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Insects harbour diversematernally inherited bacteria andviruses,
some of which have evolved to kill the male progeny of their
hosts (male killing: MK). The fly species Drosophila biauraria
carries a maternally transmitted MK-inducing partiti-like
virus, but it was unknown if it carries other MK-inducing
endosymbionts. Here, we identified two male-killing Wolbachia
strains (wBiau1 and wBiau2) from D. biauraria and compared
their genomes to elucidate their evolutionary processes.
The two strains were genetically closely related but had
exceptionally different genome structures with considerable
rearrangements compared with combinations of other Wolbachia
strains. Despite substantial changes in the genome structure,
the two Wolbachia strains did not experience gene losses that
would disrupt the male-killing expression or persistence in the
host population. The two Wolbachia-infected matrilines carried
distinct mitochondrial haplotypes, suggesting that wBiau1
and wBiau2 have invaded D. biauraria independently and
undergone considerable genome changes owing to unknown
selective pressures in evolutionary history. This study
demonstrated the presence of three male-killers from two
distinct origins in one fly species and highlighted the diverse
and rapid genome evolution of MK Wolbachia in the host.
1. Background
Insects often harbour endosymbiotic microbes that are transmitted
from the female host to the offspring [1]. Males are an evolutionary
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dead-end for maternally transmitted microbes, and the lack of transmission through male hosts often

leads to the evolution of reproductively parasitic traits [1–3]. In some cases, this is manifested in the
evolution of male-killing (MK) phenotypes, in which male offspring of infected mothers are killed during
development [1–4]. MK is thought to be advantageous for the maternally transmitted microbes, and
indeed various microbes such as bacteria, microsporidia and viruses induce MK in respective insect
species [3,4]. In addition, multiple male killers sometimes infect the same host species [5,6].

The endosymbiotic bacterium, Wolbachia (Alphaproteobacteria), is present in at least 40% of all insect
species, making it one of the most widespread endosymbionts [7–9]. Wolbachia is maternally transmitted
but is considered to have experienced host shifts repeatedly in its evolutionary history. The high
prevalence of Wolbachia in arthropods is partly due to Wolbachia-induced host manipulations, such as
cytoplasmic incompatibility (CI), parthenogenesis, feminization and MK [7,8,10]. Wolbachia induce
MK in particularly diverse host species, however, how Wolbachia acquired and maintained their MK
abilities on an evolutionary timescale remains largely unknown [11–13].

Genomic changes that lead tophenotypic changes andadaptation to newhosts are critical for the evolution
ofWolbachia [14–18]. For example, theMKWolbachia strain,wHm-t, is thought to have evolved from its closely
related non-MKstrain,wHm-c, in the tea tortrix,Homonamagnanima, by acquiringanMK-associatedprophage
region [18]. By contrast,Ostrinia furnacalis andOstrinia scapulalis harbour closely related MKWolbachia strains
that show an extremely high degree of genomic similarity to several inversions [19]. TheMKWolbachia strains
in Ostrinia moths are thought to have descended from their common ancestral hosts and have maintained a
stable genome structure throughout their evolution [19]. In the highly host-dependent symbiotic bacterium,
Wolbachia, substantial changes in the genome structure can disrupt phenotypic expression and intergenic
interactions, posing major risks to Wolbachia fitness. However, large-scale genome changes can also drive
bacterial evolution because they can alter gene expression and phenotypic outcomes in ways that point
mutations cannot [20,21]. The Wolbachia genome is an intriguing subject for exploring the evolutionary
interactions between facultative endosymbionts and their hosts.

In this study, we identified two novel, closely relatedMKWolbachia strains (wBiau1 andwBiau2) infecting
Drosophila biauraria. We analysed and compared their genomes with other Wolbachia strains identified from
diverse insects to elucidate the evolutionary history of the MK Wolbachia strains. Further, we compared
their genomes with the partiti-like virus DbMKPV1, which induces MK during the late embryonic stage
(i.e. early MK) in D. biauraria [22,23], to clarify the evolutionary origin of MK in this fly species.
2. Methods
2.1. Collection and rearing of Drosophila biauraria
Drosophila biauraria samples were collected from the Field Science Center for Northern Biosphere,
Hokkaido University, Tomakomai, Hokkaido, Japan in 2015 and 2017. Flies were collected by
sweeping and banana traps. The collected females were individually maintained at 19°C with the
standard banana medium [22]. The sex ratios of the lines derived from field-collected females were
determined at the adult stage. The normal sex ratio (NSR) isofemale line SP11-20 [23] was maintained
for more than 70 generations. The all-female matrilines (W1 and W2), each derived from a single
female, were maintained by crossing with males of the SP11-20 line. Wolbachia and the MK partiti-like
virus DbMKPV1 infections were detected by PCR, as described previously [22,23].

2.2. Tetracycline treatment
All-female matrilines (W1 and W2) were reared on tetracycline-containing banana medium (0.05%
[w/v]) [22] for two generations.

2.3. Egg-hatching rates
Egg-hatching rates were estimated by counting the number of hatched and unhatched larvae. A total of
50–100 females of either W1 or NSR (SP11-20) were allowed to oviposit on grape juice agar medium for
1 day [23]. The eggs were collected and maintained in phosphate-buffered saline with Tween 20 (PBST;
137 mmol l−1 NaCl, 8.1 mmol l−1 Na2HPO4, 2.68 mmol l−1 KCl, 1.47 mmol l−1 KH2PO4, 0.02% Tween 20,
pH7.4) for 4 days. The number of hatched larvae and remaining embryos were counted manually under a
microscope. This treatment was repeated at least four times.
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2.4. Sex determination of embryos and hatchlings of D. biauraria
We determined the sex of embryos and hatchlings by PCR targeting amale-specific Y chromosomemarker.
Briefly, each embryo and hatched larvae was squashed in 20 μl of PrepMan Ultra Sample Preparation
Reagent (ThermoFisher). Samples were then incubated at 100°C for 10 min, vortexed for 15 s,
centrifuged at 20 000 × g for 2 min, and finally subjected to PCR. A Y chromosome-linked male-specific
marker for D. biauraria [24] was amplified using a pair of primers, DbY_c52202_F2 (50-ACCGAGCG
CGAAATCATAAAACCAGCATC-30) and DbY_c52202_R2 (50-CTCATATCACTTCATGTATCCCAC
ACTTTTAACAG-30). Db-actin5C-68-F (50-GGCCATCCAGGCCGTGCTCTC-30) and Db-actin5C-68-R
(50-GCGCTCGGCAGTGGTGGTGAAG-30) were used to amplify actin-5C to confirm proper D. biauraria
genomic DNA extraction. These markers were amplified using the Emerald Amp Max Master mix
(TaKaRa) at 94°C for 3 min; the cycling conditions were as follows: 35 cycles of denaturation at 94°C for
30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s, followed by a final extension at 72°C
for 7 min. Of the actin-positive samples, those that were positive for Y-markers were classified as male.
Those that were negative for Y-markers were classified as female.
c.Open
Sci.11:231502
2.5. Genome sequencing of flies and constructions of Wolbachia genomes
For genome sequencing of fly linesW1 andW2, highmolecularweight DNAwas extracted from 0.1 g adult
females (approximately 100–200 individuals) by using Nanobind Tissue Big DNA Kit (Circulomics Inc.,
Baltimore, MD, USA) and was used for library construction using Ligation Sequencing Kit v14 (Oxford
Nanopore Technologies, Oxford, UK) following the manufacturer’s protocol. The constructed libraries
were sequenced using the ONT MinION flow cell (R 10.4) (Oxford Nanopore Technologies).
The extracted DNA was also subjected to Illumina paired-end 150 bp sequencing (PE-150) at the
Bioengineering Lab. Co., Ltd. (Japan). The obtained nanopore reads were assembled using Flye 2.3 [25]
in Galaxy Europe (https://usegalaxy.eu/). Homologies between the assembled contigs of W1 and W2
and all Wolbachia genomes available in the NCBI database were assessed using BLASTn searches.
Contigs showing homology to known Wolbachia genomes were designated as candidate contigs of
Wolbachia strains in D. biauraria. The raw data of W1 and W2 were mapped to Wolbachia-like contigs
using minimap2 v2.17-r941 [24], and the mapped reads were extracted using SAMtools v.1.9 [26] and
assembled using Flye 2.3 [24]. The circularity of the Wolbachia wBiau1 and wBiau2 genomes was
confirmed using Bandage v0.8.1 [27]. Circular Wolbachia genomes were polished against Illumina data
using minimap2 [24] and Pilon v. 1.23 [28]. The polished closed genomes of the wBiau1 and wBiau2
strains were annotated via the DFAST web server [29]. Prophage regions were annotated using the
PHASTER web server [30]. Insertion sequence (IS) elements in Wolbachia genomes were further
annotated using ISEScan [31].

Wolbachia genes wmk [32], cifs (cifA and cifB) [32–34], and oscar [18,35] were used to identify
homologues in the wBiau1 and wBiau2 genomes using local BLASTn and BLASTp searches (default
parameters). Motifs in the wmk, cifA, cifB, and oscar gene homologues were surveyed using InterPro
(https://www.ebi.ac.uk/interpro/) and HHpred (https://toolkit.tuebingen.mpg.de/tools/hhpred).
Phylogenetic trees of Wolbachia wsp and MLST genes were constructed based on maximum likelihood
with bootstrap re-sampling of 1,000 replicates using MEGA7 [36].
2.6. Phylogenetic analysis of mitochondrial CO1
The mitochondrial CO1 of D. biauraria lines was amplified using HCO and LCO primer sets targeting the
CO1 gene [37]. Amplicons were purified with Wizard SV Gel and PCR Clean-Up System (Promega),
which were subjected to sequencing using BigDye terminator v3.1 (Applied Biosystems) with the
following conditions: 96°C for 1 min, followed by 25 cycles of 96°C for 10 s, 50°C for 5 s, and 60°C
for 4 min. A phylogenetic tree of CO1 was constructed based on maximum likelihood with bootstrap
re-sampling of 1,000 replicates using MEGA7 [36].
2.7. Statistical analysis
The sex ratio of the adult flies was assessed using Fisher’s exact test. Egg hatching rates were analysed
using the Wilcoxon test. All analyses were performed using the R software v4.0 (https://www.
r-project.org/). P values <0.05 were considered significant.

https://usegalaxy.eu/
https://www.ebi.ac.uk/interpro/
https://toolkit.tuebingen.mpg.de/tools/hhpred
https://www.r-project.org/
https://www.r-project.org/
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2.8. Data accessibility

The sequence read data were deposited in the DDBJ under the accession numbers PRJDB16258
(BioProject), SAMD00634859–SAMD00634860 (BioSample), and DRA016759 (DRA). Wolbachia genomes
are available in the DDBJ database under the accession numbers wBiau1 (AP028655) and wBiau2
(AP028656). Any additional information required to reanalyse the data reported in this paper is
accessible from the Dryad Digital Repository: https://doi.org/10.5061/dryad.j9kd51cjh [38].
 hing.org/journal/rsos
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3. Results and discussion
3.1. Wolbachia induces MK in Drosophila biauraria
We collected 124 matrilines of D. biauraria (figure 1a) from Tomakomai, Hokkaido, in 2015 (n = 55) and
2017 (n = 69). Of these, 118 matrilines showed normal sex ratios (approximately 1:1, male: female),
whereas six matrilines were all female. Six all-female matrilines were negative for DbMKPV1 [23], but
positive for Wolbachia (table 1). Males were restored by tetracycline treatment, which was performed
on two Wolbachia-infected all-female matrilines, TM15-28 (referred to as W1) and TM17-F3 (referred to
as W2) (figure 1b). The egg hatching rates examined for W1 were significantly lower (28.9%, five
replicates, n = 2535 in total) than those of the normal sex ratio line SP11-20 (45.5%, four replicates,
n = 1895 in total) (Wilcoxon test, p = 0.01, figure 1c). The low hatching rates in both lines may partly
be explained by the high rate of unfertilized eggs derived from inbreeding depression. Furthermore,
sex-determination based on PCR detection of the male-specific Y chromosome in the W1 matriline
showed that sex was significantly male-biased in unhatched embryos (75.8% male: 44 males and 14
females, binomial test, p = 0.0002, figure 1d ) and significantly female-biased in hatched larvae (84.4%
female: 7 males and 38 females, binomial test, p = 0.004). Exceptionally, some adult males emerged
from a few vials during fly maintenance, but none emerged during our experiment. Thus, the
Wolbachia-infected male hatchlings appear to die before reaching the adult stage. Similarly, in
the DbMKPV1-infected D. biauraria strain (although no adult males were ever observed within it), a
few male larvae occasionally hatch but die before reaching adulthood [23]. These results suggest that
MK occurs primarily during embryonic development (early MK), but the effect of MK is continuously
active at later stages of D. biauraria.

3.2. Wolbachia strains wBiau1 and wBiau2 are closely related but have a high level of
genome rearrangements

Genome sequencing of W1 and W2 flies using both the Nanopore and Illumina platforms generated
circular closed Wolbachia genomes (table 2). Other than Wolbachia, no known MK bacteria (Spiroplasma,
Rickettsia, Cardinium and Arsenophonus) or microsporidia were identified from the genome read data,
and all the bacterial reads were considered to be derived from gut symbionts or environmental
bacteria (electronic supplementary material, table S1). This suggests that Wolbachia is the cause of MK
in both W1 and W2 lines. The W1 and W2 matrilineal Wolbachia were closely related but had different
nucleotide sequences in Wolbachia typing genes (wsp and MLST) (figure 2a). Therefore, we designated
the Wolbachia strains as wBiau1 (W1 line) and wBiau2 (W2 line). Both wBiau1 (1178058 bp circular
genome) and wBiau2 (1183391 bp circular genome) belonged to supergroup A-type Wolbachia
(figure 2a and table 2) and shared most genes with high similarity (figure 2b and electronic
supplementary material, table S2). Despite their high similarity in genetic components, wBiau1 and
wBiau2 showed a high degree of genome rearrangement (i.e. many genomic shifts and inversions)
(figure 2c). This high level of genomic rearrangement was not observed between the closely related
supergroup A Wolbachia strains: wMel in Drosophila melanogaster (1,267,783 bp, NZ_CP046925.1) and
wAu in Drosophila simulans (1,268,461 bp, LK055284.1; figure 2d ). Compared with wMel, both wBiau1
and wBiau2 showed high levels of genomic rearrangement (figure 2e,f ). This was further supported
by the comparisons of the wBiau strains with wRi from D. simulans (1,445,873 bp, CP001391.1), which
is more distantly related to wMel (figure 2a and electronic supplementary material, figure S1). In
supergroup A, even moderately divergent strains wAu and wRi in the identical host, D. simulans
showed a certain degree of synteny (figure 2g). In supergroup B, the closely related strains wMa
(1,273,535 bp, CP069054.1) and wNo (1,301,823 bp, CP003883.1) in D. simulans also showed a certain
degree of synteny (figure 2h). Furthermore, the distantly related Wolbachia strains, wHm-t

https://doi.org/10.5061/dryad.j9kd51cjh


Table 1. Frequencies of all-female lines among iso-female lines established for Drosophila biauraria.

year

all-female lines

normal sex ratio lines totalWolbachia DbMKPV1

2015 3 0 52 55

2017 3 0 66 69

Table 2. General characteristics of Wolbachia genomes. GC, guanine-cytosine; CDS, coding sequences; tRNA, transfer RNA; rRNA,
ribosomal RNA; MK, male killing.

strain wBiau1 wBiau2

supergroup A A

phenotype MK MK

contigs 1 1

genome length (nt) 1,178,058 1,183,391

GC content (%) 35.0 35.2

CDS 1251 1,233

tRNA 34 34

rRNA 3 3
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Figure 1. Sex ratio distortion in Drosophila biauraria matrilines. (a) Morphology of D. biaurara female adult (W1 line). (b) Sex ratio
of adult flies in Wolbachia-infected W1 and W2 matrilines with and without tetracycline treatment. Each treatment had two
replicates. Sample sizes (number of individuals examined) are given in parentheses. (c) Hatchability of W1 and uninfected
matrilines (NSR, SP11-20). The total number of replicates, hatched and unhatched individuals, are shown below the whisker
plot. The horizontal bar within the box represents the median. The upper and lower hinges of the box indicate the upper and
lower quartiles, respectively. Different letters indicate significant differences between groups (Wilcoxon test, p < 0.05). (d ) Sex
ratio of hatched larvae and unhatched embryos examined by PCR assays targeting the male-specific Y chromosome. Sample
sizes (number of examined individuals) are given in parentheses. NSR, normal sex ratio.
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Figure 2. Genomic similarities between Wolbachia strains wBiau1 and wBiau2 and phylogeny of the host D. biauraria.
(a) Phylogenetic tree of concatenated Wolbachia wsp and MLST sequences constructed based on maximum likelihood with
bootstrap re-sampling of 1,000 replicates using MEGA7 [37]. Homologs of Wolbachia strains were quoted from the Wolbachia
MLST database. (b) Protein clusters conserved within wBiau1 and wBiau2 strains. (c–j) Dot plots showing conserved syntenies
between Wolbachia strains. wBiau1 and wBiau2 in D. biauraria (c), wMel and wAu in D. melanogaster and D. simulans,
respectively (d ), wBiau1 and wMel (e), wBiau2 and wMel ( f ), wAu and wRi in D. simulans (g), wMa and wNo in D. simulans
(h), wHm-t in H. magnanima and wNo (i), and wPip in C. pipiens and wNo (i), were compared. (k) Phylogenetic tree of
mitochondria COI sequences of D. biauraria. Drosophila auraria [GenBank AB669695.1] was used as an outgroup.
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(1,542,158 bp, AP025638) in Homona magnanima and wPip (1,482,455 bp, AM999887.1) in Culex pipiens
shared more collinear genomes with the wNo strain (figure 2i,j ) than with the combination of wBiau1
and wBiau2. The Wolbachia strains wBiau1 and wBiau2 harbour two and three prophage candidate
regions, respectively (electronic supplementary material, figure S2). In addition, wBiau1 encoded 88 IS
elements in its genome (covering 10.1% of the genome), and wBiau2 encoded 72 IS elements (7.74%),
which were similar to other Wolbachia strains (e.g. wMel: n = 69, 7.05%; wAu: n = 71; 7.60%; wRi:
n = 128; 12.3%; wHm-t: n = 136; 11.2%) (electronic supplementary material, table S3).

Bacterial chromosomes are dynamic structures shaped by long evolutionary histories [21,39,40].
Compared with a free-living lifestyle, a host-restricted lifestyle may impose different selective forces on
endosymbiont genome evolution [40]. Endosymbiotic bacteria typically exhibit highly reduced AT-rich
genomes acquired through a combination of genomic rearrangements and the accumulation of nucleotide
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substitutions/deletions [40–44]. This is thought to be a consequence of the intracellular lifestyle of

endosymbionts, in which bacteria experience severe bottlenecks during host reproduction, leading to
reduced selection against deleterious mutations. The degradation process is further facilitated by the
stability of the nutrient-rich cellular environment in which endosymbiotic bacteria reside, allowing gene
loss without reducing the fitness of endosymbionts during long coevolutionary relationships [45,46]. For
example, the endosymbiotic bacterium, Buchnera, shows many chromosomal rearrangements and
deletions compared with its free-living enteric relatives, suggesting that the early stages of its evolutionary
transition to a host-restricted lifestyle are highly dynamic [47]. However, the Buchnera genome structure
has been extraordinarily stable over the past 100 million years of diversification between aphid species,
despite high levels of divergence in gene sequence [48,49]. Wolbachia strains have relatively stable genome
structures, although they are more dynamic than Buchnera strains [18,50,51]. In this study, we could not
identify plausible features that could have driven the genome diversity of the wBiau strains (cf. the
number of transposable elements such as prophages and IS elements were comparable to other Wolbachia
strains), but there may be some unknown mechanism that allows exceptionally high rates of genome
arrangement in wBiau1 and wBiau2. Despite the substantial and rapid changes in the genome structure, it
appears that the wBiau strains did not experience gene loss that would eliminate MK expression or
persistence in the host population.

3.3. wBiau1 and wBiau2 do not encode the MK gene of DbMKPV1
To clarify whether the Wolbachia strains encoded the MK gene of the Partiti-like virus DbMKPV1 in
D. biauraria [23], we assessed the homology of their genes using a BLAST search, which revealed that
they did not contain any genes with high homology (electronic supplementary material, table S4). As
suggested by Homona moth, which harbours three different male killers (Wolbachia, Spiroplasma and a
Partiti-like virus OGV) [18,52,53], MK Wolbachia and DbMKPV1 are likely to induce MK in D. biauraria
via different mechanisms (causative genes) and have acquired these mechanisms independently
through different evolutionary processes.

3.4. wBiau1 and wBiau2 harboured MK- and CI-associated genes of Wolbachia
We found that wBiau1 and wBiau2 encoded one (WBIAU1_10910 [154 aa]) and two (WBIAU2_11720
[123 aa] and WBIAU2_11740 [74 aa]) wmk homologues encoding single helix-turn-helix (HTH) domain,
respectively (BLASTp searches, electronic supplementary material, table S4). Of these, WBIAU1_10910
and WBIAU2_11720 genes showed high homology (identity: 99.2%, e-value: 0, bit score: 671, BLASTn,
electronic supplementary material, table S5), but no homologue of WBIAU2_11740 was identified in the
genome of wBiau1. The adjacent gene of the wmk homologues (wBiau1: WBIAU1_10920 [298 aa];
wBiau2: WBIAU2_11710 [298 aa] and WBIAU2_11730 [53 aa]) also showed partial homology to the wmk
of wMel (electronic supplementary material, table S4), but the proteins encoded by the genes lacked the
HTH domain. Some wmk genes are known to induce male lethality in Drosophila melanogaster [18,33]. In
addition, some tandemly arrayed wmk homologues show combined actions to induce male lethality
when overexpressed in D. melanogaster [32]. While the wmk homologues found in the wBiau strains were
relatively smaller than that found in wMel (302 aa), the adjacent wmk homologues may be involved in
MK in D. biauraria. By contrast, neither wBiau1 nor wBiau2 carry the oscar gene, which induces MK in
Ostrinia moths, where the Oscar protein degrades the host’s male-determining factor, masculinizer (masc)
[35]. Interestingly, Oscar is not conserved among MK Wolbachia strains and does not function in
D. melanogaster which lacks the masc gene [18]. Thus, MK mechanisms (causative genes) in D. biauraria
are likely to be different from those in Ostrinia moths.

We also found that both wBiau1 and wBiau2 harboured adjacent cif genes, cifA (WBIAU1_10970 [491
aa] and WBIAU2_11670 [474 aa]) and cifB (WBIAU1_10980 [1179 aa] and WBIAU2_11660 [1173 aa])
(electronic supplementary material, figure S3 and table S4). The wBiau strains showed very high
homology in the cifA (identity: 98.5%, e-value: 0, bit score: 2372, BLASTn) and cifB (identity: 96.7%,
e-value: 0, bit score: 5856) genes between the strains (electronic supplementary material, table S5).
The CifB proteins of both Wolbachia strains encoded a deubiquitinase domain and were classified
as the type I CifB as found in the wMel strain [32]. The cif genes (CifA and CifB) are causative factors
of Wolbachia-induced CI, in which the offspring of infected males and uninfected females are lethal
during development [32,34]. This phenotype allows Wolbachia to spread rapidly throughout the host
populations [11]. However, the MK phenotype induced by wBiau1 and wBiau2 does not allow CI
expression, which requires infected males. Note that the production of infected males by the nuclear
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suppressors against MK should result in CI expression [54]. However, suppressors against MK are not
selectively favoured when the prevalence of MK microbe is low [55], as in the case of D. biauraria
(table 1). Therefore, the potential CI ability possessed by wBiau1 and wBiau2 is not selectively
favoured. The fact that the cif genes remained intact despite substantial genome rearrangements may
suggest that cifs have unknown pleiotropic functions in addition to CI that are adaptive for Wolbachia
(e.g. host protective phenotypes or MK).

3.5. Evolutionary history of Wolbachia infection in D. biauraria
The mitochondrial CO1 sequences of MK lines TM15-28 (W1), TM17-F3 (W2) and SP12F), were distinct
(figure 2k). While the mitochondrial haplotype of DbMKPV1-infected SP12F was identical to that of the
normal sex ratio line TM15-41, the haplotypes of theWolbachia-infected W1 andW2 differed from those of
the DbMKPV1-infected and uninfected hosts and were located at the basal branches in the two distinct
clades. Although we were unable to assess the Wolbachia genomes and mitotypes of the other four
MK matrilines collected in 2015 and 2017 (table 1) due to the loss of fly stocks during laboratory
maintenance, our data suggest that the invasion of wBiau1 and wBiau2 occurred earlier than the
divergence of the two clades.
Sci.11:231502
4. Conclusion
In summary, our study highlights the diverse and rapid evolution of the MK Wolbachia genome through
its interactions with host insects. The two Wolbachia-infected matrilines of D. biauraria carried distinct
mitochondrial haplotypes; therefore, we postulate that the evolutionary history of the MK Wolbachia
genome is shaped by the independent invasion of D. biauraria by wBiau1 and wBiau2.

This study is limited in that it could not establish the selective pressures that have driven Wolbachia
genome changes. Further comparative genomics of closely related Wolbachia strains in a host species and
experimental evolutionary assays, such as studying genome changes after Wolbachia transfer into a new
host, may shed light on their genome evolution dynamics as well as the evolutionary interactions
between Wolbachia and host insects.
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