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TRANSLA'TOR’S PRETACF.

In presenting to the English student Bou-
charlat’s Treatise on the Differential and Integral
Calculus, the Translator fecls confident that, if
only his own part have been satisfactorily executed,
his labours will meet with a favourable reception :
the Work itsclf has already obtained the appro-
bation of the public, for the simplicity and ele-
gance with which a somewhat abstruse subject has
been treated.

It is presumed in the original that the reader
is alrcady acquainted with the elementary prin-
ciples of curve lines; and as it will be impossible
for him to proceed without at least a slight know-
ledge of that branch of mathematics, the Trans-
lator has been induced, by the advice of his friends,
to give a short introductory chapter on that sub-
ject. The matetials for this he has sclected chiefly
from DBoucharlat’s ¢ Theorie des Courbes,” and
though compelled by circumstances to be brief, he
trusts that sufficient has been given to enable the
student to peruse, without difficulty, the subse-
quent pages of the Work.

Catharine Hall,
Oct. 30, 1827.
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AB Vb 21 .00 ()
ABC = V3 s abe . 1 ... (2).

It therefore V7, or the square deseribed on 'V, be tuken as
the unit of surface, it appears, from ratio (1), that the
rectangle whose sides are A and 13, has the same ratio to
this square that the algebraical product ab has to unity ;
«b therefore represents the rectangle AB; and similarly,
V? being taken for the cubical unit, abe will represent
the rectangular parallclopiped whose contiguous sides are
a, b, ¢, and whose volume is abc times V2,

2. Having thus obtained the mcans of denoting geo-
metrical magnitudes by algebraical symbols, it follows
that the conditions of a geometrical problem may be ex-
pressed by those of an algebraical cquation; and con-
verscly, the conditions of an algcebraical equation may be
represented by the relations existing between different
geometrical magnitu-es.

3. We will give examples of cach case ; and first of a
geometrical problem reduced to an algebraical equation.

Ex. 1. Q.et it be required to find a mean proportional
hetween two given lines.

Suppose @ and & represent the two given lines, and
the line required ; we have then, by the question,

a:x b,
whence
&=y l'lb—-;
and the problem is thus reduced to determining the square
root of the product ah, and taking the line, o which that

root corresponds,
Ex. £ To dinde a given straight line AB (fig. 2) into
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two parts, so that the rectangle contained by the parts
may be equal to a given square.

Let ¢ be a side of the square, & the given line, 2 one
of the parts, and therefore a—a the other: then, by the
question, we have

z(a—a)=c';
and the problem reduces itself to determining the roots of
the quadratic equation (e~ )= c*

These roots are La--a/fa*—c%, La— +/La®—c, and
arc evidently both positive, since $a*—c¢? is less than Ja’,
and thercfore 4/1a?—c¢* less than v tat or ja.

The side ¢ of the squarc must be less than a, or other-

wise za°—c? would be negative, when the roots consc-

quently would become imaginary, and the problem im-
possible.

Ex. 3. Oun a given line AB (fig. ?) it is required to Fig. 2.
describe a triangle APB, so that the angle APB at the
vertex shall be a right angle.

Let P be the vertex of the triangle required, PM a per-
pendicular on the base AB; and assume

AM=qa, PM =y, AM=ux, and thercforc BM=a - 2.

Then the triangles APM, BPM being similar, we have
AM : PM :: PM: MB,
or
xry ity a—ux,
whence
a(e—2)=y%

which is the equation that expresses the relation between
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AM and PM, and these lines being known, it is evident
that the triangle is known also.

4. The equations that result from these and similar
processcs must necessarily be homogencous, or cach term
of the same number of dimensions. For thesc equations
express the relations existing between geomctrical magni-
tudes, and the species of any one of those magnitudes
depends on the dimension of the term which represcuts
it; thus a term a of one dimension represents a straight
line; a term a2 or ab of two dimcnsions represents a sur-
face, and so on. If thercfore an equation be given, which
is not homogeneous, it will presumec a rclation to exist
between magnitudes of different kinds, as between a line
and a surface; but such a rclation is impossible, and the
cquation therefore cannot be true.

5. We will procecd now to the converse casc, and show
how the conditions of an algcbraical cquation may be re-
presented by those of a geometrical problem.

Ix. 4. Having given the equation x=/ab; Gnd a.
Squaring the equation, we have

x'=ab,
and thercfore
a:v::x:b
Let AM, MB, X, (fig. 2) be the lines represented by
a, b, x, respectively, then
AM : X :: X : MB,

and what is required, is to find a mean proportional he-
tween the given lines AM, MB; which is thus cffected :

Let the lines AM and BM be placed in one straight
line AB, so that AM=qa, BM=0; on AB as diameter
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describe a semicircle APB, and at M erect the perpen-
dicular MP; then, by the property of the circle,

AM : MP :: MP : MB,

and PM therefore is the mean proportional required, and
the symbol representing PM is the valuc of z.

Ex. 5. Let it be required to find the roots of the
equation

av—a'=c'.
This may be put under the form
(e —x)=cty

so that if we take AB (fig. ) =a, AM =ux, and there- g, o,
fore BM =a~a, and also take C=¢, we shall have

AM.MB=¢C;,

and the question reduces itself to dividing the linc AB
into two parts, so that the rectangle contained by the parts
shall be equal to the square of a given line C. For this
purpose we must describe on AB the semicircle APB,
whose centre is G, the middle point of AB; ercct GD
perpendicular to AB; in GD take G E equal to the given
line C, and through E draw PEP’ parallel to AB, and
PM perpendicular to AB; then AB will be divided in
M, as is required.  For by the property of the circle

AM . MB=PM:=GE*=C-.

T'he proposed equation, being a quadratic, must have two
roots, and there must consequently be two points in AB,
which answer the conditions; P'M' being drawn perpen-
dicular to AB, it will be seen that these two points are
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M, M/, and the dines corresponding to the two roots o
values of & are AM, AM'.

This example is the converse of example (2), and our
construction will show us that ¢ must not be greater than
s for in that casc C would be greater than 1AB, 1. c.
greater than the radius GD, and when we took GF=C,
It would fall above D without the circle, and there would
be no point P in the cirele correspouding to it.

The process we have been employine s called con-
structing the cquation.

6. A problem is said to be determinate or indeter-
minate, accordingly as it admits of a {finite or an inde-
finite number of solutions.

Thus the example (2) gives us an instance of 2 de-
terminate problem ; for on referring to fig. 2, we see
that there are only two points, M and M', which can
satisfy the conditions : example (8), on the contrary,
belongs to the class of indeterminate problems ; for since
the angle in a semicircle is always a right angle, the
vertex of the triangle may be any point of the semi-
circle APB (fig. 2).

A problem is casily recognized as being determinate
or indeterminate, from the naturc of the equation to
which it gives rise: in example (2), for instance, the
cquation that results is x(a—a)=c*; and this being a
quadratic, with only one variable, it can admit of but
two solutions. But in example (8) the cquation is . . . .
x(@—x)=y% and this being a single cquation between
two variables # and y, which arc not connccted in any
other way, it belongs to what, in algebra, are termed in-
determinate equations.
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On curves and therr coordinate awves.

7. When a single equation is given between two in-
determinate quantities  and y, by assigning different ar-
bitrary values to onc of the quantities, as for instance,
an indefinite number of values may be obtained for z. If,
for example. we have the equation

y=2ur+1;

making =0, we shall find y=1,
x=1,.........y=3,
r=2,.........y=5,
=8, ... i y="T;

and proceeding in this way, it is obvious that we may
obtair an unlimited number of corresponding values of
« aad y, connected always by the equation y=2z + 1.

8. Let now Ax, Ay (fig. 3) be two straight lines of un- Fig. 3.
limited length, and at right angles to cach other, and let
the values of @ be represented by lines such as AM mea-
surcd along Az from the fixed point A, and the cor-
responding values of y be similarly represented by lines
such as AN, measured from the same point A along Ay ;
also at the point M draw MT parallel and equal to AN ;
then AM and MP represent corresponding values of x
and y, and if # or AP be supposed to commence from
zero, and to pass through cvery stage of magnitude, the
values of y will be represented by an indefinite number
of contiguous lines such as M P, all parallel to each other,
and the extremities of these lines will, by their union,
constitute a continuous line PQ (fig. 3), the form of
which will depend on the equation which connects the

corresponding values of z and 3.
b
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The line thus traced out is called a curve; the equa-
tion from which the values of AM, MP are deduced, is
called the equation to the curve, and the curve itsclf is
said to be the locus of the equation.

9. It will be seen from this that every indeterminate
cquation must have some curve corresponding to it, and
conversely every curve must be the locus of some equa-
tion : it may cither be required from the cquation to de-
termine the figure and properties of the curve; or from
given propertics of the curve to determine its equation ;
before entering on this subject, however, we must make
some further remarks on the lines Az, Ay, and AM, MFP
measured along those lincs.

10. The lines AM, AN, or AM, MP, when spoken
of together, are called the coordinates of the point P; to
distinguish them from each other, AM is also called the
abscissa, and MP the ordinate of that point; the %de-
finite lines A, Ay we denominate the axes, and A the
origin of the coordinatcs.

The axes may be inclined at any angle to cach other,
but they are generally drawn at right angles, and the co-
ordinates are then termed rectangular.

11. Hitherto the coordinates have becn supposed to
be measured only towards « and  ; but if the axes be taken
to extend indefinitely from A in the directions of x, 2/,
and y, ¥, respectively, we may suppose the coordinates
to be measured also towards 2’ and z/.

Now if a line measured in one direction be supposed
positive, a line measured in the opposite direction must
be supposed negative; and if therefore the values of »
measured to the right of A be taken as positive, those to
the left of A, or towards 2', must be considered negative,
and similarly for the values of y.
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Hence for apoint P in the plane yAx we have 42, 4y,

| L yAz'. .. ... -z, +y,
P, YAz .. ... —Z, =Y,
P"o.... YAxr ..... +z, —y.

12, The position of agy point in a planc may be de-
termined if its coordinates, measured from a given point,
arc known; for let A (fig. 3) be the origin of the co- Fig.3.
ordinates, and a, b, the abscissa and ordinate of the point :
if, then, along the axis Ax we take AM=a, and draw
MP, an indcfinite line, parallel to Ay, the point required
must be in the line MP, for that line comprises all points
which have @ for then abscissa; similarly if we take
AN=b, and draw NP parallel to Az, the point must be
mn that line, and it must therefore be in P, the intersce-
tion of the lines MP, NP. When the coordinates of the
point are known, they arc generally represented by a, b;
whi unknown or variable, by z, y.

13. Another method of determining the position of a
point in a plane is also used, in which, instead of both
axes being fixed as before, one of the axes, as z2' (fig. 4) Fig. 4.
and the origin A are supposed to be fixed, whilst the other
axis yy' is inclined to x2' at a variable angle.

On this supposition, let P be any point, and make the
axis yy pass through it; then it is clear that P riay be
determined if we know the angle 2’Ay at which the axis
Ay is inclined to Az, and also the distance AP measured
along Ay.

The origin A is called the pole, AP the radius wector,
and the equation between the angle 2'Ay, and the distance
AP, is called the polar cquation. AP is represented ge-
nerally by u or r, and the angle 2’Ay by 6.

14. An cquation between rectangular coordinates is
readily transformed into one betwcen polar, and the con~

b2
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MP, of any point P by x, %, and draw BN perpendicular
to PM.
Then

y=PM=PN4+MN=PN + AB
=BN. tan PBN + AB
=AM.tan ACB+ AB
= z.tan ACB+ AB.

Now the angle ACB, and consequently its tangent, 1s
the same for all points in the line CBP, as is also AB,
and we will therefore represent these constant quantitics
by «, b, respectively, when we shall have

y=axt+b . ... (3):

which is the equation that exists between the coordinates
of any point P in the line CBP, and is therefore the
equation of that line.

This cquation is of the first degree, and it appears
therefore that the equation to a straight line is of the
first degree.

17. It may be shown converscly that every cquation
of the first degree is the cquation to some straight linc.
For, by inspecting the equation (3), it will be scen that
a, the constant coefficient of #, cxpresses the tangent of
the angle which the line CBP makes with the axis of a,
whilst b is the ordinate of the point in which that line
cuts the axis of y. If, therefore,

y=Az+ B,

which is a gencral simplc equation, be the equation pro-
Fig. 7. posed, by taking AB=1B (fig. 7), and drawing the line
BC inclined to Ax at an angle whose tangent is A, this
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line produced will be the one whose equation is the given
equation

y=Ar+ B.

If B=0, the line passes through the origin A.

If B be negative, the ljpe cuts the axis of ¥ in a point
below A, as B'C'P’ (fig. 8). Fig. 8.

If A be positive, the angle PCz is less than a right-
angle ; but it A be negative, that angle becomes obtuse,
and the line assumes the direction BCP (fig. 8).

If A=0, then y=B is constant, and the line is parallel
to Awx.

Ex. 1. Given the simple equation y=2x+ 3, required
the line of which it is the equation.

The eqnation being

y=2+3,
wiilp =0, we have y=38, and therefore taking AB=3
(fig- 7), B will be a point in the line : Fig. 7.
when y = 0, we have similarly ¥ =—3, and thercfore

taking AC in a negative direction and = £, C will be
another point; consequently joining BC, this line pro-
duced will be the one required.
Ex. 2. y=8z—6: required the linc of which this is
the equation.
Since
y=38x—0,

when x =0, we have y = -6,

when y =0, we have =2

and therefore taking AB’ (fig. 8) in a negative dircction, gz, 8.
and =6, and taking AC' in a positive dircction, and =2,

the line B'C’ produced will be the one whose equation is
y=3x—6.
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Ex. 8. 2y=8—52: required the linc of which it is the
equation.
From this we deduce

y=4-—

and making =0, we have y=4,

8
making y=0, we have 2 =%

8 .
whence taking AB=4 (fig. 8), and AC_—_-g the line
CBP, passing through the points B, C, will be the line

required.

Problems relating to straight lines.

18. Prob. 1. To find the equation to a strajght.w
passing through a given point.

The point being given, its coordinates are known ; lct
them be «, 8, and let the equation to the straight line be

=ax+b . ... (1)

At the point in question we have x =«, y =4, and
therefore

B=au+b .... (2);

whence, subtracting equations (1) and (2), one from the
other, we obtain

Yy—RB=a(r—u),

which is the equation to the line.
The constant a in this equation cannot be determined
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from the conditions given, so that the equation is indeter-
minate ; and so it ought to be ; for it is easily seen that
through the same point an infinite number of lines may
be drawn.

Prob. 2. Required the cquation to a straight line pass-
ing through two given points.

Let «, B; «’, 3, be the coordinates corresponding to
the two points ; and let the equation required be

y=ax+b . ... ()
then for the given points we have

B=aa+b....(2),
B=aw'+b....(3);

subtracting equation (8) from cquation (2), we have

~

nn!.hcreforc

B—p3' =d(a—a'),

a= —:
a—a

subtracting cquation (2) from equation (1), there remains
y—B=a(x— )

and substituting the value of a, we have
B—F
y—B=——(z—0)

for the equation required.

This equation is determinate; and so it manifestly
should be, since only one straight line can pass through
the same two points.

If there be three points taken whose coordinates are
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a, B; o, 85 «’, B’ respectively, the equation to the
straight line passing through the two first points is

,

y—p= p— (x—a);
the cquation to the line passing through the first and
third points is

y—B= i_f (z—a);

and therefore, that the two equations may be the samc,
or the same line pass through all the threc points, we
must have

B—B _B—B’

7 T
oa—o w—a

'The equation to the straight linc passing through two
given points may readily be obtained by gcometrical.n-
Fig. 0. siderations : for let (fig. 9) E, G, be the given points, P
any other point in the line passing through E, G, and
draw the ordinates EF, GH, PM; and ELN perpen-
dicular to PN,
"Then from the similar triangles EPN, EI.G, v have
PN : LG :: EN : El.;
whence
LG
PN= L. ENs
or
 GH—EF
"M—=FF—me——— — N
PM-EF AL—AFAM—AF),

and if the coordinates AF, E¥; AH, GH; AM, MP,
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be represented by «, 3; «, 8; 2, y, respectively, we
shall have, by substitution,

y—B:%—'—:—i(w-—u),

the same equation with the one deduced before.

Prob. 8. Given the equations to two lines, required
their point of intersection.

Let the equations to the lines be

y=ax+b, y =dz +¥:

then at the point of intersection, the coordinates being
the samc for both lines, we must have

y=y, r=ua,
and therefore

ax+b=d x40
r(a—a)=b—
V—b
Ta—a’
whence
y=ar+b
ab —
“Ta-a
abl—a'd
e

and these values of r and y give the coordinates at the
point of intersection.

Prob. 4. Required the angle formed by the intersec-
tion of two given lines.
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Let CBP, C'B'lY (fig. 10) be the two lincs, and their
cquations
y=ax+b, y=da'+ 0,
then
tan ACB=ugq, tan AC'B'=d':

If; now, O be the point of intersection and ON be drawn
parallel to Az, we shall have

angle POP'=PON —P/ON,
=ACB—-A(CB,
and therefore
tan POP'=tan (ACB—-AC'D')
_ tan ACB—tan AC'H
T 1+tan ACB Aan AC'B'
a—uad'
14aa”

Prob. 5. A straight line being given, to find the equa-
tion {o the linc perpendicular to it at a given point.

Let CBP (fig. 11) be the given line, CPR' the line
perpendicular to it at the point P, whose coordinates arc
a, B; and let the equations to the lines be

y=ux+b, Yy =dJ+1l;
then
tan PCx=a, tan PC'r=ad.
But CPC being a-right angle, we have
1

] e 1, IC= —cot POC'= —
tan PC'a= —tan PC'C= —cot PCC PO
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and therefore

a=—-.

a

Substituting this valuc in the equation to C'PB/, we have
1 J !
y’:—;x +0 ... (1),

and since I’, whose coordinates are a, §, is a point in the
line, we have for that point,

1
— - ! D
ﬁ"'a“"'b ce e (2),

whence, subtracting cquation (2) from cquation (1), we
obtain

:1/’—6:—;1;(1"—0.)

for the equation to the line C'PR'.

Prob. 6. Find the length of the perpendicular let fall
from a given point on a given line.

Let CBP (fig. 11) be the straight line, M the point Fig. 1Y
from which the perpendicular MP is let fall; &, 8 the
coordinates of that point, and the equation to the line
CcBP

y=ax+b.
Then in the triangle PMO we have

angle PMO=3—POM=7— CON=ACB;

but the equation y=ax+b gives us tan ACB=g,
and consequently

tan PMO=a,
b2
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whence
cos PMO= ——l— *,
V1 a?
Also

MO=MN -ON,

and O being a point in the line which corresponds to the
abscissa AN —«, we have

ON=aa+0b,
whence
MO=MN-ON
=p - (aa+D),
and therefore
MP=MO.cosPMO
_B~aa =
T vixat
. Let tan.f=a;
then cos’az-i"’i
tan2g
_ 1—cos26
=
whence
a?cos3f4-cos?6=1,
1
cos®d e
1
cos @ =
A 14a?
Also
sin @ =2
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LEquations to the conic sections.

19. To find the equation to the circle.

Let a and $ be the coordinates AB, BC (fig. 12) of Fig.12.
the centre C of a circle PP'P" described with a radius
CP=r. Take any point P in the circle, draw the ordi-
nate PN perpendicular to Az, and CM perpendicular to
PN, and let the coordinates AN, PN be represented by
2, y: then from the right-angled triangle CMP we have

CP:=CM:+4PM*
=(AN - AB):+(PN-BC)?,
or
1= (@)t H(y—P),
which i« the gencral equation to the circle.
If the suigin A be a point in the circumference of the
circle, ard the s~ 07 x be the diameter, then we have
a=7r, =0,
cau the - mstion becores
1= (2= 1)y,
whence
yPr=rt—(r—7r)?
=2rx—x®
¥y =+ VUx—2%
If the centre C of the circle be made the origin, then
a=0, =0,
and the equation, therefore, is reduced to
rt=x%+38,
whence
y=+= Vi —2%,



Fig. 13.
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20, The general e quation
1t=(x—a)*+(y—p)’

being solved with regard to , gives us
y=B+ ri—(z—a)*;
and with regard to z, gives
r=a+ /ri—(y—pB)

It appears, therefore, from these expressions, first, that
for every value of 2 we have two values of y, and sccondly
that for every value of y we have two of z.

Now taking any abscissa AN=uz, the ordinate NP
cuts the circle in two points P, P¥, and therefore the two
values of y corresponding to the single one AN of & arc

PN=8+ vr:—(z—a)?,
PIN=f= vri—(z—a).

Again, drawing PP’ parallel to Az, we have PN=P'N/,
and {the valuc of y is the same for the two points P, P',
which have different abscissee AN, AN/, so that for one
value PN of y we have two values of «

AN =g+ 7=(y—B)5
AN'=a— /= (y—P)E.

21. To find the cquation to the parabola.

Let DKR (fig. 13) be a fixed straight line of inde-
finite‘extent, S a given point, SP another straight line of
indefinite extent revolving about S. If then in all po-
sitions of the line SP, the point P be so taken that, PM
being drawn perpendicular to DR, PM shall be equal to



R INTRODUCTION. XXXiil
SP, the locus of P will be a curve AP called the pa-
rabola.

Through S draw SK perpendicular to DR, and bisect
SK in A; then from our definition A will be a point in
the curve.

" Let the line AS produced be taken for the axis of ,
and A the origin; draw the ordinate PN, and let

AS=a, AN=zx, PN=y.

Now by the property of the curve, we have SP=PM;
and

SP!=SN*+ PN'=(AN— AS):+ PN=

PM*=KN?*=(AK + AN)*=(AS+AN)?;
whence
(AN —-AS): t PN*=(AS+ AN)?,
or
(r—a)'+y=(a +w)

and therefore

y=(a+2)'—(r—a)
=4ax

which is the equation required.
Let BL be the ordinate through S, then, since AS =a,

y*=4as,
y=2a,
and therefore
SL=2AS.

DR is called the director, A the vertex, S the focus, and

BL the latus rectum of the parabola.
c



Fig. 14.
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22, Let S and H (fig. 14) be two fixed points, and
suppose that the indcfinite stralght lines SP, HP revolve
about 8, H, intersccting in P so that SP+HP shall
always be equal to a given quantity : then the point P
traces out a curve called the ellipse.

Join §, H, and pm(lu((- the line SH to the curve in
A, M; bisect SH in C, and through C draw BCD per-
pendicular to SH, and cutting the curve in the points
B, D: then C is called the centre of the cllipse; S, II,
the foci; A, M, the vertices; AM the major, and BD
the minor axes,

23. The major axis AM is equal to the sum of the
focal distances SP ¢ 1D,

For, by the property of the curve, we have

SP + 1P —_SA 4 1A,

SP4 1P - SM+1TM,
and thercfore adding these, theve results

2(SP+1IP) =AM | AM=2AM,
and consequently
SP P AM

The triangles SBC, TIBC, are manifestly cqual and si-
milar, and therefore

sB=11B;

but
SB +HB=AM,
whence
285B=2 AC,
and

SB=AC= ! wajor aris.
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The ratio of SC to AC measures what is called the ec-
centricity of the ellipse, so that the farther S is taken
from C, AC remaining the same, the greater is the ec-
centricity : a circle may be cousidered as an ellipse in
which S, H, meet in the centre C, or in which the eccen-
tricity is 0.

24. If the lines SP, IIP, be so taken that the cxcess
of HP over ST, or (11>—SP), be constantly the same,
then P traces out a curve AP (fig. 13) called the hy- Fig. 15.
perhola.

23. To find the cquation to the cllipse.  Let C the
centre of the ellipse ABM (fig. 14) be taken for the origin Fig. 14.
of the coordinates, and the major axis for the axis of or:

P being any point in the curve, draw the ordinate PN,
and suppose
AC=u, BC=0,SC=wva -#=¢, CON ~ur, PN=y:
then S’ = V3N PN = v/ 12" +05
HP= VHN'+PN* =/ ¢ a4y

But SP + HP =24 by property of the cllipse, and there-
fore

2a= Vegat Yyt Ve—at+ Y,

whence

R— Vela+y'=vetattys
and squaring, and employing the common processes of
Algebra, we have

T dat—4a v (c— .2'59 +yr (-2 = (e +a)+ 0,
4a®—4a /(c—x) +y'=(c + ) —(¢c—a) =4,

a*—ay/ (e—x)+y*=er,
c?2
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whence, by transposition and change of sign,

a\(e—x)tyi=a—ex;
and squaring again, we-have

a¥(c —x)* + o'y’ = a*— 2 ext+e'a?,

or

apt=ar —Ratex +a® —a* (e’ — 2ex + &)
=da* + ctt —ae! —-a’'x’
=a* +z*(a*—b") —a*(a® ~ b ) —uz:
= — % +al:
= (e’ —.r),

and therefore

L I)L‘ ool .
Y g (@ ),

which is the equation to the ellipse.

If the origin be transferred to the point A, whose co-
ordinates, reckoned from origin C, are —a, 0, then, by
the rule given (art. 15) for changing the origin, we have,
for the coordinates AN, PN, mcasured from A, the
cquation

. b
y~._;1-‘.,-(a- ~(x-a))
:b;i(2a47-w‘).

a’

26. The equation to the hyperbola, deduced in a si-
milar manner, is

.. i
for origin C, y'= gzt =),
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I/
for origin A, yi= é(Qa.r +x*).

27. Let SL (fig. 14) be the ordinate through S the Fig. 14.
focus, then the value of  corresponding to this ordinate
is CSor 1/a%—0% and substituting this value in the equa-
tion to the ellipse

o b": Qg o
y=i (=),

we have

whenee

which gives us the value of SL.

The line LL/, drawn through the focus at right angles
to the major axis, is called the Latus Rectum of the cl-
lipse, and the value of the Latus Rectum thcrefore is
Qb?.

- which shows that it is a mean proportional between
the major and minor axes.

28. Let APBM (fig. 16) be an ellipse with AM, BE ¥yg. 16.
for its major and minor axes: on AM as diameter de-
scribe the circle ADM, and draw the ordinate QPN :
then A being considered the origin,



Fig. 16.
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the equation to the circle is y*=2az —22=QNv,

]9
the equation to the ellipse is :é(ﬂax —a%)=DN¢,

and we have therefore -
PN2 : QN* :: — 1 :: 02 @,

or

PN:QN ::46: a,

which is a constant ratio.

This property gives us the following easy mode of
describing an ellipse : take a cirdle ADM (fig. 16) on
diameter ACM, at the centre C crect CI) at right angles
to AM, and take any fixed pont B in it: then if we draw
ordinates such as QN, and take always in QN the point
P, so that

PN : QN :: BC : AC,

the locus of P will be an cllipse with AM and BL for its
major and minor axcs.

It will be evident from this that an indefinite number
of ellipses may be described on the same line ACM as
the major axis; for an indefinite number of points such
as B may be taken in the line CB, and for each point we
shall have an ellipse.  The position of the focus S will
be determined in cach casc by taking CS= va®—,
where a, b, are the semi-major and minor axes.

29. The four curves now described, the circle, the
cllipse, the parabola, and the hyperbola, are called the
conic sections, from the circumstance that if’ any right-
angled cone be cut by a plane, perpendicular to the plance
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of the generating triangle, the section of the cone will be
one or other of these curves.
Let ABD (fig. 17) be the right-angled cone, BCD its Fig. 17.
circular base: if then the cutting planc be parallel to the
base, the scction will evidently be a circle.
If the plane cut both slant sides of the cone, the section
will be an cllipse.
If the planc be parallcl to one of the slant sides, the
section will be a parabola.
If, lastly, the plane have to be produced backwards to Fig. 18.
mect one of the slant sides, the section will be an hyper-
bola.
These propertics arc thus proved :
80. Let ABC (fig. 17) be a right cone generated by Fig. 17.
the revolution of the plaue isosceles triangle ABC about
the axis AD, and suppose this cone to be cut by a plane
NO perpeudicular to the plane of the triangle ABC : let
NO be the common scetion of the planes, NP’OQ the see-
tion of the conc, PMQ any ordinate at right angles to NO ;
EYX a scetion of the cone made by a plane passing through
PQ perpendicular to the triangle ABC, and parallel to
the base BC, when of course EF will be a circle, and also
the line P’Q, being in the planc NO, which is perpendi-
cular to ABC, will itsell be perpendicular to ABC, and
therefore at right angles to the line EF in that plane.
Now let

/. BAC=a, £ AON=0, and therctore /. ANO
=r—(a+6), \O=c, NM=x, PM=y:

then, by property of the circle, we have
PM?=1EM x MF,

or
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y»=EMxMF . ... (1);
and, by the property of triangles,
sin ENM sin ANO
sinNEM =MN. sin AEF
sin(w —HO)_ sin (a-t+ 0)
T @ 5 =& a

sin (—2—— —-é— COS§

EM=MN.

. stn MOF ; sin AON
MP=MO. = 5o =(NO-NM). <A TE

sin g

=(NO—-NM).

COS§

0 A0, SINAU _sina
NO=AO. smANO ~— “'gn (x+6)
Substituting these values in the equation (1) we obtain

2 _

sin d.sin(z+0) / c.sina )
v

y=a o \sin(at0)
COS"—‘,i-
sin 0 . .
= .. " (c. sin ¢ — 2. sin(e« + 0)) ce(2),
cos“'-?z—

which is the equation to the section of the cone.

This equation will admit of four cases, according to
the position of NO.

1°. Let NO meet both slant sides of the ellipse; then
(+ 0) will be less than =, sin («+ ¢) will be positive, and
the equation (2) may be put under the form
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yim sin (a4 0) sin 0/ ¢. sin «

‘ \sin(u+0)x_x2) e B

o
2
COos® —

but the equation to an ellipse whose semi-major and

o

. . b
minor axes are & and b, is y=— (2az—2*), and com-

paring cquation (3) with this, we sce that equation (3)
belongs to an ellipse, in which

c.sin o ¢ sin z
g = ="+ —————
sin (e + 0) 2 sin(a+?)’

b sin(x+40)sind

w 4

g

o
2
cos?
and thercfore
¢ sinta sin (« 4-0) sin 6
ez — . . -
4 sin? (z+14) o
COS '—Q—
c: sin® 2 sin ¢
T4 o osin(a+9)y
COS' §
whencee
b ¢ sinaJ sin
2 a &/ sin(a+ 6)
COS—
2

s a.J__;ﬁnﬂ .
= G sinTg sin(a—-0)

The section, thercfore, is an ellipse with axes thus deter-
mined.



xlin INTRODUCTION.

2°, Let NO be parallel to one of the slant sides as AB,
then (a4-0)=w, sin (a-4-0)=0, the values of the axes be-
come infinite, and the equation (2) becomes
c.sin b. sina
"lj‘l= —_—2

o
cos®=—
2

c.sin (r—a) sina
= o

a
cos®—

2

¢.sina
—_

a
o)
COos o

. a

o [ > v
4¢. sin g COoy P
pa— X

a
vyg? - —
(.Obc)

2
-1
=4¢.sin—. 2,
(9]
~

which is the equation to a parabola, in which, if ¢ be the
Latus Rectum,

. . a
a = 4c. sin*—.
2

"The section thercfore is a parabola of that description.
30, If NO have to be produced backwards to mect BA
Fig. 18 also produced as in (fig. 18), then a + 6 becomes greater
than #, and sin (2 + §) becomes negative, so that the equa-

tion (2) will agree with the equation to the hyperbola

o

he
Y= 7‘(2(0.1: 4- &),

the axes being determined as in the cllipse.
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4o. If the scction be parallel to the basec of the cone,

then
a

g
_gt + "2—7

o R

0= atl=

V|3

and
-3

. . fe T
sin (« +§) =sin a+g )= s

in 6 . (/9 -2 a
s =sin 7)-—? —COS—Q,

~

so that equation (2) becomes

COS
Y

m—.z*"\

)

. 2 c.sina
J a

. a
COs %) COs -2-

. a
= 2c. SN L= 3
b

which is the equation to a cirele whose radius is ¢. sin o

This is,1n fact, a particular instance of case 1, in which ¢

. T oa . ..
is taken cqual to g g5 on this supposition, the values

of a and b become

¢ sina . a
(t=-é‘"— . = C. SlnL—),
COs 2—'
. a
LOSE

. a
—_— = (. bll‘\—2—,

-
b=csin— —
2 a
(,0572-
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which shows that the axes are equal, and the ellipse con-
sequently becomes a circle.

31. The equations which we have deduced to the conic
sections are all of the quadratic form, and it may be shown
generally that every quadratic equation belongs to some
one of those sections.

The form of a gencral quadratic equation between two
variables # and v is

Ay*4+Bry+4Ca*+Dy+Ex+F=0 ... (1);

and this being an indeterminate equation, it must (art. 9)
have some curve corresponding to it whose coordinates
arc z and g.

Let the origin of thesc coordinates be transferred (art.
15) to some other point, the coordinates of which are «
and &, by assuming

2 =2'4a, y=y+b;
then the equation (1) will become

A(y2 420y + 0°) + B2y +2'b+3/a + ab)
+C(x* + 2" +a°) +D(y + b))+ E(2' + a) 4+ F } =0

in which the coeflicients of 2’ and g arc Bb64-2¢C +E,
and Ba 4 2Ab + D respectively ; and @ and & being two
indeterminate quantitics, they may be so assumed that
these cocflicients shall be cach 0, for which purpose we
must have the equations

Bb+42aC+E=0
Ba+26A4+D =0,

whence we shall deduce, for the required values of a
and b,
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_BD-2AE

C=4AC-B’

4~ BE—2CD
=2AC—-B "

If, therefore, in the curve corresponding to equation
(1), the origin be changed to a point, whose coordinatcs
are a and b thus determined, we shall obtain an equation
which does not involve the simple powers of 2 and y, and
which, conscquently, may be assumed to be of the form

Ay + Bay+Ca4D=0 . . . (2)

Let now the equation (2) be transferred to a system of
coordinate axes inclined at an angle 4 to the former, by
assuming (art. 15)

r=a'. cos b —y'. sin 0,
y=y'.cos5+a'.sind;
when we shall have
A (" cos? 0+ 2.2% sin ). cos 642 sin® §)

+ B[x'y'(cos? § —sin* 6) — (" —a'™®) sin  cos §]
+ C( ' cos? 0+ 22"y sin 8 cos 8 + 2™ sin? () + D=0,

in which the coefficient of 2y’ 1s
A sin 20 4+ B cos 204-C sin 24,

and if we suppose this to be 0, we shall have, dividing
by cos 24,

Atan 2/ + Ctan 29 + B=0,
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whence

o= B _.
tan 20= — 45—

and if, therefore, 9 be assumed so as to answer this con-
dition, the resulting equation to the curve will involve
only the sccond powers of z and y, and constants, and
will consequently be of the forms

Py + Q' =R,

R ©Q

LA s TR

and making

R

= =mn,

P
we shall have

yr=m—nr,

which is the equation to the cllipse or hyperbola as # is
positive or negative. This is the cquation to the ellipse
or hyperbola, when the centre C is considered as the
origin of the coordinates, and it will therefore be scen
that a and & are the coordinates of that centre, measured
from the origin which corresponds to our equation (1).
If now the coefficients A, B, C, in that equation be such
that 4AC —B*=0, the values of a, b, as there deduced,
will become infinite, and the axes consequently will be in-
finite, in which case the curve cannot be cither an ellipse
or hyperbola. Under these circumstances we must get
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quit of the terms involving 2%, ay, y, and the constants,
when our equation will be reduced to the form

7y? = ma,

which is the equation to the parabola.

It appears from all this, that the general cquation (1)
may, by changing the position and direction of the axes,
be in all cases reduced to the form of the equation be-
longing to onc or other of the conic sections ; and since
this change of the axes cannot affect the nature of the
curve, the curve corresponding to equation (1) must
always be onc or other of those sections.

32. When B!—4.\C=0, the axcs of the conic section
are found to be infinite, and the cllipse corresponding to
the equation in that casc might be considered as one with
an infinite axis: it may be shown that such an cllipse is
in fact a parabola. For taking A (fig. 14) for the origin, Fig- 74
the equation to the ellipse is

b )
y= = (3ur —a*),

and it « be supposed to be infinite, a¢ vanishes in com-
parison with 2ax, and the equation becomes
)

Pr=—=. 2z ;
V=g

also, if SC=g¢,
P=a*-cr=(a+c)(@—"0);

and when C is taken infinitely distant from S, AC and
SC, differing from each other only by the finite quantitv
AS, may be supposed equal, and we shall have thercfore
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atc=2, a—c=AS,

which values being substituted in the &pression for y2,
we have

‘yﬁ=%g .2ar.AS

=4AS.x,

and this we know to be the cquation to a parabola whose
focus is S and vertex A.
33. Let the equation proposed be

y‘l
4k . costa

- tana -+ 2 =0.

This may be put under the form
32 —4h.sina.cosa.y + 4h. cosz. 2 =0,

and comparing it with equation (1) we find
A=1, B=0, C=0,
so that

B2 —4AC =0,

and the curve is thercfore a parabola, and we must get
quit of y and the constants. Tor this purpose assume
r=a"+a, y=y'+0b,
when we shall have
Y2+ 20y +b*— 4l sin a. cos a (y' + 1)
+4h. cos* a(a'+a) = 0,

in which the cocfficient of 3 is 20 — 4. sin . cos a, and the
constant is ¢ — 4k.sin a. cos . b+ 4h. a cos* « :
Making thesc scparately = 0, we have first
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b —2k. sin «. cos =0,
whence
b=2h. sin «. cos a =/ sin 2a ;

substituting this value of & in the constant, and equating
it to zcro, we have

4h2. sin2 . cos® a — 8A* sin® a. cos® « - 4ha. cos® =0,
whence

a=h.sin%a;

and therefore transferring the origin of the curve to a
point, whose coordinates are k.sin?a and /4 sin 2z, the
terin involving #' and the constant part will vanish, and
we shall have the equation

g1 Micosta x =0,
or
yi= -~4hcos*a.x,

which is that of a parabola, in which the Latus Rectum
is 40 cos®a : the negative sign intimates that the values
of z' are to be measured in a dircction opposite to that in
which the values of  were measured in the original equa-
tion ; i. e. downwards instead of upwards. This result
has been obtained without being under the necessity of
changing the inclination of the axes; and it follows, there-
fore, that the new axes remain parallel to the former.
Cor. The equation discussed in this article is the one
deduced to the path of a projectile (Whewell's Mcchanics,
art. 240), with this difference only, that x is put for g,
and y for x; the reason of which is, that in the Mechanics

« is measured along the horizontal line AR (fig. 19),
d
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whereas we measure z along the vertical axis A'B. If,
therefore, A (fig. 19) be the point of projection and
AA'R the path, it appears, from what has preceded, that
this path is a parabola, the Latus Rectum of which is
4h cos® a, and vertex the point A/, determined by taking
AB=1/sin?a, and BA'=/sin 2. Also AB will be half
the horizontal range, and BA' the greatest altitude of the
projectile above the horizontal line AR.

Polar equations to the conic sections.

3% To find the polar cquation to the parabola ASP
(fig. 13), let

AS=a, SP=uw, 2 ASP=4:
then, by the property of the parabola, we have

SP=PM
= KN
= KS+ SN
= 2AS+4 SP. cos I’'SN
= 2A8--SP. cos ASP,

whence
SP(1+cos ASP)=1AS,
and
2A8
S = s ASP
or
2a
=T ot

which is the polar equation required.
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85. To obtain the polar equation to the ellipse APM
(fig. 14), we have from the triangle SPH (Euclid, Fig. 14.
Book ii, Prop. 13)

PH*=SP: + SII*-2SI1.SN;

and putting for PH its value (2AC — SP), and 2SC
for SH,

(2AC —SPp=S1"+(25C) —4SC. SN,

or
4AC:—4SP.AC+SP*
=SP4-48C?*—4S(C . SP. cos PSN,
whence
AC'—8SP. AC=8(*+4-8C.SPcos ASD,
and

AC:=8SC2=SP(AC+8SC.cos ASP),
and dividing cach term by AC?, this gives us

SC*  SP sSC )
1 “ACT XC(I + A Cos AST )

Let now AC=a, SP=w, angle’ ASP=0, and the cc-

T Al

. . Y ‘
centricily — (,-:t'; then we have

A
1 —l"’:—:—; (14¢.cos 0);

whencee
a(l —e?)

14e.cos’

the polar equation to the ellipse.
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36. The polar equation to the hyperbola, deduced in
a similar manner, is
_ a(ee=1)
~ l4ecosd’
37. The cquation
a(l—e?)
l1+¢.cost

u =

may be considered as the gencral polar equation to the
conic sections. It is the cquation to the cllipse or the
hyperbola, as ¢ is less or greater than umity; it is the
cquation to the parabola when ¢ is equal to unity, and
the cquation to the circle, when ¢ is 0.

In the case of the parabola, when ¢=1, 1—¢? becomes
0, but at the same time @ becomes infinite, and therefore

1 0
p2) e o [ _—
al—c)=>.0= 0 0= o
the valuc of which may be any thing whatever ; in the

present case it may be shown, as in art. 32, that the true
value is 2AS.

Oblique coordinates.

38. The axes of our coordinates have hitherto been
supposed generally to be at right-angles to each other ;
Fig. 20. but it we take for our axes the lines Ao, Ay’ (fig. 20,)
inclined at the oblique angle 2'Ay/, it is evident that the
position of the point P may be cqually determined by
means of the coordinates AM, MP ; MP being supposed

to be always drawn parallel to the axis Ay
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39. Let Az, Ay (fig. 20) be rectangular axes; Az,
Ay, oblique axes, inclined to Az at angles 6 and ¢ re-
spectively ; if then the cquation to a curve be given be-
tween rectangular coordinates z, y, measured along Az,
Ay, it may be transferred to oblique coordinates ', g,
measured along the axes Az, Ay. For let P be any
point; AN, NP the rectangular coordinates, z, y; AM,
MP the oblique coordinates 2/, #'; then, drawing MQ
parallel to Az, MO parallel to Ay or N, we shall have

AN=AO+ON=AO+MQ=AMcosz'Ax
+PM. cos PMQ,
PN=PQ+QN=PQ+MO=PMsinQMQ
+ AMsin a'Ax,
or
r=ua'.cos6+y'.cos @,
y=y .sinp4 ' .sinb;

and substituting these values of @, g, we shall have an
cquation between 2, 3, which will be the one required.

Hyperbola between the asymptotes.

40. Let PAP (fig. 21) be an hyperbola, whose semi-
major and minor axes are @ and b; its asymptotes arc
indefinite straight lines Ca', Cy/, passing through the
centre C and inclined to the axis Cz at equal angles

. b
2Cu, y'Cz, the tangents of which are each equal to z

If, now, the equation to the hyperbola be required, on
the supposition of these asymptotes being the axes, making
¢ 2Czx=0, we shall have yCr= -0, and substituting
these for 6 and ¢ in the formula of art. 39, the values of

Fig. 21.
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a and y will be

r=2'.cosf+2'.cos—0=a'.cos0+ % .cosb
=(2'+ 7")cos b,

y=a'.sinb+y .sin—0=a'.sin0—3 .sin b
=(@'—y')sinb;

whence the rectangular equation to the hyperbola

"‘3( . .
ot (22 —
Y= )
will become

. b .
(2" =22y + 3y*)sin*%= -3 cos (2" 422" + ') — b,

) b
But, by hypothesis, tan 0=;, and therefore

a’ b
= = s
cos’ﬂ_u,:_‘_ljc, sin oy

which values being substituted, we obtain

b- bt a®

2 Qo Q) —

a+ bs(‘t’ 2"'.’/ +.y' ) a2 a’*'—|—b"
b‘l

= ai+ ()2(‘1"‘.’+2‘z".'/'+."/2)— ])2;

(2 + 2aty'+y) — b

and this being reduced, gives
1xty'=a*+ 0,
whence

a5
ay = 1 = Constant,

which is the equation to the hyperbola between the
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asymptotes. When the hyperbolais rectangular, we have
b=a, and in this case therefore

aﬁ
-L".’l/’ =‘-T'z.

. b
Also since -= 1, we have tan § =1, so that the lines C.',

€y, arc each inclined to Az at an angle of 459, and arc
consequently at right angles to each other.

Mecthod of determining the position of a point in spuce.

41. The points and lines of which we have hitherto
spoken have been supposed to lie all of them in one
plane, that of the coordinate axes Az, Ay; and if there-
fore a point be given which does not lie in that plane, its
position can no longer be determined by the previous
methods.

In this case the point P (fig. 22) must fivst be referred gig, 22,
to the plane of zy by a perpendicular PM let fall from
P upon that planc, and the position of M be then fixed
by two coordinates AN, NM, as before; and this me-
thod will evidently serve for any point whatever in space ;
for wherever the point be taken, its altitude above the
planc of xy may always be expressed by a line such as
PM, and the position of the point M, whenee the per-
pendicnlar PM is to be drawn, be determined by two
coordinates AN, NM.

If, now, at the point A we crect the indefinite straight
line Az at right angles to the plane of 2y, the values of
PM may be expressed by lines such as AQ rmicasured
along Az; and the values of NM being similarly repre-
sented by lines such as AO taken along Ay, AN, AO,
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AQ will be the three coordinates of the point P, and are
denoted by @, y, 2, respectively.

42. The three axes Ax, Ay, A3, being each of them
produced indcfinitely, if through the origin A we draw
three planes passing, the first through z, y; the second
through i, z; and the third through v, z; these planes
will divide space into eight compartments, four lying
above, and four below the plane of 2 ; and every point
in space must lie in one or other of these compartments.

43. What was said respecting the signs of the two
coordinates x, 3, will apply also to the signs of the three
x, y, = ; thus if = be positive, it shows that the point in
question is in one of the compartments lying above the
plane of zy: but if' = be negative, the point must be
below that plane.

On the projections of a straight line in space, and its
cquations.

44. Let PT" (fig. 23) be any straight line in space, and
from each of its points P, P, 1", &c. let fall on the plane
of 2y the perpendiculars M, P'M/, P'M", &c.; thesc
will evidently all lic in one plane PM", which is called
the projecting plane; and the scction of this plane with
that of ay will be the straight line MM, formed by the
fect of the perpendiculars. This line is the projection of
PP’ on the planc of 2y, and by drawing perpendiculars
in a similar manner to the planes of zz, yz, we shall ob-
tain the projections of PP on thosc planes.

45. The projecting planes must, from the construc-
tion, contain both the line proposed and its projection ;
and two of these projections will consequently serve to
determine the line; for if two of the projections be given,
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we shall be able to draw two projecting planes, each of
which will contain the line required, and that line, there-
fore, will be the intersection of the two planes.

46. If now in the line PP’ we take any point P whose
coordinates are @, y, ~, and lct fall the perpendicular
PM, the coordinates z, y, will obviously be the same
both for the point P and for its projection M ; and since
the same may be said of all corresponding points in the
line and its projection, the coordinates , y, of the line
PP" will be connected together by the same equation that
belongs to the projection MM"; and these observations
will apply equally to the other projections. But these
projectious being straight lines lying wholly in the planes
of xy, =, and yz, respectively, their equations will be of
the forras

y=axr+a,
z=bx+B,
y=c+vy,

and these therefore will be the equations which connect
the coordinates z, 7, =, of the line PP”, and are con-
sequently said to be the equations of that line.

Any two of the above cquations will be sufficient ; for
two being given we can from them derive two of the pro-
jections ; and, as was shown (art. 44), two of the pro-
jections will serve to determine the line.

Eguation to o plane.

4. Let DBC (fig. 24) be a plane cutting the axis of Fig. 24.
2 in the point B, and the coordinate planes 2z, y=, in the

lines BC, BD; take in it any point P, whose coordinates
. e
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arc x, y, =; draw, in the planc DBC, PQ parallcl to BC
and cutting DB in Q, and in thc plane y~ draw QO
parallel to Az, BF parallel to Ay; also let QX be per-
pendicular to PM, and therefore parallel to Az : then
we have

PM=PE+EM=PE+ QO
=PE+QF+FO
=QE.tanPQE + BF.tanQBF 4 AB
=AN.tanPQE + AO.tanQBF + AB,

whence
z=x.tan PQE + .tanQBI'+ AB;

but PQE and QBF being the angles which the sections
BC, BD make with the axes of 2, y, respectively, they
will remain the same for any point P in the plane, and
their tangents may thercfore be represented by the con-
stant cocflicients @, 4; AB is also constant, and may be
represented by ¢; when our equation will become

z=az+by+c,

which is the cquation to the plane DBC.

This is a gencral simple equation between three va-
riables, and by assuming the coefficients properly, may be
put under the form

Az+By+Cz+D=0.
When y is made =0, this becomes
Az+Cz4+D=0, -

which is the equation to the section BC; and similarly
by making £=0, we shall have
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By+Cz4-D=0,
for the equation to the section BD.

If the planc pass through the origin A, the constant
D will disappear, and the cquation be of the form

Az +By+Cz=0.

Equation to the sphere.

48. Let a, B, v, be the coordinates Aa, ab, HC, of the
centre C of the sphere (fig. 25); , , », the coordinates Fig. 25.
of any other point P on the surface of the sphere; 7 the
radius CP: draw Cr perpendicular PM, and &m perpen.
dicnlar MN; then we have

CP*=Cn*+ Pn*=06M* 4 In*
=lm-+ Mm-+Pn";
or
= () (=) + =)'

which is the cquation to the sphere.

Equation to the conc.
49. Let ABD (fig- 26) be a cone, in which the axis Fig. 26.
AC=a, the radius CD of the base=b; take C the centre
of the basc for the origin of the coordinates, and let P be
any point in the surface whose coordinates are CN, NM,
MP: draw PQ perpendicular to AC, and consequently
equal to CM : then

PQ=CM= vCN:+ NM:*= y/ 2% +3*;
but from the similar triangles APQ, ADC, we have
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PQ : AQ :: CD : AC,

vrttyt a—=2 : b : a,
whence

a'x*+y*=ab—bz,
and therefore

br=ab—a/ a*+ y*,
7] -
z=3(b— & vy,

the equation to the cone required.









ERRATA.

e -T2

Page ziii. line 8 from the bottom, for {M=a, rcad AB=a.
zxi. last line, for ordinates, read co-ordinates.
xzziii. line 2 from the bottom, for director, read directrix.
zzzvii. line 6 from the bottom, for mean proportional betmween,
read third proportional to.
zl. line 3 from the bottom, for ellipse, rcad cone.
zlv. line 6 from the bottom, for +2z'y, read —2x'y ; and for
¥, read z¢: and y" for "2
line 4 from the bottom, for 4+ C Sin. 20, read —C Sin. 26.
last line, for + C tan. 20, read — C tan. 20.
zlvi. line 2, for A+ C, read 4 —C.
liis. line 12, for QMQ, read PMQ.

Page 8, line 5 from the bottom, after ¢du+ udt, inscrt (8).
11, line 17, after z+ A, insert in y=a".

line 3 from the bottom, after &4 ;'1/ insert =.
(]

14, line 8, for elimination, read differentiation.

. Sin. Sin. k
26, line 8, a&erdC_as._h——l-_i , insert "
s 1 ly dy
49, line 15, for ﬁdy, read d.zd't'
43, line 14, for y*, read y*.
44, line 12 from the bottom, for 2y, read 2y'. .

46, line 14 from the bottom, insert (35).
53, line 18, transpose B* and B. ~

2 C3
63, line 5 from the bottom, for 2-;:2;, read ‘qu%.

68, line 1, for minimum, read mazximum.
75, line 12, for SN, rcad M"N.
line 18, for M”N, read SN.

: dy &y
line 16, for e read e
84, line 9, for a+ 4, read a— A.
89, line 3 from the bottom, for ﬂ renci ﬂl—
2 d d‘t'l’ dz*

94, line 8 from the bottom, for =0, rcad =g.
95, line 8 from the bottom, for ¢a’=, rcad ¢='+.
102, line 5, insert (73).
104, linc 4 from bottom, for da®+dy, read da*+dy®



Page 110, line 2 from the bottom, for v { s=0, read y+ s==consianl.
321, lmes 10, 13, 15, and 17, for;;, read z

122, line 7, for 'f, read ‘%, in two places.
123, line 8 from the bottom, for A¢, read P!.
dd du
25 1 @ haind
125, line 16, fo: o read T
128, linc 4, for 107, rcad 108.
line 8, for m Cos. 8, read m Sin. 6.
line 10, for m Cos. 0, read m Sin. 6.

129, line 5, for P read ‘26;‘

131, line 8, in the denominator, for »’d6°, read 12d6*.
139, line 2, for cord, read chord.
141, line 10 from the bottom, for M’E, read M'F.
144, line 4, in the denominator, for 4a°2%, read 1 + 4a*.
154, line 14, for M, read N.
168, line 6, for M, read MAh".
n+1 n+1

164, line 12, for @R | g 8T SCaA D)
185, line 1, for take tke series, read integrate by series.
194, line 1, in the denominator, for P, read P’; and for S,

read §'.
195, line 11, dele /.
204, last line, for Ba? read 2Ba®.
218, line 5 from the bottom, dele [.
216, line 5 from the bottom, for (r—d)®, read (x— F)*.
220, line 11, for B, read b.

221, line 10, for Vm*+ 2, read vV m*+2° ; and 43°, for 4=z.

) Sa2dz 8a*3%dz
224, line 3, for oy ™ G

. a a
227, line 5, for -, read o
X

228, line 8, insert (52).

229, line 11 from the bottom, for (@ ba*r), read (a-ba")r.
234, line 7, after =, insert —.

239, linc 2 from the bottom, for ¥/ 1 — 2", read 1—22

241, line G from the bottom, insert ).

245, line 4, for replacing the process, read repeating the process.
249, line 7, atd (73).

I/ b
252, line 5, for E)’ area, read s X area.

256, line 5 from the bottom, for dz*dy® read dz*+dy5.



Tage 263, line 3, dele ("Nole szventh )
266, line 4 from the bottom, for planc tungent, read tangeni-
plane ; and for y, read zy.

line 2 from the bottom, for d_/) + (d.t) , read

Vi) ().

‘.268, line 2 from the ‘bottom, for axis, read axes.
272, last line, dcle since.
""6 line 9, for ap, read 27.
line 5 from the bottom, for Maz7y,+ Nrx,y“, read Mz7yp+
Namy¥.
278, line 7 from the bottom, for (1, w)zx, read (¢, u)dz.
line 5 from the bottom, after xdw, put
290, line 11 from thce bottom, for Mdz+4 N(I_/, read zMdx+
2 Ndy.
299, line 15 from the bottom, dcle =0.
line 1% from the bottom, insert =0.

-1 n—1
306, line 8 from the bottom, for & Y, read :L"__'E{. :

dz
324, line 4 from thc bottom, for Nz, read Nz.

428, line 12, for—%, read 5:, and for ¢ read C.

853, line 7 from the bottom, for z==mux, read z=maz*.
355, line 7, for the function, read a_ function.

d*z

=

.')
line 13 from the bottom, for 111 -, read —

361, line 10, for —, read L
ax Fal
377, linc 10, for =y, read xy.
. C A
378, line 6, for =z read Fox
397, line 2, for (24), read (4).
In pages 29, 34, 134, 175, 181, 184, 185, 188, 189, 190, 192, 195,

196, 197, 200, 203, 204 205, 207, 211, 212, 235, 241,
242, 248, 276, 27(, 291 —forlog readL






‘ELEMENTS

OF THE
DIFFERENTIAL AND INTEGRAL
N CALCULUS.

DIFFERENTIAL CALCULUS.
On the differentiation of algebraic quantities.

1. ONE variable is said to be a function of another variable,
when the first is equal to a certain analytical expression com-~
posed of the second ; for example, y is a function of z in the
following equations :

Y=o/ —2%, y=a%—3bas, =:%e, y=b+cas.

2. Let us consider a function when in its state of increase,
by reason of the increase of the variable which it contains;
and since every function of a variable # may be represented

by the ordinate of a curve BMM', fig. 1, let AP=z and Fig. 1.

PM =y be the coordinates of a point M in that curve, and
suppose that the abscissa AP receives an increment PP'=4;
then the ordinate PM will become PPM'=3". In order, there-
fore, to obtain the value of this new ordinate, we see that we
must change z into 2+ /% in the equation of the curve, and the
value which the equation shall then determine for y will be
that of y'.
B



2 " DIFFERENTIAL CALCULUS.

'For example, if we had the equation y=ma®, we should
obtain y’ by changing » into 2 + 4, and y into y’, and we should
have

yY=m(z+4h)2,
or, by developing,
¥ =ma24-2mah+mld.

3. Let us take also the equation

and suppose that when x becomes x+-#, y becomes 3/, we shall
have then

y=(athy;
or, by expanding,

. y=a’+322h+3xh?+ 1 :
if from this equation we subtract equation (1) there will re-
main

Y —y=32h +3zk2 4 k3,
and by dividing by %,
Il =304 3ch+ie ... @)

Let us see now what is to be learnt from this result: 3’ —y,
being the difference betwcen the new value of y and its pri-
mitive one, represents the increment of the function y in con-
sequence of the increment % given to x; and the increment of
1, on the other hand, being %, it follows that the expression
"!——h—‘z’- is the ratio of the increment of the function % to that of

the variable z. By attending to the second side of equation
(2), we see that this ratio is diminished the more % is dimi-
nished, and that when % becomes O this ratio is reduced to 32%.

This term 32 is therefore the limit of the ratio y_—’_‘._y , being

the term to which it tends as we diminish A.



DIFFERENTIATION OF ALGEBRAIC QUANTITIES. 3

4. Since, on the hypothesis of 2 =0, the increment of y be-

comes also O, 7 ;y is reduced to g, and consequently the

equation (2) becomes
0

(—)23;1'*.

This equation involves in it nothing absurd, for from Algebra
we know that g may represent every sort of quantity; be-
sidex which it will be easily seen, that since by dividing the
two terms of a fraction by the same number the fraction is not
altered in value, it follows that the smallness of the terms of
a fraction does not at all affect its value, and that, consequently,
it may remain the same when its terms are diminished to the
last degree, that is to say, when they become each of them O.
The fractiong which appears in the equation (3), is a sym-
bol which has cxpressed the ratio of the increment of the func-
tion to that of the variable: since this symbol retains no trace
. . g dy .
of that variable, we will represent it by i—:—z ; and then ‘-1'% will
remind us that the functiop was y and the variable 2 ; but dy
and do will be no less evanescent quantities, and we shall
have

di
F=3ar. . (@),

‘_;%’ or rather its value 322 is the differential coeffictent of the
[/
function y.

We may observe tha g‘g being the symbol which represents

the limit 322, [as is shown by cquation (4)7], dx ought properly

to be always placed under dy. In order, however, to facilitate

operations in algebra, we may for a time clear equation (4) of
B2
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its denominator, and we shall have dy =32°dz. The expres-
sion 3%« is what we call the differential of the function y.
5. Let us seck also the differential of the function a 4322 ;
for which purpose we must, in the equation y =a+ 322, make
z=z+h; and changing y into 3', the equation will become
Yy =a+3a*+62rh+3h2;
therefore

Y=Y _6r13n,
h

and making 4 =0, there results ;Z: 6z ; the differential sought

therefore is dy =6zdz.
6. For a third example, let us seek the differential of
y=a2*—0*; making x=z+k, and substituting, we have
Y =az’+3a2%h 4 3azhi+akd—13 ;
therefore
y_%z =3ax®4-3axk 4 ah?,
and taking the limit, we have

dy _
el 3aat.

This is the differential coefficient of the proposed function ;
the differential will be dy =3aaz2dx.
7. Let it be proposed to find also the differential of
-2 . c .
y= ll_—.r- : performing the division we findy=1+42x+4a2; put-
ting 24 in place of # and y’ in that of y, we obtain

y=l+z+h+a*+2zh442;
and arranging according to the powers of 4,

y=l4z+a*+Qr+1)h+72;
therefore,
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taking the limit, we have iy:2.r+ 1; and therefore the dif-

ferential of 1s (Rar+1) do.

8. As nnother example let us take
y=(a2—20%) (a®—30a%);
developing, we have
y=at—5a212+6a* ;

putting 2+ % for z and y’ for y, and arranging them according
to the powers of 4, there results,

Y =a*—5a222+ 6a'+ (42*—10a%2) 1
+ (622 —5a2) )2 4xh3+ k¢ ;
therefore

y ;‘.y =42°—10a%2 + (62°—5a2) b+ dxh2 417 ;
passing to the limit, we have
ﬂ =41%—10ar;
dx
and multiplying by dir, we find that the differential is
dy= (413—10a%x) dx.

9. The cxpression dz is itself the differential of z; for let
y==z; we have then y'=x--4 ; therefore y'—y=Ah, and con-

scquently ———- =1; and since the quantity 4 does not enter
into the second side of this equation, we see that to pass to the

limit it is sufficient to change y;y into ;L:; which gives

d;
E% =1, and therefore dy=dx.

10. We should find, similarly, that the differential of ar is
adz ; but if we had y=az+ b, we should still obtain ads for
the differential : whence it follows, that a constant &, which
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is not affected by », gives no term to the differentiation, or,
in other words, has no differential.

We might, besides, consider, that if we have y =25, it is the
case in which a is 0 in the equation y=ax+5, and in which,
consequently, % = a is reduced to % = 0, so that there is
neither limit nor differential.

11. It may be observed, that sometimes the increment of
the variable is negative ; in which case we must put #—% for
@, and proceed as before.

Thus, to find the differential of ax® when the increment is
negative, we must replace 2 by x—#, and we shall have

¥ =aa3— 3aah+ 3axl® — ald ;
therefore,

Y=Y _ _30:°+ Baxh—ake:

k
taking the limit, we shall have %: —3aa%, and, consequently,

dy = —3aadz.

We sec that this comes to the same thing as supposing dr
negative in the differential of y calculated on the hypothesis
of a positive increment.

12. Before proceeding farther, we must make onc essential
remark ; viz., that in an equation, of which the second side is
a function of x, and which, for that reason, we will represent
generally by y=fr, if on changing x into »+ 4, and arranging
the terms according to the powers of 4, we find the following
development :

_y' =A+Bh+4+Ci24+Dh3 4 &e.,

we ought always to have y= A.

For if we make 4=0, the second side is reduced to A : in
regardto the first side, since we have accented y only, to indi-
cate that y has undergone a certain change on z becoming
@+ A, it follows nccessarily, that when % is 0, we must sup-
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press the accent of y, and the equation will be reduced thea to
y=A.

13. This will give us the means of generalizing the process
of differentiation. For, if in the equation y = f, in which we
are supposed to know the expression represented by fz, we
have put z+ % in place of z ; and after Laving arranged the
terms according to the powers of 4, are able to obtain the fol-
lowing development :

¥ =A+4+Br+Cl2+Di3 4 &e,,
or rather, according to the preceding article,

Yy =y+Bh+Ch+ D + &e.,
we shall have,

Y =y=Bh+Clt+ DA { &e. ;
therefore,

"1—]_:—3/=B+Ch+Dh’+&c.:

and taking the Limit,

4 _gB.

dz~ "’
which shows us that the differential coefficient is equal to the
coefficient of the term which contains the first power of 4, in
the development of f'(x+ 4), arranged according to the ascend-
ing powers of 4.

14. Ifinstead of one function y, which changes its value in
consequence of the increment given to the variable x, which
it contains, we have two functions, y and z, of that same va-
riable 2, and we know how to find separately the differentials
of each of thesc functions, it will be casy, by the following
demonstration, to determine the differential of the product zy
of those functions. For if we substitute #+7% in place of 2,
in the functions y and 2z, we shall obtain two developments,
which, being arranged according to the powers of %, may be
represented thus,

=2+ Ah+BRA+CHF +&c .. ... .(6);
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Passing to the limit, we shall find

dy _ dz_,, .

FoA T N;
multiplying equations (§) and (6) the one by the other, we
shall obtain

2y =2y + A2k 4 Bzh* + &ec.
+ A'yh+ AA'RSH &c.
+ Byk® + &c.;
therefore,

’1-;—"" Az+A'y+(Bz+AA +BYy) h+&e.;

and taking the limit, and indicating, by a point placed before
it, the expression to be differentiated, we shall get

LY PP
putting, in place of A and A’, their values, given by equations
(7), there will result,

d. zy - dy d

dz da: +y

nnd suppressing the common factor da:,
d. zy = zdy +ydz.
Tlm.f, to find the differential of the product of two variables,
we must multiply each by the differential of the other, and add

the products.
15. By means of this rule, we shall easily find the differen-
tial of a product of three variables.

Let it, for example, be yzu ; make yz=¢, when we shall
have d. yzu=d. tu.

But by what has preceded,

d. tu=tdu+udt,

and since ¢ =yz, we have dt =ydz 4 zdy.

Subst:tutmg, thercfore, these values of £ and d%, in cquatmn
{8), it is changed into

d. ysu=yrdu+ uydz 4+ uzdy.
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We see, then, that the same rule still holds for a product of
three variables ; viz., that we must write down the product yzu,
replace successively each variable by its differential, and add
the products.

The same rule holds good for any greater number of
variables.

ydz

16. The differential of a fraction — P ® is y—z Y ; for sup-

pose ; =1, we have z=ty, and dz=tdy+ yd¢ (art. 14), from

which we find ydt=dz—¢dy :
putting on the second side the value of #, there results,

ydt=dz —-5dy,
reducing to the.same denominator,

gdi= ydz—zdy’
and lastly,

A= ydz—zdy’ ord® = ydz—zdy
¥ y L

17. If in the equation d.yzw =yzdu+ yudz + uzdy (art. 15),
we divide each term by yzu, we shall get

dyzu _du dz dy

yzu  w ' oz y’
and generally, by dividing the differential of the product of
any number of variables by the product itself, we shall find,

dayztu ..... d.r dy dz dt du
T ety tet ity O

. If now o, y, 3, ¢, 4, &e,, be each equal to #, and the number
of them be m, we shall have on the second side of this equa-

tion m terms, each equal to _‘_’;’ ; the second side will therefore
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be changed into ”%‘" and the equation (9) will become
da™ _ mde

™ x

and multiplying by 2™, we shall have
d.a™ = mam—1dz,

18. We may hence deduce this rule: when a variable is
raised to a power m, to obtain its differential, we must 1°.
make the index the coefficient ; 2°. diminish the index of the
variable by unity ; 3°. multiply this product by dxr.

19. The same rule will hold, if the index be fractional or
negative.

P
To prove the first case, let y=.r?; raise both sides to the
power ¢, when we shall have y?=z?, and therefore, art. 18,
qy*dy =paP—ldzx ; whence we find,
p P!

R g ——

gy

P
and since P!, y9=1, may be put under the forms T.:_,y_v, sub-

stituting these values, we lmve

P
d 2= .‘zdw H
AT
and since z? = y9, the preceding equation is reduced to
=PY 4.
dy gz dx;
Lastly, putting for y its value, we obtain
2
=P ;s
dy = e dx;
and bringing the denominater « into the numerator, we have
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a result the same as would have been obtajned for the dif-

r
ferential of y = 27 by applying the rule given Art. 18.
To demonstrate the case in which the index is negative, let

y = a—>: this is the same with y = —, which being dif-
xP

ferentiated by the rule for fractions, art. 16, we shall have
z*d. 1—1 .dx»

TP X aP
Observing that unity being a constant, its differential is 0,

dy =

. .. d.ar
art. 10, this expression is reduced to dy = — %’ whence

=1 1.
p:c; Pd:c’ and
subtracting the index 2p from the index p—1, there results
lastly dy = — pa——'dz, as we should have found by applying
the rule of art. 18. We eonclude, therefore, that this rule
holds true, whatever be the index of 2, that is to say, whether
the index be integral, fractional, positive or negative.

20. We may arrive immediately at the differential of »™
by means of the binomial, in the manner following ;
making x = x + %, we obtain

by differentiating, art. 18, we shall have dy = —

¥y =(x+ "
and developing by the binomial theorem, we find
y=a"+ma™h+ m.m_ 1 ™2/

m—1m=2
+m-—§—- —3'—1 h <+, &e.
subtracting from this the preceding equation, and dividing by
h, there remains

m—1 m=—1 m—2

Y=Y pgm—t + m. =2 h+4+ m. ——, —— ™2 4 &ec,
h 2 3
Passing to the limit, by making A=0, we obtain

d .
2{'1 =ma™=1 ; therefore, dy=ma"—ldx ;
X
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and replacing thg value of y, we have
d.x™ =mamdz.

21. If we replace the radical signs by fractional indices, the
rule of Art. 18 will then serve to differentiate quantities of
that sort. For example, to find the differential of ,/z, we must

- dz
write z%, the differential of which will be }z "}dz=é—v—;5
which shows us, that £o0 obtain the differential of the square root
of a variable quantity, we must divide the differential of that
quantity by the double of its square root.

On the differentiation of a sum of functions.

22. The process for differentiating a quantity which con-
tains several terms would be exceedingly long, were it ncces-
sary always to pursue the course we have hitherto followed ;
finding first the value of ¥, in order to deducc from it that of
2=, and then passing to the limit by making #=0. For-
tunately, if we can differentiate each term separately, we may
adopt a more simple course by means of a theorem, which may
thus be expressed : the differential of a sum of functions is
equal o the sum of the differentials of those functions.

To demonstrate this, let f; F, ¢, &c., be the symbols of the
different functions of which y is composed, and suppese we
have

y=fx+Fz+ pz+ &ec.,
of which it is required to find the differential.

If we put z+% for x in each of these functions, since by
hypothesis we know how to develop each of them separately,
according to the powers of A, we shall be able to express the
result by

¥y = fo + Ah+ AR + &e.
+ Fr+ Bh + B/ + &e.
+ ox + Ch + Ck + &c.
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And collecting the terms multiplied by the same powers of 4,
and subtracting y, we shall find

¥ —=y=(A+B4+CYa+(A'+B' +C)2+ &e. 5

and taking the limit,

%.=A+ B+C, dy=Adz+ Bdz+Cdx.

But A, B, C, arc the terms multiplied by the first power of 4,
in the development of f(x+4), F(z+ L) o(x+ %), whence it
follows, that Adr+ Bdz+ Cdr represents the sum of the dif-
ferentials of the i)roposed function.

23. To give an application of this theorem, supposc that
we have to find the differential of

y=aad+hta2+ (%/E;

we know, by article 10, that the differential of a2 is ad.a®,
and by differentiating according to article 18, and putting the
numerical coefficient first, we obtain 3aerde. Following the
sanie plan in respect of the constant 42, we shall find that the
differential of 6222 is 26*xda ; and the article 21 shows us, that

_ Adr
c*»/ x has for its diffcrential ;V:E' Adding, then, these re-
sults, we shall find

ctdx
dy =3ax*dr+ 202xde + —.
2/ x

24. In general, when in an expression which we wish to
differentiate, a constant appears as a factor of a function of =,
we must differentiate as though there were no constant, and
then multiply by the constant.

25. If, on the contrary, the constant be not connected with
a function of z, it, as we have seen, article 10, will give no
additional term to the differential.

On the manner of fucilitating the differentiation of compli-
rated functions, and of avoiding the process of elimination,
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when the function y is not given immediately in terms of the
variable x.

26. Sometimes the function y and the variable 2 are not
given by a single equation. For example, if we had two equa-
tions of the forms y =fu, and u = pz, the first mode that would
present itself for obtaining the differential coeflicient %‘Z— would
be to eliminate u betwixt the two equations, so that we might
apply the process of climination ; but without having recourse
to this preliminary operation, we may obtain immediately the
differential coefficient %,
the following demonstration :

Suppose that when in the equation z =gz, we put r+ /% for
2, » becomes ¥'=wu+/%; and that when we put u-% for u in
the equation y = fu, the function y becomes 3’ ; if then by de-
veloping the functions of # and x according to the powers of
their respective increments, the substitution of 44 for x in
the function » gives us

wW=ut+qh+qle4q¢"h3+ &e.;
and the substitution of 2% for « in the function y gives us
y'=y+pk+pi + p ks 4, &e.

we shall obtain from these equations

which will be the object in view in

r
U —% )

— = gtqh+q' 2+ &e. (
2 ... 0y,
TI__k_y =p+pk+p'ht+ &e. S
and multiplying the equations together, we shall have
wW—u y—y

P T:(p+p’lc+p"k’+ &e.) (9+¢'h+q "3+ &c.)

The first side of this equation may be reduced ; for the in-
crement of u being represented by #, is therefore equal to
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' —u, and, consequently, instead of "L-ki 2% we may write

h
y_;_;g; when, putting #'—2 in place of 4, the preceding equa-

tion becomes
:_ —== (g+qgh+g' ke + &e) (p+p'k+p k&) ... (11).
When % is 0, / also vanishes (since u received its increment
only because « became x4+ %), and, thcrefore, in the case of
k=0, which is that of the limit, the equation (11) becomes

dy
piad & REEEEE (12).

For the determining of p and ¢, we must make % and % each
=0, in the cquations (10), when those equations give us
dy _ de_
du = Prgp= 7’
and substituting these values of p and ¢ in equation (12), we
obtain

_._y_ d_y du
dr da dp 0 (3)

This result shows us that if we have two equations, y = fu
and #=¢x, and we find the values of the differential coeffi-
cients :—‘Z and g‘; » the multiplying these two together will give

us the value of t_fg
dx

27. If, for example, we have the equations y=3u* and
u =23 4 a2®, we shall find
dy _
du
and therefore, multiplying these equations together, we shall
have

= 6u, 7 =3z’+2ar,

‘:—‘Z=Gu (32 + 2az) =6 (2% +a2%) (3c2+2az).
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28. The formula (13) is one of great use in differentiating
complicated functions; we will give a few applications of it.

10, Let it be required to find the differential of y = 4/ a® —22.

This will be done by finding the differential co-efficient

% ; for which purpose let a®*—22=u, and therefore . . . . .
y=J 6= «¥; then the equations y =fu and u=g@x (art. 26)
will be here represented by

y= u%, 4 =a%—x%.

Differentiating these equations (art, 18) we find

dy . =%_ . =% du_ .
l-i—’-l__-l,.u =4 (a*—22) ,dx__—2.r,
multiplying these differential co-efficients together, we obtain
dy -5 —2
< =—zx (a2°—2%) =

dr =ty
and therefore v
dy=— xdx .
0 —x?
Again let y= (a+62™)"; to find the differential, making
a+bz™=u, we shall have the equations y=u", u=a+bz"™;
therefore

Y _ myn—1 D% _ 1.
a—;_uu“— =n (a4 bx™)* ,a-;_bm""' 5

and multiplying these differential co-efficients together, we
have

dy —-— My p—]1
E_bmnr""’(a+bz Yy
29. As a third example, let

y=(“+~/b—£§' 4)

b—-:—=u o (14);

2

suppose
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and thercfore

y= (a+u) ....(15).

Differentiating equation (14), we have

du= 2“7‘:1{
xr
and thercfore »
du _ 2c
dr

the equation (15) gives
—_ - —_ du
dy=4 (a+ Ju)d. (a+u)=4 (a+ N ). 27-

and putting for  its valuc, there results

2(a + / 1,_--_)

multiplying these differential coeflicients together, we have

tastly
4c J PR
dy __JT “+ b— .l—";)

e
Ji=z

W might take also as an example
y=(a+ v .7)“,

and we should find
dy_Ba+va)
de 27

On successive differentiation.

30. Liet y be a function of @ ; if this be differentiated, we
shall find a result of the form pdz, p being a quantity which
may involve @ ; if p do involve x, we shall be able to differen-
tiate p also, and so obtain a result represented by gda; pro-
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ceeding in the same manner with respect to g, the result will
be of the form rdz, and so on: pda, gdr, rdx, &c. are the suc-
cessive differentials of y.

For example, if y=aa?, we shall find dy=3aa?dz, and
therefore p=23aa? ; diflerentiating ancw, we have dp=6axd.r,
and therefore ¢ = 6ax. Again differentiating, dg = Gadz,
whenee »=6a; and here the differentiation must stop, 6«
being a constant.

The cquations

dy =pdx give, dividing by dx, g% =p

dp=qde . . ... ... ..., E;: ¢

l’g:?'l].r ............ gil—zr .
v

&e. &e.

¢ being obtained by two successive differentiations, and by
dividing cach time by dx, we will represent the operation by
d®y d*y o s .
—-J—, and we shall have ——-"/. =g¢; in like manner by differen-
da® dat
. s e d’y
tiating anew, und dividing by d., we have T = und so on.
&
dy is the first differential of y ;
«*y is the second differential ;

«*y is the third differential ;
and so on.
Maclaurin’s theorem.

31, Let y be a function of x, arrange it according to the
powers of «r, and suppose

y=A+Bor4+Ca2+ D3+ Eit 4 &e. . . . . (16) ;
then differentiating and dividing by de we shall find
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-l-/‘—”-=B+2C.t+ 3Da*+ 4Esf+ &e.

de
2
‘j_{ = 20+432Ds+43.E 4+ &
rl’ ‘
7 32D +432.Er+ &c.
&c.
Represent by (4) the value assumed by y when »=0,
dy Ay
b_v (_{)"‘T) ........... de ~ " >
d*y dy
Y (;,t'—"s) ........... m ..... 3

and so on ;
the preceding equations will give us

(.1/)=A,(d”) B, (d 7 =2¢, [d 7)=3.2.D, &ec.

whence we find

. dy dy d'y
A=@).B= (dr 2(11.1 ) - ‘2( )
and substituting these values in the equation (16), it will
become
%y 1 (d%y
y=)+ (55)e+3 ()= + g5(78) e+ &e. a7),

which is l\f[aclaurm s theorem.

32. As a first application let us tuke » =":_ 3

differentiating, we find

dy:(a-{-‘t') d.1—1.d (a +.) _ (1.:'__
(a42)? - (a+2)¥
dy 1

whence we deduce -> = — ————_;
€11Cc¢ We ([", (a+.,")g ’
and differentiating anew, we shall get successively

t/‘*y 2a++)_ 2
T (a4t “(aty
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Dy 23(ata) 2.3
das — (ad2r) ~—  (ata)
&ec.
. . ] dy diy d°y
Making then =0 in the values of g, o7 Tt dad’
find
1 dyy 1 dyy _ 2 (lsl/ _2__2
@)=z (713) T T e (dﬁ) T der T T @

and substituting these values and that of y in formula (17),
we shall obtain

» 2 29
1 1 _.l_+4L' %;+&c.

a4a a a* " @3

33. For 1 second application, take y = / a® 4+ bx ; we have
then

y=(a*+ b.r)'l"’

(Il/ -1 1 b
=1 (a? Sp—. —
Fri (a2 + ln) b= 3 /lel

%y b2
Ti=— L3 (a4 b))~ b“: —=2

o 4/(11'2+bl)3
/3

iloz 3.3 (a4 ba) 2&3——-———'— L

vV (a®+ ) )J
making 2 =0, thesc values will become

(./) ((‘))‘5' =a (f]y> ) {111/ __i _5 bn a:.’iy 1 _.1.‘.:1[11'

dar da® a* ’

and substituting thescvalues ot (y), ( Z—‘j’) &ec. in formula (17),

we shall find
b2 . bad
80 T Tos

34. As a third example, take y= (a+.)™; differentiating
we shall find

—y—— ba
Vb =u +§Z— &ec.
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a,—y—m(a+ a)ym—=1
dsy
E— m (m~1) (a+»r)"—%,
s
j Z =m (m—1) (m—=2) (a+2)"—";

making =0, the value of y is reduced to «™, whence (y) =a™

aud the differential coefficients f’/ 4y

a e n,&c give us
dy d2y d3y
-—— —_— -1 . — — m—2 T - ..
(l{'r>__ma"' ’((l.r” =m(m-1)amn-2, Ty = e

m(n—1) (m—2) a—3, which values of (y), ( v ) ( s 4
r

&e¢. Leing substituted in formula (17}, we tind
(m—1)

fat+a)"=a"+ma” Lo+ m—g— am—2,%

(m— 1) ()n—2)
2 3

a™—3% 4 &c.

On the diffcrentiation of iranscendental quantilies.

35. Transcendental quantities are such as are affected by
variable indices, logarithms, sines, cosines, &c.

36. Let a” be the quantity first proposed to be differentiated ;
put ¥ =@, change x into z+%, and y into z', when the equa-
tion will become

y=ath or yy=c'a",
and this expression we must develope according to powers of %.
In order, therefore, that @* may be devclopable by the bi-
nomial theorem, we will put @ =1+ 4, and conscquently a” will
become

2
A+byr= 1+hﬁ+h (h=1). -l’i§+h.(h—1) (h—2)

b
g 3+& ..... (18);

which we might arrange in respect of %; but without per-
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forming this operation, since we want only these terms mul-
tiplied by the first power of %, we will observe that if in a
product such as 4 (A—1) (A—2) (k—3) &c., the part (h—1)
(h—2) &c. is composed of n factors, its development, accord-
ing to the theory of equations, will be of the form 2"+ Ak}
+Bhn—2....4+M~A+N, and the term N will be formed of the
continued product of the second parts —1, —2, —3, &c. of
fthe binomials A—1, 4—2, £A—3, &c. But since & (h—1)
(h—2) (h—3) &e.=h (*+Ah—1. ... Mh+N), it is evident
that the term containing the first power of % in that product
will be N/, or from what has preceded, 4 (—1 x —2 x —3) &ec.
whence we may conclude that to find in the development (18)
the terms involving the first power of %, we must, in the more
complicated terms of that serics, beginning, for instance, with
the third, form the several co-efficients of 2 in the munner
following ; the continued product of the numbers subtracted

from / in the several terms must be multiplied in the third

2 3
term by -11'—2-, in the fourth term by 23’ and so on ; whence it

follows that

-3 S
atr=1 +(b_% +%— &c.) &4 terms involving %2, 43, &c.

2 3
Representing (b—-b2~ +%——, &c.) by A, we have

a"=1+ Ah+ terms involving £®, 23, &ec.;
and substituting this value in the cquation y' = a“a*, that equa-
tion will become
y =a*+ Ad’h. + terms involving 4%, A9, &e.
If we subtract the primitive equation y =a~, there will remain
¥’ —y=Aah+ terms involving 73, A3, &c.

and taking the limit, j—y— =Aar,

or, replacing the value of y,

d.ar
(1.1'=A'a ... (19).
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The constant A depends on a, for if in the equation

.

b B
A= (6—5-'-?- &c.),
we put for 4 its value (e—1), we shall find

_ (a—1)*  (a=—1)
A=(n—1)— g +t—3
37. To determine the value of A, let us investigate, by

Maclaurin’s theorem, the development of a*; we have then

y=e

—J;'—A(l

rz”y Ad.u’ _ _\f(l‘t{’l_ — A%,

d= = “dr —  /a
3
d:_i/_ =AW &«

dred
and making a =0, we shall find

(v)=a'=1, (:Z) A,Zr'/ A‘l((-;—:)_a\‘

Substituting these values in equation (17) we have
Azr A A’1
+ &e.;

1

X this equation will become
1
atr=—

making # =

at=l+1+4 112'*1;%'*‘ dee.
and representing by ¢ the second side of this equation, it will
be changed into a‘%ze, whence we find a=¢": and taking
the logarithms, we have

loga=loge*=Aloge;
therefore
lge e,
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The nmnber e, whose value is given by the cquation
e=1+14-—

for calculating his t.1bles of logarithme.

1
1 Totiast &ec., is the base which Napter selected

The series 141+ -— i 2 + i ; r;-|»- &c. being sufficiently con-

vergent, we may take the first ten terms as an approximation,
when we shall find the value of ¢ to be about 2,7182818. If
we represent by La the logarithn of a in the Napierian system,
we shall have then ¢ = (2,7182818) ', or more simply @ =l ;

and therefore log a=log ¢! = Lalog ¢ ; whence we shall find
log «

o '_=La, which reduces equation (21) to A =La, and con-
o ¢

sequently cquation (19) gives
da'=a'dxlia . . . . (22).

Logarithmic differentials.

38. Let » be the logarithin of y in the system whose base
is «; then we have y = a’, and therefore (art. 36) dy =Aa'd :
whence we find

d.r::ily—-—ﬂ— __dy logr
log o - “log a’

log ¢
and since e"=y and x=log y, the paeceding (,quatmn becomes
dz/ log e
d.log y y loga

When we take the logarithms in the Napierian system,
loge loge
loga log e

=1, and thereforc in that case d.log y = g/l/ .

The differentials of sines, cosines, and other trigonometrical
lines, or the differentials of circular functions.
39. The arc is greater than the sinc, and less than the tan-
genl.

To prove this, let AB, fig. 2, be an arc, which has BE for
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its sine, and DA for its tangent, and take the arc AB’ equal
to the urc AB. Then the chord BB’ being a straight line,
BB’ is less than the arc AB; and therefore the straight line
BE, which is the half of the chord BB, is less than the arc
BA, the half of arc BAB'; whence it follows that the sinc is
less than the arc.

To prove that the tangent is greater than the are, we have

Area of triangle DD'C 7 area of sector BAB'C ;
or, putting for thesc areas their geometrical values,
DI x LAC 7 BADB x }AC;
suppressing the common factor 1 AC, there remains
DD’ 7 BAB,
and taking the halves, we have
DA 7 arc BA.

40. It follows from this, that the limit of the ratio of the
sine to the arc is unity ; for since, when the arc 4, represented
by AB, becomes nothing, the sine coincides with the tangent ;
much more does the sine coincide with the are, which lies be-
tween the tangent and sine ; and, consequently, we have, in
the casc of the limit, s h, or rather, sin 4

arc A h
41. To find the differeptial of the sine whose arc is x, sup-

pose that the arc reccives an increment 4 ; then we know, by
trigonometry, that

=1.

sin (x+A)=sinx.cos h+cos x.sink . . . .. (23).
Subtracting from this function its primitive, and dividing by
the increment % of the variable, we shall have

sin (#+2%)—sin x _ sin x.cos & + sin /.cos & — sin x .

h - h >
and collecting together the terms multiplied by sin x on the
second side, we shall find
sin (x4 A)—sina  sin x (cosk—1) sin/.cosx

h = T + kT
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h—1
When % becomes 0, cos /—1 becomes also 0, and &OS—T:——

o . .
is reduced to the form 6; it is necessary, thercfore, to put

that term under some other form, and, for this purpose, the
equation cos® £+-sin® k=1, gives us cos®2i—1 = —sin® &, or
(cos k—1) (cos k+1)=—sin® k ; from which we get

sin®h
“cos k41’
and substituting this value in cquation (24), it becomes

COSII—l =

gin (¢4 MN—sinas ., sin » sin & .
S —sin.r. cos g1 + cos 1. o (25).
sin A sin & 0
When /=0, - =b é?sl_l_—-{-l_é_'o’
d.sin x

and therefore equation (25) is reduced to =cos T

whence we deduce d.sin x = cos a.d.

42. In this demonstration, the radius of the tables has been
supposed unity. If we wish to have the differential of a sine
whose radius is a, instead of employing the equation (23), we
must make use of this,

. sin x.cos h+sin h.cos x
sin (@ +44)= + ;
«
and therefore, in the preceding result, it will be necessary to
dx. cos x

introduce the constant @, which will give d.sinz =

»

a
for the differential of the sine of an arc whose radius is a.

43. We might arrive at the differential of sin 2 by geome-
trical considerations ; for, let AB, fig. 3, be the arc z, BM the
arc % ; then the perpendicular BP will be the sin#, and the
perpendicular MQ the sin (o+%). This being supposed, the
more the arc BM =/ is diminished, the more does the angle
MBC approximate to a right angle ; and consequently, in the
case of the limit, we may consider MBC as a right angle, and
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the triangle MBD will then become similar to the triangle
BCP ; since in that case the triangles have their sides per-
pendiculars.  From this it follows, that we have the pro-
portion
BC:CP:: BM: MD,
or,
r:cos 2 :: BM: sin (a+A)—sin x ;

and therefore

sin (24 Ah)—sin x _cosa

BM -y’

taking the limit, and observing that, in this case, the chord
BM may be replaced by the arc BM=#4, the above equation
becomes

d.sine  cosa
dv =~ r
and taking the radius equal to unity,

d.sin x=dz cos .»r.

44. To find the differential of cos », the equation
sin® 2+ cos? =1, or rather, (sin )24 (cos )2 =1, lLeing dif-
ferentiated, gives 2 sin zd. sin # 42 cos xd. cos ¥ =0 ; whence
we find

sin xd. sin @&

d.cos ¥ = —-— —
Cos v

and putting for d.sin x its value, da. cos &, art. 41, and re-
ducing, we have d. cos x= —dux. sin z.
45. We obtain the differential of tangent «, by considering

that tan m:i—::i—': ; which equation being differentiated by art.
(16), we find

cos xd. sin x — sin xd. cos @
d.tan x = S —
cos® x

and putting the values of d.sin x and d. cos 2, we shall have
cos? x4-8in® x
cos® x ) dz,

d.tan * = (
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and thercfore, since cos® x + sin? =1,

d.tan x = -
cos 2x

46. We know, by trigonometry, that the radius is 2 mean
proportional between the tangent and the cotangent, and be-
tween the cosine and the secant, which gives

1
tang @’ SCCT= Cos z°

By differentiating the first of these equations (art. 16), we
find

cot r =

d.tang . dr dr

d.cot » = —

tang?r ~ costa. tang?xr | sin®z’

. sin .

for, from the equation cos = tang, we deduce cos. tang =sin.
. 1 . A . .

47. The equation scc o being differentiated, gives

d.cos x sinade sinae dr
d.sec =— = =

= = . =tang x.scc zdz.
cos?r cos? .» COs & COS

48. We may determine in the same manner the differential

1 . . .
of the cosecant ; for cosec # = —— ; which, being differen-
tiated, we have

cos rd.r cos 2 dr
Ad.COSeCH = —~ ———m—— = —— =
sin® » sin 2 sin 2 tan »

. coscc ad.r

=—cot @ coscc zda.

49. In respect of the versin, by differentiating the equation
versin @4cos #=1, we find d. versin 2 =d(1—cos ), and by
performing the differentiation,

d.versin r=sin zda.

On the differentiation of certain complicated Lranscendental
Junctions.

50. The preceding princéiples will serve for the differentiating
every expression affected with transcendental quantitics.
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Let y =a®" be the function ; making b = u, we shall have
y=a", and differentiating by art. 37, we shall find

z_lg = a*La = a" La, (—lzzb'Lb ;
dx

du
therefore (art. 26),
dydu dy .
Twar UF To= a¥* brLa L.

51. Let also y = z; taking the logarithms, we have
log y =vlog 2 ; and therefore, d.log y=vd.log = + log zdv :
putting for the logarithmic differentials their values (art. 38),
we shall find

l, {2
Y=t log zde.
y z

and consequently,
dz I
dy= y(vT + log zdu) s on, dy = z"(v—i— + log zrlv).

By means of this differential, we shall casily find that of

y==z": for, let " =v, then the equation is reduced to y=2"

=2z,

and the equations y =z%, v=1¢", being of the same form with
the equation whose differential we have just found, will give

dy=2" ('v dz_z +log zdv)
dv=1t" (uth+log tdu).

Substituting the values of v and dv in that of dy given by the
last cquation but one, we shall have

dy==" t“%-{- log 2.1« (u-‘% +log 2. du)]

==z t"(‘-—’—i+ul( M -:lor 2. Jog ¢ du)
=z". . e e 2. dog 1.du).
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L'aylor's theorem.

52. Before proceeding farther, we will observe that in the
. . : dy . .
differeutial calculus an cxpression such as ;1—% signifies that a

function y of one or more variables has been differentiated in
respect of the variable r and divided by dw ; if, for instance,

dy
we had y = aa2u’z4, the expression -~ / would be found by con-

da
sidering # and = as constant, differentiating in respect of o,
ey d
and dividing by da, so that we shall have —Iz =2axuszt. We
do

. . oy di
should find in the same munnnr—l'-/- =4aa®z 1 andz‘z =3aa2tuz.
e

~

If we had y=a* + 2%, —1 would be 2a.

53. Ifin a function y of'x, the variable x is changed into
x+h, we have the same differential cocfficient when x is va-
riable and h constant, as when h is variable and x constant.

To demonstrate this, if in the equation y=/f», we put
x+h=2z"in place of x, we shall have ' =f2'; the differential
of fu' will be equal to some other function of z’ represented
by @2’ and multiplied by dr, and consequently dy’= pa'dal, or
putting for 2’ its value x4, we shall have

dy =¢(x+h) d(x+k);
in which differential the only change arising from the hypo-
thesis of a being variable and % constant is in the factor
d(x+h), which is then reduced to dx, so that we have in
that case
dy =¢ (z+h)da,
whence we find

"y =t +h)....(26).
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If, on the contrary, we make % variable and z constant, the
factor d (& -+ %) is reduced to dZ, and we have

dy =¢ (x +h)dh,
and consequently

Y ooty ... @D

cquating these two values of 2 (# + %), there results
dy' _ dy
dr = dh’
For example, if we had y=ax%, by putting .« 4 4 for », we
should find
dy dy
- = @€ 2=/
ir 3a (v 4-h) e
and consequently
dy — dy'

e k-
54. The equations (26) and (27) being differentiated in
wespeet of @+ 4, wive still the equal results
1 & q
ll !

"’ = (e +h)d (e +h)

ll'~‘

-n;'}—_.qb (r+b)d(e4h);

and making & constant in the first equation, and . constant in
the second, we shall have

'ﬂ =0 (1) do ﬂ—cp' (r+h)dh.
whence we slmll deduce
dvy  diy
da® T an
dy dy
de® = dl’

We may conclude by similar reasoning that

d* Al
‘y —idl;:; and so on.
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55. This being premised, let y be a function of #+ 4, and
suppose that, when this function is developed according to the
powers of &, we have

¥=y+Ah+BR+CP+&c........ (28) ;

A, B, C, &c., being unknown functions of x, now to be de-
termined.  For this purpose, differentiating in respeet of £,
and dividing by dk, we shall have

"” = A+2Bk +3Ck + &e.

Differentiating again in respect of x, and dividing by dx, we
shall have

d
dy _ y dA +di3h9+&c .
dr dr (la

and the first sides of these equations being equal, by article
53, the sccond sides must be identical ; whence, equating the
coeflicients of the same powers of %, we shall find

dy dA . dB . dC
A=Te B=ggp C=gp V=g e

Substituting the value of A, given by the first of these equa-

S 1 &2y -

tions, in the second, we shall have B =135 s Substituting

this value in that of C, we shall have C = 1 &y . 1
> we shall have C= 755 =55 an

50 on.

By means of these values of A, B, C, &e., the cquation
(28) will become
(h/ ah/ I dy W
Y=yttt et o 183

or, putting for y' its vulue

——+&ec.;

: _ By 12 by B
J(‘“'”""-""'?“ s 18t Tagtde

which is Taylor’s theorem.
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Application of T'aylor’s theorem Lo the development of different
JSunctions in the form of a series.
56. Let y' = »/++ £ be the function :
we have then

Y=o T=u%,
and therefore

1

’—l‘f/ =4, —~i=

de” * 2/

@y _ o —s-_., L

da? ' L

a3y s ]

==y &
substituting in the formula we have

—_— — h /% N
Jrrh= ot ==t —— &e.

A Ve N
57. Let y'=sin (w4/4), whenee it follows that y=sin.;
and we may therefore form the successive differential co-
cthcients thus;

dy dty . vy,
e =COS W5 L= —sinwy TR =—cos 2
gzsin @ %:cos r; &e.;
and substituting in Taylor’s formula, we tind
sin(ox+4) =sin.r+c0s.z'.]i—sin .rl'-g——cos r. —h:—
1 1.2 1.2.3
. /A /A
+ sin o, 1'2.3.4+cos @ 9345 &e.

Making =0, sin » will then be =0, cos 2=1, and the scries
will become

. ke
sinh=h— e 4 = — &e.
5

]‘3
123Vi23.

D
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If we took y'=cos(»+%), we should find, proceeding as in
the last example, that

cosh=1—"

"I
2 t333
58. Let us develope also log (a4-%) ; then we have

— &e.

¥ =log (x+1%), and therefore y=log a';

1
dy=d.logxr= de — and thereforcgZ ==3

and we shall obtain then, h_v successive differentiations,
d"_// 1 «f ‘l/ 2
At - T A T

&e.

substituting these values in the formula of Tuylor, we have
y/ L 3
log (» +h)-—]ogr+-f— A -}-,3 , &c.

59. Had this formula been deduced from the principles of
Algebra alone, and not by differentiation, we might easily, by
mcans of it, find the differential of a logarithm [note first.’]
For the formula gives

log (w+h)—=logs 1 L

h T 2 + &e.:
and taking the limit, we have
d.log.» 1
dr "~ w

o
d.Jog.r=—.
ol

Knowing the differential of a logarithm, it would be easy to
find that of ¢ ; for by making y=a’, and taking the loga-
rithms in the Napierian system, we have

Ly=La’'=aLa,
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and differentiating,

(h/ =d+La,

whence we find
dy = ydorLa=a'drLa.

60. Maclaurin’s theorem may be deduced from that of
Taylor in the mauner following ; we have, by Taylor's
1heorem,

v Jf: ,L2 (PH I

_ .f
S @b =fet—rht =y 5+ o 1o

—+4 &c.

Representing by ( fv),(—-‘})—) » &e. the values of jfr,?, &e.
"y ol

when we make »=0; the formula of Taylor will become,
when =0,

Al

Sh= (S )+(‘”’)ll+(‘”')]2+ &e.:
in which equation, 4 enters into f& as » entered into fir, so
that if we change % into », f& will become /fir; and since
there no longer remain any traces of 4, this change is allow-
able, it being of little consequence whether we substitute
one letter or another for %: making therefore this change,
we find

so=m+ (F r+ (G se

which is Maclaurin’s theorem.

On the differentiation of cquations of (wo variables,

61. Let
F (2,y)=0 . .. (29)
be an equation betwixt two variables.

Resolving this equation in respect of », we shall find y=¢r,
n2
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and supposing that we have substituted this value in the
equation (29), it will become F(w,¢2) =0, or for greater sim-
plicity
Ja=0,
an equation identical with the former, and in which all the
terms must vanish, whatever value we give to ».  If, for in-
stance, the cquation rise only to the third degree, we may re-
present it by
A4+ B24+Car+D=0,
and putting any value whatever for », this must be always
satisfied ; whercfore putting a4 +/4 for 2, we shall have still
A(r4k)y B4+ Cr+)+D =0,
that is to say, iff we have fr=0, whatever be the value of .,
we shall have also fLe+4)=0.

Subtracting from this equation the former one fir =0, there
will remain

Se+h)y—fr=0,
and therefore
SGrh=fe_,
I3 -
But
S =fe 4 A+ BAE 4 &e.
whenee we deduee

e ) — [
LUIDZSE A Bl e
the first side of which cquation being 0, we have
. . .. d.fe
A+ Bl +&e.=0, and taking the lnmt,d— =A=0,
o’
and consequently d . fr=Adr=0, or by restoring y,
d.F(o,y)=Ade=0.

This shows us that considering y as a function of &, if we

differentiate the equation F(.,y) = 0, we may put the resultequal
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to 0; which will scrve to determine the value of the dit-
. . . . ey . .
ferential coeflicient 7'1, as we shall see in the following ex-

da
ample.  Let
F(o, py=2+3ay—*>=0 ... ..... (30) ;
differentiating by the ordinary processes, and observing that.

from the preceding demonstration. we may put the result = 0,
we have

Qodr+3ady—2ydy=0 . ..... (31)
from which equation we find
dy_ 2e (32).

de 2y — 3u

62. If we compure the process which has given us this
value with that which we have hitherto employed, we shall
see, that, working according to the previous method, it would
Lave been necessary, first, to put the equation (30) uuder the
form y=/r, and conscquently to resolve the equation in re-
speet to 4, in order to deduce then by differentiation the
dy
de

3u 9 .

and then. by differentiation,

I!/ N}
de =% 6;—
iu'—' 4+

value of Following that course, we should find, first,

R oy, -
This value of il appears under a form different from that pre-

de
sented to us by equation (32) ; but putting in equation (32)
the value of y, that cquution will become

de ™ + 9
2 / a?ta® \/—H‘-}' PN
~ 4
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as we have just found. The equation (31) is the first differen-
tial of equation (30).
To obtain the cquation which gives the second differential

coefficient, i. ¢. d /> dividing the equation (31) by du, and

. d . .
making Z—f-: p. that equation will become
v

20 +3ap—2yp=0:
considering y and p as functions of .», we shall have, by dif-
ferentiation,
2da +3udp—2ydp—2pdy =0 ;

dy
and dividing by de. and putting p in place of -", there
results
24 3u ~—2 —2p2 =0,

from which we find
l/p 2])"‘— 2

de " 3a=2y " (33).
oo Ay s ahall have 7 Ty e
But since T p» we shall have L= putting which

values in cquation (33), and getting guit of the denominators.
we shall obtain

a?y(3a—2y) =2dy'—2ds* . ... .. (34),
which will be the second differential of the equation (30).

dp
T'o obtain the third differential, we must pul. / =g, when,

having got quit of the denominator, equation (33) will be-
come
Sag—2yq=2"—2;
and this being differentiated, considering y, p, g, as functions
of «», we shall find the third differential ; and s¢ en for the
rest.
63. Instcad of using the letters g, g, 7, fov the performing
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these operations, we might arrive at the same result by differcn-
tiating the equation (31), and putting dy for the differential
of y, d’y for that of dy, d°y for that of d%, and considering
d2 as constant ; by which means we should find
2da?+3ad*y—2dyt—2ydry =0;

the same with equation (34).

64. We will now give the general expression for the dif-
ferential of the equation f(»,y)=0; for which purpose, re-
presenting f (., y) by w, we shall have, by differentiating the

. du .
function in respect of &, the term (—!;d.z' ; and by differen-

e . du
tiating in respect of y, the sccond term, —7(1y ; so that

d

d.f(r,y), or :h(_-;— de + E—r]l/

But if y 1s considered as a function of .», we shall have, by
differentiation,

dy
ly = =~dy ;
Y (er'y ’
which value being substituted, we shall find

du du 1l1/
n'u__:"—“(ll + ([J ar

65. Recalling to mind the theorem demounstrated, article
(20), we shall sce that v being considered as a function of y,
. dudy .
and y as a function of », the product iy (-t—{ is no other than

dyde
the differential of u, taken in respect of ., contained in y.
66. The total differential of a function of 2 and y being
given by the equation

Iu_.—-dr + (l_/,

. du , .
the expiessions i du, 71/”'1/ have been called the partial dif-
o [{
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ferentials of ». In like manner, if # be a function of three
independent variables «, ¥, 2, we shall have
du= gl{d‘: + :—g dy + %dz,
and the terms,
du du du
i p dy, iz
will be the partial differentials of «.

(7. We have seen (art. 52), that an expression such as gif

indicates that the function » has been differentiated in respect
of #, and then divided by d.r ; whence it follows, that if we
have an equation % = A, and therefore,
_ A
=iy
d
we cannot, without demonstration, conclude from it that
1 = Ad—‘l‘ ;
. @
for in this new equation the differentiation is no longer made
in respeet of w, but in respect of 7 ; and we do not yet know
whether on this new hypotliesis of differentiation the result
will be the same.
For the removing this difficulty, we have demonstrated
(art. 26) that

5{1) _dv f]f/

da J_; da
If in this equation we make » =, it becomes
1=92 dy
dy " d2’
whence we find
de 1
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which shows us that the change in the hypothesis of differen-
tiation agrees with the principles of Algebra.
68. We will show how it may be demonstrated dircctly, that on the new
hypothesis which gives the sign of division to the fraction (Ilil’ the following
dv

equation holds good :

de 1
dy T dy’
o
Let
LY — A4Bh4Cle 4 &c.
£ —1
then

2 - )
=y = ATTTORTRS
and cftecting the division, or developing by means of Maclaurin®s theorem.
we obtain
Pes B,
¥=u A A

Taking the imat, we have

i )

i A :
Ay i
and stnee == = A, 1t follows tha
at

X 1
dy T Y '
d

On the wcthod of tangents.

69. We give this name to the method which affords us the
differential expressions for the tangents, subtangents, normals,
and subnormals of curves.

Let » and y be the coordinates of a point M (fig. 4) taken
inacurve ; increase the abscissa AP =. by a quantity PP =17,
draw the ordinate P’M’, aud through the points M, M’, pass
the sceant M'S.  Then it i evident that the more P is dimi-
nished, the more PS tends to coincide with the subtangent PT.
until at last PP = 4 hecones O T therefore will be the limit
to which PS tends
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We must now investigate the analytical expression for PS,
in order to tuke the limit; and for this purpose the similar
triangles M'MQ and MSP give the proportion,

MQ : MQ :: MP : PS,
or MQ: & :: y :PS;
and therefore,
s_ hy
Pb_m.
T'o determine M'Q, we have
MQ=MP—-MP;
but
MP=y'=f(v+h).
and therefore,
/ dl/ d*y “Y ht .
MP_/+ I+dﬂ 12"'&‘
On the other hand
MP=y;
if therefore we subtract these equnations one from the other,
there results

> ’ Sll dl/lt
M'} I\IIPMI\IQ_ +1q]2+

Substituting this value in that of PS, we shall find

&e.

Dy
dy ,  duy /2
r?"/' driet
and dividing by £,
— Y
Ps—d_y (lg_y h

de " di®"1.2 + &e.

PS=

&e.

At the limit, #=0 and PS becomes PT, which gives us

PT =2 or (art 67) VT = ,;

(/.I'
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or rather,
da’
PT =y'——=the subtangent
Y a7 e subtangent,

representing by o/, ', the cordinates of the point M.

70. If at the point M (fig. 5) we draw MN perpendicular
to MT, PN will be the subnormal. For determining it we
have

PT : PM :: PM : PN
or
y--~ 4y ::y : PN,
Y dy Y
and therefore
d
PN = .1/'.?1.{/_7 = the subnormal.

In respeet to the tangent and the normal, we have
MT=y PT‘+ PMe,

or lenrgent J o +/ =y o +1
anNe = —— —_
S Y “_ 1i=y I{/m
MN=yPN+PM

—r— T
or normal :J_y“:‘—;l{-‘,é +.y"~':'y~/7-,-+]

71. To find the cquation to the tangent, let " and y be the
coordinates of the point of contact M ; the cquation to the
straight line MT, passing through the point M, may then be
represented by

‘l/—.l/' =A (.r—.r').
where A is the trigonometrical tangent of the angle MTP.

PM
and will therefore he expressed by for we have

Pr°’
PT : PM :: 1: tang. MTP= }].:I ;
therefore
PM Y v d:/'
"y A — o= .
tan. MTP = PT T subtangent ~ d: o

// I,

Fig.

<
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Substituting this value of A in the equation to the tangent.
that equation becomes

dy ,
y—y= (% (¥ —a’), the cquation (o the tangent.
n

The equation to the normal will therefore be

’

. dx .
y—Y =—;’—; (& —2a").

Application of the preceding formule to some ecamples.

72. 1. To find the sublangenl of the puralmlu.
The equation of the parabola being y*=p.w, we shall find
by differentiation,
2ydy=pd.,
and consequently
dy_ p
ar =5,
But 2” and y’ are the coordinates of the point of contact, and
in order thercfore to have the differential coefficient corre-
sponding to that point we must accent @ and y ; when we shall
have

dy_» .
dr' "2y
substituting this value in that of PT, we obtain
pr=2"
P

and putting pa' in place of 4%, that equation becomes
PT or the subtangent = 24'.
20, To find the subnormal of the ellipsc. The cquation of

the cllipse, referred to the centre, is

h%a%+4 a®y? =202,
which being differentiated, gives

2.2 rde +2atydy =0 ;

whence we find

dy’ o

det T gty
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and putting this value in that of the subnormal PN, we
obtain

e
PN or the subnormal = — ~—Q-n".
a

3. To find the cxpression_for the tangent to the circle. The
equation 1o the circle is 22+ 2 =72, which being differentiated,
we find for the point of contact »,' ',

dy 2

-lT.'T = -—y»,—.
By means of this value we shall reduce the expression for
MT, the tangent, to

'11.2 ‘a -—Q )
fam,-cnl_.yJ +l_,J + ~/’_ﬂ_—_—i’£
2’2

Asymplotes to curves.

73. The cxpression for AT (fig. 6), the distance of the vertex of the
curve from the point T in the tangent, is readily deduced from the equation
10 the tangent; for if the vertex A of the curve be taken for the origin of
the coordinats, the straight line AT will be the distance of that vertex from
the point at which the vrdinate PM becomes 0.

Now the cquation to the tangent is ¥y —y —_-?i"/,, (a—2"), and it will there-
s

fore be sufficient to make y =0, in that equation, in order that the value of

v, then deduced, may be that of AT ; we obtain, in this manner,

AT =2'—y'— Sl 3
dy’

which will be the distance of the origin from the point in which the tangent
cuts the axis of a.

To determine the distance of the origin from the point in which the tan-
gent cuts the axis of g, we must calculate the value of AB; and AB being
the ordinate y, corresponding to #=0 in the equation to the tangent, we shall
have on that hypothesis

dy’
AB=y' — -2’
Y "

Suppose now that x becoming infinite, the values of AT and AB con-
tinue finite; we may conclude then that the straight line TI, meets the

Fig. G.
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curve only at an infinite distance ; and conscquently TL will be an asymp-
tote to the curve.

74. Let us take, for example, the equation y2>=mx+na?; we shall find
from this equation

dy’ _ m—+2nx'
'~ 2y
and therefore
, 2y my'+2nx'3—2y" ma’
AT =x .= - = »
m-2nx m—+2nx m~42nr
AB=y' ma'+ 2'nx"‘ ___21/"' ——m:v”—- 2m"¢;

2y 2y
putting for 3’ its value, and reducing, we find
mx’ mx’

B= ;
m+2n2" 2/ m'4-nx"?

AT=—

and dividing each term in thesc fractions by a, we obtain

mn

AT=——"_  AB=—mn ..
mn 2 'm
2 \/;,+n

When 2’ is made infinite, these values become

and therefore the curve will be susceptible of asymptotes, provided only that
n be not cither negative or 0; for if # be negative, in which case the cqua-
tion belongs to an cllipse, the value of AB, given by the second of equations
(35), becomes imaginary. The same cquation is that of a parabola when
n is 0; but on this hypothesis the equations show us that AT and AB be-
come infinite, which proves that the parabola cannot have asymptotes.

On the equation of the tangent plane to a curve surface, and
the equation of the normal to that surface.

Fig.8. 75. Letf(a, y, ) =0 be the equation to a curve surface, and .. ...
A2+By+Cz+4+D=0 that to a plane. If the point M where the comact
takes placc have for its coordinates 2/, y', 2', these coordinates must satisfy
the equation of the plane, and we shall have consequently

Ax'+By'+Cz'+D=0.
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Eliminating D betwixt this equation and the preceding one, we shall find
for the equation of the plane made to pass through the point z', ¥/, ',
A(r—2") + B(y—y') + C(z—=")=0.. . (36).

Draw through the point of contact 2, y', 2°, a plane parallel to the plane
of z, z; then this plane will cut the surface in a curve MC, and the tangent
plane in a straight line ML (fig. 8), which must be a tangent to the curve
MC, or otherwise the tangent plane would cut the curve surface.

The equation to the straight line M L may be deduced from equation (36) ;
for the line ML being the section of the tangent planc made by a plane pa-
rallel to the planc of &, 2, has at every point equal values for 7 ; and since the
point M is in that line, we have =y’ or y —y’ =0, which reduces the equa-
tion (36) to

A(z—2Y4+C(z—=')=0.

This equation will therefore express the relation that exists between the co-
ordinates 2 and > of any point whatever, taken in the straight line ML, and
conscquently will he the equation to that line : it may be written thus:

A
z— 2= — —(—I‘-(.v —a') e (7).

The cquation of the curve MC will be obtained in like manner, by consider-
ing 7 as constant, in the equation f'(x, ¥, ) = 0, to the curve surface.

1 order to express the further condition of the straight line ML, being a
tangent to the curve MC, we must (art. 7 1) have the coefficient of 22—, in

d!
the equation (37), cqual to the value of o derived from the equation of

the curve MC.
But the cquation to that curve is the equation to the surface, cousidering
4 as constant ; and it will therefore be sufficient to differcntiate the equation

. . dz . - .
to the surface, and derive from it d.-; for, according to art. 52, the notation
T

..

oo Supposes that we have considered y as a constant in the differcntiation.
ar

It follows, thenee, that accenting > and z after the operation, we have for
the condition of ML, being a tangent to MC,

A dY dz' .
T orA = —Cda—"' e oo . (38).

1f, again, we draw through the point M a planc, parallel to the planc of
2, ¥, that plane will cut the surface in u curve MD, and the tangent plane
in a straight line MN ; and it may be demonstrated, as before, that the line
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MN must be a tangent to the curve of interscction MD, and that for cvery
point in the line MN, the abscissee being cqual, we must have  —2/=0;
which reduces the equation (36) to

Biy—#)+C(z—=)=0;
whence we shall get

=B
sod=E—- (V=)

This bcing the equation of the straight line MN, we shall express the
condition of that line being a tangent to the curve MDD, by equating the co-

1"
cfficient of 4 —y' to the differential coefficient, (7—,, deduced from the equa-
Y

tion to the surface, when we shall have

B _ar
o dy’ °
and consequently
dz'
B=—-—C—...... 39).
cL 39)

Substituting, in equation (36), the valucs of A and B, given by the equa-
tions (38) and (39), we shall tind

—C & ey %y — )+ Cr—)=0;
d.l"( Ey—:(y v ) +C(x—2z)=0;
whence we deduce for the equation of the tangent plane at the point 2, y' =,
,_dz’ o de ,
2=z _Ez—.,(.r—'r)+d!7(1/—u) ...... (40).

76. Let us find, for example, the equation of the tangent plane to a
sphere.  The coordinates of the centre being a, b, ¢, the sphere will have for
its equation

(@ —ay +(y—bp4(z = =1;
and we find, by differentiating,
(#—a)dx +(y —b)dy + (2 —c)dz=0;

whence we deduce, according to the notation agreed on (art. 52),

dz _a—z dz:_b—y

dx _z—c¢ dy z—c’
and the equation of the tangent planc to a sphere will therefore be at the
point whose coordinates are ', ', =/,

a—2z2' b—y'
P ] ;:(-I‘ -—J") +ﬁ (y—y').
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77. If the planc passed through the extremity of the vertical diameter,

we should have

v=a,y=bF=c+r;
and these values would reduce the equation of the tangent plane to z=c—r,
the equation of a plane parallel to the plane of z, y-

78. The equations of the normal ut the point ', 3, =, may be readily
deduced from the equation of the tangent plane : for, from the principles of
analytical geometry (sec my Theory of Curves of the second order, page
278), we know, that if we have the equations

Arv4By+4Cz4D=0......(41),
r=az+a >
S (42),
the first being that of a plane, and the other two those of a straight line ;
the conditions necessary, in order that the line may be perpendicular to the
planc, are that
A=aC, B=06C.

If, now, bringing over all the terms of cquation (40) to the first side, we
compare it with equation (41), we shall find, by equating the coefficients of
ry ¥, 2, in the two

dz’ d!

A:—EP’ :—W,C:'l:
and thcrefore
d=' dz'
| = = e, = —
da’ dy'

which values being substituted in thc equation (42), we shall obtain
d=’ dz'
r=——mz +a y= —;!7z+ﬁ.

These equations, belonging to any point in the line, must hold for the point
z'y y'y z', so that we shall have again

i ds _ &,
-1'——3;;‘- +a, y= dy'z-'—ﬂ'

and eliminating o and 8 betwixt these four last equations, we shall find, for
the equations of the normal at the point ', y/', =/,

dz' . dz' ,
r—x':—d—x—,(z =)y y—y'= —E(Z —=2),
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On functions which, for a particular value of the variable,

0
become —.

0
. Fe 0 e
79. When a fraction such as T_’ becomes ) by substituting in it a par-

ticular value of z, which we will rcpresent by @, it is a mark that the two
terms of that fraction have #—a, or gencrally (@ —a)™ for a common factor ;
and if we can get quit of this, we shall have the true value of the fraction.

Suppose, therefore, that r—a 1s m times a factor in Fur, and » times a
factor in ¢z (adwmnitting that, if the easc require it, m and # may be assumed
equal to unity or to zcero), we may write then

Fr=Pw—u)m, gz =Q(xr—a),
and therefore

];: = —g-(.r——u P e (43).
By differentiating, we find
d.Fr

o= mP(x—a)m—1+4 ‘2—[: (r—a)n;

d.F.

r .
where, it will be observed, that the value of consists of two terms,

one of which contains a power of (x —a), less by unity than that which
enters into the function. In thc same manncr, taking the differential co-

efficient of d:—:::z, we shall find onc term involving (z —a)m, another

(zr—a)m—1, and a third (z—a)m—2; the last term will be m(m—1)
P(x—a)m—2, Continuing the process, we shall see that each new differentiation
produces again terms involving the same powers of (1 —a) that were contained
in the function differentiated, with an additional term in which the power of
#-—a is diminished by unity; thus, taking the successive differential co-
efficients, thc term containing the lowcst power of z—a will be

for the first differentiation m P(z—a)m—1,

for the second . . . . . « o . m(m—1)P(r—a)m—2,

for the third . .. ...... m(m—1)(m—2)P(z—a)m—3,
forthemth.......... m(m—1).....P(z—a)m—n;

80 that the differential cocfficient of the 7th order of Fz will be of this form,

dr.Fz "
pr= =X(x—a)m 4+X'(2 —a)m—1 4+ X" (r —a)m—24+X""'(x —a)m—3

+m(m—D(m—=2)....Px—a)m—,
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‘What we have said of Far may be applied to 72, and we shall find, for the
differential of the order 7 of the proposed function, a result of this form,
dr.Fr
_der  X(r—a)yn X (r—a)yn—1... 4m(m—1)...P(r—a)n—r
.oz —Z(.z-—a)t +Z'(r—a—1.... +n(n—1)...Q(x—a)r—

dzr .

(44).

80. This being premised, we wiil consider threz cases :
1. m=n; 20.m>n; I%.m<n.
If m=n, and the number of differcntiations performed be also =m, the
hinomials (# —a)m— and (x—«)»— will be cach reduced to (x—a)®, i. e.
to unity; whilst the other binomials (r—a)m, (v —a)m—1, &e.; (r—a)n,
(r—a)r—1, &c. will become O on the supposition of x=a; thus all the
terms, except the last of the numerator and the last cf the denominator, will
vanish, and the equation (44) will become

dm.Fxr
dem  m(m—1)(m—2) ..

P Fr

.P
dm’. (23 _1."'(01 —1)(m “2)...Q Q ¢r
dam

In the seennd case, when we have m> #, if the number 7 of the differen-
iiations performied be equal to », the binomial (r—a)r— is reduced to
unity, its exponent #—7 being 0. The exponents n—1, 2 —2, &c.; m—1,
m —2, &c. of the other binomials, being greater than »—r, arc positive ;
and consequently the hinomials are reduced each of them to 0, when x is made
==a: on that hypotlesis, therefore, all the terms vanish except that con-
taining (z—a)»—7, and the equation (44) is reduced to

dn.Fx
drn 0 _ (] —o
an. oz n(n—1)...Q(x—ay—r n(n—1)...Q
dzn

This value, therefore, indicates that we have m > %, in which case the equa.
tion (43) is reduced to 0.

If, lastly, we have m <n, the number  of the differentiations performed
being taken equal to m, all the terms will disappear except the one . . . .
m(m—1) ... P(r—a)", and there will remain

dm.Fx
drn _mm—1)...P _
dmzr [} -0

dxym r2
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and this value, therefore, indicates that m is greater than n, in which case
the second side of the equation (43) is infinite.
81. From what has preceded there results this rule : When it is required

Fx .
to determine the truc value of a fraction :P—x—-, which, on a particular valuc
(1] .
being given lorthe variable, becomes Il must differcntiate separately the
. 3 d.Fx
two terms of the fraction, and cxamine then whether the results i and

d.9x are also reduced to 0, for the proposed value of the variable; if this

be the casc, we must tuke the differential coefficicnts of the cxpressions d . Fx
and d. ¢x, and scc whether on the same hypothesis these are also reduced
10 0 ; and continuing this proccss, if we find aftcr a certain number of dif-
Serentiations that the two terms of the fraction do not either of them vanish
Jor the particular value of the variable, that last fraction =will be the true

Fx
ralue Qf@; ;5 but if the numerator only become O for the value of x, the ea-

x
pression ox is 0; and lustly, if it be only the denominator that vanishes for
L Fx
she value of X, the capression Py will be infinite.
82. Let us take, for example, the fraction
Fx as—In

Tz d(a—b)’

0
this fraction becoming n when 2 =1b, if we wish to have the true value, we

322
must differentiate cach of the two terms, when we shall nbmin};—; and

since the terms of this fraction do not either of them vanish on the supposition
of r=b, the true value of the proposed fraction, when =2, is ?
83. We will take, for a sccond cxample, the fraction
a3—3r+2
1 —622+4-8v—3°
0
which is reduced o 7 when =13 and in order to obtain its true value, we

munt differentiate each of its terms, when we shall find
RELE ]
4x3—12xf8°
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m which fraction the two tenus being again 0, on the hypothesis of w=1,
we must differentiate again, ard we shall obtain
Gr
2o 12’
in this the denominator alone vanishes when we make r=1; and thercfore
the fraction proposed, on the hypothesis of @ =1, is infinite.
84. 1f we apply the same rule to the fraction
ar—=b!

~

a
0
which becomes ™ the hypothesis of + =0, we shall find, by differentiating

the two tcrus of this fraction,
arloga--b logb
l k]
an expression, of which neither numerator nor denominator vanishes when
=03 and which consequently gives log a—log 4 for the valuc of the pro-
posed fraction, when .o =0,
It is cvident that the factor conanon to the two terms of the proposcd
fraction is vr-—0, or vz hut bow are we to recognise the factor & in a2 —bs ?
To arrive at it we inust observe that, according to art. (37),

2
a :H—.\‘—‘l ¥ Aal‘f_, + &

2
=t 82 s
and, thercfore, taking the differonee.
FL]
ar—h =(A ——l’,).r.}-{\/p_. Bn)i'_é_i_&c_'

whenee we sce that v is a factor of at —01.

85. It must not be supposed that the rule which we huve just given will
suffice for cvery case; the preceding demonstration is founded on the sup-
position of m and » being whole numbers ; should they be fractional, we
could never obtain, by successive differentiation, a term in which r—a ap-
pears raised to the power 0, and conscquently we could never, by the process
hitherto employed, clear the fraction of the common factor.

For greater generality, then, let the expression be

Fa P(l'——ﬂ) +Q(l'—")ﬁ 'R(,--(,)’-'-&,c.
T P QU= AR =0 e

i which v, 5, y. &c. are positive and inceeasing, as also ', 87, v, &c. This
-
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.0 . .
expression becoming o when 2 =«, we may, instead of changing z into a,

change 2 into a4k, and make 2 =0, after having reduced ; then the hypo-
thesis will be the same as if we had immediatcly made r —a, and we shall
have
Fr_ Pi QP +R0Y 4 &e.
= P QY 4R 4 &e.

and z, «’, being the least of the exponents in each of these serivs, we shall
have three cuses,
10, a>c! 3 20.x=a'; 3° a<a’.

In the first case, dividing the two terms of the fraction by A”, we have

Fr_ PR +Qif Y 4RI f &

A — eeev.(46):
9 pQuf T LR T ¥ ke

and, by hypothesis, « is greater than «'; consequently the number a —x’ will
be positive, and mych more will §—a', y—o', &e¢., be so also, since a, 8, v,
&c., go on increasing. B —o', ,'—=z', &c., will hkewise be positive ; for
o'y B, v, &e., going on increasing ; «'is less than g, A’ than v/, &c. This
being premised, if we make 2=0, ail the ternis on the second side of the
equation (46) will vanish, except P’, and the cquation will then be reduced to

Fr_ 0 —0

ge~ P
In the second case, 1 wlich o =2, the term PPA” ™ * is reduced to Pho =P ;
and therefore, by inspecting the equation (46), we sce that when x=a, -l%'"
&

l)
is reducad to —

P
In the third and last case, in which « is less than «', dividing by 4", we
may write equation (40) thus :
Fo_  PHQIE 4RI T 4&c.
T pgt T QR TR T ke
and we sec that the hypothesis of =0 reduces this equation to
Fao_ P

=--=¢,

FY)
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86. Lt us take, for example, the fraction

(a7 — Baxr + 2a2)%
- I
(3 — us)"

which, when @ =a, is reduced to —. .

If in this fraction we put a4A for r, it becomes

(o —an)¥ (h—a)bid
(307h +3ala 4+ A8 (3a94-3ah +}.n)§;.i
(h—a)8a8 4 (h—a)nd
i = :
(B +3ah+13  (Bas +-Bah4Ah0j8
and making 4 =0, we obtain
!-?ir = 0 i =0.
X (Bun )2
87. It a particular valuc of a render the two terms of the fraction F‘: -
finite, we may divide each of the terms by Fua X 7.z, and we shall have
1 1
L ;T'" _; _0
tr 110

Fr =
88. if, lastly, wc have a product mur, 1 which the hypothesis of =0
renders one of the factors 0, and the other infirite ; and m be the factor
which becomes 0, n that which becomes infinite for the value of v ; we may
write the product thus

m
»

mn ==

n

. - LM,
and since — - will then be 0, the expression 2 will be reduced to .
n

n

On marima and minima of functions of one variable.
89. We may, in the series of Taylor, give such a value to
the increment /, that any one of the terms of the series shall
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be greater than the sum of all those that follow. For, the

series being represented by
d dy k2 oy B .
At TE T T i2at S

d; .
if we wish that ;1_._9 h, for instance, should become greater than
T

the sum of all the other terms following, we may write the
part of the serics commencing from that term, thus:

dy dy h dy I

dx+dﬁl2+dr,123+&c)h ...... An;

and since, when we make % =0, the part -

dyh  dyI®

dz2 27 dad §3+&c.

vanishes, it will be easily seen that by taking % exceedingly
small, that part may be made as small as we please, and there-

fore be made less than ‘—1‘2, which is independent of /.. Let =z

dx

d?
be what — 4 —+ &c. becomes in this case : then the series will

da®
. dy .
be reduced to T+z % ; and since we have 7’—7 =, or, multi-
) dx

plying by 4, %I; 7 zh, it follows that the term -j—ll h is greater
than the sum of all the succeeding terms. The same may be
proved for every term in respect of those that follow.

90. Let y=g@x be an equation betwixt two variables. This
may always be considered as the equation of a curve, in which
the different values of the function y are the ordinates ; and
the function y is said to be at its minimum, when, after having
been continually decreasing, it is on the point of commencing
to increasc.

Let, for example, MBN (fig. 9) be a curve whose equation
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is y =&+ ca®; we see, then, that the ordinates mp, m'p’, &c.,
go on continually diminishing up to the point B; but that
after that point, the ordinates ¢z, g'n’ &c., go on continually
increasing ; so that the ordinate AB is the minimum of the
function y.

91. Similarly the function y is said to be at its maximum
when, after having been continually increasing, it is arrived
at a point past which it begins to decrease.

The curve CDE. fig. 10. whose equation is y =b—ca?, gives
us an example of this case at the point D ; for the ordinates
immediately preceding and succeeding to AD are less than
AD ; and therefore the ordinate AD is a maximum.

92. There are some curves which have only a maximum,
others which huve only a minimum ; there are some also which
have both a maximum and a minimum, and others which do
not allow of either.

We sece, for example, that the curve, whose cquation is
y=hb+ca?, cannot have a maximum ; for, from the nature of
its equation, the ordinates go on continually increasing. The
circle CBD, iig. 11, whose equation is

Wt = (y— P2+ (e —2a)s,

has both a maximum and & minimum, which correspond to the
same abscissa A’ the maximum is PD, and the minimum
PB.

93. When a function y of a variable x has a maximum or
minimum, this maximum or minimuin may lbe determined, if
we know the abscissa corresponding to it. Suppesc, for in-
stance, that in a curve whose equation is y = ¢.r, we know the
value a of the abscissa corresponding to the maximum or
minimnum ; then we have only to make x=a in the equation
y=¢r, in order to determine the value of y, which is the
maximum or minimum required.

4. Let, now, y=/t he an ordinate PM, fig. 12, which is
arrived at its maximum : if then the abscissa AT receive an
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increment 4, represented by PP, and we draw also PP" =4,
we shall have, for the conditions of PM being a maximum,

PM’' £ PM, P’M” £ PM,

or,
J(@+h) £ fx, S (=LY L f-

If, on the contrary, PM, fig. 13, be a minimum, represent-
ing the value of x, which corresponds to the minimum by AP,
and taking PP’ =PP”=#/, we shall have for the conditions of
the minimum,

P'M’ 7 PM, P’M"7PM,
or,

S@+ k)7 fx, J(e—h) 7 fx.

Hence, when f(w+14) and f(x—£) are at the same time both
less than f, there will be a maximum ; and if these functions
be at the same time both greater thau fi, there will be a mini-
mum : if, lastly, one of these functions be greater, and the
other less, than fz, there will be neither a maximum nor a
minimum.

95. We must therefore investigate the cases in which these
conditions can be fulfilled ; and for this purpose we have, by
Taylor’s theorem,

dy
de

d2y h* Py B

it ae Tet T Te3™

S(@+h)=y+-

in which series, if we change % into —%, we find also

dey 12 doy 18

da2 18 das gt &e - (49).

d
Sla—h)y=y—=L1+
In order, therefore, that y=fr may be a maximum or a
minimum, thesec two developments must be both less or both
. {
greater than y ; but this cannot be, unless Z;Z be =0. Forby

giving to & an exceedingly small value, we may always render
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d
ﬁh greater than the sum of all the terms that follow ; in

which case the sign of dyh will be likewise the sign of g‘gh,
together with the followmg terms ; so that, on this hypothesis,
if %h be positive in one of the developments (48) and (49),
that development will be greater than y, and will be less than

ol . . /, . .
y, if %h be negative. But the signs of :ﬁlz are different in

ot .. .
these developments, and therefore, if —l'—/ll be positive in one, it
d.r

must be negative in the other : whence it follows, that one of
the quantities, f(.v+ &) and f(«—£%), will be greater, and the
other less than fir.

d . .
If, thercfore, 7,% be not =0, there cannot be cither a maxi-
«

d

mum or a minimum ; but if ;;2: 0, then the developments
P

(48) and (49) will be reduced to

1y14 d’z/lz
dat127 d2323
g b dy I
d2127 423123

Jle+D=y+ + &e.

J(e—h)y=y+ = —+ &e.;

in which casc, the sign of the terms that follow y will depend

;Lg, if only 4 be taken so small that that term may be

d*y
da2
has the same sign in the two developments, it follows, that if

greater than the sum of all those that follow ; and since

:‘;g be positive, the two functions of 244 and »—4% will be
both greater than fir; and in this case, therefore, fx will be a
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minimum. In the same manner it will be seen, that 1f (—2-;‘

be negative, fz will be a2 maximum.

96. To complete this theory, we must obscrve, that besides
iQ—Owemal"- 1 ﬂ/-“0" hich case w t
=0 y have also =<5 =0 in which case we cannol

. .. dsy
have a maximum or minimum, unless also l-{;‘é: 0. Then,
taking % exceedingly small, the sign of the quantities follow-

4
ing y will depend on —:—;—g, and we may prove, as before, that
d y

« d*y .
if (F be positive, fir is a minimum ; and if "9 be negative,

dat
fx is a maximum ; and so on. Generally, if the first coeflicient,
that does not vanish, be of an even order, there will be
minimum when it is positive, and a maximum when it is
negative.

97. For a first example, let us take the function @ —bx 422 ;
we shall have then

y=a=bax+a*;

and differentiating and dividing by dx, we shall obtain

Y _ bt 2, d.-_sa
dx

where the positive value of T shows us that the function has

a minimum. To determine the abscissa corresponding to this

. /| . .
minimum, we must equate to zero the value of :1—‘;/;, which will
. b e es . .
give us » =5 and substituting this value of & in that of y,

2
we shall find y= a—l)— for the minimum sought.

4

98. Aguin, let the function be a*+4b'w—c*2?; when dif-
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ferentiating the eqnation y=«'+ (35— (%, and dividing by
dz, we shall find,

dy _ ) . d.r/__ o
-I—IT;,-I; —2c%r, i 22,

.

-

dzy
From the negative value of ;1—‘;9. we see that there is a

maximum in the function ; the equation £2—2:%c=0, gives us

b . . .
x=g~, for the abscissa corresponding to that maximum ; and

“C
substituting this value of x in that of y, we shall find for the
maximum,

{l‘
y=0*+ e
9. Let the equation be
y=3 =4

proceeding as before, we shall find

11’1 =0u%.2 — b9, ‘£ l =18a"x :
dy da®

dy
i z he value of —, we have
ecquating to zero the va av ¢ have

<o
Oa2a2 —(* =0, whence 2 =%~

=T340
and substituting these two values of &+ successively in the

&y
dz®
and a minimum. The minimum corresponds to the abscissa

value of 3 we learn that thc function has both a maximum

b b2
=+ thc maximum to the abscissa x = — — ; and substi-

3a

(]
tuting these values in that of y, we shall find 1/..1_5—(275-! for
I

. 2l¢ .
the minimum, and y=¢* + o for the maximum,
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Application of the theory of maxima and minima to the solu-
tion of various problems.

PROBLEM 1.

-/{00. To divide a number into two parts, such that the product

Fig. 14.

of the purts shall be the greatest possible.

Let a be the number, and x one of the parts ; then a—x will
be the other, and r(u—=x) the quantity of which we have to
determine the maximum.

Differentiating the equation y=r(a—a)=ar—a?, and di-
viding by ds, we shall find

1 .
when the value of ;h,i shows us, that the function really con-

tains a maximnum : had that coefficient appeared with a con-
trary sign, the problem would have been impossible. Equat-
d 1
d.?r to zcro, we shall have r=5a,
which informs us that the number ¢ must be divided into two
equal parts, in order that the product may be a maximum.

ing therefore the value of

PROBLEM 11,

101. Of all the cylinders inscribed in a right cone, to deter-
mine that which has the greatest volume.

Let a, fig. 14, be the height SC of the cone, & the radius
AC of the base, and z the distance SD from the vertex of the
cone to the centre of the highest circle of the cylinder. Then
the similar triangles SAC, SED will give us

SC: AC:: SD: DE,
or,

a:b::x:ED,
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therefore
b

ED=-.

a

Let 1: 7 be the ratio of the diameter to the circumference ;
then we know that the circle, whose radius is r, has for its

surface 72 ; and thercfore the circle EGF, which has éa:

' .
for lts radius, has for its surface A Multiplying this sur-

4

face by the height DC of the cylinder, i. e. by a—xr, we shall
have ———.1‘({1— ») for the volume of the cylinder, und therefore

the equation to be differentiated is

A 2
_y:%q*(u-—.r):"—:p (na%—ud) ;
whence we deduce
v _ 7’:[:—(211.1—.3:‘2) “* l/ il = (2a—6r);

dv n® Tt

. dy
and equating to zero the value of 72 Ve have

wh? .
—-(2azx—32*)=0, or 2a0—322=0;
a
an equation which is the product of the factors z and 2a—3.,

. e .,

and gives, consequently, =0, or .-r=—3i. The value 2 =0
cannot correspond to a maximum, since, on that hypothesis,
d2y 21r! 2

ey is reduced to ——, a positive number ; and which there-
fore indicates a minimum ; in fact, when »=0, the cylinder
is reduced to the axis of the cone ; for the higher the cylinder
is, the more it is diminished in thickness.

2a
The value 2= T is consequently the only one that will an-
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. . . dYy .
swer the question ; and on this hypothesis d—;’-: is reduced to

2l
—— negative number. If, therefore, we subtract . . ..

SD:.z':gSC from the height of the cylinder, there will re-

main CD = %QC whence it appears that the cylinder qf the

k€.
greatest volume inscribed in the cone has for its height tlae third
qftlml of the cone.

PROBLEM III.

102. To divide a straight line AB (fig. 15) into two parts,
AC and CB, su that the product AC’xCB may be a

marimnm.

Let us represent the straight line AB by a, and the part
CB of that line by x; then the cquation of the problem
will be

y=a(a—2x);
whence we deduce

——_311'&9 4.3, —i =6ux—12.2;
dr a2

d.
and equating the value of (_lg to zero, we find »=0, or ,,._.::ﬁ.

4
This second valuc is the only one which can resolve the pro-

. . ds 9u?
blem, since it reduces the value of d_.z.z to -—%, a negative

result.
103. We may observe that when in the value of the dif-

. . di
ferential coeﬂ'lclent(—l‘% we have a constant positive factor, this

factor may he suppressed.
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For if we have
we deduce from it

and this second equation serves only to make known to us the
@ty

sign of the value of e

; which sign, since A is a constant

positive factor, will depend on that of d-‘?-gf ; and therefore A

may be suppressed in this equation. It may also be sup-
dy
dr
to zero the second side of this equation in order to determine
x, the equation Agz=0 will give us g2=0; whence it fol-
lows that the constant A may be omitted altogether.

pressed in the equatio; = Agz ; for since we have to equate

PROBLEM IV.

104. A quantity of water of known bulk is to be put into a
rylindrical vessel ; required the dimensions of the vessel, so
that its internal surfuce may be the least possible.

Let V be the bulk of the water given, and » the radius of
the base of the cylinder ; then wz® will be the area of that
base ; and since the height of the cylinder, multiplied by its
base, is equal to its bulk, we shall have

height of the cylinder x w2a%=V,
whence we find

, . \4
height of the cylinder = o

Multiplying this height by the circumference of the base,
r
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which is 27z, we shall have

\Y% 2v
— X = —
nad z

for the convex surface of the cylinder ; and adding to this sur-
face 7%, which is that of the base of the cylinder, the equation
to be differentiated will be

_2V e
y=—+Te
from which we shall deduce
dy A" d*y 4V )
{T-z__ —.TYT <+ Qra, Zl—’———;+21{ H

and the value of g‘%. being equated to zero, gives

d;
s JV
r= —
o
This value, we see, answers to a mininum, since it renders

R,
the value of g—g; positive; the radius of the base of the eylin-

. ;O
der sought will therefore be J -:é ; and if we put this value

in the expression for the height, we shall find for the height
of the cylinder,

V. w2 )V
Vi
W

PROBLEM V.

105. Of all the cones inscribed in a sphere, to determine that

which has the greatest convex surface.

Suppose that the semi-circle AMB, fig. 16, makes a revolu-
tion around the axis AB ; then the chord AM will generate a
cone, of which AP will be the height, and PM the radius of
the base, and the expression for the convex surface of this
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cone will be
circumference PM x §AM =2«PM.}AM =#».PM.AM.
We have only, therefore, to determine PM and AM; for
which purpose let AB=20, AP=2; then MP being 2 mean
proportional between AP and PB, we have
r:PM:: PM: 2a—2z;
and therefore
PM= ,‘/271.—1'——.13 H
AM also being & mean proportional between AP and AB, we
have
x:AM:: AM: 2a
and therefore
AM=y2ar;
which values being substituted in the expression for the sur-
face of the cone, we shall obtain
convex surfuce of cone =uy/2ar—1°. of 2ax
=w/ 40 —2az".
The equation to be differentiated is therefore (art. 103)
y= Jm ;
whence we deduce
dy _ 4420r—3uat
dz~ /%2 —2az>
or, suppressing the common factor ,
dy 4a‘—3a.r_
dr o 4a®—2a2’

.. . (50)

and equating this value of % to zero, we shall have
40%—3ar=0,

an equation satisfied by supposing
et

F2
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This value belongu to a minimum, as will be proved to us by
the sign of dm’

106. Before determining the value of this differential co-
efficient, we will explain a process, which in certain cases will
abridge the calculations ; and we will first observe, that when
a function becomes 0 for some value given to «, it does not
follow generally that the differential coefficient will be also 0 ;
if, for example, we have the function 2®—52+8, which be-
comes 0 when =2, or =3, the differential coefficient of this
function, which is 22— 5, does not become 0, on either of these
hypotheses.

107. We may sometimes considerably shorten the operations
which we have employed for discovering whether the furction
is susceptible of a maximum or a minimum. For Suppose
that we wished to determine the differential coefficient of the

equation Z—%:XX’, in which X and X' are functions of ., and

of which the first only becomes 0 for a particular value given
to z; differentiating this equation, and dividing by dz, we
shall get

dy XdX' XdX

da®” dr dr '
and X, by hypothesis, being 0 for the &”S\Agiven to ., this
equation is reduced to
dsy _XdX
d*~ dz

which shows us that to obtain ‘%%. we have only to multiply

the differential coefficient of the factor that vanishes by the
other factor *.

# This rule is not without exceptions, forg may be also 0. If; for in-
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108. For example, if we wished to obtain the differential

coefficient of the second order of d_y_ ¥ ~2 on the hypothesis

dr
of r=u; writing the equntion thus,
jy = (r—a).

we shall find that
dy_ 1 de—a)_ 1
drs= J;" Tdr T 7
109. We will return now to equation (50), from which we

2
wished to determine the value of (—i-{. on the hypothesis of .
uxr

4tl ' . .
r=p and resolving the numerator into its factors, we shall

have
Ay ar(4dn— 3:_)
L vy s vyt
the second side of which may be written thus ;

ar
Vianmgy e,

aud since, on the proposed hypothesis, the factor 4a—3z be-
comes 0, we shall have, art. 107,

stance, we had ;‘—l=.:=(.;-— a)?, an equation which contains equal roots, the
’ a3,
two terms of the valuc of ‘—t—:—: will be each 0 ; and instcad of suppressing the

dx’
factor represented by X. o+ We must, art. 96, have recourse to the dif-
ferential cocfficients of the higher orders, to d'lscover whether the function 1s

sueccptible of a maXimum or minimum ; if he infinite, it will be the

dx
enve of art. 87.
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Py _ ax y H4a—=82)  —3az

dx® = /4a%2*—2aa’ dz /305" —Zaa®
whence, consequently, dividing the two terms of the fraction
by =z,

&y _ 3a

d2® = i —%ar

and putting in this expression the value of », which is —;

we shall obtain

ey 3a 32
d*~ (3 —8ar -  jdad
J 3 3

which value being negative, that of 2 corresponds to a maxi-
mum.

PROBLEM VI.

110. 4 point C (fig. 17) leing given, in the angle YAX, to
draw through that point a straight line DE, whick shall
meet the azes AX, AY, in suck a manner that the length DE,
of the straight line, shall be a maximum.

Let Al=a, IC=5, IE=x; then the right-angled triangles
ICE, ADE, give us
IE:IC:: AE: AD,

or
z:b::a4+2: AD;
therefore,
b
AD == (a+ ) ;
and consequently

b
ADS= r (a+a)®.

On the other hand,
- AE = (a+1)%;
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which values being substituted in the formula
DE=,/ADéi4 AEe,
we shall find

DE:J?_:(:;'-J)“' (a4+2)2 = J(g:-t» 1) (a42z)8;

and reducing the first factor under the root to the same deno-

minator,
DE= Jb kil fr)p= .L v EFan,
a+x

Considering this expression as the product of the factor ——-
z

by the factor /6%+ .2, and differentiating by art. 14, we shall
find

,l/._-_.._-,/ ¢(2+12+ Jb“ +a2. d
performing the differentiations, we shall have
P +ax  ade — ad r
dy= :/—I";;—;+\,/b +a?xX —"73 ¢

reducing to the same denominator, by multiplying the two
terms of the first fraction by », and the two terms of the

second by /6% + 2%, we shall obtain

r a2de Dot a8
(ll/-..a—:it—t- Tl e+t a2 X —adz ;

x’ J(;“+¢9+ At/ Fat
and collecting and reducing the terms of the numerator, and
dividing by dr, there will result, lastly.

dy  aS—ab®
dx ~ b‘l+ ,s

when, the numerator being cquntcd to zero, we shall find

v == N alb?.
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To prove that this value answers to a minimum, we have
only to put, art. 107, in place of the numerator, which is the
factor that vanishes, its differential coefficient, and we shall
have thus

ay_ 3 3
da® g8 Jlay g8 vt
a value essentially positive. We have not made the substitu-

tion of the value of x, since we see at once that the square z*
is always positive.

PROBLEM VII.

111. To find the greutest right-angled triangle that can be
constructed on a given straight line.

Let a be the straight line, AB, fig. 18, and x one of the
sides of the triangle ; then the other will be 4/a®*—a?, and the

expression for the area of the triangle will be
F
b)  at—22.
The equation of the problem will therefore be, art. 103,
y=rVa®—13, or y= /0222 —21t,

whence we shall deduce

dr ‘/;E-;QH__—JA ’
and this value, being equated to zero, gives
a?r—2:9=0, or 2(a®*—2a%)=0,
an equation from which we derive
2=0, or 228 =45,
But z cannot be 0, and we must therefore determine it from

the sccond equation ; which shows us that the two sides AC,
BC, are equal.
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By differentiating the factor a®—2.%, we find, art. 107,

dj_i/ _ z d(n®—22%) 4r .
dad " A dr - 4 #at—at’

and this result being negative, the hypothesis of as—22°=0
determines, for x, a value corresponding to a maximum.

On the geometrical syrnification of the differential coefficients.

d
112. We have seen already, art. 71, that Ez represents the

trigonometrical tangent of the angle, which a tangent drawn
at the point, whose coordinates are » and y, makes with the
axis of the abscissee : but since this is the foundation of what
is about to follow, we may demonstrate the propositiou a prioi
in the manner following :
Let (fig. 4) PM =y, PP’ =k ; then drawing MQ parallel Fig. 4.
to the axis of the abscissae, we have
M'P =/(w+14),

€y — £ . iy aty _h“ )
MQ=f(v+k)—fa _dxh+(l.7‘ io + &e.
But
MQ:MQ::1: tangS:%;-g;

whence, putting for MIQ, MQ, their values, we shall have

dy, dy I o
el L S

z. Sdet @2
and when we take the limit, 2 vanishes, and tangent S be-
comes tangent T ; in that case therefore

tang S= +&e.:

dy
tang T = ~

This being premised, if PM become a maximum, the tan-
gent TN, being then parallel to the axis of the abscissa,
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makes an angle 0 with that axis ; and since we bave just seen
that the trigonometrical tangent of the angle made by the

. . . d
tangent with the axis of ¢ is represented by T'y-, we must con-
T dx

< d
sequently, in this case, have a‘z =0.
v
We might demonstrate in the same manner, that if PM
were a minimum, in which case also the trigonometrical tan-

gent would become 0, we ought to have % =0. 'Thus the

condition expressed by the cquation Z%:O is that of the pa-
rallelism of the tangent at M to the axis of the abscissa.

*y
i [}
is positive or negative ; and, with this view, we will consider,
first, the case in which the curve, fig. 20, turns its convexity
towards the axis of the abscisse.

Let AP=ux, PM =y, PPIl=PP"'=/; and through the
points M, M/, draw the secant MM'S, and the straight lines
MN, M'N', parallel to the axis of the abscissa : then we shall
have

113. We will examine now under what circumstances -

MO=MP—MP=f(r+h)—fr,
or
, _(I_l/ dJ 1/

But the similar triangles MM/'O, M hN, give us
MO : MN:: M'O: SN,
or
h:2h:: MO: SN
therefore
SN =2MO;
and substituting for M'O its value, we have

dy aty h?
SN = .
N=3h+ 20, pgte
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-~
<

On the other hand,

M'P =f(w+24h),
from which, subtracting

NP'=PM,

we shall have
dydh
dri12
and taking from this value of M"N, that of SN, there will
remain, (fig. 20.)

M'N= /(.(+2Iz)-—ﬂ._@2h+ — +&c.;

N s_- ”iﬁ+ &e. ... (51).

In the case in which the curve, fig. 21, turns its concavity
towards the axis of the abscissa, to obtain M"S, we should
huve, on the contrary, to subtract the value of SN from that
of M"N, which will give

]
M8 == e (32);
und comparing these two values, (51), (52), of M"S, we sec
dy

that in the one T-ﬂ is preceded by the sign +, and in the
da

other by the sign —.

This being premised, 4 may be so assumed that the sign of

the first term in the development for M”S shall determine
the sign of the whole of the development; and since the
square A2, which is essentially positive, cannot affect the sign
déy - . . . By
of -2 /2, the differential coeflicient —= will itself deter-
a? dat®
mine the sign of the sum of all the terms in the value for
M"S.
Considering, therefore, the equations (51), (32), relatively
only to the signs which affect cach side, we may suppress /%

%y
and the terms followi ing 5w hen the equations will become

Fig, 21,
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« y ” by
M'S= + MS=— ey
whence we shall deduce .
?”;— Ms )
ey (83)
ai=—M SS

If now y be considered as a positive quantity, M"S (fig. 20),
falling on the same side as y, will be positive ; und the first of
the equations (53) shows us therefore that, when the curve is

. . 2y -,
convex to the axis of the abscisse, :1 "i is positive.
w

Considering next the second of the cquations (53), and the
fig. 21 which belongs to it, we shall see that —M"S repre-
sents a linc which is of a sign contrary to that of 4 ; and that

d?y . .
consequently T: is negative in the case of the fig. 21, or when
Y di

the curve is concave to the axis of the abscissie.

114. The curve has hitherto been supposed to lie above the
axis of the abscissie ; let us see now what takes place when it
extends below that axis, as in the fig. 67. It is certain, then,
from what has been already proved, thet sinee the curve at

. . . 2,
M is convex to the axis of the abscnssu-,d—‘i, und consequently
1

MN is positive. But the straight lines MN and M'N", being
sitnated on the same side of the tangent T'I", ought to have
the same sign; and since MN is positive, M’N’ must be
so also; whence it follows that at the point M’, where the

. . . a2 .
curve is concave to the axis of the abscisse, 7-'%— will be of a
da

sign contrary to that of the ordinate PM’, which is negative ;

d2®
the curve, on the contrary, would be convex, if y and IZ
werce of the same sign  We may therefore say, generally,
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. T -
that on whatever side the curve falls, 7—{ has the same sign as
da

y when the curve is convex to the axis of the abscissz, and
has a contrary sign when the cufve is concave to the same
axis.

The curve being convex or concave to the axis of the ab-
scissee accordingly as the ordinate is arrived at its minimum or

. . aty e e
its maximum, we see the reason why J-{ is positive in the first
T da

case and negative in the second.

115. There may also be 2 maximum or a minimum when
:Z-I = . To explain the naturc of this condition, let y=/r
be the equation of a curve MN, fig. 22 ; then it is certain that Fig. 22.
if we give to @ a value AP, that equation will determine the
ordinate M ; and if, on the other hand, we resolve the equa-
tion in respect to y, and find »=¢y; when we put y=AP
(the preceding value of ) the cquation will give v=P'M.
In this latter case y will be considered as the abscissa, and o
the ordinate, and the same curve will be constructed, provided
only that we draw the abscissee y along the axis Ay, and con-
sider the other axis as that of the ordinates. On this hypo-
thesis, therefore, we may seck the maximum or minimum of
x a function of y; and for this purpose we shall deduce from

the proposed equation %:M, and put M=0. But the equa-

d. . dy 1
tion —.=M gives us i ~- and we see therefore that when
dy dr M

d . .
M=0, (—% = c; thus the condition recessary, in order that
we may have a maximum or minimum in this sense of the ab-

scissee, is that i-'l = 0.
dr
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116. If, for example, we take the equation
Pr=ar—b,

we shall derive from it -‘!z =2

dr 2y

; which value being equated

to zero will give y = o ; and thercfore the curve cannot have
a maximum or minimum in respect of the ordinates, except at
an infinite distance along the axis of .. Let us see now
whether it has a limit in respect of the abscissee (by limit de-
noting, generally, the maximum or minimum); and for this
purpose we must suppore the value of '711'1! infinite, which gives

«

2%/— = oo, a condition fulfilled by making y =0. On this hypo-

. ar 2 e
thesis the value of die 8 reduced to —, a positive result ; and
Y a

we see therefore that the value of y =0 corresponds to a mini-
mum of ». We shall determine the value of this minimum
by making y=0 in the proposed equation, which will reduce

it to ax — b =0, whence we shall find .r=% for the minimum

sought : this minimum is represented by AM in fig. 23.
117. Concluding this subject, we may observe that the equa-
J
tio :7‘3:’:00 indicates that the tangent MT, fig. 23, is that of
a right angle, and that consequently MT is perpendicular to
the axis of .

General considerations un the singular points of curves.

118. The differential calculus may be of great service for
finding the form of a curve of which the equation is given.
The theory of maxima and minima has presented us already
with the means of determining the limits in respect of the
abscisse and of the ordinates; but this will not be sufficient
for making known to us the particular form of the eurve. For
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instance, the curves in figures 68, 69, and 70, have the same Fig. 63.
limits OC, OD, in respect of the ordinates, and OA, OB, in
respect of the abscisse, and yet are by no means similar to

each other. What distinguishes the curve fig. 68 from the

carve fiy,. 69 s that, in the latter, there is only a point of in- Fig. 69.
flexion; this term being given to the point in which the curve

from concave becomes convex, or from convex hecomes concave.

In the fig. 68 there are two points of inflexion, one at K, the

other at G, and a point of reflaxion at €, i. ¢. a point in which

the curve at once stups its course.

119. In general, the points in which the curve undergoes
any particulur changes are termed stvgalur points s and we sce
that if we ha.. the menns of determining where these points
exist, it will be casy to follow the curve in its course. For
example. if we know that the curve, fig. 70, has poiuts of in- Fig. 7.
fexion st E and H, and points of reflexion at F and G, we
may forin some idea of this curve by the following analysis: —
In proceeding from che point A, which is a limit in respect of
the abscissie, the carve is at first coneave to the axis of the
absciss@, and continues so up to K, where there is a point of
inflexion, which from concave renders it convex. At the ex-
tremity of the convex part EF, the curve suspends its course
at the point of reflexion F, beyond which it is still convex in
the part FII, but becomes again concave beyond the point of
inflexior H, and so reaches the point C, which is a limit in
respect of the ordinates; lastly, from C to G and from A to
G, the curve is composed of two arcs, CBR, ADG, which,
being concave to the axis of the abscissee, unite in a point of
reflexion, and pass through the two limits B and D, the one
in respect of the abscissa, and the other in respect of the
ordinates.

120. From what has been said, we see how advantageous it
would he to be able, by means of the equation of a curve, to
determine the co-ordinates of its singular points. We have
already explained the.mode of finding the maxima and minima ;
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and it now remains for us to investigate the nature of the other
singular points, which will be the object of the following

On points of inflexion.

121. We have just seen that a point of inflexion is one in
which the curve from convex becomes concave, or from con-
cave becomes convex. The curve M'MMD», fig. 71, presents
us a point of this description at M. Draw at this point a
tangent TT'; then observing the different ordinates com-
prised betwixt M'P’ and MP, we shall see that the part M'N’
of the ordinate, lying betwixt the ordinate and the tangent,
goes on continually diminishing, and at M will entirely va-
nish ; whilst for the succeeding ordinates the part M"N" of
the ordinate will fall below the tangent, and will consequently

" change its sign; so that if M'N’ be positive, M"N" will be

negative. This condition we will proceed to express by an
equation ; and for this purpose let (fig. 71) PP'=h=PP":
then we have evidently

MN=MP~NTP,
or

MN'=f(z+h)=NP . .. (54).
To determine the analytical value of N'P', we have
NP =MP+N0O,

NP =y+NO . .. (55).
In regard to N'O, the right-angled triangle N'MO gives us
‘ N'O=MO . tang NMO ;
but we have seen, art. 71, that the angle N'MO, formed by
the tangent at M with a parallel to the axis of z, hns%for its

trigonemetrical tangent ; replacing, therefore, tang N'MO by
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] .
:13 and putting 4 in plare of MO, we shall have

. oy
NUO=/. —-!

e
Substituting this valuce in equation (55), and putting then
the value of NP in equation (51), we shall obtain

MN = f(z4 By—y— 5 . (50).

Without having to calculate anew the value M'N”, we
may deduce it fromn that of AUN"; for, if we suppose the or-
dinate to retive in o dircetion p.n'.:lld to itself, M'N/ will be-
come M”N”, when /& is changed into —/ ; and giving, there-
fore, this value to £ in the equation (H6), we shall obtain

M"N" :f(.r—lr)—g/—i—:-ﬁ'li—/’h . (5.

Replacing now the expressions f(z+74) and f(x—7) by their
dvvclupmcut.\, we shall have

ly

dy awly ke d . I — + &e. )_u-_ _/,

AN — ) -

MN'= (y+ 0+ 5 ot T3
d? Ve M Wty /L_‘
Jat 127 davT.20

dy

l\I'N":(.: ’/+ +&c)_,,r‘_;l

and by reducing, these equations will become

Aty b ddy I

MN'=TetetinTant e - =8
2 ? J 3
AMON = o 2y L dy h +&e . . (50).

Tt 127 123
In order now that there may be a point of inflexion at M, it
is necessary that when we give to 4 an exceedingly small
value, the lines MUN/ and M”N” should fall one above and
the other below the line TT”, and that consequently M'N’ and
M"N” should have different signs.  Buat this is not possible,

unless the first term in the series (58) and (59) be 0 for if
“
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that term Dbe not O, then we may give to 4 a value so small
that the term ?‘Z ]h 5 shall be greater than the sum of all the
terms following, and therefore the sign of that term be the
sign of the whole series; and since that term is the same in
the two series, it follows that M'N' and M"N” would in this
case have the same sign: in order, therefore, that M'N' and
M”N” may have different signs, we must have

a2y ke d%y

T 12~ O 752 =0

122. If it should happen that the same value of 2, which

d%y . .
makes —Z vnmsh, make also Y vanish, then, in order that

da® da®
4
there may be a point of inflexion, Z_.é‘/ must become 0 likewise ;
and if in this case % result O, 3% must result O also: and

generally the last differential coeflicient that vanishes must
be of an even order.
123. If the valuc of x, which is the same in the develop-

2
lopments (58) and (59), be such that :Il_m{ become infinite, the

two developments will be so likewise ; and we can then con-
clude nothing from the preceding demonstration, which rests
on the supposition of these developments being possible. In

. . A% o as
this case we must observe that the condition ;l._zé =0indicates,

2
generally, that ZT'Z ought to change its sign at the point of in-

flexion, which agrees with what was proved in art. 118: but
this change of sign may also take place in passing through in-
finity ; for let

ay 02

d2'” x—q’
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if, then, we substitute successively for # the values

2 v
r=u—rk, we shall find d—'—'é:—li.
da® h
= dty
r=ua ,m= =,
- &y
r=a+h, dw= T

where we see that it is the denominator of the value of
diy . < . .
) la.-f’ which produces the change of sign in the differential co-

cfficient, after passing the point of inflexion.
124. Hence it follows, that if there be a point of inflexion
in'a curve, we must have, for the abscissa of that point,

42y ] dy
(./.—t‘—z =0 ; OF ;{;3 = .

When, therefure, we have ascertained that one of these con-
ditions is fulfilled, we must successively augment and diminish
the nbscissa of the point which fuliils the condition by a very

. o2
small quantity 4 ; and if, for these new values of .r,aj-zms
different signs, we may then conclude that there is a point of

2
. . ay . L .
inflexion : for when - is positive, the curve is convex to

da®
. . . d2y
the axis of the abscisse, and concave to that axis when Tus

is negative ; but it is by this change from convex to concave,
or from concave to convex, that the curve manifests its point of
inflexion.

125. To give an application of this theory, let us examine
whether there is a point of inflexion in the curve whose equa-
tion is

yY=b4+2(x=—w)* . . . . (60).
2
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The differentiation gives us
dy _ dy _ LY _1o.
d'_z‘—3 2. (.z'-—a)’, a—ws-z—- 12(1—8), ;Ei—l2 5
and in order that there may be a point of inflexion, there must

2
be some value of x, which make: Z_.zlé =0. Now 2 being a
variable quantity, we may determine one of its values by the
condition that 12(w—a) =0, when we shall obtain x=a for
the abscissa that may belong to a point of inflexion. To
assure ourselves of the existence of this point, diminish the ab-
scissa a by a very small quantity 4, and substitute a+ % for z,
when we shall find that for the point M’ (fig. 72), whose ab-

. . o2y .
scissa is a—£%, we have —'/——12/L; substitute, then, a2

dez™
for z, and we shall find that the point M”, whose abscissa is
@y . d%y
a+h, corresponds to — = 124, These two values of —
da? da?

having different signs, show us that there is a point of in-
flexion at M.

. U .
The hypothesis of ¥ =a makes ;Zg vanish, and conscquently

the tangent at the point of inflexion is parallel to the axis
of @.

126. We may obscrve that we have not always the power
. d%y .
of thus equating to zero the value of d—'z; if, for instance, we
o’

wished to determine whether there were any points of in-
flexion in the curve which hus for its equation

y=b+aat,
we should find, by differentiation,

. % . . .
and we see that this value of J.;Tlf which contains no indeter-
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minate quantity, cannot be cquated to zero ; and that con-
sequently the curve cannot have a point of inflexion ; a result
to which we must attend, since the curve is a parabola. The
d%y
des
convex to the axis of the abscissa.

value of shows us only that this parabola is constantly

127. For a third application, take the equation
g =t

which being resolved in respect of y, and then differentiated.
we obtain

If, now, we sought to determine » from the equation . . . . . .

4.8 —-l—_ =0, or 3—1--_— =0, we could satisfy this equation only by

"\’/.l' \/.P
making »=2c; a value from which we could conclude no-

4y

thing: but we are also at liberty to equatc the value of prpon

. 1 . .
to infinity, and since the equation \s/—_=oo is satisfied by
P 4

making #=0, this valuc of » shows us that there may be a
point of inflexion at the origin. To convince oursclves that
there is such a point, we might substitute successively for o
the values #=0+4%, and »=0-1, i. ¢. A and — 7, and see if

i . .
in these two cases :il—'Z— produced results of different signs: but

instead of performing these operations one after the other, we
may accomplish them at once, by substituting for 2 the value
4+ 7%, and then the differential coeflicient of the second order
will become
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dy_ g 1
de3™ Yh

The higher value belongs to an abscissa greater than that at
the point of inflexion, the lower to one less, and since these
two values are of different signs, we may conclude from them
that x=0 corresponds to a point of inflexion A (fig. 73).

128. As a last example, we will take the curve which has

for its cquation

(y—=byE=u2
This cquation gives us
i, i"f R L, _.1 ;
./ [)i_" > :‘:Q" ’ ([.l“'_i‘! ,‘/,
sy

and by making =0, we have ii= which is a mark that
we may meet with a point of inflexion at the origin. To

ascertain whether this point really exists, we will make first
. . . 03y .
»=h, and substitute this value in that of T which becomes
o

ll‘l/

dad

=+41i.% l-
W

d?y . .

If then we make .» =—1/, the value of (ﬁ: becomes imaginary,
as docs also that of y, which shows us that the curve has no
. . . & .
existence for negative abscissae; and thus, although (7% be in-

%

finite at the origin, there is no point of inflexion. We shall
shortly be able to recognize the origin A (fig. 74) as belong-
ing to a class of points which have been comprised under the
nane of poinuts of reflexion, or cusps ; and which we shall pro-
cced to examine more particularly in the following section.
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Points of reflexion.

129. When a curve stops in its coursc, and turns back
again, we have a point of reflewion; and the reflexion is of the
first species when the two branches have their convex sides
opposed to cach other, as in fig. 74; of the second species Fig. 74.
when the concave sides are both turned the same way, as in
lig. 75.

130. The curve stops thus, because beyond the point C of
reflexion the values given to the abscissa determine imaginary
Ey
do*

ones for the ordinate, which supposes tha

Y
surd ; and if, before the curve St()}h, “y glvc two values, one

of the same sign as y, and the other m‘u contrary sign, this in-
Limates that there are two branches of the curve which meet
in the point ¢ (fig. 74), the one convex to the axis of the ab-
seissiv, the other coneave , and by these characteristics, there-
fore, we should recognize w point, of reflexion of the first spe-
cies. If, on the contrary, the two values of % have the samce
sign, the two branches which meet in C (fig. 75) must be
concentric; and, consequently, the reflexions will, in this case,
be of the second species.

131. For a first example, let us exumine whether there arg
any points of reflexion in the curve which has for its equation
(y—a)2=2ao

This equation gives

y=odaty/.....(61);

and we sce that when we tuke » negative, y becomes imaginary,
so that the curve stops at the origin, where =0 and y=0:
but yet this does not prove that there is at the origin a point
of reflexion ; for there might at that point be merely an arc of
the curve, having its concavity always turned the same way.
as Js the case at the vertex of the hyperbola: thus, to deter-
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mine whether the value of =0 corresponds o a point of
reflexion, we must know what the differential cocflicient of
the second order becomes near the origin.

Now, by differentiating the equation

y=ar+ ol

and dividing by d.r, we find

and to determine whetlier the curve is concave or convex neas
the point where it stops its course, we must inercase the ub-
scissa of that point by a very small quantity 4, by muking
4y

x =04 k=", and substitute this value of # in that of Py
v

when
we shall find

d2y
da*

=110,

These two values with different signs indicate therefore that
there arc two branches ; the one, AM (fig. 76), which is con-
vex-to the axis of the abscissa, the other, AN, which is con-
gave to the same axis : and consequently the origin is a point
of reflexion of the first species.
132. For a sccond example, take the equation
(y—b)e = (o —a).

This equation gives us

y:bi\/(a‘—a)“ ... (03);

and if we make v=a, we find y=0; but if we give to »
values less than «, those of y become imaginary ; for on put-
ting a—A for », we find
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y=bt —W=bthy =4,
an imaginary value; and the curve, therefore, stops at the
point C (fig. 71), whose coordinates are « and b,
To know in what manner the branches proceed beyond the

puint C, we must substitute for @ the value a+% in that of
2

d

=2, when we shall obtain

da?

“y_4- 3

da8 ™ =40
(2

The higher sign o :;—% points out a branch CM, which is
ol

convex to the axis of .»; the lower sign points out a branch
CN, which is eoncave 1o thie same axis ; and there is therefore
at C a point of reflexion of the first species.

133. As u third example, take the curve whose cquation is

y=ar*4 ,).l";\/;'.

If now we make +=0, we find y=0; but for a negative
value of », y becomes imaginary ; and the curve therefore
2y, . .
l—’ becomes in this
da

casc ; for which purpose, by writing the equation of the curve
in the manner following,

stops at the vrigin.  Let us examine what

y=art4 bk
we shall obtain

4
'—;‘Z = 2o+ 2ba*,

a.e
dys® ; —
dpe=2a 1840405

when giving to . an exceedingly small value, vepresented by 4,

- dy
the part 2.100 @ of the value of 55 will be less than the part
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dy
24, and conscquently the two values of }l:g given by the equa-
tion
dy I
(—l:;g=2a_-_};:j. 16/ b,
will be positive.

It follows, therefore, that at the origin there are two branches,
both concave to the axis of 2; and we have, consequently, at
the origin, a point of reflexion of the second species.

134. The points of reflexion belong to a class of points
comprised under the denomination of multiple points.

Multiple points.

135. Those points are called multiple points in which several
branches of a curve meet. A multiple point is double when
it is at the intersection of two branches, triple when at the
intersceetion of three, and so on.

136. Let A (fig. 77) be a double point, formed by the in-
tersection of the two branches of the curve AB, AC, to which
AT and AT are drawn tungents.  If, now, the equation of
the curve, freed from surds, be represented by F(z,3) =0, the
differential of this equation, put under the form Pdr+Qdy =0,
will contain no surd (uantity, since no such (uantitics can e
introduced by the differentiation of u rational funetion ; it
follows, therefore, that P and Q will be rational quantities.
‘This being premised, the sbove equation gives us

dy P
L= ., (64
dr Q (64)
. s . dy
and since at the point in guestion there are two tangents a

r . .
and consequently - must necessarily have two different va-

Q

. . R L
Iues ; a condition which would be fulfilled if involved a

Q
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surd quantity ; but this is impossible, since we have already
p. . e L
seen that — is rational : in this case, therefore, the principles

Q

of algebra must conduct us to a result which avoids this con-

tradiction ; and this will be when Ld appears under the form

Q

0 . .
0’ for we know that:—: is the symbol of an indcterminate

(quantity, and consequently susceptible of several values.

137. 'To show how this theorem may be demonstrated, sup-
pose, for an instant, that « and a’ represent the two values of
the trigonometrical tungent of the curve at the multiple point ;
these two values, then, must satisfy the cquation

P+ g/-'!=u.

and will give
P4Qa=0,P4+Qa=0;
whence, subtracting the last cquations one from the other.
we obtuin
Qla—a)=0.

Now the factor 2— =z, being composed of two uacqual quan-
titics, cannot be 0; it follows, therefore, that Q=0, which
reduces the cquution P4+ Qa=0 to P=0; and by mcans of

/
these values of P and Q, the cquation l’+Q:‘7-‘:"=0, or ..

1)

7t
-'y = -6-, becomes

da

dy 0
de =0
138. If instead of two branches meeting:in a point, we had
a greater number, it would be sufticient to consider only two,

to show that at the point of intersection of all the branches
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dy 0 . .

T must be = 0’ we cannot arrive so easily at the snme con-
L’

clusion, when several branches of the curve have a common

d
tangent ; but in this case, also, it may be proved that :[‘f’
e

0 .
must appear under the form o As however the demonstration

of this theorem is founded on the consideration of the contact
of curves, we will reserve it for art. 170, when we shall have
discussed the subject of osculating curves.

139. It must be observed, that the demonstration of art.
137 being founded on the supposition that the primitive equa-
tion has been cleared of surd guantities, if we differentiate
that equation without having so cleared it, it may happen
that an cquation which allows of multiple points will not give
:—Z=g The cquation of art. 131, for instance, comes under
this casc; it has a double point at the origin, and yet if we

. /
make & =10, the cquation (62) is reduced to :-%: 1.

140. We will add, lastly, that though the equation (f,lzg

dx
holds good for a multiple point, it does not follow that it sub-
sists only for a point of that description ; for the preceding
demonstration does not at all infer that the property is con-
fincd solely to such points. Thus all that we can conclude
.. . dy, 0, .
from this is, that the reduction of Tlf to 0 indicates that there
may be a multiple point.

141. What has been said will be suflicient to point out to
us the means of determining whether there exist any multiple
points in a curve whose equation is given. Let u, for instance,
be the equation ; we must deduce from it, by differentiating,
Pde+Qdy=0, aund sec whether the same values of v and y
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will satisfy the proposed cquation, and alse the equations
P=0, Q=0; if this be the case, it shows that the values of
2 and y may belong to a multiple point, and then, by exa-
mining the curve in the neighbourheod of that point, we shall
discover whether it is really a multiple point or not.

Conjugate points.

142. Suppose we have a curve such, that whilst for a par-
ticular point there are two real coordinates, the coordinates for
all adjoiging points are imaginary ; these coordinates then will
determine a point entirely detached from the curve, and to
which has been given the name of isolated point, or conjugate
point.

Let now y=fx represent the equation of a curve which has
a conjugate point. 1f « and & be the coordinates of that point,
the coordinates for at least the adjoining peints must be ima-
ginary, or it could not be isolated ; and, consequently, if we
suppose that the absci.sa ¢ is increased by a small quantity #,
the corresponding ordinate, represented by f(«+ #), must be-
come imaginary.

Now the series of Taylor gives us, generally,

dey I* Sy

dy
S@tB)=y+ 7kt st T 103

—=+4&ec.;

and if we make z =a, the corresponding ordinate must be & :

whence, changing 7 into b, and representing by ( y) (" '/)

d?
( l/) &c. the values of the differential coefficients on that

hypothesis, we shall have

Satiy=b+ (F) i+ (70 15+ () 1an+ &

a3

In order therefore that /(2 + /&) may be an imaginary quan-



94 DIFFERENTIAL CALCULUS.

tity, one at least of the expressions (:ll ) ( da:!) &ec., must be

imaginary ; i. . the hypothesis of #=a+ % must render one of
the differential coefficients imaginary ; and if this condition
be fulfilled, the curve may have a conjugate point.

For example, if we have the equation

y=x(2+0) o,
we shall find, by diﬁ'erentiating

?l;= _( ki +2 Jr )

which becoming imaginary when »# = — 4, and consequently
¥ =0, we may presume that the point A (fig. 78), whose co-
ordinates are 2= —0, and =0, is a conjugatc point: we
must determine whether it is really so or not, by successively
increasing and diminishing the abscissa —b by a quantity less
than b ; when we shall find that in cach case y becomes ima-
ginary ; which shows thereforc that the point in question is a
conjugate point.

143. Conjugate points, like multiple points, manifest their
existence by rendering the differential cocflicient ;‘;Z:O. For

»
the equation
Q ot P=y,

being differentiated and dlvxded by dz, gives

(ly dy dQ P _
dat " dz dz-+(1r 0;

where we see that the term affected by 3—:2—2 has Q for its co-
efficient ; and if we differentiate again, we shall find that Q

@
is still the coeflicient of —I—‘Z, and so on ; so that when we have
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arrived at the differential cocflicient of the nth order, we shall
have a result of the form

Now therc must be at least one of the differential coefficients
which becomes imaginary for some value of z, and which con-
sequently must contnin a hurd quantity : representing, there-

fore, this coefficient by d , the function of » which expresses

this cocfficient, must have more than one value. This is suf-
ficicnt for us to conclude, as in art. 137, that Q =0, which

reduces the equation P+Qg§=0, to P=0; and it follows,

thercfore, that we must have il!— = 9
dz 0
Osculating curves.

144. Let y=¢ and y =Fa be the equations to two curves
which meet (fig. 24) in the point M, whose coordinates are
AP=u#", PM =y ; we shall have then, for that peint,

¢ =Fa';
and supposing that 2 becomes 2”474, the preceding equations
will give

MP =p(2'+ h)=p2’ _d—-"—h+dd‘p: 1"'2 +&ec...... (66),
s d. F.z 2. Fa' I .
M'P'=F(2'+k)=Fa'+—— k+ o l.—2+&° ..... (67).

If, now, all the corrcspondmg terms of these developments
be identically the same, M'P’, M"P’ will have the same values,
and the two curves will coincide ; but if we have only o2’ = F2/,
the curves, as we have just seen, will have merely a common
point M ; if, besides ¢or=F2', we have

d.ga’  d.Fa’

dx' da’’
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the curves will then approach more nearly to cach ether ; and
still more, if, in addition to these cquations, we have also
d9¢.1" dFa’
s T A’

and so on in order ; for it is evident that the difference be-
twixt M”"P’ and M'P’ will be the less, the greater be the num-
ber of terms respectively equal in their developments.

This being premised, let @, 4, ¢, &c., be the constants in
the equation y=Fa; we may then, without changing the
nature of the curve, give arbitrary values to these constants.
If, for instance, we have the equation »* =ma4na’, which is
that of an cllipse ; this equation will always preserve the same
form, and will thercfore always belong to an cllipse, whatever
be the values we give to 2 and », (¢ and z being understood
to vary only in magnitude, and not in sign, and never to be-
come 0).

We may now, therefore, consider the constants a, &, ¢, &c.,
which enter into the equations
dFo2’ _dex  d°Fo' _ a2
do = da” Tde” T A
as arbitrary, and taking as many of these cquations as there
are constants, determine the constants by tlle condition that
those equations are satisfied.

For example, if the equation y = F.» contain three constants,
a, b, c, we may put

, ., dFy_déa’  d*Fo’  dPpx
Fo'=ess Tr=Tr’ “dt=drn

deduce from thesc equations the values of a, 4, ¢, in functions

y'=Fu., &ec.,

of “"’; ]/', j 9 (1

which will then possess this property, that when we put
&' +k for », the equation (67), obtained by mecans of Taylor’s
formula, will have the three first terms of its second side

’
.y
g, and substitute them in the equation y = Fx ;
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respectively equal the ‘hree first terms of the second side of
cquation (G6)-

What we have said of an equation containing only three
constants, will apply to one containing a greater number.

145. Lot us take, for example, the case in which the equa-
tion y=Fa2 represents that of a straight line ; the equation
y=F.r will be then replaced by

y=ar+b.. . .. (68) ; -

and the equations of condition, necessary for the climination
of the constants a and 4, will be
v =ar-4h, 114).1" =a..... (69).
da
But since @’ represents the ordinate at M of a curve whose
equation is y =¢#, and »' corresponds to y', we may replacc
bz’ by 3, and the equations (69) will become

dy'

Y =ar+0, i

=a;
whence, climinating «, we obtain

, dy
y= {Zf. - b,
and substituting the value of & given by this equation, and
that of a in the cquation (68) to the straight line, it becomes

oy .
y=y=1 (r—=2a")..... (70).

In this equation we shall recognize that of a tangent MT
(fig. 5) at the point i1, whose coordinates are »' and y': why
the line MT should be such a tangent will be seen shortly.

146. Returning now to the preceding theory ; and agreeing,
for the sake of brevi.y, to denominate curves by their equa-
tions, we have seen (art. 144) that if the curves y=¢.r and
y =Fa have only a common point, and 2’ ', be the co-
ordinates of that point, we shall have the equation of condition

H
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F+'=¢a'; but that if we determine two constants of the
. . dF.  dpa
equation y = F.a, by the conditions Fo' = ¢u’, and P "iip '.:-

2 2
the curves will begin to approach each other.

Let y=fr represent what y =F. Dbecomes after we have
substituted the values of these two constants; then y=j
will be an osculate of the first order to the curve y=g¢2 ; and
it (always by virtue of the arbitrary values that may be given
to the constants) we have eliminated three of the constants of
the equation y=F.r, by meuns of the following equations :

dFa’ _der d*Fo _ d*¢a

P =o', o =0 s =@ (71);

and y =1 represent what y=Fa» becomes after this substi-
tution, the curve y=1v{. will be an osculate of the second
order to the curve y=¢», which it will approach still nearer
than y =/» does, and so on, in order ; so that for an osculate
of the »th order, we shall have the equations

dFa'_d 4\ » d*F g d"Fo' r]”d) >

Fo/=od, de' T Ay’ de® T de® T Tdd™ T da™ (72).

147. We will proceed to show, that of two osculates which
we have thus obtained, by giving arbitrary values to the con-
stants of the same equation, the osculate of an inferior order
cannot pass between the other and the curve, in respect to
which the osculation takes place. For example, let MB (fig.
24) be the curve y=¢x, and MC its osculate y =y of the
second order ; we have then to demonstrate that the osculate
y=fr of the first order cannot pass betwixt the curves MB
and MC.

For this purposc, by putting 2'+% in place of », in these
equations, we shall find

dpa!, Al It dogal B0

PM or o(v' + )= 0o+ okt i Yo+ 5 23

+&ec.,
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INA ! _ " d\pﬁ d \Jl‘l 42 dsdl.l‘ h
PM" or Y(/+ ) =dar g — 1 + o 2+ FAD 23+&
_ djz d .z" At d’f.z- I
S+ By =fo + Tt o+ s ggt &C,

and y=+vYw being an osculate of the sccond order to y=o.,
we must have

dv.ln _dé’ dHr  dipa’
Vo' =bo's Tr =0 A = dge

¥ = /o being an osculate of the first order to y = ¢, we must
have also

dfy’  des'
f » = 4,‘ , l = ;f_’ ;
a @
from which cquations we have therefore

do' =P =f,
dpa’ d\bz (_I/Cz
d2’ ~ da

T de
and only

dresr’  d2pa’

da? dre’

Make

then the three preceding developments may be written thus,
' or o(a'+ )y =K+Vhe+ & "’,‘:" 2"3

a3 h3
PM” or (o' +h) = K4 Ve SVE B g,

L dfe ke dfe B .
fE+R) =R+ 70 1o+ - TagH e

H2

+ &ec.,
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and observing that all the terins, commencing from that which
is affected by A3, have 43 for a common factor, we may sup-
pose
d3¢:r ks
da? 23
whence, making similar reductions i the other equations, we
shall have

+ &e. = MA3;

p( +1)=K+Vhit+ M/,
W' +h)y=K+V5i24 N3,

S iy =K+ S P,

Now the curves ¥ =fr and y = Y being osculating curves,
onc of the first and the other of the second order, V must ne-

d* '
o and we can thercforc make only
ax

two hypotheses respecting V, viz.
LA o df

cessarily differ from !

VL‘dJ“’ 2 da’
If V be less than § d.z/: -, let Z be the excess of ) (11;{’ over
V, then we shall have
Viz=4° ’f‘:,

where Z is a positive quantity ; but if, on the contrary, V be

greater than 1 —=—, Z will be negative.

1,2’

Substituting this value of } d.{E: in that of f{z'+4), and ob-

serving that /2 is a common factor, our three developments
will now become
(&' +h)=K+(V+Mh)ke,
Y+ k) =K+ (V4 Nk)As,
J @+ =K+(VI+Z+Ph)lke;
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and by making 4 exccedingly small, the quantity Z, which is
independent of %z, may become greater than the expressions M4
and N/, which tend to 0.

In this case, if Z be positive, f(a'+7%) is greater than
¢(a*+4) and Y(o'+£), and we have therefore f('+%) or
P'M” (fig. 24) greater than either P'M’ or P'M”, which shows
that the curve y =/, represented by MM™
tween the other two.

If, on the contrary, Z be ncgative, we have f(#"'+7), or
P'M'Y less than 1M’ and I M”; and the curve MM!'Y being
then that which approaches nearest to the axis ol x, cannot lie
betwixt the two othors.

148. We can now explain w)  the straight line (fig. 5) whieh,
art. 145, is an osculate of the first order, is a tangent to iLe
curve ; for it follows from our theory, that betwist that straigzht,
line and the curve, we cannot draw any other straight line,
which is a property of the tangent.

The tangeut is said to have a contact of the first order with
the curve ; and generally an osculate of the order 2 has a4 con-
tact of the same order with the curve to which it is an oscu-
late ; thus when we have, betwixt the two curves, the equa-
tions

, cannot pass be-

dpe  dF2Y 20 d2Fa”
T - oy
d.’ do' " do® do'e

pr'=F,

these curves have with cach other a contact of the secoud
order ; if, besides these equations, we have also
Bpr’  BPF2

the contact will be of the third order, and so on,
149. 'The equation to the circle, which is
(y—B) + (r—a)p =72 .
contains three constants ; and we may therefore determine the
circle which has a contact of the sccond order with any curve



Fig. 25.

102 DIFFERENTIAL CALCULUE,

MN (fig. 25), of which we know the equation. For this pur-
pose, let &’ and 3’ be the coordinates of the point M in the
circumference of the circle; the valuc of 3’ will then be given
by the equation

=B —a=y,
and must replace F’ in the equations of contact, which are
, ,dow’ dF2 d*pa’ d°Fa
pr’'=Fux, —p—,=—-;, —¢,—=—T
da’ da’’ der T da

If at the same time we tuke . and y for the coordinates of
the curve y=gu, at the point of contact, the preceding equa-
tions will become

Ly dy dvy dey
y:y’_/— _-/, __'/._ '/ (74)’

de~ da” da2 " dp

. . ., dy
and in these we must substitute for the quantities i/, -l}/—", and
de
’

fl%” their values derived from the cquation (73), and its suc-

cessive differentials, which are

Y .- .
(¥ —B) d‘r"+‘l a=0....(75),

oy Ay dyr .
(¥ —B) Ez?‘;-"(_l]"-l-l_o .. (76).

But the substituting in the equations (74) the values of I’
dy d%

J;ZJ, 17}"’:' given by the equations (73), (75), (76), will be the
same thing with eliminating these quantitics betwixt the equa-
tions (73), (74), (75), and (76), which will be done by ef-
facing the accents in the equations (73), (75), and (76) ;
observing at the same time that when

' y=y, we have r=x'.

Suppressing the accents, therefore, we shall find
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(y—B)t+ (e—a)ft=92. ... (77).
dy
1/_-,;) + W —a=0 . (78),

li oy
=P Tht et =0 (79):

from ihe last of which oquatmns we deducee

y=8=— ———— .. {0;

and putting this value in the equation (78) we obtain

¢ dy? \,
dat L dy A1
o= _I]Q.I/ ll_.l . l“l}
oan

{f in the equation (77), we substitute these values of y— 3
and .o— . it beecomes

dy? dyt\ 2
(142 (lfi—fn—)(,_,,u

(d‘.'/) Ty AT

da? (l/: )
and, adding the numerators which have @ coninon factor, we
shall have

( l+ lll/ ( :11/ )

da?
dty
( m)

an cquation which reduces itself to
( dy?\*
taa)

e
()

‘-
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and, by extracting the square root, gives

ly2y 3
(1+55)°

&y =Y
dat
150. The double sign refers to the position of i : if the

. ay . .
curve be concave to the axis of v, then ;l{ will be negative ;
ot
and in order that  may then result positively, we must take
v with the negative sign, and write

Ly
(1 +7%)
Y e—— (82):
v &y )
. . . diy
for the curve being concave to the axis of the abscisse s

appears as a negative quantity, and therefore, when substituted
in equation (82), will render the valuc of ¢ positive.

151. The circle which we have just been considering has
received the name of the osculating circle, and its radius that
of the radius of curvalure ; in order, therefore, to obtain the
radius of curvature, we require only to have the equation of
the curve, from which to deduce the differential coefficients
that are to be substituted in the formula (82).

If the curve ought to be convex to the axis of x, the po-
sitive sign must be prefixed to the value of .

152. The value of y is sometimes written thus,

o (th"+ri3/)%_
T T dr ary
a form which 1s readily deduced from the equation (H2) ; tor by reducing
the two terms within the brackets 10 a common denominator, and observing
3
that (d.r’)* is da3. we obtamn
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__(dasgdyb @@t ap)?
dz, :_,l'«".n_/ dx dy

H

153. As an application of the formula (82), let it be pro-
posed to find the radius of curvature of the parabola NAM
(fig. 26), the equation to which is 22 =my. Fig. 26.
This equation gives
2odr =mdy, a!y_2.1: dg‘/ 2

m de " m

( 4.) e mQ
e, m”

II.' 1"

therefore

7:

and raising the two factors to the power 3, we have

'ﬁ_ﬂ ) e + )?
'Y=’

s’ me

m 4

- (83);

but the normal to the parabola has for its expression .
e 1
’-:—+.zﬂ)7; and we see, therefore, that the radius of curvature

of the parabola is equal to the cube of the normal, divided by
the square of the semi-parameter.

154. The osculating circle will serve to measure the curva-
ture of the curve at any point M (fig. 25) ; for if at that
point M we describe, with the radius of curvature, an exceed-
ingly small circular arc ML, that arc may be considered as
the arc of the curve itself, from which it separates but in a
very slight degree. Now the greater be the curvature of the
arc ML, the less is its radins; and it follows, therefore, that
from the decrease or increase of the radius of curvature, we
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may determine the increase or deerease of the curvature of the
curve.

If, for example, we examine the equation (83), which gives
the radius of curvature of the parabola, we see that at the

m .
vertex of the curve, where #=0, Y=g but that when 2 is
successively increased, o increases ; which intimates, there-
fore, that the curvature of the parabola goes on continually
decreasing, as we retire from the vertex.

rr .

155. 11”: expressing the trigonometnieal tangent of the angle
which the tangent at M (27) makes with the axis of &, the
cquation of the normal made to pass through a point whose
coordinates are & and 3, will be

A da
Jy—F= —a;(-l'—“) ,

and this equation heing the same with the equation (78) in
which a and 3 are the coordinates of the centre of the oscu-
lating circle, we see that the radius of that circle is a normal
to the curve.

1566. If now, through all the points of a curve MM'M", &ec.
(fig. 28), we draw the radii of curvature MO, M'O’, M’ O",
&c., we shall construct a series of points O, O, O, &c.;
which points being all subject to a certain law *, we may give
to their system the name of curve ; though we cannot yet say
any thing of the nature of this new curve, which we call the
cvolute of the curve MM'M” ; this latter curve, considered re-
latively to the evolute, being called the involute.

157. If now we pass from one point of the evolute to an-

* This law 1s implicitly contained in the cquation of the curve MM'M" ;

for that curve bemg given, the position of the points O, O, O, &ec. results
from it.
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other, not only will 2 and y vary, but a, 8, and v will alse
vary at the same time; for since « and 8 are, generally, the
coordinates of the centre of the osculating circle, and the evo-
lute is formed by the system of those centres, it follows that
« and (3 are the coordinates of the evolute, and therefore co-
ordinates which must vary for different points of the curve,
It is the same with v, which is the radius of the osculating
circle, und represents the distance of any point of the evolute
from that point of the involute whence  is drawn ; and con-
sequently, by differentiating the equation (78), in respect of
all the letters *, and dividing by dx, we shall obtain

d®y d% dy d3 da

=P et T da ae =0;

——=
and subtracting the equation (79) from this, there remains

dy dB  da_

Tdyde dx s 7
whence we find
da
dy dxr _ da_ 1
dv~ dg~ — dr™ dp’
dx dz

But, art. 67,

" We cannot differentiate otherwise the equation

(Y—BP+(x—ap=y

and its derivates ; and yet we appear to have donc so when from the cqua-
tion (73) we have deduced the cquations (75) and (76) ; to which it may be
answered, that having two arbitrary constants in the equation (73), we have
determined them on the condition that the functions represented by the first
sides of the cquations (75) and (76) should be cach cqual to 0; without
this, we should have had no right to conclude that becausc the equation (73)
holds good, the cquations (175) and (76) must hold good also,
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1 _dw
B=ap
dx
therefore,
dy da da
dx dz* a8
and, consequently, art. 24,
dy da
da= "B’

. dy . . . ) .
which valuc of d_/ being substituted in the cquation (78), w
f

shall obtain

M

d

l

y—p=+—(z—a ....-(84).

a

Y

158. We saw, art. 155, that the equation y— 8= —gg(.z'—a)

was that of the radius of curvature, passing through the point
whose coordinates are #and y ; and it will therefore be always
the equation of the same radius, when — % is replaced by %g

But the equation (84) is also that of a tangent drawn at the
point of the cvolute, whose co-ordinates are « and B*; and the
radius of curvature is thercfore a tangent to the evolute.

159. Since in the following demonstration we shall have to
employ the differential of an arc of a curve, we will procced to
find that differential.

Suppose that an abscissa AP=x (fig. 31) reccives an in-

* We may observe, that « and 8 being generally the coordinates of any
point in the cvolute, the cquation of the cvolute will be 8=fz; and there-

fore :—IIE expresses the tangent of the angle which the tangent at the point «,
a

8, makes with the axis of the abscisse,
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crement PP'=4; if then we draw MO parallel to the axis of
x, we shall have evidently

chord MM' =,/ MO*+M'O2=4/h*+M'O?;
but
tly d2y I

MO=f(r+h)—fo="Lh+-% s+ &e.;

substituting which value in the expression for MM, and re-
presenting the cocflicients of &%, At, &ec. by A, B, &c. we shall
have

dy?
MM = \/ e+ L 2+ Ak + Bl + &,

or

MM = \/ 12 (14 8) 4 Ak + Bl + &e.,

and therefore

MM \/l + +Ah+BIﬁ+ &e.

In the case of the limit we have £ =0, and the chord coin-
cides with the arc which we will represent by s; so that we

shall have
ds dy®
ax/‘ + @

whence, multiplying by dz, we deduce

ds= v/ da®+ diy>.

160. For the evolute the coordinates are 2 and 3 ; and for
it, therefore, we shall have in like manner

ds= /dad+df2.

16]. If now we differentiate the equation (77) in respect of
all the letters, we shall find



110 DIFFERENTIAL CALCULUS.

(y—B) (dy—dB) + (v—a) (de—da) ="ydy,
and cquation (78) gives us
(y—pB) dy+(z—a) dx=0,

which cquation being subtracted from the preceding one, we
have remaining

— (y—PB) dB— (r—a) da=rydy . ... (85).
Substituting in this cquation (85) and in the equation (77)
the value of y—@, given by the equation (84), we shall find
the two equations

2
-—-% (2 —a)—(r—a)da="ydy,
162
er (r—a)+ (2—a)?=1";

which, putting x—=z as a common factor, and extracting the
square root of the sccond, become

dp2+da?
_(1—“)'—7£a dry,
JdETdp
(r—a) do =%

and dividing the first of these equations by the second, we
obtain

dy=—/dpB%+da’.
But we have seen, art. 160, that, representing by s an arc of
the evolute, we have

ds= o/dB*+dat ;)
comparing which equation with the preceding one, we deduce
dy=—ds, or d(y+5)=0;
and since every function whose differential is 0 must be con-

stant, we have o +5=0; and therefore if the radius of curva-
ture increase, the are s must diminish, and by the same quan-
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tity ; a relation which we express by saying that the radius of
curvalure varivs by the same differences as the cvolute.
162. Let (fig. 29) MO =9, OB=s, M=+, O'B=s; we
have then for the radius of curvature MO,
¥ s =constant,
or
MO + arc OB =constant . . . . (86).
The radius of curvature MO’ gives rise, similarly, to the equa-
tion
vy + & =constant,
or
MO+ arcO’'B=constant . . .. (87);
and since the sccond sides of these equations (86) and (87)
represent the same constant, we derive from them,
MO+ arcO’'B=MO + arc OB,
when consequently,
MO —MO = arcOB—arc O'B =arc QO0’,

which shows us that the differcace of two radii of curvature is
equal to the arc comprekended between them.

163. It follows from this, that if on the evolute OB (fig. 29)
we wrap a string OBM, which, being of course a tungent to
the cvolute at the point B where it leaves it, has its extremity
in the point M of the involute C, when we unwrap this string,
keeping it constantly stretched, its extremity M will trace
out in its course the involute MC; for supposing that in the
course of its motion it has reached the position O'M, it will be
increased by O(Y, and will consequently be equal in length to
the radius of curvaturc passing through the point (', whence
the cxtremity M’ of the string will be still in the involute
McC.

164. The cquation of the evolute is determined in the fol-
lowing manner: 1°. we deduce from the equation of the curve,

dy d%

the values of y, ki 20, we substitute these values in the
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equations (78) and (79), when we shall get two new equations,
which are functions of + alone; 3°. climinating 2 between
these equations, we arrive at an cquation betwixt « and 8;
this equation will be that of the evolute.

165. To determine by this process the cvolute of the pa-
rabola, whose equation is 22=my ; we have, by differentiating,

2xdr=mdy,

and consequently
dy 2a dy 2

o
which values of y, ’ilz, il_-'/

I A being substituted in the cquations
" da

(78) and (79), they become

(Z—p)2 1+ 1=0 ... (89).

and subtracting the equation (88) from the equation (89),
multiplied by z, we shall obtain

3

4.)‘
—_—— C
a+1 q—O I (.)0).

On the other hand, the equation (89) multiplied by m?, and
reduced, gives us

622 ~2mpB 4 m2 =0,
whence we find

322 m
6—7+—§- PP (9]),

and eliminating x betwixt the equations (90) and (91), we
shall have the cquation of the evolute.
But before we perform this operation, we may observe that
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at the origin, where .z-:O, the cquations (90) and (9]) are
reduced to 2 =0, 3= ._—2— ; and taking, therefore, AB = - 9 (ﬁs
32), we have the point B of the evolute; we see, then, from
the equation (91), that giving to . values positive or negative,
B goes on increasing according as these values increase ; whence
it follows that the evolute is formed of two branches BC and
BD.

166. To eliminate z betwixt the equations (90) and (91).
the first, raised to the square, gives

m*
We=at—
16
from the second we deduae
( f— mem

1he two sides of which Leing cubed, we find

e
=(8—7%) 5

and cquating these two values of 2%, and dividing by m2, we

obtain
m
s=(8—3

Lect ﬁ——;'i =g, multiply each side by 27, and make . . .
lZm =n; then the equation becomes

3 =na? (%),

which is the equation of the evolute.

* Tt is casy to prove that the branches BC, BD have their convexities op~
posed to each other; for by differentiating the equation £3=nu2, or . . . -+

I
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Fig 22 By the assumption of ,3_1;‘: @', the origin is transformed

Fig.33, 34.

Fig. 35.

Fig. 36.

to the point B, whose coordinates are 0 and B—-’-;—.

167. An osculating curve may be situated in two different
ways in respect of the curve with which it is in contact:
1o, it may have its two branches, both of them above the
curve, as in fig. 33, or both of them belov, as in fig. 34; in
which case the osculate will only touch the curve: 2°. the
osculate may have oune branch above and the other below the
curve, as in fig. 35 ; and in this case the osculate will cut the
curve in the point M.

168. We will proceed to show, that the osculating circle
(fig- 36) cuts the curve.

For the same abscissa 2+ 7

let Y be the ordinate of the curve,
Y’ e the ordinate of the osculate ;
we have then

Y =¢(2+4h) = ¢o + Ak + Bi2 4+ Ch3 + &c, } .. (92);
Y =F(o+h)=Fo+ Ah+Bi2+Ch?+ &e. ?
and since the circle is an osculate of the second order, the
three first terms of these developments will be the same;
whence the difference of the ordinates, corresponding to x4,

will be

(C—=C)k3+, &c. . . . (93).
Suppose, now,’that the abscissa becomes 2—h; we must
then change % into —£% in the difference of the ordinates,
which will become

—(C=C)A3+, &e. . . . (94);

U 3 1.
B’:n"ag‘, we find ‘;—-qf—qz - %n*ar"a =—$ J %, anegative value for either

a positive or negative valuc of o, which proves that cach branch is concave to
the axis of .
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and sinee, by taking % sufficiently small, the first term of the
series (93) and (94) may be made greater than the sum of all
the other terms, it follows that the differeuce of the ordinates
will change its sign, when the abscissa, instead of being »+ /4,
shall become x—/. Ilence, taking (fig. 36) PP"=PP'=1,
if the difference of the ordinates corresponding to #4174 be a
positive quantity, i. ¢. if the ordinate P'M’ of the curve be
greater than P’N’, ‘he ordinate P"N” of the osculate will be
greater than tl.e ordinate P"M” of the curve ; whence we con-
clude that the osculate is on one side above tl:e curve, and on
the other below it, and cousequently cuts it.  What we have
said of the cirdle, whicl is an osculate of the second order, wiil
apply to every osculate of an even order.

169, If the osculae be of wa odd order, it will only touch
the curve, instead of cutting it; as is evident from the pre-
ceding demonstration.

170. We will now give the theorem promised art. 138, respecting mealriple

points.  If the curves which meet .n one of those points have a comamon tan-
gent, e equation to which may be represented by y =ax 40, we must change

. . R .  dFax
F.rinto ar<b in the sccond of the cquations (92), which will give 71 or
dx

A'=+, and all the rest of the coefficicnts in that equation will vanish ; also
the tangent being an osculate of the first order, ¢x<+A#% will be equal to
Fa+A’h, which will reduce the difference of the equations (92) to

Y —Y'=Bh+4Chi+4, &c.

Now this diffcrence ought to have two values QM and QM (fig. 30), and
therefore one of the differential cocfficients represented by B, C, &c., must
dngr

dan
143), that if we take the successive differentials of the cquation Pd.r+Qdy =0,
after cach differentiation, the term Q will continue a factor of the differential
of the highest order of y ; so that the differential of the #th order of the pro-

have two values. Let

be this coefficicnt ; we have scen already (art.

functi b ted by QY 4 k=03 and since 2L
posed function may be represen yQ;E'—'-f- =0; and since == must

have two values, we might prove, as in art, 137, that Q=0. This value of
Q will reduce that of P to 0; and it follows, thurefore, that the equation
dy_ P dy_0

de= g Villgive =g
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Thke development of functions of two variables.

171. When in a function, %, of two independent variables,
2 and y, we change x into x+4, and y into y+ 4%, Taylor’s
theorem will give us the means of developing this function :
for suppose that first we substitute x4/ in place of #, we shall
have then, by that theorcm,

du, d2ul®* % &3
— — — —_— —— ny -
Seth yy=utph+os 7o+ 7o Tagt&e - 95);

in which scries y can be contained only in the functions v,
du du
dx’ ¥
tions, we must replace, in the equation (95).

e s .3
st
dy® 1. dy’ 2.

du ndu N ,’du

—— —— ) et
du du dx ‘ de It b A3

&c. Changing, therefore, y into 4% in these fune-

u by ll+d + &c. ;

du,
dy

&YW Gttt g Tet gp ant e
L d%u o 2 ) d2u
du . du dr® et fe @ dat B
@t Y a t gyt gy gy gt e

&ec., &e., &e., &ec., &e. ;

and forming as many lines as there are terms in the equation
(95), we shall obtain

2. 2
Trh, y+ Hy=ut G T Tt e
du
+f’i},+.ﬂ”1m+ &e. b (906).
drx dy
d®u b+
t g T
+ &e.

4
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172. If we had madc these substitutions in an inverse order,
we should have found, first, by changing y into y+£,
du, dul® duk®
a "”dJ g tgpagties
and putting then in cach term x 4% in place of x, we should
have arrived at this development,

J@ y+b)=u+

. du, d%u h®
T(y+k, a:+h)=u+d.;:h+@%—+&c. ]
du
d.—-
-‘h‘/r thlc-}-&c. ‘L ....... 7).
2 2
+i]—,,.—y% % + &e.
+&e. J

The order in which we make these substitutions being ar-
bitrary, (since in putting x+ & wherever » enters, and y+k
wherever y enters, these operations cannot affect each other),
it follows, that the two devclopmente (96) and (97) must be
identical, and consequently, the terms affected by the same
products of % and / have the same valucs.

Equating therefore the terms which are multiplied by 4#,
we shall obtain

o du J du
‘dz 2; d%u d%u

dy ~ dz’ or dzdy =(lyd.1:;

an cquation which shows us that, in taking the second dif-
ferential of the product of two variables, the order of the dif-
ferentiations is arbitrary.

The same thing may be proved for the differential co-
cfficients of higher orders, by cquating the differential co-
cfficients of the other terms of the equations (96) and (97)-
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Marxima and minima in _functions of two variables.

173. We have scen, art. 171, that if in a function of two independent
variables & and g, we replace # by 2+h, and y by y-+%, the development
of f(x+h, y-+k) will be given by the equation (96); in which equation, if

du
4 dr,  d%u
we represent f(z+h, y+k) by U, & by mh, and — ay — by +— Zrdy’ we shall
have
"2 g dsu asu ddu
T— —_— —_ — —_—
! u-l—h( m+ )+ 2 dy"‘m'+ d.z'd_/ +d.|.")

—+ terms in A3, ks, &c. .. .. (98).
Now, in order that # may be a maximum or minimuri, it is necessary

that, whatever be the values given to the increments % and %, U should be
always Icss or always greater than « 3 but this is only possible when the

!
term 2( = m+ —) is cvanescent ; for if it be not, then, by waking a proper

value of h, this term may be rendered greater thau the sum of all the following
terms, when by taking % successively positive and negative, we should make
U7 in one case greater, und in the other less, than x ; hence, in order that 2
may be a maximum or a minimum, we must have

(Iu) =0,
(d1 -

du du
dy e

orF

=0

Since also k is arbitrary, m must be so likewise - and, ~onsequently, this
equation must hold goed, whatever be the valae of #e. which requires that
the equation resolve itsclf into these two :

du du

e

174. We must now see what it is that distinguishes the maximym from
the minimum ; for which purpose we must observe, that since the term in %
vanishes, it is the term in 43, which will decide the sign of the sum of all the
terms following #, and that, consequently, the term in 22, if it do not vanish,
must not, for the different values of % and %, result at one time positive, at
another ncgative, or otherwise U7 might be in onc case less, and in the other

greater than «.  We will therefore proceed to investigate the conditions
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necessary that this term in 4* may always have the same sign, whatever be
the values we give to 4 and k ; and, with this view, we will represent the
term by

%'(Amﬁ +2Bm4-C) ;
making A a common factor, this will become

Ahs B C
—Am — ..
5 (™ +2——A—m+ x) (99),
and adding and subtracting the same quantity :%:, the expression (99) may

be written thus,

ATMI:(M_'_%)‘_,_%_%]....(M),

2
B, i. e. AC> B2, will

which, if C and A be of the same sign, and % be > e

. Je
always have t.. same sign as A ; for then the quantity multiplicd by %

will be essentially positive, and the sign of the expression (100) will depend
on that of A ; so that we shall have a maximum or a minimum, accordingly

a3 A shall be negative or positive, i. e. according to the sign of dd,:, which
Y

will be the same with that of %, for, by hypothesis, C and A are to havc
both the same sign.

On the transformation of rectangulur coordinates to polar.

175. Let BDC (fig. 79) be a curve, in which we have de-
termined  point M, in position, by means of the rectangular
coordinates AP=2a, PM =y ; this point may be cqually de-
termined, if we have given the angle MAC, and the radius
vector AM : but since we generally measure angles by arcs,
we will substitute for the angle MAC the circular arc mo,
described with a radius unity ; and thus, representing the arc
mo by 8, and the radius vector An? by », we may substitute
the system of polar coordinates § and #, instead of that of the
rectangular coordinates AP =, and PM=y.

176. The origin of the abscissee is sometimes placed clse-
where than in o ; for the point M will be equally determined,

Fig. 79.
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if, having taken o for the origin, we have given the arc o'm,
and the radius vector AM. In this case we may represent
o'm by ¢, and then the absciss®, reckoned from the origin o,
will differ from the abscisse reckoned from o', by a constant
quantity oo’ ; and there will exist between them the following
equation :
0=6 — oo

Since, by means of this equation, we can always change the
origin in any manner required, we will, for greater simplicity,
suppose the origin in o.

177. Representing now by F(z, y)=0, the equation in
which we wish to change the rectangular coordinates Al =a
and PM =y into polar coordinates om =0, and AM=x#; and
investigating the relations that exist betwixt these coordinates,
we see at once, that

AP =AM cos MAP, PM=AM. sin MAP,

&, =1ucos f, y=u.sind. ... (101);

and we have only thercfore to substitute these values in the
cquation represented by F(#, y)=0, in order to obtain the
equation in respect of the polar coordinates.

Fig. 80.  178. If the origin of the rectangular coordinates x and y be
not in the centre A of the curve (fig. 80) ; let 2, 3/, be the
coordinates reckoned from the origin A’, and @ and & the co-
ordinates of the centre A, reckoned from that origin ; then
we shall have

AP=A'Q-A'B, MP=MQ-AB,
or
z=1'—a, y=y—b;
which values we must substitute in the preceding formule.

On the transformation of polar coordinates into rectangular,
and the determination of the differential of the arc of a
polar curve,

179. The cquation in respect of polar coordinates being re-
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presented by F(0, #) =0, we sec at once (fig. 79) that we may Fig. 79.
replace u by its value derived from the equation
AM:=AP2+PMe,
or
w=at4yt. ... (102).

In regard to 0, the equations (101), divided the one by the
other, give us

whence we deduce
)= nrc(tan =-’i) =tan .2,
& y
These values of 6 and « being substituted in the equation
F(8, #)=0, we obtain

F(tzm". ';/—‘, ‘/‘,u+_,/-) =0...(003),

and so arrive at an cquation between » and y, involving a
transcendental quantity tan™" :7

180. We may also obtain, between 2 and ¥, an equation,
which shall not contain the transcendental arc tan™ :5, but

which will involve differentials; and, for this purpose, we
might at once differentiate the equation represented by formula
(103) ; but the method generally adopted for arriving at this
end is the following: representing always by F (0, u) = 0,
the equation which it is required to transform into a function
of the rectangular coordinates z, y, we have secn, art. 179,
that the value of « may be expressed in terms of = and y,
without any transcendental, but that the same cannot be donc
in respect to 0; on which account, therefore, we climinate §
between the cquation F(§, ©)=0, and its differential, which
we will represent by F(0, udf, du) =0 ; this process will, in
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fact, introduce into the result the differentials df and du ; but
we shall see that these differentials may be expressed in func-
tions of the variables », y, dz and dy.

For, first, the equations (101) give us

cos b= ;, smﬂ—“ ..... (104) ;

dividing one of these equations by the other, we obtain
sinf =z z

or tan f=—;
cos b y

differentiating, there results
dd _ ady—ydr
cos?0 . @’
l, 5 by its value, derived from the first of the
;(Il:lntmns (104), and suppressing the commun factor x, we

and replacing

12dl = xdy—ydz ;
whence, consequently,

di= zdy—’ ydz
u

eee..(105);

and putting for u its value, this equation becomes
dy—ydr
do=20—"Y°%
a4y
The differential of the other variable is found still more
casily, for the equation (102) gives us
u=s/ 22+ y%;
which being differentiated, we have
du= xdr + ydy
VEryE
and, by means of these values of df, du, and u, we shal! change
the equation obtained by the elimination of § into another in«
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volving only 2, y, dy, and dir ; and which, consequently, will
be the equation belonging to the rectangular coordinates,

181. We have scen, art, 159, that the differential of an arc
%, referred to rectangular coordinates, has for its expression,

dz=y/dydy' - .. .. (108).

It may be proposed to find the differential of the same arc,
when the coordinates are polar ones; and, in this case, we
must substitute in the equation (106) the values of dz and
dy, derived from the equations

r=u.cosf, y=u.sinf.
Now, by differentiating these equations, we shall find

dr = —u sin 0.df + cos bdu,
dy=ucos 0 df+sin Odu ;

whence, squaring these last equations, and reducing them by
means of the formula
sin®§ 4 cos2 0 =1,
we shall obtain
dz= /WdP + du® ;

which is the differential of the arc in a function of the polar
coordinates.

On sublangents and subnormals, tangents and normals, to polar
curves.

182. We know that, in curves referred to rectangular co-
ordinates, the subtangent A¢ (fig. 81) is the line comprised Fig. 81.
between the foot P of the ordinate and the point ¢ in which
a perpendicular, Az, to that ordinate meets the tangeng: re-
taining the same definition for polar curves, in which the or-
dinate is no longer PM, but the radius vector AM, the sub-
tangent will be then the line AT, drawn perpendicular to
AM, and comprised between the point A and the point T, in
which that perpendicular cuts the tangent. The subtangent
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therefore has, in polar curves, a position different to that it
has in curves referred to rectangular coordinates, since in
these the subtangent is always measured ulong the axis of the
abscissee, whereas in polar curves, in which that axis no longer
exists, the subtangent varies its position at every point of the
curve.

183. We will now determine the analytical expression for
the subtangent of polar curves; for which purpose, let AM
and AM’ be two radii vectores; from the point M draw the
perpendicular MP to the radius vector AM’, and to that per-
pendicular draw the parallel AT ; then the similar triangles
ATM', PMM/, will give us the proportion

PM : PM:: AM : AT;
whence we deduce

PM x AM-
AT="—%y;
and observing that PM' is a side of the right-angled triangle
PMM’, this value of AT becomes
AT=— X AN
~/ MM's—PMs
In the case of the limit, AM' is ccmal to AM, i. c. to «,
PM coincides with the arc MN, the chord MM’ with the arc
MM, and AT becomes the subtangent. For the limit, therc-
fore, we have only to determine the expressions for M'M and
MN; the first of which being then the differential of the arc
of the curve, we have, art. 181,

MM’ =/ u8d5®+dus ;

in regard to MN, the sectors ARR’ and AMN give us the
Pproportion

AR: RR/':: AM: MN,
or
1:RR':: %: MN,
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and therefore MN =% . RR/, a quantity which, in the case of
the limit, reduces itself to ud9.

Putting these vales of MN and M'M in that of AT,
changing ./ M’ into %, and reducing, we shall find

AT=28,
du
which is cbe expression for the subrangent.

184. To determine the subnormal, we must observe that
the normal SM being perpendicular to the tangent, the or-
dinate AM (fig. 81) must be 2 mean proportional betwixt the
subtangent and the subnormal; whenee, consequently, we
have

AT : AM :. AM : subrormal,
or
AL

du

T oue subnormal ;
and therefore
dh
subnormal =—.
du
In regard to the normal and tangent, the right-angled tri-
angles MAS, MAT give
MS=yMA*+AS?, MT=,/MA*HA1%;

and substituting in these cquations the values of MA, AS,
and AT, we shall find

normal = s/w+—¢f6? tangent = qu +u d -

185. To find the analytical expression of the sector in polar
curves, the triangle AM'M (fig. 82) gives us
AM'x PM
2 ’
in the case of the limit, the arca of the triangle AM'M (fig.
82) becomes that of an elementary sector, the perpendicular

area AM'M =

Fig. 82.
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PM may be replaced by the are MN, which we have found
equal to udf, and AM’ by u ; when, making these substitutions,
we shall find
u2dh

2

The clementary scctor may also he expres‘scd in a function
of the rectangular coordinates, for, by putting in this equation
the values of  and df, given by the equations 102 and 105,
it becomes

area of the elementary sector=

atly—yda
arca of the elementary sector = --__/_.2_.’__

On the determination of the cxpression for the radius of cuiva-
ture in polar curves.

186. We have given, art. 149, the expression for the radius of curvatur.,
referred to rectangular coordinates ;3 which, assuming the positive sign for

Y is
diy"\§
._(l T ) ......... (107).

d.z"‘ *
That this value of y may be expressed in terms of the polar coordinates, we

must eliminate the differential cocfficients which enter into the formula (107)
by means of the following equations,

r=wncosf, y=wu3inh; .

which, being differcntiated, and the rcsults divided the onc by the other, we
shall obtain
dy _ dusin0+ucos 6d§

dz~ Aucosb—wusin6ds’
and, representing the two terms of this fraction by m and », we shall have

m = du sin 9 + u cos 6d9,
n=aducosd—mn sin9d9.§ seeees (108);

and consequently

y __m
= e (100),
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by mcans of which last equation we find for the numerator of the value of y,

(+E) = (2N

3 .
and raising cach term of this fraction to the power -, and observing that

o
o .
the power 1 of n? is n3, we have

(+)t= “"’*‘"”i .(110).

Differentiating now the cquation (109), we shall find

@3y _ndm—mdn

— k]
dr n?

and dividing the first side of this cquation by dx, and the second by n, which
is equivalent to dr, we shall have
dy __ndm—mdn

da3 73

aeee (111).
By means of these valucs given by the equations {110) and (111), the equa-
tion (107) becomes

(m" + n")‘k
— oo (112)3
mlm —amndn (112)
and we have now only to transform this equation into a function of § and v ;
for which purpose we must determine first the value of n?+m2, by adding

the squares of the equations (108), and reducing by means of the equation
sin 20+4- cos26=1 ; when we shall find

n34md =duds4usdée . . .. (113).

To obtain the denominator of the equation (112), we must differentiate suc-
cessively the equations (108), considering @9 as constant; and multiplying
the results by n and m respectively, we shall find

ndm =mnd%x sin 0 4 2ndu cos 0d9 — nu sin 0d59,
mdn =mdou cos § — 2mdu sin 6d0 — mu cos 8d6?,

whence, subtracting the second equation from.the first, we have
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ndm— mdn = d°u (nsin § —m cosf)
+2dud? (n cos 04msin8) .. .. (114).
— wdé? (n 8in 0 —mcos0)
Now, multiplying the first of the equations (107) by cos 6, and the second by
sin 8, subtracting the one from the other, and reducing by means of the rela-
tion sin 294 cos2)=1, we shall obtain
n 5in 6 ~m cos 6 = —udd ;
and the value of # cos 8-4mcosd being determined in a similar manner, we
shall find
7 CO8 b4 m cos & =-du.
Substituting these values ia equation (114), it beeomes
ndm —mdn = — uddu &5 -2dn2dh<4-12d53 . . .. (11D),

and the values thas determined in equations (113) and (1156) change the equa.
tion (112) into «
o (durturd2)? _

Y T Cdurdi— udiud® | und 3

On transcendental curves.

187. Curves arc thus called which contain transecndental
quantities® or differential coeflicients, and which, generally,
cannot have their equations expressed in a finite number of
algebraic terms. We will precced to examine some of the
most remarkable of these curves.

On the spiral of drchimedes or of Conon.

188. This curve is thus generated: whilst the radius AB
(fig. 37) revolves about A as a centre, a point A, setting out
from that centre, moves uniformly towards the extremity B of
the radius, in such a manner, that when AB has completed a
revolution about the centre A, the moveable point, which at
the commencement of the rotation was at A, is arrived at B.
The movcable point traces out in its course the spiral of Archi-
medes.

Let AB=q, arc BN=0,"AM =u; we have then, from the
preceding definition,
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AM : AN :: arc NB : BCDB,
or
u:a::0: 2wa,
whence we find
=g
the equation to the curve, which, as we see, has not its co-
ordinates rectangular,
When AB has made a complete revolution, the arc NB
is cqual to the circumference, and therefore § =2ra, which
changes the preceding equation into

o2
9

If the point A continue to move on uniformly, the radius
AB will make a second revolution around the centre A, and
if we take BB'=DBA, the moveable point, at the end of this
second revolution, will be arrived at B’; when § will be cqual
to 4na, and thercfore z =2a, and so on.

=a.

On the logarithmic spiral.

189. The logarithmic spiral is a polar curve, in which the
angle AMT (fig. 81) formed by the radius vector with the
tangent MT to the curve is constant; so that, representing
the trigonometrical tangent of this angle by a, we have

tan AMT =a.
But the triangle ATM, right-angled at A, gives us
1 : tang AMT :: AM : AT,
whence
AT
AM’
and replacing the radius vector AM by » and AT Dby the ex-
K

tan AMT =
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{ )
pression _“?1%?’ which we found, art. 183, for the subtangent

of a polar curve, we shall have

tan AMT, or « =tﬂ?;
du
from which we deduce
“dv_ s, L. 116),

1A
and integrating, we shall find
alog v =04 cunstant.
Let ¢ be the basc of the Napierian system ; supposing then
that we have a system of tables such, that « may be the loga-
rithm of ¢ in that system, we may replace « by Le, and Le
log u will be the logarithm of % in that system*; so that
we shall have
Lu =0+ constant.

190. The logarithmic spiral may be constructed by points
in the following manner: having divided the circumference
00'0” (fig. 83 ) into equal parts, draw radii to the points of
division, and along thesc radii take the parts Am, Am’,An, &c.
in geometrical progression ; then the points m, m’, m”, &c.
will belong to a logarithmic spiral. Feor if in the logarithmic
spiral the parts mm’, m'm”, m"m"”, &ec. be taken cxceed-
ingly small, we may consider them as straight lines, and it
will be easily seen that the triangles Amm', Am'm”, Am'm'",
&ec. are similar, since the angles at A arc equal by construc-
tion, and the angles mm’A, m'm"A, m"m'”A, &c. are so by the

property of the curve ; we have therefore from these triangles
the scries of proportions,

* To demonstrate this, let ¢ be the base of the Napierian system ; we shall

have then u=¢/rg « ; and taking the logarithms in the system of tables indi-
eated by L,

Lau=L (¢/& ") =log u Lc.
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Am : Aw' :: Aw' @ Am",
Am' : And' 12 Am" : Am'",
&e. : &e. :: &e : &c.,
which shows us that the ordinates Am, Am’', Am”, &e. are in
geometric progression.
191. In the logarithmic spiral, the normal is equal to the radius of curva-
ture; for the radius of curvature, in a polar curve, having for its expression

(dus+u :dee)%

v :;Z—J;;rl9 " ududd + w3d

if, in this formula, we substitute the values of du and d?«, as derived from
the equation (116) to the logavithmic spiral, which gives

] udb?
du .—..ﬂ. d2n—= ili db = id_
u a a?

we shall have

1f now, in the expression for the normal, which is (art. 114

du?
n"+-d oo

du?
we substitute the value of —, we shall tind the same value u +at
dba s %,

which proves that in this curve the normal is equal to the radius of curva-
ture ; and since the two lines (art. 155) have the same direction, it follows
that they must coincide.

192. This property will furnish us with the means of demonstrating that
the evolute of the logarithmic spiral is another logarithmic spiral ; for the
point N of the normal being considered as belonging to the radius of curva-
ture, and being taken at its extremity, will be in the evolute. Let «’ and ¢'
be the coordinates of this point N (fig. 84); it will be easy to determine
them in a function of the coordinates # and ¢ of the point M of the curve;
for if 00’ be an arc of a circle described with a radius unity, the abscisse of
the points M and N will differ from each other by that angle, which, since
MAN is a right angle, will be equal to a quadrant of the circumference, and

K2

Fig. 84.
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if, thercfore, adopting the usual notation, we represent the quadrant of the

circle described with radius unity by ;—, we shall have

™
§'=4 +§'
an equation, which, being differentiated, gives
a5 =dj.
For the polar ordinate =’ of the point N of the evolute, since this ordinate is
equal to the subnormal %:;- of the logarithmic spiral, we must change -"%

into #', in the cquation of that curve, when we shall find »=a»’, and, con~
sequently, du=adx’ ; and substituting thesc values of d9, du, and » in the
cquation (116) of the logarithmic spiral, we shall find
’
a‘-ii, =df’;
7

an equation which, being of thc same form with the preceding one, shows us
that the logarithmic spiral has for its cvolute anothcr logarithmic spiral.

On the hyperlolic spiral and the spirals comprised wnder the
equalion u=aj".

193. The property of the hyperbolic spiral is to have its
subtangent constant ; if therefore we represent this subtangent
by a, and cquate it to the expression for the subtangent (art.
183) of a polar curve, we shall have for the equation to the
hyperbolic spiral

df

US - = a
du ?

where a is taken negative, because we have then
du db
—_———

w2 o«

an equation which, being integrated, gives

1 6,
W= t6
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and C, being an indeterminate quantity, may be replaced by »

similar quantity - when we shall have

1 C

-_————

©w a [/

and taking the origin of § so that the abscissa 04 C' may be
equal to some new ubscissa 0, the equation will become

1 6

»
u a

or
u=§ .- (117);

which shows that when 5=0, u=o ; and that consequently
the radius vector which corresponds to the point where 0 is O,
is an asymptote to the curve.

194. The equation (117) shows us, also, that the radius
veetor is in the inverse ratio of the abscissa, so that making
successively 0 =2w, 0=4r, 6 =6r, &c., we shall have for u the
é}r’ Ia’—r, (_;f;r’ &c., which shows us that at the
end of two revolutions the radius vector is reduced to the
half of what it was at the end of the first, at the end of three
revolutions to a third of that value, and so on.

195. The equations to the hyperbolic spiral and the spiral
of Conon are particular cases of the equation #=al"; for by

series of values

making z=1, and a= Ql;, we obtain the first, and by making

n=—1, we obtain the second. Among the spirals determined
by this equation we may notice the parabolic spiral, which is
found by making n=2.

The logarithmic curve.

196. This is a curve in which the coordinates are rectan-
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gular, and the abscissa is the logarithm of the ordinate ; the
equation to the curve is therefore

r=logy,
whence we have
y=ua',
and consequently
oy
Y =a'loga.

qr

197. To discuss this cquation ; if we muake x=0, we shall
find y =1, and giving then to .» values increasing and positive,
y will go on continually increasing ; but if we give to @ a

. . 1
negative value, —u, we shall find y =e—"=—, whence we sec
a

that, in respect of the negative abscisse, y will be diminished
the further we retire from the origin, but that the curve can-
not reach the axis of », produced in a negative direction, cx-
cept at an infinite distance from the origin, in which case the

. 1, 1
equation y=-- will become y=-7=0; whence we may con-
' [ * "

clude that the axis of », so produced, is an asymptote to the
curve.
198, If, setting out from the origin, we take the equal ab-
Fig. 38. scissee (fig. 38). AP=u, and AP'=—u, we shall find

PM =a*, PM’'=a-",and therefore PM x P'M'=1.

199. The most remarkable property of this curve is, that
its subtangent has a constant value; for the equation of the

. . . . dy,
curve being differentiated, gives us & o log a, whence we
= -] da ]

o
a a’.v 1 ydoe 1
dy ~loga’ o dy “loga
cquation expresses the subtangent of the curve, art. 69, and
this subtangent therefore is constunt,

find - But the first side of this
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On the cycloid.
200. The cycloid is the curve traced out by the motion of

a point M (fig. 39), situated in the circumference of a circle Fig. 39,

which rolls along a straight line RC. In this motion from
R to C, it is evident that all the points of the arc RM must
come successively in contact with the straight line RA, until
at length the point M itsclf comes in contact at A ; the arc
RM, consequently, will be equal to the straight line RA ; and
since also every point through which M passes is, by hypo-
thesis, a point in the cycloid, A must be a point in that
curve.

Taking A, thercfore, for the origin of the abscisswe, letting
fall the perpendicular ME on the diameter BR, and making
AP=.,PM =y, BR=24, arc MR =z, ME =, we shall have

AP=AR~PR,

or

r=arc MR—=ME,
or

wr=z—u ... (118).

Proceeding first to eliminate the arc z, we must differen-
tiate the preceding equation, which will give us
dx=dz—du . .. (119),
and to obtain the value of dz in a function of «, we must ob-
serve that between » and = we have the equation
u=sinz,

which being differentiated, art. 42, we find
du=dx. w—i':
a

whenee we have
adu
cos

dx=
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and replacing, in this equation, the value of cos z given by
the equation
sin®z+cos®z=a%,
or
u? 4 cos®z=a%,
we obtain
adu

dz=

which being substituted in the equation (119), it becomes

de=—2% _du ... (120),

Vaf—ud
and we have now only to express « in a function of y. For
this purpose, let O be the centre of the gencrating circle BMR
(fig. 39), we have then
OE =4/ MO2—ME?,
or
a—y=va—u? ... (121),
which cquation being squared and reduced, we deduce from it
u=4/2ay—y* ... (122),
and, by differentiating,
du=32NY  (193).
~2ay—y*

The equations (121) and (123) transform the equation (120)
into

_udy  (u—ydy
V3ay—y  v2ay—y®

dr=

and reducing we find,
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Yy
V2ay—y*
which is the cquation of the cycloid.

201. The equation of the cycloid may be obtained also in
function of the arc, in the following manner: the equation
u=sinz gives

dr=

z=sin—.u,
so that putting for » its value derived from the equation (122),
we have
z=sin—1./2ay—3°,
and this value and that of # being substituted in the equation
(118), it becomes
a=sin~'. 2ay—yt—/20y—12* . .. (124).

202. To discuss this equation, we will prove, first, that »

cannot be eiiher negative or greater than 2a.  For, in the first

place, if we make y = —y', the expression sin—. ,/21y — 42 be-
comes sin—1. \/ —2ay —y'¢, an imaginary value ; and, secondly,
if we make y =2a+3, the expression sin—'s/2ay— 4 becomes
sin—1.,/—2a7 =3, which is also imaginary; and if, there-
fore, at a distance EF =2a, along the uxis of #, we draw (fig.
40) AB parallel to CD, the curve will be comprised within
the parallels AB and CD.

The greatest value that y can have is 2a; for if the gene-
rating circle be made to roll from A to C (fig. 41), the point

* The sine here corresponds to a radius e ; that of the tables, having
unity for radius, would bhe

N 2ay—y*

«

and 1f, therefore, we wish to introduce this sine, we must write

—

V2uy—yt

b oeett 51N f———
"

- 2y —y*.

Fig. 40.
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M, which wus at first at A, will rise continually until it
reaches B at the extremity of the diamcter BD ; when the
abscissa AD will be equal to DEB, i. e. to the semi-circum-
ference of the generating circle.

This result agrees with what is given us by the cquation
(124); for if we make y=2a, we find #=sin—1.0; but the
arc whose sinc is 0 must be one of the following ; 0, DEB,
2DEB, 3DEB, &c., and we see that, in the present case, the
arc is DEB.

If the point M, after having arrived at B, and so deseribed
the arc AB of the cycloid, continues to move on, it will de-
seribe a second arc BC, similar to the formner ; and if the ge-
nerating circle be supposed to roll continually along the axis
of the abscissa, the point M will trace out an indefinite series
of arcs of the cycloid, CB'C" C'B'C", &e. (fig. 42). The
generating circle may be supposed also to move from A to-
wards A”, and we shall then have another indefinite scrics of
ares ABA', A'B"A", &e.

It is the assemblage of all these arcs, which, in the most
general sense of the word, constitutes the cycloid.

203. The normal at the point M, whose coordinates are »

Fig. 43. and y (fig. 43), is determined, art. 70, by the formula,

dy
the normal = y J ‘ 1/-

in which, if we substitute the value of :_x derived from the

equation to the cycloid, we shall find

the normal = y / u_y ¥ +1=4/2ay.

To construct this value, if we draw the chord MD, fig. 43,
we shall have

DE: MD:: MD: DB,
or

y i MD:: MD: 24,
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whence consequently
the cord MD = /20y ;

and since, by the property of the circle, BMD is a right angle,
the chord MB will be perpendicular to the extremity of the
normal MD, and therefore the chord MB produced will be a
tangent at the point M in the cyveloid ; for we know that the
tangent and the normal form o right angle with cach other.

We may therefore construct the tangent at any point M
by describing the generating semicircle BMD, and producing
the chord BM ; but instead of having to construct this circle
at every point of the curve, it will be suflicient to describe
the semicirele on the maximum ordinate BD) of the eycloid ;
and having drawn through the given point M, the perpen-
dicular ME on BD, to draw the chord BC ; then the parallel
MT to that chord will be the tangent required ; as follows
inmediately from what has prcwdul

204. To obtain the expression for the radius of curvature
of the cycloid, we must deduce, from the equation of the
curve, the values of Z% and jl 3 and substitute them in the
expression for the radius of curvature, art. 150,

(44’
..y=_, (l‘-'y
da®

to which we prefix the negative sign, becanse we know that
the curve is concave to the axis of ».
Now the equation of the cycloid gives us at once

dy o/ 2ay—y°
dz ™

.(125) ;

to obtain £’—‘—£, m.;kmg ({ = p, we shall have
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p:.ﬁy.__yg-_- \/?ﬁ_l’
¥y ¥

und, by differentiating, art. 21, we shall find
2a
ki ady
O == "y Ry
2 J “a 1 Y Y=y
Y

dp a
whenee -~= = ———,
Ay~ yy/ 20—y
and multiplying this equation by cquation (125), we shall
obtain, art. 26,
dp a @y
G Wy
By means of these values we have for the radius of curvature

2av3 3 3
(—y_) (2a)° _2%a*
Y= —a—— = ‘—T - —?5
PR A
7
and bringing 4 into the numerator,
3 1 ] 1 1 IO,
y=2* a"'y‘l"_—.2.2g’ ayt= 2\/2{1‘:/,
and therefore the radius of curvature MM’ (fig. 45) of the
cycloid is double of the normal MR.
205. We shall obtain the equation of the evolute by sub-

o d. 2y .
stituting the values of %Y ond 44 5y the formulie, (art. 149)
dzx dx2
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dy*~\dy
C+aedar__ oy

2y == da’
da®

J=—0o =

when we shall find
u

.1/—{3="Z‘ =2y, v—a=—2,/2ay—y?;

28
K

and therefore

B==y, a=2+2¢/2ay—y*,
or (fig. 46)
QM'=MP, 2= AP +2ME.
Observing that AP+ME=AR=arcMR, the last of these
equations may be written thus,
a=arcMR+ME. ... (126);
and producing BR, taking RI.=BR=24, and describing on
RL the semi-circuinference, RM'L, that semi-circumference
will pass through the point M/, on account of the equal chords
MR and MR, and we shall have
arc MR=arcM’'R and ME=M'E,
which values being substituted in the equation (126), we shall
find
a=arcM'R+ M'E/,
and therefore
a=arcM'R+ /22852 .. .. (127),

the cquation which exists between AQ=a, and QM =, the
coordinates of any point M’ in the evolute.

If now we produce the ordinate CD=2e to a point A
(fig. 46), so that DA’ shall be also equal to 2«, and through Fig. 46
the point A’ draw the parallel A’D’ to AD, and transfer the
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origin from A to A’, making A'Q'=a’, QM'= B’y we shall have
for the abscissa
AQ=AD-AQ,
or
a’'=} generating circumference—AQ,
or '
a=nd—2a ;
in regard to the ordinate 8, we have
MQ =AD-QM,
or
B'=2a—3;
from these equations, therefore, we derive
a=ma—o, f=2a—f,
and substituting these values in equation (127), it becomes
na—d =arcMR+ /203 —=f%;
or
ra—a =arcRM'L—arcM'L+ /223 —f’
=ma—arc ML+ /243 — 3%,
and, consequently,
o =arcM'L— ,/2af —pB%,

which is the equation to a cycloid, and therefore the evolute
of a cycloid is another cycloid.

206. It may be demonstrated by synthesis also, that the evo-
lute AA’ (fig. 46) isa cycloid ; for we have

arcLM'+arcRM’' =r7a,

and thercfore

) arcLM'=m¢—arcRM’;
on the other hand,

arcRM =arcMR
=AR, (art. 199),
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which value being substituted in the preceding equation, we
shall have

arc LM'=7a—AR=AD—AR,

or
arcLM' =LA/,
which is a property of the cycloid.

O the change of the independent variable.

207. When an equation is given containing differential cocfficients, we
can eliminate them only by means of the cquation of the curve to which we
wish to apply the formula; thus when we have the formula

dy?
(+4 dy

dzy “de’
(IJ'Q
and it is asked what it becomes when the curve is a parabola, we deduce

d,
from the cquation y=aa2? of the parabola, the values of 71;'—1 and ?"I», nd

substitute them in the formula, when the differential coefficients will disap-
0 12 .

pear. If 1{5 and (—7—',{ be considered as two unknown quantities, we must
axr [

have in general two equations in order to climinate them from any proposed
formula, and these equations will be obtained by differentiating the equation
of the curve twice successively.

208. When, by the operations of Algebra, dv has been removed from under
dy, as in the following formula,

y(da=+dy
Totdp—ydy " .

the substitution is made by considering dv, dy, and d%y, as the unknown
quantities; and since to eliminate them we must have in general an equal
number of equations, it docs not appear at first sight that this elimination can
be cffected ; for the differentiation of the cquation of the curve can furnish us
with only two equations betwixt dz, dy, and d?y ; but we must observe that
when, by means of these two cquations, we have climinated dy and dty, dz*
will be found as 2 common factor in the formula, and will consequently dis-
appear. If, for example, the curve be a parabola represented by y=ar*,
this equation being differcntiated twice successively. we shall obtain,

...(128),
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dy=2avdr, A2y —=2ada?,
and thesc values being substituted in the formula (128), and the common
factor da® suppressed, there results.
y(1+4a222)
dut2? — 2ay’

209. The rcason why dr! thus becomes a common factor will be casily

. dm, dy .
seen ; for when in a formula containing originally e and -1, the denomi-
da? dz

Y i made to di 11 th those fn ¥ and
nator of Ta is e to disappear, all the terms, except those in s
dy . &y .
7 must acquire the common factor da?, the terms affected by — will no
dz )

longer contain d, whilst the terms affected by Tld_;i wili involve the first power

d,
of dz, for the product ~¢ -z':— by da? is dydx. When, therefore, we differen-

tiate the equation of the curve, and so obtain results of the form dy =Mda,
d%y =Ndzx?, these values, belng substituted in the terms involving d?y and
dydz, will change them, like the other tcrms, into products of das.

210, What we have said of a formula containing diffcrentials of the two
first orders will apply to those in which the differentials arc of higher orders,
and it follows, therefore, that by differen..ating the equation of the curve as
often as it shall be necessary, we may always clear a proposcd formula of the
differentials contained in it.

211. This will not be the casc, if, besides the differentials which we have
been considering, the formula should contain terms in @%2, in d3z, &c. ; for,
supposc that there entered into the formula the following differentials dr, dy,
dty, dax, and that by diffcrentiating the equation represented by y=fz twice
in succession, we had deduced from it the cquations

« F(2, y, dy, dv)=0, F(x, y, dv, dy, d%v, d2y) =0,

with these two equations then we could eliminate only two of the three dif-
ferentials dy, d3v, d3y, and we see that it would be impossible to make all the
differentials disappear from the formula. In this case, therefore, there is a
tacit condition cxpressed by the diffcrential @2z, which is, that the variable »
is itsclf to be considered as a function of a third variable which does not ap-
pear in the formula, and which is called the independent variable ; this will
become evident, if we observe that the equation % =fx may be derived from
the system of the two equations,
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x=TFt, y=21,

(®—c)
W

betwixt which 7 has been clnninated ; thus the equation y=a.
verts to the system of the two equations
r=bt+c, y=als,

and we may conccive that .0 and y ought to vary by virtue of the increment
which £ receives 3 but this hypothesis, that 2 and y vary according to the in.
crement given to 7, supposes tl -t there are certain relationr betwixt v and ¢,
and y and £, onc of which rela jvas s arbitrary 3 for the equation, which we

P — )2
represent in generat by y =fr, being, for exampl., y =« -(i b:) » if we csta~

: . . . R, . .
blish betwixt 2 and ¢ the arbitrary relation &= —- this value being substi«
L)

')? (13—c3)2

/-
. . Tt . P
tuted in the equation y:=a - ;——-2- will change i into y=e Jea > an
"y (

. . . i 2] P .
equation which, combined with the one x= o must, by climination, give

y=a. Q—gﬁ)—r‘, the only condition to which we need have regard in the choice
of the variable ¢.

212. We may, thercfore, determine the independent variable ¢ arbitrarily.
For inst~nce, the chord, the arc, the abscissa, or the ordinate, may be taken
for that indcpendent variable ; and if ¢ represent the arc of the curve, we must
have dt= .,/m 3 if ¢ represent the chord, and the origin be at the vertex
of the curve, we shall have £=4/271 42; lastly, ¢ may be the abscissa or the
ordinate, and we shall have then ¢ =a, or t=y.

213. The choice of one or other of these hypotheses is indispensable, in
order that a formula containing diffcrentials may be frecd from them ; and if
it is not always made, it is because we tacitly suppose that the indepcndent
variable has been determined. For instance, in the most ordinary case in
which the formula contains only the differentials d», dy, d%y, d3y, &c., the
hypothesis is, that the abscissa has becn taken for the independent variable ?,
for then there results

dx ds sy
t=w, ;‘fi :1, —d—t; =0, Ea =0, &c.

and we sec that the formula cannot contain any differentials of x of a higher
order than the first.
214. To cstablish the formula in all its generality, it is necessary, then,
L
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from what has preceded, that 2 and » should be functions of a third inde.
pendent variable 7 ; and that we should have, (art. 26),

y dy_ dyde
A dvdt’
from which equation we deduce
lh/
th/ at
S = (120);
it

and taking the second differential of %, and applying to the second side of
this equation the rule for fractions, art. 16, we shall find
dedly dy dw
dy _df dt  dt dar
T T da
rz

In this expression d¢ has two uses ; one to indicate what the independent
variable £ is, and the other to enter as an algebraic symbol.  1If we keep in
niind that ¢ is the independent variable, d¢ may be considered only in its
second character ; and then suppressing d¢? as a common factor, the preceding
expression will be reduced to

dyy _dediy—dyda
P e
and, by dividing by dz, will become
dyy dsy _ dx dry — dy dox
= das ’

215. Proceeding in the same manner with the equation (129), we sce that
by taking ¢ for the independent variable, the sccond side of the equation be-
comes identical with the first ; and, conscquently, when we take z for the
independent variablc, the only change we have to make in the formula con-

dy
d: and —, is that of replacing the second

taining the differential coefficients

drd3y —dy d*x
da3

differential cocfficient by . To apply these considerations to

the radius of curvature, which, art. 186, is given by the equation
ay*\ §
(] +d.l“
= d"l/ ?
da
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if we wish to have the valuc y, in the case in which ¢ is the independent
variable, we must change this cquation into

()
= (Ltd’y —dyd’z
T dm
3
and observing that the numerator reduces itsclf to _(_'l_f""_':_x)_ we shall have
ax:
a3
. 2
—eddye? (130).

T dwdsy — dydex

216. This value of y supposes then that a and y are functions of a third
independcnt variable 3 if  should be this variable, i. e. if £ = &, we should
have dsz =0, and the expression (130) would be reduced to its ordinary
form,

dy®

3

_ (dardy)E ( + ,hn)
- drdry -

tl.t’*

217. Bat if, instead of taking 2 for the independent variable, we wished
that y should be that variable, this condition would bc expressed by the
equation y =1, and by differentiating this cquation twice successively, we
should have

The first of these cquations tells us only that y is the independent variable,
and makes no change in the formula ; but the second shows us that dy
ought to be 0, and then the equation (130) is reduced to

_@ot+ayb
dydx

218. Wec may observe, that when x is the independent variable, we have
dex =0, an equation which shows us that da is constant ; whence it follows
that, generally, the variable which is considered as independent, has always
a constant differential.

219. If, lastly, we take the arc for the independent variable, we shall
have the cquation

dt = \Jda® + dye, 0
) /)
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and squaring and dividing by 4¢3, this will give us
dr | Ay
@ Tas

differentiating this equation, we must consider, art. 218, d¢ as constant,
since ¢ is the indcpendent variable ; and applying the usual rules, we shall
find

=1;

2dxdsr | 2dyddy 0:
ar e
whence we deduce
dedie=—dydyy 3
and, conscquently, if we substitute the value of d2z, or that of d2y, in the
cquation (130), we shall have, in the first case,

(ddy)E _sz”+tlJ iz
“(dFa)dy Yy

in the second case,

_ (aoat N
V=T ey Y T PR
220. In what has preceded, we have considered only the two differential
i’ and :}pi but if the formula should contain the differential
cocfficients of higher orders, we must, by methods analogous to those just
employed, determine the values of dg" Z;‘i
in which « and y are functions of some third independent variable.

cocfficicnts

» &c., which belong to the case

On the method of infinitesimals.

221. The ideas which we have of infinity reduce themselves
to this propoesition: A guantity is not infinite so long as it ad-
mits of augmentation. If, consequently, we have a quantity
2--a, and » become infinite, @ must be suppressed, otherwise
it would be supposed that » might be increased by the quan-
tity a, which is contrary to our definition.

222. This being a fundamental proposition, it has been en-
deavoured to demonstrate it in 2 more satisfactory manner, as
follows :
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Let the equation be
11
;+;_—M e (13D

which, being multiplicd by the product ax, becomes
e+a=Mazx ..... (132).

. . s .1
Supposing, now, that x becomes infinite, the fraction P

having rcached its last degree of diminution, is cvidently re-
duced to zero, and therefore the equation (131) becomes

w=l,

a
and this value being substituted in equation (132), we obtain
r4+a=x;

which shows, that when 2 is infinite, # 4 a is reduced to a.

223. The quantity a, in regard to which 2 is infinite, is
what we term an infinitesimal, in respect of 2.

224, Since we consider here only the ratio of quantities, the
preceding demonstration holds good when x bas a finite value,
provided only that « be infinitely small in respect of ». The
theory of fractions will serve to render the truth of this still
more evident ; for if we compare the finite quantity b with the

.. b .. . .
fraction o it is clear that the more the denominator = be in-

creased, the more the fraction is diminished ; so that when 2
becomes infinite the fraction will become absolutely 0, and, as
such, ought to be suppressed before b, which will be then in-

. b
finite in respect of po

225. Although two quantities be themselves infinitely small,
it does not follow that their ratio should be O ; for

a h
—_—:— ::a: b
=] oc
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It will be secn likewise that two infinitely small quantities
may measure each other, as well as two exceedingly large
quantities ; whence, representing the two infinitely small

dy .
quantitics by dr and dy, it follows that their ratio -‘TZ will

not necessarily be 0 ; a result agreeable to what we have ob-
tained by the consideration of limits.

226. When a quantity . is infinitely small, in respect of a
finite magnitude a, the square, #2, is infinitely small in respect
of & ; fur the proportion

liw::@:at,

shows us that a2 is contained in = as often as  is contained
in unity, i. e. an infinite number of times. It may be demon-
strated, in like manner, by means of the proportion

rrat:i % o
that 22 being infinitely small in respect of 2, the term 2% must
be infinitely small in respect of 22 ; and for this reason it is
that infinitesimals have been divided into different orders ;
thus, in the preceding examples, # is an infinitesimal of the
first order, a2 one of the second order, 23 one of the third order,
and so on.

227. We may observe, that if x be infinitely small in respect
of a, it will =till be so when multiplied by a finite quantity 4 ;
for, since . may be considered as a fraction of which the de-

. s . . Cc
nominator is infinite, we may represent . by —— ; and whether
o

¢ be . . .
we have = or = these quantities will be no less 0 in respect

of a.

228. In the same manner that an infinitesimal of the first
order ought to be suppressed when placed by the side of a
finite quantity, which it cannot augment, we must leave out
an infinitesimal of the second order, which appears by the side
of an infinitesimal of the first order ; and so on.
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If, for example, we have the expression

a+ by +cy® +dy’,
and y be an infinitesimal of the first order, and consequently
¢y® be one of the sccond, and di® one of the third order ; we
must first leave out dy’, because it cannot augment ¢y®; and
since cy? cannot augment by, it must be left out in its turn ;
lastly, we must leave out 4y also, since this infinitesimal of
the first order cannot augment the finite quantity a, and there
will remain «.

229. Two infinitesimals, » and 7, give for their product an
infinitesimal of the second order ; for from the product »y is
derived the proportion

1:y:.2: ay;
which shows us, that since y is an infinitesimal in respect to
1, xzy will be an infinitesimal in respect to », i. e. will be an
infinitesim.l of the second order.

230. It might be proved, in like manner, that the product
of three infinitesimals of the first order gives an infinitesimal
of the third order.

231. We may now explain the theory of differcntiation ac-
cording to the method of infinitesimals. }or this purpese, if
we suppose that in a function of # the variuble x receives an
increment infinitely small, so that » becomes »+d.e, the dif-
ference between this new value and the former will be the
differential of the function.

232. For example, to find the differcntial of a.r, this function
becoming a (v +dx) =axr+ adz, if we subtract from it ax, there
will remain adx for the differential.

233. Let it be proposed also to find the differential of as ;
we must then subtract ez’ from a(» + du)?, and developing
and reducing, we shall find 3azr?de+ 3awdi®+ada®. Now
ada?® being an infinitesimal of the third order, cannot auginent
3axda®, and consequently we must leave out the term ade?;
in like manner, 3a.xd.s?, which is an infinitesimal of the second
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order, must be suppressed, because 3ax?d.r is an infinitesimal
of the first order ; and there will remain 3ax®dz for the dif-
ferential. =

234. On the same principle we might differentiate cvery
other function of z, taking care to suppress the infinitesimals
of higher orders, which comes to the same thing with retaining
only the first term of the development, as was donc in the
method of limits. For example, to find the differential of fz,
instead of writing

J_(*’L;:):ﬁ = A+ Bh+ Ci +&e.
af

which, in the case of the limit, gives E;_—rdmz Adx for the dif-

ferential, we should have
Sz +dr)=fx+ Adx+ Bda® 4 Cda3 + &ec.;

subtracting the primitive function, there would remain
Adr+ Bda?+Cdad 4 &e. ;

and since infinitesimals of the higher orders are to be suppressed,
we should retain only the term Adx, which would be the dif-
ferential sought.

235. To find the differential of the product of two variables,
¥, %, we will suppose that when & becomes @+ d.r, y becomes
y+dy, and gz becomes z+dz. The product yz will then be
changed into (y+dy) (z+d=), and developing and subtracting
Yz, there will remain ydz+zdy+dydz ; in which result the
last term, being an infinitesimal of the second order, must be
suppressed, and we shall have, for the differential of yz, the
expression ydz+ zdy.

236. From this last differential we may deduce that of the
product of any greater number of variables, and then that of
™, by the same processes that we adopted when employing
the method of limits.

237. The differential of a* will ulso be obtained very easily,
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when we have the development of o'+, and this develop-
ment will be found as that of a*+* was, art. 36 ; we must then
determine the value of a*+@—qa+, and retaining only the first
term, reject all the others as being infinitesimals of higher orders
than the term which we keep. From the differential of a7,
we shall deduce, as we did before, that of log .

238. In regard to the differential of sin », we have sin
(z+dr)—~sin x=sinz. cosde + sindz . cosz —sinz, and the
arc dz being infinitely small,

cosdr=1, and sin drz=da;
from whichk values we find

d.sinx=cos.r.dz.

239. The problem of tangents may almost be said to have
given birth to the differential calculus. We will show how
this problem is resolved by the method of infinitesimals.

Let PM and P'M’ (fig. 47) be two ordinates indefinitely Fig. 47.
near to cach other, and MO a parallel to the axis of #; then
the tangent MT may be considered as the prolongation of the
clement MM’ of the curve, since that element, being excced-
ingly small, may be supposed to be a straight line. Call
AP, 2; PM, y; then the increment of » will be PP'=dxz,
that of  will be M'O=dy; and the indefinitely small triangle
MM O being similar to the triungle MPT, we have

MO : MO :: MP : T,
or
dy : do :: y : PT;
and, therefore,
dv
I)T - 'y{—l;-
We shall find then the normal, the tangent, and the equations
to those lines, just as in art. 70 and 71.
240. To obtain the differential of an arc, we must consider
the arc included between the coordinates PM and P'M/, taken
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indefinitely near to each other, as a straight line ; and then,
calling the whole arc s, MM’ will be ds, and the right-angled
triangle MM'O will give

MM2=MO2+ MOz,

:

or
ds?=dr*+dy;
and taking the square root,
ds = /da®+dy*

241. The differential of the arc of a curve, whose coordinates are polar, is
also found very readily by the consideration of infinitesimals. For let RR’
and MN (fig. 82) be two circular arcs described, one with radius uxity, and
the other with radius #, and subtending the indefinitely small angle M'AM,
formed by two radii vectores; then the triangle NM'M may be considered
as rectilinear and right-angled at M ; and we shall have thereforc

MM’=,/NM"*+NM3;
and observing that M'N =du, and that MN is equal to #d9, from the pro-
portion

1 :d0 :: u: MN,
we may replace NM’ and MN by their values; when, putting ds in place
of MM’, we shall have
ds =/ dur+u3dv3.
The same triangle MM’N, compared with the trianglec M’A'T, will give us
the value of the subtangent in a polar curve from the proportion
M/N : MN :: AM’ : AT,
or replacing AM’ by AM, from which it differs only by an infinitesimal,
du : udd :: « : AT;
whence we derive
u3d9

AT= o

On the method of Lagrange, for demonstrating the principles
of the Differential Calculus, without the consideration of
limits, infinitesimals, or any evanescent quantity.

242. We have scen of what utility Taylor’s theorem was
when it was wished to develop functions in form of a scries.
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Lagrange, observing the great facility with which the prin-
ciples of differentiation might be deduced from this theorem
(note second), arrived at its demonstration without making
use of the Differential Calculus, by a process which we shall
proceed to modify in the manner following :

Let y=f(w+4%); from the nature of this function, when 2
is made =0, f(x+ /) must necessarily be reduced to fz; and
this will be the case if the part containing % in this equation
be a multiple of k. Let this part be represented by P, we
shall have then

S+ h)y=fe+Ph;
and since P also may be a function of 4, if we represent by p
what P becomes when 2=0, and by Q% the part depending
on /4, we shall have also P=p+Q#% ; and continuing this rea-
sening we shall have the series of equations

y=fr+4Ph,
P=p + Q&,
&c.=&e.+ &e.
Putting now the value of P, given by the second cquation, in
the first there will result

y=fr+ph+4Ql2;
putting in this result the value of Q, given by the third equa-
tion, we shall have
y=fr+ph+qht+Ri3;
and continuing this process, and putting f{o+%) in place of
¥, we shall have, generally,
S(2+b)=fr+ph+gh® +rh® +sht 4 &e. . . . (133).

243. The expression f(x - %) rcpresents, generally, the
function which is not yet reduced to the form of a serics ; if
in this function we change x into # 4 7, we shall have the same
result as if we had changed 4 into % + i ; for since this func-
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tion cannot contain » without that variable being followed im-
mediately by %, a term, such as A(24%)™, for instance, when
we change 2 into 2+ i, will become A(x+A+i)™, a quantity
the same with A(x+4+:i)™, which would result from the
substitution of 2+ in place of % in the function A(2+4)™.
What we have said of this term will apply to all the others ;
and it follows, therefore, that, on the two hypotheses, the first
side of the equation (133) must give identical results, and that
consequently the development fr + ph 4 gl®--&ec., must give
the same result whether we replace = by »+1, or & by A+i.

244. Substituting, first, A+ i for & in fr + ph + ¢/* + &c.,
we shall have

Je+ph+i)+q(h+i)+r(h+i)y+ &e. .. .. (134) ;

and taking only the two first terms of each of these binomials,
there will result

Jv+ph+pi+ ght 4 2qki + rh® 4+ 3rhti+-&e. . . .. (135).

To obtain now the result of the substitution of x4 for .,
in the expression fr+4ph+gl2+rh®+&c., we must observe,
that since 4 always shows itself wherever it exists in this
scries, it cannot enter into fx, and the coeflicients p, ¢, 7, &c.,
and that these quantities therefore can only contain », and
must be considered as its functions ; and since the equation
(133) holds good for cvery function of z, the substitution »+:
for » will change

Jx into fx+pi +gi* 47i® +sit 4 &e.,

pinto p +pi+p E4p" i p-it+ &e.,

q into ¢ +¢'i+¢'#+ ¢ + it + &e.,

rinto r +2ri4+7r"@ 4 "B+ rivit 4+ &e,

sinto s +§¢48"1% 45" 4 svit 4 &ec.,

&e. &e. &e. &ec &e.
where it is almost needless to observe that by the accented let-
ters we represent the cocflicients of the different powers of i in
these developments. Substituting these values of fir, p, ¢, 7, 5.
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&e. in the series v+ ph+ gh? 4 &c., we shall obtain
Jr4pitqit4rid4&e.4 (p+pi+p it 4 &e. )k
+(@+qi4-q" B+ &e)E+ (r+ritr'it 4 &) + &e. . . (136).
245. Since this development must be identical (art. 243)
with that denoted by (135), the terms which contain the
same powers of . in these developments must be equal (note

third) ; and consequently, if we compare the terms involving
ki, 12i, 131, &ec., we shall find
2’ =2q, q¢=3r,r=4s, &c.. ... a37).

2406. We have seen, art. 244, that p was generally a func-
tion of x ; representing thercforc p by /2 and the coeflicient
of % in the development of f'(x+#%) by ™z ; and representing
in like manner the coefficient of 2 in the development of

J"(z+%) by f"r, and so on, we shall have the equations

JS(e+R)=fo +kf'z +terms in A2, k3, &c.

S (@+h)y=f'x +Lf" 2 +terms in /3, 13, &c.?

S (e+k)y=f"2+hf" 2+ terms in 22, 1%, &e. S

&e. = &c. &ec. &ec.

247. Now, by hypothesis, we have, art. 246, p =f"z; if,
therefore, in this equation, we make #=x4 %, we shall have
pHph+p' i+ p W+ &e.=f (2+ k) . ... (139);

and putting in this equation the value of f”(x+ k), given by
the sccond of the equations (138), we shall obtain

P+ph+p e+ &e. = f v+ hf x4 terms in A2, 12, &e. ;

which equation being true, whatever /4 be, the terms involving
the same powers of %~ must be equal, and consequently

p=fra.

This value of p' will change the first of the equations (137)
into f"'#=2q, whence we shall derive

q=3f"v;

... (138).
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and if in this equation we change z into (x+ %), there will
result

q+qh+q' k4 &e=1f"(z+k) ;
whence, putting for (24 k) its development, given by the
third of the equations (138), we shall have

q+qh+q"h2 4 &c. =4 (f"2+ hf "z +terms in X8, /3, &ec.) ;

and comparing the terms which involve the first power of 4,
we shall find ¢ =4 f"#, a value which, being substituted in the
second of the equations (137), will change it into 4 f"z=3r,
whence we derive

r=%.} .
Proceeding thus, we shall find successively all the other co-

efficients of the equation (133) ; and substituting in that equa-
tion the values of p, ¢, », &c., we shall have

oo ke B,
f(.r+lz)=f.z'+h_/.r+r2j’.z'+-2—.§j z+&ec..... (140).
248. If now we consider the first of the equations (138),

we shall see that 'z, being the coeflicient of 4 in the develop-

ment of f(« + %), is what we have designated by %f_.'z_’ or by
X
dy .
dz’
tions (138), we perceive that the coefficient /" of the first
power of % in the development of f'(x-+%) ought to be repre-
dy

d, dx a2
sented by ;1/".1-’ i.e. by -—d—:-d'z, and so on ; when, conse-

observing, in the same manner, the second of the equa-

quently, putting these values of f, f'z, f”2, &c., in the equa-
tion (140), we shall find

a2y h? 'y kS
S+ b)=fo+L yh+d‘z i 2+d ,23+&c ...... (141).
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249. It is thus that we arrive at Taylor’s theorem, without
making use of the differential Calculus. The expression 33’ =,
which enters into this formula, is the symbol of the operation
by which we obtain the coefficient of % in the development of
JS(z+1%); and, after this coefficient is found, the expressions
dy dy
d.z" dz¥’
will make known to us the coefficients of the other powers of
% ; so that we require only to know by the rules of algebra,

, &c., indicate to us that the same process repeated

what % ought to be for each function. If, for example, it

were asked what si is for the function 2™, we should de-

velop (#+#%)™ by the binomial theorem, which would give
a™+mam--1h 4 &c. ; and since % must indicate the coefficient

of the first power of & in this development, we should have
g%: ma™=1, Thus the whole is reduced to the being able to

find, by analytical processes, the development of the different
sorts of functions which algebra can present ; and these pro-
vesses will not differ in any way from those which we have
given for developing the different functions which, by their
combination, give all the others. It is thus that we have
given the developments of a*+3, of log (x+#%), and of cos
(z+ 1), &ec.

250. Here, then, is a third method, by which the principles
of the differential calculus appear demonstrated in a manner
independent of every consideration of limits, infinitesimals, or
cvanescent quantities ; but, nevertheless, this method does not
exclude that of limits, for when we come to its applications,
and wish, for instance, to determine the volumes, the surfaces,
or the lengths of curves, or to obtain the expressions for the
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sub-tangents, sub-normals, &c., we are constantly obliged to
have recourse to limits or infinitesimals.

251. In considering the developments of the different func-
tions (2+ k)™, a*t4, log (w4 %), sin(2+ 4), &c., which algebra
presents to us; since these functions are exceedingly limited
in number, it is easy to perceive that, in their developments,
the coefficient of the first power of % is not either O or infinity,
80 long at least as . retains its indeterminate value; and this
moreover results generally from the preceding demonstration.
For suppose that we had p =0 in the equation

Ho+b)=fr+ph+gl2+rl3+ &e. ;

there would then be two cases ; the value of », which p con-
tains, would either be giver. by an identical equation, or by
one that was not so; in the latter case p =0 would represent
an equation of a certain degree, and this equation would give
a limited number of values of x, which would be contrary to
our hypothesis, which admits for # any value whatever ; but
if p=0, i. e. if f'2=0, be an equation identical in respect
of z *, making »= z-+%, we should have still f'(z+2)=0;
and since /4 would enter wherever z does, this equation, con-
sidered in respect of %, would still be identically O, or, in other
words, this equation would hold good whatever were the value
of% ; and it would therefore be the same with its development,
which, according to the equation (139), is

p+pPRAP I+ p R+ &e.=0:

but when an equation of this sort is 0, independently of %,
the coefficients of the different powers of %2 must be separately

* The case in which p does not contain x is comprised in this ; for if the
value of p, which is 0, be represented by a—a, we may consider it as . . . .
(a—x)—(a—2).
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0 (note third), and we mugt consetruently have
7=0, p"':O. 7" =0, &».
Substituting these values in the equations
¥ =8¢, g’ =Br, p"'=4s, &e.

which result from the identity ef the terms affected by.the
same powers of iA, 4, %k, &c,, in the series 134 and 136, we
should obtain

¢=0,r=0, s=0, &ec.;
and, since also p =0, the equation (133) would be reduced to
Sa+1) =1,

and it would be necessary, vherefore, that 2+ A, put in place
of z, should produce no change in the function, which wounld
require the function to be identical or constant ; for we know
that it fir were, for instance, of the form 2®—a$, or of the
form ¢+ 2% — 7%, the substitution of #-+4 in place of z would
give «lways the same result, and we see that, in the first case,
the function would be identical, and in the second, would be
reduced to a constant. From this it follows, that the co-
efficient of the first power of /i cannot be 0 in the general de-
velopment of flo+4).

It would be no less absurd to suppeee that coefficient in-
finite, for the second side of the equation (138) becoming in-
finite, the first side would be so hkemse, i. e. we shonld have

Set+h)=o; sud since f{z+4) is oamposed of (r+4) as
Jx is of z, the term which in 7(><4) renders that expression
infinite, must also r~nder_fir inilnite For example, if o+ k)

contained a term such as ——— T h)- G h)’ which is infinite,

1t is evident that we must have in fir the term -—‘}T whiclh

would be also infinite, It follows, thevefore, that the pro-
M
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posed function would be infinite, which we do mot at all
suppose.

252. The expressions f'», f“z, f”», &c., are what La-
grange calls the prime_function, the second function, the third
Junction, &c. of fir, and generally they are the derived func-
tions. Lagrange indicates also the derived functions in an-

other manner, by replacmg by y, 2y by y , 2’2- byy ‘yand

80 on.

On the case in which Taylor’s theorem fails.

253. In general, when in a function of  we put 2k in place of », the
form of the function remains the same, since -k enters wherever & did;
thus, when S contains a radical, f{a-}-k) will contain it also; if, for ex-
ample, we have

=b?4-2,
t 7

the same radical will be found in the expression

h) =W z+h
==

254. This would not always be the case, if we should give a particular
value to « ; for instance, if :/I-':?z should enter into fr, f(x+#) would nc-
cessarily contain the term

:/.r-f-h —a

and the hypothesis of z==a would cause the term :/.1 ~—a, which appears in
Jx, to vanish, whilst the same hypothesis would reduce :/z-{-h —a, which

enters into f(#4-4), 10 a/h=h% ; o that the development of (%) would
then contain a surd quantity, which does not exist in fiv, and consequently
could not be developed according to integral powers of A.

‘This impossibility would manifest itself by the infinite values assumed by
the differentinl coefficients ; for example, if we had the equation

R
y=n2—a,
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we shonld find, by differentiating,

—
%!,- 2-;—(1'—0) B —‘—l—-,
“ 3y (@—uy
and we sce that the value of the differential coefficient becomes infinite, when
we make #=a.

266. Let, gener'ally,

+—
J@+h)=A 4 BA+CR DI+ . ... Mhy+NA"" 7 4 &e. . . (142)

be the development which we are supposed to obtain by making #=a, and

in which n+§- represents a quantity lying between 2 and #41; we will pro-

ceed to show that the differential coefficient of the order 71 is infinitc.
For this purpose, considering a as a variable, we know, art. 53 and 54, that
we have

df (a+-n) _df(a+n) @*f(a+h) _d¥f(a4-h)
de T dh T de* T aw?

&e. . (143);

now, by differentinting the equation (142) successively in respect of %, and,
for the sake of brevity, representing by M’, N’; M”, N”, &ec. what the co-
flicients M and N then become, we shall have

1
WTIT!Q=B+2CIL+:«;DM... +M'h"—1+N’kn+= l + &e,
n+—l~ —2
B —90+2.3Dh . ... $MIe—24Ns  © 4 &e,
&e. &c. &e. 3

replacing the first sides of these last equations by their values given by the
equation (143), we shall obtain

n-|-—l-—l
'Z%‘L"LL B+2Ch+3Dhs ... +MAn—1+ N4 = ... (144),
1
N— —2
"Lfi';i"—)=zc+2.a.nh.... co M= ANR T L (148);

and making 4=0 in the equations (142), (144), and (145), &c., we have
m2
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d’fl
7
which will suffice for determining the coefficients A, B, C, &c. of the equa-
tion (142).
This being premised, from the inspection of the equations (144) and (145),
we sec that, since every differentiation diminishes » by unity, when we have
arrived at the nt* differentiation, we must have

Ja=A, %"}: B =2C, &c.,

t

1 1

n—n-+— -

'Lflsf;-’-—h—):...Phn—n-i-Qh *; &e.=P+QL" + &c.
an
and from the next differentiation, we shall find
l
+1 A
antifath) _ gy + &

dan+1

1 .
but ;l being less than unity, ;--—l is a negative number, and the preceding
equation may therefore be written thus,

dn+ lj'(a-{-h) R+ &C.
dan+ 1 + 1
1——

Y &

consequently, when wc put =0 to determinc the coefficient of one of the
termn of the equation (142), we shall find

dn+1fg

P

and it will be the same when we wish to determine the differential coefficicnts
of a higher order.

It follows from this theorem, that when we make x =a in the devclopment
of {(x--h), if there be a fractional power of h in the development, and it lic
betwirt the terms affected by hv and ho+1, we shall not be adle to determine
the terms of the series of Taylor beyond that of the order n; all the other
terms will become infinite.

256. A function of x represented by fr being given, if we wish to de-
termine the development of f(x-+%), on the hypothesis of =g, we must, as
we know, calculate the terms of the seriea

dy ke

f+ +da-"l2+&'°"
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but if in making this calculation we find that one of the differential co-
efficients becomes infinite on the hypothesis of # =a, we must no longer seck
to obtain the development of f(#+4) by Taylor’s series, but employ the
following method: We must put z-% in place of z in the function fr,
then the term which contains  —a in the denominator, will contain x —a-4,
and will no longer become infinite when we put x=a, but will produce a
term affected with a fractional power of 7.
257. For example, let the function be

Ja=2ax —x*4-a\/2*—a’,
by differentiating, we find

r _-2(a—-.z-)+

N2 —u',

d*y dly
ax? a3

and substituting thesce values and thosc of — &c., 1 Taylor’s for-

mula, art. 556, we obtain

J(eHh) =20z —a*+ar/2*—a*+ [2( + &e.

w which expression, when a—=a; the term mulnphcd by A beeomes infinite,
and thercforc the development is no longer possible.
In this case, according to the preceding rule, we must put x-+% for z in
the equation
Jr=2azr —2*+4-ar/z¢—a*,
and we shall find
S(@+h)=20ar+2ah —a?—Bxh—h2+an /L F2xhFhi—d",
an equation which, on the hypothesis of £ =a, becomces
S(a4h)=u*—h*4-a /2ah 413,
or
S(@+h)=a*—h+ar/haf2a+h,
and developing by the binomial theorem, and, for brevity’s sake, repre-
senting by A, B, C, &c., the coefficients given by that formula, we have
R .S
N2a+h=(2a+k)® =A+Bh+Ch*++DIid4- &c;;
when, substituting, we find

Stath)=a—h*4-aAJht-aBhy/haChi /it &c.
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We see, from this example, that by putting x<-k for #, in the function,
and making »=a, we may introduce one or more fractional powers of / ;
we then develop, separately, the terms which are susceptible of it, cither by
the binomial theorem or otherwise, and substitute these terms in the value-of
J(a+h), which then gives the devclopment.

258. When 2 continues indeterminate, Luagrange has demonstrated that
the development of f(#-+%) cannot contain terms with fractional powers of
%. For supposc that we had

S+ =frtphtglit . ... +KJh;

B—
then, since K\// allows of three values, M, N, P, we shall have the three
developments of f(x<-7t) :

Sy =fe4ph+tgli+ . .. 4M,
SR =fo4-ph+4glr+ .. . +N,
S (@) =fe+pht-ghr . .. +-P.

But since jx must contain the same roots that f(r-+/), art. 253, does, fx
must also have three different values Q, R, S, and substituting successively
these values in place of fir, we shall find

S(e4+1)=Q+ph+gh*+ . .. 4+-M,
P+ =Q+ph+aho+ . .. +N,
S+ =Q+pht-qhz+ . .. 4P,
fle)=R4phd-gla4 ... +M,
T(e+h)=R4ph4-gl2+ ... +N,
S+ =R4ph+tgh*+ ... +P,
S(e4R)=8 +pht-gl*+ ... +M,
J(@+1)=8 +ph+gt*+ ... +N,
S@HIV=S Aphghot ... P,

so that the expression f(2<-/), when developed, will have nine difierent
values, whilst, undeveloped, it can have only as many as fr contains, and
consequently three on the present hypothesis 3 thus we cannot suppose that
the development of f(a-/4) contains a fractional power of /, without falling
into a contradiction.

259, It is casy also to demonstrate that f'(r+-k) cannot contain in its de-
velopment a term affected with a negative power of &, for if it should contain
o term such as MA—n, we should have

1
Fa A= bk, 40,
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and, by making =0, the first side would become f¥, whilst the second, in-
stead of being reduced to fu also, would become infinite, on account of the

term _D_I_’ which it contains.
hn

260. The same thing would happen, if the development should contain
a term affected by the logarithm of 4 ; for if we had, for example, a term
such as A log 2, this term, when we made h =0, would become A log 0 ; and
since the logarithm of 0 is — 2, the term A log % would then be infinite ;
whence fir would becomne so likewise, which is contrary to our hypothesis.

END OF THE DIFFERENTIAL CALCULUA.






ELEMENTS

OF THE
DIFFERENTIAL AND INTEGRAL
CALCULUS.

INTEGRAL CALCULUS.

On the integration of monomial differventials.

261. Tk object of the Integral Calculus is to find the func-
tion, which, being differentiated, will produce a given dif-
ferential. To commence with the most simple case, we will
proceed to integrate the cexpression a2™da; with which view,
differentiating the expression »m+!, we shall find

d.am+) =+ 1)e™dw,
whence we shall deduce
. pmt
m41

and since the constant ne+1 has no effect on the differentin-
tion, the preceding equation may be written thus,

=a™dr;

pmtl
——=a™dr ;
m-41
consequently, the quantity which, when differentiated, will

ot

give «Mdr is povrs & To indicate this operation, we put before
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the differential the characteristic /; which signifies sum or in-
tegral*, so that we may write

+1
/'.zv”'dm-‘?—-—.

262. Hence we deduce this general rule: to integrate x™dx

we must increase the index by unity, and divide by the index so
increased and by the differential.

dr
263. Take, for example, f—;—: we shall have then
-

ade

j——- = fuda .o~

“,‘;—XH-I

-2

we—= « A

31T 9T T
we shall tind similarly that

g+t 3

. ” )3 5 S
fdw.{/.z"‘:f.r’«ﬂr:%—: h

X

=35

~

41 =
3 + 3

264. We must observe, that when we differentiate ¢+
we find ma™'dr, as though we had differentiated only ™ ;
conscquently, in integrating, we must add a constant to the

integral. Thus, in the preceding examples, we must write

adr :

‘ -. 1
_/Tz-—-z——-}-(‘ /u’.n/z = +C.

265. This constant C, which ought to vanish by the dif-

* This term sum, for designating the integral, has been introduced by the
ancient geometricians, because, according to the method of infinitesimals, they
connidered a function y as the sum of all the infinitesimal increments.

Fig. 48 For cxample, we sec that the ordinate being MP (fig. 48), we huv
MP=ab4-a't/ 4a"d" 4-a"b" +al¥M ;

that is to say, 4 is cqual to the sun ot all the infinitesimal erements., 10+
presented cach by du.
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ferentiation, is in general arbitrary, unless from the nature of
the problem it be determinate.
If, for example, we have the cquation y =aa®— b, which is
that of a parabola CBD (fig. 49), whose origin is in A, and Fig. 49.
we deduce from it

dy=2ar dz,
we shall find, by integrating,
_y=a.03+(_‘. (D,

and this cquation may belong to an infinite number of para-
hotas, according to the value of C.

But if we wished that of all these paraboelas CBD, C'BLY,
{"B"D", &¢., the curve which has for its equation y =as*4C,
should be a parubola pussing through the point E, whose co-

ordinates are
y=0, v= AE:J’L
a

it is nccessary that, on making »= ’j, we should lave

=0, which will reduce the equation (1) to
0=4.1C,
whenee we shall deduce
C==0b,
and substituting this value in equation (1), we shall obtain
y=a1?—b,
as we had before the differentiation.
9(6. When the nature of the problem does not determine
the constant, we may dispose of the constant as in the follow-
ing cxumple ; having found that the integral of +™d is

a,m 1

_)/=m+(l, P (2),
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we will give to © a determinate value &, when the second side
of our ¢quation will become
hmt1

+C...(3),

m+1

und C being arbitrary, we may determine this constant on the
condition that the expression (3) is 0, or, which is the same
thing, on the condition that we have y=0 when »=¥4; then
the equation (2) will become

m+ L
0=2"""1c
m+1] <

whence we shall deduce the value of C, which being substi-
tuted in cquation (2) will give us

i pm+1

A | - ().

267. There is only onc case to which the rule of art. 262
for integrating 2™dz will not apply; it is that in which
m=—1, for then the formula (4) becomecs

_ae=b0 0

y= 0 —6 ’
in this case, therefore, we should have to make use of the
rule of art. 81 for determining the true value of the integral ;
but we may avoid this inconvenience by observing that . . . .

bV = ?, and that this expression %f is the differential of
log 2, consequently, we shall have
S irf =log 2+C.

Certain complex differentials whose integration may be effected
by the rule of the art. 262,

268. We have seen, art. 22, that the differential of a poly-
nomial is formed of the sum of the differentials of its terms ;
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reciprocally the integral of a polynomial will be equal to the
sum of the integrals of the terms which compose it.
For example,

_/'(ad.z-—-——_i_m‘/,) _fad,r—fb +./‘,¢-ld.1 +C,

or, by performing the requisite operations (art. 262),

bdx 2 3
j(ad.t——-—+z.d,,‘/,,.) =ax +2 E!4-515' +C.

We have added but one constant, because each term giving
a constant to the integration, we may represent the sum of
these constants by a single letter.

269. Every polynomial, such as (a+bx+c2’+ &c.)"dr,
may be integrated by the same rule, when 2 is a positive
integer ; since we have only to raisc the polynomial to the
power indicated by n, and integrate cach term separately.

For example, to integrate (a<4-bax)2dr, we shall have

Sla+bxr)ide = f(a? + 2abar+ H2a2)dr
2 23
=az+ ab.z‘-{-q—;— +C.

270. When we have an expression such as (F2)"dFa, com-
posed of two factors, one of which is the differential of the
part ¥z within the vinculum, we must put F=z, and con-
sequently dFe=dz ; when, substituting, we shall find

(Fr)"dFr=2"dz,
and integrating,
. _ (F Zz)n+1
S(FaydFr= +l TS ——+C.

To give an example, let the expression be

(a+4-bo4ca) ¥ (bdx 4 2erdr) ;
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since dda + Acade is the differential of the quantity contained
within the vinculum, putting

a+br4cx’=z,
we shall have, by differentiating,
bdr 4+ 2crdr =dz,

and therefore

(a4 br+ r.zﬂ)% (bda 4-2¢crdr) = :grl::,
whenee the integral of the expression will be

'3

2 +C=§(a+b.r+c.r’)ﬁ +C.

oW

271. If onc of the factors be the differential of the other,
except as to the constants, we may still integrate by the same
process. Let the expression, for instance, be

(a4 I:.t")"*m.rd.r .- (5);

since we see that the differential of a4 a2, which is 2bad.r,

differs from mada only by the constant, we will put .. ...

a4-ba®=z, and consequently 2brdr=dz, whence we shall
d. i .

deduce .rrl.z-=2—z, and substituting these values in the expres-

sion (5), we shall obtain

(a+ b.r’)é madr = % z'_‘{d: 5

and, by integrating, there will result

3 m 3 m 4
p2 =—5 N d) e
J(a+ba®)  mrdx = 35 +C 3 (a+ba2)*4C
272. The same transformation will also apply for reducing
certain differentials to logarithmic forms ; if we had, for cx-
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d . d:
ample, _’ﬁ__fb;’ making a+ bz =z, we should deduce dr =—Zz- ;

substituting, we should have
adx adz: a dz a \
Vit e A R AR
and putting for = its value,
adr a
_fam:‘b—log (a+b-r)+C.

Proceeding in the same manner for

adx , we shall find that
a—ba

the integral of this expression is
ady a .
‘f;———lhr— ——b—log (a=bx)+C.
Integration by circular ares.

273. Let the arc CB (fig. 50) =z, and its sine CE =.r : we Fig. 50.
have then 2 =sin z, and differentiating, there will result

da =coszdz,
whence we shall get
dx
dz=——;
co82

but the equation cos® z+sin® z=1 gives us

cos 2= 4/l —sin?z=¢/1 —a2;

substituting this value, therefore, in that of dz, we shall obtain

dzx
dz= -
N1—=2a®
and consequently we shall find, by integrating,
S =a4C.. ... (6.

J1—=2a®
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To determine the constant, suppose that when =0, we have

dr

f:/'l—_-;;=0;

since, then, according to fig. 50, the arc 2, represented by CB,
is 0 at the same time with the sine z, the equation (6) will,
on this hypothesis, be reduced to 0=C, and consequently

dr
f-\/ 1—a®

=sin—} 2.

274. On the above integral may be made to depend that of
dz_
=22’
for by dividing the two terms of the fraction by a, we shall
have

and since this integral is composed of =, in the same manner
a

that ‘/'——fl—'r—--—, is of x, it follows that

1 —a2
de
_/'——f-—~=sin—'f.
‘/ag_,z“ a

275. In the sccond place, let z be the are CD (fig. 50)
whose cosine AG is 2 ; we shall have then

2 =COSZ;
and, by differentiating,
dr = —=sin zdz ;

whence we shall derive
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d

de = ———;
sin 2

and putting for sin 2 its value drawn from the equation
cos®z +sin®z=1,
we shall obtain

dr
dz = — ——= 3
&/ 1—cost =z
or, since cos z =2,
(s = —— _fi_L H
J1—a®
when, integrating, we shall have
. —d. -
J = = —cos—tp=arcDC+C . ... N-
1—a®
. . dr
To determine the constant, suppose that when 2 =0,/ — -————
v 1=z
is also 0 ; in this case, then, equation (7) is reduced to
O=cos~0+4+C.....(8);

but in order that the cosine AG of the arc CD may be 0, that
arc must become

. w
DB =  circumference = 5
putting, therefore, 1= in place of cos—!0Q in equation (8), we
have

0=1w+4+C,
which gives us
C=—1iw;
and substituting this value in equation (7), we obtain
da
- — = —(4{m—arc DC) = —arc CB.
Sl )

N
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276. We have seen, art. 45, that

d. tang » =

cos®.r’

if, therefore, we make » =tang z, we shall find

and conscquently
dz=dv.costz:

but the proportion

cosx: 1 :: 1 : secant z,
giving
1
s z= y
sec z
we shall have
1 1 1
cos? z=

T sectz =1 +tang®z =1 +a* ;
whence, substituting this value, we shall find
1
dz=dxr. 135
and, integrating, we shall have

da
STrs=+C

Taking then the integral on the supposition that the integral
vanishes when 2 =0, z becomes (), and we have

0=C;
and therefore

fi ‘_1: - = arc whose tangent is x.
2

277. We may bring under this form the integral
/ dz»

a? +.2’9 ;
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for, dividing the two terms of the fraction by a%, we may write
it thus,

dx dr

,_/I;; 1. 7a
23 a ri]
l+-'sz qfl+i’

a a

. 1 dx
d since this i i T o .
and since this integral is composed of il ‘fl e is of =,

we shall have

. dr 1
J= = ~tan—! -
G+ a a

Let also x be the versine DG : then the cosine and versine
being together equal to unity, we shall have

r4+cosz=1;
and. by differentiating,
dr =dz.sinz,

whence we deduce

bat
sinz= y/l—cos?z=,/(1 —"c':oé_i)_(ﬁ-‘éb—s?) =4 ;(—2—_.1-) H

substituting, therefore, we have

___ dz
Vo — oo’
and, by integrating,
ar .
J-————==versin" .
2w — 2?

We add no constant, because, supposing that the integral
vanishes when 2 is 0, z is also 0.
278. When we wish to have the value of the integral for a
N2
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perticular value of #, we must proceed as in the following
example.

Suppose that the integral of -14: pr is required, when »=7;

the radius therefore being 1, the tangent will be 7; and since

the tables of sines are constructed with a radius = ten thou-

sand millions, the tangent relatively to that radius will be ten

thousand million times greater, and consequently the value of

that tangent will be 7 x 10000000000. The logarithm of the

tabular tangent will therefore be expressed by

log 10000000000 +1log 7=10410g 7,

=10+0,845098,
=10,8450908 ;

and looking out for this logarithm in the tables of sines, we

shall sec that it corresponds to an arc of

90° 96, of the decimal scale,
or,

81052, of the searagesimal scale.

To find the numerical value of this arc, ¢n the supposition of
radius =1, we must observe that, on this hypothesis, the cir-
cumference = 6,283 . . . . ; and, consequently, we shall have

4000 : 90°96" :: 6,283 .. .. : arc sought=1,42. ...
or

3600 : 81052 :: 6,283 .... : arc sought=1,42 . ...

Iutegration by parts.
279. Iu tuking the differential of a product of two variables,
by the process of art. 14, we find
dauv = udv + vdu ;
whence, integrating and transposing, there results
Sude = uv — fodu ;
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and it is to this formula that we refer the differentials which
we wish to integrate by the method of parts.

280. If, for example, we were unacquainted with the in-
tegral of »”dz, we should put =" =wu, dz=dv, and we should
have

'/“l,mdx =g+l ":/:l‘.?”-l.""—ldx =t Il?j‘.l"ndx :
whence, collecting the terms affected by zd.r, we have
(m+1) fomdr =am+1,

and therefore
pmtl

Sardr = Eﬁ +C.
281. Let the integral be
Jizlog »;
make
log *=u, dr=dv,
and we have
Jdelog x=wlog a—fde=alog r—o+C=(log r—1)r+4C.
282. As u last exumple, let it be proposed to integrate
dx /a%—a?,
making
Vv at—a*=u, and da=dv,

we shall find first

F CR— 2,2 atdr ¢
Jdr/ =z =ay a®—a +-/:;/TIT_T_9 e (O
and we must now look out for another value of
W IND

for which purpose, by multiplying this last expression by

=
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we shull have the identical equation
atdw #dr
Jai—a® T \Sat—at ’

whence, integrating the first of the expressions on the second
side, we shall obtain

Sdzy/a2—a=

. 2
fday/a*— 22 =q® sin—1= —f—l—dﬂ—.
a ,\/a'—- .2'9

and adding this equation to equation (9), we shall find

x
2fdr o0 —rt=iry/ @ —2%+-a® sin—l 5

and therefore

«?

. g
Sdanf at—a* =J§\/ @ =g T+ C.

We see, from these examples, that when, generally, we have
an expression such as fpdu, the method of parts renders the
propused integral dependent on that of fudv, and that, con-
sequently, this method of integration is not always applicable.

Integration by series.

283. Let Xdr be a differential in which X represents a
function of x ; if we develop X in a series,

Aa® 4+ B.z'ﬂ+ Ce” 4+ Da:b-}- Eo* +&e.,

arranged according to the exponents «, 8, v, &c., we shall
have

S Xdr=f{Az*+ B’ 4 Ca? + Do’ + Ez* + &e.)dx

Azt t1(") BAT1 Cprt+l p,l2+1d
= +
a+1 B+1 vy+1 0+1

+&ec.4-C.

* Should one of the exponents «, 3, ¥, &c., be equal to — 1, the term so
affected must be integrated by logarithms,
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284. Let us take, for example, the fraction ;%, which is

the differential of log (¢ + z): this fraction may be written
thus:
1

Pt

and we must now find the development of

P which might be

done by means of division ; but without performing this opera-
tion, we may deduce the development required from a formula

easily remembered, which is this,

—»—l—=l +z4224+ 28+ 2+ &e. ... (10).%

l—z
For the fraction ;—_——:_—’-' may be put under the form

1 1
X"
a x

14>
a

1 . a .
when, to develop ———, we have only to change z into —-, in
z a
1+-
a

the formula (10), and we shall have

and therefore

* This formula having been found by division, it might be supposed that
it would be better at oncc to divide 1 by (¢+-2), but I have observed that
when a particular formula is fixed in the memory, it is easier to deduce from
it different developments, than to repeat the opcration in each casc.
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] 1 1 1 » a2
e 2% axr o :2+:’ -——+&c ;
14-
a
consequently,
dx
a+m_f( +&c Ydir 5

whence, by integrating each term scparately, we shall obtain

Y: dr _x
u+.z' a 2a“+ 35

—&e.+C...(1D);

and observing that the first side of this equation is a logarith-
mic differential, art, 272, we shall have

log (a+.z)—- —&ec.4C... (12).

2a2+3 g
To determine the constant, we must observe that when

x =0, this equation is reduced to loga=0+C; which value

being substituted for C, the equation (12) will become

e

x  a?
log(a+a-) ::loga+ ; —-2—a_‘5+3—113 - &e.... (*).

®* We must observe that in thus determining the constant, we no longer
regard it as arbitrary; since by making +=0, in the equation (12), the
constant is necessarily equal to the logarithm of . 'Where the constant ac-

quired this determinate value was, when, instead of /;—i—r;, we put log (a+4-x);
for the equation (11) shows us that i_:—- is, generally, the differential of . .

C-|- + -&c,but.thesenel loga+——2e+ &c., which is

the dwclopmcnt of log (a+), is a particular casc of the preceding series, the
case, viz,, in which C=1loge. Thus, the putting log (a+) in place of

"ll’



INTEGRATION BY SERIES. 185

285. As a second example, let us tuke the series —_
142

This differential being written thus —x d2, we must

1422

find the development of - 1 <3 for which purpose, comparing

Lt

our cxpression with we shall have z=-—ua2, and sub-

1—2’°
stituting this value in equation (10), we shall find
1
e = | — 22 4 — 20 NC. - « o 3
T l—z24 a2 =254 &e 13);
and, therefore,
. de a3 o a7
T3 __,z,-....3 +3_7+ &e.... +C,

or. art. 2706,

a3 2 at
tan—lr =2 — 5 + i + &e.... +C...(14).
When =0, the arc becomes 0, and we have therefore
C=0.
286. If the tangent be greater than unity, the terms of this
series will go on increasing, and we cannot therefore give an
approximate value of the arc; in this case, we shall obtain a

converging series by putting ¢ = -1—'- in the equation (13),

which will change it into

/‘% was as if, of all the series which are the integral o n—'j—_r? we had

chosen that in which the constant is equal to loga.
This remark will apply to the rest of the expressions which we shall in-
tegrate by series. '
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1 I 1 1
T TlmEtETe e

taE
whence, multiplying the two terms of the first side by x*, we

shall have

z° 1 1=x1

l+a:;=l——.z?+:4 a8 &
and dividing by 49, we shall obtain
1 1 1 1 PR
S R T

conscquently,

. dr )| 1 1 1
‘/l+z'“=f(.z" Zi+s -;;+&c.)d.p,

and, performing the integrations scparately,

tan—lzr= —1— 1
PR Y R 5 D

To determine the value of the constant, we must not put 2 =0,
for then the terms of the second side of equation (15) will be-
come infinite ; but by making »#=co, the expression tang—'.»
will become equal to the quadrant of the circle, and the equa-
tion will become quadrant of circle=0+C; whence, repre-
senting the quadrant by } =, the equation (15) will give us

1 1 1
tang~te =4 — 2t g g + 4o

—+ &e.+C ... (13).

287. To integrate by the series
dx
W7 =

(I=a®)" Jdz',

* We might arrive at once at the same result by dividing 1 by 142
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we will develop (l—zﬂ)—:‘ by the binomial theorem in the
following manner: we will calculate first the coeflicients of the
developments of (1—a2%)™, on the hypothesis of m=—1, by
writing down in order

m—1 m—2 m—3

¢T3 Ta
and changing m into —} in these expressions, when they will
become

m,

1 3 5 7
~3 -z’ -~ &

5
and multiplying —% by —— 4, that product by -5 and so omn,

we shall form the coefficients which are to be substituted in the
place of A, B, C, &e. in the cquation

1
(1—a2) #:=1—As*+Ba*—Caf + &c.,

which will give
1 3 - 13 o4 13

viea +2 t33t tag

and by integrating the equation
dr 1 13
Tiea= (g 4y

we shall find

135
™ + §.Z.§,r o+ &c.)d.e.,

1 22 13 2 135 a7
dn= rmrde. s 2 5 2% . ... (16).
hln‘.r._..r-|2.,3-1—24 5+246 7+&(. (16)
We put no constant, because when @ =0 the arc whose sign is

z vanishes.
288. There are cascs in which, to determinc the value of the constant, wc

must neither make =0, nor #=cz. For cxnmplc, let the expression be
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by putting down in order

m—1 m—2
My =5 Ty

and making
m= !
==z
we find
1 3 ]
-3 I ) &e. ;
whence we concludc, as in art. 287, that
1 1356 1
‘*( trmt ety i et ee)s
and by intcgrating we shall find
dx _1111 1311351&c
\/,,. BT T x84 246068
On the other hand,
dr dx r4aJai—1

f.\/.zﬂ— —'/;/.1-‘2—1 xz+Jzﬂ~ 1

wdy
J‘ \/.,,n -I-d.‘l.‘

.z'+\/.r"

_log (2+a/22—1,)

and therefore

1) 131
log (@ +a/23—1) =logz — 35 5 7 am8 0+ =+ D

To determine the value of the constant, we must not put 2 =cs, for then
log 2 will become  ; nor, on the other hand, must we put x =0, for the
1 . .
'3 &c. will ther become  ; but if we supposc a=1, the
equation (17) will become
11 131 1351

)= — s —
0=0—gs—5Ti o766 “o+C=0

1
terms log 2,

which gives
c=t14l e

("
N -
a: &

1 31,13
yzteiater

‘vl -
19

4
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289. The formula (16) will scrve to determine an approxi-

mate value of the circumference ; for by making T=5 it is
reduced to
sm—ll 1 11_1_ 131 1 1351 l__‘_&c
2=31t3'3' T3 152 12°1°6°7°2

but the sine whose value is %, is equal to half the side of a re-

gular hexagon, and answers to the twelfth part of the circum-
ference ; so that we shall have

rircumf'rence-' 11 1 5 :_3 1 l. 1 3'_5_1_ ,] +&e
EESUAGLSE M E IR Y G 1
and consequently
] 111 1311 13511
cncumference = 12(2+2 355 +—~.—.-r;.-—b-+‘—.z.6.—7.2_-l- + &e. ),
taking the ten first terms of the series
1 111
2+ 935 + &ec.,
we shall find for the sum
0,52359877,

and therefore

é circumference =6(0,52359877) =3,14159262,
a value which is correct to the last figure of the decimals.
26(0. We have found, art. 284,
23
20." + 3a3
Since this series is but slightly convergent, we will put .
»=—ux, when we shall have

log (e +x)=log a + —_— —~—&ec.
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a®

22
log (a—a) = loga———22 39 —&ec.,

and this equation, being subtracted from the former one, will
give us

>r 2t 2°
log (u+x) — log (a-.r)=2(,—‘+3—a:-'+!~,):;+&c.)

or
1.,,5(%_:;:) (;+w+ | t&e. ) - .. (8).

201, To determine, for example, the logarithm of 2, by
this formula, we shall supposc

and consequently
a4 0=2 a—ar=1,

whence

_ '__l .1_1
i - §

and substituting, we shall have

log 2 = 2(3 %27"‘5 243+ & ).

Limiting ourselves to the ten first terms of this series, re-
duced to decimals, we shall determine the value of the loga-
rithm of 2; and taking the triple of this logarithm, we sh.zll
have that of 2% or 8. If, then, we calculate by the fornmula

1
P =§: &e.,

2
a

(18) the logarithm of -l-éq, and add to it that of 8, we shall have

the logarithm of %’- x8=log10; and we see that by similar

processes, the formula (18) will give every other logarithm ;
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but it must be observed that thesc logarithms belong to the
Napierian system. To deduce from them the tabulur loga-
rithms, if we represent by La the tabular logarithm of a num-
ber a, we shall have a=10l; taking the Napierian loga-
rithms, this equation will give us

log a =log 10%2 = La log 10,

and consequently

loga
log 10’
so that the tabular logarithm of any number is equal to the
Napierian logarithm of that number, divided by the Na-
pierian Jogarithm of 10.

292. A serics has been found, for determining a logarithm, still more con-

vergent than that given by the formula (18); it may be deduced from that
forinula in the fullowing manner :

By dividing a4-. by a —x. we find

La =

a+x 2z
a—z | a—a’

. 2 v .
representing the fraction i by —, we have the equation

n+m=l + v =z+u

a—x z

wuliplying by ¢ —wx, there results
plying by

av ur
M4+ =a—a4e————,
z =

and transposing, we obtain

‘.’.;u-}-? ___i:) 3
multiplying, then, by z, we find
2rx<4-ve=ar.

and consequently

v

2z’

&R
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substituting these values of E-—'-—: and ; in the formula (18), we have

this result
=4y _ v 3w
log( T) -2(2z+v+3(2 +o)3 6(22+1)5 +&e. )’
and lastly,

v , n v
log (z-+v) = log "+2(2z+v t 5 Fop o@stor T )

For example, to obtain the logarithm of 2, we must put »==1, x=1, and
consequently log z=0; when substituting in the preceding ‘rrmula, we
shall have

1 1 1

This logarithm must be divided by the Napierian logarithm of 10, art.
291, to abtain the tabular logarithm of 2.

On the method of rational fractions.
298. Let the expression proposed for integration be

Pa"+ Qe .... +Rx+ S

Pr+Qa"'. .. +Rz+S
in which the multiplier of d is a rational fraction; we will
show that in the given expression, we may always suppose that
n is greater than m ; for if this should not be the case the in-
tegration may be reduced to that of a differentiul of the same
form, in which the highest power of x in the denominator is
greater than the highest power of 2 in the numerator, by simply
dividing the numerator by the denow.inator, as in the following
example :

dz,

Let the expression be
P34+ Qo +Rr+ S
Qa2+Raor+S
dividing first by Q, we shall have
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P Q R S
— 2 i ——
Q + o + = A} v+ Q.
SRS
. o o
making then
) Q R S
-—,-:P"_, = = ” ____=Ru = ”
Q o=@
R’ S’
- =R", =S,
Q Q

we shall have
P34+ Q"2 +R'wr+ 8"
224 R"_'.r__—i-_ s~ >
and the division will be effected in the following manner :
W+ RS | Pas+ Q'+ R'r+8" | P'r+M
Pa3s4+R"Pa24S"P'a
Mrem'. ... (Q"—R P)a4+(R'—S"P")a4 8"
= Ma24+Noe+S’
M224MR"2»4+ MS™

2¥remt.......... (N—MR")zr+8S"—MS"

This last re.nainder may be represented by K+ L, and then
we have

and by inteﬂrating, we obtain
3 2
S PJQﬂ:ﬁrR—:ﬁrsﬂ— Sdw= P; +Me+S TR .zeﬁ;'-.-is
thus the question reduces itself to integrating
Ke+1L, L e
Z2+R 7+ 8"

294. It follows from this that, whatever be the rational
fraction under consideration, its integration may always be
reduced, in the most general case, to that of

dr+C;

(1]
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Pt 4 Qx—24 . ... +Rx4S dr
P+ Qo=+ .... tRo+8

Considering the denominator of this fraction as the product of
n factors, such as #—a, x— b, #~c¢, &c., these factors may be
real or imaginary, equal or unequal.

To commence with the most simple case, we will suppose
them real and unequal, and we must then proceed as in the
following examples :

dr .
205. Let it be proposed first to integratc -;:——— : resolving

a2
the denominator into its factors, we shall have
ady adry

M—a® " (v—a) (.1’+a);

and we will suppose
adr _ ( A " B
(r=—a) (z+a)” \e—a ' r4a
where A and B are constants which we must determine. For

this purpose, reducing the second side of the equation to a
common denominator, we shall obtain

adzx _(Az+Aa+ Br—Ba) ,
(r—a) (+a)” (x—a) (r+a) v

and suppressing the common divisor (#—a) (#+a) and the fac-
tor dlx, there will remain

a=Ar+Aa+Br—Ba ....(20);
and, arranging according to r, we shall have
(A+B)er+(A—B—1)a=0.

Now « being indeterminate, as the proposed differential neces-
sarily supposes*, this equation must hold good whatever z be ;

)de . ... (19),

® In fact, the characteristic d, which precedes 2, intimates that x is consi-
dered as variable,
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and, consequently, according to the method of indeterminate
coeflicicnts, the cocflicients of the different powers of » must
be separately cquated to zero; or, which comes to the same
thing, the terms must be equated to each other, w Lich, in equa-
tion (20), contain the same powers of ., when we shall have

A4+B=0, (A—=B=1)u=0,
and these cquations give

1 1
Azé, B:—é‘

Substitnting, therefore, these values in equation (19), we shall

have
. uada o tdw

gt T —a +n
and by intesrating, we shall find

mlw_' = tlog (v —a)— Llog (»+a)+C,

0 2e—=at

and, consequentay,

ada r—a oy
—— = jlog—— - C =1 “+C.
‘/.r’—a g,'c’+t(+ 0"( +u) +
. atbat
For a second example, let us take the fraction = J ~dr: the
r—

factors of the denominator are » and «2 —x%, and since a2—a?
resolves itself into (¢—a) X (a=4), the simple factors of the
denominator are r, «—a, and a4+ ; and the expression to
be integrated therefore is )

r(” _‘1) (a+ A (ll
ussume
bt %
a3+ b A B ¢ ce.(2D);

=y a7 Yama Tt
0 ‘)

P
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then reducing these fractions to a common denominator, there
results

@+bat  Ad®—Aax*+ Baz+ Ba?4Cawr—Ca?
x(a—zx) (n-FT')_ 2(a—w) (a+) ?

and equating the coefficients of the same powers of &, we shall
have

B—A—C=), Ba+Ca=0, Ac®=0?

The last of these equations gives us A =a, which reduces the

first to B—C=q-4; and this equation being combined with
the sccond, we obtain

a+b a+b
B=—5- o=~ 2’

putting these values of A, B, C, in equation (21), we find
a’ + ba® adx a+b a+b
o LRdr=

a%r—a’ r +2(a— 2) 2(a+x)
and therefore, by integrating,

a3 4 ba2 .|.

_/aT‘r———da: =alogxr— log (4—a) *
b
_a+ log(a+x)+C
® To take the integral of + )d.r, since the differential of a — 2 is
—dx, we must put the dlﬂ‘crenunl under the form

a+b dx ‘

T2 XTaw

and we see that the integral will be

—F 1og(a—z)+c.
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=alogr— (— )[log(a—o)+log (a+.))]+C

=alogs — (—————)log (a—a) (a4 2)+C

=alog e — (”; b)log (at—a2)+C
=aloge — (a+b) log (u ‘—.09)‘1’ +C.
3v—5
296. For a third example, let the fraction be —dr.
22—6x+8

Since we have first to resolve the denommator into factors of
the first degree, we will observe that if we have an equation
of the same form, represented by 22—0:z+8=0, and it be
satisticd by the values z2=2 and =4, we may conclude,
thence, that it is equal to the product (z—2) (z—4)=0.
But, by performing the multiplication, we sec that whatever
be the value which we give to 2, the product will always be
22—062+48; and therefore, when instead of = we put z, we
shall have still

(«—2) (r—4)=a2—06r+8;

consequently, whatever be the value of the polynomial . . . .
22— 6.r48, it may be resolved into its factors as though it
were cqual to zero.

Having therefore found that the roots of the equation
22—6.2r+8=0 arc 2 and 4, we may assume

3r—5 Ade Bde

#—6:+8%" = aata—d - O

and suppressing the common factor ., which we shall always
do in future, we shall find, after reducing to a common de-
nominator,
3¢—5  Ax—4A+Br—-2B
12—6r4+8" P2=0r+8 !
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cquating, then, the coeflicients of the same powers of x, we
shall obtain these equations of condition,

—~5=—4A-2B,3=A+B,
whenee we shall deduce

B=3, A=—1;

>

and putting these values in the --quntion (22), we shall find
S ¥ 7 de
el i 2/ —t¢
>—ln¢r(z -—4)——]0g a—=2)+C.

297. As another example let us take

RS l(I&—Ii )

cquating the denominator to zero, and resolving the edquation,
we find

2 dar—02 = (4 2a+ 402+ 0?) (w4 20—/ 40t 4 12) ;
representing this last product more simply by
(v+K) (¢+L),
we will suppose now

i _ A B
24 dur—062" e+ K + T+ L

and reducing the second side to a common denominator, we
shall find

2 A r+ AL+ B.u+BK

P rdaa—b T Py dar—iz
whence we deduce

A4 B=1, AL4+BK =0
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conscquently
K L
A=g T B= k=%’
and therelore
l:_.l‘ll.l' K
Yl dar— [)“! “K-L

298. In general, let

lﬂg!(i-i-l\)-— loﬂ'(a—l—l)+C

Po—l 4 Qum=+ . ... +Ra+S ,
- - ——ly
2+ Qe oL+ R4S
be o rational fraction, in which the simple factors of the de-

nominator are supposed uncqual : to integrate it, we shall first
resolve the equation

i Qa4 ... +Rae4+85 =0,

and having founed that it is the product of the factors, a—a,
x—b, v—rc, &c, assume
P14 Qe ... +Re 48 A B C

= = - xC.
Qe ... +Ra 38 .:'—a+.1'—b 'V a—c +&e

Reducing, then, the second side of this equation to a4 common
denominator, the numerator of cach of these fractions will be
multiplied by the product of the denominators of all the
others, i. e. by a polynomial in & of the order sn—1; and the
second side of the equation will consequently be a polynomial
consisting of m terms. It follows, therefore, that if we cquate
the coeflicients of the same powers of x on the two sides of the
equation, we shall have m cquations of condition for deter-
mining the s coefficients, A, B, C, &c. ; and these cocflicients
being known, we shall then only have to integrate a scries of
terms such as
Ade Bde

o0 2 ke
e=a’ =0 ’
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and the integral required will therefore be
Alog (x—u)+Blog (r—b) 4+ &c. + constant.

299. The method which we have followed, when the roots
of the denominator are unequal, will not serve if, among the
roots which we will still suppose to be real, some of them are
equal. For we have seen that, on the hypothesis of the roots
being unequal, we may assume

Pat 4+ Qo'+ Ra?+Sa+ T A B C
(=) =) a—0) (rmd) (r—0) a—a ta—b i
D E

a—d " r—e’

But if several of these roots should be equal, if, for instance,
we should have # =0 =¢, the preceding ecquation would
become

A P4 4 &ec. _A+B+C+ D E

(r—a) (r—d) (e—e) ~  a—a r—d  o—c’

and then, on reducing the second side to a common deno-
minator, A + B+ C might be considered as one constant A’,
and we sec that the three constants A’, D, and E would not
be sufficient for establishing the five equations of condition
which ought to be obtained by equating the coeflicients of the
same powers of 2.

300. To obviate this difliculty, the fraction

Put +Qad + &c.
(r=0a)® (»—d) (r—¢)

must be decomposed into another series of fractions, such
that, when reduced to a common denominator, they shall again
produce the fraction,
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Suppose, therefore,

Pz*+Qx'+&c. _A4+Br+Cs®* D E
(r—a) (z—d) (x—e)~ (r—a)® r—d’ x—c’

then, reducing the sccond side of this equation to a common
denominator, we shall have a polynomial in z of the fourth
degree, which will contain five arbitrary constants ; and which
will consequently be sufficient for cstablishing the identity of
the terms affected by the same powers of .

We will now show that the term

A+4Bar4Ca?
(r—a)?
may be put under the form
A’ B C

G=ay t o= T e=a)’
A', B, C, being indcterminate constants.  To prove this, let
d—=2;
we have then
r=a+2;
and, thc;'cfore,
A+Br+Ca® _ A+Ba+Ca*+Bx+2Cax -I—(‘,_:j

(r—a)s — 28
_A+Ba+Ca“+B+2Ca C

29 2 + =

when, putting the value of z in this equation, we shall obtain
A4+Br+Cs? A+Ba+Ce®* B42Ca C

(@—a) (e—a)y T (z—a)  r-d
a result of the p}'oposed form, since A’, B/, C’, are any con-

stants.
This demonstration will apply to an equation of any higher
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degree, and we therefore conclude that we may suppose, ge-
nerally,

P.L""_|+Qaf""—2+ .. R.,-p-]-s A A
(r—a)” ~ =y (r—ay
A., An
+(‘1.__")m—_'3 N e

It follows from this, that to integrate the expression

Pat 4 &c.
(l-—ll) (v—d) ('c—()

we must suppose

Pat 4 &e.
(r—a) (=) (@—0)
_ A A A" D E
DG -

4 —a)§+ (.t'-—:‘l) + (,4'.—(/)+ —_—

the fractions then being reduced to a common denominator,
we shall determine the constants A, A, A", D, E, by the pro-
cess which we have already employed, and we shall have then
to find the integrals of the following expressions :

E D, A'dey A'dr Ada

dx dx .
r—c  xe=d = x=—d (z—a)® (r—a)

The three first are integrated by logarithms ; in respect to
the other two, since dx is the differential of the cxpression
x—a, contained within the brackets, we may assume x—a ==z,

(art. 270), ard we shall have

ANdx Ad~_ Y .

f(x——‘aT! SN =
A(I.. A A

‘/(z—a)" == 2 =/Az (1"——@—_2(0—11)_

and consequently
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/ Pa*+Qu+&c. A A
Y(a=—a) (0—d) (r—e€)  wo—a 2(e—a)? "’

.-« +Dlog (v—A) + E log (xr—c)+ constant.

301.  Let us take, for example, the fraction

Qe e '
(r+a)’
we shall have

2ua A A

Gray = Gtay axa’
reducing the second side to & common denominator, and sup-
pressing it on both sides of the equation, there will remain
Quz=A+Ar+Aa;
whenee we shall deduen the equations of condition,
2u=A, A+Aa=0;
which give
A' =24, and A==24a2;
and consequently

2axda _ Qaldry + 2adax
(@+a2” (a+4a) " (e+a)

. (23).

To obtain the integral, we must observe, that dx being the
differential of (x4 &), we may supposc #+a == ; and therefore
. 2avdy o5 dz
J (v+a)™ —2a;/':—g+2af—z— ’
when, integrating the first fraction by the rule of art. 262,

and the other by logarithms, we shall obtain

Quedy

2a* \
(—L__i_—”),:- = +2a log 24+C;

S
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and replacing the value of z,

axdx  2a?

./.(l'+a)" u+l+2alog(a+l')+c

302. As a second example, we will investigate the integral
of
atda ]
S —axt—atr+a’’

for this purpose, equating the denominator to zero, we sce that
the terms all destroy each other, on the hypothesis of w=a;
and therefore the equation #*—aa2—a%r+a® is divisible by
w—a, Performing this division, we find for the guotient
.2—q2 ; and thus the quantity to be integrated is

dar _ ada
a2—a?)(z—a) " (v+a) (@—a)(e—a)
2%

“r—ayp(etay

Assume, therefore,
xre _ A + A’ B
(r—a)(w+a) - (r—u)®  2—a a+a

then reducing the second side to a common denominator, we
obtain

a° A(.r+a)+A'(.1.9—a-)+B(v—a)
Gay wra) (r—ay: (= +0)

and, developing and equating the coefficients of the same
powers of 2, we get the equations of condition

A'+B=1, A—2Ba=0, Aa— A’a?+4Ba*=0. ... (25).

Multiplying the first of these by «2, and adding it to the third,
we shall have )

Aa+Bat=a2;
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this, in its turn, being added to the sccond multiplied by a,
we find

a?=2Aa, and A=}« ;
and putting this value of A in the second of equations (25),
we obtain
B = 1:
the first therefore gives

and, by means of these values of the constants, the equation
(24), multiplied by dir, becomes

r%dar _ adx _ 3dx d.r
(@—a) (r+a)  2(z—a)* + 4(x—a) +4 (x+a)

To integrate , We must put 2—a =2z, when the ex-

adr
pression will become
adz _az—?dz
ST g
and we shall have for the integral, art. 262,

—az—! a a

2 T 9% T 2@—a)’

and therefore

xtdr

a 3
‘/'(1'—-(1)9 (x+a) ) (z— a)"'Zhg (#—a).

+% log (x+ a) +constant.

303. We shall proceed in the same manner, if the deno-
minator contain several groups of equal roots. For example,
let the expression be

adz _ adzy .
(=1 (a=1)2 (r4+1)*’
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we shall assume
a _ A A’ B B’
Gy GtE - =t =D TasiyT

when, reducing 10 a common denominator, we shall find

=1 - @0

“
(e
AlatDp+ Al(e—1)(a41)2+ Bz = 1)+ Bz —1)%(z+1)
£ (r—=1D)(e+1)?

and suppressing the commen denominators, and developing
the numerators, we shall obtain the equations of condition

A'+B =0,

A+ AN +B—-B'=0,
2A—Ar—2B—-B'=0,

A—A+4+DB+B =a.

The first of these equations reduces the third to 2A—2B=0,
and thereforc A=B; the second reduces the fourth to 2A

+2B=ua, or 4A=a; whence A = =B ; the fourth equa-

4
tion consequently becomes B'— A’ = zu and this being com-
bined with the first, we find
A —-—Z, B -—— :

when, by means of these values of the constants, the differen~
tial proposed becomes

1, { da dr da
Ne=1p T e =1 251 }

The two first of these expressions must be integrated by the
rules of articles (270) and (262), and the others by logarithms,
when we shall find
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/'—'-"E—~'1 ! ! 1 1) 41 1 ! C
i s Tkl Sy Sabrs Sk AC it b G )5+ -

304. Before we procecd to examine the case in which the
denominator contains imaginary roots, we will make a few ob-
servations on quantities of this description ; and first, we will
consider the equation

2+ prdqg=0....(27),
and investigate the conditions necessary, in order that the

roots of this equation may be imaginary : for this purpose, re-
solving the equation, we find

1 »°
W= ——p —
¢ 2[:_J4 '8

and the first condition necessary that this value of o may be
imaginary, is that the last term of the equation (27) be po-
sitive; for if it be negative, the cxpression —gq, which is
under the radical sign, will change its sign, and the surd part
then involving only pousitive quantitics, z cannot be imaginary :
this condition being fulfilled, x will be imaginary, if ¢ be

greater than ip". The excess of g over %p’ being then essen-

tially positive, we will represent it by (2, since a square is
always positive ; and we shall have

1
g=3r"+F%;

making %p’:a’, for the avoiding of fractions, this equation
will become
q=a*+£2

and substituting these values of p and ¢ in the proposed
equation, we shall find

24 2ar+at+£2=0 ... (28);
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an equation which, being solved, gives
r=—atfy=1...(29);
and its two roots are thercfure

—at By =1, —a—By—1,
which shows that its roots are disposed in pairs, so that one
being known, the other will be given by changing the sign of
the imaginary part.

305. Generally, an equation may have several pairs of ima-
ginary roots, and each pair will give rise to a factor of the
sccond degree, of the form

at4Lar4a2+6° . . . (30).

306. The imaginary roots are sometimes equal, excepting

as to the sign ; this happens when =0, and one of the roots

is then 4 8./—1, the other — By =1, and the factor of the
second degree is reduced to a2 + 2.

307. To give an example of an equation whose roots are
imaginary, we will take the equation

22—6ar410a2=0;
resolving it, we find
r=83ax,/—a*=3ata,/—1;
and comparing this value of .» with equation (29), we have
—a=3a, B=u;
in the present case, therefore, the equation (30) becomes
2*—6ax +9a2 4 as.
308. To conclude, when we have an equation such as
.z-“+4.z'-.i- 12=0,

whose roots are imaginary *, we may compare it immediately

* This will he recognised by the conditions of art. 304 being fulfilled.
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with the formula (30), and we shall have 2a= 4, and there-
fore a®=4; subtracting 4 from 12, there remains 8 for the
value of % and the cquation may be put under the form

2 +4r+4+8=0.

The term 8 is not, in fact, a perfect squarc; but we may
consider it as the square of V8.

309. We will employ ourselves now in the integration of
rational fractions, the denominators of which contain ima-
ginary factors ; and to commence with the most simple case,
we will consider that in which we have only a pair of ima-
ginary roots in the denominator ; suppose, for instance, that

having decomposed the denominator into its factors, we have
found

P+ Qv+ Ra2+ Sa3 +&e. de :
(@—a) (@=b) . ... (a—h) (@®+2ar+a‘+B°) ’

we shall equate this fraction, as we have done before, art. 300,
to the series of terns

Ads  Bdx Hdw M2+4+N

a—a ' a=b""""

X — h+ 2% 4202 4 a2+ ﬁ“dx’
and having determined the constants A,B,....H,M,N,
by the process already employed, all these terms, except the
last, will be integrated by logarithms ; in respect to the last,
it will be integrated in the manner following :

The quantity 22+ 2q.r+ a® being a perfect square, the term
to be integrated may be written thus,

Mzs+N _da
Grartf
making v42 =2, this becomes

Mz+ N—Ma_cd,’
zi_'_ﬁ-‘ ~r

r
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and representing the constant part N—Ma by P, it is re-
duced to
Mz4-P

g2 + ﬁQ d~

an expression which resolves itsclf into

Mzdz Pdz
=tptEre

To integrate the first, we must observe that zdz being the
differential of 22+ 3%, with the exception of a constant factor,
we may, art. 271, suppose 22+ 32 =y, which will give us,
by differentiating,

zdz...-‘;i,
o L. . Mdy
aud substituting these values, we shall obtain T whence
Y

the integral will be

M M M
5 logy="5log (2* + %) =5 log[ (x +a)*+ %]
= !/21 log (2% +2a2x+ a4+ )

=M log (2*+2az+a®+ {39)‘5
=M log ( &/ 2%+2ax + a2+ 3.

In regard to the expression ———, by dividing the two terms

Pdx

22 22 ﬁu
by g%, it may be brought under the form
d‘l

_P_
[

“m
:
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and we see that its integral is

—E—tan—’ z =N —Ma _r+ta
B 8 [ B
lastly, therefore,
ot N e Mlog v T B T
224 2ax 4 at + 32 [ A
t:m—'.'tz_;i .o (3D).

310. Let us take, for example, the fractlon a'o 5 the

denominator having #—1 for a factor, we shall ﬁnd the other
factor by division, and the fraction proposed may be put under
the form
a+bx

(r=1) (224+2+1)
when 22+x+1 being the product of two imaginary factors,
as may be seen by resolving the cquation 2*+2+1=0, we
shall assume

ud.,

a+ba A Mor4+N
D) (Pgzx) a1 syt ’

reducing to the same denominator, and proceeding as has been
directed, we shall find
_a+b _a+ b o b—2a .
A= -5 M= 3’ N= 5
the expression .r’+.z'+l being then resolved into its simple
factors, by comparing it with the expression (30), this will
give us

20=1, a®4p2=1,

1 3
“‘=§"3=,./4;

and consequently
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substituting these values, and those of M and N in the equa-
tion (31), which gives us the second part of the integral, and
observing that the first is

]

Adx a+b
-1 3

og (z—1),
we shall find

a+bxr)dr a+b atd —
f( 1,_} =—3 (1—1)———10g\/.z'“+.1:+1

811. When the fraction has in its denominator equal ima-
ginary factors, it will contain one or more factors of the second
degree, of the form (22+2axr+a®+ B2)#, accordingly as it con-
tains one or more groups of equal imaginary factors. The
factor

(22 +2ax+ a®+£%)?
will correspond to the series of terms
H+Kx H+K'z
(242220402 + [3’)"+ (22 +2ax+ a2 + f2) P!
H'+K'z 4 H+Kz 39
(22 +2ar+a®+82)r—2 " " " T 24 2ax+at+ B0 32)

and having proceeded in the same manner for the other groups
of equal factors, we must determine the constants

-+

H: K, Ir’ K', H”’ K”’ R H,’ K,s &c-:

as before.

Multiplying, then, by da, we shall have only to integrate
each term separately, which may always be done if we know
how to integrate the first term of the series (32) multiplied
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by dz, since all the others are of the same form. For this
purpose we shall put the term under the form
H+Ker
[@+a):+p] des

making 24 a =z, it will become

H—Ka+K=z
and representing the constant part H—Ka by M, we shall
have to integrate

dz ;

a fraction which may be resolved into the two

Kzdz + Md:=
(= + B)r 7 (= +p)"
To integrate the first, since zdz is the differential of z24 32,
except as to a constant factor, we shall suppose 2?24 B:=y

(art. 271), when we shall have zdz = 1dy, and substituting, we
shall obtain

Kzdz o yrt!

/(,2+Bg)p f2 J" KfJ pd.y 2K _1—]7
3 K B2+ z?)=p+l 1 K 1

I—p  "2'1—p (=4+f)

+C.

It remains now to integrate

GK—B‘:’); or M(z2+ B2)—7dz (33),
to arrive at which integral, we shall deduce it (note fourth)
from that of /(224 B2)Pdz, in the following manner :

To diminish the index p by unity, is to divide by 224 3% ;
consequently, multiplying at the same time by that quantity,
we shall have the identical equation

(224 B2)Pdz = (22 + B2)r—1(22 4+ 32)dz ;
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performing the multiplication indicated on the second side,
there will result

(224 B dz = B2(z* + )r—tdz + (B* +=°) =%,
and integrating, we shall have
S(Br+2)rdz=P(22+ £2) P dz + /(B4 22)r1%dz . .. (34).

Of the two integrals on the second side of this cquation, we
shall leave the first under the integral sign; to the second
we shall apply the method of parts.  For this purpose, mul-
tiplying and dividing the expression (3°+:")r—!z%dz by 2, we
shall put it under the form,

g(.@‘z"l' 22)i2zdz . ... (38);

'.'),.
> 8

22) 019z i ifferenti (Be+=
then (82 + 22)#—12zdz will be the differential of ————
P

0
that the expression (35) will become

z 4 (B4 ’
2 P

and comparing it with the formula

Judv = no — fodu,

we shall put

< < vAYZ
u=§, u=.(_i.3. ;‘;z ) s
when we shall find
z = 9.'. 2\ 2+29 P dz
.fg(ﬁ"+zg)"—'2z(lz :5(6 p ) _f(ﬁ - ) o

Substituting this value in place of the last term of the equa-
tion (34), and putting the constants without the integral sign,
the equation will become
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Syl = 0 (B4
= (B .
BAS) B sy
P 2p
transposing the last term on the second side, and reducing,
we shall find

] +..p

LI+ e =

(13 "1‘ ) + 3’ff(ﬁ’l+2")"—'d“ .

whence we deduce

2
S )= = s @by L U 2y

putting p—1 = —p, and, conscquently, p=1— p. we have,
lastly,

S 2yl = G(B 2ty

Ty p)P
3=2p J(B 4 22) U=z L .. (36).

T E@=2ppn

By meaus of this formula, then, the integral of (5* 4 22)~rdz
is made to depend on that of (82+42%)~*—1 dz, in which the
numerical value of the index, instead of being p, will be less
by wnity ; similarly the integral of (8% 22)—t—0dz will be
made to depend on that of (£2+422)—t—2dz, and so on ; so that
the index of the integral part being diminished by #nnily after
cach substitution, the expression to be integrated will at length
become
dz
(B +22) Mz = By

and we have scen, art. 277, that the integral of this ex-
pression is

1
- lan !
[}

[¢3)
Ty b
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We do not attempt to make the integral of (8°+2%)—'dz de-
pendent on that of (B2 +2%)°dz, a quantity which reduces itself
to dz ; for if in the formula (36) we should make p=1, the

term

B89 4 28)—1+!
ST @+
would become infinite.

313. It follows from this theory that the integration of
cvery rational fraction depends only on the three following
formulw :

Yo famdz="10", g0 g )
. S dr=_—j; [2‘+l og (r+a) ;
dr
0 —_— -1 _
'/.z“+ag a

And it is therefore we say that every rational fraction may be
integrated algebraically, or by logarithms, or by arcs of circles,
or by the union of these methods.

314. We will conclude this theory by an example containing
all the cases ; let the rational fraction he therefore

Pam - Pam 1+ P'zm—24 &ec.
RRR'...SS...TT...UU ...

in which we have

R =2—a,
R =a2-), ?
R =p—c S Jactors real and unequal.

S =(2—e)m I
S'=(r—d)* >
T =4+ 200 4-a® +p°
T =a"+2a'r+a?+p"° } fuclors imaginary and unequal.

...............

uctors real and cqual.
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U =(2%+2ax + 22 +B2)r
U =(2*+ 2a, r+a 2+ 2) % Sfuctors imaginary and equal.

We shall assume then

Pam 4 P2t 4+ P22 4 &e. A B C
RRR ...S§ ... TT .. .OU ... s—a s—bto—ec "
+ e—ey™ + (.r—c)”"‘+ Gy " + &ec.
F F Fr
ey Ty T ey
G+Har K+Lr
x4 220 4a?+ 2 +.1"'+2a'.‘t+a"+6"-’ +&e.

M+Nz M'+N'z
@ Barta T B T P Baztart it

P+Qr P4+Qx

(2*+22 2 +at+B,2) + (a2+2a z+a 2+ 3”f-')u—_1+ &c.;

and having reduced to a common denominator, we shall pro-
ceed according to the rules already laid down and explained.

Integration of irrational functions.

315. When in a differential expression, which contains
radicals, we can, by means of any transformation, make the
radicals disappear, the integration will be reduced to that of
rational fractions.

Radicals may always be made to disappear which affect
only monomial quantities ; the process to be employed for ac-
complishing this will be the same with the one we are about
to make use of in the following example :

Let the expression be

‘/_E—%?_ or'r% i L
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we shall first reduce the fractional indices to the same deno-
minator, and having found that the common denominator is
6, we shall suppose x =2z ; we shall have then

o=z, Y r=2¢ dr=625dz ;
and substituting these values, we shall find

z—la P—=1la 62 —2az" |,
:/—J_—.d.l = —, —5 0z = dz;

EENT 2=z
this expression we shall integrate by the method of ratioual
fractions, and then substitute in the integral the value of =.

316. This method will not generally apply when the quan-
tity under the radical sign is a polynomial ; we may, however,

1—=

integrate every expression in &, which contains o/ A+BrtCaz,
that is to say, every cxpression of the form

F(z,o/ A + Ba+ Ca=)da.

There may be two cases : the term Ca? may be positive, or it
may be negative ; if it be positive, we shall write the expres-

sion thus,
4 C J +—‘.l" +"" 5

but if that term be negative, we shall consider it as the pro-
duct of +C by —22, und then the radical may be put under

the form,
_ JA B
VA D e
"‘Jc*‘c“’ ¢

and putting, for greater simplicity,
A

—=a, —=—=2¥b,

C C

we shall have to integrate the two expressions

F(a,n/a+ betxa?yde, F(r, N a+t br—a?)da
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We will now employ ourselves with the first.

Our aim being to obtain, by a transformation, the values of

x, do, and 8/ « + b+ 22, in au rational function of a new variable
=, we will suppose

Natbrtfat=z4a*..... 37,
because on raising to the square, the terms in 2% will destroy
each other, and there will remain between z and & an equation
of the first degree, from which we shall be able to deduce the
values of # and dx in rational functions of . Raising, there-

fore, equation (37) to the square, and suppressing the terms
in z2, we obtain

at+bar=2rz422 . ... (38),

whence we deduce

~2
~

—

.v:z_—.Tz—z— “ v

(39);

and by mecans of this valuc the equation (37) becomes

22—

b4t = [_'__2z.+: ;

or, reducing to the same denominator,

(2—bz+a)

Vautbrtat=— —92

.. .. (40).
It remains now to detcrmine d in terms of =, for which pur-
pose differentiating the equation (38), we shall obtain
bdr =2rdz+ 2zda 4 2zd=,
whence we shall deduce

(b—22)dxr =2(>+z2)dz,

* We might also equate the radical to z—a, becausc on squaring the two
sides the terms in 22 wounld equally vanish on either hypothesis.
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and eliminating the radical betwixt the equation (37), and
the equation (40), we shall have

2—bz+a
R == P
when, substituting this value in the preceding equation, we
shall find
_ 2(s2—bz4a)
(b-—2z)d.z'._—-——T—~22 —2d7z,

and therefore

'2(z°—bz+a)
~ (=22 =——dz. . . (4]).

317. Let us take, for example,

dr
N/ A+Br+4Ca2”

dr = — —

putting %:a, and%:B, the expression may be written

thus,
dz
JU x.z'.\/a+b.z:+.z-’.

The equation (41), divided by the equation (40), will give us,
after reduction,

dr _ 2dz
.\/a+b.z+.zﬂ_b—2z’

and dividing by the equation (39), we shall have

dr _ 2dz
xa/ a+bx+a® T z'—a’

multiplying the denominators by ~/C, this equation will be-
come
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dr or de _ 2dz
\/_C.x N a+br+a® A+ Br+Czt (z"—a).\/.(-)’

a fraction integrable by the method of rational fractions, sinee

vC may be considered as an ordinary constant.
318. As a second example, we will take doy/ m2+ 2® ; com-
paring the radical part with that of the formula (40), we have

a=ns, §=0, and putting these values in the equations, (40)
and (41), we shall find

22 4 me 22 4 m2 -
/"19+.lﬂ=—'§z——, d.l‘ — 259 r
whence
—_— + m2)2
dry/m42zt=— G 4z )

and having integrated this rational expression, we must sub-
stitute for = its value in terms of 2.

319. The preceding method cannot be employed when Ca? is
negative ; for, on proceeding as above, we should have

—_ o A B
¢A+Bx—Czi=¢LJ6+—é—x—m’
=/ C  atbr—2%,

and if we should suppose A/ a + ba—® =z + z, on squaring the
two sides of this equation the terms in 2% would not vanish,
but we should have a term 222, and the value of # in terms of
2 would result irrational. To treat this case, we must observe
preliminarily that the polynomial a+ bz — 2® may always be re-
solved into real factors of the first degree®.

* To demonstrate this, let the polynomial be written thus,
—(z2—bxr—a);
we shall find then the factors of 23—br—a by equating this expression to
zero, which will give us
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Let 2 and o’ be the roots of the equation 2*~bx—na==0;
we shall have then, from the property of equations,
22=br—a=(r—2a) (r—2'),
and, consequently, by changing the signs,
efbr—at=—(r—2) (r—2a') = (r—a) (¢ —7);
substituting this value in the radical, we will suppose
Vi—a) (a—a)=(r—a)z . ... (42),
which being squared, gives us
(r—a) (@—a) = (v—a)=2,
and suppressing the common factor, we have
ad—r=(r—a)2?....(43),

whence we deduce

o a + az?
RPN I
therefore,
o+ az?
r—= =11 a,

and reducing to the same denominator,

o' —a

== P (4),

_b ,bz
* —5 * z +a,

and, therefore, by the property of equations,

o (et T b [T

and since, by hypothesis, « represents a positive quantity, the factors which
compose this product cannot be imaginary. Besides this, without resolving
the equation a? —ba —a=:0, we may conclude, from the sign of its last term,
that it has its roots real, (art. 304).
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which value being substituted on the sccond side of the equa-
tion (42), we obtain

Vie—a) (@ =)= * =2

_I.“.Q—-{_-_l_: “ e (45).

In regard to d.r, we have only to differentiate the equation
(44) to obtain its value in terms of z, and we shall have

(].l‘=—m2d.'a ce e (46).
320. Applying this process to the example

dr

Vet bw—r®

we must divide the equation (46) by the equation (45), when
we shall have

da _ 2(a'—a)z de= 2dz
T i - il
(241)2z. 31
and, therefore,
da

Cmee———————=_.2tan"'.2+C,
‘/\/a-i-b.z'—.:’ a2+

or, putting for z its value, given by equation (42),

da —
— O -1 Jr—aa—a
f./ a+br—a® C—2tan T a—a

Vo —x
Nr—a

321. Let us take also, for example, doa/2az—a2; com-
paring this radical with that of the equation (42), we shall
have =0, o/ =2a, whence the cquations (45) and (46)
become

=C—2tan—".
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4az
V2 (2a—x) .l')__ 1, dor=— G g+1)—,dz
and these equations, being multiplied one by the other, give us
e 8u2:2dz
dr N/ 20r—a®= — ‘(_L"-i-—-T);"

an expression which is integrable Ly the method of rational
fractions.

Integration of binomial differentials.

322. We have scen that a method, very extensive in its
application, for the integrating of irrational functions, iz to
transform the functions into others that are rational, so as to
be able to apply the rules for rational fractions.

The difficulty is to determine the transformation which
ought to be employed in each case; we have already stated
the onc that is applicable when the surds are trinomials, in
which the variable does not rise above the sccond degree ; and
since expressions of this sort occur very frequently in analysis,
the knowledge of the transformation necessary for rendering
them rational will be of great service. We have also given a
general process for rendering functions rational which contain
only monomials raised to fractional powers; and we will now
proceed to examine whether, by means of any transformation,
binomials affected with fractional indices can be rendered
rational.

323. The general form for binomials is
r"=(a+ b yrda*.

* The binomial expression Az’ +-Bx* being a particular case of the one
(Aer+Baxs)p, it is to the latter form that we shall refer the binomial dif-
ferentials : it may be written thus,

[+ (A+Bar—)}p =a7p(A +Bas—r)o,
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If p be a whole number, this formula will be integrated by

art. 269 ; but when p is cqual to a fraction :—1) » we shall have
r
VY a+ba")vde . ... (47).
To render this expression rational, we will put
atben=z1... (48),

or, which comes to the same thing,

(a4bzm) 9= 2,
and, consequently,
(a+bem)i=zr ... . (49).
Then the equation (48) being differendiated, gives us
bnaer—ldr=qz1""dz . . . . (60);
the same equution being resolved in respect of ., we have
1

Ry
.1':( )n;

b

and therefore, raising the two sides of this equation to the
power m, we obtain

m

ame (z'l;-a) " ;

differentiating the two sides, putting the constants in front, and
dividing by m, we find

and making s —r=n, 7p=m—1, it becomes
am=1(A4Ban)p.
Woe have replaced 7p by m —1, rather than by m, because, as we shall sec,

the conditions of integrability arc more readily expressed on that supposition.
Q
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™

gfr—a\w
am=idr=- l, = ) 0l
ne o

and substituting this value in the equation (47). as also that

”
of (a4 he*)y7, given by equation (49), we have lastly

M
q lzl——{l\

A - it r=1,] 5
WA \TD ) grtr=1Jz ... (61).

—1

e . . . m o, .
This expression is rational wioen —- is a positive whole
n

—a R .
number, for then -—- i is raised to an integral power, and we
(]

may reduce the expression (61) to a limited number of mono-

miul terms, each of which will be integrable by art. 262, or by
m . .

art. 268. If — be a negative whole number, the expression
"

(51) becomes also rational, and may be integrated by the me-

thod of rational fractions.

324. Let us take for exumyple the expression

£
a"(a+ba®) de;
in this case we shall have
p=2,9=3, m—=1=5,or m=0, n=2,

and consequently the condition of integrability is satisfied.
Substituting, thercfore, these values in the expression (51),
we shall have to integrate

3 3zl10 3a 3a2

S5 (28— a)22tdz = o dz —— ::7dz+ ﬂsz"dz 3
whence

3zt 3ge28 .3149 5

220 g Top TC

S (a+bat ) dr
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and we must substitute in this result the value of.z in terms
of 2.

325. To obtain another condition of integrability, we will
write the expression (47) in the manner following :

2 ’""‘[( ;:‘ + b) r"]‘:—‘d.r ;

. . [
and, raising the factors of the product (F+{')"r" to the

)
power ?';, we shall have
Il})
", a » M+ — I "
M=l o +& ); = g (=" +0)Tdor.

But, according to the preceding demonstration, 1 order
that this quantity may be integrable, we must have

np
L
Vi

n

= whole number,

or, performing the division,

m p
2 +L= whole number.
r g

326. Let us take, for example, the expression 2 *day a-+ba?,
writing it thus:
x5 (a4 b )Z}ll.l’,

we have

m=5, n=3, p=1, ¢=3,
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consequently
p 5 1
=3%37
and the quantity, therefore, is integrable.
In this case we shall have, (art. 325),

25 (a+bad) ‘}(1‘1’ = g5 (—'a—,— +4 ) "‘.rd‘z' 3
and adding together the indices of a, this expression will
become
x"(a.r-’-}-b)!"n'.r;
making ar-3+0=2% we shall find

23—/

2

1
(ax—3+b)° =z, 2= —

or

(%er)}m,l:“’_’“

a3 a ’

the latter of these cquations gives us

_ a
T2 —b
whence we deduce, by differentiation,
az?dz
tdy = — il
BN

multiplying the two last equations together, we have

w22z

avde =
TEF=nv
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and this value of #*d>, and that of (a.z'-"+b){' being sub-
stituted in the expression (52), we find, lastly,

azidz

by

a*(ar— + b)§d1'= -

an expression which is integrable by the method of rational
fractions.

Formulee of reduction of binomial differentials.

327. When the equation am—1da (a + ban)r does not satisfy the condi-
tions of integrability which we have just laid down, we may apply to it the
method of integration by parts, in the manncer following :

Comparing the formula fzm—idx (a 4 ba?)p with the first side of thc
cquation

Sudv=uv—frdu,
we may assume

am
(a+-ba*)p=u, am—1de =dv, and thercfore v=—,
m

and we shall have, putting the constants without the sign of integratiou,

am pnb
Srm—ldr(a+-bxn)pr =(a-bxn)r o Srm(a+ban ) p=1an—1dr,
2

or,

Sem=1da(a-ban)p = (a4-bxry) ’7':' P et n—1(a-ben)p-1da (53) 5

m
on the other hand, we have the equation
(a+ban)p=(a4ba)r=1(a4-ba") ;
and, multiplying out, this equation gives
(a+-ban)p=a(a+-ban)p—1 lan(a-b.n)r—1 ;
whence multiplying the two sides by 2m—141, we find
J‘xm-—l d_z-(a-‘.b‘,,-n ) P
=afem—ldr(a+bxn)p—i 4-lfwm+n—lda(a4-bu)p—1 . . .. (34)

By mcans of this cquation, we may eliminate the last term of the cyua-

tion (63) ; for if we multiply the ¢quation (54) by —‘1;—:", and add it to the

equation (53), we shall find
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( 1 +-,§:;’.')/_'wn—-ld_x(a+b;n)p = (rl+bn")1' ;':-f- %:f-‘f.vm—l(l,, (a+ ban)p—-}
8

and, multiplying by m, and dividing then by the constant factor on the first
side, we shall obtain

SJam—1di(a+bn)p
(m +lm)(a+b1n)P +—-———I--nf1m—1111(a+b1ﬂ)lo—‘ ... (D5)-

By this formula, therefore, the integral of am—1di(a-+ba?)r may be made
to depend on another in which the index of the part within the brackets will
be diminished by unity.

If now we put in this formula p — 1 in place of p, the integral of

un—l1da(a-+4bar)r—t will depend on that of am—tdi(a+bi#)p—2; by the
same process, this, in its turn, will depend on that of vn—1di{a—-b17) 1—3»
and so on ; so that the exponent of the part within the brackets will be suc-
cessively p, p—1, p—2, p—3 .. ... p—n (by n representing the greatest
integral number contained in p, which we suppose fractional).

If, then, we can obtain the integral of wn—1dr(«¢+ban) —7, we shall have
that in which the index of a4-bz is greater by unity, and so on, up to the
integral of am~1di(a—+-ban)pr, which we shall thus obtain in a finite number
of algebraic terms.

327. If p were negative, the equation (55) would give

RS L C LRI A I IIC LY

and making p —1 =p, we should have

Jrm=1di(a4-bax)p
_Im(a+bln))l+ 1 +[m+(\_p+])'l]f. m—ld’_,(a+(”n)p+| .
(p+1)na -+ (56) 5

a formula in which, if we make p negative, the integral proposed will de-
pend on another in which the index of the part within the brackets will be-
come niore nearly cqual to zero by unity.

328. We may also diminish the index of 1 without the brackets. For

this purpose, the first sides being ¢qual, we shall cquate to cach other the
second sides of the equations (53) and (54), which will give

Ly pnb
—‘IT(a—‘—’"")p - :mfl."" bae- '(“'}"’"') r=idh

mfan=lda (- be e V4 bfit = d(q g bon)r—idr,
whience we shall deduce
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13
(b+l% )jv,m Fa—=1(a-byn)r—=iy =(a+4 bin) p_'.;;;: —afim=id(a4-bar)r-1,
consequently

2 4-baxn) P~ mafem—idx(a4brn)r—I .

4 n—1 Yda =
Sa (a4-brr)p—1da = Wom )

and making m +n=m, and p—1 =, this cquation wili become

am—n(a-ban )+ 1 —(m—ndafrm—n—1dz(a-f-ban)»
O(m—+-pn)

Sam=1dr(a4-bam)p=
. (57)-

By means, then, of this formula, the mtegral will depend on another, m which
the part am—1, without the brackets, will hecorne #7—2~1; this second inte-
gral will, in its turn, depend on a third, in which the part without the bracket-
will be am—2r—1; and continuing the process, the indices of . without the
brackets will be successively m—1, m—=n—1, m—2n—1, m—3n—1,....
m~—rn—13 rn being the greatest multiple contained in m.

In the last of these operations, therefore, the index of 2 without the
brackets, on the second side of the equation of reduction, will be m—ru—1;
and conscquently «, on the first side of that equation, will have for its index
m—(r—1)n—1; thus making m=m—(r—1)u, in the formula (57), und
representing the part intcgrated by X, that formula will give us

X—- (nl-—r'l)l!/:l'""—";"_ld.’l (a+4-ban)
Moue—(r—1)u+pn}

Jem—tu—1n—1dr(athan)r = . (56).
If ru be equal to m, the cocfficient » —2 7 becomes 0 21d conscquently the
part affected by the sign of integration, on the second side of the preceding
equation, will vanish, and there will reinain
j—(r—1)n~1 dx Dan)v— —.—
Jam=tr dr(a+bar) b (N 4p1)

This integral being determined accurately, ll the othcrs will be so hikewise,
and the proposed formula is therefore in this case integrable.

329. In the formula (57), which reduces the index of » without the
brackets, ,m was supposed positive ; to obtain the one which applies to the
case in which s is negative, we derive from the formula (57),

fam—u=tdr(u-phar = (m—nja
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whence, making m —n=m, we have

(a+ban)p+1am —Y(sn—+n-+tnp) frm+n—1dz(a--ban)r
ma

Sam—1dz(a-ban)p =
... (59),

and by means of this formula, when the index of # without the brackets is
negative, the integral will dcpend on another, in which the value of that
index will be diminished by n ; for the index of x, without the brackets, on
the second side of the equation (89), being m-+n—1, if we replace 7 by its
negative value, which we will represent by 22, that index will become . . . .
—(m’ —n)—1, whilst that of 2, without the brackets, on the first side, will
be —m'—1; and considering only thc numerical values of these indices, it
i» evident that —(m'—n)—1 will be greatcr than —m'—1 by 2.
330. To give an application of these formular, let the expression be

amdy
Nt

this being put under the form amda(1—2%)" ¥, und compared with the onc
vn=1di(g-ban)», we shall have

m—1=m, or m=m+41, a=1, b=—1,n=2, p:-—% s
and the index of the part within the brackets being less than unity, we must
diminish the index without the brackets by substituting the above valucs in
the formula (57), which will change it into

] _11)5‘ '}

Somda(1—13) ¥ =m0 _ﬁm—% (1—) 78,

or

s amdx =__lm—l~/_]-:l—g m—1 .z"‘—i’dz' (60
J——l—a’ - \/l—z‘ ... . (60).

1f now we make successively

_ﬂd.r
m=m _?, we have/' — —— l.",_an\/l —a? m 3 zm—ldr’
—a? m—2 'm—2 Nl—z2’
m—«hl.z ] o
m=m—4...... ,,.z' Aun—-'&‘ m—5 l"_i"'

Jl—-—.z" m—4  m—A4 Ji_‘_‘{,’
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m=m—6... ’T_da';=_,w—n/l"'“"+m—7 ___"!"Iz
1—a? m—6 m—0" 1
and 8o on.
am—2dzy
The first of these equations will give us the value of f° T = which

being put in equation (60), we shall find

amdr am—1 gp—1 rm—3 m—1 m—3  arm—Adc
g mm{Emlyme) ety el mod i,
m m  m—2 moom—=2"  T_a

V1
and substituting successively the values of
am—idy  am—6Jr
I’ yice
the last integral which we shall obtain, if m be cven, will be

C.s

_/— -, =sin—1r;

but if m be odd, this last mtegral wnll be
adr

Ji-
and since xdir is the differential of a2, cxcept as to the constant, we shall put
1 —a*=z, which will give us

xdx i dz
S N =/- 2z
the last integral being thus found, it follows that when  is an integral
number the expression may always be integrated.
331. Lect us take also for cxample
__.d“_. - -
Y e
this expression being written thus :

—_/‘-—--, Edz._—:&:—\/:_=-—‘\/l—.z";

x=m(1 - %) Hdz,

and compared with the formula (59), in order to diminish the index without
the brackets, we shall have

m—l=—m, a=1, b=-—1, n=2,p=:—‘l7,
by means of which values the formula (59) will become

. — ,; —%,
[a=mda(1—a2) T= (l ') —m+-——/r—m+2d«<l—')
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or
dx v1—a* dx
—_—— — —— . .. (G]).
f“'"\/l —a? (m—1am=1 " m —-1 '/ am—=2 T3 H
d q
and if m be an even number, for example 8, the integral of — Wl
abi /1 —a
dr
depend on that of E/l_ by virtuc of the same formula, will de-
pend on the integral of m, and we shall come at length to m=2; in

which last case the formula (Gl) will give

\/l— a?

S ‘JI—-J" t

——+C:
so that, by thesc successive substitutions, we obtain the integral when . 1
even.

In the case in which m is odd, for cxample 7, the values 7, 5, 3, being
successively substituted for m in the formula (61), we cannot proceed to

m=1; for, on this hypothesis, the coefficicnt ::l—f of the second integral

1
will become ——6=-=o; the least value, therefore, that can be given to m

will be m=3; and on this hypothesis the formula (61) will become

_d‘l — J]_—“+;/ a )
3y/1—a% 22 27 J1-o

To integrate the expression

&
WiI—
1 .

we shall put « =—, which will give us

dz -]

di= =23, JTom=YT 1,

and conscquently

dr dz

But we have found. ait. 288
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S =log (14 1),

da
1=
und, thercfore, changing .« into z, we shall have

dz
f—,‘/ == log (v A1),

. 1
and putiing for = its value —, we obtain
]

dh
‘I'hus tie formula '—1;\/’—_—1—-—“ may be integrated, whether we take m even o
Y

odd.

Integration of functions of sines and cosines.

332. The integration of quantities involving sines and co-
sines depending on the possibility of developing cos®x, cos’z,
cos*r, &c. in functions of the cxpressions cos ., cos2., cos3,
&e. ; we will proceed first to show how this may be accom-
plished by trigonometry alone (note fifth).

If, in the formula

cos(a+b) =cosa .cosb—sina.sind . . . (62),
we make @ =4, we shall have

cos2a = cos?u—Ssin%a = cos?a— ( 1 —cos*«)
=2cos%a—1;

whence we derive
cos*a =1 +14cos2a,
and multiplying this equation by eose, 1t beeomes

costu = Jeosa 4 Leosa eos2a . . (63
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But if to the equation (62) we add the one,
cos(b—a)=cosa . cosb+sina . sind,
we shall obtain
cosa ., cos) = Lcos(a+b) + Lcos(b—a) ,
and making b=2a, we shall have
cosa . cos2a=}cos3a+ Jcusa;

climinating, thercfore, cosa.cos2a betwixt this cquatxon and
the cquation (63), we shall find

cos’a = jcosa +Lcos3e ;

and by the same process may be calenlated the higher powers
of cosa.

333. This being premised, when we have to integrate the
expression cos™rdz, in which m is an integral number, we
must put for cos™z its development, which, according to what
has preceded, will contain only terms of the series

constant, cos z, cos 2z, cos 3z, cos 4r, &c. ;

so that the whole will be reduced to the knowing how to inte-
grate the expression cos madar.

For this purpose, we must observe, that if, in the equation
dsin z =cos 2dz,
we make z=mz, we shall have
d'sin mar = cos mw.mdr ;
and therefore

sin ma
3

Sceosmadr =

mn

and, similarly, we should find that
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. €08 Mz
Ssinmedy=— -
m

Taking, for example, cos?#dz, and putting for cos?x its value
1+ Jcos 2z, we shall have

Jeostadr=f(} +§cos2,z-)dz=f25+-ksin2.z'+0.

334. If we wished to integrate sin™zd.», we might proceed
in a similar way ; or, otherwise, representing the comple-
ment of 2 by z, we should have

r=}\nr—z, dr=—dz, sinx=cos z,
which would therefore change the formula sin™zde into the
one —cos™ xdz, and we might integrate as above.
335. Taking the most general case sin™x cos®wdx ; if m be

even, we will put 22 =2m', when we shall have to integrate

sint™.e cos" xda = (1—cos®x)™ cos"zdx ;

and developing (1—cos?x)™, and multiplying by cos®»d2, we
shall obtain a series of terms, cach of the form cos* »dz, which
we shall integrate as above.
If m be odd, we must put m=2m'+ 1, when we shall have
sin™» cos®.rdry =sin®™ 2 cos™x sin xda
=(1—cos?x)™ cos"r X —dcosr;
making cos =2, we shall change this expression into
—(1—=22)™2"dz ;
and 2/ and n being, by hypothesis, integers, we may develop
and integrate.
336. Applying this process to the expressions
cos™ rda sin® wdx
sin®z ’ cos™x

y

since the second comes under the form of the other, by making
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x = g—z, we shall consider only the first : and if m be even,

we shall assume m =2m', when we shall have

cos™rdr  (l=sinz)™dz

sin"r T sin™ ¢
m—1
b—m'sin?e4+m’ 2 sintr+&e.
= sin" x o

an cxpression, the integral of which will depend on those of

. de
sintzda and —;
s

in*a'
If m be odd, making m=2m"+1, we shall have
m —sindz)™
cos .:dx= (1—sin ‘zz cosxdr_(l_m sins 4 &e. )cos .ul:'
sin"> s sin®x

an expression, the integral of which will depend on those of
dzcosx

sinfa
The integrals of sin'zds and sin'a cos xda have already been

sin’» cos #dr and

. d cos » .
treated of ; to integrate s e must put sin x = z, whence
a

dx cos w = dz, and consequently

dz cosx _ ,dz_ —pg, SR
o */Zf‘f‘ da=—1—g +C.

In respect to the integral of ——— eyt the same transformation

will change this expression into —-—di——, a formula which
2(1— ,g)i‘
we know already how to integrate.
337. If, lastly, we have to integrate —-—d—r——- we must
cos™  sin"x
multiply the expression by cos®z + sin®x, a quantity equi-
valent to unity, when we shall have
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dr dr + dz
cos™asin®x ~ cos™2xsin®r ' cos™axsin"—iz ’

by which the sum of the indices of the denominator will be
diminished ; and repeating the operation, and setting apart
successively all the fractions, which, in their denominators,
contain powers of the sine alone, or the cosine alone (since we
know how to integrate these fractions from what has pre-
ceded), at the last operation we shall meet with terms still
containing powers of the sine and cosine, or which will be of
the following forms :

dr dr dr

€os £'8in .)‘J Cus .l" sina

x

To mtegrute — , we must multiply the numerator by

cosasina

coste 4 sinte, and we shall have

da coso + sine® d.sinx d.cosa
=, ol = 0 —
cos.'sin 2 sine cosa  sina cos.r
the integral of which 1s .

log sin 2 —log cos ++log C =log C tang «.

<

To integrate ——, we must put cos » =z, and we shall have
sin

dz dx dx dz

dr= — —_— =

sina’ sina  sin®¥ 1—==z2’

an expression integrable by the method of rational fractions.

dx
» shal inz==z, and hall
In regard to o Ve s all suppose sin 2 and we sha
find
da dz
'/msw_fJI_zz'

338. In general, we may always transform expressions con-
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taining sines and cosines into others which do not contain
them, by simply equating sinz or cos» to a new variable z.
For example, if in the expression sin™a cos”xdx, we sup-
pose sinz =2, we shall have
dz
1=z

cosz=a/1—=22, dr=

. and substituting, we shall fad
n—1

sin™r cos"zdr =2"(1— z")% Q- z’)_*dz =z2"(1—2%) "% dz,

an expression which comes under the form of binomial dif-
ferentials.

The method of integration by parts may also be applied im-
mediately to the expression* sin™x cos"rda.

339. Lastly, trigonometrical formula also may in some cases
be employed with advantage. To integrate, for example,
sinme cos nadz ; since Trigonometry gives us

sina .cosb=1}sin(e¢+b)+1sin (a—b),
by comparing the exprcssi&ns sinme cosneds with this for-
mula, we shall find

sinma cosnxdr = L sin[(m + n)z] dr+ Lsin [(m—n)a]de,
and the integral will be, art. 333,
cos[(m+n)x] 3 cos[ (m—n)]

Co=
3 m+n = m—n

On the integration of exponential und logarithmic quantitics.

340. It has been demonstrated, art. 37, that, taking the

* To compare the expression with udv, we must decompose it thus:
cos”+

w41

sinm—1r cosnx sin xdr=—sin m—1d,
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logarithms in the Napierian system, we have da* =a'dx loga,
and therefore, reciprocally,

r

Jatdr— loga’

a form which will serve to integrate the general expression
a*Xdz, in which X is a function of . For this purpoese we
must write the expression thus: X.e’dr; and integrating by
the method of parts we shall have
X.a
j ‘( a (10’:17.5‘(; / l(;g—l—[dx . (M'),

the function X and its derivatives being then differentiated
successively, we shall deduce dX =X'de, dX'=X"dz, &c.;
and therefore

X at ,
g 0 g = gt = f X'
whence, substitutiag this value in the place of the last term
in the equation (64), we shall obtain

X.a" X'.a" a*

S Rarde= ~ (loga)® +/ (log a)2

This operation being thus continued, we shall arrive at length
at the development

. X' b. ¢ X" X0
/ Xa'dr=a loga (log(l)g-'- (loga)3 (loga)‘ o —(W-FT.
_ . adXw
( loga)"*" 4
and if, taking the series of the differential coeflicients ... ...
X, X", X" .... X", the last of these coeflicients be constant.

we shall have dXW =0, and tl\ereforc the part under the in-
tegral sign will vanish.
n
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341. Let us take, for example, X =¢%; we deduce thence

X =322, X"=2.3.7, X" or XM =3.2;
and therefore,

3.2 2.3z 2.3 )
Togay* T (loga)*~ (logay)°
If we make a equal to the number e, which is the base of the

Napierian system, logz becomes loge, and since loge=1, by
virtue of the equation ¢ =e¢™#°, the preceding series will become

JBerdr=er(a®—-8212+2.37—2.3).

Searde= a'(loga 0

342. We may arrive also at another development of fa*Xdz
in the following manner : making

S Xde=P, fPdr=Q, f/Qdr=R, &c., nnd mtegmtmg by tlne
method of parts, we shall have

JoXdr=aP—fu* loga Pde . . .. (65),
Ju'loga . Pdr=a*logd .Q— fa' (loga)® Qdr;
substituting in the equation (65) it will become
Jo" Xdr=ua'P—a’ loga.Q+ fo* (loga)2 Qdr;
and continuing to integrate by parts, we shall have generally
Ja'Xdr=a*[P—Qloga+R (loga):— &c.] * fZa(loga)" dar.

343. If we apply this formula to the case in which X = —

we shall find
1 1 _ 1 1
P——Iﬁ’ Q= 3.4.%° R"’z.a.aw’ Z'2.3.4...

and therefore

f“_"'2= T — L] (101-:«)) (loga)> ardu
234/ 3

447 3.4 2.3.42¢
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The integral of a—}if is a transcendental function, the exact

value of which has never yet been determined.
344. We see, generally, that whatever negative and in-
tegral value we give to the exponent of -, we shall always

come at last to the transcendental /° iii ; for the exponents

of z in the functions P, Q, R, &c. being successively dimi-
nished by unity, the last of these functions must be of the

form %, and consequently the last integral will be

Aar a*dx

J d-t'=Af—x——,

since A is constant.

x

Aa*dr
X

»

To obtain an approximate value of the integral of

we have no other means than to substitute in the expression
the development of ar, which, as we have seen, is

2] 3
1+ 2log a+-a§(log a)2+-2'}3-(log a)’+&e.,
and then to integrate each term separately.
345. If in the equation % =d.logu, or du = udlogu, we
make u=aY, we shall have
dav =avdlog av;

thus, whenever we can decompose a differential into two parts,
one of which may be represented by ¥, and the other by d.
log v, the integral will be 2¥+ C,

346. The integration by parts may be applied also to the
expression Xda (log )" ; for if we represent the integral of
Xdx by X, we shall have

S Xdxr (log x)" =X (log w)"—'y%d-r(los z)"
R 2
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and this last integral may be made in its turn to depend on
another of the form X dz (log «)"-2, and so on.

Bernouills’s series.

847. We have seen that differential expressions are fre-
quently not integrable until they have been reduced into the
form of a series, and that, for this purpose, representing by
Xd.r a differential in which X is any function whatever of x,
we have first to reduce the function represented by X into the
form of a series, and then to integrate, after having substituted
the development thus obtained in the formula Xdz.

The series of Bernouilli has the advantage of reducing /" Xdax
into a series, even before we have given the form of X, and is
in the integral calculus what Taylor’s series is in the differen-
tial : it is proved in the following manner :

Proceeding first to integrate Xdx by the method of parts,
we shall compare /' Xd2 with the first term of the formula

Sudv=uv—fodu,
when we shall have
X=wu, de=dv;
the integration by parts will therefore be effected by making
S Xdz=Xo~frdX . ... (66);
and the integral being taken in respect to », we have
dX

dX = Edd‘,

and consequently

. dX
JrdX =/ Fp

Integrating again by parts, « will be represented, in this case,
by %, and dv by xdx, so that we shall have v= i;— and we
shall find

zda.
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X 0X 5%
S ==y

or, putting the fraction 4 before the sign of integration,

aX X dX

‘/d. —adx —2—- 5= Jfat—— . (67 ;

. d*X X .
and replacing 5 by Tz*—d'r’ and replacing the process, we
shall obtain

X dﬂ
Jat d‘:l X z"d.z'—-}z’g—)g—j[ dﬂ{ ..... (68) ;

whence, substituting in the equation (66) the value of the
first side of the cquation (67), and in the result substituting
the value of the first side of the equation (68), and so on, we
shall obtain

dX 22 d*X a3

_[Xdz:Xz-—E.ﬁ+ ;’F.—l—.ﬁ

— &c. + constant.

On the quadrature of curces.

348. Let s be the arca ABMP (fig. 51) of a planc curve ; pig. 51.
if the abscissa AP=. becomec AP’ =a+ &, the area s will
become

wy bt

area ABM'P' =54 dsh-}-

drr 12 e
and we shall hayve theefore
ds 125 12
curvilinear arca PMM'P’ = —1-\- h+ :I " ; + &e.

Now this area is comprised between the two rectangles PM),
and P'M, for which we casily obtain the analytical expressions
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rectangle PM'=P'M’ x PP'=f(++ k)4,
rectangle FPM=PM xPP'=fz.h;

the ratio of these rectangles therefore is

Sz+M)h _ flz+h)
“ feh T fe

and, in the case of the limit, this ratio is reduced to

£

==l
But the curvilinear surface PMM'P, being comprised be-
tween the two rectangles, must differ less from the rectangle
P'M than the rectangle PM! does ; and consequently, if, in
PM’
PM
be the limit of the ratio .

area PMM'P’
rectangle PM’

the case of the limit, we have

=1, much more will unity

Replacing therefore the terms of this ratio by their analytical
expressions, we shall have

~

ds = d*sht ds dsh
Jx.h - Je
and, passing to the limit, by making % =0, we shall find
ds 1.
dafr = 7’

whence ds=fx.dz ; and putting for fx its value, we shall have
ds=ydx .... (69).
349. We might also determine the differential of the area

of a curve, by the method of infinitcsimals, in the munner fol-
lowing (fig. 59) :
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trapezium PMM'P = &I;ﬂ x PP’
= y'+(,;+d.t/) v = yda _I_dr;l/

and rejecting dzdy as an infinitesimal of the second order,
there will remain ydx for the differential.
850. As a first application, we will determine the ares of
the portion BMP (fig. 52) of a parabola. ’ !
Let y® = mr be the equation of the parabola, and B the
origin ; we find then, by differentiating, 2ydy = mdx ; there-

2 42
fore d.r:fdy, and conscquently yda= g’m—dy ; whence, in-

tegrating, we have
2
/ = y= —2~” -+C . . . (70).

To determine the constant, we must observe that when y =0,
the integral which expresses the arca sought is also 0; this
hypothesis, therefore, reduces the equation (70) to 0=04C,
and

2 2
Ydx = = = - mr =2y
jyrl.:r_ 3 e mr=gry

351. We have now some important obscrvations to make
respecting the determination of the constant; and for this
purpose we shall solve the same problem, taking the parabola
whose cquation is

Y=mtar ... . (7T1).

In this case the origin of the abecissee is no longer at the ver-
tex of the curve; for on making y =0, the equation (71) gives

e==2 ; and since this abscissa must terminate at the point
n
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B, in which y=0 (fig. 53), if we draw from B the line . . .
BA:-';;-, A will be the origin.
This being premised, on proceeding s before, we shall find

2,0 2 ¢
2ydy =ndwr, ydo = -;‘—tly, and_/:yd.t=§- 1"—+C .- (72),

and to determine the constant, we must observe that the arca
ADMP, which here represents the integral, must become 0
when the ordinate MP coincides with AD.

Now AD being the ordinate which passes through the
origin A where the nbscissa »=0, the equation (71) will
give us, on this hypothesis,

y or AD= ,/m ; and making, therefore, fyda =0, and y= o,

these values will reduce the equation (72) to 0___?»:-

3)—1+L;

3
. 2m2 .
whence we deduce C=— 357 and consequently the integral
g n

sought is

DI ] .:
Syda= é 9y _ ,;—li -=area ADMP.
3n 3In

352. In what has preceded, we have deduced from the
equation of the curve the value of da, in order to substitute it
in the formula ydz, and then integrate. We might procecd
otherwise, putting in that expression the value of y instead
of that of dir; for to obtain the integral, it is sufficient that
the differential proposed contain only one variable ; thus, in
making the substitution, we may choose the one which re-
quires the least calenlation. )

353. An integral, such as /fzda, may always represent the
area of a curve, the cquation to which is y=jx ; for this cqua-
tion being given, if we substitute the value of y in the for-
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mula fyde, we shall have /frdr for the area of that curve. It
is on this account that when a problem conducts us te the in-
tegrating a function of only one variable, the problem is said
to be reduced to quadratures.

354. Let X be a function of 2, and suppose that by in-
tegrating Xd» we have obtained

SXdr=Far4C;

this integral, in which the constant C is not yet determined,
bears the name of the general indcfinite integral, or, more
simply, of the indcfinite integral, and it is complete when it
contains the arbitrary constant C.

355. If, by any hypothesis, we determine this constant C;
if, for instance, we suppose that /Xda ought to vanish when
»=a, the equation (73) gives, in this case, 0=Fua+ C, whence
C=—VFa, and the cquation (73) becomes

SXda=Fz—Fu;

this integral F.o— Fe is then u particular integral, and we see
that a differential expression has an indefinite number of par-
ticular integrals, since we may make an infinite number of
hypotheses respecting the constant.

356. In muking the hypothesis of the integral : being 0 when
&=a, we supposc that taking an abscissa AB=a (fig. 54), the Fig. 4.
surface is comprised betwixt the limit BD and the indefinite
limit MP, which corresponds to AP =. ; the operation, there-
fore, by which we determine a particular integral is the same
with that which would fix the position of the limit BD, from
which we reckon the integral. The second limit MP will, in
its turn, be fixed invariably, if we give to » a determinate
value 6; and then the particular integral fyde=Fa—Fu
will become

Syde=Fb—Fa, . . .. (T4,

and the surface BDMP will be no longer arbitrary.  In this
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case, the integral bears the name of definite intogral, and is
said to be taken from r=a to 2=0.

857. We will now investigate the definite integral of z™dw,
presuming, of course, that we have given the two values a and
6, which satisfy the indefinite integral

)
E;H+C...(ﬁ)

Suppose that the first corresponds to /ydr=0; we shall have,
then,

ant+l

m+1 +C=0,

and the particular integral will be
. 2+l am+1
Serds = w1

Put now »=14, and we shall have for the definite integral

bm+l Apypd
m+1" m+1

J&mdr==

358. We might arrive also at this integral by making
successively #=a, and =5 in the indefinite integral, and
subtracting the first result

amti

s S
from the second

om+1

my1 10

observing only that, in taking this difference, the part sub-
tracted must be the value of the function of » at the origin of

the integral,

359. As a third application, we will determine the area of
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a right-angled triangle ABC (fig. 55): in this case the equa-
tion of the straight line AC being y=az, on putting this
value of y in the formula ydz», we obtain axdx, whence

_/}d.r:/b.rdz:%e-}-c;

and the area being 0 when «=0, the constant is equal to 0,
and therefore

ar: » _xy
area ABC_? =gxar=--
360. If in the formula ydz we put the value of y, deduced

from the equation of the circle, we shall find fdr./a2—z* for
the cxpression of the area of the circle; and we saw (art.
282) that this integral had for its value

e e 2 gin—1T
2,\/a at + 5a sin a+C.

The part }a? sin—'; cannot be determined except by supposing

that the ratio of the diameter to the circumference * is known ;

and we see, therefore, that the integration of diry/ a®—a% can-
not lead to the solution of the problem of the quadrature of
the circle ; which is likewise the case with the quadrature of
the cllipse, which depends on

[/ _—
;' - fdx \/ at—a*.

If we compare these two expressions, we shall derive the pro-
portion

* If, for cxample, 1 = —léa, we have ;::-lg, and we must procced as in

art. 278, to determinc the corvesponding arc.



252 INTEGRAL CALCULUS.

area of cllipse : area of circle : : -f; Sdzf@@—2* : fdey/a*—2*,
or,
. . b
arca of ellipse : area of circle : : o 1;
whence we have

area of cllipse = é, area of circle =%1m“=1mb._

On the rectification of curves.

361. To rectify a curve is to obtain a straight line equal 1o
an arc of the curve. Now we found, art. 159, that the dif-
ferential of an arc of a curve had for its expression

ds=y/dr+dy* . . . (76);

if, therefore, an equation be given between two variables, » and
y> and we wish to rectify the curve to which it belongs, we
must differentiate the equation, and substitute the value of
dz or dy, thus determined, in the expression (76) ; the quan-
tity under the root will then involve only one variable ; aud
if we can obtain the integral, the curve is rectifiable.

362. Let us take, for example, the curve® found art, 165,
the equation to which is 3° = 7.2 ; this equation, being dif-
ferentiated, gives us

3y*dy =2nade ;

® Tt bears the name of the semi-cubical parabola. This cquation, as well
as that of the common parabola, is only a particular case of the general
equation ym —agan, which, for that reason, is called the equation of the para-
bola of all orders.

We may also consider the equation 1y=e« of the hyperbola between the
asymptotes, as a particular case of the cquation 1myn = @m+n, which 1
therefore called the equation of the hyperhola of all orders.
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whenee we deduce

3ytdy 9 Y 42299 4.0.-2Y,,
de= ur d’n_‘l n%2% 0 4 ;'—y;dy —Z;dy

and substituting, we have

— 9 4 9
J(I.r2+dy¢=J(z%+l)dy =dyJZ.'%+].

To integrate this, since dy is the differential of the expression
under the root, except as to the constant, we ghall put, art.

271,

LR~

:—’Z—}-l::;
n

whenee we deduce

dy = %" ds;

and substituting, we shall have

I dp =g st

and the'rcforc
Togap=22 Sy c
SV da+dy -6‘5'—272 +C,
2
or, replacing the value of z,

——  8a/9y '
Wil tdp=g (2 +1)°+
To determine the constant, we see, from the nature of the
cquation of the curve, that, at the origin of the abscisse, y is
0 ; whenee, supposing that the integral also is 0 at that point,
we have

8n 8n
0—-2—7+C, C= —97 :
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and consequently

If 2 = a, the arc s comprised between the limits z = 0, and

e=a, will be
8n 9/a\i S 8a
=g/ [a6) 1 —g
363. The ion of the cycloid, art. 200, gives d1? = wdy’ ; this
4 'J e 2("’/__"/.‘

value, therefore, being substituted in the formula (76), we shall find

ds= . ydy® 2ay - 2a
! J W gV Toy—p W) @=y

dy
(2a—y)b

X
:(2(1)" X

and since —dy expresses the differential of the part under the root, we shall
put (art. 271) 2a—y =z, when we shall have

dy J 2 — _ (ot
20—y

an equation which, being integrated, gives
Jiy J 22— (o2t c=~2Fm+C;
22—y
or, restoring the value of y, Y

% R
JSay 2u_y=—2¢2a(2a—y)+(; coe s (1D

To determine the constant, we will take the integral so that it shall vanish
when y=2a; on this hypothesis, the equation (77) is reduced to 0=0+4C,
which shows that there is no constant to be added, and the arc of the cycloid

Fig: 57 will extend from the point B (fig. 57), where y =24, to the point M,
whose coordinates are  and y. The absolute valuc of the arc MB being
24/20(2a—y), it will be observed that BE =2a—y, and thereforc
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2/2e(2a—y)=2/BD X BE=2BG ;

whence it follows, that the arc MB of the cycloid is double of the chord BG,
consequently are AB=2BD.

On the determination of the surfuce of a solid of revolution.

364. If a curve BC (fig. 51), lying in one plane, revolve
about the axis AX, it will generate a solid of revolution. We
will now investigate the expression for the differential of the
surface of the solid which is thus generated.

For this purpose, let AP = 2, PM =y, PP'=/, and con-
sequently

PM=fz=y
d diy bk
M’ =f(r+k)=y+het 72

dm Tt

then the ordinates MP and M'P’ describing, in the course of
their revolution, unequal circles, these circles will be the
hases of a truncated cone, of which the chord MM’ will be
the side; and the expression for the surface of this truncated
cone will be

circ. PM +circ. PM’
2

x chord MM,

or, representing by 1: 7 the ratio of the diameter to the cir-
cumference,

27.PM422P'M’
2

x chord MM’ =w(PM +-P'M')chord MM’ ;

whence, putting for the ordinates PM, P M, their analytical
values, we shall have

.em;ﬁwc of truncated cone MM’

dy, Ty B 5+ &c.)chord MM,

=x(2y+ 7 12

dy
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and, dividing by chord MM/,

surface of cone MM’ _
chord MM’

=r(2y +”"+331‘2+& )

If now we represent by s the arc MM of the curve, and by =
the surface generated by that arc ; since, on diminishing 4, the
arc tends to coincide with the chord, the first side of the pre-
ceding equation must be replaced in the case of the limit, by
(fiL:; and the sccond side being at the same time reduced to

27y, we shall obtain

whence du=2myds ; and pytting for ds its value found, art.
159, we shall have, lastly,

du=2my/datydy? . . .. (78).

365. By the method of infinitesimals we should have con-
sidered the element of the surface of revolution as that of a
truncated cone generated by the revolution of the elementary
trapezium MPP'M' (fig. 59) about PP’; and this truncated
cone would have for the expression of its surface

(PM+PM)

circy
2

= (2y+dy) ds =2myds+ndyds,
whence, suppressing wdyds as an infinitesimal of the second
order, there would remain, for the element of a surface of re-
volution,

2ryds =2my o/ dady®.

366. As a first application, we will take the surface of a
paraboloid of revolution, which is the solid generated by the
revolution of an arc AM (fig. 60) of a parabola about its axis:
the equation of the parabola y®=p.r gives
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]1
this value being substituted in the formula 27wy, da®+dy?, it
is reduced to

P +py , . 2n —_—
2"-&/ ( %2—") Ayt = —ydy VAP + 1%

and ydy being the differcntial of the quantity under the radical
sign, except as to the constant, we must put (art. 271) ..

2,,2
dr= ———2'yd'y and d.2= 4’————y :l'y ;
P

44+ p? =2z, when differentiating we find y(ly:d%, and sub-
stituting and integrating, we obtain

] B
2r a - T *
/[l l/dl/\/tl.y +pt= Z——- dz =g, +C

S

LA

(4y +p) +C.

The constant is determined by supposing that the integral is
O when y is 0, which reduces the preceding cquation to

0=" 2+ C, whence C——(—)]ﬁ

( T
and supposing that the integral is taken from y =0 to y =4,
the definite integral will be

L+ =)

367. As a second application we will find the value of the
surface of a sphere. This curve surface being generated by
the revolution of the semi-circumference about its diameter,
let 22+ y®=a® be the equation of the circle : this being dif-
ferentiated, we shall find.

rdv+ydy=0,
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whence
ady . a%da®
dy= "'"'!;" dy*= Pl

and substituting this value in the formula (78), we shall
obtain

——
f2ny J (& +1)des= f2nden/ 7T
y
= f2radr=2naz+C...(79)-
To determine the constant, we will take the integral to com-
mence from the point A (fig. 61) ; and since the origin of the

abscissz is at the centre, we shall suppose the integral to be
0 when &= —a, an hypothesis which will change the cquation

(79) into
0=—2742*4C, and thereforc C=27wa?,
and substituting this value in the equation (79), we shall have
S2rady=2n (a2+d?).

Taking now the definite integral betwixt the limits o= —aq,
and #=a, we must change # into a in the preceding formula,
and we shall obtain for the surface of the sphere,

S 2nadx =2m (24%) =4mas.

368. We may also find the surface of a cylinder ; for this
surface Deing generated by the revolution of the rectangle
AD (fig. 62) ahout the axis AB, let AB=a, AC=0; then
the cquation of the straight line CD will be y=5, and there-
fore dy=0. Substituting these values in the formula (78), it
is reduced to 2rbdz, and integrating we have

S 2mbdz =2nbr+C;

whence, taking the definite integral betwixt the limits x=0
and 2 =a, we find for the surface of the cylinder

2wba=2wb x u= circumference of base X heigh.
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In regard to the surface of the cone, this solid being generated
by the rotation of the right angled triangle ABC (fig. 55) Fig. 55.
about the axis AB, let AB=q, CB=4; then the cquation of

AC will be yzgz, and this being differentiated, gives

dy= g de, dy?= %(Ia:*.

These values of y and dy® being substituted in the formula
(78), we have

ba?
f2z'y\/(l¢“+d_y“—f21r"d.r.\/a*+b“-"w‘—\/a“*+b’+C

and taking the definite integral betwixt the limits #=0 and
»=a, we obtain

~

area of cone =mwbaf a4 6* =2mb x _1_\5(_

=curcumference BC x A2(J .

On the cubature of solids of revolution.

369. Let v be the volume of the solid generated by the
revolution of the curvilinear arca ABMP about the axis AX
(fig. 51). Fig. 51.
If the abscissa AP =a become AP’ =2+ /4, this volume will
be augmented by the part gencrated by the revolution of the
mixtilinear trapezium PMM P’ about the same axis; and
since the volume generated by ABMP is a function of 2, for
it increases or decreases at the same time with «, the volume
generated by ABM'P' will be a function of »+4%, and will
have for its exprcssion

dev h?
"+ it et
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whence, consequently, subtracting v, the volume generated by
ABMP, we shall have
‘_IE/, + (_19_1) "'_g
de  de®l2
for the volume generated by PMM P'.

But this volume being comprised between the cylinders
gencrated by the two rectangles MP” and M'P, must differ
less from cither of these cylinders than the cylinders differ
from each other ; and if, therefore, it can be proved that, in
the case of the limit, the ratio of those cylinders is unity, still
more must this be true for the ratio of the volume described
by PMMP' to onc of the cylinders. This being premised,
we have, evidently,

+ &e.

cylinder described by PM ==[ f (04 4)T4,
cylinder described by P'M =x( fa)*h ;

the ratio of these cylinders is, therefore, expressed by

LA+
(fay 7

and since, on making 4=0, this ratio is obviously reduced to
unity, the same will be the case with the ratio of the volume
generated by PMM P’ to thut of the cylinder described by
MYP'. But this last ratio being represented by

f.lﬁ v ﬁ‘ & dv 2o h &
dz tawg T getigagthe
u( fo)eh - w(fa)?
we have, in the case of the limit,
dv
dx

Ay =15

whence we deduce
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dv .
() =myt
7 =Ty =mye,

and lastly
do=mytde . ... (80)

370. We might arrive at the same result by the considera-
tion of infinitesimals ; for the volume MON (fig. 64) may be Fig. 64.
conceived to be divided into infinitely thin slices, by planes
perpendicular to the axis of revolution; and one of these
slices, which will be the element of the sulid, may be con-
sidered as « cylinder, the base of which is the circle described
by y, and its height the thickness af of the slice represented
by da; this clement will consequently be expressed by my2dr.

371. Applying this formula to the determination of the
-olume of the prolate spheroid, which is the solid generated
hy the revolution of an ellipse about its mujor axis, since the
equation of the ellipse referred to the centreds . . ... . ..

o

5 . . . .
yr=-, («*—+7), we must substitute this value of 42 in the
¥=, .

formula 7y%4r, when we shall have
0°
wytdr= r:‘ﬁ(u"—.r‘-’)d.r ;
and integrating, we shall find
b a3
=g (a2r—" 3
Srpde=n— (a 3)+C... @

Supposing that the integral is O at the point A (fig. 56), Fig. 7.
where #=—a, we shall have

e 2
—-_—n— 3
C_'n'ag X 54%

and substituting this value of C, the equation (81) becomes
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. b a® 2
ffy’dd"——-ﬂ""-g-(aiw— ';3— +§ﬂ’) .
Making, then, #=a, in order to have the dcfinite integral
comprised between the limits = —a, and 2= +«, we shall
obtain

24 4
—— a3 = b
_/‘ay“dx_vra2 50 §1rb a,
which is the volume of the prolate spheroid.
If b=a, this volume will become that of the sphere, and
will have for its expression

2
g'rmS = §1ra’x 2a =§ of the circumscribed cylinder.
We may also determine the volume of the paraboloid of re-
volution ; for which purpose, taking the gencral parabola as
the generating curve, its equation will give
y= a.z";,

and substituting this value in the formula (80), we shall
obtain

2n+m

2 ” muata™
= [ratamdoe =———
v = [ratem Sutm

To determine the constant, we shall suppose that the volume
is 0 at the origin where »=0, whence we shall have C=0.
In the case of the common parabola, m =2, n=1, and therefore

P x
v=70*— =7mata. = =7y .
3=™W"3

2

Now =38 being the area of the circle of which PM (fig. 65) is
the radius, the expression 47y°.# represents the half of the
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cyiinder described by APMB about the axis of the abscisse ;
and therefore the volume of the common paraboloid is the half
of that of the circumscribed cylinder. (Note seventh).

Ou the cubature of bodies bounded by curve surfaces, by means
of double integrals.

372. Let EDCB (lig. 85) be a solid contained within the angle of the Fig. 85.
coordinate axes Av, Ay, Az, and terminated by a planc DCG, parallel to
the plane of y= : if & become -/, the volume of this solid will be increased
by a slice DIYCC', whose thickness is #; and representing by V' what the
volume then becomes, we shall have

-
V+— +d’!V _/1‘ +r_l-l_\ —“—-—l-(\(:-

dv " dan 1.2 dad 1.2.3
and the slice DD'CC'FG will be expressed by

V AV e dasV &3
—V = - Koo
v ot i et Ie tzat e

which, in the case of the limit, gives us

V-V _dv
—_— .. o1).
h de @D
The two methods of limits and infinitesimals have alrcady been fully ex-
plained, and we shall not scruple, therefore, to introduce here certain con-
siderations, derived from the latter, which place the subject hefore us in a
clearer light ; after which we can again recur to our method of limits. The
av
cquation (81) then shows us that o is the differential coefficient which de-

tennines the volume ; the differential consequently is '-:—:fd‘v; and this dif-
- ar

ferential is no other than the indefinitely thin slice DI)'CCT'G, of which da
is the thickness. 1f in this slice we make y vary, it will become indefinitely
thin in respect of y, as it is already in respeet of a3 and consequently it will
be reduced to an ¢l tary prism ID'KF, the height of which is =, and its
base the parallclogram FGKL=d.rdy ; we shall have therefore

v
—,-_ledl/__- dady
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whence
a&*V
dzdy
and replacing z by its value derived from the equation of the curve, this
value will be, generally, a function of r and y, which we may represcnt by
M, and we shall have

2\’

dady =M.

373. To determine the volume from this expression, we shall put it under
the form
av

III

—d-y— y = Mdy ;

when the notation of the first side shows us that the expression for the dif-
ferential of %V—— has been arrived at by considcering y as variable and @ as

constant. The same hypothesis, consequently, nust hold good when we
come to the inverse operation of integrating ; in which case «, being con-
sidered as constant, may be found in the constant which is to be added w
the integral. We shall therefore consider this constant as, gencrally, a
function of r, and representing it by X, we shall have, for a first integration,

dl—fMd_l/+x ... (82).

dr —
. . A%
To effect the second integration, we must observe that the notation i
ar

intimates that the differential of the surface has been taken, considering a
alone as variable ; the same hypothesis conscquently must be adhered to in
the inverse operation of integrating ; so that, representing by Y the function
of y which replaces the constant, and multiplying first by du, in order to
change the differential coefficient into the differential, we shall find

V = fda( fMdy+X)+Y.
374. The order of the integrations is evidently arbitrary ; and the pre-
ceding operations may therefore be indicated thus :
V=/fzdady . . . (83).
376. To give an application of this method, let it be required to find the
volume of the sphere; the equation of the sphere be'ng
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- ayta=r
we must from this equation deduce the value of z, and substituting it in the
formula (83), we shall have

S/zdrdy or fdy fzdr=fdy fdva/r3—ri—y* . . . (84);
y then being considered as constant, and the difference 72 — 32, which is es-
sentially positive, heing rcpresented by A3, we shall find, integrating in
respect of 1,

JAa/rt—vi—yi= flaJAS— 14

but, from art. 282, we havc

1., v
_/iliA‘l—n‘:'%‘JA’ — T g ATl Y

whence, replacing the value of A3, we find
JUFTI =g T 5 () ol Y (89,

To obtain the definite integral, we niust observe that the constant value of y
being represented by AP (fig. 86), all the points determined by this equation
must have their projections in the direction of the line PM : for any onc of
these points having the variable = for its ordinate will have AQ, QN for its
other coordinates, and QN will be equal to the constant AP, whilst AQ, in
the direction of x, may be replaced by PN, so that measuring the values of
« along the line PAM, the values of y will be constant; taking the integral,
therefore, from P to M, that is to say, from 2 =0 to 2 =PM = \/',u:.,;;, we
must substitute successively for 2, on the second side of the equation (85).
the values »= \/m‘, 2=0, and subtracting the second result from the
first, we shall find, for the definite integral,

1
3 (rl—y?)sin—1. 1.

Now the arc whose sinc is 1 is equal to the fourth part of the circumference,
represented by 2, and the definite integral therefore becomes

%(f"'—.'/’)-;: 3

which value of /'dzn/77—37—7* being substituted in the equation (84), we
shall have .

Hrerty=7fr=ay=5 (-5 )+X;

Fig. 86.
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and integrating from =0 to y=r, we shall find
n 2m73 1
2 = m———rd
S zdzdy = 4<r3 7 "6 xr

This will be the volume resting on the quadrant of the circle BAC, and will
conscquently be the eighth part of the sphere. (Note sixih).

On the quadrature of curve surfaces, by means of double
integrals.
376. Let EDCB (fig. 85) be a curve surface=S$, and suppose that the
abscissa a is increased by % ; the surface then will become . . o o v o o & ©

la
b_'___h_‘_d"s G

W] -+ &c.; and in the case of the limit, the ratio of the in-

crement of the function S to that of the variable » will be reduced to

&5

the differential therefore will be % dz ; and this differential will be repre-

sented, in the figure, by the indefinitely narrow strip DD'CC'.
If now y be made to vary, and be taken infinitely small, the strip DD'CC’

will be reduced to DD'IT’, and will have for its expression —— *3 ——dxdy.

dady

But the surface DD'IT’ being indefinitcly small, it may be considercd as a

planc ; and, consequently, when multiplied by the cosine of its inclination y

to the plane of zy, it will be equal to dzdy (note scoenth); and we shall have,
thereforc,

DD'IY cos y=dady,

or
28
dad -dady cos y =dxdy,
whence we deduce
as
dady cosy

To determine the valuc of y, let Ar+ By 4 Cz4-D =0 be the cquation of
the plane tangent ; we know then that this plane makes with the plane y,
an angle which is given by the cquation (note eighth).

wr= [1e(E)+(5)

considering, therctfore, A+ 4 By +Cx 4D -0 as the cquation of the tangent
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planc at the point of the curve surface whose projection is dvdy, we shall

have
d.uzj_J +< :Z)J""(T‘zi‘; )2' - - - (86).

To determinc the differential coefficients which enter into this cxpression, we
must observe that at the point under considcration the tangent plane coincides
with the curve surface, the equation to which we shall represent by =z =j(x,u);

dz dz
and, consequently, the values of i and ) which enter into the expres-
‘al ax

sion for cos y, must be regarded (art. 75) as the same with those deduced
immnediately from the equation z=f{a. y). Before making these substitu-
tions, the cquation (86G), multiplicd by drdy, must be integrated twice in
order, an operation which we shall indicate, as before, by the double sign of
integration, and we shall have’

S=£/dl'dyJ1+( ) +(

477. To give an application of this formula, we will determine the expres-
sion for the surface of the sphere.
Its equation being

a2y A= . . . . (87),
we must differentiate it, and we shall find, after dividing by 2,
xdr+ydy—+:d: =0,

whence we deduce

dz= —?d.r -—-‘zdy 3
and consequently

dj -_= x>y

dr— = ri_/ E

Substituting these values in the expression

JG+HE)

we shall change it into

PR o B
1+ 5+t e AT
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and consequently

[fdn‘dle+(% ( ) _ 1d.uh/

and putting the value of =, we shall have

mhdyj 1+(dﬂ +(:Iy) NLML*_;

378. To citet these integrations we shall put

—”"’_i_.—i——‘y--j Ay f e . (BB),
Nri—at—y? N1t —at—yt

marking thereby that we are to commence with integrating the expression
dv 7
\/1‘ —drt—
Makmg, therefore, as before, »2—3*=A?, and integrating, according to
art. 274, we shall have, adding a constant function of y,

ing z as the only variable.

-—p g
S ’L—___r_ —sin - +Y;
JAT—a? A
putting, then, for A its value, and taking the definite integral from v =0 to
+=y/r2—y>*, there will result

dx . =1 | N T
=sin .1 :fart'lﬂnjtrmﬁ':s ;
2

S
\/1“— z-.‘_?l‘l

and this value being substituted in equation (88), will give us

dxd,
J— Al _/‘;ﬂly: ;;'rry+x.
N —at—y 2 -

where X represents the constant which must be considered as a function off
« ; taking, then, the definite integral between the limits y =0 and y =7, we
shall find, lastly,

1" rdxdy = _l_ ot
NTE— Ry 2

The surface thus determined will be the part comprised within thie angle
formed by the axis of the rectangular coordinates a4, y, . that is to say, onc.
cighth of the surface of the spherc.
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On the integration of functions of two variables.

379.  The two principal methods employed for arriving at
the integration of differential equations, which contain two or
a greater number of variables, consist, 1st, in the separation of
the variables, in order to apply to themn the usual processes for
a single variable ; 2d, in the investigation of factors proper to
render a differential complete.  We shall proceed now to the
discussion of these two methods.

On the scparation of lhe variables, the linear equation of the
JSirst order, and the properties of homogencous_functions.

380. It will be scen that every differential, to be integrable
by the rules alrcady given, must be of the form ¢ ; so that
we should be at a loss how to effect the integration, should the

. . dr
equaticn contain terms such as y2der, vyde,——, &e. We are
K P

not, however, to conclude that the integration is impracticable :
for it, by algebraical operations, the expression can be s trans-
formed that each term shall eontain only mne variable, the in-
tegration may still be effected. The equation wdy-+ydz=0
comes under this case; for by dividing this equation by 2y,
it becomes

dy dr_

y

which, being integrated, gives

0;

logy +log »=C,
and representing by A the number of which C is the logarithm,
we have

logy+logz=logA ;
whence, consequently,

log xy=1log A\,



270 INTEGRAL CALCULUS.

and, passing to numbers, we have
ay=A.
381. Let the expression be the general equation
¢x.dy+Fy.dr=0;

to separate the variables, we must divide each term by ¢».Fy,
and we shall find
4o,
Fy " ox
an equation in which the variables are separated.

382. To give an example, let it be proposed to integrate
(1+42%) dy=dry:
dividing by (1 +2%)/y, we shall have

and integrating this equation, we shall obtain
2\/-37=tan—’.r+0.

383. The variables may be separated also by division in the
formula
ox.Fy.de+¢'z.Fy.dy=0.
For this purpose we have only to divide by Fy.¢'w, when we
shall have

o Fy,
; dJ+Fy({y_O.

¢z
This process is applicable to the equation
22ydz+(3y+1) dyya®=0,

for, if we divide by y /2%, we obtain
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384. The integration may also be effected, if the proposed
eyuation involving two variables can be so reduced that each
side shall contain only differentials of which the integrals are
known ; as, for instance, the functions

ydo—ady

o £

zdy+ ydr, &c.,
Y

. . . @
the integrals of which are respectively v and zy.

385. There is an important equation in which the separa-

tion of the variables is cffected in a manner particularly in-
genious.

This equation is
dy+Pydr=Qds . . .. (89),
where P and Q are functions of z, and it is integrated thus :

y is assumed cqual to the product of two indeterminate quan-
tities, X and :z, which gives

y=Xz, dy=Xdz+4:dX ;

these values being substituted in the equation (89), it is trans-
formed into

[dX + X (dz 4 Pzdo) =Qdw ;

and the function X being arbitrary, it is determined by equating
to each other the terms without the brackets; which resolves
the preceding equation inte the two

X (dz+4Pzdr) =0, zdX =Qd.
The first of these gives

d:z- = —Pdr, whence log 2= —/Pd.r,

~
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or, observing that loge is equivalent to unity,
log z=—/Pdas loge=logc~/rdr,
and, therefore,
=g rir;

from the second we deduce
X=9% _ g e

whence

X=/Qe¢P"dr+C;
and putting these values of z and X in the equation

y=zX,
we obtain
y:c—fl'lh (‘/Qc/'l'rl.)d"._l_C) e (90)_

This equation bears the name of the lincar equation of the first
order ; the reason will be seen, art. 445.

386. The separation of the variables may always be cffected
in differential equations of the first order and betwixt two
variables, when the equations arec homogencous. An ho.no-
geneous equation is one in which all the terms, considered in
respeet to the variables, are of the same dimensions ; thus the
equation

ax®yd +bayt +cyda® =
is homogeneous, since the sum of the indices of x and y in

each term is equal to 5, and the products a2y, xy*, 3%, are
each of five dimensions.

The equation
aabyr—ba®y ey =0

is also homogencous, since the sum of the indices of the vari-
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ables in cach term being 8. The variable » does not appear
in the last term of the cquation, but it may be considered as
having an index 0.

387. Let, gencrally, z bea function of « and y, composed
of homogencous terms, such as Arryt, Bav'y?, Ca'yr", &e. If
we represent by » the sum of the indices of z and y, in one of
these terms, we shall have, by virtue of their homogeneous
nature, °

ptg=n P +qg=n, p'+q"'=n, &ec.

If now we divide all the terms by 2*, this equality will still
subsist, and the term Azy? will in this case become

Azyl Ayl Ayt (¢
“;r‘—;:;-tﬁ“-A(;)’

and since what has been said of this term will apply to all the

rest, we shall have
z s
—= I‘(—{) :
e X

or, making If =y,
wmFg=z,
and the function Fg being represented by Q, this equation
may be written thus:
Qrr=-=.
388. We shall now take into consideration the differential
equation

Mdz + Ndy =0,

in which the coeflicicnts M and N arc homogeneous functions

of two variables « and y, and of a dimension 2.
"
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This equation being divided by z», it will, as we have seen,
result under the form

oy (B

and making ‘% = 2, this equation will become

dzpz+dyFz=0,

or

dy _
@~+Fal—1l—r-—0 P (91).

In order to climinate y by means of the equntlon Y- , OF . .

y=zx, we must differentiate this latter equatlon, when we
shall obtain

(l;y_” rdz
de Y

which reduces the equation (91) to
(P
pz+Fz (24 -'—'—-) 0;
from this we deduce

xdz ez . _ (px+2Fz)

da Fz °~~ Fz

and, separating the variables,

dr_ d=Fz
o px4zFz’
and consequently
dzFz

logz=— oz+4zFz

+C
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The integration being completed, it will remain only to sub-
stitute in the result the value of z.

389. We will take, for example, the equation .. ... -
2*dy=1y*dr+zydr ; when, making y=z», we shall find

=zdr+zdz,
and substituting these values, the equation will become
222dz+ 23 dz =222%dx 4 za%dx ;

reducing and dividing by the common factor 2%, we shall
obtain

rdz=z2dwr,
which cquation being divided by z*, gives
dr_ds
x 2

and integrating, we shall have
10g:t=—l +C =—1+C=_ £+C.
B ¥y Yy
o
390. Our sccond example shall be the equation

att+yx
r—Yy

dy =ydr,

the denominator in which being made te disappear, we see
that all the terms will be of two dimensions, and we must,
therefore, assume y==2z; when, being reduccd, the equation
will give us
d./ ,(d=z)
Ty

and putting for l- its value derived from the equation y =z,
T2
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we shall have
.1'dz (l —z)
(1 +2)’

= being then transposed to the second side, and that side re-
duced to a common denominator, we shall find

d.r_ A+=2)
T g 0
and, lastly,
1
loga_—szlL f2 ———llogz+C

=2 _110gY
=5, glogw+C.

391. When the proposed equation, besides the terms Az pyq, Bar'y?, &c.
contains polynomials such as
(Mary*+-Na"y*' & Yida, (Priy¥4-Qaty, +&c. Nidy,
the variables will be still scparable if we have
PHa=r 4 =(r Y=+ Pe=(tFu)l=(C +4)l . . . (92)-
To prove this, let
(r+ak=n, (F+5Yk=n . . . (93),

and divide all the terms of the polynomial (Mzrys—+Na?y* 4 &c.)¥ by an
when it will become

(M::" Ys+Na r'y,' +&ec. ) (qu Ny,, Ny | s, )k :

L)

— R _
1' a,l‘

but the equations (93) give us

n
PSS %—r’::’,

and, thercfore, substituting these values in the preceding expression, we shall
find
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w2 tae) =[M(D) +8 (D) +&2 1"
which proves that when the equations (92) arc satisfied, the polynomials
raised to any powers, reduce themselves, as the other terms, to functions of
g; and, consequently, makingg =z, or y =1z, the equation may be reduced
to a function of z. To give an cxample, let
ady —ydi =dan/T—y* . . . . (94).

This equation being written thus,

yody —yriods =d1(19y° —ynn)*,
we sce that the equations (92) are satisfied; we shall, therefore, assume
y=az, and consequently
dy d=
——=zx4ai—;

d1 dr

substituting these valucs in the equation (94), and reducing and dividing by
the common factor, we shall obtain

d. —
"’ﬁ =J1-z
whence
- M=
and integrating, we shall find (art. 273),

dr d=
1

log x=sin—1x 4,

or, replacing the value of z,
log 1 =sin—1. z+(“.
X
392. Generally, when we have an homogencous function

of the variables @, y, =, &c., we may always scparate one of
the variables, for instance, x, by making y=tr, z=uwr, &e. *

* Let Mdi4Ndy+Pd.:=0 be an homogencous funetion, in which
M, N, P, arc functions of the three vaiable. 1, #, ©3 these funcuon
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393. We sometimes employ indeterminate indices for the
purpose of rendering an equation homogeneous ; let the equa-
tion, for example, be

ay™a"de +bardz+ cavdy=0;

we shall assume y=2z* ; and since the index % is not a variable,
but an unknown constant, we may differentiate by the art. 18,
when we shall have

dy =kz*—dz, and y™ =2z¢";
and substituting, we shall obtain
az*mzdz + bavdz 4 ckaizk"'dz =0,
an equation which will be homogeneous if we have

km4n=p, g+k—1=p.

M, N, P, will contain terms such as Axpyuzr, Bav'yd'z’, Car’y? =", and
we shall have p+g+4r=p+¢ +r'=p”+¢'++"=n. If in onc of these
terms, for instance, in A2 py?z7, we substitute the values y =12, ~=ua, this
term will become

Aaptirqurar =1 p+e+r X Atdu, =enAtin’ 5

and the same being the case for the other terms, if we substitute the values
of y and z, the equation Mdr+Ndy-+Pdz=0 will have 1% for a common
factor, which, being suppressed, the cquation will take the form

¢(t, )1 +F(t, w)d.ta+f (2, u)d-uxr=0:
and, performing the differentiations, we shall have
(2, w)dr+F(t, u) (tdr+tadt)+f (2, w) (udx+-a1du=0;
whence we shall deduce
[2Q2, 2)+tF (2, w)+uf (1, v) Jdr==a[F(, w)dt+1 (¢, u)dn’ 3
and consequently

_ F(e, u)dt £ (1, w)du
(L u) Xl 2) +uf (L, «)

da
o
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Now climinating the indeterminate £, we shall find

r—n_ -
™ =p+1-g,

and this, therefore, is the equation of condition that must be
satisfied in order that the proposed expression may become
homogencous by the substitution of y =z¢¥=z1+1—,

394. Therc is an important theorem, in respect to homo-
geneous functions, which we shall proceed to demonstrate in
the manner following :

Let Mdz+Ndy be the differential of an homogencous func-
tion = betwixt two variables z and g, in which » is the sum of
the indices of the variables, in one of the terms composing the
function ; we shall have then the equation

Mde+ Ndy=d= . . . (95);

and muking'zzq, we shall find, art 387,
x
Qa"=z;

replacing, in the cquation (95), y Ly its value ¢, and repre-
senting by M and N’ what M and N then become, the equa-
tion (95) is transformed into

Mdor+4Nd.gr=dQ+" . . . (90),
or, putting for d.ga its value, gdo+2dq,
(M'4N'¢g)de4-Nadg=d(Q.r")-

But (M 4 N'q)dw is the differential of Q.”, taken in respect
of 2, so that we have

M+ N'g =nQaem! ;

and putting in this cequation y in place of g, and conscquently
M, N, in place of M, N/, it becomes

M+ N'% = nQn=1,
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or,

Mo + Ny =rnQa" =nz.

395. This theorem will apply to homogeneous functions of
any number of variables; for if we had, for instance, the
equation

Mdz 4 Ndy+ Pdt =dz,

in which the dimension of cach term is #, we should only have
to make '%: 9 -2 = r, to prove, by reasoning analogous to

what has been just employed, that we must have == "F(q,7),
and of course

Mx + Ny + Pt =nz.

The conditions of integrability of functions of two variables.—
Integration of functions whick jfulfil those conditions.—In-
vestigation of factors proper to render equations intcgrable
whick are not immediately so.

396. When we have a differential Mdz 4 Ndy =0, we can-
not conclude that there is always some equation, which, being
differentiated, will give the proposed one ; for if, for instance,
we had differentiated the equation f(2, ) =0, and derived
from it mdx + ndy= 0, we might multiply this equation by a
function of », and so obtain an equation Mdr 4+ Ndy =0, in
which the coeflicients M and N are different from 2z and » ;
and consequently the equation

Md+s + Ndy = 0

would no longer be the result of simply differentiating the
function

Sy =0.

The same would be the case, if we should combine arbitrarily
mdx+ ndy=0 with the primitive cquation f(x, y)=0: for
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example, by climinating one or more terms betwixt mdx+ndy
=0 and f (#, y) =0, we might obtain an equation

M'd»+N'dy=0,

in which the differentials M’ and N’ differ from s and .

397. An equation which, like mdz 4+ ndy =0, has been
obtained by the process of differentiation alone, is named a
complete differential ; as is also every differential function
which has been found by means of differentiation only, though
it be not equal to zero.

When a differential equation Md.»r+4+ Ndy =0 is not a com-
plete differential, we must not think of integrating it, until
by some preparatory operation it has been rendered complete.

398. Euler first resolved this important problem :

1v. A differential equation being given, how can it be dis-
covered when it is a complete differential ?

20, J¥hat are the means of integrating this equation ¥

Before giving the solution of this problem, we shall call to
mind that, according to the notation agreed on, art. 52, the
expression :ll—i indicates that the function = of » and g has been
differentiated in respect of », and divided by dx * ; if, then,
dz
dz
y and divided by dy, the result of this operation is written

this function — is differentiated in respect of another variable

*® Let dv=Ad+Bdy+Cdt be the complete differential of =5 the ratio
—:1; is no other than the differcntial cocfficient A. 1If, thercfore, wc were
asked the ratio of Adi-+-Bdy-+-Cdt to da, it would not be right to represent
it b g;; in this case, the ratio of the complete differential to dv might be

written in one of the following ways :



282 INTEGRAL CALCULUS.

thus: ;—](;; If, on the contrary, we had taken, first, the

differential coeflicient of z in respect of y, and then in respect
of 2, the result of these operations would have been written

thus :

az
dydz
When 3 is a function of three variables 2, y, %, an expres-

sion such as i::_ indicates that we have taken first the dif-
dadydu

ferential coefficient of ~ in respect of #, then the differential

coefficient of % in respect of y, and, lastly, the differential

2

d2z
dedy

cocflicient of in respect of ». Similarly the expression

d*z
Zardy indicates that we have effected five successive differen-
tiations of z, the two first in respect of x, and the three others

in respect of y.

399. This being premised, Euler’s theorem rests on the fol-

lowing proposition, which has been demonstrated, art. 172.
If we have a_function z of two variables x and y, and we take
Jirst the differential cocfficient of z in respect of x, and take

. . . dz .

then the differential coefficient of a; in respect of 'y, we shall

have the same result as if we kad taker first the differential
coefficient of z in respect of 'y, and then the differential cocffi-

cient of :;-—; in respect of X, a proposition whick we express by
saying that

d%z a2z

d.z-dy dydz

400. If we have, for example,

2= w240y,
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we find
d—i=2z+y, —d—i =,
d dy
and, consequently,
dsz d2z

dedy = 1 = Tydv
401. This being premised, let z be the function of which
the complete differential is Mda+ Ndy =0, we have then

The first of these equations, being differentiated in respect to
y, will give

dM dz

dy Tdady’

the second, being differentiated, in respect of .», will give

dN a?z

dr =rlyd.t;
and the second sides of these equations being identical, it fol-
lows that

=D

dy dz
whenever therefore this equation of condition is fulfilled, the
differential proposed will be complete.
402. We recognize, for instance, that the expression . . . .
(22~—19) dz—xdy is a complete differential, because
dM dN

==1=

dy de

The expression
(B +3e%) dr+ (By*+2wu) dy
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is also a complete differential, for
dM dN

—_— =9y =

dy Y= "dx
403. The equation yd.— zdy=0 is not a complete differen-

tial, since

dN . ..
dy =1, and = —1. This equation, in fact,

is derived from the one,
yda —zdy
yg
found immediately by differentiation, and in which the common
divisor »2 has been suppressed ; restoring it, we shall have

=0,

M= N=_2Z%,
¥ y?
and the condition <M = <N will be fulfilled.
dy  dx

404. Let it be proposed now to integrate a differential be-
tween two variables, when it has been found that the dif-
ferential is complete. For this purpose we must observe, first,
that when a function z of x and y has given, by differentiation,
Mdx-+ Ndy, the term Mdz has been obtained by considering
zas constant. Conscquently, when we integrate the part Mdz,
the constant added may involve z, and representing it therc-
fore by Y (admitting at the same time that, if requisite, Y may
be considered as an ordinary constant), we shall write

u=Mdr4+¥Y=0....(98).

This equation being the one which, by the differentiation,
ought to give us Mdr+ Ndy=0, it follows that N is no other
than the differential coefficient of /Mdx+Y, in respect of y.
Differentiating on this supposition, we shall have

_dfMdr dY

dy Yy
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from this equation we deduce

dY _ 4/ Mde
dy T dy

and integrating,

and this value of Y being substituted in the equation (98),
we shall obtain

d y
" ;/'i\TllI+./'(N——‘/-%id£)dy e e (99).

It may be observed that N— g_f}!\ :’l"'

this expression, multiplied by dy, must give for its integral a
function Y of the variable y alone.

does not contain x, since

d/Mde

ay
of x, we shall take its differential cocflicient in respect of x, when we shall
have

is not a function

405. To demonstrate that the expression N —

AN d(dfMda)

ar dyd;:__

« ... (100),

and changing the order of the differentiations, the second part of this expres-
sion will become

d d fMdx
d(dfMdz) _ dr )
dady dy ’

But the integral /Mdx having becn taken in respect of 2, the differential of
[ Mdz, relatively to the same variable x, will be Mdz, and consequently

a8/ Max
/M - d
4 dz:M, which reduces the expression dr_/ to ™ s and this
da dy dy
. . . . dN aM
value being substituted in the expression (100), we shall have =T A

a quantity which, according to the condition of intcgrability, is 0 ; it follows,
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therefore, that the differential of N —
proves that the expression does not contain 2.

406. By mecans of the formula (98), we may integrate every
function of two variables which satisfies the condition of in-
tegrability.

Let us take, for example,

(6zy—3y2)dr+ (B22—22ry)dy - . . (101).

Comparing this expression with the formula Mdx + Ndy, we
have

2 l\;d.z in respect of x is 0, and this

62y—y?=M, 3.2—=2xy=N;

and the condition of integrability is consequently fulfilled,
since we find

integrating therefore the expression (62y—32?)dz on the sup-
position of y being constant, we shall have

S Mdz=/(6ry—y2)dzr =32r%Y—3y’x ;

and substituting this value and that of N in the cquation (99),
we shall obtain

—_—2
u=3¢‘iy__ Y2+ f[3~7‘9 —2-’3]/ d(3l (yly Yy .I)]

The differentiation being performed, the part affected by the
sign of integration in this expression is reduced to

J(Bar=2zry—3a*+ 2yx)dy ;

in which the terms within the brackets destroy each other ;
and it follows, consequently, that the expression represented

by
g —
_ /[3,,2_2J:y_‘1(:3_x-’{lgl-’/ﬁ2]dy



COMPLETE DIFFERENTIALS. 287

is constant, since every quantity, whose differential is 0, is
constant ; the integral sought, therefore, is

a2y — 1y r+ constant.

407. Without employing the formula found in the preceding
article, we might arrive directly at the same result in the man-
ner following :

Integrating the cxpression (101) on the supposition that »
is coustant, we shall have

JMdr=[f(60y—y*)dr+ Y,
or,
u=3a2y—y2wr+Y . .. (103);
and, differentiating this equation in respect of y, we chall ob-
tain
du

dY
@zsw‘_2‘ry+7; « .. (104).

But :%: being no other than the coefficient of dy in the ex-
prossibn (101), we have also

%:3.:*-—2.1;1/,
and comparing thesc two values, we shall find

dY
= =0
and consequently
Y =constant ;
which value being substituted in the equation (103), we shall
have

u=3ay—yx+ constant.
408. Let the function be
(2472 + 3y*)dr + (22%y + 9ry* +8y°)dy ;
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if we compare this expression with Mdr+ Ndy, we shall find
M=2,22+3y°, N=2+2y+97y°+84°;
and since we have
dM dN
E—*yd’-i‘g.l/n = :l-;:,
the proposed function is a complete differential.
Integrating therefore in respect of 2, we shall have
S Mdr=y222+32x+ Y,
or,
u=322%43y’xr+Y ;

and differentiating this expression in respect of y, we shall
obtain

du _d.(y%2°+3y°2) dY
dy dy tay

On the other hand, l—l—; being the cocflicient of dy in the pro-

poscd equation, we have also
du ]
—ll.; = 2.2"3.y+9.r_y”+8_y-' ;

du
dy

and, cquating these two values of ——, we deduce

d(y*+3yx)  dY _ .
___dy_—_+ 7= 222y +9xy2+8yS ;

whence, performing the differentiation in respect to ¥, we have
dY
22"y 4 Yy + ;,:1;- =222y 4 9y2x+8y° ;
an equation which reduces itself to

—_— 3
@y =%
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and thercfore
Y =/8y’dy = 2y*+C;
and conscequently the integral sought is
u=y22+43y%r 424+ C.

409. We saw, art. 403, that the equation ydr—xdy =0 was
not a complete differential, because it had lost the common factor
¥ ; it appears, therefure, that there may be equations which,
like this, are not immediately integrable, but may become so
if the common factor that has been lost can be restored.

410. Let, generally, Pdr+4+ Qdy =0 be the equation which
is a complete diffcrential, and = the common factor, which,

for greater gencrality, we shall suppose a function of x and y:
we shall have then

P=Mz Q=Nz;

and if we substitute these values in the preceding equation,
the common factor = will disappear, and we shall have

Mdz+Ndy=0 . . . (105).

Now the equation Pdz+ Qdy =0 being, by hypothesis, a com~
plete differential, we must have

ar _dQ .
dy ~ dz’

putting for P and Q their valucs, this equation will become

sz_sz .
dy = da’

and, developing, we shall find

Mdz  z2dM _Ndz = zdN
Ty_+ dy ~ T

. (106).

. dz dz
411. When the common factor = is constant, dy and e
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being O, the equation (106) becomes

aM_dN
dy " dz’

and, consequently, the condition neccssary that the cquation
(105) may be a complete differential is fulfilled. But when
z is a function of z and g, the dctermination of z depends on
equation (106); and this equation is more difficult to integrate
than the proposed one, which contuins only the single dif-
ferential coefficient %g, whilst the cquation (106) contains threc
. . d
variables, r, y, 2, and the two differential coefficients :—{‘—i and

dz
Jy

412. If the cquation be homogeneous, it is very easy to
determine the factor; for let Mdr+ Ndy=0 be an homo-
gencous cquation which becomes integrable when multiplicd
by an homogencous function = of # and y; representing the

integral of the equation Md.r + Ndy=0 by u, we have
sMdx+2Ndy=du . . . (107),
and this equation being homogencous, we deduce, art. 394,
sMx+4zNy=ne« . . . (108).

If now the dimension of M be represented by m, and that of
z by %, the dimension of one of the terms zMa or Ny will be
m+k+1; this value, therefore, being put in place of #, in the
preceding equation, we shall have

zMa 42Ny =(m+ k+1)u,
and dividing the equation (107) by this, we shall find

Mdz+ Nd__fl_du 1
Mo+Ny — PRe m-k4+1
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The second side of this equation is a complete differential,

and the first must, therefore, be so also; whence it follows

that 1 is the factor proper to render the homogeneous
Mo+ Ny

cquation Mdz + Ndy =0 integrable.
413. If the common factor z, which ought to render the
proposed equation homogencous, be a function of x alonc, we

have %:O, which reduces the equation (106) to

«dM _Ndz  dN
dy ~— dz  dz’
whence we deduce
Ndz __ dM a'l_\T
%= = (g—a:)
and consequently

dM dN
s (Ty—d—) .
=S\ w— da ... (109);

integrating, therefore, we have

dM dN,
log z= f(d_'/__(.ii)d
1 ,dM dN
(G —-% Y LE

and multiplying by log e, making the coeflicient of loge the
index, and passing to numbers, we find

dM dN
f de ... (110).
g=e N d )
We have only, therefore, to multiply the proposed equation
by this factor 2, and it will become a complete differential.
v2
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414. Let the equation, for instance, be

ydo—zdy=0;
we obtain then
dM dN _
dy dr

which reduces the formula (109) to

2dx
/'___ —_— -

—-.Q

whence we derive, by integrating,

]

logz=—2logas+1logC=—log+?+logC=log ;(; H
and passing to numbers, we find

2:-—‘1& H

C(ydx—xdy)
a?

the expression will consequently be a complete

differential.

415. We may find an infinite number of factors which
possess the same property. For let z be a factor which ren-
ders the equation Mzdw+ Nzdy=0 complete; rcpresenting
the integral of this equation by %, we shall have

Mzdr+ Nzdy =du ;
multiplying the two sides by @u, we shall obtain
pu(Mzdx + Nzdy) = pudu ;

and gu being arbitrary in its form, we may assume for it any
function of », for instance, 2u?, and then 2u2dz being a com-
plete differential,

2u?(M=zdw + Nzdy) =2u2du
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must be so also; so that the factor 2zu¢ will have the pro-
perty of rendering integrable the expression

Mdx+ Ndy=0;

and we sce that we may make an infinite number of similar
hypotheses respecting pu.

Conditions of integrability of functions of three and a greate)
number of variablcs. Integration of equations of three va-
riables whick satisfy those conditions. The equation of con-
dition necessary that the integration of differential equations
between three variables may depend on a common factor, and
the means of salisfying the proposed cquation, when this
equation of condition is not fulfilled.

416. Lict 1t be proposed to determine the conditions of integrability of the
differential of a function of three variables @, w, ».

This function heing represented by u, we shall have

du=Mdr+Ndy41d: . . . . (111),
where
du du du
e N e, P == —
M= e’ N dy =

and these equations may be combined two and two together in the thiee tol-
lowing difterent ways :

1o du _ du _
dr T 7 dyT
dn du
20— =M, — =P,
dz
tf d
3o. T‘I._;f =N, %:l’.

417. By a demonstration similar to the one which has been alrcady given
(art. 172), we shall, from these equations, deduce the following :

dM _dN dM _dP dN _dP
—_—=—, -, =iy ——=—— .. (112);
dy  dx’ dz  dy’ dx dy

and, generally, if there be # variables, we shall have as many cquations ot



204 INTEGRAL CALCULUS.

condition as these variables, taken two and two, can give distinct products,
i.ce 2—"2:9 equations of condition.

418. When the differcntial du is 0, the equation (111) is reduced to
Mdez4Ndy+Pdz==0;
and this may be put under the form

dz=mdz4ndy . . . . (113),
by making
M N

P = (114).

If now z be considered as a function of z and y, we may treat the equation
(113) as though it contained only these two variables ; and the condition of
integrability will consequently be reduced to the one of art. 401 ; that is to
say, the differential of 7, taken in respect of g, and divided by dy, must be
equal to the differential of 7, taken in rcspect of 1, and divided by da. To ob-

. d
tain these expressions, we must observe that the first will not be simply %,
Y

but must have a sccond term arising from the differentiation of z, considered
as a function of y, and which terin, therefore, will be represented, art. 26, by
dm dz
dz ay
will apply also to the total differential, taken in respect of 2, and the equation
of condition (97), art. 401 will be, in the prusent case,

dm  dAmde _drn | dn dz

wtEdg~w T Eas

. What has been said of th= total differcntial, taken in respect of ¥,

whence, transposing and observing that, according to equation (113), ;—: =m,
24

dz
and -——=n, we have
dy

dm dn dm dn
II.TI'—(L—F- nd;—m}l‘z-_o....(llﬁ).

But by differentiating the equations (114), according to art. 16, we have

JM dP dN dP
am_ T MYy awm_ T Na
Ty P2 > dx T P ’

dM ap AN dP

e — — ’— — ——
dm N = dx d.; lllll _.M'-_l de Nd..' A

TP e e TP e
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and these valucs being substituted in the equation (115), the two last terms
reduced, and the common denominator P suppressed, we shall find, by
dmngmg all the signs,
dM dp dN dP dM dN
P————M P;I—;-i- NE—— NE"-MTJ;_O o ... (116).

‘This, l.hen, is the cquation of condition neccssary that z may be considered as
a function of the two independent variables 2 and y; i. e that there may be
a determinate equation between the threc variables ; and if, conscquently, we
teke at hazard an cquation Mdr+Ndy-+Pdx=0, between three variables,
before knowing whether the equation (116) is satisfied, we are not at liberty
to assume that onc of the variables is a function of the other two; i. c. that
the proposed differentiul equation necessarily infers the existence of some equa-
tion between x, y, and z; or, in other terms, that this differential cquation
has some single equation for its integral.

419. A differential cquation between three variables, for which the equa-
tion (116) is not fulfilled, was for some time considered us absurd, or at least
us uniwportant ; Mongc, as we shall shortly show, proved that this idea was
crroneous.

120. When the equatons (112) are not satisfied, ift we reprosent by 2 the
factor proper to render Md2+-Ndy+Pdz a complete differential, the cqua-
nons of conditon (112) will becomnc

d}Jﬂ_ul}.N dA:\] d}.l' d)N 11,]'
Ty T A Tdr T ol as “dy ;

and performing the difiercnuauons, we obtam

da X dM dV ]
—_ =0
M I\ du TS =0}
']
njil‘__ 1L_ (:I'\l PNt ... (1175
dx dr
dA (l). dN dP H
“r =
N dx r d_y az l‘h/)

If now we muluply the first of these equations by P, the second by —N,
and the third by M, and add, the terms without the brackets will destroy
cach other ; and the equation being then divisible by a, that factor will dis-
appear, and there will remain

dM 4N dM dP AN _ dP
P~ P NG + NG M Mo =0;

a result the same with equation (116), and which agrees with what we have
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said at the end of the art. (418); for, in order that the cquation proposed
may become integrable by means of a factor A, it is nccessary that, as in all
other sorts of integration, it should conduct us to a single equation between
a, y, and 3, a condition expressed by the equation (116).  When this equa-
tion has been satisfied, the determination of the factor o will depend on only
two of the three equations of condition (117), since their combination with
the equation (116) will produce the third *.

421. We will inquire now how we can determine the integral, when the
equation (116) is satisfied ; and for this purpose, considering one of the va-
riables, = for instance, as constant, the proposed cquation represented by

Mdr+Ndy+Pdz=0....(118),
will, on this hypothesis, necessarily reduce itsclf to
Md\+Ndy=0 . ... (119).

If this last cquation be not immecdiately integrable, this may arise from
some common factor having disappeared from the cquation (118). De.
signating it by A, and restoring it in the proposed equation, we shall have

aMdr+aNdy+aPd==0 . . . (120),
and making ~ constant, this equation will become
aMdax+aNdy=0 . . . (121).

If, now, by any process, we find a factor which renders the cquation

* This is easily verified ; for if we had, for example, the two equations

da dM dN
l\l—— N
+ ( dy Ty 0,

dN
1\ lh. das E!; ) =0,

by adding the first multiplied by P to the second multiplied by M, and sub-
tracting from this sum the product of the equation (116) by 2, we should find.
by reducing and suppressing the common factor N,

M-

dax da (dM ap —0
d:: da J T

which is the second of the equations (117).
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(119) integrable, we shall consider it as being what we have represented by
a; and the equation (121) becoming then a complete differential, we shall
be able to obtain the integral, which we will express by V. This integral
will be genaally a function of the variables a, y, and of 2, treated as con-
stant 3 it will conscquently be rendered complete by the addition of an arbi-
trary function of z, which we will designate by @z ; so that we shall have

V4p==0 ... (122);

and differentiating this equation in respect of z alone, we shall obtain

But this quanuty must be identical with the multiplier of d: in the equa.
tion (120), and consequently we shall have

dV | do= oy .
AP_E—L PRI (123);
whence we deduce
d@:__ > dV >
—,E_.)J - (124);

and since the function ¢z, which has been given by the integration, can con-

3

. - L dpz .
tain no other variable than =z, it will be the same with -;?- ; and by virtuc.
.

dV
thercfore, of the equation 124, ;,P—-'— must also reduce itsclt to a tunction
az

of the variable » alone.

It follows, from what has preceded, that having ascertained that the equa-
tion (116) is satisficd, we must consider one of the variables, = for instance,
as constant, which will reduce the cquation (118) to the cquation (119):
we must cxamine then whether the two terms Mda+Ndy can become in-
tegrable by being multiplicd by a quantity which we have designated by
a3 and having arrived at this factor, we must determine V. The values of

d,
2, %Y and P being then substituted in the equation (124) will give us di’

ap:
and conscquently by intcgrating -di;.' we shall obtain the value of ¢z ; and

this, along with the value of V, being substituted in the cquation (122), will
give us the intgral required.
422. For example, let the equation proposed he
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yidx —xzdy+yxds=0 . . . (125).

This satisfies the cquation (116), and we must therefore proceed first to in-
tegrate y=dr —asdy =0, considering = as constant 3 for which purpose, writing
the equation thus,

s(ydx —2dy) =0,
we obscrve that the part within the brackets becomes a complete differential
when multiplied by ;l.;, and we recognize, thexcfore, that, in the present casc,
we have

r=1 aav="2.
y? y

This last cquation being differentiated in respect of z alonc, the expression

dz
tion (124), it becomces

av .
— becomes z—; and this valuc and that of A being substituted m the equa®

dp= P =
= "y y
und smee P is no other than the multiplicr of d° e cquation (125), 1c-

storing its value, we shall have

dpz _z

="y 3
or
do=
_=0
dz (
and therefore
@ =conslant.

This valuc und that of V wnvert the equation (122) into
PPy
—+C=0,
y

which is consequently the integral of the equation proposed.
423. As a sccond example, we will take the equation

syde+-audy+zyds 4 azidz=0,

which cqually satisties the cquation of condition (116).  Integrating, there-
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fore, zyd1+4-zzdy, consldcring = as constant, we shall have
szy+ez=0 . . . (126);

and this integration having been effected without being under the necessity
of restoring a factor, we sce that, in the present case, A may be considered as

equal to unity. The expression d—’Y- will thus be obtained by simply difftren-

. o o dV
tiating the product szy in respect of z, which will give {-‘Ezz'y; and by

means of this value and that of P, which is «y--az?, the cquation (124) will
become

'fi_{f =ay +az?—zy,

or
dyp= _

—=a:?;

d.

whence, multiplying by dz. and integrating in respeet of =, we shatl obtain
a3
pi=—$C=0;
3
and we conclude, therefore, that the integral sought 1
a-.3
.,,,:+__‘._+c.

424. When the equation (116) 1s not satisficd, 1t eannot be assumced that
there exists an (quation whicl, being differentiated, will produce the pro-
poscd cquation 5 and, consequently, the equation (121), which rests on that
hypothesis, can no longer subsist ; a~ will appear evident in the following
example = Let

2 yda —za (2t —y*)dz =
be un equation which does not satisfy the equation of condition (116). W
will examine how, in this case, the part AP —%X, which would form the sc-
£4

cond side of the equation (1241), did that equation bold good, is composcd ;
and, for this purpose, considering = as constant, we shall have

1ydr —sxdy =0,

4t cquation which becomes integrable when divided by xy; so thar
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1
h:z-_—v, V=a—:logy;

and conscquently AP — % has for itz value

2y
ry

—log y-

Now this quantity being a function of the three variables x, y, 2, cannot be
reduced to a function of = alone, as the equation (124), did it hold good.
would require ; and thercfore the equation (124) cannot, in the case before us,
subsist.

425. Let now Mdx+Ndy-+ Pd>=0 be a differential equation, for which
the equation of condition (116) is not fulfilled ; designating by a the factor
proper to render only the part Mda 4 Ndy integrable, and multiplying the
proposed equation by this factor, we shall have

AMdr4-ANdy+42Pd==0 . . . (127);

and integrating the part AMdz + aNdy, on the supposition of = being con.
stant, the integral thus obtained may be represented, as in art. 421, by

V4 ¢z=0.

If the differential of this equation be taken in respect of the three variables,
we cannot thence assumc it to be identical with the cquation (127); for the
cquation of condition (116) not being fulfilled, it follows that the cquation
(127) cannot be considered as arising from the differentiation of some single
cquation ; and since it is on this hypothesis that the cquation (124) rests,
we see that in this case it can subsist no longer ; but though, when the equa-
tion (116) is not fulfilled, wc are precluded from supposing that the cqua-
tion proposed ariscs from the differentiation of some single equation, we may,
however, change our hypothesis, and consider that equation as the result of
some two equations. Let V - ¢z = 0 be taken for the first ; we may then
assume for the second any arbitrary relation whatever betwixt x, y, z, pro-
vided always that, conjointly with the first, it destroy all the terms of the
equation (127). Suppose, therefore, that this relation be the one given by
the equation (124), an equation which could not subsist when it was rc-
quired 1o satisfy the propose equation, but which, on the present hypothesis,
is admissible, since it is casy to sec that, combined with the cquation (122),
it may satisfy the equation (127).  For, differentiating the cquation (122),
in respect to the thrce variables, the equation (121) will furnish us first with
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the terms which arise from the differentiation taken in respect of 2 and g 5
since we have seen that the equation (122) was the integral of the equation
(121), taken in respect of thosc two variables. Adding, then, to the terms
AMd.r4-aNdy thus obtained those which arisc from the diffcrentiation of the
cquation (122), taken in respect of =, we shall have

AMd.t-}-A.Ndu—l——d +—- dz=0;

and if, in this equation, we replace the two last tcrms by their values derived
from the cquation (124), we shall obtain

AMdz+4>Ndy+-APd>=0;

an cquation in which we recognize the proposed one, and which, consequently,
will be satisfied altogether by the two cquations

V 4o =0, _+‘_?‘3_;.P . (128)

vmployed simultancously.
426, Let us take, for example, the equation

ydy+zde=d:;

1t we consider = as constant, the factor proper to render the part yily + xd:
integrable is 2, and conscquently we shall have

2ydy+2zdr—2dz=0 . ... (120) ;

an cquation which will be satisfied by the system of the two following
cquations

42:r4-02 =0, 2«!‘+%+2=0 . .. (130).
For the first being differentiated in respect to all the variables, will give
. . 805
2ydy-+2sde-+2xds+—~d:=0;

and deducing from this equation the value of 2udy-2zd>, and substituting
it in the cquation (129), that will become

—2xdz —~-;;d" —2dz=0,
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an oquation which fs also satisficd, by virtue of the sccond of the equations
(130). .

427. The equations (130) show us that the form of the function ¢z is
altogether arbitrary, and that, consequently, if we make gz===:3, for instance,
the original equation will be equally satisfied by the system of the two
cquations

Y42 423=0; 22438:242=0 . . . (131).

428. By means of these two equations between three variables, we may
construct (‘note ninth ) a curve of double curvature, which, at all its points,
will satisfy the proposed equation; and if, instead of taking ¢z==z3, we
should assurne for ¢= some other function of z, we might determino another
curve of double curvatures, which would cqually satisfy the proposcd equa-
tion ; it follows, thercforc, that the cquations (130) represent a serics of
curves of double curvature, all of which satisfy the proposed equation, and
are connected with cach other by the comumon property that their equations
d

differ from cach othcr only by the terms represented by ¢- and 3_: .

Theory of arbitrary constants.

429. An equation V' =0 between #, y, and constants, may
be considered as the complete integral of some differential
cquation, the order of which will depend on the number of
constants which V=0 shall contain. These constants arc
termed arbitrary, because if one of them be represented by a,
and V or one of its differentials be put under the form ... ..
J(2,y) =a, we sce that @ will be no other than the arbitrary
constant introduced by the integration of d . f(z, y).

This being premised, if the differential equation in question
be of the order =z, since cach successive integration produces
an arbitrary constant, it follows that V =0, which is supposed
to be given us by these integrations, must contain at least »
arbitrary constants more than our differential equation *.

* If an cquation between = and u should not contain #n arbitrary constants
more than the differential equation of the order #, it could not be considered
as the primitive equation. For example, the equation y =a13, which by two
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Let now
F(#.9)=0,F(s ,y,d 7Y =0, F( =, y,""d”)_ ..(132)

be the primitive of a differential equation of the second order,
and its immediate derivatives; betwixt the two first of these
three equations, we may climinate successively the constants
a and J, and so obtain

dy .\ _ %y
@(J’, y, —d-—‘l'. b) —0, @(J,y,—d-'—;., (l) —0 R (133).
If, without knowing F(», ) =0, we had arrived at thesc equa-
tions, we should only have to eliminate gi between them in

order to obtain F(r, y)=0, which would be the complete in-
tegral, since it contains the arbitrary constants « and &.

430. If, on the other hand, we eliminated these two constants
betwixt the three equations (132), we should arrive at an equa-
tion, which, containing the same differential coeflicients, might
be represented by

dy diy .
¢(.’c, ¥ Ar das ) 0. - (134);

but to this cither of the equations (133) would also lead us.
For the constant contained in one of these equations and its
immediate differential being eliminated betwixt them, we
should obtain separatcly two equations of the second order;
and thesc could not differ from each other or from the equa-

successive differentiations conducts us to g:‘{ =G6a.x, is only a particular in.
2

tegral; and is obtained by making =0 and ¢=0 in the complete integral,
which is y =ax3+4br+-c.

Tt must be observed also that several constants attached to the same pow.r
of  are to be considered only as onc; thus in the equation y=(a--h)r+c.
we reckon a-+-b but as one constant.
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tion (134), or otherwise the values of « and y would not be
the same in the one and the other. It follows, therefore, that
a differential equation of the second order may arise from two
differential equations of the first order, which are necessarily
different, since the arbitrary constant in the one is not the
same with the arbitrary constant in the other. The equations
(133) are what we call the first integrals of the equation (134),
which is unique, and the equation F(z, ) =0 is its second in-
tegral.

431. Let us take, for example, y = a.r+ b, which, on account
of its two constants, may be considered as the primitive of an
equation of the second order.

We deduce from it by differentiation, and the consequent
elimination of a,

%:u,y:.ﬂ:—g+b;
and these two first integrals of the cquation of the second
order which we are seeking, being cach differentaited in turn,
conduct equally, by the elimination of @ and 4, to the same
2,
. Yy
equation —-C= 0.

In the case in which the number of the constants is greater
than that of the arbitrary constants required, the additional
constants, being connected by the same equations, do not in-
troduce any new relation. Let us investigate, for example,
the equation of the second order, the primitive of which is

y=3az’+br4c=0.
Differentiating this, we obtain

%:a.’l-}-b,

¢ and 4 being then eliminated successively between these equa-
tions, we have the two first integrals
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oy d,
d—i:aw-l-b,y:.rd—'—‘z—-;aw“-i-c <o+ (135);

and combining each of these with their immediate differentials,
we arrive, by two different ways, at the same result-gi'z =a.
7 4
If, on the other hand, we had eliminated the third constant a
betwixt the primitive equation and its immediate differential,
the result would have been in no way different ; for we should
have arrived first at the result that would be furnished us by
the climination of ¢ betwixt the equations (135), and found

then » i——i%:‘ji —0&, an equation which we reduce to o z a,
by combining it with the first of the equations (135).

432. Applying the samc considerations to the differential
equation of the third order, if we differentiate the equation

F(x, ) =0 threc times in order, we shall have

F(r,./,r.)—() F(,y "” :::’:)
dy diy dy
e )=

de’ da® da® ’

=0, F(.z', Y-
and these cquations admitting the same values for each of the
arbitrary constants which F(2, y) =0 contains, we may in
general climinate these constants betwixt this last and the
three preceding equations, and so obtain a result which we will
represent by

dy dty diy g
S g Ta s fy=0 . ... (136).

This equation, from which the three arbitrary constants are
eliminated, will be the differential equation of the third order
of F(x, y)=0; and conversely, F(z, y)=0 will be the third
integral of the cquation (136).
433. If we eliminate each of the arbitrary constants succes-
x
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sively between the cquation F(2, y) =0 and the one imme-
diately deduced from it by differentiation, we shall obtain three
equations of the first order, which will be the sccond integrals
of the equation (136).

Lastly, if we eliminate two of the three arbitrary constants,
by means of the equation F(r, y)=0, and the equations de-
duced from it by two successive differentiations; i.e. if we
eliminate the constants between the equations

2,
F("’ ¥)=0, F('z:,"/, ;i_:) =0, F(-"; Y gg’ 3_;;
we shall retain, in the equations arising from the elimination,
one of the three arbitrary constants successively ; and con-
sequently shall have as many equations as therc are arbitrary
constants.
Let a, b, ¢, be these arbitrary constants; the equations of
which we speak, considered only in respect to the arbitrary
constants they contain, may be represented thus:

$c=0, pb=0, pa=0. .. .(138);

and since the equations (137) contribute cach of them to the
elimination which gives us one of the last, it follows that the
equations (138) will be each of the second order; they are
called the first integrals of the equation (136).

434. Generally, a differential equation of an order » will
have a number n of first integrals, which will consequently

) =0Q137),

n—1
contain the differential cocflicients from :—Z up to _‘l_d__”{ inclu-
& 3

sively, i. e. 2 number 2—1 of differential coefficients ; and we
see that when these equations are all known, we have only to
eliminate the differential cocfficients between them to obtain
the primitive equation.

On the particular solutions of differential equations of the first
order.

435. We have seen, art. 355, that a particular integral may
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always be deduced from the complete integral, by giving a
suitable value to the arbitrary constant contained in the latter.
Suppose, for instance, that we have given the equation
rdr4ydy=dy/ 22+ y*—a®,

the complete integral of which is

yHe=o Bt yt—dt’
if, for greater convenience of operating, we get quit of the
roots, the proposed expression will become

(a®—a® )__ +2‘,,/_- +a22=0 .. . (139),

and we shall have for the complete integral
2y +ct—art4a2=0 . . . (140);

when it is evident that by assuming for ¢ a constant arbitrary
value ¢=2q, we shall obtain the particular integral

2cy+Hut—2=0,

which will possess the property of satisfying the proposed
equation (139) equally well with the complete integral.
For we deduce from this particular integral

22—=54* dy «x
Y=—, =
4 2 ’dr ¢

by which values the proposed equation is reduced to

(- —a"')—- ——( ¥4 @ —5n2),

and this becomes satisfied by substituting on the second side
the value of ¢2, which is furnished us by the relation ¢=2a,
established between the constants.

For a long time it was supposed that this property of the
x2
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complete integral was general, and that when a differential
cquation between x and y was given, we could not meet with a
finite cquation between the same variables, which was not e
particular case of the complete integral, by giving, as we have
just done, an arbitrary value to the constant; but it was at
length discovered that this was not always the case, and Euler
himself, in 2 memoir published in 1756, regarded as a pa-
radox of the integral caleulus the singular fact of the equation

AT yt=at ... (141),

which possesses the property of satisfying the differential
equation (139), and yet is not comprised in the complete in-
tegral. For the cquation (141) being differentiated gives
adzx=—ydy, and this value and that of 2?43® being sub-
stituted in the cquation (139) cause all the terms to disap-
pear, and consequently satisfy the equation ; nevertheless the
equation (141) is not comprised in the complete integral ; for
whatever be the constant value we give to ¢ in the equation
(140), that cquation can never lead to the equation (141),
since the first, being that of a parabola, can never in any case
become the equation (141), which is the equation of a circle.

This equation (141), which satisfics the one proposed with-
out being contained in the complete integral, is called a par-
ticular or singular solution of the equation proposed. Clairault,
about the year 1734, had remarked this fact, and it was for a
long time supposed that equations of this sort were not con-
nccted with the complete integral ; Lagrange showed that
they were dependent on it, and on this subject laid down the
theory which we shall proceed to develop.

436. Let Mdao+ Ndy=0 be a differential equation of the
first order of a function of two variables .« and y; this equa-
tion may be conceived as arising frem the elimination of some
constant ¢ betwixt an equation of the same order, which we
will represent by mdx+ndy=0, and the complete integral
F(x, %, ¢)=0, which we will designate by «. But since all
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that is required is to take the constant ¢, so that the cquation
Mdax+ Ndy=0 may be the result of the elimination, we sce
that, provided only the cquation Mdx+ Ndy =0 be satisfied,
we may make the constant c itself vary ; in which case the
complete integral F(a, y, ¢)=0 will assume a still greater
generality, and will represent an infinite number of curves of
the same species, differing from cach other only by a para-
meter, i. e. by a constant. This hypothesis is evidently ad-
missible, since, when the equation Mdx + Ndy=0 is given, it
is in the true spirit of analysis, not to reject any of the means
by which this equation can be produced.

437. Suppose, therefore, that the complete integral being
differentiated, considering ¢ as variable, we have obtained

Yo .. (142).
.

dy .,
dy= ;1‘-;(1.1 + d

For greater simplicity we will write this equation thus:
dy=pde+qde . .. (143);

and it is evident that if, whilst » continues finite, ¢dc become
0, the result of the clhnination of ¢, considered as variable,
between F(zx, y, ¢)=0 and the cquation (143) will be the
same with that of the elimination of ¢, considered as constant,
between F (.2, y, ¢) =0 and the equation dy=pde *, for the
cquation (143), when gdc becomes 0, will not differ from
dy=pdr. But that gdc may be =0, we must have one of
the factors of this equation 0, i e. we must have

de=0, 0or g=0:

in the first of these cases, de =0 gives ¢ =constant, which is
what takes place for a particular.integral ; and it will there-

* This result is by hypothesis Mdi 4 Ndy =0.
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fore be the second case only that can answer to a particular
solution. But ¢ being the coefficient of dc in the equation
(142), we sce that ¢=0 gives

dy _ ay .
dT— vt (145)’

and this equation may contain ¢ or be independent of it; if
it contain ¢, two cases may happen: the equation ¢=0 will
cither contain ¢ along with constants, or will contain ¢ along
with the variables. In the first case, the equation ¢ =0 will
still give c=constant; but in the second it will give . . . . .
c=f(x, y)*, and this value being substituted in the equation
F(, y, ¢) =0 will change it into anothcr function of » and y,
which will satisfy the cquation proposcd without being com-
prised in its complete integral, and will consequently be a
particular solution : we shall, however, have only a particular
integral if the equation ¢=/{.», ¥), by means of the complete
integral, be reduced to a constant.

438. When the factor ¢g=0 of the equation gdc=0 does
not contain the arbitrary constant ¢, we shall know whether
the equation g=0 gives rise to a particular solution by com-
bining it with the complete integral +. For example, if from
4=0 we deduce =M, and substitute this value in the com-
plete integral F(2, y, ¢) =0, we shall obtain

c=constant=B, or c=fy.

* Tt being observed that this equation cmbraces, as particular cases, thosc
in which we may have e=fa, or e=fy.

4+ In the latter case, in which ¢ does not contain ¢, it may be asked how
we have a right to equatc ¢ to zero. To this we shall answer, that the value
given to ¢ in the complete integral determines the cquality of ¢ to zero. For,
when we deduce the value = fy from the equation ¢ =0, to substitute it in
E(x, ¥, ), and obtain F(y, fu, ¢), it is the same thing with deducing 2 from
F(4, ¥, €)=0, und substituting its valuc in ¢; and conscquently the result
of this last operation will still be ¥F(y, fu, ¢). It only remains now to prove
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-

In the first case, ¢ =0 gives a particular integral ; for, changing
¢ into B in the complete integral, we shall merely be giving a
particular value to the constant, just as we do when we pass
from the complete integral to a particular one. In the second
case, on the contrary, the value fy, introduced in place of ¢ in
the complete integral, will establish between x and y a rela-
tion different from what would result, were we to replace ¢
merely by some constant arbitrary value; and in this case,
therefore, we shall have a particular solution. What we have
said of y, will apply in like manner to z.

439. It happens sometimes that the value of ¢ presents it-
self under the form o this indicates a factor common to the
equations % and U which is foreign to them, and must be made
to disappear. This results from n demonstration which, on
account of its length, has been reserved for the notes (‘note
tenth ).

440. We will now apply this theory to the investigation of
particular solutions, when the complete integral is given.

Let the equation be

ydr—rvdy=ay/ da*Fdy: . . . . (144),
the complete integral of which is determined in the manner
following :
. d .

Dividing the equation by A, and making t—!Z—_ =p, we obtain

first
y—pr=a/Ll+p? ... (145) ;

differentiating in respect of z, y, and p, we have

that this result is cqual to zefo, to establish the same thing in respect to ¢;
and this is done by considering F(u, fy, ¢) a8 having arisen from the first

operation, i. ¢. from F(1, y, ¢)=0, in which we have put for 1 its value.
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»

apdp
vigp?’

and observing that dy = pdi, this equation is reduced to

dy—pdz—zdp =

apdp
xdp+ ———=0;
! V1 +pt

which is satisfied by making dp =0.
This hypothesis gives us p = cosustant = r, a value which,
being substituted in the equation (145), gives us

Y—cr=a, 1+ .... (146) H

and this equation containing an arbitrary constant ¢, which
does not appear in the proposed equation (144), it is conse-
quently the complete integral.

441. This being premised, the part gdc of the equation
(143) will be obtained by differentiating the equation (146),
considering c as the only variable ; an operation from which we
shall have

.tt((;-l--l_‘—cdf—:() ;

148 ’

and consequently the coefficient of dc, equated to zero, will
give us

ac
V142

To disengage the value of c; raising this equation to the
square, we shall find

R = —

e (147).

+ ) = g% ;

whence we shall deduce

L
a? a® —_— «
[ R [ y— .
(4 —a‘ pryl l+"—”Q .z-’i’ Vl.‘.cg_—'_—'——‘/_;:-‘__;k N
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and, by means of this last equation, eliminating the surd
quantity from the equation (147), we shall then obtain

x

C == cum

.o .. (148)%.

a‘—zx*®

This value, and that of 4/1 + ¢, béing substituted in the
cquation (146), we shall have

2! a?

Jat— a2 - o a®—at )

y+

whepcc we shall have

a®—at —_
Y= 4/(;,9 -,

N
an equation which, being squared, will give us

yr==at—a2;
and we sce that this equation is really a particular solution ;
for, by differentiating it, we obtain dy= — —;I- ; and this value

and that of o/ 2%+, being substituted in the equation (144),
reduce it to a* =a.

442. In the application which we have just given of the
principles demonstrated, art. 437, we have determined the

value of ¢ by cquating the differential coefficient %}, to zcro.
This process will sometimes prove insufficient ; for the equa-
tion

dy =pdz+ qdc

® We have not affected o/TH¢* with the double sign, becanse a and «
being of contrary signs in the equation (147), the same must necessarily be
the casc in the cquation (148).
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being put under the form :
Adz+ Bdy+ Cdc=0,

where A, B, and C, are functions of z and y, we shall deduce
from it

A C
dy- —-]—3—6{1' — -ﬁdb “on (149),
B C
e 2y — E0) -
dr= Ady Adc ... (150);

und we see that if all we have said of y, considered as a func-
tion of z, be applied to 2, considered as a function of y, the
value of the coeflicient of dc will not necessarily result the same,
since it is wanted only that some factor of B should destroy
in C a factor different to what a factor of A could destroy in
it, for the values of the coeflicient of ic, on the two hypotheses,
to result entirely different. Thus, though very gencrally the

C C . .
equations 1—3—=0, and A =0, give the same value for ¢, this
does not always happen ; and, on this account, when we have

determined ¢ by means of the equation %:(), it will not be

. d.
altogether useless to sce whether the hypothesis of 7:: =0

produces the same result.

443. Clairaut first remarked a general class of cquations
susceptible of particular colutions: they are comprised under
the form,

y:%.z’ +F(:—:‘£),

an cquation which we may represent by

y=px+Fp . ... (151);
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and differentiating, we shall find

dy= pd.z-+.zdp+ Fp d/)

since dy=pd.r, this equation is reduced to
dFp
J'd!)‘i- —d;)—-dp 0 ;
and p being @ common factor, it may be written thus :
(" (le) (l =0.

This rquation will be s~tisfied by making dp=0, which gives
p=constant =¢ ; and, conscquently, substituting this value in
the equation (151), we shall find

2=cr+Fc;

which equation will be the complete integral of the onc pro-
posed, since an arbitrary constant ¢ has been introduced by
the integration.

If we differentiate this equation in respect to ¢, we shall
have

( +(£I‘—c)d¢, 3

and, consequently, by equating the coeflicient of de to zero,
we have the equation

dFc¢

=0
de ?

24

which, by the substitution of ¢ in the complete integral, will
give the particular solution (rote cleventh).
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Linear equations.

444. A differential equation between two variables r and y is lincar, when

&y dy dny
£ Eqi 7‘1_3 cee dx,,’
the first degree ; thus, supposing that A, B, G, D, .°. .. N, X, are func-
tions of z, the linear equation of the nth order will be

the expressions y,% do not risc in the cquation above

Ay+B +c¢1‘+n‘"_i’....+nﬂi’ X ....(52)

445. When this equation is of the first order, it iy reduced to
dy _

getting quit of the deneminator, and dividing by B, we may put this under
the form

dy+Pyd1=Qdr,
and we have seen, art. 385, that this equation has for its integral

y=c—/Pdr[ fQeSfPdrd14-C).

446G. When the term X in the equation (152) is 0, if a number 2 of pau-
ticular values, p, ¢, 7, &c., substituted successively in place of v, have cach
the property of satisfying the equation, we have only to multiply p, ¢, 7, &c.,
by the arbitrary constants, a, b, ¢, &c.y to conclude that the finite complete

integral is
y=ap+by+cr+ &ec.

The demonstration of this proposition being the same for all orders, we shall
consider only the equation
dy dfly

+cdy !=0....0153);

Ay +B dm' 7;3

in which substituting successively for y the hypothetical values p, ¢, , &c.,
we shall have
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Ay +n- +c""+n

d'gq.._
Aq+B 7+ d,,+ D ;=0
dr dor ar_

and multiplying these three equations, the first by a, the second by &, and th,
third by ¢, and adding the results, we find

d
A(np+bq+rr)+n( W 42 e

der d:lp
€. — =
l_(‘( dn‘ dr‘ lI:")+ dﬂ b;;l t =0.

Now it is cvident that this cxpression, which is identically 0, is the same that

would have been obtained by making y —ap+-bg-4-cr, in the equation (153) ;

this value of y thercfore satisfics the equation (163), and since it contains

three arbitrary constants, it is the finite complete intcgral of that equation.
447. When X is not =0 in the equation

dy d‘!u (13u
Ay+DB— “=X.... (15
Avt dt +C 11"+ das X (1a4),
it we can find three particular values p, q, 7, which, substitated snecessively
for u, each of them satisfies the equation

dy :l:h/ -0

Au+B—+C——+ 75 o oo e (150),

the finite complete integral of the equation (154) will be
v=ap-+bgtcr . . - . (156);

but in this cane @, b, ¢, instead of being constants, will be functions of =,
which we shall shortly sec how to determine.

448. To demonstrate this theorem, we shall differentiate the equation
(156), and divide by dx, when we shall have

dy __ dp du
=t +° 2 +qu e

We shall now dispose of the three indeterminate quantitics «, 3, ¢, by three
conditions ; and by the first we shall make
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da db de
p:h_.-]-gzr—-{-pz;—o . oo (1087),

when there will remain

dy _ dp  ,dq , dr
PR PR AL
and a new differentiation will give us
dry dp da dp db dg  dc dr -
s = — PP 3).
dan” dus + +d; PR P M T (15

For the sccond condition we shall assume

GatE a0 0o
whence there will remain
2 2,
S
and differentiating again and dividing by dz, there will result
TR g et g T g
As a third condition, we shall supposc
dadip dbdyg decdr X
drd?  drdrTdrdn DT
and the preceding cquation will become
i’;”. d37 dasr

& m+m+m+

. (160),

‘We may say now that the value y =ap -+ bg--cr satisfics the cquation (154) 5
for putting in this equation the value of y, and consequently thosc of its dif-
ferential coefficients, which we have just dctermined, and effacing the terms
in X, which destroy each other, we find

Aap+dg-+or) +B(0 L 459 4 .37
dsp d'q d’ d!lp =0.
+C a—-+b +D( dﬂ dﬂ dar)s

449. Since we do not yet know whether the valuc given to y makes all
the terms of the equation (161) mutually destroy themselves, we must now

. (161).
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proceed to demonstrate that this equation is identically 0. For this pur-
pose, p, g, r, satisfying the equation (155), we have

da2p
dr?

ag+BI Ty

d @
Ap-+B i S+C3 +D}'1!“;=°’

d_a =0

f ‘1' r
Ar4Bom4Co + DI =0;

and multiplying the first of these equations by «, the second by b, and the
third by ¢, and adding the results, we shall find an cquation identically 0,
which will be the same with the equation (161).

450. To determine a, b, ¢, since the differential cocflicients

da dah de

Hs H’ ;1‘_’
enter into the equations of condition (157), (159), (160), ouly in the first
degree, we may eliminate two of these coefficicnts, and so find the other in a
dq
dr
X3 g, 7y &, being known; whence, therefore, we shall have equations
of the form

. . dp
function of the expressions (—i—l—, =, &c., which are determinatc functions of
-

da db de

—_—=X, —~=X , —=X

d1 " dr Xo & o
or,

da=Xdr, db=X dr, dc=X
and integrating, we shall determinc a, b, c.
451. This theorem is applicable to the case in which the lincar equation is

of any order whatever ; and conscquently the integration of such equations
is reduced to that of the cquation

dx,

"

d,
A.+B’.1.Lc e +NTE oL 162).
dxn
452. When the linear cquation of the order » has constant cocfficients, it
is easy to detcrmine the integral. For if, in the equation (162), we make
y=ems, we shall find, by differentiating,

dy dsy ddy
——=emm, E‘,:e"ﬂm’, m:cmms, &ec.;

dx

and substituting thesc values in the equation (162), we shall obtain
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eni(A4+Bm4-Cm* . . . +Nmu)=0 .. . (163).
Let m’y m"y m™, &ec., be the roots of the equation
A+4Bm+Cm2 ... +Nmn=0 ... (164),
the equation (162) will then be satisfied by the values
y=cm'z, y=cm'z, y=em"'r, &c.;

and sincc we have # values of v, the finite complete integral of the equation
(162) will be
y=aem’s4-bem"z4-con'"2 | &c.

453. When o' =m"”, the terms ac™’’ and bLem”: reduce themselves to
(@+0b)™"7 ; and since @ + b must then be considered as only once constant,
we no longer have a number n of arbitrary constants in the expression for y.
In this case, it is casily demonstrated that if ¥ = em’. satisfy the proposed
equation, the value y =1¢'c must also satisfy it. For by differentiuting this

last equation, we find

dy - . A , -
——=gxem'iny em'a, ————gpem'amRE-enim’,
dr + ' dan +

f.s_y =1cmm'3+3cm'1m', [

da3

&e. = &e. :

und these values reduce the equation (162) to
1em’3(A 4B/ +Cm"+Dm 34 &e.)
+en’2(B+2Cn’ +3Dm"? +&c.) . . . (165).

But the equation (164) having, by hypothesis, two equal ronts, we know, by
the theory of equations, that the cxpression B 4 2Cm 4 3Dm? 4 &e., will
contain onc root less than the proposed equation, and will vanish when we
put m=m’, whence it follows that the expression (165) is identically 0. The
equation (162) will consequently be satisfied by the value y=x¢™m'7, and will
have for its complete integral

y=aent's 4-brem's 4cem’s 4 &c.

454. If there werc three roots cqual to m, we might prove, in like manner,
that equation (162) would be satisfied by making

y =o't -gem'a 13w’y 4

and so on.
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455. When the equation (164) contains imaginary roots, if onc of these

roots be s/ —1, the other will be A—%,/—1, and we shall have, in the
value of y, the two terms

aE kI =1 IR V=1 .
or
eh.p( ad¥n —1 +b‘,—kr\/—-l) ... (166).
But we know that we have gencrally (note fifth ) the formule

PV 1 —cosptsingn/ =T, ¢ PV 1 cos g—sin g/ —T;

the expression (166) thereforc being compared with these formula, we may
replace

v/ =1 by cos kr-+sinkin/—1,

e—hi/ =1 by cos kv —sin kaa/—1 ;

whence the formula (166) will become
ehr(a cos ki 4-a sin kxn/—1 b cos kx—Db sin ka V1),
an expression which may be written thus:
eha[(a+b)cos kr4-(a—Db)sinkra/—1] - - - (167).

When X is 0, in the equation (152), a, b, c, being arbitrary constants,
art. 446, we may suppose a+b=c, a—b=c’s/—1, and then the imaginary
part in the expression (167) will vanish.

On the intcgration of simultaneous eguations.

456. Let it be proposed now to integrate at once two or more differential

equations. Let
My+Nx +P-—+Qd‘ =T )

. (168)
M'v+N':+P' +Q"‘” =T

be the most general equations of the first degree between 1, v, and the dif-
\'s
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. . dy dx . . .
ferential coefficients G @ and in which the coefficients M, N, P, &c.,
are functions of the independent variable 7.
These cquations may be written thus :

(My+4Na)dt+Pdy+Qdx=Td1,
(M/y+4N'z)dt+P'dy+Q'de=TdL

if we multiply the second of these by a function ¢ of ¢, and add the results,
we shall obtain

[(M+-DM0)y +(N-+ Ny 1t +(P+PO)ly +HQ+Qe)dr=(T+ T}t ;

and representing the quantities within the parcntheses by single letters, this
equation may be written thus :

Hydt+Kadt+Rdy-Sda =Tdt ;

whence we derive
K 5N
H(y+-l—_l—.r )dt+R(dy+idr) =Tdt . . . (169),

an cquation which will be of the same form with the one
dy+4+-Pydr=Qdr . . . (170),
which we have integrated, art. 385, if

d(y+-—§-a-)=dy+l—sid1 NeVIOE

since then, by making
K
y+ﬁ.1.=z ..o (172),

the equation (169) will become
Hsdt +Rdz=Tdt,

or

dz+%zdt=%d‘ .. (173);

and we see that this equatiop is of the same form with the equation (170),

. H T :
since &~ and T ¥ certain functions of the independent variable 7.
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457. To satisfy the equation (171), we require only to have
K s
"( H' ) =’
or, differentiating,

> 3

K K _ S
i di—+1d. ﬁ_i-dx H

and in order that this equation may be satisfied, the multipliers of dv must,

in general, be cqual, and consequently the term d. —:\1— be 0; i. e. we must

have
K s K
T]—_-R—.d.—H— =0 ... (174).

Having substituted in these equations the values of the expressions . . . . .
H, K, R, $, and performed the necessary differentiation, we must then
climinate 0 contained in thesc equations, and we shall have the relation that
must subsist between the coeflicients, in order that the equation of condition
may be satistied.

458. In the case in which the coefficients of the first sides of the equations
(168) are constants, the differential of a constant being equal to zero, there
will remain only the first of the equations (174); this will suffice for de-
termining the factor 9, which will then be constant, since it will become
equal to a function of constants. Replacing K, H, R, S, by their values,
we have

N +N9_Q+Q9

M4Mo P4I"9°
and getting quit of the denominators, we sce that § will be determined by an
equation of the sccond degree, and thercfore have two values.

Representing these by 8, 87, and supposing that on substituting them suc-
cessively in the equation (173), the coefficients of zdt and of df become, in
the first case, p’ and ¢, in the second case p” and ¢”, we shall have

de+p'=dt=q'dt,
dz+4p'2dt =g¢"dL

whence, integrating according to the formula (90), art. (385), we shall find
r=e—dt( fy'evatdt)+C,
3=Vt fif 'e S dtdt) 4-C" ;
and substituting in these values that of 2, deduced from the equation (172),
we shall have two equations in 1, y, and 1.

Y 2
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459. If, excepting T, T’ T", which we shall always consider as functions
of 1, the coeflicients M, N, P, Q, &c. be constants, and we have the threc
equations

dy+(My + Na + Pc)dt =Tat,
dr+(M'y + N'a + Pz)dt =T'dt,
dz4-(M"y+4N"x4+P")dt=T"dt ;
multiplying the sccond and third by constants 9, 6 respectively, and adding
the results, we shall have an equation which mnay be represented by

dy+0dr+6'dz+Q(y-+Ra+4-Sz)dt =Udt.
That this equation may be of the form
dy+Pyda =Qdu,

it is y that, idering y+Ra+S: as a single variable 7', the dif-
ferential dy' of this function should be cqual to dy-+6dz+-6'dz, which re-
quires us to have the equations of condition

=R, §=S;

and since R and S are functions enly of § and 9, by virtue of the preceding
operations, it follows that these equations will suffice for determining the
different values of the constants § ar.d €.

460. This method is gencral, and applics equally to differential equations
of higher orders, since those equations can be reduced to the first degree.
If we had, for exnmple, the cquations

P+ My+ NPy Q2

d3x

E+M'V+N' A+ Y g% o,

or rather

d*y+(My + Nz)dts+(Pdy + Qdi)dt=Tde* ) (175)
Br+(M'y+N1)der-(P'dy+4+Qadx)dt=T4drr$ ~°  * '°F

we should make
dy=pdt, dv=qdt . . . (176);
and observing that dt is constant, our equations would become
dp+(My 4Nz +Pp + Qg)dt=Tadt,
dg+4+(M'y4+N'2+4-Pp+4Q'g)dt="T"dr :

these two equations, with the equations (176), form four equations of the
first degree, to which we may apply the preceding processes.
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Integration of differcntial equations of the second order.

461. The general form for differentiul equations of the second
order between two variables is

. dy &%y _

./( Y g 7,:;;) =0...(Q77).
We shall not attempt to integrate this equation in its utmost
degree of generality ; but shall proceed to examine how the
integral can be found in certain particular cases.

462. We shall consider first the hypothesis on which we
have
¢ dy fiﬁ{ _

S5t {m)_o .. .. (178).

dy dy _dp

To integrate this equation we shall put }7;

td o T A
da® dx
when it will be reduced to

f(n', P :L,:) . .75

and if this equation can be integrated, and we deduce from it
p=X, we shall readily obtain the value of g, for the equation
dy
dx
the value of p, we shall have y=/Xdr. But if the cquation
(179), instead of giving us the value of p in terms of , should
give that of » in a function of p, so that we had o =P, in-
tegrating dy =pdz by the method of parts, we should have

y=pax—/Sxdp,
and substituting in this equation the value of &, we should
find

=p giving us y = fpd.r, if we substitute in this equation

y=pa— S Pdp.
463. We will now consider the case in which we have
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dy %y .
dz,d‘_.) 0...(180):

d’v

P ; and replacing d. by

making d_y_ =p, =9

. l . . .
its value ';, this equation will become

dty _ pdp

da? dy ”

Putting these values of :% and il—;:i in the equation (180),
we shall transform it into

S ps dy, dp)=0;
and if this equation give p=7Y, we must substitute this value

d
in the equation dz =—7':1, when we shall obtain, by integrating,

If, on the contrary, y results as a function of p, and we have,
consequently, y =P to obtain », we must integrate the equa-

tion dx:i: by parts, when we shall have

& __+././ )Q 3
and substituting in this equation the value of y, we shall find

r'—‘y+f d]).

having integrated, we must then eliminate P by means of the
equation y=P.

464. When the equation (177) contains, along with ‘7—‘2
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only one of the three quantities g:—-:, « and y, we have, in the

first case,
dy d2,
S 5Z)=0 ... q8n;
and makmg -~ =g, and consequently ¢_i’~’__y_ = dp and substi-
? d2* "~ dx’

tuting these values in the cquation (181), it will become
. dpy _
_f ( P -J.;) =0.

From this equation we deduce

dp
Ir—P ... (182),
und consequently
a':_/‘% ... . (183).

d,
On the other hand, the cquation %: p gives us

y=Spda;

and substituting in it the value of dr, given by the equation
(182), we obtain

d
y=sEL ... (8y;

having integrated the equations (183) and (184), we must
eliminate between them the quantity p, to obtain an equation
between 2 and y.

465. In the case in which d—;—g appears combined ouly with

a function of a, we have
d“l/
dz®

=X;
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multiplying by dr, and integrating, we find
dy _ ..
p P -/ Xdw+C ;
representing /' Xdx by X', we have

dy , .
d—;_x +C;

and multiplying anew by da, and integrating, we obtain
y= f X'd.r+ C.

466. Lastly, when j—:—y‘ is given in a function of y alone, we

have only to integrate the equation

e,
d_yY

To accomplish this, we shall multiply the equation by 2dy,
which will give
dt/ d2y

dzﬂ_2Yd

and the first side being composed similarly to the differential
of #*, we shall find, by integrating,

W _ [9Vay+C;

ds®

extracting the square root of this, we shall obtain
d —
7;% = /J2Ydy+C,

and, by a new integration, we shall deduce

. dy
=/ Yy

—_—— . +C.
Ve+2fYdy
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Partial differential equations of the first order.

467. An equation which subsists between differential co-
cflicients, combined, according to the case, with variables and
constants, is, generally, a partial differential equation, or, as
it was formerly denominated, an equation with partial dif-
ferences. These equations are thus denominated, because the
notation of the differential coefficients which they contain in-
dicates, as we have secn, art. 52, that the differentiation can
ouly be effected partially, i. e., by considering certain of the
variables as constants. This, consequently, supposes that the
function proposed contains more than one variable. For greatcr
simplicity, we will first admit only of two, and consider the
partial differential equations of the first order, i. e., those which
contain only one or more differential cocflicients of the first
order.

468. We will commence with integrating the following
equation :

dz

=
If 2, instead of being a function of two variables » and y, should
contain only , this would be no more than an ordinary dif-
ferential equation, which, being integrated, would give . . . .
g =ax-+c; but since, in the present case, = is by hypothesis a
function of r and y, the terms involving y in the function =
must have disappeared by the differentiation, since in dif-
ferentiating in respect of », 4 has been considered constant.
We must therefore, in integrating, adhere to the same hypo-
thesis, and suppose that the arbitrary constant is in general a
function of y; whence, consequently, we shall have for the
integral of the equation proposed,

r=ar+ Y-
469. If we have also the partial differential cquation
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in which X is a function of x ; multiplying each side by d.,
and integrating, we shall find
z=fXdo+ ¢y.

470. For example, if the function represented by X should
be z%+a*, the integral would be

a3
z=,—3- +atr+¢y.

471. We shall find no greater difficulty in integrating the

cquation

for which we shall have
z=Yzr+oy.
472. We may in like manner integrate cvery cquation in

which % is equal to a function of two variables x and y.

If we have, for eiample,
dz &

dz~ Jay+at’

considering y as constant, we shall multiply by de, and in-
tegrate according to article (271); when representing by gy
the constant which ought to be added to the integral, we shall
have
z=say+a+oy.
473. Lastly, if we have to integrate the equation
d= 1
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u as usual being considered constant, we shall have (art. 274),
z=sin 2 +0y-
Yy
474. Generally, to integrate the equation

dz

—de=F(a, ,

o0 F(a, y)dx

we must take the integral in respect of », and adding then a
constant function of y to complete it, we shall find

2=/ Fle, y)do+ gy.
475. From what has been said, we sec that, excepting the
hypothesis of one of the variables being constant, and the in-
troduction, in the integral, of a constant function of that

variable, we follow the same process as in the integration of
ordinary differential equations.

476. Let us consider now the partial differential equations
which contain two differential coefhicients of the first order,
and let the equation be
dz dz
22 iNE o,
dua dy

>

in which M and N represent given functions of ® and y: we

deduce from it
dz _]!l dz

dy~ "N dz’

and substituting this value in the formula

_d=z dz -
(l,.._d:;d,z--‘— @(1.1/ PREEEN (l8d),

which expresses nothing more than the condition that = is a
function of & and y, we obtain

dz= :-;f—i ((I.z'— %:/J/) .
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or

dz Ndz— Mdy

Let A be the factor proper to render Ndx—Mdy a complete
differential ds; we shall have then

A(Nde—Mdy)=ds . . . . (186),

dz=

and, by means of this equation, eliminating Ndo— Mdy from
the preceding one, we shall obtain

Lastly, observing that the value of Z—z is indeterminate, we
may assume it such that Xlﬁ .:—:idc shall be immediately in-

tegrable, which requires that N ‘;— be a function of 5 ; for we

know that the differential of every given function of s must be
of the form Fs.ds. From this thercfore it follows that we
must have

which will change the preceding equation into
dz="Fsds ;

whence we shall deduce

g=¢s . . .. (187).
477. If we integrate by this method the equation

dz dz
32}—.y—d—i.—0 “ e (188),

we have in this casc M =—y, N=z, and the equation (186)
will consequently become
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ds = AMaedr+ydy).
It is cvident that the factor proper to render the second side
of this equation integrable is 2; substituting therefore this
value for A, and integrating, we have
s=a%+4y*;
whence, putting this value in the equation (187), we shall have
for the integral of the equation (188)

= (22 +%)
478. Let now the equation be
P{g.;. Q—;§+R=O . ... (189),
in which P, Q, R, are functions of the variables z, y, = ; di-
viding by P, and making g =M, -}—3’ = N, we may put it under
the form
dx

dz
TLT-+M(?3,+N=O ... (190);

and making :[I—: =p, i—g =g, it will become

p+Mg+N=0.... (19]).

This equation cstablishes a relation between the coeflicients p
and ¢ in the general formula

dz=pdo+qdy . . .. (192);

without this relation, » and ¢ would be entirely arbitrary in
the formula, since, as we have already observed, it does no
more than indicate that z is a function of » and y, and that
function may be any whatever. Thus in the equation (192)
p and ¢ must be considered as two indeterminate quantities ;
and eliminating p by means of the equation (191), we shall
obtain
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dz4+Ndr =q(dy—Mda+) . . . (193);

in which ¢ will still remain indeterminate: but we know
(see note third) that when an cquation of this sort holds good,
whdtever be the value of y, we must have scparately

dz+4-Ndx=0, dy—~Mde=0 . . . (194).

479. If P, Q, and R do not contain the variable =, it will
be the same with M and N ; in which case the second of the
equations (194) will be an equation between the two variables
@ and y, and may become a complete differential by means of
a factor which we will represent by A, when we shall have

A(dy—Mda)=0 . . . (195);

and the integral of this equation will be a function of z and y,
to which we must add an arbitrary constant s, so that we
shall have

F(.'r, .z/) =¥,
and consequently
y=f(x, ).

This value of y is the one given us by the sccond of the
equations (194); and in order, therefore, that the two may
hold good simultaneously, this value of y must be substituted
in the first of the equations (194) ; for though the variable y
does not explicitly show itself in that equation, we see that it
may be contained in N.

This substitution, from the nature of the value which we
bave just found for y, comes to the same thing with con-
sidering y, in the first of the equations (194), as a function
of 2 and 5; and the first equation being, therefore, integrated
on such hypethesis, we shall find

2=—/Ndr+ ¢s.
480. To give an example of this mode of integration, let us
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take the equation
'dz dz -
"d'_;,‘*'y@ =ay/a®+4%;
comparing it with the equation (190), we have

M=Y,N=—¥ZXL . (196),

and these values being substituted in the equations (194),
they will be changed into

dz—a¥EX 400, dy—2ir=0 .. . 197).
o

Let A be the factor which renders this last equation inte-
grable ; we shall have, then,

A ((ly—'%da:) =0,

or

A(d’d_l/—?yd.)’) =0’

&2

. . )
and this equation will be integrable, if we make A=—; since

in that case its first side becomes a complete differential (art.
403). ‘

Equating, therefore, the integral of this equation to an
arbitrary constant s, we shall have

Y

-=y,

and consequently
y =d&.

By means of this value of y, the first of the equations (197) is
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changed into
dz —a Mdg = 0,
4
or

dz=adwy/14s2;

whence, integrating and considering s as constant, we shall
obtain

z=afdey/1+s2+¢s,
and conscquently
z=ax/ 14524 s.
Replacing the value of s, there results lastly

2= ¥ oY
z —a.yl +’,+‘P'—r,
or
— Y
z=ay/ 2+ + 0,

481. In the most general case, in which the coefficients
P, Q, R, of the equation (189) contain the three variables
&, ¥, %, it may happen that the equations (194) contain each
of them only the two variables which explicitly show them-
selves in the respective equations; and that consequently we
may put them under the form

dz=f{(x, z)dz, dy=F (2, y)dx.

We cannot integrate these equations independently of each
other, by supposing, as in art. 474,

2=/ 2, 2)dr+ 03, y=/F(z, y)de+ By ;

for in this case we see that we must assume z to be constant
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in the first equation, and y to be constant in the second; hy-
potheses which are contradictory to each other, since one of
the three coordinates 2, y, z, cannot be supposed constant in
the first cquation without its being also constant in the second.

482, The following is the method by which we must in-
tegrate the cquations (194), in the case in which they con-
tain each of them only the two variables which expressly
appear: let w and A be the factors which render the equa-
tions (194) complete differentials ; representing these differen-
tials by ¢U and @V, we shall have

A(d:+Nd.) =dU, u(dy—Mdr) =dV,

and by means of these values, the equation (193) will become
dU=¢>dv . .. (198).
w

Since the firt side of this cquation is a complete differential,
. . . . A

the sccond must be so likewise, which requires that - be a
w

function of V ; representing this function by ¢V, the equa-
tion (198) will beeome

AU = ViV
whence we shall deduce, by integrating,
U=a¢V.

483. Let us tuke, for example, the equation

z Az
.1_1/{,;;-}-.4 '7; =yz:

this being written thus,

dz» @ dz o
a’a:+'1/ (ly—.r— ?

and compared with the cquation (190), we shall have
V4
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-
~

M=%, N=-1%,
p

by means of which values the equations (194) will become
2 >
dz——dr=0, dy—~dx =0,
» y

and getting quit of the denominators, we shall have
.rd:--zda::(), y(ly-—.z'd,r =().

The factors proper to render thesc equations integrable are

1 . . z

P and 2; substituting these, and integrating, we find ;4_- and

y%#—a? for the integrals ; and putting these values in place of
U and V, in the cquation U =&V, we shall obtain, for the
integral of the equation proposed,

8w

= @(y2—2?).

484. It is to be observed that if we had eliminated ¢ in-
stead of p, the equations (194) would have been replaced by
the following ovnes:

Mdz+Ndy=0, dy—Mda=0 . . . (199);

and since all that we have said of the equations (194) will
apply equally to these, it follows that, in the ease in which
the first of the cquations (194) is not integrable, we are at
liberty to replace those equations by the system of the cqua-
tions (189) ; i. e. to employ the first of the equations (199)
in place of the first of the equations (194), and then see if the
integration be possible.
485. For example, if we had

dz dz 0
12— =24y =),
‘ zt/.r 2 dy Ty
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this equation, divided by az and compared with the equation
(190), would give us

whence the equations (194) would become
dz+4 '—'-"’!d.r::. 0, dy+ s r=0;
az «

and getting quit of the denominators, we should have
axdz +ayde =0, ady+.rdr=0 . . . (200).

Now the first of these equations, containing three variables,
cannot be immediately integrated ; we shall thercfore replace
it by the first of the cquations (199), when we shall have, in
lieu of the erquations (200), the following ones :

._'Iil'll‘: + (ilgd:/ =0, ady+xdr=0;

. . .
suppressing — as a common factor in the first of these equa-
a

tions, and multiplying the one by 2z and the other by 2, we
shall find

—22dz+2ydy =0, 2ady+ 2rdr =0,
equations which have for their integrals
y*—=22, and 2ay+.<;

and substituting these values in place of U and V, we shall
have

y2—2t=¢2ay +a?).

486. Tt may be obscrved that the first of the equations
(199) is no other than the result of the elimination of o+ be-
tween the equations (194).

z 2
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Generally, we may eliminate every variable contained in
the coeflicients M and N ; and, in a word, combine the equa-
tions (194) in any manner whatever; if, after having per-
formed these operations, we obtain two integrals represented
by U=« and V=0, a and J being two arbitrary constants,
we may always conclude, thence, that the integral is . . . .
U=¢V. For, since ¢« and b are two arbitrary constants,
having taken & at pleasure, we may form « of / in any manner
whatever ; i. e. we may assume a as an arbitrary function of
b; a condition which will be expressed by the cquation . . . .
a=0pb (note twelfth) ; we shall con-equently have the equa-
tions U=pb, V=4, in which &, y, and = represent the sume
coordinates ; and if we eliminate ¢ between these equations,
we shall obtain U=9V. Tt may also be observed that this
cquation informs us that on making V=14, we ought to have
U=o¢b=counstant; i. e. that U and V are constants at the
same time, without « and 6 being dependent one ou the other,
since the function ¢ is arbitrary. Now this i~ precisely the
condition which is given us by the equations U=« and
V=i.

487. To give an application of this theorem, let

dz dz N
:.P;—{'—;- ;:.)/l—l.—'}-—_l/" =0.
Having divided by 22, we shall compare this equation with
the equation (190), which will give us

¢

<
¥

|

1\'[:—"/_, N=—

o

b

.
S

[ 3]

and the equations (194) will become

dz—Ldz=0,dy +’f(/.~ =0,

or

sedz—yde =0, »dy +yda=0.
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The first of these cquations containing three variables, we
shall not attempt to integrate it in this state; but if we sub-
stitute the value of yda, derived from the second, it will ac-
quire a common factor », which being suppressed, it is re-
duced to

dz4ydy =0,

and we see that on multiplying it by 2, it becomes integrable ;
and the other cquation being so likewise, we shall find, by
integrating them,

L yr=a. wy=h;
whencee we conclude that
E4yit=qwy.

488. We shall terminate what we have to say respecting
partial differential equations of the first order, by the solution
of this problem: Awr cquation which contains an arvbitrary
Junetion of vne or more variables being given, to find the
partial differential cquation which has produced it

Suppose, therefore that we have
2= F+ )5
we shall put
i yt=a . . (201),
when our equation will become
:=Fu;

and since the differential of « must, in general, be a function
of w, multiplied by dv, we may assume ,

dz=gudu.

If now we take the differential of z, in respect of & only, i. c.
considering y as constant, we must take the differential of «
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also on the same hypothesis ; and, consequently, dividing the
preceding equation by d», we shall have

dz du

(7:;=¢N2; .« e (202);

considering, then, .- as constant, and y as variuble, we shall
find, by a similar process,
dz du

— = gu— . 3).
Ty cu dy (203)

d 0l .
The values of the differential coefficients 7?_ and 'l(_l.—z which

enter jnto the equations (202) and (203) will be obtained by
differentiating the equation (201), in respect to . and y suc-
cessively, which will give us

du du
—(E—2.’0', @—2}/ H

substituting these values in the equations (202) and (203),
we shall have

dz dz

=2, = 2u s
and eliminating gu between these equations, we shall find,
lastly,

(1.~: _dz
Yz~ 'Iy

489. Let us take also, for example, the equation
2 200 = F(w—y).
Making
r—y=un . ... (204),
this cquation becomes

22 4+ 200 = Fu ;
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and differentiating, we have
d( =2 +2ur) = gudu ;

taking the differential indicated, in respect to ., we must con-
sider z as variable, by virtue of »» which is contained in it,
and dividing by da, we shali have

dz du
b) ~— 2 —_— e e - 153 H
Bt 20 =u_ (205)
proceeding in a similar manner for 4, considering z as a func-
tion which varies only on account of y, and dividing by y,
we shall find
dz l/u
22— =m . (206).
dy F (h/ (206)
To climinate the differential coeflicients of de, the equation
(204) gives us
du _ du 1.
de ™ 7 dg/— ’
substituting these values in the equations (205) and (206),
we shall have

/»
RE (—+21_.,,u. 2"— - =—¢z¢ 5

and climinating $u between these cquntions. we shall obtain,
lastly,
o= dz a
v tay Tz

DPartinl differential equations of the second order.

490. A partial differential equation of the second order, in
which = is a function of two variables & and y, must always
contain one or more of the differential cocflicients
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diz  ds= 'z

da® dy’  drdy’
independently of the differential coefficients of the first order
which it may contain.

491. We shall confine ourselves to integrating the most
simple of the partial differential equations of the second order,
and shall commence with the one :

«®z
multiplying this by d, and integrating in respect of , we
must add to the integral an arbitrary function of y, when we
shall have

=0;

multiplying anew by d., and designating by ¥y the function
of y to be added to the integral, we shall find

2= wpy + by.
492. Let it be proposed now to integrate the equation
%z

da?

in which P is a function of » and y ; proceeding as before, we
shall find first

dz

o =S Pdetey;
and a second integration will give us

= =/[/Pde+gy]de+y.
493. We might integrate in the same manner

iz _
oy -

-
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nnd we should find

2= [ /Pdy+pr]dy+Ja.
494. The equation
d*z
dydz="

must be integrated, first in respect to one of the variables, and
then in respect to the other, which will give

o=/ [/ Pdo+gy)dy+er.

495. Generally, we shall treat in a similar manner any one
of the equations

d"z d"z d"z
——=P, ———=Q, -———=R, &e.
l[!/" 2 l[.’l'd.l/"—' )9 dx 'l/']/"_.-) » \C.,
in which P, Q, R, &c., are functions of x and y; and this
will lead to a ~eries of integrations, each of which will intro-
duce un arbitrary function into the integral.
496. Among the equations now under consideration, one

of the most easy of integration is the following :

Wtz dz

P =Q;

dy dy
by P and Q designating always two functions of .o and y.
Making

—=u .. .. (207),

we shall change this equation into

du

(Ty+Pu=Q AN (208).

To integrate, we shall consider .+ as constant, and then this
equation will contain only two variables  and », and will be
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of the same form with the equation

dy+Pyde=Qdr . . . . (209),
treated of, art, 385, and the integral of which is

y=e~u( fQeMdr4+C) . .. (210):
comparing therefore the equations (208) and (209), we shall
have
y=u, 2=y;

substituting thesc values in the formula (210), and changing
C into @x, we shall obtain

n=ec— bll_l/(‘/'Qpl ',‘l-"(l.l/ + ¢a’.) ;

and putting this value of % in the equation (207), multiplying
by dy, and integrating, we shall find

z=f[e (S QT dy+ox)Jdy + b
497. We might integrate by the same method the cquations

diz d: d2z dz

_— —=Q5——+ P5=

dady + Pda: Q’(l.rdy + dy Q

in which P and Q represent functions of ., and by reason of
the divisor dady, we see that the value of = cannot contain
arbitrary functions of the sume variable.

Oun the determination of the arbitrary functions which enter
into the integrals of partial differential equations of the first
order.

498. The arbitrary functions which complete the integrals
of partial differential equations must be determined by the
conditions which belong to the nature of the problems which
have produced those equations, problems which for the most
part belong to questions in physical mathcmatics. Not to
wander too far from our subject, we shall confine ourselves to
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considerations purely analytical, and investigate first what are
the conditions contained in the equation

%:a ... @),

499. So long as z is a function of » and y, this equation

may be considered as that of a surface ; and this surface, from

. . . . dz

the nature of its equation, will possess this property, that i
must always be a constant quantity. It follows from this that

every section EF (fig. 87) of this surface, made by a plane CD Fig. 87.
parallel to that of =, z, is a straight line. For, whatever be
the nature of this section, if we divide it into an infinite
number of parts mm’, m'm’, m'm”, &ec., these parts, sceing
that they are exceedingly small in length, may be considered
as straight lines, and will represent the elements of the sec-
tion ; also any one of these elements mm makes with a parallel
mn to the axis of the abscisse, an angle the trigonometrical

e dz . .
tangent of which is represented by o and since this angle
»

. dz .

is constant (because T 50), it follows that all the angles
dr

m'mn, m"'m'n’, m"m"n", &c., formed by the clements of the

curve with the parallels mn, »'n’', m"n", &c., to the axis of the

abscisswe, will be equal ; which proves that the section EF is

a straight line.

500. We might have arrived at the same result by con-
. . dx .
sidering the integral of the equation ;—,—- =u, which we have
@

seen to be, art. 468,

r=artoy . . . . (212);
for, for all the points of the surfuce which are in the planc
CD, the ordinate is equal to a constant ¢, represented in the
fig. 87, by AB; replacing therefore ¢y by ¢c, and muking
¢e=C, the equation (212) will become
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z=ax+C . ... (213),

and this equation being that of a straight line, the section EF,
to which it belongs, must consequently be a straight line.

501. The same being the case in respect to the other secant
planes which might be drawn parallel to that of .z, we con-
clude that the sections of all these planes with the surface
will be straight lines, which will be parallel to each other,
since they will form each of them with a parallel to the axis
of #, an angle whose trigonometrical tangent will be the con-
stant a.

502. If now we make 2=0, the cquation (212) will be
reduced to z=¢y, and will be that of a curve GHK traced
along the plane of y, = ; this curve comprising all the points of
the surface, for which #=0, it will meet the planc CD in a
point m (fig. £7), which will have, for one of its coordinates,
2#=0; and since we have also y = AB=r, the third coordinate,
by virtue of the equation (213), will be z=C, a value repre-
sented in the figure by Bm. What we have said of the plane
CD will apply to all the other planes, which are parallel to it,
and it follows thercfore that through all the points of the curve
whose equation is z=¢@y, and which is traced along the plance
of y, =, straight lines will pass parallel to the axis of ..

Here then is all of which the equations (211) and (212)
inform us, and since this condition is always fulfilled, whatever
be the figure of the curve of which z=¢y is the equation, we
sce that this curve is arbitrary.

503. It follows from what has been said, that the curve
GHK, of which z=gy is the equation, may be composed of
arcs of different curves, which join at their extremities*, as in

® In this case, the curve will be determined by means of several cquations,
in such a manner that the first will give the value of the variable r, for in-
stance, from + =« to 1=b; the second will give it from 2=0b to 1 =¢, and
s0 on.
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fig. 88, or of curves which leave breaks in certain places, as in Fig. £8.
fig. 89. In the first case, the curve is discontinuous, in the Fig. 89.
second it is discontiguous : in this last case it may be observed

that two different ordinates PM and PN (fig. 89) correspond

to the same abscissa AP. Tt is possible, lastly, that without

being discontiguous, the curve may be composed of an infinite

series of indefinitely small ares, which belong cach to different
curves ; in this case the curve is irregular, as, for example, the

fibres of a feather would be which we should draw out at ran-

dom ; but however the curve may be formed of which the equa-

tion is ==¢y, it will suflice for constructing the surface to

make a straight line move always paralle] to itself, with the
condition that its point M shall run along the curve GHK, of

which the equation is = = ¢y, and which is traced at random

along the plane of y, =.

. . dx
504. If, instead of the equation ;l—— =a, wehad the one . . ..
i

g’%: X, in which X was a function of « ; then drawing a plane
CD (fig. 87) parallel to that of 2, 3, the surface would be cut
in a section EF, which would no longer be a straight line, as
in the preceding case.  For, fur any point »/, taken in this
scction, the trigonometrical tangent of the angle 2'm’im” formed
by the prolongation of the clement #i'm” of the section, with a
parallel to the axis of », will be equal to « function X of the
abscissa z at that point ; and since the abscissa r is different
for every point, it follows that the angle #'w'm” will be dif-
ferent for each point of the section, which shows us that EF
will not, as before, be a straight line. The surface will be
constructed in the same manner as in the preceding problem,
by making the section EF move paralle] to itself, so that its
point m shall continually be in the curve GHK, of which the
equation is == @y.

505. Supposc now that in the preceding equation, instead
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dz
of X we had a function P of x and y, the equation e p,
containing three variables, will belong still to a curve surface.
If we cut this surface by a plane parallel to that of x, z, we

shall have a section in which y will be constant ; and since in
. . dz . .
all its points, ar will be equal to a function of the variable
r

x, it will follow, as in the preceding case, that this section
will be a curve.

The equation :;"-=!‘, being integrated, we shall have, for
v
that of the surface
~= f P ({J‘ + Qy H

if in this equation we give successively to y the increasing
values 3/, ¥, "', y", &c., and represent by P, P/, P, P,
&c. what the function P then becomes, we shall have the
equations

2=fPdr +oy, =z=/P'dz+py’, I
2=P'dr+¢y”, s=/Prdx+py", S (214);
&e.=&e. &e. = &e.

and we sece that these equations will belong to curves of the
same nature, but different in form, since the values of the
constant y are not the same in all. These curves will be no
other than the sections of the surface by planes parallel to that
of z, z; and, in meeting the plane of y, z, they will form a
curve, the equation of which will be obtained by making »=0
in the equation of the surface. Representing by Y, what
S Pdx becomes in this case, we shall have

2=Y+oy ... (215);

and we see that on account of gy, the curve determined by
this equation must be arbitrary; thus, having traced along
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the plane of y, =, the curve QRS (fig. 90) at pleasure, if we Fig. 90,
represent by RL the section of which z=/P'dr+ ¢y is the
equation, we must have this scction to move, ccpmg its ex-
tremity always in the curve QRS, and in such a manner that,
in its course, this section RL shall assume the successive forms
determined by the equations (214) ; when we shall construct

. .dz
the surface to which the equation ’—l—z P belongs.

da
506. Let us consider, lastly, the general equation

o= d

dr

+N.._O

the integral of which i~ U=9V, art. 486. Since we have
the cquations U=wa, and V =0, each of which is between
three coordinates, we may consider them as the cquations of
two surfaces, and the coordinates being common, they must
belong to the curve of intersection of the two surfaces.  This
being premised, since @ and b are arbitrary constants, if in
U=a we give to . and y the values 7 and ', we shall obtain
for 2 a function of ./, ', and a, which will determine a point
of the surface of which U=« is the equation. This point
will change its position if we give successively different values
to the arbitrary constant a ; that is to say, by making « vary,
the surface whose cquation is U=0a will be made to pass
through a new system of points. What has been said of
U=a will apply equally to V=24 ; we may conclude therefore
that the curve of interscction of the two surfaces will con-
tinually change its position, and consequently describe a curve
surface, m which @ and 4 may be considered as two coordi-
nates; and since the relation a=@b, which connects these
two coordmates, is arbitrary, we see that the determination of
the function ¢ reduces itself to the problem of making a sur-
face pass through a curve traced arbitrarily.

507. To show how this sort of problems may conduct to
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analytical conditions, we will examine what the surface is, the
equation to which is

d= dz )
yzl-'—‘v{_l:l/- . e . (2]()).

We have scen, art. 477, that this equation has for its integral

=p{a%+22) . . . (217),
and reciprocally we deduce from this integral
a4 yt=dz;

if we cut the surface by a plane parallel to that of ., 7, the
section will have for its equation

a4+ y2=dc,
and representing the constant ¢c¢ by «2, we shall have
‘v’.'+!/’.’= 2

This equation belongs to a circle ; and, consequently, the sur-
face will possess this property, that every section made by a
plane parallel to that of z, y, will be a cirele.

508. This property is also indicated by the equation (216) ;
for, by virtue of art. 26, we deduce from it

d
o= y(-I:,

which shows us that the subnormal is always equal to the ab-
scissa, and this is a property of the circle.

509. The equation (217) indicating to us no other con-
dition than that the sections parallel to the plane of , y, must
be circles, it follows that the law according to which the radii
of these sections are to increase, is not comprised in the equa-~
tion (217); and that, consequently, every surface of revolu-
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tion will satisfy the problem ; for we know that in surfaces of
this sort the sections parallel to the plane of ¢, y, arc always
circles. and it is needless to say that the generating curve
which, by its revolution, describes the surface, may be dis-
continuous, discontiguous, regular or irregular.

510. Let us investigate now the surface for which this gene-
rating curve should be a parabola AN (fig. 91), and suppose
that, on this hypothesis, the surface be cut by a plane AB,
passing through the axis of 5; the track of this planc along
that of x, y, will be a straight line AL, which being drawn
through the origin, will have for its equation y=«r; and if
we represent by ¢ the hypothenuse AQ of the right-angled
triangle APQ, constructed along the plane of , y, we shall
have

U=at
but ¢ being the abscissa AQ of the parabola AN, of which
QM == is the ordinate, we have, from the nature of the curve,

©v=bz,

putting for /% its value %+ »°, there results

1 1 ot
= Z(.r‘l +y)orz= i (a%at+at) = -2— (a2 +1),

and making % (a4 1) =m, we shall obtain

T=wmr ;

so that the condition prescribed on the hypothesis of the ge-
nerating curve being a parabola is that we shonld have

- z=ma*, when y=au.

511. We shall secek now to dctermine, by means of these
conditions, the arbitrary function which enters into the equa-
tion (217). For this purpose, representing by U the quantity

AA

Fig. 91.
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' +y°, which is affected by the sign ¢, the equation (217) will
become
z=oU . ... (218),
and we shall have the three cquations
24+2=U, y=ax, z=ma*

Eliminating y by means of the two first of these, we shall
obtain the value of 22, which, being substituted in the third,
will give us

[Y
PRy p—
@+1
an equation which reduces itself to
= 1[7
AL

1
since we have already supposed 7 (a*+1)=m. This value of

= being then substituted in the equation (218), it will be
changed into

, 1
¢‘[.‘ -—Z'J N

putting the value of U in this equation, we shall find
1
Plat+3%) = (a*+y*).

and we see that the form of the function is determined. Sub-
stituting this value of ¢(«+2+2*) in the equation (217), we
shall have for the integral sought,

1
=7 @42,

an equation which possesses the property required, since the
hypothesis of y =ax gives us

T=ma*.
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512, This process is general ; for suppose that the conditions
on which the arbitrary constant is to be determined are that
the integral give F(z, y, 2)=0, when we have f(2,y, z) =0;
we shall obtain a third equation by equating to U the quantity
which is preceded by ¢, and then by eliminating successively
every two of the variables .r, y, z, we shall obtain cach of those
variables in the function of U ; putting these values in the in-
tegral, we shall arrive at an equation the first side of which
will be ¢U, and the sceond side an expression also composed
of U; replacing the value of U in terms of the variable, the
arbitrary function will thus be determined.

Of the arbitrary functions which cater into the integrals of
partial diffeventials of the second order.

513. The partial differential equations of the second order
conduct to integrals which contain two arbitrary functions;
the determination of these functions resolves itsclf into 1aking
a surfuce pass through two curves which may be discontinuous
and discontiguous. To give an example, let us take the equa-

.ode! . C .
tio :I_;\;:‘)’ the integral of which, art. 491, is

r=apy+vy ... (219).

Let Ax, Ay, Az, (fig. 92), be the coordinate axes ; if we
draw a plane KL parallel to that of ., z, the section of the
surface, by this plane, will be a straight line ; for, for all the
points of this section, y being equal to Ap, if we represent Ap
by a constant ¢, the quantitics ¢y and Yy will become ¢¢ and
Yc, and consequently may be replaced by two censtants @ and
b, so that the equation (219) will hecome

z=ar+b . ... (220,

and will be that of the section made by the plane KL.
514. To determine the point in which this section meets

the plane of y, 2, making » =0, the cquation (219) gives us
142

Fig. 92.
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on this hypothesis z = {y, which indicates to us a curve amd,
traced out along the plane of y, z. It would be easy to show,
as in art. 502, that the section mects the curve amb in a point
m ; and since this section is a straight line, to determine its
position, we have only to find a second point through which it
must pass. For this purpose, we must observe, that when »
is equal to 0, the equation (219) is reduced to

z=Vy;
whilst, when 2 is equal to unity, the same equation is reduced
to
z=9y+dy,
and making, as before, ¥ = Ap = ¢, these two values of = be-
come
x=b, z=a+0,

and determine two points m and 7, taken in the same section
mr, which we have seen to be a straight line. To construct
these points, we must proceed in the following manner: we
must trace arbitrarily along the plane of y, z, the curve amé,
and through the point p, in which the secant plane KL mects
the axis of y, raise the perpendicular pm =6, which will be an
ordinate to the curve ; we must then take, at the interscction
HL of the sccant plane with that of », y, the part pp’ equal
to unity : through the point " draw a plane parallel to that of
¥, z; and on this plane construct the curve @'2'd’, similar,
and similarly disposed with the curve amb ; then the ordinate
m'p’ will be equal to mp; and if we produce m'p’ to », the
_ arbitrary quantity w'r representing a, we shall determine the
point 7 of the section.

If then we prolong, by the same process, all the ordinates
of the curve a6, we shall construct a new curve a'»4', which
will be such, that, drawing through this curve and through
amb, a plane parallel to that of », z, the two points in which
the curves are cut will belong to the same section of the sur-
face.
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a15. It follows, from what has been said, that the surface
may be constructed, by making the straight line mr move in
such a manner that it shall always touch the two curves amb,
arl.

516. This cxample will scrve to show, in some slight de-
gree, how the determination of the arbitrary functions, which
complete the integrals of partial differentisl equations of the
second order, resolves itself into making the surfuce pass
through two curves, which, according to the arbitrary func-
tions which serve to construet themn, may be discontinnous.
discontiguous, regular or irregular.






NOTESs.

NOTE FIRST.
Wt thie weninincs oF finding the developaent of log {(x+h).
Tur following is one of the processes employed for finding
the logarithm of @ 4 2. The development of log (1 + &) is
first investipated thus @ we equate log (14a) to u series of
terms arrangred according te the powers of ., observing that
in this serics there can be no term independent of . for if
we had
log (1 4+ )=+ Do+ Cut 4+ &e.,
sinee this equution ought to hold good, whatever @ be, it would
fulow that, on making .» = 0, we should have A =logl =0
w2 shall therefore assume
log(l4.0)=Aa+ B+ &e - - . (1)
chayging o into =, we shall have similarly
log (14+2)=Az+Bz2+4Cz'+ &c. ;
and z being arbitrary, we may suppose that there cxists be-
tweer # and z the relation
A42)2or 14+20+a2=1+4z;

dedudng from this equation the value of s, und substituting it
in thcequation (1), we shall find
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log (1+ )2 =A(2r+a%) 4 B(2r+22)2 4+ C(2r 4 22)* + &e. ;

whence, developing and arranging according to the powers of .,
log (14+2)2=2A0+ A o TIB L,
+4B +8(‘ +]2C}.z +&c}(2)

On the other hand, from the property of logarithins expressed
in the equation log @"=u log ¢, we have

log (14.)2=2log (1+).
or, putting for 1+ . its development (1),
log(142)2=2(Ax+DBa2+Ca3+&e.) ;

substituting this value of log (1 4+ #)2 on the first side of the
equation (2), we shall have an equation which must hold good.
whatever @ be ; and consequently equating to cach other the
terms affected by the same powers of , we shall obtain

2A=2A, A+4B=2B, 4B+8C=2C, &¢ ;
whence we shall deduce

A . 2B A
B=—g C=—py =%

&ec.,
and substituting these values, we shall find

x3

3 1

When =0, log 1 =0=C, and therefore there is no contant
to be added.

log(l+.z)_A(t———+ +&c)+C.

Making now =;, and therefore

v+

: k y
log (1++)=1log (1+3:) =log-—7— =log (v + 4)—log,



NOTES. K1Y
we shall have

¢ a
lmr(.r+lz)—logr—A(h h,.; ”’B 44+&c)- 3),

and dividing by 7,

log (x4 ) —lor ) :
log (x4 M)—loz e _ A(l, 2" R ke )

% P VR Y ey
P . log
assing to the limit, we shall find — = and conse-
£

A da

o’

It will be scen that

quently the differential of log » is -

the constant A is no other than the modulus, and since in the
Napierian system the modulus is supposed equal to unity, this
hypothesis reduces the equation (3) to

I /

I '
l()g (’t+h) =10g .‘C+;—-—~§ly— “+ H:-%F_—_'i./ - +&(‘

NOTE SECOND.

Consiuderations which prove the solidity oy the principies of
differentiation, and the mcans by whick we may wvoid em-
ploying Macluwrin's theorem in the differentiation of ex-
ponential quantitics. < new process for arrviving readily at
the differentials of logarvithmic and czponential quantities.

With the cxception of the differentials of circular functions,
which, as we have scen, are readily found by the formula of
trigonometry, all the other monomial differentials, such, for
example, as those of #™, a’, log#, &c., have been deduced
from the binomial theorem alone. We have, it is true, had
recourse to the theorem of Maclaurin, in the determination of
the constant A in the exponential formule, but we might have
dispensed with it ; for the value of A being determined from
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the equation 20 (art. 36), it is casily shown that the second
side of that equation is no other than the development of the
Napieriun logarithm of a.  For this purpose, if in the formula
demonstrated by algebra, and also in the preceding note, viz.
h* I n

h
log (" +l") —lug -”+;—“2Tré‘ -+ m“——l_l—"—-‘ +&c.,

we make =1 und A=a— 1, we shall find

log (14 e—1) orloga

a—1 t(a—1) (a—1)

=log L+ — =55 4 gt —ae
and siee log 1=0.
]oga:n—l—(a-lr w—l’.—&&;

1 2 3

which shows us that the second side of the cquation (20) ix
cquivalent to the Napierian logarithm of «, and that, conse-
quently, we may change A into log ¢, as was done art. 37.

It follows from this that the principles of differentiation
rest all of them on the binomial theorem alone ; and since
that theorem Las been demonstrated, in the elements of alge-
bra, with all the rigour possible, we may conclude thut our
principles are founded on a firm basis.

We shall terminate this note with a new process for arriving
a the differentiul of « , found (articles 36 and 37).

For this purpose, taking the equation y=a*, in which the
abscissa « is the logarithm of the ordinate y, if we assume any
ordinates whatever y and z, we must have

y= ator v, 2= a"’x . (1 ).

If now the abscisse log y and log = of the ordinates y and =z
be increased hy the same quantity 2, and the corresponding
ordinates e represented by 4 and 2, we shall obtain
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!/ =(t"4 llluy‘ z' =gt . .

and consequently, dividing these equations by the equations
(1), we shall have

‘.

Yo
Yy =
which will give us the proportion
Yy oy,
and therefore
=y Yy .. =y .
Transposmg the means, and dividing the two first terms by

/r, we shall obtain from this

y—y =2
—_— = .y R,

h 13

passing e the limit, this preportion will become

dy d=z
STl — ] 2,
dr d. -
or
de  dr

-— — .y
d= "~ dy .

whence we deduce
de  dr

:7,; —‘.!’,7'7/

From art. 9, we rceognize, in these expressions, those ot the
subtangents at the points the ordinates of which are y and =,
which shows us. therefore, that in the curve whose equation
is y=a , the subtangent is constant.  Representing its value
by ¢, we shall have
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whence

dx= c.(—I‘Z,

and consequently
dy
dlogy=¢ .

which agrees with art. 38; and supposing that the logarithms
belong to the Napierian system, we shall have c=1, and con-
sequently,

dy

d.l =—.
i Yy
To deduce from this equation the differential of the exponcntial
quantity ¢, making
a'=z,
and taking the logarithms in the Napicrian system, we shall
have
La*=Lz, or tLa=Lz;

differentiating, we shall find

darLa=

e

and consequently,
dz=zdxLa, or d.a" =w'drla,

which is conformable to art. 37.

NOTE THIRD.
On the principle of the method of indeterminate coefficients.

It may be demonstrated that when an equation, such as
At +Br+Ca2+Dx+E=0 . . . . ),
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holds good, whatever be the valne of ., each of the coeflicients
A, B, C, D, E, must necessarily be =0.

For since & may have any value whatever, making »=0,
the cquation (1) will be reduced to E=0, and since E is in-
dependent of &, it will still be 0, though & have any other value
than 0; the cquation (1) is therefore reduced to

Aa*4+Bas4Ca24Dar=0,
whence, suppressing the common factor x, there results
A3+ DBa’+Cor4+D=0;

applying to this cquation the same reasoning which we have
employed in regard to the equation (1), we may prove that 1)
is 0, and continuing the process, we shall find successively that
the other coetlicients are so also.

NOTE FOURTH.

On the integration of rational fractions, the denominators of
which, being equated to 0, cuntain roots imaginary and
cqual.

The integeation of rational fractions of this sort reducing

itself to that of the formula / —(ﬁ_i\-llflz;")"’ since the manner
in which we have integrated this expression, art. 311, is a
little complicated, we shall here point out another process
which, though less direct, is often cmployed for arriving at

the ¢nd in view.
We suppose

dz H:x dz
S @y = @y e (D

ar, which comes to the same thing,
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dz 3 BT e dz
! ey = He@ ) T K g

differentiating, we have

(“’:;‘)‘*)" Hdz (B2 +22)—r+H (1—p) (B2 422)—"2:2dx . .. .
d=
NEEOT
or,

dz H({:(B +2%) 2Hd—p)z ¢z Kg,?z:tz_)(lﬂ‘
ErEy = @ T Eey T @y
suppressing the common factors, we find
1=H (8+ %) +2H (1 —p)sr+ K (82 419),

equating to each other the coefficients of 22, us also those which
are independent of z, we shall obtain

=HA4+Kpa, U4+ 2(1—p)H+K=0;
and these values give us
1 2p—=3
2(17 (p—DBY 2(]1—1)p

H and K being thus known, if we substitute their values in
the equation (1), we shall have

dz 1 z
S T 3D EE e
211—-—3

2(,)_‘)3 /(ﬁg-l-zg)l‘—‘ e (2);

. dz .
and the integral of Fvon will thus be made to depend
on another, in which the index of the part within the brackets
will be reduced by unity. If then in the formula (2) we as-
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Iz
sume p=p—1, we shall make the integral of ( - l”" ¥ — o=
pendent on that of ————,and contmumg thus to diminish

G

the index of the part within the brackets by unity suceessively,

we shall come at last to /° Ee__h—’ the integral of which is ..

o

— ap—1
3 tan

3
NOTE FIFTII.

On the development of the powe:s of sines and cosies in terms
of the multiple arcs.

There is a formula of particular elegance, which gives the
value of & power of the cosine in terms of the quantities cos.r,
cos 2, cosid s, &c. ; and a similar formmla exists also for the
sines: with these it is important to be acquainted ; but before
we wurn our attention to them, we must prucccd to give the
demonstration of a remarkable imaginary formula, of which
we shall often have to make use.

Suppose, then, that we have given the expression
cos® + sin- 2, which is the product of the two factors . . . .
cos'p+sin¢‘/:—], and cos¢—sing —1; if we make . . .
cos ¢ +siny y/—1 = Fg, we shall have, by differentiating,

dF¢ ) —_—
—J;—z—smg)+ cospa/—1;
this equation being multiplied by — —1, becomes

dFyp
._-’-1-‘;,— “1=singy/—=1+cosp,
and since by hypothesis the second side is equal to Fo, we
have
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integrating this, we find

logFo=gv—1= (¢ Vﬁlogc:lugc’d -1

passing to numbers, we have
Fo= v =1,
and putting for F¢ its value, we obtain
cos@+sin gy /—1 =W ).
This equation being true, whatever be the value of ¢, we may
change ¢ into m@, and we shall have then
cosm@ +sinmpn/ — 1 =¢” VA

There is another expression for this imaginary power of ¢, for
the equation (1) being raised to the power m, gives us
(cosp +singpa/ —1)™ =c(p./:T)m = mq)\/—l_;

and the sccond sides of the two last equations being the same,
we have, by equating the first sides,

(cosp+8inga/ —T)™=cosmd+ sinme ./ —1 . . . . (2).

If we make p=-—o¢ in the equations (1) and (2), they wil}
become

cos (— @) +8in (—d) v =T =e—?V=1 . . . (3),

+sin(—mp)y/ =1 . . . . (4).
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If now » be represented by the arc AD (fig. 61), — ¢ will be
r(.bprcscntcd by AD'; and since these arcs have the same co-
sines, and the same sines with contrary signs, we shall have

cos(—p)=cos ¢, sin(—¢) = —sine,
We might prove, in the same manner, that
cos (—m@p) =cos m¢, sin (—m@) = —sinmy ;

and substituting these values in the equations (3) and (4),
we shall obtain

cos p—siu:p,\/jl =c¢—ov'—1 . .. (D),
(cos ¢ —sin ¢4/ —1)" = cos my—sin m.,u/;-J - - . (6G).

We will now investigate the development of cos ™x in terms
of the multiple arcs, without employing the powers of the sine
and cosine. For this purpose, asstunc

coswtsiney/ —1l=u . .. (7)

cosa—sinwy/—i=r ... (8);

these equations being added, give
1
cos = (u40),

and consequently

m o, l m m ,_] V.

cos "w =5, ()™, cos ™ =gm (v+u)™;
devcloping these binomials by the usual formula, we obtain
1 m—1
cos "'.r:,:,,;, (u”‘+mu’"“v+ m. —2——u"‘—913+&c.)

—

cos ™xr= 2lm o™ mom—lu+m . d =2y &c.) ;
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and adding these cquations, we find
2"""‘(‘08 M= g™ +1)"' + muv(um—a +,,m—2)

+m . ’-1-'2:] wo(u—i4 o)+ &e. .. .

But from the formulx (7) and (8) we deduce
u™ = (cos 2+ 4/ — Lsin 2)™, v" = (cos a—sin @4/ —1)",

and putting on the second sides of these equations their values
given by the formulx (2) and (6), we have
u™ = cos ma +sin may/ ——-T, } a0);
v =cggmr—sinmzy/ —1, ’
whence

u™ 4 v™=2cos mz, and v =1,
and consequently

................... w=1,

un—2 + pn—2 — 2008("1 _2).‘,, um=2gpm—2 — 1,

un— =t =Qeos (m—4)z, u—ipn—i=1,
&e. = &e. &c.

Substituting these values in the equation (9), we shall find

1
My : o — .,
COs "X = 2—"” l| Acos ma -+ 2 cos ( m—2 ) &

(m—=1)

+2m. g

cos(m—4)z+4&c.] . . . (11).

This development arising from that of (v4wv)", will contain
(m+1) terms; if we make successively m=2, m=3, m=1,
&ec., and change the cosines of negative arcs into positive, by
virtue of the equation cos—@ =cos g, the following table will
be formed :
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. eos?r=jcos2r 4],
coss"__cos&r 3cos
A B
cos4d.
costr = T'v + leos2r4 3,

These calculations may be considerably abridged, for the
terms cqually distant from the extremities of the series are
equal.

To prove this, it must be observed that the cosines which
enter into the equation (11) are

cos e, cos(m—2)w, cos(m—4)x, cos(m—G0)», &c.,
or

-
cos mur, cos(m—2 x 1)a, cos(im—2 x 2)x, cos(m—2 x3), &c.,

in which series it will be seen that the number following the
sign x in each term indicates the number of terms preceding
it. Hence, the term, which has 2 terms before it, will be af-
fected with cos(m—2n)a ; in respect to the term which has n
after it, since the whole number of terms in the scries is m+ 1,
that which has » after it must hold the rank m+41—», and,
consequently, will have m— n before it ; it will therefore con-
tain the expression

. cos[im — 2(m—n)Jr=cos(—m+2n)a ;
and since we have seen that we are at liberty to change the
sign of the arc of which we have the cosine, we shall have
cos(—m+2n)x =cos(m—2n)a;

the terms equally distant from the two extremities of the series
have therefore the same cosines, and since they have also the
same coeflicients ¥, the coefficients being those of the binomial

® This may be scen by comparing the development of (a+-b)» with that
of (b-aym, written the opposite way.
B B2
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theorem, it follows that those terms are equal. Thus, when
m is odd, the number m+ 1 of the terms of the series will be

 m+41
cven, and we shall have only to double the first - —;—— terms,

to obtain the valuc of the whole of the series: if = be even,
m+1 will be odd, and then we must add to the middle term
the double of the terms preceding it. This middle term will

rank the (-’g—+l)th in the series, and consequently will be

affected by cos(m—m) =cos0=1; it will therefore contain no
cosine.

By a similar process, we may find the development of
sin™z: for this purpose, subtracting the equation (8) from
the equation (7% we get

U —"0

2sine ,/—1 =u—v, and therefore sinz='2—;/ -fl ;

raising the two sides of this equation to the power m, we shall
have

. 1
sin"r= ———— (v—0)";

@v-n-

and if m be equal to an cven number 2p, we have

(u=v)?=[(u—0)Jr=[(r—u)?]' = (v—u)?
whence
(t—0)" = (v—u)™.
Developing now the equations
. 1
sin™r= ————— (#—2)™, and sin"w= —— —— (v—u)"™,

and proceeding as we did above, we shall find
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s My =(2—~/.1:—_l_—)m[cos ma —mcos(m—2)14-m. T'T; Lcos(m —41—&e];
the imaginary quantity 2./ —1 being raised to an even power
will disappear.

If m be equal to an odd number 2p+1, we shall have

(—0)rHi = (u—2)2 x (£ —v) = (v—u)* X — (v—2u)

= — (1'_ u)'lll'l- L
whence
d (u—ll)"‘=—(v—u)"',
an
. u-v m . Y — m i
sin™a= ( ) sin™r= B Gl D) e (12)5

@v=n* @/ =1)"

developing (x#—v¢)}™ and (v—u)™ by the $inomial theorem,
and substituting thesc developments in the equations (12),
added together, we shall have

. 1
28in 1t = ———— [ — oM — g« we (- 2o -em—2)4-&c. ] ... (13).

(‘_’J:T)m
Subtracting, then, the equations (10) from each other, mul-
tiplying the same equations together, and obscrving that the
second operation gives us the sum of the squares of the sine
and cosine of m.2, which is equivalent to unity, we shall find

W — " =2sinma / =1, """ =1;
and proceeding thercfore in the same manner us before, we
shall change the equation (13) into

1 m e (m—1)

sin may =—————[sinma —msin(m —2)1 + 5 sin(m—4)&e. ]
2(2 ~/ —1 )m—-l

Since, on this hypothesis, m is odd, the power m—1, to which
the quantity 2,/ —1 is raised, will be even, and the ima-
ginary quantity will consequently disappear.
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NOTE SIXTH.

On the method of determining the volumes of bodies the suifuce
of which can be cxpressed by a_function of a single variable.

When the solids are not those of revolution, we may some-
times determine the volume by means of a single integration,
without muking use of the formula (83) (art. 374). This we
shall proceed to do in respect to the pyramid ABCD (fig. 66).
For this purpose, let GFE be a section parallel to the base
DBC; from the vertex A let fall the perpendicular All on the
base DBC, and express by » and % the parts AI and IH of
this perpendiculgr, comprised between the point A and the
planes DCB, GFE, respectively; then the arca of the tri-
angle GFE being diminished or increased according to the
value which we give to .r, it may be considered as a function
of ., and we have therefore,

GEF =/r, DB =f(w+41);

and the volume of the pyramid AGFE being thus made a
function of », we may suppose

volume AGEF=¢w, volume ADBC =p(c+1).

Now it is evident that the truncated pyramid GB, which is
the difference of these volumes, will be less than the volume
of the prism, which has BCD for its Lasc and 4 for its height,
and will be greater than the volume of the prism, which has
EFG for its base und Z for its height; and the ratio of these
prisms is

Sk i)k flath),

e = e
since therefore, in the case of the limit, this ratio becomes
cqual to unity, still more will the ratio which exists between



NOTES. 375

the truncated pyramid GB and one of the prisms be in that
case cqual to unity. Now the volume of the truncated pyramid
is expressed by @¢(x+h)— ¢, und the ratio of this volume to
that of the prism, of which GFE is the base and % the height,
will therefore be

plr+h)—ge dpr d%px h

ek = dr t gt e
S

whence, passing to the limit, we shall have

doar

We might have arrived at the same result by the method of
infinitesimals ; for, considering the pyramidés composed of an
infinite number of slices parallel to the base, each slice might
be supposed to be a prism, the base of which is fir, and d.
the height, and f2.d> would thercfore be the clement of the
pyramid.

To determine the volume of the pyramid, let B be the arex
of its basc and A its height ; we shall have then

=1, or der=fe.de . ... (1)

B:jr:: A%: a2

2

and therefore,

Bas

./.)' = X—'_ H

substituting this value in the equation (1), we shall find

dox = 131%?(1.1',

and, integrating,

_B.l s
Pr=gKw

Sinee the volume AGEF, represented by ¢, vanishes when



376 NOTES.
=0, therc’is no constant to be added ; and if we make »=A,
BA
we shall have, for the definite integral, the expression =5
which is that of the volume of the pyramid ACBD.
Generally, if the section GFE, instead of being a triangle,
be any surface whatever, provided only that this section be a
function of x, we may demonstrate, as we have alrcady done
for the pyramid, that the clement of the solid bas for its ex-
pression frda,

NOTE SEVENTH.

On the projection of « plane su) fuce.

To dcmonstragthat the projection of a plane surface on
another plane is equal to the product of that surface by the
cosine of its inclination, let o be the angle of inclination which
a surface A makes with a surface B ; since the surfaces are in-
clined to each other they must nccessarily meet ; let the axis
of « be fixed in their common section, and suppose that the
ordinates y of the surface A are drawn perpendicular to that
axis; it is evident then that every ordinate y of that surface
will have y cosy for its projection on the other; and con-
scquently the element of the surface A being represented by
ydo, that of the surfuce B, or the projection of A on B, will
be represented by y cosydz ; taking the integrals, we shall
have

A=/ydr, B=fycos ydx=cos yfydr,
and climinating /yd2 between these equations, we shall find

B=A cosy.
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NOTE EIGHTII.

The cxpression_for the cosine of the angle formed by two planes
derived directly by a new process.

Let it be proposed to resolve dircctly this problem: to de-
termine the cosine of inclination of two planes.

Let DB, DC, CD, be the sections of a planc DBC (fig. 93)
with the coordinate planes, the rectangular axes of which are
tuken along the lines AB, AC, AD; call AB, a; AC, 4;
AD, ¢; and represent by a, B3, v, the angles which the plane
DBC mukes with the planes of yz, @z, and zy ; then the pro-
jections of the surface BCD on these planes*being ’i‘;,f‘f_’ 229,

respectively, we shall have, according to the preceding note,
ab be ac
DBC cosy =5 DBC cosa =, DBC cosf3 =5 (D;

cach of these equations being squared, if we tuke their sum,
replace the sum of ihe squares of the cosines by unity, and then
extract the square root, we shall obtain

DBC= 3 ,\/W.{. 022+ a2
and substituting this value in the first of the cquations (1),
we shall deduce from it

COS'}/=-—_1—__T—— . .. (2).

c ¢t
+ P

142

o
Let now Ax+By+Cz+D=0 be the equation of the plane
DBC; if we make y=0, we shall have

Az+Cz+D=0

for the equation of the seetion DB, which gives us
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A D

e T k.
and since we know that in the equation of a straight line, put
under this form, the coefficient of x represents the tangent of
the angle which the straight line makes with the axis of «,
we shall have
tan DBA=——..
A

Bat the right-angled triangle DBA gives us also

[
tan DBA=-;
a
whence, comparige these two values, we have
¢l
ct A2
ZE— :‘——(A‘2 -

Making then #=0, in the equation of the plane, to obtain that
of the section with the plane of #, y, we shall find in like
manner,

2 B

B

and substituting these values in the eq\ntiun (2), there results

Jl o
e +ca

If now we divide the equation of the plane by C, and differen-
tiate it successively in respect to the variables x and y, we
shall find,

and substituting these values in that of cos , we shall have,
lastly,
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NOTE NINTH.

On the curve of double curvature, whick may be constructed by
means of lwo equations between three variables.

It is casy to prove that the equations (131), art. 427, be-
long to a curve of double curvature ; for, changing y into z,
and z into y, in order that the coordinate axis may be better
wdapted to our demonstration, we shall have the equations

8
24 2xy+y5=0 .. .. (1),
204+3y2°4+2=0 . ... (2).

If the first cxisted alone, we might, by means of it, construct
a curve surface ; for if, at all the points of the planc of «, g,
which, as usual, we shall suppose to be horizontal, we crect
perpendiculars, the values of the ordinates z will be deter-
mined by meuns of the equation (1), and we sce that their
extremities will constitute a curve surface.  When any of
those ordinates arc imaginary, it is a mark that the surface
doce not extend through the points for which those imaginary
ordinates exist.

If now we take into account the equation (2), we shall by
it also establish a relation between » and y, which will require
the feet of the ordinates z to be in the curve that belongs to
the equation (2) : in which casc we see that the extremities
of those ordinates will no longer form a surfuce, but a curve,
and the system of the ordinates themsclves will constitute a
cylindrical surface, the interscction of which, with the plance
of 2, y, is given by the cquation (2). It is the intersection
of this surface with the one determined by the cquation (1),
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which forms the curve of which we have been just speaking,
and it is evidently one of double curvature, since we know
that the intersection of two curve surfaces forms a curve of
that nature.

NOTE TENTH.

0 . . .
On the value o which, on the hypothesis of a particular solu-

tion, the eliminated constant somctimes ussumes, when the
cquation of condition involves only variables.

The investigation of the particular solutions of a differential
equatwn of the first order has conducted us (art. 439) to the
case in which the't equation of condition ¢ =0 contains variables
alone, and in which the combination of that equation with the

complete integral produces the result c::g. This takes place

when ¢ enters only in the first degree into the complete in-
tegral =0,
For that integral is then of the form
P+cQ=0 ... (D),

where by P and Q we deslgnate functions of & and y. This
cquation being differentiated in respect of 2, y, and ¢, we
shall have

dP+¢dQ+Qdc=0 . . . (2);
and since the variables contained in P and Q are & and Y, we
may represent
dP by Mdw+ Ndy,
dQ by mdx + ndy,

when, substituting these values in the equation (2), it will
give us
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M
_Mrom) o Q 4o,

ly = _
“ N+cn v N+4cn

and since, on the hypothesis of a particular solution, the term
affected by dc vanishes, this gives us

N+en

This equation, which cannot be reduced, since Q does not in-
volve ¢, can only be satisfied by making N + cn =, which
gives ¢ = co, or by making Q = 0. The first supposition
brings us to the case of a particular integral, since all integrals
of that nature are comprised in the values which we give to ¢
from zcero up to infinity : to determine our particular solution
therefore, if it exist, we have only the equation Q=0.
But when Q=0, the equation (2) is reduced to

dP 4+ cdQ = 0,

frem which if we deduce the value of ¢, and substitute it in
the equation (1), we shall obtain

dp
P— P QQ =0;
or, getting quit of the denominators,
PdQ—QdP=0 ... (3);

thus, in the present case, the complete integral # =0 and the
proposed cquation U =0 are no other than the cquations (1)
and (8). From the first we deduce

r
= ~———y

Q

a value which is reduced to g, when P and Q have a common

factor which is made to vanish by a value given to the variables.
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This factor we will make appear by assuming P=AP" and
Q=2Q’ ; when the equations (1) and (3) will become

AP +cQ)=0, A(PdQ—Q'dP)=0 . . . (4).
The second of these, which represents the equation proposed,
contains by hypotlesis terms in dir and dy, which cannot be
found but within the brackets, since A, being a factor of the
first of the cquations (4), can contain only x and y ; and since
the operation of differentiating tends to diminish the indices
of the variables, it follows, that the variables must be of
higher degrec in the first equation than in the second, which
is derived from it, and that, consequently, P +¢Q’, which is
not common to them, must be a function of » and ¥ ; and
since also I’ 4+ ¢Q’ contains an arbitrary constant ¢, which is
not found in A, we see that P'4-cQ’ has all the characteristics
of the complete integral, and that A, on the contrary, must be
a factor unknown to the differential equation.

NOTE ELEVENTH.

Supplement 1o the theory of Lagrange on particular sclutions,
presented with certain modifications.— Method of obtaining
the particular solution of a differential cquation of the first
order, without having recourse to the complete intcgral—
Demousiration of the property of particular solutions which
causes the factor that renders a differential equation of the
Jirst order integrable to become infinite.

We have scen that a differential equation of the first order
Mdzx + Ndy =0 being given, we might consider it as the re-
sult of the elimination of a constant ¢ between the complete
integral and its differential dy = pdwx, and that the result
would be the same as if, supposing that constant variable, the
elimination had been eflfected between the complete integral
F(z,y, ¢)=0 and dy =pd2+qdc’; on the condition however
that we had ¢=0.
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In like manner, if we assume that the differential cquation
of the second order,

dzy d:/
M-= + N- P=
prct + dx +P=0,
is the result of the climination of a constant which has been
made to vary, since we have in this case the two cquations

dy=pdx+ qdc, d.:—i:g:p'd.r+q'dc N OF
we see that, in order that they may be reduced to

dy ,
dy =ndar, : i A , e
ly = pda, and d T =7 dx

we must have the two equations of condition

=0, ¢ =0;

and that to establish these, it will not be sufficient to dispose
of ¢ alone, for that ceuld fulfil only one condition ; but since
the integration of the equation of the sccond order has in-
troduced two arbitrary constants into the complete integral,
we must disposc of those two constants so that the equations
q¢=0, ¢'=0 may be fulfilled; and it is ncedless to say that
¢ will be one of those constants.

Similarly the determination of the particular solutions of o
differential equation of the third order will depend on the
equations ¢ =0, ¢'=0, ¢"=0; and generally, to obtain a par-
ticular solution of the differential equation of the order », we
must have the number » of equations of condition :

q=0, ¢ =0, ¢" =0, q“'=0, &e. . . . (2).

These may be put under another form ; for the equations (1)
show us that g and ¢’ are no other than the multipliers of de
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in the differentials of y and g'f taken in respect of 2. We have

therefore

and we see, generally, that the equations (2) reduce them-
selves to

dy dsy d3 &y _ d*y

=0, —-= —= . 3.

de 0, dede ~ 7 dedz®” ’ deda® &

It is cssential to remark that these equations cannot be con-
. dy. . . . .

tinued up to infinity: for z'gbemg successively differentiated

dy ddy d%
de’ dedy’ deda®

as a certain function of «, which we will re-

in respect to » in the expressions &e., we

dy
dc
present by Y ; and supposing that 2 becomes x+ %, Taylor's
theorem will give us the development :

dY , d°Y I Y A

Y+ ot Gz Tt as Taat e - - 4

may consider

or, restoring the valuc of Y,

(11/ Ay dsy A2

+aeds’ T dedze 13 T E&C

and the coefficients of the powers of 4 being each of them 0
by virtue of the equations (3), which according to our hypo-
thesis must hold good up to infinity, it would follow that
when = became »+ 4, the equation (4) would be reduced to
its first term Y, which shows that in this case Y, i. e. Z"‘,

would be constant. But when % is constant, ¢ being com-
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. . . d
bined only with constants, the equation -;l-/- =0 must conduct
e

us to c=constant; and we see that the particular solution
would then be changed into a particular integral, which we
do not at all suppose.

It follows from the above that the equations (3) cannot
bold good up to infinity ; and on this consideration rests the
solution of the following important problem, resolved by La-
grange, and which we shall give with certain modifications :
A differential cquation of the first order being given, to find,
without having recourse Lo the complete integral, the paiticular
solution of whick it may admit.

Let » be the complete integral, which we suppose to be a
function of x, y, and an arbitrary constant ¢ ; the differential
of u will be represented by

mde+ndy=0 . . . (3),

and may be put under the form,
m .
dy=— —dr . .. (t).
n
In the case with which we arc at present occupied, this equa-

tion is supposed to have retained the arbitrary constant *;
and consequently we may climinate this constant between

dy= — 2 dz, and u=0. The value of ¢ thercfore being de-
n

dy
rived from the equation (5) in terms of ., y,and ﬁ{ , we shall

® If the complete integral should contain the arbitrary constant only in
the first degree, and under the form ac, it would vanish by the differcntiation,
and the elimination of ¢ would be impossible ; but in this casc ¢ bemng con-

stant, tht equation proposed would not adinit of a particular solution.
¢cce
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obtain

e=¢(mn )

an equation which, for brevity’s sake, we shall write thus

c=2 ... (D),

and this value being substituted in the equation »=0, we
shall have an equation of the first order, which we will de-
signate by U1 =0, or rather by

Mdr+Ndy=0.

If, now, we differentiatc U=0 in respect of the three va-
riables z, y, and @, we shall obtain

T dU
‘_22(1«- "—I—d + o=

and since y cannot vary except by reason of the arbitrary
value which we give to x, this equation may be written thus:

dU dU dy dU
=0; ... .
(Z +a 2)dr+" 2p10=05 - (®)

But if we bear in mind that, in a function of two variables,
the first term of the differential is obtained by considering one
of those variables as constant, and the other as variable, we
shall perceive that in the equation (8), which, under a cer-
tain point of view, contains only two variables, » and ¢*, ¢ is
constant in the term

dU dU dy)
a'y dr

which term is no other than the differential of # taken in re-

* This results from y being treated as a function of a.
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spect of the variables #, y.and in which the symbol ¢ ought to
be substituted for c. ’

) But this differential is given us by the equation (5), and
since the second side of that equation indicates that the terms
must all destroy each other on the first, independently of ¢, it
n}ust of course be the same when @ holds the place of the ar-
bltmry constant c. It follows, therefore, that the part con-
tained within the brackets in the equation (8) must be iden-
tically 0, and this equation consequently is reduced to

740
7?-(@_0 CL @
which may be satisfied by making

almz(hnr%}:‘i:(! C.L (1Y,

. . . d
and since it was only for brevity’s sake that ¢ ( 2, Y, —['—y)was
dr

replaced by @, the first of the equations (10) is reduced to

do( v u, %) =0..(11),

a differential equation of the second order ; which being in-
tegrated gives us

d
¢( ¥y Y, ‘-l:"/;)=c0nstant ... (12).

On the other hand, the proposed equation U =0 is between

the same variables #, ¥, and g‘z We have, therefore, two equa-
Q'
tions of the first order corrcsponding to one and the same

equation (11) of the second ; and consequently by eliminating
:—i between them, we shall obtain a function of « and y and

the arbitrary constant ¢ contained in the equation (12); and
cc?2
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the result of this operation will therefore be the complete in-
tegral .(art. 429). To effect the elimination required, we
have only to clear the equation U=0 of $ by means of the

. . dy .
equation @ =constant; for then all the terms in (—!5. contained

in ¢, and which do not otherwise exist, will disappear. This
evidently comes to the same thing with changing ¢ into ¢ in
the equation U =0, which brings us back to «=0.

e / )
If the elimination of :—I‘Z between the integral of the second
v

factor of the cquation (9) and the proposed one U=0 bring
us back to the complete integral, it will be seen also that the

o e . d, )
elimination of ;l/ between U=0 and the other factor of the
v
equation (9) will conduct us to the particular solution. For
dy dU
%Y between U = (), and — =0, we sce at ouce
dr @y
that we shall not introduce any arbitrary constant into the
result, as in the preceding operation, since here the climina-

if we eliminate

.. . . . dU .
tion is effected without first integrating ; and it follows,

dy
C e . dy o
therefore, that the elimination of s between these two dif-

ferential equations of the first order cannot conduct us to the
complete integral, which must necessarily contain an arbitrary
constant. To proceed to this elimination, we must observe

that it is reduced to the eliminating of ¢; since —/'Z being
ar

found nowhere but in ¢, will disappear from the result along
with that expression ; and since this result retains no trace of
¢, we see that this comes to the same thing with eliminating

¢ between ¥ =0 and Z: =0, which are what U=0and . . .

dU

ol =0 become when ¢ is changed into c. But -g:—‘ being the
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differential coefficient of de, we see that this climination of ¢
du . . . .

between # and o =0 is precisely the operation which was
¢

gone through for the arriving at a particular solution.
We shall inquire now how we are to satisfy the condition
expressed by the sccond of the equations (10); and for this
purpaese, if we replace ¢ by its value given by the equation
(7), we shall obtain
JU
—=0....(13).
de (13)
We do not see at first how we can effect this diflerentiation in
respeet of ¢, which having been eliminated from U, ought not
to be found in dU ; but it must be observed that this elimina-
. .. . . . . dy
tion of ¢ intimates only that U is a function of ., ¥, and ‘—l'—/,
) 7

and that consequently dU can be of no other form than

Pde +Q/y+]{d . (14);

and though ¢ do not cxplicitly appear in this value of dU, it
must at least be found in it implicitly ; for we know that y is

{
a function of 2 and ¢, and consequently dy and d . 272 must be

of the following forms :

dy y .
oy, _“7‘—'-‘(1.1 +l_l(’.'d( R
. (15).
(h/ 431/ 4y Iy d
Zd T dede

On the hypothesis of ¢ being constant, these values are re-
duced to .
)
l/‘l/ = '—'-,.(’.l‘,

/ dy N Iffl/‘
de " da?
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equations, the second sides of which express the condition that
the differentiation be made in respect of & alone, a condition
which we tacitly admit in the equation (14), when we suppose
¢ constant in it ; but when ¢ is variable, we must put in the

equation (14) the values of dy and d.g'—z given by the equa-
tions (15), and we shall have

dy dy 0y d2y - .
Pda» Ldo4+—Ld¢ —L 4 —2 =0... (16).
do+Q( 7 o+ Gtde ) + R (2w + -2 dc) =0 7. . (16)
This then is what dU becomes when ¢ is considered as va-
riable, and we see that we have

dU dy - d2y -
7 = Q% =R - D

If now we pass to the hypothesis of a particular solution, we
dU

have, by virtue of the equation (13), T

=0, which reduces

the preceding equation to

v r%y _ _
F 7 RZ—WI—L__O e (18);
and if we suppose that this equation does not contain any
transcendental quantitics, and we have taken care, in the sub-
sequent operations, to get rid of surds by raising to different
powers, and also of fractions, the terms P and Q which the
equation (14) contains cannot become infinite. 'This being

dy . .
premised, since ;;,g is 0, by virtue of the equation (143) (art.
437), which expresses the condition of a particular solution
being possible, we see that the equation (18) is reduced to

ay

R—=0.... (19).

da® (19)

" 2y :

There may be two cuses ;- (-l-'—i muy be 0, or it may not ; on the
ol
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sccond hypothesis it will be the factor R which, becoming 0,
sutisfies the equation (19) ; but if, on the contrary, be 0,

the equation (18) is satisticd independently of Q and R ; and
consequently Q and R may be of finite values. It must not
however be concluded from this that R is not 0; for if, treat-
ing y as a function of x, we differentiate the equation (18) in
respect of that independcent variable ., we find

2, d* dR,  dQ dj
R ‘Y L4 “Qdy .
dx?dc +1[.rdc(Q ) =0%. ... (20);

de do de
. .. diy dy .
and sinee the quantities -—/~ and -~ are each 0, and their
dade dr

cocflicients cannot become infinite according to the remark
made in respect to the cqu'ttion (18), it follows that the equa-

tion (20) is reduced to R —2_=(), and consequently gives

1[1
dy . . @y
R =0, when Toide is not so. If, however, Tovde should hap-

pen to be 0, it might be proved in the same manner that . . .
dy a* .
LY _—0, and that L9 inust be 0 in order that R may not
dadde datde
be so.  Continuing the same reasoning, we come at last to &

differential coefhicient —-d ” vlnch will not be 0, since it has

dz”
been demonstrated that the cqu’xt:ons (3) cannot be continued
up to infinity ; and it follows, therefore, from this demonstra-
tion, that R, which always retains the same v value, being O in
one case, must be so in all. But since R is 0, the equation

® It must be observed that what we represent in a bricf manner by . ...

‘fh“ da and %Qllt is in fact

dR 4R d_/ dQ  dQ (h/)
Rl N
dy rl dv ' dy
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(14), put under the form .
dy  p%Y_

P+Q2;+ R t,“'—O .o @D,

is reduced to
dy
P4+ Q‘—I;_O cee e (22).

On the other hand, the same equation (21) gives us

P+Qd”

=~ R °

rl“_y

ahd we see that, on our hypothesis of a particular solution, the
equation (22) and the value of R, which is 0, reduce this value
d‘{y 0
of I to
It follows from this theory that, in the case in which a

. . . . dU_
particular solution may exist, we have the equation —Jc—=0 s

and that this equation requires, as nec(.ssnry consequelice,

d.t
fraction, i. ¢. the numerator and denominator of the fraction

that the value of “ reduce itsclf to o The two terms of this

. d®y .
which expresses the value of y ‘{‘ , being each equated to zero,
. ar

will furnish us with two equations which, if they agree with
U=0, will give the particular solution.
Let us take, for example, the equation

Iy dy .
Tz, (/J‘/‘r +yi—e .. - (23).

* We have seen that the cquation U=0 was no other than the proposed

one, considercd as the result of the elimination of ¢; as to the one %g =0, it
¢

intimates mcrely that the terins which, in the proposed equation, arise from
the variation of the arbitrary constant are 0.
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Squaring this; to get quit of the surd, and reducing, we shall
have

.r“+2.rydx (c —a?)=0;

differentiating, then, considering d» as constant, we obtain

diy _ rdr4ydy i
dat = ( i) dy—aydo’

and equating the two terms of this fraction to zero, and di-
viding by d, we shall have

d
,r+y2'!—o (a2 ——c‘)——ay_.() ... (24);

-

e d .
climinating ;7% between these equations, and then suppressing
the common factor, we shall find
PHat—2=0;

and since this equation satisfies the one proposed, we sec that
it is a particular solution.

Let us sce now whether the equation

dy _ dy*
0‘”3.;-—':/ 1+7a

admits of a particular solution. For this purpose, getting
quit of the surd by squaring the two sides, and reducing, we

shall find
I
y'.‘_ 2,1'y:7'%— at=

and differentiating, there will result

dy*
ey (st

P zy -

5

. . 0 .
an cquation which is reduced to 0 when x==0; but this hy-
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pothesis not satisfying the one proposed, it cannot conduct us
to a particular solution.

Conformably to the observation which was furnished us by
the equations (149) and (150) (art. 442), it will not be ne-
cessary to limit ourselves to the hypothesis of y being a func-
tion of z; but supposing, then, z to be a function of y, we
may investigate the particular solutions which muy be given

d®r 0
by equating the value of —. y 5t o5

A particular solution producing the mutual destruction of
the terms of the differential equation to which it belongs, it is
no other than a factor which may be made to appear by means
of a transformation. We have seen, for instance, that . . . .
a?4y%—a® =0 was the particular solution of the cquation

(zdr+ydy)=dy*(a®+y*—a®) . . . (25);
if we make »2+ y2—a2=2°, we shall have
xdr+ydy=zdz ;

and substituting these values in the equation (25), it will
become
2(dx2—dy?)=0:

which shows that in reality the particular solution repre-
sented by 22 is a common factor of the equation proposed.
Another property of particular solutions is that of causing
the factor, which rendcrs the proposed differential complete,
to become infinite. To demonstrate this, we shall put the
complete integral under the form u=coustant. Any value
which satisfies this equation must therefore give du=0, since
the differential of a constant is 0; and reciprocally any value
which does not satisfy the equatlon u=constant cannot give
du=0. But this last case is precisely that of a particular
solution which, since it does not satisfy the complete integral,
cannot produce the mutual destruction of the terms which
compose its immediate differential ; and this immediate dif-
ferential is no other thun A(Md2 4+ Ndy). It is necessary,
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therefore, that the particular solution should no: render equal
to zero the second side of the equation

A(Mdr+Ndy) =du,

or, which comes to the same thing, of the one

from which we deduce
d(w

_  dr
M+N%
dx
But, from its nature, the particular solution, though it do

dy
dr

tisfy the one M+ N ;1% =0, i. ¢. it renders the first side 0 ; and

A . (26).

not satisfy the equation A(M +N-==)=0, does, however, sa-

this, therefore, reduces the equation (26) to

)

A= e
_.—0 =cc.

For example, the equation
wdr+ydy=dy 22+ y*—a® . . . . (27)
becomes a complete differential when we wultiply it by
1

2y —as’

e We designate thus the total differential of u taken on the supposition of

d
a2 being the independent variable, in order that —'(1%2 may not be confounded

with the differential coefficient z—:, which supposes that all thc other va-
riables except 2 arc considered as constant in that tern:.
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and gives

and we see that the particular solution 22+ y*—a*=0 renders
the factor
1

Nt yr—a

=eL.

NOTE TWELFTH.

A new demonstration in respect to the integration of partial
differential equations.

We have seen, art. 486, that if in integrating the equation

dz dz
El—-+M@+N_0 N (l))

\

where M and N are functions of 2, y, and z, we obtain two
integrals U=a and V=0, we must have necessarily a = ¢é.
The demonstration of this theorem being highly important,
we have endeavoured to give to it the last degree of rigour in
the following manner: U and V being functions of #, y, and
2, the constants a and b may also be considered as functions
of the same variables, by virtue of the equations U = a and
V =b; if therefore we differentiate these cquations successively,
we shall have

da=Xdx +Ydy + Zdz )

e e (2);
db =X'de+Y'dy+Zdz § @)

and since these differentials ought to be each 0, by reason of
a and b being constants, the equations da=:0, db =0, give us
the following ones :

Xdx +Ydy +Zdz =0 E Y -
Xde+Ydy+Z'd2=0 ’ )

If in these equations, divided by dir, we substitute the
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values of ¢z and dy, deduced from the equations
dz+Ndr=0, dy—Mdz=0 . . . (24),

given art, 478, we shall have
X+YM—~ZN=0, X'+YM~ZN=0.

From. these equations we deduce

ZX'—XZ N= XY-YX

ZY-ZY"’ ZY-ZY"’

and substituting thesc values of M and N in the equation n,

we shall obtain

ds ZX—XZ d= XY-YX_, N
drtZY—Zy @ytzv—zy =0 - O

M=

dz
the coefficients E and —- are deduced from the equations
dr dy
(4), which give
dz dy dz  dz dx N .
=N M E=m s (s

. dz dz . - .
and substituting these values of - and - I in the equation
o dy

(5), and getting quit of the denominator, we shall find
—(ZY—-ZY)N—(ZX'—-XZ )% +XY-XY'=0..(7.

The quantitics X, Y, Z, which enter into this equation,
are not always known, since they are not given except by dif-
ferentiating the equations U=a, and V=04 ; we must there-
fore proceed to eliminate X, Y, Z, from our result. For this
purpose, considering z as a function of . and y, we shall de-
duce from the equations (2),

da dz db__, .
5 =X+2g, =X +4
dz  db d..

=Y+Zp, a=Y+Zy
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substituting in these expressions the values of —:—; and -:id—;-,

given by the equations (6), and deducing the values of X, Y
X" and Y', we shall find

x_ﬁ+zn x =212,
yoio EN . _db ZN

Tt Vet
and putting these values'of X, Y, X', and Y’, in the equation
(7), and reducing, we shall obtain
da db da db
2;25:2;& . . (8).

This equation shows us that a is a function of 4 ; and, in fact,
if we have a = FJ, by differentiating this equation, we shall
find da = ¢b db, whence we shall deduge

da db da
N i " i
and climinating @b, we shall obtain the equation (8).

THE END.
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