


DUD X LIBRARY
NAVAL P0STGRADUA1 OL

MONTERE







NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A DICTIONARY/DIRECTORY SYSTEM

FOR THE SPLICE SYSTEM

by

Vassilios Panagiaris

June 1984

(DDS)

Th ssis Advisor: Norman F. Sc hneidewind

Approved for public release; distribution unlimited

T222996





SECURITY CLASSIFICATION OF THIS PAGE (Whmn Data Entered)

REPORT DOCUMENTATION PAGE
t. REPORT NUMBER

READ INSTRUCTIONS
_BEFQRE COMPLETING FORM

2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Dictionary/Directory System (DDS)
For the SPLICE System

5. TYPE OF REPORT 4 PERIOD COVERED

Master ' s Thes is
June 1984

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfsj

Vassilios Panagiaris

8. CONTRACT OR GRANT NUMBERS

9. PERFORMING ORGANIZATION NAME ANO AODRESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

June 1984
13. NUMBER OF PAGES

84
1*. MONITORING AGENCY NAME 4 ADDRESS*1

// dllferent from Controlling Ottica) 15. SECURITY CLASS, (ot thta report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, It dlllerent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide 11 neceaamry and Identity by block number)

Dictionary, Directory, SPLICE, Distributed Systems,
Dictionary Interfaces

20. ABSTRACT (Continue on reverse aide It neceaaary and Identity by block number)

As a result of growing demands for automated data processing at
the Navy Stock Points and Inventory Control Points, long range
plans are being developed around the Stock Point Logistics Inter-
face Communications Environment (SPLICE) concept. Problems and
opportunities are involved with designing and using distributed
systems. This thesis investigates the area of data dictionary/
directory systems with special focus on distributed systems and
attempts to outline the benefits for the SPLICE system (Cont

)

DD
, ^N

RM
73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarad)



SECURITY CLASSIFICATION OF THIS PAGE (Whmn Dmtm Bntmtmd)

ABSTRACT (Continued) ... .

from the use of a data dictionary/directory system. Interface
considerations between data dictionary/directory system (DDS)
and neighboring modules are also discussed.

S N 0)02- LF- 014- 6601

2 SECURITY CLASSIFICATION OF THIS PAGE(TTh«n Dmtm Enfrmd)



Achieved for pullic relTalT; distribution'* unl iniited

A Dictionary/Directory System (DDS)
fcr the SPIICE System

ty

vassilios Eanagiaris
Connander Hellenic Navy

B.S., Hellenic Naval Academy, 1966

Submitted in partial fulfillment of tha
requirements fcr the degree of

2ASTEB OF SCIENCE IN COMPUTES SCIENCE

flea the

NAVAI ECSTGBAEUA1E SCHOOL
JUD6 1984



* v*00^„ A

AES1BACT

As a result cf growing demands for Automated Data

frocessirg at the Navy Stock Points and Inventory Cciticl

Points, lcng range jlans are reing developed around the

Stock feint Logistics Interface Communications Snvir cement

(SPIICI) cencept. Irotlens and opportunities are invclved

kith designing and using distributed systems. This thesis

investigates the area of data dictionary/directory systems

fcith special focus cr distributed systems and attempts to

cutlire the benefits icr the SELICE system from the use of a

data dictionary/ directory system. Interface consideratiens

letween data dictionary/directory system [DDS) and neigh-

toring mcdules are also discussed.



1ABLE CF CONTENTS

I. INIBCDUCTION - 9

A. SPLICE AM DATA DICTIONARY 9

E. OBJECTIVES Of THESIS 15

II. IICIICNARVDIEICICRY SYSTEMS 16

A. GENEEAL FEVIEW 16

E. MANAGEMEN1 OF INFGEMATION RESOURCES 18

C. SUPPCRT CI SYSTEM IIFE CYCLE 20

E. DATA DICTIONARY SYSTEM ORGANIZATION . - ... 22

E. CONCEPTS CN DDS SEIECTION AND EVALUATION . . 23

I. ADDIIIONAI ASPECIS OF DDS 24

G. HIERARCHY OF DDS 26

E- FEATURE ANALYSIS OF DDS 30

1. Architecture and Implementation 31

2. Logical Schema, Entity Types,

Relation ships 32

3. Interfaces ard Commands 33

III. INTEGRATION 42

A- THE EROEIEM 42

£. INTEGRATION CF IDS 46

1. Software Interfaces 46

2. Convert Functions 49

3. Envircrmental Dependency 51

IV. SESSION SERVICES AND DAIA DICTIONARY 56

A. GENEEAL 56

E. ARCHITECIUEE INIEEEACES 58

C. THE SESSICN SERVICES MODULE 60

X. INTEEFACIS 61



V. L/L JN DI5TRIECIED ENVI5CNMENT 64

A. INIECDUCIJCN 64

I. EXTENSIONS 10 TEE IDS 67

C. THE EDS AS. A DISTRIBUTED DATABASE 68

£. A HOTEL ICE A DIS1EIEUTED DDS 69

VI. CCNCIUSICKS £il EECO EMENDATIONS 74

A. CONCIUSICKS 74

E. . EECOaMENIAlIONS 76

APPENIIX A: TANEEM IATA DICT2CNAEY 77

1. Overview 77

2. Creating a Dictionary 78

3. Dicticiary Reverts 78

4. Updating the Dictionary 79

IIST CI EEEERENCIS 82

INIIIAI IIS1RIBUTI0N IIST 34



LIST Of TABLES

I. Data Element Attributes 36

II. Pile Entity Attributes 37

III. Selected Hardware Entities and Attributes .... 38

IV. Selected Software Entities and Attributes .... 39

V. Eccunent/Rep oit Attributes 40

VI. Kinds of CDS Irterfaces 40

VII. Ccmiand Categories fcr CDS 41

VIII. lyres of Software Packages I D/d System 54

IX. Transactions fcr D/D Convert Function 55

X. Dictionary Revert Suaaary 80

XI. Dictionary Modification Function 8 1



IIST CF FIGUfiES

1.1 Network Services Directory and Dictionary ... 12

1.2 layered Operating System Design (fief. 4) .... 14

2.1 SFIICE Data Admin. Function Organization . ... 22

2.2 A first DDS Hierarchical Structure fcr

SPIICE 21

2.3 A Second DDS Hierarchical Structure for

SIIICE 29

2-4 A Ihird DDS Hierarchical Structure fcr

SP1ICE 30

3.1 Highly Integrated L/l Centered Architecture . . 43

2.2 IB a Data Maragement Architecture 45

3.3 System Flow ior a Convert Function 50

2.4 SFIICE Embedded Approach to DDS 52

4.1 Cccperation Zetween SS and Functional

Modules 57

4.2 Software Interface Usirg a DHL Processor .... 63

5.1 A Furely Distributed Approach for a CDS .... 72



I. IHIECEUC1I0N

A. SPLICE AND DATA IICTIONAEY

lie SPLICE (Stock Feint Logistics Integrated

Communication Environ lent) concept comes as a result ci the

alwavs growing demards of the U.S Navy for automated data

processing [fief- 1] ard inventory control at various feints.

A design and implementation strategy is necessary cased in

distributed architecture for a local area network (IAN; .

SPIICE is designed to increase ADP facilities of the

existing Navy stock point and inventory control pcirt.

Eecause the current Uniform Automated Data Processing

Systen-Stock Points cannot support the growing requirements

for automated data processing (ALP) without a total rede-

sign, an effort has teen undertaken to improve the system in

the short and long term £Ref- 1]- Two major objectives are

behind tie SPLICE development;

1- Ic increase CEI display terminals so users can access

interactively the system's data base.

2. Ic standardi2€ the various current interfaces across

the £1 supply sites.

Ihe design approach first starts from the designing of

the legical or virtual Local Area Network (LAN) , by speci-

fying all tte functional modules, their characteristics, and

the communication prctocols without focusing on the hardware

characteristics. A later phase of the SPLICE project will

anticipate the mapping of the virtual LAN requirements onto

a physical local network-



lh€ following functional modules are involved in the

develop Kent of the system.

- Iccal communications (1C)

- National communications (NC)

- Ercnt-End processing <IEE)

- Terniial managenent (1M)

- Data base nanageEent (IEI?)

- Session services (SS)

- feripheral management (EM)

- Eescuice allocation (EA)

This IAN design provides for distributed control rut

does net trcvj.de for the distribution of data bases wittir. a

IAN. Th€ data bases of the SEIICE system are geographically

distributed over a wide area and for the purpose of Eain-

taining the integrity of the system, the data base functiens

are centralized within each IAN. A DBMS module for the

systeir nust at least provide dictionary, integrity,

recovery, guery language, and security features as well as

compatibility with existing CCEOI programs.

The functions of the DBM nodule would be:

Catalog, to naintain a catalog of file names and

status (raae, open or closed, size, physical address of

file , physic al address cf index, application used in, date

entered intc system, expiration date if any, location cf

backup copy, foriat, access restrictions).

- Operations, under a menu selection scheme to perform

various functions (retrieve and display a record, update

specified fields of a record, delete a reccrd, insert a

record, print a file, print a record or specified fields of

1C



a record, answer specified gueries and display and print the

results) .

- Dictionary for defining and characterizing the data

elemerts. The dictionary must be integrated with the EEES.

Ihis will contribute to data integrity and consistercy

throughout the systen and should also be of great assistance

in designing report formats.

With this improved design it is believed that the SPLICE

systen will provide economical and responsive support capa-

bilities among the 62 different geographical locations, each

having a different mix of application and terminal

requirements.

lie SflJCE functional design approach suggests devel-

oping several functional modules, distributed in miniccm-

puters throughout the IAN with the necessary communications

to support them [fief- 2]. Ihis design provides for higher

systen availability than the centralized approach since

functional nodules can be ncved from one physical node to

another without changing their logical addresses [Eef. 3]-

At the time there exist no exact methods for designing

distriruted systems ard so an objective of the NPS research

program for SPLICE is to advance knowledge about distriruted

systens and to increase understanding of how distriruted

systems nust be desigred in crder to operate effectively.

Distriruted systens have problems associated with their

design that need solutions in particular areas [Eef. 4 pp

2]- Ihe distributed system must provide the ability for the

user to ccnmunicate and access information across the 62

local networks inteiccnnec ted by the Defense Data Network

(DDN) . It must be possible for the user at Naval Supply

Center (NSC) Oakland to access the Inventory Control Point

(ICP) datatase at Mechanicsturg in the same way as the local

database at Oakland £Eef. 4 ].

11



lie data dictionary must provide su^ort to the above by

uniquely laming and identifying objects in the overall

SPLICI system. In the case of a message which is destined

to another local network, the dictionary can te used to

obtain tie physical destination address with the help of

Data Directory

Service Object
•ubjtct

code

nut
•0OTM«

""""I

'
Data dictionaryt

Session
Services
Support

Data
Dictionary
Functions

i i

i .

l i

i i

Sending
Functional

Local
Data base

Module
$JK-vfC« C«X*
Wjtci ntM

Logical Bus

Broadcast message

Figore 1- 1 Network Services Directory and Dictionary.



Session Services module (Figure 1.1) . For od ject laming

and addressing and scitware maintenance, the data dicticnary

can help ry storing all the name-to-address mapping and

routing information. The data dictionary can also be used

to specify task reguirements for the user terminal

processes. The data dictionary in a distributed environment

will cooperate closely with the session services module

which prcvides assistance to the user terminal processes in

carrying cut their tasks. Ihus a distributed operating

system must provide, in addition to other functions, the

ability tc access effectively the dicticnar y/directcry

system (figure 1.2 ficm Eef . 4) .

Major systems of the SPIICI application environment are

the Integrated Disbursement and Accounting (IDA) , Automated

Procurement and Date Entry (Af ALE) , Uniform Automated Data

Processing System-Stcck Points (UADPS-SP) , and Logistics

Data System Trident IIS. £ach of the above systems has its

cwn elements, files, programs, transactions, users and

reports £Bef. 4].

It is vital for the system tc manage all the resources

efficiently and the distributed environment makes this jcn

more difficult. A data dictionary/directory system (DDS)

seems tc be one approach to data design and managing prcblem

solution. For the centrali2ed database environment three

aspects are emphasized [Eef. 5^.

-lie software interfaces between the D/D system and

ether software packages

-Ihe convert functions of the D/D system

-Ihe environmental dependency between the D/D system and

a datarase management system (DBMS).

For the distributed database environment, as in the case

of SPIICI, there must be extensions to the centralized D/D,

13



r

i

i

i

i

USER INTERFACE

Coaannd Language

Saaston Services

PftfX'fi.S MANAGFMFNT

atton

cat ton

deration*

Intar process coanuntc

Intarprocassor coRMunt

Deadlock prevent 'op •

Critical section const

SHARED

RESOURCE

MANAGEMENT

NETWORK

MANAGEMENT

SHARED

RESOURCE

MANAGEMENT

LOGICAL RAM MANAGEMENT

Transaction work Space

Allocatton/Oaal location

Intra LAN

Co—en.

Inter LAN

Coaaui.

TCP/IP

DINS

Hit Server

Catalog

Ft la Macro*

Otctfonary/

Directory

MEMORY (RAM) MANAGEMENT

Buffer A1 locet ton/Deal location

Flrat Fit Algorithm

.
I/O CONTROL

!ng

rat

Interrupt Handl

Maaaage Prtattf

FIRMWARE (Hon Cnengaeo 1a Part of Operating Systea)

MULTIPLE MINICOMPUTER HARDWARE

i

Figure 1.2 layered Operating System Design (Eef- 4).

additiccal software interfaces required, and the use cf the

E/D as a distributed catabase.

14



E. CIJ1C1ITIIS 01 THESIS

lie SEIICE troject at the Naval Postgraduate School

1NPS) takes the approach of designing the logical or virtual

local Area Network (IAN) first, specifying all the iuec-

tional modules, theii characteristics and the commuEication

protocols, iather thar. focusing on the hardware characteris-

tics of IAN first £Bef. 1] developing alternatives fcr

SPLICI Iccal Area Networks. After providing a fuEctioEal

speciiicat icn fcr a distributed operating system, user

interface specifications are provided, where the

dicticEary/ directory system (DCS) constitutes a major compo-

nent [Bef. 4] and its function is to provide support fcr

ramiEc and identifying objects in SPLICE.

lie objectives of this thesis are to investigate the

area of data dictionary/directory systems (DDS) , to outline

the advantages/ disadvantages of these systems, arc to

presert the underlyirg ideas. Also, to pay special atteEtion

to tie distributed envircEment, and to introduce the

benefits fcr the SPI1CE system from using a dicticflary/

director} system. Firally an attempt will be made to iEtrc-

duce tie interface requirements between - a data

dictionary/ directory system fcr the SPLICE, and the neigh-

icrirc modules.

15



II- JIC1ICNABV.CIBECT0BY SYSTEMS

A. GIMEIAI BEVIEW

A cata dictionary is a description cf data resources. It

contains both machire-readable and human-readable descrip-

tions of the database tables, their attributes, interrela-

tionships, and semantics. It is usually not very large, tut

it has a very rich structure. Most systems have a data

dicticnary facility which stores metadata about the database

aside frcm the datalase itself- The data dictionary is

cften tuilt en tcp of the DEMS as a special application with

a special cata definition language.

Thus a EDS is a set of one or more databases containing

data about an organi2ation' s information resources. These

resources can be retrieved and analyzed using standard data-

lase nanagenent system (DBMS) capabilities. The concept of

a data dictionary system has existed in the data ficcessing

industry for a number of years. Use of such a system

consists, basically, cf an attempt to capture and store in a

central location definitions cf data and other entries cf

interest £Bef- 6]. The principles of such a system are:

-Ircvide for better data control

-Ercvide for better documentation

-Improve the quality of the systems that are tuilt in

terms of user functionality and satisfaction and system

naintairability.

The cata dictionaiy helps to capture and document data

elemerts, their definitions and some of their descriptive

16



attributes. It alsc provides for logical—grouping cf data

elements diring the process cf gathering reguiremen t& to

build a rew system, lie data element dictionary provides the

vocabulary that can te used between the systems analyst and

the end-user [fief- 6^-

Next in the spectrum of usage the DDS help is twofold.

Ii£st if the data dictionary is available it can be extended

to include inforaaticr of hew and by whom the data elements

can be used. Ihus a dictionary can be used to store the

defiritiens of data elements and the definitions cf ctler

data constructs (records, files), the definitions of

processes (programs cr manual processes), and definiticrs of

data users (individuals, organizations) . The Second trend

that contributed to this extended usage of a dictionary

system was the gradual migration away from the use cf tradi-

tional files toward the concept of a central, integrated

database distributed across tie DDN but centralized witiin

each IAN, under the control of a database management system.

lie problem cf duplication cf data (data redundancy) can

be sclved inside each IAN tut another mechanism irust be

provided in order to solve that problem across tie DEN.

Ihis pictlem must be examined carefully and that irechanism

must provide for economy because sometimes data redundancy

may be mere cost-efficient than the freguent use of IEN.

lie above is vital for system design because in the

SPLICE environment, data are to be shared not cnlj by

different systems, but alsc by a wide range cf users. lie

basic concept of a EEMS is tc provide a centrally located

set cf definitions cf data within each LAN that is to be

shared in crder to assure that different users will access

commcr data with a set of consistent definitions.

lie LDS acts as a repository of all definitive informa-

tion atott the database suci as characteristics, relation-

ships, and access authorizations. These databases, as

17



implied iy the term 'logically ' j^-carrr be-physically stc red in

diverse locations within each LAN hut are logically linked

via ccmiiunica tions and the EDS.

lie data dictionary system located in a node withir each

IAN can he used to provide the above definitions and thus

the required data corsistency.

Separating the data dictionary from the database raises

two prctleis £ Ref. 7]-

-3he dictionary and data base may disagree uith cne

another tr.less ore interface has control of both functions

-Having a separate data dictionary implies having a

separate language for the definition and manipulation cf the

dicticnary catabase.

Csers vho define tables and other objects (cast of

systen-R) are encouraged to include English text to describe

the neanings of the cljects. later other users can retrieve

attribute tables with certain attributes or can browse amcng

the descriptions of defined tables, if they are so author-

ized, k user later can modify these entries zo change the

attributes cf an object.

E. MAKAGEMENT 01 IHICBHATICN EESOURCES

Ixfcraation resourse managenent (IBM) is a methodology

that attempts to solve a set of problems related tc the

systen life cycle ir an integrated and coordinated manner.

Ihe data dictiorary system will play an important rcle in

this area.

In the case of SIIICE the EDS can play an important rcle

in providing a dccumented inventory of information

resources, a ccrtrcl mechanism for the analysis ard design

cf new information resources and the necessary resource

independence.

16



A data dictionary can be used as a powerful tool (net as

a scliticn) that can aid in the solution to various jrctlems

such as the inventory control, report production, proper

routing cf data, proper routing of requests, data consis-

tency, security, etc.

finally the dictionary system project is in fact an

Infornaticn Resourse Management (IBM) l project. Ihe SfllCZ

system ^cssesses much valuable data that has teen generated,

collected, and stored in ai automatic and 'formated' state.

Ctili2aticn of any class of data involves one or mere

processes. These are £Bef„ 6]

- Collection : It is a prccess that tends to he expen-

sive as the cost of identification and recording {including

input to an automated systen, as necessary) can be high.

" i rece ssi ng : Tie data collected is generally 'managed'

in scire fashion before and/or after being stored. Ir. the

case of automated data, this occurs through the use of

computer programs.

Stor age : The repository of data and information

termed a "data base".

fietrieval: Using the knowledge about the storage

technique being used, data are retrieved to answer guestiens

cr tc be modified.

~ Commu nic ations : A communication line is needed to

connect the user terminal with the place where the

dictionary resides.

l Infcrmation fiescurse Management is whatever policy,
action, cr procedure concerning information (both automated
and ncn-autcma ted) fetich management establishes that serves
the overall current and future needs cf the system. Sucn
policies, etc. wculd include considerations of availability,
timeliness, accuracy, integrity, privacy^ security, audit-
ability, ownership, use, and cost effectiveness [Eef. 6 j.

1S



lie environment ii which tbe above processes take place

is ccnpcsed of :

" £.§ta .§££ infoxgation. Bepresents the core of the

entire irfcimaticn processing spectrum.

~ lili u sers in tie s yst em. It is the personnel involved

kith the system. These are users of data and other irfcriia-

tion components.

i^isical facili ties . Computer hardware and ether

physical devices used in data processing.

~ f rece ssi ng facilities . These are all the activities

which take place in the use of physical facilities.

Supp ort facilities. All the services which are

required hy users of cata as well as personnel whose respon-

sibilities are primarily in the information systems area.

Each of the arove components is refered as an

Information Resource and the computer systec must provide

for an integrated ard coordinated manner to manage the

entire irfcrmaticn resource of the SPLICE system and the

data dictionary has to play a lajor role in conjunction with

the datarase management module.

C. £CEfC£l OF S7.STE1! IIFE CYCIE

In this section, we present some highlights of how the

data dictionary supports the main steps of system

development

.

Ire waterfall model of the software life cycle £Bef. 14]

consists of the following stages: system f easitility

,

requirements specification, product design, detail design,

coding^ integration, implementation, operations and mainte-

nance. Cf course there are also other models of a software

life cycle hut basically the functions of a DDS are the same

in whatever model we consider-

20



During the system f s feasitility stage the DDS can te

used for nek data element collection and to avoid redurdan-

cies and inconsistencies. Also the DDS can certain a

descri.fti.cn cf processes that are already available ard to

help in assessing the true magnitude of the proposed task.

During the reguirements specification stage, the data

dictionary can provide the means to detect existirg inaccu-

racies ir definitions and tc correct tnem before the system

cperaticr. This is because the DDS contains the overall

scope of the reguirenents tc be specified.

During the product design and detail design stages, the

DDS can help because it contains the design details cf fceth

data and processes, which can be shared by all members cf

the design team. Particularily in database design the IDS

can record multiple user views, pass output from the logical

design phase to physical design phase, generate multiple

designs fcr benchmark testing, and verify the existing

conversions of data in the system. Fcr the rest cf the

stages the DDS can help in data collection, coding, and

testing, by providing any desired degree of coordination and

contrcl ever tasks, generating data structures, storing

instructions for the staff, describing the various jobs and

activities, and finally, providing a means for effective and

consistent modificaticn of the system.

Additional benefits that can be derived from the IDS

£Bef. 6] are naming standards, aid to auditing, interfaces

tc application program development tools, and software

conf i guraticn management. A DDS allows a system tc be

extended trough the addition of new entity types, relation-

ship types, attribute types, and also can te used tc add

coniiguraticn entity types such as reguirements specifica-

tions, change notices, etc. The major advantage frcn the

use of the DDS is in the case of an active system where the

systeii net enly records the entities, but also controls how

they are revised.

21



£. EJ1A DICTIONARY- SYSTEM CBGANIZATION

lie organizational structure for a DDS that is to be

adopted nust be com it€usurate with the size of the activity

at any cue time. Such. a structure is displayed in figure

--

Data
adatntstrator

i

Data dictionary
adailnfatrator

Oata quality
Inspection im

i

Data (MM
l*fnUtrator #1

Oata Da«e
•datnfstrator #2

* Oata base
»d»tnt»trator #n

1

Figure 2.1 SPLICI Data Admin. Function Organization,,

2. 1 -

lie Data Adainistrator is the person responsible for

articulating the data policy after the major guidelines have

teen laid down by the designing team. That policy includes

planning icr data collection, its structuring, its storage,

and its guality ccnticl. For tne SPLICE system the Data

Administrator can be a person or a team located ir any

place, whose main function will be the setting of the above

policy.

~ ~



Ihe Dictionary Admini s trator who the jpers ce ^j^— teajs

respcnsitle for the dictionary system within the Data

Administrator function (eg. recording of all meta- informa-

tion aid meta-data ard its maintenance through the use of

the dictionary system, along with making its facilities

availafle tc the users of this system). Because in the

SPLICE system the data dictionary is unigue through all the

systen ard no diffeient views of the data dictionary are

permitted in the various locations, that team or person must

le unigue through tie system. Only that team (or person)

must have the priviledge tc naintain the DD. The Database

Administrator who the person (or team) responsible for the

technical aspects of obtaining, running and maintaining the

DBMS. Since SP1ICE is a distributed system with datalases

distributed across 6i different locations, the Database

Administrator does ret need to be unigue. The reguired

policy and definitions are setup by the data dictionary

administrator and this is enough to maintain consistency

through the whole system. Ihe Data Quality Insp ection team

has a role also in the hierarchy, and its function is the

guality inspection of the information or data, and the

guality audit trail ci the whele system. Ihis can be one or

more teairs. In the case of several teams the entire audit

effort can te divided among them.

I. CCMCIIIS ON DDS SELECTION AND EVALUATION

It is very difficult to find a commercialy available DDS

to meet exactly the reguirements of a system under develop-

ment. A selection and evaluation process composed of

various stejzs must be developed in order to select the test

syst en.

lour steps are proposed by £Eef- 6] for the process of

selection and evaluation of a DDS:

25



-letermine the reguiremert £ tor the diction a*y system.

These shculd be classified as either being mandatory ci net.

If net maccatory estatlish a scale and assign numbers indi-

cating tie importance.

-levelec a list cf features of dictionary systems ttat

will te used in the evaluation cf systems.

-Eetermine a mapping from the needs onto these features.

-lor each mapping, using descriptions of availatle

systems, a system can be found either to qualify or net.

This piccess leads to eliminate systems that are net

gualif y

.

lie cannct say that the above procedure is perfect and

does ret have a risk for mistakes, because it is sutjective

and variously defends on the experience and smartness cf the

selection/evaluation team. Scire more common/general reasens

leading to mistakes are: The needs were never ^rcjerly

assessed, and potential users were not asked the right Ques-

tions, unnecessary but apparently "nice" features were given

high values, the evaluation cf the system was inconsistent

because different pectle evaluate different systems without

a well-defined measurement method, undue emphasis was flaced

en features that will be needed in the future but uninper-

tant now, etc.

fcr the SPLICE system we cannot follow the aheve proce-

dure- SIIICE has decided to use Tandem as their "front end"

minicempi; ter. is a result, selecting a DDS is largely a

foregone conclusion ir this situation. So we have to use

Tandec ZEUS and the associated dictionary capabilities.

Z. AEUITICNAL ASPECTS OF DIS

In tie next few jears, several extensions to dictionary

systens, net availatle today, will most likely be commer-

cially available. These additions will allow dictionaries

24



to he mere effective in interfacing with the icier naticn

resources. The use cf extensibility facilities allows an

installation to custcnize the dictionary system in crder to

make it effective in such applications. Such examples are

the use cf CDS tc control the total informaticn resource, to

aid in tie analysis, design and development cf information

systems, ard to aid in efficient database design. Ihe last

applicatior example is the use of DDS as a repository of

information for an entire system. This is exactly the aajor

role the ELS has to play in the SPLICE system.

Eeferring to the £P1ICE application environment the IDS

would xeguire users and analysts to define the system data

elements, files, etc. which would entail updating eld defi-

nitions, discarding outdated ones, and introducing rew ones.

In this way standards cf data definition and description for

application programs can te established over the entire

SPLICE system £Eef. (I], But on the other hand it is a

Herculean task tc retrofit a dictionary to existing applica-

tion systems. Eecause of the many above mentioned difficu-

lies in i nplementinc the dictionary to old application

systens, we recommend as much irere preferable to inplement a

dictionary for new applications only. That means that the

dictionary will te developed gradualy and a long period will

±e needed to be fully implemented for the whole SPLICE

syst en.

Although DDSs have many advantages, their disadvantages

should te mentioned as well. Eictionary systems are complex

software systems and the execution of many dictionary func-

tions may consume a significant part of the system

resources. As the scope cf the dictionary is enlarged to

include always larger number cf information resources, the

EDS will tegin gradually tc look like the major resource

consumer, and thus the main user of the host computer system

£Bef. 6]. When we consider active interfaces of the DE5,

25



the previous problem becomes more serious. If the IDS

controls a process through cce cf these active interfaces/

it fellows that this process cannot proceed until such tine

as the dictionary system has finished its job. This delay

time is added to the thole process time. Given that there

can te many processes, the continuous use of the DDS and tne

accumulated service time may eventually result in a

rottleneck.

lie crocosed solution for the SPLICE system [Bef- 4^ can

avoid (or at least reduce) this overhead by locating one

copy cf the DDS in each LAN. Rith this simple and efficient

technique each user located in any of the 62 stock and

inverter^ control pcints only needs to consult the local

IDS. The cumber of tsers who Deeds the DDS services remains

the sane hut the overhead from the long queuing time across

the IDN will be redused ly a factor close to 62. 3y

locating the master copy cf the DDS in one place we can

solve the maintenance problem cf the DDS/ because additions/

deletions ard updates of the IDS can he done only via the

master copy by the Dictionary Administrator. All the ether

copies can be updated only remotely by the master copy

through the DDN, ir such a way as to represent the exact

image cf the master copy. Eecause cnanges in def initiens

{deleticrs, updates, additions) are not frequent, we esti-

mate that the whole process of updating the local copies of

the CIS will not be expensive, and the resultant overhead

will net te significant. Cf course this assumes all 62

IAN • s are working off the same schema, and the application

environment is homogeneous acrcss the network.

€. ElIfiifiCBY OP DDS

A good hierarchical DDS structure is significant if we

want tc avoid the "bottleneck" mentioned above. A structure

26



is proposed in Figure 2.2 and we believe that it is less

expensive in consuming the system resources than the struc-

ture ci having different views of the master dictionary at

Update request

Update order Data dictionary
administrator

1 r-

)
!f

M««ter global
dl cttontry

R*Dltcat*3 Copy
11

R*olfeat«d cooy fteDlfcated copy
t62

LAN #1 LAN #2 LAN #62
•

|

1

1

1 1

1

1

1

!

1

1

1

1

figure 2.2 A first IES Hierarchical Structure for SfllCE.

each IAN. In particular suppose the copies of the local

dicticnaries are not exact images of the master dictionary,

lut are different views of the master, especially views

containing informaticr only for the local database. Id such

a case it is not useful to separate the definitions free the

actual catara.se since the different views of the whcle

27



database ai€ centrali2ed withir each LAN. If a spare part

for eiacple cannct be found in a local database, thee the

user has tc consult the master dictionary to find the loca-

tion cf the reguested spare part because the local ccpy of

the data dictionary dees not ccntain information atcut ether

data hases of the system. In this case the user has to

access the EDN twice, first tc consult the master dictionary

and then tc consult the local database in which the spare

part is located. Ihis procedure can easily lead tc long

waiting tines and finally tc "bottlenecx" because the naster

dictionary will have to answer in guestions coming from 62

different liS's. A second hierarchical structure is shewn

in ficure 2.3 . This structure involves the location of a

copy cf EES in selected nodes instead of each node. cv this

way we neduse the amcunt of secondary memory needed tc stcre

the E/J3 hut we increase the use of DDN. This increase in

use cf LLN is inversely proportional to the numher cf I/D

replicated copies. The soluticn cf locating exact ccpies cf

the naster dictionary in each or selected LAN's has the

disadvantage of consuming more secondary storage hut cur

estimation is that this is preferable and less expensive

than the freguent use of DDK in order to consult the master

copy.

Ke cannot say that distritution instead of replication

cf CIS is an inefficient methed not acceptable for SPIICE.

Since there is not enough experience for distributed

systens, and especially for data dictionaries, we have to

examine carefully every possible architecture, t he prcs and

the cons cf each one, in crder to make the best decision.

But still we believe that the decision will be based mere on

estimations comming from intuition and less in experience

and statistical information. Such an architecture is based

en distribution instead of replication of D/D for SEIICE.

This is shewn in figure 2.4, and will be examined in a next

chapter.



.Update.
Order

Master global
dictionary

LAN #3

Figure 2.3

R*pltc«t«d copy
42

LAN #4

I

I

!

J.

Data dictionary
administrator

update requests

A Second DDS Hierarchical Structure for SPIICE,

2S



i

update
Oats dictionary
aonlntstrotor

, - - - -

J

order 1

V

Global
dtcttonary update ,' * \

1

directory v_^

l

update local dictionary views

1

1

1

Data dictionary
view #1

Oate dictionary
view 92

Data dictionary
vie* In

Data dictionary
view 162

1

.

1

i

LAN 41 LAN #2 LAN In LAN #62

* i i jl
1 i

update requests
i

i

*

value

location request

...

Data directory
*hn value
Instances

location* (l.t
oart t)

LAN #n

1

r
>catton i

»ply
IOCSess

figure 2-4 A Third IDS Hierarchical Structure for SPIICE.

B. IIA1CEE ANALYSIS CF DDS

In this section the features of DDS and a more detailed

analysis of them will be presented. This presentation is a

theoretical approach and dees not concern any particular

3C



systeii. A cost/benefit analysis can tell us which features

need to be included in a DDS under development. It is mere

preferable approach than to develop a DDS as described telow

using the landem DBMS capability.

1 • Architec ture and Implemen tation

Ihe relaticrship between DDS and DBS S will be

addressed here. The purpose cf a DBMS is tc manage- data and

the purpose of DDS is to manage meta-data. 2 Ihe guesticn is

whether the DDS must he a free-standing 3 or DBMS -dependent*

systei I Bef . 6 ].

Ihe free-starding approach is good for ccaaercial

systeis because each enterprise can evaluate the prcs and

cons and reach the optimal decisions whether to buy cr net.

Ihis approach raises compatibility problems tetween the EDS

and the £EMS, especially when the vendors are different

companies. There are many factors we have to taxe into

account fcten deciding whether a DDS must be free-starding cr

EBMS-dependent . These factcrs include the method of imple-

aentaticr, the scope cf usage, whether the DDS and IBMS are

going to be developed together or not, and whether the} are

gcing tc be supplied by the sane vendor or not.

Cne other feature of DDS architectural structure is

whether the DDS should be passive or active. Suppose there

is a ccupiler, application prcgram, cr ether process that

requires meta-data fcr its execution. There should be DDS

available which produces a utcnatically the required meta-

data. Ihis f uncticnality is referred to as dicticnary

interface ard can operate in two modes: Passive where there

2 fieta-data is the data that describes data

3 ii dictionary system which does not use a DBMS ir its
implenentation

*£ dictionary system which dees use a DBMS in its inple-
nentaticr

31



exists an cption cf whether the process will retrieve the

required neta-data (through the dictionary interface cr ficm

elsewhere) or, in the case where the process already

contains tie meta-data, there exists an option for the

systen tc cleck whether this neta-data is the most current

versicn in the dictionary. Here the dictionary is net in

the critical path of a process. Active where the arcve

cpticrs dc not exist and the process always uses the most

current neta-data in the dictionary. The dictionary here is

in the critical path cf the prccess and the process must go

through the dictionary fcr the neta-data in order to execute

properly

.

A LIS can contain both kinds of interfaces. We have

to keep in nind that the interfaces of the DDS systen dc rot

only concern the DDS itself, hut also other modules with

which the dictionary has tc cooperate in order tc nairtain

the whele sjstem.

2- logical Schena, Ent ity Types, Relationships

Eictionary schema is the term denoting the logical

structure of a dictionary. Structural characteristics and

contents cf the dictionary schema determine the kinds of

Eeta-cata and the relationships to he established among

them. Using the entity-relationship-attribute model

£Bef. 6] fcr the dictionary, we define en tities as real

world effects or thirgs about which information exists in

the dictionary, at trib ute s as properties (quantities or

gualities) cf the entities, and relationships as connections

letween entities.

In the DDS, resources such as data, hardware, soft-

ware, transactiens, personnel and documents may he repre-

sented, and entities, attributes, and r elatienships

associated with these resources must also be represented,

lables 1 through V at the end of this chapter taken ficm

j ^



£Eef- 4] indicate possible data element attributes/ tile

entity attributes, hardware entities and attributes, software

entities and attributes, and dccumen t/report attributes for

the SI1ICI system.

Similar entities in a DDS establish entity types.

Attributes can also have a degree of similarity and in this

case we speak about attribute types. Finally similar

considerations apply to relationships and so we have rela-

tionship types, that are relationships between - en tity types.

Schema descriptor

:

In a dictionary schema

containing all existing entity-types, relationship- types,

and attribute-types, ary one of tnem can be referred tc as a

schema descriptor. Information existing in the schema can

indicate which entity-types are members of a given

relaticnship-type, ard whica attribute- types are associated

with an entity-type cr relaticnship-type.

Intity-types of a DDS can be classified as data

entity-types, process entity-types and usage entity-types.

Cn the ether hand attribute types can be descriptions, clas-

sification and audit attributes created by the dicticnary to

indicate identification of the person who created the

entity, date of entity creation, identification of the

person who last modified the entity, date of latest modifi-

cation, and total number of modifications of the entity

£Eef. 6]. Ihese capabilities are very useful for a system,

especially cne as conplex as SPLICE. Using the above capa-

bilities reports and summaries can be presented on reguest,

and also we can have a trace of various interactions cn the

systen using application programs for this reason.

3 . Int erfa ces and Ccmm ands

Interfaces must be included in a DDS in crder to

allow the user to communicate with the DDS via a terminal.

The terninal-DDS ccmmunicaticn in the SPLICE system is

3 2



carried cut through tie Session Services module. This is a

separate tcpic which will te examined separately. In

general an interface can be as shown in Table VI.

Cn the other land cemmands can he classified, en the

lasis ex their functionality, into various categories as

shown in Talle VII.

A dictionary system can be regarded as a software

product that helps ir storing information about data that

already exists in databases- Both DDS and DBMS deal with

descriptions and characteristics of data elements and with

the logical structures obtained from these elements and

their relationships. A closely integrated dictionary system

and autcnated database design process have much tc cifer.

The interfaces between a dictionary and a database design

process can be divided into two broad categories:

-Initial data entry and editing

-logical model structuring

Initial data entry and editing: For data entr y the

data reguirements information needed by automated database

design procedures is almost a complete (proper) subset of

the irfcrmation normally stored in current commercial

dicticrary systems. For the SPLICE the files already exist

but tie dictionary dees not. Therefore the whole design of

IDS must provide for initial detection and avoidance of

duplicate entries. As soon as the design takes care of that

during tie initial steps, then the entry of information

about raw data elements has to be made only tc the

dicticrary system. Kext an interface must exist in order to

allow the design procedures tc access information in named

aggregations (local views). For editing, the initial data

entry is rarely clean in the sense that names, usage, and

characteristics of tie data elements may not ya t le stan-

dardized across local views. Synonyms, homonyms and inccn-

sistert characteristics of the same data usually result wien

34



data regiirements are gathered from different sources. Ihe

editing phases of the automated design procedures, and the

reports produced therein, cari serve as an input filtering

function fcr the dictionary. When the interactive editing

phases aie completed, obsolete information (eg. non-standard

names) can he removed from the dictionary, such tnat the

information remaining permanently is clean and consistent.

Again, as *>e mentioned in a previous section, this can be

done cnly for new applications because the tasc of retro-

fitinc a dictionary tc existing application systems is very

difficult.

logical model structuring: The structuring proce-

dure fcr initial design should he able to extract filtered,

unstructured data element information in named aggregates

(local viefcs) from the dictionary such that the ccmccsite

model and the derived logical designs can he generated in

the ncrnal manner.

lor adding new requirements to existing desigts and

when processing new functions or adding new data tc an

existing database, the design process should be able to

extract from the dictionary a description of the existing

design along with the filtered unstructured data element

information for that which is new. Various levels of

constraints on the freedom of structuring processes can be

set here in order tc facilitate the whole design effort.

Cnce the automated design process is completed and a

suitable logical design has been obtained, the results must

be stored in the dictionary. Assuming the unstructured data

elemerts are already described in the dictionary, the rela-

tionships defining segments, databases, logical relations

and secondary indexes would new be stored.

35



TABU I

Data Element Attributes

lype

Eange

length

Unit of measure

Usage

language naaes

Ee^etitions

88 levels

Key

Default value

Display fornat

36



TAEIf II

File Entity Attributes

file name

locations

Size (in bytes)

format (seq, randon, tin)

Access control

Access security prctection

37



TAEII III

Selected Hardware Entities and Attributes

Entities

Processing system

Secondary stcrage

Cccmunicaticns system

Ccrcen trators

lerminals

1AK I/O peripherals

Attributes

lyre

Model

Model number

Serial cumber

Hf ger ' s number

Source

Features

Description

Eccu- references

Osage by site

Cost

Maintenance activity

36



TABU IV

Selected Software Entities and Attriiutes

Erti_ti.es
Cjc era ting system

Operational support system

Ervir on mental system

Application software

Attributes

Ercgram-id

Eevisioc numler

Bevisior date

Bate compiled

Type of compiler

Patch level

Change level

license

Date released

Ercduct numler

Source

features

Dccumentaticr

Usage

Cost

Maintenance activity

39



TABU V

Docuient/Beport Attributes

bane

Nuuier

frcduct numlcr

Release date

Eevisicn nunrer

Scurce

Feature

Eescription

Quantity

Cost

TABU VI

Kinds of EDS Interfaces

Command language

Screen crierted interface

Fixed format batch data entry facility

£ rogramnatic interface that allows user writtec
applications programs to access the dictionary

4C



TAEIE VII

Comnand Categories for DDS

Dictionary naintenance

Eetort and cuery

Data structure interface

Extensirilitj

Status related

Security

Dictionary j:iccessing ccntrol

Cictionary administrator

41



III. 1MEGBATI0N

A. Ill EECELEfl

An active5 data dictionary is desirable for the SELICE

systeii. It is alsc known [Bef. 8] that most dictionaries

iaii tc ireet this objective. A prerequisite t c an active

dictionary is a high degree ox interaction between the

dictionary and various other software elements such as tne

EBflS itself, but also including guery languages, report

generators, applicaticn development aids, and the like. An

architecture for a centered and highly integrated 2ZS taken

from [Bef. 6] is shc*n in Figure 3.1 .

lie existing dictionaries today are noticeably urinte-

grated, and hence less than active. Such a situaticn is

shown in Eigure 3.2 (taken frcm £Bef. 8] ) concerning the

IBa BE/EC data dicticnary and related software. Notice, in

particular, that whereas scire batch feeding of data is

provided tc and/cr ficm the dictionary, there are nc fevier

than six jlaces vhere database definition data is stored (in

additicn tc data definitions included in actual programs)

£Ref. £]. Ihese are :

lie IE/EC dictionary itself

lie EEE/PSB lifcraiies

Ihe CCECI co^y lilrary

lie catatase design aid (EEDA)

Tie GIS data definition talles

The application development facility (ADF) , segment

rules in an I££/DC environment, or in

5 Active to some degree because if it is toa active we
can lccse efficiency



development maiagement system (DMS) files in

a CICS envir cment.

lhere is no guarantee that each of these descriptions

will agree at any point in time. Other data dictionaries

may hav€ a tigher degree of integration but no one is close

Oata base DBMS

Inquiry

Beport generator

Oata definition
generator

DATA

DICTIONARY

Application
generator

Application
program

Metadata base

Data base
design aid

Figure 2.1 Highly Integrated D/D Centered Architecture.

to the degree of integration suggested in Figure 3.1 . A

high level of integration is very much needed in crder to

support the advanced iunctiens of an active dicticrary. lo

see that tetter, consider a user who wants to know what data

H2



is ir the database, cr a DEL routine which wants tc edit a

field filer to updating the database, or the database access

systen which needs tc know if a user password is valid for

updating a certain record. All tne above functions recuire

direct access to the data dicticnary.

Ihe extent to hiich a LIS qualifies as being "inte-

grated" is a relative notior determined by the sccpe of its

metadata and the way that it interfaces with ether scftware.

Ihe mest ccnmon use cf the term "integrated" is with refer-

ence tc a I/D that is the sole source of metadata in the

systen. lie integrated D/I is accessed for all references

to meta data. Most cf the cemmerciaily available EES have

reached a high degree of integration with their envircn-

ments, and this results in multiple sources of descriptcrs

within tie systems. Ihe DDS permits these systems tc access

the £/£ indirectly and convert the metadata of each system

to the fcrmat reguired by the D/D £Bef. 5]. So for example

a DDS might communicate with a compiler in either cf two

vays

;

-Ey generating file and record definitions

that the compiler accepts via copy statements.

-Ey reading source programs and creating

transactions to load the DDS with descriptions

cf files, records, and elements.

Cne additional area which demands in vestigaticn fcr the

development of a succesful LDS concerns integrating sctecas

which describe the logical structures of all data types

existing in a distributed {like the SPLICE) database. This

feature permits the determination of a data file's legical

structure as well as its identity and location, and could

possibly be essential to the development of query and data

model translation shenes. The existence of a master schema

also permits the legical relation of data across file

boundaries; then all files in the network can be considered

as areas fcithin a sincle large database [Eef. 9J-



AOF segr»ent
rules

Application
development
facility

definition
tables

IM S/OC only

K •»

WS/VS query
support feature

IMS/VS

08 (DL/1)

DC

IMS/VS

Dl (DL/1)

CICS

DL/l OOS/VS

CICS

CICS only

Development
anegeaent
system (DM5)

090 PSB
1 tbrarles

DBO PSB
generation

Data dtcttonery
database

OB/DC data
dictionary

COBOL copy
library

I

T
i

afc

LEGENTt

Direct Interface

Men feed

Figure 3.2 lift Data flaragement Architecture,

45



E. IBTEGBAIION CF CIS

llree aspects of integrated DDS in the centralized and

distrituted datatase envir cnment for SPLICE 6 are cf great

interest and must be emphasized £Eef. 5].

-lhe software interfaces

-3h€ convert functions

-Ite environmental dependency between the DDS and the

IBMS

A LIS is irtegrated with other software packages by

facilities that:

-Allcw direct and indirect access to the D/D

-Au tcmatically capture the metadata used ty ctter

systems

In the next three subsections we will examine the thiee

most interesting aspects of an integrated DDS.

1 • Sof twa re Interfaces

A software interface permits another system to

access the L/D either statically or dynamically. first we

consider the st at ic interface, which links the D/E with

another system indirectly via the extraction of a file of

formatted metadata. lor the static interface of a DDS and a

EBMS, fcr example, the data dictionary administrator,

following the specifications of the data administrator,

enters into the CDS all pertinent transactions to define the

database and the database administrator using the above

definitions describes the database. After reviewing the

6 Cur approach for the SPLICE database and data
dictionary distribution is hytrid. SPLICE is a distrituted
system, nut the databases are centralized within each LAN.
Also tie dictionary copies at each of the selected IAK*s are
exact ccfies cf tie master dictionary and different
dictionary views are not permitted. So the whole SPLICE
system can be viewed as a distributed system, but concerning
each particular IAN, the database and data dictionary can be
said tc follow the centralized database environment concept.
So both ideas of certralized and distributed environments
can te applied tc the SPLICE with slight modificaticns

.

46



accuracy of this database description, a command is gener-

ated icr EES that uses this descripticn to produce a file

containing the DDL. The EBMS's DDL processor then trans-

lates this generated DDL intc a schema file that the run

time unit cf the DBES can access. No run-time connection

retween the DDS and the EEBS exists here; the EEMS's

processor is not executing during the DDS's DDL-generation

process.

Static interfaces differ somewhat, depending uj:cn

whether they interface the EDS with user-written prcgrans cr

with vender-supplied software packages. Static interfaces

for piogiams written in languages such as COBOL and PI/I

produce file, record, and datarase descriptions for the user

trcgrams frcm the data dictionary £Eef. 5]. These inter-

faces scnetimes feature edit capabilities, format options,

and various other functions to make the interface mcie flex-

ible. Edit capabilities may include being able tc add

prefixes and suffixes and even to replace entire rames.

format cptiens may ccntrcl indentation, level-numter incre-

nents, seguence numbers, and line identifiers. Inclusion of

various clauses suet as comments, condition names, and

initial values also nay he allcwed.

Static interfaces fcr software packages, such as IDL

processors, communication monitors, and guery processors,

produce formatted statements for those packages cr create

specially encoded control files for their use.

Static interfaces are prevalent because cf tneir

utility, capability, and efficiency. With powerful static

interfaces, the data administrator can guickly change

formatted metadata cr create new formatted definitions from

existing D/E entities. The static D/L can he made ccnpat-

ible with many versiens of other software packages and can

he developed independently cf the source code of particular

software packages. & disadvantage to the user of a static

m



interlace is tie eitra effort that may be reguired to

generate and catalog netadata for the D/D.

More significantly, tte static interface itself has

nc capabilities for updating the metadata of the systems

with which it interfaces. Without adequate synchronization

and ccntrcls, the metadata in the DDS and the metadata in

ether systens may beccme inconsistent £Bef. 5 ]-

Eynamic interfaces provide direct decess ty the EDS

to other software modules. This direct access is commonly

achieved via high-level interface commands that shield the

software package freir the physical details of the D/E. Ihe

cemmards activate stardard LDS functions, so as tc select

all entity occurrences that satisfy a particular ccrditicn.

A DCS car provide a facility that majtes commands available

through call statements; any program can then access the E/D

without knowledge of its physical structure. Dynamic inter-

faces provide consistency control and capabilities fcr hcth

update aDd retrieval. Charges to the D/D are automatically

reflected in the next execution of any software packages to

which tte D/D is interfaced; nc intervening procedures are

reguired as with static interfaces. A software package can

directly retrieve and update netadata stored in the D/D if

the user has the authority to do so, and the software

package has a such capability. Otherwise the software

package and the usei would enly have read authority tc the

E/D.

Here is where special attention must be given when

designing a DDS for the SPLICE. We said previously, when we

described the first and the secend Hierarchical structure

for SE1ICE, that the local copies of the SPLICE EDS will he

exact images of the caster copy. With this approach one can

imagine what will happen if cne program in any of the 62

LAN's attempts to update the metadata stored in the DES.

Ihe whole consistency of the system is gone. The local

46



copies will-no lcngei re exact images of the master copy and

many problems car> arise. The only solution fcr the proposed

architecture for SP1ICE DD S is that requests for update,

deletion, or additior of data definitions must be routed via

the EEN tc the node where the master copy of the CDS

resides. Tien the data dictionary administrator , whc is the

cnly person responsible for LIS maintenance, can aprcve and

make tie reguested changes in the master copy. Ihese

changes must then he transmitted to the various lccaticns

where copies of D/D reside and executed- This we believe is

the crly procedure under the proposed DDS architecture which

can maintain consistency over the whole SPLICE system. We

cannct say that this kind of operation is purely dynamic,

but neither is it static. We might call it is a hybrid

interface function wlerein the security and validity checks

cf the EES are always applied.

Ihe use of dynamic interfaces incurs significant

overhead due to the size and complex structure cf EES.

Application development support aids, such as preprocessors,

source program managers, and design aids generally can

afford this overhead tecause response time is not critical.

Cn the ether hand, efficiency is critical for transacticn-

processing systems that reference the D/D.

To reduce the potential overhead, common gueries may

be preccnpiled and stored in the D/D. Ancther technicue

used tc reduce overhead is fcr the software package to

retrieve all the metadata reguired for a transaction at

ence; thus future accesses for this transaction only involve

memory leckup. Table VIII from £Ref. 5] shows some typical

types cf software packages interfaces for EDS.

2 • Ccnyert Functions

In addition tc software interfaces the integration

cf a EIS into its environment is provided ty convert

as



iuacticns. A CDS or ganizat ion has a lot of programs, report

and files tc manage. The data/data dictionary administrator

jiust encode thousands cf maintenance transactions tc capture

the metadata or all these applications. The convert func-

tions cf a IDS scan scurce programs, database descriptions,

and t elepr ccessing environment descriptions and automati-

cally produce maintenance transactions, thus sparing the

data administrator mary hours cf manual .effort. Figure 2.3

from £Bef. 5] illustrates the flow of data through a typical

convert function.

__

i

Source language
statffttnts

Convert function Data dictionary
transactions

i \

"

l

Data dictionary Reports
1

1

Data dictionary
alntenance

Figure 3.3 System Flow for a Convert Function.

Inpcts include the source language statements and

the L/L; outputs are a file cf transactions to te input to

50



the L/L maintenance nodule, (in the case cf SPLICE that

refers tc the maintenance module cf the master z opy) and a

xeport.

Ihe D/D maintenance transactions include descrip-

tions cf databases, idles, records, groups, elements and

programs. The prine purpose of convert functions is to

convert metadata frcn both user-written programs and from

local LEV.S and its related components. Table IX illustrates

in sunmary the topical D/D convert function transac tiers.

Ecur major characteristics £Eef. 5] for convert

functions are:

The content of the generated transactions where the I/D

nainterance transactions created by a convert function

usually also contains the relationships between data

entities.

lk£ ijD^u t fil e to a convert function that can be a scurce

progran cr a library iile.

lk§. ccjrmand options *hich may include the ability tc change

names, elect lines tc scan, select types of transactions to

create, and override generation of some types of metadata,

where the ability to analyze the metadata of source programs

can make the DD£ a valuable tool for auditing adherence to

software ccntrol teciiigues.

2 . Env iro nmental Dependency

Ihis characteristic cf a DDS is determined tv its

reliance en a specific hardware configuration, an operating

systeir, a DBMS, or a teleprocessing menitor. Under ideal

conditicrs a DDS must have the capability to cperate in such

an environment without losing efficiency and functionality.

Eut scnetimes the practice deviates from theory.

51



In a completely integrated DDS the DBMS accesses

stored databases via the D/D. In a less integrated system,

the EEMS may maintain its own directory file for accessing

stored datarases.

In the independent abroach the DDS is completely

autonomous, it dees net rely en any particular DBMS, arc the

IBMS maintains its en source cf metadata.

In the DEMS amplication approach the D/D appears to

the DEMS as just another database. The DBMS mairtains its

cwn metadata for each database and these metadata are eepax

rate iron the D/D.

lor the SPLICE system, it is proposed that the

€mhe_dded approach he used, where the DDS is actually a

component cf the DBM£'s. Ihis approach provides complete

integration of the IIS. The D/D is the only source cf

r

DIMS

l D/D syste*

DB

pny«Teai

storage

D/D

phystcal

storage

_ ,

Figure 3.4 SfllCE Embedded Approach to DDS

metadata. The DBMS utilities provide the D/D management

facilities and the DECS uses the D/D to directly access the

stored databases. Nc ether directories internal or external

exist for the DEMS, and the DBMS and its facilities rely

completely en the D/E for metadata- Such a structure is

shown in figure 3-4.



Sc for example a guery processor extracts user ?iews

from the DIS aod the DBMS applies integrity constraints

specified in the DDS ty the DCS administrator before storing

a data element. A najor difficulty here, that the SELICE

designers must overcome, is the fact that the DEMS for

SPLICE already exists nut the DDS does not- The eicredded

approach is easier ard simpler when both DDS and DEMS are

developed in parallel, but this is not the case for the

SPLICE. Sc special attention and effort must te applied

during tie IDS development phase.

5 3



TAEIE VIII

lypes cf Software Packages I D/D System

Module ££§cri£tioc

III Iiocessor Creates a schema file

Eataiase control system Bun-time unit of a LEtS

Preprocessor Translates EML intc CAII
statements

Ccerj/upda te Processor Provides direct end-user
access to stored
databases

Eatch-ccde generator fieduces the time tc
develop a standard
function as compared
to a compiler-level
language

Scurce-^rogram marager Provides security
protection, data
compression and editing
capabilities for source
programs

leletrccessicg monitor Provides the capability
of interactive commuting
to remote terminals .

lest-data generator Creates test files
and databases acccrdirg

Eesign aid Analyzes and generates
designs of databases

to user specifications

Analyzes and generates
designs of databases
or information systems

54



TABU IX

Iransacticis for D/C Convert function

Mcdule type Generated transactions

Erogranaing Element, group, record, rile,
and sometimes Subschema
and process

Eatarase description Database, file, subschema,
relationship, record,
group, element

Teleprocessing Terminal, line, processor,
transaction

55



11 . SESSIOS SEBVICES AND DATA DICTIGNABY

A. GIKIiAI

lie term "session" is defined in £Ref. 4] as fellows:

"Session: All the activity (message exchange and processing)

which takes place tetween twc or more processes for the

duration of a single task (e.g. text editing or prccessing

of a transaction file)."

lie session services module of the SPLICE has to play

the rcle cf coordinating the activity of the other func-

tional modules and providing them with work instructions via

the service codes it inserts in messages to the Ffl's. Ihe

sequence cf oceraticrs may ie data dependent or highly

interactive, so in seme cases, work breakdown cannct he

completely determined in advance by the session services.

In such cases sessicr services passes control to the first

(controlling) Ffl which is to perform an operation, and

subsequent "calls" tc other FM's, if any, take place

according tc processing conditions. In all cases however,

sessicn services passes contrcl to the first (controlling)

FM. However in some cases, all the FM's which will be

involved cannot ie determined in advance. Session services

retains and maintains state information until either a

completicn nessage or error message has been received from

the controlling FM. In the case of a message which is

destined fcr an object located in another network, this fact

is indicated in the "message type" field. The physical

destination address wculd have been obtained previously from

the data dictionary which exemplifies the relaticrship

tetween session services and data dictionary.

56



USER

~Ti
—r~

i i

SENOING FM (terstnal Management)

fc«t!on*]
Co«Mjn teat tons

FM

SESSION SERVICES

Job fron
•endtna FM

REMOTE FM

If the answer-'Y*
the Jot) 1»

terminated and
complication Is

disconnected

If the answer-^'
the connectton Is
continued upon job
completion or error

If the answer- 'Y/.
then all processing

steps can be
assigned tn advance

If the answer-'^,
then conditional
processing takes

place

LOCAL FM

Figure 4.1 Cooperation Between SS and Functional Modules.

57



Session services is used in a distributed envircrment

and involves the seven layer architecture model of the ISO

for distributed netwciks. Ihe ISO seven layer architecture

is a standard one ard involves the following layers fcith the

associated functions:

iJlisi Fciction

Application Oser process

Presentation Fcrmat data the user wants it

Session Sets up session between

ccnmunicating processes

Transport Erd to erd control

Network Sfcitching, routing

Eata link Reliable transmission between

t«c nodes

Physical Physical transmission of bits

between two nodes

The ccnplexity of the SPLICE processing envircnment

reguires that user terminal processes be given z crsiderarle

assistaice in carrying out their tasks [Ref. 4]. Session

services can provide this assistance. User tenrinal

processes specify task envircrments, largely by task name

and the assistance of the data dictionary, where necessary

(figure 1.1).

E. AECH31ECTUBE INTERFACES

In the SPLICE layered architecture, the interfaces

retweer the layers aie critically important. In particu-

larly we are very interested in the software interfaces

tetween the modules which communicate with the data

dictionary. These ncdules are the session services nodule

and the EEMS module. Some forms of software interfaces

tetween IBMS and D/D can be fcund in the current literature

£flef. 5]- On the ether hard no one has yet defined the

56



required scftware interfaces between the D/D and session

services modules. We .believe that the above nenticned soft-

ware interfaces must te of the same type and closely related

to tie interfaces between the end user and the session

services. In a centralized system where session services

does net exist, the end user has to interface directly with

the E/D, tut in a distributed system the session services

nodule acts as the nediatcr between the end user arc the

data dictionary. As a minimum then, the interfaces between

sessicn services and the data dictionary in a distributed

system mtst include the interfaces between end user and data

dicticnaiy in the centralized model.

The interfaces between the abeve modules must be designed

to accommodate new mechanisms and, as far as possible, new

functions when they may arise. As new mechanisms and

network functions come into use in the system, it is highly

desirable that previously written programs continue to work.

This is achieved by designing the interfaces appropriately

and pieserving them. In the seven layer architecture,

layers 4,5,6 and 7 provide end-to- end communication between

sessions. in user machines. layers 1,2 and 3 provide cemmu-

nicaticn with the nodes of the shared network.

Eecause the SPLICE system uses a modified ISO layered

apprcach, the interfaces between machines need to te defined

in terms of the layers. So we will have layer headers and

contrcl messages that are passed between the layers. 3he

application programmer does not need to know anything abcut

these. For example any command language, using ccmnands

simmilar tc GET, PUT, OPEN, CICSE and DELETE, can refer to

data cr facilities in a distant machine.

c c



C. TEE £ES£IOH 2EBV1CES MOIOIE

Tiere are differences in the session services provided

depending upon type cf network. In the distributed environ-

ment different types of user software need different types

cf session services. These differences involve net enly the

software tut also the architecture. So one set of session

services nay be provided for ore manufacturer's architecture

and a different set for another. This is very important for

the EIIICE because tie hardware used throughout the system

varies. It may be possible that services provided across

the system are of different types. However it is desirarle

to have common sessicr services, because this will facili-

tate tie mainterance task. Also for interfacing purposes

want sessicn services to present a common image tc the

system. This can te accomplished by bidding necessary

interface units from the sessicn services. In [Bef- 10 pp

491 ] there is a description cf possible functions cf the

sessicn services subsystem in a distributed network. These

functions are generally divided into three large groups:

-functions required when setting up or disconnecting a

sessicn.

-lunctiens used during the normal running of a session.

-Jurcticns employed when something goes wrong, such as a

rede failure or a protocol violation.

Mere precisely these fucctions are divided in the

fcllcwing categories:

—Assistance in establishing a session

--Easic netwerkire functions

--Application macrcinstr uc tions

--JPicgram control facilities

--Pile access functions

--Eecovery and errcr contrcl

--Editing and trarslaticn

--Dialogue software

60



--Virtual operaticDs and trarsparency

--Ccn paction

--Eayaeut functicrs

--Security and audit functions

I- 1KIEEFACES

PurcticEal interfaces between sessicn services and data

dicticnary iiust permit ether software nodules to access the

E/D and convert metadata into the format required tj the

EDS.

A EE£ provides mary functions and features such as:

Mainter ance

Eatensitilitj

Eepcrt processor

Cuery processor

Ccnvert

Software interface

Isit facility

lie software interface function must provide a fcrnatted

pathway trailing the LBS to provide metadata to other soft-

ware systems such as compilers and DDL processors [Eef. 5],

to retrieve informaticn from the DDS, to update infernatien

where it is permited, and to crtain the restristicr proto-

cols for data consistency ard integrity. The software

interface can generate file descriptions for storage in a

program litrary, or accept the user identification and

generate a copy of that user's database view. It is not

possihle fcr this study to describe precisely the software

interfaces needed fcr the SI-LICE system- Because this

system is under development, irany aspects or the systea are

still urknewn and the software modules are not yet descrihed

in full detail. So, we will enly outline some of the soft-

ware interfaces withcut claiming that these are sufficiert

61



for the SfllCE system. Interfaces can te added tc the

systea during the later stages of the system life cycle and

existing interfaces can also te changed or improved as

neede d.

because COBOI is used throughout the system, the COEOI

"GENIEA1I" command car create from the D/D fully formatted

file and record definitions that can be stored in a lihraiy

file. Included can te most CCE01 clauses such as 88 levels,

EYNCEECN1ZII, BEEEEIMS, and CCCUfiS. The OPTION clause of

this ccmiand can pernit changes in names, the designaticn cf

seguence nunbers, level numters and identifiers, and the

inclusicn cf prograu comments. An example of the use of

this ccmnand can be fcund in £Ref. 5 pp 261]. Ihe gerera-

tion date, last revision date, and revision number can be

autcaatically recorded in bcth the listing and the L/L.

Ihe output file can alsc contain jcb control stateaents

to be included on the output file. Then the output file can

te executed as a jcb that creates and catalogs the COEOL

netadata as a member of a litrary under control cf ar.y cf

the varicus source picgram canagers.

A EM processor can be used also to interface hetween

the session services and data dictionary. A source prcgiam

triggers the DML processor hy sending a service code,

through the session services, and the DML processor inter-

acts vith the data dictionary/ directory. The output cf the

EML processor is an expanded source program that is sent to

a compiler for compilation.

Cther kinds of interfaces include guery processors,

source picgram managers, varicus user interface facilities,

and cther software packages.

62



;

i

Source program

"

DML processor D/D (IDO)

w
Expanded source

program

\ f

Sourc* compHer

Figure 4.2 Software Interface Using a DM1 Processor,

6 5



v - £ZD IK DISTBIEDTED ENVIRONMENT

A. IBTECIDCIIOH

Id this chapter *e will consider the design and function

ex DLS ir tie distributed datalase environment. Soire exten-

sions tc the centralized D/D are needed in crda r tc eratle

it tc iurction effectively in a distributed envir onment .

lie distributed system is a subset of a general informa-

tion system. It is rot necessary for the user tc knew how

cr where the data is stored or in what way the data will be

accessed ty a progran or hew and where the processing is

accomplished. Unless the dictionary plays a highly active

cole in the running of the distributed system, there is

little need to try tc share cce dictionary over the entire

network. lhis is because there is not likely to be a large

amount of update activity in a dictionary. The dicticnary

can normally be reprcduced at each node and this is the

proposed solutions fcr SPLICE. Ey using such an architec-

ture, problems of updating the dictionary across the network

can be solved without much overhead.

Cf course the problem cf distributed control in a

network is more complex than that of the hierarchical archi-

tecture cf dictionary systems which has been discussed in

chapter two. This is one reason, in addition to the lack cf

experience with distributed data dictionary systems, why we

proposed replication instead of distribution of the data

dicticnary for SPLICE. The mere the dictionary system acts

as either the ccntrcl mechanism or a repository cf control

information, the more complex the DBMS, network operating

systems, and dictionary system interactions become. for

example, in the case where we want to determine the test

64



location for running a query against a distributed and

partial!}' replicated database ["Ref. 6 J the dictionary system

is reguired to retain information on the location of all

data. Indeed, this nay be highly dynamic itself, and there-

fore the line tetween a dictionary and "real" database

becomes very fuzzy.

Creation of a distributed information resource inclies

that the number of hardware and software components are to

he designed and integrated into a controlled environment.

Ihese components in the SPLICE include several databases and

database management systems, user language interfaces, data

dictionary/directory catalogue, transaction controllers and

data input/output control modules. We will descrit€ the

varices system components and we will also attempt to demon-

strate the integration of them with the international orga-

nization for standards (ISC) communications architecture,

and a data storage ard retrieval architecture (DSRA) .

In general, a distributed system must provide to the end

user transparency, data sharing, data transfer, process

transfer, or a facility for combination of strategic, nara-

gerial ard operational reportirg. In order to do that there

are several environmental constraints that must be satisfied

[Bef- 12^- Ihese are:

Eata ccmmunicaticrs

lata storage and retrieval

Metadata

User language support

Erccess and report management

Information representation

System management

Integrity

Security

Per the SPLICE system, communication must be integrated

with cooperative processing of the various different

€5



existing software and hardware. In order to do that we need

to address the considerations of the database interface with

distributed system tasks.

A distributed database is particularly useful tc ampli-

cations that involve extensive processing in different loca-

tions. SiU.CE fits exactly in the above concept as do

airlines, banking, retail, and military command and control

applications. The distributed database of the SPLICI can be

allocated among the nodes of the network according to

various existing criteria for fragmentation. Tc avcid

confusion in distributed systems two different terms are

used : partitioned database which consists of non overlap-

ping subsets, and repli cat ed database, which has seme data

redundancy [Eef. 5]. Eeplicaticn enforces the locality and

availability of the database and reduces the freguercy of

accessing the DEN, lut recunes the DBMS tc prcvide mere

sophisticated concurrency and recovery procedures. Tc avcid

expensive overhead in data management, restrictions must be

established as to the degree of data replication permitted.

SPLICI telcngs in the class cf replicated database because

the same item of the database can be located in several

loeatiers and the lecal databases provides information for

items stcred in enly cne location.

Ma^cr problems in the development of technigues for a

distributed datarase are due to communication volumes and

delays and to the potential for parallel processing.

Sometimes it is very difficult tc apply working soluticrs to

distributed data processing which are borrowed from the

centralized processing concept. These solutions often work

well crly in one ervironment and do not transfer effi-

ciently. So excessive delays may occur. Parallel

processirg also has the potential to increase throughput,

but reguires complex controls to synchronize ccrcuirent

activities at dispersed sites. Because a data dicticnaiy is

66



a database containing metadata, the same problems existing

in distributed databases also exist in a distributed data

diet icnary . In ££ef. 5] are described five basic problems

which must he addressed in distributed data management

:

-Ihe coordination cf the DEMS with the data transmission

network such that reliable delivery of messages can be

ensured.

-Ihe decomposition of transactions into atomic parts,

selection cf nodes tc execute those parts, and ccntrcl of

any movement of data between sites necessary tc process

transactions.

-Ihe synchronization of logically related updates and

retrievals that are riocessed at different nodes.

-Ihe detection and resolution of conditions where a part

cf the database becomes inaccessible due tc node or line

failure.

-Ihe management cf metadata describing the distributed

database and environment. Ihis last problem refers particu-

larly tc the data dictionary and deserves special attention.

E. E1IESEICNS TC THE BBS

lie icle of a D/L in a distributed database environment

is very significant because it contains important informa-

tion about the description of the database distribution, the

characteristics cf the nodes and other aspects of the data

communication network. Seme additional entities must be

included in the EDS £Ief. 5] :

-Ihe database entity which describes the global view cf

the database and includes attributes for relation and attri-

bute names, validity constraints, as well as identification

cf lecal databases.

-Ihe fragment entity which describes portions cf the

local database. This entity is not useful for the SELICE

because there are not fragments of the local database.

67



-Ihe topology entity which describes the physical

configuraticn of network ccmpcnents and the links tetween

the cedes.

-Ihe ncde entity which describes the combination of

network subcomponents at a particular site of the network.

-finally some otter entities (terminal, line, multi-

plexer, processor) describing network design.

fce cannct sa} exactly what new entities should be added

to the SI-LICE DDS, but at least initially, we believe that a

form cf tcpclogy and ncde entities must be included. Ihcse

entities are needed when ncn-lccal reguests are processed,

recause the software performing transaction management needs

to reference the D/D to determine the location of the needed

data, the user's access privileges, the status in addressed

nodes, etc. The interfaces needed for this purpose can be

dynamic cr static exactly as it is in the centralized case.

C. Ill LBS AS A DIS1EIB0TED DATABASE

Practically, the D/D, when supporting a distrituted

system, teccmes itself a distributed database. The contents

cf the D/D may reside at various locations. We cannct say

that this approach fits exactly in the SPLICE case. Ihe

approach we have proposed for the SPLICE is guite different.

No partition of the I/D is permitted. That means the L/D

cannct te a distributed database as we know it in the crig-

inal fern. for the solution proposed for SPLICE DDS, we can

say that it is based on replication instead of distritution

cf the DCS. On the ether hand, there are seme other reascn-

able sclutions which follcw nore closely the distrituted

concept. Since experience with distributed systems is rela-

tively snail, the steps needed to reach a decision must be

taken very carefully in oder to avoid mistakes.

66



The designer of a DDS eccounfers some similar tasic

problens as does the designer of a distributed dataiase.

When we design a D/E we must determine the extent cf envi-

ronmental dependency between the D/D and the DBMS. As we

said bef ere, the distributed E/D is an extension cf the

centralized one and sc the three basic variations tc the

type cf relationships between a DCS and a DBMS are still in

force. In the independent distributed approach the £E£ has

no ruirirg connecticcs to any portions of the DBMS ard is

not actively or directly used in transaction processirg by

the EEMS. In the DEKS-app lacaticn approach the C/D is just

another distributed database to the DBMS and separate data

management functions are not needed to handle the D/E. Ihe

EBMS nay manage its c*n run time directory that is separate

from the D/E. In the embedded distributed approach tie L/D

provides the run-tine directory for the OEMS. All the

components cf the DEES obtain their metadata from the D/D.

Ihe size, location, and contents of the D/D would also

affect the performance of other DDS functions such as main-

tenance, reportirg, and yuery £Bef- 5].

E. A HCEEI FOE 2 DISTRIBUTED DDS

In this section we are gcing to examine a distributed

model for SE1ICE DDS. Its structure is shown in figure 2.4,

and invclves the partition cf the global DDS into different

views ccrtaining information for one or more local data-

bases. These different views can be located at each or

selected lAK's.

Ihe glcral (cr network) dictionary is the nucleus around

which all the managenent functions of a DDS are centered.

Jt certains £Ref. 11] information to start every maragement

process cf the SELICI distributed database. In particular

it certains;

a .-Inf crma ticn for the IDS design

6S



-file access programs

-Ictal volumes of gueries for each file

-Ictal volumes of updates for each file

Ibis statistical infor nation is very useful especially

for evaluating the optimal numrer of redundant copies.

r ,-Iui oima ticn fcr the distribution function

-Number and types cf transmission links, their urit

ccst, their mean utilization factor

-Ecuting tables

-CPU workloads

-Eisk utilization

Ibis information can help determine the optical alloca-

tion of redundant file copies and of possible operation

parallelism

.

c.-General infornation about data and how data is shared

amonc tie various ncdes of the system. What the numrer of

I/D ccpies is and where they are located.

d .-Irf crma ticn atcut existing constraints, status ci the

system, rede failures etc.

e .-Irf crmaticn atcut data transportability

f .-Irf orma ticn related tc data used by applications

having a global vie*. Such applications are for example

those where different local databases are involved for

executicr. We said in a previous section that sometimes

data redundancy is preferable over the freguent use cf the

EDN. lhat means infermation atout the sites where a compo-

nent (i-e spare part) is located must be somewhere in a

central position. So in the case where the component cannot

be fcucd in the local database, the user has to access the

global data dictionary to find tne places where the partic-

ular iten is located.

7C



Tc b*e able to design and run amplication or retrieval

programs the global E/D must contain information [Hef. 11]

about

:

Lata structures

Eata location

Eata availability

Eata accessibility (related to security, compatibility

etc)

Eata translation naps, access paths

Eata entities

Ccimcn procedures

Events and their interrelations

Ihis dictionary must be able to answer queries atcut D3

and EEMS's involved in a transaction and how the transaction

can be formulated to cdtain the most efficient result.

Iccal dictionaries include information abcut local data-

tases anc applications, local data entities, local proce-

dures, lecal interrelations, physical storage structures of

local eata, access methods, access paths, physical stcrage

devices, and redundancy of data items.

In [Eef. 11] a structure is proposed for a distributed

E/D guite different ficm the SP1ICE approach. This struc-

ture, as shewn in Figure 5.

1

# involves the existence cf:

Ketwcrk dictionary

Glctal external dictionary

Glcral conceptual dictionary

Iccal external dictionary

Iccal cenceptual dictionary

Internal dictionary

and each cne of the arove perfcrms a different fancticn.

Ihis architecture which is purely distributed, is prob-

ably tec ccnplicated to be implemented for the SEIICE. It

is a theoretical model and if we try tc implement it, we nay

71



Network
dictionary

u i
f

Global external
dictionary

"
Local external

dictionary

\ !
"

Global
Conceptual
dictionary

Local
Conceptual
dictionary

\ 1

internal
dictionary

\ r

Data base

Figure 5.1 A Purely Distributed Approach foe a LLS

face seiicus interface prchlems, resulting in the data

dictionary recoming the main resource consumer-

lie functions we intend to include in the SfllCE IDS

will flay a majoi role, if we want to avoid complex struc-

ture and saturation. These functions must he the minimum

possiile needed for the proper operation of the system. We

telieve, in the case where the distributed instead of repli-

cated apcicach will re followed, the architecture shewn in

Figure 2.4 is the mere practical.



Pcllcwing the atcve architecture a global dictionary

located ir some code tas the rcle of maintaining consistency

throughout the whole SELICZ system. Keguests for updates,

deletions, and additions are routed through the data

dictionary administrator and alter an evaluation procedure

the glctal dictionary is updated. Then the changes are

transnitted to various locations where the local copies are

updated. Also updates are transmitted to the data

directory.

Lata directories can be located at the inventory control

points (ICE ) . In contrast with the data dictionary, the

data directory contains glctal information only about

subject, service code, object name, and address. All the

ether information is located in the global and the various

local dictionaries. The data dictionary administrator is

responsible for maintaining the data directory, as well.

lifferent views of the glctal dictionary are located in

various IAN f s. Each view can serve one or more LAN's and it

is preferable to be located at the LAN where it is most

freguently used in order to avoid unnecessary usage of the

IDN.

Khen an item is net found in the local database the user

routes a value location reguest through the session services

(service cede) to the data directory, and the data directory

replies with the location address. Using the previous

infernatien the user can reguest and establish a session

with the remote database where the reguested information

resides.

73



VI- CONCICSICNS ANE BEaDMHENEvAIIONS

A. CCBCID£10NS

Cur effectives, as described in the first chapter, were

to investigate the area of data dicticnary/dir ectcry

systems, in a distributed environment, to outline the

advantages/ disadvantages of these systems, to present the

underlying ideas, tc examine the benefits for the SE-LICE

systeir frcm using a dictionary/directory system, and finally

to delineate the interface requirements between a data

dictionary/ directory system and other functional modules.

In addition to the above objectives we discussed also seme

ideas concerning the organization of the data administration

function, and four hierarchical architectures for ED£, each

one with a different degree of distribution-

lie first architecture is rased on the replication of

the E/D. There are no different views of the D/E, only

exact copies of one *iew located in each LAN. Using this

architecture we have 62 replicated copies of the E/D (the

same as the number of IAN' s) , each containing the inf crea-

tion (metadata) about all SEIICE data base definiticrs and

functions residirg in each IAN. This architecture minimizes

access tc the DON but has the drawback of requiring a let of

secondary storage. 3he size of the D/D, statistical and

ether infornatior concerning the frequency of using the EEN,

and the amcunt of information included in the D/D, all will

have an impact on the effectiveness of this architecture.

lhe second architecture which allocates replicated

copies of the D/D tc selected nodes (the most active) is

mere censer Dative. In the case of a nuge dictionary, this

saves a significant amount of secondary storage, hut

74



requires heavier use cf the D£N. Here the sirze cf the E/D

and tie appropriate redes at which to install the replicated

copies seriously affect the effectiveness cf this

architecture-

lie third architecture is rased on distribution cf tne

I/D- Different vieks of the D/D reside in each LAN and

contair information crly concerning the local data rase.

This architecture involves the use of a data directory (we

propose two replicated copies, one located in each ICE).

The use cf the data directory (which contains limited irfcr-

naticn) prcvides a J«ind of "relaticn or connection" retween

the varicus views. Also a global dictionary is needed in

crder tc prcvide consistency and global function facilities

throughcut the systen. This architecture is more dynamic

than the previous twe discussed so far. It has the advantage

cf saving secondary storage tut, on the other hand,

increases even mere tie use of the DDN.

A fcurth architecture was discussed just tc mention

another possibility fcr a distributed architecture, tut cur

estiniaticn is that it would be too expensive in system

resource consumption for the SE1ICE.

Three environmental dependency options for the IDS

(independent, completely integrated, and DBMS dependent)

were also discussed. The main reason for choosing the

embedded (DBMS dependent) approach is because the data

dicticnary is gcing to be used only fcr the SPLICE system

(so the independent approach does not make any sense) , and

also the SE-LICE data tase already exists. Also the enrelded

approach (DEMS dependent) was chosen because of the hcncce-

neitv cf the DBMS environments across LAN's. The indepen-

dent and completely integrated approaches are too ccstly at

this time although tie latter could be implemented eventu-

ally ficm an embedded environment.

75



E. EICCBflEKEATICNS

lien the investigations performed, we have the fclicwing

main recommendations ior the SELICE system:

a.- The TANDEM data dictionary that already exists

should he the basis fcr the SfllCE data dictionary.

b.- lie D/D should te implemented cnly fcr new applica-

tions tecause it is a herculean task to retrofit the D/D to

the existing old applicatiors.

c- Ihe embedded (EBMS dependent) approach should be

used fcr the D/D.

d.- Iwc candidate architectures should be examiiei

further tased on statistical and other informatics (not

availatle fcr the present thesis)

:

-Eeplicated architecture {Figure 2.3) with

selection cf nodes where each copy will reside.

-Distributed architecture (Figure 2.4) with the

use of twc replicated copies of the data

directory located at each ICP.

e.- & IML processor should be used to interface retween

data dictionary and session services.

76



TAJEEH DATA EICTIONAfiX

1 - Cveiview

Ihis appendix is included to mention some features

(hopefully the cost important) of TANDEM data dictionary/

since tie 1ANDEK DECS will re used in the SPLICE system.

for a mere detailed description of the TANDEM D/L, see

[fief- 13:.

P. data definition language {DDL) is a language used

by the data dictionary administrator to describe record and

file structures cf a database. After the description, the

resulting source file is input to the DLL compiler, arc the

EDL ccjipiler can create data declaration source language for

catarase records in three languages, COBOL, FOfiTRAN, and

1AL. lie EDL compiler can also produce PUP (file utility

program) file creation commands for database files. Ihe

most significant feature of LDI is its ability to create and

naintain a data dictionary. Ihe TANDEM data dictionary is a

set cf seven files that documents the structure and lecatien

cf each file in a database.

The DDL provides facilities for updating a

dicticnary as the database it describes grows and the struc-

ture cf the database files changes. The DDL compiler and

the dicticnary it creates serve as a central pcint of

contrcl ever a database.

1ANEEM defines a database as a collection cf files

structured to serve ere or mere applications. When a list

of DEI statements --a DDL source schema-- is given tc the

EDL compiler, the compiler can produce any of the following

files :

* A data dictionary.

77



* A FUEU^ile creation ccmmand source.

* A cata declaraticn source for COBOL,

FCFIEAN, or TAI.

* A schema report summari2ing each record's

structure and each file's access keys.

The data dictionary produced by the DDL compiler is

a set of fides that forms a permanent record of the database

schema. Thus the database schema, stored as a set of

dictionary files, becomes a system resource. The dictionary

gives database managers information about each file in the

database and alsc shews how the files relate to each ether.

After tie dictionary has been created, the DDL ccnpiler can

read the dictionary ard produce COBOL, F0R1RAN, or 1AI data

declaraticn source fcr any record defined by the schema.

Ihe dictionary is also used ty ENFORM, TANDEM' s database

guerv language and retort writer.

2 • Cre ating a D ictigna ry

lie data dictionary files can be created en any

subvclume in the system. The subvolume that is tc certain

the data dictionary is specified with the DDL DICT command

(for example ?DICT 2£TCCKNC.£NTY ) . The DDL compiler first

creates the dictionary files en the quantity survclume of

the I SICCKNO volume, and then opens the files for access.

3 • Dictionary Ret orts

1ANIEM trovides DDL users with ENFCRM source ior

twelve dictionary reports. The twelve reports document all

cf tie DEFINITION and RECCED entries in the dicticrary,

descriting cot only their structures, but how they relate to

each ether as well.

Cnce a schema describing a database has been

compiled by the DDI compiler and a dictionary has teen

produced, information about the database can easily be

78



cttaircd with a set cf TANDEM provided ENECEM queries. The

reports produced by these queries provide:

* Database documertatior

.

* Database analysis information.

* Quick access tc dictionary contents.

The dictionary reports are produced from ENECRM

source ttat is available tc tie user. This means that in

addition tc the standard reports, you can obtain customized

reports, tailored tc answer specific questions, by simply

editing the TANDEM supplied ENFORM source. The ENFCRM

dictionary report source file consists of 12 queries ttat

produce 12 different reports. Each query is a separate

section. Thus the queries can be run as a complete group,

individually, or ix any combination. The 12 dictionary

reports are shown in Table X.

4 . ledatinq the lictionary

As the datarase changes, its dictionary car be

updated to reflect the changes by adding, deleting cr codi-

fying DEFINITION and RECOED entries. In Table XI is a

.summary of TANDEM dictionary modification function.

7S



TABU I

Dictionary Report Summary

Cuerj
UsEl RgEort descn pticn

B1 DICTIONARY OBJECTS- E1 describes each EEf a£d
EECORD in the dictionary, giving the tine aid
date oi creation, the time and date of the
last mcdifica tion, and the version numher fcr
each oi^ect.

£2 DEFINI21CN STEUC1URE- fi2 lists all .of th€
componert groups and fields for each DEE in
the dictionary.

£3 RECORD STRUCT ORE- R3 lists all of the
component groups and fields for each EECCFD
in the dictionary.

£4 DEEINI1ICNS USING DEFINITIONS- £4 shows
which EIFs are referenced by other DEEs.
The referencing CEFs are listed with each
of its elements that references another
DEE and the referenced DEF's nane.

E5 EECORES USING DEFINITIONS- E5 shows which
DEEs are referenced by RECORDS. Each RECORD
is listed with each or its elements that
references a DEE and the referenced DEE's
name.

£6 DEFINI11CNS WHERE USED- &6 lists each IEF
that is referenced by another object, te it
a DEF cr a RECCRC. Tne referencing DEF cr
RECORD is shown in each case.

E7 EECOED ACCESS- E7 lists the file nane and
access .keys {rcth primary and alternate) for
each RICORD. in the dictionary.

R6 RECORD EEFINIIICli METHOD- R8 shows the method
used tc define each RECORD. The source CEP
is listed for these RECORDS defined with the
DEF IS <def name> clause.

ES REPORT EEADINGS- R9 lists all of the ENECEM
report headings declared for fieds and
groups within each EEF and RECORD in the
dictionary.

E10 DISP1A! EOEMATS- R10 lists all of the ENFCEM
display formats declared for fields and
1
roups within each EEF and RECORE in the
ict lonary.I:

E11 RECORE CCMMENIS- R11 lists the comments that
immediately preceded the defining RECCRC
statement for each RECORD in the dicticnary.

£12 DEEINI11CN COMMENTS- R12 lists the comments
that iirnediat ely preceded the defining LEI
statement for each DEF in the dictionary.

£C



TABLE XI

Dictionary Modification Function

Cperat./Ent. type

HL/ZEt

AII/fECCRD

ZIIEZE/LEF

IIIElE/fECORD

MCD1FY/EEF

MCDlEY/iECORE
(kit! EC
Elf changes)

£CDJf Y./IECORL
(kith DEF
chances)

Procedure

Open dictionary
compile new DEF

with ?DICT and
statement.

Open dictionary with ?DICT and
compile new RECORD statemen t

Open dictionary with ?DICT. delete
all dictionary entries that
reference the DEF, and then delete
the DEF itself with DELETE

Open dictionary
and then delete
with the DELETE

with ?DICT
the RECORD entry
statement.

Open dictionary with ?DICT
command, then delete all other
EECORD and DEI entries that refe-
rence the DEF, delete the DEF,
recompile the edited DEF, and,
finally, recompile the DEF and
EECORE statements that
reference the DEF.

Open dictionary with ?DICT
and recompile edited
RECORD statement.

Cpen dictionary with ?DICT
and delete the RECORD with
the DELETE statement. Then
modify any DEF entries that need
to be changed, and finally,
recompile the new record statenent,

81



IIS1 01 EEEEBENCES

1. Sctneidewind Nciman F., Functional Design cf a Iccal
Area Network fcr the Sto&S Poi nt"Togistics Integral el
tclmunicajEIons" En vir onment, UPS-b^-FI-IO!, "KavaT
rcsHglaluaTe School, flcnferey, Ca, December 19 82

2. Barrett/ K. M., Integr ation Consider ati ons fcr the
Stcck Point Iog isT ics Integ raTed" ' Communic a ticns
Envir cnmen ~E

'" (SIIIC2) Iccal Ire a~Ne t work" , "Master's
ITesis, Naval ' "Postgraduate Sch"ooT7~ Mcnterey,
Califcrnia, December 1S82-

3. Carlsen David I. and Krebill Dan P., The rat io ral
c cum uric atiocs module or the stcck point" logistics
infeqraTel communications environment "T5TTICIT "local
area netw ork , East~erT s "EEesis, TIaval PcsfgracuaTe
"S-cIccl, Honterey , California, June 1983.

4. Schneidewind Ncrman F. and Dolk Daniel B. , A distrib-
uted cperatinq system desiqn and dictionary/direct cry
Iox~Sin£ITfffS=53=B3-01"5T Naval PosTgraa"uaT€~"ScflocI7
Bcrterey, Ca, Kcvember 1S83.

5- Allen Fr., Loonis Mary, tfanino Mich., "The Integrated
Dicticnar y/Directory System". ACM comput ing surveys,
Vclume 14, Number 2, June 1982.

6. lefkcvits, Information resources/data di c ticnar y
-l^teiis, QED information sciences, Tnc, T983.

7. Sakamcto J. G. and Eall F. S., "Supporting Eusiness
Systems Planning Studies with tne DE/EC Data
Dicticnary", IEM systems jo urna l. Volume 21, Number 1,
1S£2.

"

6. Cutice Bob., "Data Dictionaries: An Assessment of
Current Practice and Ercblems", ACM Prcceejdincs,
Seventh International Ccnference on VlBY E3"E^I "DTfTA
EASES, September 1981 -

5. Detpe Mark E. and Fry James P., "Distributed Data
Eases. A Sunmary of Besearch", Computer Netwcrks,
Vclume 1, Number z, September 1976.

10- Martin James, lesiqn and strategy for d istribute c d ata
trccessing , PreiTIce "Sail, 1981

.

11. Schreiber F. A. and Martella G. , "Creating a
Ccncectual Model of a Data Dicticnary for Distributed
lata Eases", Data bas e. Volume 11, Number 1, Sumner
1S7S.

82



12. Swager James B. f "Architecture for a Distributee Cata
Ease Infer ma ticji Resource", AEIPS, Conference
Ercceedings, Vclume 50, May 4-7, 1F81

13. TANIEM Computers Incorporated, Oata Definition
language (EDI) Ero^rammipg Manual # DecemEec 13"E"T-

14. Ecehm Barry R.. Software Enqineerinq Eccncnics,
fientice-Hall, 19 81

"

83



INIIIAI DIS1EIB0TION LIST

Nc. Ccpies

1- Iirrary, code 0142 2
Naval Postgraduate Schccl
fccnterey, Califcrria 93943

2. E€ tart neat chaiuai. cede 52hg 2
lepartnent cf ccnputer science
Naval Postgraduate Schccl
£cnterey, Califcrria 93943

3- Prof. Normal F. Schneidewind, code 54Ss 4
Kaval Postgraduate Schocl
Kcnterey, califcrria 93943

4. Prof. Eaniel E. lolk, code 54Dk 1

Naval Postgraduate Schccl
Mcnterey, Califcrria 93943

5. Eefence Technical Information Center 2
Cacercr Station
Alexardria, Virciria 22314

6- Hellenic Navy Gereral Staff 2
Education department
Stratcpedo Papaccu
Eclar ges
Stress, GREECE

7. CLE Vassilios Paragiaris 4
Eelleric Navy Gereral Staff
SCENE
Stratcpedo Papaccu
Eclargcs
Athens, GEEECE

84





13 5 3 7 5







210525

Thesis
\T*PlW Panagiaris

c.l A dictionary/direc-
tory system (DDS) for
the SPLICE system.

30 JuN o? 3 2 7 7 5

21U525

Thesis
PIU5U Panagiaris

c.l A dictionary/direc-

tory system (DDS) for

the SPLICE system.




