thirds the head and body. It is nearly cylindrical at base, and then becomes slightly compressen, more and more so to the tip, where it is quite flat, but withont erest, althong the edges are sharp. Viewed from the sides, there is a constriction at the base oi the tuil. It is one fourth higher in the middle than at the bose.

The limbs are weak. The digits are howerer very loug, cylindrical, depressed, withont membrame. The proportions of the digits are as in A. punctatum. The longest finger is but one-third the fore-arm; the longest toe is a little more than one thirld the leg from knce. The outstretched hind legs are abont tiro thirds the head and borly to groin. When the fore and hind legs are extended and appressed to the sides they are separated by six of the intercostal spaces. This indicates that the legs are shorter than in any other species of the genus. The tongue is thick, fleshy, and attached, althongh slightly free at sides and tip. There is a longitudinal groove in the tongue, separating the two papillose portions, of an oval shape, placed side by side, with the edge of the tongue projecting beyond them. The papillat form parallel series in each oval oblique to the central groove. This is not fomul in Ambly. stoma jeffersonianum.

There are only two patches or lines of palatine tectli. These occupy the middle of the palate, forming an $\wedge$, the angle anterior and reaching as fir forward as the anterior border of the inner nares. The posteroexternal ends do not pass the inner margin of those nares (in the soft palate, the proportions being a little different in the skull).

Sometimes these two patches form nearly a straight line, or at least the central portion is straight, the lateral bending slightly backwards.


Fig. 19. Chondrotus mirrnstomus. No. 3009. Saint Lomis, Mo.; ;-
The color in alcohol is a dark brownish-hack, a very little paler beneath, and thickly and irregularly sprinkled on the sides with plumbeous spots aloont the size of the eye, of no definite ontline. These are less mumerous above and below, sometimes nearly wanting ; sometimes they are larger than as described, and look not mulike patches of a grayish lichen growing on the sides.

Mersurcments.
Inches.
Length along axis of body from smont to angle of month ........................ . . 20
Length from suont to irnlin fold ............ .................................................. . . . . . . 4 ,
Lengrth from suont to erroin ....................................................................... . 2. 20
Length from suont to hehind amms ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.50
Length from snont to tip of tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .
Length of tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00
Wirlth of head ....... ....... ..... . . . . . . .... ....................................................... . . . . 31
Length of fore-arm from blhow ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
Length of legr from knee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. . . . . 1 .


The total length of largest specimen seen (39j9, Saint Lonis) is 6 inches, of which the tail forms 260 . The smallest adult is 2 inches long.

In the just perfected young is seen a series of illy-defined light spots, larger than elsewhere along each side of the back. The belly is quite light colored.

This species bears a close resemblance to Plethodon glutinosus, from which the generie pecnliarities, the longer digits, etc., readily distinguish it. The bluish spots, too, are much less sharply defined and duller, less silvery, and do not occur on the back to anything like the same extent as in P.glutinosus. From A. jeffersonianum it will be known by the projecting lower jaw, much smaller and more arched head, greater number of costal furrows, more evident spots on the sides, etc., besides the important peculiarities of tongne and teeth.
This is one of the species whose metamorphosis is completed sometime before it attains full size. A specimen in which minute stumps of the branchice remain measures 2 inchies in length; another withont traces of them, 2.15 inches. The width of the head enters the length to the groin 4.2 times, and the tail falls short of the axilla from its base. These measurements may be compared with those of the adult in illustration of the general principle that the relative lengths of body aud tail increase with increased size.

The well developed lateral processes of the otoglossal cartilage approach the elaracter of Amblystoma more than is seen in any other species of Chondrotus. Its very long median processes are not found in any other species of this genus. Although they lie closely appressed in the long axis of the tongue, they are homologous, each with a half of the circle of Amblystoma.

Chondrotus microstomus Cope.
IRESERVE SERIES.

| Citatogno number. | No. of suce. | Incality: | When collected. | From whom icceived. | Nalure of speciinco. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8875 | 1 | Mandevillc, Ia | Nov. -, 1876 | N. O. A carlemy | Alculiolic. |
| $88: 37$ | 1 | Mount Cownel, III | Juno -, 1875 | Sammel T'ururr | $1)$. |
| 3999 | 1 | S:ant Louis, Mo. |  | Jrs. (ico. binglemann | $1{ }^{1}$ |
| $59 \times 2$ | 1 | (1) |  |  | 110. |
| 3884 | 5 | lrairie Mer Rouge, La. |  | Jas. Vairic . | 1\%o. |
| 3902 | 4 | New Madrid, Mo .... |  | R. Kenuicott | Do. |
| 40:37 | 1 | Fort Smith, Ark |  | 1)r. B. F. Shumard | In, |
| 11156 | : | Monnt Carmel, III | Nov. -, 1881 | I. M. Turner | Do. |
| 11878 | 9 | W*healland, Imd. | A | liohert Ridigway | 10. |
| 3965 | 1 | Colnmbuts, (thio. |  | lrof. L. Lestitereux | Two larsa: |
| 394! | (i) | Nuw M:nltil, Mo |  | に. Kınmirot. | Pulli. |
| 11450 | 3 | Momat Carimel, Ill | Nแッ. -1881 | L. M. Thmmer. | Alcoliolic. |
| $8: 906$ | 1 | Oiklig, S. C.......... | Apr. 5,1887 | l. W. llayward | I)o. |
| 130.5 | 3 | Monmit (armel, $111 .$. |  | L. M. Twrner. | $1 \%$ \% |
| 8737 | 2 | Belloville, 111 |  | Dr. A. leuss | Ifo. |
| 1:3216 | 1 | Hutson's liay | - -, 188t | F. W. Hayden | 130. |
| 11551 | 1 | (!) |  | (?) | Ho. |
| 1115 | 1 | (!) |  | W. W. Tel. Fx | 10. |
| 1117 | J | Silut Lonis, Mo |  | Mr (ieo. Engelmann | 10. |
| 1199 | 30 | Sonthern Illinois |  | IR. Kennicott . | $1) \%$ |
| (101) | $\because$ | İancaster, Ohio |  |  | 1). |
| 41387 | $\because$ | 1; |  | sit. Charles Culloon . . . . . . . | 1)0. |

## (Plate 51, fig. 19)

Salamandra texana, Matthes, Allgem. dentsche naturlı. Zeitnng, i, 1855, p. 266.
Amblystoma texamum Baird, U. S. Mex. Bound. Surv., ir, Rept., 29, Pl. 35̈, fig. 15; Cope, Proc. Ac. Phila., IR67, I. 204 ; Stranch, Salam., p. 65 ; Boulenger, Cat. Batr. Grad. Brit. Mus., cd. in, 18\%2, p. 50.
The description of this species is taken from specimens which are not fully grown. The proportions are, however, much those of the $C$. microstomus at the same age. This, with the large number of costal grooves, renders it almost certain that the full-grown individuals are muel like those of the latter species, and very probably of near the same size.

Skin everywhere quite smooth; no traces of pores on the head or parotoid region in many specimens. Costal folds fourteen, distinct; head folds slightly marked, the gular slight. A median dorsal groove.

Head oval, rather flattened and broad; canthus rostralis somewhat marked. Mouth large ; canthus behind eye, anterior canthus of latter marking middle of margin. Nostril a little nearer eye-fissure than length of latter, probably equal in older specimens. Width between auterior canthus of eye double length of fissure; external separated by one length of same, which is less than the distance between inner nares.

Tongue small, as in other young, but not fissured or grooved, as in those of the two preceding species. Palative teeth forming an arched series between nares, extending to their anterior border, and not beyond their imer borler in the lateral direction. From their resemlance to those of $A$. microstomum of the same age I suspect they are similar in old individuals.

Body rather stender; width of head at jaws four times in total length to groin, and .75 length to gular fold. Tail short, longer when older, equal from its basis to axilla. Limbs moderately stont; digits eiongrate; third and fourth toes nearly egual then fifth, second, first. Fingers $3,2,4,1$.


Fig. 20. Chondrotus texanus, yonng. No. 4044. San Antonio, Texas; ${ }_{1}^{2}$.
Abore, light brown, with a series of light spots along upper pari of sides; these are small, and one is between each pair of costal folds. Sides aud belly jellow.


No. 4044, eleven specimens; locality, San Antonio, Tex.; collector, J. D. Graham.

The plane front and canthus nostralis of this species form a resemblance to the C. tenebrosus, between which and C. microstomus it is naturally placed.

## CHONDROTUS PAROTICUS Baird.*

Cope, American Naturalist, 1887, p. 88.
Anblystoma paroticum Baird, Cope, Proc. Ac. Phila., 1867, p. 200 ; Strauch, Salam., p. 65 ; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. ir, 1882, p. 48, PI. n, fig. 3.

This salamander is of very peculiar character. It is one of the stontbodied species, in this respect about equal to $A$. punctatum, but with a broader head.

In the type specimen (1708) the skin is remarkably free from pits, pores, and milk glands. These are found on the parotoid region, both above and below the horizontal furrow from eye to side of neck, which is swollen in consequence. There is also a small pateh on top of head bordering the orbit, a patch on the spaces between the intercostal furrows, on the upper part of the sides, extending, though faintly, nearly to the belly. Along the ridge of the tail, bordered below by an indented line, the glands are thickly crowded. A few seattered glands are seen along the back; elsewhere the skin is perfectly smooth and glandless, with the muscle directly beneath it, although probably when fresh the usual shallow pits of the group stud the skin thickly everywhere, as usual. These are distinetly visible in a second specimen (4709). In this also the glands are more numerous on the back and extend farther down the side of the tail.
The head is broad and depressed, considerably constricted at the neck. The eyes are unnsually large and prominent for the genus, separated anteriorly by about twice the length of their orbits, distant from the nostrils less than this length. The outer and inner nostrils are respectively about equidistant by little more than one length of the orbit.

The tongue is moderate, nearly circular, filling the rami only anteriorly and hardly more than half the width of the head.

The teeth are in four patches, forming a transverse series, slightly angular anteriorly, where they extend to about opposite the centers of the inner nostrils. The two central patches are rather the larger, with a slight iuterval. They extend posterolaterally nearly to the inner margin of inner nostrils; then are separated from the outer patches by an interval nearly the width of the inner nostrils. The lateral patehes extend a short distance beyond the outer margin of the inner nostrils.

The para sphenoidal portion of the roof of the mouth is much restricted laterally and behind.
The body is full, rounded, and deuressed. There are eleven costal furrows, including inguinal and axillary.
The tail is compressed, but oval in cross-section, with the lower edge rather sharp towards the end. The upper outline is much rounded. It is not high, and not as long as the rest of head and body; longer than from snout to groin. In one specimen there is a distinct furrow along the under side.

The limbs are large; the digits lengthened; more depressed than in A. punctatum, but linear, not triangular in slape. The lateral ones are more lengthened than usual, and those of each limb are more nearly of a length. The free portion of longest finger is more than one-third from tip to elbow; that of longest toe in the same proportion.

The gape of the head is wide; the length more than half the width. The width of the head is contained four times in distance from suont to groin.


Fig. 21. Chondintus paroticus. No. 7021. Puget's Sound, Orcgon. Natural size.
The color in one specimen is everywhere a dull reddish-olive or brown, paler beneath, and withont the trace of any spots. No. 4707 is much darker, nearly black.

The Amblystomi trisruptum Cope, from Ocate Creek, is similar to the present species in the intervals between the four palatine patches and the glands on the parotid region. The rest of the skin, however, as far as cau be ascertainel, is glandular, as in $A$. punctatum, tigrinum, etc. The digits, too, are shorter, flatter, more triangular, the lateral and central more unequal. The eyes are much smaller and further apart. There are twelve costal furrows, not eleven, etc.

Chondrotus paroticus Baircl.
RESELVE SERIES.

| Catalogue number. | No. of spee: | Locality. | Whan collecterl. | From whom receisal. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4708 | 1 | Chilowynck Lake, ()regon. |  | A. (:mmphell | Alcoholic type. |
| 7021 1145 | 1 | Pruet Sound, Oregon. |  | Ir: C. 1\%. I. Kenaerly 1. © swiul | Alcoholic. |
| 4709 | 2 | Near Somialamoo, Ori. |  | - Campla | 1\%. |
|  | 1 | Coal minea of Vamconver Island. |  | Aden W. Ifewson | Do. |

I'roporlional dimensions.
4708. Chilow yuck.
Head:
Length of gape of mouth to its width
Width to distance from snont to groin Limbs:

Length (measnred along axis of body):
From snont to gapo.............. . . 50
From snont to gnlar fold. ....... . 95
From smont to armpit........... 1.50
From smont to groin ............ . . 3. 10
From snont to behiud anns .... 3. 80
From snout to end of tail...... 7.20 ITead:

Wiulth of head................... . . 75
Wilth of tongue................ . . 40
Length of orbit..................... . 25
Distance between eyes anteriorly................................ . . 45
Distance between outer nostrils . 25
$\qquad$ more than half.
Width to distance from snont to gnlar fold..................... contained It times. $4 \frac{1}{2}$ times.
Width to distance from snont to behind anns.............................. +5 times.
From suront to grular fold containel in distance from suont to groin.... $3 \frac{3}{2}$ times.
From snont to gular fold contained in distance from suont to behind
anns .............................................................................. +4 times.
Distance auteriorly between eyes in length of orbit .......................... 2 times.
Distance from eyes to nostrils in longth of orbit ............... little over 1 time.
Distance between external nostrils in length of orbit ......... little over 1 time.
Distance between internal nostrils in length of orbit................ about 1 time.
Width of tongue to wilth of head ................................... little over $\frac{1}{2}$ time.
Free portion of longest finger contained in distance from elbow to tip $2_{3}^{2}$ times.
Distance between ontstretched toes in length from snont to groin. equal.

## Measurements, in inches.

IIead-Continued.
Distance between inner nostrils . 24 Tail:

Height of tail where highest... . 45
Brearlth of tail where highest.. . 20
Limbs:
Free portion of longest finger.. . 30
From elbow to tip of longest finger............................. . . 83
Free portion of longest toe..... . 35
From knee to tip of longest toe 1.00
Distance between ontstretched toes. 3. 05

## CIIONDROTUS DECORTICATUS Cope. *

$$
\text { Anerican Naturalist, 1887, p. } 88 \text { (February). }
$$

Amblystoma decorticatum Cope, I'roceeds. Amer. Philosoph. Soc., I886, p. 522.
This species has a good deal of affinity in its character to the $C$. proveticus Bairl, but it differs in important points of structure, as well as in its external appearance.

Its general proportions are not slender; and the limbs, especially the posterior ones, are very stout. The tail is long, and is compressed from the base. It does not bear a fin at any part. Its length, in the single specimen before me, is equal to that of the head and body (including the rent), less the distance from the eye to the end of the mizzle. The head is slort and the mozzle is contracted, and is steeply romoled in profile. The distance from the muzzle to the axilla enters the length from the axilla to the groin 1.2 times. The width of the head enters
the total length to the groin 4 times. The limbs when pressed to the side overlap by the length of the fingers.
There is no canthus rostralis, and the lower jaw does not extend beyond the upper. The exterual nares are almost terminal, and are as far apart as the distance between the inner borders of the choane. The latter are rather large, and are transverse. The vomeropalatine series of teeth form a short transverse liue, which is entirely within the interual borders of the inuer nares and a considerable distance posterior to them. The tongue is wider than long, bat does not fill the wide floor of the mouth laterally. A dermal groove extends posteriorly from the eye to the side of the neck above the anterior border of the humerus. A branch groove descends a short distauce posterior to the eye and turns forwards to the canthus of the month. These grooves divide masses of crypts, those on the inferior side of the groove being most prominent. The tract above the groose resembles the parotoid gland of the Chondrotus paroticus, but is much less distinctly defined, fading out upwards.

There are eleven well-defined lateral dermal folds, and space for a twelfth, which will probably be found well defined in other specimens. The back from the interscapular region posteriorly and the superior


Fig. 22. Chondrotus decorticatus. No. 14493. Port Simpson, B. C Natural size.
part of the tail are thickly studded with crypts. There is a slightly defined gular fold.
The fore limb is as long as from its anterior base to the anterior margin of the eye. The toes are quite short, and their lengths, beginning with the shortest, are 5-2-3-4. The posterior foot is especially robust, and the sole is wider than the length of the longest finger. There are no distinct tubercles on the sole. The lengths of the toes are, begimiing with the shortest, 1-5-2-4-3.

Measuremenls of No. 14493.
Length to groin ..... 071
Length to axilla ..... 031
Length to line of eyes ..... (005
Length of fore-leg. ..... 026
Lengrth of fore-foot ..... 010
Lengtin of cubitus ..... 008
Leugh of hind leg ..... 026M.
Length of hind foot ..... 0105
Width between nostrils ..... 005
Width between eyes ..... 006
Width of head ..... 016
Width of sole ..... 008
Depth of tail at middle ..... 008

The manner of deseribing the color pattern of this species depends on what we regard as the ground. We can assume that the ground color is represented by a dark chocolate-brown, and say that this is closely studded with brownish-white spots of irregular forms and sizes. On the back, limbs, and top and sides of the head the pale spots are so close together as to reduce the brown to a net-work. On the fore-legs the pale spots are larger than anywhere else. The spots are few on the tail, and those chiefly near the base. The inferior surfaces are dirty light-brown.
The characters which separate this species from C. paroticus are: The much shorter series of vomeropalatine teeth, the shorter fingers and toes, the less distinct parotoid glands, the shorter and more obtuse head, and the coloration.

No. 14493; one specimen; Port Simpsor Alaska, 1885; Dr. T. H. Streets, U. S. Navy.

## CHONDROTUS ATERRIMUS Cope.*

## American Naturalist, 1887, p. 88.

Amblystoma aterrimum, Cope, Proc. Ac. Phila., 1867, p. 201; Strauch, Salam., p. 65 ; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. ir, 1882, p. 49.
This is a stont species, having a form of head intermediate between that of the C. tenebrosus and A. tigrinum. The dentition is quite peculiar, and with the ensemble of its characters refers this species to the immediate neighborhood of the C. tenebrosus.

Heall a broad oval, its greatest width a little over three-quarters the length from end of mazzle to gular fold, and 4.2 in same to groin. The pupil marks three-sevenths the distance from canthus of month to external nostril. Fissure of orbit equal length from same to nostril and enters 1.66 times width between the latter; it is contained 2.25 times in width between anterior canthi of eyes. Canthus rostralis marked at orbit, terminating very obtusely at nostril. The profile descends steeply from line of latter, not being prolonged, as in C. tenebrosus. Thus from the line comeeting middle of inner nares to lip is .75 external internarial distance and .6 between anterior canthus of eyes; in C. tenebrosus, same equals internarial width and .75 the distance between eyes. The distances between inner and outer nares are the same; the former are round. The series of palatine teeth commence only opposite the middle of the posterior margin of the interual nares, and describe a slight curve

[^15]round their inver margins to a point just in advance of their anterior, then turn abruptly inwards and slightly backwards, making a right angle with their previous course. They converge, but do not unite.

Tongue large; as broad as long. Gular fold well marked; parotoid groove not visible, perhaps accidentally. It is difficult, as in the C. tene. brosus, to distinguish the costal folds. There are not more than twelve.

The tail is short and stout; its upper edge is much compressed, as is the posterior half; its glaudular structures are much less developed than in other species of Amblystoma, the crypts of the crest being minute and globular. Length of tail equal from its origin (posterior margin vent) to pesterior outline of sternum.

The extremities are very stont, just meeting when laid along the side. The palms and soles are very wide, aud the toes short and flattened. They stand, as regards length, behind, $3,4,2,5,1$; before, $3,2,4,1$.


Fig. 23. Chondrotus aterrimus, No. 5242 ; natural size ; locky Mountains.
The color is black above, lead colored below.

## Measurenients.

In. Lin.
Length from snout to gape (flat projection) ..... 07.1
Lengtl from snont to gular fold ..... 12. 75
Length from snout to axilla ..... 19.1
Length from suout to groin ..... 39
Length from snout to end of vent ..... 48
Length from snont to end of tail. ..... 6
Width of head ..... 9.75
Width of tongue ..... 5.2
Width between eyes anteriorly ..... 5
Width between nostrils ..... 4
Width between inner nostrils ..... 3
Width from ese to nostril ..... 2.25
Circumference of belly ..... $0 \quad 23.6$
Greatest height of tail ..... 5.4
Greatest width of tail ..... 0 4. 5
Free portion of longest finger ..... $0 \quad 2.5$
From elbow to tip of finger ..... $0 \quad 9.75$
Free part of longest toe ..... 0 3
Knee to tip of longest toe ..... 011
Extent of olitstretched toes ..... $0 \quad 6.6$

No. 5242; one specimen; North Rocky Momntains; Lientenant Mullen.

CHONDROTUS TENEBROSUS Bil. Gird.
(I'late 22-23; 24, figs. 1-3.)
Cope, American Naturalist, $1887,1.88$.
Amblystoma tenebrosum, Bairl and Girard, Proc. Ac. Phil̊., 859, 1. 174, and U. S. Expl. Surv., Xif. pilt 11., Pl. 31, fig. 1 ; Cope, Proc. Ac. Phila, 1867, 1. 202 ; Stranch, Salan., p. (6.) ; Bunlonger, Cat. Batr. Grail. Brit. Mus., ed. 11, 1882, p. 49. Miphonura tencbrosa, Gir., U. S. Expl. Exped., Herp., p. 14, Pl. I, tigs. 9-17.

This species is especially characterized by its massive frame and buge size among true salamanders, as well as by other peculiarities, hereafter to be mentioned.

The skin is less glandular than in A. punctatum or tigrinum, although scattered glands may be detected closely and evenly distributed on the whole back and sides and on the chin. The remaining under parts and snout before the cyes are smooth.

The head is very massively built, large, broadest behind the eyes and triangular, the sides being nearly straight to the narrow and rounded tip. The eyes are very large and prominent, separated by less than two lengths of the orbit, and distant less than one length from the outer nostrils, which are separated by $1 \frac{1}{4}$ orbits distance, and placed on the side below the distinct canthas rostralis. The outer nostrils are much more distant than the inner, which are very large, much excavated, and have the external canal oceupied by a soft, plaited membrane.

The tongue is thick and fleshy, nearly orbicular, but angular anteriorly. It fills up the lower jaw pretty well, and is more than half the width of the head.

The palatine teeth are in two patches only; each very slightly convex anteriorly, coming together at a slight angle, with the apex backward, but separated along the median line. Laterally the patches of teeth form the posterior margin of the inner nares, and do not extend beyond their onter margin. The entire series is thas posterior to the nostril. In younger specimens the series are more transverse, the inner extremities slightly incurved.

The width of the head is eontained $1 \frac{1}{3}$ times in distance to gular fold and 4 times to groin.

The botly is rounded and depressed. As nearly as can be ascertained there are about twelve costal furrows.

The tail in the two specimens before me is considerably less than half the total length. It is much compressed from near the base, and the edges near the end are quite sharp. It is far short of being as deep at the base as the body.

The limbs are stont. The digits, the fingers especially, are short, con. siderably depressed, but linear and blunt at the tips. The under surfaces of these are somewhat swollen into a kind of bulb, which in alcohol contracts into something the appearance of a disk. The third finger is
longest, but is very little more than the second, and this than the first and fourth. The third finger is contained nearly four times in the distance from elbow to tip. The fourth toe is longer than third in three specineus; in one the second exceeds the fourth a little, and the same are nearly equal in case of the fingers.
The color of this species in alcohol is a kind of dark reddish-brown; paler beneath, mottled and marbled above, aud on the sides with darker brownish; most distinct on the head, especially on the snout, where the skin is perfectly smooth. The head shows a tiuge of grayish in the ground color.
(For fresh color see the figure in Girard's Herpetology of the United States Exploring Expedition.)

There are two varieties of this species: $\alpha$. Where the loreal region is flat and the muzzle narrower before the orbits, and the marblings confined to the head; the body being of a nearly uniform brown. Represented by specimens 4710 and 4053 . $\beta$. The loreal region swollen in front of orbits, aud hence the muzzle broader; the ground color grayish, with coarse brown marbling, like large hollow spots, distributed over the whole upper surfaces of the body and tail. Represented by No. 5981 and a large specimen (length 8 inches 6 lines) in Mus. Phitadelphia Academy of Natural Sciences, from Body Bay, latitude $38^{\circ} 1 \mathrm{~s}^{\prime}$ north, on the coast of California, procured by George Davidson, of the U. S. Coast Survey.

Chondrotus tenebrosus Bd. Gird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4710 | 1 | Oregon |  | Exyloring expedition | Alcoholic trpe. |
| 4053 | 1 | Astoria, Oregon ...... |  | Lient. W. P. Trowbridge, U. S. Arms. | Alcoholic. |
| 5981 | 1 | Chil ow yuck Lake, Oregon. |  | Dr. C. B. İ. Keuncrly. | Do. |
| 14182 | 1 | Puget Sound, Oregon. |  | do | Do. |
| 14491 | 1 | Portland, Oregon ... | 1885 | J. Lovisou. | Do. |
| 14559 | 1 | Shasta County, Cal... | 1886 | L. W. Green | Do. |
| 13781 | 7 | ...... do | 1885 | Chas. 'Townsend | Ad. and larva. |

Proportional dimensions.
Head:
Length of gape of month to its width................................... two.thirds.
Width contained in distance from snout to gular fold.................... $1 \frac{1}{4}$ times.
Width contained in distance from snout to groin .......................... 4 times.
From snont to gular fold contained in distance from snout to groin
little over 3 times.
Distance anteriorly between eyes in length of orbit............. not quite twice-
Distance from eycs to nustrils in length of orbit........................ four-fifths.
Distance between external nostrils in length of orbit ................... $1 \frac{1}{8}$ times.
Distance between internal nostrils in length of orbit.................. four-fifths.
Width of tongue to width of head.......................................... one-half.

Limbs:
Free portion of longest finger contained in distance from elbow to tip

$$
\text { nearly } 4 \text { times. }
$$

Free portiou of longest toe contained in distance from knee to tip $\qquad$ nearly $3 \frac{2}{2}$ times.
Distance between outstretehed toes in length from suout to groin $\qquad$ Tail:

Length from behind anus to rest of animal $\qquad$ contained $1 \frac{1}{2}$ tinues.
Length from behiud anus to total length
two-titths.
Measurements in inches.

Length, measured along axis of body :
From suout to gape 80

From snout to gular fold........ 1.50
From snout to armpit. 2. 10

From snout to groin............ 4.55
From snout to behind anus
5. 65

From snout to end of tail........ 9.30
Head:
Width of head.................... 1.15
Width of tongue
. 60
Width of orbit .34
Distance between eyes auteriorly . 58
Distance between outer nostrils . 40
Distance between inner uostrils . 30
Distance from eje to nostrils... . 26

Body :
Circumference of belly.......... 4.00
Distance between armpit and..
groin....................................... 65

## Tail:

Height of tail where lighest... . 65
Breadth of tail where highest.. . 36
Limbs:
Free portion of longest finger.. . 28
From elbow to tip of lougest finger
1.05

Free portion of longest toe..... . 36
From knee to tip of lougest toe. 1.35
Distance betreen ontstretched toes
3. 60


1


4



6



7

Fig. 24. Chondrotus tenebrosus. 4053. Astoria. $\frac{7}{1}$.
The larra of this species frequently exceeds in dimensions that of any other species, and quite equals the adult. It is a uniform lead color,

1951—Bull 34—8
or sometimes blackish, and the muzzle is rather abruptly shortened. The tail has a fin at its extremity, which extends also well anteriorly on the superior edge. The digits are flattened, and their apices are protected in many specimens by a horny cap of a blackish color. This larva, however, differs from that of other species of the genus in other characters of more importance. First, There are no teeth on the splennial bone. (I hare not examined very small specimens.) Secondly. The branchise have a peculiar shape.* There are no processes such as exist in all other Urodele larva, but the fimbrie arise from the edges of the vertical lamine, which separate the pharyngeal fissures (Fig. 3, p. 3, No. 7). The superior part of the lamina is a little more produced than the inferior, so as to form in some specimens, on the third lamina, a short process. This type of external branchice does not resemble any of those of the peremibranchiate types, where there are always processes which are frequently furnished with more or less numerons rami. Thirdly. The teeth of the larva are stronger than in the adult. They are compressed, double-edged, and acute, having thus a dagger shape. They can inflict a severe bite.

As they approach maturity the marbled colors begin to appear. They can probably reproduce withont nudergoing a metamorphosis, since I have found eggs in the ovaries ready for deposit.

I observed these larre in some tributaries of the McClond River, near Baird, Cal. They swam with great rapidity, darting about and hiding themselves among the fallen leaves that covered the bottom. I took from the stomach of one of them a larva of its own species of onethird its size. They are common in the mountain streams of northern Californiawand western Oregon. The skeleton of a large specimen from Salem, Oregon, is figured on Plates 20-21.* The hyoid apparatus of a younger larva is represeuted on Pl. 22, figs. 2-3.

## LINGUELAPSUS Cope.

$$
\text { American Naturalist, 1887, p. } 88 .
$$

Otoglossal cartilage free from the basibrauchial, and capable of anteroposterior movement on it, and not forming a ring. Tail cylindric.

In other respects this genus is identical with $\Lambda$ mblystoma. The difference in the otoglossal eartilage is great, and is presented under modifications by tro species. This cartilage is drawn backwards by two pubohyal muscles, and forwards by two corresponding geniohyals. (Plate 22, figs. 10-13.)
The species of Linguielapsus resemble in the character of their tongue and vomerine teeth the type of $C$. microstomus and the genus Chondro-

[^16]tus. They are the ouly Amblystomidie with cylindrie tail. They differ as follows:
I. Folds of the tonghe radiating from a longitulinal furrow ; vomerine teeth not extemding extemal to internal nares; tail rounded in section.
a Comma of otoghossial cartilage turned forwarls; mazzlo very short; jaws equal; legs short, separated from cach other, when appressed, by four interspaces: backish, with light cross bandson head, body, and tail. L. annulatus.
ack-Comna of otorlossal cartilage turned hackwards; mu\%zle elongate, projecting beyond chin; legs longer; separated, whon appressed, by two intercostal spaces; grayish-brown, with mmerons pale transverse lines, which form a reticulate patteru across the tail ....................................... L. lepturius.

## LINGUELAPSUS ANNULATUS Cope.*

American Natmalist, 1887, p. 88.
Amblystoma annulatum Cope, Proc. Amer. I'hilos. Soc., 1857, p. 525.
This species resembles the Chondrotus microstomus rather than the C. cingulatus or the $L$. lepturus. Howerer, it approaches the last-named sprecies in the form and length of its tail, and exceeds that and all the other species of the family in the length of that part of the boily.

The muzzle is very short, and the head is not distinguished from the neck. The legs are short, and when appressed to the sides are separated by a space of three and parts of two other intercostal spaces, equal to four spaces. The tail is in section eylindric at base, and widely wral to near the extremity, where it is more narrowly oral. It is not angulate, and has no dermal margin on the midde line above or below. Its length exceeds that of the head anl body by the length of the anterior foot, and it may have been longer, as the extremity is injured.
The head is short, and the width enters the length to the groin six and at quarter times. The front is convex to the upper lip or profile, and transersely between the orbits. The parietal region is very convex transersely. The width between the canthi oculorum behind exceeds the length from the same point to the end of the muzzle. The nos. trils present anteriorly, and they are not quite so close together as in the


Fig. 25. Lingualapsus annulatus. No. 11564; natural sizo, execpt Fig. 5.
L. lepturus, as the distance between them measmes two thimels the width between the eyelids. The vomerine teeth form two transverse fascienli, of several rows of teeth cach, between the choane, convex forwards, and separated on the middle line by a very short interval.
The skin is perfectly smooth. There is in postgular fold, and the sides are crossed by thirteen folds, with space enough at the axilla for
a fourteenth. The tail is also rery distinctly amulate-grooved. l count thirty-one grooves behind the femora, and the injured extremity is not grooved. Indistinct grooves are apparent on the tails of several of the species of Amblystoma. There are no rows of mucous pores on the head or body of this species, nor accumulations of crypts on the head, body, or tail.
The palm is wide, and the fingers not long, though of unequal length. The lengths of the fingers, begiming with the shortest, are, 2, 5, 3, 4, and their phalanges, $2,2,3,2$. The toes of the hinder foot are, in order of length, $1,5,2,3,4$; and the phalanges, $2,2,3,4,2$.

This species is larger than the $L$. lepturus or the Chondrotus microstomus.

> Measurements.

Total length . ............................................................................. . . . 1810
Length to base of ta:l....................................................................... . . 092
Length to groin................................................................................. . . 077
Length to axilla ............................................................................ . 02.2
Length to canthus oris . ................................. ................................ . 009
Length of fore limb from axilla.......................................................... .0172
Length of fore-foot. ........................................................................ . . 007
Length of hind limb from groin.......................................................... . 020
Length of hind foot ........................................................................... . 012
Width of head . ............................................................................. . . . . $01:$.
Depth of tail at middle.............................. .. ................................. . . . 009
The typical and only specimen is preserved in alcohol. The color above everywhere is dark brown; below, very light brown. The sides are paler, perhaps pale sellow in life, and the color ascends at several points, so as to form cross-bands of moderate width and very well defined. One of these crosses at the occiput and one at the axille; between the latter and the groin there are five, nearly equidistant. There is an imperfeet one at the sacrum, and there are seven on the tail, one of them imperfect. The coloration of this species is quite unique in the genus in its regularity.

The locality of the only specimen, No. 11561, is unknown.

## LINGUÆLAPSUS LEPTURUS Cope.*

American Naturalist, 1887, p. 88.
Amblystoma lepturum Cope, Proc. Amer. Philsoph. Soe , 1886, p. 524.
This species resembles the Chondrotus cingulatus, but differs from it in the entirely different form and proportions of the tail. This part is very slender in the L. lepturus, with round or vertical oval section, without keel above, and lacking very little of being as long as the head and body together. The legs are of the same proportions as in the C.cingulatus; that is, when appressed they are separated by a space equal to the length of the posterior foot, showing their greatly superior length to those of the C. microstomus. The body is cyliudric. The head is
an oval, with produced and rounded mazzle, which projects beyond the lower jaw. The animal resembles a Plethodon rather than the species of Amblystoma, but its vomerine teeth and tongue have all the characters of the Chondrotus microstomus.

The vomerine teeth form a convex series, extending forwards to a point between the choana, where they are slightly interrupted on the middle line. The tongue is large, filling the floor of the mouth, and is extensively free at the sides only. The external nostrils are nearly terminal and are rather near together, the space between them being equal to just half that between the bases of the eyelids and about threefifths that between the choane. The width between the eyes behind is equal to the axial length from the same to the end of the muzzle. The width of the head enters the length to the groin seven times. The length from the muzzle to the axilla enters the distance from the latter to the groin $1 \frac{3}{5}$ times.

The lateral digits are distinct and the median ones moderately elongate. Their leugths, begimning with the shortest, are: Fore-foot, 2, 5, 3,4 ; hind foot, $1,5,2,3,4$. The phalanges are: Fore-foot, 2, 2, 3, 2; hind foot, 2, 2, $3,4,2$. No palmat or plantar tubereles,
The skin is perfectly smooth, and between the axilla and the groin it is marked by fourteen grooves. There are no dermal margins to the fingers or the tail. The cloacal orifice is a simple slit. There is a distinct postgular fold.


Fig. 26. Lingucelapsus lepturus. Nat. size, except fig. 5.
Mcasurements.
M.
Total length...... .............................................................................. . . 11 .
Length from end of muzzle to base of tail......... ................................... . . . 092
Length from end of muzzle to groin ..................................................... . . . 0515
Length from end of muzzle to axilla.. ................................................. . . . . 020
Length from end of mmzzle to canthus oris ................................ ...... . . 0065
Length of fore-leg........................................................................... . . 013
Length of fore-foot . .............. ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0055
Length of hind leg .............................................................................. . . . 016
Length of hind foot........................................................................... . . . 0075
Width of head.. ............................................................................... . . . 0075
Depth of tail at middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0025
The color of the typical specimen in alcohol is purplish-brown above aul paler below. There are numerons not well-defined whitish spots on the sides and a few on the belly, and there are some very faint and delicate gray lines across the posterior part of the back. The tail is densely speckled with gray on the sides, and delicate gray liues across
the upper surface of the tail in a reticulate manner. The limbs are paler than the back, and the digits are cross-barred with whitish.
The habitat of this species is unknown. The only specimen was found in a jar with a specimen of Diemyetylus torosus and one of Rune temporaria; the former Californian, the latter Palaaretic.

## DICAMIPTODON Strauch.

Strauch, Salam., p. 68; Boulenger, Cat. Batr. Grad. Brit. Mus., 2d ed., 1882, p. 38.
Tongue nearly entirely adherent. Palatine tecth in two long transverse arched series, convex forwards, converging backwards, situated behind the line of the choanæ, separated from each other by a wide interspace. Toes fire. Tail compressed.
This genus I have not seen. Its characters and those of its only species are copied from Boulenger's work abore quoted.

## DICAMPTODON ENSATUS Esch.

Strauch, l. e., p. 69; Bonlenger, Cat. Batr. Grad. Brit. Mus., $2 d$ cd., 1882, p. 38. Triton ensatus, Eschscholtz, Zö̈l. Atlas, p. 6, Pl. 22.

Head broad. Snout rounded. Body stout. Limbs short. Toes free. Tail sword-shaped, curved upwards, as long as head and body. Skin nearly smooth; parotoids and costal grooves apparently absent. Red-dish-brown; back marbled with brown. Total length about four decimeters.

I have not seen this species, and know it only from the figures and descriptions above cited. It is saill to come from California.

## HYNOBIIDA.

Hynobiidac Cope, proc. Acad. Phila., 1859, p. $12 \overline{5}$.
Otoglossal cartilage, none; a second epibranchial. Second basibranchial not continuous with the first.

Vertebre amphicolons.
No parasphenoid teeth; vomerines on the posterior edge of the vomeropalatine bone. Ptersgoid bones distinct.

According to Wiedersheim* two genera of this fanily, Hynobius and Ranidens, possess a lachrymal bone in addition to the prefrontal. Whether it is a characteristic of the other genera remains to be ascertained. The same author shows (l. c.) that the hepohyal cartilages are very elongate in the two genera named, and are not articulated with the basibranchial, thus permitting of independent motion. (See plate: 25, figs. 10-11.) He also figures a cartilaginons connection between the stapes and the quadrate, as occurs in the Trematodera, which is a character of much importance.

[^17]The latest work on this subject, that of Boulenger, throws much light on it, owing to the opportunities enjoyed by its author for the study of the forms of salamanders found in Asia. He gives the following table of the genera of the family, but refers them all to the Amblystomide:

1. Series of palatine tecth converging backwards, forming a V-shaped figure.

Toes five
Hynobins.
Toes four
Salamandrella.
II. Series of palatine teeth uninterrupted, doubly arched, forming a $M$-shaped figure.
Fingers and toes with opidermic claws ............................ Onychodactylus.
III. Serics of palatine teeth in two arches, convex forwards, separated by a wide interspace.
Palatine series short, between the choante. Toes five ................. Ranidens.
Palatine series short, between the choanil. Toes four ........... Batrachyperus.
Of these genera all are Asiatic. The horny claws said to characterize Onychodactylus may not be confined to that gemes or be constant in it, as they develop by the hardening of the epidermis in Amblystoma and some other genera on exposure to dry conditions.

There are twelve species of this family known, distributed as follows: Hynobins 5; Salamendrella 2; Onychodactylus 1; Ranidens 3; Batrachyperus 1. The hyoids of three of these genera have not been examined.

## PLETHODONTIDA.

Gray, Cat. Batr. Grad. Brit. Mus., 1850, 31, exclusive of Amblystoma and Desmognathins.

Plethodontide Cope, Journ. Ac. Nat. Sci., Phila., 1866., 105.
Spelerpince Cope, Proc. Ac. Nat. Sci. Phila., 1859, 123.
Plethodontide Bolitoglosside and Hemidactyliide Hallow., Journ. Ac. Nat. Sci., Phila., 1858, 338, 339.
Plethodontince Bonlenger, Catal Batr. Grad. Brit. Mns. ed. ir, 1882.
Vertebre amphicœlons, simple below. Ethmoid wanting; no pterygoid.

Carpus and tarsus cartilaginous.
Vomeropalatine bones not produced posteriorly orer parasphenoid; dentigerous plates on the parasphenoid.

Ceratohyal undivided, articulating directly with the quadrate bone or cartilage; no otohyal. One only, the first epibranchial in adults; second basibranchial not connected with the first.

Stapes not connected with the quadrate by cartilage, in adults.
Vestibule, inner wall osseous.
The above characters define a very distinct and natural gronp of genera, which are all but one (Geotriton) confined to America. Many of the species are of small size, some of them indeed of rery small size. The largest species, spelerpes bellii, reaches the dimensions of the Amblystoma tigrinum or Axolotl. Some of the species are hatud-
somely colored. All are distinguished for their power of projecting the tougne. Some of the species of Spelerpes, where this organ is free all round, can project it entirely from the mouth, while the Geotriton fuscus has almost the power of the chameleon in this respect, projecting the tongue for a distance equal to one-half the entire length of the animal.*

Appropiately to this habit, the basibranchial bone and its pair of short hypolyal processes are free from the ceratohyals, thus admitting of free movement, and the epibranchials are very long. In all of the genera the extremity of the ceratohyal is attached to the quadrate, as in the Amblystomide, showing that it is not this element which is projected. But in Geotriton and Spelerpes sp. the epibranchial is greatly elongate, extending to the side of the nape and interscapular region, a structure necessary to projectility.

In the elaracters of the scapular and pelvic arches this family does not differ from the Amblystomidee and Salamandride. The foramen which separates the procoracoid from the coracoid is well narked and intermargimal ; in the Amblystomide it is smaller, and in the Salamandrida marginal. The femm always presents a stroug trochanter. It is weak in Stereochila marginatum. In Triturus and Diemyetylus it is quite weak, but in Salamandra strong.
In most of the genera of this family the enamel does not cover the entire crown of the tooth. In Spelerpes ruber, longicaudus, and bellii, and Plethodon glutinosus and cincreus the exterual part of the crown terminates in a transverse cutting ellge, while the inner extremity is more prolonged, leaving a transverse depression between the two. In Sp. bellii the inner apex is transverse and prolonged a little beyoud the external, while in the other Spelerpes and the Plethodon glutinosus the inuer crown is more prolonged and is incurved conic. In $P$. cincreus it is a little more obtnse. In Desmognathens and the Amblystomidæ the two apices are of equal height and are both transverse cutting elges, the outer narrowed in the former. In the larve of Plethodontidx that I have examined the crowns are simple. The teeth of Autodax are more like those of Cocilia, or of Hylonomus of the Coal Measures, and distinguish the genus from other Plethodontidie.t They are large, compressed, and simple.
This family is more remote in its skeletal characters from the Salamandrider and I'leurodelide than is the Amblystomide. Thus the absence of parasphenoid brushes, the ossification of the tarsus and earpus, and the persistence of the pterygoid bones are characters common to the two latter and wanting in the present family. On the other hand, the non-prolongation posteriorly; of the vomers, the articulation of the eeratohyal with the quadrate, and the amphicelous vertebre belong to this family and the Amblystomide only. The position of the

[^18]latter family is, therefore, between the Plethodontide and the Salamendride. The Amblystomide and Plethodondide may be thus compared with reference to the developmental character of the features which distinguish them.

AMBLYSTOMID.E.
Superior.
Carpus and tarsus osseous.
Premaxillary fontauelle elosed.
Inferior.
O. pterygoideum persistent.

## PLETIODONTID.E.

## Inferior.

Carpus and tarsus cartilaginous. Premaxillary fontanelle open.

Superior.
O. pterygoideum obliterated.

The inferiority of some Plethodontide is seen in the non-distinction of the digits (Edipus), the thimess of the ossification of the parietal membrane bones (Batrachoseps), and in (Eliphat the persistence of the membranons cranium by the limitation of the parietal bones to two surall oval lateral scales and the wide divarication of the posterior extremities of the frontals.
The genera embraced in this fimily are as follows:
Section I. The tongne attached from the central or posterior pedicel to the anterior margin in narrower or wider band. (Pletholontic.)
A. Two premaxillary bones.

Digits 4,5 ; maxillary boae regular, with numerons small teetli parietals fully ossified Plethodon.
Digits 4, 4; maxillary as above, pariotals fully ossified....... Iremidaetylium.
AA. One premaxillary.
c. Digits 4, 4.

Maxillary regular, with small teetlı ; parietals not ossified ... Batrachoseps. $\alpha \pi$. Digits 4, 5.

Maxillary normal ; teeth small, very numerons; no premaxillary fonta-

Maxillary edentulous posteriorly, deeurved, forming acutting edge; teeth few, large, knife-shaped ; a premaxillary fontanelle......... Autodax. Section II. The tongue free all romnd; attached by its central pedicel only. (Spelerpes.)
A. Two premaxillary bones (with fontanelle).

Digits 4, 5. elosely united by a broad palmar membrane ............ Geotriton. Digits 4, 5, entirely free Gyrinophilus.
AA. One premaxillary bone (with fontanelle).
r. Digits 4, 4.

Digits free; parietal and palatine bones well ossified............. Manculus.
$\alpha \alpha$. Digits 4, 5 .
Digits all free; erasial bones well ossified ............................ Spelerpes.
Digrits little distinet: parietal and palative cartilages not ossified.
(Edipina.
Digits entirely confounded as an undivided palm or sole; eranial bones
well ossified........... ..................................................... . . . . .
The generic relationships of the above-named groups are exceedingly simple, and the ease with which the animals ean be analyzed renders the case free from the doubts which constantly arise in discussions of generic relationships as to the probaide omission of characters
from the argument. Here it can be safely asserted that, as far as the skeletons are concerned, there exist no other generic distinctions than those given above. If, now, any principles can be derived from consideration of the osseous system, that which of all others presents us with by fir the greatest number of minute modifications of structure, the same may be with considerable probability inferred for the other systems.

The primary groups are distinguished by the different degrees of attachment of the tougue. That form which is most attached represents and is identieal with an immature stage of the species of section sceond, where it is more extensively free, as any one may satisfy himself by the examination of a larva of Spelerpes at a certain period. The tongue will be found to be that of Plethodon.
The secondary groups are distinguished by the separation or confluence of the premaxillary bones. Those presenting the latter type exhibit separate premaxillaries at the beginning of larral life, thongh the union often takes place very early. The number of digits dis. tinguishes groups of genera of less value; in some the hind limb has five digits, in others four. In an early larval stage all possess but four digits, and in some of those with five the inner consists of one phalange only even at maturity (Spelerpes chiropterus ct. aff.) Not having as complete a series of larver of Spelerpes and Plethorlon as of Amblystoma punctatum, I describe the development of the digits in the latter as indi. cating the meaning of variations in the same at maturity. At a length of $1.2^{\text {men }}$ the fore limb only is projected, and bears two digits only, as in the genus Proteus. At $1.5^{\mathrm{mm}}$ sometimes the posterior limbs are dereloped, sometimes not, and from this size to $2.5^{\text {mm }}$ the number of digits bears little relation to the size of the animal, an additional digit sometimes appearing earlier, sometimes later. Their numbers are then at first 2-0; then always $3-0$. With the hind foot divided, they are $3-2$, and then 3-4. Sometimes the anterior digits are complete in number before the hind limb appears, and we have combinations of numbers from 4-0 to $4-3,4-4$, and the full number, $4-5$, which is foume in all specimens of $2.5^{m m}$ and upwards. Genera which exhibit rednced digits are in all other respects Spelerpes (i.e. Manculus) or Plethoton (IIemidactylum), or Hemidactylium with unossified parietal bones and consolidated premaxillaries (Batrachoseps). Applying the case of Amblystoma to these, we could not assert that Hemidactylium, for instance, is identical with the undeveloped stage of Plethodon, since when Amblystoma exhibits digits $4-4$ it is branchiferons. But making the more legitimate cemparison with Plethodon itself, I find that the complete number of posterior digits appears much later in life than in Amblystoma, while the branchie are absorbed much earlier; that development in the first regard is retarded, while in respect to the gills it is accelerated. Thus in Plethodon cinereus the exterior digit is longer than the interior; in specimens of $2.4^{m m n}$ the onter digit is the shorter; in those
of $1.8^{\text {mam }}$, which are withont gills, it is a very minnte tubercle on the outer metatarsus. In a little earlier stage it can not but be wanting, though this I have not seen, and I have little donbt that it is then a Hemidactylium, unless, indeed, the parietal bones be not ossified.

Another fetal condition rendered permanent is seen in the generic character of the genus (Eulipus, which differs from Spelerpes solely in the foetal non-separation of the digits which continues even after the bones of the digits have been developed. In the larva of Sp. ruber the digits are early entirely distinct, so that so far as this species is concerned CEdipus presents an inexact parallelism, but they are also more distinct than in the mature Spclerpes bellii, where, as might be supposed, the foral union is delayed to maturity in other respects, as in a specimen from Orizaba, Mexico, of 16.5 lines in length. There the union is about as extensive as in (Edipus morio. In the young of Thorius pennatulus, the digits are not distinguished in specimens of .66 of the full size, and otherwise entirely mature. In the adult they are distinct for half their length. The digits in the young larva of Gyrinophilus porphyriticus are as distinct as in those of Spelerpes rubra. In one example I find the simple foot of earlier stages retained, resembling exactly that of Cdipus, excepting that there are emarginations for but three toes instead of five. Genera which have no premaxillary fontanelle at maturity have it in the larval stage. Finally, closely allied genera, which only differ in the degrees of ossification of the parietal and pala. tine bones, represent simply the relation between undeveloped and developed conditions of the same form.

The relations of the genera may be expressel as follows: Those of the first or Plethodontine section are related to those of the second or Spelerpine by an inexact parallelism, excepting Antodax, whose peenliarities exclude it from the comparison. Those in each section differing in the union or separation of the premaxillary bones are related in the same way to each other. The nearly allied genera in the Plethodontine group are Hemidactylinm and Plethodon, and Batrachoseps and Stereochilus. In the first case we have only inexact parallelism, becanse while Plethodon has the four digits of Hemidactylium, its parietal bones are mossified, though an accelcration of development in these respects would render the relations one of exact parallelism. This is apparently the relation between Batrachoseps and Stereochilus, for with the fretal digits of the latter the former preserves also its fretal craninm. It only remains to ascertain whether Stereochilus loses its branchite before or after acquiring the normal number of digits. From the very small size of one at least of these the former case seems prob). able, but I have not yet been able to prove it by direct observation. Shonld it be so, we wonld have a case of exact parallelism.

In the Spelerpine gronp the relation between Geotriton and Gyrinophilus is again one of inexact parallelism, since when the digits of the latter are only separated at the extremities, as in the former, the
animal is still branchiferous and possesses the larval tougue, etc. The same ocurs in Spelerpes when certain of its species present but four himi toes, as in Manculus; therefore the relation of these two is also of inexact parallelism. The relation of Thorius is also one of inexact par. allelism, for thongh its characters are found in some young $\mathrm{S}_{\mathrm{j}}$ elerpes at an immature age subsequent to the absorption of the branchiæ, it has opisthocrelus vertebra. With Edipus, if the coudition be wot that of exact parallelism with some species of Spelerpes, the approach to it is close, as above observed. It is chiefly prevented by the fact that the ossification of the parietal bones in most species of the latter takes place after the extremities are fully developed. It is to be observed in this comection that, as has been above pointed out, the separation of the digits takes place at rery different periods in the history of the different inpecies of the same genus. Thus in the Spelerpes ruber they are entrely distinct at a very early period of larval life, while itr S. cephalicus and S. bellii, which much more nearly resemble the species of Edipus in the disposition of the vomerine teeth and cylindric form of the tail, this separation is much retarded.

These genera may be parallelized also in the following manner in illustration of the law of heterology : *

Plethodonta.

## Spelerpes.

> A. One premaxillary.
> No fontanelle.

Stereochilus.

Autodax.

Batrachoseps.
A fontanclle. Toes 4-5. Teeth large.
Teeth small.
Toes 4-4.
AA. Two premaxillaries. Toes free.
Hemidartylium. I'lethodou.

Or thins:
Two Premaxillabies.

> Digits 4-5, $\alpha$. Distinct. Tongue frce.

Giyrinophilus.
I'lethodon.
Cicotriton.
Hemiductylium.

One Premaxillary.

> Spelerpes.

Stercochilus.

OElipus.
anculus. Balrachoseps.

Some other characters fom in this farily are those of low develop. ment and approximations to the larval condition. Thus three of the species exhibit at times a subnareal cirrhns, which occurs in some of the Cucilide, and Xenopus among Salientia. It is the persistence of that long subocular tentacle characteristic of the carly larval stage of Urodela generally (see Plate 16), and of a later larval stage of Xenopus (cid. Wyman and Gray), where they resemble the appendages of the Siluride. They have been called crochets by Rusconi, and homologized with the cylindric cephalic processes of the larval Rana, with what coraertness rem:tins to be proven by observations on other types.

Eschscholtz correctly represents Batrachoseps attenuatus as withont prefontals. An elongate process of the frontal occupies only part of its place, forming no suture with the maxillary. This is quite different from Demognathus, where the orbit is completed by the union of frontal and maxillary. In Maneulus quadridigitatus the prefrontal ocenpies this depression as an elongate vertical scale.

In s'pelerpes ruber the quadratum presents a small internal anterior ala, which has a superficial resemblance to a pterygoid. In this species there is apparently an azygus bone behind the premaxillaries. This is, however, only the exposed extremity of their united spines, which are nearly or quite isolated by the approximation of the anterior parts of the nasale. It does not occur in the Gyrinophilus porphyriticus.

## BATRACHOSEPS Bonap.

Fanna Italica ; Gray, Cat. Brit. Mus., 1850, 42; Cope, Proceed. Ac. Phili., 1869, p. 98; Stranch, Salam., p. 84 ; Boulenger, pt. Cat. Brit. Mus., ed. II, 188:, p. 52.

Tongue adherent anteriorly. Digits 4, 4; a large parictal fontanelle. "remaxillary single, piereed by a fontanelle.

This genus embraces the forms which may be considered the lowest in the family. It differs from Hemidactylium as Thorius does from Spelerpes, i. c., in the nonossification of the parictal bones. This low grade of development is hero seen in the extremities also, which are

## much reduced, and the snake-like form of one of the species. The species are four, as follows:

I. Costal pliea, eighteen; the toes well developerl, palmate.

Outer posterior toe well develoned ; hind limb extending over 7.5 costal interspaces, fore limb to orbit; tail equal body and head to orbit, more slemer than the body; belly yellowish
l. pacificus.
II. Costal plien, nineteen to twenty-one ; toes very mbimental, little distinct.
a. Parasphenoid tecth in one patch,

Hind limb extending over six costal interspaces; fore limb nearly to orbit; tail as long as body and head to orbit; width of head seven times fiom murite to groin; belly black
J. nigritentris.

Hind limb extending over fonr costal interspaces; fore limb not to angle of mouth; tail thick as body, as long as body and head phas the length fiom muzale to axilla; width of head eight times from mazale to groin; belly brown
i. attenuditus.


#### Abstract

$\alpha \alpha$. Parasphenoid teeth in two patches. Hind limb extending over four costal spaces; tail more than twice as long as hearl and body; sides dark D. caudutus.


## BATRACHOSEI'S CAUIATI'S Cono.

(llate LXNXi, lig. こ.)
Head short, wide, muzzle as long as eye, the nostril not quite terminal. Langth from end of muzzle to humerns entering 3.33 times in length from humerns to axilla. These proportions are those of the 13. attenuatus. Tail exeessively elongate, ‥2 the length of the heal and body. In the B. attemuatus the tail is 1.6 the length of the head and body and less (measurements made from femur). Limbs about as in $B$. attenuatus, the anterior reaching the first dermad groove behind the mouth, and the posterior covering four intercostal spaces when extended forwards. The imer digits are rudimental, that of the anterior foot possessing a metacarpus only: The costal grooves number twenty: one; they extend across the abrlomen, but are not visible on the biak. The tongue is a longitudinal oval. The vomerine teeth form two convergent brands directed inwarls and posteriorly from within the choanil. They are better developed than in 13. attenuatus. The parasphemois teeth are in two distinct patches, thins differing from those of the $B$. attenuatus, where they form a single patch.


The general ${ }^{7}$ color is brown. It is tlepper on the sides to a line on eath side of the back and on the anterion half of the abolomen and on the superior surface of the distal part of the tail. (indar region and chin yellowish.
'Ihis is the most vermiform North American salamander, resembling the (Edinina uniormis Keferst. of Central America in its proportions. Its relations to the Batrochoseps attenuatus are close, but its differences may be sammarized as follows: (1) The two patches of parasphenoid teeth; ( 2 ) the absence of dorsal grooves; (3) the very elongate tail; (4) the longer patches of vomerine teeth. The habitat of the B. caudatns is much north of any from which the $l$. attenuatus has been ob. tained.




## BATRACIIOSEPS ATTENUATUS Esch.

lBonalp., Fann. Ital.; Hallow., Journ. Ac., Phila., iv, 1858, p. 348; Cope, Procsed. Ac. P'hila., 1869, p. 98; Strauch, Salam., p. 85; Gray, Cat. Basr. Grad. Brit. Mus., ed. I, p. 42; Boulenger, Cat. Batr. Grad. Brit Mu:., ed. 1:, 188:, p. 60.
Salamandrina attcnuaia, Eschsch., Zool. Atlas, p. 1, Pl..21, fig. 1-14.
This species is well characterized by its slender form and its very wrak extremities. The costal folds are nimeteen, more rarely twenty or dighteen, alnd are well marked on the back and belly, and turned forwards towad the median line on the former, which is marked by a delicate eroove. There are form lateral folds in front of the fore limb, three of which are crossed by a longitudinal fold from the orbit. The tail is longer than in any other North American salamander, except the I). cumdatus, and is entirely cylindrical, and molistinguishable at the origin from the body; it is marked by forty-seren distinct annuli to the end of the rent. The toes are very small and obtuse, and free for the length of only one phalange; below this a web connects them. The inner toe on both feet is a mere knob. The extended fore limb reathes the thanserse fold behind the canthus oris; and the extended hind limb covers fomr intercostal spaces.

The heat is short, broad, and flat, and the muzzle is as long as the diameter of the orbit. The lip is more or less prominent below and before the orbits. The palatine teeth do not extend to behind the nares; they form two very oblique sliort series, which nearly meet posteriorly
ou the median line, and are well separated from the sphenoidal patches. The latter are not separate, and form one wide oval brush.

Measurentents of No. 11801.
Total length ..... 111
Total length of head and body ..... 047
Total length from muzzle to groin ..... 044
Total length from muzzle to axilla ..... 011
Total length from muzzle to canthus oris ..... 004
Length of fore limb ..... 006
Length of liind limb ..... 007
Length of hind fuot ..... 002
Width of head ..... 005


Fic. 28. Batrachoseps attonuatus. 13895, $\frac{3}{2}$; fig. $5=\frac{3}{1}$.
The color of the lower surface is brown, with a few whitish points on the gular region and tail, and frequently over the whole abdomen. The sides are darker, sometimes almost black. The upper surface is generally a paler brown, with a light shade extending on each side from the nape to the base of the tail. These bands are composed of numerous short longitudinal streaks, which become separated on the base of tho tail, and corer its surface to the end, or to the middle, as the case may be. This light color has ge nerally a reddish hue, and in many specimens extend entirels across the dorsal region, forming a band, not unlike that of Plethodon cinercus erythronotus.

Habitat.-This is an abundant species of the Pacific coast region of the continent, but it has not been found to the eastward of the Coast llange of mountains. I have examined eight specimens from near San Francisco, in the Museum of the Philadelphia Academy, from William M. Gabb, and one in the Museum of the Essex Institute from the same locality, obtained by Mr. Samuels, and the following :

## Batrachoseps attenuatus Esch.

RESERVE SERIES.

| Catalogue number. | No. of spec. | Localily. | When collceted. | From whon receivel. | Nature of specimex. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6890 | 1 | California. |  | Dr. Wm Stimpson | Alcoholic. |
| 11801 | 10 | Fresno, Cal | 1879 | Gustave Eisen.. | Do. |
| 4009 | 2 | California. |  |  | Do. |
| 8 CO 1 | 6 | Mouterey, Cal |  | (anfield | Io. |
| 4017 | 14 | Petaluma, Cal |  | E. Samuels | Do. |
| 4043 | 2 | California. |  | (\%. O. liovlo. | Do. |
| 13963 | 4 | Siorra Nevada Monntaius, Cal | July, 1884 | R. F. (\%.Stearns... | Do. |
| 14454 | 7 | Ballenas Bay, Cal.............. | ............ | K. Hemphill ...... | Do. |

## BATRACHOSEPS NIGRIVENTRIS Cope.

Proceed. Ac. Phila., 1869, p. 98; Boulenger, Cat. Brit. Mns., ed. if, 1882, p. 60 .

This small species resembles the next in general proportions, but is nearer the last in the rudimental condition of the limbs.

Muzzle shorter than orbit; upper lip slightly angulated; a groove from the orbit posteriorly ; a gular fold. Costal grooves extending to vertebral line, but not curved forwards there, as in Hemidactylium scutatum; extending across ablomen. Body slightly compressed. The tail as stont as the body at the base, subquadrate in section, becoming compressed at the tip; strongly annulate; not swollen. Inner digits on both feet minute. Vomerine series well developed; parasphenoidals as in the last.

Measurements, in inches.
Lines.
Total length.................................................................................. 22
Total length exclusive of tail from vent................................................ 13.5
Muzzle to axilla.................................................................................. 3.5
Width of head .................................................................................... . 1.7
Length of fore limb............................................................................ 1.8
Length of hind limb. ................................................................................. 2
Color above deep brown, separated abruptly from the black of the lower surfaces ; tail black.

Two specimens of this species were brought to the Maseum of the Academy of Natural Sciences of Philadelphia from Fort Tejon, Cal. The only other specimen known to me is the following :

Batrachoseps nigriventris Cope.

| Cataloguo number. | No. of spec. | Age. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13963 ${ }^{\text {d }}$ | 1 | Young.. | Sierra Nevala Mountains, Cal. |  | R.E. C. Stearns .. | Alcoholic. |

BATRACHOSEPS PACIFICUS Cope.
Batrachoseps pacificus Cope, Proc. Ac. Phila., 1869, p. 98 ; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. iI, 1882, p. 59.

Hemidactylium pacificum Cope, Proc. Ac. Nat. Sci., Phila., 1865, 1. 195.
The general proportions of this salamander are not unlike those of Hemidactylium scutatum Tsch. It differs from this in its uniform color above and below, and in some more important points. Upper surfaces dark brown, lower brownish-yellow. Vertebre and costal folds between axilla and groin eighteen, the latter not prolonged dorsally, as in the H. scutatum. Head oral, elongate; lip rounded; eyes large, prominent longitudinal diameter longer than length of muzzle. Muzzle to humerus half length from latter to groin. Tongue elongate, oval; paraspphengid teeth approaching near to the short oblique series of vomer-

1951-Bull 34——9
ines. Fore limb to orbit, hind limb searcely longer, reaching the eighth fold from behind. The imer digit on both extremities is so sloort as to render the members almost $3-3$. Tail elongate, slender, subeylindrical. Gular fold represented by a line.
Measurements, in inches. Lines.
Length of head to angle of mouth ..... 2.5
Breadth of head behind eges ..... 2
From muzzle to humerus ..... 5
From muzzle to groin ..... 16.5
Length of tail ..... 17
Leugth of posterior limb ..... 3.5

Batrachoscps pacificus Cope.
RESERVE SERIES.

| Catalogue number. | No of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 6733 \\ & 4006 \end{aligned}$ | 1 | Santa Barbara, Cal San F'rancisco, Cal |  | Dr. Hays <br> R. D. Cutts | Alc. type. Alcoholic. |

## HEMIDACTYLIUM Tschudi.

Classif. der Batrachier, Trans. Nenclatel, 1833, p. 54-94; Bonap., Fauna Ital., II, 131, Nro. 10; Fitzinger, Syst. Rept., 33; Baird, Journ. Ac. Nat. Sei. Phila., I, 284, 1849; Hallowell, l. c., 1858, 365; Gray, Cat. Brit. Mus., 1850, 41 ; Cope, Proceed. Aead. Phila., 1869, p. 99.

Desmodactylus, Dum. \& Bibr., Erp. Gen., ix, p. 117.
Tongue adherent anteriorly; digits 4-4; parietal bones fully ossified, without fontanelle; two premaxillaries, with fontanelle; prefrontal bone present.

This genus is only distinguished from Plethodon by the deficiency of its hind foot in digits. Those that remain are quite rudimental. It differs from Batrachoseps in the presence of the prefrontal bone. There is but one species known, and its labits are eutirely terrestrial.

## HEMIDACTYLIUM SCUTATUM Tschudi.

Batr., p. 94 ; Hallow., Journ. Ac. Phila. (2), int, p. 366 ; Stranch, Salam., p.
76; Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 41.
Salamandra scutata, Schleg., Faun. Japon., Amph., p. 119, and Abbilk., Pl. 40, figs. 4-G.
Salamandra melanosticta, Gibbes, Bost. Journ. Nat. Hist., v, p. 89, Pl. 10.
Desmodactylus scutatus, Dum. \& Bibr., p. 118.
Desmodactylus melanostictus, Dum. \& Bibr., p. 119.
Batrachoseps scutatus, Bonlenger, Cat. Batr. Grad. Brit. Mus., ed. if, 188:, p. 59.
Whole skin finely and beautifully granulated; viewed vertically, the sides of head are parallel, the eyes forming the anterior corners, and not projecting beyond the line of head; muzzle not tapering, but sides nearly parallel, almost entirely truncate, and overhanging lower jaw; eyes nearer muzzle than Plethodon erythronotus (viewed from above); outline contracted behind the oceiput, then expanding to middle of body
and tapering to ams; expanding again towards middle of tail, then contracting to an elongated point. Thus there is a decided contraction at base of tail not seen in most other species. Tail oval in its section throughout, thongh only exhibiting a ridge on posterior half.

The back and sides curionsly sculptured by furrows, disposed as follows: At origin of hind legs begins a dorsal furrow, which continues to middle of vertex, when it bifureates, sending a branch to each eye. There are fourteen vertical furrows (costal) on sides, which are more generally indicated across abdomen. A rather obsolete longitudinal furrow on each side marks the upper boundary of these vertical furrows and the outline of back. From the dorsal line proceed backwards, at an acute angle, furrows corresponding in number, and uniting with lines directed at a less acute angle from the superior ends of costal furrows. The lateral longitudinal furrows mark the origin of the latter lines. The sides of head also sculptured externally to the bifurcations and roughcned between eyes. One or two furrows or constrictions go entirely around the tail behind the vent, marking the narrowed base of the tail, which then swells abruptly in many specinens.

Feet very weak; toes very little developed, only four on hind foot, of which one is nearly obsolete. External and internal toes of fore feet very small. Eyes not very large nor prominent. Pupil large, black. Iris above, golden bronze; beneath darker. A general resemblance to Plethodon eincreus in color. Back, dark chestunt, but above much lighter, both sprinkled with black, the latter more especially along the dorsal line. Snout abore, eyes above, and in certain lights the furrows above the lateral longitudinal lines, light chestnut, approaching to golden bronze, faintly clonded in spots with darker; side of body finely mottled brown and bluish-white. Head, body, and tail below chalk white, with a tinge of blue, sparingly and irregularly marked with rather large black spots; spots disposed along sides and the white of tail beneath. Central tract unspotted.


Lines.
Total length ..... 402
Length to end of vent ..... 17.8
Length to groin ..... 15.6
Length to axilla ..... 3. 3
Length to canthus oris ..... 2
Length of fore limb) ..... 3. 2
Length of hind limb ..... 3.75
Length of lind foot ..... 1.1
Width of head ..... 2.6

Besides specimens from Chester County, Pa., from Huntingdon Connty, Pa., and from Chicago, Ill., in the Museum of the Philadelphia Academy of Natural Sciences, the following are in the National Museum. Professor Verrill says it is abundant near New Haven, and the Essex Institnte possesses it from Gloncester and Beverly, Mass. Dr. J. E. Gray, Catalogue of British Museum, gives Niagara. Dr. R. W. Gibbes described it from Abbeville, S. C.

Hemidactylium scutatum Tsch.
ILESERVE SERIES.

| Catalogue number. | No. of spee. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4083 | 1 | Carlisle, Pa |  | Prof. S. F. Baird | Alcoliolic. |
| 4088 | 5 | . . do |  | .....do | Do. |
| 4730 | 1 | St. Catherine's, Canada. |  | Dr. D. W. Beadle | Do. |
| 4093 | 1 | Ripley, Ohio.............. |  | P. R. Hoy ... | Do. |
| 4094 | 9 | Nortlitield, Ill. |  | R. Kennicott | Do. |
| 4089 | 4 | Meadvillo, Pa. |  | Williams | Do. |
| 4090 | 3 | Riceborough, Ga |  | (?) ....... | Do. |
| 3743 | 1 | A nilerson, S. C. |  | Mrs. Daniel | Do. |
| 14459 | 1 | (?) |  | (?) | Do. |
| 4091 | 1 | Washington, D.C |  |  | Do. |
| 4724 | 1 | Goorgia.......... |  | Dr. J. Jones | Do. |

## PLETHODON Tschudi.

System d. Batrachier, Trans. Nenchatel, 1838, 59-92; Bonap., Fauna Ital., II, 131. Baird, Journ. Ac. Nat. Sci., Phila., I, 292; Hallowell, ib., 1858, 342; Cope, Proc. Ac. Nat. Sci., Phila., 1869, 124 ; Bonlenger, Cat. Batr. Grad. Brit. Mus., II ed., 1882, p. 53.

Heredia Girard, Procced. Acad., Phila., 1856, p. 735.
Tongue attached by the median line below, from the glosshyal bone to near the anterior margin; vomerine and parasphenoid teeth present; a large fontanelle between the spines of the separate premaxillary bones. Toes 4-5, normal. Anterior teeth not enlarged. Cranium well ossified. Prefrontal bone present.
This genus is highly characteristic of the Regio nearctica, where five species represent it on the Pacific slope and three in the eastern district. A species from Japan, named P. persimilis by Gray, is shown by Mivart not to belong to this genus. The species are all terrestrial in their habits, and three which I have observed ( $P$. orcgonensis, $P$. glutinosus, $P$. cinereus) undergo their metamorphosis while quite small. The last named, and probably $P$. glutinosus, never enter the water, but are hatched in damp places on land. The branchia have therefore no functional service. The species are as follows:
$\alpha$. The paraspienoil patches in contact thronghont ; vomerine series well separated medially.
$\beta$. The tail eylimbric.
Costal plicar 16 to 19 ; form slender ; tail cylindric ; limbs weak; inner toes rudimental; vomerine series not extending beyond nares externally; belly brown-marbled; above phumbeons, or with a red longitudiual band.
$P$. cinereus.
Costal plices 14 ; form stont; tail romided; limbs short, stont; inner digits distinct; romerine series extending ontside of inuer nares; black, usually with gray lateral blotehes and smahler dorsal spots........ I'. glutinosus.
Costal plice 13; form as in I'.!lutimosus; tail longer than head and body; digits trmeate, the internal ones very rudimental; vomerine series very oblique, not extending behind choanc ; black, with yellow spots, which are largest on the head, large on the back, and minute on the sides.
$P^{\prime}$. aneus.
"Costal plicae 13; form moderate, tail cylindric, shorter than head and body; vomerine series very oblicue, not extending externally to choana; toes more acute; black, with large yellowish spots; smaller on baek, wanting on head"
P. flavipunclatus.
$\beta \beta$. The tail compressed.
Costal plicee 15; form slender; tail well compressed ; limbs weak; inner toes rndimental; vomerine series not extending outside of nares; belly brownmarbled; above, with a red dorsal band.................... P. intermedius.
Costal plicae 14; form stont; head large; limbs robust; inner toes distinct; tail compressed from the base, shorter than length of head and body; miform dark brown above, and lighter brown below........ P. crassulus. ač. P'arasphenoid patehes well separated.
B. Tail romuded.

Costal plie:e 13; form stont; head large, wite; lower jaw wider than upper; muzzle broadly truncate; vomerine teeth approximated medially; tail slender, subeylindric; black, limbs, belly, and spots of back, orange.
l'. croceater.
Costal plica 10-11; form stout; head wide ; maxillaries wider than mandible; muzale narrowly trunate ; vomerine teeth approximated medially ; tail slender, subeylindrical; light brown above; limbs and below yellow.
$P$. oregonensis.

## PLETHODON CINEREUS Green.*

Salamandra cimerea, Green, Journ. Acad., Phila., I, p. 356.
I'lethodon cinereus, Tschudi, Batr., p. 92; Cope, Cheek List N. Amer. Batr. Rept., 1875, p. 27.
Salamaudra erythronota, Green, Jonm. Ae. Phila., I, p. 356 ; Holbr., N. A. Herp., v, p. 43, II. 11; De Kay, N. Y. Faum., Rept., p. 75, Pl. 16, fig. 38; Wied., Nova Aeta Leop.-Carol., xxxir, p. 126.
Plethomen erythromotus, Bairt, Joum. Ac. Phila. (2), r, p. 285; Dum. \& Bibr., ix, p. $8(6 ;$ Cope, Proc. Ac. Phila., 1869, p. 100; Stranch, Salan., p. 72; Bonlenger, Cat. Batr. Grad. Brit. Mus., ed. 1r,'1882, p. 57.
Amblystoma crythronotum, Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 37.
Salamandru agilis, Sager, Peninsnlar Journal of Medicine, 1858, p. 429.
This species is among the most elongated and slender of American salamanders. It is almost perfectly cylindrical thronghont; a very slight amonnt of compression only being visible towarls the ent of the conical tail, which is longer than the head and body. It is much
sleuderer and more vermiform, with much weaker legs than $P$.glutinosus. Thus in specimens of the two, measuring 1.50 from snout to groin, the head and body of $P$. glutinosus have the width one-third greater.

There are eighteen well-marked costal furrows between the limbs, excluding any in the axilla. The posterior are situated in the groin, bifurcating above. In a single specimen of var. Cinerens (No. 3805) we reach a count of ninetecn. This inerease in the ummber of costal furrows is coincident with the wide separation of the limbs, the distance from head to axilla being contained about $3 \frac{1}{3}$ times in that to the groin, instead of 21 , as in P. glutinosus. The tail is longer than head and body; sometimes considerably more so.
This species, including all varieties, has an extensive range, being found throughont the United States east of the Mississippi River. It appears to be more abnudant in the Middle States; its northeru range is to the middle of Maine, Ontario, and Michigan.
Its habits are entirely terrestrial, as it is never, even in the larval stage, found in the water. It is abundant under stones and logs in the forests everywhere, and does not occur in open fields. The eggs are laid in a little package beneath a stone in a damp place. When the young emerge they are provided with branchix, but these soou vanish, and they are often found in this young stage apparently quite devel oped.

## Plethodon cincreus cinercu, Green.

The color of the upper half of body and tail is a dark liver-brown; beneath dirty whitish, finely vermiculated or mottled with brown in about equal proportions, giving rise to a "pepper and salt" appearance. There is sometines a yellowish tinge towards the head, and a plumbeons under the tail. On the sides the appearance is more that of whitish speeks in a dark gromnd. Sometimes the upper parts are clear brown, at others more or less varied with very minute spots of dull grayish-white. Sometimes the under parts are so much clouded with brown as to appear principally of this color, ouly faintly mottled with lighter ( 3805. )

This species is easily distinguished from $P$. glutinosus by much slen. derer form, smaller limbs, more webbed digits, eighteen costal grooves stead of fonrteen, vermiculated under parts, which have not the black inground, the absence of the appearance of pieces of lead foil on the sides, ete. The limbs are very small and weak. The digits are distinet, thongh short. The basal web extends rather farther forward than in $r^{3}$ glutinosus, the two terminal joints of the longest toes only being free, instead of two and a half.

I can detect nothing in the characters of head and tongue different from P. glutinosus.

## Mcasuremcuts, in inches.

Length, measured along axis of borly:
From snont to gape ..... 15
lrom snout to gular fold ..... $.3 \overline{5}$
From snout to armpit ..... 55
Froms nout to groin ..... 1. $\varepsilon 0$
From snout to behind anus ..... 2.00
From snont to end of tail ..... 4.10
Tail ..... 2.10
Head:
Width of bead ..... 23
Width of orbit ..... 09
Distance between eyes anteri- orly ..... 12
Distance between outer nostrils ..... 08

Body :
Cireumference of belly ..... 75
Distanco between armpit and groin ..... 1.24
Tail:
Height of tail where highest ..... 12
Limbs:
Free portion of longest finger ..... 05
Frou ellow to tip of longest finger ..... 21
liree portion of longest toe ..... 07
Prom knee to tip of longest toe. ..... 25
Distanco between outstretehed toes ..... 82

Plethodon cincreus cinercus Green.
RESERVE SERIES.

| Catalogne number. | No. of spec. | Localits. | When collected. | Fion whom received. | Nature of speciinen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 488.5 | 1 | Mount Jos, Pa ....... |  | J. Stauffer | Alcoholio. |
| 4888 | 1 | Brookville, Ind ....... |  |  | Do. |
| 5963 | 4 | Hudson's lay 'Territory. |  | C. Dresler | Do. |
| 4720 | 2 | St. Uathorino's, Canala. |  | Dr. D. W. Beadlo | $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ |
| 3700 | 10 |  |  | Prof. S. F. Baird |  |
| 12610 | , | Potomac liver, D.C.. | Apt. -, 183) | Edwin Prindle | Do. |
| 38.35 8.373 | 2 |  |  | S. F. Baird ${ }_{\text {F }}$ | Do. |
| 8373 11449 | $3{ }^{1}$ | Bainbridge, lı، ${ }^{\text {(i) }}$..................... | Dec. 8,1875 | J. F. Garreto | Do. |
| 12015 | 4 | (1) |  | J. H . Richard. | Do. |
| 3818 | 13 | Clarls County, V |  | C. B. R. Kenuerl | Do. |
| 3805 | 1 | Columbus. Ohio |  |  | Do. |
| 3807 | 1 | Adirondack, N. Y |  | 12. Clarke | Do. |
| 3788 | 3 | Racine, Wis |  |  | Do. |
| 47:0 | 4 | Georgia...... |  | 1r. William Jones | Do. |
| 13411 | 4 | Bostou, Mass Riplev, Ohio |  | T. Roosovelilt. | Do. |
| $3 \times 25$ 3787 | 1 | Lipley, Ohio ......... Coxsackie, $\mathrm{N} . \mathrm{Y} . . .$. |  | l'. R. Hoy <br> Prof. S. F. Baird | Do. |
| 3770 | 15 | Detroit, Mich......... |  | C. Sager . . . | Do. |
| 13316 | 9 | Fairfax County, Va... |  | Georgo Shommak | Do. |
| 3818 | 1 | Clark County, Va.... |  | C. B. P. Keunerly | Do. |
| 11708 3867 | 18 | (!) Arlirondack Monn- |  | (?) | Do. |
| 3867 | 1 | Adirondack Mountains. |  | 12. Clarko | Do. |
| $4 i 20$ | 4 | Pliilalelphia.... ..... |  | J. H. Riehari. | Do. |
| 3813 | 1 | ILampshireCounts, Va |  | M. MeDonald | Do. |
| 3824 | 2 | Tyreo Springs, 'Tenn.. |  | Major 12. Owen | Do. |
| 4721 4731 | 5 | Georgia ${ }_{\text {Vetroit, }}^{\text {Mich.......... }}$ |  | 1r. W. C. Jones Dr. A. Sager | Do. |
| 4000 | 6 | Southern Illinois |  | R. Kennicott | Do. |

## Plethodon cinereus crythronotus Green.

(3766, Clark County, Virginia.)
I have been mable to detect any difference in structure, proportions, and general character between this supposed species and $P$. cinereus. The only difference, if any there be, is to be found in the color of the back, that of the side and belly being very much the same. A broad, light-reddish stripe commences at the nape of the width of the interorbital space, and continues to the tip of the tail, on which it diminishes gradually in width. The central region of this stripe generally
exhibits a very fine mottling of brownish, scarcely obscuring the effect of the rell gromid. The mottling is sometimes equally distributedsometimes coucentrated in some places more than others. The sides of the body are abruptly and continuously dark brown, but soon fades off below into the pepper and salt of the lower sides and belly. There is sometimes the effect of a broad dark stripe on each side the red, but this is usually very illy defiued below.
The color of the red stripe varies considerably. Sometimes it las a shade of piuk-sometimes of orange or yellowish. The close resem-


Fig. 30. Plethodon cinereus erythronotus, 4828. St. Catharines, Canada; ${ }_{1}$.
blance in size and character with the frequent association in the same localities between the two species have given rise to the belief that they were different sexes of the same species. That this supposition is incorrect is proved by the fact that both males and females are fonnd of each kind, as was long ago noticed by Haldeman. As varieties they are very permanent ones, as I have found all the joung of the same brood or set of eggs, whether in the eggs or just escaped from them, uniformly with either dark backs or red ones. I hase found adnlt redbacked specimens watching eggs with red-backed embryos, and brownbacked in charge of brown-backed embryos. There is also some difference in geographical distribution. Thus, on the west side of Lake Champlain, in Essex County, New York, Professor Baird states that he has found the red-backed salamander very common, and never saw there the $P$. cinereus. Among a very great number of specimens which I have examined in the collections of the Smithsonian Institution, the Academy of Natural Sciences, and Lissex Institute I have observed but fonr specimens of the red-banded variety and four of the gray which could be regarded as intermediate in character. This appears in a rufous cast in the dorsal color of the latter and a slight obliteration of the borders of the dorsal band in the former. Such coloration is, however, very uncommon in the living animal, which is everywhere exceedingly abuudant. The statement made by J. A. Allen that such are abundant in Massachasetts is not confirmed by the specimens in the museum of the Essex Institute, Massachusetts.

All examination of the types of Dr. Sager's Salamandra ayilis (3770) shows them to belong to this subspecies. His variety with livid back, is the Plethodon cinereus cinereus.

## Measuremenls, in inches.

Length, measured along axis of body:
From snout to gape ..... 14
From snout to gular fold ..... 33
From snout to ampit ..... 48
From shout to groin ..... 1. 60
From snont to behind anus ..... $1.8 \%$
From snont to end of tail ..... 3.5:
Tail ..... 1. 70
Head:
Wisth of head ..... 20
Length of orbit ..... 09
Distance between eyes anteri- orly ..... 12
IIead-Continued
Distance between outer nos- trils ..... i(.07)
Body:
Circumference of belly ..... 65
Distance between armpit and groin ..... 1.10
Limbs:
From ellow to tip of longest
finger ..... 20
From knec to tip of longest toe. ..... 25
Distance between ontstretched tocs ..... 76

## Plethodon cincrens erythronotus Green.

RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4898 | 3 | Washington, D. C. |  | Dr. William Stimpson | Alcoholic. |
| 4891 | 1 | New York......... |  |  |  |
| 5383 | 3 | Fort William, Lake superior. |  | R. Kennicott | Do. |
| 5115 | 2 | Lake Superior ........ |  | do | Do. |
| 5375 | 5 | South of IIighlimils... |  | C. Drexler... | Do. |
| 7148 |  | Rock Cruek, D. C. |  | II. W. Elliott ${ }^{\text {U }}$ - | Do. |
| $7 \times 23$ 9300 | 10 | Washington, D. C. |  | Dr. E. Cones, U.S. A | Do. |
| 9300 <br> 92.8 <br> 8 | 2 | Nortolk, Conn | Sent. 2G, 1877 | A F. Wooster........ | Do. |
| 9358 30606 | - | Wood's IIoll, Miss.... Clark County, Via | $1 \times 71$ | U. S. Fish Commission | Do. |
| 3766 3788 | 18 | Clark County, ${ }^{\text {Westa }}$ |  | Dr. C. B. R. Kennerly. Prof. S. F. Baird . . . | Do. |
| $48: 8$ | 2 | St.Catharine's Canala |  | Dr. D. W. Beadle | 10. |
| 4839 |  | hrooksille, Ind ........ |  | Dr. R. Haymourd | Do. |
| 48.9 | 3 | St.Catharine's, Canada |  | 1)r. D. Wr. Beadle | Do. |
| 3788 | , | Iacine, Wis - ....... |  |  | 1 o. |
| 4728 3768 | 6 | West Northtield, Jll |  | R. Kennicott | Do. |
| 3768 12611 | $\stackrel{1}{1}$ | Allegany Comits, N. ${ }^{\text {P }}$ | Apr. - 1882 | 1.Steren | Do. |
|  |  |  |  |  |  |
|  | 90 |  |  |  |  |

GENERAL SERIES.

| 7823 | 36 | Washington, D. C. |  | J. W. Dagins | Alcoholic. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3751 | 5 | Glowester, Vil. |  | Her. C. Mann. | Do. |
| ¢994 | 3 | Middletown, Conn |  | W. H. Barnes. | 1 o. |
| 13110 | 6 | Hoston, Mass ..... |  | T. Ronserclitt | Do. |
| 3783 | 1 | Ripley, Ohio |  | I'rof. Hoy | Do. |
| 12702 | 3 | Lookont Mountain. 'Tem. |  | W. I. Foe . . . . . . . . . . . . . . . | 10. |
| 13570 | 5 | Norfolk, Conn ........ |  | (?) | Do. |
| 13:314 | 3 | Washington, 1), C.... |  | George Shoemaker | Do. |
| $13: 880$ | 2 | ILawley.Va. ........ |  | Brajimin Miller.... | Do. |
| 3761 | 39 | Meadville, Pa. |  | Williams....... | Do. |
| 3765 | 1 | Lameaster, ()bio. |  | L. Lesquerenx. | Do. |
| 3763 14152 | 1 | Mississippi ........... |  | Ir. Shumard | Do. |
| 14152 | 1 | (!) ............... . . |  | (?)........... | Do. |
| 3772 | 10 | Orange, N. Y..... | - | Dr. J. Gr. Cooper | Do. |
| 37.8 | 1 | Oneula Connty, N. F . | . | H. lavis ..... | Do. |
| 3755 | 25 | ('arlisle, Pa ........... |  | S. F. Baird. | Do. |
| 3816 | 1 | Upper Darby, I'a.... |  | Mr Smelt... | Do. |
| 4727 | 5 | I'hiladelphiil, P'a..... |  | J. H. Richard. . | Do. |
| 4720 | 5 | Georuia. .............. |  | Ir. W. L. Jones............... | Do. |
| 3770 | 3 | Detroit, Mich......... | -..... . ....... | Dr. Sager . . . . . . . . . . . . . . . | Ho. |

## Plethodon cinereus dorsalis Baird.

$$
\text { Cope, Proc. Ac. Phila., 1869, p. } 100 \text { (vame only). }
$$

This subspecies has the size and proportions of body and limbs as in $P$. crythronotus, but may be readily distingnished by the smaller number of costal furrows, shorter body, and different character of the dorsal stripe.

There are only sixteen costal furrows between the fore and hind legs, instead of eighteeu, as in P. erythronotus. This indicates a shorter body, and accordingly we find that the distance from snout to armpit is contained only three times in that from snout to groin, instead of $3 \frac{1}{3}$ or $3 \frac{1}{2}$, as in the other.

I am unable to detect any difference in the mouth, tongue, teeth, or limbs.

In alcohol there is a broad yellowish rel dorsal stripe, which begins at the nape and extends to the end of the tail. On the back it is on an average as broad as the interorbital space of the head. The outlines, instead of being parallel or nearly so, are very irregular on the back, exhibiting four or five coarse dentations between shoulders and rump, which in some specimens are nearly opposite each other (cansing the dorsal stripe to be twice as wide at some places than in others), or more or less alteruating. On the tail the outlines are straight, converging slightly to the tip. The sides and beneath are dull brownish-yellow or whitish, finely mottled, or vermiclated with dark reddish-brown, which becomes more crowded to the dorsal stripe, and is sharply reliered against it.

There is a distinct light line from the upper cyelid, passing internally to the nostrils and meeting its fellow in an angle in the middle of the mazzle, then sending down a single line to the edge of the lip.

Measurements, in iuches.


Head-Continued.
Distance between onter nostrils . 08 Body :

Circumference of belly ......... . 60
Distance between armpit aud groin

86
Tail: Height of tail where highest. . 10 Limbs:

Free portion of longest finger... . 05
From elbow to tip of longest fin-
ger ................................ . 23
Free portion of longest toe .... . 06
From knee to tip of longest too . 23
Distance between outstretched toes

75

This subspecies is readily distinguished from $P$. erythronotus by the different relative position of the limbs and number of costal furrows already referrel to. The very jagged or irregular outlines of the dorsal stripe, the light line on the nose, and the lighter and more reddish shade of the lateral and inferior mottling will at once distinguish it as far as color is concerned. The dusky shade of the sides is not continuous above, but shows distinctly minnte mottling of lighter.
It is somewhat difficult to assigu to this form ab definite status. I should be disposed to regard it as a good species, but for the fact that out of a great number of specimens of the $P$. crythronotus var. cinereus I find a single iudividual (Sm. No. 3825 ) from Ohio which presents the proportions of the present species, and the same number (sisteen) of costal plice. For the present therefore I refer it as a subspecies. I have seen five specimens, which agree in every particular ; one in the Museum of the Essex Institute in a bottle with the common varieties of the $P$. erythronotus, the Spelerpes bilineatus, and Desmognathus, all from Essex County, Mass., and four specimeus in the Museum of the Smithsonian as follows:

Plethodon crythronotus dorsalis Baird.


Habits.-The Plethodon cinereus is the most abundant salamander in the northern and central eastern United States. It is of terrestrial habits, and is easily found under logs and their bark, stones, etc. It feeds, like other species, on insects and their larve, capturing them by applying to their surface its flat and projectile tongue and jerking them quickly into its month. It frequently climbs to the summit of low vegetation, from which it springs by a sudden straightening or curvature of the body, as the case may be, in the manner of a caterpillar.

## PLETIIODON GLUTINOSUS Green.*

Tschudi, Batr., p. 92 ; Cope, P'roc. Ac. Phila., 1369, p. 100 ; Stranch, Salam., 1. 70 ; Bonlenger, Cat. Batr. Grad. Brit. Mns., ed. n, 1832, p. 50.

Salamandra glutinosa, Green, Jonrn. Ac. Phila., i, p. 3ñ ; Holbr., N. A. Herp., v, p. 39, Pl. 10; De Kay, N. Y. Fann. Rept., p. 81, Pl. 17, p. 4.2.
Salamandra varioluta, Gilliams, Jomrn. Ac. Phiha., I, 1. 460.
Salamandra cylindracea, Itarlan, Journ. Ac. Phila., v, p. 15 G .
I'lethodon glutinosum, Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 39.
Triton porphypilicus, De Kas, N. Y. Faun., Rept., p. 83, Pl. 16, fig. 37.
Cylimlrosoma glutinosum, Dum. \& Bibr., 1x, p. co.
This species is of a stout form, the body depressed, the liead, body, and tail continuous, with very slight constriction at the neek; the tail

[^19]eyliudrical, very slightly compressed towards the pointed conical tip, and longer than the body.

Theskin is every where closely lined with short perpendicular glands for secreting a milky juice. These are largest on the upper surface of the tail and more seattered on the belly. The skin is also closely covered with shallow pits, visible only when the mucus is removed and through a lens. I have not observed any large pores in patches on the head.

The head is broad, the sides parallel to the eyes, then converging and distinctly truncated at the end. The eyes are large and prominent, separated anteriorly by one and one-half diameters of orbit; the distance to the nostrils and between them rather less than this anount. The nostrils are lateral near the end of the mazzle. The upper jaw overlaps the under considerably, especially anteriorly; where there is a slight protuberance downwards of the lip on each side, the mazzle giving a concave outline when viewed both from before and laterally. There is a slight groove down the side of the muzzle from the outer edge of the nostrils to the swollen part of the lip.
The gular fold is entirely adnate, without any overlapping.
There are fourtcen well-marked costal furrows, including the inguinal and one close to the fore-legs. They are distinct on the sides, but interrupted on the back and belly; none are distinctly visible along the pelvic region and the tail. There is a shallow furrow along the back, but not the least sign of ridge or compression on the cylindro-quadrate tail, although this is rather higher than wide towards the end.

The limbs are moderately developed. The digits are short, broad, linear, cyindrical, depressed, and slightly swollen into knobs at the ends, where they expand very little, but without any appearance of a disk. There is a short, thickened membrane connecting the basal joints of the digits, leaving three phalanges free of the longer toes and two and onehalf of the fingers. This membr:me has the effect to canse the bases of the digits to stand out very free and separate from each other.

The second and third fingers are nearly equal, the latter rather longer; the third toe longest; the fourth sometimes not shorter. The first finger and toe are quite rudimentary, being a mere knob. The distance from snont to axilla is contained less than three times in that to groin.

The tongue is very large, in alcoholic specimens frequently protruding begond the jaws all round. It is oval, longer than broad, fleshy, and highly papillose, thin towards the margins. It is rery slightly emarginate behind, the notch hordered by a ridge on each side. It is pedicellate, free behind and on the sides, but affised to it anteriorly; the point of adthesion risible externally, as a circular or lozenge-shaped whitish spot just behind the jaw-bone, and about as large as the orbit of the eyc. The attaclunent is complete anterior to the pedicel, which again is free from its sheath only behind. The tongue is thus cerertile and capable of being thrown outwards. There is no free simace anterior to the pedicel.

The palatine teetio form a series on each side in the shape of a short are, the convexity antero-interior. These do not meet internally, but are separated by a short interval, as they are from the two phates of parasphenoidal teeth, begiming at short distance behind them and extending backwards, meeting along the median line. The inner nostrils are rather small, placed anterior and interior to the commencement of the palatine teeth. Besides the broad, shallow, short chamel proceeding from the outer end of these mostrils past the external extremity of the palatine teeth, there is a deeper and rery narrow one passing along the upper edge of the broad channel and along the margin of the upper jaw to its posterior extremity.


Fig. 31. Plethodon glutinosus. No. 3782. Ahbeville, S. C.; 1.

This species in alcohol is of a livid bluish-black. The upper parts and sides are marked with well-defined specks of a grayish-silvery color, looking like torn pieces of foil. These vary with the specimen, but are generally more munerons and larger along the sides. The under parts are sometimes finely doted with whitish, but this is msually the effect of the whitish glands seen through the integument. The muler part of the tail is of a pale bluish-gray. The light spot on the chin, showing the attachment of the tongue, has already been referred to. The soles of the feet are also whitish.
The back is sometimes destitute of spots, or they are rery minute, and these when present are ofteu duller than those on the sides. There is occasionally a yellowish tinge in the lateral spots. A few spots of the same kind are sometimes fom under the chin.
foung specimens are marked like the adult, except in being whitish beneath, and in frequently having the white spots more punctiform and seattered.

A number of young of eighteen lines in length from eaves in Montgomery Comuty, Via, have a series of small bright red spots on each side; some others from the same locality do not exhibit them. The variation is thas remotely similur to that in Desmoynathus fusca.

I have not been able to diseover any permanent difference between the southern specimens of this species amd the northern. I have thought there was a greater tendency to expansion of the light spots on the side, so as even to form a continuons band, and to a relluction in size or disappearance of those on the back. I have, howerer, found
specimens of precisely similar character from northern localities. Some southern specimens appeared to have the digits less webbed than usual. In certain specimens from South Carolina described by Hallowell the white spots fail to exhibit themselves on the sides, the color being everg where a deep blacts, the gular region, lips, palms, and soles being of a clear yellowish-brown. This constitutes a well-marked color variety, but no differences of a higher value can be found. There are four specimens of it in the Museum of the Philadelphia Academy.
The range of this species is from Texas to Maine. It is recorded by Packard as from Okok, Labrador (Mem. Boston Soc. Nat. Mist., 1868), but I suspect that this animal will be found to be the Amblystoma jeffersonianum var. laterale, which has, with the A. j. platineum, the highest northern range. It appears to be common in Massachusetts and Maine.

This salamander is entirely terrestrial in its habits. It is found much more abundantly in the mountainous districts, and haunts rocky localities as well as forest mold and fallen logs. I have found it more abundant in Pennsylvania and New York than in sonthwest Virginia. I believe that it prefers a cool climate; in the flat and warmer tertiary and cretaceous eastern coast region it is rare. In southern Penusylvania I have only found it on the northern exposure of the south Chester Valley hill, never on the southern exposure or other part of the north hill. In southwest Virginia it is more common in caves than on the surface.

Measurcments, in inches.


I'lethodou glutinosus Green.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Localit ${ }^{\text {5 }}$. | When collected | From whom received. | Nature of specimon. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8876 | 1 | Mandeville, Lan. | Nov.-, 1870. | N. O. Academy ....... | Alcoholic. |
| 3756 | 3 | Georgi: |  |  | Do. |
| $5 \geq 67$ | 2 | - .....do |  | Dr. W. Ls Junes | 1 \%o. |
| 3766 | 1 | Tyreo Springs, Temn |  |  | 1)0. |
| 3757 $376{ }^{\prime \prime}$ | 1 | Dayton, Ala ${ }^{\text {Delaware }}$ Counts, I. |  | A. E. Edgeworth ...... | Do. |
| 7905 | 10 | Carlisle, Pa......... |  | Prot.s. F Bard | 1 O. |
| 3773 | 6 | Natchez, Mi3s |  | Col. B. C. L. Wailes | Do. |
| 8024 | 10 | Southern Illinois |  | 1. Kennicott ...... | Do. |
| 9289 | 1 | Moulton, Ala |  |  | 1). |
| 5018 | 1 | South Carolina |  |  | Do. |
| 9288 | 1 |  |  |  | Do. |
| 3760 3759 | ${ }_{6}$ | Tyroo Spriogs, TCun |  | Prof. R. Owen | Do. |
| 3759 9552 | 8 | Meadville, $\mathrm{l}^{\text {Pa }}$ |  | Williams | Do. |
| 3784 | 3 | Charleston, s. C |  |  | Do. |
| 3782 | 5 | Abbeville, S. C. |  |  | Do. |
| 3781 | 8 | Ricoboronwh, Ga |  |  | Do. |
| 3754 | 8 | Carlisle, Pia, ........ |  |  |  |
| 4725 | 3 | New Braunfels, Tex |  | Capt. S. Van Vliet, U. S. Army. | Do. |
| 3779 | 2 | Clarke Connty, Va |  | Dr. C. B. R. Kenacrly .. |  |
| 4801 3789 | 1 | New York <br> Racine, Wis |  | J. Stantier .... ....... | Do. |
| 3789 6889 | 3 | Racime, Wis Charleston (!) |  |  | Do. |
| 3775 | 2 | Wrest Northticld, iil |  | K. Kennicott | Do. |
| 11960 | 1 | Milton, Flat .......... |  | S. 'T. Walker. | Do. |
| 13315 3767 | 12 | Washington. 1 . |  | Georgo Shoemakor | Do. |
| 3767 | 12 | Orange, N. J. |  | Dr. Cooper............ | Do. |
|  | 110 |  |  |  |  |

GENEILSL SERIES.

| 4889 | 1 | Norfork, $\mathrm{V}_{\text {a }} \ldots$ |  |  | Alcoholic. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3785 3781 380 | ${ }_{3}^{2}$ |  |  | Bailey ............... | Do. |
| 3781 3759 | ${ }_{9}$ | Riceborwnl, Meadrill dita |  | Williams | No. |
| 9481 | 1 | West Northitield, 111 |  | R. Kemuicot.. | Do. |
| 11094 | 3 | North Carulina |  | Capt. William Holden .. | Do. |
| 3761 <br> 4814 <br> 88 | 1 | $\underset{\text { Union Comuty }}{\text { drook }}$ Mo |  | P. R. Hoy. | Do. |
| 4814 | 1 | Brook ville, mind. |  | Dr. R. Haymoud | Do. |
| 3763 | 2 | Mississippi $\ldots$ |  | 1)1. Slummard ... | 10. |
| 1453 | $\stackrel{2}{2}$ | Gouse crrek, s.e. |  |  | Do. |
| 1377 | 1 | ${ }^{\text {Westera Missouri }}$ |  | Dr. Slumarl. | Io. |
| 14158 | 1 |  |  |  | Do. |
| ${ }^{4722}$ | 4 |  |  | 17. W. L. Jones | Do. |
| 5967 |  | Somth Carolina, ....... Uniontown, Ala.... |  | (!) $1 . .$. | Do. |
|  | 4 | Uniontown, Ala.. |  | E. 1., Showalter ......... | Do. |

PLETHODON ENEUS COpe.

Anerican Naturalist, 1s881, p. 878.

Proportions as in $P$.glutinosus. Hearl oral, flat, its width entering length of head and boly to thigh six times. Tail quite slender, eylindric from base, and longer than length of head and body by the width of the head. The limbs are weil developed, and when appressed to the sides they overlap by the length of the distal phalanges.

The tongue does not fill the floor of the mouth, especially anteriorly The romeropalatine teeth are in two straight series, which are directed posteriorly from the internal borders of the choane at an angle of 45
degrees. They are separated from each other on the median line by a short interspace and from the parasphenoids by a little longer one. This form is quite different from that characteristic of the P. glutinosus. There the series pass behind the choans', sometimes even beyond their external border, and from two arched series, not directed backwards in any such degree as seen in the $P$. cencus. T'ue parasphenoid patches are close together, but a notch anteriorly and posteriorly indicates the extremities of the line of separation.

The internal digits on both feet are rudimental and terminate in a single small phalange, which does not extend beyond the extremity of the second metapodial bone, and is comected with the latter directly by the integment. The terminal phalanges of the other toes are truncate and slightly expanded at the tips, as in the $P$. glutinosus.

There are thirteen lateral dermal folds and a gular fold. The skin is smooth everywhere.

## Measurements.



The coloration is peculiar. Instead of the black color, with or without pale bluish dots, of the $P$. glutinosus, the sides and back are thickly spotted with large jellowish-green blotehes of irregular form, producing an effect something like the coloration of the Mexican Spelerpes leprosus. The dorsal spots are much larger than the lateral, aud are often confluent. On the head they almost exclude the gromad color. The spots on the sides are quite small, as are those on the feet. The lower sides of the tail and belly are dusted with yellow, and the throat is also dusted, and a little more coarsely than the belly.

The characters which distinguish these species from the $P$. glutinosus are the different form of the vomeropalatine series of teeth, the absence of a costal dermal fold, and the coloration. There is some resemblance
to the $I^{\prime}$. flavipunctatus of Stranch, from California, to judge by the deseription given by that anthor. He states that the tail is shorter than the head and body, that the digits are more achte, and the spots are wanting on the heal amd smaller on the back than on the sides. In all these points it differs from the $I^{\prime}$. wenes.

I have seen but one specimen of this species. I took it at the month of the Nickajack Cave, which is in the monntains at the junction of the boundaries of the States of Georgia, Alabama, and Temessee.

## PLETHODON FLAVIIUNC'TA'TUS Strauch.

Salam., p. 71 ; Bonleuger, Cat. Batr. Graul. Brit. Mus., ed. 11, 188:2, p. 55.
Palatine tertlı in two very obliqne series, converging batkwards, separated from eath other by a slight interspace, not extenthing ontwads beyond choana; parasphenoid teeth in two elongate patches in contact throughont, widely separated from the palatine teeth. Tongue very large; posterior horder free. Ilead mather long, with a median longitudinal groove. Body cylimbrical. Limbs as in P. glutinosus, but the fingers more slender and more pointed. T'ail eylindrical, a little shorter than head and body. Skin smooth; thirteen costal grooves. Black, with large, irregular yellowish spots, more mumerons on the sides and on the upper part of the tail, smaller on the throat and belly, absent on the upper surface of the head and the lower surface of the tail. Total length, $117^{\text {min. }}$.

I have not seen this species, which is said by Dr. Stranch to have been obtained at New Albion, Cial. It must be rare or of local distri. bution. I have copied the above dasmiption trom boulenger's Catalogue of the British Museum, page \%.).

## I'LETHODON INTERMEDHIS Bairl.

Proceel. Ac. Nat. Sci. Phila., 1~if, 20; Strach, Salan., p. 72; Bonlenger,

This species, in general ape:arace, proportions of horly, ete, is very similar to $P^{\prime}$. cinorens crythronotus, althongh abmatant differences are easily diseoverable. The body, as in that species, is slember and depressed, but the tail is slightly compressed at the middle, and more strongly at the extremity.

There are no apparent perentatios abont the heat. The fongue is elongated, elliptical, withont posterior emargination. There are fonrteen costal furnws, or perlaps tiftern, if we inchade one above the axilla. The distance from shont to axilla is contained rather less than three times in that to groin.

The digits are well developed; more as in I'. glutinosus. There is little, if ams, iudication of web at thein bases, the thee terminal phat langes of the third and fourth toes being tred. The thitel and fonrth toes are abont equal. The outer toe is mot more than half the secome;
the first finger and toe are almost rudimentary. The third finger is de. cidedly longer than the second.

The dorsal surface of this species is traversed by a broad brownishred stripe, extending from the nape to the end of the tail, the sides regular and nearly parallel, though more separated towards the middle of the back, where it is as wide as the interorbital space. The stripe is sparsely dotted with dusky spots throughout its extent. The sides are abruptly blackish-brown on each side the dorsal stripe; at first continnous, but becoming more and more interrupte: by mottling. The belly is light brownish-yellow, thickly mottled with dark brown in about equal proportions; lightest mider the chin. There is a dusky line from the eye to the point of the mazzle.


Fig. 33. Plethodon intermedius. No. 4733. Furt Tr:jon Cal.; ${ }^{1 .}$
The general proportions and structure of this species are more those of $P$ mastinosus than of $P$ '. cincreus, although slenderer of body. In both there are about fonrteen costal grooses. The onter digit in $P$. intermedius is nearly rudimentary, instead of prominent, as in the other species.

A distinguishing feature, when compared with $P$. cinercus, is fomm in the fourteen instead of eighteen costal grooves, the fore and hind limbs being thus less widely separated proportionally. The legs are stonter and the digits much less webbed (scarcely at all in fact). The third and fourtl: toes especially are much longer.

Inderendently of the structural pecoliarities I find nothing in the color to distingnish this species from $[$ '. cincreus erythronotus.

Measurements, in inches.

Borly:
Ciremmference of belly ..... , 8
bistance between ammit and groin ..... $1 . \therefore 5$
Tail:
Height of tatl where highest ..... 17
lheadlh of tail where highest ..... $11:$
Limbs:
Free portion of longest tinger. . ..... (is
From ellow to tip of longesi finger .....  31
Free portion of longest toe .....  11
From knee to tip of longest toe. ..... 37
Distance between outstretched -toes ..... 1. 10

I'lethodou intermedius, Baird.


I have also this species from near Salem, in the Willamette Valley, Oren, so that it probably oecus throughout the entire Pacific region.

PLETIIODON CRASSULUS Cope.
Plate Lxix, fig. 1 .
Project. Amer. Philosoph. Soc., 1806, 1. 521.
This species has a superficial resemblance to the $P$. oregonensis, but its manifold differences are easily perceived.

The form is quite robust, and the lead is large, its width going into the length to the thighs only five times. The tail is very much compressed from the base, and is also shallow ; its length equals the disrance from its base to the gabar fold. The legs are robust, but notary long; when appressed to the side they fail to meet by the length of the posterior foot.

The tongue is large, filling the floor of the mouth. The vomeropalatine teeth are in two short series, which converge backwards, without coming into contact, from behind the internal eye of the choande. The parasphenoid teeth are in a single undivided patch, which commences well behind the vomeropalatines. The maxillary and mandibular teeth are minute.


Fig. 34.-l'lethodon cressulus. No. 9447. California; 1.
The head rewed from above is oval; in profile the muzzle is thick and trmoate, and projects beyond the month. The edge of the lip is slightly angulate below the nares. The eye is rather large, its length "equaling that of the muzzle. The distance between the nostrils is equal (o) that between the bases of the eyelids at their middles. The toes ane short dud fire, one phalange of the first digit on each foot projecting. The ends of the toes are obtuse and bulbiform. $A$ guar fold. lateral folds fourteen.
Measurements of No. 9447.

| Total length | $\begin{aligned} & M . \\ & .0625 \end{aligned}$ |
| :---: | :---: |
| Length of head and body | . 034 |
| Length to groiu. | 0314 |
| Length to axilla | .0045 |
| Length to line of rictus or | . 0065 |
| Length to line of eye | . 00:3 |
| Length of fore-leg | . 10095 |
| Length of fore-foot. | .0035 |
| Length of hind leg. | . 0095 |
| Length of hiud foot. | . 004 |
| Width of head.... | . 0077 |
| Width between eyes. | . 0025 |

Color above, uniform dark reddish-brown; below, uniform light brown. I have seen but one specimen of this species, as follows: No. 9447; California; Dr. J. G. Cooper, collector.

## PLETHODON OREGONENSIS Girard.

> Cope, Proc. Ac. Phila., 1869, p. 100; Bonlenger, Cat. Batr. G:ad. Brit. Mus., ell. II, 188\%, p. 54.

> Ensatinu eschscholtzii, Gray, Cat. Batr. Grad. Brit. Mns., ed. I, p. 45 (nee Triton ensatus, Eschsch.).
> Heredia oregonensis, Girard, Proc. Ac. Phila., 1856, p. 235, and U. S. Expl. Exped., Herp., Pl. I, fig. 18-25; Stranch, Salam., p. 70̂; Hallow., Proc. Ac. Phila, 18.56, p. 235.

> Plethodon chsatus, Cope, Proc. Ac. Plila., 1867, p. 167.

This species may be readily known by its relatively short and slender tail, its long, well-developed limbs, aud wide head, as well as by its delicate coloration.

The form of the body is rather depressed, with distinct head and tail. 'The width of the head enters the length to the groin in the largest individuals 5.33 times; in those of medium size, 4.5 times; in the young of 17.5 lines in length it enters 3.5 times. Costal folds 11 , the $: 11$ terior indistinct or wanting, the posterior more than usually oblique, the inguinal extending forwards and upwards one space in advance of the origin of the femur. The limbs appressed overlap, so that the fingers reach the bases ol the toes. There is no vertebral groove. The tail is slightly compressed, more distinetly so to wards the extremty, and, what is exceptional and characteristic of this species and the $I^{\prime}$. croceuter, most so inferionly, leaving the upper outline flat for the proximal two-thirds the length. The postorbital fold is well marked and continues into the transverse fold of the throat. The head is oval, and without canthins rostralis; the muzzle rather thick, and with a subinferior truncation, which is not so marked as in $P$. croceuter. The nostril is terminal and nearer the orbit than the diameter of the eye fissure. The latter enters the width between the anterior canthi of the same 1.33 times.

The inuer nares are very small. The vomerine ares curve backwards
medially, and nearly or quite in contatt. The pterygoid patches commence at some distance behind these. They are of usual breadth, but diverge more posteriorly than in the species of the first section of the gemus, resembling thas many speeies of Spelerpes. The teeth are very minute, and are arranged in series directed backwards and inwards. The tongue is a little more free than in $P$. glutinosus, as the lamina connecting the anterior and median points of support is quite thin.
The inner toe in both pair of limbs is quite small, but free and better developed than in P. glutinosus. In the auterior pair the third is the longest; the second is a little shorter than the latter, and the fourth a little longer than the first or inner one. The longest toe in the posterior limbs is the third likewise, the fourth being nearly equal to it, whilst the second is a little longer than the fourth, which itself is it little more developed than the first or innermost. Plalanges 1-2-3-2; 1-2-3-3-2.
The skin is perfectly smooth externally, but on being examined under the microscope it exhibits a mesh-work of little stellated mueous pores, similar to those of Autodax hugubris, but proportionally larger.

According to a sketch from life made by Mr. Drayton, of the United States Exploring Expedition, the ground color is milky white, with crowdel dots of reddish brown. On the specimens preserved in alcohol, however, the body, head, and limbs are of a uniform dark brown, lighter beneath. Under a low magnifying power minute dots may be observed scattered all over the surface. The color would appear to vary somewhat. A drawing in the Smithsonian records, colored from life by Samnels, represents the sides of head and body with lower surface of tail and anterior faces of limbs of a bright orange. This is the color of living speeimens which I have taken myself.


Fig. 35.-Plethodon oregonensis. No. 13946. Berkeley, Cal.; 1.,
Measurements, in inehes.
In. Lin.
Length from snout to srapo .......................................................................... 5
Length from snont to gnlar fold 9.3

Length from shout to axilla. ........................................................................ 12
Length trom smont to groin . . . . . . . . . . . . . . . . . . . . . ..................................... © 4
Length from snont to end of vent. . . . . . . . . . . . . . . . . . . ................................. 2 . 2
Length from suont to end of tail. .................................................................... 4 10.2
Length of fore limh . .................................................................................. 10
Length of fore-foot.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5
Lenirth of hind limb. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5


In. Lin.
Width of sole of hind foot ..... 2.8
Wielth of tail ..... 2.3
Width of body ..... 5.6
Wilth of head (greatest) ..... 5.6
Wilth between external nares ..... 2
Width betwcen internal narea ..... 1. 6

This handsome species would appear to be not uncominon in Oregon. I found it abuntantly in the redwood forest at Russian River, California. Its eyes are prominent and beautiful in life.

Girard referred this species to a gemus which he called Heredia, and as it appears to me withont reason, as I can find no characters ly which to distinguish it from Plethodon. Dr. Mivart informed me that this species was labeled as identical with the Triton ensatus Esch. in the libitish Musenm, and presuming on the accuracy of the determination I called it $P$. ensatus. On examination of his figures I find that Eischscholtz's animal is very different, perhaps generically so, and probably worthy of reference to a genus Ensatina, in aceordance with Dr. Gray's catalogne of the British Musemm, a course followed by Dr. Bonlenger.

Besides specimens in Musenm of the Philadelphia Academy and Essex Institute, and my own cabinet, the following have come under my observation:

Plethodon oregonensis Gird.
RESERVE SERIES.


PLETHOION CROCEATER Cope.
Proceet. Ac. Nat. Sci. Phila., 1867, p. 110, l. c., 1869, p. 100 ; Stranch, Sal:un. p. 70 ; Boulenger, Cat. Batr. Gral. Brit. Mns., ed. II, 188:, p. 55.
The largest species of the gems, and one of the most ornamented of the American salamanders.

In primary features this species is near the $P$. oreyonensis Girard having the attachment of the tongue along the median line quite narrow, and a very narrow free margin in front. Tine palatine teeth form two long transverse separated ares, which are directed more posteriorly at their median than exterior extremity, the latter extending farther ontsirle the onter margin of the inner nares than the transverse diameter of the same. The tail is snbeylindrical and slender; com-
pressed and narrowed in section below. No prominent glandular ag. glomerations or pores. Only three phalanges in the fourth toe.

Form of head peeuliar. It is very broad, with straight converging maxillary ontlines and truncate muzzle; upper surface much harrowed on muzzle; loreal regions plane, very oblique; canthus rostralis not marked. Maxillary outline obliquely spread at and behind orbits, where it is exceeded by the projecting margin of the mandible. Anteriorly, and at the end of the muzzle, it projects considerably beyond mandible. Muzzle truncate in profile; anslight emargination at middle of premaxillary border, and a groove on each side of it on inferior projeeting face of lip. Nares terminal, some distance above the angulation of the lip, contimed below in a groove, which bifurcates near lip margin; the posterior line extending a short distance, the anterior to the median emargination separating the anterior from the mferior plane of the muzzle. Eye large, not very prominent; its anterior canthus well in front of middle of jaw, and separated one diameter from nostril and 1.5 from the other ere.

No fold across from angle to angle of mandible, but the gular, parotoid, and postonbital grooves well marked. Costal grooves indistinct; 13. Skin everywhere very smootil.

Tail longer than head and body ly the length of the month. Width at curves of mandible 4.6 times in length to groiu. Extremities slender and long; when pressed to the sides the fingers extend to the heel. Length of whole fore limb 2.75 times in length to groin. Inner finger very small, half the length of the fourth; third longer than secomb. Sole narrow ; longer than longest toes. Imner toe less than half the fifth; third a trifle longer than fourth; second much longer than tifth. Lower ieg . 5 thigh to groin.

Patches of parasphenoidal teeth, two in contact anteriorly, well separated from palatines. All the teeth minute, mumerous, aente eylindro conie. Tongue with rather straight lateral and posterior outlines.

Color thronglont pitchy back, faling into bright rel orange below; limbs orange, a blackish cross band below the knee. A large redorange spot on each parotoid region, and four smaller, irregular, similar spots on the body to base of tail on cach side of and near the vertebral line. A pair of orange spots at base of tail and a distant series on the IIpper face of the tail.

Besides the type, a specimen of this species vas obtained at Cape St. Lueas, in Lower California, and I have seen one from near San Diego, at the northern end of that peninsula. As the typical specimen was found at Fort Tejon, Cal., the range of the species is extensive.


No. 4701; one specimen ; Fort Trejon, Cal.; Joln Xantus.

## STEREOCHILUS Cope.

Character.-Tongue attached along the medtan line to the anterior margin; toes $4-5$; premaxillary bones confluent, with a simple spine, without fontanelle.

This genns is represented by but one species of the anstroriparian dis. trict of the nearetic region. It is evidently of aquatic halits, and is on larva-like proportions and appearamee, but has the eranimm fully neveloped and in some respects more solilly than its allies. In the only skeleton I have examined the prefrontal is present on one side and wanting on the other. The premaxillary bone is like that of Desmognathus, while the tongue is slighty freer than in Plethoton. The species exhibits weak extremities. It is from sontheast Georgia, and is quite rare.

Costal plicere, 17 ; elongate, leall narrow, wilth more that seren times to groin, mote than twice to axilla; 110 canthus rostralis; tail compressell from base, fimed; surall; palo yellow, brown lined .......s. marginatus.

## STEREOCIILUS MARGINATUS IIAllowell.

Pseudotriton marginatus Hallow., Procect. Ac. Nat. Sci. Phila., 1wifi, p. 130.
Spelerpes marginatus Strauch, Salam., p. 83; Bonlenger, Cat. Batr. Gram. Brit. Mus. ed. if, 188?, p. 64.
This is a well-marked and peculiar species, and not neariy allied to any other. The head is more tham nsually elongate, with projecting, flat, truneate muzzle. The general dimensions of the iread are small; the interorbital space is narrow and nearly plane, its width between the anterior canthi of the orbits not quite 1.5 the longitudiual diameter of the
eye. Both upper and lower palpebree are trausparent, a feature pecu. liar to this speci es.

The pores of the skin are large and on all the upper surfaces closely placerl; dat the sides more distantly. The mucons pores on the head are distinct and large. They form a donble series along the canthus rostralis, and a smgle one above the orbit, which turns romd the latter behind, and is comtimed bolow it and along the side of the muzzle to the nostril. A series of similar large pores extends along the middle of each side, one a little in front of the median point of the intercostal spaces. The tail is compressed from the base, and not elevated; it carries a strong free dermal border along the median line above on the distal two thirds; a narrower dermal margin exists on the inferior distal half. The limbs are short and weak, but the digits are well developed. The posterior extended forwards measures 4.5 intercostal intervals; the anterior measures backwards $4 \frac{1}{2}$ of the same, comnting the axillar. The phalanges number on the posterior feet i-2-3-3-2; on the anterior, 1-2-3-2; the terminals are quite acmminate, especially behind, where in one individnal they have a slightly corneons sheath. Tiere are 17 costal folds and an axillar space. The tail is not ammlate.
The rietus of the month measures nearly the diameter of the eye behind it. The tongue is small and free all rond, except at the anterior margin and along the median line to the glossohyal pedicel. The vomerine teeth extend behind the nares in two series, which are convex posteriorly; they approach each other as though at an angle directed anteriorly, and then suddenly curve backwards and form the pterygoid series. These are more slender and more nearly approximated than in any other species, and consist each of but one row of teeth to the point where they begin to diverge ; i. e., near the posterior part of the globe of the eye. They do not diverge widely and exhibit but a few series of teeth.


Fig. 36. Stereochilus marginatus. No. 3907. Georgia; $\frac{3}{2}$.
The color is a delicate yellowish-brown, with mumerons brown lines interspersed, which form several dark bands along the side. A narrow dark line extends from the orbit to near the axilla. A narrow yellow line, brown-bordered above and below, extends from axilla to groin. The tail, belly, and gular region are closely brown-specked; similar speeks ocenr on the sides of the head behind. The gromed color of the belly is yellow.


#### Abstract

\section*{Axial measurements.} n.

From mizzle to anterior canthus eye .................................................... . . $00{ }^{2}$ From muzzle to rictns oris ........... .................................................... . . 0044 From muzzle to axilla ........... .............................................................. . . . 012 From muzzle to groin ...................................................................... . . 0412 From muzzle to posterior margin vent.... .............................................. . . . . 0446 From minzale to end of tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:9. Length fore limb ................................................ .............................. . . 006 Length fore-font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0025 Length hind limb.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 008 Length hind foot ............. .............................................................. . . . 004 Wilth betwcen external naras....... ......... ........................................... . . . . 001 Width between internal nares .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 001 Width between canthns oris ...... ...... ..... ........................................... . . . 004 Width between humeri at axilla ....... ....... .............................................. . . . 0027 Width between femora at groin ......................................................... . . . . 0035 This peculiar salamamer is probably aquatic in its labits. This is indicated by the compressed fin like tail and the transparent pappebra. It is quite elegant in its coloration. Nothing is known of its habits, as it is as yet very rare in collections. Besides the type specimen of ILallowell in the Miseum of the Acalemy Natural Sciences, I have only seen the following:


No. 3907; two specimens; Georgia; Dr. Joseph Jones.

## GYRINOPHILUS Cope.

$$
\text { Procect. Acad. Phila., 1869, p. } 108 .
$$

Tongue supported only by the glossohyal pelicel, boletoid; craninm fully ossified, the premaxillary bones remaining distinct and embracing a fontanelle. Digits entirely distinct, 4-i.

This genus is distinguished from Spelerpes on acconnt of the marked peculiarity of the premaxillary bone, in which it resembles Plethodon rather than the first mamed. But one species is as yet known. It has a superficial resemblance to the Spelerpes ruber, but differs in several osteological peenliarities. Its masal bones are well separated, and the proötic-squamosal crests are peculiar. The anterior or prö̈tic erest is short, distinct, and curved inwards and backwards; that on the proximal extremity of the squamosal curves towards it, but leaves a considerable interspace. This is occupied by two osseons processes, like two teeth of a comb. In $\mathcal{S}$. ruber the anterior crest only is present, and forms a rectangle, the anterior limb being transverse and the angle inwards. The nasal bones also are in contact across the premaxillary spines.

The type of the gemus remains for a more than usually long period in the larval condition, and just before its metamorphosis is generally identical in its osteological characters with the genns Necturns, except in the absence of the intercalary bone, and the number of posterior digits.

Costal piicie 16. Head wide, witth less than seren times to groin, not over twice to axilla; a strong eanthns rostralis; tail romaded at the base, not finned; large; uniform purple-gray above.
G. porphyriticus.

## GYRINOPHILUS PORPHYRITICUS Green.*

$$
\text { Cope, Proeced., Ac. Phila., 1869, p. } 108 \text {. }
$$

Salamandra porpinyritica, Green, Contr. Maelur. Lyc., i, 1827, p. 3, Pl. 1, fig. 2.
Salamandra salmonea (Storer), Holhr., N. A. Herp., v, p. 3:3, Pl. 8; De Kay, N. Y. Fann., Rept., p. 76, Pl. 16, fig. 39.
Triton porphyriticus, Holhr., l. с., p. 8:3, Pl. 28.

Amblystoma salmonrum, Dum. \& Bibr., p. 1 to.
Spelerpes salmonens, Stranch, Salam., 1. 8:3.
Spelerpes? salmonea, Gray, Cat. Batr. Graul. Brit. Mus., ed. r, p. $4 i$.
Spelerpes? porphyritica, id., ibid.
Spercrpes porphyrilicns, Boulenger, Cat. Batr. Crad. Brit. Mns., ed. II, 1882, p. 64.
This fine species of salamander has an elongated and slenter body, much depressed thronghont, with very littlr constriction at the neck, and the tail tapering very imperceptibly firm the body. The skin is smooth and very slippery, everywhere under the lens showing approximated shallow pits, hat no indication of glanls. As nearly as can be ascertained the pores of the head are as in stpelerpes ruber.

The heal is flat, depressed, and rather wedge-shaped, the whole upper part to the muzzle being nearly in one plane. The mozale is prominently and broadly trmeate, thongh a little rounded. The sides of the head are abmptly oblique and also quite plane, the canthms rostralis being very strongly marked as an angular ridge extemding forward outside the nostrils to the edge of the jaw, where it, forms a slight and obtuse projection. This rifge is further indicated by a light line (always present) from the anterior angles of the eye along its summit. to the margin of the jaw the two nearly parallel. The nostrils send a narrow furrow from their onter extremity down this ridge.

The lower edge of the upper jaw viewed from before is coneave, being bommed on each side by the ringe just mentioned. There is no welldefined eirrus howevor. The side view of the lower edge of the upper jaw is also concare. The upper jaw projects largely over the lower, most so anteriorly.

The eyes are large and prominent, distant anteriorly abont one and a half lengths of the orbit ; the external nostrils one orbit length apart; the inner less than this. The latter are very minnte. The tongue is circular, entirely free, pedicellate, and greatly protractils.

The teeth are much as in spelerpes ruber the parasphemidal bands pertaps rather mamow.

The hody is rathar remiform, heing of enfal size throughout, much depressed, with a fimow fiom nape to above anms, where the tail ris: into a sharp ridgr, which confinmes to the tip. There are sixteen distinct

[^20]costal furrows, excluding an axillary one, and five pelvic. Similar furrows can be traced to the tip of the tail. The tail is quadrate at the base, with rounded angles, broader than high, but becomes more and more compressed to the tip. The limbs are feeble and willely separated. The digits all distinct, but small; the first rather rulimentary.

In alcohol mature iutividuals of smaller size are of a light brownishred on the back, the sides and beneath pale reldish-salmon eolor. Tho sides of body and tail, howerer, and to a less extent the back, are closely covered by a coarse, indistinct reticulation or net-work of rathèr dark brown, showing the lighter ground color in the areola, and ennvejing the impression of rather oblong light spots. The under parts are generally immaeulate, though large specimens are sometimes finely sprinkled with dusky. There is always a light line from the eye along the canthins to the edge of the upper jaw; those of opposite sides parallel.

With increasing age the reticulation of the sides becomes obsenred by the extension of the gromm color of the back over the sides and the faling ont of the dark makings. There is, however, generally a dull clouding of darker and a fant indicaton of the light spots, especially on the lower part of the sides.

This species differs from Spelerpes ruber in many details of external form-the more vermiform and depressed borly ; more widely separated fore and hind legs; one more costal furrow ; the more depressed, more truncate, and honder head; lager eyes; promincnt ridge fon eye continued to margin of buper jaw, otb, not to mention the difference in coloration. To s., $r$. fluxissimus it is related by the protnberances on the upper jaw on each side the muzzle, but these are less prominent. The fifteen costal grooves and sharply defined bhack spots withont reticulation on the sides distinguish the former.

A specimen from Georgia (4716) differs in a more slender shape, and m having dark, horny tips to the digits, as in the aquatic Amblystome, as if having lived in a drier region than nsual. There are only fifteen costal grooves to be distinguished.


Measurements of No. B-Th, in inches.


Head:
Width of head . . . . . . . .......... . . . . .

Width of tongue................. . . . . 5
Length of orlit.................. . . 20
Distance between eyes anteri-
orly ................................. . 30
Distanee between onter nostrils. .24
Distance between inuer nostrils. . 15 Body :

Circminterence of belly .......... I. 85
Distance between armpit and
groin..............................20

Tail :
Height of tail where highest... . 40
Brealth of tail where highest.. . 35
Limbs:
Free portion of longest finger.. . 14
From clbow to til of longest finger ........................... . . 45
Free portion of longest twe..... . . 16
From knee to tip of longest toe. . (i0
Distance between outstretched
tоея .............................. . 1.90
Height of body .................. . . 54
Widtlı ............................. . . . t 0

There can be little donbt that, as Baird has smgested, this is the Salamudra porphyritica of (irecn. The angulation and pale color of the canthus rostratis is described accurately as well as the color of the borly. The large larva, 4 inehes long, is ouly referable to this species. The Chondrotus microstomus, which Holbrook and Hallowell have imagined to be Green's species, is not indieated by Green's description. It is not so large, has not the canthus rostralis, the larva is very smali, and the coloration is quite different. Green's figme represents it well, thongh the Amblystoma jefficrsonianum on the same plate is represented as larger-a relation of size the reverse of what usially hohls in mature.

This is the only one of our Eastern salamanders which attempts felfdefense. It snaps fiercely, but harmlessly, and throws its body into contortions in terrorem. It prefers the coolest localities throughout the Alleghany monntan region, from New York to Alabama. It is aquatic, but, prefers the still waters of swamus or springs tormuing streams. It is common in the-region whence Green procured it, while C. microstomus is rare, if existing at all.

Gyrinophilus porphyriticus Green.
heselive selides.

| Catahostr number. | No. ol spec. | Locality. | $\begin{aligned} & \text { When } \\ & \text { collucted. } \end{aligned}$ | From whom received. | Nature of specinues. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 8tif | , | C'ulisle, l'a... | $1 \times 71$ | Proi. s. l'. Batird | Alcoholic. |
| 3871 | 4 |  |  |  |  |
| $3 \sim 19$ | $\because$ | Caunonsburgh, l'i . . Foxburdh, Pa |  | 1r. I Mreen | D1. |
| 3847 | $\stackrel{3}{6}$ |  |  | l'ort, S. F'. Bard... | Do. |
| 3885 | ${ }_{1}^{6}$ | Mealville, Pa Colnmbus, Ohio....... |  | 1rnfessor Williams | D\%. |
| - 26 | 10 | Carlisle, Pa............. |  | 1'tof. S. F Matard. | Do. |
| $3 \times 11$ | 10 | Foxburgh, Pa |  | , | Do. |
| 3 Br | 1 | Upper James liver. |  | .....da | Do. |
| 3149 | 1 | Liceborough, (ia ....... |  |  | Do. |
| $\begin{array}{r}12715 \\ 3.12 \\ \hline 185\end{array}$ | 1 |  | Jlar. -, 1883 | W II. Wone | Do. |
| 3174 | 3 | Ampontack, N. Y....... |  | B. Baird | Do. |
| 8 812 | 1 | Columbia, S. © |  | Ib: Gerrgo H. Moran, U. S. A. | Do. |
| 4716 | 3 | Ablerille, S. C |  | Dr. liarrett ............. | Do. |
| 14688 | 1 | Uarlislo, l'ia |  | Prof. S. F', Batirl | Do. |
| 11473 3 anti9 | ${ }_{6}$ |  |  | (?) - ........... | Do. |
| 3ntis | ${ }^{6}$ | Meadville, l' |  | $\begin{aligned} & \text { V'rofessor willi: } \end{aligned}$ | Do. |
| 4716 | 1 | - ${ }^{\text {Pur. Geor }}$ |  | Dr. W. L.Ju | $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ |

## MANCULUS Cope.

Proceed. Ac. Nat. Sci. Phila., 18ti, 9.i-101; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. ni, 1892 , p. 75.

Tongue free ail round, boletoid. Toes 4-4. Parietal bones ossified, and withont fo:tanelle. Premaxillaries coössified,
This genus only differs from Spelernes in the absence of a digit from the himd foot, stauling thus in the same relation to it that Hemidactylium does to Plethodon. Its typical species was formerly referred to Batrachoseps, but, besides the great difference in the tongue, the latter has a parietal fontanclle and lacks the prefrontal bone. The latter point is indicated by Eschscholtz in his atlas. In the present genus that bone is present.
The two species as get known have a limited distribution. They are the smallest North American salamanders.

They are distinguished as follows:
Tail stont, compressed; body shorter by length of femur; black, sides light speckled

Tail slonder, cylindric; body longer; muzzle broader; yellowish, a dorso-lateral brown band ................................................................. . . . quadridigitatns.

## MANCULUS REMIFER Cope.

Rept. Peaboily Ac., Salem, 18:9, p. 81; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. 11, 188\%, p. 76.

In this small salamander the length to the fore limbs enters that between the limbs but little orer twier, indicating a less slemder form than in the S. qualrinligitutus of equal size. The head is an elongate oral, its winth entering the length to the groin nearly seren times. There are sixteen costal folds, including the axillar, and these are continned upwards to near a median dorsal groove. The tail is deep and flat and marked with the lateral intermusenlar grooves, besides a strong median groove above. The latter gives way to a low fin on the distal half of the tail.

The limbs are short and weak. The posterior extents forward over six grooves and half an interspace, the anterior over fire and one-half, inclading the axillar. The fingens are slemder; the interior on both limbs cuite short, though distinct.

The romerine teoth are in the two usmal series, which are more posteriorly directed than is ushai. The parasphenoid patches cease far behind the first mentionel, and are in natrow, very convex brashes, which are distinct from each other thenghont their length. The tongere is elongate oval.

The color is bata above and dark brown below; tho black extends downwards and nearly meets romb the neek below. The lower part.
of the sides of the head, body, and basal third of tail are dusted finewhite dots.Measuremints.
M.
Length, axial, from end of mmzzle to rictus oris. ..... $00: 375$
Length, axial, from ond of mmzzle to axilla ..... 0086
Length, axial, from ent of muzzle fo groin ..... 027
Length, axial, from end of mazzle to end of vent ..... 0.3
Lengrth, axial, from end of inuzzle to end of tail ..... 058
Length of fore limb ..... 00575
Length of fore-foot ..... 00:
Length of hind limb ..... 007
Length of hind foot ..... $00: 8$
Width of heme ..... 0038
Width of borly ..... 0032
Width of tail ..... 002

Only one specimen of this species has come under my observation. It was found by C. J. Maynard, of Salem, Mass., at Jacksonville, Fla, in February, 1869. It is preserved in the museum of the Peabody Acallemy of Sciences, which iustitution lent it to me for determination.

From the form of the tail it is probably a more anuatic animal than its congener M. quadridigitatus, and if the specimen be an arerage one it is not quite so dimimutive.

## manculds quadridigiratus hoibr.*

Cope, Procervl. Ac. I'lila., Isti9, 1. 101; Boulenger, Cat. Bair. Grad Brit. Mus., ed. 1t, Isaz, p. 75.

Sulamandra quadridigitata, IIulbr., N. A. IEerpr, v, !. (ii.), Pl. :1.
 1. Ki. ; Gray, Cat. Batr. Giad. Brit. Mus., ed. I, 11. 42.

This interesting species is among the least, if not the very smahest, of Ameriean salamanders. It is much like spelerpes bilinentus in general apparance, bat is still slemberer, and with longer digits.

I call see nothing distinctive in the head, except that the perlicellate tongue is very large, oval, elongated elliptical, nearly twice as long as wide, and filling the interspace of the lower jow. The teeth appear as in s. bilineatus. The head is marrower than in this species.

The body is eylimblical, depressed, with ifferen costal firrows; a sixteenth would lie in the axilla, but ean not be traced. The separation of the limbs varies considerably; in the hargest specimen the distance from sinout to axilla is contained nearly three and one-half times in that to groin; in others hardly 3 times.

The tail is slender, subumadrangular, and longer than the rest of the allimal.

The digits are iengthened and slemder; the longest toe contained about two and one half times in the distance from knee to tip. The inner
toe is entirely wanting, without a trace of it being left. There are thus but four digits to each limb.


The coloration resembles that of $s$. bilineata. There is a broad reddish or brownish-yellow dorsal stripe from head to end of tail, bomnded on each side by a marow dark line extending from the ere, fading gradually off below. The sides are closely dotted or mottled with brownish dots, the dark line referred to being merely a closer arrangement of the dots. The under parts are whitish in alcohol, finely mottled or dotted like the sides, but less closely and more indistinguisbably: The inedian line of the belly is generally immaculate. There is almost always a narrow light line on the side fiom the fore to hiud legs.

The light dorsal stripe is generally more or less dotted with brownish, sometimes with a tendeney to a median stripe.

In one specimen the sides are distinctly dotted finely with white.
This species was referred to Batrachoseps of Bonaparte by l'ofessor Bairl, without probably having seen the type of the latter, no doubt on the faith of Bonaparte's erroneous deseription of the tongue of the same. It is evident that the two species onght not to be regarded as congeneric, since the $B$. attenuatus turns ont to be more ncanly allied to Hemidactylimm than to Spelerpes.

The known range of this, one of the smallest of land vertebrates, is from middle North Carolina to the border of Texas, including Florida,

Measurements, in inches.

Head-Continned :
Distance betwencyesanteriorly . 09
Body : Circumference of belly...... . 6 C 'T': เil:
Height of tail where highest... . 15
breadh of tail where highest.. . 11 Limbs:
Free portion ot longest linger .. . Ois
From elbow to dip of longerst fingrer . . . . . .... .................. . . . Is
Free portion of longest toe..... . 0 :
From knee to tip oí longest tre. . $2: 3$
Distance between outstretched tnes.................................. . 72

Manculus quadridigitatus Holbr.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of spec. imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9337 | 3 | Mandeville, La... | Nov, 2,1876 | G. Kobn | Alcoliolic. |
| 3804 8867 | 7 | liceborough, Ga |  |  | D |
| 3904 | 1 | Abbeville S. |  | Prof. S. F Bai | Do. |

## SPELERPES Rafinesque.

Atlantic Journal, I, p. 22, 183:.
Spelerpes Gray, Cat. Brit. Mas. 1850, 43 ; Copo, Proceed. Ac. Phila., 1869, 1. 104;
Boulenger, Cat. Batr. Grad. 13rit. Mus., ed. n, 1882, p. 60.
Cylindrosoma Tschudi, Nat. Syst. Batrachier Neuchatel, 1838.
Cylindrosoma et Bolitoglossa pars Duméril, Erp. Gén., Ix.
Spelerpes et I'seudotriton Baird, Journ. Ac. Nat. Sci., I; Hallowell, l. c., Iv.
The tongue free, except at the glossohyal support. Palatine and parietal bones fully ossified; premaxillaries consolidated, and their spines embracing a fontanelle. Teeth small. Toes $4-5$.

This is a natural genus, and is abundantly represented by individnals in the eastern district of the nearetic realm, and the Mexican of the neotropical. Its digital characters only distinguish it from Manculus, and some of the Mexican species approach that genus in the great reduction of the inner digit, which results from a diminution in the number of phalanges. The consolidation of the premaxillaries-it marked character-appears very early in the developmental history of such of the species as I have been able to study (S. ruber, S. bilineatus). The Mexican species pass their metamorphoses soonest; theu such as S. bilineatus, and the S. ruber remans longest a larva.

The characters of nine species of Spelerpes are given in the following table. I know of none others, thinking that the genera (Edipus, (Edipina, and Geotriton should be maintained as distinct. Of these species four only inhabit the nearctic realm, and five are found in the Tierra Templada of Mexico, on the eastern side of the platean. The nearetic species are all confined to the eastern region, the genus differing in its range from Plethodon in not extending to the Pacifie region.

The largest species of the Spelerpes is the S. bellii of Mexico, which among salamanders is only exceeded in dimensions by the Chondrotus tencbrosus. The largest species of North America is the S. ruber. The species of this genus display more brilliant colors than any other of the fanily, yellow and red being the usual ones.
I. Vomerine teeth not continued back to parasphenoid patches, extended ontwardly bejond nares.
a. Costal folds 11-12; tail cylindric; inmer toes rudimental.

Plice 1:2; extremities of imer toes free; others short, thick, subequal ; a eanthus rostralis; muzzlo trumeate; vomerine series in contact ; lead-colored, usually with two dorsal series of red spots ; largest.......S. bellii.
1951-Bull. 34 ——11

Plicie 12; inner toe and joint distinct, other toes well developed, cylindric; width head 5 to 6 times, and length head to axilla, 2.5 to 3 times, to groin ; tail generally more elongate ; black; sides, tail, aud ofteu back, gray varied ; larger....................................................... S. leprosus.
Plices 11 ; inner toe not distinct; other toes very short, margined; width of head $4 \frac{2}{5}$ to axilla, 1.3 to groin; tail short; black, unspotted; medium.
S. cephalicus.

II, Vomerine teeth not continuel posteriorly to the parasphenoid patches, nor exteriorly to beyoud the nares.
$\alpha$. Tail ronnd; costal grooves 11-12; inner toes rudimental.
Plice 11 (without inguinal) ; width of head 4.5 ; length to axilla 25 times in length to groin; tail rather short ; toes very short; upper lip more or less truncate aud angulate
S. chiropterus.
$\alpha \alpha$. Tail subround; costal grooves 21 ; iuner toes minute.
Wisth of head near one-seventh, length to axilla .33 of length to groin; limbs short ; tail thick at base ; brown, with a dark lateral band on each side; small............................................................. .S. multiplicatus.
$\alpha \alpha \alpha$. Tail compressel ; costal grooves 13-14; inner tocs distinct.
Plice usually 14 ; wilth of head less than one-sixth to groin ; head to axilla well over . 33 of the same; boly louger, tail not keeled above proximally, comparatively short; vomerine series turned obliquely backwards; yellow, with two latero-dorsal black bauds; tail dark laterally ; belly yellow, immaenlate ; snall...........................................S. biliucatus.
Plie:e, 13 ; width of head equal one-sixth length to groin; muzzle to axilla more than one-third the same; tail long-keeled above; jellow, sides may black-spotted, a median dorsal series of spots; tail yellow, blackbarred; belly immaculate ; larger...........................S. longicaudus.
Plice 13; width of head greater than one-sixth length to groin; from muzzle to axilla ennsiderably more than 33 length to groin; tail longkeeled above ; yellow, with threc black bands ; tail black, yellow-barren ; belly mottled; larger..........................................s. gnthlineatus.
III. Vomerine series of teeth contiuuons posteriorly with the parasphenoid brushes, and originating behind nares.

Costal plicie 15-16; heal wide, not more than seven times to groin, not more than twice to axilla; no canthus rostralis; tail ronnded at base, not fimed ; large; vermilion red, black or brown spotted...... S. ruber.

## SPELERPES MULTIPLICATUS Cope.

Proc. Ac. Phila., 1869, p. 106 ; Bonlenger, Cat. Batr. Gral. Brit. Mus., ed. 1I, 188\%, p. 67.
This small species resembles in general proportions Hemidactylium scutatum. It is well characterized in this genus by its mumerous costal plicat and thickened, scarcely compressed tail.

The width of the head enters the length to the groin 6.75 times; the length to axilla enters thrice. The hind limb, extended, passes six intervals from the groin; the foot is wide and the toes short, especially the inner and onter; the imer has but one minute joint free. The same may be said of the anterior digits. The tail is compressed a little and considerably thickened; in the smallest specimen the terminal .75 above and .33 below are keeled; in others the superior keel is more distal.

Upper lip moderately truncate, with infranareal angles, aud in one, rudimental cirri. The muzzle is rather thick and short, the head flat; in one smaller specimen the former is a little longer than in the others and the width of the head relatively less. The vomerine teeth form short series, each rather suddenly bent backwards; the pterygoid two narrow patches not approaching the vomeriues, the relations in this respect being as in $S$. bilineatus.

The color in four specimens is an unspotted brown, the inferior surfaces paler, especially the gular region. In the smaller specimen above mentioned, which seems to constitnte a rariety, the brown color forms a broad dorsal band with dark points; the sides are of a pinkish gray, and the under surfaces light yellow.

1

4

3

5


Fig. 39. Spelerpes multiplicatus. No. 4038. Red River, Ark.; ${ }_{1}, \frac{4}{1}$.

## Measnrements of the largest specimen on the axis of the body.

Length from muzzle to axilla ..... $4: 5$
Length from muzzle to groiu ..... 1. 53
Leugth from muzzle to cud of tail ..... 3.24
Length of fore limb ..... 233
Length of fore-foot .....  08
Length of hind limb ..... 29
Length of hind foot ..... 133
Wilth of head at auterior angle orbits .....  1
Width of head at rictus. .....  22
Wilth of body at sacrum ..... 15

The form of this species would indicate it to be terrestrial in its habits. Of its geographical range we have as yet little information, except that it belongs to the southern central region of the contincut. Professor Cragin sent me a specimen which was taken in southern Kinsas, and the types were found as below stated.

No. 4038; 5 specimeus; Red River, Arkansas; Dr. L. A. Edrards.

## SPELERPES BILINEATUS Grecn.*

Bairt, Journ. Ac. Phila. (2), 1, p. 2д7; Cope, Proc. Ac. Phila., 1869, p. 107; Stranch, Salam., p. 82; Cope, Amer. Nat. iv, B. 401 ; Gray, Cat. Batr. Grad. Brit. Mus., ed. 1, p. 44; Hallowell, Jonm. Ac. Philia. (:2), iv, 1. 346; Boulcnger, Cat. Batr. Cimat. Brit. Mus., ed. n, 1-52, p. (iti.

Salamandra bilineata Green, Journ. Ac. Phila., I, p. 35 s ; Holbr., N. A. Herp., v, p. 55 ,


Salantandra flavissima Hirlan, Amer. Journ., 1826, p. 286.
Salamandia cirvigeru Greerı, Journ. Ac. Phila., ıv, p. 253; Holbr., l. c., p. 53, Pl, 15.
Spelerpes cirrigerns Bairl, l. c.; Strauch, l. c. ; Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 44.
Bolitoglossa bilincata Dum. \& Bibr., p. 91.
In describing this species I have selected specimens from New Jersey as most like the type of Dr. Green from the same State. These are before me, but are in rather indifferent preservation.

The general characters of the group as described under S. longicauda apply equally here. The chief differences of form appear to consist in a ratber narrower head, a more elongate body, and perhaps proportionally more slender digits. There are usually fourteen costal furrows between the limbs; a fifteenth falling over the insertion of the fore-legs, and in some specimens possibly in the axilla. The distance from snout to axilla is contained about $2 \frac{2}{3}$ times in that to the groin.

There is only a slight obtuseness of the lip on each side of the muzzle to represent the cirrous appendage of the larva, which is sometimes persistent, thas presenting the characters of the snpposed species $S$. cirrigera.

This species is of a clear yellow; the back with a tinge of brown on it, and this bordered on each side by a dark-brown line; sometimes very continuous, sometimes slightly broken here and there, beginning at the eye; sometimes at the muzzle and ruming through the eye.

The space between the lines is finely sprinkled with brown or black, sometimes only appreciable under a lens, sometimes more distinct. In most specimens the larger spots are aggregated into a narrow median or dorsal series extending to the tail; the spots on the line sometimes partialiy or entirely confluent. The unter parts are always entirely immaculate citron yellow. The sides are very miuntely dotted with blackish below the lateral stripe; in nearly all the specimens from Orange only distinguishable under the lens, and imparting a slight dusky shade. The amonnt of dotting here on the side is searcely greater than that on the back.

In perhaps the greater number of specimens the mottling of the sides is greater than as described, making a broad lateral band, sometimes fading gradually out of the dorsal surface, and fitling ont along the belly, sometimes leaving the lower edge of the dorsal stripe well marked; occasionally the whole sites are almost as dark as the lateral stripe. There is a row of pores on the upper part of the sides, one to each iuterspace between the costal furrows. These show in the dusky sides as a line of whitish spots, as they do in S. guttolineata. This may be owing in both either to the transparency of the epidermis or to the actual presence of spots of white around these pores.

This species bears a close resemblance to Desmognathus ochrophota in some of its conditions of coloration. The latter may be always distinguished independently of the geueric characters, by the broad light,
generally dark bordered line which passes from the eye posteriorly obliquely to behind the angle of the jaws; and by the absence of yellow on the belly.

In the large series of specimens before me are some speeimens (4735) from the vicinity of Lake Oquassa, which appear distinct from any others in the collection. They have more the general appearance of Desmognathins, though truly Spelerpes. The muzzle is rather longer and considerably higher at the end; the protuberance of the lip on the side of muzzle larger. The side of the head anterior to the eyes is much pitted with pores, scarcely appreciable in the others. The colors are darker; .the dorsal stripe browner; and the mottling of the sides eneroaches on the belly. The chin is quite conspicuously mottled. These differences mark a variety which Baird records in his MS. under the name of S. b. borealis.

A few specimens have but thirteeu costal folds, and one from Georgia (4737) has that number on one side and fourteen on the other. Those with the fewer plice have usually shorter bodies. This is particularly the case with three specimens (3748) from Georgia, where the width of the head enters the length to the groin but little over five times. The sides are in this variety dusky, with a series of white puncta below the lateral band. The dorsal regiou and top of the head are abundautly punctate; sides of tail uniform black; belly immaculate. This variety conneets with the S. bilineata, the Salamandra cirrigera of Green. The following description is taken from Green's type in the Museum of the Smithsonian Institution (No. 4743).

The head is depressed and anterior to the eyes. The sides, instead of tapering to a truncated muzzle, are nearly parallel to the truncate but rounded muzzle. This squareness is produced by the development of the protuberances of the upper lips on each side the muzzle, which, although partially indicated in other species, here attain their maximum of growth, becoming cirri, which are cyliudrical and a little knobbed at the ends, extending downwards past the lower jaw. They are about as long as the outer finger, or .05 of an inch in length. The appearance presented is not unlike that of the muzzle of a walrus or morse. The narrow groove extending from the outer edge of the external nares passes all the way down the antero external surface of the cirri.

There are but thirteen costal grooves, including an indistinct one in the groin. A fourteenth, if present, would fall above the insertion of the fore-leg. The distance from muzzle to axilla is contained only about two and it half times in that to the groin.

The tail, as in other species, is slender and compressed, longer than the rest of the animal.

The digits are musually long and very slender, considerably longer than in var. S. b. bilineatus. The limbs are also well developed.

The color is much the same as in $s$. b. bilineatus-yellowish, with a well. defined line of black on each side the back, the intermediate space
dotted with rather large and distinct spots of blackish without definite arrangement. The sides are obscurely marbled with dusky. The un. der parts appear to be immaculate, except some indistinct marbling on the chin.

Although the form winch presents this singular character is not typital of the species, I do not consider it to be referable to any other.

Besides the original two specimens of Green, I have seen three others bearing cirri, which I took with two non-cirrigerous ones on the slope of the Black Mountains of North Carolina. These specimens are otherwise of typical character.

The cirrus is a larval character retained, which, were it permanent, would be of generic value; but it is not so, and in this case an individwal feature only. The same peculiarity I have observed in two specimelt of S. chiropterus sent by Sumichrast from Mexico, and in specimens of S. longicaudus and S. guttolineatus from the United States. The other characters of this variety, though marked, are modified in various intermediate degrees in individuals from various, especially southern, localities. The form of the tail is just as in the typical variety, though Holbrook has stated them to differ.

This species is very abundant in Pennsylvania, and extends its range, with decreasing numbers, to Maine. It differs in its habits from the S. longicaudus in being to a great extent a water animal, and less firequently found under bark and stones. It is only in shallow, stony brooks that it occurs, however, and can not be called aquatic in the sense in which the Tritons are. It is very active, and wriggles and rums from the pursuer in the same manner as, and generally in company with, the Desmognathus fusca. It is one of those species whose metamorphoses are prolonged and which remains in the larval state until nearly grown.
This species appears to be the one to which must be referred the


Fig. 40. Spelerpes bilincatus Green. No. 4456. Gloucester, Mid. Twice natural size.
specimens named by Holbrook, Salamandra haldemani, which came from Pennsylvania. The yellow-belly and distributed dorsal spots resemble varieties of this species rather than any other.

Mcasurements of No. 3924, in inches.
Length, measured along axis of borly :
From snout to gape ..... 12
From snont to gular fold ..... 30
From snout to armpit ..... 47
From suout to groin ..... 1. 30
From suont to behind anus. ..... 1. 50
From snont to end of tail ..... 3.10
Tail ..... 1. 60
Head ${ }^{\text {. }}$
Width of head ..... 20
Length of orbit ..... 10
Distance between eyes anteriorly ..... 12
Distance between onter nostrils ..... 12
Body:
Circumference of belly ..... 75
Body-Continued.
Distance between armpit and groin ..... 88
Tail:
Height of tail where highest ..... 15
Breadth of tail where highest. ..... 12
Limbs:
Free portion of longest finger. ..... 05
From elbow to tip of longest finger ..... 15
Free portion of longest toe ..... 08
From knee to tip of longest toe. ..... 26
Distance between outstretched toes ..... 79
Measurements of No. 4734, in inclies.

Length, measured alougaxis of boty:
From suout to galpe.............. . . 12
From suont to gular foll. ....... . 29
From snont to armpit........... . . 45
From suout to groin............. 1.08
From snont to behind anus .... 1.27
From snout to end of tail...... 2.97
Tail................................ 1.70
Head:
Wilth of head .................. . . 20
Length of orbit.................. . . 09
Distance bet ween eses anteriorly . 10

Boly : Cireumference of belly...... . 60
'tail: Height of tail where highest. . 15
Limbs:
Free portion of longest finger.. . 07
From elbow to tip of longest finger ............................ . . 25
Free prortion of longest too..... . 11
From knee to tip of longest too. . 27
Distance letween outstretehed tоен.............................. . 87

## Spelerpes bilineatus Green.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3738 |  | Western Pennsylrauia |  | Dr. J. Green | A lcoholic tspe. |
| 8812 | 1 | Cincinuati, Ohio... |  | J. N. B. Scarborough | Alcoholic. |
| $88: 33$ | 7 | ......do |  |  | Do. |
| 3718 | 7 | Meadville, l'a |  | Williams | $1)$. |
| 4736 | 9 | Micauopy, Fla |  | Dr. I'. II. Beat | Do. |
| 4737 | ${ }_{6}$ | Bermuda. |  | J. II. Darrell | Do. |
| 3745 | 6 | Westport, N. Y.... |  | Prof. S. F. Bairl | Do. |
| 3740 | 10 | Esarx County, N.Y |  |  | Do. |
| 3744 | 1 | Colnmbus, l'a ... |  | do | Do. |
| 3748 | 3 | Jicelowough, Ga |  |  | Do. |
| 3719 | 9 | Meadville, Ja |  | Willianıs | Do. |
| 47:35 | 5 | Micanopy Fila |  | 1)r.'T, H. Bean | Do. |
| $9+63$ | 1 | Milledreville, Cat | Jıne, 1876 |  |  |
| 3746 | 10 | Cutlishe, I'a |  | Prol. S. F. Pairl | Do. |
| 37:17 | 17 1 | Cowsackie, N. Y |  | J.N. N . Scanbor | No. |
| 1:142 ${ }^{\text {a }}$ | 2 | (aarrison's, N. Y |  | T. Roosereldt. | Do. |
| 13714 | 1 | Auburn, Me..... | 188.3 | G. P. Merrill.. | Do. |
| 13310 | 1 | ......lo..... | $18 \times 3$ | ......do... | Do. |
| 13711 | , | 10 | 18:*; | do | Do. |
| 13312 | , | . . 10 | $18 \times 1$ | do | Do. |
| 13713 | 1 | $\cdots$....lo | 183:1 | .lo | 1 \%o. |
| 3798 | $\stackrel{3}{17}$ | Abrevilde.s. $(1$ |  | J. J. 13arratt | Do. |
| 13839 | 17 | Washington, 1). C | 188:3 | Grorge Shormaker. | Do. |
| 37336 14.56 | 4 | Madrid, N. ${ }_{\text {a }}$ |  | (?)................. | 1 \%o. |
| 14457 |  | Able ville, Ss: |  |  | Do. |
| 3720 | 1 | Wilmington, lel |  | Dr. Bache.. | Do. |

Spelerpes bilineatus Green-Continued.

| Catalogue number. | No. of spec. | Locality: | When collected. | From whom received.- | Nature of specimon. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3752 | 1 | Nichols, N. Y ........... |  | R. Howell . | Alcoholic. |
| 3753 |  | Meredith Bridge, N. H.. |  | S. F. Baird.... | Do. |
| 3751 | 6 | Gloncester, Va |  | Rer. C. Mann......... | Do. |
| 3717 | 5 | Clarke County, Va...... |  | C. I3. K. Kennerly ....... | Do. |
| 3741 3726 | 10 | Columbus, Ohio. |  | L. Tesquereux... | Do. |
| 3720 3721 | 60 | Upper James River, Vä. |  | S. F. Raird | Do. |
| 3742 | 1 | Anderson, S. C.......... |  | Mrs. Daniel | Do. |
| 3725 | 2 | Abbeville, S. C |  | Dr. J. B. Barratt | Do. |
| 4719 | 7 | Georgia. |  | Dr. W. L. Jones | Do. |
| 3728 | $\stackrel{2}{2}$ | Clevcland. Ohio. |  | Dr. Kirtland. | Do. |
| 3747 | 2 | Racine, Wis .... |  | R. Kenuicott | Do. |

Var. Borealis.-No.4735; nine specimens; Kenebago Lake, Uquassa, Me., 1852 ; Dr. C. Girard; alcoholic.
Form Cirrigera.-No. 4734; two specimens; Southern States (La.?); Dr. F. Bache; alcoholic.

## SPELERPES LONGICAUDUS Green.

(Plate 28, figs. 1-3; 35, fig. 11.)

Baird, Journ. Ac. Phila. (2) I, p. 287; Cope, Proc. Ac. Phila., 1869, p. 107;
Strauch, Salam., p. 82; Gray, Cat. Batr. Grad. Brit. Mus., ed. 1, p. 43;
Hallowell, Journ. Ac. Phila., 1v, p. 345 ; Bonlenger, Cat. Batr. Grad.
Brit. Mus., ed. II, 1882, p. 64.
Salamandra longicanda Green, Journ. Ac. Phila., 1, p. 351 ; Holbr., N. A. Herp., v, p. 61, Pl. 19; De Kay, N. Y. Famı., Rept., p. 78, Pl. 17, fig. 41.
Spelerpes lucifuga Rafin., Atlant. Journ. I, 1832, p. 22 (fide Baird).
Cylindrosoma longicauda Tsehudi, 13atr., p. 93.
Cylindrosoma longicuudatum Dum. \& Bibr., p. 78.
This species is sleuder and elongated; the head flattened and much depressed; the body depressed; the tail compressed from the base, and considerably longer than the rest of the animal.

The surface of the skin, though smooth, shows everywhere shallow pits under the microseope, and closely agglomerated granules, the ends of glands, which probably secrete a milky juice. I have not made out any satisfactory iudications of patehes of pores on top of the head, althongh there are some on the chin.

The head is flattened, though not wedge-shaped, quite plane above, and twice as wide as deep. It is longer than wide, the upper jaw overlapping the lower, especially anteriorly; the muzzle is triangular, broadly truncated anteriorly. There is a slight swelling in the upper lip on each side of the muzzle, imparting an emarginated or concave appearance to the front view of the month, and a concavity to the lateral outline, which posteriorly passes into a convex curve. There is a slight narrowiug of the lower jaw to fit into the emargination just referred to.

The tongue is elliptical, rather longer than wide, inserted on the upper part of the extremity of a protractile pedecil; it has no other attachment whatever. The palatine teeth form a short are which begins be-
hind and on a line with the inner bonder of inner hares, and enves inwards and backwards for a short distance. The parasphenoid teoth begin a short distance behind their termination (with adecided interval, however), and form in patches, in contact along the median line.

The body is elongated, the distance from snout to axilla contained 22 times in that to the groin. There are twelve lateral costal grooves; the posterior bifincated above and anterior to the groin. If the finrow here be counted there would be thirteen grooves. Tife interior is one interspace distant from the axilla.

The tail is rery long, generally $1 \frac{1}{2}$ times longer than the rest of the animal. It is much compressed from the base to the much-attemuated tip, but is nowhere as high as the borly:

The limbs are much developed; the digits lengthened, narrow, linear, cylindrical, depressed, and swollen slightly into bulbs at the ends. There is no basal connecting membranc. The thind and fourth toes are longest, the latter perhaps longer of the two; the second and fifth are nearly equal. The first finger and toe are very short, though not rudimentary.


Fig. 41. Spelerpes longicaudus. No. 4085. Lancaster, Ohio; 1 .
The ground color of this species is of a clear bright yellow, pater beneatio, the back and sides irregularly sprinkled with black specks looking like grains of rather coarse gmpowter. These are g' "rally (but not always) more thickly erowded along the sides, some. is almost forming a distinct spotted band on the sides of the tail; these black spots are generally aggregated into a series of vertical bands. In younger specimens, and many older ones, the spots above are arranged in three rather irregular lines, one median and two lateral larger ones. The muzzle and entire under parts are immaculate.

In old individuals there is sometimes a suffusion of reddish-brown among the spots on the sides, obscuring their ontlines. The shate of yellow varies sometimes to a redlish tinge. Sometimes the black spots on the sides are arranged in a somewhat reticulated manner.

This beantiful animal is not very active in its labits, and is almost always found in rocky gromm and in fissures and eaves in cliffs. I have never seen it in the water. It was described by Rafinesque from a specimen from a cavern in Kentucky. Its distribution is thronghont the middle latitudes, rather representing the $S$. guttolineatus of the far Sonthern States.

I have recorded a specimen of this species from Temessee (American Naturalist, 1871, p. 401), in which the balancers were persistent, as in the cirrigera form of Spelerpes bilincatus.

Measuremuluts of No. 3 â 16, in inches.

Leugth, measured along axis of body:
From snout to gape.............. . .2 2
From snout to grular fold....... . . 50
From suont to armpit............ . . 75
From suont to groin ............ 2.08
From snont to behind anns ..... 2. 35
From snont to end of tail ...... 5. 05
Tail................................ 2. 20
Head:
Width of head. . . . . . . . . . . . . . . . . $3: 3$
Width of tongue. ................ . . . .5
Length of tongrae................. . . 2
Length of orbit................... . . .
Distance betwen eyesanterionly . 20
Distanee between onter nostrils . 15
Distance between inner nostrils . 10

Body:
Cirenmference of belly.......... 1.10
Distance between arupit and groin ........................... 1.35
Tail:
Ifeight of tail where highest... . 25
brealth of tail where highest . . . 19

## Limbs:

Free portion of longest finger .. . 11
From elbow to til of lougest
tinger.......................... . . 40
Free portion of longest toe..... . 1.5
From line to tip of longest toe . 51
Distame between ontstretehed
tors.............................. 1.6.5

Spelerpes lonyicaudus (atcen.

| Catalogue number. | No. of spec. | Locality. | $\text { When } \text { collectel? }$ | Prom whom receichat. | Nature of speci men. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8842 | ${ }^{2}$ | Cincinuati, Ohin |  | J. N. B. Scalmought... | coliolic. |
| -3735 | $\frac{1}{3}$ | Culnulins, (hio |  | Williamw |  |
| 8846 | 1 | Uiucinnati, Olio. |  | J. N. B. scathorongli. | 1\%. |
| 8821 8803 | 1 | Union County, 'temm. |  |  | 11. |
| 8826 | 1 | Pranklin' Comity, Te.in |  |  | 110. |
| 3860 | 2 | Pittsburgh, Pa. |  |  | $1 \mathrm{no}$. |
| 4085 | 3 | Laneaster ( Ohi |  | 129fussur L"xpmemx | 1 O . |
| 114:56 | 1 |  |  |  | 110. |
| 1447 | $\frac{1}{5}$ | Mry | 18, | Col M. Mrhunti .... | 13. |
| 3716 3730 | 5 |  | 1849 | - Band | 10. |
| 3731 | 3 | West Northtielt, "ll |  | 1:. Kınuicot |  |
| 3739 | 3 | Southern Ilimois |  | $\text { iar. it: } \mathrm{E}$ | Do. |

## SPELERPES GITTOOLINEATUS IIolbrook.

Bairl, Jonm. Ac. Phila. (2), 1, p. 287 ; Cope, Proc. Ac. Phila., 1869, p. 107 ; Straneh, Salam., p. 82 ; Gray, Cat. Batr. Ciratl. Mrit. Mus., ed. i, p. 45 ; Itallow., Journ. Ac. I'lila., w, 346 ; Boulenger, C'at. Batr. Grad. Brit. Mus., cd. 11, 188:, 1. (is).
Salamandra guttolincuta llolır., N. A. Herp., v; p. 29, Pl. 7.
Cylindrosoma! !uttolineatum Dun. \& Bibr., p. \%!.
This species in its general proportions, shape, ete, is very similar to S. longicaudus. It appears to be rather stonter, and the liead a little broader. The eyes are larger, the toes shorter, cte. Theprotuberances of the upper lip are rather larger, which gives a more charginated out. line to the jaw when viewed from before.

There are thirtecu well-marked costal gronves, a fourteenth falling just above the insertion of the arm. The most posterior falls in the groil.

This species is of a brownish-yellow above, begiming at the muzzle, including the npper eyelids and extending to the tip of the tail. On the back it occupies nearly one-third the ciremmerence of the borly. It
is divided centrally ly a longitudinal dark brown line, begimning as a few dots, on the top of the heall, then miting into a contimons stripe, which extends to the rump, and is a little narrower than, or about equal to, the two light stripes into which it divides the color of the back. The light dorsal stripe is bordered on each side by a contimuous dark stripe well defined on the upper edge. The under parts are yellowish in alcohol, distinctly mottled or remmiculated with brown in about equal proportions. In the present specimen there is no distinct light line below the brown of the siles, which breaks up gradually below, passing into the reticulation deseribed. 'There is a single light spot in the darkest part of the sides, one to each intercostal section. The sides of the tail are dark brown, with vertical light bars analogous with the white spots just described.
In other specimens the dark brown which borders the yellowish of the back is sharply defined on its lower margin, also forming a contimons line of variable diameter, with a series of white spots, one to each space, between the costal furrows. Below this again is another continnous, quite well-defined light stripe, after which succeeds the mottling described. In this ease there are three back stripes, one median dorsal, and two lateral; and four light stripes, two median, of a brownish-yellow color, and two lateral, whitish in alcohol.
The comparison of form has alrealy been mate with S. lomgicaudus. The color differs essentially in the vermiculation, with brown beneath, instead of being perfectly immaculate. If the raricties of s. lompicatedus having three series of dorsal dots hat these mited into continmons stripes there would be some resemblance to the present species. Such is, howerer, never the case. The tail, instead of being yellow, with narrow vertical dark lines, is dark, with narrow vertical light ones.

I have fomd a cirrigerous form of this species in North Carolina.


loody:
Circmaference of belly

Distance between amult and
groin

1.15

T'ail: leight of tail where hiyhent. . .20 Limbs:

Free portion of longest fingrer. . 09
From elbow to tip of lunrest.
linger ............................ . . . 39
Free portion of lomgest the ..... . I3
Fromkner fotipot lomges, toe.. . 19
bist:med betwecon onlslm:cimed
fors.

Spelerpes guttolineatus Holbr.

| Catalogue num- | No. of spec. | Sox andage. | Localits. | When col. lected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 372.2 | 3 |  | Eutaw, Ala |  | Professor Winebell.. |  |
| 3727 | 1 |  | Salem, N. C |  | I. T. Linebac's ....... |  |
| 3749 | 3 |  | İiceborongh, G |  | Dr. Jones... |  |
| 4733 | 1 |  | A bboville, S. C. |  | Dr. Barratt |  |
| 3734 | 1 |  | Mississippi. |  | Colonel Wailes |  |
| 5720 | , |  | Anderson, S. C. |  | Mrs. Daniels. |  |
| 3733 | 4 | Larva. | New Madrid, Mo |  | R. Keunicott. |  |

This species was found abundantly by the writer in the upher valley of the French Broad River, in North Carolina, at an elevation of 2,500 feet above the sea. Dr. A. K. Fisher, of the U. S. Agricultural burean, also found this species in Virginia, only eight miles south of Washing. ton, D. C., a most remarkable extension of its range.
The specimen recorded in Dr. Yarrow's check-list as from Lancaster, Ohio, belongs to the S. longicaudus.

## SPELERPES RUBER Dandin.

(Plates 29,30 , figs. $1-5$; 31, figs. 1-5; 32, figs. 1-3; 35, figs. 7-10; 40, figs. 1,2; 45, fig. 6 ; 48, fig. 16.)

Cope, Procect. Ac., Phila, 1869, p. 107 ; Strancl, Salam., p. 83 ; Bou- lenger, Cat. Batr. Grad. Brit. Mus., ed. ir, 1882, p. 62.

Salamandra rubra Daud., Rept., viir, p. 227, Pl. 92, fig. 2; Holbr., N. A. Herp., v, p. 35, P'l. 9 ; De Kay, N. Y. Faun. Rept., p. 80, Pl. 17, fig. 43.

Salamandra macnlata Green, Journ. Ac. Phila., I, p. 350.
Salamandra subfusca Green, l. c., p. 3̄̄1.
Sulamandra rubriventris Green, l. c., p. 353 (nec. Daud.).
Pscudotriton subfuscus Tschudi, Batr., p. 95.
P'scudotriton rnber Bairl, Journ. Ac. Phila. (2), I, p. 286 ; Hallowell, l. c., IV., p. 347.
Spelerpes rabra Gras, Cat. Batr. Grad. Brit. Mns., ed. i, p. 45.
liolitoglossa rubra Dum. \& Bibr., p. 89, Pl. 93, fig. 2.
l'scudotriton flavissimus Hallow., Proc. Ac. Phila., 1856, p. 130.
Larva:
Sircu opcrculata Pal. de Beaur., Amer. Phil. Trans., iv, p. 279, Pl. -, fig. 3.
rrolcus ncocesarcanus Green, l. c., p. 358.
The form of this species varies with its age, the very old ones being nearly as stout as Ambystoma punctatum; more so than A.opacum. The more immature, however, are rather slender.

The skin is perfectly smooth and lustrous. There are no indications of glands secreting a milky juice, as in Amblystoma, but the skin is everywhere beset with shallow pits, closely set. The eye is encircled by a series of pores. These extend anterior to those on the side of the head to the nostrils, and are more crowded. The lower edge of the lower jaw is encircled by a single series of pores, and there are two other series, nearly straight, which start from the point of the chin and diverge backwards.

The head is depressed, triangular, almost wedge-shaped vierred laterally, and rather pointed; more truncate in the young. The upper jaw is projecting and overlaps the lower. The gape is about straight. The end of the upper jaw is flattened obliquely a little, visible only from below. The nostrils are very small, placed more laterally than superiorly, and a little below the anterior end of the romuded canthns rostralis. The eyes are directed antero-laterally, so that the lines of the upper eyelids would intersect before reaching the tip of the nose.

There is only a slight constriction at the neck, the entire animal from head to rump being nearly of the same diameter, and the body passes inseusibly into the tail. This is quadrate or nearly square at the base (with romuled corners), but becomes more and more compressed to the pointed tip. The dorsal surface of the tail rises into an acute ridge for the posterior two thirds, the ventral for one-third. There are fifteen costal grooves, including one in the groin. If continued to the axilla there would be sixteen, but there is no distiuct axillary one. The rertical grooves of the tail are distinct at the base of the tail, but soon become indistinet.

As stated, old specimens have a proportionally larger body than younger.
The limbs are all very weak; the digits feeble. The third finger is longest, then the second, fourth, and first. The third and fourth toes are nearly equal, then the second. The first digits are quite rudimentary, especially the first toe. The younger specimens appear to have proportionally longer digits and more slender limbs.

The tongue is a nearly eircular disk, entirely free, supported on a slender pedieel like a mushroom, and capable of being extended beyond the month. The palatine teeth are transverse; just behind the nostrils (by one diameter), and form an abrupt rectangle with each of the series on the parasphenoid bone, which widen behind and leave a free channel down the median line. This free space anteriorly is as wide as the diameter of the imer nares, but like the patches of teeth widens a litthe behind. The space is encroached upon by the plates of parasphenoill teeth with age.

The inner nostrils are minute, about transversely elleptical and continuons, with a well-defined narrow groove ruming out to the margin of the jaw. They are situated abont opposite the center of the transverse portion of the teeth, the length of which may be about three times as great as the major axis of the nostrils.

The colors of the younger specimens of this species in alcohol are a pale salmon-yellow, lighter beneath; the back and upper part of the sides sprinkled irregularly and thickly with sharply-defined blackish spots, looking like grains of coarse gunpowder. These spots vary in size with the specimen, and are generally larger towards the dorsal line. With age, and sometimes in younger specimens, the borders of these spots are less distinctly definel, and the gromid color between them
becomes suffused with a kind of purplish-brown. The belly is generally immaculate until the animal is quite old, when it is finely sprinkled with dots like grains of fine powder.

The color of a fresh specimen is as follows. It is fully grown, and was taken April 7, 1848


Fig. 43. Spelerpes ruber. No. 7903. Carlisle, Pa.; ${ }_{1}$.
Pupil small, elliptical, major axis horizontal, brasss, with horizontal dark line. General color dark salmon-red. Whole mper parts marked with rounded spots, largest along back, abont size of the eye and less, of black or dark. Between these spots is a clouding of dark red-dish-brown, as if the black of upper parts had run after being first put on. Frequently, however, there is an obscme areola of the gromul color aromad the spots; on sides of body and tail, external portion of limbs, less of the interstitial dark reddish-brown. Whole under surface sprinkled with minute black dots, larger towards the chin. Extreme edge of snont blackish, as also of lower jaw to a less degree.

Individuals vary somewhat in coloration; sometimes the dots on the belly are more aggregated towards the center, sometimes the interstitial color on back purer, so as to define spots better, while again, on the other hand, the whole uper parts are somuch shaded with the reddish-hown as to nearly obscure the black spots.

The eye can be retracted or protruded as in the figures, and also concealed by the approximation of the lids. The transparent lower lid can be brought up and over lower half of the eyeball.
In young individuals the colors are much purer; the whole body being of orange, of different shades in different individuals; darker abore, with spots of black on upper half of boily, larger along back, irregularly distribnted, beneath generally unspotted. The lower jaw with a row of spots around its margin.

Obserrations.-This is an abundant species throughont the United States east of the Mississippi River as far nortl as Maine, and corresponding latitudes in Canada, and sonth into Texas and Florida. It chicfly abomols in the hilly and mountainous sections. It is especially aguatic in its labits, and is fomm on the gromm only after rains. It is not unfrequently fomm under bark of fallen trees in damp situations, but its chief hamnts are cold springs. Here, beneath stones, it may be always fomd, ocempying, if possible, the fissure from which the limpid water rises, and displaying its heantiful hues throngh the trans-
parent medium with the brillimey of a strange exotic, rather than the pallor of a dweller in the chilly depths and dark recesses of a cave. They walk deliberately, and swim with some activity, moving, as do other salamanders, with the limbs pressed to the sides and the boty and tail molulating laterally. Their movements are not so active as those of some other species. They are very harmless and, thongh I have handled a great number of them, have never seen them attempt to bite. Their food consists of insects.

Varictics.-Occasionally a specimen is found which is of a uniform grayish-hrown. Dr. E. E. Galt sent me such a one from Staten Island, New York. Two forms have been distingnished by Professor Bairl which may rank as subspecies: the s. ruber sticticeps and the S. ruber montanas. They are described below.
The manner in which the characters which distinguish these subspecies are found singly in various individuals illustrates well the condition of a protean species. Thus of the specimens with sixteen costal plicie referable to $S . r$. montans, where the width of the head may be one-sixtl the length to the groin, two specimens measure the same, $6 \frac{1}{2}$ and $6_{3}^{2}$ in the same, and another $6_{4}^{3}$, and another (3548) 7 times. In one the posterior part of the parasphenoidal patch is widened, as in the usual form. In two specimens (3870-7031) the sixteenth plica falls over the femur and does not desceud before it; the vomerime series of both are angulated. In $7031 a$, from the same locality as 7031 , all the characters are those typical of S.r. montanus.

In two specimens having the head and coloration of var. Ruber, from Eutaw, Ala., one has fifteen plice and angulate tectl, the other sixteen plicee and curved series of teeth. In a number of S. $r$. ruber from Abbeville, S. C., one hats sisteen plice. In this variety the width of the head enters the length to groin usually five times, but varies to $5 \frac{1}{2}, 5 \frac{2}{3}$, and in 7023, 6.2 times.

In the type of $P$.flarissimus, this relation is 1 to $6 \frac{1}{2}$, with but filteen plice; the trumeation of the muzzle is less than described, and there are no cirri. In var. Sticticeps a trace of the same is visible. The peculiar coarse and sparse spotting in this var. and in S. $r$. montanus is seen in Ruber No. 7073 (half grown).

The uniform color of s. $r$. sticticeps is nearly equaled by No. 7023 , and the white punctulation of the lips by 7073 (large), though none are similar in the punctulation of the front; in 1840, from Eutan, Ala., the abdomen and gular region are similarly pmetulate.

As regards the size of the eses in $I^{\prime}$. flacissimus, their longitndinal diameter measures 1.5 the width between their anterior canthi. These specimens are both small. In several smail rar. Ruber the measurement is the same, and in the smaller of the S. r. stictiepps ; in the larger of the latter and of Ruber this measurement is as $1: 2$. Nevertheless, in a number of var. Ruber which have just completed their metamorphosis the proportion of front to eye is also $2: 1$ (No. 3849).

These rarieties are, however, not difficult to recognize, especially as I have observed, the S. r. montanus.

## Proportional dimcusions of No. 3837.

Head:
Length of gapo of month to its width ..... about half.
Width to distance from snout to gular fold. contained $1 \frac{1}{3}$ times.
Width to distance from snout to groin about 6 times.From suout to gular fold contaiued in distanco from suont to groin.... $4 \frac{1}{2}$ times.Distance anteriorly between eyes in length of orbit...................... 2 orbits.Distance from eges to nostrils in length of orbit............................ 1 orbit.
Distance between external nostrils in length of orbit ..... about 1 orbit.
Distance between interual nostrils in length of orbit. less than 1 orbit.
Limbs:
Free portion of longest finger contained in distance from ellow to tip. 4 times.
Free portion of longest too contained in distance from knce to tip....... 3 times.
Distance between outstretched tocs in length from snout to groin ..... one-half.
Tail:
Length from behiud anus to rest of animal ..... $1_{\frac{2}{2}}$ times.
Length from behind anns to total length ..... two-fifths.
Body :
Width compared with that of head. rather broader.
Number of costal furrows (including inguinal) ..... 15.
Mcasmrements of No. 3837, in inches.
Levgth, measured along axis of body :
lrom snout to gape
Borly :
Circumference of belly ..... 2.15 ..... $2 \triangleleft$
From suout to gular fold ..... 70
From snont to armpit ..... 1. 00
From snout to groin ..... 3.00
From suout to behind anns. ..... 3. 50
From suout to end of tail ..... 5. 60
Head:
Wilth of head. ..... 55
Width of tonguo ..... 22
Length of orbit ..... 14
Distance between eyes ante- riorly ..... 26
Distance between outer nostrils. ..... 15
Distance between inner nostrils. ..... 12
Distance between armpit and groin ..... 2.10
Tail:
Height of tail where highest ..... 45
Brealth of tail where highest.. ..... 40
Limbs:
Freo portion of longest finger.. ..... 10
lrom elbow to tip of longest fingor ..... 40
Free portion of longest toe ..... 15
From knee to tip of longest toc. ..... 51
Distance between outstretchedtocs1.50

## Spelerpes ruber flavissimus Hallow.

Pseudotriton flarissimus 1Iallow., Procecd. Ac. Nat. Sci. Phila., 18.50, 130.
The form and proportions, excepting about the head, are so similar to those of S. ruber, that it is unnecessary to repeat these characters. The digits are rather long, as usual in young $S$. ruber. The onter ones, however, appear proportionally longer than in the latter. The head, viewed from above, is narrower and more truneate. It is areled but not wedge-shaped, depressed, the muzzle being much higher than in S. ruber. Each side of the truncated suout is bordered by a vertical ridge, which is a little exterior to the onter nostrils, and descends a
little below the level of the jaw, looking like a fing when viewed later. ally. Viewed from in front, the lower outline of the muzzle is strongly coneave, bordered on each side by the downward extension of this ridge. There is a slight indentation of the side of the jaw behind this ridge, and there is a fine linear chamel leading down the back of this ridge from the outer margin of the external nostrils. A similar channel, but no ridge, is seen in $P$. ruber.
The outline of the upper jaw, as viewed from below, is decidedly angular anteriorly instead of rounded.

The eyes are unusually large and prominent for this section of salamanders, and are separated anteriorly by little more than one orbit's length. The two parasphenoidal ranges of teeth are in contact anteriorly, as in S. r. montanus, without the intersal of S. r. ruber.
There are fifteen costal furrows, excludiug an axiliary one. The tail is a little more than half the rest of the body.

In alcohol the color is light brownish-red, paler beneath; the upper parts and sides thinly but quite uniformly sprinkled with small, romuded, well-defined, blackish dots; very few of them on the head.

As staterl, this variety is distinguished from ©. ruber, as well as S. r. montanus and sticticeps, by the shape of the heal, the angulation of the upper lip, the moch larger and more approximated eyes. The scantiness of the black specks is more as in $S$. $r$. montanus, from which again it is distinguished by fifteen instead of sixteen costal grooves.

## Proportional dimensions.

Head :
Width to distance from snont to groin ................................ abont 6 times.
Frous suout to gular fold contained in distance from suout to groin
about $4 \frac{1}{2}$ times.
Distance anteriorly between eyes in length of orbit... seareely more than once.
Distance from eyes to nostrils in length of orbit...... .............. abont once.
Distance between external nostrils in length of orbit............ about one time.
Limbs: Distance between outstretched toes in length from snout to groin
rather moro than half.
Body : Number of costal furrows (including inguinal)
15
Measurements, in inches.

Length, measured along axis of body :
From smont to gape............. . 22
From snolit to gular fold........ . . 45
From snout to armpit ......... . . 65
From snout to groin............. 1.85
From snont to behind anus .... 2.10
From snout to end of tail...... 3.30
Trail................................. . 1.20
Head:
Width of head .................. . . 30
Length of orbit.................. . . 11
Distance between eyes anteri-
orly................................ . 3
Distance between outer nostrils . 11
1951-Bull 3t-_ 12

## Head-Continued :

Distance between iuner nostrils . 08
Distance from eye to nostrils.. . 10
Body: Distanco between armpit and groin....................... 1.17
Tail: Height of tail where highest . 20 Limbs:

Free portion of longest finger.. . 08
From elbow to tip of longest finger.... ....... .............. . . 30
Free portion of longest toe.... . . 10
From kinee to tip of longest too . 35
Distanmo between outstretched toes

1. 05

## Spelerpes ruber sticticeps Baird.

Proceed. Ae. Phila., 1869, p. 108. (Name only.)

This variety in all its details of shape, proportions and general structure resembles $I^{\prime}$. rubcr. The limbs, however, are considerably smaller and weaker, and the external nostrils seem to be firther apart. There are fifteen costal furrows, excluding the axillary.

The color in alcohol is a dank reddish-brown or brownish-red above; lighter red beneath. The color of the upper parts is very uniform and continuons, though a careful examiuation shows some very obzolete rounded spots of darker on the sides. The sides and beneath are every where sprinkled with minute blackish dots. The head is uniformly colored like the back, without dark spots, but its sides and auterior portion are closely sprinkled with whitish specks, which are very distinct and characteristic.

This rariety differs somewhat in form from S. ruber, as stated. It can be separated from the latter by the small whitish specks on the muzzle in the miform ground color, typical S. ruber always having larger black spots, without any white. The color above is deeper and more continuous than in S. ruber without the distinct dorsal spots always distinguishable in it. The ground color appears to be of a much deeper red than in $S$. ruber.

## l'roportional dimensions.

## IIead

Length of gape of month to its winth
three-fourths.
Width to distance from suout to groin
nearly 6 times.
From snout to grular fuld containel in distance from snont to groin.... $4 \frac{1}{3}$ times.
Distance anteriorly between eyes in length of orbit ..... twice.
Distance between external nostrils in lenerth of orbit ..... $1 \frac{1}{2}$ times.Limbs:
Free portion of longest finger cuntaned in distance from elbow to tip.. 5 times. Free portion of longest toe contained in distance from knee to
tip.Distance between ontstretched toes in length from shont to grom. nearly twice.Distance between ontstretched toes in lengtli from suont tobehind anus....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . more thar. twice,
Body: Number of costal finrows (inclunling ingninal) ..... 15
Measuremenls, in iurhes.
Lengrl, measured along axis of borly: Bualy:
From smont to grape.............. . . 30
Ciremmerence of belly ..... 1, 50
From smont to ginlar fuld ..... 57
From snont to armpit ..... 85
From shont to groin ..... 2. 50
F'rom suont to behind anns ..... 2.85
From snont to end of tail. ..... 4.90
Tail. ..... ®. 0 ,
Head:
Width of head .....  43
Lengrth of orhit ..... 11
Distance between eyes anteriorly .....  $\because 2$
Distance between onter nostrils ..... 16
Distance between inner nostrils . 10
Distance between armpit and groill ..... 1. 65
Tail: Meight of tail where highest est. ..... 40
Limbs:
Fres portion of longest finger ..... 07
From ellow to tip of longest fingre ..... 35
Fre portion of longest toe .....  12
From knee to tip of longest toe ..... 45
Distance between ontstretchedfoes.1.35

The extemal characters of this smbspecies are much as in $I$. ruber as to pits, smoothness, etc.

The form of this animal is more like that of Gyrinopleilus porphyriticus. in being elongated, eylimhical, and with the tail mealy equal to the distance from the heal to the groin.

The head is rather small and narrow. The proportion of eyes, ete, much as in S. ruber. The smont is, however, more abruptly tmonated, showing the nostrils on each sinle at the corner formed with the side of the head, amd with an imlistinct ridge rmming down to the jaw as in (r. porphyriticus, but less marked. The top of the lient is more convex, and not flattened between the eyes. The tonge is a eircular pedme. culated disk. The teeth curre gently from be hind the inmer nares to the parasphenoid bone, not at an angle, and the two longitmlinal series are so close contimously as to exhibit no furrow of separation, and very little of one behind. The palatine portion does not extend ontwards beyond the onter border of the inner nostrils.

Professor Baird destribed this species in 1849 from a single adult specimen canglit in the Sonth Munntain, near Carlisle, Pia. Since then several others from different localities have been obtainet, and after the renewed examination of many specimens of S. ruber I am satisficl of its distinction as a subspecies. The coloration is always appreciably difterent in the very dark iris without longitndinal bar of Montanus, compared with the brassr-yellow iris with longitndinal dark bar of limber. The gromm color above is unformly and contimously brownish-salmon, much as in G. porphyriticus, with a few well defined ribenar spots. In linber where the gromm color has become dark red-dish-brown, it is always mottled with lighter, and the larger and more mumarons diak spots are more obsolete in their ontline.

The head of Montanus is narrower and much more arched transyersely. The shont is more trincate. The two series of teeth on each silde the parasphenoid bone come closer, so as to be almost in contact, without the interval of s. ruber.

The body and tail are more siender and elongated; the latter proporionaily considerably longer. There are 16 costal furrows, excluding an axilate one, instead of 15 , as in S. ruber.

There are 16 distinct sostal grooves, excluding any in the axilla. The tail shows similar furrows at first, but they soon become indistinct. It $i$ q quadrate at the base, then gralually becomes more and more commessidel, with a sharp ridge to wands the end, as in S. mber. Its lengeth is nearly edual to the distance from the snont to the groin.

The limbs are not appreciably different from what has been reseribed in S. ruber.

The eolor of the type specimens, as preserved in alcohol, is an unform
continuous brownish-salmon above, including the limbs; the under parts, from the middle of the sides, rather abruptly pale salmon. The dark portions are marked with circular, thinly scattered, well-defined dark brown or black spots. The belly is immaculate.

In life this same specimen had the gromil color reddish-brown; beneath, deep salmon. The iris dark reddish-brown, almost black, with faint mottlings of bronze on the inner border, and without any horizoutal dark bar.

The difference of form and color are appreciable in young as well as old specimens.

The distribution of this form is in the Alleghany Mountains from Penusylvania to South Carolina.

## Proportional dimensions.

Head :
Length of gape of mouth to its wilth about three-fourths.
Width to distance from snout to gular fuld about $1 \frac{1}{3}$ times.
Width to distance from snout to groin about 5 gis thes.
From snout to grular fold contained in distance from snont to groin. abont $4 \frac{1}{5}$ thmes.
Distance anterionly between eses in length of orbit. ...................... $1^{\frac{1}{3}}$ times.
Distance from eyes to nostrils in length of orbit ..... 1 time.
Distance between external nostrils in length of orbit ..... 1 time.
Distance betweez interual nostrils in leugth of orbit ..... less than 1 time.
Limbs:
Free portion of longest finger contained in distance from elbow to tip nearly 4 times.
Frec portion of longest toe contained in distance from kuce to tip. . about $3+$ times.
Distance between oatstretched toes in length from snout to groin. . abont $1 \frac{1}{8}$ times.Tail:
Length from behiud anus to rest of animalLength from behind anus to total lengththree-sevenths.
Body:
Width compared with that of head rather less.
Number of costal furrows, including axillary and inguinal ..... 16.
Mcasurements, in inches.
Length, measured along axis of body :
From snont to gape ..... 30
From snout to gular fold ..... 65
From snont to armpit ..... 94
From suout to groin ..... 2.85
From snont to behind anus ..... 3. 25
From suout to end of tail ..... 5. 75
Of tail
Head :
Width of head ..... 46
Length of orbit ..... 15
Distance letween eyes anteri- orly ..... 25
Distance between outer nostrils. ..... $1{ }^{7}$
Distance between inner nostrils. ..... 10
Circumference of belly ..... 1.90
Body:
Distance between armpit and groill ..... 1.75
Tail:
Height of tail where highest ..... 42
Breadth of tail where highest. ..... 3:
Limbs:
Free portion of longest finger. ..... 10
from elbow to tip of longest finger .....  38
Free portion of longest toe ..... 15
From knee to tip of longest toe .....  0
Dist:ance between outstretchen toee ..... 1.75

Spelerpes ruber ruber Daudin.
RESERVE SERIES.

| Catalogne number. | No. of spec. | Lecality. | When collected. | From whom receired. | Nature of spec imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8811 | 1 | Cincianati, Olio......... |  | J. N. I3. Scarborough. . | Alcoholic. |
| $5: 392-$ | 11 | l'ointsville, N. J......... |  | N. H. Bishop | Do. |
| 7903 | 10 | Carlisle, Pa |  | Prof. S. F. Baird....... | 1)o. |
| 3865 7820 | $\frac{2}{3}$ | Dolaware County. Pa Washington, U. C |  | Dr. E. Coues, ${ }^{\text {U }}$. S. A | Do. 1). |
| 8811 | 6 | Columbia, S. C.......... |  | Dr. George N. Moran. | 1). |
| ¢818 | 1. | Hamilton County, Ohio |  | J. N. B. Scarborough . | Do. |
| 8339 | 1 | Goldsborongh, N. C .... |  | H. W. Welsher..... | Do. |
| 9339 | 1 | Tienton, N. J ..... |  | Dr. C. C. Abbott | Do. |
| 9.55 | 5 | Aux Plains River, Ill ... |  | 1. Kenuicott.... | Do. |
| $38: 37$ | 8 | Carlisle, Pa............. |  | Prof. S. F. Baird | Do. |
| 9573 3815 | 5 | Foxburgh, Pa............ |  | Prof. S. F. Baird | Do. |
| 3854 | 3 | Meadville, Pa............. |  | Wrotlianis ...... | 10. |
| $38: 38$ | 3 | Abberille, S. C |  | Dr. J. B. Barratt | Do. |
| 9120 | 2 | Morgantown, N. C |  | Dr. George N. Moran. | Do. |
| 9.51 <br> 3934 <br> 98 | 4 | Cinlisle, Pa. |  | Prof. S. F. Baird | Do. |
| 3863 | 2 | Anderson, S. C |  | Mrs. M. E. Daniel | I\%o. |
| 4024 | 1 | Columbus, Ga |  | Dr. Gesper..... | Do. |
| 1840 |  | Fort Benton, Mo |  | Dr.F.V.Hayden... | Do. |
| 13313 | , | Washington, D. C...... | Dec. 20, 1883 | Geo. Shoemaker.. | Do. |
| 3869 | 3 | Gloncester, Va.......... |  | Rev. C. Mann | Do. |
| 11961 | 2 | Milton, Fla |  | S. T. Walker ..... | Do. |
| 5948 | 1 | Beaufort, N. C.. |  | Dr. Wm. Stimpson | Do. |
| 11583 | 1 | Indian Key, Fla .. |  | (?) | Do. |
| 1816 3637 |  | Fort Torson, Ark...... Prairie Mer Ronge, La. |  | Dr. Edwards. Jas. Fairie. | Do. |
| 3637 3853 | 4 | Prairie Mer Ronge, La. Tyrce Springs, Tenn... |  | Jas. Fairie... Prof. R. Owen | $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ |
|  | 80 |  |  |  |  |

GENERAL SERIES.


Spelerpes ruber flarissimus Hallow.

| 4713 | 1 | Summerrille, N. C..................... | J. C. Mar.Nair .......... |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Speilerpes ruber stictiecps. Baird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of spec. imen |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11475 | 2 | Gcorgi |  | Dr. W. L. Jones | Alcoholic. |

Spelerpes ruber montanus Baird.

| 3839 | 2 | South Mountain, Carlisle. Pia. | 1848 | Prot. S. F. Baitl .. | Alcoholic (typo). |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3848 | 2 | Sillem, N. U. ............ |  | T. T. Liut back | Do. |
| 4715 | 1 | Ableville, S. C. |  | 1)r.J. B. Barratt | 1 l \%. |
| 3870 | 1 | Tyren Springs, Teun |  | Prot. L. (owen... | 110. |
| 5948 |  | Bianfort, N C...... |  | Wm. Stimpson | 1 m . |
| $70: 31$ 8834 | 1 | Hillsbormgh, N. © ${ }^{\text {Union County, }}$ |  | M. A.Cimtis ............ | 116. |
| ¢834 | 1 | Uuion Connty, Tenu |  | J. N. B. Searhormul . . . | Do. |

## AUTODAX Boulenger.

Ann. and Mag. Nat. IIist. 1857, p. 67.
Anaides Baird, Iconogr. Encyel., nf, 1849, p. $25(\mathrm{f}$; Girard, U. S. Expl. Exped., Rep., p. 8; Cope, Proced. Ac. Phila., 1860, r. 109; Strauch, Salam., p. 74 ; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. 11, 1882, p. 62 ; nom. preoccupatimu.

Tongue attached from glossohyal to anterior margin on the median line; considerably free. One premaxillary bone. Vomerine tecth on a ridge, which is continuons between the interior nares. Maxillary teetli* confined to the anterior part of the arch, compressed, knife-shaped, with entire enamel; mandibular teeth of similar form and large development, ferw in number, and confined to the anterior lalf of the ramus. Toes 4-5.

This curions genus is furnished with by far the most powerful dentition of any of existing salamanders, and resembles in this respect the genera of the Coal Measnres, Brachydectes, Hylerpeton, and II lonomus. In other points there is little difference between it and l'lethodon. One marked feature brings it nearer Desmognathus than any other genus of Plethodontide. The exoccipito-prötics are cach furnished with a high longitudinal crest, over which the temporal muscle passes from its origin on the atlas. It has, howerer, the usual origin from the melian iine of the parietals, which searecly exists in Desmognathos. This line is marked in A. lugubris by an elevated erest. The end of the mazzle in that species bears evidence to a habit similar to that which accompanies the singular structures of Desmognathus, viz, that of burrowing or rooting among stones or other resisting objects. The derm is similarly adherent to the bone, and the latter is exostosed and rugons. The prefrontal bones are well developed.

[^21]No species has yet been found east of the Pacific coast region.
a. Distal halfor tail rommed or oval.

Large, stont; thumb developed; fingersshort; parasplumoid suries uarrow, vomerines strongly curved backwitrls; width of head 4-. lo groin; light brown above, with yellow spots.................................................... A. Inguluris.
Smaller, slenter; thumb not distinct, fingers lonir, slemder; paraspuenoid series
 to groin ; above black, sides rray ................................................ firvers.
$\alpha \alpha$. Distal half of tail strongly compressed.
Rubust; muzzle wide; parasphenoid tooth patele widw; digitsmbort, flu immer not free; width of head $\boldsymbol{b}-\boldsymbol{f}$ times in lenght to grom; blatek, sprinkbed


## AUTODAX LUGUBRIS Hallow.

 (Plate 27, figs. 1-4; 35, fig. 3; 48, fig. 15.)Anaides lngubris Baird, Iconogr. Encycl., II, 1249, 1. 2ī6; Baird \& Girard, Proc. Ac. Phila., 1853, p. 30:3: Bairl, U. S. Expl. Expet., Herp., Pl. i, figs. 26-33, and Rept. U. S. Expl. Surv., Xint, p. IV, Pl. 30, tig. 4 : Cope, Proc. Ac. Plila., Is6!, 1. 109 : Strauch, Salam., p. 75; Bonlenger, Cat. Batr. Graul. Brit. Mus., ed. II, 1عช2, p. 52.
Salamandra lugubris Mallow., Jomm. Ac. Plıila., 1843, p. 10G.
Taricha? Ingubris Gray, Cat. Batr. Grad. Brit. Mus., ed. ı, [. 26.
Amblystoma punctatum Gray, ibia., p. :3\%.
The head is elongated, very much depressed, flattened, and when viewed from above is much swollen posteriorly. The snont is very prominent, protruling beyond the lower jaw. The nostrils are ele Vated, lateral, subterminal, and far apart. The eyes rery brominent; their diameter enters only once in the distance between their anterior rim and the extremity of the snont. The eleft of the month is large amd undulating. The maxiliary teeth are proportionally large, especially on the lower jaw. They are lanceolate in shape, very acute and thin. The palatine teeth are inconspicnons, rather bhut, disposed in an open V-shaped figure, the summit of which is directel backwarl, whilst its branehes extend to the internal and posterior margin of the in. ner nostrils. There are two elongated patches of minnte teeth on the parasphenoid, elosely appoximated anteriorly and diverging slightly posteriorly, where they are rounder and broalest. The cordiform or peltate tongne fills the whole space of the inferior floor of the mouth. It is attached along its medial line, whilst its sides are perfectly free, as is also slightly its tapering tip and its posterior bilobel expansion.

The neck is elongated and slightly contracted; a distinet and wellmarked gular fold may be observed. It no doubt exists during life, though its presence has been contested by some writers.

The body is subfasiform, diminishing towarls both extremities. The sides of the abdonen are transwersely folded thirteen times between axilla and groin. The tail is almost as long as the head and borly to.
gether. It is subcylindrical, somewhat compressed, and tapering at the end. Its upper and lower edges are rounded.

The limbs are slender, the posterior ones a little longer and stouter than the anterior. When the former are brought forward and the latter backward alongside the body the toes of either slightly overlap the other. The toes themselves are slender, entirely free, and terminated by a callous, disk-like expansion, resembling in that respect some Anura. The anterior inner toe is quite small; the third is the longest; the second nearly equal in size to the fourth; the second and fourth are nearly equal.

The skin appears quite smooth; when examined under the micro. seope, however, it is found to contain a net-work of minnte irregular stelliform pores, each stella having a hollow or clear center or mouth.
The color, as preserved on specimens in alcohol, is of a miform light brown abore and light yellow beneath. The sides, and frequently the upper surfaces, are marked with small irregular yellow spots.


Fig. 44. Autodax lugubris. No. 4047. Petaluma, Cal.; $\frac{1}{1}$.
Measurements, iu inehes.
Inches.
Leugth, axial, from snout to orbit............................................................... . 2
Length, axial, from snout to rictus oris .......................................................... . 5
Length, axial, from snont to axilla......................................................... 1. 18
Length, axial, from snont to groin .. ....................................................... . . . 2.63
Length, axial, from snont to end of vent.. ............... .............................. . 3.13
Length, axial, from suont to end of tail............................................................. 63
Length of fore-limb ...... ............ ........................................................ . . . 85
Length of hind limb................................................................................ 1
Length of fore-foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Length of hind fuot ..................................................................................... . 4
Width of hind-foot sole ........................................................................ . . . . 33
Width of head at rictus oris ................................................................. . . 7
Width of body at middle . .............................................................. . . 59
Width of body at sacrum......................................................................... . 41
The range of this species is limited, embracing ouly middle California. It is, however, not rare in that region.

Autodax lugubris Hallow.
RESERVE SERIES.

| Catalogne number. | No. of spec. | Locality. | When collected. | From whom received. | Naturo of speci. nen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4047 | 10 | Petaluma, Cal |  | E. Samnels | Alcoholic. |
| 4036 | 5 | Farallones, Cal |  | $\begin{aligned} & \text { Lieut. W. P. Trow- } \\ & \text { bridge, U. S. A. } \end{aligned}$ | Do. |
| 11424 | 8 | California (?) ... |  |  | 10. |
| 4030 | 1 | San Francisco, Cal |  | Linut. W. P. Trowbridge, U. S. A. | 10. |
| 4036 | 2 | .do |  |  | Do. |
| 4021 | 3 | Monterey, Cal.... |  | A. S. Taylor ............ | 13. |
| 11576 | (i | San Fraucisco, Cal. |  |  | Do. |
| 4004 <br> 8674 <br> 80 | 1 | P'etaluma, Cal Fort Tejon, Cal | Allg. -, 1875 | E. Samnels ............ | Do. |
| 4010 | 1 | San lrancisco, Cal |  | Lientenant Warren .... | गo. |
| 13947 | 3 | Berkeloy, Cal ....... | 1881 | 1. E. C. Stearns......... | Do. |
| 13943 | 1 | ..... do | 1884 | ...lo | Do. |
| 6.886 14475 | ${ }_{6}$ | Monterey, Cal |  | In. Campficla <br> (!) | Do. |

This is one of the most marked species of North American salamanders. The large temporal muscles give the head a swollen outline behind, and separate the derma from the cranium. The latter adheres to the top of the prominent muzzle. The fissure of the mouth is simmate, most strongly so in adult specimens. On the whole, the physiognomy is not unlike that of the suapping tortoise. I have little donbt that it is more capable of inflicting a bite than any other of the American Urodela. Its food does not appear to differ mucli from that of other salamanders; in the stomach of one I found ants, in another three or four species of beetles, anong them an entire Coccinella.

## AUTODAX FERREUS Cope.

Aucides ferrens Cope, Proceed. Ac. Phila., I86i), p. 105; Boulenger, Cat, Batr. Grat. Brit. Mus., etl. Ir, 188?, p. 53.
'This is a smaller and more slender species than the last, not being very different in propartions from Plethodon intermetius, but with a broader and more flattened head.

The head is an elongate oral, slightly trumeate in front. The nostrils are antero lateral, and with a delicate groove comecting with the commissure of the mouth. Canthus rostralis not marken. The murale is as long as the fissure of the eye, while the length of the eommissure of the mouth (diagomal line) is equal to the width of the head at the rictus. The tongne is largely free, the posterior portion rather narrowly. The inner nares are nearer together than the onter. The vomerine teeth commence behind the nares, and form a single series of eight on a ridge, which is gently arched batkwards on the median line. The parasphenoid pateh does not extend quite forward to the middhe of the orbits; it is much thatter amd wider anterioms than in A. Jugubris, and contains opposite the posterior margin of the orbits ten iongitudinal series of teeth, those of adjacent rows alternating.

Gular fold well marked; costal folds fourteen, not continued on back or abdomen. The limbs, and especially the digitz, are slender; appressed to the side, they fail to meet by the length of the fingers. The form of the body is slender and cylindric, and the width of the head enters the total length to the groin seven times. The tail is, as in A. lugubris, equal to the head and body in length, celindrical, slonder, and slightly compressed at tip.

The thumb possesses a short phalange, but no part of it is free, as in. A. lugubris; on the other hand, all the phalanges of the other toes of both feet are more slender than the $A$. lugubris, and the distal ones distinctly truncate and slightly emarginate, with dermal thickening below tip. All are quite free. Number of phalanges, 1-2-3-2, 1-2-3-3-3.

Coloration.-Sides and nape greenish.gray; top of head and dorsal region behind in the form of a serrate band, with the tail, black; below yellowish-brown; limbs black above, brown below; inferior regions unspotted.


Fig. 45. Autodax ferreus. No. 6794. Fort Umpqua; ${ }_{1}^{1}, \frac{2}{1}$.
Measurements, in inches.
Incles.
Length, axial, from snout to rictus oris..................................................... . 48
Length, axial, from suout to axilla....................................................... . . 70
Length, axial, from snout to groin ........................................................ 1. . 1.
Length, axial, from suout to end of vent................................................. 2.
Length, axial, from suout to end of tail .... ........................................... 3. 65
Length of fore-limb ............................................................................. . . . . 5
Length of fore-foot. ................................................................................ . 2
Length of hind limb : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Lengtl of hind foot . ........................................................................... . . 26
Width of hind-foot sole .................................................................... . . . 11
Width of head at rictus oris. ................................................................ . 28
Width of body at middle. .................................................................. . . 24
Width of body at saerum . ................................................................ . . 2
The maxillary bone displays the same sudden decurvature anterior to and below the orbit which the $A$. lugubris does, but it is less marked; in consequence, the commissure of the mouth is less sinuate. The long mandibular and maxillary teeth, while of similar structure, are less developed. Perhaps larger specimens of this species may be found where they may be larger, as in small specimens of $A$. lugubris they are nearly similar in proportions.

Though nearly allied to the A. lugubris, the present species will never be confounded with it. It is a moch weaker form, ant does not display the characters of the gemis in so striking a legree. The form of the
tail is that of $A$. lugubris, and not that of $A$. iëcanus. But one specimen has come under my observation, as follows:

No. 6794; 1 specimen; Fort Umpииa, Oregon; Dr. Vollen.

## autodax iëcanus Cope.

I'le!hodon ië'саииs Cope, Proceed. Ac. Phila. 1883, p. 24.
Anaides ï̈canus Cope, Proceed. Amer. Philosoph. Soc., 1885, p. 526.
A fuily grown individual of this species presents the following characters: The form is rather robust, amb the heal is distinguished from the neck ley the swollen temporal museles. The mozzle is short ant wile, with rommed border, and is not so contracted as in the A. Ingubris. 'The length from the end of the muzzle to the axilla enters that from the latter to the groin one and a half times. The tail is of moderate length, equaling that of the borly (inclading vent) nearly to the thoracie folld. The wilth of the head enters the length from eud of muzzle to groin tive and one half times $\rightarrow$ proportion intermediate between those exhibited by the two other species of the genus. The limbs are rather robust, and when apressen to the sides leave an interval of three intercostal spaces.

The top of the heal is flat, and the least interorbital wilth is equal to the lengtio from the eye to the end of the mozzle and to the space inclosed between the extermal borders of the external nares. The commissure of the mouth rises behind the line of the orbit as in the $A$. lugubris. The muzale does not project beyonl the month, as it does in A. lugubris. The internal nares are very small. The tongue is large and antero posteriorly oval, and is extensively free at the sides. The vomero palatine teeth are in two short rows of three or fone thetheach, which commence behiud the internal nares, on a line with their internal borlers, and converge, with slight poste:ior inclination, without meeting. The patch of parasphenoid teetlo is wide and subtrmeate in front, and is malivided except towards the posterior portion. The large teeth of the jaws are not so well developed as in the A. lugubris, are more slender in form, and not so mmerons. They constitute the entire armature of the dentary bone, ocenpying only the anterior half. 1 comit only four of them, and they are movable; that is, immature. 1 find no fixed ones of the larger size in the mper jais. Three or four of the posterior maxillary teeth are like those of the dentary bone, but they grauluate anteriorly into teeth of the usmal type. An examina. tion of other specimens will be necessary to ascertain whether these teeth become permanent or not, or whether they are developments of the loreding season. The large temporal muscles, curved commissure of the month, ete., so resemble the corresponding parts in the A. luynbris, that I suppose their permanent dental characters to be alike. The maxillary bone projects abriptly downwals behim the last maxillary tooth, forming a smooth edge, as in A. lugubris.

The skin of the $A$. ${ }^{\text {eicamus }}$ is smooth. There are thirteen lateral fohds between axilla and groin, and a strong pectoro-gular fold. The latter rises on each side in front of the shoulder, and then turns upwards and formards. It is soon changed into a narrow dermal ridge or rib, which is first convex upwals and then convex downwards, and then terminates in line with the eye a diameter of the latter behind it.

The feet are short, and the digits are flattened and are obtuse at the tips. The pollex is only free by a slight noteh, and the hallux by a rather deeper one. The phalanges are: Anterior, 1-2-3-2; posterior, $1-2-3-3-2$. The third and fifth anterior digits are equal, while the posteriors run 1-2-5-3-4, beginning with the shortest. The third amd fourth are nearly equal.

The tail is somewhat depressed at the base, and becomes round in seetion to the end of the proximal two-fifths. It then becomes gradually more compressed, until it is quite flat for the distal third.


Fig. 46. Autodax ï̈canus. No. 14596. Shasta County, California; $\frac{1}{2}$.
The color is black, relieved by a yellowish-brown shate of the chin, and of the palms and soles, and half the inferior side of the forearm. A line of the same color passes from the nostril to the upper lip, and the lower eyelid has the same color. The superior surfaces aud sides of the hea , body, and tail are dusted rather thickly with small subequal bluish-white spots, much as are seen in Plethodon glutinosus.

$$
\text { Measurements of No. } 14,596 .
$$

Langth from end of mazzle to end of tail....................................................... .
Langth from end of muzzle to end of vent..................................................... . . 1
langth from end of mazzle to groin ............................................................ .
Length from end of muzzle to axilla ................................................. . . . . . . 3
lungti from cud of muzzle to canthus oris............................................ . 0111
Lenglh of fore limb............................................................................... . . 115
Lungth of hind limb............. ............................................................... . 017
Length of hind foot........................................................ ............. . . .
Width between orbits (least).............................................................. . . . 0 .31i
Width of head (greatest)
011
The typical adult specimen displays the anomaly of the suppression of the fourth posterior digit of the left side.
This salamander resembles the Plethodon glutinosus in varions respeets, especially in coloration. It has, howerer, a compressed tail, like the $P$. intermedius, and short series of vomerine teeth. The wenred commissure of the month gives it the smiling expression characteristic
of the other species of Autodox, which is ynite different from that seen in Plethodon.
The Autothe iectanus was originally established on a half.grown specimen fomd by myself in Shasta Comity, Cal. A secoml specimen of the same size was sent to the National Museum by Mr. Charles Townsend from the same locality. The young specimens do not display the physiognomy of the gemus, but have the usual want of chameter as compared with the aldult. The romerine series of teeth are, however, rather better developed. The typical specimen has the following characters:

The vomerine series are straight, and do not quite meet on the midde line. They are entirely behind the nares, and do not extend exteri.n to them. The parasphenoid patches are united into one, and ate weil seprated from the vomerines.

Form rather stoat, and the tail short, equaling (from vent) the length of the body (with rent) to the galar fold. Costal folls, 13 . IEend a longitudinal oval, with rather narrowed and not truncate muz\%le; its length (to oceiput) contained $3 \frac{2}{3}$ times in length from muzzle to groin.

Limbs short; when pressed along the side they areseparated by there intercostal spaces. The digits are short and the intermal oues are rulimental.

The color is black everywhere, and the superior surfaces are dusted over with mimute light specks.

## Measurcments.

3. 

Tutal length ........... ....................................................................... . . 053
Length from muzzle to axilla........ ....... ..... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 010. .

Wilth of head at canthns oris. ................ ......................................... . . . . . 016
Lugth of anterior limb . ........... ........................................................ . . . . . . . . . . .
Lengrth of anterior foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 .
Length of posterior limb .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $00 \%$.
Length of posterior foot . ................................................................ . . . 0033:
This species is to be comparel with the Plethedon intermedius of western Oregon. It is shorter and more robust in form, having only thirteen costal plicie instead of fifteen. The color is very different.


This species is mamed from the aboriginal name Ieka, of the grame peak of northern California, Mo:m Shasta. From the same mame the town of Yreka derises its mame. So 1 am informed by Julge Raseborongh, of that place, to whom 1 am muler great obligations fior many facilities and much information.

# DESMOGNATHIDA. 

Cope, Journ. Ac. Nat. Sci. Phila., 1866, 107.

Pterygoids wanting. Orbitosphenoid separated by nembrane from proötic. Vestibule, internal wall osseous. Dentigerous plates on the parasphenoil. Ceratohyal articulating with quadrate. Carpus and tarsus cartilaginous. Vertebræ opisthocœlous. Hyoid apparatus as in the Plethodontidx.

The peculiarity of the rertebre distinguishes this family chiefly from the last. In the only genns which represente it, there are numerous peenliarities, which are not found elsewhere. Should other genera be fonnd which do not possess them, the above diagnosis would probably be the proper test of their family affinities.

The distribution is confined to the eastern district of the vearctic realm so far as yet known.

The Thoriide ouly differ from the Desmognathide in the osseous carpus and tarsus. The single genus Thorins Cope is included by Boulenger in the Desmognathilie. Thorius has a boletoid tongue like Spelerpes, and the parietal region mostly membranous. Toes, $4-5$. One species, T. pernatulus Cope, of small size, from E. Mexico.

## DESMOGNATHUS Baird.

> Jourı. Ac. Nat. Sci., I. 283,285 ; Gray, Cat. Brit. Mus., 1850,40 ; Cope, Proceed. Ac. Phila., 1869112 ; Strauch, Salam., p. 72 ; Boulenger, Cat. Batr. Sal. Brit. Mus. ed. ir, 1882, p. 77.

Preuaxillaries united, embracing a fontanelle; parietal bones ossified. Prefrontal boues wanting. Occipital condyles on eylindric peelestals. Temporal muscle arising only from the atlas, with a tendinous external margin and insertion, passing freely over the parietal and proötic bones. Tongue attached, except by its lateral and posterior margins. Vomerine and sphenoidal teeth present. Digits distinct, $4-\bar{j}$.
The absence of o. prefrontale does not appear to be the result of its confluence at any late period with the nasale; its orlinary position is traversed by the frontal suture. The frontal bone is decurved, and closes the preorbital aspect of the superpalatal vacuity, usually operl.
This marked genus, so abundantly represented by individuals in the eastern district of North America, is not admitted by either Duméril or Hallowell, probably becanse it dows not differ in external characters from Plethodon. It is an excellentillustration of the error of adhering to external characters only, in the explanation of the relations and affinities of organized beings, except for a limited range. The examination of the skeleton of species of this genus ntterly changes the impressions producel by a cousideration of the external characters. It may be stated as characteristic of the Batrachia in general that their affinities can not be determined withont study of the skeleton.

There are no dermal appendages developed in this genus at the breeding season.

1. Males with posterior half of the mandible concave and edentulous.

Inferior lateral series of pores imperfect or wanting, superior none; no tubercle in canthus oculi ; tail mostly rounded ; fourteen costal plice: ; a yellowish dorsal band ; belly immaenlate ; size small 1). ochrophicea. II. Males with mandibular alveolar margin continnons and completely toothed.

Iuferior lateral series of pores well developen, superior irregular or wanting ; a tuberele in cauthus oculi; tail compressel, keeled, aud fimed; fourteen costal plice; above dark spotted, below marbled ; size medium........... I. fusca.
Two well-leveloped lateral series of pores; a marked tubercle in the cantlus of the eye; tail flattened, linned above, attennate; twelve costal folds; black above and below ; size large................................................ . . nigra.

DESMOGNATHUS OCHROPHEA COpe.
Procecd. Ac. Nat. Sci. Phila., 1859, 122.
This small species bears a strong resemblance to the Spelerpes bilineatus Green, and, apart from generie characters, may be known from it by the rommed tail, the paler-colored abdomen, and the light bar from the eje to the angle of the mouth. Its proportions are stouter than in Plethodou cinereus erythronotus, to which it also bears some resemblance.

The costal folds are thirteen, but fourteen if that which is immediately above the groin be comnted. The first fills immediately into the axilla. This is the characteristic arrangement in D. fusce also, while in 1). nigra the foid above the groin usually extends to it, and is the twelfth, while that which corresponds to the first of the species before named falls just in adrance of the axilla. Though this is typieal of I). nigre occasionally another plica appears above the groin, and the treefth is - lightly in front of it.

The pores in $I$. ochrophed are very difficult to observe. In a few specinens I have seen a few of those of the lower series ; the uprer I believe to be wanting. The gular fold is distinct, and another vertical fold co:mmences behind its extremity, and tmming longitudinally, extends more or less distinetly to the orbit. As in other species, the derm ad heres closely to the frontal bones and is more or less rugnlose. The head is oval, with romded depressed muzzle; its greatest width enters the leugth to the groin $5_{3}^{2}$ times. The commissure of the mouth is slightly flexnose.

The appressed limbs fail to meet by four intercostal spaces. The immer digits of both feet are short but free, longer than in Plethodon speeies of similar size; the other digits are also longe: and more distinct ; proportions, $1-4-2-3,1-\tilde{y}-\Omega-1-3$; only three phalanges in longest tjes. The tail is quite slender, and only eompressel at tip; in some there is a keel above on the distal third, but never any dermal fin.

The vomeriue teeth are very few and small when present; they are uften wanting. Their basal line is on a ridge, which is convex back-
wards, nearly contiunous medially. The parasphenoid teeth stand on two narrow plates, which are well separaterl, especially behind, and are shortened; anteriorly they only reach to near the middle of the orbits. The mandibular teeth present pecularities in the male, by which it may be readily distinguished from the female. In a large number of specimens the oral commissure is but little undulate, and the mandibular teeth though longer medially, are continned to near the basis of the coronoid process. The males exhibit a strongly flexuous commissure, and the alveolar margin of the mantible is deeply concave below the front of the orbit, and is edentulons. The distal portion is abruptly convex and is armed with long teeth. The margin is slightly concate anterior to this point, anl finally rises again at the symphysis, which is prominent and protected externally ly a pad of crypts as in D. fuscus. The structure of the males is in the mandibular dentition quite that of the genus Autodax ; the A. ferreus presenting the characters but little more strongly. No such sexual difference can be fomd in the I). fusca, though the commissure only may be sometimes more flexnons in males. The jaws and dentition in the $D$. nigra do not differ in the two sexes. I have observel that two of the many males of $D$. ochrophea possess the female denition. The tongue in D. ochrophoer is an dongate oval, considerably free behind.

The color of females is a bright brownish yellow, fauling to dirty white below, with a dark brown shade on each side from the eye to the end of the tail, which is dakest above and gives the dorsal space the charateter of a band. There is an irregular series of brown dots along the rertebral line. Males are rather larger and usually datier in color; thins the dorsal band is brownish, the lateral band blackish, and the dorsal spots more distinct. In most specimens of both sexes there is a light band from the eye to the rictus oris, and the belly is always im. maculate ; the gular region nearly ahays. The testes and vis deferens are covered with black pigment; no pigment on the peritencum of the female.


This species attains searcely half the size of the $I$. fusca, as indieated by the numerous females with developed eggs in one collections. As the eggs are equal in size to those of $I$. fusca when really to be dischatged, and as the species is only half the size of the same, the eges in the oviduct of a gravid female at one time are only half as mumerons. I have only found from 6 to 10 in $D$. orfrophere, in each oviduct, while from 18 to 30 may be comatial on ane side in $D$. fusce.

Mcasurements of No. 6891, ix inches.
Length, axial, from shont to rictus oris Inches ..... $\therefore$
Length, axial, from snont to axilla ..... 46
Lengtla, axial, from shout to groin ..... 1.29
Length, axial, from snont to end of vent ..... 1.51
Length, axial, from suont to end of tail ..... 3.01
Lengeth of fore limb ..... 3
Lengeth of fore fuot .....  08
Length of hind limb ..... 36
Length of hind foot ..... 17
Width of himid foot sole ..... 9
Width of heal at rictus oris .....  2
Width of hody at middle .....  2

Hubitut, etc. This salamander is chiefly abundant in the chain of the Alleghanies and their outlying spurs. I have never scen it in the hill country of Pemsylvania or the lower plains of New Jersey anil Maryland, nor have I observed it in the Alleghanies of sonthwestern Virginia. I have taken it abumdantly in the Black Montanins of North Carolina. The Philadelphia Academy possesses numerons specimens from the Broad-Top Mountain, in southern Pemsslvania, from Dr: Leidiy. It has others from Warren County, Pa., from Dr. Randall. In northern Peunsylvania and the Adirondacks it is very abundant.
The habits of this animal are terrestrial. It occurs under the lark of every fallen $\log$ of hemlock (Abics canadensis) and in the tébris of the dark damp forests of the North. I never saw one in the water of streams and river banks, the habitat of the other species of the genus.

Professor Baird was familiar with this species before I described it. I published his suggestion, expressed in a letter, that it was the $S$. haldemani of Holbrook. Holbrook's figure does not represent this species in any degree, nor is his description more conclusive as to the reference of this species to it rather than some others. He says it is marked with spots on the upper surfaces, which are "disposed without much regularity;" but the largest are on the flanks. There are but few spots above in this animal, and they are in a regular median series. The sides are banded. He also describes and figures the belly as yellow, which it is not in Desmognathus oehrophea. The Salamandra haldemani appears to me to have been proposed on an unusually spotted spelerpes bilineatus.

Lesmognuthus ochrophara Cone.

| Catalogne number. | No. of spec. | Locality. | Whence and how obtained. |
| :---: | :---: | :---: | :---: |
| 3917 | 10 | Allegany County, N. Y | Dr. Stevens. |
| 4041 |  | Bradford Connty, l’a. Meadville, 1’a | C. C. Martìn. Professor Williams. |
| 4339 | 5 | Susquelhanna County, ${ }^{\text {Pa }}$ | P'rolessor Cope. |

Variety. A specimen with the dentition, coloration, and proportions of body and tail of this species was sent to the Smithsonian Institution from northern Georgia by Dr. Joncs. It approaches the D. fusca in having a small tubereulum canthus oculi, and a well-developel inferior series of mucous pores.

## DESMOGNATHUS FUSCA Raf.

$$
\text { (Plates } 34 \text {, figs. } 5,6 ; 36 \text {, fig. } 1 ; 45 \text {, fig. } 7 . \text { ) }
$$

(var. fusca.)
Baird, Journ. Ac. Phila. (2), 1, p. 285 ; Cope, Proceed. Ac. Phila., 1, 1869, p. 115; Strauch, Salam., p. 74 ; Gray, Cat. Batr. Grad. Brit. Mus., ed. I,p. 40 ; Bonlenger, Oat. Batr. Grad. Brit. Mus., cd. 1r, 1882, p. 77.

Triturus fuscus Rafin., Aunals of Nature, $18: 20$ (fide Baird).
Salamandra intermixta Green, Cont. Macl. Lye. i, p. 827.
Salamandra picła Harlan, Jonm. Ac. Phila., v, p. 138.
Salamandra quadrinıaculata Holbr., N. A. Herp. v, p. 49, Pl. 12.
I'lethodon fuscum Dum. \& Bibr., p. 85, Pl. 101, fig. 3.
P'lethodou niger Hallow., pt., Journ. Ac. Phila. (II), 1358, p. 344. et var. aurculata.
Saiamandra auricnlata Holbr., N. A. Herp., v, p. 47, Pl. 12.
Desmognathus auriculatus Baird, Journ. Ac. Phila. (2), I, p. 286 ; Strauch, Salam., 1. 74 ; Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 41.
Cylindrosoma auriculatum Dim. \& Bibr., p. 81.
Desmognathus fusca var. auriculata Cope Proc. Ac. Phila., 1869 ,p. 116 ; Boulenger, Cat. Batr. Grad. Brit. Mns., ed. 1II, 188\%, p. 78.

This, perhaps the most aburdant salamander in North America, is quite variable in coloration, but not in proportions and structural pecoliarities. Those of the latter which characterize it are the presence of fourteen costal plicæ; one well, and one little developed lateral series of mucous pores; the equal and regular distribution of teeth on the mandible of males; the compressed tail keeled above and fimed distally; the presence of a tubercle in the auterior canthus of the eye; the marbled color of the belly. In many quarts of specimens I find four specimens from southern localities; two in the Philadelphia Academy from Charleston, two in the Smithsonian from Bilosi, Miss., which have fifteen plice, but one of the latter has fourteen on one side. In specimens which have been preserved in too strong spirit the pores are rendered invisible; the same occurs when the spirit is impure or weak. In soft specimens, the canthal tubercle sometimes disappears, and in many young specimens and some adult females it does not appear to exist.
The head is more depressed and the muzzle prolonged than in species of other genera. The eyes are prominent; the plice behind them strongly marked. These consist of one on each side the head and nape, which converge posterionly and then turn abruptly outward, to be continued into the gular plica. A secend plical extends from the mandible across the rictus oris to the upper plica. $\Lambda$ second longitudinal
plici extends from this to the gular, inclosing an ovate enlarged area, and a short one to the orbit incloses a postorbital subround and smaller area.

The commissure of the month is more undulate in males than in females, but both present a slight elongation of the symphysis, prodinced externally by a pad of crypts. The width of the head enters the length 5.66 times. The vomerine teeth are often wanting, and when present are minute and few. Their basis is a ridge, which extends from behind the middle of the posterior nares across the palate with a posterior convexity. The parasphenoid patches are small and not in contact; they do not exteud to opposite the middle of the orbits.

The median toes are elongate, and as in D. ochroplata; they fail to meet by four interspaces when pressed to the side. The tail has a char. acteristic form, which is invariable at all periods; near the base the section is trigonal ; the dorsal keel increases in elevation and becomes a narrow fin posteriorly; the extremity is attenuated. Its length is just equal to that of the remainder of the animal.


Fig. 48. Desmognathus fusca fusca. No. 40. Carlisle, Pa.; ;
There are two color varieties, which blend together so as to indicate that no higher value can be attached to them; one of these is the Sala. mandra auriculata of Holbrook.
Above brown, wit's gray and pink shades ; sides and belly marbled, the pale predominatiug; no red spots on sides ...var. fusca. Above and sides black; the latter with a series of small red spots; a red spot from eye to canthus of month, present or absent; belly marbled, the dark predominating var. auriculata.

The latter variety occurs only in the Southern States; the tubercle of the angle of the eye and the upper lateral pores are often better develoned in it than in varr. Fusca, therefore approaching D. nigra. It is, however, easily distinguished from the latter. Sundry specimens
lack the red spots, and others hare paler bellies, resembling thus the darker Fusce. The size is the same.


In the young of 1 . fusca the $\begin{aligned} & \text { is a serics of pinkish incompletely }\end{aligned}$ separated alternating spots, in two series, covering the whole dorsal region; they are rarely so well distinguished or so bright as in the specimen of the same which furnisbed the type of IIolbrook's $S$. quadrimaculata. The pink fades to orange brown or oclar, and to pale brown, with age, and at the fullest maturity all are lost in a uniform blackish

Measurements of No. 6832, in inches.
Inches.
Lengtlı axial, from suout to rictus oris . ................................................... . . 3
Leligth, axial, from snout to axilla................. ........................................ . . 71
Lengrtb, axial, from suout to groin....... ......................................................... 1.95
Leugth, axial, from snont to end of vent................................................... 2. 3
Length, axial, from snont to end of tail...................................................... 4. 6
Length of fore limb . . . . . . . . . . . . . . . ........................................................... . . . . 42


Lengrth of hind foot................................................................................ . . . . 26 .
Witlth of sole foot....................................................................................... . . . . 16
Wilth of head at rictus oris....... ............................................................... . . . . 375
Width of body at middle ....... ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Habitat, etc.-This species lives chiefly among the stones in the many shallow rivulets and springs of the hilly and monntanous regions of the country. It is not so partial to deeper and stiller waters as the Spelcrpes ruber, but prefers the rapid and shallow streamlets; here it may be found moder erery stone, or its dedicate larvia may be observed darting rapidly from place to place, seeking concealment among mod and leaves. The I). fusce is one of the most active and vigorous of our species. The peculiar structure of the temporal muscle and its tendons, and of the occipital condyles, with the strongth of the bones of the front, enable it to burow among stones and in carth more readily than the species of other genera. When pursucrl, it rus and wriggles out of sight with the greatest rapidity, and is quickly concealed by assistance of its dusky colors.

Professor Baird originally noticed the emions disposition of the eggs in this species, which I have verified on a few occasious. As in the
annous genus Alytes，the eggs，on emission，are connected by an albu－ minons thread，which soon contracts and hardens．One of the sexes protects this rosary by wrapping it several times round the body and remaining concealed in a comparatively dry spot．How long this guturl continues is not known．

The most Eastern specimen I have seen is from Essex Comity，Mass． besides a great number of specimens in the Musemm of the Philadel－ phia Academy，the following form the Smithsonian basis of the exami－ nation：

Desmognathus fusca fusca Rafinesque．
RESERVE SERIES．

| C＇atalogue numlиッ． | No．of spec． | Locality | When collected | From whom receised． | Nalure of specime n ． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7901 | 26 | Carlisle，Pa |  | Pruf．S．F．Baird | Alcohalic． |
| cirit | 1 | Mandeville，La | Nuv．－1878 | N．O．Academy． | Do． |
| x：313 | 8 | Kinston，N．C．． |  | Welsher \＆Milner． | Do． |
| $3>8$ ： | 10 | Mcadvalle，Pa |  | Prolessor Williams | No． |
| 3916 | 10 | Carlinle，Pa．．． |  | Prof，s．F．Bairl | Do． |
| 349 | 5 | Salem，N．C |  | J．＇I＇．Lineback | Do． |
| 11899 | 2 | Nasholle，Ga | Aug．5，1850 | W．J．＇taylor． | 10. |
| 3904 | 10 | Abbeville，S．${ }^{\text {C }}$ |  | I＇rof．s．F．Baird | Do． |
| ：3917 | $1: 5$ | Wesprort，N．Y ．．．．．．．．．．． |  | ．．．do ．－．．．．．．．．． | 1 lo |
| 50－2 | 1 | Тюииевяе …．．． | 1876 | J．N．B．Scarborough | $1 \%$. |
| 88.9 $38: 115$ | 1 1 | Clanbome County，Tenu Coltimbus Olio |  | मuf．${ }^{\text {do }}$ L Lesquereux | 1） |
| 38：115 | 14 6 | Coltimbse Uhio Orallェャ，N．J |  | Pruf．L．Lesguereux． Dr．J． Q．Coopr． |  |
| ：81： | 5 | Pittsburgh 1 ${ }^{\text {a }}$ a． |  | Dr．J．G．Cooprr．．．． | $1)$ |
| ：3：14 | 3 | $11 . y$ luand County，Ohio ．． | ．．．．．．．．．．．． |  | Do． |
| 3908 | 3 | Eutaw，Ala ．．．．．．．．．．．．．． |  |  |  |
| ：8：1 | 5 | Mississippi |  | Cal．B L．C．Walles |  |
| 3749 | 3 | Philadenhia l＇a | 1851 | J．licharal ．．．．．．．．．． | Do． |
| 11.512 | 1 | Rock C：eck．D． 1 |  | $1^{1}$ L．Louy ．．．．．． | Laiva． |
| 4843 <br> $391:$ <br> 18 | 4 | Brookville inu $\ldots$ |  | 1br．R．Haymond | 110. |
| 3913 | 4 | Ad．rondiatk，N．Y Norlok，Conn | 1877 | R．Clinke．．．．．．． | 1） |
| 14477 | 2 | Gloucenter，JId | 187 |  | $1 \%$ ． |
| 3：12， | 3 | Gloucester，Va． |  |  | 16． |
| $3!101$ | 10 | Ricelbormugh，lia |  | Dr W．L．Jones | 1\％． |
| 68：31 | 2 | Biluxi，Miss |  | C．Sillman | 1 \％． |

GENERAL SERIES．


Desmognathus fusca auriculata Holbrook.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality | $\begin{aligned} & \text { When } \\ & \text { collected. } \end{aligned}$ | Fiom whom received. | Nature of specinen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8906 | 8 | Oakley, S. C | A prii 5, 1877 | F. W. Hasward. | Alcoholic. |
| 8819 | 10 | Cincinnati, Ohio |  | J. N. B. Scarborough |  |
| 3901 |  | Riceborough, Ga |  | Dr. W. L. Jonos | Do. |
| 68336 | 5 | (?).......... |  |  |  |
| 3866 | 3 | Knoxville, Tenn | ............ ${ }^{\text {a }}$ | Prof.J. B. Mitche | Do. |

## DESMOGNATHUS NIGRA Green.*

Baird, Journ. Acad. Phila. (2) ı, p. 286 ; Cope, Procced. Ac., Phila., 1869, p. 117; Stranch, Salam., p. 73 ; Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p. 40 ; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. ıI, 1882, p. 79.
Salamandra nigra Green, Journ. Ac. Phila, I, p. 352.
Triton niger Holbr., N. A. Herp., and p. 81, Pl. 27.
Amblystoma nigrum Dum. \& Bibr., p. 105.
Plethodon niger Hallow., Jour. Ac. Phila. (2), iII, p. 344, partim.
This is the most robust sala mander of the eastern regions of our zoological realm; it is not so slender as the Gyrinophius porphyriticus, and is a much stronger animal. As compared with the $D$. fusca it is much larger, the tail is more compressed and extensively finned, and the color is uniformly different. Besides the characters already pointed out in the table, it differs from $D$. fusca as follows: The parasphenoid patches of tecth are prolonged more auteriorly, and approach very near the romerines in most instances; they are always prolonged beyond the middle of the orbits; their prolongation is at the same time narrowed, and in most the patehes are not distinguished at this point. The romerine series are better distinguished (though not always), being oblique, separate, and not extending beyond nares. The tongue is in eight specimens examined nearly round, while it is always a long oval in the two other Desmognathi; finally, the only male does not possess the black pigment coat of the testes always present in the others, thongh, as in them, the vas deferens is black. The body is stouter, and the width of the head enters the length to the groin less than five times-in the others always more; this is also expressed by the existence of onty twelve costal plice, and the fact that the appressed limbs are only s? arated by $2 \frac{1}{2}$ intercostal spaces.

The postorbital plice are not strongly marked. The mucous pores are well developed, and the two lateral series are often distinct in alcoholic specimens by their white color; when they become dry they are difficnlt to observe. There are two rather distant gular series within the mandibular rami on each side, and one on each side extending in. wards and forwards from the gular plica. The superior lateral series extends from the orbit to near the end of the tail ; the inferior romel the humeri to each side the pectoral region.

The proportions of the fingers are as in I. fusca; they are entirely free. The eves are prominent, with thick opaque palpebrae. A tuberele oceupies the auterior angle, which, after an examination of that in D. fusca, is proven to be a dismemberment of the superior eyelid.

The coloration is uniform in abont twenty specimens examined. It is simple, viz: Uniform black above and below, except the muzzle from between the eyes, the lower jaw, the end of the tail, and the soles of the feet, which are brown.


Fig. 50. Desmognathus nigra. No. 3923. Abbeville, S. C.; $\ddagger$, ऊิ.
Measurcments of No. 3923, in inches.
Inches.
Length, axial, from ent of muzzle to orbit............................................ . . 29
Length, axial, from eud of muzzle to canthus oris .................................. . 55
Length, axial, from end of muzzle to axilla............................................ 1.22
Length, axial, from end of mazzle to groin ............................................. . 3. 23
L.ngth, axial, from end of mnzzle to end of vent .................................... 3.76
Length, axial, from end of muzzle to end of tail ..................................... 6.96
Length of fore limb .......................................................................... . . . 9
Length of fore foot........................................................................ . . 26
Length of hind limb . ........................................................................ 1.02
Lengtl of hind foot......................................................................... . . . 47
Width of hind-foot sole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . . . 27
Width between cyes in front.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Width at canthus oris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Widtl of borly ............................................................................... . . . . 75
Width of boily at sacrum.... . ..... ...................................................... . . 54

Habits, etc.-This creature is aquatic; but after the fashion of the $D$. fusca it ocenrs only in shallow stony brooks. It is, so far as known, confined to the Alleghany mountain ranges from Pemnsylvania southwards. It is abundant in the streans of the rocky ravines and cold springs in the remotest depths of the forest, where its retreat is cool and dark. It seeks concealment under loose stones and slabs of slate with great activity, and is not easily canght. Its habitat does not seem to be shared by any species but the D. fusea; the Gyrinophilus porphyriticus, the other characteristic Alleghany species, haunting standing springs and bogs, where stones are not so numerous. Green described it from Pennsylvania, but Baird, who is familiar with the Alleghany fauna of our State, says he has not observed it near Carlisle; nor have I met with it north of Virginia, where it is common. Besides Green's
type and specimens from near the Kanawha River, in southwestern Virginia, in the Pliladelphia Academy Mnseum, the Smithsonian contains the following:

Desmognathus nigra Green.

| Cat logue number. | Number of spec. | Locality. | Whence and how obtained. |
| :---: | :---: | :---: | :---: |
| 3887 | 2 | Georgia | Dr. W. L. Jumes. |
| 3923 | 4 | Abbeville, S. C | Dr. J. . B. Barratt. |
|  | 2 | Giles County, Va | E. D. Cope. |
| 14119 | 1 | Wythe Coninty, Va. | Col. M. Mc Donald. |

## SALAMANDRIDA.*

Gray Proced. Zool. Soc. London, 1858, p. 142. Cope, Journ. Ac. Plil., 1866, p. 107.

No ethmoid bone. Palatines with posterior separate processes extending over the parasphenoid, bearing teeth on their inner margins. Prefrontals and ptersgoids present. Parietal entirely separated from prefrontals by broad frontals. Orbitosphenoid confluent with proïtic. No dentigerous plates on the parasphenoid. No postfronto squamosal arch. The ceratohyal free, counected with the quadrate by ligament. Carpus and tarsus osseons. Vertebre opisthocœlous. No otoglossal cartilage.

The liyoid apparatus in this family is like that of the Plethodontide. There is a hypohyal on each side of the anterior extremity of the basi branchial which does not articulate with the ceratohyal. In Triturns, Salamanlra, and Hemisalam:mble, it is short (Plate 36, fig. S); while in Chioglossa it is recurved posteriorly, passing under the ceratohyal of each side, and almost reaching the basibranchial again near the point of origin of the ceratobranchial (Plate 36, fig. 9). It thus forms a nealy complete circli, supporting the circumference of the tongue. This circle has the same function as that in Amblystoma, but is of difficrent homological value. Appropriately to this functional resemblance to the American forms, the proximate extremity of the ceratolyall is attached to the distal extremity of the suspensorium, but by ligament. In Memisalamandra, on the other hand, it is attached to the proxi ual part of the same by ligament, thens furnishing a condition intermediate hetween the types of Chioglossa and of Diemyetylus.

This family is confined to the Old World. It embraces the folloring genera:
I. Maxillary and pterygoid bones separate, the former not reaching quadrate.
$\alpha$. No ligamentons postironto squamosal arch.
Tongue large, free, except on the anterior half of the median line; teeth in two longitudinal curved series . . . . . . . . . . . . . . . . . . . . . . . . . . . Chioylossa.
Tongue large, searcely free at edges; teeth in two longitudinal eurved sicries
. Salamandra.
Tongne small, not free; tee th in two straight pmalel series. IIemisalamandra.
race. A ligamentons postfronto-squamosal arel.
Tongue small; vomeropalative tecth itr longitudinal series, which converge aud join anteriorly, forming a $\boldsymbol{\Lambda}$

Triturus.
II. Iterygoid united broadly with ma:illary bons.

Postfronto-squamosal arch partly ligamentons; tongue littlo free; teeth forming a $\boldsymbol{\wedge}$

Pachytriton
The species of this fimmily recorled in Bonlenger's Catalogue of the Buitish Museum are the following :

Chioglossu lusitanica Bocage, Portugal, and northwest Spain ; Sulamandra maculosa L., central and southern Europe, Algiers, Syria; S.atra, Laur., the $\Lambda^{1} \mathrm{ss}, 2,500$ to 12,000 feet; S. caucasica Waga, Caucasus; Hemisalamandra cristata Laur., Europe; Triturus blasii De l'Isle, northwest France ; T. murmoratus Latr., France, Spain, Portıgal; T. alpestris Laur., central Europe; T. vulgaris Linn., Europe, except sonthern France, Spain, and Portugal; temperate Asia; T. crocatus Cope, Syria; T. montanus Savi, Corsica; Pachytriton brevipes Siuvage, South Kiansi, China.

## TLEURODELIDA.

Cope, Journ. Acad. Phila., I836, p. 108.
Plemrodelide and Siranolider Gray, Proceed. Zool. Soc. Loudon, 1853, p. 14?.
No ethmoid bone. Vumeropalatine bones, with posterior separate processes, extending over the parasphenoid, and having tectio on their inner margins. Prefroutals and pterygoids present. Parietals not embracing the broad frontals. No dentigerous plates on the parasphenoid bone. An osseous postfronto-squamosal arch. Ceratohyal free, connected with quadrate by iigament. Carpus and tarsas osseous. Vertebre opisthoccelous. No otoglossal cartilage. (Plate $3 t$, figs. 2-7).

This family differs from the Salamandride only in its post frontosquamosal areh. Rudiments of it already appear in some members of the latter.

The genera of ihis family are all found in the Old World. One of them is represented by tro species in North America. They are dis. tinguished as follows :

```
I. Maxillary bone not reaching quadrate.
    \alpha. Ribs not perforatiug the skin.
    'Tocs, 4 ...... ............. .................................. ...... Salamemdrina. .
    Toes, 5 ............................................................... Diëmyctylus.
    \alpha\kappa. Ribs perforating the skin; vomeropalatine tecth in il }\boldsymbol{\Lambda}\mathrm{ .
    Toes 5................ . ................................................. . . Plenrodelcs.
11. Maxillary bone reaching quadrate.
    Toes 5.
        Glossolega.t
```

The species of the above genera are as follows: Salamandrina perspicillata Savi, Italy; Diemyctylus vittatus Gray, Asia Minor, Syria; D. palmatus Sclneid., central and western Enrope; D. montandonii Bonl., Moldavia; D. bosee Lataste, Spain; l'ortugal; D. pyrrhogaster

[^22]Boie, Japan, China; D. sinensis Gray, China, D. torosus Esch., Califormia, Oregon ; D. viridescens Raff, North America, eastern and austroriparian regions; D. rusconii ('éné, Sardinia; D. asper Dngés, I'yrenees, Spain; Plewrodcles waltli Michah., Spain and Portugal, Tangiers; Glossolega poireti Gerrais, Algiers; G.hagenmuelleri Lataste, Algiers; G. verrucosa Anderson, Eastern Himalayas, Yunnan.

## DIËMYCTYLUS Raf.

> Annals of Nature, March, 1820, No. 22, p. 5; Hallowell Journ. Ac. Phila. (n. s.), ifi, p. 3833; Cope, Proccetl. Ae. Phila., 1859, p. 126.

Notophthalmus Rafinesque, l. c, p. T- ; Baird, Journ. Ac. Phila., (N. s.) I, p. 284.
Molge Merre::, Tentamen, Syst. Amphibiarnm, 1820, p. 185; Bouleuger, Cat. Batr. Grad. Brit. Mns., II, 6,1882 , pars.
E„proctus Géné, Šrn. Reptil., Sardinia, p. 98; Bonap., Fanua Italica; Cope. l.c., p. 127.

Cynops 'Tsehudi, 13atr., 1838, p. 94.
Taricha Gray, Cat. Batr. Grad. Brit. Mns., 1845, p. 25.
The hyoid apparatus in this genus is much as in the Plethodontidæ and the Salamandride. There is a small hypohyal, which toes not. articulate with the ceratolyal. In Diëmyctylus torosus there is a secoml process on each side posterior to the hyphyal,* which may be homolngous with the similar second lateral cartilage in Linguclapsus annulutus, or eren with the otoglossal cartilage. The ceratohyal is divided. the prosimal half osseons. The first ceratobranchial and epibranchial are osscous. The second ceratobranchials originate from a high memedian longitudinal crest of the basibranchial. The free extremity of the ceratohyal is elongate, and in D. ciridescens it extends all the way to the inferior surface of the exterior process of the exocciptal bone, $t$ with which it is in close contact. In the D. torosus it does not extemi so far. In both species the extremity carries with it the hyosuspensorial ligament which connects it with the quadrate bone, which thus becomes mach longer than in other genera. (Plate 46, figs. 3, 4.)

What name should be applied to this genus is uncertain, and may perhaps ever remain so. The circumstances are as follows: In 1819, in the Journal de Physique, $\ddagger$ Lxxxvin, p. 418, Rafinesque proposed to replace the name Triton of Laurenti by his own name, Triturns. In 1S20, in the Annals of Nature§ for March, p. 4, he says: "My genus Triturus is the same as the Triton of Duméril, there being already. another genus of animals called Triton. It differs from the Salamandra

[^23]in having a compressed tail." Under this geuus he included five species: T. hypoxanthus, T fuscus, T'. viiilcscens, T. nebulosus, and T' miniatus. The T. juseus is the Desmognathus fusca of Baird; the I'. viridescens and T. miniatus are included under the present genus, while the application of the other two names is unknown. Under the head of the T. viridescens (p. 5), he remarks: "It must form a peculiar subgenus Diemyetylns, distinguished by the fore-feet semipalmate, with four equal toes, the posterior with only three toes and two lateral knobs; jaws nearly equal, eyes elliptic," etc. Immediately following on the same page the author proposes the subgeneric name Notophthalmus for the T. miniatus, in the following language: "It has almost the characters of the subgenus Diemsctylus, but differs yet from it by laving the toes of the fore-feet free and unequal, the lateral ones much shorter, whence it may form another sulgenns Notophthalmus."
The first publication of the mame Triturus makes it synonymons with the Triton of Laurenti, aud all subsequent uses of the name, eren by the same author, must yield to this one. Now Lanrenti does not inclucle a single species of Diëmyctylus in lis Triton, so that the name is not applicable to the present genus. It must be applied to a gemes of Salanaudridre whose species are placed by Bonlenger in the section of his genus Molge, which is without postfronto-squamosal areh.

One year later than Rafinesque, Mcrrem ( 1820 ) proposed the name Molge for a series of species which embraced, with those of Triturus, one species of Diëmyetylns, D. palmatus (JIolge palmata Schucir.). The Trituri being abstracted by the prior name, Molge should remain for the last-named species. But it was in the same year that Rafinesque proposed Diemsctylus for the same genus, and it now becomes a question as to the day of the year on which the works of these two anthors were respectively issued. As Ratinesque's bears the carly date of March, I retain it until it is shown that Merrem's Tentamen was published previonsly. On this point I have not as yet obtained lefinite information.

The two North American species of this genus differ as follows:

Both of these species are aquatic in their habits, and they are the ouly species found in North America which are truly so; that is, they do not live on the bottom or under stones, but swim or suspend themselves in comparatively deep water.

## DIEMYCTYLUS TOROSUS Esch.

$$
\begin{aligned}
& \text { (Plates 36, fig. 2; 38, figs. 1-4; 45, fig. 8; 49, fig. 3.) } \\
& \text { Cope, Check-List Batr., Rept. N. Amer., Bull. U. S. Nat. Mus., I, p. } \\
& \quad 28,1875 .
\end{aligned}
$$

This fine species is of rather robust proportions. The heall is wille and distinct from the neck, through the protuberance of a posterion superior angle on each side. It is also perfectly flat and smooth above, excepting a gentle slope from a line connecting the orbits to the com of the mazzle. The body is slightly compressed, and its length from axilla to groin is just equal to the length from the axilla to the end of the muzzle. The tail is long, exceeding the length of the heat and body ly the depth of the latter. It is very much compressed, and has a wide dermal border both on the inferior and the superior edges.

Viewed from abore, the head is contracted towards the muzzle with curved lateral ontlines, and the end of the muzzle is truncate. It also projects considerably beyond the lower jaw. The nostrils appear to be terminal, bat directed laterally, and the space between them equals two thirds that between the bases of the eyelids, and exceeds by onequater the space betreen the internal mares. It also equals the length from the eye to the nostril, and exceerls ly a very little the length of the eye-fissure.

The upher lip begins to descend posteriorly at a point half-way between the nostril and the eye, and does not rise again, but conceals the lower jaw. The rictus is just behind the posterior angle of the eye. Anterior to this point it is joined on its internal side by a short lamina, which represents the lower lip of the perennibranchiate species of Batrachia. This lip is entirely concealed, and there is no fold in front of it, on the lower jaw.

The tongue is oval, and rery small. It is only free at the sides, and that but slightly. The vomeropalatine teeth are in two straight series, which converge forwards and join directly between the clioanae.

The limbs are robust, the posterior ones the more so. Applied to the side, they orerlap by the length of the postcrior foot with tarsus. The digits differ much from each other in length, but not so much so as in the $D$. viridescons. The sccond (first) finger is very short, and the fifth is a little longer, while the third and fourth are of usual length, the third the shorter. 'I he phalanges are 1-2-3--.2. The toes are arranged much as the fingers, the longer ones of medium length, and the first
very short. The lengths are, beginning with the shortest, 1-j-2-4-3. The number of phatanges taken in order is : 1-2-3-3-3. The epitiermis on the extremities of all the digits is horny: There are no distinct bahmar or plantar tubercles. I have not discovered any horny plates on the immer sides of the posterior legs, such as occur in the $D$. riridescens sluring the breeding season.

The charbeter of the surface of the skin varies accorling to the season and locality. In a majority of specimens the upper surfaces are smooth, but wrinkled more or less closely. In specimens which hive been exposed to drought, the surfice becomes rough, with small hard projections. The lower surfaces are always studded with minute horny points so as to be hispid. These become more numerons and prominent in specimens where the dorsal integument is ronghened. Lateral fulds are very obscure in this species, and can only be trited on the superior part of the sides. Twelve such grooves may be counted, the first and last being opposite the hmmerns and femur respectively. There is a distinct transverse postgular fold. The digits have thin dermal margins towards the base. The genitalia are very prominent during the breeding season, and the orifice is longitudinal, and its edges are marked with transverse wrinkles. Internally there is a large prominent papilla, simulating an intromîtent organ, which rests in a fossa, whose posterior wall is composed of a series of columnar papillze, which radiate backwards and downwarls. The free membrane of the edges of the tail is much reduced, or is even wanting, in the specimens with roughened skin.


1



4


5


Fig. 51. Diemyctylus torosus. No. 11407. San Francisco; 1, ${ }_{1}^{2}$.
Measurements of No. 11577.1.
Total lengrth ..... 170
Length of head and body ..... 078
Length to groin ..... 061
Length to axilla ..... 026
Length to canthus oris ..... 0Iะ
Length to anterior ciathas oculi ..... 005
Lengtin of fore-leg ..... 027
Length of cubitus ..... 011
Length of manus ..... 0115
Length of hind leg ..... 030
Length of tibia ..... 0085
Length of pes ..... 0136
Interorlital width ..... 075
Greatest width of head ..... 0175
Depth of tail at middle, with fin ..... 014

The mucous pores of this species have the following distribution: They form a band on each side of the muzzle, which passes within the eyelid to just behind the eye, where it divides. One line exteuds backwards and turns towards the middle line without joining its fellow of the opposite side. The other brauch passes behind and below the eye, and forms a patch on the loweal region. On the body the system consists of a series of pores along the lower part of each side.
The coloration of this species is simple. The sides and superior surfaces of the head, body, and limbs are brown, and the inferior surfaces are yellow. In rongh specimens the brown becomes almost black, and the yellow is correspondingly deep. In smooth specimens the brown is pale, and has an olive tinge. The upper membrane of the tail is yel$\mathrm{l}_{\text {owish-brown }}$; the lower yellow.

This species has the ridest range of any Pacific salamauder, since it extends from San Diego on the south to southern Alaska on the north. It is rery abundant in some parts of California, aud may be seen swimruing in the streams and ponds in numbers.

Diemyctylus torosus Esch.
RESERVE SERIES.

| C.itallogue number. | No. of spec. | Locality. | When collectud. | From whom receired. | Nature of specimel. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9056 | 6 | Puget Summa, Oregon |  | U. S. Expl. Exped. | Alcoholic. |
| 47 | 1 | Calitornial........... |  |  | Do. |
| 4070 | 1 | Fort Steilicoom, Wash |  | Dr. (ieo. Suckley, U. S. A. | 1\%. |
| 4028 | 3 | Engene City, Oregon |  | Dr. C.is. Newberry....... | Do. |
| 4046 | 3 | Fort Vancouver, Wasl. |  | Dr: J. G. Cooper | 1 O |
| 9214 | 1 | Fort Steilacoom, Wash.. |  |  | Uo. |
| 92315 | 9 |  |  |  | Do. |
| 11407 | 2 | San Francisco, Cal |  | U. S. Expl. Exped.......... | Do. |
| $\bigcirc 1577$ | 10 | F....do | 1879 | Gustar Eiscon (?) ........... | $1 \%$. |
| 1176 | 2 | Fresno, Cal... | 1879 | (iustav Eisen | Do. |
| 405\% | 4 | Astoria, Oregon |  | Lirnt. W. I'. 'Low bridge, U. S. A. | Do. |
| 95:06 | 1 | California |  | Dr. Wrm, Slimpson ...... | Do. |
| 6585 | 1 | Muntorev, Cal...... |  | Dr. Canfieldt ................ | 1\%o. |
| 13560 | 1 | llasslor's IIarbor, Alaska |  | II. E. Nichuls ........... . . | No. |
| 14107 | 1 | Lake Connty, Call . ..... | 1885 | 11. W. 'I'urnor'.............. | Io. |
| 13940 | 3 | lierkeley, Cai . | 1881 | F. E. C. Stuntıs.... ...... | $1) \mathrm{O}$ |
| 13946 | 1 | - ....do. | 1854 |  | 1)o. |
| 1395: | 1 | Howell Mountaius, C'al. . | 18 St | … . dolo................... | 1)0. |
| 13381 | 2 | Suu Diego, Cal .......... | 1883 | Clias. I2. ()rentt . . . . . . . | U). |
| 11479 | 2 | Port Clacstor, Alaska.... | 1883 | Lt. H. E. Niehols, U. S. N . | 10. |
| 11480 | 2 | Nisqually, ()regom...... |  | Expl. Experd............. | 110. |
| 14492 | 1 | İevillajigalo Ihar., Alas. | 1855 | Dr.' I'. H. Streets, U. S. N.. | $1) \mathrm{l}$ |
| 13928 | $\stackrel{3}{2}$ | 13aird, C'al]... ......... | 1885 | Chas. H. Townschd ....... | 1 \%. |
| $11: 55$ | $\stackrel{3}{7}$ | Inmbolilt County, Cal .. |  | ....do ... ...................... | 10. |
| 11764 | 7 | Fresuo, Cal .......... |  | Gustav Eisen . . . . . . . . . . . | 10. |
| 4014 | 5 | San Franciscu, Cil]. |  | 11. J. L. Lecunte**....... | 10. |

GENERAL SERIES.

（1＇lates 3t，ligs．3－4；39；41，ligs．5－9；41，ligs．3－4；49，lig．3；45，tig．9；49，lig．4．）
Hallow．，Journ．Ac．Phila．（N．s．）1н，1）：3i：；Cope，Proced Ac．Phila．， $1 \subset 5!$ ，1． $1: 2(6$.

Iriturus（ Notophthalmus）miniatns lialin．，l．e．，No．24．
Sılememblia stellio Say，Amer，Jomru．，r，l． 261.
Nialcmetmlra dorsalis Marlan，Joırı．Ac．Philat．，v，1．1：2 ；Wied．，Nova Acta Leop＇， tarol，x．xis，p． 131.
 Dekiay，N．Y．l＇itut，lieptil．，p．7：3，Pl．xv，fig．33；Wied．，l．c．，p．125．
Salamambra millepumctafa Storer Bost．Journ．N．H．，II，p． 60.
Salamamdra grecuii Clity，Griff．A．K．，ix，Syu．，p． 107.
Tritan dorsalis IIolbr．，l．c．，p．77，Pl．א．xv；13m．\＆Bibr．，1）． 155.
Trilon millepmetatus De Ǩay，l．c．，p．B1，Pl．xv，lig．：34．
Votophthalmus miniatus Bairel，Jonrn．Ac．Phila．（2），I，p．2st；Gray，Cat．Batr．Grad． Brit．Mus．，©l．I，p． 2.9.
Notophthalmus riritescens Baird，l．c．；Gray，l．c．1．23．
Triton punctatissimus Dum．\＆Bibr．，p．154．
Triton symmetricus Dum．\＆Bibr．，p．154；Pl．107，fig． 2.
l）iemyctyius miniatns Hallow．，l．c．
Trilon riridescens Strauch，Salam．，p． 50.
Motge viridescens Bonlenger，Cat．Batr．Gtad．Brit．Mus．，ed．ir，188\％，p．®1．
This variable species is the aquatic salamander of the eastern region at North America．Its distinctive characters have been already re－ firen to（pa ge 203），and will be more fully detailed under its appropriate sulsipecies．These are two，as follows：
Extrmal finger laalf as long as fourth or shorter；back wilh small black－edged red spots．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．D．r．viridescens． E．alanal finger more than lialf as long as fonrth；no red spots on back，but larse black oues，which are present also on the tail．．．．．．．．．．．．．．．．．．．．．D．v．meridionalis，

## Diemyctylus viridescens viridescens Raf．

There are two forms of this subspecies，which have received the nimes of viridescens and minatus respectively．These having been shown to be stages of one and the same animal，they are not distin－ m⿴囗十丌 ：he environment rendered permanent for a longer or shorter time．I gili，however，the cinacters that distinguish them．

C＇ranial earinie more promiuent，and longer ；tongue freer laterally；skin rongh： chuck－pits more frequently wanting；color red ．．．．．．．．．．．．．．．．．．．．．．．．form minialus． Cranial carina less prominent，especially at the ends；tonge less free；stin stumoth； check－pits rarely wanting ；gromb color olivaccous．．．．．．．．．．．．．．．form rin idescens．
The form Miniatus nerer has a candal fin－membrane，while it is gen－ mally present in the form Viridescens；lont this is a seasonal character． Thw dinaicters above mentioned are not always combined as deseribed， antl one or another may be wanting white the others are present．

They will be referred to later in this article. Meanwhile I describe 0 typical specimen of the form Viridescens.


Fig. 52. Diemyctylus viridescens viridescens. No. 14163. Aiken, S. C.; $\frac{1}{1}$.
The outline of the head seen from abore is an oval, which contracts anteriorly and posteriorly, and is not distinguished from the neck liy the abrupt contraction of the latter. The back is roof-shaped, and the section of the body a vertical oval. The length from the axilla to the end of the muzzle is just a little less than the distance between the axil'a and the groin. The tail is much compressed throughout, and is as long as the head and body (vent included).

The muzzle, viewed from above, is truceate-rounded, and it projects a little beyond the mouth. The two ridges of the top of the hearl inclose a long lenticular open groove which is closed in front on the unz. zle, bui open behind on the occiput. On their external sides is a shallow groove. There is a distinct but obtuse cintius rostralis, and the lorea' region is slightly coneave. The profile is slightly dee rved at the muzzle. The eye is rather large; its length excieds a little the length from its anterior canthus to the end of the muzzle, and is a little less than the interorbit 1 width. The nostrils are close together, and look upwards as well as outwards. The distance between them enters the interorbital space two and a half times. The eyes do not project upwards, so that the eyelids are nearly plane with the front. The lower jaw is only partly overlapped by the posterior pat of the upper lip, and there is no distinct lower lip or groove. On the site of the head posterior to the eye is a straight row of four pits, the first of which is near the eye and the last is in the position of the first branchial fissure. These pits are shortly linear and enred, as though made by the pressure of an instrument with a short curved edge. The distances between them are equal to each other and to half the diameter of the dye. At the position of the posterior pit are traces of three branchial itsures in three vertical short rows of minute pits ; but these are not always present. The cheek-pits, moreover, are frequently wanting. I give the results of the examination of seventy individuals of the forms Viridescens and Miniatus:

Viridescens.
Fossie present
Fossto wanting ........................ 5 Frosste wanting .............................. 25
Miniatus.
Fossie present10

The pits are generally symmetrical, but in a Miniatus there is but one pore on one side, and in a Viridescens there are no pores on one sides and three on the other.

The tongue occupies but little space on the floor of the mouth. It is slightly free at the sides, but not at the anterior or posterior ends, which pass insensibly into the adjacent tissue. Its form is oval anteroposteriorly: The vomeropalatine teeth are in two longitudinal series, which converge anteriorly, and join after ruming elose together between the internal nares. The latter are about as far apart as the external nares.

When apslied to the side the fore limb overlaps the hime limbl) by the length of the hind foot. While of nearly the same length, the fore limbs are not more that half as thick as the hind limbs. Their length is just equal to the distance from the axila to the end of the muz\%le. The secoud (tirst) finger is very small, with but a rudiment free. The third finger is long, and the fourth still longer, while the fifth is longer than the second (finst), but generally less than half as long as the fometh. The phalanges are $1-2-3-2$.

The first and fifth toes are mere obtuse rudiments and of equal length. The other toes are not relatively so long as the fingers, stambing 2-4-3 in order of length, berimming with the shortest. The phalanges are 1-2-3-3-1. In: males in the breeding-season the himd legsare thickened, esperablly the integment of the inner side. It is then divided by trans. rerse folds, and the portions between them become corneous or chitinous. There are thas from ten to twelve transverse plates on the inside of the thighs, and an irregular number on the inside of the tibia and tansus. The rudimental external and internal toes have a call of the same substance. These bodies aid the male in mantaining his hohd on the female during copulation.

The skin in the form Viridescens is smooth on all the surfaces, but rather closely wrinkled. The tail has a free dermal margin or fin (of about egnal width and length) on both the superior and the inferion erges. The genitalia are very prominent at the breeding season, aml in the male the orifice is oval. It is very pipulluse, espectally within the anterior border. (See P'lates $3!$ and 41, tig. 3.) 'There is no transverse postgular fold, and there are no tamsverse lateral groovers.

> Measurements of No. 379.
Total length ..... U! $!$ 1
Langth of heal and body ..... 11.11Lengtlo to groin
0.31
Lengts to axilla ..... $1111 ;$
Lenglh to canthis oris ..... (11)(i.
Lenglh of fore-lag ..... 111.15
Lengrth of cubitus. ..... 110
Lengrlh of fore-fisot ..... (1)14.i
Length of hind legr ..... 018.
Lengrth of tibia ..... $1111.3: 3$
Lengll of hind foot ..... (1)
Width of heal ..... mas
Width between orbits ..... (11).11;
Depth of tail at middle ..... 00л5
1951 Bull : 4 ..... 14

The color of the form Viridescens is a light brownish-olive above, which is or is not marked off distitictly from the paler color of the lower surfaces along the side. The inferior surfaces are straw color or dirty white. On each side of the vertebral line is a row of from three to six smal round red spots, each with a black border. The rest of the surface is marked with small black points, which are smaller but more distinct on the lower surfaces. On the legs they are larger and more distinct, and on the tail they appear to have run like ink spots on paper placed in water. In specimens without tims they sometimes form two rows on each side of the tail and a line along the side from the axilla to the groin. There is a faint dark line from the eye to the last cheek-pit. Chin and throat generally unspotted.

In the form Miniatus the tail is narrow, being without dermal borders, The color of the superior surtices is vermion red and the lower surfaces citron-yellow. The red spots are present as in the other form, but the small black spots are rarely present on the back. They are present on the sides, belly, limbs, and tail, and never ron together into lines. In this form the skin of all the upper surfaces is rongh, with numerous minute, semitransparent horny points of the skin. These are not developed ou the inferior surfaces.
These characters would be likely to follow the exposure of an aquatic


Fig. 53. Dirmyct!lı* miniatux miniatux Rat. 3802. Twice natural size. Joot River, Wis.
animal with soft skin to the comparative drought of the atmosphere. The greater acuteness and prominence of the eramial erests displayed by the Miniatus form is probably cansed by the closer adherence of the thinner integuments under these circumstances. Direct observations as to these points, however, exist. Dr. Hallowell was the first to express his belief that the so-called distinct species were the same. I afterwards remarken, " the nomimal I. miniutus is a state of I). viridescens," and that 1 have had it change to the latter in confinement. 1r. Howard A. Kelly, in an article in the American Naturalist, states, he "bronght home a number of I). miniatus (Raf.), or little red lizard, or red eft, and atter kerping them in a dark box tilled with saturated moss, they changed their color from a bright vermilion to the olive state characteristic of the I. viridescens," and le kept them all winter. Col. Nicholas Pike says in the same journal (January, 1886): "I have gradually eome to the conclusion that the two are identical. Some years ago I capturel yuite a number of red ones in the Catskill Mountains, bronght them home, and kept them in a box with other salamanders, where they could resort to water
if they chose. For some days they remained hiding under the wet moss and stones, but finally crept out at night and went into the water. I gave them some insects and worms, which they readily devoured. In about three months they lost their bright red, and in less than a year they were of the usual olive of the Viridescens. Another fact, still more decidedfy bearing on the case, is, that some two-year-ohd Viridescens taken from the ponds and put in earth and dead wet leaves in a tub in my garden, without water, in a month or so began to lose their green tint and assume a dingy, brownish hue."

Professor Baird thus describes the breeding habits of this salamander:*
"In the spring of the year a broad fin becomes leveloped along the tail and back of the male, and the feet enlarge, with the addition of a bhack cartilaginons mass on the toes and inside of the thighs, for the purpose of enabling it to hold on to the female. This it does by clasping her around the throat with the hind legs and retaining the hold for some hours or longer, jerking her around in the water most ummercifully during the whole time. A quantity of seminal matter is finally discharged, which becomes diffinsed in the water, and fecundates the ova while still in the lower part of the oviduct. The eggs are laid singly, of an ellipsoidal shape, and invested ly a very glutinons coat, by which it is attached to the middle of an immersed leaf, which is then doubled over it by the exertions of the female. The eggs, after remaining for some time in this way, finally give birth to small larve, the general character of whose metamorphosis is much the same as that of the sprecies already described." I have found the habits of speesimens of this species in confinement quite as deseribed by Baird. I found the axils of the leaves of Utricularia to be used as places for the deposit of eggs by the female. (See Jomral Philatel,hia Academy, 1866, p. 63.)

Diemyctylus viridescens meridionalis Cope.

## BuHetiu U. S. Nat .Mus., No. 20, 1880, p. 30. Molye meridionalis Cope; Boulcuger, Amm. Magaz. Nat. Hist., 18s8, Jamary.

This subspecies has tice longer digits of the form Miniatus, and low cranial crests of the Viridescens, with which it also agrees in color. From both forms it differs in the absence of red spots from the dorsal region, which is instead covered with rather large black spots, which continue ou the tail. The gromud above is olive ; below it is yellow, which is marked with mamerons small black spots. A character which appears to be of importance is seen in the fore foot. The outer toe is more than half as long as the penultimate, while in the varieties Viridescens and Miniatus it is less than half as long.

The first sjecimen of this form which 1 met with was sent to the Smithsonian Institution from Matamoros, Mexico. G. W. Marnock

[^24]finds it in the tributaries of the Medina River and sonthward, and William Taylor has obtained a good many specineus from San Diego, in southwestern Texas. It has not been fomm east of that region. I did not see it in the phatean comitry.

Dr. Boulenger thimks that this form should be regarded as a distinct species. Besides the characters I have cited he says the head is more depressed and the lores less vertical and the gular fold more distinct, than in the D. viridescens.


Fiu. 51. Diemyetylus virideseens meridionalis. Sin Diego, Tex.; 1.
Dicmyctylus rividescens minialus Raf.
RESERVE SEIAES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3802 | 3 | linot River, Wis |  | Protis. F. Baind | Alcoholic. |
| 3819 | 6 | Comk Comuts, Ill |  | 12. Kemmientt | 1)\%. |
| $3 \times 64$ | 6 | Muadvilte, I'a.. |  | Profensor Williams | 1). |
| 8958 | 1 | Kinston, N. © |  | J. IV. Milner | 110. |
| 88.4 | 1 | ('incimati, Ohio |  | J. N. B. Scarhorough | 10. |
| 78:9 | 2 | Washingtor, 1). C |  | 1)r. E. Cones, U. S. $\Delta$ | Do. |
| !99 | 1 | Nottolk, Comn. | Supt. 06,1877 | A.F. Whoster | 1) |
| 3793 | 5 | West Point, N. Y. |  | 1rot. S. F', Baird | 10. |
| 9393 | 3 | Upper Miss. Valley |  | ..... ........... | 110. |
| 9305 | 1 |  |  |  | Jo. |
| 4026 | 1 | Brazos River, 'lex |  | Ir. I3. F.Shumard | 10. |
| $91 \times 9$ | 6 | (!) |  |  | 10. |
| 12279 | 1 | (!) |  | (!) | 110. |
| 11465 | 3 | (!) |  | (!) | 10. |
| 0.955 | 6 | Anx Plains River, |  | C. I . R. Kembieote | 119. |
| 135\%1 | 1 | Washingtom, 1) (! | Net., 1881 | E. II. 11:iwly y | 10. |
| 59, ${ }^{\text {a }}$ | 1 | Itulsou Bay.. |  | C. Hexler | 1 \%o. |
| 13585 | , | lawley, Via |  | Ben. Miller | $1 \%$. |

Dicmyclylus viridescens rividescens Raf.
IEEERVE SERIES.

| Ciadague numb'r. | No. al sluce. | Locality. | IV heal col locted. | l'rom whon receivel. | Nature ol specionér. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3492 | 7 | Aux Plains Itiver, Ill. |  | If Kımbicott | Alcoholic. |
| $3 \times 08$ | 4 | Tjoga County, N. Y |  | E. E. Howell | ${ }^{16} 0$. |
| 3795 | 6 | Carlisle, Pa |  | I'rof. S. F'. Batio | 10. |
| 7902 | 10 | ... do... |  | … do | 10. |
| 5042 | 2 | limorgia |  | 1)r. W. L. Jon | U1. |
| $5+16$ | 6 | Illinois (?) |  | R2. Kennieott. | Du. |
| 3817 | 10 | Ahheville, S. C |  | Dr. J. 13. Barmat t | I\%. |
| 3826 | 3 | Nuw York.... |  | Prof. S. F'. Bitird | 1\%. |
| 8849 | 10 | Lexington, Va |  | Fred. Mather | 1 l |
| \$290 | 4 | Munlion. A la |  |  | 110. |
| 12053 | 4 | Monmt Catmel, Ill | Nov. -, 1881 | L. M. T'urner | ${ }^{1} 0$. |
| 380:3 | 6 | Jersey City, N. J |  |  | Do. |
| 9557 | 6 | St. Catharine's, Canadia.. |  | 11. II. W. Heatle | Jo. |
| 7056 | 7 | Girand Coteau, La ....... |  | St. 1 :hates Collego. | Do. |

Dicmyctylus riridescens ciridescens Raf.
GENERAL SERIES.

| Catalogne number. | No. of spoe. | Locality. | When col lected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7903 | 77 | Carlisle, 1'a |  | Prof. | Atcolsolic. |
| 3795 | 67 |  |  | ......lo | In. |
| 9118 | 1 | Smilla lounty, Va |  | A. L. Kumlicn | $11 \%$ |
| 93331 | 1 | Virginia | May 28, 1 dit | Fred. に Talbot | $1 \%$. |
| 3811 | 9 | James liver, Vioginia. | 16\%. 20, 1877 | S. F. Baird | 1 mo . |
| :179) | 1 | Wiscousin |  |  | 1 m |
| 1402! | 1 | Norlolk, Comb | July, 18\% | II. Win. II. Jones | 1 \%o. |
| 1364 | 3 | Garrismos, N. Y | Nov. 11884 | T. lionserellt. | 116. |
| 3801 | , | Cook Comity, 11 | 1876 | 12. Kemnicott | $1 \mathrm{no}$. |
| 14463 $146: 3$ | 16 | ${ }^{(!)}$A ${ }^{\text {a }}$ - |  |  | 10. |
| 1446:3 | 1 | Aiken, S. C |  | (!) | Do. |

Diem!rfylus rivideseres mevidionalis.


## AMPHIUMIDE.

Ethmoil bone present; restibule osseous internally. No malar or qualratonjugal bones. Vertebar amphiculons, with two anteriorly directed hypapophyses at the anterior extremity. Scapular and pelvic arehes and limbs present. Vomerine teeth on anterior or external border of vomer, which does not bomal the choma posteriorly. No parasphemid teeth. Liver not timely divaded. Cloaca without projectile mustles. Tail developed. No extermal gills. There is but one ceratohanchial bone, and but one basibranchial. There are three epibramehals. Besides hypohyals there are basilyals. No otoglossal. The stapes is direetly comected with the quadrate ly cartilage.
by all anthors the gems Amphima had been included in the same family division with Protomopsis and Megalobatrachms mutil 1866. At that time the writer proposed to separate it from the latter genera as the type of a family Amphimmidir, while the other genera were placed in another tamily with the mame Protomonsidar. This somse has not been followen by later writers; in the eatalogne of the British Masemm by Dr. Bonlenger (18se), for instance, the there genera are inclund in one fimily, the Amphimidir.

The reasons for kepping the Amphimmider distinct from the Protonopsidar were stated to be the following: *

Ampiominde: "An axial cranial bone" (? romer) in front of orbitosphemoins, and one forming palatal surtace in front of patasphemod. * * * Parietals prolonged laterally, not reaching pretrontals. Vesti-

[^25]bule, wall osseous internally. Premaxillaries consolidated. Occipital condyles on cylindrical pedestals."

Protonopside: "No anterior axial cranial boue. * * * Parietals and prefontals prolonged, meeting and embracing frontals. Wall of vestibule membranous internally. Premaxillaries separated. Occipital condyles sessile."
The following observations were made on the Amphiumidx: "The occipital condyles and temporocervical tendon are quite as in Desmognathus; they have not been previously leseribed.* In Amphiuma means there is a minute non-articulated boue on the suture between the o. o. frontalia and prefontalia in the situation of the lachrymal. There are some approximations to Ceceilia in Amphiumidæ. It does not appear to have been noticed that the * * * free margin of the frontal seems to foreshadow the overroofing of the orbit and temporal fossa seen in Cecilia. There is also a very large foramen or canal passing through the o. maxillare from near its middle to the orbit, foreshadowing the canalis tentaculiferus of Crecilia : a uarrow one occurs in the same situation in Protonopsis. Further, the prominent horizontal anterior inferior processes of the vertebral centra are the same in Amphimma and Cæcilia."

The characters assigned as above to the two families Amphiumide and Cryptobranchide are abundantly sufficient for retaining them as distinct. $\dagger$ The form of the occipital condyles might be excepted from this estimate, and the axial bone in front of the parasphenoid proves to be abnormally cut off in the specimen then examined. The Protonopside agree with other Urodela in all of the characters given, except in the exclusion of the frontals from the supraorbital borler, and in the membranous characteristic of the internal wall of the vestibule. The Amphinmide differ from other Urodela in the presence of a large ethmoid bone (the one referred to as? vomer in the diagnosis above quoted), in the presence of temporal ridges, and of two anteriorly directed hypapophyses of the precandal vertebre.

It is interesting to notice that three of the four characters just cited are shared by the Caciliida. The presence of the ethmoid is of especial importance, as it is an element constantly wanting in the Urodela. I have not found it in Desmognathus, Anaides, Spelerpes, Amblystoma, Salamandra, nor Cryptobranchns, nor is it present in Necturus or iu Siren. It is, on the contrary, always present in Ceciliida $\ddagger$ (see Plate ix, 3). The double anterior hypapophyses are otherwise confined to the same fimily.

The characters of the hyoid arches also distinguish this family from the Cryptobranchide, and they differ from those of the Psendosamria

[^26]as well. They are unione in the presence of only one ceratobranchial, Necturus ouly approaching it ia this respect. In the absence of the second basibranchial it agrees with Cryptobranchus, and approaches the Pseudosauria, where a part of it only remains. It also agrees with Cryptobranchus in the absence or confnence of the first epibranchial and in the presence of the three succeeling epibranchials.

This family is only known from North America.
There is but one gemus of this family, which is defined as follows:
A phargngeal slit on the side of the neck; vomerine terth in antero-posterior series; no scales; limbs much rednced; digits, two or three on each foot; prefrontal and nasal bones present ; a temporal crest; palatine bone not inclosing choane posteriorly; premaxillary bones coüssitied

Amphiuma.

## AMPHIUMA Garden.

> Smith's Correspondence of Limmeus, 1, p. 599 ; Wagler, Systema Am. phib., 1830 , p. 239; Tsclunli, Batr., 1829. p. 67 ; Gray, Cat. Batr. Grad. Brit. Mus., 55; Dum., Bilur, 1x, p 201; Bonlenger, Cat. Batr. Grad. Brit. Mas., el. ır, p. 82 ; Ryder, Proceeds. Acad. Phila., 1879, p. 14 ; Cope, Proceeds. Amer. Philosoph. Soc. 188i, p. 442.

Chrysodonta Mitchill, Medical Recorder, 1882, p. 529.
Sirenoides Fitz, Syst. Reptil. 1826, p. 34.
Muranopsis Fitz., l. c.; Gray, l. c.
The only portion of the shonlder girdle of this genus which is ossified is the scapula. The coracoid cartilages of opposite sides are distinct from each other, and there is a production of the precoracoid region The humerus is trucate at both extremities, making its articulations with cartilage only. The carpus is cartilaginons. The ossens ilium is quite short and slender; it has a long superior cartilaginous portion, which is attached to an equally long cartilaginons sacral rib. The inferior element is in undivided plate, which is wider than long, and presents an obtuse angle anteriorly. The posterior portion of each is occupied by a romnd discoid ossitication, which forms the posterior border, but does not reach sither the acetabulum or its fellow. The femur is rather long and has a distinct trochanter, but no head or condyles. The articulations are cartilaginons, as is the tarsus, which is also undivided. The tibia and fibula are abont one-sixth the length of the femmer, and the fibula is a little shorter and more slender than the tibia. The phalanges in hoth feet are well ossified.

The general character of these parts are deseribed in Stannins' Handbuch der Zoïlogic, but only as included in the definitions of the order to which Amphimma is referred.

Professor liyder demonstrated the identity of this genus and Murenopsis.

The range of this gemus is the Anstroribarian region. It has not been found west of Lonisiana, nor in the Mississippi valley north of Arkansas. It occurs in the Floridan district.

## AMPHIUMA MEANS Garden.

(Platres 9, fig. 7; 10; 11, figs. 1-!; 12; 13, fig. 5.)
Holl., N. A. Herp., v. p. 89, P1., 30 ; Dum. \& Bilır., p. 203; Gray, Cat. Batr. Grall. Brit. Mus., el. I, p. 5.i; Bonlenger, Cat. Batr. Grad. Brit. Musm, cid. if, 188:2, p. 8:3; Cope, Clecek List Batt. Rept. N. Am., 1875, p. 25 ; l'roceeds. Amer. Philos. Soc., 18*k, p. 5ef.

Chrysodoula larreformis Mitcli., I. c.
Amphimua menns s. didactyla C'iv., Mém. Mus., xiv, p.4, Pl. 1, fig. 1-3.
Amphimme didluctyla Wagl., Syst. Amph., p. zo!.
Siremeides dillu t!!lum F'itz., l. r.
-Imphimua hidlaclylı Cuv., Mém. Mus., Xiv, p. 7, Pl. 1, fig. 4-6; Folhr., N. A. Herp., v, p. 9:3, I'I.:31 ; Techurli, Batr., p. 97 ; Dum. \& Bibr., p. 203 ; Ryder Proc. Ac. Phila., 18:9.p. 11; Bonlenger, Chat. Batr. Gram. Brit. Mns., et. nI, 1832, p. 82.
Murauopsis tridurtyla Fitz., Syst. Reptil. p. 34; Gray, Cat. Bat. Grad. Brit. Mns., ed. I, 1. 5. ; Cope, Cherk-List Batr. Reptil. Nearctic Realm, 1875, p. 25.


Fig. 55. Amphinma means. No. 10865. Columbus, Miss; $\frac{1}{1}$.
In this species the general form is elongate, and much like that of an ecl. Of this length the tail ocenpies a proportion which varies from a hittle less than one-font! to a little less than one-fifth. This proportion depends on age, the large adnlts having shorter tails than the small and yomg ones. The body is depressed cylindric in furm. The form of the tail differs in different individuals from a vertical oval in section, to a triangle in section, with the angle upwards. Its extremity is always strongly compressed, and is slender, and the superior snrface may be rombled or angulate. There is no distinct contraction representing a neck. The head is an oval, and is narrowed very grad-
ually to the extremity of the romnded muzzle. It is much depressed also, so that the range of vision is vertical. The end of the mazale projects beyond the mouth, but the sides do not project. The number of lateral dermal grooves is about sixty.

The eyes are quite small, and are separated ly an interspace of five times their transverse diameter. They have no lids, so that the eornea is continnous with the ceplalic epidermis. The external mostrils are minnte, ant are separated by an interval a little less than half the interorbital space. The lips are large and full, those of the upper jaw overhanging, and concealing those of the lower except at the end of the muzzle. The lower lips commence on each side of the symphysis, and are decurved over the integument of the ramus, from which they are separated by a deep longitudiual groove.

In the premaxillo-maxillary series there are thirty-one teeth. The series terminates below a point posterior to the eye, and a little in front of the rictus oris. The vomerine series form a $\Lambda$ with the apex forwards. Their posterior end is nearly but not quite so fir posterior as the extremity of the maxillary row. All the teeth are compressed, and their anterior edge is abruptly recurved towarls the apex, so that the apex looks partly posteriorly. The posterior nares have a valyular opening, which looks backwards and ontwarls a little in advance of the ex. tremity of the romerine series, and nearer to them than to the maxillaries. The tongue is represented by a muscular mass, which oceupies the floor of the month. It is only free laterally, being separated by a deep groove fiom the mandibnar ramos. This groove is vertically divided by a membranons lamina for its entire length.

The skin is everywhere smooth. The segmental grooves are only distinct on the sides; on the belly they are indistinct, and on the dorsal region they are entirely wanting. There are ummerous mucons pores on the head. There are three rows on the maxillary region, the superior of which ceases below the eye, in front of a line falling perpendicularly from it. The median row terminates in one or two large pores a little behind below the eye. The inferior row extends farther and then becomes transcerse, and joins the superior branch of the superciliary row three diameters of the eye behind and within it. There is a row on each side of the muzale, which terminates in front of a line connecting the fronts of the eyes. Its place is taken by a supereiliary row, which forks behind the eye. The inferior half ceases behind the eye two diameters, while the superior one joins the transverse continnation from the inferior maxillary, and is contimed a short distance over each temporal mosele. There are no listinct rows of pores on the body. The head pores may differ somewhat from those described above from a laree specimen (No. 6300). Thas there may be only two maxillary series, and the superciliary row may not be distinctly divided. There are two rows along the superior part and two rows along the inferior part of the lower jaw.

The branchial fissure is situated nearly as far posterior to the canthins oris as the latter is posterior to the end of the lower jaw. It is in the anterior part of a fossa, and is borlered anteriorly and posteriorly by a narrow free membranous lamina. A short distance behind and below this is situated the anterior limb. The length of the limb is equal to the interocular space; in some specimens a little less. The humerus makes an angle with the rest of the limb, but the foot is continuous with the cubitus; it is divided into either two or three toes. The posterior limb is larger than the anterior, measuring nearly half as long again. Its posterior border originates a very short distance in front of the anterior extremity of the vent. It is compressed, and gently curved inwards at the knee joint. It is directed posteriorly, not quite reaching the posterior extremity of the vent. It is divided into two or three digits. The vent is a longitudinal slit, with a prominent margin. Its internal face is densely pappillose within the marginal border.

Measmrements of No. 6300.

Length of tail..................................................................................... . . . 182
Length to canthus oris ....................................................................... . . 047
Leugth to branchial fissure............ ....................................................... . . . 077
Length to fore limb.... ........................................................................ . . . 081
Length of fore limb . .......................................................................... . . . 0175
Length of hind limb ......................................................................... . . 024
Widlh between nostrils ...... ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 008
Width between eyes ...................................................................... . . 018
Wilth of head at canthns oris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 045
In specimens in alcohol the color is a dark slaty brown above and slate colored below. Its colors in life are said by Dr. Holbrook to be the same.

I have united into a single species the Amphiuma means and A. tridactyla in the above account. The description was made from a specimen (No. (0300) in which there are two toes on the anterior and three toes on the po:terior limb. In two specimens of the National collection on the toes are $3-1$ and $2-1$ in front. In the mmerons specimens (No. 7013) from Mississippi the toes are variable also. Mr. Ryder* has pointed out that one specimen displays the digits $\frac{2}{3} \frac{3}{3}$; a second $\frac{2}{2} \frac{3}{2}$; a third $\frac{1}{1}$ in front; others have the chamaters of the Means type, $\frac{2}{2} \frac{2}{2}$, and others the Tridactyle character, $\frac{3}{3} \frac{3}{3}$. All are young and from the same locality. Mr. Ryder concludes fiom these facts that the two supposed genera must be united. In this I agree with him; and after a study of the specimens in the National Musenm and in my own collection, I believe that the two species on which these supposed gevera rest are not distinguishable. I find no characters peculiar to any set of individuals.

Decelopment.-Prof. O. I'. Hay has observed the habit of this spe-

[^27]cies at the period of development of the young and describes them in the following language :*
"At the close of Augnst, 1887, I spent a few days in Little Rock, Ark., in the employ of Dr. Branner, of the Arkansas geological survey: On September 1 I visited a cypress swamp in the vicinity of the city for the purpose of collecting some reptiles. During the severe summer drought this swamp had been almost completely dried up, and there was little chance to get anything except by turning over pieces of fallen timber. Beneath a $\log$ of considerable size I found to my surprise a large auimal coiled up, which by its smooth glistening skin I immediately saw could not be a suake; but, having never before seen a living Amphiuma, it took me some time to realize that I had before me one of these animals. After making due preparation to prevent its eseape I gave the animal a push with a stout stick, and then, no attempt at retreat being made, I lifted it ont of the slight depression in which it was lying and let it straighten itself ont. Meanwhile I had observed, lying in the milst of the coils, a mass of moist-looking matter, nearly as large as one's fist. Pickiug this up, I discovered it to be a mass of eggs. This was put into a jar of alcohol, and immediately the young within the egg could be seen writhing about, thas showing that they were in an adranced stage of development. The mother offered no resistance on being handled, and was put into a small school satehel and carried to the State geologist's office, a mile away, with two empty fruitjars lying on her. That night she was kept in an empty boat-box.
This was some eighteen inches in height, and from it she made efforts to eseape. She would erect herself in one corner mutil her head was on a level with the edge of the box, but she could get no farther. Once in falling down she uttered a shrill somul somewhat like a whistle or the peeping of a young chicken. A cry like that of a young duek has been attributed liy some observer to the Siren, but Barton in some of his writings denies the statement that snch a somd is made.
"The limbs of these animals are very small. For instance, of this one, having a length of 31 inches, the hinder limbs are only three-fourths of an inch long, the anterior only one half an inch. Yet, when it was moving over the gromm or the flom, it was amusing to observe that its feet were put forward and drawn back, as if they really conld be of some nise.
"On irritating this Amphime ly pmshing her with a stick she wonld snap at it vicionsly, and on further irritation would seize it in her jaws and, springing from the floor in the form of a spiral, would turn rapidly romd and romul, thus twisting the stick in one's hand. Any enemy thas attacked would certainly find his interest in the affair fully aroused.
"There are two points in the structure of the adnlt to which I wish to call attention ; althongh no donbt they have already been observed
by anatomists. The first is that there is a little lobe of skin forming the anterior bonndary of the gil! opewing and another forming the posterior border. These can be very closely applied to each other, and seem to form a very efficient valvular apparatus, by means of which this useless relic of its larval life may be closed up. The other structure is connected with the montl. The lower lip is formed of a fold of skin that is separated from the skin of the throat by a deep groove that runs from the corner of the mouth to near the symphysis. This fold has a thin sharp edge, and is directed downward and ontward. The upper lip also has a sharp edge, which, when the mouth is closed, widely and closely overlaps the lower lip. This arrangement of the lips and that of the gill opening seems to me to have relation to the burrowing habits of these animals, and are designated to prevent the month and pharynx from being filled with mud.

The eggs of the Amphiume are the most remarkable that l know of as occurring among the Amphibians. The young, which now constitute the whole contents of the eggs, are surromded by a transparent capsule abont as thick as writing paper, and these capsules are counected by a slenter cord of similar substance. It is as if the gelatinous mass surrombling the eggs of the toad should become condensed into a solid covering and a connecting cord. How many strings there are of these eggs I can not determine with certainty, on acconnt of their being inextricably intertwined ; but, since there are fonr ends visible, there are probably two strings, one for each ovilnct. For the same reason I have not been able to comnt the eggs. A carefinl estimate makes at fewest 150 of them.
"The eggs in their present state are nearly globular, and average abont $9^{m u n}$ in diameter. Their distance apart on the string varies from is to $12 m m$; fourteen of them were comited on a piece of the string 9 inches long. At this rate the whole mass would form a string about 8 feet long. The connecting cord varies from $1.5^{\mathrm{mmn}}$ to one-half that dianmerer. The eggs greatly resemble a string of large beads.
"The young are coiled within the eapsules in a spiral formi. On removing them and straightening them they measure abont $45^{\text {min }}$ in length. The color is dusky above, with indications of a darker dorsal stripe, and on each side a similar darker band. Below the color is pale. The body is proportionally stonter than in the adult and the head broader. The fore and the hind feet have each three toes.
"The young possess conspicuous gills; and, since they are evidently near the period of hatching, it is but fair to suppose that they would continne to retain these gills for some time after exclusion. The gills are three in number on each side, and are simply pimate in form. The median gill is longest, measuring some $9^{\text {mun }}$ in length. From its main axis there arise about ten delicate twigs. The other gills are somewhat shorter, and give origin to about eight lateral twigs each. In all these filaments may be seen the blool- ressels filled with the large blood-cor-
puscles for which Amphimma is moted. Three gill-slits are open, of which the two posterior become closed in the adult. The eyes appear to better advantage than later in life.
"The finding of these young nearly ready for active life in such an mexpected situation suggests some interesting problems. At what period of their development are these eggs deposited? If at an early period, the mother must incubate them for a considerable time. If at a late period, why should they be placed in such a situation? In either case it appears to be quite probable that they are fertilized before they are deposited. Again, how are the eggs in such a dry situation saved from being thoronghly desiceated? They are, I think, kept moist by the body of the mother as she lies eoiled around them. My remembrance of her as she lay when first exposed is that she was much phomper than she now appears in aleohol; and when she was laid down on the office floor every spot she touchell was made wet. The source of this water I do not know; but it appears probable that it came from the numerous glands that fill the skin, and that the mother makes nocturnal visits to the water to lay in supplies."


Flif. 56. Amphiuma means. Thrce eages, with embryos in different positions. From liay, Americau Naturalist, 1888.

The Amphimua presents towards the salamanders the nearest affinity to the Desmognathide. The pedumeulate oceipital condyle and athantal insertion of the temporal muscle are the same in both, and are related to a similar form and probably similar use of the mazzle. By this arrangement the temporal musele lifts the entire heal by its insertion in the lower jaw, thas taking the place of cervical monseles. It can thus use the mozzle as a lever to burrow in mud and stones. Amphiuma means also resembles the species of Desmognathus in the possession of a chirrup or whistle. I do not know of another American salamander whiet possesses a voice. The eggs in both genera are laid in a rosary. I suspect that Amphiuma is a type which has degenerated from a salamander like Desmognathus, but which possessed an ethmoid bone.

Amphiuma means Gard.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9707 | 1 | Arlington, Fla. | 1878 | G. Brown Goodo.. | Alcoholic. |
| 10011 | 1 |  |  |  |  |
| 10891 | 1 | Oakley, S. C |  | H. L. Barker | Do. |
| 10899 | 1 |  |  |  | Do. |
| 6300 $4.53: 3$ | 1 | Fort Jessup, Ark |  | J. L. Brilge | Do. |
| 7013 | 10 | Biloxi, Miss.... |  | C. Belluran | Do. |
| 7065 | 2 | Riceborough, Ga. |  | Dr. W. L. Joues | Do. |
| 7062 | 1 | Charlestou, S. C |  | Dr: S. B. Barker | Do. |
| 7048 | $\stackrel{2}{1}$ | .................. |  | C. B. Adams . | Do. |
| 14561 | 1 | Nashvilie, Ga | July-1880 | W. J. Taylor | 1 Do. |
| 4534 | 2 | Prairio Mer lioug |  | Janes Fairie | Do. |
| 10865 | 1 | Columbus, Miss. |  | Spillman ...... | Do. |
| 14448 | 4 | New Orleans, La | 1883 | Dr. IR. W. Sbufeldt, <br> S. 1 | Do. |
| 7064 | 1 | Charleston, S. C. |  | Dr. Slumard..... | Do. |

CACLLIIDA.

Apoda Oppel; P'seudophidia De Bl.
Vertebre amphicolous, with anterior double hypopophyses. Vestibule with internal wall o seous. Ethmoid well developed. Squamosal and parietal more or less extended over temporal fossa. Scapular and pelvic arches wanting. Orbit surrounded by the max llary bone. Liver much subdivided. Testes, several o. each side. Two protractule museles of the male rectum, which project a port on of it as an intromittent organ.

This family has been usually regarded as representing a distinct order of Batrachia. I have diseussed this question under the head of the order Urodela, withiu which I have placed it as a suborder, which should bear De Blanville's name I'seudophidia. Besides the structural peculiarities alrealy pointed out, Peters and Sarasin have shown the bramehial apparatus of the larva to be peculiar. Inst: ad of forming loops in fibrille of precesses of the branchial arches, the branchial vein and artery ramify on the surface of membranous bladder-like expansions of the arches.

The numerons species of this fimily are distributed thronghout all tropical regions except those of the Australian realm. They are most abundant in tropical Ameriea. Their habits are subterranean, their iives being mostly spent in the nests of ants, which they eat. Ai the proper season they repair to the water and deposit their eggs. The larvae pass through their metamorphosis early in life. All of the speeies are nearly blind.

This family appears to me to have been derived from the leg-bearing Urodela through the Amphomida, by a process of degeneration. Additional eridence in favor of this rew is found in the discovery by Strasser, of small cartilages in the position of the inferior elements by the scapular areh. This degeneration may be regarded as the result of the
inactive life consequent on parasitic habits. The same result has befallen the Lacertilian tamily Amphisbanide and the Ophidian family of 'Yphlopide. Both of these are, like the Ceeciliinac, parasitic in auts' nests, and both have become nearly blind and have lost their organs of progression, whether limbs or abdominal seales. To aid them in their dark habitat a peculiar tentacle has been developen in this family, which issues from a canal of the maxillary bone. This canal passes from the orbit, and the tentacle which ocenpies it is furnished with a muscle and nerve (Weidersheim). It is probably homologous with the "balancer" of the urodelons larra, which sometimes persists as a nonretractile tentacle in several of the species of the salamandrine genns Spererpes.
The Caceiliidte have been divided into a number of genera by Peters. The presence or absence of minute scales defines some of these, and the form and position of the tentacular opening others. Some of the latter do not appear to the writer to be well fommed.

No species of the Caciliidat enters the geographical bomudaries of the nearetic realm.

Plate 11 represents the skull and some vertebre of the Chthonerpeton indistinctum, R. \& L., a representative of the family from Brazil.

## 'TRACHYSTOMATA.

Vomeropalatine bones wanting. Supracecipitals, interealaria, and basioceipitals wanting. Maxillary bones wanting. Propodial bones not coiissified; canulal vertebrad distinct.
This orler, which was proposed by Miiller, has but few living representatives, nor has palcontology disclosed with certainty any extinct ones. The range of its vandion beiug thas unknown, I confine myself chiefly to a discussion of the characters of the only family which it contains, the Sirenider. The order is distingnished, as above indieaten, by the absence of many bones of the skull usmal in vertebrata and Batrachia-a result which is apparently due to a loug process of degeneracy.

## SIRENID.E.

Vertebre amphicelons; pterygoidea wanting ; premaxillary and dentary bones toothless: patches on the parasphenoid ; two pairs of eeratobranchials; a second basibranchial continnous with the first ; several epibranchials; no otoglossal; the stapes not directly connectel with the quadrate; mandibular articulation by a ball-and-socket joint, the ball on the mandible, the cotylns in the quadrate.
ln the known genera of the family the nasal bones are embraced by the spines of the premaxillary bone; the vomeropalato pterygoid areh
is present as a cartilaginous band; the prefrontal bones are wanting; the orbitosplienoids are large and expanded laterally in front, so as to form part of the palatal surface. The carpus is cartilaginoms, and there are no hind legs or pelvic arch. There are external branchix, which consist of branching processes of the integument of the epibranchial elements. The latter are separated by branchial fissures of the walls of the pharynx.

In the genus Siren the cranial extremity of the ceratohyal is free from the cranium, but is connected with the stapes by a strong ligament. In this respect this gemus resembles the aulults of the true salamanders, or Pseudosauria, rather th an the other peremibranchiate forms, or the Tre motodera and Amphimoïdea. In its four epibranchial cartilages, however, it resembles the larva of the Pseudosanria, as also in the presence of a second basibranchial, connected with the first anteriorly, and expanding posteriorly. This mixture of characters of the adults and of the larve of psendosaurian urodela has a significance which I will further illustrate.

I have already pointed out (American Naturalist, 1885, 1.245 ) that palieontology shows that the order of Trachystomata is a degenerate type, if the structure of its skull, limb-arches, and limbs be consideret. 1 have also reason to believe that there are indications of a retrograde metanorphosis to be found in the history of its branchial apparatus. I was for a long time at a loss to account for the curions condition which Ihald observed in the branchie of the sirens. The fringes are frequently in at state of apparent partial atrophy and inclosed in a common dermal imvestment of the branchial ramus, or all the rami are covered by a co:mmon investment, so as to be absolutely functionless and immovalble This character observed in the Pseudobranchus striatus, gave origin to its separation from the genus Siren. The character is, however, common to the Siren lacertina at a certain age, and the real difference between the genera depends on the different number of the digits and pharyngeal fissures in the two.

I have also observed that the functionless condition of the branchire is universal in young individuals of the Siren lacertina of five and six inches in length, and that in a specimen of a little over three inches they are entirely rudimentary and subepidermal. I have, in fact, noticel that it is only in large adult specimens that the branchise are fully developer in structure and function. The inference from the specimens certainly is that the branchie are in the sirens not a larval character, as in other pereunibranchiate Batrachia, but a character of maturity: Of course only direct observation can show whether sirens have branchie on exchusion from the egg ; but it is not probable that they differ so much from other members of their class as to be withont them. Nevertheless, it is evident that the branchia soon become functionless, so that the mimal is almost if not exelusively an air breather, and that functional activity is not resumed till a more adranced age. That Sireus
may be exclusively air breathers I have shown by observations on a specimen in an aquarium which, for two monhs, probably from the attacks of fishes, had no branchie at all. (See Journ. Ac., Phila., 1866, p. 98).

In explanation of this fact, it may be remarked that this atrophy can not be accounted for on the supposition that it is seasonal and due to the drying up of the aquatic habitat of the sirens. The countries they inhabit arehamid, receiving the heaviest rain-fall of our Eastern States, and there is no drought. The only explanation appears to me to be that the present Sirens are the descendants of a terrestrial type of Batrachia, which passed throngh a metamorphosis like other members of their class, but that more recently they have adopted a permanently aquatic life, and have resumed their branchiae by reversion.
This hypothesis is confirmed by the relations of the stapes to the suspensor of the lower jaw. It is not connected with the quadrate cartilage, as is the case with the Protiide, Cryptobranchide, Amphinmide, and the larree of salamanders, but is distinct and is connected posteriorly with a stapedins muscle as in adult salamanders.* (See Pl. 46, fig. 5.)

There are but two known gencra of this fimily, which differ as follows:
Digits fonr ; branchial fissures nornally threc..... ............................. Siren. Digits tluree ; branchial fissures one. .................................... Pseudobranchns.

## SIREN Linnrens.

Ammitates Academic:e, vif, 1i65, p. 31 L (testo Holbrook); Systema Nature 12, ed. г, p. 371, 1766 ; Op. eit. 13, ell. i, Addenda, 1867 ; ibid., Turton's ed., 1802, 1, p. 671 ; Tschudi, Batrachia, p. 93 ; Gray Cat. Brit. Mus., p. 68; Dim. \& Bibr. Erp. Gcı., ix, p. 191 ; Boulenger, Cat. Grad. Brit. Mns., ed. II, p. 86, 1832.

Phanerobranchus, pt. Leuckart Isis von Oken, 18:21, 1. 260.
Digits four; jaws with horny sheati ; tumge large, free in frout; eyes distinct; extermal branchia three. A patch of teeth on each side of the palate standing on three plates, which are attached to the parasphenoid bone. Three branchial fissures on cach side in the adult.

In this genus there are narrow cartilages on the approximated extremities of the first basibranchial and the ceratohyals, in the position of a basilyal and lypolyals respectively.

The transverse processes of the vertebrer are very much expanded horizontally at the base, but they terminate in a pointed apex.

[^28]
## Sllien Lackitina Lim.*

Am@nitates Academicar, vir, p.311, 17 (ij ; Systema Nature, cd. 13, I Addenda; Cuv. in Humb. Obs. Zool., I, 1. 28, Pl. 11-14; Daud., Reptil., viII, p. 272, Pl. 49, fig. 2; Holb., N. A. Herp., v, p. 101, Pl. 34 ; Tschadi, l. c.; Dum. \& Bibr., p. 193 (part); Bonlenger, Cat. Batr. Grad. Brit. Mus., ed. if, 1882, p. 87.
Phancrobranchus dipus Lenckartr l.c.
Siren intermedia Leconte, Ann. Lyc. N. Y., 1828, 1. 133, Pl. 1; Holbr. l. c., p. 107, Pl. 35 ; id., ibid, p. 69.

2.


In general form this animal is quite elongate, and the tail is considerably shorter than the body, measuriug one half of the length of the head and body together. Thie head is a longer or shorter oval in outliue, and the end of the muzzle is rounded, truncate, and projects beyond the lower jaw to a moderate degree. In protile it is depressed, and the line of the front gradually descends from behind.' The fore limb is short, measuring just half the distance between its anterior base and the end of the muzzle.

The eyes are very small, and are corered by a thin epidermis or cornea. They are situated just one-third the distance between the end of the muzzle and the base of the anterior external branchia. The upper lip is pendulous at the sides of the mouth, overlapping the lower lip. The latter is free and peudulous at the sides, and is bounded below at the base by a deep groove, which may or may not be continuous round the entire chin. Thus it is complete in seven specimens and incomplete in eighteen. Both conditions are seen in specimens from the same locality, as, for instance, those from Riceborougli, Ga., and Matamoros, in Tamanlipas. The external nares are well separated from each other, and are short transverse slits.

The superior horny sheath is quite short, covering only the premaxillary bone. It has a sharp edge, and is black in color. The lower sheath is much longer, covering the entire edge of the dentary bone. It is also sharp-edged and black. The tooth patches vary in proportions in different individuals. They are distinct from each other, but are in contact anteriorly and diverge posteriorly. The teeth are small sud acute, and are arrauged in numerous transverse rows in each patch. In adult individuals the patches have an oral outline, but their width varies, and in some others and in immature examples they are more or less linear. Thus in one specimen from Matamoros the vomerine teeth are reduced to a line on each side, the two forming a $\wedge$. In one from (xeorgia the same arrangement occurs, but in a second from the same locality, and in every other respect similar to it, the teeth are in a wide patch. In two others the patch is intermediate in characters. The surface of the tongue is smooth, not displaying plice or large pappillae. It occupies nearly the entire floor of the mouth. The internal nostrils are each a hole at the exterior side of the parasphenoid patches of teeth, at tie point marking the posterior third of their length.

The fingers are moderately elongate, and are perfectly free from dermal web or border. Their lengths are in order, commencing with the shortest, 5-2-4-3. The third and fourth are sometimes of equal length.

The branchiæ, when fully developed, form a bipinnate frame-work, to which the ultimate fibrillæ are attached; that is, the primary stem sends a row of secondary branches downwards on each side, and these again ternary branches on each side. To the under side of these the fibrille are attached. They are quite short. The entire buanchia is short and not produced at the extremits, as is the case with Necturus
punctatus and larvie of Amblystoma. In Proteus the secondary brauches are also present. The fibrillæ in Siren present different conditions, perhaps dependent on the character of their environment as to the abundance of water, etc.s and indicating different degrees of functional efficiency. I have discussed this question under the head of the family Sirenidæ.

The body is rounded, subquadrate in section, and displays an indistinet median dorsal groove. The transverse grooves are distinct on the sides and nearly meet on the belly, but are not distinet on the back. They vary from thirty-one to thirty-seven in number. The larger specimens generally have thirty-six and thirty-seven grooves, while smaller ones frequently have only thirty one and thirty-two. The specimens with thirty-three, thirty-four, and thirty-five are of medium size; but a full-sized one from Georgia (No. 4535) has thirty-tro, and a small one from South Carolina (No. 10514) has thirty-four. It was on specimens presenting the characters of the smaller individuals above mentioned that the $S$. intermedia of Leconte was proposed. I can not distinguish it from the ordinary form. The skin is everywhere perfectly smooth. The tail is compressed from the base to the extremity, and for its distal half is quite thin. It has a strong dermal fin above and below. It commences above opposite to the anterior extremity of the vent, and below about one-fourth the length of the tail posterior to the vent.

The branchial fissures, as remarked in the disenssion of the supposed retrograde metamorphosis of Siren, may be one, two, or three, on one or both sides. In a series of small specimens from Sonth Carolina (No. 14111) the fissures are as follows: $2-1,3-2,2-2,2-2$. In a similar series from Georgia (No. 4535) they are 2-2, 3-3, 2-2 larger than last; $2-3$ same size as last, and $3-3$ fully grown.

Measurements of No. 8349.
11.

Total length.................................................................................. . 714
Length of head and body ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Length to axilla ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $08:$
Lengtli to first branchia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 055
Length to line of canthus of mouth. .......................................................... . . . . 019

Length of fore-leg from axilla ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0385
Length of linmerus from axilla. .... ............................................................. . . . 019
Length of cubitns ................................................................................. . . 016
Wilth between nostrils....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0165
Willth between eyes................................................................................... . . 023
Width of head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04:
Expanse of fore limbs extended ............................................................... . . . . . . 114
Depth of tail at middle........................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 065
The general color is a dark lead-color, usually darker above than below. There is in some specimens a yellow band, with irregular or badly defined outline, extending aromm the muzzle and nipper lip to the base of the anterior branchia. In some specimens this band includes the chin;
in others it is present on the cheeks only. In a fully grown specimen from Matamoros, 'lamaulipas, this band is continued along the side for one-balf the length, beyond which point it is represeuted by scattered yellow dots. A second similar badly detined band originates at the lower edge of the axilla, and extends along the inferior part of the side for two thirds the length of the superior band. These bands have tho position of those seen in the Pseudobranchus striatus. In a second equally large specimen from Matamoros these bands are wanting.

The geographical range of the Siren lacertina is the best measure of the extent of the austroriparian region of North Anerica. It appears in the middle of eastern North Carolina, and extends thence throughout the southern Atlantic and Gulf States throngh Texas to the west side of the Rio Graude, where it ceases. Northwards it ascends the Mississippi Valley proper as high as Alton, Ill., and eastward in the Wabash basin, in Indiana, to Lafayette (Conlter), and the White River (Jordan).

## Siren lacertina Linu. <br> leseserve selites.

| Catalogne number. | No. of spiec. | Locality. | When collected. | From whom received. | Nature of spocimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8349 | 1 | Neuse River, N. C |  | II. W. Welsher | Alcoholic. |
| 8537 | 1 | Columbia, S. C | Mar. - 1876 | E. E. Jackson |  |
| 9192 | 1 | Mount Carmel, Ill. | July 22, 1877 | Robert Ridgway | Do. |
| 9317 9193 | 1 | Oakley, S. C. | May 1,1877 | F. W. llay ward | Do. |
| 10514 | 1 | Columbia S. | -1878 | E. L. Jackson. | Do. |
| 10852 | 1 | Upson, T'exas | 1880 | Albert Turpo. | Do. |
| 10853 | 1 |  | 1880 | ......do | Do. |
| 7067 | 1 | Charleston, S . |  | Charleston Academy | Do. |
| 5040 4535 | 2 | Georgia. <br> liceborongh, | Feb. 1,186t | Dr. W. L. Jones | Do. |
| 4535 5201 | 4 | Riceborough, Ga. | Feb. 4, 1861 | St. Cuarles Colleg | Do. |
| 4048 | 4 | Matamoros, Mexico |  | Lieut. 13. Couch, U. S. A. | Do. |
| 10313 | 1 | Oakley, S. C........ | May 11, 1879 | F. W. Hayward ..... | Do. |
| 5960 | , | Matamoros, Mexico |  | Lieutenant Couch | $1)$. |
| 12593 | 1 | Wilmington, N. C. |  | Donald McRae | 1\%. |
| 7018 | ${ }^{2}$ |  |  | C. B. Adams | 1 O . |
|  | 2 | San Diego, Tex | June -, 1888 | W. 'xaylor | Do. |

GENERAL SERIES.


## PSEUDOBRANCHUS Gray.

> Aun. Philos., 1825, p. 216 ; Cat. Batr. Grad. Brit. Mus., 69 ; Bouleuger, Cat. Batr. Brit. Mus., ed. II, 1882, p. 87 .

Digits three. Jaws with horny sheath. Tongue free in front; eyes distinct. External branchis three. Parasphenoid teeth in two rows, united in frout, forming a longitudiual $\boldsymbol{\wedge}$. One branchial fissure on each side.
The reduced number of digits and of branchial fissures are the characters which separate this geuns from Siren. The peeuliarities found in the branchice are shared by the latter genus. But one species of Psendobranelus is known.

## PSEUDOBRANCHUS STRIATUS Leconte.

Gray, Anu. Philos., $13 \cdot 25, \mathrm{p} .216$; Gray, Cat. Batr. Grad. Brit. Mus., ed. I, p.
69 ; Boulenger, Cat. Batr. Grad. Brit. Mus., cul. if, 1882, p. 87.
Siren striata Leconte Aun. Lyc., N. Y., 1524, p. 52, Pl. 4; Tschudi, Batr., p. 98.
Holbr., N. A. Herp., v. p. 109, Pl. 36 ; Dum. \& Bibr., Pl. 96, fig. 1.
This speeies is much smaller than the Siren lacertina, and differs from it in a good many eharacters. The body is cylindrie, and the tail measures two thirds the length of the head and body and a little more. The head viewed from above has a rather narrow oval ontline, and its extremity is rounded without truncation, or sometimes acuminate. In profile the frout descends regularly to the end of the muzzle, which overhangs the mouth by a little. The eyes are quite distinct, though small, and are on the border of the head when riewed from above, but have more upward than lateral direction. The mouth is very small and does not extend so far posteriorly as the anterior border of the eye. The upper lip is pendulous, overlapping the lower, so as to reduce the month when closed to a small aperture on the middle line in front. The lip of the lower jaw is not recurved, and there is no groove passing aromed the chiu. The external nostrils are in the upper lip, not very near its elge, but they are not visib'e from above. The distance between them is three quarters the length of that between the eyes.
The parasphenoid series of teeth are but little in contact in front, and each one consists of two or three rows. They extend anteriorly near to the premaxillary and posteriorly to opposite the rictus oris. The choance are romed, and are at the external side of the parasphenoid series, one-fifth the distance anterior to their posterior extremity. The tongue is narrowed and acuminate in front, and its free portion is relatively longer than in the Siren lacertina.

The branchie liave not the same character as those of the Siren lacertina, being tripinnate on the external side only. The first is much shorter than the secomt, which is shorter than the third. The single fissure is below the base of the second. I have not found a second fissure in this species, nor have I found this one closed in individuals with
aborted branchix, as oceurs in the case of the other two in Siren lacertina. The limbs are short and weak, and their length enters that from their base to the end of the mazale tiro and a haif times. The lateral toes are generally of equal length, and the median one is a little longer. All are acute at the extremity.

The skin is entirely smooth, and there are thirty four transverse grooves between the axillie and the vent. The eross-grooves are continued on the tail, so as to be distinct for two-thirds of its leugth. The tail is but little compressed for the proximal three-fourths of its length, the vertical section being rertically oval or lentieular posteriorly. A narrow dermal free border commences at the end of the proximal fifth of its length and iucreases in width to the tip, but is never as wide as in the siren lacertina and in the Necturns and Cryptobanchus. The inferior dermal border is less extensive, existing only on the terminal fifth of the tail. The tail is relatively longer than in the Siren lacertina. The follicles of the skin are large, and so close together as to give the surfate a reticulated aprearace. There are no distinct mucons pores of a deeper chatacter.


Measuremen's of 5051.
Total length................................................................................... . 152
Length to end of veut........................................................................ . . 087
Length to axilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 013
Length to first branchia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 010

Length to rictus oris .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 002
Length of fore-leg . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 004
Length of fore foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0015
Wicith of hearl (mreatest) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 006
Width betwceи eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 003
Width of extended fore limbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ............... . . . . . 015
The general color is chocolate brown, more or less tinged with leadcolor, especially when the epidermis is fresh. A rather wide yellow band commences at the last branchia amb extends along the side to near the end of the tail. It is contimed, but less distinctly, from the branchite forwards to the end of the muzzle. A narrower band com-
mences just below the brauchix and extends along the side of the abdomen parallel with the superior band, to nearly opposite the rent. In some specimens a similar band extends from the vent along the median line below to the end of the tail, but this is frequently wauting. More frequently the dermal keel and border on the snperior edge of the tail is jellow, and this color is sometimes prolonged on the median line of the back for the posterior half or more of its length. The belty has rather large, more or less longitudinal yellow spots; and the ground color between the lateral bands is similarly but less coarsely spotten, except on the tail, where the spots are dense. The fore limbs are yellow, with a brown tinge.
The branchiæ of this species display partial or entire abortion in a larger proportion of individuals than in the Sircn lacertina. An epidermal sheath may inclose the fibrillie on the external side only, or ou the external and internal sides. In ten specimens five have the epidermal covering on both sides, three have the fibrillie free at the lower edge of the branchia, and in two the fimbrix are free on the entire posterior face. Sometimes the first branchia is inclosed in a distinct sheath from the other two, and sometimes all are distinct. The insheathing membrane may be continuous at the inferior edge of the brauchia with the epidermis of the throat. In this case a small fissure remains, corresponding with the one on the pharyngeal wall.

This species is so far only known from Georgia and Florida. From the latter State I have received it from Volusia.

Pseudobranchus striatus Leconte.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whon received. | Nafure of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7010 | 5 |  | 1855 |  | Alcoholic. |
| 5051 | 4 |  | Feb. 1,1851 | I)r. W. L. Jones | Do. |
|  | 10 |  |  |  |  |

## SALIENTIA.

Laurenti, 1768.
Anuru Duméril, 1804.
OSTEOLOGY.
Supraoccipital, basioccipital, intercalary, supratemporal, and postfrontal bones wanting. Frontals and parietals comate; prefrontals present; nasals wanting or rudimental. Vomers and palatines present, distinct from each other, the latter inclosing the internal nares and joining the pterygoids. Maxillaries, premaxillaries, and ethmoid present.

Vertebral bodies undivided, separate proatlas wanting. Vertebre very few, on account of the anterior attachment of the pelvis and the disappearance of some aul fusion into a single styloid bone (the urostyle) of others of the vertebre posterior to the point of attachment. Ribs very short or wanting.

Coracoid, clavicle, and scapula osseous, well developed ; procoracoid, epicoracoid, and suprascapula cartilaginous. Sternum present, entirely posterior to the coracoids. No presternum nor interclavicle, but frequently a median element anterior to the clavicles called the omoster 11111.

Pelvis consisting of the usual three elements, the inferior pairs closely uniter, forming a compressed boly without obturator foramina. Ilium subeylindric, very elongate.

Humerus without distinct head proximally, but with an epiphysis. Distally a globular condyle. Other long bones with epiphyses at both extremities. Astragalus and calcanemm elongate, forming a limb seg. ment. Carpal bones well developed, some of them, especially of the distal series, confluent. Tarsals of the distal series much reduced in size and numbers. (Plates 47, 59, etc.)

The anditory appendages differ from those of the Urodela, Proteida, and Trachystomata in their greater complexity. There is a cavom tympani or external ear and a series of ossicles and cartilages extending throngh it, structures all wanting to the orders mentioned. The stapes is, like that of those orders, an oval disk, which has no contimous process, but gives origin at its middle to the stapedius mascle. Immediately in front of it there arises an osseons rod, the interstapedial bone. Its base is cartilaginous, and is expandel with concave surface fitting the eonvex surface of the skill. This rod terminates at the superior interruption of a flat ammar cartilage (Annulus tympanicus), which lies on the quadrate cartilage and over the concavity formed by its forwards flexure. The mesostapedial cartilage is attached by a point on its interior face to the apex of the interstapedial, somerbat as an anther of a flower is attachell to its filament. Its superior portion is shorter, and is connected with the quadrate above by the mesostapedial ligament. Its inferior portion is more or less expanded distally. Its external face is Hat, and is applied to the inner side of the disciform epistapedial. The latter is applied like a lid to the annular cartilage already mentionel. The mesostapedial then occupies a place between the annular and the epistapedial cartilages. The membranum tympani fits closely over the latter. (Plates 40-50.)
The hyoid apparatus differs materially fiom that of the orders meutioned. It ean only be understood by reference to its development from the larval stages. There are present in the larva a ceratolyal on each side and a first basibranchial, as in Urodela. The hypolyal is connate with the former. I'osterior to the basibrauchial, two lateral cartilaginous plates, the "hyobranchials," meet on the middle line.

From the external elge of each of these four cartilages the ceratobranchials radiate. The fourth or posterior is frequently contluent with its hyobranchial. (Plate 51, fig. 1.) With the completion of the metamorphosis the basi- and hyobranchials fuse into a single piece, aud the ceratobranchials unite with the same plate, excepting the fourth, which, becoming ossitied, furms the only true bone of the region. In some types the ossification becomes more extensive, as in Cyclorhamphus; (Plate 76, fig. 10.) Sometimes the third ceratobranchial is ossified, as in Alytes (l.c., fig. '2) and Hemisus (l. c., fig. 18).
The digits of the Salientia are apparently four anteriorly and fire posteriorly; there is generally a rudimental digit, in addition, on the inner side of each foot. The thumb is especially well developed in the Hylid geuns, Hypsiboas Wagl.; (Plate 72, fig. 26.) The inner digit of the posterior foot, or the internal hallux, as it is called, has three elements in some of the Ramas (see Plate 65, Rana catelesiana), while in other forms the digit is principally represented by a large flat phalange. This is called the spur or metatarsal tubercle in works on the sulject, and it is sometimes incorrectly referred to the tarsus.

The curpus of the Salientia has but two proximal elements, the intermedium not being distinet. There is a large centrale, which forms part of the inner border of the palm. The order is further characterized (except in the Discoglossidee and the Aglossa, $q, v$.) by the fusion of the fourth and fifth carpalia into a single element, the unciforme. The other three carpalia are distinct, and the first is frequently displaced to form the base for the metacarpus of the thumb. The large size of the astragalus and calcanemm have been already referred to. The tarsus is further peculiar in the absence of intermedium and centrale and the absence of tarsalia, except a rudiment or two near the inner part of their usual position. (Plate 73.)*

## INTEGUMENT.

The slight attachment of the integument to the muscles is a wellknown feature of the Batrachia Salientia. Tbe manner of their attachment presents many varieties in the different groups. It is as follows: A transverse partition of comective tissue holds the integument along the acromials and another along the coracoids; a longitudinal band on each side of the back (frequently marked externally by a glandular fold) and one below it ou each side of the abdomen; a band or line along the hinder inferior face of the thighs, exteuding nearly to the popliteal region, and a delicate one along the upper hinder face of the same, from the groove between the superior and posterior muscles.

[^29]The attachments are similar to the last in the Dendrobatidx, in Eupemphix, and in Brachycephalus. In Engystoma ovale the lateroventral line is broad, or composed of several series of tibers and lamine, ant in E. carolinense it is composed of two septa. In Pseudophryne the dorsolateral septum, as well as the last mentioned, is widened; Ploryniscus is similar, except that the dorsolateral is marrower posteriorly, but, rapidly widening, meets its mate on the nape, forming a broal transverse attachment. In Atelopus lavis the integument between the dorso and ventrolateral septa is attached, forming a broad lateral adherent bant. In Rhinophrynus dorsalis this lateral attachment is carried so far as to leave only narrow free dorsal and ventral regions, while it is further peculiar in wanting the coracoid septum, as in Discoglossus and Xenopus. Epidalea, Bufo, and Peltaphryne, iu their numerous species, auld to the raniform structure the attachment of the whole dorsal iutegnment. The following table exhibits the other attachments.

Belly broadly free, very narrow lateroventral attachment: Bufo homutilicus, leschenaultio.
Belly broally free, broad lateroventral attachment: B. americanus, lentiginosus, cognatus, chilensis, columbicusis, vulgaris, uaricus, vallicips.
Belly broadly free, posterior fourth or fifth abdomen attached: gracilis, compactilis panthcrimus.
Lateroventralattachment very broad, leaving but narrow free abdominal space: $B$. conifcrus, qucrcicus, intermedius, punctatus, alvarius, diptychus.
Ventral integument atttached: 1 , coccifer, insidior, viridis, kelaarlii (posterior half attached).

A considerable variety is exhibited by the families of the Arcifera. In the genera of Discoglosside examined (Discoglossus and Bombinator) the attachments are as in Ranide, except the absence of the coracoid septum, as iu Xenopus. On the contrary, in the Scaphiopoditae, the integument is more or less entirely allerent above and below. The greater number, including the typical forms of Hylides, add to the ranid arrangement a close areolar attachment of the abdominal skin, while it is characteristic of many species of Cystignathilie to possess one or two transverse simple posterior abdominal septa. For the many variations and exceptions, see under the respective families.

Of the Aglossa, Xenopus lacks the coracoid and inferior femoral attachments; there is a donble or treble, but not wide, lateral adlesion low down, which may be a combined dorsolateral and dorsoventral, or broal dorsorentral only. In Pipa all the attachments are wanting, except two closely approximated lateral lines and a superior posterior and anterior inferior femoral.

## viscera.

With regard to the differences in the arrangement and structure of the internal organs a great deal remains to be observen. Hente (Anatomie des Kehlkopfes) points out some inconsiderable differenees in
the form of the cartilages of the larynx. The size and number of the pulmonary cells vary considerably. Among Hylidæ, especially those species with a loud voice, they are fewer and larger than in Discoglossidæ and Scaphiopide. The forms of the sinus, auricles, veutricle, and bulbus arteriosus, the three aorta bows, of which the median form the aorta roots, etc., appear quite identical externally in the Discoglossus, Scaphiopus, and Phyllomedusa. Internally the two former present the known characters of the Amma, i. e., the union of the distinct ducts of the first (pulmonary) and second (aortic) aorta bows throughout much of their length, the separate union of the two former aud continuance on the left side of a high free sentum of the bulbus, till they are finally turned over the right division toward the right, and have a common issue from the ventricle. A conic pocket valve is at the origin of the bifurcation of the ductus communis of the second and third aorta bows, but none in any part of the course of the pulmonary.
The general cbaracters of the venons system have been described on page 10. The researches of Hochstetter* and Howes $\dagger$ have shown that the cardinal veins do not disappear in all of the Salientia. Hochstetter in fact believes "that the vena cava inferior, instead of being throughont its whole extent a primarily independent ressel, is a compound structure, the product of a fusion between a late-formed hepatic vessel and one or both of the posterior cardinal veins" (Howes). In Batrachia the postrenal portions only of the cardinals go to form the vena cava posterior, and the prerenal portions disappear or remain as azygos or hemiazygos veius. Their persistence is shown to be frequent in the Discoglossidie, in Bombinator (Hochstetter Howes), Alytes (Howes), and Discoglossus (Howes). It is wanting in olher Salientia, includiug the Aglossia, Pelodytidie, and Pelobatidæe (Howes).

The general character of the brain in the Salientia may be gathered from Plate 56. As I omitted, by an oversight, to refer to the characters of this region in my anatomical introduction (pp. 1-12), I introduce here some remarks on its peculiarities in the Proteida, Urodela, ete., as well. In the Proteida (Necturus, fig. 1) the thalamencephalon is exposed by the non-production posteriorly of the prosencephalon. Iu Urodela generally (Plate 40) and in Salientia it is moderately exposed ; in Ceceiliidze (Plate 56, fig. 3) it is generally concealed. In all the tailed forms there is a large vascular "supraplexus" protruding from between the hemispheres. Posterior to this the epiphysis appears; it is small in all the orders. The hypophysis is on the other hand large. The cerebellum (epencephalon) is a mere commissure in the entire class. The diacolia, mesocoelia, and metacolia are only separated by slight constrictions of their walls. The metacolia is covered in the Sillientia by a triangular choroid plexus (Plate 56 p.c.). In Proteida, Urodela, and Trachestomata the olfactory lobes (rhinencephala) are distinct; but

[^30]in the Satientia they are confluent with each other. In Xenopus (Plate 54 , fig. 18) the thalamencephalon is more entensively exposed than in other Salientia.*

The form of the liver cioes not differ from the asual type in any of the varions speeies examined, exeept in the Firmisternia. While most Salientia have this organ divided into three lobes, there are but tro in the Brevicipitidie, Engystomida, and some of the Phryniseidæ. In the alimentary canal there appears to be little variety in important points. The stomach has generally a more longitulimal position than amoug Bufoniformia, except among Scaphiopide and in Ceratophrys, where it is equally transverse. No intestinal valves were observed in Pelobates, IIyla, Phyllomedusa, Ceratophrys, but a strong pyloric mus. cular constriction in Pleurodema, and one at the extremity of the small intestine in Cystignathus paihypus. (Plates 53-55.)

The testes are single in examples of all the types examined, and not strietly symmetrical ; they are varionsly situatel with reference to the kidneys. Thus in Ranoidea aurea, and Trachyccphalus lichonatus they are clongate and at the middle of the length of the kidsers, while in Hypisboas boans and Scytopis remulosus they are oval, and one or both at the anterior extremity of the latter. In Phyllomedusa soleroderma they are more than half the length of the brond kidneys, the right originating at the anterior extremity of the latter, the left but little behiml it. Both have their posterior apices in close contact at the posterior fourth of the length of the kidneys, which are in close connection for their posterior third. In Discoglossus the testes are oviform, well separated, and anterior, and during the breeting season attain a remarkably large size. During the same in Cystignathus pachypus they are not materially enlarget, are elongate, and only in contact with the kidneys for a small posterior prart of their length.

The oraries and oviduets do not essentially vary among the Salientia When the latter are fully ocenpied by eggs in an advanced stage they are folded, but differently in the same speeies. The oviducts are remarkably slender in Hyla nasuta (Litoria Giinther), and in Scytopis the fontanelle is on each side behind the partial diaphragm, at the superior anterior onter angles of the liver. In several young female specimens of Ranoidea aurea of the size of Rana silvatica, in which the frontoparietal fontanelle is not closed, the oviducts do not extend farther anterior than the ovaries; in adults, with the cranimm complete, they have the usual extent. In Cystignathus ocellatus the "nterine" sacs at the exit of the oviduets are of great size, and at certain seasons dis tended with an albuminous gelatiue, when they present several conso lutions. In spirits they oceasion the presence of a large convoluterl mass of coagulum.

[^31]
## REPRODUC'IION.

The Salientia have, in temperate climates at least, an annual period of reproduction, which occurs in the spring. The male is without intromittent organ, and fertilization is accomplished by the discharge of the spermatic fluid of the male on the eggs as they leave the body of the female. In order to accomplish this effectually the male attaches himself to the female by seizing her with his anterior limbs. In the greater number of the Salientia the embrace is round the axille, but in the Discoglossidæ, which approach nearest the salamanders in their anatoms, the embrace is, as in those animals, round the loins. In the salamanders it is, howerer, the hinder feet that seize the female, and not the arms. Among other families the genera Cultripes, Pelobates, and Pelodytes also seize the female around the waist. It is probable that this will be found to be the case in some other genera not yet observed.*

The species of Areifera exhibit peculiar structures during the breeding season; either an extension of the natatory membrane, or the development of corucous plates or spars, as aids to prehensiou. There is much variety and efficiency displayed in this point (except in Bufonidæ), in especial contrast to the apparent absence of all but the weakest modifications amoug the Kanide. This is in compensation for the structure of the sternum, whose lateral halves, being movable on each other, offer a slighter basis of resistance for the flexor and extensor muscles of the fore limbs.

In the Discoglossida, Bombinator extends the natatory membrane in the male, but does not develop horny plates. In Discoglossus two file-like oval plates cover the superior surface of the short sccond digit and the tubercle-like first or thmmb, which is here developed as in no other anurous batraclian. Dermal rugosities on the upper and muder surfaces, including the gular region, are armed with corneous tips, as in Telmatobins. No peculiarity has been noticed in Alytes. The Asterophrydida are unknown as to this point.

In Pelodytes file-like plates are developed one on the second and one on the third digit, one much larger on the fore-arm, one slightly smaller on the inside of the humerus, and a small one on each side of the breast.

Among Scaphiopide the American species develop elongate laminæ on the superior inner face of the imer (second), third, and even fourth digits. No peculiarities are recorled as appearing in the European species. Many Mylide-Agalychnis, Trachycephalus-develop a corneons shield on the inner superior aspect of the imer metacarpal, which is prolmged on the digit.

While no appendages of the season have been observel in some Cystignathidar, in several genera two acute spurs appear on the superior

[^32]aspect of the thamb and mome maely spur-like thbereles on the haeast the body is sometmes shieldel with hardened points on the rugosities, or the lip surrounded by an arehed series of eorneons ragie. In the Leptodactylus pentadactylus Lanr. a higge acute process of the !nt taleapal of the thumb, Plate 73 (fig. 32 ), projects inwards. Its apex is co ered by a horny cap, and it is a formidable grappling-look to aid the male in retaining his hold. There is alded to this in the same species a horny plate on each side of the thorax of the male, from which project three acute points. With these fixed in her back and the thomb spikes in her breast the females cau not escape. Structures like this do not appear in the Firmisternia. Mere the inferior elements of the seapular arch abut against each other, so that the thoracic cavity does not contract on pressure, and the possibility of the male retaining a firm srip on the female is thereby greatly increased. In the Cystignathus puchy. pus the males exhibit a permanent enlargement of the brachimm, Alpund. ent on largely developed anterion and posterion alie of the hamerns. ( I ide Giinther, Amm. Mag. N. M., 1S5!.)

The various ways in which the eggs are deposited by the female are expressed in the following table from Bonlenger. I adrl the peculliar habit of the genus Dendrobates, as observed by II. II. Smith in Irazil.
I. The ormm is small and the larva leaves it in a comparatively carly emberonic enndition.
A. The ora are laid in the water.

Probably the majority of Batrachians; all Enropean forms exerpit Alytes.
13. The ova are deposited out of the water.
a. In holes on the hamks of pools, which hecome filled with water after heavy rain, thus liberating the larvar.
Leptoductylus ocellatus L.; L. mystacinus Burm.; I'aludicolu yracilis 131gr.*
b. On leaves above the water, the larva dropping down when leaving the reg.
Chiromantis rufescens Gthr. ; I Ihyllonerdusa ihrringii Blgr.
II. The yolk-sae is very large, ant the young matergoes the whot or part of the metamorphosis within the eges: at any rate the larva does not assume an independent existence mintil after the loss of the external gills.
A. The ova are deposited indamp sitnations on ou leaves, and the embryo leaves the eger in the perfeet air-hreathing form. Renu opisthodon Blegr. ; \& Hyludes martinicensis Dum. d Bilrr. S
B. The ova are carried by the parent.
(1. By the male.
C. Romed the legs; the yoming leaves the enge in the tadpole state.

## Alytes.||

[^33]乃. In a gular (the vocal) sac ; the young is expelled in the perfect state.
Rhinoderma.*
b. By the female,
a. Attached to the belly.

Rhacophorus reticulatus Gthr. $\dagger$
$\beta$. Attached to the back; the joung completes its metamorphosis within the egg.
Pipa. $\ddagger$
$\gamma$. In a dorsal ponch.
aa. The young leaves the pouch in the tadpole state.
Nototrema marsupiatum Dum. \& Bibr.§
$b b$. The young leave the pouch in the perfect state. Nototrema
testudineum Esp.; || Opisthodelphins orifera Weinl.||
The species of Dendrobates have the peculiar habit of carrying the young from place to place in search of water. The tadpoles resemble those of Rana or Bufo, and attach themselves ly the month to the back of the parent. Whether the eggs are car:ied in this position is not known. 11

The larve of Salientia have been divided into two gronps by Lataste, the Mediogyrini and the Laevogyrini.** In the former the external branchial orifice is on the median line of the inferior surface; in the other it is on the left side. To the former division belong the Discoglossidar to the latter all remaining Salientia, execpt Aglossa, where there are two spiracula, one on each side (Amphigyrini Heron-Royer).

In the stage which immediately follows the separation from the egg the tadpoles of Salientia possess one or two peculiar sucking disks on the under side of the head behind the position of the month. Their form differs (Plate 78) widely in different genera of Anma, and will afford a valuable means of identifying the lirra. In Iniscoglossus pictus, the adhesive organ behind the month, is hemispherical, with a V -shaped groove on its surface, the V opening forwari. In Pelobates fuscus the adhesive organ is $V$-shaped, with a $V$-shaped groove on its surface, and the limbs of the whole organ cxtending forward to embrace the augles of the mouth. In Bufo vulgaris the organ is V -shapeel, with a V -shaped groove, and the limbs of the $V$ come into contact with the angles of the mouth. In Bufo viridis the organ is creseent-shaped, not in contact with the mouth, but a little behind it, as in Discoglossus, and with a widely open V-shaped groove. In Bombinator, Rama, and Ifyla there are two dis-

[^34]tinct oval adhesive organs on either side of the median line, with traces of a $V$-shaped groove comecting them, and both are behind the month. In Rana agilis there are two separate adhesive organs, one on each side, behind the montl, and each has a slight depression on its posterior border. In Hyla arboren there are two circular adhesive organs close to the angles of the month at either side. In Bombinator igneus there are two oval adhesive organs behind the mouth, whiel are in close contact, and later on finse into a single organ, both having an oval depression in the center. The following observations have been made on them by Professor Ryder (American Naturalist, 18s8, 1. 263). (Sce Ilate 76.)

These organs are clearly for the purpose of enabling the youg larve to attach themselves to rarions fixed bodies in the water, such as weeds, the gelatinous egg-strings and masses from which they have been hatched, ete. They are this afforded support and prevented from sinking into the ooze to smother, and their enemies thas also donbtless find them a less ready prey. These disks are also shown by Thiele not to be of the nature of suctorial organs, but are glandular, being formed wholly of thickened cpidermis, which is elevated, its cells becoming lengthened or cohmmar. There is no musenlar suctorial apparatus de. veloped in comection with them, and they are secretory, secreting a sticky mucus or slime, which serves to fasten the young tadpole to its resting phace. That an actual secretion is formed is proved by the fact that a slimy thead of secreted matter is drawn out from the disk if the young tadpole be forcibly withdrawn from its support. They are speeifically larral organs, and persist only for one to two weeks after hatching. They may be compared to the "balancers" found behind the month in the larva of Ambly stoma. In Tritons stalked suckers are said to be present, which Balfour compares to the sessile "suckers" of larval toads and frogs. Ryder observes that he carnot see how it is possible to homologize the sucking disk of larval gar-pikes with the adhesive organs in larval Batrachans, because in the former the disk is in front of the month and in the latter it is usually quite behind the month; only in one case (Hyla) are the suckers fomed near the angle of the month. The larra of Xemopus has two long barbels at the side of the head from the sides of the upper lip. But in this last case even it is doubtful if there is any homology with the "suckers" of other larvat Anura. There certainly can not be any homology between the organ of the gar pike's larva and that of young toads and frogs, thongh it is probable that these organs in the latter are truly homologons with the "balancers" of the larse of salamambers of the type of Amblystoma and Triturns.

Thicle further shows that, inasmuch as these structures are glandnlar, with no muscular appanatus, the terms "sucker" or "sucking. disk" are misnomers as applied to these organs. A better term might be proposed for these structures in yoming tadpoles, and Ryder suggests that they be called epidermal alliesice orguns.

$$
1951-\text { Bull } 34-16
$$

In later stages the structure of the parts about the month of the tadpoles of the Salientia furnisbes other chamateristie peculiarities. But little has been done towatds the deseription of these parts, the North American* and European $\dagger$ species being thus far the only ones stulied. These studies have shown that the Hylidie, Bufonide, and Ranidie have certain characters in the regions mentioned. Below the horny jaws there is a detlexed lower lip, which displays a wide surface anteriorly. This surface is traversed by transverse series of short more or less hooklike bristles. Similar series may or may not extend across above the upper jaw, or on the trooping upper lip at each side of the jatw. The lower lip and part of the apper lip is surromaled by short obtuse papille in one or more series.

Now in the Hylidie, in the regions mentioned, no series of bristles extend acoss above the upper jaw except a very short one which hangs over the jaw itself; and the upper lip-fold on each side of it bears a row of papille. The papillat form a complete boreler round the lips, exeept the interruption at the midale above. In the Bufonitae there is a row of bristles entirely aross the upper jaw, and another below the first, interrupted at the midale resion by the horny jaw. The papille do mot extemd on the mper lip-border, and are minterrupted at the midnle of the margin of the lower lip. The papillary border presents an angle inwards at the line of junction of the upper and lower lips. The Ranid:e resemble the Bufonidar, with one exception in the arangement oif the papillay boreler. The latter is continu. ous all around below. The tuper jaw is natower than in the Butonide.

Boulenger deseribes the lavia of the Rana alticola of northeast lnalia as prossessing three parotoid glamls, two on the seapular and one on the coceygeal region, which are not retamed in the adnlt. Also a harva of a tree frog from Java, probably a Rhacophorus, which possesses a reartral suctoxial disk in the position of that of a fish of the (iobiënocidir.

The external gills aresuphessed on the right side before they are on the left. In the Rana clamata this smppression takes plate on the thind day after leaving the egg, while the left gill remains until the eighth

- day. When the intemal gills are in functional ase the water of respiration issues, in most of the families, from a single rommed orifice on the left side, the subentaneous brathial chamber of the right side commanieating with that of the lett side by way of the ghlar region, beneath the sublingual and geniohyoid museles and the integnment. (See Plate 51, tigs. 2-3-7-8.) The fore lege derelop within these subentaneous spaces behind the internal gills, and remain concealed up to a considerable relative size, and after the hime legs hatre aryuired size enongh for some functional efticieney. The left fore-leg then issues through the branchial orifice, and the right leg forces a passage through the integ. mment at a correspombing position on the right site. For at time after

[^35]the fore-legs are thus external the brachial chambers remain in free commonication with the external medium by the slit arome the base of each fore-leg. These soon close, however, and the skin of the foreleg is cut off from that of the bolly adjacent by a distinct seam, which disappears later. This part of the development of the Salientia is one of the most remarkable histories in the zoology of the vertebrata.
The skin which covers the fore limb of the advanced tadpole is not a part of the true skin which invests the body, since the branchial cavity is inclosed long before the lig appears; lout it arises beneath the mucons membrane which lines the branchial chambers. This anomaly is perhaps a case of reversion. The fore-legs of primitive Batrachia were no donbt external, as in salamaders, and they became inclosed by the growth of the operentum-like integument in the larval Salientia. A prolongation of the tadpole stage would result in a retardation of the growth of the fore-leg and an acceleration of that of the operculum. The growth of the true skin of the inclosed region would be thus retarded in the leg and atrophied in the wall of the chamber. (llate 51 , figs. 4-6.)
The shoulder girlle appears separated from other parts of the skeleton, between the miscles. The coracoid and procoracoid form a loop, directed downards and inwards, far removed from that of the opposite side, and present at this time an arciferous type in all forms of the order Salientia. (See fig. 59.)
The chatacers of the cartilaginous skull of the larse of the Salientia are peculiar and very different from those of the adntt. The sus. pensorimu of the lower jaw is exceedingly elongated forwards, so that. for the purpose of securing a fixed point for the lower jaw (represented now by Meckel's eartilage) it sends upwards a process near its anterior extremity to the extemal angles of the eartilaginous ethmoid, forming an articulation. It then descends agan, and Meckel's carthage ariculates freely with its extremity. There is a curvel sartilage attached to the extremity of each Meckel's eartilage (the 1 wo forming a half eirele, opening forwards), which form the support of the functional tower lip in the larra. These are the lower labial or symphysal catilages, and are represented in the adult by a pair of short hones of the same name (mentometkelians of Parker). The premaxillary bones are in like manner represented by two cartilages, which are loosely attached above to the two corresponding processes or comna of the trabecolar cartilage, which form the roof of the mazrle in front of the ethmoid. (Plate 5o, fig. 9.) The ceratohyal is a robust hone, which articulates with the quadrate cartilage below the orbit, contracting in diameter as it extends downwards and forwards. In the process of growth its artienlation with the quadrate hecomes more and more posterior, until it leares that element entirels, and comes in contact, and in some cases fuses, with the cartilage of the hase of the skull in from of the stapes and near the interstapredial. (Plate 50, fis.. 3.)

Besides the structures of the larval hyoid apparatus already de-
scribed (antea) there are four cartilaginous arches below the ceratobranchials, which beloug to the dermal system, and which are called extrabranchials. Proximally the first of these is articulated with the anterior exterior angle of the hyobranchial plate. Distally the four are mited together. These arches support a system of branchial fringes, which are internal in position, and are contradistinguished from the external branchie which the Salientia exhibit when first hatehed, and which are the only branchie of the Urodele and other tailed tryes. They are thought ly Huxley and Parker to be homologons with the branchial structures of the Marsipobnanchii or lamprers. (Plate 51, fig. 1.)

The development of the anditory onsieles and eartilages exhibits the following facts. The epistapedial disk appears in its momal position, covering the flexure of the quadrate eartilage. The interstapedial appears as a bud in fiont of and distinct from the stapes, and the mesostapedial appears as a small membane on its apex. At a period of its growth the interstapedial eartilage comects the stapes with the guadrate cartilage, as in Trematoleratand larval I'sendosambian Urodela. At the same time the cemahyal articmates with the quadrate more distally, so that at this stage a Rana presents the characters of a transitional stage seen in the salamandrine genera Spelepres and Plethodon. The interstapedial then elongates matil it reaches the ammlas tympanicus. These facts goto show that the interstapedial and mesostapedial are not segmerted from the eeratolyal or meekelian arehes, and are therefore not homologons with the ossiculu nulitus of mammalia, miless, indeed, the embryonic record has been greatly falsified by eanogeny. (Plates 49, 50.)

ORI(iLN AND EVOLUTlON OF IJIE SALIENTIA.
The oldest Salientia of which we have my kow ledge were obtained from the Juansic: beds of the Revely Momatains by Professor Marsh.* They oecur in lower Eocene beds in North Americat (ireen liver shales)t and in Middle Miocene of switzerland (Eppelshem) $\ddagger$ and (ier-
 cene of North America (Lomp Fork, of Kansas). $\|$ Forms which by their structure wonld eomect this order directly with the extinet orders are molnown. It is, however, entirely probable that, as already pointed out (p. 14), the Salientia were derived from the libachitomi, but whether the Stegorephali enter the lome or not is uncertain. The compacted inferior pelvie elements without obturator formen of the Salientia is much like the same comdition in the Rhachitomi, and to prodnce an almost

[^36]identity between the two types it would only be necessary to elongate the ilia of the latter. The developed sternal apparatus aud shoulder girdle of the Salientia is only found among Batrachian orders in the Rhachitomi and Stegocephali. Thus in Eryops of the former there are clavicles, coracoids, and epistermum (the last reduced as in Urodela), and in Actinodon there is also an epiclavicle (Gatdry). The posterior direction of the suspensorinm of the lower jaw of the Salientia is also only fomd in the extinct orders named, pointing again to this origin. In other recent orders these bones are directed forwards.

The modifications effected in the Rhachitomons skeleton to produce the Salientian, have been partly the same as those which have produced the other existing orders. Thus the true vertebral centra have been repaced by. complete intercentra, and several posterior cranial bones have been lost. The ilia have been greatly elongated, and in so doing have embraced vertebre successively more amd more anteriorly, so that the nmmber between tha ilia and the cranimm has been greatly reducen, and the vertebrio posterior to the point of attachment become atrophied in part and concrescent in part. This process has been carried to the greatest degree in the extinct family of the Palaobatrachida. IIere the ilia extend to two verrebra: in advance of the ninth or usual sacmal, thas inclosing three vertebra in the saterm, and leaving only six for the remainder of the column. The coracoid is probably that of the Stegocephalous order, as it is better doveloped than in the Rhachitomi. The second row of the tarsus has also become rednced from these primitive typer by atrophy, while the first row has been reduced to two bones, as in the Mammabia, which have heen greatly elongated. A parallel case oecms in the Manmalia in somb lemurs, particularly in the Tarsiidir.

I have discovered that the Ganocephata (Trimerorhachis), and the lihachitomi (Tatranchys) possessed an clongiate colnmella anis, whieh is directed outwards, backwards, and upwards to a possible mem. bremmm tympmi, which may have ocenpical the noteln external to the os inferculare * (Plate $\overline{\text { a }}$ ( $)$, figs. $4-7$.)

The sublivision of this rod may have given origin to three of the
 homologies ol these with the there primeipal ossientar anditus is possible. The hasory of these parts shows that the late of athlitory ossieles displayed by some Salientia and by all Urodela (Llates 46,49 ) is the result of dexemaracy.

The canse of some of the moditications of the slaleton cath be traced to nse. Thus the constant musenlar stress on the ilia in humping the back previons to leaping must have had a temeney to draw it forwards not only on itself, but on its vertebal attachments, which are cartilaginous and vielding. The rlongation of the dirst row of tarsal

[^37]bones may be traced to a similar cause, especially the stress upon them at the moment of starting a leap and alighting from it. The survival of the elongate coracoid bone may be traced to use by pressure along its longitudinal axis in the act of seizing the female, and possibly by stress in the opposite direction when engaged in pushing objects outwards with the fore-feet, producing the effect of elongation. It is not easy to assign a cause for the loss of the prastermm and of various cranial bones. It has been, perhaps, in these comparatively umsel parts that one effect of the general reduction in size and vigor which has occurred during geological time since the Carboniferous and Triassic periods, is to be seen. The loss of auditory organs is probably due to disuse, the result of subterranean life.*
The larval life of the Salientia has probably undergone important modifications during the course of geologic time. The characters assumed by tadpoles at different stages of their growth are not parallels with known or probably to be diseovered lower forms of life, but indicate that the larva, like that of the Insecta, and like the mammalian fotus, has had a developmental history of its own. In sumport of this view I cite the anterior produ tion of the quadrate cartilage, which carries with it the ceratohyal arch from its mimitive attachment, and the ultimate shortening of the same, and the return of the ceratohyal to nearly its primitive comnection with the skull. Further, the gramual inclosure of the fore-leg in the external hranchial chamber is to be eited, the original position of the limb having been external. To these may be added the development of the epidermal stickers, of the labial dermal comb, and of peeuliar dermal glands in some tadpoles. None of these peculiarities of larval life are foum in the Urodela, and thes: have been gradually assmed by the larva of the Salientia in the conmse of their existence, as thongh they were adult animals, and probahls: in obedience to the same kind of laws. These are the interaction of the animal and its enviromment.

## CLASSIFICATION.

The natural divisions of the Salientia are the following:
I. No tongue; one pharyngeal opening of the Enstachian tube.
l'tery goid bones inclosing Enstachian tuloes below ; roracoids and procoracoids divergent, commeted ly a eatilage which does not overlap that of the opposite side

Iglossa.
II. Tonghe prescut ; two ostia pharyuge:

Clavicle and comboid of each side commected ly a longitudinal arehed cartilate, which overlaps that of the opposite side : scapula free from the slanl.

Clavicles and coracoids of both sides commeded by a single narow median cartilage; scapula artienlated with a speeial emblyle of exocepuital. (iastredmiat.
Clavicles and coracoids of hoth sides commected ly a simgle median cartilage :


[^38]The presence or absence of maxillary teeth was formerly regarded by the anthor, after Duméril and Bibron, as of primary value in the definition of the saborders. On account of the absence of teeth, a division Bufoniformia was distinguislied from the Areifera; and the tooth-bearing Fermisternia were called Raniformia. I, however, now follow Bonlenger in dropping these divisions, since the absence of teeth is some times of little systematic significance.

In the arciterous type of scapular arch the opposite halves are capable of movements which contract or expand the capacity of the thorax; in the Firmisternia the opposite halves abut against each other so as to be incapable of movement, thas preserving the size of the thoracic cavity. This arrangement has an important bearing on the comfort, and perhaps health, of the female while in connection with the male. The embrace of the fore-legs of the latter hehind the axille ot the former is very energetic, and is maintaned by varions structural aids. Thus in many species the males develop rongh and even spinous horny plates on the inner superior side of the thmm, which presses against the thorax of the female.

The firmistermial strmetme is a modification of the areiferons, which comes later in the history of growth, and probably in geological time. Dming the early stages the Fimisternia have the movable shonlder girdle which characterizes those of the arciferons division, the consolidation constituting a modification sumeradded in attaning maturity. Furthermore, young Salientia are toothless, and one section of the species of Arcifera never acquire tectl. In these (the Bufonidx) we have a group which is imperfect in two points instead of one.


Fig. 59.
Shondder girdles of Anura. Fig. $a$ of the areiferous type (Scaphiopus hollurouki). Fig. b, Rana tem.


As primitive Batamehia are tootherl, it is evident that the toothless condition of the Bufonidip and some other families is due to retardation or degeneracy. The areiferous stemum is, on the other hand, a primitive condition, since it prevails in the Urodela, and also in the Stegocephali and Rachitomi of the Caboniferons Aer, in the latter associated with median sternal elements. The roofing in of the Eustachian tubes secu in the Aglossa is also a character superadiled to the primitive combition, as the loss of tomene is a case of subtraction.

The Discoglossidæ must be regarded as the most primitive family of the Anura, as it shows none of these peculiar modifications, and presents the greatest resemblance to the salamanders in its ribs and opisthocel vertebre, and to other primitive types in its split sternum. In the accompanying diagram these affinities are expressed, and a possible phylngeny is indicated. That the latter will prove largely correct is shown by the presence of Discoglossidet in the Miocene berls of Prussia, particularly near Bonn. The paleontology of the Salientia is, however, very imperfectly known.


The Areifera and Firmisternia each exhibit parallel modifications of structure, which may be represented as follows in tabular form :

Arcifeles.
Firmisternia.
I. Without teeth.
$\alpha$. With sacral diapophy ses dilated.

ack. Sacral diapophyses eylimelric.
Denclrophryniscide ........................................ Dendrobatidse.
II. With premaxillary and maxillary teeth only.
c. With sacral diapoplyses dilated.

$\alpha$. Sacral diapophyses not dilated.
Amphignathodontidse
Hemiphractide
\}

The fanilies of Arcifera with opisthocœlous vertebræ are omitted from the table as having no counterpart among the Firmisternia.

These two series are what I have called "homologous groups," and the corresponding genera "heterologons terms. I have also supposed that one such series may have been derived from the other, in evolution, by a change in the one character which distingnishes the two series. In the case of some homologous series it is not unlikely that this may have taken place, but it is necessary, in order to be sure that such has beeu the process of evolutiou, to distinguish between two different kinds of homologous groups. In one kind the parallel characters of the one group may have been derived from those of the other by descent, according to the principle called by Lankester "homogeny." In the other case, like modifications of structure have arisen in different series of animals as a result of the operation of similar energies, as that of the animal and its environment. This is the principle of "homoplasss." To the latter kind belong the imitations found to exist between the placental and didelphian mammalia. The relation between the arciferons aud firmisternial Anura may be one of homogeny. We may theu parallelize the families which may exhibit trne cases of descent as follows :

FIRMISTERNIA.
Phryniscidæ.
Dendrobatidæ.
Dyscophidie.
Ranide.
Ceratobatrachidæ.

## Arcifera.

Bufonidæ.
Dendrophryniscidæ.
Pelodytide.
Cystignathide.
Hemiphractidæ.

It is, however, probable that the Pelodytide is the generalized form from which most of the areiferous families have been derived; and it was itself probably a desceudant of the families with opisthocœlons vertebree, as already iudicated.
The Ranide embraces many genera which imitate in details many genera of Arcifera. The metropolis of the former, as of the Lacertilia acrodonta, is the regio Paluotropica, while the latter have but few representatives out of the $R . R$. Neotropica and Australis, where but one or two species of the former occur. In both we can trace a series in which the outer metatarsal is gradually liberated from the penultimate, to afford greater extension for the web in the most aquatic types, and among those where these bones are bound, from webless to webbed types. In both we have burrowing and arboreal genera.

In strict reference to the extension of the webs the following parallels may be drawn :

Ranide.
Arciferi.
External metatarsal free:
Aquatic.
Subfossorial.
Exterual metatarsal attached:
Feet webbed-
Burrowing. Pyxicephalus.
Arboreal (vom. teeth).
Arboreal (no vom. teeth)
Aruatic.
Feet not webbed-
Terrestrial.
Terrestrial, spurred.
Rana.
Hoplobatrachus. Leptopelis. Hyperolins.
Heteroglossa.
Cassina.
Hemimantis.

Pseudis.
Mgxophyes.

Ceratophrys.
Hyla.
Hylella.
Acris.
Cystignathus. Palndicola.

It is, however, remarkable that the raniform tree-frogs nearly always have the external metatarsal bone free; the arciferons always bound. The terminal phalanges of the latter are constructed on a ball:and claw type. In the former they are $T$ shaped or bifureate, except in the single West African gemus Leptopelis, where the South American type is repeated.

I have also discovered another series of parallels which the genera of most of the families of the Sialientia present, in the degree of ossitication of the superior cranial walls.* In the least-ossified crania we find the superior part of the ethnoid still cartilaginons, the superior wail of the brain-case membranons, and the prefrontals represented by narrow lateral splints of bone. In geuera of slightly advanced type the roof of the ethmoid is ossified, and the prefrontals are wider. In better-developed generat the frontoparietal bones ossify and close the fontanelle. The higher ossification shows itself in an exostosis of the superior cranial walls, which, in further stages, involves the skin, so that it is no-longer free from the eranim. The next stage roofs over the temporal musele with bone, and the lighest stage, known only in a genus of Bufonide (Otaspis Cope), incloses the membranum trmpani behinl. The following talle expresses these facts.

These series give an excellent illustration of the development of a single character independently of other characters, and show how the gemeric characters originate quite independently of all others.
*See Nat. Hist. Rev., 1865 ; Procect. Ae. Phila., 1868 (on the Origin of Gencra); Origin of the Fittest, 1887, 1. 21.3, Plates iv aul v.


Figures of these and intermediate types of erania will be found in Plates 65 to 75.
The adaptive result attained by these changes in the cranial ossification are two. both in burrowing in the earth and in presenting a defense against encmies, the top of the head is presented to the resisting object. On being atackerl, a Salientian Batrachian always depresses the muzale and presents the top of the head to the enemy. The types with well ossified crania have a great advantage over those in which the front is membanoms or eatilaginons, especially in the case of attack from renomons smakes, stinging insects, etc. There is, however, no definite distribntion for the respective types, either in time or space, except that the genera with mossified ethmoid all belong to the Southern Hemisphere. Also, types with unossified frontoparietal bones predominate in the Anstalian and Neotropical realms, are unknown in the Ethiopian, and rare in the D'aleotropical. Types with exostosed frontoparietals chiefly abomed in the Neotropical realm, and oceur in the Nearetic and Palacaretic. Paleontologically, both exostosed (Latonia) and membranous frontoprietals (Alytes) appear together in the Miocene brown-coal of Bom, in Rhine-Prussia.

As regards the distribution of Salientia in North America, the following general remarks may be made. The sasisuru di:trict, with its comparatively homid climate and aboudant-water conises, is the home of the gemms Lama. For similar elimatic reasons the middle and northern parts of the lacific region have several species of Rana. The eastern region, the land of forest.s, possesses nearly all the species of Hyla. The racific coast has hit one, a fact due, perhaps, to its long dry season

The arid regions of the Southwest furnish the greater rariety of species of Bufo, but one species inhabiting the eastern region. The Austroriparian regiou is the home of several small forms of Hylidæ and Bu fonidæ. The distribution of the Scaphiopidæ is chiefly in the dryer regions of the West; three species are found in the Sonoran, while but one occurs in the Pacific, and one in the eastern and Austroriparian regions. The distribution may be tabulated as follows:

| Genera. | Eastern. | Central. | Sonoran. | Pacific. |
| :---: | :---: | :---: | :---: | :---: |
| Bufo | 1 | 2 | 5 | 1 |
| Scaphiopus. | 1 | 1 | 3 | 1 |
| Chorophilus | 1 | 1 |  |  |
| Hyla. | 4 |  | 1 | 1 |
| Aeris | 1 | 1 | ......... |  |
| Hylodes |  |  | ........ | . |
| Sirrhophus |  |  |  |  |
| Kana....... | 8 | 1 | 2 | 4 |
| Totals. | 16 | 6 | 11 | 7 |

## AGLOSAA.

The few members of this suborder have the vertebre opisthocelous and deprived of ribs; the diapophisses of the third and fourth vertebree are extremely elongate, and those of the sacral are strongly dilated and confluent with the urostyle. The third ceratobranchials are greatly elongated.

In Pipa there are only seven presacral vertebra.
The frontoparietals are entirely ossified, and there are true ossa nasalia.
The sternal apparatus belongs to the areiferous type, thongh the epicoracoid cartilages do not overlap.
The larve are provided with two spiracula, one on each side of the body. (Boulenger).

There are two recent and one extinct families of this suborder, which are defined as follows:

> PIPIDAE.

No ribs; vertebre opisthocelous; urostyle simple, attached to a single condyle. Coracoid and epicoracoid divergent, their connecting arehes not overlapping. No mannbrium. Teeth none; sacral diapophyses dilated.

The neotropical genus Pipa has the atlas confluent with the second vertebra, so that there are but seven anterior to the sacrum. There are distinct nasal bones, and the median septum of the ethmoid is partially ossified. The prefrontals are completely in contact with each other and with the frontoparietal. Frontoparietal completely ossified. Terminal phalanges acute, simple. Exterual matatarsals separated by a web. (Plate 69, figs. 1-2.)

## NENOPIDE.

No ribs; vertebre opisthocelous; os ilimm attached to the ninth vertebra ouly. Coracoids and epicoracoids well separated from those of the opposite side. Teeth present ; sacral diapophyses dilated.

One genus, Xenopus, with three species in the regio Ethiopica. In this the interorbital ethmoid plate, though long, is not produced anteriorly, and is entirely concealed by the frontoparietal. Frontoparietal strongly ossified, aferhanging the couthent prefrontals. The prefrontal does not always extend to it. The first two vertehre are separate, but the sactal and coceyx contluent. There are ossa nasalia above the nares. Terminal phalanges acute, simple. External metatarsals separated by a web. (Plates 49, fig. 10 and 69, fig. 2.)

## PALEOBATRACHIDE.

No ribs; os ilium attached to the diapophyses of the confluent ninth, eighth, and seventh vertehre, which form a disk; urostyle attached by a double glenoid cavity. Frontoparictal strongly ossified, not produced farther than the separate prefrontals. External metatarsals probably separated by a web.

The genus Palcobatrachus, Tsch., represented by several species in the Miocene of Germany. The superior plate of the ethmoid was concealerl, and the atlas confluent with the first vertebra, leaving but six between the occipnt and sacrum.*

Von Mever llescribes the vertebra of $P$. giganteus as procœlous, while some of them are figured as opisthocelons. Woltersdorfft states that they are procolous. A specimen in the British Museum which I examined has opisthocolous vertebre. It remains, therefore, a question of interest whether this fanily lelongs in the Aglossa. Wolterslorff, who has studied it very carefully, refers it to the Arcifera, and to the neighborhood of the Pelodytida, althongh admitting varions points of resemblance to Xenopus. He deseribes nine species from various parts of central Enrope.

## ARCIFERA.

In this tribe the extremes of the series are more diverse than in the others, and depend on the following features:
(1) In that nearest the Aglossa the vertebre are, like those of the latter and of the Salamanders, concave posteriorly and convex anteriorly; in the other extreme the reverse. These features are not as irreconcilable as might at first sight appear, as the intervertebral spheres do not become firmly attached to either centrum at maturity in some modividuals of Borboroccetes peronii, Pelobates fuscus (Stannius), and Cultripes prorinciutis (Dugès). (2) Those with opisthocœlous vertebræ

[^39]agree with the bulk of the tribe in possessing dilated sacral diapophyses, whilst those at the other extreme exhibit them cylindrical. (3) A few of the former possess small ribs, and (4) the mrostyle approaches the normal condition of vertebre in possessing one pair of tramsrerse processes; (5) most of these, with the adjoining less extreme forms, have a vertical or cat-like pupil. (6) Many of the same group exlibit a degraded or obliterated auditory apparatus; but this feature is not miformly coincident with the preceding ones. (7) The xiphisternum is formed of divergent limbs; in the bulk of the tribe it is an emarginate cartilaginous plate, and in the opposite extreme an osseons style, as in the Ranide.

Of these features the first, thirl, fourth, and sixth are agreements with or approximations to the structures of the same elements of the Salamanders; the resemblances are borne out in the physiology of the same types.

In the observel examples of the above types that is, of the biseoglosside, Pelodytidae, and Suaphiopodide, the eggs are deposited in small clusters (Pelodytes), a short thick loop (Pelobates), or in a series with a slender, tough, thread-like attachment (Alytes). In the family following that of the I'elobates, that is the New World tree-toads, the eggs are, in the Old World species (Iyla arborea) deposited in globular masses, as among the Ranide, hot inuch smaller, while in our Hylu pickeringii the masses include but from four to ten eggs. In the first-mentioned forms the male seizes the female in front of the thiglis, while in the remaining and major number of species, as well as in the observed Firmisternia, she is seized aromad the axilla.

Additional peculiarities in the development of Alytes, Pelodytes, Cultripes, and Pelobates are, that they spawn at two seasons inslead of one, aut that their larrae attain a larger size than those of other Anmab before completing their metamorphosis. This litter feature is, however, repeated near the other end of the serics-anong those with eylindrical pelvic supports, in the genus I'sendis.

The ocenrence of a xiphisternal style similar to that ef the Raidide may be regarded as an indication of superiority not only in consideration of this affinity, but as a greater degree of specialization and ossitication of the part. It appears, however, not merely among the most raniform Arcifera, and among some with procolons vertebra, which have the salamander-like mode of reproduction, but also among some of the opisthocolous species.

The only family features as above given which seem to have a functional siguificance, are the structure of the terminal phalanges as an adaptation to arboreal lile in the Hylidae and the increase of raptorial power by the addition of another set of teeth in the Hemiphractide. Yet for the first-mentioned function other arrangements are emploged in other families.
'The families of this smborder difter as follows:

1. Ribs present (Disconglossoidea (iill).
Miscouldossidtr.II. Riles ahsent (stermmon derply bitureate). (Butonoidea Gill).
Diapophysen of satroum dilated.Jinjonidtr.
Diapophyseses of sacrum not dilated Dendrophryuiscida.
AA. Maxillary tereth ouly.
Vortelnar opisthocerl ; sactal diapophyses dilated ; mrostyle distinet.

Vertehne procul ; sacral diapophyses dilated; urostyle distinct ; musualphalanges emic ................................................. I'clodytider.
Vertebra prowly sateral diapombses dilated; mostyle contluent withsaccrum; mugnal phalanges conic. .......................... Scuphiopidu.
Vertebrar procula sacral diapophyses diateal ; urostyle distimet; manalphalanges a curver claw with globular hase.................. Hylidu.
Vertebra procul; sacral diapophyses mot dilated ; urostyle free ; manalalphalanges conic, sumetimes transerse at apex........ Cystignathidu.
AAA. Maxillary and mandibular teeth present.Sacral dialuophyses dilaterlAmphignathodomitula.Sacral dianophyses not dilateal
. Hemiphartidar.

Of the above families, fon are fonnd within the bomalaries of the Nearetic Realm. These are the Bufonidar, Scaphiopidat, Ifyldae, and in a very few representatives, the Cystignathiale. Three of the families are contined to the Neotropical licalm-the Dendrophryniscidie, the Amphignathodontidac, and the Hemiphractidae. The Hylidat belong to this fanna and the Anstralian, with a large representation in the Neartic and th very small one in the Palarartic lealms. It is totally wanting from the Ethiopian. The Discoglosside is European, with one gems in New Zaaland. It is the only family well represented by tertiary forms. The small family of the Asterophrydilte are Pabatropical and Australian, and the few Pelodytide, Palitotropical and Palacaretic. The large family of the Cystignathide are Nootropical and Australian only. The lafonidie are cosmopolitan, and the scaphopidat Nearetic and Palearctic. But the greater nmmber of the Areifera are Neotropical.

We are at present acquanted with 501 species of this suborder, which represent st generic types. They represent the families in the following proportions and regions:

|  | Gemera. | Sprecies. | Jisuribution. |
| :---: | :---: | :---: | :---: |
| Discorlossidar | 5 | 8 |  |
| Asterophrydidie .............. | 4 | 6 | R. I'ala ofropica, Ansiralis. |
| leloultidit*. | 3 | 4 | 1. I'alatolropica. l'alientetica. |
| Seaphiopidie | 4 | 7 | li. J'alataretica. Nuaretiata |
| Hylidie... | 16 | 189 | (12. I'alientropiea) Li. I'alitaretica, Nearctica, Neothopica, Australis. |
| Amplignathodontidie. | 1 | 1 | 12. Neotropica. |
| Hemiphractidie | 3 | 8 | 13. Neotropica. |
| (Satignathidet. | 3.1 | 174 | 12. Nentropica, Australis. |
| binfonidat ... | 14 | 102 | Cosmopolite. |

The generic forms are all peculiar to their zoological regions, except Hyla, found wherever its family occurs, and Borboroccetes, common to Australia and the southern portion of South America.
The number of species so far known to inhabit these regions is as follows:

| Regio Australis | 55 |  | 446 |
| :---: | :---: | :---: | :---: |
| R. Neotropica | 363 | R. Paleartica. | 12 |
| R. Nearctica. | 28 | R. Fthiopica. | 9 |
|  |  | R. Palæotropica | 50 |
|  |  | Total | 517 |
| In two regions | 1 | In two regions | 2 |

The small proportion of species occurring in the Old World, exclusive of Australia, is evident, though they represent six families, while those of the New World represent but six also.
The tribe Arcifera was first defined and its extent and distribution indicated by the author in the Natural History Review, 1865, though explained a year previously at a. meeting of the Zoological Society of Lomblun. The sternal fèature characterizing it was noticed by Stectzen, Cuvier, and others in isolated cases, but its general significance not perceived. Dugès (Recherches, 64) attributes it to the tree-toads, the toads, and the Bombinator, Alytes, and Pelobates. In Stannius's Zootomie der Amphibien (73) it is assigned to the Aglossa and Bufo, as distinguished from Rana and Cystiguathus. The characters of the last genus must have heen taken from the Old World Cassina (formerly called Cystignathns), as the structure in Cystignathus and its allies is that of the true Arcifera.

## DISCOGLOSSIDA.*

Cope, Nat. Hist. Rev., 1865 (Jan.); Journ. Phila. Ac., 1866, p. 74 ; Lataste, Actes de la Soc. Linn. de Bordeaux, 1879, p. 277; Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, 444.
Vertebræ opisthocœel. $\dagger$ Diapophyses of sacrum dilated. Urostyle with a basal diapophysis. Ribs present. $\ddagger$ Bones of distal carpal series all distinct. Sternum of two slender postero-exteriorly diverging fibrocartilaginous or cartilaginous styles.

In the known genera tongue is round, entire, and little or not at all free behind. Males without vocal vesicle.

A marked peculiarity characterizes the larve of this family. The spiracle or branchial opening is situated on the median line below, while in all other tongued Anura it is situated on the left side.

It we commence the series of the Arcifera with the great family of the Cystignathidæ, we will end it with the families Asterophrydide and Discoglossidx, which are perhaps equally commected with that. which precedes then-the Scaphiopodide. The former leads 10 Xenopus through Palrobatrachus; the latter, as far as onr bresent knowl-

[^40]enge madicates, finds its completest development in the extinct genus Latonia, established by Von Meyer on the Li. seyfriedi from the Miocene of Oeningen. A species also occurs in the fresh-water deposits of S:msan (L. rugosu), whose salamander-like vertebre have been noticed by Gerrais.* These animals. were nearly related to Discoglossus, and had, like it, short posteriorly directed processes on the ribs, as in the gems Salimandra. They were, however, much larger, had the frontoparietal bones completely ossified, and the whole of the cranimm roughened externally by a dermo-ossification. On this account the genus has been compared with Ceratophrys, which belongs to the family of Cystignathidre.

In the remaining and recent genera the structure of the sternum is worthy of note. In old indiriduals of Discoglossus it is sometimes fibrocartilaginous, as in Pipa. The sternmm, homologous with the sternum of the Lacertilia, resembles the mited hemapoplysial cartilages of the anterior ribs. In the genera in question $\dagger$ this part is divided nearly up, to the point of attachment to that preceding, each moiety being directel outwarls and backwards, and tapering into a lateral linea semilunaris. Between these and the pubes there are in Discoglossus the usual three pairs of lineae semilmares, conuected on the median line by a strong linea alla

In Discoglossus the prefrontalia are strongly developed, being in contact for most of their length, sometimes touching the frontoparietalia. In Alytes they are also in contact thronghout, but are transverse and do not reach the fronto-parietals; the fontanelle is larger, and the ribs without processes; the whole animal is weaker. In this genus, as well as the preceding, the pupil is a vertical slit; elsewhere fomed in Hylorhina, Platyplectram, Limnomedusa, Pelodytidet and the Scaphiopida. A species (A. troschelii) $\ddagger$ has left its remains in the Miocene Bramkohle along with Palæobatrachus. Bombinator is similar to Alytes in its osseous structure, except that the preferntalia are in contact anteriorly only, and that the sacrum presents but one condyle for the articulation of the coceyx, as is typical of the Asterophrydide and Aglossa. Along with Alytes and Xenopus it has true ossa masalia, which bound the external nares exteriorly, thas explaining their anomalons position in Breviceps, where they are inferior. In Bombinator there is no carum tympani or auricular ossicles, and the tube Enstachii are rudimentary or wanting. This character is said by Tschudi and Bruch not to be exceptionless in adults, and that the tubee and tympanm are always present in the young of both this genus and Pelobates. All Europeau, except Lio-

[^41]pelma, which is from New Zealand. The toes are webbed in all the genera, and the external metatarsals are separated.
Cephalic integument involved in cranial ossification, which completes the o. o. froutoparietalia; two coceygeal cotyli and diapophyses; ribs with posterior process

Latonia Von Meyer.
Cephalic integument free; a small froutoparietal foutanelle (sometimes apparently closed by the ethmoid); prefrontralia largely in contact ; two coccygeal cotyli; ribs with posterior process; pupil round; cavum tymiani present. No parotoid glands....................................................... Diseoglossus Otth.
Cephalic integument free; a frontoparictal fontanelle; vomerine teeth present; two coccygeal cotyli; pupil triangular; no tympanum or Eustachian tubes (Boulenger)........................................................... Liopelma Steindachner.
Coplalic integument free; a frontoparietal fontanelle. Prefontalia in contact throughout; two coceygeal cotyli; no rudimental digit; typanum and cavum tympani distinct ; pupil erect; parotoid glands present .......... Alytes Wagl.
Cephalic integument free from cranium; a frontoparietal fontanelle; prefontalia in contact minteriorly ; one coccygeal cotylus; no inner digit developed; no tympanuur or cavum tympani; Eustachian tube rudimental or wautiug; parotoid glands none. .................................................. Bombinator Merrem.
All the characters of this fimily go to show that it is the nearest of the Salientia to the original and now extinet type which formerly conneeted that order with the Salamanders. These are, the presence of ribs, the opistlocel vertebre, the distinctness of the carpal bones of the distal row ; the inguinal grasp of the male in copula, and the frequent presence of the cardinal veins.

## BUFONIDE.*

This is the ouly cosmopolitan family of Amura. It is chiefly represented by the genus Bufo, which exists in all the zoological realms excepting the Australian: The variations in structure are not so great as in some other families. They are thus summarily reviewed by Boulenger:
"The omosternum is generally absent; if present, it is reduced to a narrow cartilage. The sternum is usually a cartilaginous plate, which in a few cases is ossified along its center; in Engystomops there is a well-defined bony style supporting a cartilaginous disk.
"The vertebre are procelons and withont ribs. The diapophyses of the sacral vertebrie are more or less dilated, but never to such a degree as in the Pelobatide. The urostyle is attached to two condyles.
"A frontoparictal fontanalle is present in Myobatrachus Engystomops Pseudophryne and Epidalea; $\dagger$ aud in a few species of Bufo the derw is completely involved in the cranial ossification.
"In two genera the pupil is erect.
"The distal phalanges are simply obtuse or $\mathbf{T}$-shapend.
"The Bufondie include terrestrial, burrowing, thoroughly amatic (Nectes) and apparently arboreal (Neetophryne) types. Rhinophrynus is a true ant-eater, as are several forms of Engystomide." $\ddagger$

[^42]Other chamaters are: superior plate of the ethmoid completely ossified; very rarely prolonged anteriorly; usually covered by the completely ossified frontoparietals, or by these and the prefoutals together. No pterygoidem. Tongue free, not retractile posteriorly.

In Otilophas and Phrynoidis* there are but eight vertebre, the atlas and second being confluent. In Neetes there are resemblances to the Asterophrydide. The prefontals are narrow, divergent, in contact only anteriorly; the superior plate of the ethmoid is small, transerse, not entirely coveren by the frontoparietals, which are but weakly ossified medially, although embraeing no fontanelle. In the other geuera the prefontals are in contact with each other aud with the fronto-parietals throughout.

In none of the genera known to belong to the family is there a mannbrimm sterni. The xiphisternmm is a slender weak cartilage in Psendophryne and Phryniscus and Bufo kelartrtio. In the other species the style supporting the terminal disk is stronger, sometimes filoro cartilagimous: in Bujo vulgaris and B. melanostictus it is broader and nearly bony, and in Nectes subasper strongest and broadest.

In l'ufo kelaurtii the terminal phalanges have a slight terminal transverse extension.
Myobatrachus, Notaden, and Pseudophryne the weakest and least developed torms, are Australian; Eupemphix, Phrynoidis, Pufo, Peltaphryne, Otaspis, Ollotis, Crepidophryne, Cranophryne and Rhinophryne are Neotropical; Bufo and Nectophryne, Ethiopian; Bufo, Nearetic; Bufo and Epidalea, Palaearctic ; and Scutiger, Bufo, Nectes, aud Nectophryue, Palreotropical.

The characters are the following:
I. Terminal phalangesesimple.
A. Two coudyles for the mrostyle.
13. Tongne bound in front, free behind.
*A frontoparietal funtanelle.
Ethmoid bone incomplete above; stermm ossified on the middle line ; ear perfectly developed; pupil erect.

Myobatrachus Schl.
Ethnoid bone complete; fingers and toes free; sternum a weak cartilage ................................... I'senlophryne Fitz. Ethwoid hone complete; toes webbed, sternum distinct.

Epidatea Cope.
**No frontoparietal fontanello. $\alpha$. No vomerine teeth.
$\beta$. Tyupanic chamber $\quad$ resent.
Toes free; tympanic drum not inclosed; stermum an osseons style...... ....... . . . . . . . . . . . . . . . . . . . . . Euncmphix Steind.

[^43]Toes webbed; tympanic drum not inclosed by boue; sternuma plato

Bufo Laur.
Toes webbed; tympanic drum iuclosed with ossification.
Otaspis Cope.
Toes webled ; nostrils directed upwards.......... Nectes Bleeker. $\beta \beta$. Tympauic chamber wanting.

Cranial derm free ; digits webbed Ollotis Cope.
Cranial derm free ; digits not distinct, iuclosed in a common integument Crpidophryue *Cope.
Crauial derm ossified ; toes webbed ......... Cranophryne $\dagger$ Cope. $\alpha \alpha$. Vomerine teeth present.

Sternum rudimentary ; toes webbed Notuden $\ddagger$ Gunth. BB. Tongue bound or retractile postcriorly ; slightly free auteriorly.

Sternum rudimentary ; pupil erect .. lihino '/hryuns Dum. \& Bibr. AA. One condyle for the urostyle.

Pupil vertical ; no vomerine teetb; toes free ; a sternal style.
Scutiger Theob.
II. Terminal phalanges $T$-shaped.

Fingers and toes wore or less webbed; the tipsedilated intolisks; sterum cartilagiuous...... .... Nectophryue Buch. \& Peters.

The distribation of these genera is as folloms :

|  |  |  | 岂 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M yolatrachus. | 1 |  |  |  |  |  |
| Pseudophryne. |  |  |  |  |  |  |
| Euperpphix.... |  | 4 |  |  |  |  |
| Epidalea......... |  | 33 | 10 | 9 | 4 | 25 |
| Otaspis.. |  | 1 |  |  |  |  |
| Nectes.... |  |  |  |  |  |  |
| Ollotis..... |  | 1 |  |  |  |  |
| Crepidophryne |  | 1 |  |  |  |  |
| Cranophryne.. |  | 1 |  |  |  |  |
| Rhinophrynus. | 1 | 1 |  |  |  |  |
| Seutiger.... |  |  |  |  |  | 1 |
| Nectophryme |  |  |  | 1 |  |  |
| Total | 6 | 41 | 10 | 10 | 5 | 30 |

## BUFO Laurenti.

Syn. Rept., p. 25 ; Wagl., Syst. Amph., p. 206 ; Tschndi, Batr., p. 88 ; Dum. \& Bibr., vıiI, p. 662 ; Giinth., Cat., p. 55 ; Nat. Hist. Rev., 1865, p. 102.

Oxyrhynehus Spix, Spec. Nov. Test. Ran., p. 49 ; Espada, Viaj. Pacif., Vert., p. 170.
Otilophus Cuv., R. A. ; Tschndi, Batr., p. 89 ; Giinth., Cat., p. 69 ; Cope, l.c.
Hylaplesia sp. Boie, Isis, 1827, p. 294.
Chaumus sp. Wagl., Isis., 1828, p. 744.
Phryme (Oken) Fitz. Syst. Reptil., I, p'. 32.
Chilophryue Fitz. 1.e.; Cope, Proc. Ac. Phila., 1862, p. 357.
Phrynoidis Fitz. l. c.; Cope, l. c., and Nat. Hist. Rev., 1865, p. 10:, pars.
Auaxyrus Tschadi, Faun. Per., ILerp., p. 78.
Schismaderma Smith, III. S. Afr., Rept., App., p. 23; Giinth., l. c., p. 1:3; Cope, l. r.

* Crepidins Cope preocenpied.
$\ddagger$ This genns may have a cranial fontanelle. Tho sknll has not heen examined.

Aderomus Cope, Proc. Ae. Phila., 1860, p. 371.
Rhato Cope, cod. loc., 1562, 1. 357, and Nat. Hist. Rev., 1865, p. 102.
Ausonia Stoliczka, Proc. As. Soc., 1870, p. 15\%.
Dromoplectrus Camerano, Atti. Acc. Tor., xiv, 1879, p. 882.
Vnpil horizontal. Tongue elliptic or pyriform, entire and free behind. Vomerine teeth none. Tympanum distinct or hidden. Fingers free; toes more or less webbed, the tips simple or dilated into small disks. Outer metatarsals mited. Omosternum generally missing; if present, cartilaginons; stermum, a cartilaginous plate, sometimes more or less ossified along the median line. Diapophyses of sacral vertebra more or less dilated. Terminal phalanges obtuse or triangular.

In the Proceedings of the Philadelphia Academy for 1854 Dr. Charles Girard gave a synopsis of the North American species of this genus, which embraces thirteen specific names. Eight of these are recognized in the present work, and two others as subspecies. In 1886 the writer gave a synopsis of the species in the Proceedings of the American Philosophical Society, the result of the study of which has been incorporated into the present volume.

1. Head withont bony erests above.
$\alpha$. Interorbital space wider than eyelid.
Parotoici glands small, as wide as long, not wider than head; legs longer, end of tarsus reaching to from front of orbit to end of nimzzle; metatarsal tubercles insignificaut.
. B. punctatus.
Parotoil glands large, long, spreading posteriorly, much wider than head; legs short, end of tarsus to tympanum; metatarsal tubercles insignificant. .1. debilis.
$\alpha \alpha$. Iutcrorbital spaee narrower than cyelid.
Parotoid gland oval; metatarsal tubercles insignificant; a large gland on tibia; size larger........................................ B. columbiensis.
Parotoid glaud oval; both metatarsal tubereles with eutting edges, the interual very large; muzzle very short; no large gland on tibia; size smaller. B. compactilis.
II. Head with bony crests above.
2. Iuterorbital space wider than eyelid.

A strong postfrontal crest ; superciliaries divergent lackwards; parotoid gland narrow and elongate, descending towards axilla; large glands ou thigh and on tibia; head four times in the lungth ; metatarsal tubercles small .................................................. .... . B. alvarins.
2. Interorbital space narrower than eyelid.
$\alpha$. No postorbital ridges.
Superciliary crests parallel ; tympanum distiuct; two cutting metatarsal tubercles; femur largely free
B. hemiophrys.
rox. Postorbital ridges present.
Two large cutting metatarsal processes; superciliary crests very divergent and distinct posteriorly, confounded in a nasal boss anteriorly; spots very large
B. cognatus.

One smaller metatarsal crest; superciliary crests not incurved and transverse posteriorly ; parotoid glauds narrow, not descending behind tympanum; large
B. Icntiginosus.

One smaller metatarsal tuberele; superciliary erests incurved posteriorly so as to be trausverse ; a supratympanic crest ; parotoid gland descending on sides to inferior part of tympannin ......... B. quercicus.

Of the species above defined, the I?. columbiensis and the IF. lentiginosus are the only ones which display any great variability, the latter having four well-defined subspecies. They are also maturally the species which present affinities to other species. Thus the B. Icntiginosus sometimes approximates, withont becoming confused with, the $B$. cognatus, and the latter in turn varies towards the $B$. compactilis.

## BUFO PUNCTATUS B. © G.

Proceed. Ac. Phili., 1852, p. 173; Baird, U. S. Mex. Bomnd. Surv., vol. it, Rept. p. 25, Plate xxxix ; figs. 5-7 (not good), 1859.

Bufo beldingii Yarrow, Proceed. U. S. Nat. Mus., 1882, p. 441.
The head is wide and flat, and enters the total length three and a third times. The width at the posterior borlers of the tympana excceds the length by the diameter of the eyelid. The latter is about four-fifths the very flat interorbital region. The only cranial ridge is the vertical one which extends from between the eyelid and the parotoid gland along the front of the tympanic membrane. The latter is very distinct and is nearly round, and is just laalf the long diameter of the eye. The prefrontal bones are rather prominent at the canthus rostralis, and are roughened with raised points. The end of the mmzzle is strongly convex in profile, its extremity overlapping the premaxillary border. The nostril is nearer the extremity than it is to the orhit. The granular ronghening is present on the extremity of the nose, on the posterior part of the vertex, on the eyelid, the pretympanie ridge, and on the parotoid gland. The tongue is narrow and suberlindrical, and the choaure are large and anterior.

The parotoid glands are subtriangular to round in ontline, and are as wide as or wider than long. The warts of the dorsal integument are quite small, and stand nearer together on the sides than on the median region. The derm of the inferior surfaces is not ronghened nor granmlar, except for a short space on the gular region, but is more or less distinctly areolate. The external surface of the arm and of the tarsus and hind foot and of the entire sole is spinulose; on the superior surface of the tibia the spinnlose tubereles are mingled with larger tubereles. When the posterior limb is extended the end of the tarsus reaches the anterior border of the orbit, and from that point in a few instances to the end of the muzzle. The first finger is longer than the second. The posterior foot is rather small, and the web is deeply emarginate to opposite the middle of the first (fourth) plalange of the fourth toe. All the toes hare a narrow dermal margin to their extremities. Subdigital tubercles not large, single. The two metatarsal tubereles are distinct, the internal quite narrow, and with prominent obtuse extremity ; the external romuled, and not presenting a free edge.

In large specimens from Lower California the tubereles are coarser, and the granular rugosities of the head smoothed off. There is a trace
of raised border to as far as above and belomd the tympanic membrane, thus imitating fantly the $B$. lentiginosus omericomus.


Fig. 60. Bufo punctatus. No. 5305. Cape Saint Lucas; $\frac{1}{1}$.
Mersurcments of No. 2618.
12.
Length of head and body ......................................................................... . . 052
Length of head to posterior elge of tympana ........................................... . . 0115
Width of hearl at posterior edge of tympana ............................................ . . . 019
Length of fore limb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 027
Length of posterior limb.............................................................................. . 060
Length of tibia .... ................................................................................. . . . . . 019
Length of tarsus.............................................................................................. . 011
Length of remainder of foot ..................................................................... . . . 018

This species is of rather variable coloration. The type (No. 261S) is a uniform light brown above and yellowish-white below. In two other specimens from the same locality the dorsal tubercles are pale, with a dark ring at the base. The latter is the prevalent coloration, for while there are six specimens which show it, there is only one other of the uniform brown tint. Specimens from Cape St. Lucas have red warts, with a black ring at the base, and have the gromm color of the sides black besides. The hinder extremities have large blackish blotches, inclosing tubereles which are pink. There is also a black spot on the eyelid, one below the canthus rostralis running longitndinally, and one which extends below and sometimes behind the tympanm.

This is one of our best marked species. Its distribution extends fiom western Texas from as far north as Fort Coneho, and along both sides of the bomdary line between the United States and Mexico, to the Pacitic ocean. It is found as far south as San Antonio, in Texas (Marnock), and in Lower California to the extremity of the peninsula (Nantns), and -in Mexico to Guanajuato (Dugès).

The paired gland-like ridges on the back, represented in the figure of this species in the Report of the United States and Mexican Boundary Surver, are merely the projections caused by the dorsal and sacral diapophyses, somewhat exaggerated

Bufo puactatus Baird.
liESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receircd. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2618 | 3 | San Pedro, Tex. |  |  | Alcoholic. |
| 2617 | 1 | Castanuelas, Mexico |  | Lient. B. Couch, U. S. A. | Do. |
| 2315 | 2 | Ringgold Barracks, Tex. |  | A. Schott ...... | Do. |
| 2634 | 1 | Sonora.................. |  |  | Do. |
| 2613 | 1 | Rio San Pedro, N. Mox .. |  | Dr. S. W. Woodhouse | Do. |
| 8168 2614 | 7 | Arizona $\qquad$ <br> New Mexico | 1871 | F. Bischoff $\qquad$ | Do. |
| 4614 | 7 | New Mexico............ |  | A. Schott <br> H. B. Mollhausen | Do. |
| 12661 | 11 | La Paz, L.Cal............. | 1882 | L. Belding ....... | Do. |
| 12669 | 3 | ...... do .............. .... | 188. | ......do .. | Do. |
| 12670 | 5 | ..... do | 1882 | …) do | Do. |
| 10196 | 1 | White River Cañon, Ariz | 1879 | Dr. R. T. Burr | Do. |
| 12660 | 3 | La Paz, L. Cal............. | 1882 | L. Beliling | Do. |
| 5305 | 5 | Cape Saint Lucas, L. Cal. |  | John Xantus | Do. |

## BUFO DEBILIS Girard.

Proceed. Ac. Phila., 1854, 87; Baird, U. S. Mex. Bound. Surv., II, Reptil., p. 27 ; Boulenger, Cat. Batr. Sal. Brit. Mus , 2 ed., 1832, p. 289.

Bufo insidior Girard, Proced. Ac. Phila., 1854, 88; Baird, U. S. Mex. Bound. Surt., II, Reptil., p. 26, Pl. xli, figs. 13-18.


Fig. 61. Bufo debilis. No. 2620. Chihuahua, Mex.; $\frac{3}{2}$.
This species of toad is nearly related to the $B$. punctutus and agrees with it in most respects. The form of the head and the characters of the skin are quite the same; so is the form of the posterior foot. The differences are well marked, and are as follows: The length of the head is contained in the total more than four times. The first finger is shorter than the second. The hind leg is shorter, the end of the tarsus only reaching the posterior border of the tympanum when the leg is extended. The form and dimensions of the parotoid gland are very different. The gland is rery large, extending posteriorly to an acuminate extremity which is a little beyond above the axilla. The superior borders of the glands are divergent, so that the total width at their apices is one and one-half times the width of the head at the tympana. The inferior outline presents the apex of a very obtuse angle downwards at a point posterior to the tympanic drum and on a level with its inferior border. The inferior surfaces are more distinctly granular than in the B. punctatus. Metatarsal tubercles insignificant; the internal, subconic.

Measurements uf No. 26Z3.


#### Abstract

Length of head and body040


 11.Lengtli of head to posterior edges of tympana
Width of head at posterior edges of tympana ..... 013
dength of fore limb from axilla ..... 020
Length of posterior from groin ..... 040
Length of tilia ..... 012
Length of tarsus ..... 009
Length of remainder of foot ..... 014

The a verage size is less than that of the B. punctutus.
The color of the Bufo debilis is a light ash. The small tabercles are generally black, and are without the red or yellow centers seen in the 13. punctatus. The limbs have narrow black cross-bands, or rather wide incomplete black bands, with the pale center so large as to leave only the black borders. The eyelids and parotoids are crossed by similar black lines. Below and concealed surfaces unspotted.

The range of this species is much like that of the B. punctatus, but it extends further east. Mr. Isaac found it on the upper Wichita in Texas, and Mr. W. Taylor at San Diego in southwest Texas. It occurs westward through northern Mexico and the southwest territories to Guaymas, on the Gulf of California. It has not yet`been found in Lower California. It was originally bronght from the valley of Mexico, and the Smithsonian Institution subsequently received it from Mazatlan. Baird reports it from the lower Rio Grande. It is probably diag. nostic of the Sonoran region.

Bufo debilis Girard.
REsERVE SERIES.

| Catalogue number. | No. of spec. | Lecality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2624 | 1 | Delaware Creek |  |  | Alcoholic. |
| -620 | 2 | Chihuahua, Mexico |  | Dr. Thomas Webb | Do. |
| $\because 6 \geq 1$ | 6 | Matamoros, Mexice |  | Lieut, B. Couch, U. S. $\Lambda$ | Do. |
| $\because 627$ | 1 | Matamoros, Mexico |  | Lieut. B. Couch, U. S. A | Do. |
| $5: 381$ | 1 | (?)................... | 1と60 | 12. Kennicott ............ | Do. |
| こ619 | 7 | Brazos River, Texas |  | Dr. B. lr. Shumard | Do. |

## BUFO ALVARIUS Girard.

Bairl's Reptilia U. S. Mex. Bound. Surv., ir, p. 26, Pl. xyI, figs. 1-6.
This very distinct species is as yet known from a single specimen, which is preserved in the National Museum. It has a general relationship to the I3. penctatus, and also to the Cuban Peltaphryne peltacephala of Cuba. In its large size it equals the $B$. marinus.

Head short and wide; muzzle obtuse and vertical in profile, not pro. jecting beyond upper lip; nares terminal lateral, the canthus rostralis forming a convex line from nares to the orbit. Front wide, superciliary ridges obsolete at anterior third of orbit, moderately elevated behind
this point, and forming a regular eurve with the postorbital ridge. No branch crests. A very short robust supratympanic crest, a short narrow precrbitalerest. Tympanic disk large, round, its diameter three-fourths the length of the eye-fissure. Tongne elongate-obovate ; truncate posteriorly. Border of eyelids thickened, presenting an angle at each extremity, anterior and posterior.


Fig. 62. Bufo alvarius. No. 2572. Fort Yuina, Cal.; ${ }_{1}^{1 .}$
Measurements.
3.
Length of head and body ..... 165)
Length of head ineluding tympana ..... 0.36
Width of head, including tympana ..... 0 OO
Length of fore limb from axilla ..... $0: 8$
Length of fore-foot ..... 0:34
Length of hind leg ..... 0.51
Length of tibia ..... 05.3
Length of tarsus. ..... $03: 3$
Length of rest of foot ..... $05: 3$

Parotoid gland a long oval, with parallel sides, descending from the usual commencement abore the tympanum to a position above the posterior edge of the humerus, and nearly on a level with the posterior border of the mombramum tympani. Dorsal integment with rather sparse small tubercles. A hage oval gland on the superior face of the
thigh, ind another larger one extending almost the entire length of the superior edge of the tibia. A prominent round wart directly posterior to the rictus oris, preceded by two or three sinaller ones. Inferior surfaces areolate, most closels prosteriorly.

Fingers short, first and third equal, fourth shortest. Sccond (first) fing er with a very large tubercle at the base of the proximal end of the second phalange; a smaller one in the same position on the second. The usual two large palmar tubercles; distal to which the entire palm is covered with elosely placed tubercles. Toes webbed to the extremities, but the web scalloped, so that the edge between the third and fourth toes is opposite the extremity of the first phalange (from metatarsal). Sole with a pavement of rather small warts, a single rather larger one below the proximal extremity of each phalange excepting the distal ones. Extermal metatarsal tubercle large, little defined; the internal small, oval, and with free conical extremity. Its imer edge is close to a free dermal margin, which extends from the cdge of the first the and turns forwards on the tarsus and is lost distad to its middle. When the hind leg is extended the heel reaches the middle of the tympanmu and the end of the tarsus reaches the extremity of the mazzle.

The length of the head is considerably less than its wilth, and enters the total length nearly four times; or, measuring from the supraoceipital line, four and a half times.

The color of the specimen is probably somewhat paler than normal from the effect of the aleohol. Girard states the fresh color to have been "uniformly dark green." At present it is light brown, and below whitish, with a few pale spots on the thoracic and gular regions. Thighs uniform light brown behind.

The figure of this species given by Baird, as above cited, is good, except that the parotoid gland is represented as too wide. This gland in this species is quite peculiar in its form and position.

No. 2572 ; one spec.; Fort Y'una, Cal.; A. Schott.

## BUFO COLUMBIENSIS Bd. \& Gird.

Bufo columbiensis Baird \& Girard, Proc. Ac. Phila., 1853, p. 378; Girard, l. c, p. 7\%, Pl. 5, fig. 4-9; Cope, Check List Batr. Rept. N. Amer., 1875, p. 29.
Bufo borets Baird $\mathbb{N}$ Girard, Proc. Ac. Phila., 185:, p. 174; Girard, U. S. Expl. Exped., Herp., p. 74, Pl. 6, fig. 4-9; Boulenger, Cat. Batr. Sal. Brit. Mus., p. 296, fig.
Bujo halophila Baird \& Gir:ard, Proc. Ac. Phila., 1853, p. 301 ; Girard, Proc. Ac. Phila., 18.74, p. 87, and U.S. Mex. Bound. Snrv., II, p. 2ヶ, Pl. 41, fig. 7-12; Bonlenwer, Cat. Batr. Sal. Brit. Mus., 1882 , p. 2!5, fig.
Bufo hilemsis, part, Giinth., Cat. Batr. Sal. Brit. Mns., 1863, p. 57.
liffo microscaphus Cope, Procecd. Ac. Phila., 186if, p. 301 ; Report U. S. G. G. Expl. W. of looth Mer., G. M. Wheeler, v. p. 522.
Bufopirms Cope, Report U. S. G. G. Expl. W. of 100th Mcr., v., p. 52, Pl. xxv fig. 4-5.
This is a rariable species, so much so as to present the appearance of including a nmmber of subspecies. But these intergrade in so many specimens that I can not maintain them as distinet, and I shatl use the term variety as more applicable to their case.

The head is short and wide, and its length varies so as to enter from foul to four and a half times in the total length. The extended hind leg brings the heel to the posterior lower or middle of the orbit. The muzzle viewed from above is rounded, and in profile is truncate, and not projecting beyond the premaxillary border. It is shorter than the length of the orbit, and the nostrils are terminal. The tongue is flat and thin, and is a long oval in ontline. The membranum tympani is quite distinct, and is subromul. Its diameter is a little less than half the length of the eye slit. The parotoid gland varies in form from nearly romd to a moderately elongate-oral; in either case it has an anterior prolongation to the border of the orbit. The glands of the integment of the upper surfaces vary from moderate to large size. They are smaller on the sides and on the limbs, excepting a large oral one on the superior face of the tibia. The inferior surfaces are coarsely areolated, with a few more distinet tubereles posteriorly. There is an infolded ridge on the inner edge of the tarsus. The posterior foot raries in relative width in different individuals and localities. In northern specimens the sole is wider, and the palmation extends to the ends of the toes. It is emarginated, so that the edge is


Fig. 63.-Bufo columbiensis columbiensis. No. 11516. Kerrakin Valley, W. T.; 1.
Mensurements of No. 328.
Length of head and body ..... $1: 4$3.
Length of head to posterior edge of membranmen tympani ..... 021
Width of head at posterior elge of membrauum tympani ..... 0.34
Length of fore limb ..... 061
Length of posterior limb ..... 116
Length of tibia ..... 0:19
Length of tarsus.
Length of remainder of foot ..... 0.45
opposite the middle of the third phatange of the fourth toe, combing from the end. In the extreme sonthern form the web does not extend to the extremities of the digits, but leares three phalanges of the fom th toe absolntely frec. It is notched to a point a little proximal to the distal end of the fourth (first) phalange. Between these extremes of palmation (represented by specimens 325 and 2581 ) all the intermediate conditions may be found. The internal metatarsal tubercle is small and narrow, with subconical extremity; the external is a low but rather wide tnberosity. The first finger is longer than the second.

The northern forms are sometimes of a miform olive-brown abore, with a pale vertebral line, and with the abdomen indistinetly spotted. Sometimes the miform brown extends for a short distance on each side of the pale vertebral line, exterior to which the surface has large brown spots on a light olive ground. In the southern forms the ground color is light brown or olive, or even clay color, with an irregnlar brown band on each side of the light vertebral line. On each side are large dark brown spots with a reddish wart for a center. Spots on the posterior legs like those on the lack. Below unspotted.


Fig. 64.-Bufo columbiensis halophilus (from Baird, U. S. and Mexican Bound Surrey) : 1.
The northern and southern varieties may be thus defined in extreme forms:
Head 4.5 times in lenglh; web extending to tips of toes, but deeply emarginate; parotoid gland more elongate ; colors dark ; size large........... I. c. columbiensis. ILead 4 times in length; webs more deeply notched, and leaving three phalanges of fourth toe free; parotoid shorter; colors light; size smaller...... B. c. halophilus.
There are, however, as many specimens which are intermediate between these extremes as there are specimens of the latter. These represent the Bufo microscaphus Cope. The specimens of the middle and sonthmin locky Momban region are referable to it, as well as many fiom

Oregon aidl California. I think B. pictus is the young of this form. To the typical $B$. columbiensis belong Nos. 328, 2577, 2579, 4975, 9950, 10920, and 11516. To the intermediate type belong $9636,8093,11500,11922$, and 11923. To the halophilus trpe may be referted Nos. 2581, 9465, 11535, 11921, and 11922 . No. 11505 is intermediate in the form of the parotoids, and the web is deeply excavated, but the free portion of the toes are widely margined. A complete series of the forms of the parotoid may be traced, begiming with the short type of halophilns, No. 2581 , through 1360S, 11505, 11535, to 11923 of the elongate form.

In Nos. 4975 and 9950 there are distinct traces of superciliary cranial ridges. They are perfectly straight, and there is no indication of postorbital ri.Iges. There are four specimens under 4975, and they are from Chilowyok, Wash. Ter. The locality of the other specimen is unfortunately unknown. The same character is seen in the type of $B$. micro. scapheus, according to my description, which is given below. The specimen is unfortunately inaccessible to me at present.
"Upper surface of head nearly plane upon its middle regiou; orbits bordered by a low and rounded off ridge; its skin being thin and adhering to the skull. Parotoids well developed and subreniform. Eyes and tympanum rather large. Tongue elongated, broadest posteriorly. Upper jaw emarginated. Two large carpal callosities. A membranons foll at the imner lower edge of the tarsns. Toes palmated; two metatarsill tubercles. Palms and soles coarsely granular. Upper surface of borly exhibiting numerous glandular tubercles; large pustular swelling upon the thighs. Color miformly dark green."

I also add a eopy of my description of the young, under the nawe of B. pictus, as it embraces some peculiar characters, probably due to immaturity:
" Palmar and solar tubercles well developed, the larger or inner one of the latter not bearing a cutting edge. Cranium plane above; the muzzle produced, rather narrowed, and vertically truncate. Membranum tympani very small, externally invisible; ostia pharyngea exceedingly minnte. Tongue large, oval, extensively free. Parotoids superior, broadly oval in form. Upper surfaces covered with large tubereles; inferior surfaces areolate. Limbs stout, especially the tarsus, which bears a longitudinal fold. The heel reaehes to the middle of the parotoid gland, and the toes are only webbed at the base." The palmar and solar tubercles are yellow, and the warts of the body tipped with rell ; size small.

There is a direct relation between the climatic conditions of the regions and the forms of this species which inhabit them. It is well known that the degree of humidity of the Pacific region increases rapidly as we pass from south to morth. The southern part of the region inhabited by this toad is quite arid, and the opportunity for aquatic life must be limited. Accordingly the natatory web of the hinder foot is reduced. In the specimens from the raing north the web is much larger and the colors are darker. This increase of pigment is confirmatory of J. A.

Allen's hypothesis, based on observations made on mammalia and birds, that dark pigmentincreases with increase of humidity.

In its eastern distribution this species is not known to pass the limits of the Rocky Momntains. Capt. Charles Bendire, U. S. Army, has sent it from Fort Walla Walla, Wash. Ter., and I took it at Atlanta, Idabo, the most eastern locality known. It is abundant throughout the entire lake region of Oregon.

It is especially numerons at Klamath Lake, where it covers the basaltic blocks which lie partially in the water, concealed by the Typhe, which grow from the bottom. They accumulate there in large piles, sometimes as large as a bushel measure, and afford abundant food for the Eutienie, which are scarcely less abundant. I saw one specimen of this toad as large as the arerage Bufo marinus of Brazil, and a specimen seen at Warner's Lake, Oregon, was but little smaller.

Bufo columbiensis Baird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2579 | 1 | Medicine Bow Creek. |  | Dr. W. A. Hammoud | Alcoholic. |
| 4104 | 6 | Columbia River, Oreg. |  | H. B. Mollhansen | Do. |
| 4975 | 5 | Chilowyuck Lako, Oreg. |  | Dr. C. 13. J. Kenuerly | Do. |
| 2688 | 1 | Fort Uiupqua, Oreg ..... |  | Dr. E. Vollum, U. S. A. | Do. |
| 4792 2577 | 1 | Simahmoo Hay, Wash... Shoalwater Ray Oreg ... |  | Dr. U. B. I. Kennerly Dr J G. Cooper | Do. |
| 2577 <br> 2574 | 10 | Shoalwater Bay, Oreg ... Cape Flattery, Wash... |  | Dr. J. G. Cooper....... | Do. |
| 2590 | 1 | Monterey, Cal. |  | A. S. Taylor | Do. |
| 2581 | 1 | Sau Diego, Cal |  | Dr. J. L. Le Conte | Do. |
| 2586 | 2 | do |  | Dr. Thomas Webb | Do. |
| $2 \cdot 89$ | 2 | Benicia, Cal |  | Dr. J. L. Le Conte. | Do. |
| 2585 | 1 | Smi Diego Cal |  | Dr. Thonas Wcub. | Do. |
| 2581 | 1 | Presidio, Cal . |  | Lieut. W. P. Trowbridge, U.S. A. | Do. |
| 9465 | 6 | Fort Tejou, Cal...... |  | J. Xantus................ | Do. |
| 8691 | 1 | Santa Barbara, Cal....... | $\text { July -, } 1875$ | H. W. Henshaw | Do. |
| 8678 8696 | 10 | Wake Talioe Cal | $\text { July -, } 1885$ | ..... do | Do. |
| 8696 8695 | 1 | Lake Taltoe, Cal Virgiuia City, Nor | 1876 1875 | Wily lo Soekels | Do. Do. |
| 8681 | 10 | Lako Tahoe, Cal | Aug.-, 1876 | H. W. Henshaw. | Do. |
| 11941 | 1 | Des Chutes River, Oreg. | 1878 | ….do | $1 \%$. |
| 13608 | 2 | Sau Diego, Cal |  | C. R. Orcutt | Do. |
| $99+1$ 11535 | 1 | Shoshone Lake |  | Dr. Curtis | Do. |
| 11535 | 1 | Monterov, |  | (?) | Do. |
| 11923 | 5 | Northern boundar | 1874 | Dr. E. Cones. | Do. |
| 11942 | 8 | Oregon ........ | 1878 | H. W. Menshaw | Do. |
| 7016 | 1 | Simahmoo Bay, Vash ... |  | C. B. R. Kennerly | Do. |
| 11953 | 12 | Fort Teion, (Gal ${ }^{\text {Fort }}$ Walla |  |  | Do. |
| 11505 9630 | 1 | Fort Walla Walla, Wash. <br> Sonth Park, Colo ....... | 1881 | Capt. Charles Bendire <br> J. T. Rothrock. | Do. |
| 11923 | 1 | Northern boundary ${ }^{\text {c..... }}$ | 1874 | Di. E. Cones ... | Do. |
| 9950 | 1 | Iowa |  | R. Kennicott. | Do. |
| 11.516 | 1 | Kewakin Valley | 1878 | H. W. Heushaw | Do. |
| 10320 8655 | 2 | Fort Walla Walla, Wash. | 1881 | Capt. Charles Bendire | Do. |
| 8655 11500 | 1 | Utah.................... |  | Dr: H. C. Yarrow ...... <br> II TV Uenshaw | Do. |
| 11500 11742 | $\stackrel{2}{1}$ | Camp lidwell, Cal | 1878 1867 | II. W. Henslaw . | Do. |
| 8506 | 6 | Crittenden, Ari\% ........ |  | J. M. Rutter ... | Do. |
| 2573 | 1 | Shoal water Bay, Wash .. |  | Dr. J. G. Cooper | Do. |
| 11519 | 1 | (?) ...... $\ldots$. |  |  | Do. |
| 62\% | 5 | Clark's Forks, Kootenay liver. |  | C. B. R. Kennerly | Do. |
| 7144 | 2 | Furt Crook. Cal |  | D. F. Parkinson | 1). |
| 11946 | 7 | Bidwell. Cal. | 1878 | H. W. Hershaw | I). |
| ${ }_{4}^{2578}$ | 1 | Uppor Pit liver, Cal |  | J. S. Newberry. | 1) |
| 4568 4194 | 12 | Fort Trjon, Cal. |  | J. De Vesey.. | 1 ) |
| 13793 | $\stackrel{9}{1}$ | Fort Bridger, Utak .... | 1884 | C. Droxler C. H. Towns | Do. |
| 13794 | 1 | Cal, | 1884 | .... do ...... | Do. |

## BUFO COMPAC'TILIS Wiegm.

Isis, 18333, p. 661 ; Peters, Mon. Berl. Ac., 18633, p. 81, and 1873, p. (ie4; Boulenger, Cat. Batr. Sal. Brit. Mus., p. 302.

Bufo speciosus Girard, Procecd, Ac. Phila., 1854, p. 86, and U. S. Mex. Bound. Surv. n, 1. 26, Pl. 40, fig. 5-10.

L'ufo unometus Giiuth., C'at. Batr. Sal. Brit. Mus., 1868, p. 57.
linjo levifions Bocourt, Bull. Soc. Philom. (7), I, p. 187.
Dromoplectrus anomalus Camerano, Atti. Ace. Tor., xiv, 1. 88\%.
Head morlerate; its upper surface smooth and even, else showing slight traces of superciliary ridges. Snont much shorter than length of orbit, subtruncated and romnded; nostrils subterminal. Mouth large; upper jaw slightly emarginated. Tongue more widely oval than usual in the genus; flat; free posteriorly for the fourth of its length. $\Lambda$ subgular vocal bladder in the male sex. Tympanmm distinct, of medinm size. Parotoids oue-half length of eye-fissure, rather small, oval, not reaching orbit. Limbs of moderate development, end of tarsus reaching tympanom. First finger much longer than the second, which is equal to the fourth. A large subcircular carpal disk. Toes semipalmated, leaving two and a half phalanges of the fourth toe free. Two metatarsal spade-shaped processes, the innermost being much the largest, both furuished with a black cutting edge. Imer lower edge of the tarsus acute, not incurved. Skin above corered with ummerous and closely placed papillie of moderate development, and indistinctly areolated beneath; no large gland on tibia. Color above greenish-brown, with or without a few brown spots; no dorsal lighter vitta or streak. Beneath greenish or yellowish-white, unicolor.


Fig. 65. Bufo compactilis. No. 2608. Ringgold Barracks, Tex.; 1.
Measurements of No. 2627.
M.

Length of head and body ............................................................... . . 072
Leugth of head to posterior edges of membranum tympani .......................... . 016
Widtlı of head at posterior edges of membranum tympani.......................... . 024
Length of anterior limb from axilla .................................................... . . 035
Length of posterior limb from groin ................... ................................. . . . 066
Length of tibia ...... .............. .......................................................... . . . 025
Length of tarsus ................................................................................ . . 015
Length of rest of foot...................................................................... . . . 025

The above measurements of the posterior leg show that the greater part of the femur is embraced in the integument of the body.

This toad has very much the appearance of one of the Scaphiopidx, and it is not unlikely that its habits are, like theirs, subterranean.

The specimen figured as Bufo speciosus by Baird in the Report of the Mexican Boundary Survey (No. 2611), from Pesquiera, in Nuevo Leon is not typical of the $B$. compactilis. It has feeble traces of the crania crests of the Bufo cognatus, and some large brown dorsal spots not found in other specimens. Three specimens from Kansas (3994) possess similar rudimental crests, and a fifth specimen of the same character was sent me from the Wichita River, in central northern Texas, by Jacob Boll. These specimens foreshadow the characters of the Bufo cognatus, while not approaching it in the development of the cranial crests. In the Dallas specimen the clorsal spots are of medium size, while in those from Kiansas they are very small or wanting. I suspeet that the cranial characters belong to a race which ranges farther north than the true bufo compactilis, which may at some time be regarded as a subspecies, under the name of $B$. compuctilis speciosus. The true $B$. compuctilis ocen's in southwestern Texas, and rauges as far south in Mexico as the Isthmos of Tehuantepec.

Bufo compuctilis Wiegm.
lRESERVE SERIES.

| Catalugue: number. | No. of slece | Lucality: | When collected. | From whom received. | Natire of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2652 | 2 | Inlianola, '1'ex. |  | Capt. John Popo, U. S. ${ }^{\text {a }}$ | Alcoholic. |
| 26.54 | 5 | Encinellit. |  | 1r. Thomas Wobl | Do. |
| 2612 | 1 | Between Salado River and Camargo. |  |  | Do. |
| 2609 | 3 | Proint Isabel. |  | G. Wurdomann. | Do. |
| 2027 | 1 | Fort liliss, N. Mex |  | Dr. S. W. Crawford, U. S. A. | Do. |
| 2611 | 1 | l'expuicria Grande, N. Leon. |  | Lieut. B. Couch, U.S. A.. | Do. |
| 2610 | 1 | Brownsville, Tex |  | Capt. Stewart Van Vliet, U.S. A. | Io. |
| 2608 |  | Ringgold barracks, Tex. |  | A. Schott . . . . . . . . . . . | Do. |
| 11194 | 1 | 'ruxas |  | Grorge B. Sennett. ..... | Jo. |
| -26:37 | $\stackrel{1}{2}$ | Matamoros, Mexico |  | Lieut. B. Coneh, U.S. $\Lambda$ | $1 \%$ |
| 4934 4964 | 3 | Kinnsas, ........... |  | 12. Kemicott. Capt. J. Роре .. | 1\%\%. |

BUFO HEMLOPHRYS Cope.
Procecel. Amer. Philo soph. Soc. 1887, p. 515.
Superciliary crests not distinct on the muzzle, parallel, neariy straight, terminating abruptly posterionly in a transverse elevation. The latter meet on amiddle line, form ing a trans erse ridge, with an abrupt descent to the nape. Exter mally they extend but a short distance, leaving no representations of the postorbital ridges except a few tubercles in one or two of the specimens. A small supratympanic tuberosity. No preorbital ridge. Muzzle vertical at end; nostrils terminal. Membranum tympani a vertical oval, two-thirds the diameter of the eye, Parotoid
gland a narrow oval. Dermal tubercles distinguished by their small size and promineuce. They form several rows on the back and external face of the tibia. At all other points the skin is closely areolated, the areolæ frequently acutely prominent, especially on the smerior face of the tibia and on the sides. The heel of the extended hind leg reaches to the posterior border of the orbit. The posterior foot is wider than in the $B$. lentiginosus, though not relatively slorter. The web is excavated to the line of the middle of the fourth (first) phalange. The metatarsal tubercles are especially large. The internal is very wide and prominent, and has an extensire acute edge; the external is much smaller, but it also has a free cutting edge transverse to the length of the tarsus. The length of the head to the position of the postorbital crests enters the total (to the rent) four and a half times.

The color is brown, marked on the back with a median yellowish line, and two or three rows of brown spots of median size on each side of it. These spots have one or two tubercles for their center pieces, which are more reddish than the rest of the spot. There are two brown spots on the upper lip and one below the tympanum. A large spot extends from below the parotoid gland to near the front of the humerus. Posterior to this, with a light interval, there extends a longitudinal deep brown band, which extends, with interruptions, to the groin. Below this on the sides are other dark brown bands, which form a more or less reticulate patteru. The limbs and posterior feet have dark brown cross-bands, and there is a very coarse dark brown reticulation of brown or brownish-yellow on the posterior face of the femur. The belly is more or less black spotted; throat immaculate.

Fig. 66. Bufohemiophrys. No. 11927. Northern Montana; $\frac{1}{1}$.
Measurements of No. 11927.
Length of head and body
Length of head to posterior edge of membranum tympani ..... 015
Width of head at posterior edges of membranum tympani ..... 023
Length of anterior limb ..... 034
Length of anterior foot ..... 014
Length of posterior limb ..... 068
Length of tibia ..... 020
Length of tarsus ..... 010
Leugth of rest of foot ..... 025M.
besides the peculiarities of the head crests and metatarsal shovels, this species differs from most of the other North American species in having the belly spotted.

No. 11! $\boldsymbol{Q}^{7}$; 7 specimens; northern bomdary United States, Montana; 1574; Dr. E. Cones.

Of the above specimens four are aduit or nearly so, and three are half grown.

## buFo Cognatus say.

Long's Expedition to the Rocky Monntains, if, 18:33, p. 190 ; Holbr. N. A. Iterp., v. 184:2, 1. : : P1, Pl. v. ; 13d., is Gird., Marcy's Report, 1853, 1. : Ple, Pl. 1' ; Report U. S. P'ac. R. R. Surv., x, Whipple's Report, 1. 44, P'l. xxvi.

Bufo dipternus Cope, American Naturalist, xint, 1. 437 ; Bonlenger, Cat. Brit. Mus., 158\%, 1. 308.
Head short, one-fifth the total, measured over the dorsal convexity; wide, and with muzzle descending steeply. The descent commences between the anterior part of the orbits, sloping to opposite the nares, below which it retreats a little within the perpendienlar to the upper lip. The entire prefrontal region to a point which measures the anterior third of the orbit projects as a flat boss or protuberance. The supereiliary ridges of the frontoparietal bones originate from the posterior side of this, and diverge rapidy, passing by a regular curve or a very open angle into the postfrontal ridge. At the point of junction there is on the inmer side an angular tuberosity, which rejresents the contimtation of the superciliary ridge. There is no disposition to the connection of these angles across the middle line or the filling up of the inchuded groove, as is seen in l3. hemiophrys, B. lentiginosus woodhousi, etc. The prefontal boss forms an elevation along the front of the orbit, but not a distinct crest. Supratympanic crest represented by an angle only. Membranmen tympani a rertical oval, quite distinct, its long diameter one-half that of the orhit, sometimes one third. Owing to the elevated form of the muzzle, the nostril marks a point half way between its summit and the edge of the mper lip, and the eye-fissure runs obliquely downards and forwands.

The parotod glands are short and wide, generally a short oral in form, at other times subtriangular. The dorsal integroment is covered with very numerons closely placed small tubereles, which continue, with diminished dimensions, on the sides and lower surfaces everywhere. No large glands intermixed. Finst finger a little longer than second. Toes webbed, the web reaching the middle of the fourth (first) phalange. Sole wide, width at second toe inehsive, one-half of length from between metatarsal tubereles. Tlie latter are large, the internal extensively free and presenting a wide entting edge. The external is larger than usial and wide, with a free entting edge. The subarticular tuberetes are small. On the fourth toe they are sometimes donble.

## M.

Length of head and body ..... 084
Leugth of head to posterior edges of tympana ..... 012
Width of head to posterior edges of tympana ..... 038
Levgth of fore-leg ..... 044
Length of fore-foot ..... 021
Length of hind foot from groin ..... 091
Length of tibia ..... 030
Length of tarsus. ..... 020
Length of rest of foot ..... 031

The above measurements of the hind foot leave only $10^{\mathrm{mm}}$. for the femur, measured from the groin. This is due to the fact that that seg. ment is almost entirely included in the integument of the body, and much more extensively than in any other North $\Lambda$ merican species. The tarsometatarsal joint reaches to the orbit when the hind leg is extended.


Fig. 67. Bufo cognatus. From Bairú, U S. Mex. Bountary Survey.
The body is dusky brown above, and is corered with small black warts, which are most numerous and prominent near the sides. $\Lambda$ yellowish-brown vertebral line extends from the head to the rump, from which proceed oblique lateral lines of the same color. 'The first oblique lateral line begins at the head and runs to the side behind the shoulder; the second begins near the middle of the back by two branches, which soon unite and run to the groin; a thirl line begins still farther back, and extends to the hips.

The abdomen is dingy jellowish-white. Thie anterior extremities are
dusky brown above and dingy white below. The posterior extremities are colored, like the back above, with bats of yellowish-brown, and are dingy white below.

After a study of the numerous specimens in the collection of the Niational Mnsemm, I am eonvinced that this species is entitled to full recog. nition. The differences from the B. lentiginosus, its nearest ally, are mumerons. These include the form of the eranial crests, the shape of the parotoid glands, and the development of the metatarsal spurs. It is also easily recognizable by the coloration.

What I beheve to be a large young specimen of this species served as the type of my Bufo dipternus. Although an inch and a half long, this individual had not developed a trace of the cranial crests. The dorsal spots also are smaller than in any specimen I have seen. I obtained two other specimens of about the size of the type and three smaller ones near the Judith River, Montana.
This is chiefly a species of the plains; but it extends into the Rocky Mountains also.

Bufo cognatus Say.
RESERVE SERIES.

| Catalogne number. | No. of spec. | Locality: | Whon collected. | From whom reccired. | Naturo of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4183 | 2 | Colorado River |  | Mollhansen. | Alcoholic. |
| 4366 | 8 |  |  | Dr. Webb. | Young. |
| 2563 | 1 | lolo Creek, Ark | July 9, 1857 | W.S. Wood. | Alcoliolic. |
| 256 | 1 | liod liver, Ark |  | Capt. R. B, Marey | 10. |
| 2561 | 2 | Fort Piorre, Nelr |  | Dr. Evans | $1)$. |
| 2033. | 10 | Salt Plains. |  | J. H. Clark.............. .-. | 10. |
| 2567 | 1 | Fort Iilley, Kans . . . . . . |  | Dr. W. A. IIammond, U. S. A. | Do. |
| 5934 | 1 | Kansas. |  | R. Kennicott.............. | Do. |
| 2564 | 2 | Coalıuila, Mexico | 1853 | Lieut. B. Conch, U.S. A.. | Io. |
| 2566 | 6 | Sand Jlills ....... |  | Dr. F. V. Hasden ......... | Do. |
| 8507 | 2 | Fort Garlaml, Colo ...... | July 23, 1873 | II. W. Henshaw | Do. |
| 4626 | 1 | Nobraska . . . . . . . . . . . . | July 23,1873 | Capt. J. II. Simpson, U. S. A. | Do. |
| 9429 | I | Fort Garland, Colo |  |  | Do. |
| 9128 | 1 |  |  |  | Do. |
| 2565 | 3 | Little Blno River, Kans . |  | Jr. J. G. Cooper. .-......... | Ino. |
| 9176 | 1 | Kalst on, Ariz............. |  | Dr.C. C. Newborry ....... | Jo. |
| 4180 | 2 | Near Colorado ILiver... |  | -..-10........... | 1)o. |
| 11.578 $\mathbf{9 4 5 0}$ | 8 | Fort Kearny, Nebr ..... |  | W.S. Wond ................ | Do. |
| 9450 | 1 | California...... | 1877 | Dr. J. G. Cooper .-......... | Do. |

## buFo Lentiginosus Shaw.

Zoology, 1803, mi, i, p. 173, tab. Lifi ; Giinth. Cat. Batr. Sal. Brit. Mins., 1868, p. 63; Cope Check List Batr. Rept. N. Am. 1575, p. 29, parte maj.; Bonlenger, 2l ed., Catal. Batr. Sal. Brit. Mus.,1882, p. 308.

Cranium with distinct osseous crests, which form straight lines, one over each orbit, which is continued posterior to it for a sloort distance. A postorbital crest extends at rightangles to the supraorbital, and presents an obtuse angle or a short rilge posteriorly at the superior border of the tympanic disk. No considerable crest directed inwarkis from the
extremity of the supraorbital. Tympanie rlisk distinct; rertically oval in form; its long diameter two-thirds that of the orbit. Parotoid gland elongate, with oval extremities; not angulate nor descembling on the sides of the body. Dorsal derm studded with rather small round warts. Surfaces of limbs and lower parts every where strongly gramular. First finger a little longer than second. Toes webber, the membrane emarginate to opposite the middle of the fourth (first) phalange, leaving the distal phalanges with a dermal margin only. Metatarsal tubercles two; the internal large, narrowed, and with a short free cutting elge; the external small and withont cutting edge. The length of the head to the posterior extremity of the longitudinal crests enters the total length from three and a half to five times, differing in the subspecies.

The color of the species is brown above, with darker brown subround dorsal spots with pale edges and of moderate size, arranged in from two to four rows on each side of the middle line. The latter is generally marked by a more or less distinct pale streak. There is frequently, but not always, a dark brown lateral shade, which commences below the posterior end of the parotoid gland, and has a pale superior, but uo distinct inferior border. It may be broken into spots. The limbs are brown, cross-banded, and the inferior surfaces are pale yellow, which is very rarely dark spotted, and then only on the thorax.

The size varies from three to five inches in length of head and borly.
In its distribution this species is one of the inost widely diffused of the cold-blooded vertebrates of North America, and as such presents several strongly marked geographical subspecies which have bectn regarded as species. That the latter view can not be maintained is evident from the existence of a small minority of individuals in which the features of the respective types are fomul to be wanting or mingled. The persistence of these forms is, however, so evident, that they shonld take distinet rank in our system. Their definitions are as follows:
Frontoparietal crests approximated, parallel, not proluced; postorbital crests loug; no supratympanic crest ; head 4 to 4.5 times in length ................ l. l. finleri. Frontoparictal crests parallel, not well distinguished posteriorly on aceonat of the abrupt elevation of the occiput; postorbitals long; no supratympanic; head 4.5 to 5 times ................................................................... li. I. woodhousei. Frontoparietal crests divergent, not much produced, and well distinguished behind; postorbitals short; supatympanic wanting or shont; heal $\&$ to $4 . \overline{\text { s }}$ times in length l. l. वmurricanins. Frontoparietal cests divergent, produced into a knob behind the short postorhitals; supratgmpanie well developed; head 3..i) to 4 times in length... If. I. Iemiginosus.
The B. l. americanus is the central furm from which the others radiate. The B. l. lentiginosus, as the characteristic type of the Austroriparian region, has character's most divergent from the others. The peculiar form B. l. fowleri of the Northeast is connected with the other types by the B. l. woorlhousei of the Rocky Monntains. The latter is the most difficult to separate from the easterm B. I americames, though its typical representatives arr quite distinct.

## Bufo lentiginosus fowlevi Putnam.

MSS., Cope, Check List N. Amer. Batr. and Reptil. 1875, p. 29. (name only).
This animal, like the B. l. woothousei, is distinguished by the gradual and steep elevation of its cranial erests and lack of supratympanic ridge. It differs from it in the approximation and posterior contlnence of these ridges, the greater breadth of the parotoids, and in coloration. Suprorbital ridges elevated, rising posteriorly close together, parallel or convergent behind, inclosing a frontoparietal gutter ; postorbital ridges eurved backward; no parietal tuberele, but a eross ridge or median elevation; no supratympanic ridge. Canthus rostralis very obtuse, a central groove on top of muzzle ; premaxillary margin retreating. A preorbital ridge; suprarbitals high, thin, sometimes divergent a little in the middle; then convergent again, prolonged a little beyond postorbital, and comnected by a lower transverse ridge. Postorhital curved backwards to meet the parotoid; latter elongate oval, as long as vertical groove to bares. Nostrils equidistant from eye slit and labial margin ; latter nowhere produced. Tympanmm distinct, half orbit. Mnzzle to middle of extended fore-arm; heel beyond muzzle; metatarsal shovel strong, uarrow; outer tubercle minute. Toes half webbed, width of sole at second toe one-third length from onter tuberele. Choane and ostiapharyngea equal. Color grayish-olive, sometimes quite bright, with a yellowish vertebral line from the end of the mmzzle. Six spots of six pairs on each side of this; two pairs superciliary, one nuchal and three dorsal, all elongate, deep brown, yellow margined. Three from orbit; one below, two behind, the superior above tympanmm, deep brown, yellow edged. Below, dirty white; throat of male in spring black; sides behind and femora marbled with yellow on blackish gronnd. Length of head to postorbital crest $4 \frac{2}{3}$ in total length ; latter equal 2 inches 6 lines. Elevation of cranium 6.7 lines. Fore limb 1 inch $S$ lines; hind limb 3 inches 5 lines, femur half included.

This subspecies is so far known only as a native of a few ponds in northeastern Massachusetts near the town of Danvers. Such a limited distribution for a land vertebrate is remarkable, as is also the fact of its having so long remained withont introduction to science. It has been known and noticed by scientific men of the neighborhood, it seems, for twenty years. I append a letter of its only historian, S. P. Fowler, to $n y$ friend F. W. Putnam, whose name the latter has conferred on it.

Among eighteen specimens of this subspecies forwarded to me by the Essex Institute of Salem, one female exhibits widely separated superciliary ridges; in a nineteenth, from New Harmony, Ind., the ridges are a little more divergent and less ascending, with scarce a trace of the median supraparietal elevation. A speamen of the var. Americanus from Nebraska approximates sufficiently closely to the last specimen to indicate that the Fowleri can not be regarded as under all circumstances separate or be accorded full speciife rank.

Bufo lentiginosus fowleri Putnam.
RESERVE SERIES.


Fig. 68. Bufo lentiginosus fowleri, Putn. 10888. Danvers, Mass.; 1.
Mr. S. P. Fowler, of Danvers, Mass., after whom this interestng toad was named, makes the following statement in regard to the habits of B. lentiginosus fowleri, in a letter to Prof. F. W. Putnam, who has kindly allowed me to make the following extract from it:
"In regard to its habits I would say I have never been able as yet to discover it except in warm summer evenings when the thermometer is not below 600. In cool evenings they are not to be seen at all and are perfectly silent. When first observed in the early part of the evening they may be seen making their way through the grass and over the grounds adjacent to the pond, and when it is reached, which is usually about dark, they commence their singular note, which the late Dr. Nichols thought was amatory, and which he described as a shrill monotone, continued a second or more in a high falsetto voice, thrice as long and more trilling than the voice of Pickering's Hyla. I agree with Dr. Nichols in regard to the croak of this toad, excepting the trill, there being no trill to this reptile's note, such as we notice in the common toad, frequently long continued, and which seems to mark this species. I would here say I have heard the note of one toad in the grass some distance from the pond. To my ear this croak is a sharp, disagreeable, unearthly screetch, difficult to describe, as it is unlike any sonnd I have ever heard uttered. I have heard people who live near this pond (Judge Putnam's) say that they thoughtit resembled in a warm summer's night (when they are most active and numerous) the whoop of a party of Indians, and that they have lueard their screeching during the whole night. That their note is amatory I have at present some doubt, as it is continned through the warm season of the year. I first noticed these toads the present season at Judge Putnam's pond, in the evening of 20 th of May, when I took several of them. I have not as yet been able
to find what I consider their spawn, nor have I seen any copulation among these toads, so often noticed among the common species. I have seen them in this pond as late in the season as the last of August. There are several ponds in the vicinity of the judge's pond, but they are not visited by these toads, but I have seen them in sinall numbers in clay pits. I have a pond in my grounds that swarms in May with the common toad, but is never visited by the one under consideration. I have not noticed the common toad around this pond, but I now intend to make a search for it. In answer to your question, 'What length of time have these toads been observed in this pond?' I wonld say I have noticed them in this pond thirty-five years. In regard to their food, I think it is different from that of the common toad, as they will not eat earth-worms, but feel readily upon flies. This habit I have noticen, as well as my brother Augustus, he having kept them for some months for the purpose of painting them, and who has furnished me with several figures of this reptile in different attitudes. I have noticed when these toads are held in the hand they make a chirping noise, and when a dozen or more are confined together they make considerable noise. Perlaps the same may be noticed in the common toad during the breeding season. It is very singnlar that those I sent yon were all males; they were all croakers, that is certain, for by their note I was led to know where to take them in the dark. I have always been puzzlen to know why these toads visit this pond during the whole warm season. So far as I have been able to judge it is for the sole purpose of croaking, for they do nothing else, or to wet their skins. The common toan is found everywhere, and breeds in all the still and quiet waters in the comotry, whereas this supposed new species is discovered in a very few ponds, and is comparatively scarce. I have thought that this toal was of a more spare habit, if I may so speak-not so heary or corpulent as the common toad, more active, as much so as the frog, and full as difficult to catch. I think there is more uniformity of size and color than we see in the common toads. I do not recollect in the great numbers I have examined to have seen a small one or one differing in color from another. The difference in size and color is very great amongst our common toads. I have said in the vicinity of this pond I have freqnently heard their note some distance from the water at the same time others were croaking in the ponl. I have never observel this anywhere else in my walks in the evening."

Bufo lentiginosus woodhousei B. \& G.
Bufo woothousei Girard, Proceed. Ac. Phila., 1854, 86 ; Baird, U. S. Pac. R. R. Repts. 1. 44, Pl. xxv, fig. 1.

Bufo frontow.s Cope, Proceed. Ac. Phila., 1866, p. 301 ; Rept. Expl. U. S. Surv. W. of $100 \mathrm{Mer} ., \mathrm{G} . \mathrm{M}$. Wheeler, 1877, v, p. 520, 627.
This subspecies may be readily distinguished ly its short head with thickened crests elevated posteriorly. It reaches a larger size than either of the other subspecies of the Bufo leniiginosus.

The canthus rostralis not marked, the muzzle descending very steeply from the anterior angles of the orbits, shorter than the elevated perpendicular extremity. Frontal ridges thickened, frequently partially filling the median groove, higher than eyelids, and rising stecply backwards, where they terminate in two short convergent tuberosities, with interior crenations. Occiput generally raised above the nape; postocular ridge equally developed, sending a small angle to the anterior acuminate extremity of the parotoids. Elevation of cranium at parietal tubercle equal to length of same from the same point. Eyes large ; tympanum distinct; half eye; parotoid narrow, long, acuminate at both ends. Elbow to anterior margin of orbit; heel to end of muzzle. Skin everywhere, with numerous small tubercles; soles rongh; toes half webbed, as in the other subspecies. The internal metatarsal tubercle is distinetly larger, i.e., wider, than in the other subspecies, almost equaling that of the $B$. cognatus. The external tubercle is also larger than in the other forms, but it never possesses a free cutting edge as it does in the B. cognatus. T!te relative shortness of the head is expressed by the measurement, one-fifth the length of the heal and body. This character is, however, not constant. Thas in the typical specimens of the species (No.2632, Canadian River) the head enters 4.66 times into the length. The same is true of Nos. 14526 and 10195. In Nos. 4155 and 2646 the head euters the length 4.5 times. In yomg specimens, as is usual, the secific characters are not well marked, and the head is one-fourth the lengtl. This peculiarity is retained in a specimen, (No. 14,538) from Saint Thomas, Ner., which is 3 inches in length. An exceptional state of affairs is secn in two large specimens (No. 2651) from the head of the Loup Fork River, Nebraska. The head is one fifth the total length, and the supraorbital crests are parallel, as in typical specimens; but the crests are well separated by a deep gutter behind, whose bottom is not raised above the nape in the usual manner.

Brown above, with pale vertebral line and three pairs of deep-brown medium-sized spots, with paler centers. Sides and lips with small brown spots. Femur and tibia with one indistinct brown cross-bar each. Below uniform yellow. The thoracic region is sometimes blaek speckled.
This is the Rocky Mountain species, as B. cognatus is the species of the plains. Its range does not appear to extend beyond the bomdaries of the United States. Its transition to the B. l. americanus is easily perceived in seven specimens collected at Pike's Peak by John Yarrow. One of these is a true B. l. woodhousei, while the other six can not be separated from the B. l. americanus. Dr. Hallowell described a toad under the name of $B$. dorsalis in Sitgreaves' report on the expedition to Zuni and the Colorado River, p. 142, Pl. 19. There is nothing in the description nor in the figure to emable us to ascertain what species or subspecies is represented. The evidence is as much in favor of the specimen having been a B. l. americanus as a B. l. woodhousei, and no lo-
eality is given to assist in reaching a conclusion. The type specimen can not be found. The name B. jrontosus Cope applies to this species; a duplication which resulted from the fact that the original specimen is half grown and not typieal of the species, and that the original deseription does not allude to its true characters.


Fig. 69. Bufolentiginosus woodhousci. From Baird, D. S. Mex. Bound. Surrey; $\frac{1}{1}$.
Measurements of No. 5243.
Length of head and body.................................................................. . 098
Width of head at posterior elges of membramun tympani .......................... . 035
Length of hearl to posterior edges of membramum tympani. ........................ . . 020
Length of fore limb .................. ....................................................... . . 054
Length of fore-foot. ........................................................................... . . 023
Length of hind limb to groin .. .......................................................... . 103
Lelıgth of tibia ................................................................................ . 037
Length of tarsus . ................... ........................................................... . . 023
Length of remainder of foot .................................................................. . 040
liufo lentiginosus rroothonsei Bd. \& Gival.

| Cataloguo number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8504 | 1 | Colorado Springs, Colo .. | July -, 1874 | John Yarrow | Alcoholic. |
| 8085 | 3 | Eastern U talı... | 1872 | 1r. H. C. Yarrow | Do. |
| 8164 | 2 | Pairfitld, Utah .-........ | 1871 |  | Do. |
| 8505 | 2 | Camp Apache, Ariz..... | Ang. - 1873 | II. W. Henshaw | Do. |
| 8548 8186 | 1 | Utah do ........................ | Aug. -, 1874 | J. M. Rutter $-7 . . . . . . . . . . ~$ | Do. |
| 8186 5068 | 3 1 | Utah....................... | 1872 | Exped. W. of 100th Mer | Do. |
| 9278 | 2 | Yellowstone River | Sept. 10,1873 |  | Do. |
| 9713 | 1 | New Mexico . | , 1875 | H. W. Henshaw | Do. |
| 10195 | 1 | White River Coñou, Ariz. |  | Dr. Burr... | Do. |
| 2535 | 2 | Yellowstone River ..... |  | Dr. Harden. | Do. |
| 4185 | , | Fort Defiance, N. Mex... |  | I. З. Mollha | Lo. |
| 5243 | 3 | Cantomment Burgwyn, N. Mex. |  | Captain Anderson. | Do. |
| 4195 | 1 | Platto Valley . . . . . . . . . |  | Dr. C. Drexler | Do. |
| 2531 | 1 | Calif. Monutains, Mexico |  | Dr.S. W. Woodhou | Do. |
| 2646 | 1 | Near Antelopo Ilills .... |  | H. B. Mollhansen | Do. |
| 2632 | , | Canadian River .......... |  |  |  |
| 8547 14526 | 1 | New Mexico |  |  | Alcoholic. |
| 14526 | 1 | Fort Custer, Mont........ | - -, 1885 | Capt. Charles Bendire, U S. A. | Do. |
| 14538 | 1 | Saint Thomas, Nev ...... |  | Dr. E. Palmer | Do. |
| 2631 7012 | 2 | Swamps on Loup Fork, |  | Dr. Mayden | So. |
|  |  | Athabasca River. |  | R. Kennicott | Do. |
| 4181 | 2 | Upper Colorado region |  | H. B. Mollha | Do. |
| 2552 | 2 | Fort Laramie, Neur ..... |  | F. W. Haydeu | Do. |

## Bufo lentiginosus americanus Lec.*

Cope, Check-List N. Amer. Batr. and Reptil., 1875, p. 29 ; Bonlenger, Catal. Batr. Sal. Brit. Mus., 188:, p. 309, fig.
linfo amevicanus (Leconte) Holbr., N. A. Herp. v, v. Pl. 4: Duın. \& Bibr., p. 695 ;
IIallow., Procecd. Ac. Phila., 1856, p. 251 ; Girard, U. S. Mex. Bound. Surv., If, p.
2.; ; Wicd., Nova Acta, xxxif, p. 121.
finfo copei Yarrow \& Henshaw, Rep. Reptil. Batr., Expl. W. 100th Mer., 1878, p. 4.
Length of head to posterior end of cranial crests entering length to vent four and a half times ; cranial ridges narrow, well marked, not uniting in a prefrontal callosity, uniting with the postorbitals at a right angle and projeeting but little behind them.

Supratympanic ridge wanting or rarely very short. Preorhital not strong. Parotoids quite elongate, varying a little in brearth. Profile a gradual descent from belind, depressed behind prefrontal bones; muzzle slightly decurved, not projecting; nostril a little nearer orbit than labial margin. Skin everywhere pustular ; a few larger marts on ealch side the vertebral line. Tympanum distinct, half orbit. Middle of fore-arm to muzzle; heel to front of orbit. Metatarsal tubercle prominent, usually narrow; its horny sheath largely blackened; outer tuberele small. No tarsal fold.

Yellowish or darker brown above, with three or fomr pairs of deeper, small, yellow-edged spots on the dorsal region, separated by a light rerteloral line which extends from the end of the muzzle; one or two yellowish streaks extend from the parotoirl posteriorly on the sides. The latter and femora behind are finely yellowish marhled on blackish ground. Below dirty yellow; breast frequently black spotted. Length
of an average specimen from South Carolina， 2 inches 10 lines；end of muzzle to postorbital ridge， 9.2 iines ；of parotoil， 7 lines；fore limb， 1 inch 9.5 lines；hind limb， 3 inches 5 lines；femur one－half included．


Fig．70．Bufolentiginosus americanus Fron：Lit．Gird．，D．S．Pac．R．It．Surv．，rol．x；$\frac{1}{1}$ ．
In this，as in other Bufones，the females are larger than the males； and the latter are usually less variegated in colors．

The B．I．americanus has been regarded by some anthors as a species distinct from the li．I lentiginosus；but the examination of a large number of specimens of both shows that all of the distinctive characters are evanescent in some indiviluals．Thus the superciliary erests rise pos－ teriorly in No． 2497 from Minnesota，so as to approximate the typieal Lentiginosis．In some of the specimens of No．2591，from Charleston， S．C．，the extremities of the crests are not more developed than in No． 2534 ，from the Platte River，Nebraska．The supratympanic erest is represented by an angle of the postorbital in the great majority of spec－ imens，but in seventeen specimens the former is quite as distinct as in mumerous specineus of the B．l．lentiginosus．These belong to Nos．24S1， 2493，2472，2474，2497，2557，5372，and 10066．Nevertheless，it is true that the subspecies B．l．americanus maintains its characters entirely within the range of the B．l．lentiginosus，as is evidenced by specimens from Prairie Mer Ronge，La．（2557），Milledgeville，Ga．（9430），Monti－ cello，Miss．，and elsewhere．

As already deseriben，the parotoin glands of this species are long and rather marrow．A valietal form has them wider and reniform in ont－ line．The five individuals which display this character are from north．
ern localities, viz: No. 2505 from Racine, Wis., and 2507 from Essex County, N. Y. They are also characterized by the presence of a supratympanic crest and by the coarseness of their tuberculation. They have no distiuct dorsal spots, a dark line round the bases of some of the tubereles representing them in some individuals.
There are also several color varieties of this subspecies. They are not unfrequently met with entirely black (var. A), as, for example, from Pemnsylvania and Michigan. In two or three from the latter region the foot is as short as in short-footed var. woodhonsei ; in one the superciliary ridges are confluent in a enrved transverse ridge. A singular abnormality (No. 2514) (var. B), from Moose River, British America, is distinguished by its yellow, orange, or pinkish ground color, with the dorsa! aud lateral spots confluent into longitudinal bands more or less broken; warts pink tipped; average size below typical; skin smoother. Un this variety was proposed the Bufo copei of Yarrow and Henshaw.

Var. C.- y yellow gromel with broad brown bands, having only yellow lines running outwardly and posteriorly ; on top of these the usual brown spots are well distinguished. The cranial ridges are higher, thicker, and more nearly parallel than nsual. Specimens are of large size; they are from South Fork of the Yellowstone, Nebraska. Total length, 4 inches 1 line ; length from end of muzzle to postorbital ridge, 11.5 lines.

Irabitat.-Sontheastern Labrador, Packard, Procced. Bost. Soc. Nat. Hist., 1866; Moose River, British America, Drexler; South Fork Yellowstone, Hayden; Kansas, Hallowell, Proceed. Ac. Nat. Sci., Phila., 1856, 251, and the Eastern and Austroriparian regions of North America generally.

Dwellers in the comntry are familiar with the voice of this species in the early spring, which is the season of the deposit of eggs. These are laid inclosed in a long, thick-walled tube of transparent albumen, secreted by the walls of the oviducts. These tubes lie in long spiral strings on the bottoms of the ponds where they are deposited. The young hatch out early, and are of a darker color than those of others of our Salientia. They retain the dark color till near the time of the completion of the metamorphosis. This takes place at an earlier date than that of the Rane, and the completed young are scarcely as large as those of the Hyla or of the Scaphiopus. The voice of this species may be heard well into the summer. It is a sonorous ur-r-r-r-r $\mathbf{r}$, which may be readily imitated by whistling while one utters a deep-toned vocal sonnd expressed in the above letters. Individuals differ in the pitch of their notes, but a chorus of them has a weird sound well befitting the generally remote spots where they congregate, and the darkness of the hour. When not thens engaged, they often take up their abode beneath the doorstep of the farmer's honse, and issue in the eveniug to secure their insect food. They progress by hops, and only walk on rery rare occasions.

## Bufo lentiginosus americanus Le C．

RESERVE SERIES．

| Catalogne number． | No．of spoc． | Locality． | When col－ lecter． | From whom reccived． | Natnroof specimen． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2482 | 5 | Root River，＇Vis |  | Prof．S．F．Bairl ．．．．． | Alcelıolic． |
| 2505 | 1. | Ritcins，Wis．．．．． |  | Ur．P．R．Hoy ．．．．．．． | Do． |
| 257 | （ | Fort Laramie，Wyo． |  | Dr．J．G．Cooper | Do． |
| 2480 | 4 | Sillem，N．C＇ |  | J．＇I＇．Linebiuck ． | Ho． |
| 8312 | 1 | Kiaston，N．C ．．．．．．．．．．．． |  |  | Do． |
| 2479 | 2 | Jacksou County，N C．．． |  | Fitzgeralı ．．．．．．．． | $1{ }^{1}$ |
| 7483 | 10 | Washiugton，D．C．．．．．．． |  | Dr．E．Coues，U．S．A | Do． |
| 2515 | 1 | ．．．．－．do ．．．．．．．．．．．．．．．．．．． |  |  | 1）o． |
| 8307 | 1 | ．．ilo | April 3， 1875. | J．Palmer | Do． |
| 2493 | 1 | \＃ibile ．．．．．．．．．．．．．． |  |  | Do． |
| 2470 | 2 | Abborille，S．C |  | Dr：J．B．Barratt | Do． |
| 2487 | 6 | Auderson，S．C |  | Mrs．M．E．Dauiels | $1{ }^{1}$ |
| 2518 | 1 | Charlestou，S．C |  |  | Do． |
| 25.7 | 7 | Prairie Mer Rouge，La．． |  | Jas．Fairio | Do． |
| 25.54 | 10 | Now Orloans，La ．．．．．．． |  | N．O．A cademy | Do． |
| 2466 | 3 | Framingham，Mass |  | Prof．S．F．Baitd． | Do． |
| 2493 | 3 | Union County，Mo．．．．．． |  | Dr，P．R．Hoy ．．． | Do． |
| 2483 | 1 | Missouri |  |  | Do． |
| 2521 | 2 | Sitint Louis，Mo |  | Dr．George Englemann． | Do． |
| 2476 | 3 | Mitietta，Ohio | 1853 | Prof．E．B．Androws．．．． | 1 \％． |
| 2474 | 5 | Columbus，Ohio |  | Prof．L．Lesqueroux． | Do． |
| 2．00： | 1 | llighland Cmanty，Ohio． |  |  | I）． |
| 2630 | 3 | Monticollo，Miss ．．．．．．．． |  | Miss Melen＇lunisou | Do． |
| 25.37 | 1 | Mississjppi ．．．．．．．．．．．．．． |  |  | Do． |
| 2516 | 3 | Mount IIolly，N．J |  | Prof．S．F．Baird． | Wo． |
| 2555 | 7 | Marylamd ．．．．．． |  | Stage | Do． |
| 2558 | 2 | Fort Smith，Ark |  | Dr．B．F．Slinenard | Do． |
| 2495 | 1 | Tyree Springs，Tenn．．． |  | Prof，R．Owon．．．． | Do． |
| 2463 | 1 | Foxbury，Pa ．．．．．．．．．．．．． |  |  | Do． |
| 2468 | 1 | Philatelphia，Pa ．．．．．．．． |  | J．H．Richard | Do． |
| 2504 | 1 | －．．．．do ．．．． |  |  | Do． |
| 2485 | 50 | Carlisle，Pa ．．．．．．．．．．．．．． |  | Prol．S．F．Baird |  |
| 2493 | 1 | Meadville，Pa ．．．．．．．．．．． |  | J．F．Thickston ． | Alcoholic． |
| 2512 | 1 | Carlisle，Pa |  |  | Do． |
| 25.56 | 4 | Bradford County，Pa．．．． |  | C．C．Martin | Do． |
| 26.53 | 1 | South Platto ．．．．．．．．．．．． |  |  | Do． |
| 2507 | 10 | Essex County，N．Y ．．．． |  | Prof．S．F．Baird | Do． |
| 2194 | 3 | Oucida Comnty，N．Y．．．． |  | H．Davis | Do． |
| 4782 | 1 | Elizabothtown，N．Y ．．．． |  |  | Do． |
| 2481 | 5 | Aux Plains，III ．．．．．．．．．．． |  | R．Kemuicolt | Do． |
|  | 2 | Southorn Illinois |  | do | Do． |
| 2496 2497 |  | Western Mississipp |  |  | Do． |
| 2497 | 3 | Minnesota |  | A．L．Riggs | Do． |
| 5373 | 6 | South of Highlinds－． |  | C．Drexler．．． | 10. |
| 8.013 | 1 | Plaza del Alcaide，N．M |  | 1）．：II．（\％．Yarrow | INo． |
| 2533 | 1 | Little Blat Liver，Kans． |  | W．S．Wood．．．．． | Do． |
| 2511 | 3 | Eutaw，Ala ．．．．．． |  | Prot．A．Winchell | Do． |
| $25: 3$ | 1 | South l＇latte River，Nubr | July 14， 1856 | W．S．Wootl ．．．．． | Do． |
| 91：0 | 3 | Milledgevillo，Ga ．．．．．．． | June 4， 1876. | Kumlien s Buan | 1） |
| ご的 | 200 | Carlisle，Pat．．．．．．．．．．．．． |  | Prol．S．F．Batirl． | Larvia． |
| 25\％＇ | 1 | liort Laramio，Nobr |  |  | Alcohulic． |
| 9405 | 1 | Eastport．Me | 1872. | U．S．F．C | Lirvat． |
| 2172 | 1 | Innssellvill＇，Ky．．．．．．．．．． |  | Georgo Bibb．．．．． | 1）o． |
| 4916 | 1 | Pearl River，Miss |  | Miss H．Tunnivon | 1）0． |
| 4891 | 6 | Nobraska ．．．．． |  | Dr．George Sucklos，U．S． | Do． |
| 9173 | 1 | ．．．．．do．．．． |  |  | Do． |
| 8971 | 1 | Wood＇s Holl，Mass ．．．．． |  | Dr．＇T．I1．＇3eau | Do． |
| 9886 | 4 | IIavie ild Giace，M1．．．． | Juno 1t， 18 G | A．I．Kumlien | Alcoholic， |
| 8298 | $\because$ | Norfotk，Comn．．．．．．．．．．． | Sept．26，1877． | A．F．Wooster ．．． | Do． |
| 8405 | 1 | Utalı．．． | 1873. | Dr．H．©．Yarrow． | Typo． |

GENERAL SERIES．


GENERAL SERIES-Continued.

| Catalogne number. | No. of spec. | Locality. | Whes collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2537 | 51 | Mississippi River...... |  | Col. J. H. Vaughan. | Alcoholic. |
| 2477 | 2 | Danvers, Mass ............. |  | Prof. S. F. Bairt .... | Do. |
| 3700 | 1 | Center County, Pa ....... |  | Brusger | Do. |
| 4101 | 5 | Yellowstone ...... |  | A. Schott | Do. |
| 4543 |  | Fort liiley, Kans |  | H. Braudt | Do. |
| 430 | , | Now Orleans, La |  |  | Do. |
| 8955 | 1 | Kinston, N. C - . |  | J. W. Minner .- | Do. |
| 8340 | 1 | Goldsborough, N. C ..... |  | H. W. Welsher.................. | Do. |
| ${ }_{8341}^{9314}$ | 7 | Platto Valley Kinston, N. C |  | 1). W. A. Ilammond, U.S.A <br> J w Miluer | Do. |
| 8341 2507 | 6 8 8 | Kinston, N.C., |  | J. W. Milner <br> Prof. S. W. Baird | Do. |
| 13817 | 1 | IIudson's Lay | 1881. | F. Walton 1 taydon | Do. |
| 11185 | 8 | Washnngton, D. C |  | Dr. T, 1I. Bean .... | Do. |
| 11948 | 1 | Wheat land, Ind | 1881. | Robert Ridgway | Do. |
| 10066 | 1 | Saint James Parish, La. | 1879. | O. dela P'eichardióre...... | Do. |
| 14519 | 1 | Gainesville, Tex ........ | 188.5. | G. H. Ragsdale........... | Do. |
| 14520 | 1 |  | 1885. | $\cdots{ }^{\text {c do }}$ di... | 10. |
| 5367 | 9 | Moose River, Brit. All.. Southern Illinois. |  | C. Drexler -.. | 1 \%o. |
| 2489 11952 |  | Southern Illinois......... |  | I. Kennicott. |  |
| $\begin{array}{r}11952 \\ 8504 \\ \hline\end{array}$ | 2 | Southampton County, Va Colorado Springs, Col... | 1874. | J. Kumlien . | Do. |
| 14175 | 1 | Olney, Ill ............... | 1885 | John and Chales Walker | 1 \%. |
| 13327 | 1 | District of Columbia ... |  | George Shoemaker | Do. |
| 11530 | 1 | Cluala, Va ...... | 1879. | F. H. Uushing | Do. |
| 2515 | 1 | Washington, D. C |  | S. F. Baird | Do. |
| 11077 | 6 | (?) |  | (?) | Do. |
| 4541 | 1 | Grand Coteau, La |  |  | Do. |
| 11506 | 1 | California | 1877. | L. Kumlien | Do. |
| 2506 | 2 | Saint Louis, Mo |  | George Engelwama | Do. |
| 2527 2504 | 1 | Mississippi.... philadelphia, P |  | D. C. Aloyad | 1 DO . |
| 2504 4842 | 2 | Philadelphia, P Brookville, Ga |  | J. Pichard | 1)o. |
| 4842 1148 | 1 | Brook ville, Ga. Pensacola, Fla |  | Ie. Maymond | Do. |

A well-marked variety of this subspecies, or perhaps a distinct sulbspecies, is represented by two specimens from Micanopy, Flab, which were obtained by Dr. Bean. The distinguishing peculiarity consists in the conversion of the superciliary ridges into flattened thickenings of the cranium, which meet or nearly meet on the middle line of the fronto-parietal region. They unite, leaving a faint line to mark the junction in the larger female, while in the smaller male they form two beveled surfaces, which mite on the middle line at an obtuse angle. Posteriorly they, with the postorbital ridges, have a straight transverse boundary. The metatarsal interual digital spur is as well developed as in many of the typical specimens, but the plantar tubercle is small. The web of the foot is well developed, reaching the end of the first (proximal) phalange. It only reaches to the middle of the proximal phalange in the B. l. americanus. The color is somewhat peculiar, having a general clouded appearance above, without the welldefined spots of the typical subspeeies Americanus. There is a pale band from one palpebral border to the other aeross the front. The median clorsal line is indistinet. Size that of fully grown B. l. americanus. This form may be called Bufo lentiginosus pachycephalus.

Bufo lentiginosus lentiginosus Shaw. Cope, Check-List N. Amer. Batr. Reptil., 1875, p. 29.
líufo lentiginosus Shaw, Zö̈l., II, p. 173, 1803; Girard, Proceed. Ac. Phila., 1854, p. 86. Chilophryne lentiginosa Cope, Proceed. Ac. Phila., 1863, p. 357.
Iinfo musicus Latr, Rept., if, p. 127; Dand., Raiu., p. 9, Pl. 33, fig. 3, aud Reptil., ViII, p. 190 ; Merr. Tent., p. 185 ; Gravenh., Delic., p. 59, Holbrook, N. Amer. Herpé!. V, Pl. 1 ; Dım. Bibr. Erp. Gen. VIII, p. G89; Leconte, Proceeds. Acad., Philada., $1863,1.357$.
Head large ; suout obtuse ; superciliary ridges greatly elevated and terminating posteriorly in a knob; upper jaw emarginate, lower furnished with a hook in front; parotoid large, reniform, and reaching from below the tympanum to near the shoulder; tympanum large; vocal vesicle internal; body above warty, beneath granulated.
The head is large, and without warts, except a few small ones on the eyelids, and the month is large. The snout is obtuse, and from its tip rums an elevated bouy crest, subdividing at the nostrils, and forming the supereiliary ridges. These diverge and inerease in elevation as they reach the posterior part of the orbit, where they terminate in a romuded knob or tubercle. Their greatest height gives to the upper surface of the head a canaliculated appearance; a second or postorbital ridge desecuds from each of these and completes the posterior border of the orbit. In consequence of the dirergence of the superciliary ridges the postorbitals are short. There is always present a short but distinct ridge above the tympanum at right angles to the postorbital-the supratympanic. The upper jaw is deeply emarginate in front; the lower is furnished at its auterior part with a distinct hook, which is received in the notch of the upper jaw.

The nostrils are small and round, placed near the point of the snont. The eyes are large, prominent, and very beautiful; the pupil is black, the iris reticulated with gold and black, and has an inner margin of jellow. The tympanum is large and lusky, with a minute spot of a lighter shade in the center. The parotoid glands are large and reniform.

The back and sides are dusky, and covered with warts of different sizes; a pale vertebral line extends from the head to the vent, on each side of which are found the largest warts; an irregular row of spots of yellowish-white exists on the flank, having somerhat the appearance of an indistinct band, extending from the inferior and posterior part of the parotoid gland to within a short distance of the thighs. The whole inferior surface of the animal is dirty white, with a strong tinge of yellow.

The anterior extremities have the upper surface dusky, with blotehes and bars of dark brown; the lower surface dirty white, tinged with yellow. The posterior extremities are dusky brown above, marked with blotches and transerse bars of darker brown, and dingy white beneath.
This species attains to the same size as the typical form of B. l. americains. A specimen (4.501) from Florida exhibits remarkably elerated
crests and broad parotord glands; the culoration is uniform cinnamonbrown; apparently a slight variety.


Besides the presence of tuberosities of the frontoparietal crests and of a supratympanic crest, this subspecies is well marked by the relatively elongated head. It enters the length to the vent three and a half times in typical examples. In some specimens it enters the length 3.75 times, and in others four times, quite as in B. l. americanus.

The B. l. lentiginosus is confined to the austroriparian region east of Texas, and all statements to the coutrary are based on error. It does not ascend the Mississippi Valiey, so far as is known.

Bufo lentiginosus lentiginosus Shaw.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality: | When collected. | From whom received. | Nature of specimeu. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2525 | 10 | Riceborough, Ga |  | Prof. S. F. Raird. | Alcoholic. |
| 590 | 1 | Shelby County, Ga |  | Maj.J. Le Conte | Do. |
| 2520 | 8 | Pensacola, Fla.......... |  | Dr. W. A. Hammond, U. S. A. | Do. |
| 25.6 | 1 | Iudian Riser, Floridia... |  | G. Wurdemann . . . . . . . | Do. |
| 2519 | 1 | Georgetown, S. U....... |  | Weston .......... | Do. |
| 8902 | 3 | Lake Monrog, Flurida .. | Apr. -, 1877 | Prof. S. F. Baird........ | Do. |
| 3383 | 2 | Charleston, S. C........ |  |  | Do. |
| 2521 | 8 | ....-do ........ . . . . . . . |  | Dr. C. Giraril........... | 10. |
| 25.2 | 2 | Alabama ... | 1853 | Prof. A. Winchell ...... | Do. |
| 2553 | 9 | Liberty County, Ga. |  | Dr. W. If. Jones ........ | Do. |
| 9126 | 2 | Beautort, S. C |  |  | 10. |
| 9952 | 2 | Little Sarasota May, Fla | 1875 | Prof. F. B. Meek ....... | Do. |
| 9705 | 1 | Arlington, Fla.......... | 1878 | fr. Brown Goodo......... | Do. |
| 25.8 | 4 | Anderson, S. U |  | Miss C. Paino ........... | Do. |
| 2597 | 3 | Mississippi |  | 1. C. Lloyd.. | Do. |
| 9472 | 1 | (?) .......... | July - , 1875 | P. L. Jony. ... | Io. |
| 745 | 11 | Mleanopy, Fla |  | Ur. J. H. Bean | 1)0. |
| 9438 | 2 | (?) .-..... |  |  | Do. |
| 3383 | 15 | Charleston |  |  | 10. |
| 11502 | 1 | Nashvillo, Ga | 1880 | William J. Taylor | Do. |
| 11397 | 10 | Milton, Fla. | 1881 | \& 'T. Walker .... | 170. |
| 11915 | 1 | Nashville, Ga | 1830 | Willitın J. Taylor ..... | $1 \%$. |

BUFO QUERULCUS Holbrook.
North Amer. Merp., v, 13, 1846, Tab. 1II, Cope, Proceeds. Amer. Philosoph. Soc. $1886, \mathrm{p} .515$.
Chilophryne dialopha Cope, Procecd. Ac. Nat. Sci. Phila., 1862, 341 (erroncous locality). L'ufo dialophus Boulenger, Cat. Batr. Sal. Brit. Mus., ed. if, 1832, p. 319.

Head broad; muzzle prominent, conic. Cranium strongly ridged. I'reocular and postocular, supratympanic, and supereiliary ridges well developed, the last making a very open angle with that of the canthus rostralis, and sending off posteriorly a parietal, which first eonverges toward that opposite, and then runs transversely on the oceiput to meet it, failing in this by a very slight interval. A small nuchal pit. Tympanm in contact with postorbital ridge, only one-fourth the size of the orbit. Tongue small, narrow, half free; a strong symphyseal tubercle fitting a premaxillary pit. Parotoids large, short, lescending on sides to opposite lower edge of tympanum. Skin everywhere rigidly rugose, subspinous on the tarsus. The joints of the extremities are pale and appear swollen. Fingers slender; first shorter than second, which equals the third. One metacarpal tubercle only. Toes short, one third webbed ; two acute metatarsal tubereles, the internal large, incurved, like a flattened spur, sellow, brown tipped. Length of head and body, 10 lines; of hinder extremity, 12 lines.

The head above is dusky, with a yellowish central longitudinal line; the superciliary ridges are gray, with a white mark in the center. On each side of this longitudinal line is an oblong black spot, extending from it to include most of the posterior part of the orbit of the eye; a small part only of the orbit in front of this is light colored ; the upper jaw is light brown.


Fig. 72. Bufo quercicus Wolbr.. 11394, natural size: Milton, Fla.
The back of the animal is dusky brown, with a vertebral line of pale yellow, marked with a few scattered small warts of reddish-brown co.or. On each side of this line are irregular black blotehes, with here and there a slight tinge of reddish brown. The back is covered with inunmerable warts and granulations of variable size and color, generally: black, but the smaller ones of dusky red. On each flank, and extend. ing trom the axilla downwards toward the posterior extremity, is an oblong black bloteh bounded with white both above and below.

The throat is dusky; the abdomen silvery-gray, yellowish at tho groin, and with a pale tinge of yellow around the rent. The anterior extremities, as well as the posterior, are rlusky brown above, marked with black transverse bars or spots. Their inferior surface is eolore:l like the abdomen, except the tingers and toes, which are reddish-brown.

This is the smallest known species of the genus Bufo. The measurements of an adult are as follows:
Length of head and body ..... M. ..... 027Length of head to posterior edges of tympanaWidth of head at posterior edges of tympana.007
0086Length of anterior leg
0146Length of anterior footLength of posterior leg from groin006
0237Length of tibia
00E6Length of tarsusLength of rest of foot005
In some specimens the transverse posterior part-of the froutoparietalerest is broken up. It then resembles the young of the Bufalentigino-sus, with which it has been supposed to be identical by rarions anthors.It, however, differs from this species in the differently shaped parotordglands, the thickened posterior parts of the mandibles, and from allthe subspecies, except the B. l. woodhousci, in the shorter head. Thereis no doubt but that Dr. Holbrook was correct in regarding this as adistinct species of very small size. The redescription of the species bymyself was due to the omission of its characteristic peculiarities fromextant writings. The erroneous locality (Saudwich Islands) is one ofseveral such errors, based on the incorrectdabeling of the collections ofJ. II. Townsend, to which the specimen belonged.

The geographical distribution of this species is restricted to the region extending from Kinston, N. C., to Middle Georgia and Florida, inclusire.

Bufo quercicus Holbrook.
RESERVE SERIES.

| Catalogue number. | No. ot spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5911 | 5 | Georgia. |  | Maj. J. Le Conte | Alcoholic. |
| 8343 | 1 | Kinstou, N. C |  | J. W. Miluer |  |
| 9695 | 1 | Arlington, Fla......... | May 1,1878 | G. Brown Gonde | Do. |
| 9915 | 4 | Little Sarasota Bay, Fla. | 1875 | Prof. F. B. Meek | Di. |
| 2626 2625 | 3 3 | Georgia.................. | 1855 | Mr. S. R. Barker. | Do. |
| 11394 | 2 | Milton, Fla | 1881 | S. T. Walker .... | Do. |

## BUFO VALLICEPS Wicgiw.

Bufo ralliceps Wiegı., Isis, 1833, p. 657; Peters, Mon. Berl. Ac., 1863, p. 81 ; Bonlenger, Cat. Batr. Sal. Brit. Mus., \$d ed., p. 319.
Bufo grautosus Baird \& Girard, Proceerl. Ae. Phila., 1852, p. 173.
Bufo nebulifer Girard, Proceed. Ac. Phila., 1854, p. 87 ; Hallow., Ibid., 1-55, p. 308;
Girard, U. S. Mex. Bouncl. Surv., II, p. 25, Pl. 40, fig. 1-4; Giintlı., Cit. Brit. Mus., p. 66.

Chilophryne nebalifera Cope, Proceed. Ac. Phila., 1862, p. 357.
Postorbital ridge forming an open angle with the supraorbital ; preorbital distinct ; supraorbital strong, nearly plane, $1_{3}^{3}$ the strong supra-
tympanic. Lidges of canthus concave, parallel on end of muzzle; latter truncate in profile. Strong maxillary ridge fiom inferior margin of orbit to posterior extremity of the bone. Loreal region concare, nostrils subrertical; tympanum half orbit. Two strong couvergent parietal ridges from supraorbital, each longer than supratympanic of its side. Length of head from end muzzle to posterior border tympanum equals breadth below at canthos oris in specimens 1.5 inches long; relatively less in: larger specimens, till in one 3.75 inches loug it is scarcely over two thirds the breadth. Eyelids nearly horizontal; tongue ordinary obpyriform; choanæ larger than ostia pharyngea. Length of head, as above, three to three and a quarter times from end of muzzle to end of urostyle. Parotoid glands measured longitudinally equal supraorbital ridge, longer obliquely; acuminate posteriorly and coutinuous with a lateral series of acute tubereles (sometimes ou a plica), which exteud downwards to groiu. Skin abore with scattered rounded, on sides with close acuminate, tubercles; below with close small rounded tubereles.

Second finger short-less than fourth; a keeled palmar and elongate pollicary tubercle; palms and soles rough with tubercles. A small acuminate aud iusignificant extcrnal metatarsal tubercle. No inner tarsal fold. Toes half webbed and margined. The carpus of the extended arm reaches beyond the muzzle; the heel attains from the hinder to the front margin of the orbit.

Dimensions of an adult (San Autonio) : From end muzzle to end urostyle, 3 inches 9 lines; from same to posterior margin tympanum (oblique), 2 inches 25 liues; auterior extremity, 1 inch $4 . \tilde{5}$ lines to carpus +8 lines to end longest finger; femur, 1 inch 6 lines; tibia, 1 inch 3 lines; foot from heel, 2 inches; tarsus, 10 lines.

Coloration: Above a chestnut-brown, with a dark cross-band between orliits. A dark lateral band from behind orbit along the side to groin, following below the lateral fold, which is light-bordered above; a more or less distinct light vertebral line; upper lip yellow-bordered. Breast and gnlar regions more or less slate-shaded. Limbs brown, cross-barred.

Varieties: Of these I am acquainted with three, which are quites istinguishable. First. The typical has a strong parietal ridge, is scarcely varied with darker below, aud is light brown above; sides very tuber. culons; specimens from Texas, Tamaulipas, and Vera Cruz-Emory and Sartorius. Second. Sides with smaller granulations; colors blackish, spotting and varying the whole inferior regions. Three specimens from Yucatan (Nos. 729, 778, 779)—Schott. Thirl. Rilges weaker, especially the parietal; cinuamon-brown, below brown raried and spotted ; sides granular. Two specimeus from Belize-Dr. Parsous.

## Specimens in National Museum from the United States:



Fig. 73. Bufo valliccps Wieg. (From Baird, U. S. Mex. Bonnd. Surv.)
Bufo ralliceps Wiegmann.
-reserve series.

| Catalogue number. | No. of spec. | Localits. | When collceted. | From whom receired. | Nature of epec imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2663 | 10 | Calcasicu Pass, La ..... |  | G. Wurdemann......... | Alcoholic. |
| 2605 | 7 |  |  |  | Do. |
| 2595 | 1 | Texis .................... |  | J. H. Clark .............. | Do. |
| 2598 | 1 | Brownsville, 'Tex........ |  | Prof. S. F. Baird ........ | Do. |
| ${ }_{2602}^{2594}$ | 1 | Fort Inge, Tex.......... New lraunfels, Tex... |  | Pr. C. B. R. Kennerly.. | Do. |
| 2399 | 2 | Santa Caterina, Nucvo Leon. |  | Licut. B. C'ouch, U.S. A. | Do. |
| 2592 | 1 | San l'edro, Tex ......... |  | Dr. C. B. R. Kennerly. | Do. |
| 2.591 | 2 | Matamoros, Mex |  | Licut. B. Conch, U. S. A. | Do. |
| 2600 | 2 | Between Laredo and Camargo. |  | A. Schott ............... | Do. |
| 2601 | 1 | San Antonio, Tex ...... |  | C. B. R. Kennelly . ...... | Do. |
| 1150 | 3 | (?) ... Orleans, |  | (1) | $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ |

This species is also common in Louisiana, numerous specimens having been sent from New Orleans by Dr. Shufeldt, and by Prof. Pen. King from Baton Rouge. Its sonthern range extends as far as Nicaragua, inclusive.

## DENDROPHRYNISCIDÆ.

This family is said by Bouleuger to differ from the Cystignathidæ, only in the absence of the premaxillary and maxillary teeth.
There are but two genera, as follows:
No vomerine teetl. Tongue entirely adherent; no tympaumm nor Eustachian tuljes; toes webbed, external metatarsals united ; omostermum and sternum cartilaginons; terminal $p$ halanges simplo

Batrachophryms Peters.
No vomerine teeth; tongue free posteriorly; fingers and toes slightly webbed; the tips dilated ; no omosternum ; sternum with osscons style.

Dendrophryniscus Espada.
There are but tro species of Batrachophrynus, which are from Pern. The single species of Dendrophrgniscus was found near Rio de Janciro.

## AS'TEROPHRYDIDA.*

Vertebre opisthocmelous. Diapophysis of sacrum dilated, of urostyle wanting; the latter attached by but one cotyloid cavity (except in one genus). Ribs none. Sternum undivided.

In the known genera the external metatarsi not separated for a wel ; terminal phalanges continnous, simple. O. frontoparietalia not strongly ossified medially, lut without fontanelle. Sunerior plate of the ethmoid well developed anteriorly. Ear perfectly developed.

Genera: Cryptotis, Gthr.; Asterophrys, Tsch.; Megalophrys, Kuhl.
The Palæobatrachidæ differ from this family in the conversion of their serenth, eighth, and ninth vertebral centra and diapophyses into a-sacrum, instead of the ninth only. The supposed osseons covering ot the carum tympani and tuba Eustachii, is not confirmed by the researches of Walterstorff.

Cryptotis, the only Australian genus of the family, possesses tro sacral condyles for the aticmlation of the coceyx ; it las a long tooth, like process on the os dentale, similar to that seen in Rena macrodon and R. kuthlii.

The other genera belong to the Malayan Islanls. There are no arboreal or aquatic forms embraced in this family. The whole number of species known is fire.
a. Toes free.

Two postsacral condyles; o. dentale with a dentiform process; romerine teeth; no parotoids ; stermm a cartilaginons plate $\dagger$.......................... Cryptotis.
Ono postsacral condyle. No dentiform process. Hrad large, adgular; upper palpebral borter with cutanconsappendages. Vomeline tectl. Tongue entirely adberent. Tympanum hidden, perfect....................... Asterophrys.
$a a$. Toes partially webled.
One postsacral condyle; vomerine teetl little developed; stermun with a bony style; tongue liroad, free behind (tympammi concealed)

Megalophrys.

## PELODYTID A.*

Vertebræ proceelons; no ribs or diapophyses of coccyx. Sacrum united with the coccyx by condyle, its diapophyses dilated.
The species of this family are of weak organization; the fronto. parietal bones are undeveloped in one of the four genera embraced ly. it, and they are rery weak in the others. Their affinities are altogether between the Asterophrydidæ and Scaphiopodidæ. Their vertebræ only distinguish them from the former and their distinet bicondyloid coceyx from the latter. In the known genera the anditory apparatus is developed, and the cephalic integument is free; in none is there a metatarsal slovel.
$\alpha$ Sternum with an osseous style.
No dentary apophysis; 10 vomerine teeth; tongne broad, bnt little free; tympanum distinct; oue postsacral condyle............................... Senophrys.
Frontoparietal boues complete; no vomerine tectlı; one sacral condyle for urostyle; tougue partially free .......................................... Leptobrachium.
Frontoparietal bones embracing a large fontanelle ; vomerinc teeth; two sacral condyles for the coccyx ; a weak parotoid gland; pupil elliptic, crect; tongue partially free; atlas and axis conflucut.............................. Pelodyt's.
$\alpha \alpha$. Sterunm without osseons style.
Frontoparietal lones complete; vomerine teetb; two postsacral condyles. Batrachopsis.
In the species of Leptobrachium and Pelodytes the extermal meta tarsi are bonnd together; in the only known species of Batrachopsis they are, according to Boulenger, slightly separated.

This family las a peculiar distribution. Pelodytes is European, Xenoplurys and Leptobrachimm are Palæotropical, and Batrachopsis, Australian (New Guinea).

## SCAPHIOPID风..*

Cope, Journ. Ac. Phila., 1866, p. 69 ; Nat. Hist. Rev., 1865, p. 11, pars.
Pelobatide Lataste, Actes Soc. Linn., Bordcanx, xxx, 339, pars; Boulenger Catal. Batr. Sal. Brit. Mus. Ed. ii, 1382, p. 432, pars.
Vertebræ procœlian; 110 costal elements or coccygeal diapophyses; diapophyses of minth vertebra much dilated, thin, and triangular; wro style without condyloid articulation, its axial portion restricting that of the sacrum and comate with it: external metatarsi bomid; listal phalanges continnous, simple. Manubrium cartilaginous. Tongue rounded, nearly entire.
The small number of species embraced in this family are of stout toad-like habit, and furnished with a shovel-like development of the cuneiform bone and a coriaccous posterior digital palmation, to aid them in removing earth white making their subterranean abodes. Many of them very seldom come to the surface of the earth, and then only in darkness; for this habit the vertical cat-like pupil is an adaptation, a peculiarity not exhibited by the toads, which are crepuscular.
I. Cavan tympani and tympaum wanting. Xiphisternmm with an ossified proximal style. C'meiform bone and sheath well developed. Pupilerect. Toes webbed.
Derm involved in eranial ossification. Temporal fossa with a stroug roof. Vomerine tecth : no parotoid glands ................................ Cultripes.
Derm involved iu cranial ossification. No roof over the temporal fossa, or parotoid glands. Vomerine teeth........................................ I'elobutes.
Dern distinct from eranium, which is undeveloped above, two lateral frontoparictal bars iuclosing a median fontanclle. Vomerine teeth. No parotoids
. Didocus.
Cuneiform bone and sheath well developed. Toes more or less webbed. II. Cavum tympani and tympaunm present. Xiphisternum entirely cartilaginons. Pupil elliptic crect.
Derm involved in the cephalic ossification, which is complete. Parotoidglands and vomerine tecth Scaphiopus.
Derm distinct from cranium, which is usnally only ossified superiorly in two superciliary bars. Parotoid glands and vomeriue teeth

Spea.
The extreme of divergence of the series of this family is, then, that representing its type in a pre eminent degree. This is seen in the genus Cultripes where the ossification of the superior cranial walls is especially thickened, obliterates the sagittal suture, and is extended in an arch orer the temporal fossa. The anterior ossification of the cocesx is applied by its axial portion beneath the axis or centrum of the sacral vertebra, and becomes consolidated with it shortly after its commencement, furbishing a structure not rare among burrowing Anura. This character is maintained in the descending scale by Pelobates, Didocis, Seaphiopus, and Spea, though none of these have the temporal fossa overarched. Cultripes, with Pelobates and Didocus, exhibit an ossified basal xiphisternal piece, while in all below it is cartilaginous, as in most Arcifera; the extreme position of the furmer is also maintained by the obliteration of many portions of the anditory apparatus. The succeeding forms-Scaphiopus and Spea-resemble the first group iu the toadlike form and in the strong cuneiform shovel and webbed feet.
The distribution of the species of the family is as follows:

|  | R. Neotrop. | P. Nearetica. | R. Palearct. |
| :---: | :---: | :---: | :---: |
| Cultripes... | 0 |  | (?) 1 |
| Pelobates | 0 | 0 | 1 |
| Scaphiopus | 0 | 2 | 0 |
|  |  |  |  |
|  | 0 | 4 | 3 |

The inferior dermal attachments of seven species of this family are as follows :
Didocus calcaratus. Belly more thau half attached.
Pelobates fuscus. l'rom half to two-thirdsattached ; sams in larva, with long tail; femur one line below.
Scaphiopus holbrookii. Free only opposite sternum; thigh attached only below on basal half.
Scaphiopus couchii. Triangular freo area to middle abdomen.

Spea hammondii．Very wide lateral inf．：：：attachments，which do not mect till femora．
Epea bonbifrons．Belly with a free median band；femoral lines below andabovo be－ hind．
Spea multiplicata．A free dorsal line，very narrow in frout，but wide as ilia behind； abdominal area with a broader free space．

## SCAPHIOPUS Holbrook．

N．Aner．Herp．，if，p． 85 ；Tschudi，Batr．，p． 83 ；Dum．\＆Bibr，vini，p． 471 ；Günth．，Cat．，p． 38 ；Cope．，Nat．Hist．Rev．，186゙̄，p．108，and Jouru．Ac．Phila．（2）vI，p． 81 ；Bouleuger，Cat．Batr．Sal．Brit． Mus．， 21 ed．，1882，p． 433.
Carum tympani and tympanic membrane present；sternum a carti－ laginous plate；pupil erect；toes webbed；internal cuneiform bone of tarsus well developed．

This genus embraces species of robust form and of burrowing habit．． The greater part of their lives is spent beneath the surface of the ground，but in spring they emerge and proceed to deposit their eggs in the nearest body of water．This is usually of a temporary character， and in adaptation to this circumstance the metamorphosis is corre－ spondingly rapid．They are rery irregular as to the period of its com－ pletion，in dry regions losing their larval appendages while rery small， while in other and well－watered regions they retain them until fully grown．During the season of reproduction they are rery noisy，but after that time disappear，and are neither secn nor heard．They are of plain colors．Their general forms are like those oi their allies of the Old World，the species of Pelobates，or somewhat like that of toads．
There are two well－marked species of this genus，which differ as fol－ lows：
$\alpha$ ．Collections of glandular crypts on the post－tympanic and pectoral regions．
Front wide；interorbital width entering length of tibia 2.5 times；vomer－ ine teeth a little behind choanx；color dark，with or without two pale longitudinal stripes． S．hollrookii． cac．No glandular enlargements on post－tympanic or pectoral regions．

Front wide；interorbital width entering leugth of tibia three times；vomer－ ine teeth a little behind nares；color light，with a net－work of brown bands．

S．couchii．

## SCAPHIOPUS HOLBROOKII Harlan．

（Plates 57，fig．2；68，fig．3；73，fig．30．）
Baird，Report U．S．Pac．R．R．Surv．，iv，Reptil．，1859，Pl．xxvir，fig． 1.
1；Cope，Proceed．Ac．Phila．，1863，p． 54.
Rana holbrookii Harlan，Med．Phys．Researches，1835，p． 105.
Scaphiopus solilarius IIolbrook，N．Am．Herp．，1836，Vol．I，p．85，Pl．xir，ibid．（edit．alt．）， 1842，iv，109，Pl．xxvir ；Tschndi，Mém．Nenchatel，i，1飞3゙，p．83；Dum．\＆Bibr．， Erp．Gén．，1811，viri， 473 ；Lo Conte，Procect．Ac．N：it．Si．Phila．，1855，429； Günth．，Cat．Batr．Sal．Brit．Mns．，1858，p．38；Boulenger，Cat．Batr．Sal．Brit． Mus．，2d ed．，1882，p． 434.

Head iarge; maxillary outline rounded. Profile of front a rather steep descent from the swollen occiput, where the skin is thin, closely adherent, and penetrated by osseous granules. Eyes prominent. Tympanum distinet, half its extent larger than ostia pharyngea. Vomerine teeth in two fasiculi between and behind the posterior borders of the latter. Parotoids small, rombled, prominent. No gland on the tibia; onn on each side of the thorax near the axilla. Skin of back minutely tuberculons, of sides more coarsely; below nearly smooth. Cunciform process longer than in any other species of the gemis, but not more prominent. Heel of exteuded hind leg reaching posterior edge of tympanum.

The imner nostrils are large, open, rather elongated transversely, and wider apart than are the external nares. The vomerine teeth are in two patches, situated within the inner nares, and on a line with their posterior borders. The teeth in the margin of the jaw are continuons, thongh not much developed. The tongne is longitudinally oral, not emarginate behind in the specimen examined, where it is free for nearly half its length.

The skin above and on the sides is covered pretty uniformly with tubercles or pustules, with smaller hard black ones interspersed. The first mentioued are wanting on the head and outer surfaces of the limbs, where the others, however, may be observed. A few pustules about the anus on the buttocks which show little signs of granulation. There is a short parotid gland just above and behind the tympanm.

The arm is well developed ; the hand much shorter than the fore-arm. The outer unger is very short; then the second; the fourth is a little shorter than the third, or longest. All are subtruncate, or thickened at the tips. A thickened web may be traced between the bases of the fingers, although such palmation is not very evident. On the imer and upper faces of the two inner fingers is a black, callous thickening of the epidermis. The tibia is much shorter than the fem:ur, and not one-third the total length of body; the foot and femur about equal. The metatarsal bones are firmly united nearly to the end by intermediate muscle, and a web extends between the tips of the short toes. The onter toe is very short, but little exceeding the third, and the web between it and the fonrth toe is proportionally reduced.

All the toes are much depressed, and invested by the thickened skin. At the base of the inner toe is an elongaten, compressed, and well-dereloped spade like process, with a sharp horny edge, of a black color; a trace of the same is seen on the imner edge of the tip of the immer toe. The sole is perfectly smooth, and there is no tubercle of any kind except the spade-like process.

Color above, in spirits, either carth-brown, fulvous-brown, or ashybrown, with a pale ashy band from each orbit; these conrerge again on the coccys. These bands are rarely mbroken, and are sometimes exceedingly indistinet; they sometimes inclose a pale area. Sides
sometimes marbled with pale ask, sometimes uniform. Sometimes a pale interorbital cross-band, sometimes two longitudinal bands on muzzle. A vertical light line on end of mazzle.


Fig. 74. Scaphiopu8 holbrookii. No. 10004. Florida Keys; $\ddagger$.
Measurements of No. 11894.
$M$.
Length of head and body..................................................................... . . . 068
Length of head, including tympana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02:3
Width of head, iucluding tympana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0275
Leugth of fore-leg from axilla.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 035
Length of hind leg from groin..................................................................... . . 076
Lengtlı of tibia.......................................................................................... . . 0217
Lengtl of tarsus......................................................................................... 01 :
Length of rest of foot................................................................................... . 027
The wide front and peculiar glands of this species readily distinguis $h_{1}$ them from all others members of the genus. Its range, like that of sin many other North American Batrachia and reptiles, is confined to the eastern region. It is fonnd in every part of this, including the Floridan and Texan districts.

Scaphiopus holbrookii Harlan.
RESERVE SERIES.

| Catalogne number. | No. of spcc. | Locality. | When collected. | From whom receired. | Nature of spec inen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9390 | 2 | Liberty County, Ga |  | Maj. J. Le Conte . | Alcoholic. |
| 9709 | 8 | Milledgeville, Ga....... | 1876 | Kumlien \& Beau . | Do. |
| 3710 | 1 | Cambridge, Mass....... |  |  | 1 \%o. |
| 3696 | 2 | .....do .......... |  | J. H. Richard. | $1) 0$. |
| 45.59 | 1 | Pearl River, Miss ...... |  | Miss Helen Tunison | $1) \mathrm{O}$ |
| 3706 | 1 | Indian River, Fla ...... |  | G. Wurdemann. | 10. |
| 3712 | 1 | .....do................. |  | Prof. L. Agassiz | 1\%o. |
| 4563 | 1 | Saint Simon's Isle, Ga .. |  | J. B. Postell .... | Do. |

Specimens from Cambridge, Mass., are nearly unicolor, while liloridan forms are lightest and most variegated; the head seems to be a little broater and more obtuse. These forms graduate into the intermediate and most common type. Mr. C. W. Hargitt (see American Naturalist, June, 1888) has found it on the Island of Martha' Vineyard, a fact which indicates the comparatively late separation of that island from the main land of Massachusetts.

Mabits.-This species, though so widely distributed, is seldom seen. After rains in spring and summer its cries may be heard at night, proceeding always, so far as my experience goes, from temporary pools. I have observed it twice in Pennsylvaia, twice in New Jersey, and once in Massachasetts on the main land opposite Martha's Vineyard. Suecimens from the latter locality which I kept in a vivarimm buried themselves in the earth by day, but issued at nightfall and indnstriously explored their surroundings. Their burows were conceated by the loose earth which fell into and filled them, but bolow this the bouy top of the head could be alwass found. Frequently one eye pro jueted fiom the debris, presenting with its brassy-colored iris a most singular appanance. On being irritated with a hard object they utter a clattering note entirely unlike that of the breeding season.

SCAPHIOPUS COUCIIII Baird.

## (Plate 68, fig. 2.)

I'roceed. Ac. Phila., vir, 1855, p. 62, and U. S. Mex. Bonnd. Surv., if, 1059, Rept., p. W. 1'l. 35, tigs. 1-6; Соре, Procced. Ac. Phila., 1863, p. 52; Brocchi, Miss. Sc. Mex., Batr., p. 26 ; Bonlenger, Cat. Batr. Sal. Brit. Mns., ed ed., 1882, p. 454.
scaphiopus rarius Cope, l. c., p. 52 ; Brocchi, l. c., p. 27.
Scaphiepus rectifrenis Cope, Proceed. Ac. Phila., 1863, p. 53; Brocchi, Miss. Sc. Mex., Batr., 1. 27 ; Bonlenger, Cat. Brit. Mns., $2 l$ ed., 1882, 435.
Form stont; heal more elongate, acmminate oval ; width of frontal region greater than from lip to nares, one-thind the length of the tibia. Profile gradually descending; front plane, muzzle projecting, rounded. Anterior border of tympanum scarcely distinguishable. Eyes very pominent. Vomerine teeth opposite middle of choana, which equal ostia pharyngea. Tongue round, slightly emarginate. Parotoid gland Hat, descending on the side. Skin tuberculutis, especially on the sides; sometimes a slighteryptiferons thickening of integment of tibia; none on the sides of the peetoral region. A posttympanic and an antepectoral fold. Abdomen slightly rugose; gular region smooth. Cuneifurm process elongate. Toes fully palmate.


Ftg. 75. Scaphiopus coushii rarius, Cope. 5893; nat. size. Cape St. Lucas, Cal.
Color above fellowish, with irregnlar brown banls, which converge between and hehimd the orbits ; others diverge on the flanks, beginning at the orvits; one from same point to hip amb one on eanthes rostralis. There is a eonthence of dorsal bands near the sarmm. A light band on onter face of tarsus and tor ; hand yellowish.
M.
Length of head and body ..... 061
Length of head, including tympana ..... 020
Width of head at borders of tympana. ..... 027
Length of fore limb ..... $0: 315$
Length of hind limb ..... 0606
Length of tibia ..... 021
Length of tarsus. ..... 011
Length of rest of posterior foot ..... 024

This species is intermediate in its characters between the S. holbrookii and the other species of the genus. The frontoparietal interobital space is wider than in the latter, but not so wide as in the former. The tibia is very short, giving the animal a more squat appearance than the S. hammondii.

In the typical specimen the labial border projected beyoud the line of the muzzle, so that the profile slopeei to it downwards and forwards. I have seen no second specimen like it, but specimens which agree with it in every other respect occur in the same zoological district. I am inclined to think that this peenliarity of the type specimen (which is not represented in Baird's plate, l. c.) is ouly an individual one. The other forms pass directly into each other.
The rauge of this species is the southern part of the Sonoran district and the corresponding part of the Lower Californian. Within the limits of the United States it has been found only in sonthwest Texas.

Scaphiopus couchii Bd.
RESERVE SERIES.


## SPEA Cope.

Journal Academy Philadelphia (2), vı, 1886, p. 81.
Cranial derm free from crauium; the latter generally with a frontoparietal fontanelle; vomeriue teeth present; toes webbed; cuneiform process large.

In this genus we have permanently preserved characters which define an immature stage of Scaphiopus. In one of the subspecies of the S. hammondii the ossification of the cranimm has progressed so far as to close the frontoparietal fimtanelle, but not so as to penetrate the
cranial integmment. The species belong to the western and southwestern parts of the nearetic realn. They are distinguished as follows:
$\alpha$. Tympanic disk distiuct; 1 og gland on tibia.
Interorbital width narrow, entering length of tibia four times; vomerine teeth between choanæ; color generally dark, with or without palo striper.
S. hammondii.
$\alpha \alpha$. Tympanic disk concealed ; a large gland on the upper side of the tibia.
Interorbital width narrow, entering tibia three times; vomerine teeth a little pusterior to nares ; colors pale.................................. S. mulliplicala.

## SPEA HAMMONDII Baird.

Cope, Journ. Ac. Phila. (2), Vi, 1866, p. 81.
Scaphiopus hanmondii Baird, Rept. Expl. Surv., iv, Reptil., 1859, Pl. 28, fig. 2; Cope,
Proceod. Ac. Plila., 1863, p. 53; Bonlenger, Cat. Batr. Sal. Brit. Mus., 1882, p. 435. Scaphiopus bombifrons Cope, Procecd. Ac. Phila., 1863, p. 53; Boulenger, Cat. Batr.

Sal. Brit. Mus., 1882. 1. 435.
Spea bombifrons Cope, Journ. Ac. Phila. (2) vi, 1866, p. 81.
Spea stagnalis Cope, U. S. G. G. Surv. W. of 100th Merid., v, Zool., p. 525, Pl. 25, figs. 6-8.
Sc.Tphiopus slagnalis Bouleurger, Cat. Batr., Sal. Brit. Mus., 1882, p. 436.
Scaphiopus dugesii Brocchi, Bull. Soc. Philom. (7),-111, 1879, p. 23, and Miss. Sci.
Mex., Batr., p. 94, l'l. 9, tig. 4 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 18 2, p. 436.
This is a widely distributed and variable species, presenting such diversity in some respects as to be interesting as an example of the appearance of important characters in the course of descent. It is interesting also from its habits, adapted as they are to the exigencies of a dry climate, in which the opportunity for aquatic life is precarions, and the metamorphosis correspondingly liable to modification.

I include three subspe cies under the common head, which are defined as follows:

Gunerally no frontoparictal fontanelle; head plane above; a longitudinal pale band on each side of back; larger ; skin tubercular. S. h. intermontanu.

A frontoparietal fontanelle; head plano or convex above; no longitudinal light bauds; skin smoother; smaller S. h. hammondii.

A frontoparietal fontanelle; heal very convex at the interorbital region ; skin nearly smooth ; colors pale ; size least
S. h. bombifrons.

I had first placel the S. h. intermontena in the genus Scaphiopus, while the two other subspecies were placed with the S. multiplicata in a distinct genus, Spea, which was characterized by the presence of a frontoparietal fontanelle. This character is generally constant, although its inconstancy as a specific character is to be expected somewhere. The genus Spea is the seat of the failure of this generic char acter to coincide with the other definitions of a species. In one of the four specimens of the subspecies Intermontanus I find the fontanelle present, while in three it is absent. In a fifth specimen it is represented by a tissure between the frontoparietal bones.

The S. h. bombifrons appears to be, at first examination, a well defined species. The interorbital protuberance is a striking character.

The tibia is also shorfer in typical examples, measuring only three times the interorbital width. This measurement is partly due to the interorbital enlargement. The skin is less tubercular and the colors are paler. The form has an especial geographical range. But I find specimens from different parts of the West which connect this form with the true S. hammondii. Such are specimens collected by Dr. Hayden in the valley of the Great Colorado, in eastern Utah, and others obtained by myself at Sante Fe, N. Mex. In some of the former the interorbital width enters the length of the tibia three and a half times.

The Spea stagnalis is known as yet from young specimens only, which have but recently passed their metamorphosis. The principal peculiarity which characterizes them is the minute size of the ostia pharyngea of the Eustachian tubes. I suspeet this to be a character of immaturity, as I find a similar state of affairs in some of the young specimens of Scaphiopus conchii in the collection.

## Spea hammondii intermontana Cope.

Proceed. Ac. Phila., 1883 , p. 14.
I took a specimen of this species within the limits of Salt Lake City, and subsequently obtained three or four specimens from Pyramid Lake, Nevalla. The sides and much of the dorsal region are covered with rather barge tubercles closely phaced. The frontoparietal bones, though ossified, ane not ronghened, as in the species of Scaphiopus. It is nearest the S'. couchii (from near San Antonio, Tex.). In that species the vomerine teeth are entirely posterior to the internal nares; in this one they are between the posterior borders of the same. The lips are not cross barred, as in the S. couchii; and the superior region has two pale lines on each side. In S. conchii these lines are replaced by a coarse marbling. As compared with the Spea hammondii, this frog differs in its large: size, lighter colors, and the presence of the superior pair of light lines.


Fig. 76. Spea hammondii intermontana. No. 10926. Ft. Walla Walla; 1.
It represents the $S$. hammondi in more northern regions, and the complete cranial ossification and larger size mark it as a mone fully developed form.
I found it associated with Bufo columbiensis in a pond near the shore of Pyramid Lake. Like other allied species, it wals rery noisy, almost obscuring the roice of the less vociferous Bufo.

## Mcasurcments.

3.Length of head and body ..... U62
Length of head, including tympana ..... 016
Width of head, iocluding tympana ..... $0: 8$
lengrth of fore limb foom axilla ..... 0:30
length of hind limb from groin ..... 070
Length of tibia ..... 0 2:3
Leugth of tarsus ..... 012
Length of remainder of foot ..... 028

Spea hammondii intermontana Cope.

| ( fitalogue number. | No. of spee. | Locality | When collected. | From whom recoived. | Nature ol speo ineon. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8100 10926 | 1 | Provo, Utah |  | Dr. H. C. Yarrow |  |

Spea hammondii hammondii Bairl.
(Plate NLJT, fig. 8; Man, fig. 18; LxVI, fig. 1.)
Cope, Journ. Ac. Philia. (2), vi, 1866, p. 1 ; Proceet. Ac. Philit., 188:3, p. 14.
Scaphiopus lammoudii Baird, Rept. Expl. Surť, iv., Reptil, 1859, PI. こ̧, fig. 2; Cope,
Proc. Ac. Phila., 1eG3, i. 53 ; Bonlenger, Cat. Batr. Sal. Brit. Mus., ded ed., 1882, 1. 435.

Spea stagnalis Cope, Yarrow's Rept., v, Zool., p. 525, P1. 25, fig. 6-8.
Scaphiopus stujualis Boulenger, l. c., p. 436.
Scaphiopus dugesi Brocchi, Bull. Soc. Philom. (i), ini, I8i9, p. 23, and Miss. Sc. Mex., Batr., p. 94, Pl. 9, fig. 4; Boulenger, l. c., p. 436.


Maxillary ontline acuminate oval; muzzle somewhat trmeate, perpendicular in profile. Region of canthus rostralis concave; front plane or a little concare, with a weak ridge on each side, which is most distinct posteriorly; the width one-fourth length of tibia, ant less from nostril to lip. Eyes prominent; tympanum distinct, one fourth the ex. tent of the former. A fold behind angle of month. Iarotoins flat, small; no gland on tibia or pectus. Tongne very large, entire. Choance large; vomerine teeth in transverse series between then. Slin roughly tuberenlons, especially on the sides; thick on the oceiput; below nearly smonth. Cmeiform process produced.

Color abore stone-brown in alcohol, with traces of two paler clorsal bauds. Tubercles fulvous tipped; extremities sladed with the same. Below whitish, immaculate.
1951—Bull 34--20

> Measurements of No. 3695.
Length of head and body ..... 051
Length of head, including tympana ..... 0154
Width of head, including tympana ..... 023
Length of fore-leg from axilla ..... 026
Length of hind leg from groin ..... 055
Length of tibia ..... 019
Length of tarsus ..... 009
Length of rest of foot ..... 022

The range of this species is extensive. It was originally obtained near Redding in northern California. My friend, James S. Lippincott, has sent it to me from the extreme south of Califorvia, San Diego. The Smithsouian Institution has a slightly differentiated variety from Chihuahua, and specimens from my friend, Dr. Dugés, from Gıanajuato, Mexico, are the same. I suspect that the Scaphiopus dugesi Brocchi from that locality is the same species.

Abundant in July and August, when it deposits its eggs in the pools of rain-water. It is very noisy at such times, and the open lots in the city of Santa Fe resound with its cries. These are much like those of the Scaphiopus holbrookii.

Spea hanmondii hammondii Baird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receivod. | Nature of spec. imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9453 | 1 | California .... |  | Dr. J. Fr. Cooper. ....... |  |
| 8559 | 3 | Alto dus Utas, N.Mex. | Sept. - 1874 | 1'rof. E. D. Cope | Alc. typo. |
| 8053 | 1 | Utal1 .................. | -1872 | Dr. H. C. Yarrow ...... | Alcoholie: |
| 9628 | 1 | Calitornia | Aug. - , 1875 | -.....do ................. | Do. |
| 3695 | 1 | Fort liedding, Cal |  | Dr. J. F. Hammond, U.S.A. |  |

Spea hammondii bombifrons Cope.
(Plates 51, fig. 17 ; 68, fig. 1a.)
Cope, Journ. Ac. Phila. (̌), vi, 1880, p. 81.
Scaphiopus bombifrons Cope, Proc. Ac. Phila., 1863, p. 53; Boulenger, Cat. Batr. Sal. Brit. Mus., 2 d ed., 1832 , p. 435.
Outline of maxille acuminate oval ; muzzle truncate, elerated, thickened transversely; profile or vertex arched, of front concave; canthus rostralis replaced by a concarity. Tympanum concealed or scarcely visible; parotoid flat, small. No gland on tibia or pectus. Tongue entire. Vomerine teeth in oblique fasiculi or short series between choane; these equal ostia pharyngea. Skin nearly smooth, roughest on the sides. Cunciform process produced. Palmation of toes deeply repand.

Color in spirits, pale ashen or brown, with numerous plumbeous rermiculations, which are aggregated into a blotch on the scapular region, which has a palo space below it. Limbs vermiculated ; outer border of tarsus and foot light. A dark spot on canthus rostralis.

This species has the most northern range of those found west of the Mississippi, and is especially characteristic of the elevated plains. It ranges from northern Texas to Montana. It resembles very closely half grown specimens of Bufo cognatus of the same region, so as to constitute it a mimetic aualogue.


Fig. 78. Spea hammondii bombifrons Cope. 9943, nat. size. Camp Thorne, Yellowstone R.

Measuremients of No. 3520.
M.
Length of head and body ..... 043
Length of head, iuclucing tympana ..... 012
Width of head, including tympana ..... 016
Leugth of fore-leg from axilla ..... 020
Length of hind leg from groin ..... 0445
Leugth of tarsus ..... 007
Length of tibia ..... 014
Length of rest of foot .....  017

The specimen 9943, from the Yellowstone River, is an excellent illustration of the mode of origin of corneous epidermis. The end of the muzzle and the frontal convexity are covered with a layer of black horn, each forming an oval shield, which meets the other on the top of the snout. This is probably a result of the constant pressure and friction of the earth when the animal is burrowing in it. Althongh the animal burrows with the hinder limbs, the muzzle is naturally used in keeping the passage-way open to the surface. The character is not constant.

This species is characteristic of the northern parts of the plains and Great Basin. I found it especially common in the region north of the Missouri River and eastward of Fort Beuton. Before my arrival there rain had fallen, and the ruts of the wagon-trails were filled with water. These ditches contained numerous examples of this species, together with Chorophilus triscriatus, Bufo cognatus, and Amblystoma tigrinum. Their metamorphosis ras completed by that time (August 20), althougin some of the specimens were small.

In Idaho, near latitude $43^{\circ} 30^{\prime}$, is situated a body of mater known as Market Lake. Its extent is variable, for it is said to be depeutent for its water supply on the overflows of the Snake River, which is a few miles distant to the eastrard. An old channel leads from the river to the lake, giving probability to the statement. At the time of my passage through the region the water was unusually high, for a portion of the stage roal, with parts of numerous telegraph poles, was submerged. The lake appeared to be about ten miles long by six in width. Tho country surrounding it is arid, and the saud, which represents soil, rests
on a basis of lava. The stage halted for a short time to enable me to examine the shore of the lake. I found it to be lined with a windrow of grasshoppers (Caloptenus spretus) which had fallen into the water and beeu washed up, some living, others dead. Among them I found numerous large fat larree of Spea bombifrons occupsing small spaces which they had cleared, quite out of the reach of the water. Their limbs were nearly fully grown, while their tails had suffered no absorption, and their jaws were toothless and cartilaginous; some quite larval in form, others with wider gape. They were engaged in eating the grasshoppers, and I detected several specimens with the entire insects in their months. In some instances the grasshoppers' borlies were too large and projected from their mouths. These precocions larre were evidently air-breathers, and hopped about, presenting a curions appearance as they dragged their large tails after them. I found some adult specimens of Amblystoma mavortium also along the water's ellge. These observations were made on the 11th of August, 1876.

Spea hammondii bombifrons Cope.

| Catalogne number. | No. of spec. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Black fuot Fork, Mont .. |  | F. V. Hayden |  |
| 3704 3520 | 1 | Fort Union, Dak ........ <br> Platte River, 200 miles west of Fort Kearney: |  | E. J. Dennis W.S. Wood. |  |
| $\begin{array}{r}3703 \\ -9913 \\ \hline\end{array}$ | 1 | Llano Estacarlo. Camp Thorne, Yellowstone. |  | Capt. J. Popo <br> (?).... .......... |  |
|  | 1 | Fort Benton, Mont ..... |  | E. D. Соро ............ |  |

## SPEA MULTIPLICATA Cope.

Spea multiplicata Cope, Jonrn. Ac. Phila. (2), vi, 1s66, p. 81.
Scaphiopus multiplicatus Cope, Proceed. Ac. Phili., 1863, p. 52; Brocehi, Mis. Sci. Mex. Batr., p. 25 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 21 ed., 1882, p. 436.


Fig. 79. Spea multiplicata. No. 3694. Valley of Mexico; $\frac{1}{1}$.
Furm broad, squat. Headi very short; profile rapidly descending; maxillary ontlines acuminate, oval; muzzle thick, rounded. An open frontoparietal fontanelle. Vomerine fascicles just posterior to the line
connecting the posterior nares. Eyes very prominent. From these a strong fold passes the posterior to the angle of the mouth and across the gular region ; tympanum corered by a portion of the parotoid gland anterior to this. Parotoid proper very large, extending beyond scapula, bent upon the side; bounded inferiorly by a strong fold, which extends from the one above mentioned to the groin. Below this, on the sides, are two or more other folds. Skin of upper surfaces coarsely tuberculous; that of the crown thick, of the extremities nearly smooth. A large gland occupies most of length of tibia. Alodomen minutely, pubic region coarsely, rngose. Cumeiform process rather short, very prominent. Choans smaller than ostia pharyugea. 'Tongue entire, with a uarrow fiee anterior border, one-third free posteriorly. Ex. tended heel reaching front of hmmerus; tibia three times as long as interorbital width. Three phalanges of fourth toe free from web. Color in spirits; abore ashy brown, below yellowish ash.

Mcasurements of No. 3694.

|  | 17. |
| :---: | :---: |
| Lengtl of head and borly | . 055 |
| Length of leat to parotoid fold | . 015 |
| Widh of heald at canthos oris. | -023 |
| Length of fore limb from axilla | . 023 |
| Langth of himel limb from groin | . 0.5 |
| L.engil of tibia | . 0175 |
| Length of tarsis | . 1012 |
| Length of rest of hind foot | . 0204 |

The characters which distinguish this species are mumercus. In its general ippearance it has a great resemblance to the Bufo compactilis of the s:ane conntry. But one specimen is known.

No. 3694 ; one specimen; Valley of Mexico; J. Potts ; alcoholic.

## CYSTIGNATHIDE.*

Ranide, part., Cystigucthidre, part., Discoylosside, part., Alytille, part., Cperoliider, Bombinatorieltr, part., Hylorlider, part., Gïnther, Cat. Batr. Sal.
Cystignalhiele Cope, Nat. Hist. Rev., 1865, plus Scaphiopodider, part.
Cysliguthide Cope ; Jonru. Ac. Phila. (2), vi, 1856 ; Bonlenger, Cat. Batr. Sal., Brit. Mns., ii cul 1880.
Bombinetorider, part., Plectromantille, Alytider, part., Polypelatider, part., Ranide, part., Discoglossidfe, part., Mivart, Proceed. Zool. Soc., 1869.

Vertebre procœlons; no ribs ; sacral diapophyses cylindrical, obtrihedral or slightly depressed distally, inclined upwards. Urostyle separate, attached to two condyles, withont diapophyses. Terminal phalanges conti dous, either uniformly conic, or with divergent teminal processes or their rudiments. Sternum distinct. No teeth on the mandible.

This, after the Hylidie the most extensive fimily of the Areifera, embraces one liundred and fifty-six species, which represent thity-seron genuric types.

Tha most exmpletely developerl senus exhibit; a eraninm withont
fontanelle and with complete ethmeid arch, and a styloid osseous xiphisternum, with terminal cartilaginous disk; the auditory organs perfectly developed; the lowest, undeveloped ethmoid arch and frontoparietal roof, and disciform cartilaginous xiphisternum without style, with Eustachian tubes and membranum tympani wanting. Accompanying this succession, we have four morlifications of the family structure to adapt to as many modes of life: the aquatic, the terrestrial, the arboreal, and the subterranean. As the earth's surface is the common nedium between the above extremes, so the species of terrestrial liabits furnish us with none of the addaptive extremes of structure, but remaila an intermediate group, from which the succession of structures, interrupted, it is true, passes towards the divergent types. Developmental structures accompany and confirm the adaptive, but by no means always coincide.
The aquatic habit is attained when the digits behind are not only webbed, but when the external metatarsi are separated by membrane also; the arboreal, when the terminal phalanges are furnished with a terminal transverse limb, which supports an adhesive disk. The subterranean is shortened, and furnished with a great development of the first digit or prepollex of the tarsus, which is covered by a corncous sheath, and serves as a spade. The first type may be combined will the third, as in Mixophyes and Chiroleptes, or either may be furnished with a bony overroofing of the temporal muscles, and penetration of its integuments by the hyperossification of the cranium.

The fossorial spur is weak in Helioporus and Paludicola, weaker in Mitrolysis, and just represented in Ceratophrys. The palmate foot is diminished in Calyptocephalus, reduced in Mixophyes and Chiroleptes, and represented by a trace in Hylorhina and Limnomedusa. The undeveloped ear is seen in Telmatobius and in Alsodes.

The rariations in the development of the thomb are not so striking as in the Hylide. In Gnathophysa, Cystignathus, and Ceratophrys the trapezium supports an osscous metacarpal and obtuse phalange, which are concealed in a large tuberele. In Mixophyes, on the other hand, the metacarpal is slender, eutirely cartilaginons, and does not support a phalange. There is nowhere a spur, as in Hypsiboas.

With regard to the dermal attachments, the following important varieties occur; in the family generally, but especially among Hylodes and Cystignathi, the dorsolateral septum is placed especially high up:

Pseudes.-Septa in Pseudis as in Rana; in Lysapus the lateroventral line is a little widened. In Mixophyes fusciolatus the lateroventrals are very wide, and leave the ventral free space very narrow behind the mildle.

Ceratophrydes.-In Ceratoplerys the lateral septa are narrow, and there are two posterior abdominal transverse septa, similar to those attached to the sternum. In Ceratophrys ormata these are wauting, but the dorsolateral line is very broad.

Criniar.-Among these animals I have examined species of Helioporus, Platyplectrum, Crinia, Borborocetes, Eisophus, and Hyperolia, and in none can I tind more than lateral traces of the epicoracoid and coracoid septa, except in the Hyperolia marmorata, where they are complete. The posterior abdominal is well developed in Eusophus nobulosus.

Pleurodema.- Ventrolateral low down, and posterior abdominal well developed in Pleurodema bibronii.

Iylodes.-Dorsolateral and ventrolateral far apart; the transverse posterior abdominal septum in the species of Lithodytes, in Ephirexis longipes, in Enhydrobius vomerinus (Elosia Girard) and Hypodictyon ridens. I have not found it in Lithodytes conspicillatus Gthr., Enhydrobius parvus, and Limnocharis fuscus Bell (Elosia nasus Girard).

Cystignathi.-In all the species the structure is similar to that of liana, except in the approximation of the dorsolateral lines, and the presence of the postabdominal septum, which is continuous with the lateroventrals, and is indicated externally in several of the species by a fold in its line of attachment.
The accompanying table exhibits the affinities of the genera and the groups into which they naturally fall.

This family was first characterized loy the anthor in Proceedings Academy Natural Sciences, 1863, 46; excluding, however, the genera Ceratophrss and Tomopterna; aud subsequently more exactly in the Natural History Review, 1865. Se veral clanges, approximations to nature, were proposed by me in 1866 . Boulenger adopted this family as I dedefined it (Cat. Brit. Mus., 1882), but modilied the extent and definitions of the genera materially.

Group I. Pseudes.-Frontoparietal bones fully developed; toes webbed, external metatarsi free; termiual phalanges acnte; sternum a cartilaginous plate; ear perfectly developed; tongue broad, entire, adherent.

Cephalie derm distinct; vomerine teeth; no cuneiform shovel or lunbar gland ; prefrontals closely united; pupilhorizoutal; no digital dilatations ................................ 1 Pseudis Wagler. Cephalic derm distinct; vomerine tectli; no enneiform shovel or lumbar gland; prefrontals widely separated from each other and frontoparietals; ends of digits dilated............ Lysapsus Cope. Ceplialie derm distiuct; vomerine tecth; fingers and toes webbed; terminal phalanges bifureate; supporting disks.. Centrolenc Espl. Cephalic derm distinct; vomerine teeth; a cnueiform shovel; nu lumbar gland; prefrontals not closely united ; pupil vertical ...................................................... Mixophyes Gthr. Cephalie derm distinet; vomerine teeth; no enneiform shovel ; a lumbar gland; prefrontals well united, transverse.
......................................... .... Cyclorhamphus Tseh.
Cephalic derm involved in a rugose cranial ossification, temporal fossa overarched, completing postorbital arch; vomerine teeth; no cmneiform shovel or lumbar glaud ; prefrontals extensively unitedand prolonged posteriorly ......... Calyptocephalus D. \& B.

Group II. Ceratormarines.-Frontoparictal hones fully developed; toes free or slightly webbed; the external metatarsi bound; terminal phalauges simple; stermun a cartilaginous plate (so far kuowi, emarginate); ear perfectly developed ; tongue entire, little free.
a. Cephalic derm disiinct ; no postorbital arch.

Pupil vertical; prefrontals well separated; vomerine teeth; toes webbed; inner finger opposable .................... Mitrolysis* Copo
Pupil horizontal; prefroutals more or less nuited; vomerine teeth: toes webbed; inner finger not opposable; abdominal derm areolate; a strong cuneiform shovel ........... Odontophrynus R. \& L.
Prefrontals widely separated; eyelids with dermal prolongation; vomerine teeth; toes nearly free; cranium elevated; form toadlike; inner finger not opposable.

Stombus $\dagger$ Boie.
Prefrontals in close contact; eyelids not prolonged; vomerine teeth on palatine arch; toes free; craniom broad; pupil horizontal; form squat; abdomen smooth

Zaehenus Cope. aa. Cranial derm involved in ossification; no postorbital areh.

Pupil vertical; thumb opposed; toes welbed; vomerine teeth; prefontals separated; no dorsal shield............. Chiroleptes $\ddagger$ Gthr. aaa. Cephalic derm involved in cranial ossification; a postorbital bony arel.

Similar to Cerat ophrys as below, but without dorsal dermal osseous shield ................ . . . . . . . . . . . . . . . . . . . . . . . Phrynocerus Tseh.
Prefrontals wholly or in part separated ; eyelids with a dermal prolongation ; vomerine teeth; toes more or less palmate ; craninm elevated; form toad-like; inner finger not opposable; pupil transverse; a dorsal dermal osseous shield..... Ceratophrys Boie. Group III. Crinie.-Frontoparietal bones embracing a large fontanelle; cephalic derm free; external metatarsi bound; terminal phalanges simple; prefrontals never closely united, rarely in contact; sternum not distinguishable into style and disk, broad, emarginate, cartilaginons.
a. Ethmoid bone with superior areh complete ; toes webled.

Pupil erect; vomerine teeth................................ Helioporus Gray.
Auditory apparatus minnte; vemerine teeth; pupil horizental; sternum with a proximal semiossified portion....... Copheus § Cope. $a a$. Ethmoid arch complete, or nearly so; digits free; no enneiforin shovel.

Largo parotoid glands; ne vomerine teeth; pupil horizontal.
........................................................ . Hyperolia Gray.
No parotoid glands; vomerine tecth in transverse series; xiphisternum broad; pupil horizontal ................. Borborocutes || Bell.
No parotoid glands; pupil erect; sternum a plate..... Perialia Gray.
No paretoid glands; pupil herizontal; vomerine teeth wanting or in minute fasciculi ; sternum slender, withont bouy deposit; abdeminal integument usually areolate .................... Crinia T'sch. aaa. Ethonoid arch cartilaginous above; digits free; no shovel.

No parotoids; vomeriue teeth; pupil ronnd; auditory organs radi. mental

Eusophus Cope.
aaaa. Ethmoid areh? No metatarsal shovel; "auditory organs wanting;" toes slightly webbed.

Vomerine teeth : no parotoids.

[^44]Group IV. Pleurodem.e.-Frontoparietal bones embraeing a fontanelle; anditory apparatus developed; digits free, or slightly webbed; external metatarsals bound; terminal phalanges simple; sternum an osseous style, with one or more distinct terminal eartilage disks; tongue entire ; cephalic dernı free.
a. Inguiual glands; pupil horizontal; sternal cartilage emarginate or bifureate.

Vomerine teeth; prefrontals well separated; metatarsal tubereles minute; terminal phalanges short............. Plenrodema Tsel. $a a$. No ingninal glands; pupil horizontal.

No vomerine teeth; prefrontals entirely separated; terminal phalanges short ........................................ Liuperus D. \& B. aaa. No inguinal glands; sternal cartilage entire; pupil erect.

Vomerine teeth; prefrontals widely separated by the osseons ethmoid; terminal phalanges clongate; limbs elongate.... Hylorhina Bell.
Group V. Hylodes.-Digits free, or nearly so; external metatarsi bound ; terminal phalanges uith a transrerse limb, which supports dermal disks; sternum wit!ont stgle, scutiform, emarginate or bilobed, osseous or cartilaginous.

1. A frontoparietal fontanelle.

No vomerine teeth or tarsal spurs; prefrontal bones wide, uniting on the middle line

Malachylodes Cope.
2. No frontoparietal foutauelle.
a. Prefrontals well separated, rarely the convexities of the inner borders in contact.
b. Manubrium eartilacirsous.

Muzzle and canthus rostralis angulated, projecting; vomerine teeth; digital dilatation ssmall. ...................... Enhydrobius Wagl.
Muzzle and eanthus rostralis contracted, little marked; vomerine teeth; digital dilatations large................... Epirhexis Cope.
bb. Manubrium osseous, styloid.
Muzzle and canthus rostralis angulatel ; no vomerine teeth ................................. ................. . Limnocharis Bell.
$a a$. Prefrontals united thronghont by close suture, and usually in contact w. ${ }^{\text {. }}$ frontoparietals.

No vomerine teeth
Syrrhophus Cone.
Vomerine teeth; abdomen smooth..................... Lilhodytes Cope.
No vomerine teoth; belly areolate .................. Hypodictyon Cope.
Vomerine teeth ; abdomen areolate ...................... IIylodes Fitz.
Group VI. Cystignatiin.-Frontoparietals and anditors apparatus fully developed; cephalie derm free; external metatarsi hound, digits free, terminal phalanges simple; sternum a distinctly defined slender osseous style, with distal cartilaginous disk; toes free.
a. Xiphisternal style emarginate, and with two distal cartilaginous tisks.

Vomerine teeth wanting; no tarsal spurs; iuguinal glands
Bubonias Cope.
Vonerine teeth present; no tarsal spurs; inguial glands
Edalorhina Esp.
No parotoid or vomerine teeth; isolated inguinal glands; two acnte metatarsal spurs; pupil horizoutal............. Paludicola Wagrl.
$a a$. Xiphisterual style and distal disk undivided.
No inguinal glands; pupil horizontal ............. Leptodactylus Fitz.
Glandular aggregations on the loins; pupil horizontal
................................................. Cystignathus Wagl.
No glands; pupil ereet ............................. Limnomedusa Cope.
No glands ; pupil horizontal ; anditory apparatus atrophied.
Telmatobius Wiegin.

|  | $\begin{gathered} \text { Regio } \\ \text { Australis. } \end{gathered}$ | Regio Neotropica. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Chili and S. of La Plata. | Central. | Mexican. | $\begin{gathered} \text { West } \\ \text { Indian. } \end{gathered}$ |
| Cyatignathi. |  |  |  |  |  |
| Hyloctes | 7 | ${ }_{4}^{0}$ | ${ }_{2}^{24}$ | 26 0 | 0 |
| Pseudes | 1 | ${ }_{3}^{4}$ | ${ }_{3}^{6}$ | 0 | 0 |
| P'leurodemx.. | 0 | 5 | 3 | 1 | 0 |
| Crinix .... | 13 | 10 | 2 | 0 | 0 |

There are then known twenty one Australian species, of which all but tivo possess an incomplete cranium and none a bony xiphisternal style. In the Patagonian subregion twenty four species, of which ten exhibit an incomplete cranium, and five a complete bony xiphisternal style; in the Brazilian subregion sixty-seren species, of which only six have an incomplete brain case, and twenty-four the osseous xiphisternal style; Mexico, thirty-two species with complete cranium, and one of these with style; the West Indies with twelve, none having the fontanelle, and three the style.

|  | R. Australis. | S. R. Patachonica. | S. R. Brazil. | S. R. <br> Moxic. | $\underset{\text { Sul.O.e. }}{\text { Inc. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | 25 | 13 | 53 | 4 | 11 |
| Prefrontals fully developed | 0 | 3 | *22 | 27 | 10 |
| Eint imperfect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 1 | 4 | 0 | 0 | 0 |
| No vonierine teeth.. | 5 | 1 | 15 | 7 | 0 |
| 'Tues wehbed.... | 8 | 2 | 6 | 0 | 0 |
| Fossorial shovel | 7 | 3 | 2 | 0 | 0 |

*Approximate.
In regard to the cranial development, the West Indian region is preeminent in this family, as in the Hylidæ; the Brazilian inferior, and the Australian rastly below all; the degradation appearing in a certain degree regular. In the lack of vomerine tecth (a feature of immaturity) South Brazilian and Argentine forms predominate. In possession of the raniform xiphisternum the West Indian and Mexican subregions show fewer representatives than the Brazilian. There are none in the Australian.

One species-Lithodytes ricordii-wanders from the R. Neotropica into the southern projection-Florida-of North America, and two others, Lithodytes latrans and Syrrhophus marnockii, bave a distrilntion in Southwest Texas; no others are known to occur beyond the borders already stated. No species is common to the R. R. Australis and Neotropica, and but one genus-Borborocetes. Two Braziliau species occur in the Sonthern West Iudies and two in Sonthern Mexien; probably three of the same country must be included in the Buenos Ayrean list.

As yet we are acquainted with the fossil remains of but one species of Cystiguathidæ-a Ceratophrys, from a Brazilian cave. It has been
regarded as idıntical with the C. dorsata by Güuther (Aun. Mag. Nat. Hist., 185!, [1. sw).


## LITHODYTES Cope.

Proceed. Ac. Phila., 1862, p. 153; Journ. Ac. Phila: (2), vi, p., 97.
Hylodes pars, auctorum.
Terminal phalanges $\mathbf{T}$-shaped; fingers and tocs free; no enlarged metatarsal tubercle. Omosternum cartilagingus. Steruma a cartilaginous plate. Prefrontal bones uniting on the median line of the muzzle. Belly smooth.

This gemus differs from Hylodes only in the smooth, as distinguished from the granular, or areolated, belly of the latter. Its species are mumerons and inhabit principally the equatorial and northern parts of the Neotropical realm. But two are found in the United States: the L. latrans at the southwestern border, and the L. ricordii at the extreme sontheast. The latter is a West Indian species; the former probably occurs in Mexico, but its existence there has not yet been ascertained positively.
$\alpha$. Vomerine in two short patches between the nares.
F'urn robust; mizzle short, wide; upper surfaces with brown spots.... L. latrans. $\boldsymbol{\alpha} \boldsymbol{\alpha}$. Vomerine tecth in two long transverse curved series posterior to the internal nares.
Form clougato ; muzzle acnte ; spotted above
L. ricorlii.

## LITHODY'TES LATRANS Cope.

(Plates 51, fig. 15; 71, fig. 22.)
Amer. Nat., 1878, p. 186 ; Bull. U. S. Nat. Mus. No. 17, 1850, p. $2 \overline{5}$.
Size rather large; froutoparietal region flat, its width equal to the rertical diameter of the membranum tympani. Skiu suooth, that of the abromeu thrown into a disk by a circular fold. Digital dilitatious suall on all the-feet. The toes have no dermal free margins; those of the hand are long, while those of the foot are rather short. The fourth finger is as large as the forearm and exceeds the thumb, which in turn is considerably longer than the second finger. There are two strong palmar tubercles, of which the extermal is divided into two by a longitudinal groove. There are two solar tubereles, and the entocuneiform is prominent and obtuse. The muzzle marks a point beyond the middle of the tarsus of the extended hind limb. The tarsus to the e.stocuneiform is just half as long as the remainder of the foot. There are prominent tubercles on the inferior sile of the digits of both extremities. The head is wide and flat and the loreal region oblique. The nasal region is flat and gently decurred and the lip projects a little beyond the muzzle. The long diameter of the eje equals the length from its border to the external nostril, which is very near the end of the muzzle, and exceeds the long or vertical diameter of the membranum tympani by one-lalf of the latter. The width of the tympanie membrane is fivesixtlus of its height. The tongue is subround. The ostia pharyugea are large, but smaller than the choance. The vomerine teeth are in two short, uearly transverse patches, on elevated bases, their apices nearly in line with the posterior border of the choanse. In gounger individnals the choane are obliquely longitudinal.

Length of head and body, $.076^{\mathrm{m}}$; length of head to line of posterior borders of tympanum, axially $.024^{\mathrm{m}}$; width at latter point, $.031^{\mathrm{m}}$; length of posterior leg, $.107^{\mathrm{m}}$.
Color of superior surfaces brownish-gray, marked with a few large brown spots with pale centers. The largest of these is on each scapular region; a smaller pair is one over the extremity of each sacral trausverse process. There are several on the pelvic region and above the groin, one on each eyelid, and one or two on the middle of the nasal region. Another covers the tympanum, and a brown band comnects the orbits around the end of the muzzle. There are tro large brown spots on the lip, one below the eye and one in front of it. The segments of the limbs have broad cross-bands, excepting the humerus. Below pale, immaculate.

This species is one of the larger forms of the genus. The nasal bones are in contact for most of their length, but diverge a little posteriorly, displaying a small portion of the ethmoid. This is not typical in Litlodytes, but approaches the state of things in Epirhexis.

This frog inhabits the eliffs of the cretaceons limestone which are
fond in erery direction along the horders and river valleys of the first phatean region of Texas. Mr. G. W. Marnock, who discovered it, informs me that after rains it is very noisy, making the rocks resomut with its ery, which is somewhat like a dog's bark. It hides in fissmes, and is so difficult to find as to be generally unknown to the comentry reple, who suppose that the voice proceeds from.a lizard. According to Mr. Marnock the eggs are hatched in winter, and the tadpoles pass their existence in temporary pools of rain-water which collects in holes in the rocks and at a distance from the creeks.


Fig. 80. Lithodytes latrans. No. 1059. Helotes, Texas; $\frac{1}{1}$.
Additional specimens of this species received from Mr. Marnock show that it reaches a larger size than the above specimens indicate. I give the following

Measurements.
M.

Length of head and body....................................................................... . . . . 094
Length of head, including tsmpana. 025
Width of head at posterior edge of tympana ............................................... . . 039
Length of fore limb 055
Length of hind limb 115
Length of tibia 039
Lergigh of tarsus 020
Length of rest of foot $0: 35$

In the large and old specimens a mineral deposit takes place in the skin, as in the Phyllomedusa seleroderma Cope and Stereocyelops inerass satus Cope. It is especially abondant in the cranial derm, but which is not, as in cases where the ossification appears on the surface of the cramial bones, atherent to the latter.

The Hylodes auyusti (Dugês MS.), Brocchi Mision Scientifique de Mexique, 1881, from Guanajuato, Mexico, is related to the present animal. I do not know what the sperific difference is, unless it be in the form of the vomerine patches, which I can not clearly make out from Brocchi's description.

| Catalogue number. | No. of spec. | Lucality. | When collucted. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10751 | 1 | Bexar County, Tex... | Febs 10,1880 | G. W. Marnock. | Alcoholic. |
| 10752 | 1 | ...... do .............. . . | .. do ...... | ......do ..-.... | $1)$ |
| 10753 | 1 | .-. - do | ...dlo .. | . . ${ }^{\text {do }}$ | Io. |
| 10058 | 2 | ..... do |  | . . do | Do. |
| 10539 | 2 | . ..... do |  | . do | Du. |
| 13633 | 1 | .......do .................. |  | . do | Do. |

## LITHODYTES RICORDII Dum. \& Bibr.

Cope, Check-List N. Amer. Batr. Reptil., 1875, p. 31.

Hylodes ricordii Dum. \& Bibr., Erp. Gen., vinf, p. 623; Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, p. 213.
Head as wide as or wider than the body, longer than broad; the lateral outlines curved; the end of the muzzle abruptly truncated. Ostia pliaryugea oval. Vomerine teeth in two long curved series, which commence behind and opposite to the external border of inner nares; they are separated by a considerable space medially. Tongue elongate oval, slightly nicked. A subgular vocal sack. Tympanum half the size of the eje. Skin smooth above and below; sides rugose. Heel reaching the orbit. Digital palettes small. Two metacarpal, two metatarsal tubercles. Brachium longer than or equal to antebrachium.

General color reddisli-brown. The loreal region, a band between the eyes, one above the tympanum, and some dorsal spots, darker. Beneath light brownist.

A single specimen from Key West, Florida, is in the National Museum. Its proper habitat is Cuba.

## SYRRHOPHUS Cope.

Amer. Nat., 1878, p. 253; Proceed. Amer. Philosoph. Soc., 1876, p. 268.

Sternum a cartilaginous plate, notched; digits free; vomerine teeth none; ear well developed; uasal bones in contact, forming a solid roof over the ethmoid cartilage. Pupil horizontal.

This genus is simply Lithodytes without vomerine teeth. In the former genus the nasals and ethmoid have the structure seen in Elosia. Four species are known, three of which are Mexican in distribution. They differ as follows from each other:

[^45]SYRRHOPIIUS MARNOCHII Cope.

## (Plate 71, fig. 34.)

$$
\text { Amer. Nat., 1878, p. } 253 \text {; Bull. U. S. Nat. Mus., 1880, p. } 26 .
$$

The typical specimen is as large as Hyla versicolor, aud has a long flat head and remarkably short hind legs. The muzzle is flat and slightly depressed above, and projects a little beyond the edge of the
lip. The nostril is a little behind the apex, and as far in front of the orbit as the long diameter of the latter. Tympanic membrane round, its diameter about half that of ese. Choane lateral, equal in size to the ostia pharyngea. Tongue longer than wide, full, entire. Integnments everywhere smooth; on the ablomen a faint discoidal fold. Digits short, moderately expanded and truncate at the extremis? Prominent tubereles at the proximal ends of the phalanges below. First aud second anterior toes equal and shorter than fourth. The heel of the appressed hind limb reaches the middle of the tympanum, and the extremity of the tarsus a little anterior to the orbit. The fore limb is relatively longer, the wrist extending beyond the extremity of the muzzle. The tarsus is two fifths the entire length of the posterior foot. The interorbital space is flat and wide, aud is but a triffe narrower than the expause of the sacral diapophyses.

The color of the upper surfaces is a light parplish-brown, close! y spotted with rather small closely placed and broadly defined dark brown spots. The spots are less distinct on the head. Inferior surfaces light yellowish, immaculate, this tint commencing as small spots on the pale ground of the sides. Limbs above brown, broadly crossbauded with yellowish femora behind, light brown with a few light points.

| Catalogue number. | No. of spee. | Locality: | When <br> collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10161 | 2 | Helotes, Bexar County, 'Tex. |  | G. W. Marnock | Alcoholic. |
| 13635 | 1 |  |  |  | Do. |



Fig. 81. Syrrhophus marnockii. No. 13635. Helotes, Tesas; $\frac{1}{1}$.
Mcasuriments
11.
J.cngth of hearl and body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 038
l.cngth of lıati, including tympana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0123

Wiulth of heiul, including tympana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0183
Lengtlı of fure limb from axilla ................................................................... . . . 12 .
I ellgtlı of hind limb from groin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 045
Lengrli of tibia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 015
Length of tarsins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0093
Length of rest of foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 015
Nothing is yet known of the life history of this species. It is probable that, like other species of the genus, it inhabits rocky places. I found the S. verrucipes in the bottom of a rocky ravine in the State of Hidalgo, Mexico, nuder a stone on the borders of a small stream.

## HYLIDE.*

Vertebre procolons. Sacral diapophyses dilated, the simple urostyle articulated to two condyles. External metacarpi bound together. Terminal phalanges articulated inferiorly onto the extremity of the penultimate, globular or swollen proximally, and giving rise, usually from a central emargination, to the curved, acute distal portion, which is of a more compact tissue. Superior plate of ethmoid never covered by frontoparietals, usually produced anteriorly betreen frontonasals. Ear perfeetly dereloped. Abdominal integument generally areolate.

This family embraces the tree toads of Australia and America. It presents comparatively little structural rariety, not containing as undeveloped types as the Cystignathide, nor as high ones; it jossesses neither earless nor fossorial, nor really aquatic genera.

The adaptive modifications are: First, those which accompany a terrestrial habitat, i.e., the diminution of the digital dilatations and palmation. These occur in regularly increasing legree in a small number of the species of the typieal genus Hyla, and are general in and distinctive of two other genera. Sceond, those which adapt the extremities to grasping a limb by opposition of digits, instead of allhering to a surface by expansion of them in one plane. This first appears possible in Agalychnis, and is structural in Phyllomelnsa. Third, those which restrict the light admitted to the retina, first, by the lateral contractility of the pupil; second, by the rendering opaque of the inferior palpebra. The first characterizes the two genera just mentioned, the last oceurs in the first two, but is inconstant in the second, and characterizes two other genera. Fourth, that which adapts the female duing the breeding season to localities withont water, or where perhaps the water contains euemies, by the inversion of the dorsal integument so as to form a salck, in which the eggs are carried. This oceurs in and is accepted as characteristic of two genera.

Another feature, which has a functional ralue, is the union of the abdominal integuments with the superficial fascia of the museles by an arcolar or fibrous net-work, contimons with that of the msual lateroventral band. The skin of the inferior surfaces of these creatures, as in the raniform tree frogs, has a thickening in numerons close areolat, the mature and function of which is like that of the digital dilatations, and the derm of the tuber on the thmb of the male hama, i. e., to sectete an adhesive fluial as aid in maintaining the peciliar positions assmmed. In proportion to the development of these is the extent of the abdomimal attachment, and hence may be supposed to be adapted for relies ing the other areolar connections from the strain of the animal's weight when in an alpressed or vertical position. Its miformity in the burrowing genera of the Bufonida and Scaphiopodidir, and especially on their dorsal surface, rather confirms this view.

This connection is, however, evilently not necessary to the use of the
abdominal integument as an adhesive support, as this faculty is nowhere better seen than in the Acris, where derm is free. This creature will adhere for days to a vertical glass plate, not only by the abdomen and digits, but by the interdigital membranes, and will light securely from a long leap on such a surface. Daudin and Duméril have related the same adhesive faculty in Pelodytes punctatus, which is not known in regard to the dermal attachments, but has not the abolominal areolæ present in Acris. The extent of the attachment is least where the dilatatious are smallest, as follows:

```
Abdomen entirely attached; 18 sp.
    Phyllomedusa four sp. Agalychnis three sp. Trachycephalus two sp. Noto-
    trema one sp.Scytopis two sp. Smilisea bandinii.
    Hypsiboas albomargiuata, boans. Hyla agrestis, krefftii, phyllochroa.
Posterior half or third of ablomen attached; lateroventral band wide.
    Triprion petasatus.
    Hyla fusca, arenicolor, gratiosa, versicolor, femoralis, squirella, andersonii, cœ-
        rnlea.
        Ranoidea aurea.
        Chorophilus triseriatus.
Less than posterior third abdomen attached; the lateroventrals wide.
    Hyla arborea, regilla, lateralis, miotympanum, pickeringii.
    Chorophilus nigritus.
Abdomen entirely free.
    Hyla leseurei, curta, gracilipes. Acris gryllus.
```

Of distinguishing features, which are seen in the degree of development of the elements of the skull, there are, first, the deveiopment of the 0.0 . frontoparietalia; second, of the prefrontalia; third, of the su. perficial cranial rugosities; fourth, of vomerine teeth; fifth, of a postfrontal arch; sixth, of the ethmoid areh.
Whole mumber of species 183
Frontoparietals fully developed . ..... 22
Frontoparietals with rugosities penetratiug derm. ..... 9
Prefrontals developed. ..... 17
No vomerine teeth ..... 6
A postfrontal process ..... 1
Ethmoid incomplete above ..... 1

Of the above characters the lack of vomerine teeth is inconstant in Phyllomedusa, being present in some and wanting in other species.

There is a tendency to the Psendis and Rana liberation of the outer metatarsusin Hyla (omericana, hyposticta, and dimolops, and H.( Ranoidea) aurea.

Parotoid glands oceur in some species of Inylida as an extensive stratum of erypts, but never exhibit the definition seen in Bufoniform and some Cystignathid genera. It even oceurs in Scytopis venulosus irreg. ularly, being sometimes present and sometimes wanting in the female, at least.

The xiphisternum exhibits the form which exists in the greater number of Cystignathide, excepting in eight species, where it only lacks the posterior emargination.
1951-Bull 34——1

## The natural genera are as follows:

I. No teeth on the parasphenoid bone.

1. Pupil horizontal.
$\alpha$. A frontoparietal fontauelle; ethmoid not ossified above.
Toes free.

## Thoropa Cope.

$\alpha \alpha$. A frontoparietal fontanelle; ethmoid completed.
Toes free, or nearly so ; digital dilatations very small; sacrim little dilated.................................................... Chorophilus Baird.
Toes fully webbed; digital dilatations minute ; salcrum little dilated.
Acris D. \& B.
Toes webbed; digital disks and sacral diapophyses nore dilated; pollex consisting of oue or more short concealed phalanges ; palpebrat transparent
. Hyla Laur.

Like Hyla, but the dorsal derm introverted forwards, forming a sate.

Nototrema D. © B.
Like Hyla, but prollex consisting of phalanges fused into a curved solid exsertible spine; palpebra transparent.............. Ihypsibous Witg.
Like Hypsiboas, but palpebrareticulate with fibers.... Cincloscopus Copre.
Like Hyla, but vomerine teeth wauting .................. Hylelle R. \& L. $\alpha \alpha$. No frontoparietal fontanelle.

Derm of the head free ; no postfrontal process...............scytopis Cope.
Derm of the head free; a postfrontal process.............. Smilisca Cope.
Derm of front free; bones exostosed .................... Osteoccpluthe F゙ilz.
Derm of the head involved in the ossification; no dermal sae.
Trachycephalus T'seh.
Derm of head involved in the ossification ; a dorsal sae of the introverted skin.

Opisthodelphys Githr.

## 2. Pupil vertical.

$\beta$. No frontoparietal fontanclle.
Tongue scarcely free behind; no digits opposable; cranial ossification involving derm. ............................................ Nyctimantis Bonl.
$\beta \beta$. Frontoparietal fontanelle present.
Tongue extcusively free behind; sternum deeply emarginate; digits not opposed when at rest; cranial skin free..............Agalychuis Cope.

> Tongue extensively free; internal digits opposable, more or less free; sternum entire ; crauial skin free................ Phyllomedusa Wagl II. Teeth on the parasphenoid bone.

Pupil horizontal; vomerine teeth; crauial derm involved in ossification of skull ; labial borders prodnced
. Diaglena Cope.
Vomerine teeth; twes webbed; derm of head involved in ossification; labial border produced; pupil vertical..................Triprion Cope.
In the series $[-2$ to Pliyllomednsa a final diminution of palmation accompanies continued size of the digital palettes and increase in the; length and breadth of the ethmoid and diminution of the frontoparie. tals, whieh features, however, are as marked in Hyla palmatu is in these succeeding types; they carry to its fullest development the cranial peculiarities of the family, and add other features before mentioned; they inhabit the contineutal subregion of the Neotropical. The other main series ( $[-1$ ) leads, first, to a filler development of the frontoparietals, then to au extension of the prefrontals, and dinally to covering of the cranium with " dermo-ossification," on the one hand with the superaddition of a dorsal dermal sac, on the other without it. This extreme finds its greatest expansion in the West Indian subregion. A.
singular incompleteness of the cranial box seems to mark Thoropa, which has the strong nasal roofing of this second series.

Chorophilus exhibits an affinity to the Cystignathidee, as does also Thoropa, which represents in iuferiority Eusophos in the same fanily.
The following is the geographical distribution of the generand species:

|  | IL. Anstralis. | I. <br> Neotropica. | $\begin{gathered} 1 . \\ \text { Nearctica. } \end{gathered}$ | $\frac{\text { 12. }}{\text { Paliciation. }}$ | $\frac{\text { R. }}{\text { R. }}$ | 12. <br> l'ilawotopica. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Triprion.. |  | 1 |  |  |  |  |
| Diaglena...... |  | 1 | ......... |  |  |  |
| Opisthotelphis. |  | $\stackrel{2}{5}$ |  |  |  |  |
| Ostroc.phtilus.. |  | 3 |  |  |  |  |
| Nototremia.... |  | 4 |  |  |  |  |
| Scytopis.... |  | 9 |  |  |  |  |
| Nictimantis. |  | 1 |  |  |  |  |
| 19yllomedusit |  | 13 |  |  |  |  |
| Amaliciorais |  | 1 |  |  |  |  |
| Centwtula |  | 3 |  |  |  |  |
| 119psibuas. |  | 16 |  |  |  |  |
| Hylciliz. | 29 | 60 4 | 10 | 3 | 0 | 3 |
| Arris... |  |  | i |  |  |  |
| Chorophilus |  | I | 5 |  |  |  |
| Thatupia.... |  | 1 |  |  |  |  |
| Total | 31 | 1:8 | 16 | 3 | 0 | 3 |

The only genns in the above series which is not confined to a zoological realn is Hyla, and the species of this genus are all restricted to their respective regions. Smilisca baudinii extends fiom the Neotropical into the borders of the Nearetic region, and it is possible that Hyla corrulea extends from the Anstralian Islands into those of the Palæotropical archipelago, thongh the identification of the species may not be strictly correct. According to Bleeker it is found in Java aud as far west as Padlang, on the west coast of Sumatra.*
The following is a distribution of these generic forms among the districts of the Neotropical region:

|  | West Indian. | Mexican. | Colombian. | Cbilan. | Eastera. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diagleua |  | 1 |  |  |  |
| Triprion. |  | 1 |  |  |  |
| $O_{\text {Opisthodelphiss }}$ |  | 1 |  |  | 1 |
| Traclyyephalus | 4 |  |  |  |  |
| Ostoocephalus. Nototrema.... |  |  | 4 |  |  |
| Scytopis. | (1) | 2 |  |  | 8 |
| Nietimantis |  |  |  |  | 1 |
| 1'hyllomedusa. |  | 2 |  |  | 11 |
| A galychuis... |  | 3 |  |  |  |
| Smilisea ... |  | 1 |  |  |  |
| Hypsiboas.. |  | 2 |  |  | 15 |
| IIy ${ }^{\text {a }}$.. | 2 | 17 | 7 | 1 | 36 |
| 11 lylela |  | 1 |  |  | 3 |
| Cliorophilus. |  |  | $!1$ |  |  |
| Thoropil... |  |  |  |  | 1 |
| Total | 7 | 31 | 13 | 1 | 80 |

Our present knowledge, as above, indicates considerable localization in the distribution of genera, and a marked predominance of the eastern

[^46]district. Bat three of the genera fonnd in the latter are known to exist in any other. The poverty of the Chilian district is marked, whiie West Indian species are nearly all of one genus, the Seytopis noted being the S. ruber of Surinam, which occurs in Trinidad. None of the species ever pass these bounds, with the last-mentioned exception, and those of Scytopis cenulosus, Hypsiboas albomarginatus and xcrophyllum, which occur in the eastern and adjoining portion of the Mexicin region. Uur knowledge of this subject is, however, very incomplete.
In the speeies of Hylidae coloration may be distributed into two regions; the first including that which is exposed to the light when the animal is crouched, with the limbs all flexed and close pressed to the sides, the hands and feet concealed more or less ander the borly; and the second embraces what is thus hidden from the light, especially the portions in actual contact in flexnre. Any marked difference in color of the different surfaces will usually be fonnd to have reference to this division into regions, generally very dissimilar in appearance. This is well seen in Hyla andersonii, carolinensis, and in Phyllomedusa and Agalychnis. For couvenience of reference, I here, as in other genera of Batrachia Salientia, term the portions of the body and limbs which are exposed to the light external ; those concealed in the flexure, internal.

## AORIS Dunéril and Bibron.

> Erp. Gén., vir, 506 ; Giinther, Cat. Batr. Sal. Brit. Mus., I ed., 1856, p. 71 ; Cope, Nat. Hist. Rev., $1866^{\circ}$, , 1. 110 ; Cope, Journ. Ac. Pliti. (2), vı, 1866,86 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 185:, if ed., p. 336 .

But one species of this genus is known, and it is found throughont the greater part of the North American realin. It is quite possible that it may become necessary at some future time to unite this genus with Hyla.

## ACRIS GRYLLUS Le Conte. *

Dum. \& Bibr. Erp. Gén., vini, 507 ; Le Conte, Proceed. Ac. Phila., 1855 ,
28; Bonlenger, Cat. Batr. Sal. Brit. Mus., $1882,336$.
Rana gryllus Le Conte, Anu. Lyceum New York, I 18:25, p. 28\%; Harlau, Mel. Phys. Res., p. 104.
Rana dorsulis Harlan, l. c., p. 105.
Hylodes gryllus Holbr., N. Amer. Merp., Pl. 33.
Head moderate, length to canthus oris equal breadth at same point. Muzzle narrowed, produced; protile projecting or nearly perpendienlar. Canthus rostralis weak, approximate ; external nostril little nearer edge of lip than to orbit. Vertex plane; diameter of orbit greater than interorbital breadth, three times in length from end of mazzle to posterior border of tympanie membrane. Latter indistinet; partially obsenrel by a fold one-fifth the size of the orbit. Skin of head and body above with rather distant tuberdes, of which some on the scapular regions are more or less pliciform. No areolation on thoracie and gular region. A series of small tubereles on the outer border of the tarsins; two small metatarsal tubercles. Articular tubercles of the phalanges very small.

[^47]Tongue broad, obovate, sometimes nearly ovate, distinctly to not emarginate posteriorly. Vomerine tecth in two ovate patehes between the interior nares, as near them as to each other.

The end of the fore-arm extended reaches the external nares. The heel of the extended hind leg reaches to or beyond the end of the muzzle. Two large metacarpal tubereles. Length of head to tympanum, one-third that of head and body.

Average size: Length of body, 12 lines; from vent to outer end of femur, 6 lines; tibia, 7 lines; tarsus and foot, 9 lines.

Typical coloration: Abore, brown or gray, with a blackish triangular patch between the eyes, the apex directed backwards; the borders of this are of a light color, which is light green in life, and is contimed as a band to the eud of the borly. Three dark bars on the lip, one from the eve to the anterior $n_{i} \mathrm{~m}_{\mathrm{i}} \mathrm{er}$ arm across the angle of the mouth, pale bordered above. A dark bar from the orbit across the tympanum, and one from scapular region to beyond middle of side. A dark bar from behind the seapular region restricts the dorsal line near the saerum, and is usually continued with an interruption to the groin. Color of upper surfaces continued on a less part of surface of femur, which is cross-barred; behind this pale, with a longitudiual band or series of spots posteriorly. Throat in spring yellow.

This species possesses the power of metachrosis or color-change in a high degree. The dorsal stripe and border of the interocular spot may be bright green, dirty white, or bright rusty ; and the dorsal tubercles vary in color in the same way. The general tint varies from bright green to dull slate color.

In its habits the Acris gryllus is a lover of the muddy borders of the water, into which it leaps when alarmed. As it does not conceal itself among vegetation, like the Hyla pickeringii, it is nuch more easily canght than that species, and is more common in museums, though not less abundant. As the structure of the feet indicate, it is a good sirimmer, and its powers of leaping are remarkable.

This species is distributed from Florida to Texas, through Kansas and the Northwest to the Atlantic, and as far northeastwardly as New York.

The northern and southern sections of this area produce forms which offer considerable differences, but which must be termed subspecies, on acconnt of the existence in some localities of intermediate individuals. I have seen such from Illinois, Pemsylvania, Missouri, and elsewhere.

These subspecies are as follows:

These subspecies are respectively of northern and southern distribution; the A. g. gryllus ranging from North Carolina to Florida and Lonisiana.

## Acris gryllus crepitans Baird.

Acris gryllus Dum. \& Bibr., Erp. Gén., viif, 1841, p. 506, parlim; Giinther Cat. Batr. Sal. Brit. Mus., 1858, p. 7, partim.
Hylodes gryllus De Kay, N. Y. Zool., Reptil., iIf, 1812, p. 70, Pl. xxıI, fig. 61.
Acris crepitans Baird, Proceed. Ac. Phila., 1855, p. 5.9; Le Conte, l. c., p. 426; Baird, U. S. Mex. Bound. Surv., Rept., p. 23, Pl. xxxvif, lig. 14-17.


Fig. 82. Acris gryllus crepitans. No. 13924. Des Moines, Iowa, ${ }_{1}^{1} ; 6$ and 7. ${ }_{1}^{2}$.
Brownish above. The median region of head and body above bright green; a dark triangle between the eyes. Three oblique blotehes on the sides, nearly equidistant: the first behind the eye, the last on the flanks and ruuniug up on the back; all usually margined with lighter, a narrow white line from the eye to arm. Beneath yellowish-white. Inferior face of thigh plain. Tibia a little more than half the length of the body. Foot rather smaller. Head rather obtuse, scarcely longer than broad. Web of hind foot extending to the penultimate articulation of the fourth toe.

This subspecies is characterized by a rather long, narrow head, with the eyes firther back than usmal. There is no constriction for the neck, the ontline tapering towards the smont from abont the middle of the body. The limbs are very muscular, and considerably developed.

The eyes are large and prominent ; their anterior edges deeidedly behind the middle of the commissure, and their posterior barely anterior to the angle of the month; hence the snont is considerably prodnced. The nostrils are minnte, situated on the canthins rostralis, rather nearer the tip of the snout than the eye, and separated by a distance less than one-third the width of the rami. The tympanum is small, not very distinct, about half the diameter of the eye, and placed just above the rictus. The head is almost as long as wide, especially in large specimens.

The tongue is broad, oval, subtruncate, and but slightly emarginate behind; the anterior extremity romeded; it is free behind and on the sides. The inner nares are large, open, placed a little in front of a point opposite the anterior canthus orbitalis.

The romerine teeth are sitnated in two oval patches abont the size of the nares, the slightly longer axes inclined a little to each other, backward. They are placed between the nares, their anterion edges nearly in the same transverse line with those of the nares, and extending a little beyond the nares posteriorly, and thins more anterior than in any other of the small Hyloids of North America. They are abont as
far apart posteriorly as their anterior extremities are from the nares. The Eustachian apertures very minute, less than the inner nares.

The lower parts are covered by a depressed parement or graunlation, extending half-way up the side and on the inferior face of the thighs In many specimens this appears to be wanting between and anterior to the arms. The upper parts geuerally are provided with rather scattered pustulations or warty elevations, with numerous pores opening between and on them; these pustules are most numerous on the sides and anteriorly. Some are considerably larger and longitudinal, and appear most distinct near the edges of the vertebral vitta.

The hands are large and well developed; rather longer than the forearm. The tips of the fingers and toes are provided with very slightly enlarged, depressed pallets or disks, convex beneath and with a naillike groove.

The outer finger is rather longer than the second, and all appear to be connected by a very slight thickened membrane. The inver finger is set at a right-angle with the third and posterior to the rest. There is a soft large tuberele at its base, and a still larger opposite to it on the other side of the palm, the two with only a narrow interval. All the articnlations of the fingers and toes have well-developed tubercles between them.

The femur is shorter than the tibia, rather longer than the foot; the tibia is more than half the length of the body. The two outer metatarsi are firmly mited, the others cleft to the base; the intervals of the latter, however, filled up by a well-developed membrane, which extends as far as the bases of the lisks, and filling up most of the space between the toes, except on each side of the longest, where the membrane forms a narrow margin on the penultimate joint. The thind toe is a little longer than the fifth or outer. The cuneiform process makes a considrable prominence, while on the opposite or onter side of the barsus amd foot we three or fomr small tubercles, at abont equal distances, the distal one opposite the emeiform process and largest. The tubercles beneath the articnlations are very distinct. There is a rudimentary membrane along the exterior edge of the font.

In aleohol the general color above is of a dull brown. During life, however, an area bommed by lines extending from the mostrils and diverging to the middle of the edge of the upper eyelid, then converging to the sacral vertebra, then again widening to the buttocks, is of a bright grass green. This is intermoted between the eyes by a welldefined triangle of brown, neirly equilateral, with rather concave sides, and its base commecting the edges of the upper eyelids. A dusky line exteumb along the eanthus rostralis. The sides of the face and edges of the upper jaw exhibit three or four indistinct square blotehes, separated ly narower intervals; one or more sometimes better defined than the rest. A lark broad line extends from the sides of the lower jaw to the lower part of the insertion of the arm, and another fiom the posterior
portion of the orbit to the upper edge of the same insertion; the two are oblique and parallel. They are separated by a narrow light (even white) line, extending from the orbit a little behind the lowest part aud running to the midalle of the insertion of the arm. Behind the arm and on the side of the body is as still larger bloteh, similar and parallel to the last mentioned, and behind this and higher up on the back still another, anteriorly covering the loins on each side, and running obliquely backwards so as to be parallel to the others. The blotehes of this posterior pair are separated loy the narrowest part of the green stripe, which is bounded to a considerable distance by these blotehes. All the blotches just described, as well as that on the top of the head, are dark brown, margiued by a lighter areola, which on the sides and back is sometimes yellowish in life. The umler parts are yellowishwhite or pure white; the throat sometimes bright yellow; sometimes closely or sparsely crowded with dark spots. There are 110 well-defined darker blotches on the arm; but the thigh, leg, tarsus, and foot each exhibit two or three transverse ones. The buttocks are yellowish, with the arus brown, and the posterior and anterior faces, with small blotches, some of which are occasionally confluent into an irreg. ular dark line along the anterior and posterior faces of the thigh. The granulation about the buttocks is usually white.

A speeimen from Russellville, Ky., has the blotches much smaller than usual.

In a specimen from Carlisle the last vertebra has the transverse apophyses very little dilated, thongh somewhat enlargen at the ends.

|  | Inches. |  |  | Inclies. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length | 1.08 | 1.00 | Tarsus | . $\mathrm{S}^{4}$ | . 25 |
| Arm and haud | . 40 | . 37 | Foot | . 49 | . 45 |
| Hand alone | . 27 | . 25 | Total of leg stretched | 1. 76 | 1.63 |
| Thigh | . 5.3 | . 47 | Wialth of head. | . 36 | . 33 |
| Leg . | . 58 | . 54 | Chord of upper jaw | . 38 | 35 |

The iris of this subspecies is golden and capable of excessive contraction. A broad blackish spot occupies it at each end of the pupil, and a narrow black line above and below the latter. When the inis is comtracted the pupil is shortly transverse, not linear as in many Hylie, and the brown spots are triangles, their apices inwards.
Specimens from the lower Mississippi are frequently of obscure colors, of rather larger size, and with large tubercles. I have not been able to distinguish them as forming a constant subspecies. Mr. Bonlenger, (Catal. Batr. Sal., Brit. Mus., 1882, p. 337) refers such a specimen to a "var. bufonia."

In connection with metachrosis in this species I observed in a specimen lately dead that on the end of the muzzle, pappebre, canthus rostralis, outer line of humerus, ends of sacral diapophyses, where the derm was in a state of tension, that it assumed a bright green hue.

The note of this species may be exactly imitated by striking two marbles together first slowly, then faster and faster, for a succession of
about twenty or thirty beats. The noise can not be heard at a very great distance. Like Hyla pickeringii, this species in confinement can readily be made to prodnce its note by imitating it, either with the voice or the clattering of two pebbles. It keeps on the high grass in and around marshy phaces, seldom if ever ascending trees or bushes. When pursued it leaps with prodigious agility and hides under water.

## Acris gryllus gryllus Le C.

Rana gryllus Le Conte, Ann. N. Y. Lyc. I (1825), 282: Marlan, Journ. Ac. Nat. Sci. v, (1827), :317, abd Med. and 1'hys. Res. (1835), 104 (copied).
Liana dorsatis ILarl., Journ. Ac. Nat. Sci., Philia. v (1027), 317, and Med. and Plys. Res. (1si5), 105 (Fig. on p. 72), (Florida.)
Hylodes gryllus lIolbrook, N. Amer. Herp., 1st cd., in (1838), 75 , xim, and $2 d$ ed., iv (184:), 131, xxxili, partim.
Acris gryllus Dum. \& Bibr., Erp. Gén., vili (1841), 506; Ang. Dum., Anv. Des. Sc. Nat., $3^{\text {nee }}$ serie, xix (l-53), 15:3; Giinther, Cat. Brit. Mus., 1858, p. 71, partim; Boulenger, Cat. 13rit. Mus., if ed., 1882, p. 336.
Acris acheta Baird, Proceed. Ac. Phila., 1855, p. 59.
Body slender; head pointed. Limbs much elongated. Head longer than wide. Web of hind foot extending only to the third articulation (from tij) of longest toe. Tibia two-thirds length of body. Foot more than half length of body. Colors much as in $A$. crepitans, but brighter. Inferior surface of thigh plain, or very slightly freckled with darker. A narrow whit e line from eye to arm and a light line above the urostyle.

Having presented a minnte deseription of $A$. crepitans, it will only be necessary here to give the principal points of difference as compared with that species. The entire form is much more slender, and the limbs longer in proportion. The head is much more acnte, and the outline of the lower jaw elliptieal, instead of being nearly semicircular. The chord of the rami is longer than their greatest width, not equal to it, and the cleft extends further back. The tympanmm in loth is searcely distinguishable. The tongue is large, triangnlar, and flesby. The teeth are in two small circular patches, between the inner wares, and separated by quite an interval. The pallets at the tips of the more clongated fingers and toes are very moderate, less prominent than in $A$. crepitans. The fourth or longest toe projects beyond the rest much more than in $A$. crepitans and the web scarcely extends on either side bejoud its antepenultimate articulation, while in $A$. crepitans this web raches to the penultimate one and even as a very narrow margin to the very tip; nor between any of the phalanges does the membrane extend to the disks as in the other.

The general listribution of color is the same, although the pattern is brighter and clearer. All the blotehes have a narrow border of white. The posterior large one secms to extend higher up on the back. The upper jaw has fom narrow white lines perjendicular to its edge on each side, as in the other species, inclosing nearly rqual spaces. There is a light streak down the posterior part of the hack above the urostyle which we have not noticed in the other. The dark longitudinal line on the
posterior face of the thigh is more distinct．The limbs are more finely barred above，three or four fasciee on each jeint；the upper and outer surface of the hands and feet also tinely barred．

The skin above seems rather smoother than in the other，while the throat is more granulated．

As regards the trausition between this subspecies and the A．g．crepi tans，a number of specimens display intermediate proportions．Thus in some the posterior toot，minns the tarsus，is exactly laalf the length of the head and body．In some lots from a single locality some speci－ mens have the hind foot one－half the length，while others fall a little below，and still others fall a little above this proportion．Such a lot is that from Cooper Comity，Mo．，No． 3557.

The distinctness of the posterior femoral brown stripe is subject to variation．In typical $A$ ．g．gryllus it is sharp，and is bordered above and below by pale bands，of which the latter is again bordered below by a darker shade．In other specimens the lower pale band is shaded， and its inferior brown elge is indistinct．The inferior edge of the brown band becomes irregular，and in the $A$ ．g．crepifans it is a good deal interrupted ly paler．

Ifris gryllus erepitans Baird．
HESERVE SERIES．

| Catalogue number． | No．of spec． | Lucality． | When collected． | From whom receired． | Nature of spec－ imen． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3550 | 4 | Ocomomowne Liver，Wis． |  | Prof．S．F．leaird | Newhalic． |
| 3．55 | 2 | －．．．．d．${ }^{\text {a }}$ |  | A．C．Bary | 10. |
| 3274 | 1 | Fort lume，＇Iex | ．－．－．－．．．．．． | Dr．C．B．li．Kiemuerly ．．． | 1\％． |
| \％ 3 | 1 | －．．．．llı． |  | －．．．do．．．．．．．．．．．．． | 110. |
| 320 | 1 | New lirammbels，＇rex |  | F．Lmalieimer | 10. |
| $\because 20$ | t | Indiamola＇Tex |  | J．H．Clark． | 10. |
| \＆ | 3 | liussellvillo，Ky ．．． |  | Bibh．．．． | 110. |
| 3ヵが | 5 | Prairie Mer limise，La．． |  | Jamtes Faitie | 10． |
| 3271 | 1 | Fort Simith，Ark．．．．．． |  | 1r．B．F．Shmmaral | 10. |
| 35．5 | $\because$ | Tatalan，Wis |  | Prol．s．F．liaind | 10． |
| 4 5 ？ 9 | $\because$ | Waslinirton，I．C |  | 1）r．Wm．Simapail | 10. |
| 3－51 | 1 | Carlimle，l＇at． |  | lıof．S．1＊Batiat ． | Du． |
| 323i | 3 | Vrolimis liver |  | W．H．Clarli． | 10． |
| $3 \pm 64$ | 5 | North Platte，Nobu |  | W．S．Wood | 10． |
| $307: 3$ | 9 | ミonth Fork ．．．．．．．． |  | 19r．I．V．Ilayden | In． |
| 327．5 | 6 |  Riln．y，Kitus． |  | W．s．W゙णит ．．．． | Do． |
| $3 \geq 69$ | 3 | lippulitital liver，Mo．． |  | $\begin{aligned} & \text { Dr. W. A. И:ammond, IT. } \\ & \text { S. .I. } \end{aligned}$ | 110 |
| 3280 | 1 | linck Marry ．．．．．．．．．．．． |  | H．13．Mollhamsen ．．．．． | 10. |
| 3575 | 6 | Sitint Lutis，Mo ．．－．．．．． |  | 1r．Gr．Encramann | 110 |
| 3.665 | 3 |  |  | に．Kırnicota．．．．．． | $11 \%$ |
| 30．688 | 4 | Somth（irand River，Miss |  | 1r．J．İ．110．．．．．．．．． | $11 / 1$. |
| $490!9$ | 3 | K゙ansits ．．．．．．．．．．．．．．．．．． |  | Jr．J．G．Covpry ．．． | 1\％． |
| $8 \times 71$ | 1 | ＇likkliaw，La ．．．． |  | 1r．＇I＇．I1．litill ．．．．． | 1）． |
| S：34 | x | （ioldstmitorirli，N．${ }^{\text {d }}$ |  | J．W．Milncr．． | 1\％． |
| 8178 | ？．11 | Inion Comnty， 111 |  | 1．Kernicott． | $1 \%$ ． |
| 11930 | $\because$ | Swampson Loul Fork |  | 1）r．F V． 11 ilvolen | $1)$ |
| 355．51 | 15 | （＇arlisle，J＇a． |  | Prol．S．J．Jitial | $1 \%$ ． |
| 35.560 | 13 | $\mathrm{N} \cdot \mathrm{W}$ Madriul，Mor |  | に．K゙いいirott． | J！． |
| 9115 | 2 | Wankeram，III． |  | J．WV Milıw： | Wo． |
| Tパ7 | 9 | W：ashingtom，1）．（： |  | Dr．Fi．l＇olles | ！ |
| 11480 | 3 | （！）．．．．．．．．．．．．． |  |  | 1 ！ |
| 1109 | $\because$ | 1＇eиsatola，Fla |  | 1）r．．f．ManmomaI | ［11． |

（iENELKLL KELIEN．

| ： 271 | 1 | Loup lourk |  | Scolulic． |
| :---: | :---: | :---: | :---: | :---: |
| 3566 | 1 | Silnt Lamis，Mo | 1ヶ．1i．Enwrlmann ． | ${ }^{1} 10$. |
| 33277 | 3 | limi Riley，Kialıs |  | 1 l \％ |

Specimens intomediate between A. g. gryllus and A. g. crepitans.

| Catalogne number. | No. of spee. | Locality. | When <br> collected. | From whom receised. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.562 | 14 | ( rand Detonr, I a |  | 『'. L. Hoy | Alcoholie. |
| 3:37 | 1.5 | Comper Comity, Mo |  | $\ldots$... do | 1 l |
| 13328 | -0, | Washingtom, D. Ci |  | Gporqe Shemaker | 1 mo |
| 12073 11919 | $\stackrel{2}{3}$ | Monm Carmel. Il |  | W. M. S. Tinlor | 10\%. |
| 12707 | $\because$ | Lowkont Mountain, Tem |  | W. F. Fow | 1\%. |
|  | 4 | Willoughls looint, Va |  | Earll and Mrlonala | 1 o |
| 3579 | $\because$ | Mobile, Ala ..... |  | Phichowly | 110. |
| 1183\% |  | Ohd Font Cold, Cal |  | Di. E. P'ah | Do. |

Acris gryllus gryllus Le Conte.
RESERVE SERIES.


## (GIOROIPIIILUS Baint.



Psomduris lit\%, Systemal liptilim, 1~4: : : 1 (mo character); (Giinther, Cat. Batr.


Cramimm Hattened; a large fromoparietal fontamelle Prefrontals amgate, diverent, not in contact anteriorly, extembing beyomd the extremity of the welldereloped prolonged superior ethmoid phate Tongen roumbed or elongate, slighty emarginate behind, where it is froc for abont half its langth. Tuterior eyelil transparent. Males with suhgnlar vocal resicle. Xiphistemmm fibocartilaginons; somethmes eartilagimons, thattened, elongater Digits free exeept in some a slight Weh rommecting free portion of metatansals; dilatations small or wanting, tha phalange with the rlaw strong, and the ball not emarginate. Dilatations of satral diapophyses mandy equilateral.

In the known sereies the romeriyn teeth are present in two small apposimated patehos helaind the point racetly betwern tice bates, and the tympamm is distimet.
 named Litoria in the Eipmotosie dimimatr. Foom typial forms of
the former, the ethmoid plate without supraorbital angles, the elongate terminal phalanges with small basal globe, supporting minute dilatations, and the nearly webless digits distinguish it. Species of Hyla less representative are similar in cranial structure, and have a diminished amonnt of palmation, but the series appears with our present knowledge distinct in the structure of the feet. Like the Litorias, its life is passed on the ground, and chiefly in the neighborhood of small pools in open and barren situations, where the voices of the species may be heard with the Acris in the summer, long after the Hylas have sought their leafy retreats in the wood or fence row. They differ from the first-mentioned gemus in being poor swimmers; though they leap into the water when alarmed, they do not swim far from the shore, and soon return to it. They do not seem to be possessed of the power of making such enormous leaps as the Litorias of Australia, or even as our Acris. In typical Litoria the brain case is more elongate and cylindrical and the frontoparietal fontanelle much narrower, but in $L$. americana the form and proprotions are the same.

The general form and habits of the Australian gemus Crinia are not very different from the present; the terminal, not inferior, attachment of the ultimate phalanx will separate it from all Hylidie.

Chorophilus is distributed from the Rio Grande, Salt Lake Valley, and Rocky Mountains on the west, to the Atlantic, and from the Gulf to the northern limits of the United States west of the Alleghanies; east of this range I am not aware of its occurring north of middle Pemsylvania. Of its six species four are confined to the Gulf States and South Carolina, while the fifth is foum under several forms thronghout the whole of the north and sonthwest, the northern and middle parts of the central, and the middle of the eastern region to Pennsylrania and New Jersee.
The species differ as follows:
I. Muzzle rounded in profile, projecting.
a. Skin of upper surfaces smooth.

Stont, width of head at tympana entering total length 2.5 to 2.66 times; nostril half-way between muzale and orbit; posterior foot shorter, slightly webbed, and with subarticular tubercles; heel reaching tympanmu .................... ......... ......................................... C. ornatns.
More slender; width of head entering lengil 33 to 3.5 times; nostril nearer end of mazzle than orbit; posterion foot longer, not webbed, and withont subarticular tubercles; licel reaching middle of orbit..... C. occidentalis.
aa. Skin warty above.
Head acmminate, the width entering the total three times; heel reaching anterior to orbit; size larger-...... ............................ C. nigritux
Heal short, wider; the wilth entering the length 3.25 times ; the heel reaches to the front of the orbit ; small ....................... C. feriarum.
Heal acmminate; the wilth entering tho total 3.5 to 3.66 times; hind legs short ; heel reaching posterior looder of inembranum tympani
II. Muzzle truncate in profile.

Vertex and front plane : canthes rostralis sharp; himd legs long. . C. ocularis.

## CIIOROPHILUS ORNATUS Holbrook.*

Cystignathus ornatus Holbr., N. Amer. Herp., Iv, p. 105, Pl. 25.
Chorophilus ornatus Boulenger, Cat. Batr. Sal. Brit. Mus., 2ll ed., 1882, p. 333.
Chorophilus ocularis Daudin, Cope, Bull. U. S. Nat. Mus., No. 17, 1880, p. 27.
Muzzle and canthus rostralis rounded; the former projecting, but short, not longer than diameter of eye ; external nares nearer the orbit than the end of the muzzle; skin not areolated or roughened above; toes without terminal knobs, distinctly webbed at the base, and with well-developed subarticular tubereles; hind legs short, heel only reaching posterior edge of tympanum when extended.

The head is rather short, and the anterior ontline is a narrow oval. The extremity of the muzzle projects beyond the mouth, and the lores are slightly oblique and a little concave. The nostril is but little nearer the extremity of the muzale than the orbit. The vertical diameter of the tympanum a little exceeds the transverse, which is one-half the long diameter of the eye-slit. The pupil, as in the other species of this genns, is horizontal. The tongue is wide, discoid, and entire behind. The ostia pharyngea are smaller than the small choanc. The vomerine patehes are short and transverse; they are entirely withiu the lines of the inner borders of the choante and behind the line of the posterior borders of the same.

The tubercles of the superior surfaces are small and rather closely placed; they are largest on the sides of the back. There is a faint areolation of the gular region. The limbs are short and stout. The humerus is half or more inclosed in the skin. The palm reaches nearly to the end of the muzzle. The fingers are short and stont, and have neither dulatations nor borders. The first is shorter than the second, which equals the fourth. The palmar tubercles are not distinct. The heel of the appressed hind foot in thin specimens marks the middle of the tympanic disk or posterior border of orbit, and the end of the muzzle the extremity of the tarsus. The hind foot beyond the tarsus is only as long as the tibia. The toes have no dilatations, but possess dermal margins, and a short but distinct basal web. There is but one solar tubercle, a small cunciform prominence. Total length, o3 ${ }^{m}$; of head, to line of posterior' borders of membranum tympani, . $011^{m}$; width of head at the latter, $.014^{\mathrm{mI}}$; length of hiud leg, $04 \bar{v}^{\mathrm{mI}}$; of femur, $013^{\mathrm{nm}}$; of hind foot, $.022^{\mathrm{mm}}$; of tarsils, . $009^{\mathrm{m}}$.

The color above is olive-gray, and below uniform straw-color. A black band passes from the end of the muzzle on each side, through the eye, and, expanding over the eardrum, terminates in front of the humerus. One or two dark spots above and behind the axilla may unite to form part of a lateral band. There may or may not be blackish spots above the groin and on the pelvie region and anterior part of the back.

The limbs have a few dark-brown cross-bands; the femur is yellowish and unspotted behiud.


Fic. 83. Chorophilus ormatus. No. 136:34. IIelotes, Texas: 1 .
Dr. Holbrook deseribes the colors of this species in life as follows:
Dove color above, with oblong spots of dark-brown, margined with yellow.

The head has a broal, indistinct, triangular spot between the orbits, the apex of which is directed backwads. A black line extemds from the snont to the orbit of the eye, including the nostrils; below this black line is a yellowish blotel, cosering most of the upper jaw. The lower jaw is cinereous above and white below. The pupil is very dark, the iris of a golden color. 'The tympanm is very tark colored, amd placed in a dark vitta, or bloteh, which extends from behind the orbit to within a short distance of the shoulder. The body is of a delicate dovecolor above, with two or more oblong spots of dark brown, margined with gellow, on each sule of the sentebral line; below these, and on each thank, are three smaller spots, likewise margined with bright yellow, the anterior one being the largest; these, with a smaller one above the vent, form a triangle on each tlank; several bright yellow spots, also disposed in a triangular form, with the apices directed forwards, are conceated by the thighs. The inferior surtace of this animal is silver-white, and except on the thoat, everywhere gramulated; abont the throat are a few indistinct points of black; the anterior and middle parts of the abobmen are white with a slight tinge; the posterior third approaches to fleshecolor.
The anterior extremities are dore-eolored abore, with a few distinct dark bands placed transversely on the fore-arm, and a black spot at the elbow; a black line rums from the inferior and mper part of the shoulder towards the lower jaw ; dove-colored above, with tramserse banls of dark brown; on the anterior part of the thigh are several small yellow spots; on the posterior surface these spots are mumerons and an closely aproximated as to resemble at first view a yellow waving lime. The whole muder surface of the thighs is nesh-colored ; the inferior surface of the legs is also thesh colored, with a few yellow dots.

No. 13634; one specimen; Helotes; Bexar County, Texas; G. W. Marnock.

Other specimens of this species are in my private collection from the same locality, aud from Dallas, Texas.

## 


 liolloroohii.
 oculnis 1 Handin.

Heal mather acate. 'Tibia reaciang half-way from the ams to the nostrils. Above, chestmat with obsolete blotehes al darker. A dank chestnat stripe from shont throngh eye amb tympanmm, with several large obligne blotehes of the same on the sides. lienrath, reddishwhite ; immaculate.

Proportions rather slember and gracefal. Ilade rather acute; mo pereptible contantion at the neek; legs long ant much developerl.
'The nostrils are situated very near the tip) of the smotat (the sides of which are rather abrupt) ; they are separated fiom each other loy less than one thind the width of the head. 'The eges are momarate, the tompanmm small, abont half the diameter of the orbit. A spowe passes from the posterior portion of orbit above and aromat the fympanmm to the insertion of the arm in front. Anterion margin of the rese abom opposite the midalle of the commissure. Tonsue variabla in dillorent specimens; in one (a mala) laser, and tilling up the interspater of lowner jaw ; the edges thin and fied behind and laterally ; boatly of obiconlanly corditorm. In two whers the tonge is rontracted into smabler space, thas thickening the edges, althongh still retaining much the same shape. The inner nostrils are large, opposite to the anterior canthos of the orbit. The vomerine potnberances ate intwobliptioal patches, their longer axes in the same dansidre line; their anterior edges just hehind the posterior border of the hestrils; the two separated by a harow ins terval. One specimen has the patehes more elongated, and narower than the two others.

The head is slighty shomer than broal. The forr-arm is longer than the hand ; the tibia, abont half the length of the hoty, is longer than the thigh, and about the length of the font.

The fingers and toes ane all slemoler, eylimdrial, and tapremg slightly to the delicate tips, which perent no imbications of pallets. The tingers are entirely free; the onter longer than the secomb, the third hongest. The two external metatamsals are mited to the emd, with moweb hetween them. The other metatarsals are divided to the tarsis, hat comeneted by a web of considerable developmont, whal searely passes bejond the ends of the metatarsus. The outer tue is longer than the third. Tramserse apophyses of sactal vertemal diated, with thansulan pallet.

The maler parts, anterior to the slight perotoral fold, are entime smooth. Behind this is a parement of demersed gramules, which extends to the inferior and posterior smface of the thighs, becoming finer
posteriorly; they also pass up the sides, becoming less and less distiuct. The upper parts appear entirely smooth, except an occasional and isolated pustule on the side of the back.

The general color above is of a light chestnut, with blotches of dark chestnut; beneath, reddish-white. A dark chestunt line extends from the snout through the nostril to the anterior canthus, and re-appears behiud the eye in an oval patcl, involving the whole tympanum, and extending above the shoulder. A secoud similar patch appears on the side, separated from the first by about the thickness of the arm. Behind this again, and a little more on the back, is a smaller blotch, behiud which is one still smaller, and the region of the anus is tinged with the same color; there thus appears to be a chain of these blotches, exteuding, at about equal distances, from the anus to the eye, the two last-mentioned lateral ones fully visible from above. There are iudistinct indications of darker blotches on the back, and suffusions of the same round the scattered pustules referred to. The extreme edge of the upper jaw is dark, but between this and the upper stripe, involving nearly the whole side of the face below the eye, is an area of light chestnut, becoming clearer and brighter under the eye. A chestnut stripe extends from the lower jaw up the arm, which has, besides, two or three transverse blotches; the femmr, tibia and tarsus have each two or three transverse fascire. The anterior face of the thighs is light chestnut; the buttocks the same, with indistinct blotches of lighter. In some specimens the ground color is greenish lead color.


Mcasurements, in inches.

| Total length | 1.04 | 1.00 | Total hind leg, stretched.. | 1. 80 | 1.73 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Femur | . 48 | . 46 | Fore-arm to tip. | . 52 | . 50 |
| Tibia | . 51 | . 49 | Width of head | . 40 | . 38 |
| Hind foot | . 48 | . 46 | Chord of ramus | . 40 | . 38 |
| Tarsus. | 34 | 33 |  |  |  |

From the C. ornatus the C. occidentalis differs in color entirely; the heal is more acute, and the cleft of mouth deeper; the legs are longer and the gramulation finer.

This species is quite distinct from the C. ornatus, and does not appear to hare been named by any European author prior to Boalenger. My identification of it with the Hyla ocularis of Daudin was based on a phate representing it, or a species very similar to it, in one of the older authors, but for which I have lost the reference. As pointed out by Boulenger, it is clearly not the species so called by Daudiu.

The Chorophilus occidentalis ranges from Georgia to the Wichita River, in north central Texas. Specimeus were sent me from the latter locality by that excellent naturalist, Jacob Boll, of Dallas. Dr. A. K. Fisher has found it near Jacksonville, Florida. It does not occur in California as supposed when first described.

RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom reccised. | Nature of speoimon. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3590 | 2 | Georgia |  | Maj. J. Le Conto | Alcoholic. |
| 5905 | 1 | Riceborough, Ga ........ |  | ...-. do ........... | Do. |
| 5906 | 2 | - .-... do ................. |  | . . ${ }^{\text {do }}$ | Do. |
| 3584 | 1 | Liberty County, Ga..... |  | W...-do ..... | I) |
|  | 2 | Allapaha, Ga ............ |  | W.J. Taylor |  |

## CHOROPHILUS NIGRITUS Le Conte.

Rana nigrita Le Conte, Aun. Lsc. N. Y., I, p. 28:\% ; Harlan, Med. \& Phys. Res., p. 105; aud Journ. Ac. Phila., v, p. 341.
Acris nigrita Dum. \& Bibr., p. 509.
Cystignathus nigritus Holl., N. Amer. Herp., iv, p. 107, Pl. 26.
Pseudacris nigrita, pars, Giiuth. Cat., p. 97.
Chorophilus uigritus Bairl, Proc. Ac. Phila., vir, p. 60; Le Conte, eod. loc., p. 小¿7; Boulenger, Cat. Batr. Sal., p. 333.
The length of the head to the posterior margin of the membranum tympani enters the total length to the vent three and one-sixth times. The head itself is narrow and acmminate, the muzzle projecting acutely beyond the labial margin. The external nares mark two-fifths the distance from the end of the muzzle to the orbital border. The membranum tympani is only one fourth the diameter of the orbit. The canthus rostralis is distinct, but obtusely rounded. The vomerine fasciculi are approximated, and near the line of the posterior border of the nares, which are larger than the minute ostia pharyngea. The tongue is large and wide behind, and faintly emarginate.

The heel of the extended hind leg extends to between the orbit and nostril ; the femmr is short, while the tarsus is long, a little exceediug half the length of the tibia, and equaling the length of the remainder of the foot, minus the longest toe. The skin of the gular and sternal region is smooth, of the abdomen areolate. That of the dorsal region is tubereular, smooth warts of large and small size being irregularly crowded over its entire surface, and not at all resembling the areolate surface of the belly.

Color above leaden, with three longitndinal rows of darker, lightedged spots, extending one on each side, and one on the median line. These spots may be united into a band on one or on both sides or on the middle line. Thigh with three cross. bands, unicolor behind; tibia with from three to five eross-bars. Upper lip dark plumbeons, with a narrow white line above a darker border, which extends a little beyond below
the tympanum. The dark band from the end of the muzzle extends to the middle of the side, or beyond. Inferior surfaces yellowish.


Fig. 85. Chorophilus nigritus. No. 5935. Liberty County, Ga.; 1-4, $\frac{1}{1} ; 6-7$, 9.
Measurements of No. 5935.

|  | Mr. |
| :---: | :---: |
| Length of head and body | 030 |
| Length of head, including tympana | . 0105 |
| Width of head, including tympana. | . 0095 |
| Length of fore-leg | . 0165 |
| Length of fore-foot | . 006 |
| Length of hind leg. | . 0475 |
| Length of tibia.. | . 0145 |
| Length of tarsus | . 0094 |
| Length of remainder of foot. | . 0145 |

This species is rare in collections and has not been well identified, owing to the imperfection of Dr. Holbrook's deseription. It can be best recognized from Le Conte's deseription above quoted. It is an evident ally of $C$. triseriatus.

A small form is found in Florida, which I hare deseribed under the name of Chorophilus verrucosus. It differs somewhat from the typical Nigricans, and I suspect that it will turn out to be a subspecies. It differs, besides its very small size, in the somewhat longer tarsus, which exceeds the foot minus the fourth toe, in length. The yellow stripe on the upper lip is broken up into a series of spots. The measurements are as follows:


From Volusia, Fla.; Mrs. A. D. Lungren.
This Chorophilus is similar in proportions to the $C$ feriarum, but is well distinguished by the characters of the longer hind leg, the skin, and the coloration. The tubercular upper surface is quite peculiar, and the smooth gular region is equally wanting in the Northern frog.

Chorophilus nigritus Le Conte.

RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9702 |  | Arlington, Fla . |  | G. Brown Goodo | Alcoholic. |
| 5935 | 5 | Liberty County, |  | Dr. J. L. Le Conte | Do. |
| 3593 |  | Charloston, S. |  | Dr. S. B. Barker | Do. |

## CHOROPIIILUS FERIARUM Baird.

Helacetes feriarum Baird, Proceed. Ac. Nat. Sci. Phila., 1854 (5), 59.
This species is not unlike a young Hyla versicolor in the short and rather squat form. The head is more pointed, however, the curve of the mouth being parabolie rather than eireular. The outline of the head above exhibits an acute angle, with but a very slight curve to near the nostrils. The sides of the head are quite oblique, and the direct distance between the two anterior canthi, as measured with the dividers, is just half that between the two extremities of the lower jaw, measured in a similar manner. The upper jaw projects considerably over the under; so much so that the nostrils are about direetly over the end of the latter. The extreme distance between the rami of the lower jaw is the same with that from the ends of these rami to the tip of the snout, thus forming of the three lines an equilateral triangle. The tympanum is quite diminutive, searcely more than half the diameter of the eye; certainly not over half the straight edge of the eyelids. In the females it is still smaller. Its center is situated directly over the angle of the mouth or the rictus.

The tongue is large, thin at the edges; about one-fifth longer than broad, and cordiform behind, with the sides but slightly curved; free behind for about one-third its length. The posterior nares are nearly eircular and opposite a point half-way between the anterior eanthus of the eye and the outer nostril. The vomerine teeth are in two oral patehes, their axes inclined baekwards at less than a right angle, the anterior extremities commeneing just inside the posterior nares and on a line with their centers.

The males are provided with a very prominent gular pouch, capable of considerable inflation.

The eyes are of molerate size, being a little more than one-third the distance from the angle of the mouth to the tip of the snout.

The limbs are of moderate development; the fore-arm being less than the hand. The arm from the elbow is exactly the length of the hind foot, measured from the end of the tarsus. The femur and tibia are equal and just half the length of the body. Closely pressed along the sides, the tips of the hind toes extend nearly to the tympanum. The
toes are all depressed, rather sharp along the edges, slender, with parallel sides, and not fringed. All are terminated by slight knobs, not pallets, but little if any wider than the fingers, and very faint traces of the marginal nail like groove. The hands are not webbed, except a rery slight basal web between the three onter fingers. The toes have their bases very slightly webbed, the membrane filling up the spaces between the metatarsals of the two outer toes. The tribercle at the base of the inner toe rather large; the one opposite at base of outer toe, small. Prominent tubercles beneatli all the articulations. Vertebre nine, in addition to the coccyx.
The entire body is strongly and coarsely granulaterl, conspicuonsly below, where it extends over the chin, between the arms, and on the arm nearly to the elbow joint; in fact, no part is free from the gramula. tion, except perhaps the sides of the head. The upper and nuder faces of the thighs are also similarly granulated.
In the males the upper parts are puplish-brown (greenish-brown in life) with dark slate brown markings; beneath cream color. There is a triangular patch between the eyes, the base extending directly across, the aper pointing down the back, the sides concave. In front of this, in the axis of the head and between the nostrils, is a small longitudinal streak. A dark patel commences on the side of the snont and extends backwards on the side of the head, including the tympanum, aud, wideuing on the sitles, fades out near the groin; the upper margin of this is most distinctly defined. The extreme margin of the apper jaw is dark mottled, but just above it and below the lateral vitta is a narrow line of sellowish-white, which widens after passing below the tympanum and, crossing above the shoulder, runs into the light color of the under parts, completely isolating the fore-Jeg. In the mate the chin is mottled black; and in all there is a narrow, indistinct streak of brown extending from the lower jaw to the outer surface of the arm, continuous with the gromid color there. On each side of the back extends a distinct stripe, from near the tympanm to about opposite the termination of the lateral stripes. An additional stripe is seen down the middle of the back, scarcely commencing so far forward; the three stripes nearly parallel, though with a temlency in the onter ones to diverge posteriorly. These stripes are sometimes irregular in outline, the central one sometimes broken up into blotches, the exterior ones less frequently. Sometimes seattered blotches are seen between the stripes. The upper surfaces of the limbs are indistinctly bauded transversely, sometimes only blotched confusedly; the posterior faces of the buttocks are brown, with circular whitish spots on the apices of the granulation. The inner faces of the limbs are uncolored.
In some specimens, which appear to be principally females, the ground color above is farn, sometimes light bluish-gray; and, as already remarked, the longitudinal stripes are occasionally broken up into coarse
or fiue blotches. A general triserial arrangement is, however, almost always perceptible.


Fig. 86. Ohorophilus feriarum. Mount Carmel, Ill.; 1-4, $\frac{1}{1} ; 6-7$, 1.
Measurements, in inches.


A specimen taken by me in Trongh Creek Valley, Huntington County, Pa., has broad minterrupted bands, as in the C. triseriatus but has not its median muzzle band. The roice of this animal was similar to that of the latter species.

A specimen of nearly the size and form of Hyla femoralis was taken in west Pennsylvania, near the Kiskiminitas River. In proportions it does not differ trom the Feriarum, but the toes are fringed, the dilatations larger, and the coloration different. Above blackish-ash, abruptly defined on the sides. Lateral band not extending beyond tympanum. No median clorsal band, but two black dorsolaterals of double ordinary width converge from each tympum and extend to end of urostyle inclosing with the interorbital triangle a narrow, anteriorly bitiureate, dorsal band of the ground color. The note of this speecies is quite different from that of the $U^{\prime}$. triseriatus, not being continnons, but in sets of crepitations repeated in time and at intervals.

This variety may not be more allied to the Feriarum than to the others, and may be called C. feriarum brachyphonus.

Chorophilus feriarum Baird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimes. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3592 |  | Carlisle, Pa |  |  |  |
| 12077 |  | Monnt Carmel. IIl |  | L. W. Turner |  |
| 12708 |  | Lookont Monntain, Tenu Wheatland Ind |  |  |  |
| ${ }_{9667}$ | 3 | Prince George's County, Md. | 1878 | Dr. T. H. Bean |  |

## CHOROPHILUS TRISERIATUS, Wied.

Hyla triseriata Prince Maximilian Reise in das inuere Norl-Amerika, I (1839), 249. Helocotes triseriatus Baird, Procecd. Ac. Phila., vir, 1854, p. 60. clarkii Baird, l. c., and U. S. Mex. Bound. Surv., Rept., p. 28, Pl. 37, fig. 4-9. Chorophilus triseriatus Cope, Check-List N. Amer. Reptil., p. 30.
-_septentrionalis Bouleuger, Cat. Batr. Sal. Brit. Mas., p. 335, 1882.
Hylodes maculatus Agassiz, Lake Snperior, 1850, p. 378, vi, figs. 1, 2, 3.
In general shape this species is more elongated and less squat than H. feriarum, and the hind legs are materially shorter. The head is considerably more pointed. The nostrils, being a little more in advance than in Feriarmm, are still over the end of the lower jaw, although the projection of the upper jaw is greater than in the latter. The distance between the anterior canthi of the orbits is more thau half that between the rami, and this latter distance less than the chord of either ramus. The tympanum is small, less than half the diameter of the eye; its anterior border on a line with the angle of the month.

The granulation of this species is very distinet, extending over the whole body, except on the interior faces of the hind legs. It is most conspicuous and distinct beneath, and is seen on the under face of the arms, especially evident in the palms of the hands.

The tongue is rather thinner than usual in Feriarum and free for a greater distance behind, less emarginated posteriorly. The inner nares are circular aud nearer the anterior canthos orbitalis than the external nostril. The vomerine teeth are considerably within and behind the centers of the posterior nares. The eyes about as in Feriarum.

The fore-arm is a little longer than the hand. The arm from the elbow is not so long as the hind foot. In general, while the thigh, leg, and tarsus are shorter iu proportion, the foot is as long as or even longer than in Feriarmm. The leg and thigh are nearly of thesanc length, and about two-fifths the length of the body. When the hind leg is flexed and applied along the sides, the tips of the toes reach only to the axille. The fingers and toes are much as iu $H$. feriarum, though with all the limbs, more slender.

The ground color above and on the sides is of a light ash, in most specimens striped with brown; beneath yellowish-white, with a few scattered brownish dots on the sides and sometimes extending across the breast behind the arms. There is no transrerse band between the eyes, but, instead, an oral spot above each orbit, and between these a distinct stripe starting between the nostrils and extending backwaris to about the middle of the back, where it bifureates at a very acnte angle and continnes, margining the mostyle, as it were, to near the anns. On each side of this dorsal mark is a stripe of similar width, starting in a line with the orbital blotehes, but behind them and extending nearly to the groin, having a slight curve outwards to retain parallelism with the dorsal fork. A well-defined stripe starts at the suout and passes backwards tmrongh the eyes and tympaumu over the shoulder
and down the sides to a point opposite the end of the stripe just de: seribed and parallel to it; in fact, we may distinguish anteriorly five distinct dark stripes, and posteriorly six, all about the same size, at the same distance apart, and parallel to each other. The extreme margin of the upper jaw is brown, but between it and the facial stripe is a narrow, well-defi ned line of white extending under the tympanm across the shonlder to be lost on the side. The marginal dark marking on the upper jaw is continued across the angle of the mouth (with a slight interruption over the canthus) up the arm, in a narrow line. The legs are all irregularly marked with rounded dark blotches, not fasciated; the buttocks brown, with whitish spots on the granulations.

Some specimens are much darker than the one just deseribed, and occasionally there is a tendeney to irregularity in the outlines of the stripes, almost breaking them up into spots, in which, however, the serial arrangement is always evident. Sometimes, too, the edges of the stripes are deeper colored than the middle.


Fig. 87. Ohorophilus triseriatus. No. 8553. Fairplay, Colorado; 1-4, $\frac{1}{1} ; 6-7, \frac{2}{1}$.


RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3859 | 7 | Racine, Wis .... .. |  | Dr. P. R. Hoy .. |  |
| 3588 | 1 | Cook County, Ill ....... |  | R. W. Kennicott |  |
| 3308 |  | Fort Union, Dak |  | Dr.J. Suckley ... |  |
| 5918 | .... | Fort Resolution |  | Dr. Kennerly |  |
| 3314 |  | Laramie River. |  | W. S. Wood |  |
| 3619 |  | South Grand River, Missourt. |  |  |  |
| 3621 |  | Saint Lonis, Mo. ... |  | Dr. G. Engelmann .. |  |
| 3307 |  | Blue liver, Kansas. |  | (!) |  |
| 5382 | ..... | Selkirk Settlement ..... |  | 1. Kennicott |  |
| 5146 3307 |  | Red River of the North |  | - |  |
| 3316 |  | Fort Union, Dak ........ |  | Dr. F.V.Vmayden |  |
| 3311 |  | Upper Missouri. |  | Dr. . do ........ |  |
| 3306 |  | Fort Pierre |  |  |  |
| 3317 |  | ......do |  | Gov. I. I. Stevers |  |

In some speeimens from the Missouri River the heal appears to be narrower and mure elongate, the tongue more orbicular and less notched.

The granulation on the lower parts seems finer. The ground color is darker, though the patteru is much the same. The dorsal stripe does not bifurcate so soon, however; there is a tendency to spots between the stripes, and there are no spots on the breast.

Measurements, in inches.


Hind foot ...................... . . . 36 . 473
The Chorophilus triseriatus abounds throughout the northwest, east of the Rocky Mountains.

I obtained it at Franklin, on the Utald-Idaho boundary, and subsequently found it very common in the ruts of the wagon trails on the plains east of Fort Benton, Mont. In the latter locality it was generally of a bright green color.

Specimens from Gloucester County, New Jersey, present the following characters:

Body longer; head contained three and tro-thirds times in total length, the width three to three and one-haif in same; tibia measuring half the distance from vent to middle and anterior border of orbit; smaller tympanm; teeth nearer each other than to nares; five longitudinal bands.

In this form the limbs are rather stont, with their upper surfaces graumated or rugulose. Toes fringed or margined. The heel extends to the orbit; tympanum one-third of latter. One, an inner tarsal tubercle. The median dorsal band is broad, unites with the interocula: triangle, and is continned part way to the end of the mozzle, giving a crneiform figure. Dorsolateral bands nearly straight, commencing some distance above and within the tympanm. Lateral stripe complete from end of muzzle nearly to groin. Ground color farn; below pale, immaculate. Posterior limbs with half cross-bands.


This species I have found abmulant on the sides of pools and ponds in the neighborhood of Gloncester, N. J. in the spring and early part of summer. It delights in those small and often temporary pieces of water which are inclosed in the densest thickets of spiny Smilax and Rubns, with scrub oaks, and surromaded by the water loving Cephalanthus, where no shade interrupts the full glow of suntight. Here they may be heard in the hottest part of the day, accompanied with a few seattering Acres, or rarely a Hyla pickeringii. Their retreats are not sought by

Ranæ. As they scarcely swim, when surprised they seek refige in the edge of the water, with so little movement as to render their capture no easy matter.
This species commences its season early. I have heard the swamps of the barrens and thickets of sonthwestern New Jersey resound with them as early as the twentieth of March, when a skim of ice covered part of the water. I have also heard it in other level paris of the same State later in the season, and in the lower part of Chester County, Pa. Its note resembles that of the Acris in being crepitant, and differs from the toned cry or whistle of the Hylæ. It is not so lond as the former and is deeper pitehed; it may be imitated by drawing a point strongly ac ross a coarse comb, commeneing at the bottom of a jar and bringing it rapidly to the mouth; or, better, by restraining the voice to the separate vibrations of the vocal cords, and uttering a bar of a dozen or twenty vibrations, beginning with the mouth closed and ending with it well opened.

The spotted form, called by Professor Agassiz Hylodes maculatus, presents the following characters. The description is made from Professor Agassiz's typical specimen.
This variety is of much the same delicate form as Triseriatus. The head is small and narrow. The limbs are short ; the tibia two-fifths the length of the body.
The tongue is or al, nearly as wide as long; rather thicker than usual; free behind, and scarcely, if at all, emarginated. The teeth are in two very small circular patches, each situated within and but little behind the internal nares. separated by a wider interval than usual. The tympanm is small and inconspicnous, not half the diameter of the orbit; the distance between the anterior canthi of the orbits is barely more than half that between the rami of the lower jaw, which is a little less than the chord of the ramos.
The fingers and toes are cylindrical, truncate, and rounded at the tips; not dilated, but somewhat knobbed. The outer finger is longer than the third; the first is directed nearly at rightangles with the third, and considerably removed from the others. The outer toe is longer than the thirl; the web is confined to the intervals between the metatarsals, except a slight development between the bases of the fourth and fifth. A rombed tubercle at the base of foot on each side. Body everywhere granulated except on the interior surfaces.
The gromed color is of a brownish-ash above, with crowded and elongated blotches of darker arranged irregularly, or not serially, as in most other varieties; a dark stripe on the side of the head throngh the tympanum and extending to the shoulder, and in one specimen an elongated bloteh on the side of the body may almost be considered a prolongation of the same. There is the usual light line along the edge of the jaw, extendiug to the arm. The limbs are blotched above, but
not fasciated. Beneath yellowish-white, with scattered brownish spots across the breast.


No. 3594; three specimens; Lake Superior, north shore; Prof. L. Agassiz.
The Texan form described by Baird and Girard as Helocetes clarkii has the following characters. It forms the transition between those with longitudiual stripes as Triseriatus and the irregular spotted Maculatus from Lake Superior. It presents the usual features in the acute head, eutirely granulated body, except on the concealed surfaces (the granulation is quite coarse), nearly free toes, etc. The head is acute and elongated; the suout projecting more than in Maculatus.
The tympanum is large, about two thirds the diameter of the orbit. The external nares are very near the tip of the snout, or at about onethird of the distance from snout to orbit; they are separated by less than one third the width of the rami. The internal nares are decidedly more separated than the external, and distant about one-third the interval of the rami. The romerine teeth are in two very small rounded, depressed patches, having a considerable interval, and in a line with the posterior edge of the inuer nares. The tongue is broad, ovate, slightly emarginate behind; thin on the edges.
The fingers and toes are cylindrical, slender, and dilated or thickened at the tips into rounded, depressed knobs. In the hand the outer finger is longer than the second; the cleft between the second and third is deeper than that of third and fourth, and there is the appearance of a very slight basal membrane between them, entirely wanting betweeu first and secoud. The outer toe is rather larger than the third; all the toes are comected by a slight basal web, which, however, scarcely extends beyond the metatarus; two tubercles at base of foot. The tibia is less than half the length of the bods; about half the distance from auns to the eyes.

Color above brownish-ash, with the back covered by ten to twenty large circular dark blotches, arrauged in some specimens in two longitudinal series, with a few smaller intermediate ones; in another distributed uniformly over the back, separated by considerable intervals; a uarrow dark line from snont through nostril to the eyes, thence throngh the tympanm, farling ont ou the sides of the body posteriorls. A narrow light line along the edge of the jaw to the arm. A few large subquadrate blotches on the upper surface of the limbs. Beneath, yellowish-white, with the gular sac tinged with brown.

Differs from Maculatus in smaller mumber of spots, which are less confluent and more clustered, more slender form and longer tibia, with shorter feet; from the other varieties in being without dorsal stripes.

## Measurements, in inches.



No. 3317; one speeimen; Indianola; J. H. Clark, United States and Mexican Boundary Survey.

In one specimen the colors are much brighter. There is a distinct dark broad band from the suout through the eye, fading out about halfway down the side. A narrow white line along the edge of upper jaw to posterior insertion of arm. The blotches above are much darber; there is a triangular one between the eyes, extending backward, and those on one side are confluent into a longitudinal band with irregular outline. The blotches on the opposite side to this are clongated and rather oblique. The dark stripe from the jaw along the arm is here wanting. Other characters similar.

No. 3315; one specimen; between Indianola and San Antonio, Tex.; J. H. Clark. I have also this form from Helotes, Fort Concho, and Dallas, Texas, so that it is generally distributed throughont the State, to the exclusion of the ordinary form.

Chorophilus triseriatus Wied.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | Frum whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8553 | 5 | Fairplay, Colo .... | July 11, 1873 | Ur. J. T. Rothrock | Alcoholic. |
| 3588 | 3 | West Northfield, Ill |  | R. Kennicott ..... | Do. |
| 5934 | 3 | Fort Resolution .... |  | ....-dlo | Do. |
| 3309 | 2 | Fort Union, N. Mex |  | Lientenant Gross, U.S. A | Do. |
| 3306 | 4 | Fort lierre, Nebr .. |  | Governor Stevens .... | Do. |
| 4573 | I | Blue River, Kansas. |  | I)r.J. G. Couper . . | Do. |
| 5146 | 2 | Red River of the North. |  | I. Kennicott... | Do. |
| 8552 | I | Pagosa, Colo . |  | Dr. H. C. Varrow | Do. |
| 8551 | 1 | - -....do ................. | Sept. - 1 1 74 | ....do. ${ }^{\text {d }}$ - | Do. |
| 3619 | 2 | South Grand River, Western Ilissomei. | Sept.-1而 | Dr. P. R. Hoy | Do. |
| 5382 | 6 | Selkirk Settlement. .... |  | R. Kennirntt ............ | Do. |
| 9633 | 1 | Fort Guiland, Gal Ciot.. | June - 1872 | H. W. Ienshaw.......... | Do. |
| 3313 | 1 | Galveston, 'lox..... ... |  | M. Dean . . . . . . . . . . . | Do. |
|  | 9 | Fort Pierre, 1) ak........ |  | T. Culbertson .......... | Do. |
|  | 2 | Between Fort ITuion and Pike Lake, Dak. |  | Lientcuant Grover....... | Do. |
|  | 1 | Between Fort Union and Fort Benton, Dak. | .............. | Dr. G. Suckley........... | Do. |

# CHOROPHILUS OCULAR1S Holbrook. 

$$
\text { Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, p. } 333 .
$$

Hylodes ocularis Holbrook, N. Amer. Heru. 1st ed., II, 79, Pl. xiv, 1838; and 2d ed., iv, 1842.
Hyla ocularis Le Conte, Proceed. Ac. Phila., 1854, p. 429.
Chorophilus angulatus Cope, Check-List Batr., Reptil., N. Amer., 1875, p. 30.
Eyes large; head acute; lower jaw narrow; tibia rather more than half length of body, decidedly longer than hind foot; terminal knobs well developed. Above chestnut, with an obscure darker dorsal band from snout to eye, bifureating behind, and auother on each side. These usually more or less obsolete; a much deeper dark chestnut vitta from suout through eye and tympanum, along the sides; below this is a distinct white line; a light line along the outer edge of the tibia.

This species, which appears to be the smallest of the genus, and indeed the sinallest of all the North American ecaudate Batrachia, has a close generic relatiouship to the other species. Its most striking features will be found in the large size of the eyes, the acuteness of the head, the small tougue, etc. The tibia is longer than in any of the genus.

The head is more pointed than usual, a character best seen in the lower jaw; which, instead of being regularly romuded, has the rami nearly straight for two thirds, then acutely rounded, almost V -shaped. The tongue is small, ovate, entire behind, and free for half its leugth. The vomerine teeth are not distinguishable. The tympanum is very small, scarcely perceptible, and less than half the diameter of the eye.

The linus are well developed, compared to the other species. The tibia is rather more than half the length of the body.

General color above dark chestnut, with an obscure dorsal stripe of darker from the snont to the posterior portion of the back, bifurcating behind. Ou each side of this is a similarly obscure stripe, while a much deeper and more distinct stripe extends along the side of the head, through the eyes, and along the flanks. Below this, on the edge of the upper jaw, is a white line, extending beyond the shoulder. Beneath yellowish-white, with obscure dark spots across the breast and chin. Faint indications of transverse bands across the thighs and legs, more decided than in the other species. The outer edge of the tibia is oceupied by a distinct light line, on the inside of which is a darker mottling.

In general it is distinguishable from all the allied species by its acute lower jaw, chestnut color, and light line down the outer edge of tibia.

> Measurements, in inches.

| Total 1 | . 64 | 1.00 | Hind foot | . 26 | . 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tibia | . 33 | . 51 | Hind leg | 1. 09 | 1.70 |
| Femur | . 30 | . 47 | Width of lower ja | . 18 | . 28 |
| Hind leg from heel | 46 | . 72 | Chord. | 21 | . 33 |

No. 3585; 3 specimens; Charleston, S. C.; C. Girard.

The specimens of this species are for the present inaccessible to me. I therefore have given above a MS. description of Professor Baird's.

## HYLA -Laurenti.

Specimen Synopsis Reptilium, 1768, p. 32; Dum. \& Bibr., p. 542; Giinth., Cat., p. 98; Cope, Nat. Hist. Rev., 1865, p. 110, and Journ. Ac. Phila. (2), Vi, 1866, p. 86 , and 1867 , p. 200 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, 2d ed., p. 337.

Calamites Fitzing., N. Class. Reptil., p. 38; Wagl., Syst. Amph. p. 200 ; Tschudi, Class. Batr., p. 7: ; Cope, Journ. Ac. Phila. (2), vi, 1867, p. 200.
Auletris Waspl., l. c., p. 201.
Hyas Wagl., l. c., p. 201.
Scynas W'agl., l. c., p. 201.
Sphernorhynchus Tschudi, l. c., p. 71.
Lophopus Tschudi, l. c., p. 73.
Deudrolyas Tschndi, l. c.. p. 74.
Remoidea Tschudi, l. c., p. 76 ; Cope, Journ. Ac. Phila. (2), vi, 1866, p. 85.
Litoria Tschneli, 1.c., p. 77 ; Dnm. \& Bibr., p. 503 ; Giinth, Cat., p. 96.
Aylometusa Burmeister, Erliater. Faum. Bras., p. $10 \%$.
Chirodryas Keferst., Gätting. Nachr., 1867, p. 358.
Cophomuntis Peters, Mon. Berl. Ac., 1870, p. 6:5.
Frontoparietal bones not developed, consisting of two narrow, separated supraorbital plates. Ethmoid largely developed auteriorly, dilated over the anterior part of the orbits, widely separating the oblique prefrontals. Urostyle attached to two condyles. Belly areolated. No parotoid gland. Pupil round or transverse. Vomeriue teeth present. Tongne attached to one-third free, posteriorly. Digital dilatations large or small; a more or less extensive web between the posterior toes. Corium not involved in hyperostosis of the cranial bones.

This genus, embracing more than half the family of Hylide, furnishesa type of structure intermediate between the extremes offered by other genera, of which that represented by Hypsiboas may be said to be the most typical. This gemus is in some degree an epitome of the family in its distribution. The Hylite have been created to inhabit the rast world of foliage that sharles the tropics of the New Worid, and restrict the insect life that peoples it, and in proportion to this profusion of regetable life is the abundance of species. The arboreal Amura assigned to the same department of the Oll World is of a widely different type, and, as has been shown, a branch of the higher stock of aquatic frogs that abound in the Northern Hemisphere.

Of the one hundred and eight species of Myla, forty-three occur in regions other than the Neotropical, viz, twenty-nine Australian, nine Nearctic, three Palæarctic, and two Palæotropical, as follows:

Australian.
H. nasuta.
H. freycineti.
H. dimolops.
H. latopalmata.
H. affinis.
H. nigrofrenata.
H. leseuerii.
H. obtusirostris.
H. arfakiana.
H. vagabunda.
H. impura.
H. thesauriensis.
H. parvidens.
H. verreauxii.
H. congenita.


Nearctic.
H. andersonii.
H. carolinensis.
H. squirella.
H. regilla.
H. pickeringii.

## Palcarctic.

H. arborea.
H. chinensis.
H. femoralis.
H. arenicolor.
H. versicolor.
H. gratiosa.
H. stephani.

Palatotropical.
H. annectens.

।
Between species of Australia and South and North America there exist close relations. Those of smallest size oceur in North America, where several spend but little of their time in trees, but like the A frican Hyperolii prefer low lands and swamps. Larger species of similar habit occur in Australia.

The distribution of the North American species is as follows:

| Austroriparian District. | Eastcrn District. | Sonoran District. | I'acific District. |
| :--- | :--- | :--- | :--- |
| H. versicolor. | H. versicolor. | H. arenicolor. |  |
| H. gratiosa. <br> H. faralis. | H. pickeringii. |  |  |
| H. squirella. <br> H. carolinensis. | H. andersonii. | H. regilla. | H. regilla. |

Of the eastern species, H. versicolor, H. pickeringii, and H. andersonii, are the only ones which extend their range north of southern North Carolina. H. andersonii has been found so far, east of the Appalachian range, from New Jersey to Gcorgia. II. versionlor and H. pickeringii
are charaeteristic of the whole region, occurring east of the Central Plains to the Atlantic, and from British America to Florida and Texas.
$H$, regilla of the Pacific district extends its range from British Columbia to Cape San Lucas and into New Mexico and Northern Mexico, presenting considerable variation in characters.

With regard to the distribution of this genus in the Regio Neotropica, a synopsis had already been given under the head of the family. But two species occur in the West Indian district, and these are both in Santo Domingo only. The species of the outlying districts are:

H. uranochroa.<br>H. ebraccata.<br>H. bistincta.<br>H. nigropunctata.<br>H. eleoohroa.<br>H. salvini.<br>H. gabbii.<br>H. nigripes.<br>H. staufferi.<br>H. eximia.

Mexican.

> | H. puma. |
| :--- |
| H. quinquevittata. |
| H. microcephala. |
| H. punctariola. |
| H. gracilipes. |
| H. miotympanum. |
| H. spilomma. |
| H. curta. |
| H. pulverata. |

## Colombian.

H. sordida.
H. phreota.
H. molitrix.
H. splendens.
H. vasta.

West Indian.
1
H. labialis.
H. punetariola.
H. rhodopepla.
H. lichenosa.
H. pulchrilineata.

Chilian.
H. zebra.

In all but two of the species which I have examined the rocal sacs are present; they commmicate with each other posteriorly in $H$. fusea and Smilisea baudinii. The adhesion of the integment is opposite the middle of the tongue in these species; in $H$.carolinensis, opposite the posterior end. In $H$. leseureii and $H$. curta the vesicles are wanting in the males.

> I. Fingers entirely free ; fascicles of vomerine situated posterior to a lino connect. ing the interior vares.
> Three phalanges of fourth toe free; upper lip not spotted ; thigh witl a fuw brown speeks behind; no distinct lateral stripe........... H. pickeringii.
> II. Fingers entirely free; vomerine fascicles between the internal nares.*
> $\alpha$. Three phalanges of fourth the free from web.
> Upper lip with a dark border; a dark lateral band on body: thigh unicolor behmel; a vocal vesicle II. regilla.

[^48]Upper lip and side with a narrow, poorly defined yellow line; thigh unieolor behind; small; head ronuded....................................II. squirella.
Larger; head short, rounded; upper lip unicolor; a plum-colored lateral band not defined below; sides and thigh behind spotted with yellow
................................................................... . . andersonii.
$\alpha \alpha$. Two phalanges of fourth toe free.
Slender; head acuminate; a yellow band on upper lip and on side well de. fined above and below ; thigh unspotted behind......... H. carolinensis.
Robust ; head rounded ; no band on upper lips, nor spots on thigh behind
H. arenicolor.
III. External fingers shortly palmate; vomerine fascicles between nares.
$\alpha$. Dorsal integument not closely areolate.
Three phalanges of fourth tog free; skin above smooth ; upper lip unicolor; thigh behind dark brown with jellow spots.
. H. femoralis.
Two phalanges of fonrth toe free; dorsal integument with small tubereles; upper lip spotted; thigh yellow, with coarse netting of darker color posteriorly .......................................................... $H$. versicolor.
$\alpha \alpha$. Dorsal integument with a close areolation like that of the belly.
Two phalanges of fourth toe free ; dorsal areolar more minute than those of belly; upper lip with yellow edge; thigh behind unspotted. H. gratiosa.
The North American species of this genus are easy to distinguish, since they are well defined. The only one which presents much variation in characters is the $H$. regilla. A species was named and figured by Professor Holbrook as the $H$. delitescens. Other anthors have not recognized this tree frog, and it remains uncertain whether it was not founded on immature specimens of the H. rersicolor.

The damp southeastern part of the continent naturally possesses the greater number of species of this genus.

## HYLA PICKERINGII Storer.

## (Plate 78.)

Hylodes pickeringii Storer, Mass. Rept. (1839), 240; Holbrook, N. Amer. Herp., 2d ed., iv (1842), 135, xxxiv ; De Kay, N. Y. Zool., ili, Reptil. (1842), 69 xx, 51 ; Thompson, Nat. Hist. Vt. (18.12), 121.
Hyla femoralis Nichols, Jouru. Essex Co. Nat. Hist. Soc., I (June, 1839), 96 (Danvers, Mass.).
Hyla crucifer Max. Von Wied., Reise in das inn. Nord-Amerika, I (1839), 249.
Acris de pickering Ang. Duméril, Ann. des Sc. Nat., 3me série, XIX (18:3), 153.
Acris pickeringii Giint her, Cat. Batr. Sal. Brit. Mns., 186z, p. 71.
Hyla pickeringii Le Conte, Proceed. Ac. Phila, 1854, 1. Vir, p. 429; Cope, Cheek-List Batr., Reptil., N. Amer., p. 31, 1875; Bouleuger, Cat. Batr. Sal. Brit. Mus., 188\%, p. 399.

Body sparsely pustular above; closely granulated on whole lower parts. Tibia not half the length of body, longer than hind foot, longer than arm from elbow. A bove, ash-gray to wood-brown, with a well-defined narrow-lined $X$ or Saint Andrew's eross on the back; a $\Lambda$-shaped mark behind the cross and a short line on eath side, with their direction parallel to the posterior of the $X$ angle; another similar mark between
the eyes nearly.parallel to the anterior branches of the dorsal X. A dark vitta from the snont throngh the eye down the sides, and a narrow mottled light line along the jaw.

Feet not webbed beyond penultimate articulation of third and fifth toes and antepenultimate of the fourth toe.
In its general features this species agrees with the other American Hyla, except that the membrane between the toes is somewhat less teveloped, and the transverse apophyses of the sacral vertebree are not quite so much enlarged towarls the tip. It forms an approach to Chorophilns, but has, however, large pallets to the extremities. It is still more removed from Acris.
The head is acuminate-orate anteriorly, with the muzzle projecting well beyond the upper lip, and is contaned a little over three times in the total length. The tympanm is about half the diameter of the eye and distinct. The tongue is very thin, subcordiform, rounded and? emarginate behind, where also it is free. It varies in size in different indiviluals. The posterior nares are large, with the two groups of vomerine teeth approximated and arranged with their longer axis oblique, anteriorly behind the eenter of the nares, and posteriorly entirely behind their posterior borders.
The fingers and toes are well developed. The hand is longer than the fore-arm, and the two about equal or little longer than the lind foot, but not quite as long as the tibia, which is contained abont two and a half times, or less, in the length of the body.

The disks are large and conspicuons. There is no membrane at the bases of the fingers, of which the third is longest, the fourth or outer longer than the second. The heel of the extended hind leg reaches to the middle of the eye. There are distinet tubereles beneath all the joints of the hind feet, and the two at the base of the foot are well developed.

The last three phalanges of the longest toe and the two last of the rest are free from membrane, which is also mearly absent along the inner edge of the antepenultimate phalange of the third toe.
The skin above is smooth, with oceasional low pistules. The abdomen and lower part of the thigin are very distinctly gramulated, as is the pectoral region and the chin to a less degree. Pectoral fold not prominent.

General color above, a pale grayish yellow with a dorsal X-shaped cross of narrow lines; beneath yellowish-white. The dorsal cross consists of a short longitudiual median dark line, whose middle is a little auterior to the middle of the back. Anteriorly this bifureates aentely, sending off branches which reach nearly to the eyes; posteriorly, similar bifurcations, parallel in direction (sometimes nearly continnons) with the first, extend on to the sides of the body. Half way between the posterior fork and the anns there are two other lines meeting at an acnte angle and parallel to the brauches of the posterior fork just mentioned.

On each side of the back, and in the center of the space between the an. terior and posterior bifurcations, is a very short line, generally parallel in direction with the branches of the posterior fork. There is also a V -shaped line connecting the eyes (the apex behind), and a short longitudinal one above the snout. There is a narrow dark line from the snout to the eye, and another dusky tympanal vitta from the eye over the arin along the sides; this line is deepest on its upper edge, and more or less obsolete on its lower; sometimes it is not distinct beyond the arm. The edge of the jaws is mottled, leaving the ridge lighter above; scarcely distinct as a line. Sometimes a broad vitta may be said to pass from the snout through eye and tympanum; indistinct below. The legs above are barred transversely in narrow lines, and the whole upper parts finely sprinkled with dark points. The posterior faces of the thighs are marmorated or blotched with yellowish, on a brown ground; the anterior faces are plain. The outer edge of the soles and heel is mottled brown. The gular sac of the male is purplish-brown in the spring.

The species varies considerably at times in the tint of the body, being of all shades to reddish-brown. The marks on the back are sometimes quite broad and coarse, instead of being narrow and more linear than in other specimens. The gular sac is quite extensible and in spring is brown. Sometimes the throat and breast are spotted with brown.
$H$. pickeringii has more resemblance to $H$. femoralis than to any other species. This has the dorsal blotches, howerer, much coarser and never arranged as above described; nor are the peculiar circular light spots on a brown ground on the posterior face of the thighs ever seen in $H$. pickeringii. From young specimens of $H$. versicolor it may be distingnished by the narrow lines of the distinct dorsal cross and the slighter web of the hind feet, with the absence of the light spot on the jaw, as well as loy the position of the vomerine teeth and the form of the muzzle.


Jcasurenents of No. 3609.
12.
Length of head and body ..... 028
Length of head to posterior olge of tympana ..... 009
Width of head at posterior edge of tympana. ..... 010
Length of anterior limb from axilla .....  016
Length of postorior limb from groin ..... 045
Length of tibia. ..... 015
Length of tarsus ..... 0085
Length of rest of foot ..... 013

Habits.-This, our most abnndant eastern species, is much more generally known by its voice than appearance. Lfter the rattling of the Acris gryllus in the marshes and river banks in the lowlands is fairly
under way, during the first bright days of spring, the shrill cry or whistle of this little creature begins to enliven the colder swamps and meadows of the hill country. Different individuals answer each other with differently toned voices of a single note. This is exceedingly slirill and loud; the muscular force employed in expelling the air from the lungs seems to collapse the animal's sides till they nearly meet, while the gular sac is distended with each expulsion to half the size of the head and body together. They are chiefly noisy in the end of the afternoon, but in shady situations or on dark days may be heard through the morning and noon. When the breeding season is over they may be still found, but with difficulty, among fallen leares in low places, where their color admirably adapts them for concealment, or in cellars, or on the ground in the woods. Not till the near approach of autumn do we have evidence of their ascent into the trees. Then, when the wind is casting the first frosted leaves to the ground, a whistle, weaker than the spring cry, is heard, repeated at intervals during the day, from ous part of the forest to another, bearing considerable resemblance to the note of the purple finch (Carpodacus purpureus), uttered as it is while flying. These roices are heard luring the same season, that of the Hyla being distinguishable as slightly coarser, or more like a squeak. Both are associated with the weak chirp of the late Dendreeca coronata as it gleans its insect food on its sonthern flight. These are the latest sounds of autumn, and soon disappear before the steady advance of the ice king.

Hyla pickeringii Holbrook.
IUESERVE SERIES.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Catalogre number. \& No. of spec. \& Locality. \& When collected. \& From whont received. \& Naturo of spoo. imen. <br>
\hline 3604 \& 1 \& Aux Plaines River, Ill.. \& \& R. Kennicolt ........ \& \multirow[t]{13}{*}{Alcoholic.
Do.
Do.
Do.
Do.
Do.
Do.
Do.

1o.
Do.
1o.
Do.
1o.
Do.} <br>
\hline 3609 \& 1 \& Mariotta, Olio........... \& \& Prct. E. B. Andrews ... \& <br>
\hline 3002 \& 1 \& Carlisle, Pa............. \& \& Prof. S. F. Baird........ \& <br>
\hline $3360: 3$ \& 1 \& Abbeville, S.C.......... \& \& Dr. J. B. Barratt. \& <br>
\hline 3608 \& 2 \&  \& \& Prot. L. Ayassiz \& <br>
\hline 3505 \& 1 \& Elizabethtown, N. Y ..... \& \& Prot. S. F. Baird \& <br>
\hline 3610
9660 \& 1 \& Carlislo, Pa............ \& \&  \& <br>
\hline 9669 \& 1 \& Princo George's County, Md. \& \& Dr. 'T. II. Bean \& <br>
\hline 5320 \& 2 \& Sulkirk Settlement...... \& \& R. Konnicott. \& <br>
\hline \& ${ }_{1}^{2}$ \& Cambridge, Mass ......... \& \& Prof. L. $\Lambda$ gassiz
C. Girard \& <br>
\hline \& 1 \& Grosse Islaud, Mich \& \& Rev. Charlos Fo \& <br>
\hline \& \& Aun Arbor, Mich. \& \& Dr. A. Sagrer. \& <br>
\hline \& \& Cook County, III. \& \& 12. Kounicott \& <br>
\hline 13325 \& 10 \& Washiagtou, D. C. \& \& Georgo Shocmaker. \& Do. <br>
\hline
\end{tabular}

HYLA REGILLA Baird and Girard.
Proceedings Academy Philada., vi, 1852, p. 174; Girard U. S. Expl. Exped., Wilkes, 1858-1860, ini, figs. 13-18.
Proportions somewhat as in $H$. versicolor. Canthus rostralis distinct, rather elevated; muzzle obtuse. Digital dilatations rather small; fingers free; toes half webbed or less. Nares and chomie small; vomerine teeth in fascicles between former. Tongue large, nearly half free, emarginate. Tympauum less than half eye. Skin above usually
sparsely pustulated. Form of cranium rariable; width at jaws from three and one-fourth to two and two-thirds times in length of head and body; from posterior margin of orbit to muzzle three and one-half to nearly four times in same. Olive or ash green above, plain or marked on each side, with blotches in two longitudinal series or stripes of darker and scattered smaller ones on each side of these. Frequently a triangular bloteb between the eses. A narrow dark line from snout to eye; a broad postocular vitta to the arm, beneath which is a bar of grayishwhite about half the width. Tibia half to two-fifths the length of the body; hind foot and arm from elbow scarcely shorter.

This species, like the $H$. pickeringii and H.curta, is anmectant to Chorophilus, whose species it represents, as well as its own genus, on the Pacific slope of North America. The diminished web and digital palettes constitute the rescmblance; but they fall, nevertheless, within the range of the Hyla type. The II. regilla is distributed throughout its subregion and into the adjoining one of Arizona aud Lower California under a slightly different form. Southern California possesses another variety along with the typical one. These varieties differ, as do those of the Chorophilus triseriatus in the proportions of the head and body; the first a long-headed and longer-bodied type; the most common, a shorter headed and longer bodied ; and the most southern form, a still shorter headed and short bodied, with more varied coloration.
Head elongate; width enters length of head and body considerably over three times; canthus rostralis straight ; a triangular patch between eyes......... scapularis. Head short; width one-third of length............................................... regilla. Head short, broad; breadth contained in total length two and two-thirds times; form squat laticeps.
I can not regard these forms as subspecies.

## Var. scapularis.

Hyla scapularis Hallow, sp. from South California, U. S. Pac. R. R., Rept., X, 350, p. 21.

Threespecimens, said to be from San Francisco, are all that the Museum Smithsonian possesses of this variety, which is proportioned somewhat as the true var. Triseriatus in the Chorophilus of that name. The metatarsal bones are more closely bound and the web is less than in other forms. The skin is nearly smooth. Besides the interocular triangle there is a dark dorsolateral band and in one a median dorsal. In oue specimen the tibia measures half the distance from the vent to the anterior angle of orbit, another half-way to end of mnzzle.

This variety has every appearance of a terrestrial auimal. It will no doubt be found to be connected with the ordinary type by annectant forms.

> Var. regilla.

[^49]There are three styles of coloration prevalent among individuals of this variety, viz: That which prevails among more northern specimens, but which occur as far sonth as San Diego, where longitudinal bands are wanting or broken into irregular small spots, and where the interocular triangle is often wanting. Second, where the general color is darker, with three broad dorsal bands or the spots into which they are resolved. The largest specimens are of this type; numbers having been brought from Fort Tejon and a few from northward. Third, represented by a large female specimen from Monterey, Cal., is without markings above, but the borders of the exterior color of tibix, the sides, and the pectoral region are closely brown spotted; in all the others the under surface are immaculate. The tints of this style seem to be more delicate, and it has a more hyline aspect than some of the others.

Head small, rather pointed, but broader than long. Tympanum small, nearly half the diameter of the eye. Eyes not very prominent; a slight fold of skin above the tympanum. A very prominent one across the breast. Skin above finely pustulated with larger scattered tubercles, not so close as in $H$. versicolor. Tibia about half the length of the bods. The gular sac is largely developed.

Disks on extremities large; the largest equaling the tympanum. The hand considerably longer than the fore-arm; onter finger longer than the second; a slight web at base. Tibia half the length of body. Outer toe a little longer than the third. Membrane extending from disk of outer toe to middle of the third joint (from the tip) of the fourth or longest; from the third articulation (from tip) of the fourth toe obliquely to the disk of the third toe; from the third articulation of the third toe to the disk of the second; from the second articulation of the second toe to penultimate articulation of the first. Thus the membrane is nearly wanting along the inner side of three terminal joints of the third and fourth toes and the two terminals of the second, while on the ontside it extends nearly or quite to the disks of the second and third and to the penultimate articulation of the first and fourth. A prominent tubercle at base of inner toe and a smaller one opposite on the sole. Expansion of sacral apophyses not very great. The heel of the hind leg extended reaches to the anterior border of the orbit.

In a very large specimen the general color above is a greenish-ash (in some a dark olive) and blotched with darker. 'iluere is a conspicnous subequilaterally triangular patch between the eyes, extended acutely backwards for a short distance. The back is variously blotehed; the most conspicuous of the blotches are considerably elongated, and arrangel one or two in a line on each side of the back in a line with the eyes and parallel; the middle of the back and the extreme sides of the body are sparsely provided with smaller, usually subcircular, sometimes elongated blotehes. There is a distinct and rather broad dark line from the snont through the nostrils to the eye ann a wider vitta from the eye, involving the whole tympanm, to a little past the
insertion of the fore-arm. The extreme edge of the upper jaw is dirk, and the space between this and the preocular line rather lighter than the ground color. In the extension of this light space backwards it becomes lighter, until from beneath the eye it passes below the postocular band to the base of the fore-arm as a grayish-white vitta, usually about half as broad as the one above it. Sometimes a series of scattered rounded spots may be traced along the side in continnance of the dark postocular vitta. The extremities above are transversely and narrowly but indistinctly barred with darker. The rest of the legs is uniformly flesh color (thighs posteriorly dusky) except a few aggregated pustules below and about the anus, which are white (no marking on the inner faces of limbs); this is seen in other species, but is very distiuct here. The immediate border of the auns is brown; beneath, white; edge of gular sac, black.

In some specimens, especially those from Fort Tejon, the prevalent color above is ash-gray, with an elougated blotch along each side of the back for its whole length, and one or two others on each side of those dorsal blotches are nearly wanting. Sometimes the exterior edges of the tibia and feet (when flexed), are blotched with brown.
This rariety resembles $I I$. squirella, but the head is less depressed ; the colors are darker; the dorsal blotches are larger, and elongated longitudinally in two or three series; the white margin to the much darker postocular vitta is broader; the body is stouter, and usually more or less grambated. The toes are less deeply webbed.

The figure of this species in volume ten of the I'acifie Railroad Surreys represents an interdigital membrane anteriorly, which does not exist, and that of the posterior limb is too extensive.


Mensurements of No. 8688.
M.

Length of head and body ...... .......................................................... . . . 039
Length of head to posterior line of tympana......................................... . . 011
Width of head at posterior line of tympana......................................... . 014
Length of fore limb. .......................................................................... . . 022
Longth of hind limb .......................................................................... . . 053
Length of tibia ............................................................................ . 017
Length of tarsus ......... .................................................................... . 010
Longth of rest of foot...................................................................... . 015
The specimen measured is of medium size ; another from the same locality has the length of the head and body equal to $45^{\text {mom. }}$.

This, the only species of the Pacific region, is quite abundant there. I have caught them along the western edge of the Great Basin in Nerada and Oregon, where they inhabit the marshes which surromm the
lakes of that region. In such localities they can not have arboreal habits, owing to the absence of trees; and it is probable that their habits are like those of the Hyla pickeringii of the east.
I append a description of the type specimen of the Hyla rebulosa Hallowell (U. S. Pac. li. R. Survey Rept., 35th parallel, Reptiles p. 21), which I afterwards called $H$. cadaverina, owing to the pre-occupation of Hallowell's name. The single specimen known is now in bad condition, and I am not sure thatit should not be referred to the $H$. regilla. The description now given was taken from the specimen when nearly fresh.

Size medium; form stout; legs elongate ; head short, broad, breadth less than three times in the total length; muzzle rounded, little prominent; canthus rostralis straight, elevated; fingers free; toes two thirds webbed; the digits short, stout; the pallettes large; a strong tarsal wing or fold; eyes small; skiu smooth.
Femora unicolor behind; no dark labial border or dark or light lateral stripes; color pale, with indistinct blackish dorsal spots.
The heel of the extended hind limb extends to between the orbit and the end of the muzzle; the largest digital dilatations equal the tympanum, which is indistinct and one-fourth the size of the eye. The eye is smaller and less prominent thau usual, its long diameter measuring the width between canthus rostralis at orbits, one and one-third times, and two-thirds length of the brachium. Foot one and three-fourths and one and five-sixths breadth of head at canthus oris; vomerine teeth entirely between the nares, which appear larger than the ostia of the Eustachian tubes.

Sacral diapophyses elongate; triangles very narrow proximally; upper surface slightly convex, thus differing from the eximia, where they are broader, flatter, and not so produced. Skin nearly smooth above; abdominal areolations not extending on the sides; a pectoral fold. Toes stout, margined ; the dilatations large (not proportionally to the digits), except on the thumb.

Above gray, with an interocular and numerous dorsal irregular black. ish spots. Canthus rostralis and band behind eye dark shaded; lip and prebrachial region light, dark punctulate. Limbs indistinctly crossbarred ; below yellowish, immaculate.

From ent of muzzlo to canthus oris.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.9
From end of muzzle to veut................................................................ 19
Length of femur................................................................................. 8.7
Length of tibia............................................................................... 10.6
Length of hind foot...................................................................... 13.1
Brealth between sacral processes................................................ 4.2
Two specimens in Musemm Academy Philadelphia, from Tejon Pass, southern California, 3,388 feet above the sea. From Dr. A. L. Heermanu.

> Var. laticeps Cope.

Color much like that of var. Regilla from Fort Tejon ; that is, a dark interncular triangle and mumerons well-defined dorsal spots. The broad
head renders the proportions of form similar to those in H. curta from which there is some difficulty in distinguishing it. The latter may be known by the small size and lack of gular vesicle among the males. The muzzle is more obtuse than in the type of H. cadaverina, but one specimen of Laticeps is similar in this point ; there is no labial brown border, but we have it much obscured in a Laticeps; the diameter of the eye is less, measuring less on the humerus; the digits much broader and shorter, with the largest pallets equaling the tympanum, while they are more elongate and slightly proportioned in Laticeps and Regilla vera. There is a thin tarsal ala, extending to the cuneiform bone, which is scarcely marked in the Laticeps. There are more lateral dorsal spots. These characters can not now be proven evanescent, so that this allied subspecies may be accepted.
Lines.
Length from end of muzzle to vent ..... 17.2
Length from eud of muzzle to canthus ovis ..... 5
Length of whole fore limb ..... 10.4
Length of whole hind limb ..... 25.6
Diameter of eye ..... 2.2

No. 5308; Cape St. Lucas, Lower California ; eight specimens; John Xantus.

Hyla regilla Baird.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom roceived. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3216 | 3 | Fort Vancourer, Wash. |  | Dr. J. G. Cooper. | Alcoholic. |
| 3232 | 3 | -.....do ...... |  | Ir.J. ${ }^{\text {a }}$ | Do. |
| 9181 | 4 | Pnget Sound, Alaska |  |  | Do. |
| 9182 | 1 | ….. do ................. |  | C. P. Expl. Exped -..... | Do. |
| 8512 | 1 | Verros Island, Lower Cal. |  | Dr.J.II. Streets, U. S. N. | Do. |
| 3239 | 2 | Ynba, Cal ................ |  | Dr. C. Cr. Newberrs ..... | Do. |
| 3253 | 1 | Astoria, Oregon ........ |  | Lieut. W. P. Trowbridge, U.S. A. | Do. |
| 4552 | 3 | Fort Umpqua, Oregon .. |  | Dr. E. Vollum, U. S. A. . | Do. |
| 3336 | 1 | Shoalwater Bay, Wash.. |  | Dr.J. G. Cooper .......... | Do. |
| 3950 | 1 | Fort Dalles, Oregon .... |  | Dr. G. Suckley, U. S. A.. | Do. |
| 3240 | 5 | Pur..do ............. |  | - . . . do | Do. |
| 3252 | 5 | Pnget Sound, Oregon . . . |  | ….dlo ................. | Io. |
| 9424 | 1 | Chilowyuck Lake, Orog. |  | Dr. C. B. R. Kennerly ... | Io. |
| 949 | 1 | Salitornia............... |  | Dr.J. G. Cooper'. . . . . . . . | Do. |
| 9500 | $\stackrel{2}{1}$ | Southern Californa | J17 $\quad 1875$ | H. WV. Henshaw | Do. |
| 8704 | 1 | Los Angreles, Cal | Jıl., -, 1875 | William Somers | Do. |
| 8680 | 5 | Santa l3arbara, Cal | Jnly -, 1875 | II. W. IIcnsliaw. | Do. |
| 8701 | 7 | --....ilo | Jıne - , 1875 | -..... 10 | 10. |
| 8686 | 20 | Sinta Cirnz Island, Cal.. | Junc - , 1875 | ..... . do | Do. |
| 8702 | 1 | Mount Whitney, Cal ... | Sept. -, 1875 | ...... do | 10. |
| 8697 | 1 | Momentains near Fort Tejon, Cal. | Aug. -, 1875 | ...... do | Do. |
| 9499 | 5 | Lake Tahoe, Nevada.... | Oct. 4, 1876 | .......do | Do. |
| 8882 | 22 | -.....lo | Aug -, 1876 | ......lo | Do. |
| 8703 | 4 | Fort T'pjon, Cal | July -, 1875 | -.....do | Do. |
| 4895 | ${ }_{19}^{9}$ | -.....ilo |  | John Xantus | Io. |
| 5293 | 19 | - |  | -....lo | Do. |
| 3245 | 3 | Monterey, Cal |  | Dr. G. Suckley, U. S. A.. | Io. |
| 9381 | 1 | Califormia ........... | - 1877 | L. Stone ................. | Do. |
| 8977 3235 | 8 | Puget Sound, Oregon | Aug. 11, 1872 | Dr. ('. 13. K. Kennerly ... | Ifo. |
| 11574 | 8 | San Diego, Cal |  | A. L. Hcermanti - .... | Io. |
| 3242 | ${ }_{6}$ | Foit Dilles, Oregon |  | 1)r. (r.Suckley, U. S. A | Do. |
| 5932 | 3 | Fort Crook, Cal*. |  | John Fielner... | Do. |
| 11970 | 1 | La Paz, Cal. | 1882 | L. Belding | Do. |
| 11969 | 1 | -.... do | 1888 | .......do . | Is. |
| 13796 | 1 | Bairi, Slasta County, Cal. | 1881 | C. II. Townsond....... .. | 10. |

Hyla regilla Barid-Continned.
GENERAL SERIES.

| Catalogne number: | No. of sper. | Locality. | When collected. | From whom reerised. | $\begin{aligned} & \text { Nabur of sper. } \\ & \text { imen. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 456.3 | 21 | Fort Tejion, Cal |  | J. Xantns | cultic. |
| 946\% | 1 |  |  | 1)r. J. ( ${ }^{\text {d, Cooper }}$ | Do. |
| ${ }_{8680}$ | 46 | Santa Cruz, Cal....... | Juno- -1875 | H. W. Henslaw | Do. |
| (1929 |  | Siunta Barluara, Cal. |  | Dr. Webb .... | Do. |
| 33238 | 4 | Fort Realing ${ }_{\text {camp }}^{\text {Cidl weli, Cal }}$ | 1878 | Dr. Hammund H. W. Henslaw | Do. |
| 11481 | 1 | Ogden, Utail...... |  | Expl. W. 10uth merillian | Do. |
| ${ }^{9486}$ | 1 | Monteroy, Cal |  | W. H. Dall | Do. |
| 9496 | 1 |  |  |  | Do. |
| 9191 | 1 | Cottonwool Cañon. |  | (?) | Do. |
| 11529 884 |  | Ringgohld Barracky, Tex. Fanquier County, Va |  | Dr. We Shenrmann | Do. |
| 183 | 4 | Chewaukan Vailoy | 1878 | H. W. Henslıaw. | 1o. |
| 11944 | 10 | Ies Chutes River, Orer. | 1878 | $\ldots$ | Do. |
| 11123 8688 | 12 | (l) ${ }_{\text {Santa }}$ Barbara, Cal |  | H. w. Hensl |  |
| 11947 |  | Plumas County, Cal .... |  | G. Thompson .. | Do. |

hyLA EXIMIA Baird.

> Proceed. Ac. Phia., 1854, p. 60; U. S. Mex. Bonnd. Surv., ir, Reptil., p. 29 , Pl. xxxvin, figs. 8-10; Peters Monatsber. Berl. Akad., 8699 p. 880 ; Brocehi, Bull. Soe. Philom., Paris (7), 1, p. 12s; Boulenger, Cat. Batr. Sal. Brit. Mus., ed. 1r, 1882, 378.
> Hyla cuphorbiacca Giinther, Cat. Batr. Sal. Brit. Mus., ed. i, 185f, p. 109, Pl. x, f. c.; Steindachmer, Novara Amphib., p. 59.

Head small, width three and one-third times in total length; loreal regionstraight; canthus rostralis strong. Sacral diapophyses small, well dilated. Tympanum half orbit or a little less. Skin smooth abore. Tibia not half the total length. Hind foot longer than arm from elbow, two and one-quarter to two and one-half times width of head behind. In spirits, bluish above, with or withont two dark longitudinal stripes; beneath white. A dark band from the eye along the sides, margined above and below by a white line, the lower one reaching only to the arm, behind which the outline of the dark band is indistinct. Legs not banded.

The proportions of this species are much those of $H$. squirclla, but stouter; the head short and broad, the bods stout, and the limbs short. The skin above appears smooth, as in $H$. carolincnsis ; beneath granulated. The tongue is large, apparently broader than long; shape slightly emarginate behind; one-third free. Teeth are in two rather clongated patches, inclined from each other back wards between the internal nares, and terminating abont opposite the centers of the latter ; then more posterior than in $H$. carolinensis. Tympaum moderate. A single vesicle, supported between the rami of the lower jaw.

The fingers are provided with distinct pallettes and are very slightly webbed at base; the toes also with well-developed pallettes and webbed to their penultimate articulation (the antepenultimate is the lougest toe). The tibia is longer than the thigh, but not half the length of the body.

Above of a nearly uniform clear blnish lead color in alcohol; нo donbt green in life; beneath white or micolored. A brown line extends
from the nustril to the eye, back of which it widens, involving the tympauum, and extends above the arm and aloug the side, fading out towards the groin; it is bordered above by a white margin, following it all the way from the eye; the upper edge not very clearly defined, especially behind, where it graduates into the blue of the back. The lower edge of the lateral vitta is margined by a distinct narrow white line (fading anterior to the cye into the blue), which margins the dark border of the upper jaw and extends to the insertion of the arin. The edge of the jaw is brown. Posterior to the fore legs the dark lateral stripe has its lower edge indistinct and fading through bluish white into the white of the belly. On eack side of the back there is a narrow dark band, commencing opposite the fore-arm and exteuding to the inguinal region, the two parallel, aud about as wide apart as are the orbits; they are margined by an indistinct border of lighter. Above the anus and bounding the back posteriorly is a series of six or eight white spots in coutact with each other. There are no bauds or blotches across the limbs, although on the onter elges (when the animal has all the limbs flexed) there is an indistinet brown line separated from the dorsal blue by bluish white.

Mensurements of No. 3257 ( 7 ).
Muzzle to vent.......................................................................................... 16.5

Breadth between orbits............................................................................... 2
Antobruchium and l:oad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................... . . 7.7
Fomur from groin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................ 5.2
Tibia...................................................................................................... . . 8.2
Foot..................................................................................................... 12.4

Measurements of No. 3248.
Total length............................................................................. . 81 1.00
Fore-arm and hand................................................................ . . 33 . 39
Femur................................................................................. . . 35 . . 43
Tibia.................................................................................... . . . 37 . 46
Tarsns............................................................................... . . 21 . 26
Foot.................................................................................. . . 34 . 42
Total of hind leg............................................. ....................... 1.19 . 1.47

| Catalogue mumber. | No. of spec. | Locality. | When collected. | From whom recoived. | Naturo of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3257 | 4 | Valley of Mexico |  | Johu Potts |  |
| 3248 | ${ }_{11}^{2}$ | City of Mexico l'uebla Mexico |  | Maj. W. Rich. |  |

According to Sumielırast this species is found during the winter season in the ricinity of water, and has the habits of Lithodytes. I have found it near the water, in March, near the City of Mexico. It thus resembles its allies of North America proper, Hyla regilla and II. pickeringii.

## IIYLA SQUIRELLA Bosc.

Hyla squirella (Buse.) in Sounine \& Latreille, Hist. Nat. Reptil., in (1802), 181 (Charleston, S. C.); (Bosc.) Daud., Hist. Nat. Reptil., vin (1803), 34, xciif, 2; Le Conte, Amı. N. Y. Lyc., I (1825), 279; Harlan, Journ. Ac. Nat. Sci. Phila., v (18.77), 3 !2, aud Mcd. \& Phys. Res. (1835), 107; Holbrook, N. Amer. Herp., 1st ed., I (183(i), 105, xviil, and 2d ed., iv (1842), 123, xxx ; Storer, Rept. Mass. (1839), 242 (copied from IIolbrook) ; Dum. \& Bibr., Erp. G6u., vin (1841), 587 ; 9 Do Kay, N. Y. Zool., III, Reptil. (1842), 72, xxi, 53; $\uparrow$ Thompson, Nat. Hist. Vt. (1842), 12:; Le Conte, Proceed. Ae. Phila., 1855, p. 429; Güuther, Cat. Batr. Sal. Brit. Mas., 1868, p. 11; Boulenger, $2 d$ ed. Cat. Batr. Sal. Brit. Mus., 1832, p. 398.
La Raine squirelle Bosc., Nouv. Dict. d'hist. nat., xxvir (1817), 543.
Iryla squirella Grivenhorst, Delicea Mus. Vratislav. (1829), 23; vi, 1, does not belong to this species.
Calamita squirrella Merrem, Tentamen, p. 171.
Auletris squirella Wagler, Ssst. Ampb., p. 201.
Above smooth. Hind foot less than arm from elbow. Tibia about half the length of the body. Light brown above (green in life?), with small, rather subcircular blotches of clarker. Legs rather indistinctly barred. Auterior and posterior faces of thighs without light spots of dark vermiculations. A dark line from snout to eye; a dark vitta from eye to arm through tympanum; edge of upper jaw mottled white, gencrally showing distinctly as a light line, which frequently extends to the middle of the side.

Body more slender than in $H$. versicolor. Limbs moderately developed. Eyes prominent. Snout rather acute. Tympanum small, half the diameter of the eye. Tongue rather small, nearly orbicular, hardly notched behind. Vomerino teeth in two small patches between the inner nares and nearly in line with their centers. Tibia not quite half the length of the body. No web at the base of the fingers.

Length of heal a little more than three times in length. Heel of extended hind limb marking a point between orbit and end of muzzle.

The body aloove is smooth, beneath granulated on the ablomen and thighs. The toes are not webbed beyond the pemultimate articulation of the third and fifth and the antepenultimate of the fourth toes.

Above green, sometimes with irregularly arrauged darker small blotehes. Beneath white. There is a V-mark connecting tho eyes above, although this is not very distinct. A sinall number of subcircular blotches about the size of the tympanum, or larger, are sometimes scattered over the back, and may be of elongate form. There is a lark line from the nostril to the eye and a vitta from the eje through the tympanum to a point above the insertion of the arm. A narrow white line, rather indistinct, passes along the head very near to the elge of the upper jaw and below the tympanic vitta; this line rarely passes the arm; sometimes extends on the side, where it is generally very much confused. The upper faces of the leg are barred transversely, though generally not very distinctly, except across the tibia, where the bars are usually decided. The exterior ellges of the feet are mottled finely with brown and gray. The anterior and posterior faces of the
thighs are dull flesh color, very faintly elouded with brown; no iudications, however, of light spots or dark vermiculations.

Specimens differ in less amonut of white on the jaw, and in tint of ground color, which is described as green in life. With a considerable resemblance to $H$. femoralis, it may be always distinguished by the white line along the edge of the mouth and by the absence of distinct circular white (yellow in life) spots on the posterior faces of the thighs.


Fig. 90. Hyla squirella. No. 11911. Nashville, Ga.; $\frac{1}{1}$.
Measurements of No. 12008.
M.

Length of hearl and body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 030
Length of head to posterior edges of tympana......................... .............. . . 010
Width of head at posterior edges of tympana........................................... . . . 0105
Length of fore limbs from axilla. .............................................. . ........ . . . . 017
Length of hind limbs from groin ................ ..... ........................................ . . . . . . 0455
Length of tibia.... ..... ..... ..... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 016
Length of tarsus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 000 )
Length of rest of foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 012
The specimen measured is of full size. They are rarely larger, and frequently a little smaller.

This species approaches nearly some forms of $I$. regilla, of which it may be considered the southeastermerepresentative, though the regions inhabited by both approach in Texas. It may be always distinguished by the more depressed head and weaker canthus rostralis; it is rarely so robust and usually of more delicate and less striped coloration. II. miotympanum Cope replaces it in Mexico; the resemblance between them is offset by the greater palmation and smaller tympanmon of the latter. In its distribution this speeies extends well vp the Mississippi valley. A specimen of larger than usual dimensions was sent me from near Brookville, Ind., by my frieud Amos W. Butler.

Hyla squirella Bose.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Localits. | When collected. | From whom recoivenl. | Nature of sure ille'l. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3650 | 5 | Pensacola, Fla. |  | Dr. W. A. Hammonl, U. S. A. | Alcohndie. |
| 3644 | 1 |  |  | Prof. I. Agassi\% ..... | 10. |
| 3645 | 2 | Liberty Countr, Ga |  | Maj. .J. Lo Conto. | 10. |
| 3647 | 3 | Grahamvillo, S.C.. |  | bailey .-..... | 10. |
| 9955 | 20 | Littlo Sarasota liay, Fla. | 1875 | 1'rof'. F' l'. Meels .-. | 110. |
| 4551 | 8 | Now Orluans, La......... |  | Now Orleany Academy . | 10. |
| 5066 | 1 | Micanopy, Fla.. |  | 1r. T. II. Bean .......... | 1). |
| 11911 | 1 | Nashville, Ga. | 1880 | W. J. Taylor . . . . . . . . . | 110. |
| 13479 | 7 | Allapalia, Ga . | 1883 | -...do ................ | 110. |
| 12008 | 6 | ( icorriana, E'la........... |  | William Wittfirll ...... | 110. |
| 11510 | 1 | (!) |  | (!) ..................... . . | 10. |
| 10881 | 1 | Makley, S.C |  | I'. W. Maywarl | 10. |
| 1131 | 1 | Sonora.. |  | A. Schott | 10. |

HYLA ANDERSONII Baird.
(Plate Lxxiv; fig. 1.)
Proceed. Ac. Phila., 1854, p. 16; Cope, l. c., 1862, p. 154; Boulenger, Cat. Batr. Sal. Brit. Mus., $2 d$ ed., 1882, p. 378.

In proportions and general appearance similar to the Hyla arborea of Europe. The skin of the upper surface of the body and extremities is smooth, minutely corrugated; that of the throat, belly, and under surfaces of the femora is areolated. A cutaneous fold across the breast and one across the throat. Tympanum about one-third the size of the eye. Tongue broad, slightly emarginate. Vomerine teeth in two oblique series between the internal nares, each directed inward and backward. The head is short and wide, and enters the length three and a quarter times. It is nearly a third wider than long. The muzzle is rounded when viewed from above, and in profile does not project, but rather slopes slightly formards to the labial margin. The fingers are free, and the web of the toes leaves two phalanges free, except on the fourth toe, where it leaves three phalanges free. The four limbs are rather long; the hind limbs are moderate, the heel, when extended, reaching the middle of the orbit. The digital pallettes are small, not half the diameter of the typanum. A tuberele on the under side near the proximal end of each phalange. Internal metatarsal tubercle distinct, oval; external, none.
Coloration iu life. The whole upper a rather deep pea-green, paler upon the sides and the margin of the upper lip. A narrow band of pur-plish-brown commences at the external nares, passes throngh the eye, and, including the tympanum, loses its inferior border a little beyond the insertion of the limmerus. The color becomes paler upon the sides, where it is of an ashy mulberry tint, and extends as far as the origin of the femur. Anterior to this peint it is margined below by large irregular spots of a beantiful saffron, which are continued upon the anterior and posterior surfaces of the femur, and the whole inferior surface of the tibia, upon a ground of a paler shade of the same color. The superoanterior surface of the tarsus, the three inner toes, and the webs of the external, also a small area behind the humerus, the posterior surface of the latter, the inferonterior face of the fore-arm, and the inner finger, are tinted and spotted in the same manner. The superior surfaces of the femur, tibia, humerns, and fore-arm are of the same color as the back; that of the hmmerus separated from the green of the jaws by an isthmus of the purplish shade, and that of the tibia separated auteriorly from the saffiron of its lower surface by a band of mulberry. The green of the back and extremities is everywhere margined with pure white, except posteriorly on the femur and tibia, and anteriorly on the former, where saffiron takes its place. The green crosses the rictus and forms an oral spot upon each side of the throat. The borders of the latter and of the chin are tinged with mulberry. Beneath whitish flesh color.

The exposed surfaces of the anterior and posterior extremities, where not green, are of a shade intermediate between mulberry and chocolate.


Fig. 91. Hyla andersonii. Anderson, S. U.; ł.
Measurements of No. 3600.
M.

Total length head and body ................................................................. . 0366
Length of head to posterior line of tympana........................................... . 011
Width of head at posterior line of tympana. .......................................... . . . 015
Length of fore limb from axilla.............................................................. . . 0224
Length of hind limb from groin .............................................................. . . . . 0525
Length of tibia........................................................................................... . . . . . . . 018
Leugth of tarsus................................................................................. . . . . . . . 010
Length of rest of foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................. . . . . . . 0155
This beautiful species is of much rarity, but two specimens having thus far come under the eyes of naturalists. The lougest known is the type from Anderson, S. C., which is representod in Plate Lxxxiv; the second specimen was found by Professor Leidy, of Philadelphia, at Jackson, N.J., and was the subject of the description of coloration in life giveu above.

## HYLA CAROLINENSIS Pennant.

$$
\text { (Plates 51, fig. } 14 \text {; 72, fig. } 19 \text {; 73, fig. 28.) }
$$

Calamita carolinensis Penuant, Arctic Zool., II (17), 331.
Calamita cincrea Schnoider, Hist. Amph. Fasc., I (1799), 174.
Rana bilineata Shaw, Gen. Zool. Amph., III (1802), 136.
Hyla lateralis Daud. in Sonn. \& Lat., Hist. Nat., Reptil., II (1802), 180; Daud., Hist. Nat., Reptil., viII (1803), 27, and in Hist. Nat. Rain. Gren. Crap. (1803), 16, 11 ; J. Le Conte, Ann. N. Y. Lyc., I (1825), 279 ; Harlan, Journ. Ac. Nat. Sci. Phila., v (1827), 341, and Med. \& Phys. Res. (1835), 107; Dum. \& Bibr., Erp. G6́n., VıII (1841), 587.

Hyla viridis Holbrook, N. Am. Herp., 1st ed., II (1838), 95, xx, and 2d ed., Iv (1842), 119, xxix.
Hyla viridis arborea Catesby, Nat. Hist Carol., nl (1743), pag. et tab. 71.
Hyla semifasciata Hallow., Proceed. Ac. Phila., 1856, p. 307.
Hyla carolinensis Günther, Cat. Batr. Sal. Brit. Mus., 1868, p. 105 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 2d ed. 1882, p. 377.

Head subacute; body slender, nearly smooth above; tibia rather more thau half the length of the body; above and on sides uniform olive-green, with an occasional circular light spot above; beneath white. A distinct narrow white line along the sides of the head and body; similar lines on the onter edge of the fore-arm and hand, the posterior edge of the tibia, and the outer edge of the hind foot. No bars on the limbs.

Boty stenderest of all the North American species; limbs elongated. Ontline of head acute, angled, slightly curred on sides, rather longer than broad. Snout rather pointed; sides of the snout somewhat oblique; length of bead entering total a little over three times. Tyinpanum small, about half the diameter of the eye, a fold of skin above it. Tongue rather ovate, slightly notched behind, where it is free for onethird its length. Vomerine protuberances small, rounded, their axis slightly inclined, almost exactly between the posterior nares; separated from each other and the nares by the same interval. The ranges of teeth are a little behind, about on a line with the posterior margins of the nares.

The extremities are rather slender and elongated. The heel of the extended hind legs marks the end of the muzzle. Tibia about half length of body; hind foot as long as arm from elbow; two and a half times in total length. The fingers are dilated at the tip into disks, twothirds as large as the tympanum, and webbed at the base to. the antepenultimate articulation of the longest. The third is longest, the fourth little shorter; then the second and first. The hind feet are webbed to the disks (the penultimate articulation in the fourth and longest toe), the web wanting on tie inner side of the penultimate joint of the second and third. The third toe is a little longer than the fifth. There is a soft tubercle at base of inner toe and a very rudimentary one at base of outer.

The skiu above and on upper part of sides is smooth, without any pustules; in larger specimen a faint and softened granulation; the belly and inferior face of thighs strongly granulated; the throat moderately so; smooth between the arms.

Color of body and legs above and sides olivaceous-brown or olivegreen, with a few scattered, well-defined spots of white. Beneath white, no mottling anywhere. A well-defined line of white starts on the snout, generally united with its fellow on the opposite side, and passes backwards, parallel with the edge of the upper jaw, under the tympanum and over the arm-pit; extends half-way or more along the sides. It has as a border a deeper shade of the dorsal color. A similar line extends along the posterior margin of the fore legs, most conspicuous at the elbow, and reaches to the outer finger. On the lind leg a similar line passes from the knee, and extends along the posterior or superior margin of the tibia along the exterior elge of the tarsus and foot to the tip, and a second line is seen in some on the anterior margin of the tibia; a short transverse white line above the anus. According to Dr. Holbrook, this species in life is bright grass-green above, the light lines straw color.

Specimens from west of the Mississippi vary in appeariug a little more granulated above. Some males exhibit a more or less tinge of green on the sides of the chin. Sometimes the lateral white line is interrupted, and those on the sides of the legs more or less obsolete.

## The specimen described is from Riceborough, Ga.



Fig. 92. Iyla carolinensis. No. 13478. Alapaha, Ga.; \&.
Measurements of No. 3652.
Length of head and body ..... 045
Length of head, includiug tympana ..... 014
Width of head at posterior edges of tympana ..... 013
Length of anterior limb from axilla ..... 023
Length of posterior limb from groin. ..... 073
Length of tibia ..... 023
Length of tarsus ..... 0145
Length of rest of foot ..... 017

The specimen measured is only of medium size. They frequently reach a length of $58^{\mathrm{mm}}$.

## Hyla carolinensis Pennant.

RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specinucu. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3655 | 15 | Peusacola, Fla. |  | Dr. W. A. Hammond, U. <br> S. A. | Alcoholic. |
| 3652 | 2 | 1. ceborough, Ga |  |  | Do. |
| 3653 6395 | 1 | Mississippi ${ }_{\text {l }}^{\text {leaufort, S. }}$ C............. |  | Dr. B. F. Shumard...... | Do. |
| 8969 | 1 | Kinston, N. C. |  | J. W. Milner | Do. |
| 9708 | 1 | Milledgeville, $\mathbf{G a}$ | June 4, 1876 | Kumlien \& Bean | Do. |
| 11405 | 15 | Liberty County, Ga |  | Maj. J. Lo Conte | Do. |
| 3654 | 1 | Georgia............. |  | C. B. Allams .... | Do. |
| 5904 | ${ }_{6}$ | Liborty Comity, Ga |  |  | Do. |
| 12006 11483 | $\stackrel{2}{1}$ | Goorgiana, Fla <br> (1) |  | William Wittfield | Do. |
| 11483 | 1 | (?) <br> Milton, Fla | 1881 | (?) <br> S. T. Walker | Do. |
| 11931 | 1 | Marco Islaud, Fla |  | J. W. Velie | Do. |
| 13478 | $\stackrel{2}{2}$ | Allapaha, Ga. | 1883 | William J. Taylor | Do. |
| 4558 | ${ }^{2}$ | Palatka, Fla |  |  | Do. |
| 4719 1070 | 12 | Micanopy, Fla... |  | Dr. T. H. Bean........... | Do. |
| 1070 5204 | $\stackrel{2}{2}$ | Saint Luuls, Mo Louisiana....... |  | Dr. George Eugelmani.. Saint Charles Collego... | Do. |
| 3657 | 5 | Prairio Mor Ronge, La.. |  |  | Do. |
| 3651 | 1 | Washingtou County, Miss. |  | Col. B. L, C. Wailes...... | Do. |
| 3214 |  | Now Braunfels, Tex. |  | F. Lindheinuer .......... | Do. |
| 3258 | 3 | San Antouio, Tex |  | J. H. Clark............... | Do. |
| 3654 | $\stackrel{2}{2}$ | Punsacola, Fla |  | Dr. R. W. Jultry ........ | 1 \%. |
| 4556 12005 | 3 6 | Grand Cotean, La Georarinua Fl |  | Saint Charles Collego... | Do. |
| 12005 6395 | 6 | $\begin{aligned} & \text { Goorgiana, Fla... } \\ & \text { Beanfort, S.C .. } \end{aligned}$ |  | Willian Wittticld Dr. F. V. Hayden | Do. |

GENERAL SERIES.

| 12005 5240 | 18 2 | Georgıana, Fla.... l'ass Christian, Mi | William Wittfield Capt. I. Anderson | Alcoholic. Do. |
| :---: | :---: | :---: | :---: | :---: |

## HYLA ARENICOLOR Cope.

Journ. Ac. Phila. (2), 1866, 1. 81.
II. afinis Baird (non spixii), Proceed. Ac. Phila., 185.l, (i1; U. S. Mex. Bonnd.

Surv, Reptil., p. 29 , lla xxivir, figs. 4-7.
Hyla copii Boulanger Aunals and Magazine Nat. History, 188̃, 1. 53; 1888, p. 189.
Head short, wide, entering the length three and a laalf times. Muzzle regularly broadly rombled, not projecting beyond premaxillary border, as long on the side as the length of the eye fissure. Nostrils terminal, near the superior plane of the muzzle. Tympanm very distinet, its diameter two-thirds that of the eye fissure. Tongue discoid, very openly emarginate behind. Choans small; the vomerine teeth in a pair of transverse fascieles exactly between them. Ostia pharyngea of Eustachian tubes about equal to the choanae.

Integument with numerous scattered small tubercles, above and on the limbs. Gnlar resion areolated, as well as belly. Fingers free, the first considerably shorter than the second. Pallettes moderate; one-third the area of the tympanm. Hind legs moderate; when extended, the heel marks the anterior part of the orbit. The extent of the web is somewhat rariable, in some specimens leaving only two plalanges of the fourth toe free, while in others two are free on the outer side and three on the inner; while others display intermediate conditions. The pallettes are about the size of those of the hand. The internal metatarsal tubercle is small but distinct; a narrow tarsal fold, which is ineurved proximally. The length of the arm from the elbow is less than that of the tibia, but is greater than the hind foot.

The general tint of color is much as in $H$. rersicolor. The blotehes on the back are, however, more numerous, and exhibit a tendency to arrangement in two rows of nearly circular spots; sometimes the serial arrangement is not maintained. Owing to the greater length of the hind legs, there are three transierse bars across the femur, tibia, and tarsus, as well as a larger number on the metatarsus. The marbling, so conspicuons on the anterior and posterior faces of the hind legs, as well as in the groin of $I I$. versicolor, is here wanting.

General aspect of $I I$. versicolor, having the same squat appearance, the gramlated skin above and below, the ash-color back with darker mottlings, the white spot under the eye, etc. The most conspicnous disthetive features are the absence of webs of the fingers, the greater length of the hind legs, and the blotehes on the back being in round spots, not cunciform. The legs with three bars not two, and without the reticulate markings behind and below.

$$
1951-\text { Bull. } 34-24
$$



F1c. 93. Iyla arcnicolor. No. 8656. Utah; i.
Measurements of No. 11410.
II.

Length of iicad and body .............................................................. . . 042
Length of head, including tympana .................................................. . 0123
Width of head, ineluding tympana.................................................. . . 016
Length of fore limb from axilla ....... ............................................... . 0245
Length of hind limb from groin....... ................................................ . . 0592
Length of tibia .............................................................................. . . 020
Length of tarsus................................................................................... . 0115
Length of rest of foot..................................................................... . . . 0155
The specimen above described is one of types from Sonora. In specimens from some other parts of Mexico and the United States the white spot below the eye is not found. In a specimen from the Colorado River (4570) there are seven rows of dark brown spots of moderate size on the back. Specimens from El Paso, Texas, have been referred to as distinct species under the name of $I$. copii, by Dr. Boulanger (loc. cit.). The only peculiarity which the description indicates is a somernat smaller tympanic drum. It is said to be one-lalf the eye at the first reference, and "hardly one-third" at the second.

The Hyla arenicolor is quite abundant as far south as Guanajuato, Mexico, where Dr. Alfredo Dugés has found it. This gentleman informs me that its voice is much like that of the bleating of goats.

## Hyla arcnicolor Сope.

IESERVE SERIES.

| Catalogno number. | No. of spec. | Localify. | When collected. | Irom whom received. | Natire of :pec imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8550 | 1 | Sinta lri, N. Mox | June -, 1873 | Dr, O. Loew | Alcoholic. |
| 80.4 | 2 | Southern California .... | 1875 | II. VV. IItnshaw | Do. |
| 86.519 | 1 | Vtah | 1872 | 1)r. ll. U. Yarow | 10. |
| 1141 i | 5 | Sonora, Moxico |  | J. II. Clark | 10. |
| 4570 | 4 | Upper Colorado Riser. |  | 13. Mijllaatser | 10. |
| 10197 | 1 | White Rivor Caỹon, $\Delta$ tizona. |  | Dr. Lurr . | Du. |
| 14101 | 1 | Fort Wingrate, N. Mex .. |  | Dr. I. W. Schufclat, U. к. A. | Uo. |

## HYLA FEMORALIS Latr.

Uyla femoralis Sonu. \& Lat., Hist. Nat. Reptil., II (1802), 181 ; Dand., Hist. Nat. Reptil., viri (1803), 32, xciri, 1 ; Hist. Nat. Rain. Gren. Cralp. (1803), III, 1; Le Coute, Auv. N. Y. Lyc., i (18:5), 230 ; LIarlan, Journ. Ac. Nat. Sci., Phila., v (1827), 342 , and Med. © Plyys. Res. (1835), 167 ; Molbrook, N. Amer. Llerp., 2 l ed., Iv (1842), 127, xxxi ; Bonlenger, Cat. Batr. Sal. Brit. Mus., 1882, 1. 388.
La liaine femorale Bosc., Nour. Dict. d'Hist. Nat., xxviri, 543.
Calamita femoralis Merrem, Tentamen, p. 171.
Auletris femoralis Wagl., Syst. Amphib., p. 201.
H!la squirella pars. Dum. \& Bibr., Herp. G6u., viir, p. 580; Günther, Cat. Batr. Sal. Brit. Mus., 1868, p. 111.
Note.-The descriptions of Dandin differ in some important points from the species of Miajor Le Conte.

Tibia less than half the length of body, longer than arm from elbow, which again exceeds hind foot. Skin uearly smooth above; abore woodbrown, with a darker interocular, triangular bloteh, and a subcuneiform one on the back, confluent in the center. A narrow line from the snont to the eye. A dark vita from the eye, indistinct in the middle, passing through and involving the whole tympanum; the upper edge of this continued to the hind legs, the lower ceasing at the fore legs. I'osterior face of the thighs dark brown, with circular yellowish-white spots. No light spot under the eje, nor any white line along the jaw; merely a lighter shate of the ground color.

Head broader than long. Body short, rather broad, and the entire appearauce as to pattern of color and shape not rery dissimilar from IIyla versicolor, from which, however, it is readily distinguishable by the femoral yellow spots; the dark postocular vitta, the absence of light spots under the eyes. The tongue is large, ovate, slightly notched, and free behind. The teeth are in two approximated minnte circular patches between the posterior mares. The tymanm is small, scarcely more than half the diameter of the eye. The tibia is not half the length of the body. The skin above is slightly pustular, although at considerable intervals, and much less in proportion than II. versicolor. The whole inferior surface of the head, bods, and thighs is grantated, including the throat. The pectoral fold of skin is smooth. The fingers are slightly webbed at the base, the fourth longer than second. The last two joints of the toes are free; the web not extending as a margin to the disk of the longest toe, as in $I I$. versicolor.

General color abore bark-brown, variegated with darker; beneath dull white. $\Lambda$ triangular blotch between the eyes, the angle behind the anterior edge extending across between the middle of the edge of the upper eyelids. In II. versicolor this bloteh is almost always interrupted in the median line. On the anterior half of the back is another large blotch, sending out two branches anteriorly and posteriorly, and one on each side, the anterior pair sometimes running into the blotch on the top of the head. Behind this are seremal other hlotehes of irreg-
ular shape, some of them confluent with that on the back. There is a narrow dark line extending from the snout through the nostril to the eye along the edge of the upper eselid, and proceeding abore the tympanum back along the side to the insertion of the hind leg. A second line extends from the lower part of the eye, parallel with the first, below the tympanum, and immediately above the insertion of the fore-arm. Perhaps it would be better to say that a broad dark band passes from the eye backwards through the tympanum, and over the insertion of the fore-arm, along the side of the body, where the lower edge is indis. tinet; the edges of the band are much the most prominent. There are two or three transverse bars on the fore-arm, the thigh, and leg, more numerous and closer on the tarsus and hind feet. The anterior face of the thigh is uniform dull white; the posterior, however, is dark brown, with several distinct, nearly circular spots of yellowish-white. The outer edge of the tarsus and hind foot is minutely punctate with gray and brown. The sides of the chin are dotted with brown. The extreme edge of the upper jaw is sometimes darker than the rest, with a slight shade of lighter color above it, very inconspicuous, however.


Fig. 94. Wyla femoralis. No. 3598. Liverty County, Ga.; 1 .
Mcasurements of No. 5908.Length of hear and body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0355
Length of hewl, including tympana ..... 0115
Width of inead, includings tympana ..... 0133
Length of fore limb from axilla ..... 0205
Length of hind limb from groin ..... 0 .56
Length of tibia ..... 018
Length of tarsins ..... 011
Length of rest of foot ..... 015

The specimen measured is a little above average size, which is intermediate between the dimensions of the II. squirella and II. versicolor. A very large specimen in my collection from Dallas, Tex., measure;; .039 " in length of head and body.

Ityla femoralis Dandin.

| Cataloguc number. | No. of spee. | Locality. | W"hen collected. | From whom receiver. | Naturo of specimell. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5908 | 1 | Ricwhorongh, Ga |  | Maj. J. Le Conto .. | Alcoholic. |
| 3599 | 2 | --- -to ...... |  |  | 1)o. |
| 3598 | $\underline{\square}$ | Lihosty Connty, Git |  | Maj. J. Le Conte | 10. |
| 969 | 2 | Arlingon, Jiat. | 1878 | 1. Srown Gorala | 1). |
| 4718 | 3 |  |  | 1r. '1. II. lhan | $1) \mathrm{c}$ |
| 14.548 | 1 | (inose) (trerk, S. C........ |  | (!) ${ }^{\text {(1) }}$ | 110. |
| 1:179 | , | Sllapala, (ia Nasluviln (a) |  | W. J. 'Tayla | 10. 1)0. |
| 11918 | 1 | Naslivilln, Ga | 1880 | ...-.rlo | 1). |

## IlYLA VERSBCOLOR Le Conte.*

Mylu rersicolor J. LeContr, Ann. N. Y. Lyc., I (15:5), Phila. v (1827), 343 ; Med. © l'hys. Res. (I835), 1U8; Holbrook, N. Amer. Herp., 1st ed., i (183f), 101, xvir, and 2l ed., iv (1812), 115, xxvir; Storer, Reptil. Mass. (1839), 241; Dumı. \& Bibr., Erp. (Gíl., viil (1811); De Kay, N. Y. Zool., int, Reptil. (I842), 71, xxi, fig. 53 A ; Thompson, Nat. Ilist. Vt. (184:2), I2: ; Giinther, Cat. Batr. Sal. Brit. Mns., 1869, p. 103; Boulenger, l. c., ed. 2, 1832, p. 37.
Dendrohyas versicolor Tseluuli, lßatrachia, 1'. 75.
Hyla richardi Baird, Proceed. Ac. l'hilia., 1854, 1. 60 (young).
Note.-Hy!a rerrucosa Daud., Hist. Lain. Gren. Crap., 33 , l'l. iv, is referred to this species by Dum. \& Bibr. Tho description, however, applies erpually well to several species, and in several points differs cutirely from II. rersicolor. The locality of $I I$. verrucosa is menkown.
Male.-Body stout and chmsy. Head short, mueh broader than long; limbs short. Outline of lower jaw nearly semicircular ; of upper, somewhat angulated. Tympanum rather large, about one-half the diameter of eye; a moderato fold of skin abore it. Tongue large, nearly orbienlar; notehed behind, where it is free for half its length. Vomerine tecth in two transcersely linear patches, extending between the posterior nares, with a slight interval between them, sometimes scarecly separating into two parts. Eyes large, protuberant.

The bases of the vomerine protuberances are in a line with the centers of the nares; the posterior edge of the teeth themselyes a little behind the posterior margin of the nares. Eustachian apertures larger than the inner nares. No papilla behind the extemal nares.

Anterior limbs short, stont; fingers broad, dilated into hroad disks; that on third finger nearly equal to the trmpanmm in dianeter.

The web is more extended than in other species in the United States, in a female specimen leaving the two last joints only free. The disk of the inner finger is smaller than the rest. Tibia reaching half-way from the anus to the eye; longer than the hind feet, and equal to the arm from elbow. The heel of the extended hind leg reaches only to the posterior edge of the orbit. The third and fifth toes are nearly equal in leugth; the disks of the second and first are less developed than the rest.

In hind feet the membrane extends in a narrow margin all the way to the disks; membrane cut out aloug the two last joints of the longest toe and of the others along the inner edge, althongh specimens vary in the amount of this excision. All the fingers and toes are much depressed, and exhibit the Hyla character more than the other American species.

The entire animal is warty, or covered with coarse \{ubereles, with finer intermixed, except on the region of the loins and anterior and posterior faces of the thighs. Beneath, with distinct gramules in a prominent and well-defined parement; less conspicuous on the throat, neck, and palms. There is a very distinet and prominent fold of skin aeross the breast. The color is very variable with different specimens and circnmstances. Above ash-gray, white, or brown. Above each
eye is an clongated blotel of dark brown, passing obliquely backwards towards its fellow, leaviug in sace between and forming an iuterrupted V. Posterior to these and in the anterior portion of the back is a single very large blotel, suberuciform in shape, from sending out a branch on each side tormards the eye, more or less parallel with the blotelies first mentioned. The posterior corners are also obliquely clongated to a greater or less extent. Immediately behind the large bloteh may ho usually traced two others, which are elongated, and extend obliquely to the sides of the body in a direction generally parallel with the onter edges of the dorsal blotelh. $\Lambda$ dnsky, indistinct bar extembs from the ege along the upper edge of the face through the mostril to the tip of the snout, and the edge of the upper jaw is more or less marbled with the ground colors. A conspicuous spot of light gray (with dak border) is always visible among other markings beneath the posterior half of the eye and on the posterior portion of the uper jaw; it is a little in adrance of the tympanum and somewhat longer. A dusky, indistinct mottled band passes from the eyo backwards throngh the tympanum along the side of the body, darkest along the mudnlating upper edge, where it is margined sometimes by yellowish white. The fore-arm has two transverse dark bands; the thigh, leg, and tarsus each the same ummber. All the surfaces of limbs concealed when flexed are remienlated with brown on a yellowish ground, the light intervals angular, even on the inside of tibia and foot. The antelior and posterior faces of the thigh and leg are yellow, sharply a:d narrowly marbled with brown. Beneath yellowish-white. Males, in spring, with the gular sac, mixed ash, brown, and white.

Specimen deseribed from Grosse Isle, Mich.
The females difler mainly in the smaller tympani.
In other specimens, from Carlisle, Pia, there is evident a constant dark spot on the side of the upper jaw and beneath the anterior half of the eye, the light spot already described being situated betreen it and a narrow dark line in front of the tympanam. Sometimes the entire back, ly the conflaence of the blotehes deseribed, is occupied by a large mottled cross, the anterior fork very short. The anterior face of the arm is blotehed with dark; the posterior marbled like the thigh. Sometimes the blotches are more or less obsolete; at others they are reduced in size, aithough nsually ernciform in their arrangement. The color of the batek is sometimes grass-green, with the dark blotches, which rary in extent.

In the sonthern and western specimens there is a tendency to a replacing of the brown reticulation on the yellow ground of the posterior face of the thighs by a mumber of subcirenlar golden spots in the brown gromnd, as in the 1 . femoralis, althongh northern specimens sometimes show traces of it. This is very evident in specimens from Prairie Mer Ronge and Tangipaloa River, Louisiana, and Dallas, Tex. As a general rule, too, the portions of the limbs concealed, or in contact with each other when flexed, are in northern specimens more fully marbled
with yellow and brown, even corering the whole inner face of the tibia, and the light interspaces more or less angular, while in the Smilisca baudinii and the southern and western specimens of II. versicolor the amount of marbling is less, and the interspaces are often reduced to small circular spots. I have, however, been unable to characterize them as more than a variety, to which I have given the name of H.v.chrysoscelis.*

A single specimen of a strongly marked variety of this species was sent to the National Museum from Mount Carmel, Ill., by Lacien M. Turner (No. 12074). It is smaller, having the average dimensions of II. femoralis. The color is a dark brown, with three rows of large approximated darker brown spots. The groin and concealed faces of the thigh are yellowish-brown, with a very scauty speckling of darker brown, very differeut from the usual coarse netted pattern. At first sight one suspects this to be a specimen of Hyla femoralis, but it possesses all the essential characters of the integument and feet of the II. versicolor, as pointed out in the analytical table of the genus, including also the light spot under the eye. It may be called II. v. phecocrypta.


Fic. 95. Hylt versicolor. No. 11.5ı. Linchestur. N. V'.; 1.
Mcasurements of Vo. istini. M.
Length of head and botg............................................................... . . 0311
Length of head, includiug tympana .................................................. . . . 016
Wielth of head, including tympana ...................................................... . . . 0213
Length of fore leg from axilla .......................................................... . . 034
Length of hind leg from groin ............................................................ . . $0 \times 13$
Length of tibia.... ....... ..................................................................... . . 026
Length of tarsus.... ......................................................................... . . 0155
Length of rest of hind foot ..................................................................... . 0245
The Hyla versicolor is "the tree frog," par excellence, of the eastern and northern United States. It is common, and in some places abundant. Its voice is a loud, coarse, resonant trill, uttered with a miform pitch, and continued for two or three seconds. It is heard about bodies of water in the spring, when the seses are depositing and fertilizing the eggs. Later in the season it proceeds from fenees, helgerows, and orchards, as well as from the forest, often at no great elevation above the ground. They are especially noisy towards evening after a rain; but they may be heard at any time during dark and drizzly days. They are susceptible of some domestication. Mr. Jacob Geismar tells me

[^50]that he kept a number of them in a vivarium near a window. Both were left open during lart of the day, and the Hyle would leave the house and establish themselves on the trees in the orchard, where their voices were heard throughout the evening. During the night they would return to the house, and would appear in their usual place in the vivarium in the morning.

Their eggs are laid in small packets on blades of grass, slender sticks, etc., in shallow ponds and pools. The metamorphosis takes place while yet small, the young exceeding only a little those of the northern toad, Bufo lentiginosus americanus. Some of the larval stages are represented on Plate 76, figs. 23-6.

The Hyla versicolor was named as an expression of its striking power of metachrosis. It readily takes the color of the object on which it rests, thus concealing itself successfully. Its colors vary from a deep brown to gray, and nearly white to bright green. The change of color is not rapidly accomplished. The favorite color is gray, which is identical with that of the lichens of the trees which it inhabits. Professor Verrill recorls this species as being found at Norway, Me., the most east ern locality known to mo.

Hyla versicolor Le Conte.
RESERVE SERIES.

| Catalogac number. | No. of spiec. | Locality. | When collocted. | From whom rocoired. | Nature of spec imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3637 | 8 | Prairie Mer Ronge, La.. |  | James Fairio. | Aleoholic. |
| 3635 | 1 | Anderson, S. C........... |  | Miss C. l'aino............ | 1) ${ }^{\text {a }}$ |
| 3639 | 1 | Kemper Comity, Miss.. |  | 1). C. Lloyd ............... | 1)0. |
| 3043 | 1 | Amn Arhor, $11 \mathrm{lich} . . . . .$. |  | Prol. S. F. Baird ......... | Do. |
| 3643 | 1 | (irusse lislo, Mich....... |  | liev. C. Fox.............. | I). |
| 3628 | 1 | latcine, W is |  | 1r. 1'.12. Hoy ...... ...... | 10. |
| 3638 | 3 | (iolmmhins, Ohio |  | 1'rot. L. Lesiguroux .... | $1) 0$. |
| 4822 | 1 | Green lelains, N.C |  | C. F. Mnoro............... | No. |
| 4831 | 3 | lirookville, Ga.... |  | Dr. W. A. Itammond, U. S. $A$. | Do. |
| 3643 | 1 | Mount Molly, N.J...... |  |  | Do. |
| 36.2 | 1 | Eutaw, Ala .............. |  | Prof. A. Wincliell....... | 1). |
| $36+1$ | 2 | Westprort, N. Y |  | Prof. S. F. Baird.......... | Do. |
| 3234 | 2 | New brammiols, Tex |  | F. Lindlıoimer ........... | Jo. |
| 3632 | 2 | Aux I'laines liver, Ill. . |  | 12. Kennicott. | 1)0. |
| 5957 | 1 |  |  |  | Do. |
| 36.36 | 6 | (arlislo, Pa. |  | 1'rof. S. I'. Baird. . . . . . . | 1)0. |
| 3627 | 1 | Washingrton, D. C |  | -... do ....... | 1)0. |
| 5017 | 1 | South Carolina |  |  | Do. |
| 3680 | 1 | Tarborouglı, N. C |  | J. L. Jrinlger .... . . . . . . . . | 1)o. |
| 4557 | 1 | Marylaud... |  | C. 13. Arlains ............. | Jo. |
| 3665 | 3 | Wethersfiela, Com |  | C. Wrimht | $1) 0$. |
| 31770 | 3 | Meadville, Pia. |  | J. F. Thicktstun | 10. |
| 3669 | 1 | Soutliern 1llinois |  | R. Kenuicott.. | 1). |
| 4555 | 1 | Washington, I). C |  |  | Do. |
| 3667 | 1 | Saint Lomis, Mo ....... |  | 1r. G. Engolmann....... | Do. |
| 3671 | 1 | West l'hilimplohia, I'a |  | W. S. Wood ....... ..... | I). |
| 4554 | 1 | Saint Catherint, GiL.. |  | 11r. I. W. learlle ....... | Do. |
| 3679 | 2 | North lied İwrer |  | 12. Kennicott.............. | Do. |
| 3060 | 1 | Natchez, Misa. .- |  | Col. 13. C. L. Wailos...... | Do. |
| 3663 | 4 | Koan Connty, ''enn |  | l'rofessor Mitcliell...... | Do. |
| 5191 | 1 | New Orloans, La. |  | Saint Charles Collugo... | Do. |
| 94.7 | 1 | Goldshorangli, N. C .. |  |  | Do. |
| 8861 | 1 | Tannipahoa River, La .. | Ang. -, 1875 | Frod. Mather ............ | Io. |
| 8860 | 3 | Claiborne Connty, Tenn. |  | J. N. B. Scarborough ... | Do. |
| 1itis | 1 | Memphis, Temm......... |  | Or.John N. Woorlwortlı | Do. |
| $114: 3$ | 1 | I'otomat River, D. |  | George Sloemaker ..... | Do. |
| 7 Cl 19 | ¢ | Washington, 1. C |  | 1r. E. Cones, U.S. A .... | Do. |
| 9671 | 1 | Goldslormirlı, N. C |  | J. W. Milner .-. .-. . . . . . . | Do. |
| $25 \%$ | 1 | Southerm llinnis |  | 12. Kemuicott | Do. |
| 36354 | 1 | Monnt llally $\mathrm{N} . .5$ |  | 1'rof.S. F. Baird. .-....... | Do. |
| 9987 | 4 | Springiticld, Mass....... | 1871 | Weslegan Univorsity... | Do. |

Hyla versicolor Le Conto-Continterd.
GENRLAL SERIES.

| Catalorn numbro: | No. of spue. | Locality | When <br> collected. | From whom received. | Saturo of npeci min 11. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5290 | 1 | Alahama.. |  | W. M. Stewar | olic. |
| 4.561 | 1 | Grand Coteau, La.... |  | Charles Cole |  |
| 4560 | 3 | Now Urleans Acalemy, La. |  |  | Do. |
| 45.33 | 8 | Peari River, Miss....... |  | Miss Helen Tummison .. | 1)o. |
| 3662 | 1 | Cook County, III |  | R. Kennicott..... . . . . |  |
| 368:3 | 1 | Anderson, S.C. |  | Mrs. Mr. C. Daniel . . . . . | 110. |
| 3168 | 1 | In Quesne, 111. |  | R. Kennicotı............ | 1 o . |
| 36.88 | , | Summerville, S. |  | J. U. MeNair............ | Do. |
| 3681 3682 | 2 | Salem, N. U.......... |  | J. '1. Linebaek ........... | Do. |
| 3247 | 1 | Sitint Louis, Mo..... |  | W. S. Wood. | 1 o . |
| 3260 | 2 | Columbus, Ga. |  | Dr. Gosuer | 1 \%o. |
| 9431 | 1 | (?) ............ |  |  | $1) 0$. |
| 9507 | 3 | Southern States |  |  | Do. |
| ${ }_{9} 9394$ | 3 | Lilierty County, Ga |  | Maj. J. Lo Conto ........ | 1 l |
| $\begin{array}{r}9375 \\ 11533 \\ \hline\end{array}$ | 3 | Yarginia w... | 1874 1880 | L. Stome W. Woorl .............. | Do. |
| 11180 | 1 | Baraboo, W is (?) .......... |  |  | $1 \%$. |
| 11598 | 3 | Ohl Fort Cobb Cal |  | Dr. E. Jaluer | Io. |
| 3458 | 1 | Suint Louis, Mo |  | 1r. George Engelmann | 1 O \% |
| 12571 | 1 | Willoughby Point, Va.. |  | Earli \& Mclonald ..... | Do. |
| 11.17 | , | (?) .................... |  | (?) $\ldots$..... | 1) 0. |
| 12078 | 3 | Mome Carmel, 11 |  |  |  |
| 71.54 3631 | ${ }_{14}^{2}$ | (:onso Crook, S.C. |  | (?) <br> R Kemuicott | Do. |
| 5031 | 14 | Cook Connty, Ill....... Grand Cotean, La |  | R. Kenaicott <br> Sant Charles Colloce... | Do. |
| $\begin{array}{r}59113 \\ 14174 \\ \hline\end{array}$ | $\stackrel{1}{2}$ | Grand Cotean, La $\ldots$...... Onney, $111 . . . . . . . . . . . ~$ |  | Sant Charles College... John and Chas. Walker. | Do. |
|  | - | O¢ney, |  | Joho amd Chas. | 1)0. |
| 13326 | 2 | Washington, b. ${ }_{\text {C }}$ |  | Grorge Shoemaker..... | Do. |
| 15.31 | 1 | Ganmeville, Tex. | 1885 | G. If. Liagsdalo.......... | 1 O . |
| 11592 | 2 | - ...do - ........ | 188. | -....do............. .- | 10. |
| 11.74 4731 | 1 |  |  | L. M. Turner <br> Meratherimm | Do. |
| 4731 | 1 | Wialiongton, D. C...... |  | Megatherimm ........... | Do. |

## IIYLA (iratiosa Le Conte.

(Plate 49, fig. 9; 72, fig. 10.)

Procect. Ac. Phila., 1856, p. 146.
Epedaphus gratiosus Lec., Cope, Proceed. Amer. Philosoph. Soc., 1885, 1. 383.
This is the largest Hyla of the Nearctic realm. It conforms in shape to the typical forms of the genns, as the $I$. versicolor, II. marmorata, ete.; but it differs from other known species in one marked peculiarity: The peculiar glandular areolation of the integument of the helly in all IIylide is here seen on the dorsal region also. On this account I proposed the reference of the II. gratiosa to another genus, which I called Epedaphus. It remains to be seen whether this course is defensible or not.
The general characteristics of this species are as follows:
Web between outer fingers extending to end of proximal phalange. Head short, elevated. Tympanum half to two-thirds eye. Integment of upper surfaces with areolations similar to those of the abrlomen. Toes webbed to base of pemultimate phalange. Femora unicolor posteriorly. Upper lip narrowly dark edged, with a white line above the
border, sometimes continued as a lateral stripe. Above purplish-ash, with umwerous dark spots, and often sparse sellow ones; side often reticulated with jellow; tarsus and antebrachium bordered with spots of the same.

The liead is short, obtuse, elevated, the muzzle slightly prominent above the labial border, and sloping gently to the nearly plane front. Canthus rostralis obtuse; loreal region oblique. Vomerine teeth in two transverse contignous faseiculi entirely between the inner nares. A dermal fold over the tympanum and one across the pectoral region. Vocal sac well developed. Hand large, as are all the terminal dilatations. The anterior are tro thirds the diameter of the membranum tympani, and the posterior are a little smaller The tympanum is very distinet, perfectly round, and with the diameter two-thirds that of the eye. The eye is rather small.
The cunciform bone of the metatarsus is unusually prominent and the tarsal fold distinct and infolded. The labial border marks the middle of the antelorachium of the extended fore limb and the last third of the tarsus of the posterior.

The heel of the extended hind leg marks cither the middle or front of the orbit.

The breadth of the cranium is contained two and tro-thirds times in the total length, and the length three and a half times. The length of the tibia enters the same two and one-third times. The o. o. prefrontalia are not very widely separated anteriorly, nor are they produced beyond the line of the nostrils, and their imer anterior borders are nearly parallel; but they diverge almost transverself, and become regularly narrower posteriorly. The form of the xiphistermm is flat-urceolate; the proximal margin truneate, and the distal convexity interrupted by a deep rounded emargination.
The dark spots which eorer all the upper surfaces may be absent, or so small as to give a speckled pattern, or so large as to present a reticulation of the ground. The very narrow labial stripe may be continued into a band or coarse yellow reticulations on the side. The groin and lower surfaces are yellow, except the gular region, which is purplish-ash, with or without a large stibtriaugular yellow mental area. The limbs all dark bander, the tibia blaish on the outer side; the femur uniform yellow posteriorly.
The young of this species resemble the II. squirella; but the shorter heavier head and muzzle, and more obtuse canthus rostralis, the traces of areolation on the dorsal skin, and the sellow borlers of the antebrachium and tarsus distinguish it. Specimens an inch and a quarter in length have not yet developed the dark cross-bands of the extremities; in many of an inch, dorsal spots are invisible, and the areolations have not appearel. As is always the case with young frogs, the extremities are relatively longer.
This beantiful species readily changes its color from green to brownish, accorling to Le Conte. Its range is restricted to Florida and ad-
jacent parts of Georgia. A specimen from Georgiana, Fla., is of a uniform green above, and resembles a very large $H$. squirelli in color.


1


2


4


Fig. 96. IIyla gratiosa. No. 3684. Georgin, C. B. Adams; 1.
Mcasurements. ..... M.
From end of muzzle to canthus oris ..... 017
From end of muzzle to vent ..... 061
Length of hear, including tympana ..... 018
Width of head, including tympaua ..... 024
Width of saeral diapophyses ..... 013
Length of fore limb from axilla ..... $03!5$
Length of hind limb from groin ..... 006
Length of tibia ..... 027
Length of tarsus ..... 016
Length of rest of foot ..... 027

## Hyla graliosa Le Conte.

RESERVE SERIES.

| Catalogno number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of spec. imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3675 | $\stackrel{2}{1}$ | Saint Augustine, Fla |  | E. R. Smith | Alcoholic. |
| 4743 | 10 | Micanopy, Fla. |  | Dr. T. H. Bean |  |
| 5901 |  | hiceborough, Ga |  | Maj. J. Le Conto | $1)$. |

## SMILISCA Cope.

Cope Proceod. Ac. Phila., 1865, p. 194; Journ. Ae. Phila. (2), vi, 1866, p. 85.
Acrodytes Cope, Nat. Hist. Rev., 1z65, p. 109.
But one species of this genus is known. It is characteristic of the Mexican region of tho Nearctic realm, but is found rather commonly within our borders in Texas.

## SMILISCA BAUDINII D. \& B.

(Plate 72, fig. 16.)
Myla bandinii Dum \& Bibr., Erp. Gen., vir, p. 564 ; Boulenger Cat. Batr. Sal. Brit. Mus., ed. и1, 1882, p. 371.
IIyla vanrlictii Baird, Proceed. Ae. Pbila., 1854, p. 61.
Hyla muricolor Cope, l. c., 18(2, p. 359.
Ifyla pansosana Brocehi, Miss. Sci. Mexique Batrachus, p. 125; teste Boulenger.
Surilisca danlinia Cope, Proceed. Ac. Phila., 1865, p. 194.

Somewhat similar in general appearance and markings to H. versicolor, althongh more slender, much smoother, and limbs more elongated. It is one of the larger species.

The tympanum is very large and distinet, nearly equaling the eye in diameter, and having a slight fold of skin above it. The head is narrower, more pointed, and more deeply cleft than in II. versicolor; the snout in front of the eyes longer. The tongue is suborate, less free behind than in $H$. versicolor, and searcely notehed. The posterior nares are larger and nearer together; they are larger than the Eustachian apertures, which are rather linear; the patches of teeth are very small. The skin above is uearly smooth, little less so than in large specimens of Hyla carolinensis. Beneath, however, the granulation is much as in H. versicolor. The webbing of the feet is much as in II. versicolor; heel to nares and end of muzzle.
Above, ash-gray. A rather broad dark bar passes backwards and inwards from above each eye, the two meeting in the middle. Behind this is an irregular cross, with broad branches, forming acute angles before and behind, the anterior extremities shorter and running into the obtuse V -shaped bar between the eyes. Two blotehes behind the extremities of the posterior branches, as described in II. versicolor, and often confluent with them. The thighs and legs are each barred transversely with three bands; those on the lind feet are not distinctly to be made out. On the upper jaw there is a distinct grayish-white spot under the posterior half of the eye about the size of the tympanum. Behind the tympanm, and extending on the base of the arm above, is also a white blotch. The sides are yellowish-white, vermiculated sparsely with black, which color is conceutrated on and under the seapular folls, so as to form a very conspicuous black spot. The pos. terior faces of the thigh brown, with yellowish-white spots, not vermiculated, as in the northern specimens of II. versicolor. Whole lower surface dull white.

Agrees with H. arenicolor (Sonora) in length of himd limbs and smaller fore-arm, but differs in being much smoother and larger; in the sulscruciform dorsal bloteh; black spot over fore-arm ; vermiculated or reticulated thighs and side, still larger tympanum, etc.

|  | Inches. | Inches. |  |
| :---: | :---: | :---: | :---: |
| Total length ................... 241.00 | Leg. | 121 | . 51 |
| Head, length.................... $7 \frac{1}{3} .31$ | Tarsus | $7 \frac{1}{2}$ | . 31 |
| Hearl, wilth...................... 9 . 37 | llind foot | . 10 | . 41 |
| Fore arm and hand from elbow .. 12 . 50 | Total hiud leg. | 40 | 1.61 |
| Thigh.......................... $12 \frac{1}{4} .51$ |  |  |  |

Nearctic localitics．

| Catalogne a！mb゙ァ。 | Nor，of spec． | Locality． | When collected． | From whom received． | Nature of sprecimen． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3259 | 1 | Brownsviite，Tux．．． <br> Montha of Lioo（iramde <br> Ilclotes，T＇cx |  | Capt．Stewart V：m Vlict <br> J．11．（＇lirk <br> G．IV．Marnock |  |

Neotropical localities．


## AMPIIGNATHODONTID E．



But two genera of this family are known，as follows ：
Digits with large dilatations on the extremities；a dorsal dermal pouch；
Amphignathodon Boul．
Digits acute at end ；no dorsal pouch $\qquad$
$\qquad$
The typical genus is hylaeform，while Grypiscus is a robust terrestrial type．The true position of the latter being somewhat doubtful，I give the following more exact definition：

Mandible with a series of caducous pleurodont teeth，and a permanent elevated tooth on each side the symphysis．Prefrontal bones fully de－ veloped，in contact with each other throu ghout，and with frontoparietals． Auditory apparatus well developed；tongue broad，entire，little free． Vomerine teeth；no parotoid glands．（See Plate 6s，fig．11．）

The mandibular teeth are obtuse，and scarcely project abore the al－ veolar margin；their attachment appears to be to the mucous membrane only，on which account they are readily scraped away．

The affinities of this genus are as set obsenre；the mandibular teeth and general form would refer it to the Hemiphractide，but the form of the sacrum separates it．The form of the cranimm，with its broad ont－ line and narrow brain－case，and of the body in general，are nearest to Cyclorhamphus and Cophacus，though the form of the sacrum separates it again．If referred to the Pelodytidæ，it will be the type of a group in the family characterized as follows：

Frontoparietal bones fully developed；xiphisternum an emarginate， cartilaginous shich；coceygeal style attached to two condyles；toes webbed．

[^51]
## HEMIPHRACTID E.*

Cope, Jouru. Ac. Phila. (2), vi., 1866; Boulenger, Cat. Batr. Sal. Brit. Mus., ed. iI, 1842, p. 451.
Three genera represent this family, as follows:
Vomerine, no parasphenoid teeth; ungual phalanges acnte ..... Hemiphractus Wagl. Vomerine, no parasphenoid teeth; ungual phalauges dilated .... C'cratohyla Espada. Vomerine and parasphenoid teeth; ungual phalanges dilated.......Amphodus Peters.

Tho species of these genera are distributed as follows; all are of the Newtropical realm.

IIcmiphractus, two species, Colombiau region.
Ceratohyla, five species, Colombian region.
Amphodus, one species, eastern region.

## GASTRECHMIA Cope.

$$
\text { Journ. Ac. Phila., 1867, p. } 198 .
$$

B:at one fanily of this superfamily is known, and that embraces but a single genus. Its range is the Ethiopian realm.
Maxille cleutulous; vertebre procelian; sacrum with diated diapophyses, attached by condyles to a simple urostyle Hentiside.

## HEMISIDE.

Auditory apparatus wanting; tongue posteriorly retractile into a sheath; froutoparietal and prefrontal bones fully developed, the former coüssified, the latter separated to end of muzzle by ossified ethmoid septum; toes webbed, no cuneiform shovel; no parotoid glands ; mannbrium present

Hemisus G Gtlr.

## HEMISUS Günther. $\dagger$

Cat. Brit. Mus., 1858.
Cacophrynus Steindachuer.
This genus shows its nearest affines to be Callula and allied genera of the Engystomida in the wide separation of the lobes of the liver for the accommodation of the pericardial sac and its contents, and by the posterior position of tho heart. In the latter point it exceeds all other genera; the heart is of relatively large size, and occupies nearly the median portion of the abdominal region. It would appear to be for the protection of this important organ that the coracoids are extended backmards. The cavity anterior to the heart is occupied by longitndinal muscles and the large larynx. The lobes of the liver extend each t:) the groin, a position even more posterior than in those genera of Raniformia which are characterized by the posterior position of that organ; and by the disappearance of its median lobe, and the wide separation of its lateral lobes for the accommodation of the heart. The genera in which this relation exists, are Brevieeps, Engystoma, Sys toma, Callnla, Phrynomantis, Atelopus, and Pipa.

This gemus exhibits also an external corpus adiposum, which I have not found in Callula, Engystoma, or any other genus of Batrachia. Each one is subtrihedral, the apex resting near the extremity of the coracoid, the borly lying between the strata of the external and internal oblique muscles, along the anterior margin of the lobe of the liver on each side.

There are some important skeletal characters found in this genus, whose value is not yet clear. Thus the suspensorium is free, and has an antero-posterior movement on the prötic. This is due to the form of the squamosal, which has no zygomatic process, and is not united by suture with the proitic. The quadrate cartilage is all that connects it with the cranimm. A similar structure exists in Breviceps and Callula (Plate 75, figs. 1-2). The frontoparietals are coüssified with each other, as are also the prefrontals.

The hyoid apparatus is peculiar (Plate 56 , fig. 18 ). The fourth ceratobranchials are ossified and proximally incurved, and in close contact with each other, thus surrounding the laryme in front. They are only connectel with the basihyobrauchial plate by membrane. Tho latter has a reי.יıred trausverse anterior margin, and sends a process formards on eaci. side to tho incurved and thin eeratohyals. The third ceratobranchials are elongate and ossified distally. This kind of hyoid apparatus further distinguishes the family Hemisidie from all others.

## FIRMISTERNIA.

Bonlenger, Cat. Batr. Sal. Brit. Mns., el. ni, 1882 (minus Gastrechuia); Firmisternia and Ramiformia, Cope, Check-List N. Amer, Batr., Reptil.: 1877 ; Raniformia and Bufoniformia pt., Copoo, Natt. Itist. Rev., 1865.

The families of this superfanily are the following:
I. No teeth on the maxillary or premaxillary bones:

Precoracoidei present; sacrum with dilated triaugular diapophyses, confluent with coccsyeal style ; two lobes of the liver...................... . . Lrecricipitidu.
lracoracoidei wanting ; sacrum distinct from coceygeal style, with dilated triaugnlar diapophyses; two lobes of the liver ...................... E'иyystomide.
Pracoracoidei present; sacrmm distinct from coceygeal style, with dilater triangular diapophyses; two or threo lobes of the liver............. Phryniscida.
Pracuracoidei present; sacrmm distinct from cocesgeal stgle, with eylindrical diapophyses; thre lobes of the liver.............................. I) . endrobatide.
II. Maxillary and premaxillary bones toothed:

Pracoracoidei absent; sacral diapophyses dilated; mandible ellontulons ............................................................................ Cophylida.
Pres coracoinls present ; sacral diapophyses expanderl; mandiblo edentulons ................... ...................................................... . Dyscophida. $^{\text {. }}$
Precoracoid present ; sternum and omosternm wating; threo lobes of tho liver; mandible edeutulons

Colostethida.
l'ancoracoid present; sternum and omosternmm present, osseons; three lobes of tho liver; mandible cdentulons............................................ Ranidn,
Pracoracoid present; stermm styloid; sacral diapophesses eytindrie; mandible dentigerons
. 'eratobatrachilda.

This tribe belongs, par excellence, to the Old World. Two of the families, which include but few species, belong to the New, viz, the Dendrobatide and the Colostethidæ, and a few species of the Engystomide and Phryniscidre also occur in tropical America. The Rauide have a number of representatives in North America. The Cophylider and Dyscophidie exist only in Madagascar, excepting one species of the latter in India. The geographical distribution of the families is as follows :

|  | Anstralian. | Neotropical. | Nearctic. | Ethiopian. | Palataretic. | Palacotropical. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Firevicipitide, species |  |  |  | 4 |  |  |
| Engrstumitie....... |  | 4 | 1 |  |  | 16 |
| lhryniscide. | 1 | 19 |  |  |  | 5 |
| Denilrobatidae |  | 8 |  | 4 |  |  |
| (ophylitin.. |  |  |  | 2 |  |  |
| 1) yscophinite. |  |  |  | 7 |  | ] |
| Colostethidio |  | 1 |  |  |  |  |
| Ranidie........... | 4 | 9 | 13 | 95 | 11 | 111 |
| Ceratobatrachidio. | 1 |  |  |  |  |  |

The resemblance to the Neotropical fauna displayed by Madagasear in its lizards and snakes is also seen in the Batrachia in the presence of a genus and four species of the family Dendrobatide.

BREVICIPITIDA.*

Cope, Journ. Ac. Phila., 1867, p. 191.

I. Prefrontals widely separated ; cthmoid arelı not ossified.

A frontoparictal fontanelle; ear perfoctly developed; tues free; no parotoid glands; head not distiuct from body ; no vomerine teeth.. Dreviceps Merrem.
Vomerine teeth present
Rhombophryne Buettger.
The characters of Rhombophryne are so far unknown that its pertinence to the family Brevicipitida is entirely uncertain, nor is it known to possess the characters of Division A. The species of Brevicipitidx are Ethiopian.

> ENG YSTOMIDEE.*

Cope, Journ. Ac. Phila., 1867, p. 191.
I. Ethmoid areh not ossified ; prefrontals widely separated.
A. A froutoparietal fontanclle; terminal phalanges with trausverse limb.
Ear perfectly developerl ; toes free; no metatarsal shovel

Plirynomantis Peters.
II. Ethmoid arch ossified; prefrontals fully developed, in contact with each other and frontoparietals; latter complete.
A. Terminal phalanges with transverse limb, anteriorly at least.
"No tympanum or cavam tympani; Eustachian ostia minute"; toes webbed; no palatine tecth; subdigital parts small, simple.... Microhyla Tsehudi.
Pupil horizontal; no vomerine teeth; tocs webbed; subdigital tubercles of manus large, forming adliesive pallets..................... Phrynella Blgr.
Tympamm, eavum tympani, and Enstachian ostia; toes with web or itarudiment; no palatino teeth.

Callula Gray.
Tympannm present; toes free; palate with a large curved tooth on each side
AA. Terminal phalanges simple.
Pupil erect; palatine teeth normal; toes free; extremities enlarged
$\qquad$
Pupil horizontal; tongue free behind; no vomerine teeth; fingers and toes free
Cacosternum Blgr.
Ear fully develuped; head not distiuct; membranum tympani concealed; toes free to slightly palmate; metatarsus with insignificaut tubercles .............................................................. Engystoma Fitz.
"Ear developed, membranum tympani concealed; toes free to partially palmate; metatarsus with two compressed shovel-like tubercles"
............................................................... Cacopus* Gthr.
"Ear developed, membranum tympani distinct externally ; toes free ; metatarsus with insignificant tubercles"..................... Adenomera Steind.

The species of this family are distributed as follows:

|  | Australian. | Neotrop ical | Nearctic. | Ethiopian. | Palreotrop. ical. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phrynomantis |  |  |  | 2 | 1 |
| Microhyla .... |  |  |  |  | 5 |
| Phrynella. |  |  |  |  | 7 |
| Callula Xenobatrachus |  |  |  |  |  |
| Xenobatrachus | 1 |  |  | -1... |  |
| Callulops ..... | i... |  |  | 1 |  |
| Rngystoma. |  | $7{ }^{\text {a }}$ | $\mathrm{i}^{\text {a }}$ |  |  |
| Cacopus ... |  |  |  |  | 3 |
| Adenomera |  | 1 |  |  |  |
|  | 2 | 8 | 1 | 3 | 17 |

## ENGYSTOMA Fitzinger.

N. Class. Reptil., p. 65 ; Giinth. Cat., p. 51 ; Boulenger, Cat.fBatr. Sal. Brit. Mus., 21 el., 1882, p. 160.
Microps Wagl., Isis, 1828, p. 744, and Syst. Amph., p. 200.
Stenocephalus Tschudi, Batr., p. 86.
Eugystona, sp., Dum. \& Bibr., viII, p. 738; Cope, Journ. Ac. Plila. (2), vi, 1867, p. 194.

Systoma, sp., Cope, l.c.

## ENGYSTOMA CAROLINENSE Holbrook.

N. Amer. Herp., I, p. 83, Pl. 2 ; Dum. \& Bibr., p. 743 ; Hallow., Proceed. Ac. Phila., 1850, p. 2.71; Günth., Cat., ed. 1, p. 51 ; Boul., Cat. Batr. Sal. Brit. Mus., 1882, p. 162.
Engystoma olivaceum Hallow., l. c.
Engystoma texense Girard, Proceed. Ac. Phila., 1859, p. 169.
Snout rather obtuse, slightly projecting, not twice as long as the diameter of the eye. Fore limb considerably longer than its distance from the tip of the snout; the hind limb being carried forwards along the body, the tibio-tarsal articulation reaches the shoulder in the female, a little beyond in the male. Toes quite free, with blunt tips and distinct subarticular tubereles; a very small inner metatarsal tuberele; no outer tubercle. Skin smootl; a fold across the head behind the eyes, which is, however, not unfrequently wanting in alcoholic speci-

[^52]mens. Tympanic membrane concealed ; ostia pharynged smaller than
choanre.
Меавurements of No. $9396 . \quad$ נf.
Length of head and body ............................................................... . . 0244
Length of head to rictus oris ............ ............................................ . 1005 .
Width of head at rictus oris ....... ...................................................... . . . 0075
Length of fore leg from axilla ......................................................... . . .112
Length of hind leg from groin ........................................................... . . 0.2 .
Length of tibia....... ...................................................................... . . 0092
Length of tarsus ...... ................................................................... . . . 006
Length of remainder of foot ............................................................. . . 0113
The color of the liead is chestnut above, and it is thickly mottled with blackish speeks beneath. The upper jaw is dark brown and the lower is dark gray. The iris is very dark gras. The holy is dark brown along the rertebral line and is chestmut on either side of it ; the sides of the head and neck below the orbits and the flanks are grayish; the throat and abdomen lighter, all thickly sprinkled with blackish specks.


The anterior extremities are chestnut-brown above and yellowishbrown beneath. 'Ine posterior extremities are chestunt-hrown above, with a few dark spots. The Engystoma carolinense ranges from South Carolina to western Texas, inclusive, and northwards in the Mississippi Valley to New Madrid, Mo. In Texas it is abundant in the north, at Dallas; then at Houston, San Autonio, and northwestward to Fort Concho. I heard it in the streets of Honston and San Antonio. In the former city it was abundant, in copulâ, in the ditches that border some of the streets, in September. The ery is loud for the size of the animal, and is similar to that of the Bufo americanus, except in being higher pitched and more nasal (in the vulgar sense). The amimals are extremely shy, and become silent on the approach of human footsteps; and as only the tip of their nose projects above the water-level, they disappear beneath it without learing a ripple.

| Catalogne number. | No. of spec. | Locality. | When colleeted. | From whom receised. | Nature of spec imen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3709 | 1 | Washington County, Miss. |  | Col. B. L. C. Wailes.. | Alcoholic. |
| 4744 | 1 | Micanopy, Ela .......... |  | 1) c T. II. Bean | Do. |
| 4192 | 2 | liteborvouh, Ga |  | Mr. W. L. Jones.. | Do. |
| 5910 | 4 | ..... do ........ |  | May. J. Li Conte | 10. |
| 3699 | 1 | Columbus, Ga |  | Dr: Ciester | Do. |
| 3707 3978 | 1 |  |  | G*otre Wioldeman | Do. |
| 2973 | 1 | Clitrleston, S. C... |  | Dr. C. Giarul... | Io. |
| 9396 | 1 | Florida |  |  | Do. |
| ${ }_{3705}^{9954}$ | 1 |  | 1875 | Prof. F. B. Meek | Do. |
| 3705 | 1 | New Madrid, Mo........ |  | R. Kennicott... | Do. |

## PHRYNISCIDE.

Cope, Jouř. Ac., Phila., 1867, p. 190.

I. Terminal phalanges enlarged at extremits:

Pupil horizontal ; tympanum distinct ; toes free.. Sphenophryne Ptrs. \& Dor. Pupil horizontal ; no membrauum tympani; toes sliglitly webled

Scaphiophryne Boul.
II. Terminal phalanges simple:
A. Pupil erect.

No sympanic disk; tocs webbed Melanobatrachus Bedd.
A. tympanic disk; prefrontals joining each other and the frontoparictals ............................................................ Вурорасhия Keferst.
AA. Pupil round.
A. tympanic disk; prefrontals continuous; sclerotica ossified
............................................................. Stereocyclops Cope.
AAA. Pupil horizontal.
I. Prefrontals fully developed, forming suture with each other and frontoparietals.

Ear perfectly developell toes webbel ; dorsum covered with a stratum of glauds. Calophrynus Tschndi.
Ii. Prefrontals small, widely removed from each other and from the frontoparietals:
A. Ear perfectly developed.

Two sharp-edged tubercles on metatarsus; toes little webbed; outer toe rudimental ; muzzle siuple.................................. Copea Steind."
No tubercles on metatarsus; toes slightly webbed, outer rudimental ; muzzle simple ; tro lobes of the liver....................... Atclopus D. \& B.
Tubercles of tarsus rudimental; toes slightly webbed, all well developed; a horizontal dermal process on extremity of muzzle. Rhinoderma D. \& B. AA. Ear imperfectly teveloped.

Toes slightly webbed, outer small ; metatarsus simple; muzzle simple ; liver with two lobes...................................... . Phrynidium Martens.
Toes slightly webbed, no cutting metatarsal tubercles or dorsal dermal shield; three lobes of the liver ...................... Phryniscus Wiegm.
Toesslightly webbed; wo cutting tubercles; a dorsal osseons dermal shield, confluent with vertebral apophyses

Brachycephalus Fitz.
One species of this family has been observed in North America. The distribution of the known species is as follows : Sphenophiyne, 1 species, New Guinea; Scaphiophryne, 2 species, Madagascar; Melanobatrachus, 1 species, India; Hypopachus, 3 species, Mexico and Central America; Stereocyclops, 1 species, Brazil; Calophrynus, 2 species Böneo, 1 species, Madagascar ; Copea, 1 species, Brazil ; Atelopus, 1 species, Central America; Purynidium, 11 species, South America; Rhinoderma, 1 species, Chili; Plıryniscus, 1 species, South America; Brachycepbalus, 1 species, Brazil ; total, 27.

## HYPOPACHUS Keferstein.

Güttingen Nachrichted, 1867, p. 352; Boulenger, Cat. Batr. Sal. Brit. Mus., cd. i1, 1882, p. 159.

No frontoparietal fontanelle. Frontoparietal and prefrontal bone in contact, concealing the ethmoid. No omosternum. No dermo-ossi-
*The sternum of this genus not having been examined, its position is doubtful.
fications. Terminal phalanges simple. No vomerine teeth. Tongue simple, oval.

Three species of this genns are known, the rare H. oxyrhinus and the II. variolosus, which, with its subspecies Inguinalis Cope, ranges from Costa Riea to Gnatemala on the east, and Michoacan on the west. A new one is now added. The species differ as follows:
Heal one-sixth total length; toes with a short web; no lateral band.

1. variolosus Cope.

Ifead one-eighth total length; toes without trace of web; heel to humerns; no lateral hand
H. сипеия Соре.
"Toes with a slight web; heel to end of muzzle; a blackish lateral band;" Boulenger ........................................................................ . oxyrhinus Boul.

## HYPOPACHUS CUNEUS Cope.



Head small; body large; limbs short. Muzzle searcely louger than diameter of eye, projecting a little beyond mouth border. A dermad groove across head at posterior borders of eyelids, and one from below posterior canthus of eye to shoukler. Another across thorax from the infermer orgin of one hamerus to the other. Skin everywhere smooth. Tympanic drom invisible. When the anterior limb is extended the end of the fore-arm rathes the end of the muzzle. The distal end of the tarsis reaches the anterior base of the lamerus, and the end of the second toe reaches the end of the mazzle when the bind limb is extended. The third finger is rather elongate, and the lengths of the fingers are in order, beginning with the shortest, $1-2-1-3$, the second and fourth being equal. In the posterion foot the lengths are, beginning with the shortest, $1-3-5-3-4$, the secoml and fifth being abont equal, and the thind a good deal shorter than the fowth. The patmar tubercles are not very distinct. At the distal end of the tarsus there are two large, subequal, sharperged tuberosities. The elge of the internal is obligue, that of the extemal transerse. Distinet small tubercles numer the articulation of the phatanges. The femme is almost entirely iuclosed in the integument of the body.

The tongue is larere, and forms an elongate dat ellipe. The intermal nostrils are anterior, and are a little finther apart than the external nostrils. The latter are nearly terminal in position.

The color is light brown, or grayish-brown, sometimes tinged with olive, and there is gensrally a pale median rertendy line. There is a wide band on each side of a paler tint, extending from the orbit to near
the groin. It is sometimes only iudicated by a line of black specks, forming a boder above and below. A pale line from eye to front of humerus. Numerons rather large black spots on the groin and numerous smaller ones on the posterior face of the femur, between which the color is often dark red. Small black spots on posterior faces of tibia and astrag:lus, anteriur edge of tibia, anil posterior edge of humerus. Digits with a light spot at each phalangeal articulation. Belly yellowish, with or without a faint coarse retieulation of a darker color.

## Measurements.

M.

Length of head and body . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................... . . . 041
Length of head to rictus oris .............................................................. . . 006
Length to axill:, axially ......... ....... ............ .... ............ ................... . . . . 015
Length of fore limb on front.............................................................. . . 022
Length of fore foot............. . .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 009 .
Length of hind limb from anus.................................................................. . . . . 046
Lengtl of hind foot . . . . . . . . . . . . . . . . . . . . . . ................................................ . . . . 023
Widll of head at rictus oris ..................................................................... . . . . 010
Width of extended femora . ...................................................................... . . . . 031
As compared with the H. oxyrhinus of Boulenger (Amm, Mag. Nat. Hist., 1883, p. 344), this frog has much shorier hind legs and at different coloration, as well as some web between the toes, judging from Dr. Bonlenger's deseription. The II oxyrhinus comes from western Mexico. The $I$. variolosus is common in Central America and sonthern Mexico.
This species has been fomb thas far only in the neightorhoolvof San Diego, in Nueces Comnty, in sonthwestern Texas. A mumber of speeimens have heen bronght from that localits and been obtained fir the United States National Museum, by William Taylor.

## DENDROBATID.E.*

Cope, Nat. IIist. Rev.,1865, amd Jomm. Le. Phila., 1867.
Hylaplesidde Gianth., Cat. Batr. Sal. Brit. Mus., 18̇b; Mivart, Proceerl. Zool. soc. Lont.
There are but two genera of this fanily and they agree in the following chatacters:
O. o. prefrontalia widely separated; ethmoid broad, wsified to extremity of muzzle; no parotoid glands or metatinsal shovel ; terminal phatanges with two divarieate limbs suphorting dilations ; tongue narrow, free, and entire behind.

Ther liffer as follows:

The speries of these generatare distributed as follows: Mantella, 4 species, Madagasear ; Dendrobates, 8 species. Central Ainerican, Colombian, aml Brazilian regions of Neotropical realm.

## COPHYLID Æ.

But two genera are known, as follows:
Tips of fingers and toes dilated; sternum small
Cophyla Boettg. Tips of fingers and toes acute; sternuiu large Phrynocara Peters.
There is but one species of each of these genera and they inhabit Madagascar.

## DYSCOPHIDA.

Boulenger, Cat. Batr. Sal. Brit. Mus., ed. II, 1882, p. 179.
The genera of this family are as follows: The definitions are taken from Boulenger, l. c., p. 473.
> I. Pupil vertical.

> Vomerine teeth in long series ; sternum very large; fingers and toes, tips not dilated

> Dyscophus Grans.
> Vomerine teeth in long series; sternum small; fingers and toes, tips not dilated Calluella Stoliczka.
> Vomerine teeth in long series; sternum small; fingers and toes, tips dilated .................................................................. Plethodontohyla Blgr.
> II. Pupil horizontal.

> Vomerine teeth in two small groups; sternum small; tips of fingers and toes dilated

> Platypelis* Blgr.

The species are distributed as follows: Dsscophus, two species, Madagascar; Calluella, one species, Farther Iudia; Plethodontohyla, three species, Madagascar; Platypelis, two species, Madagascar.

## COLOSTETHIDÆ.

> Cope, Journ. Ac. Phila., 1867, 190-197.

But one genus of this family is known, which is defined as follows :
Cranium fully developed; ethmoid plate broadly ossified to end muzzle, separating the narrow prefrontals; terminal phalanges with trausverse limb supporing digital dilatations; no vomeriue teeth or metatarsal tubercles; tougue cylindric, free behind................................................................ . Colvstethus Cope.
The only known species of this genus, Colostethus latinasus Cope, belongs to the Columbian region of the Neotropical realm.

## RANIDE.

Ranide, part., Cystignathidex, part., Polypedatidx, Hylodida, part., Giinth., Cat. Batr. Sal.
Ranide Cope, Nat. Hist. Rev., 1865 ; Boulenger, Cat. Batr. Sal. Brit. Mus., 1882, p. 3. Polypelatide, part., and Ranide, part., Mivart, Proceed. Zool. Soc., 1869.

Upper jaw toothed ; diapophyses of sacral vertebra not or but very slightly dilated.

The members of this family show no great difference in the strueture of the sternal apparatus. The precoracoids are always present, their axis being parallel with that of the coracoids, and their distal extremity resting upos that of the latter. The precoracoids are much weaker than the coracoils. In most genera an omosternum and a sternum are well developed, and furnished with a bony style. In Oxyglossus, Hylixalus, and Prostherapis the sternmm lacks the bony style, and so does also the omosternmu in Namophrys and Phyllodromus.

The vertebrae are procelous. The urostyle is attached to two condyles. There are no ribs.

A frontoparietal fontimelle is constantly absent.
The distal phalanges may be simple, pointed, or subtriangular, $\mathbf{T}$ shaped, $Y$ shaped, or even claw-shaped (Hylambates), the latter structure being met with elsewhere in the Hylidic, Amphignatholontide, and Hemiphractide ouly.

Members of the Ranide existed during the Mincene perion. The remains of Rana meriani* indicate a speeies as large as R.esculenta. Runa noeggerathi, also from the Braunkohle near Bonn, was a small species, of which I have not beeu able to learn the form of the sternum. If the species was not a Rana, it did not belong to any other existing genus of the family. The genus Asphrerium $\dagger$ (found in the Oeningen bed) possessed a humerus without terminal condyle. This may be the result of aceident to the skeleton.
The skeletal modifications in this family are those of the ethmoid and prefrontal bones and of the posterior extremity.

The genera of the Ranidæ are as follows:

1. External metatarsals bound together; omosternum and sternum both without osseous style.
Pupil vertical ; tongue emarginate ; vomerine teeth ; toes free
................................ ............................ Naunobatrachus Blgr.
Pupil horizoutal ; tongue emarginate; vomerine teeth; toes free ................................................................ Samophrys Gthr. II. External metatarsi bound ; omosternum with style ; sternum withont style.

Pupil horizontal; tongue heart-shaped; no vomerive teeth; toes webled, tips with disk IIylixalus Esp.
Pupil horizontal; tongue eutire; no vomarina tepth; toce: frec; tips with disks.... ..... ............................................... Irostherupis Cope.
Like Prostherapis, but the tongne emarginate (Blgr.)..... P'hyllobates $\ddagger$ bibr.
III. Exterual metatarsi bound together; omosternum without, sternum with, osseous style.
Pupil horizontal ; tougue entire; no vomerine teeth; toes free; tips with disks............................................................. . . I'hyllodromus Esp.

[^53]IV. External metatarsi bound ; omosternum and sternum with osseons style.
a. Terminal phalanges ball and claw ; an intercalated penultimate phalange.
Pupil vertical; tongue emarginate; vomerine teeth; tips of digits dilaterl............................................................ Hylambates Dum.
$\alpha c$. Terminal phalanges simple.
$\beta$. An intercalated penultimate phalange.
Pupil vertical; tongue heart-shaped; vomerine teeth; fingers and toes free or nearly so ......................................................... . Cassina Gird.
$\beta \beta$. No intercalated phalange.
Pupil horizoutal; tongne heart-shaped; vomerine teeth none; toes nearly free ............................................................... Arthroleptis Smith.
cocc. Terminal phalauges bifurcate.
$\beta$. An intercalated pennltimate phalange.
Pupil horizontal; tongue lieart-shaped ; no vomerine teeth; fingers and toes more or less webbed.......................................... Hyperolius* Rapp.
Characters of Hyperolius, bnt pupil vertical.................Megalixalus Gthr.
$\beta \beta$. No intercalated phalange.
Pupil horizontal; tongue emarginate; vomerine teeth; fingers and toes free or nearly so ...................................................... Cornufer Tsch.
V. External metatarsi separated by web ; omosterumm and sternum with osseons style.
$\alpha$. No intercalated phalange.
Pupil vertical; tongne cmarginate; vomerine teeth; toes webled .............................................. ........... . Nyetibatrachus BIgr.
Pupil horizontal ; tongue emarginate; no vomerine teeth; toes webbed
Heteroglossat Hallow.
Pupil horizontal ; tongne emarginate; vomerine teeth; fingers free; toes webbed; ethmoid bone nsseons above.......................... Rana Linn.
Pupil horizontal; tougne emarginate; vomerine teeth; fingers free; toes webbed; Athmoid bone eartilaginous above .................. Ranula Pet.
Pupil horizontal, tongue emarginate, no vomerine teeth; euds of digits enlarged............................................................ Micrixalus Blgr.
$\alpha \alpha$. An intercalated penultimate phalange.
Characters of Rana, but fingers more or less webbed; ends of digits enlargerl .............. ....... .............. ............ ....... Rhacophorus Kıhl.
Characters of Rhacophorus, but two inver fingers opposite the $t$ wo outer
Chiromantis l'et.
Pupil horizontal; tongue emarginate; no vomerine teeth; ends of digits enlarged ........... ................................................ Ixalus D. \& B.
Like Ixalus, but pupil vertical................................... Nyctixalus Blgr.
VI. External metatarsals separated by a web; sternum without long style; omosternum with one.
Pupil horizontal ; tongue entire posteriorly; vomerine teeth none
Oxyglussus Tsch.

[^54]It will be readily seen by the following table that the geographieal distribution of this fanily is almost cutirely in the Old World:


The only genus of the Nearctic fama is, then, Rana.

RANA Linu.

Systema Naturie x, p. 35'4, pars; Wagler Syst. Amph., 1830, p. 203; Güntl., Cat. Batr. Sal., p. 8; Cope, Nat. Hist. Rev., 1e5j, p. 117.

Mylaraua Tschndi, l. c., 1. 78; Giinth., l. c., p. 71 : : Сope, l. c.
Polypedates, sp., Tschudi, l. c., p. 73; Giinth., l. c., p. 77.
Strongylopus 'Tschudi, l. c., p. 79.
P'ysicephulus Tsenhadi, I. c., 1. -3; Соре, l. c.
Pyxicephetus, s1., Dnm, \& Bihr., l. c., 1. 442.
Linnodytes Dum \& Bibr., l. c., 510.
Peloplylax Fitzing. Syst., Rept., I., p. 31.
Tomopterma (Bihr.) Giiuth., l. c., p. 7.
Spherrothece Giintlı., l. c., 1. 20.
Dicroglossus Ehhm. P'roced. Zool. Soc., 1860, p. 158.
Hoplobutrachus Peters Mon. Berl. Ac., 1863, p. 449; Cope, l. c.
Pachybatruchus (non Keferstein), Mivart, Proc. Zool. Soc., 1868, p. 559.
Climotursua Mivart, ibid., 18ti9, p. Bezt.
Mullzaniu Bettger, Abhandl. Senck. Ges., Xir, Leel, p. $41 \%$.
Omostermm with osseous style; no frontoparietal fontanelle; ethmoid bone ossified above; restibnle of the ear functional ; Enstachian tubes open; vomerine teeth present ; tongur with two posterior cormas; fingers free; toes webbel; ossification of skull not penctrating the skin, which is therefore free.

This gemms contains, according to the latest mumeration (that of Mr. Bonlenger,) one handmed and eight species, which behong mostly to the Old World. The family of Candie, indeed, is only represented in the Western Hemisphere by four other geuera, of the Neotropical realm,
which includes but sixteen species. In the Old World the ge:ms Rana occurs every where excepting in the Australiau realm, with the exception of a single species in north Australia, and two in New Guinea. The Rana papua Less. is found in New Guinea and on the northern peniusula (Cape York) of Australia. Otherwise the batrachian fanna of Australia is arciferous. Its absence from South Amırica is absolute, and the only genus which is nearly related to it, Ranula Pet., bas but four species.

The relations of the prefrontal and ethmoid bones are very various in this genus, furnishiug us with illustrations of most of the types found throughont the order, which are usually characteristic of higher groups. The names of the faunæ in the accompanying table refer to the species of Ranidæ as given in the second column.

A coincidence between the condition of these prefrontal bones and the regions inhabited by the species is evident, as well as a certain succession in the latter: Neotropical first, Palæotropical last.

| Ranidæ, Group IV. |  | Geographical distribution. | Other groups. |
| :---: | :---: | :---: | :---: |
| A. Prefrontals lying along cautbus rostralis, separated by ethmoid thrughout. <br> a. Ethunoil cartilaginons. aa. Ethmoid projecting a short distance beyond frontoparietals. | Ranula | Neotropical. |  |
|  | Rana oxyrhyncha | South Ethiopian... |  |
|  | R. mascariensis |  |  |
|  | Heteroglossa plicata ... <br> S. g. Ilylarana (young) | labatropical. |  |
| aaa. Ethmoid prodnced tar between prefrontals. | R. (ll.) malabarica.... |  |  |
|  | Rana fasciata......... | Sonth Ethiopian | Engystomidae, Gr. II. |
|  | S. g. Hylarana, in gen <br> S. g. Amolops | Palæotropical... | Hylidee (most). <br> Cystignathidac. Gr. II. |
|  |  |  | Dentrobatidoe. <br> Ueratophrys. <br> Xenophrys. |
| B. Prefrontals subtriangular, not united by suture medially, or in contact witb frontoparie. tal. | Rana temporaria .... | Palæotropical and Nearctic. |  |
|  | R. esculenta | l'alæarctic. |  |
|  | I. virescons | Nearctic. | Cystignathus. |
|  | R. cumbita. |  |  |
| C. Brefontals more or less united by suturo merlially, not ronching frontoparietals. <br> D. Prefrontal mitert by suthe and more or less completely in contact with frontoparictals. | J. cyanophlyctis, jun | Palæotropical Alpine. |  |
|  | Heteroglossa nalalen. sis. | South Ethiopian...... | Scytopis. |
|  | Rana fuscigula ........ | do ................ |  |
|  | Hetcroglossa africana |  |  |
|  | liana uccipitalis....... | Ethiopinn............. |  |
|  | R.gracilis ............ | do <br> Palæotropical | Engystomider, Gr. I. 1ufonidee. |
|  | R. cyanophlyctis....... |  | Cystignathidoe, Gr. I auil IV. |
|  | R.grumiens. | do |  |
|  | R. hexadactyla | do |  |
|  | R. ehrenbergii |  |  |

The North American Rame belong apparently to thirteen species. Three of these present us with six subspecies additional to their typical forms, whose distinctive characters approach those of species. Two of the species of the West Coast are not distinguishable, excepting as subspecies, from two of the Palæarctic realm, which range from Eu-
rope eastwards to the Sierra Nevada or to the Rocky Mountains. In this genus is repeated the phenomenon observable elsewhere, that the species of the Atlantic Coast region are more different from those of the Old World than are those of the Pacific coast.
The longitudinal dorsal ridges constitute a peculiar feature not found in any of the other gevera of Batrachia Salientia of the United States. They exist in most of the species, with the exception of $R$. catesbiana and $R$. montezumae. Sometimes the skin above is perfectly smooth, sometimes roughened by tubercles; the same species will occasionally present both extremes under different eircumstances. The vocal saesone on each side of the throat-are, when inflated, visible externally in R. virescens, areolata, and montezuma; possibly in others. The amount of webbing between the toes varies from the fullest condition in $R$. catesbiana, septentrionalis, and boylii, to the balf webbing of $R$. arcolata.

The distinctive characters of the species are derived from the comparative bulk of the body or limbs ; the presence or absence of dorsal ridges ; the comparative length of fore arm and hand ; of femur, tibia, foot, aud body; the amount of webbing between the toes; the comparative length of the third and fifth toes (the fourth being always longest); the shape of the tongue; the position of the vomeriue teeth; the size of eye and tympanum, ete. The colors may present dark blotches, areolated or not, reticulations or marmorations on a light ground, or light sinuations or spots on a dark ground. Many species have a light line along the jaw, which begins distinctly either at the nostrils or under the eye. Those in which this line is wanting are R.catesbiana, montezuma, areolata, septentrionalis, boylii, and some varieties of clamata. Speci mens vary much, even of the same species, with latitude and external circumstances. As a general rule, those from the north are larger, darker, and more pustular, so much so, that for $R$. catesbiana, palustris, virescens, and clamata it is quite easy to establish two or three different races, some of them even raised to the rank of distinct species. As, however, all intermediate stages may be detected on a elose examination of many specimens from the same locality, although a general adherence to the type is preserved, it becomes impossible to assent to the retention of sevral longestablished species.

The following tabular analysis gives in a synoptical form the most salient features of the different species. It is, howerer, impossible here, as elsewhere, to indicate characters which shall apply with mathematical accuracy to all specimens of the same species. The dimensions, proportions, color, and other characters may vary to a considerable extent, and it is only by strikiug the balance of all the features of a species that we can determine its true position.
I. Heel of extended hind limb reaching to or leyond extremity of muzzle ; vomerine tectil entirely between chomar. (No back ear-palch.)
Dorsal dermal plice thin, msnally more than two hetween the lateral ones; spots usmally smaller, rounded ; males with vocal sacs ....... R. cirescens.
II. Heel of extended hind limb, not rearhing end of mizzle; vomerine treth between, but projecting posterior to posterior border of choane. (No black earpatch.)
$\alpha$. Males with an external vocal vesicle.
A dorsolateral dermal fold, with others between; three phaldnges of fourth toe free from well ; legs cross-barred........................... R. areolata.
Dorsolateral fold only; two phalanges of fonrth toe free from web; heel scarcely reaching tympamm, which is nearly as large as eye; brown, with small gray (or in life green) spots ............................ R. montezume. o $\alpha$. No external vocal saes in males.

Four dermal dorsal ridges; two phalanges of fourth toe free; colors pale. with rows of large quadrate brown spots . ..................... R. palustris.
Dermal fold, size of tympanm, and extent of web variable; length not exceeding if ecntimeters; large dark spots on back ....... I. septentrionalis.
A dorsolateral dermal fold; webleaving two phalanges of fourth toe free. no dorsal spots: size not exceeding 8 centimeters............ . . clamata;
No dorsolateral dermal fold: well gencrally leaving one phalange of fourth digit free; length reaching 20 centimeters ................. Ii. cutesbiana.
III. Heel not reaching end of mazale; vomerine teeth behind choance. (A black earpatch.)
Usually two phalanges of fourth digit free ; internal cumeiform tubercle small I. temporaria.

Usually three phalanges of fourth digit free; internal cnneiform tuberele large and prominent; midule of back rarely spotted; small, size 5 centimeters ........................................................ R. cantabrigensis.
IV. Heel reaching or weceeling end of muzzle, vomerive teeth behind choane. (A black ear-pateli.)
a. Tympanic disk distinct.

Head short, obtuse, entering length 3.5 times; third phalange of fourth toe bordered by web and last two free; cross-bands of tibia imperfect or very fen, dorsal spots small (in American smbspeeies)........... R. agilis.
Heal oltuse, entering length about three times; palmation hordering pemultimate phalange, leaviug the last one free; dorsal spots large; size large, reaching 10 centimeters....................................... R. draytoni.
Head acute, three times in length; back without large spots; web bordering antepumltimate phalange, leaving two free; small, length is centimeters.

1. silvatica.
$\alpha \alpha$. Tympanic disk conceal, d.
llead obtuse; pamation extending to base of last phalange; skin thiek, glandnlar; size small...................................................... . R. boylii.
It may be seen from the above table that the species of Rana found in North Amenica are closely related, and that their discrimination requires close attention. More or less numerons exceptions to the definitive characters above given exist, and increase the difficulty of distinguishing them. Thas the lind legs of the Rana pulustris are of variable lengths, about half the specimens hating them long, as in $R$. virescens. In the latter, the romerine tecth in the subspecies Brachycephala frequently are placed a little posteriorly, as in the $R$. pethetris. The latter again somotimes has four dorsal ridges, as in $R$. virescens. Sometimes
the vomerine teeth in Rana temporaria pretiosa are not appreciably more posterior in position than in Rana septentrionalis, in which case the species approach each other very closely. The Rana septentrionalis violates the characters which distinguish the $R$. clamata and $R$. catesbiana from each other, and would afford a complete connection between them were it not fur its inferior size; but eren this point does not in variably hold good, as a few specimens of $R$. clamata do not exceed it in dimensions. Three specimens have been found which relate rery elosely the $K$. silvatica and $R$. cantabrigensis, two of which are referred to the former and one to the latter species on ofher ebaracters, which are not numerous. A subspecies latiremis of $R$. cantabrigensis, from Alaska, approaches the $R$. temporaria in its wide palmation; and there is a specimen (9420) which is quite intermediate between the $K$. agilis and the R. draytoni. The chain of affinities indicated by these intermediate specimens may be sketched as follows:


These series are not probably genetic, as some of the species have, been most likely derived from the Old World. The $R$. septentrionalis, however, may be very probably ancestral to the forms of the Catesbiana series, and perhaps of others.

The species of Rana are well protected from enemies by an extremely acrid secretion of the skin. An animal of much superficial sensitiveness is not likely to take a frog into the mouth a secombl time. Domesticated dogs and cats avoid them, but snakes evidently have no such scruples agaiust, feeding on them.

## RANA VIRESCENS KKalm.*

Resa til Norra America, iII, 1861, p. 46 ; Schreber, der Naturforscher, xViII, 1782, p. 185 ; Pl. iv. Gariman, Ball. Essex Inst., xvi, p. 41.

Rena halecint "Kalm," Schreber, l. c., ncc. kalmii ; Daudin (Kalm), Hist. Nat., Reptil., vin (1803), 122, 432; 11b. Hist. Nat. Rain., etc. (1803, 03; Harlan, Sillim. Amer. Jour. Sci., x (18:5), b, 1.; Jouru. Ac. Nat. Sci. Phila., v (1827), 337 ; 1 b. Med. and Pbys. Rept. ( 1835 ), $102-224$; Storer. Rept. Mass. Reptil. (1839), 237 ; Molb., N. Amer. Herp., 1st ed., I (1836), 89, xiII; 1 b. ©i ell, IV (1842), 91, xci ; Dıu. \& Bibr., Erp. Gén., Viri (1841), 352; Thompson, Nat. Hist. Vt. (1342), 120; De Kay, N. Y. Zool., III ;1842), xx, fig. 49; Hallow., Proceed. Ac. Phila. (1856), 111.

Rana aquatica (water frog), Catesloy, Carol.. 11 (174:3), 70 ; Klein, Qualruped, J. 119. Rana pipiens Gm., ed. L, Syst. Nat. (1788), 10.92, 28; Bonnaterre, Encyclop. Meth. Erpet. (1789), 5, Ix, fig. 2 ; Schneider, Hist. Amph. fasc. 1 (1799), 153; Shaw, Gen, Zool., IIf, Auph. (1802), 105.
Rana utricularia Ilarlan, Sillim. Jonru., x (1825), 60 ; Journ. Ac. Nat. Sc., V (1827), 337 ; 1 b. Med. and Phys. Rept. ( 1835 ), 102, 223.

Rana virginiana Lam., Syn. Rept., p. 31.
Rana palustris Guériu, Iconogr. Rept., PI. 26, fig. 1.
Liana oxyrhynchus Hallow., Proceed. Ac. Phila. (1856), p. 142.
Liana berlandieri Baird, U. S. Mex. Bound. Surv., Rept., p. 27, Pl. 36, fig. 7-10.
Vomerine teeth in two scarcely oblipue groups between the choanæ. Head moderate; suont rather pointed; interorbital space half as broad as the upper eyelid; tympanum distinct, neariy as large as the eye. Fingers moderate, firstextembing beyond second; tocs not quite webhed to the eud; subarticular tubercles of fingers and toes well develoned; inner metatarsal tuberele very small, blnut; $n 0$ outer one. The hind limb being carried forward along the body, the tibiotarsal articulation reaches nearly the tip of the snout. A prominent, narrow, glandular lateral fold. Olive or grayish-brown, changing to green, abore, with regnlar oval or romnded, medium-sized, dark brown, light-edged spots; legs cross-barred; beneath immaenlate. Male with two generally well-dereloped vocal sacis. North and Central America.

There are four subspecies of the Rana virescens, which pass into each other by occasional intermediate specimens. They differ as follows:

Head entering length of head and body two and a half or less than three times; males with exterand vesicles; muzzle more acuminate; no cross-hars on tibia; spots sinaller.
I. r. splienocephala.

Head entering length of head and body two and a half to mearly three times ; mo external voeal wesicles; muzzle more or less acmminato; sint. less distinct; tibia generally erose-harred; no longitulinal band in front of femmr... $R$. r. austricola.
Head acuminate but shortor, entering the length theee times; males with external vocal vesicles; spots smaller, m.t \&) distinctly yellow bordered; cross-lars of tibia generally intermpted ; a longitndinal band on the front of the thigh.
R. v. virescens.

Head shorter and more obtuse, entering the length three and a half times; males without or with rudimental external voral vesicles; dorsal spots larger, widely yellow bordered; tibial cross-bands complete ; no longitndinal bad on the front of the thigh. R. v. brachy cephala.

The last-uamed subspecies is the one I culled $R$. $v$. berlanderi, but it turns out that the trpical specimens of that species belong to the sub. species Virescens. The latter is the Rana utricularia of Harlan, but it is also the true $R$. virescens of Kalm.

The characters which distinguish the above subspecies are not without exceptions. Some specimens (No. 1337-2) from Wheatland, Ind., are intermediate in the length of the heal between the longer and shorter for:ns. Quite trustworthy is the non-barring of the tibia in sepamating the $R$. r. sphenocephala, but it is less constant in the $R$. $v$. vircscens. Thus in the $k$. $r$. virescens two specimens ( 3431 ) from Saint Lomis, Mo., and one ( 3429 ) from ( B ramd betomr, Ill., have two completo tibial cross-bars, and No. :330? has threr; No. 10016 has only one. In the $R$. r. brachycephala there are two me thee such bars, bat in the following specimens there is hat one complete, ar all are intermpted : Nos. $4794,3427,3418,9998,8499,119 \%$. The spots are smatler, and like the
larger spotted Virescens in $8501,3295,9317$, and 3326 . In 4548, from Mexico, the nose is acute as in $k$. $v$. virescens.

This species has the widest range of any North American frog. It is fimm from the Atlantie coast to the Sierra Nevada Mommtains, and from A thabasca Lake, in the north, to Gnatemala inelnsive to the sonth. It does not ocenr on the Pacific coast. The common Mexican form $R$. $i$. austricola Cope has been misnamed $R$. lccontei by most molern writers. The latter name belongs to the $R$. Araytoni

Mr. Garman has in the bulletin of the Essex Institute called attention to the fact that the name R. halecina, by which this species is generally known, which is supposed to have been given by Kalm, does not occur in the writings of that anthor, who really calls it R. virescens. In a letter to me he states the case as follows. He begius with a quotation from Kalm :

Eu Resa til Norra A nerica, nir, 1761, p. 46. Deras fîtg îr smutsig gro̊n, stro̊d hâr och dâr mod brunaktigat thaskar.

Detorde kunna kallas: Liana virescens plantis tetradactslis fissis, palmis pentadactylis semipalmatis, macula depressa fusca pone oculnu.

The paragraph from which the above is quoted begins with "Sillhăppetåssor kallades hâr af de Srenska en art af grodor," ete. The name Rana helecina does not oceur in the text. The first appearance of this name that ocenrs to me is in "Der Naturfurscher," xvin, 1782, p. 185.

Schreber here figures the species, on Plate iv, so well, there can be no mistake. H: refers to the synonymy as follows:

Der Pipfrosch, Rana pipiens, S. Tab. iv. Rana aquatica. Catesb., Carolin., 2, D. 70, tab. 70. Klein., Qucul'ul', p. 119.

Rana virescens, plantis (mnss heissen: palmis) tetradactylis fissis, palmis (muss heissen: piantis), pentadactylis semipalmatis; maenla depressa fusca pone oculum. Kalm Resa til Norra Anerica, tom. 3, p. 46.

Rana halecina, Sill-hoppetossor, Kalm, l. c., p. 45.
Where Schreber gets his Ranu halecina from Kalm, I do not know. It is not in the Resa of Halle, 1753-1761. We do not find it in the translation by Forster, 17 ien in $^{\text {in }}$ English. Possibly it may oceur in the trauslation by Murray, Göttingen, 1754-'64, Beschreibung der Reise, etc., which is not at hand.

## Rana vircscens sphenocephala Cope.

## Rana oxyrlynncha Hallow. Procecd. Ac. Phila. (15í6), p. 14.. Not of Sundevall.

The trpical forms of this species come from Georgia and Florida. These look like a different species from that which is fomm thronghone the interior of the continent, and represent the R. oxyrkyncha of Habllowell. I describe a specimen from the former State.

Viewed from above, the mazale is elongate and acominate, and the narrow apex is rombled amd projects well beyond the lower jaw. The nostril is at a point halfow between it and the anterior border of the orbit. The canthus rostrales are well within the plate of the lips,
and are nearly parallel. The interorbital space is considerably narrower than the width of a superior eyelid. The tympanic disk is round and is a little larger than the eye. The romerine teeth form transerse patches entirely between the choanæ; that is, their posterior edges do not reach the line connecting the posterior borders of the choanæ. The ostia pharyngea are considerably smaller than the choanæ.

The first is considerably louger than the second finger and equals the fourth. The heel reaches eight or ten millimeters beyond the end of the nose. The palmation is rather narrow and leaves three phalanges of the fourth toe free. The internal cmeiform tubercle is small, but is prominent, and has an acute edge. No external tubercle.

Between the dorsolateral dermal folds there are, on the dursal region, four thin dorsal plice. On the pelvic region the external two are risdimental, while the middle pair are distinct, and near together or on each side of the urostyle.
In this specimeu the dorsal spots are suboval, are rather large, and are not yellow bordered. The dorsolateral fold is yellowish-brown, and there is a series of brown spots of irregular size, but smaller than the dorsals, just exterior to it. Below these the sides become yellowish, like the belly, and have small brown spots. A dark- brown band extends from the nostril to the orbit, and is continued from the latter round the posterior border of the tympanic disk. A similar band extends from the infe-


Fig. 99. Rana virescens sphenocephala. No. 11916. Nashville, Ga.; $\ddagger$.
rior edge of the orbit to the lower edge of the eardrum. The lips are brown, with small yellowish spots, and the superior brown is bounded above by a narrow yellow line, which commences below the front of the orbit and continues below the tympanic drum to above the posterior edge of the humerus. Below, everywhere light yellowish, unsputted. Posterior faces of femora brown, with paler coarse vermiculations. Femur with three brown spots above, and a longitudinal brown band
connecting the external with the groin anterionly. This band is not present in all of the individuals of this form. Fonr bromn spots on the anterior and on the posterior edges of the tibia, leaving the greater part of the upper surface miform light brown. Two brown spots on the tarsus and two on the external metatarsus. A brown band on the hamerus cosering the elbow, one spot on the back and one on the front part of the forearm.

## Measurements of No. 11916.

M.Length of head and body ..... 075
Width of head at posterior edges of tympana ..... 025
Lengtly of head to posterior edges of tympana ..... 027
Length of fore limb ..... 036
Length of fore foot ..... 014
Length of hivd limb to groin ..... $1: 0$
Length of tibia ..... 039
Length of tarsus ..... 022
Length of remainder of foot ..... $0: 38$

Rana virescens sphenocephala Cope.

| Catalogne number. | No. of нрее. | Locality. | When collected. | From whom rectived | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 979 | 1 | Fort Snelling, Minn..... |  | Dr. Geor. Suckley | Alcoholic. |
| 11916 | 1 | Nasliville, Gat. | 1880 | W.J. T:alor |  |
| 3426 | 7 | Prairje Mer louge, La |  | James latio | 1). |
| 11477 | 1 | Saint Simon's Infand, Ga |  | J. 1'. P'astell | 10. |
| 11950 |  | Whamalad, Ind ........ |  | Rubt. Ridsway | Do. |
| 3689 | 12 | Liberty Comms, G |  | Dr. Wr. L. Jonis | 1). |
|  |  | N. W OHleans Li Georgiana, Fla. |  | Dr. li. W. sclufeli | Do. |

Rana vircscens virescens Kalm (Cope).
This subspecies differs from the $R$. $v$. sphenocephald in the relatively shorter head, being exactly intermediate between that form aud the $h$. $v$. brachycephala in this respect. The hind legs are also a little shorter, the heel reaching exactly the end of the mazale. The mazzle is also rather shorter, and the dimensions generally are rather smaller. The web is rather larger, as the antepemultimate phalange is widely margined, so that two phalanges only can be said to be entirely free. The spots are rather smaller, and separated by wider intervals.

In the coloration may be noted as characteristic the presence of a longitudinal brown band on the front of the thigh, in front of the spots. This is rarely absent. Less constant is the presence of a brown longitudinal stripe on the external edge of the tibia. Then there is alway present a longitudinal brown band on the front of the hmmerus, commencing proximally and varying in length.

Dr. Holbrook describes the colors in life as follows :
Body green above, with ovate spots of dark brown margined with yellow; fellowish-white beueath.

1951-Bull. $34-26$

This is one of our most beantiful species. There is an ovate black spot on the top of each orbit; a very bright bronze line* begins at the nose and runs to the eye; a second line of yellowish-white extends from the nose to the shoulder; the latter is less extensive in the male animal, ending at the rocal sac. The upper jaw is dark colored, with several yellowish-white spots; the lower jaw is almost white. The eyes are large aud prominent; the pupil is black; the iris of a brilliant golden color, with a longitudinal black band passing through it. The tympauum is finely bronzed, with a yellowish spot ou its center. The superior surface of the body is bright yellowish-green, marked with ovate spots of dark olive margined with bright yellow; these spots are disposed in two rows on the back, and in two others less distinct and less extensive on the sides. From the posterior part of each orbit runs an elerated line or cutaneous fold of a bright yellow, terminating near the posterior extremity of the body. The inferior surface is silver-white at the throat and yellowish-white on the abdomen. The anterior extremitics are bronze green above, marked with several blotehes of dark olive, one of which is very regularly fonnd at the elbow; their inferior surface is whitish. The posterior extremities are bright green above, marked with dark olive oblong blotches and transverse bars; the inferior surface is pale flesh color and quite smooth, except at the posterior part of the thigh, where it is granulated.


Fig. 100. Rana virescens virescens. No. 8869 Tickfau, Georgia; $\}$.
This species is especially an intabitant of stramps. It is found in great numbers in those that border the large crecks and rivers of the Atlantic coast, and is comparatively rare inland, where it gives place to other species. With the Acris gryllus, it is the first species heard in spring, and although its roice is not lomd, the noise produced by thonsands of them is deafening when heard close at hand, and is transmitted through the atmosphere for many miles. It may be imitated by the syllables "chock, chock, chock." As a harbinger of spring it is always welcome.

[^55]This species is found along the eastern and sonthern coasts from Maine to the mouth of the Rio Grande, and np the Mississippi to southern Illinois, and in the intermediate country. On the plains and westward and southwarl it is replaced by the following subspecies.
The Rana virescens virescens is the $R$. utricularia of Harlan.
Rana virescens virescens Kalm.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receivcd. | Nature of specinen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4698 | 3 | Washington, D.C |  | John Little. | Alcoholic. |
| 3414 | 2 | Riceborough, Ga...... |  | Prot. S. F. Baird .......... | Do. |
| 3428 | 8 | Pensacola, Fla ........ |  | Dr. J. F. Hammond, U. S. A. | Do. |
| 8079 | 7 | Southern Illinois. |  | R. Kennicott ........ | Do. |
| 3323 | 2 | Fort Smith, Ark |  | Dr. B. F. Shumard | Do. |
| 3430 | 1 | Russellville, Ky ........ |  | Dr. Bibb Brial | Do. |
| 3419 | 7 | Carlisle, Pa <br> Saint Louis, Mo |  | Prof. S. F. Baird ... | Do. |
| 3431 <br> 3425 | 10 3 | Saint Louis, Mo. <br> Charleston, S. C |  | Dr. G. Engelmann Dr. C. Girard ..... | Do. |
| 8497 | 5 | Taos, N. Mex. |  | Dr. H. C. Yarrow | Do. |
| 9343 | 2 | AthallascaRiver. British Ancrica. |  | R. Kennicott | Do. |
| 3436 | 1 | Tar borough, N. C ..... |  | J. L. Bridger | Do. |
| 8239 | 1 | Cairo, Ill....... |  |  | Do. |
| 4830 | 1 | Brookville, Pa |  | Dr. R. Haymond.. | Do. |
| 8869 | 1 | Tickfaw, La | Dec. 22,1876 | Bean and Maxson | Do. |
| 3429 9342 | $\stackrel{2}{2}$ | Grand Detour, Ill <br> Grand Cotean, La |  | Dr. P. R. Hoy St. Charlcs Coll. | Do. |
| 9342 3450 | 2 | Grand Cotean, La...... |  | St. Charles Coll <br> R. Kennicott . | Do. Do. |
| 3442 | 2 | Saint Augustine, Fla |  | E. K. Smith .......... | Do. |
| 4871 | 3 | Mexico ................. |  | Lieut. B. Conch, U. S. A | Do. |
| 9257 | 2 | Washiugton, D. C........ | 1877 | Dr. T. H. Bean. | Do. |
| 9673 | 2 | Cairo. Ill |  | R. Kennicott | Do. |
| 2560 | 1 | Southern Illinois |  |  | Do. |
| 3403 | 1 | Madrid, N. Y..... ..... |  | P. R. Ноу | Do. |
| 13593 | 1 | (?) ........... |  | (?) ........... | Do. |
| 13372 | 2 | Wheatland, Ind |  | Robt. Ridgway | Do. |
| 14552 | 1 | Dallas, Tex |  | E. D. Cope .... | Do. |
| 3282 11480 | 10 | Matamoros, Mexico 1? |  | Lieut. B. Couch | Do. |
| 11480 10046 | 1 2 | (?) <br> Mount Carmel, Ill |  | Rolit. $R$ iulgway | Do. |
| 10047 | 1 | Moudo |  | Rout. Rol. | Do. |
| ¿1525 | 4 | New Marrid, Mo....... |  | (?) | Do. |
| 11907 | 2 | Nashville, Ga.... | 1880 | W. J. Taylor | Do. |
| 11967 | 2 | U.S. Arsenal, Washiug. ton, D.C. | 1879 | Dr. T. H. Bean | Do. |
| 3692 | 3 | Indian River, Fla. |  | G. Wurdemann. | Do. |

## Rana virescens brachycephala Cope.

Rana hulecina berlandieri Cope, Check List, Batr., Reptil. N. Amer., p. 32; nec Rana berlaudieri, Bairl.
Rana halecina Boulenger, Cat. Batr. Sal. Brit. Mus., ed. ir, p. 41; Brocchi, Mision Sci. de Mexique Batraciens, p. 10.
This is the most widely-distributed form of the Rana virescens, as may be seen by the aceompanying list of specimens. It differs from the $R$. $v$. virescens by appreciable characters, but these occasionally present such exceptions, that I am unable to separate them as a species, as has been done by Mr. Boulenger. The characters already ascribed to the species belong to this form, but the further differences are as follows:

I select as typical a specimen from the Yellowstone River (No. 3363). The mazzle is less elongate, and the extended hind leg brings the heel
to its apex, but not beyond. The tympanic disk is two-thirds the diameter of the eye. The head is shorter, entering the length of the head and body three and a half times. The dorsal dermal plice are thicker and there are but two between the dorsolaterals; usually, however, there are four, as in the other sub-species. First finger longer than second. Web learing two free phalanges of the fourth digit, but so repand as to give the antepenultimate phalange only a wide border. The inner cuneiform tubercle is rather small, but has a rather prominent compressed edge. External tubercle, none. A thick tarsal fold. There are no large warts on the skin, but there are occasionally minute warts and folds on the superior face of the tibia.


Fig. 101. Rane virescens brachyechhath, No. 10922. Fort Walla Walla, Wash. Ter.; $\frac{1}{1}$.
In life the color of the superior surfices is green. The dorsolateral ridges are light yellow, and so is a stripe from the end of the muzzle, which passes abore the lip and below the eye and tympanm to above the middle of the hamerns. There are two rows of large, romnded dorsal spots between the dorsolateral ridges, which are edged with greenish-yellow. There are two similar rows on each side, of which the inferior is the smaller, which are not regularly arranged. There is a spot on each eyelid and one on the end of the nose above. There is a light hand, frequently broken into spots near the edge of the upper lip. There is a brown spont on the elbow and one on the front of the cubitus. The bands seen on the front of humerns in $R . v$. viresechs is here an illy defined spot. On the superior face of the femm there are three brown spots, but there is no longitudinal brown band in front of these spots, as is usual in the two other subspecies of the R. vireseens. There are three complete wide brown cross-bands on the femm, and sometimes four. Frequently there are one or two spons on one or hoth fices of the tibia besides the three bands. The posterior face of the femur is green-ish-yellow, coarsely marbled with brown. All the spots and bands are uarrowly yellow-edsel. Luferior surfaces light yellow, unspotted.
Measurements of No. 3363.M.
Length of head and body ..... 090
Width of head at posterior edges of tympana ..... 029
Length of head to posterior edges of tympana ..... 023
Length of fore leg ..... 043
Length of fore foot ..... 019
Length of hind leg to groin ..... 153
Length of tibia ..... 028
Length of tarsus. ..... 024
Length of remainder of foot ..... 044

This is the common and only speeies of Rana found between the eastern part of the Great Plains and the Sierra Nevada Monntains. It is common wherever there is sufficient water to supply its necessities. In some of the Western towns it is eaten in the restanrants, and I have not unfrequently found it excellent food when the larder of my expeditions in search of fossils has run low.

Rana vireseens brachyeephala Cope.

| Catalogne number. | No. of spec. | Locality. | When colleeted. | From whom reccived. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3294 | 1 | Albuquerque, N. Mex |  | AI. C. B. R. Kenuerly | Alcoholic. |
| 3293 | 7 | Brownsville, Tex. |  | Capto s. Vin Vliet, U.s. A | 110. |
| 3305 | 3 | Leon River, Tex....... |  | 1r. C. B. R. Kenuerly | Do. |
| 3296 | 6 | -.....do ............... |  |  | Do. |
| 3300 | 1 | San Antonio, Tex....... |  |  | Do. |
| 3295 |  | Chacho Escondido ..... |  | Lieut. A. Couch, U.S. A .. | Do. |
| 3302 | 1 | San Pedro, Gila River, N. Mex. |  | J. H. Clark | Do. |
| 8501 | 2 | San Juan River, N. Mox. |  | Lieut. R. Biruie, U.S. A .. | Do. |
| 8498 | 1 | Taos, N. Mex |  | W. II. sherid | Нo. |
| 8499 | 1 | Abiquiu, N. Mex. |  | Dr. O. Loetr | Do. |
| 8500 5456 | 1 | Samta Fé, N. Mex . . . . . | Sept. -, 1874 | . do. | Ho. |
| 5456 3375 | 1 | Fort 13rilger, W yo...... Fort Dillas, |  | Dr. Geo Suchluy, U.S. | Do. |
| 5273 | 1 | Fort Buchauan, Ariz |  | Dr. B. J. D. Irwiu, U. S. A | Do. |
| 3356 | 1 | Platte River, Nebr |  | W.S. Wood | Do. |
| 3288 | 2 | Red Bank Creek |  | H. B. Mullhausen | Do. |
| 3342 | 5 | Laramie River...... |  | W.s. Wood ..... | Jo. |
| 9349 | 2 | Fort Union, N. Mex .... |  | H. B. Mollhausen | Do. |
| 3380 | 1 | Between Fort Benton and Fort Union, N. Mex. |  |  | Do. |
| 9347 | 1 | Colorado River |  | H. B. Mollhausen. | Do. |
| 9346 | 1 | Sand Hills, Ner. |  | Dr. F. V. Mayden | Do. |
| 3364 | 5 | Medicine Bow Creek |  | W. S. Wood | Do. |
| 3363 3350 | 5 1 | Yellowstone River |  | Dr. Fi. V. Hayden | Do. |
| 9339 | 1 | South Fork |  |  | Do. |
| 3341 | 1 | Salt Lake Valley, Utah |  | J. S Browne. | Do. |
| 3351 |  | Fort Pierre, Nebr | --- | T. Culbertsun | Do. |
| 3353 | 3 | 240 miles from Fort |  | W.s. Weod . | Do. |
| 3439 | 4 | Dunleith, 111 |  | 1)r. C. B. I. Keunerly ..... | Do. |
| 4548 | 1 | Valley of Mexico |  | J. Potts ................ |  |
| 3290 3365 | 1 | Healiwaters of 'Trinity. Chihuahna, Mexicu |  | Capt Johio Vour, U. S. A. | Do. |
| 33348 | 11 | Chihuahai, Mexicu ... <br> Pole Creck of Platte.... |  | 1m:C. B. R. Kennerly <br> W.s Wonl | Do. |
| 8154 | , | Utals | 1872 | 11. 11. Y: Yrom | Do. |
| 9944 | 1 | Fort Garland, Colo |  | 11. W. Henshaw | Do. |
| 9344 | 3 | Tass, N. Mex . . . . . . . . . | Aug. -, 1874 | Dr. II. C. Iarrow | Do. |
| 8101 | $\stackrel{2}{1}$ |  | 1872 | do. | Do. |
| 3413 3416 | 1 | Purt luron, Mich |  | lo | Do. |
| 3416 3421 | 5 | Quebre, Canada... |  |  | Do. |
| 3427 | 3 | Ruot liver, Wis |  |  | Do. |
| 4528 | 10 | liell Rivar of Nortlı |  | R. Krnnicott... | Do. |
| 8090 | 10 | Provo, Utah | 1872 | Dr. H. C. Yarrow. | Do. |

Rana rirescens brachycephala Cope-Continued.

| Catalogue number. | No of spec. | Locality. | When collected. | From whom received. | Naturas of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4794 | 2 | Nebraska. |  | Dr. Geo. Suckley; U. S. A | Alcoholic. |
| 3325 | 4 | Fost Pierre, Nebr. |  | Dr. Erans ...... | Do. |
| 9672 | 1 | Camp Crittenden, Ariz. | Aug. -, 1874 | J. H. Rutter. | Do. |
| 9382 | 1 | Lake Superior........... |  | R. Kennicott | Do. |
| 14500 | 4 | (?) ...... |  | (?) | Do. |
| 14501 | 1 | Bedford, Iowa |  | Jordan \& Meek. ... ...... | Do. |
| 3349 | 8 | Upper Mississipli and Yellowstone. |  | Dr. F. V. Hayden. . . . . . . . | Do. |
| 9753 | 1 | Welster City, Iowa.... | Misy -, 1878 | Chas. Aldrich ............. | Do. |
| 3326 | 1 | Fort Rinley. Miun... |  | Dr. J. Head, U. S. A . . . . . . | Do. |
| 8373 | 5 | Sebec Pond, Me. | Oct. 24, 1873 | H. A. Leonard.. | Do. |
| 9339 | 1 | South Fork. |  | Dr. F. V. Has den. . . . . . . . | Do. |
| 8378 | 5 | Sebec L'ond, Mo |  | H. A. Leonard.............. | Do. |
| 9343 | 2 | A liquiu, N. Mex |  | Dr. O. Loew .............. | Do. |
| 3418 | 2 | Columbus, S. C . ......... |  | Prof. L. Lesquereux .... | Do. |
| 9998 | 1 | Middletown, Conn ..... |  | F. D. Shul ............ | Do. |
| 12585 | 4 | John Day River, Oregon |  | Capt. Chas. Bendire, U. S. A. | Do. |
| 11926 | 2 | N. Boundary Survey |  | Dr. F. Coures, U. S. A...... | Do. |
| 14173 | 1 | Olney, 111 | 1885 | John and Chas. Walker .. | Do. |
| 3422 | 6 | Framinghan, Mass |  | Prot. S. F. Baird. | Do. |
| 9738 | 1 | Webster City, Iowa | 1878 | Chas. Aldrich ... | Do. |
| 9346 | 1 | Saud Hills, Nebr. |  | Dr. F. V. Hayden | Do. |
| 3320 | 2 | Fort Union, Dak. |  | E. J. Denig................. | No. |
| 5061 | 1 | South Pitss. |  | C. McCartly . . . . . . . . . . . | Do. |
| 3361 | 3 | Pole Cresk, Nebr |  | W.S. Wood | Do. |
| 3368 | 1 | Platte Rirer |  | . do | Do. |
| 9459 | 2 | Head of Yellorstone. |  | Lieut. F. V. Hayden. | Do. |
| 11490 | 7 | N. W. Boundary. |  | Dr. E. Cones................ | Do. |

RANA PALUSTRIS Le Conte.*

Rana palustris Le Conte, Ann. Lyc. N. Y.I, p. 282; Harlan, Sillin. Journ., x, p. 59, and Journ., Ac. Phila., v, p. 339 ; Dum. \& Bibr., p. 356; Holbr., N. Amer. Herp., Iv. p. 95 , Pl. 23; De Kay, N. Y. Faun., Reptil. p. 62, Pl. 62. tig. 6; Le Conte, Proceel. Ac. Phila., 1855, p. 424 ; Wcid., Nova Acta Ac. Leop., Xxxil, p. 111; Giinth., Cat., p. 14.

Rana pardalis Harlan, Amer. Journ., x p. 50.
This species approaches near to the subspecies brachycephala of the Rana virescens, although the distiuction from the typical subspecies can be readily perceived. In general it displays little variation of characters, excepting in the length of the bind legs. Here about half the specimens show a length which allows the heel to reach the end of the muzzle, while in the other half it attains to different points from the front of the orbit anteriorly (e.g. No. 3401).

The muzzle is always more obtuse than in the $R$. virescens virescens, and generally a little more so than in the $R$. v. brachycephaln, but not always. I describe a specimen from Garrison's, New York, as typical. Muzzle flat abore; rather truncate in profile, giving the head, wlien viewed from abore, a broadly obtuse acuminate outline. The nostril is a little nearer the end of the muzzle than to the orbit. The tympanic disk is twothirds the diameter of the eye-fissure. The vomerine teeth are in transverse patches between the nares, but the posterior edge line projects behind that which comects the posterior elges of the choanz. The ostia pharyngea are larger than the choance. There are no external
vocal vesicles. A glandular ridge extends from the midule of the inferior edge of the tympanic drum to a point above the midde of the humerns. There are four thick glandular folds on the back, the external or dorsolateral commencing above the tympanum. The thickness of these ridges is much greater than in the $R$. virescens virescens, but in some specimens of the $h . v$. brachycephata they approach very closely in form, and are in fact not distinguishable from those of individuals of this species where the ridges are narrower than usual. In a few individuals, of which the specimen described is one, there is another pair of ridges near the middle line of the back. In all the specimens these a repreresented in the pelvic region by a pair of approximated ridges on each side of the urostyle.

The interorbital width is two-thirds the width of an eyelid.
The tubercles of the palm are well developed. The first (second) finger is longer than the second, and equal to the fourth. The internal cmeiform tubercle is small and weak, and is without aeute edge. There is a trace of au external tubercle. The toes are not fully webbed; the edges of the web are deeply scalloped, leaving two phalanges of the fourth toe free, an 1 learing ouly a narrow border to the distal half of the antepenultimate phalange.

Fig. 102. Rana palustris. No. 13403. Garrison's, N. Y.; 1.
Measurements of No. 13403.
Length of head and body
Wialth of head at posterior edges of tympana ..... 027
Length of head to posterior edges of tympana ..... 023
Length of fore limb ..... 037
Length of fore foot ..... 016
Length of hind leg to groin ..... 115
Length of tibia ..... 049
Lengilh of tarsus ..... 020
Leugth of remainder of foot ..... 03931.

Dr. Holbrook thus describes the colors in life :
Body pale brown above, with two longitudinal rows of square spots of a dark brown color on the back and ou each flauk; yellowish-white beneath; posterior half of the thighs bright yellow, mottled with black.
The head has a dark brown spot on the top of each orbit and another near the snout, with an indistinct dark line extending from the nostrils to the orbit of the eye. The upper jaw is yellowish-white, spotted with black; the lower is white, and spotted in like manner. The eyes are large and prominent, the pupil black, with the iris of a golden color; the tympanum is bronze, with a spot of a darker shade in the middle. A yellow line begins at the eye and rums below the tympanum to the base of the auterior extremities. The superior surface of the body is pale brown, almost covered by oblong square spots of very dark brown, arranged symmetrically in two lines aloug the back. We sometimes find two of these squares confluent. A bright-yellow longitudinal line, but not raised in a cutaneons fold, as in Rana virescens begius behind each orbit and extends to the posterior extremity of the body. Below this line, on each flank, are two other rows of square brown spots, the superior row beginning on a level with and behind the tympanum, the inferior row is less regular, frequently consisting ouly of suall spots, disposed without order. The interior surface of the neck and abdomen is yellowish-white, except at the posterior part, where the yellow is more decided. The anterior cextremities are yellowishbrown above, marked with a few very dark blotches; their lower surface is silver-white; the fingers are four in number, free, of a light brown color on the upper and yellow on the lower surface. The posterior extremities are brownish above, with transverse bands of dark brown continued to the toes. The inferior and posterior parts of the thigh are gramlated, and of a bright yellow, with black spots. The inferior surface of the leg and tarsus is yellow.

This species is characteristic of the eastern district of North America, as it ceases to be found so soon as the Central Plans are reached. It ranges this entire district, extending as far nortlu as Hudson's Bay.

Iu its habits it is not gregarious like the $R$. virescens virescens, and is even more solitary than the $R$. $v$. brachycephala. It pefers cold spriugs and streamlets, but is of all our frogs the most frequently seen in the grass. It is the most abundant species in the Alleghany Monntains. Next to the $R$. silvatica, it takes the longest leaps of any of our speciesIts note is a low prolonged croak, somewhat resembling the sound produced by tearing some coarse material.

Rana palustris Le Conte.

| Catalogne numbir. | No of spre. | Locality | When cullected. | From whom received. | Naturo of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 340.5 | 9 | Calisle, Pa |  | Prol. S. F. Paird | Ateoholic. |
| 3412 | 10 |  |  | . . do |  |
| 3410 | 1 | Mambild Pa |  | $\overbrace{}^{\text {do }}$ | 1 \%o. |
| 3411 | $\stackrel{2}{2}$ | Philauddphia, I't.... |  | J. 11. liolmard .. | Do. |
| $310 \pm$ 3107 | 1 | Framingham, Mass ${ }_{\text {Washer }}$ |  | 1'of. S. F. Bar rdi... Col. B. L. W. Wailes | Do. |
| 3107 | 1 | Washington County, Miss. |  | Col. D. L. C. Wailes | Do. |
| 3400 | 1 | Westiont, N. Y |  | Prof. S. F. Bairl | Do. |
| 8345 | 1 | Kinston, N. ${ }^{\text {a }}$ |  | J. W. Milner | Do. |
| $? 402$ | 4 | Stint Louis. Mu. |  | 1)r. (eate. Emgrlmann | $1{ }^{1} 0$. |
| 3419 | + | Rant River, Wis | July - 1883 | Prot. S. F. Bairs | Do. |
| 3106 | 1 | Whtroit River, Mich | Ang. -, 1853 | -...do | 110. |
| 3401 | 3 | Pratio Mer Lamare, La |  | Jas. Fintiv - .-.... | 1 O. |
| 9340 | 6 | Prarl liver, Miss. |  | Misa Ifrlen Tumison | Do. |
| 890.5 | 1 | Painimplye Pat | Apr. 12, 1877 | Ifr T, II. Bran | bo. |
| 5153 | 1 | Toldolo, Ohin |  | J. B. 'Trmul | Do. |
| 315 | 1 | Tererspings. Tenn . |  | 1rof. It Ow-n | Do. |
| 3138 | , | West lhilatelplia, la. |  | W. Whomd | Do. |
| 9388 | 3 | Upper Wisemsin liver. |  | 12. Remmicott. | Do. |
| 3417 | 1 | Irestoncomity, Va . |  | Prol. E. I: Andrews | Do. |
| 5991 | 3 | James Bas, N. 13. |  | ( D Dresher | Do. |
| 9492 | 1 | (?) |  |  | Do. |
| $33 \geq 8$ | 1 | Quasulnetom. Iowa |  | E. 1: Bidwell | $\mathrm{D}_{1}$ |
| 13113 | 1 | (iarison's, N. $\mathrm{I}^{\text {. }}$ |  | T. linosevelilt | Do. |
| 11499 | 1 | (3) $\ldots \ldots \ldots$. . |  | (?) | 1 \%. |

## RANA AREOLATA BrI, de Gidd.

Proceed. Ac. Phila., l-iv, ן. 17: ; Bairl, U. S. Mcx. Bomul. Surv., Rep-
 $185^{\circ}, 11.41$.

Head larg ? ; vomerime teeth opposite posterior edge of choance; tympanie disk two thirds the dianocter of eye or less. A strong glandular dorsolateral dermal fold on each side, and momerons shorter ones on the back between them. First finger longer than si cond. Three phalanges of front toe free. Males with an external rocal resicle. Heel of extemderl himd leg reaching enly to eye. Palmation shomt. Grommecolor light, with momerons rommed spots on the back amd sides. Upper lips spotterl, not light or clark bordered above or on the margin. IEinder legs with mmerons brown cross bars. Lower smfaces mepotted.

This well-marked species is related to the $R$. prelustris, but is easily distinguished. It presents three well-marked snbspecies, whose characters I how give:
Length of heal to postrior elge of tympana three times in total; trmpanic disk romul ; dorsal spots well scparated; nostril equidistant between end of muzale and eye......... .............................................................. li. v. areolata.
Length of heal two and a half times in the total; tympanc disk a vertical oval; dorsal spots well separatel; nostril ernidistant between ead of mazze and eye li. r. ursopus.

Length of head ome-third of total ; tymbanic risk variahle; dusal spots so large ay to leave only circles of the light eromm-color; nostril nearer eye than end of muzzle in the yomng R. r. circulosa.

But few specimens of these suhspecies have been as yet fouml, but the characters presented in the above table will appear of importance
to those familiar with the subject. It is not impossible that one or the other of the subspecies may come to be recognized as species, but I scarcely anticipate that such will be the case. As a whole, the Rana areolata is pretty well distinguished by its ver; short palmation. Nevertheless, I have seen a specimen from Guatemala with similar posterior $\cdot$ feet, which is otherwise not different from the $R$. virescens.

Rana areolata areolata Bd. \& Gird.
Rana areolata Baird \& Gırard, Proceed. Ac. Phila., 1852, p. 173 ; Baird, U. S. Mex. Bound. Surv., Pl. 36, figs. 11, 12.


General shape slender and limbs elongated. The heel of the extended hind leg reaches half-way between orbit and nostril. Heal about as broad as long; quite deep. Sides oblique, with the nostrils, as viewed from the side of heal oblique, a little below the upper protile or canthus rostralis, and with a marginal papilla. A slight exavation between nostril and eye, continned under the latter, along upper edge of maxillary, to the tympanm, but searcely below it. Top of the head slightly gronved, or concave lougitudiually. Eyes large and prominent; in the middle third of the side of the head; nostril midway between it and tip of smont. Tympanum cirenlar, not two thirds of the diameter of the eye, not extending back to angle of jaw, but nearer this than to eye, ucarly smonth centrally. Upper maxillary large; no glandular ridge of skin on it. Very well-developed roeal resicles on each side, their centers opposite the posterior end of mandible.

Internal nostrils very large, open, transversely elongate, with a very shallow groove extending to the side of the jaw. The vomerine teeth are well developed, on two oblique protuberances, nearly in contact behind, and placed between the nostrils, the posterior edges of which are about opposite the anterior canthus of the eye. The tongue is large, flesly, longer than broad, with the corma small and wide apart. The Eustachian apertures are morlerate.

The upper parts generally are smooth, the sides apharently somewhat corrugated (searcely pustukar), thongh how mueh is owing to the abohol can not be easily determined. The posterior, inferior, and superior faces of the thighs are granulated; this, however, not extending to the body, which is: inferiorly entirely smooth. A rather broad but low fold of skin may be traced from above the tympanm along the back nearly to the thigh. A small ridge behind the tympanum.

The inner toe does not reach much beyond the middle of the metatarsal of the fourth. The web is but slig!tty developed; it extends fully only from the penultimate articulation of the outer to the antepenultimate of the fourth toe; from this to the penultimate of the thirl; from the middle of the third phalange of this (comnting from tip) to the second articulation of second; from third joint of second to first joint of fifth; in each case extending a little beyond as a narrow marginal membrane. The terminal two and one haf phalanges of the longest toe, however, are almost entirely free, and one and one-half of the rest. The membrane is more ent ont on the inner edges of the joints than the outer, by nearly one phalange. The cuneiform boue is slightly developed. No tubercle opposite on the outer edge of sole.

Upper parts brownish-olive, minutely and obsoletely mottled with lighter. The entire upper parts and sides are covered by a number of dark brown blotches, with light sellowish ceuter; they are subeircular, and smaller than the tympanam. They are most distinct and crowded anteriorly, and do not iuvade the outer ridges of skin. The groundcolor of the upper surface of the fore limbs and the sides of the head is yellowish brown, with rermienlation of brown, as also some distinet blotches of the same on the former. The hind legs have numerous parallel and transcerse dark brown bars, three or four on the thighs, four or five on the tibia, three on the tarsus, and several on the edge of the foot. These bars are broader than their interspaces, and are margined by a narrow sellowish line, so that the interval between two adjacent light lines exhibits a brown gromid lighter than the dark bars just described, and also transverse. Indeed, they may be described as :arrower bars of lighter tint hetween the dark bars, parallel to them, and separated by narrow yellowish brown lines. The lower parts are yellowish-white, unspotted, inchading the interior and inferior surfaces of the limbs. A few scattered blotches are seen on the throat and ehin. The buttocks are yellowish white, with a few obsolete dark blotehes, smallest on the posterior ellge. The central third of the tympanum is white.


Rana areolata arevlata Baird \& Girard.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3304 | 1 | Indianola, Tex. |  | J. H. Clark | Alcohollc. |
| 11897 | 1 | Nashville, Ga. | 1880 | W. J. Taylor | Do. |

## Rana areolata aesopus Cope.

Proceed. Amer. Philosoph. Soc., 1886, p. 517.
This singular form may be known at once by the short and squat form of the body as compared with the size of the hearl, resembling in this some of the Australian Cystignathidæ.
The muzzle is not prominent, and does not project beyond the upper lip. The canthus rostrales are straight, and the top of the head is flat. The tympanic disk is a vertical oral, of which the short diameter is one-half the length of the eye. The edge of the vomerine patches of teeth are a little posterior to the line comnecting the posterior border of the nares. The latter are about as large as the ostia pharyngea.
The dorsolateral glandular ridge is thick, and extends: little beyond the sacral diapophysis. There are six or seven rows of short longitudjnal glandular tubereles in the space between them. There are similar elongate warts on the sides. The posterior and posteroinferior faces of the femora finely granular; rest of the infeior surfaces smoolh.

The first finger is longer than the second, and equals the fourth. The heel of the extended hind leg reaches to the middle of the eye. The foot is of moderate length. Three of the phalanges of the fourth digit are entirely free, and the web is excavated to opposite the middle of the first phalange, extending as a margin on each side of the distal half. The inner cunciform tuberele is uot large, and has an acute apex; no external tuberele. A slightly defined tarsal dermal ridge.

In alcohol the ground color is light brown, with the dorsolateral ridge and the inferior surfaces straw-color. The spots are a darker brown, and do not appear to hare been yellow-bordered. The dorsal spots are irregularly rounded, and are in three or four longitudinal rows. There are two rows on the top of the muzzle and head, crossing the imer edge of the eyelid. There are two spots near the external edge of each eyelid. Spots on the sides smaller, in abont four rows. The lores and upper lip are rather coarsely marbled with brown; gular region faintly speckled with the same. No band, but a spot on the front of the humerus; a spot on the elbow, and three cross lines on the fore-arm. Four narrow cross bars on the femur and five across the tibia. Three cross-bars on the external side of the tarsus and five on the external face of the fourth toe. The posterior face of the femur has numerous rounded brown spots on a light ground.


Fig. 104. Rana areolata cesopus. No. 4743. Micanopy, Fla.; 子. Measurements of No. 4743.
M.
Length of head and body ..... 062
Width of hearl at posterior edges tympana. ..... 020
Leugth of head to posterior edges tympana ..... 024
Length of fore leg ..... 026
Leugth of fore foot ..... 012
Length of hind leg to groin ..... 074
Length of tibia ..... 024
Longth of tarsus ..... 013
Length of rest of foot ..... 025

The only specimen of this subspecies which I have seen is the following:

Rana areolata asopus Cope.

| Catalogue number. | No. of spec. | Locality. | Whin collecterl. | From whom received. | Nature of speciuren. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4743 | 1 | Micanopy, Fla |  | Dr. T. II. Bean | Atoholio. |

## Rana areolata circulosa Rice and Davis.*

Rice and Davis, in Jordan Man. of Vert. East. N. Amer., ed. if, 1878, 355.
Two specimens of this form are before me and yield the following characters: Their peculiar coloration gives them an elegant appearance, and one quite different fiom that presented by any other North American Rana.

Length of head one-third of total. Heel of extended hind leg reaching to the front of the orbit; mazale rather elongate, lout little produced beyond the edge of the lip, the extremity sloping obliquely upwards and posteriorly, so as to shortell the superior plate. The nostril bas an elevated position and a suprolateral presentation; it is a little nearer the orbit than the end of the mozzle. The membranum tympani is a vertical oval, with the short diameter only half the length of the eye fissure. The heel of the extended hind legreaches to the anterior border of the orbit. The posterior edges of the vomerine patches are behind the borders of the choante.

There is a strong dorsolateral glandular ridge on each side, and between these there are from six to eight narrow glandular folds not so much broken up as in the $R$. a. cesopus, hat readily becoming indistiuct in alcohol. The dorsolateral full extends nearly to the grom. Lelow it the sides are crowded with longitudinal glandular fulds, more or less broken up.

The first finger exceeds the second and equals the fourth. The interual cuneiform tubercle is quite small, and has a free apex; no external tubercle. The web is shorter than in the other subspecies, being sealloped nearly to the line of the base of the first phalange, which it only margins for part of its length, ceasing uear the distal end.


Fig. 105. Rana areolata cireuloza. No. 278. Mus. Champaign, Ill.; $\frac{1}{2}$.
Color in spirits, light brownish-yellow or straw-color, above and below. The entire upper surface and sides are, however, so thickly covered with large reddish-brown spots as to reduce the ground color to a network, forming a pattern of numerous irregular or crenate cireles. These are in three rows between the dorsolateral ridges, which are of the light ground color for most of their length. There are no light bands or lines about the head, but the lores and upper lips are closely and rather coarsely marbled with brown and yellow. The lower lip is less distinctly marked in the same was. At the orbits there are three rows of large spots like those of the back, the exterior ones on the eyelids. The fore legs are marbled like the lores, with a faint suspicion of cross-bars. The thigh, tibia, tarsus, and external toe are cross banded with such wide brown bars, that the interspaces are very narrow and often interrupted. There are thre wide and two narrow bare on the thigh, and no longitndinal markings; there are six bars across the tibia of different widths, and three across the tarsus; inferior surfaces unspotted. The lateral spots become more sparse and more widely spaced near to the abdomen; thigh posteriorly with large brown spots, on a straw. colored ground.

Measurements of No. 9386.
Length of head and body ..... M. ..... 050
Width of head at posterior edge of tympannm
Length of head to posterior edge of tympaunm ..... 019
Length of fore leg ..... 022
Length of fore foot ..... 011
Length of hind leg to groin. ..... 073
Length of tibia ..... 024
Length of tarsus ..... 014
Length of rest of foot ..... 025

Since the above was writteu I have been able, throngh the kinduess of Professor Forbes, of the university at Champaign, Ill., to examine the type specimen of Messrs. Rice and Davis. It differs considerably from the specimens above described, as follows: The muzzle is not protuberant, so that the nostril is equidistant between the end of the muzzle and the eye, as in the subspecies A reolata. The tymmanic disk is nearly round, and its long diameter is three-fourths that of the eye. This specimen has twice the bulk. In other respects it does not differ. A very strong glandular thickening of the skin extends from the eye above the tympanum, and then descends posterior to it. The eyelid also is thickened.

Two specimens (No. 1382S) from Olney, Ill., also received since the above description was written, explain these discrepancies. The larger of the two agrees with the type in all respects, but the smaller, which about equals the type in dimensious, has the elongate muzzle of the small ones that I have described above. In both the tympana are threefourths the orbit, and in neither is it decidedly oval.

Rana areolata circulosa R. \& D.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom reccived. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 9386 \\ 13828 \end{array}$ | $\stackrel{2}{2}$ | Northern lllino Olney, 111 ..... |  | Robert Kemicott <br> John and Cliarles Walker | Aleoholic. Do. |

Rana areolata capito Le Conte.
Proceed. Ac. Phila., 1855, p. 425, Plate v.
Not having at hand the only known specimen of this form, I eopy the deseription given by Le Conte. The proportions given by this author indicate that it is intermediate in proportions between the subspecies esopus and the others. Thins the width of the head in the latter enters the length 2.33 times, and in the $R$. a: areolata three times. In $R$. a. capito it enters 2.8 times. The spots are smaller than in R. a.circulosa, but larger and more mumerous than in $R$. a. asopus and $R$. a. areolata.

Above very rough, dark gray, or slate-color, speekled with blach, with six rows of roundish rows ou the back; sides speckled and irregu.
larly marked with spots of the same form and color ; from the orbits to beyond the middle of the body rums a broad raised line or cutaneous fold, and another from the corner of the mouth to the insertion of the arm. Beneath smooth, yellowish-white, speckled, spotted, and varicd with dusky ; top of the head coarsely punctured, back and sides iuberculons. Head very large, broad, and blunt; a deep concavity between the nostrils and the eses. Iris golden, mixed with black. Tympanum of the color of the body. Lower jaw with a small protuberance or point resembling a tooth. Arms and legs above gray, speckled, and barred with black; beneath yellowish-spotted and varied with dusky, the yellowish color more decided at the axille and groins. Hind part of the thighs granulate. Fingers slightly palmate at the base; the first longer than the second. The second toe twice as long as the first.

Rana areolata capito Le Conte.
RESERVE SERIES.

| Catalogue number. | No. of spec. | Locality. | When eollected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5903 | 1 | Riceborough, Ga. |  | Miaj. J. Le Coute . | Alcoholic. |

RANA SEPTENTRIONALIS Baird.
(Plate 86.)
Proceed. Ac. Philil., 1855, p. 51.
Garnier, Ameriean Naturalist, 1883, p. 945.
Rana simuata Baird, l. c.
Body rather broad, stont, and depressed. Head rather narrow ; nostrils large, midway between tip of snout and eye. Tympanum variable, at least half the diameter of the eye. Vomerine teeth minute; the patches are on a level with the posterior margin of the inner nostrils (which are rather large), and are separated by considerable intervals. Tongue moderate, the coruma well developed.

Skin rough and irregular above and on sides; not pustular nor tuberculated ; beneath entirely smooth. buttocks but slightly granulated. A well-defined, rather broad ridge commences behind the eye and, bifureating, the short branch curres ronnd the tympanum, passes obliguely down to the insertion of the arm, thickening in its descent, and meets a similar thickening from the rictus. These two ridges are separated by a groore, which commences at the eye and runs above and behind the tympanmm. The main banch proceeds along the sides to about opposite the sacrum, where it is lost. No other ridges are to be seen.

The fore-arm is short, considerably less than the hand. The femur and tibia are about equal, less than half the leugth of body and less
than the hind foot. The first, thind, and fifth toes are equal. The terminal joint of the second toe is fre:, als are the immer edges of the terminal joints of the second and thirl, and the outer edges are margined to near the tips. The emeiform process is well developed, and the sole has no distinct tubercles.

Color above and on sides light olive, with short and coarse vermiculations of lighter, most distinct anteriorly: On the sides and lower half of the back are several subeireular, large blotehes of dark brown. Legs with few blotches; no hands. Buttocks yellow, with short vermiculate dark blotehes. Beneath uniform dull yellow. No light stripe on jaw.

Compared with specimens of $R$. clamata of the same size from the north, this species differs altogether in color, in larger eyes, longer fingers, longer but less welbed foot, ete.

|  | Inches. |  |  | Inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length of body | 1.92 | 1.00 | Hind foot | ... 1.02 | 53 |
| Fore-arm | . 28 | . 14 | Between outstretchod | arms.. 2. 76 | 1.44 |
| Hand | . 50 | - 26 | Chord of upper jaw. | -. 70 | . 36 |
| Femmr | . 97 | . 51 | Width of upper jaw. | . 64 | . 33 |
| Tibia | . 99 | . 52 | Eye. | . . 26 | . 13 |
| Tarsus | . . 40 | . 24 | 'уmpanum | ..... . 15 | . 08 |
|  | . 2.84 | 1.48 |  |  |  |



Fig. 106. Rana septentrionalis. No. 3420. Garrison's Creek, N. Y.; 1.
Mature specimens, formerly deseribed under the name Rena, sinuata, present the following characters:

Body rather stout. Dyes large; tympanm three-fourths as large. Vomerine teeth small, ranging with the centers of inner nares. An indistinct fold of skin on each side of back; none intermediate; granulation of buttocks indistinct. Femur not lalf the length of hody; hind foot considerably longer than the tibia. Above and on sides purplishbrown, with simations or coarse vermiculations of yellow. Beneath silvery white. Legs transwersely bared.

F'malc.-Body moderately stont and depressed; limbs not mach developed ; femmr and tibia about equal, not half the length of body. Head rather longer than broad. Nostrils nearly intermediate between the eye and tip of snont (projected on axis of body), or nearer the latter, 1951—Bull. 3í- 27
situated on the canthus rostralis, The hollow of the face anterior to the eyo is very shallow, and scarcely traceable under the cye and tym. panum. Eyes largis; contained three times in chord of upper jaw and one diameter from the tip. Tympanum small (females ouly seen), about three-fourth the size of the eye; behind not reaching the end of the jaw. Patches of vomerine teeth very small, circular, approximated, and situated on a level with the centers of the inner nares. These are large, oblong, and widely separated. Tongue rather small, narrow. Enstachian ostia large.

The skin is moderately smooth, but on very close examination is seen minutely and closely dottel all orer with small pits, and among these on the under surfaces are scattered small glaudiform elevations, which on being emptied are represented by the pits. This is sometimes seeu iut other species, but seldom so distinctly, and may be caused by some peculiar and temporary condition of the skin. There appears to be a very low and scarcely distinct dernal ridge from the eye along the sides, but none intermediate. The granulation on the buttocks is rery low and indistinct.

The fore-arm is shorter than the hand; the femur is not quite half the length of the body, and is about as long as the tibia. The hind feet are unusually long, considerably exceeding the tibia. The feet are rery fully webbed, coming near $R$. catesbiana in this respect, the web extending between the tips of the toes, slightly excavated in the inner edges of the second and third. The terminal joint of longest toc appears to be entirely free and the second is rather narrowly margined.

In alcohol the color everywhere abore and on siles (even orer tympanum and on buttocks) is dark purplish-brown, coarsely and irregularly sinuated with bluish-white, which, as far as Protessor Baird's recollection of several years goes, is yellow during life. Beneath, silyerywhite on tbroat and chin; duller behind. The joints of the hind legs are distinctly banded transversely with dark blotches with bluish-white margins, as on the back, and separated by lighter intervals. The sides are darker than the rest of the body, and on the groin are seen a few light spots rather than sinuations.

The specimens describerl (all females) were caught in Garrison's Creek, near Sackett's Harbor, in the sumner of 1850. They were in a marshy piece of ground, about a mile from the lake, and attracted innmediate attention by their peculiarities of color, so different from auy other $\Delta$ merican species:

|  | Inches..2 .25 | 1.00 | Total | Inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length |  |  |  |  | . 76 |
| Arm from elbow. | . 90 | . 40 | Chord of head. | . 80 | . 35 |
| Femur | 1.10 | . 49 | Width of head. | . 25 | . 35 |
| Tibia | 1.04 | . 46 | Eye. | . 27 | . 12 |
| Tarsus | . 56 | . 25 | Tympanum | . 20 | . 09 |
| Hind foot | 1.18 | . 52 |  |  |  |

The variations of the Rana septentrionalis are greater than those of any other North American species of the genus. There is, hamerer, no coin-
cidence between them, so that they can not be regarded as indicating subspecies. The tympanic disk varies greatly in size, the males having it larger than the eye, and the females smaller than the eye. In this respect the species displays its near aflinity to the $R$. clamata and $R$. catesbiana. Some specimens have a dorsolateral dermal glamdilar ridge, and others have none, such difference being exhibited by specimens from the same locality. The spotting of the dorsal surfaces varies very much. In some specimens. the spots are not closely placed; in others they leave only narrow lines of the lighter grombl-color between them.
Taking all its characters together, this species occupies a position intermediate between nearly all the North American species of the genus, and from some such form it might be supposel that all the Ranæ of the northern hemisphere have been derived. The present distribution of the species is entirely northern.

Dr. J. H. Garuier has given a detailed account of the habits of this species as observed by him at Lucknow, Ontario. He calls it the miuk frog, and says that it emits the odor of the mink on being handled. It is an aquatic species, never seeking its food, which consists of insects aud small fishes, on land.

Rana septentrionalis Baird.

| Catalogno number. | No. of spec. | Locality. | When colleeted. | From whom recoived. | Naturo of spccimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3420 | 5 | Garrison's Creek, N. Y . |  | Prof. S. F. Bairil | Alcoholic. |
| 3432 | 15 | Madrid, N. Y............ |  | J | Do. |
| 13605 | 20 | Lucknow, Ontario ....... | 1888 | J. II. Garnicr | $1)$. |
| 13621 | 1 | ...... do .................. |  |  | 1\%. |
| 13629 5379 | 1 | ......d -................... | 1883 |  | Do. |
| 5379 | 3 | Selkirk Settlement.... Fort lipley, Minn .... |  | 1. Kemicott. <br> Dr. J. l'. Head |  |

## RANA CLAMATA Daudin.*

Hist. Nat., Reptil., Vili (1803), 104, 4:31 ; 1 b., Hist. Nat. Raiu. (1803), 54, Pl. xvi, fig. 2; Harl., Sillim. Amer. Journ. Sci., x ${ }^{\text {c }}$ (1825), 63; 1 b., Journ. Ac. Nat. Sci. Phila., v (1827) 33:35 ; 1 b., Med. \& Phys. Res. (1835), 101, 2:2 ; Dauı. \& Bibr. (Dand.), Erp. Gérı, vilı (1841), 373.

Rana clamitans Dandin, in Som. \& Lat. Hist. Nat., Reptil., 11 (180: ), 157; Merrem, 'Ient. Syst. Amph. (1820), 175 ; Holbr. (Bosc.), N. Amer. Ilerp., 1st el., 111 (1838),

Rana fontinalis Le Conte, Ann. N. Y. Lyc., 1 ( 1825 ), 282; ; Ifolbr., N. Amer. Herp., 1st
 Reptil. (1839), 2:36; Thompson, Med. Hist. Mass. (1312), I:0; Do Kay, N. Y. Zool., 111 (1842), PJ. xisi, fig. 54, A.
Runaria melunota Ratin., Aunals of Nature (1820), No. 2.) (Lilke Champlain).
Rana melanota (Rafin.) Harl., in Sillim. Amer. Journ. Sei., x (18\%\%), 64; Journ. Ar. Nat. Sci. Phili., v (18:7), 336 ; 1 b., Med. \& Phys. Res. (1835), 10 ! : 228; Thompsoll. Vat. Hist. Vt. (1912), 121.

Rana fatidiridis Harlan, in Sillim. Amer. Jouru. Sci., x (18:5), 5s; 1 b., Journ. Ac. Nat. Sci. Phila., V (182乞) 338; 1 l ., Mca. \& Phys. Res. (1835), 103, 220.
Rana horiconensis 1 folbr., N. Amer. Herp., 1st ed., 11 (1838), 91, xvin; $1 \mathrm{~b} ., 2 \mathrm{~d}$ ed., iv (1842), 91, XV1H ; Thompson, Nat. Hist. Vt. (1842), 121; De Kay, N. Y. Zool., 111 (1842), 61, xxil, fig. 69.
Rana nigricans Agrassiz, Lake Superior (1850), 379, vi, figs. 4, 5.
Male.-Body and limbs rery stont and massive; not much depressed. Legs short; head subacute, romuded, very deep. Nostrits large, oval; situated on the rounded and indistinct canthus rostralis, nearest to the snout, and distant from the orbit by half the diameter of the eye. Excaration anterior to the eye shallow, scarcely distinct in passing under the eye to the tympanm. Tympanum very large, one-fourth greater than the eye, and extending quite up to it, and passing beyond the articulation of the jaw; one-half the length of line from commissure to the tip of shout; its central third elevated in a shallow prominence. Eyes large, contained two and three-fourth times in chord of lower jaw and two and one-fourth in that from commissure. Head rather larger than broad.

In the female the tympanm is much smaller, thongh still large; about three-fourths diameter of eye, and distant from the latter by nearly half its own diameter. The arerage diameter in males is $11^{\prime \prime \prime \prime \prime}$, and in fe males $S^{\prime \prime \prime \prime \prime}$. Occasionally this character does not hold good. 4 male (No. 3462 ) has the diameter only $8^{\prime \prime \prime}{ }^{\prime \prime}$, while three females (Nos. 3467, 3475 , and 3504 ) have disks of $10^{m w n}$ in diameter. In this species and in the $R$. catesbiana this membrane reaches a larger size than in any other species of Batrachia.

The top of the head is plane, without any concavity. The tongue is large, fleshy, rather narrow, and free behind for one-fourth its length. The interior nares are large, and open posteriorly nearly opposite the anterior canthus of the eye. The vomerine tecth are in two oblong patches, inclined backwards, where they are nearly, if not quite, in contact, and posterior to the posterior margin of nares, though anteriorly about on a line. Enstachian openings large.

Skin more or less mammillated above and on the sides by coarse pustuliform prominences, largest on the sides; these occasionally are in the form of regular asperities, rough to the touch; the amount of this, however, depends somewhat on the conditions of preservation. From the eye extends a prominent ridge of skin, which, after passing abore the center of the tympanum, bifureates, one short branch passing round the tympanum, and, thickening belor, stops above the shonlder; beneath this for its whole length passes a well-defined furrow indenting the fold, and, proceeding directly downwards, separates the thickening just described from a corresponding and equal thickening just hehind the jaw. The long branch of the ridge or fold of skin behind the eye proceeds along the sides, occasionally interrupted, and is lost on the posterior fourth of the body, those of opposite sides paraltel and wide
apart. There are no other ridges of skin as observed in R.palustris; but a distinct broad groove or furrow may be traced down the middle of the back.

The fore-arm and hand are of nearly equal length; the third finger longest; the first and fourth nearly equal, and longer than tho second. The hind legs are short; the tibia, femur, and hind foot about equal, and less than half the length of the body. The third toe is longer than the fifth. The web between the toes is well developed, and extends from the terminal knobs, except on the inside of the second and third toes, where it is excavated to the first articulation. The first and secoml joints of the longest toe are not webbed, but are narrowly margined to tlie tips.

The general color, as preservel in alcohol, is of a dull greenish-brown or brownish-olive, with simple subcircula blotehes on the back, siles, and buttocks, and indistinct, sometimes much broken faseie on the limbs. There is in some an obscure yellowish line aiong the sides of the jaw and reaching to the arm, and a dark mark from the commissure to the arm beneath this line. The edges of the jaw are bloteleed with brown; beneath, yellowish-white. In other specimens the blotehes above are finer and more crowled, and the chin and throat coarsely reticulated or blotehed with brown, the same marking visible obsoletely on the under surfaces of the thighs. The blotehes of sides of body are sometimes much larger and more distinct than elsewhere.


Fig. 107. Rana clamata. No. 3501. Eutaw, Ala.; 1 .
The bars on the legs are sometimes replaced entirely by small blotches. The females, as already stated, differ in laving a smaller tympanum, thongh neither here nor in the males is the proportional size always the same. The body is more swollen behind; the head narrower and not so deep, and the thumbs less thickened.

In life this species is dark olive posteriorly above, which color gradually passes into a brilliant green anteriorly. Below, white; the throat citron sellow.

## Male.



Foot............................. 1.46 . 49
Female (Carlisle, Pa.).

| Total | 3.30 | 1.00 | 'Total of log | 5. 00 | 1.51 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fenur | 1.55 | . 47 | Tympanmı | . 32 | . 10 |
| Tibia | 1.55 | . 47 |  |  |  |

A Carlisle, Pa., specimen, when living, mas colored as follows: Above and on sides, greenish-hown, with romded brown spots miformly distributed, and about as large as the pupil of the eye; abont twanty between the lateral folds; head and body anteriorly bright grass-green; beneath greenish-white, unspotted, the color of the sides fading into it; the buttocks mottled with browe and yellowish white; femur and leg with three or four trausverse dark bands; fore limbs with scattered blotches not banded; iris black, mottled with golden.

The specimens from Lake Superior are types of the R. nigricans of Professor Agassiz, which I can not distinguish. They exhibit a greater amount of black mottling and blotches on the inferior surface than usual, but this is shared by individuals from more southern localities. Specimens from Maine and Louisiama are still darker, the buttocks being nearly uniform black.

In carefully comparing quite a number of specimens from the South and North, I find it impossible to establish definite characters by which to distinguish a $R$. fontinalis from $R$. clamatu. At first sight the Southern individuals, which happened all to be of medium size, appeared to be more free from the coarse pustulations; but on the other hand to have the fine asperities more numerous and closer and the head rather narrorer; but the same conditions were seen in some Nortlern specimens. The tympanum is very large in the males, though varying with the iudividuals. As in the Northern specimens, some are nearly immaculate; others mottled above and below, and of various shades of color, from black abore to olivaceous.*

This is especially a species of an aquatic life, not lunting on land, but haunting all kinds of waters, from springs to river baiks. It lives singly, in pairs, or in stnall companies, but never in swarms like the $R$. virescens. It is not noisy, contenting itself with an occasional nasal "chnng," and frequently uttering a sharp ery as it plunges into the water to escape the pedestrian on the bank. It is a good leaper and swimmer.

[^56]Rana clamata Daudin.

| Catalogne number. | No. of spec. | Locality. | When cullected. | From whom receired. | Nature of specluen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3502 | 6 | Pensacola, Fla.. |  | Dr.J.F.Haminond, U.S.A | Alcohollc. |
| 3466 | 7 | lioot R., la ${ }^{\text {ache, }}$ Wis.. |  | l'rot. S. F. Baird...... | 1)o. ${ }^{\text {P }}$ |
| 3462 | 7 |  |  | - | Do. |
| 3178 | 8 | Malison, Wis |  |  | Vo. ${ }^{\text {d }}$ |
| 3489 | 1 | Fond du Lac, Wis |  | Rev. A. C. Barry |  |
| 3173 3183 4 | 4 | Rochester, Wis Aztalan. Wis... |  | Prof. S. F. Baird | Do. 0 |
| 3183 3479 | ${ }_{1}^{2}$ | Artalan, Wis is |  | Hov. A. © Barry |  |
| 3469 | 5 | Elizabethtown, N. Y |  | Prof. S. F. Baird | Do. ${ }^{\text {d }}$ |
| 3464 | 4 | Westport, N. Y - |  |  | Du. ${ }^{\text {\% }}$ |
| 3188 | 5 | Washington, D . |  | J. H. Richard... | Do. |
| 3468 3477 | 1 | Carlisle, 1'a.... |  | 1'rof. S. 1. Bairl | Do. Do. |
| 3477 3465 | 9 | $\begin{aligned} & \cdots \\ & \cdots \\ & \cdots \end{aligned}$ |  | .....do | Do. ${ }^{\text {d }}$ |
| 3475 | 2 | meadville, 1\% |  | Prof. Williams | Do. $\%$ |
| 3513 | 1 | .....do ..... |  | J. F. Thickaton | Do. |
| 3472 | 3 | Quebec, Canala .... ... |  | Prof. s. F. Baird | 1)o. ${ }^{\circ}$ |
| 3487 | 2 | Mount IIolls, N.J ....... |  |  | Do. |
| 3511 | , | Cumberland County, Md. |  |  | Do. |
| 3146 | 1 | Clarke Cdunty, Va ..... |  | 1)r. (\%. B. R. Kennerly | 1)0. $\%$ |
| 3499 | $\stackrel{2}{2}$ | Lrairle Mer liuge, La.. |  | Trames Fairie. Wincheil | Do. ${ }^{\text {D }}$ |
| 3470 | 2 | Port Huron, Mich |  | Prof. S. F. Baird. | Do. 0 |
| 3467 | 5 | Detroit Liver Mich .... |  | ( | 110.9 |
| 3500 | 4 | A nilerson, S.C |  | Miss C. Paino | Do. ${ }^{\circ}$ |
| 3483 | 5 | Kemmebago, Me |  | Prof. C. Girard | Do. ${ }^{\text {\% }}$ |
| 3476 | 1 | Portage Counts, Ohio... |  | Prot. S. F. Bairl . .... |  |
| 3485 | 1 | Columbus, Ohio. ....... |  | Prof. I. Lesiguereux | ${ }_{\text {Do. }}$ Do |
| 3 3 93 | 1 | Weathersfield, Coun |  | © Wright | Do. |
| $35 \pm 6$ | 1 | Salem, N. C . |  | J. T. Lineback | Do. |
| 3492 |  | All ${ }^{\text {draines laver, } 111 . .}$ |  | R. Kemicott.. | 1). |
| 3493 | 1 | Willow Creek, Wis |  | Rev: A.C. Barry |  |
| 3503 | 8 | Missouri |  | Dr. I'. R. Hoy.... | Do. ${ }^{\circ}$ |
| 3521 | 1 | Sonlhern Ithinois |  | 1. Kennicott . |  |
| 9168 | 1 | Ferry Landing, V | May-, 1875 | II. W. Hensliaw |  |
| 9732 $9: 391$ | $1{ }^{6}$ |  |  | I. Kennicott. | Do. ${ }^{\text {Do. }}$ |
| 9391 13606 | 17 | Upper Wisconsin firer. Lutknow, Outario .... |  | J. H. (a, mier | No. |
| 3693 | 1 | Weat hersfiold, Comin |  | C. Wright | Do. |
| 13594 | I | (?) $\ldots . . .1 . . . . . .$. |  |  | 110. ${ }^{\text {d }}$ |
| 3521 | 1 | Meadrille, Pa |  | J. F. Thickston | Do. |
| 3515 | 1 | Westeru Mississippi |  | Dr. P. R. Hoy: | Do. |
| 3518 | 2 | Saint Louis, Mo .-.... |  | Dr. George Englemann | $1 \mathrm{Do}$. |
| 5371 | 1 | Souflh of Highland, Canada. |  | C. Drexler..... | Du. |
| 11532 | 1 | Michupicoten, Lako Superior. |  | G. Barrister...... | Do. |
| 1062 | 3 | Carlisle, Pa.. |  | Prof. S. F. Baird. | Do. |
| 11396 | 2 | Milton, Fla | 1881 | S. T. Walker | Do. |
| 11176 | 1 | Wunkegat, Ill |  | James Mlluer | Do. |
| 11908 11498 | 1 | Nashville, Ga | 1880 | W. J. Taylor | Do. |
| 1149 P 1445 | 3 | (?) Wooil's Hoil, M | 1885 | (?) iT. S. Fi4l Con $^{\text {a }}$ | Do. Do. D. |
| J335 | G | Sontliern Pacific Rail. ruad Sirter. |  | it. IB. Molliamsen | Do. |
| 3528 | 1 | Madrid, N. Y . |  | l'of. S. F. Baird | Do. |

## RANA CATESBIANA Shaw.*

Rana catesbiana Shaw, Gen. Zool., III, Amphibia (1802), 106, PI. xxviII; Le Conte, Proceed. Ac. Phila. (1855), p. 423.
PRana boans Lacep., Hist. Nat. Quad. Ovip. (1st ed. 1798 ?), ed. Deterville, I (1819), 270,315.
Rana pipiens Harl. (nec Linuæus), Sillim., Amer. Jourv. Sci., x (1825), 62; Ib., Journ. Ac. Nat. Sci., Phila., v (1827), 33̄ ; 1b., Med. \& Phys. Res., 1835, 101, 225; (Lat.) Holb. N. Amer. Herp., 1st el., $1 n 1$ (1838), 81, Pl. (e.c.), xv ; Ib., 21 ed., $1 v$ (1842), i7, Pl. xvili ; (L)Storer, Mass. Rept. (1839), 235; (L)'Tiompson, Nat. Hist. Vt. (1841), 119 ; Do Kay, N. Y. Zool., IÍ (1842), 60, Pl. wix, fig. 43 ; Cuvier, Regne Animal, 11, 106 ; illnstrated ed. D'Orb., Pl. xxxvif, fig. 2; Baird \& Girard, Reptil., Captain Marey (1853), 243.
Rana magiens Merrem, Tentameu Syst. Amph. (1820), 75 ; Gravenhorst, Del. Mus. Vratisl. (1829), 40 ; (Cateshy) Dum. \& Bibr., Erp. Gén., viri (1841), 370 ; Wagl., Syst., p. 203; Tschudi, Batr., p. 79.
Rana scapularis Harl., Sillim., Amer. Journ. Sci., x (182̈), 59 ; Ib., Journ. Ac. Nat. Sci. Phila., v (1827), 338; Ib., Med. \& Phys. Res. (1835), 103, 221.
Rana maxima americana aquatica Catesbes, Carol., i1, 1743, Pl. -, p. 72 (not Rana mugiens, as quoted by Dum \& Bibr.).
Rana conspersa Le Conte, Proceed. Ac. Phila., 1855, p. 425.


Fig. 108. Rana catesliana. No. 11490; $\frac{1}{2}$.
*Plates 5il, fig. 3; 51, figs. 4-8; 55, figs. 6; fif; fi7.

Lurgest of all the Nottit American species. Body very bulky and chmosy; legs thick and shom. daws mearly, if not quite, as wide as the length of ehord of nuper jaw ame wider than the longitndinal axis of head; mazzle sistrmate ; sides oblique. Nostrils oblique, a little below the edge of the canthas mostralis, half way between tho tip of snont and anterior canthus of eye. Tympanmm large, slighty oval, longer diameter somewhat oblique, equal to the diameter of the eye; grambated amd slightly laised for the central twothirds; smooth exteriorly. Internal mates elliptical, transverse, witer apant than are the extermal ; theireentersopposita a point abont one thind from the eye to the onter mostril ; a shallow groore extemding to the rami of the jaw. Vomerine teethin two patehes, with fomroive teeth in each pateh; tho bases of these anterionly opposite the eenters of the immer mostrils, amb separated from cach other by the same interval as from the nares. Enstachian tubes large, nearly opposite the centers of tympanmm. Tongue elongated, hoallest at the stem.

A fold of skin extends from the posterior canthas of the eye above the tympanm, and emving romnd it proceeds directly downwad to behind the posterior extremity of the lowerjaw ; it then passes aromal the insertion of the fore-arm (distant about half the diameter c ${ }^{\prime}$ it) and is lost on the breast. This fold is only conspicuons to the lowneme of the tympanum ; it is accompaned all the way by a groove on its lower edge, both being searcely traceable berond the point above mentioned, exeept in rery well preserved specimens. There are no other folds of skin; especially none on the sile of the back. The skin above is slightly shagreened hy moderate asperities, which increase posteriorly. Beneath smooth. The posterior faces of the battocks rugose-gramulated.
'The thid finger (the second liom ontside) is lomgest, then fomrth, first, and second. All are without any membrane or web. The tibia is not quite half the length of body. The fourth toe is lungest; the third rather longer than the fifth; then second amd first. All are cleft (except as tomembrame) nearly to the base of the metatarsals, deepest along the first and fifth. The web fills up the entire interval, extending from tip to tip of the toes; the outlines nearly stanght when ontstretched.

The color above is olivaceous-brown, with darker blotehes about half the diameter of the eve distributed pretty untormly; oecasionally in contact and conluent; the ontlines obsolete or not clearly marked. The buttocks aresimilarly marked, with the hotehes neary black. The jonts of the fore len hate each ane or two hars or blotehes; these are more distinctly transvese on the hind legs, where there are three or four on each joint. Membane of hind foot finely mottled. 'The lower parts, including groin, are silvery white, with similar conse blotehes or mottlings, of obseoleseent brown, thongh not quite so much erowided as above; this pattern pervales the whole inferior and interior faces of body and limbs, leaving no portion unmarked. The tympanum is rather darkest in the center.

In the male the tympanm is much larger than in the females, and larger than the eye, extending to the posterior end of the jaw. In the males the dianeter of the tympanic disk is about $20^{\mathrm{mm}}$, reaching $25^{\mathrm{mm}}$ in large animals. In the female the diamoter is about $11^{\mathrm{mm}}$; but I have observed a male with the diameter ouly $10^{\mathrm{mm}}$ and a female with the diameter as large as the arerage of males. Such cases are, howerer, not very common. It may be observed here that the supposition, apparently entertained by some writers, that the $R$. clamata possesses the largest tympanic disk in the genus, is not correct, as it is as large in the present species.
The largest specimen of this species in the National Musemu is the No. 10880; from South Caroliua. Its fimensions are as follows :
Measurements No. 10880.

M.

Length of head and body ......................................................................... . . 190
Width of head at posterior edges tympanic disk. ..................................... . . . . 070
Length of head to posterior edges tympanic disk. ..................................... . . . 065


Length of foro foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 040
Lengtl of hind leg from groin ......................................................................... 238
Length of tibia. .......................................................................................... . . . . . 074
Longth of tarsus............................................................................................. . 041
Length of remainder of hind foot......................................................................... 080
Total expanse of palmation...................................................... . 0:50
A large specimen from I'ensacola has the head rather more elongated, being longer than broad; the tympanm normal. The palatine teeth are in two patches, close together; the prominences of bone on which they are situated are in contact at their bases; the tongue broal, short, and with long cornua. The skin is minutely shagreened above; less so beueath. Tho toes rather long. Body less blotehed beneath, especially on the abdomen.

> Measurcments.

|  | Incles. |  |  | Inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length | 4. 40 | 1.00 | 'Total hind leg | 6.70 | 1.52 |
| Fenur | 2.10 | . 48 | Arm from cluow. | 1.80 | . 41 |
| Tibia | 1.90 | . 43 | Chord of upper jaw | 1. 72 | . 39 |
| Tarsus | . 66 | . 15 | Width of head.. | 1. 66 | . 33 |
| Hind foot | 2.16 | . 49 |  |  |  |

Most specimens from Carlisle, Pal., agree in general characters mith the one described, although one has the skin more pustular, with the upper parts of an obscure ferruginons color, obsoletely varied with olivaceons. The head, too, is decidedly longer than broad. Another specimen, 4 inches in the length of bodg, with broad head, has the upper parts olivaceous green, with quite small indistinct blotehes of pur. plish-brown, not very close to each other. Yomig specimens generally are of this color, the blotehes reduced to distinct black dots, scattered uniformly over the back, and the lower parts yellowish anteriorly, with very olsolete indications of the blotches. Tympanum very large. The R. conspersa Le Conte was based on such a specimen.

In the North, associated with specimens of the dark-blotched variety, are others, some of considerable size, with the skin quite smooth, and not at all pustular. Broad head, above yellowish-green, without spots or bands anywhere; beneath yellowish-white; throat bright yellow. Others again show blotches on the buttocks, then on the inside of the legs, then elsewhere. It is impossible to draw out any constant characters whereby to define any one condition of marking; much depends upon the locality.

The young specimens as a general rule have the head narrower than the adults, and it must be borne in mind that the tadpole sometimes attains a very great size before any transformation is effected. The poin at which this takes place doubtless affects the general proportions.

Small specimens from Fort Smith, two and one-half inches long, are similar to those from Carlisle, P'a. Skin pustular.

Liana catesbiana Sharr.

| Catalogne number. | No. of suec. | Locality. | When collece ed. | From whom recoired. | Nature <br> of specinien. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3532 | 1 | Carlisle, Pa. |  | l'rof. S. F. Baird. | Alchololic. |
| 3513 | 1 | Lancaster County, Pa.. |  |  | Do. |
| 3531 | 3 | Foxburgh, l'a ........... |  | Shaw. | Do.- |
| 4835 | 1 | Erookrille, Pa |  | 1r. R. Haymond....... | Do. ${ }^{\text {d }}$ |
| 3337 | 1 | Red lisur, Ark |  | Capt. İ. B. Marey U. S | Do. ${ }^{\text {D }}$ |
| 35.19 | 1 | P'airio Mer Rouge, La |  | James Fiario..... | Do. |
| 3510 | 1 | Saint Lonis, Mo. |  | 1r. G. Enflemann | Do. |
| 3512 | 1 | Riceborough, Ga |  | I'rof. S. I'. Batirl | Do. |
| 3514 | 3 | liacine, Wis ..... |  |  | Do. |
| 3688 5917 | 3 | P'ensacola, Fla |  | Dr 12. W. Jeffrcy | 1). $\%$ |
| 5917 3691 | 1 | Micanopy, Fla ${ }_{\text {M }}$ Tarborough, N. |  | Dr. T. H. Bean | Do. |
| 8346 | $\stackrel{1}{2}$ | Tarborough, N. C |  | J. L. Briuger | Do. |
| 5508 | 1 | Charleston, S. |  | Prot. S. F. Baird . | Do. |
| 33:3 | 1 | San Diego, Cal |  | Licut. B. Couch, U.S. A | Do. |
| 3.534 | 3 | Semera Lako, N. ${ }^{\text {I }}$...... |  |  | Do. 8 |
| 3507 | 4 | Wilizabethtown, N. Y.... |  |  |  |
| 35.33 | 3 | Westport, N. X |  | Prof. S. F. Baird | Do. 9 |
| 35.38 3711 | 1 | Colnmbus, Ohio |  | Proí: L. Losquerenx |  |
| 3711 3508 | 1 | Marietta, Ohio |  | Prol E. B. Andrews | Do. |
| 3508 3687 | 1 | Ely ria, Ohio Mohile, Ala |  |  |  |
| 3687 3690 | ${ }_{9}^{1}$ | Mohile, Ala |  | Pitchody 1 m. P. R. inoy | Do. |
| 3338 | 1 | Goat Creek |  | H. B. Mollhau | Do. |
| 3336 | 1 | Shawnee Villag |  | .....d do | Do. |
| 9392 | 2 | Shawuce Mission |  | Dr. J. G. Cooper | Do. $\%$ |
| 9393 |  | Monticelto, Miss |  | Miss Itclea 'temison | Do. |
| 3331 | 3 | Sibley Lako |  | W. S. Wood | Do. |
| 3332 | 1 | Saint Lonis, Mo |  | $\cdots$...lo. | Do. |
| 3599 | 1 | Tyree Springs, Teun |  | Prol' R Oren | Do. |
| 3350 | 1 | Yellowstone Ricer.. New Orleans, |  | 1)r. F. V'. Hasten..... | Do. ${ }^{\text {® }}$ |
| 9469 | $1$ | New Orlems, La,....... <br> Nount Carmel 11 | May 29, 1875 | Nuw Orleams Academg. | Do. |
| 12069 0475 | 1 | Monnt Carmel, 111 St. John's River, Fla .. | Nor. -1881 | L. M. 'furner <br> ( ( Brown Gootle | No. |
| $\begin{aligned} & 0475 \\ & 3509 \end{aligned}$ | 1 | St. Jolu's Liver, Fla <br> 13lack River, Elyria, Ohi | ——, -, 18.4 | (9. Brown Goode Prof. S. F' Bairl | Do. |
| 10880 | 1 | Oibley; S. © ............ |  | F. W. Hi, ward. | Do. ${ }^{\text {d }}$ |
| 9:389 | 1 | Liberty Comuty, Gia |  | Maj. J. Li Conte | 1). |
| 9259 | 1 | Washington, D. C | -, -, 187i | Dr. '1. If. Bean | $1)$. |
| 11514 | 2 | (?) |  |  | Do. |
| 10346 | 1 | Arlington, Vit | --, -, 1879 | Wi lian Palmer |  |
| 11199 10099 | 2 | (?) southiampton Counts | -1879 | (!) | $\text { Do. } 90^{\circ}$ |
| 1441 | 2 | Soutiampion Comily; |  |  |  |
| 3335 | 12 | Wytheville, Va ......... <br> S. P. R. R. Surway | -, -, 1885 | Col. M. Mc Donald II. B. Mollhansen | Do. |
| 3518 | ! | Sonthern Mlingio |  | 1. Kemmirot. | 1\%. |
|  | 1 | Framingham, M:1 |  | S. $\because$ 13a.ral | \%o. |
|  | 1 | Montreal, I. C. |  | do | Do. |

This species prefers larger bodies of water, and especially hames the shores where thickets and moderbrush make them inaceessible. Its roice is familiar to all dwellers in the comntrs, having much the tone of that of a bull, but with a better-defined enmetation. it may be imitated by uttering a bass "br"wm" several times in succession, with á hoarse voice, in front of an empty cask or other reverberating cavity. Familiar imitations of it are the words "be drownel" or "more rum." The roice is not uttered until the arrival of warm weather, and is contimed during the erening thronghont its continnance. It may be heard for a distance of several miles.

Dr. J. II. Garnier* points out the relationship between this species and the $R$. clamuta and $R$. septentrionalis, in the following language:
"(1) They have no chant amour, or love notes, in spring. (2) They retire early to hibernate with the first antmmal frost. (i3) They live in the water and lie in wait for their food, but do not hunt for it on land. They poise the body on any floating weeds, lie on the bank or any bit of stick or $\log$ that suits their purpose. (4) The tadpoles of $R$. catesbiana and R.elemuta require two years to mature, and the 'mink frog' (R. sep. tentrionalis) requires the same perion. (5 and (i) The foot is broader in proportion than in the rest of the family (? genus), and the second toe is proportionally stouter, a pecmlianty emphatically distinct, which can be seen at a glance. ( 7 ) When eaptured they sometimes utter a cry of distress quite different from their ordinary croaking notes, and I have often seen the bull-frog ( $R$. eutesbiana) open his month and screan for over a minute. (8) When they give their note it is ahwas produced by inflating the throat-pouch and suddenly expelling the air, whereas in $R$. virescens, cte., there is a pouch near the angle of the jaws, on either side. (9.) They are all tinged more or less with yellowish-green on the chin, which soon shades towarts the throat and breast, and the belly is white, or nearly so."

## RANA MONTEZUMLE Baird. $\dagger$

 Surv., licpules., p. 27, I'l. 36, Hig. 1-li; Brocehi, Miss. Se. Mex. Batr., p. 14, l'l. iv, fig. 2.
The general form is rather squat and heary; in this respect resembling the Northern buil-frog, or Rena catesbiana. Like it, it is without any lateral ringe of the skin on the back, or it such be present, it is interrupted and soon disappears. The head is depressed, the angles all romded, canthus rostralis not distimet; the nostrils sitnated a little below its highest part, about half way between the eye amb tip of smont. The top of the heal is slightly consex between the eyes, withont any groove. There is a slight depression behind and below the exterior nostrils, and which, proceding backwarls, heeomes obsolete below the anterior canthe of the orbit and then reapears below the midule

[^57]of the eye, whence it passes alorg the uper erige of the maxillary bone as a well-detined groove extending beneath the tympamm. There is no fold of skin passing orer and behind the tympanm, as in R. catesbiuna. The tympanm is moderate, suberliptical, with the longest diameter longitudinal, the center above the angle of the month, its anterion edge reaching within me-third of a diameter of the ege from the eye. The rim is well defined, being slighthe rased above the level of the tympamm itself, which is nealy smooth, exhibiting only a slight gramation in the center. The tongue is broad, short, subor-


Fig. 109. Rena montezuma. Valley of Mexico; i.
bicular, and with the corma distant and quite small; it is free on the sides and behind for two thirds its length. The internal nares are small, transerse, exteriorly produced into a groove extending somewhat oblignely backwads to the edge of the maxillary hones; their centers mearer the anterior canthen orbitalis than to the exterior nos. trils. The romerine teeth are situated on two protuberances, which are inclined backwards at an acote augle, and plated with their anterior bases in a line with the anterior edges of the internal nares; the teeth themselves are few in mmber, minute, and range obliquely on the posterior portion of the crest of the protuberances. The teeth on the edge of the npuer jaw are well developed, and extemb to the inner edge of the angle of the month. The Enstachian openings are large, and at least twice the dianeter of the chome. An external rocal resiele of considerable size is seen on each sitle at the angle of the jaws, as large as a very large pea after being contracted by aleohol.
As already stated, there are two distinct ridges of skin, one on each side the back, commencing above the trmpamm. They are fiequently interrupted, and do not reach the groin. The mper parts ame generally smooth, but with warts on the sides of the bods, where they are thattened at top; oceasional warts are scattered over the back,
though not prominent, but smoothed over. The buttocks are appaiently smoother than common, the usual granulation being scarcely diseernible. The under parts are entirely smooth.
The fingers are all free and of rather unnsual length, and taper suddenly from the swollen base. The third is longest, the fir $t$ and fourth nearly equal, thongh the latter is rather longer. The fourth toe is long. est, fifth and third rather shorter. All the terminal phalanges are curved domnwards and taper to rather an acute tip; the web is more cut out on the inner edges of the toes than on the outer; on the latter it extemds to a little beyond the middle of the last phalange; on the former scarcely beyond the last jont; it is everywhere decidedly concave when stretchert. The cuneiform tuberele is small, and there is a slight membrane extending from it along the inner edge of the foot.
The general color above is of a purplish-brown, beneath grayish-white or ash, everywhere minutely blotched or vermiculated with spots and sinnations of lighter; sometimes more in irregular spots, sometimes more in vermiculations. Bencath, these light spots are obsolete towards the chin, but they are very distinet on the side about the groin, and on the thighs anteriorly, posteriorly, and inferiorly, where they are larger than their interspaces. In the typical and best specimen the groundcolor of the entire limbs is purplish-brown, rather lighter beneath and internally: with the lighter spots seattered everywhere, and very obsolete indications of transverse bars above. This appears to be a male.

A female still larger than the specimen upon which the description has been based is more squat in appearance, with the warts more distinct on the side and back, but with little or no gramulation on the buttocks. The colors are much the same, except that the lower parts are lighter, the interior faces of the hind legs especially, which are yellowish-gray, with the light blotehes very obsolete. The light spots in the groin are of a pink color, which may be the general hue of the spots. Length of body, 3.60 inches.

We lave thus described one extreme of coloration. The other is quite different. Here the upper parts and sides are covered with very dark brown blotehes, each with a lighter areola; the blotehes average about two-thirds the size of the tympaum. Some of the blotches on the back are considerably elongated; those on the sides smaller. The groundcolor is of a light oliraceons-brown, with a general and uniform mottling of lighter, as already described. The inferior parts are lighter, with the blotches more obsolete. The fore limbs with several obsolete dark blotehes, the hinder with three or four transverse bars on each division; those on the thigh very short. Body 2.44 inches long.

Specimens are found in every stage of coloration between these extremes. Sometimes the blotehes and bars are barely perceptible when the skin is wer, and again they are more distinct or not at all visible. The smaller specimens are usually the most bloteled, the color becoming more uniform with increasing size. During life the dorsal spots
may become a grass-green. In most specimens the obliquity of the palatine protuberances is less than deseribed.

The areolated varieties bear some resemblance to $R$. areolata, Baird and Girard, but may be distinguished by the white spots on the darker ground of the under and inner surfaces, the more fully webbed toes, the shorter limbs, ete. Both have the lateral vocal vesciles. If. arcolata has a decided lateral fold.

## Mate.

|  | Iuches. |  |  | Iucher. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length | 3.20 | 1.00 | Hand | 74 | 23 |
| Thigh. | 1.40 | . 44 | Hind log (stretched) | 4.84 | 1.51 |
| Tarsons | . 70 | .22 | Leugth of head. | 1.08 | . 34 |
| Hind foot | 1. 64 | . 51 | Width | 1.08 | . 34 |
| lore-arm, from | 1. 70 | . 53 | Length of eyelid | 30 | 09 |

City of Mexico-twelve specimens, Maj. W. Rich; six specimens, E. D. Cope.

This species is common in the ralley of Mexico, where it is used as fool. The unspottel brown variety is found near Gnauajuato; Dr. A. Dugés.

## liana temporaria Limn.

Rana temporaria, part., L. Syst. Nat., el. 12, p. 357.
Rana mutu Lallr., Syn. Rept., p. 30.
Liana temporaria Schneider, list. Amph., 1, p. 113; Latr., Sal., p. 37, and Rept. 11, p. 150; Shaw, Zool., uif p. 97 ; Dand., Rain., p. 46, P'l. 15, and Reptil., viri, p. 94 ; Merrem, Tent., p. 175 ; Pemı., Brit. Zool., ni, p. 9 ; Jenyus, Brit. Vert., p. 300 ; Bonap., l'am, Ital. ; Schiuz, Fam. Helv., p. 143; Tschudi, Batr., p. 79 ; Bell, Brit. Reptil., p. 84; 1num. \& Bibr., !. 359 ; Koch, Ber. Senck. Ges. (1872), p.135; latio, Vert. Suisse, III, 1. 321; Do Betta, Fiann. Ital. Rett. Auf., p. 64 ; Lessoua, Atti Ac. Lincei, Mem. Cll. Sc. Fis., I, p. 1063, Pl. II ; Bonlenger, Cat. Batr. Sal. Brit. Mus., cil. if, 18s?, 1. 44.
Rana flumiventris Millet, Fann. Maine et Loire, II, 1. 663.
Riana crucnta Pallas, Koogl. Ross. As., 1. 12.
Rana ulpina Risso, II ist. Nat. Eur. Mér., 111, p. 93 ; Bonap., l.c.
Lana scotica Bell, l. c., p. 102.
Lana platyprlinus Steelistr., Amtl. Ber., 24, Vers. Kiel, p. 131.
Rana Jusca De l’Isle, Anu. Se. Nat., sér.5, xvis, 1873; Leydig, An. Batr., p. 116; Boulenger, Bull. Soc. Zool. France, 1879, 1’. 164 ; Héron Royer, Bull. Ac. Belg. (3), I, No. 2, 1. 139.
 Räsel, 1list. Rau., p. 1, Pls. 1-8.
Rana dyborskii Giinth., Amu. d Mag. N. H., 1876, xvir, 1. 337.
Vomerine teeth in two small oblique gronps, extending beyond the hinder edge of the choanse. Head moderate; shout short, blunt; interorbital space as broad as the upper eyelid; tympanum distinct, twothirds the diameter of the eye. Fingers moderate, first extending be yond second; toes at least two thirds webbed; subarticular tubercles of fingers anil toes moderate; inner metatarsal tubercle small, obtuse; outer tubercle none or scarcely distinct. The hind limb being carried formard along the body, the tibiotarsal articulation reaches
harilly the tip of the shout. A moderately prominent glamdular lateral fohl. Upper parts grayish or brown, more or less spotted with dark brown or black ; a more or less intense dink temporal spot; a light line from below the eye to the extremity of the temporal spot; sides of body largely spotterl; limbs tramsversely barred; beneath more or less spotted. Male with two intermal vocal sacs.

The above synongmy and description are taken from Boulenger, to whom we are indebted for the most complete studies of the European species of liana.

The typical form of this species is distributed over northern and temperate $\Lambda$ sia and Eurone, but a subspeeies is common in the western regions of North America. This has been called Reme pretiosa by Messrs. Baird and (iirard. It differs from the Ohd World form as follows:

Head from three and five-tentles to fonr times in length; temporal spot more distinct; li. t. tempraria.

Head from three to three and five-tenths limes in length; temporal spot less distinct............................................................................ li. t. pretiosa.

## Rana temporaria pretiosa Bal. © Gird.*

Rana pretiose latird, \& (ifrard. Proced. Ac. Phila., 1553, p. 3is; Baird, Proceed. Ac.
 Cooper, IT. S. Expl. Surv., גir., part If. p. 304; Bonlenger, Bull Soc. Zool. Fr.
 1. 435.

The form is rather stont and the head is not so small as in the typieal li. temporaria. The heel of the extended hind leg reaches to the posterior border of the orbit, or from that point to the anterior border. The imer conciform tuberele is small and obtuse, and there is a small extermal one. The following deseription is taken from a female:

Body stont, depressed, in shape mucl like $R$. catesbianu. Head obtuse, rounderd, and subtruncate. Head broader than long. Canthus rostralis not distinct. External nostrils small, circular, nearer the snont than the eves; a shallow groove behind them with a minute papilla, as in most frogs. Head flat betreen the eyes; sides oblique; facial excavation very shallow. Dyes small, contanted a little more than three times in the chord of the commissure and three and one-half in that of the lower jaw, one and one-half diameters from the tip. Tympanm very small (in small specimens quite indistinct), scareely two thirds the size of the eye, and distant from it byearly a diameter. Tongue very large and fleshy, free behind for half its length. Immer nares narow, elongated in one specimen to a mere slit. Vomerine teeth in two small oblique patches, apmoching hehim, but sepanted by an interval enmal to that between the anterion extremity and the inmer nares. This anterior extremity is un a line with or rather posterior to the hinder border of the inater mares.

Skin everywhere thick and leathery, mimutely pitted; on the sides and bosterior bat of the body with external surfaces of hind legs, pus.
tulated with small asperities, seen even on the interior digital membrane. Those on the buttocks seem to replace the usual granulation, of which no traces are visible. Many of these latter pustules on the buttocks appear to consist of glands, as their open mouths are visible in the largest specimen on the inferior surface.

The third finger is longest, then the fourth; the first longer than the second. The femur is shorter than the tibia, and both shorter than the foot ; they are not quite half the length of the bods. The tifth and third toes are equal; the foot well webbed. The terminal joint of the fourth toe is entirely free; the web extends from the tip of the outer toe to nearly the second articulation of the next, rmaning up to the first articulation, and again on the other side in a similar manner, narrowing to the tips of the third, second, and first toes on the exterior sides, and on the inner, starting from the first articulation. The inner edge of the foot is narrowly margined. The cunciform process is elongated and diminutive, with a small tubercle opposite it on the sole, the whole of which is covered by asperities. Inner toe not one-third total length of foot.

There is a broad depressed ridge extending from the eye on each side nearly to the flanks, becoming indistinct posteriorly; in some specimens perceptible at any point. No other ridges are risible, except a slight glandiform prolongation of the upper jaw, extending orer the amm, and interrupted opposite the end of the jaw and above the shonlder by the groove passing behind the tympanmm.

General color, above dull yellowish-brown (dead leaf), darker on the sides. A number of circular brown blotches on the back between the ridges, which themselves are rather brighter than the rest of the groundcolor, and not invaded by the blotches. In some these blotches are very few in number, and in none are they in any definite serial arrangements or areolated. The outer surfaces of the limbs are blotched transversely; a dull sellowish line along the upper jaw, distinct only under the eye, narrowing behind, and terminating above the arm; in young specimens an indication of a dark area back of the eyes and including the tympanm, somewhat as in $R$. sylvatica. Under parts yellowish-white, obsoletely marbled with brown. In life the groin and posterior parts of the abdomen, with the aljacent parts of the thighs, are salmon-color. I'took a specimen at Salt Lake City, Utal, which has no trace of dermal folds, and a smooth skin. Sides and above uniform dusky; thighs below and posterior part of abdomen red.

This is the characteristic Rana of the northwestern interior, being accompanied by Bufo columbiensis and Bascanium retustum. In life the posterior part of the abdomen, with the inferior faces of the thighs, are of a bright salmon red. I obtained it the entire length of the valley of the Warner Lakes, but not at Fort Bidwell. I have found it to range as far as the eastern foot of the Rocky Momntains in Montana; * and

[^58]the specimens assigued by me * to Rana septen trionalis, from the Yellowstone Basin, may be the rariety described above from Salt Lake City. I do not now have them before me for decision.

The habits of the Rana pretiosa are entirely aquatic.


Fio. 110. Rana temporaria pretiosa. No. 5973. Oregon; $\frac{1}{1}$.
Female.

|  | Inches. |  |  | Inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length | 2.74 | 1.00 | Inner toe from tarsus. | . 54 | . 19 |
| Fore-arm from | 1.46 | . 53 | Hind leg | 4.46 | 1.63 |
| From elloww | 1.18 | . 43 | Chord of jaw. | . 91 | . 33 |
| Femur | 1.24 | . 45 | Width of head | . 92 | . 33 |
| Tibia | 1.32 | . 48 | Length of eye. | . 26 | . 09 |
| Tarsus | . 72 | . 26 | Tympanum. | . 18 | . 07 |
| Hind foot . | 1.52 | . 55 |  |  |  |

Rana temporaria pretiosa Baird.

| Catalogne number. | No. of spec. | Locality: | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5973 | 1 | Caup Morrie, Oregon |  | C. 13. Kemurrls. | Alcoholic. |
| 8683 | 7 | Southern California .... | 1875 | II. W. Henshaw | Do. |
| $86 \pm 7$ | + | Nevala | Out. -. 1875 | W...dly ........ | Do. |
| 11409 | 4 | Puret Sound, Oremon ... |  | U. S. lixpl Expred | Do. |
| 5685 | 3 | Lake Tahoe, Nevatia .- | Oct. -, 1876 | 11. W. Henslaw .. | Do. |
| 3437 | 9 | Hed Liver of North... |  | 1. Kennicutt... | Do. |
| 3360 3.566 | 1 | Klamath Lake, Oregon. |  | Jr. C. (t. Newherry | Do. Do. |
| 33.366 8609 | 1 | Stuta Barbara, Cal | 1875 | IIr. A. L. Iterrman | Do. |
| 9401 | 2 | l'uget sound, Orron |  | 1) C. C. B. L. Kınnerly | Do. |
| $4 \infty 4$ | 1 | St. Catherine's, Camada. |  | Dr. I). W. Beadie | Do. |
| 3378 | 1 | North of ᄅliver Nitz, Oreron |  | 1)r: George Suckley | Do. |
| 11937 | 1 | Cuper firelole Basin, Iullowstone Park. |  | C. Hart Merriam. | Do. |
| 11:03 |  | Fort Ellis, Mont ........ | 1872 | W. B. Platt. | Do. |
| 11939 | $\begin{aligned} & 1 \\ & 6 \end{aligned}$ | Cpper Firehole Basin, lellowstone l'ark. |  | C. Hart Merrian | Do. |
| 11513 | 5 | Des Chantes liver, Ores | 1872 | IT. W. Henslaw | Do. |
| 11521 | 4 | Crooked livir, Oreg.... | 1878 | ..... do........... | Do. |
| !13ui | 1 | Monntitins near Fort Klamath, Oreg. | 1878 |  | Do. |
| 14498 | 5 | Fort Walla Walla, Wash. | 1875 | Capt. Charles Bendire, U. S. Army. | Do. |
| 10919 | , | . . do | 1881 | ....do............... | Do. |
| 10921 | $\frac{9}{10}$ | do | 1881 | - do | Do. Do. |
| 10921 | 11 | do | 1881 | do | Do. |
| 1092 | $\stackrel{2}{1}$ | $\cdots$ | 1881 |  | Do. |
| 14499 | 1 | California |  | Dr.J. G. Cooper | Do. |

[^59]
## RANA CANTABRIGENSIS Bairt.

Proceed. Ac. Phila., 1854, 1.62; Boulenger, Bull. Soc. Zool. France, 1880, 1. 209 ; do. Cat. Batr. Sal. Brit. Mus., 1882, p. 45.

Rana syluatica De Kay, N. Y. Famn, in, p. 64, Pl. 21, 22; Boulenger, Bull. Soc. Zool. Frauce, 1879, p. 174.
Rana temporaria, var. silcaticu pt., Giiuth., Cat. Brit. Mus., 1868, p. 17.
Rana tcmporaria cantubrigensis Cope, Check-List N. Amer. Batr. Reptil., 1875, p. 32.
This species differs more widely from the $R$. temporaria than does the R. pretiosa, so much so, that I now follow Professor Baird and Mr. Boulenger in maintaining it as a distinet species. As usual with the species of their genns, it presents such variations as to render the common origin of all these forms certain. Thus in four specimens from Lake Alloknagik, Alaska, the web of the hind foot is as fully developed in the $R$. temporaria pretiosa, only two phalanges of the fourth toe being free. Associated with them was a specimen of the variety $R$. can. tubriyensis evittata. In the specimen (No. 5169) from Puget Sound, Washington, the posterior leg is remarkably elongate, reaching the end of the muzzle, so as to approach nearly to the $R$. silvatica.

Two distinct subspecies and a variety of the Rana cantabrigensis are known to me, which differ as follows:

Only two phalanges free; no longitudinal stripes on back or tibia..... R. c. latiremis. Three phalanges free; no longitudinal strips on back or on tibia........R. c. ecittata. Three phalanges free ; a median dorsal and an auterior tibial light stripe

## Rana cantabrigensis latiremis Cope.

## Proceedings American Philos. Society, 1886, p. 520.

Muzzle rather obtuse, more so than in the typical $R$. cantabridgensis, and widened posteriorly; its length at the posterior edges of the tym. pana entering the length of the head and body three and a half times. The tympanic drum is very distinct, and its long diameter enters that of the eye tiro-thirds of a time. The nostrils are equidistant between the orbit and the end of the mozzle, and look uprards. The skin is quite smooth everywhere, with a dosolateral fold which is easily obliterated by immersion in alcohol. The heel of the extended hind legr reaches to the midille of the eye; the secont toe reaches nearly to the apex of the knee. The palmation is remarkably wide, leaving but one free phalange on all the digits except the fourth, where two are free. The internal cuneiform tuberele is quite prominent, with an obtuse conrex elge. There is no external tubercle. The internal finger (intex) is short and stont, and is rery little or not at all longer than the secoud (third) finger.

Color above, light brownish-gray; below, white. There are more or less numerous black spots on the sides, which incline to fuse more or less imperfectly into a longitudimal band along the dorsolateral dermal
fold. There are in some specimens a few small black marks on the back between the lateral folds. A dark line along the canthus rostralis. The black "ear-patch" is reduced to a black line, which passes from the eye over and posterior to the tympanic disk, and ceases opposite the inferior border of the latter.


Measurcments of No. 13723.
$M$.
Length of head aud body ............................................................... . 052
Width of head at posterior edge of tympana .019
Length of head to posterior edge of tympana....................................... . . 015
Length of fore limb $.0: 2$
Length of fore foot ......................................................................... . 011
Length of hind limb to groin
071
Length of tibia................................................................................ . 020
Length of tarsus................................................................................. . 012
Length of remainder of foot.............................................................. . 025
Rana cantabrigensis latiremis.

| Catalogue number. | No. of spec. | Locality.- | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13723 | 1 | Lake Alloknagik, Alaska. | -, 1882 | C. L. McKay ..... | Alcoholic. |
| 13724 | 1 |  | do | do | Do. |
| 13725 13726 | 1 |  |  |  | $\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$ |

## Rana cantabrigensis cantabrigensis Baird.*

Muzzle flat and rather acuminate, giving the head a tapering appearance, its length entering that of the head and body three and a half times. Tympanum half the diameter of the eye. Nostril equidistant between orbit and end of muzzle. A dorsolateral glandular dermal fold; the skin between them smooth, on the sides sparsely tubercular; first finger longer than second. Heel to middle of orbit; a glandular rib on the inner edge of the tarsus; webs of toes short; inner cuneiform tubercle prominent and obtuse-edged; a minute external tubercle.

The coloration of the typical form is as follows :
General appearance of $R$. sylvatica: Abore, yellowish-brown; a dark vitta through the eye, margined below by whitish; lateral fold of skin light colored, as is also a median dorsal line extending from the snout to the anus; a narrow light line along the posterior faces of the thigh
and leg; the sides are frequently black-spotted, sometimes only marbled with brown; the spots are sometimes fused into a line on the external side of the dorsolateral dermal fold ; the femora and tibixe are indistinctly cross-banded, the pale line on the latter always interrupting the bands; upper lip, dark-edged; lower lip, dark-edged, with lightcolored interruptions; a brown baud on front of humerus; threat and thorax marbled with light brown; post erior face of femur light brown, marbled with darker brown.


Fig. 110. Rana cantabrigensis cantabrigensis. No. 5925. Fort Simpson; $\frac{1}{1}$. Measurements of No. 9383.
Length of head and body ..... м.
Width of head at posterior margins of tympana ..... 017
Length of head to posterior margins of tympana ..... 014
Length of fore limb ..... 024
Length of fore foot ..... 011
Length of hind limb to groin. ..... 072
Length of tibia ..... $0: 2$
Length of tarsus ..... 012
Length of remainder of foot ..... 024

The form exittata is probably only a color variety, as it displays no peculiarity other than that of color, referred to in the analytical table given above. It is also found at several localities mingled with the typical form, thongh this is not always the case. Judging from the collection in the National Museum, it is as abundant as the typical rariety.

Rana cantabrigensis cantabrigensis Bairl.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3457 | 4 | Western Missouri |  | Dr. P. R. Hoy. | Alcoholic. |
| 3458 | 5 | Lake Winibigoshish Ninn. |  | B. F. Odell | Do. |
| 5386 | 5 | James Bay, B. America |  | C. Drexter | Do. |
| 5924 | ${ }^{6}$ | Fort Resolution........ |  | R. Kenuicott | Do. |
| 5937 | 13 | James Bay, B. America. |  | C. Irexler.. | Do. |
| 3456 | 5 | Red liver of North..... |  | I. Krunicott | Do. |
| 5919 | 38 | Fort Resolution. |  |  | Do. |
| 3454 5145 | 17 2 | North lied River |  | . do | Do. |
| 5925 | 1 | Fort simpson |  |  | Do. |
| $1+496$ |  | Alaska ...... |  | E. W. Nelson | Do. |
| $1+109$ |  | Clark County, ili. | Aug. 189 | iI. (i. Modige | Lo. |
| 14072 | 1 | Southern Alaska | 1885 | Litut. Gtorse M. Stouey; U. S. N. | Do. |
| 9383 | 14 | Lake Superior |  | R. Keunicott | Do. |
| 9384 | 1 | Athatasca R |  |  | Do. |
| 11515 | 1 | 31. of Nelson R., Hud. son's Bay. |  | Dr. Rubert Bell | Do. |
| 14497 | 4 | Fort Yukon, Alaska .. | 1879 | L. M. Turuer | Do. |

liana cantabriyensis erittata Cope.

| Catalogne number. | No. of spec. | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5365 | $\stackrel{2}{2}$ | Moose Rirer, B. America |  | C. Drexler. | Alcoholic. |
| 9385 | , | st. Catharine's, Camada. |  | Dr. D. W. Beadle | Do. |
| 5922 | 2 | Moose Island, B. A merica |  | C. Drexler. | Do. |
| 5366 | 2 | Moose River, B, America |  | ¢....lo. | Do. |
| 5364 | 3 | Welthy River. |  | R. Kiennicott | Do. |
| 5929 | 1 | Bitish America |  |  | Do. |
| 14495 | 1 | Nulato River, Alaska... |  | W. H. Dall | Do. |
| 6505 | 1 | Big Islaut, Great Slare Lake. |  | Juhn Reid | Do. |
| 5169 | 7 | Puget Sound ............ |  | U.S. Expl. Exped | Do. |
| 13727 | 1 | Lake Alloknagik, Alaskia. | 1882 | C. L. McKay...... | Do. |

## RANA AGILIS Thomas.*

Liana temporaria Millet, Fanne Maine et Loire, 11, 1. 664.
Rana agilis Thomas, Ann. Sc. Nat., sér. 4, 心. 1'. 365, Pl. 7; Fatio, Rev. Mag. Zool., sér. ㄹ, Xiv, p. 81, Pls. 6 and 7, and Vert. S'nisse, 111. 1י. 333; De l'Isle. Auu, Sci.
 p. 233 ; Leydig, An. Batr., 1. 14:3; Lessona, Atti Ac. Lincei, Mem. Cl. Sc.-fis. 1, p. 1074, ' l. in ; Boulenger Bull. Suc. Zool. France, 1879, p. 183; Catal. Batr. Sal. Brit. Mus., etl. 11, 1832, p. 46.
liana temporaric var. arculis, pt., Giinth, Cat., p; 16.
Remu 弓"acilis Fatio, Rev. Mar. Zool. sér. 2, Xiv, 1. 81.
Rana temporarial vars, agilis Schreib, Herp. Eur., p. 1:25.
Vomerine teeth in two oblique oral groups, extending beyond the hinder edge of the choane. Head elepressed; snont mather elongate, subacuminate; interobital space narrower than the upper eyelid; tympanm very nearly as iage as the fye: close to it. Fingers moderate, first extending beyoud second; toes at least two-thirls webbed; subarticular tubercles of fingers and toes much deveioped; inner metatarsa! tuberele romided, blunt, rather strong; a small outer tubercle. A narrow glandular lateral fold. Above gravish-brown, dark-spotted; a very dark temporal spot; a light lice on the lip from the tip of the snont to the extremity of the temporal spot; hind limbs regnlaly crossbarred; beneath immaculate. Male without rocal satis. (Boulenger.) France, Switzerland, North Italy, Greece.

Like the Rana temporaria, this species has its remesentative on the mestern coast of North America, which differs from it in some minor characters. This form has been named Rana awora by Baird and Girard, and I regard it as a subspecies of the $R$. agilis. The two forms differ only in coloration, as follows:

Black ear-patch well defined; dorsal spots distinct, comparatively large; hind limbs with distinct cross-bars......................................................... li. a. agilis.
Ear-patch not dark-colored nor well defined ; dorsal spots usnally minnte, or wanting ing ; cross-bars of hind limbs very indistinct........................... R. a. aurora.

[^60]
## Rana agilis aurora Bal. Gird.

Rana aurora. Bd. \& Gird. Proceed. Ac. Nat. Sci., Phila.
Body depressed, elongated; limbs elongated and well developed; head broad, acute, rounded anteriorly; nostrils elongated, sitnated below the crest of the canthus rostralis, half-way below the eye and tip of suont; eye moderate, contained three times in the chord of the commissure, sitnated two-thirds of its diameter from the rictus; tympaumb small, but little more than half the diameter of the eje. Inner wares rather elongated transversely. The vomerine teeth very few in each patch; the patches quite small, somewhat elliptical, and inclined back. wards, where they are separated by an interval a little less than that between the anterior extremities and nares; these extremities are in a line with the centers of the nares, but the teeth are on the posterior margins; the protuberauces are decidedly posterior to the nares. Tongue sinall, narrow. Enstachian openings large.

The skin is everywhere free from asperities, but not smooth, and on an attentive examination is scen to be minutely pitted all orer, and with coarser indentation on the mper surfaces of the limbs, the sides of the face, and along the dorsal foll, which aipears quite porous. The buttocks are mnch gramulated, : wameter which appears to exteurl a little on the abdomen and sides. A hroad depressed fold of skin extends from the eye to the hind legs. This is distinetly perforated or porous thronghont its extent. There are no intermediate ridges ; a glandular prolongation of apper jaw to the arm, intermpted at the posterior extremity of the jaw ; limbs very slender and much elongated; hand longer than the fore-arm ; fingers all long; third longest, fonrth next in size, then first and seeond. Femmr rather less and tibia more than half the length of the borly; hind foot and tibia about equal ; foot not very broad. Fourth toe much the longest, and with the last two joints entirely free, as are the terminal joints of all the toes. The third joint of the longest toe las a very slight margin, diminishing to the second articulation, and the inner sides of the thind and second toes are scarcely, it at all, marginel. Cmeiform process small, soft; no other tubereles on the sole, and scarcely any indications of any under the joints.

Color when liring greeuish-yellow above, with golden reflections, maculated with black; sides of abomen and hind legs reddishorange ; beneath dull yellowish-green, maculated; digital membrane purplishriolet.

In alcohol.- Abore rellowish-gray, brightest anteriorly. A few scat. tered indistinct blotehes on the upper parts and sides and scattered black dots on the head, above the eyes, on the snont, and along the dorsal ridge. Beneath yellowish, with obsolete small blotehes somewhat marmorated anteriorly. The mottling is visible on the inner faces
of limbs. Faint traces of two or three trausverse fascir on the thigh and leg. An obscure indication of a dark area about the tympanum somewhat as in $R$. sylvatica, and an interrupted dark line from eye to nostril. The side of head anterior to the eye is yellowish or greenishyellow, finely mottled, narrowing beneath the center of the eye into a somewhat distinct line, which passes backwards orer the maxillary fold of skin. In large specimens this line is iudistinct, and in none is it traceable anterior to the middle of the eye.
Iu small specimens from Columbia liiver, apparently belonging to this species, the triangular dark area behind the eye, including tympanum, is more distinct, and beneath it is a yellow line commencing below the eye and reaching back to anus. The buttocks are brown, with small light or gray-colored spots.


Rana agilis aurora Bd . Gird.

| Catalogue number. | No. of spec. | Locality. | When collected. | From whom receised. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3362 | 2 | San Francisco, Cal...... |  |  |  |
| 3371 | 8 | Columbia River....... |  | U. S. Exploring Expedi. tion. | Do. |
| 9467 | 1 | Puset Sound, Wash. Ter |  | Dr: C. B. P. Kennerly ... | Do. |
| 3374 | 6 | Peialuma, C'al |  | E. Simumels.......... | 1)0. |
| 0420 | 1 | Puget Sound, Wash. Ter |  | Dr. C. B. li. Kennerly.... | Do. |
| 934215 | 1 | Shoalwater Bay, Wash .. |  | Dr. J. ¢. Cowper .......... | Io. |
| 3377 | 2 | Astoria, Oregon....... |  | Limt. W. P. 'Trowhridge, <br> U. S Arme | 1\%. |
| 11711 | 4 | Puget Sound, Wash .... |  | U. S. Exploting Expedition. | Alcoholic types. |
| $\begin{array}{r} 3369 \\ 2628 \end{array}$ | 1 | Monteres, Cal $\qquad$ Fort Unpqua, Oreqon |  | A. S. Tavlor............... <br> Dr. Vollum | Alcolnic. Do. |

## RANA DRAYTONI Bd. \& Gird.

Rana draytoni Bd. \& Gird., Proceed. Ac. Phila. (1862), p. 174 ; Girard, U. S. Expl. Expedi., Herp., p. 23, Pl. II, figs. 19-24.
Rana lecontei Bl. \& Gird., Proceed. Ac. Phila. (1853), p. 301, Giinth., Cat., p. 15; Brocchi, Bull. Soc. Philom., (F.) I, p. 179, and Miss. Sc. Mex., Batr., p. 14, Pl. 1v, f. 1.
Rana nigricans, Hallow., Proceed. Ac. Phila. (1854), p. 96; Bonlenger, Bull. Soc. Zool. Fr. (18>0), p. 207 ; Brochi, Miss. Sc. Mex., Batr., p. 15, Pl. iv, fig. 3.
Rama louyqres, Hallow., U. S. Expl. Surv., x (1*59), w Zool., p. 20, Pl. x, tig. 1.
Epirhexis longipes Yarrow, Check List and Catal. of Spec. of N. Amer. Reptiles, Batr., (1883), p. 176. Not of Baird \& Cope.

Sp. ch.-Body stout. Head broader than long. Eye large; contained two and a half times in chord of jaw, aud distant one half time its diameter from the rictus. Tympanum three-fourths length of eyefissure. Body with tubereles above, each with a pore; without decided asperities. A glandular fold along upper jaw and a broad depressed ridge on each side of back. Femur and tibia nearls equal, about half the length of booly, shorter than hind foot. Hind foot well webbed; terminal joints free, as are second joints of second, third, and fourth toes on inner edges. Above yellowish-olive, with blotches of darker, interpersed with dark dots. Inferior and inner surfaces greenish white, every where obsoletely blotched finely with darker.

There are two subspecies of the Rana draytoni, which inhabit different zoological subregions. They differ as follows:

Hind foot two and a half times the length of the head; skiv above tubercular; a dark ear-patch; larger....................................................... . d. draytoni. Hind foot twice length of heal; skin above smooth; wo dark ear-patch; size swaller. R. d. onca.

## Rana draytoni draytoni Bd. \& Gird.*

Body stout and heavy. Limbs massive and well developed. Head rather broader than long. Nostrils moderate, with the usual papilla behind, situated nearer the suont than the eye. A triangular excavation in tront of eye, extended backwards under the eye. Eye large, contained two and one-half times in chord of commissure, one-half of its diameter from rictus. Tympanum small, iudistinct, transversely elongated; rather more than half the length of eye (its shortest diameter about equal to half this length). A glandular fold or ridge on the backward prolongation of the jaw, interrupted at rictus. Inner wostrils elliptical. Vomerine teeth in two series, obtuse-angled behind, where they are separated by an interval less than their distance auteriorly from nostrils, the ridges ranging with the centers of the nares, and the teeth on a line with their posterior margin. Tongue not large.

Skin thick and leathery (apparently the case in most frogs from the Pacific coast) ; above it is uniformly covered with depressed and softened tubercles, each tubercle with a distinct pore, sometimes with a
smaller one in it, especially on the back. Fore legs slightiy tubercular only. Buttocks granulated; the granules depressed (not tubercular). On each side a broad depressed ridge of skin, not very distinct at first sight, extendiug from the eye over tympanum in a line slightly convex above to uear the groin, where it is interrupted, and then takes a sudden bend upwards, over the leg, towards the anus, ceasing about opposite the articulation. This ridge is sometimes only traceable by the cribriform pores, which are crowded in it for its whole length; no branch visible back of the tympanum. A glandular fold, as already described, back from the jaw. Tibia about lalf the length of the body; a little, longer than the femur and shorter than hind foot; third finger longest; then fourth; second rather shortest; first much swollen at the base. Terminal joints of toes nearly free from web, especially on the inner edge, which is the case with the inner edges of the second joints of the second, third, and fourth toes. The membrane extends along the outer edge of second joint of fourth toe for a short distance. Cuneiform process moderate, with a small tubercle opposite it on the sole. Rounded tubercles beneath all the articulations, except the terminal. Tips of all the fingers and toes somewhat knobbed.

Color above sellowish-olive, with absolete subcircular indistinct blotches of darker, interspersed with dark dots of the same, generally on the tubercles. The dots appear somewhat condensed along the dorsal ridge. A few indistinct transverse fasciæ on the legs. Beneath, greenish-white, with indistinct mottlings of dusky present on the inner faces of the limbs, leaving no portion of the body unicolor. A trace, perhaps, of a yellowish line along the posferior portion of the jaw. Buttocks dark brown, with light spots.


Fig. 114. Rana dragtoni draytoni. No. 8700. California; f.
With a general resemblance to $R$. aurara, it differs in being more tubercular and pustulous above, the shorter limbs, the smaller but more fully webbed feet, broader head and tongue, etc.

This species differs from $R$. clamata in the broader, more depressed body, and dorsal fold, large foot, smaller tympanum, etc.

Measurements of male.

|  | Inches. |  |  | Inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total length | 3.24 | 1.00 | Hind foot | 1.82 | . 56 |
| Fore leg | 2. 63 | . 75 | Inner toe. | . 60 | . 18 |
| Fore-arm | . 62 | . 19 | Hind leg | 5.62 | 1.73 |
| Hand | . 80 | . 25 | Chord of upper jaw. | 1.10 | . 34 |
| Femur | 1. 64 | . 50 | Width | 1.16 | . 36 |
| Tibia | 1.66 | . 51 | Eye..... | . 40 | . 12 |
| Tarsus | . 86 | . 26 | Tympanum (long diam.) | . 26 | . 08 |

At the time when the description of $R$. lecontei was prepared the limits of variation of the species were not as well understood as they have since become from an examination of many specimens from different localities. On this account the species was established on specimens of small size, collected by Dr. Le Conte, but which I consider to belong to the $R$. draytoni. The color above is a dark olive-brown, with numerous uniformly distributed darker and well-defined circular blotches about the size of the pupil, and most of them with a rather lighter center. They are principally embraced within the lateral ridges, though some are exterior to them. The buttocks are dark brown, with well-defined spots and dots of yellowish, smallest near the anus. The transverse bars on the legs are uumerous, narrow, and well-defined, three to five on the tibia. A narrow and well-defined greenish-white line along the upper jaw from beneath the eye, and a lighter tinge along the lateral ridge. Beneath yellowish, marbled with brown on the whole under and inner surfaces.

Rana draytoni Baird \& Girard.

| Catalogue number. | No. of spec. | Localits. | When collected. | From whom receired. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3374 | 5 | Petaluma, Cal .. |  | Dr. E. Samuels. | Alcoholic. |
| $9 \pm 10$ | 1 | Puget Sound... |  | Dr. 己. 13. R. Kennerly | Do. |
| 3376 | 1 | California |  | A. L. Heerman ..... | Do. |
| 3370 | 2 | E1 Dorado, Cal |  | Dr, Boyle $\ldots$... | Do. |
| 11497 |  | San Francisco, Cal |  |  | Do. |
| 3548700 | 1 | Presidio, Cal ............ |  | Lient. W. P. Trowbridge | Do. |
|  | 1 | Mountains near Fort Tajon, Cal, |  | H. W. Henshaw .......... | Do. |
|  | 4 | Calitorvia ............ |  | Dr.J. L. Leconte |  |

## Rana draytoni onca Cope.

Yarrow's Rep. Expl. Surv. W. of 100th Mer., Zoology, vol. v, p. 523, Pl. 25, figs. 1-3.

Head oval; muzzle sloping to the lip. Diameter of tympanic membrane equal distance between nares and between nostril and orbit, and three-fourths the diameter of the orbit, or the distance from mares to margin of lip in front. Yemerine teeth in fasciculi behind the line connecting the posterior borders of the choanre. A dermal fold on each side of the back, and a short one behind the angle of the inouth, with
some seattered warts on the sides; skin othermise eutirely smooth. Toes obtuse, with wide webs reaching to the base of the penultimate phalange. One long metatarsal tubercle; one fold on the tarsus; a dermal border on outer toe. The heel extends beyond the end of the muzzle.

Light bromn above; below, yellow. Three rows of rather distant, solicl, small black spots between the dorsal folds; two or three rows on each side; none of the spots yellow-bordered. Head unspotted; no band on the lip. A brown rertical band on the front of the humerus. Scattered spots on tibia and femir; clouded spots on the posterior face of the femur. Size of Rama clamata.

This frog, of which a female specimen was obtained, combines characteristics of different groups; its coloration resembles somewhat that of the eastern or typical form of Rana vireseens, but the full palmation of the hind foot is that of $R$. montezuma and $R$. catesbiana. It is also quite similar to the $R$. draytoni, which is the $R$. longipes of Hallowell. The feet are shorter, the hind feet being twice as long as the head to the posterior border of the tympanum, while in $R$. d. drayioni it is tivo and five-tenths times as long. The $R$. onca lacks the black cheek-patch of the R. d. draytoni.

Utah, 1872; Dr. H. C. Yarrow; alcoholic; female.

> RANA BOYLII Baird. Proceerl. Ac. Phila., 1855, p. 62.

Rana pachyderma Cope, Proceed. Ac. Phila., 1883, p. 25.
Tympanum small, very indistinct. A broad depressed ridge of skin on each side of back. Skin finely tubercular above. Head broader than long. Tibia and femur more than half the leugth of body; the latter the longer. Hind foot less than half this length; webbed entirely to the expanded tips; outer toe decidedly longer than the third. Au elougated tubercle at base of inner toe, with another opposite it. Abore dull reddish-olivaceous, with indistinct blotches and dark spots on the back and fasciæ on the legs. Beneath yellowish, mottled anteriorly. Inner faces of legs immaculate.

Body rather stout. Limbs well developed. Tibia and femur very long. Head short, broad ; outline rounded, althongh the tip is rather acute. Nostrils small, situated on the crest of the decided canthus rostralis about midway between the eye and the tip of the snont. Eyes large, situated far back; contained three times in the chord of the jaw and one and a half diameters from the tip of suout; less than half a diameter from the rictus. A moderate excavation in front of the ese. Tympanum very small and indistinct, not half the diameter of the eye, covered with the small tubercles of the skin. A slight fold of skin above it and proceeding toward the arm, met by an indistinct thickening of the skin from the jar, as in the typical species. Tongue
large, fleshy, with a romded notch behind, leaving the posterior cornna as two short obtuse processes, differing from the cornua of the typical Rana; the tongue free posteriorly for half its length. Internal nares small, distant, elongated transversely. Vomero-palatine teeth in two longitudinal series, approaching each other obtusely behind, and separated by a considerable interval; anteriorly these teeth (of which there are only three or four in the lineal series) do no quite reach the level of the inner nares.

The skin is thick and coarse, above finely meven ; smooth and even below. Above and on sides thickly sprinkled with minute tubercles, even on tympanum. A broad, depressed, searcely distingnishable ridge from the eye along the sides, indicated in the shrunken specimen more by a peculiar pitted appearance than in any other way. On the sides are sereral circular areas of moderate size marked in the same way, probably large pustulations in life. The anteroinferior face of buttocks with distinet porous pits; the posterior faces granulated. The arms are well developed ; the fore arm and hand about equal ; the third finger longest; the inner rery much swo!len at the base, which is dark and horn-like. Femur considerably more than half the leugth of body aud longer than the hind foot; the tibia stiil longer. The feet are broad; each toe slightly dilated at the rombded tip, with epidermis thickened and hornlike ; the fourth toe is longest; the onter considerably longer than the third. The web extends completely between all the tips, so that there is nothing free but the very extremities. There is an elongated unarmed tubercle at the base of the inner toe, and a smaller one opposite to it; well-dereloped tubercles are seen under all the artienlations. The transverse apophyses of the sacral vertebra not dilated.

Above dark reddish or yellowish olive, rery obscurely mottled with darker, and a faint indication of yellowish along the region of the lat. eral ridge. Some whitish spots on the sides. and scattered black dots above on the tubercles. Legs transversely and obsoletely banded with darker. Beneath yellowish, with obscure mottling on the throat. No trace of a light line on the jaws, which are mottled.

A tadpole of this species measured three-fourths of an inch to the anus, and two inches to the tip of the tail, aud yet the fore legs had not been protruded, although fully formed, showing a considerable growth before maturits.

The specimen above described is from El Dorado County, Cal., and was for a long time the only one in our collections. During my expedition to Oregon in 1879 I rediscovered it, and found it rather abundant in the mountainous regions of northern California. The following is a description of a specimen from Baird, on the MeCloud River, one of the heads of the Sacramento.

This species belongs to the Rana temporaria group, and must be compared with Rana agilis aurora Bd. Gird., and h. temporaria pretiosa Baird
and Girard. The vomerine teeth are opposite the posterior border of the choanæ, and form two short, oblique series, directed inwards and backwards. The toes are webbed to the terminal phalange of the fourth digit. The hind leg extended reaches the extremity of the muzzle with the heel. There are two plantar tubercles. The internal is narrow, rather prominent, and with obtuse extremity; the other is at the base of the fourth metatarsal bone, and is rounded.
The muzzle is obtuse and the head rather wide. Its greatest width at the position of the membranum tympani equals the length from the end of the muzzle to the line connecting the axillæ in some specimens; in others to that connecting the middle of the humeri. The skin is on all the superior surfaces thick and glandular. This condition is especially marked in the dorsolateral fold of each side, which is so thickened in front as to resemble a paratoid gland. This becomes less visible in alcohol. The tympanic membrane is either eutirely concealed or is represented by a depression ouly. The skin covering it is roughened. A groore extends downwards and backwards from it. Between this and the canthus ovis is a glandular thickening, and behind it are two others, one above the other. Posterior to these, on the sides, is a sucression of rounded, ruughened warts, similar to those on the toads. Similar warts, but less prominent, are scattered over the dorsal region, and are numerous near the extremity of the coccyx. The skin of the superior surfaces of the head, body, and limbs is minutely but rery distinctly ronghened by swall warts, each of which gives exit to a pore. Inferior surfaces smooth. Length of fingers, beginning with the shortest, $1,2,4,3$.

The color is dark brown or nearly black, with indistinct darker spots on the back; sides brown. Axilla and groin sellow, marbled with black. Thighs above light or dark brown, with three darker cross-bars. Tibiæ similar, with three cross-bars. Thighs, behind, black, coarsely vermiculated with yellow, or yellow closely spotted with black; below, light rellow, spotted with brown on the gular region and on front of femora-

The specimens from Ashland agree with those from the McCloud, except that they are nearly black above and do not exhibit the dorsal spots.

I compare this species with the Rana draytoni, from the Russian River, near the coast of California. That species has but one palmar tubercle, the internal, which is of similar proportions to that of the $k$. boylii. The skin is not thickened, and is much less glaudular everywhere. The membranum tympani is entirely distinct. The posterior face of the femur is not rermiculated with yellow, but is covered with large black masses. The whole of the under surfaces are brown-spotted. There are four brown cross bars on the tibia; traces of the fourth sometimes appear in the R. boylii. From Rana pretiosa it differs in all these characters, besides those that belong to the latter; i. e., the fasciculated vomerine teeth and the short lind legs.


Fig. 115. Rana boylii. No. 3370. Natural size. El Dorado, Cal.
Measurements of No. 3370.
Length of head and body ............................................................................. 145
Length of head to line connecting cauthus ovis..................................... . . 0132
Width of head at line connecting canthus ovis..................................... . . 019
Length of muzzle to line of anterior canthus ocularum ............................ . 062
Length of fore leg......................................................................... . . . 0275
Length of foot .............. ............... . ................................................... . . . . . 014
Length of hind leg..................... ...................................................... . . . . 0753
Length of hind foot ................ .......... ..... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 034
Leugth of hind foot without astragalus ..................................... .......... . . 023
Rana boylii Bd. \& Gird.

| Catalogae number. | $\begin{aligned} & \text { No. of } \\ & \text { spec. } \end{aligned}$ | Locality. | When collected. | From whom received. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3370 | 2 | El Dorado, Cal . |  | Dr. D. C. Boyle | Alc. type, do. |
| 13929 | 12 | Baird, Shasta County, |  | C. H. Townsend | Alo. |

In aldition to the above, I obtained five specimens from Baird, and two from Ashland, Oregon, at the northern base of the Siskiyou Mountains, which form the boundary between Oregou and California.

## RANA SILVATICA Lec.

Rana sylvatica Le C., Ann. N. Y. Lyc., I (1825), 282; Harlan, Sillim. Amer. Journ. Sci., x, (1825), 58 ; 1 b. Journ. Ac. Nat. Sci, Phila., v (18:25), 338 : 1 b. Med. and Phys. Res. (1835), 103, 221 ; Holbr., N. Amer. Herp., 1st ed., I (1836), 95 ; 1 b., 2 d ed., IV, (1842), 99, xxiv ; Storer, Rept. Mass. Reptil. (1839), 239; Dum. \& Bibr., vili (1841), 362 ; De Kay, N. Y. Zool., III (1842), 64, xxi, fig. 54, and xx, 50 ; Thompson, Nat. Hist. Vt. (1842), 121 ; Weid., Nova Acta Ac. Leop., xxxvii, 114 ; 1) l’'sle, Ann. Sci. Nat., sér. 5, xvir ; Boulenger Catal. Batr. Sal. Brit. Mus., 188\%, p. 47.
Rana pennsylvanica Harlan, Sillim. Amer. Jouru. Sci., x (1825), 58; Boulenger, Bull. Soc. Zool. France, (1879), 188.
Body rather broad and much depressed; angulated by the lateral radies; the widest portion just anterior to the fore legs. Limbs long and sleuder.

Head pointed, broad ; the sides obliquely sloping; eyes not risible from beneath; distauce between the anterior canthi about two-fitths that
between the rami. Loral space rather excavated or concave. Nostrils moderate, rather oblique; situated below the canthus rostralis, so as to be fully risible beneath the outline of the profile; they are situated half-way between the anterior canthus of the eye and the tip of the suont, and not so far forward as the tip of the lower jaw; they are separated by about the diameter of the eye, or one fourth the distance between the rami. Eyes large, projecting, their centers nearer the hinge of the jaws than the end of snout, the posterior margins above the rictus. Tympanum moderate, its posterior edge on a line with the posterior end of jaws, its center raised, its longest diameter vertical, and about two-thirais that of the ese. The light liue under the eye is prolonged into a thickened glandular fold of skin which is interrupted abruptly above the insertion of the arm; the middle of the interval be. tween this interruption and the end of the snout opposite the center of the eye. The distance between the rami rather less than to the end of snout. Upper jaw projecting moderately.

The tongue is elongated, much longer than broad, free behind for more than balf its length and on the sides to the tip; the two cornua moderately prominent. Internal nares moderate, circular, and nearer the anterior canthus of the eye than to the external nostrils. Teeth in two small slightly elongated patches, placed with their axes a little inclining backwards and abont intermediate between the nares, their anterior edges being in the same line. They are abont as far apart behind as their anterior edges are from the nares on either side. The teeth of the upper jaw excend back to the gape of the mouth.

The skin of the upper and exposed portions of body and limbs is more or less roughened by minute and close-pressed tubercles, with here and there a larger interspersed. These do not appear to be at all glandular or excretive. They are largest and most prominent on the sides and the posterior portion of the back, where they are generally black. The posterior and inferior face of the thighs is granulated for about two-thirds its leugth, as well as a small portion of the belly on the pubic region. The sides are scarcely granulated, although coarsely pustulate; all the rest of the lower parts of body, iucluding the concealed surface, are perfectly smooth. The skin of the thigh is pierced by innumerable fine pores.

As already stated, there is a fold of skin as a continuation of the light stripe along the edge of the upper jaw, and extending to a point just above the middle of the arm, thickened behind. A rounded depressed ridge or fold of skin commences at the posterior end of the eyelid, and, curving a little downwards to the tympaumm, sends off a short branch along its posterior border, then continues aloug the sides of the body (over the extremities of the transverse processes of the vertebra), ceasing at the insertion of the hind leg.

The fore-legs are well developed; the fore arm shorter than the hand. All the fingers are perfectly free. The third finger is longest, the first
and fourth equal, the secomd least. All are thickemed at base and tapering to tips, and have a bulb under each joint and several on the palm. There is considerable power of oprosition in the inner fingers. The tibia and femme are considerahly more than half the length of the body. The former is longer than the foot the femmernemediate. The fourth toe longest; the thind rather longer thath the difth, and extemding to the middle of third phatage (from tip) of longest ; the second and first sureessibely shorter. All the metatarsals are separated by about half their distal extremities and the interval filled by membrame. The wel extends from the first joint (from tip) of the outer tog to the second of the fourth ; from this same joint to the first of the third toe; from the second joint of the third to the first of the second ; from the second of the second (extending by a very narow web to the tirst) to the tirst of the first; the ontlines, when stretelem, very concave, elongated, and mather shatp. The teminal phalamges of all the toes and the last two of the longest are thas tiree. The cunciform process is well developed.

Upher parts a fellowish gray, tinged with brown om the sides. The side of the head below the canthus rostralis and latemal fold, inchuding tympamm, is of a dark reddish-brown (sometimes black), extemding in an acute angle to a temination just above the insertion of the arm or posterior edge of the maxillary fold. Edges of both , jaws dam brown, a little mottled. A gellowish-whe line from the tip of the snout paralled with the margin of the mper jatw, and, rmmang of the maxillary fohl, terminates with it. All the lower and interior faces of the body are fellowish-white, with an obseme motlling of brown on the theratt. A few seattered spots of black on the sides and the posterior portion of the back, principally on the lawger tubereles. There are three or four transerse date bars aross the faces of the thighs; the posterion fares are mottled with obseme hown, on a yellowish gromme ; the brown agregated into a ring aromb the ams. The infiemor surfile es of the tarsme amb fore-an dark hown ; an elongated brown pot at the proximal extremit! of the am, extembing oblignely fom the lower jaw.

Some specimens from lacine have the body rather stmen and the lags shorter, the weh of hind feet rather mome developed. A mmber of faint white spots on the posterior face of the buttocks. Others fiom the same locality, however, have the characters as wiven abowe Oceasimally the membane of the foot does not extend beyom the thind joint (from tip) of the longest toe, and in the typical specimen fiom Carlishe it omly raches to the secom joint ly a narow margin.

A specimen from Quebee is rather darker than msatal, repereially on the sides, imd has the feet webled more than is deseribed above.

A female specimen from Westport, N. Y., is stonter amb the head broader than in a male. The legs are rather shorter. There is less grambation on the puhis, while the gramles on the posteroinferior
surface of the thighs are more depressed, larger, and more separated than usual by thie intermediate valleys. No appreciable difference in the size of the tympanum.


Fig. 115. Rana silvatica. No. 3388. Quebec, D. C.; 1.

## Mcasurements.



Rana silvatica Le Conte.

| Catalogue number. | No. of spec. | Locality. | When col lected. | From whom reccived. | Nature of specimen. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3393 | 4 | Westport, N. Y |  | Prof. S. F. Baird. | Alcoholic. |
| 3388 | 1 | Quebec; Canala |  |  | Do. |
| 3347 | 1 | Anderson, S. C .......... |  | Mins G Paino. | Do. |
| 3885 | 1 | Racino, V is ............ |  | Dr. 1r. R. Hoy............ | Do. |
| 3392 3399 | 1 | Clarke Connty, Va ..... Carlisle Pa |  | I. Kenuicotit............ | Do. |
| 3399 3398 | 1 | Carlislo, Pa. <br> Yellow Creek, Ohio |  | Prof. S. F. Baird. | Do |
| 5159 | 1 | Toledo, Ohio....... |  | J. 3 c 'Trembley | No. |
| 3390 | 1 | Carlisle, Pa. |  | Pruf. S. F. Bairl | Do. |
| 3384 | 1 | ......do |  | ..... do .......... | Larva. |
| 3387 | 1 | - |  | ... dlo. | Alcoholio. |
| 9387 | 1 | Upper Visconsin River. |  | R. Krminicott | Do. |
| 5147 $8: 377$ | $3$ | Lake Supurior ......... |  |  | Do. |
| 8377 $5: 81$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Scarborough, Mo Selkirk Settlement |  | U. S. Fish Commission.. | Do. |
| 5381 981 | 1 | Selkirk Settlement Athabasca River |  |  | Do. |
| 7836 | 1 | Washington, D. C |  | Dr. E. Cuoues, U.S. Army | Do. |
| 3735 | 1 | Ogdeusburgh, $\mathrm{N} . \mathrm{Y}$ |  |  | Du. |
| 5417 | 2 | Ilinois. |  | R. Kennicott | 1). |
| 5922 | 1 | Moose Liver, British America. |  | C. Drexler. | Do. |
| 9668 | 1 | Prince Georyo's County, Mu. | May-1878 | Dr. T. II. Bean | Do. |
| ¢928 | 1 | Kinston, N. C...... |  | Jas. W. Milner | Do. |
| 34533 | 1 | Saint Lolis, Mo |  | Dr. Gro. Finglemat | Do. |
| $119+9$ | 2 | Wheatland, Ind | 1881 | Robt. Ridyrwily | Do. |
| 13.323 | 1 | Washington, D. C...... |  | Geo. Shoomak | Do. |
| 11479 |  | Hiemlock Like.........̈. | 1880 | S. C. lirow | Do. |
| 11512 | 1 | (?) .. |  |  | Do. |

## RECAPITULATION.

The number of existing species of batrachia of North America known, and described in the preceding pages, and the fanilies to which they belong, are as follows:


## A D DENDA.

The following notes were too late for insertion into the body of the book:

> AMBLYSTOMA TIGRINUM Green. (p. 84).

Don José M. Velasco asserts that the Siredon mexicanus (S. humboldtii) undergoes a metamorphosis, but he nowhere describes the adult. He did observe in 187s* the metamorphosis of the Amblystoma tigrinum in specimens from Lake Santa Isabel, threo miles north of the City of Mexico. It does not appear that he discriminates between the two species, so that when he states tinat the S. mexicanus is found in Lake Zumpango, thirty-two miles north of the City of Mexico, we are not certain whether it may not be the $A$. tigrinum to which he refers.

The Siredon gracilis and S. lichenoides of Baird are both larval furms of the A. tigrinum.

Dr. R. W. Shufeldt, U. S. Army, thus describes the metamorphoses of the Amblystoma tigrinum, as observed by him at Fort Wingate, N. Mex. (Science, September, 1885, p. 263):
"(1) Axolotls are more readily converted into Amblystomas if kept in water containing but little air, and vice versa.
"(2) If transformation is forced up to a certain point in development, the reptile arrives at the higher form without any further interference.
"(3) Axolotls live in the water with apparent comfort a considerable and rarying length of time after their gills have been absorbed.
"( 4 ) After the metamorphosis is completed their power to return to the water again to live seems to depend upon the moult, and whether they have lived in moist or dry places since the metamorphosis.
"(5) By varying the conditions under which these animals live, we can at our pheasure retard or accelerate their development to the higher stages.
"(6) Young Axolotls are more easily trausformed thau the older specimens, but this rule also depends largely upon the conditions under which these animals live.
"There is another very important factor that enters into this metamorphosis that, so far as the previons accounts go, is not tomehed npon, and that is the question of their diet during the experiments. Axolotls are very voracions creatures and eminently carnivorous.

They are very fom of maw meat, and, upon the slightest provocation, they will feed upon eath other. So I have fomm during the eourse of my experiments that-
"(7) The metamorphosis is hastened by regnarly suphlying the animals with plenty of proper fool. And what is still more interesting, when they are this treated it markedly alfects the appearanee of the transformen Amblystomas.
"(s) If, during the process of foreing the transformation of A xolotls, the animals are regulaly supplied with the remuisite amount of fresh meat, the transformed Amblystomas are very much larger and stronger than those which are transformed without having reedeal any thond. In the ease of A. tigrinmo-those that received food-the transformed animal would hardly have been recognized as the same speries; they were not only larger, lant of a very deep, mully, black color, withont spots, while the others were mottled with bright yellow and a pale brown.
"(9) The depth of the water has a wonderfin influence mpon the metamorphosis; and the fact is well known that the depper the water in which the Axolotls live the slower their transformation.
"Temperature is another important factor in the change, and its moderate increase sems to hasten the transformation.
"Now, the most interesting part of all is to watch the operation of these laws that I have given, in nature, and the manner in which the metamorphosis of Axolotls is there efficeted.
"It would, indeed, be hard to find any where a more perfect and beantiful example illustrating the extremely sensitice balince that may exist between the surromding conditions on the one hand and their effect upon an animal organism on the other. This year, for instance, the pond that I have observed gradually dried up; the north haif of it entirely. This took a momber of weeks, but during that time all the moditications of which the metamorphoses of Axolotls are sulyject to or capable of, were, so far as their necessity goes, most lucidly demonstrated. A shallow comer of this pond would, after a torrid day or two, dry up, whereupon all the Axolotls that happened to be eanght within its limits wonld be fomd-perhaps sereral humdred of them-mmer the debris, rapilly assuming the Amblystoma form.
"Numbers of the same generation, howerer, in deeper parts, would be malfiected by the change of environment so suddenly precipitated upon their brethren. If the drying up, continued, these transtormed animals: quit the site, and during the next few days could be found muler logs, and in other suitable phaces at some considerahie distance from it. On the contrary, should a rain in the mean time fill the pond again and flood orer these shallow parts, the transformations were checked, and those with gills and lumehie in all stages of change once more took to the water. When hulden together in the shallow phaces, the large and strong ones deromed the smaller and feebler forms; and the differ.
dent appearance of the two was very striking upon the most superficial examination.
"One day in July the whole north half of this pond suddenly ran dry ; and I must confess the sight its bottom presented during the following day was one of the most extraordinary, and at the same time most interesting, that I ever beheld, and after what has been said can be better imagined than described. It absolutely swarmed with these creatures, whose organizations were accommodating themsel-es; to the new condition of affairs as rapidly as the laws governing the changes permitted. The study would have furnished food for a small volume.
"Axolotls are also affected by the character of the ponds or swamps they live in, the same species showing all manner of shades in their coloration. Those in shallow ponds, with little or no vegetation and hard clay bottoms, grow to be very light colored, and long retain their larval forms.
"No doubt many such ponds as I have described exist all over this southwestern comity, and a moments reflection will make it clear to ns how the metamorphosis of this creature temps to save thousands of their lives when the region is visited by a protracted drought and their places of water resort fail them. The preservation of the form is thereby to a great extent protected."
A good many of the adults proceed lo Dr. Shafeld differ from the typical form in the shortness of the tail : its length from the posterior end of the rent equaling the length from that point to the axilla.

> CHoNDHOTIS (DNGilatos Cope (p. 100).

The following figures of this species were avoidably omitted from their proper places in the text:


1). Charles C. Abbott informs me that this species has a distinct whistle -like wolof, and states that Mr. John Burroughs has also heard it.

> AMIHILMA MEANS Gard. (p. Olio).


ately beyond. The large ductus cuvieri enters the large auricle opposite the middle of the length of the ventricle. Those vessels at their cardiac terminations are distinctly seen in the large pericardiac sac. The vena portic is very large, and extends along the dorsal side of the liver proximally.

The stomach is searcely distinguishable. The alimentary canal is only convoluted in the posterior two tifths of its length, the rectum leing distingnishable by its superior diameter and its absence of flexure. The liver is large and not divided, and terminates rather abruptly where the convolutions of the alimentary canal commence. It is attached to the median line by a fold of peritonem by one edge. Its middle line is grooved, and the groove is occupied by a ressel, and by the edge of the mesentery, which extends to the intestines. In Plate xir it is cut at the proper point to display the large gall-bladder (y).

The lungs are not so long as in Siren lucertina, not extending beyond the liver. They are of subequal length.

The testis is single and very elongate. It extends from the extremity of the liver to near the outlet of the vas deferens. Parallel to it, and in part attached to it, is a slender, flat body, which I suppose to be the corpus adiposum. The kidney is an elongate, oval, and flat body, emptying ly a very short ureter into the cloaca. Its rence revehentes are distinetly visible from the inferior side. The Mullerian duct extends along its exterior border and anterior to it between the lung and the dorsal peritonem a long distance anteriorly; that is, as far as the proximal fourth of the length of the stomaeh. The minary hladder is remarkably elongate, extending forward to the distal end of the liver:

The spleen is elongate, but not so much so as in Siren lacertina, equaling about one-third of the stomach, and just reaching the gall-bladder.

Ostenlogy.-According to Mr. F. A. Lueas, who drew the plate of Amphiuma for the present volume, the iliae bones were mensmmetrically attached in the specimen, the one to the sisty-third and the other to the sixty-fourth vertebra (Plate x).

Voice.—Prof. J. A. Ryder, of the University of Pennsylvania, has kept this species in captivity. IIe states that its roice is so loud that it can be heard from one room to another of the building of the sehool of biology.

## SIREN LACEITTINA (p. Ved.)

Splanchnology.-The branchial arteries leave the bullus arteriosus near together, scarcely forming a truncus communis. The brauchial veins, on the other hand, unite on each side into a truneus communis or aorta root, which mites with that of the opposite side to form the aorta a considerable distance anterior to the bulbus arteriosus. The valve of the holbus is a longitudinal elevation containing six groores, one corresponaing to each arteria branchialis. (Plate xxi, fig. 5 a.)

Both lungs extend from the heart to the eloaca. The stomach is scarcely distinguishable from the intestine. The latter is large, and is
moderately conroluted. The vessels of the mesentery are large. The mesenteric vein runs along the inferior elge of an elongate body, which is either the spleen or the puncreas. It extends from the stomach for a distance equal to one thirl the length of the visceral cavity, terminating near the anterior testis. The liver is large and long, extending from the heart to near the anterior testis. It is divided by a median groove for most of its length, in which the base of the mesentery is attached cardiad of the large gall-bladder. The anterior part of the liser forms a median lobe, which extends for a short distance below the alimentary canal.

There are two pairs of testes, the anterior the longer. The kidneys are flat, oval bodies, lying on each side of the middle line immediately above the rectum. They open by a short ureter into a fold of the cloaca. The urinary bladder is large and long, extending forwards as fiar as the anterior extremity of the anterior testis. (Plate xliv.)

## SALIENTIA.

Viscera.-The corpora adiposa are elongated transversely, and frequently fissured at the distal extremity. (Plate Lvir.)

The ductus miilleri is present in Bufo, Scaphiopus, and other genera, but is wanting in Rana, except Rana virescens (Sedgwick).
The urinary bladder is large, and is extended from side to side of the inferior part of the ablominal cavity. Its anteroposterior extent is small.
The Rev. W. J. Molland informs me that he has observed in Japan arboreal nests of Batrachia Salientia, in which the embryos developed into tadpoles, which reached a length of nearly an inch, before leaving the nest. The nests are made in willow trees at a distance of from 12 to 14 feet above the water. The dried remains of a nest containing a good many dried ova and tadpoles was sent me by Mr. Holland. The latter are distinguished by the presence of a large persistent food-yolk, as in various Salientia of division II of the table on pages 233 and 239.

$$
\text { BUFO Laur. (p. } 261 \text { ). }
$$

Insert at bottom of page 261 in table of species:

BUFO ADUNCUS, sp. nov.
This very distinct species has the cranial crests of the B. lentiginosus type, more especially resembling the B. l. forlerii. It differs especially from that species in the very short, wide heal, with depressed mazzle overhanging the month, in the perfectly smooth inferior surfaces, and in the coloration, as well as $m$ varions minor details.

The heal is wirler than long, the width entering the length 9.25 times, while the lengthenters it three times. The entire profile is steeply decurverl, and terminates in a prominent muzzle, which projects considerably leyond the upper lip. The nostril is lateral and neally terminal. The lip borter is directly below a point half-way hetween the nostril and the orbit. The maxillary bone is somewhat contracten to the lip border. The prefrontal bones are oltusely angulated abowe, but the cranial erests commence with the frontoparietal bones. 'They are parallel, rather near together, and are well distinguished everywhere. They form a right angle with the postorbitals, beyom whici they are not produced, nor is there any tendency to conflnenee postrriorly. A short, robnst supratymanie ridge. Orhit large; tympanic disk ohlique, the long axis directed upwards amb forwards, amb at little shorter than the ege-fissure. Slin above with small warts at comsiderahle distances apart; below everywhere smooth. Parotnids indistinut in the specimen, their superior borters strongly divergent from the miditle line posteriorly. Limbs rather long. The muzzle marks the midite of the fore-arm, and the distal end of the tarsus of the extemed limbs. First finger longer than secomb; second comected with first and thirel fingers by a shont web. Palmar tubercle longer than msual. Tows closely homul together, the fometh considerathe hager than any of the others. The internal cmeiform tubercle has a free edere, whim is mot back; the external tuberele is small. The femmer is bomed th the maldle lyy the skin of the side of the boil:-

## Mcusurcilimn's.




 lowish-whitr. 'The small wats above are ferl, with a biarl ring at the
base．No medtan dorsal band．A light hamb eommences on the seap－ ula and cxtemds nearly to the groin．It is homaded anove by separate blackish spots，and below by similar spots，which are closer together． These form the superior lomer of a lead colored hand．This disappears below in a crowd of small black spots，which grow smather and disap． pear on the sides of the abdomen．The integment thas marked is areolated．All the lighter parts of this region are doted with small pink spots．Posterior faces of fore－arm，femme，tarsus，and external metatansi blackesh，with sumall yellow speckles．The limbs have on their upper surfaces brown cross bands with jink points in them．Anterior face of tansus with a hrown spot，and several on the external digits．

| （ataluyne numbir． |  | Lox：alits． | From whom received． | Nature ol npucimer． |
| :---: | :---: | :---: | :---: | :---: |
| 14100 | 1 | 「イッスa＊ | 19．II．Karardala | Alobrolic． |

This species is well maracterized ly the length of its legs，the short and peentiar form of its heal，the smonthess of its lower surfaces，and the color．Thomgh not stated on the label，the sperimen deseribed is probahiy from Gamshoro，in Central Northern Texas．

## MILA ANIMRSONI Baird（1．3（6）．

The liev．Dr．John E．Peters informs me that he took a specimen of this rare tree frog near May＇s Landing，N．．J．This is the third individual that has been fomed，and the locality is not fir from that at which 1）r． Leut\％took the second one．Dr．I＇eters found the speeimen on the grommd near a piece of water．Its note is milike that of IIylu repsicolor， being a hoarse peep－pecp，or，accorling to Dr．Abbott，a keck－keek．

The following drawings represent the parts of the type specimen of the form（＇．n．rerrucosus Cope，from Florida，which was not inserted


at the moper plawe in ha lext．The tope specimen is in my private eollection．

Prof. A. L. Verrill tells me that he has seen a few specimens of this species near New Haven, Conn., and that he considers that place to be about the northern limit of its range.

## AMPHIGNATHODONTIDA.

The following fignre of the mouth and feet of the Grypiscus umbrinus Cope, in illustration of the abore family, was omitted from its proper


Fig. 119. Grypiscus umbrinus. Rio Janeiro; $\frac{1}{1}$.
page. The specimen figure is from Rio Janciro, and is in the Musenm of Comparative Zoülogy of C'ambridge.
BUFONIDÆ (p. 260).

For the generic name Ollotis, in the key, substitute Nannopliryne Gthr. (1873), which has two years priority.
CYSTIGNATHIDE (p. 313).

Insert under Hylorles, immediately after Malachylodes, the following: Vomerine tecth present Batrachyla Bell.

## BIBLIOGRAPHY.

[Note.-Works on natural history of a general or geographical claracter aud popular text-books are not included.]

Abbott (Charles C.) Notes on the habits of the Savanali Cricket Frog [Aeris crepitans, Baird]; in Amer. Naturalist, vol. 16, 1882, Sept., pp. 707-711.
—— Receut Stndies of the Spade-foot Toad; Americau Naturalist, 1884, p. 1075.

Albrecht (P.) Note sur le basioccipital des Batraciens Anoures, avec fig.; in Bull. Mus. Roy. Hist. Nat. Belg., t. 2, No. 2, pp. 195-200.
Allen (Harr.) The Spinal Cord of Batrachia and Reptilia; in Proc. Acad. Nat. Sc. Phila., 1883, p!. 56, 57.
Archarow (J.) Ueber die Aufsaugung ans den Lymphsiacken des Frosches; in Arbeit. d. naturforsch. Gesellsch. Univ. Kasan, T. 18, 2. Hft., Kasan, 1887. ( 18 p. p )

Ueber dic Aufsaugung aus den subcutanen Lymphsäcken bei dem Frosche; in Arch. f. Anat. u. Pliys. pliysiol. Abth., 1887, pp. 377-387.
Aubert (Herm.) Ueber das Verhalten der iu sauerstoffireier Luft paralysirten Frösche und ein daranf gegriindetes einfaches Verfahren dio Reflexmechanismen bei erhaltener Erregbarheit der motorisehen Nerven und der Muskeln stundenlang zu lïhmen; iu Arch. f. d. ges. Physiol., Pfliiger, 27, Bd. 11, 12. Hft., pp. 566-576.
Baird (S. F.) Revision of the North American Tailed-Batrachia, with doseriptions of new genera and species; in Journal Acad. Nat. Sci. Phila., vol. 1, 2 d scries, 1849.
in IIeck (J. G.) Iconographic Encyclop:edia of Science, Literature, and Art, vol. 2, 1851.

- Descriptions of New Genera and Species of North American Frogs. Proceedings Acal. Philadelphia, 1854, p. 59.

Baird (S. F.) Reptiles of the U. S. Surveys for R. R. to the Pacific Ocean. Report, vol. $10,1857$.
—— Reptiles of the Bomdary; U. S. and Mexican Boundary Survey, vol. 2, 1859.
—— and Girard (Charles). Charaeteristics of some new Reptiles in the Mnsemm of the Smithsonian Institution; Proceerls. Acad. Philadelphia, 1s52, p. 68.

- Descriptions of New Species of Reptiles collectel by the United States Exploring Experlition, under command of Capt. C. WHlkes, U.S. N.; loc. cit., 1852, p. 174; 1853, p. 420.
————— List of Reptiles collected in Califoruia by Dr. J. L. Leconte; loc. cit., 1853, p. 300.
Ballou (IV. H.) Migration of Frogs; in American Naturalist, vol. 21, No. 4, p. 383.

Barboza du Bocage (J.-V.) Reptiles et Batraciens nonveanx d'Augola; in Jorn. Sc. Math., Phys. e Nat. Lisb., No. 26, 1p. 97-99.
(2 Reptil., 1 n. sp., Batrach.)
Barfurth (D.) Experimentello Untersnchungen iiber die Verwandlung der Froschlarven; in Biolog. Centralbl., 6. Bd., No. 20, pp. C09-613.
(Naturforscher-Versamml.)
Ueber Versuche zur Verwandlung der Kaulquappen; in Tagebl. 59. Vers. deutsclı. Naturf., p. 139, Anat. Auz., 1. Jahrg., 1: p, p. 314-317.

- Dio Verwandeng der Kanlquappen; Ausz. in Der Naturforscher, 19. Jahrg., No. 49, pp. 490, 491.
(Naturforscher-Versamml.)
- Versucho iiber die Vermandlung der Froschlarven ; in Arch. f. mikrosk. Anat., 29. Bd., 1. Hft., pp. 1-28.

Barfurth (1).) Dio Riackbildung des Frosehlarvenschwatzes mad die sogenannten Sarcoplasten, mit $\because$ Taf. Ibid., p1. 34-60.
——Die Regencration des Amphibienschwanzes; in Anat. Anz., 3. Jalurg., No. 14, pl. 40:3-405.
Bassi (Gins.) Modificazione morfologicho dei globuli rossi del sangue di Rana; note preventina. Nodena, 1857, 8vo, 2 pp. Estr. dalla Rassegna di se. met., aun. 2, No. 3.
Baur (G.) Ueberdie Itomologien ciniger Schitidelknochen der Stegocephalen und Reptilien; in Anat. Anz., L. Jahrg., No. 1:?, 1p. 34s-3.50.
———Beiträge \%mr Morphogenie des Carphe u. Tarsus der Vertebraten. I. Theil. Matrachia. Jena, 1387, 8ro, po. $8 \%$.
Bayer (l'rz.) Paluobatrachus bohemicu. v. M. aus der Brambohte von Frendenhain, mit 1 Taf.; in Sitzasber. d. k. bülim. Ges., Prag, 1880, pp. 291-298.
Bedot (Manr.) Recherches sur le développement des berfs spinaux che\% les Tritons; avee $1 \mathrm{pl} . ;$ in Recneil Zool. Suisse, t. 1., No. 2, 11 p. 161-188.
——Arch. Sc. Plys. Nat., Genève (3), t. 11, No. 2, 1p. 117-146.

Bedriaga (J. vou). Die Amphibien mal Reptilien Grichenlands; in \%ool. An\%., No. 137, pp. 216-220.

Die Amphibien mad Reptilien Griechenlamels; in Bull. Soc. Imprír. Natural. Moscou, 1881, No. :2, pr1. $21:-$ 310.
—— Teber die Begattung hei cinigen geschw:inzaten Amphibien (Ciluswoleya hugcmaïllori); in Zool. An\%, No. 115, 11.
(See Z. A., No. 111, p. 265.)
———Beitrige zur Kemntniss der Amphibien nud Reptilien der Fanma von Corsica. Mit 3 Tai.; in Arch. f. Naturgesch., 49. Jahrg., 10e33, 1. II't. (1582, Nov.), 11י ${ }^{12124-144 .}$

Beitrityo zur Kemutniss der Amphibien mud Reptilien der lounna von Corsica. (Schluss); in Arch. f. Naturgesch., 49. Jahirg., ©. IIft., pr. 145-173. (S. Z. A., No. 138, 1. 238.)
——Prof. Nimek's Mittheilnng iiber die Fortpflanzung der Tritnuen; in Zool. Auz., 4. Jahry., No. 79, pp. 15\%-159.
Bell (Thos.) A Ilistory of British Reptiles; 8vo, London, 1839.

Bell (Thos.) Koology of tho voyage of tho heagle, vol.:3, Reptiles, p. 31, Amphibia; Lomdon, 184?.
Bellonci (G.) Sulla regione ottica die l'esci o degli Anfibi; in Rendicont. Accal. Instit. Bologua, 1881-'ס2, יוי 24-26.

- Sulla produzione dei globnli rossi nell' Axolotl; in Rendic. Aceal. Sc. Instit. Jolugua, 188li-'87, p. 33.
———Sni muclei polimorfi dello cellulo sessmali degli Aulibi. Bologna, leobl, 4vo. (Mem. Accal. Instit. Bologna.) ( 14 pp., 2 tilv.)
- Sulle commissure cerebrali anteriori degli Antibi e dei Rettili. Contav.
 Mem. Accad. Sc.Instit. Bulognia (4), t. ※.
——— Intorno alla cariocinesi nella segmentazione dell' novo di Axolotl. Relazione ital Trincheso ; in Atti R. Accatl. Linc. (3), Transunti, vol. 8, No. 4, p. 94.

Bergendal (1).) Das Knochengewebe der Amphibien. Abstr.; in Anat. Anz., i, p. 149.
Betta (Ell.de). Prospetto sisteratitico degli Amphibi enropei; in Monogratia degli Amphibi urodeli italiani, $18{ }^{2} 64$.
———ramal d' Italia, parto $\mathbf{1}^{\mathfrak{n}}$, Rettili al Aulili, 1874.
——Snlla questione delle Rane rosse

Biedermann(W.) Vebermorpholugische Veriandermgen der Zongendriisen des Froseheshei Reizungler Driisen nerven. Nit 1 Taf.; in Sitzarber. Akal. Wiss. Wien, matho-mat. Cl., 3. Aloth. sti. Bel.,1. $\because$ Hft., pp. (if-s9). Apart: Wien (C. Gerold's Sohu in Comm.), 1850, wro (e: 11.). No. 60.

Birge (E. A.) Die Zahl der nenen Fasern mad die motorischen (ianglienzellen im Riiekemmark des Frosehes; in Areli. f. Anat. u. Phys., plysiol. Abtheil., 18*? pI. 435-4~0. Ans\%ng in Biolog. C'entrallul., 2. Jilurg., No. 22, 111. 68ti-tios.

Note on the lunctious of the Spinal Cord in the Frog; in Amer. Montlily Microserlp. Jomra, vol. Q, No. 11, lיp. $210-213$.
Blanchard (Rapli.) Sur les glands cloaealle et pelviemue et sur la papille clo:arale des batraciens urodiles; in Zool. An\%., 4. Jihrg., No. 73, 1pr. 9-14: No. 74, pr.34-39.

Blanchard（liaph．）Qumbues moty ：lll sugne del artidle de M．Latante（\％om． A1\％，No．只か）；in \％ool．Au\％，11．Jahrg，

———sur lit prosence du Crapand vert I linfo rividis，Lam．］en Framer；in Bull．Sue．Zool．Framee，T．13，No．ㄹ，pp． （ij，（i\％．
－Riponse it la eritique de M．G．－A． Bonlenge：，F．C．，ply．32e，；Be：3．
Blanc（J．）lober den l3an der Nasen－ schlemintant bei rischen n．Amphibien． Vonlanf．Mithlucil．；in Zool．Auz．， 5.

Blumm（－．）Kiichtung des mexicani－ selneu Kimmemolehs Axolotl；in 12. Bre．naturf．（ies．Bamberg（Eried－ 1：ïul（ r ）．
Boas（J．E．V．．）Bilratg til Kundskaben olin（＇ontes arteriosws og Arteriehnerne hos Amphibictur．Medt＇avl．K．joben－
 M．I．

Beitriate zur Augiologie der Am－ phibien．Nlit 3 Taf．；in Morphol．

—— Leber den Conus arteriosns mud die Arterimboren der Amphibien．Mit 3 Tat．n．E Holzschan；in Morpholog．

Bocage（Barlorath，J．V．）Reptis e Am－ philios dus．Thomé；in Jonr．Sc． Math，Plys．Natf．Acand．Lisboa，T．11，

Boettger（O．）Die leptilien in．Amphi－ bien von Madagenc：ur：4to．Framkfurt a．M．，1－7ス．
———bericht iiber die Leistmagen in der Herpetohngid wahrend des Jahres 1884； in Areh．f．Nituresesch．，51．Jahrg．，5． Hft．（ 2. Bkl．，$\therefore$ Mt．）．pp．
———解解rdie wichtig－ten Unterschichle der fiinf dentselien Rana－Arten；Der zowlegische（Gatten，18－5，1．2：33．
——Aufailahuge der von den Philip－ pinen bekanoten Reptilien und Batra－ chien；in Bericht Smekenb，nat．Ges．， Frankf．，1－8it，1川．！1－134．
（140 sp．Weptil．，号 sp．Amphib．）
－Wericht ibber die Leistmgen in ter Herpetolugie w：ihmom dey Jahres 1885； in Areh．f．Naturgeseli．，敖．Jahrg．，

———Emente Aufailhumider Reptilien mall batt：ahior des chinesischon


Boettger（O．）Vir\％cichinissder von llern Dr．Heinr．Simmoth ans Porthgand vou den Azoren mutgelnachten Reptilien mul Batrachier ；in Sit\％gster．k．prenss． Akaul．Wiss．，Berlin，1857，No．12，11． 175－194．

Ueber die Reptilien mad Batra－ chier Tramseaspicus；in Zoolog．An\％， 11．Jihrg．，No．2t9，p1］．©5：－2033．
－Verechechiss der vou Herru E．vou Oertzen ans Griechentand und Kleina－ sien mitgehrachten Batrachier und Reptilien；in Sitagslier．k．preuss． Akad．Wiss．，Berlin，1888，l1p．133－186． （11 Ampliib．， 32 ｜1 n．sp． $\mid$ Reptil．）

Studien an palararktisehen Reptil－ ien mud Amphibien；in 19．－21．Ber． Offenbath．Ver．，pp．81－9\％．
－＿Materialien zur herpetologischen Fannat von China．It a．）Liste der zwei－ ten Moellendorth＇schen Senthug siidehi－ nesischer Kriechthiere．b．）Batrachuer （Frösche mul Krïten）；in 26．－28．Ber． Ghènbach．Ver．f．Naturk．，pp．51－102．

Herpetologische mittheilungen； in 22．u．23．Ber．Offenbach．Ver．f． Naturl．，Ml．147－156．
（Amphilhat et Reptilia， 2 n．sp．）
－Die Reptilien mad Amphibien von Marocen．Mit 1 Taf．；in Abhand． Senckenberg．nat．Ges．，13．Bel．，1．Ifft．， plp．93－146，Apart：Fraukfurt a．M．， M．Diesterweg in Comm．，1853，4vo， M．2．50．
Borelli（Alfr．）Ricerche intorno alle dif－ ferenze osteologiche delle Reture fuscex italiane；in Boll．Mus．Zool．，Anat． Comp．，Turino，vol．1，No． 14 （ 16 11י1．）．
Born（G．）Ueber Doppelbildmagen beim Frosch mid deren Entstehung．Sep．－ Abdr．aus d．Breslan．：iřt1．Zcitsehr．， 1882，No． 14 （ $6 \mu \mathrm{p}$.$) ．$
（Vortr．in d．Ges．f．wat．Cult．）
－Ueher den Einfluss der Schwere auf das Froschei．Selp－Abelr，ans Bres－ lan．iirstl．Zeitsshr．，1884，No． 8 （14 1p．）， svo．
——Ceber die Nascuhühlen und den Thrinmenasengang der Auphibien． Morphologisches Jahirbueh，p．577， 1576. Hylridization between Amphibia． Abstr．；in Journ．R．Microse．Soc．Lon－ don，1887，p．3，pp．370， 371.
（Arel．f．mikrosk．Anat．S．Z．A．，No．239，p． 704．）

Born (G.) Beitrige zur Bastarlirnngzwischen den cinheimischen Aurnarten, in: Pllüger's Arch. f. d. ges. Physiol., 32. Bd., 9.-11. Ifft., pp. 453-518.

Intluence of Gravity on the Frog Ovinil. Abstr.; in Journ. R. Microse. Soc. London (2.), vol. 6, 1. 6, pp. 939, 940.
(A reh. f. mikrosk. $\Delta$ nat.) S. Z. A., No. 202, p. 477.

- Einc Doppelbildung hei Liana jusca Roes. Mit Abbild.; in Zool. Avz., 4. Jalhg., No. 78, pp. 135-159.
$\qquad$ Weitere Beitriage zur Bastardirung zwischen den einheimischen Anuren. Arch. mikr. Anat., xavii, 1p. 609,271, pls. X-XII.
Boscá (Ed.) Catalogue des Reptiles et Amphibiens de la lóuinsule ibérigne et des íles Baléares: in Bull. Soc. Zool. France, 5. amm., 5.-6. 1., 1p. 240-2e7. ( 55 s s ., 20 Amphil., 35 Reptil.)
_- Correcciones y aliciones al Catállogo de los Reptiles y Aufibios de España, Portugal é islas Baleares (con 2 lam.) ; in Anal. Suc. Españ. Hist. Nat., T. 10, cuad. 1, plp. 89-112.
Bouillot (J.) Sur l'épithéliuu sécréteur dureindes Batraciens, in: Compt. rend. Acad. Sc. Paris, T. 95, No. 14, pr. 603, 604.
——Sur l'épithélium sécréterr du rein des Batraciens. C. R. Soc. Biol. (8), iii, 11p. $325,326$.
——Sur l'épithélium sécréteur du rein des Batraciens; in Compt. rend. Acad. Sc. P'aris, T. 97, No. 17, pp. 916-918.
_-Sur l'épithéliun sécréteur du rein des Batraciens; in Jouru. de Microgr., 6. ann., No. 11, 1 1p. 574, 575.
(Compt. rend. Ac. Sc. Paris. S. Z. A., No. 130, p. 31.)

Boulenger (G. A.) Etude sur les Grenouilles rousses, liane temporaria, et deser. d'esp. nonv. Bull. de la Soc. Zö̈logique de France, 1879.

- On the Paliearetic and Ethiopian Species of Bufo, with 3 pl . ; in Proceed. Zool. Soc. London, 1880, iv, pp. 5455.47.
-- Description of a new Genus and Species of Frogs of the Family Ranidie [Nyctixalus margaritifer]; in Ann. of Nat. Hist. (5.), vol. 10, Jnly, p. 35.

Boulenger (G. A.) Notes on a South American Frog lately living in the Society's Gardens [ Phyllomedusahypochondrialis], with 1 pl.; in Proc. Zool. Soc. London, 1882, i, pp. 264, 265.

- Catalogue of the Batrachia Salientia in the collection of the British Muscum. 2d ed., 1882.

Descriptions of new species of Reptiles and Batrachians in the British Muscum. Pt. I, Annals Magas. Nat. Hlist., 1883, p. 161 ; P't. II, in Ann. of Nat. IIist. (5.), vol. 13, May, pp. 396398 ; Pt. III, loc. cit., 1887, p. 50.

- On a collection of Frogs from Yurimaguas, Huallaga River, Northern Peru. With ${ }^{2}$ pll. ; in Proc. Zool. Soc. Loulon, 1883, iv, pp. 635-638.
———Catalogne of the Batrachia Gradientia s. Candata and Batrachia Apoda in the Collection of the British Museun. 24 cd . London, 1883, 8vo ( $136 \mathrm{pp} ., 9$ pl.).

Notes on little known Species of liogs; in Amı of Nat. Inst. (5.), vol. 11, Jan., plp. 16-19.
(1 n.sp.)
-Description of a now Species of Into from Japan ( $B$. formosus, n. sp.). With 1 pl.; in Proc. Zool. Soc. London, 1883, ii, 11 י139, 140.
-_Report on a Collection of Reptiles and Batrachians from the Timor Laut Islands, formed by Mr. II. O. Forbes. With 2 pl.; in Proc. Zool. Soc. London, 188:3, iii, pp. 386-388.

Diagnoses of New Reptiles and Batrachians from the Solomon Ils.; Procceds. Zool. Soc. Lendon, 1884, ${ }^{1}$. 210.
——— Description of a New Frog of the genus Megalophrss; Frocceds. Zool. Soc. London, 1885 , p. 850.

Description of a new species of frog from Asia Minor; Procceds. Zool. Soc. London, 1885, 22.
——A description of the German RiverFrog (Rana esculcutu, var. ridibunda, Pallas) ; Procceds. Žool. Soc. London, 1 $885, \mathrm{p} .666$.
—— Note sur les Grenouilles Rousses d’Asie; Bull. Soc. Zoolog. de France, 1886.

Boulenger (G. A.) First Report on additions to the Batrachian Collection in the Natural History Musenm. With 1 lil.; in Proc. Zool. Soc. Lonton, 1886, p. iii, pp. 411-416.
(4 n. sp.; n. g., Geomolgo.)
——Remarks on Specimens of Liana arralis exbibited in the Society's Gardens. With 1 pl.; in Proc. Zool. Soc. Loudon, 1886, p. ii, pp. 242,243.
——On a wew species of Hyla from Port Hamilton, Corea [ $\Pi$. strpheni], based on an example living in the Society's Garlens. With 1 pl . ; in Proc. Zool. Soc. London, 1887, iv, pp. 52S-579.
—— On now Reptiles and Batrachitus from North Borneo; Aunals Magas. Nat. Hist., 1887, p. 95.
-... On a rare Himmalayan Toan; loc. cit., 1807 , p. 405.
——— Description of new or little-known South American Frogs of the genera Paludicola and Hyla; loc. cit., 1887, p. 295.
--Descriptions of two new Anstraliaur Frors [Limnodyuastes fletcheri, ('riniu rictoriena]; in Ann. of Nat. Hist. (6.), vol. 2, Aug., 1pl. 142, 143.
——Ou a living specimen of Nenopus lavis, Dand.; in Proc. Zool. Soc. London, 1887, iv, pp. 5.63, 564.
-Description d'me esp. houv. de Triton (Montandonii). Avec 1 ll.; in Bull. Soc. Zool. France, 5. Aun., 5. 6. 1., p. 161.
(S. Z. A., No. 75, p. 58)

On the existence of tro species of Aquatic Frogs in North Germany; in The Zoologist (3), vol. 8, June, 1 p . 220-222.
(Rana e8culenta typica añ R. fortis.)
Supplement ì l'etude sur les Grenouilles ronsses; in Bull. Suc. Kool. Frauce, 5. ann., 5. 6. p., pl. 207-209.

Description of a new Frog of the genus Megalophrss [Feir]; in Ann. Mus. Civ. Stor. Nat. Genora (2), vol. 4, pp. 512, 513.

An account of the Reptiles and
Batrachians obtained in Tenasserim ly
M. L. Fea, of the Genoa Civic Mnsenu.

With 3 pls.; in Ann. Mns. Civ. Stor.
Nat. Genova (: $)$, vol. 5 [25], pp. 474488.
(34 [v.] sp., Reptil.; 21 [3 u.] s1., Amphib.) 1951—Bull. $34-30$

Boulenger (G. A.) On some Reptiles and Batrachims from Ignarasse, Pernambuco. With 1 pl. ; in $\Lambda$ mu. of Nat. (6), vol. 2, Hist. July, pp. 40-43.
( 4 n . sp.)

- Quelques mots en réponse à la note de M. lo Dr. R. Blanchard sur la classification des Batraciens. Bull. Soc. Z. Fr., xi, pl. : 30 , 3:1. [Cf. Zool. Rec. xxii, Rept., p. 2.e.]
———Second contribntion to the Herpetology of the Solomon Ids. ; Pruc. Zool. Soc. Lond., 1887, p. 333.
-- Descriptions of new Reptiles aud Batrachians from Malagascar. With 2 pl .; iu Anu. of Nat. Hist. (6), vol. 1, Fehr., 1p. 101-107.
(11 $1 . \mathrm{sp}$.)
Descriptions of new Reptiles and Batrachians ubtained ly 1I. O. Forhes in New Guinea. Ibid., May, 1יו. 343341.
(2 n. sp., n. g., C:allulups, Amphil.)
- A list of Reptiles and liatrachiams obtained by 11. 11. Johmston on the Rivo del Rey, Cameroons District, W. Africa; in Pruc. Zool. Suc. London, 1e87, iv, 110. 564, 565.
(3 [2 u. sp.], Amphil.)
——On a rare American Newt, Molge meridionalis, Cope: in Ann. of Nat. Hist. (i), vol. 1, Jan., 1. 24.
__ Note sur le Pclobate brm, à propos de la récente commmication du M. Héron-Rojer sur le I'clobates latificons; in Bull. Soc. Zool. Fr., T. 13, No. 5, 1p. 115, 116.
—— Encore un mot sinr less prétendus caracteres differenticls du Pélobate d'Italic. Ilid., No. (6, l'. 1 (i3).
———Deseription of a mew genus of Cocilia [Epicrionops]; in Ams. of Nat. Hist. (5), vol. 11, March, p1, 202, 203.
——A Synopsis of the Reptiles and Ratrachians of the Proviner Rin Grande do Sul, Brazil ; in Amm, of Nat. Hist. (5), wol. 18, Dec., pp. 42:3-44.5.
(62 Reptil,, 27 Amphil.)
——— Description of a new sipecies of Frog from Madarascar [Rane guttulatu]; in Amm. of Nat. llist. (5), vol. 7, May, lp. 3:30,361.
- Notesur la position de lorifice anal chez les tetards des Batraciens d'Europe. Bull. Soc. \%. Fr., גi, p. 319.

Boulenger (G. A.) Description of a new Genns and Species of Frogs in the Fanily Hylitio [ Pternohyla fodiens]. With fig. ; ill Ann. Nat. Hist. (5), vol. 10, Cet., p1. 320-323.

- On the "unrsing" habits of Dendrobates, as observed by A. Kappler; in Ann. of Natt. Ilist. (i), vol. 1, June, lll. $454,4 \% \pi$; July, pp. $1 \because 2,1 \because: 3$.
———On mew Batrachians from Malacea. With 1 pl.; in Amm. of Natt. Itist. (5), vol. 19, May, pp. 315-31².
(5 n. sp.; n. g., 1'lirgnella.)
On two Emronan Specien of BomIfinator. With 1 pl.; in Proc. Zoul. suc. London, 1886 , iv, pl. $499-501$.
——— Deseription of a new taileal Batrachian from Corea [Hynobins leechii]; with cut; in Ann. of Nat. Hist. (5), vol. 19, Jan., l. 6i.
(Amaides, Baird, chaugeld to Antodax.)
- lescriptions of (4) new hrazilian Batrachians; in Ame of Nat. Jist. (i) vol. 1, March, 18se, 1 11. 1>i-189.
- A list of Batrachiams from the Province Santa Catharina, Brazil. Ibid., June, 1888, 11. 415-417. (21 sp.)
Bourne (Alf. Gibbs). On certain Abnemmalities in the common Frog (liemm temporaria). 1. The Occurrence of au Ovotestis. 2. Abuormalities of the Vertebral Colnum. With 1 pl.; in Quart. Jomm. of Microse. Sc. U. S., vol. 24, Jan., рр. 83-88.
Branco (W.) Weissia bavarica, n. g., и. sp., ein nener Stegocophate aus dent unteren Rothliegenden. Nit 1 Taf. In: Jahrb. k. preuss. geol. Landesanst. f. 1886, pl $.2:-39$. Ausz. von Datues; in Nen. Jahrb. Miner., Geol. n. Paleont., 1888, 1. Bd., 1. Hft. (Dec., 18s7), 1. 117.

Braun (Aug.) Ueber die Varictiiten des l'lexns Inmbosacralis von Rana. In-ang.-Diss. Bonn, 1886, 8vo ( 26 pu.).
Brocchi (一). Études sur les Batraciens [Mexique et Amér. cent.] ; in Mission Scientif. au Mex., Rech. Zool., 3. p., 2. sect. ( $143 \mathrm{pp} ., 24 \mathrm{pls}$.).
Brum (Alb. von). Flimmerepithel in den Galleng:ingen des Frosehes; in Zowl. Aı\%., (i. Jahrg., No. 148, p. 483.
Burfurth (1).) Experimentelie Untersuchungen iiber die Froschlarven. Biol. Centralbl., vi, pp. 609-613.

Burfurth (I.) Versmehe iiber die Verwandlung der Fruschlarven. Anat. Anz., i, plp. 31:-317.
Cad (Joh.) Ueber dio Centren nnd Leitungsl)ahnen in Riickenmark des Frosches. Mit einem Exeurs über Leitungsbalhuen im Riickenmark von Kaniuchen und Katze. Mit2 lith. Taf. Wiir\%burg, Stahel, 1884, 8vo ( 50 Pp .). Sep.-Abdr. ans: Verhandl. phys.-med. (ics. Wiirzburg, N. F., 18. BI., M. 3. 20.
Calmels (G.) Sur le venin des Batraciens; in Compt. rend. Ac. Sc. Paris, t. 98, No. 8, pl. 536-5339. Abstr. Journ. R. Mieros:. Soc. (2), vol. 4, p. 3, pp. $360,361$.
——Erolution de l'épithélium des glamies it vaniu du Crapand; in Compt. renil. Ac. Sc. P'aris, T. 9t, No.

Camerano (Lor.) La Riuna latustii Bunleng. nel Veneto; in Boll. Mns. Zoul.


Descrizione di un girino anomalo, di Licua escententu Linnen; in Boll. Mns. Zool. Anat, Comp. Tor'ino, vol. 3, No. 36 ( 21 pr).

Intomo alle Neotenia ded allo bviluppo deqli Autibi; in Atti Acead. Se. Torino, vol. 19. Ilisp. 1. 1p.1. 2-93.

- Recherchess sur la prolongation do la vie branchiato des Amplibies; in Arch. Ital. de Biolog., t. 5. filse. 1, lip. 29-36.
——Sur le développement des Aurphibies et sur ce que loon at nommé che\% emx la Neotenie; in Arelı. Ital. de Biolog., t. 5, fase. 1, pp. 27, 25.
- Ricereho intorno alla vita branchiale degli Antibi. Relazione del M. Lessona; iu Atti R. Acchtu. Sc. Torinu vol. 12 , disp. 7, p1. 7.55-75*.
- Ueher die italienischen EuroctusArten. Zoul. An\%., 4. Jahrg., No. su, pp. 183, $1 \times 1$.
- Bufo rivillix, v. infra, lidua exculentu.

Della scelta sessuale degli Autibi urodeli. Con fig.; in Atti Accal. Sc. Torino, vol. 16, disp. : , p1. 214-2 2.

Osservazioni intorno ad min indivilno mostruoso ili IIglu ribidis Lamr. Con figg. Torino, 1-830, 8ro. Estr. dagli Atti R. Accad. d. Sc. Torino, vol. 16, disp. 1, Dec., 1880, pp. 83-57.
(Una sola ganla posteriore.)

Camerano（Lor：）Recherehes sur les vari－ atioms de líane cseralenta et da liulo riri－ dix dans le biswin de lat Málitervame．
 lavance．d．su．，Compres d＇Alger， 1 ssi．
－＿Recherehers sur hes variations de lat lama execuldenta et da bugo riridis dans le bassin de la Móliteramés．l＇aria，

（Assoc：frame．pom lasame d．se．，Congres

－Ricerche inturno alla distribnzione grogralicallegli Antibi Ameri in Emopal． Com I carta，Torimo，II．Lonselerr．
 Accall．R．Tomino，vol． 1 ． ．
－Ricerche intorno alla vita bram－ chiale denli Aulibi ；in Zool．An\％．， 6.

－Inturno allat Neotemia ed allo sio lupporedi Anfihi．Torino，Lasiselaer，
 R．A．call．Sce＇lorino，vol．1！），1－s．3．

Recerele intorno alla vita ham－ （hialdempli Anfib．Con：tar．＇Torino．
 dalle Mem．R．Accatl．Sc．Torino，vol． ：

Ricerehe intorno：allanlistriburione geograticar degli Anlithi amuri in Buropa；in Athi R．Accad．Sc．Torim，


Donogratia Negli Autibi anuri italimi．（：॥ 彐 tav．Tominu，Erm．
 dalle Mem，li．Acearl．sic．Torino（2），t． 3．
Capparelli（A．）Rocherches sur le venin dn Tritun cristalux；in Arch．Ital．Biol．， T．4，finse．1，ply． 7 ：
Carbonnier（1I．）Nofoon the halhits ：und rearing of the Axolotl，－Imblystoman mexicann＂．（Tramslat．）；in Proc．U．

Carlin（W＇m．E．）Oloservations on Sire－ don lichomoides；in Iroe．U．S．Nat． Mns．，vol，：3，18：1，1p．1：0），1：1．
Catteneo（6．）Sviluppo odisposizione delle rellule pigmentali nelle larve Nell＇Axolotl．Boll．Scient．，viii，1p．W！－ 16.

Chatin（Joa．）hecherrhes pour survir it Fhistoite dn mo：an dans l＇epitherlime auditif des Battaciens．Avers 2 pl． l＇aris，Ganthier－Villans，188：3，4to（30 pli．）．

Chauvin（Marin rom）．Whber dio Fiar－ humg de Mïnchens von Protens an－ ！лиіни．．．Ans\％；in Naturfinseher，I6． Jihar．，No．50．ן．小itl．
（Mitheildar Section tior hahlenkmale，No． 3．）

Ueber wie Fortpulamang des Am－ Mystoma；in Zonl．Anz．，if．Jillurg．，No． 11：1，pl．5．13－6， 15.
———Vorlianfige Miltheilung iileer die Fortpolanzung hes Prolches anguinus； in Zool．Aı\％，No．114，1r．：330－3：3\％．
Clarke（Sam．P．）Tho ualy development of the Wolfitan Borly in Imblystoma pructulum．Will 3 pl．；in Sturlies Biolog．Laborat．Johns Mopk．Univer－

Cope（E．D．）On the I＇rimary Divisions of the Salamambribir，with descriptions of two new species；in lroc．Ac：ul．Nat． Sti．Phili．．p．I关，1－5．）．

On soms new aml little－known Americ：an Amuta；in Jroce Acatl．Nat． Sci．Phila．，1．Lish，lemi．

On Traelyyepphalus，Scaphiopus， and other American Batachia；in proce．Acall．Natt．Sci．I＇hilit．，p．4：3， 1＊
－On the limits and relations of the Ramiformes；ill Proe．Aeal．Nat．Sci． lhila．．Pli．1si－1～3，1s（64．
＿－＿Sket of of the primary empons of Datreerhia salientia；in the Natural Histury Review，art．ii，11 ．！ $77-120$ ， $1 \sim$ 畆．

On Amphibamas arandierps，a new Batrachian from the Coal Measures； in l＇rue．Acral．Natt．Sci．Philan．l－ 13．1，1205．

The Reptilia and Batrachia of the Somoran Irovinceof the Neartic Region； Prowerds．Acall．Philata．，182if，1． 300.
——Contributions to the Ilerpetology of Tropical Ameria；；in I＇merets．Acaul－ miny lhila．；third，186． 1 ， 15 s ；foneth， irkit，p．1•23；til＇th，18tit，p．：317 ；sisth， $1-62,1$ ．30．7；ninth，1871，1．200．In l＇roededs．American Philos．Soc．；sor－
 tenth，1ait，p．E．j；eleventh，［87！，p． 2iI ；twelfth，18．31，p．11is；thirtecnt？， 1－5．5，1．©it．
－A revien of the species of the Amblystomidar；in P＇roc．Lead．Nat． Sci．Phila．，p．166i， 1 E6ī．

Cope (E. D.) On the structure and distribution of genera of the Areiferous Anura; in Journ. Ac. Nat. Sci. Phila., pp. 67-97, 1867.

On the families of the Raniform Alura; in Journ. Ac. Nat. Sci. Philia., pp. 189-206, 1857.
___ Examination of Reptilia and Batrachia of the Orton Exped'n to Ecuador and Upp. Amazon, with notes on other species; Procceds. Acad. Philada., 1868, p. 96.

Synopsis of the extinct Batrachia of North America; in Proc. Acad. Nat. Sei. Phila., p. 20z, 1868.

- A review of the species of the Plethodontide and Desmognathide; in Proc. Acal. Nat. Sci. Phila., p. 93, 1869.
- On Siredon Metamorphoses, etc.; in American Journal of Science and Arts, vel. 1, February, 1871.

On the system of the Batrachia Anura of the British Musemm Catalogne ; in American Journal of Science and Arts, vol. 1, March, 1871.
-Check-list of N. A. Batrachia and Reptilia. Bulletin of the U. S. National Museum, No. 1, 1875.
———Synopsis of the Extinct Batrachia from the Coal Measures; Geological Survey of Ohio, vol. 2, Paleontology, pp. 349-411, pl. xxvi-xl, 1875.

- A contribution to the Zoology of Montana; iu American Naturalist, July, 1879.

On the Zoological Position of Texas. Bulletin of the U. S. National Museuni, No. 17, 1880.
—— Notes on the Geographical Distribntion of Batrachia and Reptiiia in Western North Amorica; in Proc. Acad. Nat. Sc. Phila., 1883, pp. 10-35. (With 4 n . sp.)
——— The Retrograde Metanorphosis of Siren; Amer. Naturalist, 1885, p. 1226.

The Batrachian Intercentrum; American Naturalist, 1886, p. 76.
——Synonymic List of the North American species of Bufo and Rana, with descriptions of some new species of Batrachia, from specimens in the Niational Museum; in Proc. Amer. Philos. Soc., October, p. 514, 1886.

Cope (E D.) Synopsis of Batrachit and Reptilia obtained by H. H. Smith in the Province of Matto Grosso, Brazil; Proceeds. Amcr. Plilosoph. Soc., 1887, p. 44.

- The Permian Formation of New Mexico; in Amer. Naturalist, vol. 15, Dec., pp. 1020, 1021.
(2 n. sp. of Batrachia.)
———The Batrachia of the Permian Periot? of North America. With 4 pls. and 7 cuts; in American Naturalist, vol. 18, Jan. 1884, plp. 26-29.

The Hyoid Structuro in the Amblystomid Salamanders. With fig.; iu Americau Naturalist, vol. 21, No. 1, pp. 87, 88.
—— The Ossicula anditns of the Batrachia. With 1 pl.; in Am. Nat., vol. 22, May, $1 \mathrm{p} .464-467$.
——On the Structure and Affinities of the Amphimide. With 2 pla.; iu Proc. Amer. Plilos. Soc. Philad., vol. 23, No. 123, pp. 442-445.

- The Classification of the Ciecilians. (Abstr.); in Nature, vol. 35, No. 899, 1. 280.
__ Ein Uebergangsleid von den Amphibien zu den Reptilien (Cricotus). Auszug, in Kosmos, vou E. Krause, 9. Bd., 3. Hft., Juni, pp. 230, 231.
- On the relations of the Hyoid aud Otic Elements of the skeleton in the Batrachia; in American Journal of Morphology, ii, November, 1888, p. 297, 3 plates.
——_ and Packard (A. S., jr.) The Fauna of the Nickajack Cave; in American Naturalist, November, 1881. Credner (H.) Ueber Branchiosaurus amblystomus, einen weuen Stegocephalen aus deun Rothliegend-Kalke von Niederhiisslich im Planen'schen Grnnde; in Sitzgsber. naturf. Ges. Leipzig, 8. Jalırg., 1381, pp. 43, 44.
- Ueber einige Stegocephalen ans dem sächsischen Rothliegenden; in Sitzungsber. naturf. Ges. Leipzig, 1881, pp. 1-7.
- Die Stegocephaten aus den Rothliegenden des Planeu'schen Grundes bei Dresden. Mit 4 Taf. I. Th. 1. Einleitung. \%. Branchiosaurus gracilis, Crd. Berlin, 1831, 8vo. (Aus Zeitschr. d. deutsch. geolog. Ges., 1881, pp. 298330.)

Creduer (II.) Diu Stegocephalen ans dem Rothliegeuden des Planen'sehen Grumdes bei Dresten. I1. Dramhiosturus amblystomus Credn. Mit 3 'Taf. Berlin, 1881, 8vo. (Ans Zeitschr. d. dentsch. geolog. Ges., 1881, plp. 574GUi). III. Pelosaurus laticeps Credn., Archegosaurus Decheni Goldf., und A. latirostris Jord., ebend., 188:, pp. 2132:37.
(See Z. A., No. 96, p. 564.)
——— Ueber Melanerpeton Fr. ans dem Rothliegend-Kalk von Niederhiisslich in Planen'schou Grundo; in Sitzgsber. maturf. Ges. Leipzig, 8. Jahrg., 1889, pp. 45-47.
__Die Stegocephalen ans den Rothliegenden des Planen'schen Grundes hei Dresilen. IV. Th. Acauthostoma rorax Cret. [n. g. et sp.], Melanerpetor spiniceps Cred., Discosaurus permianus Cred. [1. g. et sp.]. Mit 2 Taf. Abdr. aus Zeitscher. d. deutseh. geol. Ges., 18-3, pp. 275-300.
Cuvier (G.) Ossemens Fossiles. Atlas, plate 252, Paris, 1836.
Cuccati (G.) So ${ }_{1}$ ra il distribuimento e la terminazione delle fibre nervee nei polmoni della Rana tenporaria. Con 1 tav.; iu Interuat. Monatssehr. f. Anat. ı. Hist., 5. Bd., pp. 194-203.

Daudin (F.-M.) Histoire Naturelle des Rainettes des Grenonilles et des Crapants; 4to, Paris, an XI $=1803$.

Histoire Naturelle des Reptiles; Tome viii, 8vo, Paris, 1803.
Davidoff (M.) Ueher die Varietiaten des Plexus lumbosacralis von Salamandra maculosa. Mit 1 Taf.; in Morphol. Jahrl., 9. Bul., 3. Hft., 1י1. 401-411.
Davis (J. W.) On the occurrence of the Remains of Labyrinthodonts in the Yoredale Roeks of Wensleyidale (Brit. Assoc.); in Nature, vol. 28, No. 728, p. 578.
Dawson (J. W.) On the Results of Recent Explorations of Erect Trees containing Animal Remains in the Coal Formation of Nova Scotia. With 9 pls.; ia Philos. Trans. R. Soc. London, vol. 173, p. 2, p1. 621-660. Abstr.; in Proc. R. Soc., vol. 33: No. 218, pp. 254256.
(N. g. Fritschia amblyodon.) S. Z. A., No. 119, p. 446.

Desfosses (-). De l'wil du Protée; in Compt. remi. Ar. Sc. l'aris, T. 94, No. 26, pl. 1729-1731.
Dewitz (J.) Kurtze Notiz iiberdie Furchnng von Froscheiern in Sublimatlösung; in Biolog. Centralll., 7. Bil., No. 3, pp. 93,94. Alostr. in Journ. R. Microse. Soc. Londom, 18×7, p. 3, p. 370.
Dogiel (Alex.) Ueber die nervïsen Elemento in der Netzhant der Amphibien und Vïgel. Mit 3 Abbild.; in Anat. Anz., 3. Jahrg., Nos. 11, 12, pp. 342-347.

Ueher den Ban des Geruchsorgans bei Ganoiden, Knochenfischen und Amphibien. Kasan, 1886; in Arbeit. naturforseli. Ges. Kasan, 16. Bil., 1. Hft. ( 82 pr .).

Ueber den Ban les Geruchsorgaus bei Ganoiden, Knochentisehen und Amphibien. Mit 3 Taf.; in Arch. f. mikrosk. Anat., 29. B.l., 1. 11ft., pp. 74139.

Ueber den Bau des Geruchsorgan hoi lischen und Amphibien; in Biol. Centralbl., vi, pp. 423-431.
Dollo (L.) Noto sur le Batracien de Bernissart. Avee 1 pl. ; in Bull. Mus. R. d'Hist. Nat. Belg., T. :3, No. 1, pp. 85-95.
(Hylaobatrachus croyii, n. g., n. sp.)

- Notice sur les Reptiles et les Batraciens recneillis par M. le Capitaine E. Storms dans la région du Tangranyka; in Bull. Mus. R. Hist. Nat. Belg., T. 4, No. 3, pp. 151-160.
Dowdeswell (G. F.) Note ou a Minute Point in the Structure of tho Spermatozoon in the Newt; in Quart. Journ. Mierosc. Sc., vol. 23, April, 1ין 336-339.
Dugès (A.) Recherches sur l'Ost́ologie et la Myologie des Batraciens à lenrs differens îges, 4to, 18:34.
Duméril (Anguste). Mémoire sur les Batraciens Anoures de la famille des Hylaformes ou Rainettes, compr. la drser. d'un genre nonv. et de onze esp. nonv. Ann. il. Seiences, Nat. Paris.
Duméril et Bibron. Erpétologie Générale Hist. Nat. des Reptiles; Tome viii, Batraciens, Paris, 1841.
Durham (H.E.) Notes on the presence of a Neurenteric Camal in R.ma. Q.J. Micr. Sci., xxvi, pp. 509, 510, Ml. xxvii.

Duval (Math.) Sur le développenent de l'appareil génito-nrinaire clıe\% la grenouille. 1. p. Le rein perensenr. Avec 2 pls.; in Revue Sc. Nat. Montpellier (3), T. 1, No. 4, 1882, pp. 471498.

Ecker (Alex.) Dio Anatomio des Frosches. Ein Handbuch fiir Plysiologen, Aertze und Studirende. 1. Abth. Knochen- und Muskellelire. Mit 96 mehrfarbigen Holtzstichen. 2. Aufl. Brannschweig, Vieweg, 1888, 8vo (vii, 139 pp .), M. 5.

- Die Anatomio des Frosches. 3. (Schluss-) Abtheilng. Lebre von den Eingoweiden, dem Integument n. den Sinnesorganen. Bearbeitet von R. Weidersheim. Braulschweig, Vieweg, 18*2, 8vo (xi, 95 1p.), M. 5.
Eisler (P.) Histologie der Magenschleimhant. Ber. Ges. Halle, 1885, pp. 4-36.

Treats of the Urodela (Proteus, Salamandra, Molge.)
Engelmann (Tlı. W.) Der Bulbus aorta, des Froschluerzens. I'lysiologisch mutersucht in Gemeinschaft mit J. IIartog u. J. J. W. Verhoeff. Mit 1 Taf. n. 3 Holzschn. Bonn, 1802, fro. Ans Pflitger's Arch. f. d. gess. Illysiol. Laborat. Utrecht (3.), D. 7, Atl. 2, pl. 149-100.
Ewald (A.) und Krukenberg (C. Fr. W.) Ueber die Verbreitung des Gnanin, besonders iiber sein Vorkommen iu der Hant von Amphibien, Reptilien, mud von Petromyzon fluvitalis; in Untersucl. pliysiol. Iust. Heidelbg., 4. Bil., 3. Ilft., pp. 253-265,
Ewart (J. C.) The Dissection of the Frog. Edinburgh, Thin; London, Simpkins, 1884, 8ro. 18. 6rl.
Fatio (V.) Fanne des vertólores de la Suisse. Vol. 3. Reptiles et laatraciens, 1872.

Fermins (Plı.) Abhandlungen v. d. surimamischen Kröto oder Pipa; 8vo, Brunswick, 1776.
Flemming (W.) Weitero Beobachtingen iber die Entwicklung der Spermatosomen bei Salamandra maculosa. Mii 1 Taf.; in Arcl. f. mikrosk. Anat.,31. Bd., 1. Hft., pp. 71-97. Abstr. in Journ. R. Microsc. Soc., London, 1888, p. 2, p. 169.

Flemming (W.) Nouvello contribution is la comaissance de la cellule. I' partie. La division cellulairo dans les spermatocytes de Salamandra maculosa; extr. in Arch. zool. expér. et gén. (2), T. 5, No. 3, Notes, No. 15, pp.33-35.

- Salamandra maculosa, Spermatocyten; in Zool. Anz., No. 265, p. 591.
Fischer (J. G.) Ueber eine Kollektion von Reptilien und Amphibien von der Insel Nias und iiber eine zweite Art der Gattung Anniella Gray. Mit 1 Taf.; in Abhandl. aus d. Gel. d. Naturwiss., Hamburg, 9. Bd., 1. Hft. ( 10 pp .).
(26 [2 n.] sp.)
- Anatomische Abhandlungen iiber die Perennibranchiaten und Derotremen; 4to, Hamburg, 1864.
Fischer (J. de). Rôle des Amphibicus en Agriculture. Montpellier, 1886, 8vo, 23 pp .
Fischer (Joh. v.) Weisse Froschlurche im Freien; in Humboldt (Dammer), 1507, 1. Hft., pp. 22, 23.
- Der Hählemmolels oder Erdtriton (Suclerpes [Ceotriton] fuscus) Gene.

Der Blasins'sche Triton (Triton Blesti de l'Isle) und iiber the Haltung der emrop:iischen Tritonen im Allgemeinen; in Zool. Garten, 28. Jahrg., No. 1, pp. 11-20.

- Die Panther-Kröte in der Gefangenschaft ( Bufo pantherinus Guich $=B$. manritanicus Schleg.); in Zoolog. Garten, 24. Jahrg., No. 2, p1. 43-45.
ller anstralische Lanlofrosch, Hyla carrulea White $=$ Hyla eyanca Daudin, in der Gofimgenselaft; in Zoolog. Garten, 24. Jahrg., No. 1, pp. 21-25.
- Plenrodeles waltlii in Eis cingeselulossen; in IImmbollt (Dammer), 7. Jahırg., 4. Ifft., plp. 138, 139.
Fischer-Sigwart (II.) Eine Elireurettung des Grasfrosches (Rana temporaria); in Zoolog. Garten, 25.) Jahrg., No. $1, \mathrm{pp} .23-25$.
—Unsere Frïsche n. Krüten siml Nachtthiere; in Zoolog. Garten, 25. Jalirg., No. 9, pp. 50,51.
Fisher (A. K.) Surlerpes guttolincalus Holbrook in the vicinity of Washington, D. C.; in Amer. Naturalist, vol. 21, No. 7, p. 672.
Fitzinger (L. I.) Nene Classification der Roptilien ; 4to, Wien, 1826.

Fraisse (F.) Eigenthiimliche Structurverhailtuisse im Schwanzo erwachsonor Urodelon. Zool. Anz., 1880, pp. 12, 13.

Franke (Ad.) Die Reptilien und, Amphibien Deutschlauds. Nach eigenen Beobachtungen gesehildert. Miteinem Vorwort von 1R. Leuckart. Leipzig, Veit u. Co., 18ヶ1, 8 vo ( $\mathrm{x}, 174 \mathrm{pp}$.), No. 2.
Fubini (S.) Gowicht des centralen Nervensystems in Vergleich zılı dem Körpergerricht der Thiere, bei Rana esculenta u. Rana temporaria; in Moleschott, Untersuch. z. Naturlehre d. Mensch., 12. Bd., 5., 6. IIft., pp. 455-461.
Gage (S. H.) Observations on the fat cells aud connective-tissue corpuscles of Necturus; Preceedings Amer. Society of Microscopists, 1882, August.

Notes on the mouth epithelium of Necturus and Menopoma. Notes on the blood corpuscles of Necturus; loc. cit., 1885.
Garman (S. W.) On Pseudis. A note on the so-called Batrachichthys, deseribed in tho Ann. Mus. Nac. Rio do Janeiro, vol. 1, plate 6, by l)r. Pizarro.

- A Species of Pseudis from the Rio Arassuahy, Brazil [Ps. fusca, n. sp.]; in Scienco Olserver, vol. 4, No. 5, 6, p. 47. - On the Reptiles and Batrachians of North America. The North Am. Reptiles. P.1. Ophidia. With 9 pls. (xxxi, 185 pp .).

Fromi Mem. Mus. Compar. Zool. at Harvard Collcge, 1883.

- On the Reptiles and Batrachians of Grand Cayman; in Proc. Amer. Philos. Soc., vol. 24, No. 126, pp. 273-277.
( $6\left[\begin{array}{l}\text { n.] sp }\end{array}\right)$
-_ Reptiles and Batrachians from Now Mexico and Texas (from Bull. Essex Instit., vol. 19, 1887, 20 pp .).
Garnier (J. H.) The Mink or Hoosier Frog [Rana septentrionalis]; in Amer. Naturalist, vol. 17, Sept., pp. 945-954.
- On a new species of Menobranchus [lateralis var. n. Latastei]. Proc. Canad. Instit. (3), vol. 5, fasc. 2, pp. 218, 219.
Gasco (F.) Gli amoridel'Tritone alpestro (Triton alpestris, Lanr.) e la deposizione dello sue nova. Ann. Mus. Genov., xvi, pp. 5-58.
- Les Amonrs des Axolotls; in Zool. Au\%, 4. Jabrg., No. 85, pp. 313-316; No. 86, pp. 32s-334.

Gaskell (W. II.) On the rhythm of the Heart of the Frog, and on the Nature of the Action of the Vagus Nerve; in Philos. Trans. R. Soc. London, vol. 173, p. 4, pp. 993-1633.

- Abstr. Proc. R. Soc., vol. 33, pp. 199-203.
Gatehouse (J. W.) The development and life-history of the Tadpole. With 2 pls.; in Journ. of Microsc. and Nat. Sc. U. S., vol. 1, pp. 33-38.
Gautier (A.) et Etard. Observations rolatives à une note do M. Calmels sur le venin des Batraciens; in Compt. rend. Ac. Sc. Paris, T. 98 , No. 10, p. 631.
Geerts (A.-J.-C.) Notice sur la grande Salamandre dı Japon. Avec I pl. ; in Nouv. Arch. du Mus. (2.), T. 5, pp. 273290.

Gegenbaur (C.) Untersuchnngen z. vergleich. Anatomie d. Wirbelsaiile bei Amphibien u. Reptilien ; 4to, Leipzig, 1862.

Untersuchungen zur vergleichenden Anatomie der Wirbelthiere, Carpus und Tarsus, 1864.

- Untersuchungen zur vergleichenden Anatomie der Wirbelthiere, Schultergürtel der Wirbelthiere, 1865.
Giacosa (P.) Chemical Composition of the Egg and its Envelopes in the Common Frog; abstr. in Journ. R. Microsc. Soc., Loudon (2.), vol. 4, p. 2, pp. 203, 204.
- Eludes sur la composition chimique do l'œnf et des enveloppes chez la Grenouille commune; in Archiv. Ital. Biolog., T. 2, fasc. 2, pp. 220-231.
Götte (Alex.) Entwickelungsgeschichto der Unke. Bvo, pp. 965, Leipzig, 1875, with folio atlas.
- Uober Eutwickelıng n. Regeneration des Gliedmassen-Skeletos der Molche; 4to, Leipzig, 1879.
Gravenhorst (J. L. C.) Reptilia Musei Zoologici Vratislaviensis, fasc. I. Chilonia et Batrachia; folio, Leipzig, 1829.
Greef (R.) Ueber Siphonops thomensis Barb. du Boc. Beitrag zur Kemntniss. der Cocilion (Gymmophionen). Mit 1 Abbild.; in Sitzgsber. d. Ges. z. Beförd. d. ges. Naturwiss. z.l Marburg, 1884, No. 1, pp. 17-32.
Greiff (J.) Z:iilies Leben eines Axolotl; in Zool. Garten, 28. Jabrg., No. 3, 1p. 95-90.

Grünhagen (A.) Ein nelles manomotrisches Verfahen zur Demonstration vaso-constrictorischer Centren im Riickemmark des Frosches; in Pfliiger's Arch. f. I. ges. Physiol., 25. Bl., 5.-6. Ilft., pi. 251-255.
Guinther (A.) Catalogue of the Batrachia Sillientia in the collection of the British Musemm, 1868.
——Amphibia from the Straits of Margellan, etc.; in Proc. Zool. Sor. London, 1881, i, pp. 18, 19.
(4 sp., 3 v. sp. See Z. A., No. 9!, pp. 341, 312)
—— Notes on Batrachians from Perals; Aunals Magas. Nat. Hist., 1887, p. 313.
—— Report on a Collection of Reptiles and Batrachians scut by Emin Pasla from Monluttn, Tpper Congo; in Proc. Zool. Soc. Lombon, 18:
(13 Reptiles and 4 Batrach.)

- Observations on some rare reptiles and a Batrachian now or lately lisiner In the Society's Menagerie. With (ipl.; in Trans. Zonl. Soc. London, vol. 11, pt. 7, pi. 215-2?:。
(Ceratophrys ornata, all figured.)
Haase (Erich). Sachsens Amplibien; in Sitzersber. 11. Al:hdlg. naturwiss. Ges. Isis Dresten, 1887, Juli-Dec., Ahblitr., pl. 57-65.
Hallowell (Edward), M. D. Deseription of several species of Urolela, with remarks on the geographical distribution of the Cadncibranchiate division of these animals and their classification. Proceedings of the Academy of Natural Sciencek, Febriary, 1856, p. 6.
- On the Cadncibrameliate Vrodnle Batrachians; Journal Acanl. Sciences Plilada., 1858, 3337.
———On Trigonophrys rugiceps; loc. eit., 1. 367.

Hargitt (C. W.) On the habits of Scaphiopus holbrookii; Amer. Naturalist, June, 1888.
Hartog (S.) Bijdrage tot de physiologie van den Bulbus Aort:e van het kikvorschhart. Met 2 hontsn, en 1 pl. ; in Onderzoek. Physiolog. Laborat.Utrecht, (3.), D. (G, all. $\because, 15 \% 1$, pp. 361-418.

Harvey (R-ulen). loritesophageal Membrame of Forme (1) ablin Mierose. Clul); in Ainl. of Nat. list. (5.), vol. 11, Marelı, pp. 2l: 21:3.

Hay (O.1'.) Description of a new speries of Ambly stoma from Indiana; Proceeds. U. S. N:at'l Musemin, 188.), 1. 209.

- Observations on Amphinma and its yound; Amer. Naturalist, 1888, p. 315.

Heller (Karl M.) Amphibiologische Notizen. Mit 1 Abbild. ; in Zool. Garten, 29. Jahrg., No. 6, p11. 177-181.
Hermann (L.) Weitere Untersnchungen iiber das Verhalten der Froschlarven im galvanischen Strome; in Pfliiger's Arch. f. I. ges. Physiol., 38. Bd., 8.,9. Ifft., pl. 414-419; Abstr. in Journ. Microse. Soc. (2.), 1887, p. 1, pp. 51, 52.
Héron-Royer ( - ). Notice sur les mmurs les Batraciens. Fasc. 2, Angers, 1886, 8 ro ( 4.5 pp.). Extr. du Bull. Soc. Etud. Scient., Angers, $1=85$.

- Sur la reproduction de l'albinisme par voio hérélitaire chez l'Alyte acconcher at sur l'aceoulement de ce Batracien; in Bull. Soc. Zool. France, 'T. 11, Nos. $5,6, \mathrm{pp}$. 671-679.
——A propos de lal question des grenonilles ronssice soulevee en Italie par Edoardo Betta-liana fusca et Rana ayilis -t t les principanx caractères qui les diflérencient a la periorle embryounaire et hranchiale. Avee 1 pl . ; in Bull. Soc. Zool. France, T. 11, Nos. 5, 6, pre 681-690.
——Description du P'elobates latifrons des environs de Turin et d'une conformation particuliase de lethmoinde chez les Batraciens. Avec 10 figs. ; in Bull. Soe. Zool. Fr., T. 13, No. 3, pp. 85-91.
- Note complémentaire sur le Pelobates lutifions. Ibid., No. 4, p. 108; No. 5, 1p. 109, 110.
——. Nouvelles reeherches sur lo Pelobates latifrons, en réponse à la note de M. Bonlenger sur lo Pelobato brun.
__ Note sur l'hybridation des Batraciens anoures et ses produits congéuères et bigéuìres; in Bull. Soc. Zool. Frauce,

- Recherches sur les caractères embryomaires externcs de l'Alyte acconcher (Alytes obstetricaus) à partir do la ponte jusqu`à l'eslosion do la larve. Avec 1 pl.; in Bull. Soc. Zool. France,


Héron－Royer（ - ）．Note sur đquelques caractères permettaut do distinguer facilement Bufo viridis de Bufo calamita． Avee fig．Ibid．，T．9，Nos．1，2，．pp．29－31．

Observations comparatives sur le développement externe et l＇état adulte des Batraciens du genro Bombinator． Avec 2 pls．；in Bull．Soc．Zool．France， ＇T．13，No．3，pl．73，74．liufo riridis， ibid．，1． 84.

Lacconplement du Bufo viridis et les phénomìues que préselitent les cor－ dous d＇oufs de cet anoure durant l＇évo－ lution de l＇embrym．Avee dis．；iu Ball．Soc．Zool．France，T．13，No．1， 110．隹－31。
－Essai sur la Transmission de la Cohoration chez les Batraciens Anoures； Bulletin de la Sociéte Zö̈logique de Framer，1838，p．205．
－Note sur une nouvelle forme de Grenonille rousse du sul－est de la France［Rana fusca honnorati］．Avee 2 pls．；in Bull．Acad．Sc．Belg．（3），T． 1，No．2，pp．1：9－143．

Sur la présence d＇une enveloppe adventise antour des fieces chez les Batraciens．Avec fig．；in Bull．Soc． Zool．France，T．13，No．2，p1．55－57．
（t Van Bambeke（Clı．）Sur les caractires fonmis par la bonehe des têtardsiles Batraciens anoures d＇Europe． l＇aris，1sól，syo（ 7 plp ．）．
（Extr．du Bull．Soc．Zool．France．）
——— Sur les caractires fommis par la bonche des tetards des latraciens anoures d＇Europe；in liull．Soc．Zool． France，1881，1．，2．1．，pp．75－80．
－＿－－－ Sur les caractìres fournis par la bouche des titards des Batraciens anouresd＇Europe．Bulletindela Societé Koologique de lrance（20 avril）， 1888.
Hertwig（Osc．）Das mitflere Kemblatt und die Chorda der Amuren；in Jena． Zeitschr．f．Naturwiss．，16．Bu．，3．1Ift．， Sitagsher．，pp．19－21．
Hilgendorf（F．）Das Ileosacral－Gelenk der \％mugenlusen Friosehe（Pipa，Dacty－ lethra）；in Sitzgsher．Ges．Nitt．Fr．Ber－ lin，18～4，No．2，pp．35－35．
Hinckley（Mary II．）Notes on Egrgs and Talpoles of Hyla rowsolor；in I＇roc．Busion Soc．Nat．Hist．，vol．21， pp．104－10\％．

Hinckley（Mary II．）The development of the Tree－Toad［llyla rersicolor］． With fig．；in Amer．Natnralist，vol．16， Ang．，pp．636－639．
－On some differences in the mouth structure of Tadpoles of the Anurons Batrachians foumd in Milton，Mass． With 1 मl．；in Proc．Boston Soc．Nat． Hist．，vol．21，iii，1p．307－314．
Hirschburg（ - ）．Zur Dioptric des Am－ phibienanges，$r$ ．supra l＇isees，Z．A．， No．147，p． 45 s.
Hoffmann（C．K．）Zur Eutwicklungs－ geschichteder Urogrmitalorgane beiden Auamnia．Z．wiss．Zool．，xliv，pp．570－513， pls．xxxiii－xxxy．Beatrackia，pp．siso－6t．
Holl（H．）Zur Anatomie der Munthäle von Rana temporaria；in Auzaiger kais． Akad．Wiss．Wien， 1 万二木，No．1，！！！ $1-$ 1－
Honnorat（Ed．－F．）Note sur l＇espè Liana fusca．Thil．，pp．14－151．
Horissay（F．）et Bataillon（－）．Seg－ mentation de l＇enf et sont du basto－ pore chez l＇Asolotl；in Compt．rend． Ac．Sc．Paris，T．107，No．4，1p．2s．－284．
－＿Formation de la Gastrula， du mésohlaste et de la chorde darsale chez l＇Axolotl；in Compt．reml．Ac．Sc． Paris，T．107，No．2，pp．134－1：36．
Horst（R．）On new and little－known Frogs from the Malayan Archipelago； in Notes Leyden Mus．，vol．5，Note XXIII，pp．235－244．
（On Bufo crientatus and borloniens，Thelo－ derma leprosum； 6 n．sp．）
Howes（G．B．）On a hitherto mrecog－ nized feature of the Larynx of the Anmrons Amphibia；Proccenl．Zoül． Soc．London，1887，p． 491.
－Notes on the Gular Brood－ponch of lihinoderma darwinii；Procects．Zoül． Suc．London，1883，p． 231.
－On the Carpus and Tarsus of tho Anura；Procecds．Zö̈l．Soc．Loudon， 1888, p． 141.
－Note on the azygos reins in the Anurons Amphilia．With tier．；in Proc． Zool．Soc．London，1882，i，pl．12：－120．

On some abmormalities of the Frog＇s vertebral colmun，Rama tempo－ raria．With cuts；in Anat．An\％． 1. Jahrg．．No．11，pp．278－281．
－Olservations on the Morphology and Genesis of supernmerary phatan－ ges，esp．of the latrachia ；Proceeds． Zoïl．Soc．London，1833，p．495．

Huber (O.) Ueber Brustwarzen bei liana temporaria L. Mit 1 Taf.; in Zeitschr. f. wiss. Zool., 45. Bd., 4. Ift., 111. 664-668.

Huxley (T. H.) Anatoms of the vertebrated Animals. London, 1871.

On the structure of the skull aml of the heart of Menobranchus latcralis. I'roc. Zool. Soc. Loudon, Marel, 1874, 1. 186.

Hyrtl (Jos.). Cryptobranchus japonicux; Vienna, 1865.
Ihering (II. von). Oviposition in PhylIomedus.. Alustr.; in Journ. R. Microse. Soc. (2.), vol. 6, pt. 5, p. 766.
(Agn. of Nat. Hist.. S. Z. A., No. 230, p. 489.)

Iwakawa (T.) The genesis of the Egrg in Triton. With 3 pls.; in Quart. Journ. Microsc. Sc., vol. 22, Jul $5, \mathrm{pp} .260-277$.

The genesis of the Egrg in Triton. Extr. ; in Revile Sc. Nat. Montpellier (3.), T. 2, No. 1, 1882, pp. 122-124.
(Quart. Journ. Microsc. Sc. S. Z. A., No. 130, p. 32.)
Jacobaeus (O.) De Ranis et Lacertis Olservationes; 12mo, Kopenhagen, 1686.

Jensen (O. S.) Ueber dio Struktur der Samenkörper lei Sängetieren, Vügeln und Amphibien. Anat. Anz., i, pp. 251257.

Johnson (A.) and Sheldon (L.) Notes on the Development of the Newt (Triton cristatus). Q. J. Micr. Sci., xxvi, pp. 5.73-589, pls. 34-36.

Jordan (Panl). Dic Entwicklung der vorderen Extremitiit der anuren liatrachicr. Inang.-Diss. Mit 2 Taf. Leipzig, Alex. Edelmann, 1888, 8vo ( 55 pp .), M. 2.50.

Jourdain (S.) Sur le systìme lymphatique des têtards des Grenonilles; iu Compt. remid. Acall. Sc. Paris, T. 96, No. 4, pp. 271-273.

- Recherches sur le systime lymphatique de la Rana temporaria. 2. p. (Suite.) Avec 3 pls. Montpellier, 1883, 8vo (16 pp.). Extr. de la Revne d. Sc. natur. Montpellier.
——Recherches sur le systeme lymphatique de la Rana temporaria $\mathbf{L}$. Avec 3 pls. Extr. de la Revino Scienc. Natur. Montpellier, déembre 1881 (T. 1, 3. ser.), ( 17 pp .).

Jourdain (S.) Recherehes sur le systeme lymphatique de la liana temporaria. Avec 3 pls. ; in Revine Sc. Nat. (Montpellier) (3.), 'T'. 1, No. 2, 1881, pp. 152168. 2. p., avec 3 pls., ibid., No. 4, plp. 455-4:0.
-_ Ueber die Bastardirming von Frosehlurchen und die Principien der Zengung; in Naturforscher, 16. Jihlog., No. 47, 111. 44i-447.
(Nach Phliiger. S. Z. A., No.161, p. 110.)
Kato (T.) Versuche an Grosshirn des Frosches. luang.-1)iss. Berlin, 1886, 8vo ( 27 pp .).
Kastschenko (N.) Ueber diu Genese und Architectur der Batrachicrknochen. Arch. mikr. Anat., xix, pp. 1-5i, pls. 1 and 2.

- Ueber die Krappfairlong der Froschgewehe. Mit 2 'Taf.; in Arelı. f. mikrosk. Anat., 21. Bul., 3. 1Ift., pp. 377-386.
Kessler (K. F.) Einige bomerkmgen iiber die Verwandlung der schwanzlosen Batrachier; in Arbeit. d. St. Petershurg. Naturforseli-fies., 11. Br., 1. Hit., Prot., pp. 90-103.

Kingsley (J. S.) A case of polymely in the Batrachia. With 1 pl.; in Proc. Boston Soc. Nat. Ilist., vol. :21, pl. 16!176.

Klaussner (Feril.) Das Riickenmark des Protens anguinus. Eine histologisehe Studic. Mit 2 Taf. Mïnelın, 1883, 4to. Aus Abhandl. k. bayer. Akal. cl. Wiss. 2. Cl., 14. Bl., 2. Alth., pp. 143-174. Apart: Miinchen, Franz in Comm., 1E8:3, 4to, M. 1.50.
———Das Riickemark ies I'rotens anguinus. Ansz. in Biolog. Centralbl., 3. Bl., No. 9, pp. 271, 272.
(Ausz. von Ohersteiner. Abhaall. bager. Akad. S. Z. A., No. 148, p. 478.)
Kloetzke (C. Gr.) Dissertatio Anatomica de liana cornita; 4to, Berlin, 1816.
Knappe (E.) Das Bi:lder'sche Organ. Ein Beitrag zur Kemintniss der Anatomie, Histologic, nud Entwicklungsgeschichte der Geschlechtswerkzenge einiger Amphibien, besonders der einheimischen Bufoniden. Morph. Jahrb., xi, pp. 489-552, pls. xxviii-xxix.
Knauer (Fr.) Dio europ:iiischen Kricehthiere und Larche; in Der Naturlistoriker, 3. Jalrg., Nos. 11, 12, pp. 87, 88 ; 95,96 .

Knauer (Fr.) Naturgeschichie der Limche (Amphitiologic); 8ro, Wien, 1sis. -- Dimorphismus der Geschlechter bei den (enrop.) Larehen ; in Der Naturhistoriker, 3.' Jahry., No. 9, pp. 71, 72.
_— Welche Factoren kommen bei Betrachtung der Fiirlmang und Zeichnnntr der Kriechthiere mad Lureho in Allgemeinen in Rechumg und wie geben sich tlio beziiglichen Verhtiltuisse im Specichlen hei unseren einheimischen Kriechthieren und Lurchèn? In Der Niturhistoriker, von Knauer, 4. Jahrg., 1. Hft., pp. 46-52; 2. Hft., pl. 123-129.
———Enropa's Kriechthicre und Larche. Fiir den Naturfremad beschrieben umd nath ilurem Leben geschildert. Gr. svo (iii, $15 \% \mathrm{pr}$.), Wien, 1877. Richter's Wtwe. I. Solm, M. 1.50.
Kœner (O.) Urher die Verbreitnng unserer Tritonen; in Zoolog. Garten, 23. Jaitry., No. 7, p. 216.
(Triton palmathes in Taunus.)
Kollmam (J.) Das Ueberwintern you europaiischen Froseh- mad Tritoblarven mad die Umwandlung des mexicanisshen Axolotl; in Verhandl. nat. Ges. Basel, 7. 131., 2. 1ttt., pp. 3si-3s9.
——— Lhivernage des larves de Grenonilles et do Tritons d'Europe, et la métamorphose de l'Axolotl dı Mexique; in Recueil Zool. Snisse, 'T. 1, No. 1, pl. 7.5-8!

Kuhn (A.) Ueher das hitutige Labyrinth fler Amphilsien. Areh. mikr. Auat., xvii, 1p. 479-550.
Kupfer (C.) Activity of tho Yolk during impregnation [Bufo]; Abstr. in Journ. R. Microsc. Soc. (\%.), vol. 3, pt. 4, 1. 48\%.
(S. Z. A., No. 138, p. 238.)

Kupfiner (C.) Uuber active Betheitigung des Dotters :mm Beftuchtungsacte hai bujo rariabilis und rulyaria. Mit I Abhid.; in Sit\%ryber. Akad. Mianchen. 13が, 1! ! . 608-619.
Lampert (Kurt). Zur Gencseder Chorda dorsalis hein Axolotl. Inang. Diss. Erlangen, 1ssis, 8vo ( $23 \mathrm{pp} ., 1$ Tiaf.).
Landois (II.) Ein sechsbeiniger Moleh (Triton truiatux); in Zoolog. Gatten, Q.). Jalig., No. 3, p. 94.

Eill chen so simmedeher wie zweek-
 Abbild. ; in Zoolog. Farten, ©. J. Jalmerg., No. 4, 1p. 103-100.

Lange (Max). Die Athunang des Frosches in ihrer Bezichung zu den Ernihrnugsverhialtnissen der Medulla oblongata. Ioaug.-Dissert. Künigsberg, Beyer, 1882, 8:0 (29 pp.).
Lataste (Fernand). Sur la gónération du Pélodyte ponetué, avee fuclques observations sur les Batraciens Anoures. Aun. Se. Nat., 4" série, T. 1, 1877. Extrait da Bulletin do la Société Zoologique de France, 1877, 101.

Quelques observations sur les Têtards les Batraciens Anoures. Bulletin de la Sociéte Zoologicjue de Franco, 1877, p. 101.

- Tentatives d'llybridation chez les Batracieus Anoures et Urodèles. Mémoire lu par l'autour à la sćanco du 6 décembre 1878 de la Société Zoologique de France, p. 315.
_-Division ea familles naturelles des Batraciens Anoures d'Europe. Liste des espèces de Batratiens Auoures et Urodèles de France. L'accouplement che\% les Batraciens Urodèles; in Revine Internat. 1. Scicuc., 18is', No. 42, pp. 488-499.
———Division en familles naturelles des Batraciens Anoures d'Europe; in Scction de Zool. de l'Assoe. Franç. Avane. Sc. Congrès de Paris, 1578.
—— Reptiles et Batraciens du Sud du Portugal, par 0 . Boettger. Analyse critique. Ibid., 1880, No. 2, pp. 173-178. - - Les organes géuitanx exterues et l'acconpleaneat des Batraciens Urodèles; in Revne Iuternat. Sc., 1878, No. 7, pp. 209-214.
- Encore sur la fécondation des Batraciens Urodiles. Ibid., 18\&1, No. 2, pp. 151-164.
—— $\overline{\text { p propos d'un squelette monstrucux }}$ de Batracien Anowe (.llytes obstetrirams). Avec fig. Ibid., 1879, pp. 49-5!. ——— Des sccours réciproques que penvent se fournir la zoologie descriptive et la zoologie géographiçue ( l'ufo boulengeri, 11. sp.). Ilid., 1579, pp. 434-4:38.
—— Etude sur la Dixcoglossus pietus Otth.; in Actes de la Soc. Lillu. de Bordeamx, vol. 33, 'T. 3, p. 275, 1879.
———Sur un nouveangenre (Ammorychis) de Batracien Anonre d'Europe; in Comp. Reml. Ac. des Sci. Paris, p. 98:3, $165!$.

Lataste (Fernand). La elassification des Anoures; in No. 42, Revine internationale des scicnces.
-- Sur la classification des Batraciens Anoures à propos du système de M. le Dr. R. Blauchard; in Zool. Anz., 11. Jahri., No. 2i४, pl. 236-240.
Latreille (P.-A.) Histoire Naturelle des Salamandres de France; 8ro, Paris, 1800.

Laurenti (.J. N.) Specimen Meảicum (xh. Syuopsin Reptilinm emeud.; 12mo, Viema, 176 .
Lavalette (St. George). Spermatologische Beitriage. IIl. Arcll. mikr. Anat., xxvi, pp. 385-397.

Bufo vulgaris, Hyla arvorea, Rana esculenta.
-_ Spermatogenesis in Amphibians. Abstr.; in Journ. R. Microsc. Soc. Loudon ( 2. ), vol. 6, p. 6, p. 935.
(Atch. f. mikrosk. Anat. S. Z. A., No. 234, p. 584.)

Leuhossék (M. vou). Uutersuchungen iiber die Spinalganglien des Frosches. Arch. mikr. Anat., xxvi, pp. 370-453, pls. 15 and 16.
Leonard (Alice). Der Einfluss der Jahreszeit anf die Leberzellen von Rana temporaria. Mit 1 Taf.; in Arch. f. Anat. n. Ploys., physinl. Abth., 1oxi. Supplt.-Bil., pip. 28-47.
Lessona (M.) 'Stndi sugli Anfibi anuri del Piemonte (5 Tit.); in Atti Ace. Lincei, Mem. se. fis., ser. 3., vol. 1, pp. 1019-1098.
(Ausfürliche Beselireibung von 7 Arten mid iliren Larven.)
--Contributo allo studio deila pello degli Urodeli (Salamandrina, Euproctux - Spelerpes. Con 2 tav. Torino, Locscher, 18૪1, 4 to ( 14 pp .). (Extr. dalle Mem. R. Aceal. Torino, ser., p. 34.)
—— Contributo allo stradio della pelle derli Urodeli (Salamandeina, Euproctus e Spelerpes). Con 2 tav.; in Mem. li. Acearl. Sc. Torino (2.), T. 34, Cl. fis., pp. 1 $\div 5-136$.

Sulla struttura della pelle nei generi Sulamandrina, Euproctus e Spelerpes. Relazione dal Bizzosero; in Atti R Accad. Sc. 'Torino, vol. 16, disp. f, Margio, p. $57 \%$.
Lessona (Mich.) Della Albinisma nei seneri della liana temporaria L. ; in Atti R. Aread. Sc. Torimo, vol. 1f, disp. 1, plo. $94-92$.

Leydig (F.) Ueber din Ban der Zihhen bei Batrachiern u. die Bedentung des Fersenhiökers; Morpb. Jahtb. ii, pp. 165-196, 1876.

Dio Anuren Batrachier der dentschen Fanua; 8vo, Bom, 1877.
List (Jos. Hur.) Ueber eine WirbelSyoostose bei Sulamandra maculosa Lanr. Mit 1 Taf. Aus Sitzgsber. k. Akarl. d. Wiss. Wien, math.-nat. Cl., 88. Bd., 1. Abtlı, pl. 1260-1271.
-- Ueber Becherzellen im Blasenepithel des Frosches. Mit 2 Taf. Aus Sitzgsber. Akad. d. Wiss. Wien, math.nat. Cl., 3. Abth., 89. Bd., pp. 1*6-211. -- Ueber Becherzellen im Blasenepithel des Frosches; in Zool. Anz., No. 169, p. 328.
——— Ueher einzellige Driisen (Becherzellen) im Blasenepithel der Amphibien. Mit 1 Taf. ; in Arel. f. mikrosk. Anat., 29. Bul., 1. Hft., pp. 147-156.

Lockington (W. N.) Review of the Progress of North American Batrach. ology in the years 1880-1e8:3; in Americall Naturalist, vol. 18, Feb., pp. 14!154.

Lockwood (S.) Bufo americures at play; in American Naturalist, vol. 17, Jиие, pp. 683, 684.
Loos (P. A.) Die Eiweissilriisen der Amphibien und Värel. Mit 1 Taf.; in Zeitschr. f. wiss. Zool., 35. Bd., 3. Hft., pp. $478-504$. Apart: Diss., Leipzig.
Luckjanow (S. M.) Beitriige zur Morphologie der Zelle. 1. Abhillg.: Ueber die epithelialen Gebilde der Marensehleimhant bei Sulam. maculosa. Mit 7 Taf. ; in Arch. f. Anat. n. Plyss., pluysiol. Abth., 1887. Suppl.-Bd., pp. 66-90. 2. Abhdlg.: Ueber die Kerne der grlatten Muskelzellen bei Salam. maculosa. Mit 2 Taf.; in Areh. f. mikrosk. Anat., 30. Bit., 4. Ift., 1 1p. 545-558.
Lydekker (Richard). The Labyrinthodont from the Bijori Group; Memoirs Geolog. Survey India, ser. iv, vol. 1, $185 \%$
Macallum (A B.) The Termination of Nerves in the Liver. Witl! figgr.; in Quart. Joum. Micr. Sc., vol. 27, pit. 4, pr. 439-160.
(Necturus.)

Macallum (A. B.) On the Nuelei of the Striated Muscle-Fibre in Vecturus (Menolrunchus) lateralis. With figg. ; Qtart. Jonrn. Micro. Sc., vol. 27, p. 4, pp. 461-4i6.
—— Nerve-endings in the Cutaneons Epithelimen of the Tadpole; in Proc. Camad. Instit., vol. 3, 1886, 1p. 276, 277. Alstr:; in Journ. R. Mierose. Soc. Londou (2.), vol. 6, p. 6, p. 947.
Macpherson (Hugh A.) Habits of the Edihe Frog; in Zoologist (3.), vol. 7, Marell, lpp. 129, 130.
——— The Palmated Newt in Gloucestershire; in Zoologist (3.), vol. 7, May, 1.

Marsh (O. C.) Observations on the Metamorphosis of Siredon into Amblystomia. American Journal of Science and Arts, vol. xlvi, Navember, 186 .
Mason (John J.) Minute Structure of the Central Nervons System of certain Reptiles and Battachians of America. Series A. Author's edition. One lundred. Newport, R. I., 18:9-18\$2, 4to (rec. 1883). Tit. Dedie., 2 BI. Inlialt, 94 pp.; 4 Bl. Litterat. and List of Plates, exiii plates.

- Lead-poisoning in Frogs. Now York, 1880. (Rec. Jume, 1851. Reprint from New Yori Med. Journ., October, $1880,8 \mathrm{pp}$.)
- Microscopic Studies on the Central Nervous System of Reptiles and Batrachians. Art. III. Diameters of the unclei of the large nerve cells in the spinall Cord (contin.) ; also of those which give origin to the motor fibres of the cranial nerves. Reprint from Journ. of Nerv. and Mental Disease, wol. 8, No. 1, Jaumary, 1851 ( 7 pl').
Massart (Jean). Sur l'irritabilitó des spermatozoïles de la grenouille; in Bull. Ac. Se. Belg. (3), T. 1.7, No. F, pp. 750-7.54.
Mattozo (Suntos F.) Sur le tetard du C'ynops (I'clonetes) bescrei; in Jour. Sc. Mith. Phys. Nat. Acad. Lishon, T. 11, No. 42, p]. 99-10:.
Mayer (Sigm.) Zur Lelre von der Schilddriise und Thymus bei Amphibien; in Anat. Anz., 3. Jahurg., Nk. 4. 5., 少. 97-103.

Maximilian (l'r\%. \%n Wicd). Abbildunrell \%ur Naturgeschichte Brasilims; folio, Weimar, 1825.

Maximilian (Prz. \%n Wiell). Verzeichmiss der Reptilen w. a. e. Reise in N.Anerica henbathtet whrden; 4to, Dresden, 1865 (Salamandra brericauda $=$ Spelerpes ruber huj. 口ई.; S., maculata $=$ S. ruber (?) : and S. methenolenca $=$ I'lethodon glutinosur.
Merrem (B.) Versuch eines Systems iler Amphibien; 8vo, Marburg, 1820.
Miall (L. C.) On the Labyrinthodonts of the Coal Measures. Rep. Brit. Assoc., p1. 225-249, plates 1-3, 1873.
——On the Labyrinthodents of the Coal Measures. Rep, Brit. Assoc., pp. 149-19?, plates 4-7, 1874.
Mills (J. W.) The Heart of the Fish eompared with that of Mcnobrunchns, with special reference to reflex iulils. ition and independent eardiac rhythus. J. Physiol., vii, pp. 81-95.

Mitropanow (P.) Die Nervenendigungen im Epithel der Kanlquappen und die "Stiftehemzellen" von Prof. A. Käliker; in Zool. Auz., 9. Jahrg., No. 23: 1p. 549-553.

- Zur Eutwicklungsgeschichte und Innervation der Nervenhiigel der Urodeleularven. Mit Holzschn.; in Biolog. Centralbl., 7. Bul., No. (;, ipr. 174178.

Mivart (St. George). On I'lethodon persimilis of Gray. Proceedings of the Zoological Society of London, Junc 2r, 1867.

- On the classification of the Annrons Batrachians; in Proc. Zool. Soc. Loudon, pp. 230-295, 1869.
- On the Myology of Menopoma alleghaniense. Procecdings of the Zoologicall Society of Lomlon, $\Lambda_{\text {pril }} \stackrel{2}{2}, 1869$, p. 254.
- On the Myology of Menobranchas lataralis. Proceedings of the Zoological Society of London, June 24, 1869, p. 444.
———On the Common Frog. Nature Series. Macmillan \& Co., 1874.
Monks (S. P.) The spotted S:lamander; American Naturalist, 1880, p. 372.
Montgomery (Ilenry). Observations on the Mcnobranchus maculatux; Canadian Natmalist, 1:7!, 7 pp .
Morgan (\%. Lhogid). Abnormalities in the Vertural Colmm of the Common Froir; in Nature, vol. 35, No. 890, p. 53.

Morgan (C. Llogd). Abnomality in the Urostyle of the Common Frog. With in Nature, fig.; vol. 35, No. 902 , p. 344.
Moszeik (Otto). Mikroskopische Untersuchungen ifber den Glycogenansat\% in der Froschleber. Mit 1 Taf.; in Pliiger's Areh. f. d. gers. Playsiol., 4?. Bal., 11., $12.11 f t .$, pp. $55(i-5 s 1$.

Müller (F.) Erster Nitchtrag mam Kiatalog der herpetologischen S:mminng des Basler Musenms. Mit 1 Taf.; in Verhamull. naturf. Ges. Basel, 7. Th., 1. Hft., pp. 1:0-165. Zweiter Nachtrag, ibid., 1p. 16i(i-174.
Nehring (A.) Ueber dats Vorkommen von Alytes obstetricans östlich der Weser; in Sitzgsber. Ges. Nat. Fr. Berlin, 1e87, No. 4, 1\%. 48, 49.

- Zur geographischen Verbreitung von Alytes obstctricalls; in Zool. G:urten, 28. Jahrg., No. 2, pp. 61, 62.
_-_ relobates fuscus anf liigen; in


Das Ange von Protens (nach Defosses) ; in Kosmos, 6. Jahry., 7. Ilft., 12. Bal, pp. (i:-
(S. Z. A., No. 130. p. 33.)

Neumam (I. O.) Naturgeschiclate 1. Schlesisch-Lansitzschen Amphibien; 8wo, Görlit\%, 18:31.
Ninni (A. P.) La pesear cal il commercio delle rane o delle tartamghe theviatili nella provincia di Vene\%ia; in Boll. Sue. Ven. Trent. Sc. Nat., T. 4, No. シ, 1ין. 10s-113.

- Triton cristatns Lanur., s. s.p. Karclinii. Con 1 tav. ; in Atti Soc. Ital. Se. Nat., vol. 2!, fitse. 2, 3, pr. :3:7-3:3:s.
Nussbaum (M.) Zur litlerenzirung des Geschlechts im Thierreich. Areh. mikr. Anat., xiii, pl' 1-1:2, pls. 1-1.
(This work contains tetails upon sexual orgams in Batrachia.)
Osborn (Hemry fo.) Preliminary Ohservations upon the Brain of Amphiema; in l'roc. Aced. Nat. Sc. I'hila., lexis, 111. 178-184.
- Preliminary observations non the hain of Menobranclus and Mennpona; Proceeds. Acal. Philadelphia, 1, $\times \underset{4}{ }$, 1 . 26.

Owen (Rich.) On Rhyfithosterns capensis Ow. A lablyrinthoment Amphitian from the Trias of Cape of (Good lhome ((ieol. Soc.); in Amin, of Nat. Ilist. (5.), vol. 13, June, 1. 481.

Parker (Win. K.) On the Strincture amd Development of the Skull in the Batrachia; in Philosophical 'Tramsactions of the Royal Society, part 2 , rol. 166, $18 \pi$.

On the Structure aud Development of the Sknll in the Urodeluna Amphibia; in lhilosophical Transactions of the Roy:al Society, part 2, vol. 167, 1876.
—— Abstract of a Menoir on the development of the sknll in the Utodele Batrachians; in Proccerl. Zool. Soc. London, 1850, iv, plp. 544, 5.5.
——On the Structure and Ievelopment of the Skull in the Batrachia. Part 3. From the Philosophical Transactions of the Royal Society, part 1, Irsl.

- On the Morphology of the skill in the Amphibia Urodelit. With of pls.; in Trams. Limn. Soc. Loudon (?.), Zool.,

———On the Monpholegg of the Skull in the Amphitia Vrodela, Transactions of the Lime:an Sucisty of London, vol. $\therefore$, part $3, \mathrm{p}, 165,1-3 \%$.
—— Stracture and Development of the Skull in the Batrachia. Part 3. Abstract in I'. R. Soc., xx.x, pp. 43i-4:3s.
Perényi (J. von). Die ectoblastisclio Anlage des Urogrenitalsystems bei Rana rsculenta mul Lacerta cirilis; in Zool. An\%, 10. Jahug., No. $\because 13$, 1. 66.
$\Lambda$ blastoporus aillandómegmaradíra a bekatéléknél. [1)er blastoporus ald heibender After bei den Amuren.] Ans Mary. Tud. Akad. Ert. V Köt., 1י! I 1115 (1hungrian).
Perraca (Conte Mario (i.) Sulla bontio specifica del Triton hlasii de l'Isle e descrizione di ma movat fomea ibrilla di Tritonfrancesc. Con 1 tav.; in Boll. Mus. Zool. Anat. Comp. T'orino, vol. 1, No. $1 \because$, ( $1: 3 \mathrm{pp}$.).
——Sul valore specifico del Pclobates latijrons dei flintorni di Torino recentemente deseritto dal Sig. Harom-Royer; in Bull. Musei Zowl. Anat. Comp. 'Torime, vol. 3, No. 46 ( 6 [1י).
Peters (W') liemerkngen iiber versehicdene Batrachier, namentlich iibre die Originaldexemplare der von Schmeider mad Wiegmann heschriehenen Arton des zoologischen Mnsemus an Berlin. Monatshericht der kïnigl. Akalemie der Wissonsehat tren zu Berlin, 16. Vebr., 1863. 1. 76.

Peters(W.) Ueberdie Entwickelung der Ceecilien. Monatsbericht der königl. Akademieder Wissenschaften \%n Berlin, 19. Juli, 1875, 1. 48...
—— Veber cine vom lhm. Vicceonsul L. Krug und Dr. J. Gundlach anf der Insel Puertorico gemachte Sammlung von Silngethicren mul Amphibien, so wio iibur dio Entwickelung eines Batrachicrs, Itylodes martinicensix Dum. Bihr., ohne Metamorphose. Monatshericht der kïnigl. Akademio der Wisseusehaften zan Berlin, 1876, p. 703, 11. i.
——Ueher die Eintheilung der Ciecilien mul insbesembere iiber dio Gattmugen Rhinatrema mud Gymmopis. Monatsberieht der kïnigl. Akademie der Wissensehaften zu Berlin, Nor. 24, 1879, p. 92.
——Mittheilumg iiber nene oder weniger bekamte Amphibien des Berliner zoologrischen Mussmm. Mit l'araf ; in Monatsber. Akall. Berlin, 18s0, pp. 217-284.

——— Herpetologische Mitheilungen; in Sitmangber. Ges. Niat. Fr., 1881, No. 6, $11_{1}$. $x$ : -91 .
(1. Exerescenzan der Ranu gigas Blsth d zur l'atangserit. 3. Bau des Schädels von

——Ubher die von Herrn J. M. Hildebrandt auf Nossi-Bé und Manlagasear gesammelten S:ingethiere und Amphihien; in Monatsher. Akad. Berlin, 18:0,

(14.1. Mammaliaı; aj sp. Lisptilia 2 n. sp.; 5 Auphibia)
———Ueber dic von Iterru Gerh. Rohlfs mad Dr. Strecker anf der lieise mach der Oase kufrat gesammelten Amphibien. Mit l Taf.; in Munatsber. Akal. Berlin, 1880, pp. 305-309.
——Sehatidel von zwei Ciacilien, Mypogrophis rostolus mul It. seraphini; Gesellsch. A. naturforsch. Fremide, Berlin, 1880, p. 53.
———Ueberdie Verschicdenheit der Lage der ibisseren Spalten der Schallblasen als Merkin:al \%ur Uuterscheidnug besonders alticanischer Froscharten; in Sitzungslere. Ges. Nat. Fr. Berlin, 1881, No. 10, 1 p . 162, 163.
——— Veber nene Batrachier der Gatthngen IIyperolins und Limmodytes ans Africa; in Sitzongsber. Gers. Natt. Fr., 1シ8:2, No. 1, 1p. 8-10.
(3n. sp.)

Peters (IV.) Eine nene Gattung von Batrachier:, Hylonowns, alus lBogota; in Sitzosher. Ges. Nat. Frr. Borlin, 188:, No. 7, pl. 107-109.

- Drei neno Batrachicr; in Sitagyber. Ges. Nat. Fr. Berlin, 18ふ:2, No. 10, P1. 14E-148.
(A mblystoma krausci, Nyetibatrachus sinensis, Bufo buchneri.)
- Aenterning des Namens IIylonomus in Ifyloscertus [13atrach.]; in Sitzagber. Ges. Nat. Fr. Berlin, 1852, No. K, pl. 127-129.
—— Neue Art der urodelen Batrachier, Spelerpes (Edipus) yncatanus, n. sp., aus Yucatan (Central America) ; in Sitzgsber. Ges. Nat. Fr. Berlin, 1882, No. 9, p1. 137, 138.
-_ Ueber die verölfentichte zweite Anilage d. Catalogs der Batrackia Salientia d. British Musemms vou Dr. G. A. Boulenger; Ges. uaturf. Frenude Ber$\operatorname{lin}, 188 \%, \mathrm{p} .60$.

Ueber die von S. Krug in J. Guntlach anf d. Iusel Portorico gelorachte Sammlung v. Siangethiere u. Amphibien; Monatsber. Ak. Wiss. Berlin, 1876, p. 703.

- Ueber Mautipus mud Phrynocara, zwei nene Batrachiergattungenans ilem Hinterlasse tles Reisenden J. M. Hildebrandt von Matlagasear; in Sitzgrber. k. preuss. Akad. Wiss., 1883, vi, vii, pp. 165-168.
—— Uebersiclit der Amphibien ans Chincoxo (West Africa), welcho vou der africanischen Gesellschaft dem Berliner zool. Musemm iibergeben sind; in Berlin, Monatsher., 1377, pp. 611-621. (Mit 1 Taf.) ; anch in Correspoud.-BI. d. afric. Ges., Bl. 2, pp. 261-26if.
(47 Reptilien und 12 Batrachier, mit $9 \mathrm{n} . \mathrm{sp}$.) - Ueber die von Spix in Brasilien gesam. Eidechsen; II. Bemerk. n, neno oder wenig bek. Amphibien; Monatsberichte Akad. 1l. Wissensch., 1877, p. 415. - Ueber dio von Dr. Sachs iu Vene\%uela gesam. Amphibien; l. c., 1877, p. 459.
——Ueber dio Eintheilung der C:icilieu; Monatsber. Ak. Wiss. Berlin, 1879, p. 924.
Pfitzner (Wilh.) Epidermis of SalamanIler; in Journ. R. Microscop. Soc. (?.), vol. 1, pt. 2, pp. 218-244.
(Abstract from Morphol. Jahrb. S. Zoolog. Anz., No. 72, p. 628.)

Peters（IV．）Die Epidermis der Amphi－ bien．I．Untersmehngen iiber Ban und Eutwickelung der Epidermis dey ge－ nleckten Salamanders ；Morph．Jahrb．， vi，pl． $468-526$ ，pls． 24 aud 25.
Pfliger（E．）Inthencers which determine Sex in the Einbryo［Rama］．Abstr．in Journ．R．Microsc．Suc．（2．），vol．3，pit．3， pp．348，34！．

Das Ueberwintern der Kablyuap－ pen der Knolstanchkröte［ $\Gamma$ Celobates fus－ cus］．（Ein Beitrag zur Lehre von der Anpassmag der Organismen an die tins－ seron Lebensbedingmagen mad zar Dia－ guose der Batrachierlarven）；in Pflii－ ger＇s Arelı．f．d．ges．Plysiol．，31．Bd．， 3．，4．Hitt．，lill．134－145．

Ueberwinteru oler Kaulquappen des Pelobates．Ansz．；in Biolog．Cen－ tralbl．，3．Bil．，No．9，p．287．Kosmos （Vetter），7．Jahrg．，5．IIff．，13．Bu．，1י 392.
（Pfliiger＇s Arch．S．Z．A．，No． 148 p． 478.$)$
Pflüger（Ed．）und Smith（Will．J．）Un－ tersuchnngen iiber Bastardirung der anmen Batrachier und dio Principien der Zenenng．1．Th．Experimente iiber Bastardirmug der annren Batrachier；in I＇tliiger＇s Arch．f．d．ges．I＇hysiol．， 32. Bd．，9．－11．Hft．，pli．519－511．2．Th． von E．Plliiger，Znsammenshelhung der Ergebnisse und Erörterming der Princi－ pion der Zeugung，pro．54之－1－0．
Picaglia（Lnigi）．Contribuzionio all＇Er－ petologia di Bellavista（Repmbblica Argentina，provincia di Corionters）；in Atti Soe．Natmal．Modena；Mem．（3．）， rol． $6, \mathrm{p}, \mathrm{p}$ ． $\mathrm{x}=3-96$ ．
（17 Reptil， 1 Amphilb）
Poh！－Pincus（一）．Ueber die Muskel－ fise males Froschherzens；in Arcà．f．il． mikrosk．Anat．，23．Bd．，4． $11 \mathrm{ft} ., \mathrm{l} \mathrm{l}^{1}$ ． 500－5\％\％．
Rauber（A．）Die Kerntheilungslignten im Melullarrohr der Wirbethiere． 1. Batrachier；Arel．mikr．Anat．，xxvi， 1中．（
Reinhardt（J．）aud Lïtken（Ch．）Ibi－ drag til Kumlskals om Brasilien＇s Pad－ dur og Krylalyr；Vidensk．Medid．fria den Nat．lorening，18i5l，8vo，Commhagen．
—— Bidrag til Vestimiske Griges ug navoligen de Dansk Vestindiske फलrs； Herpetologie；fiom Natmahist．Form． $V$ idensk．Meddel．for $180^{\circ}$ ．

Richet（Cli．）Des monrements de la Granonille，consécntify al l＇excitation électrique ；in Compt．rend．Acad．Sc．， Paris，T．92，No．D2，pp．1298－1301．
Ridewood（W．（i．）On an alonornal genital system in a male of the com－ mon froy．With 1 fig．；in Auat．Auz．， 3. Jahrg．，No．11，12，plo．333－336．
Roesel（A．J．）LIisturia naturalis Rana－ rum Nostratium；Nuremberg，1758， folio．
Romiti（G．）Divisione cellulare nell＇ novo segmentato di Batraciani；in Atti Suc．Tosc．Sc．Nat．P＇isa，Proc．－ verl．，vol．4，1p．21，22．
Rope（G．T．）The Natterjack Toall［Bufo calamita ］；in Zoologist（3．），vol．7，Feb．， 1．E4．

On some Reptilia and Batrachia observer iu Normandy；iu Zoologist （3．），vol．7，Feb．，pl．49－53．
Roux（Will．）Ueber die Zeit der Be－ stimmung der Haptrichtnugen im Froschembryo．Eino liologischo Un－ tersuchmir．（Mit 1 Taf．）Leipzig，W． Engelmam，1＊s：3，8vo（ 28 plp ），M． 1.
—— Beitrige zin embryonalen Eut－ weklungsmechanik．：U．Ueber die Ent－ wicklung der Froseheier bei Aufhe－ bong der richtenden Wirkmag der Schwere；Sep．－Abdr．ants d．Bresl． ：arztl．Zuitschr．，1834，No． 6 （16 p1．）．
———Beitraige zur Entwicklungsmecha－ mik lese Embryo．No．4．Die Richtnugs－ best immung der Medianelo des Froseh－ embryo durch die Copulationsrichtmag des Eikernes mad des Spermakernes． Mit 1 Taf．；in Auch．f．mikrosk．Anat．， 20．Bi．，2． 11 ft ．，111．157－212．
Rusconi（D．M．）Del Proteo anguino do Lalluenti ；4to，l＇ivia， 1819.
——Amonrs dis Salamandres arfua－ tífues；4to，Milain，18：2．
－Olservations anatomigues sur la Sirime ；Ato，Pavia，18：37．

Riflessione sopra il Sistema Lin－ fatico dei Rettili；roy．Rro，Pavia， 185.

Ryder（J．A．）The＂Ventral Suckers，＂ or＂Sucking Disks，＂of the Tadpoles of diflerent genera of Frogs and Toads； in Amer．Naturalist，vol． 22, Marel，lip． 26：3，264．
（Report on Thiele＇s praper．V．Z．A．，No． 277，p．202．）

Salvadori (T.) Relazione sopra la "Monografia sugli Aufibi amori italiani" del Sor. Camerano; in Atti R. Accad. Sc. Torino, vol. 17, Disp. 7, pp. 788-790.
Barasin (P.) und Sarasin (F.) Einige Puncte aus der Entwickluugsgeschichte vou Ichthyophis glutinosus (Epicrium gl. ) ; in Zool. Anz., 10. Jahrg., No. 248, pp. 194-196.

Entwickelungsgeschichte u. Anatomie der Ceylonesischen Blindwüble, Ichthyophis glutinosns: in Ergebnisse Naturwiss. Forschung. auf Ceylon. Baud II. Folio; Wiesbaden, 1887.
Sauvage (H.-E.) Sur quelques Batracieus de Chine; Bullet. Soc. Plilomath. Paris, 1877, Mar.
Savi (P.) Sulla Salamandra perspicillata; 8ro, Pisa, 1 e23.
Schauz (F.) Fate of the Blastopore in Amphibians. Abstr. in Journ. R. Microse. Soc. Londou, 1888, p. 2, p. 189.
(Jena. Zeitschr. V. Z. A., No. 277, p. 202.)
Schiff (Maur.) Remarques sur l'innervation des cours lymphatiques des Ba tracieus anoures; in Revue Zoolog. Suisse, T. 1, No. 3, pl. 319-356.
Schneider (J. G.) Historiæ Amphibiorum Fascic. prim. contineus Ranas, Calamitas, Bufones, Salamandras et Ḩ̧dros; 8vo, Jeua, 1799.
Schöbl (Jos.) Ueber die Blutgefiisse des cerebrospinaleu Nervensystems der Urodelen. Mit 1 Taf.; in Arch. für mikroskop. Auat., 20. Bd., 1. Hft., pp. 8i-92.
Schreiber (E.) Herpetologia Europaa; 8vo, Brunswick, $1=75$.
Schulgin (M.) Bau des Cerebrospinalsystems der Amphibien u. Reptilien. Mit 1 Taf. ; in T. 9, 1. Hft., pl. 149-2:29.
Schultze (Frz. Eilh.) Ein lebendes Amblystoma tigrinum ; in Sitzgsber. Ges. Nat. Fr. Berliu, 18e6, No. 9, p. 133.
Schultze (O.) Axis of Frog Orum. Abstr. in Journ. R. Microsc. Soc. Londou, 1888, pt. 1, p. 15.

- Ueber die Furchuug beim Axolotl; in Sitzgsb. phys.-med. Ges. Würtzburg, 1887, pp. 2-4. Abstr. in Jouru. R. Microsc. Soc. Londou, 1888, pt. 3, p. 392.

Beitrag zur Eutwicklungage. schichte der Batrachier. Mit 1 Taf.; in Arch. f. mikr. Auat., 23. Bd., 1. Hft., pp. 1-22.

Schultze (O.) Untersuchungen über die Reifung und Befruchtung des Amphibieneies. Mit 3 Taf. ;. in Zeitschr. f. wiss. Zool., 45. Bd., 2. Hft., pp. 177-226.

- Ueber Reifung und Befruchtang des Amphibieneies; in Anat. Anz., 1. Jahrg., No. 6, pp. 149-152.
- Zur ersten Entwicklong des braunen Grasfrosçes. Mit 2 Taf.; in Festschr. A. v. Kölliker, pp. 265-280. Ausz. von W. Roux ; in Biolog. Centralbl., 7. Bd., No. 14, pp. 420-425.
Schwink (-). Ueber die Gastrula bei Amphibieneiern; in Sitzsgber. Ges. f. Morph. n. Phys., München, 1887, 2. Hft., pp. 93-95. Biolog. Centralbl., 8. Bd., No. 1, pp. 29-31.
Scott (W. B.) and Osborn (II. F.) The early development of the common Newt; from the Quart. Journ. Micr. Sci. London, October, 1879.
Sedgwick (W. T.) On.variations of re-flex-excitability in the Frog, induced by changes of temperature ; in Stud. Bio$\log$. Labor. Johns Hopkins University, vol. 2, No. 3, pp. 385-410.
Seoane (Lopez). Reptiles et Batraciens de la Galice ; in No. 42, Revue internationale des sciences, T. 1, p. 693; 1878.
Setschenow (S.) Galvanische Erscheiuuugen an der cerebrospinalen Achse des Frosches ; in Pfliiger's Arch. für die ges. Physiol., 25. Bd., 5., 6. Hft., pp. 281-284.
Sewall (Henry). A uote on the processes concerned in the secretion of the pep-sin-forming glands of the frog; in Studies Biolog. Laborat. Johns Hopkins Univ., vol. 2, No. 1, pp. 131-134.
Sidebotham (Harold). Note on the fate of the Blastopore in Rana temporaria. With 1 pl. ; in Quart. Journ. Microsc. Sc., vol. 29, pt. 1, pp. 49-54.
Siebold (C.T.E.v.) Observationesquædam de Salamandris et Tritonibus; 4to, Berliu, 1828.
Siebold (C. T. E. v.) Zoologische Notizeu. Archiv. f. Naturgesch. xviii. 1852, pp. 8-17. Ueber Rana oxyrhinus et $R$. platyrhinus.
Smirnow (Alex.) Ueber Nervendknäuel in der Froschlunge. Mit 2 Ábbild.; in Anat. Anz., 3. Jahrg., No. 9, pp. 258-261.
Smith (Herb. H.) On Oviposition and uursing in the Batrachian genus Dendrobates. With 2 tig.; in American Naturalist, vol. 21, No. 4, pp. 307-311.

Smith (W.H.) The Tailed Amphibians, including the Cæcilians; 8vo, Detroit, 1877.

Catalogue of the Reptilia and Amphibia of Michigan. Suppl. to Science News; roy. 8vo, New York, 1879.
Smith (Will. J.) Beiträge zur differentiellen Diagnose der Rana fusca s. platyrrhinus und Rana arraliss. oxyrrhinus auf Grund der an den Gaumenzaihnen nachweisbaren Unterschiede. Mit 2 Taf.; in Pflüger's Arch. f. d. ges. Physiol., 32. Bd., 9., 11. Hft., pp. 581588.

Solger (B.) Ueber einige Entwicklungsstadien des Peritonealepithels der Amphibienlarven. Der anatomischen Section der Naturforscher-Versammlung zu Freiburg vorgelegt.
( 8 pp. , Autograph. Msept.)
Spengel (J. W.) Zwitterbildungen bei Amphibien (nach Marshall und Bourue); in Biolog. Centralbl., 4. Bd., No. 8, pp. 235-241.
-_ Beobachtungen iuber das Leben des Ajolotl in Mexico.
Spix (J. B. (le). Animalia nova, spec. nov. Testudinorum et Ranarum quas in Itinere per Brasiliam coll. et descr. J. B. de Spix ; Munich, 1824, 4to.

Steindachner (Frz.) Batrachologische Mittheilungen; Verhandl. d. k. k. zoolog. botan. Ges. Wien, 1864 (May).

Ueber zwei noch unbeschriebener Batrachier (Osteocephalus sp.); Archiv. p. 1. Zoologia, Modena, II, 1862.

- Batrachologische Beiträge. Mit 3 Taf. ; in Sitzgsber. kais. Acad. Wien. Math.-nat. Cl., 1. Abth., 85. Bd., 1., 2. Hft., pp. 188-194, Apart, M. -, 80.
(3 Sp., daron 2 neu, Ceratophrys soltzmanni u. Scaphiophryne spinosa, beide, eben so wie Discophus guineti abgebildet.
Steiner (J.) Untersuchungen iiber die Physiologie des Froschhirns. Ausz.vom Verf. ; in Biolog. Centralbl., 7. Bd., No. 3, pp. 88-93.
Stephens. (W. J.) On some additional Labyrinthodont Fossils from the Hawkesbury Sandstone of New South Wales. Second note on Platyceps wilkinsonii; in Proc. Linn. Soc. N. S. Wales (2.), vol. 2, pt. 1, pp. 156-158. (v. Z. A., No. 277-203.)

Stirling ( Wm .) and Macdonald (James F.) The Minute Structure of the Palatine Nerves of the Frog, and the Termination of Nerves in Bloodvessels and Glauds. With 1 pl. ; in Journ. of Anat. \& Plysiol. (Humphry), vol. 17, pt. 3 (April, 1883), pp. 293-307.
Storer (H. W.) On the Bufo lentiginosus of Shaw (B.l.fowleri Putn.). Proceedings of the Natural History Society of Bostou, vol. 1, p. 136, 1843.
Stöhr (Pl.) Ueber die ersteu Aulagen des Kopfskelets der Auuren. Aus Verhaudl. phys.-med. Ges. Wiirtzburg, Sitzungsber., n. F., 16. Bıl. (3 pp.).
-_Zur Entwickelungsgeschichte des Anurensch:idels. Mit 2 Taf.; in Zeitschr. f. wiss. Zool., 36. Bd., 1. Hft., pp. 6s-103.

Zur Entwickelungsgeschichte des Urodelschiidels. Z. wiss. Zool., sxiii, pp. 477-526, pls. 29 aud 30.
Stoliczka (F.) Observations ou-Iudian Batrachia; Proceeds. Asiatic Soc. of Bengal, 1872, p. 101.
__ Note on a few Barmese Sauria Ophidia and Batrachia; ibidem, $18 \tau 2$, p. 143.

Strube (K. W.) Ueber den japanischen Salamander; in Nachricht d. kais. Ges. d. Fremude d. Naturwiss. Moskau, T. 50, 1. Hft., Protok. zool. Abth., Sp. 32, 33 . Geerts, -, eben dariiber, ibid., Sp. 33-37.
Sumichrast (F.) Enumeracion de loa Batracios observados en la parte oriental y meridional de la República Mexicana; in La Naturaleza (Mexico), T. 6, pp. 78-84.
——Contribution à l'histoire naturelle du Mexique. I. Notes sur une Collection de Reptiles et de Batracieus de la partie occidentale de l'Isthme de Te huantepec ; iu Bull. Soc. zool. Frauce, 5. aun., 5., 6. p., pp. 162-190.

Tarchanoff (J. R.) Physiologie des Geschlechtsapparates des Frosches; in Ptlüger's Arch. f. d. ges. Physiol., 40. Bd., 7., 8. Hft., pp. 330-351.
Thin (G.) On the Nucleus in the Frog's Ovum. Rept. Brit. Ass., 1885, pp. 10691071.

- Nucleus in Frog's Orum. Abstr. in Journ. R. Microsc. Soc. London, 1887, pt. 1, p. 42.
Townsend (Chas. H.) Habits of the Menopoma; in Aner. Naturalist, vol. 16, 1882, Feb., pp. 139, 140.

Tschudi (J. J.) Classification der Batrachier ; 4to, Neuchatel, 1838.
-_Fauna Peruana; 4to, St. Gallen, 1844-6.
_- Fauna Peruana ; Reptilia, conspectus; Archiv. f. Naturgesch., 1845, p. 150.
Tuckerman (F.) Supernumerary leg in a Male Frog (Rana palustris); J. Anat. Phỵs., xx, pp. 516-519, pl. 16.
Vaillant (L.) Reptiles et Batraciens d'Europe, 1874.
——Reptiles et Batraciens d'Europe, $1 \approx 85$.

Remarque sur lat disposition des corps vertébraus chez l'Anaides lugubris Hall.; Societé Philomathique Paris, 1881. July. Ibid., December, 1885.

- Sur un Appareil au Transport des Batraciens Auoures vivants; Bull. d.I. Société d'Acclimatation.
Velasco (José M.) Anotaciones y observaciones al trabajo del Señ. A. Weısmann; in La Naturaleza (Mexico), T. 5, 1800, pp. 58-84.
- Abstract of above; in Biolog. Centralbl., 2. Jahrg., No. 3, 1882, pp. 80-83.
Verrill (A. E.) Catalogue of Reptiles and Batrachians found in the vicinity of Norway, Oxford Co., Maine; 8vo, from Procceds. Boston Soc. Nat. Hist., ix, $1863, \underline{1} .195$.
Virchow (H.) Ueber Gefüsse des Kopfes und des Anges beim Frosche; in Verhandl. phşsik.-medic. Ges. Würzburg, 15. Bd., Sitzungsber., pp. 34, 35.

Von Bambele (C.) Formation des feuillets embryonnaires et de la notocorde chez les Urodèles; Bull. Ac. Belg. (2.), 1, pp. 83-91.
_Nouvelles recherches sur l'embryologie des Batraciens; Archives de Biologie, i, pp. 305-380, pls. 11-14.
Wagler (J.) Natürliches System der Amphibien München, Stuttgard $u$. Tübingen, 1830, 8vo.

- Descriptiones et Icones Amfibiorum; folio, München, Stuttgard u. Tübingen, 1833.
Waldschmidt (Jul.) Zur Anatomie des Nervensystems der Gymnophionen [Jena. Zeitschr.]. Inaug.-Diss. (Rern). Jena, G. Fischer, 1887, 3vo (18 pp.).
(r. Z. A., No. 261, p. 502.)

Waldschmidt (Jul.) Ueberdas Gymno-phionen-Gehirn; in Biolog. Centralbl., 6. Bd., No. 23, pp. 731, 733.
(Berlin. Naturforsch.-Versamml.)

- Zur Anatomie des Nervensystems der Gyumophionen. Mit 2 Taf.; in Jeua. Zeitschr. f. Naturwiss., 20. Bd. (n. F., 13. Bd.), 2., 3. Hft., pp. 461-476.

Walecki (A.) Materialien zur Zoographie Polens. Amphibia; in Physiograph. Denkschr., Warschau, 1882, 2. Bd., pp. 358-394.
Wedenski (Nic.) Ueber die Athmung des Frosches (Rana temporaria). Mit 1 Taf.; in Pflüger's Arch. f. d. ges. Plyssiol., 25. Bd., 3., 4. Hft., pp. 129149.

Weinzettl (V.) Zur Kenntniss des weiblichen Proteus anguineus. Mit 1 Taf.; in Zeitschr. f. wiss. Zool., 38. Bd., 4. Hft., pp. 671-185.
Weismann (Ang.) Transformacion del Ajolote mexicano en Amblistoma (trad. del Anu. Report Smithson. Institute, 1877); in Lat Naturaleza (Mexico), T. 5, 1880, p1. 31-57.
Welikij (W. N.) Ueber die Innervation der LSmphherzen; in Arbeit. d. St. Petersl. Naturforsch.-Ges., T. 15, 2. Hft., 1884, Protok., pp. 34, 35.
Welikij (W.) Ueber die Lymphherzen bei Siredon pisciformis. Vorläufige Mittheilung. Bull. Pétersb., xxx, pp. 341, 342, and Mél. Biol., xii, pp. 311, 312.

- Ueber die Pacinischen Körperchen der Frösche; iu Arbeit. d. St. Petersburg. Naturforsch.-Ges., T. 15, 2. Hft., 1884, pp. 39, 40.
Weliky (M.) Ueber die Endigaugen der sympathischen Nervenfaser in den Lymphherzen [des Frosches]; in Bull. Acad. Imp. Sc. St.-Pétersbourg, T. 28 , pp. 455, 456.
Weliky (N.) Ueber die Lymphherzen bei Triton taniatus; in Zoolog. Anz., 10. Jahrg., No. 262, p. 529.
Weliky (Wlad.) Ueber die Auwesenheit vielzäbliger Lymphherzen bei den Froschlarven ; in Zool. Anz., 9. Jahrg., No. 231. pp. 524, 525.
Wiedemann (A.) Die im Regiernngsbezirk Schwaben n. Neuburg vorkominenden Kriechthiere und Lurche; in 29. Ber. naturw. Ver. Sch waben u. Neuburg (Augsburg), 54 pp .

Wiedersheim (R.) On Salamandrina perspicillata and Geotritonfuscus. Genoa, 1875, 8vo.
_—Die ältesten Formen des Carpus und Tarsus der heutigen Amphibien ; in Morphologisches Jahrbuch, p. 421, 1876. - Dio ältesten Formen des Carpus und Tarsus der heutigen Amphibien; in Moŕphol. Jahrl., p. 152, 1877.
-_Das Kopfskelet der Urodelen ; in Morphol. Jahrb., pp. 352, 45y, 1877.
——Ueber Neubildung von Kiemen bei Siren lacertina; in Morphol. Jahrb., p. 630, $187 \%$.
——Ou Labyrinthodon rütimeyeri. Abl. der Schweiz. palzont. Gesell., Zürich, 18:3.

- Zur Anatomie des Aublystoma Weismann. Zeitschr. f. wiss. Zool., Bd. 32, pp. 216-236, plates 11, 12, 1878.
——Die Anatomie der Gymuophionen. Jena, 1879, 4 to.
- (Waldschmidt). Ueber das Gym-nophionen-Gehirn; in Tagebl. 59. Vers. deutsch. Naturf., p. 196.
- Ueber die Vermehrung des Os centrale im Carpus und Tarsus des A xolotls. Morph. Jahrb., vi, pp. 581-583, pl. 30.
Wightman (A. C.) On the Ventricular Epithelium of the Frog's Brain; in Johns Hopkins University Circular, vol. 7, No. 66, pp. 84, 85.
Wilder (Burt. G.) The Branchiæ of the Embryo Pipa; in American Naturalist, August, 1877, pp. 491, 492.
——On the Habits of Cryptobranchus; in Americau Naturalist, 1882, Oct., pp. 816, 817.
Will (Ludw.) Ueber die Entstehung des Dotters und der Epithelzellen bei den Amphibien und Inseeten; in Zool. Anz., No. 167, pp. 272-276.
Wlassak (Rud.) Das Kleinhirn des Frosches. Mit 2 Taf.; in Arch. f. Anat. n. Phys., playsiol. Abth., 1887, Suppl.Bd., pp. 109-137.
Wolterstorff (W.) Ueber fossile Frösche insb. das Genus Palæobatrachus; Magdeburg, Th. I, 1886; Th. II, 1887; 8vo.
- Unsere Kriechthiere und Lurche. Vorläufiges Verzeichniss der Reptilien und Amphibien der Provinz Sachsen und der angrenzenden Gebiete, nebst eiver Anleitung zu ihrer Bestimmung. Halle a. S., Tausch u. Gurse, 1883, 8 vo ( 38 pp .), M. 1.

Wolterstorff (W.) Vorläufges Verzeich. niss der Reptilien und Anphibien der Provinz Sachsen und der angrenzenden Gebiete; in Zeitschr. f. Naturwise. (Halle), 61. Bd., 1. Hft., pp. 1-38.

- Triton palmatus an Harz; in Zool. Anz., No. 253, p. 321. Humbolt (Dammer), 6. Jahrg., 12. Hft., p. 473.

Ueber Pelobates fuscus subsp. insubricus Cornalia; Zoolog. Anzeiger, 1888, No. 294.
Wurffbain (J. P.) Salamaudrologia. Descriptío historico-philologico-philo-sophico-medica Salamandræ; Nuremberg, 1783.
Wwedensky (N. E.) Versuche tiber die Innervatiou der Athemberwegungen bei R. t.; iu Arbeit. St. Petersburg. Na--turforsch.-Ges., 11. Bd., 2. Hft., 1880, Protok., pp. 184, 185, 201-204.
Yarrow (H. C.) Descriptions of New Species of Reptiles and Amplibians in United States Natioual Museum; in Proc. U. S. Nat. Mus., vol. 5, pp. 438443.

Yung (E.) De l'influence de la nature des aliments sur le développement de la grenouille (Rana esculenta); in Compt. rend. Acad. Sc. Paris, T. 92, No. 26, pp. 1525-1527.
———Sur l'influence des milieux physicochimiques sur le développement des têtards de greuouilles (Rana esculenta); in Arcl. Sc. Phys. et Nat. Geuève (3.), T. 10, Oct., pp. 346-349.
(Soc. helvét. sc. natur.)

- On the Influence of Physico-chemical Agencies upon the development of the Tadpoles of Rana esculenta; in Aun. of Nat. Hist. (5.), vol. 13, Jan., p. 72. Journ. R. Microsc. Soc. London (2.), vol. 4, pt. 1, p. 29.
(Bibl. Unir. Arch. Sc. Phys. S. Zoolog. Anz., No. 169, p. 309.)
——Développement de la sexualité des larves de grenouilles et influence d'un mouvement de vague sur le développement. C. r. Ass. Fr. Sci., xiv, i, p. 151.
Zelinka (C.) Ueber eine in der Harnblase von Salamandra maculosa gefundene Larva derselben Species ; in Zool. Anz., No. 261, pp. 515,516.
Zeller (Ernst). On the development of Proteus anguinus. Zoologischer Anzeiger, 1883, xi, p. 570.


## ADDENDUM TO BIBLIUGRAPHY.

Allen (J. A.) Catalogue of Reptiles and Batrachians found in the vicinity of Springtield, Mass. Boston Soc. Natural History, xii, December, 1868, 8vo.
Barkas (T. P.) Illnstrated Guide to the Fish, Amphibian, Reptilian, and supposed Mammalian Remains of the Northumberland Carboniferous strata. 8vo, London, 1873, with folio atlas.

- Coal Measure Paleontology, 1873.

Barton (B. S.) some Account of the Siren lacertina, etc., in letter to J. G. Schneider. 8vó, Philadelphia, 1821.
Bavay (A.) Note sur l'Hylodes martinicensis et ses Métamorphoses. BasseTerre (Guadeloupe), 8vo, 1872.
Bidder (F. H.) Vergl. Anatom. u. Hist. Untersuch. iiber die mänul. Geschlechtsu. Harnwerkzeuge der nackten Amphibien. 4to, Dorpat, 1846.
Bocage (Barboza de). Lista dos Reptis possessāes Portugesas d'Africa occidental que existem no Museu de Lisboa. Extr. do Journal de Sciencias Mathematicas, Physicas e Naturaes, 18 oे $^{6}$.
—_Mélanges Erpétologiques. II. Sur quelques Reptiles et Batraciens nouveaux rares ou peu connus d'Afrique occidentale. Ext. do Journal d. Sciencias Mathematicas, Phys. e Natur., 1873, No. 15.
Bonaparte (C. L.) Amphibia Europæa ad Syst. nostr. Vertebrat. ordinata. Memorie d. Reale Accad. d. Scienze di Torino, ii, ii, p. 385.

Prodromus Systematis Herpetologicæ. 8vo, loc.? date?
Brocchi (M.-P.) . Recherches sur l'ostéologie d'un Batracien Anoure (Hemiphractus). Bibl. de l'école des Hautes Etudes xvi, ii, Paris, 1877.

Brocchi (M.-P.) Note sar quelques Batraciens hylieformes recueil. an Mexique et Guatemala. Bulletin Soc. Pbilomathique Paris, 1877 (June).
__ Sur le Système Nervenx de l'Axolotl (Siredon mexicanus). Bull. Soc. Philom. Paris, 1877 (March).
-_Sur quelques Raniformes et Bufoniformes de l'Anérique centrale. Bnll. d. Soc. Pbilom. Paris, 1877 (July).

Brosio (J. C.) Generatio $\pi a \rho a \delta o \xi o s ~ i n ~$ Rana. 8vo, Leipsic, 1724.
Burmeister (H.) Labyrinthodonten aus d. Bunten Sandstein v. Bernbùrg; i, Trematosaurus, 4to, 1849.
__ Dic Labyrinthodonten a. d. Saarbriicker Steinkohlengebirge, 1850.
Cope (E. D.) On the Batrachia and Reptilia of Costa Rica; Journal Academy Philadelphia, 4 to, 1875, p. 93.
——On the Intercentrum of the Terrestrial Vertebrata; Transac. Amer. Philosoph. Soc., 4to, 1886, p. 243.
——On the shoulder-girdle and extremities of Eryops; loc. cit., 1888, p. 362.

Dana (J. D.) Note on the Position of Amphibians among Vertebrates. Amer. Journ. Sci. \& Arts, 1864, p. 184.
Dawson (J. W.) Air-breathers of the Coal Period; 8vo, 1863.
Della Chiaje (S.) Ricerche anatomicobiologiche sul Proteo serpentino. 4to, Naples, 1840.
Duméril (A.-A.) Reptiles et Poissons de l'Afrique occidentale. Arch. du Muséum Paris, x.

Observation sur la Monstrnosit6 dite Polymélie. Nouv. Arch. du Mnséum, 1865.

Eichwald (一) On Zygosaurus; Bulletin Soc. Naturalistes de Moscou, xxi, p. 159, 1848.

Fischer de Waldheim (-) Notices. q. Saurieus de l'Oolith de Gouvern. de Simbirsk; Bull. Soc. Natural. de Moscou, xx, p. 364, 1847. (On Rhinosaurus.)
Fitzinger (L. J.) Ueber eine neue Ba-trachier-Gattung aus Neu-Seeland. Verhandl. d. k. k. zool.-botan. Ges. Wien, 1861 (April).
Fraisse (P.) Beitriige z. auat. Pleurodeles ıcaltli. 8 vo , Würtzburg, 1880.
Frauenfeld (G., Ritter rou). Ueber in eineu Steiu eingeschlosseneu lebeuden Salamander. Verhandl. d.k.k.zoolog.botan. Gesellsch. Wien, 1867 (Oct.).
Fritsch (Ant.) Ueber die Fauna des Pilsner u. Rakonitzer Beckens; Sitż. d. k'. Boehmisch. Gesellsch. d. Wissenschaften, 1875 (March).
-_ Fauna der Gaskohle u. der Kalksteine d. Permformation Böhmens; 4to, Prague; Bd. 1, ITeft 1, 1879; Heft 2, 1880; Heft 3, 1881. Bd. 2, Heft 1, 1885 ; Heft $2,1885$.
Garman (S. W.) West Indian Batrachia in Mus. Compar. Zoology, Caubridge, Mass. 8vo. Bulletin Essex Inst. Salem, xix, 1887.
Gaudry (A.) Sur la Déconverte de Batracieus daus le Terrain primaire; Bullet. de la Soc. Géolog. de France, 1875 (3e sér., t. iii), p. 299.

Les Vertébrés Fossiles des environs d'Antuu; Bull. Soc. Géolog. Frauce, 18.8, vii, p. 62; enlarged, Autuin, 1888, عvo.
Gegenbaur (C.) Uelser Bau u. Entwickelung der Wirbelsäule bei Amphibien überhaupt, u. beim Frosch insbesondere. Abh. d. naturf. Ges. Halle, vi, 1861.

Gibbes (L. R.) Description of a New Species of Salamander. Boston Journ. Nat. Hist., v, No. 1, zro.
Goldfuss ( - ) Beitriige zur vormeltlichen Fauna des Steinkohlengebirges, 1847.
Guinther (A.) List of Cold-Blooded Vertebrata collected by Mr. Frazer in the Audes of Westeru Ecuador. Proceeds. Zool. Soc. Loud., No. 2: Proceeds. Zool. Soc. London, 1859 (Nor.).
-_Observations on Australian TreeFrogs living in the Soc. Menagerie. Proc. Zool. Soc. Londou, 1 E63 (June).

Günther (A.) Third Contribution to our Knowledge of Batrachians from Australia. Proc. Zool. Soc. London, 1864 (Feb.).

- Additious to the Knowledge of Australian Reptiles and Fishes. Proceeds. Zool. Soc. Londou, 1867 (July).
- Description of two net species of Frogs from Australia. Ann. Magaz. Nat. Hist., 1873 (May).
-_ Note on Hyla punctata and H. rhodopora. Proc. Zool. Soc. London, 1872, Mar.

Third report on Collections of Indian Reptiles obtaiued by the British Museum. Proc. Zool. Soc. Londou, 1875, p. 567.
Hallowell (E.) Report upon the Reptilia of the North Pacific Exploriug Expeditiou under Capt. Juo. Rogers, U. S. N. Proceeds. Acaderuy Nat. Sc. Philadelphia, 1860, p. 480.
Hancock and Atthey. On Batrachiderpeton ; Nat. Hist. Traus. Northumberland and Durham, is, p. 20\&, 1871.
—_Ou Pteroplax ; loc. cit., iii, p. 66, p. 207.

Harless(E.) Ueber die Chromatophoren des Frosches. Zeitschr. d. wisseusch. Zoologie, 5. Bd., 4. Hft., 1854, p. 372.
Henshaw (H.) Report upou the Reptiles aud Batrachians collected during the years 1875-6-7 in Califoruia, Arizona, and Nerada, by Dr. H. C. Yarrow; U. S. Engineers, G. M. Wheeler. Evo, Washington, 1878.
Higley (W. K.) Reptilia and Batrachia of Wiscousin; Traus. Wiscon. Academy Sci., Arts, and Lett., vii, p. 155, ? date.
Huxley (T. H.) On Vertebrate Fossils from the Pauchet Rocks; Palieontologica Indica, ir, 1865.
——Descriptiou of Vertebrate Remains from the Jauow Colliery, Kilkenuey; Traus. Royal Irish Acad., xxir, p. 12, 1867.
_In Howell on the Warwicksh. Coal Field; in Mem. Geol. Surrey United Kingrlom, 1859.

- On some Amphibiau and Reptilian Remains from E. Africa and Australia; Quart. Journ. Geol. Soc., xv, 1859, p. 642.
——— Description of Anthracosaurus russellii ; Quart. Journ. Gcol. Soc. London, xix, $56,1862$.

Huxley (T. H..) On ner Labyrinthodonts from the Edinburgh coal field; Quart. Journ. Geol. Soc., xviii, 291, 1862.

On Pholiderpeton, loc. cit., xxp, p. 309, 1869.

Joly (N.) Etude sur les Métamorphoses des Axolotls du Mexique. Montpellier, evo, 1872.
Keferstein (W.) Ueber einige neue oder seltene Batrachier aus Australien und dem tropischen America. Nachricht. der kïnigl. Ges. d. Wissensch. n. d. G. A. Universit. zu Güttingen, 1867, No. 13, 1. 341.
Lataste (F.) Qnelques mots ì propos de l'accouplement des latraciens anoures. Bull. Soc. Zool. France, 1877.
_—Bradybates ventricosus est synonyme de Pleurodeles ralti. Soc. Linnéenne de Borleaux, 1879.
__ Etude sur le Discoglosse. Actes de la Soc. Linnénne de Bordeanx, 1879.
__ Sur l'Habitat du Triton rittatus Graty et sur l'identification de cette esprice arec le T. ophryticus Barth. Bull. Soc. Zoolog. de France, 1877.
Leidy (J.) Notices of remains of extinct vertebrated animals discovered by Prof. E. Eumons ; Proceeds. Acad. Philada., 1856, p. 255.
Malbranc (M.) Vou der Seitenlinie u. i. Sinnesorganen bei Amphibien. 8vo, Leipsic, 1875.
Mason (J. J.) Microscopic Studies on Central Nerv. Syst. Reptiles and Batrachians. Bvo. Journal of Nerrons and Mental Disease, Jannary and Jnly, 18Ev, Chicago.
Mertens (C. H.) Anatomice Batrachiorum prodromus. Olos. in osteologiam Batr. nostr., Noo, Halle, 1820 .
Meyer (H. von) Saurier des Muschelkalkes. Folio, 184i-55.
_— Saurier des Kupferschiefer, $185 t$.
Reptilien aus d. Steinkohlenformatron in Deutschland, 4to, 1858.

- Melosaurns uralensis; Jahrb. f. Mineralogie, 1859, p. 293; Palieontogra$p^{\mu}$ hica, vii, 1859, p. 90.
Meyer (H. von) u. Plieninger. Palæoutologie Württembergs, 1844.
Meyer (Jos.) Systema Amphibiorum Lymphaticum. Dissert. inauguralis, 4to, Berliu, 1845.

Müller (F.) Mittheilung aus der herpet. Sammlung des Basler Museums. 8 vo, Basel, p. 32.
—— Katalog der im Musenm und Universitätskabinet zn l3asel anfgest. Amphibien u. Reptilien. Basel, 1878, 8vo.
Newport (G.) On the Impreguation of the Ovum in the Amphibia. 4to. Philosoph. Trausac. Roy. Soc., 1851, p. 169.

Peters (W.) Ueber die Entwicklung der Cacilien. Monatsber. Ak. Wis. Berlin, 1875, p. 403.
Pike (N.) Notes on the life history of the common Newt; American Naturalist, 1886, p. 17.
Owen (R.) On Labyrinthodon leptognathus; Transac. Geol. Soc. Lond., ri, 503, 1842.

- On Brachyops laticeps. Quart. Journ. Geol. Soc. Lond., x, 473, 1854.
Ryder (J. S.) Morphological notes on the limbs of the Amphiumide; Proceeds. Acad. Philada., 1879, p. 14.
Schmidt (P.) Beschreibung zwèier neuen Reptilien aus dem Naturhist. Museum zu Hamburg. 4to, Hamburg, ? date.
Steindachner (F.) Reise d. Oesterr. Fregatte Novara. Zoolegischer TLeil. Erster Baud. Amphibien. Wien, 1867.
Steinheim (-). Die Entwickelung des Froschembryo's besonders des Muskeln. Genitalsystems (? loc.), (date ?).

Strasser (H.) Zur Entwickelung der Extremitiitenknorpel bei Salamandra u. Tritonen; Morphologisches Jahrbuch, v, 240, 1879.
Trautschold (H.) Die Reste Permischer Reptilien des Palaontolog. Kabinets d. Univ. Kasan; Nouv. Mém. de la Soc. Imp. des Naturalistes, 4to, Moscou, xv, livr. 1, 1884.
Velasco (J. M.) Descripcion sobre la Metamorfosis y Costumbres de una especie nneva del genero Siredon. La Naturaleza, Mexico, 1878.
Vogt (Carl). Untersuchnngen über die Entwickelungsgeschichte d. Geburtshelferkröte (Alytes obstetricans). 4to, Solothurn, 1842.

## LIST OF CUTS.

[Explanation of numbers in all the floures.-1. Head from above; 2. Do. from side; 3. Do. frombelow ; 4. Interior of month; 5. Palate enlarged; 6. Fore foot, from below ; 7. Hind foot, frombelow.]
Page. Fig. 1. Chondrocranium and cranial nerves of Salamandra, from the side; diagrammatic; from Wiedersheim ..... 9
2. The same as Fig. 1, from below ..... 10
3. Necturus maculatus Raf.; No. 8815; Mount Carmel, Ill.; Amblystoma mexicanum Wagl., larva; and Chondrotus tenebrosus B. \& G., larva; California ..... 24
4. Necturus punctatus Gibbs; No. 11813; natural size; Charleston, S. C. ..... 27
5. Cryptobranchus allegheniensis Harl. ; No. 9572; Pennsylvania ..... 39
6. Cryptobranchus fuscus Holbr.; No. 7003; Knoxville, Tenn ..... 43
7. Amblystoma talpoideunı Holbr.; No. 3879 ; natural size; Prairie Mer Rouge, La ..... 53
8. Amblystoma apacum Grav. ; No. 3751; natural size; Gloucester, Va ..... 55
9. Amblystoma punotatum Linn. ; natural size; Hampshire County, Va . ..... 60
10. Amblystoma conspersum Cope; No. 3934 ; natural size; Carlisle, Pa. S. F. Baird ..... 62
11. Amblystona copeianum Hay; from drawing in Proceedings National Museum by Prof. O. P. Hay ; Irvington, Ind ..... 65
12. Amblystoma tigrinum Green; No. 4691; natural size; West Northfield, III ..... 68
13. Amblystoma tigrinum Green; No. 4059; natural size; Fort Ripley, Minn. ..... 74
14. Amblystoma xiphias Cope; No. 14470 ; natural size; Columbus, Ohio.. ..... 88
15. Amblystoma jeffersonianum Green; No. 3968; natural size, except $5=$ ? , from Green's type; western Pennsylvania ..... 91
16. Anblystoma jeffersonianum fuscum Hallow.; No. 3897 ; natural size; Clark County, Va ..... 92
17. Amblystoma nacrodactylum Baird; No. 4042; $\frac{3}{2}$ natural size; Astoria, Oregon ..... 96
18. Anıblystoma spixanthum Cope; type; natural size, Atlanta, Idaho; Coll. Copo ..... 98
19. Chondrotus microstomus Cope; No. 3999 ; natural size; Saint Louis, Mo. ..... 102
20. Chondrotus texanus Matthes; No. 4044 ; twice natural size; San Anto- nio, Tex ..... 104
21. Chondrotus paroticus Baird; No. 7021; natural size; Puget Sound, Oregou ..... 106
22. Chondrotus decorticatus Cope; No. 14493; natnral size; Port Simpson, British Columbia ..... 108
23. Chondrotus aterrimus Cope; No. 5242; natural size; Northern Rocky Mountains ..... 110
24. Choudrotus tenebrosus B. \& G.; No. 4053 ; natural size; Astoria, Ore- gon ..... 113
25. Linguclapsus annulatus Cope; No. 11564; type; natural size ..... 115
Paga
Fig．26．Linguclapsus lepturus Cope；No．14583；type；natural size ..... 117
27．Batrachoseps caudatus Cope；No．13561；Hassler＇s Harbor，Alaska．H． E．Nichols；事 except $5=4$ ..... 127
28．Batrachoseps attenuatus Esch．；No． 13895 ..... 128
29．Hemidactylium scutatum Tschudi；twice natural size，except $5=\frac{4}{4}$ ； No．4094；Northfield，Ill．R．Keunicott ..... 131
30．Plethodon cinereus erythronotus Green；No．4828；twice natural size， except $5=\frac{1}{f}$ ；St．Catherine＇s，Canada ..... 136
31．Plethodon glutinosus Green ；No．3782；Abbeville，S．C ..... 141
32．Plethodon eneus Cope；natural size，except 5，f；Nickajack Cave， Tennessee ；Coll．Cope ..... 144
33．Plethodon intermedius Baird；No．4732；type；natural size，except 5，f； Fort Tejon，Cal ..... 146
34．Plethodon crassulus Cope；No． 9447 ；natural size，except 5，₹ ；Califor－ nia ..... 147
35．Plethodon oregonensis Girard ；No． $13946 \frac{1}{2}$ ；natural size，except f ；Berke－ ley，California ..... 149
36．Stereochilus marginatus Hallow．；No． 3907 ；$\frac{3}{8}$ ；natural size；Georgia． ..... 153
37．Gyrinophilus porphyriticus Green；No． 3374 ；natural size，except 5，$\ddagger$ ； locality unknown ..... 156
38．Manculus quadridigitatus Holbr．；No． 3904 ；twice natural size；Abbe－ ville，S．C ..... 160
39．Spelerpes multiplicatus Cope；No．4038；twice natural size；Red River， Arkansas ..... 163
40．Spelerpes bilineatus Green；No．14456；twice natural size，except 5，年； Gloucester，Md ..... 166
41．Spelerpes longicaudus Green；No． 4085 ；natural size，except 5，which is f ；Lancaster，Ohio ..... 169
42．Spelerpes guttalineatus Holbr．；No． 3723 ；natural size，except 5，符；Eu－ taw，Ala ..... 171
43．Spelerpes ruber Dand．；No．7903；Carlisle，Pa ..... 174
44．Autodax lugubris Hallow．；No．4047；Petaluma，Cal ..... 184
45．Autodax ferreus Cope ；No． 11451 ；natural size，except 5， ；locality un－ known ..... 186
46．Anaides iëcanus Cope；No． 14596 ；natural size，except 5，子；McCloud River，California． ..... 188
47．Desmiognathus ochrophrea Cope；No． 6891 ；natural size，except 5 ，twice natural size；Meadeville，Pa ..... 192
48．Desmognathus fusca Raf．；No． 7901 ；twice natural size ；Carlisle，Pa． ..... 195
49．Desmognathus fusca auriculata Holbr．；twice natural size；Abbeville， S．C ..... 196
50．Desmognathus nigra Green；No． 3923 ；natural size，except5，twice nat－ ural size ；Abbeville，S．C ..... 199
51．Diemyctylus torosus Esch．；No．11407；natural size，except $5=$ 个；San Fraucisco，Cal ..... 205
52．Dicmyctylus viridescens viridescens Raf．；No．14463；Aiken，S．C． ..... 208
53．Diemyctylus viridescens miniatus Raf．；No．3802；twice natural size， except fig． $5=\ddagger$ ；Root River，Wisconsin．S．F．Baird ..... 210
54．Diemyctylus viridescens meridionalis Cope；San Diego，Tex．；$\ddagger$ ..... 212
55．Amphiuma means Gard．；No．10865；natural size；Columbus，Miss． ..... 216
56．Amphiuma means；three embryos in the egge；from Hay ..... 221
57．Siren lacertina L．；No．12593；Wilmington，N．C．；† ..... 226
58．Pseudobranchus striatus Lec．；Nos． 7010 aud 5051 （latter Georgia，Dr． Jones）；twice natural size with branchiæ aborted；fig． $\bar{\varepsilon}$ ，branchiæ aborted and inclosed；9，branchiæ free（No．5001） ..... 231
Page.
Fig. 59. Shoulder-girdles of Salientia; $b$ and $c$ from Parker ..... 247
60. Bufo punctatus B. \& G.; No. 5305; natural size; Cape St. Lucas, Cali- fornia ..... 263
61. Bufo debilis Girard; No. 2620; fig. 1-4 natural size; 6-7, $\frac{3}{2}$; Chihua- bua, Mexico ..... 264
62. Bufo alvarius Girard; No. 2582 ; type; natural size ; Colorado desert. Frons Baird ..... 266
63. Bufo columbiensis columbiensis B. \& G. ; No. 11516; uatural size ; Ke- watin Valley ..... 268
64. Bufo columbiensis halophilus B. \& G.; natural size ; copied from Baird U.S. Mexican Boundary Survey ..... 269
65. Bufo compactilis; No. 2608; natural size; Ringgold Barracks, Texas. A. Scbott ..... 272
66. Bufo hemiophrys Cope; No. 11927 ; natural size ; United States north- ern boundary ..... 274
67. Bufo cognatus Say ; uatural size ; copied from Baird and Girard, U. S. P. R. R. Survey ..... 276
68. Bufo lentiginosus fowleri Putn.; No. 10885; Danvers, Mass ..... 280
69. Bufo lentiginosus woodhousii; natural size; copied from Baird and Girard, U. S. P. R. R. Survey ..... 283
70. Bufo lenfiginosus americanus; uatural size; copied from Baird and Girard, U. S. P. R. R. Survey ..... 285
71. Bufo lentiginosus lentiginosus Shaw ; uatural size; copied from Baird and Girard, U. S. P. R. R. Survey ..... 290
72. Bufo quercicus Holbr.; No. 1394 ; uatural size, except 6 and $7=$ ? ..... 291
73. Bufo ralliceps Wied; natural size; copied from Baird, United States Mexican Boundary Survey ..... 294
74. Scaphiopns holbrookii Harl.; No. 10004; natural size ; Florida Keys. ..... 300
75. Scaphiopus conchii rarius Cope ; No. 5893; natural size; Cape St. Lucas, California ..... 301
76. Spea hammondii intermontana Cope ; No. 10926; natural size; Fort Walla• Walla, Washington ..... 304
77. Spea hammondii hammondii Baird; No. 14553; uatural size; Colorado aud Utah region ..... 305
78. Spea hammondii hombifrons Cope ; No.9943; natural size; Camp Thorne, Yellowstone River ..... 307
79. Spea multiplicata Cope; No. 3694 ; natural size; Valley of Mexico. J. Potts. ..... 308
80. Hylodes latrins Cope; No. 1059 ; natural size; Helotes, Tex ..... 317
81. Syrrhophus marnochii Cope; No. 13635; natural size; Helotes, Tex ..... 319
82. Acris grıllus Lec. ; No. 1:3924; natural size; Des Moines, Iowa ..... 326
83. Chorophilns ormatus Holbr.; No. 13634 ; natural size; Helotes, Tex ..... 334
84. Chorophilus occidentalis Baird; No. 5905; natural size; Riceborough, Ga. ..... 336
85. Chorophilus nigritus Lec.; No. 5935; 1-4, natural size; 6-7, \& natural size ; Liherty County, Ga ..... 338
86. Chorophilus feriarum Baird; No. 12077; 1-4, natural size ; 6-7, ? natural size; Monnt Carmel, Ill ..... 341
87. Chorophilns triseriatus triseriatus Wied.; No. 8553; 1-4, natural size; (i-7, 予 uatural size; Fairplay, Colo ..... 343
8४. Hyla picheringii Holbr.; No. 3608; natural size; Boston, Mass ..... 354
89. Hyla regilla R. \& ( . . No. 1:3796; natural size; Baird, Shasta County, Cal ..... 358
90. Hyla squirella Bose; No. 11911 ; natural size ; Nashville, Ga ..... 364
91. Hyla andersonii Baird; No. 360u; natural size ; Anderson, S. C ..... 366
Page.
Fig. 92. Hyla carolinensis Penn. ; No. 13478; natural size; Allapaha, Ga ..... 368
93. Hyla arenicolor Cope; No. 8656 ; natural size; Utah ..... 370
94. Hyla femoralis Daud. ; No. 3598; natural size; Liberty County, Ga ..... 372
95. Hyla versicolor Lec.; No. 14551 ; natural size ; Rochester, N. Y ..... 375
96. Hyla gratiosa Lec. ; No. 3684 ; natural size; from Georgia, C. B. Adams ..... 379
97. Engystoma carolinense Holbr. ; No. 3699 ; natural size ; Columbus, Ga. ..... 396
98. Hypopachus cuneus Cope; San Diego, Tex ..... 388
99. Rana virescens sphenocephala Cope; No 11916; Nashville, Ga ..... 400
100. Rana virescens virescens Kalm; No. 8869 ; natural size; Tickfaw, Ga ..... 402
101. Rana virescens brachycephala Cope; No. 10922 ; uatural size; Fort Wal- la Walla, Washington; Capt. C. Bendire, U. S. Army ..... 404
102. Rana palustris Lec.; No. 13403; natural size; Garrison's, N. Y.; T. Roosevelt ..... 407
103. Rana areolata areolata B. \& G.; No. 3304; uatural size; Indianola, Tex ..... 410
104. Rana areolata cesopus Cope; No. 4743 ; naturalsize; Micanopy, Fla. ..... 413
105. Rana areolata circulosa Rice \& Davis; type in Museum, Champaigu, Ill. ; No. 278: natural size; northern Illinois ..... 414
106. Rana septentrionalis Baird; No. 3420; natural size; Garrison's Creek, New York ..... 417
107. Rana clamata Daud.; No. 3501; natural size; Eutaw, Ala ..... 421
108. Rana catesbiana Sbaw; No. 11499 ..... 424
109. Rana montezunce Baird; natural size; Lake Xochimilco, valley of Mexico, E. D. Cope ..... 429
110. Rana temporaria pretiosa Baird; No. 5973; natural size; Camp Mon- jie, Oregon ..... 434
111. Rana cantabrigensis latiremis Cope; No. 13723; natural size; Lake Al- lokuagik, Alaska ..... 436
112. Rana cantabrigensis cantabrigensis Baird ; No. 5925; natural size; Fort Simpson ..... 437
113. Rana agilis aurora B. \& G.; No. 3877; uatural size; Astoria, Oregon. ..... 440
114. Rana draytoni draytoni Baird ; No. 8700 ; natural size ; mountains near Fort Tejon, Cal. ..... 442
115. Rana boylii Baird ; No. 3370 ; natural size; Eldorado, Colo. ..... 447
116. Rana silvatica Lec. ; No. 3388; natural size; Quebec ..... 450
117. Chondrotus cungulatus Cope; type; No. 3786; Abbeville. S.C. ..... 455
118. Bufo aduncus Cope; type; No. 14100; Gainesville, Tex; ..... 458
119. Chorophilus nigritus verrucosus Cope; type; Volusia, Fla ..... 459
120. Grypiscus umbrinus Cope; Rio Janeiro; $\ddagger$ ..... 460

## EXPLANATION OF LETTERING ON PLA'TES.

A. -The cartilages, ligaments, and muscles.
A. p. Ascending process of suspensorium.
A. s. c. Anterior semicircular caual.
A.t. Annulus tympanicus.
B. Balancer.

Bb. I, II, etc. Basibranchials I, II, etc.
Cb., cbr., I, II, etc. Ceratobranchials I, II, etc.
Ch. Ceratohyal.
Ctr. Cornu trabeculæ.
E. Br. I, II, etc. Epibrachials.

Ecor. Epicoracoid.
Epa. Ethmopalatine.
Epg. Epipterygoid.
Est. Epistapedial.
Eth. Pars ethmoidea.
Eu. Eustachian ligament.
HM. Hyomandibular.
HQ. Hyoquadrate ligament.
HS. Hyosuspensorial ligament.
Hsc. Horizontal semicircular canal.
Il. Inferior labial.
Inc. Internasal cartilage.
Ll. Lower labial.
Mh. Mandibulo-hroid ligament.
MK. Meckels cartilage.
Mst. Mesostapedial.
Na. Nasal roof cartilages.
Nc. Notochord.
OG', $\mathbf{O G}^{2}$. Otoglossal: 1, cartilaginous; -2, tibrous.
Pbc. Pubic cartilage.
Pca. Trabeculoquadrate cart.
Pd. Pedicle of suspeusorium.
Pg. Pterygoid.
Proc. Procoracoid.
Psc. Posterior semicircular canal.
Q. Qc. Quadrate.

Sl. Superior labial.
SSC. Suprascapula.
St. M. Musculus stapedins.
St. Stapes.
Tcr. Tegmen cranii.

Tr. Trabeculum.
Trab. Plate. Trabecular plate.
T. ty. Tegmen trmpani.
B.-The bones.

Lis. Alisphenoid.
Ang. Angular.
a. r.; a. r. t. Articulare.

As. Astragalus.
a. s. c. Anterior semicircular canal.
a.t. r. Apex of trabecule.
au. Auditory capsule.
B. br. Basibranchial.
B. hy. Basilyal.
B. o. Basioccipital.
C. Urọstyle.

Ca. Calcanenm.
C. br. Ceratobranchial.
C. c. Centrale carpi.
C. hy. Ceratohyal.
Cl. Clavicle.

Co. Columella.
Cor. Coracoid.
Cu. Cuneiform.
D. Dentary.
Di. Diapophysis.

Eb. Epibranchial.
Ecor. Epicoracoid.
E. eth. Ectethmoid.
ep. Epiotic.
Eth. Etlimoid.
ExO., Eo. Exoccipital.
f. Fibulare.

Fe. Femur.
F. P. Frontoparietal.

Fr., F. Frontal.
H. Humerus.
H. hy, Hypolyal.

Hy. Hrpopophysis.
I. Intermedium.
n. Ilium.

Int. Intercalare.
Is. Ischium.
Ist. Interstapedial.
J. Jugal.
L. Lunar.
M., Mx. Maxillary.

Mn. Mandible.
N., Na. Nasal.

Npr. Nasopremaxillary.
N. px. Nasal process of premaxillary.
N. sp. Neural spine.

Occ. Occipital condyle.
Odv. Odontoid vertebra.
Opo. Intercalare.
Os . Orbitosphenoid.
Ost. Omosternum.
Pal., Pa. Palatine.
Pas., par. Parasphenoid.
Pb . Pubis.
P. cor. Precoracoid.

Pef., P.F. Prefrontal.
Pez. Prezygopophysis.
Pg. Ptersgoid.
Pmx., px. Premasillary.
Po. F. Postfrontal.
Poz. Postzygopophysis.
P. Pa. Parietal.
P., pa. Posterior palatine.
P. pg. Palatopterygoid.
P. px. Palatine part of premaxillary.

Pro. Proütic.
Ps. Parasphenoid.
Pt., Pg. Pterygoid.
Ptr. Pretransverse process.
Qj. Quadratojugal.
Qst. Quadratostapedial articulation.
Qu., Q. Quadrate.
R. Rib.
r. Radiale carpi.
S. Scaphoid.

Sa. Sacrum.
Sca., Sc. Scapula.
Smx. Septomaxillary.
So. Supraoccipital.
Sp. Splenial.
Spe. Sphenethmoid.
Spt. Squama palatina.
Sq. Squamosal.
SSc. Suprascapula.
St. Sternum.
St., Stp. Stapes.
Sy. Symphyseal.
T. Tibiale.

Tib. Tibia.
Tr. Temporal ridge.
U. Ulnare carpi.
u. Ulnare.

UR. Ulnoradius.
U. S. Urostyle.

Vo. Vomer.
Vp., Vop. Vomeropalatiue.

> C.-Foramina and nerves.

Car. Foramen carotideum.
En. External nostril.
Fm. Forameu magnum.
Fo., Font. Foutanelle.
Fso. Fenestra ovalis.
G. Gasserian ganglion.

Hsc. Horizontal semicircular canal.
In. Internal nostril.
Mnp. Middle nasal passage.
Nerves. 1. Olfactory nerve.
2. Optic nerve.
5. Trigeminal nerve.
5. First or orbitonasal branch of trigeminal.
5?-53. Maxillary and manuiibular brauches of trigeminal.
7. Facial.
71. Palatine ("vidian") branch of facial.
8. Auditory nerve.
9. Glossophary ngeal.
10. Vagus nerve.

O1. Olfactory capsule.
Olf., Ol., Nervus olfactorius.
Py. Pituitary body, space, or region.
D.- Fiscera and central nervous system.

AB. Arteria branchialis; aorta buw.
AM. Arteria mesenterica.
Ao. Aorta.
Au. Auricle.
B. Branchia.

BA. Bulbus arteriosus.
Bc. Brauchial chamber.
Bf. Branchial fissure.
Br. Brauchice.
c. Cistus urinatorius ; urinary bladder.

CA. Corpus adiposum.
cl. Cloaca.
DC. Ductus cuvieri.
d. c. Ductus choledochus; diaccelia.
E. Eye.

Eah. Epidermal adhesive organs.
Eb. Exterual brauchire.
EE. Epencephalon (cerebellum).
Ep. Epiphysis (pineal body).
Fo. Fontanelle of oviduct.
gb. Gall bladder.
H. Heart.

Hv. Hepatic veiu.
Hyp, Hy. Hypophysis (pituitary body).
I, i. Intestine.
K. Kiduey.

1. Lung.
li., liv. Liver.
l. ant. Anterior lobe of liver.
2. in. Large intestine.
M. Month.

ME. Meseucephalon.
MD. Mülleriau luct.

Med. Meliastiuum.
Mes. Mesentery.
MO. Mouth of oviduct in cloaca.
11. Nerves.
O. Oviducts.

O . Foutanelle of oviduct.
Oes. Esophagus.
Ov. Ovary.
P. Pancreas.
P. c. Plexus chorölleus.

Pe. Prosencephalon.
Pf. Peritoneal fold.
Ph. Pharynx.
Pp. Pappilla cloacæ.
Py. Pslorus.
r. Rectum.

Rh. Rhinencephalou.
S. in. Small intestine.

Sp. Spleen.
Spx. Supraplexus.
St., Stom. Stomach.
Sv. Sinus venosus.
T, t. Testis.
TE. Thalamencephalon.
Ur. Ureter.
Ut. Urethra.
V. Ventricle of head.
V.B. Vena branchialis.

Vca. Veua cava ascendeus.
Vd. Vas deferens.
Ve., Vek. Vena effereus of the kidney.
Vet. Veua effereus of the testis.
Vl. Left veutricle.
VM. Vena mesenterica.
VP. Vena portae.
Vp. Vena pulmonalis.
Vr. Right ventricle.
Viv. Fourth ventricle.
Ventricles of the brain I, II, III, IV, V.
V. 1. Lateral veutricle.

Vre. Venæ revehentes renales.

## EXPLANATIONS OF PLATES.

PLATE I.
Necturus maculatus, skeleton from below, two-thirds natural size
PLA'TE II.
Necturus maculatus, natural size.
Fig. 1. Skull, superior view.
2. Skull, inferior view.
3. Skull, left side, exterior view.
4. Skull, left side, interior view.
5. First and second vertebræ, from below.
6. First and second vertebre, from above.
7. First and second vertebræ, right side.
8. Atlas, from front.
9. Second vertebræ, from behind.

## PLATE III.

## (Copied from Wiedershein's Kopfskelet der Urodelen.)

Fig. 1. Necturus maculatus, skull, from below, displaying the chondrocranium of one side.
2. Necturus naculatus, skull, from above, displaying the cartilaginous nasal capsules.
3. Cryptobranchus allegheniensis, skull, left side.
4. Cryptobranchus allegheniensis, skull, from above, showing chondrocranium of one side.
5. Cryptobranchus allegheniensis, skull, from below, showing cartilages of oue side.

## PLATE IV.

Necturus maculatus, two-thirds natural size, from below, showing viscera, mostly in place; the alimentary canal and corpus adiposum displaced to the right side of the animal.

PLATE V.
Cryptobranchus allegheniensis, skeleton, from above, half natural size.
PLATE VI.
Cryptobranchus allegheniensis, skeleton, from below, half natural size.

## PLATE VII.

Cryptobranchus allegheniensis, viscera from below in position, two-thirds natural size. Drawn by Prof. S. F. Baird. a, auricle; $v$, ventricle of heart; $L$, liver; $m$, mediastiun $n ; s$, stomach; $i$, intestiues; o, oviduct; $o^{1}$, fontanelle of oviduct; $g$, gall-bladder; $r$, rectum ; $c$, urinary bladder.
1951—Bull. 34——32

# PLATE VIII. <br> Cryptobranchus allegheniensis, skull. 

Fig. 1. Superior face.
2. Inferior face.
3. Left side, exterior.
4. Left side, interior.
5. Left mandibular ramus, exterual side.
6. Left mandibular ramus, internal side.

## PLATE IX.

(Copied from Wiedersheim's Kopfskelet der Urodelen.)
Fig. 1. Siren lacertina, skull, left side.
2. Siren lacertina, skull, from above, one-half the cartilage exposed.
3. Siren lacertina, skull, from below, oue-half the cartilage exposed.
4. Proteus anguinus, skull, left side.
5. Proteus anguinus, skull, from above.
6. Proteus anguinus, skull, from below.
7. Amphiuma means, skull, left side.

PLATE $X$.
Antphiuma means, skeleton, from below, two-thirds natural size.
PLATE XI.
Amphiuma means, one-third natural size; from Georgia. Copied from Cope, Proceedings of the American Philosophical Society, 1886, p. 442.
Fig. 1. Skull, left side.
2. Skull, from above.
3. Skull, from below.
4. Skull, right haif, from within.
5. Left mandibular ramus, external view.

6-9. An auterior dorsal vertebra; fig. 6, front ; 7, rear ; 8, bottom ; 9, top.
Chthonerpeton indistinctum, R. \& L., three-eighths natural size; from Brazil. Copied from Wiedersheim, Die Anatomie der Gymnophionen.
Fig. 1. Skull, from above.
2. Skull, frou below.
3. Skull, left half, from within.
$4-6$. Oue and parts of two other vertebre; 4 , from above ; 5 , from below; 6 , right side.

## PLATE XII.

Amphiuma means Gard. three-toed form; viscera in place, except that the alimentary canal is displaced to the right side of the animal. Two-thirde natural size.

PLATE XIII.
Hyoid apparatus of Batrachia. Figs. 1, 3, 5, 6 dissected and drawn by E. E. Galt : : 2, 4, and 7, by E. D. Cope.

Fig. 1. Necturus maculatus, small, $\times 3$.
2. Proteus anguinus, adult, $\dagger$.
3. Cryptobranchus allegheniensis, adult, $\mathfrak{f}$.
4. Meyalobatrachus maximus, adult, $\dagger$.
5. Amphiuna means, small, $\times 4$.
6. Siren lacertina, small, $\times 4$.
7. Ichthyophis glutinosus, f.

PLATE XIV.
Skeleton of Amblysfoma punctatum, one-half natural size; superior view. No. 722.

## PLATE XV.

Amblystoma punctatunt, skeletou from below ; natural size.

## PLATE XVI.

Amblystoma punctatum, skull, one-half larger than natural size.
Fig. 1. Skull, above.
2. Skull, below.
3. Skull, left side, exterior.
4. Skull, left side, interior. The uumbers below are those of the nerves which issue from the foramina of the figure.

## PLATE XVII.

Visceral anatomy of Amblystoma punctatum, from drawings by Prof. S. F. Baird.
Fig. 1. Viscera in place, from below.
2. Liver, from above; $a$, from below.
3. Corpora adiposa and ovaries; one outlined only.
4. Larynx, lungs, stomach, and spleen isolated.

## PLATE XVIII.

dmblystoma punctatum, development of larva, from drawings by Prof. S. F. Baird, magnified four diameters.

Fig. 1. Embryo taken from egg 4 lines in diameter, $\times 4$.
2. Another embryo, from above; a from below.
3. Larva just from the egg, from below, $\times 8$.
4. Larva two weeks free from egg, with three digits on manus, from above; $a$, frou side ; $\times 4$; May, 11, 1848.
5. Larger larva, with posterior limbs, from above, $\times 4$. "In six individuals, all had the right branchiæ less developed than the left;" note S. F. Baird.
6. Hind limb before development of digits.
7. Right fore-foot, from above, of specimen older than fig. 4; 5-25, 1848.
8. Eye of fig. 4, showing lens.

PLATE XIX.
Amblystoma opacum and Plethodon erythronotus, skulls, twice natural size.
Fig. 1-3. Amblystoma opacum.
4-6. Plethodon erythronotus.
PLATE XX.
Anatomy of Amblystoma opacum, drawn by Prof. S. F. Baird.
Fig. 1. Viscera in place, from below; lettering as before; female; natural size.
2. Oviducts and fat bodies; natural size; cl, cloaca; fo, fontanelle of oviduct; $k$, kiduey.
3. Stomach and liver; the latter everted, to show portal vessels.
4. Cloaca much eularged, showing mouths of oviducts and labia (la.).
5. Urinary bladder distended.
6. Urogenital system; C $A$, corpus adiposum ; $T$, testis; $k$, kidney; $v$ e $t$, vasa efferentia testis; vek. vasa efferentia, renis ; $v$. $d$. vas deferens.

## PLATE XXI.

Aniblystoma sp., viscera, drawn by Prof. S. F. Baird.
Fig. 1. Amblystoma punctatum, viscera, natural size, female; the digestive and urogenital systems drawn separately; lettering as before; cl, cloaca; June, 1848.
2. Amblystoma punctatum, urogenital system of male, enlarged; lettering as before; May, 1849.
3. Amblystoma opacum Grav., male, cloaca; 1, vas deferens; 2, ureter; 3, groove from each vas deferens, which unites with its fellow at apex of peninsula (9), and is continned as a branch on each side, dividing and inclosing the process (4), and, reuniting, passes round the posterior part of the folds of membrane (5) ; 4, oval, fleshy bodies, supported on short stems equal to themselves ; 5 , a series of deep folds of membrane of each side, nearly meeting inferiorly; 6 , slight protuberance in the depression between the folds; 7, folds which arise between the bodies (4) as one, and, bifurcating, sink a way behind the folds (5); 8, a second set of folds anterior to 7.
4. Amblystoma opacum, liver from above; a, from below.
5. Heart and branchial vessels of Siren lacertina, diagrammatic; $a$, transverse section of bulbus arteriosus.

## PLATE XXII.

Chondrotus tenebrosus, skeleton of larva, from above, natural size. Fig. 1, skull from below; 2, lower jaw and hyoid arches from above. From Salem, Oregon.

## PLATE XXIII.

Chondrotus tenebrosus, larva, natural size, from below.

## PLATE XXIV.

Hyoid apparatus of Amblystomider ; Figs. 1, 2, and 3 dissected and drawn bry Dr. E. E. Galt ; the remainder by E. D. Cope.

Fig. 1. Chondrotus tenebrosus, from below; $\dagger$.
2. Chondrotus tenebrosus, larva, from above; $\times 2$.
3. Chondrotus tenebrosus, larva, from below; $\times 2$.
4. Chondrotus aterrimus, from below ; 3.
5. Chondrotus aterrimus, from above; 3.
6. Chondrotus paroticus, from below; $\frac{3}{2}$.
7. Chondrotus paroticus, from above ; $\frac{3}{2}$.
8. Chondrotus decorticatus, from below; 负:
9. Chondrotus decorticatus, from above; $\frac{3}{2}$.
10. Lingucelapsus annulatus, from below; ${ }^{1}$.
11. Lingualapsus amnulatus, from above; $\mathfrak{q}$.
12. Lingucelapsus lepturus, from above; ${ }_{1}^{2}$.
13. Lingucelapsus lepturus, from below; ?.

## PLATE XXV.

Hyoid apparatus of Amblystomidec and Hynobiider ; Figs. 1, 2, 8, and 9 dissected drawn by E. D. Cope; 3-7 by E. E. Galt, and 10, 11 from R. Wiedersheim.

Fig. 1. Chondrotus microstomus, from below; $\times 4$.
2. Chondrotus microstomus, from above; $\times 4$.
3. Chondrotus tcnebrosus, larva, side view; $\times 2$.

Fig. 4. Amblystoma punctatum, from below $; \times 2$.
5. Amblystoma punctatum, larva, siile; \%.
6. Amblystomu mucrodactylum, from below; $\times 2$.
7. Anblystoma tigrimm, from below ; $\times 2$.
8. Amblystoma epixanthum, from abore: $\times 3$.
9. Amblystoma jeffersoniamum, from aliove: $\times 3$.
10. Hynobins norines.
11. Ramidens sibiricus.

## PLATE XXVI.

Ilethodon glutinosus. skull, twice natural size.
Fig. 1. Skull, above.
2. Skull, below.
3. Skull, left side.
4. Skull with mandible, from behind.

## PLATE XXVII.

Fig. 1-4. Autollas lugubris, skull, natural size.

1. From left side, exterior.
2. From aloore.
3. From below.
4. Left side, interior.

Fig. 5-7. Manculus quadridigitatus, three times natural size.
6. Skull, from above.
7. Skull, from leelow.
5. Skull, from left side.

## PLATE XXVIII.

Fig. 1-3. Spelerpes longicaudu, skull, twice natural size, with cervical rertebræ.

1. Nkull, abowe.
$\because$ Skull, bre]ow.
2. Skull, left side.

4-6. Spelerpes bilimenta, skull, three times natural size, with three cerrical vertebere.
4. skall, above.
5. Skull, hrlow.
(i. Skull, left sirle.

## PLATE XXIX.

Spelerpes ruluer. skulls of larva aud ablult, twice natural size.
Fig. 1-3. Larva nearls matme.

1. Skull and three vertebrar, from above.
$\because$. skall and three vertebre, from below.
2. Skull and threa vertebrir, from left side.

4-6. Skull of arlult.
4. From abore.
$\therefore$ E. From helow.
6. From left sille.

## PLATE XXX.

(Copied from Parker. Spelerpes ruber, sknlls of alnlt and larva, much enlarged.)
Fig. 1-2. Spe lerpos mber, larva, yonnger than that represeuted in tho last plate (xxix).

1. Sknll, from above.
2. Sknll, from helow.

Fig. 3-5. Adult.
3. From above.
4. From belorr.
5. From right side.
6. Gyrinophilus porphyriticus, part of right side of skull of larva, showing trabecula, etc.

## PLATE XXXI.

Spelerpes ruber, viscera, $q$, drawn by S. F. Baird.
Fig. 1. Viscera, in situ, natural size; egge nearly ready for expulsion. Lettering as before. 1a. The heart removed. Vca, ascending vena cava; $A$, auricle; $V P$, vena pulnonalis; $v$, ventricle; Ba, bulbus arteriosus; cc $A$, canalis communis arteriosus.
2. Fontanelle of oriduct, near stomach.
3. Left ovary with corpus adiposum on left side.
4. Liver; a, from below.
5. Cloaca and kidney, with vasa efferentia renis and vas deferens.
6. Plethodon glutinosu8, $q$, kidneys, from below: $v$ e $k^{1}$ vasa efferentia renis stretched out of place to show their course, on left of figure.

## PLATE XXXII.

Bones of Urodela three times natural size; drawings by Prof. S. F. Baird.
Fig. 1. Scapular arch of one side of Spelerpes ruber which has just passed its metamorphosis; the branchiæ not quite oblitorated; Carlisle, Pa., June 12, 1849.
2. Humerus of the same.
3. Cubitus and manus of the same.
4. Amblystona punctatum, posterior leg of larva just changing to the adult.

## PLATE XXXIII.

Skulls of Gyrinophilus porphyriticus.
Fig. 1-3. Skull of adult, natural size.

1. From above.
2. From below.
3. From left side.

4-6. Skull of advanced larva, twice natural size.
4. From above.
5. From below.
6. From left side.

> PLATE XXXIV.
> (Copied from W. R. Parker.)

Fig. 1-4. Gyrinophilus porphyriticus, larvæ, much enlarged.
1-2. Larva less advanced than that represented in Plate XXXIII.

1. From above.
2. From below.

3-4. Larva still less advanced than that represented in figs. 1,2.
3. From above.
4. From below.

5-6. Desmognathus fusca, skull.
5. From above.
6. From belorr.

PLATE XXXV.
Hyoid apparatus of Plethodontidæ, dissected and drawn by Dr. E. E. Galt, excepting figs. 11 and 12.

Fig. 1. Plethodion oregonensis, inferior view, $\times 2$.
2. Plethodon glutinosus, inferior view, $\times 2$.
3. Autodax lugubris, inferior view, $\times 2$.
4. Batrachoseps attenuatus, inferior view, $\times 3$.
5. Hemidactylium scutatum, inferior view, $\times 3$.
6. Gyrinophilus porphyriticus, inferior view, $\times 3$.
7. Spelerpes ruber, superior view, $\times 3$.
8. Spelerpes ruber, inferior view, $\times 3$.
9. Spelerpes ruber, larva, superior view, $\times 4$.
10. Spelerpes ruber, larva, inferior view, $\times 4$.
11. Spelerpes longicaudus, inferior view.
12. Manculus quadridigitatus, inferior view.

## PLATE XXXVI.

Hyoid apparatus of Urodela.
Fig. 1. Desmognathus fusca, inferior view, $\times 3$; Dr. Galt.
2. Diemyctylus torosus, inferior view, $\times 2$; Dr. Galt.
3. Diemyctylus viridescens, superior view, $\times 2$; Dr. Galt.
4. Diemyctylus viridescens, lateral view, $\times 2$.
5. Diemyctylus palmatus, inferior view, $\times 3$.
6. Salamandrina perspicillata, inferior view, $\times 6$; from Parker.
7. Salamandrina perspicillata, larva, inferior view, $\times 6$; from Parker.
8. Hemisalamandra cristata, $\times 2$; inferior view.
9. Chioglossa lusitanica, inferior view, $\times 3$.

## PLATE XXXVII.

Fig. 1. Salamandra maculosa, skeleton, natural size.
2. Thorius pennatulus, skull, from side, $\times 4$.
3. Thorius pennatulus, skull, from above, $\times 4$.
4. Thorius penuatulus, skull, from below. $\times 4$.

## PLATE XXXVIII.

Fig. 1-4. Diemyctylus torosus, skull, much enlarged ; copied from Parker.

1. From above.
2. From below.
3. Right mandibular ramus, external vierr.
4. Right mandibular ramus, internal view.

5-9. Salamandrina perspicillata, skull; copied from Wiedersheim.
5. Skull, from above.
6. Skull, from below.
7. Skull, from left side.
8. Skull, from front.
9. Skull, from behind.

## PLATE XXXIX.

Diemyctylus viridescens, much enlarged; copied from Parker.
Fig. 1. Skull of adult, from above.
2. Right ramus of mandible, inner side.

Fig. 3. Hyoid apparatus of adult, from below.
4. Skull of larra, from above.
5. Skull of larva, from below.
6. Hyoid apparatus of larva, from above.
7. Basis cranii of very young larva.

## PLATE XL.

Crodela, viscera isolated and much enlarged. From drawing by Prof. S. F. Baird.
Fig. 1-2. Spelerpes ruber, kidney and vas deferens, $\ddagger$.

1. The tubules of the kidney displayed from above; $a$, in greater detail from below.
2. The vasa efferentia; diagrammatic.
3. Gyrinophilus porphyriticus, liver and central circulatory sssteun of a large larva.
4. Pletholon ylutinosus, \&, liver, natural size.

5-9. Diemyctylus riridescens, ち.
5,6. Reproductive organs and cloaca of male.
7. Right corpus adiposum, inferior surface, $\times 4$.
8. Testis.
9. Kiduer, ra* deferens, and vasa etterentia.

## PLATE XLI. <br> Central nervons system of Urodela, enlarged.

Fig. 1. Spelerpes ruber, from above : $a$, from below.
2. Amblystoma punctatum, $\mathfrak{f}$, brain and cranial nerves of the left side from below. The cranial nerves are umblered. $G$, Gasserian ganglion; Cu, connecting branch between trigeminns and facial nerves; $L$, part of laby rinth.
3. Diemyctylus ciridescens, brain, from above; $a$, from below; $h$, from left side;
$I^{\prime} e$, prosencephalnn; Ep, epiphysis; $T E$, thatamencephalou; $M E$, mesencephalon: EE, epencephalon; $I \Gamma$, fonrth ventricle; Hyp, hypophysis.
4. Diemyctylus riridescens, semicircular canals.

## PLATE XLII.

## Larval and loreeding stages of Salamanders.

Fig. 1. Gyrinophilus porphyriticus larva, natural size: June 3.
2. Spelerpes longicandu. larva $\times 4$ : Man ? 9.
3. Diemyctylus riridexcens, hreeling male, natural size: a iuferior side of hind leg, showing corueons nuptial excresceuces, and tips of digits.

## PLATE XLIII.

Siren lacertina, skeleton from below, tro-thirds natural size.

## PLATE XLIV.

Siren lacertina, splauchnologs; three-fifthe natural size.
For lettering see geueral explanation. The mesentery is divided so that the alimentary canal cau be extended outrard to the right side, so as to display the other organs. Thr lines TVM and Mes, on the right of it, extending from the testes to the gall-hladder represent the looders of the gap opened bs the section. The cloaca is divided, expming the months of the urethra and ureters. For heart and vessely see Plate 19. tig. is.

## PLATE XLV.

Carpus and tarsus of Rhachitomi and Urodela, natural size, excepting Fig. 1, which is one-half natural size.

Fig. 1. Carpus of Eryops megacephalus Cope, from the Permian formation of Texas.
2. Nectur'us maculatus, carpus and tarsus.
3. Cryptobranchus alleghenienxis, carpus and tarsus.
4. Amblystoma opacum, carpus and tarsus.
5. Plethodon glutinosus, carpus and tarsus.
6. Spelerpes ruber, carpus and tarsus.
7. Desmognathus fusca, tarsus.
8. Diemyctylus torosus, carpus and tarsus.
9. Diemyctylus viridescens, carpus and tarsus.

## PLate XLVI.

Carpus and tarsus of Batrachia, from drawings made by Dr. George Baur, enlarged, except Figs. 2 and 9, which are natural size.
Fig. 1. Necturus maculatus, young of, $31 \mathrm{~mm} \times 30 ; a$ earpus, $b$ tarsus.
2. Megalobatrachus japonicus, natural size; $a$ carpus, $b-c$ tarsus.
3. Cryptobranchus allegheriensis, tarsus $\frac{1}{1}$.
4. Amphiuma means, $a-b$ carpus; $c$ tarsus; $\times 50$.
5. Siren lacertina, carpus $\times 2$.
6. Onychodactylus japonicus, $a$ carpus, $b$ tarsus.
7. Geotriton fuscus, tarsus $\times 6$.
8. Hemidactylium scutatum, tarsus $\times 8$.
9. Archegosaurus decheni Vou Meser, from a specimen in the Museum of Tübingen; drawn by A. Froriep; natural size.

## PLATE XLVII.

Carpus and tarsus of European Batrachia, much enlarged. From Gegenbaur, Untersuchungeu zur Vergl. Auatomie d. Wirbelthiere. I Heft. Carpus u. tarsus.
Fig. 1-2. Proteus anguinus, carpus and tarsus; 1 carpus, 2 tarsus.
3. Sulamandra maculosa larva, carpus.
4. Salamandra macnlosa larva, tarsus.
5. Salamandra maculosa adult, carpus.
6. Salamandra maculosa adult, tarsus.
7. Molge vulyaris, carpus.
8. Molge rulgaris, tarsus.
9. Bombinator igneus, carpus.
10. Bombinator igneus, tarsus.
11. Phryniscus crucifer, carpus.
12. Rana temporaria, carpus:
13. Rana escnlenta, tarsus.

## PLATE XLVIII.

The relations of the quadrate, stapedial, aud hyoid apparatus. In Figs. 1, 3, 9, 14,15, and 16 the squamosal boue has been removed. Figures twice natural size, excepting $1,3,4,7$, aud 8 , which are natural size, and 10,11 , and 12 , which are three times natural size. From Cope in the American Journal of Morphology, 1888.
Fig. 1. Vecturus maculatus; squamosal removed.
2. Proteus unguinus.
3. Cryptobranchus allegheniensis; the middle of the squamosal removed, the extremities remaining.

Fig. 4. Amphiuma means.
5. Typhlonectes compressicaudus, from the Belize.
6. Dermophis mexicanus, with the quadrate bone turned up, exposing its inferior face, and that of the quadratojugal: $4 a$, the quadrate in uormal positiou. From Mexico.
7. Chondrotus tenebrosus larra, 250 mm .
8. Chondrotus tenebrosus, adult.
9. Amblystoma tigrinum larva; squamosal removed.
10. Amblystoma punctatum, adult.
11. Bemidactylium scutatum.
12. Batrachoseps attenuatus.
13. Gyrinophilus porphyriticus.
14. Plethodon glutinosus; squamosal remored.
15. Autodax lugubris; squamosal removed.
16. Spelerpes ruber; squamosal removed.

## PLATE XLIX.

The relations of the quadrate, stapedial, and hyoid apparatus in Urodela and Sahentia. Figures twice natural size, with separate details larger. From Cope, American Journal of Morphologr.
Fig. 1. Desmognathus nigra, the sfuamosal in place; a, stapes separate and enlarged.
2. Salamandra maculata ? the squamosal separated.
3. Diemyctylus torosus, squamosal removed; a, separate squamosal.
 the squanosal, external side; $b$, apex of ceratohyal, with hroquadrate ligament.
5. Siren lacertina $\frac{1}{f}$, squamosal in place.
6. Discoglossus pictus, partly posterior view; u, ear-houes and origin of ceratohyal, enlarged.
7. Bufo leutiginosus americunus, the squamosal remored: $a$, the squamosal separate.
8. Spea hammondii, the squamosal removed; $a$, the sinnamosal; $h$, the earbones.
9. Byla gratiosa, the squamosal removed; $a$, the squamosal; $b$, the car-bomes and cartilages in profile, the cartilages of the tympanmm divided by wrtical section ; $c$, the ear-hones and cartilages nudivided, external virw.
10. Nenopus calcaratus, partly from behind, with squamosal in place.
11. Stereocyclops incrassatus, sfuamosal in place; $a$, stapes and ear-hones and cartilages.
19. Rana pretiosa, squamosal in place: far-bones and verticall! divided cartılages.

## PLATE L.

The quadrate, hyoid, and anditory elements. From Cope, American Journal of Morphology, 1888.
Fig. 1. Ranatircscens, $\times 2 ; a$, squaunosal bone: $b$, ear-bones without epistalpedial $: \times 4$.
2. Rana rucscens, larva with hind legs, and developed fore legs concealled: the skull $\times 2$; $a$, the hyoid apparatus from below $\times 4$.
3. Rana catesbiana, adranced larva, skull, without hy̧oid elements. exenpt ceratohyal $\times 3$.
4. Trimerorhachis insignis Cope: left posterior part of skull from below, the mandible in place: natural size. From the Permian bed of Texas.

Fili. :s The same species : another individual; same vier, without suspensorinm and lower jaw.
(i. Zatrachys serratus Cope, right posterior part of skull, superior view, showing notch (Ty) for tympanic membrime; natural size; from the Permian bed of Texas.
7. The same specimen as tig. 6, from below, displaying eolumella or stapes.

## PLATE LI.

Fu; 1. Rana rirescens, hyoid apparatus of larva represented on Piate XLVII, fig. 2, right side, from below; right ceratobrauchials cut off distally; $\times 4$.
$\because$ Lana clamata, larva, jnst free from egg $\times 6$; a, the same from belor.
3. Rana clamata, same brood as 2 , three dass from egg; right gill wanting.
4. Rima cntesliana, young larva with small fore leg inelosed in branchial chamber ; $\times 2$.
万. Rana catisbiana more advanced ; fore leg partially protruded from branchial tissure ; $\times 2$.
f. Rana catesbiana, individual represented in fig. 3, Plate XLVII; fore leg fully protruded, but the branchial lissure (of right side) not closed; $\times 2$.
i. Rana catesbianu, same as tig. 4, displaying form of external branchial chamber; $\times 2$.
8. Liana catesbiana, larva of age of tig. 5, showing branchial chamber, and the pharsnx bounded by a dotted line; $\times 2$.
9. Liana rirescens, hyoid apparatus of adult, from below.
10. Rana areolata circulosa, hyoids from below, $f$.
11. Rana draytoni draytoni, hyoid apparatus from below, $\uparrow$.
12. Rana montezume, byoid apparatus from belor, t.
13. Lituna cantabrigensis, hyoid apparatus from below, $f$.
14. Hyla carolinensis, hyoid apparatus, ?
15. Lithodytes lutrans, hyoid apparatus, $\ddagger$.
16. Spea multiplicata, hyoid apparatus from below, Ł.
17. Spea hammondii bombifrons, hyoid apparatus from below, $\ddagger$.
18. spea hammondii hummondii, hyoil appuratus from below, $\uparrow$.
19. Chondrotns texanns, hyoid of young just after absorption of branchix, $\times 4$.
20. Typhlonectes compressicaudus, hyoids, $\frac{1}{1}$.
21. Dermophis mexicanus, hyoids, $\dagger$.

## PLATE LII.

## Viscera of Batrachia.

Fini. 1. Necturus lateralis.
2. Amblystoma mexicanmm, larva (Siredon).
3. C'ryptobranchus alleyhenicmsis.
4. Amphinma means.

Lettering: $P^{\prime}$, pancreas; oe, u'sophagns; $I$ ' $火$, portal vein ; pyl, pslorus; $g$, gall-bladder; dc, ductus choledochus.

## PLATE LIII.

## Visceral of Batrachia.

Flu. 1. Siphonops annulatus; c, urinary bladder.
-. Salamandra macnlosa.
3. Pipa americana; py, pyloric constriction.

1. Aemopus capensis; de, ductus choledochus: py, pslorus; cr, cæco-rectal constriction.
2. Bufo sp.

# PLATE LIV. <br> Digestive apparatus of Salientia 

Fig. 1. Pelobates fuscus.
2. Pseudis paradoxa, larva.
3. Pleurodema bibroni; py, pylorus.
4. Ceratophrys dorsata.
5. Leptcdactylus typhonius.
6. Engystoma microps.

PLATE LV.<br>Viscera of Salientia.

Fig. 1. Bufo melanostictus.
2. Hyla corulea.
3. Phyllomedusa bicolor.
4. Hemisus guineënse.
5. Breviceps gibbosus.
7. Rana catesbiana.

## PLATE LVI.

Brains of Batrachia, chietly Salientia, natural size or enlarged two diameters.
Fig. 1. Necturus maculatus, right ventricle exposed ; $a$, roof of mesencephalon removed; $b$, floor of mesencephalon enlarged.
2. Hemisalamandra cristata, from above; a, sagittal section of mesencephalon; $b$, prosencephalon, right ventricle exposed; c, floor of mesencephalon, showing commissure $c^{\prime}$ and cerebellum, epe, and fourth ventricle, iv; $d$, commissure from behind; p.c., plexus choroildeus.
3. Siphonops annulatus (Mus. Berolin.), from above; a, sagittal section, the posterior part of the hemisphere cut off obliquely; $b$, hemispheres spread apart, displaying thalameucephalon and mesencephalon; c, prosencephalon, left veutricle exposed; $d$, thalamencephalon with epiphysis, from above; $e$, mesencephalon, epencephalon, and fourth ventricle; $f$; fourth veutricle on removal of cerebellum. Lettering: pr, prosencephalon; me, mesencephalon ; te, thalamencephalon; ee, epencephalon; hy, hypophysis; $e p$, epiphysis; iv, fourth ventricle.
4. Bufo viridis, from above, left ventricle exposed; a, sagittal section; p.c., plexus choroideus.
5. Epidalea calamita, with plesus choroïdeus.
6. Alytes obstetricans.
7. Pelobates fuscus.
8. Pleurodema bibroni.
y. Leptodactylus caliginosus.
10. Phrynomantis bifasciatus.
11. Breviceps mossambicus.
12. Rhinoderma darwinii.
13. Atelopus varius; a, roof of mesencephalon removed, showing floor ; b, prosencephalon, left ventricle exposed.
14. Diplopelma ornatum.
15. Hylambates maculatus.
16. Rana erythraea.
17. Rana esculenta, from above, with plexns choroïdeus remored (p. c.); a, right hemisphere removed, left ventricle exposed, and mesencephalon exposed; $b$, left reutricle.
18. Xenopus capensis; $a$, right ventricle and thalamencephalon exposed ; p.c., choroid plexus and artery.

## PLATE LVII.

Viscera of Salieutia with the digestive organs removed. There remain the urogenital, the respiratore, and the central circulatory systems.
Fig. 1. Bufo lentiginosus americanus, $\delta$.
2. Scaphiopus holbrookii, д.
3. Rana palustris, $\circ$; orary of the right side removed, so as to display the kidney and oviduct. The greater part of the left lung is also cut off, in order to display the fontanelle of the left oviduct.

## PLATE LVIII.

Bufo lentiginosus americanus, skeleton, natural size, from above.

## PLATE LIX.

Bufo lentiginosus americanus, skeleton, natural size, from below.

## PLATE LX.

Bufo pantherinus, natura. size, from below.
PLATE LXI.
Xenopus capensis, natural size, from below.
PLATE LXII.
Ceratophrys ornatus, natural size, from below.

## PLATE LXIII.

Fig. 1. Breviceps gibbosus, natural size, from below.
2. Pelobates fuscu8, natural size, from below.

PLATE LXIV.
Fig. 1. Hyla versicolor, natural size, from above.
2. Hyla versicolor natural size, from below.

PLATE LXV.
Callula pulchra, natural size, from below.

## PLATE LXVI.

Rana catesbiana, natural size, from above.
PLATE LXVII.
Runa catesbiana, natural size, from below.
PLATE LXVIII.
Details of osteology of Salientia, including Discoglossid(e, Asterophrydidce, Pelodytidce, and Scaphiopide.
Fig. 1. Spea hammondii hammondii, cranium from above, and a sternum of subspecies bombifrons.
2. Scaphiopus couchii, sternum.
3. Scaphiopus holbrookii, skull and sternum (a).
4. Didocus calcaratus, skull.
5. Pelobates fuscus, sternum of large tadpole.

Fig. 6. Pelobotes fuscus, front of skull.
7. Cultripes provincialis, skull; from Dugès.
8. Didocus calcaratus, sternum.
9. Megalophrys montanus, front of skull.
10. Leptobrachium hasseltii, skull.
11. Pelodytes punctatus, top of skull.
12. Xenophrys monticola, front of skull.
13. Bombinator igneus, skull; from Parker.
14. Alytes obstetricans, skuil; from Parker.
15. Discoglossus pictus, adult ; vertebral column and skull from above; sternum from below.
16. Discoglossus pictus, skull of a younger animal from above.

## PLATE LXIX.

Including Pipida, Tenopida, Bufonida, and Rhinophrynida.
Fig. 1. Pipa americana, frontoparietal and nasal bones; a, sternum, from Boulenger.
2. Fenopus capensis, axial part of skull from above; e, ethmoid bone; 08, orbitosphenoid; $n$ nasal.
3. Myobatrachus gouldi, front of skull from above, with and without prefrontals.
4. Pseudophryne australis, skull from above; a, sternum.
5. Epidalea calamita, sknll from above.
6. Bufo margaritifer, subsp. nasicus, skull from below, the vomers removed, showing palatines; $a$, anterior half of skull from above, part of frontoparietal bone of one side removed to show superior plate of ethmoid.
7. Bufo spinulosus (Peru), young animal, with and without prefrontals.
8. Bufo spinulosus, adult.
9. Bufo lentiginosus americanus.
10. Bufo delalandi (Mus., Paris).
11. Bufo pantherinus; frontoparietal bone removed on both sides displaying ethmoid.
12. Bufo carens.
13. Bufo coeruleostictus; $a$, sternum.
14. Peltaphryne peltacephala, head.
15. Otaspis empusa, head.
16. Rhinophrynus dorsalis, front of skull from above.

PLATE LXX.
Cystignathida.
Fig. 1. Pseudis limellum, skull from above.
2. Pseudis mantidactyla, superior axis of skull.
3. Pseudis paradoxa, superior axis of skull.
4. Cyclorhamphus fuliginosus; skull, separate ethmoid bone, and sternum.
5. Mixophyes fasciolatus, cranium from above.
6. Stombus americanus, superior axis of skull.
7. Ceratophrys ornatus, young ; superior axis of skull.
8. Stombus boiei, skull with crests from above; $a$, do., axis only; diagrammatic.
9. Ceretophrys dorsata, anterior extremity of ethmoid.
10. Chiroleptes australis, part of skull of individual not fully mature; a, perfect sternum.
11. Grypiscus umbrinus, $a$, skull; $b$, sternum, and $c$, sacrum with urostyle.
12. Calyptocephalus gayi, head from above.
13. Limnomedusa macroglossa, skull and ethmoid; the former showing thin ossification along the sagittal suture.
14. Cophous marmoratus, with separate ethmoid.

Fig. 15. Borborocotes tasmaniensis, cranium.
16. Borborocates peronii, two skulls.
17. Helioporus albipunctatus, skull.
18. Helioporus albipunctatus, sternum.

PLATE LXXI.<br>Cystignathide-Continued.

19. Hyperolia marmorata, part of cranium, and separate ethmoid.
20. Hyperolia marmorata, sternum.
21. Paludicola brachyops, cranium.
22. Lithodytes latrans, cranium ; a, sternum.
23. Rhyncholistris roseus, with and without prefrontal bones.
24. Eusophus nodosus.
25. Bylorhina cenea.
26. Crinia georgiana, skull and ethmoid.
27. Alsodes monticola, frontoparietal bones and sacrum of type specimen.
28. Pleurodema bibroni, skull part.
29. Liuperus marmoratus, skull part.
30. Bubonias plicifrons, skull.
31. Bubonias plicifrons, sternum.
32. Elosia bufonia, with separate ethnoid.
33. Elosia nasus.
34. Syrrhophus marnockii.
35. Crossodactylus gaudichaudii.
36. Hylodes lentus.
37. Hylodes oxyrhynchus.
38. Hylodes martinicensis.
39. Leptodactylus caliginosus $\uparrow$
40. Leptodactylus ?
41. Cystignathus ocellata.
42. Ungual phalanges of Cystignathidx. Nos. 5, 6, Hylodes; 23, 24, Cystignathi.

## PLATE LXXII.

## Hylida.

Fig. 1. Thoropa missiessii, top of front of skull.
2. Chorophilus ornatus, top of skull. Fig. $a$, premaxillary bone; $b$, maxillary; $c$, prefrontal ; $d$, ethmoid ; $f$, squamosal ; $g$, exoccipital ; $h$, foramen magnum.
3. Hypsiboas xerophyllum, front of top of skull.
4. Hypsiboas crepitans, front of top of skull.
5. Hypsiboas albomarginatus, front of top of skull ; $a$, a thin ossification of basal membrane.
6. Hypsiboas punctatus, front of top of skull.
7. Cincloscopus maximus, front of top of skull.
8. Hyla lencomelas, frout of top of skull.
9. Hylu? sp., front of top of skull.
10. Hyla gratiosa; a, sternum, front of top of skull.
11. Hyla americana (Litoria), front of top of skull.
12. Hyla freycineti, front of top of skull.
13. Hyla hyposticta, front of top of skull.
14. Hyla dimolops, frout of top of skull.
15. Hyla aurea (Ranoidea), front of top of skull.
16. Smilisca baudinii, front of top of skull, with ungual pbalanges.

Fig. 17. Agalychnis moreletii, frout of top of skull.
18. Phyllomedusa bicolor, front of top of sknll; a, sternum.
19. Hyla carolinensis, skull from above ; $a$, steruum.
20. Scytopis renulosur, front of top of skull ; 1, ethmoid bone; a, another specimen, showing inequalities of surface and posterior outline of ethmoid bone.

## PLATE LXXIII.

## Hylide, Hemiphractida, Cystignathida, and Pelobatida.

21. Osteocephalus planiceps, skull from above.
22. Hypsiboas crepitans, roof of mouth.
23. Trachycephalus geographicus, skull from above; from Steindachner.
24. Triprion petasatus, head, side view.
25. Triprion petasatus, head, from above.
26. Triprion petasatus, interior of mouth.
27. Cincloscopus maximus, right manus; $u$ and $r$, ulna and radius; $u$ and $r$, ulnar aud radial carpals; c, central, 1-2-3-4-5 distal carpals, 4 aud 5 , conflueut; 1-5 metacarpals; I supportiug a spinons pollex.
28. Acris gryllus, right manus, four times natural size.
29. Hylidar, distal phalauges; No. 7, Trachycephalus marnoratus auterior and posterior ; 8, Hyla carolinensis, do.; 9, Scytopis venulosu8, do. ; 10, Hypsiboas albonıarginatus, do.; 11, Cincloscopus maximus, do., posterior attached to penultimate phalange; 12, Hyla aurea, do ; 13, Phyllomedusa bicolor, do.; 14, same, the external ungnes of both pedes.
30. Hemiphractus scutatus, head from above, from Boulenger.
31. Scaphiopus holbrookii, right manus; lettering as in Fig. 28.
32. Mixophyes fasciolatis, right manus, lacking the phalanges; letters as in Fig. 28.
33. Leptodactylus pentadactylus, left manus, the male showing process of second metacarpal, which is wanting in the female ( $\%$ ); lettering as in Fig. 28.

## PLATE LXXIV.

Embracing Hemisida, Brevicipitider, Engystomidar, Phryniscidre, and Dendrohatida.
Fig. 1. Hemisus guttatum, skull, from above.
1a. Hemisus guttatun, skull, from left side, exhibiting the snprascapulo-prö̈tic articulatiou, and the small freely-moving suspensorium.
2. Henirus guttatum, sternum; from Bouleuger.
3. Breviceps gibbosus; a, auterior part of top of skull from above; $b$, end of muzzle from frout, displaying lateral premaxillaries between the premaxillaries, the maxillaries, and the uares; $c$, vertebral column, less the first and the sacrum, from below; $d$, last lumbar vertebra, anterior extrenity from left side; $e$, last lumbar vertebra, auterior extremity, from frout.
4. Phrynomantis bifasciatus, front of top of skull.
5. Phrynomantis bifasciatns, symphysis mandibuli, from above.
6. Phrynomantis lifasciatus, from front.
7. Microhyla achatina, top of front, and anterior end of frontoparietal, showiug dotted outline of ethmoid.
8. Callula balteata, top of front, from above.
9. Engystoma microps, top of front, from above.
10. Cacopus systoma, top of front, from above, with profile of prefrontal bones.
11. Diplopelma ornatum, top of front, one-half the frontoparietal removed to show the ethmoid.
12. Diplopelna ornatum, sjmphysis mandibuli.
13. Engystomidae (uame mislaid).
14. Hypopachus rariolosus, top of skull; $a$, sternum.
15. Stereocyclops incrassatus, top of skull, $a$, sternum.

Fig. 16. Atelopus flavescens, top of front and ethmoid.
17. Atelopus ? sp., top of front, ethmoid, and profile of prefrontal bone.
18. Phryniscus varius, top of front, with profile of prefrontal bone.
19. Phryniscus ? lavis, top of front, ethmoid, and profile of prefrontal bone.
20. Rhinoderma daruini, top of front and profile of prefrontal bone.
21. Dendrobates tinctorius, top of front and anterior extremity of parasphenoid bone.
22. Ungual phalanges of-No. 15, Dendrobates tinctoriu8; 16-17, Atelopus flavescens; 18, Callula picta; 22, Callula balteata.
23. Cacopus systoma, sternum, from Boulenger.
24. Dyscophus antongilii, sternum, from Boulenger.

## PLATE LXXV.

## Ranida.

Fig. 1. Phyllobates licolor, part of skull.
2. Prostherapis brunneus, skull and sternum.
3. Hylambutes murmoratus, front of skull, above.
4. Cassina seneyalensis, front of skull, above; with the anterior extremity of the froutoparietal bones of an older individual.
5. Hyperolius madagascaricnsis, front of skull, above.
6. Cormujer dorsalis, front of top of skull and ethmoid.
7. P'hrynohatrachus nutalensis, front of top of skull.
6. Stuurois natutor, front of top of sknll.
9. Ranula chrysoprasina, front of top of skull ; $a$, sternum of do.
10. Ranu jungluhnii, trout of top of skull.
11. Rana maluiberica, front of top of skull.
12. Rana erythrea, front of top of skull; young.
13. Rana erythrea, front of top of skull; medium.
14. Rana erythreea, front of top of skull: large.
15. Ranct mascariensis, frout of top of skull.
16. Ruma fasciuta, front of top of skull.
17. Rama oxyrhyncha, front of top of skull.
18. Rana breficep. front of top of skull; one a superior, the other an anterosuperior view.
a9. Rana clamatu, finnt of top oî skull.
20. Ricua nifilis, top of head from front: adult.
21. Ruma "uilis, tol of head from front: soung.

E2. Rana cy, (hophlyctis, top of head from front; ronng.
23. Remu tigrina, top of head from front: roung.
24. Rima tigrinn, top of lieal from front; adult, the anterior part of the frontopirtictals removed, showing the form of the ethmoid and the cartilage of its superior face, the accompanying figure representing the ethwoid with the cartilage removed.
此. Riunu lexchemanliti, young: front of top of skull.
2ti. Rann occipitalix. front of top of skull.
e7. L'ann hexadlacty'a, front of top of skall.
2\%. liuna fuxciquln, tront of top of sknll.
*3. Lihacophornx reimrardit, front of top of skull.
30. Chiromentio rerumpelina, frout of top of skull.
31. Polypedates macuiatus, top of head.

3:. Oryglossus limu, top of frout of sknll.
33. Cugual phalanges of Ravide. Fig. 1, Rana crythraa, posterior foot; 2, Polyperdutes maculatux, anterior foot; 3, clo., anterior and posterior feet; 4, lihacophorus reintardtii, anterior aml posterior feet; 19, Rana malabarica, both feet: 20, is temporaria, both feet $21, R$. clamata, both feet; $22, R$. fuscigula. bottit tiot.
1951—Bull. 31 - 33

## PLATE LXXVI.

Hyoid apparatus of Anura, mostly eularged. Figures copied from Parker's Structure and Development of the Skull in the Batrachia, except Fig. 18 which is is original, and Figs. 2, 3, 5, 6, and 7, which are from Duges Osteologie et Myologie des Batraciens, corrected by comparison with Parker l. c.

Fig. 1. Xenopus capeusis, S. Africa.
2. Bombinator igneus, Enrope.
3. Alytes obstetricans, Europe.
4. Xenophrys monticola, India.
5. Pelobates fuscis, Europe.
6. Pelodytes punctatus, Europe.
7. Bufo vulgaris, Europe.
8. Phyllomedusa bicolor, S. America.
9. Hyla ewingii, Australia.
10. Cophaus marmoratus, S. America.
11. Cystignathus typhonius, S. America.
12. Atelopus varius, Costa Rica.
13. Callula pulchra, Farther India.
14. Engystoma carolinense, N. America.
15. Dendrobates tinctorius, S. America.
16. Rhacophorus maximus, India.
17. Rana esculenta, Europe.
18. Hemisus guttatus, Natal.

## PLATE LXXVII.

Superficial and deep muscles of the manus and pes of three species of Anuras.
Figs. 1, 2. Leptodactylus pentadactylus, manus, male.
3, 4. Leptodactylus pentadactylus, manus, female.
5,6,7. Scytopis venulosus, pes.
欠, 9, 10, 11. Rana esculenta, pes.
The lettering in Figs. 1-4 is identical with that used in Duges Osteologie et Myologie des Batraciens.
No. 87, Cubito-metacarpal; 88, subluno-metacarpal of the index: 89, metacarpometacarpal of the index; 95 , humero-subdigital; 96 , cubito-radio-subphalangeal of the index; 120 , subluno-phalangettal of the index ; 121 , sub-wetacarpo-phalaugo-phalangettal of the index. In Figs. 5 and 8 are displayed the superficial flexors of the digits. In $6,7,9,10$ and 11 , the deeper muscles of the phalanges aud metatarsals are exbibited in the numbers from 7 to 21 . Nos. 13 and 22 are the second and third intermetatarsals of Dugés.

## PLATE LXXVIII.

Embryology of Hyla pickeringii Holbr., and Hyla \& versicolor Lec.; from drawings by Prot. S. F. Baird.

Figs. 1-19. Hyla picheringii.

1. Egg with germinal vesicle; tirst day after layiug, May 15, 9 a. m. Figure a natural size.
2. The same, May 16, 9 a. m. ; from above.
3. The same, May 16, 9 a. m.; from below, showing germinal area.
4. The same in profile.
5. First appearance of embryo in egg laid about the evening of May 14.

Figs. 1-19. Hyla picheringii-Coutinued.
6. Side riew of the same.
7. A more advanced embryo.
8. Side view of the same.
9. Embryo still farther advanced, May 16, 4 p. m. Fig. $a$, side view of the same.
10. Vitellus of elongate form, with brown polygonal spots arranging themselves in meridians, May $16,4 \mathrm{p} . \mathrm{m}$. Laid about $10 \mathrm{a} . \mathrm{m}$., May 15.
11. Embryo on May 17, 10 a. nı.; rotation commenced ; Fig. a, profile.
12. Embryo May 17, 11 a. m. ; a, profile.
13. Embryo May 17, 4 p. m., straightened out.
14. Embryo May 17, 4 p. m., profile.
15. Embryo May 17, 5 p. m., profile enlarged, displayıng ciliary movements.
16. The same; head from front.
17. May 18,9 a. m., liberated artificially and swimming.
18. The same; front and below.
19. May $18,3.30 \mathrm{p} . \mathrm{m}$.
20. Tadpole, anterior part.
21. Eye of same in profile.
22. Brain and spinal cord of tadpole.

23-26. Hyla : versicolor.
23. Embryo in albumen, April 9.
24. Embryo just before liberation.
25. Embryo just after liberation; branchial circulation distinct.
26. Head of the same from below; diagram.

PLATE LXXIX.
Development of the three anterior inferior cranial arches of the genus Rana; mach eularged. From W. K. Parker.

The arches are: the trabecular (in dotted outline), the mandibular, and the ceratohyal. The successive stages of the ossicula auditus are exhibited also. For explauations of details, see Plates XLVIII to L.

PLATE LXXX (cancelled).
PLATE LXXXI (caucelled).
PLATE LXXXII (cancelled).

## PLATE LXXXIII.

Fig. 1. Hyla andersonii Baird; natural size.
2. Hyla gratiosa Le Conte; natural size.
3. Do.; mouth, within.
4. Do. ; hand.
5. Do. ; foot.

PLATE LXXXIV (cancelled).
PLATE LXXXV (cancelled).
PLATE LXXXVI.
Rana septentrionalis Baird, var. sinuata Baird; natural size.



1.

2.

4.

5.

9.

6.




Cryptobranchus allegheniensis.




1.

2.

5.



Siren, Proteus, and Amphiuma.




AMPHIUMA MEANS.


反.


AMBLYSTOMA PUNCTATUM.
-



1




AMBLYSTOMA PUNCTATUM.

1.

2.

3.

4.

5.

0.
(2)




Chondrotus tenebrosus.



Chondrotus tenebrosus.

2.

10.

11.

| - |
| :--- |



Hyoid Arches of Amblystomide and Hynobilde.

3.

1.

2.


Plethodon glutinosus.

3.

2.




##  <br> 3.


6.

4.

5.
(1)


1.


2

6.

4.

6.
年








4.







33.


$1 a$.


$4 a$.


Hyp

$3 a$.

Brains of Urodela.

3.




Sisen lacertina.

6.

9.

7.



URODELA AND GANOCEPHALA.



Proteida and Urodela.

```
1
```



2.







Proteida and Urodela.


Urodela and Salientia.



Salientian.




Bufo lentiginosus americanus.



Xenopus.

## 1 1


(


1. Breviceps gibbosus. 2. Pelobates fuscus.


Hyla versicolor.






Bulletin 34, U. S. National Museum.-Cope. Batrachia of North America.


N20
i


134


14



15

Plate lXiX.

:

$\frac{82}{8}$


9


10


11

BUFONIDA, ETC.


$8 a$


$10 a$


11


14



18


15


16


5


CYSTIGNATHIDE.
(


隹
26


30

2

20
coses $\underbrace{\infty}_{32}$

24



37


36



41



38


40

Cystignathide.


1


3


11
16

$10 a$


8


12


15




17

Hylide.


25


28


29


23


32


30


Hylide and Carpus.











13


12




14


15


18


16


20


22


31

य $\begin{array}{llll}2 & \pi & \pi & \pi \\ \pi & \pi & \pi\end{array}$ $\prod_{19} \int_{0}$


33


$3:$


30

Ranide.

6.




12.





Embryology of Hyla.



,


1. HYLA ANDERSONII BAIRD.

$$
x
$$



## IN D EX.

Amphiuma........................................ 215
means ..... 216, 455
oateology of ..... 456
aplanchnology of ..... 455
roice of ..... 456
Amphiumida ..... $33,213,451$
Amphiumoide ..... 30
Amphodus ..... 38:
Anaides ..... 18:
Anaxyrus ..... 260
Andersonii (Hyla) ..... 365
Angulatus (Chorophilus) ..... 348
Annulatum (Amblystoma) ..... 115
Annulatus (Linguælapsu8) ..... 115
Anomalus ( Bnfo ) ..... 272
Ansonia ..... 261
Anura ..... 232
Apoda ..... 30, 33, 222
Aquatica (Rana) ..... 307, 424
Arborea, viridis ( H yla) ..... 366
Arcifera ..... 203
Arenicolor (Hyla) ..... 369
Areolata (Rana) ..... 409, 410
Argus (Amblystoma) ..... 56
Artbroleptis ..... 392, 393
Arvalis (Rana) ..... 438
Astezophrydidæ ..... $248,255,295$
genera of ..... 295
Asterophrss ..... 295
Atelopus ..... 387
Aterrimum (Amblystoma) ..... 109
Aterrinus (Chondrotus) ..... 109
Attenuata (Salamandrina) ..... 127
Attenuatus (Batrachoseps) ..... 127
Auletris ..... 349
Auriculata (Salamandra) ..... 194
Auriculatum (Cylindrosoma) ..... 194
Auriculatus (Desmognathus) ..... 194
Aurora (Rana) ..... 439
Antodar ..... 121, 124, 182
ferreus ..... 183, 185
iëcanus. ..... 183, 187
lugubris ..... 183
species of ..... 183
Axolotes ..... 47
dyltcs ..... 239, 2:8
Batrachia ..... 7
affinities of ..... 13
classiffcation of ..... 13
Page.
Batrachia, explanation of terms of ..... 16
general anatouny of ..... 7
characters of. ..... 7
larval characters of ..... 12
nomenclatnre and history of. ..... 16
of North America, number andspecies of451
phylogeny of ..... 14
Batrachophrynus ..... 295
Batrachopsis ..... 295
Batrachoseps ..... 121, 124, 125
attenuatus ..... 126, 127
caudatus ..... 126
nigriventris ..... 126, 129
pacificus ..... 126, 129
species of ..... 126
Batrachyla ..... 460
Batrachyperus. ..... 119
Baudinii (Hyla) ..... 379
(Smilisca) ..... 379
Beecheyi (Salamandra) ..... 204
Beldingii (Bufo) ..... 262
Berlandieri (Fana) ..... 398, 403
Bicolor (A mblystoma) ..... 66
Bilineata (Bolitoglossa) ..... 164
(Rana) ..... 366
(Salamandra) ..... 162
Bilineatus (Spelerpes) ..... 163
Boans (Rana) ..... 424
Bolitoglossa. ..... 161
Bolitoglossidæ ..... 119
Bombifrons (Scaphiopns) ..... 303, 306
(Spea) ..... 306
Bombinator ..... 258
Bombinatoridæ ..... 309
Borborocætea ..... 312
Boress (Bufo) ..... 267
Boylii (Rana) ..... 444
Brachycephalus. ..... 387
Breviceps ..... 384
Brevicipitidæ ..... 383, 384
Bubonias. ..... 313
Bufo ..... 252, 260, 457
aduncus ..... 457
alvarius ..... 235, 261, 265
americanns ..... 235
chilensis ..... 235
coccifer. ..... 235
cognatus .235, 261, 275
oolumbiensis ..... 235, 261, 267
columbiensis ..... 269
hslophilns ..... 269
varieties of ..... 269
compactilis 235, 261, 272
coniterus ..... 235
debilis. ..... 261, 264
diptychus ..... 235
gracilis ..... 235
hænıtiticus ..... 235
hemiophrys ..... 261, 273
insidior ..... 235
intermedius ..... 235
kelaartii ..... 235
lentiginosns ..... 235, 261, 277
americanus ..... 278, 284


Page.
确78
..... 335
pantherinus ..... 235
quercicus ..... 91
valliceps ..... 457235
Bufonidæ382
Cacopus ..... 38C.eciliidæ222Ca. forniense (Amblrstoma)68Call384, 385
Calluiops ..... 85Calyptocephalus311Cantabrigensis (Rana)435, 436
Carolo (土 artrstor
Carolinense (Engsstoma) ..... 38
306(Hyla)Catesbiana (Rana)424
(Rachoseps) ..... 1211
Ceratobatrachidæ ..... 384
Ceratobyla ..... 382Chaunus260
Chilona (Buß̃) .....
Chioglossa ..... 00Chiroleptes312
Chiromantis ..... 392, 393
Chondrotus ..... 1, 47, 989999, 107
microstomus105
tenebrosus99, 104
Chorophilusferiarum332, 339rerrucosus459ocularis332, 348
ornatus ..... 332, 333
Chorophilus, species of ....................... $\quad 33$ triseriatus.................. 321, 332, 342
Curysodonta ..... 215
Cincloscopus ..... 322, 323
Cinerea (Calamita) ..... 366
(Salamandra) ..... 133
Cinereus (Plethodon) ..... 133
Cin_ulatum (Amblystoma) ..... 100
Cingulatus (Chrondrotus) ..... 100
Cireulosa (Rana areolata) ..... 413
Cirrigera (Salamandra) ..... 164
Clamata (Rand) ..... 419
Clamitaus (Rana) ..... 419
Clarkii (Helocætes) ..... 342
Clinotarsus ..... 393
Cociliidx ..... 33
Coguatus (Bufo) ..... 275
Colostethidæ ..... 248, 383, 384, 390
Colostethus ..... 390
Columbiensis (Bufo) ..... 267
Compactilis (Bufo) ..... 272
Conspersa (Rana) ..... 424
Couspersum (Aublystoma) ..... 61
r"pea ..... 387
Copranum (Amblystoma) ..... 63
Copei (Bufo) ..... 284
Copheus. ..... 312
Cophomantis ..... 349
Cophyla ..... 390
Cophylidæ ..... 248, 383, 384, 390
Copii (Chorophilns) ..... 335
(Hyla) ..... 369
Cornufer ..... 392, 393
Couchii (Scaphiopus) ..... 301
Cranophryne ..... 260
Crassulus (Plethodon) ..... 147
Crepidophryne ..... 260
Crepitang (Acris) ..... 326
Crinia ..... 312
Croceater (Ylethodon) ..... 150
Crucifer (Eyla) ..... 352
Crueuta (Rana) ..... 431
Cryptoloranchidæ ..... 33, 36, 451
Cryptobranchus ..... 37
Cryptobranchus allegheniensis ..... 38
fuscus ..... 43
Crrptotis ..... 295
Cultripes ..... 297
Cunens ( H ypopachus) ..... 387
Crelorhamphns ..... 311
Crliudracea (Salamandra) ..... 139
Crlindrosoma ..... 161
Crnops ..... 202
Cystignathidæ....248, 249, 255, 309, 390, 394, 451, 460
table of genera ..... 311
Csstignathus ..... 250, $32+$
Danliuia (Smiliscu) ..... 379
Debilis (Bufo) ..... 264
Decorticatum (Amblystoma) ..... 107
Decorticatus (Chondrotus) ..... 107
Dendrobates ..... 389
Dendrobatida $248,249,383,384,389,394$
Denilrohsas ..... 349
Dendrophrrniscidæ ..... 248, 249, 255, 295
genera of ..... 295
Desmiostoma
Page. ..... 47
Desmodactylus ..... $130,19 n$
Desmognathidæ ..... 33, 190, 451
Desmognathus fusca ..... 191, 194
auriculata ..... 193
fusca ..... 195
nigra ..... 191, 198
oohrophæa ..... 191
species of. ..... 191
varieties of ..... 195
Diaglena ..... 322, 323
Dialopha (Chilophrsne) ..... 291
Dicamptodon ..... 47, 118
ensatus ..... 118
Dicroglossus ..... 393
Didactyla (Anubiuma) ..... 216
Didact:lum (Sirenoides) ..... 216
Didocus ..... 297
Dlëmyctylus ..... 201, 202
species of ..... 203
torosas ..... 203, 204
riridescens. ..... 203, 207
meridionalis ..... 211
miniatus ..... 207
viridescens ..... 207
Dipternus (Bufo) ..... 275
Dipus (Phanerobranchns) ..... 226
Discoglossidæ ..... 248, 255, 256, 309
Discoglossus ..... 258
Dorsalis (Rana) ..... 324, 329
(Salamaudra) ..... 207
(Triton) ..... 207
Draytonil (Rana) ..... 441
Dromoplectrus ..... 261
Dugesil (Scaphiopus) ..... 303, 305
Dybowskii (Rana) ..... 431
Dyscophidæ ..... 248, 249, 390
Dyscophus ..... 390
Edalorhina. ..... 313
Embolomeri ..... 13
Engy'stoma ..... 385
carolinense ..... 385
Engystomidæ ..... 451
Enhydrobius ..... 313
Eusatus (Dicamptodon) ..... 118
(Plethodon) ..... 148
(Triton, ..... 118
Epidalea ..... 258, 260
Epirhexis ..... 313
Episcopum (Amblystoma) ..... 68
Epixanthum (dmblystoma) ..... 97
Ermani (Triton) ..... 204
Erythronuta (Salamandra) ..... 133
Erythronotum (Amblystoma) ..... 133
Ersthronotus (Plethodon) ..... 133
Eschscholtzii (Ensatiua) ..... 148
Eupeulphix ..... 259, 260
Euphorbiacea (Hyla) ..... 361
Euproctus ..... 202
Eurrcea ..... 37
Eusophus ..... 312
Eximia (Hyla) ..... 361
Fasclata (Salamandra) ..... 54
Fasciatan (Ambl; stonia) ..... 54, 68
Femorale (La Raine) ..... 371


INDEX.
Hypopachus variolosus ..... 388
Hypsiboas ..... 322, 323
albomarginata ..... 321
boans ..... 321
Iëcanus (Analdes) ..... 187
(Autodax) ..... 187
(Plethodon) ..... 187
Ingens (Amblystoma) ..... 68
(Heterotriton) ..... 68
(Salamandra) ..... 68
(Triton) ..... 68
Insidior (Bufo) ..... 264
Intermedia (Siren) ..... 226
Intermedius (Plethodon)
Intermixta (Salamandra)89
(A) ..... 89
(Xiphonura) ..... 68, 89
Jeffersonianum (Amblystoma) ..... 89, 92
Lacepedii (Menobranchus) ..... 23
(Phanerobranchns) ..... 23
Lacertina (Siren) ..... 226
Lævis (Taricha) ..... 204
(Triton) ..... 204
Larvæformis (Cbrysodonta) ..... 216
Laterale (Amblystoma) ..... 92
Lateralis (Hyla) ..... 366
(Menobranchns) ..... 23
(Necturus) ..... 23
(Triton) ..... 23
Laticeps (Hyla) ..... 359
Latiremis (Rana) ..... 435
Latonia ..... 258
Latrans (Lithodytes) ..... 316
Lecontei (Rana) ..... 441
Lentiginosa (Chilophryne) ..... 289
Lentiginosus (Bafo) ..... 289
Leptobrachium ..... 296
Leptodactylus ..... 313
mystacinus ..... 289
239
Leptopells250
Lepturum (Anblystoma) ..... 116
Lepturus (Linguælapsus) ..... 116
Levifrons (Bufo) ..... 272
Lichenoides (Siredon) ..... 68
Limnocharis ..... 313
Limpodytea ..... 393
Limnomeduas. ..... 312
Lindynaates ..... 312
Lingnælapsus ..... 47, 114
annulatns ..... 115115, 116
Liopelma ..... 258
Lithodytes ..... 313, 315
latrans ..... 315, 316
315, 318
Litoria ..... 349
Liuperus ..... 313
Longicauda (Cylindrosoma) ..... 168(Salamandra).Longicaudatum (Cylindrosoma)168
Longicaudus (Spelerpes) ..... 168168
Longipea (Epirhexis)
(Rana) ..... 44
Lophopus ..... 349
Lucifaga (Spelerpes) ..... 168
Lugubris (Analdea) ..... 183
(Antodax) ..... 183
(Salamandra) ..... 183
(Taricha?) ..... 183
Larida (Amblystoma) ..... 68
(Salamandra) ..... 68
Lyaapeus ..... 311
Macrodactylnm (A mblystoma) ..... 95
Maculata (Camarataxis) ..... 88
(Lacerta) ..... 36
(Salamandra) ..... 172
Maculatum (Amblyatoma) ..... 68
(Desmioatoma) ..... 68
Maculatus (Hylodes) ..... 342
(Necturua) ..... 23
(Protens) ..... 23
Maculosus (Necturus) ..... $\because 3$
Malachylodes ..... 313
Maltzania ..... 383
Manculus 121, 124, 125, 158
quadridigitatus ..... 159
Mantella ..... 389
Mantipus ..... 390
Marginatus (Pseudotriton) ..... 152
(Spelerpes) ..... 152
(Stereochilas) ..... 152
Marnochii (Syrrlophus) ..... 318
Mavortia (Amblystoma) ..... 68
Mavortium (Amblystowa) ..... 68
Maxima (Rana) ..... 424
Means (Amphinma) ..... 216
Megalobatrachus ..... 37
Megalixalus ..... 392, 393
Megalophrys ..... 295
Melanobatrachus ..... 387
Melanosticta (Salamandra) ..... 130
Melanostictus (Deamodactylus) ..... 130
Melanota (Rana) ..... 419
(Ranaria) ..... 419
Menobranchus ..... 23
Menopoma ..... 37
Micrixalus. ..... 392, 393
Microhyla ..... 384, 385
Microps ..... 385

Microatomum (Amblystoma) ..... 101
Microstomus (Chondrotus)! ..... 101
Millepunctata (Salamandra) ..... 207
Millepunctatus (Triton) ..... 207
Miniatua (Diemyctrjus) ..... 207
(Notophthalmua) ..... 207
(Triturus) ..... 207
Mitrolysia ..... 312
Mixophyes ..... 311
Molge ..... 202
Montanus (Paeudotriton) ..... 119
Montezuma (Rana) ..... 428
Mucronata (Eurscea) ..... 39
fogiens (Rana) ..... 424
Multiplicata (Scaphiopus) ..... 308
(Spea) ..... 308
Multiplicatus (Spelerpes) ..... 162
Page.
Murænopsis ..... 215
Muricolor (Hyla) ..... 379
Musions (Bufo) ..... 289
Muta (Rana) ..... 431
Myobstrachus ..... 259, 260
Myxophyes ..... 250
Nannobatrachus ..... 391, 393
Nannophrys ..... 391, 393
Nebullfer (Bufo) ..... 292
Nebullfera (Chilophryne) ..... 292
Nebulosnm (Amblystoma) ..... 68
Nectes ..... 260
Nectophryne ..... 260
Nectarus ..... 22, 23, 31
maculatus ..... 23
punctatus ..... 27
Neocæsareanus (Protens) ..... 172
Niger (Plethudon) ..... 194, 198
(Triton) ..... 89,198
Nigra (Desmognathus) ..... 198
(Salamandra) ..... 198
Nigricans (Rana) ..... $.420,441$
Nigrita (Acris) ..... 337
(Rana) ..... 337
Nigritns (Chorophilus) ..... 337
(Cystignathus) ..... 337
(Psendacris) ..... 337
Nigriventris (Batrachoseps) ..... 129
Nigrum (Amblystoma) ..... 198
Notaden ..... 260
Notophthalmus ..... 202
Nototrema ..... 221, 322, 323
marsupiatum ..... 240
testadineum ..... 240
Nyctibatrachus ..... 392, 393
Nyctimsntis ..... 322, 323
Nyctixalus ..... 392
Obscurum (Amblystoma) ..... 68
Occidentalis (Chorophilus) ..... 335
(Litoria) ..... 335
Ochrophæa (Desmognathus) ..... 191
Ocularis (Chorophilus) ..... 33, 335, 348
(Hyla) ..... 335,348
(Hylodes) ..... 348
Odontophrynus ..... 312
Cdipina ..... 121
Cdipus ..... $121,124,125$
Olivaceum (Engsstoma) ..... 385
Ollotis ..... 260
Onca (Rana) ..... 443
Ouychodactylus ..... 119
Opaca (dmblystoma) ..... 54
(Salamandra) ..... 54
Opacum (Amblystoma) ..... 54
Operculata (Siren) ..... 172
Opisthodelphys ..... 322, 323
Oregonensis (Heredia) ..... 240 ..... 148
(Plethodon) ..... 148
Ornatus (Chorophilus) ..... 333
(Cystignathus) ..... 333, 335
Otaspis ..... 200
Otilophus ..... 260
Oxyglossus ..... 392, 393
Oxyrhyncha (Rana) ..... 399
Page.
Osyrhynchus ..... 260
(Rana) ..... 398
Pachybatrachus ..... 393
Pachyderma (Rana) ..... 44
Pachytriton ..... 201
Pacificum (Hemidactrlinm) ..... 129
Paciticus (Batrachoseps) ..... 129
Palæobatrachidæ ..... 253
Paludicola ..... 250, 313
gracllis ..... 239
Palustris (Rana) ..... 398, 406
Pansosana (Hyla) ..... 373
Pardalis (Rana) ..... 406
Paroticum (Amblrstoma) ..... 105
Paroticus (Chondrotus) ..... 103
Pectoglossa ..... 47
Pelobates ..... 297
Pelobatidx ..... 248, 296
Pelodytes ..... 296
Pelodytidæ ..... 248, 249, 235, 205
genera of ..... $2 \cdot 6$
Pelophylax ..... 393
Penusylvanica (Rana) ..... 447
Perialia ..... 312
Phanerolranchus ..... 23, 22:
Phractops ..... 31?
Pliryne ..... 260
Phrsnella ..... 384, 385
Phrynidium ..... 387
Phrsniscidæ ..... 451
Phryniscus ..... 387
Phrynocara ..... 390
Phrsnocerus ..... 31:
Phrynoidis ..... 26')
Phryuomantis ..... 384, 385
Phyllobates ..... 391, 39.3
Phyllodromus ..... 391, $3: 3$
Phyllomedusa ..... $321,322,323$
iberingil ..... $2: 39$
Pickering (Acris de) ..... 35:
Pickeringll (Acris) ..... 352
(Hyla) ..... 352
(Hylodes) ..... 352
Picta (Salamaudra) ..... 194
Pictus (Bufo) ..... 267
Pipa ..... 240
Pipidæ ..... 248, 252
Pipiens (Rana) ..... 397, 424
Pisciformis (Siredon) ..... 6z
Platineum (Amblystoma) ..... 93
Platypelis ..... 390
Platyrrhinns (Rana) ..... 431
Plectromantidæ ..... 309
Plethodon ..... $121,124,125,132$
æneus ..... 133, 143
cinereus ..... 31, 133
cinerens ..... 134
dorsalls ..... 138
erythronotus ..... 135
crassulus ..... 133, 147
croceater ..... 133. 150
flaripunctatus ..... 133, 145
glatinosus ..... 133, 139
intermedius ..... 133, 145

Page.
Plethodon, species of ..... 133
Plethodontæ ..... 124
Plethodontidæ ..... $33,119,451$
Plethodontinæ ..... 119121
Pethodontobsla ..... 390
Plearodeles ..... 201
Plenrodelidæ ..... 33, 201, 451
genera of ..... 201
Pleurodema ..... 313
Polspedates ..... 393
Polspedatidæ ..... 309, 390
Porphrritica (Salamandra) ..... 155
(Spelerpes ?) ..... 155
Porphrriticum (Amblystoma) ..... 101
Porphyriticus (Grrinophilas) ..... 155
(Spelerpes) ..... 155
(Triton) ..... 139,155
Pretiosa (Rana) ..... 432
Proserpine (Amblystoma) ..... 68
Prostherapis ..... 391, 393
Proteïla ..... $13,21,451$
Proteldæ ..... 22, 451
Proteus ..... 22, 31
Protonopsis ..... 37
Pseudacris ..... 331
Pseudis ..... 249,311
Pseudobranchus ..... 225, 230
striatus ..... 330
Pseudophryne ..... 259, 260
Pseudosanria ..... 30
Pseudotriton ..... 161
Punctata (Amblystoma) ..... 56
(Lacerta) ..... 56
Punctatissimus (Triton) ..... 207
Punctatam (Amblystoma) ..... 56, 183
Punctatus (Necturus) ..... 27
Pyxicephalus ..... 250, 39:
Quadridigitata (Salamandra) ..... 159
Quadridigitatus (Batrachoseps) ..... 159
(Manculus) ..... 159
Quadrimaculata (Salamandra) ..... 194
Quercicus (Bufo) ..... 291
Rana ..... 250, 252, 392, 39
agilis ..... 396, 438
agilis ..... 438
aurora ..... 397, 438, 439
areolata ..... 396, 397, 409
esopus. ..... 412
areolata ..... 410
capito ..... 415
circnlosa ..... 413
boylis ..... 396, 397, 44
cantabrigensis ..... 396, 397, 435
cantabrigensis ..... 435, 436
erittata ..... 435, 437
latiremis ..... 435
catesbiana 394, 396, 397, 424
clamata ..... 394, 396, 397, 419
corrugata ..... 394
cyanophlyctis ..... 394
draytoni ..... 396, 397, 441
draytoni ..... 441
onca ..... 441,443
ehrenbergii ..... 394
Page.
Rana esculenta ..... 394
fasciata ..... 394
fuecigula ..... $39!$
gracilis ..... 394
grunniens ..... 394
hexadactyla ..... 394
mascariensis ..... 394
montezumæ ..... 36, 397, 428
occipitalis ..... 394
opisthodon ..... 239
oxjrhyncha ..... 394
palustris ..... 396, 397, 406
septentrionalis ..... $396,397,416$
silvatice ..... 396, 397, 447
species of ..... 396
temporaria ..... 394, 396, 431
pretiosa ..... 397, 432
temporaria ..... 432
rirescens ..... 391, 398, 397
austricola ..... 398
brachycephala ..... 398, 403
circulosa ..... 409
sphenocephala ..... $.398,399$
virescens ..... $.398,401$
Ranidæ.............248, 249, 250, 309, 383, 384, 390, 451
genera of ..... 391
Ranidens ..... 118
Ranoidea ..... 349
aurea ..... 321
Ranula ..... 392, 393, 394
Recapitulation ..... 451
Rectifrenis (Scaphiopus) ..... 301
Regilla (Hyla) ..... 355
Remifer (Manculus) ..... 158
Rhachitomi ..... 13
Rhacophorus ..... 392, 393240
Rhæbo ..... 26 L
Rhinoderma ..... 240, 387
Rhinophrynus ..... 260
Rhombopbryne ..... 384
Richardi (Hyla) ..... 373
Ricordii ;Hylodes) ..... 318
(Lithodytes) ..... 318
Ruber (Pseudotriton) ..... 172
(Spelerpes) ..... 172
Rubra (Salamandra) ..... 172
(Spelerpes) ..... 172
Rubriventris (Salamandra) ..... 172
Salamandra ..... 200
Salamaudrella ..... 119
Salamandrida ..... 38,200
genera of ..... 200
Salamandrina ..... 201
Salamandroides ..... 47
(Cryptobra:ichus) ..... 38
Salamandrops ..... 37
Salientia ..... $13,232,451,457$
classification of ..... 246
integument of ..... 234
origin and evolution of ..... 244
osteology of ..... 232
reprouluction of ..... ¢38
riscera of ..... 235, 457
Salmonea (Salamandra) ..... 155


## INDEX.

Page.
Tiferiata (Hyla) 342
Triseriatus (Chorophilus) ..... 342
(Helocates) ..... 342
Trisruptum (Amblystoma) ..... 86
Triturns ..... 201
Tylotriton ..... 201
Uperoliida ..... 309
Urodela ..... $13,29,451$
development of ..... 31
geographical distribution of ..... 34
phylogeny of ..... 35
systematic arrangement of ..... 33
Utricularia (Rana) ..... 397
Valliceps (Bufo) ..... 292
Vanvlietii (Hyla) ..... 379
Tariolata (Salamandra) ..... 139
Varius (Scaphiopus) ..... 301
Venenosa (Salamandra) ..... 56
Verrucues (Hyla) ..... 373
(
L2

University of
Connecticut Libraries


[^0]:    Prof. S. F. Baird, Secretary of the Smithsonian Institution.

[^1]:    ${ }^{1}$ Cope, American Naturalist, 1888, p. 436.
    ${ }^{2}$ Baur, Carpus u. Tarsus der Vertebraten, 1887, Batrachia, pp. 6-12.
    ${ }^{\circ}$ On the Intercentrum of the Terrestrial Vertebrata, 'Transac. Amer Philosoph. Soc., 1886, p. 243.

[^2]:    ${ }^{1}$ This is partly derived from the table which I have given in Vol. II, Palæontology of the Geological Survey of Ohio, 1874, p. 352. See also American Naturalist, 1884.
    ${ }^{8}$ Of Cuvier: Epiotic of Huxley, according to Vrolik.
    ${ }^{3}$ Theromorpha Cope olim; name preoccupied.

[^3]:    'See Cope On the ossicula auditus of the Batrachia, Amer. Naturalist, 1888, p. 464 ; Journal of Morphologf, November, 1888.

[^4]:    * On the Arciferous Anura, Jonrmal Academy Philadelphia, 1866, p. 103.
    $\dagger$ Geological Survey of Ohio, in, Paleontology.

[^5]:    * Bulle tin du Masée lioyal du Belgigne, 1ssir, !. sí.

[^6]:    * L: g. Molye rulyaris (Dugés). Dienyctylus riridescens.
    f0. P. !lay, Ameriean Naturalist, 1828.
    t Sarasin, Embryology of the Ceciliidx.

[^7]:    * Iconographic Encyclopedia, 18.s.
    † Procerdings Plilit. Acad., p. 9\%.
    $\ddagger 1879$.
    § By Steintachuer.
    
    TThe ficts as to the first stages of the skinll ol the iativa of Amblystoma are derived from Dr. W. K. I'arlier, Philosopl. Transar にït, ए. 5\%9.

[^8]:    * Catalngue of the British Musenm, 1882, P. ४8.
    $\dagger$ Reptiles of British India (Ray Society), p. 441.
    $\ddagger$ American Naturalist, 1884, p. 26.
    § Zü̈tomie der Amphibien, 1856, p. 44.
    $\|$ American Naturalist, 1885, p. 244, note, aud Pioceeds. Amer. Philos. Soc., Felb. 11886 p. 442.

[^9]:    *Anatomic der Gymuoplionen, Jena, 1879. tAmericau Naturalist, 18ธ், [. 244.

[^10]:    * Vide an exception under a. tigrinum.

[^11]:    Leugth of gape of month to its width. twothinds.
    Width to distance from sham to sulat fold about three-gnarters.
    Wialth to distamer from smom to sroin
    5) tilum.

[^12]:    

[^13]:    *Plate 25, fig. 8.

[^14]:    Amblystoma cingulatum Cope, Proc. Ac. Phila., 1867, p. 205 ; Stranch, Sulana., p. 65; Boulenger, Cat. Batr. Grad. Brit. Mus., ed. ir, 188:, p. 50.

[^15]:    * Plate 24, figs. 4,5.

[^16]:    * Sce page 31, antea.
    * The fourth ceratobranchial was present in this specimen, but was overlooked by the artist.

[^17]:    * Das Kopfskelet der Urodelen, in. 6if-71.

[^18]:    * Riidlinger in Sitzmagsber. Akad. Wiss., Mmich, 1885, p. 109. $\dagger$ Sce Proceed. Acad. Nat. Sci., Phila., 18:9, 124.

[^19]:    * Phates 2f; 31, fig. 6 ; :35, fig. 2; 40, fig. 4; 45, fig. 5; 48, fig. 14.

[^20]:    

[^21]:    * Girard, l. c., descrilies the teeth as not fixed to the jaw, and eapable " of a depression hackiards." This is only true of snecessional terth or teeth ahont to be shed; the fimetional teeth are firmly anchylosed.

[^22]:    *Sciranota birnes.

[^23]:    * First indicated by Wiedersheim in Der Kopfskelet der Urodelen, PI. vi, fig. 91.
    $\dagger$ This was first slown me by Dr. F. E. Galt in one of her dissections.
    $\ddagger$ Prodrome de soixante-dix nonveanx genres d'animanx déconverts dans l’intérienr des Eftats Unis d'Amérique, darant l'amée 1818.

    SAmals of Nature or Anmal Synopsis of new Genera of Animals, Plants, ete., Discovered in North America, by C. S. Rafinesque, Transylvania University, Lexington, Ky., 1820.

[^24]:    *Iconogr. Encycl., vol. II, p. 254, 1851.

[^25]:    *. Iomm. Ac., Phila., 1~ili, p. 1114.

[^26]:    * They were described by Mr. J. (i. Fischer, Anatomisch. Abhandl. iib. Ferennibranch. I. Werotrem., Erstes left, p. (it, 1 Rit.
    + Proceed. Amer. Philosoph. Soc., 1836, 1. 442.
    $\ddagger$ Wiedersheinı, Anatomie der (iymmophionen, Jena, 1879.

[^27]:    * Iroered. Phila. Ac., 1879, „. 14.

[^28]:    * American Naturalist, 1888, p. 464.

    1951—Bull $34-15$

[^29]:    *These results were sent in to the Secretary of the Smithsonian Institution February, 18*7. Throngh the delay in publication they have been auticipatel by an admirable paper on tho carpus and tarsus of Salientia ly Mr. G. B. Howes, Proceeds. Zool. Soc. Loudon, 1338, p. 141 (March).

[^30]:    * Morphologisches Jahrbnch, 18:7, p. 119; Anatomischer Auzeiger, 1887, 517. $\dagger$ Procee.I. Zö̈l. Soc. London, 1833 , p. 122.

[^31]:    * For descriphions amd figmes of brains ol' Urodela, Proteida, and Trachystomata, see Osbor'n ; (Amplimma), Jrocecds. I'hila. Acal., 1883, p. 17\%; (Cryptobranchus and
     5.30; als: Wiedersheim, Auatomio der (fym!onhionon, dena, 1279.

[^32]:    * On acconnt of this difterence MM. Thomas and Delisle have proposed to divide the Amma into two groups, naming them the Alamplexes and Ingninamplexes. See Jourmal de Zoologic, vi, 187\%, p. $47 \%$.

[^33]:    
    
    
    
    
    || Drmonrs, Mén. Ae. Sc. Paris, 1711, p. 1:3; De l'Isle du Drónent, Ann. Sc. Nat. (6): 111. 1s゙てi, art. 7.

[^34]:    * Jimencz de la Espada, Ann. Soc. Esp. IList. Nat., i, 18i: p. 1:3: : Spengel, Zeitselır. wiss. Zool. xxix, 1877, p. 495; Howes Proceeds. Zool. Soc. Londou, 1888, p. 231.
    †Giinther, Ann. \& Mag. Nat. Hist. (1), xvir, 1376, p. 379 ; Ferguson, op. cil., xvifi, 1876, 1, 3.3\%.
    $\ddagger$ Fermin, Jéveloppement parfait đu mystère đle la generatiou du fancux Crapaud de Surinanı; Maestricht, 1765.
    § Boulenger, Cat. Batr. Eeand., 1と8:, p. 417.
    || Weinland, Arch. f. Anat. Plysiol., 1854, p. 449.
    TKappler, Das Ausland, 183.7, p. 8.is; Smith, American Naturalist, 1888, p. 182.
    **Tho family terminations "ide" given to these divisions by Lataste are iuappropriate, as they do not represent families.

[^35]:    
    † Heron Royer et Vian Bambelse, Bull. soc. Zoül. France, April, $18 s 1$.

[^36]:    * Proceed. bitish Ac. Sci., 1857, Aberlean; on the evilence fimished by Dr. Otto Meyer.
    
    $\ddagger$ T'schuli, Chaswif. 1!. Batrachier, 1*38.
    § Von Moyrr, Pabanotographica, I860, p. 123.
    $\|$ Cope, American Naturalist, 1850, 1. 141.

[^37]:     if, $1 \times-$.

[^38]:    

[^39]:    * Palmontographica, III, p. 14\%.
    † Ueber fossile Früsche msbes. das g. Palacobatrachus, Magdeburg, 1886.

[^40]:    * Flate 78.
    †Observed by Dugès and Gervais in Alytes.
    $\ddagger$ Observed by Dugès in Alytes and Bombinator, and by Duméril in Discoglossus.

[^41]:    * Palieontologie Francaise, p. 494.
    $\dagger$ Dugès has given a figure of it in Bombinator, Pl. 3, fig. ©24.
    †Cope, Jonm. Aeat. Phila., le6f, p. 7\%. Liona troschelii (Von Mejer, Palxoutographica, III, p. 1:38).

    19\%1-13nll. 31-17

[^42]:    * Platere 78.

    I This gemms is not admitted by Bonlenurer.
    

[^43]:    *'The raised orbital ridges of this gemus do not constitnte its essential character, as formerly supposed, hat rather the division of the neural spines and the wide separathon of the lateral portions (they stand above the zyoupoplyses) thronghont the vertebral colmm. Perhaps the fusion of the atlas with the second vertebra is importaut in the same eomention. 'There is but one species at present known, $I$ '. asper.

[^44]:    * Typo Chiroleptes alboguttatus Gthr.
    $\dagger$ 'Type Ceratophrys boiei Wied.
    $\ddagger$ Phractops Peters.
    §Telmatobius Boulenger, not of Wiegmann.
    || Includes Limnodynastes Fitz., Günther.

[^45]:    Posterior limbs short, heel to tympanum; head wide; tympanum half orbit; rufous, brown spotted
    S. marnochii.

    Posterior limbs longer, beel to front of orbit; head wide, a canthus rostralis; tympanum one-third orbit; brown, pale spotted................................. S. leprus.
    l'osterior limbs longer, heel to front of orbit; head narrow, no canthus rostralis; tympanum one-third orbit; brown, dark spotted.................S. cystignathoides.
    Heel to front of orbit; head rather wide, flat; tympanum two-thirds eye-slit; subdigital tubercles large; gray, with black spots
    S. vervacipes.

[^46]:    *Over de Reptiliën Fauna vam Sumatra, P. Bleeker, Batavia, 1860, p. 8.

[^47]:    * Plate 73, fig. 29.

[^48]:    *In $H$. squirella the vomerine patches sometimes project posterior to the line conrecting the nares.

[^49]:    Hyla regilla B. \& G., Proceed. Ac. Nat. Sci., Phila., vi, 1852, 174, 1853, 301 ; Girard, Herp., U. S. Expl. Exped., 1859, fo, Vol. inf, Figs. 13-18; U. S. Pac. R. R. Surv. Rept., Williamson Abbot, 12, Pl. xximi, lig. 3 (bad).
    Hyla scapuluris Hallowell partim, Proceed. Ac. Nat. Sci. Phila., vi, 1852, 183, and var. hypochondrialis, U. S. Pac. R. R. Surv., x., 35 lat., p. 21.

[^50]:    * Julletin UT. S. National Museum, No. 20, 1830, ]. 2?.

[^51]:    ＊A lignre of diryniscus mmbrinas will be fonnd in the Ardenda．

[^52]:    * Including Glyphoglossus Gthr.

[^53]:    * Vou Meyer, Palieontographica, in, 1. 127.
    $\dagger$ d. reussii Vou Meyer, l. c., in., p. 63.
    $\ddagger$ This genus, which I placed provisionally in the Cystignathidae, not laving seen the sternum, belcugy here according to Boulenger. The name must be, therefore, erased from the table on page 312 .

[^54]:    * Rappia Gthr., bnt sufficiently distinct from Hyperolia Gray.
    $\dagger$ Plrynobatrachus Günth.; Steworhynchus Smith ; Leptoparius Peters; P Stawrois Cope.

[^55]:    *This line is yellowioh in the young.

[^56]:    * Professor Baird had an opportmity of examining the npecimens from which Dr. Holbrook mado his description and fignro of $R$. clamitans without seojng occasion to change the opinion above expressed.

[^57]:    

[^58]:    *American Naturalist, 1599, p. 435.

[^59]:    *Annual Report U. S. Geol. Survey Terrs., 1871, p. 469.

[^60]:    * Plate 75, fig. 20.

