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Complex systems exhibiting critical transitions when one of
their governing parameters varies are ubiquitous in nature and
in engineering applications. Despite a vast literature focusing
on this topic, there are few studies dealing with the effect of
the rate of change of the bifurcation parameter on the tipping
points. In this work, we consider a subcritical stochastic Hopf
bifurcation under two scenarios: the bifurcation parameter
is first changed in a quasi-steady manner and then, with
a finite ramping rate. In the latter case, a rate-dependent
bifurcation delay is observed and exemplified experimentally
using a thermoacoustic instability in a combustion chamber.
This delay increases with the rate of change. This leads to a
state transition of larger amplitude compared with the one
that would be experienced by the system with a quasi-steady
change of the parameter. We also bring experimental evidence
of a dynamic hysteresis caused by the bifurcation delay when
the parameter is ramped back. A surrogate model is derived in
order to predict the statistic of these delays and to scrutinize
the underlying stochastic dynamics. Our study highlights the
dramatic influence of a finite rate of change of bifurcation
parameters upon tipping points, and it pinpoints the crucial
need of considering this effect when investigating critical
transitions.

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.172078&domain=pdf&date_stamp=2018-03-21
mailto:giacomob@ethz.ch
mailto:noirayn@ethz.ch
https://dx.doi.org/10.6084/m9.figshare.c.4024465
https://dx.doi.org/10.6084/m9.figshare.c.4024465
http://orcid.org/0000-0002-0126-7263
http://orcid.org/0000-0002-9679-1550
http://orcid.org/0000-0002-4448-6140


2

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172078

.................................................
1. Introduction
Many systems exhibit abrupt changes, or tipping, e.g. population extinction [1,2], emergence of infectious
diseases [3], financial systems crisis [4], compression buckling of mechanical structures [5] and climate
transitions [6–8].

Tipping is dangerous if some states of the system are associated with extreme or catastrophic
events, and this explains the interest this subject has received in the last decades. Recently, different
studies demonstrated that economical or environmental disasters can be modelled as dynamical systems
incurring a tipping. Therefore, the development of tipping forecasting techniques with early indicators
is an active research area [9–11].

A key aspect in this context is the distinction between three types of tipping, rooted in different
causes [12].

B-tipping is induced by a bifurcation where the system state changes drastically for a small change of a
control parameter. In this case, the tipping can be often predicted with techniques that rely on the popular
concept of critical slowing down [13–17], or that make use of other properties of the attractor [18,19].

In N-tipping, dynamic noise induces jumps between several coexisting attractors (e.g. [20–23]); in this
case, the analysis of the time-series statistic can help in detecting precursor of critical transitions [24,25].

R-tipping is induced by the rate at which a control parameter is varied, if several possible attractors are
present in the range of parameter variation. Inertial effects play a central role in R-tipping. In the case of
standard R-tipping, the system starts from an attractor but, if the parameter rate of change is larger than a
critical value, it cannot follow this attractor and tips to another one [26–29]. In the case of ‘preconditioned
R-tipping’, the system starts from an unstable condition and, depending on the rate of change, it evolves
towards one of the possible attractors [30].

Inertial effects can also delay the bifurcation, moving the tipping point to higher/lower values of the
bifurcation parameter as observed, for example, by Baer & Gaekel [31] for the FitzHugh–Nagumo model.
This delay is in general a function of the parameter rate of change. Therefore, we will refer to this effect
as ‘rate-delayed tipping’.

All those mechanisms can manifest independently, or, like in the present study, simultaneously. In
this case, the evolution of the system results from the interplay of different time scales set by the ramp
rate, the noise intensity and the system relaxation time [32]. Several examples can be found in the recent
literature. Ashwin et al. [33] study the regimes of transition and the escape time in a network of bistable
nodes as a function of the coupling and noise strengths. Sun et al. [34] assess the possibility of tipping for
a Duffing–Van der Pol oscillator with time-delayed feedback, as a function of forcing noise intensity,
feedback time delay and feedback intensity. The work from Clements & Ozgul [35] deals with two
stochastic models for population dynamics, and studies the effect of the rate of change of one governing
parameter on the system dynamics and on the predictability of tipping. Berglund & Gentz [36] provide
theoretical and numerical analyses for rate-delayed tipping in the presence of noise in supercritical
pitchfork bifurcations. An analogous study is carried out by Ritchie & Sieber [37] for a rate-dependent
tipping in a saddle-node bifurcation. Kwasniok [38] introduces a method to predict a fold and a Hopf
bifurcation in the presence of noise. Kuehn [39] studies the delay in a Hopf bifurcation with a random
initial condition.

In this study, we show experimental evidence of simultaneous B-, N- and rate-delayed tipping
mechanisms at a Hopf subcritical bifurcation, in a laboratory-scale combustor subject to thermoacoustic
instabilities in the presence of turbulence-induced noise.

The four panels in figure 1 illustrate how the three types of tipping combine in our system. In these
diagrams, the amplitude A is plotted as a function of the bifurcation parameter ν. In the absence of noise
and for a quasi-steady change of the bifurcation parameter (figure 1a), the system state evolves on the
deterministic attractor, leading to B-tipping and hysteresis (blue and red for increasing and decreasing ν).
This quasi-steady picture changes if the bifurcation parameter varies at a finite rate (figure 1b): bifurcation
delay occurs, and it is a function of the rate (e.g. [40–42]). For a quasi-steady variation of ν in the presence
of stochastic forcing (figure 1c), the hysteresis is suppressed in a statistical sense. For each value of the
bifurcation parameter, the state is defined by a probability density distribution. In this case, N-tipping
occurs in the bistable region (e.g. [6,43]). Finally, when the bifurcation parameter is varied at a finite rate
in the presence of stochastic forcing (figure 1d), the highest probability of state transition is delayed. This
is the case discussed in this work. Our scenario, therefore, results from the combination of a finite-rate
ramping through a stochastic subcritical bifurcation.

This paper is organized as follows. In §2, we introduce the physical problem of thermoacoustic
instabilities. In §§3.1 and 4.1, we show experimental results where the average tipping point is delayed
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Figure 1. Illustration of the various types of tipping encountered in the vicinity of the bistable region of a subcritical bifurcation according
to the classification proposed in [12]. Solid and dashed black lines: deterministic attractor and repeller, respectively. Light to dark hues:
low to high probability density. (a–c) B-tipping, rate-delayed tipping and N-tipping. (d) Present work where B-, N- and rate-delayed
tipping mechanisms occur simultaneously (see figure 4 for the experimental data).

when the control parameter is ramped at a finite rate. In §§3.2 and 4.2, we develop a low-order stochastic
model of the system and demonstrate with a quantitative first-passage time analysis how the bifurcation
delay statistic varies with the ramping rate. Finally, in §5 we consider a situation where a control
parameter is ramped up and, if tipping is detected, ramped down in order to come back to the initial
safe state. In this situation, the system may suffer irreversible damage if the ramp up is too fast, which
applies to many industrial applications or to natural systems like, for instance, climate transitions.

2. Thermoacoustic instabilities
Thermoacoustic coupling is a phenomenon that has fascinated scientists for over two centuries. In
1777, Dr William Higgins reported, with surprise, on a hydrogen flame emitting ‘sweet tones’ if placed
inside a glass tube [44]. In 1894, Lord Rayleigh provided an explanation to this observation: the gas
in the tube resonates if the flame (or any other source) provides heat at the moment of maximum gas
compression [45].

Many years after, during the Cold War, thermoacoustic instabilities became a very critical issue for
one of the most challenging projects ever realized by humankind: the Apollo programme to take man
to the Moon. As detailed in [46], the F-1 engines propelling the Saturn V had destructive combustion
instabilities that required 2000 full-scale tests, with empirical modifications of the chamber geometry
before the rocket was ready for take-off.

More recently, thermoacoustic instabilities became a recurrent issue in the development phase of
heavy-duty gas turbines for power generation and turbofans for air transportation. This is because the
resulting intense acoustic fields induce high-cycle fatigue of the combustion chambers [47]. For heavy-
duty gas turbines, the pressing demand for machines with high power density and ultra-low emissions,
which are capable of compensating the production intermittency of the wind and solar sources, led to the
use of lean premixed flames. Unfortunately, these flames are more prone to thermoacoustic instabilities.
In the case of aeroplane turbofans, these instabilities constitute an increasingly serious obstacle to the
development of new aeroengines complying with more stringent emission regulations [48].
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Figure 2. Thermoacoustic instabilities occur in combustion chambers for aeronautic and power-generation applications. (a) Schematic
of our laboratory-scale swirled combustor. (b) Illustration of this unstable coupling. Under a certain phase difference relationship, well
known as the Rayleigh criterion, a constructive feedback establishes between the unsteady heat release rate q(x, t) and the acoustic
field p(x, t). (c) Thermoacoustic limit cycle in the laboratory-scale combustor used for this work. In the left loop, four snapshots of the
flame showing the coherent motion of the flame leading to q and originating from the thermoacoustic feedback. Time traces of acoustic
pressure and heat release rate are shown on the right.

The suppression of these instabilities is very challenging due to the uniqueness and complexity of
engines in real-life application [49]. Despite the achievements attained over the past decades in terms of
passive mitigation implementation, development engineers cannot predict if a combustor prototype will
have a sufficiently large pulsation-free operating window, over which the acoustic level is acceptable for
the mechanical integrity of the components.

Figure 2a shows a schematic of our laboratory-scale combustor.1 The air premixed with methane
enters the plenum, a volume that, in practice, evens the flow delivered by the compressor and guides it
to the inlet of the burner. Then, the mixture passes through the swirler, a set of curved blades that rotate
the flow. This rotational motion is essential to achieve a stable anchoring of the flame. Then, the flow
enters the combustion chamber, where combustion takes place. At any operating point, the fluctuating
component q of the heat release rate Q = Q̄ + q acts as a source term in the wave equation:

∂2p
∂t2 − c2∇2p = (γ − 1)

∂q
∂t

, (2.1)

where p is the acoustic pressure, c the speed of sound and γ the specific heat ratio. In practice, the
unsteady heat release of the flame q is influenced by the acoustic field p, via, for instance, acoustically
triggered fuel supply modulation or coherent vortex shedding, which leads to a thermoacoustic feedback
loop [50]. As illustrated in figure 2b, the geometry of the combustor and the temperature distribution
define a set of acoustic modes in the chamber. Each mode is characterized by a shape and an eigenvalue.
The latter determines whether the thermoacoustic mode is linearly stable or unstable. The system
stability depends on several operating parameters, such as the mass flows of fuel ṁCH4 or air ṁair. The
transition from linearly stable to linearly unstable regime occurs at Hopf bifurcations, where the sign
of the growth rate of the mode changes. If unstable, the thermoacoustic dynamics is characterized by a
limit cycle, with amplitudes prms and qrms being defined by the natural acoustic damping of the chamber,
and by the linear and nonlinear components of the flame response to acoustic perturbations [50,51].

1Additional details about the combustor and the experimental apparatus are provided in appendix A.1.
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The non-coherent component of the heat release rate fluctuations, which is induced by turbulence, acts
as a broadband forcing on this self-sustained thermoacoustic oscillation.

A typical operating condition for which we observe a thermoacoustic limit cycle is presented in
figure 2c (see also the movie in the electronic supplementary material). The four panels in the loop
show instantaneous flame pictures and the corresponding phase-averaged flame shapes. The right plot
displays the time traces of the acoustic pressure signal p (in red) and the heat release rate q (in blue)
(note the symbols on the time trace corresponding to the four flame snapshots in the left loop). The flame
exhibits a periodic motion at the frequency of the first acoustic mode (150 Hz), with sound intensity at
the anti-nodes exceeding 150 dB, which is considerable for a burner operated at atmospheric pressure.
This dynamic state would not be acceptable in a commercial aeronautical engine or in a heavy-duty gas
turbine, because the acoustic loading, which scales with the engine operating pressure, would be highly
detrimental for the mechanical components.

In this work, we focus on the transient thermoacoustic dynamics associated with the passage through
the Hopf bifurcation when one of the critical operating parameters—the equivalence ratio—is ramped.
We show experimental evidence of a bifurcation delay and explain the phenomenon using a surrogate
low-order model. This is particularly relevant for the development of new aeronautical and land-based
gas turbines, which require fast loading or deloading, and which may be at risk due to such rate-delayed
tipping points.

3. Subcritical bifurcation
This section presents two main results. In the first part, the results of the experimental mapping of the
combustor dynamics as a function of the equivalence ratio are shown. In the second part, a low-order
model of the system is derived.

3.1. Stationary experiment
The combustor was operated selecting one equivalence ratio φ at a time. The stationary operation was
reached and a long acoustic pressure signal p(t) was recorded using a microphone placed inside the
chamber. The oscillation amplitude A(t) was then extracted by applying the Hilbert transform to p(t). The
procedure was repeated for different equivalence ratios φ in the range [0.580; 0.635]. The results for five
selected φ are presented in figure 3a. On the left, the measured acoustic pressure and amplitude signals
are plotted, together with their probability density functions (PDFs) P(p) and P(A). On the right, the joint
PDFs P(p, ṗ/ω) for three of the presented operative points show the statistic of the phase portraits.

These results demonstrate how the system undergoes a subcritical Hopf bifurcation when the control
parameter is varied. For low equivalence ratio φ, the system state is attracted towards zero. The small
fluctuations of the acoustic signal envelope are due to the stochastic forcing exerted by the intense
turbulence in the combustor. For intermediate values of φ, two states are possible: small amplitude
acoustic pressure and high amplitude limit cycle. The intermittency between the two states is triggered
by the turbulence-induced stochastic forcing (N-tipping, as in figure 1c). For higher equivalence ratio
φ, the stochastically forced limit cycle is the only stable state. The reader can refer to the electronic
supplementary material for the movies of the three regimes.

3.2. Nonlinear oscillator model
The thermoacoustic behaviour described in the previous section can be reproduced by a low-order
model derived from first principles. The Helmholtz equation (2.1) (hereafter rewritten in Laplace space)
defines the acoustic pressure field in the combustor, given an unsteady source of heat in the volume and
impedance conditions at the boundaries:

∇2p̂(s, x) −
( s

c

)2
p̂(s, x) = −s

(γ − 1)
c2 Q̂(s, x) in the domain (3.1)

and
p̂(s, x)

û(s, x) · n
= Z(s, x) on the boundaries, (3.2)

where s is the Laplace variable, p̂ and û are the transforms of acoustic pressure and velocity fluctuations,
respectively, x the position, c the local speed of sound, γ the specific heat ratio, Q̂ the heat release rate
source term, n the outward normal to the boundary and Z the acoustic impedance. This equation is valid
under low Mach number conditions.



6

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172078

.................................................

0

0

0

0

0

0

0

max

0

0

0

˙ ˙p
w

0

p

0 p

0 p
50

2.5

2.5

2.5

2.5

2.5

–2.5

–2.5

–2.5

–2.5

–2.5

0.580 0.595 0.598 0.601 0.635f =

t (s)

P(p) P(A)p(t), A(t) (mbar)
P(p, p/w)

P
•

 (A
; v

) max

0

0
0 v

0
v0p

0

A
 =

p2  
+

 (
p/

w
)2

P
•

 (A
)

V
 (

A
)

ṗ
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Figure 3. (a) Experimental records of the thermoacoustic subcritical Hopf bifurcation investigated in this work. According to the
methane/air mixture equivalence ratio φ = (ṁCH4/ṁair)/(ṁCH4/ṁair)stoich., the acoustic pressure recorded in the combustor has
three different signatures, reflected in the different shapes of the PDFs P(p) and P(A). From top to bottom (increasing φ): small
amplitude acoustic pressure resulting from the forcing of the linearly stable thermoacoustic mode by turbulence-induced noise; bistable
thermoacoustic dynamics with two intermittently visited attractors; high amplitude limit cycle. These three possible regimes are also
presented by the joint PDFs of the oscillation phase portrait P(p, ṗ/ω) at three exemplary φ. (b) Surrogate oscillator model (3.7) that
mimics the subcritical Hopf bifurcationwhen the parameterν is increased. In the three-dimensional plot, P∞(p, ṗ/ω; ν) and three cuts,
resembling the experimental P(p, ṗ/ω). (c) The stationary PDF P∞(A; ν) for the slow-varying oscillation amplitudeA, obtainedwith the
transformation of variables A2 = p2 + (ṗ/ω)2. On top of it, the deterministic pitchfork and saddle-node bifurcation diagram (in blue),
and the stationary PDF P∞(A) with the corresponding potential V(A) for an overdamped particle at the three selected ν .

Although nonlinear coupling among different thermoacoustic modes can occur in some practical
configurations, we focus on situations where, like in the present case, one mode is dominant in the
thermoacoustic dynamics. Therefore, it is possible to project the acoustic field on an orthogonal basis Ψ
and approximate the system’s dynamics with the one of the dominant mode only, which will be denoted
by ψ [52,53]. This yields the approximation p̂(s, x) ≈ η̂(s)ψ(x), η̂ being the mode amplitude:

η̂= sρc2

s2 + ω2
1

VΛ

(
γ − 1
ρc2

∫
V

Q̂(s, x)ψ∗(x) dV − η̂

∫
∂V

|ψ(x)|2
Z(s, x)

dσ

)
, (3.3)

where ρ is the gas density and Λ the mode normalization coefficient. This equation can be rewritten as

(s2 + αs + ω2
0)η̂= sq̂, (3.4)
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with

α = ρc2

VΛ

∫
∂V

|ψ(x)|2
Z(s, x)

dσ (3.5)

and
q̂ = γ − 1

VΛ

∫
V

Q̂(s, x)ψ∗(x) dV. (3.6)

Therefore, the system dynamics can be approximated by a forced damped harmonic oscillator (3.4) of
resonance frequency ω0. The term α > 0 represents the damping mechanisms, and it is assumed to be
constant, since the impedance at the boundaries is generally a smooth function of s and therefore is
not expected to vary significantly around ω0. The term q̂ is the result of the weighting on the mode
shape of the volumetric heat release rate and can be decomposed into two contributions: q̂ = q̂n + q̂c.
The first component q̂n represents the non-coherent part of the heat release rate oscillations, induced by
the intense turbulence present in practical combustors. The term q̂c refers to the coherent heat release
rate fluctuations, which result from a feedback interaction with the acoustic field established in the
combustor. Hence, this term can be expressed as a nonlinear function of the modal amplitude η. It is
customary to simplify this function by replacing it with its truncated Taylor expansion [52,53]. The linear
term coefficient β of this expansion defines, together with the linear damping α, the linear stability of
the system. Absorbing in the constants the mode shape ψ(xp) at the pressure probe location xp and
considering only the odd terms of the series expansion up to the fifth order leads to the following
oscillator model for the thermoacoustic system:

p̈ + ω2
0p = [2ν + κp2 − μp4]ṗ + ξ (t), (3.7)

where ν = (β − α)/2 is the oscillation linear growth rate in rad s−1 and κ and μ the two positive
constants that define the nonlinear component of the oscillator response. The term ξ (t) is a white noise
forcing of intensity Γ that models the non-coherent turbulence-induced heat release rate fluctuations.
In figure 3b, the plot shows the stochastic Hopf bifurcation featured by this oscillator, as a function of
the bifurcation parameter ν. This three-dimensional representation of the stationary joint-probability
density P∞(p, ṗ/ω; ν) is depicted together with three orthogonal cuts resembling the ones obtained from
the experiments and showing that the bifurcation parameter ν of the surrogate model (3.7) corresponds
to the equivalence ratio φ in the experiments.

It is convenient to describe the system evolution in terms of the slowly varying amplitude A and
phase ϕ, with p(t) = A(t) cos(ω0t + ϕ(t)). By inserting this ansatz for p into the second-order stochastic
differential equation (3.7) and by performing deterministic and stochastic averaging (e.g. [54]), one gets
first-order Langevin equations for A and ϕ. The equation for A is dA/dt =F (A) + ζ , where F (A) = A[ν +
(κ/8)A2 − (μ/16)A4] + Γ/(4ω2

0A) and ζ is a white noise forcing of intensity Γ/2ω2
0. The deterministic

dynamics derives from a potential with F (A) = −dV/dA, and the equation does not depend on ϕ, which
leads to the corresponding Fokker–Planck equation (FPE) for the variation in time of the amplitude PDF
P(A; t):

∂P
∂t

= − ∂

∂A
[F (A)P] + Γ

4ω2
0

∂2P
∂A2 . (3.8)

Setting ∂P/∂t = 0, one obtains the stationary PDF P∞(A; ν), plotted in figure 3c as a function of the
linear growth rate ν, in a pitchfork bifurcation diagram fashion. To provide a visual reference, the
bifurcation diagram of the deterministic case (i.e. in the absence of noise, Γ = 0) is superimposed in blue.
This diagram shows the subcritical pitchfork and the saddle-node bifurcations governing the system.
In the bottom insets, the PDFs P∞(A; νi) for three selected values of the bifurcation parameter ν are
presented. In the upper insets, the corresponding potentials are plotted. The linearly stable and stable
limit cycle conditions feature a single potential well at low or high amplitude, while the bistable case
has two potential wells. The stochastic forcing causes the jumps from one basin of attraction to the other,
and hence the intermittency between low-amplitude noisy fluctuations and high-amplitude limit cycle
oscillations.

4. Ramping
In this section, the dynamics of the system under transient operation is analysed. In the first part,
experimental results obtained by ramping the bifurcation parameter are provided. They highlight the
presence in the system dynamics of B- and N-tipping mechanisms combined with inertial and hysteresis
effects. In the second part, the model introduced in §3.2 is used to study the influence of the ramp rate
on the system dynamics.
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Figure 4. Experimental evidence of the bifurcation delay and of the dynamic hysteresis in the ramped φ experiment. The panels are
divided in ramp up (top row) and ramp down (bottom row). The stationary probability density function P∞(A;φi) at seven equivalence
ratiosφ (grey) is given as a reference and compared to the evolution in time of the ensemble PDF P(A; ti), where ti is the time at which
φ(ti)= φi withφ(t)= φ0 + Rt for the ramp up andφ(t)= φE − Rt for the ramp down.

4.1. Ramp experiment
The following test was performed on the test rig to highlight the peculiar dynamics of this combustor.
The methane and air mass flows were controlled such that the equivalence ratio φ repeated 100 times
the following four-step cycle: (1) linear increase for 4 s from φ0 = 0.580 to φE = 0.635; (2) idle for 10s at
φE; (3) linear decrease for 4 s back to φ0; (4) idle for 10 s at the lowest equivalence ratio. Figure 4 presents
the results of this experiment. The panels are grouped in two rows: the upper row corresponds to the
statistic of the 100 ramps up, the lower row to the one of the 100 ramps down. Each column corresponds
to an equivalence ratio. The PDFs of this ramp experiment were obtained via a kernel density estimation
(KDE) applied over the 100 realizations, and they are plotted in colour (blue for the ramp up, red for
the ramp down). In all the panels, the stationary PDF for the corresponding φ (no ramping, already
presented in figure 3a) is given in grey as a reference.

The system experiences dynamic hysteresis: in the bistable region, even though the stationary PDF
features two maxima, the system stays in the low-amplitude (respectively, high-amplitude) range when
φ is ramped up (respectively, down). Another feature is the delay in transition, easily observable in the
bottom row: the dynamic PDF peak is at an amplitude that is higher than the one of the stationary PDF
at the same φ. This means that the system experiences inertial effects, remaining close to the initial state
longer: a bifurcation delay is observed. This observation corresponds to the case depicted in figure 1d.

4.2. Rate-dependent bifurcation delay
The ramp rate, together with the ramp profile, is expected to influence the bifurcation delay, as shown
in [31] for a deterministic system. We therefore used the surrogate oscillator model to investigate this
aspect in more detail. The parameter ν was varied linearly in time between two values ν0 and νE at
different rates R. Two approaches were used. The first is to simulate (3.7) in Simulink, varying the initial
condition and running different realizations of the process. Extracting the envelope for each realization
and considering the ensemble statistic, it is possible to draw maps of the evolution in time of the
amplitude PDF P(A; t). The other approach is to integrate numerically the FPE (3.8) and obtain directly
P(A; t). The two methods closely agree, as shown in appendix A.2. In figure 5, the results of the FPE
integration are presented. A ramp up/idle/ramp down/idle cycle is solved, for two different ramp rates
R = 50 rad s−2 and R = 10 rad s−2. The dynamic stochastic bifurcation delay is captured and it is observed
that a faster ramp leads to a more pronounced delayed transition from one stable point to the other.

An important aspect of the phenomenon depicted in this figure is that the state transitions are
delayed with respect to the bifurcation point, but not time delayed (the horizontal axis in these figures
is normalized by the physical duration of the cycle). In other words, a higher rate of change of the time-
varying potential induces a faster transition into the neighbouring basin of attraction, but the transition
occurs for a delayed value of the bifurcation parameter compared to the quasi-steady picture of the
system.
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0 = 0.44.

5. First passage analysis
In this section, we imagine that a tipping point is feared due to the monotonous change of a key
parameter of the system, and that one wants to ramp back this parameter sufficiently early to avoid
the critical transition. In that situation, the underlying time-varying potential landscape is unknown and
a controller monitors the state of the system while the parameter varies. As is usually done when new
prototype engines are tested, we will take the current state of the system to feed the controller. Indeed,
gas turbines and aeronautical engine combustors are equipped with a controller that constantly monitors
the acoustic pressure level in the chamber. In case the measured acoustic pressure is too high, the control
system intervenes, either changing the parameters to bring the operating condition back to a safe point,
or in extreme cases, shutting off the flame by closing the fuel supply valve.

If the combustor features a subcritical bifurcation on the varied parameter (e.g. φ), the system inertia is
a factor that has to be taken into account. In this case, the transition from low to high amplitudes happens
suddenly and, if the bifurcation delay is long, the reached acoustic pressure level can be considerable. In
this situation, the control system detects the danger late and might be ineffective in avoiding damages to
the system. A way to estimate the hazard represented by the delayed bifurcation is to compute, using the
surrogate model, the statistic of the time tfp needed to reach a certain danger level. This is similar to the
classical problem of first passage time, often addressed in the context of bifurcation theory for stochastic
dynamics in steady double-well potential [3,55–58]. A major difference in the present situation is that the
potential evolves with time. Ramp rate and noise intensity are expected to influence this escape problem
as theoretically shown for other types of bifurcation in [59] or [60]. The statistic of the first passage
time can be computed either performing an ensemble average over many time-domain simulations
of the process, or solving the unsteady Fokker–Planck equation and imposing an absorbing boundary
condition at that threshold level. Details about the two methods, with results in close agreement, are
provided in appendix A.3. The value ν(tth) = νth of the control parameter ν(t) at the first passage time
tth is of particular interest: this quantity is proportional to the danger of the delayed transition, as it



10

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172078

.................................................

0

5

10

10

15

30 50

t = 0.1 s

0.3

0.50.
70.
9 ·v th

Ò

v th
 (r

ad
 s

–1
)

P
A

th
 (v

th
; R

)

max

0

R (rad s–2)

Figure6. PAth (νth; R) is theprobability density of the instantaneous linear growth rateν at thefirst passageover the threshold amplitude
Ath, as function of the ramp rate R. It is obtained from simulations of the unsteady FPE with absorbing boundary at A= Ath. In blue
〈νth(R)〉, the linear growth rate of the system at the mean first passage time.

00

0

22

5

5

Ath

Ath

t (s)t (s)

control threshold

R = 10 rad s–2 R = 50 rad s–2

Dtth = 0.28 s

Eth = 0.07

Dtth = 0.51 s

Eth = 0.63

A

A

(a) (b)

(c) (d)

Figure 7. Two exemplary cases (square R= 10, circle R= 50) are simulated in Simulink, implementing a control system that ramps
down ν if the danger level is reached. Row (a,b) different realizations of the process (thin lines, grey and red in the safety and danger
zones, respectively) and the two extreme realizations in terms of first passage time (thick grey lines) with their associated quasi-steady
deterministic bifurcation diagrams (blue lines). (c,d) KDE of the PDFs. The mean residence and mean released energy in the danger zone
are also indicated.

determines the limit cycle amplitude when the transition occurs. This νth statistic can be determined
as νth = ν0 + Rtth. The results are presented in figure 6. The contour levels represent the probability
density of νth as a function of the ramp rate R. The mean value of νth (plotted in blue, 〈νth〉) increases
with the ramp rate R, while the time needed to reach the danger level is shorter (see the iso-time lines).
This finding indicates that a fast ramp of the control parameter is dangerous if a subcritical bifurcation
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is present, as exemplified in the two test cases presented in figure 7. Here the process was simulated
in Simulink: the parameter ν was ramped up at two different rates R (10 and 50 rad s−2) and when
the danger level was reached, ramped back down at the maximum rate R = −50 rad s−2. In figure 7a,b,
many realizations of this process are presented. As a function of the initial condition and of the random
excitation, each realization has a different evolution and, therefore, a different first passage time. The
two extreme realizations (shortest and longest first passage times) are highlighted with thick lines. The
respective deterministic bifurcation diagrams are superimposed to provide a visual reference. The PDFs
obtained with a KDE over the realizations are plotted in figure 7c,d. The control system effectively brings
the oscillations back to a safe level in both cases. However, the combined action of the finite ramp-down
rate, dynamic hysteresis and inertia causes the system to stay in the danger zone for a certain time. The
faster case R = 50 m s−2 is more critical: as discussed before, the crossing of the threshold level happens
on average when the target ν is already high. As a result, the system abruptly reaches high-amplitude
oscillations and has to travel a long distance on the bifurcation diagram upper branch before reaching
the safety zone. This effect can be gauged by comparing two quantities for the two cases R = 10 and
50 rad s−2: in the latter case, the mean residence time over the safety threshold �tth is twice larger and
the mean released energy 〈Eth〉 ∝ (1/�tth)

∫
�tth

A2 dt is nine times larger.

6. Conclusion
A subcritical Hopf bifurcation of a thermoacoustic system was investigated in this work. A laboratory-
scale combustor was operated under different values of methane/air equivalence ratio, which serves
as bifurcation parameter: depending on its value, acoustic pressure amplitude in the chamber is
either damped, intermittently switching between low and high amplitudes, or attracted towards high-
amplitude, which corresponds to a stable limit cycle. The main focus of the work was on the transient
dynamics: the equivalence ratio was ramped in time and dynamic hysteresis and delayed bifurcation
were observed. A nonlinear oscillator surrogate model was used to investigate the effect of the ramp rate
on the bifurcation delay. It was shown that when the control parameter is ramped faster, the transition
from the damped regime to the limit cycle occurs for higher values of the bifurcation parameter. The
corresponding first passage problem in a time-varying potential was solved with the unsteady Fokker–
Planck equation and with Monte Carlo simulations of the process. This study primarily addresses a major
problem of practical combustion systems. Operating conditions of gas turbines are often varied in time,
for matching power grid requirement, and similar rapid changes of the combustion regimes also occur
in aeronautical engines, especially at take-off. If a subcritical thermoacoustic bifurcation is present, a
delayed bifurcation results in a sudden and unexpected acoustic pressure level rise, which is detrimental
to the machine integrity. Therefore, a slow variation of the machine parameters is advisable, especially
when mapping the operating points of a new combustor. More broadly, this study is relevant for the
countless systems which exhibit critical transitions. This work highlights the importance of carefully
considering the rate of change of the bifurcation parameter, when investigating tipping points.
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Appendix A
A.1. Experimental set-up
The experiments were conducted using a turbulent, small-scale, swirled combustor operated at
atmospheric pressure. Electrically heated air (300◦C) and methane are premixed upstream of the plenum.
The mixture then goes through a swirler and reaches the combustion chamber. The total mass flow rate
was kept constant, with a bulk velocity of 10 m s−1 at the combustor inlet. The equivalence ratio was
varied from φ = 0.580 to φ = 0.635, corresponding to a thermal power of about 12 kW. The inner and
outer diameters of the eight-blade axial swirler are 19 mm and 41 mm, respectively. This swirler imparts

http://dx.doi.org/10.5061/dryad.4cj4k
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rotation to the flow, with a swirl number of 0.6. A quartz window located on one side of the cylindrical
combustion chamber provides optical access to the flame.

Local acoustic pressure and spatially integrated OH∗ chemiluminescence were acquired
synchronously at a rate of 10 kHz. Acoustic pressure was recorded by means of four calibrated water-
cooled microphones (Brüel&Kjær, type 4939) at several axial locations (−235, 25, 115 and 245 mm
from the combustion chamber inlet). The OH∗ chemiluminescence intensity was recorded using a
photomultiplier equipped with a 310 nm bandpass-filter. For such perfectly premixed lean flames, this
signal can be considered as proportional to the heat release rate.

The high-speed movies (1000 fps) of the turbulent flame are obtained with a LaVision HSS X camera
coupled to a HS-IRO image intensifier. The UV-optimized lens (Nikkor 105 mm f/4.5) of the intensifier is
equipped with a 310 nm filter, which band-passes the OH∗ chemiluminescence.

A.2. Ramping of the growth rate ν : validation of the FPE method
The evolution in time of the probability density function P(A; t) during the ramping of the control
parameter ν can be obtained solving numerically (3.8). In this case, the drift coefficient is time-dependent
F (A; t) = A(ν(t) + κA2/8 − μA4/16) + Γ/4ω2

0A, where ν(t) = ν0 + Rt. The solution is obtained via the
Matlab� ode23 solver, imposing a Dirichlet boundary condition P(A; t) = 0, ∀t in A = 0 and A = Amax,
Amax being the upper boundary of the domain. The initial condition is the stationary PDF P∞(A; ν0).
The result for the set of parameters ν0 = −4.5, R = 10, κ = 8, μ= 2, Γ = 106, ω0 = 120 × 2π , Amax = 6 is
presented in figure 8a. The contour plot represents the PDF P(A; t) for a ramping sequence leading to a
significant bifurcation delay. This solution of the unsteady FPE is validated against the statistic of Monte
Carlo simulations of the process. In detail, (3.7) is simulated 5000 times in Simulink�, imposing again
ν = ν(t) = ν0 + Rt and with the initial conditions distributed according to the stationary PDF P∞(A; ν0).
The ensemble statistic of the trajectories are presented in figure 8b. Close agreement with the FPE method
can be observed.

A.3. Calculation of the first passage time distribution using the FPE
The following procedure was adopted to compute the distribution of the first passage time tth above
the threshold Ath. The FPE (3.8), with ν(t) = ν0 + Rt was numerically solved using the Matlab� ode23,
imposing the Dirichlet condition P(A = 0; t) = 0 on the lower boundary and an absorbing boundary
condition on the threshold: P(A; t> t∗ | A(t∗) = Ath; t∗) = 0. This boundary condition is a probability sink,
which leads to a monotonic decay in time of the integral

∫Ath
0 P(A; t) dA. This integral represents the

probability of not having crossed the threshold Ath before time t. Therefore, the probability of having
crossed the threshold before t is the cumulative distribution function (CDF) of the first passage time
C(t) = 1 − ∫Ath

0 P(A; t) dA. Subsequently, the PDF for the first passage time was obtained by differentiating
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[−4.5; 5.5]. (b) Same test as in figure 7, this time applied to the supercritical bifurcation of the Van der Pol oscillator. Two exemplary
cases (square R= 10, circle R= 50) are simulated in Simulink, implementing a control system that ramps down ν if the danger level is
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the CDF and the results are given in figure 9a(i)(ii). In contrast with the FPE simulation presented in
figure 8, P(A; t) is soaked up at A = Ath due to the absorbing boundary condition. In turn, C(t) increases
monotonically from zero at t = 0 and approaches 1 for increasing likelihood of having passed the tipping-
point. The PDF P(tth) (blue curve) is then deduced by differentiating C(t) and the mean first passage
time 〈tth〉 is then readily computed as the mean of this probability distribution. In order to validate
this FPE-based method, the first passage time probability distribution is computed doing a statistic of
5000 time-domain simulations of the process in Simulink�. Similarly to the unbounded case presented
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in the previous section, simulations are initialized according to the stationary PDF at time 0. For each
simulation, the first time when the amplitude of the oscillations exceeds the amplitude Ath is recorded,
and the distribution of this time over all the realizations is computed. The results are presented in
figure 9b(i)(ii): the outcome of the Monte Carlo simulations (histograms) confirms those of the FPE
method for all the ramp rates R. The map in figure 6 was generated repeating the FPE procedure
presented in this section for different R and applying the mapping νth = ν0 + Rtfp. This approach is
significantly cheaper from the computational viewpoint compared with the statistic of the time-domain
simulations.

A.4. Supercritical bifurcation
Bifurcation delays exist for any type of bifurcations. In the context of thermoacoustic instabilities in
practical combustion chambers, supercritical stochastic Hopf bifurcations are very common. The Van
der Pol oscillator with stochastic forcing is the simplest model for this type of bifurcation:

p̈ + ω2
0p = [2ν − κp2]ṗ + ξ (t), (A 1)

with all the terms having the same meaning as in (3.7). Figure 10a(i)(ii) shows the probability density
function of the amplitude P∞(A; ν) for a quasi-steady ramping of the bifurcation parameter. As with
the surrogate model of the subcritical Hopf bifurcation, simulations were performed to illustrate the
incurred risk when one of the system parameters is ramped at a finite rate while a controller is fed with
the current state of the system. The parameter ν was ramped up in time and as soon as the oscillation
amplitude exceeded the control threshold Ath, ν was ramped back with the maximum possible rate. The
results for two different ramp-up rates R are shown in figure 10b(i)–(iv). Again, it can be observed the
averaged released energy is higher when the ramp rate is faster.
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