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ABSTRACT

Unmanned vehicle technology has matured significantly over the last two decades.
This is evidenced by its widespread use in industrial and military applications ranging from
deep-ocean exploration to anti-submarine warfare. Indeed, the feasibility of short-range,
special-purpose vehicles (whether autonomous or remotely operated) is no longer in
question. The research efforts have now begun to shift their focus on development of
reliable, longer-range, high-endurance and fully autonomous systems. One of the major
underlying technologies required to realize this goal is Artificial Intelligence (AI). The latter
offers great potential to endow vehicles with the intelligence needed for full autonomy and
extended range capability; this involves the increased application of AI techniques to
support mission planning and execution, navigation and contingency planning.

This thesis addresses two issues associated with the above goal for Autonomous
Underwater Vehicles (AUV’s). Firstly, a new approach is proposed for path planning in
underwater environments that is capable of dealing with uncharted obstacles and which
requires significantly less planning time and computer memory. Secondly, it explores the

use of expert system technology in the planning of AUV missions.
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I. INTRODUCTION

A. BACKGROUND

The last two decades witnessed significant progress in unmanned vehicle
technology. This, coupled with advances in computer and Artificial Intelligence (AI)
research has increased the likelihood of realizing effective unmanned autonomous
undersea vehicles in the near future. With the maturity in the basic technologies
required, the research focus has begun to shift towards the development of more
reliable, longer range, higher endurance and fully autonomous systems. In line with
these developments, the Naval Postgraduate School (NPS) is currently constructing an
experimental Autonomous Underwater Vehicle (AUV) to support research on the
technology issues related to the above challenge.

In conjunction with research efforts on the vehicle design, previous student thesis
studies [Ref. 1, 2] have also centered on the creation of a "laboratory testbed
environment" for testing AUV mission planning, navigation, and control issues using
simulated environments. The testbed is comprised of a visual simulator (a high-
resolution graphics workstation) linked to a special-purpose Al workstation. The latter
is used for prototyping Al software for mission planning and control while the visual
simulator facilitates 3-D visualization of the AUV behavior during tests. The whole
setup is aimed at providing effective and quick feedback on the results and thus

reducing the overall time and expense of AUV subsystem development.




This thesis is devoted to the investigation of two inter-related issues, namely,
mission planning and path planning for Autonomous Underwater Vehicles, both of
which are issues central to the development of completely autonomous vehicles. In the
process, the laboratory testbed mentioned above is used to demonstrate and validate

the results.

B. MISSION PLANNING EXPERT SYSTEM

Mission plans can be constructed at different levels of abstraction. At the highest
levels, they are mission specifications, detailing the mission objectives, the mission
tasks and the constraints under which the mission is to be executed. At the lower
levels, they list the phases of the mission and detail the tactical actions to be taken in
each phase. The task of transforming the high-level mission specifications to low-level
plans is presently done by the human mission planner. However, with the growing
maturity of expert systems technology, it has become increasingly feasible to develop
systems that automatically perform this translation.

In AUYV applications, a major output of the planning process is the route or path
to be taken by the vehicle. The path derived should be consistent with the high-level
mission objectives and, in particular, should satisfy the mission constraints. The
complexity of this task depends on the number and type of constraints. The latter can

be imposed by the vehicle, by the environment in which it is to operate, and by the




nature of the mission. Vehicle-related constraints result from the physical
characteristics of the vehicle (such as size and weight), its dynamics (and hence
maneuverability), and the degree of control available. Environmental constraints can
be natural or man-made; for instance, a minefield presents as much an obstacle to a
vehicle as rough undersea terrain. Finally, the nature of the mission refers to factors
such as the time-urgency of the mission, the need for stealth (detection avoidance) or
for threat avoidance.

Fortunately, many path-search algorithms exist in the Al field [Ref. 3, 4, 5, 6, 7,
8], each having its inherent advantages and disadvantages. As will be explained in the
next section, some algorithms provide optimal shortest path solutions, while others
minimize the time required for planning. However, since it is inappropriate for the
human planner to be thoroughly familiar with the characteristic strengths and
weaknesses of all available algorithms, the use of an automated planning tool would
be highly desirable. This thesis explores one approach to designing an expert system
that selects the best path-planning algorithm for the mission, based on the projected

balance between mission factors such as time, energy, risk, etc.




C. PATH PLANNING
1. ROUTE PLANNING vs PATH PLANNING

Path planning aims at deriving a well defined path for the vehicle that
satisfies the constraints and requirements of a mission. This can be done in two stages,
first at the macro-level and then at the micro-level. In order to differentiate between
the two, henceforth, the macro-level path planner shall be referred to as the route
planner, and the micro-level route planner as the path planner. Macro-level route
planning takes a macroscopic view of the area of operation by partitioning it into
regions such as sonobouy fields, unnavigable areas, minefields, search areas, and so
forth. To do this, a priori intelligence information concemning the environment may be
required. The best route, made up of a sequence of joined path-segments passing
through or avoiding specific regions and satisfying the high-level mission objectives
and constraints, is then determined and selected from among possible alternatives.

The requirement for a micro-level path planner is dependent on the agent

that will ultimately traverse the route. By agent is meant some entity capable of

- independent motion along a given path. If the agent is man, then the output of the

route planner would be sufficient. However, for a land-based autonomous robot or
vehicle, for instance, this is inadequate since it must also account for micro-level
problems such as avoiding pits, local steep slopes and physical objects along the path.

Thus the role of the path-planner is to derive a detailed path for each path-segment of




the route chosen. This can be done in the pre-execution phases and then modified as
necessary during execution whenever unforseen events or obstacles are encountered.
2. SEARCH METHODS IN PATH PLANNING

Invariably, some form of search [Ref. 9] technique in the Artificial
Intelligence domain is employed in path-planning. Search can be defined as the
systematic exploration of the different possibilities that potentially offer a solution.
Many search strategies exist, the classical ones being Depth-first, Breadth-first, Best-
first, A* [Ref. 9, 10], etc. Variants of these have also been used in numerous
applications. In determining the suitability of a search technique, there are two
important application-related factors which must be considered - the size of the search
space and the availability of a priori information conceming the environment.

The practicality of a search method is highly dependent on the size of the
search space because of the physical limitations in the computational time and space
resources of a computer. For instance, exhaustive search techniques, such as the
_ breadth-first strategy, are not practical for applications with a large search space.

One measure of the size of a search space is the branching factor [Ref. 9,
10}, which is defined as the average number of alternatives at each decision point or
node (the average number of successors possessed by each node) in a decision tree.
For instance, in a 2-dimension path-planning problem, each position on a rectangular

grid has 8 neighbors resulting in a branching factor of 8. Heuristics are often used to




reduce the branching factor, thereby making feasible an otherwise impractical
technique. In the underwater environment, however, the problem is compounded by
an additional dimension. Unlike two-dimensional path-finding problems, each location
on a three-dimensional grid has 26 altematives (Figure 5.1). A massive but intelligent
pruning of the search tree is therefore required, if a technique is to be viable.

The second factor - the availability of a priori information conceming the
environment - partitions search methods for path-planning into two categories:

1. Methods which require a priori terrain/environment information. Most
classical search techniques and their variants fall exclusively under this category.

2. Methods which do not require such a priori information. The methods
in this category inevitably, require some form of sensing devices, such as vision
sensors, ultrasonic sensors or contact sensors. In reality, situations possessing complete
a priori information on the environment or terrain are few. Even where a priori
information is available, such data may not be accurate or complete due to the
dynamic nature of the environment. Examples include enemy territory and uncharted
areas. Thus, if vehicles are to be completely autonomous, they must be endowed with
the capability to perform without complete information. Published work relating to this

area is scarce.




D. SCOPE OF THESIS
This study is focussed specifically on three objectives:
1. To present the software design of a mission planning expert system which
transforms high-level mission specifications into detailed low-level plans.
2. Todevelop a viable path-search strategy for underwater environments, called
Heuristic Search.
3. To compare the performance of 3 different search strategies for path

planning, namely, Best-first, A*, and Heuristic search.

E. THESIS ORGANIZATION

Since this thesis has two distinct parts, namely, the design of a Mission Planning
Expert System, and the design of Heuristic Search strategy for path-planning, this
thesis document could either adopt a bottom-up or a top-down approach to describing
the work. After much deliberation, it was decided that a top-down approach would be
advantageous in helping the reader to better appreciate the low-level details of path
planning, if an overview of the system is first presented.

Chapter II reviews previous and ongoing work in the area of mission planning
and control for AUV’s, and in the area of path planning search methods. In particular,
the different system architectures that have been proposed for mission planning and

control are briefly described.




...,

Chapter III presents a detailed problem statement for this thesis. First, the
physical characteristics of the current vehicle and the proposed control architecture are
discussed in order to provide an overview of the system. The models and assumptions
on which this thesis is based are then presented together with a description of the
laboratory testbed simulator.

Chapter IV presents the intemals of the Mission Planning Expert System. It

expounds on the top-level software architecture and explains how each entity is

represented within the system. It then proceeds with a description of the detailed
design for each functional component. Finally, the reader is led through an illustrative
example of how a specific mission is planned using the Mission Planning Workstation
developed.

Chapter V describes the methodology of the Heuristic path-search strategy. It
explains each component concept in detail, and shows how it influences the vehicle’s
decision on the path to take to reach the goal. Chapter VI follows up with a
comparative study of the three path-search strategies, namely A*, Best-first, and
Heuristic search. The detailed results of several simulations, which were run in order
to derive their relative performances, are presented.

Finally, Chapter VII summarizes the contributions of this thesis and suggests

further extensions to the project.
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II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

The ultimate research goal in the area of mission planning and control for AUV’s
is to enable a vehicle to operate autonomously without human intervention in its
fulfillment of a given mission. This can only be achieved if the vehicles are endowed
with the inteiligence required to respond to, or deal with, unforseen situations. The
realization of such behavior involves automating some of the important high-level
functions, such as planning, planning-control, and decision-making, which are
ordinarily undertaken by a human planner. To satisfy this objective, the ardent efforts
of the AUV research community have resulted in a variety of innovative strategies and
corresponding system architectures for mission planning and control. The major ones
are discussed in this chapter.

In the domain of path planning and navigation for autonomous vehicles in
general, as will be seen, much of the early research work relied on several
fundamental premises. Firstly, most previous research is targeted for robotic
applications in two-dimensional environments. Secondly, all obstacles are typically
approximated by polyhedral shapes to simplify the algorithm. A third fundamental

assumption is that a priori information on the environment is available; where this is




untrue, the algorithms proposed require the robots to first "learn" about the
environment, and to form its own model conceming the world [Ref. 11}, prior to

actual navigation.

B. ARCHITECTURES FOR MISSION PLANNING AND CONTROL
1. BLACKBOARD BASED SYSTEMS

In recent years, there has been considerable interest in the use of
"blackboard” architectures as the structural design paradigm for knowledge-based
control architectures onboard AUV’s [Ref. 12, 13, 14]). The methodology derives its
name from the organized global data space where all system data is placed: the
blackboard. An example is the ongoing research work at the Marine Systems
Engineering Laboratory (MSEL) at the University of New Hampshire [Ref. 12], where
a Blackboard Control Architecture (BCA) is used for an experimental AUV route
planner, named the "Supervisor”. The focus of the work is on route planning. Given
a high level mission specification consisting of an unordered list of way-points to visit
- and surveys to run, the system works out a route connecting the mission tasks and
issues intermediate level motion commands that describe the route.

The Supervisor views a route problem as two distinct problems: the domain
problem of actually planning a route and the control problem of how to go about

planning the route. Thus, a dual blackboard architecture is used to separate the two,

10




resulting in two distinct components in the system: the route planning subsystem and
the control planning subsystem. Each component is comprised of a blackboard and a
pool of knowledge sources. The knowledge source pools possess the procedural
knowledge while the data generated and used by those knowledge sources is "written"
on the blackboards. A knowledge source is an independent process that acts as a
specialist in some particular area of the problem. Knowledge sources have a
condition/action format. They "trigger" and become executable if their conditions
evaluate to true, in which case, a Knowledge Source Activation Record (KSAR) is
generated and stored in an agenda of KSARs waiting to be executed. When selected
for running, the action portion is executed and any output from it is posted either as
new information or as an update on the blackboard. This posting or modification on
the blackboard is referred to as an "event”.

The system solves the route planning problem in the following manner. The
user posts a mission specification on the control blackboard as an input. The system
_then attempts to trigger the knowledge sources based on that event. If one or more are
triggered, only one is selected and executed generating one or more new events. These
new events in turn cause other knowledge sources to be triggered, and perhaps
execute. An "independent cooperation” among the knowledge sources ensues with
knowledge sources triggering on events, executing their actions (one knowledge source

per inference cycle), and posting the results of their actions on either blackboard. The

11




route planning knowledge sources work out the details of the mission path and the
control knowledge sources specify the order of route planning knowledge source
exccution. The solutions to both problems are incrementally generated on the
blackboards and the final output of the Supervisor is a set of motion-commands pairs
such as "goto x y z; do operation xxx".

At the heart of the control mechanism is the scheduling strategy used to
choose the next KSAR from the agenda for execution. The scheduler plays a crucial
role in influencing the outcome of the plans since it determines the planning behavior
(i.e., the process by which the system generates the solution). Two strategies are used
in the Supervisor, namely, successive refinement and Last-In-First-Out (LIFO)
strategies. Successive refinement strategy directs the domain problem solution through
its abstraction levels from the most abstract down to the most detailed so that
knowledge sources at the higher abstraction levels have greater priority for execution.
The LIFO strategy simply chooses the most recent KSAR for execution.

The Supervisor is currently designed to adopt one of the two strategies
based on only one context parameter, namely, the time available to plan the mission
which is part of the mission specification. If the allowable planning time is greater
than a limit, successive refinement is chosen, otherwise the default LIFO strategy is
used. This policy is adopted because results show that successive refinement strategy
takes longer time to plan than LIFO and is thus less desirable when allowable

planning time is low.
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Currently, there are several issues that are not (yet) addressed by the
system. Factors such as energy, risk, need for stealth and detection avoidance, etc.,
which are usually critical to a mission have not been considered. Moreover, the route
planner assumes way-points are given, so that the problem reduces to one of
sequencing them instead of deriving them from a priori environmental knowledge.
Perhaps the more important questions relate to the architecture itself. Mayer [Ref. 15]
points out several potential shortfalls with regard to blackboard architectures for
mission control:

1. Lack of predictability, traceability and reliability of operation.

2. Inability to scope the effect of the data generated in the reasoning

process.

3. High levels of communication traffic in a loosely coupled architecture.

4. Explosive increase in complexity of the "scheduler” as the number

and complexity of the knowledge sources increases.

5. Inability to implement effective system level error detection and

recovery procedures.
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2. SITUATION BASED CONTROL ARCHITECTURE

This concept evolved from the blackboard architecture, apparently to effect
a larger distribution of the knowledge based control components to different hardware
processors, and to facilitate easier partitioning of knowledge sources along functional
lines. A prototype Knowledge Based Control System (KBCS) for an AUV, based on
this idea has been implemented at Texas A&M University to demonstrate its feasibility
[Ref. 15].

The KBCS design revolves around the idea of a situation based architecture.
This concept partitions the problem space into non-overlapping regions called
situations. A situation encapsulates the rule sets, domain and declarative knowledge
required to make the decisions, judgements, and actions required of the reasoning
component in the corresponding part of the problem space. Situations can arise from
either external or intemal events, or combinations of the two. An entity called the
Anticipator is responsible for monitoring the ongoing events and to "trigger" when
certain scenarios such as "threat detection” or "mission replanning" occurs. When they
trigger, the appropriate situation is retrieved from a situation database; the latter in tum
triggers the actions of the various knowledge source components to deal with the
situation.

In the prototype developed, the knowledge source components correspond
roughly to the major functions of a submarine crew. Each component is hosted on a

separate Symbolics 3640 machine and interconnected via an ethemet network. Five
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systems were developed, namely, the Skipper, the Navigator, the Engineer, the
Diagnoser and the Facilitator. The Diagnoser is responsible for monitoring the other
subsystems and to initiate recovery procedures when any failure occurs, while the
Facilitator serves the inter-subsystem communication needs.

In a mission planning situation (or scenario), the Skipper, who is generally
responsible for strategic and tactical planning, would request a path from one location
to another from the Navigator. If a path can be found, a series of constrained paths
will be tested. For example, the Skipper may order a path that will avoid standard
shipping lanes. The Navigator will then search for a path that satisfies the constraints.
When a path is retuned to the Skipper, the Engineer is requested to perform a
resource analysis for the path. The latter is essentially another constraint on the path
(fuel) that must be considered before a final selection is made. After obtaining one or
more constrained paths from the Navigator, The Skipper selects the mission plan that
best satisfies the mission goals. All this time, the Facilitator serves the inter-subsystem
communication needs.

Thus, unlike the blackboard approach where a single event triggers
individual knowledge sources and where the knowledge sources reason independently,
this approach relies on the anticipation of situations (based on a collation of one or
more events) to trigger the cooperative actions of all the knowledge sour-=s to deal

with the task.
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3. VALUE-DRIVEN HIERARCHICAL STRUCTURE

This approach to automating mission planning and control was first
conceived at the University of New Hampshire under the NBS-UNH AUV program
[Ref. 16]. The methodology emphasizes onboard planning and decision making in
order to respond to unexpected events that may require major revisions in the mission
route or plan, including decisions to omit some tasks originally planned for the
mission.

The central contribution of the research is idea of a value-driven approach
to decision making as opposed to rule-based decision making. In this approach, the
critical mission factors such as vehicle survival, energy constraint, the time urgency
for accomplishment of each task, the need for stealth, etc., are identified. For each
factor, a value-priority indicating its criticality to the overall mission success is
specified by the user. For instance, a value for the vehicles is used to assess the
desirability of plan altematives that may involve high risk to individual vehicles, or
even the deliberate sacrifice of a vehicle, while a value of stealth for the mission
. would indicate the priority assigned to the avoidance of detection during the execution
of the mission, and so forth., Each of the altemative plans is then evaluated in terms
of the value criteria (or mission priorities) and the decision is completed simply by
selecting the single altemnative that shows the best projected score.

Except for resource-related constraints, all value-priorities are specified by

the user. Resource constraints such as time and energy are treated differently since
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their usage (and thus, their value-priorities) can be varied as long as the total
consumption of these resources does not exceed the supply. Using the latter condition,
Lagrangean optimization techniques are applied to search for possible parameters
(comprising the set of priorities as well as the sequence in which the mission tasks are
to be executed) that gives optimal or near-optimal candidate plans with regard to the
overall mission score. Each possible set of priorities is fed to a set of "outcome
calculators” which provide the projected score for the plan.

The process ends with the selection when either a clearly satisfactory
alternative has been identified, or when the available time for a decision has been
exhausted. The output of the planner is the (macro-level) route for the vehicle and the
tasks to be performed in sequence. The key to intelligent behavior in this approach lies
in the correspondence of the valuative criteria with the higher-level objectives; the
replanning that is performed whenever unanticipated circumstances occur enables the

system to respond "intelligently".

‘C. PATH PLANNING ALGORITHMS
1. NAVIGATION FOR AN INTELLIGENT MOBILE ROBOT
An algorithm described by Crowley [Ref. 3] is designed for a mobile robot
equipped with a rotating uitrasonic range sensor in a two-dimensional environment.
This navigation system is based on a dynamically maintained model of the local

environment, called the composite local model. The composite local model integrates
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information from the rotating range sensor, the robot’s touch sensor, and a pre-leamed
global model as the robot moves through its environment. This work describes
techniques for constructing a line segment description of the most recent sensor scan
(the sensor model), and for integrating such descriptions to build up a model of the
immediate environment (the composite local model). The estimated position of the
robot is corrected by the difference in position between observed sensor signals and
the corresponding symbols in the composite local model. Crowley also describes a
learning technique where the robot develops a global model and a network of places.
The network of places is used in global path planning, while the segments are recalled
from the global model to assist in local path execution. The system is useful for
navigation in a finite, pre-learned and man-made environment such as a house, office,
or factory.
2. ROBOT NAVIGATIONIN UNKNOWN TERRAIN USING LEARNED
VISIBILITY GRAPHS
This algorithm, as described in [Ref. 4], deals with the problem of
navigating an autonomous vehicle robot through unexplored terrain containing
obstacles. A two-dimensional terrain, arbitrarily populated by disjoint convex
polygonal obstacles, is assumed. The algorithm is proven to yield a convergent
solution to each path of traversal. Initially, the terrain is explored using a rather
primitive sensor, and the paths of traversal made to be near-optimal. The visibility

graph that models the obstacle terrain is incrementally constructed by integrating the
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information about the paths traversed so far. At any stage of learning, the partially
leamed terrain model is represented as a learned visibility graph, and it is updated
after each traversal. This work proves that the leamed visibility graph converges to the
visibility graph with a probability of one when the source and destination points are
chosen randomly. Ultimately, the availability of the complete visibility graph enables
the robot to plan globally optimal paths and also obviates further usage of sensors.
3. LEARNED NAVIGATION PATHS FOR A ROBOT IN
UNEXPLORED TERRAIN
This algorithm is presented in [Ref. 5]. A method of robot navigation is
proposed, which requires no pre-leamned model, makes maximal use of available
information, records and synthesizes information from multiple joumeys, and contains
concepts of leaming that allow for continuous transition from local to global path
optimum. Their model of the terrain consists of a spatial graph and a Voronoi diagram.
Using acquired sensor data, two-dimensional polygonal boundaries are used to
approximate the actual obstacle surfaces, free space for transit is correspondingly
reduced, and additional nodes and edges are recorded based on path intersections and
stop points. Navigation planning is gradually accelerated with experience since
improved global map information minimizes the need for further sensor data
acquisition. The method assumes that obstacle locations are unchanging, that
navigation can be successfully conducted using two-dimensional projections, and that

sensor information is precise.
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4. AUTOMATIC PATH PLANNING FOR A MOBILE ROBOT USING
A MIXED REPRESENTATION OF FREE SPACE

This algorithm, proposed in [Ref. 6], uses a mixed representation of free space
in terms of two shape primitives: generalized cones and convex polygons. Given a set
of polygonal obstacles in space, the planning algorithm first identifies the
neighborhood relations among obstacles and uses these relations to localize the
influence of obstacles on free space description, and then locates critical "channels"
and "passage regions" in the free space. The free space is then decomposed into non-
overlapping geometric-shaped primitives where the channels are represented as
generalized cones similar to those introduced by Brooks |Ref. 7]. The passage regions
are represented as convex polygons. Based on this mixed representation of free space,
the planning algorithm uses two different strategies to path plan trajectories inside the
channels and passage regions.

5. HEURISTIC TWO-DIMENSIONAL NAVIGATION ON ROUGH
TERRAIN WITH OBSTACLES

The algorithm is described in [Ref. 8]. It is designed for autonomous land

vehicle navigation in situations where no a priori terrain information is available. The
method models the terrain as a regular two-dimensional grid system with height
information stored at each cell. Thus, the path search uses the traditional eight-
neighbor search strategy. The path search process is guided by a set of heuristics
intended to mimic closely what a human navigator would do in similar circumstances.

In the implementation, these heuristics are represented as mathematical functions. For
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instance, the heuristic to "move toward the destination whenever possible” is captured
in an estimation function, while the rule "try not to visit the positions already
explored” is represented by a path-marking function. A significant contribution of the
work is in the area of obstacle clearance; conceptually, whenever obstacles are
encountered by the vehicle, it is made to detour along the periphery of the obstacle
until the latter is cleared. Results show that for flat or moderately sloped terrain, the
method provides an almost optimal path (in terms of energy required), while highly
sloped terrain yields reasonable paths. It is also highly efficient in the usage of
computer CPU and memory resources. This approach forms the basis of the Heuristic

search developed in this thesis for three-dimensional underwater environments.

D. SUMMARY

This chapter provides a broad survey of research work that has been done in the
area of mission planning and control for Autonomous Underwater Vehicles, and in the
area of path-planning in general. Three different system architectures for mission
planning and control are examined - Blackboard Based systems, the Situation Based
Control Architecture and the Value-driven Hierarchical Architecture. In the area of
path-planning, previous research has concentrated on two-dimensional path-planning
with little attention given to three-dimensional problems. In particular, the methods
surveyed are targeted for land-based vehicular and robotic applications. Published

work on path-planning for underwater environments is scarce.
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III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This thesis further advances the evolutionary development of an automated
mission planning and control system for the NPS-AUYV program. A key feature of the
mission planning expert system developed is its ability to select an appropriate path-
search strategy for a particular mission. The output of the system is a detailed path
specification that fulfills the mission requirements and constraints. The path is
constructed using one of three alternative path-search methods, namely, A*, Best-first,
or Heuristic search. In particular, Heuristic search is proposed as a new path-search

strategy for autonomous vehicles in three-dimensional underwater environments.

B. NPS AUV PHYSICAL CHARACTERISTICS

The current vehicle is called the "NPS Model 2 AUV" and is based to a
" considerable degree on the earlier, smaller Model 1 AUV described in [Ref. 17]. The
overall appearance and layout of the Model 2 AUYV is shown in Figure 3.1. As can be
seen, the vehicle has a rectangular cross-section and is fumished with four forward
control surfaces and four aft control surfaces, as well as four tunnel thrusters. These

thrusters, combined with the two aft screws, provide the vehicle with active control
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of five degrees of freedom in a low speed hovering mode, with only the roll degree
of freedom being passively controlled. When the vehicle is operated in its
higher-speed transit mode, thrusters are not used and all six degrees of freedom are
actively controlled using the aft main screws for propulsion and hydrodynamic forces
on the control surfaces to achieve commanded rotational rates in roll, pitch, and yaw.
The total weight of the vehicle is 387 lbs and its length is 93 inches.

As can also be seen from Figure 3.1, the Model 2 AUV is battery powered and
contains two on-board computers, a Gridcase 80386 based laptop computer, and a
Gespac 68030 based real-time control computer. The Gespac computer is fumished
with depth and speed sensors, a complete suite of inertial sensors (3 rate gyros, 3
accelerometers, vertical gyro, directional gyro, and flux-gate compass), and a sonar
system for obstacle avoidance and bottom sounding. As indicated in the figure, the
latter system consists of four fixed-base pencil-beam sonar rangers mounted in a
flooded fiberglass nose cone. One sonar beam looks downward at 45 degrees, another
forward, and the other two are aimed diagonally to the right and left of the forward
looking beam. It is currently anticipated that the Gridcase computer will be
programmed in Common Lisp and will run under the MS-DOS operating system while

the Gespac computer will be programmed in C and will run under OS-9 [Ref. 18].
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C. CONTROL SYSTEM ARCHITECTURE

Figure 3.2 shows the current system architecture which depicts how the vehicle
mission planning, mission control, and vehicle control functions are divided. Although
the hierarchical structure is inherited from previous thesis work [Ref. 1, 2], some
major re-organization and enhancements has been made. In particular, the previous
mission selection supervisor has been replaced by a mission planning expert system
at the Mission Planning level, which is the focus of this thesis.

The figure is subject to multiple interpretations depending upon what computers
host the software. Currently, at the time of writing this thesis, the Mission Planning
and Mission Control levels reside in a Symbolics 3675 Lisp machine, while the
Vehicle Control level and the simulation of the vehicle and environment are
implemented in a Silicon Graphics Iris 4D/GT graphics workstation. Figure 3.3 shows
a typical image from a simulated mission using the latter system.

The next stage in the development of the software system of Figure 3.2 will
involve downloading of Mission Control software into a laboratory duplicate of the
on-board Gridcase computer. Simulated missions will then be run in the laboratory
with the SGI graphics workstation function unchanged from its role in the current
stage of software development. It is expected that this mode of operation will represent
a stable configuration for mission planning for the Model 2 AUV. That is, it is
anticipated that on-board mission control software will in general be mission
dependent and that, before being installed in the vehicle, all such software will be

tested initially in the laboratory on a duplicate Gridcase computer.
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Figure 3.3 Graphical Display of Simulated AUV and Test Pool

The third interpretation of Figure 3.2 is that Mission Planning software will be
hosted on a smaller delivery system Lisp machine, currently a Texas Instruments
Micro-Explorer. This system will be portable and will be part of the AUV pre-launch
checkout and initialization system. In this case, Mission Control software will be
automatically generated and downloaded to the AUV just before launch. In this
configuration, Vehicle Control level software, implemented in C, will have previously
been installed in the Gespac real-time control computer. It is expected that the latter

software will be relatively stable and generally not mission dependent.
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At the time of this writing, only the first interpretation of the software system
for the Model 2 AUV is fully operational. Moreover, much remains to be done to
further expand this system to better support meaningful AUV operations. In parallel
with this activity, work is also under way to realize the second and third
interpretations. This thesis, however, is confined to the Mission Planning software at

the Mission Planning level.

D. MISSIONS

The Defense Advanced Research Projects Agency (DARPA) has identified over
70 military missions especially suited for AUV execution {Ref. 2, 20]. The current
stage of development of the system considers only a minute subset of these, and
classifies them under four categories: routine, charting, covert, and intelligence
missions. Further, although multi-task missions are common, this study assumes only
single-task missions with the following generic three-phase structure: transit from start
to a goal location, perform task upon reaching destination, and then retumn to the start
location. The high-level mission specifications considered are: available planning time,
mission depth, mission threat level (stealth requirement), and mission range (computer
resource requirements). Other constraints implicit in all missions include obstacle
clearance and collision avoidance.

In order to validate the performance of the expert system and the path-search
strategies, a generic test mission template, called Transit Pool, has been defined in
which the area of operation is the proposed test site for the actual vehicle, namely, the
NPS swimming pool. Given the start and goal locations in the pool and the mission

specification, this mission requires the system to construct a detailed path using an
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appropriate path-search method; the vehicle is then required to navigate itself in
accordance to the path derived, and to maneuver around obstacles placed in its path.
However, prior to actual in-water tests, several simulated executions under varying

mission specifications must first be performed using the AUV laboratory testbed.

E. PATH PLANNING ASSUMPTIONS
1. ENVIRONMENT MODEL

In this study, the environment is the NPS swimming pool. The latter is
modelled by a 3-dimensional Cartesian coordinate system with the X-Y plane parallel
to the surface of the pool and the Z-axis pointing towards increasing depth of pool
(Figure 3.4). Each unit of the X and Y-coordinate is 70 inches (corresponding
approximately to the length of the vehicle), while each unit of the Z-coordinate is 10
inches (corresponding approximately to the height of the vehicle). Henceforth, the
units shall be referred to as the grid units, and the coordinate system as the path-
planning coordinate system, the grid system or simply the grid.

In this model, a three-dimensional unif cell with unit length on all sides
is defined. Note that this cell is not a cube because one unit Z-coordinate is shorter
than one unit X or Y-coordinate. This then becomes the resolution of the environment
as all locations are resolved to a unit cell at the specified (x,y,z) coordinate.

Another assumption is that the underwater environment is homogeneous
all round; that is, changes in pressure, temperature, density and viscosity of fluid,
which affect the resistance to vehicle movement are not modelled. Thus, the energy

cost per unit distance is constant everywhere in the environment. Note, however, that
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the cost rate for vertical movements and that for horizontal movements may still be
different, since these are vehicle-related rather than environment-related constraints.
2. OBSTACLE MODEL

Only static obstacles are modelled, although the heuristic search
algorithm can be extended to handle dynamic obstacles [Ref. 8]. The smallest size of
an obstacle is a unit cell, and larger objects are approximated by a lego-style assembly
of multiple unit cells.

One problem inherent in vehicle dynamics which is addressed in the
obstacle model is that there is always a finite distance required to bring a moving
vehicle to a halt, as well as some finite radial distance associated with any vehicle
tums. For instance, it would not be realistic to expect the vehicle to head straight for
an object and then make a sharp dive or tum without hitting it. To circumvent the
problem, a concept called obstacle-growing is adopted [Ref. 21]. The obstacle-growing
process increases the size of the obstacles by one unit cell all round its periphery.
Thus a virtual obstacle is created which is larger than the real obstacle. In the
subsequent discussions and figures shown, real obstacles are implied, unless explicitly

stated.
3. VEHICLE MODEL

The following conceptual model of the vehicle is assumed:

1. The size of the vehicle is approximately the unit cell size of the

environment.

2. The vehicle remembers all the places it has visited.
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3. It expends a certain amount of energy whenever it moves from its
current location to a new position.
4. 1t tracks its own position with absolute accuracy.
4. SENSOR MODEL

This sensor model is not applicable to A* and Best-first search methods,
since they require complete a priori information. For Heuristic search, the sensors must
facilitate the building of a model of its immediate surrounding environment. More
accurately, it is assumed that the onboard vehicle sensors are able to sense the
surrounding environment defined by a rectangular boxed region with dimensions (5
x 5 x 5) grid units, with the vehicle at the center. Note that it would not be sufficient
for the dimensions to be (3 x 3 x 3) grid units; this is because the vehicle must be able

to sense at least two grid units all around itself in order to detect a virtual obstacle.

F. SIMULATION FACILITIES

As mentioned in Chapter I, a laboratory testbed environment has been
developed as a result of previous thesis work. This testbed is configured from three
separate systems: a Symbolics 3675 LISP machine, a Symbolics Color Monitor and
a Silicon Graphics IRIS 4D/70GT graphics workstation. The LISP machine together
with the Symbolics Color Monitor is set up as the Mission Planning Workstation; the
former hosts the Mission Planning software, while the latter is used to display the
dcrivcd path (as well as the actual path during execution phase) in two-dimensional
plan and side-elevation views of the NPS pool. The IRIS graphics workstation is for

3-D visualization of the vehicle and environment during mission execution. The
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Mission Planning Workstation and the IRIS workstation communicate via an ethernet
network using TCP/IP protocol.

In parallel with the mainstream work of this thesis, the C-code for the IRIS
graphics has been significantly enhanced. First, the code has been modularized to
facilitate easier maintenance in the future. Secondly, the display of the swimming pool
has been modified to reflect the actual dimensions and, in particular, the tapering
depth of the pool is shown. Thirdly, all objects in the display such as the pool and the
vehicle itself has been converted to an Object File Format (OFF) [Ref. 22], again to
facilitate easier modifications in the future. Lastly, the new NPS Model 2 AUV has
been added to the display. These changes were necessary not only as an upgrade of

the simulator, but also to bring it on par with the current status of the overall project.

G. SUMMARY

This chapter discusses in detail the problems addressed by this thesis. The
current vehicle characteristics are described; in particular, the planned incremental
realization of its control architecture is highlighted. The basic underlying assumptions
for the development of both the Mission Planning Expert System and the path-search
strategies are also listed and described in detail. They include assumptions concerning
the type of missions considered, the environment and obstacle models, and the vehicle
and the sensor models. Finally, the role of the laboratory testbed used in this thesis is

explained.
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IV. MISSION PLANNING EXPERT SYSTEM

A. SOFTWARE ARCHITECTURE OVERVIEW

The Mission Planning Expert System (MPES) is physically hosted on a
standalone Symbolics 3675 Lisp machine. Conceptually, it resides at the mission
planning level (Figure 3.2). The internal structure of the system, as shown in Figure
4.1, is essentially hierarchical and is pattemed after the progressive phases of a
mission, namely, the initiation, planning, construction, and execution phases. The
system has been developed entirely in the KEE expert system shell [Ref. 23]; the
corresponding KEE knowledge base is shown in Figure 4.2.

In this architecture, control of the planning operation is centralized at the top-
level Mission Planning Controller (analogous to a real-life Mission Commander) which
is designed to oversee the entire mission and to enforce an orderly transition from one
phase to another. In addition to the Controller, there are four other distinct elements
or role-players in the system corresponding to the four main mission phases. They are
the Mission Receiver, the Mission Planner, the Mission Constructor and the Mission
Executor. Of these, the latter three are charged with the core mission planning and
tasks, and are collectively referred to as the Mission Planning Agents. Communication
between individual elements is effected by means of formal documents realized as

KEE units [Ref. 23].
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The Mission Receiver is solely responsible for interacting with the User
conceming the mission orders (specifications). This is done, during the initiation
phase, via the Mission Planning Workstation described in Section D of this chapter.
When the orders have been completed, control is passed to the Mission Controller
which then initiates the actions of the Mission Planning Agents. The first of these
agents, the Mission Planner, is a key element in the system; it embodies the essential
"intelligence” or "knowledge" for deciding the most appropriate path-search strategy
to be used, based on the current mission constraints. The Planner’s decision is
currently based on three main parameters, the range of the mission (determined from
the start and goal coordinates), the time available for planning the mission, and the
threat level of the mission. The design of the rule-based Planner is described in greater
detail in Section C of this chapter. Once the path-search strategy has been decided, the
decision is registered in the Construction Orders document and passed to the Mission
Constructor.

The Mission Constructor is currently equipped with three search methods or tools,
as shown in Figure 4.2, under the Mission Constructor. They are the A* search,
Best-first search [Ref. 9, 10], and Heuristic search methods, all of which perform
three-dimensional grid-based search. Among these methods, only A* is guaranteed
to produce an optimal path. Best-first search produces generally good (but not always

optimal) paths with less time and space than A*, while heuristic search provides only
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reasonable paths, but does so very quickly. These generalizations are justified based
on the results of a series of tests conducted to evaluate their performance (described
in Chapter VI).

Upon initiation by the Controller, the Mission Constructor proceeds to construct

the detailed path using the selected search method and the off-line environmental

database. In this process, it ensures that all operational requirements with regard to
threat avoidance, operating depth, etc., as well as any restrictions in vehicle motion,

¢ are considered. The output from the Constructor is the Mission Details document
containing the low-level execution details of the mission. Currently, it contains the
path definition (which is a series of way-points in the path) and the activity to be
performed upon reaching the target/goal location. This document is passed to the
Mission Executor for the next stage of the mission - the execution phase.

The role of the Mission Executor is to interface between the MPES at the
Planning level and the on-board computers at the Mission Control level. In actual
missions, it downloads the planned Mission Details to the AUV for execution, when
commanded by the Controller. In the laboratory setup, however, it is designed to drive
the AUV simulator running on the SGI graphics workstation; that is, it emulates the
Mission Control level function by monitoring and controlling the simulated vehicle as

it navigates along the prescribed path.
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B. REPRESENTATION OVERVIEW

As mentioned, the MPES is implemented using the KEE expert system shell.
Thus, the five distinct role-players in the system as well as the three documents shown
in Figure 4.1, are implemented as KEE units. A KEE unit is a basic entity in the KEE
environment. It is a block of Lisp code similar to an instantiation of a Common Lisp
class [Ref. 24], but with added functionality. Specifically, unit slots in KEE can hold
procedures (or functions) called methods, and not just attributes or components as in
Common Lisp. This feature of KEE produces a more explicit encapsulation of methods
with objects than is provided for by CLOS, the Common Lisp object standard [Ref.
25].

KEE units which make use of methods in their slots are procedural or method-
based units. KEE units, however, can also be rule-based; these are units that contain
rules rather than methods. Rule-based units are employed for functions which are not
suited for an algorithmic solution. Planning, for instance, is a rather unstructured and
poorly understood problem -- and in particular, mission planning. The same is true for
a generalized mission controller which makes decisions based on dynamically
changing situations; for instance, decisions to skip a mission phase, or to abort the
current mission phase in order to begin re-planning due to unforseen circumstances -
such decisions usually involve a great deal of judgement, and the reasoning and

analysis process is generally unstructured. Employing rule-based reasoning in these
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areas also facilitates understanding by human experts. For these reasons, the Mission
Planning Agent and the Mission Controller are implemented as rule-based units.

On the other hand, the Mission Receiver, Constructor and Executor are
implemented as method-based KEE units because they execute well-defined tasks with
completely defined input and output. They possess slots containing procedures which
perform their tasks. Lastly, the three documents are simple units with slots meant only

for data storage.

C. THE MISSION PLANNER

The central role of the Mission Planner agent is to decide which of the available
search methods would best fulfill the given mission requirements. In order to reach
this decision, it works with three specialists: the Knowledge Processor, the Voters, and
the Decision Maker, which are realized as three different rule sets operating under the
Mission Planner. The Mission Planner controls the operations of these three
specialists by providing information to and receiving processed information from them
sequentially.

The interactions between the planner and the specialists are shown in Figure 4.3,
First, the Mission Planner makes the Mission Orders available to the Knowledge
Processor and initiates its operation. The latter processes the high-level information

and transforms them to "intermediate knowledge"” that is readily understood by the
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Voters. When this processing is completed, the Mission Planner receives the
"intermediate knowledge" from the Knowledge Processor and passes it to the Voters.
The Voters correspond to the intermediate knowledge - each Voter provides voting
values to the search methods according to its strength or weakness in the relevant area
of the path-search process. Upon receipt of the voting values from the Voters, the
Mission Planner initiates the operation of the Decision Maker. The Decision Maker
then makes a decision based on the voting values and the "credibility" of the
individual voters, and sends its decision to the Mission Planner. Finally, the Mission
Planner generates the Construction Orders on the basis of that decision. The following
sub-sections describe the implementation of the three specialists in greater detail.
1. THE KNOWLEDGE PROCESSOR

As its name suggests, the Knowledge Processor processes knowledge -
specifically, it transforms the high-level information contained in the Mission Orders
to "intermediate knowledge" that is understood by the Voters. Intermediate knowledge
. here, refers to the degree of criticality associated with the factors pertinent to path
planning, such as the time and space constraints, and the optimality of the path
required. The transformation is done in two stages: first, it processes the Mission
Orders, and then it generates the intermediate knowledge on the basis of the first step.

A total of 15 rules are used - three for the first stage and the rest for the second stage.
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a. Processing the Mission Orders

The following three rules are used to first process the Mission Orders:
"Mission.Range.Rule", "Space.Constraint.Limits.Rule", and "Plan-
ning.Time.Limits.Rule". The first of these three rules is responsible for estimating the
mission range (or distance). This estimate is needed in order to determine the
computing memory space and time needed for the whole mission, even though an
exact mission distance is not available before completing a path to the goal. Thus, a
gross estimate is obtained by simply taking the horizontal straight-line distance
between the start and the goal positions before planning a path.

The second, the "Space.Constraint.Limits.Rule", determines the upper limits
and the lower limits for computer memory space requirements. This information is
used to determine whether the currently available computer space is sufficient to plan
a mission. Because the greatest requirement for computer space is generated by the
Mission Constructor, the overall space requirements are based entirely on its needs.
Moreover, since the Constructor has three search methods at its disposal, the most
' complex of these, A*[6], is used to estimate the needed space. Based on experiments
with the Constructor, the branching factor for A* search averages 1.45, and
approximately 14 units of storage are needed at each node of the search tree.
Consequently, the estimated space requirement (ESR) for A* search is given by

ESR = 14 * (1.45) P 4.1)

where D is the mission distance measured in grid units. Since this relationship is
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approximate, before the value for ESR is used by the mission planner, it is
transformed into an upper and lower bound as follows:
UESR =2 * ESR (4.2)
LESR = 0.5 * ESR (4.3)
The "Planning.Time.Limits.Rule" performs a task similar to
"Space.Constraint.Limits.Rule".  This rule calculates ETR (Estimated Time
Requirement) using the following equation:
ETR=23*103*(2.1)P 4.4)
This equation is derived from the observation that search time is proportional to the
size of the search tree, and that the size of the tree is mainly determined by the
maximum width of the tree. Thus, the same type of equation as that for ESR is
introduced to calculate ETR, and the effective branching factor, 2.1, is again measured
from experiments. As for space constraints, the value obtained from Eq. 4.4 is
transformed into lower and upper bounds by multiplying by a factor of 0.5 and 2.0
respectively.
b. Generating Intermediate Knowledge
The upper and the lower bounds on time set by this calculation are used by
the "Planning.Time.Critical.Rule", "Planning.Time.Not-Critical.Rule", and
"Planning.Time.Independent.Rule”. Depending on the available time given through

the Mission Orders, one of these rules is fired. If the available time is less than the




lower bound, then the "Planning.Time.Critical. Rule" is fired. In this case, "Planning
time is critical”, a standard form of intermediate knowledge, is given to the Mission
Planner. This is actually done by saving “critical” into the "planning-time" slot of the
Mission Planner unit. If the available time is larger than the upper bound, then the
"Planning.Time.Independent.Rule" is fired, and the value "independent" is saved into
the "planning-time" slot. Otherwise, the "Planning. Time.Not-Critical.Rule" is fired, and
this rule puts "not-critical” into the "planning-time" slot.

Similarly, the "Space.Constraint.Critical.Rule", "Space.Con-
straint.Not-Critical.Rule", and "Space.Constraint.Independent.Rule" utilize the upper
and lower bounds on space to generate the standard intermediate knowledge about the
space constraint. Depending on the comparison result, the value “critical”,
"not-critical”, or "independent" is saved into the "space-constraint” slot of the Mission
Planner.

The rules relating to path optimality, "Path.Optimality.Critical.Rule",
"Path.Optimality.Not-Critical.Rule"”, and "Path.Optimality.Independent.Rule", generate
the intermediate knowledge for the Voters from the threat information in the Mission
Orders. Depending on whether the threat level is hostile, neutral, or friendly, the
"path-optimality" slot of the Mission Planner is set to "critical”, "not-critical", or

"independent”, respectively.
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The "Successor.Rule" checks the mission threat level and, when the threat
is hostile, puts "shallow successor not allowed" into the "successor-mode" slot of the
Mission Planner in order to keep the Mission Constructor from considering a shallower
path segment than the mission depth during path construction. However, this successor
information is not part of the intermediate knowledge and is moved directly to the
Construction Orders by the Mission Planner when the planning phase is completed.

Two rules relating to the AUV hovering mode, "Hovering.Rulel" and
"Hovering.Rule2", put a proper value into the "vertical-successor" slot of the Mission
Planner depending on the information as to whether the hovering mode is allowed or
not as specified by the user through the Mission Orders. Like the successor
information set by the "Successor.Rule", the "vertical-successor” slot information is
directly transferred to the Construction Orders without further processing.

2. THE VOTERS

The Voters, another of thuee specialists under the Mission Planner, mimic
a group of people casting ballots based on their own judgements. As shown in Figure
4.2, nine voting rules are implemented. Those voting rules which match with the
intermediate knowledge generate favor values, which lie in the interval 0 to 1. The
Voters also append their "signatures” to the "favor" values so that the credibility or the
importance of the "favor" values can be weighted by the Decision Maker, the last

specialist under the Mission Planner. Each rule is composed of one condition in the
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LHS (left hand side) of the rule and three actions in the RHS (right hand side). When
the LHS condition matches with one of the assertions in the intermediate knowledge,
the RHS three actions generate three "favor" values for the three search methods.
Therefore, these nine rules act as a favor value look-up table as well as a reader of the
table. The currently implemented favor values are shown in Table 4.1. These values
have been carefully selected based on simulation experience to produce reasonable
results for various cases. Because of the rule-based approach, whenever a new table

entry is introduced, a new rule can be simply added without affecting other voting

rules.
Table 4.1 Favor Values used by Voting Rules
A* Best-first Heuristic
Planning Time Ciritical 0.2 0.1 1.0
Not Critical 1.0 1.0 1.0
Independent 1.0 0.5 0.5
Space Constraint | Ciritical 0.3 0.3 1.0
Not Critical 0.7 0.7 1.0
Independent 0.9 0.9 1.0
Path Constraint Critical 1.0 0.5 0.5
Not Critical 1.0 0.7 0.6
Independent 1.0 1.0 1.0
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3. THE DECISION MAKER

The Decision Maker, the last specialist under the Mission Planner, makes
a recommendation using the favor values. It can discriminate among favor values
based on the signatures provided with them. Currently, no favor values are weighted
differently because the Decision Maker works satisfactorily without different weighting
factors. When the operation of the Decision Maker is initiated by the Mission Planner,
the Decision Maker calculates its own final scores of three search tools by adding up
the favor values. After the final scores are calculated, three rules become active to
select the search tool which gets the highest final score. Basically, the three rules
oppose each other until the highest score is set by the rule which matches with the
highest score among them. The LHS rule compares the score of a specific search tool
and the highest score which is in temporary storage in the Decision Maker. If the
matched score is higher than the highest score in the Decision Maker, then the RHS
rule changes the highest score to the matched score and declares the search tool as the
winner. Therefore, when rule firing is terminated, the highest score as well as the
winner is recorded in the Mission Planner unit. Because of this approach, when an
additional search tool is added into the Mission Constructor, another rule can be
simply added without modifying the existing rules. Note that although this decision
making is interally performed in two phases in the Decision Maker, the Mission
Planner simply sends one message, "Start" to the Decision Maker. The method
(procedure) execution and the rule firings are sequentially performed by the Decision

Maker itself.
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D. MISSION PLANNING WORKSTATION
1. PURPOSE AND DESIGN CONSIDERATIONS
The Mission Planning Workstation is configured using a Symbolics 3675
LISP machine and an external Symbolics Color Monitor, as mentioned in Chapter 111.
Its purpose is to provide the user with an interactive, easy-to-operate, display
workstation from which to plan and monitor the progress of a mission. This is
achieved through the provision of several image panels for:
1. Selecting a mission.
2. Entering the parameters and data for the selected mission.
3. Pre-viewing the detailed plans for the mission and, in particular, the
path.
4. Monitoring the current mission status and the AUV operating status
during execution.
Except for (3), all the panels are developed on the LISP machine using the
| KEE graphics facility. In order to produce an easy-to-operate system, two principles
were observed in the design: firstly, the user is prompted at each step, and secondly,
in order to avoid "information overload", all data that is irrelevant to a specific phase
of the mission is either inhibited from display or hidden. A preview of the detailed
plans is facilitated by the display of a two-dimensional representation of the path on

the Symbolics Color Monitor.
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2. AN ILLUSTRATIVE EXAMPLE

This section takes the reader through the process of planning a simulated
mission. The system begins with an initial screen on the Lisp machine, as shown in
Figure 4.4, which contains two image panels - the User Prompt Panel and the Select
Mission Panel. The former displays the current action to be taken by the human
mission planner (the user), while the latter provides a menu of possible AUV missions.
At startup, the user is required to respond to a select mission prompt with a mouse
click on the designated mission. The currently available choices are shown in Figure
4.4. At present, only the transit pool mission is fully developed, and this mission is
thus used as an example.

After selecting the mission type, the user is presented with a mission specific
panel with initially unknown parameters. In this example, as shown in Figure 4.5, a
Transit Mission panel is displayed and the user is prompted to enter mission parameter
values. Figure 4.5 shows the result of such a selection. In this case, the test pool
selected is the NPS swimming pool. An environmental database for this pool,
including possible obstacles, is encoded as another KEE unit as shown on Figure 4.2.
As can be seen on Figure 4.5, in addition to providing numerical mission parameters,
the user must inform the expert system regarding the threat level and also enable or
disable hovering mode in the AUV. The reason for the latter choice is that, while

hovering mode allows very precise maneuvering, it is very expensive in terms of
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energy and time requirements. In Figure 4.5, the user has indicated a friendly threat
level and hovering not allowed. He has also designated an available planning time
of only one minute. In making these choices, the user has indicated considerable
urgency in getting a mission under way and that rapid, rather than precise transit to
the goal is desired. After entering all parameters, the user then mouse clicks on OK
to indicate completion.

At this point, the User Prompt Panel at the top is replaced by a Mission
Phase Panel (Figure 4.6), which shows the phase of the mission at any given moment.
When the mission construction is completed, the system is ready to commence
execution phase. During execution phase, two new panels are displayed (Figure 4.6):
the AUV Operating Status Panel and the Execute-Abort Panel. The former panel is
displayed on the right and it shows the status of the vehicle at any moment, while the
latter panel is displayed just below the Transit Pool mission panel and it prompts the
user to either proceed with execution or abort the mission. Selecting abort will abort
"the mission and bring the system back to the initial screen (Figure 4.4). On the other
hand, selecting execufe will initiate a simulated mission on the SGI graphics
workstation.

The mission type and parameter selections indicated on Figures 4.4 and 4.5
result in the choice of heuristic search as the only acceptable method of path planning

for a mission of this urgency under the specified conditions. The resulting path that
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Figure 4.7 Symbolics Color Side Monitor Showing Top View (Upper Image)
and Side View (Lower Image) of Waypoints and Vehicle Trajectory
for Transit Pool Mission

is displayed on the Symbolics Color Monitor is shown in Figure 4.7; the upper image
of the figure shows a top view of the path in the pool environment, while the lower
image shows the corresponding side view. The path is represented by a series of dots
designating the waypoints. This figure also shows the trajectory followed by the

simulated AUV in attempting to transit the specified wayp»ints.
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It should be noted that while the prohibition on the use of thrusters by the
human mission planner prevents the AUV from passing through all waypoints, it does
successfully reach the specified goal. In accomplishing this task, the navigator shown
on Fig. 3.2 used an extremely simple scheme in which desired speed and heading are
derived by simply aiming the vehicle at the next waypoint until it enters the proximity
of the selected waypoint. The proximity criterion used is a spherical region of radius
one grid unit around the waypoint. At that time, the navigator switches to the next
waypoint and calculates a new course and speed. Of course, other navigation/guidance
methods enable more accurate transiting of waypoints [Ref. 27, 28, 29], but since
precise path following is not required in the specified transit mission, the above
described simpler approach was used.

It should be observed from Figure 4.7 that the path selected by heuristic
search is not optimal; a shorter path results from simply going around the obstacle at
the prescribed mission depth. Indeed, the use of A* search would yield this path.
However, for the pool size used in this experiment, A* search requires approximately
20 minutes and, as shown on Figure 4.5, in this instance the human mission planner
was unwilling to allow this much time for path planning. As a side remark relating
to Figure 4.7, one of the features of the heuristic search methiod used in this research,
is that when an obstacle is encountered in a friendly environment, the path planner
follows a rising trajectory while trying to go around the obstacle in the hope that a
way over it can be found without going all the way arounu it. This behavior is clearly
evident in the figure.
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E. SUMMARY

This chapter presents an in-depth description of the Mission Planning Expert
System and its associated Mission Planning and Control Workstation for the NPS
AUV. Its structure, as well as the design and development using the object-oriented
and rule-based paradigm offered by the KEE expert system shell, is also described in
detail. Finally, an example is given that takes the reader through the mission planning

phases using the Mission Planning workstation.
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V. HEURISTIC SEARCH

A. INTRODUCTION

The Heuristic search method is designed for autonomous vehicles in a cluttered
underwater environment. It is an informed search strategy which provides a semi-
optimizing solution [Ref. 26] to guiding the vehicle to a specified goal location while
maintaining a given transit depth.

As the name suggests, the algorithm is based on heuristics. The specific heuristics
used are meant to closely model human behavior in its reasoning decision-making
conceming which route to take. These heuristics not only provide local cost
optimization decisions but also endow the vehicle with obstacle avoidance and
clearance capabilities required for it to operate autonomously.

The dominant characteristics of this method that set it apart from the traditional
Al search methods such as A* and Best-first are:

1. It does not require the use of an agenda [Ref. 9, 10] of unexplored paths.

2. It makes extensive use of heuristics for path-search as well as for obstacle

clearance.

3. It does not require complete a priori information on the environment.

4. It is capable of dealing with uncharted obstacles.

5. It is relatively much faster.

6. It can be extended to deal with dynamic obstacles.
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B. PRELIMINARY DEFINITIONS AND NOTATIONS

In order to discuss the Heuristic search precisely, it is first necessary to define the
terms as well as the notations used throughout this chapter. The definitions of the
terms and notations are tabulated in Tables 5.1 and Table 5.2 respectively. In addition,

throughout this chapter, the term obstacle is used to refer to virtual obstacles (see

Section E of Chapter III).

TABLE 5.1 DEFINITION OF TERMS

TERMINOLOGY DEFINITION

Goal The Goal position or destination.

Start The start position.

state The tuple (vehicle-heading, position).

candidate successor One of the possible successors of the current
states.

candidate position The position coordinates of the candidate
SUCCEeSSOr.

mission-depth The depth specified for the current mission.
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TABLE 5.2 NOTATIONS

NOTATIONS DEFINITION
Porart Start position
P oal Goal position
P(x,y,z) Position located at coordinate (x,y,z)
Py Current vehicle position
P (x,y,2) Current vehicle position at coordinate (x,y,z)
P Vehicle position after its kth move from P, .
Sy Current vehicle state
S,(theta,P ) Current vehicle state with a heading of theta at P
CSpe1 One of the candidate successor states
CP,,1 The position corresponding to candidate successor
state CS_ ¢
Sooal The vehicle state at the Goal

Horiz_Dist(A,B)

Horizontal distance between positions A and B

Depth_Change(A,B)

Vertical distance between positions A and B

EF

Evaluation Function

EF(ACSn +1) Evaluation Function of candidate successor CS__

EC Estimated Cost Function

EC(CS,,1) Estimated Cost Function of candidate successor CS_
LC Local Cost Function

LC(A,B) Local cost incurred in moving from point A to B
TC(A,B) Translational cost incurred in moving from pt. A to B
RC(A,B) Rotational cost incurred in moving from point A to B
PM(CS,_,)) Path-marking value of candidate successor CS,
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C. SUCCESSOR POSITIONS

In a 3-dimension underwater environment, a point or position on the grid has 26
possible candidate successors. Figure 5.1 shows the names adopted for these
candidates; the successors of a position are named according to their directions with
respect to that position. The top successors are prefixed with a ’t’, while the bottom
successors have a ’'b’ prefix. In pruning the search tree, however, only viable
candidates of a given state, are searched. These potentially viable successors form
groups called successor sets. Table 5.3 shows the different successor sets defined; note
that the sets are not disjoint.

The successor set currently selected for search is referred to as the active
successor set, and its members are called the candidate successors. Which successor
set is active in a given situation depends on the search mode (see Section H of this
chapter) in force. Moreover, more than one successor set may be active in a given
situation; in this case the union of these sets is the active set. A candidate successor
is said to be "open" if it is not an obstacle, and "closed" if it is an obstacle. Similarly,
an active successor set may be "completely open”, "partially open”, or "completely
closed". It is "completely open" if all the candidate successors in the set are not
obstacles. It is "partially open” if there is at least one successor within the set that is
not an obstacle. Finally, the active successor set is "completely closed" if all the

candidate successors in the set are obstacles.
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TABLE 5.3 SUCCESSOR SETS OF THE CURRENT STATE S (theta,P (x.y,z))

SUCCESSOR DESCRIPTION
SET

fwd-level The 3 successors in the forward direction with respect to
the vehicle heading, theta, and having the same depth z, as
the current position.

fwd-rise The 3 successors in the forward direction with respect to
the vehicle heading, theta, at a depth of z-1.

fwd-dive The 3 successors in the forward direction with respect to
the vehicle heading, theta, at a depth of z+1.

top-fwd-rl The 2 successors in the forward direction, one on the right
and the other on the left with respect to the vehicle
heading, theta, and having a depth of z-1.

bot-fwd-rl The counterpart of the top-fwd-rl successor set except that
the 2 successors are at a depth of z+1.

top-rl The 2 successors in the same vertical plane as the vehicle,
one on the right and the other on the left with respect to
the vehicle heading, theta, and having a depth of z-1.

bot-rl The counterpart of top-rl successor except the two
successors are at a depth of z+1.

fwd-top The single successor in the forward direction with respect
to the vehicle heading, and having a depth z-1.

fwd-bot The single successor in the forward direction with respect
to the vehicle heading and having a depth of z+1.

right-left The 2 successors on the right and left sides of the vehicle.

back-up The 9 successors behind the vehicle.

top The single successor directly above the vehicle.

bottom The single successor directly below the vehicle.
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It should also be noted that the successor set of a state is a function of the
heading of that state. For instance, the forward-level successors for a current heading
of 0 degrees is the set [ne, n, nw], while the same for a heading of 90 degrees is [ne,
e, se]. With this dependence on heading, it is more accurate to speak of the successors
of a state rather than the successors of a position. To illustrate the different successor
sets, Figure 5.2 shows an example of the different successor sets for a vehicle heading
of 270 degrees. In addition, the term forward position is used to refer to any successor
set in front of the vehicle. In the example of Figure 5.2, the forward position refers
to one or more of the following sets: the fwd-level, fwd-rise, and fwd-dive successor

sets.

D. HEURISTICS
The heuristics employed offer advice on which set of successors of a state to try
for further search under a given circumstance. Two classes of heuristics are defined -
General heuristics and Obstacle Clearance heuristics. General heuristics are
applicable under all circumstances or modes, providing guidance on the choice of the
best successor position while Obstacle Clearance heuristics suggests a systematic

approach to searching for "a way out" when an obstacle is encountered.
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The following general heuristics are adopted:

1. Move toward the goal whenever possible.

2. Prefer to move in the direction of current heading

3. Try not to visit the positions already explored.

4. Keep to the specified mission-depth as far as possible.

5. Search forward successor positions as far as possible.

Obstacle clearance heuristics used are as follows:

6. Prefer to search bottom successors (bottom-search) or top successors (top-
search) as determined by the rule-based system.

7. In either case, prefer to move along the diagonal of the obstacle until it is

cleared.

E. ENERGY COST MEASURE

All paths have an associated cost in terms of the amount of energy expended in
traversing it. The path-planning problem requires finding a reasonable cost (semi-
' optimizing) path between the start and the goal positions. Thus, some measure of
energy cost has to be adopted. In this study, the energy cost is normalized to distance
units, which is inches (the unit used to measure the size of the vehicle); this unit shall
be referred to as the normalized energy unit, or simply the energy unit. For example,
suppose the distance between point A and point B on a horizontal plane is 100 inches
then energy expended in moving from A to B is 100 energy units.
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F. EVALUATION FUNCTION (EF)

Heuristics 1, 2 and 3 require an Evaluation Function to estimate the cost of
moving from a given state to the Goal. At each state, this cost is evaluated for all
candidate successors and the one with the lowest evaluation function is chosen as the
best successor of the current state. Note that the evaluation function does not include
the accumulated cost of moving the vehicle from the Start to its current state. Thus,
unlike A* search which performs "global optimization", beuristic search is guided by
local optimization.

The Evaluation Function has 2 main components:

1. Local Cost (LC) of moving from the current state to a candidate successor

state.

2. Estimated Cost (EC) of moving from the candidate successor state to the Goal

position.

Mathematically, this can be expressed as follows:

EF(CS,, ;) = LC(S,,CS,,,) + EC(CS (5.1)

n+1)
1. LOCAL COST FUNCTION (LC)
The Local Cost function computes the energy required to move the vehicle

from its current state (S) to a candidate successor state (CS4p)- It is the sum of two

components:
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1. Translational Cost to move the vehicle from point P, to CP__,.
2. Rotational Cost required to change the heading of the vehicle in moving
from S; to CS_ ;.
Mathematically, it is expressed as follows:
LC(S,,.CSp41) = TC(P,,CP ) + RC(S,,CS L 1) (5.2)
a. Translational Cost (TC)
The translational cost is different for horizontal and vertical maneuvers.
Here, it is assumed that the cost rate (i.e., the energy expended per unit distance) for
vertical movement (depth changes) is greater than that for horizontal movement by a
factor of 1.2. For example, suppose the Euclidean distance between point A and point
B is 100 inches; if A and B lie on the same horizontal plane, then energy expended
is 100 inches, whereas, if A and B were in the same vertical plane, the cost would be
120 inches. Formally, the Translational Cost in moving from point A to point B is
defined as follows:
TC(A,B) = Horiz_Dist(A,B) + 1.2 * Depth_Change(A,B) (5.3a)
Thus, in moving from current state Sn to a candidate successor CSn+1,
the translational cost incurred is given by:

TC(P,,CP,,,) = Horiz_Dist(P,,CP,, ;) + 1.2 * Depth_Change(P_,CP,,,) (5.3b)
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b. Rotational Cost (RC)

Due to the inertia of a vehicle, there is a cost associated in changing the
heading of a vehicle, and this is accounted for by the concept of rotational cost. This
cost tends to make a vehicle maintain its current direction of movement. Formally, the
rotational cost is defined as the amount of ¢. 2rgy expended (in normalized energy
units) in changing the vehicle heading while moving from S to CS_,,. In general,
rotational cost varies with the turning angle; the larger the turning angle, the larger the
cost. Table 5.4 below shows the rotational cost variation with angle. Note that a 45
degree tuming angle means either a 45 degree left turn or a 45 degree right tum with

respect to the current heading of the vehicle.

TABLE 5.4 ROTATIONAL COST (in normalized energy units)

Turning Angle (degrees) 0 45 90 135 180

Rotational Cost 0 7 35 70 140

2. ESTIMATED COST FUNCTION (EC)
The Estimated Cost represents the minimum estimated energy required by
the vehicle in moving from a candidate successor state, CS__ {, to the Goal. It is the

minimum cost that will be incurred if that candidate is chosen, regardless of the
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remaining path chosen from it to the Goal. Since a lower Estimated Cost results in a
correspondingly lower Evaluation Function, a candidate successor with a lower cost
estimate is favored. Thus, the Estimated Cost Function serves as a "pulling force",
drawing the vehicle towards the Goal. I has two components - the minimum expected
translation cost and the minimum expected rotational cost. Mathematically, the total
cost is expressed as:

EC(CS,,;) = TC(CP, +1’Pgoal) + RC(CS,, +l’Sgoal) + PM(CS,,¢) 5.4

a. Minimum Expected Translational Cost

This component, TC(CP, a))» decreases with distance from the Goal.

+1'Pgo
Thus, candidate successor positions nearer the Goal are favored, thereby aiding the
vehicle to move towards the Goal. This quantity is computed in the same manner as
the translational cost component of the Local Cost function, with the appropriate
parameter substitutions.
b. Minimum Expected Rotational Cost

Figure 5.3 illustrates the concept of minimum expected rotational cost,
RC(CS,, +l’Sgoa1)' It is the minimum turning cost that will be incurred in moving the
vehicle from the candidate successor to the Goal. Like its translational counterpart, its
role is to enhance the vehicle’s tendency to move toward the Goal by favoring

successors with a lower minimum. This quantity is computed using the same table

(Table 5.4).
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¢. Path Marking
Path marking [Ref. 8] is a concept introduced to implement the Heuristic 3,
which says "to prefer candidate successor whose positions are not already explored".
It provides a means for the vehicle to "memorize” the positions already visited. The
technique works as follows. The path marking value of each position is initially zero.
Whenever the vehicle moves from state S, to CS,,, a path marking value,
PM(CS,, {), equivalent to the Local Cost LC(S,,CS, ), is assigned to the position
P, (corresponding to state S ). This value serves to increase the Evaluation Function
- of position P, when it is next evaluated as a candidate successor, thereby reducing its
favorability and its chances of being chosen as the best successor. In this manner,

Heuristic 3 is facilitated.
To summarize the various component costs discussed in this section (Section

F), Figure 5.4 shows the entire cost structure.

G. OBSTACLE CLEARANCE

The obstacle clearance heuristics exploit the fact that obstacles in the real world
are largely high or wide. Odd-shaped obstacles can be approximated by these two
shapes. As shown in Figure 5.5, for high obstacles, the shortest path is to move
horizontally around the obstacle, whereas for wide obstacles, the shortest path is to

move vertically over or under the obstacles. However, without any knowledge of the
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disposition of the obstacle, it is not possible to determine which way is shortest. A
compromise, semi-optimizing solution is to move along the diagonal of the obstacle,
as illustrated in the figure. Thus, in the absence of any a priori information conceming
the shape and size of the obstacle encountered, a reasonable strategy would be to
move diagonally along the obstacle wall whenever possible. This heuristic is realized
by defining a preferred successor search sequence that constrains the vehicle to do

just that, as explained in the following sections.

H. MODES OF OPERATION
1. OVERVIEW

The heuristic search algorithm defines three :nodes of operation: NORMAL
mode, OBSTACLE mode, and OBSTACLE-EDGE mode. These modes determine the
heuristics that are called into play. Since the latter also affects the successor sets to
be searched, the modes are also referred to as search modes. Before proceeding
further, it is emphasized again that the term obstacle used in this section refers to
virtual obstacles.

Figure 5.6 shows the mode transition flowchart at a high conceptual level.
The search process begins in the NORMAL mode where only the general heuristics
are employed. It remains in this mode until the vehicle encounters an obstacle

blocking its path. It then changes to OBSTACLE mode and calls upon the obstacle
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clearance heuristics to guide it. Whenever it reaches an edge of the obstacle, it
progresses to OBSTACLE-EDGE mode. The latter mode is required to confirm that
the obstacle has indeed been cleared. The criteria for this decision is explained shortly.
If confirmation is negative, it returns to OBSTACLE mode; otherwise it switches back
to NORMAL mode. Figure 5.7 shows the corresponding fiorwchart with the actual
criteria used to determine the mode transitions; note that the right side of the figure
shows the active successor set corresponding to the questions at each stage, in the
chart.
2. NORMAL MODE

In NORMAL mode, only the forward positions of the current state are
searched. The forward positions may be any one of the three successor sets, namely,
the fwd-level, the fwd-rise, and the fwd-dive (see Figure 5.2), depending on the
current vehicle depth with respect to the mission-depth. The fwd-level successor set
is searched (i.e. is active) when the vehicle is at mission-depth, the fwd-rise when its
depth is greater than mission depth, and lastly, the fwd-dive when its depth is less than
the required mission-depth. The system enters OBSTACLE mode if and only if the
currently active successor set is "completely closed”, indicating that an object is
blocking its path. Note that in the situation where the active set is "partially open", the
vehicle is not considered to have "encountered” an obstacle (it merely came close to

one); it therefore remains in NORMAL mode.
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3. OBSTACLE MODE

When in this mode, the vehicle has sensed an obstacle in its path and
immediately consults the obstacle clearance heuristics for guidance. Here, the active
successor set to be searched is controlled based on a preferred (or prioritized)
sequence list. This list defines the order of the successor sets to be examined in tum
until an "open" successor is found. Such prioritized search is necessary in order to
force the outcome of the search to preferred successor(s) wherever possible. Recall
that according to the obstacle clearance heuristics, it is preferable to move forward,
and along the diagonal of the obstacle.

To realize the obstacle clearance heuristics, two search sequences are
defined, namely, the top-preferred-sequence, and the bottom-preferred-sequence.
Which sequence is used depends on whether bottom search or top search is preferred,
as determined by the rule-based planner. When the threat level is hostile, the bottom-
preferred-sequence is chosen; otherwise, the default top-preferred-sequence is used.
The two sequences are defined as follows:

Top-preferred-sequence:

(fwd-rise fwd-level top-rl fwd-top top
fwd-dive bot-rl fwd-bot right-left backup]

Bottom-preferred-sequence:

{fwd-dive fwd-level bot-rl fwd-bot bottom

fwd-rise top-rl fwd-top right-left backup]
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The search always begins with the first successor set in the sequence chosen.
This is the fwd-rise successor set if the top-preferred sequence is selected, and it is the
fwd-dive set if the bottom-preferred sequence is chosen. This first successor set is used
as the criteria for progressing from OBSTACLE mode to OBSTACLE-EDGE mode.
There are three possible cases: the first successor set is "completely open”, "partially
open” or "completely closed".

If the first successor set is "completely open”, it is an indication that the
search process has reached an edge of the obstacle, where clearance is possible; in this
case, the system progresses to OBSTACLE-EDGE mode. In fact, this is the only
situation where the system is allowed to move on to OBSTACLE-EDGE mode. It
must be stressed again that this criterion for transiting to OBSTACLE-EDGE mode
from OBSTACLE mode applies only to the first successor set in the sequence, as
shown on the right column of Figure 5.7.

If the first successor set is "partially open”, then the best candidate successor
is selected, but the system remains in OBSTACLE mode. Lastly, if it is "completely
closed"”, the next successor set in the sequence becomes active and is tried. If this set
is also "completely closed", then the next one in line is tried. This continues until an
open candidate successor is found. Like the second case, the system remains in
OBSTACLE mode. It must be stressed that, if the system remains in OBSTACLE

mode, the search in the next cycle will begin again with the first successor set.
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4. OBSTACLE-EDGE MODE

This is a transitory mode which serves to confirm that the obstacle has
indeed been cleared. This mode is necessary to prevent the system from going to
NORMAL mode prematurely, and causing it to retum to OBSTACLE mode
immediately because the obstacle is not fully cleared.

When the system enters OBSTACLE-EDGE mode, the vehicle may have
deviated away from the mission depth, considering that it was previously in
OBSTACLE mode, trying to find a way out. Thus, the active successor sets chosen
in OBSTACLE-EDGE mode should attempt to bring the vehicle back to the mission
depth. To achieve this, there are two alterative active successor sets that can be
searched: the first set is the union of fwd-level and fwd-rise successor sets (with no
priority between members of the union), and the second set is the union of fwd-level
and fwd-dive successor sets. Each of these contain six candidate successors. The first
set is used when the current vehicle depth is greater than the mission depth; otherwise
the second set is used. The reason for including the fwd-level successor set in the two
alternatives is to allow the vehicle to move forward horizontally whenever moving
towards the mission depth is not possible.

After the active set (containing six candidates) has been chosen as described,
there are again the usual three possibilities: the set is "completely closed", "partially

open”, or "completely closed”. If it is "completely closed", then a wall of obstacles is
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on its path, and it regresses to OBSTACLE mode. Otherwise, if the active set is
"completely open”, there is a high chance that the obstacle has been cleared, and it
proceeds to NORMAL mode. Lastly, if the successors are "partially open”, then the
obstacle is still in its immediate vicinity; in this case, it chooses the best successor

(according to the general heuristics), but remains in OBSTACLE-EDGE mode.

I. AN ILLUSTRATIVE EXAMPLE

To illustrate the mode transitions during obstacle clearance, consider the example
shown in Figures 5.8a and 5.8b. Figure 5.8b shows the corresponding front, side and
top views of Figure 5.8a. Note that virtual obstacles are shown in the diagrams.

In the situation depicted, the Goal is assumed to be far away on the other side of
the wall (Figure 5.8a), and near the X=0 plane. It is also assumed that the system is
in NORMAL mode when the vehicle is at position P, = P(5,2,4) -- at the mission
depth, z = 4 -- and heading in the direction of the Y-axis. In this state, the active
successor set is the fwd-level set { P(4,3,4), P(5,3,4), P(6,3,4) }. Since this set of
coordinates are all obstacles, it is "completely closed”; thus, the system changes its
mode to OBSTACLE mode, while still at position P;.

Assuming the mission planner decides that top search is preferred, the top-
preferred-sequence is used, and the first successor set in this sequence is fwd-rise.

Since this set is also "completely closed”, the next set in the sequence, namely the
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fwd-level is tried. As noted earlier, this set is "completely closed”; so, the next
successor set in the sequence, namely, the top-rl set is searched. This set contains two
candidate successors, P(4,2,3) and P(6,2,3), both of which are "open". Suppose that
P(4,2,3) is selected (by the general heuristics) as the successor; so the best successor
is Py = P(4,2,3), but the system remains in OBSTACLE mode (since the first
successor set is not "completely open").

Note that the vehicle heading at position P, has changed to the negative X-axis
direction. With the system still in OBSTACLE mode, the search begins again with the
first successor set of the top-preferred-sequence. At this state, the fwd-rise successor
setis { P(3,1,2), P(3,2,2), P(3,3,2) }. Of these candidate successors, P(3,2,2) is chosen
as the best successor, since P(3,3,2) is an obstacle and P(3,1,2) has a high expected
rotational cost. Thus, the best successor is P; = P(3,2,2). Here again, the system stays
in OBSTACLE mode because the first successor set is not "completely open”.

At position P3, the search commences with the fwd-rise set which is the set

| { P(2,1,1), P(2,2,1), P(2,3,1) }. Of the three candidates, P(2,3,1) is chosen because it
is nearest to the goal and also. because it has the lowest expected rotational cost.
Hence, P, = P(2,3,1). This time, the situation has improved; since this first successor
set in the sequence is "completely open", the system can progress to the OBSTACLE-

EDGE mode.
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Note that in traversing from Py, through P, and Pj, and then to P, the vehicle
is actually constrained to move diagonally along the obstacle, in accord with the
obstacle clearance heuristics. Moreover, at P4, the vehicle has actually crossed the
edge of the obstacle; hence, the term OBSTACLE-EDGE mode.

When the vehicle reaches position Py, its depth is less than the mission depth
(z=4); so, the active successor set during OBSTACLE-EDGE mode is

fwd-level U fwd-dive

. = { P(1,4,1), P(24,1), P34,1) } U { P(14,2), P(2,4,2), P(3,4,2) }

= { P(1,4,1), P2 4,1), P(34,1), P(1,4,2), P(2,4,2), P(3,4,2) }

Among these, Ps = P(2,4,1) is chosen as the best successor, because the other
candidates would have incurred greater cost by changing either the vehicle depth or
its heading. Further, since this set is "completely open", the system proceeds to
NORMAL mode, signalling that the obstacle has been cleared. From then on, the
NORMAL mode heuristics would constrain the vehicle to move down towards the
mission depth, by continuing to search only the fwd-dive successor set until it reaches

it.

J. SUMMARY
This chapter discusses the methodology of Heuristic search. The algorithm defines

three separate modes of operation, namely, NORMAL, OBSTACLE, and OBSTACLE-

86




EDGE modes, in which different heuristic sets are used to guide the vehicle. Two
classes of heuristics exist: the general heuristics which apply under all three modes,
and the obstacle clearance heuristics which are operative only when obstacles are
encountered during OBSTACLE and OBSTACLE-EDGE modes.

The heuristics serve to prune the otherwise enormous solution space, by selecting
only the viable successor sets for further search, thereby, contributing to its speed and
versatility. Moreover, since the successor sets all lie within a unit cell of the current
vehicle position, the only requirement is for the vehicle sensor to be able detect the
obstacles within its close vicinity; thus, complete a priori information on the
environment is not required in the case that heuristic search is pursued by a physical
agent. Finally, unlike the A* and Best-first search methods, Heuristic search does not
require an agenda of unexplored paths. This results in efficient computer memory
resource usage. The next chapter quantifies its performance relative to the A* and

Best-first search strategies.
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V1. PATH PLANNING EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter provides a quantitative evaluation of the relative performance of the
three path search methods: A*, Best-first, and Heuristic search strategies. In order to
highlight the performance of Heuristic search, the paths derived by the three search

strategies under the exact same environmental conditions and obstacles are compared.

B. SCENARIOS

Nine different simulation scenarios in the NPS pool environment are defined and
used for the study. They are tabulated in Table 6.1 and the detailed definition of each
scenario can be found in Appendix A. For each scenario, a different obstacle
arrangement or layout is defined in a rectangular boxed region near the center of the
pool. In all cases, the Start and Goal positions are located on opposite sides of this
obstacle region. The three paths corresponding to the three path-search methods are
then derived assuming top-search is preferred, and their results compared.

Scenario 1 evaluates their performancc in a clear uncluttered environment.
Scenario 2 and 3 tests their ability to find a path around simple obstacles. The
remaining scenarios examine their obstacle clearance ability in a randomly cluttered

environment. Hence, in the random scenarios (4a through 4f), increasing obstacle
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densities are déﬁncd for the obstacle region. The different densities are simulated by
calling a random function software routine with the percentage as an input parameter.
This random function then generates obstacles of the specified density in the obstacle
region located near the center of the pool. Note that due to the obstacle growing
process mentioned in Chapter I, the percentage of virtual obstacles is higher than that

specified.

TABLE 6.1 SIMULATION SCENARIOS

SCENARIO DESCRIPTION

1 No Obstacle

2 Wide wall obstacle

3 High wall obstacle

4a Region with 5% random obstacles
4b Region with 10% random obstacles
4c Region with 15% random obstacles
4d Region with 20% random obstacles
4e Region with 25% random obstacles
af Region with 30% random obstacles
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C. MEASURES OF PERFORMANCE

The search techniques are compared on the basis of the following three
quantitative performance measures:

1. Cost of the path

2. Time required to find the path

3. Maximum number of OPEN nodes during the path generation

The cost of a path is the total cost incurred in traversing the path. It is used as
a measure of the optimality of the path by comparing it with one that has a minimum
cost. The second and third factors measure the efficiency with which the computer
CPU and memory resources are utilized. The OPEN nodes here refer to the leaf nodes
of the search tree [Ref. 9]. These two factors are important because with current
technology, computing resources are limited.

Note that the algorithms are not compared on the basis of the actual value of the
quantities, since the latter differs for different implementations as well as in different
computers. Rather, it is their relative strengths with respect to each other that are

meaningful.

D. RESULTS AND ANALYSIS
1. QUANTITATIVE ANALYSIS
The results of the simulations are summarised and tabulated in Table 6.2
and Table 6.3. Table 6.2 shows the raw data obtained under the defined scenarios,

while Table 6.3 summarizes their relative performance with respect to cost.
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TABLE 6.2 SIMULATION RESULTS

SCENARIO FACTORS HEURISTIC A* BESTFIRST
1. No obstacle Max-open-nodes 1 5432 30
Time (secs) 0.13 3277 2.1
Cost 1338 1338 1446
2. Wide wall Max-open-nodes 1 333 40
Time (secs) 0.15 9.1 25
Cost 1407 1124 1232
3. High wall Max-open-nodes 1 3184 23
Time (secs) 0.15 860 1.28
Cost 1383 1266 1304
4a. Random 5% Max-open-nodes i 2309 22
Time (secs) 0.12 506 1.14
Cost 1196 1196 1304
4b. Random 10% Max-open-nodes 1 724 24
Time (secs) 0.17 58 1.38
Cost 1220 1196 1376
4c. Random 15% Max-open-nodes 1 703 26
Time (secs) 0.57 53.8 1.60
Cost 2202 1196 1445
4d. Random 20% Max-open-nodes 1 309 38
Time (secs) 0.16 8.95 2.20
Cost 1407 1148 1256
4e. Random 25% Max-open-nodes 1 307 38
Time (secs) 0.16 10.99 222
Cost 1407 1148 1256
4f. Random 30% Max-open-nodes 1 703 26
Time (secs) 0.16 14.37 2.20
Cost 1407 1148 1256
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TABLE 6.3 COMPARISONS WITH RESPECT TO PATH COSTS

SCENARIO A* HEURISTIC | BESTFIRST HEURISTIC | BESTFEIRST
%DIFF %DIFF
1. No obstacles 1338 1338 1446 0.0 8.0
2. Wide wall 1124 1407 1232 25.2 9.6
3. High wall 1266 1383 1304 9.2 3.0
4a. Random 5% 1196 1196 1304 0.0 9.0
4b. Random 10% 1196 1220 1376 2.0 15.0
4c. Random 15% 1196 2202 1445 84.0 20.8
4d. Random 20% 1148 1407 1256 225 9.4
4e. Random 25% 1148 1407 1256 225 9.4
4f. Random 30% 1148 1407 1256 225 9.4
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a. Time Required
This quantity measures the raw CPU time required to find a path. Table
6.2 shows that Heuristic search has excellent time performance. In general, Bestfirst search
takes about 1 order of magnitude longer, while A* is about 2 orders of magnitude longer
than Heuristic search.
b. Maximum Number of Open Nodes
The Heuristic search algorithm has only one OPEN node during the entire
search. This is expected since it does not keep an agenda of open nodes to be explored,
unlike A* and Best-first search strategies; instead an absolute decision is made at each
decision node. This makes Heuristic search highly efficient with reagrd to computer
memory usage. A* lies at the other extreme, requiring enormous amount of storage
(scenario 1 in Table 6.2) even for such short range scenarios.
c¢. Cost of Path
The optimality of a path can be measured by the percentage cost
difference of its path with respect to the optimal path (i.e. the minimum cost path). In
order to show that the A* search algorithm used in this study yields the optimal path, a
slight digression is necessary.
A search algorithm is said to be admissible if, it always terminates in an
optimal path from the Start location to the Goal location whenever a path from the Start

to the Goal exists. Nilsson [Ref. 9; pp 74 to 79] has shown that in order for the A* search
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algorithm to be admissible, at any point in the search, the estimated cost of the path from
any point in the path to the Goal (as provided by the estimation function), must be less
than or equal to the actual cost. This condition is clearly satisfied by the Estimation
Function used in this study, since, in fact, the minimum expected cost is used by the
function (and there does not exist any path which will give a lower cost).

Thus, the A* search used in this study gives minimum cost paths (that
satisfy the constraints of the path specifications), and it can therefore be used as the
yardstick for measuring the cost performance of other algorithms.

The second last column of Table 6.3 show that, except for scenario 4c,
the cost of Heuristic search path is usually within 25% of the optimal path. Its cost
performance is optimal or very close to optimal in relatively uncluttered environment
(scenarios 1, 4a and 4b). The reason for the high cost in Scenario 4c (differing from
optimal by 84%) can be explained by analysing its path - a close analysis of Figure 6.6
reveals that the vehicle path was blocked completely by the wall of the pool and, behaving
as a human would, it tumed back to find another way through the obstacle. Since
autonomous vehicles usually operate in open environments, this situation is an exception
rather than the norm. The paths obtained for Best-first search also come within 20% of the

optimal solutions as the last column shows.
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2. QUALITATIVE COMPARISON OF HEURISTIC AND A* PATHS

The paths generated by Heuristic search and A* search for each scenario is
shown in Figures 6.1 through 6.9. It can be seen from Figures 6.1 and 6.4 that in clear and
uncluttered environments, Heuristic search and A* search yield almost the same paths; in
fact, Table 6.2 show that the two paths corresponding to the two methods have the same
cost in each case. The slight deviation in the paths, particularly for Scenario 1 (Figure 6.1),
is probably due to the fact that the sort routine used in A* search does not preserve the
order of the agenda for equal-cost paths. Another contributing factor is that Heuristic
search prefers to maintain the vehicle heading as far as possible, and any required changes
to its heading are therefore deferred till later in the path.

The paths derived by Heuristic search under Scenarios 2 and 3 (see Figures 6.2
and 6.3), exhibit the characteristic behavior induced by obstacle clearance heuristics, as
explained in Sections G and I of Chapter V. In both cases, the Heuristic search path
proceeds diagonally along the wall of the obstacle instead of taking the shortest path as
established by A* search.

Figures 6.5 through 6.9, reveal that Heuristic search and A* search yield
qualitatively very different paths when the environment is increasingly cluttered with
obstacles. This is expected since the fundamental strategy of the two methods are different:
A* search aims for global optimization while Heuristic search aims for local optimization.
It is also noted from Figures 6.7 through 6.9, that as the density of the obstacles increases,
the obstacle region becomes effectively a single contiguous block, and the paths derived

by cither method is independent of the obstacle density.
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E. SUMMARY

The above results show that Heuristic search is very suitable for autonomous vehicle
path-planning where speed of search and space requirements are fundamental
considerations, and where the optimality of the path with respect to energy cost is not
critical. A* is highly space and time inefficient, but yields an optimal path. The
performance of Best-first search lie somewhere between the two. Qualitatively, Heuristic
and A* strategies yield almost similar paths for clear and relatively uncluttered regions,
and widely different paths for cluttered environments. The most appropriate method to use,
therefore, depends on the given mission, and specifically, on the criticality of the time,

space and cost constraints.
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ViI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

The research efforts under the NPS-AUYV program have, thus far, been directed
at vehicle design at the Vehicle Control level (Figure 3.2) as well as the creation of
the laboratory testbed environment. With the stabilization of the groundwork at this
level, current efforts have begun to examine the issues at the higher Mission Planning
and Mission Control levels. This thesis represents a step in this direction by addressing
the issue of computer support for AUV mission planning. The specific contributions
of this thesis are elaborated in the following sections.

1. A PROTOTYPE MISSION PLANNING EXPERT SYSTEM

The MPES serves as an important mission planning aid to human mission

planners. The Mission Planning workstation developed provides an informative, easy-
to-operate, and a totally interactive control station that allows rapid mission planning
and evaluation of plans prior to actual execution. Additionally, with the prototype
definéd and developed, the MPES can be easily upgraded to handle other more
complex missions, as well as providing a basis for experimentation with other rule-

bases.
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2. SOFTWARE ARCHITECTURE FOR MISSION PLANNING

The software architecture adopted closely models the progressive stages of
mission planning. It represents another approach to designing an expert system which
automatically transforms the high-level mission specifications to detailed low-level
plans. The advantages of this approach are:

1.  Simplicity. The complex mission planning task is decomposed into
distinct decision-making entities, thereby simplifying its design and development.

2. Flexibility. The incorporation of a centralized control in the design by
the Mission Planning Controller provides the flexibility needed to react and adapt to
changing situations. This is especially valuable for on-board mission planners and re-
planners which have to respond to unexpected events during the execution of the
mission.

3. Maintainability and ease of enhancements. Future enhancements to
individual entities can be performed with minimum impact to other components. For
instance, modifications to the Voters entity either to consider a new constraint or to
add a new path-search strategy will only require a new entry to Table 4.1. The new
path-search algorithm can also be added to the Mission Constructor with virtually no
side-effects on other entities. This attribute is further augmented by exploiting KEE's
object oriented and rule-based paradigm - the former facilitates modularity and

encapsulation necessary for maintainability, while the latter is suited to the inherently
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unstructured nature of the problem.
3. DEVELOPMENT AND ANALYSIS OF ALTERNATIVE THREE-
DIMENSIONAL PATH-SEARCH ALGORITHMS
Three path-search strategies, each with differing characteristics were
implemented and their performance compared. The results were used as critical inputs
to the Mission Planning Expert System.
4. HEURISTIC SEARCH STRATEGY
The Heuristic path-search is developed in this thesis promises to be
appropriate for fully autonomous, long-range, high-endurance missions. The speed of
this algorithm and its ability to perform without complete a priori environmental
information also makes it a practical and viable candidate for real-time on-board path
planning functions.
5. GRAPHICAL SIMULATOR UPGRADE
Although it was not intended to be a goal of the research, the code for the
IRIS 4D/70GT graphics workstation was upgraded to be on par with the overall status
" of the NPS-AUYV project. This was done in order to provide the framework necessary
for more realistic simulations with regard to the test environment and vehicle, prior

to the actual in-water tests.
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B. RESEARCH EXTENSIONS
There are several broad areas in which future research can be directed. They
include the vehicle design, upgrading of the MPES and the testbed simulator, and the
on-board Mission Control level functions. The near-term goals, however, should bring
about a consolidation of the efforts thus far, and facilitate the construction of a
demonstration prototype AUYV. The realization of this prototype will serve not only to
demonstrate that the myriad ideas and design decisions made are coherent and
feasible, but also to uncover early the potential and major design flaws (where they
exist). Thus, the immediate research efforts should emphasize the Mission Control
level functions and the integration of the hardware and software at the Mission Control
and Vehicle Control levels. At the same time, the short and long-term research
objectives should set out the blueprint required to realize a fully autonomous AUV,
suitable for long-range and high-endurance missions. The following sections describe
the possible extensions to four areas: mission planning, mission re-planning, path
_planning algorithms, and the graphical simulator.
1. MISSION PLANNING
An immediate task is to develop the code necessary for automatic
downloading of the planned Mission Details to the on-board Gridcase computer, so as
to be ready for the forthcoming in-water demonstration tests. Another near-term goal

would be to expand and develop the other mission types in the same fashion as the
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one developed for the Transit Pool mission. In the process, other new and probably
more complex constraints may need to be considered - in particular, constraints such
as fuel (energy) requirements and the actual time available for mission execution must
be factored in. The off-line database may also require extension to include more
realistic open ocean environments although this should be done in conjunction with
the upgrades to the graphical simulator to provide the corresponding displays. So far,
the missions considered are relatively simple. Thought should also be given to multi-
task missions which require optimal task scheduling and more sophisticated route
planning capabilities.
2. MISSION RE-PLANNING
A fully autonomous AUV should have the versatility to deviate from
original mission plans and to initiate re-planning in response to changed circumstances.
For instance, if the mission H-hour has been brought forward, it must be able to re-
prioritize and re-plan its tasks in order to achieve the higher mission objectives. Thus,
onboard re-planning and re-scheduling capabilities must be incorporated to enable it
to respond appropriately. A good starting point would be to modify the off-line
mission planning code for the onboard re-planner.
3. PATH PLANNING
Several immediate improvements can be made to the heuristic search

algorithm. Firstly, the various cost figures such as rotational cost and translational cost
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have been estimated in this study; but, with the development of the actual vehicle,
more realistic vehicle data should be made available and used.

Secondly, although the heuristic search strategy can theoretically perform
without a priori information concemning the environment, it remains to be
demonstrated. However, this would not only require changes to the path-planning code
(mainly the data structures used for encoding the environment), but it also requires the
graphical simulator to be upgraded to simulate processed sonar sensor inputs. The
same is true with its capability to deal with dynamically moving obstacles.

The third possible improvement to Heuristic search is the handling of
concave obstacles. This is related to the path-marking feature used to overcome the
local minimum problem explained in Section F of Chapter V, since all concave
obstacles possess inherent local minimas which may trap the vehicle. Although the
path-:narking technique can be used, it is inefficient with respect to cost and time in
the case where the concave obstacle (or "tunnel”) is wide and deep. This is due to the
fact that the method has to search almost the entire volume within the concave
obstacle before the path marking value becomes sufficiently high to discourage further
search within the obstacle. Thus, more elegant and more efficient approaches need to
be examined. One promising method that can be explored is the obstacle-marking

technique used in {Ref. 8], for two-dimensional path-plan.ing.
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A fourth enhancement to be considered for immediate implementation is
the changes required to be performed on the path search algorithms to accomodate the
hovering mode of the vehicle. Presently, although the interface for its selection is
provided, hovering mode is not considered in the path-search algorithms.

Fifthly, the efficiency of A* search with regard to time and memory
resources, can be improved. Specifically, a different sort method can be explored to
improve the time required to sort the agenda.

In the longer term, one suggestion for consideration relates to the
methodolgy used to realize the heuristics in Heuristic search. Currently, the heuristics
are implemented procedurally for execution speed. Another method is to express the
heuristics in a higher-level rule form, by using Prolog for instance, although this
approach may severely degrade the execution efficiency. Thus, a combination of the
rule-based and procedural approaches may be the most effective way to implement the
heuristics - a technique which is worth exploring.

Within the Mission Planner, one possible and significant enhancement to
the high-level for consideration, is to combine a macro-level route planner with a
micro-level path planner. Thus far, the various computer aided prototypes developed
in the path planning research community, have dealt solely with one or the other.
There is a good possibility, however, for path-planning to be performed in two stages -

first, invoking a route planner to derive the major route segments, and then to plan

the detailed path (for each path segment) using a path planner.
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A final suggestion is to implement and include new path-search strategies
to expand the suite of path-planning tools available for the Mission Constructor of the
MPES.

4. GRAPHICAL SIMULATOR

The simulator should evolve with the NPS AUV vehicle as well as with the
complexity of the missions it will undertake. As the physical design of the NPS Model
2 AUV stabilizes and becomes more fully defined, its corresponding hydrodynamic
model and maneuvering characteristics should be incorporated on the simulator to
validate its performance prior to actual tests. Another important extension, as
mentioned above, is the display of open ocean environments to support the testing of
more realistic missions. Finally, the simulator can be enhanced to include the
simulation of processed sonar inputs to be passed to path-planning algorithms. In
particular, it can be used to validate the capability of the Heuristic search (and other

search strategies) to plan a path without complete a priori environment information.
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The following Table A.1 provides a detailed definition of each scenario used to

analyse the performance of the three search methods, as mentioned in Chapter V1. The

APPENDIX A

SCENARIO DEFINITIONS

parameters that have the same value for all the scenarios are:

Mission Speed = 350 (rpm)

Mission Depth = 50 (inches)

Safety Radius = 350 (inches)

TABLE A.1 DETAILED SCENARIO DEFINITIONS

S/N Description Start Goal Obstacle

Number
1. No Obstacle (140 140 20) { (630 1260 20) 0
2. Wide Wall (350 140 20) | (350 1190 20) 1
3. High Wall (350 140 20) | (350 1190 20) 2
4a. | Random 5% (210 140 20) | (280 1190 20) 21
4b. | Random 10% | (210 140 20) | (280 1190 20) 22
4c. | Random 15% | (210 140 20) | (280 1190 20) 23
Ad. | Random 20% | (210 140 20) | (280 1190 20) 24
4e. | Random 25% | (210 140 20) | (280 1190 20) 25
4f. | Random 30% | (210 140 20) | (280 1190 20) 26




APPENDIX B

AUV TESTBED SIMULATOR USER MANUAL

A. HARDWARE CONFIGURATION

The laboratory AUV testbed simulator is comprised of the following systems:

1. Symbolics 3675 LISP machine

2. Symbolics Color Monitor

3. Silicon Graphics IRIS (SGI) 4D/70GT graphics workstation

The Symbolics LISP machine is directly connected to the Symbolics Color
Monitor, and the two together make up the Mission Planning workstation. The former
hosts the mission planning software and interfaces with the user via a series of mouse-
driven panels, facilitating the interactive input of mission data and the monitoring of
the progress of the mission planning cycle; the latter displays the derived path as well
as the actual path during the execution phase, in two-dimensional plan and side
elevation views of the NPS pool (for the purpose of feedback and evaluation). The
SGI ‘graphics workstation is used for 3-D visualization of the vehicle and the
environment during a simulated execution of the mission; it comes with a side
terminal which is used for starting the program as well as for displaying user prompt
messages during the simulation. Communication between the Mission Planning and

the SGI graphics workstations is facilitated by an ethemet local area network on which
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they reside. In this manual, the term AUV testbed simulator refers to the complete
laboratory testbed configuration, while the AUV graphics simulator refers only to the

SGI graphics workstation.

B. PRE-REQUISITE FOR USING THIS MANUAL

This manual assumes some basic familiarity with the Symbolics LISP machine
and the IRIS graphics workstation. The user is also required to be familiar with the
elementary commands in the Unix operating system such as those for login on,
traversing the hierarchical directory structure, and simple file manipulations. Finally,
some nominal experience with the LISP machine and the KEE expert system shell is
required for proper startup and shutdown of the AUV testbed simulator; in-depth

knowledge of its operation is not needed.

C. THE SGI GRAPHICS WORKSTATION

The operation of the AUV graphics simulator is described in detail by Ray [Ref.
19]; it is updated and included here both to reflect the changes made and for
completeness. The simulation is normally run on the IRIS 4D/70GT, specifically IRIS-
S, because of its physical proximity to the LISP workstation, which allows easy
viewing of both workstations during the autopilot mode of operation. However, all the
IRIS machines are networked in a manner that allows the simulation to be run on

either IRIS-1, IRIS4, or IRIS-S.
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1. Start-Up Procedure
To start the simulation, "log on"” to the auv account on both the IRIS
workstation and the side terminal of the IRIS, and then transfer to the directory
/work/auviongsm (where the auv programs reside). Start the simulator program by
entering the command auv on the side terminal followed by a carriage return. It takes
about 10 seconds to initialize and to read in the object data files of the vehicle and the
pool, before the graphics is fully displayed on the main IRIS graphics workstation.
2. Display Viewing Controls and Vehicle Controls
When the simulation is started, the right side of the graphical display shows
a control panel with a set of sliders. This panel provides two types of control: the
display viewing controls and the vehicle controls. The viewing controls are those
shown on the top half of the control panel and they are used to alter the viewer's
perspective of the display. The vehicle controls, shown on the lower half of the control
panel, are used to manually steer the vehicle. All controls shown are activated by
using the mouse to manipulate the sliding markers as follows: first, position the cursor
_ at the appropriate slider, then press and hold down the left mouse and drag the marker
to the desired new value while still holding down the left mouse. Note that changes
to the user’s viewpoint using the viewing conrols, should be executed slowly or the

user may lose his own perspective in the display.
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3. Manual and Autopilot Modes
The simulator can be operated in either the manual or the autopilot modes.
In the manual mode, all vehicle controls shown on the display are active, while in
autopilot mode, they are inhibited since the Mission Planning workstation provides the
control commands to the vehicle. Note that the display viewing controls are always
active. The initial default mode is the manual mode; here the simulated vehicle starts
on the surface of the pool with a speed of 25 rpm on course east.
4. Aautopilot Mode
The autopilot mode is started by pressing in sequence the ESC-key and the
A-key on the main keyboard of the IRIS workstation. Pressing the ESC-key brings the
vehicle to the original default starting position, while hitting the A-key puts the system
in autopilot mode. After activating the autopilot mode, the side terminal will indicate
that the IRIS server is waiting to connect to sym1 (the Symbolics LISP machine) and
the following message will prompt the user to start the KEE portion of the simulator
to connect the LISP client to the IRIS server:

Ready to commence execution phase
Server waiting to connect to syml
Server waiting to connect to symi

The autopilot execution can be interrupted by pressing the Q-key which
brings the system back to manual mode; if this is done, the autopilot cannot be re-
started without exiting the program. Note that the communications sockets must be
broken when the program is exited, as explained in the next section.
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5. Exiting the Simulation Program

The simulation can be interrupted and the program exited at any point
during the autopilot simulation mode by using the pop-up menu. The pop-up menu can
be brought up by pressing the right mouse. Selecting the exit option on the menu of
choices will terminate the display program.

However, the above procedure is still incomplete. One important additional
step that must be taken is to break the communications (send and receive) socket
connections on both the IRIS workstation and the Symbolics Lisp machine. This must
be done on the IRIS server first and then on the Lisp machine. To break the socket
connections on the IRIS, go to the side terminal and list the current processes by
entering the Unix command ps. This brings up a list of active processes together with
their corresponding process numbers. Stop any send/receive communication daemons
with the kill <process number> command. This must then be followed by a
corresponding step on the Syrﬁbolics Lisp machine, by doing SELECT-L to enter the
Lisp Listener and issuing the command (end-con) to end the "conversation”.

Note that this procedure to break communications as described, must be
repeated if, on the next activation of the autopilot mode, the system reports that the

sockets are already in use. Usually, the procedure is performed not more than twice.
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D. THE AUV TESTBED SIMULATOR
1. Initial State of SGI Graphics Workstation and the Symbolics Color
Monitor
To start the AUV testbed simulator, the three systems comprising the
testbed need to be put in the initial state as follows. First, put the AUV graphics
simulator in autopilot mode, by following the steps described in the previous section.
This is the initial state for the graphics simulator. Next, ready the Symbolics Color
Monitor (of the Mission Planning workstation) by simply depressing the "on" button;
if the display is "blurry”, press the "degaussing” button and hold it for at least 2
seconds.
2. Initial State of Symbolics Lisp Machine
The next step involves initializing the MPES software on the Symbolics
LISP machine. First, "log on"” to the machine by first doing a SELECT-L to bring up
the LISP Listener window (if not already displayed), and then issuing the command
. login auv; this login procedure puts the user in the auv project account on the LISP
machine.
The next thing to do is to load the auv-mpes desktop into the KEE
environment; this desktop encapsulates the MPES knowledge-base and reserves the
workspace needed by the program. The load procedure is as follows. First, do a

SELECT-K to get into the KEE environment. Then use the mouse to point the cursor
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at the desktop icon at the upper left comer of the screen and depress the left mouse
button. When a pop-up menu appears, select the Load Desktop option. A KEE
"typescript” window will appear requesting the name of the desktop to be loaded: enter
sym4:>auv>ongsm>auv-mpes.lisp. KEE will then respond by first loading the required
lisp files and then the MPES knowledge base. (The lisp files contain the lisp functions
used by the MPES knowledge base). Loading is completed when a shadow mouse
appears on the screen; clicking the left mouse button at this stage will bring up the
initial screen of the MPES. The Mission Planning workstation is now ready for
operation.
3. Mission Planning and Construction Phases
The procedure for planning a mission during the planning and construction
phases, is performed on the Mission Planning workstation as described in Section D
of Chapter IV.
4. Mission Execution Phase
The execution phase is started by selecting the execute option from the
execute-abort panel on the Mission Planning workstation (see Figure 4.6 and Section
D of Chapter 4). This selection triggers the establishment of the communications
between the IRIS graphics simulator and the Mission Planning workstation. The
Mission Planning workstation then initiates a "conversation” with the IRIS, and then

sends it the coordinates of the initial position of the vehicle and any obstacles that

124




,

may be defined for the environment. When the data has been transferred, it issues the

following message on the KEE "typescript” window:

Iris5 communication selected.
A conversation with the iris has been initiated.
Connection with iris established.

Initial AUV state sent to iris
Hit a key on Iris5 main terminal to continue

At the same time, the IRIS displays a corresponding message on the side terminal as
follows:

Obstacles received from lispmachine
Initial position obtained from lispmachine
Hit any key to receive waypoints from lispmachine

To proceed, hit any key on the main IRI5S workstation keyboard. This
causes the display program to begin reading in the waypoints sent by the Lisp
machine. Note that the transfer of the waypoints from the Lisp machine to the IRIS
is not required, and is done only so that the complete path can be displayed on the
IRIS for debugging purposes. Upon completion of this transfer, the actual execution

then begins.
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APPENDIX C
FILE ORGANIZATION

A. IRIS WORKSTATION
Figure C.1 shows the overall hierarchical file organization of the auv account on
the IRIS1 Workstation. The Iris software used in this thesis are stored in the share3
and the ongsm sub-directories. The following list provides a brief description of the
contents of the relevant sub-directories:
1. share3  -- contains the original IRIS-SYMBOLICS communications
software (which is not modified in this thesis).
2. ongsm -- contains the current version of the Iris auv software.
3. symbolics -- contains a backup of the lisp files for the Symbolics Lisp
Machine Workstation.
4. auvobjs -- contains the OFF files for the auv graphical objects.
5. modell objs -- contains the OFF files for the AUV Model 1 vehicle.
6. model2objs -- contains the OFF files for the AUV Model 2 vehicle.

B. SYMBOLICS 3675 LISP MACHINE WORKSTATION

Figure C.2 shows the hierarchical file structure of the auv account on the
Symbolics Workstation. The sub-directory ongsm contains all the required lisp < sde,
the KEE Knowledge Base, and the KEE Desktop developed for the MPES. Under no
circumstances should the contents of this sub-directory be changed or modified.

The currwork sub-directory is created as a "working" or "scratch-pad” directory,
meant for storing any code that is under development. It is recommended that, prior
to any future changes or enhancements that might be made to the auv-mpes lisp code,
a copy of the ongsm sub-directory contents be made on the currwork sub-directory;
any modification should then be performed on the currwork sub-directory.
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auv

shared ongsm rogers nordman

/\

auvobjs symbolics

a

modell1objs model2objs

Figure C.1 File Organization on IRIS Workstation
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auv

currwork ongsm rogers

Figure C.2 File Organization on the Symbolics Workstation
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APPENDIX D
PROGRAM LIST

This appendix contains the source listings of the lisp code developed for this

thesis. They are stored in several files as listed below:

10.
il
12.
13.

1. array.lisp
2. astar-best.lisp
3. boot.lisp
4. evallisp
5.
6
7
8
9

hsearch.lisp

. monitor.lisp
. obstacle.lisp

. posn.lisp

. succ.lisp

sym-iris-comm.lisp
missions.lisp
mission-agents.lisp

umissions.lisp

The last three files, "missions.lisp”, "mission-agents.lisp”, and "umissions.lisp"

contain the methods (lisp functions) referenced directly by the KEE units. In addition

to the above list, two other major files exist: mpexpert.u and auv-mpes.lisp. These two

files are automatically generated by KEE when the Knowledge Base and the Desktop

(respectively) are created; they are not included here due to their excessive length, and

also because it would not benefit the reader of this report.
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:3:; =%~ Package: USER; Mode: LISP: Syntax: Common-Lisp; Base: 10 -#-

(222222222 2222002 AR RRl Sl d Al da il al il X 222 2 2222220 Ry

Filename.......: array.lisp
Author...ccveea Oong Seow Meng

Date Created...: 18 Aug 19893

Description....: This file contains lisp code that build the e¢valuation function
map (emap). For convenience, the emap is implemented as a
s~dimensional array corresponding to the pool envirzonment in the
grid-system. Actually a complete 3-dimensional array ia not necessary
for keeping track of the obstacle locations (virtual and real) and
for path marking - a two-dimensional map with a pointer to a linked
list of obstacle positiona is sufficient (and more storage efficient)
should be considered.

Modifications..:

NS e % %4 e %p % % % e Se e %6 e % S wp Sy

H T2 R LRSS LA AR S22 AR 22ttt iRl i i altililiid il i it Rt Rt d20d2 22 )

(DEFUN make_emap ()
(SETF *emap* (MAKE-ARRAY (list (+ *xmapsizer 2)
{(+ *ymapsize* 2)
(+ *zmapsizer 2) ) )) )

(DEFUN init_pool_emap ()
(apply_array_fn #'aelmt_dist_to_goal *emap*
1 *xmapsize* 1 *ymapsize* 1 *"zmapsize* )
(mark_emap_boundaries) )

(DEFUN mark_smap_boundaries ()
;; x-z plane boaundaries
(apply_array_fn #‘aelmt_init_to_infinity
*emap* 0 {1+ *xmapsizer*) 0 0 0 (1+ *zmapsize®)) .
{apply_array_fn #‘aelmt_init_to_infinity
*emap* 0 (l+ *xmapsize*)
(1+ *ymapsize*) (l+ *ymapsize*)
0 {1+ *zmapsize*))
;: y=z plane boundaries
(apply_array_fn #‘aelmt_init_to_infinity
*emap* 0 0 0 (1+ *ymapsize*) Q (l+ *zmapsize®))
{apply_array_fn #’aelmt_init_to_infinity
*eamap* (l+ *xmapsize*) (l+ *xmapsize~)
¢ (l1+ *ymapsizer)
0 (1+ *zmapsize®))
;: x-y plane boundaries
(apply_array_fn #’aelmt_init_to_infinity
*emap® 0 (l+ *xmapsize*) O (1+ *ymapsizer) 0 Q)
(apply_array_fn $’aelmt_init_to_infinity
*emap* 0 (l+ *xmapsizer)
0 (1+ *ymapsize~”)
(1+ *zmapsize*) (l1+ *zmapsizev)) )

(DEFUN apply_array_£n -
(fname array x~start x-end y-start y-end z-start z-end)
(DO ((xindex x~start (l1+ xindex)))
({> xindex x-end))
(DO {(yindex y-start (1+ yindex)))
({> yindex y-end))
(DO ((zindex z-start (1+ zindex)))
({> zindex z-end)) .
(funcall fname array xindex yindex zindex) ) ) } )
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(DEFUN aelmt_init_to_zero (array L3 K
(SETF (AREF array i J k) 0} )

(DEFUN aelmt_init_to_infinity (array i3jx
(SETF (AREF array i 3 k) *infinity<) )

(DEFUN aelmt_disc_to_goal (array i3iK
(SETF (AREF array i j k) (dist_bet_posns (LIST i j x) =goal®)) )
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:33: =-"- Mode: LISP; Package: USER; Base: 10; Syntax: Common-lisp -*-
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Filename.......: astar-best.lisp
Authof.........: Ong Seow Meng

Date Created...: Oct 1989
Description....: This file contains the lisp functions for A* and Best-first searches.

Modifications..:

e N Se %o %a N S We N S N e

T PN AN AN AN R R N TR R AN NN T I N T T R A N A T AT R N T I N T N N T N P N I I T N N I P I TR TN N TN EN TN T AN TN CNTS

Funczions specific to Best First Search

-~

(DEFUN bestfirst.search ()
(SETF rgiven-mission-depth* *mission-depth®)
(SETF *path* (bestfirsc_search2 (LIST (LIST *start*)) *goal%))} )

(DEFUN bestfirst_search2 (queue goal-posn)
(IF (> (LENGTH queue) *max-qlengthv) (SETF *max-qlength* (LENGTH queue)))
(LET* ( (curr-posn (posn (FIRST (FIRST queue))))
(horiz-dist-to-goal (horiz_ccord_dist curr-posn goal-posn)) )}
(IF (<= horiz-dist-to-goal *safety-dist~*)
(SETF *mission-depth* (z_coord goal-posn))
(SETF *mission-depth* *given-mission-depth*) ) )
(COND ((NULL queue) NIL)
({within_vicinityp (posn (CAAR queue)) =*goal-vicinity-liscr)
(reverse (FIRST cueue)))
(T (bestfirst_search2 (SORT (APPEND (bestfs_expand_node (FIRST queua)) (REST gqueue))
#’ (LAMBDA (pathl path2) (smaller_estimationp pathl path2 goal-posn)) )
::; #’ (LAMBDA (pathl path2) (closerp pathl path2 goal-posn}) )
goal-posn} ) ) )

(DEFUN bestfs_expand_ncde (path)
(eliminate_circular_paths
(MAPCAR #‘ (LAMBDA (child) (CONS child path))
(remove_obstacle_succs (successorS (FIRST path)) ) ) ) )

(DEFUN smaller_esatimationp (pathl path2 goal-posn)
(LET ( (pathl-state (FIRST pathl))
{path2-state (FIRST path2)) )
(¢ (bestf_estimation (direction pathl-state) (posn pathl-state) goal-posn)
(bestf_estimation (direction path2~state) (posn path2-scace) goal-posn) ) ) )

(DEFUN bestf_estimation (succ-dir succ-posn goal-posn)
(LET ( (coord-dist-to-goal (+ (horiz_coord_dist succ-posn goal-posn)
(abs_vert_coord_dist succ-posn goal-posn)) ) )
(+ (dist_bec_posns succ-posn goal-posn)
(COND {({<= coord-dist-to-goal *safety-dist*) 0)
(T (rotational_cost suce-dir succ-posn goal-posn)) ) ) ) )
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Functions specific to A-star Search

The structure of ’‘path’ in Astar Search is:
(Mode eval-fn cost-so~-far (dir (xn yn zn)) (dir (xn-1 yn-1 zn-1)) .......
sesese {dir (xstart ystart zstart))

L R AT

« ve we

(DEFUN astar.search ()
(SETF *given-mission~depth* *mission-depth*)
(SETF *path* (astar_search2 (LIST (LIST ’Normal-Mode 0 O *start*)) *goal*) ) )

(DEFUN astar_searchZ (queue goal-posn)
(IF (> (LENGTH queue) *max-qlength*) (SETF *max~qlength* (LENGTH queue)))
(LET* ( (curr-posn (posn (FOURTH (FIRST queus))}))
(horiz~dist-to-goal {(horiz_coord_dist curr-posn goal-posn)) )
(IF (<= horiz-dist-to-goal *safety-dist*)
(SETF *mission-depth* (z_coord goal-poan))
(SETF *mission-depth* *given-mission-depth*) ) )
{(COND ((NULL queue) NIL)
({within_vicinityp (posn (FOURTH (FIRST queue))) *goal-vicinity-list*)
(reverse (CDDDR (FIRST queue))}) )
(T (astar_search2 (SORT (remove_higher_cost_paths
(astar_expand_node (FIRST queue) goal-posn)
(REST queue) )
#’ (LAMBDA (pathl path2)
(smaller_evaluationp pathl path2) ) )
goal-posn) ) ) )

(DEFUN remove_higher_cost_paths (new~list-of-paths curr-queue)
:: removes the higher cost path if two paths lead to the same state.
(COND { (NULL new-list~of-patha) curr-queue )
( (NULL curr-queue) new-list-of-paths )
( T (LET* ( (curr-new~path (FIRST new-list-of-paths))
(curr-old-path (FIRST curr-queue))
(curr-state~new-path (FOURTH curr-new-path))
{curr-state-old-path (FOURTH curr-old-path)) )
{IF (EQUAL curr-state-new-path curr-state-old-path)
(LET ( (new-path-cost (THIRD curr-new-path))
(old-path-cost (THIRD curr-old-path)) )
{COND ( (< new-path-cost old-path-cost)
(CONS curr-new-path
(remove_higher_cost_paths (REST new-list-of-paths)
(REST curr-queve) ) ) ;::
( T (remove_higher_cost_paths (REST new-list-of-paths)

curr-queue } ) ) )
(CONS curr-new-path (remove_higher_cost_paths
(REST new-list-of-paths) curr-queue )) ) )) ) ))

(DEFUN astar_expand_node (path goal-posn)
(LET ( (cost-so-far (THIRD path))
(curr-state (FOURTH path)) )
(SETF *Current~Mode* (FIRST path)) )
(LET ( (succ-list (remove_obstacle_succs (successorS curr-state))) )
(REMOVE-IF
#’ (LAMBDA (a_path)
(LET ( (path-posn-list (get_path_posn_list (CDDDR a_path))) )
(MEMBER (FIRST path-posn-list) (REST path-posn-list)) ) )

{MAPCAR #’ (LAMBDA (child)
(APPEND (LIST *Current-Mode*
(astar_evaluation curr-state child cost-so-far)
2! (astar_evaluation curr-state child goal-posn cost-so-far)
(+ cost-so-far (astar_delta_cost curr-state
(posn child)) ) )
(CONS child (CDDDR path)) ) )
succ-1list ) ) ) ) )
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(DEFUN astar_evaluation (curr-state succ-state cost-so~far)
(+ cost-so-far (evaluation curz-state succ-state)) )

(DEFUN astar_delta_cost (curr-state succ-posn)
(local_cost (direction curr-state) (posn curr-state) succ-posn) )

(DEFUN smaller_evaluationp (pathl path2)
(< (SECOND pathl) (SECOND path2)) )

Functions shared by both Best-First Search and A-star Search

v s

(DEFUN cost_of path (path-~state-list)
(DO* ( (curr~-state-~list path-state-list (REST curr~state-list))
{(curr-state (FIRST curr-state-~list) (FIRST curr-state-list))
(next-state (SECOND curr-state-list) (SECOND curr-state-list))

(curr-dir (direction curr-state) (direction curr-state))
(curr-posn (posn curr-state) (posn curr~state))
(next-posn (posn nexct-state) (posn next-state))

(total-cost 0 ) )
( {(NULL (CDDR curr-state-list))
(+ total-cost (local_cost (direction (FIRST curr-state-list))
(posn (FIRST curr-state-list))
(posn (SECOND curr-state-list)) )) )
{SETF total-cost (+ total~cost (local_cost curr-dir curr~posn next-posn))) ) )

(DEFUN within_vicinityp (position vicinity-list}
(COND { (NULL vicinity-list) NIL)
( (EQUAL position (FIRST vicinity-list)) T)
({ T (within_vicinityp position (REST vicinity-list))) ) )

(DEFUN successorS (curzr-state)
;: returns the list of successors of the current state according to curr-mode.
(COND ( (EQUAL *Current-Mode* ‘Cbstacle-Mode)
(IF *DEBUG* (PROGN (PRINC ’'Obatacle-Mode) (TERPRI)))
(obst_mode_successorS curr-state) )
( (EQUAL *Current-Moder ’'Near-Obst-Edge)
{IF *DEBUG* (PROGN (PRINC ’'Obstacle-Zdge) (TERPRI}))
(obst_edge_successorS curr-state) )
( (EQUAL *Current-~Moder* ‘Narmal-Mode)
(IF *DEBUG* (PROGN (PRINC ’‘Normal-Mode) (TERPRI)))
(normal mode_successorS curz-state) ) ) )

(DEFUN normal mode_successorS (curr-state)
(det_search_mode curr-state)
(LET ( (succ-list (qget_succ_list curr-state *search-mode®)) )
(COND ((all_are_obstaclesp succ-list)
(SETF *Current-Mode* ‘Obstacle-Mode)
{successorS curr-state) )
{ T succ~list) )} ) ) -
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(DEFUN obst_mode_successorS {(curr-state)
: returns the list of successors of current state and
. ; determiones if ready to proceed to *Near-Obat-Edger.
(LET* ( (search-sequence
(IF *Bottom~Search-Preferred* *AS-BF-baot-~preferred-sequence*
*AS-BF~top~preferred-sequence*) )
(first-mode-to-try (FIRST search-ssquence)) )

(LET ( (succ-list
(REMOVE-1IF #’' (LAMBDA (a-auccessor) (is_wallp (posn a-successor)})
(get_succ_list curr-state first-mode~to-try) ) ) )
(IF (NOT (all_are_obstaclesp succ-list))
(PROGN (IF *DEBUG* (PROGN (PRINC ’at-~least-one-opening!) (TERPRI)))
(IF (OR (no_cbstacles_in_succ_listp succ-list)
(depth_threshold_reached (z_coord (posn curr-statej)) )
;; get out of *Obstacle-Mode* if none of the successors
;; are obstacles.
(SETF *Current-Mode* ‘Near-Cbst-Edge) )
(remove_cbstacle_succs succ-lisc) )
;7 else try the rest of sequence but remain in Obstacle-Mode.
(DO* ( (curr-seq-ls (REST search-sequence) (REST curr-seg-ls))
(curr-smode (FIRST curr-seg-ls) (FIRST curr-seg-ls))
{succ~liat (get_succ_list curr-state curr~smode)
(get_succ_list curr-state curr-smode) ) )
( (NOT (all_are_cbstaclesp succ~list))
(PROGN (IF *DEBUG* (PROGN (PRINC ‘returned_succ_list_ )
(PRINC suce~list) (TERPRI) ))
{remove_obstacle_succs sucec-list) ) ) ) ) ) )} )

(DEFUN obst_edge_successorS (curr-state)
(LET* ( (fwd-level~succ~list (fwd_level_succ_list curr-state))
(toward-mission-depth-succ-list (IF (< (depth curr-state) "mission-depthv)
(fwd_dive_suce_list curr-state)
{fwd _rise_suce_list curr-state) ))
. (total-succ-list
(REMOVE-IF #' (LAMBDA (a-successor) (is_wallp (posn a-successor)))
(APPEND fwd-level-succ-list toward-mission~depch-succ~lisc)) ) )
(COND ( (no_obstacles_in_succ_listp total-succ-list)
(SETF *Current-Mcde* ’‘Normal-Mode)
{successorS curr-state) )
( (all_are_obstaclesp total~succ-list) (SETF *Current-Mode* ‘Obstacle-Mode)
(successorS curr-state) )
‘ ( T (IF (NOT (all_are_obstaclesp fwd-level-succ-list))
fwd-level-succ-list
toward-mission-depth-succ-lisc )) )} ) )

{DEFUN all_are_obstaclesp (succ-liat)
(COND ( (NULL suce-list) T)
( (NOT (is_obstaclep (posa (FIRST succ-list)))) NIL)
( T (all_are_obsctaclesp (REST succ-list))) ) )

(DEFUN get_path_posn_list (path-state~list)
(COND ( (NULL path-state-list) NIL )
( T (CONS (posn (FIRST path-state~list))
(get_path_posn_list (REST path-state-list)) )} ) )

(DEFUN remove_obstacle_succs (succ-list)
(REMOVE-IF #’ (LAMBDA (cand-succ-state)
(is_obstaclep (posn cand-succ-state)) )
succ~lisc )} )

. (DEFUN eliminate_circular_paths (list-of-paths)
(REMOVE-IF
#’ (LAMBDA (a_path)
- (LET ( (path-posn-list (get_vath_posn_list a_path)) )
(MEMBER (FIRST path-posn-list) (REST path-posn-list)) ) )
list-of-paths) )
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Filename.......: Dboot.lisp
Author.........: Ong Seow Meng

Date Created...: 27 Dec 1989
Description....: This file contains the global variable and global constant
definitions as well as the parameter-initialization routines.

Modifications..:

P2 A2 22 221222222222 2R el s sl Al it Al s i 2 2 222222222 22 22222 R DY L TR R 2 g 2oy T+

S % v % % Sy ow,

-——-— -

GLOBAL VARIABLES

. v

~

(DEFVAR *DEBUG* NIL)

(DEFVAR *goal*)

(DEFVAR *start”)

(DEFVAR *mission-depth*)
{CEFVAR *given-target-~depthr)
(DEFVAR *safety-dist®)
{DEFVAR *path"*)

(DEFVAR *real-path+)

(DEFVAR rreturn-pathv*)
(DEFVAR *goal-vicinity-listw)
(DEFVAR *curr-speed®)

(DEFVAR *vert-mvt-~speed”)
(DEFVAR rvertc-turning-speed®)

(DEFVAR *iris-sym~comms-established*) set by send_parameters_to_IRIS

reset by abort_mission method of EXECUTCR

~ o~
e a

(DEFVAR *emap*)

(DEFVAR *xmapsizer)
(DEFVAR *ymapsizer)
{DEFVAR *zmapsize~)

(DEFVAR *ObstacleLs*)
(DEFVAR *NumObstacles*)

(DEFVAR *risk-factorv)

(DEFVAR *real-horiz~dist-pu-coord* 70.0)
(DEFVAR *real-vert-dist-pu-coord* 10.0)
(DEFVAR *yup-costpu-dist*)

{DEFVAR =*down-costpu-dist*)

DEFVAR *approx-half-real-horiz-dist-pu-coordr*)

(DEFVAR *Bottom-Search-Preferred®)
(DEFVAR *top-preferred-sequence®)
(DEFVAR *bottom-preferred-sequence*)

{DEFVAR *search-mode?*)

(DEFVAR *Obstacle~Mode*)
(DEFVAR *Near-Obst-Edge*)
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GLOBAL CONSTANTS

e %

;; Constants used in path search programs
(DEFCONSTANT *PI* 3.142)

(DEFCONSTANT *half-PI* (/ <PI* 2))

(DEFCONSTANT *one-eight-PI* (/ *PI* 8))
(DEFCONSTANT *infinity* 100000}

(DEFCONSTANT *deg-to-rad-factor* (/ *PI* 180.0))
(DEFCONSTANT *rad-to-deg-factor* (/ 180.0 *PIv))

LOADFILES loads all the files containing the required lisp functions

LTSN YO

(DEFUN loadfiles {)
(load “"symd:>auv>currwork>array”)
{load “symd4:>auv>curzwork>obstacie™)
{load “symd:>auv>currwork>posn”™)
(load "“symd:>auv>currwork>suce™)
{load "symd:>auv>curswork>eval®)
(load *"symd:>auv>currwork>hsearch”)
(load “symd:>auv>currwork>astar~best”)
(load “symi:>auv>currwork>monitor”)
(load "symd:>auv>currwork>asym~iris-comm”}
(load "symd:>auv>curzwork>umissions®)
(load “"symd:>auv>currwork>missions”)
{load "sym4:>auv>currwork>mission-agents") )

- 0 P = A >

- - -y

INIT_SEARCH PARAMETERS function initializes the system parameters used for path search.

e = " - >

(DEFUN init_search_parameters {)
(IF *DEBUG® (FORMAT T *"~% Entered function ‘init_system_parameters’.”"})
:; (SETF *risk-factor* 90)
(SETF *risk-factor* 0)
(SETF *vert-mvt-speed* 200.0)
(SETF *vert-turning-speedr 200.0)
(SETF *real~horiz-dist-pu-coord* 70.0)
(SETF *real~-vert-dist-pu-coord* 10.0)
(SETF *approx-half-real-horiz-dist-pu-coord~*
(= (/ *"real~-horiz-dist-pu-coord* 2) 0.1))
(SETF *up-costpu-dist* 1.2}
(SETF *down-costpu-dist* 1.2)
(SETF *top-preferred-sequence” '’ {fwd-rise fwd-level top-rl fwd-top top
fwd-dive bot-rl fwd~bot right-left back-up) )
(SETF *bottom-preferred-sequence® ' (fwd-dive fwd-level bot~rl fwd-bot bottom
fwd-rise top~rl fwd-top right-left back-up) )
(SETF *AS-BF-top-preferred-sequence* ’ (fwd-rise-and-level top-all-and-rl
fwd~dive bot~-all back-up) )
(SETF *AS-BF-bot-preferred-sequencer ’ (fwd-dive-and-level bot-all-and-rl
fwd~rise top~all back-up) ) )

(init_search_parameters)
(loadfiles)
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Filename.......: eval.lisp
AUChOZ.cceuoeoat Ong Seow Meng

Date Created...: 18 Aug 1989
Description....: This file contains the lisp code for computing the evaluation
function and it component costs, used in Heuristic search.

Modifications..:
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(DEFUN evaluation (curr-state succ-state)
returns the evaluation function (F) in MAIN mode,
F=C+E
where C = local_cost functioen
E = estimation function
(local_cost (direction curr-state) (posn curr-state)
(posn succ~-state) )}

(estimation (direction succ-state) (posn succ-state) ) ) )

e v v N

4+ e e v e

(DEFUN estimation (suce-dir succ-posn)
returns the estimacion function
E = T{(CPn+l,Pgoal) + PM(CPn+l) + R(CPn+l,2qoal)
where (T + PM) is stored in estimation map, emap
+ translation_cost succ-posn *goal*
(+ (AREF *emap* (x_coord succ-posn)
(y_coord succ-posn)
(2z_coord succ-posn) }
(rotational_cost succ-dir succ-posn *goal~®) ) )

.
;
H

e ve N %,

;
.
;

(DEFUN local_cost (curr-dir curr-posn tgt-posn)

; returns the local coat C = T + R

tx where T = tranalational cost
2z R = rotational cost

{(+ (translation_cost curr~posn tgt-posn)
(rotational_cost curr-dir curr-posn tgt-posn)
(risk_cost tgt-posn) ) )

~

(DEFUN risk_cost (candidate-posn)
(* *risk-factor* (depth_to_go candidate-posn)) )
(LET ( (dist-from-start (horizontal_dist candidate~posn (posn *"scart+)))
(dist-from-goal (horizontal_dist candidate-posn *goal¥)) )
(COND ((<w dist-from-goal *safety-dist*)
(SETF *mission-depth* (2_coord *goalv)) ) )

[ PR
“a % e e

{BEFUN depth_to_go (posn)
3 (LET ((curr-depth (- *zmapsize* (2_coord posn)})))
(ABS (-~ *mission-depth” (3_coord posal}) )

(DEFUN translation_cost (curr-posn tgt-posn)
:: returns the translational cost (T) from curr-po n to tgt-posn.
(+ (depth_change_cost curr-posn tgt-posn)
(horizontal_dist curz-posn tgt-posa) ) )

(DEFUN depth_change_cost (posnl posn2)
:: returns the cost of changing depth in moving
:: from posnl to posn2.
{LET ((vert-dist (vertical_dist posnl posn2)))

(COND ((w» vert-dist 0} O0)
((> vert-dist Q) (* wup-costpu-dist* (ABS vert-dis:))) ;; moving up towards surface

((< vert-dist 0) (* *down-costpu~dist* (ABS vert-dist))) ) ) )
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(DEFUN rotational_cost (curr-dir curr-posn tgt-posn)
;: returns the turning cost (RC) in moving from curr-posn to tgt-pesn
(* <real-horiz-dist-pu-coorxd*
‘ (COND ((= (horiz_coord_dist curr-posn tgt-posn) 0) 0)
(¢ (LET* ((new-dir (azimuth curzr-posn tgt-posn))
(abs-delta (ABS (turn_angle curr-dir new-dir)}))
{turn-quantum {/ abs~delta 0.3926991)) )
; turn-quantum is in units of 22.5degq.
:: (PRINC ’turn-quantum_s= ) (PRINC turn-quantum) (TERPRI)
(COND ((rangep turn-gquantum 0 1) 0)

({rangep turn-quantum 1 3) 0.1)
{{rangep turn-quantum 3 §5) 0.5)
{ (rangep turn-quantum S5 7) 1.9)
{(rangep turn-quantum 7 9) 2.0)

((rangep turn-quantum 9 11) 1.0)
{{rangep turn-quantum 11 13) 0.5)
({ (rangep turn-quantum 13 15) 0.1)
(> turn-quantum 15 ) 0y )y ) ) )

(DEFUN rangep (var lower upper)
(IF (AND (>= var lower) (< var upper)) t NIL) )

(DEFUN azimuth (from-posn to=-posn)
:; azimuth is the angle in x~y plane with zero along the y-axis
(ATAN (xcoord_diff from-posn to-posn)
{(ycoord_diff from-posn to-posn) ) )

(DEFUN turn_angle (azimuthl azimuth2)
{= azimuth2 azimutchl) )

- (DEFUN dir_quantum {azimuth)
(/ azimuth *one-eight-PI*) )

{DEFUN distc_bet _posns (posnl posn2)
(SQRT (+ (sqr (horizontal_dist posnl sosn2))
) (sqr (vertical_dist poanl posn2)) )) )

(DEEUN horiz_coord_dist (posnl posn2)
{SQRT (+ (sqr (abs_xcoord diff posnl posn2))
(sqr (abs_ycoord _diff posnl posn2))) ) )

(DEFUN abs_vert_coord_dist (posnl posn2)
(abs_zcoord_diff posnl posn2) )

(DEFUN horizontal_dist (posnl posn2)
(* *real-horiz-dist~pu-coord* (horiz_coord_dist posnl posn2)) )

(DEFUN vertical_dist (posnl posn2)
(* *real-vert-dist-pu-coord* (zcoord_diff posnl posn2) ) )

(DEFUN saqr (n)
(* nn))

(DEFUN abs_xcoord_diff (posnl posn2)
(ABS (- (x_coord posn2) (x_coord posnl))) )

{DEFUN abs_ycoord_diff (posnl posn2)
(ABS (- (y_coord posn2) (y_coord posnl))) )

(DEFUN abs_zcoord_diff (posnl posn2)
(ABS (- (z_coord posn2) (z_coord posnl))) )
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(DEFUN xcoord_diff (posnl posn2)
(-~ (x_coord posn2) (x_coord posnl)) )}

(DEFUN ycoord diff (posnl posn2}
{= (y_coord poan2) (y_coord posnl)) )

(DEFUN zcoord diff (posnl posnl)
{~ {z_coord posn2) (z_coord posnl)) )

(DEFUN x_coord (posn)
(CAR posn) )

(DEFUN y_coord (pean)
(CADR posn) )

(DEFUN z_coord (posn)
(CADDR posn) )

140




::: =%— Package: USER:; Syntax: Common-Lisp; Base: 10; Mode: LISP ~-*-

(A RA SRR 2222222222t 2 il it s s X2 YRR Ly B R T LR Y PR g p e

Filename.......:
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Date created...:
Description....:

NOt@sS..coeeveeans

Modifications..:
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hsearch.lisp
Qng Seow Meng

20 Aug 1989
This file contains the lisp code for heuristic search.

A State is defined by the list-form
(course (x y 2))
where (x v z) is a path planning coord.
and course is north in the positive Y-axis.

PR A2 2R A AR 22 22 a2 d il s il sl il 22222222222 AR 222 R4

(DEFUN heuristic.search ()
(SETF *path* (heuristic_search2 *start*)) )

(DEFUN heuristic_searchl (curr-state)
(LET* ( (curr-posn (posn curr-state))
(horiz-dist-to-goal (horiz_coord_dist curr-posn *goal~*)) )
(IF (<= horiz-dist-to-goal "safety-dist~)

(SETF *mission-depch* (z_coord *goal®)) )

(COND ( (within_viecinityp curr-posn =*geal-vicinity-list*) (LIST curr-sctace) )

{ T (LET ((succ-state (successor curr-state)))

(path_mark curr-state succ-statas)
(APPEND (LIST curr-scace) (heuristic_search2 succ-state)) )) ) ) )

(DEFUN successor (curr-state)

‘ L

returns the best successor of the current state.
(COND ( *Obstacle-Moder (IF *DEBUG* (PROGN (PRINC ‘Obstacle_Mode) (TERPRI)))

(get_obst_mode_successor curr-state) )

( *Near-Obst-Edge* (IF *DEBUG* (PROGN (PRINC ‘Cbstacle_Edge) (TERPRI)))

(get_obst_edge_successor curr-state) )

( T (det_search_mode curr-state)
(get_normal_mode_successor curr-state

{get_succ_list curr-state *search-mode*)) ) ) )

(DEFUN get_obst_edge_successor (curr-state)
(LET* ( (fwd-level-succ~-list (fwd_level_succ_list curr-state))
(toward-mission~depth-succ-list (IF (< (depth curzr-state) *mission-depth*)

(total~sucec-list

{COND

(fwd_dive_succ_list curr-state)
(fwd_rise_succ_list curr-state) ))
(REMOVE~IF #°’ (LAMBDA (a~successor) (is_wallp (posn a-successor)))
(APPEND fwd-level-succ-list toward-mission-depth-sucec-list)) )} )
{ (no_obstacles_in_succ_listp total-sucec-list)
(SETF *Near-Obst-Edge* NIL)
(successor curr-state) )

( (all_are_obstaclesp total-succ-list) (SETY *Near-Obst-Edge* NIL)
(SETF *Obstacle-Mcde* T}

(successor curr-state) )
{ T (LET ( (best-succ (get_best_succ curr-state fwd-level-succ-list)) )
(IF (not_obstaclep (posn beat-succ))

best-succ
(get_best _succ curr-state towazd-mission-depth-suce-list) })) ) ) )
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(DEFUN is_wallp (position)
{COND ( (OR (= (x_coord position) *xmapsize®) (= (x_coord position) 0)) T )
{ {OR (= (y_coord position) *ymapsize?*) (= (y_coord pesition) 0)}) T )
( (OR (= (2_coord position) *zmapsize*) (= (z_coord position) 0)) T )
{ T NIL) ) )

(DEFUN get_obst_mode_successor (curr-state)
(LET* ( (search-sequence
{IF *Bottom-Search-Preferred* *hottom-preferred-sequence*
*top~preferred-sequence*) )
(first-mode-to-try (FIRST search-sequence)) )

(IF (is_wallp (posn (FIRST (get_succ_list curr-scate first-mode-to-try))))
(SETF first-mode-to-try (SECOND search-sequence)) )

(LET* ( (succ-list (get_succ_list curr-state first-mode-to-try))
(best-succ (get_best succ curr-state succ-list)) )

(IF (NOT (is_obstaclep (posan best-succ)))
(PROGN (IF *DEBUG* (PROGN (PRINC ’found-a-way!) (TERPRI)))
(IF =DE3UG* (PROGN (PRINC ‘first_try best-succ_is_ )
(PRINC best-succ) (TERPRI) ) )
(IF (OR (NOT (at_least_one_obstaclep succ-list))
(depth_threshold_reached (z_coord (posn best-succ))) )
:: get out of *Obstacle-Mode® if none of the successors
;; are obstacles.
(PROGN
(IF *DEBUG* (PROGN (PRINC ’‘Changing-to-Normal-Mode-now!)
(TERPRI) ))
(SETF *Near-Obst-Edge* T)
(SETQ *Obstacle-Mode* NIL) ) )
best-aucc )

;: else try the rest of sequence but remain in "Obstacle-~Moder.
(DO* { {(curr-seq-ls (REST search-sequence) (REST curr-seg-ls))
{(curr-smode (FIRST curr-seq-ls) (FIRST curr-seq-~ls))

{succ-list (get_succ_lisc curr-state curr-smode)
{get_succ_list curr-state curr-smode) )

(best-succ (get_best_succ curr-state succ-list)
(get_best_succ curr-state suce-list) ) )

{ (NOT (is_obstaclep (posn best-succ}))
(PROGN (IF *DEBUG* (PROGN (PRINC ‘best-succ_is_ )
(PRINC best-succ) (TERPRI) ))

best-suce) ) ) ) ) ) )

(DEFUN depth_threshold_reached (curr-depth)
(COND ( (>= curr-depth wzmapsize*) T)
( (<= curr-depth 1) T)
( T NIL) ) )

(DEFUN no_obstacles_in_succ_listp (state-list)
(NOT (at_least_one_obstaclep state-list)) )

(DEFUN at_least_one_obstaclep (state-list)
s return T if there is at least one posn in the state-list that is an obstacle:
;: else, NIL is returned.
(COND ( (NULL state-list) NIL )
( (is_obstaclep (posn (FIRST state-list))) T).
( T (at_least_one_obstaclep (REST state-~list)) ) ) )
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(DEFUN get_succ_list
(COND ((EQUAL
((EQUAL

((EQUAL

( (EQUAL
({EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL

( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
( (EQUAL
{ {fEQUAL
((EQUAL

{curr-state

search-mode
search-mode
search-mode

search-mode
search-mode
search-mode
search-mode
search-mode
search-mode
search-mode
search-mode

search-mode
search-mode
search-mode
search-mode
search-mode
search-mode
search-mode
search-mode

(DEFUN get_normal_mode_syccessor

(LET
(COND

(T best-succ)

(DEFUN path_mark

{set _emap (posn curr-scate)

search-mode)

* fwd~level)
’ fwd-~dive)
* fwd=-rise)

‘top=fwd-rl)
‘bot=-fwd~rl)
‘top-rl)
‘bot~rl)

* fwd=top)

‘ fwd-bot)
‘right-left)
‘back=-up)

‘' twd-rise-and-level)
' twd-dive-and-~-level)
‘bot-all-and-rl)

returns the list of successor states of the current stace.

{(fwd_level_suce_list curr-sctate))

(fwd_dive_succ_lisc
(fwd_rise_succ_lisc

(top_fwd_rl_succ_lisc
(bot_fwd_rl_ succ_lisc
(top_rl _succ_list
(bot_rl_succ_list
(fwd_top_succ_lisc
(fwd_bot_succ_liat
(right_lef:_succ_list
(back_up_succ_list

curr~state))
curr-~state))

curr-scate))
curr~scate})
curr-state))
curr-state))
curc-state))
curr-state))
curr-state))
curr-state))

*top-all-and-rl)

‘top-all) (top_all_succ_list curr-state))
‘bot-all) (bot_all_succ_list curr-state))

‘top! (LIST (top_posn_state curr-state)))
‘bottom) (LIST (bot_posn_state curr-state))) )

{curr-state succ-lisc)

1)

{(curr-state succ-state)
(+ {(get_emap
(local_cost

(DEFUN det_search_mode (succ-state)

(LET* (

(COND

((> succ-depth *mission-~depth®)
((= succ-depth *mission-depth~)
((< succ-depth *mission-~depthr)

(succ~posn
{succ-depth

(posn

succ-statae))

(DEFUN get_best_ succ (curr-state succ-list)
:; raturns the best successor (state) among those in succ-list

(LET* ((best-succ (FIRST succ~list))
(best-evalue (evaluation curr-state best-succ)) )

v e
;e

((NULL rest-list)

(DO* ((rest-list (CDR succ-lisat)

returns the best successor state of the current state
((best-succ (get_best_succ curr-state succ-list)))
({is_obstaclep (posn best-succ))
{SETF *Obstacle-Mode* T)

{(posn curr-state))

(posn curr-state)
(posn succ-state)

(z_coord succ-posn}) )
((OR (is_obstaclep succ-posn)

*Obstacle-Moder)
{SETF

{SETF

(COR rest-list)))

termination condition and result-form

:: body of do loop
(LET* ((candidate-succ (FIRST rest-list))

(candidate-evalue

best~succ)

{COND ((< candidate-evalue best-evalue)
(SETF best-succ candidate-succ)
(SETF best-evalue candidate-evalue))
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(SETF *search-mode~*
Tsearch-moder*
(SETF *search-mode*
(SETF *search-mode* ’ fwd-dive))

(successor curr-statae) )

(direction curr-state)

yory

*Cbstacle-Mode* nil) )
*3D-~all)

! fwd-rise))
* fwd-level))

)Yy )y )

)

(evaluation curr-state candidate-succ))

)

)

)

)

(fwd_rise_and_level succ_list curr-state))
(fwd_dive_and_level_succ_list curr-stace))
(bot_all_and_rl_succ_list curr-state))
(top_all_and_rl_ succ_lisc curr-statae))

)




(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(CEFUN

(DEFUN

(DEFUN

{DEFUN

(DEFUN

(DEFUN

posn (state)
;:; returns the positional coordinates of the state
(SECOND state) )

direction (state)
;: returns the azimuth of the state
(FIRST state) )

depth (state)
(z_coord (posn state)) )

is_obstaclep (position)

(IF (EQUAL (sense position) +*infinity®)
T
NIL) )

not_obstaclep (position)
(NOT (is_obstaclep position)) )

sense (posn)
(AREF *emap* (x_coord posn) (y_coord posn) (z_coord posn)) )

make_vicinity_list (ref-posn)

(LIST ref-posn
(n_posn ref-posn)
(s_posn ref-posn)
(e_posn ref-posn)
(w_posn ref-posn)
(ne_posn ref-posn)
(nw_posn ref-posn)
{se_posn ref-posn)
(sw_posn ref-posn) ) )

send_state_to_iris (state)
(send_float (direction scate))
{send_posn_to_iris (posn state)) )

send_posn_to_iris (position)
(send_float (x_coord position))
(send_float (y_coord position))
(send_float (z_cooxd position)) )

set_esmap (coords value)
(SETF (AREF *emap* (x_coord coords)
(y_coord coords)
(z_coord coords) ) value) )

get _emap (coords)

(AREF *emap* (x_coord coords)
(y_coord coords)
(2_coord coords) } )
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Filename.......: monitor.lisp
AUthor..ccveeset Ray Rogers
Modified by....: Ong Seow Meng

Date Created...: 1989
Description....: Contains all lisp code for generating the display on the
Side Color Monitor.

Modifications..:
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2 ;DEFINE VARIABLES

{DEFVAR *display-window?)

(DEFVAR *display-window-array*)
(DEFVAR *display-window-width*)
(DEFVAR *display-window-height¥*)
(DEFVAR *display-window-position®)
{DEFVAR *display-window-screen*)
(DEFVAR *display-window-pos*}

{DEFVAR *main-screen®)
(DEFVAR *screen-alu*)
(DEFVAR *start-alu*)
(DEEVAR *goal-alur)
{DEFVAR *icon~alur)
(DEFVAR *grid-alur)
(DEFVAR *letter-aluv*)
(DEFVAR *legend-box-~alu*)

{DEFVAR *x-screen-org®)

(DEFVAR *y-screen-org®)

(DEFVAR *z-screen-org®)

(DEFVAR *scale*)

(DEFVAR *vert-scaler)

(DEFVAR x3)

(DEFVAR ys)

(DEFVAR xg)

(DECVAR yg)

(DEFVAR xi)

(DEFVAR yi)

(DEFVAR *fixnum~dist-pu-coord* (TRUNCATE *real-horiz-dist-~pu-coord=*))
(DEFVAR *fixnum-vert-dist-pu-coord* (TRUNCATE *real-vert-dist-pu-coord*))

;2DEFINE WINDOW AND COLCRS

(DEFFLAVOR my-color-flavor ()
{tviwindow
tvigraphics-mixin))

{DEFUN make~-color-window

(window-name position inside-width inside-height
&rest options &key (superior (color:find-color-screen :create-p t))
Gallow-other-keys)

(apply #’'tv:make=-window ’‘my-color~flaver
tblinker~p nil
tborders 2
:save-bits t
texpose~p t
:label nil
- :name window-name

tposition position
tinside~width inside-width
:inside~height inside-height
:superior superior
options)) 145




(DEFUN make-~display-window ()
{SETF *display-window*
(make~color-window "Display-Window”
{10 20) 1220 1000))
s * (50 S0) 1150 850))
(SETF *screen-alu+* (SEND color:color-screen
tcompute~color-alu
tvialu-seta 0.3807 0.5125 1.0))
(SEND *display-window® :set-erase-aluf *screen-aluv)
(SEND *display~-window* :refresh))

(DEFUN init-display ()
(clear-scene)
actual poolsize is 1404 by 700 (or 20 X 10 auv-lengths)
i.e. approx a ratio of 2:1
Thus, we choose a screen-size of x-screen-size:y-screen-size = 2:1
The variable *scale* should be set at 1000/1400 = 500/700 = 0.7143)
Also, the vertical distance per unit coord is 10.0 and height of pool
is about 10 AUV heights,
Thus variable *vert-scale* should be set at 300/(10*10) = 3.0
(SETF *x-screen-org* 100.)
(SETF *y-screen-org® 55.)
(SETF *z-screen-org® 650.)
(SETF *scale* 0.7143)
(SETF *vert-scale* 3.0)
{(draw_box)
(draw_depth_box)
‘monitor-display~{s-ready)

S N6 % % % % N
A Ve % % % W

(DEFUN create-display-window ()
(SETF *main-screen* (SEND *terminal-io* :superior))
(make-display-window)
{SETF *display-window~-poa*
(SEND *display-window* :position))
(SETF *display-window-screen*
(SEND *display-window* :screen))
(init-colors)
‘done~init-display-window)

(DEFUN clear-scene ()
{tv:sheet-force-access (*display-windowr)
{(SEND *display-window* :refresh)))

(DEFUN kill ()
(SEND *display-window* :kill)
‘display-window-killed)

(DEFUN init-~colors ()
(SETF *start~alu* (SEND *display-window-screen*
tcompute-color-alu color:alu-x 0.406 0.9535 0.2207))
(SETF *goal-alu* (SEND *display-window-screen*
tcompute-color-alu color:alu-x 1.0 0.009008 0.8421))
(SETF *path-alu* (SEND *display-window-screen*
tcompute~-color-alu color:alu-x 0.0 0.7 1.0))
(SETF *obst-alu* (SEND *display-window-screen*
icompute-color-alu color:alu-x 0.5 0.5 0.5))
(SETF *icon-alu* (SEND *display-window-screent*
icompute-color-alu color:alu-x 1.0 0.0 0.2862))
(SETF *grid-alu* (SEND *display-window-screen*
:compute-color-alu color:alu-x 0.9054 1.0 0,4847))
(SETF *letter-alu* (SEND *display-window-screen® ’
tcompute~color-alu color:alu-x 0 0 0})
(SETF *legend-box-alu* (SEND *display-window-screen~*

tcompute~celor-alu color:alu-x 0.745 0.7243 0.7976)))
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(DEFUN draw_box ()
(LET* ((x-screen-size 1000) (y-screen-size 550)
(x-interval 50.) (y~interval 50.)
(x-auv-~lengths 20.) (y-auv~leangths 11.)
({x-end-coord (+ *X-SCreen—-org® x-screen-size))
{y-snd~coord (+ *y-screen-org® y-screen-size)) )
(SEND *display~window* :draw-rectangle
x-screen-size y-screen-size *x-screen-org* *y-screen~org®* *grid-alu*)
;:;draw vertical lines
(DO (({x~index *x-screen-org®” (+ x-index x-interval}))
({{> x-index x-~end-coord) NIL)
(SEND *display-window*
:draw-line x-index *y-screen-org* x-index y-end-cecord ricon-alu*) )
s;draw horizontal lines
(DO {{y~index “y-screen~org® (+ y-index y-interval)))
({> y~index y-end-coord) NIL)
(SEND *display-window*
:draw-line *x~screen-org* y-index x-end-~coord y-index *icon-aluv) ) ) )

(DEFUN draw_depth_box ()
(LET* ((x-screen-size 1000) (z~screen-size 300)
(x-interval 50.) (z-interval 30.)
(x-auv-lengths 20.) (z=~auv-height 10.)
(x-end-coord (+ *x-screen-org* x-screen-size))
(z-end-coord (+ *z-screen-org* z-screen-sizae)) )
(SEND *display-window* :draw-rectangle
x-screen-size z-screen-size *x~screen-org" *z-screen-~org* *grid-alur)
;;draw vertical lines
(LO ((x-index *x~screen-org” (+ x-index x-interval}))
({> x~index x~-end-coord) NIL)
(SEND *display-window*
idraw-line x-index *z-screen-org® x-index z-end-coord *icon-alur) )
;7;draw horizontal lines
(DO ((z-index *z~screen-org” (+ z-index z-interval)))
((> z~index z=~end-coord) NIL)
(SEND *display-window*
tdraw=-line *x-screen-org” z~index x-end-coord z-index *icon-alu*) ) ) )

(DEFUN draw-icon (x y 2)
(SEND *display-window* :draw-filled-in-circle x y 6§ *icon-alu*)
(SEND *display-window* :draw-filled-in-cirzcle x z 6 *icon-alu*) )

(DEFUN draw=-start-pes (x y 2)
(SETF xs (+ (* x *scale®) "x-screen-org*))
(SETF ys (+ (* y *scale*) *y-screen-org"))
(SEND *display-window* :draw-filled-in-circle xs ys 20 *start-alu*)
(SETF zs (+ (* 2z *vert-scale®) *z-screen-org*))
(SEND *display-window* :draw-filled-in-circle xs zs 20 *start-alur*) )

(DEFUN draw-goal-pos (x y 2)
(SETF xg (+ (* x *scale*) *x~-screen-org®))
(SETF yqg (+ (* y “scale*) *y-screen-org?®))
{(SEND *display-window"* :draw-filled-in~circle xg yg 20 *goal-alu®)
(SETF zg (+ (* z *vert-scale®) *z-screen-org"*))
(SEND *display-window* :draw-filled-in~circle xg zg 20 *goal-alu*) )

(DEFUN draw-path-pos (x y zJ
3 (x y z) are real position coordinates
(SETF xp (+ (* x *scale®) *x-screen-org*))
(SEIF yp (+ (* y *acale*) *y~-screen-org*))
(SEND *display-window® :draw-filled-in-circle xp yp 12 *path-alu*)
(SETF 2p (+ (* 2z *vert-scale*) "z-screen-org®*))
(SEND *display-window" :draw-filled-in-circle xp zp 12 *path-alu*) )
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(DEFUN draw_obst_pos (x y 2)
;s (x y z) are real coordinates.
(LET* ( (box-len (TRUNCATE (* *fixnum-dist-pu-coord® *scale®)))
(half-box~len (TRUNCATE (/ box-len 2.)))
(box-height (TRUNCATE (* *fixanum=-vert-dist-pu-coord® *vert-scale®)))
(half-box~-height (TRUNCATE (/ box-height 2.)))

(xobst (TRUNCATE (+ (=~ (* x vscale”) half-box-len) *x-screen-org®})))
(yobst (TRUNCATE (+ (~ (* y *scale®) half-box-len) *y-screen-org®)))
{zobst {TRUNCATE (+ (~ (* z *vert-scale”) half-box-height) *z~-screen-org~®))) )

(SEND *display-window® :draw-rectangle box-len box-len xobst yobst *obst-aluv)
(SEND *display-windowr :draw-rectangle box-len box~height xobst zobst *obat-alu*) ) )

(DEFUN move-icon (x y 2)
(setf xi (+ (* x "scale*) *x-screen-org"))
(setf yi (+ (* y *scale*) *y-screen-org®))
(SETF zi (+ (* 2 *vert-acale”) *z-screen-org"*))
(draw-icon xi yi zi) )

::main bedy
:;prepare monitor

0

{create-display-window)
(init-display)
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Filename.......: obstacle.lisp
Author.cseveeso! Ong Seow Meng

Date Created...: 18 Aug 1989

Description....: This file contains the lisp code for generating the obstacles used
in the scenarios. A generic function called ‘generate_random obstacle’
is defined for generating random obstacles; this function is also used
for creating solid obstacles by specifying a value of 100% obstacle
as the parameter. Code for ‘cbstacle growing’, sending obstacle coords
to iris for display, displaying obstacles on Side Color Monitor, etc.,
is also included.

L R T YRR T

Notes......co008
Structure of *Obstaclels* is as follows:-
{ (Obs-disposn C1 C2 ... Cn) (Obs~disposn €1 C2 ... €a) ..... )
e.g., ( (leng (0 0 0) (1 0 0) (1 2 0)) (broad (1 1 %) (22 2)) «.u. )

e e % % N % v S % oap N,

Modifications,.:

e % %e ve v

(2244 A Rt sl il il lll sttt dslii sl sl s ssXts s s s s s 22022222

(DEFVAR *Obs0l*)
(DEFVAR *Obs02*)
(DEFVAR *Cbs03*)
(DEFVAR *Obs04*)
(DEFVAR *Obs0S*)
(DEFVAR *ObaQér*)
(DEFVAR *Cbs07*)
(DEFVAR *Obs(Q8*)
(DEFVAR *Obsll®*)
(DEFVAR *Obsl2v)
(DEFVAR +*Obsl3~*)
(DEFVAR *Obalg*)
(DEFVAR *ObslS*)
(DEFVAR *Obslé")
(DEFVAR *Cbs217*)
(DEFVAR *Obs22v)
(DEFVAR *Obs23*)
(DEFVAR *Obs24+)
(DEFVAR *QObs25*)
{DEFVAR *Obs26*)
(DEFVAR *Obas3lv*)
(DEFVAR *Obs32*)
(DEFVAR *Obs33*)
(DEFVAR *Obs34*)
(DEFVAR *QObs3S*)
(DEFVAR *Obs36*)

(DEFUN generate_random_obstacle (comment seed percent xorg yorg zorg xsize ysize zsize)
(LET* ( (a 43411) (b 17) (e 640001) (x seed) (count Q)
(Obst (LIST commant)) )
(DOTIMES (i xsize)
(DOTIMES (4 ysize)
(DOTIMES (k z3ize)
(IF (< (/ (SETF x (MOD (+ (* a x) b) c)) ¢) (/ percent 100))
(PROGN (SETF obst
(APPEND Obst (LIST (LIST (+ L xorg) (+ J yorg) {(+ k zorqg) )}
(SETF count (1+ count)) ) ) } ) )
(TERPRI) (FORMAT T “"Number of obatacle points = =} (PRINC count) (TERPRI)
. (LET ( (total-points (* xsize ysize zsize)) )

{FORMAT T "Total number of points = ") (PRINC total-points) (TERPRI)
(FORMAT T "Percentage obstacles = ") (PRINC (* (/ count total-points) 130.0)) )

(LIST Obat) ) )
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;2 Obs0l is a wide wall obstacle in middle of nps pool.
(SETF *ObsOl* (generate_random obstacle ‘wide_wall 10 100 2 9 ¢ 8 2 3))

:; Obs02 is a high wall obstacle in the middle of nps pool.
(SETF ~Obs02* (generate_random_obstacle ‘high_wall 10 100 4 9 2 3 2 8))

:: Obs0) is a horizontal U-shaped obstacle (concave obstacle)
(SETF <Obs03* (LIST (APPEND (LIST ‘horiz_U)

(REST (FIRST (generate_random_obstacle ’wall 10 100 3 8 31 5 7)))
(REST (FIRST (generate_random_obstacle ‘wall 10 100 8 8 31 5 7)))
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 13 3 61 7))) )))
2: Obs04 is a vertical U-shaped obstacle (concave obstacle)
(SETF *Obs04* (LIST (APPEND (LIST ‘horiz_U)
(REST (FIRST (generate_random obstacle ‘wall 10 100 3 8 3 1 5 7})))
(REST (FIRST (generate_random_obstacle ‘wall 10 100 8 8 3 1 5 7)))
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 13 3 61 7))) )))

:; Obs0S is a tunnel (concave obstacle)
(SETF *QObs0S* (LIST (APPEND (LIST 'small-tunnel)
: the following is a vertical wall on the left of vehicle along y-~axis
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 8 31 5 7)))
: the following is a vertical wall on the right of vehicle along y-axis
(REST (FIRST (generate_random _obstacle ‘wall 10 100 8 8 3 1 5 7)))
; the following is a vertical wall at end of the tunnel along x-axis
(REST (FIRST (generate_random obstacle ‘wall 10 100 3 13 3 61 7))
; the following is a top horizontal wall.
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 8 3 6 6 1))))))

(SETF *Obs06* (LIST (APPEND (LIST ‘medium-wide-tunnel)
; the following is a vertical wall on the left of vehicle along y-axis
(REST (FIRST (generate_random_obstacle ‘wall 10 100 2 6 31 5 7))
; the following is a vertical wall on the right of vehicle along y=-axis
(REST (FIRST (generate_random obstacle ‘wall 10 100 8 8 31 5 7)))
s the following is a vertical wall at end of the tunnel along x-axis
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 13 3 61 7)))
: the following is a top horizontal wall.
(REST (FIRST (generate_random_obstacle ‘wall 10 100 3 8 3 6 6 1))))))

(SETF *Obs07* (LIST (APPEND (LIST ‘very-wide-tunnel)
; the following is a vertical wall on the left of vehicle along y-axis
(REST (FIRST (generate_random obstacle ‘wall 10 100 1 8 31 6 7)))
: the following is a vertical wall on the right of vehicle along y-axis
(REST (FIRST (generate_random_cbstacle ‘wall 10 100 8 8 3 15 7)))
;s the following is a vertical wall at end of the tunnel along x-axis
(REST (FIRST (generate_random_obstacle ‘wall 10 100 2 13 3 71 7)))
: the following is a top horizeantal wall.
(REST (FIRST (generate_random obstacle ‘wall 10 100 2 8 3 7 6 1))))})

(SETF *Obs059* {generate_random_obstacle ’‘wall 10 100 3 8 3 6 6 1))

ion (2 7 3) and size 5 § §.

:: Obslx series are random obstacles in a boxed region at locat

(SETF *Obsll* (generate_random_obstacle ‘random§ 16 5 2 73 5§55 §5))
(SETF *Obsl2* {generate_random_cbstacle 'randomlO 10 10 2 7 3 5 5 S})
(SETF *Obsl3* (generate_random_obstacle ’‘randomlS 10 15 2 7 3 5 § §))
(SETF *Obsl4* (generate_random_obstacle ‘random20 10 20 2 7 3 5 5 5))
(SETF *ObslS* (generate_random obstacle ’'random25 10 25 2 7 3 5 5 5))
(SETF *Obslé* (generate_random_obstacle ‘random30 10 30 2 7 3 5 § 5})

:; Oba2x series are random obstacles in a hoxed region at location (2 7 3) and size 6 3 S.
(SETF *Obs2l* (generate_random_obstacle ‘random5 20 5 2 7 3 6 3 5))
(SETF *Obs22* (generate_random_obstacle ‘randoml0 20 10 2 7 3 6 3 5))
(SETF *Cbs23* (generate_random_obstacle ‘randomlS 20 15 2 7 3 6 3 §))
(SETF *Obs24* (generate_random_obstacle ’‘random20 20 20 2 7 3.6 3 5))
(SETF *Obs25* (generate_random_obstacle 'random25 20 25 2 7 3 6 3 3))
(SETF *Obs26* (generate_random_obstacle ’'random30 20 30 2 7 3 6 3 5))
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2 Oba3x serles are random obstacles in a boxed region at location (1 8 1) and size 9 4 8.
:: This obstacle is spread across the width and height of the nps pool.

(SETF *Obs3l* (generate_random_obstacle ’'random5 31 5 8))

(SETF *Obs32* (generate_random_obstacle ‘randoml0 31 10 8))

{SETF *Obs33* (generate_random_obstacle 'randoml5 31 15 8))

(SETF *Obs3A* (generate_random_obstacle ‘random20 31 20 8))

(SETF *Obs35* (generate_random_obstacle ’random25 31 25 8))

(SETF *Obs36* (generate_random obstacle ‘random30 31 30 8))

L T W oY
ODODOOO®
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(DEFUN place_obs_l1s ()
(DO ((obst-1s *ObstacleLs* (REST obst-1la)))
( (NULL obst-ls))
:: body of outer loop
(LET* ((curr-obat (FIRST obst-1s))
{obst-disposn (FIRST curr-obhst)))
(mapcar #’'grow_obstacle (REST curr-obst)) ) )
{display_obstacles_on_monitor) )

(DEFUN display obstacles_on_monitor ()
(DO (({obst-1ls *Obstaclels* (REST obst-1s)))
{ (NULL obst-1ls))
¢: body of outer loop
(LET* ( (curr-obst (FIRST obst-1ls)) )
(MAPCAR #‘’ (LAMBDA (obst-posn)
{draw_obst_pos (* *real-horiz-dist-pu-coord* (y coord cbst-posn)})
(* *real-horiz-dist-pu-coord* (x_coord obst-posn))
(* *real-vert-dist-pu-coord* (z_coord obst-posnj}))} )
(REST curr-obst) ) ) ) )

(DEFUN send _obstacles_to_iris (obstacle)
(MAPCAR #’send_posan_to_iris (REST obstacle)) )

(DEFUN grow_obstacle (coord)
{mark_n coord)
(mark_tn coord)
{mark_bn coord)
(mark_s coord)
(mark_ts coord)
(mark_bs coord)
(mark_e coord)
(mark_te coord)
{mark_be coord)
{mark_w coord)
{(mark_tw coord)
(mark_bw coord)
(mark_ne coord)
(mark_tne coord)
(mark_bne coord)
{mark_nw coord)
{mark_tnw coord)
{mark_bnw coord)
(mark_se coord)
{mark_tse coord)
(mark_bse coord)
(mark_sw coord)
(mark_tsw coord)
(mark_bsw coord)
(mark_top coord)
(mark_bot coord) )

(DEFUN mark_n {coord)
(set_emap (n_posn coord) *infinity+*) )

(DEFUN mark_tn (coord)
(set_emap (tn_posn coord) *infinity*) )
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(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

{DEFUN

{DEFUN

{DEFUN

mark_bn {(coord)
(set_emap (bn_posn coord) *infinity*) )

mark_s (coord)
(set_emap (s_posn coord) *infinity*) )

mark_ta (coord)
(set_emap (ts_posn coord) *infinity*) )

mark_bs (coord)
(set_emap (bs_posn coord) *infinity*) )

mark_e (coord)
(set_emap (e_pasn coord) *infinity*) )

mark_te (coord)
(set_smap (te_posn coord) *infinity*) )

mark_be (coord)
{set_emap (be_posn coord) *infinity*) )

mark_w (coord)
(set_emap (w_posn coord) *infinity*) )

mark_tw (coord)
(set_emap (tw_posn coord) *infinity*) )

mark_bw (coord)
(set_emap (bw_posn coord) *infinity*) )

mark_ne {coord)
{(set_emap (ne_posn coord) *infinity*) )

mark_tne (coord)
{set_emap (tne_posn coord) *infinity*) )

mark_bne (coord)
{set_emap (bne_posn coord) *infinity*) )}

mark_nw (coord)
{set_emap (nw_poan coord) *infinity*) )

mark_tnw (coord)
(set_emap (tnw_posn coord) *infinity*) )

mark_bnw (coord)
{set_emap (bnw_posn coord) *infinity*) )

mark se (coord)
(set_emap (se_posn coord) *infinity*) )

mark_tse (coord)
(set_emap (tse_posn coord) *infinity*) )

mark_bse (coord)
(set_emap (bse posn coord) *infinity*) )

mark_sw (coord)
(set_emap (sw_poan coord) *infinity*) )

mark_tsw (coord)
(set_emap (tsw_posn coord) *infinity*) )}

mark_bsw (coord)
(set_emap (bsw_posn coord) *infinicy") )

mark_top (coord)
(set_emap (top_posn coord) *infinity*) )

mark_bot {coord)
(set_emap (bot_posn coord) *infinity*) )
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133 ="~ Package: USER; Mode: LISP; Syntax: Common-Lisp; Base: 10 -*-
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Filename........: posn.lisp
Authof....cseve.3 Ong Seow Meng

Date created....: 26 Aug 1969
Description.....: This file contains the lisp code for generating the individual
candidate successors.

S % % S o % o

Notes...........: Pool oordinate system is as follows:

~ Y axis (North)
/
/
origin .---=> x axis (East)
i
!
v 2 axis

Modifications..:

(122222 222222222222 d2 2212222 R R il sl il il il et il stis s diltsld sl
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(DEFUN n_posn (curr-posn)
(list {(x_coord curr-~posn)
(1+ (y_coord curr-posn))
(z_coord curr-posn) ) )

(DEFUN n_posn_state (curr-state)
(LET ((nposn (n_posn (posn curr-state))))
(CONS 0 (LIST nposn)) ) )

(DEFUN s_posn (curr-posn)
{list (x_coord curr-posn)
{1- (y_coord curr-posn))
(z_coord curr-~posn} ) )

{DEFUN s_posn_state (curr-state)
(LET ({sposn (s_posn (posn curr-state))))
(CONS *PI* (LIST sposn)) ) )

{DEFUN e_posn (curr-posn)
(cons {1+ (x_coord curr-posn)) (REST curr-posn)) )

(DEFUN e_posn_state (curr-state)
(LET ({eposn (e_posn (posn curr-state))))
(CONS *half~PI* (LIST eposn}) ) )

{DEFUN w_posn (curr-posn)
(cons (1~ (x_coord curr-posn)) (REST curr-posn)} }

(DEFUN w_posn_state (curr-state)
(LET ((wposn (w_posn (posn curr-state))))
(CONS (- *half-PI*) (LIST wposn)) ) )

(DEFUN ne_posn (curr-~posn)
(list (1+ (x_coord curr-posn))
(1+ (y_coord curr-posn))
{z_coord curr-posn) ) )

(DEFUN ne_posn_state (curr-state)
(LET (({neposn (ne_posn (posn curr-state))))
(COND ( (= (direction curr-state) 0) (CONS *half-PI* (LIST neposn)))
(T (CONS C (LIST neposn}))) ) ) }
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(DEFUN nw_posn (curr-poan)
{list {1- (x_coozd curr-posn))
(l+ (y_coord curr-posn))
(z_coord curr-posn) ) )

(DEFUN nw_posn_state /curr-state)
(LET ((nwposn (nw_posn (posn curr-state))))
(COND ( (= (direction curr-stace) Q) (CONS (- *half-PI*) (LIST awposn)) )
( T (CONS O (LIST nwposn))) ) ) )

(DEFUN se_posn (curr-posn)
{list (1+ (x_coord curr-posn))
(1~ (y_coord curr-posn))
{z_coord curr-posn) ) )

(DEFUN se_posn_state (curr-state)
(LET ({(seposn (se_posn (posn curr-state))}))
(COND ( (= (direction curr-state) *half-PI*) (CONS *PI* (LIST seposn)))
( T (CONS *half-PI* (LIST seposn)}) ) ) )

(DEFUN sw_posn (curr~posn)
{list (1- (x_coord curr-posn))
(1- (y_coord curr-posn))
(z_coord curr-posn) ) )

(DEFUN sw_posn_state (curr-state)
(LET ((swposn (sw_posn (posn curr-state))))
(COND ( (= (direction curr-state) *PI*) (CONS (- *half-PI*) (LIST swposn)) )
( T (CONS *PI* (LIST awposn})) ) ) )

;; top positions

.
;

.
’

(DEFUN tn_posn (curr-posn)
(list (x_coord curr-poan)
{1+ (y_coord curr-posn))
{1- (z_coord curr-posn)) ) )

(DEFCY tn_posn_state (curr-state)
(LET ({(tnposn (tn_posn (posn curr-state))))
(CONS 0 (LIST tnposn)) ) )

(DEFUN ts_posn (curr-posn)
{(list (x_coord curr-posn)
(1= (y_coord curr-posn))
{1~ (z2_coord curr-posn)) ) )

(DEFUN ts_posn_state (curr-state)
(LET ((tsposn (ts_posn (posn curr-state))})
(CONS *PI* (LIST tsposn)) ) )

(DEFUN tw_posn (curr-posn)
(list (1- (x_coord curr-posn))
(y_coord curr~posn)
(1= (2_coord curzr-posn)) ) )

(DEFUN tw_posn_state (curr-state)
(LET ((twpasn (tw_posn (posn curr-state))))
(CONS (- *half~PI*) (LIST twposn)) ) )

(DEFUN te_posn (curr-posn)
(list (1+ (x_coord curr-posn))
(y_coord curr-posn)
{1- (2_coord curr-posn)) )} )

(DEFUN' te_posn_state (curr~state)

(LET ({teposn (te_posn (posn curr-state))))
(CONS *half-PI* (LIST teposn)) ) )
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(DEFUN tne_posn (curr=-posn)
{list (1+ (x_coord curr-posn))
{1+ (y_coord curr-posn))
(1= (z_coord curr-posn)) ) |}

(DEFUN tne_posn_state {(curr-state)
(LET {((tneposn (tne_posn (posn curr-state))))
(COND ( (= (direction curr-state) 0) (CONS *half-PI* (LIST tneposn)))
{ T (CONS 0 (LIST tneposn))) ) ) )

(DEFUN tnw_posn (curr-posn)
{list (1~ (x_coord curr-posn))
(1+ (y_coord curr~posn))
{1~ (z_coord curr-posn)) ) )

(DEFUN tnw_posn_state (curr-state)
(LET ((tnwposn (tnw_posn (pesn curr-state))))
(COND ( (= (direction curr-state) 0) (CONS (-~ *half~PI*)} (LIST tawpoan)) )

( T (CONS O (LIST tnwposnl))) )} ) )

(DEFUN tse_posn (curr-posn)
{lisc (1+ (x_coord curr~posn))
(1= (y_coord curr-posn))
(1~ (2z_coord curr-pasn}) ) )}

(DEFUN tse_posn_state (curr-state)
(LET ({(tseposn (tse_posn (posn curr-state))})
{COND ( (= (direction curr-state) *half-PI*) (CONS *PI* (LIST tseposn)))

{ T (CONS *half-PI* (LIST tseposn))) ) ) )

(DEFUN tsw_posn (curr-posn)
{list (1~ (x_coord curr-posn))
(1~ (y_coord curr-posn})
(1~ (2_coord curr~posn}) } )

(DEFUN tsw_posn_state (curr-state)
{LET ((tswposn (tsw_posn (posn curr-stata))))
(COND ( (= (direction curr-state) *PI*) (CONS (-~ rhalf~-PI*) (LIST tswposn))

( T (CONS *PI* (LIST tswposn))) ) ) )

;: Bottom positions

.
¢
7

(DEFUN bn_posn (curr-posn)
(list (x_coord curr-posn)
{1+ (y_coord curr-posa))
{1+ (z_coord curr-paesn)) ) )

(DEFUN bn_posn_state (curr-state)
(LET ((bnposn (bn_posn (posn curr-state))))
(CONS Q0 (LIST bnposn)) ) )

(DEFUN bs_posn (curr-posn)
(list (x_coord curr-posn)
{1- (y_caeord curr-posn))
{1+ (z_coord curr-posn)) ) )

(DEFUN bs_posn_state (curr-state) -
(LET ((bsposn (bs_posn (posn curr-state)))}
(CONS *PI* (LIST bsposn)) ) )

(DEFUN bw_posn (curr-poasn)
(list (1- (x_coord curr-posn))
{y_coord curr-poan)
(1+ (z_coord curr-posn)) ) )

(DEFUN bw_posn_state (curr-state)

(LET ((bwposn (bw_posn (posn curr-state))))
(CONS (-~ *half-PI*) (LIST bwposn)) ) )
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(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

(DEFUN

{DEFUN

be_posn (curr-posn)

(list (1+ (x_coord curr-posn))
(y_coord curr-posn)
{1+ (z_coord curr-posn)) ) )

be_posn_state (curr-state)
{(LET ((beposn (be_posn (posn curr-state))))
(CONS *half-PI* (LIST beposn)) ) )

bne_posn (curr-posn)
(list (l1+ (x_coord curr-posn))
(1+ (y_coord curr-posn))
(1+ (z_coerd curr-posn)) ) )

bne_posn_state (curr-stats)
(LET ((bneposn (bne_posn (poan curr-state))))
(COND ( (= (direction curr~-state) 0) (CONS *half-PI*
{ T (CONS 0 (LIST bneposn))) ) ) )

{LIST bneposn)})

bnw_posn (curr-posn)
(list (1- (x_coord curr-posn})
(l+ (y_coord curr-posn))
(l+ (z_coord curr-posn)) ) }

bnw_posn_state (curr-state)
(LET ((bnwposn (bnw_posn (posn curr-state))))
(COND ( (= (direction curr-szate) 0) (CONS
{ T (CONS 0 (LIST banwposn))) ) } )

(- *half-PI*) (LIST bnwposn)) )

bse_posn (curr-posn)
(list (1+ (x_coord curr-posn))
{1- (y_coord curr-posn))
(1+ (2_coord curr-posn))} ) )

bse_posn_state (curr-state)
(LET ((bseposn (bse_posn (posn curr-stata))})
(COND ( (= (direction curr-state) *half-PI”} (CONS
( T (CONS *half-PI* (LIST bseposn))) ) )} )

*PI* (LIST bseposn)))

bsw_posn (curr-posn)

(list (1- (x_coord curr~posn))
(1= (y_coord curr-posn))
(l+ (z_coord curr-posn)) )} }

bsw_posn_state (curr-state)
(LET ((bswposn (bsw_posn (posn curr-state))))
(COND ( (= (direction curr-state) *PI*) (CONS
( T (CONS *PI* (LIST bswposn))) } ) )

(- *half-PI*) (LIST bswpoan)) )

top_posn (curr-posn)
(list (x_coord curr~posn)
{(y_coord curr-posn)
(1- (z2_coord curr-posn)) ) )

top_posn_state (curr-state)
(LET ((topposn (top_posa (posn curr-state))))
(CONS (direction curr-state) (LIST toppeosn)) } )}

bot_posn (curr-posn)
(list (x_coord curr-posn)
(y_coord curr-posn)
{1+ (z_coord curr-posn)) ) )

bot_posn_state (curr-state)

(LET ((botposn (bot_posn (posn curr-state))))
(CONS (direction curr-state) (LIST botposn)) ) )
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Filename.......: succ.lisp
AUthOf....cv...: Ong Seow Meng

Date created...: 21 Dec 1989
Description....: This file contains the lisp functions that creates a list of
candidate successors., This successor list is a function of the

vehicle heading.

Modificaticns..:
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(DEFUN fwd_dive_succ_list (curr-state)
;; returns list of forward candidate 2successors
;: in the x-y plane, in the current direction.
{

LET* ((curr-dir (direction curr-state})
(dir-q (dir_quantum curr-dir)) )
(COND ((rangep dir-q -0.5 0.5) (fwd_dive_succO_list curr-state))
((ranqgep dir-q 3.5 4.5) (fwd_dive_succd_list curr-state))
((OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1))
(fwd_dive_succB_list curr-state))
({rangep dir-q ~4.5 -3.5) (fwd_dive_succl2_list curr-state)) ) ) )

(DEFUN fwd_rise_succ_list (curr-state)
; returns list of forward candidate successors above the curren: posn
; in the x-y plane, in the current directicn.
LET* ((curr-dir (direction curr-state))
(dir-q (dir_quantum curr-diz)) )
(COND ((rangep dir-q -0.5 0.5) (fwd_rise_succO_list curr-state))
((rangep dir-q 3.5 4.5) (fwd_rise_succd_list curr-state))
((OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1))
(fwd_rise_succB8_list curr-state))
{{rangep dir-q ~4.5 -3.5) (fwd_rise_succl2_list curr-state)) ) ) )

(DEFUN fwd_level succ_list (curr-state)
;; returns list of forward candidate successors
;3 in the x-~y plane, in the current direction.
(LET* {((curr-dir (direction curr-scate))
(dir-q (dir_quantum curr-dir)) )
(COND ((rangep dir-q -0.5 0.5) (fwd_level_succO_list curr-state)}
{{rangep dir-q 3.5 4.5) (fwd_level_succd_list curr-state))
((OR (rangep dir-q =-8.1 =-7.5) (rangep dir-q 7.5 8.1))
(fwd_level_ succ8_list curr-state))
((rangep dir-q ~4.5 =3.5) (fwd_level_succl2_list curr-state)) ) ) )

(DEFUN fwd_rise_and_level_succ_list (curr-stace}
;: returns list of forward rise and level candidate successors
;2 in the x-y plane, in the current direction.
(APPEND (fwd_rise_succ_list curr-state) (fwd_level_succ_liast curr-stata)) ) _

(DEFUN fwd_dive_and_level_succ_list (curr-state)

: returns list of forward dive and level candidate succesaors

; in the x-y plane, in the current direction.

APPEND (fwd_dive_succ lis* ~urr-state) (fwd_level_succ_li:t curr-state)) )
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(DEFUN top_fwd_rl_succ_list (curr-state)

returns list of top forward left and right candidate suc
in the x-y plane, in the current direction.

(direction curr-state))

(dir_quantum currc-dir)}) )

.e
;:

(LET* ((curz-dir
(dir-q

(COND ((rangep dir~q <-0.5 0.5) (LIST (tne_posn_state
(tnw_posn_state

((rangep dir~q 3.5 4.5) (LIST (tne_posn_state
(tse_posn_state

({OR (rangep dir-q ~8.1 ~7.5) (ranqep dir-q 7.5
{LIST (tse_posn_state
(tsw_posn_state
(LIST (tnw_posn_state
(tsw_posn_state

({rangep dir-q =~4.5 ~3.5)

(DEFUN bot_fwd_rl_succ_list (curr-state)

;: returns list of top forward left and right candidate suc
:; in the x-y plane, in the current direction.
(LET* ((curr-dir (direction curr-state))

(dir-gq (dir_quantum curr-dir)) )

(COND ((rangep dir-q =-0.5 0.5) (LIST (bne_posn_state
(bnw_posn_state

((rangep dir-q 3.5 4.5) (LIST (bne_posn_state
(bse_posn_state

((OR (rangep dir-q -8.1 =7.5) (rangep dir~q 7.5
(LIST (bse_posn_state
(bsw_posn_state
(LIST (bnw_posn_state
(bsw_posn_state

({rangep dir-q ~-4.5 -3.5)

(DEFUN top_rl_succ_list (curr-state)

;2 returns list of top left and right candidate successors
in the x-y plane, in the current direction.

(direction curr-atate))

(dir_quantum curz-dir)} )

(LET* ((curz=dir
(dir-q

cessors

curr-state)
curr-state)
curr-state)
curr-state)
8.1))

curr-state)
curr-statce)
curr-state)
curr-state)

cassors

curr-state)
curr-state)
curr-state)
curr-state)
8.1))

curr-statce)
curr-stace)
curr-state)
curr-state)

(COND ((rangep dir-q =0.5 0.5) (LIST (te_posn_state curr-state)
{tw_posn_state curr-state)
((rangep dir-q 3.5 4.5) (LIST (tn_posn_state curr-state)
(ts_posn_state curr-statae)
((OR (rangep dir-q -8.1 =7.5) (rangep diz-q 7.5 8.1))
{(LIST (te_posn_state curr-state)
(tw_posn_state currc-state)
((rangep dir~q ~4.5 =3.5) (LIST (tn_posn_state curr-state)
(ts_posn_stacte curr-state)
(DEFUN bot_rl succ_list (curr-state)
;; returns list of bottom right and left candidate successors.
;¢ in the x-y plane, in the current direction.
(LET* {((curzr-dir (direction curr-state))
(dir-gq (dir_gquantum curr=-dir)) )
(COND ((rangep dir-q =0.5 0.5) (LIST (be_posn_state curr-state)
(bw_posn_state curr-state)
((rangep dir-q 3.5 4.5) (LIST_(bn_posn_state curr-state)
(bs_posn_state curr-state)
({OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1})
(LIST (be_posn_state curr-atate)
(bw_posn_state curr-state)
((rangep dir-q ~4.5 ~3.5) (LIST (bn_posn_state curr-state)
(bs_posn_state curr-state)
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(DEFUN right_left_succ_list (curr-state)
;; recurns list of right and left candidate successors
7 in the x-y plane, in the current direction.
LET* ((curzr-dir (direction curr-state))
(dir-q (dir_quantum curr-diz)) )
(COND ((rangep dir-q =~0.5 0.5) (LIST (e_posn_state curr-state)
(w_posn_state curr-state) )
{({rangep dir-q 3.5 4.5) (LIST (n_posn_state curr-state)
(s_posn_state curr-state) )
((OR (rangep dir~q -8.1 =-7.5) (rangep dir-q 7.5 8.1))
(LIST (e_posn_state curr-state)
(w_posn_state curr-state) )
((rangep dir-q -4.5 ~3.5) (LIST (n_posn_state curr-state)
{s_posn_state curr-state) )

(

(DEFUN top_all_succ_list (curr-state)
returns list of right and lef: candidate successors
in the x~y plane, in the current direction.
T* ((curr-dir (direction curr-state))
(dir-q (dir_quantum curr=dir)) )
(COND ((rangep dir-q =0.5 0.5) (LIST (te_posn_state curr-state)
{tw_posn_state curr-state)
(top_posn_state curr-scate)
((rangep dir-q 3.5 4.5) (LIST (tn_posn_state curr-state)
(ts_posn_state curr-state)
(top_posn_state curr-state)
((OR (rangep dir-q ~-8.1 ~7.5) (rangep dir-q 7.5 8.1))
(LIST (te_posn_state curr-state)
(tw_posn_state curr-state)
(top_posn_state curr-state)
{{zangep dir-q -4.5 -3.5) (LIST (tn_posn_state curr-state)
(ts_posn_state curr-state)
{top_posn_state curr-state)

LYY
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{DEFUN bot_all_succ_list (curr-state)
eturns list of right and left candidate successors
-

:
H

LE

n the x-y plane, in the current direction.
({curr-dir (direction curr-state))
(dizr~q (dir_quantum curr-dir)) )
(COND ((rangep dir-q =0.5 0.5) (LIST (be_posn_state curr-state)
(bw_posn_state curr-state)
(bot_posn_state curr-state)
((rangep dir-q 3.5 4.5) (LIST (bn_posn_state curr-state)
(bs_posn_state curr-state)
(bot_posn_stata curr-state)
((OR (rangep dir-q -8.1 ~7.5) (rangep dir-q 7.5 8.1})
(LIST (be_posn_state curr-state)
(bw_posn_state curr-state)
(bot_posn_state curr-stace)
((ranqep dir-q -4.5 -3.5) (LIST (bn_posn_state curr-state)}
(bs_posn_state curr-state)
(bot_posn_state curr-state)
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(DEFUN top_all_and_rl_succ_list (curr-state)
:: returns list of right and left candidate successors
22 in the x-y plane, in the current direction.
(LET* ((curr-dir (direction curr-state))
(dir-q {dir_quantum curr-dir)) )
(COND ({rangep dir~q =0.5 0.5) (LIST (e_posn_state curr-state)
(w_posn_state curr-stace)
(te_posn_state curr-state)
{tw_posn_state curr-state)

(top_posn_state curr-state) )

((rangep dir~-q 3.5 4.5) (LIST (n_posn_state curr-state)
(s_posn_state curr-state)
{tn_posn_state curr-state)
{ts_posn_state curr-state)

{top_posn_state curr-state) )

((OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1))
(LIST (e_posn_state curr-state)
(w_posn_state curr-state)
(te_posn_state curr-state)
(tw_posn_state curr-state)

(top_posn_state curr-state) )

((rangep dir~q -4.5 =3.5) (LIST (n_posn_state curr-state)
(s_posn_state curr-state)
(tn_posn_state curr-state)
{ts_posn_state curr-state)
(top_posn_state curr-state) )

(DEFUN bot_all_and_rl_succ_list (curr-state)
:: returns list of right and left candidate successors
22 in the x~-y plane, in the current direction.
(LET* ((curr~dir (direction curr-state})
(dir-gq {dir_quantum curr-dir)) )
(COND ((rangep dir-q =0.5 0.5) (LIST (e_posn_state curr-state)
(w_posn_state  curr-state)
(be_posn_state curr-~state)
(bw_posn_state curr-state)
{bot_posn_state curr-state) )
((rangep dir~q 3.5 4.5) (LIST (n_posn_state curr-state)
(3_posn_state curr-state)
(bn_posn_state curr-state)
(bs_posn_state curr-state)
{bot_posn_state curr-state) )
((OR (rangep dir-q -8.1 ~7.5) (rangep dir-q 7.5 8.1))
(LIST (e_posn_state curr-state)
(w_posn_state curr-state)
(be_posn_state curr~—state)
(bw_posn_state curr-state)
(bot_posn_state curr-state) )
((rangep dir~q ~4.5 -3.5) (LIST (n_posn_state curr-state)
(s_posn_state curr-state)
(bn_posn_state curr-state)
(bs_posn_state curr-state)
(bot_posn_state curr-state) )

(DEFUN back_up_succ_list (curr-state)
13 returns list of all candidate successors behind the curr-state,
3 in the x-y plane, in the current direction.
(LET* ((curr-dir (direction curr-state))
(dizr-q (dir_quantum curr-dir); )
(COND ((rangep dir~-q =0.5 0.5) {(back_up_succO_list curr-state))
((rangep dir-q 3.5 4.5) (back_up_succd_list curr-state))
((OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.§ 8.1})
(back_up_succ8_list curr-state))
({rangep dir~q ~4.5 =-3.5) (back_up_succl2_list curr-state)) )
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(DEFUN fwd_top_succ_list (curr-state)
;: returns the one and only forward top candidate successors
22 in the x-y plane, in the current directiecn.
(LET* ((curz-dir (direction curr-state))
(dir—q (dir_quantum curr-dir}) )
(COND ((rangep diz-q =0.5 0.5) (LIST (tn_posn_state curr-state)))
((ranqgep dizr-q 3.5 4.5) (LIST (te_posn_state curr-state)})
({OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1))
(LIST (ts_posn_state curr-state)) )
{(rangep dir-q -4.5 -3.5) (LIST (tw_posn_state curr-state))) ) ) )

(DEFUN f£wd_bot_succ_list (curr-state)
22 returns the one and only forward bottom candidate successor
7: in the x-y plane, in the current direction.
(LET* ((curr-dir (direction curr-state))
(dir-q (dir_quantum curr-dir)) )}
(COND ((rangep dizr-q =0.5 0.5) (LIST (bn_posn_state curr-state)})
({rangep dir-q 3.5 4.5) (LIST (be_posn_state curr-state)))
((OR (rangep dir-q -8.1 ~7.5) (rangep dir-q 7.5 8.1))
(LIST (bs_posn_state curr-state)) )
({rangep dir-q -4.5 -3.5) (LIST (bw_posn_state curr-state))) } ) )

(DEFUN fwd_dive_sucec0_list (curr~state)
(LIST (bn_posn_state curr-state)
(bne_posn_state curr-state)
(bnw_posn_state curr-state) ) )

(DEFUN fwd_dive_succd4_list (curr-state)
{LIST (bne_posn_state curr-state)
(be_posn_state curr-state)
{bse_posn_state curr-state) ) )

(DEFUN fwd_dive_succ8_list (curr-state)
(LIST (bse_posn_state curr-state)
(bs_posn_state curr-state)
(bsw_posn_state curr-state) ) )

(DEFUN fwd_dive_succl2_list (curr-state)

{(LIST (baw_posn_state curr-state)

(bw_posn_state curr-state)
{bnw_posn_state curr-state) ) )}

(DEFUN fwd_rise_succO_list (curr-state)
(LIST (tn_posn_state curr-state)
(tne_posn_state curr-state)
(tnw_posn_state curr-state) ) )

(DEFUN fwd_rise_succd_list (curr-state)
(LIST (tne_posn_state curr-state)
(te_posn_state curr-state)
(tse_posn_state curr-state) ) )

(DEFUN fwd_rise_succ8_list (curr-state)

(LIST (tse_posn_state curr-state)

(ts_posn_state curr-state)
(tsw_posn_state curr-state) ) )

(DEFUN fwd_rise_succl2_list (curr-state)

(LIST (tsw_posn_state curr-state)

(tw_posn_state curr-state)
(tnw_posn_state curr-state) ) )

(DEFUN fwd_level_succO_list (curr-state)

(LIST (n_posn_state curr~state)
{ne_posn_state curr-state)
(nw_posn_state curr-state) ) )
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(DEFUN fwd_level_succd_list
(LIST (ne_posn_state
{e_posn_state

{se_posn_state

(DEFUN fwd_level_succ8_list
(LIST (se_posn_state
(s_posn_state
{sw_posn_scate

(DEFUN fwd_level_succl2_list (curr-state)

{(curr-state)
curr-state)
curr-state)

curr-state) ) )

{curr-state)
curc-state)
curr-state)

cuzrr-state) ) )

(LIST (sw_posn_state curr~state)
(w_posn_state curr-state)

{nw_poan_state curr-state) ) )

(DEFUN back_up_succO_list (curr-state)

(LIST (s_posn_state curz-state)
(se_posn_state currz-state)
{sw_posn_state curr-state)
{ts_posn_state curr-state)
(tse_posn_state curr-state)
(tsw_posn_state curz-state)
(bs_posn_state curr-state)
(bse_posn_state cuzr-state)
(bsw_posn_state curr-state)

(DEFUN back_up_succd4_list {curr-state)

(LIST (nw_posn_state curr-state)
{sw_posn_state curr-state)
(w_poan_state curr-state)
(tnw_posn_state curr-state)
(tsw_posn_state curr-state)
(tw_posn_state curr-stata)
{bnw_posn_state curr-state)
{bsw_posn_state curr-state)
(bw_posn_state curr-state)

(DEFUN back_up_suce8_list (curr-state)

{LIST (n_posn_state curr-state)
(ne_posn_state curr-state)
(nw_posn_state curr-state)
(tn_posn_state curr-state)

(tne_posn_state curr-state)
(tnw_posn_state curr-state)

{bn_posn_state

curr-state)

(bne_posn_state curr-state)
{bnw_posn_state curr-state)

(DEFUN back_up_succl2_list (
(LIST (ne_posn_state
(se_posn_state
(e_posn_state
{the_posn_state

curr~state)
curr-state)
curr-state)
curr—-state)
curr-state)

(tse_posn_state curr-state)

(te_posn_state
{bne_posn_state
(bse_posn_state
(be_posn_state

curr-state)
curr~state)
curr~state)
curr-state)

)

)

}

)
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(DEFUN 3D_fwd_succ_list (curr-atate)
;: returns list of all forward candidate
i: successors in the current direction.
(LET* ((curr-dir (direction curr-state))
(dir~q (dir_gquantum curz-dir)) )
(COND ((ranqgep dir-q -0.5 0.5) (3D_succO_list curr-state))
{{rangep dizr-q 3.5 4.5) (3D_succé_list curr-state))
{(OR (rangep dir-q -8.1 -7.5) (rangep dir-q 7.5 8.1))
(3D_succ8_list curr-state))
{(rangep dir-q -4.5 =3.5) (3D_succl2_ list curr-state)) ) } )

(DEFUN 3D_succQ_list (curr-state)

(LIST (n_posn_state curr-state)
(ne_posn_state curr-state)
(nw_posn_state curr-state)
(tn_posn_state curr-state)
(tne_posn_state curr-state)
{tnw_posn_state curr-state)
(bn_posn_state curr-state)
{bne_posn_state curr-state)
(bnw_posn_state curr-state) ) )

(DEFUN 3D_succq_list (curr-state)

(LIST (ne_posn_state curr-atate)
(e_posn_state curr-state)
(se_posn_state curr-stace)
(tne_posn_state curr-stace)
(te_posn_state curr-atate)
({tse_poasn_state curr-state)
(bne_posn_state curr-state)
{be_posn_state curr-state)
(bse_posn_state curr-stace) ) )

(DEFUN 3D_succ8_list (curr-state)

(LIST (se_posn_state curr-state)
(s_posn_state curr-state)
(sw_posn_state curr-state)
{tse_posn_state curr-state)
(ts_posn_state curr-state)
{tsw_posn_state curr-state)
{bse_posn_state curr-state)
(bs_posn_state curr-state)
(bsw_posn_state curr-state) ) )

(DEFUN 3D_succl2_list (curr-stat.)

(LIST (aw_posn_state curr-state)
(w_posn_state curr-state)
(nw_posn_states curr-state)
{tsw_poasn_state curr-state)
(tw_posn_state curr-statae)
{(tnw_posn_state curr-state)
(bsw_poasn_state curr-state)
(bw_posn_state curr-state)
(bnw_posn_state curr-state) ) )
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2:: -%"- Mode: LISP; Syntax: Common-lisp; Package: USER -*~
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Fllename........: sym-iris-comms.lisp

Modifications:
26 Feb 90 1. Changed the following port numbers due to IRIS OS Upgrade:
*remote-portl* 1052
*remote-port2* 1051

*Talk”™ is an object to send and to receive data across a network.

get remote host object

make connection

send data

get data from remote host
close communication

open closed communication
switch from iris2 full-duplex
comms to irisS semi-duplex

usage : (send talk :init-destination-host ‘iris2)
(send talk :start-iris)
(send talk :put~iris data)
(send talk :get-~iris)
{send talk :stop-iris)
(send talk sreuse-iris)
(send talk :change~iris-ports)
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(defvar talk)

o

library functions to be used by flavor conversation-with-iris.

e %

(defmacro loopfor (var init test expl)
*{prog ()
{setq ,var ,init)
tag
, expl
(setq .var (l+ ,var))
(if (= ,var ,test) (return t) ({(go tag))))

{(defun convert-number-to-string (n)
{princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(do ((J O (+ J 1))
{n 0 (+ (* n radix) (digit-char-p (char str j) radix))}))
((= J (length str)) n}))

(defun find-period-index (str)
(catch ‘exit
{dotimes (x {length str) nil)
(1f (equal (char str x) (char "." 0))
{throw ’‘exit x})}))

(defun get~leftside~of-real (str &optional (radix 10))
f(do ((3 0 (1+ )
(n 0 (+ (* n radix) (digit-char-p (char str J) radix))))
((or (null (digit-char-p (char str 3}) radix})) (= 3} (length str))) n)))

{defun get~rightside-of-real (str &Goptional (radix 10))
{do ({index (1+ (find-period-index str)) (1+ index))
(factor 0.10 (* factor 0.10))
{(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))
{(= index (length str)) n )))

{defun convert-string-to-real (str &optional (radix 10))
(+ (float (get~leftside-of-real str radix)) (get-rightside-of-real str radix))}
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port number definitions: 1Iris2 uses full duplex comms so ports are set up for
this default. Iris5 uses semiduplex comms (the same port for send and
receive) and will have both ports set to *remote-portl*.

s % % v W

1: The following port numbers, *remote-portl* and *remote-port2*
:: has been changed due to IRIS 0S upgrade.

13 (defvar *remote-portl* 1027) 3 this is the remote send port
:: (defvar *remote-port2* 1026) : this is the remote receive port
(defvar *remote-portl? 1052) s this is the remote send port

(defvar *remote-port2* 1051) this is the remote receive port

(defvar *local-talk-port* 1500)
(defvar *local-listen-port* 1501)

this is the local send port
this is the local receive port

.. v

({SETF *remote-portl* 1052) : this is the remote send port
(SETF *remote-port2* 1051) : this is the remote receive port
(SETF *local-talk-port* 150:; ;s this is the local send port

(SETF *local-listen-port* 1501, this is the local receive port

conversation-with-iris flavor definition

This definition is not restricted to irils, but it can be
used with any host as long as the remote host does not
already use ports 1027 or 1026 for its own purposes.

e S5 % W N % wa v

(defflavor conversation-with-iris ((talking-port-number *remote-portl*)

(listening-port-number *remote-port2*)
(local-talk-port-number *local-talk-port*)
{local-listen-port-number *local-listen-port*)
(talking-stream)
{(listening-stream)
(destination-host-object)

)

()

tinitable-instance-variables)

(defmethod (:init-destination-host conversation-with-iris)
{name-of-host)
(setf destination-host-object (net:parse-host name-of-host)}))

{defmethod (:change-iris-ports conversation-with-iris)
()
(setf talking-port-number *remote-portlr) ssets irisS semi-duplex comm ports.
(setf listening-port-number *remote-portl*))

(defmethod (:start-iris conversation-with-iris)
()
(setf talking-stream
(tcpiopen~tcp-stream destination-host-object
talking-port-number
local~talk-port-number))
(setf listening-stream
({tcpiopen-tcp-stream destination-host-object
listening-port-number
local-listen-port-number))
(terpri)
(princ "A conversation with the iris machine has been initiated.~)
{terprl))
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(defmethod (:reuse-iris conversation-with-iris)
()
(send self :start-iris))

(defun read-string (stream num-chars)
(let ((out-string "%))
(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))))
out~string))

(defmethod (:get-iris conversation-with-iris)
0
(let* ((typebuffer “-"
{lengthbuffer * ")

{(buffer -
{(buffer~-length 1))
(progn

(setf typebuffer
(read-string listening-stream 1))
(setf lengthbuffer
(read=-stri,~qg listening-stream 4))
{(setf buffer-length
(convert-string-to-integer lengthhuffer))
(setf buffer
{read~string listening-stream buffer-length))

(cond ((equal typebuffer "I™) (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C"”) buffer)

(¢t nil))) N

{defvar *step-var* 0)

(defun my-write-string(string stream)
(let* ((num-chars (length string)))
(dotimes (i num-chars)
{(write-char (aref string i) stream))))

(defmethod (:put-izis conversation-witheirzis)
(object)

(let* ((buffer (cond
{(equal (type-of object) ‘bignum) (convert-number-to-string object))
{ (equal (type-of object) ’fixnum) (convert-number-~to-string cbject))
((equal (type-of object) °‘single-float) (convert-number-to-string object))
((equal (type-of object) ’string) object)
(t “erroz®)))

(buffer-length (length buffer)). .
(typebuffer {cond (lequal (type-of object) ’'bignum) "I%)
{(equal (type-of object) ‘fixnum) “I®)
{ (equal (type—of object) ‘single-float) "R")
{{equal (type-of obiject) ’string) “C")
(¢ "C*)))

(langthbuffer (convert -number~to-string buttoz-l‘nqth)))
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{progn
{my-write-string typebuffer talking-stream)

(send talking-stream :force-qutput)

(1f (= (length lengthbuffer) 4)
(write~-string lengthbuffer talking-stream)
{progn
{loopfor *step-var® (length lengthbuffer) 4
(write-string "0" talking-stream))

{my~write~string lengthbuffer talking=-stream)
))

(send talking-stream :force-output)

{(my~-write-string buffer talking-stream)
(send talking-stream :force-oucput)

)

(defmethod (:stop-iris conversation-with-iris)
()
(progn (send listening-stream :close)
(send talking-stream :close))

(terpri)
(princ "A conversation with the iris machine has been closed.™)

(terpri))

(setf talk (make-instance ’‘conversation-with-iris))

suse thias function when selecting comms

(defun choose-iris (*host~name*)
sfrom the keyboard

(cond
{ {aqual *host-name* ‘iris2)
(setq *host-name* ‘iris2)
(send talk :init-destination-host *host-namer) suse iris2 as default output.
(terpri)
(princ "Iris2 communications selected."™)
(terpri))
{ (equal *host-name* ’iris$s)

(setq *host-name* ‘irisS)
;select semi-duplex comm ports.

H (send talk :change-iris-ports)
(send talk :init-destination-host *host-name*)
(terpri)

(princ "Iris5 communicationa selected.")
(terpri))))

suse these two functions when using

(defun select-iris2()
:the mouse-driven control panel

(setf *host-name® °iris2)

(send talk :init-~destination-host *host-name*)
(terpri)

(princ "Iris2 communications selected from Control Panel.”)

{terpri))

(defun select-irisS()

(setf *host-name* ’irisS)

{(send talk :init-destination-host *hoat~name*)

(terpri)

{princ "IrisS communications selected from Control Panel.™)

(terpri))
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(defun start-~con{()
(send talk :start-iris))

(defun get_data()
(send talk :get-1iris))

(defun send_float (single-float)
(send talk :put-iris single-float))

(defun send_string(string)
(send talk :put-iris string))

(defun end-con()
{send talk :stop-iris))

(defun restart()
(send talk :reuse-~iris))
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::: -*~ Package: KEE; Mode: LISP; Syntax: Common-Lisp; Base: 10 -*-
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Filename......: missions.lisp
Author........: Ong Seow Meng

w % v W

Date Created..: 20 Jan 90
Description...: Contains the methods referenced by the following UNITS in
the MPES knowledge base.
[UNIT]=»{MISSIONS]
{UNIT}=(TRANSIT.POOL]
[UNIT]=[NPS.POOL])
[UNIT)={OPS.ORDERS]

Modifications.:
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NPS.POOL UNIT methods

“ S

(DEFUN init_obstacles (THISUNIT)
2 This method is to be activated OFFLINE and only ONCE to set the values.
(REMOVE .ALL.VALUES ’‘nps.pool ‘obs0l)
(REMOVE .ALL.VALUES ’‘nps.pool ‘obs02)
(REMOVE.ALL.VALUES ‘nps.pool ’‘obs03)
(REMOVE .ALL.VALUES ‘nps.pool ‘obs04)
(REMOVE .ALL.VALUES ‘nps.pool ‘obs0S5)
(REMOVE .Al.L.VALUES ‘nps.pool ‘obs06)
(REMOVE .ALL.VALUES ‘nps.pool ’obs07)
1 (REMOVE.ALL.VALUES ‘nps.pool ‘obs08)
(REMOVE.ALL.VALUES ‘nps.pool ‘obsll)
(REMOVE .ALL.VALUES ’‘nps.pool ‘obsl2)
(REMOVE .ALL.VALUES ‘nps.pool ‘obsl3l)
(REMOVE .ALL.VALUES ‘nps.pool ‘obsld)
(REMOVE .ALL.VALUES ‘nps.pool ‘obsl5)
(REMOVE.ALL.VALUES ‘nps.pool ‘obslé)
(REMOVE .ALL.VALUES ’‘nps.pool ’‘obs2l)
(REMOVE .ALL.VALUES ‘nps.pool ‘obs22)
{REMOVE.ALL.VALUES ‘nps.pool ‘obs23)
(REMOVE.ALL.VALUES ‘nps.pool ‘obs24)
(REMOVE .ALL.VALUES ‘npsa.pool ’‘obs25)
(REMOVE.ALL.VALUES ‘nps.pool ‘obs26)
(REMOVE .ALL.VALUES ‘nps.pool ‘obs3l)
(REMOVE.ALL.VALUES ‘nps.pool ‘obs32)
{REMOVE .ALL.VALUES ‘nps.poocl ‘obs33)
{REMOVE.ALL.VALUES ‘nps.pool ’obs34)
(REMOVE .ALL.VALUES ‘nps.pool ‘obs35)
(REMOVE .ALL.VALUES ’‘nps.pool ’obs36)

(PUT.VALUE ’nps.pool ’obs0l USER::*Obs01*)
{PUT.VALUE °’nps.pool ‘obs02 USER::*Obs02*)
{(PUT.VALUE ’nps.pool ’'obs03 USER::*Qbs03*)
(PUT.VALUE ‘nps.pool ‘obs04 USER::*Obs04*)
{(PUT.VALUE ’nps.pool ’'obs0S USER::*Qbs05*)
(PUT.VALUE ’nps.pool ’obs06 USER::*Qbs06*)
(PUT.VALUE ’nps.pool ’'obs07 USER::*Obs07*)
(PUT.VALUE ’nps.pool ‘obs08 USER::*Obs08*)
(PUT.VALUE ’‘nps.pool ‘oball USER::*Obsll#*)
(PUT.VALUE ’nps.pool ‘obsl2 USER::*Qbsl2*)
(PUT.VALUE ’‘nps.pool ‘obsl3 USER::*Obsl3*)
(PUT.VALUE ‘nps.pool ’‘obsl4 USER::*Obsl4¥)
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(PUT.VALUE ‘nps.pool ‘obslS USER::*Obsl5+)

(PUT.VALUE ’‘nps.pool ‘obslé USER::*Cbslé*)

(PUT.VALUE ‘nps.pool ‘obs2l USER::*Obs21v)

(PUT.VALUE ’‘nps.pool ‘0bs22 USER::*Obs22*) .
{PUT.VALUE ‘nps.pool ‘obs23 USER::*QCbs23v)

(PUT.VALUE ‘nps.pool ‘ob3s24 USER::*Obs24v)

(PUT.VALUE ’‘nps.pool ‘obs25 USER::*Obs25*)

(PUT.VALUE ’‘nps.pool ‘obs26 USER::*Obs26%)

(PUT.VALUE ‘nps.pool ‘obs3l USER::*Obs3lv) .
{PUT.VALUE ‘nps.pool ‘obs32 USER::*Obs32*)

(PUT.VALUE ‘nps.pool “obs3d3 USER::*0bs3i3~)

(PUT.VALUE ’nps.pool ‘obs34 USER::*Obs34v)

(PUT.VALUE ‘nps.pool ‘obs35 USER::"Obs35v)

(PUT.VALUE ‘nps.pool ‘0bs36 USER::*Obs36%) )

PANELS UNIT methods

“
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RESET_SCREEN method is for [unit::slot]={PANELS::reset-screen]

-- called by [unit::slot]={EXECUTOR: :abort-mission].

- ——————

(DEFUN reset_screen (THISUNIT)

(UNITMSG ‘viewport-auv.status.panel.2 ‘close-panel!)
(UNITMSG ‘viewport-mission.status.panel.l3 ‘close-panel!)
(UNITMSG ‘viewport-execute.aborz.panel.l6 ’‘closa-panel!)

{(UNITMSG ‘enter-parameters-prompt ‘close!)
(UNITMSG ’‘viewport-transit.pool.l ‘close-panel!)
(UNITMSG ’viewport-user.prompt.panel.3 ' open-~panel!)
(UNITMSG ’'select-mission-prompt ‘open!)

(UNITMSG ‘viewport-select.mission.panel.5 ‘open-panel!) )

TRANSIT.POOL UNIT methods

L AR

3 -

- -

SELECT_TRANSIT_POOL method is for (unit::slot]={TRANSIT_POOL::select-mission]

The active-image TRANSIT POOL in SELECT.MISSION.PANEL is
attached to this method.

- - - s e = e S e - -

(DEFUN select_transit_pool (THISUNIT)

e e % v %

(UNITMSG ‘viewport-select.mission.panel.5 ‘close-panel!)
(UNITMSG ‘select-mission-prompt ‘close!)

(UNITMSG ‘enter-parameters-prompt ‘open!)

(UNITMSG ‘viewport-transit.poocl.l ’open-panel!) )

INITIATE_TRANSIT_POOL method is for (unit::slot]={TRANSIT POOL::initiate-mission]

The active-image titled "OK™ in TRANSIT.POOL image-panel is
attached to this method.

(DEFUN initiate_transit_pool (THISUNIT)

(SETF USER::*DEBUG* NIL) -

(future enhancement) check all entries are valid and satisfy cardinality
constraints before writing mission orders.

(UNITMSG THISUNIT ‘write~-mission.ordecrs)

(UNITMSG ‘viewport-user.prompt.panel.3 ‘close-panel!)

({REMOVE.ALL.VALUES ‘mission.atatus.panel ‘mission-status)

(UNITMSG ‘viewport-mission.status.panel.l3 ’‘open-panel!)
(clear.unstructured. facts)

(ASSERT ’ (TEXT ‘planning-phase) ‘mission.planning.controller) )
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MISSIONS UNIT methods
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; INIT_DATA_SLOTS is for (unit::slot]=(<MISSIONS>::init-~data-slots]

(I USER::*DEBUG* (FORMAT T "~% Entered function ‘init_data_slots’."))
(REMOVE.ALL.VALUES THISUNIT ’area~-operation)

(REMOVE.ALL.VALUES THISUNIT ‘goal-posn)

(REMOVE .ALL.VALUES THISUNIT ‘novering-mode)

(REMOVE .ALL.VALUES THISUNIT ‘initial-heading)

{REMOVE.ALL.VALUES THISUNIT ’‘mission-depch)

(REMOVE.ALL.VALUES THISUNIT ‘missjion-speed)

(REMOVE .ALL.VALUES THISUNIT ‘safety-radius)

(REMOVE .ALL.VALUES THISUNIT ’start-posn)

(REMOVE.ALL.VALUES THISUNIT ‘threat)

(REMOVE.ALL.VALUES THISUNIT ‘time-avajilable)

(IF USER::*DEBUG* (FORMAT T "~% Exit function ‘init_data_slots’.")) )

o o R

S o = o e

; WRITE_MISSION.ORDERS is for ({unit::slot]={<MISSIONS>::write-mission.orders]

(DEFUN write_mission.orders (THISUNIT)
(IT USER::*DEBUG* (FORMAT T "-~% Entered function ’‘Write_mission.orders’.™))
(UNITMSG ‘mission.orders ‘init-orders)
(PUT.VALUE 'mission.orders ’‘active-mission THISUNIT)

(PUT.VALUE ’'mission.orders ’‘action (GET.VALUE THISUNIT ’‘action))
(PUT.VALUE ‘mission.orders ’'arsa-operation {(GET.VALUE THISUNIT ‘area-operation})
(PUT.VALUE ‘mission.orders ‘class (GET.VALUE THISUNIT ‘class))
(PUT.VALUE ‘mission.orders ‘goal-poan (GET.VALUE THISUNIT ‘goal-posn))
(PUT.VALUE ‘mission.orders ‘hovering-mode (GET.VALUE THISUNIT ‘hovering-~mode))
{PUT.VALUE 'mission.orders ’‘'initial-hea «.g (GET.VALUE THISUNIT ‘initial-heading))
(PUT.VALUE ’'mission.orders °‘mission-depth (GET.VALUE THISUNIT ‘mission-depthil
(PUT.VALUE ‘mission.orders ‘mission-speed (GET.VALUE THISUNIT ‘mission-speed))
(PUT.VALUE 'mission.orders 'safety-radius (GET.VALUE THISUNIT ‘safecy-radius))
(PUT.VALUE ‘mission.orders ’‘start-posn {(GET.VALUE THISUNIT ‘start-posn))
(PUT.VALUE ‘mission.orders ’‘threat (GET.VALUE THISUNIT ‘threat))

(PUT.VALUE ‘'mission.orders 'time-available
{* 60.0 (GET.VALUE THISUNIT ‘time-availablae)))

(IF USER::*DEBUG* (FORMAT T "~% Exit function ‘write_ops.orders’.")) )

MISSION.ORDERS UNIT methods

INIT_ORDERS method is defined for funit::slot)=[{MISSION.ORDERS::init-orders].
«- called by write_mission.orders

(DEFUN {nit_orders (THISUNIT)

(IF USER::*DEBUG* (FORMAT T "-~% Entered function ‘init_orders’."))
(REMOVE .ALL.VALUES THISUNIT ’‘active-mission)

(REMOVE.ALL.VALUES THISUNIT ‘action)

(REMOVE .ALL.VALUES THISUNIT ‘area-ope-ation)

(REMOVE .ALL.VALUES THISUNIT ’‘class)

(REMOVE .ALL.VALUES THISUNIT ‘goal-posn)

(REMOVE.ALL.VALUES THISUNIT ‘hovering-mode)

(REMOVE .ALL.VALUES THISUNIT ’initial-heading)

(REMOVE.ALL.VALUES THISUNIT ‘mission-depth)

(REMOVE.ALL.VALUES THISUNIT ‘mission-speed)

{REMOVE .ALL.VALUES THISUNIT ‘safety-radius)

(REMOVE.ALL.VALUES THISUNIT ’start-posn)

(REMOVE.ALL.VALUES THISUNIT ’‘threat)

(REMOVE.ALL.VALUES THISUNIT ‘time-available) -

(IF USER::*DEBUG* (FORMAT T "~% Exit function ‘init_orders’."))
{init_auv_status_panel) )
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(DEFUN init_auv_status_panel ()

(REMOVE.ALL.VALUES ’auv.status ‘x-posn)
(REMOVE.ALL.VALUES ‘auv.status ’‘y-posn)
(REMOVE.ALL.VALUES ’auv.status ’'depth-under-sub)
(REMOVE .ALL.VALUES ’auv.status ‘depth)
(REMOVE.ALL.VALUES ‘auv.status ‘heading)
(REMOVE.ALL.VALUES ’‘auv.status ‘rzpm) )

(DEFUN compute_score (THISUNIT)

(KEE: :REMOVE.ALL.VALUES KEE::’decision.maker KEE::'best-score)
(KEZ::PUT.VALUE XEE::'decision.maker KEE::’best-score 0.0)
(KEE: :PUT.VALUE KEE::'decision.makezr KEE::’astar-score
(+ (KEE::GET.VALUE KEE::’planner KEE::’astar-planning-time)
(KEE: :GET.VALUE KEE::’planner KEE::’astar-space-constraint)
(KEE: :GET.VALUE KEE::’planner KEE::’astar-path-optimality) ))
{KEE::FJT.VALUE KEE::’decision.maker KEE::’bfirst-score
(+ (KEE::GET.VALUE KEE::’planner KEE::’bfirst-planning-time)
(KEE: :GET.VALUE KEE::’planner KEE::’bfirst-space-constraint)
(KEE: :GET.VALUE KEE::’planner KEE::’bfirsc-path-optimality) )}
(KEE: :PUT.VALUE KEE::’'decision.maker KEE::’hsearch~acore
(+ (KEE::GET.VALUE KXEE::’'planner KEE::‘’hsearch-planning-time)
({KEE: :GET.VALUE KEE::’planner KEE::’hsearch-space-constraint)
{(KEE: :GET.VALUE KEE::’'planner KEE::’'hsearch-path-optimality) )}
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127 =*- Package: KEE; Mode: LISP:; Syntax: Common-Lisp; Base: 10 -*-
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Filename.......? mission-agents.lisp
AUCROX...ceans ¢ Ong Seow Meng

Date Created...: 20 Jan 90
Description.....: Containa the methods referenced by the following UNITs in
the MPES knawledge base.
{UNIT|={PLANNER]
{UNIT]={CONSTRUCTOR]
[UNIT]={EXECUTOR]
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Modifications.:
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PLANNER methods

e sy ae

PLAN method is {PLANNER::plan])
(DEFUN plan (THISUNIT)
(IF USER::*DEBUG* (FORMAT T "~% Entered function ’‘plan’.”))
(RETRACT ‘ (TEXT ‘planning-phase))
(IF USER::*DEBUG* (FORMAT T "~% before rule base activiation”))
;; activate mission.planning.rules which operates on slots in ops.orcers unit.
’ (UNITMSG ‘knowledge.processor ’start)
(UNITMSG ‘voters ‘start)
(UNITMSG ‘decision.maker ’‘start)
(UNITMSG THISUNIT ‘generate-construction-orders)
;2 (ASSERT NIL ‘mission.planning.rules NIL :AGENDA.CCNTROLLER ’GREATEST.WEIGHT)
(IF USER::*DEBUG* (FORMAT T “~% after rule base activation.")))

; generate_construction_orders -= for (slot)=(generate~construccion-orders)
(DEFUN generate_construction _orders (THISUNIT)
(KEE::2UT.VALUE KEE::’construction.orders KEE::'active-mission
(KEE: :GET.VALUE KXEE::’'mission.orders XZE::’active-mission) )
(KEE::PUT.VALUE XEE::’construction.orders KEE::’area-operation
(KEE: :GET.VALUE KEE::'mission.orders KEE::’area-operation) )}
(KEE: :PUT.VALUE KEE::'construction.orders KEE::’goal-posn
(KEE: :GET.VALUE KEE::'mission.orders KEE::'goal-posn) )
(KEE::PUT.VALUE KEE::’construction.orders KEE::’'hovering-mode
(KEE: :GET.VALUE KEE::’mission.orders KEE::’hovering-mode) )
(KEE::PUT.VALUE KEE::’construction.orders KEE::'mission-depth
(KEE: :GET.VALUE KEE::’mission.orders KEE::’'mission-depth) )
(KEE: :PUT.VALUE KEE::’construction.orders XEE::'mission~speed
(KEE: :GET.VALUE KEE::’mission.orders KEE::'mission-speed) )
(KEE::PUT.VALUE KEE::’construction.orders KEE::’safety-radius
(KEE: :GET.VALUE KEE::’mission.orders XEE::’'safety-radius) )
(KEE::PUT.VALUE KEE::’construction.orders KEE::’start-posn
{(KEEt:GET.VALUE KEE::'mission.orders KEE::’start-posn) )
” ({KEE::PUT.VALUE KEE::’construction.orders KEE::’threat
(KEE: :GET.VALUE KEE::’mission.orders KEE::'threat) )
(KEE: :PUT.VALUE KEE::’construction.orders KEE::’path~plan-method
(KEE: :GET.VALUE KEE::’planner KEE::’'recommended-path-planner) )
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start_knowledge.processor -~- for (UNIT::slot]=(KNOWLEDGE.PROCESSOR: :start]

(DEFUN start_knowledge.processor (THISUNIT)
(ASSERT NIL THISUNIT) )

start_decision.maker -- for [UNIT::slot]=(DECISION.MAKER::start]

(DEFUN start_decision.maker (THISUNIT)
(UNITMSG THISUNIT ‘compute-score)
(ASSERT NIL THISUNIT) )

start _voters -- for [UNIT::slot]={VOTERS::start]

DEFUN start_voters (THISUNIT)
(ASSERT NIL THISUNIT) )

CONSTRUCTOR methods

CONSTRUCT method is [CONSTRUCTOR::construct]

(DEFUN construct (THISUNIT)
(IF USER::*DEBUG* (FORMAT T "~% Entered function ‘construct’.”))
(RETRACT ‘ (TEXT ‘construction-phase))
¢+; (FORMAT T "~MONSTRUCTION phase in progress.....®}

(UNITMSG (GET.VALUE ‘mission.orders ’active-mission) ‘construct-mission)}

;e (ASSERT ‘ (TEXT ‘execution-phase) ’‘mission.controller) )

EXECUTCR methods

————————— -

EXECUTE method is (EXECUTOR::execute]

(DEFUN execute (THISUNIT)
(IF USER::*DEBUG* (FORMAT T "~% Entered function ‘execute’.”})
(RETRACT ‘ (TEXT ’execution~phase))
{UNITMSG (GET.VALUE ’‘mission.orders ‘active-mission) ’‘execute-mission)
3 (FORMAT T "~MWMISSION EXECUTION in progress......")
(IF USER::*DEBUG* (FORMAT T "~% end of execute function®)) )

ABORT method is (EXECUTOR::abort-mission}

(DEFUN abort_mission (THISUNIT)
{clear.unstructured. facts)
(UNITMSG ‘viewport-execute.abort.panel.l§ ‘close-panel!)
{UNITMSG ’‘panels ’‘reset-~screen)

(init_auv_status_panel)
(IF USER::*iris-sym-comms-established* (USER::end~conj}) )
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Filename......: umissions.lisp
Author........: Ong Seow Meng

Date Created..: 24 Jan 90
Description...: Contains the methods referenced by

(UNIT::SLOT]=[<specific-mission-unit>::construct-mission]
{UNIT::SLOT)=(<specific-mission-unit>::execute-mission]}.

Modificationa.:
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TRANSIT_POOL UNIT methods

INIT_

USER_PKG method is defined for (UNIT::SLOT]={TRANSIT.POOL::init-user-pkg].
It is called by the construct_transit_pool method in [UNIT]=(TRANSIT.POOL].

s % % N

(DEFUN

init_user_pkg (THISUNIT)
(IF *DEBUG* (FORMAT T "~% Entersd function ‘init_user_pkg’."))
{(init-display)
{init_global_variables)
(SETQ *pooldepth* (* *zmapsize* *real-vert-dist-pu-coord®))
(SETF *goal* (change_to_path_planning_coord

(KEE: :GET.VALUE KEE::’mission.orders KEE::’goal-posn) ) )
FORMAT T "~% *goal* = =) (PRINC rgoal®)
(LET ( {(initial-hdg (* *deg-to-rad-factor®*

(KEE: :GET.VALUE KEE::’mission.orders KEE::’initial-heading) ))})
(SETF *start®
(CONS {nitial-hdg (LIST (change_to_path_plaanning_coord
(KEE: :GET.VALUE KEE::’mission.orders KEE::’start-posn) ))) ) )

(
:
¢

A %¢ e e %

ETF *start*
(CONS 1 (LIST (change_to_path planning_coord
(KEE: :GET.VALUE KEE::’'mission.orders XEE::’start-posn) )}} )

(FORMAT T "~% *gtart* = ) (PRINC *start®)

(SETF *mission-depth* (nearest_vert coord
(KEE: :GET.VALUE KEE::'mission.orders KEE:: 'mission~-depth)) )

(FORMAT T “~% *mission-depth* = ) (PRINC *mission-depthv)

(SETF *safety-dist®* (nearest_horiz_coord
(KEE::GET.VALUE KEE::’mission.orders KEE::’ safety-radius)) )

(FORMAT T *"~% *safety-dist* = “) (PRINC *safety-disc?®)

{TERPRI)
{(FORMAT T "~SInitialising system. Wait......... ")

(make_emap)
{init_pool_emap) -
(place_obs_ls)

{SETF *goal-vicinity-list* (make_vicinity_list *qgoal®))
(IF *DEBUG* (FORMAT T "~% Exit function ‘init_user_pkg’'.")) )
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(

(

INIT_GLOBAL_VARIABLES function is called by function init_user_pkg.

DEFUN init_global_variables ()

(IF *DEBUG* (FORMAT T "~%

(LET*

Entered function ‘init_global_variables’.®))

{ (curr-area-ops (KEE::GET.VALUE KEE::’mission.orders KEE::'area-operation))
{curr-mission (KEE::GET.VALUE KEE::’'mission.orders KEE::’'active-mission))
{threat-level (KEE: :GET.VALUE curr-mission KEE::’threat)) )

(SETF *xmapsize* (KEE::GET.VALUE curr-area-ops KEE::’xmapsize))

(SETF *ymapsize* {KEE::GET.VALUE curz-area-ops KEE::’ymapsize))

(SETF *zmapsize* (KEE: :GET.VALUE curr-area-ops KEE::’zmapsize))

(SETF *ObstaclelLs* (KEE::GET.VALUE curr-area-ops KEE::’selected-obst))

{SETF *Bottom-Search-Preferred* (IF (EQUAL threat-level XEE::’HOSTILE} T NIL)) )

(IF *DEBUG* (PROGN (FORMAT T "~%
{PRINC *Bottom—-Search-Preferred*) ))

(SETF
(SETF
(SETF
(SETF
(SETF
(SETF
(SETF
(SETF
(SETF
(SETF

*path* NIL)
*real-pathv NIL)
*return-path* NIL)
*goal-vicinity-list* NIL)
*Obstacle~-Mode* NIL)
*Near-Obst-Edge* NIL)
*search-mode* ‘fwd-level)

*Bottom=-Search~Preferzed® =» *)

*Current-Mode* ’Normal-Mode)

*curr-speed* 0.0)

*iris-sym-comms-established* NIL) )}

CONSTRUCT_TRANSIT_POOL method is for (unit::sloct]={TRANSIT.POCL::construct-mission].

DEFUN construct_transit_pool (THISUNIT)
(IF *DEBUG* (FORMAT T "~%

Entered construct_transit_pool function."))

(KEE: ; UNITMSG THISUNIT KEE::’i{init-user-pkq)
{TERPRI)

(LET~

(FORMAT T "Change path~plan-method in unit mission.plan now (if required)."”) (READ)

((searchmethod (KEE::GET.VALUE KEE::’construction.orders KEE::’path-plan-methed))
(searchfunction (KEE::GET.VALUE searchmethod KEE::’user~function))
: goal-posn is in real coord !!!!
(goal~posn (KEE: $1GET.VALUE KEE::’'mission.orders KEE::'goal-posn))
(transit-depth (KEE::GET.VALUE XEE::’mission.orders KEE::'mission-depth))
(transit-speed (KEE::GET,.VALUE KEE::’mission.orders XEE::’mission-speed)) )

(IF *DEBUG*
(PROGN (FORMAT T *-~%

searchmsthod is ") (PRINC searchmathod) (TERPRI)

(FORMAT T *~% goal-posn is ) (PRINC goal-posn) {TERPRI)

(FORMAT T “~%
(FORMAT T "~%

: Bind global variables

trzansit-depth is ") (PRINC transit-depth) (TERPRI)
transit-speed is ") (PRINC transit-speed) (TERPRI) ) )

(LET ( (start-real-coord (real_posn_coord (posn *start®))) )
(SETQ xstart (x_coord start-real-coord))

(SETQ x xstart)

(SETQ ystart (y_coord start-real-coord))

(SETQ y ystart)

(SETQ zstart (z_coord start-real-coord))

(SETQ z zatart)

(SETQ depth_under_sub (~ *pooldepth* (z_coord start-real-coord)}) )
(SETQ sub_depth (* *real-vert-dist-pu-codrd® (z_coord (posn *start*))))

(FORMAT T “~% Path planning begins......")

2

Begin Path Planning

(SETF *max-qlength* 1)
(TIME (SETQ *real-path® (plan_path searchfunction *start*)))
(KEEZ: :PUT.VALUE KEE:1:’mission.details KEE::’path *real-path*)
(SETQ *return-path* (REVERSE *real-path®)) .
(print_performance_data)
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(DEFUN

(DEFUN

; Display start, goal and path on coler monitoer.

s NOTE: The monitor coord system is opposite that of iris (x-iris = y-monitor)
(draw-start-pos ystart xatart zstarct)

(draw-goal-pos (y_coord goal-posn) (x_coord goal-pasn; (z_coord gowul-posn))
(move-icon ystart xstart zstart) :
(display_path_on_monitor)

(TERPRI)

(PRINC “"Detailed MISSION PLAN ready for execution.®)

(TERPRI)

(IF *DEBUG* (FORMAT T "~% Exit construct_transit_pool function.™)) ) )

print_performance_data ()

(TERPRI)
(PRINC " MAX QUEUE length = ®) (PRINC *max-~qlength*)} (TERPRI)
(FORMAT T “~% Cost of Path = *) (PRINC (cost_of_path *path*)) (TERPRI) )

send_search_parameters_to_IRIS ()

: Initiate conversation with IRIS

(SETF talk (make-instance ’‘conversation~with-iris))
{choose~iris *iris$)

(start-con)

{TERPRI)

(SETF *iris-sym-comms-established* T)

{PRINC "Connection with iris established.”)
(TERPRI)

; send obstacles to iris
(LET ( (obst-posn-list (REST (FIRST "Obstaclels*})) )
(send_float (LENGTH obst-posn-list))
(PRINT obst-posn-list)
{MAPCAR #’send_obstacles_to_iris
(LIST (CONS (FIRST (FIRST *ObstaclelLs*))
(MAPCAR #’real _posn_coord obst-posn-iist)))) )

; Send initial state to IRIS
(send_float xstart)
(FORMAT T "~% xstart sent to iris: =) (PRINC xstart)
(TERPRI)
(send_float ystart)
(FORMAT T "~% ystart sent to iris: ) (PRINC ystart)
(TERPRI)
(send_float zstart)
(FORMAT T "~& zstart sent to iris: =) (PRINC zstart)
(TERPRI)
(LET (({init-dir (* *rad-to-deg-factor* (direction *start®))))
(send_float init-dir)
(FORMAT T "~8% initial direction sent to iris: ®)
(PRINC init-dir)
(TERPRI) )
(FORMAT T "~% Initial AUV State sent to iris.”)

s Send path to IRIS
(send_float (LENGTH *real-path®))
(MAPCAR #° send_state_to_iris *real-path®)

; Send goal location to IRIS.

(LET ( (goal-posn (KEE::GET.VALUE KEE::°'mission.orders KEE::’goal-posn)) )
(send_float (x_coord goal~posn})
{send_float (y_coord gaal-posn)) ) )

(DEFUN plan_path (searchmethod start-state)

(SETT *goal-vicinity-list* (make_vicinity_ list 'qogl'))

(MAPCAR ¢’change_to_real_state_coord
(process_path (APPEND (funcall searchmethod) (LIST (LIST O *goal®*)))) ) }
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(DEFUN process_path (path) A
{COND ( (NULL (CDR path)) path )
(T (LET ( (curz-state (FIRST path))
(next-state (SECOND path)) )
(IF (sharp_turn curr-state next-state)
(process_path (REST path))
(CONS curz-state (process_path (REST pathj)} ) }) ) )

(DEFUN sharp_turn (curr-state next-state)
(COND ( (course_change_90_degrees curr-state next-state)
(IF (OR (x_coord_unchanged curr-state next-state)
(y_coord_unchanged curr-state next-state) )
T
NIL ) )
( TNIL) ))

(DEFUN course_change_90_degrees (curr-state next-state)
(LET ( (curr-hdg (FIRST curr-state))
(next-hdg (FIRST next-stace)) )
(IF (>= (ABS (- next~hdg curr-hdq)) *half-PIv)
T
NIL ) ) )

(DEFUN x_coord_unchanged (curr-state next-state)
{(IF (= 0 (xcoord_diff (posn curr-state) (posn next-state)))
T
NIL ) )

{DEFUN y_coord_unchanged (curr-state next-state)
(IF (= O (ycoord_diff (posn curz-state) (posn next-state))})
T
NIL ) )

EXECUTE_TRANSIT_POOL method is defined for ([unit::slot]=(transit_pool::execute-mission].

% v e

(DEFUN execute_transit_poocl (THISUNIT)

(KEE: :UNITMSG KEE::’viewport-auv.status.panel.2 KEE::’open-panel!)

(IF *DEBUG* (FORMAT T "~% Entered function ‘execute_transit_pool’."))

(send_search_parameters_to_IRIS)

(TERPRI) (PRINC “Hit a key on IrisS main terminal to continue.”) (TERPRI)

(LET ( (transit-speed (KEE::GET.VALUE KEE::’mission.orders KEE::'mission-speed)) )
(transit_without_contacts (real_posn_coord *goal*) transit-speed “TRANSIT®)
(transit_back_without_ contacts transit-speed) ) .
(TERPRI)

(PRINC “TRANSIT_POOL MISSION COMPLETED.")

(TERPRI}

{(stop_in_pool xatart ystart)

{end~con} .

(IF *DEBUG* (FORMAT T "~8% Exit function ’'execute_transit_pool’.")) )
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(DEFUN transit_without_contacts (goal-posn transit-speed sub-command)

;: goal-posn is in real distance coordinates
:; *"real-path* is in real distance cocordinates

{DO* { (curr-posn (LIST x y sub_depth) (LIST x y sub_depth))

(horiz-dist (horiz_coord_dist curr-posn goal-posn)

(horiz_coord_dist curr-posn goal-posn) )
(vert-dist (abs_vert_coord_dist curr-posn goal-posn)
(abs_vert_coord_dist curr-posn goal-posn) ) )

( (AND (< horiz-dist *real-horiz~dist-pu-coord®)
(¢ vert-diast *real-vert-dist-pu-coord®*) )
{TERPRI) (PRINC "AUV AT GOAL") (TERPRI) )

(LET* ( (next-subgoal (posn (SECOND *real-path®*)))
(xsubgoal (x_cocord next-subgoal))
(ysubgoal (y_coord next-subgoal))
{zsubgoal (z_coord next-subgcal})
(newspeed *curr-speed®) )

127 (zsubgoal (- *pooldepth* (z_coord next-subgoal))) )

(SETF newspeed (adjust_speed transit-speed))
(SETF *curr-~speed® newspeed)

(SETQ autocourse {(get_autocourse x y xsubgoal ysubgoal))

(send_float autocourse)

{send_float zsubgoal)

(send_float newspeed)

(send_float xsubgoal)

(send_float ysubgoal)

(send_string sub-command)

{TERPRI)

(gqet_data_from iris_without contacts)
(COND ( (AND (> *real-horiz~dist-pu-coord~

(horiz_coord_dist curr-posn next-subgoal) )

{> *real~vert-dist-pu-coord*

(abs_vert_coord_dist curr-posn next-subgoal) ) )
(SETQ *real-path* (REST *real-path*)) ) ) ) ) )

(DEFUN transit_back_without_contacts (transit-speed)
(SETQ *"real-path* *return-path®*)

(transit_without_contacts (real _posn_coord (posn *start®))

transit-speed
“TRANSIT BACK") )

(DEFUN stop_in_pool (xstart ystart)
(FORMAT T "~% Standing by for Recovery......")
(DO ({numtimes 1 (1+ numtimes)))
((= numtimes 50))
(send_float (get_autocourse x y xstart ystart))
(send_float Q)
(send_float 0)
(send_float xstart)
(send_float ystart)
(send_string “STANDING BY FOR RECOVERY.")
(get_data_from_iris_without_contacts) ) )
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(DEFUN gec_data_from_iris_without_contacts()
(SETQ x (qget_data))
(KEE::PUT.VALUE KEE::’auv.status KEE::'x-posn x)
(SETQ y (get_data))
(KEE: :PUT.VALUE KEE::’gsuv.status KEE::’y-posn y)
(SETQ depth_under_sub (get_data))
(KEE: sPUT.VALUE KEE::’auv.status KEE:!’depth-under-sub depth_under_sub)
(SETQ sub_depth (get_data)) )
(KEE::PUT.VALUE KEE::’auv.status KEE::’depth sub_depth)
(SETQ acourse (get_data))
(KEE: :PUT.VALUE KEE::’auv.status KEE::’heading acourse)
(KEE: sPUT.VALUE KEE::’auv.status KEE::’rpm
(KEE: :GET.VALUE KEE::’mission.orders KEE::’mission-speed))
(PRINC " x Y depth_under_auv auv’s depth =zourse”)
(FORMAT T "~% ~0,2F ~10,2F ~12,2f ~12,2F ~12,2F" x y depth_under_sub sub_depth acourse)
:: The following few line transfer data to the color monitor
:; color monitor coord system is opposite that of iris display (x-iris = y-monitor)
(move-~icon y x sub_depth)
(TERPRI))
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; Functions to support transit_pool mission.
H
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(DEFUN adjust_speed (transit-speed)
(COND ((< (LENGTH *real-path*) 3) (MIN 250.0 transit-speed))
({(moving_vertically soon) *vert-mvt-speed®)
({turning_vertically soon) (MIN *vert-turning-speed* transit-speed))
(T (MIN transit-speed (+ (* 0.3 *curr-speed+*) (* 0.7 transit-speed))) ) ) )

(DEFUN moving_vertically_soon ()
(LET ((next-posn (posn (SECOND *real-path?)))
(next2posn (posn (THIRD *“real-path®))) )
(IF (< (horiz_coord_dist next-posn next2posn) 0.2)
T
NIL) ) )

(DEFUN turning_vertically_soon ()
(LET ({next-posn {(posn (SECOND *real-path*®)))
(next2posn (posn (THIRD *real-path#*))) )
(IF (AND (>= (horiz_coord_dist next-posn next2posn)
*real-horiz-dist-pu-coord?)
(> (abs_vert_coord_dist next-posn next2posn) 0.2) )
T
NIL) ) )

(DEFUN change_to_path_planning_coord (real-posn-coord)
{LIST (nearest_horiz_coord (x_coord real-posn-coord))
(nearest_hariz_coord (y_coord real-posn-coord))
{nearest_vert_coord (z2_coord real-posn-coord)) ) )

(DEFUN neareat_horiz_coord (real-dist)
(MAX 1 (round (/ (- real-dist *approx-half-real-horiz-dist-pu-coordv)
*real-horiz-diat-pu-coordr) )) )

(DEFUN nearest_vert_coord (real~height)
(MAX 1 (round (/ real-height *real-vert-dist-pu-coordv))) )

(DEFUN change_to_real_state_coord (state)
_ (CONS (direction state) (LIST (real_posn_coord (posn state)))) )
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(DEFUN real_posn_coord (posn-coord)
(LIST (real_horiz_dist (x_coord posn-coord))
(real_horiz_dist (y_coord posn-coord))
; the following needs to be changed later to get rid of *pooldepth*
2 (= *pooldepth* (real_vert_dist (z_coord posn-coord))) ) )
(real_vert_dist (z_coord posn-coord)) ) )}

(DEFUN real_horiz_dist (coord-value)
(* coord-value *real-horiz-dist-pu-coordr) )

(DEFUN real_vert_dist (coord-value)
(* coord-value *real-vert-dist-pu-coord~*) )

(DEFUN get_autocourse (x y xl1 yl)
(cond
((< x x1) (autecoursel x y xl1 yl})
(t (- 360 (autocoursel x y xl1 yl)))))

(DEFUN autocoursel (x y xl yl)
(* 57.295 (acos (/ ( - yl y)
(get_the_distance x y x1 yl)))}))

(DEFUN get_the_distance (x y xl1 yl)
(sqrt (+ (sqr (- x xl))
(sqr (- y yl)))))

(DEFUN display_path_on_monitor ()
(MAPCAR #’plot_point *real-path*) )

(DEFUN plot_point (state)
(draw-path-pos (y_coord (posn state))
(x_coord (posn state))
(z_coord (posn state)) ) )
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