
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-06

Automated test case generation for reactive

software systems based on environment models

Imanian, James A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2131

Downloaded from NPS Archive: Calhoun



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 

MONTEREY, CALIFORNIA 
 
 
 

THESIS 
 

AUTOMATIC TEST CASE GENERATION FOR 
REACTIVE SOFTWARE SYSTEMS BASED ON 

ENVIRONMENT MODELS 
 

by 
 

James A. Imanian 
 

June 2005 
 
 

  
 Thesis Co-Advisors:   Mikhail Auguston 
  James B. Michael  

Approved for public release; distribution is unlimited 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
June 2005 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:   
Automatic Test Case Generation for Reactive Software Systems Based on 
Environment Models 
6. AUTHOR(S) James Imanian 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
The goal of software testing is to expose as many faults as possible.  Often one can increase the number 
of faults detected by running large amounts of test cases, therefore the ability to automatically generate 
applicable test cases for a System Under Test (SUT), would be a valuable tool.  In this thesis an 
attributed event grammar is designed and used to build a model that describes the environment a SUT 
must operate in.  This event grammar captures events, their precedence or inclusion relation to other 
events, and attributes of the events.  An event is defined as an observable action that has a distinct 
beginning and end.  The high level environment model is then used by a test generator to produce an 
event trace from which input for the SUT is extracted.  Thousands of event traces can be generated.  For 
reactive systems the event trace will have the appropriate time delays between inputs.  The feasibility of 
this approach is proven by implementing a prototype of an automated test generator based on 
environment models. 
 

15. NUMBER OF 
PAGES  

75

14. SUBJECT TERMS  Automatic test case generation, attributed event grammar, event trace, event 
grammar, software testing, testing automation, test generation, real-time systems 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

AUTOMATED TEST CASE GENERATION FOR REACTIVE SOFTWARE 
SYSTEMS BASED ON ENVIRONMENT MODELS 

 
James A. Imanian 

Commander, United States Navy 
B.S., US Naval Academy, 1989 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE  
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2005 

 
 
 

Author:  James A. Imanian 
 

 
 
Approved by:  Mikhail Auguston 

Co-Advisor 
 

 
 

James B. Michael 
Co-Advisor 

 
 

 
Peter J. Denning 
Chairman, Department of Computer Science 
 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
The goal of software testing is to expose as many faults as possible.  Often one 

can increase the number of faults detected by running large amounts of test cases, 

therefore the ability to automatically generate applicable test cases for a System Under 

Test (SUT), would be a valuable tool.  In this thesis an attributed event grammar is 

designed and used to build a model that describes the environment a SUT must operate 

in.  This event grammar captures events, their precedence or inclusion relation to other 

events, and attributes of the events.  An event is defined as an observable action that has a 

distinct beginning and end.  The high level environment model is then used by a test 

generator to produce an event trace from which input for the SUT is extracted.  

Thousands of event traces can be generated.  For reactive systems the event trace will 

have the appropriate time delays between inputs.  The feasibility of this approach is 

proven by implementing a prototype of an automated test generator based on 

environment models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 
 
 

I. INTRODUCTION TO THE PROBLEM OF AUTOMATED TEST CASE 
GENERATION ............................................................................................................1 
A. GENERAL SOFTWARE TESTING CHALLENGES ................................1 
B. CHALLENGES IN TESTING REACTIVE AND REAL TIME 

SYSTEMS.........................................................................................................1 
C. SOME REASONS TO AUTOMATE THE TESTING PROCESS.............2 
D. ADVANTAGES OF AUTOMATED TESTING...........................................2 
E. THE MAIN PROBLEMS IN TESTING AUTOMATION..........................3 
F. CURRENT AUTOMATED SOFTWARE TESTING METHODS ............3 

1. Automated Test Scripts .......................................................................3 
2. Universal Modeling Language (UML) ...............................................4 
3. Automated Testing Based on Java Predicates...................................4 

II THE ENVIRONMENT MODEL ...............................................................................7 
A. OBJECTIVE OF RESEARCH.......................................................................7 
B. THE ENVIRONMENT MODEL APPROACH ...........................................7 
C. ENVIRONMENT MODEL STRUCTURE...................................................7 
D. ENVIRONMENT MODEL ADVANTAGES................................................8 

1. Ability to Generate Valid Data ...........................................................8 
2. Model Easily Understood ....................................................................8 
3. Model Easily Derived from Specification or Use Cases ...................9 
4. Model Can Be Used in Verification and Validation .........................9 
5. Defies Anti-extensionality Axiom .....................................................10 
6. Model Forms Part of an Ideal Test Suite.........................................10 

E. A SOLUTION FOR REAL TIME AND REACTIVE SYSTEMS............10 

III. RELATED WORK ....................................................................................................13 
A. INTRODUCTION OF AN EVENT AND EVENT TRACE......................13 
B. USING ATTRIBUTED EVENT GRAMMAR TO MODEL AN 

ENVIRONMENT...........................................................................................13 
C. BEHAVIOR MODELS AIDING RUN-TIME VERIFICATION AND 

MONITORING..............................................................................................14 

IV. DEVELOPMENT OF ENVIRONMENT MODELS .............................................17 
A. DIFFERENT TYPES OF ENVIRONMENT MODELS............................17 

1. Complexity of the Model ...................................................................17 
2. Normal and Non-Normal Behavior Represented a Model.............18 

B. ENVIRONMENT MODEL CHARACTERISTICS...................................18 
C. CALCULATOR ENVIRONMENT MODEL CHARACTERISTICS .....19 
D. WEAPON SELECTOR ENVIRONMENT MODEL 

CHARACTERISTICS...................................................................................20 

V. SPECIFICATION OF AN EVENT GRAMMAR ..................................................21 
A. SOME BASIC QUESTIONS ........................................................................21 



 viii

B. RELATIONSHIP SYNTAX .........................................................................22 

VI. DESIGN OF TEST DRIVER GENERATOR PROTOTYPE...............................23 
A. HIGH LEVEL ARCHITECTURE ..............................................................23 
B. LOW LEVEL ARCHITECTURE................................................................23 
C. CHOOSING A LANGUAGE TO WRITE THE PARSER AND TEST 

DRIVER GENERATOR IN..........................................................................24 
D. THE MODEL PARSER DESIGN STRUCTURE......................................25 
E. THE TEST GENERATOR DESIGN STRUCTURE .................................25 

VII. EXPERIMENTS ........................................................................................................27 
A. HYPOTHESIS................................................................................................27 
B. TEST DESIGN...............................................................................................27 
C. PROCEDURES..............................................................................................28 
D. RESULTS .......................................................................................................28 
E. ANALYSIS .....................................................................................................28 

VIII. CONCLUSION ..........................................................................................................29 
A. CONTRIBUTIONS........................................................................................29 
B. FUTURE WORK...........................................................................................29 

APPENDIX A.........................................................................................................................31 
A. EXAMPLES OF ENVIRONMENT MODELS...........................................31 

1. A “Normal” Model Used to Test Vector Calculator.......................31 
2. A “Non-Normal” Model for a Calculator........................................32 
3. A Complex Model for a Calculator ..................................................33 
4. A Model for a Weapon Selector........................................................34 
5. Model for the Paderborn Shuttle System ........................................35 

B. EXAMPLES OUTPUTS ...............................................................................36 
1. Example Parser Output.....................................................................36 
2. Example “Normal” Test Driver Generation Program...................38 
3. Example “Normal” Test Driver........................................................39 
4. Example “Non-Normal” Test Driver Program...............................40 

APPENDIX B .........................................................................................................................43 
A. SOURCE CODE ............................................................................................43 

1. Environment Parser...........................................................................43 
2. Test Case Generator ..........................................................................46 
3.  Modified Vector Calculator Program..............................................51 

LIST OF REFERENCES......................................................................................................55 

INITIAL DISTRIBUTION LIST .........................................................................................57 
 
 
 
 



 ix

LIST OF FIGURES 
 
 

Figure 1. Sample Model Structure. ...................................................................................8 
Figure 2. A Simple Model...............................................................................................17 
Figure 3. High Level Architecture ..................................................................................23 
Figure 4. Low Level Architecture ...................................................................................24 

 
 
 
 
 
 
 



 x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF ACRONYMS AND ABBREVIATIONS 
  
 

AEG   Attributed Event Grammar 
 
SUT   System Under Test 
 
TFG   Testing Flow Graph 
 
UML   Unified Modeling Language 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 xiii

ACKNOWLEDGMENTS 
 
 
I would like to thank Professor Mikhail Auguston and Professor Bret Michael for 

both serving as my thesis advisors and mentoring me as I entered the worlds of computer 

science and software engineering.  They have both made my graduate education 

experience truly rewarding.  I am eternally grateful for the guidance and encouragement 

they gave me. 

 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

EXECUTIVE SUMMARY 

The goal of software testing is to expose as many faults or bugs as possible.  

Automated software testing methodologies can increase the number of faults detected by 

producing and running large amounts of test cases.  The ability to automatically generate 

applicable, as opposed to purely random, software test cases for a System Under Test 

(SUT), would be a valuable tool to have when automating this part of the software test 

cycle.  In this thesis an attributed event grammar is designed and then used to build an 

environment model that describes the environment a SUT must operate in.  This event 

grammar captures events that occur in the desired environment.  An event is defined as an 

observable action that has a distinct beginning and end and has one or more attributes, 

such as a type, or timing attributes.  Events may have a precedence or inclusion relation 

to other events.   

The high level environment model is then parsed and placed in the appropriate 

form for input to a test generator.  The test generator takes this input from the parser, 

produces an event trace and extracts input for the SUT.  Thousands of event traces can be 

generated.  For reactive systems, the event trace will have the appropriate time delays 

between inputs.   

The feasibility of this approach is proven by implementing a prototype of an 

automated test generator based on environment models.  The generator is able to take a 

parser’s structured form of an environment model and generate an event trace.  This 

event trace is then traversed by the generator and the requisite events are collected as 

actions to be sent to the SUT.  The generated sequence of actions provides an interface 

with the SUT.  



 xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



1 

                                                

I. INTRODUCTION TO THE PROBLEM OF AUTOMATED 
TEST CASE GENERATION  

A. GENERAL SOFTWARE TESTING CHALLENGES  
Testing is a resource intensive process that can only achieve subjective goals.  

Current testing techniques can not guarantee the total absence of bugs, or the software’s 

reliability under all conditions.  Testing is used to determine the presence of bugs or 

faults and to determine if the System Under Test (SUT) implements the required 

capabilities.  A successful test only proves that the SUT was able to handle a certain set 

of inputs with the SUT in a particular state.  Exhaustive testing is impossible to 

accomplish on non-trivial systems, and even simple implementations of algorithms may 

hide faults.  The most complex problem is testing reactive systems which must take 

inputs from the environment and produce outputs in real time. 

Testing may be done on sub-systems.  It is important to note that these sub-

systems may be systems in their own right but the fact they passed system level tests does 

not mean when they are joined with other systems the whole application will function 

according to requirements and specifications without fault.  In “Testing Object-Oriented 

Systems” Binder points out, system scope failures can result from omissions and from 

interactions that cannot be produced until all components are exercised in the target 

environment1.  Therefore it is important to derive a test plan that is systematic in its 

ability to comprehensively as possible test the SUT’s ability to meet requirements at an 

application level scope.  A solution proposed in this thesis is to use an environment 

model approach to build these important application level tests. 

 

B. CHALLENGES IN TESTING REACTIVE AND REAL TIME SYSTEMS 
Reactive systems are systems whose role is to maintain an ongoing interaction 

with their environment rather than produce some final value upon termination.2  Two 

examples of reactive systems are aircraft flight control systems, where the pilots inputs 

must be translated into mechanical input to flight control surfaces, or the control software 
 

1 Binder, Robert, Testing Object-Oriented Systems (Boston, MA: Addison-Wesley, 2000), 717.  
2 Hhttp://www.cs.nyu.edu/courses/fall02/G22.3033-004/H Accessed June 9, 2005. 



2 

                                                

used in a nuclear reactor, where the software must take in temperature and other sensor 

inputs from the core and produce appropriate warnings when conditions are not nominal.   

Real time systems are able to respond to inputs from the real world within a 

predetermined amount of time.  Real-time software is characterized by time constraints, 

that is, time constraints of such a nature that, if a constraint is not met, information is 

lost.3  When producing test cases for reactive systems, one must produce a large amount 

of test data to simulate the prolonged period the SUT must operate.  With a SUT that is 

both reactive and real time, this test data must be fed to the SUT with the appropriate 

time interval between inputs. 

 

C. SOME REASONS TO AUTOMATE THE TESTING PROCESS 
Testing that requires long series of inputs or that has complex relationships, such 

as timing constraints, are ideal candidates for automation.  Additionally the need to 

generate large amounts of appropriate test data, run that data through a test harness in a 

mechanized fashion, and to automatically determine if each individual run resulted in a 

pass or no pass are some of the many other areas of software testing that can benefit from 

automation.  Automated test suites can be rerun to support regression testing or other 

forms of testing that require the ability to compare baseline results.4 

Designing the tests and the test data is the most time-consuming portion of the 

testing process.5  

 

D. ADVANTAGES OF AUTOMATED TESTING 
Binder lists ten significant advantages of automated testing including:6 

• Quick and efficient verification of bug fixes 

• Decreased cost over manual methods after two or three development 
cycles. 

 
3 Stephen Schach, Object-Oriented and Classical Software Engineering. (Boston, MA: McGraw Hill, 

2002),148. 
4 Binder, 803. 
5 Daniel Mosley and Bruce Posey., Just Enough Software Test Automation. (Upper Saddle River, NJ: 

Prentice Hall PTR, 2002), 10. 
6 Binder, 802. 



3 

                                                

• Removes errors that occur during manual input. 

• Automated comparison is the only repeatable and efficient way to evaluate 
a large quantity of output. 

 

E. THE MAIN PROBLEMS IN TESTING AUTOMATION 
Testing Automation does not come without cost or any disadvantages.  Depending 

on what part of the testing process is automated the following are a few of the difficulties 

that must be over come: 

• How is the appropriate input data going to be generated? 

• How are the test cases going to be run on the SUT? 

• How are test results going to be verified? 

As with any software what type of maintenance will be required on the test cases, 

test suites or test harnesses that are generated by the automation effort will also be of 

concern when automating the various phases of software testing. 

 

F. CURRENT AUTOMATED SOFTWARE TESTING METHODS 
There are many types of automated testing methods and models that have been 

developed.  The following is a small sample of the current approaches in automated 

software testing methods.  A short description of the principles used by the method, as 

well as how these methods tackle the main problems in testing automation is discussed.  

1. Automated Test Scripts 
Automated test scripts can come in two different forms, recorded or programmed 

test scripts.  Programmed test scripts are the product of a programmer writing a piece of 

software that produces outputs to be feed as input to a SUT.  Recorded test scripts are the 

product of a “recording” of a user inputting data to a SUT.  One strength of these 

automated test scripts have is the fact that if well designed, they are able to stress known 

or expected application weaknesses.7  However there are weaknesses as well.  With 

recorded test scripts, rule-based violations can occur at many levels.  Recorded test 

scripts have limitations including hard-coded data, and frequently must be edited before 

they work properly.  Many variations of the same test script must be recorded to cover 

 
7 Mosley and Posey, 34. 



4 

                                                

needed test cases.  A programmed test script may have all the faults of any other piece of 

software.  The script itself must be verified, that it is conducting the tests you want and 

validated, that it is conducting the proper tests.  Both types of automated scripts result in 

a large maintenance requirement.    

Automated Test scripts therefore address two of the three main problems in 

testing automation.  They create input data by either generating it through another 

program or by recording actual user inputs to the system.  These test cases are then feed 

as inputs to a SUT either as a flat file, function calls, or via a software wrapper.  This 

method does not solve the problem of how to verify the correctness of the outputs.  These 

automated test scripts can be developed strictly from specifications and therefore can be 

used in black box testing situations. 

2. Universal Modeling Language (UML) 
To model the dynamic aspects of a system, UML statechart diagrams can be used. 

A statechart diagram consists of states, transitions, events and actions and shows a state 

machine emphasizing the flow of control from state to state.8  Statecharts are finite state 

machines extended with hierarchy and orthogonality.  Kansomkeat and Rivepiboon 

present a technique that can automatically generate and select test cases from UML 

statechart diagrams.9  This technique transforms UML statechart diagrams into 

intermediate diagrams, called Testing Flow Graph (TFG).  The TFG is then used to 

generate test cases.  These test cases are sequences of function calls that are used as 

inputs to the SUT.  Here again is a method to create input data and run the resulting test 

cases, but there is no automated method of verifying the correctness of outputs.  The use 

of UML statecharts limits this method to white box testing situations. 

3. Automated Testing Based on Java Predicates 

Boyapati, Khurshid and Marinov present “Korat”, a framework for automated 

testing of Java programs.10  Given a formal specification for a method, Korat uses the 

method precondition(s) to automatically generate all non-isomorphic test cases up to a 

 
8 Grady Booch and others., The UML Users Guide. (Reading, MA: Addison-Wesley, 1999). 
9 Supaporn Kansomkeat,and Wanchai Rivepibon, “Automated-Generating Test Case Using UML 

Statechart Diagrams,” in Proceedings of SAICSIT 2003, 296. 
10 Chandrasekhar Boyapati and others., “Korat: Automated Testing Based on Java Predicates,” in 

ACM ISSTA, July 2002, 123. 



5 

given bound on the input.  Korat then executes the method on each test case, and uses the 

method post-condition as a test oracle to check the correctness of each output.  With this 

approach all three main testing automation problems are solved.  There are some strict 

restrictions on when Korat can be used.  Programs must be written in Java with the 

correct pre and post conditions coded for all methods.  With this restriction Korat is 

useful only in white box testing situations. 



6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



7 

II THE ENVIRONMENT MODEL 

A. OBJECTIVE OF RESEARCH 
The objective of this research was to specify the syntax and semantics of an event 

based grammar that can model the environment in which a SUT operates.  Using this 

grammar, examples of environment models were to be developed.  A prototype 

implementation of a test driver generator based on these environment models has been 

developed. 

 

B. THE ENVIRONMENT MODEL APPROACH 
The goal of any software testing is to expose as many faults or bugs as possible.  

Modern automated software testing methodologies increase the number of faults detected 

through allowing more extensive testing.  Current software testing methods allow for 

automation in the running of test cases, and the monitoring of test case results, but there 

are relatively few specialized methodologies that actually automate the generation of test 

cases themselves.  There are no uniform methodologies that can be applied over a large 

range of software. 

This thesis suggests a testing approach based on using models of the environment 

in which the SUT operates.  These models would be built using event grammars.  There 

are several advantages inherent in this approach.  A wide range of software can be tested 

using test cases derived from environment models.  The model and the tests it would 

generate can be derived directly from requirements and specifications, even before the 

code for the system was completed.  Lastly this approach is one that can automatically 

generate a large number of test cases.   

 

C. ENVIRONMENT MODEL STRUCTURE 
The event grammar captures events, their sequence or inclusion relation to other 

events, and the attributes of these events.  An event is defined as an observable action that 

has a distinct beginning and end.  The event also has certain attributes associated with it, 

for example, a missile launch event could have attributes including a time of launch and 

type of missile. 



Events themselves can have two basic relations between them.  If the events are 

dependent on each other they are related by either precedence or inclusion.  With 

precedence Event B is preceded by Event A.  With inclusion Event A has one or more 

instances of Event B that must be concluded before Event A concludes.  Two events may 

have not relation at all or no dependencies between them.  These can be called parallel 

events.  Figure 1 depicts a model where events B and C are included in event A, event B 

precedes event C and events A and D are parallel events 

 

Figure 1.   
 

D. ENVIRONMENT MODEL

1. Ability to Generate
The ability to automatically

to an effective or productive test p

capacity to get “good” test data.  A

create a set of planned tests that co

reflected in the automated tests.  Au

designed well.11   The environment

team to create “good” or valid test d

2. Model Easily Unde
The ability of non-technical

environment model is a key feature

such a high level non-technical pe

that could lead to inconsistencies, a

inclusion of business rules that are n

                                                

The following is a portion o

tested in this thesis: 
 

11 Mosley and Posey, XVI. 
A::= B C 
B::= / f1() / 
C::= / f2() /
D::= / f3() /
 
Sample Model Structure. 

 ADVANTAGES 

 Valid Data 
 generate thousands of test cases does not directly lead 

lan.  The true measure of any testing technique is its 

 professional and effective automation effort should 

rresponds to a set of test requirements that in turn are 

tomated tests are effective only when the test data are 

 model approach has several strengths that allow a test 

ata. 

rstood 
 personnel to help in the creation or correction of the 

 of the environment approach.  The model is written at 

rsonnel should be able to point out both logic errors 

s well as the absence of certain business rules, or the 

ot represented in the model.   

8 

f the calculator model built for the calculator program 



9 

                                                

perform_binary_calculation::= press_binary_op_button enter_number  enter_number; 

It would not be too difficult for a non-technical person, working on a test team that was 

testing a calculator that used reverse polish notation, to observe and point out that this 

perform_binary_calculation is not properly represented in the model.  This same person 

could propose the correct solution of : 
perform_binary_calculation::= enter_number  enter_number press_binary_op_button; 
 
3. Model Easily Derived from Specification or Use Cases 
An environment model can easily be derived from specifications or use cases 

when available.  This is another way to ensure valid data is generated in the test cases.  It 

is possible for the environment model approach to generate a larger set of valid test data 

than a UML use case approach.  A use case describes the functionality of the product to 

be constructed.12  Each use case describes a sequence of actions that a systems performs 

to achieve an observable result of value to an actor.13  The use case approach uses 

expected input from the user (environment) to trigger a desired reaction from a particular 

function or set of functions in the system.  The environment model approach models the 

environment and does not attempt to create “expected” inputs, hence an environment 

model may produce “unexpected” but still valid test cases for use on the SUT. 

4. Model Can Be Used in Verification and Validation 
The environment model approach can be used as a tool in both verification and 

validation of a SUT.  The definition of verification and validation in this instance comes 

from Boehm:14 

Verification: Are we building the product right? 

Validation: Are we building the right product?  

An environment model contributes to the verification effort by providing test 

cases, based on specifications that will test the SUT’s ability to meet the specifications.  

With validation, testers are trying to determine if the SUT is providing the utility needed 

by a particular set of users.  The environment model is not derived from the functionality 
 

12 Schach, 369. 
13 Simon Bennett and others., UML. (New York: McGraw-Hill, 2001), 27. 
14 Boehm, Barry., “Verifying and Validating Software Requirements and Design Specifications,” In 

IEEE Software 1 January 1984, 75-88. 



10 

                                                

of the SUT but instead from specifications on how the SUT should interact with its 

environment, i.e. it is a black box testing approach.  As such, the tests cases derived from 

an environment model may highlight deficiencies on how the SUT interacts with its 

environment.  For example a nurse scheduling system for a large hospital may be 

designed for one user to enter data from a single host.  Using non environment model 

approaches, the scheduling system may pass all tests, the database is large enough, has 

the required fields, enter data does not produce any race conditions, etc.  However test 

cases from an environment model approach may show that one user can not handle the 

amount of schedule requests generated by the whole hospital.  Therefore the scheduling 

system in its current form is not the right system for the hospital. 

5. Defies Anti-extensionality Axiom 
The anti-extensionality axiom states that a test suite that covers one 

implementation of a specification does not necessarily cover a different 

implementation.15  The environment model test cases will cover different 

implementations since they must operate in the same environment.  The software wrapper 

used to provide input to the SUT may vary among implementations but the test cases 

themselves will not. 

6. Model Forms Part of an Ideal Test Suite 
A fully automated test process that derives the environment model and test cases 

from design specifications or source code would be ideal.  Automation would eliminate 

the errors introduced by human involvement in the process.  Another benefit would be 

the reduction in the amount of time required for testing a SUT. 

 

E. A SOLUTION FOR REAL TIME AND REACTIVE SYSTEMS 
A test driver produced by an environment model is an ideal solution for real time 

and reactive systems.  For real time systems all test cases are easily derived at generation 

time before the SUT begins its execution so the test driver can very efficiently provide 

input to the SUT at the appropriate intervals.  For reactive systems, a large portion of the 

 
15 Perry, Dewayne and Gail Kaiser. “Adequate Testing and Object-Oriented Programming.” in 

Journal of Object-Oriented Programming 2(5): January/February 1990, 14. 



11 

test cases can be generated before execution.  Depending on the resources available, 

many of the possible branches can also be generated before execution time of the SUT. 



12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



13 

                                                

III. RELATED WORK 

A. INTRODUCTION OF AN EVENT AND EVENT TRACE   
The concept of an event and event trace is introduced by Auguston in papers on 

debugging automation.16 17 In the papers an event is defined as any action that can be 

detected during program execution.  They also define two binary relations for events, 

precedence and inclusion.  These relations are able to describe the execution of a program 

as a partially ordered set of events, or an event trace. 

In a paper detailing the use of a high-level decoy specification language called 

CHAMELEON, Michael et al., detail an approach to use events and event traces to create 

software decoys against malicious attacks.18  In this paper the concept of event is used to 

develop event patterns that are matched against program system calls to detect intrusion 

events.  When there is an event pattern match, an action is performed.  In the 

environment model approach an event is external to the program being tested, and the 

event trace is the entire set of inputs for the program.  

 

B. USING ATTRIBUTED EVENT GRAMMAR TO MODEL AN 
ENVIRONMENT 

Auguston et al. introduce the concept of automated testing of real-time reactive 

software systems based on attributed event grammar modeling of the environment in 

which a system will operate.19  Here an event is defined as “any detectable action in the 

environment that could be relevant to the operation of the SUT.”  Events can have a 

 
16 Auguston, Mikhail. “A Language for Debugging Automation.” in Proceedings of Sixth 

International Conference on Software Engineering & Knowledge Engineering, edited by S.K. Chang, 108-
115 Skokie, Ill: Knowledge Systems Inc., June 1994. 

17 Auguston, Mikhail. “Lightweight Semantics Models for Program Testing and Debugging 
Automation.” in Proceedings of 7th Monterey Workshop: Modeling Software System Structures in a Fastly 
Moving Scenario, 23-31. Ligure, Italy: Santa Margherita, June 2000. 

18 J. Bret Michael and others, “An Experiment in Software Decoy Design.” in Security and Privacy in 
the Age of Uncertainty: IFIP TC11  Eighteenth International Conference on Information Security, edited by 
Gritzalis, D., Capitani di Vimercati, S., Samarati, P., and Katsikas, S., 253-264. (Boston, MA: Kluwer 
Acad. Publishers, 2003). 

19 Mikhail Auguston and others “Test Automation and  Safety Assessment in Rapid Systems 
Prototyping.” in Proceedings of 16th IEEE International Workshop on Rapid System Prototyping Held in 
Montreal, Canada, June 8-10 2005, 188-194. 



14 

                                                

precedence or inclusion relation as well no relation at all.  Two events with no relation 

are unordered, and can even happen concurrently. 

This paper by Auguston et al. demonstrates not only how to automatically 

generate and run test cases on a SUT, but additionally demonstrates how an environment 

model could accept and react to outputs from the SUT.  This allows generated test cases 

to interact with the system and adjust the evolving event trace based on the results of that 

interaction.20  The authors propose a method of using a large number of automatically 

generated tests to gain some approximation for the risk of the SUT entering into various 

hazardous states.  By altering the probability of individual model parameters, these tests 

can determine the impact that parameter has on the probability of a hazardous outcome. 

 

C. BEHAVIOR MODELS AIDING RUN-TIME VERIFICATION AND 
MONITORING 

Behavior models based on event grammars can be designed not only for the 

environment, but for the SUT as well, and used for run-time verification and 

monitoring.21 Auguston et al. state that this technique may be used to create the oracle 

that will allow the automation of test-result verification.  So it is feasible to automate all 

three major phases of the software testing process: the creation of test cases, the running 

of test cases, and the verification of test case results. 

Below are some of the advantages of using an environment model approach as 

taken from the two Auguston et al. papers: 

• An environment model specified by AEG provides for automated 

generation of a large number of random (but satisfying the model 

constraints) test drivers. 

 
20 Mikhail Auguston and others “Test Automation and  Safety Assessment in Rapid Systems 

Prototyping.” in Proceedings of 16th IEEE International Workshop on Rapid System Prototyping Held in 
Montreal, Canada, June 8-10 2005, 188-194 

21 Mikhail Auguston and others, “Environment Behavior Models for Scenario Generation and Testing 
Automation.” in Proceedings of the First International Workshop on Advances in Model-Based Software 
Testing (A-MOST'05), the 27th International Conference on Software Engineering, ACM Press (St. Louis, 
May 2005). 



15 

• Since the whole testing process can be automated, it becomes possible to 

run large numbers of test cases with which to expose errors. 

• It addresses the regression testing problem: generated test drivers can be 

saved and reused. 

• It is relatively easy to adjust the testing tool to the changing requirements 

by just adjusting the event grammar.  

• The generated test driver contains only a sequence of calls to the SUT, 

external event listeners for receiving the outputs from SUT, and time 

delays where needed to fulfill timing constraints.  Hence it is quite 

efficient and could be used for real-time test cases. 

• Different environment models for different purposes can be designed, for 

example, for testing extreme scenarios by increasing probabilities of 

certain events.  Experiments with the environment model running with the 

SUT provide a constructive method for quantitative and qualitative 

software risk assessment. 

• Environment models can be designed in early stages, before the system 

design is complete and can be used as environment simulation tool for 

tuning the requirements and prototyping efforts.   



16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



IV. DEVELOPMENT OF ENVIRONMENT MODELS 

A. DIFFERENT TYPES OF ENVIRONMENT MODELS 

1. Complexity of the Model 
Different environment models contain varying levels of complexity both in the 

relationships between the events that will be modeled and how the model will interface 

with the SUT.  Models may have very simple relationships between events.  For example 

a simple model may have only single level of inclusions with no other dependencies 

between top level events.  Figure 2 illustrates an example. 

 

Fig

 

Some models may ha

dependencies that require goi

access to other event attribu

ENCLOSING.  The ENCLOS

specifications for the event gr

Models may generate

account for this the test genera

which allows the test generato

Parallel events may have the s

quantum is inconsequential si

them. 

The relation to be es

complexity of the model as w

you have the simplest case of

 

 

A::= B C 
B::= /f1()/
C::= /f2()/
 
ure 2.    A Simple Model. 

ve complex relationships between various events including 

ng up and down a hierarchical structure.  Events may need 

tes.  These relations are represented by the construct of 

ING construct is discussed further in Chapter V where the 

ammar are covered.   

 events that have precedence relations between them.  To 

tor must attach time stamps to events as they are generated, 

r to later arrange event execution by sorting events by time.  

ame time stamp but the order of the events within the same 

nce by definition the events have no dependencies between 

tablished between the test driver and SUT will affect the 

ell.  If the test driver is only providing inputs to the SUT, 

 the model producing an event trace that is feed linearly as  

17 



18 

                                                

input to the SUT.  The model and test driver become more complex when the test driver 

must take output / feedback from the SUT and then provide the appropriate input as a 

reaction to the SUT output.   

2. Normal and Non-Normal Behavior Represented a Model 

One characteristic of a model is whether or not it is modeling a normal or non-

normal environment.  Normal is defined here as typical or what is expected.  Models that 

are designed to represent a normal environment, on average, produce the proper types of 

inputs, in the correct sequence, at what is expected as the normal time frequency.  The 

caveat “on average” is used because even a normal model may produce non-normal 

events.  Due to pure randomness normal models may produce low frequency events at a 

higher than expected rate of occurrence, or because of interactions in the model, a normal 

model may produce an output that is of the incorrect type, sequence, or with the wrong 

timing. 

Models can be designed to represent a non-normal environment.  These models 

may produce certain events, or sequences of events at a much higher probability than 

what is expected in the SUT’s operating environment.  Also non-normal models may be 

designed to create timing issues that are not expected or occur at a very low frequency in 

the anticipated operating environment.  These non-normal models are ideal tools to 

“stress” a SUT under varying operating conditions.  A non-normal model may also be 

used to force certain conditions to occur at a high rate or even always occur.  A fault 

model would provide the ideal basis from which a non-normal model could be built.  

 

B. ENVIRONMENT MODEL CHARACTERISTICS 
When determining the characteristics of an environment model one must first 

determine the events that occur in the environment that become an input to the SUT or 

must be observed by the SUT for it to carry out its functions.  A calculator must take in 

sets of numbers and operators.  A weapon selector22 must first detect an inbound target 

before algorithms for weapon selection are started and a weapon selection is made. 

 
22 A weapon selector is a system that must decide from several locations and types of weapons, which 

has the best chance of intercepting an incoming missile.  See Appendix A for a sample environment model. 



19 

The next consideration is what attributes the events must have in order to test the 

required functions of the SUT.  A calculator may only be designed to take numbers of 

less than 6 digits.  A weapon selector might need to discriminate between cruise and 

ballistic missiles.  The last consideration when determining the characteristics of an 

environment model are the sequence and timing of events.  Sequentially event B may 

always be proceeded by event A so the model must have this characteristic.  Event A may 

occur randomly or on a set interval.  Again this characteristic must be present in the 

model. 

If it is possible that the environment may not always produce events in the correct 

order or even with the correct attributes the environment model must include this 

behavior to adequately test the SUT.  An example would be the model generating event B 

without a preceding event A, and having event B be an integer when it should be a 

character. 

 

C. CALCULATOR ENVIRONMENT MODEL CHARACTERISTICS 
When developing the simple calculator environment model that would be used to 

test the vector calculator program, the first consideration was to determine what type of 

events happen in the calculator environment.  It was determined that the environment 

consisted of a user providing an operator and then two sets of numbers to the calculator.  

Each of these inputs needed to be followed by an “enter” event so the inputs are discrete.   

The next step was to determine the attributes of the events.  For the vector 

calculator numbers are represented by short so the number acceptable from the 

environment is not too large, approximately 15 bits depending on the implementation.  

The operations acceptable are plus (+), minus (-), multiply (*) and divide (/).  There is no 

requirement for an equal operator as the program automatically produces an output after 

receiving an operator and two numbers. 

The sequence of the inputs from the environment was critical, as mentioned 

above; no output is produced unless a strict sequence of operator, number, and number is  

 

 



20 

followed.  The timing of inputs is of no consequence since the calculator program has 

both no timing dependencies between inputs and no timing constraint in producing an 

output  

 
D. WEAPON SELECTOR ENVIRONMENT MODEL CHARACTERISTICS 

The theoretical weapon selector to be tested had several requirements to 

accomplish: 

• receive an inbound missile alert 

• determine the target and the time to impact of the inbound missile 

• determine the priority of an inbound missile to be engaged 

• decide on the best weapon to engage the inbound missile 

• be able to retarget an inbound missile if a previous engagement 
failed to destroy it 

The weapon selector would prioritize inbound missiles based on the predicted target of 

the enemy missile and the predicted warhead it is carrying.  For example an enemy 

missile targeted at a large city with a nuclear warhead would receive the highest priority, 

while an enemy missile targeted at a military unit with a high explosive warhead would 

receive the lowest priority.  The weapon selector would determine the warhead type by 

fusing intelligence information of the launch location and the flight parameters of the 

missile.  The model environment for the weapon selector presented in Appendix A is not 

capable of interacting with the SUT, therefore the requirement for the weapon selector to 

retarget missiles is not tested. 

Based on the requirements the inbound missile attributes where determined to be: 

• launch location 

• current location 

• type ( ballistic | cruise ) 

• payload 

• target 

The weapon selector environment model only needs the launch and current location 

attributes to generate the test cases.  The other attributes are needed to allow an oracle to 

determine if the weapon selector met its requirements. 

 



21 

V. SPECIFICATION OF AN EVENT GRAMMAR 

A. SOME BASIC QUESTIONS 
When designing the event grammar three questions had to be answered: 

• What parts of the SUT’s environment needed to be represented in a 
model? 

• How would these parts of the environment be captured by an event 
grammar? 

• How would this model be used to automatically generate test drivers? 

The first question, what parts of the SUT’s environment needed to be represented 

in a model, is covered in the Chapter IV discussion on the development of environment 

models.  The environment model is designed to create the proper input for the SUT.  

These inputs must have the appropriate attributes, be produced in a particular sequence 

and sent to the SUT based on certain timing constraints.  Therefore the event grammar 

must be able to support these requirements.  There is a distinction between an events 

timing attribute and the model’s design to simulate the timing of events.  For example, a 

model of the environment that a routing protocol must operate in could include the arrival 

of keep-alive messages from other routers.  Let us say one of the keep-alive event’s 

attributes is that it is sent every 30 seconds.  The event should not be telling the model 

when to send the event.  The model must determine when to send a keep-alive to the 

SUT, and therefore the model must be able to send or not send a keep-alive at the 

standard 30 second time interval.   

This requirement of accurately capturing the attributes of events but ensuring the 

model maintains control of creation of the event trace, brings us to the second question 

concerning how would the essential parts of the SUT’s environment be captured by an 

event grammar.  Identifying the essential parts of the SUT’s environment can be done in 

various ways, the most straight forward of which is, deriving the inputs required to 

support the SUT from the SUT’s specifications and requirements.  How the model 

maintains control over events is through a hierarchical structure.  Environment models 

are written “top down” with the rule(s) of the model coming before and therefore 

controlling all event rules.  



22 

In order to automatically generate test cases using the environment model 

approach, the test driver generator must first be able to generate a data structure that 

contains the events to be modeled that occur in the SUT’s environment.  The model has 

the rules for generating these events.  Some events may merely be triggers for other 

events to occur, while certain events will contain actions to be accomplished.  The test 

driver generator must then traverse the data structure for events that have actions for the 

SUT.  These events will have attributes that contain the information the SUT needs to act 

on in order to fulfill its requirements.   

 

B. RELATIONSHIP SYNTAX 
Figure 2 in Chapter IV illustrates the basic relationships needed between events.  

Events B and C are included in event A and event B precedes event C.  These basic 

relationships are all that are need to represent event relationships in many environment 

models.  However while modeling a range of example environments it has been 

determined some other relationships must be represented to accurately model some 

environment. 

Some environments require children of rules to access attributes of the parent or 

other children of the same parent.  The construct ENCLOSING covers this type of 

required link between events.  See the Paderborn Shuttle Model in Appendix A for 

examples on the ENCLOSING construct allowing the child access to attributes of the 

parent event. 



VI. DESIGN OF TEST DRIVER GENERATOR PROTOTYPE 

A. HIGH LEVEL ARCHITECTURE  
At the highest level the path to the creation of the test driver occurs after the 

environment model written in an AEG is translated by a compiler into the type of code 

needed to create a test driver for the SUT.  The purpose of the compiler is to take the 

environment model written to test a SUT and generate a test driver.  The test driver then 

generates the input for the SUT.  The input to the SUT can be as simple as plain data 

presented as a flat file, as is the case of the calculator example in this thesis, or the input 

can be complex function calls placed within the appropriate wrappers.  The test driver 

may also be designed to take inputs from the SUT and then provide the appropriate 

feedback to the SUT. 

 

 

 

Compiler Test  
Driver SUTModel 

Figure 3.   High Level Architecture 
 

B. LOW LEVEL ARCHITECTURE 
Refining the path that leads to the completed test driver from the environment 

model adds intermediate steps within the compiler and test driver.  First within the 

complier there must be a parser that takes the environment model and parses it into an 

abstract syntax tree.  Within the test driver several actions must be accomplished.  First, 

from the abstract syntax tree an event trace generator must create a set of events.  If 

required by the environment model, these events need to be sorted by timestamp to create 

a sorted event trace.  This sorted event trace is then used by the test driver to generate the 

input to be used by the SUT.  

23 

It is important to note that not all events generated from the abstract syntax tree 

will be used by the test driver to generate code for input to the SUT.  One requirement for 

the test generator is to traverse the tree that is produced from event trace generation and 

identify those events that result in actions that must be used as input to the SUT.  Only 

these events would be used to create input for the SUT.  The simplest example is an 



environment event that the SUT does not observe but is in the precedence chain of an 

event that the SUT does observe.  Take an environment model designed to test a radar 

system.  A simple example is a missile launch event that would not be observed by a 

radar site on the other side of the world, but does translate to a radar target later in time.  

A more complex example would a model designed to produce different types of radar 

targets at various ranges to the radar site.  Based on the size of the target and its range, 

there is a certain probably that the radar will detect the target, therefore the test generator 

must determine if the radar system will be given a radar “hit” as an input or not.   

Model Parser

C-
Source 
Code

Sorted 
Event 
Trace

Event 
Trace

Abstract 
Syntax 
Tree

Generate Test 
Driver
(i.e. C 

program)

Sort by 
Timestamp

Event Trace 
Generator

Set
Models

Non-set models

 
Figure 4.   Low Level Architecture 

 
 

C. CHOOSING A LANGUAGE TO WRITE THE PARSER AND TEST 
DRIVER GENERATOR IN 
To write the parser and test driver generator the RIGAL programming language 

was chosen for its flexibility and readability.  RIGAL is a programming language 

developed by Mikhail Auguston and Vadim Engelson as a compiler writing tool.23  The 

main data structures are atoms, lists, and trees. The control structures are based on 

advanced pattern matching.  RIGAL allows the programmer to divide a program into 

                                                 
23 Mikail Auguston “ Programming Language RIGAL as a Compiler Writing Tool,” ACM SIGPLAN 

Notices, December 1990, vol.25, #12,.61-69. 

24 



25 

several independent modules or rules and provides various means to tailor interaction 

between the modules.  This gives the programmer the benefit of being able to add delete 

or modify rules without major modification to the whole program. 

RIGAL proved to be very flexible as the parser and generator were developed and 

refined.  As new capabilities or functions were discovered to be needed during the 

development phase, it was relatively easy and straight forward to modify both either the 

parser or generator by modifying current modules or adding new ones. 

 

D. THE MODEL PARSER DESIGN STRUCTURE  
The model parser takes a text file and uses the Rigal lexical analyzer to parse the 

file into individual atoms.  The parser then begins normal parser tasks including putting 

the model into an intermediate form as a symbol rule table and reporting any syntax rule 

violations.  Rule definitions are placed in a tree structure that preserves the hierarchical 

relationships between the rules.  Each rule definition is itself placed in a tree structure 

that has the rule name as one branch and the string of atoms that makes up the rule 

definition on a second branch.   

 

E. THE TEST GENERATOR DESIGN STRUCTURE 
The test generator is designed to create a C program that will generate the actions 

to be sent to the SUT.  First the intermediate form created by the parser is loaded and 

then the appropriate C headers are sent to the file that will be the test driver.  RIGAL 

does not have a random number generator so a random number file created by a C 

program is loaded next by the generator for random number generation during execution.  

Now the parser output is traversed by the generator and each rule is processed to produce 

an event trace.  Those events that produce an action are passed on as output to create the 

test driver.  



26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



27 

VII. EXPERIMENTS 

A. HYPOTHESIS 
The hypothesis of the experiments was the belief that it is technically feasible to 

run automated tests generated from environment models on a system under test.  The 

SUT chosen for experimentation was a vector calculator program.  Tests were run with 

the environment model only providing normal and correct inputs and then with the 

environmental model allowing random or non-normal inputs. 

 

B. TEST DESIGN 
The calculator program tested was designed to ask a user for an operator (plus, 

minus, multiply or divide) then two numbers.  Each input is received from standard in 

and returned to standard out.  The calculator program was modified to take input from a 

file and direct output to a second file.  The program was also modified by enclosing it 

inside a loop with the length of the number of test cases to be run.  A copy of the 

modified program is in Appendix B. 

To determine how the test driver needed to be structured, manual testing was done 

to ensure data was appropriate and correct.  It was determined that a flat file with each 

input terminated by an end of line character would be appropriate input.  Correct input 

depended on an operator being sent as input followed by two numbers.  The test 

generator could have been designed to produce this flat file directly, but since more 

complex SUTs may require function calls with parameters as input, the generator is 

designed to generate a C program that when executed produces the actual test driver.  

Originally the calculator environment model included up to 8 digit numbers as 

input.  To avoid variable overflow, the model was initially modified to produce test cases 

with only four digit numbers since this particular calculator program uses a short 

variable to store the number input.  Manual testing also allowed the identification of how 

would the program handle these “overloads” of the number variables.  The fault model 

predicted the only way to generate a number that could not be represented by 15 bits from 

two 15 bit numbers was to use the multiplication operator.  Two errors were observed 



28 

during manual testing of multiplication operations.  Some “overloads” resulted in 

negative numbers as output.  This was the result of an unrecognized integer overflow 

generating a now truncated binary number with the sign bit flipped to negative.  The 

other error indication was an output that contained the first input number followed by a 

zero in the place for the second input number and a zero displayed as the result of the 

operation.  This was probably the output required when an overflow condition was 

recognized. 

 
C. PROCEDURES 

Before each test was run, the required number of equations to be in the test case 

was placed in the guard of perform_calculation in the model, and in the outer loop 

variable of the vector calculator program.  Then the parser was run on the model followed 

by the test driver generator.  The resulting C program was run and the output file was 

used as the input for the calculator program.  The calculator program produced a text file 

with the results of the equations. 

 
D. RESULTS 

The result of each test was either a text file with the number of equations run or a 

calculator program that had crashed. 

 
E. ANALYSIS 

The goal of the thesis was to prove that it was technically feasible to run 

automated tests, generated from environment models on a system under test, not to 

provide the method of verifying the SUTs results.  However a brief ananlysis of the 

results did bring out some interesting points.  From scanning the results the following 

conclusions can be made:  

• the automated tests showed the result of division operation is rounded off 
to nearest integer, so some division results are incorrect 

• the calculator program can handle division by zero without crashing 

• when feed non-normal inputs the calculator program crashes 

 



29 

VIII. CONCLUSION 

A. CONTRIBUTIONS 
A “test pattern” is a tool that you can build upon and use to accomplish a specific 

type and scope of test.  A mature test pattern has proven itself as a “best practice” way of 

testing for and revealing a certain kind of fault.  Test patterns are used because they 

provide a ready-made template to examine a piece of code at a specific level and reveal 

the particular faults you are trying to discover.  In this thesis various techniques for 

designing and building an environment model have been presented.  The use of 

environment models can be seen as a use of a test pattern.  Environment models can be 

developed and easily refined to become the mature test pattern needed for testing various 

systems.  

The research completed has proven that it is technically feasible to run automated 

tests, generated from environment models on a system under test.  This environment 

model approach to the automatic generation of software test cases is a tool that can be 

used in an overall testing infrastructure.  The environment model approach allows testing 

in all types of testing from black box to white box.  With a valid fault model, large 

number of bugs should be discovered in a short amount of time due to the automated 

nature of the tests. 

 

B. FUTURE WORK  
There are numerous interesting research areas that would be key extensions to the 

presented research on the environment model approach to automated testing.  One of the 

extensions needed are models that have the ability to sort threads by time stamp and 

interact with the SUT.  As mentioned in Chapter III, Auguston et al. have provided a 

solution to these problems in a recent paper so the environment model approach has this 

capability. 

Another area for research is how the environment model approach could 

contribute to rapid prototyping, and risk analysis.  The automated environment model 

approach allows easy manipulation of the parameters in the model.  Manipulating one 



30 

parameter while keeping others fixed, can allow the discovery of dependencies that are 

not obvious.  In rapid prototyping, early versions of a system can be easily tested and its 

“behavior” in the expected environment can be observed.  This would allow early 

corrections to both the software code and the requisite specifications if required.  In risk 

analysis large numbers of tests can be run and statistics built on the effects of changing 

individual parameters.  From these statistics risk decisions could be made on where to 

place resources. 

These and other possible capabilities when added to the environment model 

approach will allow this approach to tackle the complexity and scale of real world 

systems making it  the powerful testing tool it has the potential to be.   

 



31 

APPENDIX A. 

A. EXAMPLES OF ENVIRONMENT MODELS 

1. A “Normal” Model Used to Test Vector Calculator  
 
using_calculator::= ( perform_calculation )* (= 1000); 
 
perform_calculation::=  perform_binary_calculation; 
 
perform_binary_calculation::= press_binary_op_button enter_number  enter_number; 
 
enter_number::= ( press_digit_button )* (<=5) press_enter; 
 
press_digit_button::= @ genOut(RAND[0..9]) @; 
 
press_binary_op_button::= ( p(25)  press_plus press_enter  |  
                                              p(25)  press_minus press_enter |  
                                              p(25)  press_mult press_enter  |  
                                              p(25)  press_div press_enter  ); 
 
press_plus::= @ genOut( "+" ) @; 
press_minus::= @ genOut( "-" ) @; 
 
press_mult::= @ genOut( "*" ) @; 
 
press_div::= @ genOut( "/" ) @; 
 
press_enter::= @ press_enter( "" ) @; 
 



32 

2. A “Non-Normal” Model for a Calculator 
 
using_calculator::= ( perform_calculation )* (= 5); 
 
perform_calculation::=  perform_binary_calculation; 
 
perform_binary_calculation::= ( p(50) press_binary_op_button | 
         p(50) enter_number )  
                                                     enter_number   
      ( p(50) press_binary_op_button | 
         p(50) enter_number ); 
 
enter_number::= ( press_digit_button )* (<=5) press_enter; 
 
press_digit_button::= @ genOut(RAND[0..9]) @; 
 
press_binary_op_button::= ( p(25)  press_plus press_enter  |  
                                               p(25)  press_minus press_enter  |  
                                               p(25)  press_mult press_enter  |  
                                               p(25)  press_div press_enter  ); 
 
press_plus::= @ genOut( "+" ) @; 
 
press_minus::= @ genOut( "-" ) @; 
 
press_mult::= @ genOut( "*" ) @; 
 
press_div::= @ genOut( "/" ) @; 
 
press_enter::= @ press_enter( "" ) @; 

 



33 

3. A Complex Model for a Calculator 
 
using_calculator::= (perform_calculation)* (<= 100); 
 
perform_calculation::= ( p(20) perform_unary_calculation |  
       p(80) perform_binary_calculation ); 
 
perform_unary_calculation::= enter_number press_unary_op_button; 
 
perform_binary_calculation::=  
    ( p(80) ( enter_number press_binary_op_button enter_number press_equal ) |  
      p(20) ( press_left_par perform_calculation*     press_right_par)); 
 
enter_number::= ( press_digit_button )* (<=8) press_enter; 
 
press_digit_button::= @ genOut ( RAND[0..9] ) @; 
 
press_unary_op_button::= ( p(60) @ press_negation() @ | p(20) @ press_sin() @ |  
                                             p(20) @ press_cos() @ ); 
 
press_binary_op_button::= ( p(25) @ press_plus() @ | p(25) @ press_minus() @ |  
                                              p(25) @     press_multiply() @ | p(25) @ press_divide() @ ); 
 



34 

4. A Model for a Weapon Selector  
In this model a weapon selector is a system that must decide from several 

locations and types of weapons, which has the best chance of intercepting an incoming 

missile. 

 
launch::= (boost_phase ascent_phase terminal_phase)* (<=100) 
 
boost_phase::= boost_1 boost_2 boost_3 
 
boost_1::= / send_flash() / 
 
boost_2::= ( / calculate_coordinates() / [ p(0.7) /send_radar_hit()/ ] )* (<=10) 
  
boost3::= ( / calculate_coordinates() / [p(0.9) /send_radar_hit()/] )* (<=10) 
 
ascent_phase::= ( / calculate_coordinates() / [p(0.9) /send_radar_hit()/ ] )* (<=10) 
 
terminal_phase ::= ( /calculate_coordinates()/ [p(0.9) /send_radar_hit()/]  
                                )* (<=10) 
 if coordinates == target_location /send boom_signal()/ 

 



35 

5. Model for the Paderborn Shuttle System  
 
The following model is found in Auguston et al. paper on “Environment Behavior 
Models for Scenario Generation and Testing Automation”.  It is presented here as an 
example to illustrate the ENCLOSING construct, which provides access to the attributes 
of parent events. 
 
Shuttle_system:  {* Shuttle *} (1..ShuttleNum); 
 
Shuttle:  /Shuttle.id = Unique_num; 
    Shuttle.at_station = Rand(1..StationNum); 
    Shuttle.account = MaxAccount; 

  Shuttle.limit = 0; 
  Shuttle.retired = false;/ 

   (*  WAIT order(Shuttle.start, Shuttle.destination) 
WHEN (Shuttle.start == Shuttle.at_station) 

    ( /send_offer(Shuttle.id,  
     calculate(Shuttle.start, Shuttle.destination);/ 
    WAIT confirmation(Shuttle.accepted) 
    WHEN (Shuttle.accepted) Move   
    ) 
   *); 
 
Move:   
 WHEN (ENCLOSING Shuttle.limit > MaxLimit) 
  Maintenance 
 / ENCLOSING Shuttle.at_station = next_station(ENCLOSING Shuttle.at_station, 
           ENCLOSING Shuttle.destination); 
 ENCLOSING Shuttle. account -= TransitFee; 
 ENCLOSING Shuttle.limit += Wear; 
 send_notification(ENCLOSING Shuttle.id, ENCLOSING Shuttle.at_station );/ 

CheckAccount  
 WHEN (ENCLOSING Shuttle. at_station == ENCLOSING Shuttle. Destination) 
 /ENCLOSING Shuttle. account += Payment;/ 
  ELSE Move; 
 
Maintenance:  
 / ENCLOSING Shuttle.account -= MaintenanceFee; 

  ENCLOSING Shuttle.limit = 0;/ 
  CheckAccount; 
 

CheckAccount:  
 WHEN (ENCLOSING Shuttle. Account <= 0) 
  (/ENCLOSING Shuttle.retired = true;/    
    BREAK); 



36 

B. EXAMPLES OUTPUTS 

1. Example Parser Output 
<<<=EXITS FROM RULE #program: SUCCESS 
RESULT= 
 
  <.base:'using_calculator', 
    rule_table: 
    <.using_calculator: 
      (. 
        <.type:'iteration', 
          pattern_list:(.<.type:'rulename',name:'perform_calculation'.> .), 
          guard:<.op:'=',numb:1000.> 
        .>  
      .) 
      , 
      perform_calculation:(.<.type:'rulename',name:'perform_binary_calculation'.> .), 
      perform_binary_calculation: 
      (.<.type:'rulename',name:'press_binary_op_button'.> 
<.type:'rulename',name:'enter_number'.> <.type:'rulename',name:'enter_number'.>  
      .) 
      , 
      enter_number: 
      (. 
        <.type:'iteration', 
          pattern_list:(.<.type:'rulename',name:'press_digit_button'.> .), 
          guard:<.op:'<=',numb:5.> 
        .> <.type:'rulename',name:'press_enter'.>  
      .) 
      , 
      press_digit_button: 
      (. 
        <.type:'action', 
          funtion_name:'genOut', 
          arg_list:(.<.type:'random_num',limit1:0,limit2:9.> .) 
        .>  
      .) 
      , 
      press_binary_op_button: 
      (. 
        <.type:'alternative', 
          alt_list: 
          (. 
            <.probab:25, 
              pattern_list: 
              (.<.type:'rulename',name:'press_plus'.> <.type:'rulename',name:'press_enter'.>  
              .) 



37 

               
            .>  
            <.probab:25, 
              pattern_list: 
              (.<.type:'rulename',name:'press_minus'.> <.type:'rulename',name:'press_enter'.>  
              .) 
               
            .>  
            <.probab:25, 
              pattern_list: 
              (.<.type:'rulename',name:'press_mult'.> <.type:'rulename',name:'press_enter'.>  
              .) 
               
            .>  
            <.probab:25, 
              pattern_list: 
              (.<.type:'rulename',name:'press_div'.> <.type:'rulename',name:'press_enter'.>  
              .) 
               
            .>  
          .) 
           
        .>  
      .) 
      , 
      press_plus:(.<.type:'action',funtion_name:'genOut',arg_list:(.'+' .).> .), 
      press_minus:(.<.type:'action',funtion_name:'genOut',arg_list:(.'-' .).> .), 
      press_mult:(.<.type:'action',funtion_name:'genOut',arg_list:(.'*' .).> .), 
      press_div:(.<.type:'action',funtion_name:'genOut',arg_list:(.'/' .).> .), 
      press_enter:(.<.type:'action',funtion_name:'press_enter',arg_list:(.'' .).> .) 
    .> 
  .>  



38 

2. Example “Normal” Test Driver Generation Program 
#include <iostream>   
#include <fstream>   
using namespace std;   
int main() {   
// ofstream constructor opens the file   
ofstream genOut( "driver_output.txt", ios::out );   
genOut  <<  "-" ;  
genOut << endl ;  
genOut  <<  "7";  
genOut  <<  "1";  
genOut << endl ;  
genOut  <<  "6";  
genOut  <<  "6";  
genOut  <<  "4";  
genOut  <<  "8";  
genOut << endl ;  
genOut  <<  "*" ;  
genOut << endl ;  
genOut  <<  "0";  
genOut << endl ;  
genOut  <<  "0";  
genOut << endl ;  
genOut  <<  "*" ;  
genOut << endl ;  
genOut  <<  "5";  
genOut << endl ;  
genOut  <<  "0";  
genOut  <<  "0";  
genOut << endl ;  
genOut  <<  "/" ;  
genOut << endl ;  
genOut  <<  "2";  
genOut  <<  "8";  
genOut  <<  "2";  
genOut  <<  "1";  
genOut << endl ;  
genOut  <<  "7";  
genOut << endl ;  
genOut  <<  "+" ;  
genOut << endl ;  
genOut  <<  "2";  
genOut << endl ;  
genOut  <<  "8";  
genOut << endl ;  
 return 0; } 



39 

3. Example “Normal” Test Driver  
- 
71 
6648 
* 
0 
0 
* 
5 
00 
/ 
2821 
7 
+ 
2 
8 
 



40 

4. Example “Non-Normal” Test Driver Program 
 
#include <iostream>   
#include <fstream>   
using namespace std;   
int main() {   
// ofstream constructor opens the file   
ofstream genOut( "driver_output.txt", ios::out );   
genOut  <<  "*" ;  
genOut << endl ;  
genOut  <<  "1";  
genOut  <<  "6";  
genOut  <<  "6";  
genOut  <<  "6";  
genOut << endl ;  
genOut  <<  "1";  
genOut  <<  "5";  
genOut << endl ;  
genOut  <<  "/" ;  
genOut << endl ;  
genOut  <<  "7";  
genOut  <<  "1";  
genOut << endl ;  
genOut  <<  "0";  
genOut  <<  "0";  
genOut << endl ;  
genOut  <<  "2";  
genOut  <<  "8";  
genOut  <<  "2";  
genOut  <<  "1";  
genOut << endl ;  
genOut  <<  "7";  
genOut << endl ;  
genOut  <<  "/" ;  
genOut << endl ;  
genOut  <<  "-" ;  
genOut << endl ;  
genOut  <<  "2";  
genOut << endl ;  
genOut  <<  "4";  
genOut  <<  "0";  
genOut << endl ;  
genOut  <<  "/" ;  
genOut << endl ;  
genOut  <<  "2";  
genOut  <<  "4";  



41 

genOut  <<  "6";  
genOut << endl ;  
genOut  <<  "5";  
genOut  <<  "2";  
genOut  <<  "8";  
genOut  <<  "5";  
genOut << endl ;  
 return 0; } 
 



42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



43 

APPENDIX B. 

A. SOURCE CODE 

1. Environment Parser 
-- MODEL PARSER version 6 
-- James Imanian 
-- last modified 23MAY05 
-- 
-- takes attributed event grammar model and generates the 
-- intermediate form needed by test generator 
 
 
----------------------------------------------------------------- 
#main 
    -- take environment model file named CalcEv3.txt and parse 
    $lexems:= #CALL_PAS(35 'CalcEv3.txt' 'L+A-U-P-C+p-m+'); --C lexar 
 
    OPEN MSG ' '; 
    $var := #program($lexems); 
   
    -- intermediate form for parser input will be "calctree" 
    SAVE $var 'calctree'; 
   
## 
 
 
#program 
    (. (* $l !.:= #ruledef  ';' *)  .)  
    /FORALL $e IN $l DO 
        $rule_table++:= <. $e.rulename: $e.pattern_list.> 
        OD; 
     
    RETURN 
        <. base:       $l[1].rulename,  
           rule_table: $rule_table 
        .> 
    / 
 
## 
 
 
#ruledef 
    -- look for signature of a rule definition 
    $Id  ':' ':' '=' (* $plist !.:= #pattern *)   



44 

    /RETURN <. rulename:    $Id,  
               pattern_list: $plist .> / ;; 
 
    -- if rule does not properly terminate with a semicolon 
    (* $l!.:= S' ($$<>';') *) 
    / MSG << syntax error in rule $l / 
 
## 
 
-- go through $plist and determine what type of rule it is 
#pattern 
    $p:=(   #action  
          ! #alternative  
          ! #rulename  
          ! #iteration ) 
        / RETURN $p / 
     
## 
         
 
#rulename  
    $Id 
    / RETURN <. type: rulename, 
                name: $Id .> / 
## 
 
 
#iteration 
    '(' (* $p!.:= #pattern *) ')' '*' [ $guard:= #guard ] 
    / RETURN <. type:         iteration, 
                pattern_list: $p, 
                guard:        $guard .> / 
     
     
## 
 
 
#guard 
    '(' ( $op:= '=' ! ( '<' '='/ $op:= '<=' / ) )  
    ( '0' / $num:=0 / ! $num:= ( #NUMBER ! #random ) ) ')' 
    / RETURN <. op:   $op,       
                numb: $num .> / 
        
## 
 
 



45 

 
#action -- always a function call                                   
     '@' $Id '(' (* $arg_list!.:= ( #NUMBER ! #random ! $ATOM ) * ',' )  
         ')' '@'   
     / RETURN <. type:         action, 
                 funtion_name: $Id, 
                 arg_list: $arg_list .> /  
 
## 
 
 
#alternative 
        '(' (* 'p' '(' $num:= #NUMBER ')' (* $p!.:= #pattern *)   
            / $alt_list!.:= <. probab: $num, 
                               pattern_list: $p .>; 
              $sum+ := $num; 
              $p:= NULL; 
            / 
            * '|' ) ')' 
                
             
        / IF $sum <> 100 -> MSG << Sum of prob not 100 and is $sum FI; 
          RETURN <. type:     alternative, 
                    alt_list: $alt_list .> / 
         
 
##   
 
 
-- rule that will pass to generator a request (in a tree form) 
-- for a random number within a range  
#random 
    -- RIGAL lexical analyzer does not recognize zero as a number  
    -- so zero character must be assigned to number zero 
    'RAND' '[' ('0' / $num1:=0 / ! $num1:= #NUMBER) '.' '.'  
              ('0' / $num2:=0 / ! $num2:= #NUMBER) ']' 
    / RETURN <. type:   random_num, 
                limit1:  $num1, 
                limit2:  $num2  .> /   
 
## 



46 

2. Test Case Generator 
 
-- GENV8.RIG Generator version 8 
-- James Imanian 
-- Last modified 30MAY05 
-- 
-- takes intermediate form produced by model parser 
-- and produces an event trace 
-- 
-- loads random number file "randNums.txt" for use in 
-- random number generation 
 
-------------------------------------------------------- 
 
-- The main rule will generate the skeleton of the test driver 
#main 
    LOAD $tree 'calctree'; 
    PRINT $tree;      
 
    --globals 
    $rule_table:= $tree.rule_table; 
        
-------------------------------------------------------- 
 
    -- create a file that will be the test driver 
    OPEN gen 'result.c';  
     
    -- give the file the needed headers 
    gen << '#include <iostream> ';  
    gen << '#include <fstream> '; 
    gen << 'using namespace std; '; 
      
 
    gen << 'int main() { '; 
 
    -- send outputs to a file "driver_output.txt" 
    gen << '// ofstream constructor opens the file '; 
    gen << 'ofstream genOut( "driver_output.txt", ios::out ); '; 
 
    -- load random number table  
    $random_table:= #CALL_PAS( 35 'randNums.txt' 'L+A-U-P-C+p-m+'); 
      
    -- $current_random will be used as a pointer allowing the  
    -- the progam to cycle through randNums.txt multiple times 
    -- if needed 
    $current_random:= 0; 



47 

    -- trace rule will traverse tree generated by the parser 
    -- and produce the events needed for test generator 
    $trace:= #generate_from_rule($tree.base); 
      
    -- properly end the test generator program 
    gen<< ' return 0; }'  
                       
## 
 
 
#generate_from_rule 
    -- initialize a variable 
    $rule_name 
     
    -- use of LAST allows a rule to look to parent rule(S) 
    -- and use a variable there 
    / $plist:=LAST #main $rule_table.$rule_name; 
      FORALL $p IN $plist DO 
          #generate_from_pattern($p) 
      OD 
    /   
     
## 
     
#generate_from_pattern 
    -- iteration 
    <. type: iteration, 
       pattern_list: $plist, 
       [guard: <. op: $op, 
                 numb: $limit 
              .>] 
    .>     
 
    -- determine what type of iteration is to be done  
    -- iterations are either a set number or less than or equal 
    -- to a set or random number     
    / IF $op = '=' ->  
          -- Ability to detect guard, and ensure random number of 
          -- reps is withn range via a modulo sceme 
          IF #NUMBER( $limit ) ->    
              $numb_of_repetitions:= $limit   
          ELSIF T -> $numb_of_repetitions:= #get_rand( $limit) 
          FI; 
 
      ELSIF    T  ->  
           IF #NUMBER ($limit) ->  



48 

               $numb_of_repetitions:= #random() MOD ( $limit + 1 ) 
           ELSIF T ->  
               $x:= #get_rand( $limit ); 
               $numb_of_repetitions:= #random() MOD ( $x + 1 ) 
           FI;   
      FI; 
       
      -- If MOD function produces numb of reps = 0 
      IF $numb_of_repetitions = 0 -> $numb_of_repetitions:=1; 
      FI;  
 
    -- need to determine if more iterations need to be completed     
 
    $count:= 0; 
   
    LOOP 
        IF $count >= $numb_of_repetitions -> RETURN NULL;  
        FI; 
        FORALL $p IN $plist DO 
            #generate_from_pattern($p); 
        OD; 
        $count +:=1; 
      
    END -- loop 
     
    /;; 
      
      
 
 
-- alternative 
    <. type: alternative,  
       alt_list: $L 
    .> 
      
    / -- make the decision which alterntive to use 
  
    -- first try alternatives one by one.  if probabilty of alternative 
    -- plus previous alternatives equals the random number then execute 
    -- that alternative 
  
    $determined_prob:= #random(); 
   
    FORALL $a IN $L DO 
        $sum +:= $a.probab;  
        IF $determined_prob <= $sum -> 



49 

            FORALL $p IN $a.pattern_list DO 
                #generate_from_pattern($p) 
            OD; 
            RETURN NULL; 
        FI 
    OD; 
  
    -- enforce the last alternative 
  
    $a:=$L[-1]; 
    FORALL $p IN $a.pattern_list DO 
     #generate_from_pattern($p) 
    OD; 
     
    /;; 
  
-- action 
    <. type:          action, 
       funtion_name:  $Id, 
       arg_list:      (. (* $arg_l!.:= ( #NUMBER ! #get_rand ! $a) *) .) 
    .> 
 
    /       
    IF $Id = 'press_enter'-> 
              gen<< 'genOut << endl' 
        
    ELSIF T -> gen<< $Id ' << '; 
        FORALL $e IN $arg_l DO 
            IF #NUMBER( $e )->  
               gen<] @ '"' #IMPLODE($e) '"'  
            ELSIF ( $Id <> 'press_enter') ->     
                            gen<] @ '"' #IMPLODE($e) '" ' ; 
            FI;   
        OD; 
    FI; 
        
    -- action will result in line of code so it must be terminated with ;  
    gen<] ';' ; 
     
    /;; 
       
      
-- rule name 
    <. type: rulename, 
       name: $Id .> 
       



50 

    / #generate_from_rule($Id) /  
       
## 
 
 
#random 
    -- enter random number file, return the next random number 
    -- and increment pointer 
    /LAST #main $current_random:= LAST #main $current_random MOD 
                                    #LEN( LAST #main $random_table) +1; 
       
     RETURN LAST #main $random_table [ LAST #main $current_random ] /                 
      
##   
 
 
#get_rand 
    <. type:  random_num, 
              limit1:  $num1, 
              limit2:  $num2  .> 
     
    / $x:= $num2 - $num1; 
      -- ensure the result is returned as a positive number         
      IF $x < 0 -> 
           $x:= -$x 
      FI; 
     
      RETURN $num1 + #random() MOD $x / 
 
## 
            



51 

3.  Modified Vector Calculator Program 
//************************************** 
//      
// Name: Simple Basic Calculator 
// Description:Here is a simple calculator I built with the use of vectors.  
// Please vote. 
// By: GamaNetwork 
// 
// Assumes:Calculator that uses simple vectors 
// 
// This code is copyrighted and has// limited warranties.  Please see http:// 
//www.PlanetSourceCode.com/vb/scripts/ShowCode.asp?txtCodeId=9255&lngWId=3// 
// for details. 
 //      
// 
// Code has been modified for testing.  It now takes inputs from a file “driver_output.txt” 
// and outputs to file “calc_output.txt” 
// 
// Comment lines beginning with JAI are comments of the tester James Imanian 
// 
 
#include <iostream> 
#include <vector> 
#include <string> 
#include <stdlib.h> 
#include <fstream> 
using namespace std; 
using std::cout; 
using std::cin; 
using std::ios; 
using std::cerr; 
using std::ifstream; 
int main() 
 
{ 
    // JAI Modification to open input file 
   
    // ifstream constructor opens the file 
    ifstream inCalcFile( "driver_output.txt", ios::in ); 
 
    // exit program if ifstream could not open file 
    if ( !inCalcFile ) { 
    cerr << "File could not be opened" << endl; 
    exit( 1 ); 
    } // end if 
    // JAI end of testing modification 



52 

 
   
 
    vector<short> alpha(2); 
    short i; 
    short r1; 
    string typ; 
    char c1='"'; 
    char c2='='; 
   
    // JAI input not needed from user 
    //cout<<"|--------------------------|"<<endl; 
    //cout<<"| - Gamanets Simple Calc - |"<<endl; 
    //cout<<"| lx_8000@hotmail.com |"<<endl; 
    //cout<<"|--------------------------|"<<endl; 
    //cout<<"Enter Basic Math Type:"<<endl; 
    //cin>>typ; 
   
    // JAI for loop for multiple test cases added for testing 
    for(int j=0; j<1000; j++){ 
 
 
        // JAI modification to read from input file 
        inCalcFile>>typ; 
      
   
 
        for(i=0;i<2;i++) 
        { 
            // JAI testing modification 
     //cout<<"\nValue Numbers: "<<i+1<<":"; 
            //cin>>alpha[i]; 
     inCalcFile>>alpha[i]; 
        } 
         
        if(typ=="+") 
        { 
            r1=alpha[0] + alpha[1]; 
        } 
        if(typ=="-") 
        { 
            r1=alpha[0] - alpha[1]; 
                 } 
        if(typ=="*") 
        { 
            r1=alpha[0] * alpha[1]; 



53 

        } 
         
        if(typ=="/") 
        { 
            r1=alpha[0] / alpha[1]; 
        } 
                         
        // JAI output to be directed to a file 
               
 
//cout<<""<<alpha[0]<<""<<typ<<""<<alpha[1]<<""<<c2<<""<<c1 
        //<<""<<r1<<""<<c1<<""<<endl; 
                         
        // JAI Modification to open output file 
   
        // ofstream constructor opens the file 
          
        // NOTE program APPENDS the file.   
        // ERASE file if you do not want old results. 
  
        ofstream outCalcFile( "calc_output.txt", ios::app ); 
 
 // exit program if ofstream could not open file 
 if ( !outCalcFile ) { 
     cerr << "File could not be opened" << endl; 
     exit( 1 ); 
 
 } // end if 
  
 // JAI end modification 
       
         
outCalcFile<<""<<alpha[0]<<""<<typ<<""<<alpha[1]<<""<<c2<<""<<c1 
                  <<""<<r1<<""<<c1<<""<<endl; 
        
    } // JAI end test for 
       
    // JAI pause not needed 
    //system("Pause"); 
    return 0; 
} 



54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



55 

LIST OF REFERENCES 

Auguston, Mikhail.  “A Language for Debugging Automation.” In Proceedings of Sixth 
 International Conference on Software Engineering & Knowledge Engineering, 
 edited by S.K. Chang, 108-115 Skokie, Ill: Knowledge Systems Inc., June 1994. 
 
Auguston, Mikhail.  “Lightweight Semantics Models for Program Testing and Debugging 
 Automation.” In Proceedings of 7th Monterey Workshop: Modeling Software 
 System Structures in a Fastly Moving Scenario, 23-31. Ligure, Italy: Santa 
 Margherita, June 2000. 
 
Auguston, Mikhail, James Bret Michael, Man-Tak Shing.  “Environment Behavior 
 Models for Scenario Generation and Testing Automation.” In Proceedings of 
 the First International Workshop on Advances in Model-Based Software  Testing 
(A-MOST'05), the 27th International Conference on Software Engineering, ACM Press 
St. Louis, May 2005. 
 
Auguston, Mikhail, James Bret Michael, and Man-Tak Shing. “Test Automation and 
 Safety Assessment in Rapid Systems Prototyping.” In Proceedings of 16th IEEE 
 International Workshop on Rapid System Prototyping, 188-194. Montreal, 
 Canada, June 8-10 2005. 
 
Bennett, Simon, John Skelton, and Ken Lunn. UML. New York: McGraw-Hill, 2001. 
 
Binder, Robert. Testing Object-Oriented Systems.  
 Boston, MA: Addison-Wesley, 2000. 
 
Boehm, Barry., “Verifying and Validating Software Requirements and Design 
 Specifications,” In IEEE Software 1 January 1984, 75-88. 
 
Booch, Grady, James Rumbaugh, and Ivar Jacobson. The UML Users Guide. Reading, 
 MA: Addison-Wesley, 1999. 
 
Boyapati, Chandrasekhar, Sarfraz Khurshid and Darko Marinov. “Korat: Automated 
 Testing Based on Java Predicates,” In Proceedings of ACM International 
 Symposium on Software Testing and Analysis, July 2002, 123-133. 
 
Kansomkeat, Supaporn, and Wanchai Rivepibon, “Automated-Generating Test Case 
 Using UML Statechart Diagrams,” In Proceedings of SAICSIT 2003, 296-300. 
 
Michael, J. Bret, Georgios Fragkos, and Mikhail Auguston. “An Experiment in Software 
 Decoy Design.” In Security and Privacy in the Age of Uncertainty: IFIP TC11 
 Eighteenth International Conference on Information Security, edited by 
 Gritzalis, D., Capitani di Vimercati, S., Samarati, P., and Katsikas, S., 253-264. 
 Boston: Kluwer Acad. Publishers, 2003.  



56 

Mosley, Daniel, and Bruce Posey. Just Enough Software Test Automation.  
 Upper Saddle River, NJ: Prentice Hall PTR, 2002. 
 
Perry, Dewayne and Gail Kaiser. “Adequate Testing and Object-Oriented Programming.” 
 In Journal of Object-Oriented Programming 2(5) 13-19, January/February 1
 990. 
 
Schach, Stephen. Object-Oriented and Classical Software Engineering. 
 Boston, MA: McGraw Hill, 2002. 
 
 



57 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor Mikail Auguston 
Naval Postgraduate School 
Monterey, California 
 

4. Professor Bret Michael 
Naval Postgraduate School 
Monterey, California 
 
 


	I. INTRODUCTION TO THE PROBLEM OF AUTOMATED TEST CASE GENERA
	A. GENERAL SOFTWARE TESTING CHALLENGES
	B. CHALLENGES IN TESTING REACTIVE AND REAL TIME SYSTEMS
	C. SOME REASONS TO AUTOMATE THE TESTING PROCESS
	D. ADVANTAGES OF AUTOMATED TESTING
	E. THE MAIN PROBLEMS IN TESTING AUTOMATION
	F. CURRENT AUTOMATED SOFTWARE TESTING METHODS
	1. Automated Test Scripts
	2. Universal Modeling Language (UML)
	3. Automated Testing Based on Java Predicates


	II THE ENVIRONMENT MODEL
	A. OBJECTIVE OF RESEARCH
	B. THE ENVIRONMENT MODEL APPROACH
	C. ENVIRONMENT MODEL STRUCTURE
	D. ENVIRONMENT MODEL ADVANTAGES
	1. Ability to Generate Valid Data
	2. Model Easily Understood
	3. Model Easily Derived from Specification or Use Cases
	4. Model Can Be Used in Verification and Validation
	5. Defies Anti-extensionality Axiom
	6. Model Forms Part of an Ideal Test Suite

	E. A SOLUTION FOR REAL TIME AND REACTIVE SYSTEMS

	III. RELATED WORK
	A. INTRODUCTION OF AN EVENT AND EVENT TRACE
	B. USING ATTRIBUTED EVENT GRAMMAR TO MODEL AN ENVIRONMENT
	C. BEHAVIOR MODELS AIDING RUN-TIME VERIFICATION AND MONITORI

	IV. DEVELOPMENT OF ENVIRONMENT MODELS
	A. DIFFERENT TYPES OF ENVIRONMENT MODELS
	1. Complexity of the Model

	B. ENVIRONMENT MODEL CHARACTERISTICS
	C. CALCULATOR ENVIRONMENT MODEL CHARACTERISTICS
	D. WEAPON SELECTOR ENVIRONMENT MODEL CHARACTERISTICS

	V. SPECIFICATION OF AN EVENT GRAMMAR
	A. SOME BASIC QUESTIONS
	B. RELATIONSHIP SYNTAX

	VI. DESIGN OF TEST DRIVER GENERATOR PROTOTYPE
	A. HIGH LEVEL ARCHITECTURE
	B. LOW LEVEL ARCHITECTURE
	C. CHOOSING A LANGUAGE TO WRITE THE PARSER AND TEST DRIVER G
	D. THE MODEL PARSER DESIGN STRUCTURE
	E. THE TEST GENERATOR DESIGN STRUCTURE

	VII. EXPERIMENTS
	A. HYPOTHESIS
	B. TEST DESIGN
	C. PROCEDURES
	D. RESULTS
	E. ANALYSIS

	VIII. CONCLUSION
	A. CONTRIBUTIONS
	B. FUTURE WORK

	APPENDIX A.
	A. EXAMPLES OF ENVIRONMENT MODELS
	1. A “Normal” Model Used to Test Vector Calculator
	2. A “Non-Normal” Model for a Calculator
	3. A Complex Model for a Calculator
	4. A Model for a Weapon Selector
	5. Model for the Paderborn Shuttle System

	B. EXAMPLES OUTPUTS
	1. Example Parser Output
	2. Example “Normal” Test Driver Generation Program
	3. Example “Normal” Test Driver
	4. Example “Non-Normal” Test Driver Program


	APPENDIX B.
	A. SOURCE CODE
	1. Environment Parser
	2. Test Case Generator
	3.  Modified Vector Calculator Program


	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

