Iohn Aluams

 Silurary.IN THE CUSTODY OF THE BOSTON PUBLIC LIBŔRARY.

Semis Tola his of bi
\square
Ho year 170
for 80

COCKERs Droimat ARITHMETICK,

Wherein is thewed the Nature and Ule of Decimal Fractions in the ufual Rules of Arithmetick, and the Menfuration of Plains and Solids.
Together with Tables of Intereft and Rebate for the valuation of Leafés and Annuities, Prefent, or in Reverfion, and Rules for Calculating thofe Tables.

Whereunto is added
His Artificial Arithmetick, Thewing the Genefis or Fabrick of the Logarithms, and their ufe in the Extraction of Roots, the folving of Queftions in Anatocifm, and in other Arithmetical Rules in a Method not ufually practifed.

A L S O

His Algebraical Arithmetick, containing the Doatrine of Compofing and Rejolving an Equation ; with all other Rules requifite for the undertanding of that mylterious Art, according to the Method ufed by Mr. Fobn Kerfey in his Incomparable Treatife of $A L G E B R A$.

Compoled by EDW ARDCOCKER, late Practitioner in the Arts of Writing, Aritbmetick and Engraving.

Perufed, Corrected and Publifhed
By foHN HAW KINS, Writing Mafter at St. Georges. Church in Soutbowark.

> Cum tur non edas cur brec mea Zoile Carpis, Carpere vel noli noflta, veleda tun. Мшرผ̃よ

2DAMS
244.7

To the Right Worfhipful

Sir PETER D ANIEL, Kt.

$$
A N D
$$

PETER RICH, Efq;
Aldermen of the

LONDON. THOMAS LEE, Efq; A N D
$\mathcal{F} A M E S$ READING, Efq;
Juftices of the Peace for the COUNTY of
S

u

FOHN HAWKINS Humbly Dedie cateth this Treatife of ARITHMFTITK.

$\frac{1+20}{1+20}+16$
,

$$
\cos +\infty
$$

$+2+2+2+2+2$

17 $4+$

TO THE

READER.

Courteous Reader,
T N the year of our Lord 1677 , I publifhed Mr. Cocker's Vulgar Arithmetick; and therein gave an account of the fpeedy publicati. on of his Decimal, Logarithmical and Algebraical Arithmetick; but other extraordinary occurrences intervening, occafioned its not feeing the light before this time :

By the Vulgar part, the Ingenious Learner may be qualified with fo much of that moft neceflary Art of Arithmetick as is fufficient for the management of bufinefs in the greatelt concerns of Trade and Commerce; and for thofe Ingenious Souls, whofe ative fancies lead them to a further forutiny into the ftudy of the Arts Mathematical was this Treatife compofed, which will fairly lead them by the hand, without any other Guide or Company, into the Contemplation of thofe moft fublime feccilations, an inheritance entailed only upon the ingenious, and induftrious fons of Art.

The Method throughout the whole is plain, perficuous, and clear, and I hope will prove fa-

To' the Reader.

tisfâtory to thofe who fhall ferioufly apply therr: felves to the Rules, Precepts and Examples therein contained.

The ufe of Decimals (in the folution of que= ftions Arithmetical, ani fuch Ge metrical as are neceflary in the menfuration of the moft ufual planes and folids) is as plainly laid down as the Author or my felt could poffrbly contrive it, and particularly in all the varieties of Intereft both Simple and Compound, with Tables, and Rules for the Calculation thereof, alcording to the Method of feveral Famous Authors (who have beftowed much pains in the management thereof,) and efpecially of that moft Famous, and no le's laborious Mathematician of our Age and Nation, Mr. Yobn Kerfey, whofe Memory deferves highly to be honoured by all the Profefliors of this Science.

The Genefis or Fabrick of the Logarithms, and their ufe in arithmetick is laid down after a different but more intelligibley manner than hitherto hath been ufed by rther Authors, and 1 hope the fudious Reader will receive that fatisfaction therein whichour Author earnefly aimed at, or himfelf cañ expect.
And as for the Algebraical part I think there is nothingthercin ex preffed that isfuperfuluous, nor any thing omitted that could be thought necerfary to render it/plain, perfpicuous and clear; fo that what other Authors trdating upon this fubject have left intricate, thand difficult to be underftood is here made obvious (by clear demonftration) to the meaneft Capacity ; therefore, Courteous Reader, if thou intendeft to be a proficient in the Mathematicks, begin chearforly, proceed gradually , and with refolution; and the

To the Reader.

the end will crown thy endeavours with fuccers; and be not fa floathfully ftudious as at every difinculty thou meetelt withal to cry out, Ne plus ultra, for pains and diligence will overcome the greateft difficulty: To conclude, That thou mayeft fo read as to underttand, and fo underftand, as to become a proficient, is the hearty defire of him who wifheth thy welfare and the progrefs of Arts.

Fram iny School at St. Geerge's
Church in Southwark,
FOHN HAWKINS. Ottob. 271684°

Anixo guo Anamfiggino Jorammi Lehkeg Lofoxrofebolrii Torgiemgig Im Xonifafu Difohemiemgi Puwinafig febo.

$G I H_{3}$

TT you Lèpeag fo zegfod gone ot youh glahe roughèg im lehugims fre toppodims feheafige you dipp frem ze fre zeffeh azpe fo juws rod I rave glemf nime, amw it ny laimeg freheim nay ze Lhotifazpe fo fre luzpixk I rave ny digr, zuf it mof, if ig mof a foow frims mod imweew I wo gay go.

$$
G I H, I a n
$$

Oxfoz. 301684 ,
roub ruuz pe gebuairf
Jorm Radkingo

The Aavice of a Friend of the Authors to fuch as are defirous to attain to the perfection of timis moft ujeful'AR $T, \& c$.
You that pervfe this curious work, obferve, That he not meanly does of men deferve, Whofe ftudious labour brought it to an end, And'as his Mafter-piece did it commend T. thofe who are defirous to impioy Their time the beft of curious Arts t' enjoy; An Art by which man's fortunes often rais'd, An Art by all that Trade or Traffique prais'd: An Art, or an Aquirement, who fo wants His bufinefs, if (important,) quickly faints; 'Tris what's fo ufeful, that not to be known, Wou'd ruin each mans occupation:
Thereforc let thofe who fain wou'd rife, embrace This, and preferment they have in the chace. Long fince it was invented for our good, Yet till late days, not rightly underftood; And not till now to its perfection brought, Though many ways with tedious trouble fought. In there choice Pages all is to be found That does concern the Subject : thefe do bound The largeft field of true Arithmetick, No numbers wanting that mankind wou'd feek. The curious Artift with a fearching eye, Although turn'd Critick, here no faults can fpy; Or if there any be, they are fo fmall, That nearly the y refemble none at all; For all that have perus'd it, have confeft That of this kind, this much exceeds the reft. 7. A. Teacher of the Mathematicks.

In Commendation of his Friend Mr. FOHN^{2} HAWKINS, uponthe publication of this Treatife.

THE Learned Chymift cant more truly Say He can the unfeen powers of herbs dijplay;
Or by diffolving their external face Bring fubtil Spirits, Sulphurs, Salts in place; Exalt thes intern Energy; fublime From Putrefactive Nunc, Eternal Time: Than you by $A L G E B R A$ and Numbers prove Th' Iqquations true, of all the Orbs above. You by fubtructing add, and do divide The feif fame way by which you multiplyed. From Numbers fmall you mighty Powers make, And from the fame the Ouinteffence you take. By infinites, you finite Ňumbersbind, By things unknown, you unknown things do find. Preportions you find out, and as Exact, As Chymifts you 不quations d'e Extraft. Thus you the Powers of Numbers do unfold, And like them, change baje Metals into Gold. - The Springs unfeen; for no man fully knows From whence the facred fource of Number flows. But my poor Mite you need not, nor my praile, To you my lines can't lafing Trophies raife. Nor need your Numbers my unlearned defence, Numerick Truth in its abftraited Senfe, Derives its Spring from an Eternal Font, Without beginning endlefs in Accomnt.
The Univerfal World it does comprife,
It no beginning had, nor ever dies.
All things i^{\prime} th ${ }^{5}$ Sphear of Sacred Numbers ftand, The mojt Immenfe, and the minutcoff fand.

Heaven, Eath, the Seas, thrir furniture Jubmit, And their num'rous off-/pring flows with it: It meafures place and time; in hhades of night It fees no darknefs, but Inuftrious light. Both Life and Death to it the Same appear, And Subjects are within its mighty Sphear. Thus my affections (friend) make me intrude, Though with unpoli/h'd lines, and numbers rude: On fuch a Theam, Who could forbear to fing? To Sacred Ftre, who fhould not Incenfe bring? Infpired by thy Great ART; my fublime Mufe Th' etcrnal Truth of Numbers ghall diffuse: Whilft I applaud the object of thy Per, The unkwown depths of Algebra and Men: Here fox thy Pillars; in this $A R T$ afpire To light oibr Tapers woith Coeleftial fure. In the fame Zeal proceed: thy numbers fot With feaking Symbols to the meaneft Wit.
:3 th. OCtob.
1684.

Yours and Truths Servant, WILLIAM SALMON.

Med. Profeff.

To the Ingenious Author of theje Decimals, and Algebra, the Famous Arutbmeticias"; and his fingular nood Friend by choice, EDWARD COCKER.

WIth adimirati n fruck I herc Thot'd paufe, Not daring truft my Mufe in your applaufe, Whofe fame already has fo loud been fung By the Divineft of the Sacred Thirorig:
Did not your Rich and Matchlefs Airt infire My drowfie foul with a poetick fire ;
For who in filence can remain, that views A Subject worthy fuch as can infure
A moving Rapture of the firf degree Into a Breaft, hefore from Phoebos free : So great a Mafter-piece as this, mankind In all their tedious fearch could never find. Arithmetick's here : to perfection brought, Here's to be found what never yet was taught : The curious work fo to the Life is drawn, That all befides are like the Nornings dawn; Compar'd to day's clear face when Sol fits high In his Meridian Throne in vain fome try To reach your Arts Perfections, bat the more Their Genius flags when to your hights they'd foar ; And at the beft their labours do appear Foils to make your Diamonds fine more clear: This Book of yours bears record of your fame, And to all Ages will transfer your Name. For why, your boundlefs Wit, and curious Pen Do ftill youswrite the miracle of Men.

R. N. Philo-Math,

In Memory of the deceafed Author, Mro FD. WARD COCNER: And in praife of this (FORbumal) and his former works.

WHO erre (of oid) to the Common good appos Their minds or means, birt they mere dcifi'd? Andchicfy thofe, who new Inventions found; Bucchns for Wine: Ceses aho Till d the Ground: Whofe Fames and Memoreis with ezer laft Tilt the late Evening of the World be paf.

Now this our Author by bis fluent Pen In all Fair-Writing did exceed moft Men: And though in Knotting, Gething did do well, Cocker in That, did Gething far excell: And not with Pen alone, on Paper He Could Write and Knot, but with the Graver 100 On Copper plates. He did all Men out-do.

What curious Copy-Books and Sculptures are Extant in Print of His, which may compare With any in the World, and no onc Hand Had Pen and Graver both at fuch Command ? But leaving now his Writing, take a viero Of his Arithmetick, whofe Books are Two: The one of Plain (or Vulgar Numbers) mads Fit for Young Scholars, and for Mein of Trade.

Thisother's in Thice parts, more General; 1. Of Artificial Numbers DECIMAL : II. The fecond's Numbers LOG ARIT HMIC AL : III. The third by Symbols ALG EBRAIC AL, All' fraught mith Queftions Enigmatical, Of all Arithmeticks the GENERAL. Coinfider now what Pains the Author took, And Praife Hirm asthom benefits by bis Book. But Since the Author's dead, I'll not defer To praife ard thank th' ingenious Editor.

Ad amicum fsвm dilectifimum Dominum Joannem Hawkins de opere boc mirâ cum ernditione, tumz indulfriâ Corrceto ơ ReviJo.

$$
{ }^{\prime} \text { Eqwulastкò\%。 }
$$

Si mernit Laurum, qui Lauro fcribere digna Novit, \& ad fophiam pandere callet iter. Quid meruit qui non tantum novit, fed \& iple; Preftitit ingenio, vix facienda, fuo?
Laura conveniunt non tantnm ferta capilis,
Aurea fed potiùs, docte, corona tuis. 'Aurum vos illi divites concedite, Laurum

Dent alii, nemo fe meruiffe neget.
Quod fi nec Lauri noftro tribuetis honorem
Autori, planè quem merniffe liquet,
'Auri nec fummam dabitis quam quifor fatetur
Ingenii meritum non mirus efle fui.
Non Mracenates eritis, non effe parronos
Poffe putat, quorum tam fit avare manus; Sed potius (veniam petimus, dabimufq; viciffim) Nominat ingratos vos (feio cur) afinos.

Fornnes Robinfon.

A Catalogue of the Chapters contained in the Decimal Part.

A Catalogue of the Chapters

 contained in the Logarithmical Part:Chap. Page.

$1: 205$

A Catalogue of Chapters.

Divifion by the Logarithms
Chap. Fag. Aldo to Extraik the Sure, Cube, Biquadrate,\&c. Roots of any Numbers by the Logarithms ——— of the use of Logarithms in Comparative Arithm:? tick - - - - - of Anatocifm or Compound Interelf, wherein is hewed how by the Logarithms to answer all questions concerning the Increase, or prefent worth of any fum of Money or Annuity for any term of years, or at any Rate of Interest, sci: .-

A Catalogue of the Chapters

 contained in the AlgebraickPart.

Concerning the construction of Collick Powers, and the way of expreffing them -by Letters; rageother with the signification of all fuck Characters or marks as are used in the enjuing-Treatife-..) Addition of: Algebraick Integersubtration of Algebraick IntegersMultiplication in Algebraick Integers-...
pivifion in Algebraick Integers--
Doctrine of Algebraical Fractions, and first of Divifion in Algebraick Integers--
be Doarine of Algebraical Fractions, and first of
Reduction
f Addition and Subtraction of AlgetraicalFractions. multiplication and Divifion of AlgebraicalFrations. 6. Pule of Three in Algebraick Quantities
Q Convection of Some eafie Queftions mbereins the Rules?
 To Cion of Equations Analogies into Equations, and Equations? into Arnlogiss Ais into Equations, and Equations $\}$

Chap. Pay.

A Catalogue of Chapters.

Advertifements:

MVltum in parvo; or, the Pen's Gallantry. A Copy Book, Invented, Written and Engraven by Edwoard Cacker.

The Country Survey Book ; or, Land Meeter's Vade Mecum. Wherein the principles and practical rules for furveying Land are briefly and plainly delivered, that any Perfon underitanding vulgar Arithmetick, may, by this Treatife alone, and a few cheap Inftruments, meafure a parcel of Land; and with Judgment and Expedition, plot it and give up the content thereof. With an Appendix and Copper Plates. By Adam Martingdale. The third Edition, publifhed by Mr. Fohn Collins. Both Printed for G. Sapobridge, at the Tbree Fioner de Luces in Lit. tle-Britain.

NOTATION
 0 F

C H A P.

1. 1 H A T Arithmetick, and the Subject thercof, (viz. Number) is, I have largely defined in the Firf Chapter of my Vulgar \& rithmetick, in which Treatife I have applyed the fpeices of Niumeration to the various Rules of Vulgar Arithmerich, both in Intreners; and Frations for the folution of various Practical Queftions folvable thereby, by fuch plain and eafie Rules as many years experience in the practice thereof had made me capable of, and which I hope might render it Intelligible, and ferviceable to the meaneft Capaciry.

And in this I thall thew you the ule of Decim? Fractions in all the Rules of Arithmetick; But Erincipally in the folving Quertions of latered or in Reverfion, and likewife their ufe in the calculating of Tables for that purpofe, ecc.
II. In Decimal Fractions we fuppore the unite or integer to be divided into ten equal parts, and each of thofe tenth parts are again divided into ten other equal parts, fo that then the Unit or Integer will be divided into a 100 equal parts, and then again each of thofe hundred parts is fuppofed to be divided into to other equal parts, fo that then the Unit or Integer, will be divided into I 000 equal parts, $宀 \sim$. And fo by Decimating the firft and fubdecimating the fecond we proceed ad infinitum.
III. And hence it is evident that a Decimal FraCtion is always either fo many tenths, or it is fo

 which compound Decimal Fraction being Reduced, as is taught in the 6 Rule of the 19 Chapter of my Vulgar Arithmetick, will give its equivaIent fimple Decimal Fraction; As for Example, Tis of $\frac{\frac{1}{0}}{5}$ of $\tau \frac{1}{0}$ is .00 .8 that is $\frac{80}{2} \frac{8}{0}$ and hence it follows that always a Decimal Fraction hath for its Denominator an Unit with a Cypher, or elfe Cyphers annexed to it on the right hand, viz. either 10 , or 100 , or 1000 , or 10000 , or 100000 , \&ic. ad infinitum.
IV. In Decimal Frations the Denominator is never exprefs'd, but may at firt fight be underftood by the number of places contained in the Numerator; the Denominator being always an unite with as many Cyphers annexed to it, as ther: are real places in the Numerator; as 8 being a Decimal is $\frac{\pi}{\sigma}$, viz. its Denominator is an

Chap. Io Decimal Fractions.

 unite with one Cypher annexed to it, and $-\frac{5}{x} \frac{3}{6}$ is thus written .85 and $\frac{15}{7} \frac{0}{\circ} \sigma$ thus written $1 \sigma_{+}$; But if the Numerator of a Decimal Fraction confifteth not of fo many places as there are Cyphers in the Denominator, there foch defect is fupplyed by prefixing fo many Cyphers before the Nu merator, (viz.) on the left hand as there are ploce deficient; as for Example, $\frac{8}{00}$ if it were only feet down thus, (.8) then it would be but in, but by prefixing a Cypher before it thus (.08) it is $\frac{8}{800}$ and $\frac{8}{7} 000$ is thus exprefied (.008) and or.
V. A Decimal Fraction being written without its Denominator; is known from a whole Namben, by having a point or prick prefixed before it thus;. .25 is. $\mathrm{T}^{\frac{25}{0}}$ but if it had been expreffed without a point thus (25) it would have figrified fo many unites: The fame is to be observed in mist Numbers, for $29 \frac{15}{100}$ being written Decimall, will stand thus, (29.16) and 48 흔ㄷㅇ thus, (48.025) and $4850 \frac{28}{2} 0$ thus (48.0028) and the, like of any others.

But rome Authors diftinguifh Decimals from whole Numbers', by prefixnig a virgule, or perpendicular line before the Decimal, (whether it be alone, or joyned with a whole Number) thus, 18 is $\frac{3}{5} 5$, and 1025 is $5^{30} 00$, and $29\left[16\right.$ is $29 \frac{35}{100}$, orc. Others exprefs the fame Deciaml Fraction and mist numbers thus, (viz.) 18 Io is 29 : 1^{16}, orc. Others with a point over the place of lints in the whole number; and then the former $\mathrm{Fr}_{\boldsymbol{x}}$ Ctions and mist number will be thus written wiz, $08,0025,2916$ the like of others: And forme Authors again put points over all the plat-

S, C25, 2916, 48025, © c. but being written according to the firft direction, I conceive they may be moit fit for Calculation.
VI. As whole Numbers do increare their value in a decuple proportion, by annexing a Cypher or Figure to the place of Units, fo by prefixing a Cypher or Figure on the left hand of a Decim.l, fo as actually to take place in the Decimal, its value is decreafed in a fubdecuple proportion, fo the Number 4, by annexing a Figure or Cy pher to it ; it is increafed from 4 to 40 , co. 'But if 4 had been a decimal, viz. 4 . and if there had been o prefixed before it on the left hand, its value had been decreafed from \bar{r}^{4} to \bar{i}_{100}^{4} or 04 , and by prefixing 5 , it is .54 ; and fill by prefixing more Figures or Cyphers, its value will decreafe in the fame Ratio ad infinitum.
VII. Anl as Cyphers being prefixed before a whole Number, (viz.) on the left hand thereof) do neither increafe or decreafe its value; (for 4 and 04, and 004 being Integers, do ftill retain one and the fame value;) So a Decimal, by having a Cypher, or Cyphers annexed to the Right hand thereof, have noi their value either Increafed, or Deccafed,

Whence it is evident, that all Decimal Fractions may be Reduced to an equal Denomiation at firft light; for fuppole. I5, and .008 , and .73465 were Decimals given to be Reduced to one denomination; In this cafe I confider, that the denominatior for the given decimal confifting of the moft places in 100000 , and . is and .008 whole Denominators are 100 and 1000 may be rertuced to decimals of the fame value, having

Chap. I.
likewife 100000 for their Denominator, by annexing fo many Cyphers on the Right hand of the Numerators, as (according to the 4 Definition foregoing) may make cach of them to have, 100000 for a Deniominator, fo . 15 will be .15000 , and .068 will be .06800 .
VIII. As the order of places in whole Numbers is from the right hand to the left, fo the order of places in a Decimal Fraction is from the leff hand to the right, the firft place being accounted tenth parts of an Unity, and by forme it is called primes, the fecond place is fo many hun. dredth parts of unity, or it is called feconis, the third place is fo many thoufandth parts of mity, or it is called thirds, coc. which will more fully ap. pear by the following Table.

> A Table of Notation of Integers and Decimals. -satyun Jo

> Kyun jo

In the foregoing Table is given a mixt Number of Integers and Decimals; the Integers being feparated from the Decimals by a point, or prick, according to the fifth definition beforegoing ; fa that 384375864 fignify fo many Integers or Unites, and 823056345 lignifie fo many parts of Unity, the Figure 8 in the firft place being fo many tenth parts of Unity; and the next Figure, viz: the Figure 2 is fo many hundredth parts of unity, cic.

So in the Decimal Fraction 4.478 , the Figure 4 poffeflith the firft place, and is. 4 primes, or four tenth parts of an unite, and 3 the fecond figure is called 3 feconds, or 3 hundredth parts of an unite, and feven the third Figure is called feven thirds, or feven thoulandth parts of an unite, and 8 the fourth figure is called eight fourths, or eight ten thoulandech parts of an u ite, occ.

Whence it appeareth that every place in a Decimal Fraction being confidered a part by it felf, without any refpect to the ref, will of it felf mike a particular Decimal Fraction; fo in the 11 It mentioned Decimal Fraction, viz. 4378 , each place being confidered by it felf, will make there following Decimal Fractions, viz. . $4 . .03$.007 and .0008 , or $\frac{75}{5}$, $\frac{3}{150}, \frac{7}{1000}$, and $\frac{8}{10000}$; which Fractions being added together, according to the Rules of Addition of Decimals hereafter delivered in the third Chapter, their fum will be 4378 , which is the given Decimal of which they are compofed.
IX. A Decimal Fraction is expreffed by fome Au rhors, by Primes, Seconds, Thirds, Fourths, ©fc: As if this Dccimal. 748 were to be expreffed, they fay it is feven primes, four feconds, and eight thirds:

Chap. 2.
Others there are which express it thus, viz. fe. ven hundred forty eight thirds, but the molt approved way to exprefs or read a decimal Fraction, is according to the method of reading a vulgar Fraction, and to give it the Denominaton of the Figure in the lat place of the Decimale, and then the Decimal .748 will be thus read viz, fever hundred forty eight thoufandths, and .036 is thus read, thirty fix thoufandths, and fo of any other. This Chapter being well underflood, all the paris of Numeration, viz. Addition, Subftraction, Multiplication, and Division of Decimals will prove very effie.

C H A P. II.

Reduction of Decimals.

To Reduce a given Vulgar FraaCtion to a Decimal, that foal. be equivalent thereto.

1. WHen in any Arithmetical Operation your work is fo mingled with vulgar Fractions, as to render it tedious, or diffscult ; the bet remedy you can have, is to reduce your vulgar Fraction or Fractions into a Decimal

$$
\mathrm{B}_{4}
$$

or Decimals, which having done the work, wil be as cafie in every refpect, as if you had to d, with nothing but whole Numbers, which yoi may effect by the following Proportion, viz. A the Denominator of the given vulgar Eraction, to its Numerator.

So is an Unite, with 10 many Cyphers as you intend your Decimal fhall have places, to the Decimal required.

So if the Fraction to be reduced were $\frac{3}{4}$, and you would reduce it to a decimal confifting of 4 places, I fay, the proportion is

As 4 (the Denominator of the given Fraction.) Is to 3 (its Numerator.)
So is 10000 (the denominator of the decimal required.)

To. 7500 (the Decimal required.)
So that I conclude $\frac{3}{4}$ will be reduced to its equivalent Decimal $\cdot 7500$, 0.1 .75 ; for Cyphers on the right hand of a decimal do neither increafe nor diminifh its value, by the feventh defimition of the firft Chapter.

Now accurding to the forefaid proportion, it is evident, that if to the Numerator of any Fraction given to be reduced to a decimal, you annex as many Cyphers as you intend its equivalent decimal fall have places, and then divide it by its denominator, the Quote will be the decimal required.

So let there (again) be given ${ }_{4}^{3}$ to be reduced (as before) to a decimal of 4 places, in order thereuntoI annex 4 Cyphers to the Numerator and it makes 30000 , which I divide by the 3_{2} nominator and it Quotes 7 divide by the de. the decimal equivalent .7500 , or 75 , for

Note that all vulgar to the vulgar Fraction $\frac{3}{4}$.
Note that all vulgar Fractions, cannot be redu-

Chap. 2

ced to decimals, having exactly the fame value, although they may come infinitely near, and the more places that you make your decimal to confift of, fo much the neareedoth it come to the truth, but 4 or 5 places is exact enough for moft operations $;$ fo if it be required to reduce the yulgar Fraction to to decimak of 4 places, it will be found to be .8 I . which is not exaet, but yet it wanteth not :oofor part of an unit of the truth, and if you make ic $.8 \times 82$ fit will be fomewhat more thar the truth.

Again if you annex's Cyphers to the Numerator, and fo make the Decimal confift of 5 places, it will then be 81818 , yet it will want of the truth, but not fo much as when it had bit 4 places, for now it will not want $\frac{1000 \% \text { part of }}{}$ an unite of the exact truth, and if you make it to be .81819 , it will then exceed the truth. Thus by increafing the number of places in the Decimal, you may come infinitely near the truth, bue never find a decimal exactly equivalent in many cares.

Noteallo, that if after you have Reduced your vulgar Fraction to a decimal, according to the foregoing Rule, there be not as many places in the decimal; as you annexed Cyphers to the Numerator of the given vulgar Fraction, then you are to fupply fiuch defeet by prefixing fo many Cy phers on the left band of the fignificant Figures; as there are places wanting, according to the fourth Rule of the Firft Chapter.

So if $\frac{1 \frac{1}{2}+\mathrm{s}}{}$ were given to be reduced to a decimal of any number of places, as fuppofe σ; in order to it, I annex σ Cyphers to the Numerator II, and it makes iro00000, for a dividend, which divided by 94.1 , it quotes $116892 ;$ which places; wherefore to make it compleat, I prefix a Cypher before it, and it makes . 011689 for the true decimal Required; and if it had been required to confift of four places, then I Iannex 4 Cy phers to the Numerator, yet after diviiion is ended, there will be but 3 places in the Quotient, viz. In, therefore to make it confift of 4 places, I prefix a Cypher before it, and it makes .or 16 for the decimal fought. Again let there be given $\frac{53}{564}$, to be reduced to a decimal of (fuppofe) 5 placesit will be found to be .00407 ; and

To Reduce the known parts of Money,

 Weight, Meafure, Time, ©oc. to Decimal Fractions.II. Hence it is evident that the known parts of Money, Weight, Meafure, Time, and Motion, ơr. may be reduced to decimal Fractions of the fame value, or infinitely near it, for if (in Money) a Pound Sterling be an Integer, whatioever is lefs than a Pound, is either a part or parts of the fame; and when you know what part or parts thereof it is, you may reduce it to a decimal of the fame value; by the firft Rule of this Chapter; fo if you would know what is the decimal of a Pound Sterling equal to 7 Shillings; confider that 7 s. is $\frac{3}{2} \circ$ of a Pound, and by the faid Rule, the decimal anfwering thereto is $35 l$. And if I would know the decimal equal to 3 d . 1 coniider that 3 d. is $\frac{1}{2}_{\frac{3}{2}}$ of $2^{\frac{2}{3}}$ of a Pound, of $2 \frac{30}{40}$ of a Pound, and the decimal equivalent thereto,

Chap. 2:
will be found (by the faid Ruley to be . 0125 ; likewife if there were given 7 s .3 d . to find the decimal equal thereunto: Firf, I confidet, that $7 \mathrm{s}$.3 d is 87 pence, which is $\frac{8}{2}$ 利o of a Pound, and the decimal equal thereto will be found to be .36251.

In like manner if it were required to find the decimal of a pound Troy weight equivalent to 6 oz .- I 2 pm . I firft find that 6 oz . - 12 pm . make 132 ppots. which is $\frac{1}{2} \frac{12}{2}$ of a pound Troy weight, and the decimal equivalent thereunto, will be found to be .55 by the faid firft Rule of this Chapter. The like is to be underfood in the Reducing of any of the known parts of Coyn, Weight, Meafure, ơc into Decimals.

> To find the value of a Decimal Fraition, in the known parts of Money, 'Weight, Meafure, ơc.
III. When you would find the value of a decimal Fraction in the known parts of Coyn, Weight, Meafure, Time, Motion, or the like, obferve the following

RULE

Multiply the given Decimal by the number of parts in the next Inferiour Denomination that are equal to an Integer in the fame denomination with the given decimal, and fee how many places are in the Product, more than were in the faid given decimal ; and cut fo many off from the left hand with a dafh of your Pen, and tione Fi-

Figures fo cut off, are the value of the faid decimal in the next inferior Denomination to it, and the Figures (if there be any) Remaining are the decinal- of an Integer in the faid Denomination, and may be Reduced as low as you pleare by the fame Rule; as in the following Example.
Let it be required to find the value of this decimal of a pound fterling, iiz. 7635.

Firft, I Multiply the givei decimal by 20 , and the Product is 152700 which is, of 6 places, and the given decimal is but of 4 places, wherefore I cut. off 2 Figures at the left hand, viz. 'is. which is fo many fhillings, now when the faid
763515 is cut off from the relt, there are we yet remaining 2700 , which I multiply 1512700 pence, and the product is 32400 , which 12 confinting of 5 places, 1 cut off one
\qquad Figure, (viz. 3) from the left hand, 312400 which is fo many Pence; fo that I conclude the value of the given Decimal to be $15 \% .-03 d$, and the remaining Figures, viz. 2400 are the decimal parts of a Peny, which becavfe they do not amount to the value of a Farthing, I do not reduce any lower, fee the work in. the Margent.

So if 6847%, be given, and it be required to find its value, if you work as is before direCted, you will find it to be 13 s. -08 d. - 1.312 guarsers. And 374%. being fo reduced, you will find it ita make 7s.-0y d. 3 . 040 quarters.

In like manner, if it were required to reduce this decimal of a pound Troy weight, viz: $.84576 \%$ into known parts ; Firf, I multiply it by 12 , and it produceth 1014912 from which I cut off the two firt Figures to the left hand,
(viz. so) for Ounces, and the remaining Eigures, which are 4912 do 1 multiply by 20 , and the Product is 29824 , from which I cat off the firft Figure, viz. 2. which is two peny weight and 9824.0 remaineth, which I mul- iol 14912 tiply by 24 , and the Product is 2357760 , which is 23.57760 grains; fo that 1 conclude the value of the given Decimal $.8457^{6}$ pound Troy weight to be $100 \mathrm{z} .-02 \mathrm{pm} .-23 \mathrm{gr}$. - 57760 ; the fame is to be obferved
298240
$-\quad 24$
$-\quad-\quad$ 392960 196480 in finding the value of any other decimal whatfoever, whether of Coin, Weight, Meafure, Time, or Mo- $23 / 57760$ tion.

I might here have added Tables of Reduction, fhewing the Decimal Fractions of any of the parts of Money, Weight, orc. as divers Authors have already done; but becaufe they are though ufeful, feldom made ufe of, and partly by reafon of the eare in finding the equivalent decimal of any Fraction whatfoever, according to the Rules herein delivered I fall forbéar it.
IV. There is a briefer way of difcovering the value of a decimal of a Pound ferling, riz. The Figure which ftandeth in the firft place of the decimal, (viz. in the place of Primes) being doubled, gives you the number of Millings; then let the figure poffefling the fecond place of the decimal, viz. the place of feconds) be efteerned fo titany tens, and the Figure in the third place account fo many units, which faid tens and units being accounted one entire number, and made lefs by onę, will be fo many 'farthinges, which faid

14 - Reduction of Decimats, \&c. Chap. 2. Thillings and farthings are the value of the given decimal; but if the Figure in the fecond place be 5 , or elfe exceed 5 , then reckon one fhilling for that, and for the excefs above 5 , efteem every unite 10, as beforé.

Example 1 .

What is the value of $736 \mathrm{~s} l$?
The Figure 7 (ftanding in the place of primes) being doubled, gives I 4 , which is fo many thile lings, and the Figure in the fecond place, (which is 3) being accounted fo many tens is 30 , and the Figure in the third place (viz. 6,) being efteemed unites, and annexed to the tens beforefaid, makes 36 , which being leffened by I , makes 35 farthings, which is $8 \mathrm{~d} . \frac{3}{4}$, fo is $14 \mathrm{~s} .-08 \mathrm{~d} . \frac{3}{4}$ the value of the given Decimal .73651 .

Example 2.

What is the value of $.8896 l$?
The firft Figure (8) being doubled, makes 16 ; and becaufe the next Figure is abore 5, I add I to 10 , which makes 17 fhillings : Then the excefs of the fecond Figure above 5 being 3, I efteem it fo many tens, and the Figure (9) in the third place being unites, makes 39 ; which leffened by 1 , makes, 38 Farthings, which is 9 d. $\frac{.}{2}$, fo is $17 \mathrm{~s} .-9 \mathrm{~d} . \frac{1}{2}$, the value of the given decimal .8896. And after the fame manner may the value of any decime', of a Pousd Sterling, be difcovered at firt figlt: without lofs of a farthing.

Chap. 3:

CHAP: II.

Addition of Decimals.

1.7 HE work of Addition of Decimal Fradions is in every refpeat the very fame with that of whole Numbers of one Denomination in common Arithmetick, refpect being had to the right ordering or placing of the Decimals requio red to be added, which that you may underftand; oblerve this

General Ruile.
II. When two or more decimals are given to be added together, you are fo to difpofe of them one under the other, as that all the Figures on the left hand may ftand in order one under the other, that is to fay, primes under primes, or tenth under tenths, (whether they be Cyphers or fignificant Figures) and feconds or hundredths, under feconds or hundredths, foc. obferving the fame order if they confift fome of them of never fo many places, and others of never fo few.

Example.

Let there be given thefe following Decimals to be added together, viz. .00746 , and .0832 , and .62 and $.8:$ Firf, 1 difpofe of them in order to the work, as you fee in the .00746 Margent, where you fee the lowermost .0832 Figure 8 , which is primes, is placed un- .62 $\operatorname{der} \sigma, \circ$ and 0 , which are likewife . 8 primes, and the Figure 2 in σ_{2} being in
in the place of feconds is placed under 8 and 0 which are likevvife feconds, or hundredths, and the Figure 3 in the place of thiirds, or thoufandths is placed under 7, which is alfo fo many thirds, orc. The fame order is to be obferved in placing of the defimals of mixt numbers to be added, as fuppofe there were given there following mixt numbers to be added together, viz. 168.3572, and 36.864 , and 7.42 , and .6: Now in order to their, finding out their Sum, I difpofe of them in order one under the other as followeth. Where you may obferve that the whole Numbers themfelves, or integral parts of the given mixt Numbers are placed one under the other, as is directed. in Addition of whole Numbers, without any refpect at all had to the decimals annexed to them, and the decimals are placed under each other, according to the directions given in the laft Rule; without any refpect had to the Integers, properly belonging to theni.

$$
\begin{gathered}
168.3572 \\
36.86_{4} \\
7.42
\end{gathered}
$$

III. Having placed your given Decimals in or der, according to this Rule, draw a line under them, as in Addition of whole Numbers; under which line you are to place their Sum; Then proceed in your work in every refpeč, as in Addition of Integers, beginning at the right hand, and fo proceeding through the Decimals without any regard to them as Decimals, but as if they were all whole Numbers: As for Example, let us take the Decimals given in the firft example of the laft the line, becaufe there is no other figure or number to add to it, then I proceed to the next, faying 2 and 4 makes 6 , which I alfo fet down in order under the line, then I .00746 fay 3 and 7 makes 10 , fo 1 fet down 0 , .0832 and carry i to the next, faying i that .62 I carry, and 2 , and 8 , make 11 , for .8 which I fet down 1 , and carry i to the next, faying, I that I carry and 8, 1.51066 and 6 , make 15 , which I put in its place under the line, becaufe it is the laft; and becaufe the figure 5 ftandeth under the place of primes, I put a point before it, that is to fay between I and 5 , and the work is finiffied ; the number I being an integer, and the reft a decimal, whereby I find the fum to be 1.51066 ; that is 1 integer, and .51066 parts of an integer.

After the fame manner if the mixt numbers in the fecond example of the foregoing Rule were given to be added, their fum will be found to be 253.2412 , that is 213 integers and .2412 decimal parts of an integer, as you may fee by the fol:lowing work.

Other Examples for the Learners practice may be fuch as follow.

42.608	4.368	748
16.07	7.573	36.72
26.009	.724	9.564
42.8	.56	.7358

C HA P. IV.

Subftraction of Decimal Fractions.

'WHen two Decimal Fractions are givecn , and their difference or excess is required, you must place them (in order to the work) as you were taught in the foregoing Chapter of Addition, and the operation is the very fame in every reflect as in Subtraction of whole Numbers of one Denomination, beginning at the right hand as in the following Example.

Let it be required to fubftract the Decimal .634 from the Decimal .728 ; in order to the work I put them one under the other, viz. . 728 the biggeft uppermoft and take each fir- . 634 gre the in lowermoft out of its Correlpondent Figure in the uppermoft, putting .094 their respective differences in order below the line, and I find, that when I have finifhed the operation) the Remainder or difference to be . 094 as by the work appeareth.

Chap. 4. Decimal Fractions.
In like manner if the nixt Number 42.347 were given to be fubstracted from the mixt Number 76.23. I place them in 76.123 the fame order as is direfted in Additi- 42.347 on beforegoing, only with this Cantion be fure to place the biggef upper - 33776 moft, then proceed to take each figure in the lowermoft out of its correfjondent figure in the uppermoft, as if they were whole numbers, and having finifhed the work, the Remainder, or difference will be found to be 33.776 as you fee it done in the Margent.

When the decimal given to be fubftracted do not confift of an equal Number of places, fuch defect muft be fupplyed by anncxing Cyplers, or fuppoling as many Cyphers to be annexed (as are. wanting) on the right hand, and then the work will be as in the former Examples.

Example.

Let it be required to fubftract .037486 from $\therefore 84$; Now becaufe 84 hath in it but 2 places, and the other bath 6 , I .840000 fupply that defect by annexing 4 Cy- .037+80́ phers thereto as in the Margent, and the work being finifhed, I find the Re- .802514 mainder or difference to be . 802514.0

The fame is to be obferved when a decima! Fraction or mixt Number is given to be Subitracted from a whole number, as 64.002 fuppofe 15486 were given to be fub- 15.486 tracted from σ_{4}, becaufe there is no decinal annexed to 64 , you are to fup $43.5!4$ ply the decimal places with Cypbers, and then proceed in the work as belore is breent, and having linimed the work of Subftraction, the Remainder will be found to be 48.514 as by the work in the Margent appeareth.

Other Examples for Practice may be thefe following.

From	.3479	84.6	10
Subftract	.2784	15.0752	0.2358
Remains	.0695	69.5248	9.7642

C H A P. V.

Multiplication of Decimal Fractions.

1. N Multiplication of Decimals; whether both the Factors are decimal Fractions, or whether they be mixt Numbers, or if the one be a decimal Fraction, and the other a whole or mixt Nurnber the Multiplyer is to be placed under the Multiplicand in the very fame manner as in multiplication of whole Numbers, and when they are fo placed, the operation is the fame in every refpect, as in Multiplication of whole Numbers; and when you have added the feveral particular products together, as is ufual in whole Numbers the value of the product is to be found out by dhis

General Rule.

Look how many Decimal places are in both the Factors, (viz. the Multiplicand ant Multiplier) fo many decimal places mut be in the produet.

Wherefore cut off fo many Figures from the right hand of the Product for decimals, and the figure or figures remaining on the left hand (if there be any) are Integers, as in the following Example.

Let it be required to multiply 34.82 by 7.25 it matters not which you make the Multiplicand, or the Multiplyer, but I take 7.26 for the Multiplyer, because it hath feweft places, 9 and put it in order under 34.82, as if they were both whole numbers, and having finifhed the work of Multiplication I find the Product to be 252.7932 as you may fee by the following work.

34.82
7.26 20892 6964 24374
252.7932

Then to find the value of the Product, I look how many decimal places are in (both) the Maul. tiplicand and Multiplyer, and I find 4, wherefore I mark the 4 firft places to the right hand for decimals, by putting a point between them and the other figures on the left hand, and then the Product will appear to be really
252.7932 that is 252 integers, and .7932 decimal parts of an integer.

A fecond example may be of a mixt Number given to be multiplyed by a decimal fraction; as thus, let it be required to Multiply $38.5746_{\text {; }}$ by .00463 ; I prepare the given numbers for operation as is before directed, and having finifhed the work 1 find the Product to amount to 178600398 . Then to find the true value of the product I confider the number. of decimal places, in both the Faztors, which I find to he 9, viz. 4 in the Multiplicand and 5 in the Multiplyer, therefore I mark out: nine places towards the right hand of the product of a decimal fraction, which indeed is the whole preduct, and theref re I conclude the true value of the product to be .178600398 , as by the following operation appeareth, viz.

$$
\begin{array}{r}
\begin{array}{r}
38.5746 \\
.00463
\end{array} \\
\hline \begin{array}{r}
1157238 \\
2314476 \\
1542984
\end{array} \\
\hline .178600398
\end{array}
$$

A Third Example fhall be of 2 decimal Fractions, the one being given to be multiplyed by the other, as, let there be given . 63478 to be Multiplyed by .8264 , having difpofed of the given numbers according to order, and finifhed the work of Multiplication as is before directed, I find the Product to amount to 524582192 , which being done, to find the true value thereof, I confider that there are 9 decimal places in both the Factors,

Factors, viz. 5 in the Multiplicand and 4 in the Multiplyer; wherefore Incte out 9 places in the product for a decimal Fraction, and fo I find the true value of the Product to be .524582192 , as by the following operation appeareth.

$$
\begin{array}{r}
.63478 \\
.8264 \\
\hline 253912 \\
380868 \\
126956 \\
507824 \\
\hline .524582192
\end{array}
$$

The like is to be underftood in any of the like Cafes whatfoever.
II. If it fo happen (as oftentimes it may) that after your Multiplication is finifhed, the figures in the product do not confift of fo many placesas there are decimal figures in the Multiplicand and Multiplyer, fuch defect mufe be fupplied by prefixing as many Cyphers before it towards the lefk hand, as it wanteth places, and then mark fuct: product with the faid prefixed Cyphers, for a decimal Fraction and the true produt required; as in the following Example.

Let it be required to Multiply 0475 by .0642 , after the Multiplication is finifhed, 1 find the product to be 305692 , confifting but of 6 places, but the number of decimal places in the Multiplicand and Multiplyer is 8, wherefore to make the product to confift of 8 places, 1 prefix 2 Cyphers before it, and then the true produet will be .00305592 ; the work followeth.

24 Multiplication of Decimals,\&c. Chap. s:

.0476
.0642
$-\quad 952$
1904
2856
.00305592

In like manner if .376523 were given to be Multiplyed by . 346 you will find the product to be 506799958 confifting of 9 places, but there are so Decimal places in both the given Factors; wherefore the Product muft be increafed to ro places by prefixing a Cypher which will make it $: 0506799958$, as by the following work.

$$
\begin{array}{r}
.376523 \\
.1346 \\
\hline \begin{array}{c}
2259138 \\
1506092 \\
1129569 \\
376523
\end{array} \\
\hline .9506799958
\end{array}
$$

By this time I doubt not but the diligent Lear: ner is well acquainted with Multiplication of Decimal Fractions, the work being as plain and eafre as in whole Nnmbers; The next we come to is Divifion.

CHAP。

C H A R. Vi.

Divifion of Decimal Fractions.

HAving gone through Addition, Subftraction; and Multiplication, (The operation being (as you fee) in every refpect the very fame as in whole Numbers) we come now to Divifion; and although in Decimals, (as well as in whole Numbers) Divifion may feem fomewhat difficult to the young Practitioner, yet we fhall endeavour to sender it as plain and eafie as poffible may be.

1. The operation in divifion of decimals is in every refpedt the fame with that of whole numbers, therefore the difficulty in divilion of Decimals lieth not in the operation, but in finding out the value of the Quotient after the work of Divifion is ended; a general Rule for finding of which thall be given by and by.
II. It is neceffary many times to annex a Cypher or Cyphers to the dizidend; whither it be a whole Number, or a mixt Number, or a Decimal FraCtion, for many times the divifor, confifteth of more places than the dividend, and in that cafe there muft be a competent Number of Cyphers annexed to the Dividend, as, fuppore it were required to divide 73.564 by 46.24897 , here your cannot conveniently procced in the work till you have annexed Cyphers to the dividend, to increafe the number of places in the decimal part thereof, and you may annex as many as you pleare,
for by the 7 Rule of the firlt Chapter, Cyphers annexed to a Decimal Fraction do neither Augment nor diminifh its value.
III. When a queftion to be wrought by Divifion of decimals is propofed, confider whether there are as many decimal figures in the dividend as there are in the divifor, if there be any wanting, make them full as many, or rather more by annexing Cyphers thereto, according to the Rule foregoing, but in fome cafes there muft of neceffity be more, for when there is an equal number of decimal places in the dividend, and in the divifor, and a divifion can be made, then the Quotient will infallibly be a whole number without any Fraction, except what is in the Remainder.
IV. In Multiplication of Decimal Fractions, the product containeth as many Decimal figures as there are decimal places in the Multiplicand and Multiplyer, and in Divifion if you muitiply the Quotient by the divifor the product will be equal to the dividend, upon. which confideration the true value of the (Quotient of any divifion may infallibly be known by this

Gencral Rule.
After the work of Divifion is ended, confider how many decimal places are in the dividend more than there are in the divifor, and how mary foever the excefs is, let fo many in the Quotient be feparated from the Reft, for a Decimal. But if there are not fo many figures in the Quotient, as the faid excefs is, fuch defect muft be fupplyed, by prefixing as many Cyphers one the left hand, putting a point before them, as hath been Taught already; then Shall fuch Decio
mal as aforefaid, be the true value of the Quotient fought.

1 thall explain this Rule by Examples of the feveral Cafes that may happen in the divifion of Decimals, which are 9 , as followeth.

cafe 1.
A wholenumber given to be divided by a mhole number.
V. When you are to divide one whole Number by another and they are not commenfurable, flough there are no decimals in either the dividend or the divifor, yet if you amnex a Competent number of Cyphers to the dividend, there will be decimal in the Quotient confiting of as many places as you annexed Cyphers to the di vidend.

> Example i.

Let there be given 5729 to be divided by 438; According to the foregoing Rule, I annex a Number of Cyphers, (fuppofe 4) to the given dividend which will fupply 4 decimal places, and it will be 5729.0000 , and after the work of diviffon is finifhed I find the Quotient to be 130799 438) 5729.0000 (13.6799 , Gjr,

Now to find out the value of the Quotient by the General Rule before-going, I confider that there are no decimals in the divifor, but there are 4 in the dividend, and confequently by the faid Rule there muft be 4 decimal places noted out in the Quotient by fetting a point before them, and then the true value of the Quotient will be found to be 13.0799 .

Example 2:

Let there be given 48 to be divided by 437.6 , you cannot here make any work till you have annexed Cyphers to the dividend, becaufe the diviforis bigger than the dividend, and therefore annex as many as you think convenient, fuppofe σ, and having finifhed the work of divifion you will find the Quotient to be 1095, now to find out its true value, confider that there are no decimal places in the divifor, but there are σ, in the dividend, therefore there muft be 6 decimal places in the Quotient, but the Quotient as yet poffeffeth but 4 places, therefore to make them up σ according to the faid general Rule, I prefix two Cyphers before the other figures, on the left hand of the fame, fo as they may take place in the decimal by putting a point before them, fo will the true Quotient be .0.1095, ©̌c.

$$
43796) 48.000000(.001095, \text { Ơ: }
$$

This firit Cafe may very well ferve for a further illuftration of the firft Rule of the fecond Chapter of this Book.

A mbole number given to be divided by a mixt number;

- Lef the whole number 586 be given to be divided by the mixt number 36.4865 ; here you may obferve that although the dividend be greater than the divifor, yet there can be no operation untill the dividend is prepared by annexing a competent number of Cyphers to it, and according to the third Rule of this Chapter, I muft annex at leaft 4 , but here I fhall take 6 (or moreat pleafure) and then the dividend will be 586.000000 , and the work being finifhed as in Divifion of whole numbers, the Quotient will be found to be 1606 , orc.

$$
39.4865) 586.000000(16.06, \text { Coc. }
$$

Now to difcover the value of this Quotient; according to the general Rule foregoing, I confider that there are four decimal figures in the divifor, and σ decimal places in the dividend, the excefs being 2 , and confequently there mult be two decimal places noted in the Quotient by putting a point beforethem, and then the true Quotient will be 16.06 as you may prove at your leifure.

Example 4.

Another Example of the fecond Cafe may be this, let there be given the number 2 , to be divided by the mixe number 28.74, having prepared the dividend, by annexing 6 Cyphers to en to be 695 , orc.

$$
28.74) 2.000000(0695,0 . c \text {. }
$$

Now to find out the true value of this Quotient I confider according to the general Rule, that there are but two decimal places in the divifor, and σ in the dividend, therefore (the excess being 4) there mut be 4 decimal places in the Quotent, but there are but three places, wherefore I make them up 4; by prefixing a Cypher before them, according to the latter part of the fid General Rule.

Example 5.
A whole inuit. given to be divided by a decimal Frat.
Let there be given the whole Number 48 to be divided by the decimal .0675 , after the dividead is prepared by annexing a competent number of Cyphers, as fuppofe 7 , after the work of divirion is ended, I find the Quotient to amount to 71IIII as followeth.,

$$
.0675) 04.8 .0000000\left(7 \mathrm{I} .11 \mathrm{I}, \mathrm{c}^{\circ} \mathrm{c}\right. \text {. }
$$

Now to find out the value of the raid Quotient, by the foregoing general Rule, I confider that there are 4 decimal places, in the divisor, and 7 in the dividend, the excess being 3 ; wherefore I conclude that according to the faid Rule, there molt be 3 decimal figures in the Quote, cut off or feparated from the reft by a point, and then the true value of the Quotient will be 7IITIII that is 71 integers, and II I decimal parts of an integer or very neat.

$$
C \cdot \sqrt{2} 4
$$

Example G.
A mixt rumber given to be divided by a whole numbers
Let there be given the mixt Number 743.574, to be divided by the whole Number 75.

After the dividend is prepar'd by annexing Cyphers at pleafure, and the operation (according to divifion of whole numbers finifhed) you will find this Quotient, viz. 991432.

$$
\text { 75) } 743.57400(9.91432
$$

Now to find out the true value of the Fid Quotient, I confider that after there are 2 CYphers annexed to the dividend, that the decimal part thereof will poflefs 5 places; and becaufe there are none in the divifor, therefore: the excefs is 5 , and confequently (according to the faid General Rule) I note 5 Places in the Quotient for the decimal part, which being done, I find the true value of it to be 9.91432°.

Examele 7.

Again, let the dividend in the laft Example, ciz. 743.574 be given to be divided by the whole Number 43576 , and the Quocient will be found to be ${ }^{1} 706_{3}$, if there be 3 Cyphers annexed to the dividend, and there will be 6 decimal places in it, and not one in che divifor, wherefore there muft be 6 decimal places in the Quotient, but there are but 5, thercfore to make them 6, according to the laid General Rule, I prefix a Cypher, and then the true value of the Quotient

Chap. 6 :

 will be . 017063 as upon proof you will eafily find.$$
43567) 743.574000(.017063, \text { çc. }
$$

Caje 5.

Example 8.

A mixt number given to be divided by a mixt number.
Let the following mixt Number, viz: 3.748 be given to be divided by the mixt Number 46.375 . Here according to former directions I annex Cyphers (at pleafure) to the dividend, fuppofe ζ, then will the dividend be 3.74800000 and having finified the work of divilion, as if they were whole numbers, I find the Quote to be $8084, \ldots c$. but the true vaiue of this Quotient thus found I as yet know not, therefore to make a difcovery of its value I confider that in the dividend there are 8 decimal places, and in the divifor there are but three fuch places, therefore the number of decimal places in the dividend exceeds the number of places in the divifor by 5 , fo that by the foregoing general Rule I know that there muft be 5 decimal places in the Quotient, but there are only 4 figures, viz. 8084 , but to make them 5 according to the general Rule, I prefix a Cypher before the other figures and it makes .08084, which is the true Quotient fought.

$$
36.375) 3.74800000(.08084,06
$$

$$
\text { Cafe } 6
$$

A mixtinumber givento be divided by a Dec．Frattion．

> Example ?.

Let there be given the mixt number 54． 379 to be divided by the Decimal Fraction 34657 ， Baving annexed a competent number of Cyphers， If that there may be 3 ，or 4 ，or 5 Decimal places in the dividend more than there ase in the divi－ for，wherefore I annex 6 Cyphers，and then the dividend will be 54.379000000 ，and when the work of Divifion is ended the Quotient will be found to be 1567705.

Which being done she nexer thing in ordor to the compleating of the work，is to find out the true value of the faid Quotient，which is cafly done by the faid generul sule，for I confider that in the divifor these are 5 decimal places but in the dividend there are 9 （viz． 3 given lignifi－ cant figutes，and 6 Cyphers annexed）fo that the： excers is 4 ，therefore I conclude that there mut be 4 Decimal places in the Quotient，and the reft are of the lntegral part，fo that I find the true Quotient is 156.7705_{3} that is 15^{5} Integetsand .7705 or $17700{ }^{7}$ parts of an tnteger，which you may cafly prove at your Leifure．

$$
-34637) 5+3750.0000(156.7705,06
$$

$$
\text { Examp'c } 10 .
$$

If there were giventhe mixt Number $453^{\prime \prime}+$ to be divided by .000277 ；bere ate not fo many decimat plices in the divibend as chese is in elis divifors thenfore do I increate thar Number by
annexing 5 Cyphers thereto, and then the dividend will be 45.38400000 , then do I proceed to the operation, taking no notice at all of the the Cyphers whichare before the Divifor, but work as if there were none at all, and when the work of divifion is finifhed, I find the Quotient to be 183740.89 , coc .

$$
.0002+7) 45.3^{8} 400000(183740.89, \text { of0 }
$$

Now the Quotient being found, I come next to ind out its value, which to do I confider that ihere are σ decimal places in the divilor, and 8 in the dividend, fo that the excels is 2 places, therefore I conclude according to the faid General kule, that there mult be two decimal places noted in the Quotient, fo that then its true value will be found to be $1837+0.89$, orc.

$$
\text { Case } 7
$$

A Decimal Fraction given to be divided by a poole number.

$$
\text { Example } 1 \text { I. }
$$

let it be required to divide the decimal Fraction $.0786_{4}$ by the whole Number 25° here in this Example, there is no need of anbexing any Cyphers to the dividend to prepare it for operation, but yet you may at your pleafio: - , only becaufe there is no neceflity I fhall forbear it, and proceed to the work dccording to the k nle of Divition in whole Numbers, and the nork leing finihed, I find the Quotient to be then I proced co. Find out the value of this Quotient the dividend，therefore there muft be 5 decimal places in the Quotient，and there are but 3 places as yet，therefore do 1 prefix two Cyphers before the Quotient thus found，and note them for th true Quotient fought，which is $.0031^{14}$ ，as by the operation appeareth．

$$
25 .) .0786+(.00314
$$

Cafe 8.
A Decimal Fractiongiven to be divided by a mixit Number．

Example 12.
Let there be given the Decimal Fradion． 846 to be divided by the mixt number 3.476 ，here 1 ． prepare the dividend for the work by annexing 4 Cyphers thereto，and having finifhed the work of Divifion－I find the quotient to be 2433 ，and to dif－ cover its value according to the general Rule，I confider that there are in the dividend fafter the 4 Cyphers are thereto annexed） 7 decimal places， and in the divifor there are but 3，fo that the ex－ cefs is 4 ，therefore I conclude that there muft be four decimal places in the Ouotient，fo that the true Quotient is the Decimal Number 2433 ， E゙に。 as followeth．

$$
2.476) .8 .460000(.2+33, \text { cóc }
$$

But if to the faid dividend .846 there had been annexed 5 Cyphers then the true Quotient would have been 24,338 , cocc. and if there had been 6 Cyphers amexed thereto then had the Quotient been $2+3383$, čc.

$$
\text { Exanople } 130
$$

Let it be required to divide this Decimal FraCtion, viz. 846 by the mixt Number 34. 76 , after I have annexed Cyphers to the Dividend to prepare it for the work; and the work of Divifin being finifhed, I find (as before) the Quctient to be 2433 , but the value of it being Found out, by the general Rule, will be different from the former Quote, for having taken the number of decimal places, in the dividend and the divifor, 1 find the exseefs to be 5 in the dividend, fo that there fhould be 5 decimal places in the Quotient, but there are now but 4 places, whereof to fupply that defect I prefix a Cypher before the faid Quote, and put the point before it fo as it may take place in the Decimal, and then the true value of the Quotient will be :02433, erc. as followeth.

$$
34.7 \epsilon) .8+60000\left(.02433, \sigma_{c} c .\right.
$$

And if the Divifor had been 347.6 then the Quote would bave been $.002433, \sigma_{c}$.

Caje 9.

A Dectialal Fration given to be divided by a Decimai Fration.

> Example ita

Let there be given the Decimal Fration .835796 to be divided by i. 243 , here I may annex Cyphers at pleafure to the Divinend to prepare it for operation, but becaufe there is no- herentity for it I fhallforbear, and procced to the work as in Divifion of whole numbers, which being finifed I find in the Quatient the number 3439, and now I have nothing to do but to find out the true value of this Quotient, and in order thereunto I confider that in the dividend are 6 decimal places, and in the Divifor but 3, wherefore the excefs is 3, which is the number of decimat places in the Quotient, which being feparated, from the reft by a pointaccording to former directions, the true value of the Quotient will be found to be 3439, ơc.

$$
\text { .243). } 835796(3.439
$$

But if the dividend, had had a Cypher annexed to it, then the Quotient would have been 3.4394 cic. and if two Cyphers had been annexed to ir ? then the Quotient would have been $3 \cdot 439+8,0 \cdot 6$: But if the dividend had been .0835796 , and the divifor the fame as before, the operation would have been ftill the fame, and the fame figures would be in the Quotient but not of the fume value, for they would have been ail Decimals,

38 Divifion of Dec. Fractions. Chap. 6: viz. $\cdot 3439$, © c. But if the Dividend had been (as before) .835795) and the Divifor had been (.0243) the fame as before with a Cypher prefixed héfore it to deprefs its value, though the operation be the very fame, yet the value of the Quotient would have been 34.39, orc. And if the divifor had had two Cyphers prefixed before it thus .00243 then the Quotient would have been $343.9,06 c$. And if the Divifor liad been (.000243) the fame is before with 3 Cyphers prefixed before it then the Quotient would have been 3439. confifting intirely of, Integers, except you have annexed Cyphers to the Dividend. Thus have I largely gone over all the cafes that can happen in Divifion of Decimals, and have given one or more examples in every Cafe, fo that I hopeby this time the diligent Reader is made capable of performing any Operation, either in Addition, Subftraction, or Multiplication, or Di. yifion of Decimals, and if he be fo perfected, perhaps he may be defirous to know fomething of the ufe and application in the practical parts of Arithmetick, before he comes to the more difficult part of the extraction of Roots, and becaufe 1 would not dull the edge of his Apetite, I Shall give him a tafte of their excellent ufe in the Rule of proportion, and in the Menfuration of fome Superficies and Solids, and then come to fhew their ufe in the extracting the Cube and Square Roots, ard the calculating of Intereft, orc.

C H A P. Vit.

The Rule of 3 in Decimals.

IShall not here meddle with the Rule of 3 in its diftinct kinds, viz. Single, Double, Direct, or Inverfe, fuppaing the Learner to be acquainted with that already in the practice of vulgar Arithmetick.
I. In the Rule of 3 in decimals, the operation is in every refpect the lame as in whole Numbers, fo is it in all the parts, or Rules of Arithmetick, only when you work in Decimals you muft have refpeet to the Decimal Rules before taught, for in decimals you muft Add, Su'). tract, Multiply, and Divide, when, and after the fame manner as you do in whole Numbers, a few Examples will make you perfect in the knewledge thereof.

Example 1.
If $1 \frac{3}{4} l$. of Tobacco coft 3 s. 6 d. how much will $326 \frac{1}{4} l$. cost at that Rate?

When the Fractional parts of the Numbers in this Queftion are turned into decimals, then it will be read thus, viz.

If 1.75% of Tobacco colt 3.5 s. how much will 326.25 \% Of the fa:ne coft at that Raic ?

The numbers being orderly placed as is directed in the σ Rule of the 10 Chapter of my Vulgar Arithmetick will ftand as foiloweth . viz.

$$
\begin{array}{ccc}
l . & \text { s. } \\
1.75 & : & l .5 \\
326.25
\end{array}
$$

And if you multiply the third number by the fecond, or the fecond by the third, which is all one, and divide the Product thereof by the firft, as is direrted in the 10 Rule of the 7 Chap. of my Vulgar Arithmetick; only in Multiply. ing and Dividing, you muft have regard to Multiplication and Divifion of Decimals delivered in the two Chapters foregoing, and when the work is finifled, the anfwer will be found to be 652.5 fhillings, or $32 \% .12 \mathrm{~s} .6 \mathrm{~d}$. fee the following work.

Chap. 7 in Decimals. 4

$$
\begin{array}{cccc}
\text { 1. } \\
1.75: & 3.5: & \begin{array}{ccc}
526.25 \\
3.5
\end{array} & 652.5
\end{array}
$$

$$
163125
$$

$$
97875
$$

$$
\text { 1.75) i141.875 (} 652.5
$$

$$
1050 \cdots
$$

$$
918
$$

$$
875
$$

Fact 652.5 fillings

437
350
875
875

(0)
Example 2:

If 9 C. of Tobacco cost 25%. 7 s, what will be the price of $17 C$. weight of the fame at that Rate?

The given numbers being Rightly fated, logethe with the whole operation take as followeth.

Here you fee that the answer in Decimals is 47.883 l. now the value of this decimal Fraction may be difcovered at first fight. (by that brief way of finding the value of a decimal part of a pound Sterling, delivered in the 4 Rule of the 2 Chapter foregoing) to be $17 \% 8 \mathrm{~d}$. fere for 8 primes is is millings, and 8 feconds is ithil. ling more, and 3 feconds over, which with the 3 in the place of thirds makes 33, from which abating I, because it is above 25, there remains 32 farthings or 8 pence.

Example 3:

If an ounce of Gold be worth 2 l . Ig s. 4 d : Idemand the price of $190 \approx .3 \mathrm{pm} .5 \mathrm{gr}$. at that Rate?

By the 4 Rule of the 2 Chapter $3 \mathrm{pmo}$.5 gr . may be reduced to this decimal of an ounce, viz. 160416 , fo that 19.160416 is a mixt number equal in value to 19 oz .3 pto .5 gr . And by the fame Rule .9666 is found to be the Decimal part of a pound fterling, equal in value to $19 \mathrm{s}$.4 d . fo that the decimals being found out, and the nnmbers given in the queftion being ftated in order will be as followeth, viz.

$\begin{array}{cc} \text { oz. } & l . \\ \frac{3}{3} & 2.9666 \end{array}$	$\begin{array}{r} : \quad 19.160416 \\ 2.9666 \end{array}$
Facit 56.841, cra:	114962496
$l . \quad$ s. d.	114962496
or 56-16-10 fere	114962496
	172443744
	38320832
	56.8412901056

So that I find the anfwer to the Queftion to be 56.84129 , \& orc. or 561 . 16 s. 1o d. very near as it may be difcovered by the brief way of finding the value of the decimal of a pound fterling delivered before in the 13 page.

C HAP. VIII.

The further ufe of Decimals in the Menfuration of Superficies and Solids.

PROP. I.

To Meafure a long Square.

 thay very fitly be reprefented by a long fquare Table, or a long Board, or the like, as the figure ABCD, in the Margent, and to find out its content the Rule is

Multiply the length of it in Feet or Inches, by the breadth of it in Feet, or in Inches, and the product will give you the true Superficial Content of it in Feet or Inches.

Example.

There is a Table whofe length is 18.75 Feet and its Breadth 3.5 Feet, I demand its content in Feet?

To anfwer this queftion, I take 18.75 Feet (the length of it) and multiply it by 3.5 Feet (the breadth of it) and the product is 65.625 feet which is the content of the Table, as was required. See the work.

$$
\begin{gathered}
\frac{18.75}{3.5} \\
\frac{93 \% 5}{5025} \\
\text { Facit } 65.625 \text { Feet }
\end{gathered}
$$

Here by the way take notice that although amongft Artificers, the two foot Rule is generally divided each foot into 12 inches, ơc. Yet for him that is at any time , imployed in the practice of Meafuring, it would be moft necelfary for him to have his two foot Rule, each foot divided into 10 equal parts, and each of thofe parts divided again into 10 other equal parts, fo would the whole foot be divided into 100 equal parts and thereby would it be made fit to take the dimenfinns of any thing whatfoever, in feet and decimal parts of a foot. and thereby the content of any thing may be found as exactly if not more exactly and near, than if the foot were divided into lnches, quarters and half quarters,
and thereby many times would there be much. labour and pains avoided, which the Artel is Content to undergo through the want of fuck Decimal divifion of this Rule, as we will Thew in the folving of the former propofition; after the vulgar way. The Queltion is

There is a Table whore length is 18 foot 9 inches, and its breadth 3 foot 6 inches, now I demand its content in feet ?
, Now before I can find its content; I must find its length and breadth in Inches, and then multiply the inches of the length by the inches of the breadth, and then the product will be 9450 which is its content in fquare inches, and to find its Content in feet I mut divide the inches by 144 (the number of fquare inches in a foot) and the Quotient is the content in feet: See the works, following

$$
\begin{gathered}
450 \\
900
\end{gathered}
$$

144) $9450(65$: $9 \mathrm{4q}$ feet
864 .

$$
810
$$

$$
720
$$

Chap. 8.
So that you fee according to this way the an: fiwer is 65 fquare feet and 90 inches, or $x^{\frac{20}{3}+7}$ of a foot which is the very fame with that anfwer in decimals, and if the Divifion by 144 had been continued by annexing Cyphers to the Dividend 9450 , there would haye come out in the Quotient the Decimal .624 as before.
But how tedious a work it is to anfwer it after the vulgar way, compared with the decimal way I leave the Judicious Reader to judge, and much more tedions would it have been if there had been either halfs or quarters of Inches either in the length or breadty, or both, but the work would ftill have been the fame in the decimal way, that is, in every refpect as eafie.

After the fame manner is found out the Content of the true Geometrical fquare, which is a figure fitly Reprefented by an exact fquare Trencher, that is, having its length and breadth both equal.

PROP. II.

To find the Content of a right angled Triangle:

ARight angled Triangle is a plain figure having 3 fides and 3 Angles as the figure B, C, D , in the Margent, two of which fides viz. $B C$ and $C D$, are perpendicular to each other, now if from the top of the perdendicular at D, there be a line drawn parallel to the bafe, B, C, B, C, as is the Prickt line A, D, and from the end of the Bafe at B, there be drawn the prickt line B, A parallel to the perpendicular till it meet the line A, D in A, then will there be made the parallelogram, or long fquare A, B, C, D, of which the Triangle B, C, D, is half, the Diagonal B, D. dividing the whole parallelogram into 2 equal. parts.

Now it is plain from the firt propofition, that if you multiply the fide B, C, by the fide C, D_{i} then the product will be the Content of the whole parallelogram A, B, C, D, and then the half of that Content will be the Content of the given Tri. angle B, C, D, O if you take half C, D which is C, F, and half of B, A, which is B, E, and draw the line E, F, then will E, F, divide the parallelogram A, B, C, D, into two equal parallelograms, and either of chem is equal to the given Triangle B, C, D, now if by the firft propofition I can find the Cortent of the parallelogram $\mathrm{E}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{I}$ find alfo the Content of the Triangle $B, C_{2} D$, becaufe they are equal, whence itcomes to pafs that if you multiply the bafe by - half the perpendicular, or the perpendicular by
half the bafe of a Rectangular Triangle (Gwhich is all one) the product will be the true Content thereof.

Example.

In the former Triangle the bale B, C, is 18.28 Feet, and the perpendicular C, D, is 12.26 Feet, I demand its Content in Feet?

Here I firf find the Content of the whole Parallelogram, by multiplying the fides together, and the Product is 224.1128 , Feet; and the half of that produte is the Content of the Triangle B, C, D, which is 112.0564 Feet. See the following work.

$$
\begin{aligned}
& 18.28 \text { the fide } B, C \text {, } \\
& 12.26 \text { the fide } C, D \text {. } \\
& 10968 \\
& 3656 \\
& 13656 \\
& 1828 \\
& \text { 2) } 224.1128 \text { (I } 12.0564 \text { Feet }
\end{aligned}
$$

The Content would have been the fame, if I had multiplyed the one fide by half the ocher, which is indeed the fhorteft way, and moft praEtical, See the work.
6.13

5484
1828
10968
Fact 112.0564 . Feet

The answer would have been the fame, if I had taken the whole file CD, and Multiplied it by half the fidel $B C$.
PR O P. III.

To find the Content of any plain Triangle, not Rectangular.

TH E Deft and eafieft way is to let fall a perpendicular, upon the longeit file from the angle that is onpolite to it, which will divide it into two right-angled plain. Triangles, as suppore there were given the plain Triangle AB C, as followeth.

Here the file $\mathrm{A} B$ ，being the longeft fide，I let fall a perpendicular from its oppofite angle at C ，which falleth upon D ，in the line A B ，fo is the line CD the nearest diftance between the angular point C ，and the line $A B$ ，and divideth the given Triangle AB C，into two Right－an－ ged Triangles；（viz．）A D．C and CD B ；and if you find the content of there two Right－ angled Triangles（according to the directions in the fecond propofition）and add them together， their fum will be the content of the given Ti－ angle AB C．But it may be more artificially found out thus，

Multiply half the line $C D$ ，into the whole line AB，the Product will give the Content of the Triangle which was fought；or if you mol－ tiply the whole line $C D$ ，into half the line A B ，the product will be the Content of the given Triangle，which is very plain from a due confide－ ration of the methodufed in Solving the fecond． propofition．

> Exawntle.
leet the bare or longet tide A B bo 48.5 Feet long，and let the length of the perpendicular CD be 21.5 Feet， 1 dele to know how many fquare, or fuperficial feet are contained in the faid Triangle ?

To refolve this quefion according to the foregoing Rule, I firft Bi-part the Bafe A B 48.5 which is 24.25 which I multiply by the length of the perpendicular C D 21.6 and the Product is 523.8 : See the following work,

So that you fee the content is the fame which of the forefaid ways foever you work; obferve the fame method in finding the content of any oblique Triangle given.

PROP. IV.

To find the Content of a Traрежum.

ATrapezium is a plane Figure having four dunequal fides, and as many unequal Angles it inatters not how unequal they are, and to fird out its content obferve the following directions, viz.

Divide it into two oblique Tiangles, by draw ing a line fromany one of the angles, to the angle that is oppofite thereto, which line fhall be a common bafe to both the Triangles.

Then if you find out the content of both the e Triangles, according to the method prefrribed in the third propofition, the fum of their contents, the content of the given Trapezium.

Or it may be more artificially found out thus,
Multiply the length of the common bafe by half the fum of the perpendiculars let fall from the angles oppofite to the faid common bafe, and the product will be the content of the whole Trapezium: or elfe

Multiply the fum of the faid-perpendiculars by half the faid common bafe, and it will produce the fame effect.

Example.

In the following Trapezium ABCD, draw the bafe $A \mathrm{C}_{5}$ aghich finpore to be 9.5. Feet, then let fall the perpendicularat D_{2} which let be. 3.45 Feet, and that at B 4.25 Feet, the fum of the faid perpendiculars is 7.7 half of which is 3.85 , by which if the common befe A C be multiplyed, the product (which is) 36.575 is the content of the Trapezium required. Or if youl multiply 7.7 the fum of the perpendiculars by half of the common bale 9.5 , which is 4.75 the product will be the fame. See the following work.

$$
\mathrm{E}_{3}
$$

54
The use of Decimals

PROP. V.

To find the Content of any regor-
lar Polygon.

ARegular Polygon is a plane Figure confifting of equal fides and equal Angles, viz. a Pentagon, confining of 5 equal fides, and 5 equal Angles ; an Hexagon, confining of σ equal fides, and σ equal Angles; an Heptagon of fever equal fides, an Octagon of eight, ec. and to mature any one of there regular planes, do thus draw a line from the Centre of the Figure to the middle of any one of the fides, and maultiply that line into half the fum of the fides, and the Product thence arifing is the content of the given plane.

I hall give you an Example of this in the Mensuration of an Hexagon, or plane of 6 equal fides.

Let there be given the Hexagon ABCDEF, having the length of each fire 30 then will the length of the perpendicular G H be 26 fere, now there being in all 6 fides, and each of them in length 3θ, the fum of them all is 180 the half of which is
 90 , which being maul- is the content of the given Hexagon.

The reafon of this manner of working is very plain, if from the Centre you draw the lines $G A$, and $G B$, thereby making the Triangle G.A.B, whore content (by the third propofition) is found by multiplying the perpendicular $G H$ into half the fide $A B$, viz. into $H A$, or HB , but there are 6 fuch Triangles in the given Polygon; therefore GH , mulciplyed into σ times HB, produceth the content required.
PROP VI.

To find the Content of any Irre-

 gular Polygon.
Y ET it be required to meafure the following Figure ABCDEFGHI.

Firlt take care that the whole plane be divided in Trapeziums and Triangles according ro your own fancy, and as the nature of the plane will bear, and then meafure thofe Trapezimms and Triangles, as is directed in the third and fourth Propofitions before going, and add the feyeral contents together, fo will the fum give you the whole content of that Irregular Polygon.

As in this Example, firft I draw the lines $A C_{2}$ and $D H$, and $E G$, fo is the whole figure divided

into the Trapeziums ABCI, and CIHD, and DHGE, and the Triangle EGF, the contents of which being feverally found out by the third and fourth Propofition, the fum of them will be the content of the whole Figure.

PR OP. VII.

To find the circumference of a Circle having the Diameter giver.

A Circle is a Geometrical Figure exactly round, fo that if from a point in the middle of it called the Centre, there be never fo many lines drawn to the Circumference, they will all be of equal length. But between the diameter and circumference of a circle there cannot be found a true and exact proportion. Archimedes hath demonftrated the proportion to be near as 7 is to 22 ; but that of V an Coulen is the 3. 14159265358979323846 , orc. but for aractice this following proportion is fufficiently exact, viz.

> As is to 3.141σ
> So is the Diameter of any Circle,
> To its Circumference.

In the Circle defcribed in the Margent; the Diameter AC is 28, I demand what is the circumference ABC?

To answer which I fay by the properton foregoing; As 1 is to 3.1416 , fo is 28 the diameter to 87.9648, which is the circumference AB C D. The work followeth.

$$
\begin{aligned}
& \text { As } 1 \text { to } \frac{3.1416 \text {, fo is } 28 \text { to } 87.9648}{\frac{28}{251328}} \frac{\frac{1}{8282}}{87.9648}
\end{aligned}
$$

Chap. 8
in Meafuring.

PROP. VII.

To find the content of a Circle

 having the Diameter given.HIrft find out the circmference, by the laft Propofition, then multiply half the circumference by half the Diameter, and that product is the Content.

> Example.

There is a Circle whofe Diameter is 14 Inches, I demand how many fquare Inches are the fontent of that Circle ?

By the foregoing Propofition, I find the circumference to be 43.9824 Inches, the half of which is 2.1 .9912 which being multiplyed by 7, (half the given Diameter) the product is 153.9384 which is the content required. See the work.

$$
21.9912
$$

7
facit 153.9384 fquare Inches.

PROP. IX.

To frid the folid eontent of a quare piece of Timbtr, Stone, \&c. Whofe bafes are equal, that is, whoje ends are of fio the Same bignefs.

Cuch a folid piece by Geometricians is called a Parallepipedon, and its content is thus forind cut, viz:

Firft find out the fuperficial content of the bafe or end, (by the firft propofition) then mulziply that content by the whole leingth, and that Product is the folid content of the whole piece. In I

Exainple.

There is a fquare piece of Timber, the two contigtious! fides at the end of which are 2.5 Feet, and 1.8 Feet, and its leigth is 22 Feet; 1 demand how many folid Feet are in that piece of Timber.

Firft I multiply 2.5 by 1.8 the fides of the bare, and that produceth 4.5 for the content of the bafe or end, and that Product I multiply by 22 the length, and that produceth 99 Feet, and fo many is there contained in that piece of Timber. As you may fee in the following work.

Chap. 8:

Here note, if the fides of the end, or bafe, be given in Inches, and its length in Feet, then Reduce the fides of the bafe into the Decimal parts of a Foot, and proceed as before, or you may find out the content of the bafe in Inches, and multiply that content by the length in Feet, and that product divided by 144 , will give you the content in Fcet, or elfe reduce the length into Inches, and multiply the content of the bafe thereby, and divide that product by 1728 (for there are fo many Cubical Inches in a Foot) and the Quotient will give you the folid content in Feet. But the Decimal way is preferred.

PROP.

PROP. X.

To find the Solid content of a Cylinder, baving the Diameter of its Bafegiven.

ACylinder is a folid whofe bafes are Circular equal, and parallel, and may fitly be reprefented by a round pillar, or a Roling-ftone of a Garden, and to find the folid content of fuch a body this iś

The Rule:

Firft find the plane of the bafe, by the 7 and 8 propofitions foregoing; and then multiply that by the length thereof, which product will give you the folid content of the given Cylinder.

Example.

There is a Cylinder, (fuppofe a Roling fone) whofe length is 8.75 Feet, and the Diameter of its bafe 2.8 Feet, 1 demand the folid coptent thereoi?

$$
\begin{aligned}
& \text { As i } \\
& \text { Is to } 3.1416 \\
& \text { So is } 2.8 \text { the giver Diameter. } \\
& \text { To } 8.79648 \text { the Circumference of }
\end{aligned}
$$ the bure, half of which (viz. 4.39824) being multiplyed by r .4 the femi-diameter will produce 6.157536 for the content of the Bafe, which being

being multiplyed by 8.75 (the length) it produceth 53.87844 for the folid content required.

If there had been given the circumference of the Cylinder, then the Diameter of the bafe muft have been found out by the converfe of the feventh Propofition, as fuppore there had been given 8.75 the length of the Cylinder, and $8.796_{4} 8$ its circumference to find the folidity thereof. Firl I find out the Diameter by the following proportion, viz:

$$
\text { As } 3.1416
$$

Is to I
So is 8.79648 the given Circumference To 2.8 the required Diameter.

And then the reft of the work is the fame with that before.

PROP. XI:

To find the Solid Coitent of a Cone.

ACone is a Sold Body, having a Circle for its bafe, and its fuperficies Circular, decreafing its equidiftant Diameters from the bafe proportionably, till it remaineth in a point over the Centre of its bafe, and may fitly be reprefented by a Sugar-loaf, or a round Spire Steeple; and to find its folid Content this is

> The Rule.

By the 7 and 8 Propofitions foregoing find out the plane of its bafe, and multiply that by $\frac{1}{3}$ of

64
The ufe of Decimals
Chap. 8 its height, and that produet is the solid content. of the Cone Required.

Example.

There is a Cone the circumference of whofe bafe is 22.5 and its height is 16 , I demand the folid content of fuch a Cone?

> As 3.1416
> Is te I.
> So is 22.5 the cirumference of the bafe
> To 7.162 the diameter of the bafe.

Then Imultiply half 22.5 which is 11.25 by haif 7.162 which is 3.581 , and it produceth 40.28625 which is the fuperficial content of the bafe; then I take $\frac{2}{3}$ of the height of the Cone (I6) which is 5.333 very near, by which I multiply 40.28625 (the fuperficial content of the bafe) and it produceth 214.84657125 . See the work as followeth;

$$
\begin{array}{r}
40.28625 \\
5.333 \\
12085875 \\
12085875 \\
12085875 \\
20143125
\end{array}
$$

Solid Content is 214.84657125
The fame is to be obferved in the menfuration of any other Cone.

But here you are to oblerve that the flanting fide of the Cone, (viz.) the length from the

Chap. 8 .
vertex to the extremity of its Bale) is not to be taken for its true height, but a perpendicular let fall from its vertex or centre of its Bare is its true height; and how you may find out that perpendiculars length fall be flown you in the work of the fourth Proposition of the eleventh Chapter.

PROP. XII.

To find the solid Content of a

 Pyramid.BEtween the Cone and Pyramid, this is the Difference, as the Cone hath a circular bare and fuperfices, the Pyramid hath a Polygon for its bale, fo that its bafe and fuperfiches are Angular, its vertex terminating in a point jut over the Centre of its bale, and to find out its folidity, here followeth

The Rule.

Find out the fuperficial content of the bale, by the fifth Propofition foregoing, and multiply that by $\frac{1}{3}$ of its height, and it produceth the folid content of the Pyramid.

Example.
'There is a Pyramid whole bare is an Hexagon the file of which is 30 , and its perpendicular

Here by the fifth Propofition I find the fuperficial content of the bafe to be 2340 ; then do I take $\frac{1}{3}$ of the perpendicular height of the Pyramid, which is 18 , and thereby do I multiply 2340 , (the plain of the bafe) and the product is 42 r 20 , which is the folid content of the given Pyramid.

Here note by the way, that a line drawn from the point at the top of the Pyramid, to the extremity of any part of the bafis, is not the true height of any Pyramid, but a perpendicular let fall fiom the Cufpis (or top) to the centre of the bafe is the true height, and how to find out fuch perpendicular heights flall be fhewn in the fourth Propofition of the II Chapter.

PROR.

Chap. 8.

 in Measuring.
PR OP. XIII.

To measure the Frustum of a

 Pyramid or Cone.THE Frustum here given to be meafured is AGEF, the Gide of the greater bare at A being 24 Inches, and the side of the lefter bale at E being 8 Inches, and the length of it I, C, 20 foot equal to EB , or FO .

It is evident that if I find the folidity of the whole Pyramid AGD, \& afro the solidity of
 the lefter Pyramid EFD, and then fubtract the content of EFD, from the contentof $A G D$, that there will remain the folidity of the Frustum AGE.F; and certainly this way of meafuring the Frutiam of a Pyramid or Cone, is the mons cast of any: And it may be enfily meafued that, first of all find
out the height of the whole Pyramid CD, which you may do by the following proportion, viz.

As the Semi-difference of the fides of the Bares, Is to the height of the Fruftum,
So is the half fide of the greater Bafe,
To the height of the whole Pyramid.
And this proportion will hold good if you work by the Semi-difference of the Diameters of the bafes, as well as by the Semi-difference of the fides of the Bafes.

As in the foregoing figure, let AG be the Diameter of the greater bafe, and EF the Diameter of the leffer bafe, from E and F let fall the perpendicular: EB and FO , then thall BO , be equal to $E F$, and the fum of $A B$ and $O G$ are the difference of the Diameters of the bafes, EF and $A G$; and confequently $A B$ is the Semi-difference, and BE is the height of the Fruftum, and AC is half the fide of the greater bafe, and $C D$ is the height of the whole Pyramid. Then by Eucl. 6. 4.

As $A B$ (the Semi-difference of Diameters)
Is to BE (the height of the Fruftum)
So is AC (half the greater Diameter)
To C D (the height of the whole Pyramid)-
So the height of the, whole Pyramid AGD, will be found to be 30 foot; for the greater Diameter A G, is 24 Inches, the leffer 8, the difference 16 , the Semi-difference 8, therefore fhall CD be 30 foot; for

$$
8: 20:: 12: 30
$$

Chap. 8.
Now having found the height of the whole Pyramid to be 30 foot, I thereby (according to the 12th. Propolition foregoing) find the content of the whole Pyramid to be 40 foot, then in the leffer Pyramid EFD there is given the fide of its bafe EF, 8 Inches, and its height ID so Inches for CD 30-C I 20-ID 10, and by the faid i2th. propoftion I find the folid content of it to be 1.48 Feet, which being Subtracted from 40 (the content of the greater Pyramid) there will remain 38.52 feet for the true folid content of the given Fruftum A GEF.

After the fame manner is found the folidity of the Fruftum of a Cone, the height of the whole Cone being found out by the difference of the Diameters of its bafes; and by the inth.' propofition find the folidity of the whole Cone, and a fo the folidity of the leffer Cone, that is cut off from the Fruftum, then Subtract the content of the leffer from the content of the greater, and the remainder will be the folid content of the Fruftum.

This laft propofition is ufeful in the meafuring of tapering Timber Round or Squared, and $f r$ finding the liquid capacicy of Brewers Conical, or Pyramidal Tuns.

Thus have I fhewed the Ufe of Decimals in the Menfuration of the moft ufeful Planes and Solids, I might proceed farther to thew their Appiication in the particular Menfuration of / Board, Glafs, Pavement, Plaitering, Painting, Wainfcot, Tiling, Flooring, Tapiftry, Brickwork, Timber and Stone; but it requireth (rather) a particular. Treatife, than the narrow bounds here allowed for fuch a work.

C H A P. IX.

The Extraction of the Square Root.

IN the Solution of any Queftion, or in the working of any fum whatfoever belonging to any of the Rules of Vulgar or Decimal Arithmetick, there have been (at leaft) two things or numbers given, whereby the anfwer might be found; but in the extraction of the Square, Cube, and all other Roots, there is but one number, given to find out the number fought, viz. there is a fquare Number given to find its Root, a Cube Number to find its Root, \&rc. And

1. A fquare Number is that which is produced by multiplying any number by (or into) it felf, which Number given to be fo multiplyed is called the Root; as if the Number 8 were given to be multiplyed by it felf, it produceth 64 , then is 8 called the Root, and σ_{4} is its fquare, fo the Root 12, hath for its fquare 144.
II. When a fquare Number is given, and its Root is required, the Operation it felf is called the Extraction of the Square Root.
III. Square Numbers are of two kinds, viz. either Single or Compound.

Chap. 9. The Extraction of Roots.

IV. A fingle fquare Number is that which is produced by the Multiplication of a Digit, or fingle Number into it elf, and confequently fuck a fquare Number muff be under 100, which is the fquare of 10, fo 25 being given for a fquare nomGer, it is a ingle fquare having for its Root 5. And 81 is a fingle fquare Number, having for its Root the Digit 9. All the ingle fquare numbers with their Roots, are contained in the following Tablet.

Roots	$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{9}$	$\frac{4}{16}$	$\frac{5}{25}$	$-\frac{7}{36}$	$\frac{7}{49}$	$\frac{8}{64}$	$\frac{9}{81}$
Squares									

V. When the Root of any fquare Number is required it being lefter than 100 , and yet is not exactly a fingle quatre, exprefled in the Tablet above, then you are to take the Root of that ingle fquare Number exprefled in the raid Tablet, which (being leis) is neareft to the given fquare; as if it were $7+$ whole Root is required I find that 8 I (the square of 9) is too much, and 64 (the square of 8) is too little, but yet it is the neareft fquare number that is lefter than 7% and therefore 1 take 8 to be the square Root of 7 t , but yet it is plain that 8 is too little for the Root of 74. And to find out the Fractional part of this Root, you Shall be plainly taught by and by.
VI. A compound fquare number is that which hath above 9 for its Root.
VII. The Root of a fingle fquare Number may be difcovered at the firft fight, but the Extradiction of a compound fqaure Number is more tedious and difficult, its Root confiting of two places, at the leaft, and the fquare it felf, of 100 at the leaft.

Vill. When a compound fquare number is given, and it is required to have its §quare Rcot extracted, before you can proceed to the Operation, your fquare number muft be prepared, by pointing it at every fecond figure, beginning at the place of Units.

As, fuppofe you were to extract the fquare Root of 2304 , firft I put a point over 4 (it fanding in the place of llnits) and then paffing over the fecond place (or place of Tens) which is $0, I$ put a point over the figure ftanding in the third place, (or place of Hundrees) which is 3 , and 2304 . the preparative work is done, as
you may fee in the Margent. Now if there kad been more places in the given number, then I muft have put a point over the figure ftanding in the fifth place, and another over that in the feventh oc. And here note, that as many points as you put over the given fquare number, fo many Figures there will be in the Root, that is, the Root will confift of fo many places.

So if there were given the number 33016516 , to have its fquare Root extracted, after I
have pointed it according to the Direction before given, it will ftand as in the Margent, and becaufe the points that are put over it are in number 4 , I conclude the Root it feif will confift of 4 places, or figuies.
IX. When you have thus prepared your num. ber, then draw a crooked-line on the Righthard of your number, bahind which to place your Root, as you do for a Quotient in Divifion.

Note that when your number is prepared for Operation, as in the 8 Rule, the numbers containing between point and point, may not unfitly be termed Squares, and in the enfang work, we fhall fo call them, as in the forcfaid number 33016516 , being pointed as hefore, I call 33 the firft fquare, or, the fecond, σ_{5}, the third, and 16 the fourth, and laft fquare; every fquare (except fometimes the firt confiting of two figures, or places, the laft of which towards the Right-hand hath always a point over it, and if it fo happen (as it often doth) that the laft Figure (in any given fquare number) toward the left hand hath a point over it then that number alone fhall be accounted the firt fquare.

As if the number 676 were given, when it is pointed fur the work according to Direction, as you tee in the $\dot{\sigma}_{-\sigma}$
Margent I account σ for the firlt fquare and 76 for the fecond.

Thefe things being underftood, we fhall lay down thofe general Rules requifite for the manage. ment of the work it felf.
X. When your number is pripared, find out the hind the faid crooked line. As
Let it be required to extrast the fquare Root of the faid number 2304 , here the firft fquare number is 23 , and (according to the faid 5 Rute) its 2304 (4 Root is 4 , which I place behind the crooked line as you fee in the Margent.
XI. Then fquare the faid Root, and place its fquare which is 16 under the faid firft fquare 232 and having drawn a line undetneath, fubtract the faid fquare $i \sigma$, from 23, and place the Remainder, which is 7 underneath the faid line as you miay percieve by the work in the Margent.

XII. Then to the faid Remainder bring down the Figures of the next fquare and annex them thercto on the Right-hand, fo that they may make one intire number, which (for diftinctions fake) we fhall call the Refolvend.

As in this Example to the Remainder 7,1 bring down the 230° (4 next qquare 04 , and annes it 16 thereto, and it maketh 704 for a Refolvend, as you may fee in the 704 Refolv. Margent.
XiII. Always let the whole Refolvend (except the laft Figure on the right hand) be efteemed a Dividend, on the left hand of which draw a crooked line before which to place a Divifor, as in Diviíon.

So in this example, the Refolvend 704 is to be made a Devideng, all but the laft place which line, as you fee in the Margent.
XIV. Let the Quotient expreffing the Root (or part of the Root fought) be doubled, or multiplyed by 2 , and that double or product fall be a Divifor, and mut be placed on the left hand of the Refolvend, before the faid crooked line.

So in our Example, the numbber 4 which was put for part of the Root being doubled makes 8, which I put before the Refoldvend for a Divifor, as it appears 8) 704 in the Margent.
XV. Then (according to the Rule of Division in whole numbers) Geek how often the fid Divifor is contained in the fid dividend, and put the answer down in the Quotient, and alpo on the Right hand of the Divisor.

As in our Example I reek how often the Divisor 8 is contained in the Dividend 70, which I find to be 8 times, therefore I put 8 in the Quotient for part
 of the Root, and alpo on the Right hand of the Divifor. See the work in the Margent.
XVI. Then by the Figure lat put fur part of she Root, multiply the fid Divisor together with the Figure that you annexed to it (accounting them both as one intire number) and place the product underneath the faid Refolvend, drawing a line under it, and then fubtract it out of the faid Refolvend, placing the Remainder beneath the line.

As in our Example, having placed 8 in the Quotint, and alto on the Righthand of the Divifor, then in the place of the Divifor, 88) 704 their ftands 88, which I multiply by 8 , the number lift put in the Quotient, and

$$
\begin{gathered}
2304(48 \\
16 \\
\hline 88) \begin{array}{l}
704 \\
704 \\
\hline(0)
\end{array}
\end{gathered}
$$ the product is 704 , which I place in order under the Relolvend 704, and having drawn a line underneath, I fubtract the raid, product 704, from the Refolvend 704 , and there remaineth 0 , fo is the work finifhed, and I find the fquare Root of 2304 to be 48 . See the work in the Margent.

Here note that if at any time when you have multiplyed the number ftanding in the place of the Divifor, by the Figure lat placed 1. Note. in the Quotient, or Root (as is directed in the lat Rule) if the product be greater than the Refolvend, then conclude the work to be erroneous, to correct which put a lefter Figure in the Root, and proceed as is before directed.

Note also that the work of the $12,13,14$, ${ }^{15}$, and 16 Rules, must be repeated as often as there
there are points over the Figures, ex: cent for the firft fquare, which is to 2. Note. be wrought according to the Direction given in the 10 and It Rules foregoing, and the work of thole two Rules is to be obferved, but once in the extraction of a fquare Root, tho ${ }^{\circ}$. it confift of never fo many squares or points.
There things will, appear plain and cafe in the working of one or two more Examples:

Example 2.
Let it be Required to extract the fquare Root of 33016516 .

Here In order to the work. I firft prepare my number by diftinguiifhing it into Squares, by pointing it according to the 8 Rule foregiong and thereby 1 find that 33 , is the firm square, and (according to the 10 Rule) I take the square Root of 33, which is 5, and place for the firft Figure of the Root, then (according to the eldventh Rule) I Square the Root (5) and it makes 25 , which I place under the faid frt Square number 33 , and fubtract it therefrom, and the remainder (8) I place below the line, as in the following work.

Then (according to the twelfth Rule) I annex to the fail remainder (8) the next square (oi) (according to the thirteenth Rule) be my dividend, and (according to the fourteenth Rule) I double the number (5) in the Root, and it makes ro for a Divifor, and thereby I divide the faid dividend (80) and I find that it Quotes 7, which (according to the fifteenth Rule) I put-in the place of the Root after 5, and likewife before the Divifor, (10) fo that in the place of the Divifor inftead of 10 , there is now 107.

Then according to the fixteenth Rule) I multiply the faid 107, by 7, (the figure laft placed in the Root) and the product is 749, which I place orderly under the faid Refolvend, and fubtract it therefrom, and the remainder is 52 which I put below the line, as in the following work.

Then I repeat the fame work over again, in finding the next Figure of the Root, as (did in finding the laft, viz. to the remainder (52) (according to the twelfth Rule) I bring down and thereto annex the next (third) fquare (65) and it makes 526 for a new refolvend, then (according to the thirteenth Rule) is 526 a new dividend, and (according to the fourteenth Rule) I take the Root (57) and double it for a new Diyifor

Then (according to the fifteenth Rule) I feek how often the divifor (114) is contained in the dividend, (526) and I find it will bear 4, which I place in the Root orderly, and alfo on the right hand of the Divifor, (114) and then there will be in the place of the Divifor, the number 1144, which (according to the fixteenth Rule) I multiply by the Figure (4) laft put in the Root, and the product is 4576 , which I place orderly under the refolvend (5265) and fubtract it therefrom, and the remainder is 689 which I place under the line, as is before directed. See the whole work as followeth.

Then I again repeat the work of the 12,13 ; 14, 15, and 16 Rules of this Chapter for finding the next Figure of the Root, viz. firft I bring down (16) the next fquare number, and annex it to the remainder 689 (according to the twelfth Rule) and it makes 68916, for a new refolvend, of which (by the thirteenth Rule) 689r is a new Dividend then (according to the fourteenth

Rule) I double the Root, and it makes 1148 for a divifor, which I place on the left fide the refolvend, and then feek how often it is contained in the faid dividend (689 I) and the anfwer is σ, which I place for part of the Root in order, and alfo on the right hand of the faid Divifor, fo that in the place of the Divifor 1148 , will then ftand the number 11486, which by the fixteenth Rule, I multiply by 6 , (the Figure laft placed in the Root) and the product is 11486, -which I place in order under the refolvend, and fubtraft it therefrem, and the remainder is O , and fo the work is finifhed, whereby I find the fquare Root of 33016 pi6, to be 5746 , as by the whole operation appeareth.

And if the Root had confifted of never fo many places, ýet for every Figure put therein (except the firft, for which you are to obferve the tenth and eleventh Rule) the work of the 12, 13, 14, 15 , and 16 Rules must be repeated according
cording to the fecond note after the fixteenth Rule foregoing.

Example 3.
A third Example may be this, let it be required to extract the square Root of 8328996 .

In the working of this Example you will fee, the use of the firft note upon the fixteenth Rule, for only the number 8 is the firft fquare, as you may fee by the pointing of the given numbber, and after the whole work of Extraction is finished, you will find the fquare Root of the giyen number, to be 2886, as in the following oderation.
8328996 _ (2886 Root

4
48) 4.32 Refolvend
384. Product fubtract

> 58) 4889 Refolvend
> 4544 Product fubtract
5766) 34596 Refolvend 34596 Product fubtraci:
XVII. When there is given a number that is not a fquare number, that is, whore root cannot be exactly found, and you are defirous to find the Fractional part of the root as near as may be,
you are to obferve the eighth rule in preparing your number for extraction. and then to annex thereto an even number of Cyphers at pleafure, and note, that as many pairs of Cyphers as you annex thereto, fo many decimals will there be in the root exprefled, (which though it come not to be the exact root, yet will it come fo near the truth, that if the laft Decimal Figure placed in the root, be increafed by an unire, it will be too much) and as many points as there are over the given Integral Square number, fo many places will there always be in the Integral part of the Root, as in the following Example, where it is required to extract the fquare root of 129596 .
Firt I procced to the work of extraction according to the former rules as if it were an exact iquare Number, and find the integral root to be 359 , as followeth.

715 Remainder
But becaufe (when the work is finifhed) there is a Remainder of 715 , I annex a competent even yumber of Cyphers, to the given number, as of 4 , or σ, or S, and point them out in the fame manner

Chap. 90 . The Square Root. manner as if there were fignificant figures in an Integer, then bring two of them down to the fid remainder (715) and annex them thereto, fo have you 71500 for: a new refolvend; Then find out a new' divifor by doubling the root, as is be. fore directed, and proceed as if the annexed Cy phers were fignificant figures, or whole Numbers, as : far' as you please, as in this example, where the work is carried on till there are 3 decimal figures in the Root; and the work being finifhed, 1 find the root to be 359.994 , and there is a remainder of 319964 . See the work.

$$
\begin{aligned}
& \text { - } 129596.000000(359.694 \\
& \text { 65) } \frac{9}{395} \\
& 325 \\
& \text { 709) } \overline{7096} \\
& \text { 7189) 71500 } \\
& 64701 \\
& 647901 \\
& \text { 719984) 3199900 } \\
& 287993^{6} \\
& 319964 \text { remains. }
\end{aligned}
$$

84 The Extraction of
 Chap. 9.

But if you proceed to put another decimal in the root you will find it to be 359.9944 , and the remainder will be 3196864. Now you may perccive that the faid root, is too little, becaufe there is a remainder, but yet it is fo near the truth that if the latt figure thereof were increafed by an unite, and lo made 359.9945 it would then be too much, as you may prove at your leifure.
XVIII. The Square root of a vulgar Fraction that is commenfurable to its root, is thus found, viz. extract the fquare root of the Numerator, for a new Numerator, and likewife the fquare root of the Denominator, for a new Denominator; fo Mall that new Fraction be the fquare root of the given Fraction; as for

> Example.

Let it be required to extract the fquare root of $\frac{2}{3}$ sirlt I take the fquare root of 25 , which is 5 , and place it for a new Namerator, then I take the fquare root of the Denominator 36, which is σ, and place it for a new Denominator, fo is $\frac{5}{6}$ the fquare root of $\frac{3}{5} 5$, which was required; in like manner if $\frac{4}{9}$ were given to have its fquare root extracted, its root would be found to be $\frac{2}{3}$ and $\frac{3}{4}$ is the fquare root of $\frac{9}{16}$, the like is to be obferved for any other.

But here note diligently; before you Note. procced to extract the Square root of any Fraction, that you reduce it to its loweft Terms, for it may happen that in its given Terms, it may be incommenfurable to its root, but being reduced to its loweft Terms it may

Chap. 9.
be commenfurable, andits root exactly found our, fo $\frac{50}{2}$ is incommenfurable to its root, but bing reduced to $\frac{25}{3}$, its fquare root will be found to bes as before.
XIX. The fquare root of a mixt number that is commenfurable to its root is thas found out, viz. reduce the miyt number to an improper Fraction, and then extract the fquare root of the Numerator, and the fquare root of the Deminator, for a new Numerator, and a new denominator, as in the laft Rule.

So if it were required to extract the fquare root of $1 \frac{1}{2} \frac{1}{5}$, firt 1 reduce it to an improper Fraction, and fo it is 强, whofe Square roxt is $=1 \frac{1}{3}$, fo if it were required to extret the fquare root of $3^{\frac{1}{8} \frac{3}{2}}$, firft I reduce the given mixt number, to the improper Fraction ${ }^{25 / 5}$, and then extract the fquare root of the Nunierator 256, and it I find to be 16 , for a new Numerator, and likewife the fquare root of 8 r , the denominator, which I find to be 9 , for a new denominator, fo is $\frac{16}{9}=1 \frac{7}{5}$ the fquare root of the given mixt number $3^{\frac{3}{2} \frac{6}{2}}$ which was required.
XX. When you are to extract the fquare root, of a Fraction that is incommenfurable to its root, prefix before the given Fradtion, this Char racter v^{\prime}, or v^{\prime} g. fignifying the \{quare roor of that before which it is prefised, fo the fquare root of $\frac{24}{29}$ is this expreffed, $\sqrt{\frac{24}{29}}$ or $\sqrt{ } 9, \frac{2 t}{25}$, the like of any other. But if you would know 3 s near as may be the fquare root of any fuch Fracti. on, reduce it to a decimal of the fame value by the firft Rule of the fecond Chapter, but let the decimal confift of an even number of places, miz. either of two, four, fix, or eight, core plates; and the more places it confifteth of, fo much the nearer the truth will the root be; - Then extract the fquare root of that decimal (according to the Rules before delivered,) in every reflect as if it were a whole number, fo shall this root fo found be very near the true root; and fo near that if it confift of 3 places it hall not want $\frac{x}{1000}$ part of an unit of the true root, and if of 4 places, it fall not want roo\% part of an unite of the truth.

So if I would extract the square root of ${ }^{3}$; find I reduce it to a decimal, which I find to be .75 and becaufe I would have the root to confifit of 4 places, I annex, σ Cyphers thereto and it makes .75000000 , then extracting the fquare root thereof as if it were a whole number, I: find it to be .8660 , and there is a remainder of 4400 , but if I would have it confilt of 5 places,' then I annex 2 more Cyphers to the faid remainder, and make it 440000, and proceed, and then I find the root to be .86602 , and the remainder to be 93596.
XXI. In like manner if it were required to extract the fquare root of a mint number incommenfurable to its root, as near as may be, firft reduce the Fractional part to a decimal, but let it conifit of an even number of places, viz. of 2 , 4,6 , or 8 , orc. places, then proceed to extract its fquare root, according to the Rules farmerty delivered in this Chapter, in every refpect, as if it were a whole number, fo hall the root fo found, be very near the truth, and the more places it confifth of, fo much the nearer will it be to the true root. And note that in the root where will be fo many decimal places, as you

Chap. 9.
placed points over the decimal part of the fquare number.

So if it were required to extiact the fquare root of $28 \frac{-6}{13}$ firlt I redace the fractional part $\frac{6}{3}$ to a decimal and it makes $46: 538$, fo then the mixt number whofe fquare root 1 am to extract is 28.461538 , which being pointed, and the work of extraction finithed, according to the former Rules, I find its fquare ront to be very near 5.334 and there is a remainder of 9982, But if I had proceeded yet farther, and made the decimal part to have confifted of 7 places, it would have had for its fquare root 5.3349 , which
 root.

But if you would not extract the fquare root of fich a mixt number, then prefix before it this character, $\sqrt{ }$ or $\sqrt{ }$. fo if the faid mixt number 28 零 were given 1 would exprefs its fuare root thus, viz. $\sqrt{ } 18 \frac{6}{13}$ or $\sqrt{ } 9.28 \frac{6}{1}$ the like is to be underftood of any other.
XXII. When you are to extract the fquare root of a decimal Fraction, which hath 2 or 3 Cyphers pofiefling the two or three firft places on the left hand of the given decimal, then cut off 2 of them with a dafh of the Pen, and put a Cypher to poifers the firft place of the Root, and proceed to extract the fquare root of the remaining Figures, according to the former Rules as if there had been no fuch Cyphers before the given decimal ; and if the given decimal have 4 Cyphers before it, cut them off with a dafh of the Pen, and put 2 Cyphers in the root, and the: 3 proceed as before.

So if it were requirea to extract the fquare root of $5 \frac{5}{8+5}$, firft I reduce to it to a decimal Fraction and it makes .005910, then I cut off the two firlt Cyphers, and place one Cypher in the root, then 1 nocceed to extract the fquare root of the remaining Figures, vir. 5910 , as if there had been no wich Coynhers before them, and I find the root to be verynarar .077 as you may try at your leifure.
XXIII. The operation in the extraction of the square root is thus proved, viz. Multiply the root into it felf, and (if there

The proof of the Extraction of the Square Root. be no remainder after the work of extraction is finifhed) the product (if the work be truly done) will be equal to the number firf given. As in the firft Example, where it is required to extract the fquare root of 2304 , which is there found to be 48. Now if I multiply 48 by it felf, it produceth 2304 , which is the given number, and therefore I conclude the operation to be true. But if after the work of extraction is finifhed, there is any remainder then, when you have multiplied the root by it felf, to the product add the faid remainder, and if the fum be equal to the given number, the operation is right, otherwife not. As in the Example of the feveateenth Rule, where it is reguired to extract the square root of 129596 ; and is there found to be 359.994 , and the remainder is 319964 . Now to prove the wor', I mulaiply the root (359.994) by it felf, and it produceth 129595.680036 , which fhould be 129596, therefore to the faid product I add the frid remainder $(319964$, and the fum is 129596, and therefore I conclude the work to be truly wrought.

C H A P. X.

The Extraction of the Cube Root.

I.

ACube Number is that which is produced by multiplying any Number into it felf and again into that product, which faid given number is called the Cube Root.

As, fuppofe 5 were given to find its Cube, firft I multiply 5 into its felf, and it produceth 25 , which is called the Square of 5 , then I.again multiply 25, (the faid Square) by 5 , and it produceth 125 , which is called the Cube of 5 , and here note that as 125 , is called the Cube of 5 , fo is 5 called the Cube Root of 125 .
II. The extraction of the Cube Root is no: thing elfe then when by having a Cube Number given we find out its Cube root ; which faid Cube number is given always fuppofed to be a certain number of little Cubes, comprehendedwithin one intire great Cube, whicit faid Cube may very well be reprefented by a dye, or any other
other folid body, having its length, breadth and depth equal; this being fuppofed, let there be laid 9 Dyes conftituting a fquare, whofe fide fhall be 3 , and upos them let there be laid 9 more, Dyes; and upon them let there be laid 9 more, then will there be in all 27 Dyes, which will conftitute one greater Cube, whofe length, breadth and depth will be ${ }_{3}$ Dyes, and this greater Cube comprehendeth 27 lefier Cubes. Now the extraCtion of the Cube root is by having the number of little Cubes (27) comprehended in the greater given Cube to find out how many of the leffer Cubes make up the fide of the greater.
III. A Cube number is either Simple or Compound.
IV. A Simple Cube number is that which hath for its root or fide, one of the 9 Digits, and it is therefore always leffer than 1000 ; fo fhall you find that 343 is a Simple Cube Number, whofe fide or root is 7 , for $7 \times 7 \times 7=343$, all which faid Simple Cubes, and Squares, as alfo their roots are expreffed in the Tablet following.

Roots	\times	2	3	4	5				
Squares	I	4	9	16	25	36	49	64	81
Cubes		8	27	64	125	216			

V. A Compound Cube number is that which is produced by the multiplication of a Number confifting of two places (at the leaft 3 times into

It felf continually, and is therefore never leis than 1000, 10 1 728 is a compound Cube number, produced by the multiplication of 12 into its felf 3 times; for $12 \times 12 \times 12=1728$.
VI." When a compound Cube Number is given to have its Cube root extracted, before you can go about it, you muft prepare it for the work by pointing it; which is thus done, viz: put a point over the firft figure towards the right hand, viz. over the place of Units, then (pafting the two next places) put aipoint over the fourth figure, or place of Thoufands, and fo proceed by putting a point over every third figure, as you did over every fecond figure in the extraction of the Square root, till you have finifhed your pointing; That being done, on the right hand of the faid Cube number draw a crooked line, behind which to place its Cube root, as you do to place the Quotient in Divifion, as in the following Example.

> Example I:

Let it be required to extract the ' Cube root of 262144.
In order to prepare this Cilie Number, for the Extraction of its Cube root, I firft put a point over the firft figure (4) towards the right hand, and

262144 (then overpaffing the two next figures (14) I put ano. ther point over the forth figure (2) and then is the given number diftributed into feveral parts not unfitly called Cubes, vic. 262 (as far as the firft point goeth) is the firt Cube, and the 144 (from thence to the feiond point) is the fecond Cube, and then 1 draw a crooked line behind it as you fee in the Margent.
VII. Having proceeded thus far, find out the Cube Root of the firt Cuse (252) but becaufe it is not an exact Cube number, take the Cube root of that number in the foregoing Tablet, which being leffer than it is, yet is neareft to it, (which I here find to be 6 ,) and place it behind the crooked line for the firft Figure in the Root, as you fee in the following work.

$$
262144 \text { (6 }
$$

VIII. This being done, Cube the faid number which is placed in the root, and fubfribe its Cube under the firft Cube of the given number. So in this Example 216 being the Cube of 6,1 place it under 262 the firft Cube of the given number 262144 , as followeth

$$
\begin{aligned}
& 262144(6 \\
& 216
\end{aligned}
$$

1X. Draw a line under the Cube thus fubferibed, and fubtract it from the firt Cube of the given number, placing the remainder orderly underneath the faid line. So 216 (the Cube of 6) being fubtracted from 262 , the remainder is 46 , which I place underneath the line as followeth

X. Bring down the next Cube number and annex it to the faid remainder on the right hand therefore. So 144 being the next Cube, I bring it down and annex it to the remainder 46 , and it makes 46144 , which by Artifts is ufually called the Refolveed.

$$
\begin{aligned}
& 262144(6 \\
& 216
\end{aligned}
$$

46144 Refolvend

XI. Draw a line underneath the Refolvend, then Triple the root, that is, multiply it by 3 , and place its Triple under the Refolvend in fuch order, that the place of anits in the faid triple may fland under the place of tens in the Refolvend. So the triple of 6 , is 18 , which I place under the Refolvend fo, that 8 (the place of units in the faid triple) may ftand under 4 in the place of tens of the Refolvend; as you fee following.

$$
\begin{aligned}
& \frac{262144(6}{216} \\
& \frac{46144 \text { Refolvend }}{18}
\end{aligned}
$$

XII. Square the faid root, and then triple the faid fquare of the root, and place the faid triple Square under the faid triple root in fuch order that the place of unites in the triple fquare of the root, may ftand underneath the place of Tens in the triple root, fo in this Example, the square of the root σ, is 3σ, and the triple thereof is 108, which 1 place ander 18, the triple root fo , that 8 the place of unites in the faid triple fquare of the root, may ftand under 1 , the place of Tens in 18; the faid Triple root as followeth

XIII. Draw a line underneath the faid triple root, and triple 1quare of the root, as they are placed, and add them together in the fame order

Chap. 10. the Cube Root: 95 as they fland, fo fhall their fum be a Divifor: So in our Example, a line being dravin under 18 and 108, and they added together in the fame order as they ftand, their fum is 1098 for a Divifor, as in the following work.

$$
\frac{\frac{252144}{216}}{\frac{46144}{18}} \text { Refolvenis }
$$

XIV. Draw a crooked line on the left hand of the reiolvend, before which to place the faid Divifor, and let the whole refolvend (except the place of unites therein) be efteemed a Dividend, then feek how often the faid Divifor is contained in the dividend, and put the anfwer for the next Figure in the rcot. So in our Example feek how often 1098 the divifor is contained in 4614 the dividend, obferving here the ufual Rules of Divifion) and the anfiwer I find to be 4 which I place for the next figure in the root, as in the Example.

1098)	46144	Refolvend
	$\begin{array}{r} 18 \\ 108 \end{array}$	the Triple root. the Triple fquare of the root.

$X V$. Draw a line underneath the whole work, and then Cube the Figure laft placed in the root, and place its Cube underneath the Refolvend in fuch fort that the place of units in the one may ftand under the place of units in the other; fo in our Example 64 being the Cube of 4 (the Figure laft placed in the root) I place it: under the Refolvend in fuch manner that the Figure 4 in the place of unites of the Cube 64 , may ftand under 4 , the place of unites in the Refolvend, and then the work will ftand as followeth.

$\frac{26}{216} 2144(64$

1098) 4614+ Refolvend

> 18 the Triple Root Io8 the Triple fquare of the Root.

1098 Divifor

64 the Cube of 4
XVI. Squarc the figure laft placed in the Root, and multiply its fquare by the triple Root fubfrribed underneath the Refolvend, (as is clirected in the eleventh Ruie of this Chapter) and fubIcribe the product under the Cube laft pue dowri, in fuch order that the place of units in the faid produet, may fand under the place of Tens, in the faid Cube. So in our Example, the figure laft placed in the Root is 4, which fquared is i6, and is multiplyed by is (the triple Noot before fet down) the product is 288 , whith 1 place under 64 (the cube of 4) in fuch fort ithet 8 (in the place of Units of the fid produet): may ftand under (σ (the place of Teas) in the fid? cube of 4 ; view the work.

262144 (σ_{4}
216 Cube of 6
1098) 46144 Refolvend

18 Triple Root
108 . Triple fquare of the Root.
1098 Divifor
64 Cube of 4
288 the fquare of 4 in the triple Root.
XVII. Multiply the triple fquare of the Root, fubforibed as is before directed in the twelfth Rule of this Chapter) by the figute laft placed in the Root, and place the product under the number laft fubferibed, (which is the produt of the fquare of the figure laft placed in the Root multiplyed by the faid Triple Root) in fuch manner that the place of Ulnits of this, may ftand under the place of Tens in that; As in this Example, The Triple fquare of the Root is 108, which multiplyed by 4 (the figure laft placed in the Root) the product is 432 , which 1 place under 288 (the number laft fubforibed) in fuch order that the figure 2 (in the place of linits of the faid laft produet) may ftand under 8, which is in the place of Tens, of the faid number laft iubicribed; and then the work will ftand as followeth.

262144 (64

216
46:44 Refolvend
18 Eriple root.
108 Triple fquare of the roor.

sog 8 Divifor

σ_{4} Cube of 4
288 Square of 4 in Triple Roor
432 Triple funare of the Root in 4
XVIII. Draw another line under the work, and deld the 3 numbers together, that were laft placed under the Divifor, in the fame order as they there ftand, and let their fum be called the Subtrahend, which let be fubtracted out of the Refolvend, nothing the Remainder; So in this Example I add $64,288,432$ together in the fame o: der as they ftand, and their fum is 46144 the Subtrahend, which I fuhtract out of 46144 the Refolvend, and there is nothing remaineth, fo the whole work is finimed, and I find the Cube Root of 262144 to be σ_{42} withour any Remainder; See the whole work as followeth
: :
262144 (64
216
1098) 46144 Refolvend
18 Triple root.
108 Triple fquare of the root.
1098 Divifor
432 Triple fq. of the Root in 4.
46144 Subtrahend.
(0)
Now the Learner is to obferve three things in
general from the Rules beforedelivered, concern-
ing the extraction of the Cube Root.

Obferve 1. That the work contained in the 7.8 and 9 Rules for finding out the firft Figure of the Root, is not again to be repeated, throughout the whole work of Extiaction, although the Root confilt of never 'fo many places, but the work of all the Rules following is to be repeated as often as a nen figure is put in the root.

Obferve 2. For every particular Cube in the number given, diftinguifned by the points, (except the firt) there is to be found out a new refolvend, by annexing the next Cube to the remainde: often as there is a refolvend, fo often mutt there be found a new Divifor (by the 11,12 and 13 Rules) and as often as there is found a new Divifor fo often muft there be found a new Subtrahend (according to the $15,16,17$, and is Rule beforegoing.)

Obferve 3. When the Subtrahend chanceth to be greater than the refolvend, then you may conclude there is an error in four work, which muft be corrected by puting a lefler figure in the Root:

Example 2.
Let it be required to extraet the Cube Root of 48627125 .

Having prepared the given nuber for the work of extraction, according to the 6th. Rule of this Chapter, I find it to be diftributed into 3 Cubes, viz. 48 , the firf, 627 , the fecond, and 125 the third. Then I proceed to the work; and firft I find the Cube root of 48 , (the firt Cube) which is 3 , then 48627125 do I Cube 3, and place its Cube which is 27 un-
der (48) the firft cube; and fubtract it therefrom and the remainder is $2 T$, according to the $y, 8$, and 9 Rules of this Chapter, and then will the wort ftand as you fee in the Margent.

Then, to the faid remainder 21 , do I bring down, and thereito anncx the next cube, which

Is 627 , and it makes 21627 for a refolvend according to the loth. Rule foregoing. Then do I find out a Divifor according to the 11,12 and ${ }_{13}$ Rules of this Chapter, and Grft I triple the Root
(3) and it makes 9 , which

I place under (2) the place of Tens in the Refolvend; Then do I fquare the faid Root (3) and that makes
9 , then do 1 triple its iquare (9) and that makes
27, which I place under the faid Triple in fuch order as is directed in the r2th Rule, then draving

$$
485 \pm 7: 25 \text { (3 }
$$

27
21527 Refoivend
09
27
279 Divifor
a line underneath the
work, I add the two faid numbers rogether, (viz) the Triple Root, and the Triple Square of the Root) in fuch order as they are there placed, and their fum is 779 for a Divifor; as per Mar. gent.

Then according to the 146 Rule I feek how often the faid Divifor 279 is contained in 2162 the Dividend; and I find the anfwer to be σ, which I place for the fecond figure in the Root, then do.I in the next place go about to find out a fubtrahend, and in order thereunto firft (according to the fifteenth Rule of this Chapter) I cube the Figure (σ) lat placed in the root, and it maketh 216 , which I place under the Refolvend in fuch order (as is diredied in the faid fifteenth Rule) that the place of Units of the one may ftand under the place of Units of the other; Then (according to the roth Rule of this Chapter) Ifquare the figure (viz. 6) laft placed in

Chap. 10.

 by (9) the fid triple root, and the product is 324 which I place under $(2,6)$ the raid Cube of 6 , in foch order as is directed in the fail 16 th rule. Then do I multiply the raid triple fquare (viz: 27) by the figure (6) aft placed in the root, and it produceth 162, which. I place under the lat product 324) in foch manner as is directed in the 1 th rule. Then 1 add thefe 3 feverat numbers together in the fame order as they ftand, and their fum is 9656 for a Subtrahend, which fubracted out of (2627) the Refolvend, the remainder is 1971 , as you may fee by the following work.$$
\begin{aligned}
& 48627: 25(36 \\
& 27
\end{aligned}
$$

279) 21527 Rerolvend

09 Triple root
27,
279 Divifor
276 Cube of 6
324 Square of 6 by the triple rout
162 Triple fquare of the root by 6
ing 56 Subtrahend
1971 Remainder

Then to the fail remainder (1971) do I ans- nex the next cubc number (125) according to the rot's Rule, and it makes 1971125 for a reSolvend;

Thon I proceed according to the 11,12 , and 13 Rules to find a Divifor, and therefore I firft triple the whole Quotient (36) and it is 108 , Then do I quare the whole Quote (36) and it makes 1296; whici being tripled is 3888 , which being orderly placed under the triple

$$
\begin{gathered}
108 \\
3888 \\
38988
\end{gathered}
$$ Qlote, and added thereto in that order, the fum is 38988 for a new Divifor: See the work in the Margent.

Then do I feek how ofren the faid Divifor is contained in the Dividend (197112) and I find it to be 5 times contained, therein, and accordingly I place 5 in the root, and proceed according to the $15 ; 16,17$ and 18 Rules to find out a Subtrahend, and therefore firt, I cube the number (5) laft placed in the root, and it makes 125 , then do I fiquare the faid 5, and it makes 25, by which I multiply (IO8) the faid triple root; and place the product (2700) under the faid cube, as is before directed, then do I by the faid 5, multiply (3888) the triple fquare of the root and the product (19440) do I place under the former produćt (2700) according to former directions, and add the 3 Numbers together, in the fame order as they fand, and their fum is 1971125, (as appears per Margent) for a Subtrahend, which taken out of the faid Refolvend there remainth (o) and fo the work is finifhed

Chap. 1e? the Cube Roos:
finifhed, and I find the cube root of the giver number 48627125 to be 365 ; view the whole work laid down as followeth.

$$
\begin{aligned}
& 48627125(365 \\
& 27
\end{aligned}
$$

\square
279) 21627 Refolvend
a 9 the Triple root
27 the triple fquare of the root
279 Divifor
216 the Cube of 6
324 the fq. of 6 in the tr. root
162 the triple iquare of the root in σ
19656 the Subtrahend
38988) 19.71125 Refolvend

108 the triple root 3888 the triple fq. of the root
38988 the Divifor 125 the Cube of 5 2700 the fq. of 5 in the tr. root 19440 thetr. fq. of the root in 5
1971125 the Subtrahend
(o)
XIX. When it is required to extract the cube Root of a Number that is incommenfurable to its ies Robt and you are defirnus to know the EraEional pare of the root as near as may be, you are to annex to the given number a competent number of Cyphers, which number of Cyphers mult be always a nfitiple of 3 , viz: either 3 , $6,2,12$, orc. Cyphers, that is 000,000000 , or 000000000 , ofc. And having obferyed the 6 Rule for the punctation of the given number, likewife point the annexed Cyplers, in the fame manner as if they were fignificant figures, or integers; and obferve that as many points as you put over the integral part, fo many places will the integral part of the root confitt of, and fo many points as are put over the Cyphers, or Decimals, fo many decimal places will there be in the root; this being obferved the: work it felf in the extracting the Cube root of a'decimal Fraction or of a mixt number of integers and decimals, is the fame in every refpect as if the number given were an integral Cube number, according to the rnles before delivered in this Chapter. As in the following

> Example.

Let it be required to extract the Cube root of I 3798 which is a number incommenfurable to its Cube root, and to find out its root as neár as may be I annex to it 9 Cypliers (fo by that means I mall have 3 Decimals in the root) and prepare ic for Extraction by pointing it as is be. fore directed, and as you fee following.

Chap. 10, , the Cube Root.

- And having performed the work of extraction according ta the former Rules, I find its Cube root to be 23.984 , which (as by the remainder you may perçive) is fomewhat too little, but yet fo near the truth, thar, if the decimal pare were increafed by an unite and fo made 23.98 ; it would then be too much, and fo confequently it cannot want (as it is) Toro $\frac{10}{8}$ part of an Haite of the truth, and if the root had had another figure placed in it, it would then have come fo near the truth that it would not have wanted $\frac{-\pi \bar{\sigma} \frac{1}{6}}{6}$ part of an unite: for your farther fatisfation fee the whole work performed as followeth.

Chap. 10 .

XX. If at any time it is required to extrat the cube root of a vulgar FractiTo extradt the Cube on, let fuch Fraction be firft Root of a vilyom reduced to its loweft Terms ; Fraction. becaufe it may not be commenfurable to its root in the given Terms, but being reduced to its loweft Terms it may, and having fo done to perform the work, this is

> Thbe Rule:

Extrad the Cube Root of the Numerator, (by the former Rules) and place that for a new Numerator, then extract the Cube root of the Denominator, and place that root for a new Denominator, fo thall this new Fraction be the Cube root of the given Fraction.

As for Example, Let it be required to extract the Cube root of $\frac{27}{67}$, firf I take the Cube root of 27 (the Numerator) which is 3 and place it for a new Numerator. Then I take the Cube root of 64 , (the Denominator) which is 4 , and place it for a new Denominator, fo thall this new Fraction ${ }_{4}^{3}$ be the Cube root of the given Fraction $\frac{2}{6}$.

In like manner if there were given $\frac{10}{2} \frac{5}{5}$ to have its Cube root extracted, I can eafly difcover that there cannot be found any Cube root exactly either for the Numerator or Denominator, in the Termsthey are given in, but being reduced to their loweft Terms, they are $\frac{27}{67}$, whore cube root is ${ }_{4}^{3}$ as before.

In like manner the Cube root of $20 \frac{10}{k} 7$ will be founci to be $\frac{2}{9}=\sqrt{2}$. $10 \frac{13}{\frac{13}{2}}$.
XXI. But

XXi．But when there is given a vulgar Fras

 Ction to have its cube rootFocxtract the Cube Root of a vingir Fraction that is in－ cominenfurable to its就號。 extraced，it being incom－ menfurable to its root，you may find its cube root very near if you reduce the giveri vulgar Fraction to a decimal， and then extraf the Cube root of that decimal（by the Rules before deli－ vered，in every refpect as if it were a whole Number，and then fhall that be a decimal cube root，lefs than the truth，yet fo near the truth that if you add an unite to the laft decimal figure it will then be greater than the truth．

Here take notice by the way that your vulgar fraction being reduced to a decimal in Note order to have its cube root extracted， fuch a number of places as may be a multiple of 3，that is，it muft confift of $3,6,9,12,15$, ec． places，and the more places there is in the decimal， the nearer the truth will the root be，

Example．

Let it be required to extraft the cube root of A ：In order whereunto I reduce it to this deci－ mal viz． 625 ，which becaufe it confifteth but of 3 places，（and fo confequently can have but 1 figure in its root） 1 increde to 9 places by an－ nexing 6 Cyphers thereto thus .625000000 and then the root will confift of 3 places，then do I proceed to extract its cube root，（according to the former Rules）and find it to be．．354，efr．

Chap. 10 :

 may prove at your leifure.XXII. When your gityen vulgar Fraction is reduced to a Decimal of the fame value, and the 3 , or 4 firft places towards the left hand "are poficfled by Cyphers, then in this cafe youjare to cut off 3 of them with a dalh of the Pen, and for them place a Cypher to pofiés the firft place in the root, and then proceed to extract the cube roct of the remaining figures, according to the former Rules, as if there had been no fuch Cyphers at all.

As for Ezample.

Let there be given $\frac{+}{5}$ to have its cube root extracted; Firft reduce it to a decimal Fraction by the firlt Rule of the fecond Chapter of this Book, and it makes .000485613 , ©oc. Now to extract the Cube root of this Fraction, I firft prepare it, by pointing it in every refpert as if it were a whole number, then with a dafh of my Pen, I cut off the three firf Cyphers and pur a (o) to poffers the firft place in the root, then 1 proced to extract the cube root of the remaining figures (485613) as if therc had been no Cy pheis at all before therm; and having finifhed the work I find its cube root to be .078 as by the following work.

In like manner if the decimal which is given to have its cube root extracted, have 6 Cyphers placed before the fignificant figures on the left hand, then cut off thofe 6 Cyphers with a dafh of the Pen, and for them: put two Cyphers to poffers the two firft places in the root, Then proceed to extract the Cube root of the remaining figures as if there had been no fuch Cy . phers, \&o.
XXIII. When it is required To extract the Cube to extract the Cube Root of Root of a mixt num- a mixt number, reduce it to ber. an improper Fraction, and if: it hath a perfect Cube root, then extract the Cube root of the Numerator, and tract the Cube Root of the Denominator, and place it for a new Denominator, fo fhall this new Fraction be the Cube Root of the given mixt Number.

Eximple.

Let it be required to extract the Cube Root of $53+3$, having reduced it to an improper Fraction; I find it to be $\frac{1728}{2}+\frac{28}{3}$, and having extracted the Cube Root of the Numerator (1728) I find its root to be-12, for a Numerator, and the Cube root of 343 the Denominatar is 7 for a Denominator, fo that 1 conclude $\frac{12}{1} \frac{1}{7}$ (or L^{3} to be the Cube root of the given mixt Number $53^{\frac{13}{4} \frac{3}{3}}$, as you may prove at your leifure.
XXIV. But if the given mist Number, whofe Cube root is required, have not :a perfect root then you are to reduce the Fractional pare into a Decimal of the fame value, (but ler the number of decimal places be always a multiple of 3) and then proceed to extract the Cube Root of that mixt Number, as if it were a whole Number, always referving fo many decimal places in the Root as there are points over the decimal part of the mixt Number.

> Example.

Let it be required to extract the culse root of 28^{3}. Firft, reduce $\frac{3}{4}$ into its equivalent decimal, which is 675 , but to make it confift of fix places, I annex theretolfour Eyphers, and then the faid mixt number will be 28.750000 , which being done, I proceed to the work as followeth.

So that I find by the work, the Cube root of 28.750000 to be 3.06 , ofc.

XXV . It is ufual amongft Artifts to exprefs the Cube Root of a whole Number, mixt Number, or Fraction, either Vulgar, or Decimal, that
that is incommenfurable to its Root, by prefixing this Character, (viz. $\sqrt{ } c$.) before the incommenfurable number or quantity, fo the Cube Root of 328 may be thus expreffed $\sqrt{ } c .328$, and the Cabe Root of 24_{4}^{3}, thus $\sqrt{ }$ c. 24^{3}, or in a decimal mixt number thus $\sqrt{ } c, 24.75$ and of the fraction ${ }_{4}^{3}$ thus $\sqrt{ } c, \frac{3}{4}$, ©rc.
XXVI. The operation in the extraction of the Cube Root is proved thus, viz. Cube the Root found out, that The proof. of the is, Multiply it three times into extraction of the it felf, and if any thing remain Cube Root. after the work is done, add it to the lalt product, and if that fum be equal to the given rumber, then the work is truly performed, otherwife not.

As in our firft Example, where it is reqquired to extraft the Cube Root of 110592 , and which is found to be 48 ; and to prove the work, multiply 48 by it felf, whofe product is 2304 , which being again multiplyed by 48 , it produceth 110592, which is equal to the given number, and therefore I conclude the work to be right.

Likewife to prove the Example of the Nineretnth Rule, where it is required to extract the Cube Root of 13798 which is found to be the mixt number 23.984. Now to prove the work, I Cube the roor, as before directed, and find it to be 13796.370427904 to which add the remainder 1629572006 and their fum maketh the given number 13798 which proves the work to be right.

CHAP. XI.

The Ufe of the Square and Cube Roots in folving fome Queftions Arithmetical and Geometrical.

PROP.

To find a mean proportional between two given Numbers.

MUltiply the given Numbers the one by the other, and extract the fquare Root of the product, fo fhall that fquare root be the mean proportional fought.

Example.
Let the given numbers be 12 and 48 and let it be required to find a mean proportional between them ; firft multiply the given numbers 12 and 48 the one into the other, and their produet is 576 , the Square Root of which is 24 , fo that

Chap. II. The ufe of the Square, \&c. 117° that I conclude 24 to be a mean proportional between 12 and 48 ; for,

$$
12: 24 \cdot \%: 124: 48 .
$$

The fquäre of the mean being equal to the product of the extreams?

This propofition is ufeful in finding the fide of a fquare that fhall be equal to any given paralelogram; for, (according to the firlt Propofition of the eighth Chapter of this Book, if you multiply the contiguous fides of a Rectangular paratelogram the one by the other, that product will be its content, and if you extract the fquare root of that content, it will give you the fide of a §quare, (in the fame meafure your paralelogram was) which will be equal to the given paralelo gram.

plr óp. it

To find the Side of a Square that Sagll be equal to the Content of any given fuperficies.atwisis
$W^{\text {Ind }}$ out the Conteat of the given fuperficies by the Rules laid down in the Eighth Chapter, and then estrad.the fauare root of the

Content, fo will that Root be the fide of a fquare equal to the given fuperficies.

Example.

There is a Rectangled Triangle whofe bafe and perpendicular are $: 6$ and 8 , I demand the fide of a square that will be equal to the given Triangle.

According to the fecond Propofition of the Eighth Chapter, I find the Content of this Triangle to be 144 , the fquare Root of which is 12 , and is the fide of a fquare equal to the Faid Triangle.

In like manner if you extract the fquare root of the Content of a Circle, Pentagon, Hexagon, © c c. or of any other figure regular or irregular, it will give the fide of a fquare equal to that fuperficies.

PROP. III.

Having any two of the fides of a Right-angled plain Triangle, given to find the third fide.

THis moft excellent and ufeful propofition is generally called Pythagoras his Thcoreme, and in the 47 Pro. of Euclides Elements of

Chap. ir.

 Square and Cube Roots. 119 Geom. it is demonftrated, and proved that the square made of the Hypothenufe, or flat fire of a right angled plain Triangle is equal to the fum of the fquares made of the bare and perpendicular.
As for Example.

In the Triangle AB C, the Bare AB is 48 , and the perpendicular BC is 36 , now I demand the length of the Hypothenufe AC .

To find out an anfwer to this, fir I Square the bale A B,(48) which is 2304 , then square the Perpendicular (36) and its rquare is 1296 , the fum of which two fquares is 3600 , which is equal to the Square of the Hypothenufe AC, therefore the fquare root of 3600 will give the length of AC, which is 60 .

PROP. IV.

T Here is a Tower about which there is a Moat that is 48 foot wide, and a fcaleing Ladder that is 60 Foot long, will reach from the outline of the Moat, to the top of a Wall, that is within the fard Moat, now I demand the height of the faid Wall above the Water?

120 The Ufe of the Square, \&c. Chap. In.
Let the Bafe A in the foregoing. Triangle be the breadth of the Moat, and let the Hypothenufe $A C$ be the fcaling Ladder, then is the perpendicular B C the height of the Wall above the Water. Now it is plain that (becaufe the fquare of AC is equal to the fum of the fquares of $A B$ and $B C$) if from the fquare of $A C$ which is 3600 you fubtract the fquare of $A B$ which is 2304 , there will remain 1296 , which is the fquare of $C B$, therefore I extract the fquare Root of 1296 , and find it to be 36 , which is the height of the faid Wall above the Water as was required.

By the help of this Propolition may be found the trite perpendicular height of a Cone, or of a Pyramid; for, in a Cone, if you fquare the flant height, (which is the length of a line drawn from its vertical point, to the Circumference of its bafe) and from the fquare of that fubtract the fquare of the Semidiameter of its bafe, there will remain the fquare of the perpendicular height of that Cone.

Alfo, In a Pyramid, if from the fquare of the flant height of it, you fubtract the fquare of that line which being drawn from the Centre of its bafe, fhould touch the end of the faid flant line, (whether they meet at an angle or not) the remainder will be the fquare of the perpendicular height of that Pyramid, and its fquare Root will give the height it felf.

Chap. II.

PR O P. V.

By the Content of a Circle to find its Diameter.

The proportion is
$A^{\mathrm{S}} \mathrm{Is}^{22 .}$ to 28.
So is the given Content
To the fquare of the Diameter,

> Example:

There is a Circle whofe fuperficial Content is 153.9385 , I demand its Diameter?

$$
22: 28:: 153.9385: 195.9217 .
$$

The fquare Root of which is $\$ 3.99$ (very near 14.) for the Diameter required.

Chap. 1x.

PROP. VI.

By the Content of a Circle to fund its Circumference.

The Propartion is

A7 Is to 88
50 is the given Content
To the fquare of the Circumference.
The fquare root of which is the Circumference required.
Example.

There is a Circle whofe fuperficial content is 153.9385 , I demand the Circumference of that Circle!

$$
7: 88:: 153.9385: 1935.2258
$$

The fquare root of which is 44 fere which is the Circumference required.
II. The Cube Root is that by help of which we refolve all queftions Mathermatical that concern folidity, and by which we increafe folid bodies according to any given proportion. By it we difcover the folidity of a body that is capable of length, becadth, and depth, (or thicknefs,)

Chap. 15. The Vfe of the Square, \&8c: 123 and by having the folidity given, we difcover the fide or diameter of fuch a body.
Some queftions pertinent thereto may be fuch as follow.

PR O P. VII.

T Here is a Cube whofe fide is 4 , I' dernand what fhall be the fide of a Cube whofe folidity is double to the folidity of that Cube?

To anfwer this propofition, find ont the Cube of 4 (the fide of the given Cube) which is 6.4, and double it, which is 128 , then extract the Cube root of 128 a ard it makes 50397 fice, and that is the fide of the Cube which is double to the Cube whofe fide is 4 .

P R OP. VIII.

THere is a Cube whofe folidity is i 28 foot, I demand the fide of a Cube whore folidity is half as much ?

Take $\frac{1}{2}$ of $128=\sigma_{7}$ the Cube root of which (viz.4.) anfwers the queftion.

PROP. IX.

HAving the folid Content of a Globe to find the fide of a Cube whofe folidity fhall be equal to the given Globe.

Es.

Extract the Cube root of the given folid Con. tent of the Globe, and it will give you the fide of the Cube required.
Example.

There is a Globe whofe folid Content is i $_{7} 28$ Inches, I demand the fide of the Cube equal thereto?

Having extracted the Cube root of 1728 , I find it to be 12 , which is the fide of the Cube re quired:

PROP. X.

HAving the Diameter and Weight of a Bullet, to find the Weight of another Bullet whofe Diameter is given.

As the Cube of the given Bullets Diameter, Is to its Weight or Solidity.
So is the Cabe of the Diameter of any other Bullet, To its Weight or Solidity.

> Example.

There is a Bullet whofe Diameter is 4 Inches, and its weight is 9 Pound, I demand the weight of another Bullet, whofe Diameter is $6 \frac{1}{\ddagger}$ or: 6.25 Inches.

The Cube of 4 is 64.
The Cube of 6.25 is 244.142625
Then I fay
$54 \vdots 9 \vdots: 244 \times 140625: 34 \times 33227$

Chap. İ." Square and Cube Roots. I2s
So that the weight required is 34.33227 pounds and if you rednce the Decimil to the known parts of Averdupois weight, yoa'will find the anfwer to be 34 南-05 oz.-05 $d r$.

This kind of Proportion is by Artifts Termed triplicate proportion.
In like manner, the Diameters of two Bullets, or Globes being given, and the folidity of one of them to find out the folidity of the other, is) may be dene by the fame proportion, only changing the middlemoft Term.

> PROP. XI.

710 find the fide of a Cube equal to a given paralelepipedon.
Find out the folidity of the given paralelepipedon by the Eighth Prop. of the Eighth Chapter, then is the Cube Root thereof, the required fide.

> Example.

There is a paralelepipedon having the fides of its bafe to Foot 4 Inches, and 5 Foot 2 Inches, and its length is 20 Foot 8 Inches, I defire to know what is the fide of a Cune whofe content thall be equal to the given paralclepipedon?

The superficial Content of the bafe is 7688 inches, which drawn into 248 the length in Inches ${ }_{x}$ the product is 1906624 inches for its folid Content, the Cube root of which is, 124 inches, for the fide of a Cube equal to the given paralelepipedon.

In like manner if you would find at any time the fide of the Cube equal to any folid Body whether Regular or Irregular: Firft, Find the fo~ the Cube Root of its folid Content you have your defire.

PROP. XII.

BEtween two given Numbers to find two mear proportionals.
Divide the greater extream by the leffer, and extract the Cube Root of the Quotient, and by the faid Cubs Root multiply the leffer extream, then will the product give you the leffer mean: propotional, then multiply the faid leffer mean by the faid Cubique Root, and that product will give you the greater mean proportional.

Example.

Let the two given extreams be 6 and 48 between which it is required to find 2 mean proportionals.
" Firft, I divide 48 (the Greater Extream) by 6 (the Leffer Extream) and the Quotient is 8 , the Cube Root of which is 2 then by (the Cube Root) 21 multiply 6 (the leffer extream) and the product is 12 for the leffer mean proportional, and 12 being multiplied by 2 (the Cube Root) the product is 24 , for the greater mean proportional fought. Thus have I found 12 and 24 to betwo mean proportionals between 6 and 48, for

$$
6: 12: 24: 48
$$

Chap. 11. Squate and Cube Rosts, ${ }^{127}$
In like manner between 3 and 8 r will be fourid 9 and 27 , for two mean proportionals.

PROP. XIII.

T]HE Concave Diameter of two Guns beins known, and the quantity of Gun-powder that will charge one of them, to find out how anuch will be fufficient to charge the other.

The Capacities are one to another, as are the Cubes of their Diameters, and alfo the proportion is direct.

Example.

If 25 pound of Gun-powder be fufficient to charge a Gun, whole Concave Diameter is I Inches, or 1.5 Inch, how much powder will be fufficient to charge a Gun, whofe Concave Diameter is 7 Inches? Anfwer, 25.47

The Cube of 1.5 is 3.375 and the Cube of ? is 343 . wherefore the Proportion is as followeth.s

$$
\begin{gathered}
3.375: .25:: 343: 25.47 \\
\text { Orthus, } \\
3.375: 343:: .25: 25.47 \\
\mathbf{P} R O P \text { P XIV. }
\end{gathered}
$$

7 HE Concave Diameters of two Guns being given, and the quantity of a weaker fort of Gun-powder fufficient to charge one of them,

128 The U̧e of the Square, \&c. Chap. II.

 to find out how much Gun-powder of a ftronger fort (the proportion of the ftrength and weaknefs of the Gun-powder being alfo given) will be fufficient to charge the other Gun,This is folved by two operations in the Rule of proportion, firft to find out how much of the ftronger fort of Gun-powder will be of equivalent ftrength with the given quantity of the weaker fort, and this proportion is reciprocal; The fecond is the fame with that in the foregoing Propofition.

Example

There is a Gun whofe Concave Diameter is $a_{2} \frac{1}{2}$ inches, and it requireth 25 pound of powder to Charge it, now there is another fort of Gunpowder which is much ftronger than the former, and the proportion between their ftrength is as 5 to 2, now I demand how much of the ftrongeft powder is fufficient to charge a Gun whofe Concave Diameter is 7 inches.

To anfwer this, Firft, I find out how much of the ftrongeft powder will charge that Gun, which is $I^{\frac{1}{2}}$ inch in its Concave Diameter, which is dune by the following proportion, viz.

$$
5: 2:: .25:: 10
$$

Thus have. I found that $\frac{1}{5}$ of a pound of the ftrongeft Powder will charge a Gun whofe Concave diameter is $I \frac{1}{2}$ inch. And according to the laf proportion, 1 find by a direct Propofition that 10.16 pounds of the fame will be fufficient to charge a Gun whofe Concave diameter is 7 inches, viz.

$$
3.375: 343:: 10: 10.16
$$

CHAP.

C H A P. XII.

Concerning Simple Intereft.

1. TJHen Money pertaining or belonging to one perfon is in the hands, poffeffion, or keeping, or is lent to another, and the Debtor payeth or alloweth to the Creditor, a certain fum in confideration of forbearance for a certain time, fuch confideration for forbearance is called Intereft, Loane, or ufe Money; and the money fo lent, and forbern is called the principal.

II. Intereft is either Simple or Compound.

III. When for a fum of Money lent there is loane or intereft allowed, and the fame is not paid when it becomes due, and if fuch interert doth not then become a part of the Principal, it is called Simple Irterelt.
IV. In the taking of Interef for the continuance or forbearance of Moneys refpect muft be had to the rate limited by Act of Parliament, which Act now in force, forbiddeth or reitraineth all perfons whatfoever, from taking more than 6%. for the interelt of an 100% for a year, and according to the fame proportion for a greater or a lefler fum, not confining the lendes ot borrower to the Space of one year, no more than
it conineth him or them to the limitation of the fum to be lent, or borrowed, but that the fum may be either more or lefs than 100% and may continue in the hands of the Debtor, either a longer, or a fhorter, time than one year, according as the Lender and Borrower do agree, and oblige each other; now for any time greater thail one year, the late or proportion of In tereft is by Act of Parliament limited, but the Act doth not fay what part of 6%. flall be the interef of an 100% for half a year, a quarter of a year, a month, a day, or for any time leffer tinan one year, and in this cafe feveral Artifts do differ in their opinions, fome would have the true proportional intereft for any time lefs than a year to be difcover'd by continual meani proportionals; as fuppofe it were required to know the intereft of 900 l . for half a year at 6 per Cent. per Annum, they would have the Intereft to be reckoned after the Rule of Coma pound intereft, and fo 30%. is not the intereft of a 100% for half a year, but is too much: But lay they, to find out the true intereft thereof: you ane to find a mean proportional between 100, and 106, and that made lés by 100, will give you the intereft of 100%. for half a year, and fo by extracting of Roots they find out the intereft for any time lefs than one year, but this is fufficiently laborious and painful if it be done without the help of Logarithms; but to perform this work to the 12 power for a Month or to the 52 for a week, is very tedious, and to the 365 , power for one day is fcarcely poffible to be effected by natural Numbers, but cufom and daily practice tell us that the intereft of Money for any time lefs than one year ought
to be computed according to the Rules of Simple Intereft, and fo 3 l . is the undoubted intereft of 100% for 6 months, and 30 millings is the intereft of 100 l . for a quarter of a year ; but here note by the way that by 6 months is not meant 6 times 4 weeks, or 6 times 28 days, but by fix months, or half a year is to be underftocd the half of 365 days, and a quarter of a year is $\frac{1}{4}$ of $3^{6} 5$ days, and by I month is underftood in of 365 days, to that a month confifteth of $30^{\frac{1}{12}}$ days:

Upon the aforefaid cuftom of computing the intereft of Money for time leds than one gear, this following Analogy feems to be aflumed for a fafe expo. Vide Sedt σ of the fition of the ftatute (and which 5 chap.of Mr.Ker is indeed the ground, and rea- lies A Apendix to fon it felf of Simple Intereft) Wing arith. viz. That fuch proportion as
365 days (or one year) hath to the intereft of any fum for a year, fuch proportion hath any part of one year, or any number of days propounded to the intereft of the fame fum, for that time propounded. And this (as was faid betore) is the whole ground work, and very foundation of the manner of computing of simple Intereft.
V. Rebate, or Difcount, is, when there is an allowance of fo much per Cent. for Money paid before it be due; and Or Rebate, as the increafe of Money atintereft what it is. is found out by continual proportionals Arithmetical of Geometrical increafing, fo is the Rebate or difcount of Money found out by continual proportionals decreafing Arithmeticaliy or Geometrically, that is according as the al-

$$
\mathrm{K} 2 \text { lowance }
$$

lowance is, either after Simple or Compound Intereft; Now the nature of Rebate or Difcount is thus ; when there is a fum of Money, (fuppofe soo l.) to become due at the end of a certain time to coine, (viz. at the end of 12 Months;) and it is agreed upon by the Debtor and Creditor that there fhall be made prefent payment of the whole Debt, and it is likewife agreed that in confideration of this prefent payment that the Creditor fhall allow the Debtor after the rate of σ per Cent. per Anmum: Now upon this agreement the Creditor ought to receive fo much money as being put out to intereft for the fame time it was paid before 'twas due, and at the fame rate of intereft, that the difoount was reckoned at, then would it amount or be increafed to the fum that was fint due.

The manner of working Queftions in Rebate at Simple Intereft fhall be fhewn in the ninth Rule of this Chapter, and of working Queftions in Rebatc at Compound Intereft fhall be Thewn in the Fourth Rule of the next Chapter.

VJ. When the intereft of a 100 l. for a year is known, the intereft of any other fum, for the fame time, is alfo found out, by one fingle rule of direct proportion, viz. The intereft of a 100%. for a year by the ftatute is $6 \boldsymbol{l}$. I demand what is the intereft of 75% for the fame time, and at the lame rate of Intereft? The proportion is as followeth:

Or if you would have the Anfwer to produce both principal and intereft, then make the re-

Clap. 12. Simple Interef?

cond number to be the fum of the given principal and intereft, and the fourth proportional will aniwer your defire. Thus

$$
1.1 . \quad 10: \frac{1}{100: 106: 75: 79.5=79+10}
$$

VII. When the interelt of 100 for a year is given, and the interelt of any other fum of pounds, hillings and pence is required for a year, the anfwer may be eafily found after the praatical method delivered in the following Example.

Let it be required to find the intereft of 8. 4.8 . 13 s.-O4d. for one year after the rate of σ per Cent. per Annum, Simple Intereft?

Firft, I place the given numbers according to the direction given for the Rule of 3, which will fand thus, yiz.

$$
\begin{aligned}
& \text { 2. l. l. s. d. } \\
& 100: 6: 14^{8-13-04}
\end{aligned}
$$

Now it is evident that if I multiply ${ }^{3} 48$ l. - 13 s.- -04 d. (which is the third number) by 6 (which is the fecond number) and divide the product by 100 (which is the firft number) the Quotient will be the anfwer; Thexefore I proceed thus, viz. firlt I multiply the pence by σ, which makes 24 pence, or two fhillings, therefore I fet down 0 under the pence, and carry 2 to the next, then I go to 13 s. faying 6 times is is 78 , and 2 that I carried is 80 s. which is, 4 r. therefore 1 fet down o under the thillings and carrys 4 to the pounds, then 1 , proced, faying 6 times 8 is 48 and that 4 ? proceeding thus till the work be finimed, and then will the product be 890 l.-00 s.--00 d. which product fhould be divided by 100 (the firft number) but it being an unite with two Cyphers, I cut off two figures from the right hand of the pounds, with a dalh of the pen, and the figures on the left hand of the faid damb are fo many pounds, and thofe on the right hand of it, are the Decimal parts of a pound, whore value may be found out by the 3 Rule of the 2 Chap. But remember, that if there be any fhillings or pence, in the product you are to add them to their refpective products in your Reduction.

The work of the foregoing Example is as followieth.

So that by the work I find the intereft of $3481 .-\mathrm{I} 3 \mathrm{~s} .-4 \mathrm{~d}$. for one year after the rate of 8 per Cent. per Au, to be $81 .-183$ s. 04 d. -3.2 gWo

Another Example may be this, viz. 1 demand the intereft of $368 \%-15 \mathrm{~s}-3 \mathrm{~d}$. for one year, at 6 per Cent. per An. Anfwer 22 l.-02s.- 6 d. as by the work following.

$$
100-6 \div \frac{1.8}{368-15-03}
$$

$$
\begin{aligned}
& 2212_{20}^{11-06} \\
& 20
\end{aligned}
$$

VIII. The Intereft of soa 1 : being known for a year, or 365 dayes, the interef of any other fum may be known for any other time, or number of dayes, more or lefs than a year, by two fingle Rules of ${ }_{3}$ Direet, iiz. Firft, find out what is the intereft of the given fum, for one year, or 365 dayes, according to the latt Rule, then having found out that, you may (by another fingle Rule of 3 Direct) find out its interelt for any other time more or lefs.

> Example.

What is the intereft of 322% for 6 years after the rate of 6 per Cent. per Annum, Simple Intereft ?
 to

First I find what is the Interest of 322% for a year by the following proportion,

$$
100: 6:=\frac{1}{322}=\frac{4}{19.32}
$$

Thus having found the intereft of 322% for a year to be 19.32 2. at 6 per Cent. by the following proportion I find out its interest for 6 years, to be 115 l. - 18 s. $-04_{4}^{3} d$, and that added to the principal, makes $437 \mathrm{l} .-18$ s. $-04 \frac{3}{4}$ d. for the fum due to the Creditor at the end of the said time.

And here take notice that the second number in this loft proportion, mut always be only the intereft of the fum proposed, and not the fum of the principal and intereft, as in the fecond pro portion under the fixth Rule.

After the fame manner is the intereft of I l. (at the rate of a per Cent. per Annum, or any other rate of intereft,) difcovered for a day, by the help of which the intereft of any fum whatfoever may be difcovered for any number of dayes as thall be thown by and by.

Firft ${ }_{100}^{l}: \frac{l}{6}:=1=\frac{l}{1} 0$

Secondly | day |
| :--- |
| $365: .06: 1$ |
| 1 |$=0001643835$

So that by the foregoing proportions I have found that the intereft of 1 l. at 6 per Cent. per Amnum for a day is :0001643835 l .

Now if you would know the Interelt of any other fum for any number of days more or lefs than 365 , yon may do it by help of the faid number after this manner, viz.

Multiply the fum whofe interef is required by the faid number, and that product will give you the intereft of the faid fum for one day, then multiply that Product by the number of days. given, and the laft Product will give you the intereft of the faid fum for the number of dayes in the queftion. Take the following queftion for an example, uiz.

What is the intereft of 568%. for 213 days after the rate of 6 per Cent. per Annemp?

$$
\begin{array}{r}
.00016_{43} 835 \\
568
\end{array}
$$

$$
\begin{array}{r}
13150680 \\
9863010 \\
8219175
\end{array}
$$

.0933698280
213
2801094840
933698280
1807390560
19.8877733640

$$
\text { Facit } 19-17-0-0
$$

Having finifhed the work as you fee, I find the anfwer to be 19.8877, ofc. which upon fight I difcover to be $191 .-17 \mathrm{~s}:-09 \mathrm{~d}$. by the brief way of valuing a decimal Fraction of Coyne laid down in the 4 Rule of the fecond Chapter beforegoing.

But when the intereft of any fum of Money is required for any number of days as afore faid, at any other rate of intereft than at 6 per Cent. per Annum, the aforefaid number will not then ferve for the work, but you are to find out particular multiplyars for the feveral rates of intereft as is before directed. All which I have exprefled from 4 to :o per cent. in the following Table.

So that when you would find out the intereft of any fum of Money for any number of dayes according to the direction before given, at any Rate from 4 to 10 per Cent. per Annum, Simple Intereft, you may perform the work by the multiplyar in the foregoing Table which is placed againft each refpective rate of Intereft.
IX. When the prefent worth of a fum of Money due at the end of any time to come is required, Rebate being allowed at any rate of Simple Intereft, it may be found out by the following method; viz. Firf, Find out the intereft of 100 l. for the time that the Rebate is to beal lowed for, and at the fame rate of intereft propounded, then make the fum of an 100 pound, and its intereft for the propofed time, to be the firf number in the Rule of 3 , and 100%. the fecond number, and the given fum whofe prefent worth is required, let be the third number, and the fourth number in a direet proportion fhall anfwer the queltion, as in the following Example, viz.

What prefent Money will fatisfie a debt of 100%, that is due at the end of a year yet to come, Difcount or Rebate being allowed at the Rate of 6 per Cent. per Annum.

According to the foregoing Directions, I fate the numbers as followeth, and the fourth pro-
proportional number or anfiwer to the queftion is $.9433962 l:=94$ l. -06 s. $-09^{\frac{1}{2}}$ d. fere.

$$
\begin{array}{ll}
l o \\
106: 100: 100: 9433962
\end{array}
$$

The reafon of the faid Analogy will appear if you confider, that there ought to be fo much ready money paid, that if it were put out to intereft at the fame rate of Int. that Rebate was allowed for, and for the fame time, the fame would then beaugmented to the fum that was at firf due, as in the laft queftion, there is given rool which is due at the end of i2 Months, now I fay, that there ought to be fo much money paid Gown to fatisfie this debt, as being pit out to intereft at 6 per Ceri. for 12 Months, would then be increafed to 100%. which is the firfe fium due, and again it is as cvident that if there were 106%. due at the end of 12 Months, or a year, and prefent payment is agreed upon, allewing Rebate at ob per Cent, per Annum, that then there ought to be paid the fum of 100%. in full difcharge of the faid debt of 106% for if when'I have received the faid fum of 100 l . I put it out to intereft for one year at the rate of σ per Cent. it will ther be increafed to 06%.

Therefore to folve the faid quetion, the proportion here ufed is no more than if I hould fay, If 105% be decreafed to 100% what will 100%. te decreafed to? The anfwer is, to $94 l .-6 s,-9 d \cdot \frac{7}{4}$ and for proof, if you will feek what that fum will be increafed to at the end of 12 Months, at the rste of σ per Cent you will find it to be YOO.

How much present Money will fatiffeat debt

Chap. 12. Simple Intereft. of 82 . - 15 s. due at the end of 126 days, yet to come allowing we bate after the rate of 0 per Cent. per Alinum?

First I find the interel of 100 l . at the fame rate of interest for 126 days by the following pros. portion.

$$
\begin{aligned}
& \text { day }=\frac{\text { day }}{1:}=1 . \\
& 365: 6: 126: 2.0712
\end{aligned}
$$

Then do I add 2.0712%. (the interelt of 100 i.) to 100% and the fum is 102.0712 which I make the firft number in the Rule of 3 , and 1001 . the fecond, and 82.75 \% (the fum given to be Rebated) the third number, and the fourth number in a direct proportion is the anfwer to the queinion, fee the work as followeth.

$$
\begin{aligned}
& l_{102.0712}^{l .}: \stackrel{l .}{100}: \frac{l .}{82.75}: 81.0708 \\
& 102.0712) \\
& 8275.00
\end{aligned}
$$

So that by the work it appears that $82, l$. 15 so due at the end of 126 days yet to come, will be fatisfied with the prefent payment of 8I l. -01 s. $-04_{4}^{3} \mathrm{~d}$. Rebate be allowed after the rate of σ per Cent. per Annum.

The proof of the Rule.
Find out (by the eighth Rule foregoing) how much the present money that is paid upon Rebate, will amount to being put out to interest for the fame time, and at the fame rate of intereft that Rebate was allowed for, and if the amount be equal to the fum that was due at the end of
of that time then you may conclude the work to be rightly'performed, otherwife not:

As for Example.

In the foregoing queftion it was found that 81. 0708 l. being paid prefently would fatisfie a debt of 82.75 due at the end of a 126 dayes to come, and to prove it, let us fee whether 81.0708 being put out to intereft for 126 days at the rate of 6 per Cent. per Annum, will be inereafed to $88.75 l$. (the fun which was faid to be due at the end of 126 days to come) which 1 do by thefe two proportions following according to the eighth Rule.

Secondly, $100 \div 2.0712: 81.0707: 1.0791$, \& c_{0}
So you fee that I have found the intereft of 81.0708 for 126 days to be 1.6791 , orc. which added to the principal 81. 0708 the fam is 12.7499 which by the brief way of valuing the Decimal of a pound Iterling is $82 l_{0}-15$ s. and indeed it doth not want $\frac{1}{3}$ part of a farthing of the exact fum, which is occafioned by the defective Decimal wherefore I conclude the work to be rightly performed.

Upon the foregoing ninth Rule is grounded the manner of calculating the enfuing Table of Multiplyers, which heweth in decimal parts of a pound, the prefent worth of a pound Sterling due at the end of any number of years to come,
notexceeding 30 , Simple Intereft being compu-ted-at 6 per Cent. per Annum.

The firft number in the Table being found out by this following proportion, viz.

As 106 \% is to 100%. To is 1% to 943396 . and the fecond number in the Table being the prefent worth of 1%. due at the end of two years to come, is thus found out, viz. Firft I confider that 12%. is the fimple intereft of 100% for 2 years, which added to 100% makes 112%. wherefore I fay as 112% is to 100% fo is 1%. to .892857 6, which is the prefent worth of 1%. due at the end of two years to come.

The feveral proportions and operations for the whole, Calculation being as followeth, viz.

	106:100	: :- I	
2	112 : 100	: 1	. 892857
3	118:100	: $: 1$. 847457
4	124:100	: : 1	. 80645 r
5	130:100	: :	.769230
6	136 : 100		.734294

And after the fame manner are all the numbers in the following Table Calculated; which being well underftood, the way of calculating moit of the enfuing Tables will eafily be obtained; and its ufe you will find immediately after the Table it felf.

TABLEI.

Which fheweth in De-1I 602499 cimal parts of a pound 12.581395 the prefent worth of I l. 13.561797 due at the end of any 4.543478 number of years to come 15.526315 funder 31, at the rate of 1.6 . 510204 6 per Cent. per Ann. Sim-17. 495049 ple Intereft. 18.480769.

$$
19.467289
$$

20.454545
21. 442477

$22 \cdot$.431034
23.	.420168
24	.409835
25	.400000
25	.390625
27.381679	
28	.373134
29.364963	
30.	.357143

10.625000

After the fame method might this Table be continued to any number of years at pleafure, In might alfo have calculated for other rates of intereft, as thofe are in the next Chapter concerning Compound Intereft, but Simple Intereft being not fo generally in practice, I fhall therefore forbear.

The ufe of the preceding TA BLE.
It is evident (by the ninth Rule foregoing)
that if any fum be paid with an allowance of Rebate, you are to make 100 l. with its intereft (for the fame time you Rebate for) both in one sum, to be the firft number in the Rule of 3 100 the fecond, and the fum to be rebated the chird, then will the fourth proportional be the anfwer; and the fame may be wrought by any other number and its intereft, as well as by $100 l$. and its intereft mutatis mutandis: Now in the Table beforegoing there is expreffed in Decimal parts of a pound, the prefent worth of 1%. due at the end of any number of years to. come under 3^{2}, \&c. that is to fay, if you take the money fignified by thofe Decimals, and put it out to intereft at 6 por Cent. per Annim, Simple intereft for fo many years as are exprefled in the Collum of years againft the faid Decimal, then will that fum at the end of the faid Term, be augmented to $1 l$. whercfore if you have any fum what foever to be rebated for any number of years within the limits of the Table, make i l. the firft number in the Rule of 3 , and the Decimal in the Table againft the number of years to be rebated for, make that the fecond, and the fum whofe prefent worth is required the third number, fo will the fourth proporional be the anfwer. But (becaufe the firf number (being Unity) neither multiplieth nor divideth if you take the number in the Table, correfpondent to the number of years for which you would reckon Rebate, and theieby multiply the fum whofe prefent worth is required, the product will give you the Anfwer.

Examples

There is a fum of Money, viz. 560 l , due at the end of 8 years to come, but the Debtor and Creditor agree that present payment hall be made, and the Debtor to be allowed Rebate after the rate of 6 per Cent. per Annum, Simple Intereft. Now I demand how much prefent money will fatisfie the faid Debt ? Answer, $378.378 \mathrm{l} .=378 \mathrm{l} .-07 \mathrm{~s} .-06+\mathrm{d}$. fee the following work.

Firft (the Rebate being to be reckoned for 8 years) I look for 8 in the Collum of years, and just againft it on the right hand, I find .675675 which I multiply by 560 (the fum who fe prefent worth is required, and the product is 378.378 , which by the brief way of valuing the fraction of a pound Sterling). I find at first fight to be $379 l .=07$ s.-c6 ${ }^{3}+d$.

This Queftion if it had been wrought by the foregoing ninth Rule would have produced the fame anfwer, for, the Int. of $100 l$. for 8 Mon. is 48% and 100 न $48=148$ wherefore by the Rule of 3 I fay

X. When an Annuity or yearly Income in arrears for any number of years, and you would know the increafe, or amount of it, allowing Simple Intereft at a certain rate per Cent. per. Annum, for each yearly payment from the time it firft became due, the operation will be fomewhat more tedious than to find the amount of one fingle fum, according to the eighth Rule of this Chap. which will clearly appear by folving the following queition, viz.

There is an Annuity, or an income of ico l. per Annum. forborce to the end of 6 years, I demand how much is due at the end of the faid Term, allowing intereft at the rate of σ per Cent. per Annum Simple Interelt? Anfiwer 690%

Ir order to the folution of this Queltion, I confider, Firf, that

It is evident that for the laft year, viz. the fixth years payment, there mult be no intereft at all Reckoned, becaufe it becomes not due till the end of the fixth year; Secondly there mult be reckoned the intereft of 100% for one year, viz. that which is due at the end of the fifth year; Thirdly, there muft be reckoned the intereft of 100%. for two years, viz. that which is due at the end of the fourth year. Fourthly, There muft be reckoned the intereft of 100 l . for three years, viz. that which is due at the end of the third year, Fifthly, the interelt of 100%. for 4 years, viz. thit which is due at the end of the fecond year: And sixthly, The intereat of I: Ol. for 5 years, viz. that which is due at the end
of the firft year, and is forborne the fecond, third, fourth, fifth and fixth years; all which interefts being added together, and their fum added to the fum of each years income, the fum will exhibit the total fum, due at the end of the faid fix years, which you may perceive by the following work to be 690%. which is the anfwer to the foregoing Queftion.

The Intereft of $100 l.)^{1} 2(\cdots) 12$ at 6 per Cent. por $A n .\{3\rangle=18$ Simple Intereft, for $\left\{\begin{array}{l}4 \\ 4\end{array}\right)={ }^{24}$
${ }_{5}{ }^{2}-10$
The fum of the intereft is 90
600 The fum of the annuities is 600

The Total amount is
690

The Conftruction of Table II.

UPon the foregoing reafon is grounded the Calculation of the following Table, which theweth the amount of i l. annuity, being forborn to the end of any number of years under 3 I, Intereft being allowed for each yearly payment af. ter the rate of 6 per Cent. per Annum, simple In. tereft.

The firft number in the Table being $: l$. which is that due at the end of the firlt year, no intereft being due for that; the fecond number in
the Table is 2.06 , which is the frt and fecond years-payment, and the 'intereft of 1 l. for one year, being that which was due at the end of the fir year; The third number in the Table is 3.18 \% being the increase of I \%. for 2 years addod to the fecond number in that Table which is 2.06 , for the amount of 11 . at the end of 3 years is 1.12 which added to 2.06 the fecond number it makes 3.18 for the third number; The fourth number is the amount of il. for 3 years which is 1.18 added to the number before it, viz. the third number, proceeding in the fame method, till you have compofed the Table at your pleafure, each number in the Table being 1 l. and the amount of 1% (for fo many years as it ftandeth againft in the Table made left by one,) added to the number immediately proceeding it.

> LB TABLE

$\begin{aligned} & \mathbb{R} \\ & \stackrel{\sim}{6} \\ & \stackrel{3}{6} \end{aligned}$	T A BLE II.	容	
	Which theweth in pounds	11	14.30
	and Decimal parts of a	12	15.96
	pound the amount of 11 , an-	13	17.68
	nuity being forborne to the	14	19.4 .6
	end of ainy number of years	15	21.30
	under 3 r , Simple Intereft	16	23.20
	being computed after the	17	25.16
	Ratc of 6 per Cent. per $A_{n,}$	18	27.18
		19	29.26
		20	31.40
Σ	1.00	21	3.3.60
2	2.06	22	35.86
3	3.18	23	38.18
4	4.36	24	40.56
5	5.60	25	43.00
6	6.90	26	45.50
7	8.26	127	48.06
8	9.68	128	50.68
9	11.16	29	53.36
10	82.70	30	56.10

The ufe of Table II.

In the preceeding Table in the Collum under the word Years, are fet down every Year fucceffively from 1 to 30 , and the number in the Table placed againft each year, is the amount of I l annuity, in pounds and decimal parts of a pound, being forborne fo many years as it is placed

Chap. 12.

placed againft. The use of it will plainly appear by the folving of one, or two Queftions, viz.

There is an Annuity of $13+1 .-10 \mathrm{s}-.6 \mathrm{~d}$. all forbore to the end of 4 years; 1 demand how much is due to the Creditor at the end of the fail Term, Simple Intereft being allowed after the rate of 6 per Cent. per Ainum?

$$
\text { Tacit } 5361 .-10 \text { s. }-07 \mathrm{~d}
$$

To answer this Queftion, first, 1 look for 4 years, in the Collum of years, and the number againt it is 4.36 which is the amount of I l. Annutty for 4 years; therefore having turned the Is.- -6 d . (in the given annuity) into a Decimal (which is .525) I fay by the Rule of 3 than?,

Thus by the work I find the anfwer to be 58.529 l the value of which Decimal by the brief way of valuing a Decimal laid down in the th. Rule of the 2 d . Chapter, 1 find to be 580% 10s. 7 d .

And it is plain that in solving Questions by this Table, that (the firft number in the Rule of 3 being unite) if you multiply the given Amity

$$
14
$$

by the proper Tabular Number, that then the product will be the answer.

$$
\text { Example } 2 .
$$

What is the amount of an Annuity of 1.50% ios. being forborn to the end of the 7 years, allowing Simple Intereft after the rate of 6 per Cent. per Annum? Answer, 1243 b. -02 s. $-07^{\frac{1}{+}} d$. fere.

The given Annuity is

The Tabular number for 7 years is

150.5
8.26
9030
3010
12040

Fact 1243.130
XI. When an Annuity or yearly Income, for a certain number of years to come, is to be fold for ready Money, and the feller The Rebate of is to allow the Buyer Rebate at Annuities at Simple Interelt for his prefent Simple litereft payment, then in this cafe the buyer ought to pay fo much prefent Money for each yearly payment, as being put out at Simple Intereft for fo many years as it is Rebated for, it would then amount to one yearly payment, and the fum of all thole grerent worth will be the prefent worth of the Annuity required, the Rule will appear very plain by the following Example,

There

There is an Annuity or Leafe of 100%. per An: num to continue 6 years yet to come to be fold for ready Money, the Seller being to allow the Buyer Rebate at 6 per Cent. per Annum, Simple Intereft now I defire to know how much prefent Money will buy out the faid Leafe?

$$
\text { Facit } 4 s \mathrm{~g} \text { l-Oo s. }-\mathrm{O} 4^{\frac{1}{2}} \text { d. fere. }
$$

It is evident that if we find out the prefent worth of 100% due at the end of the firlt year, and alfo the prefent worth of 100%. due at the end of the fecond year, ard the prefent worth of 100%. due at the end of the third year, and likewife the prefent worth of 100%. due at the end of the fourth, fifth, and fixth years, and add all thefe prefent worths together, their fum will be the prefent worth of the given Annuity; which feveral prefent worths are found out according to the ninth Rule, by the feveral proportions fol. lowing, viz.

The prefent worth of the faid Annuity is $\} 499.468754$

So that you fee by the foregoing proportions; the prefent worth of 100%. per Ansum to contimue fix years, allowing Rebate at σ per. Cent. per ' $\mathrm{s} .-04 \frac{1}{4} \mathrm{~d}$.

Upon the foregoing eleventh Rule is grounded the conitruction and calculation

The conifruction of the 3 Table. of the following Table which Theweth the prefent worth of I pound annuity to continue any number of years under 3^{1} Simple Intereft being computed after the tate of 6 per Cent. per Annum ; the firt number in the Table is .943396 which is the prefent worth of I pound due at the end of a year to come. The fecond number in the Table is 1.836253 , which is the fum of the prefent worths of 1%. due at the end of two years to come, and if 1%. due at the end of one year to come added together; And the third number in the Table is 2.683710 which is the fum of the prefent worths of $1 l$. dueat the end of 3,2 , and I years to come, after the fame method is the whole Table calculated.

But the numbers in the faid Table may more eafily be found out thus, viz. Look in the firft Table, and let the firft number of that be the firft number of this third Table, and let the fum of the firft number in this, and the fecond number in that be the fecond number in this Table, and for the third number in this Table take the fum of the fecond in this, and the third in that Table, and in this manner you may proceed till you have compofed the whole Table.

TABLE

$1 \stackrel{\bigotimes}{\boxed{W}}$	T A BLE III.	11	8.251334
5	Which fheweth	12	8.832729
	the prefent worth	13	9.394526
	of I l. annuity to	14	9.938004
	continue any num-	15	10.464319
	ber of years under	16	10.974523
	31 , Simple Intereft	17	11.469572
	being computed at	18	11.950341
	6 per Cent.per An.	19	12.437630
		20	12.892175
1	. 943396	21	13.334652
2	1.836253	22	13.765686
3	2.683710	23	14.175524
4	3.490161	24	14585360
5	4.259391	25	14.985360
6	4.094685	26	15.375985
7	5.698900	27	15.757664
8	6.374575	28	16.120798
9	7.023925	29	16.485761
ro	7.648925	30	16.842901

The Ufe of the foregoing Table III.

In the foregoing third Table in the left hand Colum under the Title of years, ate exprefled all the integral numbers, from one to 30 , which fignifie fo many years, and the numbers in the Right hand Colum which are placed againft the number of years are pounds, and decinial them are the prefent worth of 1 pound Annuity to continue fo many years to come as are placed againft them in the Collum of years, Rebate being allowed at Simple Intereft 6 per Cent. per An.

As, fuppofe there were a Leave of 20 fillings per annum to continue 6 years, to be fold for refont Money, allowing the buyer Rebate at σ per Cent. "per Asnum Simple Intereft. I define to know how much is its prefent worth ? To answer this, $\$$ look in the Collum of years for σ, and in the next Collum on the Right hand jul againft 6 you
 anfwer to the Queftion. And by the help of this Table may the prefent worth of any Annuity to continue any number of years under $3 \mathrm{I}^{\prime}$ be found out, allowing Rebate at 6 per Cent. per Ansum, Simple Intereft, by one fingle Rule of 3 Direct, according to the manner of folving the following question, viz.
Duct. I.

There is a Leafe of 18 years yet to come, of the yearly value of $13 n l$. to be fold for ready Money, and the purchafer is to be allowed Rebate after the rate of 6 per Cent. per Annum, Simple Intereft, now I demand how much is the prefent worth of this Leafe?

$$
\text { Fecit } 1553 \mathrm{l} .-10 \mathrm{~s}_{0}-10^{\frac{2}{1}} \mathrm{~d}
$$

Firth, I look in the Table for 18 years, and over against it on the right hand I find 1.1.950341 which is the prefent worth of I pound annuity to continue is years, ec. Therefore by the Rule of 3 Direct, I fay

$$
358510230
$$

II95034I.

$$
\begin{aligned}
& \text { l. } \quad l . \\
& 1: 11.950341 \text { : : } 130: 1553.544330
\end{aligned}
$$

$$
\text { l. so } \quad d_{0}
$$

$1553.544330=1553-10-10^{3}$.
So that by the work you find the anfwer to be 1553.544%. orrc. or 1553% - 10 s.- $10 \frac{3}{4}$ d. very near, which faid anfwer is nothing elfe but the product of the Tabular number, ($11.95034^{\circ} \%$.) multiplied by the given annuity (130 l.) For it is evident, that if the prefent worth of 1 pound annuity to continue 18 years be 11.95034 , $\%$ then the prefent worth of 130% Fer annum to continue the fame number of years (and Rebate being allowed at the fame rate per Cent. per An. for the one as for the other) mult be 130 times as much. But when rebate is to be allowed after any other rate then 6 per Cent. per Annum, then the toregoing Table will not atall be ufeful, bat you muft have recourfe to a Table calculated for the fame rate of intereft, which you may eafily pero. form at leifure by the foregoing rules.

$$
\text { Queft. } 2 .
$$

What Annuity to continue 18 years will 1553.544330 purchafe, allowing the Buyer Simple intercit at 6 per Cent. per Annum?

Facit 130%

This Queftion is. but the converfe of the former, and may be thus refolved, viz. Take the Tabular number correfponding to 18 years, which is 11.950341 by which divide the given purchafe Money, and the Quotient will give you the annuity that it will purchafe, viz.

$$
\underset{1 .}{1.950341) 1553.54433(130}
$$

So that by the work Ifind it will purchafe an Annuity of 130%. to continue is years.

The reafon of the work is plain, for if the Tabular number correfpondent to 18 years be the prefent worth of 1%. Annuity to continue 18 years to come, then it is certain that fo much Money as is expreffed by that Tabular number, will purchafe an Annuity of i l. to'continue 18 years: And confequently we may find by help of the faid Table what annuity any other fum of Money will purchafe to continue any number of years not exceeding 30, by a fingle Rule of 3 Direft, as in the laft Queftion, the proportion is as followeth, viz.

And it is no more in effect than a fum in Divifion, for the fecond number (being r) neither multiplyeth nor divideth, \&r.

By what hath been faid concerning the ufe of the foregoing Table, you may perceive that the prefent worth of an Annuity is found out by multiplication, and to know what annuity any fum will purchare is performed by Divifion.

Chap. iz. Simple Intereft. 159

I might have made Tables for other Rates of Intereft, but Simple Intereft being feldom allowsed in the purchafing or valuing of Leafes and Annuities, they being generally purchafed at Compound Intereft, or Intereft upon Intereft, makes me forbear, and indeed at Simple Interen a Leafe is over-valued.

CHAP .

CHAP. XIII:

Of Compound Intereft:

I. WHat hath been raid in the laft Chapo ter, I judge fufficient for the under Itanding of the Nature and Ufe or Simple Intereft, and that being well underftood, the nature of Compound Intereft will not feem difficult to the ftudious Learner, and the better he is acquainted :with the nature of Simple Interelt, fo much the eafier will he come to the knowledge of the nature, and ufe of Compound Intereft.
II. Compound Intereft is, when a fum of Money is put out to Intereft, and the Interef thereof becoming due is ftill continued in the hands of the Debtor, fo as to become part of the principal, interelt being reckoned for it from the time it becometh due, for which reafon it is called intereft upon intereft: And as simple Intereft increafeth by a feries of Arithmetical proportionals contipued; fo doth Compound Intereft increafe by a rank or feries of continual Geometrical proportionals. For when a fum of Money is put out to intereft at any rate per Cent. per Annum. (as fuppofe a 100% to be put out to receive at the end of one year 6 l . for its intereft) it is evident that if the intereft (being σl.) be continued in the hands of the Debtor, there will be at the end of the recond year the increafe of 106% which is 112.36% and at the third years end there will be the increafe of $112.36 /$. fo that every number proceedeth from that going before it, after the fame rate or reafon as doo proceedeth from ICO , as you fee follow. ing.

l.	l	1.	1.
$100:$	106	$: 106$	112.36
$100: 106$	$:$	112.36	$: 19.1016$
$100:$	106	$:$	119.1016

So that by the Augmentation of 100 . in 4 years you have this rank of Geometrical proportionals continued, viz. roo, ro6, il2.36, 119.1016 and 126.247696 which is in number s, viz. more by one than is the number of years. the laft of: which is the amount of 100% at 6 per Cent. for 4 years reckoning Compound Intereft, or Intereft upon Intereft, and each of theie proportionals proceedeth from that going before it as io6 proceedeth from 1oo, that is to fay, every of the faid proportionals, is in frach proportion to that which goeth before it as 106 is to 100 , or as 100 is to 106 , fo is any one of them, to that which followeth it, or if you take any 3 of them which are placed together, there this proportion between them, viz: As the firft of thofe three is to the fecond, fo is the fecond to the third, and the third to the fourth, and the fourth to the fifth, and the fifth to the fixth, ser. "whence it is evident that they have amongt themfelves this following Qualification, viz. that the fquare of: Product, made by that which is placed immediately béfoverit, and that immediately after it, and the fame would it be if there were never fu many Tierms, and is a peculiar property of all numbers that are Geometrical proportionals continued
III. The Intereft of 100% for a year being known, the Compound Intereft of any other fum for any number of years may be likewfe found out by fo many:fingle Rules of 3 , as there are given years, for,

As 100% is to its increafe for one year, fo is any other fum to its increafe for the fame time, and fo is the firft years increare to the fecond, and the fecond years increafe to the third, and fo is the third years increare to the fourth, ect

Example.

Let it be required to find how much 350 l , will be increafed to, being put ont to Intereft at 6 per Cento per Annum, Compound Intereft for 5 years ? Anfwer, 468 l. -7 s. $-44^{\frac{3}{4}}$ d. fere, See the following work.

$$
\begin{aligned}
& 350: 371 \\
& 371: 393.26 \\
& 393.26: 416856 \\
& 416.8556: 441.866936 \\
& 441.867936: 468.37895216
\end{aligned}
$$

Chap. 13. Compousd Intereft. $\quad 163$

 Whereby you fee that 350 l . being put out to intereft after the rate of 6 per Cent. will at the firt years end be increafed to 371 . And 371 . being put out for the fecond year, will be increafed to 393.26% and 393.26 l . being made a principal, and put out at the fame rate for the third year, will at the end thereof be increafed to $416.85^{\circ} \mathrm{l}$. and at the end of 5 years it will be iscreafed to 468.37895216%.And upon the atorefaid Grounds is calculated the following Table $\mathrm{r}_{\text {, }}$ whofe Conifruction and ufe immediately followeth the fame.

TABLE

Chap. I3.

Compound Intereff.

н	
\%	
Y	

The Conftruction of the foregoing T A BLE I.

By the third Rule foregoing it is evident that the Intereft of 100 l . for a year being known, the Compound Intereft for any other fum may be found out for any number of years; According to which Rule all the numbers in the faid Table are found out, being the amount of $1 l$. at Compound Intereft for any number of years, not exceeding 30 , being put out at any of there Rates, viz. $5,6,7,8,9$, or 10 pex Cent. per Annum, which numbers are found out by the Rule of Proportion thus,

$$
100: 105:\left\{\begin{array}{l}
1.051 .05 \\
1.05: 1.1025 \\
1.1025: 1.157625 \\
1.157625: 1.21550625
\end{array}\right.
$$

By which means the four firft numbers in the fecond Colume of the Table (being placed under the number 5) are found, and by a continuation of the fame operation are all the reft of the numbers in that Colume found out ; which is indeed nothing elfe but a continual ' multiplication of the firft number, (viz. 1.05 , into it felf 29 times, and fo the laft number in that Colume is the thirtieth power of 1.05 , and the fame Colvme may be continued to any other number of years at pleafure above 30 ; the numbers in this Colume being the intereft of $I l$, at

Chap. 13.

5, per Cent. jer Annam Compound Intereft for 30 years.

The numbers is the third Colume under the Figure 6 , are the increate of I $\%$ at 6 per Cent. per Annum. Compline: for 30 years, and are found out by multiplying 1.06 into it pelf 29 times according to the Rule of Continual Mustiplication. The like is to be underftood of all the reft.

The ufe of the foregoing TABLE:

In the firs Column of the Table under the Title years, are expreffed the number of years from I to 30 , and in the fecond Colume under the figure 5, and againit every reflective year are expreffed the increate of $1 /$. being part out at 5 per Cent. per Annum, Compound Intereft.

In the third Collum under the number 6 is expreffed the yearly increafe of I l. being put out at 6 per Cent. per Annum, Compound Int. And fo in the $4,5,6$, and 7 Collins, are the yearly amounts of I l. at 7,9 ; 9 , and io per Cent. peri, Anmum, Compound Interest.

All which numbers in the raid Table are muttiplyers, for the producing of the amount or Increase of any other fum being put out at Campound Intereft, at any rate of Interest, and for any number of years therein expreffed, as will appear by the following Examples.
hi, looted Example Io combs adZ :

1. de find the fullamoune of 365 l. beingonat

Here becaufe the fum propofed is put out at 6 per Cent. and for 9 ycars, I look in the Collum of σ per Cent. which is the third Collum of the Table under the figure 6, and juft againt 9 in the Collum of ycars, I find 1.63947 which is the increafe of 1%. being forborn the fame time, and at the fame rate of Intereft, wherefore by the Rute of 3 I fay

$$
\begin{aligned}
& \frac{\text { l. }}{i}: \frac{l}{1.68947}:=365: 61665655 \\
& \frac{365}{844735} \\
& 103682 \\
& 506841 \\
& \\
& \\
& \hline 16.65655
\end{aligned}
$$

So that by the work If find that if the fum of 365 . be all forborn to the end of 9 years; and intereft be computed for the fame at 6 per Cest. per Ammum, Compound Iutereft, it will then be increafed to 616.65655 which is $6161 .-13 \mathrm{~s}$, $1 \frac{1}{2} d$.

Exasple 2.

What will 128 l. -16 s.- -08 d . be increafed to? The utmoft improvement thereof being made for 15 years at 7 per C'ent. per Annum, Compound Intereft?

Fivft, turn the $16 s-8 d$. into the Decimal of a pound by the 2 d Rule of the 2 d Chapter foregoing, and you will find it to be .8333 , fo that the given fum is 128.8333 , coc.

Now to anfwer this queftion, I look into the foregoing Table, and in the Collum of 7 per Cent. and juft againft 15 years I find 2.75903 which is the uttermoft increafe of i 6 . for 15 years at 7 per Cent. Compound Intereft, by which if you multiply the given fum, the product will be the anfwer to the queftion, as by the following work will plainly appear.

$1: 2.75903:$| 128.8333 |
| :---: |
| 2.75903 |$\frac{3964999}{115949970}$| 6441663 |
| :---: |
| 2018331 |
| 256666 |

By the foregoing work the anfwer is found to be 355.4549, co $c=355$ l-O 09 s.-OI d.

But if any fum be put out at Compound Int. for months, or days over and above the given number of years, then the work will be fomewhat different from the former; for firft you mult Find out the amaunt of the given fum, for the given number of years, and then by the 8th Rule of the foregoing Chapter find out the Intereft of, that amount for the odd time, being either months or dayes under a year, and that Int. being added to the aforefaid amount, that foum
will be the anfwer to the queftion: this is fo obsious that it ncedeth no Example.
IV. When a fum of Money due at the end of any number of years to come is Of Rebated or Dif- to be fatisfied with prefent mocount at Compound ney, aliowing rebate at ComIxtcreff. pound Intereft, there mult be found a Rank or Series of continual proportionals, more in number by one than the number of years for which the difcount is propofed, of which rank or ferics of proportionals, the fum to be fatisfied by prefent payment mult be the firft, and the fecond mult decreafe from that after the fame rate or proportion as 100 decreafeth from the fum of 100 added to its intereft for one year, after the rate of Intereft propounded; that is to fay, as ico proceedech from 106, or ro8 if the intereft be 6 or 8 per. Cont. and ofree the fame rate or reafon mult the third decreafe from the fecond, and the fourth from third, corc.

When a queftion is flated for the rebate of Money at Compound intereft, it is folvable by as many fingle Rules of 3 , as the number of years for which the fum propofed is to be Rebated, and it is notiaing clie but the inverfe of the third Rule of this Chapter, as may be proved by the working of the following queftion, taken out of the raid Rule, whe it is proved that 3501 . being forborn in the Debtors hands for 5 years at 5 per Cent. Compoinde Intereft, it will then be inctcafed to $46 \$.28001216$; now let the Foid Queftion be inverted this, vi:
There is a fum of Monce viz. 468.380012 .16 due at the end of 5 ycars to come, now 1 demand

Chap. 13

 Debt, rebate being allowed after the rate of 6 per Cent. per Annum, Compound Intereft ?Firft, I fay, as 106 is to 100 , fo is the fum due at the end of 5 years, viz. $; 68.38001216_{5}$ to 441.867936 , which is the fum due at the fourth years end, and fo is the fum due at the fourth years end, to the fum due at the thid years end, $<c$. as by the work appeareth.
$\therefore 06: 100:= \begin{cases}468.38501216 & 441.86793^{6} \\ 441.867936 & 416.8556 \\ 416.8556 & : \\ 393.26 & : \\ 371 & 371\end{cases}$

So that by the foregoing work you fee that if 468.38001216 l. be due at the end of 5 years to come, and is to be fatisfied by the payment of prefent money, rebate being allowed at 6 per Cent, per Annum, Compound Intereft, 350 l , is the füm required.

And upon this Rule is grounded the Calculation of the following Table, which fheweth what i l. due at the end of any number of years to come, not exceeding 30 is worth in prefent Money, Rebate being reckoned at any of thefe rates, viz. $5,6,7,8,9$, or 10 per Cent. per Ar. Compound Intereft.

[^0]The

The Conftruction of the foregoing T A B L E.

By the Fourth Rule of this Chapter is plainly thewn the manner of finding the prefent worth of any fum of Money due at the end of any number of yearstō come, Rebate being computed at Compound Intereft, and after the fame manner are the numbers in the foregoing Table found as you may fee by the following Example, where the four firft numbers in the third Colume are methodically found out by the Rule, that being the Colume of Rebate at σ per Cent. per Annum,

1. $106: 100: 1: 9+3396226415$, ớc.

II | $106: 100: \div 9433962264,: 88999647$, , 6 c.
III | $106: 100:=8899964+\quad .83961928$, 0 c.
IV | $106: 100:: 83961928: .79209460$, orr.
So that by the foregoing proportions, I fay firft, if 106%. be decreafed to 100% what will 1 1 . be decreafed to? Anfwer, to 94339 l. © co. $=18$ s. $10^{\frac{1}{2}}$. The five firtt figures thereof being the firft number in the third Colume ©f the foregoing Table, and it theweth that the prefent worth of 1% due at the end of one year to come, Rebate being allowed at 6 per Cent. is $943391=18 \mathrm{~s} .-10 \frac{1}{2} \mathrm{~d}$.

Secondly, I fay, by the Rule of 3 , If io6 1 . be decreafed to 100%. what will 94339, orc. be decreafed to ? The anfwer is .88999 \% of $c .=17$ s. $09 \frac{1}{2}$ fere. And this is the fecond number in the third
third Colume of the faid Table, and is placed againf 2 years in the firfe Colume, and fheweth the prefent worth of ti l : due at the end of two. years to come, Rebate being allowed after the Rate of 5^{5} per Cent. per Amum, Compoind In' cereft.

And after the fame manner are all the relt of the numbers in the faid Colume of σ per Cent: found out, and alfo all the other Decimal FitaEtions in the fecond, fouth, fifth, fixth, fro Columes, fhewing the Rebate of one pound for any number of years not exceeding 30 , at $5,7,8,9_{2}$ and roper Cent. (nutatis mutnendis.)

The ufe of the foregoing T ABLE IF:

The firlt Colume is the number of years for the Rebate of 11 . and the numbers in the reft of the Columes, are Decimal Fractions fhewing the prefent worth of illedue at the end of fo: many years to come, as they are placed againft in the Colume of years, Rebate being allowed at the fame rate of intereft under which they are placed, the figures $5,6,7,8,9$, and ro placed at the top, denoting the fame. An. Example or: two will make its ufe more plain.

Example I.
I demand how much prefent Money will fatis-: fie a Debt of $68+!$ due at the end of 6 years to come, allowing rebate after the rate of 8 per Cent. per Annum, Compound Intereft? To anfwer this Queftion, look in the Colume of 8 per Cent. and againft 6 years I find this number, viz. 63017 which meweth that if 1% be due at the eni of

6 years to come, its prefent worth is 6.3017% Rebate being allowed after the rate of 8 pen Cent. Per Axnum. Compound Intereft.

Therefore I fay by the Rule of 3, If I l. be des creafed 50.63017 l . what will $68+\%$. be decreafed to at that rate? Facit $431.03628 \%=431 \% 0 \mathrm{~s}$ $8 \frac{1}{2}$ d. as by the work appeareth.

$$
\begin{aligned}
& l . \quad l . \quad l: \\
& 1: 63017: 684: 431.03628 \\
& 684 \\
& 252068 \\
& 504136 \\
& 378102 \\
& \text { 431.03628 Facit } 43 \div-00-08 \frac{1}{2} \text { fere }
\end{aligned}
$$

So that you fee the fum propofed being multie plyed by the proper Tabular number, produceth the anfwer to the queftion, for the number 1 , which is here the firft number in the Rule of 3 doth not either multiply or divide, and therefore the anfwer is found ont by the multiplication only. Obferve the work of the next Example.

> Example.

What is the prefent worth of $16+1 .-15 \mathrm{~s}$. due at the end of 9 years to come, allowing Rebate after the rate of σ per Cent. per Annum, Compound Intereft ? Facit 97 l. - 10 s. $-03 \frac{1}{\ddagger}$.

Look in the Table aforefaid in the Collum of σ.per Cent. and againft 9 in the Collum of years you will find this number, viz. .59189 which is the prefent worth of $I l$. due at the end of 9

Chap. 13.
Compoind Interef.
years to come, and is the proper multiplyar for finding the anfwer to this Queftion, as by the work.

$$
\begin{aligned}
& \pi \\
& \pi .59189 \\
& 29594.5 \\
& 414323 \\
& 236756 \\
& 355134 \\
& 59189 \\
& \\
& 97.5138775
\end{aligned}
$$

The anfwer found by the foregoing operation is $97.51 .38775=97$ l.- 10 s.-03 $\frac{3}{4}$.

But if the given time for the Rebate of any fum confifteth of odd Months or Days, befides years, then in fuch cafe, the Rebate (at the given Rate of Intereft) for the odd time mult be found by the 9 th. Rule of the 12 Chap. foregoing) for the given fum, and then the prefent worth of the given fum thus decreafed, muft be found for the number of years as in the two laft Examples.

Example 3.

There is 640 l.-10s. due at the end of his years, and 3 months to come, what is its prefent worth, Rebate being allowed at the Rate of 7 per Cent. per Annum; Compound Intereft ?

Firf, I find the decrease of 640.5% for Months thus, viz.

$$
\begin{array}{ccc}
\text { mon. } & l_{1} \\
12 & 7 . \\
\hline
\end{array}
$$

So that I find the Int: of 100%. for 3 Months at 7 per Cent. to be 1.75% which added to 100% makes tor .75, then to find the decreafe of 640.5%, for 3 Months: I fay,

$$
\begin{array}{ccc}
l .1 \\
101.75 & : & l . \\
100 & : & l . \\
640.5 & =629.484
\end{array}
$$

So that I find by the lat proportion, that if at the end of 6 years 3 months: There was due 640.5 l . yet at the end of 6 years there will be due but 629.484 l . whore prefent worth by the foregoing directions will be found to be $419 \%-9$ s. for,

Read the 9 th. Rule of the Twelfth Chapter foregoing, and you will eafily underftand the method here used for folving Queftions of this nature.
V. Queftions in Rebate at Compound Intepeft may be refolved by the First Table of this Chapter which fheweth the increafe of $1 l$. at Compound Intereft, orc. But as in the fecond Table you make the Tabular numbers multiplyans, to find out the prefent worth of a fum; fo

Chap. 13. Compotrid Intereft.
if you would find out the prefent worth of a fum by the firft Table, you mult then make thofe Tabular Numbers Divifors ; the Reafon whereof is plain, for the firt Table Theweth the increale of 1% for 30 ycars, cer. But they may likewife ferve to fhew what form of Money due at the end of anymber of years to come under 3^{1} (allowing Rebate according to the rates of intereft therein mentioned) il. prefent Money will fatisfie. Now to Wefolve Queftions in Rebate by this Table, look lin the Collum of the propofed lateref or Rebate, and againt the propofed number of yedrs is the Tabular number for your work, which muft be according to the following proportion, viz.

As the Tabular Number fo found,
Is to It,
So is the fum propored to be Rebated,
To its prefent worth.
To make this a little more plain, I hall Anfwer the firft Queftion in the Ufe of the fecond Table, by the help of the firlt Table only, which is as followeth, viz.
I demand haw much prefeit Monẻy will fatisfie a Debt of 684%. due at the end of 's years to come, allowing Rebate after the rate of 8 per Cent.per Annum, Compound Intereft ?
Jiooklin Table r. in the Collum of, 8 pen Ceme. and againtt 6 years you will find this nnmber; yiz. I. 58687 , therefore the proportion is: 25 followeth.

So that by this proportion the anfwer is +3 n. 03719%. $=43$! $l,-00-083^{3} \mathrm{~d}$. very near to the anfwer before found by the feconct Table of Rebate:
2.V1. When an annuity is in arrear, and it is required to know its utmoft imThe mpaner of valu provement, accounting Ining: Axnuities that are tereft upon Intereft for each in arrear. particular fum from the time it becomes due, to the end of the given Term of years. The manner how to work fuch Qucftions will be apparent by the working of the following Queftion, viz.

There is an Annuity of 150 l . to continue to the end of five years, and the utmolt improvement thereof to be made after the rate of 6 per Cent. per Annum, Compound Intereft; now I demand how mucli will then be due to the Cre: ditor?

It is evident tiat there mult be found out, firlt the amount of 1.50% for one year, viz. that which is due at the end of the fourth year, it lying in the Debtors hands all the fifth year.

Secondly, There muft be accounted the improvement of 1 gol. for 2 years, viz. that which is due at the end of the third year, it lying in the Debtors hands the fourth, and fifth years.

Thirdty, There muft be accounted the improvement of 150% for 3 years, viz, that which is due at the end of the fecond year, it lying in the hands of the Debtor the third, fourth, and fifth years.

And in the fourth place there mult be accountad the utmof improvement of 150% for 4 years, ziz. that which is due at the end of the firt year, it lying in the Debtors hands the fecond, third, fourth, and fifth years.

And befides there mut be accounted - 50%. due at the end of the fifth jear, no Intereft being reckoned for that, becaufe it becometh not due till the expiration of the lafe year, and then the fum of all thefe is ihe utmoft amoust of that annuity.

The folving of Queftions concerning Annaicies at Compound Intereft, will not be any thing different in their operation, from the manner of folving a Queftion concerning a fingle fum of money put out for years at Compound Interef, by the third Rule before-going. As fuppore that initead of an Annaity of 150% there was a fingle furm of 'i 50%. put out for 4 years at Compound Intereft, at 6 per Cent. what would be its utmoft improvement at the ens of the faid Term?

Here you will eafily perceive that in fowing the one, the other is allo folved.

See the work according to the foregoing third Rule.

$$
\begin{aligned}
& 1 . \\
& 100: 106:
\end{aligned}: \begin{cases}150 & : 159 \\
159 & : 168.54 \\
168.54 & : 178.6524 \\
14.624 & : 189.361544 \\
150 & 150\end{cases}
$$

Now if the foregoing proportions be well confidered, you will find that

The fum due ot the end of l. the fifth year, being that years $\}$ I 50 Rent is \qquad
And 150%. due at the end of the, l. fourth year, will at the fifth years 159 end be encteafed to \qquad
And iso. due at the end of the? third year, will at the end of the $\} 168.54$ fifth year be increafed to \qquad $\int_{1}^{10.54}$
And iso. doe at the fecond l. years end, will at the fifth years $\} 178.6524$. end be increased to \qquad
And 150%. due at the frt $\%$. years end, will at the fifth years $\{89.371544$ end be increased to \qquad Jilive 1891544

The fum of all there being l. due at the five years end is- 3845.553944

Chap. 13. Compound Intereft.
So that if an Annuity of 1 yol. be all forborn to the end of five years, and it be impro. ved to the utmof after the rate of o per cent. per -Amum, Compound Intereff, it will then be increaled to the fum of $845.553944=845 \%$. $11 \mathrm{~s} .0^{3} d$.

Now if the particular numbers in finding out the augmentation of the fad Anatity according to the manner before prefcribed, be well viewed, and the method in finding them out be well confidered, is will appear, that if, an Annuity, payable by yearly payments, be all forborn to the end of any number of years, and the utmoft improvement there of be made at Compound Interef, the total then due at the end. of the faid time, or term of years, will be the fum of a feries, or Rank of continual proportionals as many in number as the years of the Annuities forbearance, the firf being the Annuity, or yearly payment it felf, and the fecond proceeding from the firft after the fame Rate or proportion as $100 l_{\text {. and its Intereft for } a_{2}}$ year added rogether, proceedeth from 100% and after the fame Rate doth the third proceed from the fecond, and the fourth froms the third, cri.

$$
\mathrm{N}_{4} \quad \text { The }
$$

The manner of Calculating the following Third TABLE.

And upon this Rule is grounded the Calculation of the following Table, which fheweth what il. Annuity (being forborn to the end of any number of years to come; not exceeding 30) will be increafed to Compound Intereft, being computed after any of the Rates mentioned at the head of the Table.

But confidering that as an Annuity increafeth yearly at Compoind Intereft, the fum due at each years end, is the fum of a feries of continual proportionals equal in number to the year$3 y$ payments, and that the firft number is the annual payment its felf, therefore may a Table to thew the Annual increafe of il. Annuity with great eafe be made from the firf Table, fhewing the yearly increafe of $1 . l$. at Compound Intereft, as will plainly appear by what followeth.

Let us pitch upon making the Collum of 6 per Cent. per Annum, in the third Table ? Look in the firt Table, and you will find the Collum of σ per Cent. to have for its firft number 1.06, and the fecond number r.12360 ©re. And to make the Collum of 6 per Cent. in the third Table proceed thus, for the firf number in the faid third Table put 1, or 1.00000 , and for the fecond - number in the third Table, take the fum of the firft-number in the third Table (which is 1.00000 , and the firft number in the firft Table (which is 1.06) and that makes 2.06 for she

Chap. 13. Compousd Intereft. 185 the faid fecond number; then add the fecond number in the third Table, to the fecond in the firft; and their fum is the third number in the third Table; then add the faid third number to the third number in the firt Table, and their fum is the fourth number in the third Table, ơc. And after this manner proceed till you have made all the numbers in the faid Colum of 6 per Cent. And after the fame method are the reft of the Colums made, (the firft number in each being 1. or 1.00000) mutatis mxtandis.

But here note, that the numbers in the faid firft Table ought to be continued to more places than are there expreffed, to prevent the errors that elfe may be found in the third Table, by adding of defective Decimals. The ufe of the faid Table is thewn immediately after the fame.

C HAP.

4	
Years	Tosogolmrimg nibNoo ato

The Ufe of the third TABLE:

The numbers $5,6,7,8,9,10$ at the head of the Table are the feveral Rates of Intereft, of rool. for a year, and the numbers placed in the feveral Collums under thofe numbers, Shew the yearly increafe of in pound Annuity, at the fame Rate of Intereft as it is placed under, and for fo many years as it is placed againft in the Collum of years on the left hand of the Table; and the ufe of thefe numbers will be manifeft by the method ufed in folving the following Que? ftion, viz.

There is an Annuity of $34 i .-8$ s. payable by yearly paynent, forborn unto the end of Twelve years; Now, I demand how much is due at the end of the ride Term, Compound Intereft being allowed at 6 per iCent. per Annum? Facit 580 l. - 6 s. -6 d. and fomewhat more as will appear by the follwing operation:

The increafe of the faid Annuity being propofed at 6 per Cent. I look in the Collum which hath the number 6 placed at the head of it, and againt the number i2 in the Collum of years I find the number 16.86994 which theweth that -if I l . Annuity be forborn to the end of 12 years, and there be allowed Compound intereft at 6 per Gent. it will then be increafed to $16.86994=16 \mathrm{l}$. - I $7 \mathrm{~s} .-04^{\frac{1}{2}} \mathrm{~d}$. therefore I fay by the Rule of Proportion.

Whereby it is apparent that thore tabular num bers are only Multiplyars for the producing of the amount of any given annatity for any number of years not exceeding 30, any Rate of Compound Intereft, being allowed from 5 to 10 per Cent. Inclufive, ©゙c.
VII. Queftions concerning the increafe of Annuities at Compound Intereft may be likewife folved by the firft Table in this Chapter, according to the following method, viz.

When an Annuity is in arrear, and it is required to know to what fum it is angmented, Compound Interef being computed, or. Find out what principal will in one year gain the Annual Rent propofed, allowing the propofed Rate of Intereft. Then (as is taught in the ure of the faid firt Table) find the increafe of the faid principal for the number of years, and at the rate of intereft propored, and from the amount thereof fubtrait the faid principal, then will that Reniainder be the ahount of the given Annuity for the given time, as will appear by folving the firft Queftion of the fixth Rule beforegoing
forcgoing, which is this, viz. there is an Anty of 150 . forborn to the end of 5 years what is its amountat 6 per Cent. per Annum, Compound Interelt?

Now to anfwer this, I find out a principal that at 6 per Cont. weill gain isol. in one year, which II do by the following proportion, wiz.

So that I find 2500%, to be the anfwer, then fuppofing the faid principal 2500%. to: be put out to intereft at σ per Cent. Compound Intereff for 5 years, look in the firft Table in the Collum of 6 per Cent. and againft 5 years you will find 1.3 .38225 , whe which being multiplyed by 2500 , produceth 3345.563944 from which if you fubtract the faid principal 25001 . there will remain 845.563944 for the anfwer which is the fame with that found before.
VIII. When an Annuity to continue any number of years is to be bought with ready money, there ought to be naid fo much money, as being. put out at Compound Interelt, at any Rate, and for the time of the Leafes continuance, its total amount may be eqnal to the utmoft improvement of the faid Annuity, being all forborn to the time of the Leafes expiration, Com-

The manner of finding the prefent worth of amusit ies, Rebate being allowed at Compis Int.
pound Interelt being Com-s puted at the fame rate. And the manner of finding out fuch a prefent worth, is as. in the following Example,

Chap. 13. Compound Intereft. - igl viz. There is an Annuity lof 468.38001216 \% to continue 5 years what is its prefent worth, allowing Rebate after the rate of 6 per Cent. per A_{n-} num, Compound Intereft.

Here it is plain that there mult firft be computed the prefent worth of the faid Annuity, due at the end of the firft, fecond, third, fourth and fifth years; and the fum of all there prefent worths, will be the prefent worth of the faid annuity, as will appear by the following work which is wrought by the fourth Rule of this Chapter.

The prefent worth of; l. 468.38001216% due at the end $\} 4+1.867936$ of the firlt year is.

The fame fum due at the end of two years, is in ready
morev worth. 416.8556

The hame fum due at the 3393.26
The fame fum diee at the end
of four years is woith
The fame due at the end of five years is worth in ready $\} 35^{\circ}$ money.

The fum of the faid prefent Worths is \}1972.083536

Which is the prefent worth of an Annuity of 468.3001216 to continue 5 years Rebate being atas pound Intereft.

The Conftruction of the fol lowing T A BLE IV.

And upon the fame grounds with the folution of the laft Queftion is calculated, the following fourth Table, which fheweth the prefent worth of I l. Annuity to continue any nurnber of years, not exceeding 30 , and payable by yearly payments, Rebate being allowed after the rate of $5,6,7,8,9$, and 10 per Cent. per An. Compound Intereft.

But the nature of the following Table being rightly confidered, you will find the making of, it to be eafily performed by help of the numbers in the fecond Table of this Chapter.

> As for Example.

Let us pitch upon the making of the Collum of 6 per Cent. Firft, I turn to the fecond Table, and by the numbers in the Collum of 6 per Cent. I do the work; The firft number in the fecond Table, I make to be the firf number in the fourth, and to that fourth 1 add the fecond number in the fecond Table, and their fum is, the fecond number in the 'fourth Table; then to this fecond number do I add the third number in the fecond Table, and their fum is the third num-

Chap. 13. Compound Interef. 177

ber in the fourth Table and after the fame man. ner are all the reft of the nimbers in that Collum made, and alfo thofe in the reft of the Collums, mutatis mutandis.

But remember when ever you Calcuiate one Table by the help of another, to continue the Table you make ufe of, to more placesthan you intend the numbers in your Table to confift of for fear of errors through the Addition of Defective Decimals.

- TABLE

Cliap. 13.
 Compouind Intereft.

The Ufe of the foregoing T ABLE.

The finf Collum is the number of years from ito 30 , and the number $5,6,7,8,910$, at the head of the Table are the Rates of Intereft of 100 l . for a year, and the numbers in each of thefe Collums under the faid rates of intereft are the prefent worths of $1 l$. Annuity to continue for the number of years which is placed againgt them, allowing Rebate after the rate of Intereft at the head of each Collum, and are multiplyars ferving to find the prefent worth of any other Annuity, as will appear by the following

Example.

There is an Annuity of 48 l . to continue 12 years, and payable by yearly payments, to be rold for prefent money, I demand what it is worth, allowing Rebate at 6 per Cent. per Annism, Compound Intereft? Facit 402.424=40 . 8 s. $05^{3} \mathrm{~d}$. which is thus found out by the foregoing Table, viz. look in the faid Table, in the Collum of 6 per Cent. and againft 12 in the Collum of years, you have this number, viz. 8.38384 , which is the prefent worth of 1% Annuity to continue twelve years, Rebate being allowed, erc. therefore by the Rule of proportion, Ifay

So that I find the anfwer to be 402.42432 , which is found by muluplying the faid Taoulas number by 48 , as you fee iby the work.

Otherwife find a principal which may beav fuch proportion to the given Annuity that is to be Rebated) as 100 beareth to the Rate of In. tereft allowed in the Rebate. Then find the prefent worth of this principal fo found, by the Directions given in the ufe of the fecond Table of this Chapter, then fubtract the faid prefent worth from the principal found as before, and the remainder will be the prefent worth of the given Annuity, Rebate being allowed as propofed.

Example.
What is the prefent worth of an Amnity of 50% to continue 3 years, allowing Rebate at 8 per Cent. per Annum, Compound Interelt?
Firf, I find a principal that fhall be to the given number so as 100 is to 8 which I find to be $625 l$. by the following propurtion, viz.

Then by the fecond Table I find the prefent worth of 625% which is 496.145%. which I fubtract from the faid principal 625 . and there renaineth $128.855 l=128 l$. $-175_{4}-1 \frac{1}{4} \mathrm{~d}$. fere which is the prefent worth of sol. per Annum, to continue 3 years, Rebate being allowed at 8 per Cent. per Annum, Compound Intereft,

Moreover by the numbers in the foregoing fourth Table, you may at firt fight difcover how many years purchafe any Leafe to continue any number of years, not exceeding 30 is worth in ready money, Compound Int. being Computed on both fides at any of the rates mentioned at the head of the Table.

Example:

Suppofe there were a Leale iffuing out of Lands to continue is years to be fold for ready money, allowing Rebate at 8 per Cent. per Annum, Compound Intereft, I dentand how many years purchafe the faid Leafe is worth?

Look in the Table 4, in the Collum of 8 per Cent. and again? 16 years you will find 8.85136 which fheweth that it is worth 8.85136 years purchafe which is fomewhat above 8 years, and 3 quarters; But if the faid Leafe had been of Houres, and roper Cent. were thought a convenient allowarice for the fame, then you will find it to be worth 7.8237 I years purchafe which is 7 years, and above 3 quarters purchafe.
IX. When there is a fum of money propounded, and it is required to know what annuity to

Clap. 13. purchafe according to any given Rate of Intereft, you may fuppofe any annuity at plealure, then by the directions of the purchafe given in the ufe of the fourth Ta- of Annuities at ble; or elfe by the eighth Rule Comp. Intereft. of this Chapter, find the prefent worth of the fuppofed annuity for the number of years, and at the rate of Intereft propounded, which being done, you may find what annuity to continue the faid number of years, the fum propounded will purchafe by the following proportion, viz.

As the prefent worth of the fuppofed annuity. Is to the faid annaity.
So is the fuin propounded,
To the annuity required.

> As for Exampic.

Let it be required to find ont what annuity to continue 4 years, 800 \%. prefent moncy will purchafe, Compound Intereft being computed at σ per Cent. per Anpum? Facit 230.873%

Firf, fuppofe an annuity at pleafurc to continue 4 years, as fuppofe 150%. then do I find the eighth Kule of this Chapter the prefent worth of the faid annuity to be 519.76584% therefore by the Rule of proportion I fay

The Conftruction of the fol: lowing T A BLE V.

Upon the reafon of the foreging Rule is grounded the Calculation of the following Table for the purchafing of Annuities; and it may Somewhat more readily be Calculated thus, viz.

It is evident by the conitruction of the firft Table of this Chaprer, that i l. prefent is equivalent to 1.06 due at the end of a year to come; therefore is 1.06 the firft number in the Collum of 6 per Cent. of the following Table; becaufe $1 l$. will purch fe 1.06%. Then it is alfo evident by the fourth Table that the prefent worth of il. Annuity to cortinue two years at the fame rate is 1.83339 , ơc. that is 1.83339 , of c. will purchafe a Leafe of I $\%$ per Annumi to continue two years, Compound Intereft, being allowed at 6 per Cent. therefore by the Rule of 3 Direct, I fay,

$$
\begin{aligned}
& l: \\
& \text { x.13339, ©゚c. : } 1:: 1: 54543 \text {, ơc. }
\end{aligned}
$$

By which I find that I l. ready money will buy a Leafe of. 54543 l. per Annum to continue 2 years therefore it is the fecond number in the following Table. Likewife by the fourth Table I find that 2.67301 is the prefent worth of $1 l$. Annuity to continue 3 years at the fame rate of Intereft, wherefore by the Rule of proportion I fay,

Whereby I find that i l. will purchare an Annuity of .37411 , to continue 3 years. Compound Int reft being allowed at 6 fer Cent. wherefore 37411 , is the third number in the faid Table; whereby it is evident that if you divide 1, or Unite by the feveral numbers in the faid Collum of 6 per Ceyt. in the fourth Table, fucceffively, the feveral Quotients will give you the numbers fucceffively, for the Collum of σ per Cent. in the fifth Table ; And after the fame manner are all the numbers in the other Collums of the faid fifth Table found out (except the firt number of each Collum, which muft be the fame with the firft numbers in each Collum of the firft Table) mutatis mutandis.

But it is abfolutely neceifary that the numbers in the faid fourth Table, be continued to more places than there are expreffed, to prevent the errors that otherwife will arife, by dividing by defective Decimals.

TABLE

Chap. 13.
 Compaisind intcreft.

The ufe of the foregoing Table V.

The ufe of the foregoing Table will appear in the folution of the following Queftion, viz.

A Merchant hath 1500 l. hy him, which he is willing to lay out upon an Annuity, ifluing out of Lands to continue 20 years, beginn.ng prefently Compound Intereft being Computed on both fides at 6 fer Cent. per Anmum. Now I demand what Annuity the faid fum will buy ? Facit $130.77 \%=130$ l.-1 5 s.- 05 d . very near.

To anfwer this queftion. I look in the Collum of 6 per Cent. of the foregoing fifth Table and againft 20 in the Collum of years I find .08718 , which is the annuity that 1%. prefent money will purchafe to continue 20 years, wherefore by che Rule of three Direct, If fay.

X. Queftions concerning the purchafing of Leafes and Annvities may be folged very well by she numbers in the fourth Table, if you make chem Divifors inftead of Multiplyars.

Let the laft Queftion be propofed, and folved by the fourth Table, viz.

What Annuity to continus 20 years will 1500%. ready Money purchafe, Compound Interelt being allowed at σ per Cent.

To anfwer this I look in the fourth Table, in the Collum of 6 per Cent. againt 20 years and there I find this number, viz, 1146992, which is the prefent worth of 1%. Annuity to continue 20 years, Compound Intereft being allowed at σ per Cent. And if it be the prefent worth of I 6 . Annuity, I conclude it will purchafe I l.

Annaity to continue the fame number of ycars? wherefore I fay by the ikule of 3 Direct,

$$
\begin{gathered}
\text { l. } \\
11.76992
\end{gathered} \quad \text { l. }: \quad \text { l. } \quad \text { l. }
$$

So that the anfwer is the fame with the former which was found by he!p of the Fifth Table.

All the foregoing Tables might have been continned to any greater number of years at pleafure ; But although thefe Tables are calculated but for 30 years; yet they may be made forviceable for years above $3 \odot$, as flall be fewed by and and by.

Arithmetical Quefions to exercife the Learner
the Preccdent Tables.
Ouef. I. There is a Leafe of 20 years to be gin prefently, which in ready Money is worth 1200 \%. But fuppofe the faid Leafe were not to begin till the expiration of 8 years, I demand what would be the prefent worth of the faid Leafe Rebate, being allowed at 8 per Cent. per Ano num, Compound atereft?

The main intent of this Queftion is to Thew the ufe of the fecond Table, for if you find the prefent worth of 1200% due at the end of 8 yeats, at 8 per Cent. the Queftion is anfwered, which according to the directions given after the faid Table, will be found to te $\sigma_{4} 8.3216 \%$ $=648 \mathrm{l},-06$ s.-Os d .

Cuef. 2. A oweth to $B 600$ l. to be paid in 6 years, viz. 100 l . every year, but being weakned in his Eftate, is not able to pexiorm; but end?

This Queftion is folved by help of the third and firft Tables; for firft 100% is to be paid in. the nature of Annuity for 6 years, therefore by the third Table I find the amount of an annuity of 100 l . to continge σ years at 8 per Cent. which is 733.592% and will be due at thel expiration of 6 years, and then is that fum to be forborn to the end of 10 years, which is 4 years after the 6. years; which being a fingle fum, its amount is tound by the firf Table to be 998.037 I co co. which is the anfwer to the citertion:

Qweft. 3. There is a Leafe to continue 2 y years to be fold for 1000 /. but the Leffee defireth rather to pay an ammal Rent: Now the queftion is what that annual Rent ought to be Compound Intereft being compated as 10 per Cent. per Annews?

The intent of this Quettion is to find what anmaity to contintie 21 years : 000 will puichafe at ro per Comt. which is to be done by the fifth Table thus,
Becave the tinse is for 25 years, look in the Collum of years for 21 and jort againt it in the Collhan of :o peacemt. you will find it isG2, by which moltiply 1000 ; and the product is 115.62% and fo much will io00 1 . purchafe for 21 years at ic per Coit. Compound Interefty
Qucft. 4. A and B lave each of them a Leafe to contime 20 yens; A hath 80%. per Amum,

an exchange, upon this condition, that A dhall pay in teady money the excefs of his Eftate, allowing him Compound Intereft at 8 per Cent. Now 1 demand how much ready moncy A oughe to give B upon this exchange, according to that condition?

Subtract 80% from 120% and the Remainder is 40%. and fo much per Annum is the Leafe of B worth more than that of A, therefore A mutt pay B fo much money as will nurchafe 40 l. per Arnum to continue 20 years at 8 per Cent. which by the third Table will be found to be 392.7256 l .

Queft. 5. There is a Houfe to be let by Leafe for 2 y years, for which the Leffor will have go?. fine, and 70% per Annum, but the Ieflee is willing to pay the greater fine, that he may have the Rent but 40 l . per Annum, now I demand what fine he ought to pay upon that condition Compound lntereft being allowed at 8 per Cent. per Anrum?

Take the difference between 40 and 70 , which is 30 for the abatement in the yearly kent for 21 years; Then by the fourth Table find the prefent worth of 30% per Annum for 21 years at S per Cent. which is $300.5043 \mathrm{l}=300 \mathrm{l}-10 \mathrm{~s} .-01 \mathrm{~d}$. which added to the faid 50% fine makes 350 l. -ros.-ord. for the fine to be paid uron the faid condition.

Queft. 6. There is a Leafe to be let of 20% per Annum, and 250%. fine for 24 years, and the Leffee is willing to pay the greater Kent, that he may pay but 50 l . fine, now I demand what Rent he ought to pay upon that condition, Compound Intereft being computed at 7 por Cext. por Alonum?

It is manifeft, that if the Leffor taketh 501. ne, he abateth 200 l. therefore find by the fifth Table what Annuity to continue 24 years, 200% : will purchafe at 7 per Cent. The Tabular number is .08718 , which multiplyed by 200 produceth $17.436=17$ l. - $8 s .-9$ d. and fo much mult the Leffee raife his rent if he will have 200 l . abated of his fine, to which if you add 20%. the propofed Rent, the fum is $37 l .-8 s,-09 \mathrm{~d}$. for the yearly Rent to be paid to fatisfie the faid condition.

Queff. 7. What Annuity to continue 20 years, may I grant prefently, for 900 l . to be paid 6 years hence, accompting 6 per, Cent. por Annum, Compound intereft.
Firit find by the fecond Table the prefent worth of 900 1. due 6 years hence, at 6 per Cent. which is $634 \cdot 46_{4}$ l. $=634$ l. - $09 \mathrm{~s} .03^{\frac{1}{2}} \mathrm{~d}$.

Then by the Fifth Table find what Annuity to continue 20 years 634.4^{6} will purchafe at 6 per Cent. And you will find the anfwer to be $55.31257152 l .=551 .-06$ s.-03 d. and fo much I ought to grant yearly for 20 years for 900 l . to be paid me at the end of 6 years.

Q Yuef. 8. I have 6 years of an old Leafe, yet to come, and would take a new Leafe in reverfion for 21 years, after the expiration of the old Leare, the annual Rent whereof is 40%. But I would pay fuch a fum of Money prefent as a firic, that for my Leafe in Reverfion for the faid 2 I years, I may pay but 15% per Annum, Now I demand how much prefent money I ought to pay the Leffor, to fatisfie thefe conditions, Com: pound Intereft being computed at 8 per Cent.

The difference between 40 and 15 is 25 , and fo much the Leffee defireth to have abated in his prefent worth of 25 per Anm for 21 years at: 8 per Cent.which is $250.42025 \%=250$ \%-08 s.-05d. Then by the fecond rable find the prefent worth of 250.42025% due at the end of 6 yars to come, at S Fer. Cont. which is 157.807% \& d 157 ?-16 $-\mathrm{Cl}^{3}$ And fo mach ought I to give to fatisfie the faid conditions.

Queft. 9: There is a Leare to be lé for 12 years, for 20% per Annuat and 20 \%. fine but the Leffe defreth to take aleale of the fame for 21 years, and to pay the fame Rent, the Queftion is, what fine ought to be paid for the Leafe of 21 years, accounting Compound Intereft at 6 fercent? Facit $2801-12$. $05 d$.

By the fifth Tabe feek what Annuity to continue 12 years, $2 c 0$ l. will purchafe at 6 per cent. which you with find to be 23.854 l Then by the Foutth Table find the prefent worth of 23.854%. Annuity to continue 21 years at 6 por Cent. whichi is $280.620 l^{3} \& \mathrm{C} .=280 \mathrm{l}$. I 2 s . -05 d . and $\mathfrak{f o}$ much ought the Leffe to pay for a fine, to have his Leafe for 2 years.

Quef. 10. A Gentleman hath 1000% which te would la out to purchale an. Annity of 1001. to be paid by yearly, payments; Now the Qieltion is, how many years muft the faid Annuty cond tinue, Compound Intereft beind allowed on both fides at 8 por Cent. por Annm?

Fiff, Divide 1000 by 1 co , and the ruotient will be oo which fheweth that the Buye giveti To years purchafe for the faid Annuity:

Then in the Fourth Tabte, and in the Collum of δ perccent 180 k for the number 10 , which cannot be exactly found, but" the nearef to it ond lef than t, is $9.8 \mathrm{I}^{\circ}$ \& Whith is placed againt

20 years, and the nearef to it greater than it is, is 10.0168 I , therefore I conclude that the Annuity muft continue ahove 20 years; but not 21 years, and to find out how much it muft continue more than 20 years, I work thus, viz. Firft, I find the difference between the faid Tabular numbers $10.168 i$ and 9.81814 , which is $.1986 \%$ Then 1 find the difference between the leffer of the faid Tabular Numbers, viz. 9.81814 and 10 , the Number that I would find in the Table, which is . 18186 , then by the Rule of proportion, I fay.

$$
\text { b. } 19867: \begin{gathered}
\text { year } \\
.18186: 9153
\end{gathered}
$$

which is as much as to fay, as the greater dif. ference .19867 is to one year, fo is the leffer difference to . 9153 parts of a year, which is 47 Weeks, and 5 Days, therefore the number of Years fought in the Queftion is 20 Years, 47 Weeks and 5 Days.

Quefi. if. A Gentleman bought a Leafe of $: 00 \%$. per Annum to continue 18 years, fur 960%. now I demand what Rate of Compound Intereft was their implyed in fuch a bargain?

To Anfwer this, Firft, I divide 960 by, 100 , and the Quotient is 9.6 which fieweth how many years purchafe is was worth; then becaufe the Leafe was to continue 18 years, I look in the fourth Table is the Collum of years for 18 , and carry my Eye exactiy in the line againft it, looking for the faid Quotient 95 which I cannot find exactly, but the mext (fefier) number to it is, 9.37188 in the comluna of 8 per Cent. and the next (bigger) number to it is 10.05908 , in the Collum of 7 per Cent. wherefore I conclude that the Rate of interel implyed between 7 and 8
per Cent. and to know how much it is more than 7, I do thus, take the difference between the two faid Tabular numbers which you will find to be 68720 allo fubtract (9.6) the faid Qiotient, from $10.059 n 8$ (the greater Tabular number) and the remainder is 45908 , then by the Rule of Proportion, I fay,

That is to fay, as the difference between the two Tabular numbers is to the leffer Remainder fo is 1 . the difference between 7 and 8 per Cent. to .668 the proportional part to be added to 7 l . which is 13 s . $-04 \frac{3}{2} d$. fo that $7 \% 13 \mathrm{~s}$ $04 \frac{1}{2} d$. is very near the Interelt required.

How to find out Tabular Numbers for years exceeding 30.
It may many times fall out, that the number of years propoled in a Queftion, may exceed the number of years limited in the foregoing firft, fecond, third, fourth and fifth Tables, and in fuch cafes that defect may be fupplyed by the method ufed in the folution of the following Queftions.

Queff. 12. Suppofe 80% were put out to In . tereft at $5 l$. per Cent. Compound Intereft for 40 years, I demand how much it will then be amounted to?

This Queftion is to be folved by the firft $\mathrm{T}_{\mathrm{z}}-$ ble, thus, viz. Take any two Numbers in the Collum of years, which together will make up HO_{2} and then take the Tabular numbers in the

$$
\mathrm{P}_{2} \quad \text { Collum }
$$

10^{5} E. Conjound Interefl.

Collum of siper Cente which fand araint chofe fivn munbis, and mit thy fhem tozetlex, and
 Furt, aid ine lut Jodet wil be the Anfwer.

As foppore youtake 30 and 10 , or 21 and is? or 3 I and 9,0 os 25 and 15,0 co.

But we will pitch open 30 and 10 , and the Tabular manber againf 30 it the Collum of 5 per certo is 4.3219 , and agant io is 162839 which two numbers beigg muliflyed, produce 7.03996 , c. which is the anvon of 1% for 40 years at 5 per Cent then multiply 7.03905^{3} \&c. by 80% and the riodue is 5.3 .197 , \&c,

The Anfer vould have beef the fande; if we? had pitched upon anty other two numbers to have made up 40. And fo: Tryalheaenf, let us pitch upon 25 and r^{2}, the atular number agatnfe 25 is 3.33635 , and the Tabular nuniber againft 15 years is 2,07892 , and the product of there two Tabuhr numbers is 7,0399 , \&c. which multiplyed by 80 , piotuceth 563.197 . as ${ }^{2}$ Before? and fo much will 80%. be increafed to in 40 vears at 5 fer cent pir 4 . Conipound Intereft The like is t 5 be undel had for any ot mer numer of years.

Quef.. 13. Suppofe 42うt to be payabe at the end of 50 years to come, What is its prefent worth, Reodte being allo ed it s por Cent. per Simhm, Cditpound metrent

- This outen is of the fame natare with thore lelonging to the fecond Table e_{2} and is anfwers thereby, accoring to the nrethod ufet in forving, the laft ohethu by the vift ofable, viz, the gi ch em eth so Hos, injich upon a atid

Clipe ± 39

and tiat againf 20 is $3-5889$ and the produst of the fe two is o $\quad=03$, c. Which is the piefent worth if il duc $50 y$ yars hence át sperchin. per Ans. Wherefore ! minily $08-203$, 0.0 . $4,42=$, and
 fo much is the mefent wotit of $4 \geq 0$? ane, 5 ? years lience at s per Cind A Amom. CompounPlntereft?

Urift 14 . An el froincoterond the Sea, diat
 per annum was fallen to Him by the Death of the Proptetou, tha oefign is, yint was then
 σ p.r Etitit. or Ram?
 Jongirg the thed Tanchand the mander of

Find on (by the teveth, Pule ? this chipter) what principal will in die, year gain 30% at 6 fer Cent., by the fonforms, proportion:

Having found son 1- to be the rincing fe k (after the manaer ot the in nuefoni) by the firt Tanethe dmount or horeare of 506 . for 36 years as σ fir Cert. Whith you whif find to be 4073.5993%. \&ic. fiommmich if for frbtrat the faid rincipal $\mathrm{g}^{2} \mathrm{l}$, the romainde: is 3573.599%. \&ic. $=3573 \mathrm{l}$. -12 - -00 d fere. An fo much was due to the Heir at his retum:

Queft. 15. There is an "Annuity of 30% to con. tinue 37 years, the Queftion is what is is worth in ready money, Compound Intereft being computed at 6 per Cent Jer Aninum?

By the fecond way of folving Quentions under
the fourth Table, for a principal which will gain 30% in one year, at 6 per Cent. which is here 500%. then according to the method ufed in folving the thirteenth Queftion foregoing, find the prefent worth of 500%. for 37 years at 6 per Cent. which will be found to be 57.896537 which fubtracted from 500 l . leaves $442.1034, \sigma \in c .=442 \mathrm{l} .2 \mathrm{s.0} 0_{4}^{3} \mathrm{~d}$. And fo much is the prefent warth of the forefaid Annuity

Quef. 16. What Annuity to continue 40 years will 500 l . purchafe Compound Intereft beirg computed at σ per Cent. per Annum?

It is evident by the tenth Rule of this Chapter, that if you find out the prefeat worth of 1 l. Annuity for any number of years, and at any rate of Intereft, it may eafily be found what Annuity to continue the fame number of years any other fum will purchafe at the fame rate of intereft by one fingle Rule of 3 Direct : Therefore,

Find out the prefent worth of $1 l$. Annuity to continue 40 years at 6 per Cent. by the method ufed in foiving the lat Queftion, which will be found to be 15.04632%. $=15$ l.——0 s.- 11 d. which fum of Money will purchafe an Annuity of il. to continue 40 years at 6 per Cent. therefore to know what Annuity of 500%. will purchafe for the fame time, fay by the Rule of Proportion.

which will be found to be 33. 230 ofc. $=$ 33 l. - $04-07^{\frac{1}{4}} \mathrm{~d}$. fere, and fuch an Annuity to continue 40 years will $500 l$. purchafe Intereft be: ing allowed at 6 per Cent.

$$
F I N I S
$$

Cockers

AR TIFICIAL

ARITHMETICK,

SHEWING

The Genesis or Fabrick of the Logarithmes and their use in the extraction of Roots, Solving of Queftions in Anatocifme, or Compound Intereft, and in the other Rules of Arithmetick, in a Method not usually Practifed.

Compofed by EDWARD COCKER, late Practitioner in the Arts of Writing Arithmetick and Engraving.

Perused, Corrected and Publined
By GOHN HAWKINS, SchoolMatter at St. Georges's Church in Southwark.

Nit tame difficile eft quod non folertia üncat.
LONDON,

Printed by Games Orme, in the Year 1703.

The meaning of fuch Characters as are ufed in the enfuing Treatife.
(i) S the fign of Addition, and is asmuch as to fayy plus, fignifying that the Numbers or Quantities between which it is placed, are to be edded together as $4 \div 7$ fignifieth that 4 and 7 are to be added together.
-Is the fign of Subtraction, and as much as to fay minus, fignifying that the Number which followeth it is to be fubtricted out of the Number which produceth it, as 8-5 fignifieth that 5 is to be fubtracted from 8 . x Is the fign of Multiplication, and fignifieth that the Numbers between which it is llaced; are to be multiplyed together, as 6×8 fignifieth that σ and 8 are to be multiplyed together.
$=$ Is a fign of Equality, and fignifieth that the Numbers or Magnitudes between which it is placed, are equal as $3 \div 6=7 \div 2$ fignifyeth that 3 and 6 are equal to 7 and 2 : Likewife $18-6=4$ $\div 8=12$ and $4 \times 7=28$ crc. If this be not a fufficient Explanation, read the $13,14,15$, and 19 Sections of the firft Chapter of my Algebraical $A=$ rethmetick.

Chap. :

 TH H Lomomolaits nis
 SECONDBOOK

 A PIFICIAE ARITHMETDEM, Artifichal Numbers, veryilfilly cáred Logarithmes.
II. Logatithmes are asmrored Numbers which differ among themfelves by Arithmetical proporion, as the numbers which they fignified differ by Geometrical proportion.
III. Logarithmetical Arithmetick is an Artifi cial ure of Numbers, invented for eafe in Caicu lation, wherein each natural Number is fo fitter with an Artificial, that what is ufually produced by Multiplication of matural Numbers, is here effected by the Addition of their Artificial Numbers: And what natural Numbers perform by Divifion, is here effected by the Subtraction of their artificial Numbers, and what natural Num-

Numbers do perform by long and tedious operations in the extraction of Square, Cube, Biquadrate, ơc. Roots is here eafily effected by Bipartition, Tripartition, Quadrupartion, ©c. of their artificial Numbers, and ro the hardeft parts of Calculation is avoided by an eafie pofthapharefis, as our Trignometrical Calculators of late have fuffciently experienced, by avoiding very tedious Multiplications and Divifions in the ufe of the Tables of Natural Sines, Tangents,

* The Lord Nepair Baron of Merchilton in Scotland. Secants to the Everlafting Credit of the honourable * Author of this late and ina comparable invention.
IV. The parts of Artificial Arithmetick are the fame with Natural Arithmetick, but we fhall treat them in this order, viz. Firft, of the $\mathrm{Na}=$ ture of Logarithmes; Secondly, of their Genefis, or the Invention of the Table of Logarithmes And Thirdly, of the ufe of the Logarithmes in Multiplication, Divifion, the Extraction of Roots, ${ }^{\circ} \mathrm{c}$.

Chap. 2.

C H A P. II.

Of the nature of Logarithmes.

1. Ogarithmes are Numbers fo fitted to proportional numbers, that themfelves retain equal differences.

Let there be affigned a feries or rank of numbers in Geometrical proportion, as thofe in the Collum A viz. 1 , 2, 4, 8, 16. 32, Oc. And let there be as many other numbers placed over againft them in Arithmetical progreffion, that is having equal differences as thofe in the Collums B. C. D. E. or any other numbers whatfoever of the like Nature. Then,

Forafmuch as

| \begin{tabular}{r\|r|r|}
\hline
\end{tabular}	B	C	D	E
1	0	2	5	0
2	1	4	8	3
4	2	6	11	6
8	3	8	14	9
16	4	10	17	12
32	5	12	20	15
64	6	14	23	18
128	7	16	26	21
256	8	18	29	24
512	9	20	32	27
1024	10	22	35	30
2048	11	24	38	33
4096	12	26	41	36

And as the numbers in the faid Collums, B, C, D, E, are Logarithmes of the refpective numbers in the Collima A, fo they may be Logarithues of any other tank, or feries of numbers in Geome. trical proportion.

- II. If fout inmbers are Arithmetical proportiohals, either ${ }^{3}$ Cortinued, or Dif outinued, the fum of the means is equal to the fum of the exitreans.?

Let us chobre $8,10,12,14$ in the Collom C. L fay that the fum of the Extreams, 88 and ${ }^{1} 4$, are equal ts dic funa of the two means, 15 , and 12 FUE, $8 \div 14=10 \div 12=22$. Or if they are dicontinucdas, $10,12,22,24$, int the Cullum C ; for $10 \div 24=12+22=34$. The like of any ptier, this being a peculiar property of all. Numbers that are Arithmetically proportional.
III. If four Numbers are in Geometrical proportion, either continued, or difcontinued, the prodnct arifing from the Multiplitation of the two extreams, is equal to the product of the two means.

So $4,8, \mathrm{r}, \mathrm{\sigma}, 32$, in the Collum of A are Geometrical proportionals continued, and the product of the Extreams 4 and 32 , is equal to the product of the means, 8 , and 16, for ${ }^{0} 4 \times 32=$ $8 \times 16=128$.

Alfo, $4,8,64,128$ are Geometical proportionals dicentinued, and the prodrte of a and 128 , the extferms, is equal to the produet of 8 and σ the two means, for $4 \times 128: \times\{8 \times 164=$ 512.

Hence it follows, that what Geometrical pro:pottiznots perform by Multiphications, the fame will the Logaritimes (being Arithmeticais

Let there he given four Geometricalfpropor: tionals in the Collum A, viz. $8,16.128$, and 256 , and let their Logarithmes be $8,10,16$, and 18 in the Collum C; I fay that as 8×25^{5} the product of the extreams is equal to 16×128 the product of the means, fo is $8 \div 18$ the fums of the Logfrithmes of the exitreams is equal to $10 \div 16$ the fum of the Logarithmes of the means. Therefore.
2. If 3 Wumbers are given to find the fourth prots portiona, it may be found by Addition ant Subtractien of their Logarithnies, (for, a* in Natural Numbers if you multiply the fecond and third together, and divide their product byy the firf, the Qute will be the fourch prom poitional number fo if you add the Logarithmes of the 'fecond"and third together, and from their? frim fubtract the Logarithmes of the firt, the? remainaeres will be the logarithme of, the fourtios propôrtiónal number.

> Example.

Let there be given 2,16 , and 6_{4}, and let it he required to find a fourth proportional number theretg_{2} which is 512 . rithme of 1024 , the product of the fecond and third) and if from 30 the faid fum of the Logarithmes, you fubtract 3, (the Logarithme of the firf) there will remain 27 , which is the Logarithme of the 512 the fourth proportional number fought for.

$$
12 \div 18=30-3=27
$$

And

$$
2: 16:: \sigma_{4}: 512
$$

IV. By what hath been faid, you may perceive that to natural numbers there may be fitted divers kinds of Logarithmes, but we fhall pitch only upon that kind which were framed by Mr. Briggs at the requeft of the Baron of Merchifton, who hath chofen thefe Geometrical proportionals, viz. 1. 10. 100, 1000. 10000. 100000, ©rc. Tó which numbers he hath affumbed the Logarithmes following, viz. for the number 1 , the Logarithme 0.000000 , for 10 the logar. 1.000000 , for 100 , the logar. 2.000000 for 1000 the logar. 3.000000 , for 10000 , the logar. 4.000000, Orc. $_{\text {. as }}$ in the following Table.

Chap.2. Artifcial Arithmetick.

A	1
1	0.000000
10	1.000000
100	2007000
1000	3.001000
10000	4.000000
100000	5.000000
1000000	6.000000
\$0000000	7.000000
100000000	8.000000
1000000000	9.200000
10000000000	10.000000

The numbers in the Collum \mathbf{A} are the feries of Geometrical proportionals, and the numbers in the Collam B, are the refpective Logarithmes of each of thofe Geometrical proportionals, themfelves being Arithmetical proportionols, wherenote that the Figures $8,2,3,4$, ors. which are feparated fiom thee reft by a point or pick, are called the Indices; or Characterifticks of the lue. garithme, becaufe they declare how many places the numbers by them fignified do confift of the Characteriftick of any Logarithme being always an unite lefs than the rumber of places, which the number by it fignified doth confilt of: As in the foregoing Table you may perceive that the logarithme of I , is 0.000000 , and the logarithme of 10 is 1.000000 , and the logarthme of I 100 is 2.000000 , Grc. fo that the Index, or CharaEteriftick of 1 , and of all numbers from 1 to 10 is o. and the Characteriftick of 10 and of all numbers from 10 to 100 is I : And the Charaferiftick of 100 and of all numbers from 100 to 1000 is 2 , and the Characteriftick of each number being an unite the number be it disnifyed doth conilit, as was faid before.

The Iogarithmes of this kind ought all to confift of an $6 q 40$ number gf places, that is to fay they ought nor to be, one Log. of 10 places, another of 8, cic. but all of them to be of σ, of 7 of 8, or places;

30 cis CH H D. III.
 Of the Genefis or Fabrick of por the Lugaritnmes. 1. F HE Logarithme of 1 being anumed to be 0.090000 , and the Logarithme of is to be , 000000 , ihe Logatithace of 100 to be 2000000 , 0 . In the next place it will be requil? fite to thew the way and manuer of Calculatiog the, Logarithmes of the intermediate numbers. yiz. of the numbers berween I and Io, which are 2,3, A, 5, er and bet cen to and 100 , which

 Which to do objerve the following Rules.fs biss . 0 b II. Eind fo many continual means becweem and io, till that continual mean which comets peateft 1, may be a mixt number lefs than 2 ,

Chap. 3. Artificial Arithmetick. 2.13

 and fo near:, that it may have as many Cyphers placed before the fignificant Figures of the Numerator, as you, intend your logarithmes to confift of places; But our Directions here fhall be for the making a Table of logarithmes to confift of 7 places; wherefore find fo many continual means between 1 and 10 , till the laft may liave 7 Cyphers placed before the fignificant Fi gures of its Numerator, in order whereunto, annex to the number ro a competent number of Cyphers, (viz. 28 , becauie the work may be the more exact) and extract the Square Root of that number fo cnlarged, which being done, you vill find its Square Root to be 3. I5 227 766016837 , This being done, annex to the faid Root 14 Cyphers more, and extract the Square Root thereof, which you will find to be I. 77827941003892 .Again annex to the Root laft found 14 Cy phers more, and extract the Square Root thereof, which you will find to be $1.333521+3216332$, and thus proceeding fucceflively by annexing of Cyphers, and a continual extraction of the Square Root, until you have found a Square Root. or Continual mean, having 7 Cyphers placed before the fignificant Figures of its Numerator, which will be found after 27 feveral Extractions to be i. 00000001715559.

So the 3 laft continual
means between Io and
w will be found to be $\left\{\begin{array}{l}1.00000006862238 \\ 1.00000003431119 \\ 1.00000001715559\end{array}\right.$
All which 3 continual means are lefs than 2, and -O near I, that there are 7 Cyphers placed beore the fignificant Figures of each of their Nu meraters.

Having found 27 feveral means between 10, and I , place them fucceffively one under the other as in the Collum A, of the following Table; Then make another Coilum (B) to contain the Refpedive logarithmes of thofe continual means.

And becaufe biparting the logarithme of any number produceth the logarithme of the Square Root of that number, therefore take the logarithme of 10 , which is 1.000000 , and place it in the Colium Bover againft Io, then bipart it, (that is, divide it by 2) and you will have $c .500000$ which is the logarithme of $3.16227766 \quad 0.16837$ the Square Root of 10 , then take half of that logarithme, viz. 0500000 which is 0.50000 , and place it for the logarithme of r .778279410 , \&c. the fecond mean proportional, (or Square of Root of $3.162277660,8 . c^{\text {. }}$) and fo by continual bipartition, you will at length find that 0.00000 00074.50580 , will be the logarithme of the laft continual mean, viz. the logarithme of I .000000 171559, as in the following Table.

Continual means.	their Logarithmes.
10.00000000000000	1.00000000000000
3.162277660:5837	0.5000000000000
1. $778279+10.3892$	0.25000003000000
$\begin{gathered} 1.3335214321632 \\ \& c_{0} . \end{gathered}$	0.12500000000000
1.00000006862238	e.000000
1.00000003431119	-.ocosco:01
1.00000001715559	0.00:000000740

Chap. 3. Artificial Aritbmetick. 215
III. Any Number whatfoever being given, how to make the Logarithme thereof.

When it is required to make the logarithme of any number, extract fo many continual means between the given number and 1 , until the mean which cometh neareft I, may be a mixt number lefs than 2 , and fo near s, that it may have 7 Cyphers placed before the fignificant figures of its Numerator, which being done, you may eafily find out the Logarithme of that continual mean, by help of the foregoing Table; and then by douibling, and redoubling the Logarithme of the faid continual mean, as many times as you found continual means by extraction, fo fhall you at laft have the Logarithme of the given number.

You may make the Logarithme of any number whatfoever by this and the laft Rule.

> As you Example.

Let us pitch upon the number 2, and make its Logarithme.

To do which, annex to the number 2 a competent number of Cyphers, viz. 28, and extract the Square Root thereof, which you will find to be 1.41421356237309 for the firf continual mean, to which faid mean annex 14 Cyphers more, and extract the Square Root thereof, and fo proceed, by annexing of Cyphers and extracting of Roots, till the neareft mean proportional number to 5, may have feven Cyphers placed before the fignifcant Figures of its Namerator, which after 23 feveral Extractions you
will find to be raid to be 1.0000000862658 .
Then to find out the logarithme of this contimual mean, fay by the Rule of 3 Direct.

As the fignificant Figures of the Twenty fifth mean proportional in the foregoino Table, viz. 6862238.

Is to its refpective Logarithme, 29802322.
So are the fignifcant Figures of the laft continual mean found between 1 and 2 , viz. 8262958 . To its refpe tive Logarithme 35885571 .
Now i:you prefix before the Logarithme laft found 3 Cyphers, it will be 000000003588557 I , which being doubled and redoubled 23 times, (becanfe there were 23 continual means found between I and 2) there will at laft be produced 0.30102998797568 , which is the logarithme of the number 2, which was Required, but becaure we intend the Table of Logarithmes to confift but of 7 places, and becaufe 2 nines follow the fixth place therefore make the Figures 2 to be 3 and fo Thall the logarithme of 2 be 0.301030 cancelling the following Figures as fuperfluous.

The Logarithme of 2 being fourd, you may eafily find the logarithmes, of $4.5,8,16,20,25$, 32, $40,50,64, \mathcal{O}^{\circ} c$. by Artificial Multiplication and Divifion, which is by adding and fubtracting of logarithmes; for if you take the logarithme of 2 out of the logarithme of 10 , there will remain the logarithme of 5 and the logarithme of 2 Doubled gives you the logarithme of 4, then add the logarithme of 4 , to the logarithme of 2 , and you have the logarithme of 8 , and to the logarithme of 8 add the logarithme of 2 , and it gives you the logarithme of 16 , and the logarithme of sadded to the logarithme of 4 , gives the logatitnme of 20, and the logarithme of 6

Chap. 3. Arififial Arithmetick. 217 doubled, gives the Logarithme of 25 , cic. In the next place you are to get the Logarithmes of $3,7,11,13,17,19,23,29,31,37$, $41,43,47,53,59,61,67,71,73,79,89,97$, orc. by help of which all the reft may be Calculated.
IV. The firft figure of every logarithme, which is feparated from the reft by a point or prick is very properly c lled the Index, or Charaderiftick of the logarithme, which fheweth the Nature of the number by it fignified, viz. whether it be pofitive, or negative, and if pofitive, of what number of places it coth confint, and if negative, what place of the Decinal Fraction the firft figure of the number by it lignifyed, fhall pofiefs, as in the following Table.

Whereby you may perceive that the logarithmes of abfolute and defective numbers are the fame, only the Characterifick of a defesive number is marked with the note of defection, for the logarithme of the abfolute number $4676 \$$ is 4.670134 , the Chataferiftick 4, thewing the number by it fignified to confift of 5 places, asis already faid in the fourth Rule of the fe- number 46.768 is 1.670134 which is the fame with the former, only the Chaiacteriftick is I, which fheweth the Integral number by it fignified, to confift of two piaces, the reft being a decimal Fraction. Likewife the Logarithme of the Decimal. 45768 is - .670134 , which is ftill the fame with the former, only its Characteriftick being marked with a note of defection fheweth it to be the Logarithme of a Decimal Fraction, and becaufe the Characteriftick is-1, it fheweth that the firft figure of the number by it fignified doth polfers the firt place of the Decimal, or place of primes: Again the Logarithme - 46703 is fill the fame, and if you look for it in the Table of Logarithmes, not regarding the Index, you will find it to be the Logarithme of 46768 , but becaufe its Index is defective, I conclude it to be the Logarithme of a Decimal, and becaufe the Index, or Characteriftick is-4, therefore I conclude that the firft Figure of the number fignified by it, muit pollefs the fourth place of the Decimal, wherefore place 3 Cyphers before it, and you have .000 6768 for the Decimal fignified by the Logarithme-4.670134. This being well underfood, the reit will eafly be attained by the following, Directions.

Chap. 4.

CHAP. IV.

Of the ufe of the Tabie of Logarithmes.

TH E ufe of the Table of Logarithmes is twofold, viz. Firf, To find therein the logarithme of any given number, or to find the number appropriated to any given logarithme.

Secondly, To refolve diverfe neceilary problems in Arithmetick, Geometry, Trigonometry, Aftronomy, coc.

Concerning the firft of there. I fhall not meddle, becaufe our Limits will not afford fufficient room to infert a Table of Logarithmes, and the Tables already publifhed by others are fufficiently explained, in that point as Mr. Briggs, Mr. Gunter, Dr. Newton, Mr. Wing ate, Mr. Norwood, Mr. Pbillips, \&c. Every one fhewing how by their own Tables to find the logarithme, of any num. ber, or the number to any logarithme, therefore I fhall proceed to fhew their ufe in Arithmetick, viz. how to Multiply, Divide, and Extract Roots, \&c. thereby, And Firft,

To Multiply by the L.ogarithmes.
In Multiplication by the logarithmes there are 3 Cafes, viz. the Characterifticks of the logarithmes of the Factors are either both affirQ 4
mative mative, or both negative: or elfe they are the one affirmative, and the other negative?

I. When they are both Affirmative.

When the Characterifticks of the logarithmes of the Fa? tors are both Affirmative, then the fums of thofe logarithmes is the logarithime of the fact or product.

Examples.
Multiply $34-\log \quad 1.531479$
by $2.6 \cdots-\log . \quad 1.414973$
Product 884 - log. 2.94 .5452
Multiply $28.86 \ldots$ log. 1.460 .296
"by " 8.9 -... log. 0.949390
Product 2568.54 ———log. 2.409686
Note that if you carry io to the Characteristick; it is affirmative, as in the laft Example.
II. When they are both Negative.

When the logarithmes of the Factors have their Characteriftich's both Negative; or defective, then the fum of their logarithmes is the logarithme of their product, the fum of their Characterifticks being alfo negative as in the following Examples.

Multiply $\quad .004-\cdots-\log .-3.602060$
by .02.-.--log.---2.301030
Product is .0cuo8

Chap. 4

Multiply .025-log.-2.39794.0
by
.42 - $\log :-1.623249$
Product is .01050 —. log. $=2.021189$
Multiply .093 —...- - log. -2.9684 .83
by $.053 \cdots-\log -2.763428$
Product cos394————log.---3.731911
And here note, that when you cary ten to the Characterificks it is affirmative, and muff be abated ont of their fum as in the two lad examples:
III. When they are Heterogeneal, viz. the one Affirmative, and the other Negative.

When the Characterificks of the Factors are the one Negative, and the other Affirmative, then add the logarithmes together, and when you come to the Characterifticks, take their difference, and place it for the Characteriftick of the Product, making it either Affirmative or Negative, according to the affection of that wherein lay the excess; and here note, that if you carry any thing to the Characterifticks, it is Affirmative, and must be added to the affirmative characteriit. And in the following Examples.

Multiply
by
34. - log. 2.541579 .64 - log..--1.806180

Product 222.78 —— log. 2.347759
Multiply " 348 —— log. 2.54.1579
by . .0064 - log.--3.806180
Product $2.2272=$ log. 0.347759
Mel-

222
Multiply Artificial Aritbmetick

Chap. 5:
Multiply 3.4^{8} —— log. 0.541579
by .0064 log. -3.846180
Product $022273-\log -2.347759$
Multiply 3502 — log. 3.551693
by . 008 - $\log -3.903089$
Product 28.496 - log. 1. 454782

CHAP. V.

Divifion by the Logarithmes.

I. 10 fabtract the Logarithme of one rumber out of the logarithme of another is the fame (and produceth the fame effect) with Divifion in Natural Numbers, the Logarithme remaining being the Logarithme of the Quotient.
II. In Divifion by the Logarithmes there are three Cafes, viz. Firft, when the Characteriflicks of the Dividend, and of the Divifor are both Affirmative: Secondly, when they are both Negative., And Thirdly, when they are Heterogeneal, viz. the one Affirmative, and the other Negative. Of which in their order.

Clap, 5. Artificial Arithmetick.

I. When they are both Affirmative.
III. When the Characterifticks of the Dividend, and of the Divifor, are both Affirmative, then if you fubtract the Logarithme of the Divifor out of the logarithme of the Divitend, the remainder will be the logarithme of the Quotient. And if you borrow 10 from the Characterifticks, it is Affirmative.

> Examples.

Thefe Examples are fo plain that they need no Explanation.
II. When they are both Negative,
IV. When the Characterifticks of the Dividend, and of the Divifor, are both Negative, fubtract the Logarithme of the Divifor from the Logarithme of the Dividend, and the Remainder is the Logarithme of the Quotient, and if you borrow 1o, it muft be paid to the Index of the Divifor, affirmatively.

Examples.

Examples.

Divide
$.4^{8}-1 \log -1.681241$
(1) by $.12-\log -107918 \mathrm{x}$

Quotient 4. - - log. 0.602060
Divide .036——log.-log-2.55530.3
(2) by .1 8--log. -1.255272

Quotient .2-m-log. - 1.301031
(3) by $.39-\log -1.193125$
Quotient $.4-591064$
1.602061

Divide .0171——log. $-2,232096$

$$
9 .-\log -1.954242
$$

Quote

$$
.019 —-\log -2.278754
$$

The frt and second of the foregoing Exampies are eafily underftood, and as for the third and fourth, all the difficulty therein is caufed by borrowing io at the next figure to the Characteshticks, as in the third Example, in fubtracting \&out ot 1. Now to make good the io borrowed, I pay I to the Characteriftick of the Divifor, and because the raid 1 is affirmative, and the fid Charactcrintick negative, therefore furtract it from the Characteriftick of the devi. for, and there remains nothing; wherefore I take (0) out of the Chatacteriftick of the Devidead, and there remains- 1 for the Charactery-

Chap. 5. Artificial Arithmetick. 225
ftick of the Quotient. The fame is to be underftood in the fourth Example, and in all others of the fame Nature.

A Gencral Obfersation drawn from the third and fourth Rules foregoing.
V. If when the Characterificks of the Dividend and Divifor be Homogeneal, (that is, both affirmative, or both Negative) the Characteriftick of the Divifor is greater than the CharaEteriftick of the dividend, then in this cafe fubtract the Characteriftick of the Dividend out of that of the Divifor, placing the remainder for the Characterifick of the Quotient, changing its fign, viz. if it be affirmative, make it negative, and if it be negative, make it affirmative. Remembring the Directions under the laft Rule when you borrow from the Characterifticks.

Obferve the following Exiamples.

Divide 6.4 -log. 0.806180
(2) by

800 - - log. 2.903090
Quotient. 008 ———log. 3.903090
Divide 6.3 ——log. 0.799340
(3) by 78.75 --log. 1.896251

Quotiont $.08-\log :-2.903089$

Divide 75 ——log.-1.87506:
by .0015 - log. -3.176091
Quotient 500 - $-\log$. -2.698970
Divide . 64 -.... log.- 1.806180
(5) by

Quote
80 - log. 1.903090
Divide $16.56 \cdots-\log . \quad 1.21906$ io
(6) by $460 \cdots \cdots \log 2.662758$ Quote . 0036 - - log. 2.556302
III. When they are Heterogeneal, viz. the one Negative, the other Affirmative.
VI. When the Characterifticks of the Dividend and the Divifor are Heterogeneal, proceed as in the two firft Cafes, till you come to the CharaEterifticks, and then inftead of fubtracting the one Characteriftick from the other, add them together, fo fall their fum be the Charaeteriftick of the Quotient, and it is of the fame kind with the Characteriftick of the Dividend.

But here note that when you borrow io at the next figure to the Characteriflick it mut be paid to the Characteriftick of the Divifor Affirmatively viz. If the Characteriftick of the Divifor be affirmatively, then add \mathbf{I} to it to that you borrowed, and if it be negative, fubtract I from it. As in the following Examples.

Divide 344 - log. -1.158352 by

Quote

$$
.012=\log -2.069181
$$

Chap. 5.
Divide 64-—log.- 1.806180

In the fecond of the foregoing Examples I borrow I (in the place next the Characteriftick) by fubtrasing 9 out of 8 , wherefore to make it good, I fubtract I from- -2 (the Characteriftick of the Divifor,) becaufe it is Negative, and the remainder which is 1 I I add to I (the Characteriftick of the Dividend) and their fum is 2 for the Characteriftick of the Quotient whick is Affirmative, becaufe the Characterifick of the Dividend is Affirmative.

And in the laft Example, I likewife borrow \& from the Characteriftick, wherefore to make it good, I add I to the Characteriftick of the Divifor, (becaufe it is affirmative) and that makes it 3, which added to - I (the Characterifick of the Dividend) makes -4 for the Characteriftick of the Quotient, which here is negative, becaufe the Characieriftick of the Dividend is negative.

Other Examples for Exercife may be fuch as follow.

Divide by

$$
\begin{aligned}
& 648 \sim \log -2.11575 \\
& .36 — \log -1.556303
\end{aligned}
$$

Quote 3800 - - log. 3.255272

228 Artificial Aritbmetick.

Chaps 6.

CHAP. VI.

To rife the Powers of Num-

 bers, viz. to find the Square, Cube, Biquadrate, or Squared Square, tc of any mumDer. Alfo to Extract the Square, Cube, Biquadrate, dr. Roots of any Number by the Logarithmes.1. RY the third Section of the Second Chapter of this Book it is evident, that if you add the Logarithnues of two numbers together, the Sum will be the Logarithme of their Product

Chap. 6. Artifcial Aritbmetick. 229

 duct ; And by the firft and foirth Sections of the 9th Chapter of my Decimal Arithmetick, it appeareth that any number multiplyed by it felf, produceth its Square, wherefore if you double (or multiply by 2) the logarithme of any number, it will produce the logarithme of its Square, which if duly confidered you will find that to Square, Cube, ơr. any number, is nothing elfe but to multiply the Logarithme of the given number by the Index of the Power you would rai e it to, viz. If yon would find the Square of any number, multiply the logarithme thereof by 2 , Co fhall the product thereof be the Logarithme of itsSquare; and if you would find the Cube of any number, multiply its logarithme by 3, and the product thereof will be the Logarithme of its Cube; and if you would find the Biquadrate of any number, multiply its Logarithme by 4 , and it will produce the Logarithme of its Biquadrate, orc. As in the following Example.Let it be required to find the Square of 12
The Logarithme of 12 is 1.07918 :
2.158362

Which being multiplyed by 2 , produceth 2. 158362 , which is the Logarithme of 144 , viz. the Square of 12.
230. Artificial Arithmetick.

Chap. 6
Again let it be required to find the Square o 94.

The logarithme of 94 is --... 1.9731278
3.9462550

Which being multiplyed by 2 , producet? 3.9462556 , which is the logarithm of 8836 which is the Square of 94 .
II. But if the characteriftick of the logarithm be negative, that is if the given number, whof Square, Cube, Biquadrate, efc. you would finc to be a Decimal Fraction, obferve, that in multi plying the next figure to the Characteriftick th tell, or tens to be born in mind are affirmative and are to be deducted out of the Product of thi uegative Characterifticks.

Obferve the feveral Examples following
What is the Square of .7 log .-1.84509: .7.
Facit . 49 log.-1.69019
What is the Square of $.09 \log -2.95424$? .09

Eacit. $008 \mathrm{I} \log$. -3.90848 ,

Chap. 6. Artijcicial Aritbmetick. 231
What is, the Cube of $12 ? \ldots \log$. 1.07918 I

Facit 1728 for $12 \times 12 \times 12=1728 \log .3 .237543$
What is the Cube of os ; … log. -2.698970

Facit.0001 25 for. $05 \times 05 \times 05=00125 \log .4 .096910$
What is the Biquadrate of 9 ?--log. 0.95424^{2} 4
Facit 6561 for $9 \times 9 \times 9 \times 9=6561$ log.-3.816968
What is the Biquadrate of .08 ? log. -2.903090

Facit.00004096 for. $08 \times .08 \times 08 \times 08$
$=00004096$ whofe logarithme is $\}-5.6 \$ 2360$
What is the fifth Power of $6 ?-\log \cdot 0.778151$
\square
Facit $7776=6 \times 6 \times 6 \times 6 \times 6 \cdots-\log$. 3.890755
The likeis to be obferved of all others.
To Extratt the Square, Cube, Bigmadrate, \& C_{0} Roots of any given numbers by the Logarithmes.
III. From a due confideration of the firf jection of this Chapter, it may eafly be perceived, that

To Extract the Cube Root of any number is to ipart (or divide by 2) its logarithme, fo thall R 2 that that biparted logarithme be the logarithme of the Square Root defired.

Example.

Let it be required to Extract the Square Root of 75832

$$
\begin{aligned}
& \mathrm{q}=75832 \mathrm{log} \cdot 4 \cdot 879852 \\
& \sqrt{ }=275.37 \cdots \text { 2) }
\end{aligned}
$$

Let it be required to find the Square Root of 4489 .

$$
\begin{aligned}
& \mathrm{q}=4489-\log .3 .652149 . \\
& v=67 \\
& \text { 2) }
\end{aligned}
$$

In the firft of the fe Examples the logarithme of 75832 is 4.879852 which being biparted (or divided by 2 gives 1.826074 for the logarithme of (265.37) the Root required.

And in the fecond Example 3.652149 (the logarithme of 4489 being biparted gives 1.826074 for the logarithme of (67) its Square Root.

So will the Square Root of 36783 be found to be 191.789 fere, and the Square Root of 3866 will be 62.17717 fere. And the Square Root of 95 will be found to be 9.7468 , \&c.

To extract the Cube Root of any number is to tripart (or divide by 3) its logarithme, fo shall this triparted logarithme be the logarithme of the Cube Root required.

Examples.

Let it be required to Extract the Cube Root of 157454.

The Cube 157464 - log. 5 3.197181
vc. 54 — log. triparted 1.732393
Let it be required to find the Cube Root of 187237601580329.

The Cube 187237601580329 -log. 14.27239308 3)
vc. 47209 - its triparted -log. 4.75746436
In the first of the fe Examples where it is re. quires to extract the Cube Root of 157464 , its logar. is 5.19718 I which being divided by 3 hath for its third part 1.732393 which is the logarithm of (54) the Cube Root of 157464 , which was required. And the fame is to be obferved in finding the Cube Root of 1872376015 $8 C_{329}$ by the Logarithms; or of any other pofictive number whatsoever as yoll may fee by the following Examples.

The Cube $=8$
its log. 0.903090
3) its $\log \cdot 0.301030$

The Cube 125 its log. 2.096910

234 Artifcimil Aritbmetick. Chap. 6. The Cube 15.625 —— its log. 1.193820 $\sqrt{ } c .=2.5$ its log. 0.397940

To Extract the Biquadrate Root of any given number, do thus, viz. Take To extract the Bi- its logarithme, and divide gu ideate Root of it by 4 , fo fall the fourth part any Number. thereof be the logarithme of the biquad. Root required, as in the following Example.

Let it be required to extract the Biquadrate Root of 256.

Biquadrate number given 256 -its log. 2.408239
Its $\sqrt{ }$. biquad. $=4 \ldots$ its log. 0.602059 Here the log. of the given biquadrate number, viz. 256 is 2.408239 which being divided by 4 , giveth 0.602059 for the logarithm of (4) the biquadrate Root required,

In like manner if you would extract the Root of the fifth Power of any number given, Divide its logarithme by 5, fo fall the Quotient be the locarithme of its Root. And if you would find the Root from the lixth power of any Number, divide its logarithme by σ and the Quote is the \log withe of the Root defined, of c.
IV. But here you are to observe in Extracting the Square, Cube, Biqua-

To extract theSquare, Cube, \& c. Roots of ne.gative numbers by the logarithmes. drate, or any other Root of a negative number; or decimal by the logarithmes, that if you cannot evenly. divide

Chap. 6. Artificial Avitbmetick. divide the Index or Charmetriftick of the logarithbue without the remainder, then add to the faid Characteriftick fo many units till it may be divided without any remainder, and place the Quotient for a new Cbar acteriffick, (belonging to the Root;) Then look how many units you lent to the Characteriftick, and efteem them fo many tens to be prefixed to the logaritbmetical figure immediately foliowing the Charatterifick, then praceed to finifh the work, fo fhall this new logarithme be the logaritbme of the Root required, which will alfo be negative.

Examples. follom.
What is the Square Root of .144?
Square given $=144 \cdots$ - Its $\log -1.158362$
2)

Its $\sqrt{ } q=37947$-its \log. biparted. - I. 579181
What is the Square Root of .00324
Square given $=.00324-\log -3.510545$ 2)
lts $\sqrt{ } \mathrm{q} .=05621$ - \log. biparted. -2.755272
What is the Cube Root of .000512
Cube given $=000512 \cdots$ its $\log .-4.709269$
Its $\sqrt{ } \mathrm{c}$ —.05——its log. triparted-2.903089 In the firtt of thefe Examples, where it is required to Extract the Square Root of .144, its logar. is -1.158362 , which (according to the thind Rule) I fhould bipart, (or divide by 2) R 4

And becaufe its negative Cbaracteriffick (-1) cannot be evenly divided by 2, I increafe it by an unit, and it makes?, then will the quote be-1 for the Index of the log. of the Root, then do I proceed to the next figure, to the Characterifick which is I , and becaufe it added I to the Characteriftick, therefore I increafe the next Figure by adding io to it. (or prefixing I before it and then it is II, coc. So I find the logarithme of the Root to be-1.5755272, viz. 37947.

And in the third Example, where it is required to find the Cube Root of $.0005_{12}$, the Index of its logarithme is - 4, which cannot be evenly divided by 3 , thereforel add 2 to it to make it σ, and the Quotient is - 2 for the Index of the logarithme of the Root, then becaure I added 2 to thic Index-4, therefore I increafe the next Figure to it with 2 tens, making it 27 êc. So is the Cube Root required fonnd to be os.

Chap, 6. Artificial Aritbmetick.

Ob Serve the like in extracting of any other Roots: Othermife, you may make uSe in the following Table.

50. 40. 30. 20. 10. 0

The ufo of the foregoing Table.
In the foregoing Table the Figures 2: 3. 4.5.6. placed on the left hand, are in the Indices of Yo. wars, whole Roots are required to be extracted. or they are Divifors by which to divide the logarithme of any given power, in order to find Out its Root: As the number 2 (which is the uppermoft) is the Divifor for finding the logerithme of the Square Root of any number: And 3 the Devifor for the Cube; and 4 for the Biquadrate, \&r. The Figures placed between the perpendicular nection, and under A are the Charatterifticks of the logaribmes of Negative or Decimal Numbers, whofe Roots are required to be extracted; And the Figures placed on the right hand of the perpendicular line under B, are the Charatterifficks of the Logarithme of the feveral Roots: And the numbers at the bottom of the Table, viz. $50,40,30$, orc are the numbers to be added, or rather prefixed to the firft Figure of the $\log a$. rithme next the Characteriftick whote Negative Index is found in the faine feries or Collum even with the Divifor, © cic.

Example.

Let it be required to extract the Cube Root of .405224.

The Logarithme of the given Number is - 1.6076951.

And the Divifor whereby to extract the Cule Root is 3 , which I find in the foregoing Table on the left hand; then on the right hand of its line of connection, I find the Charaiteriftick of the Logarithme-1.6076951 which is -I, and juft againft it on the right hand under BI find $\rightarrow 1$ for the Charatterifick of the Logarithme of the Root, and in the bottom line under the faid - I , in the fame feries, I find 20 which is to be prefixed to the Figure in the Logarathme next the Character iffick, \&c. and having finifhed Divifion, If find the Logaritbme of its Root to be - 1.8692317 which is 7 .7.
So if the Logarizhme - 6.418426 were to be divided by 4, Firf the Divifor 4 on the Ioft

Chap. 7. Artifcial Arithmetick. $\quad 239$ left hand of the Table, and find the Cbaracteriftick -6 , behind its line of connection juft againft which on the right hand of the perfendicular line you have -2 for the Index or Characteriftick of the Quotient; and at the bottom, jult underneath-6 you have 20 , which being added to (4) the firft figure of the Dividend next the Charaiteriffick makes it 24 , in which the Divifor 3 is contained σ times, ofc. See the work.

Biquad. propofed. $0000026207-\log .-6.418426$ 4)

The $V(4)=040235 \cdots-\log .-2.604606$

CHAP. VII.

Of the Ufe of Log. in Comparative Arithmetick.

PROP.I.

Having three Numbers given, to find a fourth proportional.

THis is nothing elfe but the work of the Rule of 3 , and it may be thus performed,

Add the Logaritbme of the fecond and third Numbers together, and from their fum fubtract the Logarithme of the firft, fo fhall the remainder be the Lagarithme of the fourth, as in the following Example.

The 3 given numbers are 3,24 , and 108 unto which it is required to find a fourth proportional.

$$
3: 24:: 108: 864
$$

The Operation by the Logarithmes.

As 3--its \log.

The fum of the 2 laft \log is 3.413635
From which if you fubtract the ? \log. Of the firft, the remainder is $\} 2.936514$ Which is the Logarithme of 864 . the fourth pro. portional required.

The former work mav be fomewhat fhortned, if inftead of the log. of the firft you take its Complement. Arithmetical (which is nothing elfe but to fet down what every Figure wants of 9, till you come to that next the right hand, and then fet down what it wants of 10) and then add them all 3 together, and cancel the firt Figare of the fum on the left hand, and then will the fum be the Log. of the Anfwer, as will appear by working the foregoing Examples.

Cliap. 7. Artificial Arithmetick. 24^{1}
As 3 Comple. Arith. of its log. -9.522879$\}$
Is to 24 its \log. 1.380211 add
So is 108 - its \log.-2.033424
To 864 -its \log. - 12.936514

PR O P. II.

Between two Numbers given to find a

 Mean proportional.When the logarithmes of the numbers propounded are homogeneal, viz. both Affirmative, or both Negative, add them together, then bipart that Log arithmetical fum, fo have you the Logaritbme of the mean proportional re. quired, which Logarithme fo fornd is of the fame kind with the Logaritbmes of the number given Let it be required to find a seean proportional between 18 and 6 .

In this Example the Logaritbme of 18 , and 6 being added together make 2.02342 which is the Logarithme of 108 , and that Logarithme being divided by 2 (which is the fame with extracting the Square Root of its fignificant number, 10.392 which is the mean proportional required.

Example 2.

Let it be required to find a mean proportional between.0i 8 and .006.

$$
\begin{aligned}
& .018 \text { its } \log . \cdots-2.25527 \\
& .006 \text { its } \log . \rightarrow-3.77815 \\
& \text { 2) }-4.03342 \\
& .01039: \log . \quad 2.01671
\end{aligned}
$$

II. But when the Cbaractcrificks of the Logarithmes of the given Nuinbers be Heterogeneal, uiz. the one Aflirmative, and the other Negative; add the Lorarithmes together as before, till you come to the Cbaracterifick, then fubtract the leffer Characteriftick ont of the greater, (according to the third Rule of the fourth Chapter, which being done, bipart the Logarith metical production, fo fhall the Quote be the Logarithme of the mean proportional required, which will always be of the fame kind with that Logarithme of the given Numbers, whofe Index is greateft, as in the following Examples.

Chap. 7. Artificial Aritljmetick. 243
Example 1.
What is the mean proportional between 36 and. 5 ? Facit 4.2427.

Here the Log. of $\left\{\begin{array}{l}36 \\ .5\end{array}\right\}$ is $\left\{\begin{array}{r}1.556302 \\ ---1.698970\end{array}\right.$
Their fum is
2). 1.255272
which being divided by 2 , gives? the Log. of the me. prop. which $\{1.627636$ is the \log. of 4.2427.

Example 2.
What is the mean proportional between \sum_{2} and .75 ? Facit 3.

The Log. of

$$
\left\{\begin{array}{c}
12 \\
.75
\end{array}\right\} \text { is }\left\{\begin{array}{r}
1.079181 \\
\ldots-1.875061
\end{array}\right.
$$

Their fum is
2) 0.954242
which being divided by 2 ?
gives the Log. of 3 the mean 0.47712π proportional required.

$$
\text { for } .75: 3:: 312: 3
$$

PROP. III.

Detipeen 2 Numbers given, to find two mean Proportionals.

Whether the numbers given be Homogeneal, or Heterogeneal, fubtract the Logarithme of the leffer extream from the Logaritbmine of the greater extream, then take $\frac{1}{3}$ of the difference of the faid Logarithmes; and add it to the Logarithme of the leffer extream, fo will the fum be the L_{o} garithme of the leffer mean; then add the fame Difference to the faid Logaxitbme of the leffer. mean, and the fum will be the Logarithme of the greater mean; ftill obferving the Rules delivered in the fourth and fifth Chapters of this book, in adding and fubtracting of Logarithmes:

Exiamples.

Ex. I. Let it be required to find 2 mean proportionals between 144 and 12 ?

> The \log. of $\left\{\begin{array}{c}144 \\ 12\end{array}\right\}$ is $\left\{\begin{array}{c}2.158362 \\ 1.07918 \mathrm{i}\end{array}\right.$
> The Difference-3) : 0.079181
> $\frac{1}{3}$ of the Differ. 0.359727
> 1.effer mean 27.473 log. 1.438908
> Greater mean 62.899 log. 1.798635

Chap. 7. Artificial Aritbmetick.
Example. 2. Let it be required to find 2 mean proportionals between .75 and .05 ?

$$
\text { The Log. of }\left\{\begin{array}{l}
75 \\
.05
\end{array}\right\} \text { is }\left\{\begin{array}{l}
-1.875061 \\
-2.698970
\end{array}\right.
$$

The Difference - 3)r.176091 $\frac{1}{3}$ part of the Diff. is 0.392030
i.effer mean is $.12331 \longrightarrow \log$. I.Ogio00

Greater mean is $.304 \mathrm{II}-\log$. 1.484030

Example. 3. Let it be required to find 2 mean proportionals, between 125 and .05 ?

The Log. of $\left\{\begin{array}{l}125 \\ .05\end{array}\right\}$ is $\left\{\begin{array}{r}2.096910 \\ -2.698970\end{array}\right.$ Their Difference-3) 3.397940
4 of their Differ.- -1.132646

The leffer mean is .67860 Log.-1.831616
The greater mean is 9.2101 Log. $1.96_{42} \sigma_{2}$

PROP.IV.

Three Numbers given to fund a fourth in a Dw: plicate Proporition.

Take the Logarithries of the two Numbers which have one and the fame Denomination, and
fubtract the leffer Logarithme from the greater, and double the remainder, (that is multiply it by 2.) Then if the firt number be lefs than the fecond, add the faid double difference to the Logarithme of the other Number, fo will the fam be the Logarithme of the fourth number, or number required, as in Example.

The fuperficial content of a Circle whofe Diameter is 14 Inches is 154 Square inches, I demand the Content of another Circle, whofe Diameter is 25 Inches? Facit 491.07 fquare Inches. See the operation.

Diam. I4 Incles its $\left.\log . \quad \begin{array}{r}\text { I.146128 } \\ \text { Diam: } 25\end{array}\right)$ Inches its \log.
The Difference of the \log.
Their Difference doubled - - 0.503624 The given content its log. 2.187521 The Cont. required 491. c7. log. 2.691145

But if the firf number be greater than the fecond, then inftead of adding the doubled dif. ference to the other number, fubtract it therefrom, fo fhall the remainder be the Logarithme of the number required, as in the following Example.

There is a Circle whofe Diameter is 8 In ches, and its fuperficial Content is 616 fquare Inches, I demand what is the Superficial Content of another Circle, whofe Diameter is 25 Inches? Facit 491.07 Square Inches, as in the former Example

Chap. 7.

Diameter 28 Inches its \log.—I. 1.47158
Diameter 25 Inches its \log. 1.39794° The Difference of the \log. 0.049218

Fhe Difference doubled - 0.098436 ${ }^{\circ}$ The given Content 610 , its log. 2.78958 I

Content required 491.07 , its log. 2.691143

PROP. V.

Having 3 Numbers given to find a fourth in a Triplicate Proportion.

Triple the Diference of the Logarithmes of the two given Terms; which have the fame Denomination. Then if the firf Term be lefs than the fecond, add the faid Triple Difference to the Logarithme of the other Term, fo fhall the fum be the Logarithme of the fourth Term required, as in the following Example.

There is a Bullet whofe Diameter is 4 . Inches, and its weight is 9 l.I demand what weight a Bullet of the fame metal will be, whofe Diameter is 8 , Inches ? Facit 72 i. view the following अैOrk.

248 Artificial dritbmetick. Chap. 7. Diameter 4 Inches - - log.- 0.602060 Diameter 8 Inches - - log. 0.903090 The Difference of the logar.—-0.301030

The Difference Tripled is - 0.003090 The given weight 9 l. - $\log .-0.95424 .3$

The weight required is 72 l. $-\log$. 1.857333
But if the firft term be greater than the fecond then fubtract the faid Tripled Difference from the logarithme of the other term, fo fhall the remainder be the logarithme of the fourth number required. As in Example.

There is a Bullet whofe Diameter is 8 Inches, and its weight is 72 pounds, I demand the weight of another Bullet of the fame Mettal, whofe Diameter is 4 Inches? Facit $9 l$. See the operation, it being the converfe of the former.

Diameter 8 Inches, its \log. -0.903090 Diameter 4 Inches, its log. 0.602060

The Difference of the \log. is -0.301030

The Difference Tripled is 0.903090 The given weight 72 , its \log.- 1.857333

The weight required $9 l$. its \log. 0.95424 .3

C H A P.

Chap. 8.

C H A P. VIII.

Of Anatocifme, or Compound Intereit, wherein is fhewed how by the Logarithmes to anfwer all Quettions concerning the Increafe, or prefent worth of any Sum of Money or Annuity,for any Term of Years, or at any Rate of Intereft. Accordirg to the fix Fundamental Theorems invented and laid down by Mr. Oughtred in his Treatife $\mathcal{D e}$ Anutocifmofive Urura Compofita,annexed to his Clavis Matbematicre.
I. Wen any Queftion in Compound Inte* reft is propofed, it will fall under one of the fix Cafes following, viz.

$$
\mathrm{S}_{3}
$$

1. To find the Increafe or amount of any fum of money put out at Compound Intereft for any number of years, and at any Rate of Intereft propounded.
2. To find the prefent worth of any fum of money due at the end of any number of years to come, Rebate being allowed at any Rate of Compound Intereft.
3. Tofind the increafe, or armount of an Annuity being forborn for any number of years at any Rate of Compound Interelt:
4. To find what Annuity any fum of Money due at the end of any Term of years to come. will purchafe at any Rate per Cent.
$\$$ To find the preent worth of any Annuity to continue any number of years', ailowing Rebate at any Rate per Cent.
5. To find what Annuity any Sum of Money will purchafe for any number of years, and at any Rate of Interelt propofed.
II. When any Qucftion in Compound. Intereft is propounded, find oat the Intereft of $1 /$ i and let 1 l . with its intereft be the Rate of Intereft implyed in the Queftion, as if any Queftion were propofed at $\frac{1}{\text { per Cent. the Int. of } 1 \text { l. for a year }}$ is .08 and the rate of Intereft is 1.08 , if at 6 per Cent. the Rate is r.o6, ecc. of which find out the logarithme.
III. When any Annuity or Debt the payments be half yearly, Quarterly, or Monthly, erc. you are to divide the Logarithme of the raid Rate by 2 , 4 , or $12, \delta c$. fo fhall that Quo. tient be the Logarithme of the Rate, as fuppofe any Queftion were propounded at 8 pere Cont, the Rate

Chap. 8. Artifcial Aritbmetick. 251

 Rate of Intereft here implyed is 1.08 , for$$
100: 108:: 1: 10.8
$$

Which faid Rate is for yearly payments, the Logarithme whercof is 0.0374204 , but if the payments are to be half yearly, then if you divide the faid Logarithme by 2 , it will give you 0.0187102 for the Logarithme of the Rate, and if the payments be Quarterly, divide the faid Logarithme of 1.08 by 4 , and it will give you 0.0093551 for the Log. of the Rate, and if the payments be monthly, then if you divide the faid Log. of 1.08 by iz, it will give you0.0031183 for the Log. of the Rate, wic. and this is generally the firft thing to be obferved in every Quettion, as you will find by the following Examples.

GASEI.

To find the Increafe or Amount of any Sum of Money put out at Compound Intêreft for any Term of years, and at any Rate of Intereft propounded.

Quef. r. if 50 l. - 16 s . be but out at 8 per Cent. Compound Intereft. for 7 years, I demand how much will then be due to the Creditor ? Facit 87 l.-WI s.- $02_{4}^{3} \mathrm{~d}$.
IV. Multiply the Logarithme of the Rate by the number of years, and the product will give you the Logarithme of the Amount of I l. for the propofed time, to which if you add the Log. of the Sum propounded, the fum will be the log. of the Aufwer.
S_{4}
The

The Operation by the Logarithmes.
The log. of 1.08 the Rate prop. 0.0334237
The numb. of years propounded.
7
The log. of the Increase of $1 l$
for 7 years. $\} 0.2339659$
The log. of (50.8 l .) the fum? proposed.

```
1.7058637
```

The log. of (87061) the an- $\}_{1.9398296}$
fer. which is 87%-UI s.- $23_{4}^{3 .}$. . fere

Quest. 2. What is the amount of $761 .-0_{4} \mathrm{~s}$
for 3^{4} years at 8 per Cent? Fecit
The Operation by the Logarithmes.
The log. of (1.08) the given ?
Rate per Annum? $\} 0.0334237$
which divided by 4 , gives the?

$$
\frac{13}{\substack{0.0250677 \\ 083559}}
$$

which multiplyed by 13 the?
Quarters in 3 years give the $\{0.1086267$ log. of the increase of $1 l$. the log. of (76.2) the given fum 1.8819547
the log. of $(97.8 \xi 4)$ the Anfw. 1.0905814

Chap. 8. Artificial Arithmetick.

Quef. 3. If $50 l$. be put forth at Interelt for 20 years at $6^{\frac{5}{4}}$ per Cent. I demand how much it will be incteafed to at the end of the faid time. Facit 168 l.-OI s.- 10 d.

The rate of Inereft here projofed is $6 \frac{1}{4}=6.25$ poi Cent. therefore to find out the Rate of I l. for a year, fay by the Rule of proportion.

So that the Rate of Intereft implyed in the Queftion fit for Calculation by the Log. is I.C625 according to the fecond Rule of this Chapter? behold.

The Operation.

The log. of (1.0625) the given
Rate 0.026328 The number of years propound. 20 The log. of the amount $\mathrm{I} \ell$, in $\} 0.5265780\}$
The log. of (50) the fum pro-
pofed,
$-1.6989700\}^{\text {adi }}$.
The bog. of 158.090 - 2.2255480
Which is $168 \%-01$ s.-Io d. very near, and fo much will 50% be increafed to in 20 years at σ l.-5 so per Cent.

C A S E 2.

> To jind the prefent worth of any. Sum of money due at the end of any number of years to come, Rebate being allowed at any Rate of Compound Intereft.
V. When it is required to find the prefent worth of any fum of Money, firft find the amount of i $\%$. for the propofed time, and at the Rate of Intereft propounded, then find the Logarithme of the fum propofed to be Rebated, and from it fubtract the Logarithme of the amount of $1 l$. (found as beiore) and the remainder will be the logarithme of the prefent worth of the fum propofed. As in the following Example.

Queft. 4. What is 30 l. that is due 7 years hence worth to be paid prefently, allowing Rebateat Bper Cent? Facit I7l-10s.-01! d. as you may perceive by

The Operation by the Logarithmes.
The log. of (1.08) the propofed Rate-0.033424

The log.of the amount of I l. for 7 years 0.233968 The log. of 30 1.477121

The log. of (17.506) the Anfwer 1.243153
which is $17 l$. - 10 - $-01 \frac{1}{2} d$ and fo much is the prefent worth of 30% due 7 years hence.

Oneft. 5.

Chap. 8. Artificial Aritbmetick.
Qnef. 5. What is the prefent worth of 1201 . due 2 years hence, allowing Rebate at 6 per Cent ? Facit rool.-15 s.-II d.

The Operation of the Logarithmes.
The log. of (I .06) the propored Rate- $0.02 \% 306$ The time propofed - 2

The log. of the amount of 1 . for 2 years.0.050612 The log. of 120 2.079181

The \log of (106.79) the Anfwer. - $-2.028 \$ 69$
which is 106 l. - 15 s. -11 d. and fo much is the prefent worth of $120 l$. due 2 years henice:

$$
\text { C A SE. } 3 .
$$

To find the Increafe, or Amonni of an Annuity, being. forborrn any number af years, at any Rate of Compound Intereft.
VI. For Refolving Queftions concerning the forbearance of A nnuities, you are (by the fourth Rule). firft to find ont the Ampunt of'; 1 . for the Time, and at the Rate of Intereft propounded.

Secondly, Find out the Logarithme of the faid amount made lefs by $f_{2}:$ and alfo the log. of the R. te made lefs by I , and fubtract the latter from the former, " Io fhall the remainder be the log. of the amount of $\mathrm{r} \%$. Annuity for the term of years propounded, to which if you add the Logarithme of the propofed Annuity, the fum will be the Logarithme of the Amount, or Increafe of the faid Annuity. As in the following. Example.

256 Artificial Arithmetick. Ghap. 8.
Ouef. 6. What will be the Amount, or Increafe of 48 l. -16 s. per an. for 7 years, Compound Interelt being Computed at 8 per Cent. Facit 435 l.—08 s. $-05^{\frac{1}{2}}$ d. fere. See

The Operation by the Logarithmes.

The log. of r .08)the given rate is 0.033424 3 mult.
The time propounded
The log. of (1.7138) the amount of 1%. for 7 years.——\} $\} 0.233968$
$\left.\begin{array}{rl}1.7138-1=7138 \text { its } \log . & -1.853577 \\ 1.08-1=08 \text { its log. } & 2.903090\end{array}\right\}$ fubt
The difference of the log. which? is the increafe of $1 l$ annuity 0.950487 /add

The log. of (48.8) the Annuity propofed
The log. of ($4.55 \cdot 4.22$) the amount of the propofed Annuity $-\boldsymbol{-}\} 2.638906$
which is 435 l. $-8 s-5 \frac{1}{2} d$. very near, and fo much will be the Increafe of an Annuity of 48%. 16 s. in 7 years, at 8 per Cent. Compound Intereft.
Quef. 7. There is an Annuity of 50%. forborn to the end of to years, I demand how much is. then due, Compound Intereft being computed at $6 \frac{1}{4}$ per Cent.? Facit 666 l.-16 s. as you will find by

Chap, 8. Artificial Aritbmetick.
The Operation by the Logarithmes.
The log. of (1.0625) the Rate 0.0263289 The term of years

The log. of (1.8335) the a- $\} 0.2632890$
mount of $\mathrm{I} l$. for IO years. 30.020 .
$1.8335-1=8335$ its log. -1.9209056$\}$ fubto $1.0625-1=.0625$ its \log. -2.79588005

The log. of the amount of $\mathrm{I} l$.
annuity for 10 years _ $\}_{1.1250256}$
The log. of (50) the Annuity $\} 1.6989700$ propofed.

The log. of (666.80) the a-? mount of the annuity pro- $\boldsymbol{}_{2} .8239956$ pored which is 666 l . - 16 s . and fo much will be due. at the end of the fail time.

CASE.

Tc find what Annuity any fum due at any time to comet will purchase to continue for any time, and at ant Rate of Interelt proposed.
VII. The Operation in this Cafe is the fame in every reflect with that in the former Cafe , only whereas in the laft cafe you fubtracted the \log. of the rate less I , from the log. of the increase of il. leis I , fo in this you mut fubtract the log. of the increase of il. less in, from the \log. of the rate less 1 , as in the following Example.

258 Artificial Arithmetick. Chaps 8.
Queft. 8. There is 705 l. due at the end of 7 years to come, I demand what Annuity to continue 7 years, the fame will purchafe, Compound Intereft being allowed at 8 -per Cext ? Facit $79: 0: 5 l .=79 \mathrm{l} .-00 \mathrm{~s}$. as you may find if you obferve

Thê Operation by the Logarithmes.

The log.of(r.o8.the propofed $\{0.033424\}$ mult.
Rate The propofed Tine -

The log. of the increafe of 1. . $\}$
for 7 years 1.738 —. $\} 0.233968$
$108-\mathrm{r}=.08 \mathrm{its} \log$.
$1.7138-\mathrm{I}=.7138$ its $\log , \quad-1.853577\}$ fubt.
The log. of the value of $I l-1.050513$
The log. of (705) the purchafe
money. 2.848189
The log. of the purchafe (79.015) 1.898702 which is 791 --0. $s-4$ d. fere.

Queftions of this Nature may be folved at two Operations by the fécond and fixth Cafes; Firift. by the Rule in the fecond Cafe find the prefent worth of the fum propounded, then by the fixth, find what Annuity fuch a fum will purchafe.

$$
\text { C ASE: } 5
$$

To find the prefent worth of an Annuity to continue any Term of years, howfoever payable, viz. either yearly, balf yearly or Quarterly, Rebate being atlcwed at any rate per Cent.
VIII. Find out the Logarithme of the Rate, and multiply it by the number of Years or Quar-

Chap. 8. Artifcial Arithmetick. 259

ters, according as the Anmity is payable, and that will produce the Logarithme of the increafe of I l. for the propofed time, to which add the Log. of the Rate made lefs by \mathbf{I}, and fubtract that fum from the Log. of the increafe of $1 l$. made lefs by I , fo fhall the remainder be the Log. of the prefent worth of I l. annuity for the time propofed to which add the logarithme of the propofed Annuity, and the fum will be the Logaritbme of the prefent worth of the given Annuity. As in Example. Queft. 9. What is the prefent worth of an Annuity of 30 l . payable by yearly payments, and to continue 30 years, allowing Rebate after the Rate of 8. per Cent. per Annum?

Facit 337 l.-I 4 s.-09 $\frac{1}{2} d$. as appears in

The Operation' by the Logarithmes.

The log.of (r.08) the propofrate $0.033+242$? mult
The term of years
The log.of (10.063 l.) the in - $\}^{1.002720}$ creafe of $\mathrm{I} l$.for 30 years.
The log.of(80) the rate lefsi-2.903090
-1.905810 fubt.
The \log of $10.063-1=9.0630 .9572 .72$
The log. of the prefent worth?
of , 1. Annuity —————1.051462\}
The log. of (30) the propofed ? Annuity - \quad -

$$
1.477121
$$

The log. of (337.74) the prefent worth of the propored An- $2.528 ; 83$ which is 337 l .- 14 s. - $09 . \frac{1}{2}$ d.

CA SE 6.

To find out what Annuity to continue any term of years any given fum of Money rill purchase at any pate of Compos Interef:
IX. When you would know what Annuity any given fum will purchase, firft (as in the foregoing rules) find out the Logarithme of the Rate, which multiply by the proofed time, fo will that product be the Logarithme of the encreafe of il. to which add the Log. of the rate made le ifs by 1 , and from that fum fubtraft the Log. of the laid increafe of $1 l$. made less by 1 , fo will the remainder be the Log. of what 1%. will purchase for the proposed Time, to which if you ads the Log. of the given purchafe mong, the fum will be the Log. of the Annuity that the given fum will purchafe. As in Example,

Que. io. What Annuity to continue 7 years, and payable by (Quarterly payments will 246 \% purchale. Allowing Rebate at 8. per Cent ? Fact 12.297%.

The Operation by the Logarithmes.

 The \log. of I .08 the given Rate per An. -0.033424which divided by 4 gives the log. of $\} 0.808356$ \{1.0194) the Rate per @tarter. - \} ~ The Quarters in 7 years

66848
16712
The Log, of the encreafe of 16 . for 28
Quarters, viz. 1.7138 ————3 $1.0194=.0194$ its \log.
$1.7138-1=.7138 \mathrm{its} \log$.
The log. of the purchase of 1 . The log. of the propofed Sum 264

The log. of (12.297) the Annuity $\}$ 1.089796
which the laid fun will purchafe $\}$
which is $12 l-05$ s- $11 \frac{1}{2} d$.
More variety of Queftions might beftated, but the fe to the Ingenious are fufficient.

With all other Rules requifite for the underftanding of that Myfterious Art, according to the Method ufed by Mr. 70 H N KERSEY, in his incomparable Treatife o! A L GEBRA.

Compofed by ED W A R-D COCKER, late Practitioner in the Arts of Writing Arithmetick, and Engraving.

Perufed, Corrected, and Publifhed By $70 H N H A W K I N S$, School-Mafter at St. George's Church in Soutbwark.
Plato foribus Academix infribi juffit ; Nemn Aritbmetices Ignarus bic Ingrediatur.

$$
L O N D O N
$$

Printedin the Year 1702.

219400)
WOIT सMETIス
 10. cierkisa bafo
\qquad

\qquad

\qquad

ALGEBRAICAL DEFINITIONS

CH A P. I.

Concerning the conftruction of Coffick Powers, and the way of expreffing them by Letters, together with the fignification of all fuch Characters or Marks as are uled in the enfuing Treatife.

AnE Analytical Art generally called Algebra is that by which, when a Problem, or hard Queftion is propounded, we aflame the Quantity To

264 Alse or Number fought, as if it were really known; and, with this affumed Quantity, and the Quantity and Quatities gven, we proceed by undeniable Confequences, until the Quantity firft affumed is found to be equal to fome quantity or, quantities really known, and is therefore it felf alfo known

II. Algebra is either Numeral, or Literal.

III. Numeral Algebra is fo called, becaufe alt the given Quantities in any Queftion are expreffed by Natural Numbers, and the number or quantity fought is folely reprefented by fome Letter or Character taken at the pleafure of the Artif.
IV. Literal Algebra is fo called, becaure when a queltion is refolved after this method, the known or given quantities as well as the unknown, are all expreffed by Letters of the Alphabet, or fome other Convenient marks or Characters, and this is alro called, Specious Algebra; and when a queftion is refolved after this manner, at the end of the operation, there is difcovered, a Canon, directing how the queftion propofed, or any other of the like nature may be folved, and therefore is literal Algebra, accounted more excellent than Numeral Algebra, for that produceth not a Canon without extraordinary difficulty; becaufe the numbers frift given are by Arithmetical operations fo interwoven and confounded, that it may feem a task too tedious for the mot ingenious Artift to trace out their foeffteps.

Chap. r.

V. The Doctrine of Algel,ra confifts in the knowledg of certain quantities called Coffick Powers, which we fhall immediately explain.
VI. In a feries, or rank of Ceometrical pro. portionals continued, proceeding from ilnity or one, whether they be afcending, or defcending, all the numbers or Terms except the firfe (which is fuppofed to be unity) are called Coffick Numbers, or Powers, as for Example, in this rank of continual proportionals, viz. $1,2,4,8,16,32$, $64,128,156, * 6 c$. the fecond 'Term (2) is called the root or firft Power, the third term (4) is called the Square or fecond power, the fourth Term (8) is called the Cube, o! third power; the fifth (16) is called the Biquadrate, or fourth power, (32) is the fifth power, (64) is the fixth power, (128) is the feventh power, cro.

In like manner if you take a rank of Geometrical proportionals continued, and defcending from unity viz. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{1} 6, \frac{1}{32}$, \&ic. or $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{217}$ $\frac{1}{81}, ~$ Ofc. or $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{6_{4}}$, $\approx c$. The fecond Term is called the root or firit Power, the third term is called the fecond Power, the fourth term is called the third power, for.
VII. Whence it is evident that the Square or Second Power is generated by the Multiplication of the root or firft Power into it felf, and the Cube or third power is generated by multiplying the fecond Power by the root, or by multiplying the root 3 times into it felf, and the Biquadrate or fourth power is produced by multiplying of the third power by the root, or by multiplying the root 4 times into it felf, and the fifth power is produced by multiplying the fourth power by the root, ecc. As for Example.

If you take 2 for a Root, multiply it by its felf, it produceth 4 for the Square or fecond power of the Root :: Again, multiply 4 by the Root 2, and it produceth 8 for the third power, or Cube of the Root 2 : Again, if you mulipiy the Cube 8 by the Root 2, it prodiceth the fourth Power, or Biquadrate of the Root 2, © ©
In like manner if 3 were propofed for a Root, it being multiplyed Dy it felf, produceth 9 for the Square, or Second Power of 3 , and 9 being multiplyed by the Root 3, produceth 27 for the Cube, or third Power of the Root 3 , corc.

And alfo if $\frac{x}{2}$ be propofed for a Root, and it be multiplyed by it felf it produceth $\frac{1}{4}$ for the Square or Second rower of (the Root) $\frac{8}{4}$, and $\frac{1}{4}$ (the Square being multiplyed by (the Root $\frac{1}{2}$,) it produceth $\frac{1}{8}$ for the Cube, or third Power of (the Root) $)^{\frac{1}{2}}{ }^{\frac{1}{2}} c$.

Whence it is evident that the 4,6 or 7 powers of any Roots may be found out. without any refpect at all had to the intermediate Powers between the Root and the power required; as fuppofe there were given the Root 3, and it were required to find the fifth power of it. I take 3, and fet it down 5 times in order thus, 3, 3, $3,3,3$, and multiply them all into each other, according to the rule of continual multiplication, and the laft product (which is 243) is the fifth power of the Root 3, which was required

Again let it be required to find the fourth power of 5, I take 5, and fet it down 4 times thus, $5,5,5,5$, thea dol multiply them continually, and find the laft prodicit to be 625, which which is the fourth power (of the given Root) as was required. The like may be obferved in the finding of any other power of any other given Root.
VIII. If there be a feries of Geometrical proportionals continued, and againft each power there be placed numbers orderly reprefenting the number or degree of diftance of each power from the Root, fuch numbers are called the Indices or exponents of the powers, becaufe they fhew how often the Roots is involved into it felf for the production of fuch a power, as in the Rank, or Scale of Algebraical powers placed in the margent, proceeding from the root 2 , to the tenth power thereof, which is 1024 , under which is written the word Powers, and then againft each particular power, on the left hand thereof, is expreffed Index, or Exponent of that Power, hewing how often the Root is involyed or multiplyed into it folf to produce that Power: As for Example, againft the number 64, is placed the num. ber σ, which fheweth that 64 is the fixth power of its Root, or that its Root is multiplyed 6 times into it felf to produce the number 64. The like is to be underftood of any other,

Likewife if any two or more Indices, or ExT 4 ponents
ponents be added together, their fum will be an exponent fhewing what power wili be produced by the multiplication of thofe Powers belonging to thofe Exponents or Indices which you add together; as in the foregoing Table let it be required to find out what power of the Root 2 will be produced by multiplying 128 (its feventh power) by 8 (its third power,) in order to which I take 3 and 7 , the refpective Indices of the given powers, and add them together, and their fum is 10 , which fleweth that the third power, and the feventh power of any Number, or Root, being multiplyed together, will produce the tenth power of that Root; fo in our example 128 being multiplyed by 8 , produceth, 1024, which is the tenth power of the Root 2.

In like manner, the Indices 3 and 5 being added together, make 8 for a new Exponent, which fheweth that 32 and 8 (the powers belonging to thofe Expoirents) being multiplyed together, will produce the eighth power, viz. 256 , as appears by the faid Table, the like of any other

So that you fee that the addition of Indices anfwers to the multiplication of their Corre? rpondent powers.

And in like manner will the fubtration of Indices, or Exponents, anfwer to the Divifion of their correfpondent powers, obferving always to make the power correfponding the fubtrahend (or Index to be fubtracted) to be the Divifor.

Chap. I. Aigebraical Definitions.

IX. When a Queftion is propounded, and its folution is to be fearched out by the Algebraick Art, the number or magnitude fought is arenerally called a Root, and it muft be reprefented or fignified by fome Character or Symbol, as muift be alfo all the powers proceeding from the faid Root according to the tenure of the Qieftion, in order to which there may be taken fome letter of the Alphabet at the pleafure and difcretion of the Artift, as a, b, c, or $d, c c$. to exprefs the faid Root, but to avoid confufion in operation, by the commixture of known with unknown Quantities, our Modern Analy\{ts have. been accuftomed to affume vowels to reprefent unknown Quantities, and to put Confonants to fignifie known or given quantities.
X. If for the number or quantity fought there be put or affumed the Vowel a, then its Square will be an, that is, a being multiplyed by it felf, produceth an, that is a fquared, or the fquare of a, for a time a is $a a$, and the Cube or third power raifed from the Root a, is aaa, that is, a times $a a_{\text {, }}$ is ana, and the fourth power accordingly is aana, and after the fame manner may any higher power of a be fignified:

In like manner if for the quantity or number lought there be allumed, the letter e, then fhall the Square raifed therefrom be ee, and the third power eee, and the fourth power eeee, and the fifth power eeeee, \&c.

Alfo if b, or any other Confonant, be put for a given or known Quantity, then its Square will be, $b b$, its Cube $b b b$, and its biquadrate $b b b b, \& c$. but

270 Algebraical Definitions. Chap. 8.
But by fome Analyits the powers of a, or any other letter, or Vowel, or Confonant, are exprefled by placing the Index or Exponent of the power in a fmall Character, juft after the Symbol, even with the head thereof, viz. $a, a^{2}, a^{3}, a, \sigma$ or fignifie the Root a_{2} its Square, its Cube, and its Biquadrate, ©c. which may be further exemplified by the following Table.

Chap. I. Algebraical Definitions. $27 \pm$

XI. The numbers made ufe of in folving of Algebraical Que'tions, are either abfolute Numbers, or Numbers prefixt.

Abfolute numbers are thofe which are disjunct from any kind of Magnitude or Quantity, either known or (unknown) required, butfand fimply of themfelves, without havin $\tilde{O}_{\text {, }}$ Relation to any thing elfe, as $5,10,20,100, \frac{\varepsilon}{4}$, and $\frac{15}{2}$ are called abfolute numbers.

Numbers prefixt are fuch as are immediately prefixt to fome letter or letters, fignifying an Algebraical quantity, either known, or required fuch as are $2 a, 4 a, 10 a, 100 a \cdot \frac{1}{2} a,{ }_{4}^{3} a, 3 a a$, $5 b b b, 3 a, 5 b^{3}$; which numbers fo prefixed, fhew how often the quantity to which they are prefixed, is to be taken, as $4 a$, fignifieth that a is to be taken 4 times, and $5 b 6 b$, or $5 b^{3}$, fignifieth that the Cube or third power of b is to be taken 5 Times, $\frac{1}{2} a$ is half of a, and $\frac{2}{3} b$ is two thirds of b; The like is to be underftood of any other. And,

Note, that when you have any Algebraical Quantity or Letter, or Character, not having any number prefixed to it, then I, or unity' muft $b e$ imagined to be prefixed, as a, or \mathbb{a}, b, or $1 b, \& c$
XII. As in Vulgar and Decimal Arithmetick, in Algebraical Arithmetick, the operations are performed either by Abfolute Numbers, or by Alphabetical charasters, in all the fundamental rules, viz. Addition, Subtraction, Multiplication, Divifion, and the Extraction of Roots: and note that

Where it is required to perform the work by abfolute numbers, that the operation is in every refect the fame as in Common Arithme.
tick.

Chap. I. Algebraical Definitions.

tick. But where it is performed by Alphabetical Letters, there is an abfolute neceffity of ufing fome Characters, to fignifie the Operation, an explanation of which Characters take as followeth.
XIII. The Character (+) is a fign of affirmation or Addition, which it is placed between two quantities, fignifying that the 2 numbers or quantities between which it is placed, are to be added together, and is as much as to fay plus, as $3+6$ fignifieth the fum of 36 and 6 , is as much as to fay 3 plus 6 , or 3 more 9 , which is 9 and $4+7+9$ fignifieth the fum of 4,7 , and 9 , which is 20 ; fo $a-b-b$ fignifieth the fum of a, b, and c. And here note, that when there is no Mark, or Character before any Letter or quantity, then is it Affirmative, and the Mark $(--)$ is fuppofed to ftand before it; as a_{2} is faor-1 $1 a^{2}$, and b is $+b$, or $+1 b$, and $b c d$ is $-b c d$ the like of. others.
XIV. This Character $(\%)$ is a negative fign, and always belongeth to the quantity or Number which followeth it denying it to be, and fignifieth a fictitious Number, or quantity lefs than nothing.

So -7 is a feigned number, lefs than nothing by 7 , viz, as the height of the Sun above the Horizor may be affirmed to be 7 deg. or -17 deg. fo when it is deprefled 7 degrees below the Horizon, its height may be faid to be一 7 deg. that is, 7 deg. lefs than nothing.

But when the faid fign or Character is placed between two numbers or Quantities, it firnifies that the number or quantity which follow- eth it, is to be fubtracted out of fome Number or Quantity going before it, as $12-8$ fignifiech that 8 is to be fubtracted out of 12 , or it fignifieth the excefs of 12 above 8 , or the Difference between 12 and 8 , which is 4 , fo $a-b$ fignifieth the excefs of a above b, and it is as much as to fay (a lefs b,) fo $a+-b-c$ fignifieth that c is to be from the fum of a and b.
character
XV. This, Chapter (x) is the fign of Multiplication, and fignifieth that the Numbers or Quantities between which it is placed, are to be multiplyed together, as 4×5 fignifieth the product of 4 and 5 , which is 20 ; $102 \times 5 \times 8$ fignifieth the product of the continual multiplication of 3,5 , and 8, viz. 120.
Likewife $b \times c$. fignifieth the product of the multiplication of b by c, and $b \times c \times d$ fignifieth the prochict made by the continual multiplication of b, c, and d_{0} into each other.
But for the molt part Analyfts fignifie the multiplication of literal Quantities by fetting the letters together like letters in a word, as ab is the fame with $a \times b$ and abc is the fame with $a \times b \times c$ and this indeed is to be preferred before theother as moft convenient and fitteit for operation.
XVI. This Character (as) fignifieth the Diference between the two quantities between which it is placed, when it is not known in which of them the excefs lyeth. So 6 cac fignifieth the Difference between b and c, which it is not known whether b be greater or leffer than c.

XVII. The

XVII. The faid 4 Characters defined in the 13, 14,15 , and 16 Sections foregoing, vizo. ,$+ \ldots \times$ andes, may oftentimes have Relation to fuch a Compound Quantity following the Character, as hath a line drawn over each part of it, as for example, $c+b \in d$, by which you are to underftand that the Quantity (c) is to be added to the difference between the Quantities (b and d) in which of them foever, the exceifs lyeth:

Likewife $a-\overline{b c c} c$ which fignifieth that the difference between b and c is to be fubtracted from the Quantity expreffed by a.

Alfo $a \times \bar{b}+c$ fignifieth that the fum of b and c is to be multiplyed by the quantity a, where take notice that in regard there is a line drawn over the two quantities b and c the fign \times hath reference to the multiplication of a into the quantity c as well as the quantity b, which immediately followeth it, but if the faid line were omitted, and the quantities were thus expreffed, $a \times b-1-c$, it would fignifie the quantity c to be added to the product of the multiplication of a and b.

Furthermore $b-\bar{\square}+d$ fignifieth that the quantities c and d are or mult be fubtracted from the Quantity b, whereas if there were not a line over the quantities c and d, it would fignifie that the quantity d is to be added to $b-e$.
And $c=\overline{a \leftarrow c}$) fignifieth the difference between the quantity c, and the fum of d and e, whereas if the line were not over d and e, it would fignifie the quantity e to be added to the difference between c and d.
XVIII. This Character $(\sqrt{ })$ is a radical fign, and fignifieth that the Square Root of the quantity or quantities following it, is to be extraCted as $\sqrt{ } \cdot 3 \sigma$, fignifieth the Square Root of 36 , viz. σ.

So $\sqrt{ }$ ab fignifieth the Square Root of the product of the quantities \dot{d} and b, and $v a b c$ is the Square Root of the product of the continual multiplication of the quantities of, a, b, and c.

But when you would reprefent the Root of A Power that is higher than a Square; then immediatly after the faid Radical fign, exprefs the index, or exponent of its, power in a parenthefis, as followeth, viz. $\sqrt{ }(3) 64$, fignifieth the Cube Root of 64 , which is $4, \sqrt{2}$ (4) 81 fignifieth the Biquadrate Root of 81 , viz. 3 .

Alfo $\sqrt{ }(3)$ ab, fignifieth the Cibe Root of the product of the multiplication of the quantities; a, and b, and $\sqrt{ }(4)$ edfignifieth the Biquadrate Root of the product of the multiplication of the quantities, c and d.

And the fid Radical fign doth oftentimes belong to fuch a Compound Quantity following it, as hath a line over every part of it. As for Example, $v_{6} \div c$ fignifieth the Square Root of the fum of the Quantities b and c. So $\sqrt{ }$ (3) $\overline{a+b-c}$ fignifieth the Cube Root of the remainder, when the quantity c is fubtracted from the fum of the quantities, a and b, and ((4) $\overline{a a+b-c)}$ fignifieth the Biquadrate Root of the remainder, when the quantity c is fubtracted from the fum of the Square of a added to b.

Likewife $a-1-\sqrt{b b+c-a d}$ fignifieth that to the quantity a is to be added the Square Root of the remainder, when the quantity d is fubtratied from the fum of the Square of the quantity b_{2} and

Chap. 1. Algebraidat Definitions.
and the quantity $c:$ A nd thefe and fuch like are by Ainalyits generally callediuniverfal Roots.

After the fame manner may be exprefed the univerfal iscuare Root of but aatc thus, viz (2)borm iwhich fignificth the Square Root of the fum when b is added to the Square Root of Gix
XIX. This Charater $(\Rightarrow$) fignifieth an Equation, or equality of the magnitudes, or quantities between which it is placed, and imports as much as thefe words, viz. (is equal to) as in the following Example, viz. $3-14=7$, which is as much as to lay, the fum of 3 and 4 , or 3 plus 4 is equal to $7 ; 7+9=12+4=16$ imports that the fum of 7 and s is equal to the fum of $i z$, and 4 which is equal to 16 ; and $9=12-3$, fignifeth that ' 9 is equal to the excefs of is above 3 .

Alfo $4^{\times 5}=2 x_{10}=16+4=20$ fignifieth that the Rectangle or Product of 4 by 5 is equal to the Rectangle or Product of 10 by 2 , which is equal to the fum of is and 4 , equal to 20.
"Likewife ${ }^{2}-=_{2}$. Ignifieth that the Quotient of 24 divided by 6 , is equal to the Quotient of 8 divided by 2 :

Again $a-b=c-d$ fignificth that the fum of a and b is cqual to the excefs c above d and
$2 x+d$ mer g lignifieth that the fum fand dis eqaal to sthe Quotient of f divided by $g ;$ and $b x_{c}=r-s$ fignifieth that the Reanangle of b and Ul
c is

278 Algebraical Definitions. Chap. 1.
c is equal to the excefs or r above s, and $a=\sqrt{c o t-\frac{1}{4} c e-\frac{1}{2} c}$ fignifieth that a is equal to the remainder, when $\frac{1}{2} c$ or $\frac{c}{2}$, is fubtracted from the univerfal fquare Root cc $\div \frac{1}{4} c \mathrm{c}$ this will be made plain and ealie to the ingenious practitioner by the enfuing Example of this Treatife.
XXI. This Character ($($) ftands for the word (greater) fignifying the number, or quantity ftanding on the left hand of the faid Character to be greater than that on the right hand thereof; as $8 \Gamma_{3}$ fignifieth that 8 is greater than 3 ; alfo $a+b \varepsilon_{c}$ fignifieth that the fum of a and b is greater than c, 6.
XXII. This Character (c) ftands for the word leîs) and it fignifieth that the number or quantity ftanding on the left hand thereof is leffer than that on the right hand. As $4+3$ ᄃ $20-8$ fignifieth that the fum of 4 and 3 is less than the excefs of 20 above 8 Likewife $c-d$ L $^{6}+\boldsymbol{e}$ is thus read, viz. the Remainder of d being fubtracted from c is lefler than the fum of b and e.
XXIII. This Character, $(::)$ is always placed in the middle between 4 Geometrical proportionals, as in the following Examples, viz. $2: 4:: 9: 18$ is thus to be read, viz. as 2 is to 4 , fo 9 is to 18 ; or after the manner of the Rule of 3 , if 2 require 4,9 will require 18. Alfo $b: c:: d: c$ is thus read, as b is to c, fo is d to e. And $a f-e: b:: c+b$ is as much as to fay as the Compound Quantity $s f$ is to the quantity b, fo is the Compound

Chap. 1. Artifficial Definitions. 279 Quantity $c+b$ to the Quotient of the Compoind Quantity $b c+6 b$ being divided by $a f e$.
XXIV. This Character (\because) placed after any number of quantities exceeding two, declareth the laid numbers or quantities after which it is placed to be continual Geomerrical proportinals, fo $2,4,8,16,32,64 \div$ fignifieth the faid numbers to be continual proportionals Geometrical, for, as 2 is to 4 , fo is 4 to 8 , and fo is 8 to 16 , and fo is 16 to 32 , and fo is 32 to 64, cic. alfo thefe quantities, viz. a.b.c.d. e, \because are continnal proportionals Geometrical, for, as a is to b, fo is c to d. and fo is d to e.

C H A P. II.

Addition of Algebraical Inte-

 gers.I s in Common Arithinetick, fo in Algebraical, Addition finds out the aggregate, or fum of two or more given quantities however exprefled numerally or literally.
II. When the quantities given to be added are alike, and have like figns, collect the numbars prefised to each quantity into one fum, and
 there
thereto annex the letter, or letters of any one of the given quantities, and then prefix the fign of Affirmation or Negation, viz. . or fo thall the quantity thas found be the fum defired.

And here note that every quantity which hath no number prefixed to it, is fuppofed to have the number 1 prefixed, fo is $a=1 a$, and $b=1 b$.

Example.

What is the fum $36 \mid b-1-2 b$? Facit σb, for the fum of the numbers prefixed to each quantity, viz 3,1 , and 2 is 6 , to which if annex the Character b, it will be σb, which mult have the fignt- prefixed to it, or elfe it mult be imagined fo to be, then will- $\sigma 6$ be the fum of the given quantities. So if $5 a b$ the fum of $3 a b-2 a b$. And-4cd the fum of $-3 c d$.

> More Examples of this Rule.

III. When the quantities given to be added together are like, but have-unlike figns, then fubtract the leffer number prefixed from the greater, and to the remainder annex the letter or leticrs by which any one of the given quantities is exprefled; and thereto prefix the fign of - or -according to the fign of that prefixed

Chap. r. Algebraical Integers. 281

 number wherein lay the excels, fo hall this new quantity be the fum of the quantities propounded.
Example.

Let it be required to add- $5 \boldsymbol{\sigma} c \mathrm{~d}$ to $=2 \mathrm{~cd}$, the fum will be found to be ti 3 cod; for, firth, I fobtract -2 from -15 and there remains 3 , to which I annex $c d$, fo will there be 3 cd, to which I prefix the riga - because it belongs to the number s_{0} wherein lay the excess, fo have It 3 ed for the fum required. See the work.

$$
\text { add } \frac{\left\{\begin{array}{l}
15 c d \\
-2 c d
\end{array}\right.}{\text { Sum- } 1-3 c d}
$$

Again, if it were required to add $-4^{a a}$ to $-7 a a$ the fum, would be add $\left\{\square^{7 a a}\right.$ found to be- $3 a$, , because the fign belongs to the number 7 wherein lay the excess, fee the work in fum 3 an the Margent.

> More Examples of the lat Rule.
 fum $4 a b c d|-3 a a e|-4 g g g \mid-16 b c d$

And here note that i the numbers prefixed to the given quantity be eq-al, and they have different ligns, their fum will be 0 , fo if it were reguited to add+8bcd to-8bcd their fum will ve 0 , the negative fign deftroying the aftrmative.
IV. When the quantities given to be added are more than and have different figns then according to the fecond Rule of this Chapter, bring the quantities ha ing like figns into one fum, that is; che affilmative quantities into one fum, and the negative into another, then by the foregoing third Rule add thore two quantities together, fo mall their fum be the number fought.
Example.

Let it be required to add the fum of $3 a a+7 a a$ -2aa-5aa. Firft by the faid fecond Rule I find the fum of $3 a r+7 a a$ to be Ioaa; and the fum of - $2 a u-5 a a$ to be-7aa, then by the faid third Rule I find the fum of $10 a s$ - ria to be $3 a a$, or - $3 a a$, fo that I conciude the fum of $3 a a^{\prime}$ faa - 2aa-5 ar to be-j $32 a$.

Nore Eniraples of this Rule folloro.

$$
\begin{aligned}
& \text { To be ad- }\left\{\begin{array}{c|c|c}
+3 c c & -2 c d & -73 b c d \\
\text { ded. } & -7 c c & -7 c d \\
+8 c c & +17 b c d \\
-4 c c & 5 c d & -9 b c d \\
-7 c d
\end{array}\right. \\
& \text { Sum } 0^{-1} 1-5 \operatorname{scd} \mid 3+b c d
\end{aligned}
$$

H. When

Chap. 2. Algebraical Integers. 283
V. When the fimple quantities given to be added together, be unlike, then (how many foever there be) fet them one after another in the fame line without altering their figns.

Example.
What is the fum of 46 added to 3 cd ? Facit $4^{b}-1-3 c d$ for the fum.

More Examples of this Rule follow.

Algcbraical Audition of Componnd Integers.
VI. The Addition of Compoind Algebraical Integers is eafily performed by the ficlp of rhe foregoing Rules of this Chapter, whechit the Compound quantities to be added are alike, or unlike; as you may cafily perceive by the work of the following Examples.

Let it be required to find the fum of $3 a-16$ and $5 a-36$. their fum will be $8 a+4 b$ for u_{4} by the fecond Rule of this Ciapter.

Alro the fum of $6 i d-366$ and $26 d-566$ will be found to be 8 cd - 2 bh for (by the fecon Rule of this Chapt.) $6 \mathrm{~cd}-2 \mathrm{~d} d=8 \mathrm{~cd}$, and by the third Rule the fum of $3 b i-j b-2 b$ which wo fums added together by the firth Rale of this Chapter will be Scd-26t.

Aloreover if it were required to find the fum of thefe Cempound Quantitics, viz. $150 g-18 e$ -20 and $5 \sigma-3 a+12$ it will be $18 g \sigma-15 a-8$ for $150 g-3 g g=18 g g$ by the fecond Rule, and the fum of $8 a-3 a=5 a$ by the thind Rule, and b\% the fame $12-20=-8$, the fum of which 3 fums is $18 \mathrm{~g} g+5 a-8$ by the fifth Rule of this Chapter.

And the fum of $8 b-16-1-2 c d$ and $24-5 b-3 c d$ is $3 b-1-8-1-5 \mathrm{~cd}$. And here note that in fetting down Compond quantitics to be added together, it matters inot which of them you fet Srft, 10 that to every puantity there is proficed its proper fign; as $3 a: 1-b-c c$ is the fame with $b-13 a-c c$ and with-cc-t+ $b-13 a, 8 c$.

Chap. 3.

Algebraical Integers.
285
To be ad- $\quad\left\{\left.\begin{array}{l}1 \sigma c d e+4 d b-51 \\ \text { decd. }\end{array} \quad 96^{3} \right\rvert\,-4 c f-d \sigma\right.$
$-8 c d e--2 d b$
decd. $\quad\left\{\begin{array}{l|l}-8 c d c--2 d b & 4 t^{4}+2 d \sigma--2 i b\end{array}\right.$
--3cde-ab $\mid 2 c^{2}+e j-d \sigma$
Sum $5 c a c+d b+5 p \mid \quad c++5 e^{x}-2 b$

CHAP. M.

Subtraction of Algebraick In-

 tegers.IShall not here need to give yod a definition of the nature of frotraction, but hall only give you a general Rule for finding ont of the remain. der, excess, or difference of any tho quantities: and that in all cafes whatfoever.
I. When a Quantity Single or Compound, is given to be fubtracted from another, then change the fight, or figns of the quantity to be fubtraetd, into the contrary lignins, that is + into and - into-1-; which being done, add the two given quantities together by the Rules of the foregoing fecond Chapter, fo hall then for be the difference, or remainder fought.

$$
\text { Example } \mathrm{I}
$$

Let it be required to fubtract 3 a from 8 a.
The quantity here given to be fubtracted is $3 a$, which according to the fecond rule of the fecond chap. is $+3 a$, therefore muft its fign+be changed into-, fo will it be- $3 a$, which being added to $8 a$ (by the third Rule of the fecond Chap.) their fum will be $5 a$, for, $8 a-3 a=5 a$, and $8 a$ and is the difference between the quantities fo much
3 A.

Example 2.

Let it be required to fubtract- $3 b c$ from $4 b c$.
Here becaufe- $3 b c$ is the quantity to be fubtracted, therefore muft its fign-be changed into , fo will it be $+3 b c$, which being added to $4 b c$, by the fecond Rule of the fecond Chapter, their fum is $7 b c$, for, $3 b c+4 b c=-7 b c$, and fo much is the remainder when- $3 b c$ is fubtracted from $+4 b c$,

Example 3.
Let it be required to fubtraet - 36 de from -9bde.

Here becaufe- 3 bde is the quantity to be fubtra? cied, therefore muft its fign-be changed into-t, fo will it be $-1-36 d e$ which being added to - $96 d e$ according to the thirc Rule of the fecond Chapter their fum will be-6bde for $+3 b d e-9 b d e=\sigma b d e$, and fo much is the remainder when- $3^{b d e}$ is fubtracted from-sbde.

Chap. 3. Algebraical Integers. 287

$$
\text { Example. } 4
$$

Subtract $3 c d$ from $8 d$. The fin of $3 c d$ being changed, it will be- $3 c d$, which being added to $8 d c$ by the fifth Rule of the Second Chapter, their fum will be $8 d e-3 c d$ which is the remainder when $3 c d$ is Subtracted from $8 d e$.

Example g.

What is the remainder when- $3 b c$ is fubtrated from $2 c d$? Facit $3 b c-2 c d$, or $2 c d+3 b c$.

In all which Examples you fee that the fign of the quantity given to be fubtraited is changed into the contrary fign.

More Examples of Subtraction of Simple Aloe brick Integers.

$$
\text { Example } 6 . \quad \text { Example } 7
$$

From	$3 c d$	$-5 b c$
Subtract	$c d$	$-8 b c$

Remainder $3 c d-c d \mid 5 b c-3 b c$
$\left.\begin{array}{l}\text { Remainder } \\ \text { contracted }\end{array}\right\} \left.\frac{2}{3 c c d} \right\rvert\, 3 b c$

Example

Example 8. Example 9.

Remainder $3 d a+d a \mid c d e-2 c d e$
$\left.\begin{array}{l}\text { Remainder } \\ \text { contracted }\end{array}\right\}-1-4 d a \quad \mid \quad-3 c d e$

And when it is required to fubtract a Compound Integer from a Compound Integer, the operation will not in any wife differ from the former, observing always to change-finto - , and -into- - , as will appear by the following Exsamples.

Examples.

From $2 a 4^{b}$ let it be required to fubtract $2 a-b$. Here $2 a-b$ being the quantity to be furtracked from the other, its figns muff be changed into the contrary figs. And then instead of 2a-b you will have- $2 a-b$, which being added to $3 a \quad 4 b$ the fum will be $a+5 b=3 a \quad 4 b-2 a \quad b$, and fo much is the remainder, when fubtraction is performed according to the tenure of the Queftion. See the work laid down as followeth.

From $\quad 3 a+4 b$
Subtract $2 a-b$
Remainder $3 a-1-4 b-2 a+6$
$\left.\begin{array}{l}\text { Remainder } \\ \text { contracted }\end{array}\right\}$

Example II.
From $3 a n-2 d c-f-a b$ let it be required to fubtract $a a-1-3 a b-3 d c$. The quantity here given to be fubtracted is $a a-1-3 a b-3 d c$, whore ligns being changed, it will then be-aa-3ab-1-3dc, which being added to $3 a-2$ de $-a b$, the fum will bezai - $2 d c-1-a b-2 a-3 a b-1-3 d c$, which according to the fixth Rule of the fecond Chapter is equal to $2 a a+d c-2 a b$. See the following operation.

From $3 a a-2 d c+a b$ Subtract a $a-3 a b-3 d c$

Remain. $3 a a-2 d c-f a b-3 a-3 a b+3 d c$
Kemainder contracted $\{2 a a+d c-2 a b$

But when the given quantities are unlike, then place the quanticy to be fubtracted immediately after the quantity out of which it is to be fubtracted in the fame line, changing its fignts, which new quantity when the faid quantity is fo anaexed, is the remainder required, which will admit of no Contraction, becaufe the quantities are unlike.

Example.

Example 12.

Let it be required to fubtract $3 a b+2 a n$ from $7 b c-1-6 c d$, the quantity given to be fubtracted is $3 a b+2 a a$ which annexed to the other given quantity, changing its figns, will give $7 b c+\sigma c d$, $-3 a b-2 a a$, which is the remainder required. See the following work.

```
From \(7 b c+6 \cdot d\)
Subtract \(3 a b-2 a a\)
```

Remainder $7 b c+6 c d-3 a b-2 a b$

More Examples of Subtraction in Compound Alebrick Integers.

From $3 a+2 b c$
Subtract $2 a a+4 b c$

$$
\left\{\begin{array}{r}
8 r d-3 d c \\
-2 r d-9 c d
\end{array}\right.
$$

Remain. $3 a a+2 b c-2 a a-4 b c \mid 8 r d-3 d c-1-2 r d+9 d c$
Rem.
cont. aa- $2 b c$
$10 \mathrm{~d}+\mathrm{d}+\mathrm{dc}$

From $6 a c e-1-3 c d-b c$ Subtract 4ace-cd-5bc

Remain. $6 a c e+3 c d-b c-4 a c e+c d-1-5 b c$
$\left.\begin{array}{l}\text { Rem. } \\ \text { cont. }\end{array}\right\}$ ace- $-4 c d+\frac{6}{6} b c$

From $3 a a-2 b c+5 a b$
Subtrait $2 a a-2 b c-a b$
Remain. $3 a a-2 b c+5 a b-2 a a-2 b c+a b$
Rem. $2 a a+6 a b$
cont. $\} a b$

From $8 a^{4}-1-3 b c-3 d$ Subtract $5 a^{4}$
$\left\lvert\, \begin{aligned} & 3 c d+5 a \\ & 2 a b-3 c\end{aligned}\right.$
Remain. $8 a^{4}-1-3 b c-3 d-5 a^{4} \mid 3 c d-5 a-2 a b+3 c$
Rem. $\} 3 a^{4}+3 b c-3 d$.
cont.

As in Natural Arithmetick, the remainder ar the fum fubtracted being added together will k equal to the number from which the fubtraction made; fo is it likewife in Algebraical Arith. metick; for if you add the remaining Quantity to the quantity fubtracted, the fum will be equal to the quantity out of which the fubtraction is made. As in the firit Example of this Chapter, where it is required to fubtract $3 a$ from $8 a$, and the remainder is $5 a$, now if to 5∞ you add $3 a$, the fum will be $5 a-1-3 a=8 a$; And in the twelfth Example, where it is required to fubtract $3 a b-1-2 a$, from $7 b c-1-6 c d$; the remainder is found to be $17 b c-6 c d-3 a b-2 a n$, to which if you add the number fubtracted, viz. $3 a b-1$ $2 a a$, the fum will be $7 b c-6$ - $6 d$ equal to the given quantity out of which fubtraction is made, for zab-t-raa being added to-3ab-2aa they de-
ftroy each other, becaufe their figris ate unlike, and this may ferve for a fufficient (and indeed the only) proof of the work.

CHAP. IV.

Multiplication in Algebraick lntegers.

1. N Multiplication of Algebraical Quantities there are always two quantities given, to find out a third.
2. The two quantities given are called the Factors, and the third quantity invented, or found by the faid Factors, is called the Product, Fact, or Reitangle.
III. When the given Factors are fingle quantities alike, or unlike, if they have not natural numbers prefixed to them, the tact is difovered at firt feght, and is performed bymoynirg both the quantities together in one; pivithout any Character between them, like letters, in a word.

But fectal regard maft be had to the figns of the given quantities, in ably kincs of Multipli

Chap. 4.
cation, whether by fimple or Compound Quantities, and whether with, or without nimbers prefixed to them: the nature of the product wholly depending thercupor, viz. If the figns of the quantities to be multiplied together be alike, that is both + or both 一, then the fign of the product or fact will be-t, but if they be of different kinds, viz. the one-t, and the other -, then the fign of the product will be-, as you will find by the feveral examples following.

Example I. What is the Product of a multiplyed by b ? Facit $a b$.

Here becaule both the Factors are figned with + , therefore the fign of the rroduct is + .

In like manner, if the given Faitors had been - a and -6 the product would have been ($a b$ or ba) the fame as before, bccaufe the figns of the Factors are both alike, viz. both-.

But if the given Factors had been $-1-a$ and $-b$, or. $-a$ and $+b$ then the product or fact would have been - ta or $-a b$, becaufe the figns of the Fao Coors are unlike, viz. the one-f-and the otherObferve the like in all cafes whatfoever.

Example. 2. What is the product of abe multiplyed by cd? Facit abccdor + $a b c c d$.

And if you had been to multiply - abc by -cd, the product would have been the fame, viz. abccd, or-fabccd:
But if the Factors had been-abc by-1-cd, or +abcby-cd, then the Fact. would have been -abocd, becaufe the figns of the Factors are anlike.

More Examples of the like Nature.

IV. When the Quantities given to be fubftraeted are Single, or Simple Quantities, (whether alike, or unlike) having natural numbers prefixed to them, then in fuch cafes let the natural numbers be multiplyed together, and to their product annex the product of the given Algebraical Quantities, they being multiplyed together as in the laft Rule, fo fhall this new quantity found be the product required. As in the following Examples.

Example 1. Let it be required to multiply $3 a$ by $9 a$.

Firft, I multiply the numbers prefixed to both quantities, the one by the other, viz. 9 by 3 , and their product is 27 , to which I annex the Letters contained in both quantities, viz. aa, and they make $27 \mathrm{ar}_{2}$ which is the product, or Fact required.

Example 2. Let it be required to multiply $3 a a$ by 4^{6}. Here firft I multiply the numbers prefixed together, viz. 3 and 4 , and they make 12 ; to which product I annex the Letters of both quantities given, viz. aa and b, and they make $12 a a b$ for the product required.

Example 3. What is the product of - 3 abc by-5cd?

Here Grft I multiply the given numbers prefixed, $v_{2 z}$. 3 and 5 , and they produce 15 , to which I annex the Letter in both the quantities, viz, $a b c$ and $c d$, and they make $15 a b c c d$, to which I prefix the fign-1, becaufe the figns of the given quantities were both alike, viz.-and then will the product or fact be-fis atccd.

Example 4. What is the product of - $6 a b$ multiply by-3cd?
Firft, multiply the numbers prefixed, viz. 6 and 3, and the product is 18 , to which I annex the Letters in both the given quantities, ab and $c d_{2}$ and it makes $18 a b c d_{\text {, }}$ to which I prefix the fign-(becaufe the figns of the Factors were unlike, viz. the one-1, and the other -) and then the product will be- 18 abcd.

More Ex:amples of the like Nature. | Multiplicand 8 fg | 4860 | 20 dff | $14 g 6 k$ |
| :--- | :---: | :---: | :---: |
| Multipipar. | ors | σf. | 3 ff |
| 6 | | | |

Product $48 \mathrm{fgrs}|288 \mathrm{kff}|$ 6odf ${ }^{4} \quad 1 \cdot 84 g h k$
V. When Compound quantities are to be multiplyed, the operation (in effect) is the fame with multiplication of Simple Quantities delivered in the foregoing Rules, for you are to multiply every particular quantity in the multiplicand by each particular quantity in the multiplyar, (not regarding whether you begin the work at the right: hand or the left) and then let the feveral products be joyned together ac-
cording to the Rules of the Algebraical Addition, and that fum will be the produf required. The following Examples will make the Rule plain.

Example. I.
In the firft place let it be required to multiply a Compound quantity by a fimple, (viz.) ab $-1-d$ by a. And in order thereto, Firft, I multiply a into $a b$, and the product is $a a b$, and then into d, and it produceth ad, fo is aab + ad the produtt required, each member of the product being affirmative, becaufe all parts of the Factors were Affirmative.

Example 2. Let it be required to multiply Multiply $a a-1-a b-c \quad a a-1-a b-c$ by b. The by $b \quad$ Product of aa by b is - -aab, and the product Product $a a b-1-a b b-b c$ of $a b$ by b is $\psi a b b$, and the product of $-c$ by 6 is-cb, all which particular products being joyned, and one Compound quantity compofed thereof, it will give aab-1$a b b-b c$ for the product required. See the work in the margent.

Chap. 4. Algebraick Integers. 297

Example 3. Let it be required to multiply the Compound quantity ac $+d g$ by the Compound quantity $c+d$.

Firft, Multiply each member of the multiplicand by c, and the product is acc+cdg, then multiply each member of the multiplicand by d, and the product is acd $+d d g$, which two products being joyned together by the Rule of Algebraical Addition, the fum is acc $+c d g-\operatorname{acd}+\mathrm{d} d g$, which is the produl required, as appears by the operation.

Example 4. What is the product of $d a-f-b c$ multiplyed by da-ab?
$\begin{array}{rr}\text { Multiply } & d a+b c \\ \text { by } & d a-a b\end{array}$
ddaa+dabc
-aadb-abbc
Product ddaa+dabc-abb-adbbc

Firft, Multiply the Multiplicand da-|bc by da (the firft member of the multiplyar) and it produceth didaa--dabc, then multiply the faid Niniti-
plicand by-ab (the fecond member of the nultiplyar) and it produceth -aads-able, which two quantities being joyned together give ddaat $-d a b c$-aadb-abbc for the produt required. As you may fee in the Operation,

Example 5. What is the product of $a+b-c$ multiplyed by $a+b-c$?

Firft, Multiply each member of the Multiplicand by a (the firlt member of the multiplyar) and it produceth aa- ai-nac, then multiply each faid mismber in the multiplicand by b, (the fecond member of the multiplyar) and it produceth $a b-1-b b-b c$, then multiply each mimber of the faid multiplicand by $-c$ (the third and lait member of the multiplyar) and the product is - ac-bc-1 $c c$; which faid three products being joyued together according to the Rules of Algebraical Addition, will give $a a+2 a b-2 a c+b b-2 b c$ $-1-c c$ which is the Square of $a+b-a$ or product required, as appears by the whole operation.

And if there are natural numbers prefixed to any of the Compound Quantities, the operation will not be different trom the foregoing Examples of this Rule, regard being had to the fourth

Chap. 4. Algebraick Integers. 299
Rule of this Chapter, as will appear by the fol. lowing Example.

Example 6. What is the product of $3 b-26$ multiplyed by $4 b-3 c$?

Firft, By the fourth rule multiply each member of $(3 b-\mid-2 c)$ the multiplicand by $4 b$, and the product is $12 b b+8 b c$; then multiply the faid multiplicand by - $3 c$, and the product is $-9 b c-6 c c$, which being added to $1266-1-8 b c$, the fum will be $12 b b-b c-6 c c$ which is the product required.

Example 7. What is the product of $2 a-1-2 e-8$ multiplyed by $2 a-5$?
Multiply $2 a-12 e-8$
by $2 a-5$

$$
\begin{aligned}
& 4 a a+4 a-16 a \\
& -10 a-10 a+40
\end{aligned}
$$

Product $4 a a-1-4 a-26 a-10 e+40$

Firt, $2 a+2 e-8$ being multiplyed by $2 a$, roduceth $4 a \pi-1-4 a c-16 G_{3}$ for $2 a \times 2 a=4 a, B$ and $2 a \times 2 e=46!5$
$2 a \times 2 e=4 a e$ and $2 a x-S=-10 a$ which is marked with -, becaufe the figns of the Factors are unlike, viz. -8 and -12 e. Secondly $2 a-f-2 e-8$ being multiplied by --5; produceth-1-10e-10e -40 ; for $-5 x-1-5 a=-10 a$ and $-5 x-1=2 e$ $=-10 e$, and $-5 x-5 \cdots-40$, all which quantties being joyned together by the Rules of AlgebraicalAddition will give-t $4 a a-1$ ae- $26 a-10 e$ $\$ 40$ which is the product required. See the work. More Examples in Avultiplication of Compound Alge: braica! Integers.

Multiplicand
Multipliar
Product
$3 b-2 c$
36
$9 b b-1-6 b c \mid 24 c d-24 b-48$

Multiplicand $2 n b+b o d$ Multipliar $3 a b-b-b=d$

6 aabb-1-3bbacd
$-2 b b a c d-b b c o d d$
Product óaabb-1blacd-bbcsaid

Malt. $30+66 \cdots 16$
Malt. $46-60-4$

$$
\begin{aligned}
& 32 a-1-4 a b b-64 a \\
& -18 a b-6 b b c+96 c \\
& -12 a-4 b a-1-64
\end{aligned}
$$

Produk. $1219 n+4 a 6 b-96 a-18 a 6-66 b c+966-4666+64$

Chap. 5.
Algebraical Integers.
Multiplicand $3 a b-1+4 c c-2 a$
Multiplyar 2 ab - $3 c c-a$

GHAP. V.

Divifion in Algebraick Integers.

1. TN Divifion Algebraical (as in Divifion in Common Arithmetick) there are two quaritities given to find out a third; which quantity fonght is called the Quote; or Quotient ; and of the quantities given that which is to be divided, is called the dividend, and the quantity by which it is to be divided, is called the Divifor.
II. when it is required to divide one number or quantity by another, if you place the Dividend for the Numerator, and the Divifor for the Denominaror of a Fraction, that Fraction To compored is equal to the Quotient that would arife
rife by the real Divifion of the one by the other.
For if it were required to divide 4 by 5 , the quotient would be $\frac{4}{5}$, or if it were required to divide 12 by 7 , the Q quotient would be $I \xi^{2}=\frac{13}{7}$. The reafon of which is the gro ind of the genesal part of Divifion in Algebra; for when one quantity is to be divided by another, feet the quaitidy that is Dividend for the Numerator of a Fraction, and the quantity that is the Divifor fet for the Denominator.
So if it were required to divide the quantity b by the quantity a, I would place them thus, viz. $\frac{\square}{a}$ which fignifieth the Quotient of b divided by a.

In like manner if it were required to Divide abe by cd, the Quotient would be $\underset{c}{\text { abe }}$. And if $5 a c$ were to be divided by 3 ed, the Quotient would be $\frac{5 a c}{3 \text { s. }}$ And if bcd were to be divided by 7 , the Quotient would be bed.
The fame is to be observed in Division of Compound Algebraick Integers, for if it were required to divide $a-1-b$ by c, the Quotient would be $\frac{2+b}{c}$, and if 56 were to be divided by $3 \times 1-b c d$, the Quotient would be $\frac{\mathrm{eb}}{31+a}$.

More Examples of Divifion according to the forego-
ing Rule.

II. When in any quotient that is expreffed according to the foregoing rule, there are the fame Letter or Letters repeated in every part or member of the Numerator and Denominator, you may cancel foch Letter or Letters, but be fore that what fou cancel in one part, to cancel the very fame in all the reft. So fhall this new Quantity be a true quotient, equivalent to what it was before the fid Letters were cancelled.

Example. What is the Quotient of bd divide by b ? According to the foregoing Rule the Quotient is $\frac{b d}{b}$ but because the Letter b is found both in the Numerator and in the Denominator : therefore cancel b in both of the?
them, and then you will find the Quotient to be do for ${ }_{b}^{\mathrm{bd}}=d$.

Again let it be required to divide $a b+a d$ by acd, the Quotient is $\frac{\mathrm{ab}+\mathrm{ad}}{\mathrm{acd}}$, and becaufe the letter a is-found in every member of the Numerator and Denominator, caft it out of every one, and then you will have $\frac{b+d}{c d}$ for the Quotient.
Likewife if you were to divide $a b+a b c+a b e$ by $a b d-$ - $a b f$ the Quotient you would find to be $\frac{2 b+a b+a b e}{a b d+a b f}$ which being contracted by cancelling $a b$ in each member of the Numerator and Denominator, there will be found $\frac{1+c+e}{d+f}$ for the Quotient.

And $b b-F b$ being to be divided by b, the Quotient will be $\frac{b b+b}{b}$ and by cancelling b in every part, there will be $b-1 \mathrm{I}$ for the Quotient $a b-$ breviated, for $\frac{\mathrm{bb}+\mathrm{b}}{\mathrm{b}}=\frac{\mathrm{ibb}+\mathrm{rb}}{\mathrm{b}}$ and by cancelling b in every part, there will be $\frac{\mathrm{ib}+\mathrm{t}}{\mathrm{1}}$ and $\frac{\mathrm{ib}+1}{1}=6-\mathrm{f}-\mathrm{c}$

The fame is to be obferved whether the figns be- or - ; fo if it be required to divide abs-t che, by bie-bce the Qllotient will be $\frac{2 b e+b e}{b a e+b c}:$ And becaufe be is found in each quantity, I cancel it, and the Quotient contracted, or abbreiated will be found to bed $\frac{a+c}{d+c}$

More Examples of Contractions or Abbreviations in Division of Algebraick Integers according to the foregoing Rule.

Dividend aaa		
Divifor aa	$a d-a k+a$	$\begin{array}{l}b c d-c r d \\ c g d-c m d\end{array}$

IV. If when it is required to divide a Simple or Compound Algebraick Quantity by a Simple Quantity, there be prefixed to every member a number, or numbers, that may be divided by any other number without any remainder, then inftead of the given prefixed numbers prefix the Quotient of each of the laid numbers divided by the faid Common meafurer, not neglecting to cancel any letter that may be found in each part of the Numerator and Denominator, according to the foregoing third Rule. As for Example.

Divide $16 b c$ by 46 . Here according to the foregoing Rule, the Quotient is $\frac{16 b c}{4 b_{i} ;}$, but because the prefixed numbers 16 and 4 will admit of 4 for a common meafure, therefore I divide them both by 4 , and the Quotients are 4 and i, which I prefix to the given Quantities inftead of 16 and 4 , and then the Quo-

Quotient will be $\frac{4 \mathrm{bc}}{\mathrm{l}}$, or $\frac{4 \mathrm{bc}}{\mathrm{b}}$, and becaufe bc is centained both in the Numerator, and the Denominator, cancel it, fo have you $\frac{4 c}{c}=4 c$ for the Quotient required.

Moreover $\mathrm{I} 5 a b c-1 \mathrm{I}_{2} 6 d$ being given to be divided by 3 g , the Quotient will be found to be $5 \mathrm{sac}+4 \mathrm{~d}$.

For, I firft difcover that the prefixed numbers is, 12 and 3 , have 3 for their common meafure, by which they being feverally divided, give 5,4, and 1, which being prefixed to the faid Quanticies after b, (which is found in every quantity is cancelled) there will be $\frac{\frac{s a c+4^{d}}{g}}{g}$ for the true Quotient required.

More Examples of Contraction in Divifion, accorling to the two laft Rules.

V. When in Compound quantities one or more letter or letters is repeated in every member, then will the remaining letters in each quantity evenly
evenly divide the faid Compound quantity with out any remainder, and the quotient will be the Letter or letters repeated in each number as aforefaid. As for Example.
r. What is the Quotient of bat-a divided by $b-1-c$? Here it is evident that the quotient will be a; for proof whereof take the divifor $b-1 c_{2}$ and multiply by the quotient a, according to the fifth rule of the fourth Chap. and the produict will be batca equal to the dividend.
2. Likewife if it were required to divide bad-1-cad by $b+c$, the quotient will be found to be set.
3. Alfo by the fame reafon if you divide $2 a b$ $2 a c d-2 a a b$ by $b-c d$ - $d b$, the quotient will be $2 a$, and if you divide the fame dividend by $2 b$ $2 c d-2 d b$ the quotient will be a.

More Examples of the like nature.

$$
\begin{array}{l|l}
\text { Dividend } 6 a b-1-2 a d c & \begin{array}{l}
4 b+3 c d-c \\
\text { Dividend } 6 b-1-2 d c
\end{array} \\
4 b+3 d-1
\end{array}
$$

The reafon why - 1 is the laft number of the laft example is, becaufe- c, or- Ic is the laft number of the dividend, for according to the thirteenth Rule of the firft Chapter, when a quantity hath no number prefixed to it; it is fuppofed to have the number I before it.

And here note, that as in Multiplication of Algebraick Integers- by 十, and - by - produceth + , and + by - produceth -, fo in Divifion, if you divide -1 by t, or-by , the fign
fign of the Quote will be -1 , but if you divide + by -, or -, by -, the fign of the Quote will be - ; fo if $3 a b$ be divided by $3 a$, the Quote will be b, or $\cdot+b$, and if $-3 a b$ be divided by $-3 a$, the Quote will $b e+b$, for if you multiply $+3 a$ by $+b$, the product will be +3 ab by the third Rule of the fourth Chapter foregoing. Alfo if your divide $+3 a b$ by $-3 a$, or $-3 a$ by $+3 a$, the Quotient will be $-b$, for $+3 a$ being multiplyed by $-b$; produceth $-3 a b$; and $-3 a$ being mutiplyed by $-b$, produceth $+3 a b$.

VJ. From a due confideration of the manner of operating the Examples of the laft Rule; a way may be difcovered to divide a compound Quantity by a Simple, or Compound Quantity, and to find out the true Quotient when it likewife will be a Compound Quantity, the practice of which will be made plain by the following Examples.

Example $\mathbf{1}$. Let it be required to divide $b a+c a_{0}$ by ar. Having placed the Dividend and Divifor as is ufual in vulgar Arithmetick, and as you fee in the following operation.

$$
\text { a) } \begin{gathered}
b a+c a(b+c \\
-b a b \\
\frac{1-c a}{-c a} \\
\frac{(0)}{}
\end{gathered}
$$

Then do I feek how oftera is contained in $b a$ (the firf member of the Dividend) and the an? fwer

Chap. 5. Algebraick Integers.
fwer is b times, therefore I put b in the Quotient, and thereby I multiply (a) the Divifor and the product is $-16 a$, which muft be fubtracted from b_{a} in the Dividend, and therefore I change its fign into -baby the firft Rule of the third Chapter, and where remaineth o, then do I bring down - ca the next member of the $\mathrm{Di}=$ vidend, and divide it by a and the $Q_{\text {uoticat }}$ is $-1-c$, by which I again multiply (a) the Divifor, and the product is ca , which fubtracted from cathere remaineth 0 , and fo the work of Divifion is ended, and I find the Quotient of $b a-1-c a$ divided by a to be $b-1-c$, for proof whereof if you maltiply $b-f c$ by a (the Divifor) the prodaci, will be bat ca equal to the given Dividend.

Example 2. Let it be required to divide ba-1-cc-1+bc-1-ce by $b+c$

Having difpoed of the Dividend and Divifor in order to the work with a crooked line behind which to place the Quotient, as in Common Arithmetick; then firft I reek how often b (the firft meniber of the Divifor) is contained in ban (the first member of the Dividend) and therearifeth a, which I put in the quotient, and thereby mutiply each member of the Divifor, viz. \dot{b}-j c, and the prodnef is $b a+c a$, which place under the two frit quantities of the dividend towards the left hand, viz. under ba-fbe, and by the firft Rule of the fecond Chapter fubtract it therefore, $\hat{0} 0$ will the remainder be 0 ; to which I bring down the remaining part of the dividend, viz be tce and divide be by e, and there arifeth in the quotient e_{3} by which I multiply the whole Diviior $6+r_{2}$ and the Product is beter, which fubtracted from the Dividend
dene $b e-f-c e$, the Remainder is 0 . See the whole work as followeth.

So that the Quotient is af-e, now to prove the work, multiply the Divifor $b+c$ by the Quotient ($a-1-8$) according to the fifth Rule of the fourth Chapter, and the Product you will find to be $b a-1-c a-1-b e+c e$ which is equal to the given Dividend; and therefore I conclude the operation to be truly performed.

Ex: ample 3. In like manner, if you divide $b a+b d+c a+c d-a e-d e$ by $a+f$, the Quotient will be found to be $b-f-e$ according to the following work.

Quotient

$$
\begin{gathered}
a+d) b a+b d-c a+-c d-a c-d e(b-1-c-c) \\
\frac{1-b a-1-c a+c d}{0+c a+c d} \\
\left.\frac{1-a c-d e}{(0} 0\right)
\end{gathered}
$$

The work of the laft Example explained.

In the foregoing Example, firft I divide b_{a} (the firft member of the Dividend) by a the firft quantity or member of the Divifor, and there arifeth l. F-in the Quotient, which is -1 , (becaufe the figns of the Dividend and Divifor are -1) and thereby I multiply the Divifor a-f-d. and the Product is $b a-1-b d$, which I place under the two firft members of the Dividend as you fee in the work, and fubtract it therefrom, and the remainder is 0 , to which I bring down the two next quantities, viz. $-1-c a+c d$.

Then do I divide-|-cs by o, and there arifeth in the Quotient- -c , becaufe the Dividend and D_{i} vifor are both figned $-(-$,) by which I multiply the faid Divifor, and the product is $+c a-1-c d$ which I place under the Dividerd, and fubtract it therefrom, and there remaineth o, to which I apnex the two next and laft members of the Dividend. viz. -ae-de; and divide-ae by - a and the O_{n}. tient is-e, (becaufe the figns of the Dividend and Divifor are different, viz. the one F, and the other -) and thereby I multiply the whole Divifor, and the Product is-ae-de, which fubtracted from (-ae-de) the Dividend, the re-. mander is 0 , and fo the work is finifhed, and the Quotient arifing by this Divifion is $b+c-c$, as you may prove at your leifure.

If the quantities or members of the Dividend of the foregoing. Example are not placed in the fame order that is there expreffed, the effect of the operation will be the fame, as you may fee by the following work.

Divifor Dividend Quotient $a+d) b a+c a-a c+b d+c d-d e(b+c-e$

$$
\begin{gathered}
c a--a c \\
c x--c d \\
-a c-d e \\
\left(\begin{array}{ll}
0 & 0
\end{array}\right)
\end{gathered}
$$

Firft, I divide $b a$ by a, and the Quote is \dot{b}, by which1 multiply the Divifor (atd) and the product is $b_{s}-1-b d$ which I fubtract from $b_{a}+c a$ and the remainder is (by the Rule of the third Chapter)baca $+b_{a}-6 d$ which being contracted- + by the Rules of Addition is cabd, (for tba and -ba expunge each other.) then to this remainder do I bring down the two next quantities of the Dividend, viz.-..actbdwhich being annexed to the faid remainder $c a-b d$ it then (makes for a new dividual) ca-bd-ce $+b d$, but-bd and $+b d$ deftroy each other, and therefore the dividual contracted is ca -ce, which Idivide by atdas before, and the protient is $-1-c$, by which I multiply the Divifors and the Product is $c_{2}+c d$, which being fubtracted from the faid dividual $\mathrm{c}_{\mathrm{a}}-a e$, the remainder is oa ac ca-ed which being contracted, is ae cd, to which I joyn the two next quantities in the Dividend, viz. -cd-de, and it makes (ae-cd-f-cd-ac) =-ae-de (for -cd and I cd deftroy each other for a new dividual, which I divide by the faid Divifor a $+-d$, and the Quote is -e, by which I multiply the Di- cted from-ae-de (the dividual) the remainder is $-a e-d e-|-a e-|-d e=c$, and fo the work is finifhed, and 1 find the Quotient to be $b+c-e$ as before.

Buthere note by the way that it doth not always fall out that youare to divide the firft member of the dividual by Note. the firft of the Divifor, but by fome other member which you can difcover will do the work without making a Fraction. As in the following Example.

Example 4. Wet it be required to divide am—ec by a-1-e?

Firft, I divide aa by a, and there arifeth in the Quotient a, by which 1 multiply the Divifor $a+e$, and the Product is $a a-1-a t$, which fubtracted from the Dividend ($a_{2}-c \varepsilon$) the remainder is -ec-ac for a dividual, and then do I not jeek how often a is contained in $e e$, for then the anfwer would be a Fraction, but I divide ee by its correfpondend $D_{2 v i f o r t i} e_{\text {, and }}$ there arifeth - e_{2} to be written in the Quotient next after as but not -1 - e_{3} becaure--tivided by + quotes Then I multiply the whole Divifor $a-1+$ by - e. and the product is -ac-ce, which fubtracted from the faid dividual - $e e$ _ae, the remainder is 0 , fo is the work ended, and I find the Quotient to be a-e. See operation.

$$
\begin{gathered}
a-1-e) a a-e e(a-c \\
a a-1-a e \\
-e e-a e \\
\left.\frac{-a e-e i}{(0 \quad 0}\right)
\end{gathered}
$$

Example 5. If it were required to divide ana + $a b d+b a a+b b d$ by $a a-1-b d$ by the Quotient would be found to be $a+b$, as appears by the work.

$$
\begin{aligned}
& a a-1-b d) a a a+-a b d+b a a+b b a \\
& \frac{a a a+a b d}{0 \quad 0-1+b a a+b b d} \\
& \frac{b a a+b b d}{0}
\end{aligned}
$$

Example 6. If $a, a a-a b b+a b d-1-b a a-b b b-1-b b d$ be divided by $a+b$ the Q note will be $a a-b b+b d_{2}$ as by the operation.
$a+b) a a a-a b b+a b d+j a a-b b b+b b d$ ($\operatorname{a} d-b b+b d$ a $a a-1-b a a$
-abb-1-abd
$-a b b-b b b$.
+abd+bbd
$+a b d+6 b d$

Example

Chap. 5. Algebraical Integers.

Example 7. Let it be required to divide $18 a b b c+9 b b c c-1-24 b c c-1-24 a b c-1-16 c c$ by $3 b c+-4 c$ the quotient will be found to be $6 a b+36 c-1-4 c$. See the following operation.
Divifor Dividend Quotient
$3 b c+4 c) 18 a b b c+9 b b c c+24 b c c+24 a b c+16 c c(6 a b+3 b c+4 c$ $18 a b b c+24 b c c$
$+56 b c c+1266 c$

$$
\begin{aligned}
& +12 b c c+16 c c \\
& +12 b c c+16 c c
\end{aligned}
$$

When Algebraical Divifion according to the Rules before delivered, will not exactly perform the work without any remainder, then you may place the Dividend and Divifor Fra-ction-wife, which is indeed the moft general practice amongt Algebrits; or elfe proceed in Divifion as far as you can by the preceeding method; and then place the remainder for a Numerator over the Divifor, as in the following Example, where $a n-b b-1-a c$ is divided by $a+b$, and the quotient is $a-b+a+b$ a the remainder being-fac.

$$
\begin{aligned}
& \text { a-f }) \frac{a a-b b-\operatorname{tac}\left(a-b \frac{a c}{a+b}\right.}{a a+a b} \\
& \frac{Y_{4}}{-b b-a b-1-a c} \\
& -b a-b b
\end{aligned}
$$

CHAP . VI.

The Doctrine of Algebraical Fractions. And Firlt,

Of Reduction.

I. TE that intends a confiderable proficiency 1 In this mysterious Art, muift be very well acquainted with the Doctrine of Vulgar Fraactions, a mean knowledge therein not being furficient for all operations whatsoever in Algebraick Fractions have their dependence thereupon, being wrought in every reflect as vulgar FraCtions, they are by the help of the Rules contained in the feveral Chapters foregoing, and there are very few questions folved Algebraically, but what have one or more Fractions concerned in its operation.

To reduce Fractions, bating ungual Denominators to Fractions of the fine value having a comman Diomin tor.
II. When you would reduce algebraical FraaCtions to a common Denominator, multiply the Numerator of the fife Exaction into the Dinominator or denominators of the reft, fo farl the Product be a Numerator equal to the Numerator

Chap. 6 Algebraick Fractions. $3: 7$

of the firl Fraction, likewife multiply the Numerators of the fecond, third, or c. Fractions into all the Denominators except its own, and the feveral products fhall be fo many new Numerators; then multiply all the Denominators continually, fo fhall the product be a common De nominator to all the Numerators found out as before.

Example: r. Reduce $-\frac{a}{b}$ and $\frac{d}{c}$ to a common Denominator. Multiply the Numerator of (of the firft Fraction) into the Denominator (c) of the fecond Fraction, and the product is ai, for a Numerator $\Rightarrow a$, then multiply (d) the Numerator of the fecond Fraction into (b) the Denominator of the firft, and the product is $d b$, for a Numerator $=d$, then multiply the Deno. minators together, viz. b into c, and the product $b c$ is the Denominator common to both the ${ }_{a c}^{\text {Nemerators, }} f_{b d}$, will the 2 new Fractions be $\frac{a c}{b_{c}}$ and $\frac{b d}{b_{c}}$ for $\frac{a c}{b_{c}}=\frac{a}{b}$ and $\frac{d b}{b_{c}}=\frac{a}{c}$.

$$
\text { Example 2. What Fractions are }=\frac{\infty}{\sigma}, \frac{\square}{\infty} \text { and }
$$

Whaving an équal or common Denominstor? Facit $\frac{a n d, b c d}{c a d}$ cad and $\frac{c c z}{c_{a d d}}$, for $a \times a \times d=a a d,=$ the Numerator a, and $b \times c \times d=b c d=$ the Numerato \dot{b}, and $c x_{c} x_{a}=c c a=$ the Numerator, and $c \times a \times d=$ ad which is the common Denominator.

To reduce an Algebraical Fraction so its lomeft Termis equivalent.
III. When in the Numerator and Denominator of an Algebraical Fraction, the fame letter or letters is contained, then cancel the fame in both and if there be any numbers prefixt, if you can difcover any number that will divide them both without any remainder, then prefix thofe quotients inftead of the numbers prefixed before; fo fhall this new Fraction be of the fame value with the Eraction propofed.

So will $\frac{c b d}{c b b}$ be reduced to $\frac{d}{b}$ by cancelling $c b$ tor and Denominator.

Alfo $\frac{24 b d e-32 b d a}{8 b d d}$ by being reduced to its loweft terms will be $\frac{3 e+4^{a}}{d}$ by cancelling $b d$ in every part, and dividing the prefixed nnmbers by 8 . More Examples follow.

Or if you can in a Compound Algebraical Fraction) difcover a quantity that will divide the Numerator and Denominator without any remainder, faccording to the fixth Rule of the Fifth Chapter) then fhall the Quotients be a

Chap. 6. Algebraick Fractions.
new Numerator and a new Denominator equal, to the Fraction in its given Terms. As in the following Eximples.

$$
\begin{aligned}
& \frac{b a+d a}{b+d}=a \quad \left\lvert\, \frac{a x+2 a c+e e}{a+e}=a+e=e\right. \\
& \underset{a-c}{a,-2 a e+e e}=a \bar{a} \left\lvert\, \frac{a a a+\cdots b b b b}{a a-b b b}=a a-b b\right.
\end{aligned}
$$

To reduce an Integral quantity to an Algebraical Fraction.
IV. Multiply the given quantity by the intended Denominator, fo fhall the Product be the Numerator requircd. As in the following Examples.

Let it be required to reduce the quantity b to a Fraction, having ad for its Denominator. To do which I multiply the given quantity b by ad, and the product is the Numerator, viz. bud, fo fhall bad the Fraction required fatt:' ad -
Alfo if it were required to reduce the quantity e to a Fraction, whore Denominator Thould be $b-f-c$, it would be $\frac{b++c e}{b+c}$
V. If it be required to reduce a mixt quantity to a Fraction, multiply the Integral quantity by the Denominator of the Fractional part, and joyn the product to the Numerator of the FraCtional part, fo fhall the fum be the Numerator. As in Example.
c
Reduce $a-b+-\frac{c}{d}$ to an improper Fraction Mult. the Integral part " $a+b$ by the Denominator d, sind the Product da-1-ub which being added to the numerator c, makes $d a+d b+c$ for the numerator, 4t. which placing d for a Denominator, it gives Ha $d b+c$
$-=a+b+\frac{c}{a^{\prime}}$ for the anfwer.
VI. When you are to express an Algebraick Integer Fraction-wife, without an Afigned Denoawinator, then make the given quantity the Numerator, and I the Denominator.

So will $a b$ be $\frac{a b}{1}$ and $c d$ will be $\frac{c d}{-}$ and $a+b$

$$
a+b
$$

will be - čc.
Thefe things are fo plain that they need no waxther explanation by examples.

CHAP. VII.

Os Addition and Subtraction of Algebraical Fractions.

1. JHen the Frastions given to be added together have an equal or common Denominator, add the Numerators together, and place their fum for a Numerator over the com-

Chap. 7. of Algebraick Fractions. 324

 common' Denominator, which new Fraction fthall be the fum of the given Fractions, but if they have not a common Denominator, reduce them by the fecond Rule of the firth Chapter, and them proceed as before.Example I. What is the fum of $\frac{a}{b}$ and ${ }_{6}^{a c}$? Facit $\frac{a+a c}{b}$, the fum of the Numerators, viz. and $a c$ is $a-1-\infty$ which placed over the Denominator b, gives $\frac{a+a c}{b}$ for the fum required.

Example. 2. So alpo the fum of $\frac{a b c}{\tilde{f}}$ and $\frac{d g}{f}$ wavily be $\frac{a b c \oplus d g}{f}$

Example 3. And the fum of $\frac{a+5-b-c}{a} \frac{a-b b a y s}{a}$ and $\frac{2 a-\cdots 2 b}{d}$ will be found to be $\frac{4 a}{d}$ for the formate of the Numerators is $a-1-b-c+-a+b+a-1-2 a-2 b$ $=4 a$.

Example 4. What is the fum of $\frac{a}{b}$ and $\frac{c}{d}$? $a d+c b$ Facit $\frac{a d+c b}{b d}$ the given Fraction being reduced to a common Denominator by the fecond Rule of the firth'? Chapter, are $\frac{a d}{b *}$ and $\frac{d b}{b d}$ whore fum is $\frac{a d}{c a}$

Example 5. What is the fum of $\frac{a}{6} \frac{b}{6}$ and $\frac{3 \sqrt{b}}{b}$ ac d $-3.6 b d+3 f g h c$.
Fecit
II. When it is required to gather mixed quanties into one fum, then add the fractional parts together by "the foregoing Rule, and likewife briag the Integers into one fum, and the fum of chefe two fums will be the fum required.

> Ex:ample.

What is the fum of $b v-1-\frac{a b}{c}$ and $c d+\frac{a+b}{d}$?
The Sum of the Fractions ${ }^{\circ}$
being added by the forego- $\} \frac{a b d+c a+c b}{6 d}$
ing Rule is
To which fum if you add the Integral parts of the \quad abd $+c a+c b$ propounded mixed Quantities, the fum required will be

Subtraction of Algebraical Fraitions.

III. If the 2 given Fractions have not a common Denominator, then reduce them to fuch by the fecond Rule of the fixth Chapter, then (by the Rule of the third Chapter) fubtract the $\mathrm{Nu}-$ merator of the Fraction to be fubtrasted from the Numerator of the other Fraction, and place the remainder for a Numerator over the common Denominator, which new Fraction fhall be the renainder fought. As in the following Examples.

If you would fubtract ${ }^{a b}$ from - Take the Nimerator $a b$ from the Numerator $b c$, and the reminder is be-ab which being placed over the .

Chap. 7. of Algebraical Fractions. 323
Denominator e, it will give $\frac{b c-a b}{e}$ for the remainder, or difference fought.

Allo let it be required to fubtract. $\frac{a b+c-18}{b+c}$ from $\frac{b 6+5 c \ldots-24}{b+c}$

The Difference of the $6 c+5 c-24-a b-c+18$ Numerators of the given $S=b c+4 c-6-a b$
Fractions is.

Which remainder or difference
 the difference fought, which is

And if it were required to fubtraç $a \frac{c d-b c}{c}$ from $a a+\frac{a b}{c}$ The given mixt quantities will (by the fifth Rule of the fixth Chapter) be reduced to $\frac{c a n-a b}{c}$ and $\frac{a e+c d-b e}{c}$

Which will be redu- $\mathcal{Z}_{\text {case }+ \text { abe }}$ ced to thefe Fractions of $\frac{\text { case }+ \text { abe }}{\text { ce }}$ the fame value, having and a common Denominator, $y \frac{4 x+c d l . c c b}{c e}$ viz.

And if from the Nume-? rator caae tabe you fubtract? the Numerator $c a e-1-c c d-c c b\} \frac{c a a s-a b e-c a c-c c d+c c b}{c e}$ there will. be given for the remainder fought, viz.

324 Multiplication and Divifon. Chap. 8. In like manner if from a it be required to fubtract $\frac{a+6}{6-\ldots}$ First by the fourth Rule of the firth Chapter, reduce the quantity a to the impproper Fractional Quantity $\frac{b-c}{a+c}$ and therefrom fubtract the given Fraction $\frac{\text { fo will you have }}{b \rightarrow c}$ ab- ac-anc
the remainder fought which is

$$
b--c
$$

CH A P. VIII.

Multiplication and Divifion of Algebraical Fractions.

1. THen it is required to multiply two Aigebraical Fractions the one by the other, the work is the fame as in Vulgar Fractions, for if you multiply the Numerators of the given Fraetions together, and likewife their Denominators together, and place their Refpective Products for a new Numerator, and a new Denominator, that new Fraction hall be the Product required.

Example it. What is the Product of $\frac{9 a}{6}$ multiplyed by $\frac{a b}{c}$ Facit $\frac{9 a a b}{c b}$ for saxab $=9 a a b$, which is the Numerator, and $c \times b=c b$ the Denominator.

Example 2. What is the Product of $36 \frac{1}{36} 26$ multiplied by $\frac{4 c d}{6 \div c}$ Facit $\frac{12 c d a \div 8 c c d}{2 c 6 b+\frac{1}{+2 c c b} \text {; for } 4 c d x}$ $\overline{3 a \div 2 c}=12 c d a-f-8 c c d$, which is the Numerator.

Example 3. What is the Product of $a+\frac{b_{c}}{d}$ maultiplyed by $8 c-1-\frac{a d}{b}$? Facit $\frac{8 d a c b+8 c c b b+a \operatorname{add}+\cdot b d c}{d b}$
for $a-1-\frac{b c}{d}=\frac{d a+b c}{d}$ and $8 c+-\frac{a d}{b}=\frac{8 c b+a d}{b}$ by the
Rule of the fixth Chapter, and $\frac{d_{B}+b c}{d} \times \frac{8 c b+d}{b}$
$2 d a c b+8 c c b b+a \bar{a} d d+b d c$
$\bar{T} \frac{d b}{}$ which is the Product require.

Example 4. What is the product of ab multiplyed $b y \frac{a+b}{c}$? Facit $\frac{a b+a b b}{c}$; for $a b=\frac{a b}{1}$ and ab $a+b$ an $+a b b$ $I_{x}{ }_{c}=-$ which is the Product required.
II. If it fo chance that you have a Fraction to be multiplyed by an Integer that is equal to the Denominator of the Fraction, then take the Nu. merator for the Product.

Example. What is the Product of $\frac{a \cdot 02 n e-m e l}{e}$ being multiplied by ane? Facit an-2actee tor heing multiplyed by the Integer, and the fame Intefer being put as a Denominator to the Produtet, the Quotient arifing by the Divifion of the Numerator by the faid Denominator, will be equal to the Numerator of the given Fraction; fo $\frac{-1}{6} \times \frac{1}{6}=\frac{1}{6}-6$
IIt. When it is required to divide one Algebraical Fraction by athather, if they have a common Denomitator, cancel the Denominator, and divide the Numerator of the Dividend by that of the Divifor, fo fhall that Quote be the Quotient fought:

Sos if it were required to divide $\frac{a b c}{d}$ by $\frac{b c c}{d}$ the
Quotient will be found to be ${ }_{b c c}^{a b c}=-$ for having caft away the common Denominator d, and divided (abc) the Numerator of the Dividend by (bcic) the numerator of the Divifor, the Quotient will be $\frac{a b c}{b c c}$ which is $\frac{a}{c}$ by cancelling be in the Numerator and Denominator.

1V. When the given Algebraical Fractions have not a common denominator, then multiply the denominator of the divifor into the Numerator of the divideni, and the product is a new numerator; alfo multiply the numerator of the divifor into the denominator of the dividend, and the product is a new denominator; which new Fraction is the quoticnt fought, and this is a general Rule in all cafes whatfoever, and is the faine with divifion in Vulgar Fractions, only seeping to the Algebraick Rules.

Chap. 9. of Algebraick Fractions.

Example. What is the quotient of $\frac{a}{6}$ being divided by $\frac{a}{b}$, Facit $\frac{c a}{b a}=\frac{c}{b}$, for $c \times a=$, (the new Numerator,) and $a \times b=b a$ (the new Denominator.
Likewife, if it were required to divide ${ }^{2 a+b}$ by $\frac{26 b}{a+b}$ the Quotient would be $\frac{{ }^{3} \alpha a-+4 a b+6 b}{2 b b c}$ for the
numerator of the dividend is $3 a-b$, and the denominator of the divifor is $a-1-b$, and $\overline{a+b x}$ $\overline{3 a+c}=3 a a-1-4 a b-1-b b$ which is the Numerator; and the numerator of the divifor is $2 b b$, and the denominator of the dividend is c, and $2 b b x \cdot c=$ $2 b b c$, which is the Denominator. The like is to be obferved in all cafes both in Multiplication, and Divifion of Algebraical Fractions.

GHAP. IX.

The Rule of Three in Algebraick Quantities.
I. $\Gamma \mathrm{H}$ E Rule of Three in Algebraical quarties reprefented by Letters, (whethicr it be Direct or Inverfe) differs not from the Rule cons term by the third, and divide the Product thereof by the firft the quotient will be the fourth quantity fought in proportion.

Example i. If b gives c, what will d give? Fact-.
In this Example the fecond and third quantities, are c and d, which being multiplied tonethen, produce at by the Third Rule of the fourth Chapter, which being divided by (b) the cd
frt quantity, the quotient is $\frac{-}{6}$ which is the fourth proportion fought for.

$$
b: c:: d \frac{c d}{b}
$$

Which may be proved according to the proof of the -Rule of Three Direct laid down in the Tenth Chapter of my Vulgar Arithmetick: For,

The Product of the fecond and third Terms is cd. And

The Product of the firft and fourth Terms is bcd
b

$$
b c d=c d
$$

And by the 3 d Rule of the both Chap. \bar{b}
(the frt Term) which was to be proved.

Chap.9. in Algebraick Quantities
Example 2. If b to require d, what will $a+e$ require? Fact $\underset{b+c}{ }$ For,

$$
b+c: d: \frac{d+e}{d}: \frac{d d+b}{b+c}
$$

Example 3. If 12 require 36 , what will 4 a require? Facit $\frac{{ }^{1}+4^{a b}}{12}=12 a b$. For,

$$
\frac{{ }^{144 \cdot a b}}{32}=12 a b .
$$

II. Nor will the operation be different from the former, if any of the 3 given quantities be a Fraction, or if they be all Fractions, observing the Rules of multiplication and divifion in A lgebraick quantities; or when any of the given Terms is a mint quantity, let it be reduced to the form of a Fraction, by multiplying the Integral part by the denominator, and joyning the Product to the N_{N} mercator of the Fractional part, and then multiply and divide as before.

Example 4. If $b+\frac{c}{d}$ require d, what will $\frac{f}{g}$ re$d d f$ $b-1-\frac{c}{d}$ to the form of a Erasion, it will be $\frac{d b+c}{d}$ and the fecond Term d being fer Fration-wife, will be $\frac{d}{d}$ then if you multiply $\left(\frac{f}{g}\right)$ the third

$$
\text { Z } 3
$$

330 The Kule of Three, \&c. Chap. 9. Term by $\left(\frac{d}{1}\right)$ the fecond Term, the Produce will be $\frac{d f}{g}$, which being divided by $\left(\frac{d b-c}{d}\right)$ the firlt Term, the Quotient will be $-\frac{\operatorname{ddf} \cdot}{\operatorname{dbg}+g c_{3}}$ which is the fourth proportional faught. For,

$$
\frac{d b+c}{d}: \frac{d}{r}:: \frac{f}{g}: \frac{d a f}{d b_{g}+g c} .
$$

I fhall not need here to give any Examples in the Inverfe Rule of proportion in the Algebraick quantities, the manner of the operation being the fame with the former, only the proportion flows backward, as in the Rule of Three Inverfe in Vulgar Arithmetick.

CHAP. X.

A Collection of forme early Queftions wherein the Rules hitherto delevered are Exercifed, taken out of Mr. Oughtred's (lan is Matbemafica, Chap. I1. Sir Jonas More's Arithmetick in Spices, Chap. Io, and Mr. Kersey's Elements of Algebra, Chap. 10. of the First Book.

1. CoHere are two Quantities or numbers, whereof the greater is a $(=4)$ and the leer is e $(=2)$ What is their fum? What their difference? What the product of their multiplecation? What the Quotient of the greater dividad by the leffer? What the Quotient of the leifer divided by the greater? What the fum of their Squares?. What the difference of their: Squares? What is the fum of their fum, and difference? What is the difference of their ruin and differences? What is the Product of their fum and difference? What the Square of their fum?

$$
74 \quad \text { What }
$$

What the Square of their difference? What the Square of their Product ?

1. The fum of the quantities
propofed is
2. Tieir difference is
3. Their Product by multi- plication
4. The quote of the greater $\}$ divided by the leffer,
5. The quote of the leffer by $\}$ the greater

6. There are two quantities whofe fum is $b(=12)$ and the greater of them is $a(=8)$ I demard what is the letler ? What their difference? What is the produet of their multiplica: tion? What is the fum of their Squares? What the difference of their Squares?
7. The leffer is
8. Their difference is
9. The Produet is
$b-a$
$2 a-b$
$a \dot{u}-1 a$
10. The

Chap. 10. Algebraick Aritbmetick. 333
4. The fum of their Squares is
5. The difference of their? Squares is
$2 a b-2 b a+6 b$
$2 b a--b b$
III. There are trio Quantities or Numbers whore difference is $d,(=4)$ and the greater of them is $a(=8)$ I demand what is the lefter? What is their fum? What their Rectangle or Product? What the fum of their Squares? What the differance of their Squares?

1. The difference, or excels? being fubtracted from the greater, gives the lefter.
2. Their fum is

$$
2 a-d
$$

3. Their Product or Rattan- g

$$
a x-d x
$$

4. The fum of their Squares is
5. $\begin{aligned} & \text { The difference of their } \\ & \text { Squares is }\end{aligned}$

$$
a-d
$$

$$
2 a x-2 a d+d d
$$

$2 a d-d d$
IV. There are two Numbers, Magnitudes, or Quantities, whereof the Ratio of the greater to the lefter is as r to s_{3} (or as 3 to 2) and the greater of them is a $f=12$.) I demand what is the teller? What is their Sum? What their difference ? What their Rectangle, or Product? What the fum of their Squares? And what the difference of their Squares?

1. The leffer is by the Rule of 3 .
z. Their fum is
2. Their difference is

3. Their

4 Their Rectangle or Pro-
duct is
5 The fum of their Squares is
6 The difference of their?
Squares is $\frac{s a a}{r}$ $a a-1-\frac{s 5 a \alpha}{\gamma y}:$

$$
a a \frac{\operatorname{ssa} a}{r}
$$

But if the Ratio between the lefter and the greater had been given as s to r, (or as 2 to 3) and the lefter had been giver $c(=8)$ then,

The greater by the Rule of $\}$
a would be 3 would be

2 Their from
3 Their difference
4 Their Rectangle, or Product
; The fum of their Squares
$\left.\begin{array}{l}\sigma \text { The difference of their } \\ \text { Squares, }\end{array}\right\}$
V. There are two numbers or Quantities whereof the Rectangle or Product is $b(=96)$ and the greater quantity is a $(=12)$ What is the iefler? What their fum? What their difference? What the fum of their Squares? And what the difference of their Squares?
The Product given being? dividend by (α) the liefer quantity is

2 Their

Chap. 11. Algebraick Arithmetick.
335 2 Their fum

3 Their difference
4 The fum of their Squares
5 The difference of their
Squares.

$$
\begin{aligned}
& a+\frac{b}{a} \\
& \frac{b}{a} \\
& a a-1-\frac{b b}{a b} \\
& a a-\frac{b b}{a b}
\end{aligned}
$$

But if the Rectangle had been given b, as before, and the leffer quantity had been given c $(=8)$ Then

I The greater would have? $\left.\begin{array}{l}\text { been found by Divilion } \\ \text { to be }\end{array}\right\}$

2 Their Sum
3 Their difference
4. The Sum of their Squares.
$5 \begin{aligned} & \text { The difference of their } \\ & \text { Squares. }\end{aligned}$

C HAP. XI.

Reduction of Equations.

II AN Equation is an equality between two quantities of different names, whether the
the comparifon of Equality be between Simple, or Compound Quantities, or both; between which two Quantities there is always this Chà. raser, viz. =-

So in this following Equation, viz. $4=3 c, a$ is faid to be the firft part, and $3 c$ the fecond part of the Equation, and fignifieth that fome Number or Quantity reprefented by a is equal, is three times another Nuinber or Quantity reprefented by c.

So $a=b+c$ fignificth that fome quantity reprefented by a is equal to the fum of two other Numbers or quantities reprefented by b and a.

The manner of compoling an Equation witl be underftood by folving of the feveral queftions contained in this and other following Chap. But when known, are mingled with unknown quantities, in an equation they mult be fo feparated or reduced that the unknown quantity or quantities may remain intire on the one fide, or part, and the known or given quantities on the other fide or part of the Equation, which to perform is the work of Reduction, and which is contained in the feveral following Rules of this Chapter,

Here note, that the Quantity unknown or fought in every Equation is repefented by the Letter a, or fome other Vowel, and the quantity or quantities known or given are reprefented by Confonants, as $b, c, d, f_{2} \& c$.

Reduction of Addition.

11. If equal numbers or quantities be added to equal numbers or quantilies, the fims on totals will be crual, and thetcfore.

Chap̃. II. Reduction of Equation.
If it be granted that $\quad a-8=20$
Then by adding +8 to each
part of the Equation there $a-8-1-8=20-18$ arifech
Then becaufe in the firft part of the Equation there is -18 and - 8 , they del rny each other by the Third $a=28$ Rule of the Second Chap. and it followeth that.

Again let this Equation be? propofed to be reduced, $S a-b=d+b$ viz.
Then by adding b to each?
part of the Equation, there
arifeth
And becaure -6 and $-1-b$ are
in the firlt part of the equa- $\{a=d-1-2 k$ tion, they deftroy each other, and the Equation is
Likewife if

$$
a a-b-c=f f
$$

Then by adding $b-1-c$ to each? part of the equation there $\}_{a a}=f f-1-6+$ arifeth

Now from a due confideration of the premifes it followeth that if in an Equation there be any Number or Quantity propofed with the fign -- before it, then if it be transferred to the other fide of the equation, and cancelled on the fide or part, where it now ftandeth, the effect will be the fame as the adding of that Quantity to each part of the Equation, and this
this by Artifts is called Tranfpofition. As in the firft of the foregoing Examples, where it is granted

And by tranfofing- 8 on the other fide of the Equation, making it there $-1-8$ it

$$
a=28
$$ giveth

And in the fecond Example where $a-b=a-1-b$ By tranfpofing - b, cancelling ?
it on the firt fide of the?
equation, and making it $\mathrm{C} \quad a=d-2 b$ 1.6 on the other, it is

And let it be granted that
$a-b b-d=c$ Then by tranfpoling of $-b 6$? and-d there arifeth $\}$

$$
a-8=20
$$

Chap. I1.) Reduction of Equation. 339 Again let be given
$2 a a+b=a a+c c$
By the Tranfpofition of $-j^{-6}$?
on the firft fide the Equation it is
And by Tranfpofition of $a a^{2}$ on the fecond fide of the equation it is

Alfo if
$2 a a=a a+c c-b$

By, Tranfpofition of $b-\{-c$?
to the fecond fide of the $\{a a=b a-1 d d-b-c$ equation it is
And by the Tranfpofition?
of $b a$ to the firft fide of $\quad a s-b a=-d d-b-c$ the equation it is

Which method (in reducing of the premifed Equation) is deduced from this general Axiom, viz.

If from equal Numbers or Quantites; equal Numbers or Quantities are fubtracted, the remainder fhall be equal.

So in the fecond Example? there is given this equation, $\}$ Firft by fubtracting b from?
each part of the equation, $\} \quad 2 a x=a a+c a-b$
there is
Then I fubtract a_{a} from each $\}$
part, and there remaineth $\}$

$$
a a=c c-b
$$

Reduction by Multiplication.

IV. When in an Equation one or both parts are Fractions, then let them be reduced to a common denominator by the, $2 \mathrm{~d}_{2} 4$ th, and 5 th Rules of the fixth Chapter, and then cafting away the Denominator, ufe only the Numerators, fo fhall Equations expreft by Algebraical Fractions be reduced to other Equations, confifting altogether of Integers. As in the following Examples.

If

$$
\frac{2}{8}=9
$$

Then by 1 educiug 9 in the fecond part of the Equation to a Fraction, having 8 for its Denominator, it is

$$
\frac{a}{8}=\frac{72}{8}
$$

And by cafting away the De-? $\begin{aligned} & \text { nominator which is com- } \\ & \text { mon to both, it is }\end{aligned} \quad a=72$ Again, if $\quad a=\frac{b c d}{a+b}$
Then by reducing a; on the) firft fide of the Equation

$$
\frac{a a+b a}{a+b}=\frac{b c d}{a+b}
$$ for its Denominator, it is

And by cafting away the?
common Denominator $\} \quad a a-1 b a=b c d$ $a+b$ the Equation is S
Likewife, if

$$
\frac{a b}{c}=\frac{d c}{b}
$$

The quantities being redu-?
$\begin{aligned} & \begin{array}{l}\text { ced to a common Deno- } \\ \text { minator, are }\end{array}\end{aligned} \quad \frac{a b b}{c b}=\frac{d c t}{c b}$
And the common Denomi-? nator $c b$ being caft away,
the Equation is
$a b b=d c c$

Chap. 11. Reduction of Equation.

V. When either part of an Equation is Compofed of a mixed Quantity or Quantities, let the Integral part or parts be reduced to a Fraction or Fractions, and then proceed as in the laft Exaniple.

It is granted that
Firrt, it is reduced to $\frac{b b+b c+a}{b}=\frac{c d a-b c}{a}$ Which Fractional Equation?
being reduced according $\} b a n+b c a+a z=b c a d+b 60$ to the foregoing Rule, is $\$$
VI. When fome power or degree of the number or quantity fought is multiplyed into each part, and each member of an Equation, then let that degree or power be cancelled in each part and member, fo will it quite vanifh, and the Equation will be reduced to more Simple Terms. As for Exainple.

Let it be granted that

$$
a a+-b \alpha=c a
$$

Forafmuch as a is a Factor in 7 each part and member of the equation, therefore it $a-1-b=c$ being expunged in each, there arifeth this equation J
'VII. When (according to the fecond, thind, forth, and fifth Rules) an Equation is reducel, and that fome known Number or Quantity is multiplyed into the quantity fought, then divide each part of the Equation by that known Quantity. io the end that the quantity fought may

$$
\mathrm{A} \text { a } \quad \mathrm{h} \boldsymbol{\mathrm { r }}
$$

have no quantity multiplyed into it but I (or unity.) As in Example,

If it be granted that $\quad b a=c d$
Then because the Quantity)
fought is (a) muliplyed?
by b, divide each part of
the equation by b, and
there arifeth
$a=\frac{c d}{b}$
VIII. When ally one part of an Equation is composed of a ford quantity, (viz. fuch as hath the radical fign, prefixed to $i t$) and the other part is a rational quantity : then let that rational quantity be railed to the power fignified by the Radical fign, and then catt away the fid radical fign, fo fall both parts of the Equation be a rationail quantity. As,

If it be proposed that Square 8 and place its Square in the room of it elf, carting away the radical fign from the frt part of the Equation, and then it will be S

Likewife if

Then by railing the fecond part of the Equation to its Square, and catting away the

$$
\sqrt{ } a=8
$$

$$
a=64
$$

Chap. 11. Reduction of Equation.
Again, if

$$
\sqrt{ }=b-1-c
$$

The fecond part of the Equa-) tion being fquared, and the $a=b b+2 b c+c c$ radical fign cancelled in the
firt, there arifeth

Reduction iy Divifion.

IX. If equal Quantities be divided by equal Quantities, the Quotients thence arifing will be equal. For,
If

$$
a a=10 a
$$

Then by dividing each part of?
the Equation by a, therearifeth this Equation.

And if
Then by dividing each part of? the Equation by a, there ari- $\} a a=b b-1-d a\}$
feth

And $d a$ in the fecond part of the Equation being tranfpo-\%
fed by the third Rule of this $\quad a a-d a=b b$
Chapter, there axifeth this Equation, viz.
And if
$b a-c a=d d$
Then by dividing each part of the Equation by $b-e_{\text {, }}$ it is $\} a=\frac{d d}{b-c}$

CHAP. XII.

To Convert Analogies into Equations, and Equations into Analogies.

I. TTHIS is deduced from this univerfal - Theorem, viz. That if four quantities are Proportionals, the product of the two Means is equal to the product of the two Extreams; and if three numbers are Proportionals, the product of the two Extreams is equal to the Square of the Means.
i. Let there be propofed $\}$ thefe four Porportionals. Then by the faid Theorem?
this Equation will follow, voz.
$a d=b c$
2. Let there be propofed? the $\{e$ three continual Pro- $\}$ portionals, wiz.

$$
\begin{gathered}
a, b, c \div \because \\
a: b:: b: c \\
a \in=b b
\end{gathered}
$$

Whence there followeth this $\}$
Equation, vin. $a: b:: c: d$ That is to fay
II. From a due confideration of the Premifes it is evident that Equations, may oftentimes be refolved into Proportionals, viz. when the Product of two quantities is found equal to the product

Chap. 12.
 Simple Equations.

duet of two other quantities: Then as any one of the Factors in the frit fide of the Equation is to any one of the Factors in the fecond part of the Equation, fo is the remaining Factor of the fecond part, to the remaining Fattor in the firft part : And the Converfe,

Suppofe that

$$
b c=a d
$$

From thence may be drawn $\}$
$b: a:: d: c$ this Analogy,

The trath of which may be proved by the firft Rule of this Chapter, for thereby the faid Analogy may be reduced to the given Equation, viz. $b c=a d$.
Again if
$3 b a=3 d c$

Then from thence may be de- $?$ duced this Analogy, viz. \} or or

$$
\begin{aligned}
& 3 b: c:: 3 d: a \\
& 3 b: 3 c:: d: a \\
& b: 3 c: 0 d: 3 a
\end{aligned}
$$

Likewife if
Then may that Equation be? refolved into thefe Proportionals,

And if
Their it will be fourd that
$b c=c a-1-d a$
$c+d: b:: c: a$

$d \dot{d}=6 b a$
$6 b: d:: d: a$
III. When it happens that there is an Equation between an Algebraical Fraction, and an Integer, if the Numerator of the faid Fraction can be refolved into two fuch quantities, as being multiplyed the one by the other, will produce the faid Numerator, then will the faid Equa-

$$
\text { A } 23 \quad \text { Eio: }
$$

ton produce this proportion, viz.
As the Denominator of the Fraction is to one of the Factors of which the Numerator is producoed, fo is the other Factor to the Integer, unto which the fetid Fraction it equal. Examples.

If it be granted, that

$$
\frac{b c}{d}=a
$$

Then may that Equation be 3
refolved into this Analogy. $\}$

$$
d: c:: b: a
$$

For,

$$
d: c:: b: \frac{b c}{d}(a)
$$

Again, if

$$
\frac{c d}{b+d}=a_{1}
$$

Then may that Equation bes refolved into this Analogy, $\} b+d: c, c:: d: a$ And alpo if

$$
d d=\frac{a b+a d}{c c i l}
$$

Then may the fid Equation? be revolved into this Analo- $\} c c: b-\mid-d:: a: d d$
gy, viz:

The Practice of the two aft Rules will be plainly difcovered in the next Chapter b(in the refolution of Questions producing fimple Equatiohs) to be of molt excellent ore in difcovering or laying down of Theorems for the ready folltion of the Queftion proposed, or any other of the fame nature, which Theorems are to be kept referved in iftore for the finding out of new, and the confirmation of old Truths.

CHAP.

C H A P. XIII.

The Refalution of Arithmetical Queftions (Algebraically) which produce Simple Equations

1. $\triangle \mathrm{N}$ Equation is two-fold, viz. Fint, Simple, and fecondly, Adfected or Compounded.
II. A Simple Equation is when the Quantity fought (folely poffeffing one part of the Equation) is either expreffed by a Single or simple Root, as a, or by a Single or Simple Power as as, or aad, crc. as in thefe Equations, viz. $a=32$, and $a c=\sigma_{4}$, or $4^{13 a}=256$, and fuch like.
III. When a Quertion is propounded, and to be refolved Algebraically, then for the Anfwer put a, and for each of the given Numbers put Confonants, then proceed according to the Tenure of the Queftion, by Addition, Subtraction, Multiplication, or Divifion, until an Equation is Compored; and when the Equation is compofed, then proceed to reduce it (accord. ing to the Rules contained in the Eleventh Chapter) until the Quantity unknown (being a or fome power of a) do folely poffefs one part of be alpo known.
IV. I hall in the Refolution of every Cuefion proceed (gradatim) ftep by ftep, according to the inethod unfed by Mr. Kerf $\int e y$, each itep being numbered orderly in the margent, from the beginning to the end, by $1,2,3,4, \dot{\sim} c$. And I fall only proceed in the operation literally, becafe otherwife this Treatife would fuel to a bigger Volume than is at prefent intended; but I ind ll give the Learner a tate of Numeral Alaebra, in the folution of two or three of the firft Queftions thereby.

Ques. I. There are two Numbers whole fum is 48 (or b) and the excel of the greater above the lefter is if (or c) I demand what are the Numbers.

The Solution literally.

1. For the greater number put
2. From which if you dub-? tract the difference ; c) you will have the lefter, which is S
3. The greater and lefter being added together, will be? equal to (b) the fum whence this Equation
4. And by the 「ranpofition or- c the Equation is
5. Then dividing each part $\}$ of the Equation by 2, it is $\}$

$2 a=b-1$
$b=\frac{b-1 c}{2}$
6. And

Chap. 13. producing Simple Equasions. 6. And if from $\frac{k+c}{2}$ you fubtract (c) the excers of the greater above the lefler, the $\}$

$$
\frac{b+c}{2} c
$$ leffer will be

So that the Numbers fought are 31 and 17 , for by the fifth ftep (a) the greater is foond to be $=$ to $\frac{b+c}{2}$ and b is given 48 , and c is given 14 , the fum of which is 62 , which divided by 2 , gives 31 , for the greater, and by the fixth ftep, if from the greater you fubtract the difference (c) the remainder will give the leffer, which is 17, for $\frac{b+c}{2}=17$.

Now if the bith and fixth feps are duly confo dered, they will prefent you with this

Theorem,

The fum of the fum and differencé of any two Numbers being divided by 2, will give the greater Number; and the difference of any two Numbers being fubtracted from half the fum of the fum and difference, the lemainder will give the leffer number.

The Solution Numerally.

I. For the greater number put
a
2. From which if you fubtra Ω ? the difference (14) the lef- $\} \quad a-14$ ler is
3. Which added together, will? be the fum, whence this Equa- $\{2 a-14=48$
tion.
4. And by tranipolition of -I 4 it will be
\} $2 a=\sigma_{2}$
5. And both parts of the E-? quation being divided by 2 , will give the value of $(a)\}$
the greater.
6. From which if you fubtract? (14) the Difference, the re- $\}$ mainder will give the lefter by the fecond ftep.

So that the Numbers fought are 31 and 17 , which will fatisfie the conditions of the Queftion.

$$
\text { Quefion } 2 .
$$

There are two Numbers whore Sum is 56 (or b) and the lefter hath fuch proportion to the greater, as^{2} to 5 , (or c to d) I demand what are the Numbers?
r. For the lefter number put
2. Then by the Rule of Three
find the greater, viz. $c: d:=a: \frac{d_{s}^{s}}{c}$

4
3. Wherefore the fum of the
two numbers fought is
4 Which furn must be equal to? the given fum, whence this $\}$

$$
\frac{d \pi}{c}
$$ Equation.

$$
a+\frac{d a}{6}=b
$$

Chap. 13. producing fimple Equations is r
5. Which Equation being reduced by the fourth and fifth

$$
{ }_{a}=\frac{c b}{c+d}
$$

Rules of the eleventh Chap. the value of a will be found to be
6. And by the firf, fecond, and fifth fteps the greater number will be difcovered $\int \frac{d b}{c+d}$ to be

So that the numbers fought are 40 and 16 , for (a) the leffer is found to be by the fifth fep $\frac{c b}{c+d}$ viz. the Froduct of (cb) 56 by 2 divided by $(c+d)$ the fum of 2 and 5, viz. 7 , which is 16, © c.

And if (acording to the third Rule of the twelfth Chap.) the two laft feeps be turned into proportionals, it will give this

Theorem.

As the fum of the Terms which reprefent the Ratio of two Numbers, is to the fum of the numbers themfelves, fo is the leffer term to the leffer number; and fo is the greater Term to the greater Number.

Therefore if the fum of two Numbers is given, and alfo their Ratio, the Nnmbers themfelves are alfo given by this Theorem.

The fame Question folved Numerically.

1. For the lefter number put
a
2. Then by the Rule of Three? the greater number is found viz. $\left.2: 5:: a: \frac{5 a}{2}\right\}$

$$
\begin{aligned}
& \frac{5 a}{2} \\
& a+\frac{5 a}{2}
\end{aligned}
$$

4. And according to the temure of the Quertion, their? fum mut be equal to the gi- $\}$

$$
a-\frac{5 a}{2}=56
$$ ven fro, whence this equaion

5. And that Equation being
reduced by the fifth and firth Rules of the eleventh Chap. the value of a will be found to be
6. Which being fubtracted? from the given fum, the $\}$ greater number is $: \quad\}$

$$
\frac{112}{7}=16
$$

Quest. 3.
A Gentleman asked his Friend (that had four ?ares in his hand; what Money he had in each Punic ? To whom he anfwered, that he knew not, but (quoth be) this I know, that in the fecond Pure there arc 8 or (b) Crowns more than in the First or leaf Purfe, and in the third 8 Crowns more than the fecond, and in the fourth or bigget Puri there are 8 Crowns more than in the third, and twice as many as in the firft or leaft, I demand what number of Cropins he had in each Purge?
$\left.\begin{array}{l}\text { 1. For the number of Crowns } \\ \text { in the firft Purfe put }\end{array}\right\}$
2. Then in the fecond there is
3. And in the third there is
4. And in the fourth
5. Which according to the tenure of the Queftion is double to that in the firft, whence this Equation
6. Then by the tranfpofition? of a from the firft fide of the $\} 3^{t=a}$ Equation, it is

$$
\begin{aligned}
& a+b \\
& a-2 b \\
& a+3 b
\end{aligned}
$$

$a-1-3 b=2 a$

Hich difcovereth the value of a to be $3 b$, or 3 times 8 , which is 24 , $8 c$. which is the number of Crowns in the firft Purfe, and confequatly the number of crowns in each Purfe, is $24,32,40$, and 48 , which will fatisfie the conditions of the Queftion.

The fame Queftion folved Numerically.

1. For the Crowns in the frft $\}$
purfe put
2. Then in the fecond there is
3. And in the third
4. And in the fourth
5. Which is double to the? number of Crowns in the $a+24=2 a$ firft, whence this equation, 6. Which Equation being reduced by the tranfpolition of a, difcovers the value of a, viz.

354 Resolution of Questions Chap. 13.

Queft. 4.

Three men build a Ship which coff them 2700 l . (or b) Pounds, of which B muff pay double to what A muff pay, and C muff pay three times as much as B, I demand the flare that each mull pay.
i. For the fum to be paid by $\}$

$$
A \text {, put }
$$

2. Then B must pay
3. And C mut pay
4.
5. The fum of the fe three quantities are equal to the? total charge, whence this $\}$ Equation
6. Which being reduced, if- covers the value of a, viz. $\} \quad a=\frac{6}{9}$ which is the fum that A muff pay, viz. 300 l . Therefore B muff pay $\frac{26}{9}=600 \%$. which is twice as much as A, and C mut pay $\frac{66}{9}=1800 l$. which is three times as much as B.

$$
\text { Quef. } 5 .
$$

There is a Fifth whore bead is fuppofed to be 9 (or b) inches, and his Tail is as long as his Head and half his Body, and his Body is as long as his Head and his Tail; I demand the length of foch a Fish ?

1. For the length of the Bo-
dy put
2. Then will the Tail be

$$
\frac{a}{2}-16
$$

Chap. 13. producing Simple Equations. 355
3. Then if to the Tail you? $\left.\begin{array}{l}\text { add the length of the Head, } \\ v_{i z} . b \text {, the fum is }\end{array}\right\}$ 4. Which according to the temure of the Question is e qual to the length of the Body, whence this Equation 5. And the fecond part of the
Equation being clear'd of the unknown quantity a by Reduction, gives the value of a the length of the Body, viz.
6. Then according to the Temure of the Queftion, if therefrom you fubtract (6) the length of the head, the reminder will be the length of the Tail, which is

By the fifth Step the length of the Body is found to be $46=36$, and by the firth ftep the length en the Tail is difcovered to be $36=3 \times 9=27$. So that the length of the head is (given) 9 inches, the length of 'the Tail 27 inches, and the length of the Body 36 inches, which numbers will fatisfie the conditions of the Queftion.

For, $36=27+9$ the Body, And $-3^{3}+9=27$ the Tail.
So that the whole length of the Fifth is $9+27-36=72$ Inches.

$$
\text { QUEST: } 6 .
$$

A Father lying at the point of death, left to his three Sons A, B, and C all his Eftate in Money, and divided it thus, viz. to A he gave $\frac{1}{2}$, wanting 44 (or b) pounds, and to B he gave $\frac{1}{3}$ and 14 , (or c) pounds over, and to C he gave the reft, which was 82 or d pounds lefs than the fhare of B. Now I demand what was the Father's Eftate?

1. For the Father's Eftate put
2. Then will the fhare left to $\}$

$$
\begin{array}{r}
a t \\
a \\
\hline 2
\end{array}
$$

3. And the fhare of B

$$
\frac{a}{3}-j c
$$

4. And by the third ftep the?
fhare of C is

$$
\frac{a}{3}+\dot{c}-d
$$

5. The Quantities in the three laft fteps being added together, give

$$
\frac{7 a}{6}+2 c-b-d
$$

6. Which mult be equal to the? Father's Eftate, whence this $S \frac{7 a}{6}-1-2 c-b-d=a$
Equation. Which Equation after due re-? duction and tranfpofition of $($
Quantities, the value of a is $a=6 b+6 d-12 c$ difcovered to be
And $66=6 \times 44=264$, and $6 d=6 \times 82=492$, and $12 c=12 \times 14=168$, now $264+492-168=588$, 10° that the Father's Eftate was 588 pounds, of which A had 250 l. B 210% and C 128, which Numbers do anfwer the conditions of the Queftion.

Clap. 13. producing Simple Equations. 357

$$
\text { Queft. } 7 .
$$

Two perfons thus difcourfed together concerning their Money, quoth A to B give me 3 (orb) of your Crowns, and I hall have as many. as you ; nay quoth B to A, but if you will give me 3 of your Crowns, I hall have 5 times as many as you. Now I demand how many Crowns had each perfon?
I. For the number of Crowns which A had put
2. Then forafmuch as adding 3 (or b) Crowns to A will be equal to the Crowns remaining to B after he had given 3 Crowns to A therefore B will then have left. \int
3. And confequently if you add thereto the 3 (or b) Crowns which he gave to (A the fum will be the numbbet of Crowns which B had at firft, which is
4. Then if from the number of

Crowns A had at firlt (a) you fubtract 3 (or b) crowns, there will remain to $A a-b$ $2+36$ crowns, and giving the fame to B he will then have
5. Which according to the te-? mure of the Queftion is five times as much as what A) $5 a-5 b=a-36$ had left, whence there arifeth this Equation.
σ. Which equation being re- ? duce by the fecond and Seventh Rules of the ell- $\}$ venth Chapter, the value of a is difcovered to be
7. And by the fixth and third fteps the number of Crowns which B had at firft are found to be
So that it is found that A had 6 Crowns, and B had 12 Crowns, which numbers will fatisfie the conditions of the Queftion. For,

$$
\begin{gathered}
9+3=12-3=9 \\
\text { And, } \\
12+3=5 \times 6-3=15
\end{gathered}
$$

Quef. 8.
A Labourer had 576 (or b) pence for threshing 60 (or c) Quarters of Corn, viz. Wheat and Burly; for the Wheat he had is (or d) pence per Quarter, and for the Burly he had σ (or f) pence per Quarter, I demand how many Quarters of each he threshed?
7. For the quarters of Wheat ?
which he threshed put
2. Then the quarters of Bar- $\}$ ley will be
caa
3. The quantity of Wheat in? the firlt step being multiplyed by its price produceth $\}$
da

Chap. 13. producing Simple Equations. 359
4. The quantity of Barly in the fecond ftep being multiplyed by its price, produceth
5. The fum of the quantities in the two laft fteps mult be equal to the given price of the 60 quarters, whence

$$
d a-f a+f c=b
$$ this equation

6. Which being reduced by the fecond, third, and fifth Rules of the eleventh Cha. the quantity of Wheat win

$$
a=\frac{b \cdots-f_{g}}{d-f}
$$ be difcovered to be

7. And by the fecond and? fifth fteps the quantity of Barly is difcovered to be J

$$
f i-f a
$$

$$
c-\frac{b--f_{c}}{d-j}
$$

So that the qnarters of Wheat which he threfhed were 36 , and the quarters of Barly 24.

The Proof.

$12 \times 36=432$
$6 \times 24=144$
And
$452+144=576$, which was to be proved.

$$
\text { Quef. } 9
$$

A Gentleman bought a Cloak of a Salef-man, which coft him 3 l.-10 s. or 70 (or 6) hillings, and defiring the Salefman to tell him what he $B \mathrm{~b} 2$ gained
gained thereby, he faid he gained $\frac{1}{4}$ (or c) of what it coft him, the queftion is what the Cloak coft the firft penny?

1. Suppore the Cloak coft
2. Then he gained
3. The firft and fecond fteps 7
being added together, their
fum will be equal to the fum
which the Gentleman gave
for it, whence this equation
4. Which Equation being re-?
duced by the nintin Rule
of the eleventh Chap. the value of a will be difcovered to be
So that it coft 56 fhillings, $\frac{1}{4}$ of which is 14 fhillings, and $56-14=70$.

And if the quantity in the fourth ftep be duly confidered, you will find that if the gain had been any other part or parts of the firft coft, it the price it was fold for had been divided by the Fraction reprefenting part of the gain, increafed by 1 , the quote would have been the anfwer.

Queftion 10.

A Gentleman hired a Labourer to work for him for 40 (or b) days, and made this agrecment with him that for every day he wrought he frould have 20 (or c) pence, and for every day that he played he fhould forfeit 8 (or d) pence, and at the end of the faid 40 days he received

Chap. 13. producing fimple Equations 184 (or f) pence, which was his full due. Now I demand how may days he wrought, and how many days he played?

1. For the number of dis he wrought, put
2. Then the number of days he ? played will be
3. And if the time he wrought (in the firft ftep) be multiplied by 20 (c, it will produce the total he gained by work, viz.
4. And if the time he played) (in the id step) be drawn into 8 (d) the product will be what he loft by play
5. And if the total lois sin the fourth fer, be fubtrased from the gain (in the third ftp) the remainder will be what he received, whence this Equation
6. Which being reduced by the fecond and ninth Rules of the eleventh Chapter, it will difcover the value of a to be eighteen which is the days that he wrought.
7. And from the firth and fecons steps the number of days he played are difcovered to be 22 days, viz.

$$
c a-\mid-d a-d b=f
$$

So that by the fixth ftep it appears he wrought 18 days, and by the feventh ftep it appears that he played 22 days.

The proof.

$$
\begin{aligned}
& 18 \times 20=360 \text { and } \\
& 22 \times 8=176 \text { and } \\
& 360-176=184
\end{aligned}
$$

Quest. II.

A perron (in the Afternoon) being asked what a Cloak it was, answered that ${ }^{\frac{3}{5}}$ (or b) parts of the time from Noon was equal to $\frac{8}{8}$ (or c) parts of the time remaining to midmight, now, (foppoling the time from Noon to Midnight to be divided in :2 (ord) equal parts or hours) I demend what was the prefent hour of the day ?
r. For the hour fought put
2. Then the time to midnight $\}$ will be
3. Then will $\frac{3}{5}$ (or b) parts of? the Hour from Noon be
a
$d-a$
ba
4. And $\frac{5}{8}$ (or c) parts of the? time remaining till midnight will be
5. Therefore from the third $>$ and fourth fteps there rifath this equation.
6. Which equation being reduce according to the fecont and ninth Rule of the eleventh Chapter gives the $a=\frac{c d}{b+c}$ value of a (to be $6 \frac{-4 \frac{4}{5} \frac{1}{2}}{2}$ the hour fought) viz.

Chap. 13. producing Simple Equations. 363
So that the hour fought was $\sigma \frac{4}{3} \frac{48}{2}$? and confequently the time remaining till midnight was $5^{\frac{2}{3} \frac{81}{32}}$ hours, which two numbers will anfwer the conditions of the queftion, for, $\frac{3}{3}$ parts of $\sigma \frac{78}{3 \frac{8}{21} \frac{2}{2} \text {, }}$ which is $3^{\frac{3}{3} \frac{3}{y}}$ is equal to $\frac{5}{8}$ parts of $\int^{\frac{2}{3} \frac{8}{2}}$, as you may proveat your leifure.

Moreover, If the laft ftep be converted into proportionals by the third Rule of the twelfth. Chap. it will give this

Theorem.

As the fum of the parts of any two Numbers (wherein there is an equality) is to the fum of thofe Numbers, fo is the given parts of any one of thofe Numbers, to the other Number.

As fuppoc it were required to find out two Numbers, whofe fum is 27 , and fuch, that ${ }^{3}$ of the one may be equal to 3^{3} of the other, the fame may be found out by the faid Theorem. For,

$$
\frac{3}{4}-1 \frac{3}{5}: 27:: \frac{3}{4}: 15
$$

which number fo found is the number fought, whereof $\frac{3}{3}$ is to be taken; and the other is $27-15=12$, or it may be found by the following proportion, viz.

$$
\begin{aligned}
& \frac{3}{4}+\frac{3}{5}: 27:: \frac{3}{5}: 12 \\
& \text { Quef. } 12 .
\end{aligned}
$$

One asked a Shepherd what was the price of his hundred Sheep, quoth he, I have not an hundred, but if I had as many more, and half as ma-

$$
\text { B b } 4
$$

r. For the number of fieep he
had; put
-2 . Which being doubled is
3. And if to the fecond ftep you add half the firft, it is $\$$ 4. And if to the third ftep (there be added $7 \frac{1}{2}$ (or b) the fum is
5. Which quantity in the? fourth fep is equal to 100$\}$ (or c) whence this equation 6. Which equation being reduced by the $5^{\text {th }}$ and 7 th Rules of the 1 Ith Chap. the value of a will be difcovered to be 37 , viz.

So that the number of fheep he had were 37

CHAP. XIV.

How to Extract the Root of

 a Square formed from a Binomial, and how by having any two of the Members of fuch a Square given to find out the third.ABinomial is a quantity conffing of two names or parts, as $a-1-b$, or $a-b, a a+c c$. $b-1, e^{\circ} c$. And when a Square is formed from fuch a Root, it will confift of three members or parts, viz. two Affirmative Squares of the parts of which the Binomial is compoled, and the double Rectangle of thore parts, which double Rectangle is fometimes affrmatire, and fomerives negative, viz. Affirmative, when the parts of the Binomial are both affirmative, or both negative, that is, when thy are both figned with -1 , or both with -; and negative, when one of the parts of the Binomial Root is figned with -1 , and the other with--

So if $a-1-b$ were given for a Root, its Square would be $a+2+2 a b-1-b b$ which is compofed of (aw and 66) the Squares of the parts of which the Root is compofed, and of ($2 a b$) the double - Pro

366 The ExtraEtion of Roots,\&c. Chap. 13.

Product, or Rectangle made by the multiplication of the faid parts (a and b) one by the other. See the work.

So if it were required to find the Square of the Binomial $a-b$, or $b-a$ it (being multiplyed by it felf would be $a a-2 a b+b b$, which is compofed of (aand $b 6$) the fum of the Squares of the parts, and their double Rectangle, as before, but (2ab) the Double Rectangle of the parts is figned with-, fo that the Squares of the difference of any two numbers or quantities is equal to the fum of the Squares of the faid quantities or numbers made lefs by their double Rectangle. As by the work.

So if the Number 10 were divided into 8 and $2, v i z .8+2$, its Square would be $64-1-32+4$ $=10 \times 10=100$. And the Square of $8-2$ is $64-32+4=6 \times 6=36$ for $8-2=6$ and $6 \times 6=36$.

Chap. 14. The Extraction of Roots,\&c. 367
Note, That a Binomial Root having one of its parts figned with-, is by fome Authors called a Refidual Root, as $a-b$, and $c-d$, $t c$. are Reiiduals.
II. From what hath been faid concerning the Square of a Binomial, may be inferred this

Theorem.

If a Compound quantity confifting of 3 members, whereof two are Squares of different names, with the fign+prefixed to them, and the third is the double Rectangle of the Roots of thofe Squares, having aifo the fign-1-prefixed to it , then fhall the Square Root of fuch a compound quantity be the fum of the Square Roots of the faid two fimple Squares; but if the faid double Rectangle hath the fign-prefixed to it, the Square Root of the faid Compound quantity? fhall be the difference of the faid Roors.

So the Square Root of $a a-t-2 a b+b b$ will be found to be $a+b$, for the Square Root of aa is a, and the Square Root of $b b$ is b, which two. Roots added together, give $a \neq b$.

Alfo the Square Root of $a+3 a-1-16$ will be found to be $a-1-4$, the 2 Squares in the given quantity are aa and 16 , and $8 a$ is the double product of (a and 4) the faid Roots being multiplyed the one by the other.

Likewife the Square Root of $a a-2 a b-1-b b$ is $a-b$, or $b-a$, not $a+-b$, becaufe the double Rectangle ($2 a b$) is figned with 一.

Furthermore the Square Root of $9 \times a+12 b a$ $-4 b b$ is $3 a+2 b$: The two Square quantities in the faid Compound Square are gaa, and $4 b \dot{b}$, whofe double Product of $3 a$ and $2 b$ being multiplyed together.

And the Square Root of aa--20a $-1-100$ is $a-10$, for the two Squares in this Compound Square Quantity are aa and i.00, whofe Square Roots are a and 10 , and 20a is the double Rectangle of 10 and a, they being multiplyed together.

The foregoing Theorem being well underftood will be of excellent ufe in the Refolution of Queftinns, producing Quadratick Equations, as you will find by the Quentions contained in the next Chapter.
III. When it is required to extract the fquare Root of quantity whofe Root cannot be exactly extracted, then prefix the radical fign to it, which fhall reprefent its Square Boot. So the Square Root of $b c$ is $\sqrt{ } b c$, or $\sqrt{ } 2$) $b c$, and the Square Root of $\overline{a \beta+c c}$ is thus reprefented, viz. $\sqrt{\overline{a \beta+b b} \text {, }}$ or $\sqrt{ }(2)$ $\overline{a s+b b,} \sigma$
IV. From a due confideration of the foregoing Theorem, a way is difcovered how by having any two of the members of a square formed from a binomial Ront, the third member may be found out. For,

When two Affirmative Square Quantities are given for two of the members of a Square formed from a binomial Root, then take the Roots of thofe two Squares and multiply them the orie by the other, and double the Product, fo hall that Product being doubled be the third member, which being annexed to the two given Squares, either by $-1-$, or--, it will make an exact Compound square, whofe Root il all be a Binomial.

Chap. 14. The Extraction of Roots, \& c. 369
So if $a,-1-b b$ were given for two of the memberg of a Square, fort, I find their Roots to ie a and b, which being multiplyed the one by the other, produce $a b$, and that Product being doubled gives $2 a b$, for the middle Term of the Compound Square Quantity to make it a compleat square, the Root whereof is a Binomial, viz:: $a a-1-2 a b-1-b b$, if the raid double product he joyned to the raid fum of the Squares by the fin-, it will give the Compound Square Quantity aa -2ab-1-6b whole Root is $a-b$.

Also if $25 a a-1-16 b 6$ were given for two of the members of a square, whore Root is a Binomial. The fail Square being compleated, will be $25 a a-1-402 b-1-1666$, or $25 a a-40 a b-1-166 b$, whore Root is either $5 a-14 b$, or $5 a-4 b$.
V. When the two given members of a Compound Square Quantity, whore Root is a Bingomil, are the double product or rectangle, and one of the two affirmative fquares, divide half the fail double product by the Root of the given square, and fquare the Quotient, fo fall that fquare be the third member fought, which being joyned to the two given Quantities with the fign -1 , it will give you a compleat fquare having for its root a Binomial.

As for Example. Let $a a-\mid-2 b a$ be proofed for z of the members of a fquare, whole Root is a Binomial: Firft, I take half of (aba the fid double product and it is $b a$, which being divided by (a) the Root of aa) the given Square, the Quotient is b, whore fquare is $b 6$ for the third member fought.

Again, let $25 a a-1-40 a$ be the two proposed terms of fuck a fquare, whole Root is a Benoni-

370 Th: Compleating of Squares. Chap. 14. al, and let it be required to find the other fquare which fhall make it a compleat fquare, raifed from a Binomial Root; in order to which, firft, I take half ($4 \subset a$) the double product, viz. 20a, and divide it by the Root of (2 jaa) the given fquare, which is sa, and the Quotient is 4, which being fquared, gives 16 for the third member required, which being joyned to the reft, gives $25 a a-1-40+16$ for the fquare compleated.
VI. When the two given members of a fquare raifed from a Binomial Root, are fuch that one of them is a fquare affirmative without any Number or Quantity prefixed to it, and the other is the Root of the faid fquare multiplyed by fome other Quantity, then is that other Quantity by Artifts called the Coefficient, and if you fquare half the faid coefficient, or, (which is all one) take $\frac{1}{4}$ of the fquare of the coefficient, that Thall be the third member required, which being foyned to the two given quantities by the fign十; it will give you a compleat fquare raifed from a Binomial Root.
Example. Wet the two given members of a quare be aa-1-2iba, and let it be required to find out the third member. Here the coefficient is $2 b$, half of which is b, which being fquared, gives $b 6$ for the third member which was fought, fo is the fquare compleated $a a+2: b-1-b b$.

In like manner, if the two given members of a quare were $a a+b a$, and it were required to find out the thid member.

Here the coefficient is b, half of which is $\frac{1}{2} b$, or $\frac{b}{2}$, whore fquare is $\frac{1}{4} b b_{2}$ or $\frac{b b}{4}$ for the mem-

Chap. 14. The Compleating of Squares. 37 I ber fought. Alfo let the two given members of a fquare be $a a+8 a$, and let it be required to find out the third member. Here the coefficient is 8 , half of which is 4 , whofe fquare is 16 , for the third member required, fo is $a a+8 a+16$, a compleat fquare, whofe Root is $a+4$.

Again, if the two given members of a fquare be $a a-c a$, and the third is required; Firft, I take half the coefficient c, $v_{i j} . \frac{1}{2} c$, and then fquare it, and it gives $\frac{1}{4}$ or $\frac{\mathrm{cc}}{4}$ for the member fought, and fo is the Square compleated aa-ca- $-\frac{\mathrm{t}}{4} \mathrm{cc}$, whofe Root is $a-\frac{1}{2} c$.

In like manner, if it were required to make a $a+36 a$ a compleat fquare, take half the coeff. cient (3^{b}) which is $\frac{3}{2} b$, or $\frac{3}{2} b$, whofe fquare is Terms with the being joyned to the two given Terms with the fign-1, it gives $a a-1-3 b a+\frac{9}{4} b b$, whore Root is $a+\frac{3}{2}$.

The fame Rule is to be obferved for the fquaring of half the coefficient when it is a Fration.
As for Example. Let the two members of ${ }_{c d}^{a} \rightarrow b_{c}$ fquare raifed from a Binomial given be $a \operatorname{ab-}$ f^{a}, and let it be required to find the third being fquared, gives $\frac{b b d a+6 b d c+g c c}{}$ for the member fought, and fo the fquare being compleated, is a a $+\frac{6 d+3 c}{f}=\frac{66 d d+6 b d c+9 c c}{4 f t}$ whofe Root is

372 The Compleating of Squares. Chap. 15.
VII. When the Root of the given fquare hath no coefficient, then the number I is fuppofed to be the co-efficient, half whereof, (viz. $\frac{1}{2}$) bein f fquared, gives $\left(\frac{1}{4}\right)$ the third member fought to make it a compleat fquare.

So aa-H a being given for 2 of the members of a \{quare raifed from a Binomia], its third member to make the fquare compleat will be $\frac{1}{4}$, for $a a-1-a$ $=a a-1-1 a$, where the Coefficient is \leq, whore half is $\frac{1}{2}$, which being fquared, gives ${ }_{4}^{4}$ for the third member fought, fo the Square being compleated, is $a a-1-a-1-\frac{1}{2}$, whofe Root is $a-1-\frac{1}{2}$.

This Chapter ought to be well underftood before any further progreís be made, for the manner how to refolve Queftions which produce Quadratick (or fquare) Equations doth principally depend thereupon.

CHAP. XV.

Concerning the Refolution of Queltions producing Quadratick Equations.

'QUadratick (or fquare) Equations, are fuch adfected or Compound Equations as confift of three terms, the higheft of which
is a fquare, and is called the higheft term in the Equation, of which three terms two are always unknown, and the third is always known? the firft of the three is the fquare of the Quantity or Numbber fought, and the fecond Term is the Product of the Quantity fought, being multiplyed by rome known Number or Quantity, and is called the Middle Term of an Equation, and the third Term is a Number, or Quantity purely known.

So in this Equation, viz. $a a-1-b a=d$, the firft and higher Term or member is $a a$, which is the quatre of the Quantity or Number fought, and $b a$ is the middle term of the Equation which is the Product of the Quantity fought, it being drawn into b (which is known) and the third term or member of this Equation is $b_{\text {; }}$ which is really known, and is ufually called the Absolute Number or Quantity given.
II. The Equations of this kind are of three Forms, which are laid down by Mr. Kerf $\int e y$, in the fifteenth Chapter of the firft Book of his Elements of Algebray, as followeth, viz.

Equations of the fir. Forms

$$
\begin{gathered}
a a+c a=b \\
a a a a-d a a=f \\
\text { saaaaa-1-caaa}=b
\end{gathered}
$$

Equations of the Second Form.

$$
\begin{aligned}
& \text { Equal, }
\end{aligned}
$$

Equation of the third Form.

III. The Refolution of Equations which fail tonder the firlt Form.

When an Equation is compofed after any of the three foregoing Forms, and any known Quantities are mixed with unknown, let it be fo reduced by tranfpofition (according to the Rules of the Eleventh Chinpter) as that the known quantities may poffeis one fide, and the unknown Quantities the other fide of the Equation.

Example. Let this Equation be given, viz. $a a-1-b a=-b a-\mid-b d c$.

By the tranfonation of B on the firft part of the Equation, and -ia one the fecond part, it will be reduced to this Equation, viz. $a-1-b a=$ $b d c-b$, which is an Equation of the firft form: And when your Equation is fo reduced, add to each part of the Equation the fquare of half the coefficient, and fo will the firft part of the Equation be an Exact and compleat fquare, then according to the 2 d and 3 d Rule of the Fourteenth Chipter extract the fquare Root of both parts of the Equation, and from the Square Roots of both parts of the Equation fubtract half the coefficient, and then you will difcover the value of a. As in the following Examples.
Quiff.: I.

What number is that which being fquared, and multiplyed by 8 (or 6) the fum of the raid Square and Product is equal to 384 (or_{c}) ?

Resolution.

I. For the number fought put
a
2. Whore Square is
a,
3. Its Product by 8 (or b) is ba
4. The fum of the fecond and third fees mull be equal to $\}$ $a a-1-b a=c$ 384 (or c) whence this E. quation.
5. To each part of the equaton add the fquare of $\left(\frac{1}{2} b\right)$ half of the coefficient, then will it be 6. Then by extracting the fquare root of both parts of the equation by the fecond and third Rules of the 14 Chap. it will be reduced to $\$$
7. By the tran(pofition of $\frac{1}{2}$)
to the fecond part of the $a=\sqrt{\sqrt{2}+\frac{1}{4} b b}-\frac{1}{2} b$ Equation the value of a is difcovered to be
Which Equation is thus expreffed in words, viz. the number fought is equal to the remainder, when $\left(\frac{1}{2} b\right) 4$ is fubtracted from the fquare root of the fum of $(c) 384$ and $\frac{4}{4}$ of the Square of $(b) 8$ (added together) which is 16 , fo that the value of a is $I \sigma$. For $c-1 \frac{1}{4} b b=400$ and $\downarrow(2) 4000=2 C$. and 20 $-4=16$.

$$
\text { oneft. } 2 .
$$

What number is that whofe Square being multiplyed by 4 (or b) and its Biquadrate (or fourth fower) multiplyed by 6 (or or_{c}) and the Products added together, the fum is 3850 , (or d)

Refolution.

1. For the number fought put
2. Its Square multiplyed by b is
a
3. Its Biquadrate multiplyed
baa
caaaa
4. The fum of the fecond and third fteps muft be equal to 3850 (or d) whence this Equation, viz.
5. And becaufe the highelt 3 power of the equation is multiplyed by c, therefore each part being divided by c the equation is
6. To each part of the equa-3 tion add half the fquare of the coefficient $\left(\frac{b}{c}\right)$ and $\left\{\begin{array}{l} \\ a a a+\frac{b}{c} \\ c^{2 a}+\frac{b b}{4 c c}=\frac{d}{c}+\frac{b b}{4 c c}\end{array}\right.$ the equation will be
7. Then the fquare Root of each part of the equation in the fixth ftep, being extracted by the fecond and
$a a+\frac{b}{2 c}=V: \frac{d}{6}+\frac{b b}{4 c c}$ third Rules of the 4 Chap. the equation then will be

Chap.15. Quadratick Equations.
8. And by the tranfoofition
of $\frac{b}{26}$ to the fecond part of
the equation the value of $a n=V(2) \frac{d}{c}-\frac{i b}{4 c c} \cdot \frac{b}{c c}$ $a a$ is found to be
9. And becaure the equation in the 8 ftep is the value of $a x$, therefore if the fquare Root of each part of that equation be cxtracted, the value of a it felf will be difcovered to be
which in words is as much as to fay the Number fought (or a) is equal to the fquare Root of the remainder when $\left(\frac{b}{2 c}\right) \frac{1}{3}$ is fubtracted from the
 (or $\frac{b b}{4 c i}$) being added together, fo that the value of a, (or the number fought is 5 . For $V: \frac{d}{6}+\frac{66}{266}=\frac{76}{3}$ and $\frac{76}{3}-\frac{1}{3}\left(\frac{6}{26}\right)=\frac{75}{3}=25$ and r : $25=5$, which is the number fought.

The Proof.

$$
4 \times 5 \times 5+6 \times 5 \times 5 \times 5 \times 5=3850
$$

You muft remember always to reduce a Fraction to its loweft Terms before you extract its Root.
III. The Refolution of Equations which fall under the fecond of the three Forms before mentioned.
Quef. I.

What umber is that which having 8 (or b; times its felf fubtracted from its fquare, the remain der is 48 (or c)?

> Refolution.

1. For the number fought put
2. Then will its fquare be
3. The firft fep multiplyed by b is $\quad b a$
4. If the third fep be fubtra-? ited from the fecond, the re-
$a a-b a=c$ mainder will be 48 (or c) $\}$ whence this equation
5. To each part of, that equa-) tion add the fquare of $\left(\frac{1}{2}{ }^{\prime}\right)$) $a n-b a+-6 b=+{ }^{1}-6 b$ half the coefficient, and then it will be
6. Extract the fquare Root of each part of the laft equation by the fecond and third Eules of the 14 th Chapter, and it is
\%. And by the tranfpofition of $\frac{x}{2} 6$ to the fecond part of the equation, the value of a a
 difcovered to be 12 .
which in words is as much as to fay, the Number fought (or a) is equal to the fum of the univerfal: Square Root of the fum of 48 (or c) and a fourth part of the fquare of 6 (or $\frac{1}{8} 66$) being added

Chap. 15. Quadratick' Equations
to 4 (or ${ }_{2}^{b}$) which is 12 for $1=48$ and ${ }^{r} 6 b=16$, and $48+16=64$ and, $64=8$, and $8+4 \cdot\left(\frac{1}{2} b:=12\right.$.

The Proof.

$$
\overline{12 \times 12}-\overline{8 \times 12}=+8
$$

$$
\text { Queft. } 2 .
$$

What number is that which having 12 (or b). times its fquare fubtracted from its Biquadrate, or forth power, the remainder is 3328 (or c)?

> Revolution.

1. For the number fought put
2. Then its biquadrate is
a
3. And its square multiplyed?
4. The difference of the fecong and third Steps mut $\}$
$a a n a-b a=c$ whence this equation, viz.
5. Square half the coefficient,? and add it to each part of the equation, and then it will be
6. Extras the fquare R - ot of both parts of the equation by the fecond and third (Rules of the 14 Chap. and then the equation will be
7. By the tranfpofition of $-\frac{1}{2} b$ to the contrary Coaft the value of (a) the number

$$
a a=\sqrt{ } \cdot c-1-\frac{1}{4} b b-1-\frac{1}{2} b
$$ fought will be difcovered to be

$$
C \subset 4
$$

$a a-\frac{1}{2} b=\sqrt{a-c-1-\frac{1}{4} b b}$ $212 a-b b a+\frac{1}{4}=+{ }_{4}^{2 b b}$

baa

8. By extracting the fquare 7 root of both parts of the equation in the 17 th flop the value of a is found to be 8.
Which is as much as to fay, that the Number fought, (or a) is equal to the universal fquare root of the fum of 6 (or $\frac{3}{2} b$) being added to the univerfal fquare Root of the fum of 3328 , (or c) and 36 (or $\frac{3}{4} 65$) which upon tryal you will find to be 8 .

For, $c=3228$, and $b=12$, and $\frac{1}{4} b b=36$, wherefore $3328+36=3364$, and $V: 3364=58$, and $58+\left(\frac{1}{2} 6\right) 6=64$, and $V: 64=8$, which is the Number fought.
IV. The manner of refolving Equations which fall under the lat of the three forms before mentoned.

Let the equation proposed (if it falls under the third and laft form) be reduced to an equation of the fecund form, by the tranfpofition of its terms, as in the following queftions, viz.

What Number is that whole fquare being fabtracted from 12 (or 6) times it fell the remainder is 32 (or c)?

Resolution.

1. For the number fought put
a
2. Its product by 12 (or b) is ba
3. If from the fecond ftep you? fubtract (a a) the fquare of $\}$ the first Pep, the remainder is S

Chap. 15. Quadratick Equa
4. The remainder in the third?
381
ftep is equal to 32 (or $c) \quad b a-a a=c$ whence this equation $\}$

Now by tranfpofition I reduce to an equation of the fecond of the foreraid forms. And Firft,
3. By tranfpofition of aa to the contrary part, the e-\}
6. Then by tranfpofition of $c\rangle$
7. And by tranfpofition of $b a z$ in the lixth ftep, the equa- $-c=a a-b a$
tion will be

$$
a a-b a=-c
$$

So that from a due confideration of the method ufed in reducing Equations of the third form to equations of the fecond form you may eafily perceive that the work of tranfpofition in the fifth, fixth and feventh fteps is performed only by changing the figns of all the Terms of the Equation in the fourth ftep, viz. by changing - Einto -, and - into - -
So the Equation in the fourth ftep is $b_{a-a a}$ $=c$,
And by changing the figns of $b a-a a$ on the firft part of the Equation, and of c in the fecond part into $-b a-\mid a a$, and $-c$, the Equation will then be-bat-aa=-c, or $a, a-b a=-c$, which is the fame with that in the feventh ftep; and it is now an Equation of the fecond of the three foregoing forms, fo that I now proceed to the folution of the Equation.
8. The
8. The fquare of half the co- -
efficient (${ }_{2}^{2} b$) in the feventh $\left(a x \cdots b a+\frac{1}{4} b \dot{b}=c+\frac{1}{4} \dot{b} b\right.$
ftep to each part of the equation, it will then be
9. The fquare root of each
part of the lat equation
being extracted by the $\mathrm{fe}-\}-\frac{1}{2} b=\overline{V:-c+\frac{3}{4} b b}$ cong and third Rules of the 14 Chapter the equation will then be
10. And by the tranfpofition of $\frac{1}{2}$ in the ninth ftep to the contrary part, the raluce of a will then be found
to be (8)
which is as much as to fay that the number fought (or a) is equal to the fum of 6 (or $\frac{2}{2} b$) being added to the Square Root of the remainder, when 32 (or c) is fubtracted from 36 (or ${ }^{\frac{1}{4}} 66$) which is 8 . For, ${ }_{4}^{1} 66-c=4$ whore fquare Root is 2 , and $2+6\left(\right.$ or $\left.\frac{1}{2} t\right)=8$ which is the number fought.

The Proof.

$$
12 \times 8=96
$$

And 96 -ri. $(a a)=32$ (or c) which was pro. pounded.
V. The Refolution of various Questions producing Quadratick Equations.
Quest. I.

There are two Numbers whole fum is 12 (or b) and the fum of their fquares is 80 (orc) 1 demend what are thole numbers?

Redo-

Revolution.

1. For one of the numbers fought put
2. Then the other will be
3. Then the fum of their? Squares will be
4. Which quantity in the $?$
third ftep is equal to 80^{\prime} or
c) whence this equation S
5. Which equation being? duly reduced by the rules of the eleventh Chapter giveth this equation.
6. Which Equation being Solved according to the third Rule of this Chap. $\left(a=V^{\frac{c-6 b}{2}}+\frac{b b}{4}+\frac{b}{2}\right.$ ter, the value of a is dircovered to be
7. Wherefore I conclude the numbers fought are 8 and 4 , for their fum is 12 , and the fum of their fquares is 80
8. Moreover the Equation in the fixth ftp will give this

Cahoot.

If from half the given fum of the Squares you fubtract half the fquare of the given fum, and to the remainder you add half the given fum, the fquare root thereof being added to the fid half fum of the numbers, the fum of this addition will give you the greater number fought, and the greater number being fubtracted from the given fum of the numbers, will give the lefter number fought.

Oust.

Queftion 2.

There are two numbers, the product of whofe multiplication is 96 (or b) and the fum of their equares is 208 (or c) I demand what are thofe numbers?

Refolution.

1. For one of the numbers fought put
2. Then by dividing 96 (or $b) ?$ by a, the Quotient will give other which is
$\frac{b}{a}$
3. The quare of the number in the firft ftep is
4 The fquare of the other number in the fecond ftep is $\}$ 5. And the fum of their? fquares in the third and fourth fteps is
4. Which furn in the fifth ftep? muft be equal to the given fum of the Squares 208 \} (or c) whence followeth | this equation, viz.
5. Which Equation in the laft ftep being duly reduced by the Rules of the eleventh Chapter the value of a will be difcovered to be

$$
a=\sqrt{(2) \sqrt{3}_{3}^{3} c c-b b+\frac{7}{2} c}
$$

8. So that I conclude the numbers fought to be 12 and 8 , for their product is 96 , and the fum of their §quares is 208.

9. More-

Chap.15.producing Ruadratick Equations 385

9. Moreover the Equation in the feventh ftep giveth this

$$
C A N O N .
$$

From 4 of the Square of the given fum of the Squares fubtract the Square of the given Product of the Multiplication of the numbers fought, and extract the fquare Root of the remainder, and to the faid Square Root add half the given fum of the faid fquares, and then extract the fquare root of the fum of that Addition, fo fhall that fquare Root be one of the Numbers fought, by which if you divide the given Product, the Quotient will be the other Number fought.
QUESTION3.

There are twa Numbers whofe fum is 12 (or 6): and the Product of their Multiplication is 20 (or c) what are the Numbers?
RESOLVTION.
i. For one of the Numbers? fought put
2. Which if you fubtract from
(12) b the given fim, the remain ter will be the other number, viz.

$$
b-a
$$

3. And if the firft and fecond fteps be multiplyed the one by the other, the Product will be

$$
b 6-a a
$$

4. Which
5. Which Product the Queftion? requires to be equal to 10 or $c)\} \quad b a-a a=c$ from whence this equation S
6. Which equation is of the third and laft form, mentioned in the begimning of this Chapter, which being duly reduced by the Rules of the eleventh Chapter, it will be

$$
a a-l a=-c
$$

6. Which Equation being folved according to the method ufed in the fourth Rule of this Chapter, the value of a will be difcovered to be

$$
a=\sqrt{\cdot \frac{1}{4} b b-c}-1 \frac{1}{2} b .
$$

7. So that I conclude the Numbers fought to be 10 and 2 , whofe fum is 12 , and their product 20, according to the conditions of the Queftion. Morcover the Equation in the fixth ftep, will prefent you with this

$$
C A N O N \text {. }
$$

From the Square of the haif given fam of the Numbers lought, fubtracted their given product, and extract the fquare Root of the remainder, and to its fquare Root add half the given fum of the numbers fought, fo fhall the fum of that Addition be the greater number fought, which being fubtracted from the faid given fum will leave the leffer.

> Queft.

Chap.15. producing Quadratick Equations. 387

$$
\text { QUEST. } 4 .
$$

There are three Numbers which are Geometrical proportionals continued, the mean whereof is I2 (or b) and the two extreams are fuch, that their difference is 18 (or c) I demand what are thofe three Numbers?
RESOLVTION.
x. For the leffer extream put
2. Then the greater will be
3. Then will the produ:t
made by the multiplication of the extreams of the firft and fecond fteps be
4. Which Product (or ReCtangle) in the third feep (muft be equal to the fquare? $a-1-c$ of (12 or b) the mean whence this Equation.
5. Which Equation being fol. ved by the fecpand Rule of this Chapter, the value of a will be fourd to be
6. I $f: y$ the exiream proportionals fought are σ and 24 , whofe difference is 18 : For,

$$
\sigma: 12:: 12: 24 \text { or } a:: b:: b: \frac{6 b}{8}
$$

7. The Equation in the fifth ftep being well confiderec, will prefent you with this
CANON:

$$
C A N O N
$$

If to the Square of the given mean you add the fquare of half the difference of the extreams, or (which is all one) $\frac{1}{4}$ part of the fquare of the given difference of the extreams, and extract the fquare root of the fum of that Addition, and then from that quatre root fubtract half the aid difference. the remainder will be the lifer extream, and if thereto you add the given difference, that fum will be the greater extream.

$$
Q U E S T
$$

A Draper fold a piece of Cloth for $24 l$ (or b) and gained as much per Cent. (or c) as the cloth coff him, I demand how much it colt him?
K SOLUTION.
I. For the price which the? cloth coff, put

$$
a
$$

2. Then will the gain by its? tale be

$$
b=a
$$

3. Then by the Rule of three find how much is gained per Cent. Saying, ($a: b-a:: c: \frac{c b \cdot-c a}{a}$ for that his gain per cont. was
4. Which quantity in the 3 d step according to the tenurse of the queftion mut C be equal to what the cloth coff in the first ftp whence this Equation, viz.

$$
a=\frac{c b--c A}{a}
$$

Chap.15. producing Quadratick Equations. 389

5. Which being reduced by? the Rules of the eleventh $\{a+c a=c b$ Chapter, it will be
6. Which (being an Equation? of the firft of the ${ }_{3}$ forms delivered in the beginning in the fifteenth Chap.)being,

$$
a=\sqrt{a} c b+\frac{c}{4} \quad c
$$ folved by the 2 d \& 3 d rule of the 14 Chapter, the value of a is difcovered to be J

I fay the cloth coft 20 l . which is the value of a, for,$: c b+\frac{c c}{4}=70$ and $70-\frac{c}{2}=20$, fo that he gained 41 . in laying out 20: For,

1.	1.	l.
20	4	10

and fo the conditions of the Queftion are fatisfied.

$$
Q U E S T .7
$$

A Merchant bought a certain number of pieces of cloth, and paid 30 pounds (or b) per Cloth, and fold them again at fuch a rate per Cloth, that if the pounds he fold a Cloth for be multiplyed by the pounds he gained per Cloth, the product will be equal to the Cube of the number of pounds gained per Cloth, I demand what he gained per Cloth, and what he fold each Cloth for?
RESOLUTION.

1. For the number of pounds $\}$ gained per piece, put $\}$
2. To which if you add 207 - orb) the fum will be the

$$
a-1 b
$$ number of pounds it was fold for per piece, viz.

3. And if (according to the tenure of the Queftion) the fecond item be multiplyed by the frt, the product
will be
4. Which Product in the third? ftep, mult(according to the nature of the Question) be equal to the Cube of the $\} \quad a n+b a=a a a$ pounds gained per Cloth in the frt ftep, whence this equation, viz.
5. Which equation being re duce by the third and duce by the third and firth Rules of the eleventh $\{$
Chap. it will then be
6. Which equation in the 5 th ftep being folved by the 7thRule of the 14 th Chap. and the firth Rule of this C
$a=\sqrt{: b+4} \cdot$ Chap. the value of a will be difozered to be
which is as much as to fay in words, a (or the gain per Cloth) is equal to the fum when 言 is added to the Square Root of the fum of 30 , and $\frac{\text { f }}{\text { f }}$ added together, (viz. the Square Root of $30 \frac{2}{4}$) which is $5^{\frac{2}{2}-1}:=6$.

I fay,

Chap.15. producing Quadratick Equations. 3 gi

I fay he gained 6 pounds per Cloth, and he fold it for 36 pounds per Cloth, which two numbers will fatisfie the conditions of the queftion.

The Proof.

$$
6 \times 36=6 \times 6 \times 6=216
$$

$$
\text { QUEST. } 8 .
$$

A Brick-layer, and a Labourer wrought logether at the Building of a certain house 42 days, (or 6) and the labourer he wrought 4 (or c) days more than the Brick-layer did to gain one pound, and at the end of the 42 days the Brick-layer received for his work I_{4}^{2} pounds (or d) more than the Labourer, I demand how many days each of them wrought for $I l$.
RESOLUTION.
I. For the number of days which the Brick-layer $\{$ wrought for l. put
2. Then according to the conditions of the queftion, the number of days that $?$

$$
a-1-c
$$ the labourer wrought for I 1 . will be

3. By the Rule of proportion find how many pounds the Brick-layer received for the work of 42 days, as followeth,
$a \leq 1:=b: \frac{b}{a}\{ \}$
which is
Dd 2
4. Then find out by the Rule of 3 how many pounds the Labourer received for his work in 42 days thus
$c a+c: 1: b: \frac{b}{a+6}$ which is
5. But the Brick-layer received $1 \frac{1}{2}$ (or b; pounds more than the Labourer for 42 days work, wherefore if to the 4 th ftep you add d (or b) it will be equal to what the Brick-layer received in the third Itep, whence this Equation, viz.
6. Which Equation being reduced by the fourth, fecond, and feventh Rules of the eleventh Chapter, it $\}$ will then be
7. The Equation in the fifth ftep being folved by the Rule of this Chapter, the value of a will be difoove- $\}$ red, viz.
which is as much as to fay a (or the number of davs which the Brick-layer wrought) is equal to the difference when $\binom{c}{2} 2$ is fubtracted from the Square root of the fum of $\left(\frac{b c}{d}\right) \frac{672}{7}$ or 66 and $\left(\frac{c c}{4}\right) 4$ which is $100=10-2=8$

I fay the Brick-layer wrought 8 days for twenty fhilings, and the Labourer wrought

Chap.15. producing Quadratick Equations. 393 $8-4=12$ days, which two numbers will fatisfie the conditions of the queftion, as will appear by the

PROOF.

Firft by the Rule of Three find what the Bricklayer received for the 42 days, faying,

Then find how much the Labourer received for his 4.2 days work by the Rule of Three, faying,

So that I find the Brick-layer for his 42 days work received 5 l.-5 s. and the Labourer 3 l. - 10 s. which is ! l. 15 , or $I_{4}^{3} l$. lefs than the Bricklayer received.

$$
\text { QUEST. } 9 .
$$

A Gentleman bought a Houre, and fold it again for 280 pounds (or b) and by its fale he gained fo many pounds, that their Square being added to the fquare of the number of pounds it colt him, the fum will amount to $\$ 2000$ (or c) pounds, now I demand how much the houfe coft him?
RESOLUTION.

1. For the number of pounds?
2. Then will the gain by its fate be
3. The Square of (a) its fort
4. The Square of the gain by Sale is
5. The fum of the two quai-? tities in the third and fourth fteps is
6. Which quantity in the
fifth Atp is equal to 52000 (
(or c) whence this Equation (2aa-2ba-1-bb=c
7. Which equation being reduce by the third and $\left.\begin{array}{l}\text { feventh: Rules of the e- } \\ \text { leventh Chapter it will be }\end{array}\right\} \quad a a-b a=\frac{c-b b}{2}$.
8. Which equation being fol-? vel by the third Rule of? this Chapter the value of $a\}$
$a a-2 b a+6 b$
$2 a-2 b a-1-b b$ will be difcovered, viz.
which is as much as to fay in words, (a) the price which the house coff is equal to the fum when half what he fold it for is added to the Square Root of the fum of half the given fum of the squares added to a fourth part of the Square of what it was fold for, that fum being made left by hath the Square of what it was fold for; which was 220% and he gained by the pale 60%. For,

$$
\frac{1}{2}=26000 \text {, and } \frac{66}{2}=19600 \text {, and } \frac{66}{3}=39200 \text {, now }
$$

Chap.I5. producing Quadratick Equations. 395 26000 -19600=45600, and 45600--39200 $=5400$, and $\cdot(2) 6400=80$, and $80-1-\left(\frac{1}{2} b\right)$ I 40 $=220$, which is the number of pounds the houfe coft, and $280-20=60$, which is the number of pounds he gained by the Sale of the loure, as you will find by

The Proof.

$$
\begin{gathered}
220 \times 220=48400 \text {, and } \\
60 \times 60=3600 \text {, and } \\
48400-3600=52000
\end{gathered}
$$

whereby the conditions of the queftion are anfwered.
QUESTION10.

A Draper fold 2 pieces of Cloth (whereof one contained 6 (or b) yards more than the other) for two equal numbers of fhillings, the leffer piece he felleth for 2 (or c) Phillings, per yard more than the other, and the number of fhillings which one piece was fold for, did exceed the number of yards in both pieces by 186 (or a^{\prime}) the queltion is what was the Number of yards in each piece, and what cach piece was fold for per yard?
RESOLVTION.

1. For the number of yards $\}$ in the leaft piece put $\}$
2. Then will the yards in the $\} \quad a-1-b$ greater piece be
3. Then will the fum of the $2 a-1-6$

Dd4 - 4. Then
4. Then if (according to the? nature of the Question) to the fum of the yards in the third Item, you add 186 (or d) the fum will be the number of Shillings which each piece was fold for, viz.J
5. And if the quantity in the? fourth ftep, be divided by (a) the quantity in the firth ftep the Quotient will give the number of fillings that 1 yard of the leapt piece was fold for.
6. And if the raid Quantity in the fourth Prep be dividied by the number of yards. in the biggeft piece, (which is the Quantity in the fecon ftep ;the Quotient will give the number of filings that a yard of the biggeft piece was fold for, which is ${ }^{J}$
7. If to the Quantity in the? firth Rep you add 2 (or c) $\} \frac{2 a+b+d+c a+c b}{a+b}$ failings, it will then be $\}$
3. Which (quantity in the feventh ftep (as the Queftion requires) is equal to the Quantity in the fifth flap, whence this Equation, viz.

$$
\frac{2 a+b+d+c a+6 b}{x+6}=\frac{2 x+b+d}{}
$$

Ghap.15.producing Quadratick Equations. 397
9. Which equation in the eighth ftep being reduced by the Rules of the Eleventh Chapter, it will then be

$$
a a+\frac{c b-2 \dot{b}}{c} a=\frac{6 b+b d}{c}
$$

10. The Equation in the laft fep being folved by the third rule of this Chapter, the value of a will be difcovered to be

$$
a=\sqrt{\frac{b b+b d}{6}}+\frac{c c b b \cdots-\cdots c b b+4 b b-c b-2 b}{46}
$$

11. But if you confider well the Equation in the ninth ftep, you will find the coefficient to be 0 , for $\frac{c b-2 b}{c}=0$, and therefore $\frac{c b \cdots-2 b}{2 c} a=0$, whence the middle Term in that Equation is O, and therefore the middle term being removed, the Equation will be $a=\frac{b b+b d}{c}$ which is a fimple Equation, and if the Square root of both parts of that equation be extracted, the value of a will be difcovered to be $a=-\frac{b b+b d}{c}$ $=24$, which is the fame with the value of a in the tenth ftep, as you may eafily. find ipon Tryal, wherefore I fay,

The number of yards in the leaft piece is 24.
And the number of yards in the biggeft piece is $24-1-6=30$, which two numbers will fatisfie the conditions of the queftions, as will appear by

The

The Proof.

The number of yards in both pieces is $24-1-30$ $=44$, which if added to 186 (as the Queftion requires) will give the number of fhillings which one piece was fold for, which is $54+186=240$, and the leaft piece was fold at io Shillings per yard.

$$
\begin{array}{cc}
\text { yards } \\
24: & \text { s. yards } \\
240: & I_{2}: \\
240 \\
42 \\
\hline 10
\end{array}
$$

And the price of a yard of the biggelt piece was $8 s$. For,

$$
\begin{gathered}
\text { yards } \\
30: 240:: 1 \\
30 \\
\text { s. } \\
240 \\
40
\end{gathered}
$$

Which is two fhillings per yard lefs than the leffer piece was fold for per yard, and theretore the anfwer is true, and the conditions of the queftion are fatisfied.

CHAP. XVI.

The Doctrine of Surd Quan-

 tities.'AL. L quantities or Numbers whatfoever, whether Integral, or Fractional, ate called Kational, but when the Root of any power cannot be exactly extracted, fuch Root is called Irrational or Surd, and is expreffed by putting the Radical fign before the number out of which the Root propofed ought to be extracied ; as \checkmark or \downarrow (2) placed before any number or quantity fignifieth the Square Root of the quantity or Number, and $V(3)$ the Cube Root, and $\sqrt{ }$ (4 the
 fieth the Square Root of I_{2}, and $\sqrt[1]{ }$ (3) 12 its Cube Root, ơr.
II. Surd Numbers are two-fold, viz. Simple and Compound; A Simple Surd quantity is when, the Radical fign is prefixed to a simple quantity, as $\sqrt{ }(3) 5$ or $\left(v^{\prime}(4)\right.$ ab.

A Compound Surd quantity confifts of feveral Simple Surds, which are connected together by + - or - , as $\sqrt{ } 4+\downarrow 6$, and $\sqrt{\prime} a b-1-\sqrt{ } a c-1 \vee d_{3}$ and $\sqrt{ }(2) \frac{d}{a b+d c}$ which laft Compound Surd is ufually called an univerfal Root.

III. To

III. To Reduce Simple Surd quantities that have different radical figns to a common radical figs.

Let the Indices of the given Powers be reducoed to their lowers Terms by their common meafirer, and fer the quotients under their refpeactive Dividends, and multiply crofs-wife, fo foal the product be the Index required, before which placing \downarrow, it shall then be the common radical fign required : Then raife the Powers of the given Roots to the powers dignified by the fail alters quotients, before which fid Powers place the common radical ign found as before, fo will you have new furd quantities equal to the given quantities, and having equal Radical fiona.

Example. Let it be required to reduce $V(6) 8$, and $\sqrt{ }(8)$ is to two other Roots equivalent to the former, having a common radical ign.

$$
\begin{aligned}
& r(6) 8 X^{\sqrt{ }(8) 12} \\
& { }^{3}\left(24^{\prime} 4096 v(2)_{1728}^{4}\right.
\end{aligned}
$$

Firft, the exponents 6 and 8 are reduced to 3 and 4 , which being placed under the given exponents 6 aid 8 as you fee, and having multiplyed Crofs-wife, viz. 3×8, or 4×6, you have 24 for a new Index, to which prefix r, and it is $V(24)$ for the common radical ign, and then raifing 12 to the third power thereof, and 8 to the fourth, you have $V(2+1) 4096$ and $V(24) 1728$ equal to $v(6,8$, and $v(8) \mathrm{t} 2$.

So if it were required to reduce $V(4) a$, and $v(\sigma) b$ to Surd Roots equivalent thereto, hawing a common Radical sign, it will be as followeth.

$$
\begin{array}{cc}
r(4) a & r(6) 6 \\
2 & 3 \\
r(12) a a a \text { and } r(12) b b
\end{array}
$$

IV. Multiplication in Simple Surd Quantities.

1. If the Quantities given to be multiplyed have a common radical fign, then multiply them together without any regard to the fign, and to the product prefix the given Radical fign, which new quantity fall be the product fought.

So if $V 6$ be to be multiplyed by $V 8$, the Product will be \mathscr{r}^{8}, and $\mathscr{r}(3) 4$ by $\mathscr{V}(3) 8$ Produceth $V(3) 32$ and $V a$ by $V b$, produceth $V_{a} b$, and $\checkmark(3) 6$ by $\mathbb{F}(3) b d$ produceth $\mathbb{N}(\xi)$ cbd. cor.
2. But if the Quantities given to be multiplyed have not a common Radical fign, let them be reduced to fuch by the third Rule foregoing, and then proceed as before.

Example. What is the Product of $P(4) a$ by $V(6) b$? The faid quantities being reduced to a common radical fign, will be $V(12)$ aaa and $V(12)$ $b b$, which being multiplyed together, produce $\checkmark(12)$ aaabb which is the product fought.

So the $V, 2,6$ being multiplyed by $\mathscr{V}(3) 6$ they being Reduced to a common radical fign, are $\checkmark(6) 66 b$, and $V(6) c c$ which being multiplyed producè $V(6)$ bbbcc.
3. When a furd quantity is to be multiplyed by a rational quantity, then firft raife the given rational quantity to the power of the given quantity, whofe Root is irrational or furd; and then proceed as before.

So if it were required to multiply \mathbb{V}_{5} by 5 , the rational number s being raifed to the fecond power is 25 , and then you will have to multiply
$\sqrt{5}$ by $\sqrt{25}$, whofe Product is $\sqrt{ } \mathbf{2 5}$.
Likewife $\sqrt{ }(3) 6$ being to be multiplyed by a, the Produc? will bes (3)baaa, for a being raifed to the third power is $a a_{2}$ and $\sqrt{2}(3) 6$ by $\sqrt[v]{ }$ (3) aaa produceth $V^{\prime}(3)$ bana as before.
V. Divifion in Simple Surd Quantities.

1. Reduce the Surd Quantities given to be divided to a common Radical lign by the third Rule of this Chapter, and then divide the Quantity following the Radical fign of the Dividend by the quantity following the radical fign of the Divifor, aud to the quocient prefix the faid common Radical fign, fo mall that Surd quantity be the quotient fought.

Example. There being given $\sqrt{ }$ is to be divided by $\sqrt{ } 3$, the quotient will be $\sqrt{ } 5$. And $\sqrt{ } 6$ being to be divided by, $\sqrt{ } a$, the quotient will be $\sqrt{ } \frac{b}{a}$ and $\sqrt{ }(2)$ a being given to be divided by $\sqrt{ }(3) b c$, the quotient will be $\sqrt{ }(6) \frac{a z n}{b b c c,}$ for the given quantities being rednced to a common radical fign, are $\sqrt{ }(\sigma)$ aaa and $\stackrel{r}{ }(\sigma)$ bbce.
VI. Addition and Subtraction of fimple Surd quantities.
I. When the Surd Roots to be added together, are equal, multiply any one of them by the given number of Surd quantities, fo fhall that product be the fum required, before which prefix the radical fign given, fo the fam of $V 6$ and $V /$ is $\sqrt{2} 4$, for the given number of roots is 2 , whofe fquare is 4 , and $V+\sqrt{6}=\sqrt{2} 4$, fo $\sqrt{(3)} 6$ being to be added to $P(3) b$, their fum is $V(3) 36$ and $r(3)$ a being to be added to $V(3)$, and $V(3)$ a their fom will be

Chap. 16. Surd Equations.

403
$V(3)=7 a$, for the given Number of Surds is 3 and $V(3)$ a being multiplyed by 3. viz. $V(3) 27$ (by the third part of the fourth Rule) the Product is $V(3) 27 a$ which is the fum of $V(3) a, \sqrt{3}) a$, and $V(3 a$. which was required.
2. When two unequal Surd Roots which have the fame Radical fign prefixed to each of them, be to be added together, or when the leffer of them is to be fubtracted from the greater, Then you $12 a f$ firft try whether they be commenfurable, or not; that is, if after they have been divided by their greatelt conmon meafurer, the Quotients be rational Quantities, then multiply the fum of thofe rational quantities by the faid common Divifor, and the Produrt fhall be the fum of the Surd Quantities propounded; and if the difference of thofe Rational Quotients be multiplyed by the faid common meafurer, then will the Product be the difference of the Surc Quantities propounded.

Example. Let it he required to find the funz and difference of $V 50$, and $V 8$, their greateft common meafurer is $V 2$, by which they being divided, the Quotients are V_{25} and V_{4}, viz. 5 and 2; whofe fum is 7 , which being multiplyed by V_{2}, the Product is $7 V_{2}$ or $V_{9} 8$, which is the defited fum of the Surd Quantities propounded. And if the difference of the faid Rational Quotients, viz. $;-2$ (or 5) be multiplyed by the faid common Divifor $\left(V_{2}\right)$ the Product will be ${ }_{3} V_{2}=V_{1} 8$, which is the difference of the Surd Quantities given, the leffer being fubtrated froms the greater.

Bat if the fimple Surd quantities given to be added, or fubtracted, be incommenfurble, neither their fum nor difference can be expreft by any
fimple Term, or Root, but their fum and difference mult he expreft by -1 -and -? as fuppofe you were to add $V 10$ and $V 13$ together, their fum would be $V_{13}-1-V_{10}$, and their difference $V_{13}-V_{10}$. The like of other quantities expreft by letters.

C H A P. XVII.

The Parts of Numeration in Compound Surd Quantities.

1. Addition and Subtraction in Compound Surd Quantities.
r 7 HE Addition and Subtraction of Compound Surd quantities is the fame with the fimple surds, having refpect to the figns of Affirmation and Negation, viz. -1 and -

So if to $\sigma \sim-1-\sqrt{ } 8(3 \sqrt{2})$ you add $4-1-\sqrt{2}(2 \sqrt{2})$ the fum will be $10-1-\sqrt{50}(5 \sqrt{2})$ and if from $6-1-\sqrt{18}(3 \sqrt{2})$ you fubtract $4 \cdot-1-\sqrt{8}(2 \sqrt{2})$ the difference will be $2-\sqrt{2}$.
 are to add $\sqrt{ } 80-\sqrt{27}(4 \sqrt{5}-3 \sqrt{3})$ the fim is $\sqrt{720}-\operatorname{br} 27(12 \sqrt{5}-3 \sqrt{5})$ and if you fubtract the $v 80-1-2 / 243(4 / 5+-9 \sqrt{3})$

Thefe two examples are of Compound Surd quantities which are commenfurable, and the next is of Compound Surd quantities, partly commenfurable, and partly incommenfurable. As

Let it be required to add $V 12(2 \sqrt{3})+V / 5$; to $\sqrt{2} 7(3 \sqrt{3})$ - 18 the fum will be $\sqrt{7} 5(5 \sqrt{3})+\sqrt{8}$ $+1 / 5$, and if the former be fubtracted from the latter, the remainder will be $\sqrt{3}+18-\sqrt{5}$.

The fame is to be obferved in Addition and Subtraction of Compound Surd quantities altogether ihcommenfurable. As in the following Examples.

To and from Add and Subtract	
Sum is	$\sqrt{10}+\sqrt{7}+\sqrt{3-1} \sqrt{2}$
Or, Difference is	
	$r_{10}+r_{7}-r_{3} r_{2}$
Or, $\quad \sqrt{1}: 17+6_{28} 0:-V_{5}+\overline{V_{24}}$	
To and from $\quad V(3) \mathrm{ro}+r(3)_{7}$	
Sum is	
Difference is	

II. Multiplication in Compound Surd Quantitties.

Multiplicand $\sqrt{ } 180+\sqrt{48}(6 \sqrt{ } 5+4 \sqrt{3})$
Multiplyar $\sqrt{125}+\sqrt{12}(5 \sqrt{5}+2 \sqrt{3})$
$150+20 \sqrt{15}$
$+12 \sqrt{15}+24$
Product $150+32 \sqrt{15}+24$
Product contracted $174+32 \sqrt{ } 15$

Multiplicand $\sqrt{ } a b b+\sqrt{c}$ ff $(b \sqrt{ } a+f \sqrt{ } c)$
Multiplyar $\sqrt{a d d}+\sqrt{ } c a a(d \sqrt{ } a+a \sqrt{ } 6)$
+ba $c a+f a s$
Product $b d a+f d+b a \times \sqrt{ } c a+f a c$

Multiplicand | $\sqrt{ } b c+a$ |
| :--- |
| Multiplyar |
| $\sqrt{b c-a}$ |
| Product |
| $b a-a a$ |

Chap. 16.
Surd Quantities.
III. Division in Compound Surd Quaytitties.

Divisor Dividend
$a+r b c) a b-b v b c(b$ Quotient.
$a b+b r b c$
$0 \quad 0$
$a+r b c) a a a+b c r b c(a a+b c-a r b c$ aaataarbc
$+b c r b c-a a r b c$
$+b c r b c+a b c$
$-a a r b c=a b c$

There Examples will not rem difficult to the ingenious, if what is before delivered concerning Surd quantities be duly confidered.

CHAP. XVII.

The Parts of Numeration in Univerfal Surd Roots.

WHEN it is required to extract the Root of any Compound quantity, whether Square, Cube, Biquadrat, ơc. if they cannot be exactly extracted without any remainder; then if to fuch given compound quantity you prefix the Radical fign, fuch Roots are called Univerfal Surd Roots, and firtt, concerning

I. Multiplication in Univerfal Surds.

r. When any Univerfal Root is to be multiplyed by a Rational quantity, or by any Surd, multiply the Square of the Multiplicand by the Square of the Multiplyar, when the Univerfal Radical fign is quadratick, or the Cube of the Multiplicand by the Cubc of the Multiplyar, when the Univerfal Radical fign is Cubical, and before that Product prefix the given Univerfal Radical fign, fo fhall that new univerfal Root be the Product fought.

Chap. 17.

Example. Let it be required to multiply by 2 this univerfal Square Root, viz. $\sqrt{: 10}+\sqrt{40}$ I take the fquare of 2 , which is 4 , and the fquare of $\sqrt{10+1} \sqrt{40}$, which is $\sqrt{10-1} \leqslant 40$, and multiply it by 4 , and the Product is $\stackrel{\Sigma}{40-1} 4 \sqrt{40}$, whole univerfal fquare Root is the Product fought, viz. $\sqrt[V]{40-1-4 \sqrt{40}}$

Alfo if $P(3): \sqrt{(3) 64-1+}(3) 27$ were to be multiplyed by 2, or doubled, take the Cube of the univerfal Root given, which is $\sqrt{2} 364-1(3) 27$, and multiply the fame by the Cube of 2, which is 8, and the Product is $8 r(3)^{\prime}+1-8 r(3) 27$, the Cube Root of which is the Product fought, viz. $V:(3) 8 \sqrt[V]{(3) 64}+8(3) r(27$, and it is double to $V(3): V(3) 64+V(3) 27$ the Surd Root given.

In like manner, if it were required to multiply $\sqrt{112+\sqrt{6}}:+\sqrt{12-\sqrt{6}}$: into its felf, or to find its fquare; the fquares of the parts are $12+\sqrt{6}$ and 12 - 6 the fum of which is 24 and the Prom duct made by the Multiplication of the parts one into the other, viz. $\sqrt{112-1 \sqrt{6}}$ into $\sqrt{: 12}-\sqrt{6}$: is V_{138}, (for the difference of the Squares of 12 and $\sqrt{ } 6$ is 138 , whore fquare Root is $\sqrt{13} 8$, and the double of the raid Product is $2 \sqrt{1} 38$, which added to 24 (the fum of the fquares of the par makes $24+2 \sqrt{138}$, which is the fquare $\sqrt{ }: \overline{12+\sqrt{6}}+\sqrt{12-\sqrt{6}}$.

Likewife if $\sigma+\sqrt{: 20-} \sqrt{16}$: is to be m of by $6-\sqrt{20-20-\sqrt{16},}$ the Product will be ${ }^{r}$ 20, for if $23-V_{16}$ (which is t^{t} $\vee: 20$ — $V 16$) be subtracted from 36 6) there will remain $16+16$

Product fought. Alfo $6-1 \sqrt{: 20-\sqrt{10}}=10$, and $\sigma-\sqrt{20}-\sqrt{1} 6:=2$ and $2 \times 10=20$ as before.

Again, if it be required to multiply $\sqrt{: a a+b b}$; by a, the fquares of the given quantities are $a a-\mid-b b$ and $a a$, which being multiplyed the one into the other, the Product will be aada-i-bbaa, the univerfal Square Root of which is the Product fought, view. \mathbb{V} ianaa-1-6baa: which may be more compendioufly expreft thus, aV: $a a-1-b b$.

II. Divifion in Univerfal Surds.

As in Multiplication you multiplyed the Square of the Multiplicand by the Square of the Multiplyar, the given Radical fign being Quadratick, Gre. So in Divifion of Univerfal Surd Roots. you are to divide the fquare of the Dividend by the fquare of the Divifor, when the univerfal Radical fign is Quadratick, and Divide the Cube of the Dividend by the Cube of the Divifor, when the univerfal Radical fign is Cubical, orc : fo fhall the Quotient, when the univerfal radical fign given is prefixed thereto, be the Quotient required.

Example. What is the Quotient when $\overline{\sqrt{40}-1-4 \sqrt{30}}$ is divided by 2 ? Here I divide $40-1-V_{4} 0$, which is the fquare of $V_{4} 0-F_{4} V_{4} 0$: the dividend) by 4 (the fquare of the given Divifor) and there arifeth $\Gamma_{10+1} \sqrt{4}^{2}$: the univerfal fquare Root of which, viz. $\bar{R} 10+r^{\prime} 40:$ is the Quotient required.
Alfo if it were required to divide $V(3) 8 \overline{V(3)} \overline{64 T^{5}}$ $8^{\prime} /(3) 27$ by 2 , the Quotient would be found to be $r:(3) \overline{r(3)} 54+r(3) 27$: here the Cube of the
given Dividend is $8 V(3) 64-1-8$. (3) 27 which being divided by 8 (the Cube of 2) there will arife $r(3)_{6}+V(3) 27$, to which if you prefx the univerfal radical fign of its Cube Root, it will be $\overline{\sqrt{:(3)} \sqrt{(3) 64+\sqrt{(3)} 27}}$: which is the Quotient fought.

Likewife if it be required to divide $\overline{v: a a a a}+\overline{b b a a}$ by a, the Quotient will be found to be $\overline{v: a a-}+v_{b b}$: for, the fquare of the Dividend is anaa-bban, and the fquare of the Divifor is $a a$, and when the Divifion is ended, there will arife $a a-b b$ the univerfal fquare Root of which is $v: a a-b b$: which is the Quotient fought.

But when the work of Divifion in univerfal Surd Quantities happens to be intricate, and its operation cannot be finifhed without a remainder, you may fet the power of the Dividend for a Numerator, and the power of the Divifor for a Denominator, and againft the line of Separation, place, or prefix the univerfal radical fign, which univerfal Root fo fignified thall be the Quotient fought.

As if it were required to divide $\overline{v: \sqrt{a}+b c}$ by $v: v a+c:$ the quotient will be $v: v a b-1-b c$.
III. Addition and Subtrattion in Univerfal Surd Quantities.

1. If two Univerfal Surd quantities that are commenfurable are propofed to be added together, or fubtracted, the operation may be performed like fimple Surds. As for Example. If the fum and difference of $\sqrt{8+}+4 \sqrt{3}$ and $\sqrt{2}+\sqrt{3}:$ were required.

$$
\text { E. e } 4
$$

Her

Here each of the faid quantities being divided by their greatelt common meaforer, $\overline{V i 2+\sqrt{3}}$: the Q:otients are V_{4} and $\nu_{1}, v i z, 2$ and 1 , which are rational Numbers expreffing the-proportion of the Surds propounded, therefore if their common Divifor be multiplyed 2-1-I (viz. 3.) it giveth $3 / 2+23:$ for the fum required, and the faid common Divifor being multiplyed by $(2-1)$ the difference of the faid 2 and 1 , it will produce $\sqrt{: 2-1-\sqrt{3}:}$ for the difference of the Roots propored.

Likewife if it were regnied to find the fum and difference of :aaact-aabb: and $\sqrt{: a a b b-1-b b b b}$.
The faid Quantites being reduced; are $\overline{a v a a-1 b b:}$ and $b r_{:}: a+b b:$

Therefore is their fum $a+b \times v: a-\frac{b b: \text { and their }}{}$ difference is a cabvar bb.
2. When the Root of a refidual is to be added to, or fubtracted from, the R oot of its correfpondent Binomial, then may thofe Roots be connected togeciber by the figns + and - ; and then the whole being multiplyed by it felf, the univerfal Root of the Product thall be the fum or difference of the Roots propounded.

As fuppofe $v: 12+\sqrt{ } \sigma$: were propounded to be added to $\sqrt{: 12-6}$: the given Roots being conneEted together by + , make $1: 12+\sqrt{6: 12}{ }^{1 / 6}$: which compnfed Quantity being multiplyed by it felf, produced $24+2,1138$; whofe univerfal Square Root $(\sqrt{ } \cdot 24+2 \sqrt{128:})$ hall be the fum of the Quantities propofed to te added.

But if $\sqrt[12]{1-\sqrt{6}}:-\sqrt{: 12-\sqrt{6}}$ be multiplyed into it felf, the product will be $24-2 \boldsymbol{V} 138$, whore
whore univerfal fquare Root is the difference, of the two given Roots.
3. But if the univerfal Roots to be added or fubtracted are not commenfurable, eve c. then they are to be added by - - , and fubtracted by -

So if it were required to add $\overline{V:-1 / 3}$ to $v: 3-v_{2}$ their fum would be $6: 54-v_{3}: 4 v: 3-v_{2}$.

And the latter being fubtracted from the tormen, the remainder would be $\bar{v}: \overline{5-1 \cdot v} 3:-\overline{v: 2-v 2}$:

And the fum of $r: a b+c$: being added to $v: d+b$: will be $\overline{v a b-1} c:-\overline{v a d-1+b:}$ and the latter being fubtraited from the former, the remainder will be $z: a b-1-c:-v: d-1-b:$
IV. The Extraction of the Squat e Root out of Binomials, and Refduals:

Subtract the Square of the lefter part of the given Binomial, from the Square of the greater part, and, add the Square Root of the remainder to the greater part, and afro mbtiact it therefrom, and then extract the fquare Roots of the Sum and remainder, and joyn them together by -1- if the quantity proofed be a Binominal, but by ... if it be a Relidual, which Roots fo joyned, are the feuar Root of the given Binomial, or Refidual:

Example 1.

$\left.\begin{array}{l}\text { Extract the Square Root } \\ \text { of this Binomial, viz. }\end{array}\right\}$

$$
38+1 / 1300
$$

1. From the fquare of the greater part 38, wiz. from $\}$ I 444
2. Sub-
3. Subtract the fquare of the? refer part, viz. ${ }^{\text {which is }}$, 1300$\}$

1300
3. The remainder is
4. The fquare root of the reminder is
5. To which root if you add? the greater part 38 , the fum is
6. The half of which fum is
7. The fquare root of the fair? half fum is the greater part of the root fought, which is
8. From the greater part of the given Binomial, viz. 38 , fubtract the quire root in the fourth ftep, viz. 12, the
remainder is
9. The half of which is,

26
10. The fquare root of the faid half remainder is the leffer part of the root
fought.

$$
\mathscr{V} 3
$$

11. To which if you add the quantity in the feventh fer, $5+013$ which is the square root of the given Binomial, but if the given ford quantity had been a Refldual, viz. if it had been required to extract the square root of $38-V_{1} 300$, then the root would have been $5-V_{1} 3$.

Example 2.

Extract the fquare root of
this Binomial, viz.

1. The fquare of the greater part 7 ; is
2. From which fubtract the? square of the leffer part, (viz. $V_{2} O_{3}$) which is
3. The remainder is

$$
7+v 20
$$

$$
49
$$

$$
20
$$

4. The fquare root of that re-3
maninder is

$$
29
$$

5. To which fquare root add 2 the greater part of the given Binomial, vi ₹. 7 , and the S fum is
6. The half of which fum is
7. The fquare root of the faid fum is the greater part of the root fought, which is
8. From the greater part of the given Binomial, (viz.) from 7) fubtrait $\sqrt{2} 2$ in the fourth sep, and the re-

$$
7-\sqrt{29}
$$ mainer is

9. The half of which remainder is
10. The fquare root of the $\}$ raid half remainder is the leffer part of the root
fought, which is

$$
\frac{7}{2}-V^{2} \frac{9}{4}
$$

$$
\overline{V_{2}^{7}-V^{29}}
$$

11. Which
12. Which being joyned to the greater part of the root fought in the feventh ftep by the fign t, the fum will be the fquare root fought, which is

$$
v: \frac{7}{2}+v^{2} \frac{9}{4}:+v^{\frac{7}{2}-v^{2} \frac{9}{4}}
$$

But if the lefter part of the faid root found in the tenth Step be joyned to the greater part found in the feventh ftep by internofing the fign - inftead of -1 , it will then Le the fquare root of the refidual $7-\sqrt{20}$.

Example. 3.

Let it be required to extract the fquare root of this Binomial, viz. aa -tod added to 2avd, fuppofling the greater part of the given Binomial; to be aa-l-d. Then,

1. The fquare of the greater part is aaa $-1-2 b d d-1-b b$
2. From which fubtract the Square of the lifer part
(2avd) viz. Ada, and the aaaa-2aid-1-dd remainder is
3. The square root of that remainder is

$$
a a-d
$$

4. To which Square root add)
the greater part of the gi-
ven Binomial, viz. a ar d, and the fum is
5. The half of which fum is
$2 a$
6. The fquare root of which?
half fum is the greater part
a of the root fought, which is 5
7. From
8. From $(a a-1-d)$ the greater? part of the given Binomial fubtract the fquare root found in the third ftep ($a a-d$) and the remainder is
9. The half of which remain- $\}$ der is
10. The fquare root of which? half remainder, is the lefter part of the root fought, viz.
11. Which raid root being? joyned to the greater part? found in the firth ftep by
$a-1-v d$ the fign -1 , it will be the root fought, viz.
but if the quantity in the ninth ftep be joyned to the quantity in the firth ftep, by interpofing the fign -, it will then be the fquare root of the refidual, $a a-1-d$ leis $2 a \sqrt{ } d$.

Example. 4.
Let it be required to ex-2-T-dved more 2 ed
tract the square root of fuppofing the greater part to be
eF-dved, then

1. The fquare of the greater part is
2. From which fubtract the? fquare of the lefter part, which is

$$
e p e d-1-2 e e d d+e d d d
$$

3. And the remainder is eeed-2eedd-eddd
4. The fquare root of that?
remainder is

$$
\overline{e-d_{v}} \text { ed }
$$ der is

9. The half of which remain- $\}$
10. The fquare root of the fail half remainder is the lefter part of the root

2dred
dived

$$
\overline{v: d v e d:}
$$ fought, which is

11. If to the greater part of the root fought in the feventh tee, you join the lefter part in the eleventh ftep, by interpofing the fig + , it will then be the root fought, which is

$$
\overline{v i e v e d}+\sqrt{: d v e d:}
$$

But if the two fail quantities are joyned together by the interpofition of the fign-, it will then be the fquare root of the refidual e-tded le ss $2 e d$.
V. Some Qreftions to exercise the Rules of this and the foregoing Chapters.
QUEST:

Let it be required to divide 100 (or c) into two foch unequal parts, that 100 multiplied by
the lefer part may be equal to the fquare of the greater.
RESOLVTION.

1. For the greater number put
2. Then will the lefer be
3. By which if you multiply?

100 (or c) the product will be
4. Which quantity in the 3 d ftep muft be equal to the fquare of the Quantity in $A a=c c-C A$ the firft ftep, whence this equation.
5. Which Equation being re-) duced by the rules of the in Chap. and folved, the value $n=\overline{r a c+\frac{c e}{4}-\frac{1}{2} c}$ of a will be difcovered to be
which Equation in the laft ftep being duly confedered, will prefent you with this

Theorem.

To the Square of the given line or number add a fourth part of its Square, and extract the Square root of that fum; then from the faid fquare root fubrract half the given line, fo fally the remainder be the greater fegment, or number fought.

$$
\text { QUEST. } 2 .
$$

What Number is that whofe fquare being made lefs by the Rectangle of it felf drawn into in (or b) the remainder is equal to f ?

1. For the number fought put
2. The fquare of which is
3. The Rectangle of a in b is
a
4. If the quantity in the third ftep be fubtracted from the quantity in the fecond ftep, the remainder is equal to f;
whence this Equationo
5. Which Equation being fol-
ved by the rules of the 11 th
Chapter the value of a will $a=+\frac{1}{2} b-1+f: f-1 \frac{6 b}{4}$ be found to be

The Proof.

6. If
$a=\frac{1}{2} b+\sqrt{\cdot f+\frac{1}{4} b b:}$
7. Then by fubtracting $\frac{1}{2} 6$ from each part of the equa- $\} a-\frac{1}{2} b=v: \overline{f+\frac{1}{4} b b: ~}$ tion there remaineth.
8. Then by fquaring each part $a a-b a+\frac{3}{4} b b=f+\frac{1}{4} b b:$ of the equation you have
9. And by fubtracting $\left.\frac{1}{4} \quad 6 b\right\}$ from both fides of the equa- $\{\quad a a-b a=f$ tion there remaineth which was to be proved

$$
Q \cup E S T \cdot 10
$$

1. Let c and d be put for two fuch known Quantities that d not $-\frac{1}{4} c c$, and let a beeput. for a quantity unknown, and let it be granted that $c a-a a=d$ what is the value of a ?
2. The given equation in the firft ftep is one of the third form mentioned in the beginning of the fifteenth Chapter, and it will be found that the 2 values of a are

$$
a=\frac{1}{2} c-1
$$

$$
\begin{aligned}
& a={ }_{2}^{1} c-1-\sqrt{2} 1{ }_{4} c c-d \\
& a=\sqrt{1}=\sqrt{1 \frac{1}{4} c c-d}
\end{aligned}
$$

By either of which values of a the Equation propounded in the firft ftep may be expounded, as will appear by the

$$
\dot{D} E M O N S T R A T I O N
$$

1. If
2. Then by the tranfpofition of $\frac{3}{2} c$ to the contrary coaft,
it is
3. And by quaring each part of the laft Equation, it is
$a a-c a-1-\frac{1}{4} c c=4 c c-a$
4. And by fubtracting $\left.{ }_{4}{ }_{4} c c\right\rangle$
from each part of the equa- $\quad a \pi-c a=-d$ tion, it is
5. And by changing the figns?
on the quantities on each $\} \quad c a-a n=d$ fide of the equation, it is S

Which was to be demonftrated.

6. Again, if

$$
a=\frac{1}{2} c-v: \overline{\frac{1}{4} c c-d}
$$

7. Then by tranfpofition of? $V: \overline{16 c-d}$ to the other fide $\} a+r: \overline{4} c c-d:=\frac{1}{4} c c$ it is
8. And by tranfpofition of a it is
9. And by fquaring each part?
of the equation it will then $\}^{3}+6 \cdot d=46 c-6 n-1$ ar be quation, it is
II. And the quantitics on both fides of the equation being tranfpored to the contrary coaft, and the figns of each thereby changed, the equation will then be which was likewife to be proved.

$$
Q U E S T . \quad 2
$$

Let it be required to divide 100 into two fuch parts that if each part be divided by the other, the fum of the Quotients may be 3. This is Queft.I. of the ninth Chapter of the fecond Book of Ker \int ey's Elements of Algebra, and it is thus wrought, viz. 1. For one of the parts fought put
2. Then will the other be
in the firft and fecond fteps being mutually divided by each other (according to (
 the import of the queftion) this equation arifeth
4. Which equation being du-
ly reduced, gives
ly reduced, gives $\}$ roon-an=2000
5. Which is an equation of the third form mentioncd in Chap. I 5 . and being folved according to the method there given, the two values of a writ be found to be
Which you may eafily prove at your leifure.

Chap. 18.

CH A P. XVIII.

Algebraical Queftions Refolvel by various Pofitions.

MR. Kersey in the Twelfth Chapter of the fecond Book of his Elements of Algebra, hath laid down Rules for the folution of Queftions Algebraically by various Pofitions; áfluming a pe. culiar letter to reprefent every one of the Quantities fought, viz. a for one unknown Quantity, e for another, and y for a third, oc. and for the performance of the work he hath laid down 3 Rules which are as followeth, viz.

$$
尺 \cup L E \quad
$$

When many Quantities are fought in a QuePion, let them be reprefented by various letters, and let the tenor of the Queftion be reprerented by Equations, which done by Tranfpofiton find what any fingle letter in the firft equaton is equal to; Then wherefoever that Letter is found in the other equations, infead thereof, take what it is found equal to, fo will that letter quite vanish out of the following Equations; Then by Tranipofition ret a fecond letter alone in one of thole equations out of which the first letter was cancelled and proceed as before, fo at

$$
E f 2
$$

length one of the letters will be made known, by help of which the reft will be eafily diforered.

$$
\mathbb{R} \cup L E
$$

When the fame Quantity (fuppofe a) is found in two feveral Equations, and equal Numbers are prefixed to thofe Quantities, then if their ligns be both -1 , or both-, fubtract the lefer Equation from the greater; but if the figns be one -1 , and the other - , then add thofe two Equations together, fo will the faid Quantity a quite vanifh.

$$
R \cup L E B .
$$

When the fame Quantity (fuppofe a) is found in two feveral Equations, but the Numbers prefixed to thofe equal Quantities are unequal, thore two Equations may be reduced to two others which fhall have equal Numbers prefixed to the faid Quantity a thus, viz, Multiply all the Quantities in the firft Equation by the number prefixed to a in the fecond Equation; and alfo multiply all the Quantities in the fecond Equation by the number prefixed to the fame quantity a In the firft Equation, fo by fuch alternate multiplication two new Equations will be produced, wherein the Numbers prefixed to the faid quantity a will be equal to one another, and then proceed according to the fecond Rule, and expel the fame quantity out of the reft of the Equations; proceed in like manner with a fecond quantity, until at length fome one quantity be made known: by which all the reft may be

Chap. 18. by various Pofitions.

 found out. The three foregoing Rules will be exercifed in the Resolution of the following \mathscr{Q}^{2} fins,QUEST. I.

Divide 100 (or c) into two foch Numbers, (viz. a and c) that $\frac{a}{3}+\frac{e}{s}$ may be equal to 30 (or d) I demand the numbers a and e ?
RESOLUTION.

1. If
2. And
3. Then by tranfpofition of?
e in the firft step, you will have
4. By reducing the Equation
in the fecond flex, fo as a may foley poffers one fine thereof, you will have
5. If inftead of a in the $4^{\text {th }}$ step, you take what a is equal to in the third ftep, you will have this equati-) on, viz.
6. The firft part of the equal-? ion in the fifth ftep being $\}$ multiplyed by 5 , will give
7. By the tranfpofition of -se it is
8. And by the tranfpofition? of is in the haft flex, you

$$
5 c-15 d=2 e
$$ have

$$
\mathrm{Ff}_{3} \quad 9 \text { Each }
$$

Chap. 18.

 9. Each part of the Equati--on in the lat step being divided by 2 , will give the value of e, viz.
I fay the value of e is 25 , and the value of a is $100-25=75$, which will anfwer the Conditions of the Queftion. As appears by

The Proof.

$$
\begin{gathered}
25+75=100 \text {; and } \frac{25}{3}+5=30 \\
\text { QUEST. } 2 .
\end{gathered}
$$

There are two Numbers (a the greater, and e the lefter) whole difference 4 (orb) and the difference of their Squares is σ_{4} (or c) what are the Numbers?
RESOLUTION.

1. If
2. Then by the tranfpofition $\}$
$a-c=b$

$$
a=b+i
$$

3. And if
4. Then by tranfpofition of ce it is
5. If both parts of the equa- 2 Lion in the fecond step be $\{a a=b b+2 b e+c e$
fquared, it will be
6. And if instead of $a \operatorname{a}$ in the fifth Equation, you place what it is equal to in the fourth flee, the Equation will then be

$$
c+e e=b b+2 b c+c e
$$

7. By fubtracting ce from both? parts of the lat equation $\{\quad c=6 b+2 b e$ you will have
8. By dividing both parts of? the lat equation by b, you $\} \quad \frac{c}{b}=b-1-2 c$. will then have
9. By tranfpolition of b in the?
lat step, the Equation will $\} \quad \frac{c}{b} b=2 e$ then be
10. And if both parts of the equation in the lat ftep be divided by 2 , the value of $\quad \frac{c}{26} \frac{b}{2}=0$ e will then be difcovered to be
I fay the value of e (the lifer number) is σ, and by the fecond step (a) the greater number is $e-16=6+4=10$, which two numbers, (viz, 10 and σ) will fatisfie the Conditions of the Queftion, as will appear by

The Proof.

to - $6=4$, and $\overline{10 \times 10}-\overline{6 \times 6}=64$

$$
\text { QUEST. } 3 .
$$

A Maid being at Market fold rodozen of Eggs, and twelve Pounds of Butter for thirteen Shillings. And at another time, and at the fame rate, the felleth Eight dozen of Eggs, and 18 pounds of Butter for 16 fillings, I demand how the fold her Eggs per dozen, and her butter per pound?
Let a reprefent the defired value of a dozen of Eggs, and for the price of a pound of Butter Ff. 4 put

428 Refolution of Queftions. Chap. 18. put c, and then may the queftion, being abftracted from words, be ftated thus, viz.

1. If
2. And

$$
\begin{array}{r}
10 a-1-12 e=13 \\
8 a-18 c=16
\end{array}
$$

What are the values of a and e ?

$$
\text { RESOLVT } 10 \mathrm{~N} .
$$

3. By tranfpofition of $12 c$ in? the firft ftep, that equation $10,0=13-12 e$ will be
4. And both parts of the laft? $\begin{aligned} & \text { equation being divided by } \\ & 10 \text {, it is } \\ & S\end{aligned} a=\frac{13-128}{10}$
5. By tranfpofition of $8 e$ in? the fecond ftep, that equation will be $8 a=16-18 e$
6. Each part of the laft equation being divided by' $8,5 \quad a=\frac{16 \ldots 18 e}{8}$
will give
7. If inftead of a in the fixth? Itep, you place what it is equal to in the fourth ftep,
$\frac{13 \cdots-12 e}{10}=\frac{16-\cdots 18 e}{8}$ the equation will then be
8. Both parts of the laft E ? quation veing reduced to $104 \cdots-960=160 \cdots 1806$ Integers will give each to the contrary coaft, che equation will then be?

$$
84 c=56
$$

Chap. 18. by various Pofitions.
429
10. If each part of the laft Equation be divided by 84 , the value of e will be difcovered to be

which is 8 d . for the price of one pound of Butter.
ir. By the tenth ftep the value of e is difcovered to be $\frac{2}{3}$ s. by which means the value of a (by the quantities in the fonrth and fixth fteps.) is found to be $6 d$. for the 4 th Itep, is
And it hath been found before, that $=_{5}^{2} s$, fo that $12 e=12 * \frac{2}{3} s=8$ s. and $\frac{33 s, \cdots 8 s}{10}=\frac{5}{105}=6 d$. ro the Maid fold her Eggs at σd. per dozen, and her Butter at 8 d. per pound, which will anfwer the conditions of the queftion.
QUEST:

Three Men, viz. $A, B ;$ and C difcoure thus together concerning their Age ; quoth B to A, your age added to mine is 54 (or b) years; quoth C to B, and my age added to yours makes 78 (orc) years? and quoth A to C, my age added to yours is 72 (or d) years. I demand the age of eacli perfon?

Let the age of each Perfon be reprefented by the letters acy, viz. for the age of A put a, for the age of B put e, and for the age of C_{p} pt y; and the Qustiom being abframed from words, will be as followeth, uiz.

1. If
2. And
3. And

$$
\begin{array}{r}
a+c=b(=54) \\
c+y=c=78) \\
y+a=d=72)
\end{array}
$$

What are the values of $a e$ and y ?
RESOLUTION.
4. By tranfpofition of e in the firth then there will arise. $\}$ 5. If inftead of a in the third to in the fourth step, there
will arife
6. By the tranfpofition of d ? and e in the laft ftep, there arifeth

$$
e=y+6-d
$$

7. And if inftead of ϵ in the fecond ftep you take the lat-? ter part of the filth ftep,
there will then arife

8. In which lat equation there is no unknown quantity but
$\%_{0}$ and therefore the equation being duly reduced, will difcover the value of y to be 3 9. If in the firth ftep inftead of y you take the latter part of the equation in the eighth ftep, the value of e will be found to be
9. And if instead of e in the fourth flee; you take the? latter part of the Equation in the ninth ftep, the value of a will be difcovered, viz. 5

Chap. 18. by various Pofitions.
And thus the work is finihed, and the equations in the eighth, ninth, and tenth feps prefent you with this

$$
C A \cdot N O N .
$$

From the fum of every two of the three given Numbers fubtract the third number remaining, fo fhall the three remaining numbers being divided by 2 be the Numbers fought. So the Number fought in the Queftion, viz. a, e, and y, are found to be 24,30, and 48, viz. the age of A is 24 , the age of B is 30 , and the age of C is 48 , which three Numbers will fatisfie the Conditions of the Queftion for $24-1-30=54$, and $30+48=78$, and $48+24=72$:
QUESTIONS.

What two Numbers are thofe whofe fum is 20 , (or b) and their difference 4 (or c)?
Let a be pur for the greater Number fought ${ }_{3}$ and e for the leffer, and then the Queftion bcing extracted from words may be ftated thus, $v i_{\boldsymbol{z}}$.

1. If
2. And

What are a and e ?

$$
\begin{gathered}
a+c=b(20) \\
a-e=c(4)
\end{gathered}
$$

RESOLVTION.
3. Forafmuch as $+1 a$ is found in each of the equations in the firtt and fecond fteps, therefore (by the fecond
 Rule) they being fubtracted, do give this Equation, viz.
is equal to in the fourth $a-\frac{1}{2} b-1-\frac{1}{2} c=$.
frep, you will have this $E-\{$
quation, viz.
6. By the tranfpofition of $-\frac{1}{2} b$
and $+\frac{.}{2} c$ to the contrary
coaft, the value of a will bes $a=\frac{1}{2} b+\gamma^{\frac{2}{x}} c$
difonvered, viz.
From the fourth and fixth fteps is raifed this

$$
C A N O N
$$

If from half the fum of two numbers you fubtract half their difference, the remainder will be the leffer number; and if to half their fum you add half their Difference, that fum will be the greater number, whereby the two numbers fought in this Queftion are found to be 12 and 8 ; for $12+8=20$ and $12-8=4$.

$$
Q U E S T .6
$$

What 3 Numbers are thofe, that if to the firf there be added 121 (or b) the fum will be equal to the fum of the firft and fccond; and if to the fecond there be added 121 , the fum will be equal to double the fum of the frift and third; and if to the thirs liere be added 12 ; their fum will be trible the fum of the firft and fecond?
if for whe number fought you put $a_{0} e$, and y, zige for the firf number a_{2} for the fecond e.

Chap. 18. by various Pofitions.

and for the third y, then the Queftion being abftracted from words, may be ftated thus, viz.

1. If
2. And
3. And

$$
\begin{aligned}
& a-1-b=c-1 y \\
& c+b=2 a-2 y \\
& y+b=3 a-1-3
\end{aligned}
$$

What are the Numbers a ey?
RESOLVTION.
4. By the tranfpofition of y in? the firft Equation; thereari- $\{\quad a+b-y=\varepsilon$ feth
5. And if inftead of e in the fecond Equation you take what is equal thereto in the fourth equation, there arifeth

$$
a+b-y+b=2 a+-3 y
$$

6. The lar Equation after due?
$2 b=a+3 y$ reduction will be
7. And if intead of $3 e$ in the third Equation you take the triple of what e is found equal to, in the fourth fep, you will find the following Equation to arife, viz.

$$
y+b=3 a+3 a+3 b-3 y
$$

8. Which Equation after due \not reduction by tranfpofition the quantities will be found to be
9. And both parts of the laft?

Equation being divided by $\}$ 4 there arifeth S
$4 y=6 a+2 b$

$$
y=3-1-\frac{1}{2} 4
$$

434
 Refolution of Queftions
 Chap. 18.

10. Then if inftead of $3 y$ in the fixth equation there be taken the triple of the latter part of the ninth equation, there arifeth
II. After due Reduction of the equation in the tenth? ftep, the value of a will be difcovered, viz.
11. Again, if initead of a the? fixth Equation you put the latter part of the Eleventh Equation, there arifeth
12. After due reduction of the equation in the twelfth itep, the value of y will be difcovered to be
13. And if for a and y in the? fourth ftep there be put? their equals in the in thand 13 th fleps there will arife
14. The Equation in the lart? Itep being duly reduced, winl $\}$ difcover the value of e, viz. $\}$

$$
\frac{b}{11}+-\frac{i b}{11}=e
$$

From the clerenth, thirteenth, and fifteenth fteps is gathered this

$$
C A N O N .
$$

If the number given to be added to the three numbers required be divided by in, the Quotient will give the firlt number, and its Quintuple (or Product by s) being divided by is will give the fecond number, and its feptuple (or product

Chap. 18. by various Pefitions.
duct by 7) being divided by II, will give the third number.

By which Canon the numbers required in the Queftion are 1t, 55, and 77, (the fecond being 5 times as much as the firft, and the third is 7 times as much as the firft? which faid numbers will fatisfie the conditions of the Queftion, as will appear by

$$
\begin{aligned}
& \text { PROOOF. } \\
& 11+121=55-77=132 . \\
& \text { And } 55-121=2 \times 11+77=176 . \\
& \text { And } 77+121=3 \times 11+55=198 . \\
& \text { which was to bedone. }
\end{aligned}
$$

QUEST. 7.

What two numbers are thofe that if to 10 times the greater there be added fix times the leffer, the fum will be 228 (or 6) and if from 4 times the greater you fubtract 2 times the leffer, the remainder will be $\varsigma \sigma$ (or c)? For the two numbers put a and \hat{e}, and then the foregoing queftion being abftracted from words, may be fated thus. viz.
I. If
2. And

$$
\begin{array}{r}
10 a-1-\sigma=b \\
4 a-2 \epsilon=c
\end{array}
$$

What are the numbers a and ε ?
RESOLUTION.
3. The firit equation (according to the third Rulc) being multiplyed by 4, which

$$
40 a+-2+c=45
$$ is prefixed to a in the $\mathrm{fe}-$) cond equation, produceth which is prefixed to a in the frt, it produceth

5. And if from the Equation in the third step you fubtract the equation in the fourth ftp, becaufe 40 a is found in both, (according to the fecong Rule) there atifeth this equation, viz.
6. Both parts of the equation in the fifth ?ep, being devided by 44 the value of e will be difcovered to be
7. If instead of - $2 c$ in the fecond ftep you put double the latter part of the equaton in the uxth flem, you will have this equation 8. The feventh equation be? ing curly reduce d, the value of a will be difcover'd to be \int

$$
e=\frac{4 b-10 c}{44}
$$

$$
44^{6}=4 b-10 c
$$

$$
4 a-\frac{2 b-3 c t}{1!}=c
$$

$$
a=\frac{\sigma \sigma+26}{44}
$$

By the firth and cighth steps the numbers fought are 18 and 8 , which will anfwer the conditions of the Queffiom, as you may perceive by

The Proof.

$$
\begin{aligned}
& 10 \times 18+6 \times 8=228 \\
& \text { And } \\
& 4 \times 18-2 \times 8=56
\end{aligned}
$$

Soli Dea Gloria.

$$
F I N I S .
$$

\int • \cdot

$$
\text { MAK : } 1934
$$

1

[^0]: Nis?

