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INTRODUCTION. 

THE present supplement contains some developments of a view of 

Mathematical Optics, which was proposed by me in the foregoing 
volume of' the Transactions of this Academy. According to that 

view, the geometrical properties of an optical system of rays, whether 

straight or curved, whether ordinary or extraordinary, may be 

deduced by analytic methods, from one fundamental formula, and one 

characteristic function : the formula being an expression for the vari- 

ation which the definite integral, called action, receives, when the 

coordinates of its limits vary ; and the characteristic function being 

this integral itself, considered as depending on those coordinates. 

Although this view was stated, and the formula announced, in the 

Table of Contents prefixed to my preceding Memoir, yet the demon- 

stration was not given in the part already published, except for the 
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Systems produced by the ordinary reflection of light ; it has there 

fore been thought advisable to give in the present Supplement, the 

general demonstration of the formula, and some of its general conse 

quences. The demonstration is founded on the principles of the 

calculus of variations, and on the known optical principle of least 

action. The result deduced from these principles, is, that the co 

efficients of the variations of the final coordinates, in the variation of 

the integral called action, are equal to the coefficients of the varia 

tions of the cosines of the angles which the element of the ray makes 

with the axes of coordinates, in the variation of a certain homoge 
neous function of those cosines : this homogeneous function, which is 

of the first dimension, being equal to the multiplier of the element of 

the ray under the integral sign, and therefore to the velocity of that 

element, estimated on the hypothesis of emission. It was proposed, 
in my former Memoir, to call this result the principle of constant 

action : partly to mark its connexion with the known law of least 

action, and partly because it gives immediately the differential equa 
tion of that important class of surfaces, which, on the hypothesis of 

undulation are called waves, and which, on the hypothesis of molecu 

lar emission may be named surfaces of constant action. But in the 

present Supplement, it is proposed to designate the fundamental for-. 

mula by the less hypothetical name of the Equation of the Characte 

ristic Function because, whatever may be the nature of light, the 

definite integral in this equation is, as we have before observed, a 

function of the coordinates of its limits, on the analytic form of 
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which function the properties of the system depend. In the applica 

tions of this formula, to systems of straight rays, ordinary or extra 

ordinary, it is advantageous to introduce the consideration of a 

characteristic function of another kind, depending on the direction 

rather than on the coordinates of the ray, but connected with the 

former function, and with the geometrical properties of the system, 

by relations which form the chief subject of the present Memoir. 

The theory of these relations, from the generality of its nature, will, 

perhaps, be interesting to Mathematicians: I am aware that it admits 

of being much farther extended, and that much remains to be done, 

in order to render it practically useful. 

WILLIAM R. HAMILTON. 

OBSERVATORY, april, 1830. 



SUPPLEMENT, 

&c. &c. 

FUNDAMENTAL FORMULA OF OPTICAL SYSTEMS. OR EQUATION OF THE 
CHARACTERISTIC FUNCTION, 

1. Tit E fundamental formula that we shall employ in our inves 

tigations respecting the geometrical properties of optical systems of 

rays, straight or curved, ordinary or extraordinary, which, after issu 

ing from any luminous origin, have been any number of times 

reflected and refracted by any combination of media, according to 

any laws compatible with the known condition of least action, is the 

following : 
3v 3v 

3jvds   373  ry 
3z. (A 

In this equation, x, y, z, are the coordinates of any point of the sys 
tem, referred to three rectangular axes ; a, (3, 7, are the cosines of 
the angles which the tangent to the ray at that point, or the direc 

tion of the element ds, makes with the axes of coordinates ; v is the 

quantity which in the hypothesis of molecular emission represents 
the velocity of this element, and is supposed to be in general a func 
tion of the six quantities, x, y, z, cc, g, 71 depending on the nature of 
the medium, and involving also the colour of the light; the partial 
differential coefficients, 

av )v 



are obtained by putting v under the form of a homogeneous function 
of a, 13, 7, of the first dimension, with the help of the relation 

  1, and by then differentiating this homogeneous 
function, as if a, g, v, were three independent variables ; finally, the 

definite integral f vds is taken from the luminous origin to the point 
x, y, 2., and the variation 8f yds is obtained by supposing the co 
ordinates of this last point to receive any infinitely small changes, 
the colour remaining the same. 

2. To deduce the equation (A from the known condition of least 

action, let us observe that by the calculus of variations, 

vds =f(3v. ds .v.3ds ; 

in which, by what we have laid down respecting the form of v, 

)r av )1, h av 3v  vs: 3x  
-4-3y yz-3z ?a  3/3 Fy 3y, 

3v 3v 3v 
v=43-;+AF1+14,7; 

while, by the nature of a, is, 

ds 4.)de  3. ads  ).dx d. 3x, 

319.ds -1 13. Ms 3.Ads  2. dy  d. 

h. di  y. 3d: =O. yds =2. dx  d. z; 

we have therefore, 

Vvdt t 3x 4. 34 3y  1: 3z 
de  f ();-; 

dIr d3y + ons 
h'3v h' Iv'  

373 3y --FAN 
32 3z 

)1, 
 AT  

ds 
dt -1.13y (t 

 3z 
(}1 

de  

the accented quantities belonging to the first limit of integral, and 

disappearing when that limit is fixed. The condition of least action 

requires that the quantities which remain under the integral sign, as 



coefficients of ex, y, ez, should also vanish, and furnishes thereby 
the following general differential equations of a ray, 

h 3v 3v , 3v 3v , , 3v 
rz: us  .27; , 

3--y 
us  

fp 5-z us  u, (B 

of which any two include the third. And rejecting the evanescent 

quantities in the expression for efvds, we find the formula (A), 
which it was required to demonstrate. 

3. The fundamental formula thus obtained, resolves itself into 

the three following equations : 

31vds v fvds h 3 fvds 3v 
' 

which we shall thus write ; 

w 3v 3V 3v 3/1 3v 
ri-V'Fi=37;' (C 

representing, for abridgment, the definite integral lvds by V, and 

considering this integral as a function of x, y, z, of which the form 

depends upon the nature of the system, the medium, and the light, 
and of which the partial differential coefficients of the first order are 

denoted by 
3V 3V 3V 
-s 

  

When the form of V is given, we can obtain these coefficients by 
differentiation ; and if we know also the form of v, which depends 
only on the nature of the medium and of the light, we can by the 

equations (C determine a, 1,7, as functions of x, y, z ; that is, we 
can find the direction of the ray or rays passing through anK pro 
posed point of the system. The geometrical properties of one system 
as distinguished from another, for any given medium and any given 
kind of light, may therefore be deduced by analytic reasonings from 
the form of the function V ; on which account we shall call this 
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function V, the characteristic function of the system ; and the funda 
mental formula (A), that expresses its variation, namely : 

3V r.t. ail-3x  iiia 3y  ti 
3z , 

we shall call the equation of the characteristic function. 

Other Characteristic Function for Systems of Straight Rays. 

4. In the remaining reasonings of the present Supplement, we 

shall confine ourselves to the consideration of homogeneous systems 
of straight rays not parallel ; and in investigating the properties of 

such systems, it will be useful to employ another function, connected 

with the function V by many remarkable relations. This new func 

tion, which we shall call IV, is determined by the condition : 

h 3v 3v 
W V=x;-;+yai-7-3 +za-v (D 

which gives, on account of (A , or (C), 
3v 3v SD ;W  x3 3-7, 4. 0 ,731 

4 
3--; 

It results from this differential equation (E (in which we employ 
the sign of variation 6' to mark the connexion with the definite 

integral f vds, a remark which applies to the whole of the present 

Supplement, that if the variations of x, y, z, be such as to leave 

a, ig, V, and consequently 
h )t, h 

unchanged that is, if we pass from any one point of the system to 

any other point situated upon the same ray, the function W will not 

vary. We may, therefore, consider W as a function of a, g, 712 of 

which the form can be determined from that of V, by eliminating 

x, y, z, between the equations (C and (D), when the nature of the 

(E 
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medium and of the light is known. Reciprocally, if the connexion 

between W, a, (3, y, be given, that which exists between V, x, y, z, 

can be found. For if we suppose that for the sake of symmetry, W 

has been put under the form of a homogeneous function of the 

dimension i, by the help of the relation e  0.  7  12 and then 

differentiated as if a, 0, 7, were three independent variables, we shall 

have, by (E), and by the nature of homogeneous functions, 

)wrv 32v rv 
ye  in 3 : -IT -.2  yaw+z1,-;----ly, 
3TV 12v 32v Vv 
-iii 

 OVA  x  y TAT. 
 z 

ix, 
aw . X21 rv rt; 
V 

 ZWV  X 
-KT;  Y-14;;+z V 

' 

in which we shall for simplicity suppose the dimension i  0 ; and 

eliminating a, is, v, by means of these equations, from that marked. 

CD), we shall deduce the relation between V, x, y, z, from the rela 

tion between W, a, (3, 7. We may therefore consider W as itself a 

characteristic function, which diotinguishea any one homogeneous 

system of straight rays not parallel, from any other such system, com 

posed of light of the same kind, and contained in the same medium. 
It is evident that on some occasions it must be advantageous to attend 

to the function TY instead of V, because V changes in passing from 
one point to another of the same ray, whereas W is constant, when 

the ray and the system are given. On the other hand, in any sud 

den change of the system by reflection or refraction, the function W 

receives a sudden alteration, while the change of V is gradual ; it is 

therefore convenient to employ V instead of TV, in investigating the 

effects of such changes. Accordingly, in the remainder of this 

memoir, we shall consider both these functions, and examine the 

relation between them : and shall begin by investigating the con 

nexions between their partial differential coefficients. 

c 2 
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Connexions between the Partial Differential Coefficients of the two 
Characteristic Functions. 

5. The connexions between these coefficients, are to be obtained 

by differentiating the preceding expressions for 

311 3V ar aw ;Kr airr 
173-' 

and by attending to the homogeneous forms which we have assigned 
to io and W. The dimension of W being supposed  0, we have by 
the nature of homogeneous functions, 

:TV 3W 3W a  v +7 s'w 
=O ; 

3W 32W rgr rg, 
 a ire  7.57  7 

aw rly rw rw  
v 

a 'Y  ; 

aw 32W PW PW 
w lc 

 0; 

2 'Li" " )7.7  13 XV 'Y IA; 
 PW )'W 3'W 33W 

&c. 
We have also, by the homogeneous nature of D, which we have 

put under the form of a function of the first dimension, the following 
relations : 

)1), . IV I IV 4 i; -r re kir -r v  v; 

32v32v Pt; a 17,, A -5-47 +13;  0; 

Pt; Po Pv a 
w rie  1, Tic 

 0; 

Pv , Pv Pv 
a-Kw -r P 7iry  V V 

 0; 

Pt; Pv 33v Pv 
3a2 a vs -1-Aw+y-p@A0001@0; 

BEC. 

(F 

(G 
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These relations give 
3v,  3    0 Es' 57 )7 

and therefore, by (C),, 
3 V 3V 

43-Tx-+Al-ri-4-0--&-- 
0, 

a condition which resolves itself into the three following, 

v 32V 32 V 
-Tar  A -EFT  

32V rr 3W a 
-DT   ; (H 

.,x  1 3   C ; 

and combining these three equations (B with those which are ob 
tained by differentiating (C), we find, 

vil3x, rev  313zV2  t rhiv 3 )3.1 r:y 
3 

;7 la 7. 3 
ato 

I 
r V , 31V h rv a 3v 3 'V 3,0 

 
31V a 3v \ V  

Tyi-r 1:7-47 ri -9; r 

voh,  ()2xV. rays reV ai; vz :7; .734Cx 
a 

3.4 raz.17 3 
Z) 

in which 

 )'V 3'V It a 81V 6' V i'V\' as V W v 12 
8x2 k hay kW 8z2 hax 

and 

 ax (ax  pay  vaz), 
  (.1x  say  14). 

w=ag-v(ar+oy 00; 

so that 

ah'tfaey1-1-73z1=0. 

(I 
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Now, if we differentiate the expressions, 

sly iov v 42 v  x 2 Y. 143 
z 

TO; 
&#18;W 82v (12 V )2V  a, Y z 

3/-iVy 
31F )2V V 
1-17 

 X 
8,--W  9r 

which result from the foregoing number, and put for abridgment, 

UV NV 2 1/1,1 Tic  21,42  ffr, 

atv 
2x. Tx  4. 142,-T. .1 4. 

;;;; 
V 

2x. 
la; 4. az.  

;;;., 
v 

32V 82V 8V 
4372  (12 

WA lc ay (Fs 

2 2 Pe 30 
alp 4. vv." 3,0131 
rto rv 23v  27.2 =1 

37y 

laj. 
.1zs ;2v 

(12v Z 
T1-i2 

;2v )2v 

K 

we find 

 
2 

?via 
 .}?1,  

 311 57t, &#18;y/a wav 
az,a 

5.;_av 

and therefore, by (/). 
3,v h pas w  v" 

(d)2  

)2:: 3;z1:  1 
 

)  )2 k FC 
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,v2 
 ay2aV Vivii)2 )2zY (471)2  2 32V 

RIG (a;; 3x2 574 11" 

 2 
34s;7 ()}73 34.. 4. 2 ..42k (3 771. (3) (L 

in which, without violating the conditions (F), the variations atx, 43, 

4,, may be considered as independent, and which is consequently 

equivalent to six expressions for the six partig differential coefficients 

of W, of the second order. 

These six expressions may be put under the following form : 

)2 W )3V 
zsz 

 X 
yjr3 

32 W )210 
Tyr' 

 X 
)4y 

W &#18;391 rv 33v S v x as3 L22/3 
z 

3424  VII 
o" )1 V 
vi' 42 
VII )2V 
vii3y2. 

' 

vil 32 V 
Vli 3z2 

VI 3 V 
Tx-iy 

vl 2 P. 
TriT ay)Z 

)2 V 
Vli MX; 

1 

3.2v s )2iv 
Y -5/7 

z 
rv Tir A-e-F 

32r, S )2v 
+YW-Ezris 

w rv, s )2v x 
37.75/1 " z 

moxy vil Lais 
)2 W 3ev 311 S 33v 
3-AT 

 x 
371W, Vai;  2 

32W 321 31v S 32v 
4-y; =xi:ray; 

Z 
14111  717 &#18;6.'""W. 

in which 

1e11b1 

(1 asi 12  
321 rv ro \  )2t, (3v\2  

42 kW 42 17 k av2 k "'"T; ' 

and 

Pt,r2v  
32 32 r A 

v 
 

67-0 -T 5;r 

 
(32 

v 32V 31v )2V 32v )2V 32.1 )2V aiv )V 3 2v)2 V 
g7 TTI +57 ;r 4" 2 

%Ts TiF  2 2 
Vra 

These expressions enable us to deduce the partial differential 
coefficients of W, of the second order, from the corresponding diffe 
rentials of V; they may also be employed to deduce the latter from 
the former. For if we put 
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)2W 
 

33v )3'V i 33v 
Ty 

 x le -TY 3,24 -r z 
--r)--:y  

=M, 

)2 W 
 

al.. )371 33v 
IF 

 x 
Ta-73-7  y v.  z 

)13.4  
 N, 

)2 W )3V )31 )3 V 
17 

 
 

X  y 037.  z   p, 

)1Tv f Pt, _j PV _i ... )3V 1 iiu., 
DT 

s'-' 
k 

x 
;aim -1 Y WO -r 4 

Way  
 ivl ' ' 

32W...... i 33v . 31v z 3v 
kj);;; kx0E-27+Y4-72-rv  Tisv) N', 

t W f )3v Pv_ )3V 1 
WC 

'''' 
k 

X Vi..  Y 34-Wii  
z 

WI 
 12 ' ' 

MN  lie2  NP  N's  PM -1)/2  W", 

(M N P  as;  4.7.32v 
32v N v p) 
X2 fra 'm''),19 2  2 Mi 31" 

5a73 

)2V1-v  2 
Nia-17 ris2P32 , a-x-)=S 

we find, by the equations (M), 
VII WU  et,  (N 

and therefore 

asv s' 371, vu.11 ;').T7  S' z'al v"1117 
iaT2 

 
W" 3,62 

 
-TV '" ' TxTi 

--.1 Wu Ifris 
 W' 

)2 V 5' ;2v 'VI N )V ....... 5' 32v v"N'  
3y2 

 
W" )737 

 
Wll ' TyTi FV" TAW 

 
"kW ' (0 

2 V.... Si )271 111 .1 )2V S' 3av OP'  
I )e wit V" 

 
wll ' .... 

har  wu Tyl; 
 

w" ' 

32V 
The coefficients of the form --L72-, may also be. deduced from those 

as w 
of the form -Li- , in the following manner. Differentiating the equa 
tions (K we obtain 

 MIA P3v  
3v 

MU MA N'Xy  (P 

N' ;13  Pay  ; 
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we have also 

0 =cM 1iP vP', 
0   AN  
0 aP  AN' )1P; 

and therefore 

 =CM N 3' I M's' : ;' ), 

  (M N 
13)),LL  N3' 

t +N'-- 

  (M N P 3' 
-Z P(i  ,6.-Tv 

Now, if we put 
V 3V r V  3,T3 Tx  3y3  3z3 

ay 3z 

we shall have 
avav V  4 r ?AV Xyr a, 

and therefore by (Q), 

wqr v (m N 
(3'  (3' t-)1  (317:9)2 

 M 
(a, N(3'- P 

(31-7').1.,)1  2 M' 
(31 (3' 

 N' 
(3 (3' Z  

2 P' 
(31 !s0 t-)1. ; 

an equation in which ar, ay, 3z, are independent, so that it is equi 
valent to six separate expressions, for the six partial differential coef 

ficients of V, of the second order and these expressions may easily 
be shewn to coincide with those marked (0). And on similar prin 

ciples we can investigate the relations between the partial differential 

coefficients of the function V and If, for the third and higher 
orders. 

VOL. XVI. 
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Changes produced by Reflexions or Refractions, Ordinary or 

Extraordinary. 

6. Let us now consider the sudden changes in these partial diffe 

rential coefficients of the characteristic functions of the system, pro 
duced by reflexion or refraction, ordinary or extraordinary. The 

general formula for such changes, is, from the nature of the inte 

gral V, 
A V T.T2  l'i  0, (S 

L2 , being here the symbol of a finite difference, and V V being the 

two successive forms of the function V, before and after reflexion or 

refraction. The condition (AS may be considered as a form of the 

equation of the reflecting or refracting surface ; and if u  o, be any 
other form for the equation of this surface, we may, by introducing 
a multiplier x, differentiate the following formula : 

AV ( Vt  VO A u, (T 

as if the coordinates x, y, z, were three independent variables. Dif 

feretitiating in this manneir the equation (T), and making, after the 

differentiations, ti  o, we find 

W Ir2 A E.  -ai 
 

Tr. 
1;' ;172 W,  A he A  

by -41 
 

4 
Hi &#18;V, )T7 316 A Yi- -1;-- ITL-Ali-' i 

(u 
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ry pr, PV, ru )u 
17' A Tr'  

rpr, )2  

)2V 2V2 )21,2 v, ru  A  S-7-2 77.  A -Er -17 ' 

32  V, 2V1)ti 
UT 

 
4-74 

A 
/WY 

'r 

rv 
379 

(v 

2r/.2 rp, ru &#18;ts Au 
A 

IP; 
-" A 

Tyl-z -;; 4' )7 
)2V 2v1 rv, 32u 3A 3/4 3A 3u 

4iiii=4-ri-1iriA3z3x.' Tr fi- 

The equations marked (U), contain the laws of reflexion and 

refraction, ordinary and extraordinary ; since, when put by means of 
(C under the form 

3v 3o2Sv 1 3u A, g f 
17; 

 , 

3v 3v2 3v1 3`u  A 

3v2 ?v1 32; A  
&#18;vi 

A Vz-' 

(W 

and combined with the relation 04  13: 72,  1, they suffice to 

determine, for any given forms of the functions v v, , and for any 
given directions of the incident ray and of the tangent plane to the 

reflecting or refractiog surface, the cosines c1/4, g , of the angles 
which the reflected or refracted ray makes with the axes of coordi 

nates, and the value of the multiplier x ; observing that the ratio 

(t /32  CO 

os (t  PI (ti" (t 

D 
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is positive in the case of refraction, and negative in that of reflexion. 

The equation (V), when combined with the relations (H), determine 

the six partial differential coefficients of V; of the second order, toge 
ther with the three quantities 

h b 
' 

ay 
' ' 

since they give, for these three latter quantities, the conditions 

, , f&#18;217.1 42 k I A Y;r1 P2 k TXTi 
"1" A 

"Di 
-r" Tadi "1" A 

 AI h 37t3u 
 "7"314  3A a 2 )7,  A2 Fy 4 4Y2 rx et2 /32 rg 4. 72 ri 

0 a, 
(32V, 

32u 
(32V, 

3zu 32 V, 
321 Tryi --r ix-0 

T" A 2 --r 3-Ty  "ir 72 
(Ix Toz 

, 314 3u 3u , 3u 3), h 
-r   a Tx 412 7. vk2 192  

32V, 3tu /32V1 31u/3' V, 31u 
0 x, yrri  zr:ii- -I k vrz-  v;   A 

 Naz 132  7. 3;z1 

in which the trinomial 

, 3u 
 

3 A 
a2 y-r /32 )7): 

3)1 
a2  Az  72 ;:- 

can be determined by the following relation : 

2 fry, 0 . . _ 
(3,v, 

, 
332y2 

U 
 ,y22  r2:2 )4. 2 Urxr  X ru Pi -r 

f 2V1rv 32, \ 2 a 2 2 k 
 F rAuy 

 2/32 v. k 4 A  2 
(3-324--;  A 832,4 

, . - 
 3u 

 2 
 42 }---XA /32 )t  -I a Fr 2 )i v rz 

In a similar manner we can calculate the new values which are 

given, by reflexion or refraction, to the partial differential coefficients 

of V, of the third and higher orders ; and can thence deduce the cor 
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responding changes in the coefficients of the function TV, by means of 

the relations which we have already pointed out, between these two 

characteristic functions ; observing, that while the value of V itself 

is not altered in the act of reflexion or refraction, but only its form 

and its differentials, the value of TV receives a sudden increment, 
which has for expression, 

;V Air  11,6, Fz-  y 2s 
yr;  

ZA 
T.; 

(x :7-r14  y ;ii 
 z N . 

7. By the help of the foregoing formulx, we can compute the 

partial differential coefficients of any given order, of the characteris 

tic functions V and TV, for any homogeneous system of straight rays, 

produced by any finite number of successive reflexions and refractions 

ordinary or extraordinary, when we know the nature of the light and 

of the mediums, and know also the coordinates of the luminous origin 
and the equations of the reflecting or refracting surfaces. To shew 

this more fully, let us observe, that in a system of straight rays di 

verging from a luminous point, and not yet reflected or refracted, v%e 

may put 
x  X  cce , y  Y  Ag , z  Z  fyc , 

g being the distance from the luminous origin X, Y, Z, to any other 

point x, y, z ; and that we have the equations, 

ay a, ay V: t, (x  ...v 5; .4 (y  Y Fis  (z  Z TY ' 
(Z 

4 b 4 
W=X-5--;  Y-fig +Zry, 

from which we can deduce the partial differentials of the functions 

V and TV, in this first state of the system ; those of the second order, 

for example, being given by the following expressions: 

 A 
(Y 
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c pp krY  azr a' 
v 31, Sv 3' IV xat vr zr g-. 

in which the symbols 

have the same meanings as before. Knowing, in this manner, the 
differential coefficients of V, before the first reflexion or refraction, 
we can, by the method of the preceding number, calculate the cor 

responding coefficients of V, and thence of W, immediately after that 

change ; the coefficients of W, thus deduced, will remain the same, 
in passing from the point of first reflexion or refraction to th.e second 

point at which the direction of the ray is altered, and, by the me 

thods of the fifth number, we can deduce from these coefficients of 

Wthe corresponding coefficients of V, immediately before that second 

change ; and SQ proceeding, we can calculate the alterations in the 

partial differentials of the two characteristic functions, produced by 
any finite number of successive reflexions or refractions. 

Connexion of the two Characteristic Functions with the Developable 
Pencils and the Caustic Curves and Surfaces. 

8. Let us now suppose these partial differentials known, and let 
us examine their connexion with the geometrical properties of the 

system. One of the most remarkable of these geometrical properties 
is, that the Rays are in general tangents to two uries of caustic curves, 
which are contained upon two caustic surfaces, and form the aretes de 
rebroussement of two series of developable pencils; that is, two series 
of developable surfaces, composed by rays of the system : a property 
which was first discovered by MA L us, and to which I also had 
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arrived in my own researches, before I was aware of the existence of 

his. To investigate the connexion of these curves and surfaces with 

the characteristic functions V and W, let us consider the conditions 

which must be satisfied, in order that a curve having for coordinates 

x", y",x", should be touched by an infinite nunTher of rays of the sys 
tem. Let y, z, be the coordinates of any point on such a ray, knd 

c its distance from the point of contact a" y" z", in such a manner 
that we may put 

x  x" ac ,Y  yll ,Z  z" , 

and therefore 

e=m(&#18;x-av" ,8 (ay  )yli y +(z -h"): 

we shall then have 

 a (a)x -F A&#18;.y vh  

3y' =yj A (car  lay vh  cap, (A' 
 v (02: /34 10z cay 

Assigning to /11 dli'?..e' the same meahings as in the fifth number, 
And observirig that by the nature of yn et, the variations ad lyt 32" 
are proportional to a, (3, y, so that 

ax"  (.?xff mgy"  Viz"), 
am"  A (ax" Ay" 7W 
az"  v (ale  ph"  

The formula (A' give 

s, ')V s)V 
)7t=C. 

 9 
4-11 

 co  

)1 & 
=ey;:-cav, 

17, having the same meaning as in the fifth number : and these 

(F 
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equations (B' contain the whole theory of the developable pencils 
and of the caustic curves and surfaces. Putting them under the 

form, 

rv 
0=(c ax. -&#18;7r Iht 

o e 2V 

0.(a2r7 
rt, 

c 3xazw)as+(c 

X217 Z212 
w 344 rY C helz 

 
Lay 1 " ' 

yt  0,  

aya. 4)7  " f e 

)2. 

}I" 

14  1 a z . , (CI 
1 

)y)z kay 1 

we find by eliminating the differentials, and attending to the rela 
tions (G), (H), the following quadratic equation 

o evil cS .4 vu, (TY 

which may also be thus transformed, 

o  ev"  cS' W" (E` 

the symbols V', V", W", S, having the same meanings as in the 
fifth number. The form (D'), serves to connect the distance g with 

the function V, and the form (E' with W. By either of these forms, 
we obtain in general two values of g, and therefore two points x" y" z", 
which are the only points wherein the ray can touch a caustic curve : 
and the locus of the points thus obtained, composes the two caustic 

surfaces. The joint equation of these surfaces, in x" y" z", may be 
found by eliminating a, g, 7, between the four following equations: 

x"  x'  a (II Ay" w"), 

Y"  (axll  Ay"  ye' , 
 (ax" igy"  7z"), 

F' 

0  (ax" 8yl  70) vi' (ax" Ay"  7z" S,' W," 

in which SI, WI", are formed from S', W", by changing x, y, z, to 
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XI ,yI, z these latter symbols being abridged expressions for the fol 

lowing quantities, 
x (ax Ay .1. 7z  x 

Y (ax   

z +13y -I  

and being considered as functions of a, g, 7, determined by the con 
ditions 

0  ax, -1 py,  lyz 
&#18;W rv Pv )2V 
-a;. X, are  3", 17-01731 -IF z, lay , 

3 W )'v, rv ai. asiv 
313 

-- XI 1,44 -r y, 313. . z, zely, 
a w r v atv rv 
--);; 

 x I 0:),  Y  iiify  
Z i Tyi ; 

which give, after elimination, 

f rv &#18;2v \W fry 3W, rv W rv v \ fis'  Vi7.61 WIT 1;5 "4 a, -Try -W" ' 

rv rv 
 )1,$ 

rv 
rvyw TATI "T" 4-7 

rv 3W 31V )W re, 3WA 
1044 m ais aiith 

rv W rv W 3*/ 
kav 3V2 -VP 

The equation of the caustic surfaces in x, y, x, may also be de 
duced from the characteristic function W, by eleminating a, g, y, 
between the equations (K and the following 

tv"  0: 

or from the function V, by simply putting 

(K' 

9. The formulm of the preceding number determine by differen 
tiations and eliminations alone, the equation of the two caustic sur 

VOL. XVI. 
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faces ; but when it is required to determine 'also the two series of 

caustic curves contained on these two surfaces, or the two series of 

developable pencils composed by the tangents to these curves, we 

must then have recourse to integration. The differential equation in 

x, y, z, which determines the developable pencils, may be found by 

eliminating g between the formulw marked 09, and may be put 
under any one of the three following forms : 

3v 3V h 3V . . 3  34 4 ;A 3x' 
h . 3V 8v 31 at ....  a, . al ais h )7 ri' 

 
)1 )v )x av 'V  )7 

 
31Y; ' 3 li' 

in which ot, ,e, 7, are considered as given functions of x, y, z, deduced 
from the equations (C). The developable pencils having been thus 

determined, by integrating the equations (LI), the caustic curves will 

be known, because they are the arztes de rebroussement of those pen 
cils ; the caustic curves may also be found by the condition of being 
contained at once on the developable pencils and on the caustic sur 

faces ; or, finally, we may find the differential equations of these 

curves in x", y", z", without reference to the developable pencils, by 

combining with the formulw (P the differential relation, between 

a, 0, 7, which results from the equations (B' and admits of being 

put under any one of the three following forms : 

h av av av v  . a  . r  . a  
a. 4 )/3 act ' 

h h 3v h 3' --. 3   Yq3  
4 z'v .-;.. 4 ' 

 
)i 4 3v h 3' . 3   Y -. 1   
$7; 30& a. k, ' 

(W 
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3v 3v 3v 
ax )A Ts; 

being changed to their expressions (P), or rather to the equivalent 

expressions, 

av ;v 
3' 3 

 M'  Al; 33 PAy (ax  Ay   3 IT , z 

31 3v 
;1 

)7-8 
 MI34 N,3A N,i3v 4 (4x  Ay vz 3 , 

3v ;l r 
 ACIA  P/4  (ax I3y 7z a (Iv, 

from which cox  fyz will disappear, when substituted in the 

equations (M), and in which 

1W,34 A1/313 1)13y  

M1'3z N,31 1c1137  3 

1313z  1Q13/3  P,31,  3 

32v , )2v \ 
-; -r. yfi ze lay 

2v s 32v \ x,3  yi3 sisir z, 373ril 
32v 2v 

(x y,3 z'; . 

(01 

10. A remarkable transformation of the equations (BO, which 

determine, as we have seen, the developable pencils, and the caustic 

curves and surfaces, may be obtained in the following manner. We 

have by (P), 

(N' 

3v ;W 
It 3z  

x3 VI 
1";1-21 yul gx;f3  A 

3.0 

which gives 

c3 /sTaz 
 3 04 4' x"3 ylla 3-a--3278 

zu3 
Ly,e,321' Is 3 

when we substitute for x, y, z, their expressions e  cog, y ge, 
 ye, and attend to the relations (G). And by similar substitu 

tions in the expressions for 

1 2 
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 a d  

the equations (13' become, 

3P, )2V )2V 32V  

3W)2V  )2V , 32v 3   xsi 3 a  3'1 3734 
 , 

3W 32v 32 to 32v 3 
7-4-, 

 
3,7av  

Now, if we conceive another system of rays, composed of the 

same kind of light, and contained in the same medium, but all con 

verging to or diverging from the one point, x", y", x", and represent 

by W', the characteristic function, which, in this new system, cor 

responds to W in the old, we shall have 

, ;211 )2V  il Y" 5T-c3i3 

32v,, )2v  
_j_kits 

3 Fr 32v , 32v 
TY =17-37 )78Y7 
3Wa 32 32V d, )11!.. 3 -C.0 

 XV )1-7v  Y, 1 
Kri3  

z d. 
Lav 

' 

3W1 3' v 32V , )210 3 
-v 

 x"3 
ya--A  y"3  z 3 

)W1 32 v32 v 3   x"3 
Xy j  y"3 -rv -4 z'', 

F.y 44 . 872 

the equations which determine the developable pencils, and the caus 

tic curves and surfaces, may therefore be thus written : 

(W 

(P' 

(q 
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On Osculating Focal Systems. 

11. The equations which we have thus obtained, as transforma 
tions of the formulx (B'), are not only remarkable in an analytic 
view, but contain an interesting geometrical property of the caustic 

surfaces. To explain this property, it is necessary to introduce the 

consideration of osculating systems of rays. Let us therefore con 

ceive a system, placed in the same medium, and composed of the 

same kind of light, as that given system of rays which has W for its 

characteristic function, but converging to or diverging from some One 

point X, Y, Z ; and let us denote by Fr, the corresponding charac 

teristic function of this new system, which becomes equal to the Wi 

of the preceding number, when the point X, Y, Z, coincides with the 

point a", 39", ; then the general expression for this function W' is 

W=X-4-17-+Z--FC, 3'4 (SI 

C being an arbitrary constant ; and the system which thus has W' for 

its characteristic function, we shall call afocal system. The four arbi 

trary quantities, X, Y, Z, C, which enter into the general expression 
(SO for WI, may be determined by the condition that for some given 

ray of the given system, that is, for some given values of a, g, 7, 
certain of the first terms of the development of ft'', according to the 

positive powers of the variations of a, 13, 7, may be equal to the cor 

responding terms in the development of the given function W; and 

when the form of W' has been particularized by this condition, we 
shall call the corresponding system of rays, an osculating focal system. 
Now, if we suppose a, g, 7, to be changed into a  da, ag, 

 3'7, we may express the altered values of W and W' by means of 
the following developments : 
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aw atw 33W 4 8cc., 

w, +aw, a2w,  i-T-3313"  &c. 

in which 

aw w; 8W 3W -T.. 2/s A -Tr "' 

22 w 32 w ty w W ;2 W ;I W ;ZW )42 ;AZ  ),y2  2  3-49  2 
wv 

kay  2 
yri; , )66 42 )0,213 

&c. 

The equations 
W'  W, 31/11'  3W, (r 

will be satisfied independently of the ratios of the variations aos,33, Ztv, 
if we take the point X, Y, Z, any where upon the given ray, and 

suppose, 
C  W  

(X  Y Z . 3v 3v 

There remains therefore one arbitrary constant of the focal system to 

be determined, and this is to be done by equating the next terms of 

the developments, that is by putting 
)2  )2 W, (UI 

and assigning some limiting ratios to the variations act, ag, ay , con 

sistent with the difThrential equation 

  y310  0 , 

which results from a' [32   1 And, from the nature of the 

functions W, Tf', the equation (U' may be put under the following 
form : 

)2 wi ;2 W' 
y ()2 

WI W 
 xgnbov,  -4- 

(114 4247 (43 
h... 1?-- 

3.0 )0 2 ;42 Vira uks 'Y 
Wi 8G W' fa. 

ai32 I k 7 1 
2 



which shews that there are in general an infinite number of osculating 
focal systems corresponding to any given ray, that is, an infinite 

number of different values for the arbitrary parameter which enters 

into the expressions of 

iv, 2W, ;2 f,v, 
dat Wis ' 

according to the infinite variety of values that we may assign to the 

ratio 
03, 

gy3a Calf 2 

but that the values of this arbitrary parameter, which do not change 
for an infinitely small alteration in the ratio on which they depend, 
are determined by the following equations 

131 .. 32 W 12nri any 
7 

0 (VW  32W Vax eg 
37 (%2 t,  (4 37); 0A2 

W' 32 W 
k 343 36c3,8 A  7 

which give, by elimination, 

(32wi )2w  w, PH" (rwi 2W\2 
k 342 Is k ;ea' ?IP k LkS W (X' 

The systems that correspond to these extreme values of the arbitrary 

parameter, we shall call the extreme osculating focal systems ; and 

since, by the nature of the functions W, W', the equations (1P are 

equivalent to the formulx (V), the foci of these extreme osculating 

systems are contained upon the caustic surfaces : and the ratios of 

3a, as, ay, in these extreme systems, are the same as in the develop 
able pencils. 

12. Let us now consider the law of the variation of the focus of 

the osculating system, between its limiting positions. This law is 

analytically expressed by the formula  ; in which we may geo 
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metrically interpret aa, dy, by considering these infinitely small 
variations of a, g, 7, as arising in the passage from the given ray to 
an infinitely near ray of the system. The plane which passes through 
the given ray, and is parallel to the infinitely near ray, may be called 
the plane of osculation : since, if it be known, we shall know the 
ratios of aa, ag, and can determine, by the formula (U'), the 

position of the focus of the osculating system. To simplify this 

determination, let us put 

X  x, milt Y  y, AR, Z  z, yR, (179 

X, I; Z, being the coordinates of the focus, and x y z having 
the same meanings as in the eighth number ; the formula (U' then 

becomes, by the nature of W, and by the relations (G), 

&#18;v RP V  W  Xi)1 ST;  
2 

rif z,02 

cry denoting 

r. ka  ay . 31' 

The second number of this equation (Z), vanishes when the ray 

passes through the origin ; and if we suppose the ray to coincide 

with the axis of z, we shall have also e7  0, and the equation will 

become, 

0 ;d  
(R )2-ffW 

,442  2 
 R Jr:TA  

)2v rfrrfR 
-42  TTis  , e 

which expresses the dependence of the parameter R, on the ratio of eg 

to t ; R being now the distance from the origin, upon the ray, to the 
3,9 

focus of the osculating system ; and the ratio being the tangent of 

the angle 0, comprised between the plane of xz, and the plane having 
for equation, 

(Bo 

(V 

(A" 

y   tan. 
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that is the plane of osculation. This plane becomes a tangent to one 
of the developable pencils, when the distance R attains either of its 
extreme values, corresponding to the two points where the ray 
touches the caustic surfaces, and determined by the equation, 

R 
aj 

R  
(R 'avA  , 

which results by elimination from the two following : 

0. 
(R -y-at; -el/V R 

+--1-77 
tan. 9 , 

rw auv o 
=(R 5-;17,3  R t 

--)rAi 
tan. 0 . 

Let R R be the two values of R, determined by the formula 

(0), and 0, , q5 the two corresponding values of the angle 4), 
which may be deduced from the following equation : 

2v 
(rt 

auv auv 
(riv 

3 er. 
)(2W 

PW 
ti,-7a73 

tam 0 (1-473 
tan  

&#18;43 
...n -yj Lais 

tan. 0 ; (En 

then the general relation (A" between R and 0, may be put under 

the following form : 

R R, 
(sin. 

(9  
9,) 

2 
 

R2  R sm. (9, -)1 

being a coefficient which is independent of R and 0, and is positive 
or negative according as the quantity 

rv rv /2V\2 
ait2 Vg443 

is positive or negative. This latter quantity is the same with that 
which we have before denoted by v", because the remaining parts of 
the general expression for v", namely 

yv(32v12 32v 8'y 02v\2 32v )1v 0211\2 xe kw, U.;46 1 42 ;72 Way  372 L2 '9-al 
' 

xvi. 

(C" 

D" 

F  

VII  
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vanish when a 0,  O. If therefore be positive, and if we 

denote by R2 the greater of the two values R, that is the one 

nearer to positive infinity, we shall have by (F"), for all other values 

of R, 
R > R, , R < R. > 0); (G" 

so that in this case the foci of the osculating systems are all ranged 

upon that finite portion of the ray which lies between the caustic sur 

faces. If, on the contrary, v" is negative, then the two differences 

R R, and R R, are both positive or both negative, so that 

> (17" < 

in this case, therefore, the foci of the osculating systems are all con 

tained upon the remainder of the ray, that is upon the two indefinite 

portions which lie outside the former interval. And in each case, 

the distances of the focus of any osculating system from the two 

points in which the ray touches the two caustic surfaces, are propor 
tional to the squares of the sines of the angles which the plane of 

osculation makes with the two tangent planes to the developable pen 
cils. In the foregoing investigations we have supposed that W, and. 

its analogous function W', which we consider for symmetry as homo 

geneous, are put under the form of functions of the dimension zero ; 

a supposition which permits us to adopt the expressions (K for the 

partial differentials 

3w aw 
' 

instead of the less simple and more general expressions given in the 

fourth number: but if we had assigned any other value to the dimen 

sion i, in those more general expressions, we should have deduced the 

same results respecting the law of osculation. 
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13. The function IC, the sign of which distinguishes between the 

two preceding cases of osculation, has this remarkable property, that 

it is independent of the direction of the coordinate axes ; in such a 

manner that if a, s, y, be, as before, the cosines of the angles which 

the ray makes with three given rectangular axes, and if we denote by 
a' IT y' the new values which these cosines acquire when we refer the 

ray to three new rectangular axes, we shall have 

27 /VD PV 212V 
;X2 k3Z kI7-Th:8 

;2t, ;2v \e 2v ;2v 
Lit af3i2 kaceay ke2 Yy7i 

tvv v a2v 
kaisayi  ay. ax. (aya. 

-7- 

fry at, 2 

WO Xy" L' 2 k (I" 

V being, in the first member, a homogeneous function of a, ,e, y, and, 
in the second member of a', 0', 7', of the first dimension. To demon 

strate this theorem, let us observe that by the known formulze for the 

transformation of coordinates, we may put 

=iii j313 C,  a A  , 
 A'   C',  aB AB' 4 7B" (K" 
 a' A" B" ,/C", 7'  aC  AC"; 

A, B, C, A', H, C', A", B", C", being constant quantities of which 

only three are arbitrary, and which satisfy the following conditions : 

A'  132  C2  1, A2  adi2  A112  1, 
A" 11. B12  1, Bi B"'  1, 

AA'  BB'  CC  0, AB -I APB'  4"B" =0, 

B"  CI"  cz C'2 qf Cll.  1, 
(L" 

A A"  .131 B"  0, BC  B" C" =0, 
A" A  13" B C  0, CA  C A'  C" A" =0. 

This being laid down, we have, by (K"), and by the nature of 

partial differentials, 
F 
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h au au 3v 
wiz  A r; -1 A' 

57 
All 

);;,-, 
au h h  3v 
3731=BK+Hrist--1-B ;., 
h 3v 3v 3o 
Ty7=Cj W -;-+C 4  Cll  , h 

and, continuing the differentiations, 

at.)3tv rv 32v 32v r  At  A, 2  A" 
Tvi  

2 AA' 
ii-3134 

2 A' All 
afi.-  

2 A" Av 
a-v-L, 

rv 2 32v rv 32v 32v 
FAv 

 /32 B't Bll  2 B113' 
a-Tiro 

2 B'B" 
3731-v 

2 13"/3 

 cz rv 
-ryw  C12 

-rwy 
CII2 

va2V  2 CC";.: --.1,82'1v  2 cc" 
a-731-v  2 C"C 
rv rv 

(B 
B'  B"  A' 

(4.48 13';  HI 
a 

34 32v 32v 
 B 

7y 
B' 

a7-al 
B" 

-y 

38v  

a 2 v 
yA7 

 B 2V C3 
-111 aig B' a2v a2v C  

wig kg 3 Cu a. 
k3a7 

B"  C" 
aaav alicav 
a. u a2u )2,, 

3av 32v a2 u A Ca.-72 
v 

Lixt  A II 
(s 

A'  All 
-32v a  a; 2 )134 

s )2v a2v C" 
2 

 *Tv 
A" 

a72); 

and substituting these values for 

6.2v (121 )21 2't 
Kra 472 avlia;; Tv-x7 

in the second member of (I"), and reducing by the relations (K"), 
(L"), and (G), we obtain the function in the first member. This 
function v", which composes the first member of (r), may therefore 
be obtained by assigning to the axes of coordinates, any arbitrary 
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but rectangular directions, which may most facilitate the calculation. 

For example, when we are considering an extraordinary system of 

rays in a one-axed crystal, we may take the axis of the crystal for the 

axis of z, and then the function v will take the form 

 in2 72  n (42  32), 

the quantities m, n, being independent of a, g, ; and we find by 
differentiation, 

at 3v h V  n2a, v  ?i23, v  nev, 

32v t2 v3 )2to 2 1)3 321 
nov. -t n 32  in 7 n ,n2 ay 

=in (42 4 i32), (Nu 

v3 )2v v3 32v v3 32v 2 
;-LTA 

 n24C13 n42137' a7L 
m 

values which may be verified by the relations (G and which give 

11'(x2  /32  72). m2n4 
V4 v4 (0" 

we may therefore conclude that whatever be the directions of the 

rectangular axes of coordinates in an extraordinary system of this 

kind, the function v" is essentially positive, and is equal to the square 
of the constant m, multiplied by the fourth power of the constant n, 
and divided by the fourth power of v ; v being the velocity of the 

extraordinary rays of some given colour, estimated on the hypothesis 
of molecular emission, and the constants in, n, being the values which 

assumes when the ray becomes respectively parallel and perpendi 
cular to the optical axis of the crystal. Hence it follows, that in 

extraordinary systems of this kind, the foci of the osculating systems, 
considered in the preceding number, are all comprised between the 

two points in which the given ray touches the two caustic surfaces. 

It is evident that this result extends to the case of ordinary systems 
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of rays, to which the expressions (M"), (N"), for v, and for its partial 
differentials, may be adapted by making n  m, a change which gives, 
by (0"), v"  ma. 

Principal Foci and Principal Rays. 

14. Another important property of the function v", is that when, 
by the nature of the light and of the medium, this function is essen 

tially greater than zero, (which we have seen to be the case for all 

ordinary systems of rays, and for the extraordinary systems produced 
by one-axed crystals, the intersection of the two caustic surfaces 
reduces itself in general to a finite number of isolated points. To 

prove this theorem, let us resume the formulm of the twelfth number, 
and let us suppose that the ray which coincides with the axis of z, 
passes through a point of intersection of the caustic surfaces, so that 
the two roots of the quadratic (C" are equal ; then the two values of 
tan. 4), deduced from the quadratic (Y), will be equal also ; and if 
we put this quadratic under the form 

E (tan. 0)2  E' tan. E"  0 , (Pn 

in which 
a 217 32 W 2v w E  
&#18;c-W TAT: Lks ' 

)2,v )2 w 2111 &2W 111 =I 
6432 3.2 

 
La 42 

9 

)21 ;2W 3*V a. w  1;T 
 

)042 

we must have 

E"  4 EE"  0. (Q" 

Now the coefficients E, E", are connected by the following 
relation: 
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)2v )2v ,)2v E E' -1- E -O 

and it results from this relation, that if 

aft, a.v ray n 
L a 043 

the condition (a cannot be satisfied without supposing separately 

E=0, le =0, E" =0. (S11 

We may therefore put 
;2 TV ;2v 3 w )2v )2W ;2v 
T;Ti  Kr )44113 ). P 313 ks 2 

II, being a quantity which can be determined by substituting these 
values in the quadratic (CI ; for this substitution gives, 

v" (R p)t  0 , (.4  B, 

R being the common value of the two equal roots. Hence it follows, 
that when R is made equal to this value in the equation (A" for the 

focus of an osculating system, that is, when we place this focus at the 
intersection of the caustic surfaces, the coefficients of ace, 2accas, 434 

namely, 
;2v 2w pv )2W 3 2 ti  w R R , R i, L Lk3 o 

become separately =0 ; and it is easy to prove that in like manner 
the coefficients of 

()a 
  

2 
, 2 

(34  
 

(a4 )2 V V 

must separately vanish, in the more general equation (V' of the ele 
venth number; we have therefore generally, for the intersection of 
the caustic surfaces, when the function v" is essentially > 0, the fol 

lowing equations: 

(R" 
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ply a2w, pry 
=w ,---=-T-, 

;2w ;2w, ; 2W  
k3Zly 

 

of which the three latter result from the three former. These six 

equations, which are all expressed by the one formula (U9 or (0), 

provided that we consider act, a.63, ay, as independent, will give in 

general a finite number of real or imaginary values for a, g, 7, R, 
and thus will determine a finite number of isolated points, as the in 

tersection of the caustic surfaces. We shall call these points the 

Principal Foci ; and the rays to which they belong, we shall call the 

Principal Rays of the system. In general, whether v" be greater or 

less than zero, we may employ the equations (T" to determine a 

finite number of isolated points and rays, to which we shall give the 

same denominations. It results from the equations by which these 

points and rays are determined, that if the focus of an osculating 

system be placed at a principal focus of a given system, the oscula 

tion of the second order will be most complete, since it will be inde 

pendent of the direction of the plane of osculation (B" ; the three 

first terms of the two developments in the eleventh number, namely, 

W +NV  I32W, 
W'14W' +02W', 

becoming equal, independently of the ratios of aa, as, ay. The prin 

cipal foei of an optical system possess many other remarkable proper 

ties, some of which we shall indicate in the course of the present sup-, 

plement. 
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On Osculating Spheroids and Surfaces of Constant Action. 

15. To develope one of the properties of the principal foci and 

principal rays of an optical system, we must introduce the considera 

tion of osculating spheroids, and surfaces of constant action. The 

characteristic function. V, the mode of dependence of which upon the 

coordinates x, y, z, distinguishes any one system of rays from any 
other, having the same kind of light and contained in the same me 

dium, is equal, as we have seen, 
 
to the definite integral fvds, that is 

to the action of the light, taken from the luminous origin of the 

system to the point x, y, z ; the word action being used in the same 

sense as in that known law, which is called the law of least action. 

We may therefore give the name of surfaces of constant action, to that 

series of surfaces for each of which the characteristic function V is 

equal to some constant quantity, and which have for their differential 

equation, 

3V 0 -x 3z. L  (U" 

In like manner, if we denote by V' the analogous characteristic 
function of one of those focal systems considered in the eleventh 

number, which have their light of the same kind and in the same 

medium, but converging towards or diverging from one focus ; the 

general expression of this function V' will be V'  vg const. 

being the distance from the focus ; and the differential equation 

 0  V'  V" 

will represent a series of surfaces, which are analogous to the surfaces 

(U."). In the case of ordinary light, these surfaces (r are spheres, 
and they may be called in general, sphProids of constant action ; the 

VOL. XV I. a 
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focus of the focal system being called the centre of the spheroid. The 

general equation of such a spheroid contains four arbitrary constants, 
of which three are the coordinates of the centre ; and if we determine 
these four constants, by the condition that for some given values of 
:r, y, x, that is for some given point of a given system, certain first 
terms of the development 

17, vi &c. 

may be equal to the corresponding terms of the development 
v at,  Pr &c., 

the spheroid thus determined will be an osculating spheroid, to the 
surface of constant action which passes through the given point of 
the system. The conditions 

IN v,?r=3v, (w 

may be satisfied independently of the ratios of dx, ay, az, by taking 
the centre of the spheroid any where upon the given ray, that is, by 
establishing between the three coordinates of this centre the two 

equations of the ray, and by assigning a proper value to the other 

arbitrary constant ; there still remains therefore, after satisfying the 
conditions (W"), an arbitrary parameter depending on the position of 
the centre, which we may determine by the equation, 

a. 32v, (X" 

assigning any arbitrary ratios to the three variations ax, q,h, or 
rather any value to the one ratio 

 
-17.5i7=7/7-3z 

2 

because, by the relations (H), 

v 
Eir22v(h--Tg 4 

2 
 2 

kra;yr 
 sks  1z 

 
g 

y a t Y. 1 



43 

so that the condition (X'-' may be thus written : 

32 ) V ),  (au V ' )2r 
(3ix--th +2(1;4i Wry 

0  (wir "Vr k V 
2 

or" I' 
1 17 Is )4 s I 

-7 

or, by a further transformation, 

8 " 1 32t, 2 . 
V  

(-e .ia;iy)x 4.24z  
2 a 11  )2v ), 

'Y -I 2 
k 1-7-41 (3Y -11; 

 
(lc 1:1 3; 12 

Y k 

g being here the distance of the point x y z upon the ray, beyond the 
centre of the spheroid. This equation (Z" contains the law of oscu 

lation of the spheroid, since it expresses the dependence of the dis 

tance e on the direction of the plane passing through the ray and 

through the consecutive point x y 4, z dz. We shall 

call this plane the plane of osculation of the spheroid ; and we see, 

by comparing (Z" with (C'), that the extreme values of g corres 

pond to those directions of the plane of osculation in which it touches 

the developable pencils ; while the corresponding extreme positions of 

the centre of the osculating spheroid, are contained upon the caustic 

surfaces. And when the ray is one of those principal rays deter 

mined in the preceding number, it is easy to prove that the equation 
(Z" is satisfied independently of the ratios of the differentials, if we 

assign to g the value which belongs to the principal focus ; the prin 

pal foci are therefore the centres of spheroids, which have complete 
contact of the second order with the surfaces of constant action. 

The equations which express this property of the principal foci are 
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(V" )2v )2V I 32, 3V 1 )*v 34 
T )72 

"1 
3 

of which any three include the rest ; they may also be thus written, 

3-2 V' 32 V 32 V' )2V 12 r )2v 
ar2 ar2 3y2 

' ha 
 

Pr 32 32 Pi )2V 1,, 32J7 
3x4 

 
-0 7Z17 

and may be summed up in the one equation (X"), by considering 
ax, 4, 3z, as independent. With respect to those rays which are 
not the principal rays of the system, and for which the equation (X" 
can only be satisfied by assigning some particular value to the ratio 

"Ay 

that is some particular position to the plane of osculation of the sphe 
roid, we find, by reasonings similar to those of the twelfth number, 
the following law of osculation : 

=(4 
 

+:1-41)\ 
C 12 (w 

C2 

e being the extreme values of g ; + .4, the corresponding 
values of the angle 4,, comprised between the plane of osculation and 

any fixed plane that passes through the ray ; and the coefficient 

being independent of g and 4', and having the same meaning as 

before. The formula (C'" may be written in the following manner: 

C 2 I C C2 ksin. (+2 41 (Ir 

3xt   
kg, 

)2V 32 V 1 32 V 1 3'w 32V 
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in this kind of osculation, therefore, as in the former, the distances of 

the variable focus or centre from the points where the ray touches 

the two caustic surfaces, are proportional to the squares of the sines 

of the angles which the plane of osculation makes with the tangent 

planes to the developable pencils. 

On Osculating Focal Reectors or Refractors. 

16. Besides the two preceding kinds of osculation, it is interest 

ing to consider a third kind, which exists between the last reflecting 
or refracting surface, and certain other surfaces, which would have 

reflected or refracted to or from one focus the rays of the last incident 

system, and which we shall therefore call focal reflectors or refrac 
tors. Let V, , V , denote, as in the sixth number, any two succes 

sive forms of the characteristic function V, of which we shall suppose 
that V, belongs to the system in its given state, and V, to the same 

system before its last reflexion or refraction ; then, by the number 

cited, the equation V,   0, will be a form for the equation of 

the reflector or refractor, at which the state of the system was last 

changed, and which we shall consider as known. Let V', be the 

form which V, would have, if the rays of the final system all con 

verged to or diverged from one focus, this form being such as was 

assigned in the fifteenth number, and depending only on the nature 

of the light and of the final medium, but involving four arbitrary con 

stants, of which three are the coordinates of the focus; then it is easy 
to prove that the equation with four arbitrary constants, of the focal 

surface, which would have reflected or refracted to or from one focus 

the rays of the last incident system, is 

V, Vi2=0. (E' 
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We may determine the four arbitrary constants of V', in this equa 
tion, by the condition that the focal reflector or refractor shall touch 

the given reflector or refractor at a given point, and osculate in a 

given direction. The condition of contact, of the first order, is ex 

pressed by the equations 

V,  V'2 , aV2 3V/2 , (Fs" 

and may be satisfied by establishing between the three coordinates of 
the focus the two equations of the ray, and by assigning a proper 
value to the remaining arbitrary constant ; and the position of the 
focus upon the given ray, may be determined by the condition of os 

culation in the given direction, which is expressed by the equation 

32 /72 =32P (G"' 

assigning the given ratios to the variations x, tly, az. This equation 

(Gm being the same with that marked (X" in the foregoing num 

ber, we can deduce from it the same consequences ; the osculation 

therefore between the focal surface (E'" and the given reflector or 

refractor, follows the same law as the osculation between the spheroid of 

constant action. (V" and the given surface (U" for which the function 

V is constant ; in such a manner that the focus of the focal reflector or 

refractor coincides with the centre of the spheroid, if the point of 

contact, and the plane of osculation be the same. The distances 

therefore of the focus of the focal reflector or refractor from the 

points in which the ray touches the two caustic surfaces, are propor 
tional to the squares of the sines of the angles which the plane of 

osculation makes with the tangent planes to the two developable 

pencils. And when the ray is one of those principal rays, assigned 
in the fourteenth number, (the focus of the focal surface being at the 

principal focus corresponding, then the contact of the second order 
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is most complete, and the two reflectors or refractors osculate to each 

other in all directions. 

On Foci by PrOection, and Virtual Foci. 

17. Another kind of focus, of which the law is similar, though 
not the same, may be deduced in the following manner. If we con 

ceive a plane passing through a given ray of a given optical system, 
and through a point infinitely near to this given ray ; the ray which 

passes through the near point may be projected on the plane, and the 

intersection of its projection with the given ray may be calJed a 

focus by projection . Suppose, to simplify the first calculations, that 

the given ray is the axis of z, and that the infinitely near point is con 

tained in the plane of x y ; its coordinates in this plane being denoted 

by b, ay, and the cosines of the angles which the near ray makes 

with the axes of z and y, being am, 43: then, if we denote the gene 
ral coordinates of this near ray by x y z , its equations may be thus 

written, 
x   z ll3a, y   ay  xl3,8 , (ipil 

and the connexions between ax, ay, act, as, will be expressed by the 

two following conditions: 

3'V 3i V, v 

1 

 oa 
ya--130 , 

(r 
611, 3'i' 82v 
friyht 3-37 

 , 

which are obtained by differentiating (C and making z 0, v 0. 

The equation of the pland on which the near ray (ir is to be 

projected may be put under the form 
OF-. "" 3sc (Km 
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and if p be the vertical ordinate of the focus by projection, the equa 
tion of the projecting plane is 

!Iit !lzuks  
x z,?c x p.64 

p being determined by the condition that the two planes (K" (Lai), 
shall be perpendicular to each other, which gives 

CM" 

In general, whatever arbitrary position we assign to the rectangu 
lar axes, if we represent by x op, y z -F 7p, the coordi- 

nates of the focus by projection, those of the given point being x, y, 
and those of the near point ir ar, i ay, z  az, we shall find, 

by a similar process, 

1 Lase  ksay avazr 343x -1 Ighly 
)/' dzi=.7;57-T-735y yazr 

' (Nu' 

ae, dy', having the same meanings as in the fifth number. And 

since the equations (C give, by differentiation and elimination, 

321 3tv 
 

 3 V 
az 3 Xy2 Stz 

/ri, ;2v 
v")A kTir Yat 

 v 
1117 k-gr 

and therefore 

(Yv 
rv Ww 

---0-+--.-----r 1.2 az WA ay kch 
3'v \))V Pe 3 V rt  V I  
ay.  Ty (1.43/3s ir ay -I WI, az I 

' 

Pt, 
 

3V 
 

rv 3 V rv ; V rv 3V  
)71 ggry  Way Ty  

J(0" 

31v 32 v 32 v1 , 3v V 
(atas 4 bay  )14z w  

32 , 
V-k3K3r; +.3 vs 

a 
yi 

3v ; 
 j; yz (Pi' 
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we find, finally, 

vti 
3V'7  3 3V 30 
I; 

3V h 
Pea  3y"  Ix' 2  3 3 )3 4 3 3 

ry 

 33.2: 3,82v2 :2;2 
v (Q,19 

v" being the same function as before. It results from this equation 

((r or from (M1" and (r" that when the given ray is taken for 

the axis of z we shall have 

(32v 
)2V 3tv 

317 
2 3tv 3 V 3av 32 V. 

ufi, wy i;-. (cos. 11)2  (a-a7-4   Ma 

IMF ncwuaqeirj 
 

)2 )s 
T 

32 V 1)21, 32V 
Is3/3 1;17 riry Tgy LT' 1r ri37- 

sm. ri cos. n, 

if we put dy  dx tan. H, so that U denotes the angle which the 

plane of projection makes with the plane of xz. Differentiating (11" 
for H only, we find that the values of this angle which correspond to 
the extreme positions of the focus by projection are determined by 
the condition 

f 32V 32V 32V 3 V\ 32V 32V 32V\ 33 V 32V 32V 
a tan' a 0 n 0  

-130x2 )77 
 

3xcly X 342 -I Wi\ 
: 

the planes of extreme projection, that is, the planes which correspond 
to the extreme values ofp, are therefore perpendicular to each other 
and if we suppose them taken for the planes of xz, yz, and denote by 
P1 Pt, the corresponding values of p, we shall have 

0 32v /32V , 32V\ 32V f3tv )2i7N  
Kris k3X2 "T. 2y2 3xay 7. 42 

V" 32V 32V 32V 32V i2" a2V 32 V 32V 3247 
pi 

 
3x3y 3,82 3xe ' pa, 

" '343/3 3-x:ry 142 3y2 
VOL. X VI. 

(R"' 

(I" 
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and finally the dependence of p upon H, that is, the law of the focus 

by projection will be expressed by the following formula: 

1 1 
 2 1  COL n    

P Pi P2 (sin. . (tin 

When the given ray is one of those principal rays determined in 

the foregoing numbers, the angle H disappears from this formula, 
and all the foci by projection coincide in the principal focus, the 

condition (S" being at the same time identically satisfied, and fail 

ing to determine the planes of extreme projection : but in general 
these planes can be determined by that condition, and have a remark 

able connexion with the tangent planes to the developable pencils, 
which can be deduced from the equation (E of the ninth number, 

3ge  , 

For, when we suppose ez  0, y ex tan. H, we find from this 

equation (V the following quadratic equation to determine the two 

values of tan. H corresponding to the tangent planes of the two deve 

lopable pencils 

A 32V 31 V 32V 32V  842 ;Ay aks (rv 
;217 &#18;217 

)41,3 lap ',tan. 11,2 

v ;217 32v ;IV\ 
laic' 512 3132 7-cr 7 I ta 

and if the first condition (T" be satisfied, that is, if the planes of 

extreme projection be taken for the planes of in, yz, the product of 

the two values of tan. 11 determined by this quadratic will be unity ; 
the tangent planes to the developable pencils are therefore symmetri 

cally situated with respect to the planes of extreme projection, the 
bisectors of the angles formed by the one pair of planes bisecting also 
the angles of the other pair. The tangent planes to the developable 

.fl  V" 
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pencils are not always perpendicular to each other, and therefore are 

not always fit to be taken for rectangular coordinate planes, however 

remarkable they may be in other respects ; but the planes of extreme 

projection, determined in the present number, possess this important 

property, and may be considered as fumighing for any given straight 

ray of an optical system, ordinary or extraordinary, (except the prin 

cipal rays, two natural coordikate planes, which contain the given 

ray, and are perpendicular to each other. And whenever the deve 

lopable pencils are also perpendicular to each other, the tangent 

planes to these pencils will coincide with the planes of extreme pro 
jection, and the extreme foci by projection will be contained upon 
the caustic surfaces. This perpendicularity of the developable pen 
cils requires that there should exist a series of surfaces perpendicular 
to the rays of the system, and having for their differential equation 

02x  33y  0 ; 

and reciprocally when this equation is integrable, the perpendicu 

larity here spoken of, exists, and we shall say that the system is rec 

tangular. This condition is satisfied in the case of ordinary systems, 
because, for such systems, the differential equation (U" of the sur 
faces of constant action becomes 

w nt (atx glk  14x  0, 

and consequently coincides with the equation (IV"), In having the 
same meaning as in the thirteenth number ; the rays of an ordi 

nary system are therefore perpendicular to the surfaces for which 
the function V is constant, and their planes of extreme projection 
are touched by the developable pencils. We may also remark that 
for such systems  1, and the osculating foci coincide with the 
foci by projection. 

1a. There is yet another kind of foci which we shall call Virtual 

Foci, and which it may be interesting to consider, because they con 
s (2 
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duct to the same pair of natural coordinate planes as those which we 
have deduced in the foregoing number, and because they furnish new 

applications of the characteristic functions of the system. By a virtual 

focus of a given ray, we shall understand a point in which it is nearest 
to an infinitely near ray of the system. To explain this more fully, 
let us observe, that if we establish any arbitrary relation between 

R, y, distinct from the relation a2   I, we shall obtain 
some corresponding relation between 

V 3V 

by eliminating a, g, between the equations (C ; the result of this 

elimination, which we may represent by 

F (3v '517r- 0, 

F denoting an arbitrary function, will be the equation of a pencil, 
that is of a surface of right lines, composed by rays of the system : 

and unless this surface be one of the developable pencils deter 

mined in the ninth number, the rays of which it is composed will 

not intersect consecutively, so that there will be only a virtual inter 

section, or nearest approach, even between two infinitely near rays. 
To find the coordinates of this virtual intersection, we are to seek the 

minimum of ax  ay.  az*, or of aes  ay"  ?ea, corresponding to 

given values of a, 0, y, aa, ag ay. Now if we put r  ax ley  vz, 
we shall have 

x x, r, y  y, /3r, z  

=h 4 Liar, 4 k 3.9r, az  k Lyr, 

and therefore 
 ax, a (alv,-F Ay, Th,), 

sy,  rkg  (e)r, 4 Ay, 
 +x,  (az. faY 

(X!" 
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x yi, z and ax`, ay', at', having the same meanings as before ; and 

the condition of minimum gives 

3.3x, .4. 3194,  r-- (Z"' )a2.  42 +4' 

which may also be thus written 

fa. we  kay 31,32'  343x  3134  373z : 

or, by the foregoing number, 
 32v 32.0 32v 1 
kr,"  TAT  v)3117 

h 3 3V 3, 3v 317 av 3v 
5"; )73-33-y 

(B4 

Another transformation of this condition, which shall involve the 

function W instead of V, may be obtained in the following manner. 

Let Tf, be the form which the characteristic function W would have, 

for a system of rays of the same light and in the same medium, but 

all converging towards or diverging from the one point x y z,; so 

that, by the theory already given, 

aw32v 321 
1;2    KiT7' 

5 3W, 3 It V a 32v 32v  T z 
373g,, 

&#18;w 32v 32v irv 3 ,  x,3 y,3 fa;  -37 
: 

then, by differentiating the equations (GO, and attending to the for 

muhe (Inn, we find 

3 (w w, 32v 32,0 321 -  mil (4 70  34-5-7 Ozi 47  

32v 32v 3.2v  
Q-A (le  r3a (41 r3A 54; (3z, rh , 

32, 32v ,  
3;i; (ail  &#18;A, (3y  43  (SY  rh , 

(D4 

0  (3x r1g  13 tlA (32" rh ; 

 A 4  

It 

(C4 
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and therefore 

oh, 14a  
(Ki-)2v 3-7,2-32m )-(1v: 

wi 

ar: 2 a  w w, 
a;;;13 

 3 
(Wi: 

WI  

VI, (3y1 410  6732:2 TiFrv Vry &#18;(WW1 
Wi 

gi(w 
w a 3 (w pv, rv a a t g ; Tisir 

rty rico riV W Wi le (hi rh  
(V' 32-7 

Pv 2 ; (W -`1 Wr rv a )(w w, rv ; ; (IV W, 
g I Li; ' 

k 

E 4  

J 

By these equations the condition (A4), may be transformed into 
the following : 

ur (L. 4. ao  42   
-57 

32   

a (Tv fv, h 3 (W-. W, .3v  3(W w, 
da.4 a. +30 )-'+3; xi 

 

To find the geometrical law expressed by this last formula, let us 
take the given ray for the axis of z, and let us choose the planes of 
xz, yz, in such a manner that the bisectors of their angles shall bisect 
also the angles formed by the developable pencils ; we shall then 

hare, by the fourteenth number, E E", that is 

frqv rwl 3,2W /v 
aaaas a,s2  

 
344 Uaz VIP (64 

and the formula (P will becoine 

II 
 

&#18;iv aav 
rw 

&#18;ect 
 

).  W 4/32 
Ws Wi3 TAT Le 3a  )7;271 )gr7k-5-7 ; (H4 

or finally 
r  r, (cos. or  r,  14 

(F4 
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when we put 

21ET VW 3" 3'2 W 3av 2WW21v 
,M=Ittan.b): (K4 vil is 1  1e)13 lar9 -Y;;7" ' wig lars S'etz 3/32 

to being the angle which the plane passing through the given ray and 

parallel to the near ray makes with the plane of az ; and 2., r, being 
the extreme values of r. 

The equation (Ii expresses in a simple manner the law of the 

virtual focus. It shews that the extreme positions of that focus cor 

respond to the same pair of natural coordinate planes, passing through 
the given ray, which we considered in the preceding number, and 

which we may therefore call the planes of extreme virtual fopi, as 

well as the planes of extreme projection. Indeed, when the given ray 
is one of the principal rays of the system, assigned in the fourteenth 

number, then all the virtual foci, as well as all the other foci hitherto 

considered, coincide in the principal focus : and the planes of extreme 

virtual foci become, in this case, indeterminate. However, we shall 

shew that their place is then supplied by another remarkable pair of 

planes, which pass through the principal ray, and complete the sys 
tem of natural coordinates : but for this purpose it is necessary to 

enter briefly on the theory of aberration from a principal focus, which 

we shall do in the following number. 

Aberrations from a Principal Focus. 

19. If we conceive a plane cutting a given ray perpendicularly at 

a given point, this plane will be nearly perpendicular to the near 

rays, and will cut those rays in points near to the given point : the 

distances of these near points from the given point, are the lateral 

aberrations of the near rays, and the cutting plane may be called 
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the plane of aberration. Let v, y, z, be the coordinates of the 

given point, and x x, y z A; the coordinates of the 

point in which a near ray is cut by the plane of aberration, A being 
here the mark of a finite difference ; we shall have the condition 

0  mAx AlAy  le AZ, (L4 

ce g being the cosines of the angles which the given ray makes with 

the axes of x, y, z : and if we determine the successive differentials 

of x, y, z, with reference to a, g, 7, by differentiating the equations 
(C or (K as if a, $, 7, were three independent variables, and by 
putting 

0  ote)x  fay  .yat, 
0  arz Oly +1,32z, 
0  arx Ary 

&c. 

we shall have 

 [ax [324  [334 &c. 

Ly  [4  4 [342Y1 [PA &c. (N4 
az z [h  I [32z  [33x1 &c. 

the expression [3x], [ix], &c., being formed from ar, x, &c., by 
changing the differentials da, aig, 37, to the finite differences Aix, Ais, 
Li7 and finally, the lateral aberration of the near ray will have for 

expresssion 

(AX)2  Ayr ta)a 

Let us apply this general theory to the case when the ray from 

which the aberrations are measured, is a principal ray of the system 
and in order to simplify the calculations, let us take this ray for the 
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axis of z, and the principal focus for origin. Then if we neglect the 

Squares and products of Lia, Aie, we find by the preceding theory, 

&X' cAss, zNy  (AA, AZ  0, (04 

o being the distance from the principal focus to the plane of aberra 

tion ; if, therefore, we suppose this distance g to be unity, and repre 
sent by a, b, the corresponding values of Am, Ag, we shall have, 

Agg  a, AA  b; 

and if we take the principal focus for origin, the coordinates of the 

point in which the near ray intersects the plane of aberration will be 

a, b, 1. If now we conceive another plane of. aberration, perpendi 
cular to the principal ray and passing through the principal focus, 
we shall have, for this new plane, e  0, and the expressions (04 for 

the components of aberration vanish : in this case, therefore, it is 

necessary to carry the approximation farther, and take account of 

terms of the second dimension, in the variations of a, g, 7f. For this 

purpose we may differentiate twice successively the equations (K), 
as if a, g, 1,, were independent, making after the differentiations, 

x, y, x, ky, 3z, ez each  0, and changing 3a, kg, c)1x, 33y, 
to Ala, AR, Ay, 2 Ax, 2 Ay. In this manner we find 

3W 32V 
 

d)2  AX 17 
3462 3;-45 " 

31 
c]i 

LX 32..v 
y 

in which we may put 

E)23Z1 1334a2  2 ab 
37-ix 

b2 

nvier'w 
rw ini  a z --- 

L-V13 we 43 
(Re 
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changing Ate, AO, to their expressions (P4), and observing that the 

general relation (a  Az)   AO' =cs  $' 

  1, gives here 0  P  (Am)  (am.  (Ay), so that 
the terms Accly, AgLiv, Ay in the developments of 

may be neglected, as being of the third dimension. And if, for fur 
ther abridgment, we put x, y, instead of Ali, ay, in the equations 
(Q4 to denote the coordinates of the intersection of the near ray with 
the plane of xy, that is, with the plane of aberration passing through 
the principal focus, and denote the partial differential coefficients 

d3tV PPV alW 33W 
2642' 43 

by A, B, C, D, we shall have 

rt, pp 
xti  (a2  2 Bab  CV' , 

32 V ev X 
W3  y  (Ba2  2 Cab  Db2 

(S4 

and by elimination, 

)2v A 
z)i-T 

B 
-;:jA 

32v )2v C D , kaa 

2 vllx 3 3.2 v a' +2 j 
C ab 

A 

0 y  Ad 32v )*0 B a a2 +2 C IT B 
IT/3 

ab 
(T4 

)2v )2V D C b , )42 meA 

)/, having the same meaning as before. 
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Natural Axes 01 a System. 

20. The equations, (Si or (T4), express the connexion between 

the coordinates x, y, of the intersection of a near ray with the plane 
of aberration passing through the principal focus, and the coordinates 

a, b, of the intersection of the same near ray with another plane of 

aberration, parallel to the former, and at a distance from it equal to 

unity: they serve therefore to resolve the questions that have reference 

to this connexion. The most interesting questions of this kind, are 

those which relate to the comparative condensation of the near rays, 
in crossitig the two planes of aberration. Let us therefore consider 
an infinitely small rectangle e)aib on the plane of a, b, having for the 

coordinates of its four corners, 

Pt a, b ; II" a  ?a, b Ind a, b ; IV" a  ;a,  )6: 

the rays which pass inside this little rectangle, will, at the plane of 

xy, be diffused over a little parallelogram, of which the coordinates of 
the corners are 

 P, y; IInd )a, y )7; &#18;a; Ind x y-b )6, y 

&#18;0; ar 
g )rn trik 34 

the partial di1ferentia1 coefficients 

b &#18;b  

)k, 

being obtained by differentiating the equations (S4), or (T4). The 
area of the parallelogram on the plane of xy is 

t 3,41, 15 a 
2 
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its ratio to the rectangle dadb, is therefore expressed by 

 t. 

and by the equations (T4), or (S4), 

Ir h Atm 
(U4 

if we put 
 (Am 4. Bb (Ca  Db)....(Ba Cb (V' 

The smaller the quantity lir is, the more will the rays which 

pass through the little rectangle dab, be condensed at the principal 
focus ; so that the curves upon the plane of a, b, which have for 

equation 

 const, (W. 

may be called lines of uniform condensation : and we see, by (V4), 
that these curves will be ellipses or hyperbolas, according as N" is 

positive or negative, if VVQ put for abridgment, 

(B.  AC (C2  BD  4 (AD  ,BC)1  IV" (X4 

These elliptic or hyperbolic curves are all concentric and similar, 
and their axes are all contained on the same pair of indefinite right 
lines, which are perpendicular to each other and to the given ray ; 
and the planes which pass through the ray, and through these axes 
of the lines (W4), will coincide with the planes of xx, yx, if the fol 

lowing condition be satisfied : 

AD  BC  0, (r 

that is, 

33W 33W PW 
3193 IOW (Z4 
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This condition is independent of the magnitude of the unit of 

distance, by which we have supposed the two planes of aberration to 

be separated : there are therefore an infinite number of systems of 

ellipses or hyberbolas, similar to the system  W4), and all having 
their axes contained in the same pair of rectangular planes, which 

pass through the principal ray and it is natural to take these planes 
for the planes of xz, yz, the plane of xy being still the same plane 
of aberration as before. And thus, the intersections of these three 

rectangular planes, may be considered as furnishing, in general, 
three natural axes of an optical system, which are perpendicular each 
to each, and cross in the principal focus. These natural axes possess 

many other properties, of which we hope to treat hereafter but in 
the foregoing remarks we have only aimed to shew, by some selected 

instances, the possibility of deducing the geometrical properties of 

optical systems of rays, from the fundamental formula (A), 

3v 3v 3v 
afvds   57 ay  h, 

with the assistance of the characteristic function V, and of the con 
nected function W: and believing that this object has been accom 

plished, we shall conclude the present Supplement. 
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