
NPS-53-88-007

NAVAL POSTGRADUATE SCHOOL

Monterey, California

s<<»^

A TUTORIAL ON APL2

by

Toke Jayachandran

Technical Report for Period

September 1987 - July 1988

Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School

Monterey, CA 93943

FedDocs
D 208.14/2
NPS-53-88-007

NAVAL POSTGRADUATE SCHOOL
Department of Mathematics

R. C. AUSTIN HARRISON SHULL
Rear Admiral, U.S. Navy Provost

Reproduction of all or part of this report is authorized

, i
C^ii ,v « I If iN iV I »i <, >>Au

|RT SECuRlU ClASSit iCAIION

UNCLASSIFIED

Hi! Y CLARIFICATION AUlHOHllY

REPORT DOCUMENTATION PAGE nunicv^.^
id KfciiR.ci.vt MAhMN^ rw\VAL POSTGRADUATI

MONTEREY CA 93943.51m
''

ASSif K ATlUN / DOWNGRADING SCHEDUlt

(RMlNu OKc.ANl2ATlON HEPOKI NuMHtKlS)

-53-88-007

Ifc Of PLHIUHMINu OHuANlZAIION

al Postgraduate School

bD OFFICt SYMBOL
(it applicable)

53

*ESS (City. Hate, and /IP Code)

terey, CA 93943

i OiSlKiBUlluN / AvA.iABlLlT Y Oh REPORT

Approved for public release; distribution
unlimited

i MONilUNiNu OKvjANu'AhON KtPOHl NuMtJtH(S)

NPS-53-88-007

',» NAMt Of- MONltORiNG ORGANISATION

Naval Postgraduate School

/b AOOKtSS (C#ly. Star*, and ZIP Code)

Monterey, CA 93943

E Of f UNDiNG/ SPONSORING
RllZATlON
al Postgraduate School

8d OFFICE SYMBOL
(H applicable)

53

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

^ESS K'fy. S'ate. and ZIP Code)

terey, CA 93943

10 SOURCE Of FUNDING NUMBERS

PROGRAM
ELEMENT NO

PRO,ECT
NO

TASK
NO

AORk UNIT
ACCESSION NO

{include Security Classification)

itorial On APL2

ONAL AUTHOR(S)

J Jayachandran

£ Of REPORT
mical Report

3b TIME COVERED
FROM9/1/87 T07/31/!

14 DATE Of REPORT (tear Month. Day)

1 August 1988
15 PAGE COUNT

37

'LEMENTARY NOTATION

COSATi CODES

GROUP SU9 GROUP

18 SUBJECT TERMS (Continue on reverse it necessary and identify by block numoer)

programming language, APL, APL2, tutorial

8ACT (Continue on reverse it necessary and identity by block number)

3 report contains a short tutorial on the new features of the APL

>uage processor called APL2 , available on the NPS mainframe computer

rRiUUTlON/AVAILABlLITY Of ABSTRACT
JClASSlFlEDMJNLlMlTED SAME AS RPT D OTIC USERS

21 ABSTRACT SECURITY CLASSlf ICATION

UNCLASSIFIED
ME Of RESPONSIBLE INDIVIDUAL
Toke Jayachandran

22b TELEPHONE (include Area Code)

(408) 646-2600
22c OffiCE SYMBOL

53Jy

RM 1473, 84 MAR 8 J APR edition may be used until exhausted

All other editionv are obsolett
SECURITY CLASSIFICATION OF THIS P^GE

-T;'-^ ^ r^-C' ' \
v- * * >V -*-"* - ?•*" ~ .r> ** '-.-'—-» -^ - V JT* "-*'-*» f.**?r*i^ Z&jj*&tX'£&& i*t* ~..>r1w»ar-..->-*••. dWrtfc»M**i.Jfclfc

A TUTORIAL ON APL2

INTRODUCTION

APL2 is an advanced APL language processor which is

essentially a superset of the older VSAPL processor, both available

on the NPS mainframe computer. Practically all of the commands and

functions in VSAPL perform exactly the same way in APL2 and several

new features that enhance the programming and data processing

capabilities are included in APL2. Both VSAPL and APL2 will

continue to be available to the user. The aim of this report is to

provide a short tutorial on the new features in APL2 ; the reader is

assumed to be familiar with the APL language and the VSAPL

processor. Two IBM publications (references CI] and [2]) and the

recently published book "APL2 At a Glance" (reference [3]) provide

a comprehensive discussion of the capabilities of the APL2

processor.

A minimum of 1.5 megabytes of virtual memory is required in

order to use APL2. The CMS command: GETSTOR 1500K followed with an

ENTER will assign the requisite amount of memory. The APL2

processor may now be invoked with the command:

APL2

The response from the system might be as follows:

APL2 1.2.00 (ENGLISH)

PROGRAM PRODUCT NUMBER 5668-899

VERSION 1, RELEASE 2

CLEAR WS+

The + after WS indicates that a system message describing

some feature of the processor, may be displayed with the command:

)MORE. For specialized applications it is possible to add certain

keyword options to the invocation command e.g. , APL2 OPTION1

OPTION2 . . . The available options and their definitions are

described in [13. As with VSAPL, the GRAFSTAT package can be used

from within APL2 ; the appropriate invocation command for this

application is APL2GS instead of APL2.

Workspaces created under APL2 will have file type APLWSV2 as

compared to VSAPLWS for the older APL workspaces. These older

VSAPL workspaces cannot be loaded into APL2 with the)LOAD command

and the)LIB command will not even list them. However, it is

possible to convert them into APL2 workspaces by first "migrating"

them into APL2 with the command: DMCOPY WSNAME and then saving them

with the DSAVE WSNAME command. The APL2 workspace name can be the

same as the VSAPL workspace; because of the differences in the file

types both workspaces will still exist on the A-disk. The APL2

command: DOFF returns the user to the CMS environment; there is no

command to directly log off from the APL2 environment.

Complex arithmetic can be carried out in APL2. A complex

number of the form a+ib is entered as aJb or in its polar form as

mD0 or mR<l> where m is the magnitude of the complex number and <J> is

its angle measured in degrees or radians. If R is a complex

number, +R is its conjugate, IR is its magnitude and xR represents

a complex number with magnitude 1. The APL2 primitive functions

+,-,x and t perform the standard complex arithmetic in the usual

way.

ARRAYS IN APL2

A very useful capability available in APL2 is the ability to

create "mixed arrays" and "nested arrays". A mixed array is one

that contains both numeric and character constants in the same

array. A nested array can have other arrays as its basic elements;

for example, a nested array could be a matrix each of whose

elements is a vector or even another matrix. The following

examples illustrate the creation of mixed and nested arrays.

EXAMPLES:

X14-1 2 3 4 X2<-(1 2M3 4)

Yl<-'ABCD' Y2<-'A' 'B' 'C 'D' Y3«-'AB' 'CD'

Note that it requires separate commands to create the

arrays XI, X2 , Yl , Y2 and Y3. XI is a 4-element array

of numeric constants. X2 is a nested 2-element array

whose both elements are themselves 2-element arrays.

Yl and Y2 , although defined differently, represent the

same array i.e., a 4-array of character scalars and Y3

is a nested 2-array with 2-arrays as its elements.

Z<-(2 3)p(i.4) 'ABCD' '****' (5 6 7 8J9) 'EFGH' ' AAAA

'

W<-'ONE' 'TWO' C 'BUCKLE' ('MY' 'SHOE'))

D<-2 2 p'ONE' 'TWO' 'BUCKLE' C'MY' 'SHOE')

Z is a mixed-nested array, a matrix whose three elements in

the first row are the arrays CI 2 3 4), (ABCD), (*•*•) and whose

three elements in the second row are (5 6 7 8J9), (EFGH), (aaaa).

W is a 3-element nested array in which the first two elements are

3-element arrays and the third element is itself a 2-element nested

array. When displayed on the screen these objects will appear as

follows:

Xl<-->1 2 3 4 X2<--»1 2 3 4 Y1<-->Y2<-->ABCD Y3<~>AB CD

Z<--»1 2 3 4 ABCD ***•

5 6 7 8J9 EFGH AAAA

W<~>ONE TWO BUCKLE MY SHOE

These arrays will be used repeatedly to demonstrate various

concepts; the reader may find it convenient to create them in a

clear workspace and try out some of the new functions and

commands

.

Notice the number of spaces between the elements of W. There

is one space between ONE and TWO and also between MY and SHOE;

there are two spaces between BUCKLE and MY and three spaces between

TWO and BUCKLE. The spacing is designed to indicate the levels of

nesting in the array; however, the only foolproof method for

determining the degree of nesting in an array is to use the new

APL2 function DISPLAY described below.

Public Library 1 includes a workspace called DISPLAY that

contains an APL function, also called DISPLAY; this function will

present a pictorial representation of the degree of nesting in a

given array, on the screen. To use this function it must first be

copied into the active workspace with the command:

)COPY 1 DISPLAY DISPLAY or)COPY 1 DISPLAY

In APL2 it is possible to create several different arrays with

a single command. Also, multiple usage of evaluated input (A<-D D

D or character input CB«-Q) is allowed.

CAA BBX-10 will assign to both AA and BB the scalar 10.

(AA BB)<-(1 2 3)'XYZ' will assign (1 2 3) to AA and XYZ to BB.

It is not necessary to separate objects

enclosed in parentheses with spaces.

10+CAA BBX-100 will create AA and BB both containing 100 and

then display 110, the result of the addition

10+100.

(A B C)«-D D D will display three successive : for keyboard

input. The three inputs will be assigned to

C, B, A in that order; same for also.

A number of new primitive functions and operators that are

especially designed to handle nested arrays are included in APL2.

Recall that a primitive function is one that is invoked by entering

a single APL character such as p or <t>. An APL "operator" takes as

its operand an APL function, to produce a new user defined

function; for example, the primitive operator " / " (reduction)

when combined with the primitive function " + " results in the

summation function " +/ ". A new primitive operator called EACH

invoked with the APL character " " Cdieresis - Shift 1 on the APL

keyboard) is particularly useful for manipulating nested arrays.

When this operator is combined with a primitive function as its

left operand the result is a new function whose effect is to apply

the original primitive function individually to each of the

elements of its argument array. Thus, p" when applied to an array

will display the shapes of each of the elements in the array

separately.

+ /C1 2)(3 4)(5 6)«-->9 12 +/"(1 2)C3 4)C5 6)<--»3 7 11

p"Xl<--»EMPTY p"X2<--»2 2 p"Z<-->4 4 4 p"W<--»3 3 2

4 4 4

Notice that the third element of p"W is 2 since this element

is a nested 2-element array with components BUCKLE and MY SHOE.

DEPTH is a new primitive function invoked with the APL

character " = ". On the newer IBM 3179-G2 terminals the character

can be generated with a single key stroke; the rightmost key in the

keyboard row ASDFGHJKL: M = . On older terminals such as the IBM

3278s it is an "overstruck" character; the system command:)PBS ON

described on page 2 4, must be used to generate the character.

DEPTH is a monadic function that displays the degree of nesting in

its argument array. The DEPTH of a simple scalar (numeric or

character) is and the DEPTH of any non-nested array is 1

regardless of its dimension (a vector or a matrix or any higher

dimensional array). For nested arrays, the DEPTH is 1 plus the

depth of the item with maximum depth. Thus,

=X1<--*1, =X2<-->2, = Z«-->2, =W<~>4 , =D«--»3, ="W«~»1 1 3

and =""W <--> 000 12

The dyadic function PICK (APL character o, Shift X) will

select the element specified in the left argument from an array

specified as its right argument. For example,

23Xl<-->2 23X2<~>3 4 2 2dX2<--»4

3dW<--»BUCKLE MY SHOE 3 2aW«-->MY SHOE 3 2 2 43W«-->E

For simple arrays, a single number as the left argument of

PICK will suffice to identify the object to be picked. For nested

arrays, if the left argument is a single number the entire nested

element at the specified location will be picked; if the left

argument is an array all but the rightmost number identify the

location of a nested element from which an object is to be picked

and the rightmost number is the indicator of the location of the

specific object to be picked. Thus, 3 2 2 4dW will pick the fourth

character 'E' from the 2nd sub-element 'SHOE' of the 2nd

sub-element 'MY SHOE', which is in turn the 2nd sub-element of the

third element of W, 'BUCKLE MY SHOE'.

Picking objects from matrices and higher dimensional arrays

is a little more involved and will be discussed after the

introduction of ENCLOSE a new APL2 function.

ENCLOSE is a monadic function (APL character c, Shift Z) that

artificially converts any array into a single "scalar-like" object

whose shape would, of course, be empty. If X is any array, ex is a

scalar object i.e., pcX<--»EMPTY.

The ENCLOSE function is necessary for picking objects from a matrix

or a higher dimensional array. To PICK the entire element in a

specified row and specified column of a matrix (this object could

be an array) the location indicator must first be converted into a

scalar object using ENCLOSE.

(c2 2)dD <~>MY SHOE picks the (2,2) element of D which is a

nested array. However, to PICK the 2nd

sub-element SHOE the appropriate command is

(2 2)2dD «-->SHOE When picking sub-elements from an element at

a given location, the location indicator is

specified within parentheses but is not

not converted into a scalar using ENCLOSE.

Thus, to PICK an element from a matrix or a higher dimensional

array, the item to be picked must be preceded by its location

(row, column etc.) specified between parentheses and the element

indicator follows the location indicator; if the entire item at a

given location is to be picked the ENCLOSE function must be applied

to the location indicator. PICK can be very useful for replacing

or modifying elements in an array without the necessity for

redefining the entire object.

For the array Xl«--»1 2 3 4 Xl[3 3<~>3 and

Xl[3]<-c'THREE

'

will replace the number 3 with the

the scalar like object THREE. XI is

now a mixed-nested array. However,

XI [3]<-'THREE ' will result in an error since this command

calls for the replacement of a scalar object

with an array.

((2 2)23D)<-'BELT" will replace SHOE with BELT in array D.

This command calls for the replacement

of the 2nd sub-element in the 2nd row

and 2nd column of D with BELT.

When using the ENCLOSE function one can also specify an

axis of a higher dimensional array along which the function

to be applied e.g., c[l]R or c[2]R.

Let A<-2 3pi6 and B<-C2 4pi8) 9 (3 2p 'ABCDEF ' D . Then,

A«~»l 2 3 B«--»l 2 3 4 9 AB pB<--»3

456 5678 CD p"B<~>2 4 3 2

EF

c[l]A«~>l 4 2 5 3 6 The ENCLOSE function is applied to

the columns of A to create a 3-array

of scalar-like objects; note that

pc[l]A=3 and p"c[l]A is EMPTY.

c[2]A«--»l 2 3 4 5 6 a 2-array with rows of A as elements.

10

The new monadic function DISCOSE CAPL character =>, shift X on the

APL keyboard) has many uses. It can be used as an inverse of

ENCLOSE to negate its effect. If X is an array, dcX <~>X i.e., the

combination of ENCLOSE followed by DISCLOSE will have no effect on

an array X. Another important use for DISCLOSE is in the creation

of tables. Suppose the 3-element mixed-nested array MENU is

defined by

MENU<-('HAMBURGER' 2. 00 H 'FRIES' 1.00) ('COKE' 0.75)

Then, the command: dMENU will convert the array into a

table that will be displayed as below.

HAMBURGER 2.00

FRIES 1.00

COKE 0.75

The above example illustrates how the DISCLOSE function can

simplify the task of creating tables and charts. DISCLOSE can be

applied to an array R of any dimension; the only requirement is

that all the elements of R are either scalars or themselves arrays

of the same rank but not ncecssarily of the same shape. DISCLOSE

has no effect on simple (non-nested) arrays. For nested arrays its

effect is to create a new array which is atleast one dimension

higher than the original array R. The sizes of the newly created

dimensions are directly related to the sizes of the sub-arrays of

R. Let the nested 3-array B be defined by

11

B«-(2 4pi8) 9 C3 2p'ABCDEF') . Then,

pB<~>3 p"B<--»2 4 3 2

=>B is a three dimensional array of shape

(3 3 4) whose 3 components along the

first dimension are

OB HI; ;]<~>1 234 OB) [2; ;]«--» 9 000 OB) [3; ;]«--»A B

5678 0000 CD

0000 0000 EF

The size of the first dimension, 3, is the number of elements

in B, the size of the second dimension is 3, the largest number of

rows in the elements of B, and the third dimension, 4, is

determined by the maximum number of columns in the elements of B.

Note that numerical objects are padded with zeros and character

objects are padded with spaces (pOBH3; ;]<--»3 4) to make them

conform to size requirements. The following examples illustrate

the use of DISCLOSE with axis specification. Consider the

nested-mixed matrix Z defined earlier.

p dZ<~>2 3 4 OZH1; ;]«~>1 2 3 4 OZH2; ;
]<-->5 6 7 8J9

ABCD EFGH
• ••* A A A A

The shape of Z, (2 3), determines the first two dimensions

12

of dZ and the size of the newly added dimension, 4, is the

shape of the largest sub-array of Z.

P3[l]Z<-->4 2 3 C=>C1]Z)[1; ;]<-->l A* (=>[1]Z) [2 ; ;
]<--*2 B*

5 Ea 6 Fa

The sub-columns of Z, consisting of the corresponding

elements of its sub-arrays, determine u[l]Z.

p3[2]Z«->2 4 3 C=>[2]S)[1 ;;]*--»1 A* C3[2]Z) C2 ; ;]<~»5 Ea

2 B* 6 Fa

3 C* 7 Ga

4 D* 8J9 Ha

This time the rows of 3Z consist of the corresponding

elements of the row sub-arrays of Z.

The monadic function ENLIST (APL character e) will convert

any array into a simple scalar array Ca vector of scalars) after

removing all the nesting. The effect of this function is different

from that of the RAVEL function "
,

" which stretches out any array

into a 1-dimensional array with all nested objects left intact.

€Z<~>1 234ABCD****567 8J9 EFGHaaaa
p€Z<~»24 p,Z«-->6 p",Z«--»4 4 4 4 4 4

13

FIRST is a monadic function, invoked with " t " (same as TAKE)

that selects the first element of an array, in row major order.

CTZX-'XXXX' will replace CI 2 3 4) in the first row, first

column of Z with the character array XXXX.

The dyadic function MATCH C
M = ", same as DEPTH) will yield a

1 if the left argument L matches the right argument R exactly, and

a otherwise.

'ABCD' = 'A' 'B' 'C 'D' <--» 1

'AB' 'CD'='ABCD' <~>

'AB' 'CD'='AB CD' <~> since L is nested and R is not.

''=l0 <--»0 since L is a character and R is numeric.

The FIND function € is a dyadic function that yields a boolean

array of the same shape as that of the right argument R with a 1 in

each position where the pattern defined in the left argument L

begins to occur in R.

'••••'€Z <--»0 1

14

'XY'€'XYXYXYXYXY' <~>1 010101010

This function is different from MEMBER, APL character €, which

produces a boolean array of the same shape as L with a 1 for every

component of L that occurs in R.

APL2 OPERATORS

The EACH operator " " was discussed briefly earlier. This

operator can be combined with several primitive functions as well

as user defined functions to create new user defined functions such

as " +/" " which will sum each of the sub-arrays in a nested

numerical array, separately. The two operators " / " and " \ "

have new uses in APL2 as demonstrated in the examples below.

Consider

XI h 1 2 3 4 X2 <--» 1 2 3 4 Yl «--* ABCD

The next four examples illustrate how to EXPAND an array by

replicating each element the same or different number of times.

2/X1 «-* 11223344 replicates the elements of XI.

2 3/X2 <-> 1 2 12 34 34 34

2/X2 f-> 3 4 3 4

12 3 4/Y1 <r+ ABBCCCDDDD

15

The next group of examples show some of the different ways

to REDUCE a given array.

2+/X1 h 3 5 7 the sums of successive pairs.

2-/X1 <~> "1 "1 ~1 the differnces of successive pairs.

"2-/X1 <-- -C2-/X1D«--»1 1 1

3x/xi <~> 6 24 the products of successive triples.

Examples of the use of the primitive function "
,

" with

the operator " / "

.

,/Xl <--» ,/X2 <--» cXl all scalar objects.

4,/Xl <~> 2./X2 <--» C,cXl) an array of shape 1.

1,/Xl <~> XI 1 ,/X2 <--> X2

2,/Xl <--» 1 2 23 34 a mixed array of succesive pairs

4,/Xl <--> 2./X2 and p2,/X2 = P 4,/X1 = 1

Examples of reduction of higher dimensional arrays:

, /Z *--> 1 2 3 4 ABCD**** 5 6 7 8J9 EFGHAAAA

p,/Z <--> 2 and p",/Z <--» 12 12

,/[l]Z «--» 1 2 3 4 5 6 7 8J9 ABCDEFGH ****aaaa

p,/[l]Z <--* 3 and p",/[l]Z <--> 8 8 8

,/[2]Z <~> ,/Z since the outermost axis reduction

is the default.

16

Examples of the different ways of using the SCAN operator

,\X1 «-» 1 12 123 1234
p,\Xl <--> 4 and p",\Xl <--» 1 2 3 4

, \X2 Hi 2 12 3 4

p,\X2 «--» 2 and p",\X2 <--> 2 4

In additon to the primitive operators, one can create user

defined operators with unspecified operands, which result in

generic user defined functions. In a particular application,

specific primitive functions are used as operands in the invocation

command. The user defined generic operator AND (selected from the

EXAMPLES workspace in Public Library 1) is one which will perform

two unspecified functions in parallel, e.g., the sum and product of

two numbers. The operator can be created using any of the editors

available in APL2 (discussed later on in this report). This

example also illustrates the creation of an operator (or a

function) that can be used either monadically or diadically; a new

APL2 system variable DNC (discussed later on in this tutorial) is

very useful for this purpose.

[0] Z«-L (LF AND RF) R

[1] ->(0=DNC 'L')/Vl

[2] A APPLY TWO FUNCTIONS TO PRODUCE A PAIR OF RESULTS

[3] fi EXAMPLE: 4 +ANDx 5

[4] fi DYADIC USAGE

17

[5] Z«-CcL LF R) ,cL RF R

[6] ->0

[7] fi MONADIC USE

[8] Vl:Z<-(cLF R),cRF R

The operands LF and RF in the above definition can be any

two APL2 functions; specific choices for these functions

are made at the time of application of the operator.

EXAMPLES OF THE USE OF THE OPERATOR 'AND'

4 +ANDx 5 «-•» 9 20 (dyadic use of the operator)

-AND-r 5 «-•* ~5 0.2 (monadic use of the operator)

In the first example, the primitive functions " + " and " x "

have been selected for LF and RF respectively. In the second

example, the negation function " - " and the reciprocal function "

f " are the left and right operands of the operator AND. Also in

the second example, the operator is used monadically i.e., only a

right argument is used with the operator. The first example

illustrates the dyadic use of the same operator.

18

SYSTEM VARIABLES AND SYSTEM FUNCTIONS

A number of new system variables and functions are included in

APL2. A few of these that are important for standard applications

are discussed below.

DDL R (Delay function)

R is a numeric scalar. This function will cause

a delay of R seconds between the execution of two

successive APL expressions or commands.

L DEA R (Execute Alternate)

L and R are character arrays containing valid APL

expressions e.g., 'Ao.xB' or 'DESCRIBE' etc. The

effect of this function is to execute the APL expression

R. If the execution is completed without interruption

the result is displayed. Otherwise, the alternative

expression in L will be executed. For example,

'i3' DEA ' l4 ' will result in the display of the

array (12 3 4) and "i3' DEA '1.4.5' will result

in the evaluation of i3 since 1.4.5 is undefined.

DL and DR (Left and Right Arguments)

Whenever a primitive dyadic function is suspended

19

either in the immediate execution mode or within a

defined function, the left argument of the dyadic

function is temporarily stored in DL and the right

argument is stored in DR; for a monadic function

only DR will be created. One or both of these

system variables can now be assigned new values

that will make the function executable. In the

immediate execution mode (calculator mode) the

command: ->0 will then complete the execution of

the corrected expression. The analogous command

for a suspended function is: ->N, where N is the

line number where the function is pendant, to

complete the execution of the function. The

APL expression 2 3+4 5 6 will result in a

LENGTH ERROR since the two argument arrays are

of different shapes. DL will now contain the

left argument array (2 3) and DR holds the

right argument array (4 5 6). The expression

can now be made executable either by assigning

to DL a 3-array or by assigning to DR a 2-array

or by assigning to DL and DR any two arrays of

of the same length or shape. Thus, for example,

DL«-1 2 3 followed by the command: -»0 will

display the array (5 7 9) the result of adding

the arrays (1 2 3D and (4 5 6).

20

DNC R (Name Class)

R is a character array (scalar, vector or matrix)

containing the names of APL objects. This function

will check each of the names in R to see if it is

already in use in the workspace; a 1 , 2 , 3 or a 4

will be displayed if the name represents a label,

variable, function or an operator, respectively.

If a name is not in use but conforms to APL naming

conventions a is returned and a "1 implies that

the name is invalid. DNC was used in the definition

of the operator AND discussed earlier.

L DNL R (Name List)

The left argument L is optional and may be omitted.

The array R can be any subset of the array (1 2 3 4).

The names of APL objects specified in R (labels if

R=l, variables if R=2 , functions if R=3 and operators

if R=4) are displayed. If L is included in the command,

only those names that begin with the alphabets included

in L, will be listed. 'AB' DNL 2 3 will display the

names of all variables and functions that begin with

the letters A or B.

21

NEW SYSTEM COMMANDS

)OUT FILENAME NAMELIST

This function creates on the A-disk a "transfer

file", with the specified file name and file type

APLTF, that contains the APL objects specified

in the namelist, which is optional. If the

namelist is omitted all user defined objects

and certain system variables are transferred.

This command can be very useful in situations

where the workspace is nearly full and more

room is needed. Some of the objects that

are not immediately needed can then transferred

and the objects erased to generate more room.

DIN FILENAME NAMELIST

This command will result in the creation, in the

active workspace, of the objects in the namelist

from the transfer file created with the)OUT

command. The namelist can be a subset of the

one used with the)OUT command and if it is

omitted the entire transfer file will be copied

into the workspace.

DNMS

The names of all user defined variables, functions

22

and operators will be listed. Each of the names

ends with a period followed by a 2 , 3 or a 4 to

indicate if it is a variable, function or operator

name. Optionally, the beginning and ending

alphabet sequence for the names to be listed, may be

included in the command; DNMS BE EXA will list

only those names that begin with the sequence

BE through EXA.

Sometimes it is convenient to assign a group name

to those objects that share a common trait. All

that it takes to create a group is to define a

character matrix with the names of the objects

to be included in the group as rows e.g.,

GROUP 1 <rz>

'

VAR1 ' '0P2' 'FN5' which creates a group

with three objects. The name of the group

itself may be included as one of the names in the

matrix; this would be useful when erasing the group

or when copying the group into another workspace.

To apply an APL command to an entire group, the

group name must be specified within parentheses.

If the command applies only to a subset, the

group name without parentheses followed by the

list of objects, must be specified. For

example, the command:)ERASE (GR0UP1) will

erase the three objects VAR1 , 0P2 and FN5.

However, DERASE GR0UP1 0P2 will only erase

the one object 0P2 and GR0UP1 will now have

23

just two objects. Also, the DNMS command will

list the group name as one of the variable

names.

)OPS

Lists the names of all user defined operators.

Here again, starting and ending alphabet

sequences may be specified.

D QUOTA

A six element array whose components are

the total amount of virtual memory, virtual

memory still unused, the workspace size,

workspace still available, size of the memory

reserved for shared storage and the maximum

number of shared variables that may be defined,

is displayed.

DPBS ON

PBS stands for printable backspace. This command

is necessary to generate "overstruck" characters

such as @, a, ?, = on terminals that do not have

separate individual keys for such characters.

After the command has been issued, an overstruck

character is generated by typing in sequence the

two component characters (e.g., D and -r) with the

underbar character " " C shift FD between them.

24

Thus, the sequence " a_ _ " is equivalent to the

overstruck character " a "
,

" = M is the

APL character for the DEPTH function and " D_-r "

is the same as the character EJ.

)RESET N

Clears the first N lines from the State Indicator.

If N is omitted the entire State Indicator is

cleared.

)HOST CMS-COMMAND

The specified CMS command will be executed and

control is returned to the APL2 environment. If

a CMS command is not specified, the name of the

host operating system (CMS at NPS) will be

displayed. The command)HOST SUBSET will

temporarily create a CMS sub-environment within

APL2 ; return to APL2 is achieved with the

command: EXIT.

)MSGN USERID MESSAGE

The message is sent to the user with the specified

userid.

25

APL2 EDITORS

Three different editors viz., a line editor , a full screen

editor and the editor associated with the computer operating system

(XEDIT at NPS) are available for use in APL2. The respective

commands for selecting these editors are

DEDITOR 1 for the Line Editor.

DEDITOR 2 for the Full Screen Editor.

^EDITOR XEDIT for XEDIT.

There will not be any system response when one of these

commands is issued unless an error is detected. The line editor is

essentially the same as the one in VSAPL and will not be discussed

in this report. The system editor XEDIT is one of the choices for

a full screen editor and it can be used to create or modify APL

functions, character variables and character matrices. Only

currently existing APL character variables and matrices can be

edited with XEDIT. In order to create a new such object, the first

step is to define a dummy variable or matrix with a specified name

in the workspace (for example: VARNAME*-' ' will create an empty

character variable); it can then be modified using the editor. The

editing process is initiated with the command: VVARNAME or VFNNAME

or VZ«-L FNNAME R etc. If APL characters are included in the object

being edited, issue the command: SET APL ON in XEDIT to insure that

they are properly displayed. All of the XEDIT commands will now be

available to the user. To add new lines at the end of an existing

object the INPUT command (I) may be used. However, it is very

26

important that the BOTTOM command CBOT) is issued prior to the

INPUT command. Otherwise all new lines will be written above the

"HEADER LINE" and it will not be possible to save the object or

even to abandon the editing process; turning the power off may be

the only way out.

The APL2 full screen editor is quite different from the VSAPL

editor. The new editor does not provide a command line at the

bottom of the screen to enter editing commands. All commands are

entered by typing certain APL characters between the square

brackets of any displayed line of the object being edited. When

the Enter key is pressed, the command is executed and the original

line will be restored. The following are some of the full screen

editor commands; unless stated otherwise these commands may be

entered on any displayed line.

[->] Abandon the edit session.

[V] Save the object; remain in editor (PF6).

v This command is entered at the end of any

displayed line or on a new line to save

the object and exit from the editor (PF3).

[Anl-n2] Delete lines nl through n2 inclusive.

[Anl,n2,..] Delete the specified lines nl, n2 etc.

[A-n] Delete lines 1 through n.

[An-] Delete lines n through the last line.

[a] Delete all lines except the header.

[l] Renumber the lines (PF2).

27

[v name nl-n2] Save (PUT) lines nl through n2 under

the specified name for later reuse.

The name is optional unless multiple

PUTs are planned. A different name must

be used with each PUT command; otherwise,

the file will contain only the objects

from the most recent PUT command.

[a name nl-n2] Retrieve (GET) specified lines saved

with the PUT command.

[] This command (blank line number) on any

line implies that the text on the line

is a continuation of the preceding line.

[t] Scroll forward one screen starting

with the cursor line (PF9).

[T] Scroll back to the preceding screen (PF7).

[4-] Scroll forward to the next screen (PF8).

[?] Display the PF key settings.

[$]expression This command will result in a temporary

exit from the editor to execute the APL

expression; the expression will not be a

part of the object being edited.

New lines may be added at the end of an existing object in one

of three ways: (1) type on a blank line after the last displayed

line or (2) type over the header line starting from the left line

number bracket ([) or (3) type over any existing line after

replacing its line number with that of the new line. In the latter

28

two cases, when the Enter key is pressed the new line will be

created at the end and the original lines will be restored intact.

Any existing line may be modified by typing over the existing

text or by typing the desired line number followed by the modified

text on a blank line at the end. An existing line may be

duplicated as a new line by replacing its line number with the

desired new line number; on pressing the Enter key the old line

will be restored and the new line is created.

A new line of text may be created between lines n and n+1 by

typing the new text on line n+1 starting from the left bracket ([

) of the line number. Pressing the Enter key will create the new

line with a fractional line number e.g., [3.1] and the (n+lDst line

will be restored. If desired, pressing PF2 key will renumber the

lines immediately; otherwise, the renumbering will be done

automatically at the end of the edit session.

More than one object can be edited simultaneouly with the APL2

full screen editor. While editing 0BJECT1 say, the command:

V0BJECT2 on any displayed line of 0BJECT1 (no text to the left or

right of the command) will display the second object for editing

starting from the line at which the command was issued. The lines

of the first object that have been overwritten may still be

displayed using scrolling. If desired a third object may be

brought in by following the same procedure, etc. When done with

editing an object, the object may be closed with the command: v at

29

the end of any displayed line of the object and the immediately

preceding object will become the current object for editing.

AUXILIARY PROCESSORS

Several auxiliary processors (APs) that allow the interfacing

of non-APL programs with APL programs are available to the APL2

users. These APs have many uses such as reading and writing to CMS

files, accessing peripherals and running non-APL programs such as

Fortran programs from an APL environment. Most of these processors

are automatically attached when the APL2 command is issued. One of

these APs, AP 121 CAPL2 Data File Processor) will be discussed here

in detail; two others viz., AP 100 (Host System Command Processor)

and AP 101 (Alternate Input Processor) will be briefly mentioned.

The Host System Command Processor (AP 100) allows the use of CP or

CMS commands; the APL command:)HOST CMS-COMMAND will execute the

CMS-COMMAND and returns the user to the APL environment. The

command:)H0ST SUBSET creates CMS as a sub-environment of APL.

Entering the command: RETURN will reactivate the APL environment.

The Alternate Input Processor (AP 101) can be used to run non-APL

programs such as Fortran programs and use its output as input to an

APL function. This processor can also be used to run an APL

program from the CMS environment. Details on the use of these

processors are in reference [2].

30

The APL2 Data File Processor CAP 121) allows the creation, on

the A-disk, of an APL file (file type VSAPLFL) containing

temporarily unneeded APL objects such as data sets, variables and

functions; these objects can be retrieved from the file when

needed. This capability is very useful in situations where several

different large data sets need to be processed and the active

workspace does not have enough room. Also, because of the

structure of an APL file it requires much less disk space to save

an APL file than an APL workspace that contains the same objects.

Two types of files, sequential or direct access, may be created

using this processor. Objects written to these files, called

records, are assigned consecutive numbers starting from 1 for

purposes of identification. Records from a direct file can be

retrieved in any order and sequential file records can only be read

on a first in first out basis; the 10th record in a sequential file

can only be accessed after the preceding 9 records are read. There

are no size limitations on records written to a sequential file but

when creating a direct file the size of the largest record (maximum

allowed is 4054 bytes) that will be written, must be specified.

The actual process of creating files and retrieving records is

achieved using "shared variables" and system functions/variables

such as DSVO, and DSVC. Two shared variables, a "control variable"

whose name must start with CTL and a "data variable" with a name

that must start with DAT are needed to interact with the AP 121

processor, and a prescribed dialogue must be carried out to

successfully create a file and to add or retrieve records. The

following example illustrates the sequence of commands needed to

31

121 DSVO" 'CTL1' 'DAT1'

2 2

CTL1<-'C TESTFILE D

CTL1

create a direct file called TESTFILE and to add certain ficticious

records to it.

Offer to share the two variables.

This is the system response to indicate

acceptance of the proposed variables. A

return of a indicates that the sharing

was unsuccessful; a 1 indicates that the

offer is pending.

Request the creation of a direct file

named TESTFILE; CTL1<-'C TESTFILE S' will

create a sequential file.

Check for successful creation of the file

OK. Any number other than indicates

failure; see reference [2] for the

meanings of other responses.

Open the file for sequential writing

of records. Records are written

sequentially in both types of files.

The number 100 indicates the size of

of the largest record.

Check for successful execution.

OK.

Write the APL variable VAR1

as the first record.

CTL1 Check

OK

CTL1<-FN1 Write the function FN1

CTL1<-'SWC TESTFILE 100'

CTL1

CTL1<-VAR1

32

CTL1

CTL1<-'JIM SMITH'

CTL1

CTL1«-Z

CTL1

CTL1«-' '

CTL1

CTL1<-'DR TESTFILE'

CTL1

CTLl<-0,3

CTL1

NAME 4-DATI

CTLK-0,

1

CTL1

as the second record.

Check

OK

Write the third record,

JIM SMITH.

Check

OK

Write the fourth record,

the nested variable Z.

Check.

OK

Close the file.

Check.

OK

Open the file for direct reading.

Check.

OK

Read the third record and store it in DAT1

,

the shared variable created earlier.

Check. This check is optional but is a

good idea.

OK

Creates the character variable NAME

which contains JIM SMITH.

Read the first record into DAT1.

Check.

OK

33

ZZ«-DAT1

CTL1*-' '

CTL1

ZZ is assigned the contents of Varl.

Done with reading from the file.

Check.

OK

The commands for reading from sequential files are as follows.

CTL1<-'SR TESTFILE' Open the file for sequential reading.

CTL1 Check.

OK

Varl«-CTL1 Varl is recreated in the workspace.

FN1«-CTL1 The function FN1 is created in the

workspace.

ZZ2<-CTL1 The character variable ZZ2 containing

JIM SMITH is created.

CTL1«-' ' Finished reading.

CTL1 Check.

OK

PUBLIC LIBRARIES

Two public libraries supplied with APL2 (LIB 1 and LIB 2) contain

the follwing workspaces:

LIB 1 - DISPLAY, EXAMPLES, MATHFNS , MEDIT,

UTILITY, WSINFO

LIB 2 - APLDATA, CMS, CMSIVP, FSC126, FSM,

34

GDMX, GRAPHPAK, PRINTWS , SQL, TRANSFER,

VAPLFILE, VSAMDATA

Each of these workspaces contains ABSTRACT, DESCRIBE, and HOW

variables that provide information about the workspace. Also, the

workspace WSINFO in LIB 1 has brief descriptions on all the

workspaces in both libraries. The more important workspaces are

EXAMPLES, MATHFNS, UTILITY, APLDATA, CMS and PRINTWS. The EXAMPLES

workspace contains examples on creating user defined operators and

functions. MATHFNS has functions to perform certain mathematical

computations such as finding eigenvalues, finding roots of

polynomials etc. UTILITY is similar to EXAMPLES and contains

various functions to perform frequently used operations. APLDATA

is made of functions to create and read from APL files, that

automatically carry out the necessary dialogue described in the

previous section. The CMS workspace includes functions for

interacting with the CMS operating system and to run non-APL

programs. PRINTWS may be used to print entire APL workspaces or

specified APL functions and variables on the computing center's

laser printer.

FINAL COMMENTS

A new release of APL2 (release 3), currently under test, has

several new features such as the ability to create and edit numeric

as well as nested arrays, no size restrictions on direct files, and

35

new nested array handling capabilities. This version can be

invoked with the command APL2T instead of APL2 ; this release

requires a minimum of 2 megabytes of virtual memory. It is

expected that release 3 will replace release 2, after the new

mainframe computer is acquired and installed.

36

REFERENCES

[1] "APL2 Programming: Language Reference",

IBM Order No . SH20-9227-1 , Program No. 5668-899,

Release 2.

[2] "APL2 Programming: System Services Reference",

IBM Order No . SH20-9218-1 , Program No. 5668-899,

Release 2.

[3] "APL2 At a Glance" by J. A. Brown, S. Pakin and

R.P. Polivka, Prentice Hall, New Jersey, 1988

37

DISTRIBUTION LIST

DIRECTOR (2)
DEFENSE TECH. INFORMATION

CENTER, CAMERON STATION
ALEXANDRIA, VA 22314

DEPT. OF MATHEMATICS
CODE 53
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 9 3 943

DIRECTOR OF RESEARCH ADM.
CODE 012
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 9 3 943

LIBRARY (2)

CODE 0142
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

PROF. TOKE JAYACHANDRAN (25
CODE 53JY
DEPARTMENT OF MATHEMATICS
MONTEREY, CA 9 3 943

CENTER FOR NAVAL ANALYSES
4401 Ford Ave.

Alexandria, VA 22302-0268

38

DUDLEY KNOX LIBRARY

3 2768 00302419 1

