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ABSTRACT 

 This thesis examines the basics of total ownership cost (TOC) modeling over the 

life cycle of electro-optic/infrared sensors, including the inception phase of Acquisition 

Costs, followed by annual Operations and Maintenance (O&M) expenses, and a final set 

of Disposition Costs at the end of life of the sensor. This model allows cost analysts to 

have better decision analytics of the costs for use in cost comparisons across sensor 

platforms, return on investment analysis, portfolio allocation of resources, and analysis of 

alternatives. The findings show that the developed model is functional and could be used 

in the Department of Defense total ownership cost estimation process to facilitate 

decisions among sensor platforms. 
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I. INTRODUCTION 

Despite the colossal Department of Defense (DoD) budget, the DoD does not have 

the luxury of unlimited resources. The DoD has a plethora of competing priorities that it is 

required to fund to support the U.S. National Defense Strategy. Therefore, as leaders, it is 

imperative to make financial decisions that maximize the overall DoD portfolio. Portfolio 

optimization encompasses several tenets including, properly building and refining budgets, 

allocating every taxpayers’ dollar as efficiently as possible, and avoiding cost overruns. An 

essential tool in portfolio optimization is cost estimation. Reliable cost estimation allow 

decision makers and leaders to make more informed financial decisions and decrease the 

strain on the DoD’s budget. Cost estimation is both a hard science and an art. Analysts 

have the benefit of using historical estimates and actual cost data from previous programs 

and projects. Historical data gives costs analysts a starting point for new cost estimates; 

however, the uncertainty involved in real life and future events is always present. This 

uncertainty makes it impossible to provide the exact cost of a future program, which is 

where the skill in cost estimation comes into play. To produce credible and defendable cost 

estimates, cost analysts must utilize multiple tools and techniques. This thesis provides a 

model designed to help cost analysts understand system life-cycle costs while incorporating 

uncertainty. The model allows those analysts to have better decision analytics when making 

financial decisions. 

A. RESEARCH PURPOSE 

The purpose of this thesis is to develop a model to estimate total ownership with 

life-cycle costs under uncertainty associated with surface electro-optic infrared (EO/IR) 

sensors. It examines the basics of total ownership cost (TOC) modeling over the life cycle 

of the EO/IR sensors, including the inception phase of Acquisition Costs, followed by 

annual Operations and Maintenance (O&M) expenses, along with a final set of Disposition 

Costs at the end of life of the sensor. This model allows managers to have better decision 

analytics of the costs of said sensors for use in subsequent cost comparisons across sensor 

platforms, return on investment analysis, portfolio allocation of resources, and analysis of 

alternatives. 
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B. RESEARCH FOCUS 

In this research, we answer the following primary question: Would an advanced 

analytical model be a more effective metric to estimate total ownership with life-cycle cost 

under uncertainty than the current method of life-cycle cost estimates for surface EO/IR 

sensors? To accomplish this, we will develop and analyze a total ownership with life-cycle 

cost model under uncertainty for surface electro-optical infrared sensors. In the 

development of the model, we determine what data are required to implement our proposed 

model for surface ship EO/IR sensors. We also examine the current Department of Defense 

(DoD) method for determining system life-cycle costs for defense systems and will 

consider whether the proposed model is a useful alternative to the current method of 

determining the life-cycle costs for EO/IR sensors on surface ships. Last, we consider 

whether the developed model can be applied to cost estimating in other sectors of DoD cost 

projections. 

C. RESEARCH SUMMARY 

While executing a standard life-cycle–based total ownership cost analysis, we 

assume that before the system is operational, there are substantial acquisition costs. 

Acquisition costs typically are broken down into Research, Testing, Development, and 

Evaluation (RTD&E) costs and procurement costs. These costs are usually referred to as 

Year 0, followed by the operational years where operation and maintenance costs will 

apply. The final price analyzed is the salvage cost, or the cost to properly dispose of, sell, 

or render the system inoperable. The sum of these three expenses is called the life-cycle 

cost. 

Unfortunately, the accurate calculation of these costs is not as straightforward as 

their descriptions. To accurately incorporate these three factors, it is essential to consider 

economic theory. The elements of time valuation of money are critical in the analysis of 

alternatives. The economic growth, annual discount rate, inflation, and opportunity cost of 

investing in a specific system are essential to our study. Other factors include budgetary 

cutbacks and changes in technology. Our model allows the cost analyst to input these 

changes to manually adjust for each of these. Utilizing this model serves as a proof of 

concept to understand how this approach could be used to reduce cost overflow and prevent 
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budget overruns. The model provides greater insight into the true nature of the cost of cash 

outflow and the life cycle of the product and its associated costs. The results the model 

produces give leaders a more effective metric to analyze total ownership cost under 

uncertainty, therefore allowing leadership to make more informed decisions in the DoD 

acquisition process. 
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II. BACKGROUND AND LITERATURE REVIEW 

A. INTRODUCTION 

This background and literature review provide a comprehensive overview of the 

topics pertinent to our project. We examine the concepts and best practices in the field of 

cost and cost estimation and their application inside the DoD. We then look into the DoD’s 

acquisition process as a whole to analyze how the DoD can utilize cost estimation to 

influence decision-making. Once we cover basic cost estimation and the acquisition 

system, we then move to discussing total ownership cost and life-cycle cost estimation 

(LCCE) and how these factors play a role in calculating the overall cost of a system.  

The review covers the topics of risk and uncertainty to explain the relationship and 

differences between the two, as well as to highlight the importance of properly accounting 

for both factors. We conclude with an overview of our model’s subject, the electro-optical 

infrared sensor (EO/IR). We give a brief overview of the capabilities as well as the 

applications that these sensors have on Navy surface vessels, along with the sensors’, 

rapidly changing technology, and state why it is imperative that the Navy continues to buy 

these sensors while ensuring the cost stays at a rational price point. 

B. COST ESTIMATION 

1. Cost Estimation Overview 

The DoD receives a limited amount of funds every fiscal year and must decide how 

those funds are used in support of national strategies and goals. Specifically, those 

decisions fall into one of three categories: long-term planning, budgeting, and choosing 

among alternatives (Mislick & Nussbaum, 2015). The government is tasked with spending 

taxpayers’ dollars effectively and efficiently. This means that DoD decision-makers must 

ensure they make strategic investments, including the acquisition of new programs and 

systems. Before a program is implemented or system purchased, decision-makers must 

understand the full cost that will be incurred and its effect on the DoD’s limited budget.  

The projected costs of major acquisitions are produced through a process known as 

cost estimation. Cost estimation is defined as “the process of collecting and analyzing 
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historical data and applying quantitative models, techniques, tools, and databases in order 

to predict an estimate of the future cost of an item, product, or task” (Mislick & Nussbaum, 

2015, p. 11). In basic terms, cost estimation is performed by running relevant data from the 

past through a model or database to predict what an item will cost in the future. It is 

important to note that reliable historical data is fundamental to this process.  

In order to produce cost estimates, analysts must first gather available historical 

data. In Mislick and Nussbaum’s book, Cost Estimation Methods and Tools, they describe 

data collection as often the most time-consuming and costly step of the entire cost 

estimation process (2015). Mislick and Nussbaum assert that only after the historical data 

has been obtained can the cost analyst start the “organization, normalization, and 

management of that historical data” (p. 11). They go on to clarify that normalization refers 

to taking the historical data and “applying adjustments to that data to gain consistent, 

comparable data to be used in your estimates” (p. 78). Normalizing the data set allows the 

analyst to compare data across different periods of time by adjusting for different factors. 

Mislick and Nussbaum explain that a data set must be normalized three different ways: for 

content, for quantity, and for inflation. Normalizing for content ensures you are comparing 

the same category or type of data (Mislick & Nussbaum, 2015). Normalizing for quantity 

ensures that the analyst is comparing data at the same point on the learning curve of 

production and comparing equal quantities (Mislick & Nussbaum, 2015). Lastly, the data 

is adjusted to account for inflation when comparing data from different years (Mislick & 

Nussbaum, 2015).  

The second component of cost estimation is the quantitative model that is used to 

turn normalized historical data into a future cost estimate. Mislick and Nussbaum (2015) 

explain that the “profession of cost estimating is scientifically grounded by using 

transparent, rationally defensible and reviewable quantitative methods” (p. 12). The 

development of a high-quality quantitative model is key in cost estimation. If a poor 

quantitative model is used, then the quality and reliability of the cost estimate will also be 

poor. This axiom highlights the importance of the development of quality cost models for 

EO/IR sensors.  
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The third part of Mislick and Nussbaum’s (2015) definition of cost estimation is 

the prediction. The ultimate goal of cost estimation is to predict a future cost. The 

prediction is based on the information available at the time. We can only “estimate the 

conditions that will pertain later when the project is executed” (Mislick & Nussbaum, 2015, 

p. 12) and must rely on the information available in the present. While no one can forecast 

the future with 100% accuracy, through historical data and quantitative models we are able 

to provide a more accurate prediction that, while not perfect, is still a useful tool for 

decision-makers in the acquisition process. 

Mislick and Nussbaum (2015) explain that the overall objective of the cost 

estimation is to provide a complete, reasonable, credible, and analytically defensible 

estimation of future costs—a quality estimate—that can be used by decision-makers. They 

have provided a breakdown of characteristics essential to a quality cost estimate, and we 

explore some of these characteristics in the following paragraphs.  

One of most important characteristics of a quality cost estimate is that it must be 

understandable to the cost analyst or decision-maker in order to be an efficient decision-

making tool (Mislick & Nussbaum, 2015). To this end, a complex approach to cost 

estimation should be avoided, and a simpler approach should be used (Mislick & 

Nussbaum, 2015). An understandable estimate also clearly lays out the assumptions and 

ground rules that were used in the process (Mislick & Nussbaum, 2015). With the diversity 

among people’s backgrounds and experiences, there can be differing underlying 

assumptions in the cost-estimation process. Therefore, the assumptions used must be 

clearly stated, and a sensitivity analysis should be performed to accommodate additional 

variations of assumptions (Mislick & Nussbaum, 2015).  

Another characteristic of a quality cost estimate is that it is “anchored in historical 

program performance” (Mislick & Nussbaum, 2015, p. 13). We previously stated that cost 

estimation uses historical data to predict future cost. Therefore, an important aspect of the 

historical data is its relation to the future costs we are trying to predict. The cost estimation 

must be based on data from a similar system or program (Mislick & Nussbaum, 2015). For 

example, if we are trying to estimate the cost of a new class of surface ship, we should not 

be using historical data from a submarine program as such data would not produce a quality 
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estimate. Instead, we should use the historical data from a past class of surface ship that 

has features similar to the new class. Although we are using historical data as a base, we 

must also account for “current and potential future process and design improvements” 

(Mislick & Nussbaum, 2015, p. 13). We are trying to predict the cost of a new future 

system, which may have updated designs and processes with no historical data. These 

updates and improvements still need to be accounted for in our estimation and are often 

accomplished by subject matter experts (SMEs) and their professional judgment (Mislick 

& Nussbaum, 2015). Lastly, cost estimates are about predicting the future, and with the 

future comes uncertainty. In order to produce quality estimates, cost analysts must address 

the uncertainties and risk associated with the program (Mislick & Nussbaum, 2015). We 

go into more detail about how risk and uncertainties are addressed in cost estimation later.  

2. Cost Overview 

Before comprehending cost estimation methods, it is important to become familiar 

with the terms associated with cost estimation. To begin with, an understanding of cost 

provides a solid foundation in the cost estimation process. If analysts and decision-makers 

do not understand what we are trying to predict, then we will not produce a quality or 

credible estimation. The term cost is often used interchangeably with the term price; 

however, they do not have the same meaning. There is an important distinction between 

the two terms. Mislick and Nussbaum (2015) define cost as the total amount of money 

needed to produce a certain item, or a quantitative measurement that accounts for all 

resources needed to produce an item. However, they refer to price as the amount of money 

that a person must pay for an item. When people go into a store, they normally ask the 

salesperson “What does this item cost?” Answering the literal question of what an item 

costs would encompass every resource that went into the development and production of 

that item. Instead, the accurate question is “What’s the item’s price?” or “How much 

money must I exchange to receive that item?” In cost estimation, we are focused on the 

question of what a program or project costs.  

Because the term cost can refer to a number of different types or categories, the 

type of cost is important to understand during the cost estimation process. One of the first 

distinctions is between recurring and nonrecurring costs. A recurring cost is “repetitive and 
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occurs each time a company produces a unit” (Mislick & Nussbaum, 2015, p. 26). When a 

bottling company produces a bottled beverage, each bottle cap has an associated cost. The 

cost of each bottle cap is recurring. In contrast, a nonrecurring cost is “not repetitive and 

cannot be tied to the quantity of the items being produced” (Mislick & Nussbaum, 2015, 

p. 26). The cost associated with the purchase of the bottling machine would be considered 

nonrecurring. Closely related to recurring and nonrecurring costs are fixed and variable 

costs. According to Mislick & Nussbaum (2015), variable costs are associated and vary 

with the level of production. The more units produced the more the total variable cost. 

However, they describe fixed costs as unaffected by the level of production and are 

“generally associated with nonrecurring costs” (p. 27). No matter how many units are 

produced, the fixed cost will remain unchanged. 

Another distinction between types of cost is direct and indirect costs. A direct cost 

can be “reasonably measured and allocated to a specific output, product, or work activity” 

(Mislick & Nussbaum, 2015, p. 26). The material used to produce an item is a direct cost. 

An indirect cost “cannot be attributed or allocated to a specific output, product, or work 

activity” (Mislick & Nussbaum, 2015, p. 27). The maintenance required for the upkeep of 

a machine used in production is indirect. Operating costs that are not direct labor or 

material, such as electricity and property taxes, are classified as overhead costs (Mislick & 

Nussbaum, 2015). 

Other cost classifications are sunk costs and opportunity costs. A sunk cost is a cost 

that has already been incurred, as it occurred in the past. These costs are considered 

irrelevant to decision-makers, as the money spent cannot be retrieved (Mislick & 

Nussbaum, 2015). If a person walks into a car dealership and purchases a car, the cost of 

that car is not used in considering future upkeep or upgrades. The person cannot get back 

the money spent and reallocate it; therefore, it is sunk. Opportunity cost arises when there 

is more than one option to be considered. Mislick and Nussbaum (2015) define opportunity 

cost as the “measure of the lost value when you do not choose what turns out to be the 

optimal solution or alternative” (p. 29). In the car dealership scenario, you have the option 

of buying several different cars. Each of those cars has different features and a different 

value. In order to buy one car, you have to decide not to buy the others. This means you 

are giving up some features or value. Opportunity costs are important for decision-makers 
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when determining the best available option among multiple alternatives. Decision-makers 

must also consider the classification of life-cycle costs.  

3. Life-Cycle Cost 

In developing a cost estimate, cost analysts first must understand a program’s or 

project’s life cycle. A life cycle follows the project or program from its inception to its 

disposal, or “cradle to grave.” It includes “the various stages of activity or phases through 

which the project progresses on its way from beginning to completion” (Rendon & Snider, 

2008, p. 3). The life cycle starts at a program’s development, flows through its production, 

operation, and maintenance, and finally concludes after proper disposal. The costs 

associated with this process are classified as the program’s life-cycle cost (LCC).  

The Defense Acquisition University (DAU) defines life-cycle cost as the direct cost 

of the acquisition program, as well as the indirect cost that can be logically attributed to 

the program over the entire life cycle (“Life cycle cost,” n.d.). It includes the cost to the 

government to “acquire, operate, support (to include manpower), and where applicable, 

dispose” (“Life cycle cost,” n.d., para. 2) of a system or program. There are multiple 

stakeholders in the DoD, such as Congress, the program manager and office, and 

contractors, who view a program’s life-cycle cost from different perspectives. These 

multiple perspectives have led to three different methods of breaking down and displaying 

LCC.  

The first method is breaking down program life-cycle costs into five different 

appropriation categories (“Life cycle cost,” n.d.): Research, Development, Test, and 

Evaluation (RDT&E); Procurement; Operations and Maintenance (O&M); Military 

Construction (MILCON); and Military Personnel (MILPERS). This method is used to 

develop and submit budget requests to Congress (“Life cycle cost,” n.d.).  

However, program managers and program offices would not find the first method 

as useful as Congress does. Instead, they utilize program life-cycle costs that are broken 

down by Work Breakdown Structure (WBS; “Life cycle cost,” n.d.). The DAU describes 

a WBS as a framework that displays “the total system as a product-oriented family tree 

composed of hardware, software, services, data, and facilities” (“Life cycle cost,” n.d., 
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para. 5). The WBS relates all of the work elements to each other and eventually to the final 

product (“Life cycle cost,” n.d.). A WBS encompasses all of the work necessary to produce 

a product (Huynh & Snider, 2008). This breakdown shows the relationship between costs 

and different elements of a system, which is a useful tool for program managers and 

contractors.  

The Office of the Secretary of Defense (OSD) for Cost Assessment and Program 

Evaluation (CAPE) outlines the third display method in its Operating and Support Cost-

Estimating Guide (OSD CAPE, 2014). OSD CAPE defines a program’s life-cycle cost as 

the summation of four different cost categories or phases: Research and Development 

(R&D), Investment, Operating and Support, and Disposal (OSD CAPE, 2014). Figure 1 

provides a graphical representation of the four cost categories over a program’s life cycle.  

 
Figure 1. Notional Profile of Annual Program Expenditures by Major Cost 

Category over the System Life Cycle. Source: OSD CAPE (2014). 

R&D is the initial cost category or phase in a program’s life cycle. These costs are 

the first incurred in the research, design, and development of a new system or program. 
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They can also include the “system design and integration; development, fabrication, 

assembly, and test of hardware and software for prototypes and/or engineering 

development models” (OSD CAPE, 2014, p. 2-3).  

Following R&D is the Investment cost category. These costs are incurred from 

“procurement and related activities from the beginning of low rate initial production 

(LRIP) through completion of deployment” (OSD CAPE, 2014, p. 2-3). LRIP refers to the 

production of the minimal number of a product or system that is required for Initial 

Operational Test and Evaluation (IOT&E; “Low Rate Initial Production [LRIP] of 

Production and Deployment Phase,” n.d.). Investment costs can include program 

management, initial spares, technical publications, and equipment training (OSD CAPE, 

2014).  

The Operating and Support (O&S) phase is the third phase in the OSD CAPE 

definition of LCC. The O&S phase normally accounts for a majority of a project’s life-

cycle costs (OSD CAPE, 2014). O&S consists of all of a system’s operation and 

sustainment costs from initial deployment to the end of its operational life. This includes 

all costs associated with “operating, maintaining, and supporting a fielded system” (OSD 

CAPE, 2014, p. 2-3). Specifically, costs can include “personnel, equipment, supplies, 

software, and services associated with operating, modifying, maintain, supplying, and 

otherwise supporting a system” (OSD CAPE, 2014, p. 2-3). 

The fourth and final OSD CAPE cost category is Disposal. Disposal costs are those 

associated with the proper disposal or demilitarization at the end of a system’s operational 

life (OSD CAPE, 2014). These costs can include “disassembly, materials processing, 

decontamination, collection/storage/disposal of hazardous materials and/or waste, safety 

precautions, and transportation of the system to and from the disposal site” (OSD CAPE, 

2014, p. 2-5). However, disposal costs can also be incurred during the sustainment phase 

due to unplanned system losses (OSD CAPE, 2014). We will revisit this method of life-

cycle costing in our discussion of total ownership costing. 
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C. DEPARTMENT OF DEFENSE ACQUISITION PROCESS 

1. Defense Acquisition Overview 

To comprehend how life-cycle costs and cost estimation are used in the DoD, cost 

analysts first must have a basic understanding of the DoD acquisition process. DoD 

Directive 5000.01 defines the purpose of the acquisition process as the ability to “acquire 

quality products that satisfy user needs with measurable improvements to mission 

capability and operational support, in a timely manner, and at a fair and reasonable price” 

(Office of the Under Secretary of Defense for Acquisition, Technology, & Logistics 

[OUSD(AT&L)], 2007, p. 3). In acquiring a new system or program, the DoD uses the 

Defense Acquisition System (DAS), which is defined in Directive 5000.01 as a 

“management process by which the Department of Defense provides effective, affordable, 

and timely systems to the users” (OUSD[AT&L], 2007, p. 2). However, the DAS is not the 

only part of the acquisition process. It is used in conjunction with two other DoD Decision 

Support Systems (Ambrose, 2017a): the Joint Capabilities Integration and Development 

System (JCIDS) and the Planning, Programing, Budgeting, and Execution process (PPBE). 

These support systems identify and document the operational requirements or needs and 

guide the program’s financing process. We are providing a brief overview of both support 

systems because they are fundamental to the overall DoD acquisition process.  

Dealing with identifying, assessing, and prioritizing military operational 

requirements, JCIDS represents the foundation of the defense acquisition program process. 

It uses a top-down approach stemming from the National Military Strategy and flows into 

joint concepts and joint capabilities. The DAU (“Joint Capabilities Integration and 

development System [JCIDS],” n.d.) describes the JCIDS process as a “collaborative effort 

that uses joint concepts and integrated architectures to identify prioritized capability gaps 

and integrated doctrine, organization, training, materiel, leadership and education, 

personnel, and facilities (DOTmLPF) solutions (materiel and non-materiel) to resolve 

those gaps” (para. 2). The JCIDS process starts with the identification of an operational 

capability gap and the requirements needed to fill the associated gap. This can be achieved 

through a Capabilities-Based Assessment (CBA) and two different potential solutions: 
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materiel or non-materiel (JCIDS, n.d.). If a materiel solution is decided on, then the DoD 

acquisition process proceeds.  

As an example, if a commander discovers his or her sailors are unable to combat a 

new threat with the ship’s current systems, a capability gap has been identified. The DoD 

will address this gap and the need for a solution through the JCIDS process. If the solution 

is a new or updated system, then a new program will be developed through the defense 

acquisition process. Once the need for a new system or program has been identified, 

decision-makers can transition to the financing side of the acquisition process.  

The Planning, Programing, Budgeting, and Execution process (PPBE) is the second 

acquisition support system. The DAU defines the process as the DoD’s “internal 

methodology used to allocate resources to provide capabilities deemed necessary to 

accomplish the Department’s missions” (“Planning, programming, budgeting & execution 

process [PPBE], n.d., para. 3). The process focuses on how resources are allocated in the 

DoD to support both current and future acquisition programs, and more specifically, on 

how the DoD finances those programs. The PPBE process is broken down into four phases.  

In the first phase, planning, the required capabilities to support and complete the 

missions outlined in the national policy are developed. This phase produces the Joint 

Programming Guidance (JPG), which provides guidance and establishes priorities for the 

Program Objective Memorandum (POM; Candreva, 2008). However, the JPG does not 

account for any fiscal constraints. The next phase in the PPBE process is programming. 

This phase entails applying fiscal constraints to the objects produced in the planning phase 

and results in the production of the POM, which outlines the plan for the allocation of 

funding to programs (Candreva, 2008). The third part of the PPBE process is the budgeting 

phase. The goal of this phase is converting the information contained in the POM into the 

budget format required by Congress and the Office of Management and Budget (OMB; 

Candreva, 2008). The budget outlines what the money is for, why is it needed 

(justification), and the monetary amount; it represents a request for spending authority. The 

appropriations from Congress grant that authority and give the power to obligate funds 

from the U.S. Treasury to an objective (Candreva, 2008). After the authorization and 

appropriations bill has been signed, decision-makers can enter the execution phase, the 
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fourth phase of the PPBE process (Candreva, 2008). Execution refers to the act of 

exercising the authority granted by the appropriation or the spending of the money 

(Candreva, 2008). The PPBE is an important part of the acquisition process. Without the 

funding piece, the DoD would not be able to acquire the new programs and systems that 

have been identified as a need through the JCIDS process.  

Now that the two support systems, JCIDS and PPBE, have identified capability 

need and established program funding, decision-makers can turn to the DAS. The DAS is 

governed by the DoD’s Instruction 5000 series, which provides policy and principles, as 

well as a foundation of management for the DAS. The DAS has established a five-phase 

framework for defense acquisition programs. It takes the capability need identified through 

the JCIDS process and develops it into a working system. The process follows the system 

from the program’s conception through its operational phase and ends with its disposal. 

Figure 2 from DoDI 5000.02 (OUSD[AT&L], 2017) shows the DAS process for a 

hardware-intensive product. 

 
Figure 2. Hardware-Intensive DAS Process. Source: OUSD(AT&L; 2017). 

Materiel Solution Analysis (MSA) is the first phase of the DAS. DoDI 5000.02 

describes the MSA purpose as “conduct [ing] the analysis and other activities needed to 

choose the concept for the product that will be acquired, to begin translating validated 
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capability gaps in system-specific requirements” (OUSD[AT&L], 2017, p. 18). This phase 

takes the identified capability gaps and needs from the JCIDS process and translates them 

into the requirements for the desired acquisition. Numerous technologies are then analyzed 

and evaluated to determine which one best fulfills those needs and requirements (Ambrose, 

2017b).  

The second phase of the DAS is Technology Maturation and Risk Reduction 

(TMMR). The purpose of this phase, as defined by the DAU, is “to reduce technology, 

engineering, integration, and life-cycle cost risk to the point that the decision to contract 

for Engineering and Manufacturing Development (EMD) can be made with confidence for 

the successful program execution of development, production, and sustainment” 

(“Technology maturation and risk reduction,” n.d.). The goal of this phase is to reduce the 

risks associated with the product that will be developed (OUSD[AT&L], 2017).  

Following the TMMR phase, the process enters the EMD phase of the DAS. The 

goal of the TMMR phase is to ensure that a system meets all the operational requirements 

through development and testing (OUSD[AT&L], 2017). The hardware and software 

designed are being completed and prototypes are built during this phase. These prototypes 

will undergo a Developmental Test and Evaluation (DT&E) to verify the capability 

requirements have been met (OUSD[AT&L], 2017). These results will support the decision 

to enter into the next phase.  

Production and Development (P&D) is the fourth phase of the DAS. The purpose 

of this phase is “to produce and deliver requirements-compliant products to receiving 

military organizations” (OUSD[AT&L], 2017, p. 30). In this phase, the product undergoes 

testing, including Operational Test and Evaluation (OT&E), to verify that the product 

meets the operational requirements before full production and deployment 

(OUSD[AT&L], 2017). After successful testing, the product can be produced and then 

fielded for use by operational forces. The phase also encompasses Low Rate Initial 

Production, Limited Deployment, Full-Rate Production Decision, and eventually Full-Rate 

Production and Deployment (OUSD[AT&L], 2017). 

The last phase of the DAS is Operating and Support (O&S). Its purpose is to 

“execute the product support strategy, satisfy materiel readiness and operational support 
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performance requirements, and sustain the system over its life cycle (to include disposal)” 

(OUSD[AT&L], 2017, p. 31). The phase consists of two main stages, sustainment and 

disposal. Sustainment continues the full rate production, deployment, and operational 

support of the product throughout its life (OUSD[AT&L], 2017). This phase also includes 

proper disposal at the end of the product’s life. At the end of a product’s operational life, 

it will be “demilitarized and disposed of in accordance with all legal and regulatory 

requirements” (OUSD[AT&L], 2017, p. 32). After a product’s disposal, the DAS is 

complete.  

2. Cost Estimation in the Department of Defense 

Cost estimation is an important and required tool used by decision-makers in 

defense acquisitions. The requirement for a cost estimation is outlined in the DoD 

Instruction 5000.02, Operation of the Defense Acquisition System. Specifically, the 

instruction mandates that the “DoD Component will develop a DoD Component Cost 

Estimate that covers the entire life cycle of the program for all Major Defense Acquisition 

Programs (MDAPs) prior to Milestone A, B, and C reviews and the Full-Rate Production 

Decision; and for all Major Automated Information System (MAIS) programs at any time 

an Economic Analysis is due” (OUSD[AT&L], 2017, p. 135). This means that before the 

acquisition process can move beyond the MSA, TMRR, and EMD phases and ultimately 

continue on to full production, a cost estimate encompassing the entire program life cycle 

must be produced. In addition to the DoD’s Component Cost Estimate, a separate, 

independent cost estimate is also required. DoDI 5000.02 requires the Milestone Decision 

Authority to consider an “independent estimate of the full life-cycle cost of a program, 

prepared or approved by the Director of Cost Analysis and Program Evaluation (DCAPE)” 

(OUSD[AT&L], 2017, p. 135). The DoD Component and DCAPE estimates are classified 

by the DoD as Life-Cycle Cost Estimations (LCCEs). Mislick and Nussbaum (2015) 

describe an LCCE as “a cost estimate for the totality of the resources that will be necessary 

throughout the product’s life cycle” (p. 18).  

There are four main cost-estimating techniques used in the DoD to develop an 

LCCE, and they can be used in different phases of a program’s life cycle (Ambrose, 2017a). 

The first method is parametric cost estimating and involves the use of statistical inferences 
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to generate an estimate based on system performance and design (Ambrose, 2017a). Using 

historical data from similar systems, cost estimation relationships (CERs) and patterns are 

identified. Those patterns are assumed to hold true in the future and are used to predict cost 

(Mislick & Nussbaum, 2015). The second method is analogy cost estimating, whereby a 

new system is compared to a similar existing system. The analogy method is a relatively 

quick and inexpensive method; however, it may not be as precise as other methods 

(Ambrose, 2017a). The parametric and analogy methods are normally used early in the 

acquisition process during the MSA, TMMR, and EMD phases (Ambrose, 2017a). The 

third and most time-consuming method is engineering cost estimation. In this method, the 

system is broken down into its WBS elements in which individual detail estimates are 

conducted. These estimates are then summed together to create the overall estimate 

(Mislick & Nussbaum, 2015). The engineering method is used during the TMRR phase 

and through the remaining acquisition process (Ambrose, 2017a). The last main method 

used by the DoD is actual costing. This method uses the actual costs from a system that 

were incurred in the past to predict the cost of producing that system in the future 

(Ambrose, 2017a). This method can be used after a program has entered the P&D phase.  

D. TOTAL OWNERSHIP COST 

While LCCEs are useful tools for decision-makers, they present a narrower scope 

when a broader perspective may be more beneficial (Kobren, 2014). Thus, we introduce 

the concept of total ownership cost (TOC). The DAU defines total ownership cost as 

including the “elements of life-cycle cost as well as other infrastructure or business process 

costs not normally attributed to the program” (Kobren, 2014, para. 2). Infrastructures refers 

to “all military department and defense agency activities that sustain the military forces 

assigned to the combatant and component commanders” (Kobren, 2014, para. 3). The 

major infrastructure categories are support to equipment, support to military personnel, and 

support to military bases (Kobren, 2014). Not normally included in a traditional LCCE, 

other support activities to consider in a cost estimate are recruiting, environmental and 

safety compliance, management headquarters functions, and logistics infrastructure 

activities (Kobren, 2014).  
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DoD Directive 5000.01 states that “DoD Components shall plan programs based 

on realistic projections of the dollars and manpower likely to be available in future years. 

To the greatest extent possible, the MDAs shall identify the total costs of ownership, and 

at a minimum, the major drivers of total ownership costs” (OUSD[AT&L], 2007, p. 5). 

This requires the DoD to expand beyond the basic life-cycle cost estimation and include 

the support activities and infrastructure costs. To support the DoD directive, the 

Department of the Navy (DoN; 2014) issued its Total Ownership Cost (TOC) Guidebook 

in which it describes “new departmental and naval processes” (p. 6) that support the DoD 

policy of the identification of total costs of ownership. Specifically, the guidebook assists 

the DoN and its organizations in developing, understanding, and applying the TOC 

requirements of the DoD.  

The DoN (2014) outlines the importance of TOC: “As the DoD (and Navy) funding 

remains constant or declines, and as Navy’s purchasing power declines as a result, 

increasing the decision weight priority for alternatives that can mitigate and reduce TOC 

becomes our clearest path to a capable and optimally affordable Fleet” (DoN, 2014, p. 8). 

For this reason, we focus our model on TOC instead of a standard life-cycle cost. 

E. RISK AND UNCERTAINTY 

A key point that we need to understand in cost estimating is that the future is 

uncertain. Therefore, an essential pillar in developing a defendable and credible cost 

estimate is ensuring that risk and uncertainty are incorporated. A cost estimate can be 

severely affected by factors such as technological maturity, schedule slips, software 

requirements, or any other unforeseen event (Mislick & Nussbaum, 2015). Unknown 

factors make any point estimate or any exact answer extraordinarily unlikely (Mislick & 

Nussbaum, 2015). A more accurate estimate uses a central tendency centered on the 

original point estimate and a range both higher and lower to define the bounds of the 

estimate.  

Though similar and related, risk and uncertainty are not synonymous. In the 

simplest terms, risk is the probability of the occurrence of a negative or unfavorable event, 

while uncertainty is the lack of certainty, or the realization that definitively knowing the 

outcome of any future event is completely impossible (Mislick & Nussbaum, 2015). In 



20 

Johnathan Mun’s (2015) book, Readings in Certified Quantitate Risk Management 

(CQRM), he states that  

The concepts of risk and uncertainty are related but different. Uncertainty 
involves variables that are unknown and changing, but uncertainty will 
become known and resolved through the passage of time, events and action. 
Risk is something one bears and is the outcome of uncertainty. Sometimes 
risk may remain constant while uncertainty increases over time. (p. 28) 

A good way to think about risk and uncertainty is to imagine going on a skydiving 

trip with a friend. As the plane takes off, you and your friend realize that there is only one 

parachute and that parachute is looking like it is somewhat past its service life. Your friend, 

being slightly more adventurous than you, decides to grab the parachute and take the jump. 

Both you and your friend share the same level of uncertainty about whether the parachute 

will open and whether your friend will live to tell the story. However, only your friend will 

assume the risk of jumping out of the plane and falling to his or her death.  

Though better than ignoring risk altogether, incorrect treatment of risk can 

significantly affect the estimate. Cost estimating risk, schedule or technical risk, 

requirements risk, and threat risk are the four types of risk that play a factor in the cost 

estimation for a life-cycle cost. Cost estimating risk is the risk attributed to cost estimating 

error and uncertainty due to the numerical methodology used (Mislick & Nussbaum, 2015). 

Next, schedule or technical risk is the risk associated with the inability to accomplish 

schedule or technical objectives of the design or current specification, which stretches the 

timeline of the program completion (Mislick & Nussbaum, 2015). Requirements risk is the 

risk of the original requirements being shifted due to shortfalls in the original requirements 

documentation or due to the current design failing to complete the requirement. The final 

category is threat risk, the risk of a new unforeseen threat due to a complete change in the 

original problem (Mislick & Nussbaum, 2015).  

Even after a cost estimator does due diligence in looking at historical data and 

normalizing data to build an analogy, parametric, engineering, or actual estimate, the 

multiple sources of uncertainty can still play a large factor in the estimate. Because cost 

estimators do not have a crystal ball that they can use to tell the exact future, they must use 

assumptions such as inflation rates and changes in technology.  
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F. ELECTRO-OPTICAL INFRARED SENSORS 

1. Background 

As cited in Driggers, Friedman, and Nichols (2012) book, Introduction to Infrared 

and Electro-Optical Systems, electro-optics (EO) refers to the field of systems that convert 

photons into electrons. Driggers et al. note that these systems are designed to respond to 

wavelengths within the 0.4–3 micrometer region. They deliver images that are analogous 

to human vision, and the authors point out that some EO systems are even capable of 

processing the near or short infrared (IR) spectral region (Driggers et al., 2012). 

The term target is used to describe the desired image sought with an EO sensor. 

The signal from a target usually has a large reflective component, typically in the EO 

wavelength band. The target is provided this reflection component by moonlight, starlight, 

sunlight, or any artificial light source (Driggers et al., 2012). The light sources reflecting 

off of the background and the target are known as external radiation. Radiation reflected 

by targets and background does not go directly to the EO sensor. The reflected radiation 

must first transition through the atmosphere, where it experiences scattering, before being 

processed by the EO sensor (Driggers et al., 2012). Scattering is a phenomenon where 

particles in the atmosphere such as smoke, smog, or mist interfere with the reflection. Once 

the reflected radiation meets the EO sensor, it is passed through the sensing element, which 

could be detectors, tubes, or image intensifiers (low light situations) (Driggers et al., 2012). 

Next, the output of the sensor element is digested by the electronics and sent to a human 

interface for the operator (human) to gather some information from the process. This 

information could take myriad shapes such as detection, recognition, or identification of 

targets such as a warship. In short, EO sensors detect the light reflected off the subject from 

the scene (Driggers et al., 2012). Figure 3 represents a typical EO sensor scenario.  
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Figure 3. Typical EO Sensor Scenario. Adapted from Driggers et al. (2012). 

Infrared is able to recognize the spectral region from 0.7 to 14 micrometer 

wavelengths. It is divided into four subregions: the near-infrared (NIR) region is from 0.7 

to 1.1 mm, the short-wave infrared (SWIR) region is from 1.1 to 3 mm, the mid-wave 

infrared (MWIR) region is from 3 to 5 mm, and the long-wave infrared (LWIR) region is 

from 8 to 14 mm (Driggers et al., 2012). Infrared is primarily used in night operations 

(Driggers et al., 2012). The science of infrared is based on the science supporting Planck’s 

law, which states that all bodies above the temperature of absolute zero emit 

electromagnetic radiation. The electromagnetic radiation is exploited to uncover the 

electromagnetic signatures given off that do not correlate to the wavelengths visible by the 

human eye or EO sensors. 

As the temperature of the object gets hotter, the peak wavelength moves to 
shorter wavelengths so that at very hot temperatures the radiation is 
perceived by the eye as light. The emissive surface characteristics of the hot 
object determine the spectral emission weighting of the radiation. The 
radiation emitted travels through the atmosphere, where it will then meet 
the aperture of the sensor. (Driggers et al., 2012, p. 7) 

Most IR sensors provide situational awareness for very low light situations such as 

night vision, surveillance of low-lit areas, and navigating through smoke-filled 

compartments (Driggers et al., 2012). Figure 4 shows the basics of an infrared sensor 

scenario.  
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Figure 4. Typical IR Sensor Scenario. Adapted from Driggers et al. (2012). 

The design of EO or IR imaging is very dependent on the purpose of the sensor, 

and the performance of the system is predicated on the functions of the wavelength 

(Driggers et al., 2012). Factors such as the characteristics of the scene and the atmosphere 

will determine the quality of the image obtained by the sensor. For EO sensors, the largest 

factor is reflectivity, or how much of the external radiation from the scene is going to make 

it back to the sensor (Driggers et al., 2012). For IR sensors, the question is far more focused 

on the emissivity of the target, or how much electromagnetic radiation is the target is 

creating that will get back to the sensor (Driggers et al., 2012). 

2. EO/IR Sensors on Surface Ships 

Before the advent of electro-optics, direct optics were a commander’s main 

resource in support of tactical decision-making. Binoculars, stadimeters, and periscopes 

were the key in situational awareness and obtaining fire control solutions for torpedoes and 

gun engagements (Davidson, 2015). With the invention of EO, warfighters are no longer 

restricted to the limitations of the human eye. The application of using television cameras 

and the discovery of light-sensitive semiconductor materials allow images to be converted 

into electrical signals that are fed into displays for humans to process information. EO 
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sensors paired with the ability of infrared sensors allow warfighters to discern a target in 

the most vast and unlit environments (Davidson, 2015).  

In Nitschke’s (2007) article, “New Generation Naval Electro-Optics,” he states that 

Electro Optical/Infrared technology is an invaluable aid for the 21st century 
digitised battlespace arena. It provides surface warships, submarines, and 
maritime aviation operating in the varying naval environment with 
extensive image gathering, navigational, and targeting capabilities. (p. 87) 

The constant advances in EO/IR systems have developed sensors with integral 

lasers that are used to measure distances with extreme accuracy and are a fraction of the 

size of the range finders of legacy ships (Davidson, 2015). In an Institute for Defense 

Analyses report entitled A Tutorial on Electro-Optical/Infrared (EO/IR) Theory and 

Systems, it is stated that “the performance of an EO/IR sensor depends on the optics, 

detector, display, target-background contrast and the intensity of the illumination source” 

(Koretsky, Nicoll, & Taylor, 2013, p. 5). Using the background on EO/IR sensors detailed 

previously, it can be seen that there are a multitude of applications for these sensors on 

surface ships.   

Technological advances have emphasized the importance of the opportunity and 

the necessity to reinvest in the newest technologies and systems. These advances in 

technology will drive future EO/IR system purchases by the DoD. These system 

acquisitions will require a credible and reliable cost estimation to ensure the DoD manages 

its budget effectively. With the complexity and uniqueness of EO/IR systems, an efficient 

cost estimation model is needed to account for all life-cycle costs. The additional aspect of 

uncertainty should also be considered in the estimation. The cost estimation model we are 

proposing takes into account total ownership costs for and uncertainty of the acquisition of 

EO/IR systems for U.S. Navy surface ships. This model serves as a proof of concept to 

help future DoD decision-makers understand the costs associated with EO/IR systems so 

they can make strategic investments. 

3. Program Executive Office Integrated Warfare Systems  

The mission of Naval Sea Systems Command (NAVSEA) is to “design, build, 

deliver, and maintain ships and systems on time and on cost for the United States Navy” 
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(NAVSEA, n.d.). NAVSEA is overall responsible for systems on Navy surface ships 

including EO/IR sensors. To help manage all of these programs, NAVSEA contains five 

affiliated Program Executive Offices (PEOs). Each PEO is responsible for managing all 

aspects of its assigned programs’ life cycles (NAVSEA, n.d.). EO/IR sensors fall under the 

purview of the PEO Integrated Warfare Systems (IWS). The Program Executive Office 

Integrated Warfare Systems (PEO IWS) is tasked to “develop, deliver, and sustain 

operationally dominant combat systems for Sailors” (Assistant Secretary of the Navy for 

Research, Development & Acquisition, n.d.). In August 2018, PEO IWS had 196 active 

contracts with a total value of $33.2 billion and was responsible for 129 programs and 

projects (Deputy Major Program Manager, 2018). 
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III. MODEL INTRODUCTION 

A. MODEL GUIDANCE 

This chapter gives a comprehensive description of our model entitled “TOC Model 

Worksheet (Final).xlsx” and the directions for operating it. This model was developed by 

Johnathan Mun (jcmun@nps.edu), Eliah Ledbetter (eliah.ledbetter@nps.edu), and Katelyn 

George (katelyn.george@nps.edu) at the Naval Postgraduate School in Monterey, CA, to 

model the life-cycle and total ownership costs of surface electro-optic infrared (EO/IR) 

sensors for NAVSEA. This chapter is intended to prepare the model’s cost to apply the 

fundamentals of TOC over the entire life cycle of an EO/IR sensor from the acquisition 

cost through disposal.  

B. TOTAL OWNERSHIP COST WITH LIFE-CYCLE MODEL 

This chapter is not a guidance on design specification; it is, instead, a guide to decision-

analytic modeling of a sensor for use in a follow-on comparison between alternatives. In a life-

cycle–based analysis of TOC, an essential set of assumptions includes that there is a multitude 

of costs incurred prior to the system being operational, such as R&D and Production. In this 

example, these costs are identified as Year 0 (as shown in Figure 5). The follow-on cost 

represents the operational years of the system; in this example, these years are designated as 

Year 1 through Year 10 (see Figure 5) where the Operation and Maintenance (O&M) costs 

apply. In the final year of operations (Year 10 in Figure 5), the additional cost incurred must 

be considered to either dispose of, salvage, or otherwise render the system inoperable. Figure 

5 shows the typical life-cycle cost over time, which is calculated by taking the summation of 

the aforementioned costs incurred over the life cycle of the system. It is imperative to remember 

the importance of economic theory while dealing with multiyear projects. These costs must be 

annually discounted at a predetermined discount rate to reflect the time value of money (the 

purchasing power of a dollar today is not equivalent to the purchasing power of a dollar 

tomorrow due to economic factors such as economic growth rate, inflation, and changes in 

interest rates). Finally, the O&M cost may also change over the system’s life due to inflation, 

budget restrictions, and changes in technology; this model allows for these factors to be 

adjusted manually.  
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Figure 5. Typical Life-Cycle Cost over Time 

To understand this chapter, it is imperative that the reader be familiar with the 

primary function of Microsoft Excel and comprehend the fundamentals of Risk Simulator. 

These two prerequisites are essential for running Monte Carlo simulation to attempt to 

quantify the uncertainties in the cost over a system’s life. Risk simulation only needs to be 

applied to the model when a risk or uncertainty analysis is required for the modeled sensor 

or system. The Excel model is divided into multiple worksheets. The first five worksheets 

are labeled System A to System E. These are five identical worksheets prepopulated with 

standard EO/IR generic cost structures (see Figure 6). Unlocking the worksheets allows the 

cost analyst to make modifications to the equations and model, alter the model structure, 

and audit the model’s calculations. However, for regular use, it is recommended that the 

worksheets remain locked to prevent insertions of any accidental and erroneous changes to 

the model. Figure 6 shows the first two dozen rows of the model, while Figures 7 and 8 

show the last two sections of the model. The following list provides additional clarity and 

guidance to this worksheet. 
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Figure 6. Model Input Worksheet 

• The Excel file has five worksheets (Systems A–E), where each worksheet 

is meant for a different system. Alternatively, one of these can be set as 

the current or baseline system. If additional systems need to be included 

for analysis, we recommend creating a new file (simply perform a File | 

Save As to create a duplicate file).  

• The figures in this document show a sample dataset where all unit and 

dollar inputs are set to 1 or $1, respectively. This was done intentionally to 

illustrate the location of data entry cells, as well as to have some sample 

results to show how the model works. Analysts can access the same results 

either by manually entering these unitary values or by opening the 

associated “TOC Model - Example Only (Repeated Data and Locked 

Sheets).xlsx” file to follow along.  

• Row 1 is where you enter the name of the System in cell D1. Then enter 

any discount rate value ≥ 0%. The discount rate is used to calculate the 

present value of all future cash flows. Use 0% if no present valuation is 
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needed, or enter the annualized cost of money (e.g., from 3% for 

inflationary adjustments only to 15% to account for risks and reinvestment 

opportunity costs of the cash flows). Also, here you can select the 

economic or operational life of this current system. These inputs can be 

unique for each of the five systems under analysis. 

• Row 2 allows you to select the uncertainty range on which to perform 

risk-based Monte Carlo simulations. You can select to not run any 

simulations, a small ±5% range, standard ±10% to ±20% range, wide 

±25% to ±40% range, or a highly uncertain ±45% to ±50% range. These 

ranges will be automatically computed and applied as probability 

distributions on the inputted costs (see the following bullet points) in order 

to run simulations. There is also a section where you can enter notes about 

the system under analysis (cells D2:O2). 

• Row 3 allows you to enter an annual positive growth rate or an annual 

negative decline rate to be applied to the O&M over time, starting in the 

second year. This allows the cost analyst to increment the O&M over time 

or perform a similar reduction in costs over the lifetime of the system. 

• The data input grid starts from row 6 to row 187, around columns B to P. 

All white-colored cells with borders are cost analyst input cells. You can 

also make modifications to subsection headers (e.g., rows 6, 24, etc.) and 

line item titles (e.g., cells B7:B23). The subsections and line item titles are 

generic inputs and can be changed as required. There is also an “Other:” 

line item that can be used as required.  

• Because the model has been structured to run simulations and other 

advanced analytics, it is highly recommended that the analyst does not 

make any structural adjustments or modifications by deleting worksheets 

or inserting rows and columns unnecessarily. Also, the model has been 

optimized for printing, and any major modifications will muddle the 

printing capabilities. 
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• The number of units per system and number of platforms (columns C and 

D) have to be ≥ 0 and are self-explanatory. The acquisition cost, 

operational cost, maintenance per year, and replacement per year are on a 

per-unit basis. If you wish to enter the total replacement cost for the year, 

first take that value and divide it by the product of units with the number 

of platforms to obtain a per-unit cost. Enter only per-unit costs. Continue 

data entry until row 145.  

• All grayed-out cells are computed values and should be left alone. If you 

wish to audit the calculations, first unlock/unprotect the worksheet and 

then select a cell to view its calculations. 

• Area B147: D177 looks at nonrecurring costs to the acquisition process of 

this current system. All acquisition costs are summed and set as today’s 

(Year 0) cost.  

• Area B179:D187 looks at the nonrecurring end-of-life or disposition costs. 

These costs will be incurred at the end of the selected economic life 

(droplist circa cell K2) and will be discounted appropriately based on the 

discount rate and term of life selected.  

• Replicate the data entry just described for up to five systems as required. If 

fewer than five systems are needed, simply ignore the unused worksheets, 

but remember not to delete them unnecessarily. If more than five systems 

are required, create a copy of the file and apply these remaining systems as 

a separate file. Changing the structure of the file may invalidate some of 

the preset simulation models and assumptions. 

Figure 9 illustrates the Monte Carlo simulations section. This table summarizes the 

sections of the costs and created simulation variables (cells in green). Figure 10 shows how 

these simulated results will be used to generate the life cycle of the cost structure of the 

system, where the economic life of the system is accounted for, as well as any required 

discounting to generate the present value of the costs. If the cost analyst wishes to run a 

simulation using Risk Simulator, we recommend first coming to this section and then 
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hitting Run. This way, the analyst can see the actual simulation executing and how the cells 

in green change (Figure 9), as well as how the subsequent calculations will simulate and 

change (Figure 10). Note that by default, 10,000 simulation trials have been set because 

triangular probability distributions were applied to each of the subtotaled cost items, and 

the process is modeled to run without any predetermined seed values.
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Figure 7. Input Worksheet (Nonrecurring Acquisition Cost) 

 
Figure 8. Input Worksheet (Nonrecurring End-of-Life-Cycle Cost) 
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Figure 9. Monte Carlo Uncertainty Simulation 
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Figure 10. Life-Cycle Cost Cash Flow Calculations 
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In the summary worksheet (Figure 11), the total costs, as well as present values of 

total costs for various economic and useful lives, are tabulated. Analysts can view the 

results as tables and charts. Here, a comparative cross-sectional analysis of alternatives 

assessment can be seen, and a growth of the costs can be seen in the charts. Note that these 

results and charts are single-point estimates and are calculated prior to any simulations. 
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Figure 11. Life-Cycle Cost Cash Flow Summary Results and Dashboard 
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If a simulation is run, the resulting charts in Figure 12 will be automatically 

generated. For more information, see Chapter IV for instructions on setting up and running 

simulations and interpreting the basic results as well as using some basic decision-analytics 

tools. Note that this current chapter provides only the most basic information needed. If 

detailed understanding is required, please see Mun’s more than two dozen books (Modeling 

Risk, 3rd ed., 2016, is particularly recommended).  

The model has predetermined simulation settings created, and, as such, the cost 

analyst can simply click on the Run Simulation icon in Risk Simulator to execute the run. 

Running the simulation will make changes to the cells in Figures 9 and 10, as previously 

discussed. If the other worksheets have populated inputs, these worksheets will also be run, 

and the results will be presented as probability distributions (shown in Figure 12). Each 

system’s calculated Total Cost and Present Value of Total Costs will be shown (for the 

selected economic and useful life) as probability distributions and simulation statistics. 

Analysts can also perform a comparative analysis by using Overlay Charts (see the bottom 

of Figure 12), generate reports of the statistical results (see Figure 13), and run detailed 

reports of the analysis (see Figure 14), as well as other complete analytics such as scenario 

analysis and sensitivity analysis (see Chapter IV).  

Finally, in the Summary Worksheet, analysts have the option to make adjustments 

to the cost cash flow series by making ± $ adjustments in the empty cells with borders (see 

Figure 15). This capability allows for any known factors such as technology insertion, 

foreseen major structural modifications, or any other such adjustments to be applied every 

few years. The cash flows will be adjusted accordingly in this worksheet. Note that as of 

the current version of Risk Simulator, simulations will be applied not to any such 

modifications, but only to single-point results. 
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Figure 12. Example Simulation Results 
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Figure 13. Example Simulation Statistics Table (Only Sample Basic Results Shown) 
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Figure 14. Example Simulation Report 
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Figure 15. Manual Adjustments to Life-Cycle Cost Cash Flow  
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IV. MONTE CARLO RISK SIMULATION 

A. WHAT IS MONTE CARLO SIMULATION? 

Monte Carlo risk simulation is the process of running multiple probability 

simulations (Mun, 2015). Monte Carlo risk simulation provides analysts and decision-

makers a method to more easily solve complex real-world problems (Mun, 2015). Monte 

Carlo simulation produces synthetic future outcomes by computing thousands and even 

millions of different sample paths of outcomes to observe the prevalent characteristics 

(Mun, 2015). To obtain proficiency in the skills required to solve these complex problems, 

analysts would need to use high-level math; However, this not a sensible solution (Mun, 

2015). In an effort to make this more practical, analysts will use any available tools and 

techniques to simplify the process (Mun, 2015). Monte Carlo risk simulation provides an 

analyst with answers that are comparable to the more sophisticated and time-consuming 

mathematical methods (Mun, 2015).  

In his book, Readings in Certified Quantitative Risk Management, Mun (2015) 

describes Monte Carlo simulation as a random number generator that is a very effective 

tool for estimation and risk analysis. A simulation generates a multitude of scenarios for a 

model by repeatedly choosing random values from a spectrum of potential outcomes 

chosen by the cost analysis (Mun, 2015). The outcomes calculated by the model will 

produce a probability distribution for the uncertain variables (Mun, 2015). All of the 

outcomes will result in a model. From this model, an analyst will be able to derive a forecast 

that defines an important piece of information such as estimated total cost, net profit, or 

total expenses (Mun, 2015). This chapter provides a step-by-step walk-through of the 

Simulation Module in Risk Simulator used in forecasting cost estimates.  

B. RISK SIMULATOR SOFTWARE INSTALLATION REQUIREMENTS 
AND PROCEDURES 

Mun (2015) explains the following six modules (see Figure 16) contained in the 

Risk Simulator software: 
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1. The Monte Carlo Simulation module gives an analyst the ability to run a 

variety of different simulations. These products can include distribution 

fitting and correlation reports.  

2. Analysts can use the Forecasting module to produce a number of different 

forecast reports, including automatic time-series and econometric forecast. 

3. The Optimization Under Uncertainty module provides analysts with a tool 

that can minimize or maximize the objective through the optimization of 

the model’s constrained variables.  

4. The Modeling and Analytical Tools module gives analysts the ability to 

run statistical testing on the input data, as well as a variety of types of 

sensitivity analyses on the simulation.  

5. The ROV BizStats module allows analysts to run over 130 types of 

business analyses on the simulated model.  

6. The ROV Decision Tree module allows analysts to incorporate advanced 

analytics into the common method of decision tree modeling (Mun, 2015). 

 

 

 

 
Figure 16. Risk Simulator Icon Toolbars in Excel 
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C. GETTING STARTED WITH RISK SIMULATOR 

1. A High-Level Software Overview 

The Risk Simulator software is equipped with several applications such as Monte 

Carlo simulation, forecasting, optimization, and risk analytics (Mun, 2015). 

Mun (2015) explains that the Simulation Module allows cost analysts to run the 

following simulations: 

• Simulation Forecasts can be generated using the Simulation Model. These 

forecasts provide a tool for analysts to examine various distributions.   

• Distribution Fitting can also be preform using the Simulation Module. 

This application automatically finds the statistical distribution that is the 

best fit for the model data.  

• The Simulation Module also examines the relationship between the 

variables in the simulation and determines the extent of correlations 

between those variables.  

• The Simulation Module also can generate sensitivity analysis charts, such 

as tornado and spider charts. These sensitivities charts provide analysts a 

tool to identify sensitivity factors for the simulation.  

• To determine the differences between forecasts, the simulation model 

allows analysts to test statistical hypotheses.  

• To assess the strength of the result statistic an analyst should run the 

bootstrap simulation.  

• Instead of selecting parameters, an analyst can use historical data analysts 

to run custom simulations (Mun, 2015).  

In his book, Mun (2015) describes the forecasting: 

used to generate automatic time-series forecasts (with and without 
seasonality and trend), multivariate regressions (modeling relationships 
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among variables), nonlinear extrapolations (curve fitting), stochastic 
process (random walk, mean-reversion, jump-diffusion, and mixed 
processes), Box-Jenkins [autoregressive integrated moving average] 
ARIMA (economic forecasts), Auto ARIMA, basic econometrics and auto-
econometrics (modeling relationships and generating forecasts), 
exponential J-curves, logistic S- curves, [generalized autoregressive 
conditional heteroskedasticity] GARCH models and its multiple variations 
(modeling and forecasting volatility). (p. 76) 

The Optimization Module allows the cost analyst to optimize multiple variables to 

maximize or minimize the objective with the range that the analyst inputs, the optimization 

can be run as either a static, dynamic, or stochastic optimization under uncertainty together 

in the Monte Carlo risk simulator (Mun, 2015).  

Analysts have access to multiple business and analytical models in the ROV 

BizStats module (Mun, 2015). The ROV Decisions Tree module provides analysts the 

ability to create traditional decision tree models and the option to run those models through 

Monte Carlo risk simulations (Mun, 2015). Analysts can also use this module for sensitivity 

and scenario analyses (Mun, 2015).  

2. Running a Monte Carlo Simulation 

To run a simulation in an existing Excel model, Mun (2015) lays out the following 

steps:  

1. An analyst should open an existing simulation profile or create a new one. 

2. In the open simulation profile, the analyst should define and then use 

appropriate cells to enter the input assumptions.  

3. The analyst should define and then use appropriate cells to enter any 

output forecasts. 

4. The analyst will then run the simulation. 

5. The analyst should interpret the simulation results (Mun, 2015). 

An analyst can practice these steps using the example, Basic Simulation Model, 

provided by the Risk Simulator software (Mun, 2015). This file allows the analyst to run 
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example simulations on a basic model. The example file can be accessed through the 

installation folder (i.e., c:\Program Files (x86)\Real Options Valuation\Risk 

Simulator\Risk Simulator) or accessing directly through clicking the Risk Simulator icon, 

followed by the Example Models button (Mun, 2015). 

a. Starting a New Simulation Profile 

The first step for an analyst when running a new simulation is creating a new 

simulation profile (Mun, 2015). A simulation profile is tailored to each simulation based 

on the analysist preference and contains setup instructions for specific uses (Mun, 2015). 

The profile will include all of the assumptions, run profile, and forecasts. Multiple 

scenarios for a single profile allow an analyst to run the simulation using different input 

assumptions (Mun, 2015). Conversely, a team of analysts could independently run a 

simulation in the same model profile using their own assumptions (Mun, 2015).  

Mun (2015) outlines the steps for creating a new simulation profile: 

1. An analyst should open an existing model or create a new one. If the 

analyst does not have an existing model or does not want to create a new 

one, then the sample Basic Simulation Model can be used.  

2. Once the model is open, the analyst will select the Risk Simulator button 

and then click on the New Simulation Profile Icon.  

3. The analyst will then choose a name for the simulation and enter any 

additional relevant information (see Figure 17; Mun, 2015).  
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Figure 17. New Simulation Profile Example 

Mun (2015) outlines the following input requirement for a simulation profile: 

• Title: Providing a title for the simulation allows an analyst to create and 

save multiple profiles for a single model. Once a title is inputted, the 

profiled can be saved without overwriting assumptions that were 

previously entered. This technique prevents the analyst from having to re-

enter or change the assumptions when rerunning scenarios. To change a 

profile name, the analyst can select the Risk Simulator button then click 

Edit profile. The analyst will then enter the new profile name. 

• Number of trials: An analyst can select the amount of simulation trials 

necessary in this section. When an analyst is unsure of how many trials are 

required to be run for the model, the analyst can use error and precision 

controls. These controls will assist an analyst in determining the requisite 

number of trials that should be run based on the model. The Risk 

Simulator software default number is set at 1,000 trials. An analyst can 

enter any positive integer into this block. The number entered will directly 

correlate to the number of trials the simulator will run.  

• Pause simulation on error: Once this selection is checked, the simulation 

will stop each time an error is faced in the model. For example, if the 
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model encounters an error in its calculation, the simulation will stop. If an 

analyst wants to audit a model to ensure there are no computational errors 

in it, this function is essential.  

• Turn on correlations: This function directs the software to calculate 

correlations between the input assumptions. An analyst should check this 

box to ensure these calculations are performed. If correlations are left 

unchecked, they will automatically be set to zero, and the simulation is 

done under the assumption that there are no cross-correlations among 

input assumptions.  

• Specify random number sequence: Mun (2015) explains that each 

simulation will produce marginally different results every time that 

simulation is run. He clarifies that the variation in the results stems from 

the random number generator ingrained in the Monte Carlo risk 

simulation. However, when making a presentation or a demonstration, an 

analyst may require the same results; this is especially true when trying to 

use the simulation to drive a live presentation using one specific set of 

data and wants to know the outcome of the simulation before it is run. 

This setting is set by the analyst by entering any positive integer as an 

initial seed number. The analyst will use the same initial seed value, 

number of trials, and input assumptions for the simulation. This 

specification will consistently generate the exact same random number 

sequence, which will ensure the same end results each time the simulation 

is run (Mun, 2015).  

If needed, an analyst can adjust the above selections after the simulation profile has 

been created (Mun, 2015). To adjust the simulation settings, the analyst must ensure that 

the currently active profile is the one that the analyst wants to change; if it is not, the analyst 

needs to switch profiles (Mun, 2015). To do so, the analyst will click on the Risk Simulator 

icon, followed by the Change Simulation Profile button, and select the desired profile 

(Mun, 2015). Figure 18 shows the Risk Simulator box, where the analyst can view and 
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select various profiles (Mun, 2015). Once the correct profile is active, the analyst will click 

on the Risk Simulator icon then select the Edit Simulation button (Mun, 2015). This will 

allow the analyst to make the desired changes to the profile’s settings (Mun, 2015). This 

function also gives an analyst the ability to replicate or rename a preexisting profile (Mun, 

2015). The analyst should ensure that each simulation profile has a distinct name to 

differentiate between the various profiles (Mun, 2015). Simulation profiles are hidden 

within segments of the existing Excel file; this means the analyst will not have to save 

multiple files for each profile (Mun, 2015). Each simulation profile is automatically saved 

when the analyst saves the Excel file (Mun, 2015). When the analyst re-opens the Excel 

file, the last active simulation profile will automatically open as the current profile (Mun, 

2015).  

 
Figure 18. Change Active Simulation Example 

b. Defining Input Assumptions 

After the simulation profile has been created, the analyst will then set input 

assumptions (Mun, 2015). These assumptions are only assigned to cells that do not contain 

functions or equations (Mun, 2015). Input assumptions are numbers that are entered by the 

analysts (Mun, 2015). Conversely, cells that contain functions or equations are designated 

for output forecasts or model outputs (Mun, 2015). It is important to remember that these 

assumptions can only be set after a simulation profile is opened (Mun, 2015). 
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Mun (2015) outlines the following steps to set up new input assumptions for a 

model:  

1. The analyst should create a new profile or open an existing one. To start a 

new profile, the analysist will click the Risk Simulator icon, followed by 

the New Simulation Profile button. 

2. Then the analyst will select the desired input assumption cell. If following 

along using the sample model, analyst will select cell G8.  

3. To set an assumption in the selected cell, the analyst will select the Risk 

Simulator icon, followed by the Set Input Assumption button. If the Risk. 

Simulator toolbar is displayed, instead the analyst can click on the Set 

Assumption icon.  

4. The analyst will then select the desired distribution for the model. The 

analyst will then have opportunity to adjust the distribution parameters. 

Once all the relevant information has been imputed in the Assumption 

Properties window (see Figure 19), the analyst will hit OK (Mun, 2015). 
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Figure 19. Setting an Input Assumption Example 
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The cost analyst can also set assumptions by accessing the shortcut to the Risk 

Simulator menu. To accomplish this, the analyst selects the desired cell in which to place 

the assumption in and right-clicks to open the Risk Simulator menu (Mun, 2015). Figure 

20 shows the multiple key areas in the Assumption Properties.  

In his book, Mun (2015) describes the noteworthy assumption properties: 

• Assumption Name: Most simulation profiles will have multiple input 

assumptions, and it is imperative for an analyst to keep track of each 

assumption. In order to organize the assumptions present, an analyst can 

name the assumptions using this feature.  

• Distribution Gallery: The left side of Figure 20 is the Distribution 

Gallery. It shows the different distributions available in the simulation 

software. This software is capable of running over 20 distributions, and 

each can be selected by simply right-clicking on the desired distribution.  

• Input Parameters: Once the analyst selects the desired distribution, the 

required parameters will be displayed. Parameters can be manually entered 

by the analyst, or they can be linked from the desired cell. If a parameter is 

not expected to change, it is easier to manually type it into the cell. 

However, if the parameter is allowed to change, then linking the cells is 

more efficient. 

• Correlations: If correlations are required, then the analysts should verify 

the correlation status. To accomplish this, the analyst will click on the 

Risk Simulator icon, followed by the Edit Simulation Profile button. The 

analyst can then decide to either shorten or correlate the distribution to 

another assumption; however, these two actions cannot be used at the 

same time.  

• Short Descriptions: To understand why a certain distribution was used, 

an analyst can review the explanation using the short description feature. 
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Short descriptions are available for all distributions available in the 

software’s gallery. 

• Regular Input and Percentile Input: To test an input assumption, an 

analyst can use either the regular input or the percentile input function. If 

an analyst is working with a model that has a normal distribution with 

given inputs for the standard deviation and mean, the analyst could see 

what the corresponding 90th and 10th percentiles would be by clicking on 

the percentile input function (Mun, 2015).  

If an analyst decides to use the example model provided by the Risk Simulator 

software, then cell G9 will need an input assumption (Mun, 2015). The analyst should 

select the uniform distribution with a maximum value of 1.1 and a minimum value of 0.9 

(Mun, 2015). Then, the analyst can proceed to the next step, defining the output forecasts 

(Mun, 2015). 
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Figure 20. Assumption Properties Example 
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c. Defining Output Forecast 

Defining output forecasts is the next step in running a simulation (Mun, 2015). 

Analysts should remember that outputs cells that contain functions or equations are the 

only place that forecasts can be inputted (Mun, 2015).  

Johnathan Mun (2015) describes the steps to set output forecasts: 

1. First, the analyst will select the desired forecast output cell. If using the 

example model provided, the analyst will select cell G10.  

2. Once the appropriate cell has been selected, the analyst will click on the 

Risk Simulator icon, followed by the Set Output Forecast button. If the 

Risk Simulator toolbar (Figure 16) is displayed, the analyst can click in 

the Set Output Forecast icon.  

3. Lastly, the analyst will enter the required information in the Set Output 

Forecast popup window (Mun, 2015).  

To set an output forecast, an analyst can choose the desired cell in which they want 

the forecast to be displayed (Mun, 2015). Then the analyst can access the Risk Simulator 

shortcut by right-clicking the cell (Mun, 2015). Figure 21 shows the set forecast properties. 

• Forecast Name: This is where the cost analyst would insert the name of 

the forecast cell. Not only is this simple step good practice for modeling, 

but it also gives the analyst the ability to access the desired results quickly 

(Mun, 2015).  

• Forecast Precision: Instead of a cost analyst guessing the number of trials 

needed to run in a simulation, the cost analyst can input precision and 

error controls. This function will pause the simulation and alert the analyst 

when the error-precision combination has been met, allowing the 

simulation process to be automatic rather than a guessing game for the 

analyst (Mun, 2015).  
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• Show Forecast Window: Forecast windows are displayed as the 

software’s default setting. However, an analyst can choose to hide the 

window using the Show Forecast Window feature (Mun, 2015). 

 
Figure 21. Set Output Forecast 

d. Running the Simulation 

After the setup is complete, the analysts can now run the simulation. To start the 

simulation, the analysts will click on the Risk Simulation icon followed by the Run 

Simulation button (Mun, 2015). If the Risk Simulator toolbar is displayed, the analyst can 

click the Run icon to start the simulation (Mun, 2015). To rerun the simulation, the analyst 

will need to reset it (Mun, 2015). This can be accomplished by clicking the Risk Simulator 

icon and selecting the Reset Simulation button (Mun, 2015). The simulation can also be 

reset by clicking the Reset Simulation icon on the Risk Simulator toolbar (Mun, 2015). If 

desired, the analyst can run one simulation at a time using the step function (Mun, 2015). 

To do this, the analyst will select the Step Simulation icon on the Risk Simulation toolbar 

or click on the Risk Simulation icon, followed by the Step Simulation button (Mun, 2015). 

The Step Simulation function can be used when teaching others how the program works 

(Mun, 2015). It allows the analyst to show that the entire model is recalculated every time 

a simulation is run (Mun, 2015). 
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The Risk Simulator program also contains a function called Super Speed (Mun, 

2015). This allows analysts to run simulations at very fast speeds (Mun, 2015). An analyst 

can access this function by clicking the Super Speed icon on the Risk Simulator toolbar or 

clicking the Risk Simulator icon and selecting the Run Super Speed Simulation button. An 

analyst can practice this function using the example model. First, the analyst will need to 

reset the model, and then edit the simulation profile (Mun, 2015). Next, the analyst should 

change the Number of Trials box to 100,000 (Mun, 2015). After hitting the Run Super 

Speed icon, the model with run 100,000 trials in only a few seconds (Mun, 2015). Super 

Speed simulation will not run if the model contains errors, external data links, or Visual 

Basic for Applications (VBA) (Mun, 2015). The analyst will be notified if the model 

contains any of these aforementioned conditions, and the simulation will proceed at normal 

speed (Mun, 2015). It is important to note that simulations can run at normal speeds, even 

if they contain errors (Mun, 2015). 

e. Interpreting the Forecast Charts 

The final step for an analyst in running a Monte Carlo risk simulation is interpreting 

results (Mun, 2015). After the simulation is complete, the analyst can generate a variety of 

statistical reports and forecast charts. Examples of these reports and charts are shown in 

Figures 22 through 31. The forecast chart and forecast statistics are extremely helpful to 

analysts when analyzing the results (Mun, 2015). 

Mun (2015) explains that the forecast chart (Figure 22) is the “probability 

histogram that shows the frequency counts of values occurring in the total number of trials 

simulated” (p. 83). He further explains that the x-axis is describing the number of times 

that a particular value results from the simulation (Mun, 2015). The y-axis represents the 

possible values that can occur from the simulation (Mun, 2015). The curved line going 

through the histogram describes the cumulative frequency or the overall probability that 

the x will fall within the required parameters set at the bottom of the histogram display 

panel (Mun, 2015). 

The forecast statistics that summarize the distribution of the forecast values in terms 

of four instances in the distribution are displayed in Figure 23 (Mun, 2015). A cost analyst 
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can switch between the statistics and the histogram tabs by pressing the space bar (Mun, 

2015). 

 
Figure 22. Example Forecast Chart 

 
Figure 23. Example Forecast Statistics 
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3. Forecast Chart Tabs 

a. Preferences 

As shown in Figure 24, the middle tab in the Risk Simulator Forecast sheet is 

designed to let the analyst adjust the preferences in the forecast simulation (Mun, 2015). 

Changing the preferences changes the style of the charts and allows the analyst to extract 

the data more efficiently (Mun, 2015). The analyst can choose to show where data is shown 

by selecting one of the two boxes, or the analyst can change the speed at which the 

simulation is run (Mun, 2015). The analyst can also adjust the number of bins within the 

histogram between 5 and 100 (Mun, 2015). Finally, the preferences tab allows the analyst 

to adjust the Data Update Interval (Mun, 2015). Adjusting this feature gives the analyst 

control over the run speed of the simulation compared to the update rate of the forecast 

chart (Mun, 2015). It is important to remember that the more frequently the analyst views 

the simulation, the slower the simulation will run, and the more memory it will use in the 

process (Mun, 2015). The update rate is based solely on the preference of the analyst (Mun, 

2015). It will not change the overall outcome of the results, only the speed at which the 

simulation is run (Mun, 2015). To significantly reduce the amount of memory used while 

running the simulation, the analyst can minimize the excel program (Mun, 2015). 

Minimizing the window will allow the computer more memory to complete the simulation 

(Mun, 2015). 

b. Options 

An analyst will use the Options tab on the forecast chart, as shown in Figure 25, to 

tailor the results of the forecast (Mun, 2015). The analyst can use this options tab to filter 

in specific data in or out, by entering left and right boundaries or looking at data within a 

particular standard deviation (Mun, 2015). The analyst can specify the required precision 

level of the forecast by entering an allowed error percentage from 0 to 100%. The Options 

tab allows the analyst to display the mean, median, and 1st or 3rd quartile statistics (Mun, 

2015). Finally, the analyst can use the Options tab to decide how many significant figures 

are needed by choosing the number of decimals to include in the forecast result data (Mun, 

2015). 
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c. Controls 

Figure 26 shows the control tab, which allows the cost analyst to manipulate all of 

the functionalities including the type, color, zoom, size, 3D, and tilt in the forecast chart 

(Mun, 2015). The control tab also gives the analyst the ability to generate overlay charts 

(PDF, CDF) and run distributional fitting on the analyst’s forecast data (Mun, 2015). 

d. Global View versus Normal View 

Figures 24, 25, and 26 show how an analyst can display the forecast view in Normal 

mode (Mun, 2015). In Normal mode, the forecast options are broken up into tabs, as 

described in the paragraphs above (Mun, 2015). Global mode, as depicted in Figure 27, has 

the same functionality as the Normal mode; however, all of the options are displayed under 

one interface (Mun, 2015). An analyst cans witch between both Global and Normal modes 

by clicking the icon in the top right corner (Mun, 2015). 

  
Figure 24. Forecast Chart Preferences 
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Figure 25. Forecast Chart Options 

 
Figure 26. Forecast Chart Controls 
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Figure 27. Example Forecast Chart Global View
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4. Using Forecast Charts and Confidence Intervals 

The forecast charts allow the cost analyst to identify the probability of occurrence, 

also known as confidence intervals (Mun, 2015). Using the example simulation, Figure 28 

shows a 90% probability that the outcome will fall between $0.2653 and $1.3230 (Mun, 

2015). If a two-tail confidence interval is desired, the analyst selects two-tail in the type 

drop-down window (Mun, 2015). The analyst could then change the certainty value (e.g., 

90) and then hit the TAB key (Mun, 2015). The two computed values are displayed in the 

pink and blue boxes (Mun, 2015). In the example, there is a 5% chance that the result will 

be above $1.3430, and there will be another 5% chance that result will be below $0.2653 

(Mun, 2015). This shows that the two-tailed confidence interval is centered on the 50th 

percentile, or the median value (Mun, 2015). Therefore, both tails have the same 

probability.  

Alternatively, a one-tail probability can be computed by setting up the Forecast 

simulation as shown in Figure 29 (Mun, 2015). This figure shows that a cost analyst 

choosing a left-tail selection with a 95% confidence by selecting Left-Tail ≤ in the type 

box, then entering 95 as the certainty level and hitting the TAB key (Mun, 2015). This 

means there is a 5% chance that income will be above $1.3230 or a 95% chance that income 

will be below $1.3230, which perfectly replicates the results displayed in Figure 28 (Mun, 

2015). 
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Figure 28. Forecast Chart Two-Tail Confidence Interval 

 
Figure 29. Forecast Chart One-Tail Confidence Interval 

Additionally, the cost analyst can determine the probability of an income’s value 

(Mun, 2015). For example, what are the chances of the output being less than or equal to 

$1? To display the answer, the analyst should click the Left-Tail ≤ probability type, then 
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input 1 for the value and hit the TAB key; then the corresponding certainty will be 

calculated (Mun, 2015). Figure 30 that shows there is a 67.70% chance that the income 

will be equal to or less than $1 (Mun, 2015). 

To ensure completeness, the cost analyst can select the Right-Tail > probability 

type, input 1 for the value 1, and hit the TAB key (Mun, 2015). This calculated probability 

shows the right-tail probability passes the value 1, or the probability of income being above 

$1 (Mun, 2015). Figure 31 shows that there is a 32.30% chance of income exceeding $1 

(Mun, 2015). The probabilities of 67.70% and 32.30% sum to 100%, accounting for the 

full probability under the curve (Mun, 2015).  

 
Figure 30. Forecast Chart Probability Evaluation (Less than $1) 
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Figure 31. Forecast Chart Probability Evaluation (Greater than $1) 

D. TORNADO AND SENSITIVITY TOOLS IN SIMULATION 

To completely capture the static impacts on each individual variable effect on the 

outcome of the model, a cost analyst would consult a Tornado Analysis Chart (Mun, 2015). 

The tornado chart can break down the amount of fluctuation each variable has on the model 

and is able to rank each variable from most to least significant (Mun, 2015). Figures 32 

through 37 pertain to the use of the Tornado Analysis tool. Figure 32 shows a sample 

discount cash flow model that displays the analyst’s input assumptions. If an analyst is 

trying to decipher the greatest impact factor that will drive the outcome of the model, the 

Tornado Analysis chart is a valuable tool (Mun, 2015). In this case, the question becomes, 

what are the main drivers that make the Net Present Value $96.63, or which input variable 

most impacts this value?  

The analyst can access the Tornado Chart Analysis tool by clicking the Risk 

Simulator icon, followed by the Analytical Tools button (Mun, 2015). Next, the analyst 

will select Tornado Analysis from the list of options (Mun, 2015). If the analyst decides to 
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use the example model as practice, the analyst will open the Tornado Analysis tool (Mun, 

2015). This can be accessed by clicking on the Risk Simulator Icon, followed by the 

Example Models button (Mun, 2015). The analyst will then select option 22 Tornado ad 

Sensitivity Charts (Linear) to load the example (Mun, 2015). In the sample model (Figure 

33), the Net Present Value will be selected as the output variable and be shown in cell G6 

(Mun, 2015). To build the tornado chart, the software will use the input variables that have 

the ability to affect the output variable (Mun, 2015). The testing range of the input variables 

is also displayed in Figure 33 (Mun, 2015). Mun (2015), explains that the testing range of 

simple input variables will be a simple perturbation. The default setting for the model is ± 

10%, however the analyst has the ability to adjust the percentage if required (Mun, 2015). 

Jonathan Mun (2015) informs that a “wider range is important as it is better able to test 

extreme values rather than smaller perturbations around the expected values” (Mun, 2015, 

p. 169). Wider ranges do a better job of capturing nonlinear impacts (Mun, 2015).  

1. Procedure 

The following are Mun’s (2015) steps for running a Tornado Analysis on the 

example model: 

1. To open the example model, the analyst will click on the Risk Simulator 

icon, followed by the Example Models button. Then the analyst will select 

option 22 Tornado and Sensitivity Charts (Linear) and proceed to the DCF 

model Worksheet. 

2. Next, the single output cell should be selected. In the example model, the 

analyst should select cell G6.  

3. To generate the Tornado Analysis, the analysis will then click on the Risk 

Simulator icon, followed by the Analytical Tools button. From the options 

provided, the analyst will select the Tornado Analysis button.  

4. The analyst should review the input variables’ names before hitting OK. If 

required, the analyst can rename any of the variables to make the tornado 

and spider charts easier to analyze (Mun, 2015). 
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Figure 32. Sample Discounted Cash Flow Model 
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Figure 33. Running Tornado Analysis
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The tornado analysis report (Figure 34) was generated using the example model 

provided with the Risk Simulator program. It depicts which input variables are the most 

impactful and least impactful on the out variable, Net Present Value (Mun, 2015). In Figure 

34, Capital investment is the most impactful input variable (Mun, 2015).  

Jonathan Mun (2015) explains the four sections that a tornado analysis report 

contains: 

• The first section outlines the procedure that was performed.  

• The second section (Figure 35) is a sensitivity table. This table displays 

the model variables from those that have the greatest influence on the 

model down to the variables with the lowest influence. It also shows how 

each variable independently impacts the Net Present Value. Using the 

example sensitivity table, an analyst can determine that capital investment 

has the greatest impact on the results.  

• Information contained in a sensitivity table can be displayed graphically 

using a spider chart. Figure 36 shows an example spider chart based on the 

data contained in Figure 35. In this case, the y-axis depicts the Net Present 

Value. The percentage change away from the base value is represented on 

the x-axis. If a variable’s effects produce a line that is positively sloped, 

then the relationship is positivity. Conversely, a negative relationship is 

depicted by a negatively sloped line. To determine the magnitude of a 

variable’s effect, an analyst would take the absolute value of the slope of 

the variable’s line.  

• The last section of a tornado analysis report is the tornado chart (Figure 

37). Similar to a spider chart, tornado charts also graphically display the 

data contained in the sensitivity table. However, a tornado chart ranks the 

variables from the most impactful to the least impactful variable and 

displays them on the y-axis. In a tornado chart, the x-axis represents the 

output variable, or in this case, the Net Present Value. Positive effects 

from a variable are depicted as a green bar, and negative effects are 
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displayed as a red bar. Meaning, for tax rate, a positive effect of the tax 

rate on a lower Net Present Value is signified by the green bar on the left 

side. In this example, Net Present Value and tax rate are negatively 

correlated (Mun, 2015).  

 
Figure 34. Tornado Analysis Report 
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2. Notes 

Mun (2015) encourages analysts to “remember that tornado analysis is a static 

sensitivity analysis applied on each input variable in the model” (p. 173). This means that 

variables are separated, and their effects are then delineated and displayed (Mun, 2015). 

One could argue that tornado analysis is an important, if not the most important, analysis 

to perform prior to executing a simulation (Mun, 2015). When performed, this analysis 

allows the cost analyst to capture and identify risk and to identify the major cost drivers of 

the model. Once the analyst teases out the most important factors, the next step is to identify 

which of the factors are uncertain. It is essential for an analyst to examine the model’s 

uncertain impact drivers because, as critical success drivers, they will have a significant 

influence on the model’s results (Mun, 2015). Analysts should ensure the uncertain impact 

drivers are simulated (Mun, 2015). The cost analyst should not focus on using the Tornado 

Analysis tool on the factors that are certain and those that have little impact on the model 

(Mun, 2015). In using this model, the most important factors for an analyst to simulate will 

be price and quantity, assuming that the required investment and effective tax rate are both 

known and are fixed (Mun, 2015).  

 
Figure 35. Sensitivity Table 
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Figure 36. Spider Chart 
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Figure 37. Tornado Chart 

Although spider charts can be for an analyst to interpret, they are an important tool 

for determining if nonlinearities exist (Mun, 2015). For example, the spider chart shown in 

Figure 38 depicts a situation where nonlinearities are present in the model (Mun, 2015). 

The analyst can identify nonlinearities as curved lines instead of straight ones (Mun, 2015). 

An analyst can generate an example spider chart by using the example model that is 

embedded in the Risk Simulator software (Mun, 2015). To access the example model, the 

analyst will click on the Risk Simulator icon, followed by the Example Models button 

(Mun, 2015). Next, the analyst will select option 23 Tornado and Sensitivity Charts 

(Nonlinear) to generate the example spider chart (Mun, 2015). The built-in example model 

uses the Black-Scholes option pricing model (Mun, 2015). Tornado charts do not have the 

ability to identify the nonlinearities that are present in a model (Mun, 2015). However, 
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these nonlinearities can be essential information, as they can provide analysts vital insight 

into the dynamics of the model (Mun, 2015). 

Figure 33 shows the Tornado Analysis tool’s cost analyst interface. In the following 

bullet points, Mun provides tips on running tornado analysis and details on new 

enhancements:  

• Tornado analysis should always be run more than once. This tool was 

designed to be a diagnostic tool for the model and therefore should be run 

multiple times on each model. The first time the tornado analysis is run, 

the cost analyst should select the default setting and show all of the 

analysis on all of the variables. The resulting report will be large but will 

give the analyst a starting point in being able to derive how many of the 

precedents are critical factors. When running the tool with all the 

variables, the chart may show that only 5 variables significantly impacted 

the output, while the remaining 100 variables have minimal to no impact 

on the model. The cost analyst could then run the analysis with the top 10 

most impactful variables to create an effective tornado report that 

highlights the differences between the critical and less important variables 

(Mun, 2015).  

 
Figure 38. Example Nonlinear Spider Chart 
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E. SENSITIVITY ANALYSIS 

Spider and tornado charts apply static perturbations prior to running the simulation. 

Mun (2015), explains that sensitivity analysis differs because it “applies dynamic 

perturbations created after the simulation run” (p. 176). He goes on to explain that static 

perturbations imply “that each precedent or assumption variable is perturbed a preset 

amount one at a time, and the fluctuations in the results are tabulated” (p. 176). Conversely, 

sensitivity charts are created by dynamic perturbations, or when multiple assumptions are 

changed simultaneously (Mun, 2015). The effects of the dynamic perturbations and 

variable correlations are reflected in the fluctuation of the results (Mun, 2015). Tornado 

charts are used to identify and rank the variables that drive the factors the most, while the 

sensitivity model shows the impact when multiple factors are interaction together in the 

model (Mun, 2015). The relationship between static and dynamic perturbations is shown 

in Figure 39. Similar tornado charts, the sensitivity analysis ranks critical success drivers 

in order of most impactful down to the less impactful (Mun, 2015). However, an analyst 

will get different results if the correlations between the input assumptions are compiled 

(Mun, 2015). In Figure 39, an analyst can determine that the Net Present Value is 

marginally impacted by the price erosion (Mun, 2015). However, when reviewing Figure 

40, where correlation between input assumptions is present, an analyst can conclude that 

price erosion has a much greater impact on the Net Present Value (Mun, 2015).  

 
Figure 39. Example Sensitivity Chart without Correlations 
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Figure 40. Example Sensitivity Chart with Correlations 

1. Procedure 

The steps for running a Sensitivity Analysis are outlined by Mun (2015): 

1. The analyst will open an existing excel model. If there is no preexisting 

model, the analyst must create a new one. After a model has been created, 

the analyst will create a simulation profile by defining the input 

assumptions and then the output forecasts. These assumptions and 

forecasts should be entered into the appropriate cells. If the analyst does 

not want to use an existing model or create a new one, the sample model 

can be used. To access this model, the analyst will select the Risk 

Simulator icon and click on the Example Models button. Next, the analyst 

will choose the 22 Tornado and Sensitivity Charts (Linear) option and 

proceed to the DCF Model Worksheet. 

2. After there is an active model open, the analysts will select the Risk 

Simulator icon and click on the Run Simulation button.  

3. Once the simulation run has finished, the analyst will need to open the 

Sensitivity Analysis function. To accomplish this, the analyst will select 

the Risk Simulator icon followed by the Analytical Tools button. From the 



79 

Analytical Tools menu, the analyst will then select the Sensitivity 

Analysis option.  

4. In the Sensitivity Analysis window (Figure 41), the analyst will select the 

appropriate forecast that will be used to analyze their model (Mun, 2015).  

 
Figure 41. Running a Sensitivity Analysis 

The sensitivity analysis report results consist of two key charts and one report. The 

first is a nonlinear rank correlation chart shown in Figure 42. This ranks assumption-

forecast correlation pairs from highest to lowest. Because these correlations are non-

parametric and nonlinear, they are free from any distributional requirements. The results 
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should be similar to the tornado analysis charts previously described with the exception of 

Tax Rate (Mun, 2015). Using the sensitivity analysis chart shown in Figure 39, it can be 

seen that Tax Rate has far less impact on the model. When analyzing the impact of tax rate 

alone on the model, it can be seen that it has a significant impact, but when tax rate is 

interacting with other variables in the model, it has a far less powerful impact (Mun, 2015). 

This example is used to demonstrate the importance of running sensitivity analysis after a 

model has undergone simulation to truly gauge the interaction between multiple variables 

(Mun, 2015). Figure 43 shows the fluctuation in the forecast, or how much of the variation 

is explained by the model. 

 
Figure 42. Example Rank Correlation Chart 
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Figure 43. Example Contribution to Variance Chart 
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V. MODEL APPLICATION AND RESULTS 

A. INTRODUCTION 

The inputs for this model were sourced from the program components lists provided 

by the research sponsor, NAVSEA, for the (generic or specific) EO/IR sensor. The cost 

estimates for this model were sourced using rough of order magnitude (ROM) values. The 

values fluctuate slightly between the five different systems to illustrate the differing 

systems’ costs between contract estimates. These values were explicitly created to further 

the proof of concept of the model and therefore do not necessarily reflect the accurate value 

for component, part, or salary of support team members. However, these values do show 

how the simulation can provide an estimate of an entire system and demonstrate how much 

impact each variable will have on the overall life-cycle cost estimate. In this example, we 

simulate a cost estimate of an EO/IR system being implemented on 55 platforms with a 

service life of 20 years. 

B. MODEL INPUTS AND DATA 

The Total Ownership Cost is calculated by summing the initial Acquisition Cost, 

Operation Cost, Maintenance Cost, and Disposal Cost. The model accounts for these four 

phases, beginning with the Acquisition Cost. In a real-world scenario, a cost analyst would 

utilize the technical specifications given by the program office to enter the required values. 

From the technical specifications, the analyst would insert two crucial metrics. The first is 

the number of platforms that will receive the system, and the second is the number of 

components required in each system. Since real-world data is not available for this notional 

model, this thesis uses ROM system to fill in the blanks. 

In systems A-E, the model uses 55 as the number of platforms. Though the number 

of platforms remains the same in the simulation, the technical specifications for the number 

of components required for each sensor are different. Figure 44 shows the input column 

for Number of Platforms and Number of Units per System. 
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Figure 44. Number of Platforms and Units per System 

The Acquisition Unit Cost accounts for all of the planning, design, and construction 

costs to make each component possible. The model also considers the estimated cost for a 

replacement component. The estimated cost for replacement parts should be considerably 

lower than the initial Acquisition Cost because developed technology will only need to be 

reproduced instead of being redeveloped. The Operational Cost per year is an estimate of 

the amount required to run the component for a year. The Operation Cost includes 

equipment depreciation, costs of the energy source used to power the component, cost of 

damage due to use, and so on. Similarly, the Maintenance cost is an estimate based on the 

amount required to maintain the equipment every year. Figure 45 shows the categories for 

Acquisition and Operation and Maintenance Costs. 
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Figure 45. Categories for Acquisition and Operation and Maintenance Costs



86 

Once the cost analyst has entered the Acquisition Cost for the hardware and 

software required for the system, the analyst must remember to account for the human 

element. The analyst will need to ensure that the cost required to pay for those responsible 

for the design, logistics, management, and technology are represented in the model. This 

model uses the Acquisition Cost column to record the initial salary of each job. The 

Number of Platforms column describes the number of teams required for each system. The 

Number of Units per System column describes the number of people required on each team. 

The Operation Cost column is used to annotate the continuing salary for the human element 

for the remainder of the program’s life. Essentially, this is how an analyst would annotate 

a recurring salary payment. Throughout the five systems, the number of people per team 

and the amount requested per salary will vary. Figure 46 shows an example of where 

salaries are input into the model.  

 
Figure 46. Manpower and Personnel Salary Input Section 

All of the costs mentioned previously are recurring costs, costs that will be 

multiplied by the number of years of the program and summed to get the total cost. Analysts 

must be sure not to forget to account for all of the one-time costs associated with the origins 

of any project. Figure 47 shows the list of nonrecurring costs accounted for in the model. 
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Figure 47. Nonrecurring Acquisition and Procurement Costs 

Finally, we account for all of the disposal and end-of-life-cycle costs that will also 

be one-time costs. Figure 48 shows the nonrecurring end-of-life-cycle costs. 

 
Figure 48. Nonrecurring End-of-Life-Cycle Costs 
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C. RESULTS AND ANALYSIS 

Once the data have been manually inputted into the model, the cost analyst can 

utilize the multitude of charts, graphs, and tools to analyze the total ownership cost of the 

systems. These graphs, charts, and tools will allow the analyst to compare multiple cost 

estimates over the entire life of the system at the same time. This thesis analyzed the 

following tables and charts to highlight the functionality of the model: Total Net Life-Cycle 

Cost, Present Value of Discounted Total Net Life-Cycle Cost, Cash Total Net Cost at Five-

Year increments, Total Ownership Cost Forecast Statistic Table, Simulation Probability 

Charts, and the Tornado Analysis.  

1. Total Net Life-Cycle Costs and Cash Total Net Cost at Five-Year 
Increments 

Figure 49 shows the Total Net Life-Cycle Cost for all five systems over a span of 

30 years. The table and graph show the cost for the systems broken down into five-year 

estimates. The model projects the life span of the system past the 20-year expected service 

life. This extension allows the cost analyst to consider cost out to the 30-year point, as 

many DoD systems tend to exceed their expected service lives. However, the five-year 

increments also allow a decision-maker to understand the total net cost of disposing of a 

system before its 20-year service life. The side-by-side comparison enables a decision-

maker to graphically perceive the potential differences between the cost estimates of the 

multiple systems. When choosing between alternatives, Figure 49 can be a beneficial 

decision aid. 

In the analysis table in Figure 49, the 20-Year Cash Total Net Cost ranges from 

$554 million (System C) to $771 million (System D). If cost was the determining factor, a 

decision-maker could quickly determine that System C should be selected. To make the 

comparison even easier to analyze, Figure 50 provides a side-by-side comparison of all 

five systems at each of the five-year increments. Looking at the 20-Year Total Net Cost 

Graph, it can be clearly seen that System C has the lowest Total Net Cost. 

Cost analysis should only be one part of the picture when it comes to making then 

correct strategic decision. For example, each system’s specifications and capabilities––its 

military benefits or returns––should also be computed, such that each system will have its 
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own return on investment (ROI). Nonetheless, the major component of any ROI analysis 

is its cost. The focus of this research is to determine this cost computation. Another aspect 

of TOC analysis is its use in cost mitigation, cost savings, and cost deferred, which 

constitute another point of view of cost-based decision analytics.
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Figure 49. Total Net Life-Cycle Cost 
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Figure 50. Five-Year Increment of Net Total Cost 



92 

2. Present Value of Discounted Total Net Life-Cycle Cost 

While Figure 49 shows the Total Net Life-Cycle Cost, it does not include 

consideration of economic factors such as the time value of money and uncertainty risk. 

To mitigate these factors in the model, Figure 51 incorporates a Net Present Value Life-

Cycle Cost estimate using a discount rate of 3% (i.e., the government’s cost of money, 

where we can use 20-year and 30-year Treasury bond yields as proxies). In the analysis 

table in Figure 49, the 20 Year Total Net Cost ranges from $554 million (System C) to 

$771 million (System D), but when looking at the more realistic Present Value Discounted 

Net Life-Cycle Cost, the range between Systems C and D decreases to $418 million and 

$577 million. Not only do the estimates for the minimum and maximum values decrease 

when the discount factor is applied, but the delta of the range between the values also 

shrinks by $57.8 million. Incorporating the discount rate into the model gives the decision-

maker a complete analysis of the costs. Specifically, it shows the value of the lifetime cost 

of a system in today’s money, thereby putting all systems with different life cycles and life 

spans on an equal footing with each other, for a better cost comparison.
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Figure 51. Present Value of Discounted Net Life-Cycle Cost
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3. Total Ownership Cost Forecast Statistics Table 

The Forecast Statistics Table, shown in Figure 52, summarizes the distribution of 

the Total Life-Cycle Cost and the Total Present Value (PV) Life-Cycle Cost for the five 

systems at different points in the life cycle of the system. Figure 52 highlights the outcomes 

of running 10,000 trials using the Monte Carlo Risk Simulator. The takeaways from this 

figure are the mean, standard deviation, maximum, minimum, and range data points. These 

metrics provide a decision-maker with a better understanding of how uncertainty can affect 

the Total Life-Cycle Cost and Total PV Life-Cycle Cost of a system. 

System C looks at the cost over a 20-year life span. Using the Monte Carlo Risk 

Simulator, the maximum Total Life-Cycle Cost of the system is $568 million, while the 

minimum is $540 million. These values represent the worst- and best-case scenarios, 

respectively. The simulations produced a Total Life-Cycle Cost range of $28 million and 

a mean value of $554 million. The standard deviation of Total Life-Cycle Cost simulations 

for System C is $4.5 million, meaning 68.2% of the estimates will fall within ±$4.5 million 

of the mean if the distribution is somewhat normally distributed. Figure 52 also shows the 

same metrics for the PV of the Total Life-Cycle Cost for all systems. 
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Figure 52. Total Ownership Cost Forecast Statistics Table
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4. Simulation Probability Charts 

A simulation probability chart is a histogram or frequency distribution of all of the 

total life-cycle costs of a system based on 10,000 simulation runs or trials. The probability 

chart produces a graphic representation of the information contained in the forecast 

statistics table. Figure 53 shows the frequency distribution of the total life-cycle cost for 

System A over a 20-year life. In the figure, it can be seen that System A’s frequency 

distribution is shaped as a roughly symmetrical bell curve centered on a mean of $700 

million. Using this chart, an analyst could confidently conclude the total life-cycle cost for 

this system will fall between $679 million and $721 million. The figure also shows the 

90% confidence interval of the TOC to be between $690 million and $710 million. This 

means that there is a 90% chance that given all uncertainties that exist in each of the input 

assumptions, the 20-year total lifetime cost for System A will be between these two values. 

In addition, there is only a 5% chance that the cost can be below $690 million and 5% 

chance it can exceed $710 million. 

 Figure 54 uses the same frequency distribution over the same 20-year system life 

as in Figure 53; however, Figure 54/ takes into account the discount rate to better illustrate 

the economic factor of inflation over time. Similarly, the 90% confidence interval in 

present values is between $518 million and $533 million. 
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Figure 53. Total Life Cycle-Cost for System A (20 Years) 

 
Figure 54. Total Present Value Life-Cycle Cost for System A (20 Years) 
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Figure 55 shows the total life-cycle cost for System B; however, the system’s life 

span has been extended to 25 years versus 20 years. The probability charts allow cost 

analysts to graphically compare the frequency distributions of two different systems with 

varying life spans. In a comparison between Figure 53 and Figure 55, System A has a 

shorter life span and lower total cost range. Through this analysis, a decision-maker can 

determine if the extended life span of System B is worth the higher total life-cycle cost. 

Figure 56 displays the total PV life-cycle cost for System B, which has been adjusted using 

a discount factor for inflation.  

 
Figure 55. Total Life-Cycle Cost for System B (25 Years) 
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Figure 56. Total Present Value Life-Cycle Cost for System B (25 Years) 

Figure 57 shows the total life-cycle cost for System D; however, the system’s life 

span has been shortened to 10 years versus the original 20 years. The probability chart 

allows an analyst to compare the total life-cycle cost of a system with a shorter life span to 

systems with longer life spans. In a comparison between Figure 53 and Figure 57, System 

A has a longer life span and a lower total cost range than System D. This comparison 

illustrates that despite System D’s shorter life span, the total life-cycle cost is higher than 

that of System A. This could be a vital metric for decision-makers to consider when 

determining which system has the best value. Figure 58 shows System D’s total PV life-

cycle cost to account for economic factors. These probability distributions can also be 

overlaid and compared against one another for a better view of the potential cost spreads, 

as shown in Figure 59. 
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Figure 57. Total Life-Cycle Cost for System D (10 Years) 

 
Figure 58. Total Present Value Life-Cycle Cost for System D (10 Years) 
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Figure 59. Probability Distribution Cost Overlay of the Five Systems 

5. Tornado Analysis 

The tornado analysis chart gives decision-makers the ability to break down which 

variables have the most significant impact on the overall outcome of the simulation. By 

focusing on the top critical factors, decision-makers can focus on cost reduction techniques 

in places that will have the most effect. The tornado analysis allows the decision-makers 

to adjust how many critical variables to display. Figure 60 shows the tornado analysis chart 

detailing the 20 most impactful variables on the TOC model. Based on the notional cost 

values inputted into the model, the number of platforms containing that ancillary material 

is the most critical factor. 
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Figure 60. Tornado Analysis 
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VI. CONCLUSION 

A. KEY CONCLUSIONS 

The purpose of this thesis was to develop a total ownership with life-cycle cost 

model while considering uncertainty for EO/IR sensors on U.S. Navy surface ships. 

Through the examination of total ownership cost (TOC) modeling over the life cycle of 

EO/IR sensors, including the inception phase of Acquisition Costs, followed by annual 

Operations and Maintenance expenses, along with a final set of Disposition Costs, we were 

able to develop a useful model for TOC estimations. Using Monte Carlo risk simulation, 

our model accounts for risk and uncertainty when producing cost estimates. The model 

also provides analysts with a more realistic estimate by factoring in economic theory, such 

as economic growth, annual discount rate, and inflation.  

As discussed, the cost analysis models presented should only be one part of a larger 

picture when it comes to making the correct strategic investment decisions. For example, 

each system’s specifications, capabilities, military benefits, or financial and non-economic 

returns, should also be computed, such that each system will have its own return of 

investment (ROI). Nonetheless, the major component of any ROI analysis is its cost. The 

focus of this research was to determine these critical cost computations. Another use of 

TOC modeling is in determining cost mitigation, cost savings, and cost deferred, that is, 

what the cost differential might be or an Analysis of Alternatives, which constitute another 

point of view of cost-based decision analytics. 

The model allows decision-makers to have better decision analytics of the costs of 

EO/IR surface sensors. These analytics can be used in subsequent cost comparisons 

between different sensor platforms, Analysis of Alternatives, and portfolio allocation of 

resources. Specifically, PEO IWS and NAVSEA can utilize this model in future program 

cost estimation development. Since the model is tailorable to different sensor 

configurations, it can provide clarity in analyzing different and complex alternative sensor 

systems to develop and outfit the fleet. The results of this model give decision-makers a 

more effective metric to analyze TOC under uncertainty; this can reduce cost overflow and 
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prevent budget overruns. Ultimately, the model allows leadership to make more informed 

decisions in the DoD acquisition process and maximize the use of its limited resources. 

B. CURRENT RESEARCH LIMITATIONS AND FOLLOW-ON RESEARCH 

The main limitation of the current study is that notional cost data was used to 

provide a proof of concept that the model functions as designed. However, this presents an 

opportunity for future research whereby additional follow-on research with empirical data 

should be conducted. This model can analyze cost data in past, present, and future EO/IR 

models.  

Beginning with historical data, a cost analyst could compile a list of program 

components associated with a system that is retired or currently in use. Once the list of 

components is obtained, the analyst can then associate the estimated historical cost 

assigned to each component during the program’s initial cost estimate (e.g., a program cost 

estimate developed in 1992). Using the original cost data and component list, the analyst 

could then run the new total ownership with life-cycle cost model under uncertainty. This 

would produce a new cost estimate for the program, which could then be compared to the 

original estimate and the actual life-cycle cost of the program. Executing this study would 

determine whether the TOC model developed in this thesis is a superior method of cost 

estimation for the DoD. 

Another follow-on study could be done using the data from a program that is 

currently undergoing its initial cost estimation. The cost estimate could be done in 

conjunction with the DoD’s current methods of cost estimation. Another researcher could 

partner with PEO IWS and the new system’s program office to complete a cost estimate 

using the TOC model developed in this thesis. This process would allow for real time cost 

comparisons at different stages in the acquisition process. The comparison between the two 

estimates would provide decision-makers with another method of verifying assumptions 

and validating that their cost estimates are reasonable and credible. Concurrently 

conducting the cost estimates allows researchers and cost estimators to compare their 

estimates to actual cost data at the different increments throughout the program’s life cycle. 

This comparison would determine which method of cost estimation was more accurate at 

different points in the system’s life cycle.  
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These follow-on studies require real-world cost data from historical or current 

EO/IR programs. While data collection may prove difficult and time-consuming, this 

research would be beneficial to the DoD and well worth the investment. Working with PEO 

IWS and the program office’s cost estimation teams could result in model improvements 

and provide an even more robust total ownership with life-cycle cost model under 

uncertainty.  

C. OTHER APPLICATIONS AND CONCLUSIONS 

This thesis focuses specifically on the application of this TOC model with regard 

to EO/IR sensors on surface ships; it barely scratches the surface of the model’s potential. 

This model could be applied to any one of the thousands of acquisition projects in the DoD. 

The model’s use is not confined to EO/IR sensors on surface ships but can be adjusted and 

developed for various programs. The process and the strength of the results that the model 

would provide would be the same; the only necessary change a cost analyst would need to 

make is to alter the list of components to reflect whichever system or program is being 

analyzed. In the same fashion, this model could also provide contractors and non-DoD 

organizations with an additional method of cost estimation.  

Cost estimation is not an exact science; however, this model provides a coherent 

method of estimating the total ownership with life-cycle costs under uncertainty for EO/IR 

sensors on surface ships. It gives a decision-maker another tool when evaluating alternative 

programs and courses of action. The ultimate goal of this model is to provide a more 

effective tool in determining how the DoD spends its limited resources on competing 

priorities. While follow-on research needs to be conducted to validate the efficacy of the 

model, this thesis offers a proof of concept and takes a step towards DoD portfolio 

optimization.  

  



106 

THIS PAGE INTENTIONALLY LEFT BLANK 



107 

APPENDIX A. SYSTEM A EXCEL SPREADSHEET DATA 

Appendix A contains the model’s Excel spreadsheet for System A, shown in 

Figures 60-67. This spreadsheet includes the recurring cost inputs, the nonrecurring cost 

inputs, the end-of-life-cycle cost inputs, and the risk-based Monte Carlo simulation 

uncertainty ranges.  
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Figure 61. System A: Recurring Cost Inputs, Section 1 
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Figure 62. System A: Recurring Cost Inputs, Section 2 
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Figure 63. System A: Recurring Cost Inputs, Section 3 
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Figure 64. System A: Recurring Cost Inputs, Section 4
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Figure 65. System A: Nonrecurring and End-of-Life-Cycle Cost Inputs Section 
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Figure 66. System A: Monte Carlo Simulation Uncertainty Ranges, Section 1 
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Figure 67. System A: Monte Carlo Simulation Uncertainty Ranges, Section 2
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APPENDIX B. SYSTEM B EXCEL SPREADSHEET DATA 

Appendix B contains the model’s Excel spreadsheet for System B, shown in Figures 

68-74. This spreadsheet includes the recurring cost inputs, the nonrecurring cost inputs, the 

end-of-life-cycle cost inputs, and the risk-based Monte Carlo simulation uncertainty 

ranges.  
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Figure 68. System B: Recurring Cost Inputs, Section 1 
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Figure 69. System B: Recurring Cost Inputs, Section 2 
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Figure 70. System B: Recurring Cost Inputs, Section 3 
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Figure 71. System B: Recurring Cost Inputs, Section 4



120 

 
Figure 72. System B: Nonrecurring and End-of-Life-Cycle Cost Inputs 

Section 
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Figure 73. System B: Monte Carlo Simulation Uncertainty Ranges, Section 1 
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Figure 74. System B: Monte Carlo Simulation Uncertainty Ranges, Section 2
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APPENDIX C. SYSTEM C EXCEL SPREADSHEET DATA 

Appendix C contains the model’s Excel spreadsheet for System C, shown in Figures 

75-81. This spreadsheet includes the recurring cost inputs, the nonrecurring cost inputs, the 

end-of-life-cycle cost inputs, and the risk-based Monte Carlo simulation uncertainty 

ranges. 
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Figure 75. System C: Recurring Cost Inputs, Section 1 
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Figure 76. System C: Recurring Cost Inputs, Section 2 
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Figure 77. System C: Recurring Cost Inputs, Section 3 
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Figure 78. System C: Recurring Cost Inputs, Section 4 
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Figure 79. System C: Nonrecurring and End-of-Life-Cycle Cost Inputs 

Section 
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Figure 80. System C: Monte Carlo Simulation Uncertainty Ranges, Section 1 
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Figure 81. System C: Monte Carlo Simulation Uncertainty Ranges, Section 2 
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APPENDIX D. SYSTEM D EXCEL SPREADSHEET DATA 

Appendix D contains the model’s Excel spreadsheet for System D, shown in 

Figures 82-88. This spreadsheet includes the recurring cost inputs, the nonrecurring cost 

inputs, the end-of-life-cycle cost inputs, and the risk-based Monte Carlo simulation 

uncertainty ranges.  
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Figure 82. System D: Recurring Cost Inputs, Section 1 
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Figure 83. System D: Recurring Cost Inputs, Section 2 
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Figure 84. System D: Recurring Cost Inputs, Section 3 
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Figure 85. System D: Recurring Cost Inputs, Section 4 
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Figure 86. System D: Nonrecurring and End-of-Life-Cycle Cost Inputs 

Section



137 

 
Figure 87. System D: Monte Carlo Simulation Uncertainty Ranges, Section 1 
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Figure 88. System D: Monte Carlo Simulation Uncertainty Ranges, Section 2
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APPENDIX E. SYSTEM E EXCEL SPREADSHEET DATA 

Appendix E contains the model’s Excel spreadsheet for System E, shown in Figures 

89-95. This spreadsheet includes the recurring cost inputs, the nonrecurring cost inputs, the 

end-of-life-cycle cost inputs, and the risk-based Monte Carlo simulation uncertainty 

ranges.  
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Figure 89. System E: Recurring Cost Inputs, Section 1 
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Figure 90. System E: Recurring Cost Inputs, Section 2 
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Figure 91. System E: Recurring Cost Inputs, Section 3 
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Figure 92. System E: Recurring Cost Inputs, Section 4 
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Figure 93. System E: Nonrecurring and End-of-Life-Cycle Cost Inputs 

Section 
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Figure 94. System E: Monte Carlo Simulation Uncertainty Ranges, Section1 
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Figure 95. System E: Monte Carlo Simulation Uncertainty Ranges, Section 2
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APPENDIX F. MODEL SUMMARY EXCEL SPREADSHEET DATA 

Appendix F includes the model’s Excel spreadsheet for the summary data used to 

produce the Total Net Life-Cycle Cost and Present Value of Discounted Total Net Life-

Cycle Cost graphs (shown in Figures 96-98). 
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Figure 96. Model Summary Data (Years 1–10) 
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Figure 97. Model Summary Data (Years 11–20) 
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Figure 98. Model Summary Data (Years 21–30)
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APPENDIX G. SIMULATION REPORT EXCEL SPREADSHEET 

Appendix G contains the model’s simulation report, including the assumptions and 

forecast charts, shown in Figures 99-148.  

 
Figure 99. General Assumptions 

 
Figure 100. Assumption Inputs, Section 1 
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Figure 101. Assumption Inputs, Section 2 
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Figure 102. Assumption Inputs, Section 3 
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Figure 103. Assumption Inputs, Section 4 
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Figure 104. Assumption Inputs, Section 5 
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Figure 105. Assumption Inputs, Section 6 
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Figure 106. Assumption Inputs, Section 7 
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Figure 107. Assumption Inputs, Section 8 
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Figure 108. Assumption Inputs, Section 9 
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Figure 109. Assumption Inputs, Section 10 
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Figure 110. Assumption Inputs, Section 11 
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Figure 111. Assumption Inputs, Section 12 
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Figure 112. Assumption Inputs, Section 13 
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Figure 113. Assumption Inputs, Section 14 
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Figure 114. Assumption Inputs, Section 15 
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Figure 115. Assumption Inputs, Section 16 
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Figure 116. Assumption Inputs, Section 17 
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Figure 117. Assumption Inputs, Section 18 
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Figure 118. Assumption Inputs, Section 19 
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Figure 119. Assumption Inputs, Section 20 



171 

 
Figure 120. Assumption Inputs, Section 21 
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Figure 121. Assumption Inputs, Section 22 
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Figure 122. Assumption Inputs, Section 23 
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Figure 123. Assumption Inputs, Section 24 
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Figure 124. Assumption Inputs, Section 25 
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Figure 125. Assumption Inputs, Section 26 
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Figure 126. Assumption Inputs, Section 27 
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Figure 127. Assumption Inputs, Section 28 
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Figure 128. Assumption Inputs, Section 29 
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Figure 129. Assumption Inputs, Section 30 
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Figure 130. Assumption Inputs, Section 31 
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Figure 131. Assumption Inputs, Section 32 
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Figure 132. Assumption Inputs, Section 33 
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Figure 133. Assumption Inputs, Section 34 
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Figure 134. Assumption Inputs, Section 35 
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Figure 135. Assumption Inputs, Section 36 
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Figure 136. Assumption Inputs, Section 37 
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Figure 137. Assumption Inputs, Section 38 
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Figure 138. Assumption Inputs, Section 39 
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Figure 139. Assumption Inputs, Section 40 
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Figure 140. Assumption Inputs, Section 41 
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Figure 141. Assumption Inputs, Section 42 
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Figure 142. Assumption Inputs, Section 43 



194 

 
Figure 143. Assumption Inputs, Section 44 
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Figure 144. System A Forecast Charts  
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Figure 145. System B Forecast Charts 
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Figure 146. System C Forecast Charts 
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Figure 147. System D Forecast Charts 
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Figure 148. System E Forecast Charts 
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APPENDIX H. TORNADO ANALYSIS REPORT EXCEL 
SPREADSHEET  

Appendix H contains the model’s Excel spreadsheet for the data used to produce 

the tornado chart, shown in Figure 149.  

 
Figure 149. Tornado Chart Top 20 Variable Data 
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