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Sensory uncertainties and imperfections in motor control play
important roles in neural control and Bayesian approaches to
neural encoding. However, it is difficult to estimate these
uncertainties experimentally. Here, we show that magnitude of
the uncertainties during the generation of motor control force
can be measured for a virtual stick balancing task by varying
the feedback delay, τ. It is shown that the shortest stick
length that human subjects are able to balance is proportional
to τ 2. The proportionality constant can be related to a
combined effect of the sensory uncertainties and the error in
the realization of the control force, based on a delayed
proportional-derivative (PD) feedback model of the balancing
task. The neural reaction delay of the human subjects was
measured by standard reaction time tests and by visual blank-
out tests. Experimental observations provide an estimate for
the upper boundary of the average sensorimotor uncertainty
associated either with angular position or with angular
velocity. Comparison of balancing trials with 27 human
subjects to the delayed PD model suggests that the average
uncertainty in the control force associated purely with the
angular position is at most 14% while that associated purely
with the angular velocity is at most 40%. In the general case
when both uncertainties are present, the calculations suggest
that the allowed uncertainty in angular velocity will always be
greater than that in angular position.
1. Introduction
Sensory feedback is necessary for the skilled performance of novel
voluntary motor tasks [1–3]. With practice extending over weeks
to years, the nervous system gradually develops an internal
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model which predicts the sensory consequences of the voluntary movements [4–7]. As skill increases there

is a decrease in the variability in the outcome of repetitions of the motor task [8]. However, during daily
living, humans perform many voluntary tasks which have not been well learned or even practised
once. Even though the nervous system may partly rely on motor programs previously learned for
the performance of similar motor tasks, there can still be considerable uncertainty associated with the
application of these motor programs to the new task. The control problems are particularly difficult on
the first day of practice since there has been no opportunity for sleep-dependent consolidation and
refinement of motor control [9,10]. Understanding the control of these unpractised motor tasks has
important implications ranging from the design of teaching strategies to the design of automobiles to
safely perform a sudden manoeuvre during driving or in airplanes to facilitate an emergency evacuation.

Tasks controlled by feedback are constrained by the reaction time delay and sensorimotor uncertainties
in the control process, such as sensory uncertainties and error in motor control realization (motor noise).
Although these uncertainties cannot be controlled, they nonetheless place constraints on the nature of the
control mechanisms that work best in unpredictable environments. Recently emphasized examples arise
in the control of autonomous vehicles [11,12] and in the role played by sensory dead zones in balance
control [6,13]. In addition sensorimotor uncertainties play a central role in Bayesian approaches to neural
encoding [14,15] and, if large enough, undermine the effectiveness of internal models to predict the
sensory consequences of movements. These uncertainties can arise in many ways including the effects of
temporal and spatial quantization of the sensory inputs [16,17], static uncertainties related to the system
and control parameters [18–20], and noise [21–26]. Neuroimaging studies emphasize that the disparity
between novice and expert motor performance lies at the level of the organization of the neural networks
that are involved in motor planning [27,28]. Motor planning neural networks in novices are more
diffusely and extensively activated compared to those in experts. Moreover, novices activate certain brain
regions, such as the posterior cingulate, suggesting that they have difficulty filtering out irrelevant
information. In terms of motor control theory, these observations suggest that uncertainties in generating
the control force are important features of the motor control process.

Whereas the reaction time delay, τ, can be readily estimated using reaction time tests [5,6,29–31] it has
been difficult to obtain estimates of uncertainties in the control force generation. An exception arises in
the control of unstable states, in particular, stick balancing on the fingertip [20]. In particular, these
studies have drawn attention to the importance of determining the shortest stick length, Lcrit, that can
be balanced for a given τ. Analytical and numerical simulations show that Lcrit increases as τ 2 [20,32].
Sensorimotor uncertainties impair control performance, hence increases Lcrit further. Virtual stick
balancing tasks [21,26,33–35] that involve the interplay between a human and a computer provide an
environment in which τ can be readily manipulated. Thus it becomes possible, at least in principle, to
directly measure the dependence of Lcrit on τ and use this dependence to obtain insight into the
magnitude of the sensory uncertainties related to the angular displacement and velocity.

In the engineering literature, static uncertainties play an important role in the design of effective control
strategies in uncertain environments [36,37]. A good measure for the robustness of the controller against
static uncertainties is the stability radius, which is a kind of ‘distance from instability’ and hence is
related to the size of the stable domain in the space of the control and system parameters. The concept of
stability radius has been already adopted in human balance models [18,19] and it is also used in this
paper for robust stability analysis.

The paper is organized as follows. First, the concepts of Lcrit and sensorimotor uncertainties in relation to
the control of an inverted pendulum by time-delayed proportional-derivative (PD) feedback are discussed.
In §3, we describe the construction of a virtual stick balancing task and in §4, we describe the results
obtained for 27 novices during one day of practice. It is observed that the allowed sensorimotor
uncertainties related to the angular velocity are larger than those related to the angular displacement.
2. Background
Controlling an inverted pendulum in the presence of feedback delay is a benchmark problem in control
systems theory and is often used to model human balancing [38,39]. It is known that upper equilibrium
of the pendulum can be stabilized by a PD controller if the feedback delay is less than a critical delay
tcrit ¼ T=(p

ffiffiffi
2

p
), where T is the oscillation period of the structure hung at its downward position [40].

The governing equation for a pendulum with a uniformly distributed mass balanced on a cart is

€w(t)� aw(t) ¼ �pw(t� t)� d _w(t� t), (2:1)
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Figure 1. (a) Stability chart for delayed PD feedback for τ = 0.3 s and L = 2 m. Red and blue lines denote real root boundary and
complex root boundary, respectively. Stabilizing control gains are indicated by grey shading. Robustness of the controller is related to
the size of the stable region characterized by Δp and Δd. (b) Stability boundaries for the critical length associated with stability radii
δp = 0 (dotted), δp = 0.1 (dashed) and δp = 0.5 (solid).
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where w is the angular position measured from the w = 0 vertical upright position, a = 3g/(2L) is a system
parameter inversely proportional to the length L, g is the acceleration due to gravity, p and d are,
respectively, the proportional and derivative control gains and τ is the reaction delay. The oscillation
period about the lower equilibrium is T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=(3g)

p
, hence, tcrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L=(3g)

p
.

2.1. Stability
The stability chart of (2.1) can be determined by the D-subdivison method [41] after substituting λ = iω
into the characteristic equation

l2 � aþ pe�lt þ dle�lt ¼ 0: (2:2)

The so-called D-curves are the transition curves in the parameter plane (p, d ) where characteristic
exponents exist with zero real part. Figure 1 shows the D-curves and the stable parameter region
for (2.1). Two types of D-curves can be distinguished. The line p = a shown by red line in figure 1 is
associated with a real characteristic root when ω = 0. This type of D-curve is often referred to as real
root boundary (RRB) in the literature [42]. The parametric curve

p(v) ¼ (aþ v2) cos (vt) (2:3)

and

d(v) ¼ aþ v2

v
sin (vt) (2:4)

shown by blue line in figure 1 is associated with a pair of pure imaginary characteristic roots λ = ±iω. This
type of D-curve is called complex root boundary (CRB). The parametric curve (2.3)–(2.4) is initiated from
the parameter point ( p0, d0), where

p0 ¼ lim
v!0

p(v) ¼ a (2:5)

and

d0 ¼ lim
v!0

d(v) ¼ at: (2:6)

This point provides a useful reference point in the plane ( p, d ).

2.2. Theoretical critical length
It is known that feedback delay limits the stabilizability of control systems. In the stick balancing
problem, this limitation can be represented by the critical length Lcrit. For a given feedback delay τ,
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the critical length is Lcrit = (3/4)gτ 2 (e.g. [32,40]). If the pendulum is shorter than Lcrit then it cannot be

stabilized about its upside equilibrium position using a PD control with feedback delay τ. This
relation explains why it is more difficult to balance a short pendulum than a long one. The panels in
figure 1 demonstrate the concept of the critical length. If the feedback delay τ is fixed and the length L
of the pendulum is decreased, then the size of the stable regions decreases. When L = Lcrit, then the
stable region disappears at the parameter point ( p0, d0) as shown by the solid lines in figure 1b.

2.3. Critical length in the presence of static sensorimotor uncertainties
When L > Lcrit, then the system is stable if the control gains are selected from the shaded area in figure 1.
The larger the stable region, the larger the robustness against the error in selecting p and d. The size of the
stable region along the p and the d directions can be characterized by the stability radii

dp ¼ (1=2)Dp
p0 þ (1=2)Dp

and dd ¼ (1=2)Dd
d0 þ (1=2)Dd

, (2:7)

where Δp and Δd are the width and the height of the stable region. If the control gains are tuned to the
middle of the stable region, i.e. p = p0 + (1/2)Δp and d = d0 + (1/2)Δd, then larger than δp relative error in
the tuning of p or larger than δd relative error in the tuning of d destabilizes the system. Parameters Δp
and Δd at the same time show the robustness of the system against static sensorimotor uncertainties
[18,19,36,37]. Figure 1b shows the robust stability boundaries associated with δp = 0, δp = 0.1 and δp = 0.5
by solid, dashed and dotted lines, respectively. The corresponding critical lengths are, respectively,
Lcrit|δ=0 = 0.707 m, Lcrit|δ=0.1 = 1.665 m, Lcrit|δ=0.5 = 6.432 m. This means that in the case of 10% static
uncertainty in the gain p, stable control for a stick of length shorter than 1.665m cannot be guaranteed
by delayed PD feedback. The case of Lcrit|δ=0 corresponds to the case when the stable region bounded by
the D-curves (2.3)–(2.4) just disappears.

In order to analyse the effect of Δp and Δd separately, the control force is decomposed into
components as Q(t) =Qp(t) +Qd(t) where Qp(t) = pw(t− τ) and Qd(t) ¼ d _w(t� t) are associated with
proportional and derivative feedback, respectively. In the case of static error Δw = ɛpw in the
perception of w, the corresponding control force becomes

~Qp(t) ¼ p
�
w(t� t)þ Dw(t� t)

�
¼ (1þ 1p) p w(t� t): (2:8)

Similarly, static error D _w ¼ 1d _w in the perception of _w alters the control force term Qd as

~Qd(t) ¼ d
�
_w(t� t)þ D _w(t� t)

�
¼ (1þ 1d) d _w(t� t): (2:9)

Static error DQ ¼ 1Q ~Q in the realization of the control force can also be represented as a multiplicative
error in the actual control force: Q̂(t) ¼ (1þ 1Q)~Q(t). The corresponding terms of the actual control
force then read

Q̂p(t) ¼ (1þ 1Q) ~Qp(t) ¼ (1þ 1Q,p) p w(t� t) (2:10)

and

Q̂d(t) ¼ (1þ 1Q) ~Qd(t) ¼ (1þ 1Q,d) d _w(t� t), (2:11)

where ɛQ,p = ɛp + ɛQ + ɛpɛQ and ɛQ,d = ɛd + ɛQ + ɛdɛQ. Here ɛp, ɛd and ɛQ are the uncertainty ratios
associated with the perception of the position and the velocity and with the realization of the control
force, while ɛQ,p and ɛQ,d describe their combined effect. If the combined uncertainty ratio ɛQ,p is
larger then the corresponding stability radius δp, then the closed-loop system becomes unstable.
Similarly, if ɛQ,d > δd, then the closed-loop system is again unstable. This way, the stability radii δp and
δd are directly related to the combined static errors ɛQ,p and ɛQ,d, respectively. Thus, Δp and Δd reflect
the robustness against the static uncertainty in the perception of the angular position w and
the angular velocity _w, respectively, in combination with the robustness against the realization of the
control force Q.

The critical length for a given stability radius δp or δd is the length L where the width or the height of
the stable region is just equal to p0 (1 + 2δp) or d0 (1 + 2δd), respectively. The critical lengths associated
with different stability radii δp and δd as function of reaction time delay are shown in figure 2a,b. The
curves associated with δp = 0 and δd = 0 are given by Lcrit|δ=0 = a0τ

2 where a0 = (3/4)g and the
condition δ = 0 refers to the theoretical case without uncertainties (see §2.2). It can be shown by
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analytical manipulation of (2.3) and (2.4) that the critical length associated with δp > 0 or δd > 0 can be
written in the form Lcrit|δ>0 = a1τ

2, where coefficient a1 describes the contribution of the static error in
p and d. As (2.10) and (2.11) show, the permissible error in p and d can be associated with the
combined uncertainties ɛQ,p and ɛQ,d. Thus, if ɛQ,p > δp or ɛQ,d > δd then the control system is unstable.
In this sense, coefficient a1 describes the contribution of the combined uncertainties ɛQ,p and ɛQ,d to
the increase of the critical length. The stability radii δp and δd as function of the ratio a1/a0 are shown
in figure 2c,d. Note that δd is larger than δp for the same ratio a1/a0, which indicates that larger
relative error is allowed in d than in p. This property is implied by the shape of the stable region of
the delayed PD feedback model.

Taken together these observations demonstrate that the static sensorimotor uncertainties in the
control process can be estimated by measuring Lcrit as a function of τ. Specifically, the coefficient a1 is
determined by fitting a second-order curve onto the measured critical lengths. Then the
corresponding stability radii δp or δd can be determined according to figure 2c,d, respectively. Here,
we use this approach to estimate the combined sensorimotor uncertainty for a virtual stick balancing
task for subjects during the first day of practice.
3. Methods
3.1. Mechanical model
The mechanical model of an inverted pendulum is used, where the suspension point is manipulated by
the human subject. The corresponding equation of motion reads

1
3
L2€w(t)� 1

2
Lg sinw ¼ � 1

2
L aS(t) cosw, (3:1)

where aS is the acceleration of the suspension point. This equation is used for the real-time simulations
during the virtual balancing tests.

Stability and stabilizability properties are analysed by assuming a delayed PD feedback in the form

aS(t) ¼ kpw(t� t)þ kd _w(t� t), (3:2)
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where kp and kd are the actual control gains for the acceleration aS. After linearization, equation (3.1) can
be written in the form of equation (2.1) with p = 3kp/(2L) and d = 3kd/(2L).

3.2. Participants
Twenty-seven subjects were recruited from the local student and faculty population (age between 19 and
42 years, 23 in average, six females, 21 males). All subjects were free of any neurological or
musculoskeletal impairment that could affect virtual stick balancing. The research was carried out
following the principles of the Declaration of Helsinki and was approved by the Hungarian National
Science and Research Ethics Committee. All participants provided informed consent for all research
testing and were given the opportunity to withdraw from the study at any time.

3.3. Reaction delay measurement
Two classic forms of reaction delay testwere used [29–31]. In the first task (referred to as ‘SINGLE’), the subject
kept their index finger on a button and pressed it as quickly as possible in response to a single light flash. In
the second task (referred to as ‘INDIVIDUAL’), the subject kept their index andmiddle fingers on two nearby
buttons and pressed the button which corresponded to a single light flash as quickly as possible. Ten trials
were performed for both tests such that the time increments between the succeeding flashes were
randomized. More details on the reaction time test equipment used in the test is given in [43].

3.4. Virtual stick balancing environment
Thevirtual stick balancing environment is shown in figure 3. The software for the virtual stick balancing task
was developed in a JAVA environment. The governing equation (3.1) of the inverted pendulumwas solved
using fourth-order Runge–Kutta method with adaptive time step such that the simulation was running in
real time. The interface for the virtual environment was a conventional optical computer mouse. For the
actuation of the virtual environment, the input signal is the acceleration of the computer mouse moved
by the subject’s hand. The acceleration was determined via numerical derivation of the pixel-based
position of the cursor [44]. Due to the finite number of pixels, this results in a noisy acceleration signal.
Therefore, a simple re-sampling filter was used, and the input acceleration was computed as

aS(ti) ¼ K
x(ti)� 2x(ti�k)þ x(ti�2k)

Dt2
, (3:3)

where K = 8.85 × 10−5 m/pixel is a gain factor scaling the screen size to the manipulation length
of the computer mouse [44], x(ti) is the mouse position measured in pixels at the time instant ti = iΔt and
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k≥ 1 is an integer filtering parameter. The sampling period was set to Δt = 16.67 ms, which corresponds to

the screen refresh rate 60Hz. The acceleration aS(ti) and the stick’s position w(ti) and velocity _w(ti) were
computed within a single sampling period.

A HP Probook 430 was connected to a 24-inch LG 24BK550Y-B monitor via VGA cable. The vertical
dimension was scaled such that all sticks appeared to be 23 cm long on the computer screen. The
displacements in the horizontal direction were not scaled in order to match the real deviation of the
underling dynamical model. This way, the displacement between the top and the bottom of the stick
appeared in its real size on the computer screen. Subjects were instructed to concentrate on the top of
the stick during the stick balancing trials.

3.5. Machine delay and delay increments
The response timeof the computer screen, signal filteringand the screen refresh rate introduce amachinedelay
τMwhich is equal to the time betweenwhen an input is produced bya computermouse and its appearance on
the screen. Different computer-screen configurations have been investigated to make the machine delay as
small as possible [44]. The screen response time was measured using a light sensor system, which detects
black and white transition time of the screen synchronized to the mouse input. The response time between
a mouse input and its full representation on the screen was measured to be τM,response = 64 ms. Signal
filtering for the acceleration (3.3) introduces a large artificial delay τM,filter = kΔt. The optimal value for the
filtering parameter was experimentally found to be k = 3, which gives the additional delay τM,filter≅ 50 ms.
Finally, the time step Δt for the simulation was adjusted to the screen refresh rate, which was set to 60 Hz.
This sampling effect introduces a delay which varies linearly between 0 and Δt with an average of
τM,sampling = Δt/2 = 8.3 ms. Thus the total machine delay is

tM ¼ tM,response þ tM,sampling þ tM,filter ffi 122ms: (3:4)

The overall reaction delay for virtual stick balancing is

t ¼ tN þ tM þ tadded, (3:5)

where τN is the neural reaction delay of human subjects and τadded is the artificially added delay. During the
virtual balancing tests, τadded was increased in steps of Δτ = 50 ms.

3.6. Blank-out tests
Reaction delay during virtual stick balancing is measured from the response to a visual blank-out [6]. The
stick disappears from the screen for a period of length 500ms at a random time instant between 5 and 10 s
after the start of the trial. The first corrective motion after the end of the blank-out indicates the length of
the reaction time delay of the subject. In order to get an objective estimate for the delay for all the
blank-out trials, a sweeping window technique was constructed using two time windows Wb = [ti− Δw,
ti] andWa = [ti, ti + Δw] before and after the time instant ti with length Δw = 300 ms. The indication function

P(ti) ¼ (mb(ti)�ma(ti))
2

mb(ti)þma(ti)
(3:6)

was defined to indicate the change in the corrective acceleration, where

mb(ti) ¼ 1
N

X1

i¼�N

ja(ti)j and ma(ti) ¼ 1
N

XN

i¼1

ja(ti)j (3:7)

are the absolute mean values of the measured accelerations over the windowsWb andWa with N = Δw/Δt.
The peak in Π indicates the time instant where the largest change in the corrective acceleration takes place.

A sample measurement data of a blank-out test can be seen in figure 4. The top panel presents
the measured corrective acceleration. The time is scaled such that the end of the 500ms blank-out is at
t = 0 s. The blank-out (off) period is indicated by grey shading. Red curves show the individual trials,
while their average is shown by blue lines. It can clearly be seen that significant change in the corrective
acceleration takes place at about 270ms after the end of the blank-out. Since the acceleration of the
computer mouse is readily measured, this time corresponds to the subjects’ reaction delay τN. It should
be noted that the corrective accelerations before the blank-out and during the blank-out are in the same
range while after the blank-out significantly larger correction can be observed. This shows that after the
blank-out a huge corrective action is necessary to keep the stick balanced (see also fig. 2 in [6]).
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3.7. Balancing protocol
Each subject was tested as follows:

1. Reaction time test SINGLE: 10 trials.
2. Reaction time test INDIVIDUAL: 10 trials.
3. Practice with a 5m long virtual stick without extra added delay: 10min.
4. The critical length was determined by a halving method. First, the subject performed five trials

without added delay with the initial length L0 that the subject was able to balance without any
difficulty during the 10min practice. The balancing of a stick of length L0 was deemed ‘Successful’
if a balance time of 20 s was achieved such that the stick’s angle never exceeded ±20° for at least
one out of the five trials [6]. If the balancing was successful/unsuccessful, then the L was
decreased/increased by ΔL1 = 1 m and the subjects did five trials. If successful/unsuccessful, the
stick length was decreased/increased by ΔL2 = 0.5 m and the subject did five trials, and so on.
After five steps, the last change in the stick length was ΔL5 = 0.0625 m. The critical length Lcrit(0)
was determined as the shortest stick length with successful balancing.

5. The time delay was increased by adding τadded = Δτ = 50 ms to the feedback and Step 4 was repeated
with initial length L0 = Lcrit(0) + 1 m. In this way, Lcrit(50) was determined for an added delay of 50ms.

6. Step 5 was repeated for added delays of τadded = 100, 150, 200, 250 and 300ms to obtain, respectively,
Lcrit(100), Lcrit(150), Lcrit(200), Lcrit(250) and Lcrit(300).

7. Finally, a blank-out test [6] was made using a stick length which was well balanced by the subject.
This was typically Lcrit(0) + 1 m. The blank-out test provides an estimate of the subject’s neural
reaction delay τN.

It typically took 60min for a subject to complete this balancing protocol. All the subjects were able
to do the balancing tasks for all added delay from 0 to 300ms successfully. No subject complained
of fatigue.
4. Results
The data of the measurements are available within the Dryad Digital Repository: https://doi.org/10.
5061/dryad.41ns1rn9m [45].

4.1. Reaction delays
All the test subjects were able to perform all the three types of reaction time tests (SINGLE, INDIVIDUAL,
BLANK-OUT) successfully. The results of the different tests are summarized in figure 5. The shortest mean
reaction delay (227ms in average) was obtained in the SINGLE reaction time test, while the INDIVIDUAL

https://doi.org/10.5061/dryad.41ns1rn9m
https://doi.org/10.5061/dryad.41ns1rn9m
https://doi.org/10.5061/dryad.41ns1rn9m
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tests resulted in slightly larger mean reaction times (258ms in average). The mean reaction times in the
BLANK-OUT test (270ms in average) correspond to that of the INDIVIDUAL tests (24 out of the
27 subjects passed the modified t-test at 98% significance level). A repeated measure ANOVA test was
also performed in order to check the relation between the results of different reaction time
measurements. The test showed a statistically significant relation between the means of the reaction
times at 94% significance level. This observation supports the assumption that both the INDIVIDUAL
test and the virtual stick balancing involve a decision making, while in the SINGLE reaction tests,
subjects just responded to a signal in a simple way.

The variance of the reaction times in the BLANK-OUT test is significantly larger than for the other
two tests. This is due to the complex concept of the BLANK-OUT test and due to the equivocal
evaluation of the change in the corrective acceleration. For instance, the stick may happen to be close
to the vertical position by the end of the blank-out period just by pure chance and the subjects do not
have to react sharply. On the other hand, subjects sometimes react before the return of the visual
feedback although they were instructed not to do so. This action might be driven by some internal
predictive processes, i.e. the subjects think/estimate that they must do some action otherwise the stick
will fall even though they do not know the actual position of the stick. These effects cause an
uncertainty in the evaluation of the reaction time by the indicator function Π, which is reflected in the
larger variance of the BLANK-OUT tests. Nevertheless figure 5 shows that the deviation of the
measured reaction time delays increases with the complexity of the task. For the SINGLE reaction
time tests, the variation of the estimated delays is smaller than for the INDIVIDUAL test. The
deviation for the delays estimated from the BLANK-OUT test is even larger, which indicates that
virtual stick balancing might be a more complex task than the two-choice individual reaction time tests.

4.2. Critical parameter of the human controller
Blue markers in figure 6 show the experimentally determined critical lengths as a function of the overall
reaction delay τ = τN + τM + τadded for all the 27 subjects. The neural reaction delay τN of the subjects was
chosen to be the average of the results during the blank-out tests. The standard deviation of the estimated
neural delay is indicated by an error bar. The uncertainty in the critical length is equal to ΔL5 = 0.0625 m
in each case. The red line indicates the parabola a1τ

2 fitted on the measured data. This curve can be
associated with the critical length Lcrit|δ>0 corresponding to non-zero stability radii. The goodness of
fit for the individual subjects is evaluated using the coefficient of determination R2. The value of R2

ranges from 0 to 1. R2 = 1 means that the data points exactly fit on a parabola of the form a1τ
2. R2 = 0

indicates no second-order relationship between τ and Lcrit. Subjects in figure 6 are sorted by the
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corresponding coefficient of determination R2. For 21 out of 27 subjects R2 > 0.85, which supports the
assumption of Lcrit being proportional to τ 2. The black curve corresponds to the theoretical critical
length Lcrit|δ=0 = a0τ

2, where a0 = (3/4)g (see §2). The difference between the theoretical (black) and
the experimental (red) parabolas is characterized by the ratio a1/a0 (also indicated in each panel in
figure 6). Note that the critical length for the subjects is clearly larger than the theoretical critical
length Lcrit|δ=0, that is, a1 > a0 for all subjects.

Once the ratio a1/a0 is determined for the individual subjects, the corresponding stability radii δp and
δd can be determined based on figure 2c,d. Note that δp and δd describe the relative width and the relative
height of the stable region (figure 1) and the shape of the stable region implies that δp < δd (see §2.3). The
ratio a1/a0 and the corresponding stability radii are shown in figure 7 for all test subjects. The stability
radius δp ranges between 3.1 and 27.6% with mean value 14.1%. This gives an upper limit for the
combined uncertainty ɛQ,p associated purely with the perception of the angular position (recall that
the system is unstable if ɛQ,p > δp). In other words, in average larger than 14.1% relative error in the
control force term Qp destabilizes the control process. The stability radius δd ranges between 16.8 and
58.2% with mean value 40.3%. This gives an upper limit for the combined uncertainty ɛQ,d associated
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purely with the perception of the angular velocity (recall that the system is unstable if ɛQ,d > δd.) That is,
in average larger than 40.3% relative error in Qd destabilizes the control process. Thus there is a much
larger uncertainty associated with the perception of the angular velocity than the angular
displacement. This observation is a straight consequence of the shape of the stable region in figure 1,
namely, Δd/d0 > Δp/p0. On the neurophysiology side, it is also in agreement with the concept that
perception of velocity based on visual feedback is more complex than perception of position [46,47].
5. Discussion
The addition of a time delay has been frequently used to identify the nature of the bifurcations that can
occur in physiological control mechanisms [48–50]. Here, we have used this approach with a virtual
balancing task in order to measure the dependency of Lcrit on τ. We observed that Lcrit = a1τ

2, where
the coefficient a1 is related to the presence of sensorimotor uncertainties. In particular, these
uncertainties are related to the size of the stable region in the plane of the control parameters, which
corresponds to the stability radii (i.e. allowed static uncertainty of the control parameters). Based on a
systematic series of balancing trials by 27 subjects, the overall error associated purely with the angular
position was estimated to be around 14%, while the error associated purely with the angular velocity
was estimated to be 40%. In the more general case in which sensorimotor uncertainties exist in both
angular position and velocity, it is predicted that the uncertainties in angular velocity will be greater.

An obvious source of uncertainty in the perception of the stick position and velocity is originated
from the resolution and the refresh rate of the computer screen. The screen resolution was 1920 × 1080
and the size of one pixel is Δpixel = 0.277 mm. The refresh rate was f = 60 Hz. This results in a
resolution of Δw = Δpixel/L in the perception of the angular position and D _w ¼ fDpixel=L in the angular
velocity during a single refresh period. For instance, for a stick of length L = 5 m, which appears to be
23 cm long on the screen, Δw = 0.0032° and D _w ¼ 0:191� s�1. The maximum angles during the shortest
successfully balanced sticks with zero added delay for all subjects were on average 0.97°, which is
significantly larger than the pixel-caused uncertainty. The maximum angular velocities in average
were 5.45° s−1, which is again significantly larger than the pixel-caused uncertainty. These
observations support that the resolution and the refresh rate do not significantly contribute to the
uncertainty of the overall sensory perception. In other words, the effect of spatial and temporal
digitization of the stick is negligible.



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191006
12
Here, we have not considered the effects of stochastic perturbations. Whereas control gains change

from trial to trial, the effects of neuronal membrane noise on motor planning are always present. We
anticipate that given the large changes in motor planning neural networks, the effects of static
changes in the control gains on balancing performance will always be much more significant during
the early stages of learning than the effects of noise. This is particular true because of the presence of
a central refractory time; that is, changes in the control of a task cannot be made by the nervous
system until the previous corrections have been completed [51,52]. Moreover, neuronal membrane
noise is likely to be of the same intensity in novice and experts and hence likely has only a small role
to play in reducing the variance between repeated trials as skill increases. The advantage of focusing
on deterministic uncertainties in the control process is that we can obtain greater insights into the
problems faced by a person doing an unpractised task. Nevertheless, although the presented analysis
used the concept of static uncertainties according to [18,19,36,37], the results can also be related to
stochastic uncertainties (noise) both in neural perception and in motor control. As shown in [53,54],
stochastic perturbation has a similar effect on the performance of the control process: the region of
parameters for which the system is stable in the presence of noise is typically smaller than the stable
region for the nominal (noise-free) system. In this sense, the stability radii can be used to demonstrate
the robustness of the system against noise.

Considerations of sensory uncertainties are important for the design of motor tasks for novices,
including small children, and for devising safe ‘one time’ strategies to be used in emergency
situations. The goal must be to adjust parameters so that the stability regions in parameter space are
larger than the relevant sensory uncertainties. For the special case of stick balancing on the fingertip
this can be simply accomplished by making L sufficiently long. However, it is quite possible that the
approach we have illustrated here can, with suitable modifications, be applied to other examples of
motor and physiological control.

Although the estimated stability radii are related to the specific task of virtual stick balancing, the
conclusions might be valid for other tasks that involve the stabilization of an unstable equilibrium.
The result that the stability radius for the velocity feedback is larger than that for position feedback is
a straight consequence of the ratio of the height and the width of the stable region in figure 1. This
emphasizes that the stabilization of an inverted pendulum in the presence of feedback delay is indeed
a benchmark problem in human balancing.
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