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INTRODUCTION.

Tue present supplement contains some developments of a view of
Mathematical Optics, which was proposed by me in the foregoing
volume of the Transactions of this Academy. According to that
view, the geometrical properties of an optical system of rays, whether
straight or curved, whether ordinary or extraordinary, may be
deduced by analytic methods, from one fundamental formula, and one
characteristic function: the formula being an expression for the vari-
ation which the definite integral, called action, receives, when the
coordinates of its limits vary ; and the characteristic function being
this integral itself, considered as depending on those coordinates.
Although this view was stated, and the formula announced, in the
Table of Contents prefixed to my preceding Memoir, yet the demon-
stration was not given in the part already published, except for the
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Systems produced by the ordinary reflection of light ; it has there-
fore been thought advisable to give in the present Supplement, the
general demonstration of the formula, and some of its general conse-
quences. The demonstraﬁon is founded on the principles of the
calculus of variations, and on the known optical principle of least
action. The result deduced. fro.mb these principles, is, that the co-
efficients of the variations of the final coordinates, in the variation of
the integral called action, are equal to the coefficients of the varia-
tions of the cosines of the angles which the element of the ray makes
with the axes of coordinates, in the variation of a certain homoge-
neous function of those cosines : this homogeneous function, which is
of the first dimension, being equal to the multiplier of the element of
the ray under the integral sign, and therefore to the velocity of that
element, estimated on the hypothesis of 'émission. It was prdposed,
in my former Memoir, to call this result the principle of constant
action : partly to mark its connexion with the known law of least
action, and partly because it gives immediately the differential equa-
tion of that important class of surfaces, which, on the hypothesis of
undulation are called waves, and which, on the hypothesis of molecu-
lar emission may be named surfaces of constant action. But in the
present Supplement, it is proposed to designate the fundamental for-
mula by the less hypothetical name of the Equation of the Characte-
ristic Function : because, whatever may be the nature of light, the
definite mtegral in this equatlon 1s, as we have before observed, a

function of the coordinates of its limits, on the analytic form of
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which function the properties of the system depend. In the applica-
tions of this formula, to systems of straight rays, ordinary or extra-
ordinary, it is advantageous to introduce the consideration of a
characteristic function of another kind, depending on the direction
rather than on the coordinates of the ray, but connected with the
former function, and with the geometrical properties of the system,
by relations which form the chief subject of the present Memoir.
The thgory of these relations, from the generality of its nature, will,
perhaps, be interesting to Mathematicians: I am aware that it admits
of being much farther extended, and that much remains to be done,

in order to render it practically useful.

WILLIAM R. HAMILTON.

OBSERVATORY, April, 1830.



SUPPLEMENT,
&c. &c.

FUNDANENTAL PORMULA OF OPTICAL SYSTEMS, OR EQUATION OF THE
CHARACTERISTIC FUNCTION,

1. Tue fundamental formula that we shall employ in our inves-
tigations respecting the geometrical properties of optical systems of
rays, straight or curved, ordinary or extraordinary, which, after issu-
ing from any luminous origin, have been any number of times
reflected and refracted by any combination of media, according to
any laws compatible with the known condition of least action, is the
following :

3/'mls=§%)x+3—§3y+:-%iz. (A)

In this equation, «, y, 2, are the coordinates of any point of the sys-
tem, referred to three rectangular axes; «, B, 7, are the cosines of
the angles which the tangent to the ray at that point, or the direc-
tion of the element ds, makes with the axes of coordinates; v is the
quantity which in the hypothesis of molecular emission represents
the velocity of this element, and is supposed to be in general a func-
tion of the six quantities, z, y, 2, «, 3, 7, depending on the nature of
the medium, and involving also the colour of the light; the partial
differential coefficients,

E W
).) 's;) 'g:
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are obtained by putting v under the form of a homogeneous function
of &, 8, ¥, of the first dimension, with the help of the relation
e*+f8* + 9* =1, and by then differentiating this homogeneous
function, as if &, 8, ¥, were three independent variables ; finally, the
definite integral /vds is taken from the luminous origin to the point
®, y, 7, and the variation Jfvds is obtained by supposing the co-
ordinates of this last point to receive any infinitely small changes,
the colour remaining the same.

2. To deduce the equation (4) from the known condition of least
action, let us observe that by the calculus of variations,

3./ vds = f(3v. ds 4 v.3ds) ;

in which, by what we have laid down respecting the form of v,
d ) bl 3v. % b
= s;)x-l-)—i)y + 5532 + 3:34 + 3—53,6 + 537,
3 3
V=i by

while, by the nature of «, 8, v,

dn.ds 4+ «.3ds = J.ads = 3.dx = d.3x,

38.ds 4 .3ds =3.8ds = 3. dy = d.3y,

dy.ds vy dds = pds = 3. dz = d.3z;
we have therefore,

Afede= (320 4 2w+ i) det f( 5 Bet G g+ T )
= e — S 2 dy — S g s —
3 bl 3 dv do 3
(G amaf) e (am i) (G o)
the accented quantities belonging to the first limit of integral, and

disappearing when that limit is fixed. The condition of least action
requires that the quantities which remain under the integral sign, as
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coefficients of dz, dy, Jz, should also vanish, and furnishes thereby
the following general differential equations of a ray,

%ds:d%,%de:d%,g—:ds:d:%, (B)
of which any two include the third. And rejecting the evanescent
quantities in the expression for 0/ vds, we find the formula (4),
which it was required to demonstrate.

3. The fundamental formula thus obtained, resolves itself into
the three following equations :

3fvds _ dv 3fvds _dv 3/vds _ v
% %’ %y 8’ 2 N’

which we shall thus write:

W _w W _ W _d

it il Aal TRR Tl o ()
representing, for abridgment, the definite integral fvds by V, and
considering this integral as a function of z, ¥, 2, of which the form
depends upon the nature of the system, the medium, and the light,
and of which the partial differential coefficients of the first order are

denoted by s 57 3y

3 %’ %
When the form of V' is given, we can obtain these coefficients by
differentiation ; and if we know also the form of v, which depends
only on the nature of the medium and of the light, we can by the
equations (C) determine e, 3, y, as functions of z, y, z; that is, we
can find the direction of the ray or rays passing through any nro-
posed point of the system. The geometrical properties of ore system
as distinguished from another, for any given medium and any given
kind of light, may therefore be deduced by analytic reasonings from
the form of the function ¥'; on which account we shall call this
VOL. XVI. c
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function V, the characteristic function of the system ; and the funda-
mental formula (4), that expresses its variation, namely :

dv d v

we shall call the equation of the characteristic function.

Other Characteristic Function for Systems of Straight Rays.

4. In the remaining reasonings of the present Supplement, we
shall confine ourselves to the consideration of homogeneous systems
of straight rays not parallel ; and in investigating the properties of
such systems, it will be useful to employ another function, connected
with the function /' by many remarkable relations. This new func-
tion, which we shall call /7, is determined by the condition :

W Vel gyl dsy D)
which gives, on account of (4), or (C),
W= a3 g et 5 (E)
It results from this differential equation (E) (in which we employ
the sign of variation ¢ to mark the connexion with the definite
integral f'vds, a remark which applies to the whole of the present

Supplement,) that if the variations of 2, y, z, be such as to leave

=, 3, 7, and consequently
o W P

%%y
unchanged, that is, if we pass from any one point of the system to
any other point situated upon the same ray, the function /¥ will not
vary, We may, therefore, consider /¥ as a function of e, B, ¥, of
which the form can be determined from that of 7, by eliminating
@, Y, %, between the equations (C) and (D), when the nature of the
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medium and of the light is known. Reciprocally, if the connexion
between W, «, B, v, be given, that which exists between V, #, ¥, 2,
can be found. For if we suppose that for the sake of symmetry, IV
has been put under the form of a homogeneons function of the
dimension i, by the help of the relation &* 4+ 8* + 7' = 1, and then
differentiated as if «, 3, ¥, were three independent variables, we shall
have, by (E), and by the nature of homogeneous functions,

W iy Py o
e =Wetrsetyapt s,

W . ¥ Fv v
STl e il Tl v
W . v v v
E R > 7Rl T i v

in which we shall for simplicity suppose the dimension i = 0; and
eliminating &, B, ¥, by means of these equations, from that marked
(D), we shall deduce the relation between V, &, y, 2, from the rela-
tion between W, «, 3, y. We may therefore consider ¥ as itself a
characteristic function, which distinguishes any one homogeneous
system of straight rays not parallel, from any other such system, com-
posed of light of the same kind, and contained in the same medium.
Itis evident that on some occasions it must be advantageous to attend
to the function W instead of V, because V changes in passing from
one point to another of the same ray, whereas /¥ is constant, when
the ray and the system are given. On the other hand, in any sud-
den change of the system by reflection or refraction, the function W
receives a sudden alteration, while the change of V is gradual ; it is
therefore convenient to employ V instead of W, in investigating the
effects of such changes. Accordingly, in the remainder of this
memoir, we shall consider both these functions, and examine the
relation between them : and shall begin by investigating the con-
nexions between their partial differential coefficients.
c2
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Connexions between the Partial Differential Coefficients of the two
Characteristic Functions.

5. The connexions between these coefficients, are to be obtained

by differentiating the preceding expressions for

V3V W W W W

i i T X
and by attending to the homogeneous forms which we have assigned
to v and /. The dimension of W being supposed = 0, we have by
the nature of homogeneous functions,

~¥-+ﬂ%+v%’g=°; R
?g+~§g+#{%+v—%=0;
e e S =0 ] -
LA + 8 g+ v 35 =05
LA LGy R AL PN Y
&e. J

We have also, by the homogeneous nature of v, which we have
put under the form of a function of the first dimension, the following
relations :

LN

Y T
“ it e Y =05
*v v v .
-W+ﬁ$;+v-5—-=0, | ()
--%'+P 3:;7 +v%= 0;

» LA Po
%‘i“ﬁ'l‘ﬁ"—“w;ﬁ +7W»=0;
&c. ]
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These relations give
il +pa§%+,a§z-=o,
and therefore, by (C),
.3%;14. p:%’.+,a.§zﬂ= 0,

a condition which resolves itself into the three following,

&V 14
RS RN
FV 3V >V

4 4 rv ,
e T tr =0

and combining these three equations (H) with those which are ob-
tained by differentiating (C), we find,

, SV b Py Vv FV 2V 3
e = (gt +twm) i — (et et i)
YV PV PP\ BV W ¥V b, W
L (Y LV L ¥V (¥V Nk PV W BV N
Vvide = (3?"'—:,,7* )5 Rty st w08 )

in which _
2V MV bl AN v v LAY * oV FVy\?
ey () ty e () tEw - ()
and
32! = 3 == u (edz 4 By = 132),

¥ =3y — 8(ads + Ay + o),
¥ =%—y (s 8y + ¥¥2);

so that
«dz 4 By 4 ' =0.
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Now, if we differentiate the expressions,

W _ % v 3%y

R vl i il » v

W 3%y dp 3%

w =T ¢3ﬁ+y3ﬁ_’+z 3Ry’ (K)
W 3%

¥y 3*v
L™ A A
which result from the foregoing number, and put for abridgment,

L4 W 3w
.8 '}7 + 3&8_83— + 3%’-3; —4 32W,

. 8%y 3% 8% _ g S0
ol s W gty =Y
2 v
a3 .;:3?5 + 382 %‘g o+ 3y % =8,
' dw v _ a0
3&.8W+aﬁ.a T—+37.3v—3 37 »

3. ;:_:’ + 3. %"? + 2. Taai’; =¥ ;—:
ax.%+ay. ;;-‘,’- + % %:v%,
b gy + ’;;;;-Pk.;;-=3' g,
we find
2w — (a0 ;E.‘-l-ya' ;%-}- a ;-:') =%y f{- + apy%f +3.,y§%,
a2 gl
and therefore, by (I),

VIysrW = VI (‘31 ;%_ + 33 2,.,_\ 2 ;%)

L3 /e 2 2 3 b ] 2
t e+ ) {OE)Y +0g)Y +8))
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- $= %)+ W(’r) 05) ""’W(’“)(a

3,,£ (’ap) (% )"‘2%52‘(’5) )} (L)
in which, without violating the conditions (F), the variations da, 33,
dy, may be considered as independent, and which is consequently
equivalent to six expressions for the six partial differential coefficients
of W, of the second order.

These six expressions may be put under the following form :

»w ¥p S v U 11 4 h
'&"—‘”aa'*'ywap"' 3.3,'*‘ VT 33 — VT 3

»w S ¥v ol B

= ”“W"'”T""Wi? + T T = T

»w S ¥ o ¥V

37’ _zw+y3,631°+23y‘+7” 57""77,—5;;‘» L
3’W M v M S 3w ol 3V (M)
TR v i rr e e v v wlk i i ralan 0 P o
»w v *v *v S v ol 3
;;7—%.;,3;, ”aww +‘7w LI iy (i ™
»w S ¥ o e
W‘“w&, +y m,e:,,"‘"i;;;i + i e~ T

in which

v/,=%% ( ) + ;:: v (TSE) + 3 Fv ro ( )2’

and

S'( +3ﬁ‘+w)(§"’" a=r gz“:‘,

_((Po¥F 3o 3V maw Yo BV Wy BV e 3V
LA S S S A R R o ~ o
These expressions enable us to deduce the partial differential
coefficients of W, of the second order, from the corresponding diffe-

rentials of V'; they may also be employed to deduce the latter from
the former. For if we put
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O .

MN — M'* 4 NP — N'* = PM — P2 = W,
3y 30 3% 3% v b L) 3y
2 2,
+2 N',W";-;-zzw%;;):s,
we find, by the equations (M),
V”WI — v”ﬂ,, VIISI: ‘l)lls.' (N)
and therefore

*V_ 8§ w VM V8 oM
=W T Wy S W N W

¥V _ & ¥ N NV 8 v YN .
W—WW Wi Sz — W' %%y~ W’ (0)
PV _ 8 Ve WP NV _ 8 ¥v _ JP
W T W N T W e W
.- *v
The coeflicients of the form -5, may also be deduced from those

of the form E;;Z. in the following manner. Diﬁ‘erentiating the equa-
tions (K) we obtain

M 4 M3 +P’37=3’3r:,

Mo+ Nt Noy =¥ 2, (P)

P+ N'38 Ph:a';:-;
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we have also
0= «M 4 M 4 4P,
0= alM' 4+ 8N + 4N,
0=qaP + BN 4 oP;
and therefore

Wise = (M + N + P) 3‘:—”;—(M3’ + MY

Wiy = (M 4+ N 4 P) 3'31— MY 1 + N¥
Widy = (M + N+p)3'_._(m'?}+ Ny

Now, if we put

v ‘//E;
Ty )

%”"’x)'

sern k)

b14 1214 t14
®V = 31'355 + 33 ;y—-]- 3 )

we shall have

, v o , v
PV =323 w + 3/93’:5 + 3 5

and therefore by (Q),
wrv=or+ N+ P § (V) + (%)

— M) eV (v =) +r(vE) +2M’(
v () () e (7B

)}

)(3 ;)

(R)

Q@

an equation in which dz, 3y, 8z, are independent, so that it is equi-
valent to six separate expressions, for the six partial differential coef-
ficients of ¥, of the second order: and these expressions may easily
And on similar prin-
ciples we can investigate the relations between the partial differential
coefficients of the functions ¥ and W, for the third and higher

be shewn to coincide with those marked (O).

orders.
VOL. XVI. D
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Changes produced by Reflexions or Refractions, Ordinary or
Extraordinary.

6. Let us now consider the sudden changes in these partial difte-
rential coefficients of the characteristic functions of the system, pro-
duced by reflexion or refraction, ordinary or extraordinary. The
general formula for such changes, is, from the nature of the inte-
gral ¥,

aV(=V,—V)=0, (S)

A being here the symbol of a finite difference, and ¥, V,, being the
two successive forms of the function ¥, before and after reflexion or
refraction. The condition (S) may be considered as a form of the
equation of the reflecting or refracting surface ; and if 4 = o, be any
other form for the equation of this surface, we may, by introducing
a multiplier A, differentiate the following formula :

aV(=V,=V)=2xru, (T)

as if the coordinates x, y, z, were three independent variables. Dit-
ferentiating in this manner the equation (7)), and making, after the
differentiations, ¥ = o, we find

wow, W, Su

T T e T u
W W, W, W v
CHTTN Ty Ty @

W W, 3w du
AR TR T R ErE



19

*y v, ¥V, ™ h N
AT =TT g |
*V _’ya X, - ¥y » 3_0{
ATy Ty T Py
b4 FV, ¥V,  Yu M
AT T TE T 32.21-')‘ 30 +23-z-5_z-’ _
yr_xv, oy ¥u bww ww v )
AWy T Wy o TNy YR
Xy rv, Fu o, 0 3 du

CHET W TR TIRE Ty R Ry
Xy ¥, vy, Fu W 0k
W TR T WE T T W T ER TR

4

The equations marked (I/), contain the laws of reflexion and

refraction, ordinary and extraordinary ; since, when put by means of
(C) under the form

v v, é“v,__ABu
Aﬁ")::—h, R T
3!:_’!!, ’”l 3‘“
L TR TR Ty (W)

and combined with the relation &; + 8} 4+ 7; = 1, they suffice to
determine, for any given forms of the functions v,, v,, and for any
given directions of the incident ray and of the tangent plane to the
reflecting or refracting surface, the cosines «,, 8;, 7., of the angles
which the reflected or refracted ray makes with the axes of coordi-
nates, and the value of the multiplier A ; observing that the ratio

“1 (;—:) + 8. (%) + 71 (;;-

-,(_%) + 8, (%) + 7 %‘)

D92
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1s positive in the case of refraction, and negative in that of reflexion.
The equations (¥), when combined with the relations (H), determine
the six partial differential coefficients of ¥, of the second order, toge-
ther with the three quantities
N M M
% 5 W%
since they give, for these three latter quantities, the conditions
¥V, ad A wy
o= (G g) T (G T«f?)+ v (s 4 5or
M M
+3z(¢’§—+p’3y+'“ Bz.)+ (“’3x+ﬁ’3y+7')z)

0=“’(31r+ 3eiy) + 8 ’—,-;':-;-» )+7,(-,—r+ ,’;;;)

%(*h 2a +“3z)"'§‘(“*ax+=3y+‘/=r )
o=u (St rm) +o (3 +2 %r o (32405
+§;(4z 37:-.4-46: 537+7"§'z_ +g( 2 E +ﬁ;5;\—+ 71;-3)=
in which the trinomial
(uz % +ﬁ¢;—; + ‘Yz.-:%)
can be determined by the following relation :
0= (3.1" "":xz)“*‘"(ayz""‘a,,s)'l"h )+
2008, (32 + 3;,;) + 20 (S5t b aggs) +2m e (Gt 40 2

A du Ju du
+2( +ﬁzay+7‘az)(‘a s;-"'pz ﬁ+7g g)'
In a similar manner we can calculate the new values which are
given, by reflexion or refraction, to the partial differential coeficients
of V, of the third and higher orders; and can thence deduce the cor-
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responding changes in the coefficients of the function IV, by means of
the relations which we have already pointed out, between these two
characteristic functions; observing, that while the value of ¥V itself
is not altered in the act of reflexion or refraction, but only its form
and its differentials, the value of ¥ receives a sudden increment,
which has for expression,
AW =1zna ;%—-}-yA%%—-}-ZAg—;-:‘
=A(.1:;:- —i—y;;—-}-z;—:—). (Y)

7. By the help of the foregoing formulz, we can compute the
partial differential coefficients of any given order, of the characteris-
tic functions ¥ and W, for any homogeneous system of straight rays,
produced by any finite number of successive reflexions and refractions
ordinary or extraordinary, when we know the nature of the light and
of the mediums, and know also the coordinates of the luminous origin
and the equations of the reflecting or refracting surfaces. To shew
this more fully, let us observe, that in a system of straight rays di-
verging from a luminous point, and not yet reflected or refracted, we
may put

z—X=ag, y— Y=g, 2—Z = 4,

¢ being the distance from the luminous origin X, Y, Z, to any other
point &, ¥, %3 and that we have the equations,

— oy = . _ 3 v
=u=@—X 5 =V + =25, ”
v v dv '
from which we can deduce the partial differentials of the functions
V and ¥, in this first state of the system ; those of the second order,

for example, being given by the following expressions:
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—ay » v
g""_’.ty}:--}-’yy g-f-)zb‘ 5

. b2 v dv

in which the symbols
v » d

Y5 Tn

have the same meanings as before. Knowing, in this manner, the
differential coefficients of ¥, before the first reflexion or refraction,
we can, by the method of the preceding number, calculate the cor-
responding coefficients of ¥, and thence of /7, immediately after that
change ; the coefficients of 7, thus deduced, will remain the same,
in passing from the point of first reflexion or refraction to the second
point at which the direction of the ray is altered, and, by the me-
thods of the fifth number, we can deduce from these coefficients of
W the cbrresponding coefficients of ¥, immediately before that second
change ; and sa proceeding, we can calculate the alterations in the
partial differentials of the two characteristic functions, produced by
any finite number of successive reflexions or refractions.

Connezion of the twa Characteristic Functions with the Developable
Pencils and the Caustic Curves and Surfaces.

8. Let us now suppose these partial differentials known, and let
us examine their connexion with the geometrical properties of the
system. One of the most remarkable of these geometrical properties
is, that the rays are in general tangents to twoe series of caustic curves,
which are contained upon two caustic surfaces, and form the aretes de
rebroussement of two series of developable pencils; that is, two series
of developable surfaces, composed by rays of the system: a property
which was first discovered by Mavrus, and to which I also had



arrived in my own researches, before I was aware of the existence of
his. To investigate the connexion of these curves and surfaces with
the characteristic functions ¥ and W, let us consider the conditions
which must be satisfied, in order that a curve having for coordinates
z, 4", 2", should be touched by an infinite number of rays of the sys-
tem. Let &, y, 2, be the coordinates of any point 6n such a ray, and
¢ its distance from the point of contact a” y” ”, in such a manner
that we may put
z=a" dag, y=y" + Be, z2=2" + 4,
and therefore
Y=u(dr — ") + 83y — ") + v (3z — &"):

we shall then have

3 =3y — 8 bz + By + it) = 6,
%! = ¥x ey (wdx o By  93z) = g3y,
assigning to 31 Jy’ 3z the same meanings as in the fifth number,
and observing that by the nature of 2” 3" 2", the variations ¥z 3y 3"
are proportional to a, B, ¥, so that
31” = x (‘h” +ﬁ&” + ,yaz”)’
3y = B («dz” -+ B! 4 32),
21 == (B 4 By - 380,
The formule (4") give

0’ =0z — a (adz 4 Ry + ¥32) = ¢da,
} @

o _ t14 ~
v v b1 ,

v v b1
Y=oy =dg

3 . . .
5"52— having the same meaning as in the fifth number: and these
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equations (B’) contain the whole theory of the developable pencils
and of the caustic curves and surfaces. Putting them under the
form,

0=(¢ 5 S r.: )’”’(C% m,s )t (e o4 %)"’
0= (c ¥V )3‘+(¢ >V — 5 )’J+(c%*}%)"’ (C")
o= ::-a': “"m‘; ”"'(f ‘33,7 s,sa-,)*“(“g“";;-)’z’

we find by eliminating the differentials, and attending to the. rela-
tions (G), (H), the following quadratic equation

0=€!Vll__gs + '0", (D/)
which may also be thus transformed,
0= ¢ — ¢S W": (E)

the symbols v, V", W”, S, §, having the same meanings as in the
fifth number. The form (D), serves to connect the distance ¢ with
the function V, and the form (E’) with W. By either of these forms,
we obtain in general two values of ¢, and therefore two points a” y” 27,
which are the only points wherein the ray can touch a caustic curve:
and the locus of the points thus obtained, composes the two caustic
surfaces. 'The joint equation of these surfaces, in 2” y” 2”, may be
found by eliminating «, 3, ¥, between the four following equations:

xll x + G(C-’l‘”"‘ ﬁy” + yzll)'
=y + B8 (a2 + 8y + 2"),
z" 2 4 v (ax" 4 By + 42"),
0= (uz" + By" + ") 0" + (a2’ +8y" + ") S + W/5 .

(F)

in which 8/, W/, are formed from §, W”, by changing x, y, 2, to
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.y Y, 2,, these latter symbols being abridged expressions for the fol-
lowing quantities,

z—a(ax+ By + v2) =2z,

y—AB (s + Byt 2=y,

t—y(exd gy + yz2=172,,

and being considered as functions of «, 8, ¥, determined by the con-
ditions

0=uaz, + By, + v, ~
a’%= '%+y,§;,f;,+z,§§1,
EEuamtutag | ()
%:x,%+y,%+z,%;

which give, after elimination,

3w Pv 3\ IW 3 IW 3o IW v IW
v=(mtet ) n = (F e Tty )

v Fv Pv\ W Fo W v IW v JW), (HY)

v1=(5 t 3 + 57) % — (3w Ty
e [ b i) Fo\ W v W v W v W
=t )y (Bt ey )
The equation of the caustic surfaces in @, y, 2, may also be de-
duced from the characteristic function W, by eleminating «, 3, 7,
between the equations (K) and the following

W'=0: (9
or from the function ¥, by simply putting

1

5 = 0. (K’)

9. The formule of the preceding number determine by differen-

tiations and eliminations alone, the equation of the two caustic sur-
VOL. XVI. E
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taces ; but when it is required to determine also the two series of
caustic curves contained on these two surfaces, or the two series of
developable pencils composed by the tangents to these curves, we
must then have recourse to integration. The differential equation in
, Y, 2, which determines the developable pencils, may be found by
eliminating ¢ between the formule marked (B’), and may be put
under any one of the three following forms:

o W W
3;:.35;-3’%’.33;,

Yo W I ,
ﬁ-.)s;_yg.)E, (L)
o 3V do 14
7L ~Aals SRS

¥

in which 2, B, y, are considered as given functions of #, y, 2, deduced
tfrom the equations (C). The developable pencils having been thus
determined, by integrating the equations (L'), the caustic curves will
be known, because they are the arétes de rebroussement of those pen-
cils ; the caustic curves may also be found by the condition of being
contained at once on the developable pencils and on the caustic sur-
faces; or, finally, we may find the differential equations of these
curves in &', 3", 2", withaut reference to the developable pencils, by
combining with the formule (F’) the differential relation between
@, 3, ¥, which results from the equations (B’) and admits of being
put under any one of the three following forms:

y . 3%-_- y};. y e,

v ap=rPoal, (M)

R ar=yk a%’;;
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v v v
Vi V5 V5
being changed to their expressions (P), or rather to the equivalent
expressions,

3';%=M,3u+M','3ﬁ+P,'3‘y+ (ex 4 By + ¥2) 3 %,
by 3 ,
Yor =MD + N3 + Ny + (az oy +2) 3 55, (N')

3’;3= ,’3& + N,’)ﬁ + P/37+(w+ﬁy + ) a%,

from which «z 4+ By + yz will disappear, when substituted in the
equations (M’), and in which

, R4 3% 3ty v
M,?u-]-M,)ﬁ-[-P,’By_ax-—-(3,5‘&‘—2-1-3/,3%-{-2,3%),
, N _ 8 W 3*v v % ,
Mpat N3s + Ny =3 50— (3 sm+wd g+ 22 55), ()

W % v 3w

10. A remarkable transformation of the equations (B'), which
determine, as we have seen, the developable pencils, and the caustic
curves and surfaces, may be obtained in the following manner. We
have by (P),

v W 3 3% 3%v
which gives
, v o _ W ) 3% b L
3&'—‘33:—37— z’3372-+3/'3m+z”3m),
when we substitute for z, y, z, their expressions 2 + ag, Y’ + Be,

¥’ + e, and attend to the relations (G). And by similar substitu-
tions in the expressions for

E 2
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d v
,ﬁ, and 3'3—7—,

the equations (B’) become,

W .
3_3‘— 3a¢+y’—;s'ﬁ+z”9")7
3'0 3 ,
W v
a____z[/ "\ ,,5
)3“31,'1' 331, + = 371

Now, if we conceive another system of rays, composed of the
same kind of light, and contained in the same medium, but all con-
verging to or diverging from the one point, &”, 3", 2’, and represent
by W7, the characteristic function, which, in this new system, cor-
responds to W in the old, we shall have

JWI 30 2’0 ~
= "'r*”'aap+ }:S,,'
w

% = ‘Is"‘y a;s- + = T,
w I ’ w 8%
37 _fm'fy' _$y+ z ‘, L (Q’)
W 3
= z=+””’a.a,s+" Sy’
LAY S S i RN il

_33_ 38 w T 383y’
w o
33;--3.‘33—5 +y”;3537+ ’:az,

7

the equations which determine the developable pencils, and the caus-
tic curves and surfaces, may therefore be thus written :

3W I 3"" b4 3w
).s‘_,)-y—__ 3 3x—3-iy—. (R/)
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On Osculating Focal Systems.

11. The equations which we have thus obtained, as transforma-
tions of the formule (B'), are not only remarkable in an analytic
view, but contain an interesting geometrical property of the caustic
surfaces. To explain this property, it is necessary to introduce the
consideration of osculating systems of rays. Let us therefore con-
celve a system, placed in the same medium, and composed of the
same kind of light, as that given system of rays which has W for its
characteristic function, but converging to or diverging from some one
point X, ¥, Z'; and let us denote by W’, the corresponding charac-
teristic function of this new system, which becomes equal to the W’
of the preceding number, when the point X, Y, £, coincides with the
point 2, 3”, 2” ; then the general expression for this function W’ is

v ) v o
W=Xg4+Yg+Zy+C (89

C being an arbitrary constant; and the system which thus has W’ for
its characteristic function, we shall call a focal system. The four arbi-
trary quantities, X, ¥, &, C, which enter into the general expression
(8) for W, may be determined by the condition that for some given
ray of the given system, that is, for some given values of «, 8, 7,
certain of the first terms of the development of W7, according to the
positive powers of the variations of «, 8, ¥, may be equal to the cor-
responding terms in the development of the given function W3 and
when the form of W’ has been particularized by this condition, we
shall call the corresponding system of rays, an osculating focal system.
Now, if we suppose «, 8, 7, to be changed into « + o, 8 4 38,
v + 3y, we may express the altered values of W and /¥’ by means of
the following developments :
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W+ W IPW 4 o 3’W+ &e.,
W' W 4§ W+ 2—333W’ + &

in which
W W W
W= - %+ —3,? % + T‘”’
3‘"’-—-——3“ + 35‘ 3ﬁ’+ 31’ 37“+2 Mpwﬂ+23——3ﬁv+2§——3‘ﬁu,
&e.

The equations

=W, W' =W, (T")
will be satisfied independently of the ratios of the variations 8z, 88, dy,
if we take the point X, Y, Z, any where upon the given ray, and
suppose, .

d d v
C=W - (Xt Y5+ Z5).

There remains therefore one arbitrary constant of the focal system to
be determined, and this is to be done by equating the next terms of
the developments, that is by putting

BXW =W, (U9
and assigning some limiting ratios to the variations da, 33, dy, con-
sistent with the differential equation

«da 4 BB - ydy =0,

which results from &’ + 8° + *= 1. And, from the nature of the
functions W, W', the equation (U') may be put under the following
form :

= B ) ) 4 (5 ) (o 5) (o)

(B ) ()
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which shews that there are in general an infinite number of osculating
focal systems corresponding to any given ray, that s, an infinite
number of different values for the arbitrary parameter which enters
into the expressions of

a*wr W Bw
2 " I8 3T

according to the infinite variety of values that we may assign to the
ratio

¥38 — By

vda — ady ’
but that the values of this arbitrary parameter, which do not change
for an infinitely small alteration in the ratio on which they depend,
are determined by the following equations:

o= (5% = ) e - 52) + G — )= 5 ),

2 /7 (W,)
= Ei;’? a,ap)("" w) + %" %;:/‘)(3/3—%37);
which give, by elimination,
L, 32 Ll 4 »>w 32 2
(3zWr _ zw) ( a;:n - ) _ (W_ -a:;; . )

The systems that correspond to these extreme values of the arbitrary
parameter, we shall call the extreme osculating focal systems ; and
since, by the nature of the functions /¥, W’, the equations (F¥") are
equivalent to the formule (R’), the foci of these extreme osculating
systems are contained upon the caustic surfaces: and the ratios of
dz, 33, dy, in these extreme systems, are the same as in the develop-
able pencils.

12. Let us now consider the law of the variation of the focus of
the osculating system, between its limiting positions. This law is
analytically expressed by the formula (U); in which we may geo-
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metrically interpret 3z, 33, 3y, by considering these infinitely small
variations of &, 3, ¥, as arising in the passage from the given ray to
an infinitely near ray of the system. The plane which passes through
the given ray, and is parallel to the infinitely near ray, may be called
the plane of osculation : since, if it be known, we shall know the
ratios of de, 33, 3y, and can determine, by the formula (U, the
position of the focus of the osculating system. To simplify this
determination, let us put

X=z + «R, Y=y, 48R, Z=2z + 4R, (Y")

X, Y, Z, being the coordinates of the focus, and #,, ¥,, 2,, having
the same meanings as in the eighth number; the formula (U) then
becomes, by the nature of #’, and by the relations (G),

3 ) v
Rytw+ B0 =237 g0 4 92 g + 0 5 ()

d0*v denoting
3-‘3 -+ W +3y3 5;

The second number of this equation (Z’), vanishes when the ray
passes through the origin; and if we suppose the ray to coincide
with the axis of 2, we shall have also dy = 0, and the equation will
become,

Yo , BW Yo ¥W\,
0=(R oy + 50) W +2 (Rog + 1) 28 + (Ryz +37) % (A9
which expresses the dependence of the parameter R, on the ratio of B
to da; R being now the distance from the origin, upon the ray, to the
focus of the osculating system; and the ratio ;’i— being the tangent of

the angle ¢, comprised between the plane of 22, and the plane having
for equation,

Q»

L= =tmg, (BY)

a0,
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that is the plane of osculation. This plane becomes a tangent to one
of the developable pencils, when the distance R attains either of its
extreme values, corresponding to the two points where the ray
touches the caustic surfaces, and determined by the equation,

3w P FW\ _ vy XW\?
(5 +50) (3 +30) = (Bam+ 53) - (cn
which results by elimination from the two following:
o=(r3 2+7—) (R )m.¢, Z
dv  PW 3‘20 *w S
0= (R3uBB+ 5;-373) 4 (RW + -}—ﬁ—,) tan. ¢.

Let R,, R,, be the two values of R, determined by the formula
(C”), and ¢,, ¢,, the two corresponding values of the angle ¢,
which may be deduced from the following equation :

(B")

B'v bi) rWrw b
~ st ) (53 — 5 >-0) = (3 — 3¢ o #) (3 — saggen-)s (B

then the general relation (4") between R and ¢, may be put under
the following form :

R~ R, (Sin. (¢ — Qll)’

R, —R™ = (P. —9) (F")

¢ being a coeflicient which is independent of R and ¢, and is positive
or negative according as the quantity

L OO
Jat 38~ \dadg

15 positive or negative. This latter quantity is the same with that
which we have before denoted by v”, because the remaining parts of
the general expression for v", namely

dv v ?v\? | 3% 3w 3%y 3%v 3w
= — 2 7 (2 Y oevIv__fev
‘ det 3a¢ (3063,5) + 3B* Iyt (3,837) 37 Wt ( ) !

VOL. XVI. F



34

vanish when « = 0, 8 = 0. If therefore v” be positive, and if we
denote by R, the greater of the two values R,, R,, that is the one
nearer to positive infinity, we shall have by (F"), for all other values
of R,

R> Ry, R<CR,, (V2> 0); (G")

so that in this case the foci of the osculating systems are all ranged
upon that finite portion of the ray which lies between the caustic sur-
faces. If, on the contrary, " is negative, then the two differences
R — R, and R — R, are both positive or both negative, so that

5> (» <0); (H")

in this case, therefore, the foci of the osculating systems are all con-
tained upon the remainder of the ray, that is upon the two indefinite
portions which lie outside the former interval. And in each case,
the distances of the focus of any osculating system from the two
points in which the ray touches the two caustic surfaces, are propor-
tional to the squares of the sines of the angles which the plane of
osculation makes with the two tangent planes to the developable pen-
cils. In the foregoing investigations we have supposed that /¥, and
its analogous function ', which we consider for symmetry as homo-
geneous, are put under the form of functions of the dimension zero ;
a supposition which permits us to adopt the expressions (K) for the
partial differentials

W W W

L T
instead of the less simple and more general expressions given in the
fourth number: but if we had assigned any other value to the dimen-
sion ¢, in those more general expressions, we should have deduced the
same results respecting the law of osculation.
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13. The function 7", the sign of which distinguishes between the
two preceding cases of osculation, has this remarkable property, that
it is independent of the direction of the coordinate axes; in such a
manner that if , 8, ¥, be, as before, the cosines of the angles which
the ray makes with three given rectangular axes, and if we denote by
« (3 % the new values which these cosines acquire when we refer the
ray to three new rectangular axes, we shall have

3ty J° 2 3o 3 32 dtv 3t 92

w5~ () + 55— Gm) +a7a:z‘—‘ S,,T) =

3%y 3% 3% \¢ %y 3% 3’17 3ty

575 55— (iaw) + e 5 (m», + 50 5 (aﬁg) Y
v being, in the first member, a homogeneous function of «, 8, y, and,
in the second member of &', 3, ¢/, of the first dimension. To demon-
strate this theorem, let us observe that by the known formule for the
transformation of coordinates, we may put

a=o«d + £FB 4 /C, ' =ud + g4’ + 44",
f=dd/ 4 BB 4 O, 8 = «B 4 8B + 4B ()
y=a'A" 4 #B" +/C", o/ = aC } BC" + 4C";

4,B,C, 4, B, C', A", B, C", being constant quantities of which
only three are arbitrary, and which satisfy the following conditions:

A* + B* + C* =1, A* + 4% 4 4" =1,
4%+ B* 4 (" =1, B* 4 B* + B'* =1,
A1 F BIT O =), C* 4 O C't o= 1,
A4 4+ BB 4 CC =0, AB+4 AB 4 A"B"=),
A'4"+B'B"4- C'C'=0, BC 4 B'C' + B"'C' =0,
A"A+ B'B 4 C'C=0, CA 4 C4' + C'4" =0.

(L%

This being laid down, we have, by (K”), and by the nature of
partial differentials,
F 2
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b1 v
3"" A +Al +A”§—y—’
v v v
&= 3:+B'-+B”g:
3

and, continuing the diﬁ'erentiations,

Fv Fv 1o O b2 Fv L) ¥
= A% — A% — e 4 v

E’T 2"' 3ﬁ‘+A a!+2AA,m+2AA”3a +2A”Aa’,

v Fv Fv v

2 12
3p""B’ a,,+B Bﬁ‘+B 3¢+2BB’3“8A+2B’B‘3'33 +2BB37 )
3o e
3‘ym_(;ny_.;.c' aﬁg + C 37&+2CCMB+2C'C"M +2CCM’
v

’ ()
W—“’(Ba"" n/s*'B"a‘a +A(Bm+B’W+B"m
+.d”(B +B’3M+B’—-

3’ ’ 3’0
wi =B (C3F +Ca~a,s+caay)+3(cm+c’apz+C”m
dtp
i Ul
+B (Co+ O g, +Csr=)'
3By 3” " I ] , 3%y
ay'a;'—c( 3‘*+A$§_+‘43751+C( 3»33+A3p'+‘4[3,s31

+ ¢ (ﬂ + 4 3ﬁ3y+d” 37‘)
and substituting these values for

dip 3w I %v 3y Ity

W3 T W W W N
in the second member of (I”), and reducing by the relations (K*),
(L"), and (G), we obtain the function in the first member. This
function v, which composes the first member of (I”), may therefore
be obtained by assigning to the axes of coordinates, any arbitrary
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but rectangular directions, which may most facilitate the calculation.
For example, when we are considering an extraordinary system of
rays in a one-axed crystal, we may take the axis of the crystal for the
axis of 2, and then the function v will take the form

v==y/ m*y? 4 n? («2 + 8?), (M")

the quantities m, n, being independent of «, 8, ¥ ; and we find by
differentiation,

3 3 bl
v%:n’a,vs‘%:n’ﬁ,v%:m’w \l

v 3 v
ors x’;— =m2yt a's, — 51:- =miyt fontel, 5 o =mt (o +ﬁ'),5(N")

values which may be verified by the relations (G), and which give

mint (a® 4= B2 + 42). _ m’n*
ot =T (= ";4 ) - (o)

we may therefore conclude that whatever be the directions of the
rectangular axes of coordinates in an extraordinary system of this
kind, the function v" is essentially positive, and is equal to the square
of the constant m, multiplied by the fourth power of the constant n,
and divided by the fourth power of v; v being the velocity of the
extraordinary rays of some given colour, estimated on the hypothesis
of molecular emission, and the constants m, n, being the values which
v assumes when the ray becomes respectively parallel and perpendi-
cular to the optical axis of the crystal. Hence it follows, that in
extraordinary systems of this kind, the foci of the osculating systems,
considered in the preceding number, are all comprised between the
two points in which the given ray touches the two caustic surfaces.
It is evident that this result extends to the case of ordinary systems
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of rays, to which the expressions (M"), (N"), forv, and for its partial

differentials, may be adapted by makingn =m, a change which gives,
by (0"), v' = m>.

Principal Foct and Principal Rays.

14. Another important property of the function v, is that when,
by the nature of the light and of the medium, this function is essen-
tially greater than zero, (which we have seen to be the case for all
ordinary systems of rays, and for the extraordinary systems produced
by one-axed crystals,) the intersection of the two caustic surfaces
reduces itself in general to a finite number of isolated points. To
prove this theorem, let us resume the formule of the twelfth number,
and let us suppose that the ray which coincides with the axis of z,
passes through a point of intersection of the caustic surfaces, so that
the two roots of the quadratic (C*) are equal ; then the two values of
tan. ¢, deduced from the quadratic (E"), will be equal also ; and if
we put this quadratic under the form

E (tan. ¢)? 4+ E' tan.¢ + E" =0, (P")

in which
B = 3w B’W_ v W
= i 3BT T I/ dadB’
32v 3*W 32w §2W
882 du?  da? 38
_ Y0 2 Mo 3 W
T k% Ted8 T 3 3¢

El

Ell

we must have
E*—4EE"'=0. Q")

Now the coefficients E, K, E", are connected by the following
relation :
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¥ % , 920

and it results from this relation, that if

the condition (Q") cannot be satisfied without supposing separately
E=0, =0, E' =0, (")
We may therefore put

3'W_ Fv B¥W _ 3w FW _ _3’_'0
% T E%RT NI T F e e T MR

p being a quantity which can be determined by substituting these
values in the quadratic (C”); for this substitution gives,

v(R4-x)2=0,xu=— R,

R being the common value of the two equal roots. Hence it follows,
that when R 1s made equal to this value in the equation (4”) for the
focus of an osculating system, that is, when we place this focus at the
intersection of the caustic surfaces, the coefficients of da*, 20238, 33,

namely,
v | BW v 2w dw | W
R)F + dx?’ R 3B + 5‘4:3,6’ RW*‘ e ?

become separately = O; and itis easy to prove that in like manner
the coefficients of

(e )2 (et ) (=L 5), (u—23),

must separately vanish, in the more general equation (V’) of the ele-
venth number; we have therefore generally, for the intersection of
the caustic surfaces, when the function v” is essentially > 0, the fol-
lowing equations :
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W' _ W »w _ W W _ W
32t T da? ' a3 T a0 ' ez . 3B*
»rw 2w W’ 2w W _ W

dudy - dady ' 3Bdy - 3Rdy T 3y - P ’

(Tll )

of which the three latter result from the three former. These six
equations, which are all expressed by the one formula (U’) or (£,
provided that we consider 3, 88, 3y, as independent, will give in
general a finite number of real or imaginary values for «, 8, 7, R,
and thus will determine a finite number of isolated points, as the in-
tersection of the caustic surfaces. We shall call these points the
Principal Foci; and the rays to which they belong, we shall call the
Principal Rays of the system. In general, whether v be greater or
less than zero, we may employ the equations (T") to determine a
finite number of isolated points and rays, to which we shall give the
same denominations. It results from the equations by which these
points -and rays are determined, that if the focus of an osculating
system be placed at a principal focus of a given system, the oscula-
tion of the second order will be most complete, since it will be inde-
pendent of the direction of the plane of osculation (B”); the three
first terms of the two developments 1n the eleventh number, namely,

W+ 3W 4 42w,
W IW 4+ 33w,

becoming equal, independently of the ratios of d«, 33, 3y. The prin-
cipal foci of an optical system possess many other remarkable proper-
ties, some of which we shall indicate in the course of the present sup-
plement.
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On Osculating Spheroids and Surfaces of Constant Action.

15. To develope one of the properties of the principal foci and
principal rays of an optical system, we must introduce the considera-
tion of osculating spheroids, and surfaces of constant action. The
characteristic function ¥, the mode of dependence of which upon the
coordinates z, y, 2, distinguishes any one system of rays from any
other, having the same kind of light and contained in the same me-
dium, is equal, as we have seen; to'the definite integral fvds, that is
to the action of the light, taken from the luminous origin of the
system to the point z, y, z; the word action being used in the same
sense as in that known law, which is called the law of least action.
We may therefore give the name of surfaces of constant action, to that
series of surfaces for each of which the characteristic function V is
equal to some constant quantity, and which have for their differential
equation,

> 3
3V=0=£3x+}£-3y+%32. Uy

In like manner, if we denote by V"’ the analogous characteristic
function of one of those focal systems considered in the eleventh
number, which have their light of the same kind and in the same
medium, but converging towards or diverging from one focus ; the
general expression of this function ¥’ will be V' = vp 4 const., ¢
being the distance from the focus ; and the differential equation

dug=0=23V (v

will represent a series of surfaces, which are analogous to the surfaces
(U"). In the case of ordinary light, these surfaces (V") dre spheres,

and they may be called in general, spheroids of constant action ; the
VOL. XVI. G
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tocus of the focal system being called the centre of the spheroid. The
general equation of such a spheroid contains four arbitrary constants,
of which three are the coordinates of the centre ; and if we determine
these four constants, by the condition that for some given values of
, Y, %, that is for some given point of a given system, certain first
terms of the development

ViV 4 f 0V 4 ke

may be equal to the corresponding terms of the development
V4120 + &,

the spheroid thus determined will be an osculating spheroid, to the
surface of constant action which passes through the given point of
the system. The conditions

V=V, =237, (W)

may be satisfied independently of the ratios of 3z, 3y, 3z, by taking
the centre of the spheroid any where upon the given ray, that is, by
establishing between the three coordinates of this centre the two
equations of the ray, and by assigning a proper value to the other
arbitrary constant ; there still remains therefore, after satisfying the
conditions (/¥"), an arbitrary parameter depending on the position of
the centre, which we may determine by the equation,
1V =3V, (X"

assigning any arbitrary ratios to the three variations dz, dy, 3z, or
rather any value to the one ratio

P —ake
vy — 8’

because, by the relations (H),

v ) 40 (em 20) (v ) + B (o2,
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so that the condition (X”) may be thus written:

o= (3 - 3) (o2 43— 20 (o) (o= £)
(3“ 14 3’V) ()y—-——)z) (Y"

or, by a further transformation,
0=(—:—. ;—} ')(3::—-—3: +2(— ’_’2 %)(3:—%32)(33,——5—3:)

+ (?. - 37) (v—22) ()

¢ being here the distance of the point 2 y 3 upon the ray, beyond the
centre of the spheroid. This equation (2”) contains the law of oscu-
lation of the spheroid, since it expresses the dependence of the dis-
tance ¢ on the direction of the plane passing through the ray and
through the consecutive point # + 3z, y + dy, 5 + 82. We shall
call this plane the plane of osculation of the spheroid ; and we see,
by comparing (Z") with (C"), that the extreme values of ¢ corres-
pond to those directions of the plane of osculation in which it touches
the developable pencils ; while the corresponding extreme positions of
the centre of the osculating spheroid, are contained upon the caustic
surfaces. And when the ray is one of those principal rays deter-
mined in the preceding number, it is easy to prove that the equation
(Z") is satisfied independently of the ratios of the differentials, if we
assign to ¢ the value which belongs to the principal focus ; the prin-
pal foci are therefore the centres of spheroids, which have complete
contact of the second order with the surfaces of constant action.
The equations which express this property of the principal foci are

G 2



LI L 4
’7’ — hg 2 5

of which any three include the rest ; they may also be thus written,

1 = 1 _ 1 ¥ ¥V
t T g TR Iy > ¢ W T W’ z
¢ ¢

1V ¥V _»ny »v 4

I T I TWT T W Tt =%
*V_ ¥V BV ¥V By ¥V
Sxdy ady * Wz T Wk’ RIx . oxdx

(B”)

and may be summed up in the one equation (X”), by considering
az, dy, oz, as independent. With respect to those rays which are
not the principal rays of the system, and for which the equation (X")
can only be satisfied by assigning some particular value to the ratio

§z — adz
vy — A% '

that is some particular position to the plane of osculation of the sphe-
roid, we find, by reasonings similar to those of the twelfth number,
the following law of osculation :

1 1

@ ¢ _ gy fein (d—.)\?,
:l : _Z _—_———-—sin. (\J/‘——\L)) : (Cm)

—— —— —

¢ e

g, €. being the extreme values of ¢; ¥, ¥,, the corresponding
values of the angle v, comprised between the plane of osculation and
any fixed plane that passes through the ray; and the coefficient £
being independent of ¢ and ¢, and having the same meaning as
before. The formula (C”) may be written in the following manner :

er—¢ ¢ (Si!l- ($2—¥)/ ° (o)
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in this kind of osculation, therefore, as in the former, the distances of
the variable focus or centre from the points where the ray touches
the two caustic surfaces, are proportional to the squares of the sines
of the angles which the plane of osculation makes with the tangent
planes to the developable pencils.

On Osculating Focal Reflectors or Refractors.

16. Besides the two preceding kinds of osculation, it is interest-
ing to consider a third kind, which exists between the last reflecting
or refracting surface, and certain other surfaces, which would have
reflected or refracted to or from one focus the rays of the last incident
system, and which we shall therefore call focal reflectors or refrac-
tors. Let V,, V,, denote, as in the sixth number, any two succes-
sive forms of the characteristic function ¥, of which we shall suppose
that V, belongs to the system in its given state, and 7, to the same
system before its last reflexion or refraction; then, by the number
cited, the equation ¥V, — ¥, = 0, will be a form for the equation of
the reflector or refractor, at which the state of the system was last
changed, and which we shall consider as known. Let V7, be the
form which ¥, would have, if the rays of the final system all con-
verged to or diverged from one focus, this form being such as was
assigned in the fifteenth number, and depending only on the nature-
of the light and of the final medium, but involving four arbitrary con-
stants, of which three are the coordinates of the focus; then it is easy
to prove that the equation with four arbitrary constants, of the focal
surface, which would have reflected or refracted to or from one focus
the rays of the last incident system, is

V,— ¥, =0. (E™)
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We may determine the four arbitrary constants of 77, in this equa-
tion, by the condition that the focal reflector or refractor shall touch
the given reflector or refractor at a given point, and osculate in a
given direction. The condition of contact, of the first order, is ex-
pressed by the equations

V3=V’a, ’Vg=:V'¢, (Fm)

and may be satisfied by establishing between the three coordinates of
the focus the two equations of the ray, and by assigning a proper
value to the remaining arbitrary constant; and the position of the
focus upon the given ray, may be determined by the condition of os-
culation in the given direction, which 1s expressed by the equation

:’ Vz -— :ZV,‘ » (Gm)

assigning the given ratios to the variations dz, dy, 3. This equation
(G™) being the same with that marked (X") in the foregoing num-
ber, we can deduce from it the same consequences; the osculation
therefore between the focal surface (E”) and the given reflector or
refractor, follows the same law as the osculation between the spheroid of
constant action (V") and the given surface (U”) for which the function
¥ is constant ; in such a manner that the focus of the focal reflector or
refractor coincides with the centre of the spheroid, if the point of
contact, and the plane of osculation be the same. The distances
therefore of the focus of the focal reflector or refractor from the
points in which the ray touches the two caustic surfaces, are propor-
tional to the squares of the sines of the angles which the plane of
osculation makes with the tangent planes to the two developable
pencils. And when the ray is one of those principal rays, assigned
in the fourteenth number, (the focus of the focal surface being at the
principal focus corresponding,) then the contact of the second order
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is most complete, and the two reflectors or refractors osculate to each
other in all directions.

On Foci by Projection, and Virtual Foci.

17. Another kind of focus, of which the law is similar, though
not the same, may be deduced in the following manner.  If we con-
ceive a plane passing through a given ray of a given optical system,
and through a point infinitely near to this given ray ; the ray which
passes through the near point may be projected on the plane, and the
intersection of its projection with the given ray may be called a
Jfocus by projection. Suppose, to simplify the first calculations, that
the given ray is the axis of z, and that the infinitely near point is con-
tained in the plane of & ¥ ; its coordinates in this plane being denoted
by 32, 3y, and the cosines of the angles which the near ray makes
with the axes of £ and y, being 3z, 33: then, if we denote the gene-
ral coordinates of this near ray by x,, ¥, %,, its equations may be thus
written,

z, = 3 4 2w Yy =3y + 228, (H")

and the connexions between 3z, 3y, da, 33, will be expressed by the
two following conditions:

b 3% &, P )
e e R Al s K R -
'l 4 >y o, )

which are obtained by differentiating (C) and making 3z = 0, dy = 0.
The equation of the plané on which the near ray (H™) is to be
projected. may be put under the form

LTI 2 (K™)

.
-
2

£, = &
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and 1f p be the vertical ordinate of the focus by projection, the equa-
tion of the projecting plane is

yy—3—z38 _ -+ p
g, =3 —zdx = é+4 pia

)

p being determined by the condition that the two planes (K™) (L"),
shall be perpendicular to each other, which gives

1 dxdx < I8 (M)

P o0t 4 ¥y

In general, whatever arbitrary position we assign to the rectangu-
lar axes, if we represent by & + ap, y + Bp, 5 + yp, the coordi-
nates of the focus by projection, those of the given point being z, v, z,
and those of the near point # 4 32, y + dy, z + 3z, we shall find,

by a similar process,

1 _ 2 408 430 e daly 4 B )

TP T Twr g W W T W foy re — (wz+ By £ vy’

3z, 3y, 3%, having the same meanings as in the fifth number. And
since the equations (C) give, by differentiation and elimination,

W | W o | W
v = (3* T % +77) *—(F Y tiam? 3y +3¢3'y )

3 v b 4 b 3’1: 3V
""’“(a.t + SE* + 3—7'")’ W (37,3’ ﬁ"" % ay + apa,, =) hom

=+t 57w~ (3w T Gt w )
and therefore
v"(wx+w+mz)_( +,p 3")w_(.w LAY 35,;;’

W o
+¥ YY), (P)
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we find, finally,

3 V., @
(az'=+3w+az'=)-—a Yy _+3,y- 324.35-3 5%
v’ being the same function as before. It results from this equation
(Q") or from (M) and (I"") that when the given ray is taken for
the axis of 2 we shall have

W (Y BV e T Y A T 1 .
"(mm; 7 5) oo 1+ (535 gy — 5ar 57) (0 )

+ { ,? V) z;;; 346_’)} sin, II cos. IT, (R™)

if we put 3y = dz tan. II, so that IT denotes the angle which the
plane of projection makes with the plane of #z. Differentiating (R")
for IT only, we find that the values of this angle which correspond to

the extreme positions of the focus by projection are determined by
the condition

Yo ¥V o 2y 3 W RV NV (3w .
%7 5T T e gpv) W20 —m‘s(a? ) REAYE +W) (57)

the planes of extreme projection, that is, the planes which correspond
to the extreme values of p, are therefore perpendicular to each other ;
and if we suppose them taken for the planes of zz, yz, and denote by
P> ps, the corresponding values of p, we shall have

1] 2 3 2 3

0 = g (357 + :TV) ;.r;;(s—- + )

! 30 3P % 3V v 30 3V 3w BV

_.—___..—-

T ¥ ddy T 3T Wt P, T e dzdy Mt 3y
VOL. XVI. y: 4

(Tll/ )
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and finally the dependence of p upon II, that is, the law of the focus
by projection will be expressed by the following formula:
—;— = -i- (cos. TI)® + '171: (sin. TT)* . (U™
When the given ray is one of those principal rays determined In
the foregoing numbers, the angle II disappears from this formula,
and all the foci by projection coincide in the principal focus, the
condition (§”) being at the same time identically satisfied, and fail-
ing to determine the planes of extreme projection: but in general
these planes can be determined by that condition, and have a remark-
able connexion with the tangent planes to the developable pencils,
which can be deduced from the equation (E') of the ninth number,
, 30 BV B 14
& o 3 P =3 5% 3 =
For, when we suppose ¥ = O, dy = Oz tan. II, we find from this
equation (L’) the following quadratic equation to determine the two
values of tan. IT corresponding to the tangent planes of the two deve-
lopable pencils :

v 3V I 3’7 3‘7 v *V
=t Wy T 3R % + (5 — 5% 5ay) o1

+ (’z” >y ;;f 27) tan. 1 ()

and if the first condition (T"") be satisfied, that is, if the planes of
extreme projection be taken for the planes of #z, yz, the product of
the two values of Zan. II determined by this quadratic will be unity ;
the tangent planes to the developable pencils are therefore symmetri-
cally situated with respect to the planes of extreme projection, the
bisectors of the angles formed by the one pair of planes bisecting also
the angles of the other pair. The tangent planes to the developable
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pencils are not always perpendicular to each other, and therefore are
not always fit to be taken for rectangular coordinate planes, however
remarkable they may be in other respocts ; but the planes of extreme
projection, determined in the present number, possess this important
property, and may be considered as furnishing for any given straight
ray of an optical system, ordinary or extraordinary, (except the prin-
cipal rays,) two natural coordihate planes, which contain the given
ray, and are perpendicular to each other. And whenever the deve-
lopable pencils are also perpendicular to each other, the tangent
planes to these pencils will coincide with the planes of extreme pro-
jection, and the extreme foci by projection will be contained upen
the caustic surfaces. This perpendicularity of the developable pen-
cils requires that there should exist a series of surfaces perpendicular
to the rays of the system, and having for their differential equation

«dr 4+ By + w2 =0; (W)

and reciprocally when this equation is integrable, the perpendicu-
larity here spoken of, exists, and we shall say that tke system is rec-
tangular. This condition is satisfied in the case of ordinary systems,
because, for such systems, the differential equation (U"”) of the sur-
faces of constant action becomes
SV =m (adz + BY + 432) =0,

and consequently coincides with the equation (#"), m having the
same meaning as in the thirteenth number ; the rays of an ordi-
nary system are therefore perpendicular to the surfaces for which
the function ¥V is constant, and their planes of extreme projection
are touched by the developable pencils. We may also remark that
for such systems £ = 1, and the osculating foci coincide with the
foci by projection.

18. There is yet another kind of foci which we shall call Virtual
Foci, and which it may be interesting to consider, because they con-

a2
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duct to the same pair of natural coordinate planes as those which we
have deduced in the foregoing number, and because they furnish new
applications of the characteristic functions of the system. By a virtual
Jocus of a given ray, we shall understand a point in which it is nearest
to an infinitely near ray of the system. To explain this more fully,
let us observe, that if we establish any arbitrary relation between
@, B, ¥, distinct from the relation &* + 8* + 9° = 1, we shall obtain
some corresponding relation between

3V vV ¥

EJ )7, ‘a_z' ’
by eliminating , 3, 7, between the equations (C) ; the result of this
elimination, which we may represent by

F denoting an arbitrary function, will be the equation of a pencil,
that is of a surface of right lines, composed by rays of the system :
and unless this surface be one of the developable pencils deter-
mined in the ninth number, the rays of which it is composed will
not intersect consecutively, so that there will be only a virtual inter-
section, or nearest approach, even between two infinitely near rays.
To find the coordinates of this virtual intersection, we are to seek the
minimum of 3z* + 3y* 4+ 32%, or of 3x'* + Y™ + 32, corresponding to
given values of , 3, ¥, 3,33, dy. Now if we putr = ax + By + yz,
we shall have

=1z 4 «, y=y,+F Br, 2= z, 4 o1,

dr =z, 4 duer, Jy= 2y, + d8r, 32 = ¥z, -} 31, } X)

and therefore

¥ =138+ ¥y, — B8 (adz, + By, + »3,),
3 = rdy + 3z, — v (ad3, + BYy, + ¥%2),

3 = 1l o dx,— & (32,4 B, + 71,
(Y/u)
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.5 Ys, %, and 07, 3y, 37, having the same meanings as before ; and
the condition of minimum gives

_ 33‘3.1", 4 3,83_1/, -+ 3732, Z")
TT T W F 48 ¢

which may also be thus written
0 =dz’ 4 3Ry + 3pdz' = dadz 4 28y + dodz: (AY)

or, by the foregoing number,
Fv & Fv b 1 4 v IV v 3V .
(};.-+W+W)azv=a’§:3$+x$as§+yga§. (BY

Another transformation of this condition, which shall involve the
function W instead of ¥, may be obtained in the following manner.
Let 7, be the form which the characteristic function /¥ would have,
for a system of rays of the same light and in the same medium, but
all converging towards or diverging from the one point @,, ., %; s0
that, by the theory already given,

W, & ¥ ¥
¥ =22 r‘: +!I)gg'”p+’,3 rgv:
W, _ b Fv b .
a—y’g—_z‘)m-{-yﬁw-fz)a—ég, (C)
W, _ v *v S

then, by differentiating the equations (G"), and attending to the for-
mule (Y"), we find

3(Wa:- W) = ;—:::—(Bx' — rda) +§;3()y’._,ap) + ;:_Tv‘y()z/_r}y)’
a(W— W,) B’u y.u a,v
I = O — rde) o g O — )4 g (O — 1),
) m( rda) + 3}3:(3" T )+rp;;( r o
M_a:_.ni)_ = 3-3—3’—7(31’ —r)a) + ;;_..;; (%’—r)ﬁ)-{-%(&'——rly),

0=@a2x! — 1)+ BQY —1rd) + + (3 —rdy);
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and therefore

" W —w) \
o ' — rd) = (V‘* wt w)’—z.‘-*

{3* 32w —w) ) 3V 3(W—— —W) . Yo, 3F—W)
- ) SH +W ’I "’T‘}’
3(W—

v”()y’—raﬁ)=('§-+'ﬁr+w))—rL
_ {373 _aﬁa_“W)_F 3(W-—W)+ gW- }
un(az'_ra,,)z(}‘— + 3 +$,—))

yIF W)  Fv JUW—W) ¥v 3(W.—W,)
{3«_31 P T e e X

By these equations the condition (4*), may be transformed into
the following :
ol Ot 4 3 + 3% + (,ﬁ; + ;’T'; + %,‘L) *W—w) =
Iw—w)
PR

(E*)

~

3(”’-‘*”’,)

y I —w)

M"'_W)__i_a —-—3,9—'_'*"%3

& = (F*)

To find the geometrical law expressed by this last formula, let us
take the given ray for the axis of z, and let us choose the planes of
32, Y2, in such a manner that the bisectors of their angles shall bisect
also the angles formed by the developable pencils; we shall then

have, by the fourteenth number, E = E”, that is

W ¥W > .
sas (5 + 3% Tp (,“, + 31 ) (64)
and the formula (F*) will become

by (POVW _ Vo XWY 3 Yo FW ¥ 3WY  * -
vr= (i35 — % 32) o + (s — 5or 30 o ()

or finally

r =17, (cos. w)*® + r, (sin. w)?, (I



when we put

Yo W o PW Yo OW Yo ¥W . _ .
0”1‘1= 343# a“’ﬁ ———— 3‘32 32 N U"i’z=ww — }_.T —&T,aﬁ_axtan.u. (K‘)

 being the angle which the plane passing through the given ray and
parallel to the near ray makes with the plane of 22; and », r, being
the extreme values of r.

The equation (I*) expresses in a simple manner the law of the
virtual focus. It shews that the extreme positions of that focus cor-
respond to the same pair of natural coordinate planes, passing through
the given ray, which we considered in the preceding number, and
which we may therefore call the planes of extreme virtual foci, as
well as the planes of extreme projection. Indeed, when the given ray
is one of the principal rays of the system, assigned in the fourteenth
number, then all the virtual foci, as well as all the other foci hitherto
considered, coincide in the principal focus: and the planes of extreme
virtual foci become, in this case, indeterminate. However, we shall
shew that their place is then supplied by another remarkable pair of
planes, which pass through the principal ray, and complete the sys-
tem of natural coordinates: but for this. purpose it is necessary to
enter briefly on the theory of aberration from a principal focus, which
we shall do in the following number.

Aberrations from a Principal Focus.

19. If we conceive a plane cutting a given ray perpendicularly at
a given point, this plane will be nearly perpendicular to the near
rays, and will cut those rays in points near to the given point : the
distances of these near points from the given point, are the lateral
aberrations of the near rays, and the cutting plane may be called
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the plane of aberration. Let z, y, 2, be the coordinates of the
given point, and r 4 Az, y + Ay, z + Az, the coordinates of the
point in which a near ray is cut by the plane of aberration, A being
here the mark of a finite difference ; we shall have the condition

0 = aAz + pAY +yAzZ, ¢ 4]

« 3 y being the cosines of the angles which the given ray makes with
the axes of #, ¥, z: and if we determine the successive differentials
of , y, z, with reference to «, 8, ¥, by differentiating the equations
(C) or (K) as if &, B, y, were three independent variables, and by
putting ,

0 = adz 4 83y + %32,

0 = ad%z 4 B3y -} 49z, o)
0= ad’z + 133’.1/'1'73’2.-
&c.

we shall have

ay=[%] + 1 [y] + & [Pyl + & (NY)

ar= (0] + § (2] + - L (] + &e.
az=[3] 4 3[3z] + 2 [82] + &e. }

the expressions [dz], [#z], &c., being formed from dz, é*z, &c., by
changing the differentials 3, 38, 3y, to the finite differences Ax, AB,
Ay: and finally, the lateral aberration of the near ray will have for
expresssion

vV (az2) + (ay)* + (ar)*.

Let us apply this general theory to the case when the ray from
which the aberrations are measured, is a principal ray of the system:
and in order to simplify the calculations, let us take this ray for the
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axis of 2, and the principal focus for origin. Then if we neglect the
squares and products of Az, AB, we find by the preceding theory,

aAt=gra, ay=¢aB, 8z=0, (0%

¢ being the distance from the principal focus to the plane of aberra-
tion ; if, therefore, we suppose this distance g to be unity, and repre-
sent by a, b, the corresponding values of Aa, AB, we shall have,

Aa=a, a8=1b; (PY

and if we take the principal focus for origin, the coordinates of the
point in which the near ray intersects the plane of aberration will be
a, b, 1. If now we conceive another plane of aberration, perpendi-
cular to the principal ray and passing through the principal focus,
we shall have, for this new plane, ¢ = 0, and the expressions (0*) for
the components of aberration vanish : in this case, therefore, it 1s
necessary to carry the approximation farther, and take account of
terms of the second dimension, in the variations of &, 8, . For this
purpose we may differentiate twice successively the equations (K),
as if «, 3, 9, were independent, making after the differentiations,
z, y, 3, dz, 3y, 3z, &'z, each = 0, and changing 3=, 83, 3y, &'z, &'y,
to Ae, AB, Ay, 2 Az, 2 Ay. In this manner we find

. W 3 ¥
i[) 77:]:3;_: Az+3:§3-Ayz
3%y

Q‘
1 3’2 ?_Z = e A't'l‘ a_z”. A S ( )
z % 3a38 T 2V
in which we may put
W _BW ¥ W,
*w (B%)

wT _ ew 4
[ )=sme om0

VOL. XVI. b 4
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changing A, AB, to their expressions (P*), and observing that the
general relation (¢ + A«)' + (8 + AB)? + (¥ + Ay)* = a* + B*
+ 9* = 1, gives here 0 = 2 Ay + (Aa)* + (AB)* + (Ay)?, so that
the terms AzAy, ABAy, Ay*, in the developments of

w LW

[»%] [»%
may be neglected, as being of the third dimension. And if, for fur-
ther abridgment, we put z, y, instead of Az, Ay, in the equations
(Q*) to denote the coordinates of the intersection of the near ray with

the plane of a4y, that is, with the plane of aberration passing through
the principal focus, and denote the partial differential coefficients

W W BPW  PW
3’ 3;')3’ ’aﬁ"’ "3 »

by 4, B, C, D, we shall have
x-;—:f—+y:%;=4(a¢=+~23¢+05*), -
= a3+ Y3y = 4 (Be* +2 Cab + DY), %
and by elimination,
20"1—(AF—BW)41 +2(B$E;—C’—'—‘Tab
+(€ sr«*”m)"
2vy=(Bys—1 3-‘-3-) +2(c

v

+(Da CWb

Y 3w (T4

3’_B_§ﬁab

" having the same meaning as before.
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Natural Azes of a System.

20. The equations, (8*) or (T*), express the connexion between
the coordinates z, y, of the intersection of a near ray with the plane
of aberration passing through the principal focus, and the coordinates
a, b, of the intersection of the same near ray with another plane of
aberration, parallel to the former, and at a distance from it equal to
unity: they serve therefore to resolve the questions that have reference
to this connexion. The most interesting questions of this kind, are
those which relate to the comparative condensation of the near rays,
in crossing the two planes of aberration. Let us therefore consider

an infinitely small rectangle 32.3b on the plane of a, b, having for the
coordinates of its four corners,

Ita b; 11 a + 3a,b; 1114 a, b 4 3b; IVt g - 3a, b -} 35:

the rays which pass inside this little rectangle, will, at the plane of

zy, be diffused over a little parallelogram, of which the coordinates of
the corners are

P,y T00e 4 0,y 20 I 5 4 B 20y 4 W
IV 32 2 3200y o 3 20 4 L
the partial differential coefficients

being obtained by differentiating the equations (S*), or (7*). The
area of the parallelogram on the plane of 2y is

i ¥y Yy .
N )w

2
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1ts ratio to the rectangle dadb, is therefore expressed by

%z dy 3z Yy,
* (mw =)

and by the equations (T*), or (S*),

o 3y _ M ;
Sa % % %= @9
if we put
M' = (Aa 4 Bb) (Ca + Db)~— (Ba + Cb)?. )

The smaller the quantity M” is, the more will the rays which
pass through the little rectangle 3adb, be condensed at the principal
focus ; so that the curves upon the plane of a@,b, which have for
equation

M" = const, (W*)

may be called lines of uniform condensation : and we see, by (V*),
that these curves will be ellipses or hyperbolas, ac¢ording as N” is
positive or negative, if we put for abridgment,

(B? — AC) (C* — BD) — 4 (4D — BC)* = N!. (X*

These elliptic or hyperbolic curves are all concentric and similar,
and their axes are all contained on the same. pair of indefinite nght
lines, which are perpendicular to each other and to the given ray ;
and the planes which pass through the ray, and through these axes
of the lines (W*), will coincide with the planes of 4z, yz, if the fol-
lowing condition be satisfied :

AD—BC=0, (Y4

that 1s,

PW VW _ ¥ PW \
W % e ()]
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This condition is independent of the magnitude of the unit of
distance, by which we have supposed the two planes of aberration to
be separated: there are therefore an infinite number of systems of
ellipses or hyberbolas, similar to the system (¥¥*), and all having
their axes contained in the same pair of rectangular planes, which
pass through the principal ray : and it is natural to take these planes
for the planes of 2z, yz, the plane of xy being still the same plane
of aberration as before. And thus, the intersections of these three
rectangular planes, may be considered as furnishing, in general,
three natural axes of an optical system, which are perpendicular each
to each, and cross in the principal focus. These natural axes possess
many other properties, of which we hope to treat hereafter; but in
the foregoing remarks we have only aimed to shew, by some selected
instances, the possibility of deducing the geometrical properties of
optical systems of rays, from the fundamental formula (4),

3 3 3
6‘jvds=6%3.v+%3y+ r;’;z,

with the assistance of the characteristic funetion ¥, and of the con-
nected function /¥: and believing that this object has been accom-
plished, we shall conclude the present Supplement.
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