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ABSTRACT

The linesr!' discrete Kalmsn filter W3S analyzed usini^ a

f reauency-domain approach* Process and measureirient noise

covariances stg shown to be critical design parameters which?

together with the assumed prior state and covariance

estimates? completely determine the dain schedule of the

linear Kalman filter* Several relevant design techniaues are

illustrated and discussed* The concepts of smoothing and

sharpening are demonstrated* E>(tensions to adaptive;/

non-linear? and non-parametric filterinsi are briefly

discussed? as are applications to inventory manasJement?

estimation of time-varyind mean functions? and multiple

regression
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I* INTRODUCTION AND SUMMARY

A, BACKGROUND

The Kslman filter is a recursive Bsyesian least-sausres

estimator of an n-diinensional system state vector based on an

m~di(Tiensional measurement vector* The filter may operate in

a J-dimensional coordinate system where J:im? Jin* The basic

assumption is that each dimension of the coordinate system

varies according to a kth order Gauss-Markov process* The

Kalman Filter was developed in the early 1960 's by Kalman and

Bucy Crefs* 1 and 211

The Kalman filter may be used to obtain an optimal

estimate of the present state? a prediction of future states?

and/or smoothed estimates of past states* The current state

estimate is .Generally used to determine an optimal control

input* Future state estimates are used to determine optimum

present policy* Smoothed past state estimates are used for

data analysis and model building* Thus the potential areas of

application span the field of time series analysis*

Applications of the Kalman filter are numerous and the

theory is bein.^ continually developed and extended* An

overview of the development of linear filtering theory and an

eirtensive bibliography may be found in Kailath Cref*33* A

reasonably clear presentation of theory and applications is

contained in Gelb Cref*4I!*
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Perhaps the widest and most successful application of

Kalman filtering has been to vehicle tracking and control*

Clark Cref»5.1 has written a particularly lucid description of

the desidn of a filter for an anti-aircraft dun fire control

system which is noteworthy for its clarity of presentation of

the underlyiniiS theory* It is evident Crefs* 4 and 5 3 that

the desii^n process is heuristic^ and reauires extensive

testinsJ and analysis of candidate filter configurations!' even

when the process is well-understood and is based on a mature

technology*

The Kalman filter has also been appliedy with varyini^

desJrees of success y in economic models/ inventory models i- and

even weather models. Considerable difficulty is encountered

in model buildin.di' because the filter desiisn reouires dood

estimates of the variance and covariance of noise sources? as

well as an accurate state transition model* A prior estimate

of system state and covariance is also reauiredj" which is

somewhat less critical because errors in the prior estimate

decrease with time* These parameters are often difficult to

determine in highly random processes of Questionable

stationari ty

*

The Kalman filter is derived and designed almost entirely

within the time domainy although Clark Cref*53 does refer to

the concept of filter bandwidth* The Kalman filter is

essentially a low-pass filter with a very wide transition

bands' and higher-order filters have some amplification at the

mid or low-mid freauency rande* In iSeneralf the stop band

does not completely attenuate hi.'^h freauencies* This allows





the filter to attGnuate hi^h-f reauency noise somewhat while

still retainins^ some response to sudden changes of state*

B, PURPOSE

The purpose of this thesis is to acQuaint the reader with

the Kalman filter? to show how the choice of various filter

parameters affect its performance» and to provide design

insight through analysis in the freauency domain* The

approach is tutorials and the reader is referred to some of

the interesting examples which may be found in the

literature

C* METHOD

The freauency response of several simple filter desis^ns

were investigated usina the Fast Fourier Transform program in

the APL Library 2* The computer results were Justified

analytically for the simplest design? a scalar sinsde-state

filter* Derivations are presented in appendix A*

D* LEUEL OF PRESENTATION

Full understanding of the theory reauires a knowled.^e of

stochastic processes that evolve over time* as well as an

understandings of digital sidnal theory in the freauency

domain* The Fourier transform is a basic tool* A full

exposition of the under lyinsi theory is clearly beyond the

1 r\





scope of this presentation. The reader is directed to Larson

and Shubert Zref*6'Jl for the theory of stochastic processes

and to Hamming Href*?] for the theory of di.'^ital filtering.

As previously mentioned!' Gelb Zref*Al and Clark Cref»5Il are

^ood references for the Kalman filter* Bloomfield Cref*83

and Brillinsier Cref»9II are also applicable references* Brown

Cref.lOJ and Box and Jenkins Cref.llU contain related

material

There are few readers who are entirely conversant with

both the freouency domain and time domain approach to time

series analysis* Nevertheless? a duality exists between the

two? and a summary of the theory is presented*

Illustrative examples will often be based on trackind

modelsy because this is presently the widest area of

application of Kalman filters? and because most readers will

find the concepts of position? velocity? and acceleration

easy to understand. The concepts are easily extendable to

other areas* For example? the economist may wish to replace

"velocity" with "trend"*

E* SUMMARY OF RESULTS

The steady-state dain? bandwidth? and sensitivity of the

linear discrete Kalman filter are shown to be completely

determined by the choice of the process and measurement noise

covariances* Filter performance on stationary or

nearly-stationary data can be predicted by comparing the

frequency response of the proposed filter with a spectral

11





analysis of the data* The wide transition band of the

amplitude response of the scalar Kalman filter can be

sharpened by multiple passes of the data through a

hij^her-dain filter* This can be accomplished simply and

recursively* The superiority of symmetric smoothinsS filters

over non-symmetric filters was demonstrated. When used as a

smoother (by usin^ both forward and backward passes) the

Kalman filter was as effective as a non-recursive Gaussian

filter* Hisiher-order filters were shown to hawe higher

bandwidth and amplification as the order of the filter was

increased* A freouency domain approach to filter design may

provide additional insight and enable the designer to achieve

better filter performancey particularly when the system state

transition model and noise covariance models are not well

understood

.
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II, THEORY

A* STOCHASTIC PROCESSES AND STATIONARITY

A continuous stochastic r-rocess X(t) is 3 Gaussian

process if the probability densities of all orders are

multivariate Gaussian densities* It is a kth order

Gauss-Markov process if the state at time t depends only on k

earlier states* If we should expand the state space to k

states r which include all derivatives up to the (k"-l)th? the

future system state vector will depend only on the present

state* For example » if the acceleration of a vehicle is a

first-order Gauss-Markov process y then the position of the

vehicle is a third-order Gauss-Markov process. Howeveri' if

our state space includes acceleration and velocity as well as

positions' the future state of the system is independent of

all but the present state* If the random acceleration has

zero meant and variance one over one time increment y the

acceleration is a standard Wiener process W(t)* The

derivative of the Wiener processy written dW(t)y has zero

mean? unit variance? and is called white Gaussian noise

y

which may be thought of as a 'zero-th order" Gauss-Markov

process Cref*4Il*

The standard Wiener process is not stationaryy because

the variance .^rows linearly with time* That isy the estimate

of a future state based on the present state has variance

13





that is 3 linear function of tinriG* However » the standard

Uiener process has stationary s- independent increments* That

is? the variance at time (til) ^iven the state at time (t) is

constant and independent of t»

A stochastic process X(t) is wide-sense stationary if and

only if it has a constant mean function^ and a correlation

function such that Cref»6ll

Rj,(t, + ^si-tj^f s) = R (t, yt^) = R (t^-t, )

that isy the correlation function of the process is

independent of an arbitrary time shift s» A Gaussian process

is strictly stationary if and only if it is wide-sense

stationary Lvef ,61 *

The Gauss-Markov assumption makes possible the

development of theory and appl i cat ions y because f in ideneraly

any linear operation performed on a Gaussian process results

in another Gaussian process? and the Markov property allows

consideration of only the present state y disreiSardind all

previous states,

B* THE PHILOSOPHICAL CONCEPT OF STATIONARITY

A f reauency-domain analysis of a stochastic process is

only meaningful if the process is stationary If the process

were chandini^i over timey the spectrum would chansJe over time*

Since the spectrum can only be analyzed by means of data

taken over timey such analysis of a non-stationary process

1^





would be mean ini^l ess However y if the process is

"auasi-ststionary " ? that isi* it exhibits stationar*:^

statistics for a whilei' then under<3oes a change.• then settles

down to stationaritvi a^^ainy the freauency approach is still

useful? although inaccurate over the transition period* As

an example y consider an airplane subject to random

accelerations due to air turbulence* An appropriate model

midht be a third-order Gauss-Markov process as loni^ as the

airplane maintains a straight path or turns at a constant

acceleration* However? the pilot's inputs to initiate or

terminate a maneuver would result in brief periods of

non-stationarity y and the model would perform inadeouately

durind and immediately after the transition period*

It may be ardued that every practical process can be

considered stationary over infinite time* If the process is

random? it represents an ensemble of possible paths? of which

any realization in terms of real-world data is only one

possible path? and may or may not be closely representative

of the ensemble* When dealing with reality? we are often

forced to assume stationarity in order to make analysis

possible? and often we obtain dood results even though we can

never know whether or not the assumption of stationarity is

really valid*

C. DUALITY OF THE TIME AND FREQUENCY DOMAINS

1 » Fourier Series

A very wide class of mathematical functions may be

15





rerresentGd by the Fourier series Cref«12.'] as follows!

d(t) + ^^(a^cos nt f b sin n t)
*!»/

where :i b -^ 2 7r*

Existence and convergence of this series representation

reauire only that <^ < t ) be everywhere sini^le-valued ? and

possess 3 finite number of maxiiTia? iTiinimay and finite

discontinuities* The function d(t) need not be

differentiable Any function meetinsi the above criteria can

be thoudht of as a constant mean function a^r plus an

infinite series of sines and cosines of integral freauencies

and various amplitudes* Of course? the independent variable

t must be shifted and scaled to the interval C ? 2 7T 3 Note

that the lowest freauency present? aside from the

zero-f reauency meany is one cycle for the span of i^ ( t )

Amon<3 the functions meetind the criteria are a souare pulse?

an impulse? and any manifestation of a random walk* In

practice? the Fourier analysis of a function s5 ( t ) reauires

the truncation of the infinite Fourier series* This results

in a smooth least-sauares approximation to the function <3 ( t )

There are ripples in the approximation if the function ^(t)

is not dif ferentiable or if the truncation is too severe*

This is known as the Gitabs phenomenon? and is illustrated in

fisiure 1? which was taken from Hamming Cref*73* By taking a

sufficient number of terms in the Fourier expansion? we can

improve the closeness of the approximation*
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7r/4 7r/2 3 7r/4 v

Figure 1» The Gibbs Phenonrienori

2* Basic Concept

The basic concept of the duality between the time and

freauency domains is so simple that it often sJets lost in a

forest of Fourier transforms* The time period is the

reciprocal of freauency* The basic relationship is

v/27r = f = 1/T

where v is the frequency in radians/unit timer f is the

freauency in cycles/unit timer and T is the time period for

one cycle* Stated simply y freauency is the inverse of the

time period*

3* Discrete Data and the Sampling Theorem

The digital computer allows the efficient analysis of

continuous phenomena by means of discrete approximations* Ue

saw earlier that the lowest freauency contained in a Fourier

expansion of a function s-Kt) was the reciprocal of the time

span covered by the function* Similarly? the famous Samplin?.^

Theorem Crefs* 6 and 7 3 states that if a function ^(t) in

continuous time is sampled at constant? discrete time

17





intervals ht (that isy at a rate of :l./t).t)y then the hisihest

ob«>ervable freauency is 0*5 cycles per measurenient interval

t^t* This means that at least two observations Bve reouired in

each cycle in order to observe that particular freauency*

The fre«uency 0»5/tity usually written sinfiPly 5 y is

referred to as the Nyauist freauency* The result is the

aliasing phenomenon!' which is familiar to most movie.doers*

Durinsi the chaser the stas^ecoach wheels appear to stop or

rotate slowly backwards when the rate of rotation of the

wheel sPokes (spokes/sec) e;cceeds 1/2 the camera rate

(frames/sec)* When hislher freauencies exist in the function

d(t) sampled at a rate ls.tr they are folded back and appear in

the frequency spectrum of the sampled data as freauencies

less than the Nyauist freouency* The sampling theorem shows

that a spectral analysis of discrete data is only meanin:^ful

over the Nyauist interval C -0»5/l!^t!' fO»5/LtI]t

4 The Discrete Fourier Transform

Any function d(t) for which a conversSent F"ourier

series exists may be represented in the freauency domain in

terms of real and imaginary parts? or in terms of amplitude

and Phase andley as a function of freauency* It should be

noted that the function .<3(t) may also be complex-valued r but

we will deal with only real-valued functions* In the

continuous domain? the formulas

d(t) ~T^\G(v) exp(ivt) dv

and

18





G(v) = r<3(t) exp(-ivt) dt

represent a Fourier transform pair* The frequency response

G(v) completely determines the time function ^(t) and

conversely

If the function d ( t ) is sampled at intervals t =

0yl!'2y»»»yn the time~to~f reouency transformation becomes

G(v) = 21^<t) e>jp(-ivt) t = 09l9t**fr\

which is defined only on the Nyauist interval C-TTfTTj^ here

defined in radians* The formula may he written in a more

familiar form by U5in<3 the Euler relation

eKP(~ivt) = cos vt ~ i sin vt

as

G ( V ) •-^ £i(t) (cos vt - i si n v t

)

which is continuous in v on the interval Z-TTr Tf 1 , The Fourier

transform is a bit difficult to handle analytically for all

but the simplest functions? but the discrete Fourier

transform is .Generally easy to compute by use of a Fast

Fourier Transform (FFT) program available in most computer

libraries* The output will Generally be a very close discrete

approximation to G(v)r if the span of d(t) is larde enoui^h*

The inverse transformation can also be made*

19





Since G(v) is coinpleM valued whenever the function <i(t)

is not symmet ric y it is often useful to represent it in terms

of amplitude and phase* The amplitude is

I G ( V )
I

=•• /g(v)G(-v) := /i:Re(v)/ f i::im(v)a^

where Re(v) and Im(v) are the real and imai^inary parts of

G(v)* The phase an^le is

6(v) = arctan Im(v) / Re(v)

ru THE DOOB-MEYER-FISK DECOMPOSITION

In most practical app 1 i cat ions y a finite-variance

sample-continuous stochastic process X(t) can be written

T T

X(T) ^ X(0) f /A(t)dt f /B(t)dW(t)

e>

where X(0) is the initial value of that process y A(t)dt is

predictable y smooth behavior determined by a set of

deterministic differential e«uations describing the systemy

and B(t)dU(t) is noise y where dU(t) is white Gaussian noisey

and B(t) is a smooth transformation that is sometimes thou.<.=iht

of as "coloring" the noise* Such a representation is called

the Doob-Meyer-Fisk decomposition Cref*6Ily which may be

thoui^ht of as separatin?^ the process into a si.^nal and noise*

Several important points must be made with redard to this

20





o?Quat.ion* It is not intended here that the expression be

evaluated analytical l«j The integral E<(t)dW(t) is an I to

intei^raly which is not even a stochastic version of a

StieltJes inte?iJral Cref.6J» Alsoy althousih the processes

A<t) and B(t) are smooth functions that may he considered

deterministic representations of system behaviors' they are>

not necessarily known to the observer? even when an adequate

technolorjical representation exists*

Consider asJa in our piloted aircraft beinsJ tracked by a

radar* The process A(t) represents the dynamics of the

airframe-; as affected by the control inputs of the pilots

which arG unknown to the radar observer* The process B(t)

consists of several parts* One is the measurement process?

which may or may not be known to the radar observer* For

examples' a nutatind radar antenna miidht impose some periodic

error in the measurements' which would be manifested in the

process B<t)* Overlaid on this mi.<3ht be a white Gaussian

noise measurement error* Air turbulence could also be

represented as white Gaussian noise y which s' however y coul'd

only be manifested throu-^h deterministic airplane dynamics*

There are those who would ardue that the pilot should also be

modelled as a random variable* In any event? the process

B<t) mi<^ht be further decomposed into several processes? here

at least airframe response to air turbulence and periodic

radar antenna dynamics*

The vital observation is that if the freauency content of

the processes A(t) and B(t) are known to be different? they

can be partially separated by a spectral analysis of the

21
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freauenciss in all control axes. These can be estimated

cloaelyi' even for eneiirj airr-lanesy and are denerall<:i similar

amond similar types of airplanes y althou'^h they vary with

airspeed. It is physically impossible for the airplane to

respond faster than its hii^hest natural dynamic freauencies*

Any freauency content higher than this must be noise* If the

ratiar system dynamics are of a his/her freauency than this?

they can also he separated* The pilot will take advantaj^e of

the full response rate of the airplane only very rarely*

Therefore? low freauency components are most likely due to

pilot maneuvers* Of courses' since white Gaussian noise has

a flat freauency spectrum as a result of aliasing Cref*73.» it

is impossible to separate all of the noise from the sisinal*

However!' it is often possible to remove ouite a bit of it*

E* DIGITAL FILTERS

A dii^ital filter is a linear transformation applied

iteratively to a set of data points* The purpose here is to

separate noise from the signal* The simplest digital filter

is the simple a^'/erai^er which estimates the mean value from

the datay and smooths out all fluctuations* The most sJeneral

form of the dis^ital filter was stated by Hamming Cref*73 as

M(t) = 2a(k) z(t~k) -f 21b(k) yAt-k)

where the estimate x<t) at some point t is a linear
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combination of the data points -zit-k) 9 and perhaps of the

previous estimates x'(t~k)» The coefficients sCk) and b(k)

avQ wei.'3htind coefficients and may? of course )» be zero* As a

result of the samplins{ theoremy the filtering process is

meaningless unless the measurements z(t~k) are made at

eaually spaced intervals alon^ the t axisr where t is

usually? but not necessarily y time»

1 Some Classifications of Di.^^ital Filters

Didital filters may be classified as symmetric or

non-sv^mmet ric y and as recursive or non-recursive . A

symmetric non- recursive filter is one in which all b(k) eaual

zero and all a(k) = a(-k)y such as the filter

x(t) = 0,2 z(t-l) f 0,6 z(t) + 0.2 z(tfl).

An example of a recursive filter is

K(t) = a z(t) f b x(t~-l) 0<a<:iy b = l-a

which is not symmetric. This particular filter may be

oppressed as

yAt) ^ a z(t) f bC a z(t-l) + bL a z(t-2) + ,,.,33

which reduces to

(t) ^ a z(t) + ab z (t-1) + ab^z(t-2) +.,.i ab'^z(
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The recursive filter extends to the infinite pastr slthouj^h

the coefficients 3b will approach zero? if |bl<l» In this

case? 3 recursive filter can be closel^:^ approximated by a

non -recursive filter* A primary advantasie of the recursive

filter is that old data need not be stored* New estimates

may be computed simply and rapidly as time evolves* This is

an important advantage for real-time applications*

2* Applications of Didital Filters

Di.dital filters are used to separate a signal from

noisey to separate various freouency components of a signal i*

and/or to perform such mathematical functions as integration

and differentiation* A review of Simpson's rule and the

Trapezoidal rule should convince the reader that these

numerical intei^ration techriic<ues arey in fact? recursive

digital filters* Sometimes a filter has two purposes* For
•I

examples' it midht be desirable v in estimatini^ velocity from

successive observations of position y to simultaneously

differentiate and remove hisJh freouency noise* When a filter

is used to stop part of the frequency spec t rum y it is

referred to as a "low-pa5s*y "hij=Jh~pas5 " y "band-pass • y or

"band-stop" filtery depending on its function*

3 Analysis of Didital Filters

In the time domain y a digital filter is described

completely by its impulse response function y which is nothing
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more than the response of the filter to data consisting of a

string of crerosi' a sin:^le oney followed by zeros* The output

of the filter is then simply the wei.dhtind coefficients 3(k)*

If the filter is recursive f we mi.dht not he able to deduce

the recursive form from tho? coefficients aik) / but that will

not concern us here. The Fourier transform of the

imp'.ilse -response function

N
H(v) = '^3(k) e;cp(-ivk)

will completely specify the freauency response of the filter.

If the filter is symmetric!' there will be no imafrlinary partf

and hence no phase shift. If the filter is recursive i- it

cannot practically be symmetric y and the summation will

siene rally run from zero to infinity. That isr the impulse

response will extend infinitely far into the future ^ which

means that the filter remembers all of the past.

The duality of the time and freauency domains allows us

to specify a desired freauency response and to design an

appropriate filter by calculatinsi filter weis^hts? or to

analyze an existing filter by calculating the freauency

response from the filter weidhtin<^ coefficients.

F. DATA ANALYSIS AND EXPERIMENT DESIGN

No digital filter should be applied to data analysis

without a clear idea of the effect of the filter upon the

data. Slutsky and Yule first noted that some smoothing
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formulas induced periodic functions in the smoothed estimate

thst were more the effect of smooth in^^ than of the original

data C reft 73 A spectral analbisis of representative raw data

can be helpful in deciding on an appropriate filterini^

techniaue* However? such data as economic time series or

weather data are typically very noisyy are based on a

relatively short run of data? and cannot be described by an

adequate technoloi^ical model* The analyst must be aware of

these problems* Sometimes there are no siood solutions? but a

spectral representation may produce freauencies that can be

explained on rational £2 rounds*

Another potential pitfall is a result of the samplins^

theorem* Consider the timely e);ample of an air pollution

model* It would be reaonable to suspect that air pollution

would follow at least a daily cycle? or perhaps an eisiht hour

cycle if mornind and evening rush hours were considered*

Daily samples of air pollution could not hope to uncover

cycles of a shorter period than every two days* Samples

every four hours would be marginally adequate* Hourly

samples would be necessary for a ^ood analysis* Additionally?

recall the reauirement for eoually-spaced sampling intervals*

For various reasons? the analyst may h3\/e no control over

data collection* However? he must always understand what has

been done? or could have been done? to the data? as well as

what he is doind to it? in order to avoid erroneous

conclusions *
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Ill* THE LINEAR DISCRETE KALMAN FILTER

A* DESCRIPTION

The linear discrete Kalman filter is 3 recursive Bayesisn

least-SQuares estimator of the state vector^ of a linear

system based on a vector of noisy measurements made at

discrete time intervals* The process to be estimated is

assumed to be an n -state Gauss-Markov process of order ky

subject to process noise U with zero mean and covariance

matrix Q* The process is observed by an m-dimensional

measurement » subject to measurement noise V (not to be

confused with frequency (v)) with zero mean and covariance

matrix R» The filter reauires a prior Bayesian estimate of

system state and covariance* The recursive estimate of system

state at time t is obtained by the formula

X(t:t)= X(tlt"-1) f K<t)CZ(t)~HX(tlt-l).l

where

X(tlt) state estimate based on current measurement

Z(t) current measurement

X(t!t-1) state estimate prior to current measurement

K<t) Kalman da in matrix (to be discussed later)

H observation matrixy which is constant

The derivation of the Kalman filter eauations may be
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found in Gelb Cref» 411 A summary of the filter eauations i<s

presented in fi:^ure 2? which should be consulted in order to

follow the subseouent discussion*

In General y the state model represents a dynamic system?

that isi' one which chansles with time* The extrapolation of

the state estimate to the time of the next observation is

obtained by the formula:

X(tfl!t) = § X(t!t)

where ^ is the state transition matrix* The observation

process occurs accordin<2 to the conceptual relation

Z(t) =: HX(t) + V

where X(t) is the true system state observed throu.<5h the

observation matrix Hy and M represents measurement noise?

which is assumed to be a Gaussian random variable with zero

mean and covariance matrix R* Note that the process

represented by this formula is assumed to occur in the real

world* The computation does not occur in the filter* Rather

y

the measurement Z(t) is an input to the filter*

In the linear Kalman filter? the ^ain K(t) does not

depend in any way on the data* It depends only on the model?

and is therefore extremely sensitive to assumptions* Gain is

calculated accordini3 to the formula

T T -1
K(t) = P(t)H CHP(t)H f R3
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where P(t) is the covsriance in the system state estimate

prior to the current measurement and R is the covariance of

the measurement error* The covariance is updated according

to the formula

T(t) = L"I-K(t)H3 P(t)

where S(t) is the state covariance 5iven the current

measurement* and I is the identity matrix* The covariance is

extrapolated to the time immediately prior to the next

observation by the formula

P(tfl) = $ 2.(t) §^i Q

where ^ is the state transition matrix and Q is the

covariance of the process noise* Combinin.d the above two

eauations shows that the covariance of the state estimate at

the time of the current measurement depends on the previous

covariance accordin.d to the formula

2(t) = i:i--K<t)H:3 C(| Z(t-l) i^f Ql

Filter performance is very dependent on adequate

model lin.'^y particularly on the state transition model $ and

the choice of noise covariances R and Q* To a lesser extent?

performance also depends on the initial estimates of system

state X(1!0) and covariance P<1!0)* However f the latter

parameters ar^i less important because their effects decrease
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with tiiTie. If the matrices Rv Qy 5r and H are constant in

timej' the ^^ain K(t) and covariance matrices ^(t) and P(t)

eventually reach a steady state y and are completely

determined by R y Qy ^? and H*

For a 'fiiven linear filtery it will be shown that filter

dainy covariancey and freauency response will be completely

determined by the choice of R and Q»

B. THE SCALAR KALMAN FILTER

The multi-state Kalman filter is a powerful computational

device* Howevery it is difficult and often impossible to

manipulate in closed form because of the freauent occurence

of singular matrices. An analysis of a sins^le-state (scalar)

filter can be used to illustrate the mechanics of the Kalman

filtery and to aid in developing an intuitive understandiri:^

In the discussion that followsy it is assumed that all

matrices are scalarsy andy in particulary Q and H eGual one*

Matri;-.' notation is preserved for clarity* Derivations may be

found in append i;< A»

1 Transient and Steadyj-State Gain

It can be shown (appendix A) that the scalar Kalman

sJain can be expressed recursively as

K(t) ^ K(t-l) f Q/R
K(t-l) -f- Q/R f 1

When the filter reaches steady-state y the ^ain is constant
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and

2R J 4R* R

The inverse relationship is

R 1-K

Thusy the vari<3nce ratio Q/Ry which is the ratio of process

noise variance to measurement noise variance* completely

determines the steady-state i2ain» The steady-state filter is

completely described by the formula

X(t) --= K Z(t) f (1-K) X(t-l)

2 > Frequency Response

Lettind K = a and (1~K) = by the impulse- response

function G(t) may be written

t
G(t) - ab y t = Oy

1

y2y .

The Fourier Transform is

H(v) JG(t) exp (-ivt)dt

H(v) = 3 2. lib exp(-iv)3
i'o

H<:v) = a / i:i - b e>cp(-iv)3
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Since the filter is not symnriet ric y the freQuency response

H(v) h3S both resl and iinadinary parts* The amplitude may be

written

A =
I
H ( V )

I

= yH(v)l-l(-v) = a / / 1 f b^ -2b cos

which reduces to
A --= / Q/R

y Q/R f 2(1 -cos V)

The Phase andle may be written

8(v) arctan / -b sin v
|

[l -b cos v/

The andle for maximum phase shift is

v(max 9) = arccos b = arccos (1~K)

V (ma)-; 8) = arccos (1 f a/2R JQ^/AR^ f Q/R )

Therefore 7 the variance ratio Q/R also completely specifies

the steady-state freauency response of the filter* Amplitude

and phase relationship for several values of ^ain Bre plotted

in figures 3 and 4*

It is evident that hidh Q/R (hi.?ih ^ain) reduces the phase

lad of the filter but allows more of the hidh-f reauency

components to pass* Conversely y low Q/R (low dain)

attenuates more of the hidh-f reouency components « at the

evjpense of an increased phase lad* Note that even at very
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low ^3.in (low Q/R) not all of the hi^h -f reouency component is

attenuated!' and the phase laii is ouite severe* The slope of

the amplitude chan?^e is Quite shallow? imply ini.^ that

attenuation increases Gradually as freauency increases This

is a conseouence of the assumptions and performance will not

he adeauate if the data does not represent a Gauss-Markov

process y but in fact represents some phenomena chani^in.^ with

time

C* IMPROUIMG THE FILTER

The transition band of the filter can be sharpened? and

more of the hi^^h- freauency components eliminated* by runnini^

the data throush two filters in series* The basic scalar

filter was

x(t) == a 2(t) f b x(t-l)

where a - K and h = (1-K)» Runnind the data throu£^h the

filter aiiain? we obtain a new estimate y(t) » where

y(t) =:: a x(t) f b y(t~l)

It should be evident that we can accomplish this all in one

step as

y(t) == a^z(t) f 2b y(t-l) - b y<t~2)
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We need onl'-i to save one additional previous estimate y(t~2)

as well as y(t-l)» The impulse response function is

d < t ) = < t f 1 ) a' b*" y t ••= O'jlf * * *

We have performed a convolution in the time domain ? which

corresponds to a multiplication in the freauenc*:^ domain.

This may not be ejcactly what we want. Let us suppose that we

want the wei^htind coefficient for the present data point

s(t) to be 0»27 in both cases* This reauires a = 0.27 for

the basic filter and a = ^0.27 - 0.52 for the double filter.

The impulse response function for both filters is presented

in fiiJure 5. Note that the double filter fonsets the past

more readily. The amplitude and phase shift for both filters

is presented in figures 6 and 7. The da in for the scalar

filter was 0.27y corresponding to a variance ratio (Q/R) of

0.1. Also note that the double filter has somewhat better

hidh-f reauency attenuations' somewhat less attenuation at low

freouenciesy and a slightly sharper (steeper) transition. We

would therefore expect it to be a bit better at separatin.d a

low-f reauency signal from noise. At low freouencies» the

double filter has less phase shift. Howevery phase shift is

more severe at freauencies above 0.5 radians.

D. performance: comparison

The basic scalar filter and the improved (double) filter

37





IMPUI-SE RKSPOfiSliC FUfJC T I ON

W E I G H T ;i; 11 G C O f.i f~F I C X K N f

0.270a

G

0.22;:

0,:lBO

0,135

» 090

»04:'j

0.000

(i)

G

(D

G
o

L]

(D

O SI^a7l_l£ FILTER
n t< O U B L. E l~ 1 1_ T Ir; I"-:

G

G (i)

G

6
TIME

...__I...G,

i>rrER<

...._G._

9
v'AU

._G.„ 1 ..G._.„i:3..

.1.2

._-! ._.C1„.-.C]

15

FIGURE rS

38





COMHARt'iOH OF SINGLE A((D E'OUE'UE FII_TEP:

flMFUITUDE

1.05 __
I

i
f I

0.70

0.75

0,60

0.45

0.30

o.i;

.L^

_-L i

T i

1 T

1
OOU&LE FILTETR

1 i

T
1 T

i +

L +
i

Ti f

i f

+ i

Ti Tl
fi +

+ i Ti
Tfii

+ f Jri

T++iiL
r+ii++iiii

"t+ + X_ TrT+ + + +LJ.J.J..lL.J.XXXJL

TT++++iiiiiiii
TTTTTF

<5T(!Gl.E:: FIUTEf:;

O.OOi.
0.0

I I

O.S
. I I I I I I _.

1.0 1.5 2,0
FREOUEMCr ( P:ADIAMS/TIME )

FIGURE <5

I I I I

3.0 3 .

5

39





COMPARISON OF SINGLE ONO t'OUE'l.C: FILTER

PHASP. SHIFT (RAt'XANS)

0.001

0,18

•0.;56

-0,54

-0.72

-0.90

I, OB

r

+

ii

1

0.0

ii

1

+ T

LTT
+ T

IT +

+ +

IT f-

i+ +
+ +

1+ +

1 +

i+ f

f i

i+ f

i f

SINGLE riLTEf;: IT +

+ +
IT +

1+ +

+ +
+ T +

IT T

I IT
IT i POUE<LE FILTER

i + T +

+i i++ +
IFTf+TT IT

+

T i +

Ti 1 +11 +

H 11 +

T++++T

I I I I

0,b
I I I

i,0 1,5 2.0 2.5
FRirGUtlfJC I (P:«r>IflNS/TIME)

I I I

3.0 3.5

FIGURE 7

ko





wero coniF'Bred usind the data illustrated in figure B, A

series of independent normal random numbers with zero mean

and variance ten were Generated? to simulate measurement

noise* They were added to a nominal function which was a

combination of steps and a ramp* The ramp function rises 1

unit each measurement interval r which corresponds to one

standard deviation in process noise Qy so at least durinsJ the

ramp functions the data corresponds to the filter design

variance ratio Q/R •= 0«1* A spectral analysis of the data is

presented in figure 9. The signal and noise are presented

separately and in combination. Note that the noise-only scale

is expanded* The noise spectrum is irre-^ulary but overall

Quite flat* The sissnal consists mostly of very low

f reauencies y but also has some hisih freauencies* This would

be expected? since step and ramp functions reauire very hi<3h

freauencies in their Fourier expansion* The hi:^h-f reauency

si.dnal is submerged in noise* The dataf of course? does not

fulfil the assumptions from which the Kalman filter is

derived* However? the real world seldom does either* We are

looking for robustness*

The filters were first tested on the siilnal alone* The

results are presented in fissure 10* It can be seen that

neither filter can respond instantaneously to the

discontinuities in the function? since hi.dh freauencies are

attenuated* Both filters lasl after discontinuities and

durind the ramp rise* This is a conseauence of the non-

symmetric nature of the filters and illustrates the phase

lad* Note that the double filter performs a bit better?
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remainini^ closer to the data throu<^hout (it is a peculiarity

of the f-lottiri;5 routine that only one symbol will he plotted

when ever data points coincide* Therefore!' data points that

do not af^psav should be regarded as occurring simultaneously

with the ones that do appear)

*

The filters were then tested on the noisy data* The

results are presented in figures 11 and 12* The latter plot

has the data suppressed so that the scale can be increased

and more resolution obtained*

The same trends can be observed as were previously* The

double filter la^s less during the trend and transitions*

The double filter appears to follow the noise a bit more

closelyy but overall it follows the sisJnal better than the

basic filter* The averas^e variance between the sisinal and the

filter was 4*20 for the double filter and 5*10 for the basic

filter? which was an 1S% improvement for this simple

modification* The improvement is due to the fact that the

double filter weights more recent data more heavilyy and

remembers less of the past than the scalar Kalman filler?

even thousJh the weisJht on the present observation is the

same *

This simple experiment is only intended to acquaint the

reader with possible improvements to the Kalman filter* Like

any tooly the Kalman filter should not be applied

indiscriminantly The interested reader is referred to

Hamminss Cref*7n for the basic principles of digital filter

desi:3n*
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E, THE TRANSIENT CASE

The sophisticated reader has no doubt noticed that the

steady-state scalar Kalman filter is eauivalent to the

BoK -Jenkins IMA(Oi'li'l) model Cref» IIU and to Brown's

exponential snrioothin<3 model Cref»10ZI* Zehna critici:zed the

exponential smoothing model Zref *131 f notind the bias would

occur if the steady-state model was applied with an

inappropriate prior estimate* Bessler and Zehna L"ref.l4II

developed a ^ain schedule which they call finite exponential

smoothing* Their formula for ^ain is

a(t) = a/d-b"*^ )

where a is the steady state .'^ainy b = (l-a)t- and 3(t) is the

s^ain schedule as a function of time* It is similar to the

Kalman .<3ain schedule if the initial Kalman ^ain K(0) is

chosen as one. In both models? no prior estimate is

reauired* The weisJht on the first observation is one* A

comparison of the two models is illustrated in fi<^ure 13 y for

a steady-state siain of 0*2 and an initial slain of ! The

Kalman Sain was calculated accordin.^ to the recursive formula

in section III .A*

The Kalman filter dain converges faster? althou:^h the

difference is not dreat* The scalar Kalman filter possesses

two other advantasies over the finite exponential smoothing

techniaue* Firsts' if a dood prior estimate does exist? the

ij.8
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Kalman filter allows the initial ^ain to be chosen as less

than one? and its value will be determined bv-i the assumed

covariance of the prior estimate* Alsoy the Kalman model

forces the analyst to at least think about the concepts of

measurement noise and process noisey and to estimate the

noise variance ratio Q/R*

As noted before y a freauency analysis of the transient

case is not appropriate* However y it can be thought of as a

case of transient bandwidth* The filter is initially set to a

hii^her :3ain than steady-state siain* If there is no prior

estimate available? the initial ^ain is oney and the filter

is initially an infinite-bandwidth or all -pass filter. As

data are acauired sSain drops and the bandwidth narrows until

steady-state conditions are achieved* The concept of

transient bandwidth is important to the subject of adaptive

filterins^y to which we will return*

F* HIGHER ORDER FILTERS

The main beauty of the Kalman filter is not in its

statistically unbiased method of calculating^ <^ainy but in its

powerful matrix formulstiony which allows it to be applied as

a multi-dimensional model incorporating any order of

differencing desired* As the state space is increasedy it

auickly becomes impossible to analyse the filter

analytically* Hi<3h-order multi -dimension filters can also

easily exceed the capacity of present digital computers for

real-time applications* Fortunately y it has been found tihat
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the state spscg can be reduced and dimensions decoupled with

very little degradation in the overall accuracy of the state

estimate llrefs* 4 and 51* For e>;ample!' if a 12--state model

can be reduced to 9 states and can be adeauately represented

bv^ three 3-state models » the matri;c calculations can be

considerably simplified and speeded up*

We will examine a second-order (first difference)

filter? which can be used to estimate trend? or velocity. We

will use the latter term* Position and velocity are to he

estimated based only on successive measurements of position.

The state transition and the observation matrices are

§.

[;;]

H = CI 0.1

The covariance matrices i? P? and Q are? of course? 2 by

2 matrices. The state vector has two elements? velocity and

position? while the measurement vector has only position.

The measurement error R is a 1 by 1 matrix which we will

vary. We have chosen Q as

Q

[::]

arcluiri^ that any process noise will be contained entirely in

velocity. That is? there can be no random motion that is not

caused by a random velocity. Randomness of velocity will feed

into position throus^h the state transition matrix.
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Even in this simple C3se» solving an3l\-jticall\:f for

stesd'd-state ^3 in in teriTis of R and Q reauires solving a

system of 4th order polynomial equations. We will opt

instead for a computer solution* The reader may continue to

think in terms of the noise variance ration where R will take

on the values ly 10? 100 and Q will remain constant as above*

Since there is only one non-zero term in the Q matrix y we may

think of the noise variance ratio as the scalar Quantity

a<2?2)/R. The resulting steady-state ^ains are

Moise Variance
Ratio

1*0

0*1

0.01

Position
Gain

*769

362

e locity
Gain

481

211

080

As would he expected^ the position ^ain is much higher

than that of a scalar filter at an eauivalent noise variance

ratio? because the process variation now applies to velocity

rather than position* The velocity da in is considerably less

than the position ^ain? since the velocitvi is not measured

directly but must be estimated from successive measurements

of position The impulse-response function of the medium-i^ain

filter (noise variance ratio 0*1) is presented in fisiure 14*

The amplitude response of these three filters is

compared in fii^ures 15 and 16* The most striking feature is

the amplification which occurs at a specific freauency in the

position freauency response* This implies that the filter is
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most sensitive to (notion in a particular freauency r3n.<^e»

Thusy the natural freauency of the system to be observed c if

it is known y is a sisSnificant desi^^n parameter* Adainx we

observe the attenuation of hidh-f reauency noises* althou<2h a

sii^nificant amount still remains at the maximum freouency

(note that fiirlure 16 does not include the ori.'^in)*

The freauency response of velocity shows a reduction in

amplitude at low freouency* The amplitude at zero freauency

is eaual to the velocity <3ain» This is far from ideal

performance for a differentiator 7 which should have an

amplitude response of zero at zero freauencyy with a slope of

one UP to the cutoff freauency Zref *71 , The differentiator

isy however y reasonably effective at reducing the amplitude

of hidh-f reauency components*

The Phase shift of the filters adain shows increasing

phase laid as dain is decreased* The overall effect is

similar to the scalar filteri' and is otherwise unremarkable*

Thereforey plots are not included*

The data of fii^ure 8 was tested on the lowest-i^ain

velocity filter* Note that the spectral content of the data

(fisJure 9) is Guite low-f reauency y and that the bandwidth of

the lowest i^ain velocity filter is auite widey and indeed is

higher than that of our scalar filter* So it midht be

expected that the velocity filter would have some trouble

with the data*

The velocity filter performance on the nominal function

only is presented in figure 17* The filter overshoots auite

badly at the discontinuous steps? which y of course y are an
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inripulse in velocity* The overshoot is less at the start and

stop of the trend. It does settle down and track the trend

without Issli' which is an inriprovement in perf orinance over the

scalar filter* It should be noted that with hisJher dainy the

filter would track the nominal data better y while with lower

Gains' the overshoots would be more severe*

The performance of the velocity filter on the data is

illustrated in fi.'^ure IS* As expected? the filter tends to

follow the noise too much* Howevery it does follow the

discontinuities much more ouickly than the scalar filter*

This points out the fact that the hi::3her-order filter is more

effective as a maneuver detector but it is less suitable for

5moothin<3 very noisy data* This asJain illustrates the

concept of bandwidth? which is Guite hii^h even in the

low-dain velocity filter*

In retrospect? the decision to choose Q(lrl) as zero may

not have been wise* Allowind some process noise in position?

exclusive of velocity? could well have some smoothing effect

on the velocity estimate? which would result in smoother

one-period ahead predictions* This could smooth the

operation of the filter a bit* The possible combinations of

filter parameters? even for this simple filter? are auite

numerous*

The freouency response of a second-difference

(acceleration) filter was also determined for comparison*

The results are presented in figure 19* The Q matrix was

zero except for Q(3?3)? which was one* R was chosen as 10?

resulting in a nominal noise variance ratio of 0*1* Ada in?
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the da in was hi :3her than that of a velocity filter with an

eauivalent noise variance ratio* The amplification of

low -f reauency components of position was increaseds- and the

zero-f reouency amplitudes of velocity and acceleration aiSain

corresponded to filter :3a in*
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IU« ESTIMATION y SMOOTHING y AND PREDICTION

A» ESTIMATION

So far* we have been concerned only with estimation of

the present state* A filter designed to provide such an

estimate cannot be symmetric y because it can put no wei:^ht on

future observations* Thusr phase lasJ is inevitable y and is

one of the parameters that should be considered in the design

process*

B» SMOOTHING

Smoothing is the use of a filter to provide an estimate

of past states* Such a filter can be made symmetric^ which

completely eliminates the phase l3<3» Non-recursive smoothin:^

filters cause a loss of N data points at each end of the

data? where the span of the filter is <-Ny N)»

The Kalman filter can be used as a smoother by simply

runninsJ the forward estimate through the filter in the

opposite direction* The impulse response function of the

scalar filter was

3<t) = ab"^

It can be shown (appendix^ A) that the impulse response
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function of the smoother (forward and backward filters

combined) is

t
G(t) = ab /(1+b)

*

which is Just the convolution

3(t) (D £i(-t)

The Kalman filter is able to provide an estimate

throu<3hout the span of the data* No data is lost at either

end* However? due to transient effects y the data near either

end is subject to phase shift and some increase in <3ain* The

filter is necessarily not symmetric near each end of the data

span*

Gelb L"ref*4II includes a complete discussion of

fixed-point » f i;ced-la<2f and fixed-interval smoothin53* We

will restrict our attention to the scalar? fixed-interval

y

steady -state casey i.^norins5 the end effects*

The scalar Kalman filter of section III*D (noise

variance ratio of O.ly <3ain of 0*27) was used as a smoother

on the data of figure 8* The results are presented in

figure 20* As compared to the one-pass performance as

illustrated in fi<3ure 12y the smoothed data shows phase la^

removed and peaks in the oscillations reduced* However? the

smoother has less ability to follow the discontinuities in

the nominal function* Tiie removal of the phase la<2 is

characteristic of any symmetric filter* However? the reduced
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ability to follow the discontinuities is the result of

reduced effective :^sin* Since we have convolved the filter

weidhtsy we have sQuared the amr- litude of the freauency

response. The wei^iht on the data point at (t--0) is reduced*

The effective dain was 0,27 for the forward filter^ and 0.156

for the smooth in52 filter. This reduction in effective ^ain

is not addressed in the literature on the Kalman filter^ and

it is unclear how smoother ^ain should he chosen in relation

to the noise variance ratio Q/R.

C. A COMPARISON OF TWO SMOOTHERS

The Kalman smoother of the previous section was comparGd

with a Gaussian smoother to illustrate some design options

and procedures. The Gaussian smoother was chosen from amon^^

a hu53e variety of data windows because it has s2ood smoothin<3

properties!' and because it is particularly easy to desii^n.

Interestins^ly y preliminary experiments showed repetitive

applications of a Kalman filter to result in an approximately

Gaussian filter weight distribution. A comparison of the

Gaussian smoother to a variety of other windows is contained

in Harris Cref.1511.

The Gaussian smoother is a symmetric filter with the

weights chosen accordinsf to a discretized and truncated

normal distribution. The formula is

^(t) = K exp("-t^/2<r*)
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where t is an inte53e?r on the rani^e (-Ny N) and K is chosen

such that

.d(t)

The ease of desi<^n comes froin tihe observation that the

Fourier transfornri of the continuous Normal distribution is

also a Normal distribution with scale parameter (variance)

eaual to l/(y. As lon.'Si as (flr- > 2) and truncation is not more

severe than Jn| 2ffv a reasonable approximation of the

freauency response for the Gaussian digital filter is

G(^) Si e>cp( -0'*v^/2)

The scale parameter was chosen such that the frequency

response was eaual at (v - 0*5) Skippins^ the algebraic

details? this re«uired (fi* = 3 » 1 .1 ) The Gaussian smoother was

truncated to (N ~ 7)f resultinsJ in a filter span of 15 data

points. The freGuency response of both filters is presented

in figure 21!- and the filter weisJhtinsJ coefficients are

presented in fidure 22.

Since we truncated the Gaussian smoother f we would

expect some ripples in the tail of the freauency response

r

which are Just barely visible in fidure 21. The Gaussian

filter has a sharper transition band? and is wuite effective

in blocking hisJh freauencies* As compared to the Kalman

smoothers the Gaussian filter wei.<^ht5 the present data point
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less/ nearby dabs points more and farther data points less*

The performance of the Gaussian smoother on the data of

figure 3 is presented in figure 23* A comparison of the

Kalman and Gaussian smoothers is presented in fixtures 24 and

25 In fissure 24? the smoothers are applied only to the

nominal function It can be seen that the Gaussian smoother

followed the discontinuities and corners of the nominal

function better than the Kalman smoother However y when the

smoothers were applied to the noisy data? the results were

less clear (figure 25). The Gaussian smoother as^ain followed

the nominal function a bit betters" but it also followed

low-f reauency components of the noise a bit more? tending to

emphasize cyclic effects that aren't really there. The mean

SQuare difference between the smoothed estimate and the

nominal function were very similar)- 1.81 for the Gaussian

smoother and 1.34 for the Kalman smoother. Thusf the Kalman

filter seems auite effective when used as a smoother. The

reader is reminded that the mean s«uare difference for Vne

scalar Kalman filter was 5.1y which clearly indicates the

superiority of smooth ins' over filtering.

D* PREDICTION

Prediction is difficult. Recall that a stochastic

process is an ensemble of possible pathsy while data is the

manifestation of one member of that ensemble. What could

have happened did? but what can happen isn't necessarily

.^oind to. Prediction can be thoujSht of as filtering without
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messureiTiGnts y and the estimste is projected forward in time

throusJh the state trsrisition model* Filtered or smoothed

estimates may be auite accurate!' even if the state transition

model is not. However? dood predictions ai'e heavily

dependent on an accurate state transition model*

The hi?iJher-order Kalman filters are polynomial models*

Hammings has pointed out that polynomial models are poor

predictors y since the estimate tends to veer off to plus or

minus infinity as soon as the model is released from the data

Cref«7;i, There is no reouirement to use the same model for

prediction as for filterinsj. For example? it mi<3ht make sense

to track a tar.<3et with an acceleration filter? but to compute

fire control information based on a constant-velocity model?

since target acceleration is £3en(3rally assumed random with

nero mean. Similarly!/ the economist may desire to filter

data with a hidh-order models but make predictions based on

constant trend, Clark Crcf.5II discusses a somewhat more

sophisticated method due to Sin?ier? in which the model decays

from an acceleration predictor to a constant-velocity

predictor as prediction time increases. Such techniaues are

heuristic in nature? but can prove valuable? to the innovative

analyst

.

An interesting^ example of the above concept can be found

in Box and Jenkins Cref.llII. They compared a quadratic

forecast due to Brown Cref.103 with their own IMA<0?1?1)

model with a sJain of 0.9. The latter model is eauivalent to

the steady-state scalar Kalman filter. The data used for the

comparison was a time series of IBM stock prices. Box and
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Jenkins observed thaty while the Quadratic model mi^ht well

be used to fit the data? its performance as a predictor was

clearly inferior to the simpler IMA(Oyl!»l) model* This is

not surprisin<=l • since it has lond been su:3i3ested that stock

prices behave as a randorfi walk? and that the best forecast of

stock pricey at least in the short runy is the present price

Cref»llll» Note that the foredoin'2 implies that the sJain

should be set to l»Oy which corresponds to no filtering at

all* Therefore y E<ox and Jenkins apparently found that some

filterinsS of the data was sr-'pvop'viate f even thousJh the :^ain

they used was auite hii^h*
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V. some: refinements y extensions and alternatives

A, ADAPTH^E FILTERING

In the linear Kslman filter? the slain is completely

independent of the data* Clearly? this will result in maJor

errors if the i^ain is chosen inappropriately or if the data

statistics change* If the :3ain is too low? the filter la.<3s

badly* In the extreme case? which occurs if the process

noise covariance Q is much too low? the filter pays much too

much attention to the past and diverges from the data* On

the other hand? if the iHain is too hi3h? the filter pays too

much attention to the data and the state estimate contains

noise. If the filter is a polynomial model and is to be used

as a predictor? the resultins^ errors will be spectacular*

The solution is simple in concept but can be difficult

to implement. One simply sets the steady -state ^ain as low

as appropriate for the stable process bein^ estimated. In

target trackings? the s^ain would be set to track an airplane

flying a straisiht path. A "maneuver detector" or "trend

detector" is incorporated? which is nothini^ more than a

recursive statistical test applied to the residuals to

determine whether or not they come from a zero-mean

distribution. If not? the bandwidth is iSradually widened

(^ain is increased) until the residuals pass the zero-mean

test. Then? the da in is allowed to decrease toward the

stable? steady-state value.
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Further detailis and some novel <3f='p roaches are discussed

in Clsrk C reft 53 Two exsinples taken from Clark are

illustrated in fidure 26* The conceptual adaptive filter

discussed above reauires time to detect the maneuver or

trendy adapt to ity and reconver?3e to a stable ^ain settind*

Durin'ii this time? the state estimate is less accurate y and

the time reauired ma^:^ be unacceptable lonsi for some

appl i cat ions

Clark proposes a dual -bandwidth adaptive filter to speed

adaptation* The process is simultaneously tracked by a

narrow-band and a wide-band filter* If a maneuver or trend

is detectedy the state estimate of the wide-band filter is

fed into the narrow-band filter. Ideality this would allow

the narrow-band filter to Jump immediately to the current

(unbiased) estimate of the wide-band filter* In practicer

Clark found that some wideninj^ of the bandwidth of the

narrow-band filter was also reojuired*

Voluminous literature exists on the subject? much of it

very difficult to read* Clark Cref*5Il incorporates a

particularly lucid account of stability problems encounteredy

methods of reducin<.;i the cost of false detection of biasr

analytical methods of determining filter parameters y and

experimental results* Although Clark's filter was desi.^ned

to track and predict the position of airborne tariSetsy the

methods discussed are adaptable to the filtering of economic

time series or virtually any other stochastic process*
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B. NON-LINEAR FILTERING

In the non-l inesr Kslman filters one or more of the

nri<3t rices Q? Ry Hy or § are allowed to vary with time* Since

this results in a time-variation of the ^ain rriatrixy

Quantitative analysis in the frcauency domain is no longer

aF-propriate However:' it is well to keep the concepts in mind

in order to sJain additional insis^ht* There are two basic

types of non-linearities that may arise? non- linear

measurements and non-linear dynamics*

1 Non-Linear iieasurements

Non-linear measurements arise when observations are

made in one coordinate system and the model reauires that the

states be estimated in another coordinate system* In this

case/ the matrices R and H are time~varyin:S functions of the
I

coordinate t ransformationr and do depend on the datar in the

sensis that they depend on the location of the data within the

coordinate system* This type of non-linearity is often easy

to handle*

For the best example of non- linear measurements we must

return to the tardet-t racking model* Fire control systems

<3enerally track in azimuth" elevation y and ran:^e * However

r

the model is a polynomial in Cartesian coordinates r but not

in polar coordinates* Airplanes often fly a straight pathr

but seldom!- if ever? fly a constant bearing or rans^e with

respect to the radar observer*- In this model* the
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non-linearity can be reduced by cansiderini3 the Cartesian

iTieasurement error as a linear transformation of the polar

measurement error* If the polar measurement error is

Gaussian)' the Cartesian measurement error is very nearly

Gaussian with covariance matrix R a function of the

coordinate transformation*

The Cartesian R matrix will not be diagonal ^ even if the

polar R matrix is* However y Clark Cref.SU has found that

setting the off-diadonal terms of the Cartesian R matrix to

zero did not appreciably degrade filter performance. In this

wayy he was able to decouple a nine-state filter into three

three-state filters*

If the measurement non-linearity is too severe y it may

not be reasonable to assume that the noise is Gaussian.

However? limited experiments performed on data with

non-Gaussian noise (an exponential distribution was used)

showed that the Kalman smoother and the Gaussian smoother

were Quite robust as lon^ as the <2airi was not hisJh* This

seems to be a conseauence of the Central Limit Theorem? since

low s$ain implies a linear combination of a fairly larde

number of data points* It should be noted that a filter

designed to handle this situation is still linear? althourJh

the Gaussian assumption is violated*

2 . Non-Linear Dynamics

Non-linear dynamics are considerably harder to handle

than non-linear measurements* This is unfortunate? since the

areas of potential application are numerous* Non-linear
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dynamics occur when the Q or ^ matrices depend on the

previous history of the process.

As 3 simple example? consider the multiple resJression

model

y(t) --= 3 >£,(t) + b x^(t) + y(t-l)

where y(t-l) corresponds to the intercept term. In this

model)' we wish to estimate the dependent variable y(t). To do

soy we need to estimate not only the independent variables

x,(t) and x(t)» but also the reilression coefficients a and b»

Let us assume we can measure y<L)y x.(t)y and xlt) f but not a

and b* Assumin<^ a first-order system? the state update

eauation is

y(tfl It)

x/t+l It)

:(j(tfl It)

a(t+l It)

b<t+l It)

1 a(tlt) b(tlt)

1

10
10

1

y(t I t)

x,( 1 1 1

)

; ;j( 1 1 t

)

a ( 1 1 1

)

b ( 1 1 1

)

Where the transition matrix is unfortunately not uniaue. The

first row of the transition matrix could be equally well

represented by

i: 1 x/tit) ;i^(tlt)3
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or even

C 1 3(t!t)/2 b<tlt)/2 K/t:t)/2 x^(t!t)/2 1

and it obviously changes at every iteration^ It is at this

point that filter desisin becomes an art*

Note that the independent variables and the reiiiression

coefficients are assumed here to be first-order Gauss-Markov

processes* Increasingly hi^h orders would multiply the state

SP3C©

Several experiments were run usini^ a second-order model

similar to the above on the Box -Jenkins Cref»llll series M

data (sales data with leadind indicator)* Quantitative

results are not presented? because the Box-Jenkins data did

not include sufficient forecast estimates for comparison

f

some " cheat ini3" was done because the Box-Jenkins parameters

were used in filter desij3ny and it never became clear exactly

what parameters were appropriate for the R and Q matrices*

However!' some Qualitative comments are appropriate* The

model did work* Some instability was noted in the regression

parameters* It became obvious that tfie sJain on the

regression parameters must be set very low in comparison to

the £{ain on the independent vari ablest in order to keep the

regression parameter estimates from varying faster than the

estimates of the independent variables* This implies

choosin<3 small values for the noise variance of the

regression parameters* Also!- by keeping the ^ain fairly low
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on the lesdiriiS indicator!' it W3S possible to induce a phsse

l3d that 3PproxiiTiste.ly cancelled the lead.

The reaui rement to keep ^ain low in order to improve

stability is evidently a conseauence of the increased de<3rees

of freedom. The more parameters to be estimatodc the more

dei^rees of freedom in the model* HisJh ^ain is anala^ous to

relatively few data points beinsJ used in redression* The

more variables we introduce into the model » the less ^ain we

ave able to use*

It is indeed unfortunate that multiple re<3ression is a

non-linear problem when cast in a filter model* It would be

useful to have a multiple regression model for which more

recent observations were wei«3hted more heavily than older

ones in determining the regression parameters* No doubt the

innovative analyst could develop one to fit the specific

situation* However r clearly-defined techniques with

demonstrated results ar<s not available to the practitioner*

The experts all have their favorite methods f and much of the

literature is difficult to read* There is clearly a need for

additional research in this area*

C* NON-PARAMETRIC FILTERING

We close our discussion with an interesting^ alternative

to conventional digital filterin;;^ techniaues* There ax^e

those who are bothered by the usual distributional

assumptions made in any application of parametric statistics*

An extensive literature has developed in the field of
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non-p3r<3iTie trie statistics? which is based on the principle

that distributional assumptions are avoidedy or at least

weakened* A strond point of non-parametric statistics is

relative insensi tivi ty to extreme outliers* However y little

pro.'^ress has been made in the non-parametric analysis of time

series* An exception may be found in Tukey Cref*16Ilf which

is presented in a hi^Shly intuitive manner? with little or no

theoretical b3ck:3round.

One simple idea advanced by Tukey is that of median

smoothini^* The smoothed estimate is based on the median of

several adjacent data points y rather than on a weighted

linear combination* The result is obviously a series of

steps y since adjacent data points will often have the same

median. Tukey su^<3ests several methods to restore some

curvature in the estimate* These will not be developed here*

Tukey 's methods would be relatively hard to mechanize on a

computer y because the methodolosJy reauires extensive logical

r ij 1 e s *

Tukey 's methods could be extended to real-time filtering

problems by developing a non-parametric analoi^ to the

recursive di:^it3l filter* Recall that the recursive dii^ital

filter consists of a weighted linear combination of recent

data points added to a weighted linear combination of recent

estimates* The non-parametric filter estimate would simply

be the median of several recent data points and several

recent states* The idea is intuitively appeal in^S and should

be the subject of future research* Discussion here will be

limited to some of the more obvious traps that await the
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unwsry.

If such 3 filter were to be designed? the

iiripulse- response function would be mean ins^l ess f because the

median estimate would always be 2:ero if the span of the

filter were Greater than two. Nevertheless f a median filter

does have a freauency response^ which in fact is a

particularly nasty one*

Consider a seven-point median smoother y where the state

estimate at time t is the median of the measurements made at

time (t-3) to time (t+3)» This is anala^ous to the

rectansJular (parametric) window discussed in Hammins^ Cref»7II»

The rectangular window wei;3hts all data points within the

window eQually. The median window obviously does the same*

As a result? we would expect the freauency response of the

median window to have severe ripples as does that of the

rectani^ular window* We can see intuitively that this is true*

Since the span of our example median window is 7f the

freauency response of any freauencvj that is a non-;rero

integer multiple of 1/7 is obviously zero* The freauency

response at zero freauency is one» since the zero freauency

implies a constant* The amplitude of the freauency response

falls off to the first zero» then rises asiain* Successive

maxima decrease with increasinsJ freauency^ but the freauency

response is always non-zero except at freauencies that ax^e

non-zero inte^^er multiples of the reciprocal of the span of

the window* Thus» the non-parametric filter will need to

incorporate some (unspecified) device to improve the

freauency response*
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Two other difficulties are worthy of mention, Firstr

the S3iriplin£3 distribution of the median may have a 1 artier

variance than the samplini^ distribution of the mean* This

means that the parametric filter may provide a better

estimate than the non-parametric filter if the assumptions on

which the parametric filter is based are at all reasonable*

Second r for the non-parametric filter to be useful? the

median must be a statistic of interest* If it is assumed

that the distribution is symmetric? the median and mean are?

of course? eaual* If the samplinsl distribution is skewed? the

mean cannot be deduced from the median unless strict

parametric assumptions are imposed? which of course? override

the Justification for the non-parametric filter in the first

place* The idea is nevertheless intrii^uin^? and should be

explored further*
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UI, SOME APPLICATIONS

The KsliTisn filter has been applied to Operations Research

and economic problems with varyini^ de^^rees of success*

McWhorter Cref.1711 conducted an empirical study of the Kalmsn

filter in which he compared it to several other methods of

time series forecastin<3 The results were mijced? with no

method dominating The Kalman filter compared more favorably

over a short term fo recast in."^ horizon than over a lonsJ term

one* Its performance was? not surprisin.<^ly !» found to be

degraded if the structural model was seriously mis-specif ied»

McWhorter pointed out some of the difficulties encountered in

building the model* In an economic contextr it is often very

difficult to specify the noise covariance matrices R and Q i*

and even to identify the structure of the state transition

matrix $ The assumptions made are often 3weepin<:J and

arbitrary!* in contrast to trackinx^ applications where the

noise processes and especially the state transition model are

relatively well understood*

A* INVENTORY MANAGEMENT

The Kalman filter is directly applicable to inventory

management y and if properly designed? should be superior to

the finite exponential smoothing model of Bessler and Zehna

Cref*143* Downini^y Pike? and Morrison Cref*lSIl designed a
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KaliTisn filter for the inventors control of nuclear material*

The paper is readable y and the filter is we 1 1 -documented and

ess'j to understand* They use the concept of a control

vector!' which has not been mentioned here. An interestinid

peculiarity of the model is that one of the measurements is

only available once every twenty iterations. The state

transition matrix is a simple material balance relation which

is obviously auite accurate. Such a model could be expected

to perform ouite well.

B. ESTIMATING A MEAN FUNCTION

AlthousJh the Kalman filter was derived from an assumption

of stationari ty y we have seen that it can be Quite powerful

in separatinsi a time varyinsJ sisJnal from noise. The examples

of section III were all essentially estimates of the

time-v3ryin<3 mean function of a stochastic process. The

example process was Gaussian with a constant variance. The

variance was the measurement noise y and so directly

influenced the ^ain. If variance were not constant? the

performance of a non-adaptive filter would be dei^raded. If

the change in variance was jareat erioui-ihr an adaptive filter

would be rewuired.

A dood method of estimatin:^ a time-varying mean function

could be applied in numerous areas? such as any sort of

traffic or flow control problem? perhaps in Quality control

of larde-batch or flow manufacturing processes? and any

application where it is desirable to detect a chanise in the
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process. The sensitivity of the filter is directly

adjustable bvj the modeller throu:^h the noise covarisnce

matrices Q and R.

A particularly useful application would he to the

estimation of the rate parameter of a non-time-homodeneous

Poisson process* If this can be done accurately y the process

can be transformed to a stationary one Cref»6Il? which i^^reatly

expands the number of analytic tools that can be used*

The Poisson process is a counting process in continuous

times' and to attempt to filter a strinsi of interarrival time

data would violate the sampling theorem. The times of

arrival are the measurement times y and they are most

certainly not made at eaually spaced intervals. Insteady the

filter may be desiidned to sample a countin?^ process. At

discrete intervals the filter would count the number of

arrivals since some arbitrary time oriri^in. If the process

were to continue for a lon:^ timey the time origin misiht

occasionally have to be reset to prevent computer overflow.

It is easy to see how this samplin.<^ process could be

implemented even if the input data were actually arrival

instants in continuous time. The sampling interval should be

small enough that there is low probability that more than one

arrival would occur durind a sJiven measurement interval.

Since the number of arrivals is monotone non-decreasini-:J in

timey a velocity or trend model would be appropriate. The

input data would consist of intej^ers. The state estimates

would not. The non-inteder estimate of number of arrivals up

to the current time would not be useful to us. However y the
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second element of the state vector^ the velocity or trends'

would in fact be the filtered arrival rate estimate Since

the process is noisy and non-Gaussian? a very low

steady-state dain is appropriate*

The time-varyind Poisson process cannot have constant

variance f since the mean and the variance are eQU3l4 A low

arrival rate implies hisih variance in the Poisson process y

which is eauivalent to hij^h measurement noisey which reauires

low ^ain* A const3nt-:3ain filter would therefore be

relatively more sensitive at low arrival rates than at hi:3h

arrival rates* An adaptive filter could be easily desij^ned

to use the inverse of the rate estimate as the measurement

noise variance estimate* Stability misJht reauire that the

adjustment of the measurement noise variance be itself a

filtering process^ in which the incominsJ variance estimate is

regarded as data*

C» MULTIPLE REGRESSION

If the resiression constants are assumed known (or

computed by other means) the design of an appropriate filter

is Quite straightforward)' and quality of estimation is

related directly to the Quality of the model. Note that the

velocity filter is simply the regression of velocity on

position? where the slope parameter is known to be one* If

the reslression coefficients are assumed to vary in time? the

problem becomes non~ linear and is auite complex* Because of

the immense applicability of this model? additional
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developmental work is indeed 3 fertile field for future

research

D. SOME DESIGN CONSIDERATIONS

In applications where the noise covariance matrices R and

Qr and the system dynamic model (state transition matrix ^)

are known or easily estimated)' desisJn is straightforward

and has been successfully accomplished while remainini^ in the

time domain* However r in applications where sweepinsJ

assumptions are reauired? a freauency -domain analysis could

he very helpful* Some sjuidelines are as followsJ

1 . Spectral Analysis of the Data

A spectral analysis of sample data will show what the

freauency response of the filter should he* The Fast Fourier

Transform (FFT) prc^ram available in most computer libraries

is Generally easy to use. Howevery the FFT pr-o-^rams

Generally reauire an exact power of 2 for the number of data

points* H3mmin.<3 Cref.7;j points out some pitfalls* Since

stationarity is assumed^ the data should be considered as a

rotating cylinder^ and if the starting and endini^ values are

not similarif a discontinuity will exist in the spectrum* The

data can be tapered and padded with zeros» but exactly the

best method to accomplish this is unknown. Several methods

mi^ht be tried*

The main virtue of the FFT is its speed* It works well

on a lond run of data* If the number of data points is small
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(around a hundred) it mii^ht be effective to find (or write) a

less efficient.' conventional discrete Fourier transform

program!' which would not reauire padded y truncated? or

tapered data if the starting and ending values are similar*

If the FFT program used does not reauire an exact power of

two for the number of input data points? it would be well to

find out why not* The program may be doins^ the paddin<3 and

tsperind itselfir and the analyst should be curious as to how*

The analyst should remember that the spectrum is computed

from the dstay and it is therefore an estimate* If the run

of data is shorts there will be considerable variance in the

estimate

2* Frequency Analysis of Proposed Models

The analyst may test the effect of assumptions made

in desidnind the filter by simply obtaining an impulse

response of the filter and running it throu^^h an FFT.

Truncation and t3Perin<3 is no problem y because the impulse

response will approach zero with time* The profer impulse

n
function is simply a 1 followed by 2 -1 neros for a filtery

or a 1 in the middle of 2 -1 zeros for a smoother* If the

output of the FFT consists of real and imaj^inary componentsy

it will be necessary to compute amplitude and phase*

3* Adjusting the Model

If the model dynamics seem adequate but the bandwidth

is wrondy the analyst should by now have some insight into

what adjustments to make to the noise covariance matrices to
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try to iiTiPv^ove things* In a model of any coiriplexity at all?

there are numerous passible conibinations However!' even soine

improvement over the initial assumptions will be beneficial*

Ule are not looking for theoretical elegance* we avQ lookinsJ

for performance*

Perhaps the model dynamics obviously call for a trend

filter or even a ch3n.^e-of-trend (acceleration) filterr but

the data is auite noisy* Consideration should be !:;5iven to

lowerinsJ the order of the filter* A very low-^ain velocity

filter will not follow changes in trend well* A hi^her-:3ain

scalar filter may do so more ef fecti vely ? 3lthou<3h it will

lad a steady trend* There are many tradeoffs^ and we cannot

achieve perfection.

4 Testing the Model

The model should be tested on real or simulated data*

From here onr the model lin^:^ process is the standard cyclical

oney doings back to earlier steps as necessary until

satisfactory performance is achieved*
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APPENDIX A> DEPg NATIONS

1* SCALAR KALMAN FILTER

3* Recursive Forinula for Kalman Gain

The cov3ri<3rice extrapolation eauation

P<t) = I Z(t-l) -^ i Q

reduces in the scalar case to

P<t) = 2<t-l) + Q

Since

K(t) = 2(t) H^r"'

we may write? for the scalar case?

2(t-l) = K(t-l) R

Similarly? since

T r -1
K(t) = PH C HPH + R3

by reducing to the scalar case and substituting!- we may write

K(t) = K(t-l) R -f Q = K(t-1) + Q/R
K(t-l) R + a f R K(t-l) f Q/R + 1

b . Steady-State Kalman Gain

Rearran^in^^ the recursive slain equation and letting

K(t) = K(t-l) = K

we see that

K^f (a/R)K - Q/R =

By the Quadratic formula?

2R / 4R* R

We are obliged to take the larder root? since the smaller
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root would force the sJsin to be negative. We also observe the

inverse relationshiF'

(K + a/2R)^ = a^/4R*+ Q/R

K^+ (a/R)K + a^/4R^ •= G*/4R*+ Q/R

K* = (Q/R)(l-K)

Q/R = K*/(.l-K)

c Transient Kaltrian Gain

Recall that the K'alman filter reauires a prior state

estimate X(0) and a prior estimate of covariance F'(0). This

reauirement can be avoided by usinsJ K(l) = 1? which allows

the initial state estimate to be eaual to the first

measurement* Recall that

K(t) = I(t) H R

Since K(l) = 1? then 2(1) = R

d* Amplitude and Phase of FreGuency Response

The freauency response is

H(v) = 3 2-Cb e>cp(~iv)3^

sxnce

then

|b exp(-iv) I < 1

H(v) = a / lll-b exp(-iv)3

The amplitude squared is

2 2
A = H(v) H(-v) ••= a / Cl-b exp(-iv):] Cl-b eKP(iv)3
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B y hi I.J 1 e r ' s r e 1 <3 1 i o ri

A^ ^:= a^/ CI f tf -2b cos vl

which iTisy be writto^n

A* --- 3^/ C(l-b)*f 2b (1 -cos v).]

recsl 1 iriid that

Q/R ^ K^/(l-K) = 3^/b

WG may write the arriplitude as

a/R
Q/R f 2(l-cos V)

The phase an^^le is

9(v) = arctan ClmCv) / Re(v)3

where Iiti(v) and Re(v) are the ima.<3inary and real parts of

H(v)» which iTiay be written

H ( V

)

II 1 •- b e ;^ p ( i V ) 1

lll-ta exp(-iv) JCl-b exp<iv)3

H ( V ) = a ( 1 f b c Q s V - i b si n v

)

J. f b •2b cos V

which allows us to write

8(v) ~ arctan C ( -b sin v) / (
1 ~b cos v )

3

The an^le -for niaxiiTtum phase shift occurs when

d8(v) - b -- b cos V
dv 1 f b* -2b cos V

so tha-t the iTiaKimum phase shift 9(v){Tiax occurs when

V - arccos b

and has a value of

8(v)nriax = arctan -b sin (arccos b)
1-b cos (arccos b)

arctan ( ~b / ./1-b'- )/
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2» IMPULSE RESPONSE FUNCTIONS

The .i(TiPul<j;e- response of the scalar Kalman filter is

td<t)=3b t=0ylr27.».

a* IiTiPulse-response of Double Filter

^(t) = ab 3b

^ t

t ) - ^^ ah ao = a ^^ b b

d(t) -= (t + 1) 3^b^

b* Inripulse-response of Scalar Kalman Smoother

^(t) = ab ® ab

£i ( t ) - >^_ a b a b -a ^ b = a b ^^ b

<J(t) •= a^b^/ (1-b) = a b*/(l+b)
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