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Abstract

A simplified hyperbolic approximation to cnoidal wave

theory is applied to generate the radiation stress tensor and

used in the equations of motion to obtain solutions for

changes in the mean water level outside and inside the surf

zone. Comparison between linear theory, cnoidal theory and

laboratory results are made. A limiting case and an optimum

case for cnoidal theory are discussed in the comparison.

Cnoidal theory is shown to give better predictions than

linear theory to the data considered.
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TABLE OF SYMBOLS AND ABBREVIATIONS

C wave celerity

C wave group velocity
g

en elliptic cosine

D total water depth

E Jacobian elliptic integral of the second kind

E potential energy per unit surface area

E^ kinetic energy per unit surface area

Et total energy per unit surface area

F energy flux

g acceleration due to gravity

H wave height

H deep water wave height

h still water depth

h, water depth below the wave trough

K Jacobian elliptic integral of the first kind

k elliptic modulus

L wave length

£j_
complement to angle of incidence

m wave number

m deep water wave number

M total horizontal momentum

p pressure

Q argument of the hyperbolic function

R. friction term
1

S. . radiation stress tensor



sn elliptic sine

t time variable

Tj_ force

ux X-directed velocity

u Y-directed velocity

U mean steady motion

w vertical velocity

x,y,z direction of coordinate axes

a angle between wave front and bottom contour

3 beach slope angle

6 distance between still water and wave trough

n wave profile

nQ wave profile above still water

ff mean water level

9 dimensionless parameter

k shoaling coefficient

E, dimensionless parameter

<J)
velocity potential

p water density

a radial frequency

designation of still water level
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I. INTRODUCTION

The narrow region where the beaches of land masses and

the waters of the oceans meet is one of dynamic character.

Within the relatively short distance of perhaps a few hundred

yards, the waves rapidly release energy which may have been

transmitted many hundreds of miles. For the surfer waiting

for the perfect wave, the coastal engineer designing a new

structure, or the naval commander planning an amphibious

operation, the zone of wave energy dissipation against a

beach is one of prime importance.

The waves under consideration are those which have been

generated by a distant wind system. They have propagated over

a relatively long distance and are rather orderly and swell-

like in appearance. As they move toward the beach into pro-

gressively more shallow water, the waves undergo a transfor-

mation. They begin to slow and the wave heights build until

the wave can no longer maintain stability. At this point the

wave breaks and releases its energy across the surf zone.

Investigators have shown that the unsteady motion of

the waves results in a flux of excess momentum, commonly

termed a "radiation stress". A change in the radiation stress

as a wave train moves into shallow water can cause a suppres-

sion of the mean water level outside the surf zone and an

elevation of the mean water level inside the surf zone.

Historically, waves of this type most often have been

mathematically represented by linear or higher order Stokes'
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theories. However, some investigators are of the opinion

that cnoidal wave theory, which is a shallow water, finite

wave theory, is a more accurate representation of waves in

the field; this is because the wave form described by cnoidal

theory better resembles actual wave profiles.

This investigation uses cnoidal theory to examine two

radiation stress phenomena. A brief history of cnoidal

theory is presented to provide some understanding of this

class of waves. Next an asymptotic form of cnoidal theory

using the "hyperbolic wave" approximation is made and the

necessary wave parameters are defined. A brief discussion of

the history of the radiation stress follows, with the develop-

ment of the set-down and set-up expressions concluding the

section. The next section developes the application of

cnoidal theory to the radiation stress relationships. The

following section discusses the application of both linear

and cnoidal theory to laboratory data. The two theories are

compared to determine their applicability to a particular

laboratory experiment and to prototype conditions in general.

The final two sections contain recommendations for further

investigations and the conclusions reached from this study.

12



II. HISTORICAL SUMMARY OF CNOIDAL THEORY

This section comprises a brief historical summary of

cnoidal wave theory. The origins and major contributions to

the theory are included. These are by no means the entire

field of contributions and are presented merely as a means of

gaining basic familiarity with the theory.

Cnoidal theory was originally developed from an inves-

tigation of long wave propagation in a channel by Kortweg and

deVries [1] . Their original concern was the solitary wave, a

wave of translation, whose wavelength is infinite. The

solitary wave form is entirely within the crest and lacks a

trough. During their investigation the authors developed a

new class of shallow water waves, which are described in terms

of Jacobian elliptic functions and integrals. The primary

function is the Jacobian elliptic cosine, en, and from this

function came the term cnoidal as an analogy to sinusoidal

waves. By varying the Jacobian integrals and functions, one

can use cnoidal theory in its asymptotic forms to span the

region from Stokes 1 waves to solitary waves. In general, the

cnoidal wave appears as a periodic wave form with shallow

troughs and peaked crests (Figure 1)

.

The development of cnoidal wave theory is in some respects

similar to that of Stokes' waves. The assumptions made for

the fluid (incompressible, frictionless , homogeneous) are the

same. The consideration of the equations of motion, the

equations of continuity and appropriate boundary conditions,

as well as irrotationality , is made in both theories. However,

13



cnoidal waves are specifically long waves of finite amplitude

and are applicable only in shallow water.

A comparison of the linear long wave solution and first

order cnoidal waves is now discussed. Both solutions begin

by considering the free surface boundary conditions.

The dynamic free surface boundary condition is written:

_-||— - gn - -1^ (u
2 + w 2

) = 0, at Z = n . (1)

The kinematic free surface boundary condition is:

w = _3n = _a_u + u _a_u at z = (2)
at at dx

For the linear theory solution and the " zeroth" order

cnoidal theory, the assumptions are made that:

and

u 2 and w 2
< < gn

u du dr\
< <9x " v at

Thus for the first approximation, equations (1) and (2)

may be reduced to

8cJ)

and

o

3<J> 9n
^ + ^r = (4)az at

where the subscript represents the first approximation.

The coninuity equation for an irrotational , inviscid and

incompressible fluid is represented by Laplace's equation,

V
2

cj) = (5)

14



From equations (3), (4) and (5), Lamb [2] presents the

classical long wave equations

8
2 u C 2

3
2 u

8t 2
8x 2 (6)

and

3
2
n C 2

d^ji

9t 2 " dx 2 (7)

in which C 2 = gh.

A general solution for a progressive wave is now

assumed as

& = f (x - ct) (8)h

and

u
o— = f (x - ct) . (9)

c

From equations (8) and (9) , the solution for the first

approximation to the velocity is given as:

u
o - C & •

< 10 >

Equation (10) specifies a velocity which is uniform over

depth.

When the ratio of — and the curvature of the wave profile
H

become significant, the development is no longer satisfactory

and a second approximation must be considered. A second

approximation is obtained by substituting the results of (10)

into equation (1) and proceeding through the same steps

as before. As in the first approximation, the vertical

15



velocity contributions are neglected due to the shallow water

considerations. This development results in a differential

equation whose solution was originally shown by Kortweg and

deVries to be the basis for cnoidal wave theory. This neces-

sarily restricts cnoidal wave theory to shallow water

applications

.

Keulegan and Patterson [3] used essentially this develop-

ment in their study of flood waves and other waves of trans-

lation moving in an open channel. They developed expressions

for the wave profile, wave celerity, and energy for use in

examining the deformation of the wave form while undergoing

propagation.

Using the perturbation method of expansion, Laitone [4]

has developed a second order approximation to cnoidal theory.

He notes that an expansion which retains only first order

terms gives a solution identical to the original formulation

of Kortweg and deVries. From his second order approximation,

Laitone notes that pressure variations are no longer merely

hydrostatic and that vertical velocity terms may no longer be

small enough to ignore.

In a later work, Laitone [5] compared his second

approximation of cnoidal theory to third order Stokes 1 theory

and established limiting criteria for the application of

these theories to finite amplitude waves. Laitone concluded

that the second cnoidal approximation should not be applied

to waves whose wavelengths are shorter than five times the

water depth. He also established the maximum theoretical

16



value for the cnoidal shoaling coefficient of k = .7273.

Laitone concluded that third order Stokes' theory should be

limited to cases where the wavelength is less than eight

times the water depth.

It should be noted at this point that cnoidal theory is

not widely used. This is due to the relative unfamiliar ity

of the elliptic functions and integrals and to the difficulty

in applying them. However, there have been attempts to

present cnoidal theory in a more useable form for the

engineer. Weigel[6] summarized the theory and compiled

tables and graphs of important parameters and functions.

Weigel also has made some interesting comparisons of various

theoretical and measured wave profiles, which support the

supposition that cnoidal theory is more applicable than

Stokes' theory in shallow water. (See Figure 2). Masch and

Weigel [7] have prepared improved tables of functions and

parameters for cnoidal theory, and though this facilitates

the use of the theory somewhat, it nevertheless remains

relatively cumbersome and difficult to apply.

The mass transport of cnoidal waves was considered by

LeMehaute [8] to treat the run-up of long waves. The develop-

ment utilizes the wave parameters derived from Laitone 's

second order work.

A recent application of cnoidal theory has been carried

out by Iwagaki [9] . In an attempt to simplify the existing

theory to facilitate its use, Iwagaki defines a new class of

waves known as "hyperbolic" waves. The elliptic functions are

17



Figure 1

Cnoidal Wave

o— Experim e n ta I Wave

(after Taylor , 1955)

Solitary Wave

Sinusoidal Wave

Figure 2

Experimental & Theoretical Wave Profiles

(after Wiegel , 1955)
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approximated by hyperbolic functions and other assumptions are

made which further simplify the theory. A more detailed

discussion of hyperbolic wave theory follows.

19



III. DEVELOPMENT OF
HYPERBOLIC WAVE EQUATIONS

Iwagaki [op. cit . ] had defined a new class of waves

derived from cnoidal theory and has termed them hyperbolic

waves. The term hyperbolic comes from the fact that the

Jacobian elliptic functions can be closely approximated by

hyperbolic functions for certain restriced values of the

argument.

Cnoidal theory is developed in terms of the Jacobian

elliptic functions en, sn, and dn; the elliptic modulus, k;

and the complete elliptic integrals of the first and second

kind, K and E, respectively. The theory is ordered on the

ratio of wave height to water depth at the trough, _ . By
h
t

setting k and E equal to unity and allowing K to become

infinite, the solitary wave can be formulated. In this case

the wave length becomes infinite and the elliptic cosine and

sine are replaced by sech and tanh, respectively.

Iwagaki has considered the case where k and E are set

approximately equal to unity and K remains finite. From

Figure 3, the relationships between k, K, and E can be

determined. For the case where K = 3, both k and E are

approximately equal to unity. With these considerations,

cnoidal theory can be expressed in terms of hyperbolic func-

tions and the complete elliptic integral of the first kind,

K. From the above considerations, hyperbolic wave

characteristics can be developed from cnoidal theory by putting

20
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k and E equal to unity, keeping K >^ 3 , and replacing the

Jacobian elliptic functions by the appropriate hyperbolic

functions. This limits the region of validity to very

shallow water.

Traditionally cnoidal theory has used the depth of the

water below the trough as the origin for the vertical axis.

This same water depth is used with the wave height for

ordering purposes. Iwagaki retains the same vertical axis

origin, but by including a factor for the distance between

the trough of the wave and the still water level, is able to

order hyperbolic wave theory on the ratio of wave height to

still water level. (Figure 4 shows the hyperbolic wave

characteristics and axis.)

The hyperbolic wave approximations are applied to

Laitone's second order cnoidal theory to obtain expressions

for the wave profile, water particle velocities, wave

celerity and wave energy. All wave characteristics are

expressed to order (**) .

n

Wave characteristics were developed using the hyperbolic

wave approximation as given by Iwagaki applied to the first

order cnoidal theory as given by Laitone. The results are

listed below:

A. Wave Profile

H = H sech 2 Q - ^ (11)
K

22



where Q =
(

2K£ ix i 2Kct
(Ha)

and l-t = sin a

I = cos a
i = 1,2

B. Horizontal Particle Velocity

u. = \ gh [(£) sech 2
Q - ^&] l± I ~ 1,2

l ' n K h x (12)

C. Vertical Particle Velocity

w = f3gii (1+^-) (-)
3//2 sech 2

Q tanhQ (13)

(Note: For first order considerations, w is

neglected. This is a result of the shallow water wave formu-

lation, which assumes vertical water particle velocities are

small compared to the horizontal particle velocities.)

D. Wave Celerity

C = \JgI 1+1(1
h

1

K 2K
)]

E. Potential Energy

(14)

E _ I PHILE
p

" 3 K [1 - 2K] (15)

F. Kinetic Energy

1 pgH_i _ 3_L
K 3 K l± 2K-

(16)

23



G. Total Energy

2 PgH 2
n - 3E^ = E + E = ± Hy±i_ [1 - ±_] (17)

t p K 3 K 2K v ;

There is an equal partitioning of potential and kinetic

energy for the first order theory.

24



IV. RADIATION STRESS PHENOMENA

The concept of a "radiation stress" is a relatively

recent one, having been developed in a series of papers by

Longuet-Higgins and Stewart in the early 1960's. The original

series of papers were rigorously developed, using detailed

perturbation techniques. As the authors later admitted, the

details of the mathematical development tended to obscure

the relative simplicity of the concept based on physical

reasoning. As a result, Longuet-Higgins and Stewart [10]

have attempted to present a simplified, physical explanation

of the radiation stress concept and resulting phenomena.

To illustrate the concept, the authors make an analogy

to an occurance in electromagnetism. They note that when

electromagnetic radiation originates or terminates on a sur-

face, a force results and is known as a radiation pressure.

In a like manner, an analogous force results from a wave

train on a fluid surface. The resulting force is directed

in the direction of wave propagation. Additionally, the wave

train has momentum directed in the propagation direction.

From the consideration of the conservation of momentum, any

obstacle which impedes the wave train has a force exerted

upon it and this force is equal to the rate of change of

wave momentum. This force represents the radiation stress,

which may be defined as an excess flow of momentum due to the

wave train.

25



Longuet-Higgins and Stewart have used the radiation

stress concept to explain numerous observed phenomena in the

ocean [Refs. 11, 12, 13]. Among these are changes in the mean

water level outside and inside the surf zone, known as the

set-down and set-up, respectively. Other examples treated

are surf beats, wave-current interaction and the generation

of capillary waves by steep gravity waves. This investigation

will consider the case of radiation stress applied to the

set-down and set-up phenomena.

A. DEVELOPMENT OF RADIATION STRESS PHENOMENA

It is now appropriate to consider the development of

phenomena resulting from the radiation stress. The case to

be investigated considers waves from deep water which are

progressing shoreward. As the waves shoal over a sloping

bottom they increase in height until the breaking point is

reached. As the wave height changes the radiation stress

undergoes a corresponding change. The change in the radiation

stress in turn causes changes in the mean water level.

After a wave initially breaks, it is assumed to continue

across the surf zone with the wave height governed by the

depth. This implies a spilling breaker classification.

Implicit in the above assumption is a beach of gentle slope.

One may then assume that no energy reflection will occur from

the beach slope. Viscous considerations will be neglected.

The net current perpendicular to the beach is assumed to be

zero. The bottom is assumed to have straight and parallel

26



contours, although the bottom profile remains arbitrary. A

final consideration for the formulation is a steady state

system.

Consider the equation for the time-averaged conservation

of momentum averaged over depth using Leibnitz' rule, as

given by Phillips [13]

,

3M. 8

JT- + 3*7 ( Ui Mj + S
±

.) = T ± + R± i,j = 1,2 (19)

where (1,2) refer to the (x,y) components respectively.

The first term represents a change in the total horizon-

tal momentum. The first term in the parenthesis represents

a momentum flux due to steady motion and the second term is a

momentum flux due to unsteady motion - the radiation stress

tensor. The first term on the right side of (19) is a hori-

zontal force due to the slope of the free surface. The last

term is a friction term.

1 . Development of the Radiation Stress Tensor

In developing the radiation stress tensor, the

coordinate system represented in Figure 5 is utilized. The

Y-axis is perpendicular to the beach, the X-axis is parallel

to the beach, and the Z-axis is directed upward. The origin

of the coordinate system is centered at the still water level,

As a general case, the waves are assumed to approach the

beach contours at an arbitrary angle, a. The development

retains terms to second order only. For the shallow water

case under consideration, terms are ordered on the ratio of

the wave height to still water depth, _
h

27
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Following the development of Longuet-Higgins and

Stewart [10] , consider the flux of horizontal momentum across

a vertical plane in the fluid. With the assumption of no

mean currents and considering only unsteady motion, this

momentum flux can be represented by

p (ux
2 + u

y
2

) + p . (20)

The total average flux of horizontal momentum

across a vertical plane is found by integrating equation (20)

between the bottom and the free surface and time averaging :

n

f

j
(pu 2 + ux

2 + p) dz (21)
-h

where the over bar indicates time averaging.

By considering only components in the Y-direction,

the principle component of the radiation stress, Syv , is

defined as the mean value of (21) minus the mean flux in the

absence of the wave train:

S = (pu 2 + p)dz - p^ dz (22)
yy J

h Y ^ ih °

where S represents the excess momentum flux due to unsteady
YY *

wave motion. The second term of (22) represents the hydro-

static contribution of the total pressure in the absence of

any mean flow.

By separating (22) into three parts and integrating

each separately, the problem is simplified. Consider

2 9



S = S (1) + S (2) + S (3) (23)
yy yy yy yy

n

fwhere S (1) = pu 'dz
yy -h Y

r

S
yy

(2) = (p - pQ )dz (24)

-h

n
r

S (3) =
I

pdz
yy J

o

All terms of (24) contain terms of second order. Terms of

higher order will be discarded.

Beginning with the S (1) term, the upper limit may

be replaced by z = 0, since the portion from 0<z<n can be

shown to give a third order contribution. Thus,

o o
f f

Syyd) -
J

PU
y
2dZ =

j
PV d Z U5)

represents a Reynolds' stress integrated from the bottom to

the free surface.

Considering the S (2) term,

o

S
yy

(2) = I (p - pQ )dz
=

-h

(P " P )dz (26)

which represents changes in the mean pressure within the

fluid column. To be consistent p must be considered to the

second order. Longuet-Higgins and Stewart note that p may

30



be easily derived from the vertical momentum flux equation

across a horizontal plane. This flux must be great enough to

support the weight of the water above. Then,

p + pw 2 = - pgz = p_ (27)

and p - pQ = - pw 2
. (28)

Substituting (28) into (26) and combining with (25) gives

o
r

s
yy (1) + S

yy
(2) =

P

<

u
y

2 + w ' )dz (29)

-h

The S (3) term is evaluated by considering that
yy

the pressure near the free surface is nearly equal to the

hydrostatic pressure below the free surface. Thus for

p - pg(n - z) (30)

integrated over the stated limits and time averaged gives

S
yy

(3) = | pgn
2

. (31)

Combining all terms yields

o

S
yy

P(u/ + wz )dz + - pgn
z

(32)

-h

2 . Wave Set-Down

When the stated assumptions are applied to equation

(19) , it may be reduced to a simple expression. The first

term in equation (19) is discarded from the steady state

assumption. The first term in the parenthesis is neglected

from the assumption of no net currents perpendicular to the

31



beach and the fact that there are no current gradients in

the X-direction. The friction term is neglected. Equation

(19) is now reduced to the following expression:

dS
yy—— = T . (33)

dy y

The right side of (33) is a horizontal force result-

ing from the slope of the free surface and is given by

T - - pg(n + h)^ . (34)

Making the assumption that n<<h, (33) can be rearranged to

give

dri 1 dS

dy = ~ pgh dy (35)

which is the basic equation for considering the changes in

mean level due to radiation stress.

For regions seaward of the point where the wave

begins to break, Longuet-Higgins and Stewart [11] have pre-

sented a solution for the mean water level using linear waves

given by

1 H 2m
n

8 sinh 2mh Ubj

where the negative sign indicates a set-down. Equation (36)

is expressed in terms of the local wave height, wave number

and water depth. An additional expression is given in terms

of the deep water wave height and wave number and is written

1 „ 2 coth 2mh
n ~ ~ 8

H m 2mh + sinh 2mh {* ,}

32



From equations (36) and (37) it is readily seen

that the set-down increases as the wave shoals, as long as

the energy flux remains constant. In addition, the assump-

tion of an arbitrary bottom profile is valid, since the amount

of set-down is only dependent on the local water depth,

rather than any specified bottom profile.

3 . Wave Set-Up

The set-down reaches its maximum value at wave

breaking and other assumptions come into prominence. As the

wave breaks and continues shoreward, energy is being contin-

ually released. The energy decrease across this region is

assumed to be a function of the local water depth. Addition-

ally, it is assumed that the Syy terms retain the same form

as (32) . The energy decrease results in a corresponding

decrease in the radiation stress and results in a set-up.

The solution for set-up using linear theory is

given by

n = Y (hb
- h) + n b (38)

where Y = ~g (38a)

3S K
2 + 1)

H
and k = _£. . (38b)

h.

Equation (38b) represents the value of the shoaling coeffi-

cient at breaking. The subscript, b, refers to conditions

at breaking. The fj from (38) is the maximum value of set-

down, or the set-down at incipient breaking.
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V. CNOIDAL WAVE CHARACTERISTICS APPLIED TO
RADIATION STRESS EQUATIONS

This section discusses the application of the cnoidal

wave characteristics developed earlier to the radiation

stress equations. As a first step, the radiation stress term

will be developed. This will then be used to develop the

expressions for set-down and set-up.

A. THE RADIATION STRESS TENSOR

Because only the primary term of the radiation stress

tensor, sVy/ is required for the simple case of waves approach-

ing perpendicular to the bottom contours, only cursory

consideration will be given to the remaining three terms of

the tensor. For other investigations requiring a more general

solution, the remaining terms of the tensor are easily

developed from this simple case. Once again, only terms of

second order are required for the present consideration.

Equation (32) specified the complete form of the Syv

term, which was then separated into three components for ease

in development. A similar approach will be used for the

application of the cnoidal wave characteristics. The S (1)V* yy

and Syy(2) terms were combined to give

S (1) + S (2) =
yy yy

which is equation (29)

.

o
e

p (u
2 + w 2 )dz

-h
y
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The component of horizontal particle velocity in the

Y-direction (12) can now be written as

u = \[gh [(£)sech 2 Q - jk (g)]cos a (39)

Squaring (49) gives

u 2 = gh (S)
2

cos 2
a [sech 4 Q - | sech 2 Q+ -

] (40)

Upon consideration of the equation for the vertical

particle velocity (13) , it is noted that when this term is

squared it contains terms of order (ii) * 2
. Since only terms

/H 2of order (— ) are to be retained, equation (32) can now be

written as

o
c

S
yy

(l) * S
yy

(2, = pu 2 dz (41)

-h y

Substituting equation (40) into (41) , integrating over the

prescribed limits and averaging over one wave length results

in the following expression:

2
2 pgH z

3 2
S
yy (D + S

yy
(2) = 3 "K t 1 " 2K] cos a ( 42 ^

For the case of waves approaching perpendicular to the bottom

contours, equation (42) is identical to the expression for

total energy per unit surface area (17)

.

The S (3) term, equation (31) was written

S
yy

(3) =|pgn 2
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and is equivalent to the mean potential energy per unit

surface area. Squaring the expression for the wave profile

(11) gives

2 _ tt2
n' = H z (sech H

Q - ±_)
K 2

(43)

Averaging (43) over one wave length and substituting into

(31) results in

S
yy

(3) " I,*
2? (1 " Ik> < 44 >

Equation (44) is the same as the expression for the mean

potential energy per unit surface area.

Combining (42) and (44) gives

S = E cos 2 a + —

t

yy t 2
(45)

to the second order

.

In a similar manner, the remaining terms of the radiation

stress tensor can be developed and the tensor can be written

!:

E sin 2 a + fit

Et
• ,— sin2a

2

Et sin2a

E,cos 2 a + —5
2

This is the same form in terms of energy density as the tensor

for the shallow water linear wave development.

Considering the case where the waves approach perpendic-

ularly to the beach (a = 0) , (45) may now be written

yy 2 t
(46)
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Equation (56) is of the same form as the expression developed

earlier for shallow water gravity waves. This is considered

to be a significant result, since it now allows an analogous

development of the set-down and set-up expressions for cnoidal

theory. Additionally, it should provide a basis for compari-

son of the first order cnoidal and linear theory radiation

stress results.

B. CNOIDAL WAVE SOLUTION FOR SET-DOWN

The general form of the equation for set-down is given

by (35) . An analytical solution for the hyperbolic approxi-

mation to cnoidal theory will be developed for the limiting

case of K = 3.

Recall that equation (35) was expressed approximately

outside the surf zone as

drj 1 dSyy

dy pgh dy

where h = h(y) and S = — E. for a = 0. For the region
r yy 2 t *

seaward of the point where initial breaking occurs, the mean

rate of energy transport is constant and is written as

F = E^C . (47)

For the shallow water consideration C = C. Longuet-Higgins

has presented a general solution for equation (35) as shown

below:

* &r <f>
+ const - (48>

In equation (58) , o is the radial frequency, F is the

mean rate of energy transport. £ and are dimensionless
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parameters as defined below for the case where K = 3

1/2

e , 4Kh vrr
t
n

s

1/2
i

h (l4 Su 2 h ;

(49)

In equation (49) £iS j_ s analogous to the wave number of linear

wave theory.

9 = £r = 3(
e» —^c 2

< 50 >

U 2 h J

From (49) and (50) it can be shown that

e = e .

Substituting (49) and (50) into (48) gives:

a
3 F d , 1 . ,_. .

n =
T¥ « ( V* '

•

(51)

Integrating (51) with respect to and substituting into the

result gives:

1 a
3 F _g_ 3/2 _1 _F

n
" 2 ^ (

a
2 h

) "2 p(gh) 3'2 l
-

J

For the limiting case of K = 3, the celerity reduces to

C = \["gh

and substituting E = —2— into equation (52) , the change
9

in mean water level outside the breaking point is:

"
= " 18 H" (53)

For the cases where K > 3, equation (35) does not lend

itself to an analytical solution and a numerical scheme must

be devised for the solution. Using equation (47) for the

constancy of energy transport outside the breaking point, a
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wave height can be calculated for each depth. A numerical

difference scheme is then applied to equation (35) to give a

solution for each point as specified by a given water depth.

C. CNOIDAL SOLUTION FOR SET-UP

The general solution for the set-up after the inception

of breaking is obtained by considering once again equation

(35) and the same assumption from the linear theory case.

Inside the surf zone a solution for the general case is

readily obtained by analytical means. The primary tensor term

(46) can be written:

s =3 pgH 2

(1
_3_

) (54)b
yy 2

ht K U 2K ; lD4j

Inside the point of initial breaking, the total mean

water depth is now represented by

D = (n + h) (55)

in which h = h(y) and n is the set-up. The critical value

of the shoaling coefficient now becomes

H
b

K = — . (56)
u
b

Thus, equation (54) becomes

PgK
2
hD(y)

2
3

S
yy

~ K (
1_ 2k) • (57)

Substituting (57) into (35) gives:

^ = -iHjti (i-i-) £D
(58)

dy K 2K dy
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or

dn 2K 2
b 3 dn dh

dy K 2K dy dy

Now let

<->..2

b

(1"^ } fe +
3u7) (59)

1 2k 2
k 3

K v 2Kd-w) (60)

Rewriting (59)

f= -B§ (61)

where B = —±

(A+l)

Equation (61) can now be integrated to give:

fi = - Bh(y) + const. (62)

At initial breaking ft — ffj-,

and h = h, .

Thus the constant in (62) becomes

const. = f\, + Bh, . (63)

Substituting (63) into (62) gives the general solution

for set-up inside the surf zone as

n = B(hb - h) + nb (64)

where h = h (y)

.

Equation (64) has the same form as the linear solution.
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VI. APPLICATION OF THEORY TO EXPERIMENTAL DATA

Bowen, et a_l. [14] conducted a laboratory experiment to

carefully measure the set-down and set-up caused by shoaling

waves. The experiment was conducted in a laboratory channel

with a plane beach of slope 1:12. The measurements were made

using a sensitive manometer arrangement, whose pressure

readings were later converted to water surface elevations.

Seaward of the inception of breaking, a steadily

increasing value of set-down was measured. As the wave began

to break, a near constant value of set-down was measured,

until breaking was complete. This suggests a wave more nearly

plunging, rather than the spilling breaker considered in the

theoretical developments. Once initial breaking was complete,

a rebound phenomenon was noted where the broken wave formed

a bore and proceeded shoreward. In this region, the set-up

was found to steadily increase and the wave height was nearly

a linear function of water depth. This is one of the consid-

erations made in the theoretical developments.

A particular laboratory measurement was chosen to compare

linear theory and cnoidal theory. The set-down and set-up

calculations were made for both cnoidal theory and the shallow

water approximation to linear theory.

For the shallow water approximation to linear theory,

equation (36) becomes

* - - 16 f (65)
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From the earlier development for the limiting case,

equation (53) , gives a comparable expression for cnoidal

theory of

n = - 1_ H^
18 h

Equations (65) and (53) were used to calculate the

values of set-down. Equations (38) and (64) were used to

calculate the values of set-up. A comparative plot for both

theories and the measured data is shown in Figure 6.

For the theoretical solutions, it is necessary to patch

the solutions for set-down and set-up together at the initial

break point, since neither theory accounts for the transition

zone indicated by the laboratory experiment. Also neither

theory makes an allowance for the formation of the observed

bore

.

For K = 3 cnoidal theory gives a value of set-down and

the corresponding set-up which is closer to the laboratory

experiment than linear theory. When the value of K is

increased, the resulting set-down decreases. For K = 6 the

resulting cnoidal theory set-down gives a very good approxima-

tion to the laboratory experiment, particularly at the deeper

measurement points where friction effects are likely to be

minimized. This is an important point to note, since friction

considerations were neglected in both theoretical develop-

ments. In both cases the assumption of a constant mean rate

of energy transmission was made for the region outside the

initial break point. By neglecting friction effects, both
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theories give energy values which are necessarily larger than

those actually observed. It should also be noted that as the

value of K is increased in the cnoidal theory expressions,

the energy value decreases and gives lower set-down values.

As K becomes very large, the wave form approaches the

solitary wave condition for which the set-down is zero.

Because the set-up solution for both theories is a

linear function of the decreasing water depth, the excessive

set-down values result in excessive values of the set-up.

Even the optimum value of K gives too large a set-up value.

Some of the difference between the theoretical and laboratory

results is due to the necessity of patching the theoretical

solutions together at the break point. The theoretical

set-up begins at the break point, whereas, the laboratory

experiment showed a transition region before the onset of the

set-up.
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VII. RECOMMENDATIONS FOR FURTHER STUDY

Because this study is limited in scope, a number of

suggestions for further investigations can be made. The simple

relationships derived from the hyperbolic approximation to

cnoidal theory lend themselves to other applications of the

radiation stress concept. Extensions into the derivation of

longshore currents and sediment transport by these currents

could be made. Applications to surf beats and the effects of

the set-up on storm surges could be done, following the work

of Longuet-Higgins and Stewart.

The hyperbolic approximation to cnoidal theory has shown

a useful application to radiation stress concepts. A far

wider and more accurate study could be done using cnoidal

theory as originally developed, rather than the asymptotic

form of the theory. However, this would be a great deal more

difficult and most certainly would require facility with

numerical methods to utilize the elliptic integrals and

functions.
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VIII. SUMMARY AND CONCLUSIONS

The hyperbolic approximation to cnoidal wave theory can

be readily applied to the radiation stress phenomena of set-

down and set-up. Using techniques established for linear

wave theory, wave characteristics for the cnoidal approxima-

tion yield an analytical solution for the limiting case of

K = 3. For any case of K greater than three, a numerical

scheme is required for solution. The same assumptions are

made for both the linear and cnoidal models. The radiation

stress tensor derived for first order cnoidal theory has the

same form in terms of energy density as the tensor for linear

theory.

The set-down solution for linear theory and cnoidal

theory is a function of wave height and local water depth.

In addition, cnoidal theory has a dependence upon the partic-

ular value of K under consideration. The values of set-down

obtained for linear theory and the limiting cnoidal case

(K = 3) were greater than the measured laboratory value. The

limiting cnoidal case was closer to the measured values than

linear theory. An optimum value of K = 6 was found for the

particular experiment being considered. The resulting cnoidal

values were in very close agreement with the laboratory values

for the deeper measurement stations. The differences between

the measured values of set-down and the theoretical values

are attributed in part to the simplifying assumptions made in

developing the mathematical models. For example, all friction
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considerations were neglected. This assumption probably makes

a considerable contribution to the excessive set-down resulting

from both theories, particularly at the shallower stations.

At the point of initial breaking, the set-down and set-up

solutions must be patched together. The excessive set-down

values obtained from theory lead to larger than measured set-

up results. The set-up solution is a linear function of

water depth and the set-up continues above still water level

on the beach. No provision is made in either model for the

bore which was observed in the laboratory study.

Cnoidal theory appears to give a finite wave solution

which more closely represents the observed results from the

laboratory experiment. As the value of K increases, the

resulting set-down and set-up approach the laboratory results.

At K = 6 , good agreement between cnoidal theory and the

measured values is found, especially in deeper water. Thus

cnoidal theory is a more valid theory in shallow water, not

only from mathematical considerations, but from physical

measurements as well.
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