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PREFACE.

Tue spirit and zeal with which Mineralogy and
the kindred sciences are cultivated in Britain and
America, and the numerous opportunities afforded
to the inhabitants of these countries of visiting the
most remote regions of the globe, have made the
author of the present work anxious to contribute
his share to the more general diffusion of Mineralo-
gical Science, by publishing in the English lan-
guage the elements of a method which places Mi-
neralogy within the reach of those who wish to be-
come acquainted with minerals, without the assist~
ance of lectures or extensive collections. With
the view therefore of fulfilling the promise of Mr
Moss, given in the Introduction to his Character-
istic, p. vi., a translation of his Grundriss der
Mineralogie is now laid before the English pub-
lic. “The original Work appeared in two volumes;
the first in 1822, and the second in the autumn of
1824. A considerable portion of it was translated
from the manuscript under the eye of the author,
and the remainder from the printed sheets which
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were sent over during the progress of publication.
In consequence of a continued correspondence with
Professor Moxs, and the present rapid progress of
the science itself, the translator found it necessary
to make many alterations, improvements, and addi-
tions ; so that this Treatise on Mineralogy may be
considered in many respects as a second edition,
rather ‘than as a mere translation of the original
work.

The principles according to which Mineralogy 1s
here treated, are so different from those generally
received, that, in order to prepare the public for
the reception of his method, the author found it ne-
cessary to give a full developement of his ideas in
a Preface of considerable length ; and this was the
more indispensable, as the second volume was not
published along with the first. In conformity with
the views of Mr Mous, the translator has endea-
voured 'to "attain the same object, by publishing
in'the Transactions of the Royal Society of Edin-
burgh, and in the scientific journals of that city,
several papers drawn up in strict accordance with
these principles, and shewing their application"ir’x
particular cases. These papers were designed to con-
vey a just idea of the leading principles of the pre-
sent work, from which even the substance of some
of ‘them is extracted. From these considerations, it
would be superfluous to give here the translation
of that part of the German Preface which regards



PREFACE. 1x

the exposition of the principles, notwithstanding its
high importance. It will only be necessary to ad-
vert to those passages in it, which refer more par-
ticularly to the arrangement of some of the de-
partments of the work itself.

In the systematic nomenclature, introduced by
Professor Mons; and employed in the present
work, the compound names and denominations
express the degree of connexion in which the spe~
cies stand to each other, and faithfully represent
their resemblance, In the trivial nomenclature,
the name applied to the species does not express
any thing of that connexion, and it must be a
single word, if it shall be convenient for use, in cases
where we do not intend to apply it in Natural History
to any scientific purpose; consequently those are se«
lected which, according to the rules of §. 241., may
be considered as unexceptionable, and are added to
the specific characters in the Characteristic, referring
at the same time to the page of the second and
third volume, where the species is more amply de-
scribed, and other synonymes added. Where no
good trivial names existed, the names or denomina-
tions used by Professor JaMEsoN in the third edi-
tion of his system, or those adopted by other Mine»
ralogical authors, or by Chemists, have been intro
duced in their place.

The actual employment of the Characteristic to
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the purpose for which it is intended, the determina-
tion of minerals occurring in nature, cannot be tco
strongly recommended to the beginner.  This alone
will make him accustomed to observe with his own
eyes the characters upon which depend the identity
or difference between several species. The present
work is the only one hitherto published, which ena-
bles those who have studied the Terminology, to
determine every mineral by a philosophical process,
although they should never have seen it before.

The synonymes quoted in the General Descrip-
tions of the species are confined to a very few
works. ~ Among those in the English language,
the works of Professor JamEsox are no doubt the
principal ones. The synonymes selected for the use
of the present publication are contained in the third
edition of his valuable System of Mineralogy, and
Manual, in which he has adopted the system
of the method of Natural History. To these syn-
onymes are added the names in the third edition of
Mr Puiniies’ Elementary Introduction to the know-
ledge of Minerals, which appeared too late to be
attended to in the German edition. The German
works noticed, are the System of WERNER, as con-
tained in the Handbuch der Mineralogie by Horr-
MANN, continued by Mr BrE1THAUPT, and the Sys;
tem of Professor HausmaxNn, these works being
framed according to the most original views. The
former, in particular, has met with a very general
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reception for a long series of years. 'The System
of Mr Vox Lroxuarp is of a later date, and is
recommended by its comprehensive references to
mineralogical works, and other interesting notices.
Among the French works on Mineralogy, those
of the Abbé Havy have been selected, as being
most generally received and understood. The
nomenclature used in both editions of his T'raité de
Minéralogie, and in the T'ableau Comparatif, may
of itself be considered as an abstract of the history of
his system.

The works and memoirs of Messrs BrooxE,
Levy, and PairLips, have been consulted in regard
to numerous and highly valuable crystallographic
observations on several substances, which had not
before been examined with suflicient exactness, and
which were unknown to Professor Mous, at the
publication or the composition of the German ori-
ginal,

It was not till the publication of the first vo-
lume of this work, in 1822, that the axis of any
mineral was ascertained, by actual measurement,
to be in an inclined position towards the basec:
and although that fact, which was first intro-
duced into crystallography by Mr Mous, is
there indicated in the characters of some of the
species, it had not yet been so generally ascer-
‘tained, mor could it be so fully developed in
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the crystallographic department of the work, as it
requires. The formulee which in the German are
given in the Preface, are inserted in this translation
in their proper place, but without changing the num-
bers and distribution of the paragraphs. The names
and denominations also remain; in the characters
alone the necessary changes are made, the expression
Prismatic in a more general signification being
employed as including the prismatic, hemi-prisma-
tic, and tetarto-prismatic forms. In regard to such
hemi-prismatic forms as have their axis inclined
to the base, it should be observed, that the angles
of horizontal prisms indicated, are those which the
face of the prism includes with the inclined axis,
like BAM and B’AM, Vol. L. Fig. 41.

Those simple forms which have been observed in
nature, are noted with an asterisk. For these, and
also for each of the combinations, some locality is
mentioned in which they have been discovered. In
a few instances another variety is substituted in the
translation for one in the original, when a certain lo-
cality could be obtained for an uncertain one, by a
comparison with the specimens in the cabinet of Mr -
ALLAN. ;

The letters inclosed and printed' in italics refer
to the figures, or to the works of Haty, sometimes
also to particular papers, and in this case the title .
~of the latter has been mentioned. Some of the
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figures represent the combinations, where they are
quoted themselves ; others arc only similar to them,
in so far as they have the same general appearance,
but different angles.

To distinguish the compound varieties from the
simple ones, is a matter of the highest importance ;
and they must therefore be kept perfectly separate.
This is the point where Mineralogy ends and Geo-
Jogy begins, two sciences which have nothing com-
mon with each other. Geology presupposes Mine-
ralogy ; but it considers the productions of the Mine-
ral Kingdom in quite another point of view, and
accordmg to different prmclples ; withont which
it would not be a distinct science,

With the enumeration of the compound varieties,
the General Description of the species is completed.
But there exists besides, a great variety of informa-
tion in regard to the productions of the Mineral
Kingdom, belonging in part to Natural History,
but partly also foreign to this science; the latter
nevertheless is generally deemed an essential part
of a work on Mineralogy. Something of this in-
formation is contained in the Observations added
to every species, and which may require here a few
explanations.

The first of them properly belongs to the pro-
yince of Natural History. It comprehends some re-



VIII PREFACE.

marks on crystallographic subjects, or on the his-
tory of the species. Here the species are also com-
pared with the determinations and divisions into
sub-species and kinds, as contained in the Werne-
rian system, which will enable the reader not only
to understand the principles of these divisions, but
also to form an idea of their contents in reference to
the varieties occurring in nature.  These distinctions
are not susceptible of strictness and precision; the
only purpose, therefore, in treating of them, is to
convey the ideas with brevity and distinctness.

Then follow some of the chemical properties of
the species, as exhibited before the blowpipe, or
when acted upon.by acids, &c., and one or more
analyses, mnstituted by the most celebrated chemists,
in many cases accompanied by the formulae and cor-
responding proportions among the ingredients, as
proposed by BerzrLivs. To Professor MiTscHER-
LIcH the translator is indebted for several interesting
facts regarding the circumstances under which cer-
tain species still continue to be formed or may be
produced at will, in laboratories and furnaces.

In the third place, something of the geological
position of .the species is mentioned ; it does not
contain every thing known in this respect, but only:
so much as will suffice for giving a general idea of
the modes of occurrence in nature, peculiar to the

Specxes
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The geographic distribution of mineral species
is of far less importance than the distribution of
plants or animals, in which so much depends on the
geographic position, climate, soil, the particular
place of growth or residence, and other accidental
circumstances. It is the subject of the fourth class
of observations, which are confined to the state-
ment of a few localities only, since it cannot fall
‘within the scope of an elementary work to enumerate
all the localities of the different varieties of the
species.

Under the fifth head, some of the applications of
the species are mentioned, and sometimes a sixth
number is added, containing notices of species,
nearly allied to the one just treated of, but which
have not yet been received into the system. Some-
times one or several of these classes of observations
are wanting, or joined in a single number.

"T'he first Appendix, which follows immediately
after the system, contains such minerals as will
probably, when farther examined and compared,
be received into the system as particular species.
They are arranged in alphabetical order; and in
some of them the order, or even the genus, is
mentioned, to which they will probably be found
to belong.  Their great number cannot surprise
those who are aware how imperfectly many migerals
‘which were long ago known, have been hitherto ex-
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amined and described ; consequently it is less advis-
able to receive at once newly discovered minerals
into the system, when we see that even those deter-
minations, which were usually considered most firmly
established, have frequently been found, on more
accurate examination, to be erroneous. The species
contained in this appendix must be viewed exactly
in the same light as the plante incerte sedis in the
natural system in Botany (not in artificial systems,
which cannot admit of any appendix), which are
not included in any of the systematic unities, not-
withstanding the advantage that the examination of
one, or of two individuals at the most, should here
be sufficient for knowing the species to its full ex-
tent.

The properties of the minerals contained in the
second Appendix are such, that we cannot expect
that they will ever form particular species, since
they are not susceptible of a natural-historical deter-

- mination. Some minerals of this description have
been enumerated in the Observations annexed to
those species, to the decomposition of - which they
owe their existence, as, for instance, Porcelain-Earth,
which is noticed under the head of Prismatic Feld-
spar. :

‘Ihe copper-plates, which have been extremely well
executed by Mr MILLER, are intended not merely to
represent the figures quoted in the general descrip-
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tions of the species, but also for producing a gene-
ral survey of the combinations most commonly oc-
curring among the simple forms found in nature.
They are disposed in the order of the systems of
crystallisation, and provided on the opposite page
with the explanations given in crystallographic signs.
The figures in the last five plates are not ar-
ranged in this order, since they were added only
in the course of printing the work.  They refer
either to some remarkable varieties of species de-
scribed in the system, or they have been rendered
necessary by the reception of several species into the
first Appendix, which had been described by vari-
ous authors, the greater part of them since the pub-
“lication of the German original.

In comparing many of these with nature, the
cabinet of Mr AcrrLaN, as will appear from the
frequent references made to it, has afforded the
translator the most important assistance; and he
trusts it will not be found out of place,if he embraces
the present opportunity of expressing to that gentle-
man, the deep sense he must ever entertain of the
many marks of kindness he has received from him.
To him he has not only been indebted for a home
in a foreign land, but also for much assistance, and
many valuable observations, in the progress of this
work. To Dr BrewsTER he is under the greatest
obligations, both for many interesting additions,
cdpcerning the optical and other properties of mi-
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nerals, and for the perseverance and patience with
‘which he has aided him in the correction of the
press. Dr TurNer also has favoured him occa-
sionally with his valuable assistance.

The translator feels it an agreeable duty to ac-
knowledge, in the present place, that the addi-
tions to this work, and likewise the papers, which
he composed -previous to its publication, owe the
greater share of any merit they may possess to
Professor Mous, whose constant tuition in Mine-
ralogy, since the year 1812, he has had the good
fortune to enjoy, and of whose continued friendship
he has every reason to be proud.

The following words of Professor Mous, at the
end of his Preface to the first and to the second
volumes of the original, will form the best conclu-
sion of these prefatory observations. ¢ The present
"T'reatise on -Mineralogy is founded on principles so
:e different from those generally received in‘treating
¢ of minerals, being in part in direct 6pposition to
" ¢ them, that it is not without hesitation that I have
¢ determined to lay it before the public. I have
¢ endeavoured to unite accuracy, correctness, and
« perspicuity, with as much of precision as I could
¢« command ; yet I am perfectly aware that I have
“ not everywhere succeeded, and that this Trea-
“ tise is in many respects imperfect. The task I
“ had to perform was nothing less than to apply
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¢ with consistency to a whole science, a method
¢¢ which, though not. new in itself, had yet been dis-
% regarded in Mineralogy, and to remove all the
¢ difficulties arising from deficiencies I had to
¢ supply, and from errors I had to correct. 'This
¢ problem, however, requires so much time and
¢ labour, that the person who undertakes to re-
£ solve it, must leave many parts to subsequent
¢ investigation, while those who judge of the merits
“ of a first attempt of this kind, will be disposed
¢ to relax in the severity of their ecriticism. Yet
¢ I wish that this work may be subjected even
¢ to the strictest examination, provided it be can-
¢ did, well grounded, and does not omit to con-
<¢ sider, that at the present moment the disposi-
¢ tion"of the whole must be of greater importance
¢ than the minuter details of the various depart.
¢ ments of the work. I know none of the im-
¢ perfections still to be met with, which could
¢ not be removed by future labours, and which
¢ will not soon disappear, if I have been for-
¢ tunate enough to call the attention of natu-
¢ ralists towards the exact knowledge of the phy-
¢ sical qualities of minerals, and to induce them
¢ to investigate these more closely and accurately
¢ than has hitherto been customary. Like every
“ other department of Natural History, Minera-
¢ logy is a charming science. But its charms are
¢« grounded only upon its exactness; and nothing
¢ has a more baneful influence on the science itself,
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¢ than a superficial view of it. My only intention
< is to forward the scientific progress of Mineralogy,
¢¢ which is chiefly dependent on the purity of
¢ method necessary in every science ; on the cor-
¢ rectness of principles already demonstrated in the
¢¢ other departments of Natural History; and on
«¢ the consistency of the different parts of the science
¢ among themselves, objects which I have en-
¢¢ deavoured to attain. In this condition, Minera-
¢¢ logy answers every purpose that can be reason-
¢¢ ably expected from any part of Natural History.
<¢ T trust that the results already obtained, however
« insufficient they may be, will induce naturalists
¢ to take advantage of the first step towards the
¢¢ construction of that edifice, of which I have laid
¢t down the plan in the present Treatise.”

Charlotte Square, EpIiNsurcH,
25th March, 1825.
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§. 1. NATURE.

In the sciences, the word Naturs is used under
three different significations. In the first, it de-
notes the general idea of the natural bodies alto-
gether, or the compass of natural existence ; in the
second, the assemblage of the properties of a single
body, or the constitution and appearances of things ;
in the #hird, it is used for expressing the power or
cause which produces them.

These significations are contained in the following ex-
amples. ¢ There are bodies in Nature very much resem-
bling, and yet different from, each other.” ¢ It is in the
nature of gold to be ductile, heavy, &c.” ¢ Nature pro-

 duces different species of animal, vegetable, and mineral
bodies.” !

§. 2. NATURAL HISTORY.

The object of Natural History is Nature consi-
dered as the assemblage of all material bodics.

The name of Natural History, does not express the es.
sential properties of the science to which it is applied, and
has therefore been used in a very improper sense. Na-

¢ tural History is by no means a historical science; it has
no business with accidents or facts, but refers to objects, of
which it is indifferent whether they exist contemporane.
ously or consecutively ; and it considers these objects either
singly, or in such relations as they are brought into, by
VOL. 1. A
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the application of the science itselft Of this kind is the
connexion produced amengst the natural objects by the
Theory of the System, or the second principal head of the
present work. Natural History by no means considers
those connexions among different bodies, in which some of
them produce alterations in the others, or centain the causes
of certain events.

The peculiar character of History, consists in being a nar-
rative or a relation of facts, arranged according to the suc-
cession of time. Natural History has nothing to relate,
and takes no notice of the succession of events.

The impropriety of the words Natural History, has ex-
ercised a prejudicial influence upon the developement
and the progress of the science itself, and has given rise
to many misconceptions. All these misconceptions disap-
pear as soon as the notion of Natural History is circum-
scribed within proper limits. Suppesing the existence .of a
definition of this kind, the name of Natural History can
be retained, particularly since it has not, till now, been
superseded by another more appropriate expression.:

§. 8. NATURAL-HISTORICAL PROPERTIES.

The properties of a body, in as far as they are
considered and ‘made use of in Natural History,
are called Natural-Historical Properties.

The Natural-Historical properties are those with which
. Nature has endowed the bodies which it produces, pro-
vided these properties, as well as the bodies themselves,
remain unaltered during their examination. A bedy is
said to be in its natural state, while it coutinues to shew
these properties. The natural state of a body is either
constant, or it is variable during a certain period of time.
In the first case, Natural History at once selects such of
the invariable properties, as may serve its purpose agree-
ably to the principles cf the science. In the second, it de-
termines before hand the state of the highest perfection,
or of the full developement of these bodies, and then makes
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the same choice. Properties thus sclected are the natural-
historical properties of a body. Hence every natural-his-
torical property is one of those appertaining to a body in
its natural state ; but every one of the properties to be
met with in a body is not on that sole account also a natu-
ral-historical property. The assemblage of all the natural-
historical properties of 2 natural production, is its Natural,
or Natural-Historical quality.

Properties not subservient to the use of Natural His-
tory, are considered in other sciences, which, in respect to
their fundamental principles, entirely differ from that of
Natural History.

§. 4. NATURAL PRODUCTIONS.

Material Bodies, in consequence of their being
produced by Nature, arc called Natural Produc-
tions.

It is Nature alone which produces bodies. Art only
modifies certain properties of the bodies produced by Na-
ture. Natural productions, modified or altered by the as.
sistance of art, are called artificial productions. A tree is a
natural production ; a table, into the form of which the
wood of the tree has been fashioned, is an artificial pro-
duction. Ifa gem undergoes a chemical analysis, it ceases
by that process to be a natural production. If it is cut
and polished, abstraction being made of its artificial form,
it still must be considered as a natural production; whilst,
in respect to the form itself, it becomes an artificial one.

§. 5. DESIGN OF NATURAL HISTORY,

Natural History considers the natural produc-
tions as they are, and not how they have been
 formed. ' ‘

-~ % Natural History does not inquire into the mode of for-
mation of natural productions, but only into their natu-



4 INTRODUCTION. §. 6

ral-historical properties, because herein consists the only
ohject of its consideration. Yet this is not on account of
the difficulties, which attend the explanation of the mode
in which natural productions have been formed, but be-
cause it acknowledges principles, which entirely exclude all
explanations of this kind. 'Thus the principles of Natural
History fix the extent and the limits of that science ;
limits which it cannot transgress without inconvenience.
Yet it is not thereby too much confined, since whatever
may thus be excluded, does not belong to Natural His-
tory itself, but to other sciences. Every addition from
these would only serve to contaminate the fundamental
principles of Natural History. Itisa matter of the highest
importance to keep the sciences perfectly distinct from each
other, and strictly within their respective limits, in order to
become scquainted with their stronger and their weaker
parts, and to assist wherever it should be necessary ; but
the philosopher must not possess them separately. The
sciences might be compared to working tools set in dif-
ferent handles, and subservient to different purposes. The
intelligent naturalist is like an «dle artist, who knows how
to employ them conformably to his design.

§. 6. INDIVIDUALS.

A natural production, in as far as it is a single
body, and, as such, by itself fit to be an object of
natural-historical consideration, is termed a Natu-
ral-Historical Individual.

Natural productions, which are not individuals, or whose
individuals are no more recognisable, may, nevertheless,
be objects of examination, according to the principles of
Natural History. The idea of individuality implies unity
of form ; and by this an individual becomes an independ-
ent whole, whose natural-historical consideration does not
presuppose the ‘existence of, or at least not the con-
nexion with, another individual. In Natural History, a
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tree is an individual; not the trunk, nor a branch, nor
the fruit of that tree. For the first of these is, by itself,
an object of natural-historical consideration, the others
only in as far as they are parts of the tree.

In water and other fluid bodies, individuals are at least
not observable. Water and other fluid bodies produced
by Nature, though whole masses of them (which may,
nevertheless, consist of individuals) are without individu-
ality, on all accounts remain natural productions, and, ag
such, objects of Natural History.

§. 7. ORGANIC AND INORGANIC NATURAL PRO-
? DUCTIONS.

The most conspicuous difference which presents
itself in Natural History, is that which exists be-
tween bodies either organic or organised, and inor-

ganic.

An organised body is composed of organs ; that is tosay,
of vessels and instruments suitable to the subsistence, in-
crement, and reproduction of themselyes and of the whole.
During a certain variable period of time, called Lif,
the organised body is beyond the reach of those powers
which affect inanimate matter, if removed from that condi-
tion. Matter, in as far as it forms a part, or is the pro-
duct, of an organised body, is called organic matter ; and
a body consisting of it, an orgenic body. An irorganic
body consists of inanimate (not organic) matter. Here the
powers actuating it, have finished their effect, and are
therefore in equilibrium ; it exists in itself in an invariable
state, and can be altered only by external force. Certain
products of organised bodies, as resins, &c. are not orga-
nised themselves ; that is to say, do not consist of organs ;
yet they do not cease to he organic bodies, because they
consist of organic matter. However, they are not by
themselves objects of a natural-historical consideratjon

(8. 6.).
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§. 8. ANIMALS AND PLANTS.

A farther difference takes place among the or-
ganised natural productions, depending upon their
mode of generation, subsistence, growth, propaga-
tion, and upon the quality and utility of their or-
gans. One part of them are termed Animals, the
other Plants.

§ 9 MINERALS. P |

There is no such difference among the inorganic
bodies. The inorganic productlons of Nature are
altogether comprehended under the name of Afi-
nerals.

Some naturalists have attempted to introduce a distinc.
tion among the i morgamc productions of Nature, similar to
that mentioned above in respect to the organised bodies ;
yet the characters upon which this distinction was founded,
do not refer to those bodies themselves, or to their natural.
historical properties; but arise merely from their con-
nexion with each other, from local relations, &c.; and
hence the distinction itself is foreign to Natural History.

Those inorganic productions of Nature which have been
separated from the minerals, and provided with a particular
name, are the Atmospherilia, or those bodies which constitute
the atmosphere, in the same way in which the others form
the solid parts of the globe. Agreeably to the preceding
considerations, this difference, the only one between the
two classes of natural hodies, is quite inadmissible in Natu-
ral History ; for Natural History does not consider the na-
tural productions in so far as they constitute the solid mass
of the globe, or the fluid mass of the atmosphere, but in
so fur as, taken separately, they possess certain natural-his
torical properties. Hence the atmospherilia camnot be se-
parated from the minerals. In a subsequent paragraph it
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will appear, that a distinction of this kind would be con-
trary to the very idea of a mineral,

The Wernerian school has applied the term Fossil to
those minerals, which constitute the solid part of our globe.
Commonly this name is given to the remains of organic
bodies, which are dug out from the earth, as ¢ fossil wood,
fossil bones, &c.” and this is indeed the right use of the
expression. The name of a fossil becomes entirely inap-
plicable, if, agreeably to the principles of Natural History,
the atmospherilia are united with the minerals. Moreover,
the meteoric masses of iron, being the only varieties we
know, of the species of octahedral Iron, cannot be called
fossil bodies.

§. 10. NATURAL XINGDOMS.

Natural History considers the differences men-
tioned in §. §. 8. and 9., as the foundation of divi-
“ding the natural productions. Each member of this
division is called a Kingdom. That division which
comprehends the animals is termed the Animal;
that which contains the plants, the Vegetable ; and
that which comprises the minerals, the Mineral

Kingdom.
§. 11. DIVISION OF NATURAL HISTORY.

¢ The distinction among the natural productions,
in §. 10., has occasioned a division of Natural His-
tory, according to these: three Kingdoms. That
part of Natural History which considers the Ani-
mal Kingdom, is called Zoology ; that which con-
siders the Vegetable Kingdom, Botany ; and that
whose object is the Mineral Kingdom, Mineralogy,
or the Natural History of the Mineral Kingdom.



8 INTRODUCTION, §. 12

"This division of Natural History, is founded upon the
difference of the objects, to which the single parts of that
science refer. "It has no influence upon the principles and
upon the method ; or, properly speaking, it is not a conse-
quence from these, which are identical for all the three
parts of Natural History.

There is, however, another division required in Natural
History, which does not depend upon differences among
the objects considered, but is founded upen the being .of
the science, and is therefore equally applicable in Zoology,
in Botany, and in Mineralogy. This is the division in
Dcterminative and Descriptive Natural History, which will
be explained more fully hereafter. It appears from the pre-
ceding observations, that respecting the mineral kingdom,
Anorganography does not signify the same as Mineralogy,
but applies merely to the descriptive part of it. Oryctog-
nosy, however, means the doctrine of what is dug out of
the earth, that is to say, according to the mode of expres-
sion mentioned in §. 9., of the fossils, and cannot therefore
be applied with more propriety than the other, to the Na-
tural History of the Mineral Kingdom.

Mineralogy, or the Natural History of the Mineral
Kingdom, does not allow of any other subdivision than
that which has just been considered. FHence Geology is
not a part of Mineralogy, but of Physical Astronomy ;
Mineralogical Chemistry is not a part of Mineralogy, but
of Chemistry ; Economical Mineralogy is not a part of
Mineralogy, but of Economy ; nor is Mineralogical Geo-
graphy a part of Mineralogy, but of Physical Geography,
which belongs to Physical Astronomy. :

§. 12. PRINCIPAL HEADS OF NATURAL HISTORY.

The method of Natural History in general, and
each of its departments in particular, is develop-
cd under the following heads : 1. Terminology,
Q. Theory of the System, 3. Nomenclature, 4. Cha-
racteristic, 5. Physiography.
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If this be effected in a general way for all the three king-
doms, it produces the method of Natural History in gene-
ral ; if applied to each of them, it gives the method of the
Natural History of the kingdom concerned.

As yet, the method of Natural History in general, has
not been treated of separately, nor is it an object which
requires to be more circumstantially developed in the pre-
sent place. This method would be for the whole compass
of the productions of Nature, what the Philosophia Botanica
of Linneus is for the vegetable kingdom.

The method of the Natural History of any particular
kingdom, is eontained in that of Natural History in gene.
ral, and differs from the method of the other kingdom,
only by its being applied to different bodies. This will be
perfectly evident, if we reflect that the different parts of
Natural History could not be parts of one and the same
science, should their methods be different. Indeed, the
method according to which the aggregate of various infor-
mation, commonly called Mineralogy, has hitherto been
treated, is different from the method of Natural History
in general. Mineralogy, however, treated in this manner,
is not the Natural History of the Mineral Kingdom, but
is a compound not contained within a single science, and
which altogether cannot be traced to constant principles,
by any regular process of reasoning. :

§. 13. TERMINOLOGY.

Terminology“is the explanation of the natural-
historical properties, in as far as they arc employed
i ) y B i
in recognising, distinguishing, and describing the
productions of Nature, and in developing those
general ideas, which the method requires.
Terminology teaches the language adapted to the pecu.
liar use of the science, and explains the meaning of what
has been called the Technical Terms.

In this scientific language, fixed expressions are conuect-
ed with accurately determined ideas, and, vice versa, accus
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rately determined ideas with fixed explessions. It is as
necessary in Natural History, as it is in Geometry; and it
may be said to be in respect to the former, what the Defi-
nitions are in respect to the latter. In Natural History,
however, the Terminology has to surmount many more
difficulties than in Geometry, since it refers principally
to empiric notions. Hence, the more geometrical ideas can
be introduced into the mineralogical Terminology, the
greater advantage will be obtained; because, by this means,
its explanations will approach the nearer to the character
of geometrical ‘definitions. None of the other parts of
Natural History allow of the introduction of geometrical
ideas to so great an extenti as the Natural History of the
Mineral Kingdom.

1

§. 14. THEORY OF THE SYSTEM.

The Theory of the System determines the idea
of the Species in Natural History. It fixes the
principle of classification; and upon the idea of
the species, it founds, according to this principle,
the ideas of the Genus, the Order, the Class, and
the Kingdom, in both the natural and the artificial
systems ; the difference of these it likewise indi-
cates and explains. Lastly, by applying all these
ideas to Nature, the outline of the system thus con-
structed, is furnished with its contents, in confor-
mity to our knowledge of the productions of Nature,
as obtained from immediate observation.

The Theory of ‘the System contains the reasoning, or
philosophical part of the science, and consists in the pro-
“duction of ideas of a greater extent, than those derived
immediately from observation. These are the ideas men.
tioned above. The fundamental proposition, in this part
of the science, is the following: AW things arc identica?
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which, in their natural state (§ 3.), do not differ from cach other
in any of their properties ; and this may be considered as an
Axiomin Natural History. This mode of reasoning is com.
mon to all the three parts of the science. There occur,
however, differences in respect to the application of these
ideas to Nature. They arise out of the different qualities
of the natural productions contained in each of the King-
doms.

The possibility of introducing mathematical ideas into
the Terminology of the Mineral Kingdom, is particularly
beneficial to the establishment of these systematic ideas,
in as much as their precision, in some measure, extends to
the latter; and imparts to the most important of them
all, to the Idea of the Species, a degree of evidence, which
seems to be wanting in the other kingdoms, both vegetable

~ and animal; and which it is scarcely possible to supersede
by any other considerations. In this part of Natural His-
tory, the Theory of the System takes the place of the
Axioms and Theorems of Geometry.

The name of Classification has been sometimes applied
to the systematic reasonings in Natural History. Yet,
properly speaking, classification is only that part of the
Theory of the System which refers to the idea of genera,
orders, &c. under which the species shall be finally ar.
ranged, and in their application to Nafure.

§. 15. NOMENCLATURE. - -

Nomenclature, is the assemblage of rules, ac-
cording to which Names and Denominations are
applied to natural productions. By these names
and denominations, the ideas of the system are
fixed; or the one can be substituted as representa-
tives instead of the other.

The scientific nomenclature in Natural History is systc-
malicel. Any nomenclature, not systematical, is termed a
trivial nomenclature, and does not belong to the science.
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The necessity of a systematic nomenclature in Natural
History needs no demonstration. Fundamentum Botanices
duplex est: Dispositio é D inatio. Lanx. Phil. Bot.
151. The systematical nomenclature is the base upon
which the existence and the progress of the science is
founded, which, without it, must fall into confusion. This
is more obvious, indeed, in Zoology and Botany, than in
Mineralogy, yet by no means less trye in this part of
Natural History, as is sufficiently proved by long conti-
nued experience. i

No systematical nomenelgture has hitherto existed in
Mineralogy ; and even the fragments of it, to be met with
here and there, dp not deserve our sttention, because they
refer to systems foreign ta Natural History.

Trivial names* are not fit for any scientific use, but they
are very convenient for common usage, particularly if they
are well chosen.

§. 16. caaracTERISTIC.

The Characteristic furnishes us with the peculiar
terms or marks, by which we are able to distinguish
objects from each other, in so far as they are com-
prehended in the ideas established by the Theory
of the System. 'The Characteristic 1s peculiar to
the Determinative part of Natural History (§. 11.).

The Characteristic presupposes the general notions or
ideas of Natural History to have been developed and appli-
ed to the data of observation, and therefore is not the
source of these ideas, nor of any other. The natural-his-
torical properties, or those assemblages of them, by which
we can distinguish the different species of one genus, the
different genera of one order, the different orders of one

* What Linnus calls trivial names, will be explained in
its proper place.
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class, the different classes of one kingdom, are termed
Characters ; while the single properties made use of, or con-
tained in them, are called their Characteristic terms or marks.
The Characteristic is intimately connected with, and indeed
presupposes the existence of the system. A character re-
ferring to a natural system is called a natural Character, and
one which refers to an artificial system, an artificial Cha-
racter.

Hitherto there has never existed a Characteristic in Mi-
neralogy, nor was it even possible to be successful in the
attempt of its construction ; because there never has been
a system, to which a Characteristic could have been applied.

§. 17. PuYSIOGRAPHY.

Physiography is the description of natural pro-
ductions, and consists in the enumeration of all
" their natural-historical properties. Physiography is
peculiar to the Descriptive part of Natural His-
tory (§. 11.).

Descriptio ¢st totius planie chdracter naturelis, qui describaé

omncs cjusdem partes externas. Linn. Phil. Bot. 326.

Physiography is intended to produce, by its descriptions,
a distinct image of the natural productiens. If considered
as a mere description, the object of Physiography is the
individual (8. 6.); and these descriptions do not require
any thing but Terminology, and the correct idea of Natu-
ral History itself. No systematical ideas are wanted, amt
any names may be employed, if they be only fit to be kept
in a constant, though in itself arbitrary, reference to the
object described. Very little advantage, however, is deriv-
ed from such descriptions, for the Natural History of the

Mineral Kingdom. In order te answer the purposes of

Physiography, their object must be the Species; and the

result obtained by that means, is the Collective or Gencral

Description of the species, which unites in itself the descrip-

tion of all its individuals or varieties. Under this supposi-

tion, it requires also a correct notion of the natural-his-
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torical species. But since Physiography is entirely inde-
pendent of the system, and consequently also of the
systematic nomenclature ; the general descriptions will be
applicable to any system, provided the terminology employ-
ed be sufficiently accurate. Any nomenclature ean be
made use of in this part of the science, because the arbitrary
names in every instance can easily-be exchanged for the
systematic denominations. 'The Descriptive part of Mi-
neralogy has been hitherto the only one, towards which the
labours of naturalists have been directed ; and it is solely
- {0 them that we are indebted for the progress of our infor-
mation respecting the products of inorganic Nature.

To the Descriptive part of Mineralogy must be referred
all those representations of the objects, as drawings, models,
&c. which are executed with the view of giving a more com-
prehensive idea of these objects themselves; but they belong
to Terminology, if they are intended to elucidate certain
particular properties of the minerals, as the drawings and
models in Crystallography, which are employed for the sake
of developing the whole theory of Crystallisation.

§. 18. IDEA OF NATURAL-HISTORY.

Natural History is the science, which enables
us to find the Systematic Denomination of any
natural production (§. 8.), if its Natural-Histori-
cal Properties be given or known ; and, vice versa,
from the Denomination being given, to find the
Natural Quality of a body. Mineralogy being one
of the three departments of Natural History, is
the same to the Mineral Kingdom (§. 10.), as
Natural History in general, is to the whole material
Nature (§. 2.).

Lcge artis mutuo noscatur planta ex inc et ex
planta 3 wtrumque cx proprio charactere ;- in illo scripto, in
hac delincato 5 tertius non admitiatur. LINN, Phil, Bot, 261.
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Hence the application of Natural History, to the objects
of observation, essentially consists in the process of con-
necting the natural-historical properties of the natural pro-
ductions with their systematic denominations ; or, on the
contrary, in that of joining the denominations with the
individual or collective descriptions (§..17.). ‘The first re-
quires the assistanee of the System and of the Charac-
teristic; the other can be immediately effected, and does
not require the application of a particular proceeding.

From the manner in which Mineralogy has hitherto been
treated, it was impossible to obtain any other but an em-

" pirical knowledge of Minerals, which consists in the re-
collection of having already met with a similar object, to
which a certain arbitrary name had been given.

It is very difficult to attain a correct knowledge of the
productions of the Mineral Kingdom, if we confine our.
selves to empiricism. Besides, it is a waste of time, and
the information thus acquired, is at the best uncertain.
The bad consequences of having chosen an unscientific
mode of proceeding of this kind, increases with the actual
enlargement of our information, in respect to the produe-
tions of inorganic Nature.

§. 19. METHOD OF STUDYING THE NATURAL
HISTORY OF THE MINERAL KINGDOM.

* " The only scientific way of studying Mineralogy
is, to proceed according to the prmmples, and con-
formably to the method of the science itself. This
requires some practice in several observations, re-
lative to certain properties of Minerals ; it presup-

_poses some acquaintance with the mathematics ; and
a little tuition will greatly facilitate its application.

Fvery person who intends to acquire solid information
in Mineralogy, must endeavour to become conversant
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with the principles of Natural History ; without which, it
is but too easy to miss the way to its attainment. An-
other very material object is the correct application of
these principles to the Mineral Kingdom ; for the best
and most perfect instrument is of no utility to those who
are not acquainted with its employment.

Lastly, a certain degrce of skill is required m recog-
nising and finding out the connexion of those forms which,
in Mineralogy, are called regular. In order to facilitate
the acquisition of this, some mathematical knowledge is ne-
cessary.

After having become sufficiently acquainted with Ter-
minology, the surest and shortest way for the beginner
to proceed, is to apply.at once to Nature itself. This may
be effected by means of the Characteristic, which, accor-
ding to the rules laid down, under the fourth Head, must
be employed in order to acquire a certain degree of prac-
tice, in the determination of ‘individuals occurring in Na-
ture. This leads to an intimate acquaintance with the
minutest details, and thus becomes the basis of informa-
tion of greater extent.

If the stndent has an opportunity of examining well
arranged collections, he will be enabled to acquire general
ideas, and form general views, in a much shorter period
of time than would be possible by the comparatively slow,
yet detailed and sure processes of the Determinative part
of Mineralogy. 'In collections of this kind, the determina-
tion of the species must be correct, and their arrangement
conformable to the general principles of Natural History.
Collections otherwise arranged, can be of' little use to the
beginner ; on the contrary, they may be prejudicial to his
future progress, in as much as they confound his ideas;
and indeed they may be said to be useful only to those, who
wish to enlarge their information, by observation and in-
quiry. B

There exist but few Mineralogical works, which can pro-
perly be recommended to 2 beginner. The following enu~
meration contains those most useful for this purpose.
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FOR THE STUDY OF TERMINOLOGY.

Von den zusserlichen Kennzeichen der Fossilien, von A. G.
Werner. Leipzig. 1774. This work has been translated
into several languages. It has been translated into Eng-
lish, under the title of—

A Treatise on the External Characters of Fossils, of Abraham
Gottlob Werner, by Themas Weaver. Dublin. 1805.
A Treatise on the External, Chemical, and Physical Cha-
racters of Minerals, by Robert Jameson. Second Edi-

tion. Edinburgh. 1816.

Cristallographie, ou Description des Formes Propres & tous
les Corps du Régne Minéral. Avec Figures et Tableaux
Synoptiques de tous les Cristaux connus. Par M. de
Romé de 'Isle. 2de Edition. Paris. 1783.

Traité de Mineralogie, par le Cen. Haiiy, &c. En cing
volumes, dont un contient 86 planches. Paris. 1801.

De la Cristallisation considérée géométriquement et phy-
siquement ; ou Traité abrégd de Cristallographie, &e.
Par A. J. M. Brochant de Villiers. Strasbourg. 1819.

Versuch eines ABC Buchs der Krystallkunde von Karl
von Raumer. Berlin. 1820.

Nachtriige zu dem ABC Buche der Krystallkunde von
Karl von Raumer. Berlin. 1821.

Various Memoirs in the Journal and the Annales des
Mines, &c. by Messrs Haily, Monteiro, &c. Also in the
Memoirs of the Academy and the Society of Berlin, in
the Journal fiir Chemie und Physik of Schweigger, &c.
by Messrs Weiss, Bernhardi, &c.

Since the original publication of this work in German, there
has appeared—

A Familiar Introduction to Crystallography ; by Henry
James Brooke. ILondon. 1823.

FOR THE STUDY OF THE THEORY OF THE SYSTEM.
Caroli Linneei Philosophia Botanica, &c. Holmiz. 1751.
Des Caracteres Extérieurs des Minéraux, ou existe-t.il

dans les Substances du Régne Minéral des Caractéres

qu'on puisse regarder comme spécifiques, &c. Par M.

de Rom¢ de I'Isle. Paris. 1784.

VoL. 1. B
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Most of the works relating to the subject of the Mineral
System, and Classification in general, require the utmost
attention on the part of the beginner, who intends to per-
use them.

As to the principles of Nomenclature and the Characte-
ristic, the study of the works of Linneeus is particularly to
be recommended, and, above all, of his Philosophia Bola-
nica and Critica Botanica.

In the second volume of this Treatise, those works are
quoted, which regard the Descriptive part of Mineralogy,
and which partly also have been referred to in the deserip-
tions of the single species.



PART I.

TERMINOLOGY.

GENERAL CONSIDERATION OF MINERALS. THEIR DISTINCs
TION INTO SIMPLE, COMPOUND, AND MIXED. DIVISION OF
THEIR NATURAL-HISTORICAL PROPERTIES,

§. 20. POWER OF CRYSTALLISATION, AND ITS PRO-
DUCTS.

That power which produces the individual (§. 6.)
in the Mineral Kingdom, is termed the Power of
Crystallisation.

This name has been applied, because the most eminent
and perfect productions of that power are Crystals (§. 26.).
The power of Crystallisation is included im the general
idea of the Individualising power, which tends fo produce
individuals in all the three kingdoms of natures' and which
refers equally well to regular crystals, and to such indivi-
duals of the mineral kingdom, as ‘are produced by the power
of crystallisation, although they are not crystals thems
selves, as will be shewn in anether part of this work.

Individuality does not require regularity, but it implies
unity of form (§. 6.). An individual, whatever may be its
form, fills the space occupied by that form, with a certain
matter (§. 23.), and thus it represents a whole, being co-
herent in itself, and limited towards the outside. For this
reason, the individual is a single body, and, as such, by it«
self a fit object for the consideration of Natural History.

‘When minerals pass into the state of individuality, they
at the same time are endowed with the rest of those natu«
ral-historical properties which are peculiar to them in that
state of distinct existence; and hence these properties’
must likewise be considered as produced by the power of
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erystallisation. The assemblage of those properties, is the
mineral, or the natural production itself; at least, in as
far as it is an object of Natural History.

Minerals, upon which the power of crystallisation has
not exercised its action, are without individuality, and
therefore do not possess any of the properties connected
with this state of existence. They want unity of space ;
they are not single bodies, and, as such, by themselves fit
objects of Natural History. As mere shapeless masses,
with certain inherent properties, they can be considered as
objects of Natural History, only because they are natural
productions (§. 4.)-

Temperature has a great influence over the power of
crystallisation. Several minerals, as water, fluid mercury,
&e. pass into the state of individuality, and become solid,
if the degree of temperature be sufficiently reduced ; on
the contrary, by an inerease of temperature, hexahedral
silver, octahedral bismuth, &c. leave this state, and become
liquid, and others elastic.* For that reason, in treating of
Natural History, it is necessary to fix the degree of tem-
perature in which the productions of the mineral kingdom
are considered; and this is the ordimary temperature, at
which water is fluid, and the most fusible crystals are solid.+-

§. 21. MINERALS DECOMPOSED AND IMPERFECTLY
FORMED.

The productions of the power of crystallisation
continue to be objects of natural-historical conside-
ration, so long as they retain the properties pecu-
liar to them, which they have derived from the ac-
tion of this power. By the loss of some or of seve-

* If the change produced on a mineral by the application
of heat, affects more than the mere state of aggregation,
the consideration of this change makes part of another sci-
ence, and has no reference to Natural History.-

+ This is the reason why water, and not ice, has received
a place in the system. ‘
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ral of these properties, they cease to be suitable ob-
Jects for the consideration of Natural History.

A mineral possessed of the properties it received from the
power of crystallisation, is in its natural or original state
(§- 3. A mineral which has lost these properties more or
less, is decomposed, and ceases to be an objeet of natural.
historical consideration.

Minerals thoroughly decomposed commonly appear in
the form of powder, or as shapeless masses, without present-
ing any regular structure, or lustre, or determined and con-
slant degrees of hardness or specific gravity; and the co-
hesion of their particles is destroyed. They form part of
the friable or earthy minerals. An example of an earthy
mineral we have in Porcelain-earth, a substance produced by
the decomposition of prismatic Feld-spar.* The decompo-
sition of minerals, however, does not in all cases proceed so
far. Some minerals retain their form, whilst colour, lustre,
hardness, &c. are changed ; as in several varieties of hexa-
hedral and prismatic Iron-pyrites. All, even the slightest,
of these alterations, exercise an influence upon the natural-
historical consideration of those bodies. It is in direct oppo-
sition to the principles of Natural History, to consider de-
composed varieties of one species, as varieties of another ;
but this, nevertheless, has been but too often the case in
Mineralogy. Thus, decomposed varieties of hexahedral and
prismatic Iron-pyrites, and of brachytypous Parachrose-
baryte, have been taken for varieties of prismatic Iron-ore.
In most cases it is possible to determine what the decom-
posed minerals have been in their natural or original state,
though indeed, for that purpose, we have often to recur to
considerations foreign to Natural History.

It seems that the substance of several minerals has, in
the period of their formation, not arrived at that state of
perfection which distinguishes the finished productions of

* Another class of friable minerals consists of very small
fragments of crystals, and grains of fresh or not decomposed
minerals. Such are fine sand, &c.
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crystallisation. In respect to Natural History, they must
be classed with those which are decomposed. Minerals ime
perfectly formed, may be compared to animals or plants
mutilated, defective, monstrous ; while those that are decoms
posed, having ceased to retain their original state, may be
compared to the animal or the plant which has ceased to
live. They may elucidate facts, both in Zoology and Bo-
tany, though in that state they are not in themselves ob-
Jects of inquiry in Natural History. It is therefore per-
fectly evident, that the distinction introduced by some
naturalists among minerals, into crystallised, crystalline,
and amorphous, depends upon accidental circumstances in
the formation of these bodies; and, therefore, is not essene
tial.

§. 22. SIMPLE MINERAL.

A mineral consisting of one single indiv}dual, or
forming a part thereof, is termed a Simple Mineral.

This is the idea of a simple mineral in Natural History.
The simple mineral must be distinguished from what is
called simple in Chemistry ; and, likewise, from what Mi-
neralogists commonly call simple. The last frequently
consists of several individuals, and is therefore not simple
in the sense of Natural History. Examples of simple mi.
nerals are crystals and grains of dodecahedral Garnet, or
of octahedral Diamond. The particles of which granular
Limestone is composed, are each simple minerals belong-
ing to the species of rhombohedral Lime-haloide; while
those of Coccolite are also simple minerals, belonging to
the species of paratomous Augite-spar,.&c.

§. 23. COMPOUND MINERAL.

A mineral consisting of more than one indivi-
dual of the same quality,* is termed a Compound

Mineral.

* The term Homogeneous individuals would be more
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The compound mineral consists of simple ones. It is
produced when several individuals of the same quality are
formed in a common space, either at the same time, or one
after the other ; one being the support of, or at least con-
tiguous to the other. It is, therefore, not one simple mi-
neral, but a composition of several. If many of these sim.
ple minerals come into contact, they prevent each other mu.
tually from assuming their regular form. Compound mi.
nerals, therefore, which consist of many simple ones, do
not possess regularity.

Examples of compound minerals are frequently met with,
as in the above mentioned varieties of rhombohedral Lime-
haloide, and paratomous Augite-spar; also the globular
masses of hexahedral and prismatic Iron-pyrites, and the
stalactitic masses of rhombohedral Quartz, called Calcedony,
&c. may serve as examples of compound minerals.

§. 24. MIXED MINERAL.

A mineral, consisting of several individuals of
different qualities, is termed a Mixed Mineral.

The mixed mineral consists of simple minerals, like the
compound. The mized mineral, as such, is not an obhject
of Natural History, because its constituent parts, the sim-

. ple minerals, have already been considered by themselves,
and received their appropriate places in the system of Na-
tural History. For the same reason it becomes necessary,
from the principles of Natural History, to exclude even com.

exact, if, in the present place, we could avail ourselves of
that expression. In order to understand what is meant
here, it will be sufficient to consider individuals of the
same quality, to be such as are contained in the examples
quoted in the preceding paragraph of rhombohedral Lime.
haloide, and paratomous Augite-spar. Individuals of dif-
Jerent quality, are such as exhibit notable differencesin their
natural-historical properties; as, for instance, Granite,
where the component individuals of rhombohedral Quartz,
prismatic Feld-spar, and rhombohedral Talc-mica, widely
- differ in appearance and character.
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pound minerals from these considerations. It is necessary,
however, to distinguish correctly between the simple and
the compound minerals; and since this cannot be done
otherwise, than by knowing all the details respecting these
hodies themselves, their consideration must not entirely be
neglected.

The union among the simple minerals in the mixed mi-
neral, is sometimes so close, and the particles of the mixture
so diminutive, that it becomes impossible to ascertain their
reality by simple ocular inspection. Many Mineralogists
in this case consider mixed minerals as simple, and class
them as such in their systems. But this is not the only
error of the kind, occurring in such arrangements. Both
mixed and decomposed minerals are by themselves no
longer objects of the method ; yet there are even mixtures
of decomposed minerals, which have been introduced into
the systems, and to which particular places have been
assigned.

Examples of mixed minerals we have in many varieties
of rocks; in granite, gneiss, porphyry, &c.; also in many of
those masses which constitute beds and veins. Examples
of close or impalpable mixtures, are found in Iron-flint
and Heliotrope, both varieties of rhombohedral Quartz ;
the first of which is mixed with oxide of iron, the other
with Green Earth, a variety of prismatic Talc-mica. Mix-
tures of decomposed minerals we have in Clay, Yellow
Earth, Tripoli, &c.

§. 25. DIVISION OF THE NATURAL-HISTORICAL
PROPERTIES.

The natural-historical properties of minerals are
divided into; 1. such as refer to simple; 2. such
as refer to compound minerals; 3. such as are
common to both.

The natural-historical properties of minerals compre-
- hend their colour, the different degrees of hardness, the
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different kinds of lustre, the regular forms, the circum.
stances and relations, under which the particles of the in-
dividuals can be separated from each other, &c. ; because
these are the properties of minerals exhibited in their na-
tural state, and may be considered without producing any
change or alteration on the mineral.

Properties which can only be observed during, or after
a change, cannot be employed agreeably to the principles
of Natural History, and must therefore be excluded from
Mineralogy ; because, in observing them, we transfer the
object itself from its natural state, into another, in which it
ceases altogether to be an object of Natural History. Pro-
perties of this kind are, the fusibility of minerals examined
before the blow-pipe, or by the assistance  of some other
apparatus, and the concomitant phenomena ;—their solu-
bility in acids ;—phosphorescence produced by heal, if; after
the first experiment, it cannot be observed any longer ;—
chemical analysis instituted to ascertain the quality or re-
lative quantity of the component parts, and the results
of that process :—every thing, in short, must be excluded,
which alters the natural state of a mineral. There are
properties to be met with in minerals in their natural state,
which, although not altered by examination, yet are of no
utility in Natural History ; such as the size of crystals ;
the irregular enlargement, and figure of some of the faces
depending upon it ; the accidental forms minerals assume
by being broken, rubbed down, water-worn, decomposed, &c.
Such properties are accidental, because the identity (§. 14.)
of the individual is not destroyed by their occurrence.

The natural-historical properties include the greater part
of the gharacters commonly called external, and some of
those called physical.

As to the distribution of those properties among the dif-
ferent heads mentioned above, the first will include those
which can be observed only in an individual itself, or in a
fragment of an individual. These are the geometrical pro-
perties, or such as refer to Space; the relations of Struc-
ture, those of Surface, and the phenomena of Refraction,
in so far as they depend upon the regular form of minerals.
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To the second belong the relations of Composition, the Forms
of compound mirierals, the mode of Junction of the indivi-
duals in these compositions, &c. these properties being
such as are only to be met with in compound minerals.
The third comprehends those in which the simple or com-
pound state of the mineral has no influence upon the con-
sideration of the properties ; as Colour, Lustre, Transparen-
cy in general, Hardness, Specific Gravity, the State of Aggre-
Zation, Taste, &.

Terminology includes, therefore, three Sections, within
which each of the above mentioned properties is considered
in a separate Chapter.



SECTION 1.

THE NATURAL HISTORICAL PROPERTIES OF SIMPLE
MINERALS.

CHAPTER 1.

OF THE REGULAR FORMS OF MINERALS.
I. GENERAL CONSIDERATION OF THE REGULAR FORMS.

§. 26. crysrTar.

In Mineralogy, the term Crystal is applied to a
body, which consists of continuous and homoge-
neous matter, and occupies, from its origin, a re-
gularly limited space.

Crystals assume a regularly limited space in their origin,
that is to say, in the very act of their formation. A mine.
ral which appears in a regularly limited space only after
a part of its homogeneous matter has been detached from
it, is not contained under the preceding definition, and
therefore no Crystal.

The matter contained within the regularly limited space,
is termed komogencous, if it be everywhere of the same qua-
lity ; and it occupies or fills the space with Continuity, if in
its interior it allows no particles to be distinguished from
one another, of which the whole mass might be said to be
composed. There are minerals occupying a regularly li-
mited space, with homogeneous matter, but without conti-
nuity ; because in their interior, particles can be observed,
which are evidently distinct from each other (§. 186.). Mi.
nerals which are found thus to consist of homogeneous mate
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ter within a regularly limited space, yet want continuity,
and cannot therefore be called crystals in the signification
of that term, as defined ahove.

§. 27. OBJECT OF CRYSTALLOGRAPHY.

The object of the science of Crystallography, is
to ascertain the regularly limited space, that is to
say, the Form of the Crystals, not the matter,
which occupies that space.

Since the object of Crystallography is nothing but figur-
ed Space, and in this nothing is to be considered besides
geometrical quantities, and their relations to each others
it appears that Crystallography is a pure geometrical
science,

§. 28. ForMs AND FACES.

The regularly limited space occupied by a crys-
tal, is termed a Form of Crystallisation, and the
limits or planes, Faces of Crystallisation.

In Crystallography, the faces of crystallisation are con-
sidered as perfect Planes, although this is not always the
case in nature.

They are termed Faces of Crystallisation, in order to
distinguish them from certain other faces of minerals,
which, though they exhibit regular shapes, yet are no crys-
tals (8. 26.).

The faces of crystallisation receive particular names, ac-
cording to the forms which they limit, as, for instance,
Faces of the Rhombohedron, of the Octahedron, &c. ‘They are
called Faces, without any nearer determination, if the
form to which they belong is understood to be a form of
crystallisation.
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§. 29. EpcEs.

The limits of the faces, or their intersections
with each other, are termed Edges.

The Edges of forms are always supposed to be straight
lines, although in nature they are not always straight.

The Edges are denominated not only according to the
forms to which they belong, but also according to their par-
ticular situation in respect to these forms. If a form of
crystallisation contain edges of only one kind, these bear
simply the name of the form ; as, for instance, Edges of the
Hexahedron. If it contain several kinds of edges, they are
distinguished from each other by their name, for in-
stance, Terminal and Lateral Edges of the Rhombohe-
dron, &c.

§. 30. soLID ANGLES.

The limits or terminal points of the edges are
Solid Angles.

The solid angles are named according to the forms in
which they are found, and receive a nearer determination,
by some epithet expressing their particular situation and
quality. Thus we say, Solid Angles of the Hexahedron s
also rhombohedral, pyramidal, prismatic Solid Angles, &c.

§. 31. HOMOLOGOUS FACES.

Faces, equal and similar to each other, and simi-
larly situated, are termed homologous ; such as are
not equal and similar, or assume a different situa-
tion in the forms, are not homologous.

In nature, the homologous faces are mot always equal

" and similar to each other, yet they are always similarly
situated. Sometimes a single face of a crystalline form is
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cnlarged, and assumes a figure different. from what it
should be, and dependent upon this enlargement. Crys-
tallography takes no notice of these irregularities, in as
much as they are accidental, and because this science is in-
tended to promote the study of the forms in their peculiar
Regularity and Perfection, in order to enable us to develope
their relations to each other, and to facilitate the applica-
tion of both to the phenomena of Nature.

§. 32. HOMOLOGOUS OR EQUAL EDGES.

Edges are said to be of equal magnitude, or of
equal value, if the faces meeting in them are equally
inclined to each other, or produce an equal angle of
incidence ; they are said to be of equal length, if
they are formed by equal sides of the faces; and if
they are both of equal magnitude and equal length,
and at the same time similarly situated, they are
termed equal or homologous.

The inclination at the edges is invariable in nature ; and
upon this constancy of the angles of incidence, is founded
the application of crystallography to nature. The length
of the edges is subject to variation, as well as the figure of
the faces. In the crystals themselves, all the edges of
equal quantity which are similarly- situated, although per-
haps not of equal absolute length, are considered as homo-
logous.

§. 33. DENOMINATION OF THE SOLID ANGLES.

Solid angles are denominated according to the
number of faces contiguous to them, or according
to the quality of the edges produced by the inter-
section of these faces. Solid angles formed by homo-
logous faces, are said to be Homologous themselves.
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A solid angle formed by the intersection, or consisting
of three, four, five, &c. faces, is said to be a solid angle of
three faces, a solid angle of four faces, &c. A solid angle
18 equiangular, if the plane angles contiguous to it are equal ;
it is unequiangular, if they are different from each other. A
solid angle, resulting from the junction of two, three, &c.
different Zinds of edges, is said to be digrammic, trigrammic,
&c. ; and a solid angle having all its edges equal, or which
possesses only one kind of edge, is, in opposition to. the
latter, termed a monogrammic solid angle.*

§. 34. SIMPLE AND COMPOUND FORMS.

A form contained under homologous faces
(§. 81.) is termed a Simple Form ; one that is con-
tained under faces which are not homologous, a
Compound Form.

‘We have examples of the former, in the Hexahedron, the
Octahedron, as Geometry considers those solids, Fig. 1. 2.,
and in several others besides. Of the latter in the same,
if their angles or edges, or both, are replaced by faces not
belonging to their own form, Figs. 3. 4., or in general, if the
form is limited by more and other faces, than is required
for a simple form.

§. 35. THE COMPOUND FORMS CONSIST OF THE
SIMPLE.

A compound form consists of two or more simple
ones. Those faces of the compound, which are

* Monogrammic, single-edged or one-edged, from pévg,
single, and yeapph a line 3 digrammic, double-edged or two<
edged, from 35, double, and ypappns trigrammic, friple~
edged or three-edged, from 55ls, triple, and ypapwn; referring
to the number of different kinds in those lines or edges,

_which terminate in the solid angle.
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homologous to each other, belong to one and the
same simple form.

The hexahedron, whose angles are replaced by equilateral
triangles, or by equiangular hexagons, Figs. 3. 4., is a com-
pound form. The faces of a four-sided or eight-sided figure,
homologous to each other, are faces of the hexahedron,
which is one of the simple forms; the triangles or hexa-
gons, again homologous to each other, are faces of the se-
cond simple form, which is the octahedron, and the com-
pound form is said to consist of both.

It is possible, that a compound form may assume the as-
pect of a simple one, in so far as it may be contained under
faces, which, according to the given definition, are homo-
logous. The particular circumstances, under which this
happens, and the reasons, why a form of that kind, never-
theless is considered as compound, will be given afterwards.

§. 36. TANGENT PLANES.

A plane, which.touches a simple form in one of
its edges, is called a T'angent Plane.

The edge of the simple form lies in the tangent plane ;
and the latter is always supposed to be equally inclined to
both the faces meeting in the edge of the simple form, un-
less it be expressly mentioned otherwise.

§. 37. sECTIONS.

A plane, which intersects a simple form, is term-
ed a Section. A Principal Section divides the form'
into two equal halves, without dissecting an edge;
a T'ransverse Section is perpendicular to a certain
line within the solid.

The knowledge of Sections is very useful, in a more de-
tailed examination of the forms themselves s and the Prin-
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cipal sections, in particular, allow of many interesting ap-
plications, both in Crystallography and in Optics. In Op-
tics, however, the term principal section is applied only to
those planes, which pass through the principal axis.

In the hexahedron, Fig. 1., the principal section ACEG
passes through the parallel diagonals AC and EG of two
opposite faces, and through the edges joining them AE and
CG, forming an oblong or rectangle. In the rhombohe-
dron, Fig. 7., ore principal section ABXC passes through
those diagonals of two parallel faces AB and X.C, which join
different solid angles with each other, and through the in-
termediate edges AC and BX, forming a rhomboid. An-
other principal section C'C”B’B”, passes through the dia-
gonals of parallel faces C’C” and B’B”, joining equal solid
angles with each other, and through the intermediate edges
CB” and C"B/, forming a rectangle. Two or more prina
cipal sections, of equal and similar figure, and similarly
situated, are accounted as one. Some forms, as the rhom-
bohedron, have more than one ; others, as the tetrahedron,
no principal section at all. The consideration of these sec-
tions is not of equal importance in all forms..

It is not necessary to carry the distinction of these sec-
tions any farther, than to such as yield regular, or at least
equiangular or equilateral figures. If, therefore, sections
in general are mentioned, only sections of that description
are to be understood.

. §. 88. momoLocoUs SECTIONS.

Sections, which either possess similar figures, or
which assume them, if reduced to the same distance
from the centre of the solid, or in which the junc-
tion of certain points, by straight lines, produces si-
milar figures, are termed sections of the same
kind, or Homologous Sections.

There are two sets of homologous sections in the hexa-

hedron, containing on one side all the squares, as A/B'C'D’,
VOL. L c
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Fig. 1.5 on the other all the equilateral triangles, as RST,
Fig. 5, But the equiangular hexagons, as R”R/S”S'T*T’,
produced by sections parallel to the triangles, are homolo-
gous with them; for triangles of this kind can be inscribed
in them, or they are transformed into such triangles, if
brought to the same distance from the centre of the form.
The sections of the hexahedron, which appear as oblongs
or rectangles, as RSR’S’ Fig. 6., are likewise homologous
to each other ; for they are similar, if made equidistant from
the centre. Let the edge of the hexahedron AD be = 1,
and AS that part of it through the end of which the sec-

tion passes, = 12; the figure of this section will be a

square. A section of that kind, however, if made equidis-
tant from the centre with a rectangle, is likewise transform-
ed into a rectangle, and therefore homologous with these
figures, and not with the squares above mentioned.

In every oblong, a rhomb can be inscribed, if we join
the centres of its sides by straight lines. Hence sections
of a rthombic figure are homologous with sections of an ob-
long or rectangular figure.

Besides the sections described in the hexahedron, there
are none to be met with in any other solid whatever; or
those which may be met with in other solids, can always be
traced to one of these. The different kinds of sections are,
therefore:

1. Such as are either eguilateral Triangles themselves, or
in which equilateral triangles may be inscribed ; as regu-
lar hexagons, or equiangular hexagons, whose alternate
sides, or equilateral hexagons, whose alternate angles, are
equal ; dodecagons of the same description, &c.

2. Such as are either Sgquares themselves, or into which
squares may be inscribed, as regular octagons, or equiangu-
lar octagons, whose alternate sides are equal, or equilateral
ones, whose alternate angles are equal, &c.

3. Such as are Rectangles ox Rhombs, or in which rectangles
or rhombs may be inscribed. Tt must be remarked here,
that if among the rectangular sections, there is only one, or
two squares, as in the tetrahedron and in the hexahedron,
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the rectangular, as the greater number, determine the kind
of the sections.

The different kinds of sections will be furnished with
appropriate and expressive names in the following §§. 50,
52, 53.

§. 39. axes.

The straight line passing through the centres of
two parallel sections, if it be perpendicular to their
planes, is termed an Azis.

Suppose a hexahedron, Fig. 1., to be intersected by a
plane A’ B’C’ D’ parallel to one of its faces; the section
will be a square. The straight line PQ through M and P
the centres of this, and of a parallel square, will be an
axis. Take from a solid angle of the hexahedron, Fig. 3.
equal parts AR, AS, AT upon the edges terminating in
this angle, and lay a section through the points thus de-
termined. The straight line AG through the centres M, M’
of this and of a parallel section R’8”S8"T” I"R”, even
though the figure of the latter should be no triangle, is
likewise an axis. Take equal parts AR, AS; ER’, ES’
of the parallel edges of a hexahedron, Fig. 6., beginning
from two adjacent solid angles A and E, and lay a plane
through the points thus determined. Its figure will be a
rectangle, or, at a certain distance from the centre of the
hexahedron, it will be a square (§. 38.); and the straight
line NO through M and M’ the centres of this and of a
parallel section, is again an axis.

Every axis passes through the centre of the solid.

In the centre of the solid, all axes, which are perpendicu-
lar to homologous sections(§. 38.), intersect each other at
equal angles.

§. 40. moMoLecOUS AXES.

An axis belongs to that section, in the centre of
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which it is perpendicular to its plane. Axes be-
longing to homologous sections, are said to be
themselves homologous.

The axes belonging (o the equilateral triangles, &c. may
for the present be called axes of the first; those belonging
to the squares, &c., of the second ; and those belonging to
the rhombs; or rectangles, &e., axes of the third kind.

Some forms contain only one, others two, and others
three kinds of axes in different number. The number in
which the axes of the first kind appear, is onc or four ; that
in which those of the second kind are found, one or three ;
and that in which those of the third kind are contained in
the solids, one, three, four, or siz.

The hexahedron contains four axes of the first, three of
the second, and six of the third kind ; the tetrahedron four
of the first, none of the second, three of the third; the
rhombohedron contains only one axis of the first kind.

§. 41. PRINCIPAL AND SUBORDINATE AXES.

Principal Azes are those whose sections are re-
gular, or such figures as allow regular figures to be
inscribed into them ; Swubordinate Axes such whose
sections are no regular figures themselves, and in
which no regular figures can be inscribed. If a
form contains no principal axis properly so called,
one of the subordinate axes is considered as the
principal axis.

The axes of the third kind, in whatever number they may
appear, are always subordinate axes, if they occur at the
same time with others. But if they occur alone in a form,

their number is in no case greate'r than three; and then
two of them are subordinate ; the third is the principal axis.
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§. 42. UPRIGHT POSITION.

A form is said to be in its Upright Position
when one of its principal axes is vertical.

Forms that have only one principal axis are upright but
in a single one; such as have more than one are upright
in several positions. If a form econtains only axes of the
third kind, it is upright, when that axis is in the vertical
position, which is considered as its principal axis.

In the subsequent inquiries, all forms, simple and com-
pound, are supposed to have been previously brought inte
an upright position.

§. 43. PARALLEL POSITION.

Two or several forms are in Parallel Position,
if the axes of the one are parallel to the homolo-
gous axes of the other.

Two or several forms are in parallel position, if of the
axes of the one, only two are parallel to two homologous
axes of the other. Feor all the homologous axes intersect
each other in the centre of theform, at equal angles (§. 39.)

The parallel position cannot in general be perfectly de-
termined in forms which possess only one axis. Several
forms, moreover, may be considered in different positions.
It will be pointed out hereafter by what means, in these
cases, the parallel position must be determined. The diffe-
rent positions of forms are of great importance in all crys.
tallographic researches, if the object of these be more than
the consideration of one form at a time.

Similar forms in parallel position, have their faces pa-
rallel.

§. 44. HORIZONTAL PROJECTION.

Place any given form in its upright position.
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Draw from the angles of this form, perpendicular
lines to a horizontal plane, and join all the points
thus determined by straight lines. The greatest
plane figure obtained by this proceeding is the Ho-
rizontal Projection of the form.

The horizontal projection belongs to the vertical axis,
and is homologous with the sections to which the axis be-
longs (§. 40.), and to which the projection is parallel.

A form possesses as many different horizontal projections
as it has kinds of principal axes.

The Side of the horizontal projection is the unity of most
of the subsequent calculations referring to the dimensions
of crystalline forms.

§. 45. REGULARITY.

The Regularity of simple forms is their greater
or lesser agreement with the regular solids of geo-

metry. 3

Regularity refers only to simple forms. The regularity
of the simultaneous existence of these in the compound, is
termed the Symmetry of combinations, which will be cone
sidered more at large in §. 141.

The irregularities so frequently occurring in crystals,
must be abstracted, in our consideration of them, and the
forms reduced to their peculiar regularity.

§. 46. DEGREES OF REGULARITY.

The regularity of simple forms allows of being
arranged in Several Degrees.
Geometry considers solids whose angles are not altogether

situated in the surface of one sphere, to be less regular than
those whose angles are all touched by the surface of a single
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sphere ; and thus, it likewise acknowledges different degrees
of regularity. The degrees of regularity in Crystallography
are not the same with these. By the peculiar method of
treating its object, Crystallography is forced to ascribe the
same degree of regularity to forms, the angles of one of
which may lie in one, of another in two, of a third in three
different spheres, as to the hexahedron, to the monogram.
mic Tetragonal-dodecahedron (§. 63.), and to the Tetracon-
ta-octahedron (§. 77.); and it ascribes to others, as to the
Tetrahedron, a lesser degree of regularity, although its
angles altogether should be situated in the face of one and
the same sphere.

§. 4. DETERMINATION OF THE DECREES OF
REGULARITY.

The degrees of regularity of simple forms, are
determined according to the Kind and the Number
of their Azxes.

There are four degrees of regularity to be distinguished
in simple forms.

Forms of the first degree of regularity contain four axes
of the first kind, three of the second, and six of the third ;
of the second degree of regularity, four of the first kind, some
of them at the same time three of the second, some three of
the third, some none besides those of the first ; of the third
degree of regularity, only one axis of either the first or the
second kind, and an undetermined number of axes of the
third kind ; of the fourth degree, three axes of the third
kind.

Thus, first 4 3 6
4 3 0
second {4 0 3
4 0 0
- 1 0 L
third { 0 1 undetermined.
d fourth 0 0 3
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With these degrees of regularity, the rest of the quality
of simple forms is in the closest agreement, as will be seen
hereafter. The first degree of regularity contains two of
those forms, and the second one of those forms, which are
geometrically regular.

§. 48. CLASSIFICATION OF SIMPLE FORMS.

Simple forms are divided, according to the num-
ber of their principal axes, into such as have only
One Principal Axis, and such as have Several.

The forms with one axis are of the third and fourth,
those with several axes are of the first ‘and second degree
of regularity.

§. 49. NOMENCLATURE OF SIMPLE FORMS.

The forms of one axis receive their names ac-
cording to the figure of their faces, or according to
some general property; those of several axes, ac-
cording to the number of their faces; and when
a more accurate determination is necessary, accord-
ing to certain peculiarities of these forms them-
selves.

Systematic nomenclature remedies the want of confor-
mity and precision, which has hitherto prevailed in the
method of denominating crystalline forms ; and at the same
time produces a distinct idea of the forms themselves, since
it is in fact their abridged description. This shews the use-
fulness of the systematic nomenclature, and justifies its in-
troduction.

Forms of a single axis, whose faces are rhombs, are term-
ed Rhombohedrons ; others, whose faces are triangles, are
called Pyramids.

A form of several axes, which is contained under four faces,
is a Tetrahedron, or the Tetrahedron, because there exists
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only one, or because all tetrahedrons are similar ; a form
contained under six faces, is the Hexahedron ; a form eon-
tained under eight faces, is the Octahedron ; a form con-
tained under twelve faces, is @ Dodecahedron, because there
are several varieties, or because not all dodecahedrons are
similar ; a form contained under twenty-four faces is an

[Icositetrakedron ; and a form contained under forty-cight

faces, a Testracontaoctahedron.

The denominations which denote the different kinds and
varieties of simple forms, according to their peculiar pro.
perties, are formed from these names by coraposition, or by
the addition of adjectives.

I1. OF SIMPLE FORMS IN PARTICULAR.

CONSIDERATION OF SIMPLE FORMS, AND SOME OF THEIR
GEOMETRICAL RELATIONS.

§. 50. THE RHOMBOHEDEON.

The rhombohedron, Fig. 7., is a form contained
under six equal and similar rhombic faces; or the
rhombohedron is contained under six equal and si-
milar rhombs.

1. Any six rhombs, which are equal and similar to each
other, limit one, and if the obtuse angle of their figure is
less than 120°, #wo rhombohedrons.

2. All rhombohedrons belong to the same kind of forms.

8. The solid angles A, X, produced by equal plane angles
and equal edges (§. 33.) of the rhombohedron, are termed
its Apices.

4. The straight line AX through the apices, is the Axis of
the rhombohedron. The Rhombohedron has only oneaxis,
and this is of the first kind (§ 40.). Since all forms con-
nected with the rhombohedron possess axes of this kind,
these in future will be designated by the denomination of
shombohedral Axes.
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5. A solid angle, through which a rhombohedral axis
passes, is termed a rhombokedral solid angle. This applies
equally to forms which are not rhombohedrons themselves.

6. The edges CA, C’A, C”A, BX, B'X, B”X, contigu~
ous to the terminal points of the axis, are Terminal Edges s
while CB’, B'C”, C"B, &c. or those which do not intersect
or meet with theaxis, are Lateral Edges.

7. The diagonals of the faces of a rhombohedron, are
commonly said to be the diagonals of the rhombohedron
itself. Those which are horizontal, like CC”, C'C”, &ec.
when the rhombohedron isin its upright position (§. 42.),
are termed the Horizontal Diagonals ; those which, on the
same supposition, assume a direction inclined to the axis, like
AB, AB/, &c. are called the Inclined Diagonals of that form.

8. The rhombohédron has two principal sections. The
first and most useful is a rkomboid, bounded by two parallel
terminal edges, and the inclined diagonals contained be-
tween them, as ABXC; the second is a rectangle, as
C'C’B'B”. The other sections are of the first kind
(8- 38.), and termed Rhombohedral Sections. That through
the centre of the form, or the transverse section, is a regu-
lar Hezagon.

9. The horizontal projection of the rhombohedron is a
Regular Hcxagon, equal to that circumscribed about the
transverse section.

10. Of two rhombohedrons, that with a greater plane
angle at the apex, C’AC”, is termed the more obtuse ; that
with a lesser, the more acute of these forms. The same dis-
tinction applies also. to pyramids.

11. The sections CC’C” and BB’B”, through contiguous
horizontal diagonals, are perpendicular to the axis, and di-
vide it in three equal parts, AP, PQ, and QX.

12. If, as it is supposed in all calculations concerning
the rhombohedron, the side of the horizantal projection is
= 1; the horizontal diagonal is = ./ 3.

13. Let the axis AX be = a3 the angle of inclination a¢
the terminal edge = x; we obtain :

2a’— 9

€08 X == =— -
44+ 9
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14, Let « be the plane angle at the apex ; we have
2 a%— 9

CO8e & == oo e

2(a’+ 9)

§. 51. PYRAMIDS IN GENERAL.

A pyramid is contained under equal and simi-
lar triangles.

1. The whole number of these triangles, as well as its
half] is an even number.

2. The triangles are either isosceles or scalene. A pyra.
mid contained under isosceles triangles, is termed an isosce-
les pyramid ; one contained under scalene triangles, a scalene
pyramid.

3. The angles at the vertex of these triangles, are the
Apices of the pyramid.

4. The straight line through the apices is the Principal
Auis. ] ,

5. The edges contiguous to the terminal points of the
axis, are called Zerminal Edges ; they are equal in isosceles,
and unequal in scalene pyramids. The remaining edges of
the pyramid either lie in a plane perpendicular to the prin-
cipal axis, or they are situated like the lateral edges of a
rhombohedron (§. 50. 6.). They are called Lateral Edges,
the first of them sometimes Edges a# the Base.

6. The pyramids are divided according to the whole,
and denominated according to half the number of their faces,
as follows : ‘

Number of ol Figure of the
o Faces. Lheliiminniioh- Triangles.
<]
2| misne Foursided, | {logeeles
3 Y isosceles.
A Twelve, Six-sided, { e
Sixteen, Eight-sided, scalene.
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7. The term Pyramid has not exactly the same signifi-
cation in Crystallography, as in Geometry. In Geometry,
it means a solid, bounded by any number of triangular
planes meeting in one point, and terminating at one poly-
gonal plane, as its base. In Crystallography, it must be
restricted to simple forms; and, therefore, cannot be ap-
plied to any other but those, which have hitherto been call-
ed double pyramids. There are no simple pyramids, as
simple forms, to be considered in Crystallography. The te-
trahedron, which has been called a simple three-sided pyra-
mid, is no pyramid at all, but is a form of several axes, and
in the closest connexion with other forms of that kind,
particularly with the octahedron. 'The epithet doudle, there-
fore, is superfluous, since the crystallographer has on no oc-
casion to distinguish between simple and double pyramids,
as two different classes of simple forms.

§. 52. 150SCELES FOUR-S5IDED PYRAMIDS.

The isosceles four-sided pyramids, Fig. 8., are
contained under eight isosceles triangles.

1. The isosceles four-sided pyramids, have two principal
sections, one of which, BCB'C’, is a square, the other,
ACXC, or AB’XB, a rhomb.

2. The remaining sections, belonging to the principal
axis, are also squares ; and the axis is therefore of the se-
cond kind (§. 40.). 'This axis itself, the solid angles through
which it passes, and the sections belonging to it, are term-
ed Pyramidal, because all forms in connexion with the isos-
celes four-sided pyramid, contain axes, solid angles, and sec-
tions of the same kind. The same denomination applies to
every form possessing similar axes, solid angles, and sec-
tions, although this form be not an isosceles four-sided py-
ramid.

3. Besides these, the isosceles four-sided pyramids con.
tain four axes of the third kind, two of which, BB’ and
CC, are the diagonals, the two others HH” and H'H”
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parallel to the sides, of the base. These axes intersect
each other at angles of 45°.

4. The horizontal projection is a square, equal to the
base, or to the square principal section.

5. Let the side of the horizontal projection be =1 ; the
axis = a, the terminal edge = x; the lateral edge, or that
at the base = z; we obtain :

cos.x=-_.__l_ 3 cos.z=_l:a’ 4
1 4 a? 1 4 a?

§. 53. SCALENE FOUR-8IDED PYRAMIDS,

The scalene four-sided pyramids, Fig. 9., are con-
tained under eight scalene triangles.

1. The scalene four-sided pyramids have three principal
sections, ABXB’, AC'XC and BC'B’C, all of Whlch are
rhombs.

2. The remaining sections, all parallel to the principal
ones, are likewise rhombs: the axes AX, BB/, C(’ there-
fore are of the third kind. These axes, the solid an-
gles through which they pass, and the sections belonging
to them, are called Prismatic, on account of the great
number and variety of oblique angular four-sided prisms
existing among the forms in conmexion with the scalene

, four-sided pyramid, all of which possess axes, solid angles,
and sections of this kind. 'Those denominations of axes,
solid angles, and sections, are likewise made use of in such
forms as are not connected with the scalene four-sided
pyramid.

3. Any axis of the scalene four-sided pyramid can be
assumed as the principal one, or any solid angle can be
considered as the aper. After the principal axis has been
obtained, the subordinate axes, apices, solid angles, the base
and its diagonals, are thereby ascertained, and remain inva-
riablein all considerations of a determined form of this kind.
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4. Among the terminal edges, the greater is said to be
the obtuse edge, the lesser the acute edge ; which is likewise
the case in the scalene six-sided pyramids (§. §3.), and in
the eight-sided pyramids (§. 56.).

5. The horizontal projection is equal and similar to the
base, or to that principal section, which is perpendicular to
the principal axis.

5. Let the axis AX of a scalene four-sided pyramid be
= ay BB’ one of its diagonals = b; CC’ the other dia.
gonal = c; the terminal edge AB contiguous to b = y;
the terminal edge AC contiguous to ¢ = x; the edge BC
at the base = z: then
a? bl (a’ +b?)c? c’

€os. Yy =
a% b? 4 (a? +b’) et
€0S. X = a__ﬁ_.._(aﬁi_cib_’
a% ¢c? + (a? +¢?)b?
cosi g w3 (brheDat,
b2 c2? + (b2 +c2) a?
and v
€0S. y + C0S» X 4 C0Se Z == == 1,
Hence
c0s. ¥y = — (1 + cos. ® + cos. z) 3
€08 X = — (1 + cos. y + cos. z) 3
cos. zZ = — (1 + cos. y + cos. X).

7. Suppose cos. y = « 5 €0s. X = B3 cos. z = ¢: the fol.
lowing ratio among the diagonals will be obtained :
a:b:e=J/[1+2)1+p]1: NVIO0+2)A+49)1
:NIA+AA+ 9]

§. 54. 1SOSCELES SIX-SIDED PYRAMIDS.

The isosceles six-sided pyramids, Fig. 10., are
contained under twelve dsosceles triangles.

1. The isosceles six-sided pyramids have two principal
sections: one of them AHXZ, &c. is a rhomb, the other
HORZNT a regular hexagon. The latter is at the same
time the base of the pyramid.
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2. The remaining sections are rhombohedral (§. 50.) and
prismatic (§. 53.), as also the.axes. Of the prismatic axes,
three HZ, ON and RT pass through the lateral solid angles,
and three IS, KU and LV through the centres of the la-
teral edges.

3. The horizontal projection is equal and similar to the
base, or to the rhombohedral principal section.

4. The side of the horizontal projection being = 1
(§- 50. 12.), let the axis be = m.a (the axis of a rhembo-
hedron being designated by a, and a certain constant co-
efficient by m); the terminal edge'= x 3 the lateral edge
= z: we have

m? a? +6 \

T \2mznar+6 /’
m? a%—3

"m%ar+3 )

C0S. X =

COS.Z=—(

- § 55. SCALENE SIX-SIDED PYRAMIDS.

The scalene six-sided pyramids, Fig. 11., are
contained under twelve scalene triangles.

1. The principal section A’'BX'C, &c. is a rhomboid.

2. The remaining sections are rhombohedral; those
which pass only through terminal edges are equilateral
hexagons of alternately equal angles; that through the
centre, or the transverse section, is an equilateral dodeca-
gon, likewise of alternately equal angles.

3. The lateral edges of this form are disposed like the
lateral edges of a rhombohedron.

4. The horizontal projection is a regular hexagon.

5. The side of the horizontal projection being = 1; let
the axis A’X’ be = m.a (where a signifies the axis AX of
a rhombohedron, whose lateral edges coincide with the la-
teral edges CB, BC, &c. of the pyramid, and m a variable
co-efficient) : the obtuse terminal edge = y ; the acute ter-
minal edge = x; the lateral edge = z: the following for-
mule will be derived.
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3m? +6m—1)az + 18

2 @Bmi+)ar+9] /.
(Bm?—6m-—1)az+18

2 [ (3m?2 + 1)a? + 9]
(3m=—1)ar—9

“(Bmz+1)az + 9
cos.y =1+ cos. x + cos. z— 2. \/ [( + cos x) (1 — cos. 2)];
€08. X = 1 4 €05. y + €08. Z2—2. A/ [ (1 4 cos. y) (1 —cos. 2) |5
€0s. z =—(1+cos. y +cos. X + 2. o/ [ (1 +cos. y) (1 + cos. x)]).

cos.y=—((

COS.X=—(

COS. Z =

§. 56. SCALENE EIGHT-SIDED PYRAMIDS.

The scalene eight-sided pyramids, Fig. 12., are
contained under sixteen scalene triangles.

1. The scalene eight-sided pyramids have three different
principal sections 3 the first of these B’SC’S'BS”/CS” is an
equilateral octagon, of alternately equal angles; the other
two A’C/X’C and A’B’X’B on one side, and A’SX”S” and
A’S’X’S” on the other are rhombs.

2. The remaining sections are pyramidal and prismatic ;
so are likewise the axes. Of the prismatic axes, every two
B’B, C'C, and S8, §’S”, pass through equal solid angles.

3. Those edges which are not terminal, are edges at the
base.

4. The horizontal projection is equal and similar to the
base or the pyramidal principal section.

5. Let the axis A’X’ of the scalene eight-sided pyramid
be == m. a (where a is = AX, the axis of an isosceles four-
sided pyramid, the side of the horizontal projection of
which, S8’ is = 1, and m a variable co-efficient, greater
than 1 4+ 4/ 2 (§ 103.)); the acute terminal edge = y;
the obtuse = x ; the edge at the base = z: we obtain

e ek (2(ma2+l)
(m* + 1)a® + 2
(m? —1)a% +2
(m? + - 1) a® + Ty 2
(m? +1)a®—2 ¥
(m% +1)a% +2

COS: X == oo

COS: Z = —
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“And . #
c0s.y = —=4 (1 + cos. z

+ 2. o/ [—(cos. x + cos. z) (1 + cos. x)]);

€08 X = 4 (1 4+ cos. z
+ 2. o/ [— (cos. y + cos. ) (1 + cos. y)])5
€0S. Z = — (3 + 2. cos. y + 2. cos. X

+ 2. 4/ [2 (1 + cos. y) (1 + cos. X)]).
§. 57. THE TETRAHEDRON.

The Tetrahedron, Figs. 13. 14., is contained un-
der four equilateral triangles.

L. The plane angles a,a,a of the tetrahedron are = 60°;
the angles of incidence, at the edges A,A, &c. (their magni.
tude) = 70° 31 44”.

2. The sections of the tetrahedron are rhombohedral and
prismatic; one of the latter, through the centre, is a
square. ;

3. The principal axes are rhombohedral ; they join the
solid angles with the centres of the opposite faces; their
number is four, and they intersect each other at angles oft
109° 28’ 16”7, and 70° 31 44”. These angles of intersection
are general for the rhombohedral axes, whenever more than one
occur in the same form. The subordinate axes are prisma-
tic; they join the centres of opposite edges ; their number
is three, and they are perpendicular to each other.

4. The tetrahedron is a regular solid of geometry. ®

5. This form occurs, either by itself or in combina-
tions, in tetrahedral Copper-glance, in dodecahedral Gar-
net-blende, &c.

* The principal sections and horizontal projections of
the forms of several axes being of comparatively little use,
and besides very easily ascertained, I have thought it
superfluous to enter here into a greater detail.

VOL. L. D
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§. 58. THE HEXAHEDRON.

The Hexahedron, Fig. 1., is contained under six
squares.

1. All the angles of the hexahedron, those of the faces
as well as those of the edges, are = 90°.

2. The sections are rhombohedral, pyramidal, and pris-
matic: so are the axes.

3. The rhombohedral axes pass through the solid angles ;
the pyramidal axes, whose number is three, through the
centres of parallel faces, and these are perpendicular to each
other ;3 and this again is general to the pyramidal axes, whenever
more than one occur in the same form. 'The prismatic axes,
whose number is six, pass through the centres of parallel
edges ; those which belong to parallel edges, intersect each
other at right angles ; those which belong to edges that are
not parallel, at angles of 60° and 120°; and those are again
general angles for the prismatic azes.

4. The hexahedron or cube is a regular solid of geometry.

5. This form is frequently met with in nature, asin
octahedral Fluor-haloide, hexahedral Iron-pyrites, &c.

§. 59. THE OCTAHEDRON.

The Octahedron, Fig. 2., is contained under
eight equilateral triangles.

1. The plane angles of the octahedron are = 60°; the
edges or angles of incidence = 109° 28’ 16”. The angles
of incidence of the octahedron and of the tetrahedron are
supplemental to each other (to 180°). These angles are
the same as those at which the rhomhohedral axes inter-
sect each other (§. 57. 3.).

2. The sections and axes are the same as in the hexahe-
dron ; only the rhombohedral axes pass through the centres
of parallel faces, and the pyramidal axes through the solid
angles.
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3. The octahedron is a regular solid of geometry.
4. This form occurs very frequently in different species,
a8 in octahedral Corundum, octahedral Iron-ore, &c. .

§. 60. DODECAHEDRONS IN GENERAL.

The Dodecahedrons are contained under twelve
equal and similar faces, the figure of which deter-
mines the kind of the dodecahedrons. A dodeca-
hedron whose faces are triangles, is termed a
T'rigonal-dodecahedron ; one whose faces are tetra<
gons, a Tetragonal-dodecahedron ; and one whose
faces are pentagons, a Pentagonal-dodecahedron.

1. None of these dodecahedrons are regular in the geos
metrical sense of the word ; for their faces are not regular
polygons ; besides, they have at least two different kinds of
angles, and, one of the dodecahedrons only excepted, they
have also at least two kinds of edges.

§. 61. TRIGONAL-DODECAHEDRONS.

The Trigonal-dodecahedrons, Figs. 15. 16., are
contained under equal and similar isosceles triangles.

1. The trigonal-dodecahedrons possess the general aspect
of the tetrahedron, and their sections and axes are of the
same kind, and in the same situation.

2. They contain four solid angles of three, and four of
six faces ; both of them being equiangular. The first are
monogrammic, and correspond to the centres of the faces 3
the others are digrammic, and correspond to the solid angles
of the tetrahedrom.

3. Of the two kinds of edges of the trigonal-dodecahe~
drons, the first, or those joining the angles of six faces,
have the situation of the edges of the tetrahedron; the
others meet in the solid angles of three faces, upon the
centre of the faces of that form.
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4. There are two known varieties of these dodecake-
drons, whose dimensions are as follows :
a.* b. A. B.
1. 117° 2/8” 31° 28 56”.  109° 28’ 16”. 146° 26’ 33”.
9. 112° 53 77, 33° 33’ 261”. 129° 31’ 16”. 129° 31’ 16”.

5. Of the first variety of this form we have examples in
tetrahedral Copper-glance; of the second variety, in dode-
eahedral Garnet-blende.

§. 62. TETRAGONAL-DODECAHEDRONS.

The Tetragonal-dodecahedrons are contained
under equal and similar tetragons.

1. There are two kinds of these forms.

2. Of the faces of the one, two are always parallel to
each other, and they contain two pairs of equal angles. Of
the faces of the other, no two faces are parallel, and they
contain only one pair of equal angles, the remaining two
being also different betwixt themselves. All the edges of
the former are equal, while the latter pessess two kinds of
different edges.

3. From this last mentioned difference, the denomina-
tions of the two kinds are derived ; the first containing the
monogrammic, the second the digrammic Tetragonal-dodeca-
hedrons.

§. 63. THE MONOGRAMMIC TETRAGONAL-DODECA-
HEDRON.

The faces of the monogrammic Tetragonal.-do-
decahedron, or of the Dodecahedron, Fig. 31., are
rhombs,

* The small letters a, b, signify the plane angles of the
faces, énd the large ones A, B, the angles of the incidence
at the edges, as referring to the figures.
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1. The plane angles of these rhombs are = 109° 28’ 16”
and 70° 31’ 447, equal to the edges of the octahedron (§. 59.
1.) and of the tetrahedron. They are equal also to the
angles of intersection of the rhombohedral axes (§. 57. 1.
3.). The edges are all = 120°.

2. The monogrammic Tetragonal-dodecahedron has eight
solid angles formed by three, and six formed by four faces;
both of them are equiangular. The first are situated like
the solid angles of the hexahedron, the second like those of
the octahedron.

3. The sections and axes are as in these. The rhombohe-
dral axes pass through the solid angles of three, the pyrami.
dal axes through the solid angles of four faces, and the pris-
matic axes threugh the eentres of parallel faces of the solid.

4. There is only one variety of this form, which is com-
monly expressed by the name of the Dodecahedron.

5. The dodecahedron is not a rare form; it is found in
dodecahedral Garnet, hexahedral Gold, &c.

§. 64. DIGRAMMIC TETRAGONAL-DODECAHEDRONS.

The faces of the digrammic Tetragonal-dodeca~
hedrons, Figs. 17. 18., possess the outlines of those
inscribed in a Trapezium.

1. The digrammic Tetragonal-dodecahedrons have the
general aspect of the tetrahedron.

2. They contain two kinds of solid angles formed by three
faces, four of each. Both kinds are equiangular. The
more acute correspond to the solid angles, the more obtuse
to the centres of the faces of the tetrahedron. They possess
moreover six solid angles of four faces, which are equian-
gular, but digrammic, and situated above the centres of the
edges of the tetrahedron.

3. Of the two kinds of edges of these forms, the more ob-
tuse join in the obtuse, the more acute in the acute solid
angles formed by three faces, and both in the solid angles
consisting of four faces.
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4. The sections and axes are as in the tetrahedron. The
prismatic axes pass through the solid angles of four faces.
5. There is only one variety known of this form, whose
dimensions are the following :
a. b. c. A. B.
90°  118° 4’ 10”. 75° 67 65” 90°. 152° 44’ 2%
6. It has been observed in dodecahedral Garnet-blende.

§. 65. PENTAGONAL-DODECAHEDRONS.

'The Pentagonal-dodecahedrons are contained un-
der equal and similar pentagons.

1. There are two kinds of Pentagonal-dodecahedrons.

2. In the one, every face has the opposite one parallel to
it, a property which is not to be met with in the other.

3. The first have the general aspect of the hexahedron,
and are therefore termed %herahedral ; the other that of the
tetrahedron ; and accordingly they bear the denomination
of tetrahedral Pentagonal-dodecahedrons.

§. 66. HEXAHEDRAL PENTAGCONAL-DODECAHEDRONS.

The faces of the hexahedral Pentagonal-dodeca-
hedrons, Figs. 19. 20., have two pairs of equal angles,
and four equal sides. The single angle is opposite
to the single side.

1. All the solid angles of these Pentagonal-dodecahe-
drons, are bounded by three faces ; eight of them are equi-
angular and monogrammic, and correspond to the solid
angles of the hexahedron. The other twelve are formed
by two equal angles, and the single angle ; they are di-
grammic, and pairs of them may be conceived to be situated
upon the faces of the hexahedron, in the direction of
planes, which pass through two pyramidal axes of that form.

2. Of the two kinds of edges, those opposite to the single
angle are the Characteristic Edges of this form ; because
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the examination of these yields the best means to distin«
guish the different varieties of the hexahedral Pentagonal.
dodecahedrons. The other edges meet in the monogram.
mic solid angles.

" 3. The sections and axes are as in the tetrahedron. The
prismatic axes pass through the centres of the characteris-
tic edges.

4. There are three varieties of this form, whose dimen.
sions are the following :
a. b. e
1. 102° 35" 40”.  108° 24’ 30”%. 110°17’ 40".
2. 121° 35 18”. 106° 36’ 2”. 102° 36’ 19”.
3. 141°16°50”. 103°20/33". 96° I 2"
A. B.
L neesyien. n7e ey nn
2. 126° 52/ 127, 113° 3¢’ 41",
3. 143° 748"  107° 27 27
5. The first and second variety are found in hexahedral
Iron-pyrites, the angles of the third depend upon the third
variety of the icositetrahedrons, § 71. 130.

§. 67. TETRAHEDRAL PENTAGONAL-DODECAHE-
DRONS.

The faces of the tetrahedral Pentagonal-dodeca-
hedrons, Figs. 21. 22. 23. 24., have no equal angles;
but they possess two pairs of equal sides.

1. The tetrahedral Pentagonal-dodecahedrons have three
kinds of solid angles, all of which are formed by three faces.
The first are equiangular, monogrammic, four in number,
and they correspond to the solid angles of the tetrahedron 3
the second, of the same description, but more obtuse, core
respond to the centres of the faces of the same form. The
third are not equiangular; they are trigrammic, twelve in
nymber, and pairs of them are situated between the more
acute equiangular solid angles.
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2. This form contains three kinds of edges ; the first meet
in the more acute, the second in the more obtuse equian-
gular solid angles, and the third join those which are form-
ed by three different plane angles.

3. Its sections are rhombohedral ; and it does not pos-
sess any other but rhombohedral axes, in conformlty with
the sections.

4. These solids are remarkable, on account of their being
as it were twisted, some to the Right, others to the Left.
They are equal and similar to each other ; but every part of
the ong, has exactly the reverse situation of the other.

5. The dimensions of the three varieties of this form, are
as follows:

a. b. S S d.
1. ne & 137, 111° 50’ 44”. 93° 49’ 21”. 143° 11’ 29",
2. 113° 21 46”. 113° 43’ 28”. 99° 35’ 38", 130° 12’ 117
8. 113° 34 417, 128° 20’ 44", 97° 59’ 19”. 136° 39’ 57".
e A. B. C.
1‘ 750 2’ 13”. 1410 47/ 12”. 940 5’ 45”. 1060 36' 2”.
9, 83° & 577. 131° 4577 78°27 46”. 115° 22’ 37”:
3, 66°25 19”. 131° 48 37”. 95°27 54”. 121° 35’ 18”.

6. This form has not yet been found in nature ; and the
angles of the mentioned varieties depend upon those of the
tetraconta-octahedrons, § 77. 134.

§. 68. 1COSITETRAHEDRONS IN GENERAL.

The Icositetrahedrons are contained under twen-
ty-four equal and similar faces, the figure of which
determines the kinds of icositetrahedrons. An
icositetrahedron, whose faces are triangles, 1is
termed a T'rigonal-icositetrahedron; one whose
faces are tetragons, a T'etragonal-icositetrahedron ;
and one whose faces are pentagons, a Pentagonal-
icositetrahedron.
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1. None of these icositetrahedrons are geometrically re-
gular. ‘

§. 69. TRIGONAL-ICOSITETRAHEDRONS.

The Trigonal-icositetrahedrons are contained un-
der equal and similar, isosceles or scalene triangles.

1. This species of icositetrahedrons comprises three
kinds, different from each other by their general aspect,
and the situation of their faces.

2. The varieties of the first kind have no parallel faces ;
they exhibit the general aspect of the tetrahedron, and are
therefore said to be ictrakedral ; the varieties of the second
have parallel faces, and the general aspect of the hexahe-
dron ; these are termed kexakedral; the varieties of the
third possess also parallel faces, but the general aspect. of
the octahedron, and these are termed octahedral Trigonal-
icositetrahedrons.

§. 70. TETRAHEDBAL TRIGONAL-ICOSITETRAHE-
DRONS.

The faces of the tetrahedral Trigonal-icositetra-
hedrons, Figs. 25. 26., are scalene triangles.

1. These forms have four solid angles, and six faces, all
of which are equiangular and digrammic. Those contained
by four faces, six in number, are situated above the
centres of the edges ; the more obtuse solid angles of six
faces, four in number, above the centres of the faces of the
tetrahedron, and the m:ore acute solid angles formed by
the same number of faces, also four in number, correspond
to the solid angles of this form.

2. There are three different kinds of edges in this form.
The longest join those solid angles of six faces which are
not similar to each other, the intermediate ones the more
acute, and the shortest the more obtuse of these solid angles
with those which are bounded by four faces.
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3. The sections and axes are as in the tetrahedron. The
prismatic axes pass through the solid angles of four faces.
4. There are three varieties, of the following dimensions:
a. b. c.
1. 56015 4. 82223197 4l° 2V 37",
2. 53°46' 427 82° 17’ 58”.  43° 55’ 20”.
3. ss°2134” 8501y 197, 40° 19 7.
A. B. C.
1. 110° 557 297 158° 12’ 487 158° 12 48"
2. 122° 52’ 427, 152° 20 22”.  152° 20’ 22”.
3. 124° 51’ 0. 144° 27 58”. 162° 14’ 50”.
5. The third variety of this form has been observed in
hexahedral Boragite; the other two depend upon the first
and second variety of the tetraconta-octahedron, §. 77. 133.

§. 71. HEXAHEDRAL TRIGONAL-ICOSITETRAHE~
DRONS.

"The faces of the hexahedral Trigonal-icositetrahe-
drons, Fig. 32., are isosceles triangles.

1. The solid angles consist either of four or of six faces,
and are all equiangular. The first, six in number, are mo-
nogrammic, and situated above the centres of the faces ;
the second, eight in number, and digrammic, are situated
like the solid angles of the hexahedron.

2. Those edges of the form which correspond to the
edges of the hexahedron, join the angles of six faces with
each other; the others join the solid angles of six faces
with those of four faces.

3. The sections and axes are as in the hexahedron.

4. There are three varieties of these forms, whose dimen.
sions are the following :

a. b. A. B.
1. 79° 31/ 28”. 50° 14’ 16", 157° 22’ 48" 133° 48’ 47"
2. 83° 37 14", 48° ;l’ 237, 143° 7/ 487 143° 7’ 48"
3. 86° 58507 46° 30’ 304", 126°52' 12% 154° 9 29",
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5. The second variety occurs in dodecahedral Garnet,
the third in octahedral Fluor-haloide; the angles of the
first depend upon those of the first variety of the dodecas
hedrons, §. 66. 130.

§.72. OCTAHEDRAL TRIGONAL-ICOSITETRAHEDRONS,

The faces of the octahedral Trigonal-icositetra-
hedrons, Fig. 33., are isosceles triangles.

1. Their solid angles consist of either three or eight
faces, and are equiangular. The first, eight in number,
are monogrammic, and correspond to the centres of the
faces; the second, six in number, are digrammic, and cor-
respond to the angles of the octahedron.

2. Those edges, which have the situation of those of the
octahedron, join the solid angles of eight faces with each
other ; the other edges unite two dissimilar solid angles.

3. The sections and axes are as in the octahedron.

4. There is only one variety known, of the following
dimensions :

a b. A. B.
118° 4’ 10”.  30° 57’ 55", 141°37 28", 152° 44 2"

4. Examples of this form are found in octahedral Fluor.

haloide, hexahedral Lead-glance, &c.

§. 73. TETRAGONAL-ICOSITETRAHEDRONS.

The Tetragonal-icositetrahedrons, are contained
under equal and similar tetragonal faces.

1. This species of icositetrahedrons comprises two kinds,
the varieties of which are distinguished from each other by
the figures of their faces, and by several properties depend-
ing upon them, chiefly by the diversity of their edges, ac-
cording to which, they also receive their denominations.

2. The varieties of the first kind, contain only two dif-
ferent edges, and are termed digrammic ; whilst the second,
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or trigrammic Tetragonal-icositetrahedrons, possess three dif-
ferent kinds of edges.

§. 74. DIGRAMMIC TETRAGONAL-ICOSITETRAHE-
DRONS.

The digrammic Tetragonal-icositetrahedrons,
Fig. 34., are contained under tetragonal faces,
which can be divided by one of their diagonals,
in two isosceles triangles.

1. These icositetrahedrons possess three different kinds
of solid angles, one of which is formed by three, the others
by four faces: all of them are equiangular. The first are
monogrammic, eight in number, and correspond to the solid
angles of the hexahedron. Of the second, six are mono-
grammic, and correspond to the solid angles of the octahe-
dron ; the other twelve are digrammic, and correspond to
the centres of the faces of the dodecahedron, (§. 63.).

2. These forms possess two kinds of edges, the one
terminating in the solid angles of three faces, the other in
those which are produced by four equal edges.

3. The sections and axes are the same as in the hexahe.
dron, the octahedron, &c. The rhombohedral axes pass
through the solid angles of three faces, the pyramidal axes
through the monogrammie, and the prismatic axes through
the digrammic solid angles consisting of four faces.

4. There are two varieties known in nature, of the follow-
ing dimensions :

a. b. c. A. B.
1. 78°27/46”. 82°15" 3”.117° 28, 131°48'36". 146°26'33".
2. 84°15/39”. 81°25'37". 112°587". 144°54' 11”. 129°31/16".

5. Examples of the first variety of these forms we have
in hexahedral Kouphone-spar and dodecahedral Garnet ;
of the second, in octahedral Fluor-haloide and dodecahedral
Corundum ; of hoth, in hexahedral Iron-pyrites.
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§. 75. TRIGRAMMIC TETRAGONAL-ICOSITETRAHE-
DRONS.

The trigrammic Tetragonal-icositetrahedrons,
Figs. 27. 28., are contained under tetragonal faces,
which cannot be divided in two isosceles triangles by
any of their diagonals.

1. The angles of these forms consist of either three or
four faces. The first are monogrammic, equiangular, eight
in number, and they are situated like the solid angles of
the hexahedron. Of the solid angles of four faces, six are
equiangular and digrammic, and they are distributed like
the solid angles of the octahedron ; the other twelve are un.
equiangular and trigrammic, and they have the situation of
the digrammic solid angles in the hexahedral pentagonal-
dodecahedron (§. 66. 1.).

2. Of the three different kinds of edges, the first termi-
nate in the solid angles consisting of three faces ; the first
and second in the digrammic, and the first, second, and -
third, in the trigrammic solid angles, bounded by four faces.

3. The mutual inclination NOP of the longest or greatest
edges, in the digrammic solid angle, is the Characteristic Angle
D of the trigrammic tetragonal-icositetrahedron.

4. The sections and axes are the same as those of the
hexahedral pentagonal-dodecahedrons; the rhombohedral
axes pass through the solid angles of three faces, the pris-
matic axes through the digrammic solid angles of four faces.

5. There are three varieties of these forms, whose dimen-
sions are as follows ¢

a. b. c. d.
1. 106° 59’ 77 79° 53’ 50”. 116° ¢’ 13”. 57° 0’ 50”.
2. 104°38 257, 84° 12 327, 113° 21 4¢”. 57° 47" 177,
3. 96°1% 377, 83° 46’ 23", 113° 34’ 41”.  66° 25' 197,
A. B. C. D.
1. 148° 597 507, 115° 22 377, 141° 47 12”. 112° 37 12"
2. 160° 32/ 13”. 118°59’ 9. 131° ¢’ 57”7, 118° 4’ 10”.
3. 15¢° 47’ 28”. 128° 14’ 48”. 131° 48’ 37”. 126° 52/ 12",
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6. All these varieties are met with in hexahedral Iron.
pyrites; the first also in hexahedral Cobalt-pyrites.

§. V6. PENTAGONAL-ICOSITETRAHEDRONS.

The Pentagonal-icositetrahedrons, Figs. 29. 30.,
are contained under irregular pentagonal faces, all
the angles of which are different, but which possess
two pairs of equal sides.

1. These forms contain three kinds of solid angles, two
of which consist of three, and one of four faces. Eight of
those formed by three faces are equiangular and mono-
grammic ; these are situated like the solid angles of the
hexahedron : the other twenty-four are unequiangular and
trigrammie ; the situation of these is similar to that of the
trigrammic solid angles in the tetrahedral pentagonal-do-
decahedron (§. 67. 1.). The six solid angles of four faces
are equiangular, monogrammie, and correspond to the solid
angles of the octahedron.

2. There are three different kinds of edges; the first
terminate in those solid angles which are produced by the
concurrence of three equal edges ; the second terminate in
the solid angles of four faces ; and the third join those solid
angles with each ether, which do not consist of equal plane
angles.

3. The sections are rhombohedral and pyramidal, as
also their corresponding axes. The pyramidal axes pass
through those solid angles which contain four, the rhom-
bohedral axes through those which contain three equal
plane angles. These forms possess no prismatic axes at all,
and agree with the tetrahedral pentagonal-dodecahedrons,
in this particular as well as in the occurring difference be-
tween right and left.

4. The dimensions of the three varieties of these forms
are as follows :
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a. b. c. d.
1. 77° 26’ 40”7, 126° 18’ 53”. 116> 6’ 13”7, 93° 49’ 21*.
2 80° 24’ 227, 132° 54’ 46", 113° 2V 46”. 113° 43’ 28”.
3. 82214 17 115° 18 18" 113° 34/ 417, 123° 12’ 38",

e. A. B. C.
1. y26° 18 537 130° 0719”7 141° 47' 127, 141° 47 12,
2. 99° 35 38", 135°35’ 43", 131° & 577, 145° 67’ 8.
3. 105° 407 227, 149° 37 57”. 131° 48’ 37”. 135° 35 43",

5. This form has not yet been found in nature; the

angles of the three varieties depend upon those of the te-
traconta-octahedrons, §. 77. 130.

§. 77. TETRACONTA-OCTAHEDRONS.

The Tetraconta-octahedrons, Fig. 85., are con-
tained under forty-eight scalene triangles.

1. The solid angles of these forms are bounded by four,
six, or eight faces; they are equiangular and digrammic.
Twelve consist of four faces, and are situated above the
centres of the faces of the dodecahedron ; eight consist of
six faces, and correspond to the solid angles of the hexahe.
dron ; and the remaining six, which consist of eight faces,
are distributed like the solid angles of the octahedron.

2. Of the three different kinds of edges of these forms,
the first, being the longest, join the solid angles of six faces
with those of eight faces ; the second or intermediate join
the solid angles of eight faces with those of four faces ; and
the third, which are the shortest, unite the solid angles of
six faces with those of four faces.

3. The sections and axes are as in the hexahedron, in the
octahedron, &c. The rhombohedral axes pass through the
solid angles of six faces, the pyramidal axes through the
solid angles of eight faces, and the prismatic axes through
the solid angles of four faces.

4. There are three varieties of these forms, of the fol-
owing dimeusions :
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a. b c.
1. 86°567257. 56°15 4”7. 3G° 48 3V
Q. 87° 34’ 49”.  53° 46’ 42”.  38° 38’ 29".
8. 85°50023".  54°21/34”. 39° 48 3.
A. B. C.
1. 158° 12 48”7, 148° 59’ 50”. 158° 12 48”.
2. 152° 207 22, 160° 32 13”. 152° 207 22".
3. 162° 14507, 154° 47 28”. 144° 2 58"

5. The first of these varieties occurs in dodecahedral
Garnet ; the third in octahedral Fluor-haloide; the se-
cond depends upon the second variety of the icositetrahe-
drons, §. 75. 133.*

CONSIDERATION OF THE CONNEXION AMONG SIMPLE FORMS,
AND OF THE RELATIONS, UPON WHICH IT DEPENDS.

§. V8. oBSERVATIONS.

There exists a very remarkable connexion among
several simple forms, which depends not only upon
the kind, but also upon the relative dimensions of
these simple forms.

It is a matter of fact, sufficiently demonstrated by nu-
merous observations, that certain crystalline forms are pe-

* The preceding enumeration of the varieties of tessular
. forms, as occurring in nature, is by no means complete.
Several varieties of the digrammic tetragonal-icositetra-
hedron (§. 74.), of the tetraconta-octahedron (§. 77.), and of
other forms, have already been observed; for instance, in
octahedral Fluor-haloide, in dodecahedral Garnet, in hexa-
hedral Iron-pyrites, &c. but not with a sufficient degree of
accuracy. It is to be expected, that our knowledge of these
forms will be considerably enlarged by a more accurate ex-
amination of nature.
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culiar to certain mineral species, whilst others are never
found in the same substances. Thus hexahedral Gold is
found in hexahedrons, but never in rhombohedrons ; rhom-
bohedral Lime-haloide in rhombohedrons, never in hexa-
hedrons.

Experience proves quite as generally that varieties of one
and the same accurately determined mineral species, may as-
sume several different forms of crystallization ; hexahedral
Gold, beside the form of the hexahedron, assumes also that
of the octahedron, of the dodecahedron, of the digrammic ’
tetragonal-icositetrahedron, &c.; rhombohedral Lime-ha-
loide, besides rhombohedrons, exhibits also several isosceles
and scalene six-sided pyramids,andregular six-sided prisms;
and we may frequently observe, that even in one and the
same individual of such species, several of those simple
forms appear at the same time, or in connexion with each
other : thus, in hexahedral Gold, the hexahedron occurs in
one individual with the octahedron ; in rhomhohedral Lime-
haloide, rhombohedrons are found with pyramids, with
prisms, &c.

It is likewise demonstrated by experience, that two or
more simple forms, if they appear at the same time, in a
species or an individual, do really possess certain dimen-
sions or relations towards each other, and that other forms,
though of the same kind with the preceding, are exclud-
ed from such species, merely on account of their dimen-
sions. Thus the species of rhombohedral Lime-haloide does
not present indiscriminately the forms of any rhombohe-
dron, or of any six-sided pyramid whatever; but we find
only such as possess certain dimensions, upon which the
symmetry of their combinations depends.

Natural History does not lead us to inquire into the fi-
nal cause of that remarkable fact, why the crystals of hexa-

_ hedral Gold should be hexahedrons, octahedrons, &c.; and
why those of rhombohedral Lime-haloide should be rhom-
bohedrons and six-sided pyramids of certain dimensions.
Such questions, supposing even that they were capable of
being answered, are not within the province of Natural

VOL. 1. E -
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History (§. 5.). But Natural History endeavours to de-
termine the relations under which crystalline forms of cer-
tain dimensions appear in the individuals of the same spe-
cies, or come into connexion with each other. These re-
searches not only form part of the peculiar object of Na-
tural History ; but this science derives the greatest advan-
tage from them in its farther developement.

§. 79. DERIVATION,

The method employed in Natural History for
determining the kind and the relations of crystal-
line forms, which occur in the individuals of the
same species, or come into connexion with each
other, is called the Derivation.

To derive one simple form from another, is to shew
how, according to a certain general rule, it arises, or is
produced from it. The processes of derivation consist in
geometrical constructions, which are not gratuitously ima-
gined, but deduced from observation ; and their correct-
ness and applicability, though evident from their very ori-
gin, is thoroughly confirmed by the exactness with which
the phenomena in nature can be explained.

There are several of these rules or methods of proceed-
ing by which the derivation can be effected. Of these
different methods, those must be selected which will ap-
ply to the quality of the form from which the derivation
is to start, and which is termed the giver form. The pro-
duct of derivation is called the derived form. The derived
and given forms are either ofthe same, or of different kinds.
The derived form is a simple form, like the given one; or,
should this not be the case, it must be resolved into two or
more simple forms. The derived form having thus been
developed, the relations existing between this and the
given one are to be determined.
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§. 80. FIRST PROCESS OF DERIVATION.

The first process of derivation requires tangent
planes (§. 36.) to be placed on certain edges of the
given form, and enlarged till they limit the space
either entirely, or at least as far as the number and
situation of the faces will allow.

If the edges to which the tangent planes are applied, be
equal or homologous, as, for instance, the terminal edges
of the rhombohedrons, and of the isosceles four-sided pyra-
mids, or the acute and obtuse terminal edges of the scalene
six or eight-sided pyramids; this process will yield a simple
form at once, which is the derived form itself.

If, on the contrary, the edges in which the tangent planes
are to be laid, be not homologous, as is the case in the
acute and the obtuse terminal edges of the scalene four-
sided pyramids; this process will not give a simple form,
but a compound one, which is contained under faces
not homologous with each other. Compound forms of
this kind are not the derived forms themselves (§. 79.)
though they either contain them, or at least may be em.
ployed for their ulterior derivation. They are considered
as Auxiliary or Intermediate Forms.

All intermediate forms belong to that given form, from
which they result by the above mentioned process.

§. 81. sEcOND PROCESS.

The second process requires the axis of a form
contained under tetragonal faces, to be produced
on both sides, to an undetermined but equal length 3
straight lines to be drawn from the lateral angles
of the tetragonal faces towards the terminal points
of the lengthened axis, and planes to be laid on
every contiguous pair of them. The derived form
is contained under these planes.
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This process is not limited to forms which, like the rhom-
bohedron, are originally contained under tetragonal faces ;
but it can be extended to such as are originally contained
under triangles, and is therefore applicable to pyramids of
every deseription. In this case, however, the given form
Tequires a certain preparation, the nature of which will be
explained in its proper place.

Forms produced in this way, if simple, are the derived
forms themselves; if compound, they are, like those in
§. 80., considered as intermediate or auxiliary forms, and
made use of accordingly.

Of intermediate forms in general, it may here be re-
marked, that, by enlarging their homologous faces, till the
rest disappear, they may be resolved, and by that means the
simple forms which they contain, may be extracted.

§. 82. THIRD PROCESS,

The third process requires planes to be laid on
the terminal edges of the given form, which may
likewise be an intermediate one (§. 80. 81.) ; their
number and inclination being such, that the inter-
sections of the faces from both apices produce a
plane figure, similar and parallel to the horizontal
projection of the given form. The derived form is
contained under these planes.

The number of faces contiguous to every terminal edge,
as employed in this process, is either one or two; more
than two faces can never be applied to one terminal edge.
This process in some cases affords a determined solution of
a problem, which it would be impossible to obtain from a
process analogous to that of §. 80.

§. 83. FOURTH PROCESS.

The fourth process requires the consideration of
those differences which take place in the situation
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of a Moveable Plane, tangent to the uppermost
point of a vertical rhombohedral axis in a form of
- several axes.

The last process refers only to those forms which possess
several axes; while the three methods of derivation de-
scribed above, are more particularly intended for such as
have only one axis. The fourth process produces only
simple forms.

§. 84. POSITION OF THE DERIVED FORMS.

By the application of these processes of deriva-
tion, the derived forms are obtained in such posi-
tions in respect to the given one, as will enable
them to produce symmetrical combinations, both
with the given form, and among each other.

In forms of several axes, this is the parallel posit'ion
(8. 43.). In those of only one axis, it must be determined
in particular, according to the quality of the forms con-
cerned. It is sufficiently demonstrated by all compound
forms occurring in the individuals of the mineral kingdom,
that the simple forms of which they consist, in every in-
stance are found in such positions as are assigned to them
by the derivation and by the connexion which it produces
between forms of a certain quality.

§. 85. sERIES.

If one of the processes described above yields
a derived form of the same kind as the given form,
the same process may be applied also to this
derived form ; and not only to this, but also to the
new product of the derivation, and so on. The as-
semblage of forms thus produced, and following
each other, is termed a Series.
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Series may also be produced, although the derived form
be not of the same kind as the given form ; yet this does
not take place so immediately as under the circumstances
noticed.

These series form a peculiar feature, and are of the
greatest importance in the Method of Crystallography de-
veloped in this work.

A constant ratio exists between every two subsequent
members of those series. The general expression of this
ratio is the Law of the Series.

Upon the series themselves is founded the method of
Crystallograplic Designation (§. 90.).

§. 86. LimiTs.

The limits of the series of those forms which pos-

sess one axis, are Prisms of infinite axes.

There is no reason why a series produced by derivation
(§- 85.), should stop at a member, as long as another ulte-
rior one can still be derived from it. This is always pos-
sible, as long as those dimensions, which are altered by
the derivation, remain finite. All members in which this
is the case, are termed firite members. If a member re-
ceives infinite dimensions, the derivation can no longer be
continued. The limits of derivation, and consequently
the limits of the series arising from it, are therefore at-
tained, if the dimensions of these forms become infinite.

The dimensions of forms which most conveniently may
be supposed to grow infinite, or infinitely small, are the
axes; if these be infinite, the form becomes a prism; on
the contrary, if they be infinitely small, it becomes a plane.
Prisms of infinite axes, and planes of infinite extent, are,
therefore, limits of all the series of those forms which
contain one axis.

Forms of infinite dimensions can never appear by them-
selves. Those which occur in nature, and consist of termi-
nal and lateral faces, are only segments, or parts of those
prisms of infinite axes. The lateral faces of the prism
represent the limit of the series on one side; the termi-
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nal faces or the base, the limit of the series on the other.
Hence they are not simple, but compound forms; and this
is the reason why they have not been enumerated among
the simple forms. The whole series is comprised within
the two limits. The particular mode in which the limits
of the series of different forms result, depends upon the
quality of those forms themselves, and will be explained in
particular in every series.

Forms of several axes cannot have limits of this descrip-
tion. However, if we suppose the different varieties of ho-
mogeneous simple forms of variable dimensions (§. 70. 71. 73.
77.) to constitute series; the limits of these series will be
represented by those forms of many axes, whose dimens
sions are constant (§. 58. 59. 63.).

§. 87. FUNDAMENTAL FORM.

That form, which serves as the base of the de-
rivation (§. 81.), is termed the Fundamental Form.

The idea of the Fundamental Form in the present me-
thod, is well defined, and perfectly determined. Hence
mere simple forms, or such as have hitherto been common«
ly called fundamental, primitive or primary forms, must
not be confounded with this idea.

Fundamental forms must possess the following proper.
ties. They must be,

1. Simple forms;

2. Forms not derivable from another fundamental form 3

3. Forms which do not possess infinite axes; and

4. Forms contained under the least possible number of

faces, provided the form itself be not objectionable
from other considerations.

According to these characters, the fundamental forms of
the mineral kingdom will be,

1. The Scalene Four-sided Pyramid,

2. The Isosceles Four-sided Pyramid,

3. The Rhombohedron, and

4, The Hexahedron,
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1. DERIVATIONS FROM THE SCALENE FOUR-SIDED PYRAMID.

§. 88. DERIVATION OF MORE ACUTE AND MORE OB-
TUSE PYRAMIDS, OF SIMILAR BASES WITH THE
FUNDAMENTAL FORM.

From every scalene four-sided pyramid may be
derived a more obtuse pyramid of the same kind,
possessing a similar base with the fundamental form.

First of all, one of the prismatic axes of the given py-
ramid is fixed upon as its principal axis (§. 41.) ; according
to this the pyramid itself is brought into its upright po-
sition (§. 42.). Apply, after the first process (§. 80.), tan-
gent planes to the terminal edges AB, AC, &c. of this form
ABCB'C’X, Figs. 37., and enlarge them, till they intersect

_ each other from all sides. There will arise a form AFGIHX,
contained under eight isosceles triangles, which, by four
and four, are equal and similar to each other. If the form
be considered as a four-sided pyramid, its base FGIH has
the form of an oblong or rectangle. Thisis the intermediate
form (§. 80.). It will be proper to observe here, that these
intermediate forms are not mere geometrical conceptions,
but that they are very frequently found in nature, and
will be farther explained in §. 97.

Place now, after the third process (§. 82.), one plane
on each of the terminal edges AF, AG, &c. of this inter-
mediate form, the inclination of this plane to the faces of
the form, and to each other, heing such as to enable them
to intersect each other, after the necessary enlargement, in
the plane of the base, and thus to produce a plane figure
WBEW'E’, similar and parallel to BCB‘C’, the base of the
fundamental form. These planes will contain the required
form, namely, a scalene four-sided pyramid.

This process may also be applied inversely, that is to
say, for any given scalene four-sided pyramid, we may find
the one from which it is derivable, according to the method
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described above. For this purpose inscribe that intermediate
form which belongs to the pyramid sought, in that which
is given. This is effected by bisecting each of the lateral
edges, and joining the points thus determined by straight
lines ; after which, lines must be drawn from the angles of

- the oblong figure, which has thus been inscribed in the
base of the pyramid, to the terminal points of the axis of
the fundamental form. A rhomb is now inscribed in the
rectangular base of the intermediate form; the angles of
the rhomb coinciding with the centres of the sides of the
oblong. This rhomb will be similar and parallel to the
base of the fundamental form. But it likewise represents
the base of the derived form, which will be completed, if we
draw straight lines from the angles of this rhombic figure,
towards the terminal points of the axis of the fundamental
form, and lay planes on every two of those lines, which
are adjacent or contiguous to each other.

§. 89. RATIO BETWEEN THE DERIVED AND THE
FUNDAMENTAL FORM.

The axes of two scalene four-sided pyramids, of
which the one is derived from the other, according
to §. 88., are towards each other in the ratio of
1: 1, if the derived pyramid is more obtuse; in
the ratio of 2: 1, if the derived pyramid is more
acute than the given one. The horizontal projec-
tions of all these forms are supposed equal; and
the axis of the fundamental pyramid = 1.

Let BCB'C/, Fig. 37., represent the base of the fundamen-
tal form, which bisects the axis AX in M, the centre of
the pyramid ; GAF will be a plane tangent to the termi-
nal edge AC, HAF another plane tangent to the terminal
edge AB, and consequently AFGIHX the intermediate
form, whose base is the rectangle FGIH.

Circumscribe about this rectangle,a rhomb LWL, simi-
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lar to’ the base of the fundamental form, and draw the
lines WA, TA, &c. These lines WA, TA, &ec. will be
terminal "edges ; the planes WAL, LAY, &c. faces, and
WEWE’ the base of the derived pyramid, which is repre-
sented by ABTWT'X.

The triangle BMC is equal to the triangle BFC = A
FCZT = A BBF. Hence A BMZ = 4. A BMC, and
WLTWB'E” = 4. BCB'C". Therefore WL = 2. BC, and BM
= 2. BM.

In the plane WAM, draw the line BA’ parallel to 15A 5
the triangle BA’M will be similar to the triangle 1AM, and

WM : BM = MA : MA/,
hence
MA’ = } MA.

If ABTWT'X be now supposed the fundamental pyra.
mid, AFGIHX will be the inscribed auxiliary form, and
ABCB'C’X the more acute derived pyramid, to which the
auxiliary form belongs (§. 80.).

In the bases of both these pyramids, the triangle BMC
is = } A BMI; therefore BC = } BT, and BM = } BBM.

Lengthen now the axis MA to the point &, and draw the
line 189 in the plane WAM. This is the terminal edge of
the more acute derived pyramid, if its horizontal projection
be supposed equal to that of the fundamental form.

But on account of the similarity of the triangles BAM
and WAM, the following proportion takes place :

BM: M = MA: MQ,
and therefore,
MgJ = 2. MA.

90. SERIES OF SCALENE FOUR-SIDED PYRAMIDS,
WHOSE BASES ARE SIMILAR TO THE BASE OF THE
FUNDAMENTAL FORM.

If the derivation (§. 88.) be continued, a series

of scalene four-sided pyramids of similar bases will
arise, whose axes increase and decrease, like the
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powers of the number 2; the horizontal projections
always being supposed equal.

There exist certain constant ratios in the homologous di-
mensions of any two scalene four-sided pyramids, thus de-
rived from each other ; for the sake of an easier comparison,
they can be expressed by constant ratios between their axes,
if referred to one and the same horizontal projection.

Supposing the horizontal projection to be equal in all
the pyramids considered, designate the fundamental form
by A ; and by B, C,D ... the derived pyramids whose axes
are decreasing, by B/, ¢/,.D ... those whose axes are increas-
ing : a fragment of the series, containing such members as
are nearest to the fundamental form, will be represented by

«D, € B, A, B, C D..

Let the axis of A be = a, the axis of B will be = 1. a,
that of C = 1. L. a = }. a, &c,, that of B’ = 2.a, that of
C' = 2. 2. a = 4. a, &c. ; hence the fragment of the series
given above, as expressed by the axes of its members :

3.2 }a, L.a a, 2.a 4.3, 8 a..
and their ratio to each other =

BORTEN s el e Y 20 4 2 8
that is to say =

PR g s 20 .20 5 2% 3 023,

The general member of this series, or the expression of
the axis of an indeterminate nth member, will be = 2». a,
where a is the axis of the fundamental form, and 2» the
Law of Progression. ‘The number 2 is the Fundamental
Number of the series.

Upon laws of this kind is founded the method of Crys-

_ tallographic Designation, which is comprised under the fol-
lowing rules. The fundamental form is expressed by any
‘arbitrary letter. The same letter serves also for denoting
such derived forms as are of the same quality as the funda-
mental one, as is the case in the present instance, where the
derived and the fundamental scalene four-sided pyramids
possess similar bases ; but if the derived forms are of an-
other kind, the letter is transferred to these derived mem.
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bers, along with the modification or alterations thereby ren-
dered necessary. Under both circumstances, the place of
the member in the series to which it belongs, is expressed
by the appropriate exponents of the fundamental form, to-
gether with + or —, their positive or negative signs. In the
fundamental form, the expouent is = 0, and therefore not
expressly indicated.

Let P designate the fundamental form of the above-
mentioned series ; the fragment of that series will be
. P—3, P—2,P—1, P, P+1, P+2, P+3 ..

An indeterminate nt* member receives the designa-
tion P + n, the (n + 1), P + n + 1, where the number n
may be either positive or negative.

Since the ratio of the diagonals of the base b:c (§. 63.)
is known from the dimensions of P, and remains the same
in all the members; the dimensions of any required mem-
ber can be found, if the ratio of its axis to that of the fun-
damental form be known, and this ratio is indicated by
the designation. One of the advantages of this designation
consists, therefore, in affording a distinct idea of the forms
themselves, speaking as it were to the eye; at the same
time, it expresses the connexion existing among them, in
as far as they are derived from each other ; and, moreover,
it contains every thing required for calculating the dimen-
sions of any member, if those of the fundamental form, or
of any other member, be known.

The expressions of the cosines of the edges, as given for
the scalene four-sided pyramid (§. 53.), refer to those of the
pyramid P. If; instead of a%, 2% a2 is substituted in these
formulee, they are changed into the following expressions,
which refer to the pyramid P + n,
22n g2 h2 _(2211 a2 + bz) c? .

COoS. y = 3
2292 h2 4 (22n a? + b’) c2 .
2n n
cos. X — 2a?c?— (272’ + c?) b’;
2ma? 2 4+ (2@ a? + c?) b2
s et (b® + c?) 2a2

T brer + (b2 + c2) 2mar
In order to find the cosine of any of these angles for a
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certain determined member of the series, of which P is the
fundamental form, there is nothing required but to substi-
tute for n that number which denotes the peculiar place of
the member in the series. These general formule are very
useful in all crystallographic calculations.

§. 91. LIMITS OF THE SERIES OF SCALENE FOUR-
SIDED PYRAMIDS.

The limits of the series, §. 90., are on one side an
oblique-angular four-sided prism, whose transverse
section is equal and similar to the base of the fun-
damental form, and its axis infinite ; on the other
side a plane, perpendicular to that axis.

The series (§. 90.) may be continued on both sides, as
long as the members obtained, or as long as their axes, are
finite quantities; and there can be no reason why we should
consider one of these pyramids as the last, because the de-
rivation always will produce new members of the series.
But when the axis becomes infinite, no more new members
are produced ; and in this case the series breaks off, or ar-
rives at its limits (§. 86.). These limits are therefore sca-
lene four-sided pyramids of known bases and infinite axes.

But suppose now the axis to decrease, the terminal edges
will approach to the parallelism with the diagonals of the
base, the inclination of the faces in these lines, or the ter-
minal edges, to 180°, and the magnitude of the lateral edges
to 0. The final term of these approximations is obtained,
when the axis becomes infinitely small; in this case the
pyramid is transformed into a plane figure, similar to the
base.

The prism of an infinite axis is infinitely distant from P in
the series of pyramids; or, in other words, thereis an infinite
number of members of the series between the fundamental
form and that prism. The number n in that form, is there-
fore = . In thesame manner, nis = — « for the prism
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of an infinitely small axis. The crystallographic signs for

these limits are P + ¢ and P — o, and the series itself is

thus represented between its limits :
Peow..P+n..P+wx.

The algebraic expressions in the preceding §. yield the
plane angles of the base of P, which is equal to the trans-
verse section of theprism of infinite axis, if n be supposed
= + ¢, as follows:

cos.y =Dl — ¢t
b2z + ¢?’

€oS: X = ff_:b_z
c2 + b2

The value of cos. z = — 1, indicates that one face of the
pyramid contiguous to the upper apex, and one contiguous
to the lower apex, coincide in a single plane parallel to the
axis, by which the lateral edge z becomes = 180°.

Several members of this series, together with their in-
termediate forms and limits, have been observed in nature.
Thus, prismatic Topaz, presents three consecutive mem-
bers, the intermediate form belonging to the most acute
of them, and both the limits of the series. Two consecu-
tive members, with their intermediate forms and limits,
are known in several species, as in prismatic Lime-haloide,
prismatic Lead-baryte, diprismatic Copper-glance, and
others.

92. DERIVATION OF SCALENE FOUR-SIDED PYRA-
MIDS OF DISSIMILAR TRANSVERSE SECTIONS.

The members of the series of §. 90. serve as a

foundation to several other derivations., From every
one of them, several Pairs of scalene four-sided Py-
ramids may be derived, the bases of which are dissi-
milar to that of the fundamental form, and partly
also amongst themselves.

The derivation is effected by the second process (§. 81.);
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but this form being contained under triangular faces, must
undergo a preliminary operation, before the process can
be applied.

Let AX, Fig. 40., be the axis, BCB'C’ the base of the
fundamental form, of which the faces BAC/, C’AB/, &c. are
contiguous to the upper, and BXC’, C’XB/, &c. to the lower
apex of the pyramid. Enlarge now the planes of these
faces upwards and downwards, beyond the edges BC/, C'B’,
&ec. ; and in these enlargements describe the triangles BA’C’,
BX'C’, &c. and C’A”D/, C’X”B/, &c. equal and similar to
the faces of the fundamental form. This process deter-
mines the situation of the points A/, A7, &c. X/, X7, &c.
which, being joined by straight lines, will produce rectan-
gular figures, similar and parallel to the base of the inter-
mediate form (§..90.). These rectangular figures are per-
pendicular to the axis of the fundamental form, which they
intersect in the points A and X. This mode of transform-
ing triangular planes in such as are rhomboidal, is the pre-
paration of forms mentioned above (§. 81.).

After this preparation, let the axis of the fundamental
form be produced on both sides to an indefinite but equal
length, so as to have AQ = X% or M@ = MZ%; and
draw straight lines from the points A, A”, &c. of the lower
rectangle towards &, which is the upper point, from the
points X’, X”, &c. of the upper rectangle towards £, which
is the lower terminal point of the lengthened axis, and
from the angles B, C, B, C/, of the base of the fundamen-
tal form, towards both these extremities. If planes be now
laid on every contiguous pair of these lines, those faces
. which are inclined towards the upper apex, will intersect
those which are inclined towards the lower apex, in the
lines BS, SC’, C'S’, &c., and thus produce a form comn-
tained under sixteen scalene triangles.

The triangles BMQ and C'M@ are rectangular in M,
and the line M4 is common to both. But BM is either
greater or less than C’M s therefore, also, B@ will be
greater or less than C'Q. Hence the two faces BAS
and C’AS of the derived form, contiguous to the edge 4S,
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are not homologous with each other; and the form conse-
quently is not a simple one.

It is the intermediate or auxiliary form, mentioned in
§. 81. This compound form can be resolved, or the simple
forms, contained in it, can be extracted, as follows :—Produce
first the lines C’S, and CS”, to their intersection in 25 ;
C’S’ and CS” to their intersection in 3, and draw BJ
and WA : BAC, C'AW’, &ec. will be faces, WCW'C’ the
base of the pyramid AWBCW'C'E, which is one of those
sought for. On the other hand, produce the lines BS” and
B’S” to their intersection in & ; BS and B’S’ to their intersec-
tion in &', and draw A and T'A : BAL’, T'AB/, &e. will
be faces, BL'B'T the base of ABL’B’TE, &c. which is the
other pyramid contained in the compound form. The
transverse sections of this pair of derived pyramids are
dissimilar, or differ from each other, as well as from that of
the fundamental form.

The former of these two pyramids has the same short
diagonal CC’, the latter the same long diagonal BB, as the
fundamental form. The latter is therefore said to apper-
tain or to refer to the long diagonal, while the other is said
to appertain or to refer to the short diagonal of the funda-
mental form.

The axis %, common to these pyramids, may be con-
sidered as being = m. AX, a product of the axis AX of
the fundamental form, and a certain number m, which is
called the Number of Derivation. This number must be
positive, and greater than 1, either whole or fractionary.
The values of this number most commonly, though not
exclusively, occurring in nature, are 3, 4, and 5. The crys-
tallographic signs of the pyramids thus obtained, are com-
posed of the sign of that fundamental or derived member
of the series (§. 90.), upon which they depend, which is in-
cluded in a parenthesis, and of the number of derivation m,
added to it in the form of an exponent. 'The signs < and -,
placed above the letter referring to the fundamental form,
denote the diagonal to which the derived pyramids belong.
The first indicates the long, the second the short diagonal
of the fundamental form. Thus,
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(B + n)» and (P + n)»
are the crystallographic signs for the derived pair of pyra-
mids. g
The axis common to both these forms is = 2*. m.a; 2".a
being the axis of P + n, and a the axis of P.

§. 93. THE RATIO OF THE DIAGONALS OF THE
BASES IS DEPENDENT ON 7.

If m be supposed equal, the bases of all (P + n)m,
and, on the other hand, the bases of all (P 4 n)m,
are equal and similar to each other.

It is evident from the preceding paragraph, that the
figures of the bases, or their dimensions, are determined
by the situation of the points 8, §', S”, 8", or, which is the
same, by the length of the lines MS, MS’, &c. Draw the
line AA’ which bisects BC/, the lateral edge of the fun-
damental form in H, and the lines HM and A’X, perpen-
dicular to the axis, it will follow that

AX = 2. HM = o/ (b? + c?).

From the similarity of the triangles ASM, and GA'X,

we ohtain :

AX: XA’ =4dM: MS; or

(m 4 1)a: ,/ (b? +c?) =m.a: MS,
Therefore
L 10 2 2

I‘IS—m+l (B2 +c?).
: From this expression it appears, that for a given ratio
of b and c in the base of P, the quantity of the axis a en-
ters for nothing in the determination of the bases of the
derived forms, and consequently, that the angles of these
depend only upon the number m.

If, according to this process, pyramids of dissimilar bases
are derived from several scalene four-sided pyramids, ac-
cording to a determined m ; the bases of all these derived
pyramids will be equal and similar to each other, in as

vor. I. F
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far as they belong to one and the same diagonal ; because
the axes of the fundamental pyramids have no influence
upon the dimensions of the bases. It will be exactly the
same, if the axes are in the ratio of the powers of the
number 2, that is to say, if the fundamental pyramids are
members of one series; as, for instance, P, P + 1,
P+ 2, &e.

§. 94. RATIO OF THE DERIVED AND THE FUNDA-
MENTAL FORM.,

If in the pyramid P, the ratio of the axis, the
longer, and the shorter diagonal is expressed by
T AL s c,
orin P + n, by
o8 ol u) s
the ratio of the analogous lines in the same succes-
sion will be,

for (B)y® o = m.a" "0 b o
foB4n)*=2ma : b : mec;
foor(P)» = ma :mb : ¢or

for(P4+n)*=2"ma :mb : e
Since; Fig. 40., in the ratio of
aM : M5 : MC’

AM and MC’ are known quantities, being expressed by a,
cand m (for M is = m. a, or = 2~ m. a, and MC’ = ¢);
the only thing still to be effected, is to express M5 in the
same manner, or only by b and m.

Draw the line SN parallel to M ; the triangles SC'N,
WC’B’, will be similar to each other, and

C'N: SN = C'B’: BB,
= C'B’: M5 + MB"
But
ON=CB —NDB' = C’B’— MS

=N Ot e = I Yt )
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1
. Ok b2 +c¢2); and
L AGRIDL

SN = MB’ = b.
Therefore

m__l'__l-,J(b’+c?):b=,\/(h2+c'-'):(m+l)b;

and
from which follows
M = m. b.

For (P + n)m™, therefore, will follow that
aM: MB: MC' =2 m.a: m.b: ¢, from which, by
the mere permutation of the diagonals, the ratio of the
analogous lines of (P + n)= is found to be

=2"ma: b : me
Since

AM : BM = dM : 1M ;

AM :CM=¢4M; T'M;
the triangle AMB is similar to M5, and AMC’ to AMZ/,
and 925 parallel to AB, A&’ parallel to AC. 1If therefore
from any member of the series §. 90., according to whatever
m, a pyramid of dissimilar base with the fundamental form
be derived ; the terminal edges contiguous to similarly situ.
ated, although unequal diagonals, b and m. b or ¢ and m. c.
of the two pyramids, will always be parallel to each other.

The number m may be so great, that m.c becomes great
er than b. Nevertheless m.c remaifis the line corres.
ponding to the diagonal ¢, which is here supposed to be the
short one. The correspondence between two diagonals
must not therefore be judged of according to their absolute
length, but according to their situation. This will require
some attention, in order to avoid being confounded by the
apparently different position of such pyramids.

If the ratios obtained just now between the axis and the
diagonals of (B + n)m, and (P + n)m be substituted in the
general formulse for the edges of the scalene four-sided
pyramid (§. 51.); the result will be other formule, similar
to those in §. 90., and as general ; and they will refer to sca-
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lene four-sided pyramids, derived according to the above
mentioned process. E

. 95. SERIES OF DERIVED PYRAMIDS OF A’ DIs-

SIMILAR TRANSVERSE SECTION, WITH THAT OF P.
OTHER METHOD OF DERIVING PYRAMIDS OF THE
SAME KIND.

The pairs of scalene four-sided pyramids, deriv-

ed after one and the same m, from the members of

the series §. 90. form two series, which proceed ac-

cording to the law of the series §. 90., and are
similarly limited.

The same method which from P produces (P)= and (P)~,
if applied to P + n, yields (P + n)» and (P + n)=.
The axis of (B) is therefore to that of (P + n)= in the ra-
tio of the axis of P to the axis of P + n, or in that of 1: 2n.
Hence 2is the fundamental number, 2+ the law of pro-
gression of the series.

If the positive and negative value of n becomes infinite,
(P + n)» and (P + n)= are changed into (P + e )m,
(P—=)m and (P + = )n, (P—ew)n. According to § 91.
these forms are oblique-angular four-sided prisms, whose
transverse sections are equal and similar to the bases of
(B +n)mand (P + n)m. Their plane angles are obtained by
the algebraic expressions in the preceding paragraph, if n is
supposed = . The signs (P—c )™ and (P—ow )™ re-
fer to the face perpendicular to the axis, already expressed ;
which face, however, more generally is designated by
P — o, the sign obtained in § 91. The complete designa-
tion of the two series between their limits, is therefore

P—o ..(Ptn)m..(P+ )
Peeo ..(P+n)m ... (P+ o)m.

There exists, however, still another method of deriving
pyramids of dissimilar bases from the fundamental form
and although this method does not produce any new forms,
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yet it is yery well calculated to shew the agreement be-
tween the forms derivable from the scalene, and those de-
rivable from the isosceles four-sided pyramid. This me-
thod also tends to preserye the saineness of the value of m
in both, at least in respect to those numbers of derivation,
which are most commonly met with in nature.

" This method of derivation consists in applying the process
§. 92., not to the pyramid P itself, but to the interme-
diate form which belongs to that pyramid. It is exactly
the same as that by which the scalepe four-sided pyramids
of dissimilar bases are obtained from the fundamental py-
ramids themselves, and therefore requires no particular
description.

The first result is a compound form, as obtained above,
which, by a further resolution, yields a pair of scalene
four-sided pyramids, one of which refers. to the long, the
other to the short diagonal of the fundamental form ; al-
though in the derivation, none of these diagonals remain
unchanged. The correspondence of these pyramids to the
diagonals of the fundamental form, is determined as in-§. 92.
Their crystallographic designation, in as far as they are
obtained by the application of the last mentioned process,
is (Pr + n)= and (Pr + n)™.

The ratio of the diagonals of the bases is entirely de-
pendent upon m. For, considering one and the same m,
all the bases of (Pr + n)™ on one side, and all the bases of
(Pr + n)= on the other, are equal and similar to each other,
as may easily be deduced from §. 93. The two lines MS,
MS”, Fig. 39., are in the same ratio as the diagonalsc and b.
From the consideration of the figure it appears, that

s T L
m+ 1

M§'e 23 3,
m + 1 7
The co-efficients of the three perpendicular lines in this
derivation are different from those obtained in § 94. If the

axis, the longer, and the shorter diagonal of P 4 n be in the
ratio of
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20,3 ; b : e,
the ratio of the analogous lines in the same succession
will be

forPr4mm="F1 o0, . W iy
2 me1

for (Pt + n)» = B e c
2 m—1

Let S'5'S, Fig. 39., be half of the base of the derived
pyramid (Pr 4+ n)=; in the ratio of the three lines
aM : MW s MS

9M and MS are already known, that is to say, expressed

by a, ¢, and m ; and the only expression still wanting, is
that of M’ by means of a function of m and b.

The triangle C’IS is similar to the triangle MW'S;

therefore
¢S : CI=MS : MW.
But we have
OF o MS MO = L35 o g N
m+1 m +
Therefore
Bl yaial Doy : 2m.b,
m+ 1 m+1 ma=1
and
Mp =22 b

Since this is the required expression, it follows that
MI:MB : MS=2ma: 2M.p ; 20
m-—1 m+1
or if the co-efficient of that diagonal to which the pyramid
belongs, is supposed = 1, the same ratio will be expressed

by

.C3

m+ 1 ,m+1 .
By exchanging the diagonals b and ¢, the ratio of the
three lines of (Pr + n)» will be obtained
=n_1_+_l. 22a: b :m+l.c.
2 me—1
The co-efficients of the axis and the two diagonals, as de-
veloped here, if substituted in the expressions for the co-

£ 2n a

Ce
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sines of the edges of a scalene four-sided pyramid (§. 53.),
will produce similar expressions for the edges of the de.
rived pyramids, in as far as the process of derivation has
been applied to the intermediate form.

The pairs of scalene four-sided pyramids thus produced,
according to an equal m, from all the intermediate forms,
which belong to the members of the series §. 90., will them«
selves likewise form two series, which proceed according
to the general law of the former, and are limited by planes
perpendieular and parallel to the axis. The complete de.
signation of the two series between their limits, is

P— ... (Br+ ) ... (Br + o)m=;
P .. (Pr+n) .., (Pr+ o).

It has already been stated, that by these two different
modes of derivation, we obtain exactly the same forms.
This may be demonstrated, by proving how one form, whose
derivation from P is expressed by the sign (P + n)», may
likewise be derived from the intermediate form Pr + n’,
under the sign (Pr + n)@’, or that (P + n)™ may be
= (Pr + n)m"

The ratio of the axisand the diagonals, that is to say, of
the three lines perpendicular to each other, is in

(P +n)m = m 2%a: mb : c3in
’ ’
(Pr+ n')m' = w . 2,3 ¢ m_.tl. FIE
2 m—1
If we suppose the co-efficients of b in the two pyramids
to be equal, we obtain m’ = .m_".%. , which being sub.
m e

stituted in the ratios for (Pr + n’)»’ gives
= 2 .. 3:mb :ec
me—1

The equality of the three lines supposes therefore also
xﬁfl—l' 2% to be = m.2n3 and consequently 2= (Mmw=1) 27,

Any scalene four-sided pyramid, which belongs to P + n,
under the sign of (P + n)=, may therefore likewise be con.
sidered as deriving from the intermediate form of P + n,
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™1
viz. from Pr + n under the sign (m — 1) (Pr 4+ n) m—1,
It depends here upon the value of m, whether the deriva-
tion proceeds from an intermediate form belonging to the
principal series, or to a subordinate one (§. 96.).
Let m be == 2, and the secondary pyramid therefore
= (P 4 n)?; we have
m41
(m —1)(Pr + n)m—1 = (Pr+ n)*;
the ratio of the perpendicular lines = 2.27.a : 2. b: ¢,
exactly as in (P + n)?. Let m be = 3, it will follow, that
m + 1
(m —1) (Pr+ n)m—1 =} (Pr + n)5 = (Pr + n — 1)3,
and the ratio of the lines given above = 3 .2»—'.a: 3. b
te=32%a: ;.b:c,asin(P+n)§.
In both these examples, Pr + n belongs to the principal
m 41
series. But suppose m = 43 (m — 1) (Pr + n)m—1

will be = 3 (Pr + n)’g, and the ratio of the three lines will be
= % 2% a:4.b: ¢, of which the first member still must
be multiplied by 3 to make it equal to that of (B 4 n)*, as
the crystallographic sign requires. Here Pr 4+ n belongs
to that subordinate series, whose co-efficient is the num-
ber 3.

In the two first of these examples, it appears that one
pyramid may be transformed into another, whose number
of derivation is greater; in order to obtain forms in every
respect more analogous to the rest of those contained within
the compass of forms derived from the scalene four-sided
pyramid. The last example shews how a pyramid de-
rived from a member of a subordinate series, may be trans-
formed into another which belongs to 2 member of the
principal one. These two kinds of permutation sufficiently
account for the utility in the employment of the double
mode of deriving and of designating forms, which, for their
absolute dimensions, might be considered as heing identical.

" The values of m most commonly found in nature are 3,
4 and 5, particularly the first of them ; and there is scarcely
* a species to'be found presenting forms in connexion with
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the scalene four-sided pyramid, which does not afford ex-
amples of their occurrence. Prismatic and prismatoidal
Hal-baryte, prismatic Topaz, prismatic Chrysolite, may be
quoted as examples. Besides these, (I’ + n)¢ and (P + n)®
occur in prismatic Hal-baryte, (Pr + n)? in prismatoidal
Antimony-glance, (P + n)g in prismatoidal Manganese-
ore.

§. 96. SUBORDINATE SERIES.

There exist several series of forms, homogencous
and of similar bases with that of §. 90. and belonging
to it, in reference to which the latter is termed the
Principal or Fundamental Series, while the others
are said to be Subordinate.

A Subordinate Series is a succession of homogeneous
forms, whose bases are equal and similar to those of the
members of the principal series, but possessing axes,
which, on account of their relative magnitude, are ex-
cluded from the principal series : these members, however,
may form another series among themselves, which follows
the law of progression of the principal one.

The members of the subordinate series may be derived
from those of the principal series, either directly, or by the
interposition of certain other forms, which are produced
from that series. In the present case, the first of these
methods being more simple, will find its application.

Let AX, TFig. 38., be the axis, BCB'C’ the base of the
fundamental form, and the points A’, A”, &c., X/, X”, &c.,
be determined, as has been shewn in the preceding deriva-
tions.

Through those points lay the two rhombs FGIH and
¥'G'I’H, similar and parallel to the base C'B’CB : produce
the axis, so as to have 9% = m. AX; draw the lines
F4, G4, &c. F’%, G’E, &c. and lay planes into these in
such situations that they include a space by themselves.
This space will have the form of a scalene four-sided pyra.
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mid, the base of which is similar to that of P. The same
result is obtained by applying at once the third method of
derivation (§. 82.) to the intermediate form in §. 92. This
would require to lay planes on the edges formed by the
intersection of the faces of (P 4 n)= with those of (P + n)m=,
the inclination of these planes being such, as to make their
commeon intersection a rhomb, similar and parallel to the
base of the fundamental form.

Tt is now wanted to determine the ratio of the axis of
the derived pyramid to that of P, the horizontal projections
of the two pyramids being supposed equal.

For this purpose draw the lines : AA’, bisecting the edge
BC’in K; MK in the plane of the base, and XA’ in the
plane of the lower rhomb, parallel to MK. ¥rom the si.
milarity of the triangles AMK, AXA’ follows

XA = 2. MK.
Draw now the line A’d, and another KQ’ parallel to it;
and MQ’ will be half the axis of the derived pyramid, its
horizontal projection being reduced to BCB/C. But from
the similarity of the triangles @A’X and A’KM follows
XA’ : MK = Xg : M@’
or, since

ik l—_-(m+1)a:m+l.a

and consequently,
aM =12+,
2

The number m: . is termed the co-efficient of the sub-

ordinate series, and prefixed in the crystallographic sign of
one of its members, to the sign of the member of the
principal series, from which the derivation started, so that

m+Tp 4 nisthe designation of an indeterminate mem-

ber of the subordinate series.
If m + 1 becomes a power of the number 2, the deriva~
tion yields a member of the principal sexies itself; and if
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m;- Yisa power of the number 2 greater than 1, n is in-
creased for the exponent of this power. Any other m pro-
duces one member of a subordinate series from every mem.

ber of the principal one. In this case m;— Lis divided by

that power of the number 2, which, in the series of these
powers, differs least from the mentioned number ; n is in-
creased for the exponent of that power, or diminished if
that power be negative, and the quotient thus obtained is
now considered as the co-efficient of the member of the
subordinate series.

The expressions for the cosine of the edges referring to
those members of the subordinate series, are developed, as
has been pointed out before in several similar occasions.

The limits of the subordinate series evidently coincide
with those of the principal series.

From the value of m = 3, = 4 and = 5, the co-efficients
of the subordinate series are found = % and = £. These
and their inverse § and ¢ have already been found in na-
ture; 2, for instance, in prismatic Hal-baryte, $ in pris.
matic Lime-haloide, 4 and £ in prismatic Sulphur.

§. 97. HORIZONTAL PRISMS.

To every scalene four-sided pyramid, derived
from P, as well as to P itself, belong two Horizon-
tal Prisms, one of which refers to the long, the
other to the short diagonal of the base of the fun-
damental form.

In any scalene four-sided pyramid, we may suppose one
of the diagonals of the base to be increased continually,
while the other remains unchanged. The value of the ter-
minal edges changes with the increase of the diagonal. The
edge which is contiguous to the unchanged-diagonal ap-
proaches to 180°. That contiguous to the increasing one
approaches to equality with the angle of the principal
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section through the axis and the unchanged diagonal, and
these limits are attained when the increasing diagonal be-
comes infinite. The pyramid is thus transformed into a
prisim, the axis of which is the infinite diagonal : its situa-
tion is horizontal, and on this account the whole form: is
termed a IHorizontal Prism. Since each of the diagonals
may thus be supposed to increase till it becomes infinite,
there will be two horizontal prisms belonging to every sca-
lene four-sided pyramid, and each of these prisms is refer-
red to that diagonal, which remains unchanged, while the
other increases to infinity.

This mode of considering the matter will suffice for
giving a general idea of horizontal prisms. But it has no
connexion with the relations of forms developed in the
preceding paragraphs, where there exists nowhere an ab-
solute increment of a diagonal, this being always a conse-
quence of a simultaneous increment of the axis (§. 93. 95.).
In the principal series, whose members also possess their
appropriate horizontal prisms, the diagonals do not change
at all, while the axes may be increased to infinity.

There are, however, two methods of obtaining horizon-
tal prisms, in connexion with other forms: either the inter-
mediate form (§. 90.) is resolved by enlarging its homolo-
gous faces, or tangent planes are laid, not on all, but only
on the homologous, terminal edges of the given scalene
four-sided pyramid. The result is the same in both pro-
cesses. :

The designation of horizontal prisms is in general
Pr +n; it is Pr + n, if they belong to the longer, it is
Pr + n, if they belong to the shorter diagonal of P. If
the faces of Pr + n and those of Pr + n appear in combina-
tion with each other, and produce the intermediate form,
their relative breadth is in the ratio of those diagonals
to which their axes are parallel. This intermediate form,
in as far as it is a compound form, receives the com-
pound sign Pr 4+ n. Pr 4 n; but in as far as it is em-
ployed in the derivation of other forms, as in §.95., the
sign Pr + n is applied to it, because the reference to
the diagonals is only taken into consideration afterwards.
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§. 98. SERIES OF HORIZONTAL PRISMS, AND THEIR
LIMITS. INCLINATION OF THE AXIS.

Every series of scalene four-sided pyramids has
two concomitant series of horizontal prisms. The
limits of these series are planes, which are perpen-
dicular to those diagonals to which they belong,
if 4 n becomes infinite, and perpendicular to the
axis of the fundamental form, if — n becomes in-
finite.

The designation of an indeterminate member in each of

m+1 m+1

these series is Pr+ n and Pr + n, which, if

m = 1, signifies a member of the principal series. From
every other value of m, provided m + 1 be not a power of
the number 2, a member of a subordinate series is obtain-
ed. If m + 1 be a power of the number 2 greater than 1,
yet the co-efficient nevertheless will remain = 1, as in
every other member of the principal series ; but the n in
its crystallographic sign is augmented for the exponent of
that power, just as has been mentioned above, in respect
to members of subordinate series.

There is no particular designation required for such hori-
zontal prisms as belong to pyramids of dissimilar bases,
§. 92. and §. 95., because their principal sections coincide
with those of the pyramids, already expressed by the above
mentioned signs. This may be proved, for some of them,
by considering in general the ratio between the axis and the
two diagonals of pyramids, derived according to an undeter-
mined m3; and for others, by taking the determined value
of m, as obtained from observation.

A horizontal prism is determined by the cosine of that
terminal edge, which is contiguous or parallel to the infinite
diagonal, or by that angle of the principal section of the
pyramid, which lies in the terminal point of the axis.

The values of these cosines are obtained, if-in the gene-



94

TERMINOLOGY. §. 98.

m+1

ral expressions of these quantities for P + n, one

of the diagonals after the other is supposed infinite. Inthe
horizontal prisms belonging to P, the values of the cosines
are as follows :

a? —b?
for Pr, et i
for Pr, PR o

a% 4 c*

As to the limits of the horizontal prisms, it is evident,
that in the same proportion in which the axis of the pyra-
mid 11"2;1 P + n increases, the angle of the horizontal
prism at the axis must diminish ; and that it must entirely
disappear, when the axis becomes infinite. The supple-
ment of this evanescent angle is = 180°, and the hori-
zontal prism therefore is transformed in two unlimited pa-
rallel planes, perpendicular to those diagonals to which they
belong. If on the other side the axis decreases, the same
angle becomes greater and greater, and at last = 180°, if
the axis is infinitely small. The supplement of this angle
is = 0; the faces of the horizontal prism contiguous to the
opposite ends of the axis, coincide with the plane of the
basis; and they appear as faces perpendicular to the axis.

This is the result of o g Pr 4+ e and o daes
m+1 m+ 1 2
2

Pr + o,

and of Pr — e and Pr— .

The series of horizontal prisms between their limits, are
expressed by

Pasioes ...m+l

Pr+n..Pr+n,

m+1

P = 4% Pr 4+ n ... Pr 4 ¢o.

The face perpendicular to the axis has received its sign
as the limit of the principal series; and in the limits for
n = + e, it is unnecessary to attend to the co-efficients of
the different series.
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The method of derivation, applied to the scalene four-
sided pyramid, is so general, that it will remain unaltered,
and yield similar forms and relations, even though the axis
of the fundamental form should be inclined at an angle to
the plane of the base.

This Inclination of the Axvis may take place, either in the
plane of only one of the diagonals of the rhombic base,
as in Fig. 41., or in the planes of both diagonals, as in
Fig. 42. 1In the first two principal sections, ACA'C’ and
BCB'C’ are rhombs, and one ABA’B’ is a rhomboid
in the second, only BCB'C’ is a rhomb; and both the
others, ACA’C’ and ABA’B’ are rhomboids. A third case
is still possible, where all the three principal sections would
yield rhomboidal figures, upon which supposition, how-
ever, the diagonals CC’ and BB’ themselves intersect each
other at oblique angles in the point M. From the want
of sufficiently accurate observations, it is at present impos-
sible to decide which of the two last cases, or whether
perhaps both of them take place in nature, while the
fact of an inclination of the axis in the plane of one of
the diagonals has already been established by numerous ob-
servations. According to the principles laid down in §. 87.
as respects the determination of fundamental forms, it will
be impossible to limit the number of these to four, because
forms whose axis is inclined, cannot be derived from others
whose -axis is perpendicular to the base by any of the given
processes of derivation. Without entering here into the
full developement of the theory of these forms, and without
drawing all the necessary consequences from this import-
ant fact, it may be useful to mention some of the alge~
braic formulze, dependent upon the inclination of the axis
in the plane of one of the diagonals.

Tet a : b:c:d denote the ratio between the four
lines AP, BM, CM, and MP, in Fig. 41., the following
formulse will be obtained :

a? (b’ - cﬁ) —c2 (b + d)2 :

a? (b? + c?) + c2 (b + d)2

eos: y’ = a? (b? —c?)—c? (b—d)? ;
a? (b2 + c¢?) 4 c?(b—d)2

C0s. y =
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a® (¢? — b2) —ec? (b* —d%)
JTE o+ )+ ex(b+)%) (a* (bt e )t e (b—d) )] °
c? (b? —d2?) —az (b® + c?)
V@ (i cn) +er (b+d)7) @ (b*+ 2) + e (b—d) )]’
The angles of the principal sections are found by means
of the following formulee :
a? +d? —c?

COS. X =

€08.Z =

cos. CAC/ = — = S aey
a* +d* + ¢
SR AL s s S bl
B2ce
cos. BAB' = it i -

NI + (b +4)) (@ + (b—d)?)]
In most cases, it will be convenient to have the angles
BAP and B’AP separately, as given by the formulze :

tang BAP = i

b—d

tang B'AP =

For finding the dngle of Inclination, or that at which the
axis AA’is inclined to the line AP, perpendicular upon
the base, we have

tang MAP = 4.
'The terminal edge of the horizontal prism belonging to
the diagonal c, is expressed in the formula:
a%? —c*?
€os. y = m”;
that lateral edge of P + « which is contiguous to the dia-
gonal - b, in the formula:
a? bz —c¢? (a2 + d2)
a*b® + c? (a? + dz)'

In such forms as Fig. 42., where the axis is inclined in a
plane which, if it intersects the base at right angles, passes
through neither of its diagonals, the formule become more
complicated by the introduction of a new variable quantity
e = PR, yet the general processes of derivation are still
applicable to the same extent in this apparently irregular
figure, as they are to the scalene four-sided pyramid, whose
axes are perpendicular to cach other.

cos. y =
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2. DERIVATIONS FROM THE ISOSCELES FOUR-SIDED
PYRAMID.

§. 99. DERIVATION OF HOMOGENEOUS FORMS.

From every isosceles four-sided pyramid another
form of the same kind may be derived, which is
more obtuse, and in a diagonal position to the fun-
damental one.

The derivation is effected by laying tangent planes on
the terminal edges AB, AC, &c. of the given pyramid
ABCB/(X, Fig. 45., and enlarging them till they wholly
include the space AFGF'G’X (§. 80.). The result of this
operation is at once the derived form itself, because the
terminal edges of the fundamental pyramid are equal to
each other.

In this case, also, the process may beinverted. Draw for
this purpose the perpendicular lines from the apices to the
lateral edges upon each of the faces of the given isosceles
four-sided pyramid, and by planes, laid through every two
adjacent ones of these Iines, detach those parts of the form
which are situated towards their outside. The remaining
form is the same isosceles four-sided pyramid, from which,
after the process described above, the given mere obtuse
pyramid has been derived.

The terminal edge of the given pyramid coincides with
the perpendicular line, drawn upon the face of the derived
form, from the apices towards the lateral edges, as is evi-

< dent from the circumstance that these planes touch the
given pyramid in its edges. The base of the derived
pyramid is the square circumscribed about the base of the
fundamental form ; it is inscribed, if the method has been
applied inversely. The two pyramids, and thus every
two which are in the same relation, assume such a posi-
tion towards each other, that the diagonals of the base of
the more acute pyramid are parallel to the sides of the base
VOL. I. G
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of the more obtuse one, and wvice versa. This is termed
the diagonal position. If from the more obtuse pyramid ano-
ther still more obtuse is derived, and from the more acute one
another, still more acute ; these new pyramids are diagonal-
ly situated to that one from which they are derived ; but to
the fundamental form they are in such positions as to have
their sides and diagonals parallel to the analogous lines of
the other, and this is termed the parallel position.

§. 100. RATIO BETWEEN THE DERIVED AND THE
FUNDAMENTAL FORM,

The axis of an isosceles four-sided pyramid,
whose faces touch the edges of another, is to the
axis of this latter pyramid, in the ratio of J/1 : 1;
the axis of that pyramid, whose edges are touched
by the planes of another, is to the axis of the latter,
in the ratio of /2 : 1. In both cases, the sides of
the horizontal projection are supposed equal.

Let AM, Fig. 45., be half of the axis, BCB’C’ the base
of the fundamental form ; FAG will be a plane, laid on
the terminal edge AB, GAF’ another, laid on the termi-
nal edge AC/, &c.: therefore FGF'G’ will be the base, and
FA, GA, &c. the terminal edges of the derived pyramid.
The axis AM is common to both.

The square FGF'G’ = 2. BCB'CY,
hence FG = GF’ = BC".\/2,
and FG: BC =MG: MB=,/2:1

Describe from M with the distance MB, the axrc BB”; it
will follow, that

MG

MB”"=MB=—"_.
N2

Draw the line B”A’ parallel to GA ; MA’ will be half of
the axis of the derived pyramid, its horizontal projection
being equal to BCB'C”. In the similar triangles AGM
and A'B”M, is

pr——
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GM : MA = B"M : MA’,

or
GM : MA — l:/i‘g.z MA’,
therefore
MA = MA
NE)

In order to find the ratio of the axis of the more acute
pyramid, from which the more obtuse one may be derived,
upon the supposition of their horizontal projections being
equal, let FGF'G’ be the base of the latter ; BCB'C’ will
be the base of the former, if the axes of the two pyramids
are supposed equal.

But we have BCB'C’ = | FGF'G".

Therefore BC' = L.C,
N2
and BC': FG =MB : MG = 1 : 1.
A 2

Produce the line MB, and with the distance MG, de«
scribe from the point M the arc GG”, MG” will be = MG
= MB. J/ 2.

Now produce the axis AM, and draw G”’A” parallel to
BA ; MA” will be half the axis of the more acute pyramid,
its horizontal projection being equal to FGF'G’. In the
similar triangles BAM, G”A”M, the following proportion
takes place :

BM : MA = G"M : MA”,
or

BM : MA = MB. \/ 2 : MAY,
therefore

MA” = MA. A/ 2.

§. 101. SERIES OF ISOSCELES FOUR<SIDED PYRAMIDS,

Every derived pyramid may again be considered
as a fundamental form, and the derivation may be con-
tinued. This will produce a series of icosceles four-
sided pyramids, whose axes increase and decrease
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like the powers of the square root of 2; the hori-
zontal projections of these forms being always sup-
posed equal.

As in §. 90. the fundamental pyramid is designated by
P, the more obtuse members in their succession by P — 1,
P —2, P — 3, &c. the more acute members by P + 1,
P 4 2, P + 3, &c. This designation not only rests upon
the same principles as that in §. 90., but is in fact exactly
the same. Since it is necessary to know before hand
whether P is an isosceles or a scalene four-sided pyramid,
if the forms derived from it are to be taken into consider-
ation ; this identity of the designation can neither in this
nor in any other case, admit of, or give rise to, any ambigui-
ty. Suppose theaxis of P = a; the series of pyramids, and
that of their axes, will appear as follows :

owe P— 3] P —2, PN, P, "P1- 4, SPE NS e
; 2;:/2, %, _7"‘?, a, /2.3 2.8, 2./28..
The ratio of the axes is
1 1 1
L e 1 :a/2: 2 :24/2..
that is to say
veo A 278 2 A 220 N2 1 /1200 N 2T SN

The axis of an undetermined ntt member, or of P + n, is

o

=a/2"% a = 2% a; and this expression is the Law of Pro-
gression of the series, whose fundamental number is

J2 =2k
It is evident, that subsequent members of the series are

in a diagonal position, alternating members in a parallel
position ; and since the position of P may be taken for
normal, all members of an even exponent will be in a
parallel position, those of an odd exponent in a diagonal
position.

v The algebraic expressions in §. 52. refer to the edges of
P. Those of P + n are obtained by substituting 2" a2 in
the place of a2,
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§. 102. LIMITS OF THE SERIES.

- The limits of the series § 101. are, on one 51de
a plane perpendicular to the axis, on the other two
rectangular four-sided prisms, one of which is in
a parallel, the other in a diagonal position with
the fundamental form.

The origin of these prisms is sufficiently evident from
§. 91. If the diagonals of the base of the pyramid be sup-
posed equal, a rectangular four-sided prism is obtained,
instead of an oblique-angular one. It appears likewise, from
the calculations in §. 101., that anisosceles four-sided pyra-
mid of an infinite axis is transformed into a rectangular
four-sided prism.

The series of scalene four-sided pyramidsislimited on one
side by a plane perpendicular to the axis, on the other by
a single prism, because there exists no difference in the
position of its members. But there is a difference of that
kind, in the series of isosceles four-sided pyramids, in which
the positioi of two subsequent members changes from
the parallel to the diagonal, and from the diagonal again to
the parallel position; and since the last member, or the
limit of the series, may be considered in the one, as well
as in the other of these positions, it becomes necessary to
assume two rectangular four-sided prisms of infinite axes,
as limits of this series, one for the parallel, the other for
the diagonal position of two prisms limiting the series.
This supposition is exactly conformable to experience.

The limits on the opposite side are squares equal to the
horizontal projection, because the isosceles four-sided py-
ramid, if its axis becomes infinitely small, is transformed
into a square plane figure. Here the difference of the
position can no longer be considered, because this pyramid
being nothing but a plane figure, cannot appear by itself in
nature, and receives its boundaries from the intersection
with the planes of other pyramids and prisms.

The designation of the limits is, agreeably to what has
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already been stated, P — oo and P 4 2.  Since in the latter
case it is impossible to argue from the exponent upon the
position of the form, it is necessary to express this difference
of the two four-sided prisms, by some other contrivance in the
designation. The prism in the parallel position receives the
sign as it has been employed above, the sign of that in the
diagonal position is inclosed in crotchets, and the designa-
tion of the series of isosceles four-sided pyramids between
its limits is therefore as follows :
P—c ...P+n...{[£i:] .

Five members of this series have been observed in pyra-
midal Garnet, four of them being consecutive, in the same
species also the limits on both sides of the series. Four
consecutive members are known in pyramidal Copper-
pyrites, three in pyramidal Lead-baryte, pyramidal Tin-
ore, pyramidal Titanium-ore. The limits of the series
oceur still naore frequently, even in those species, which
exhibit fewer members of finite dimensions.

§. 103. DERIVATION OF SCALENE EIGHT-SIDED
PYRAMIDS.

From every member of the series §. 101., seve-
ral scalene eight-sided pyramids may be derived.

This derivation iseffected according to the second method
(§- 81.), and it is applied after a preparation of the form, as
described in §. 92.

The faces of the isosceles four-sided pyramids being iso«
sceles triangles, the figures BAC’A’, C’AB’A”, &c., Fig. 40.,
will be rhombs, and the points A’, A”, &c., X', X”, &e. will
be situated in the angles of two squares, whose planes, like
those of the rectangular figures, §. 92., are perpendicular to
the axis in the terminal points A and X. These squares
A’AVA”A™ apd X/X7XX™" are equal and parallel to
the square circumscribed about the base BCB’C’.

Draw now from the points A’, A”, &c. towards the upper,
from the points X/, X”, &c. towards the lower terminal
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point of the produced axis, the straight lines A’d, A”Q,
&e., X'k, X”E, &c. These lines, and accordingly their
intersections S, §’, &c. will be situated in planes, which are
perpendicular to the faces of the isosceles four-sided pyra-
mids ; and the lines BS, C'S, &c. are therefore equal to
each other. Thus likewise the triangles BAS, SAC, &c.
are equal and similar to each other,and the form obtained
by the derivation is a simple one, namely, the scalene
eight-sided pyramid A’BSC’S’'B’S”CS"%.

The designation of the scalene eight-sided pyramids is
(P + n)m, in agreement with §. 92. It comprehends as it
were at once the two pyramids (P + n)= and (P + n)= of the
mentioned paragraph, which forms, in the present case, would
be equal and similar. The axis of the scalene eight-sided

pyramid is = 2%. m. a ; where 2% a is the axis of P + n.
The relative length of the axis of the eight-sided and the
four-sided pyramids, is expressed by the number m, as in
§. 92. The only values of this number yet ascertained by
observation relative to the pyramids, are 3, 4, and 5; and
although it cannot be determined in general, yet it must
always be rational, positive, and greater than 1 + ./ 2
(§.56.5.). This supposition is necessary for making it possible
to determine the position of scalene eight.sided pyramids
among themselves, and towards isosceles four-sided pyra.
mids. If m isequal to 1 + ,/ 2, the eight-sided pyramid
is isosceles ; if it is less than 1 + ,/ 2, the acute terminal
edges are transformed into the pbtuse ones, and vice versa.
And since every scalene four-sided pyramid, derivable from
P + n, according to a certain m less than 1 + / 2, can like-
wise be derived according to another m greater than 14 ,/2,
from another more obtuse isosceles four-sided pyramid P + n’
connected with P ; this supposition, by excluding the above
mentioned values of m, produces at once simplicity and clear.
ness in the consideration of these forms. By the supposition
of m being greater than 1+ ,/2, it is also possible to avoid
a double designation of the same kind as that mentioned in
§ 95. These considerations, however, yield a formula
for changing any pyramid (P + n)m, in which m is less
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than 1 + ,/ 2 into another (P + n’)™, in which m’ is great-
erthan 1 4,/ 2. Itis

m4 1
P+n)”=m—1)(P+n—1)=m—1
Thus, for instance, 2 being less than 1 + ./ 2, the sign

of a pyramid (P + 1)? may be transformed into another
41

(2—1) (P +1—1)2—1 — (P)3, where the exponent 3
is greater than 1 + / 2.

The position in which the scalene eight-sided pyramid is
obtained from the isosceles four-sided pyramid, supposing
m to be greater than 1 + A/ 2, is the parallel position, that
which differs from it for 45°, the diagonal position. In the pa-
rallel position, a plane through the axis and the acute termi-
nal edge of the eight-sided pyramid, passes at the same time
through the acute terminal edge of another eight-sided py-
ramid, or through the perpendicular line from the apex,
upon the face of an isosceles four-sided one, whilst in the
diagonal position, the same plane passes through the obtuse
terminal edge of the other eight-sided, or through the ter-
minal edge of the four-sided pyramid.

Pyramids expressed by the sign (P + n)® are frequently
met with in nature, as in pyramidal Garnet, in pyramidal
Zircon, &c.; those dependent upon other values of m oc-
cur more sparingly, as (P + n)* in pyramidal Garnet, and
(P + n)® in pyramidal Tin-ore.

§. 104. THE BASES OF THE SCALENE FOUR-SIDED
PYRAMIDS DEPEND UPON 772,

For one and the same m, the bases of all forms
contained under the sign of (P + n)™, are equal
and similar to each other.

The demonstration of this proposition follows from §. 93.
The lines denoted in that paragraph by b and ¢, obtain
here the determined value = A/ 2; and hence we have

2. m

\IS____..
m+ 1
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The magnitude of the plane angles of the base, and there-
fore of all sections perpendicular to the principal axis of the
scalene eight-sided pyramid, depend consequently solely
upon m, and these bases are equal, whenever m is the same.

§. 105. SERIES OF SCALENE EJGHT-SIDED PYRA-
MIDS.

Every member of the series §. 101., gives for
every determined m likewise a determined scalene
eight-sided pyramid. The forms of this kind, de-
rived from consecutive members of the series, ac-
cording to one and the same m, produce a parti-
cular series among themselves, the axes of which

n
increase and decrease, as the powers of 4/ 2, or as 22.

These series arise like those in §. 95. The axes of their
members are products of m, the number of derivation,
with the axes of the members of the series of isosceles four-

sided pyramids, = 2%. m.a; and since m.a is a factor
common to them all, they will be among each other in

the ratio of 22,
n
If in the algebraic expressions §. 56., 2%.a be substituted

for a, the result will be expressions of the same kind for
the cosines of the edges of (P+ n)™.

§. 106. LIMITS OF THE SERIES OF SCALENE EIGHT-
SIDED PYRAMIDS.

The limits of the series of scalene eight-sided py-
ramids are, on one side a plane perpendicular to the
axis, on the other unequiangular eight-sided prisms,
whose transverse sections are equal and similar to
those of the members of the series, and their axes
infinite. The latter must be considered in two dif-
ferent positions.
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That these limits are prisms of the kind above mentioned,
follows from § 95. But, as has been shewn in §. 102. re-
garding the rectangular four-sided prisms, the eight-sided
prisms must, for the same reasons, be considered in
either position, the parallel as well as the diagonal one;
and, therefore, two limits of infinitely long axes must be
assumed for the series of scalene eight-sided pyramids, one
in a parallel, the other in a diagonal position to the funda.
mental form. The positions of these prisms are determined,
like the positions. of scalene eight-sided pyramids.

If n becomes = o, (P +n)™ is transformed into (P + co) ™,
(P — n)= into (P — )= ; the latter, not being different
from P — o, is denoted by that sign. In (P + cs)= the
position, which cannot follow from n = e, must be indicat-
ed by the designation, and this is effected as in four-sided
prisms, by giving to the parallel prism thesign (P + )™,
to the diagonal prism the sign [(P + e)m]. The designa-
tion of the whole series between its limits, is therefore =

P+ oo)m
Pew.@+nm. {5 m))m] :

The above-mentioned algebraic expressions give for
n = + &, the cosines of the angles in the transverse sec-
tions of the unequiangular eight-sided prisms. Thus,

€OS. § == ol
m? + 1
cos.x=—-312_T_l-.
m?z 4+ 1

The following result is obtained, for the above-mention-
ed determined values of m (§. 103.).

PRISMS. €OS. Y. |COS. X. Yy ' X.

(F+w) |—3 [—3 | 126752 127 143° 7 48"

(P+ o) |—|—if| 118° 4107| 151° 55 507
®+eo) | — 5| —i3

112° 37/ 12”’ 157° 22’ 48"
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Examples of (P + )? we have in pyramidal Garnet, in
both positions; also in pyramidal Copper-pyrites, pyra-
midal Tin-ore, &c. ; of (P + o) in pyramidal Lead-baryte,
and pyramidal Tin-ore.

§. 107. SUBORDINATE SERIES.

There are several Subordinate Series of isosceles
four-sided pyramids, belonging to that in §. 103,
which, in reference to these, is termed the Princi-
pal Series.

The derivation of the members of these subordinate se-
ries is exactly the same as that employed for the scalene
four-sided pyramids, §. 96.; only being here applied to
members of the series of isosceles four-sided pyramids, the
result will be the required subordinate series of isosceles
pyramids. The co-efficient thus obtained is likewise

m+1

; and the subordinate series themselves proceed

according to the law of the principal one, and are bounded
by the same limits.

The same members of the subordinate series may also be
obtained by laying tangent planes on the homologous termi-
nal edges of the scalene eight-sided pyramids, &c. The latter
process would be the same as that employed in §. 116., for
the derivation of subordinate series of rhombohedrons from
the principal one. The results of this and of the preceding
process are identical. For if the tangent plane be laid on
the acute edges of the scalene eight-sided pyramid, the co-

m
efficient obtained will be

+1 .
5 if it be laid on its obtuse

edges, the co-efficient will be mo . By substituting seve«

ral values instead of m, for instance, those which are most
commonly found in nature, we obtain members belonging to
the same subordinate series. It is therefore sufficient to
assume one of these terms as the general algebraic expres-
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sion of the co-efficient. If the co-efficients become powers
of the number 2, the members belong to the principal
series. 'The members of the subordinate series in particu-

lar are designated by 27~ + lp sy n, agreeably to the rules

given in §. 96.

The position of the members of the subordinate series in
respect to those of the principal series, follows easily from
their derivation ; and the expressions of the cosines of their.

m+1

edges are found by substituting .a instead of a in

the formulee §. 56.
The values of the co-efficients hitherto ascertained by
observatxon are, w o 2:’ , and ¢. Members of the series
N 2P 4+ n occur in pyramidal Zxrcon and pyramidal Cop-
per-pyrites ; of the series £P + n in pyramidal Tin-ore ;
of the series i-lﬁP + n in pyramidal Lead-baryte, pyra-
midal Kouphone.spar, of the series $ P 4+ n in pyramidal
Kouphone-spar and pyramidal Titanium-ore. It may be
remarked here, that the two series, %P 4+ n and
2 P + n are obtained together with the principal series,
if, according to the first method of derivation, tangent
. planes are applied to the terminal edges of those eight-
sided pyramids, which depend upon m = 3, m = 4, and
m = J.

3. DERIVATIONS FROM THE RHOMBOHEDRON.

§- 108. DERIVATION OF HOMOGENEOUS FORMS.

From every rhombohedron, another form of the
same kind, but more obtuse, may be derived. The
derived rhombohedron isin a transverse position to-
wards the fundamental form.

The first method, §. 81., is applied here without any
further preparation ; and it is evident that the form thus
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obtained will be a rhombohedron, which is more obtuse
than the given one.

The inclined diagonals of this more obtuse rhombohedron,
assume the situation of the terminal edges of the other ;
while the horizontal projections of both are parallel. One
of these forms is said to be in a transverse position towards the
other, because this position may be obtained, by turning
a rhombohedron from its original position, round the prin-
cipal axis, for an angle of 60° or 180°. Ifa rhombohedron is
in the transverse position towards another, it may be brought
into the parallel position, only by turning it again round
the axis for the same quantity.

In the parallel position, a plane through the axis, and
the inclined diagonal, or the terminal edge of one rhom-
bohedron, passes at the same time through the inclined dia-
gonal or the terminal edge of the other ; in the transverse
position, on the contrary, the plane through the axis and
the inclined diagonal of the one at the same time passes
through the terminal edge of the other rhombohedron. .

In order to invert the process of derivation given above,
draw the inclined diagonals upon the faces of the rhombo-
hedron, and take away, by planes passing through every two
adjacent diagonals, those parts of the form which lie on
their outside. The remainder is the more acute rhombo-
hedron, from which the given one in its due position may be
derived according to the first method of derivation, as em-
ployed above.

§. 109. RATIO OF THE DERIVED RHOMBOHEDRONS.

The axis of the rhombohedron, whose faces

touch the terminal edges of another, is to the
axis of this rhombohedron = 1 : 1; and the axis
of the rhombohedron whose terminal edges are
touched by the planes of another, is to the axis of
this in the ratio of 2 : 1; the horizontal projections
always being supposed equal.
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Let AX, Fig. 45., be the axis, and ACXB the principal
section (§. 37.) of the given rhombohedron ; AC will be
one of its terminal edges.

According to the method of derivation applied, the ter-
minal point B’ of the inclined diagonal of the derived rhom-
bohedron will be situated in the prolongation of the termi-
nal edge AC of the fundamental form. But this point lies
also in the prolongation of QS’, a line perpendicular to the
axis in Q, AQ being = 2 AX (§. 50. 11.). Therefore the
terminal point B’ of the inclined diagonal of the derived
rhombohedron coincides with the intersection of the two
produced lines AC and QS’, and AB’ is this diagonal
itself.

If in the same way, the lines XB and PS are pro-
ducedtill they intersect each other in C’; XC’is the other
inclined diagonal of the derived rhombohedron parallel to
the former ; and the lines joining the point X with B/, and
A with C, represent the terminal edges, AB’XC’ accord-
ingly the principal section of the derived rhombohedron.

The line AX, or the axis, is common to both principal
sections ACXB, and AB’XC’ ; but the side of the horizon~
tal projection of the given rhombohedron is PC, while
that of the derived rhombohedron is QB".

In the similar triangles APC, AQB’ we have
PC: QB = AP: AQ=} AX: 3 AX =1:2(§. 50. 11.).

Hence the side of the horizontal projection of the deriv-
ed rhombohedron is double the same line of the given
rhombohedron, their axes being equal; and the inclined
diagonal AB’ = XC’ of the derived rhombohedron, is
double the terminal edge AC = XB of the given rhombo-
hedron.

Draw now the line BA’ parallel to C’A, and B”A’ paral.
lel to B’A; BA’B”X will be the principal section, and
A’X the axis of the derived rhombohedron ; provided the
two rhombohedrons have the same horizontal projection,
whose side is = BQ.

But in the similar triangles AC’X and A‘BX the follow-

ing proportion takes place : .
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A\XLA’X:C’X: BX:?: 1.
Hence the axis of the derived rhombohedron is equal to
half the axis of the fundamental one, if the horizontal pro-
Jections are equal.

In order to find the ratio between the axis of the more
acute rhombohedron and that of the fundamental form, let
AB’XC’ be the principal section of the latter, the side of
the horizontal projection being C’P. In this case ACXB
will be the principal section of the derived rhombohedron,
the side ofits horizontal projection — BQ, and its axis equal
to that of the fundamental rhombohedron.

From the point C’ draw the line C’'B” parallel to the
axis, produce AB to B, and complete the rhomboid
AB’X’B”. This is the principal section of the derived
rhombohedron, the side of the horizontal projection being
Ble 3 C’P-

The similar triangles ACX and AB'X’ give

AX : AX = AC : AB' =1: 2.

The axis of the more acute rhombohedron is conse-
quently double the axis of the fundamental form, their ho-
rizontal projections being equal.

§. 110. SERIES OF BHOMBOHEDRONS.

By continuing the derivation, a series of rhom-
bohedrons is obtained, whose axes increase and de-
crease as the powers of the number 2 ; their hori-
zontal projections being always supposed to be
equal.

This series corresponds exactly to the series of scalene
four-sided pyramids (§- 90.), in respect to the ratio be-
tween the axes of its members, in as much as it depends
upon the same fundamental number.

Designate the fundamental form by R; R + n will be
the general expression of an indeterminate member of the
series.

Fig. 44. will assist us in giving a clearer idea of this se-
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ries. Let ACXB be the principal section of R. Produce
the axis AX, and from the points B and C draw lines paral-
lel to it 5 every line drawn perpendicularly from these upon
the axis, will be equal to the side of the horizontal projec-
tion of R.

The inclined diagonal of R becomes the terminal edge
of R + 1. The inclined diagonal of R + 1 passes through
the point S, the centre of the inclined diagonal XC of R.
Hence draw the line AB’ through S, and produce this line
till it arrives at the parallel from C; AB’ will represent
the inclined diagonal, BAB’X’ the principal section, and
AX’ = 2. AX consequently the axis of R + 1.

The inclined diagonal of R + 1 becomes the terminal
edge of R + 2. The inclined diagonal of R 4 2 passes
through 8’ &c. Draw the line AB” till it arrives at the
parallel from B; AB” will be the inclined diagonal of
R + 2, AB’X”B” its prineipal section, and AX” — 2. AX’
=4. AX its axis.

Thus, considéring AB” as the terminal edge of R + 3, it
will be found, that AB” is its inclined diagonal, AB"X”B"”
the principal section, and AX” = 2. AX” = 4. AX' =
8. AX the axis of R + 3 ; and in this manner we may con-
tinue the series, as long as we please.

The axis of R being = a, that of R + 3 is = 23.a, that
of R +n=2%a, that of R+ n+ 1 = 22+*La, These
values substituted in the expressions §. 50., give the cosines
of the terminal edges for any required member of the series
of rhombohedrons.

§- 111. LIMITS OF THE SERIES OF RHOMBOHEDRONS.

The limits of the series §. 110. are, on one side
a plane perpendicular to the axis, on the other a
regular six-sided prism of an infinite axis. The
transverse section of that prism is equal and paral-
Iel to the transverse section of the fundamental
form; the figure of the plane perpendicular to the
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axis is a regular hexagon, equal and similar to its
horizontal projection.

Lay planes of intersection through the horizontal dia-
gonals of a rhombohedron, whose axis is longer than the
side of its horizontal projection. These planes will detach
those parts of the rhumbohedron which are contiguous to
the terminal edges of this form. The remainder, contigu-
ous to the lateral edges, is contained under two equilateral
triangles in the direction of the axis, and under six isosce-
les triangles, being halves of the faces of the rhombohedrons.
The equal sides of these triangles are the lateral edges of
that form. This solid is the Central Part of the rhombo-
hedron. i

In the central part of a more acute rhombohedron, the
angles at the bases of the isosceles triangles are greater, but
the angles at the vertex areless ; and the horizontal projec-
tion always being constant, the sum of the first approaches to
two right ones, the latter to nothing, the more the axis
of the rthombohedron is elongated. The equal sides in this
case approach nearer and nearer to the parallelism with
each other and with the axis, and to the equality with
one-third of it, which is contained in the central part of the
rhombohedron.

The limits to which these approximations lead, cannot
be obtained, while the axis remains a finite quantity. But
when the axis becomes infinitely long, these limits are ob-
tained; the triangles are transformed into unlimited paral-
lelograms, and contain a regular six-sided prism, which is
still unlimited in the direction of its axis.

As to the transverse section of the prism, we may ima.
gine, that in the proportion in which the axis of the rhom-
bohedron increases, its faces turn round certain immoveable
lines. These lines are the sides of the trausverse section of
the rhombohedron; and therefore they are likewise the
sides of the transverse section of the prism.

Let HORZ, Fig. 46., be part of the horizontal projec-
tion, and the vertical lines C’D, EB’, &c. through the points

vot. 1. H
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H, O, R, Z, the edges of that regular six-sided prism, in
whose planes are situated the lateral edges CB, C'B’ of two
rhombohedrons. These lateral edges, intersecting each
other at the points M, N, turn as it were round these, and
consequently the faces of the rhombohedron turn round the
line MN, in a ratio, dependent upon the length of the axis.
If the axis becomes infinitely long, the lateral edges of the
rhombohedron assume the situation C”B” ; the rhombohe-
dron is transformed into a regular six-sided prism, upon the
faces of which are drawn the horizontal lines MN, ML,
&c. ; and these lines, the sides of the transverse section of
the rhombohedron, are therefore likewise the sides of the
transverse section of the prism, whose position is thus de-
termined in respect to the rhombohedrons of the series, and
to their horizontal projection.

As to the opposite limit, it is evident, that if the axis
becomes infinitely small, all the faces of the rhombohedron
coincide in a single plane, and that this form is therefore
changed into a regular hexagon, equal and similar to the
horizontal projection of the fundamental form.

The crystallographic signs of the limits are R + ¢ and
R — o, those of the series between its limits,

Reow..R+n..R+ e

Many examples are found in nature, illustrative of this
series. Thus, rhombohedral Lime-haloide presents five
consecutive members, and both the limits; in rhombohe-
dral Tourmaline and rhombohedral Ruby-blende, four con-
secutive members and both limits have been observed ;
two or three consecutive members occur in many species ;
and in most of those, affecting forms which are in connexion
with the rhombohedron, we likewise frequently meet with
the limits on either side of the series.

§. 112. DERIVATION OF SCALENE SIX-SIDED PYRA-
MIDS.

From the members of the series in the preced-
ing paragraph, several scalene six-sided pyramids
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may be derived, the lateral edges of which agree
in their situation with the lateral edges of the rhom-
bohedron.

‘We employ here the second method (§. 81.), without any
farther preparation. Produce the axis of the rhombohe-
dron on both sides, to an indefinite but equal length; or,
what is the same thing, multiply the axis of the rhom-
bohedron by the number of derivation m, which must be
rational, positive,and greater than 1 ; draw from the angles
of the rhombohedron, straight lines towards the terminal
points of the axis produced, and lay planes on every ad-
Jacent pair of these lines. Theresult will be a scalene six-
sided pyramid, whose lateral edges coincide with those of
the rhombohedron.

Every determined prolongation of the axis of the rhom-
bohedron, or every determined m, determines a scalene
six-sided pyramid. A rhombohedron, and all the scalene
six-sided pyramids derived from it, which therefore agree
in the situation of their lateral edges, and also the pyramids
among each other, are said to be forms belonging together or
co-ordinate.

The position in which the scalene six-sided pyramid is
placed by the derivation towards the rhombohedron, is
termed the parallel position. The pyramidisin a transverse
position towards rhombohedrons, which immediately pre-
cede or follow that from which it is derived, because the
rhombohedrons themselves are in a transverse position to-
wards each other. In general the pyramids partake of the
position of the rhombohedron from which they are derived,
and pyramids belonging together are in a parallel position.

In general, two scalene six-sided pyramids, or one pyra-
mid and a rhombohedron, are said to be in a parallel position,
when a plane through the obtuse terminal edge and the
axis of the pyramid, intersects the face of the rhombohe-
dron in its inclined diagonal, or in the other pyramid like-
wise passes through its obtuse terminal edge, and in both
forms at the same time also through the axis, The same
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forms are in a transverse position when this plane passes
through the terminal edge of the rhombohedron, or through
the acute terminal edge of the other pyramid.

The erystallographic sign of a scalene six-sided pyramid
derived from P + n according to m is (P + n)~; its axis
is = 2" m.a; where 2" a is the axis of R + n, and a the
axis of R.

The value of m is frequently found in nature to be = 2,
= 3, or = 5, all of which occur in rhomhohedral Lime-ha-
loide. (P + n)3 is also found in rhombohedral Tourma-
line, in rhombohedral Ruby-blende, (P + n)* in rhombo-
hedral Iron-ore. Besides these, we have m = 7 in rhom-
bohedral Lime-haloide, m = § in rhombohedral Fluor-
haloide, rhombohedral Quartz, rhombohedral Tourmaline,
m = } in the two first of these species, m = %} and = §
in rhombohedral Quartz.

.
§. 113. THE TRANSVERSE SECTIONS OF THE SCA-
LENE SIX-SIDED PYRAMIDS DEPEND ON 7.

For one and the same m, the transverse sections
of all forms contained under the sign of (P + n)™
are similar to each other.

Let ABXC, Fig. 47., represent the principal section of
the rhombohedron from which the scalene six-sided pyra-
mid has been derived ; AQ, X% the prolongations of the
axis, and consequently 9B, ZC the obtuse terminal edges,
dC, £B the acute terminal edges of thls pyramid, and
ABEC its principal section.

Draw from M, the centre of the axis, in the plane of the
transverse section, the line MG parallel to QB. 'This line
will be intersected in F by the obtuse terminal edge 4B ;
and F will therefore be that point in the transverse sec-
tion, or MT' that line situated in its plane, upon which de-
pends the magnitude of the angle of the transverse section
at the place of the obtuse terminal edge of the pyramid.
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Draw now the line BG, parallel to the axis; we have
MG = QB =1; and FG =1 — MF.
In the similar triangles FBG and FAM, we have
GB : GF = M : MF,
or,

20 - MF =2 MFy
6 2

and consequently

from which it appears that the angles of the transverse
section are dependent solely upon m, and that consequent.

. ly they are the same in all pyramids derived gccording to
the same m, whatever may be the fundamental rhombohe-
dron.

If the section does not intersect the lateral edges of the
pyramid, its figure is an unequiangular, but equilateral
hexagon. The angle at the obtuse edge is as above; but
the angle at the acute edge is likewise dependent upon m.
For let CPY’ be in the plane of the section ; the lines CP
and PF’ will determine its figure. But CP is = 1; and
PF = ?ﬂ__...l., as it follows from the similarity of the

3m + 1
triangles QAB and PAT. Now
CP: PF=3m+1:3m—1,
a ratio solely dependent upon m. Hence all sealene six-
sided pyramids, derived according to the same m, have
their sections through the terminal edges similar to each
other.

§. 114. SERIES OF SCALENE SIX-SIDED PYRAMIDS,

From every member of the series §. 110., several
scalene six-sided pyramids may be derived. The.
axes of those which are derived according to one
and the same m, and consequently the pyramids
themselves, produce a series which proceeds agree-
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ably to the law of the series of rhombohedrons

§- 110.).

The axes of the members of this series may be consider-
ed as products of the axes of R + n by m, that is to say,
asbeing equal to 2% m.a ; and since m and a are common
factors to them all, the axes are to each other in the ratio
of 2 (§. 110.).

If these values, namely 2" a instead of a, are substitut.
ed in the expressions §. 55., the cosines of the edges are
obtained for any particular member of the series.

§. 115. LIMITS OF THE SERIES OF SCALENE SIX-
SIDED PYRAMIDS.

The limits of the series of scalene six-sided pyra-
mids are, on the one side unequiangular twelve-sided
prisms of infinite axes, whose transverse sections
are determined by m, and on the other side plane
figures equal and similar to the horizontal projec-
tion,

The axis of a scalene six-sided pyramid, which belongs
to a rhombohedron, whose axis is in a finite ratio to the
side of its horizontal projection, can never become infinite,
unless m itself should be infinite, a supposition, however,
which is excluded from the relations to be taken here into
consideration, in as much as such an m would give no
series, or rather a series, all the members of which are
equal to each other. Therefore the limits of the series of
these pyramids must arise from rhombohedrons, whose
axes are themselves infinite, or from the regular six.sided
prism (§. 111.).

Lay planes of intersection through the terminal points
of the lateral edges of a scalene six-sided pyramid derived
from a rhombohedron, whose axis is longer than the side of
its horizontal projection; and thus detach the apices of
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the pyramids, so that only the central part analogous to
that in §. 111. remains, to which the lateral edges are ad.
Jacent.

This part contains one-third of the axis of the rhom.
bohedron, from which the pyramid is derived. It is limit.
ed perpendicularly to the axis by equilateral hexagons,
whose alternating angles are equal (§ 113.), and from the
sides by twelve scalene triangles, whose bases are the sides
of those hexagons, the longer sides being the entire lateral
edges, and the shorter sides parts of the obtuse terminal
edges of the scalene six-sided pyramid.

The central part of a pyramid derived according to the
same m from a more acute rhombohedron, although con«
tained under faces of the same kind, will yet differ from
the preceding by the sum of the angles at the base of the
triangles being greater, the angle at the vertex smaller,
and the sides approaching nearer to parallelism and equa.
lity with each other, and to one-third of the axis of the
rhombohedron.

The limits to which the pyramids approach, when thus
derived according to the same m, from more and more acute
rhombohedrons, are : the sum of the angles at the base of
the triangles must be = 180°, the angle at the vertex = 03
and the sides equal and parallel among themselves, and
to one-third of the axis of the rhombohedron. These li-
mits are obtained when the central part of the pyramid,
containing one-third of the axis of the rhombohedron,
from which the pyramid is derived, and therefore the axis
of the rhombohedron itself becomes infinite, or when the
rhombohedron is changed into the regular six-sided prism.
If therefore (P + n)™ is changed into a prism, the expres.
sion of its axis 2°. m. a, will be changed into 2. m. a, because
n and not m is = es.

‘While the scalene triangles, the lateral faces of the cen.
tral part, by the continual increase of the axis, are chang.
ed into unlimited parallejograms, the central part itself
is changed into a twelve-sided prism, unlimited in the direc+
tion of the axis. Through all these changes, however, m
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remains unaltered ; and since the angles of the transverse
section are solely dependent upon m, the unequiangular
twelve-sided prism will have the same transverse section as
any other member of that series, whose limit it represents.

As to the opposite limit, it is evident, that if the height
of the central part, = } of the axis of the rhombohedron,
disappears, the axis of this rhombohedron itself must also
be = 0; and consequently that the rhombohedron must be
a plane figure, equal and similar to the horizontal projec-
tion. Now the axis of the pyramid sought is m.0 =03
and the pyramid therefore likewise a plane figure, equal
and: similar to the horizontal projection.

The designation of the series between its limits is

Reo .. (P4+n)m.. (P +w)m

If an unequiangular twelve-sided prism, from its original
position, is transferred into another different from it for
60° or 180°, its faces and edges resume exactly the situa-
tion they had before. Hence there is only one position
existing for these forms : in which property it agrees with
the regular six-sided prisms, the limit of the series of rhom-
bohedrons, from which it derives its origin.*

If in the algebraic expressions mentioned in the last
paragraph, n is made = ¢ ; the angles are obtained for the
transverse section of the unequiangular twelve-sided prism,
being the limit of the respective series of the scalene six-
sided pyramid. Thus we find
3m? +6m—1Y

0S. ——
G TN 2@me:4+1) /°
€0Se Z == — 3_'112_—1 3
X 3m? +1

* Another regular six-sided prism, which in every respect,
but the position, agrees with the former, will be considered
in §.118. This form, however, is in no immediate connexion
with the scalene six-sided pyramids; and consequently no
unequiangular twelve-sided prism can be considered in, or
referred to, a position analogous to that regular six-sided
one, although the angles of their transverse sections should

- seem to indicate a similar position.



§.116.  oF THE CONNEXION OF FORMS. 121

The values of the cosines, and the angles of the trans-
verse sections of the limits, relative to the above-mentioned
series occurring in nature, are the following :

PRISMS. CO0S. Y. | COS. Z. Yy Z.
7 ,

@+ )t | 53| —25]1620 ¢ 127| 137° 58 487
@+ o)f | —12|— 3] 1580127487 | 1410 47127
(®+ @) | —33|— 33| 152° 12 157 | 147° 47 457
@+ o) {—32]—32] 147 a7 a57] 1520 127 157
@+ o) | — 11 |—12] 1410 47127 | 158° 12 48
(P+ o)? | — 35 [— 43| 137° 5% 487 | 162° & 127
P+ @)° | —38!—33|133° 10 257 | 166° 49’ 357
@+ o) | —42]— 13| 120° 25 487 | 170° 34 127

Few of these prisms have as yet been observed in na-
ture. Those which have been observed are (P + oe)g and
(P + )* in rhombohedral Fluor-haloide, (P + )* in
rhombohedral Lime-haloide and in rhombohedral Tour-
maline, (P + m)g in thombohedral Quartz, (P + «)%in
rhombohedral Corundum. The angles of other prisms have
not been exactly ascertained.

The angles of the first and sixth of the preceding prisms,
those of the second and fifth, and those of the third and
fourth, are inversely equal to each other. In general,
the number of derivation which produces the one, may be
found from that which produces the other, by the formula:

m = 3_1’1‘1' _i_.l_...
3 (m’ —1)

§. 116. SUBORDINATE SERIES.

To the series of rhombohedrons, §. 110., belong
several subordinate series, in reference to which
the former is termed the principal series.
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For the derivation of these subordinate series, the first
process is applied to the scalene six-sided pyramids.

Let ABXC, Fig. 47., represent the principal section of a
rhombohedron, ABEC that of a scalene six-sided pyramid
derived from it according to a certain m.

If tangent planes are laid on the terminal edges 4B, &c.
of this pyramid; these edges become the inclined diagonals
of the resulting rhombohedron. Suppose its axis — a’; that
part of it which corresponds to the mclmed diagonal AB
will be

AQ = 3 ' = M4 + MQ,=:’2%"1. 3
and
a,=§.3m+ 1 a=3m+ 1
6 4
the side of the horizontal projection BQ being = 1.

If on the other side tangent planes be laid on the acute
terminal edges AC, &c.; these terminal edges again will
become the inclined diagonals of the derived rhombohe-
dron. The axis of this rhombohedron being = a”; that
part of it which corresponds to the inclined diagonal ac
will b

a,

AP = 3. 2" = MA — MP — ?_“_‘_6—_1. »

and

for the same horizontal projection.
Hence 30+ 1 ang 3 m4_ . are the co-efficients, with

which a, the axis of R, or 22 a, the axis of R + n must be
multiplied for obtaining members of the subordinate series.
‘When these co-efficients become powers of the number 2,
the rhombohedron produced is a member of the principal
series ; when they are not powers of the number 2, mem.
bers are produced belonging to a subordinate series, which
1s determined by m.
Designate the subordinate series by > t1 R 4+ n,
gnate the subordinate series by —

The quantity b + 1 9n 2 substituted for 2~ a in the
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above mentioned algebraic expressions, gives the cosines of
the edges for the members of the subordinate series.

The position of the members of the subordinate series
towards each other, and towards those of the principal se~
ries, follows from their derivation. The limits are com-
mon to the principal, and to all subordinate series.

§. 117. DERIVATION OF THE ISOSCELES SIX-SIDED
PYRAMIDS.

From every rhombohedron an isosceles six-sided
pyramid may be derived, whose axis is to the axis
of the rhombohedron in the ratio of 2 : 8, the ho-
rizontal projections of the two forms being sup-
posed equal.

The third method of derivation (§. 82.) is applicable to
the present case.

Let ABXC, Fig. 48., represent the principal section of
the given rhombohedron, and suppose a horizontal plane
to pass through M, the centre of its axis. In this plane
is situated the base of the six-sided pyramid, which is to
be derived.

The terminal edge AC of the rhombohedron, being
produced to Z, will be changed in AZ the terminal
edge of the pyramid. In the same way XB is changed
into XH, so that, if we draw AH and XZ, AZXH will
be the principal section of the derived isosceles six-sided
pyramid, its axis being equal to that of the rhombohedron,
the side of its horizontal projection MZ = MH.

Draw the lines BG and CG’ perpendicularly to HZ ;
MG’ will be = MG = PC, equal to the side of the hori.
zontal projection of the given rhombohedron ; and if now
the lines GA’, G’A’, GX, G’X, be drawn parallel to the
sides of the principal section of the pyramid, A’X’ will re-
present the axis of this form for the side of its horizontal
projection MG’ = PC, that is to say, equal to the horizon=
tal projestion of the given rhombohedron,
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The two triangles APC, A’MG” are equal and similar to
each other. Therefore A’M = AP; which if the axis of
the pyramid be called a’, may be expressed thus:

a =k a
and consequently
a = Fe Qe

The above-mentioned constant co-efficient (§. 54. 4.) ac-

cordingly is = 3.

§- 118. SERIES OF ISOSCELES SIX-SIDED PYRAMIDS.

There is a series of isosceles six-sided pyramids
in connexion with the principal series of rhombo-
hedrons, with which it proceeds after the same law,
and is limited by infinite six-sided prisms.

The axes of the members producing this series, are equal
to the axes of the rhombohedrons, multiplied by £, the ho-
rizontal projections being always supposed equal ; so that,
if P + n denotes an undetermined nt® member of the se-
ries, its axis will be = % 2" a. In the expression for the
axis of any member, the common factor §. a is contained ;
and by dividing with it, we find that the axes of the series
increase and decrease like the powers of the number 2;
and 2 consequently expresses also in this series the law of
progressien.

The limits of this series are isosceles six-sided pyramids
belonging to rhombohedrons, whose axes are on one side
infinitely long, on the other infinitely short. It isevident
that an isosceles six-sided pyramid of an infinitely long axis
can be nothing else but a regular six-sided prism, whose
transverse section is equal and similar to the horizontal
projection of the pyramid ; and that an isosceles six-sided
pyramid of an infinitely short axis can be nothing else but
a plane figure perpendicular to the axis, and equal and si-
milar to the same horizontal projection.

The regular six-sided prism, which limits the series of
isosceles six-sidled pyramids, can be distinguished by its
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position from the other regular six-sided prism, which li-
mits the series of rhombohedrons. The faces of the two
prisms differ in their situation for 30° and 150°: and the
prisms therefore themselves are two different well defined
forms, which must not be confounded with each other.

If, in the algebraic expressions in §. 54., m is made = 2,
and 27°, a? is substituted for a%; the expressions produced
refer to the cosines of the edges for P + n. They are:
2,22, 22 4 27\

42000 + 2777
4,29, 22 27
4.2 y 27/

The series of isosceles six-sided pyramids between its

limits, receives the following designation :
R ... P+n..P+ .

Several members of this series, together with its limits,
oceur in rhombohedral Fluor-haloide, rhombohedral Quartz,
rhombohedral Corundum, &c. There exist also series
appertaining to rhombohedrons of certain subordinate se-
ries, and which, on that account, receive a co-efficient in
their representative sign, like the rhombohedrons from
which they are derived. Examples of the series 3 P + n,
$ P 4+ n,and P + n, have been found in rhombohedral
Corundum ; of the two first also in rhombohedral Quartz,
of the first in rhombohedral Iron-ore, &c.

COS.X:——(

COS-Z—._-..._.(

4. DERIVATIONS FROM THE HEXAHEDRON.

§. 119. DIFFERENT POSITIONS OF A MOVEABLE
PLANE.

A plane, moveable round the terminal point of
a rhombohedral axis of the hexahedron, is liable
to assume four different classes of positions. One
of these is exactly determined, and admits of only



126 TERMINOLOGY. §. 119.

one case ; the others allow of a farther distinetion in
two cases.

Let ACBC"B”C"B’X, Fig. 36., represent a hexahedron,
which is brought into an upright position by supposing one
of its rhombohedral axes AX vertical. AC, AC’, &c. are
therefore the terminal edges, AB, &c. the inclined diagonals
of this hexahedron, if considered as a rhombohedron of 90°.

Direct now the planes MNOO’, PQRR’ and TUVV’
through the axis AX, soas to make them pass through
the inclined diagonals AB, AB’, and through the terminal
edges AC”, AC’ which are opposite to these edges. The
planes will intersect each other at angles of 60° and 120°.

The part MNSS’ of the plane MNOO’ turned towards
the observer, may be termed the Section of the Face, the
part PQSS of the plane PQRR/, similarly situated, the
Section of the Edge, in so far as they refer to the upper apex
A ; because the former passes through the inclined diagonal
ATB, and bisects the face, while the latter passes through
the terminal edge AC of the hexahedron, and bisects the
angle at which the faces meet.

The sections of the face divide every face of the hexa-
hedron into two equal and similar triangles, as ABC,
ABC/, &c. and thus the solid angle A may be conceived to
consist of six faces, which, for the sake of derivation, are
considered moveable, and their situation is ascertained in
respect to both the sections, to that of the face, and that
of the edge. Whatever results are found for one of these
faces, likewise applies to the other, because the hexahe-
dron is a solid of several axes, and it will therefore be suf-
ficient to consider the situation of one of these six faces,
because the rest must assume an analogous position. This
refers evidently not only to those contiguous to A, but
also to those belonging to the other solid angles B, C, &c.
of the hexahedron.

The moveable plane may assume the following situations

1. Perpendicular to both sections.

Upon this supposition, ABC will be perpendicular to
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the intersection of MNSS’ and PQSS’, which is the line
S§’, or the rhombohedral axis of the hexahedron. Al the
six planes contiguous to that point, will necessarily coin-
cide in that plane.

2. Perpendicular to the section of the edge; but inclined to
the section of the fuce. . ;

Here every two faces situated like ABC and AB’C, &ec.
coincide in a single plane, which, though always perpendi-
cular upon PQSS’, yet may be differently inclined to AX.

3. Perpendicular to the section of the face, inclined to the section
of the edge.

In this case again, pairs of faces like ABC and ABCY coin-
cide in a single plane perpendicular to MNSS’, inclined to
AX.

4. Pcrpendicular to none of the sections.

No two planes contiguous to the same solid angle of the
hexahedron coincide, but every two meeting in the same
section, as ABC and AB’C in PQSS’, or ABC and ABC’
in MNSS’, are inclined to that section at the same angle.

In the first of the above mentioned cases, the situation
of the moveable plane is perfectly determined.

In the second case, the plane must either

a) touch AC, the edge of the hexahedron, or

b) the line of its intersection with PQSS’ must include
an angle with AX, which is greater then CAX.*

Supposing the first to take place, two faces of the solid
angle C, coincide in one single plane, with two faces of
the solid angle A, for instance CC’A with ABC, and
CC”A with AB’C. This does not take place upon the
latter supposition.

In the third case, the moveable plane may either

a) pass through the diagonal AB, and consequently coin.

cide with the face of the hexahedron itself, or

* Should this angle be less than CAX, it would be neces-
sary to refer the whole derivation, from the solid angle A,
to the solid angle C, where the case is confined within the

. one above mentioned. .
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b) its intersection with MNSS’ may include an angle
with AX, greater than BAX.

In the first case, two planes of the solid angle B coincide
with two planes of the solid angle A, as for instance BAC
with ABC, and BAC’ with ABC’, and consequently two
from C likewise with two from C’, being altogether eight
planes coinciding in a single one, which is not the case in
the second.

The differences which may occur in the fourth case are
the following :

a) the intersection of every two faces, as ABC and AB’C,

- with the plane PQSS’, may coineide with the edge of the
hexahedron, or

b) it includes an angle with AX greater than CAX.

Suppose the former to take place; two faces from the
solid angle A will coincide with two faces from the solid
angle C, viz: ABC with CC’A, and ACB’ with CC”A ;
which is not the case upon the latter supposition.

The different situations, which a plane moveable round
the point A may assume, are therefore the following :

1. Perpendicular to both the sections ;
2. Perpendicular to the section of the edge, touching the
edge of the hexahedron ;
3. Perpendicular to the section of the edge, intersecting
the edge of the hexahedron 3
Perpendicular to the section of the face, in the face of
the hexahedron ;
Perpendicular to the section of the face, not in the face
of the hexahedron
Inclined to both the sections, touching the edge of the
hexahedron ;
. Inclined to both the sections, intersecting the edge of
the hexahedron.

L od

513

2]
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§. 120. PRODUCTION OF THE FORMS OF SEVERAL
AXES.

Whatever situation of those mentioned in the
preceding paragraph the moveable planc may as-
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sume, it corresponds to the face of a form of seve-
ral axes.

‘We obtain or derive the forms of several axes from the
hexahedron, by considering the space limited by all those
faces which are homologous to the one whose situation has
been ascertained.

Hence there will exist as many different kinds of forms
of several axes, as there are possible situations of the
moveable plane, and no more; and we obtain, therefore,
the complete number of these forms, whilst at the same time
every form is excluded which does not belong to this as-
semblage.

In the preceding paragraphs 57—77, we have met with
more than seven forms of several axes. Those which are
not immediately produced according to the present consi-
deration, are nevertheless contained in its results, the
mode of which will be explained in the paragraphs 128—
134.

§. 121. THE OCTAHEDRON.

In the first situation the moveable plane is the
face of the Octahedron (§. 59.).

Of the forty-eight faces which are moveable round the
eight solid angles of the hexahedron, every six conti-
guous to one of these solid angles coincide in one and the
same plane, perpendicular to a rhombohedral axis of the
form (§. 59. 2.).

§. 122. THE DODECAHEDRON.

In the second situation the moveable plane is
the face of the Dodecahedron (§. 63.).

A pair of faces from every solid angle of the hexahedron
coincides with another pair of faces contiguous to an adja-
VOL. I. 1
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cent solid angle in a plane which touches the edge of the
hexahedron, and joins these two solid angles. Hence, of the
forty-eight faces, four and four will coincide, and the solid
obtained will be limited by twelve faces. The prismatic axes
pass through the centres of the edges of the hexahedron,
and consequently also through the centres of the faces now
obtained. Thus the faces of the derived form become
perpendicular to the prismatic axes, and are themselves
the faces of the monogrammic Tetragonal-dodecahedron

(§- 63. 3.).

§. 123, THE OCTAHEDRAL TRIGONAL-ICOSITETRA-
HEDRON.

In the third position the moveable plane is the
face of an octahedral Tngonal—zcosztetmhedrmb

§. 72.).

In this case there are no pairs of faces from one solid
angle, coinciding with pairs from another; but of the six
faces contiguous to one and the same solid angle, two and
two faceswill coincide. Hence the number of faces of this
form is twenty-four. Xach of these faces is intersected by
the two other faces contiguous to the same, and by one
contiguous to the adjacent solid angle; with the last of
these faces it produces an edge in the direction of the
greater diagonal of the dodecahedron, or in the direction of
the edge of the octahedron., Its faces therefore assume the
figure of isosceles triangles; the rhomhohedral solid angles
of the form consist of three faces, and they are monogram-
mic ; the pyramidal solid angles are formed by eight faces,
and they are digrammic ; the form itself is an octahedral
Trigonal-icositetrahedron (§. 72. 1. 2.).

The different varieties of octahedral trigonal-icositetra-
hedrons may be considered as forms intermediate between
the dodecabedron and the octahedron. If the angle
measuring the inclination of the moveable plane to the axis
AX, Tig. 36., becomes greater than CAX, the face of the



§.124. 125. oF THE CONNEXION OF ForMs. 131

monogrammic tetragonal-dodecaliedron is divided into two
isosceles triangles, whose common base is the longer diagonal
of the rhomb. The triangles retain their isosceles figure,
though the angles may vary, till the moveable plane inter-
sects the axis of the form at an angle of 90°. 1In this case,
all the faces contiguous to the same solid angle coincide in
a single plane, which is the face of the octahedron. All
possible varieties of octahedral Trigonal-icositetrahedrons
are therefore contained between the two forms just men-
tioned, and the dimensions of their varieties depend upon
the magnitude of the above mentioned angle.

§. 124. THE HEXAHEDRON.

In the fourth situation, the moveable plane is
the face of the Hexahedron (§. 58.).

In this situation pairs of faces from all the four solid
angles A, B, C, ’ coincide in a plane perpendicular to the
pyramidal axis (§. 58. 3.).

§. 125. THE DIGRAMMIC TETRAGONAL-ICOSITE-
- TRAHEDRON.

In the fifth situation, the moveable plane is the
face of a digrammic Tetragonal-icositetrahedron

@§. 74.).

The pairs of faces from the angles A and B, and those -
from the angles C and €/, do not coincide, but they inter-
sect each other at equal angles in a determined point of the
lengthened pyramidal axis of the hexahedron. A'solid
angle of three faces is produced at the point.A. The
edges which produce these two kinds of solid angles unite
with each other in the prismatic axes prolonged, and thus
produce solid angles, which contain likewise four faces, but
two different kinds of edges.

Each face is intersected by four other faces, two of
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which are contiguous to the same solid angle, the other two
to the adjacent ones. The faces are four-sided ; and on ac-
count of the two kinds of edges which the form contains,
it is a digrammic Tetragonal-icositetrahedron (§. 74. 2.)-

The digrammic Tetragonal-icositetrahedrons may be con-
sidered as forms intermediate between the hexahedron and
the octahedron. For if the angle measuring the inclination
of the moveable plane to the axis AX becomes greater
than BAX, a digrammic Tetragonal-icositetrahedron will be
produced, and the varieties of this form will succeed each
other, till the angle just mentioned becomes = 90°, when the
derived form is changed into the octahedron. The dimen-
sions of the different varieties, are dependent upon the
value of that angle.

§. 126. THE HEXANEDRAL TRIGONAL-ICOSITETRA=
HEDRON.

In the sixth situation the moveable plane is the
face of a hexahedral T'rigonal-icositetrahedron

(§. 1)

This icositetrahedron is produced by the coincidence of
two faces contiguous to adjacent solid angles. T'rom every
edge of the hexahedron faces rise towards the prolongation
of the pyramidal axes, at which they form a solid angle of
four faces, intersecting each other at equal angles, while
the general aspect of the hexahedron is retained in the de-
rived form. = The rhombohedral solid angles are equiangu-
lar, but they consist of two kinds of edges.

Each of the faces of this form is intersected by three
otber faces, of which one is contiguous to the same, and one
to an adjacent solid angle of the hexahedron, the third face
being common to both these solid angles. The faces of
this form are consequently triangular, and intersect each
other at equal angles in its pyramidal solid angles. The
form, therefore, will be a hexahedral Trigonal-icositetrahe-
dron.
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The hexahedral Trigonal-icositetrahedrons are forms in-
termediate between the hexahedron and the dodecahe-
dron. The moveable plane passes through the edge of the
hexahedron ; the limits to which its inclination approaches
will therefore be on one side a plane perpendicular to the
section of the edge, on the other a plane perpendicular to
the section of the face, of which the first produces the
dodecahedron (§ 122.); and the other the hexahedron
(§ 124.).

The varieties are determined according to the mutual
inclination of the faces at the place of the edge of the hex.
abedron. Every different inclination, greater than 90°
and less than 180°, yields a particular hexahedral T'rigonal-
icositetrahedron.

§. 127. THE TETRACONTAOCTAHEDRON. DESIGNA-
TION OF THE TESSULAR FORMS.

In the seventh situation, the moveable plane is
the face of a Tetracontaoctahedron (§. 77.).

No two faces coincide in 2 single plane. The form there-
fore is contained under forty-eight faces, which are scalene
triangles, on account of their intersection with two faces
from the same, and with one face from the adjacent solid
angle of the hexahedron. The rhombohedral solid angles
are formed by six faces, the pyramidal solid angles by
eight, and the prismatic solid angles by four. All of them
are equiangular and digrammic. Hence the form will be a
Tetracontaoctahedron.

It may here be observed, that the seven forms thus con-
nected with the hexahedron, the hexahedron itself being
one of the number, perfectly agree with each other in re-
spect to the kind, number, and situation of their axes,
which is an immediate. consequence from the method of
derivation employed. The same property does not extend
to the rest of the forms of several axes; and thus the num-
ber of the different kinds of axes in their peculiar situation,
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becomes the character by which it is possible to ascertain
whether or not a form of several axes belongs to the com-
pass of those which may be derived immediatcly from the
hexahedron. All these forms are contained under the first
degree of regularity (§. 47.).

If, instead of a rhombohedron, we substitute the hexa-
hedron, or, instead of an isosceles four-sided pyramid the oc-
tahedron, and apply to them the modes of derivation describ-
ed above (§. 80.81. 82.): certain combinations between the
derived forms will likewise represent the whole compass of
those obtained by the process of the moveable plane; some
of them even with their determined dimensions, which may
be considered as an advantage of this method. It requires,
however, some knowledge of compound forms (§. 34.),
upon the resolution or developement of which it depends.

The designation of the forms of several axes has been
framed upon a principle different from that followed in the
designation of the rest of simple forms. The great num-
ber of distinct kinds of forms, and the few varieties of each,
known or occurring in the compass of derived forms, have
been the reason why it was impossible to trace in the crys-
tallographic signs, all those relations of the forms to each
other which distinguish the designation of the forms
derived from the four-sided pyramids and from the rhom-
bohedrons. The following method, although it does not
possess the advantage of expressing these relations, yet
is recommended by its brevity and distinctness.

Designate the hexahedron by the letter H, the octahe-
dron by O, the dodecahedron by D, the tetracontaoctahe-
dron by T ; these being the initial letters of their respec-
tive names.  The initial letters of the icositetrahedrons
cannot be employed in the same way, because there are
three different kinds of such forms among those immediate-
ly derived from the hexahedron ;—namely, the hexahe-
dral and the octahedral trigonal-icositetrahedrons, and the
digrammic tetragonal-icositetrahedron. Designate the first
of these by A, the second by B, the third by C; and add
to them, as well as tothe sign of the tetracontaoctahedrons,
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the number which denotes the variety of these forms, as
contained in the preceding paragraphs 71-77.

§. 128. RESOLUTION OF FORMS BELONGING TO THE
FIRST DEGREE OF REGULARITY.

To resolve a form of several axes, means to pro-
duce from it two or more equal and similar forms
of several axes, the faces of which agree in num=
ber and situation with one-half or one-fourth of the
faces of the original form. 'These forms reproduce
the original one, if combined in the required po-
sition.

A form of several axes, produced by the resolution of an-
other, if it contains half the number of its faces, is termed
a Half; if it contains only one-fourth of the faces, it is
termed a Fourth of the resolved or original form.

Those halves must not be taken for half forms, or such
as might be obtained by cutting in two, one of the original
forms, as would be a simple pyramid. Nor are the fourths
real quarters of original forms, because they have not been
obtained by cutting in two, one of the preceding halves.

The method by which the resolution is effected, is the
following :

Place the given form in an upright position, so as to
make one of its rhombohedral axes vertical.

Call the upper terminal point. of this axis a Principal
Point, the lower one a Subordinate Point, and transfer those
names to all the terminal points of rhombohedral axes, dis-
tant from the vertical one, for 109° 28’ 16”. In the hexa-
hedron, as represented Fig. 36., the principal points are
A, B, B/, B/, and the subordinate points, X, C, C’, C”.

Enlarge now,

1. all the faces contiguous to the principal points, till those con-
tiguous to the subordinate points disappear; or,
2. the alternating faccs from the principal points, and those from
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the subordinate ones which are parallel to them, again, till
the rest disappear : or,

3. the alternating faces from the principal points, and those
Jrom the subordinate ones, which are not parallel to them,
till the rest disappear.

The enlarged faces, if they can geometrically include a
space by themselves, will produce a form of many axes,
which is a Half, if only one of the three methods has been
applied ; a Fourth, if two at the same time, or subsequent-
ly, have been employed in resolving the original form.

If, in the first mode of resolution, instead of enlarging
the faces contiguous to the principal points, we enlarge
those from the subordinate ones, the result from the same
original form will be another half, equal and similar to the
first, but in a different situation from the other form.
The two halves can be brought into a parallel position, by
inverting the perpendicular axis of one of them. The posi-
tion now mentioned is called the inverse, in reference to the
other or normal position ; and one half of this kind is said
to be the Inverse of the other, which has been obtained in
the normal position.

A similar result takes place, if, in applying the second
mode of resolution, those faces are made to disappear,
which produce the half in the normal position, while the
others are enlarged. Both these kinds of halves are re-
markable for the parallelism of their faces, which, however,
is a consequence of the method of resolution applied.

The third method of resolution, if treated in the same
manner, enlarging those faces which had been made to dis-
appear before, and vice versa, does not yield exactly the
same result. In respect to position, there is no difference
among the two halves; but there is a difference according
to Right and Lqﬂ as mentioned in §. §. 67. and 76. The
same relatlon exists in the Fourths, which, like the halves
of the first and third method of resolution, ha_ve no paral-
lel faces.

Some of the forms derived from the hexahedron, de not
allow. of any resolution at all; either because half the num-
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ber of their faces would not be sufficient to include a space
from all sides ; or because none of the methods mentioned
is applicable to them. The first is the reason why the
hexahedron, the other why the dodecahedron, have no
halves. Besides, it is not every form that can be resolved
by every one of the above-mentioned methods ; but cer-
tain properties of the form are required to render one of
these methods applicable.

The first method supposes the faces of the form which is
to be resolved not to touch the terminal points of two rhom-
bohedral axes ; or, which is the same, not to touch a prin-
cipal point and a subordinate one at the same time. For
asit is required to effect the reverse on one of those points,
from what has been done on the other, it would thus be
requisite, that one and the same face should at the same
time be made to enlarge itself and disappear. For this
reason, the hexahedral trigonal-icositetrahedron cannot be
resolved according to the first method.

The second and third method supposes the number of
faces at the rhombohedral solid angles to be such as will
render it possible to enlarge the alternating ones. This
cannot take place, if the solid angles are formed of three
faces. In this case, the resolution too is impossible ; and
therefore, the two methods require the rhomhohedral solid
angles to consist of six faces. The third method requires
moreover the condition of the first method to take place,
else it would be necessary to enlarge all the faces; and con-
sequently no resolution at all could take place. By this
last condition, the hexahedral trigonal-icositetrahedron is
excluded, and the method becomes applicable only to the

tetracontaoctahedron, which, however, can be resolved ac-
* cording to hoth the other methods.

The axes undergo very remarkable changes by the reso-
lution. 'The rhombohedral ones remain unaltered ; the
prismatic axes disappear entirely in all the halves; the
changes in the pyramidal axes are various. If the third
method has been applied, they remain constant like the
rhombohedral axes; they are changed into prismatic axes
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in the first and second processes; and then there are no
more than three axes of this kind to be found in the solid.
In the resolution of halves in fourths, or in the application
of two of the methods at once, they disappear entirely.
The peculiar character of the halves is, therefore, that they
have sir axes less ; of the fourths, that they have nine axes
less than the original forms.

The halves arising from the first method of resolution,
and the fourths, into the formation of which this method like-
wise enters, assume the general aspect of the tetrahedron.

The crystallographic signs of these forms are obtained
by indicating a division by the numbers 2 and 4, the re-
ferences as to position by the signs + and —, and those to
Right and Left, by the letters r and 1 prefixed to the crys.
tallographie sign of the original form.

§. 129. THE TETRAHEDRON.

The half of the octahedron is the Tetrahedron
@&. 57.).

The octahedron allows of the application of the first pro-
cess. The number of faces of its half is four, and these
faces are perpendicular to the rhombohedral axes.

The crystallographic signs of the two tetrahedrons, of
which one is in the normal, the other in the inverse posi-

w0
tion, Figs. 13. 14., as halves of the octahedron, are % (o)

O
e 5
an 2 ()

§. 130, THE HEXAHEDRAL PENTAGONAL-DODECA-
HEDRON,

The half of the hexahedral trigonal-icositetrahe-
dron is the hewahedral Pentagonal-dodecahedron

(. 66.).

Here the second process must be applied. If the al-
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ternating faces contiguous to the principal points disap-
pear, and at the same time those which are parallel to the
former at the subordinate points; every one of the re-
maining enlarged faces is intersected by five others, and
thus assumes a pentagonal figure. The number of faces is
evidently twelve ; the form produced will therefore be a
pentagonal-dodecahedron, which is a hexahedral one because
the second mode of resolution does not change the general
aspect of the form. The latter property also might be
derived from the equality and similarity of the eight solid
angles of three faces, which correspond to those of the
hexahedral trigonal-icositetrahedron, which are formed by
six faces (§. 66. 1.).

The crystallographic signs of the hexahedral pentagonal-
dodecahedrons, ene of them being in’the normal, the other

in the inverse position, Figs. 19. 20., are% (a) and

Al ("), where n denotes the variety which is to be

expressed. A

§. 131. THE DIGRAMMIC TETRAGONAL-DODECAHE-
DRON.

The half of the octahedral trigonal-icositetrahe-
dron is the digrammic Tetragonal-dodecahedron

(§. 64.).

The resolution is effected after the first method.

Each of the enlarged faces is intersected by four others,
of which two belong to the same, and two to other princi-
pal points. Thus they become four-sided, and their number
is twelve. Hence the form is a tetragonal-dodecahedron ;
and since it assumes the general aspect of a tetrahedron,
the first mode of resolution having been applied, it will be
that described in §. G4. 1., or the digrammic tetragonal.
dodecabedron.

The crystallographic signs of these forms in the normal
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and in the inverse position, Figs. 17. 18., are %2 (®) and
Bn

—_—— (V).
)

§. 132. THE TRIGONAL-DODECAHEDRON.

The half of the digrammic tetragonal-icositetra-
hedron is the T'rigonal-dodecahedron (§. 61.)

This resolution is likewise effected after the first me-
thod.

Each of the enlarged faces is intersected by two faces
of the same, and one of another principal point. These
faces, isosceles triangles, are twelve in number; and the
half therefore is a trigonal-dodecahedron.

The crystallographic signs of these forms in the normal

and in the inverse position, Figs. 15. 16., are _(.:23 ()

Cn
e =)
an 2()

§.133. THE TETRAHEDRAL TRIGONAL-ICOSITETRA=
HEDRON, THE TRIGRAMMIC TETRAGONAL-ICOSI-
TETRAHEDRON, AND THE PENTAGONAL-ICOSITE-
TRAHEDRON.

The halves of the tetracontaoctahedron are,

1. Tle tetrahedral Trigonal-icositetrahedron
§- 70.);

2. The trigrammic. Tetragonal-icositetrahedron
(§.75.); and

8. The Pentagonal-icositetrahedron (§. 76.).

Any one of the three methods of resolution may be ap-
plied to the tetracontaoctahedron; and this form conse-
quently has three kinds of halves, which at first sight seem
to agree with each other only in their being icositetrahe-
drons.
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The first mode yields the tetrahedral trigonal-icositetra-
hedron. The solid angles of six faces of the original form
are likewise to be found in the half, because according to
this method all the faces contiguous to the principal points
are enlarged. The faces are intersected by two other faces
of the same principal point, and by one face contiguous
to another, exactly as in the preceding case; the faces re-
main triangles, which are likewise scalene, but not similar
to those of the original form. The half therefore is a tri-
gonal-icositetrahedron, which owes its tetrahedral aspect to
the application of the first process.

In the designation of these forms, it is necessaryto indicate
the mode of resolution upon which they depend. The sign of
the tetrahedral trigonal-icositetrahedrons in both, the normal

and the inverse positions, Figs. 25. 26., will therefore be ?2'3
i

and — ? The trigrammic tetragonal-icositetrahedron is
1

the result of the second mode of resolution. The intersec-
tion of the enlarged faces takes place with two faces of the
same principal points, and with two faces contiguous to adja-
cent subordinate points. In comparing the pyramidal solid
angle of the tetracontaoctahedron with the corresponding
solid angle in its half, we find, that of the eight faces which
constitute the first, alternating Pairs of faces are enlarged,
and not the alternating single faces. From this it becomes
evident that the angle formed by four faces above the face
of the hexahedron cannot consist of equal edges, and that
consequently the faces of the tetragonal-icositetrahedron
thus formed cannot by a straight line be divided in two isosce-
les triangles. Besides the two kinds of edges meeting in the
solid angle of four faces, the form contains still another kind
of edges, which meet in the rhombohedral solid angle form-
ed by three planes ; it is therefore a trigrammic tetragonal-
icositetrahedren (§. 75. 2.).

The crystallographic signs of the trigrammic tetragonal
icositetrahedrons in both, the normal and the inverse posi-

Tn Tn

tions, IMigs. 27. 28.,are —— and — —_
211 21i
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If we apply the third method, the result will be a pen-
tagonal-icositetrahedron. Here all the altermating faces
of the original form are enlarged, while the rest disappear,
so that each face is intersected by five others, of which two
belong to the same principal point, the rest to the adjoin-
ing subordinate points, and the faces assume therefore a
pentagonal figure. Of the pyramidal solid angle of the te-
tracontaoctahedron likewise the alternating faces are en-
larged ; this solid angle therefore remains a pyramidal one,
and the axis which passes through it, a pyramidal axis.
These properties will suffice for determining the form to be
a pentagonal icositetrahedron.

The crystallographic signs of the pentagonal-icositetra-
hedrons, in reference to their being as it were twisted to

the right or to the left, Figs. 29. 30., are r %ﬂand 1_T2£_

Tt would be superfluous to add here the number iii for in-
dicating the mode of resolution, except in comparing these
forms with other halves of the tetracontaoctahedron.

§. 134, THE TETRAHEDRAL PENTAGONAL-DODE-
CAHEDRONS.

The three icositetrahedrons of the preceding pa-
ragraph, which are halves of the tetracontaoctahe-
dron, allow of a farther resolution, and then yield
the fourths of that form. The fourths of the te-
tracontaoctahedron, are the tetrahedral Pentagonal-

dodecahedrons (§. 67.).

The resolution of the tetrahedral trigonal-icositetrahe-
dron, is effected by enlarging its alternating faces, till they
limit the space by themselves. Each of the enlarged faces
is intersected by five others; and the resultant fourth is
therefore a pentagonal-dodecahedron, whose general aspect
is that of the tetrahedron, on account of the application of
the first process. The fourth itself is the tetrahedral
pentagonal-dodecahedron.
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This method of resolution produces the same result as if

the first and the second, or the first and the third, had been
applied to the tetracontaoctahedron. The first requires
the faces of the subordinate points to disappear ; the others
require in this case only the enlargement of the alternating
faces of the remainder.
- If in the icositetrahedron considered above, we enlarge
those faces which have disappeared, and vice versa, let those
disappear which have been enlarged before; the result
in respect to that obtained first, will be a Left tetrahedral
pentagonal-dodecahedron. But theicositetrahedron may be
resolved both in the normal and in the inverse position.
Hence both the differences, as to Right and Left, and as
to Normal and Inverse, come into consideration in the te.
trahedral pentagonal-dodecahedron.

The trigrammic tetragonal-icositetrahedron may be re-
solved after the first process, by enlarging all the faces
contiguous to its principal points, &c. Iach of these faces
isintersected by five others, two of which belong tothe same,
the other three to adjacent principal points. For the rest,
every thing is as above; and the trigrammic tetragonal.
icositetrahedron yields exactly the same fourths.

The pentagonal-icositetrahedron is resolved according to
the first method, by enlarging all the faces contiguous to
the principal points, &c. Each of these faces again is in-
tersected by five others, and the result of the resolution is
likewise a tetrahedral pentagonal-dodecahedron.

These four pentagonal-dodecahedrons, different on one
side as to right and left, on the other as to their normal
or inverse position, reproduce in binary combinations the
icositetrahedrons, and in a quadruple combination the tetra-
contaoctahedron itself, from the resolution of which they
have been obtained.

The first of these differences is expressed by the letters
r and 1, the second by the signs + and —, prefixed to
.’1; the general notation_of one-fourth of the tetraconta-

octakedron. The four dodecahedrons will therefore be
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+ 1-T4£ @) Fig. 21, _1-%(; ) Fig. 22.,
+ 1_"‘;.4“@”) Fig 23, — 1'1;@"') Fig. 24.

These four solids yield six binary aggregates :
1. +r.'¥_n.. —rE, which is = 1 T__I_I'Fig. 30. ;
4 4 2ii1

2. +r TTn i 12!, which is = + _'21_‘1_1 Tig. 25.3
i

1

3.4+ 2% TR Gpichis = — L2 Fig. 28.
1 1 i

4. _-rE. e IEE, which is=+_T£Fig. 27. 3
1 1 21
Tn Tn ¥4 o g biitres:

S —r_, —1 which is = — —_ Fig. 26.;
1 S T S

6. +12% 1 T8 hichis < r LD Figige:
4 4 211

Ofthese, 1 and G are pentagonal-icositetrahedrons, 1 is
the left, and 6 the right one; 2and 5 are tetrahedral
trigonal-icositetrahedrons, 2 is in the normal, and 5 in the
inverse position ; and 3 and 4 are trigrammic tetragonal-
icositetrahedrons, of which 4 is in the normal, and 3 in
the inverse position. Every two homogeneous forms of
these six reproduce by combination the tetracontaoctahe-
dron itself.

The halves and fourths belong to the second degree of
regularity.

The preceding methods of resolving the original forms
of several axes yield all those forms which have been de-
scribed above (§. 57.—77.), and which could not be ob-
tained by immediate derivation. Thus, resolution com-
pletes what by derivation would have remained imperfect ;
and we are entitled to consider as complete the number
of simple forms of several axes. .

The method of resolving simple forms, is not confined
to those which possess several axes, in as much as it may
also be applied to pyramids of every description, and even
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to rhombohedrons. This requires, however, certain re.
strictions, which will be mentioned along with the results
of that process, in some of the paragraphs referring to the
Character of Combinations.

GENERAL IDEAS OF SIMPLE FORMS.

§. 135. SYSTEM OF CRYSTALLISATION.

The assemblage of simple forms derivable from
one fundamental form (§. 87.), independent of all
consideration of its dimensions, is termed a System
of Crystallisation, and denominated after the fun-
damental form, from which it is derived. ;

The term System of Crystallisation has often been made
use of in a sense different from that of the present defini-
tion.

A System of Crystallisation is not a mere aggregation of
forms, according to their different kinds, or according to
certain properties peculiar to them 3 but it is the Assemblage
of those Relations which take place among certain simple
forms, in as far as they are derived from one fundamental
form.

From the above mentioned four fundamental forms, there
arise four different Systems of Crystallisation 3 and no more
systems are possible, if there exist only four forms of this
kind. We have no reason to assume a new {undamental
form in Crystallography, unless we have discovered or ob-
served a form, which cannot be derived {rom any one of
those which are known. As this is the case with the sca-
lene four-sided pyramids with an inclined axis (§. 98.), the
number of systems of crystallisation will be increased to
siz, or perhaps to scven. In none of these systems can
there be any objection against considering all those forms

VOL. I K
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which geometrically must enter into it, as really belonging
to them, although nature should not as yet have produced
them as simple forms.

The System of Crystallisation derived from the rhombo-
hedron is termed the Rkombokedral System. 'The system
whose fundamental form is the isosceles four-sided pyramid,
is called the quadrato-pyramidal, or, in shorter terms, the
Pyramidal System ; that from the scalene four-sided pyra-
mid is the rhombeo-pyramidal system, which, on account of
the great variety of prisms which it contains (§. 91. 95. 98.),
receives the denomination of the Prismatic System ; and
that from the hexahedron is called the Tessular System, not
the hexahedral one, in order to intimate, that experience
has not as yet given any reason for assuming another sys-
tem of tessular forms, although geometrically we may con-
ceive a system of forms of several axes, which stands in the
same relation to the regular dodecahiedron of Geometry, in
which the tessular system is to the hexahedron. 'The other
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