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Properties of structure functions from helicity components of light quarks
and antiquarks in the statistical model
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In the quantum statistical parton distribution approach proposed more than one decade ago to describe the
parton structure, new properties are now understood; in particular the relation between quarks and antiquarks
leads to very specific properties. The simultaneous treatment of unpolarized and polarized parton distribution
functions (PDFs) allows a determination of thermodynamical potentials (the master parameters of the model)
which drive their behavior and consequently the behavior of the structure functions. The existence of a possible
relation between the gluon and a qq̄ pair leads to define a toy model for the unpolarized and polarized gluons.
In view of forthcoming experimental results in the large-x region, specific predictions made by the model are
presented.
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I. INTRODUCTION

The main objective is to build a quark structure where con-
stitutive elements can be understood through their parameters,
which are easily associated with the quark properties. The first
point to clarify is the choice of a statistical model. Taking
the example of a proton at rest, which contains three quarks,
a statistical treatment seems not justified due to the low
number of elements. However, when a proton is accelerated
in a collider the energy increase has not only an effect on
the mass but also to creates a large number of qq̄ pairs or
a quark-gluon plasma, which in a p-p collison materializes
mainly in primary unstable particles observed in a detector as
a large number of tracks. The production of numerous pairs
and gluons provide a justification for a statistical treatment of
the parton interaction process. Moreover, the fact that a quark
is described in the model by a Fermi function means that it is
already dressed to live in a surrounding nuclear medium made
of quarks.

The statistical approach is characterized by thermodynam-
ical potentials whose values are the master parameters; they
drive not only the shape of the parton distribution functions
(PDFs) but are found to control some specific properties of
the structure functions. In order to introduce the maximum
constraints, we decided to work from the beginning with
helicity components, which are the building blocks of both
the polarized and unpolarized PDFs; a unique situation in
the domain. It is clear that the polarized data set is much
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smaller than the unpolarized one, and also that it is limited to a
medium energy region; however, the experiments at the BNL
Relativistic Heavy Ion Collider (RHIC) enlarge somehow this
domain, but a large gap remains to reach energies available at
the CERN Large Hadron Collider (LHC).

The objective of the paper is to discuss the consequence of
the statistical approach on the quark structure, because from a
collection of results obtained through the years one gets now
a better global view.

In Sec. II, a review of the basic elements of the quarks dis-
tribution is presented together with the notations. In Sec. III, a
proof is given to show how the antiquark PDFs can be deduced
from those of the quarks by using different constraints in
the fitting process. Section IV is devoted to an analysis of
the different helicity components and how their effect is put
in evidence in structure functions. In Sec. V, a toy model
is introduced to define new unpolarized and polarized gluon
PDFs, which is inspired by the relation between gluons and
qq̄ pairs. The conclusions are presented in Sec. VI.

II. BASIC ELEMENTS OF THE QUARK DISTRIBUTIONS

The PDFs are the essential elements to evaluate scattering
processes in QCD. In the absence of a theory they are usu-
ally parametrized with polynomials [1,2]. To go beyond this
approximation and in an attempt to define a more physical
structure for the quarks, a statistical approach was proposed
many years ago to build up the PDFs [3].

Let us now describe the main features of the statistical
approach. The fermion distributions are given by the sum of
two terms, a quasi Fermi-Dirac function of helicity h = ± and
a helicity-independent diffractive contribution:

xqh(x,Q2
0) = AqX

h
qx

bq

exp
[(

x − Xh
q

)/
x̄
] + 1

+ Ãqx
b̃q

exp(x/x̄ ) + 1
(1)
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for the quarks, and for the antiquarks the ansatz

xq̄h(x,Q2
0) = Āq (X−h

0q )−1xb̄q

exp
[(

x + X−h
0q

)/
x̄
] + 1

+ Ãqx
b̃q

exp(x/x̄) + 1
,

(2)

at the input energy scale Q2
0 = 1 GeV2.

With the above definitions, the diffractive term is the same
for flavors u, d, but has a specific expression for other flavors.
It is absent in the quark helicity distribution �q = q+ −
q−, the quark valence contribution q − q̄, and the difference
u − d.

In the numerator of the non-diffractive parts of Eq. (1),
the multiplicative factor Xh

q allows one to separate u and d

quarks since one assumes Au = Ad , the term xbq implying a
modification of the quantum statistical form; this term is intro-
duced in order to control the small-x behavior. The parameter
x̄ = 0.09 plays the role of a universal temperature and X±

q

are the two thermodynamical potentials of a quark q, with
helicity h = ±. They represent the fundamental parameters
of the model because they drive the PDFs’ behavior.1 For
convenience the values of the potentials obtained in BS15 [5]
are recalled:

X+
u = 0.475 ± 0.001, X−

u = 0.307 ± 0.001,

X+
d = 0.245 ± 0.001, X−

d = 0.309 ± 0.001, (3)

X+
s = 0.011 ± 0.001, X−

s = 0.015 ± 0.001.

III. GENERATION OF THE ANTIQUARK DISTRIBUTIONS

To adopt a coherent scheme, it is natural to suppose that
antiquarks must also contain a Fermi part analogous to the
quarks and, in addition, a diffractive part that is the same as in
the quarks. All these constraints lead to a general expression,

xq̄h(x,Q2
0) = Ā

′h
q xb̄q

exp
[(

x − Yh
q

)/
x̄
] + 1

+ Ãqx
b̃q

exp(x/x̄ ) + 1
.

(4)

This distribution depends on the new parameters Ā
′h
q , Y h

q ,
compared to Eq. (2). In order to determine these parameters
in a fitting process, the constraint of the valence sum rule is
added,∫

[q(x) − q̄(x)]dx = Nq, where Nq = 2, 1 for u, d (5)

(this sum rule is independent of the diffractive part). A second
constraint, which comes from the momentum sum rule, is
added: ∫ ∑

i

[xqi (x) + xq̄i (x) + xG(x)]dx = 1, (6)

where G(x) is the unpolarized gluon distribution. Making a fit
at next-to-leading order (NLO) of unpolarized and polarized
experimental data analogous to the one discussed in BS15 [5],

1The PDF QCD evolution was done at next-to-leading order in the
M̄S scheme using the HOPPET program [4].

one finds for the potentials a solution

Y−
u = −0.475, Y+

u = −0.307,

Y−
d = −0.244, Y+

d = −0.309,
(7)

where a comparison with the solution obtained in BS15 (3)
leads to

Y−
u = −X+

u , Y+
u = −X−

u , Y−
d = −X+

d , Y+
d = −X−

d , (8)

the change of sign in the q̄ potentials and in the helicity find
its origin from the unpolarized gluon whose potential is null,
X±

q + Y∓
q = 0; this point will be examined later.

The other parameters are given by

A = 1.943, bu = bd = 0.471, b̄u = b̄d = 1.304,

Ā
′+
u = 29.039, Ā

′−
u = 18.768, (9)

Ā
′+
d = 28.851, Ā

′−
d = 36.536.

By introducing the definition Ā
′h
q = Āq/X−h

q , the antiquark
distributions (4) become identical to Eq. (2), where the four
normalizations Ā

′h
q are reduced to one constant, Āq = 8.915.

This result confirms the ansatz intrduced at the beginning for
the antiquarks, which was expected to be a solution of Eq. (4).
To summarize, an interesting relation between light quarks
and antiquarks in the statistical approach was established, with
the objective of reducing the number of arbitrary distributions
(see Sec. V).

IV. PROPERTIES OF THE UNPOLARIZED
AND POLARIZED QUARK DISTRIBUTIONS

From the results obtained in Eq. (3) one finds for the light
quarks the following hierarchy between the different potential
components:

X+
u > X−

u � X−
d > X+

d . (10)

In Eq. (7) the two potentials X−
u ,X−

d have very close nu-
merical values, which is a consequence of the near equality
between xu−(x,Q2) and xd−(x,Q2).

It is easy to show that quark helicity PDFs increase with the
potential values, while for antiquarks helicity PDFs increase
when the potentials decrease.

As a consequence of the above hierarchy of potentials (10),
there follows a hierarchy on the quarks helicity distributions,

xu+(x) > xu−(x) = xd−(x) > xd+(x) (11)

and an obvious hierarchy for the antiquarks, namely

xd̄−(x) > xd̄+(x) = xū+(x) > xū−(x). (12)

It is important to note that these inequalities (11) and
(12) are preserved by the NLO QCD evolution. Also note
that the initial analytic form, Eqs. (1) and (2), is almost
preserved by the Q2 evolution with some small changes on
the parameters’ numerical values. One clearly concludes that
u(x,Q2) > d(x,Q2) implies a flavor-asymmetric light sea,
i.e., d̄ (x,Q2) > ū(x,Q2), a trivial consequence of the Pauli
exclusion principle, which is built in. Indeed this is based on
the fact that the proton contains two u quarks and only one d
quark.
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We move on to mention more significant consequences
concerning the helicity distributions that follow from
Eqs. (7)–(12). First for the u quark

x�u(x,Q2) > 0, x�ū(x,Q2) > 0. (13)

Similarly for the d quark

x�d(x,Q2) < 0, x�d̄ (x,Q2) < 0. (14)

These predictions were made almost 15 years ago [3]. It is
interesting to notice that the polarized structure function xg

p
1

measured by experiment and driven by x�u has a maximum
around x = 0.42 in a medium Q2 range; such an x value
is close to the thermodynamical potential X+

u . Concerning
xgn

1 , which is negative for small x because it is dominated by
x�d, when x increases x�u becomes dominant so xgn

1 takes
positive values. All these properties are well understood and
described by the statistical model due to the properties of ther-
modynamical potentials. The predicted signs and magnitudes
have also been confirmed [5] by the measured single-helicity
asymmetry AL in the W± production at BNL-RHIC from the
STAR experiment [6].

Another important earlier prediction concerns the deep
inelastic scattering (DIS) asymmetries, more precisely
[�u(x,Q2) + �ū(x,Q2)]/[(u(x,Q2 + ū(x,Q2)] and
[�d(x,Q2) + �d̄ (x,Q2)]/[(d(x,Q2) + d̄ (x,Q2)], shown
in Fig. 1. Note that the data from the HERMES experiment
[7–9] and the Jefferson Lab (Jlab) [10,11], so far, are in
agreement with these predictions at low x < 0.6. In the
high-x region our prediction differs from those which impose,
for both quantities, the value 1 for x = 1. This is another
challenge, since they have been measured at JLab [10,11]
only up to x = 0.6.

There are two more important consequences which relate
unpolarized and helicity distributions. Namely, for quarks

xu(x,Q2) − xd(x,Q2) = x�u(x,Q2) − x�d(x,Q2) > 0,
(15)

and similarly for antiquarks

xd̄ (x,Q2) − xū(x,Q2) = x�ū(x,Q2) − x�d̄ (x,Q2) > 0.

(16)

This means that the flavor asymmetry of the light antiquark
distributions is the same for the corresponding helicity distri-
butions, as noticed a long time ago [12] (see also Ref. [13]).

Now coming back to all the components
xu+(x,Q2), . . . , xū−(x,Q2) and more precisely to their
x behavior. It is clear that xu+(x,Q2) is the largest one and
they are all monotonic decreasing functions of x at least
for x > 0.2, outside the region dominated by the diffractive
contribution.

Similarly xd̄−(x Q2) is the largest of the antiquark compo-
nents. Therefore if one considers the ratio d(x,Q2)/u(x,Q2),
its value is 1 at x = 0, because the diffractive contribution
dominates and, due to the monotonic-decrease property, it
decreases for an increasing x. This falling x behavior has
been verified experimentally from the ratio of the DIS struc-
ture functions Fd

2 /F
p
2 and the charge asymmetry of the W±

production in p̄p collisions [14].

FIG. 1. BS15 [5] predicted ratios [�u(x,Q2) + �ū(x, Q2)]/
[u(x,Q2+ū(x,Q2)] and [�d (x,Q2)+�d̄ (x,Q2)]/[(d (x,Q2 +
d̄ (x,Q2)] versus x, at Q2 = 1 (solid), 10 (dashed), 100 (dashed-
dotted), and 1000 GeV2 (long-dashed). Experiments data are from
the HERMES [7–9] and Jlab [10,11] Collaborations.

Similarly if one considers the ratio ū(x,Q2)/d̄ (x,Q2),
its value is 1 at x = 0, because the diffractive contribution
dominates and, due to the monotonic-decrease property, it also
decreases for an increasing x. By looking at the curves of
Fig. 2, one sees similar behaviors. In both cases in the vicinity
of x = 0 one has a sharp behavior due to the fact that the
diffractive contribution dominates, and in the high x region
there is a flattening out above x � 0.6. It is remarkable to
observe that these ratios have almost no Q2 dependence.

To conclude, we predict a monotonic increase of the ratio
d̄(x,Q2)/ū(x,Q2). This was first observed in the low-x
region by the E866/NuSea Collaboration [15,16] and very
recently there was a serious indication from the preliminary
results of the SeaQuest Collaboration that this trend persists
beyond x = 0.2 [17].

V. A TOY MODEL FOR GLUON DISTRIBUTIONS

In the BS15 version of the model [5], the unpolarized
gluon is parametrized as a Bose-Einstein function with a zero
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FIG. 2. The ratios d (x,Q2)/u(x,Q2) (left) and ū(x,Q2)/d̄ (x,Q2) (right) versus x for Q2 = 1 (solid), 10 (dashed), and 100 GeV2 (dashed-
dotted), from BS15 [5].

potential value, and no diffractive part is included:

xG(x,Q2
0) = AGxbG

exp(x/x̄ ) − 1
, (17)

where AG = 36.778 is determined by the momentum sum
rule. The polarized gluon distribution involves also a Bose-
Einstein function but requires an extra factorized function
whose origin is discussed in Refs. [18,19], so its expression
is given by

x�G
(
x,Q2

0

) = ÃGxb̃G

(1 + cGxdG )

1

exp(x/x̄ ) − 1
, (18)

where ÃG = 26.887. In contrast to the quark situation, these
expressions are not directly related and so have to be deter-
mined independently from specific experimental data. Com-
ing back to the model structure, this is not exactly true because
their determination is influenced by unpolarized and polarized
quarks, which are related; nevertheless, a more direct relation
will reinforce the model structure.

Inside a proton at high energy, besides the presence of
2u + d quarks, there exists a collection of q − q̄ pairs and
gluons. It is also known that a quark-antiquark pair can
annihilate into two gluons. It seems natural to suppose that a
q − q̄ pair should behave like a composite boson and so could
have a relation with the gluon field. In this case one should
find that in a QCD process involving gluons, for instance in
structure functions, one can replace the gluon by a q − q̄ pair,
leading to a new test for the antiquarks since the quarks are
well established.

For this purpose two new formulas are defined for the
unpolarized and polarized gluons, and they play the role of
a toy model at the input scale. In these formulas q and q̄
contain only the non-diffractive part of Eqs. (1) and (2), and,
to comply with the previous definitions (17) and (18), their
expressions are now given by

xG
(
x,Q2

0

) = Aqq̄ (xux · xū + xd · xd̄ + xs · xs̄)
[
x,Q2

0

]
,

(19)

x�G
(
x,Q2

0

) = Aδqq̄ (x�u · x�ū + x�d · x�d̄

+ x�s · x�s̄ )
[
x,Q2

0

]
. (20)

We remark that although the two formulas (19) and (20)
contain the product of two Fermi functions, both are evolved
as a boson, so the result is not the evolution of the product of
two Fermi distributions.

Also, in the expressions (17) and (18) G and �G are
defined independently and are not related, while in the ex-
pressions (19) and (20) indeed they are related, because for a
given flavor q, q̄,�q,�q̄ are not independent. This has the
consequence that the parton structure can be described with
very few basic constituents.

A fit at NLO of unpolarized and polarized DIS experimen-
tal data gives in the case of BS15 parametrization [5]

χ2 = 2860, 2140 pts, 1.34χ2/pt. (21)

Now with Eqs. (19) and (20) of the toy model a fit of the same
set of data gives

χ2 = 3013, 2140 pts, 1.4χ2/pt; (22)

the difference in χ2 is 5%. Restricted to the polarized structure
functions g

p
1 , gd

1 , gn
1 with 271 pts, BS15 gives χ2 = 323 and

the toy model gives χ2 = 301. Notice that in the original
version the expression of �G requires four parameters; in this
version only one normalization constant Aδqq̄ is necessary,
since AG,Aqq̄ are determined by the momentum sum rule.
This difference confirms the interest in the gluon distributions
given by Eqs. (19) and (20).

In this new fit the potentials read

X+
u = 0.4616, X−

u = 0.3166,

X+
d = 0.2530, X−

d = 0.3062,

X+
s = 0.007896, X−

s = 00982,

bq = 0.491, b̄q = 1.123,

bs = 0.0044, b̄s = 0.08,

x̄ = 0.0944.

(23)
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FIG. 3. Left: Comparison of xG(x, Q2) versus x for Q2 = 1, 10, 100 GeV2, computed from BS15 [5] (dashed) and the toy model (solid).
Right: Same comparison but for x�G(x,Q2).

The new results for the potential values are close to the
previous ones (7) and still satisfy the previous hierarchy (10):

X+
u > X−

d ∼ X−
u > X+

d , (24)

so the properties discussed in Sec. IV remain valid.
For the normalization constants one obtains Aqq̄ = 23.882,

Aδqq̄ = 18.99.
In Fig. 3 a plot is given for some results associated with

the unpolarized and polarized gluons in the cases of BS15
parametrization [(17) and (18)] (dashed curves) and the toy
model [(19) and (20)] (solid curves). The distributions be-
haviors are very similar; the polarized case, which is more
sensitive to the gluon structure, looks slightly different, but
when combined with the polarized quarks give an excellent
description of the polarized structure functions (see the χ2

values discussed above). To conclude this part devoted to
the statistical model, the present formulas used as a toy
parametrization of unpolarized and polarized gluons give
an equivalent description of the original model, and they
represent also a new test for the antiquark PDFs since the
quark PDFs are well established. In QCD calculations Mellin
transforms are sometime involved; the Mellin transforms of
the Fermi functions for fermions and bosons are mathemati-
cally related [20], which is an encouraging sign for our new
definition of gluons.

One can ask the question if the previous formulation can
be applied to another model. In the domain of polarized
PDFs, the de Florian-Sassot-Stratmann-Vogelsang (DSSV)
model [21] is a reference, so it becomes of interest to test
this polarized version inside the toy model, taking the DSSV
model as input in Eq. (20). There is a difference between the
statistical model and the DSSV model due to the fact that
in the statistical model unpolarized and polarized PDFs are
related, which is not the case with DSSV. Polarized quarks,
antiquarks, and the gluon of flavor i are defined in DSSV at
the input scale μ0 by the expressions (28) of Ref. [21], namely

x�fi

(
x, μ2

0

) = Nix
αi (1 − x)βi (1 + γi

√
x + ηix). (25)

A more serious constraint on the polarized gluon can be
obtained from the double-spin asymmetry in jet production
A

jet
LL with the modified expression for the polarized DSSV

gluon [22]

x�g(x,Q2
0) = Ngx

αg (1 − x)βg (1 + ηgx
κg ). (26)

In order to test the toy model with the polarized gluon,
Eq. (20), one adopts the strategy of fitting the same polarized
data previously used, taking Eqs. (25) for the quarks and
Eq. (20) for the polarized gluon. In Table I, for simplicity, the
number of quarks free parameters is restricted to Ni, ηi , while
αi, βi, γi, are held fixed to their original values (see Table II
of Ref. [21]).

For the polarized gluon one obtains a normalization co-
efficient Aδqq̄ = −0.078. With a χ2 = 235 for 271 pts the
quality of the polarized fit is similar to the previous statistical
model. Here again the five parameters introduced in Eq. (26)
are reduced to one. A plot of the polarized gluon for three Q2

values is shown in Fig. 4 for the original DSSV model (dashed
curve) and the toy model (solid curve).

Now our purpose is to show that the polarized gluon
discussed above offers a good exploratory domain for the
parton structure. Beginning with the statistical model, it was
natural to associate to the gluon a Bose-Einstein expression
such that

x�G
(
x,Q2

0

) = ÃGxb̃G
1

exp(x/x̄) − 1
. (27)

TABLE I. Parameters describing NLO (MS) x�fi in Eq. (25) at
the input scale μ0 = 1 GeV, using the toy model.

Flavor i Ni αi βi γi ηi

u + ū 0.403 0.692 3.34 −2.18 21.38
d + d̄ −0.023 0.164 3.89 22.40 83.80
ū 4.83 0.692 10.0 0 24.97
d̄ −0.147 0.164 10.0 0 98.94
s = s̄ −0.019 0.164 10.0 0 −23.03
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FIG. 4. Comparison of x�G(x,Q2) versus x for Q2 =
1, 10, 100 GeV2 calculated with the toy DSSV model (solid) and the
original one (dashed).

This original expression was unable to describe the double-
spin asymmetry of the one-jet inclusive production A

jet
LL in the

near forward rapidity region as a function of pT within the
domain 5 � pT � 30 GeV measured by the STAR Collabo-
ration at BNL-RHIC [23]. To obtain a good description the
polarized gluon was modified according to Eq. (18).

It turns out that the extra multiplicative function 1
(1+cGxdG )

has the behavior of a logistic function or activation function
used in neural networks [18],

S(x) = 1

1 + e−eGx+hG
, (28)

so one can write the polarized gluon as

x�G
(
x,Q2

0

) = S(x)
Ã′

GxbG

exp(x/x̄) − 1
. (29)

The physical interpretation of this new formula means that the
incoming momentum is collected now by means of a Bose-
Einstein distribution and then filtered by an activation function
to produce the gluon probability distribution.

The toy model defined above proceeds along the same line:
a polarized gluon is built in terms of a composite made of
known physical functions, namely the PDFs associated with
their probability. Figure 5 shows the example of u, ū quarks
where their probabilities product generates a component of
the gluon polarized PDF. The resulting effect of the toy model
is perfectly compatible with experimental data for both the
statistical and DSSV models.

To summarize the discussion on the different expressions
so far defined in (20) and (27)–(29), the objective was to
replace an arbitrary function by a physical quantity perfectly
justified in the context of the model.

It is known that �G gives an important contribution to the
proton spin sum rule. A study of this effect is presented in
Fig. 3 of Ref. [19] using the gluon defined by Eq. (18). It
can be seen that just above Q2 = 100 GeV2 the value of the
spin sum rule 1/2 is saturated; the same calculation performed

FIG. 5. Quark u contribution to the polarized �G following the
toy expression (20).

with the toy gluon model (20) gives a saturation for Q2 around
1000 GeV2, which corresponds to a significant improvement.

Finally, I would like to present a new test of the toy
gluon distribution in a pure hadronic reaction and compute
the double-helicity asymmetry A

jet
LL discussed above. It is

important to remark that the asymmetry calculation requires
knowledge of both the unpolarized and polarized gluon dis-
tributions (19) and (20). In Fig. 6 the prediction is compared
with these high-statistics data points and the agreement is very
reasonable.

VI. CONCLUSION

The purpose of this work was to show that a statistical
model offers a unique framework to build a quark structure
whose properties are clearly defined by parameters related to
physical quantities in the PDF expressions. The thermody-
namical potentials which are the master parameters generate
definite properties of the quark PDFs, as confirmed by exper-
imental structure functions.

This prediction results from the following characteristic
features of the statistical approach:
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FIG. 6. Left: Inclusive differential cross section for p + p → jet + X at
√

s = 200 GeV versus jet pT calculated with the unpolarized
toy gluon model (19). Right: The longitudinal double-spin asymmetry ALL in −→p + −→p → jet + X at

√
s = 200 GeV versus jet pT calculated

with the polarized toy gluon model (20). Data are from the STAR experiment [6].

(1) The PDF helicity components defined by Fermi-Dirac
expressions are the building blocks of the unpolarized
and polarized PDFs.

(2) The thermodynamical potentials satisfy a hierarchy
relation given by Eq. (10) which imposes specific
properties on the distribution functions.

(3) The expressions obtained between quark and anti-
quarks allow one to relate the behaviors of the ratios
xd(x,Q2)/xu(x,Q2) and xū(x,Q2)/xd̄ (x,Q2).

(4) A toy model has been defined for the gluon in terms
of unpolarized and polarized quarks distributions that
produces equivalent results to the original gluon
parametrizations but with only one free normalization
parameter. In addition this toy model gives for the

gluon made with basic fermion helicity components
a relation between unpolarized and polarized gluon
distributions, which was not the case in the original
version of the model.

It is clear that the model is able to explain a large set of
unpolarized and polarized experimental deep inelastic scat-
tering data. Of course the predictions which can be made in
view of future experiments depend on the present values of the
parameters, so it is a challenge for the model to be confirmed
by new experiments.

To conclude, the statistical approach not only provides
numerical PDF values compatible with experimental data but
also gives a coherent model of the quark structure at the
fundamental level of helicity distributions.
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