DGD.

MONTEREY. CALTFURNIA 93943-8002

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DIGITALLY CONTROLLED "PROGAMMABLE" ACTIVE FILTERS

by
Panagiotis Andresakis
December 1985

SUPPLEMENTARY NOTATION

COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) digitally controlled analog filter
FIELO	GROUP	SUB-GROUP	

ABSTRACT (Continue on reverse if necessary and identify by block number)
In this research a general purpose digitally controlled analog filter s presented. The novel design is a cascade of second-order sections that re individually programmed to achieve any filtering toplogies. Twoinary words are used to control the pole frequency w p and selectivity p of each section independently. Each second-order section is a eneralized-Immittance Converter (GIC) biquads which are known for their igh stability and low active and passive sensitivity. CMOS switches are sed to electronically relocate the minimum number of passive elements to achieve function programmability. Switches are also used to select the umber of cascaded sections to realize higher order transfer functions.

DISTRIBUTION/AVAILABILITY OF ABSTRACT Qunclassified Nnlimited SAME AS RPT. DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
NAME OF RESPONSIBLE INDIVIDUAL Sherif Michael	22b. TELEPHONE (Include Area Code) (408) 646-2252	22c. Office SYMBOL Code 62 Mi

Digitally Controlled "Programmable" Active Filters

by

Panagiotis Andresakis
Lieutanant Hellenic Navy B.S., Hellenic Naval Academy 1977

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the

NAVAL POSTGRADUATE SCHOOL December 1985

John N/. Dyer
Dean of Science and Engineering

ABSTRACT

In this research a general purpose digitally controlled analog filter is presented. The novel design is a cascade of second order sections that are individually programmed to achieve any filtering topologies. Two-binary words are used to control the pole frequency ωp and selectivity $Q p$ of each section independently. Each second-order section is a Generalized-Immittance Converter (GIC) biquads which are known for their high stability and low active and passive sensitivity. CMOS switches are used to electronically relocate the minimum number of passive elements to achieve function programmability. Switches are also used to select the number of cascaded sections to realize higher order transfer functions.

TABLE OF CONTENTS

I. INTRODUCTION 14
A. THE NEED FOR AN ACTIVE PROGRAMMABLE FILTER 14
B. LINEAR SYSTEMS 16
C. FILTERS AS A SPECIAL CLASS OF LINEAR SYSTEMS. 18
D. ACTIVE FILTERS FUNDAMENTALS 18
E. GENERALIZED IMMITTANCE CONVERTER 19
II. THEORETICAL ANALYSIS 21
A. BIQUADRATIC TRANSFER FUNCTIONS 21

1. Low Pass 22
2. High Pass 23
3. Band Pass 23
4. Notch 23
5. All Pass 24
B. SENSITIVITY FUNCTIONS 24
6. Magnitude Function Deviation 25
7. Classical Sensitivity 26
8. Gain Sensitivity Product 27
9. Determining the Variability of the Transfer Function Magnitude 28
C. PROPOSED GIC FILTER, ANALYSIS 29
10. Low Pass Realization 34
11. High Pass Realization 36
12. Band Pass Realization. 37
13. Notch Realization 38
14. All Pass Realization 38
D. SENSITIVITY ANALYSIS 39
E. STABILITY 52
III. PROGRAMMABLE GENERALIZED IMMITTANCE CONVERTER
FILTER 53
A. GENERAL 53
B. THE PROPOSED GIC PROGRAMMABLE FILTER 54
C. THE REALIZED GIC PROGRAMMABLE FILTER 61
IV. COMPUTER SIMULATION 69
A. INTRODUCTION 69
B. STIMULATION RESPONSE(S) 70
15. Low Pass Realization 70
16. High Pass Realization. 80
17. Band Pass Realization 84
18. Notch Realization 88
19. All Pass Realization 101
V. REALIZATION OF THE PROGRAMMABLE GIC FILTER 105
A. EXPERIMENTAL RESULTS 105
20. Low Pass 105
21. High Pass 107
22. Band Pass 122
23. Notch 122
24. All Pass 142
B. CONCLUSION 142
VI. COMBINING HIGHER ORDER SECTIONS 149
VII. APPLICATIONS OF THE PROPOSED GIC PROGRAMMABLE FILTER IN FREQUENCY HOPPING SYSTEMS 167
A. BACKGROUND 167
25. General Description of FH Systems 167
26. Signal Generation 168
a. Direct Synthesis 168
b. Indirect Synthesis 170
B. PROPOSED USES 173
VIII. CONCLUSION 177
APPENDIX A: PROGRAM USED TO STIMULATE THE IDEAL GIC PROGRAMMABLE FILTER 179
APPEDNIX B: PROGRAM USED TO SIMULATE THE NONIDEAL GIC PROGRAMMABLE FILTER 185
APPENDIX C: PAPER PRESENTED AT THE 19TH ANNUAL ASILOMAR CONFERENCE ON CIRCUITS, SYSTEMS AND COMPONENTS 191
LIST OF REFERENCES 196
INITIAL DISTRIBUTION LIST 200

LIST OF TABLES

2.1	Elements Identification for Realizing the Most Commonly Used Transfer Functions..............
3.1	The Elements Identification for Different
	Realization of the GIC Filter................. 56
3.2	The Truth Table of the Switches Logic Used
	to Select the Filtering Function............. 59
3.3	The Four Bitwords that control Fp and the
	Corresponding Capacitor....................... 65
3.4	The Four Bitwords that control Rq and Qp....... 66
4.1	The Resulting Qp Values for the Different
	Introduced Rq Values in the Computer
	Simulation...................................... 71
4.2	The Resulting p Values for the Different
	Introduced G Values............................ 72
4.3	The 25 Possible Combinations of Transfer
	Function Realizations.......................... 73
4.4	Data from Figs. (4.3) and (4.4) Indicating the
	Affect of Frequency Dependency of Ai (i-1, 2) 79
4.5	Data Illustrating the Ideal vs. the Nonideal
	Responses of the HPF........................... 86
4.6	Data Indicating the Ideal vs. the Nonideal
	Responses of the BPF Realization.............. 97

LIST OF FIGURES

2.1 Active Filter Configuration Using the GIC 30
2.2 The Circuit of 2.1 Prepared for Nodal Analysis. 31
2.3(a) The CGIC Implementation Using Op. Amps 40
2.3(b) Symbolic Representation of the CGIC with 40
Created 3G and 4G 40
2.3(c) The Basic Confirguration 403.1 The Generalized Immittance convertor GIC
Implementation Using Op. Amplifiers 55
3.2
Schematic Diagram of the Programmable GICFilter Showing the Controlled Noder.57
Different Elements Realizations and theCorresponding Switches Used for DigitallySelecting the Filtering Type.58
3.3(a) The CMOS Logic Diagram Used to Control the Analog CMOS Switches of Fig. (3.4) and Realize the Truth Table of Table (3.2) 60
3.4
The complete Circuit Diagram of the Programmable
GIC Filter 60
3.5 The Two Capacitor Banks Realizations for the
Programming of 62
3.6 The Resistor Bank used to Realize Rq Neededfor the Programming of Qp .63
The Constructed Blacks of Capacitor's Controllingthe fp67
3.8
The Constructed Block of Resistance ControllingQp. 68
Ideal LPF Amplitude Response. 75
4.4Ideal LPF Amplitude Response.764.3 Ideal vs. Nondieal CPF Amplitude Response forQ=2 and Vareity of Frequencies.................. 77
Ideal vs. Nonideal LPF Amplitude Response forFrequencies (7.96 k and 30.1 k) and a Variety
of Q's.. 7878
4.5 Ideal HPF Amplitude Response for a Variety ofQ's.. 8181
4.6 Ideal HPF Amplitude Response. 82
4.7 Nonideal HPF Amplitude Response. 83
4.8 Ideal vs. Nonideal HPF Amplitude Response. 85
4.9 Ideal vs. Nonideal HPF Amplitude Response. 87
4.10 Ideal BPF Amplitude Response. 89
4.11 Ideal BPF Amplitude Response. 90
4.12 Ideal BPF Amplitude Response. 91
4.13 Ideal BPF Amplitude Response. 92
4.14 Nonideal BPF Amplitude Response. 93
4.15 Nonideal BPF Amplitude Response 94
4.16 Ideal vs. Nonideal BPF Amplitude Response 95
4.17 Ideal vs. Nonideal BPF Amplitude Response 96
4.18 Ideal Notch Amplitude Response 98
4.19 Ideal Notch Amplitude Response 99
4.20 Ideal vs. Nonideal Amplitude Response 100
4.21 Ideal vs. Nonideal Amplitude Response 103
4. 22 Ideal vs. Nonideal Phase Response 104
5.1 LPF Amplitude Response 106
5.2 LPF Amplitude Response 108
5.3 LPF Amplitude Response 109
5.4 LPF Amplitude Response 110
5.5 LPF Amplitude Response 111
5.6 LPF Amplitude Response 112
5.7 LPF Amplitude Response 113
5.8 LPF Amplitude and Phase Response 114
5.9 LPF Amplitude and Phase Response 115
5.10 HPF Amplitude Response 116
5.11 HPF Amplitude Response 117
5.12 HPF Amplitude Response 118
5.13 HPF Amplitude Response 119
5.14 HPF Amplitude Response 120
5.15 HPF Amplitude Response 121
5.16 HPF Amplitude and Phase Response 123
5.17 HPF Amplitude and Phase Response 124
5.18 HPF Amplitude and Phase Response 125
5.19 HPF Amplitude and Phase Response 126
5.20 BPF Amplitude Response 127
5.21 BPF Amplitude Response 128
5.22 BPF Amplitude Response 129
5.23 BPF Amplitude Response 130
5.24 BPF Amplitude Response 131
5.25 BPF Amplitude Response 132
5.26 BPF Amplitude Response 133
5.27 BPF Amplitude Response 134
5.28 BPF Amplitude and Phase Response 135
5.29 BPF Amplitude and Phase Response. 136
5.30 BPF Amplitude and Phase Response. 137
5.31 BPF Amplitude and Phase Response 138
5.32 BPF Amplitude and Phase Response. 139
5.33 Notch Filter Amplitude Response 140
5.34 Notch Filter Amplitude Response 141
5.35 Notch Filter Phase and Amplitude Response 143
5.36 Notch Filter Amplitude Response 144
5.37 Notch Filter Amplitude Response 145
5.38 All Pass Filter Amplitude Response 146
5.39 All Pass Filter Amplitude Response 147
5.40 All Pass Filter Amplitude and Phase Response 148
6.1 Cascade GIC Programmable Filter 149
6.2 LPF Fourth Order vs. Second Order Ideal
Response from Computer Simulation. 151
6.3 Network with Logic Realizing up to the 8thOrder LP, HP, BP, N and AP Transfer Functions 152
6.4Fourth Order vs. Second Order Experimental
LPF Responses 153
Ideal Fourth vs. Second Order HPF Responses
From Computer Simulation. 154Fourth Order vs. Second Order Experimental
HPF Responses.155

6.7
Fourth Order vs. Second Order BPF Amplitude
Responses from Computer Simulation. 157
Fourth Order vs. Second Order Experimental
BPF Responses 158
Fourth Order vs. Second Order Notch FilterAmplitude Responses from Computer Simulation. 160
All Pass Fourth Order vs. Second Order
Amplitude Responses from Computer Simulation. 162
Chevychev Response 163
Chevychev Response 164
BP-BD Amplitude Response 165
BP-BD Amplitude Response 166
Block Diagram of Frequency Hopping Modem. 169
Diagram of a Direct Frequency Synthesizer 171
Indirect Signal Synthesis Using a Phase-Locked
Loop 172
Proposed Receiver of a F.H. System Using theProgrammable GIC Filter......................... 174
Practical BPF Realizations of the Composite GIC 176

ACKNOWLEDGEMENTS

Totally devoted to my father.
I also would like to express my gratitute to Professor Sherif Michael for all his teaching and understanding.

I. INTRODUCTION

A. THE NEED FOR AN ACTIVE PROGRAMMABLE FILTER

The availability of an analog filter with digitally controlled "programmable" coefficients has been the goal of many researchers due to its several attractions. One possibility of a compact, versatile analog filter under remote control opens up many novel and independent application areas. Also, when a programmable filter is combined with a permanent referenced memory which is user-programmable, this would form an economical and versatile device for dedicated stand-alone applications. The need for such a device was motivated by advancement in thick and thin film technologies and continuous upgrading of systems specifications to take advantage of the available technologies to the limits.

Linear analog filtering finds many applications, such as speech processing (recognition or synthesis), geology, instrumentation, communications, process control, adaptive balancing, etc. There has been much emphasis on performing the filtering function digitally, largely because of the ease of varying and optimizing the transfer function. However, for many reasons, such as cost, size, signal processing complexity, and bandwidth, it would be desirable to perform
the filter function with linear components yet retain the flexibility of varying the filter parameters digitally.

Recently, the advantages of combining linear components (operational amplifiers, resistors and capacitors) and non linear elements (switches) have been demonstrated using switched capacitor techniques [36-38]. In this research, we are presenting the results of realizing a continuous active device using linear elements and switches controlled by digital signals to achieve a fully programmable filter [32]. Several programming features of the proposed filter are reported. The first feature is the ability of the network to realize the most common filtering functions (function programmability) namely: Low Pass (LP), Band Pass (BP), High Pass (HP), All Pass (AP) and Notch (N) functions, using the minimal set of elements. The second feature is the ability of the network to program (independently) the key parameters of the filtering function chosen (parameter programmability) namely: the pole resonant frequency ($\omega \mathrm{p}$) and selectivity (Qp). Finally, the ability to program the network to cascade several sections to achieve higher order filer. All of the above programmability features are performed independently to realize a universal filtering network. In order to demonstrate the idea of this research, it is necessary to introduce some theoretical back ground.

B. LINEAR SYSTEMS

The box at Fig. (1.1) illustrates the concept of the linear system. In the time domain, the system is characterized by its impulse response $y(t)$, which is the output signal $Y(t)$ produced in response to an impulse. for an arbitrary input signal $u(t)$, the output signal $y(t)$ is given by the well known convolution integral.

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} \int_{d}^{\infty}(t-T) x(t) \tag{11}
\end{equation*}
$$

Fig. l. 1 - Black Box Concept of Linear System

The system transfer function $G(s)$ is the Laplace transform of $g(t)$, thus:

$$
\begin{equation*}
G(s)=y(t) \exp (-s t) \tag{1.2}
\end{equation*}
$$

where

$$
s=v+j \omega
$$

Under the laplace transformation 1.1) becomes:

$$
\begin{equation*}
V(s)=C(s) \cdot U(s) \tag{1.3}
\end{equation*}
$$

so that the transfer function $G(s)$ is the ratio of the output variable to the input variable.

$$
\begin{equation*}
G(s)=\frac{Y(s)}{U(s)} \tag{1.4}
\end{equation*}
$$

The most general types of linear systems are consisting of a finite number of lumped, linear and time-invariant elements. The system is characterized by an Nth order ordinary linear differential equation which results, in most general cases, a transfer function $G(s)$ which is a real rational polynomial function of the complex variable S. Thus we can write $G(s)$ in general as

$$
\begin{equation*}
C s(s)=\frac{P(s)}{E(s)}=\frac{P_{M} s^{M}+P_{M-1} s^{M-1}+\cdots+P_{0}}{l_{N} s^{N}+l_{N-1} s^{N-1}+\cdots+l_{0}}=\frac{\sum_{k=0}^{M} e_{k} s^{k}}{\sum_{k=0}^{N} l_{k} \cdot s^{k}} \tag{1.5}
\end{equation*}
$$

where Pk and Ik are real numbers so that $\mathrm{G}(\mathrm{s})$ is real for real s, and the roots of the polynomial $P(s)$ and $E(s)$ must be
real or occur in conjugate pair.
Also by proper multiplications $G(s)$ can take the form

$$
\begin{equation*}
G(s)=\frac{P(s)}{E(s)}=C \cdot \frac{\prod_{k=1}^{M}\left(s-s_{z k}\right)}{\prod_{k=1}^{N}\left(s-s_{n k}\right)} \tag{1.6}
\end{equation*}
$$

where C is a constant extracted from $G(s)$ such that $E(s)$ and $P(s)$ become monic polynomials (leading coefficients equal to unity), Szk are the transmission zeros and Snk are the natural modes at the system.

C. FILTERS AS A SPECIAL CLASS OF LINEAR SYSTEMS

Linear systems can be distinguished into "SPECTRAL SHAPING NETWORKS" and "FILTERS." The role of filters is one of selecting signals while the role of spectral shaping networks is that of modifying the input signal spectrum in an arbitrary, but predescribed manner. Specifically, we desire that a filter should do as little as possible shaping on signals in its passband; any shaping it is considered a distortion of the signal. On the other hand, networks which perform pulse forming fall within the spectral shaping category.

D. ACTIVE FILTER FUNDAMENTALS

The distinction between passive and active filters is that the first do not require a power source to perform their function while the second do. The motivation behind active

RC filters lies in the desire to have inductorless filter realizations. It is well known that of the three passive R,C\&I elements, the inductor is the most nonideal one. This is especially true at low frequencies, where inductors become quite bully and have increased losses or equivalently lower Q-factors.
E. GENERALIZED IMMITTANCE CONVERTOR

One of the methods of active RC filters design consists of simulating the inductances in the LC ladder by active RC networks. This simulation can be based on the principle that we want to find a one port network having an input impedance.

$$
211=s^{*} L
$$

Various active elements as well as synthesis procedures employing them have been proposed [1-9]. A partial list includes:
(1) Negative Impedance Converter (NIC)
(2) Negative Impedance Inverter (NIV)
(3) Postive Impedance Converter (PIC)
(4) Gyrator
(5) Generalized Impedance Converter (GIC)
(6) Curent Conveyor (CC), and
(7) Operational Amplifier (OA)

Although the introduction of these elements has stimulated research in the area of active network theory, very few elements have made their way to large scale
production to become available as off-the-shelf items. The reason for this is mostly an economic one. For a device to become available at low cost, it has to be used in substantially large quantities. It follows that such a device has to be versatile enough to be of use in a number of applications, of which active filter design is only one. The analog circuit design area has found these attributes in the IC operational amplifiers (Op. Amp.)

The IC Op. Amp. is currently the most popular linear active element. It is available from a large number of manufacturers, at reasonable cost and with good performance characteristics. Furthermore, elements engineers have become accustomed to the use of Op. Amp. It is therefore, only natural that the Op. Amp. is becoming the most popular active element in the design of active $R C$ filters, and can be found in NIC's, PIC's, GIC's, and other circuit realizations.

II. THEORETICAL ANALYSIS

A. BIQUADRATIC TRANSFER FUNCTIONS

The filter as a special class of linear system has a transfer function expressed in a polynomial quotient form given as

$$
\begin{equation*}
T(s)=\frac{P(s)}{E(s)}=\frac{P_{M} s^{M}+P_{M-1} s^{M-1}+P_{c}}{g_{N} s^{N}+g_{N-1} s^{N-1}+\cdots+g_{0}}=\frac{\sum_{k=0}^{M} i_{k} s^{k}}{\sum_{k=0}^{N} g_{k} \cdot s^{k}} \tag{2.1}
\end{equation*}
$$

where Pk and gk are real numbers to that $\mathrm{T}(\mathrm{s})$ is real for s , and the roots of the polynomials $P(s)$ and $E(s)$ must either be real or occur in conjugate pairs. Also, in general, the degree of the numerator (deg.[P(s)]. $=M$) is less than or equal to the degree of denominator $(\operatorname{deg}[E(s)]=N)$ and the roots of $E(s)$ are in the open-half S-plane. The $E(s)$ is known as the characteristic polynomial or natural mode polynomial of the linear system, and the degree of $E(s)$, that is N, is the order or degree of the system.

A general second-order transfer function or "biquad" function may be written as

$$
\begin{equation*}
T(s)=\frac{P_{2} s^{2}+P_{1} s+P_{0}}{s^{2}+g_{1} s+g_{0}}=\frac{P(s)}{E(s)} \tag{2.2}
\end{equation*}
$$

where $P(s)$ is the loss-pole, or more appropriately here, the transmission-zero polynomial, and $E(s)$ is the natural pole polynomial mode as discussed above. It is a usual practice to express the denominator in terms of $_p$ and $Q p$, where _ p is the natural-mode or resonance frequency and $Q p$ is the natural-mode or quality factor. Thus (2.2) becomes

$$
\begin{equation*}
T(s)=\frac{P_{2} s^{2}+P_{1} s+P_{0}}{s^{2}+\frac{w_{p}}{Q_{p}}+w_{p}^{2}} \tag{2.3}
\end{equation*}
$$

The numerator coefficients determine the location of the transmission zeros and hence, the type of filter function the biquad provides. Special cases of interest are:

1. Low Pass (LP)

For which $\mathrm{P} 1=\mathrm{P} 2=0$, thus two transmission zeros are at infinity

$$
\begin{equation*}
T(s)=\frac{P_{0}}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{2.4}
\end{equation*}
$$

2. High Pass (HP)

For which $\mathrm{p} 0=\mathrm{p} 1=0$, thus two transmission zeros are at infinity, and

$$
\begin{equation*}
T(s)=\frac{p_{2} s^{2}}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{2.5}
\end{equation*}
$$

3. Band-Pass (BP)

For which $\mathrm{P} O=\mathrm{P} 2=0$, thus one transmission zero is at infinity while the other is at the origin, and

$$
\begin{equation*}
T(s)=\frac{p_{1} s}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{2.6}
\end{equation*}
$$

4. Notch (N)

For which $P 1=0$ and the two transmission zeros are at $\left.S= \pm j u_{n}, w_{n}\right\rangle_{H P N} w_{p} \quad$ (depending if we have low-pass-notch or high-pass-notch), leading to

$$
\begin{equation*}
T(s)=p_{2} \cdot \frac{s^{2}+\omega_{n}^{2}}{s^{2}+\frac{\omega_{p}}{Q_{p}} s+\omega_{p}^{2}} \tag{2.7}
\end{equation*}
$$

5. All Pass (AP)

For which the pair of zeros are at the mirror image location of the pair of poles, that is

$$
\begin{equation*}
T(s)=\frac{s^{2}-\frac{\omega_{p}}{Q_{p}} s+\omega_{p}^{2}}{s^{2}+\frac{\omega_{p}}{Q_{p}} \cdot s+\omega_{p}^{2}} p_{2} \tag{2.8}
\end{equation*}
$$

B. SENSITIVITY FUNCTIONS

A concern about the design of a filter is how close the resulting response will be to the ideal or desired function. The reason for response deviation from the ideal is the finite tolerances of the $R C$ elements, as well as the nonideal performance of the active elements. In the latter case, not only the gain changes or tolerances have to be considered but the effect of the "limited amplifier bandwidth" on the filter response must also be evaluated. Although effects of initial component tolerances may be "trimmed out" during the initial filter alignments or tuning process, a sensitive design will deviate from the required specifications as time process, due to component variations with temperature, aging, humidity, etc. Note also that a sensitive design might be extremely difficult to tune in the first place, or the initial adjustment will be quite uneconomical.

The answer to tolerance question can be obtained through sensitivity studies. Considerable emphasis has been placed, in the active filter literature, on the study of sensitivity
functions and relations. some of the most useful and widely accepted sensitivity functions are the:

1. Magnitude Function Deviation

Assure a filter designed to meet a certain magnitude characteristics $T(s)$ or $T(j 心)$. One is concerned with the deviation in $\{T(j \omega) \mid$, that is $\{T(j \omega) \mid$ both in passband and in stopband. Usually it is desirable to express the expected deviation in $d B$. The deviation $D(i)) d B$ in the magnitude function may be evaluated as follows. Let the function $\mid T(j \mathfrak{N})$ change to $[|T(j, j)|+|T(j)|]$, then

$$
\begin{equation*}
D(\omega)=20 \log \frac{\left|\Gamma(\jmath \omega)+\Delta^{T}(j \omega)\right|}{|T(j \omega)|},(d b) \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
D(w)=868 \ln \left[1+\frac{\Delta|T(j w)|}{|T(j w)|}\right],(d b) \tag{2.10}
\end{equation*}
$$

and for small variability (2.10) can be approximated as,

$$
\begin{equation*}
D(\omega) \simeq 8.68 \frac{\Delta|T(j \omega)|}{|T(j \omega)|} \quad,(d b) \tag{2.11}
\end{equation*}
$$

Thus, the deviation in the magnitude response in nepers is equal to the per unit variability in the magnitude of the transfer function. The problem now reduces to that of evaluating the per unit change in $|T(j w)|$. This is not an easy problem since $T(j w)$ is a function of many elements with different tolerances and tolerance statistics. Furthermore, the per unit change is function of frequency.
2. Classical Sensitivity

Lets recall the definition of the classical sensitivity, S_{X}^{Y} where Y is a variable of interest, usually a function of many parameters of which x is one, then

$$
\begin{equation*}
S_{x}^{x} \triangleq \frac{J_{x}}{\partial x} \frac{x}{x}=\frac{\partial(\ln x)}{\partial(\ln x)} \tag{2.12}
\end{equation*}
$$

Note that from the above definition, S_{x}^{y} is the limit to as Dx -->0. thus, for small variations,

$$
S_{x}^{\prime} \simeq \frac{\Delta y / y}{\Delta x / x}
$$

The usefulness of the classical sensitivity function is evident from (2.13). The per unit or percentage change in
y, due to a given per unit or percentage change in x, can be easily obtained by multiplication with S, i.e.,

$$
\begin{equation*}
\left(\frac{\Delta y}{y}\right) \simeq S_{x}^{y}\left(\frac{\Delta x}{x}\right) \tag{2.14}
\end{equation*}
$$

3. Gain Sensitivity Product

An important consideration in the evaluation of the sensitivity of a filter parameter as considered in [2] with respect to the closed loop gain is the tolerance on the closed loop due to the open loop gain variability.

Thus, the gain-sensitivity-product, G.S ${ }_{K}^{Y}$ is defined as:

$$
\begin{equation*}
G \cdot S_{k}^{k} \triangleq k \cdot S_{k}^{x} \tag{2.15}
\end{equation*}
$$

where k is the closed loop gain. We can extend (2.15) to the open loop gain as:

$$
\begin{equation*}
C S S_{A_{0}}^{\gamma} \triangleq A_{0} S_{A_{0}}^{Y} \tag{2.16}
\end{equation*}
$$

and also we can note that:

$$
\begin{equation*}
G \cdot S_{k}^{x}=G \cdot S_{A_{0}}^{x} \tag{2.17}
\end{equation*}
$$

and thus then ultimate good is the variability or tolerance rather than the sensitivity, the gain-sensitivity product is a better index for comparing different designs.
4. Determining the Variability of the Transfer Function

Amplitude

Assure that the active filter has ℓ resistors, m capacitors and n amplifiers. Let the amplifier k have an open loop gain Aok and, possibly, a closed loop gain Kk . The variability of the magnitude function as given by the Reference [10] is:

$$
\begin{align*}
\frac{\Delta|T(j \omega)|}{|T(j \omega)|}= & \sum_{i=1}^{\ell} S_{p_{2}}^{\left|T_{(j \omega)}\right|}\left(\frac{\Delta R_{2}}{R_{2}}\right)+\sum_{j=1}^{m} S_{c_{j}}^{|T(\omega)|}\left(\frac{\Delta c_{l}}{c_{j}}\right)+ \\
& +\sum_{k=1}^{n} G \cdot S_{k_{k}}^{|T(j \omega)|}\left(\frac{\Delta A_{O_{k}}}{A_{0 k}^{2}}\right) \tag{2.18}
\end{align*}
$$

Note that each of the sensitivity functions is (2.13) is a function of frequency. In a high order filter realization, the different sensitivity functions might be difficult to evaluate.
C. PROPOSED GIC FILTER ANALYSIS

In order to obtain the transfer functions of the proposed programmable filter [13] shown at Fig. (2.1), nodal analysis was used as follows:
(1) The circuit of Fig. (2.1) was replaced by the one of Fig. (2.2) in which the two operational amplifiers were replaced by the two equivalent dependent voltage sources as can be seen, every element (node, admittance, voltage source, etc.) was labeled and every element was associated to a current direction and a voltage polarity.
(2) The kirchoff current low was written for every node except:
(a) The reference,
(b) any node connected to the reference by a voltage source.

Node
1
2
3
4
5
6
7
K.C.L.

$$
\begin{equation*}
i 7=-i 3 \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
i 2=i 5+i 6 \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
i 4=i 7+i 8 \tag{2.21}
\end{equation*}
$$

Fiz. 2.1
Active filter Configuration Using the GIC

Fig. 2.2 - The Circuit of 2.1 prepared for Nodal Analysis
(3) Every admittance current was expressed in terms of nodal voltages:

$$
\begin{align*}
& i 1=Y 1[\sqrt{3}-\sqrt{1}] \tag{2.22}\\
& i 2=Y 2[\sqrt{3}-\sqrt{2}] \tag{2.23}\\
& i 3=Y 3[1 / 4-\sqrt{1}] \tag{2.24}\\
& i 4=Y 4[\sqrt{ } / 4-2 / 5] \tag{2.25}\\
& i 5=Y 5[\sqrt{2}-\sqrt{6}] \tag{2.26}\\
& i 6=Y 6[\sqrt{2}] \tag{2.27}\\
& \text { i7 }=[Y 7[1 / 5-2 / 6] \tag{2.28}\\
& \text { i8 } \left.=\mathrm{Y} \text { [} V_{5}\right] \tag{2.29}
\end{align*}
$$

(4) The source dependencies were listed expressed in terms of nodal voltages,

$$
\begin{align*}
& v_{4}=A_{1}\left[v_{2}-v_{1}\right] \tag{2.30}\\
& v_{5}=A_{2}\left[v_{5} . v_{1}\right] \tag{2.31}
\end{align*}
$$

and then (substitute) where necessary.
(5) A matrix equation having the unknown voltages V3, V4, and V5 related with the desired transfer functions $T 1, T 2$, T3, of the filter was obtained as:
$\left[\begin{array}{ccc}\gamma_{1}\left[1+\frac{1}{A_{2}}\right]+\frac{Y_{3}}{A_{2}} & \gamma_{2} & -V_{3}-V_{1} \\ V_{2}\left[1+\frac{1}{A_{1}}\right]+\frac{V_{5}}{A_{2}}+\frac{V_{6}}{A_{1}} & -\frac{V_{2}}{A_{1}}-\frac{V_{5}}{A_{1}}-\frac{V_{6}}{A_{1}} & -V_{2}-V_{5}-\gamma_{6} \\ 0 & V_{4} & -V_{7}-V_{8}-V_{4}\end{array}\right] \cdot\left[\begin{array}{l}v_{3} \\ v_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ -V_{5} v_{12} \\ V_{7} v_{12}\end{array}\right.$
and by substituting $T_{1}=\frac{v_{3}}{v_{1 n}}, \quad T_{2}=\frac{v_{4}}{v_{1 n}}$ and $T_{3}=\frac{v_{5}}{v_{1 n}}$ the above matrix equation takes the following form:

$$
\left[\begin{array}{ccc}
V_{1}\left[1+\frac{1}{A_{1}}\right]+\frac{V_{3}}{A_{2}} & V_{3} & -Y_{3}-V_{1} \tag{2.33}\\
V_{2}\left[1+\frac{1}{A_{1}}\right]+\frac{Y_{5}}{A_{2}}+\frac{V_{6}}{A_{1}} & -\frac{V_{2}}{A_{1}}-\frac{Y_{5}}{A_{1}}-\frac{V_{6}}{A_{1}} & -V_{5}^{V_{2}}-V_{6}-V_{5} \\
0 & V_{4} & -V_{2}-V_{8} \cdot Y_{4}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-V_{5} \\
-V_{7}^{\prime}
\end{array}\right]
$$

So the above matrix equation gives the 3 different responses of the programmable filter as functions of the $Y 1$, . . . Y7 admittances and A1, A2 (Gains) the two Op. Amps. In ideal case $[\mathrm{A} 1=\mathrm{A} 2=0$] the equation takes the form:

$$
\left[\begin{array}{ccc}
\gamma_{1} & \gamma_{3} & -y_{5}-\gamma_{2} \tag{2.34}\\
v_{2} & 0 & -\gamma_{2}-\gamma_{5}-\gamma_{6} \\
0 & \gamma_{4} & -\gamma_{4}-\gamma_{7}-v_{5}^{\prime}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
-1
\end{array}\right]\left[\begin{array}{c}
0 \\
-\gamma_{5} \\
-\gamma_{7}
\end{array}\right]
$$

Now we can express the above matrix equation for the nonideal case in which A1 and A2 are finite and frequency dependent $A_{1}=W_{1} / s, A_{2}=W_{2} / s$ where $W 1$ and $W 2$ are the Gain Bandwidth Products (GBWP) of the Op. Amps. A1, A2, respectively.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\psi_{1}\left[1+\frac{s}{w_{2}}\right]+\frac{v_{3}}{w_{2}} s & \psi_{3} & -\psi_{3} \cdot \psi_{1}
\end{array} \bar{T}_{1}(s)\right] \quad 0 \quad:}
\end{aligned}
$$

$$
\begin{align*}
& \left.\gamma_{4} \quad-1_{4} \cdot k_{2}-18\right] \Gamma_{3}(5) \quad-1 ? \tag{2.35}
\end{align*}
$$

1. Low Pass (LP) Realization

Can be obtained through $T 2(s)$ by substituting $Y 6=Y 7=0$, and if we consider the ideal case where ($\mathrm{A} 1=\mathrm{A} 2=00$), then

$$
\begin{equation*}
T_{2}(s)=\frac{\gamma_{1} \gamma_{5}\left(\gamma_{4}+\gamma_{8}\right)}{\gamma_{1} \gamma_{4} \cdot \gamma_{5}+\gamma_{2} \gamma_{3} \gamma_{8}} \tag{2.36}
\end{equation*}
$$

If we further substitute the values of the remaining admittances as proposed in [4], that is $Y 1=G 1, Y 2=s C 2$, $Y 3=s C 3+G 3, Y 4=G 4, Y 5=G 5, Y 8=G 8$ then (2.36) takes the form

$$
\begin{equation*}
T_{2}(s)=\frac{G_{1} G_{5}\left(G_{4}+G_{8}\right)}{G_{1} G_{4} G_{5}+G_{3} G_{8} C_{2} 5+G_{8} C_{2} C_{3} 5^{2}} \tag{2.37}
\end{equation*}
$$

which is the form of a low pass transfer function as indicated by (2.4) where

$$
\begin{align*}
& P_{0}=G_{1} G_{5}\left(G_{4}+G_{8}\right) / C_{2} C_{3} G_{8} \tag{2.38}\\
& \omega_{p}^{2}=\frac{G_{1} \cdot G_{4} \cdot G_{5}}{C_{2} C_{3} G_{8}} \tag{2.39}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{w_{p}}{Q_{p}}=\frac{G_{3}}{C_{3}} \tag{2.40}
\end{equation*}
$$

2. High Pass (HP) Realization

This one is obtained through $\mathrm{Tl}(\mathrm{s})$ substituting the following values of the admittances: $Y 1=G 1, Y 2=G 2, Y 3=S C 3$, $\mathrm{Yr}=\mathrm{G} 4, \mathrm{Y} 5=0, \mathrm{Y} 6=\mathrm{G} 6, \mathrm{Y} 7=\mathrm{SC} 7$, and $\mathrm{Y} 8=\mathrm{G} 8$, and if we assume ideal case (A1=A2-> 00), the

$$
\begin{equation*}
T_{1}(s)=\frac{s^{2} C_{3} C_{7}\left(G_{2}+G_{4}\right)}{G_{6} G_{1} G_{4}+C_{3} G_{2} G_{8} \cdot s+G_{2} C_{3} C_{7} s^{2}} \tag{2.41}
\end{equation*}
$$

expresses the H.P. filter of (2.5) where

$$
\begin{equation*}
\omega_{P}^{2}=\frac{G_{1} G_{4} G_{6}}{G_{2} C_{3} C_{7}} \tag{2.42}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\omega_{p}}{Q_{p}}=\frac{G_{8}}{C_{7}} \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}=\frac{G_{2}+G_{4}}{G_{3}} \tag{2.44}
\end{equation*}
$$

3. Band Pass (BP) Realization

This is also derived from $T 1(s)$ by substituting the following values of admittances: $Y 1=G 1, Y 2=G 2$, $Y 3=s C 3$, $Y 4=G 4, Y 5=0, Y 6=G 6, Y 7=G 7$, and $Y 8=s C 8$, and if we assume ideal case ($\mathrm{A} 1=\mathrm{A} 2-->00$), then

$$
\begin{equation*}
T_{1}(s)=\frac{s C_{3} G_{7}\left(G_{2}+G_{6}\right)}{G_{1} G_{4} G_{6}+s G_{2} G_{7} C_{2}+C_{3} C_{8} G_{2} 5^{2}} \tag{2.45}
\end{equation*}
$$

which is the form of a BP transfer function as given by (2.5) where

$$
\begin{equation*}
W_{p}^{2}=\frac{G_{1} G_{4} G_{6}}{G_{2} G_{3} C_{8}} \tag{2.46}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\omega_{p}}{Q_{p}}=\frac{G_{7}}{C_{8}} \tag{2.47}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}=\frac{G_{7}\left(G_{2}+G_{6}\right)}{C_{8} G_{2}} \tag{2.48}
\end{equation*}
$$

4. Notch (N) Realization

T2(s) expressed the Notch response if the following substitutions have been made. $Y 1=G 1, Y 2=G 2, Y 3=s C 3, Y 4=G 4$, $Y 6=0, Y 5=G 5, Y 7=S C 7, Y 8=G 8$, and again assuming ideal case (A1=A2-->00),

$$
\begin{equation*}
\left.T_{2} C_{3}\right)=\frac{s^{2} C_{3} C_{7} G_{2}+G_{1} G_{5}\left(G_{4}+G_{8}\right)}{s^{2} C_{3} C_{7} G_{2}+C_{3} G_{2} G_{8} s+G_{1} G_{4} G_{5}} \tag{2.49}
\end{equation*}
$$

which is the form of a N transfer function as defined by (2.7) where

$$
\begin{equation*}
\omega_{n}^{2}=\frac{G_{1} G_{5}\left(G_{4}+G_{8}\right)}{C_{3} C_{7} G_{2}} \tag{2.50}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{p}^{2}=\frac{G_{1} G_{4} G_{5}}{C_{3} C_{7} G_{2}} \tag{2.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\omega_{P}}{Q_{P}}=\frac{C_{8}}{C_{7}} \tag{2.52}
\end{equation*}
$$

5. All Pass (AP) Realization

This is derived from $\mathrm{Tl}(\mathrm{s})$ with the following admittances substitutions. $\quad Y 1=G 1, \quad Y 2=G 2, Y 3=s C 3, Y 4=G 4$,
$Y 5=G 5, Y 6=0, Y 7=s C 7$ and $Y 8=G 8$, and if once more we assume ideal case, then

$$
\begin{equation*}
T_{1}(s)=\frac{s^{2} C_{3} C_{7} G_{2}-s C_{3} G_{5} G_{8}+G_{1} G_{4} G_{5}}{s^{2} C_{3} C_{7} G_{2}+s C_{3} G_{2} G_{8}+G_{5} G_{1} G_{4}} \tag{2.53}
\end{equation*}
$$

which is the response of an All Pass filter as (2.8) indicates where:

$$
\begin{equation*}
\frac{W_{P}}{Q_{p}}=\frac{G_{8}}{C_{7}} \text { (for nonminimun phose) } \tag{2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{p}^{2}=\frac{G_{1} G_{4}}{C_{3} C_{7}}(\quad-\cdots) \tag{2.55}
\end{equation*}
$$

Table 2.1 shows all the realizations proposed by [31]. In our research for designing a programmable filter the No. 1, 3, 7, 9, and 12 realizations were used since they offer the minimum admittance elements. change to shift from one to another.
D. SENSITIVITY ANALYSIS

Consider the CGIC circuit shown in Figure (2.2(a)) [12]. Assuming ideal Op. Amps., the chain matrix of the CGIC can be obtained as

Fig. 2.3(a) The CGIC Implimentation Using Op. Amps.
(b) Symbolic Representation of the CGIC with created ports $3 G$ and $4 G$
(c) The Basic Confirguration.

Table 2.1 - Elements identification for Realizing the Most Commonly Used Transfer Fuctions

$$
[a]=\left[\begin{array}{cc}
1 & 0 \tag{2.56}\\
0 & h(s)
\end{array}\right]
$$

where $\mathrm{h}(\mathrm{s})$, the admittance conversion function, is given by:

$$
\begin{equation*}
h(s)=v_{2} v_{3} / v_{1} v_{4} \tag{2.57}
\end{equation*}
$$

Two new ports can be created across terminals $3 G$ and $4 G$ as shown symbolically in Fig. (2.3 (b)).

A synthesis procedure is now described which uses the configuration of Fig. (2.3(c)). The transfer functions between the input and output terminals 2,3 , and 4 are readily obtained as

$$
\begin{equation*}
V_{3} N_{i}=T_{1}=\left[r_{5}+h(3)\left\{r_{7}\left(1+r_{6} \mid Y_{2}\right)-v_{5} Y_{8} / N_{2}\right\}\right] / D(3) \tag{2.58}
\end{equation*}
$$

$v_{14}\left|v_{2}=T_{2}=\left\{y_{5}\left(1+v_{8} \mid v_{4}\right)-v_{6} y_{7} \mid v_{4}+h(s) v_{7}\right\}\right| D(s)$
$y_{2}\left|y_{2}=T_{3}=\left\{y_{5}+h(s) y_{7}\right\}\right| D(s)$
where

$$
\begin{equation*}
D(s)=Y_{5}+Y_{6}+h(s)\left(y_{7}+Y_{8}\right) \tag{2.61}
\end{equation*}
$$

The conversion function $h(s)$ and $Y 5-Y 8$ can be selected in many different ways and it is found that any second-order transfer function can be realized [12].

Letting

$$
V_{i}=S C_{2}+G_{2}
$$

where $i=1,2,3$, or 4 , we have from (2.57)

$$
\begin{equation*}
h(s)=\left(s C_{2}+G_{2}\right)\left(s C_{3}+G_{3}\right) /\left(s C_{1}+G_{1}\right)\left(s C_{4}+G_{4}\right) \tag{2.62}
\end{equation*}
$$

Clearly by omitting one or more conductances and/or capacitances a number of specific conversion functions can be generated.

Most frequently, filters are designed by using Butterworth, Chebychev, Bessel or elliptic approximations in which the transmission zeros are located at the origin, imaginary axis or at infinity. Consequently, the transfer
function can be expressed as a product of a second-order transfer functions of the form

$$
\begin{equation*}
T(s)=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{b_{2} s^{2}+b_{1} s+b_{0}} \tag{2.63}
\end{equation*}
$$

where $a 1=a 2=0, a 0=a 1=0, a 0=a 2=0$ or $a 1=0$ for low pass (LP), high pass (HP), band pass (BP) or notch (N) section, respectively.

The coefficients ai's of $T(s)$ for these sections are all positive. These sections can be realized by choosing $h(s)$ in a simple manner such as $k_{1} s, k_{2} s, k_{3} s^{2}+k_{4} s$ or their reciprocals. The different ki's (i=1, 2, 3, or 4) are positive constants. By comparing (2.58-2.61) with (2.63), circuits $1-10$ in Table 2.1 can be obtained. Circuits 3, 4 and 7 can be regarded as realizations of simple RLC networks [31].

All pass transfer functions are often needed for delay equalization and these can be realized by using second-order transfer functions of the type give by (2.63) where $a 2=b 2$, $a 1=b 1$, and ao-bo. Second-order sections of this class can be obtained from circuits 11 and 12 of Table 2:1.

Figures (2.3(a)), (2.3(b)), and Table 2.1 show that with the exception of circuit 10 , the response is obtained from the output of an operational amplifier. Owing to the low
output resistance of the amplifier, any number of sections can be cascaded without isolating amplifiers.

An important criterion of a realization is its sensitivity to element variations. The pole Q factor and the undamped frequency of oscillation from the transfer function of (2.63) are defined as

$$
\begin{equation*}
Q_{p}=\sqrt{b_{c} b_{1}} / b_{1} \quad, \quad \omega_{p}=\sqrt{b_{0} / b_{2}} \tag{2.64}
\end{equation*}
$$

For a Notch section, the Notch frequency is defined by

$$
\begin{equation*}
w_{n_{2}}=\left(a_{0} / a_{2}\right)^{1 / 2} \tag{2.65}
\end{equation*}
$$

and the multiplier constant can be taken to be

$$
\begin{equation*}
H_{N}=a_{c} l_{b c} \text { or } \quad a_{2} \mid b_{2} \tag{2.66}
\end{equation*}
$$

for $\omega_{n}>\omega_{p}$ or $\omega_{n}\langle\omega p$, respectively.
Similarly for the LP, HP, and BP sections

$$
\begin{equation*}
H_{L . P}=D_{0} l_{0}, H_{H} P=a_{2} / b_{2} \text { and } H_{B P}=a_{1} \mid b_{1} \tag{2.67}
\end{equation*}
$$

For an All Pass Section, let

$$
\begin{equation*}
O_{z}=\frac{\left(a_{0} a_{2}\right)^{1 / 2}}{a_{1}}, w_{z}=\left(a_{0} \mid a_{2}\right)^{1 / 2} \text { and } H_{A . P}=a_{2} \mid b_{2} \tag{2.68}
\end{equation*}
$$

The sensitivity of a quantity x with respect to variations in an element e is given by

$$
S_{e}^{x}=\frac{e}{x} \frac{\partial_{x}}{\partial e}
$$

For ideal amplifiers, the use of (2.64)-(2.68) and Table (2.1) leads to

$$
\begin{equation*}
0 \leqslant\left|S_{e}^{x}\right| \leqslant 1 \tag{2.69}
\end{equation*}
$$

where x represents any one of the quantities defined by (2.64)-(2.68) and e represents any capacitance of conductance. In addition, it can be shown that

$$
\sum S_{e}^{x}=0
$$

and

$$
\begin{equation*}
\Sigma\left|S_{e}^{Q_{D}}\right|=\sum\left|S_{e}^{Q_{2}}\right|=4 \tag{2.70}
\end{equation*}
$$

For amplifiers with a finite open-loop gain A, according to [31] the circuit of (Fig. 1(c)) gives

$$
\begin{equation*}
v_{k} \mid v_{2}=N k(s) \cdot J(s) \tag{2.71}
\end{equation*}
$$

where $k=2,3,4$, and

$$
\begin{align*}
& \Gamma(3)=F_{1} \cdot Y_{1}+F_{2} Y_{3}+\left(1+F_{1}\right)\left(1+F_{2}\right)\left(M_{1}\left|A_{1}+\right| I_{3} / A_{2}+Y_{1} / A_{1} A_{2}+Y_{3} A_{1} A_{2}\right) \tag{2.72}\\
& I_{1}=\left(Y_{5}-Y_{6}\right) / Y_{2} \\
& F_{2}=\left(Y_{7}+Y_{8}\right) / Y_{4}
\end{align*}
$$

Consider realizations in which $h(s)=k 1 s$, such as the circuits 7 (BP), $3(\mathrm{HP}), 9,10(\mathrm{~N})$, where

$$
\begin{align*}
& V_{1}=G_{1}, V_{2}=G_{2}, V_{3}=S G_{3}, Y_{4}=G_{4}, Y_{5}=G_{5}, V_{6}=G_{6}, v_{7}=S C_{7}+G_{5} 7 \\
& V_{8}=S C_{8}+G_{8} \tag{2.73}
\end{align*}
$$

For real amplifier gains such that

$$
A_{1}=A_{2}=A_{0} \text { and } A_{0} \gg 1
$$

(2.72) gives

$$
\begin{equation*}
D(s)=F_{1} v_{1}+F_{2}^{\prime \prime} 3+\left(1+F_{1}\right)\left(1+F_{2}\right)\left(y_{1}+v_{3}\right) A_{1} \tag{2.74}
\end{equation*}
$$

From (2.64), (2.73), and (2.74), the Q-factor and the undamped frequency of oscillation can be obtained as

$$
\begin{align*}
& Q_{P_{a}}=Q_{p}\left\{1+\frac{x_{4}}{x_{1} A_{0}}\right\}^{1 / 2}\left\{1+\frac{x_{5} G_{4}}{\left(C_{7}+C_{8}\right) A_{0}}\right\}^{1 / 2} /\left\{1+\frac{C_{3} x_{4}+G_{1} x_{5}}{C_{3} x_{2} A_{0}}\right\} \\
& \omega_{P_{a}}=\omega_{p}\left\{\left(1+\frac{x_{4}}{x_{1} A_{0}}\right)\left(\left(1+\frac{x_{5} G_{4}}{\left(C_{7}+C_{8}\right) A_{0}}\right)\right\}^{1 / 2}\right. \tag{2.75}
\end{align*}
$$

where

$$
\begin{align*}
& Q_{P}=\left\{\left(G_{5}+G_{6}\right)\left(C_{1}+C_{8}\right) G_{1} G_{4} \mid\left(G_{7}+G_{8}\right)^{2} G_{2} G_{5}\right\}, \\
& \omega_{p}=\left\{\left(G_{5}+G_{6}\right) G_{1} G_{4} \mid\left(C_{7}+C_{8}\right) G_{2} G_{3}\right\}^{1 / 2} \\
& X_{1}=\left(G_{5}+G_{6}\right) \mid G_{2}, \tag{2.76}\\
& X_{2}=\left(G_{7}+G_{8}\right) / G_{4}, \\
& X_{3}=\left(C_{7}+C_{8}\right) / G_{4}, \\
& X_{5}=\left(1+X_{1}\right): X_{3} \text { and } X_{4}=\left(1+x_{1}\right)\left(1+X_{2}\right)
\end{align*}
$$

The sensitivities of Qua and pa with respect to the amplification do can be written as

$$
\begin{align*}
& S_{A_{0}}^{A_{1 a}}=\frac{-1}{2 A_{0}}\left[\frac{x_{4}}{x_{1}}+\frac{x_{5}}{x_{3}} \frac{2 x_{4}}{x_{2}}-\frac{2 G_{1}}{c_{3}} \frac{x_{5}}{x_{2}}\right] \\
& S_{A_{0}}^{\omega_{P a}}=\frac{1}{2 A_{0}}\left[\frac{x_{5}}{x_{3}}-\frac{x_{4}}{x_{1}}\right] \tag{2.77}
\end{align*}
$$

The use of (2.77) and (2.78) leads to

$$
\begin{equation*}
S_{A_{0}}^{Q_{P a}}=\frac{-1}{2 A_{0}}\left[\left(1+\frac{1}{x_{1}}\right)\left(1+x_{2}\right)+\left(1+x_{1}\right)\left\{1-2\left(1+\frac{1}{x_{2}}\right)-\frac{=Q_{p}^{2} x_{2}}{x_{1}}\right\}\right] \tag{2.78}
\end{equation*}
$$

by assuming that

$$
\begin{equation*}
\left(1+\frac{1}{x_{1}}\right)-x_{1} \ll 2 x_{2}\left(1+x_{1}\right)+2 Q_{p}^{2} x_{2}\left(1+\frac{1}{x_{1}}\right) \tag{2.79}
\end{equation*}
$$

Eq.(2.78) reduces to

$$
\begin{equation*}
S_{A_{0}}^{Q_{P_{0}}}=\frac{Q_{p}}{A_{0}}\left[P_{p} \cdot x_{2}\left(1+\frac{1}{x_{1}}\right)+\left(1+x_{1}\right)\left(O_{p} x_{2}\right)\right] \tag{2.80}
\end{equation*}
$$

Straight forward differentiation shows that $\underset{A_{0}}{\text { Spa }}$ is minimum when

$$
\begin{equation*}
x_{1}=1, x_{2}=1 / 0_{0} \tag{2.81}
\end{equation*}
$$

From (2.79) and (2.81) the analysis is valid provided that $4 Q_{p}+4 A_{p} 川 1$ which is clearly satisfied in practice.

From (2.80) and (2.81) the minimum sensitivity to variations in fAo is derived as

$$
\begin{equation*}
S_{A_{0}}^{Q_{p a}} \doteq 4 Q_{P} / A_{0} \tag{2.82}
\end{equation*}
$$

The corresponding value of $S_{A_{0}}^{\text {cpa }}$ is given by

$$
\begin{equation*}
S_{A_{0}}^{Q_{P a}} \doteq-\frac{1}{A_{0} Q_{p}} \tag{2.83}
\end{equation*}
$$

LP realizations as circuits 1 and 2 can be obtained by using a conversion function of the form or its reciprocals. The admittances Y1 to Y8 are chosen as

$$
Y_{1}=G_{1}, Y_{2}=S C_{2}, Y_{3}=S C_{3}+G_{3}, V_{\Delta}=G_{4}, Y_{5}-G_{5}, V_{6}=Y_{2}=0, V_{8}=G_{8} \quad \text { (2.84) }
$$

in order to obtain a conversion function of the form

Now Qpa and ipa are obtained as

$$
\begin{align*}
& P_{p a}=\frac{Q_{p}\left\{1+\left(1+G_{E} / G_{0}\right)\left(1+G_{3} / G_{1}\right) / A_{0}\right\}^{1 / 2}\left\{1+\left(1+G_{4} / \sigma_{B}\right) / A_{0}\right\}^{\prime \prime} / 2}{1+\left(1+G_{0} / G_{0}\right)\left(1+G_{1} / G_{3}\right) / F_{0}+\left(1+G_{4} / G_{\varepsilon}\right)\left(G_{3} G_{5} / G_{3} G_{2} A_{0}\right)} \tag{2.85}\\
& w_{p a}=w_{p}\left\{1+\left(1+r^{G} / G_{4}\right)\left(1+G_{3} / G_{1}\right) / A_{0}\right\}^{1 / 2}\left\{1+\left(1+G_{4} / G_{4}!A_{1}\right\}\right. \tag{2.86}\\
& Q_{0}=\left\{\left(C_{3} G_{1} G_{4} G_{5}\right) \mid\left(G_{2} G_{3}^{2} G_{8}\right)\right\}^{112} \\
& \omega_{0}=\left\{\left(G_{1} G_{4} G_{5}\right) \mid\left(C_{2} C_{3} G_{8}\right)\right\}^{1 / 2} \tag{2.87}
\end{align*}
$$

The sensitivity of Qua with respect to variations in fAo can be minimized following the approach used earlier. It is found that for minimum sensitivity [31]

$$
\begin{equation*}
G_{4}=G_{8}, \quad G_{1}=Q_{p} G_{3} \tag{2.88}
\end{equation*}
$$

The minimum value of $S_{A_{0}}^{Q p a}$ can be shown to be

$$
\begin{equation*}
S_{A_{0}}^{Q_{P_{0}}}=\Delta Q / A_{0} \tag{2.89}
\end{equation*}
$$

and the corresponding value of $S_{A_{0}}^{\omega p e r}$ is given by

$$
\begin{equation*}
S_{A_{0}}^{\omega_{P a}}=-1 / A_{0} Q_{p} \tag{2.90}
\end{equation*}
$$

The above sensitivity analysis can be extended to realizations using any other type of conversion function [31].

Equation (2.69) shows that the sensitivities to passive element variations are independent of the selectivity. Furthermore, the sensitivities with respect to variations in the amplifier gain are low. The proposed realizations are
seen to have similar sensitivity properties as the low sensitivity realizations reported in [21-27].
E. STABILITY

It has been shown elsewhere [20] that some networks using GIC's can be conditionally stable where a circuit can lock in an unstable mode during activation (just after switching on the power supply). In this section the stability properties of the configuration show in Fig. (2.2(c)) are examined.

The natural frequencies of the circuit in Fig.(2.3(c)) are the zeros of the characteristic polynomial D9s) as given by (2.72). The differential open-loop gain of a frequency compensated Op. Amp., in a bounded frequency range $0 \leq 1 \leq 15$ an

$$
A=f_{0} \omega_{c}{ }^{\prime}\left(s+j_{c}\right)
$$

where do and wc are the d.c. gain and the cutoff frequency respectively, and $0 \leqslant A_{0} \leqslant A_{m o x}$. In the frequency range $\omega \ll{ }^{\circ} \mathrm{c}$ c the amplifier gains $A 1$ and $A 2$ can be assumed to be real. For any second-order transfer function the coefficients of $D(s)$ are seen to remain positive for any attainable pair of $A 1$ and A2. this is due to the absence of negative terms in $D(s)$. Therefore, the zeros of $D(s)$ will remain the left-half s-plane and low frequency unstable modes cannot arise during activation.

III. PROGRAMMABLE GIC FILTER

A. GENERAL

Signal processing devices evolved considerably over the last several years. The progress was motivated by the advancement in film and semiconductor technologies, as well as the continuous upgrading of systems specifications to take advantage of the available technologies to the limits.

Linear filtering finds many applications, such as speech processing (recognition or synthesis), geology, instrumentation, communications, process control, adapting balancing, etc. There has been much emphasis on performing the filter function digitally, largely because of the ease of varying and optimizing the transfer. However, and for many reasons, such as cast size signal processing complexity, and bandwidth, it would be desirable to perform the filter function with linear components, yet retain the flexibility of varying the filter parameters digitally.

Recently, several advantages of combining linear components (amplifiers and capacitors) and nonlinear elements (switches) have been demonstrated using MOS switched capacitor techniques [31, 32]. Here, we are presenting the results of realizing a continuous active device using linear elements and switches controlled by digital signals to achieve fully programmable filters.

Our research addressed two different aspects of programmability namely;
(1) Programming the filter topology using a minimal set of elements to obtain any type of filtering function desired, e.g., LP, HP, BP, N and $A P$.
(2) Programming the filter's transfer function parameters, (pole resonant frequency ωp and quality factor $Q p$) for a chosen type of filtering function.
B. THE PROPOSED GIC PROGRAMMABLE FILTER

The basic active network considered as the heart of the GIC programmable filter is the GIC structure [31] of Fig.(3.1), whose superior performance was established in the literature [10,32]. The filter transfer function was derived using loop analysis in Chapter II.

Table (3.1), illustrates that for any of the LP, HP, BP, N and AP realizations, five resistors, two capacitors and two Op. Amps., are required. also, the transfer function of each realization is shown. The passive elements are connected to the different nodes, shown in fig.(3.2), for the different realizations. A set of MOS bilateral switches controlled by a digital binary word, are used to interchange the elements to achieve the different types of filter realization shown in Fig.(3.3). The truth table of the switch control logics is shown in Table (3.2). Fig.(3.3(a)) illustrates the CMOS logical circuit for realizing this truth table. While four of the resistors are equal and of value R each, the fifth

Eig. 3.1 - The Generalized Immittance Cunverter (GIC) Implementation Using OA's.

Filter Type	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Transfer Function
LP	G	C	$\mathrm{C}+\frac{\mathrm{G}}{\mathrm{QP}}$	G	G	0	0	G	$\mathrm{T}_{2}=2 \mathrm{Wp}^{2} / \mathrm{D}(\mathrm{s})$
HP	G	G	C	G	0	G	C	$\frac{\mathrm{G}}{\mathrm{QP}}$	$T_{1}=2 S^{2} / D(s)$
BP	G	G	C	G	0	G	$\frac{\mathrm{G}}{\mathrm{QP}}$	C	$\mathrm{T}_{1}=2(\mathrm{Wp} / \mathrm{Qp})^{\mathrm{S}} / \mathrm{D}(\mathrm{s})$
N.	G	G	C	G	G	0	C	$\frac{\mathrm{G}}{\mathrm{QP}}$	$\mathrm{T}_{2}=\left(\mathrm{s}^{2}+\mathrm{W}_{\mathrm{n}}^{2}\right) / \mathrm{D}(\mathrm{s})$
AL	G	G	C	G	G	0	C	$\frac{G}{Q P}$	$T 1=\left(s^{2}-\frac{w p}{\chi P} s+w p^{2}\right) / D(s)$

where $T(s)=N(s) / D(s)$ and $D(s)=s^{2}+(W p / Q p) S+W p^{2}$

TABLE 3.1. - The Elements Identification for Different Realizations of the GIC Filter .

Fig. 3.2 - Schematic Diagram of the Programmable GIC Filter Showing the Controlled Nodes .

$\begin{aligned} & \text { J U } \\ & \text { U } \\ & \text { U } \\ & 0 \\ & 0 \\ & U \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & < \\ & z \\ & \infty \\ & \infty \\ & m^{-} \end{aligned}$	$\begin{gathered} 4 \\ z^{2} \\ x^{-} \infty \end{gathered}$	$\begin{array}{r} z \\ z \\ -\infty= \end{array}$	$\begin{aligned} & 4 \\ & z \\ & \infty \\ & = \\ & = \end{aligned}$
	$x^{2} x^{n}$		NT	$\widetilde{\widetilde{x}}_{ }^{\widetilde{x}}{\underset{\widetilde{x}}{ }}_{x}^{x}$	$$
Component \& Switches					
	©	$\bigcirc 4$	\Leftrightarrow		
	$\begin{gathered} x^{n} \\ \alpha^{n} \end{gathered}$	$x_{x^{x^{\infty}}}^{x^{0}}$	$0_{i}^{0^{\infty}}$		FH^{-2}
$\left.\begin{array}{lll} 0 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & \tilde{U} \\ 0 & 0 & 0 \\ 0 & E & = \end{array} \right\rvert\,$		a z^{∞} a a			$\begin{aligned} & a \\ & \infty \\ & \infty \\ & x, ~ \end{aligned}$

Fig. 3.3 -
Different Elements Realizations and the Corresponding Switches Used for Digitally Selecting the Filtering Type .

¢	-1	\bigcirc	\bigcirc	-	\bigcirc
\sim_{\sim}^{\sim}	\bigcirc	\cdots	\cdots	\bigcirc	-
\sim_{0-1}^{0-1}	\cdots	-	-1	\bigcirc	\bigcirc
\sim_{n}^{n}	\bigcirc	\bigcirc	\bigcirc	\cdots	\checkmark
$\underbrace{ \pm+1}$. 0	-1	-	-1	-
$\mathrm{mb}^{\text {m }}$	\cdots	\bigcirc	\bigcirc	\bigcirc	\bigcirc
m^{N}	\bigcirc	-	\cdots	-	-
$\sim^{\text {¢1 }}$	-1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }^{0}$	\bigcirc	\cdots	0	\cdots	-
0°	\bigcirc	\bigcirc	\cdots	0	\bigcirc
\sim^{∞}	\cdots	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\sim^{\wedge}	\bigcirc	\bigcirc	\cdots	\bigcirc	\bigcirc
\sim^{6}	ρ	-	\bigcirc	-	-
0^{n}	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\cdots	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\sim^{∞}	\bigcirc	-	\cdots	\cdots	\rightarrow
\sim^{N}	\cdots	\bigcirc	\bigcirc	-	-1
0^{-1}	\bigcirc	-	\cdots	\bigcirc	\bigcirc
	$\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ 0 \\ 3 \\ 0 \\ 0 \end{gathered}$			$\begin{aligned} & \text { 上 } \\ & \text { J } \\ & 0 \\ & \mathbf{z} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \sim \\ & \text { - } \end{aligned}$
	0 0 0	-1 0 0	0 -1 0	-1 -1 0	0 0 -1

TABLE 3.2 -The Truth Table of the Switches Logic Used to Select the Filtering Function .

Fig. 3.3a
The CMOS Logic Diagram Used to Control the Analog CMOS Switches of Fig. and to Realize the Truth Table
resistor is the $Q p$ determining resistor and of value Rq=RQp. The two capacitors are equal and of value $C=1 / W p R$. each. The two equal banks of capacitors are used to control wp. Each bank contains n binary weighted capacitors connected in series through analog CMOS switches as shown in Fig.(3.5). Using a digital binary word of n bits to control Wp, $2^{\text {n }}$ different values of C will result at the 2 terminals of both capacitors banks that correspond to 2^{n} different values of p. Using a similar technique the value of Rq can be controlled through a bank of m binary weighted resistors in series, though analog CMOS switches as shown in Fig.(3.6). Using a digital binary word of m bits to control $Q p, 2^{m}$ different values of $R q$ can be achieved that correspond to 2^{m} different values of $Q p$. Thus, full independent control of the pole pair ωp and $Q p$ are achieved by programming the switches to obtain the corresponding C and $R p$. It can be easily shown that with minor modifications, an additional programmable element can be added for the control of the notch frequency.

C. THE REALIZED GIC PROGRAMMABLE FILTER

A complete circuit diagram of the constructed GIC filter is shown in Fig.(3.4). The values of m and n were selected to $m=n=4$. Thus, 15 different values of ωp (fp) and Qp were obtained as it is illustrated at the corresponding Table (3.3) and (3.4). the (designed) banks of the resistors for the control of $Q p$ and the capacitors for the control of ωp (fp) along with their control switches are shown correspondingly in Fig.(3.7) and Fig.(3.8).

Fig. 3.4 - The Complete Circuit Diagram of the Programmable GIC Filter

Fig. 3.5 -
The Two Capacitor Banks Realizations for the Programing of ω_{p}.

(For linear $Q p$ control, $R_{j+1}=2 R_{j}$ resulting in $R Q P=\sum_{j=0}^{m} R_{0} b_{j}$)

Fig. 3.6 - The Resistor Bank Used to Realize R_{q} Needed
for the Programming of Q_{p}.

	switch control		C	Fp	
Sa	Sb	Sc	Sd	nF	Khz
0	0	0	0	5.96	16.693
0	0	0	1	6.34	15.709
0	0	1	0	7.16	13.887
0	0	1	1	7.72	12.875
0	1	0	0	8.42	11.810
0	1	0	1	9.20	10.856
0	1	1	0	10.00	10.043
0	1	1	1	11.00	9.047
1	0	0	0	15.10	6.650
1	0	0	1	17.60	5.637
1	0	1	0	20.80	4.823
1	0	1	1	26.00	3.828
1	1	0	0	35.50	2.805
1	1	0	1	55.00	1.810
1	1	1	0	100.00	.995

Table 3.3 The four - bit words that control Fp and the corresponding capacitor

	switch control		Rq	Qp	
Sa	Sb	Sc	Sd	K	
0	0	0	0	24.0	15
0	0	0	1	22.4	14
0	0	1	0	20.8	13
0	0	1	1	19.2	12
0	1	0	0	17.6	11
0	1	0	1	16.0	10
0	1	1	0	14.6	9
0	1	1	1	12.8	8
1	0	0	0	11.2	7
1	0	0	1	9.6	6
1	0	1	0	8.0	5
1	0	1	1	6.4	4
1	1	0	0	4.8	3
1	1	1	1	0	1.6

Table 3.4 The four - bit words that control Rp and Qp

$$
\begin{aligned}
& \mathrm{C}_{1}=100 \mathrm{uf} \\
& \mathrm{C}_{2}=55 \mathrm{uf} \\
& \mathrm{C}_{3}=25 u \mathrm{~F} \\
& \mathrm{C}_{4}=41 u \mathrm{~F}
\end{aligned}
$$

Fig. 3.7 - The Constructed Blocker Capacitor Controlling the fp.

$\underbrace{\text { DIGITAL CONTROL }}$

$$
\begin{aligned}
R_{1} & =1.6 \mathrm{k} \\
\mathrm{R}_{2} & =3.2 \mathrm{k} \\
\mathrm{R}_{3} & =6.4 \mathrm{~K} \\
\mathrm{R}_{4} & =12.8 \mathrm{k}
\end{aligned}
$$

Fig. 3.8 - The Constructed Block of Resistance Controlling Qp.

IV. COMPUTER SIMULATION OF THE PROGRAMMABLE FILTER

A. INTRODUCTION

In order to observe the theoretical responses of the different realizations as well as to compare them with the experimental measurements, two computer programs were written in Fortran. those programs are shown in Appendices A and B. The first one simulates the programmable filter's responses T1(s), T2(s) and T3(s) as functions of the network's admittances Yi, $i=1$. . .8, and the "constant" Op.Amps. gains $A 1$ and A2. A realistic value of $A 2=A 2=10^{5}$ was given to the above gains corresponding to 741 Op. Amps. used in the experiment. the second program simulates the programmable filter's responses $T 1(s), T 2(s)$ and $T 3(s)$ as functions of the network's admittances Yi, i=1 . . . 8 and the frequency dependent Op. Amps. gains A1 and A2. In this second case a single pole approximation value of wils was assigned for Ai(i=1, 2). Where, Wi is the GBWP of the Op. Amps. used, a value of $W 1=W 2=2 \pi \times 10^{6}$ was given to the above $W i(i=1,2)$ corresponding to 741 Op. Amps. used throughout the research.

To be able to compare the computer simulation results with the experimental ones obtained, the same values of admittances were used as input data. That means that the same values of $R, R q$ and C according to Chapters III and V were used. With the value of R selected to be 1.6 k Table
(4.1) illustrates the different values of Rqs used in the simulation to realize the different values of $Q p$ and Table (4.2) illustrates the different values of capacitors used in the simulation to realize the different frequencies Wps.

The "DO CASE I" command of Fortran simulated the digital logic (including the control switches) used to realize the different responses of the programmable filter that is LP, HP, BP, N and AP. The frequency's (wp) translations and the different $Q P$ values were simulated by changing the values of Rq and Cs at every run of the program.

The above programs also simulated the transfer function of two cascaded GIC programmable filters as it will be discussed later in Chapter VI. Each of the filters could have been at different realization (as well as at different p and $Q p$) relative to the other one. The 25 possible combinations of transfer function realizations are shown in Table 4.3.
B. SIMULATION RESPONSE(S)

1. Low Pass (LP) Realization

Using the elements values prescribed in Table (3.1) yields the following L.P. transfer function:

$$
\begin{equation*}
T_{2}(s)=\frac{2 w_{p}^{2}}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{4.1}
\end{equation*}
$$

For $\mathrm{R}=1.6 \mathrm{kq}$	
Rq kq	Qp
1.1	0.7
1.6	1.0
3.2	2.0
6.4	4.0
11.2	7.0
16.0	10.0
32.0	20.0
Where $\mathrm{Qp}=\mathrm{Rq}$	

Table 4.1 - The Resulting Qp Values for the Different Introduced Rq Values in the Computer Simulation.

For $\mathrm{R}-1.6 \mathrm{kq}$
\(\left.\left.$$
\begin{array}{|c|c|}\hline \mathrm{C} \\
\mathrm{nf}\end{array}
$$ \right\rvert\, \begin{array}{c}\mathrm{fp}

\mathrm{khz}\end{array}\right]\)| 100.00 | 1.099 |
| :---: | :---: |
| 50.00 | 3.83 |
| 26.00 | 7.96 |
| 12.5 | 15.10 |
| 6.6 | 30.16 |
| 3.3 | 117.09 |
| 0.85 | 236.67 |
| 0.42 | |

$$
f p=\frac{1}{2 \pi \cdot R \cdot C \cdot}
$$

Table 4.2 - The Resulting ω p Values for the Different Introduced C Value (R constant 1.6 kg)

FIITEA	1	FIITER 2	1	I
Ip		IP	2	2
'HP		HE	1	1
(BP)		BP	4	4
N		N	3	3
$\cdots A E$		A?	3	3
If		HP	2	1
I?		$B 2$	2	4
LP		iv	2	3
LE		AE	2	3
HP		LE	1	2
- HP		BE	1	4
HP		N	1	j
H?		42	1	3
BP		L?	4	2
BP		de	4	1
3 B		N	4	3
B P		AP	4	3
N		IE	3	2
N		$B{ }^{1}$	3	1
N		BF	3	4
\cdots		$A E$	3	3
$A \mathrm{~F}$		IP	3	2
$A P$		H?	3	1
AP		BP	3	4
A:		N	3	3

Toble 43 - The 25 Possible Combinations of Transfer Function Realizations
value

$$
\begin{equation*}
T_{2}\left(j \omega_{p}\right)=-2 j Q_{p} \tag{4.2}
\end{equation*}
$$

with magnitude of

$$
\begin{equation*}
\left|T_{2}\left(j \omega_{p}\right)\right|=2 Q_{p}=20 \log \left|2 Q_{p}\right|, d b \tag{4.3}
\end{equation*}
$$

Fig. 4.1 illustrates the theoretical "ideal" LPF magnitude response for $f p=3.8 \mathrm{Khz}$ and for 3 different values of $Q p$. The simulation results match the equations of (4.2).

Fig. 4.2 illustrates the theoretical "ideal" LPF magnitude response for $\mathrm{Qp}=2$ and for 3 different values of $\mathrm{w} p$. the Op. Amps. gains Ai, (i=1, 2) are frequency depended. This dependance affects the magnitude of the filter and causes a frequency shift from the theoretical value of the ideal's case. Figs.(4.3) and (4.4) illustrates the ideal vs. nonideal theoretical LPF amplitude responses.

Data extracted from Figs.(4.3) and (4.4) are illustrated in Tables (4.4(a)) and (4.4(b)) simultaneously.
L.P.F AMPLRESPONSE ($\mathrm{F}=3.828 \mathrm{KH}$)

Fig. 4.1 - "Ideal" LPF Amplitude Response

LP.F AMPLRESPONSE ($Q=2$)

Fig. 4.2 - "Ideal" LPF Amplitude Response

------ ideal
\qquad nonideal
Fig. 4.3 Ideal .vs. nonideal L.P.F. amplitude response for $Q=2$ and frequencies $(1.99 \mathrm{~K}, 7.96 \mathrm{~K}, 30.16 \mathrm{~K}$ and 117.1 K$) \mathrm{h}$?
L.P.F AMPLITUDE RESPONSE

1. $Q=0.7$
2. $Q=2.0$
3. $Q=4.0$
4. $Q=7.0$

Fig. 4.4 Ideal .vs. nonideal L.P.F. amplitude responce for frequencies $(7.96 \mathrm{~K}, 30.1 \mathrm{~K}) h$ zand variety of Qs .

Data From Fig. (4.4) LPF Characteristic

Table 4.4 - Data from Figs. (4.3) and (4.4) indicating the Affect of Frequency Dependency of Ai, $i=1,2$
2. High Pass (HP) Realization

Using the elements value shown in Table (3.1) yields the following HP transfer function:

$$
\begin{equation*}
T(s)=\frac{2 s^{2}}{s^{2}+\frac{\omega_{p}}{Q_{p}} \cdot s+\omega_{p^{2}}} \tag{4.4}
\end{equation*}
$$

takes the following complex value at wp.

$$
\begin{equation*}
T_{1}\left(j \omega_{p}\right)=2 j Q_{p} \tag{4.5}
\end{equation*}
$$

which magnitude is

$$
\begin{equation*}
\left|T_{1}\left(j \omega_{p}\right)\right|=2 Q_{p}=20 \log \left(2 \omega_{p}\right), d b \tag{4.6}
\end{equation*}
$$

Fig. (4.5) illustrates the theoretical "ideal" HPF amplitude response for $f p=3.8 \mathrm{KHZ}$ and for 3 different values of Qp. The computer simulation results match that of the (4.6) relation.

Fig. (4.6) illustrates the theoretical "ideal" HPF amplitude response for $Q=2$ and for 3 different frequencies.

Fig. (4.7) illustrates how this dependency effects the amplitude of the $H P$ filter. (The amplitude decreases as
H.P.F AMPL. RESPONSE $(\mathrm{F}=3.828 \mathrm{KH})$

Fig. 4.5 - "Ideal" HPF Amplitude Response for a Variation of Qs.
H.P.F AMPLITUDE RESPONSE(Q=2)

Fig. 4.6 - "Ideal" HPF Amplitude Response.
H.P.F AMPLITUDE RESPONSE(Q=2)

Fig. 4.7-Nonideal HPF Amplitude Response.
the frequency increases) while Figs. (4.8) and (4.9) illustrate the frequency shift of the amplitude response due to that dependency.

From the date of Fig. (4.8), Table (4.5) were constructed.
3. Band Pass (BP) Realization

Using element values from Table 3.1 the following BP transfer function is achieved:

$$
\begin{equation*}
T_{1}(s)=\frac{2\left(\frac{\omega_{p}}{Q_{p}}\right) s}{s^{2}+\frac{\omega_{p}}{Q_{p}} s+\omega_{p^{2}}^{2}} \tag{4.7}
\end{equation*}
$$

takes the following value at W_{p}.

$$
\begin{equation*}
T_{1}\left(j \omega_{p}\right)=2 \tag{4.8}
\end{equation*}
$$

which has constant magnitude of 6 dB

$$
\begin{equation*}
\left|T_{1}\left(j \omega_{p}\right)\right|=2=20 \log 2=6 \mathrm{cb} \tag{4.9}
\end{equation*}
$$

H.P.F AMPLITUDE RESPONSE (Q=2)

Ideal
nonideal

Fig. 4.8 - "Ideal" vs.Nonideal HPF Amplitude Response.

Ideal
C
Nonideal

$\begin{aligned} & \mathrm{fp} \\ & \mathrm{~Hz} \end{aligned}$	Response dB	nf	$\begin{aligned} & \mathrm{fp} \\ & \mathrm{~Hz} \end{aligned}$	Amp Response Db
4,378.98	12.28	26	4,378.98	12.148
8,359.87	12.30	12.5	8,359.87	12.11
15,923.57	12.31	6.6	15,923.57	12.02
31,847.13	12.31	3.3	31,847.73	11.41
123,407.00	12.31	0.85	107,484.00	9.21
252,781.05	12.31	0.43	187,101.80	9.21
242,781.05	12.32	0.43	187,101.80	6.69

Table 4.5 - Data Illustrating the Ideal vs. the Nonideal Responses of the HPF
H.P.F AMPL RESPONSE(F=8K/16K)

1. $Q=0.7$
2. $2=2.0$
3. $2=4.0$
4. $2=7.0$

Fig. 4.9 - "Ideal" vs. Nonideal HPF Amplitude Response.

Fig. (4.10) illustrates the theoretical BPF magnitude response for $\mathrm{fp}=3.83 \mathrm{kHZ}$ for different values of Qp . These agree with the (4.9) equation since as it is indicated by the simulation plot the amplitude is constant and independent of Qp.

Fig. (4.11) illustrates the above concept but at $\mathrm{fp}=15.1 \mathrm{KHZ}$.

Fig. (4.12) and (4.13) illustrate the theoretical "ideal" BPF amplitude response for $Q P=2$ and for different values of p. As it is indicated from Fig. (4.13) the amplitude remain constant even at very high frequencies (10 HZ). But with $A i$, ($i=1,2)$ depending on frequency the amplitude decreases as the frequency increases. This is indicated in Figs. (4.14) and (4.15) which describe the BPF amplitude response plots for $Q=4$ and $Q=1$ respectively and for different frequencies. The frequency dependence of $A i$, $i=1$, 2) creates a frequency shift from the ideal theoretical value which is indicated in Figs. (4.16) and (4.17). Table (4.6) illustrates the data extracted from figs. (4.16) and (4.17).
4. Notch (N) Realization

Using the admittances value of Table (3.1), the following Notch transfer function can be achieved:
B.P.F AMPL RESPONSE $(\mathrm{F}=3.828 \mathrm{KH})$

Fig. 4.10- "Ideal" BPF Amplitude Response.

B.P.F AMPLITUDE RESPONSE(F=16K)

Fig. 4.11 - "Ideal" BPF Amplitude Response.

B.P.F AMPLITUDE RESPONSE(Q=4)

Fig. 4.12 - "Ideal" BPF Amplitude Response.
B.P.F AMPLITUDE RESPONSE(Q=4)

Fig. 4.13 - "Ideal" BPF Amplitude Response.
B.P.F AMPLITUDE RESPONSE(Q=4)

Fig. 4.14 - Nonideal PBF Amplitude Response.

B.P.F AMPLITUDE RESPONSE(Q=1)

Fig. 4.15 - Nonideal BPF Amplitude Response.

B.P.F AMPLITUDE RESPONSE(Q=4)

_---- Ideal
nonideal

Fig. 4.16 - Ideal vs. Nonideal BPF Amplitude Response.
B.P.F AMPLITUDE RESPONSE(F=16K)

Fig. 4.17 - $\begin{aligned} & \text { Ideal vs. Nonideal BPF Amplitude } \\ & \text { Response. }\end{aligned}$

Ideal		$\begin{gathered} \mathrm{C} \\ \mathrm{nf} \end{gathered}$	Nonideal	
$\begin{aligned} & \mathrm{fp} \\ & \mathrm{khz} \end{aligned}$	$\begin{aligned} & \text { Amp. Response } \\ & \mathrm{dB} \end{aligned}$		$\begin{aligned} & \mathrm{fp} \\ & \mathrm{khz} \end{aligned}$	Amp. Response
7,961.78	6.02	12.5	7,969.738	5.958
30,254.78	6.02	3.3	28,662.42	5.75
115,445.80	5.97	0.85	95,541.38	4.92

and

Ideal		Rq	Nonideal	
QP	Max. Amp. Response dB		QP	Max. Amp. Response dB
4	6.01	6.4	4	5.902
8	6.01	12.8	8	5.728
20	5.95	32.0	20	5.528
	$=15,127.33 \mathrm{~Hz}$, 739.29 Hz

Table 4.6 - Data Indicating the Ideal vs. the Nonideal Responses of the BPF Realization
N.F AMPLITUDE RESPONSE(Q=2.)

Fig. 4. 18 - Ideal Notch Amplitude Response.

NOTCH AMPLRESPONSE($\mathrm{F}=3.83 \mathrm{KH}$)

Fig. 4.19 - Ideal Notch Amplitude Response.
N.F AMPLITUDE RESPONSE $(Q=2$.

$\begin{array}{ll}\text {----- } & \text { Ideal } \\ & \text { nonideal }\end{array}$

Fig. 4.20 - Ideal vs. Nonideal Amplitude Response.
where n is the Notch frequency.
At P the transfer function takes the value

$$
\begin{equation*}
T_{2}\left(j \omega_{p}\right)=\frac{\omega_{p}^{2}+\omega_{n}^{2}}{j \frac{\omega_{p}^{2}}{Q_{p}}} \tag{4.11}
\end{equation*}
$$

Fig.(4.18) illustrates the "ideal" theoretical Notch filter amplitude response for a variety of frequencies and constant $Q p(Q=2)$, while Fig.(4.19) for a variety of $Q p s$ and for constant $p(f p=3.83 \mathrm{KHZ})$.

Fig. (4.20) illustrates the effect of the frequency dependency of $\mathrm{Ai},(i=1,2)$ on the response.
5. All Pass (AP) Realization

As proposed in Table (3.1) using the same admittances values as Notch. An All Pass transfer function can be derived as

$$
\begin{equation*}
T_{1}(s)=\frac{s^{2}-\frac{w_{p}}{Q_{p}} s+w_{p}^{2}}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{4.12}
\end{equation*}
$$

which takes the following values
at $\left.\omega \rightarrow 0, \mid T_{1} \omega_{0}\right)|\rightarrow 1=0 \mathrm{db}, \quad| T_{1}(j 0) \rightarrow 360^{\circ}$

$$
\begin{equation*}
\omega \rightarrow \infty,\left|T_{1}(j \infty)\right| \rightarrow 2=6 d b, \quad \mid T_{1}(j \infty) \rightarrow 0^{0} \tag{4.13}
\end{equation*}
$$

The above agree with the computer simulation results of Figs. (4.21) and (4.22).

A.P AMPLITUDE RESPONSE(Q=2)

Fig. 4.21 - $\begin{aligned} & \begin{array}{l}\text { Ideal vs. Nonideal APF Amplitude } \\ \\ \text { Response. }\end{array}\end{aligned}$

A.P PHASE RESPONSE($\mathrm{Q}=2 / \mathrm{F}=8 \mathrm{~K}$)

Fig. 4.22 - Ideal vs. Nonideal Phase Response.

V. REALIZATION OF PROGRAMMABLE GIC FILTER

A. EXPERIMENTAL RESULTS

After the circuit of Figs. (3.10), (3.9), (3.8), (3.7), was constructed a variety of measurements were taken in order to study the response of the network to the different inputs (control bitwords). To observe the affect of the control switches which introduce a resistance of 80 each at CLOSED position, two values of Rs, Rq, and Cs were used with one decade difference in magnitude. That means that R was given the values of 1.6 K (as discussed in Chapter III) and 16 K , the four resistors that consisted the Rq bank were of values (1.6K, $3.2 \mathrm{~K}, 6.4 \mathrm{~K}, 12.8 \mathrm{~K})$ in the first case and $(16 \mathrm{~K}, 32 \mathrm{~K}$, 64 K and 128 K) in the second one, and that the capacitor bank's capacitors were chosen of values (100nF, $50 \mathrm{nF}, 12$, $5 \mathrm{nF}, 11 \mathrm{nF}$) and (10nF, $5 \mathrm{nF}, 1.2 \mathrm{nF}, 0.1 \mathrm{nF}$) accordingly, to be able to keep the range of frequencies as much the same as possible for both cases.

1. Low Pass Filter

With the topology-control bit word 000 the network realized a LPF response. Fig. 5.1(a) illustrates the LP response for $R=1.6 \mathrm{~K} \not$ to $^{\text {to }}$ a variety of frequencies for $Q=5$ while $5.1(b)$ illustrates the same but for $Q=2$. It can be observed from 5.1(a) ($Q=5$) that the amplitude response

(a)

$1-\mathrm{f}=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.98 \mathrm{khz}$
$3-\mathrm{f}=3.83 \mathrm{khz}$
$4-\mathrm{f}=7.96 \mathrm{khz}$
$5-\mathrm{f}=12.0 \mathrm{khz}$

Fig. 5.l - (a) LPF Response for $R=1.6 \mathrm{k}$ ($\mathrm{Q}=5, \mathrm{Rq}=8.0 \mathrm{k}$)
(b) LPF Response for $R=1.6 \mathrm{k}$ ($\mathrm{Q}=2, \mathrm{Rq}=3.2 \mathrm{k}$)
decreases while the frequency increases as it was expected from computer simulation. This is occurred up to the frequency of 6 KHz ; then it started increasing with the frequency, while at Fig. (5.1(b)) (Q=2) it remained constant. Fig. (5.2) illustrates (for $R=16 \mathrm{KHZ}$) that the observation in Fig (5.1) is not any more the case (for that frequency range) and the network responses the same as in computer simulation while in Fig. (5.3) ($Q=5$) the above can be noticed again. this is due to the interference of the control switches as it was discussed previously. Figs. (5.4) and (5.5) illustrate a variation of Q values for $f=9 \mathrm{KHz}$ for the two cases ($R=1.6 \mathrm{k}$ and $R=16 \mathrm{~K}$) respectively. A difference in magnitude can be observed due to the interference of the control switches. Figs. (5.6) and (5.7) illustrate the same but for $F=12.8 \mathrm{KHz}$. Figs. (5.8) and (5.9) illustrate the phase and amplitude response of the LPf.
2. High Pass (HP) Realization

With the topology-control bitword 001, the network realized a high pass filter. Figs. (5.10) and (5.11) illustrate the $H P F$ amplitude response for a variety of frequencies and ($Q=2$). It can be observed (as in LPF realization) that for this frequency range and for $R=1.6 K^{\text {f }}$ the amplitude starts increasing as the frequency increases, decreases then again while for $R=16 \mathrm{~K}$ (his does not occur. the same observation submerges comparing Fig.(5.14) and (5.15). Figs. (5.12) and (5.13) are the plots obtained for

$1-\mathrm{f}=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.99 \mathrm{khz}$
$3-\mathrm{f}=3.83 \mathrm{khz}$
$4-\mathrm{f}=7.90 \mathrm{khz}$
$5-\mathrm{f}=12.8 \mathrm{khz}$
Fig. 5.2 - LPF Amplitude Response $\mathrm{R}=1.6 \mathrm{k} \quad(\mathrm{Q}=2$, $\mathrm{Rq}=32 \mathrm{k})$
$1-f=0.99 \mathrm{khz}$
$2-f=1.99 \mathrm{khz}$
$3-f=9.20 \mathrm{khz}$
$4-f=7.96 \mathrm{khz}$
$5-f=15.0 \mathrm{khz}$

Fig. 5.3 - LPF Amplitude Response $\mathrm{R}=16 \mathrm{k} \quad(\mathrm{Q}=5, \mathrm{Rq}=50 \mathrm{k})$

$$
\begin{aligned}
& 1-Q=1 \\
& 2-Q=2 \\
& 3-Q=4 \\
& 4-Q=7
\end{aligned}
$$

Fig. 5.4 - LPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=7.96 \mathrm{khz}$

$1-Q=1$
$2-Q=2$
$3-Q=4$
$4-Q=7$

Fig. 5.5 - LPF Amplitude Response (R=l0k), $\mathrm{f}=7.96 \mathrm{khz}$

$$
\begin{aligned}
& 1-Q=1 \\
& 2-Q=2 \\
& 3-Q=4 \\
& 4-Q=7
\end{aligned}
$$

Fig. 5.6 LPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$) and $\mathrm{f}=12.8 \mathrm{khz}$

$$
\begin{aligned}
& 1-Q=1 \\
& 2-Q=2 \\
& 3-Q=4 \\
& 4-Q=7
\end{aligned}
$$

Fig. 5.7 - LPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=12.8 \mathrm{khz}$

VFR	FCT	$\begin{aligned} & \text { TH } \\ & \text { TH: } \\ & \hline \end{aligned}$	MKR:	CEH		$9 \mathrm{~dB}$		${ }_{\text {de }}^{\text {g }}$	0IU
			--		-2				
							-		
				-1					,
						-	-		

1. Phase Response.
2. Amplitude Response.

Fig. 5.8 - LPF Amplitude/Phase Response.

1. Phase
2. Amplitude

Fig. 5.9 - LPI Phase/Amplitude Response.

$1-\mathrm{f}=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.99 \mathrm{khz}$
$3-\mathrm{f}=3.83 \mathrm{khz}$
$4-\mathrm{f}=7.96 \mathrm{khz}$
Fig. 5.10 - HPF Amplitude Response
($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=2$

$1-\mathrm{f}=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.9 \mathrm{khz}$
$3-\mathrm{f}=5.0 \mathrm{khz}$
$4-\mathrm{f}=8.0 \mathrm{khz}$
$5-\mathrm{f}=13.8 \mathrm{khz}$

Fig. 5.11 - HPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=2$

$1-Q=0.7$
$2-Q=2.0$
$3-Q=4.0$
$4-Q=7.0$

Fig. 5.12 - HPF Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=6.65 \mathrm{khz}$

$$
\begin{aligned}
& 1-Q=2.0 \\
& 2-Q=4.0 \\
& 3-Q=7.0
\end{aligned}
$$

Fig. 5.13 - HPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$) , $f=6.65 \mathrm{khz}$

$1-f=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.99 \mathrm{khz}$
$3-\mathrm{f}=3.83 \mathrm{khz}$
$4-\mathrm{E}=7.96 \mathrm{khz}$
Fig. 5.14 - HPB Amplitude Response $(\mathrm{R}=1.6 \mathrm{k}), \mathrm{Q}=5$

$1-f=0.99 \mathrm{khz}$
$2-\mathrm{f}=1.99 \mathrm{khz}$
$3-\mathrm{f}=3.83 \mathrm{khz}$
$4-\mathrm{f}=7.96 \mathrm{khz}$
$5-\mathrm{f}=12.8 \mathrm{khz}$

Fig. 5.15 - HPB Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$) , $\mathrm{Q}=5$
$f=6.65 \mathrm{KHZ}$ and a variety of $Q s$ for $R=1.6 \mathrm{KQ}$ and $R=16 \mathrm{KP}$, respectively. a difference of about 12 dB in amplitude appears. Finally, figs (5.16), (5.17), (5.18), (5.19) illustrate the phase and amplitude responses of the HP realization.

3. Band Pass (BP) Realization

The 010 topology-control bitword realizes the Band Pass Filter. Figs. (5.20) and (5.21) illustrates the amplitude response for set of frequencies and $Q=10$. At both cases the amplitude decreases while the frequency increases until the value of 9 KHz . Then starts increasing again. It can be also observed that for $R=1.6 \mathrm{~K}$ the frequency deviation from the theoretical fp is larger.

Figs. (5.22) and (5.23) illustrate the amplitude response again, but for $Q=1$. This time the deviations from the theoretical response (both of amplitude fluctuations and frequency shift) are less.

Figs. (5.24), (5.25), (5.26), and (5.27) are also plots of the amplitude response but for variation of Q. A difference of approximately $1 d B$ appears for the lowest
 Finally, Figs. (5.28)-(5.32) illustrate the phase and amplitude of the BPF response.

4. Notch (N) Filter Realization

With the topology-control bitword 011, a Notch filter realization can be achieved. Figs. (5.33) and (5.34)

(a)

(b)

1. Phase
2. Amplitude

Fig. 5.16 - HPF Amplitude/Phase Response ($\mathrm{Q}=1$)

Fig. 5.17 - HBF Amplitude/Phase Response ($\mathrm{Q}=0.5$)

Fig. $5.18-\underset{(Q=2)}{\operatorname{HPF}}$ Phase/Amplitude Response

1. Phase
2. Amplitude

Fig. 5.19 - HPF Amplitude Response ($\mathrm{Q}=2$)

Fig. 5.20 - BPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$) , $\mathrm{Q}=10$


```
1. \(\mathbf{f}=0.99 \mathrm{~K}\)
2. \(f=1.99 \mathrm{~K}\)
3. \(f=3.8 \mathrm{~K}\)
```

4. $\mathrm{f}=7.96 \mathrm{~K}$
5. $\mathrm{f}=11.2 \mathrm{~K}$
6. $f=15.1 \mathrm{~K}$

Fig. 5.21 - BPF Amplitude Response
($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=10$

1. 0.99 khz
2. 1.99 khz
3. 3.8 khz
4. 6.65 khz
5. 12.8 khz
6. 15.1 khz

Fig. 5.22 - BPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=7$

Fig. 5.23 - BPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=1$

Fig. 5.24 - BPI Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=3.83 \mathrm{khz}$

Fig. 5. 25 - BPI Amplitude Variation ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=3.83 \mathrm{khz}$

$\begin{array}{rr}1-Q= & 10.0 \\ 2-Q= & 4.0 \\ 3-Q= & 1.0\end{array}$

Fig. 5. 26 - BPF Amplitude Response ($\mathrm{R}=\mathrm{l} .6 \mathrm{k}$)

$\begin{array}{rr}1-Q= & 10 \\ 2-Q= & 4 \\ 3-Q= & 1\end{array}$

Fig. 5.27 - BPF Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$) , $\mathrm{f}=9 . \mathrm{khz}$

	2								

(a)

1. Phase Response
2. Amplitude Response

Fig. 5.8 - BPF Phase/Amplitude Response

$\begin{aligned} & \text { OFR } \\ & 8 F R E \end{aligned}$	$\begin{aligned} & \text { FCT } \\ & \text { FC } \end{aligned}$	TH ${ }_{\text {TH: }}$	1k\%:	CEH	TE ${ }^{\text {E }}{ }^{6}$	6dE		${ }^{6} \mathrm{~d}$	吅哭
5									
	1								
	+			2					
	,								
-1		,							

1. Phase Response.
2. Amplitude Response.

Fig. 5.29 - BPI Phase/Amplitude Response

1. Dhase Response.
2. Amplitude Response.

5.30-BPF Phase/Amplitude Response.

l. Phase Response.
3. Amplitude Response.

Fig. 5.31 - BPF Phase/Amplitude Response

1. Phase Response.
2. Amplitude Response.

Fig. 5.32 - BPF Phase/Amplitude Response

Fig. 5.33 - Notch Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{Q}=4$

$$
\begin{aligned}
& 1-f=0.99 \mathrm{khz} \\
& 2-f=1.99 \mathrm{khz} \\
& 3-f=3.83 \mathrm{khz}
\end{aligned}
$$

Fig. 5.34 - Notch Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$)
illustrate the amplitude response for different frequencies and for $Q=4$, while Figs. (5.35) and (5.36) illustrate the amplitude response for $f=1 \mathrm{KHZ}$ and a variety of Qs. Fig. (5.37) illustrate the phase response in addition to the amplitude one.
5. All Pass (AP) Realization

The topology-control bitword 100 realizes the All-Pass filter. Figs (5.38), (5.39) and (5.40) illustrate the plotted amplitude and phase responses.
B. CONCLUSION

The constructed circuit performed as predicted by the theoretical analysis and the computer simulations. This means that it realized all the desired filtering transfer functions LP, HP, BP, N, and AP. The effect of interference of the control switches nonideal performances which is more severe at high Qps can be minimized by increasing the values of R (meaning that the values of $R q$ also increases and the values of Cs decreases).

		1							
			2						

㤢最： Hz 日昭 Hz
EH： $2 \mathrm{KHO}^{2 \mathrm{~Hz}}$

1．Phase Response．
2．Amplitude Response．

Fig．5．35－Notch Phase／Amplitude Response $\mathrm{f}=2.8 \mathrm{khz}$
（a）$Q=7.5$
（b）$Q=5$

Fig. 5.36 - Notch Amplitude Response ($\mathrm{R}=1.6 \mathrm{k}$), $\mathrm{f}=0.99 \mathrm{khz}$

+774.	\square	1	1								
								500 hz			
1	-		IT	!		IL			\%		
3	\square	1						2 mV	ldiv		
$1-$											
1.						-					
2			\square	\square							
1									--.		
1	\square		1	-	T I	\square	:				
						------	--		--		
							--		---		
	$\\|$		3								
						-					
	-					--.	--				
				-	--7.		-		-		
	-	,				---	---	\cdots			
	-	-	-	\square	\cdots		-	--. -			
			-		----	----	----		-.-		

$$
\begin{aligned}
& 1-Q=2.0 \\
& 2-Q=4.0 \\
& 3-Q=8.0
\end{aligned}
$$

Fig. 5.37 - Notch Amplitude Response
(R-1.6k), $f=0.99 \mathrm{khz}$

$$
\begin{aligned}
& 1-Q=4.0 \\
& 2-Q=8.0 \\
& 3-Q=12.0
\end{aligned}
$$

Fig. 5.38 - APF Amplitude Response
($\mathrm{R}=1.6 \mathrm{k}$) , $\mathrm{f}=2.8 \mathrm{khz}$

Fig. 5.39 - APF Amplitude Response
($\mathrm{R}=1.6 \mathrm{k}$) for $\mathrm{f}=0.99 \mathrm{khz}$, $\mathrm{f}=1.99 \mathrm{khz}$, and $\mathrm{f}=2.8 \mathrm{khz}$

$\begin{aligned} & F F \\ & F R \end{aligned}$	$\begin{aligned} & F C \\ & F C \end{aligned}$	$\begin{aligned} & \text { H: } \\ & \text { H: } \end{aligned}$	$\begin{aligned} & +10 \\ & 000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Qde } \\ & \text { CEHT } \end{aligned}$	$F S$ TER		ε_{50}	$\begin{array}{r} d E \\ 00<0 \end{array}$	$\begin{aligned} & \text { DIU } \\ & \text { DIU } \end{aligned}$
			$1 / 1$		--	--		---	
				2					
			\cdots						

1. Phase.
2. Amplitude

Fig. 5.40 - APF Phase/Amplitude Response ($\mathrm{Q}=7.5$)

VI. COMBINING HIGHER ORDER SECTIONS

By cascading two or more programmable filters, higher order transfer functions can be obtained. Fig. (6.1) illustrates two cascaded GIC programmable filters.

Fig. (6.1) Two Cascaded GIC Programmable Filters. (Each Black box Stands for the Network of Fig. (3.10)

25 different combinations of the two individual transfer functions $\mathrm{Ti}(\mathrm{s})$ and $\mathrm{Tj}(\mathrm{s})$ can obtained as it is indicated in Table (4.3).

For Lp-IP combination and for ideal theoretical case (A1=A2-->OO) a fourth order low pass filter can be obtained with transfer function:

$$
\begin{equation*}
T_{2}(s)=\frac{w_{p}^{4}}{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}^{2}} \tag{6.1}
\end{equation*}
$$

The computer simulation of the fourth order transfer function of a nonideal theoretical filter vs. the second order case is illustrated at Fig. (6.2). The experimental results taken from the properly designed and built circuit as illustrated in Fig. (6.3) are shown in Fig. (6.4).

Using the same procedure as above a fourth order HP-HP combination for the ideal theoretical response is given by

$$
\begin{equation*}
T_{1}(s)=4 \frac{s^{4}}{\left\{w_{p}^{2}+\frac{w_{p}}{Q_{p}} s+s^{2}\right\}^{2}} \tag{6.2}
\end{equation*}
$$

which at Wp takes the complex value of

$$
\begin{equation*}
T_{1}\left(j \omega_{\psi}\right)=-4 j Q_{p}^{2} \tag{6.3}
\end{equation*}
$$

with magnitude of

$$
\begin{equation*}
\left|T_{1}\left(j w_{p}\right)\right|=4 Q_{p}^{2}=40 \log \left(2 Q_{p}\right), d b \tag{6.4}
\end{equation*}
$$

Fig. (6.5) illustrates the fourth order nonideal theoretical $H P$ filter response vs. the second order one. Both at $Q p=2$ and $f p=8 \mathrm{KHz}$, while fig. (6.6) illustrates the experimental responses. For $\mathrm{Qp}=2$ according to (6.4) and

L.P.F AMPL. RESPONSE $(\mathrm{Q}=2 / \mathrm{F}=4 \mathrm{~K})$

Fig. 6.2 - LPF Fourth Order vs. Second Order Ideal Response from Computer Simulation.

Fig. 6.3 - Network with Logic for Realizing np to 8 th Order LP, HP, BP, N, and AP Transfer Functions.

1. Single
2. Cascade

Fig. 6.4 - 4th Order vs. 2nd Order Experimental LPF Response ($\mathrm{Q}=2$)
H.P.F AMPL.RESPONSE $(Q=2 / \mathrm{F}=4 \mathrm{~K})$

Fig. 6.5 - "Ideal" 4th vs. 2nd Order HPS Responses From Computer Simulation.

Fig. 6.6 - 4 th Order vs. 2nd Order HPF obtained Responses from the Constructed Circuit.
(2.4) a difference of 12 dB were expected between the second and fourth order filter which is approximately the case in both computer simulation and experimental results.

The BP-Bp combination leads to the theoretical "ideal" fourth order transfer function:

$$
\begin{equation*}
T_{1}(s)=4 \frac{\left(\frac{\omega_{p}}{Q p}\right)^{2} s^{2}}{\left\{s^{2}+\frac{\omega_{p}}{Q_{p}} s+\omega_{p} z^{2}\right\}^{2}} \tag{6.5}
\end{equation*}
$$

which takes the following value at up:

$$
\begin{equation*}
T_{1}\left(\omega \omega_{p}\right)=4=12 \mathrm{db} \tag{6.6}
\end{equation*}
$$

According to this, a magnitude response of 12 dB approximately at $\mathfrak{w p}$, was expected from both experimental and computer simulation results. Fig. (6.7) illustrates the simulated response of a fourth order nonideal HP filter vs. a second-order one. A difference of 5.8 dB instead of 6 dB can be observed. Fig. (6.8) illustrates the experimental response, where a difference of 5.4 dB appears basically due to the interference of the control switches and the nonideally matched values of the capacitors which control the fp selection.

B.P.F AMPL. RESPONSE $(\mathrm{Q}=4 / \mathrm{F}=8 \mathrm{~K})$

Fig. 6.7 - Fourth Order vs. Second Order BPF Amplitude Responses from Computer Simulation.

Fig. 6.8 - Fourth vs. Second Order BPF Responses Obtained from the Constructed Circuit.

The $N-N$ combination for the ideal theoretical case (A1=A2-->00) results the following transfer function:

$$
\begin{equation*}
T_{2}(s)=\frac{\left(s^{2}+w_{n}\right)^{2}}{\left\{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}\right\}^{2}} \tag{6.7}
\end{equation*}
$$

where $w n$ is the Notch frequency.
Fig. (6.9) illustrates the fourth order "nonideal" Notch filter simulated response vs. the second order one.

The AP-Ap combination for the theoretical ideal case result in the following transfer function:

$$
\begin{equation*}
T_{1}(s)=\frac{\left\{s^{2}-\frac{w_{p}}{Q_{p}} s+\omega_{p}\right\}^{2}}{\left.\left\{s^{2}+\frac{w_{p}}{Q_{p}} s+w_{p}\right\}^{2}\right\}^{2}} \tag{6.8}
\end{equation*}
$$

which takes the following values for $\mathrm{S}=0$ and 00 :

$$
\begin{equation*}
T_{1}(j 0)=1 \tag{6.9}
\end{equation*}
$$

with amplitude and phase of

$$
\begin{equation*}
\left|T_{1}\left(j_{0}\right)\right|=1=0 d b, \quad \mid T_{1}(, 0)=360^{\circ} \tag{6.10}
\end{equation*}
$$

N.F AMPLITUDE RESPONSE (Q=2./F=8K)

Fig. 6.9 - Fourth Order vs. Second Order Notch Filter Amplitude Response from Computer Simulation.
and

$$
\begin{equation*}
T_{1}(\omega \infty)=2.25 \tag{6.11}
\end{equation*}
$$

with amplitude and phase of

$$
\begin{equation*}
\left|T_{1}\left(j_{\infty}\right)\right|=7 d b, L T_{1}(j \infty)=0^{0} d b \tag{6.12}
\end{equation*}
$$

The computer simulation of nonideal fourth order all pass filter vs. a second order one which is illustrating at Fig. (6.10) matches the above.

Fig. (6.11) illustrates the resulting Chebychev filter from a BP-BP combination with $Q p=4$ and different frequencies ($\mathrm{fp} 1=8 \mathrm{KHZ} \mathrm{fp} 2=10 \mathrm{KHZ}$), while Figs. (6.12) and (6.13) illustrate the resulting Chebychev filters from the designed and built circuit. Fig. (6.14) illustrates the resulting response from a HP-LP combination.

A.P AMPLITUDE RESPONSE(Q=2)

Fig. 6.10 - APF Fourth Order vs. Second Order Amplitude Response from Computer Simulation.

B.P.F AMPLITUDE RESPONSE(Q=4)

Fig. 6.11 - Chevycheb Response for $\mathrm{f}_{1}=8 \mathrm{k}$,
$\mathrm{f}_{2}=10 \mathrm{k}$

Fig. 6.12 - Chevychev Response Obtained by Cascading BP-BP

$$
\begin{array}{ll}
\mathrm{E}_{1}=6.65 \mathrm{khz} & \mathrm{f}_{2}=12.8 \mathrm{khz} \\
\mathrm{Q}_{1}=3 & \mathrm{Q}_{2}=3.5
\end{array}
$$

Fig. 6.13-BP-BP Response $Q_{1}=Q_{2}=4$
$\left(f_{1}=3 \mathrm{khz}, f_{2}=15 \mathrm{khz}\right)$

Fig. 6. 14 - HP-LP Response $Q_{1}=Q_{2}=4$
$\left(\mathrm{f}_{1}=3 \mathrm{khz}, \mathrm{f}_{2}=9.0 \mathrm{khz}\right)$
VII. APPLICATION OF THE PROPOSED GIC PROGRAMMABLE FILTER IN FREQUENCY HOPPING SYSTEMS

A. BACKGROUND

1. General Description of Frequency Hopping Signals

Frequency hopping is a spread spectrum modulation technique used to generate many possible carrier frequencies over a large bandwidth. Of all the possible carrier frequencies, only one is selected at a given time. However, all frequencies are eventually selected during some time interval.

Frequency hopping ($F H$) may be pictured as an $R F$ carrier whose center frequency is "hopped" over many frequencies. The hopping may be either in a simple sequence or a pseudorandom sequence.

The hopping rate of a frequency hopping system does not affect the bandwidth of the output spectrum. In a direct sequence system the chip rate determines the total bandwidth. In a frequency hopping system, however, the bandwidth is determined by the highest and lowest frequencies of the frequency hopped carriers. For example, if the highest frequency carrier is at 15 MHz and the lowest frequency carrier is at 10 MHz , the total signal bandwidth is 5 MHz . This is the bandwidth regardless of the hopping rate. This allows wideband spread spectrum signal generation at low hopping rates.

2. Signal Generation

Frequency-hopped signals may be generated in several ways. The different methods are classified into two groups:
(1) Direct synthesis, and
(2) Indirect synthesis.

One important aspect of frequency hopping synthesis is coherency. coherent signal synthesis is defined as the establishment of a known and repeatable phase each time a new frequency is hopped to. Non-coherent signal synthesis is defined as the establishment of a random or unknown phase each time a new frequency is hopped to. some techniques, direct or indirect, of signal generation can be used as a coherent frequency source. In other techniques, the changing of frequencies creates non-coherent sources.

If a frequency hop system is a coherent, it will have a signal-to-noise advantage over a non-coherent system.
a. Direct Synthesis

The direct approach to signal synthesis utilizes techniques which enable direct synthesis of different frequencies. Examples of direct synthesis techniques are:
(1) Frequency mixing, and
(2) Surface acoustic wave devices.

Frequency mixing for single synthesis is a common technique used to generate many different frequencies. An example of the frequency mixing technique is show in Fig. (7.2).

FIGURE 7.1 BLOCK DIAGRAH OF A FREQUENCY HOP MODEM

A pscudorandom code generator selects one of many transmit frequencies during a small time interval. The traffic modulates the carrier frequency which is spread over many different frequencies by the hopping action. The receiver dehops the input signal into a narrowband If. The code synchronizer locks the pseudurandom code generator in the recelver to the received signal. A data demodulator removes the traffic from the If amplifier output.

In Fig. (7.2), an RF switch selects one of several frequency inputs. Two of these input signals of different frequencies are multiplied together to generate a new output frequency. The device used to multiply the two signals together is called a frequency mixer. when two frequencies are mixed, the sum and the difference of the frequencies are generated. In order to select only one of these frequencies, a "filter is used to reject the unwanted frequency." A filter tuned to the desired frequency would allow selection of that frequency while rejecting the other. By selecting the mixing frequencies in the proper order, the output frequency can be stepped through several different frequencies. At each frequency mixer output, a filters is required to reject unwanted frequencies. The filters may require a short time for the signal to stabilize after it is selected. The time required for the filter to stabilize at each new frequency may ultimately determine the maximum hopping rate of the direct frequency synthesizer.
b. Indirect Synthesis

The indirect method of signal synthesis is defined as frequency synthesis through the use of phase-locked oscillators. One common indirect method for synthesis is shown in Fig. (7.3).

In this circuit a phase-locked loop is used to generate the numerous carrier frequencies. The phase-locked loop has an internal oscillator whose output frequency, Fo,

TIGURE 7.2 DIAGRAN OF A DIRECT FREQUENCY SYPTHESIZER

FIGURE 7.3 INDIRECT SIGNAL SYITTHESIS USING A PHASE-LOCKED LOOP When the reference frequency, F_{-}, is at the same frequency as F_{1}, the voltagecontrolled oscillator produces a constant output frequency, F_{0}. since F_{0} is divided by the programable divider. F_{0} is equal to N times F_{1}. By changing the divider ratio, N, many output frequencies are possible.
is shown in Figure (7.3) as the phase-locked loop output. The divide-by-N circuit divides this oscillator frequency by a selected number, N.

The phase-locked loop internally adjust its output frequency Fo so that $F 1 *$ is the same frequency as the reference frequency $F 1$. If the divide-by-N circuit output frequency is initially lower than the reference frequency $F 1$, the oscillator output frequency is automatically increased until F1 and F1* are identical. When this occurs, the oscillator output frequency will become stable and remain at that frequency until the number, N, changes. When this number changes, the oscillator frequency is again automatically adjusted so that $F 1$ and F1* are again identical.

B. PROPOSED USES OF PROGRAMMABLE FILTER

A wide field of applications exist in FH systems for the programmable GIC filter. The outstanding performance of the filter (including sensitivity and stability) and its high speed response to the different inputs (due to the use of CMOS integrated circuits) make it very exceptional in this field. The first proposed use is indicated, in Fig. (7.4). The figure illustrates a receiver of a frequency hopping demodulator. The received frequency hopped signal after heterodyned by the RF mixer passes through the GIC filter in a BP realization (at this application the topology control network does not need to exist since the BP realization is

Fig. 7.4 - The Proposed Receiver of A Frequency Hopping System Using the Programmable GIC Filter
the only type to be used). The frequency shift of the filter is controlled by the synchronized pseudorandom code generator. This code generator also controls Q through some interfaced binary logic in order to correct the amplitude reduction which appears at high frequencies. The frequency shift problems can be easily corrected by the use of composate Op. Amp. Fig. (7.5) as it is extensively analyzed in Refs. [32], [34], and [35].

The programmable filter can also be used in the direct frequency synthesizer as it is illustrated at Fig. (7.2). At each frequency mixer output exists the need of a filter required to reject the unwanted frequencies. The frequencies to pass are not always the same, but they hop. the $B P$ realization of the filter is used which center frequency can be controlled accordingly. The filter may require a short time for the signal to stabilize after it is selected. The time required for the filter to be stabilized at each new frequency may ultimately determine the maximum hopping rate of the direct frequency synthesizer.

Fig. 7.5
Practical BP Filter Realization of the Composits GIC

VIII. CONCLUSION

The novel design described here has resulted in a universal programmable filter than can be digitally controlled to realize almost any practical filter specifications. This is done through the use of CMOS switches controlled by binary codes to program the order of the filter, the filter topology, the filter center frequency and selectivity. The design procedure required developing optimum switching arrangements for the minimum redundancy in components and least dependence of the filtering function on switching imperfections such as switches stray capacitances and non-zero and nonlinear switch-on resistance. The sensitivities of Qp , Wp are found to be low with respect to the passive and active elements variations. The experimental result show close agreement between theory and practice. Further, these results indicate that these realizations are insensitive to temperature and power supply variations. A wide field of applications exists for the programmable filter beside the one discussed in Chapter VII.
(1) Word recognition and speech synthesis;
(2) Music applications;
(3) Signal processing in communication;
(4) Adaptive balancing.

Further investigation is needed to develop a programmable switched capacitor realization that can allow frequency scaling by changing clock frequency. Work can be also extended for developing a wide bandwidth programmable filter using the composite operational amplifier technique proposed by [39]. Such implementation would lead to a very useful monolithic device at moderate cost.

The research has yielded a paper that was presented at the 19th Annual Asilomar Conference on circuits, systems and computers, Monterey, California; November, 1985 (Appendix C).
\$ 100
DIMENSION ATISI 1001 ,PTISI 1001 , AT2SI 1001 , PT2S (1001
由, ATJS (100), PT3S(100), FAT1(100), FAT2 (100), FAT3(100)
DIMENSION AT1(100), PT $1(100), A T 2(100), P T 2(100), A T 3(100)$,

* PT3(100), FPT1(100), FPT2(100), FPT3\{100),

FFTF1(100),FTF2(100),FTF3(100),FP11100),FP2(100),FP3(100)
COMPLEX TLS,T2S,T $35, Y 1 S, Y 2 S, Y 3 S, Y 4 S, Y 5 S, Y 6 S, Y 7 S, Y 8 S, D S, K 1 S, K 2 S$, *K35,K4S,K5S,K6S
COMPLEXX T1, T2, T3, Y1,Y2,Y $3, Y 4, Y 5, Y 6, Y 7, Y E, D, K 1, K 2, K 3, K 4, K 5, K 5$
DIMENSION FR(100), 3 TIS(100),HT15(100), 3T2S(100), HT2S(100)
*, $\operatorname{BT} 35(100), H T 3 S(100), F B T 1(100), F B T 2(100)$, FET3(100)
DI NENSION BTI(100), HT1(100), ZT2(100 j,HT2(100), 日T3(100)
*, HT3 (100), FHTI(1001 , FHT 211001 , FHT 3(100)
COMPLEX CIS,C2S,C C S, GIS,G2S,G3S,G4S,G5S,G6S,G7S,G8S,DUS, X1S, X2S,
$\div \times 35, \times 45, \times 55, \times 65$
COMPLEX C1, C2, C3, G1, G2, G3, G4, G5, G6,G7,G6, DD, X1, $\times 2, \times 3, \times 4, \times 5, \times 6,3$
OMEGA $=3$.
DO $20 \mathrm{~K}=1,100$
OMEGA = OMEGA + 125.220 .
$S=$ CMPLX 0.0 , GMEGA)

$\begin{array}{ll}\mathrm{Za}_{1}=1600 \text { - } \\ \mathrm{Cl}_{1} & =200 \mathrm{E}-9\end{array}$
$R Q 1=3200$.
$R 2=1600$.
$R 2=50 E-9$
$R O 2=3200$.
$23=1600$.
C3 $=12.5 E-9$
RQ3 $=3200$.
$\mathrm{R}_{4}=1600$.
$C_{4}=3.12 E-9$
RQ4 $=3200$.
$A 3=A 4=A 35=A 4 S=1 E 5$
$A 1=A 2=A 15=A 25=1 E S$
$3=4$
$1=4$
$L=4$
$N=4$

C
c

 DO CASE L

C CASE
$G 15=1 . / R 4$
$G 2 S=G 15$
$63 S=S+C 4$
$G 4 S=G 15$
$G 6 S=G 15$
$G 5 S=0.0$
$G 7 S=G 3 S$
$G 8 S=1 . / R Q 4$

C
CASE LPF

GIS $=1 \cdot / R 4$
G2S = S*C4
G3S $=G 25+1 . / R 04$
G4S $=$ G15
$663=0.0$
G5S $=$ G15
$675=0.0$
G8S =G1S
CASE
C

C HPF
CASE

C
LPF

G1	$=$	$\begin{aligned} & 1 . / R \\ & 5 \neq 3 \end{aligned}$	
63	$=$	G2.	1.1RQ3
64	=	G 1	
66	=	0.0	
65	$=$	61	
67	$=$	0.0	
68		G 1	

c
CASE
C NOTCH
$G 1=1 \cdot / R 3$
$G 2=G i$
$G 3=S 4 C 3$
$G 4=G 1$
$G 5=G 1$
$G 6=0$.
$G 7=G 3$
$G B=1 / A R Q 3$
c
BPF

G1	1.183
$G 2$	$=61$
63	$=5 * C 3$
64	$=G 1$
65	$=0.0$
G6	$=61$
67	$=1 . / R Q 3$
68	= 54.6

ENO CASE
 DO CASE 1

CASE
HPF
$Y 1 S=10 / R 2$
Y2S = Y1S
$Y 35=5 \neq C 2$
$Y 4 S=Y 15$
Y6S = Y1S
Y5S $=0.0$
Y7S = Y 35
YAS $=1 . / \mathrm{RQ}_{2}$
c
Y1S = 1-/R2
$Y 25=5$ 수C2
Y35 = Y2S* 1./RQ2
Y4S = Y 15
$Y 6 S=0.0$
$Y 55=Y 15$
Y7S $=0.0$
ras =ris
C
CASE
NOTCH
YiS $=1 . / R 2$
$Y 25=Y 15$
$Y 35=5 \neq C 2$
$Y 4 S=Y 15$
Y5S $=Y 15$
Y6S $=0.0$
$Y 75=Y 3 S$
Y日S = 1./RA2
IF NONE DO
c
3PF
Y1S = 1.1 R2
$Y 25=Y 15$
Y3S $=5 \neq C 2$
$Y 45=Y 15$
Y5S $=0.0$
Y6S $=$ Yis
Y7S = 1./RQ2
END CASE

DO CASE J
CASE
HPF
$\begin{aligned} Y_{1} & =1 \cdot / R 1 \\ Y_{2} & =Y_{i}\end{aligned}$
$Y 2=Y 1$
$Y 3=S C_{1}$
$Y 4=Y 1$
$\mathbf{Y}^{2}=\mathbf{Y}_{1}$
$Y 5=0.0$
$Y 7=Y 3$
CASE
LPF

CASE
NOTCH
$Y_{1}=1 \cdot / R_{1}$
$Y 2=Y 1$
$Y 3=S * C 1$
$Y_{4}=Y 1$
$Y_{5}=Y 1$
$Y_{6}=0$.
$Y 7=Y 3$
$Y_{3}=1 \cdot /$ RQ1 $_{1}$
IF NONE DO
BPF
$Y 1=1 \quad / R 1$
$Y 2=Y 1$
$Y 3=S \pm C 1$
$Y 4=Y 1$
$Y 5=0$
$Y 6=Y 1$
$Y 7=1$
$Y 8=S \neq C 1$
END CASE

 Y $2 S \neq Y 3 S \neq Y 4 S / A 2 S+(Y 2 S / Y 1 S) \not \subset K 1 S \neq Y 3 S \neq(Y 7 S+Y 8 S)+Y 3 S \neq K 6 S \neq K 3 S / A 2 S$
 （Y1S＋Y3S）$=K 2 S$ ）／A1SI／DS
 －Y5SキY7S＊K5S／A1S＋Y2StY35もY7S 1／US
 \＃YSS／A2S（Y1S／Y2SI＊K1S＊Y3S＊Y7S＋K6S＊Y3S＊Y7S／A2SJ／DS
 $(Y 2 / Y 1) \approx K 1 * Y 34(Y 7+Y 8) * Y 3+K 6 \div K 3 / A 2$

 YZ＊Y3＊Y7／／D
 K1 キ Y お \＆Y $7+K 6 \neq Y 3 \approx Y 7 / A 21 / 0$

 C1S＝（G1S＊G4StGSS＊G3S＊GSS＊（G7S－G 8S）＊G3S＊G7S＊\｛G2S＊G6S）＋（G7S＊ $(G 1 S+G 35) \neq 25) / A 35) / 005$
C2S＝GGIS＊G5S＊X4S－G1S＊G7S＊G6S－G3S＊G5S＊×4S／A4S－G3S＊G6S＊G7S／A4S ＋ $55 \mathrm{~S} \uparrow 575 * \times 5 \mathrm{~S} / \mathrm{A} 3 \mathrm{~S}+\mathrm{G} 2 \mathrm{~S}$＊G3S＊G7S／／DDS
$C 3 S=1 \times 1 S * G 7 S \neq \times 2 S / A 3 S+\times 1 S \neq G 4 S * G S S+G 3 S \neq G 7 S * \times 2 S / A 3 S \neq A 4 S+G 3 S * G 4 S$ ＊GSS／A4S＋（G1S／G2SI＊XIS＊G3S＊G7S＋X6S＊G3S＊G7S／A4SI／DOS
$D D=\{\times 1 \neq \times 2 * \times 3) / A 3 * G 1 * G 4 \div \times 6 * G 3 * \times 2 * \times 3 /(A 3 * A 41 * G 27 G 3 * G 4 / A 4$＋

$C 1=\{G 1 \neq G 4 * G S+G 3 \neq G 5 \div(G 7-G B)+G 3 \not G 7=(G 2+G 6\}+(G 7 \neq(G 1+G 3) \neq \times 2) / A 3) / D D$
$C 2=1 G 1 * G 5 * X 4-G 1 * G 7 * G 6+G 3 * G 5 * X 4 / A 4-G 3 * G 6 * G 7 / A 4+G 5 \neq G 7 * X 5 / A 4$＊ G2\＆G3＊G7 1／DD
$C 3=\{\times 1 * G 7 * \times 2 / A 3+\times 1 * G 4 * G S+G 34 G 7 * \times 2 / A 3 * A 4+G 3 * G 4 * G S / A 4 *\{G 2 / G 1) *$ $X_{1} \neq G 3 \neq G 7+X_{6} \neq G 3 * G 7 / A 4 / / 00$
$\left.\begin{array}{rl}\text { ATIS }\{X) & =20 . \neq A L O G 10\{C A B S\{T 1 S\end{array}\right)$

C

C
c
c

C

C
c
c

C
c

C

C
c
c
c
c
c
c

```
ARTIS = REAL{T1S)
ART2S = REAL(T2S)
ART3S = REAL(T3S)
AITIS = AIMAGITIS)
AIT2S = AIMAG(T2S)
AIT3S = AIMAG(TIS)
```

PTIS(K) = ATAN2イAITIS, ARTISIF 57.325
PT2S(K) = ATAN2IAIT2S: ART2S) $=57.325$ PT3S(X) $=$ ATANZ AIT3S, ART3S) $=57.325$

AII(K) $=20 . * A L O G 10\{C A B S\{T 1)$
AT2\{K) $=20$. ALLOGIO(CABSIT2))
AT3(K) $=20 \cdot$ FALDGIO(CABS(T3))
ART: = REALITIJ
ART2 = REAL $\{$ T2)
ART3 = REAL\{T3
$A I T I=A I M A G(T 1)$
$A I T 2=A I M A G(T 2)$
AITZ $=$ AIMAG $(T 3)$

> PTI(K) = ATAN2\{AIT1, ARTI) $=57.325$
> PT2 $(K)=A T A N 2(A I T 2: A R T 2) * 57.325$
> PT3(K) $=$ ATAN2 AATJ3:ART3) $=57.325$
FATI $\{K)=A T 1(K)+A T 1 S(K)$
FAT2 $(K)=A T 2(K)+A T 2 S(K)$
FAT3 $(K)=A T 3(K)+A T 3 S(K)$

	Pritk)	
K)	Pr2(K)	- PT2S ${ }^{\text {- }}$ (K)
K)	PT3(K)	

$$
\begin{aligned}
& \text { BTIS(K) }=20 . * A L O G 10\{C A B S(C 15\} 1 \\
& \text { BT2S(X) }=20 . \approx A L O G 10(C A B S 1 C 25)) \\
& \text { BTJS }(K)=20 . \neq A L D G 10(C A B S(C 3 S))
\end{aligned}
$$

ARTIS = REAL(CIS)

ART2S = REAL\{C2S)

ART3S = REAL(C3S)

AITIS $=$ AIMAGPCIS!
AlT2S = AIMAGIC2S)
AIT3S = AIMAG(C3S)

	ATANEATMIS		ARTIS)*	57.
HT2S(X)	25		ART2S)	57.325
HT3S(K)	ATAN2IAIT3S		ART3S)	57.325

ART1 $=$ REAL\{C1
ART2 $=$ REAL C2
ARTJ $=$ REAL CJ

AITI = AIMAG\{CI)
AIT2 $=$ AIMAG(C2)
AIT3 $=$ AIMAG(C3)

FBTI $(K)=$ STI(K) * BTISIK)
FST2 $(x)=\operatorname{AT} 2\{K)$ BT2S(K)
FBT3(K) = ET3(K) * BT3S(K)
c
c

```
            FHTI(K) = HTI(K) HTIS{K)
            FHT2(K) = HT2(K) + HTZS(K)
            FHT3(K) = HT3(K) + HT3S(K)
            FTFI(X) = ATI(K) * ETI(K) ETIS(X)* ATIS(K)
            FTF2(X) = FATZ(K) FST2(K)
            FTF3(K) = FAT3(K) FGT3(K)
```

c
FPI $(X)=F H T 1\{K)+$ FPTI\{Ki
FP2 $\{$ K) $=$ FHT2\{K) +FPT2\{K\}
FP3 3 K) $=F H T 3(K)$.FPT3(K)

WRITE $(6,66)$ FR(K),FATI(K),F3TI(K)

FHTSIK)
CONTINUE
20
66 FORMAT(6) $1 \times, F 9.3)$) STOP END
\$ENTRY

APPENDIX B

\$J0e
DIMENSICN ATIS\{1001, PTIS\{1001, AT2S(100), PT2S(100)

DIMENSION ATL(100),PT1(100), AT2(100), PT2(100), AT3(200),

* PT3 (100), FPT11100),FPT2 11001 ,FPT31100),
* FTF1 (100), FTF2(100), FTF3 1100), FP1 (100), FP2 (100), FP3(100)

COMPLEX T1S, T2S, Y $3 S, Y 1 S, Y 2 S, Y 3 S, Y 45, Y 5 S, Y O ̈ S, Y 7 S, Y Y S, D 5, K 1 S, K 2 S$, まK $35, K 45, \times 55, k 65$
COMPLEX T1,T2,T3, Y2,Y2,Y3,Y4,Y5,Y6,Y7,YB, D, K1,K2,K3,K4,K5,K6
DIMENSION FR(100), ヨTIS(100),HTIS(100), BT2S(100),HT2S\$100)
*, BT35(100), HT3S(100),FBT1(100),FST2(100), FBY3(100)
DIMENSION BT1(100), HT1P100), ET2 (100), HT21100), BT3(100)
क, HT3(100), FHT1(100), FHT2 (100), FMT31 100)
COMPLEX C1S,C2S,C3S,G1S,G2S,G3S,G4S,G5S, $665, G 75, G 85,005, \times 15, \times 25$,
$\approx \times 35, \times 45, \times 55, \times 65$
COMPLEX C1,C2,C3,G1,G2, $63, G 4, G 5, G 6, G 7, G 8,00, \times 1, \times 2, \times 3, \times 4, \times 5, \times 6,5$
DMEGA $=0$.
DO $20 \mathrm{~K}=1,100$
OMEGA $=$ OMEGA 125 - 20 -
5 = CMPLX 0.0 , OMEGA
 $R 1=1600$.
$C_{1}=200 E-9$
$R G 1=3200$.
RQ1 $=3200^{\circ}$
R2 $=1600$.
$C 2=50 E-9$
RQ2 $=3200$.
R3 $=1600$.
C3 $=12.5 E-9$
RQ3 $=3200$.
R4 $=1600$.
$\mathrm{CH}=3.125-9$
$\mathrm{RQ}=3200$
W1 $=W 1 S=$ SET VALUE
$A 3=A 4=A 3 S=A 4 S=W 1 / S$
$A_{1}=A 2=A 1 S=A 2 S=W 15 / S$
$J=4$
$V=4$
$N=4$
C
C
C
 DO CASE L CASE
$G 1 S=1 . / R 4$
$G 2 S=G 1 S$
$G 3 S=S \pm C 4$
$G 4 S=G 1 S$
$G 6 S=G 1 S$
$G 5 S=0.0$
$G 7 S=G 3 S$
$G 8 S=1.1 R Q 4$
c

CASE

 LPF

C
$G 15=1.1 R 4$
$G 2 S=G 15$
$G 3 S=5 * C 4$
$G 4 S=G 15$
$G 5 S=615$
$G 6 S=0.0$

```
            G7S \(=\) G35
            G8S \(=1 . / R 14\)
    \(1=\) NONE DO
    BPF
            G1S = 10/R4
            G2S \(=\) Gis
            G3S \(=5 \neq C 4\)
            G4S \(=\) G15
            \(65 S=0.0\)
            \(665=G 15\)
            G7S = 1./RQ4
            \(685=5 \div C 4\)
                            END CASE
```



```
C HPF
    DO CASE N
                    CASE
HPF
                    CASE
HPF
                                \(G 1=1.1 R 3\)
\(G 2=61\)
                \(G 2=G 1\)
\(G 3=5 \pm C 3\)
                \(G 3=S+C\)
\(G 4=61\)
\(G 6\)
                    \(G 6=G 1\)
\(G 5=0\).
                    G7 \(=63\)
    CASE
                    ,
                            G8 \(=1 . /\) RQ \(_{3}\)
C
    LPF
            G1 \(=1.1 R 3\)
            \(G 2=5 * C 3\)
            \(\begin{array}{ll}G 3 & =G 2 \\ G 4 & =G 1\end{array}\)
            \(G 4=G 1\)
\(G 6=0.0\)
            \(\begin{aligned} & \text { G6 } \\ & \text { GS }\end{aligned}=0.0\)
            \(G 7=0.0\)
    CASE
    NOTCH
                                \(G 1=1.1 \operatorname{RO}^{3}\)
            \(G 2=G 1\)
            \(G 3=S \neq C 3\)
            \(G 4=G 1\)
            \(65=61\)
            \(G 6=0\).
            \(67=63\)
            GB \(\overline{=}\) i./RQJ
            C
            IF N
\(G 1=1.1 R 3\)
\(G 2=G 1\)
\(63=5+C 3\)
\(G 4=G 1\)
\(65=0.0\)
\(66=G 1\)
\(67=1 / R Q 3\)
\(G 8=S \approx C 3\)
END CASE
```



``` DO CASE
CASE
                HPF
                        Y1S \(=1 . / R 2\)
                    Y25 = Yis
                    Y3S = S*C2
                    \(Y 45=Y 15\)
                        Y6S \(=Y 15\)
                            \(Y 6 S=Y 15\)
\(Y 5 S=0.0\)
                    Y7S \(=Y 3 S\)
                            YAS \(=1 . /\) RQ2
            CASE
            LPF
                    Y1S \(=1 . / R 2\)
```

c
c
CASE NOTCH Y1s $=1.1 R 2$ $Y 2 S=Y 1 S$
$Y 3 S=S \# C 2$
$Y 45=Y 15$
$Y 5 S=Y 15$
$Y 5 S=0.0$
$\begin{aligned} \text { Y5S } & =0.0 \\ Y 7 S & =Y 3 S\end{aligned}$
YBS $=1 . / R 22$
IF NONE DO
BPF
Y1S $=1.1 R 2$
$Y 2 S=Y 1 S$
$Y 3 S=S \neq C 2$
$Y_{4} \mathrm{~S}=Y 25$
YSS $=0.0$
Y6S = Yis
$Y 7 S=1.1 R Q 2$
$Y B S=S=C 2$
YAS
END CASE
c

DO CASE J
CASE
hpF

CASE
LPF
$Y 1=1 . / R 1$
$Y_{2}=S \dot{F} C_{1}$
$Y_{3}=Y 2+1 . / Q_{1}$
$Y_{4}=Y_{1}$
$Y 6=0.0$
$\begin{aligned} Y_{5} & =Y 1 \\ Y 7 & =Y_{1}\end{aligned}$
$\begin{aligned} Y 7 & =0.0 \\ Y B & =Y i\end{aligned}$
CASE
NOTCH

$$
\begin{aligned}
& Y_{1}=1 \cdot / R_{1} \\
& Y 2=Y
\end{aligned}
$$

$Y 3=S+C 1$
$Y_{4}=Y_{1}$
$Y 5=Y 1$
$\begin{aligned} Y_{0} & =Y_{0} \\ Y_{7} & =Y_{3}\end{aligned}$
$r_{3}=1 . / R Q_{1}$
IF NONE DO
C

γ_{1}	= 1./R1
Y2	$=\mathrm{Y}_{1}$
r3	= S*C1
Y4	$=Y 1$
Y5	$=0.0$
Y6	$=Y 1$
$Y 7$	= 1./RQ1
Y8	- Cl

 C

$(Y 1 S+Y 3 S) \neq K 2 S) / A 1 S) / D S$
 －YSS＊Y7S＊KSS／A1S Y2S立Y3S＊Y7S J／DS
T3S＝\｛K1StY7StK2S／A1S＋K1SFY4SFY5S＋Y3SキY7SAK2S／A1StA2S＋Y3SきY4S सYSS／A2S＋（Y1S／YZS）\＃K1S＊Y3SキY7S＋K6SきY3S＊Y7S／A2S）／DS
 $(Y 2 / Y 1) \neq K 1 \neq Y 3 \neq\{Y 7+Y 8\}$＊$Y$（ $\mathrm{Y} K 6 \$ K 3 / A 2$

 $Y 2 * Y 3 * Y 7$ ，／ 10
$T 3=(K 1 \neq Y 7 \neq K 2 / A 1+K 1 * Y 4 \neq Y 5+Y 3 \approx Y 7 \neq K 2 / A 1 * A 2+Y 3 \uparrow Y 4 \neq Y \subseteq / A 2+\{Y 2 / Y 1)$

DOS＝（x1S＊×2S＊×3S）／A3S G1S＊G4S＊×6S＋G3S＊×2S＊×3S／（A3S＊A4S）＋

 $(G 1 S+G 3 S) \neq 2 S 1 / A 3 S) / 00 S$
$C 2 S=\{G 1 S \neq G 5 S * X 4 S-G 1 S * G 7 S * G 6 S$－G3S＊GSS＊X4S／A4S－G3S＊G6S＊G7S／A4S － $555+675 * \times 5$ S／43S＋G2S＊G3S＊G7S／／DOS
$C 3 S=\{\times 15 \neq G 7 S \neq \times 2 S / A 3 S+\times 1 S F G 4 S \neq G 5 S+G 3 S \neq G 7 S * \times 2 S / A 3 S \neq A 4 S$＋G35＊G4S
＊GSS／A4S＋（G1S／G2S）＊X1S＊G3S＊G7S＋X6S＊G3S＊G75／A4S\}/DOS
$D D=\{\times 1 * \times 2 * \times 3 / / A 3+G 1 * G 4 * \times 6+G 3 * \times 2 * \times 3 /(A 3 * A 4\}+G 27 G 3 * G 4 / A 4+$

$C 1=\{G 1 \neq G 4+G 5+G 3+G 5 *(G 7-G 8)+G 3 \neq G 7 \neq\{G 2+G 6\}+(G 7 \neq(G 1+G 3) \neq \times 21 / A 3) / 00$ $C 2=1 G 1 \neq G 5 * \times 4-G 1 \neq G 7 \approx G 6+G 3 * G 5 * X 4 / A 4-G 3 * G 6 \neq G 7 / A 4+G 5 * G 7 * X 5 / A 4$ 62＊G3＊G7 1／10D
$C 3=(\times 1+G 7 \neq \times 2 / A 3+X 1 * G 4 * G 5+G 3 * G 7 * \times 2 / A 3 * A 4 * G 3 * G 4 * G 5 / A 4 *(G 2 / G 1)$ X1＊G3＊G7 + X6＊G3＊G7／A4／／DD

ATIS（K）$=20$ ．＊ALDG10（CABS（TIS））
AT2S\｛K）$=20 . \neq A L O G 10\{C A B S\{T 2 S i)$

c

AOT1S = REAL (T1S)
ART2S = REAL (T2S)
ART3S = REAL (T3S)
AITIS = AIMAG(T1S)
AITZS $=$ AIMAG(TZS)
AIT3S = AIMAG(T3S)
PTIS(X) = ATAN2\{AITIS, ARTISIF 57.325
PT2S(K) = ATAN2(AIT2S, ART2S) $\% 57.325$
PT3S(K) $=$ ATANE(AIT3S, ART3S) F 57.325
ATI\{K) $=20$. FALOGIO\{CABS\{T11\}
AT2:K) $=20$. ALOGIO (CABS (T2))
AT3(X) $=20$. FALOGIO\{CABS(T3))
ART1 = REALITLJ
$A R T 2=$ REAL $\{T 2\}$
ART3 = REALITJI
AITI = AIMAG\{TI\}
AIT2 $=$ AIMAG(T2)
AIT3 $=$ AIMAG(T3)
PTIIK! = ATAN2IAIT1, ART1才F57.325.
PT2 (K) = ATAN2 (AIT2, ART2) 257.325
PT3TK: = ATAN2IAIT3:ART3) 57.325

	ATIIK)	
(AT 2 \{K)	- A
$3(x)$	AT3(K)	A

FPTI(K) $=$ PTIIK) PTIS\{K)
FPT2\{K) $=$ PT2 $(K)+P T 2 S(K)$
FPT3(K) $=$ PT3(K) + PT3S(K)
BTIS(K) $=20 . * A L O G 10(C A B S\{C 1 S 1)$
BT2S (X) $=20$. FALDG10(CABS(C2S))
ZTJS (K) $=20 . \neq A L O G 10(C A B S(C 3 S))$
ARTIS = REAL(CIS)
ART2S = REAL (C2S)
ART3S = REAL(C3S)
AITIS = AIMAGICIS)
AIT2S = AIMAG(C2S)
AIT3S = AIMAGIC3S)
HT1S(X) = ATAN2(AITIS, ARTIS) $=57.325$
HT2S(x) = ATAN2(AIT2S; ART2S) $\Rightarrow 57.325$
HT3S(X) = ATAN2 AIT3S: ART3S) 57.325
ST1(K) = 20. \#ALOGIO(CABSICI)
GT2(K) $=20$. FALOGIORCABS(C2))
BT3(K) $=20 . * A L O G 10(C A B S(C 3))$

```
ARTI = REAL{CI\
ART2 = REALIC2)
ART3 = REAL{CI}
```

AITI = A\{MAG\{CI\}
AIT2 $=$ AIMAG\{C2)
AIT3 $=$ AIMAG(C3)
HTITKI = ATAN2IAIT\& ARTI才* ST•325
HT2 KK) $=$ ATAN2 (AIT2, ART2) 257.325
HT3 $\{K)=A T A N 2\{A I T 3$, ART3) $=57.325$
$F B T 1\{K)=9 T 1(X)+B T 1 S(K)$
$F g T 2\{K)=8 T 2(K)$
$F B T 3(K)=E T 3(K)$
c
c
FHTI(K) = HTI(K) HTIS(K)
FHTZ $(K)=$ HT $2\{K)$ HTZS(K)
FHT3(K) $=$ HT3(K) $\operatorname{HT} 3 S(K)$
FTFI (X) $=$ ATI(K) * ETI(K) BTIS(K)*ATIS(K)
FTF2 $(X)=F A T 2(K)$ FgT2(K)
FTF3 $(K)=F A T 3(K)$.FBT3 (K)
C

c
WRITE(6,66) FR(K),FATI(K),FBTI(K)

```
    * FHT3(K)
    CONTINUE
    FORMAT(6(1X,F9.3))
    STOP
    END
$ENTRY
```


APPENDIX C

DIGITALLY CONTROLLED "PROCRAMMABLE" ACTIVE FILTERS

Sherlf Michael and Panaglotis Andresakis

Department of Electrical and Computer Englneering
Naval Postgraduate Scnool Montercy, CA 93943

ABSTRACT

In tnls contribution a general purposc algltally controlled analos lliter is presented. The novel design 19 a cascade of second order sections that are indlvidually prozrammed to achleve any flltering topologies. Two-binary words are used to control the pole rrequency w_{p} and selectivity Q_{D} of eacn section independently. Eaen second order section is a GeneralizedImmittance converter (GIC) blquads whlch are known for their high stabllity and low active and passlve sensltlvity. CMOS swltches are used to electronlcally relocate the minlmum number of passive elexents to achleve tunction programmablilty. Switches are also used to select the number of cascaded sections to reallze higher order transfer functions.

1. INTRODUCTION

The avallabllity of an analog fllter with algltally controlled "programmable" coefficients has been the goal of many researchers due to lts several attractions. One possibllity of a compact, versatlle analob fllter under remote control opens up many novel and Independent afplication areas. Also. wnen a programmable fliter 13 comblned with a permanent refercnce memory whlcn is user-programmable, thla would form an economical and versatile device for dedlcated stand-alone applicatlons. The need for sucn a device was motlvated by advancement In film and semiconductor technologles as well as the contlnuous upgrading of systers spectificatlonato tax advantage of en avallable technologles to the limlts.

Linear analog fllterlng finds many appllcar tlons, sisch as speech processing (recogntition or synthesis), geology. Instrumentation, conmunlcatlons, process control, adaptlve balanclng, etc. There nas been mucn empnasis on performing the flltering function digltally, largely becauge of the case of varying and optimlzing the transfer function. However, for many reasons, sucn as cost. slze, slgnal processing complextty, and Dandwldth, it wosld be deglrable to perform the fllter function with llnear components yet retaln the flexabllity of varylng the fllter pardeters digltally.

Recently, the adrantages of comblning linear components (operational amplifiers (OAS),
reslstors and capacitors) and nonlinear elements (swltcnes) nave oten demonstrated using switcned capacitor techniques $[1-3]$. In tnis contricutlon, we are presentling the results of realizing a contlnuous actlve levice using linear elements ard switcnes controlled by digital signals to achleve a fully programable [1lter [4]. Several programming features of the prowosed fllter are reported. The first feature is the abllity of the network to reallze the most common fllterlng functions (function proeramaabllity) namely: Low Pass (LP), Band Pass (EP), HIgh Pass (HP), All Pass (AP) and Hotch(N) functions, using the minlmal set of elements. The second feature is the aollity of the rietwork to program (1ndependently) the key parameters of the flltering function cnosen (parameter programmabllity) namely: the pole resonent frequency (wD) and selectlvity (GD). Flnally the ablllty to program the network to caseade several sectlons to achleve higner order fllter. All of the above programmabllity features are performed Independently to reallze a unlversal flltering network.

2. DESICN ANALYSIS OF THE PROPOSED EILTERS

The baslc actlve network consldered.here as the neart ol the programmable fllter is the sezond order Generallzed lmiftance Converter (GlC) structure [5]. F[g. 1, whose supertor performance was establisned in the llterature [6]. The general transfer function reallzed $T(s) 1 s$ glven by:
$T(s) \cdots N(s) / D(s)-\left(a_{0}+a_{1} s \cdot a s^{2}\right) /\left(0_{0}+b_{1} s+b_{2} s^{2}\right)(1)$ The CIC transfer functions of Fis. 1 assuming non-1deal OAs are glven by

Stabllity and sensltivity analysis:
An important criterion of a reallzation ls its sensitivity to element varlations. The GIC sensltivity analysis has snown to be as good or better than all competltive second order networks [6]. Whlle the GlC stabllity can easlly be demonstrated since in all the transfer functions (2), the coefficlents of $D(s)$ are seen to remain positive for any OA mismatch. Thls is
due to the absence of negative teras ln $D(s)$. therefore the zeros of $D(s)$ will remaln in the left-half s-plane and low rrequency unstable modes cannot arlse during activation.

Function programmabllity:

The objective of thls research was to develop a device that is capable of realizing the rollowing transfer functions: LP where $T(s)$ - K/D(s), BP where $T(s)$ - KS/D(s), HP where T(s) - K S ${ }^{2} / D(s)$. AP where $T(s) \cdot\left[s^{2-s}\left(\omega_{p} / Q_{p}\right)+\omega_{D}{ }^{2}\right] / D(s)$ and N where $T(s)=\left(s^{2}+w_{z}^{2}\right) / D(s)$. By optimiz!ng the design of the filter, it was round that all or the above runctions can be realized by the second order GIC section using rour resistors, two capacitors and two OAs as shown in Table 1 . These passive elements are connected to different nodes to achleve the varlous reallzations. A set of CMOS Dllateral swltches controlles by digltal binary word, are used to relocate the same elements in different ways to achleve the desired fllterlng runctions according to Fig. 2. The truth table or the switches control logic is shown in Table 2, while fig. 3 lllustrates the corresponding oinlmized CMOS loglc circult used for passive elements relocation.

Paramater programmadillty:

White four of the reststors are equal and of valise Reach, the fifth resistor is the Q_{p} deteralning reststor and of value $R_{q}-R Q_{p}$. The two capacitors are equal and of value $c-1 /\left(\omega_{p} R\right)$ each. Two equal banks of capacitors are used to control wp. Each bank contalns n binary= welghted capacitors connected in serles with n CMOS swltches as shown in Fig. 4. Using n bit Dinary word to control the switches, 2^{n} different values or o can be obtalned that corresponds to 2^{n} different values or wp. Using a similar techndque, the value of R_{q} can be controlled by an a bit digital word that yields $2^{\text {ma }}$ different values of Q_{D}. as lllustrated in Fig. 5 . Thus, full independent control of the pole pair ω_{p} and Q_{p} are achleved by programming the digital words controlling the switches to obtaln the corresponding c and R_{q}. The complete second order programmable filter is shown in Fig. 6 ir where ehe punction programmablity as well at the parameter programabllity are demonstrated.

HIgher order programmabllity:

Active fllters design procedure can be classlfled as direct or cascade. In direct synthesis procedures the transfer runction is reallzed as a single section [7]. In cascade synthesls procedures a high order transfer function 19 expressed as a product of first and second order transfer functions and each of these is realized independently. The overall network is obtalned by cascading the individual sections. The cascade method of synthests offers two practical advantages (a) simple network tuning (b) a rew number of undversal sections can be deslgned whlch can reallze a rilltitude of network speciflcations.

The second order GIC network structure lends itself to the cascade synthesis procedure since it does not require additional lsolating ampliflers. Fig.6.b shows a block diagram of a programable higher order filter that utllizes the second procedure by cascading 2 or more sections of the filter network shown in fig. 6.a. The result 19 a high order fully programable general purpose fllter, that can be tallored to match almost any proposed specification.

3. COMPUTER SIMULATIONS AND EXPERIMENTAL VERIFICATIONS:

Fig. 7 shows differenct computer slmulation outputs of the programmable fllter. The plots yimulate the filter responses assuming ldeal OAs with Infinite Galn Bandwidth Products (CBWP), as well as practical filter responses assuming OA's Pinite GBWPs of 1 MHz as of that of the LM741 OA. A single pole $O A$ model was utllized to approximate the fllter transfer functions ln the later case. The approximation was found adequate since the simulation results or the nonideal response were found to be of close proximity to the experimental results of Fig. 8. The experiaental results were obtalned using a three bit word for fllter topology progranmabllity to select the type of transfer functions. A two words, four blts each, were used for fllter parameters programmabllity where ω_{p} and Q_{2} are controlled independently as given in Tatle 3. Elg. 7 also 111 ustrates a higher order programmabllity where a fourth order characteristlcs are shown for a LPF and a Chebychev EPF.

4. CONCLUSION

The novel design described here has resulted in a unlversal programmale fllter that can be digitally controlled to reallze almost any practical rifter specifications. Thls is done through the use of CMOS switches controlled by blnary codes to program the order of the fllter, the filter topology, the fllter center frequency and selectivity. The design procedure required developing optimum switching arrangements for the minlmum redundancy in components and the least dependence of the filtering function on atitohlng lmperfeotione uoh ee switches stray capacitances and non-zero and non-ilnear switch-on reslstance. Further investlgation 19 belng conducted to develop a programmable swltched capacitor reallzation that can allow frequency scalling by changlng clock srequency. Work 19 also in progress for developing an extended bandwldth programmable fllter using the composite operational anplifler technlque proposed earller by the author. Such implementation would lead to a very useful monollthic device at moderate cost.
5. hefehences

1. R.'d. Brodersen, P.R. Gray, and D.A. Hodges. "MOS Swleched Capacitor Fllters". IEEE Proceedings, Volume 67. No 1 PD 61-75, Jan.. 1979.
2. D.J. Allstot, R.W. Brodersen, and P.R. Gray, "An Electronlcally Programmadale Switched Capacitor Filtern. IEEE Journal of Solld State Circuits, Volume SC-14. No. 6. DP. 1034-1041. Dec. 1979.
3. P.B. Denyer, J. Mavor and J.W. Artnur. miniature Programaade Transversal Filter using CCD MOS Jechnology", IEEE Proceedingg, Volume 67. No. 1. DD 42-50, Jan 1979.
4. Snerif Micnael. "Composite Operational Ampliflers and Tnelr Applications in Active Networkg" PhD Dissertation, West Virginia University, WV PD 95-138. Aus 1983.
5. B.B. Bhattacharyya, wasfy B. Miknael and A. Antonlou. "Degign of RC-Active Networks by Using Cenerallzej-immittance Converters". Proceedings of the 1974 International Symposium on Circult Theory pp 290-293. Apri1 1973.
6. 2.K. Mitra and U.K. Aatre. "A Note on Ereouency and Q Liritations of Active fllters". IEEE Transactions CAS, Volume CAS-24, DD 215-218, April 1377.
7. L.T. Eruton, nBlquadratic Sections Using Generallzed impedance Converters", The Radio and Electronic Engr. Vol. 41, No 11, pp 510-512, Hov 1971.

- $01 \operatorname{tch}$ control				\bullet Q	- 0
9.	30	se	3	18	
-	-	\bullet	-	24.4	19
-	-	-	1	22.4	14
-	-	1	-	30.1	13
-	-	1	1	19.2	12
-	1	-	-	17.6	11
-	1	-	1	16.0	10
-	1	1	-	14.6	,
-	1	1	1	12.1	-
1	-	-	-	11.2	7
1	-	-	1	3.6	6
1	-	1	-	1. \cdot	,
1	-	1	1	6.	-
1	1	-	-	-1	1
1	1	1	1	2.2	2
1	1	1	-	1.6	1

Table 3. Binary Words Controlling Op \& fo

Fiz. 1 The Generalized Immance Converter

Table 1.
The Elements Values for Different Realizations

Fiz. 2 Elements Relocation switches for topalozs Drograrmatilit,

Table 2. The Truth Table of the Logic Contralling Elements Relocation Switches

Fig. 3 The lozic controlling figure 2 saliches

Fig. 4 Capacitors Banks for Frequency Programmability

Fig. 5 The Projramable Rạ rejistor

: $\because::$
Fig. $7 . d$

Fig. $7 . f$

Fig. 7.1
-:-.- inem

LI'F AMIL RESI'ONSE ($0=2 / P=4 K$)

 Fig. 7.h

Fig. $7 . m$

Fig. 7.k

Fig. $7 . n$

Fig. 7 Computer Simmulation's Results.

Fig. 8.a

Fig. 8.6
2nd order \& 4th order B.P.F

B.P.F Realization for different frequencies

Fig. 8 Experimental Results

1. Su, K. L., Active Network Synthesis, McGraw-Hill, New York, 1965.
2. Huelsman, L. P., Theory and Design of Active RC Circuits, McGraw-Hill, New York, 1968.
3. Haykin, S. S., Synthesis of RC Active Filter Networks, McGraw-Hill, New York, 1969.
4. Newcomb, R. W., Active Integrated Circuit Synthesis, Englewood Cliffs, N.J., Prentice-Hall, 1968.
5. Mitra, S. K., Analysis and Synthesis of Linear Active Networks, Wiley, New York, 1969.
6. Sedra, A. S. and Smith, K. C., "A Second-Generation Current Conveyor and its Applications," IEEE Trans. Circuit Theory, Vol. CT-17, pp. 132-134, 1970.
7. Sedra, A. S., "A New Approach to Active Network Synthesis," PhD Thesis, Department of Electric Engineering, University of Toronto, 1969.
8. Moschytz, G. S., Linear Integrated Netowrks: Fundamentals, Van Nostrand Reinhold, New York, 1975.
9. Heinlein, W. E. and Holmes, W. H., Active Filters for Integrated Circuits, R. Oldenbourg Verlag, Munich, 1974.
10. Mitra, S. K., Analysis and Synthesis of Linear Active Networks, Wiley, New York, 1959.
11. Gorski-Popiel, J., "RC-Active Synthesis Using Positive-Immitance Converters", Electron.Letts, Vol. 3, pp. 381-382, Aug. 1967.
12. Antoniou, A., "Realization of Gyrators Using Operational Amplifers and Their Use in RC-Active Network Synthesi," Proc. Inst. Elec. Eng., Vol 116, pp. 1838-1850, Nov. 1969.
13. Riordan, R. H. S., "Simulated Inductors Using Differntial Amplifiers," Electron. Letts., Vol 3, pp. 50-51, Feb. 1967.
14. Antoniou, A., "Stability Properties of Some Gyrator Circuits," Electron. Letts., Vol. 4, pp. 510-512, 1968.
15. Bruton, L. T., "Network Transfer Functions Using the Concept of Frequency-Dependent Negative Resistance," IEEE Trans. Circuit Theory, Vol. CT-16, pp. 406-408, Aug. 1969.
16. Antoniou, A., "Novel RC-Active Network Synthesis Using Generalized-Immittance Converters," IEEE Trans. Circuit Theory, Vol. CT-17, No. 2, pp. 212-217, May 1970 .
17. Orchard, H. J., and Sheahan, D. F., "Introductorless Band-Pass Filters," IEEE J. Solid-State Circuits, Vol. SC-5, pp. 108-118, June 1970.
18. Cobb, D. R., and Su, K. L., "Open-Circuit Voltage Transfer FunctionSynthesis Using the Generalized Positive Impedance Converter," Proc. International Symposium on Circuit Theory, pp. 345-349, Apr. 1972.
19. Mikhael, W. B., and Bhattacharyya, B. B., "New Minimal-Capacitor Low-Sensitivity RC-Active Synthesis Procedure," Electron. Letts., Vol. 7, pp. 694-696, Nov. 1971.
20. Mikhael, W. B., and Bhattacharyya, B. B., "Stability Properties of Some RC-Active Realizations," Electron. Letts., Vol. 8, No. 11, pp. 288-289, June 1972.
21. Tarmi, R., and Ghausi, M. S., "Very High-Q Insenstivie Active RC Networks," IEEE TRans. Circuit Theory, Vol. CT-17, pp. 358-366, Aug. 1970.
22. Kerwin, W. J., Huelsman, L. P., and Newcomb, R. W., "State-Variable Synthesis for Insensitive Integrated Circuit Transfer Functions," IEEE J. Solid State Circuits, Vol. SC-2, pp. 87-92, Sept. 1967.
23. Tow, J., "A Step-By-Step Active Filter Design," IEEE Spectrum, Vol. 6, pp. 64-68, Dec. 1969.
24. Moschytz, G. S., "FEN Filter Design Using Tantalum and Silicon Integrated Circuits," Proc. IEEE, Vol. 58, pp. 550-566, Apr. 1970.
25. Thomas, L. C., "The Biquad, Part I-Some Practical Design Considerations," IEEE Trans. Circuit Theory, Vol. CT-18, pp. 350-357, May 1971.
26. Thomas, L. C., "The Biquad, Part II-A Multi-Purpose Acrtive Filtering System," IEEE Trans. Circuit Theory, Vol CT-18, pp. 358-361, May 1971.
27. Hamilton, T. A., and Sedra, A. S., "Some New Configurations for Active Filters," IEEE Trans. Circuit Tehory, Vol. CT-19, pp. 25-33, Jan. 1972.
28. Bruton, L. T., "Biquadratic Sections Using Generalized Impedance Converters," The Radio and Elecrtronic Engnr., Vol. 41, No. 11, pp. 510-512, Nov. 1971.
29. Sheahan, D. F., and Orchard, H. J., "Band-Pass Filter Realization Using Gyrators," Electron. Letts., Vol. 3, pp. 40-42, 1967 .
30. Valihora, J., "Modern Technology Applied to Network Implementation," Proc. International Symposium on Circuit Theory, pp. 169-173, Apr. 1972.
31. Bhattacharyya, B. B., Mikhael, W. B., and Antoniou, A., "Design of RC-Active Networks by Using Generalized-Immittance Converters," Proceedings of the 1974 International Symposium on Circuit Theory, pp. 290-392, April 1973.
32. Michael-Nessim, Sherif, "Composite Op. Amp. and Their Applications in Active Networks," PhD Dissertation, West Virginia University, WV, Aug. 1983.
33. Serpa, A. S., Brackett, P. O., Filter Theory and Design: Active and Passive, Matrix Publishers, Inc., 1978.
-34. Luczac, Michael A., "Composite Op. Amp. and Their Use in Improving Bandwidth, Speed and Accuracy in Active Network," Thesis, NPGS, 1985.
34. Gariano, Patric, "Generation of an Optimum High Speed High Accuracy Op. Amp.," Thesis, NPGS, 1985.
35. Brodersen, R. W., Gray, P. R., and Hodges, D. A., "MOS Switched Capacitor Filters," IEEE Proceedings, Vol. 67, No. 1, pp. 61-75, Jan 1979.
36. Allstot, D. J., Brodersen, R. W., and Gray, P. R., "An Electronically Programmable Switched Capacitor Filter," IEEE Journal of Solid State Circuits, Vol. SC-14-No. 6, pp. 1034-1041, Dec. 1979.
37. Denyer, P. B., Mavor, J., and Arthur, J. W., "Miniature Programmable Transversal Filter Using CCD MOS Technology," IEEE Proceedings, Vol. 67, No. 1, pp. 42-50, Jan. 1979.
38. Michael, Sherif, and Panagiotis, Andresakis, "Digitally Controlled Programmable Active Filters," 19th Annual Asilomar Conference on Circuits, Systems and Computers, Monterey, California, Nov. 1985.

No. Copies

1. Library, Code 0142

Naval Postgraduate School
Monterey, California 93943
2. Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145
3. Hellenic Navy General Staff

4
Genico Epitelio Nautikou
Stratpedo Popagou
Athens, Greece
4. Professor Sherif Michael, Code 62

4
Naval Postgraduate School
Monterey, California 93943
5. Professor Gerald D. Ewing, Code 62

2
Naval Postgraduate School
Monterey, California 93943
6. Department Chairman, Code 62

1 Naval Postgraduate School
Monterey, California 93943
7. LT P. Andresakis, H.N.

6
15 Gr. Labraki Street
Pireaus, 18533 Greece

Digitally controlled programmable acti

32768000646350
DUDLEY KNOX LIBRARY

