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Microhaplotypemarkers havebecomean important research focus
in forensic genetics. However, many reported microhaplotype
markers have limited polymorphisms. In this study, we
developed a set of highly polymorphic microhaplotype markers
based on tri-allelic single-nucleotide polymorphisms. Eleven
newly discovered microhaplotypes along with nine previously
identified in our laboratory were studied. The microhaplotype
genotypes of unrelated individuals and familial samples were
generated on the MiSeq PE300 platform. These 20 loci have an
average greater than 3.5 effective number of alleles. Over the
whole set, the cumulative power of discrimination was 1–3.3 ×
10−18, the cumulative power of exclusion was 1–1.928 × 10−7 and
the theoretical probability of detecting a mixture was 1–1.427 ×
10−6. Differentiation comparisons of 26 populations from the
1000 Genomes Project distinguished among East Asian, South
Asian, African and European populations. Overall, these
markers enrich the current microhaplotype marker databases
and can be applied for individual identification, paternity testing
and biogeographic ancestry distinction.
1. Introduction
Single-nucleotide polymorphisms (SNPs) are the most abundant
variations in the human genome [1]. There are millions of SNPs
in each individual, making them significant in forensic research,
especially for the identification of individuals [2]. They have
many useful features. First, the amplicons of SNPs are smaller
than commonly used short tandem repeats (STRs), and this may
be helpful when analysing degraded samples. Second, SNPs
tend to be specific to certain populations, making them
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promising genetic markers for inferring ancestry. Moreover, their low mutation rates [3] make them

useful in paternity testing [4]. However, SNPs are mainly biallelic markers with limited polymorphic
content [5,6]. To establish a new forensic marker that expresses more polymorphism than single SNPs,
Pakstis et al. [7] proposed a multi-SNP haplotype system called mini-haplotype. This is defined as
three or more SNPs with high heterozygosity within a molecular region less than 10 kb. However, the
segment size of the mini-haplotype is too large for detection in forensic laboratories. On the basis of
mini-haplotype, Kidd et al. [8] optimized the concept of the microhaplotype to fit the application of
forensic science. A microhaplotype locus is a short segment of DNA (smaller than 200 bp) composed
of two or more SNPs that produces a multi-allelic haplotype [8]. Recombination rates among SNPs are
quite low in such a short region, and massively parallel sequencing (MPS) can be used to identify
phase-known haplotypes in a single sequence run [9]. Microhaplotype loci with improved
polymorphisms and low mutation rates are being widely studied for their potential use to supplement
the use of traditional forensic genetic markers [10–13].

Nonetheless, at present, STRs are the preferred markers used in forensic genetics owing to their multi-
allelic nature and thus high number of polymorphisms [14]. Capillary electrophoresis (CE) is generally
used for detection when applying STR genotyping in forensic genetics. However, STRs have high
mutation rates, and are not ideal for ancestry identification [15,16]. Their mutation rates are 103–104

times those of SNPs [17], which lead to false exclusion in paternity testing [18]. STRs often generate
artificial peaks such as stutter peaks and -A peaks in CE analyses, which may affect the analysis of
unbalanced DNA mixtures [19]. STR detection through MPS technology has disadvantages such as read
length limitations of most MPS platform, homopolymer sequencing errors generated during STR
sequencing and complex data interpretation [20–22]. There are no such problems with microhaplotypes
[23–25]. Therefore, microhaplotypes could be great supplementary tools for STRs in forensic science.

A number of microhaplotypes have been proposed [25–28], but many have a limited number of
polymorphisms. In this study, we constructed highly polymorphic microhaplotypes consisting of tri-
allelic SNPs. Then we explored their applicability in terms of identifying individuals, determining
biological relationships and detecting DNA mixtures using the MiSeq PE300 platform (Illumina, San
Diego, CA, USA). We also used them to infer biogeographic ancestry based on 1000 Genomes Phase 3
data [29]. The populations considered were from five main regions: East Asian (EAS), including Han
Chinese in Beijing (CHB), Han Chinese in Southern China (CHS), Chinese Dai in Xishuangbanna
(CDX), Kinh in Ho Chi Minh City Vietnam (KHV) and Japanese in Tokyo, Japan (JPT); African (AFR),
including African Caribbeans in Barbados (ACB), Americans of African ancestry in southwestern USA
(ASW), Esan in Nigeria (ESN), Gambian in Western Divisions in Gambia (GWD), Mende in Sierra
Leone (MSL), Luhya in Webuye, Kenya (LWK) and Yoruba in Ibadan, Nigeria (YRI); South Asian
(SAS), including Bengali from Bangladesh (BEB), Gujarati Indian from Houston, TX, USA (GIH),
Indian Telugu from the UK (ITU), Sri Lankan Tamil from the UK (STU) and Punjabi from Lahore,
Pakistan (PJL); European (EUR), including residents of Utah, USA with Northern and Western
European Ancestry (CEU), British in England and Scotland (GBR), Finnish in Finland (FIN), Iberian
population in Spain (IBS) and Toscani in Italy (TSI); and American (AMR), including Colombians
from Medellín, Colombia (CLM), Mexican ancestry from Los Angeles, USA (MXL), Puerto Ricans
from Puerto Rico (PUR) and Peruvians from Lima, Peru (PEL).
2. Material and methods
2.1. Candidate loci selection and primer design
SNPs, with a preference for tri-allelic ones, were selected according to the following criteria: (i) for Chinese
Han populations (CHB and CHS from the 1000 Genomes Project), a minor allele frequency (MAF) greater
than 0.10, and (ii) SNPs on the same microhaplotypes with an identical allele frequency were excluded.
Then each microhaplotype needed to be less than 200 bp, with a molecular distance between loci on the
same chromosome greater than 2.0 Mb to minimize the effects of linkage disequilibrium. The effective
number of alleles (Ae) needed to be greater than 3.0; and heterozygosity for each microhaplotype less
than or equal to 0.6. The naming of these microhaplotypes followed the principles proposed by Kidd
[30]; those in the same molecular region with different SNP compositions were distinguished from each
other using lower-case letters (a, b, c, …). The specific amplification primers were designed using
Primer Premier5.0 and Oligo software v. 2.3.7 (Molecular Biology Insights, Colorado Springs, CO,
USA). Finally, BLAST was used to verify amplicons homology.
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2.2. DNA samples

Blood samples were collected from Chinese Han populations who provided written informed consent
(ethics approval code: 2018-S194), including 50 unrelated individuals and 12 parent/child duos.

2.3. MPS and data analysis
All samples were amplified in a SmartChip using the Takara/WaferGen SmartChip TETM system
(Takara Bio, Kusatsu, Japan). Parallel nanolitre polymerase chain reaction (PCR)-based target
enrichment for amplicon sequencing was performed using a method similar to that described in De
Wilde et al. [31]. The PCR system (100 nl per well) for each sample comprised MasterMix 1×,
Universal Outer Primer 1 µM, Index Primer 1 µM, Inner Primer Pair 0.25 µM and DNA template
2.5 ng µl−1. PCR was performed on a T100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA)
with the following conditions: 95°C for 5 min, 10 cycles at 95°C for 15 s, 60°C for 30 s, 72°C for 60 s,
2 cycles at 95°C for 15 s, 80°C for 30 s, 60°C for 30 s, 72°C for 60 s, 8 cycles at 95°C for 15 s, 60°C for
30 s, 72°C for 60 s, 2 cycles at 95°C for 15 s, 80°C for 30 s, 60°C for 30 s, 72°C for 60 s, 8 cycles at 95°C
for 15 s, 60°C for 30 s, 72°C for 60 s, 10 cycles at 95°C for 15 s, 80°C for 30 s, 60°C for 30 s and 72°C
for 60 s. The PCR products were purified by gel-cut recovery. All samples were sequenced on the
MiSeq PE300 platform according to the manufacturer’s recommendations.

The base coverage threshold of sequencing was set to 30×. The raw data were processed with
bcl2fastq software for each sample and run through the BBDuk software of BBMap v. 37.75 (https://
sourceforge.net/projects/bbmap). The phase-known genotype data were ascertained using GATK
v. 4.0 [32] and HapCUT2 [33]. To verify the reproducibility of sequencing results, 30 samples were
re-sequenced on another chip.

2.4. STR genotyping
The DNA samples were amplified using a Goldeneye 20A kit (Peoplespot, Beijing, China) with a 9700
Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA). PCR products were separated and
detected using an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).
The genotypes were analysed using GeneMapperID v. 3.2 (Applied Biosystems).

2.5. Sanger sequencing
Sequencing accuracy was validated through T vector molecular cloning and Sanger sequencing. Ten
randomly selected loci were typed using the S14 sample and checked for consistency against the
sequencing result of the S14 sample using the MiSeq PE300 platform.

2.6. Statistical analysis
The forensic parameters were evaluated using modified Powerstats software v. 1.2 [34] based on the
sequencing results of 50 unrelated individuals, including the power of discrimination (PD), power of
exclusion (PE), observed heterozygosity (Ho) and p-value of exact tests for Hardy–Weinberg
equilibrium (HWE). Kidd & Speed [35] defined the effective number of alleles (Ae) for a locus as the
equivalent number of neutral alleles of equal frequency, calculated using the formula 1/∑pi

2 (where pi
represents the frequency of allele i). The probability of detecting DNA mixtures was calculated as
well. Linkage disequilibrium (LD) between loci was estimated with χ2-tests using Arlequin v. 3.5
software [36], and correlation coefficients (r2) for loci pairs were calculated using the SHEsis online
tool [37]. SNP information on 26 populations from 1000 Genomes Phase 3 data was used for
estimating haplotypes and haplotype frequencies with PHASE v. 2.1.1 [38,39]. We also calculated the
principal forensic parameters for all 26 populations to assess the applicability of the set of
microhaplotype markers to different populations. STRUCTURE software v. 2.3.4 [40] was used to
evaluate their utility for inferring ancestry. The program was run three times with 10 000 burn-ins and
50 000 Markov chain Monte Carlo iterations for each K value (K = 2–7); CLUMPP v. 1.1.2 [41] and
Distruct v. 1.1 [42] were used to visualize the results. We applied the neighbour-joining (NJ) method
[43] to establish a phylogenetic tree using POPTREE2 [44] and MEGA v. 7.0 [45]. F-statistic values
were calculated using Arlequin v. 3.5 software, and R software v. 3.4.2 was used to describe F-st
among populations with the ‘pheatmap’ package. For the 12 parent/child duos, paternity was

https://sourceforge.net/projects/bbmap
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https://sourceforge.net/projects/bbmap
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Figure 1. The MPS sequencing result and Sanger sequencing result of the S14 sample at mh04zha007 site.
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separately verified using the combined paternity index (CPI) based on STR genotyping and MiSeq
sequencing results.
3. Results and discussion
3.1. Marker selection and evaluation
After excluding loci according to the screening criteria and sequencing quality control threshold,
20 microhaplotypes were successfully sequenced on the MiSeq PE 300 platform. The accuracy of MPS
sequencingwas verified on the S14 sample for 10 randomly selected loci. The results are presented in figure 1.

The newly proposed markers identified in this study are mh02zha012, mh04zha001, mh04zha002,
mh04zha007, mh08zha011, mh09zha008, mh11zha006a, mh10zha002, mh14zha003, mh17zha001 and
mh22zha008. Table 1 lists the basic information and forensic parameters of the 20 microhaplotypes. All
loci consisted of three or more SNPs with one tri-allelic SNP, except for locus mh22zha008. The molecular
lengths of the 20 loci ranged from 8 to 178 bp; 13 that were less than 150 bp might be useful for slightly
degraded DNA samples, especially mh14zha003 which was only 8 bp. The detailed information of
specific primers and PCR amplicon sizes are reported in electronic supplementary material, table S1.

The HWE and LD test results are given in electronic supplementary material, table S2. There was no
significant deviation from HWE after Bonferroni correction ( p = 0.05/20 = 0.0025). The LD p-values of
microhaplotype markers on the same chromosome showed no significant deviation from expectations,
suggesting that these sites were in linkage equilibrium. To further evaluate LD, we calculated another
parameter, r2 (electronic supplementary material, figure S1). The r2 values between marker pairs on
the same chromosome were all under 0.04, supporting the previous conclusion of LD tests.

TheAe values of the 20microhaplotypes ranged from2.818 (mh04zha001) to 4.995 (mh19zha007),with an
average value of 3.724, suggestingwide applicability of this system in forensic practice [35].We compared the
average Ae value and the matching probability (MP, the probability that two randomly selected individuals
have the same genotype at the tested locus) of the set with other microhaplotypes proposed in table 2. Ae

values correlate with the ability of microhaplotype loci to detect and deconvolute DNA mixtures [46]. For
instance, when a microhaplotype locus with an Ae value of 3.0 is applied for detecting a mixture of two
unrelated individuals, the probability of there being a third allele was 0.4444 under the simple HWE
model [35]. Hence, the maximum probability of detecting a mixture for this locus was 0.4444; for a locus
with an Ae value of 4.0, the maximum probability would be 0.65625. We used the minimal integral value
of Ae for our probability calculation. The cumulative probability of detecting a mixture with the set of
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Table 2. The comparison of forensic parameters between microhaplotype markers.

number
of loci populations average value of Ae average value of MP reference

87 100 Italians 3.043 0.2396 Turchi et al. [27]

25 60 unrelated Chinese Han individuals 3.230 0.1622 Chen et al. [11]

26 CHB populations from 1000 Genomes 3.571 0.1387 Chen et al. [28]

CHS populations from 1000 Genomes 3.566 0.1411

20 CHB populations from 1000 Genomes 3.762 0.1228 in this study

CHS populations from 1000 Genomes 3.721 0.1281

50 unrelated Chinese Han individuals 3.724 0.1342
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Figure 2. The average value of Ae for five main continents from 1000 Genomes Project.
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microhaplotypes was equal to 1− (1− 0.4444)15 (1− 0.65625)4 = 0.999997927. Ae values convey information
on the polymorphisms of markers, and we assessed how these could be used to analyse DNAmixtures. The
larger theAe values reflect the better capacityofdetectingmixedDNAsamples. ThePDof 20 loci ranged from
0.801 to 0.916 with an average value of 0.866. The cumulative PD value of the set was 1–3.3 × 10−18. The PE
values of those loci ranged from 0.342 to 0.755 with a mean value of 0.523, and the cumulative PE was
1–1.928 × 10−7. The Ho values of all loci were greater than 0.6. The observed alleles of microhaplotypes
and allele frequencies are illustrated in electronic supplementary material, figure S2; most
microhaplotypes had at least four alleles, although the maximum number was 12 for locus mh04zha004.

The principal forensic statistics are summarized in electronic supplementary material, table S3. The
combined MP of 26 populations was calculated following the method proposed by Balding & Nichols
[47], and ranged from 9.57 × 10−4 (MSL population) to 1.04 × 10−12 (STU population). The combined
MP of CHB population for unrelated individuals was 8.73 × 10−11, suggesting this set can be used
independently for personal identification. Alleles observed in the global populations and allele
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Figure 3. The STRUCTURE analysis of 26 populations based on the set of microhaplotypes.
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frequencies are presented in electronic supplementary material, table S4, the allele frequencies of tri-
allelic SNPs for every microhaplotype are given in electronic supplementary material, table S5. We
speculate that the tri-allelic SNPs in microhaplotypes contribute significantly to the polymorphism of
each locus in the Chinese Han population. The Ae values of 20 loci were calculated for 26
populations, and average Ae for five main regions are depicted in figure 2. Note that EAS populations
all have an average Ae > 3.0 at all loci. More population genetic studies of this highly polymorphic
panel will be done in the future, so that this panel could be applied in forensic casework.
3.2. Biogeographic ancestry distinction
The results of STRUCTURE analysis are shown in figure 3. At K = 2, the AFR populations (ACB, ASW,
MSL, GWD, LWK, ESN and YRI) were distinguished from the others. At K = 3, it was possible to find
genetic differences between AFR and EAS. At K = 4, the four populations of AFR, SAS (BEB, GIH, ITU,
STU and PJL), EAS and EUR (GBR, FIN, CEU, IBS and TSI) were separated, but AMR (PEL, MXL,
CLM and PUR) populations were not separated from EUR. At K = 5, populations of AMR and EUR
formed two mixed clusters that could be attributed to the immigration history of the AMR population
from Europe. Another reason for poor differentiation might be the small number of loci and the
deficiency of markers’ ancestry information. Because the set of microhaplotypes was not specifically
designed for inferring ancestry, we focused more on Ae values than Rosenberg’s informativeness (In)
values [46]. The heatmap of F-st is illustrated in electronic supplementary material, figure S3. The AFR
populations clustered in the upper left part of the figure with negligible F-st values. Conversely, there
was a high F-st value between AFR and EAS populations, representing significant genetic differentiation
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among African and East Asia populations. A phylogenetic tree was constructed using the NJ method
(electronic supplementary material, figure S5); it produced five main branches (basically consistent with
geographical distribution) extending from a rooted tree starting with AFR populations. Taken together,
these results indicate that our system unambiguously differentiated between four major populations:
East Asian, African, South Asian and European/American.

3.3. Determination of biological relationships
The specific genotypes and CPI values of 12 parent/child duos based on microhaplotype sequencing and
CE of STR markers are shown in electronic supplementary material, table S6. The genotypes of 20
microhaplotype loci for all duos are in accordance with Mendel’s law of inheritance. The CPI value of
eight duos (P2, P3, P4, P5, P6, P8, P9 and P11) exceeded the threshold value of 10 000, which could be
direct confirmation of paternity. Furthermore, we compared the log10 values of CPI using a single
marker type (microhaplotype or STR) with those using STR markers with our set of microhaplotypes
and show the results in figure 4 (TPOX loci were ruled out from final cumulative operation based on
LD test results). The combined CPI values all exceeded 10 000. For group P5, the CPI value based on
STR markers did not reach the threshold of 10 000 because there was a non-matching locus (D12S391).
However, we confirmed the relationship between a mother and son for P5 using our microhaplotype
combinations. Considering the good polymorphism and low mutation rates of our microhaplotype
set, we believe that can be a complementary system for the routinely used STR markers. Given the
high throughput of MPS, our panel can be combined with other microhaplotype panels such as Zhu’s
kinship analysis panel [48], to improve the forensic efficacy of paternity testing.
4. Conclusion
We developed a set of highly polymorphic microhaplotypes and evaluated their use for forensic
analyses. The lengths of loci were limited to 200 bp and most amplicons were less than 300 bp,
making them amenable to the MPS method. Moreover, several loci with small amplicons can be
applied for the analysis of slightly degraded DNA samples. These markers will be particularly helpful
for mixture analyses and for identifying individuals from East Asian populations. The population
specificity of these markers will be helpful for inferring biogeographic ancestry. We believe that this
microhaplotype set is a useful addition to forensic genetic testing.
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